x86: Resolve PLT32 reloc aganst local symbol to section
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef INFER_ADDR_PREFIX
48 #define INFER_ADDR_PREFIX 1
49 #endif
50
51 #ifndef DEFAULT_ARCH
52 #define DEFAULT_ARCH "i386"
53 #endif
54
55 #ifndef INLINE
56 #if __GNUC__ >= 2
57 #define INLINE __inline__
58 #else
59 #define INLINE
60 #endif
61 #endif
62
63 /* Prefixes will be emitted in the order defined below.
64 WAIT_PREFIX must be the first prefix since FWAIT is really is an
65 instruction, and so must come before any prefixes.
66 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
67 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
68 #define WAIT_PREFIX 0
69 #define SEG_PREFIX 1
70 #define ADDR_PREFIX 2
71 #define DATA_PREFIX 3
72 #define REP_PREFIX 4
73 #define HLE_PREFIX REP_PREFIX
74 #define BND_PREFIX REP_PREFIX
75 #define LOCK_PREFIX 5
76 #define REX_PREFIX 6 /* must come last. */
77 #define MAX_PREFIXES 7 /* max prefixes per opcode */
78
79 /* we define the syntax here (modulo base,index,scale syntax) */
80 #define REGISTER_PREFIX '%'
81 #define IMMEDIATE_PREFIX '$'
82 #define ABSOLUTE_PREFIX '*'
83
84 /* these are the instruction mnemonic suffixes in AT&T syntax or
85 memory operand size in Intel syntax. */
86 #define WORD_MNEM_SUFFIX 'w'
87 #define BYTE_MNEM_SUFFIX 'b'
88 #define SHORT_MNEM_SUFFIX 's'
89 #define LONG_MNEM_SUFFIX 'l'
90 #define QWORD_MNEM_SUFFIX 'q'
91 /* Intel Syntax. Use a non-ascii letter since since it never appears
92 in instructions. */
93 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
94
95 #define END_OF_INSN '\0'
96
97 /* This matches the C -> StaticRounding alias in the opcode table. */
98 #define commutative staticrounding
99
100 /*
101 'templates' is for grouping together 'template' structures for opcodes
102 of the same name. This is only used for storing the insns in the grand
103 ole hash table of insns.
104 The templates themselves start at START and range up to (but not including)
105 END.
106 */
107 typedef struct
108 {
109 const insn_template *start;
110 const insn_template *end;
111 }
112 templates;
113
114 /* 386 operand encoding bytes: see 386 book for details of this. */
115 typedef struct
116 {
117 unsigned int regmem; /* codes register or memory operand */
118 unsigned int reg; /* codes register operand (or extended opcode) */
119 unsigned int mode; /* how to interpret regmem & reg */
120 }
121 modrm_byte;
122
123 /* x86-64 extension prefix. */
124 typedef int rex_byte;
125
126 /* 386 opcode byte to code indirect addressing. */
127 typedef struct
128 {
129 unsigned base;
130 unsigned index;
131 unsigned scale;
132 }
133 sib_byte;
134
135 /* x86 arch names, types and features */
136 typedef struct
137 {
138 const char *name; /* arch name */
139 unsigned int len; /* arch string length */
140 enum processor_type type; /* arch type */
141 i386_cpu_flags flags; /* cpu feature flags */
142 unsigned int skip; /* show_arch should skip this. */
143 }
144 arch_entry;
145
146 /* Used to turn off indicated flags. */
147 typedef struct
148 {
149 const char *name; /* arch name */
150 unsigned int len; /* arch string length */
151 i386_cpu_flags flags; /* cpu feature flags */
152 }
153 noarch_entry;
154
155 static void update_code_flag (int, int);
156 static void set_code_flag (int);
157 static void set_16bit_gcc_code_flag (int);
158 static void set_intel_syntax (int);
159 static void set_intel_mnemonic (int);
160 static void set_allow_index_reg (int);
161 static void set_check (int);
162 static void set_cpu_arch (int);
163 #ifdef TE_PE
164 static void pe_directive_secrel (int);
165 #endif
166 static void signed_cons (int);
167 static char *output_invalid (int c);
168 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
169 const char *);
170 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
171 const char *);
172 static int i386_att_operand (char *);
173 static int i386_intel_operand (char *, int);
174 static int i386_intel_simplify (expressionS *);
175 static int i386_intel_parse_name (const char *, expressionS *);
176 static const reg_entry *parse_register (char *, char **);
177 static char *parse_insn (char *, char *);
178 static char *parse_operands (char *, const char *);
179 static void swap_operands (void);
180 static void swap_2_operands (int, int);
181 static enum flag_code i386_addressing_mode (void);
182 static void optimize_imm (void);
183 static void optimize_disp (void);
184 static const insn_template *match_template (char);
185 static int check_string (void);
186 static int process_suffix (void);
187 static int check_byte_reg (void);
188 static int check_long_reg (void);
189 static int check_qword_reg (void);
190 static int check_word_reg (void);
191 static int finalize_imm (void);
192 static int process_operands (void);
193 static const seg_entry *build_modrm_byte (void);
194 static void output_insn (void);
195 static void output_imm (fragS *, offsetT);
196 static void output_disp (fragS *, offsetT);
197 #ifndef I386COFF
198 static void s_bss (int);
199 #endif
200 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201 static void handle_large_common (int small ATTRIBUTE_UNUSED);
202
203 /* GNU_PROPERTY_X86_ISA_1_USED. */
204 static unsigned int x86_isa_1_used;
205 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
206 static unsigned int x86_feature_2_used;
207 /* Generate x86 used ISA and feature properties. */
208 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
209 #endif
210
211 static const char *default_arch = DEFAULT_ARCH;
212
213 /* This struct describes rounding control and SAE in the instruction. */
214 struct RC_Operation
215 {
216 enum rc_type
217 {
218 rne = 0,
219 rd,
220 ru,
221 rz,
222 saeonly
223 } type;
224 int operand;
225 };
226
227 static struct RC_Operation rc_op;
228
229 /* The struct describes masking, applied to OPERAND in the instruction.
230 MASK is a pointer to the corresponding mask register. ZEROING tells
231 whether merging or zeroing mask is used. */
232 struct Mask_Operation
233 {
234 const reg_entry *mask;
235 unsigned int zeroing;
236 /* The operand where this operation is associated. */
237 int operand;
238 };
239
240 static struct Mask_Operation mask_op;
241
242 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
243 broadcast factor. */
244 struct Broadcast_Operation
245 {
246 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
247 int type;
248
249 /* Index of broadcasted operand. */
250 int operand;
251
252 /* Number of bytes to broadcast. */
253 int bytes;
254 };
255
256 static struct Broadcast_Operation broadcast_op;
257
258 /* VEX prefix. */
259 typedef struct
260 {
261 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
262 unsigned char bytes[4];
263 unsigned int length;
264 /* Destination or source register specifier. */
265 const reg_entry *register_specifier;
266 } vex_prefix;
267
268 /* 'md_assemble ()' gathers together information and puts it into a
269 i386_insn. */
270
271 union i386_op
272 {
273 expressionS *disps;
274 expressionS *imms;
275 const reg_entry *regs;
276 };
277
278 enum i386_error
279 {
280 operand_size_mismatch,
281 operand_type_mismatch,
282 register_type_mismatch,
283 number_of_operands_mismatch,
284 invalid_instruction_suffix,
285 bad_imm4,
286 unsupported_with_intel_mnemonic,
287 unsupported_syntax,
288 unsupported,
289 invalid_vsib_address,
290 invalid_vector_register_set,
291 unsupported_vector_index_register,
292 unsupported_broadcast,
293 broadcast_needed,
294 unsupported_masking,
295 mask_not_on_destination,
296 no_default_mask,
297 unsupported_rc_sae,
298 rc_sae_operand_not_last_imm,
299 invalid_register_operand,
300 };
301
302 struct _i386_insn
303 {
304 /* TM holds the template for the insn were currently assembling. */
305 insn_template tm;
306
307 /* SUFFIX holds the instruction size suffix for byte, word, dword
308 or qword, if given. */
309 char suffix;
310
311 /* OPERANDS gives the number of given operands. */
312 unsigned int operands;
313
314 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
315 of given register, displacement, memory operands and immediate
316 operands. */
317 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
318
319 /* TYPES [i] is the type (see above #defines) which tells us how to
320 use OP[i] for the corresponding operand. */
321 i386_operand_type types[MAX_OPERANDS];
322
323 /* Displacement expression, immediate expression, or register for each
324 operand. */
325 union i386_op op[MAX_OPERANDS];
326
327 /* Flags for operands. */
328 unsigned int flags[MAX_OPERANDS];
329 #define Operand_PCrel 1
330 #define Operand_Mem 2
331
332 /* Relocation type for operand */
333 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
334
335 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
336 the base index byte below. */
337 const reg_entry *base_reg;
338 const reg_entry *index_reg;
339 unsigned int log2_scale_factor;
340
341 /* SEG gives the seg_entries of this insn. They are zero unless
342 explicit segment overrides are given. */
343 const seg_entry *seg[2];
344
345 /* Copied first memory operand string, for re-checking. */
346 char *memop1_string;
347
348 /* PREFIX holds all the given prefix opcodes (usually null).
349 PREFIXES is the number of prefix opcodes. */
350 unsigned int prefixes;
351 unsigned char prefix[MAX_PREFIXES];
352
353 /* Register is in low 3 bits of opcode. */
354 bfd_boolean short_form;
355
356 /* The operand to a branch insn indicates an absolute branch. */
357 bfd_boolean jumpabsolute;
358
359 /* Has MMX register operands. */
360 bfd_boolean has_regmmx;
361
362 /* Has XMM register operands. */
363 bfd_boolean has_regxmm;
364
365 /* Has YMM register operands. */
366 bfd_boolean has_regymm;
367
368 /* Has ZMM register operands. */
369 bfd_boolean has_regzmm;
370
371 /* Has GOTPC or TLS relocation. */
372 bfd_boolean has_gotpc_tls_reloc;
373
374 /* RM and SIB are the modrm byte and the sib byte where the
375 addressing modes of this insn are encoded. */
376 modrm_byte rm;
377 rex_byte rex;
378 rex_byte vrex;
379 sib_byte sib;
380 vex_prefix vex;
381
382 /* Masking attributes. */
383 struct Mask_Operation *mask;
384
385 /* Rounding control and SAE attributes. */
386 struct RC_Operation *rounding;
387
388 /* Broadcasting attributes. */
389 struct Broadcast_Operation *broadcast;
390
391 /* Compressed disp8*N attribute. */
392 unsigned int memshift;
393
394 /* Prefer load or store in encoding. */
395 enum
396 {
397 dir_encoding_default = 0,
398 dir_encoding_load,
399 dir_encoding_store,
400 dir_encoding_swap
401 } dir_encoding;
402
403 /* Prefer 8bit or 32bit displacement in encoding. */
404 enum
405 {
406 disp_encoding_default = 0,
407 disp_encoding_8bit,
408 disp_encoding_32bit
409 } disp_encoding;
410
411 /* Prefer the REX byte in encoding. */
412 bfd_boolean rex_encoding;
413
414 /* Disable instruction size optimization. */
415 bfd_boolean no_optimize;
416
417 /* How to encode vector instructions. */
418 enum
419 {
420 vex_encoding_default = 0,
421 vex_encoding_vex,
422 vex_encoding_vex3,
423 vex_encoding_evex
424 } vec_encoding;
425
426 /* REP prefix. */
427 const char *rep_prefix;
428
429 /* HLE prefix. */
430 const char *hle_prefix;
431
432 /* Have BND prefix. */
433 const char *bnd_prefix;
434
435 /* Have NOTRACK prefix. */
436 const char *notrack_prefix;
437
438 /* Error message. */
439 enum i386_error error;
440 };
441
442 typedef struct _i386_insn i386_insn;
443
444 /* Link RC type with corresponding string, that'll be looked for in
445 asm. */
446 struct RC_name
447 {
448 enum rc_type type;
449 const char *name;
450 unsigned int len;
451 };
452
453 static const struct RC_name RC_NamesTable[] =
454 {
455 { rne, STRING_COMMA_LEN ("rn-sae") },
456 { rd, STRING_COMMA_LEN ("rd-sae") },
457 { ru, STRING_COMMA_LEN ("ru-sae") },
458 { rz, STRING_COMMA_LEN ("rz-sae") },
459 { saeonly, STRING_COMMA_LEN ("sae") },
460 };
461
462 /* List of chars besides those in app.c:symbol_chars that can start an
463 operand. Used to prevent the scrubber eating vital white-space. */
464 const char extra_symbol_chars[] = "*%-([{}"
465 #ifdef LEX_AT
466 "@"
467 #endif
468 #ifdef LEX_QM
469 "?"
470 #endif
471 ;
472
473 #if (defined (TE_I386AIX) \
474 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
475 && !defined (TE_GNU) \
476 && !defined (TE_LINUX) \
477 && !defined (TE_NACL) \
478 && !defined (TE_FreeBSD) \
479 && !defined (TE_DragonFly) \
480 && !defined (TE_NetBSD)))
481 /* This array holds the chars that always start a comment. If the
482 pre-processor is disabled, these aren't very useful. The option
483 --divide will remove '/' from this list. */
484 const char *i386_comment_chars = "#/";
485 #define SVR4_COMMENT_CHARS 1
486 #define PREFIX_SEPARATOR '\\'
487
488 #else
489 const char *i386_comment_chars = "#";
490 #define PREFIX_SEPARATOR '/'
491 #endif
492
493 /* This array holds the chars that only start a comment at the beginning of
494 a line. If the line seems to have the form '# 123 filename'
495 .line and .file directives will appear in the pre-processed output.
496 Note that input_file.c hand checks for '#' at the beginning of the
497 first line of the input file. This is because the compiler outputs
498 #NO_APP at the beginning of its output.
499 Also note that comments started like this one will always work if
500 '/' isn't otherwise defined. */
501 const char line_comment_chars[] = "#/";
502
503 const char line_separator_chars[] = ";";
504
505 /* Chars that can be used to separate mant from exp in floating point
506 nums. */
507 const char EXP_CHARS[] = "eE";
508
509 /* Chars that mean this number is a floating point constant
510 As in 0f12.456
511 or 0d1.2345e12. */
512 const char FLT_CHARS[] = "fFdDxX";
513
514 /* Tables for lexical analysis. */
515 static char mnemonic_chars[256];
516 static char register_chars[256];
517 static char operand_chars[256];
518 static char identifier_chars[256];
519 static char digit_chars[256];
520
521 /* Lexical macros. */
522 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
523 #define is_operand_char(x) (operand_chars[(unsigned char) x])
524 #define is_register_char(x) (register_chars[(unsigned char) x])
525 #define is_space_char(x) ((x) == ' ')
526 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
527 #define is_digit_char(x) (digit_chars[(unsigned char) x])
528
529 /* All non-digit non-letter characters that may occur in an operand. */
530 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
531
532 /* md_assemble() always leaves the strings it's passed unaltered. To
533 effect this we maintain a stack of saved characters that we've smashed
534 with '\0's (indicating end of strings for various sub-fields of the
535 assembler instruction). */
536 static char save_stack[32];
537 static char *save_stack_p;
538 #define END_STRING_AND_SAVE(s) \
539 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
540 #define RESTORE_END_STRING(s) \
541 do { *(s) = *--save_stack_p; } while (0)
542
543 /* The instruction we're assembling. */
544 static i386_insn i;
545
546 /* Possible templates for current insn. */
547 static const templates *current_templates;
548
549 /* Per instruction expressionS buffers: max displacements & immediates. */
550 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
551 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
552
553 /* Current operand we are working on. */
554 static int this_operand = -1;
555
556 /* We support four different modes. FLAG_CODE variable is used to distinguish
557 these. */
558
559 enum flag_code {
560 CODE_32BIT,
561 CODE_16BIT,
562 CODE_64BIT };
563
564 static enum flag_code flag_code;
565 static unsigned int object_64bit;
566 static unsigned int disallow_64bit_reloc;
567 static int use_rela_relocations = 0;
568 /* __tls_get_addr/___tls_get_addr symbol for TLS. */
569 static const char *tls_get_addr;
570
571 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
572 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
573 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
574
575 /* The ELF ABI to use. */
576 enum x86_elf_abi
577 {
578 I386_ABI,
579 X86_64_ABI,
580 X86_64_X32_ABI
581 };
582
583 static enum x86_elf_abi x86_elf_abi = I386_ABI;
584 #endif
585
586 #if defined (TE_PE) || defined (TE_PEP)
587 /* Use big object file format. */
588 static int use_big_obj = 0;
589 #endif
590
591 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
592 /* 1 if generating code for a shared library. */
593 static int shared = 0;
594 #endif
595
596 /* 1 for intel syntax,
597 0 if att syntax. */
598 static int intel_syntax = 0;
599
600 static enum x86_64_isa
601 {
602 amd64 = 1, /* AMD64 ISA. */
603 intel64 /* Intel64 ISA. */
604 } isa64;
605
606 /* 1 for intel mnemonic,
607 0 if att mnemonic. */
608 static int intel_mnemonic = !SYSV386_COMPAT;
609
610 /* 1 if pseudo registers are permitted. */
611 static int allow_pseudo_reg = 0;
612
613 /* 1 if register prefix % not required. */
614 static int allow_naked_reg = 0;
615
616 /* 1 if the assembler should add BND prefix for all control-transferring
617 instructions supporting it, even if this prefix wasn't specified
618 explicitly. */
619 static int add_bnd_prefix = 0;
620
621 /* 1 if pseudo index register, eiz/riz, is allowed . */
622 static int allow_index_reg = 0;
623
624 /* 1 if the assembler should ignore LOCK prefix, even if it was
625 specified explicitly. */
626 static int omit_lock_prefix = 0;
627
628 /* 1 if the assembler should encode lfence, mfence, and sfence as
629 "lock addl $0, (%{re}sp)". */
630 static int avoid_fence = 0;
631
632 /* Type of the previous instruction. */
633 static struct
634 {
635 segT seg;
636 const char *file;
637 const char *name;
638 unsigned int line;
639 enum last_insn_kind
640 {
641 last_insn_other = 0,
642 last_insn_directive,
643 last_insn_prefix
644 } kind;
645 } last_insn;
646
647 /* 1 if the assembler should generate relax relocations. */
648
649 static int generate_relax_relocations
650 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
651
652 static enum check_kind
653 {
654 check_none = 0,
655 check_warning,
656 check_error
657 }
658 sse_check, operand_check = check_warning;
659
660 /* Non-zero if branches should be aligned within power of 2 boundary. */
661 static int align_branch_power = 0;
662
663 /* Types of branches to align. */
664 enum align_branch_kind
665 {
666 align_branch_none = 0,
667 align_branch_jcc = 1,
668 align_branch_fused = 2,
669 align_branch_jmp = 3,
670 align_branch_call = 4,
671 align_branch_indirect = 5,
672 align_branch_ret = 6
673 };
674
675 /* Type bits of branches to align. */
676 enum align_branch_bit
677 {
678 align_branch_jcc_bit = 1 << align_branch_jcc,
679 align_branch_fused_bit = 1 << align_branch_fused,
680 align_branch_jmp_bit = 1 << align_branch_jmp,
681 align_branch_call_bit = 1 << align_branch_call,
682 align_branch_indirect_bit = 1 << align_branch_indirect,
683 align_branch_ret_bit = 1 << align_branch_ret
684 };
685
686 static unsigned int align_branch = (align_branch_jcc_bit
687 | align_branch_fused_bit
688 | align_branch_jmp_bit);
689
690 /* The maximum padding size for fused jcc. CMP like instruction can
691 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
692 prefixes. */
693 #define MAX_FUSED_JCC_PADDING_SIZE 20
694
695 /* The maximum number of prefixes added for an instruction. */
696 static unsigned int align_branch_prefix_size = 5;
697
698 /* Optimization:
699 1. Clear the REX_W bit with register operand if possible.
700 2. Above plus use 128bit vector instruction to clear the full vector
701 register.
702 */
703 static int optimize = 0;
704
705 /* Optimization:
706 1. Clear the REX_W bit with register operand if possible.
707 2. Above plus use 128bit vector instruction to clear the full vector
708 register.
709 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
710 "testb $imm7,%r8".
711 */
712 static int optimize_for_space = 0;
713
714 /* Register prefix used for error message. */
715 static const char *register_prefix = "%";
716
717 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
718 leave, push, and pop instructions so that gcc has the same stack
719 frame as in 32 bit mode. */
720 static char stackop_size = '\0';
721
722 /* Non-zero to optimize code alignment. */
723 int optimize_align_code = 1;
724
725 /* Non-zero to quieten some warnings. */
726 static int quiet_warnings = 0;
727
728 /* CPU name. */
729 static const char *cpu_arch_name = NULL;
730 static char *cpu_sub_arch_name = NULL;
731
732 /* CPU feature flags. */
733 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
734
735 /* If we have selected a cpu we are generating instructions for. */
736 static int cpu_arch_tune_set = 0;
737
738 /* Cpu we are generating instructions for. */
739 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
740
741 /* CPU feature flags of cpu we are generating instructions for. */
742 static i386_cpu_flags cpu_arch_tune_flags;
743
744 /* CPU instruction set architecture used. */
745 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
746
747 /* CPU feature flags of instruction set architecture used. */
748 i386_cpu_flags cpu_arch_isa_flags;
749
750 /* If set, conditional jumps are not automatically promoted to handle
751 larger than a byte offset. */
752 static unsigned int no_cond_jump_promotion = 0;
753
754 /* Encode SSE instructions with VEX prefix. */
755 static unsigned int sse2avx;
756
757 /* Encode scalar AVX instructions with specific vector length. */
758 static enum
759 {
760 vex128 = 0,
761 vex256
762 } avxscalar;
763
764 /* Encode VEX WIG instructions with specific vex.w. */
765 static enum
766 {
767 vexw0 = 0,
768 vexw1
769 } vexwig;
770
771 /* Encode scalar EVEX LIG instructions with specific vector length. */
772 static enum
773 {
774 evexl128 = 0,
775 evexl256,
776 evexl512
777 } evexlig;
778
779 /* Encode EVEX WIG instructions with specific evex.w. */
780 static enum
781 {
782 evexw0 = 0,
783 evexw1
784 } evexwig;
785
786 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
787 static enum rc_type evexrcig = rne;
788
789 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
790 static symbolS *GOT_symbol;
791
792 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
793 unsigned int x86_dwarf2_return_column;
794
795 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
796 int x86_cie_data_alignment;
797
798 /* Interface to relax_segment.
799 There are 3 major relax states for 386 jump insns because the
800 different types of jumps add different sizes to frags when we're
801 figuring out what sort of jump to choose to reach a given label.
802
803 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
804 branches which are handled by md_estimate_size_before_relax() and
805 i386_generic_table_relax_frag(). */
806
807 /* Types. */
808 #define UNCOND_JUMP 0
809 #define COND_JUMP 1
810 #define COND_JUMP86 2
811 #define BRANCH_PADDING 3
812 #define BRANCH_PREFIX 4
813 #define FUSED_JCC_PADDING 5
814
815 /* Sizes. */
816 #define CODE16 1
817 #define SMALL 0
818 #define SMALL16 (SMALL | CODE16)
819 #define BIG 2
820 #define BIG16 (BIG | CODE16)
821
822 #ifndef INLINE
823 #ifdef __GNUC__
824 #define INLINE __inline__
825 #else
826 #define INLINE
827 #endif
828 #endif
829
830 #define ENCODE_RELAX_STATE(type, size) \
831 ((relax_substateT) (((type) << 2) | (size)))
832 #define TYPE_FROM_RELAX_STATE(s) \
833 ((s) >> 2)
834 #define DISP_SIZE_FROM_RELAX_STATE(s) \
835 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
836
837 /* This table is used by relax_frag to promote short jumps to long
838 ones where necessary. SMALL (short) jumps may be promoted to BIG
839 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
840 don't allow a short jump in a 32 bit code segment to be promoted to
841 a 16 bit offset jump because it's slower (requires data size
842 prefix), and doesn't work, unless the destination is in the bottom
843 64k of the code segment (The top 16 bits of eip are zeroed). */
844
845 const relax_typeS md_relax_table[] =
846 {
847 /* The fields are:
848 1) most positive reach of this state,
849 2) most negative reach of this state,
850 3) how many bytes this mode will have in the variable part of the frag
851 4) which index into the table to try if we can't fit into this one. */
852
853 /* UNCOND_JUMP states. */
854 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
855 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
856 /* dword jmp adds 4 bytes to frag:
857 0 extra opcode bytes, 4 displacement bytes. */
858 {0, 0, 4, 0},
859 /* word jmp adds 2 byte2 to frag:
860 0 extra opcode bytes, 2 displacement bytes. */
861 {0, 0, 2, 0},
862
863 /* COND_JUMP states. */
864 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
865 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
866 /* dword conditionals adds 5 bytes to frag:
867 1 extra opcode byte, 4 displacement bytes. */
868 {0, 0, 5, 0},
869 /* word conditionals add 3 bytes to frag:
870 1 extra opcode byte, 2 displacement bytes. */
871 {0, 0, 3, 0},
872
873 /* COND_JUMP86 states. */
874 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
875 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
876 /* dword conditionals adds 5 bytes to frag:
877 1 extra opcode byte, 4 displacement bytes. */
878 {0, 0, 5, 0},
879 /* word conditionals add 4 bytes to frag:
880 1 displacement byte and a 3 byte long branch insn. */
881 {0, 0, 4, 0}
882 };
883
884 static const arch_entry cpu_arch[] =
885 {
886 /* Do not replace the first two entries - i386_target_format()
887 relies on them being there in this order. */
888 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
889 CPU_GENERIC32_FLAGS, 0 },
890 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
891 CPU_GENERIC64_FLAGS, 0 },
892 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
893 CPU_NONE_FLAGS, 0 },
894 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
895 CPU_I186_FLAGS, 0 },
896 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
897 CPU_I286_FLAGS, 0 },
898 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
899 CPU_I386_FLAGS, 0 },
900 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
901 CPU_I486_FLAGS, 0 },
902 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
903 CPU_I586_FLAGS, 0 },
904 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
905 CPU_I686_FLAGS, 0 },
906 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
907 CPU_I586_FLAGS, 0 },
908 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
909 CPU_PENTIUMPRO_FLAGS, 0 },
910 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
911 CPU_P2_FLAGS, 0 },
912 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
913 CPU_P3_FLAGS, 0 },
914 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
915 CPU_P4_FLAGS, 0 },
916 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
917 CPU_CORE_FLAGS, 0 },
918 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
919 CPU_NOCONA_FLAGS, 0 },
920 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
921 CPU_CORE_FLAGS, 1 },
922 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
923 CPU_CORE_FLAGS, 0 },
924 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
925 CPU_CORE2_FLAGS, 1 },
926 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
927 CPU_CORE2_FLAGS, 0 },
928 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
929 CPU_COREI7_FLAGS, 0 },
930 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
931 CPU_L1OM_FLAGS, 0 },
932 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
933 CPU_K1OM_FLAGS, 0 },
934 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
935 CPU_IAMCU_FLAGS, 0 },
936 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
937 CPU_K6_FLAGS, 0 },
938 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
939 CPU_K6_2_FLAGS, 0 },
940 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
941 CPU_ATHLON_FLAGS, 0 },
942 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
943 CPU_K8_FLAGS, 1 },
944 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
945 CPU_K8_FLAGS, 0 },
946 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
947 CPU_K8_FLAGS, 0 },
948 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
949 CPU_AMDFAM10_FLAGS, 0 },
950 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
951 CPU_BDVER1_FLAGS, 0 },
952 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
953 CPU_BDVER2_FLAGS, 0 },
954 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
955 CPU_BDVER3_FLAGS, 0 },
956 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
957 CPU_BDVER4_FLAGS, 0 },
958 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
959 CPU_ZNVER1_FLAGS, 0 },
960 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
961 CPU_ZNVER2_FLAGS, 0 },
962 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
963 CPU_BTVER1_FLAGS, 0 },
964 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
965 CPU_BTVER2_FLAGS, 0 },
966 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
967 CPU_8087_FLAGS, 0 },
968 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
969 CPU_287_FLAGS, 0 },
970 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
971 CPU_387_FLAGS, 0 },
972 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
973 CPU_687_FLAGS, 0 },
974 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
975 CPU_CMOV_FLAGS, 0 },
976 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
977 CPU_FXSR_FLAGS, 0 },
978 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
979 CPU_MMX_FLAGS, 0 },
980 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
981 CPU_SSE_FLAGS, 0 },
982 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
983 CPU_SSE2_FLAGS, 0 },
984 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
985 CPU_SSE3_FLAGS, 0 },
986 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
987 CPU_SSSE3_FLAGS, 0 },
988 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
989 CPU_SSE4_1_FLAGS, 0 },
990 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
991 CPU_SSE4_2_FLAGS, 0 },
992 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
993 CPU_SSE4_2_FLAGS, 0 },
994 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
995 CPU_AVX_FLAGS, 0 },
996 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
997 CPU_AVX2_FLAGS, 0 },
998 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
999 CPU_AVX512F_FLAGS, 0 },
1000 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
1001 CPU_AVX512CD_FLAGS, 0 },
1002 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
1003 CPU_AVX512ER_FLAGS, 0 },
1004 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
1005 CPU_AVX512PF_FLAGS, 0 },
1006 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
1007 CPU_AVX512DQ_FLAGS, 0 },
1008 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
1009 CPU_AVX512BW_FLAGS, 0 },
1010 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
1011 CPU_AVX512VL_FLAGS, 0 },
1012 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
1013 CPU_VMX_FLAGS, 0 },
1014 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
1015 CPU_VMFUNC_FLAGS, 0 },
1016 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
1017 CPU_SMX_FLAGS, 0 },
1018 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
1019 CPU_XSAVE_FLAGS, 0 },
1020 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
1021 CPU_XSAVEOPT_FLAGS, 0 },
1022 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
1023 CPU_XSAVEC_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
1025 CPU_XSAVES_FLAGS, 0 },
1026 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
1027 CPU_AES_FLAGS, 0 },
1028 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
1029 CPU_PCLMUL_FLAGS, 0 },
1030 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
1031 CPU_PCLMUL_FLAGS, 1 },
1032 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
1033 CPU_FSGSBASE_FLAGS, 0 },
1034 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
1035 CPU_RDRND_FLAGS, 0 },
1036 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
1037 CPU_F16C_FLAGS, 0 },
1038 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
1039 CPU_BMI2_FLAGS, 0 },
1040 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
1041 CPU_FMA_FLAGS, 0 },
1042 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
1043 CPU_FMA4_FLAGS, 0 },
1044 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
1045 CPU_XOP_FLAGS, 0 },
1046 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
1047 CPU_LWP_FLAGS, 0 },
1048 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
1049 CPU_MOVBE_FLAGS, 0 },
1050 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
1051 CPU_CX16_FLAGS, 0 },
1052 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
1053 CPU_EPT_FLAGS, 0 },
1054 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
1055 CPU_LZCNT_FLAGS, 0 },
1056 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
1057 CPU_HLE_FLAGS, 0 },
1058 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
1059 CPU_RTM_FLAGS, 0 },
1060 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
1061 CPU_INVPCID_FLAGS, 0 },
1062 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
1063 CPU_CLFLUSH_FLAGS, 0 },
1064 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
1065 CPU_NOP_FLAGS, 0 },
1066 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
1067 CPU_SYSCALL_FLAGS, 0 },
1068 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
1069 CPU_RDTSCP_FLAGS, 0 },
1070 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1071 CPU_3DNOW_FLAGS, 0 },
1072 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1073 CPU_3DNOWA_FLAGS, 0 },
1074 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1075 CPU_PADLOCK_FLAGS, 0 },
1076 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1077 CPU_SVME_FLAGS, 1 },
1078 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1079 CPU_SVME_FLAGS, 0 },
1080 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1081 CPU_SSE4A_FLAGS, 0 },
1082 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1083 CPU_ABM_FLAGS, 0 },
1084 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1085 CPU_BMI_FLAGS, 0 },
1086 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1087 CPU_TBM_FLAGS, 0 },
1088 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1089 CPU_ADX_FLAGS, 0 },
1090 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1091 CPU_RDSEED_FLAGS, 0 },
1092 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1093 CPU_PRFCHW_FLAGS, 0 },
1094 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1095 CPU_SMAP_FLAGS, 0 },
1096 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1097 CPU_MPX_FLAGS, 0 },
1098 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1099 CPU_SHA_FLAGS, 0 },
1100 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1101 CPU_CLFLUSHOPT_FLAGS, 0 },
1102 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1103 CPU_PREFETCHWT1_FLAGS, 0 },
1104 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1105 CPU_SE1_FLAGS, 0 },
1106 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1107 CPU_CLWB_FLAGS, 0 },
1108 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1109 CPU_AVX512IFMA_FLAGS, 0 },
1110 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1111 CPU_AVX512VBMI_FLAGS, 0 },
1112 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1113 CPU_AVX512_4FMAPS_FLAGS, 0 },
1114 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1115 CPU_AVX512_4VNNIW_FLAGS, 0 },
1116 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1117 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1118 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1119 CPU_AVX512_VBMI2_FLAGS, 0 },
1120 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1121 CPU_AVX512_VNNI_FLAGS, 0 },
1122 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1123 CPU_AVX512_BITALG_FLAGS, 0 },
1124 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1125 CPU_CLZERO_FLAGS, 0 },
1126 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1127 CPU_MWAITX_FLAGS, 0 },
1128 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1129 CPU_OSPKE_FLAGS, 0 },
1130 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1131 CPU_RDPID_FLAGS, 0 },
1132 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1133 CPU_PTWRITE_FLAGS, 0 },
1134 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1135 CPU_IBT_FLAGS, 0 },
1136 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1137 CPU_SHSTK_FLAGS, 0 },
1138 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1139 CPU_GFNI_FLAGS, 0 },
1140 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1141 CPU_VAES_FLAGS, 0 },
1142 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1143 CPU_VPCLMULQDQ_FLAGS, 0 },
1144 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1145 CPU_WBNOINVD_FLAGS, 0 },
1146 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1147 CPU_PCONFIG_FLAGS, 0 },
1148 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1149 CPU_WAITPKG_FLAGS, 0 },
1150 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1151 CPU_CLDEMOTE_FLAGS, 0 },
1152 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1153 CPU_MOVDIRI_FLAGS, 0 },
1154 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1155 CPU_MOVDIR64B_FLAGS, 0 },
1156 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1157 CPU_AVX512_BF16_FLAGS, 0 },
1158 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1159 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1160 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1161 CPU_ENQCMD_FLAGS, 0 },
1162 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1163 CPU_RDPRU_FLAGS, 0 },
1164 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1165 CPU_MCOMMIT_FLAGS, 0 },
1166 };
1167
1168 static const noarch_entry cpu_noarch[] =
1169 {
1170 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1171 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1172 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1173 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1174 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1175 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1176 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1177 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1178 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1179 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1180 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1181 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1182 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1183 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_FLAGS },
1184 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1185 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1186 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1187 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1188 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1189 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1190 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1191 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1192 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1193 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1194 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1195 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1196 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1197 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1198 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1199 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1200 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1201 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1202 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1203 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1204 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1205 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1206 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1207 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1208 };
1209
1210 #ifdef I386COFF
1211 /* Like s_lcomm_internal in gas/read.c but the alignment string
1212 is allowed to be optional. */
1213
1214 static symbolS *
1215 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1216 {
1217 addressT align = 0;
1218
1219 SKIP_WHITESPACE ();
1220
1221 if (needs_align
1222 && *input_line_pointer == ',')
1223 {
1224 align = parse_align (needs_align - 1);
1225
1226 if (align == (addressT) -1)
1227 return NULL;
1228 }
1229 else
1230 {
1231 if (size >= 8)
1232 align = 3;
1233 else if (size >= 4)
1234 align = 2;
1235 else if (size >= 2)
1236 align = 1;
1237 else
1238 align = 0;
1239 }
1240
1241 bss_alloc (symbolP, size, align);
1242 return symbolP;
1243 }
1244
1245 static void
1246 pe_lcomm (int needs_align)
1247 {
1248 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1249 }
1250 #endif
1251
1252 const pseudo_typeS md_pseudo_table[] =
1253 {
1254 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1255 {"align", s_align_bytes, 0},
1256 #else
1257 {"align", s_align_ptwo, 0},
1258 #endif
1259 {"arch", set_cpu_arch, 0},
1260 #ifndef I386COFF
1261 {"bss", s_bss, 0},
1262 #else
1263 {"lcomm", pe_lcomm, 1},
1264 #endif
1265 {"ffloat", float_cons, 'f'},
1266 {"dfloat", float_cons, 'd'},
1267 {"tfloat", float_cons, 'x'},
1268 {"value", cons, 2},
1269 {"slong", signed_cons, 4},
1270 {"noopt", s_ignore, 0},
1271 {"optim", s_ignore, 0},
1272 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1273 {"code16", set_code_flag, CODE_16BIT},
1274 {"code32", set_code_flag, CODE_32BIT},
1275 #ifdef BFD64
1276 {"code64", set_code_flag, CODE_64BIT},
1277 #endif
1278 {"intel_syntax", set_intel_syntax, 1},
1279 {"att_syntax", set_intel_syntax, 0},
1280 {"intel_mnemonic", set_intel_mnemonic, 1},
1281 {"att_mnemonic", set_intel_mnemonic, 0},
1282 {"allow_index_reg", set_allow_index_reg, 1},
1283 {"disallow_index_reg", set_allow_index_reg, 0},
1284 {"sse_check", set_check, 0},
1285 {"operand_check", set_check, 1},
1286 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1287 {"largecomm", handle_large_common, 0},
1288 #else
1289 {"file", dwarf2_directive_file, 0},
1290 {"loc", dwarf2_directive_loc, 0},
1291 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1292 #endif
1293 #ifdef TE_PE
1294 {"secrel32", pe_directive_secrel, 0},
1295 #endif
1296 {0, 0, 0}
1297 };
1298
1299 /* For interface with expression (). */
1300 extern char *input_line_pointer;
1301
1302 /* Hash table for instruction mnemonic lookup. */
1303 static struct hash_control *op_hash;
1304
1305 /* Hash table for register lookup. */
1306 static struct hash_control *reg_hash;
1307 \f
1308 /* Various efficient no-op patterns for aligning code labels.
1309 Note: Don't try to assemble the instructions in the comments.
1310 0L and 0w are not legal. */
1311 static const unsigned char f32_1[] =
1312 {0x90}; /* nop */
1313 static const unsigned char f32_2[] =
1314 {0x66,0x90}; /* xchg %ax,%ax */
1315 static const unsigned char f32_3[] =
1316 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1317 static const unsigned char f32_4[] =
1318 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1319 static const unsigned char f32_6[] =
1320 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1321 static const unsigned char f32_7[] =
1322 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1323 static const unsigned char f16_3[] =
1324 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1325 static const unsigned char f16_4[] =
1326 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1327 static const unsigned char jump_disp8[] =
1328 {0xeb}; /* jmp disp8 */
1329 static const unsigned char jump32_disp32[] =
1330 {0xe9}; /* jmp disp32 */
1331 static const unsigned char jump16_disp32[] =
1332 {0x66,0xe9}; /* jmp disp32 */
1333 /* 32-bit NOPs patterns. */
1334 static const unsigned char *const f32_patt[] = {
1335 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1336 };
1337 /* 16-bit NOPs patterns. */
1338 static const unsigned char *const f16_patt[] = {
1339 f32_1, f32_2, f16_3, f16_4
1340 };
1341 /* nopl (%[re]ax) */
1342 static const unsigned char alt_3[] =
1343 {0x0f,0x1f,0x00};
1344 /* nopl 0(%[re]ax) */
1345 static const unsigned char alt_4[] =
1346 {0x0f,0x1f,0x40,0x00};
1347 /* nopl 0(%[re]ax,%[re]ax,1) */
1348 static const unsigned char alt_5[] =
1349 {0x0f,0x1f,0x44,0x00,0x00};
1350 /* nopw 0(%[re]ax,%[re]ax,1) */
1351 static const unsigned char alt_6[] =
1352 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1353 /* nopl 0L(%[re]ax) */
1354 static const unsigned char alt_7[] =
1355 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1356 /* nopl 0L(%[re]ax,%[re]ax,1) */
1357 static const unsigned char alt_8[] =
1358 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1359 /* nopw 0L(%[re]ax,%[re]ax,1) */
1360 static const unsigned char alt_9[] =
1361 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1362 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1363 static const unsigned char alt_10[] =
1364 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1365 /* data16 nopw %cs:0L(%eax,%eax,1) */
1366 static const unsigned char alt_11[] =
1367 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1368 /* 32-bit and 64-bit NOPs patterns. */
1369 static const unsigned char *const alt_patt[] = {
1370 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1371 alt_9, alt_10, alt_11
1372 };
1373
1374 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1375 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1376
1377 static void
1378 i386_output_nops (char *where, const unsigned char *const *patt,
1379 int count, int max_single_nop_size)
1380
1381 {
1382 /* Place the longer NOP first. */
1383 int last;
1384 int offset;
1385 const unsigned char *nops;
1386
1387 if (max_single_nop_size < 1)
1388 {
1389 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1390 max_single_nop_size);
1391 return;
1392 }
1393
1394 nops = patt[max_single_nop_size - 1];
1395
1396 /* Use the smaller one if the requsted one isn't available. */
1397 if (nops == NULL)
1398 {
1399 max_single_nop_size--;
1400 nops = patt[max_single_nop_size - 1];
1401 }
1402
1403 last = count % max_single_nop_size;
1404
1405 count -= last;
1406 for (offset = 0; offset < count; offset += max_single_nop_size)
1407 memcpy (where + offset, nops, max_single_nop_size);
1408
1409 if (last)
1410 {
1411 nops = patt[last - 1];
1412 if (nops == NULL)
1413 {
1414 /* Use the smaller one plus one-byte NOP if the needed one
1415 isn't available. */
1416 last--;
1417 nops = patt[last - 1];
1418 memcpy (where + offset, nops, last);
1419 where[offset + last] = *patt[0];
1420 }
1421 else
1422 memcpy (where + offset, nops, last);
1423 }
1424 }
1425
1426 static INLINE int
1427 fits_in_imm7 (offsetT num)
1428 {
1429 return (num & 0x7f) == num;
1430 }
1431
1432 static INLINE int
1433 fits_in_imm31 (offsetT num)
1434 {
1435 return (num & 0x7fffffff) == num;
1436 }
1437
1438 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1439 single NOP instruction LIMIT. */
1440
1441 void
1442 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1443 {
1444 const unsigned char *const *patt = NULL;
1445 int max_single_nop_size;
1446 /* Maximum number of NOPs before switching to jump over NOPs. */
1447 int max_number_of_nops;
1448
1449 switch (fragP->fr_type)
1450 {
1451 case rs_fill_nop:
1452 case rs_align_code:
1453 break;
1454 case rs_machine_dependent:
1455 /* Allow NOP padding for jumps and calls. */
1456 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1457 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1458 break;
1459 /* Fall through. */
1460 default:
1461 return;
1462 }
1463
1464 /* We need to decide which NOP sequence to use for 32bit and
1465 64bit. When -mtune= is used:
1466
1467 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1468 PROCESSOR_GENERIC32, f32_patt will be used.
1469 2. For the rest, alt_patt will be used.
1470
1471 When -mtune= isn't used, alt_patt will be used if
1472 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1473 be used.
1474
1475 When -march= or .arch is used, we can't use anything beyond
1476 cpu_arch_isa_flags. */
1477
1478 if (flag_code == CODE_16BIT)
1479 {
1480 patt = f16_patt;
1481 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1482 /* Limit number of NOPs to 2 in 16-bit mode. */
1483 max_number_of_nops = 2;
1484 }
1485 else
1486 {
1487 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1488 {
1489 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1490 switch (cpu_arch_tune)
1491 {
1492 case PROCESSOR_UNKNOWN:
1493 /* We use cpu_arch_isa_flags to check if we SHOULD
1494 optimize with nops. */
1495 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1496 patt = alt_patt;
1497 else
1498 patt = f32_patt;
1499 break;
1500 case PROCESSOR_PENTIUM4:
1501 case PROCESSOR_NOCONA:
1502 case PROCESSOR_CORE:
1503 case PROCESSOR_CORE2:
1504 case PROCESSOR_COREI7:
1505 case PROCESSOR_L1OM:
1506 case PROCESSOR_K1OM:
1507 case PROCESSOR_GENERIC64:
1508 case PROCESSOR_K6:
1509 case PROCESSOR_ATHLON:
1510 case PROCESSOR_K8:
1511 case PROCESSOR_AMDFAM10:
1512 case PROCESSOR_BD:
1513 case PROCESSOR_ZNVER:
1514 case PROCESSOR_BT:
1515 patt = alt_patt;
1516 break;
1517 case PROCESSOR_I386:
1518 case PROCESSOR_I486:
1519 case PROCESSOR_PENTIUM:
1520 case PROCESSOR_PENTIUMPRO:
1521 case PROCESSOR_IAMCU:
1522 case PROCESSOR_GENERIC32:
1523 patt = f32_patt;
1524 break;
1525 }
1526 }
1527 else
1528 {
1529 switch (fragP->tc_frag_data.tune)
1530 {
1531 case PROCESSOR_UNKNOWN:
1532 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1533 PROCESSOR_UNKNOWN. */
1534 abort ();
1535 break;
1536
1537 case PROCESSOR_I386:
1538 case PROCESSOR_I486:
1539 case PROCESSOR_PENTIUM:
1540 case PROCESSOR_IAMCU:
1541 case PROCESSOR_K6:
1542 case PROCESSOR_ATHLON:
1543 case PROCESSOR_K8:
1544 case PROCESSOR_AMDFAM10:
1545 case PROCESSOR_BD:
1546 case PROCESSOR_ZNVER:
1547 case PROCESSOR_BT:
1548 case PROCESSOR_GENERIC32:
1549 /* We use cpu_arch_isa_flags to check if we CAN optimize
1550 with nops. */
1551 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1552 patt = alt_patt;
1553 else
1554 patt = f32_patt;
1555 break;
1556 case PROCESSOR_PENTIUMPRO:
1557 case PROCESSOR_PENTIUM4:
1558 case PROCESSOR_NOCONA:
1559 case PROCESSOR_CORE:
1560 case PROCESSOR_CORE2:
1561 case PROCESSOR_COREI7:
1562 case PROCESSOR_L1OM:
1563 case PROCESSOR_K1OM:
1564 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1565 patt = alt_patt;
1566 else
1567 patt = f32_patt;
1568 break;
1569 case PROCESSOR_GENERIC64:
1570 patt = alt_patt;
1571 break;
1572 }
1573 }
1574
1575 if (patt == f32_patt)
1576 {
1577 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1578 /* Limit number of NOPs to 2 for older processors. */
1579 max_number_of_nops = 2;
1580 }
1581 else
1582 {
1583 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1584 /* Limit number of NOPs to 7 for newer processors. */
1585 max_number_of_nops = 7;
1586 }
1587 }
1588
1589 if (limit == 0)
1590 limit = max_single_nop_size;
1591
1592 if (fragP->fr_type == rs_fill_nop)
1593 {
1594 /* Output NOPs for .nop directive. */
1595 if (limit > max_single_nop_size)
1596 {
1597 as_bad_where (fragP->fr_file, fragP->fr_line,
1598 _("invalid single nop size: %d "
1599 "(expect within [0, %d])"),
1600 limit, max_single_nop_size);
1601 return;
1602 }
1603 }
1604 else if (fragP->fr_type != rs_machine_dependent)
1605 fragP->fr_var = count;
1606
1607 if ((count / max_single_nop_size) > max_number_of_nops)
1608 {
1609 /* Generate jump over NOPs. */
1610 offsetT disp = count - 2;
1611 if (fits_in_imm7 (disp))
1612 {
1613 /* Use "jmp disp8" if possible. */
1614 count = disp;
1615 where[0] = jump_disp8[0];
1616 where[1] = count;
1617 where += 2;
1618 }
1619 else
1620 {
1621 unsigned int size_of_jump;
1622
1623 if (flag_code == CODE_16BIT)
1624 {
1625 where[0] = jump16_disp32[0];
1626 where[1] = jump16_disp32[1];
1627 size_of_jump = 2;
1628 }
1629 else
1630 {
1631 where[0] = jump32_disp32[0];
1632 size_of_jump = 1;
1633 }
1634
1635 count -= size_of_jump + 4;
1636 if (!fits_in_imm31 (count))
1637 {
1638 as_bad_where (fragP->fr_file, fragP->fr_line,
1639 _("jump over nop padding out of range"));
1640 return;
1641 }
1642
1643 md_number_to_chars (where + size_of_jump, count, 4);
1644 where += size_of_jump + 4;
1645 }
1646 }
1647
1648 /* Generate multiple NOPs. */
1649 i386_output_nops (where, patt, count, limit);
1650 }
1651
1652 static INLINE int
1653 operand_type_all_zero (const union i386_operand_type *x)
1654 {
1655 switch (ARRAY_SIZE(x->array))
1656 {
1657 case 3:
1658 if (x->array[2])
1659 return 0;
1660 /* Fall through. */
1661 case 2:
1662 if (x->array[1])
1663 return 0;
1664 /* Fall through. */
1665 case 1:
1666 return !x->array[0];
1667 default:
1668 abort ();
1669 }
1670 }
1671
1672 static INLINE void
1673 operand_type_set (union i386_operand_type *x, unsigned int v)
1674 {
1675 switch (ARRAY_SIZE(x->array))
1676 {
1677 case 3:
1678 x->array[2] = v;
1679 /* Fall through. */
1680 case 2:
1681 x->array[1] = v;
1682 /* Fall through. */
1683 case 1:
1684 x->array[0] = v;
1685 /* Fall through. */
1686 break;
1687 default:
1688 abort ();
1689 }
1690
1691 x->bitfield.class = ClassNone;
1692 x->bitfield.instance = InstanceNone;
1693 }
1694
1695 static INLINE int
1696 operand_type_equal (const union i386_operand_type *x,
1697 const union i386_operand_type *y)
1698 {
1699 switch (ARRAY_SIZE(x->array))
1700 {
1701 case 3:
1702 if (x->array[2] != y->array[2])
1703 return 0;
1704 /* Fall through. */
1705 case 2:
1706 if (x->array[1] != y->array[1])
1707 return 0;
1708 /* Fall through. */
1709 case 1:
1710 return x->array[0] == y->array[0];
1711 break;
1712 default:
1713 abort ();
1714 }
1715 }
1716
1717 static INLINE int
1718 cpu_flags_all_zero (const union i386_cpu_flags *x)
1719 {
1720 switch (ARRAY_SIZE(x->array))
1721 {
1722 case 4:
1723 if (x->array[3])
1724 return 0;
1725 /* Fall through. */
1726 case 3:
1727 if (x->array[2])
1728 return 0;
1729 /* Fall through. */
1730 case 2:
1731 if (x->array[1])
1732 return 0;
1733 /* Fall through. */
1734 case 1:
1735 return !x->array[0];
1736 default:
1737 abort ();
1738 }
1739 }
1740
1741 static INLINE int
1742 cpu_flags_equal (const union i386_cpu_flags *x,
1743 const union i386_cpu_flags *y)
1744 {
1745 switch (ARRAY_SIZE(x->array))
1746 {
1747 case 4:
1748 if (x->array[3] != y->array[3])
1749 return 0;
1750 /* Fall through. */
1751 case 3:
1752 if (x->array[2] != y->array[2])
1753 return 0;
1754 /* Fall through. */
1755 case 2:
1756 if (x->array[1] != y->array[1])
1757 return 0;
1758 /* Fall through. */
1759 case 1:
1760 return x->array[0] == y->array[0];
1761 break;
1762 default:
1763 abort ();
1764 }
1765 }
1766
1767 static INLINE int
1768 cpu_flags_check_cpu64 (i386_cpu_flags f)
1769 {
1770 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1771 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1772 }
1773
1774 static INLINE i386_cpu_flags
1775 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1776 {
1777 switch (ARRAY_SIZE (x.array))
1778 {
1779 case 4:
1780 x.array [3] &= y.array [3];
1781 /* Fall through. */
1782 case 3:
1783 x.array [2] &= y.array [2];
1784 /* Fall through. */
1785 case 2:
1786 x.array [1] &= y.array [1];
1787 /* Fall through. */
1788 case 1:
1789 x.array [0] &= y.array [0];
1790 break;
1791 default:
1792 abort ();
1793 }
1794 return x;
1795 }
1796
1797 static INLINE i386_cpu_flags
1798 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1799 {
1800 switch (ARRAY_SIZE (x.array))
1801 {
1802 case 4:
1803 x.array [3] |= y.array [3];
1804 /* Fall through. */
1805 case 3:
1806 x.array [2] |= y.array [2];
1807 /* Fall through. */
1808 case 2:
1809 x.array [1] |= y.array [1];
1810 /* Fall through. */
1811 case 1:
1812 x.array [0] |= y.array [0];
1813 break;
1814 default:
1815 abort ();
1816 }
1817 return x;
1818 }
1819
1820 static INLINE i386_cpu_flags
1821 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1822 {
1823 switch (ARRAY_SIZE (x.array))
1824 {
1825 case 4:
1826 x.array [3] &= ~y.array [3];
1827 /* Fall through. */
1828 case 3:
1829 x.array [2] &= ~y.array [2];
1830 /* Fall through. */
1831 case 2:
1832 x.array [1] &= ~y.array [1];
1833 /* Fall through. */
1834 case 1:
1835 x.array [0] &= ~y.array [0];
1836 break;
1837 default:
1838 abort ();
1839 }
1840 return x;
1841 }
1842
1843 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
1844
1845 #define CPU_FLAGS_ARCH_MATCH 0x1
1846 #define CPU_FLAGS_64BIT_MATCH 0x2
1847
1848 #define CPU_FLAGS_PERFECT_MATCH \
1849 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1850
1851 /* Return CPU flags match bits. */
1852
1853 static int
1854 cpu_flags_match (const insn_template *t)
1855 {
1856 i386_cpu_flags x = t->cpu_flags;
1857 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1858
1859 x.bitfield.cpu64 = 0;
1860 x.bitfield.cpuno64 = 0;
1861
1862 if (cpu_flags_all_zero (&x))
1863 {
1864 /* This instruction is available on all archs. */
1865 match |= CPU_FLAGS_ARCH_MATCH;
1866 }
1867 else
1868 {
1869 /* This instruction is available only on some archs. */
1870 i386_cpu_flags cpu = cpu_arch_flags;
1871
1872 /* AVX512VL is no standalone feature - match it and then strip it. */
1873 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1874 return match;
1875 x.bitfield.cpuavx512vl = 0;
1876
1877 cpu = cpu_flags_and (x, cpu);
1878 if (!cpu_flags_all_zero (&cpu))
1879 {
1880 if (x.bitfield.cpuavx)
1881 {
1882 /* We need to check a few extra flags with AVX. */
1883 if (cpu.bitfield.cpuavx
1884 && (!t->opcode_modifier.sse2avx || sse2avx)
1885 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1886 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1887 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1888 match |= CPU_FLAGS_ARCH_MATCH;
1889 }
1890 else if (x.bitfield.cpuavx512f)
1891 {
1892 /* We need to check a few extra flags with AVX512F. */
1893 if (cpu.bitfield.cpuavx512f
1894 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1895 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1896 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1897 match |= CPU_FLAGS_ARCH_MATCH;
1898 }
1899 else
1900 match |= CPU_FLAGS_ARCH_MATCH;
1901 }
1902 }
1903 return match;
1904 }
1905
1906 static INLINE i386_operand_type
1907 operand_type_and (i386_operand_type x, i386_operand_type y)
1908 {
1909 if (x.bitfield.class != y.bitfield.class)
1910 x.bitfield.class = ClassNone;
1911 if (x.bitfield.instance != y.bitfield.instance)
1912 x.bitfield.instance = InstanceNone;
1913
1914 switch (ARRAY_SIZE (x.array))
1915 {
1916 case 3:
1917 x.array [2] &= y.array [2];
1918 /* Fall through. */
1919 case 2:
1920 x.array [1] &= y.array [1];
1921 /* Fall through. */
1922 case 1:
1923 x.array [0] &= y.array [0];
1924 break;
1925 default:
1926 abort ();
1927 }
1928 return x;
1929 }
1930
1931 static INLINE i386_operand_type
1932 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1933 {
1934 gas_assert (y.bitfield.class == ClassNone);
1935 gas_assert (y.bitfield.instance == InstanceNone);
1936
1937 switch (ARRAY_SIZE (x.array))
1938 {
1939 case 3:
1940 x.array [2] &= ~y.array [2];
1941 /* Fall through. */
1942 case 2:
1943 x.array [1] &= ~y.array [1];
1944 /* Fall through. */
1945 case 1:
1946 x.array [0] &= ~y.array [0];
1947 break;
1948 default:
1949 abort ();
1950 }
1951 return x;
1952 }
1953
1954 static INLINE i386_operand_type
1955 operand_type_or (i386_operand_type x, i386_operand_type y)
1956 {
1957 gas_assert (x.bitfield.class == ClassNone ||
1958 y.bitfield.class == ClassNone ||
1959 x.bitfield.class == y.bitfield.class);
1960 gas_assert (x.bitfield.instance == InstanceNone ||
1961 y.bitfield.instance == InstanceNone ||
1962 x.bitfield.instance == y.bitfield.instance);
1963
1964 switch (ARRAY_SIZE (x.array))
1965 {
1966 case 3:
1967 x.array [2] |= y.array [2];
1968 /* Fall through. */
1969 case 2:
1970 x.array [1] |= y.array [1];
1971 /* Fall through. */
1972 case 1:
1973 x.array [0] |= y.array [0];
1974 break;
1975 default:
1976 abort ();
1977 }
1978 return x;
1979 }
1980
1981 static INLINE i386_operand_type
1982 operand_type_xor (i386_operand_type x, i386_operand_type y)
1983 {
1984 gas_assert (y.bitfield.class == ClassNone);
1985 gas_assert (y.bitfield.instance == InstanceNone);
1986
1987 switch (ARRAY_SIZE (x.array))
1988 {
1989 case 3:
1990 x.array [2] ^= y.array [2];
1991 /* Fall through. */
1992 case 2:
1993 x.array [1] ^= y.array [1];
1994 /* Fall through. */
1995 case 1:
1996 x.array [0] ^= y.array [0];
1997 break;
1998 default:
1999 abort ();
2000 }
2001 return x;
2002 }
2003
2004 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2005 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2006 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2007 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
2008 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2009 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
2010 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
2011 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
2012 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2013 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2014 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2015 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2016 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2017 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2018 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2019 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2020 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2021
2022 enum operand_type
2023 {
2024 reg,
2025 imm,
2026 disp,
2027 anymem
2028 };
2029
2030 static INLINE int
2031 operand_type_check (i386_operand_type t, enum operand_type c)
2032 {
2033 switch (c)
2034 {
2035 case reg:
2036 return t.bitfield.class == Reg;
2037
2038 case imm:
2039 return (t.bitfield.imm8
2040 || t.bitfield.imm8s
2041 || t.bitfield.imm16
2042 || t.bitfield.imm32
2043 || t.bitfield.imm32s
2044 || t.bitfield.imm64);
2045
2046 case disp:
2047 return (t.bitfield.disp8
2048 || t.bitfield.disp16
2049 || t.bitfield.disp32
2050 || t.bitfield.disp32s
2051 || t.bitfield.disp64);
2052
2053 case anymem:
2054 return (t.bitfield.disp8
2055 || t.bitfield.disp16
2056 || t.bitfield.disp32
2057 || t.bitfield.disp32s
2058 || t.bitfield.disp64
2059 || t.bitfield.baseindex);
2060
2061 default:
2062 abort ();
2063 }
2064
2065 return 0;
2066 }
2067
2068 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2069 between operand GIVEN and opeand WANTED for instruction template T. */
2070
2071 static INLINE int
2072 match_operand_size (const insn_template *t, unsigned int wanted,
2073 unsigned int given)
2074 {
2075 return !((i.types[given].bitfield.byte
2076 && !t->operand_types[wanted].bitfield.byte)
2077 || (i.types[given].bitfield.word
2078 && !t->operand_types[wanted].bitfield.word)
2079 || (i.types[given].bitfield.dword
2080 && !t->operand_types[wanted].bitfield.dword)
2081 || (i.types[given].bitfield.qword
2082 && !t->operand_types[wanted].bitfield.qword)
2083 || (i.types[given].bitfield.tbyte
2084 && !t->operand_types[wanted].bitfield.tbyte));
2085 }
2086
2087 /* Return 1 if there is no conflict in SIMD register between operand
2088 GIVEN and opeand WANTED for instruction template T. */
2089
2090 static INLINE int
2091 match_simd_size (const insn_template *t, unsigned int wanted,
2092 unsigned int given)
2093 {
2094 return !((i.types[given].bitfield.xmmword
2095 && !t->operand_types[wanted].bitfield.xmmword)
2096 || (i.types[given].bitfield.ymmword
2097 && !t->operand_types[wanted].bitfield.ymmword)
2098 || (i.types[given].bitfield.zmmword
2099 && !t->operand_types[wanted].bitfield.zmmword));
2100 }
2101
2102 /* Return 1 if there is no conflict in any size between operand GIVEN
2103 and opeand WANTED for instruction template T. */
2104
2105 static INLINE int
2106 match_mem_size (const insn_template *t, unsigned int wanted,
2107 unsigned int given)
2108 {
2109 return (match_operand_size (t, wanted, given)
2110 && !((i.types[given].bitfield.unspecified
2111 && !i.broadcast
2112 && !t->operand_types[wanted].bitfield.unspecified)
2113 || (i.types[given].bitfield.fword
2114 && !t->operand_types[wanted].bitfield.fword)
2115 /* For scalar opcode templates to allow register and memory
2116 operands at the same time, some special casing is needed
2117 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2118 down-conversion vpmov*. */
2119 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2120 && !t->opcode_modifier.broadcast
2121 && (t->operand_types[wanted].bitfield.byte
2122 || t->operand_types[wanted].bitfield.word
2123 || t->operand_types[wanted].bitfield.dword
2124 || t->operand_types[wanted].bitfield.qword))
2125 ? (i.types[given].bitfield.xmmword
2126 || i.types[given].bitfield.ymmword
2127 || i.types[given].bitfield.zmmword)
2128 : !match_simd_size(t, wanted, given))));
2129 }
2130
2131 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2132 operands for instruction template T, and it has MATCH_REVERSE set if there
2133 is no size conflict on any operands for the template with operands reversed
2134 (and the template allows for reversing in the first place). */
2135
2136 #define MATCH_STRAIGHT 1
2137 #define MATCH_REVERSE 2
2138
2139 static INLINE unsigned int
2140 operand_size_match (const insn_template *t)
2141 {
2142 unsigned int j, match = MATCH_STRAIGHT;
2143
2144 /* Don't check non-absolute jump instructions. */
2145 if (t->opcode_modifier.jump
2146 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
2147 return match;
2148
2149 /* Check memory and accumulator operand size. */
2150 for (j = 0; j < i.operands; j++)
2151 {
2152 if (i.types[j].bitfield.class != Reg
2153 && i.types[j].bitfield.class != RegSIMD
2154 && t->opcode_modifier.anysize)
2155 continue;
2156
2157 if (t->operand_types[j].bitfield.class == Reg
2158 && !match_operand_size (t, j, j))
2159 {
2160 match = 0;
2161 break;
2162 }
2163
2164 if (t->operand_types[j].bitfield.class == RegSIMD
2165 && !match_simd_size (t, j, j))
2166 {
2167 match = 0;
2168 break;
2169 }
2170
2171 if (t->operand_types[j].bitfield.instance == Accum
2172 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2173 {
2174 match = 0;
2175 break;
2176 }
2177
2178 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2179 {
2180 match = 0;
2181 break;
2182 }
2183 }
2184
2185 if (!t->opcode_modifier.d)
2186 {
2187 mismatch:
2188 if (!match)
2189 i.error = operand_size_mismatch;
2190 return match;
2191 }
2192
2193 /* Check reverse. */
2194 gas_assert (i.operands >= 2 && i.operands <= 3);
2195
2196 for (j = 0; j < i.operands; j++)
2197 {
2198 unsigned int given = i.operands - j - 1;
2199
2200 if (t->operand_types[j].bitfield.class == Reg
2201 && !match_operand_size (t, j, given))
2202 goto mismatch;
2203
2204 if (t->operand_types[j].bitfield.class == RegSIMD
2205 && !match_simd_size (t, j, given))
2206 goto mismatch;
2207
2208 if (t->operand_types[j].bitfield.instance == Accum
2209 && (!match_operand_size (t, j, given)
2210 || !match_simd_size (t, j, given)))
2211 goto mismatch;
2212
2213 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2214 goto mismatch;
2215 }
2216
2217 return match | MATCH_REVERSE;
2218 }
2219
2220 static INLINE int
2221 operand_type_match (i386_operand_type overlap,
2222 i386_operand_type given)
2223 {
2224 i386_operand_type temp = overlap;
2225
2226 temp.bitfield.unspecified = 0;
2227 temp.bitfield.byte = 0;
2228 temp.bitfield.word = 0;
2229 temp.bitfield.dword = 0;
2230 temp.bitfield.fword = 0;
2231 temp.bitfield.qword = 0;
2232 temp.bitfield.tbyte = 0;
2233 temp.bitfield.xmmword = 0;
2234 temp.bitfield.ymmword = 0;
2235 temp.bitfield.zmmword = 0;
2236 if (operand_type_all_zero (&temp))
2237 goto mismatch;
2238
2239 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
2240 return 1;
2241
2242 mismatch:
2243 i.error = operand_type_mismatch;
2244 return 0;
2245 }
2246
2247 /* If given types g0 and g1 are registers they must be of the same type
2248 unless the expected operand type register overlap is null.
2249 Some Intel syntax memory operand size checking also happens here. */
2250
2251 static INLINE int
2252 operand_type_register_match (i386_operand_type g0,
2253 i386_operand_type t0,
2254 i386_operand_type g1,
2255 i386_operand_type t1)
2256 {
2257 if (g0.bitfield.class != Reg
2258 && g0.bitfield.class != RegSIMD
2259 && (!operand_type_check (g0, anymem)
2260 || g0.bitfield.unspecified
2261 || (t0.bitfield.class != Reg
2262 && t0.bitfield.class != RegSIMD)))
2263 return 1;
2264
2265 if (g1.bitfield.class != Reg
2266 && g1.bitfield.class != RegSIMD
2267 && (!operand_type_check (g1, anymem)
2268 || g1.bitfield.unspecified
2269 || (t1.bitfield.class != Reg
2270 && t1.bitfield.class != RegSIMD)))
2271 return 1;
2272
2273 if (g0.bitfield.byte == g1.bitfield.byte
2274 && g0.bitfield.word == g1.bitfield.word
2275 && g0.bitfield.dword == g1.bitfield.dword
2276 && g0.bitfield.qword == g1.bitfield.qword
2277 && g0.bitfield.xmmword == g1.bitfield.xmmword
2278 && g0.bitfield.ymmword == g1.bitfield.ymmword
2279 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2280 return 1;
2281
2282 if (!(t0.bitfield.byte & t1.bitfield.byte)
2283 && !(t0.bitfield.word & t1.bitfield.word)
2284 && !(t0.bitfield.dword & t1.bitfield.dword)
2285 && !(t0.bitfield.qword & t1.bitfield.qword)
2286 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2287 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2288 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2289 return 1;
2290
2291 i.error = register_type_mismatch;
2292
2293 return 0;
2294 }
2295
2296 static INLINE unsigned int
2297 register_number (const reg_entry *r)
2298 {
2299 unsigned int nr = r->reg_num;
2300
2301 if (r->reg_flags & RegRex)
2302 nr += 8;
2303
2304 if (r->reg_flags & RegVRex)
2305 nr += 16;
2306
2307 return nr;
2308 }
2309
2310 static INLINE unsigned int
2311 mode_from_disp_size (i386_operand_type t)
2312 {
2313 if (t.bitfield.disp8)
2314 return 1;
2315 else if (t.bitfield.disp16
2316 || t.bitfield.disp32
2317 || t.bitfield.disp32s)
2318 return 2;
2319 else
2320 return 0;
2321 }
2322
2323 static INLINE int
2324 fits_in_signed_byte (addressT num)
2325 {
2326 return num + 0x80 <= 0xff;
2327 }
2328
2329 static INLINE int
2330 fits_in_unsigned_byte (addressT num)
2331 {
2332 return num <= 0xff;
2333 }
2334
2335 static INLINE int
2336 fits_in_unsigned_word (addressT num)
2337 {
2338 return num <= 0xffff;
2339 }
2340
2341 static INLINE int
2342 fits_in_signed_word (addressT num)
2343 {
2344 return num + 0x8000 <= 0xffff;
2345 }
2346
2347 static INLINE int
2348 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2349 {
2350 #ifndef BFD64
2351 return 1;
2352 #else
2353 return num + 0x80000000 <= 0xffffffff;
2354 #endif
2355 } /* fits_in_signed_long() */
2356
2357 static INLINE int
2358 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2359 {
2360 #ifndef BFD64
2361 return 1;
2362 #else
2363 return num <= 0xffffffff;
2364 #endif
2365 } /* fits_in_unsigned_long() */
2366
2367 static INLINE int
2368 fits_in_disp8 (offsetT num)
2369 {
2370 int shift = i.memshift;
2371 unsigned int mask;
2372
2373 if (shift == -1)
2374 abort ();
2375
2376 mask = (1 << shift) - 1;
2377
2378 /* Return 0 if NUM isn't properly aligned. */
2379 if ((num & mask))
2380 return 0;
2381
2382 /* Check if NUM will fit in 8bit after shift. */
2383 return fits_in_signed_byte (num >> shift);
2384 }
2385
2386 static INLINE int
2387 fits_in_imm4 (offsetT num)
2388 {
2389 return (num & 0xf) == num;
2390 }
2391
2392 static i386_operand_type
2393 smallest_imm_type (offsetT num)
2394 {
2395 i386_operand_type t;
2396
2397 operand_type_set (&t, 0);
2398 t.bitfield.imm64 = 1;
2399
2400 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2401 {
2402 /* This code is disabled on the 486 because all the Imm1 forms
2403 in the opcode table are slower on the i486. They're the
2404 versions with the implicitly specified single-position
2405 displacement, which has another syntax if you really want to
2406 use that form. */
2407 t.bitfield.imm1 = 1;
2408 t.bitfield.imm8 = 1;
2409 t.bitfield.imm8s = 1;
2410 t.bitfield.imm16 = 1;
2411 t.bitfield.imm32 = 1;
2412 t.bitfield.imm32s = 1;
2413 }
2414 else if (fits_in_signed_byte (num))
2415 {
2416 t.bitfield.imm8 = 1;
2417 t.bitfield.imm8s = 1;
2418 t.bitfield.imm16 = 1;
2419 t.bitfield.imm32 = 1;
2420 t.bitfield.imm32s = 1;
2421 }
2422 else if (fits_in_unsigned_byte (num))
2423 {
2424 t.bitfield.imm8 = 1;
2425 t.bitfield.imm16 = 1;
2426 t.bitfield.imm32 = 1;
2427 t.bitfield.imm32s = 1;
2428 }
2429 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2430 {
2431 t.bitfield.imm16 = 1;
2432 t.bitfield.imm32 = 1;
2433 t.bitfield.imm32s = 1;
2434 }
2435 else if (fits_in_signed_long (num))
2436 {
2437 t.bitfield.imm32 = 1;
2438 t.bitfield.imm32s = 1;
2439 }
2440 else if (fits_in_unsigned_long (num))
2441 t.bitfield.imm32 = 1;
2442
2443 return t;
2444 }
2445
2446 static offsetT
2447 offset_in_range (offsetT val, int size)
2448 {
2449 addressT mask;
2450
2451 switch (size)
2452 {
2453 case 1: mask = ((addressT) 1 << 8) - 1; break;
2454 case 2: mask = ((addressT) 1 << 16) - 1; break;
2455 case 4: mask = ((addressT) 2 << 31) - 1; break;
2456 #ifdef BFD64
2457 case 8: mask = ((addressT) 2 << 63) - 1; break;
2458 #endif
2459 default: abort ();
2460 }
2461
2462 #ifdef BFD64
2463 /* If BFD64, sign extend val for 32bit address mode. */
2464 if (flag_code != CODE_64BIT
2465 || i.prefix[ADDR_PREFIX])
2466 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2467 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2468 #endif
2469
2470 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2471 {
2472 char buf1[40], buf2[40];
2473
2474 sprint_value (buf1, val);
2475 sprint_value (buf2, val & mask);
2476 as_warn (_("%s shortened to %s"), buf1, buf2);
2477 }
2478 return val & mask;
2479 }
2480
2481 enum PREFIX_GROUP
2482 {
2483 PREFIX_EXIST = 0,
2484 PREFIX_LOCK,
2485 PREFIX_REP,
2486 PREFIX_DS,
2487 PREFIX_OTHER
2488 };
2489
2490 /* Returns
2491 a. PREFIX_EXIST if attempting to add a prefix where one from the
2492 same class already exists.
2493 b. PREFIX_LOCK if lock prefix is added.
2494 c. PREFIX_REP if rep/repne prefix is added.
2495 d. PREFIX_DS if ds prefix is added.
2496 e. PREFIX_OTHER if other prefix is added.
2497 */
2498
2499 static enum PREFIX_GROUP
2500 add_prefix (unsigned int prefix)
2501 {
2502 enum PREFIX_GROUP ret = PREFIX_OTHER;
2503 unsigned int q;
2504
2505 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2506 && flag_code == CODE_64BIT)
2507 {
2508 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2509 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2510 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2511 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2512 ret = PREFIX_EXIST;
2513 q = REX_PREFIX;
2514 }
2515 else
2516 {
2517 switch (prefix)
2518 {
2519 default:
2520 abort ();
2521
2522 case DS_PREFIX_OPCODE:
2523 ret = PREFIX_DS;
2524 /* Fall through. */
2525 case CS_PREFIX_OPCODE:
2526 case ES_PREFIX_OPCODE:
2527 case FS_PREFIX_OPCODE:
2528 case GS_PREFIX_OPCODE:
2529 case SS_PREFIX_OPCODE:
2530 q = SEG_PREFIX;
2531 break;
2532
2533 case REPNE_PREFIX_OPCODE:
2534 case REPE_PREFIX_OPCODE:
2535 q = REP_PREFIX;
2536 ret = PREFIX_REP;
2537 break;
2538
2539 case LOCK_PREFIX_OPCODE:
2540 q = LOCK_PREFIX;
2541 ret = PREFIX_LOCK;
2542 break;
2543
2544 case FWAIT_OPCODE:
2545 q = WAIT_PREFIX;
2546 break;
2547
2548 case ADDR_PREFIX_OPCODE:
2549 q = ADDR_PREFIX;
2550 break;
2551
2552 case DATA_PREFIX_OPCODE:
2553 q = DATA_PREFIX;
2554 break;
2555 }
2556 if (i.prefix[q] != 0)
2557 ret = PREFIX_EXIST;
2558 }
2559
2560 if (ret)
2561 {
2562 if (!i.prefix[q])
2563 ++i.prefixes;
2564 i.prefix[q] |= prefix;
2565 }
2566 else
2567 as_bad (_("same type of prefix used twice"));
2568
2569 return ret;
2570 }
2571
2572 static void
2573 update_code_flag (int value, int check)
2574 {
2575 PRINTF_LIKE ((*as_error));
2576
2577 flag_code = (enum flag_code) value;
2578 if (flag_code == CODE_64BIT)
2579 {
2580 cpu_arch_flags.bitfield.cpu64 = 1;
2581 cpu_arch_flags.bitfield.cpuno64 = 0;
2582 }
2583 else
2584 {
2585 cpu_arch_flags.bitfield.cpu64 = 0;
2586 cpu_arch_flags.bitfield.cpuno64 = 1;
2587 }
2588 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2589 {
2590 if (check)
2591 as_error = as_fatal;
2592 else
2593 as_error = as_bad;
2594 (*as_error) (_("64bit mode not supported on `%s'."),
2595 cpu_arch_name ? cpu_arch_name : default_arch);
2596 }
2597 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2598 {
2599 if (check)
2600 as_error = as_fatal;
2601 else
2602 as_error = as_bad;
2603 (*as_error) (_("32bit mode not supported on `%s'."),
2604 cpu_arch_name ? cpu_arch_name : default_arch);
2605 }
2606 stackop_size = '\0';
2607 }
2608
2609 static void
2610 set_code_flag (int value)
2611 {
2612 update_code_flag (value, 0);
2613 }
2614
2615 static void
2616 set_16bit_gcc_code_flag (int new_code_flag)
2617 {
2618 flag_code = (enum flag_code) new_code_flag;
2619 if (flag_code != CODE_16BIT)
2620 abort ();
2621 cpu_arch_flags.bitfield.cpu64 = 0;
2622 cpu_arch_flags.bitfield.cpuno64 = 1;
2623 stackop_size = LONG_MNEM_SUFFIX;
2624 }
2625
2626 static void
2627 set_intel_syntax (int syntax_flag)
2628 {
2629 /* Find out if register prefixing is specified. */
2630 int ask_naked_reg = 0;
2631
2632 SKIP_WHITESPACE ();
2633 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2634 {
2635 char *string;
2636 int e = get_symbol_name (&string);
2637
2638 if (strcmp (string, "prefix") == 0)
2639 ask_naked_reg = 1;
2640 else if (strcmp (string, "noprefix") == 0)
2641 ask_naked_reg = -1;
2642 else
2643 as_bad (_("bad argument to syntax directive."));
2644 (void) restore_line_pointer (e);
2645 }
2646 demand_empty_rest_of_line ();
2647
2648 intel_syntax = syntax_flag;
2649
2650 if (ask_naked_reg == 0)
2651 allow_naked_reg = (intel_syntax
2652 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2653 else
2654 allow_naked_reg = (ask_naked_reg < 0);
2655
2656 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2657
2658 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2659 identifier_chars['$'] = intel_syntax ? '$' : 0;
2660 register_prefix = allow_naked_reg ? "" : "%";
2661 }
2662
2663 static void
2664 set_intel_mnemonic (int mnemonic_flag)
2665 {
2666 intel_mnemonic = mnemonic_flag;
2667 }
2668
2669 static void
2670 set_allow_index_reg (int flag)
2671 {
2672 allow_index_reg = flag;
2673 }
2674
2675 static void
2676 set_check (int what)
2677 {
2678 enum check_kind *kind;
2679 const char *str;
2680
2681 if (what)
2682 {
2683 kind = &operand_check;
2684 str = "operand";
2685 }
2686 else
2687 {
2688 kind = &sse_check;
2689 str = "sse";
2690 }
2691
2692 SKIP_WHITESPACE ();
2693
2694 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2695 {
2696 char *string;
2697 int e = get_symbol_name (&string);
2698
2699 if (strcmp (string, "none") == 0)
2700 *kind = check_none;
2701 else if (strcmp (string, "warning") == 0)
2702 *kind = check_warning;
2703 else if (strcmp (string, "error") == 0)
2704 *kind = check_error;
2705 else
2706 as_bad (_("bad argument to %s_check directive."), str);
2707 (void) restore_line_pointer (e);
2708 }
2709 else
2710 as_bad (_("missing argument for %s_check directive"), str);
2711
2712 demand_empty_rest_of_line ();
2713 }
2714
2715 static void
2716 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2717 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2718 {
2719 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2720 static const char *arch;
2721
2722 /* Intel LIOM is only supported on ELF. */
2723 if (!IS_ELF)
2724 return;
2725
2726 if (!arch)
2727 {
2728 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2729 use default_arch. */
2730 arch = cpu_arch_name;
2731 if (!arch)
2732 arch = default_arch;
2733 }
2734
2735 /* If we are targeting Intel MCU, we must enable it. */
2736 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2737 || new_flag.bitfield.cpuiamcu)
2738 return;
2739
2740 /* If we are targeting Intel L1OM, we must enable it. */
2741 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2742 || new_flag.bitfield.cpul1om)
2743 return;
2744
2745 /* If we are targeting Intel K1OM, we must enable it. */
2746 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2747 || new_flag.bitfield.cpuk1om)
2748 return;
2749
2750 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2751 #endif
2752 }
2753
2754 static void
2755 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2756 {
2757 SKIP_WHITESPACE ();
2758
2759 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2760 {
2761 char *string;
2762 int e = get_symbol_name (&string);
2763 unsigned int j;
2764 i386_cpu_flags flags;
2765
2766 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2767 {
2768 if (strcmp (string, cpu_arch[j].name) == 0)
2769 {
2770 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2771
2772 if (*string != '.')
2773 {
2774 cpu_arch_name = cpu_arch[j].name;
2775 cpu_sub_arch_name = NULL;
2776 cpu_arch_flags = cpu_arch[j].flags;
2777 if (flag_code == CODE_64BIT)
2778 {
2779 cpu_arch_flags.bitfield.cpu64 = 1;
2780 cpu_arch_flags.bitfield.cpuno64 = 0;
2781 }
2782 else
2783 {
2784 cpu_arch_flags.bitfield.cpu64 = 0;
2785 cpu_arch_flags.bitfield.cpuno64 = 1;
2786 }
2787 cpu_arch_isa = cpu_arch[j].type;
2788 cpu_arch_isa_flags = cpu_arch[j].flags;
2789 if (!cpu_arch_tune_set)
2790 {
2791 cpu_arch_tune = cpu_arch_isa;
2792 cpu_arch_tune_flags = cpu_arch_isa_flags;
2793 }
2794 break;
2795 }
2796
2797 flags = cpu_flags_or (cpu_arch_flags,
2798 cpu_arch[j].flags);
2799
2800 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2801 {
2802 if (cpu_sub_arch_name)
2803 {
2804 char *name = cpu_sub_arch_name;
2805 cpu_sub_arch_name = concat (name,
2806 cpu_arch[j].name,
2807 (const char *) NULL);
2808 free (name);
2809 }
2810 else
2811 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2812 cpu_arch_flags = flags;
2813 cpu_arch_isa_flags = flags;
2814 }
2815 else
2816 cpu_arch_isa_flags
2817 = cpu_flags_or (cpu_arch_isa_flags,
2818 cpu_arch[j].flags);
2819 (void) restore_line_pointer (e);
2820 demand_empty_rest_of_line ();
2821 return;
2822 }
2823 }
2824
2825 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2826 {
2827 /* Disable an ISA extension. */
2828 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2829 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2830 {
2831 flags = cpu_flags_and_not (cpu_arch_flags,
2832 cpu_noarch[j].flags);
2833 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2834 {
2835 if (cpu_sub_arch_name)
2836 {
2837 char *name = cpu_sub_arch_name;
2838 cpu_sub_arch_name = concat (name, string,
2839 (const char *) NULL);
2840 free (name);
2841 }
2842 else
2843 cpu_sub_arch_name = xstrdup (string);
2844 cpu_arch_flags = flags;
2845 cpu_arch_isa_flags = flags;
2846 }
2847 (void) restore_line_pointer (e);
2848 demand_empty_rest_of_line ();
2849 return;
2850 }
2851
2852 j = ARRAY_SIZE (cpu_arch);
2853 }
2854
2855 if (j >= ARRAY_SIZE (cpu_arch))
2856 as_bad (_("no such architecture: `%s'"), string);
2857
2858 *input_line_pointer = e;
2859 }
2860 else
2861 as_bad (_("missing cpu architecture"));
2862
2863 no_cond_jump_promotion = 0;
2864 if (*input_line_pointer == ','
2865 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2866 {
2867 char *string;
2868 char e;
2869
2870 ++input_line_pointer;
2871 e = get_symbol_name (&string);
2872
2873 if (strcmp (string, "nojumps") == 0)
2874 no_cond_jump_promotion = 1;
2875 else if (strcmp (string, "jumps") == 0)
2876 ;
2877 else
2878 as_bad (_("no such architecture modifier: `%s'"), string);
2879
2880 (void) restore_line_pointer (e);
2881 }
2882
2883 demand_empty_rest_of_line ();
2884 }
2885
2886 enum bfd_architecture
2887 i386_arch (void)
2888 {
2889 if (cpu_arch_isa == PROCESSOR_L1OM)
2890 {
2891 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2892 || flag_code != CODE_64BIT)
2893 as_fatal (_("Intel L1OM is 64bit ELF only"));
2894 return bfd_arch_l1om;
2895 }
2896 else if (cpu_arch_isa == PROCESSOR_K1OM)
2897 {
2898 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2899 || flag_code != CODE_64BIT)
2900 as_fatal (_("Intel K1OM is 64bit ELF only"));
2901 return bfd_arch_k1om;
2902 }
2903 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2904 {
2905 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2906 || flag_code == CODE_64BIT)
2907 as_fatal (_("Intel MCU is 32bit ELF only"));
2908 return bfd_arch_iamcu;
2909 }
2910 else
2911 return bfd_arch_i386;
2912 }
2913
2914 unsigned long
2915 i386_mach (void)
2916 {
2917 if (!strncmp (default_arch, "x86_64", 6))
2918 {
2919 if (cpu_arch_isa == PROCESSOR_L1OM)
2920 {
2921 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2922 || default_arch[6] != '\0')
2923 as_fatal (_("Intel L1OM is 64bit ELF only"));
2924 return bfd_mach_l1om;
2925 }
2926 else if (cpu_arch_isa == PROCESSOR_K1OM)
2927 {
2928 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2929 || default_arch[6] != '\0')
2930 as_fatal (_("Intel K1OM is 64bit ELF only"));
2931 return bfd_mach_k1om;
2932 }
2933 else if (default_arch[6] == '\0')
2934 return bfd_mach_x86_64;
2935 else
2936 return bfd_mach_x64_32;
2937 }
2938 else if (!strcmp (default_arch, "i386")
2939 || !strcmp (default_arch, "iamcu"))
2940 {
2941 if (cpu_arch_isa == PROCESSOR_IAMCU)
2942 {
2943 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2944 as_fatal (_("Intel MCU is 32bit ELF only"));
2945 return bfd_mach_i386_iamcu;
2946 }
2947 else
2948 return bfd_mach_i386_i386;
2949 }
2950 else
2951 as_fatal (_("unknown architecture"));
2952 }
2953 \f
2954 void
2955 md_begin (void)
2956 {
2957 const char *hash_err;
2958
2959 /* Support pseudo prefixes like {disp32}. */
2960 lex_type ['{'] = LEX_BEGIN_NAME;
2961
2962 /* Initialize op_hash hash table. */
2963 op_hash = hash_new ();
2964
2965 {
2966 const insn_template *optab;
2967 templates *core_optab;
2968
2969 /* Setup for loop. */
2970 optab = i386_optab;
2971 core_optab = XNEW (templates);
2972 core_optab->start = optab;
2973
2974 while (1)
2975 {
2976 ++optab;
2977 if (optab->name == NULL
2978 || strcmp (optab->name, (optab - 1)->name) != 0)
2979 {
2980 /* different name --> ship out current template list;
2981 add to hash table; & begin anew. */
2982 core_optab->end = optab;
2983 hash_err = hash_insert (op_hash,
2984 (optab - 1)->name,
2985 (void *) core_optab);
2986 if (hash_err)
2987 {
2988 as_fatal (_("can't hash %s: %s"),
2989 (optab - 1)->name,
2990 hash_err);
2991 }
2992 if (optab->name == NULL)
2993 break;
2994 core_optab = XNEW (templates);
2995 core_optab->start = optab;
2996 }
2997 }
2998 }
2999
3000 /* Initialize reg_hash hash table. */
3001 reg_hash = hash_new ();
3002 {
3003 const reg_entry *regtab;
3004 unsigned int regtab_size = i386_regtab_size;
3005
3006 for (regtab = i386_regtab; regtab_size--; regtab++)
3007 {
3008 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
3009 if (hash_err)
3010 as_fatal (_("can't hash %s: %s"),
3011 regtab->reg_name,
3012 hash_err);
3013 }
3014 }
3015
3016 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
3017 {
3018 int c;
3019 char *p;
3020
3021 for (c = 0; c < 256; c++)
3022 {
3023 if (ISDIGIT (c))
3024 {
3025 digit_chars[c] = c;
3026 mnemonic_chars[c] = c;
3027 register_chars[c] = c;
3028 operand_chars[c] = c;
3029 }
3030 else if (ISLOWER (c))
3031 {
3032 mnemonic_chars[c] = c;
3033 register_chars[c] = c;
3034 operand_chars[c] = c;
3035 }
3036 else if (ISUPPER (c))
3037 {
3038 mnemonic_chars[c] = TOLOWER (c);
3039 register_chars[c] = mnemonic_chars[c];
3040 operand_chars[c] = c;
3041 }
3042 else if (c == '{' || c == '}')
3043 {
3044 mnemonic_chars[c] = c;
3045 operand_chars[c] = c;
3046 }
3047
3048 if (ISALPHA (c) || ISDIGIT (c))
3049 identifier_chars[c] = c;
3050 else if (c >= 128)
3051 {
3052 identifier_chars[c] = c;
3053 operand_chars[c] = c;
3054 }
3055 }
3056
3057 #ifdef LEX_AT
3058 identifier_chars['@'] = '@';
3059 #endif
3060 #ifdef LEX_QM
3061 identifier_chars['?'] = '?';
3062 operand_chars['?'] = '?';
3063 #endif
3064 digit_chars['-'] = '-';
3065 mnemonic_chars['_'] = '_';
3066 mnemonic_chars['-'] = '-';
3067 mnemonic_chars['.'] = '.';
3068 identifier_chars['_'] = '_';
3069 identifier_chars['.'] = '.';
3070
3071 for (p = operand_special_chars; *p != '\0'; p++)
3072 operand_chars[(unsigned char) *p] = *p;
3073 }
3074
3075 if (flag_code == CODE_64BIT)
3076 {
3077 #if defined (OBJ_COFF) && defined (TE_PE)
3078 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3079 ? 32 : 16);
3080 #else
3081 x86_dwarf2_return_column = 16;
3082 #endif
3083 x86_cie_data_alignment = -8;
3084 }
3085 else
3086 {
3087 x86_dwarf2_return_column = 8;
3088 x86_cie_data_alignment = -4;
3089 }
3090
3091 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3092 can be turned into BRANCH_PREFIX frag. */
3093 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3094 abort ();
3095 }
3096
3097 void
3098 i386_print_statistics (FILE *file)
3099 {
3100 hash_print_statistics (file, "i386 opcode", op_hash);
3101 hash_print_statistics (file, "i386 register", reg_hash);
3102 }
3103 \f
3104 #ifdef DEBUG386
3105
3106 /* Debugging routines for md_assemble. */
3107 static void pte (insn_template *);
3108 static void pt (i386_operand_type);
3109 static void pe (expressionS *);
3110 static void ps (symbolS *);
3111
3112 static void
3113 pi (const char *line, i386_insn *x)
3114 {
3115 unsigned int j;
3116
3117 fprintf (stdout, "%s: template ", line);
3118 pte (&x->tm);
3119 fprintf (stdout, " address: base %s index %s scale %x\n",
3120 x->base_reg ? x->base_reg->reg_name : "none",
3121 x->index_reg ? x->index_reg->reg_name : "none",
3122 x->log2_scale_factor);
3123 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3124 x->rm.mode, x->rm.reg, x->rm.regmem);
3125 fprintf (stdout, " sib: base %x index %x scale %x\n",
3126 x->sib.base, x->sib.index, x->sib.scale);
3127 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3128 (x->rex & REX_W) != 0,
3129 (x->rex & REX_R) != 0,
3130 (x->rex & REX_X) != 0,
3131 (x->rex & REX_B) != 0);
3132 for (j = 0; j < x->operands; j++)
3133 {
3134 fprintf (stdout, " #%d: ", j + 1);
3135 pt (x->types[j]);
3136 fprintf (stdout, "\n");
3137 if (x->types[j].bitfield.class == Reg
3138 || x->types[j].bitfield.class == RegMMX
3139 || x->types[j].bitfield.class == RegSIMD
3140 || x->types[j].bitfield.class == SReg
3141 || x->types[j].bitfield.class == RegCR
3142 || x->types[j].bitfield.class == RegDR
3143 || x->types[j].bitfield.class == RegTR)
3144 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3145 if (operand_type_check (x->types[j], imm))
3146 pe (x->op[j].imms);
3147 if (operand_type_check (x->types[j], disp))
3148 pe (x->op[j].disps);
3149 }
3150 }
3151
3152 static void
3153 pte (insn_template *t)
3154 {
3155 unsigned int j;
3156 fprintf (stdout, " %d operands ", t->operands);
3157 fprintf (stdout, "opcode %x ", t->base_opcode);
3158 if (t->extension_opcode != None)
3159 fprintf (stdout, "ext %x ", t->extension_opcode);
3160 if (t->opcode_modifier.d)
3161 fprintf (stdout, "D");
3162 if (t->opcode_modifier.w)
3163 fprintf (stdout, "W");
3164 fprintf (stdout, "\n");
3165 for (j = 0; j < t->operands; j++)
3166 {
3167 fprintf (stdout, " #%d type ", j + 1);
3168 pt (t->operand_types[j]);
3169 fprintf (stdout, "\n");
3170 }
3171 }
3172
3173 static void
3174 pe (expressionS *e)
3175 {
3176 fprintf (stdout, " operation %d\n", e->X_op);
3177 fprintf (stdout, " add_number %ld (%lx)\n",
3178 (long) e->X_add_number, (long) e->X_add_number);
3179 if (e->X_add_symbol)
3180 {
3181 fprintf (stdout, " add_symbol ");
3182 ps (e->X_add_symbol);
3183 fprintf (stdout, "\n");
3184 }
3185 if (e->X_op_symbol)
3186 {
3187 fprintf (stdout, " op_symbol ");
3188 ps (e->X_op_symbol);
3189 fprintf (stdout, "\n");
3190 }
3191 }
3192
3193 static void
3194 ps (symbolS *s)
3195 {
3196 fprintf (stdout, "%s type %s%s",
3197 S_GET_NAME (s),
3198 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3199 segment_name (S_GET_SEGMENT (s)));
3200 }
3201
3202 static struct type_name
3203 {
3204 i386_operand_type mask;
3205 const char *name;
3206 }
3207 const type_names[] =
3208 {
3209 { OPERAND_TYPE_REG8, "r8" },
3210 { OPERAND_TYPE_REG16, "r16" },
3211 { OPERAND_TYPE_REG32, "r32" },
3212 { OPERAND_TYPE_REG64, "r64" },
3213 { OPERAND_TYPE_ACC8, "acc8" },
3214 { OPERAND_TYPE_ACC16, "acc16" },
3215 { OPERAND_TYPE_ACC32, "acc32" },
3216 { OPERAND_TYPE_ACC64, "acc64" },
3217 { OPERAND_TYPE_IMM8, "i8" },
3218 { OPERAND_TYPE_IMM8, "i8s" },
3219 { OPERAND_TYPE_IMM16, "i16" },
3220 { OPERAND_TYPE_IMM32, "i32" },
3221 { OPERAND_TYPE_IMM32S, "i32s" },
3222 { OPERAND_TYPE_IMM64, "i64" },
3223 { OPERAND_TYPE_IMM1, "i1" },
3224 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3225 { OPERAND_TYPE_DISP8, "d8" },
3226 { OPERAND_TYPE_DISP16, "d16" },
3227 { OPERAND_TYPE_DISP32, "d32" },
3228 { OPERAND_TYPE_DISP32S, "d32s" },
3229 { OPERAND_TYPE_DISP64, "d64" },
3230 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3231 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3232 { OPERAND_TYPE_CONTROL, "control reg" },
3233 { OPERAND_TYPE_TEST, "test reg" },
3234 { OPERAND_TYPE_DEBUG, "debug reg" },
3235 { OPERAND_TYPE_FLOATREG, "FReg" },
3236 { OPERAND_TYPE_FLOATACC, "FAcc" },
3237 { OPERAND_TYPE_SREG, "SReg" },
3238 { OPERAND_TYPE_REGMMX, "rMMX" },
3239 { OPERAND_TYPE_REGXMM, "rXMM" },
3240 { OPERAND_TYPE_REGYMM, "rYMM" },
3241 { OPERAND_TYPE_REGZMM, "rZMM" },
3242 { OPERAND_TYPE_REGMASK, "Mask reg" },
3243 };
3244
3245 static void
3246 pt (i386_operand_type t)
3247 {
3248 unsigned int j;
3249 i386_operand_type a;
3250
3251 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3252 {
3253 a = operand_type_and (t, type_names[j].mask);
3254 if (operand_type_equal (&a, &type_names[j].mask))
3255 fprintf (stdout, "%s, ", type_names[j].name);
3256 }
3257 fflush (stdout);
3258 }
3259
3260 #endif /* DEBUG386 */
3261 \f
3262 static bfd_reloc_code_real_type
3263 reloc (unsigned int size,
3264 int pcrel,
3265 int sign,
3266 bfd_reloc_code_real_type other)
3267 {
3268 if (other != NO_RELOC)
3269 {
3270 reloc_howto_type *rel;
3271
3272 if (size == 8)
3273 switch (other)
3274 {
3275 case BFD_RELOC_X86_64_GOT32:
3276 return BFD_RELOC_X86_64_GOT64;
3277 break;
3278 case BFD_RELOC_X86_64_GOTPLT64:
3279 return BFD_RELOC_X86_64_GOTPLT64;
3280 break;
3281 case BFD_RELOC_X86_64_PLTOFF64:
3282 return BFD_RELOC_X86_64_PLTOFF64;
3283 break;
3284 case BFD_RELOC_X86_64_GOTPC32:
3285 other = BFD_RELOC_X86_64_GOTPC64;
3286 break;
3287 case BFD_RELOC_X86_64_GOTPCREL:
3288 other = BFD_RELOC_X86_64_GOTPCREL64;
3289 break;
3290 case BFD_RELOC_X86_64_TPOFF32:
3291 other = BFD_RELOC_X86_64_TPOFF64;
3292 break;
3293 case BFD_RELOC_X86_64_DTPOFF32:
3294 other = BFD_RELOC_X86_64_DTPOFF64;
3295 break;
3296 default:
3297 break;
3298 }
3299
3300 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3301 if (other == BFD_RELOC_SIZE32)
3302 {
3303 if (size == 8)
3304 other = BFD_RELOC_SIZE64;
3305 if (pcrel)
3306 {
3307 as_bad (_("there are no pc-relative size relocations"));
3308 return NO_RELOC;
3309 }
3310 }
3311 #endif
3312
3313 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3314 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3315 sign = -1;
3316
3317 rel = bfd_reloc_type_lookup (stdoutput, other);
3318 if (!rel)
3319 as_bad (_("unknown relocation (%u)"), other);
3320 else if (size != bfd_get_reloc_size (rel))
3321 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3322 bfd_get_reloc_size (rel),
3323 size);
3324 else if (pcrel && !rel->pc_relative)
3325 as_bad (_("non-pc-relative relocation for pc-relative field"));
3326 else if ((rel->complain_on_overflow == complain_overflow_signed
3327 && !sign)
3328 || (rel->complain_on_overflow == complain_overflow_unsigned
3329 && sign > 0))
3330 as_bad (_("relocated field and relocation type differ in signedness"));
3331 else
3332 return other;
3333 return NO_RELOC;
3334 }
3335
3336 if (pcrel)
3337 {
3338 if (!sign)
3339 as_bad (_("there are no unsigned pc-relative relocations"));
3340 switch (size)
3341 {
3342 case 1: return BFD_RELOC_8_PCREL;
3343 case 2: return BFD_RELOC_16_PCREL;
3344 case 4: return BFD_RELOC_32_PCREL;
3345 case 8: return BFD_RELOC_64_PCREL;
3346 }
3347 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3348 }
3349 else
3350 {
3351 if (sign > 0)
3352 switch (size)
3353 {
3354 case 4: return BFD_RELOC_X86_64_32S;
3355 }
3356 else
3357 switch (size)
3358 {
3359 case 1: return BFD_RELOC_8;
3360 case 2: return BFD_RELOC_16;
3361 case 4: return BFD_RELOC_32;
3362 case 8: return BFD_RELOC_64;
3363 }
3364 as_bad (_("cannot do %s %u byte relocation"),
3365 sign > 0 ? "signed" : "unsigned", size);
3366 }
3367
3368 return NO_RELOC;
3369 }
3370
3371 /* Here we decide which fixups can be adjusted to make them relative to
3372 the beginning of the section instead of the symbol. Basically we need
3373 to make sure that the dynamic relocations are done correctly, so in
3374 some cases we force the original symbol to be used. */
3375
3376 int
3377 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3378 {
3379 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3380 if (!IS_ELF)
3381 return 1;
3382
3383 /* Don't adjust pc-relative references to merge sections in 64-bit
3384 mode. */
3385 if (use_rela_relocations
3386 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3387 && fixP->fx_pcrel)
3388 return 0;
3389
3390 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3391 and changed later by validate_fix. */
3392 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3393 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3394 return 0;
3395
3396 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3397 for size relocations. */
3398 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3399 || fixP->fx_r_type == BFD_RELOC_SIZE64
3400 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3401 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3402 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3403 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3404 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3405 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3406 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3407 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3408 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3409 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3410 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3411 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3412 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3413 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3414 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3415 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3416 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3417 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3418 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3419 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3420 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3421 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3422 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3423 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3424 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3425 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3426 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3427 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3428 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3429 return 0;
3430 #endif
3431 return 1;
3432 }
3433
3434 static int
3435 intel_float_operand (const char *mnemonic)
3436 {
3437 /* Note that the value returned is meaningful only for opcodes with (memory)
3438 operands, hence the code here is free to improperly handle opcodes that
3439 have no operands (for better performance and smaller code). */
3440
3441 if (mnemonic[0] != 'f')
3442 return 0; /* non-math */
3443
3444 switch (mnemonic[1])
3445 {
3446 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3447 the fs segment override prefix not currently handled because no
3448 call path can make opcodes without operands get here */
3449 case 'i':
3450 return 2 /* integer op */;
3451 case 'l':
3452 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3453 return 3; /* fldcw/fldenv */
3454 break;
3455 case 'n':
3456 if (mnemonic[2] != 'o' /* fnop */)
3457 return 3; /* non-waiting control op */
3458 break;
3459 case 'r':
3460 if (mnemonic[2] == 's')
3461 return 3; /* frstor/frstpm */
3462 break;
3463 case 's':
3464 if (mnemonic[2] == 'a')
3465 return 3; /* fsave */
3466 if (mnemonic[2] == 't')
3467 {
3468 switch (mnemonic[3])
3469 {
3470 case 'c': /* fstcw */
3471 case 'd': /* fstdw */
3472 case 'e': /* fstenv */
3473 case 's': /* fsts[gw] */
3474 return 3;
3475 }
3476 }
3477 break;
3478 case 'x':
3479 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3480 return 0; /* fxsave/fxrstor are not really math ops */
3481 break;
3482 }
3483
3484 return 1;
3485 }
3486
3487 /* Build the VEX prefix. */
3488
3489 static void
3490 build_vex_prefix (const insn_template *t)
3491 {
3492 unsigned int register_specifier;
3493 unsigned int implied_prefix;
3494 unsigned int vector_length;
3495 unsigned int w;
3496
3497 /* Check register specifier. */
3498 if (i.vex.register_specifier)
3499 {
3500 register_specifier =
3501 ~register_number (i.vex.register_specifier) & 0xf;
3502 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3503 }
3504 else
3505 register_specifier = 0xf;
3506
3507 /* Use 2-byte VEX prefix by swapping destination and source operand
3508 if there are more than 1 register operand. */
3509 if (i.reg_operands > 1
3510 && i.vec_encoding != vex_encoding_vex3
3511 && i.dir_encoding == dir_encoding_default
3512 && i.operands == i.reg_operands
3513 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3514 && i.tm.opcode_modifier.vexopcode == VEX0F
3515 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3516 && i.rex == REX_B)
3517 {
3518 unsigned int xchg = i.operands - 1;
3519 union i386_op temp_op;
3520 i386_operand_type temp_type;
3521
3522 temp_type = i.types[xchg];
3523 i.types[xchg] = i.types[0];
3524 i.types[0] = temp_type;
3525 temp_op = i.op[xchg];
3526 i.op[xchg] = i.op[0];
3527 i.op[0] = temp_op;
3528
3529 gas_assert (i.rm.mode == 3);
3530
3531 i.rex = REX_R;
3532 xchg = i.rm.regmem;
3533 i.rm.regmem = i.rm.reg;
3534 i.rm.reg = xchg;
3535
3536 if (i.tm.opcode_modifier.d)
3537 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3538 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3539 else /* Use the next insn. */
3540 i.tm = t[1];
3541 }
3542
3543 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3544 are no memory operands and at least 3 register ones. */
3545 if (i.reg_operands >= 3
3546 && i.vec_encoding != vex_encoding_vex3
3547 && i.reg_operands == i.operands - i.imm_operands
3548 && i.tm.opcode_modifier.vex
3549 && i.tm.opcode_modifier.commutative
3550 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3551 && i.rex == REX_B
3552 && i.vex.register_specifier
3553 && !(i.vex.register_specifier->reg_flags & RegRex))
3554 {
3555 unsigned int xchg = i.operands - i.reg_operands;
3556 union i386_op temp_op;
3557 i386_operand_type temp_type;
3558
3559 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3560 gas_assert (!i.tm.opcode_modifier.sae);
3561 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3562 &i.types[i.operands - 3]));
3563 gas_assert (i.rm.mode == 3);
3564
3565 temp_type = i.types[xchg];
3566 i.types[xchg] = i.types[xchg + 1];
3567 i.types[xchg + 1] = temp_type;
3568 temp_op = i.op[xchg];
3569 i.op[xchg] = i.op[xchg + 1];
3570 i.op[xchg + 1] = temp_op;
3571
3572 i.rex = 0;
3573 xchg = i.rm.regmem | 8;
3574 i.rm.regmem = ~register_specifier & 0xf;
3575 gas_assert (!(i.rm.regmem & 8));
3576 i.vex.register_specifier += xchg - i.rm.regmem;
3577 register_specifier = ~xchg & 0xf;
3578 }
3579
3580 if (i.tm.opcode_modifier.vex == VEXScalar)
3581 vector_length = avxscalar;
3582 else if (i.tm.opcode_modifier.vex == VEX256)
3583 vector_length = 1;
3584 else
3585 {
3586 unsigned int op;
3587
3588 /* Determine vector length from the last multi-length vector
3589 operand. */
3590 vector_length = 0;
3591 for (op = t->operands; op--;)
3592 if (t->operand_types[op].bitfield.xmmword
3593 && t->operand_types[op].bitfield.ymmword
3594 && i.types[op].bitfield.ymmword)
3595 {
3596 vector_length = 1;
3597 break;
3598 }
3599 }
3600
3601 switch ((i.tm.base_opcode >> 8) & 0xff)
3602 {
3603 case 0:
3604 implied_prefix = 0;
3605 break;
3606 case DATA_PREFIX_OPCODE:
3607 implied_prefix = 1;
3608 break;
3609 case REPE_PREFIX_OPCODE:
3610 implied_prefix = 2;
3611 break;
3612 case REPNE_PREFIX_OPCODE:
3613 implied_prefix = 3;
3614 break;
3615 default:
3616 abort ();
3617 }
3618
3619 /* Check the REX.W bit and VEXW. */
3620 if (i.tm.opcode_modifier.vexw == VEXWIG)
3621 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3622 else if (i.tm.opcode_modifier.vexw)
3623 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3624 else
3625 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3626
3627 /* Use 2-byte VEX prefix if possible. */
3628 if (w == 0
3629 && i.vec_encoding != vex_encoding_vex3
3630 && i.tm.opcode_modifier.vexopcode == VEX0F
3631 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3632 {
3633 /* 2-byte VEX prefix. */
3634 unsigned int r;
3635
3636 i.vex.length = 2;
3637 i.vex.bytes[0] = 0xc5;
3638
3639 /* Check the REX.R bit. */
3640 r = (i.rex & REX_R) ? 0 : 1;
3641 i.vex.bytes[1] = (r << 7
3642 | register_specifier << 3
3643 | vector_length << 2
3644 | implied_prefix);
3645 }
3646 else
3647 {
3648 /* 3-byte VEX prefix. */
3649 unsigned int m;
3650
3651 i.vex.length = 3;
3652
3653 switch (i.tm.opcode_modifier.vexopcode)
3654 {
3655 case VEX0F:
3656 m = 0x1;
3657 i.vex.bytes[0] = 0xc4;
3658 break;
3659 case VEX0F38:
3660 m = 0x2;
3661 i.vex.bytes[0] = 0xc4;
3662 break;
3663 case VEX0F3A:
3664 m = 0x3;
3665 i.vex.bytes[0] = 0xc4;
3666 break;
3667 case XOP08:
3668 m = 0x8;
3669 i.vex.bytes[0] = 0x8f;
3670 break;
3671 case XOP09:
3672 m = 0x9;
3673 i.vex.bytes[0] = 0x8f;
3674 break;
3675 case XOP0A:
3676 m = 0xa;
3677 i.vex.bytes[0] = 0x8f;
3678 break;
3679 default:
3680 abort ();
3681 }
3682
3683 /* The high 3 bits of the second VEX byte are 1's compliment
3684 of RXB bits from REX. */
3685 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3686
3687 i.vex.bytes[2] = (w << 7
3688 | register_specifier << 3
3689 | vector_length << 2
3690 | implied_prefix);
3691 }
3692 }
3693
3694 static INLINE bfd_boolean
3695 is_evex_encoding (const insn_template *t)
3696 {
3697 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3698 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3699 || t->opcode_modifier.sae;
3700 }
3701
3702 static INLINE bfd_boolean
3703 is_any_vex_encoding (const insn_template *t)
3704 {
3705 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3706 || is_evex_encoding (t);
3707 }
3708
3709 /* Build the EVEX prefix. */
3710
3711 static void
3712 build_evex_prefix (void)
3713 {
3714 unsigned int register_specifier;
3715 unsigned int implied_prefix;
3716 unsigned int m, w;
3717 rex_byte vrex_used = 0;
3718
3719 /* Check register specifier. */
3720 if (i.vex.register_specifier)
3721 {
3722 gas_assert ((i.vrex & REX_X) == 0);
3723
3724 register_specifier = i.vex.register_specifier->reg_num;
3725 if ((i.vex.register_specifier->reg_flags & RegRex))
3726 register_specifier += 8;
3727 /* The upper 16 registers are encoded in the fourth byte of the
3728 EVEX prefix. */
3729 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3730 i.vex.bytes[3] = 0x8;
3731 register_specifier = ~register_specifier & 0xf;
3732 }
3733 else
3734 {
3735 register_specifier = 0xf;
3736
3737 /* Encode upper 16 vector index register in the fourth byte of
3738 the EVEX prefix. */
3739 if (!(i.vrex & REX_X))
3740 i.vex.bytes[3] = 0x8;
3741 else
3742 vrex_used |= REX_X;
3743 }
3744
3745 switch ((i.tm.base_opcode >> 8) & 0xff)
3746 {
3747 case 0:
3748 implied_prefix = 0;
3749 break;
3750 case DATA_PREFIX_OPCODE:
3751 implied_prefix = 1;
3752 break;
3753 case REPE_PREFIX_OPCODE:
3754 implied_prefix = 2;
3755 break;
3756 case REPNE_PREFIX_OPCODE:
3757 implied_prefix = 3;
3758 break;
3759 default:
3760 abort ();
3761 }
3762
3763 /* 4 byte EVEX prefix. */
3764 i.vex.length = 4;
3765 i.vex.bytes[0] = 0x62;
3766
3767 /* mmmm bits. */
3768 switch (i.tm.opcode_modifier.vexopcode)
3769 {
3770 case VEX0F:
3771 m = 1;
3772 break;
3773 case VEX0F38:
3774 m = 2;
3775 break;
3776 case VEX0F3A:
3777 m = 3;
3778 break;
3779 default:
3780 abort ();
3781 break;
3782 }
3783
3784 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3785 bits from REX. */
3786 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3787
3788 /* The fifth bit of the second EVEX byte is 1's compliment of the
3789 REX_R bit in VREX. */
3790 if (!(i.vrex & REX_R))
3791 i.vex.bytes[1] |= 0x10;
3792 else
3793 vrex_used |= REX_R;
3794
3795 if ((i.reg_operands + i.imm_operands) == i.operands)
3796 {
3797 /* When all operands are registers, the REX_X bit in REX is not
3798 used. We reuse it to encode the upper 16 registers, which is
3799 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3800 as 1's compliment. */
3801 if ((i.vrex & REX_B))
3802 {
3803 vrex_used |= REX_B;
3804 i.vex.bytes[1] &= ~0x40;
3805 }
3806 }
3807
3808 /* EVEX instructions shouldn't need the REX prefix. */
3809 i.vrex &= ~vrex_used;
3810 gas_assert (i.vrex == 0);
3811
3812 /* Check the REX.W bit and VEXW. */
3813 if (i.tm.opcode_modifier.vexw == VEXWIG)
3814 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3815 else if (i.tm.opcode_modifier.vexw)
3816 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3817 else
3818 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3819
3820 /* Encode the U bit. */
3821 implied_prefix |= 0x4;
3822
3823 /* The third byte of the EVEX prefix. */
3824 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3825
3826 /* The fourth byte of the EVEX prefix. */
3827 /* The zeroing-masking bit. */
3828 if (i.mask && i.mask->zeroing)
3829 i.vex.bytes[3] |= 0x80;
3830
3831 /* Don't always set the broadcast bit if there is no RC. */
3832 if (!i.rounding)
3833 {
3834 /* Encode the vector length. */
3835 unsigned int vec_length;
3836
3837 if (!i.tm.opcode_modifier.evex
3838 || i.tm.opcode_modifier.evex == EVEXDYN)
3839 {
3840 unsigned int op;
3841
3842 /* Determine vector length from the last multi-length vector
3843 operand. */
3844 vec_length = 0;
3845 for (op = i.operands; op--;)
3846 if (i.tm.operand_types[op].bitfield.xmmword
3847 + i.tm.operand_types[op].bitfield.ymmword
3848 + i.tm.operand_types[op].bitfield.zmmword > 1)
3849 {
3850 if (i.types[op].bitfield.zmmword)
3851 {
3852 i.tm.opcode_modifier.evex = EVEX512;
3853 break;
3854 }
3855 else if (i.types[op].bitfield.ymmword)
3856 {
3857 i.tm.opcode_modifier.evex = EVEX256;
3858 break;
3859 }
3860 else if (i.types[op].bitfield.xmmword)
3861 {
3862 i.tm.opcode_modifier.evex = EVEX128;
3863 break;
3864 }
3865 else if (i.broadcast && (int) op == i.broadcast->operand)
3866 {
3867 switch (i.broadcast->bytes)
3868 {
3869 case 64:
3870 i.tm.opcode_modifier.evex = EVEX512;
3871 break;
3872 case 32:
3873 i.tm.opcode_modifier.evex = EVEX256;
3874 break;
3875 case 16:
3876 i.tm.opcode_modifier.evex = EVEX128;
3877 break;
3878 default:
3879 abort ();
3880 }
3881 break;
3882 }
3883 }
3884
3885 if (op >= MAX_OPERANDS)
3886 abort ();
3887 }
3888
3889 switch (i.tm.opcode_modifier.evex)
3890 {
3891 case EVEXLIG: /* LL' is ignored */
3892 vec_length = evexlig << 5;
3893 break;
3894 case EVEX128:
3895 vec_length = 0 << 5;
3896 break;
3897 case EVEX256:
3898 vec_length = 1 << 5;
3899 break;
3900 case EVEX512:
3901 vec_length = 2 << 5;
3902 break;
3903 default:
3904 abort ();
3905 break;
3906 }
3907 i.vex.bytes[3] |= vec_length;
3908 /* Encode the broadcast bit. */
3909 if (i.broadcast)
3910 i.vex.bytes[3] |= 0x10;
3911 }
3912 else
3913 {
3914 if (i.rounding->type != saeonly)
3915 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3916 else
3917 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3918 }
3919
3920 if (i.mask && i.mask->mask)
3921 i.vex.bytes[3] |= i.mask->mask->reg_num;
3922 }
3923
3924 static void
3925 process_immext (void)
3926 {
3927 expressionS *exp;
3928
3929 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3930 which is coded in the same place as an 8-bit immediate field
3931 would be. Here we fake an 8-bit immediate operand from the
3932 opcode suffix stored in tm.extension_opcode.
3933
3934 AVX instructions also use this encoding, for some of
3935 3 argument instructions. */
3936
3937 gas_assert (i.imm_operands <= 1
3938 && (i.operands <= 2
3939 || (is_any_vex_encoding (&i.tm)
3940 && i.operands <= 4)));
3941
3942 exp = &im_expressions[i.imm_operands++];
3943 i.op[i.operands].imms = exp;
3944 i.types[i.operands] = imm8;
3945 i.operands++;
3946 exp->X_op = O_constant;
3947 exp->X_add_number = i.tm.extension_opcode;
3948 i.tm.extension_opcode = None;
3949 }
3950
3951
3952 static int
3953 check_hle (void)
3954 {
3955 switch (i.tm.opcode_modifier.hleprefixok)
3956 {
3957 default:
3958 abort ();
3959 case HLEPrefixNone:
3960 as_bad (_("invalid instruction `%s' after `%s'"),
3961 i.tm.name, i.hle_prefix);
3962 return 0;
3963 case HLEPrefixLock:
3964 if (i.prefix[LOCK_PREFIX])
3965 return 1;
3966 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3967 return 0;
3968 case HLEPrefixAny:
3969 return 1;
3970 case HLEPrefixRelease:
3971 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3972 {
3973 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3974 i.tm.name);
3975 return 0;
3976 }
3977 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
3978 {
3979 as_bad (_("memory destination needed for instruction `%s'"
3980 " after `xrelease'"), i.tm.name);
3981 return 0;
3982 }
3983 return 1;
3984 }
3985 }
3986
3987 /* Try the shortest encoding by shortening operand size. */
3988
3989 static void
3990 optimize_encoding (void)
3991 {
3992 unsigned int j;
3993
3994 if (optimize_for_space
3995 && !is_any_vex_encoding (&i.tm)
3996 && i.reg_operands == 1
3997 && i.imm_operands == 1
3998 && !i.types[1].bitfield.byte
3999 && i.op[0].imms->X_op == O_constant
4000 && fits_in_imm7 (i.op[0].imms->X_add_number)
4001 && (i.tm.base_opcode == 0xa8
4002 || (i.tm.base_opcode == 0xf6
4003 && i.tm.extension_opcode == 0x0)))
4004 {
4005 /* Optimize: -Os:
4006 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4007 */
4008 unsigned int base_regnum = i.op[1].regs->reg_num;
4009 if (flag_code == CODE_64BIT || base_regnum < 4)
4010 {
4011 i.types[1].bitfield.byte = 1;
4012 /* Ignore the suffix. */
4013 i.suffix = 0;
4014 /* Convert to byte registers. */
4015 if (i.types[1].bitfield.word)
4016 j = 16;
4017 else if (i.types[1].bitfield.dword)
4018 j = 32;
4019 else
4020 j = 48;
4021 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4022 j += 8;
4023 i.op[1].regs -= j;
4024 }
4025 }
4026 else if (flag_code == CODE_64BIT
4027 && !is_any_vex_encoding (&i.tm)
4028 && ((i.types[1].bitfield.qword
4029 && i.reg_operands == 1
4030 && i.imm_operands == 1
4031 && i.op[0].imms->X_op == O_constant
4032 && ((i.tm.base_opcode == 0xb8
4033 && i.tm.extension_opcode == None
4034 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4035 || (fits_in_imm31 (i.op[0].imms->X_add_number)
4036 && ((i.tm.base_opcode == 0x24
4037 || i.tm.base_opcode == 0xa8)
4038 || (i.tm.base_opcode == 0x80
4039 && i.tm.extension_opcode == 0x4)
4040 || ((i.tm.base_opcode == 0xf6
4041 || (i.tm.base_opcode | 1) == 0xc7)
4042 && i.tm.extension_opcode == 0x0)))
4043 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4044 && i.tm.base_opcode == 0x83
4045 && i.tm.extension_opcode == 0x4)))
4046 || (i.types[0].bitfield.qword
4047 && ((i.reg_operands == 2
4048 && i.op[0].regs == i.op[1].regs
4049 && (i.tm.base_opcode == 0x30
4050 || i.tm.base_opcode == 0x28))
4051 || (i.reg_operands == 1
4052 && i.operands == 1
4053 && i.tm.base_opcode == 0x30)))))
4054 {
4055 /* Optimize: -O:
4056 andq $imm31, %r64 -> andl $imm31, %r32
4057 andq $imm7, %r64 -> andl $imm7, %r32
4058 testq $imm31, %r64 -> testl $imm31, %r32
4059 xorq %r64, %r64 -> xorl %r32, %r32
4060 subq %r64, %r64 -> subl %r32, %r32
4061 movq $imm31, %r64 -> movl $imm31, %r32
4062 movq $imm32, %r64 -> movl $imm32, %r32
4063 */
4064 i.tm.opcode_modifier.norex64 = 1;
4065 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
4066 {
4067 /* Handle
4068 movq $imm31, %r64 -> movl $imm31, %r32
4069 movq $imm32, %r64 -> movl $imm32, %r32
4070 */
4071 i.tm.operand_types[0].bitfield.imm32 = 1;
4072 i.tm.operand_types[0].bitfield.imm32s = 0;
4073 i.tm.operand_types[0].bitfield.imm64 = 0;
4074 i.types[0].bitfield.imm32 = 1;
4075 i.types[0].bitfield.imm32s = 0;
4076 i.types[0].bitfield.imm64 = 0;
4077 i.types[1].bitfield.dword = 1;
4078 i.types[1].bitfield.qword = 0;
4079 if ((i.tm.base_opcode | 1) == 0xc7)
4080 {
4081 /* Handle
4082 movq $imm31, %r64 -> movl $imm31, %r32
4083 */
4084 i.tm.base_opcode = 0xb8;
4085 i.tm.extension_opcode = None;
4086 i.tm.opcode_modifier.w = 0;
4087 i.tm.opcode_modifier.modrm = 0;
4088 }
4089 }
4090 }
4091 else if (optimize > 1
4092 && !optimize_for_space
4093 && !is_any_vex_encoding (&i.tm)
4094 && i.reg_operands == 2
4095 && i.op[0].regs == i.op[1].regs
4096 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4097 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4098 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4099 {
4100 /* Optimize: -O2:
4101 andb %rN, %rN -> testb %rN, %rN
4102 andw %rN, %rN -> testw %rN, %rN
4103 andq %rN, %rN -> testq %rN, %rN
4104 orb %rN, %rN -> testb %rN, %rN
4105 orw %rN, %rN -> testw %rN, %rN
4106 orq %rN, %rN -> testq %rN, %rN
4107
4108 and outside of 64-bit mode
4109
4110 andl %rN, %rN -> testl %rN, %rN
4111 orl %rN, %rN -> testl %rN, %rN
4112 */
4113 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4114 }
4115 else if (i.reg_operands == 3
4116 && i.op[0].regs == i.op[1].regs
4117 && !i.types[2].bitfield.xmmword
4118 && (i.tm.opcode_modifier.vex
4119 || ((!i.mask || i.mask->zeroing)
4120 && !i.rounding
4121 && is_evex_encoding (&i.tm)
4122 && (i.vec_encoding != vex_encoding_evex
4123 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4124 || i.tm.cpu_flags.bitfield.cpuavx512vl
4125 || (i.tm.operand_types[2].bitfield.zmmword
4126 && i.types[2].bitfield.ymmword))))
4127 && ((i.tm.base_opcode == 0x55
4128 || i.tm.base_opcode == 0x6655
4129 || i.tm.base_opcode == 0x66df
4130 || i.tm.base_opcode == 0x57
4131 || i.tm.base_opcode == 0x6657
4132 || i.tm.base_opcode == 0x66ef
4133 || i.tm.base_opcode == 0x66f8
4134 || i.tm.base_opcode == 0x66f9
4135 || i.tm.base_opcode == 0x66fa
4136 || i.tm.base_opcode == 0x66fb
4137 || i.tm.base_opcode == 0x42
4138 || i.tm.base_opcode == 0x6642
4139 || i.tm.base_opcode == 0x47
4140 || i.tm.base_opcode == 0x6647)
4141 && i.tm.extension_opcode == None))
4142 {
4143 /* Optimize: -O1:
4144 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4145 vpsubq and vpsubw:
4146 EVEX VOP %zmmM, %zmmM, %zmmN
4147 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4148 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4149 EVEX VOP %ymmM, %ymmM, %ymmN
4150 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4151 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4152 VEX VOP %ymmM, %ymmM, %ymmN
4153 -> VEX VOP %xmmM, %xmmM, %xmmN
4154 VOP, one of vpandn and vpxor:
4155 VEX VOP %ymmM, %ymmM, %ymmN
4156 -> VEX VOP %xmmM, %xmmM, %xmmN
4157 VOP, one of vpandnd and vpandnq:
4158 EVEX VOP %zmmM, %zmmM, %zmmN
4159 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4160 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4161 EVEX VOP %ymmM, %ymmM, %ymmN
4162 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4163 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4164 VOP, one of vpxord and vpxorq:
4165 EVEX VOP %zmmM, %zmmM, %zmmN
4166 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4167 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4168 EVEX VOP %ymmM, %ymmM, %ymmN
4169 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4170 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4171 VOP, one of kxord and kxorq:
4172 VEX VOP %kM, %kM, %kN
4173 -> VEX kxorw %kM, %kM, %kN
4174 VOP, one of kandnd and kandnq:
4175 VEX VOP %kM, %kM, %kN
4176 -> VEX kandnw %kM, %kM, %kN
4177 */
4178 if (is_evex_encoding (&i.tm))
4179 {
4180 if (i.vec_encoding != vex_encoding_evex)
4181 {
4182 i.tm.opcode_modifier.vex = VEX128;
4183 i.tm.opcode_modifier.vexw = VEXW0;
4184 i.tm.opcode_modifier.evex = 0;
4185 }
4186 else if (optimize > 1)
4187 i.tm.opcode_modifier.evex = EVEX128;
4188 else
4189 return;
4190 }
4191 else if (i.tm.operand_types[0].bitfield.class == RegMask)
4192 {
4193 i.tm.base_opcode &= 0xff;
4194 i.tm.opcode_modifier.vexw = VEXW0;
4195 }
4196 else
4197 i.tm.opcode_modifier.vex = VEX128;
4198
4199 if (i.tm.opcode_modifier.vex)
4200 for (j = 0; j < 3; j++)
4201 {
4202 i.types[j].bitfield.xmmword = 1;
4203 i.types[j].bitfield.ymmword = 0;
4204 }
4205 }
4206 else if (i.vec_encoding != vex_encoding_evex
4207 && !i.types[0].bitfield.zmmword
4208 && !i.types[1].bitfield.zmmword
4209 && !i.mask
4210 && !i.broadcast
4211 && is_evex_encoding (&i.tm)
4212 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4213 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4214 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4215 || (i.tm.base_opcode & ~4) == 0x66db
4216 || (i.tm.base_opcode & ~4) == 0x66eb)
4217 && i.tm.extension_opcode == None)
4218 {
4219 /* Optimize: -O1:
4220 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4221 vmovdqu32 and vmovdqu64:
4222 EVEX VOP %xmmM, %xmmN
4223 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4224 EVEX VOP %ymmM, %ymmN
4225 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4226 EVEX VOP %xmmM, mem
4227 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4228 EVEX VOP %ymmM, mem
4229 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4230 EVEX VOP mem, %xmmN
4231 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4232 EVEX VOP mem, %ymmN
4233 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4234 VOP, one of vpand, vpandn, vpor, vpxor:
4235 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4236 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4237 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4238 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4239 EVEX VOP{d,q} mem, %xmmM, %xmmN
4240 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4241 EVEX VOP{d,q} mem, %ymmM, %ymmN
4242 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4243 */
4244 for (j = 0; j < i.operands; j++)
4245 if (operand_type_check (i.types[j], disp)
4246 && i.op[j].disps->X_op == O_constant)
4247 {
4248 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4249 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4250 bytes, we choose EVEX Disp8 over VEX Disp32. */
4251 int evex_disp8, vex_disp8;
4252 unsigned int memshift = i.memshift;
4253 offsetT n = i.op[j].disps->X_add_number;
4254
4255 evex_disp8 = fits_in_disp8 (n);
4256 i.memshift = 0;
4257 vex_disp8 = fits_in_disp8 (n);
4258 if (evex_disp8 != vex_disp8)
4259 {
4260 i.memshift = memshift;
4261 return;
4262 }
4263
4264 i.types[j].bitfield.disp8 = vex_disp8;
4265 break;
4266 }
4267 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4268 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4269 i.tm.opcode_modifier.vex
4270 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4271 i.tm.opcode_modifier.vexw = VEXW0;
4272 /* VPAND, VPOR, and VPXOR are commutative. */
4273 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4274 i.tm.opcode_modifier.commutative = 1;
4275 i.tm.opcode_modifier.evex = 0;
4276 i.tm.opcode_modifier.masking = 0;
4277 i.tm.opcode_modifier.broadcast = 0;
4278 i.tm.opcode_modifier.disp8memshift = 0;
4279 i.memshift = 0;
4280 if (j < i.operands)
4281 i.types[j].bitfield.disp8
4282 = fits_in_disp8 (i.op[j].disps->X_add_number);
4283 }
4284 }
4285
4286 /* This is the guts of the machine-dependent assembler. LINE points to a
4287 machine dependent instruction. This function is supposed to emit
4288 the frags/bytes it assembles to. */
4289
4290 void
4291 md_assemble (char *line)
4292 {
4293 unsigned int j;
4294 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4295 const insn_template *t;
4296
4297 /* Initialize globals. */
4298 memset (&i, '\0', sizeof (i));
4299 for (j = 0; j < MAX_OPERANDS; j++)
4300 i.reloc[j] = NO_RELOC;
4301 memset (disp_expressions, '\0', sizeof (disp_expressions));
4302 memset (im_expressions, '\0', sizeof (im_expressions));
4303 save_stack_p = save_stack;
4304
4305 /* First parse an instruction mnemonic & call i386_operand for the operands.
4306 We assume that the scrubber has arranged it so that line[0] is the valid
4307 start of a (possibly prefixed) mnemonic. */
4308
4309 line = parse_insn (line, mnemonic);
4310 if (line == NULL)
4311 return;
4312 mnem_suffix = i.suffix;
4313
4314 line = parse_operands (line, mnemonic);
4315 this_operand = -1;
4316 xfree (i.memop1_string);
4317 i.memop1_string = NULL;
4318 if (line == NULL)
4319 return;
4320
4321 /* Now we've parsed the mnemonic into a set of templates, and have the
4322 operands at hand. */
4323
4324 /* All intel opcodes have reversed operands except for "bound" and
4325 "enter". We also don't reverse intersegment "jmp" and "call"
4326 instructions with 2 immediate operands so that the immediate segment
4327 precedes the offset, as it does when in AT&T mode. */
4328 if (intel_syntax
4329 && i.operands > 1
4330 && (strcmp (mnemonic, "bound") != 0)
4331 && (strcmp (mnemonic, "invlpga") != 0)
4332 && !(operand_type_check (i.types[0], imm)
4333 && operand_type_check (i.types[1], imm)))
4334 swap_operands ();
4335
4336 /* The order of the immediates should be reversed
4337 for 2 immediates extrq and insertq instructions */
4338 if (i.imm_operands == 2
4339 && (strcmp (mnemonic, "extrq") == 0
4340 || strcmp (mnemonic, "insertq") == 0))
4341 swap_2_operands (0, 1);
4342
4343 if (i.imm_operands)
4344 optimize_imm ();
4345
4346 /* Don't optimize displacement for movabs since it only takes 64bit
4347 displacement. */
4348 if (i.disp_operands
4349 && i.disp_encoding != disp_encoding_32bit
4350 && (flag_code != CODE_64BIT
4351 || strcmp (mnemonic, "movabs") != 0))
4352 optimize_disp ();
4353
4354 /* Next, we find a template that matches the given insn,
4355 making sure the overlap of the given operands types is consistent
4356 with the template operand types. */
4357
4358 if (!(t = match_template (mnem_suffix)))
4359 return;
4360
4361 if (sse_check != check_none
4362 && !i.tm.opcode_modifier.noavx
4363 && !i.tm.cpu_flags.bitfield.cpuavx
4364 && !i.tm.cpu_flags.bitfield.cpuavx512f
4365 && (i.tm.cpu_flags.bitfield.cpusse
4366 || i.tm.cpu_flags.bitfield.cpusse2
4367 || i.tm.cpu_flags.bitfield.cpusse3
4368 || i.tm.cpu_flags.bitfield.cpussse3
4369 || i.tm.cpu_flags.bitfield.cpusse4_1
4370 || i.tm.cpu_flags.bitfield.cpusse4_2
4371 || i.tm.cpu_flags.bitfield.cpusse4a
4372 || i.tm.cpu_flags.bitfield.cpupclmul
4373 || i.tm.cpu_flags.bitfield.cpuaes
4374 || i.tm.cpu_flags.bitfield.cpusha
4375 || i.tm.cpu_flags.bitfield.cpugfni))
4376 {
4377 (sse_check == check_warning
4378 ? as_warn
4379 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4380 }
4381
4382 /* Zap movzx and movsx suffix. The suffix has been set from
4383 "word ptr" or "byte ptr" on the source operand in Intel syntax
4384 or extracted from mnemonic in AT&T syntax. But we'll use
4385 the destination register to choose the suffix for encoding. */
4386 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4387 {
4388 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4389 there is no suffix, the default will be byte extension. */
4390 if (i.reg_operands != 2
4391 && !i.suffix
4392 && intel_syntax)
4393 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4394
4395 i.suffix = 0;
4396 }
4397
4398 if (i.tm.opcode_modifier.fwait)
4399 if (!add_prefix (FWAIT_OPCODE))
4400 return;
4401
4402 /* Check if REP prefix is OK. */
4403 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4404 {
4405 as_bad (_("invalid instruction `%s' after `%s'"),
4406 i.tm.name, i.rep_prefix);
4407 return;
4408 }
4409
4410 /* Check for lock without a lockable instruction. Destination operand
4411 must be memory unless it is xchg (0x86). */
4412 if (i.prefix[LOCK_PREFIX]
4413 && (!i.tm.opcode_modifier.islockable
4414 || i.mem_operands == 0
4415 || (i.tm.base_opcode != 0x86
4416 && !(i.flags[i.operands - 1] & Operand_Mem))))
4417 {
4418 as_bad (_("expecting lockable instruction after `lock'"));
4419 return;
4420 }
4421
4422 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4423 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4424 {
4425 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4426 return;
4427 }
4428
4429 /* Check if HLE prefix is OK. */
4430 if (i.hle_prefix && !check_hle ())
4431 return;
4432
4433 /* Check BND prefix. */
4434 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4435 as_bad (_("expecting valid branch instruction after `bnd'"));
4436
4437 /* Check NOTRACK prefix. */
4438 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4439 as_bad (_("expecting indirect branch instruction after `notrack'"));
4440
4441 if (i.tm.cpu_flags.bitfield.cpumpx)
4442 {
4443 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4444 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4445 else if (flag_code != CODE_16BIT
4446 ? i.prefix[ADDR_PREFIX]
4447 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4448 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4449 }
4450
4451 /* Insert BND prefix. */
4452 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4453 {
4454 if (!i.prefix[BND_PREFIX])
4455 add_prefix (BND_PREFIX_OPCODE);
4456 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4457 {
4458 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4459 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4460 }
4461 }
4462
4463 /* Check string instruction segment overrides. */
4464 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
4465 {
4466 gas_assert (i.mem_operands);
4467 if (!check_string ())
4468 return;
4469 i.disp_operands = 0;
4470 }
4471
4472 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4473 optimize_encoding ();
4474
4475 if (!process_suffix ())
4476 return;
4477
4478 /* Update operand types. */
4479 for (j = 0; j < i.operands; j++)
4480 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4481
4482 /* Make still unresolved immediate matches conform to size of immediate
4483 given in i.suffix. */
4484 if (!finalize_imm ())
4485 return;
4486
4487 if (i.types[0].bitfield.imm1)
4488 i.imm_operands = 0; /* kludge for shift insns. */
4489
4490 /* We only need to check those implicit registers for instructions
4491 with 3 operands or less. */
4492 if (i.operands <= 3)
4493 for (j = 0; j < i.operands; j++)
4494 if (i.types[j].bitfield.instance != InstanceNone
4495 && !i.types[j].bitfield.xmmword)
4496 i.reg_operands--;
4497
4498 /* ImmExt should be processed after SSE2AVX. */
4499 if (!i.tm.opcode_modifier.sse2avx
4500 && i.tm.opcode_modifier.immext)
4501 process_immext ();
4502
4503 /* For insns with operands there are more diddles to do to the opcode. */
4504 if (i.operands)
4505 {
4506 if (!process_operands ())
4507 return;
4508 }
4509 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4510 {
4511 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4512 as_warn (_("translating to `%sp'"), i.tm.name);
4513 }
4514
4515 if (is_any_vex_encoding (&i.tm))
4516 {
4517 if (!cpu_arch_flags.bitfield.cpui286)
4518 {
4519 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4520 i.tm.name);
4521 return;
4522 }
4523
4524 if (i.tm.opcode_modifier.vex)
4525 build_vex_prefix (t);
4526 else
4527 build_evex_prefix ();
4528 }
4529
4530 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4531 instructions may define INT_OPCODE as well, so avoid this corner
4532 case for those instructions that use MODRM. */
4533 if (i.tm.base_opcode == INT_OPCODE
4534 && !i.tm.opcode_modifier.modrm
4535 && i.op[0].imms->X_add_number == 3)
4536 {
4537 i.tm.base_opcode = INT3_OPCODE;
4538 i.imm_operands = 0;
4539 }
4540
4541 if ((i.tm.opcode_modifier.jump == JUMP
4542 || i.tm.opcode_modifier.jump == JUMP_BYTE
4543 || i.tm.opcode_modifier.jump == JUMP_DWORD)
4544 && i.op[0].disps->X_op == O_constant)
4545 {
4546 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4547 the absolute address given by the constant. Since ix86 jumps and
4548 calls are pc relative, we need to generate a reloc. */
4549 i.op[0].disps->X_add_symbol = &abs_symbol;
4550 i.op[0].disps->X_op = O_symbol;
4551 }
4552
4553 if (i.tm.opcode_modifier.rex64)
4554 i.rex |= REX_W;
4555
4556 /* For 8 bit registers we need an empty rex prefix. Also if the
4557 instruction already has a prefix, we need to convert old
4558 registers to new ones. */
4559
4560 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
4561 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4562 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
4563 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4564 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4565 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
4566 && i.rex != 0))
4567 {
4568 int x;
4569
4570 i.rex |= REX_OPCODE;
4571 for (x = 0; x < 2; x++)
4572 {
4573 /* Look for 8 bit operand that uses old registers. */
4574 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4575 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4576 {
4577 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4578 /* In case it is "hi" register, give up. */
4579 if (i.op[x].regs->reg_num > 3)
4580 as_bad (_("can't encode register '%s%s' in an "
4581 "instruction requiring REX prefix."),
4582 register_prefix, i.op[x].regs->reg_name);
4583
4584 /* Otherwise it is equivalent to the extended register.
4585 Since the encoding doesn't change this is merely
4586 cosmetic cleanup for debug output. */
4587
4588 i.op[x].regs = i.op[x].regs + 8;
4589 }
4590 }
4591 }
4592
4593 if (i.rex == 0 && i.rex_encoding)
4594 {
4595 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4596 that uses legacy register. If it is "hi" register, don't add
4597 the REX_OPCODE byte. */
4598 int x;
4599 for (x = 0; x < 2; x++)
4600 if (i.types[x].bitfield.class == Reg
4601 && i.types[x].bitfield.byte
4602 && (i.op[x].regs->reg_flags & RegRex64) == 0
4603 && i.op[x].regs->reg_num > 3)
4604 {
4605 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4606 i.rex_encoding = FALSE;
4607 break;
4608 }
4609
4610 if (i.rex_encoding)
4611 i.rex = REX_OPCODE;
4612 }
4613
4614 if (i.rex != 0)
4615 add_prefix (REX_OPCODE | i.rex);
4616
4617 /* We are ready to output the insn. */
4618 output_insn ();
4619
4620 last_insn.seg = now_seg;
4621
4622 if (i.tm.opcode_modifier.isprefix)
4623 {
4624 last_insn.kind = last_insn_prefix;
4625 last_insn.name = i.tm.name;
4626 last_insn.file = as_where (&last_insn.line);
4627 }
4628 else
4629 last_insn.kind = last_insn_other;
4630 }
4631
4632 static char *
4633 parse_insn (char *line, char *mnemonic)
4634 {
4635 char *l = line;
4636 char *token_start = l;
4637 char *mnem_p;
4638 int supported;
4639 const insn_template *t;
4640 char *dot_p = NULL;
4641
4642 while (1)
4643 {
4644 mnem_p = mnemonic;
4645 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4646 {
4647 if (*mnem_p == '.')
4648 dot_p = mnem_p;
4649 mnem_p++;
4650 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4651 {
4652 as_bad (_("no such instruction: `%s'"), token_start);
4653 return NULL;
4654 }
4655 l++;
4656 }
4657 if (!is_space_char (*l)
4658 && *l != END_OF_INSN
4659 && (intel_syntax
4660 || (*l != PREFIX_SEPARATOR
4661 && *l != ',')))
4662 {
4663 as_bad (_("invalid character %s in mnemonic"),
4664 output_invalid (*l));
4665 return NULL;
4666 }
4667 if (token_start == l)
4668 {
4669 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4670 as_bad (_("expecting prefix; got nothing"));
4671 else
4672 as_bad (_("expecting mnemonic; got nothing"));
4673 return NULL;
4674 }
4675
4676 /* Look up instruction (or prefix) via hash table. */
4677 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4678
4679 if (*l != END_OF_INSN
4680 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4681 && current_templates
4682 && current_templates->start->opcode_modifier.isprefix)
4683 {
4684 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4685 {
4686 as_bad ((flag_code != CODE_64BIT
4687 ? _("`%s' is only supported in 64-bit mode")
4688 : _("`%s' is not supported in 64-bit mode")),
4689 current_templates->start->name);
4690 return NULL;
4691 }
4692 /* If we are in 16-bit mode, do not allow addr16 or data16.
4693 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4694 if ((current_templates->start->opcode_modifier.size == SIZE16
4695 || current_templates->start->opcode_modifier.size == SIZE32)
4696 && flag_code != CODE_64BIT
4697 && ((current_templates->start->opcode_modifier.size == SIZE32)
4698 ^ (flag_code == CODE_16BIT)))
4699 {
4700 as_bad (_("redundant %s prefix"),
4701 current_templates->start->name);
4702 return NULL;
4703 }
4704 if (current_templates->start->opcode_length == 0)
4705 {
4706 /* Handle pseudo prefixes. */
4707 switch (current_templates->start->base_opcode)
4708 {
4709 case 0x0:
4710 /* {disp8} */
4711 i.disp_encoding = disp_encoding_8bit;
4712 break;
4713 case 0x1:
4714 /* {disp32} */
4715 i.disp_encoding = disp_encoding_32bit;
4716 break;
4717 case 0x2:
4718 /* {load} */
4719 i.dir_encoding = dir_encoding_load;
4720 break;
4721 case 0x3:
4722 /* {store} */
4723 i.dir_encoding = dir_encoding_store;
4724 break;
4725 case 0x4:
4726 /* {vex} */
4727 i.vec_encoding = vex_encoding_vex;
4728 break;
4729 case 0x5:
4730 /* {vex3} */
4731 i.vec_encoding = vex_encoding_vex3;
4732 break;
4733 case 0x6:
4734 /* {evex} */
4735 i.vec_encoding = vex_encoding_evex;
4736 break;
4737 case 0x7:
4738 /* {rex} */
4739 i.rex_encoding = TRUE;
4740 break;
4741 case 0x8:
4742 /* {nooptimize} */
4743 i.no_optimize = TRUE;
4744 break;
4745 default:
4746 abort ();
4747 }
4748 }
4749 else
4750 {
4751 /* Add prefix, checking for repeated prefixes. */
4752 switch (add_prefix (current_templates->start->base_opcode))
4753 {
4754 case PREFIX_EXIST:
4755 return NULL;
4756 case PREFIX_DS:
4757 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4758 i.notrack_prefix = current_templates->start->name;
4759 break;
4760 case PREFIX_REP:
4761 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4762 i.hle_prefix = current_templates->start->name;
4763 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4764 i.bnd_prefix = current_templates->start->name;
4765 else
4766 i.rep_prefix = current_templates->start->name;
4767 break;
4768 default:
4769 break;
4770 }
4771 }
4772 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4773 token_start = ++l;
4774 }
4775 else
4776 break;
4777 }
4778
4779 if (!current_templates)
4780 {
4781 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4782 Check if we should swap operand or force 32bit displacement in
4783 encoding. */
4784 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4785 i.dir_encoding = dir_encoding_swap;
4786 else if (mnem_p - 3 == dot_p
4787 && dot_p[1] == 'd'
4788 && dot_p[2] == '8')
4789 i.disp_encoding = disp_encoding_8bit;
4790 else if (mnem_p - 4 == dot_p
4791 && dot_p[1] == 'd'
4792 && dot_p[2] == '3'
4793 && dot_p[3] == '2')
4794 i.disp_encoding = disp_encoding_32bit;
4795 else
4796 goto check_suffix;
4797 mnem_p = dot_p;
4798 *dot_p = '\0';
4799 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4800 }
4801
4802 if (!current_templates)
4803 {
4804 check_suffix:
4805 if (mnem_p > mnemonic)
4806 {
4807 /* See if we can get a match by trimming off a suffix. */
4808 switch (mnem_p[-1])
4809 {
4810 case WORD_MNEM_SUFFIX:
4811 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4812 i.suffix = SHORT_MNEM_SUFFIX;
4813 else
4814 /* Fall through. */
4815 case BYTE_MNEM_SUFFIX:
4816 case QWORD_MNEM_SUFFIX:
4817 i.suffix = mnem_p[-1];
4818 mnem_p[-1] = '\0';
4819 current_templates = (const templates *) hash_find (op_hash,
4820 mnemonic);
4821 break;
4822 case SHORT_MNEM_SUFFIX:
4823 case LONG_MNEM_SUFFIX:
4824 if (!intel_syntax)
4825 {
4826 i.suffix = mnem_p[-1];
4827 mnem_p[-1] = '\0';
4828 current_templates = (const templates *) hash_find (op_hash,
4829 mnemonic);
4830 }
4831 break;
4832
4833 /* Intel Syntax. */
4834 case 'd':
4835 if (intel_syntax)
4836 {
4837 if (intel_float_operand (mnemonic) == 1)
4838 i.suffix = SHORT_MNEM_SUFFIX;
4839 else
4840 i.suffix = LONG_MNEM_SUFFIX;
4841 mnem_p[-1] = '\0';
4842 current_templates = (const templates *) hash_find (op_hash,
4843 mnemonic);
4844 }
4845 break;
4846 }
4847 }
4848
4849 if (!current_templates)
4850 {
4851 as_bad (_("no such instruction: `%s'"), token_start);
4852 return NULL;
4853 }
4854 }
4855
4856 if (current_templates->start->opcode_modifier.jump == JUMP
4857 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
4858 {
4859 /* Check for a branch hint. We allow ",pt" and ",pn" for
4860 predict taken and predict not taken respectively.
4861 I'm not sure that branch hints actually do anything on loop
4862 and jcxz insns (JumpByte) for current Pentium4 chips. They
4863 may work in the future and it doesn't hurt to accept them
4864 now. */
4865 if (l[0] == ',' && l[1] == 'p')
4866 {
4867 if (l[2] == 't')
4868 {
4869 if (!add_prefix (DS_PREFIX_OPCODE))
4870 return NULL;
4871 l += 3;
4872 }
4873 else if (l[2] == 'n')
4874 {
4875 if (!add_prefix (CS_PREFIX_OPCODE))
4876 return NULL;
4877 l += 3;
4878 }
4879 }
4880 }
4881 /* Any other comma loses. */
4882 if (*l == ',')
4883 {
4884 as_bad (_("invalid character %s in mnemonic"),
4885 output_invalid (*l));
4886 return NULL;
4887 }
4888
4889 /* Check if instruction is supported on specified architecture. */
4890 supported = 0;
4891 for (t = current_templates->start; t < current_templates->end; ++t)
4892 {
4893 supported |= cpu_flags_match (t);
4894 if (supported == CPU_FLAGS_PERFECT_MATCH)
4895 {
4896 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4897 as_warn (_("use .code16 to ensure correct addressing mode"));
4898
4899 return l;
4900 }
4901 }
4902
4903 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4904 as_bad (flag_code == CODE_64BIT
4905 ? _("`%s' is not supported in 64-bit mode")
4906 : _("`%s' is only supported in 64-bit mode"),
4907 current_templates->start->name);
4908 else
4909 as_bad (_("`%s' is not supported on `%s%s'"),
4910 current_templates->start->name,
4911 cpu_arch_name ? cpu_arch_name : default_arch,
4912 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4913
4914 return NULL;
4915 }
4916
4917 static char *
4918 parse_operands (char *l, const char *mnemonic)
4919 {
4920 char *token_start;
4921
4922 /* 1 if operand is pending after ','. */
4923 unsigned int expecting_operand = 0;
4924
4925 /* Non-zero if operand parens not balanced. */
4926 unsigned int paren_not_balanced;
4927
4928 while (*l != END_OF_INSN)
4929 {
4930 /* Skip optional white space before operand. */
4931 if (is_space_char (*l))
4932 ++l;
4933 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4934 {
4935 as_bad (_("invalid character %s before operand %d"),
4936 output_invalid (*l),
4937 i.operands + 1);
4938 return NULL;
4939 }
4940 token_start = l; /* After white space. */
4941 paren_not_balanced = 0;
4942 while (paren_not_balanced || *l != ',')
4943 {
4944 if (*l == END_OF_INSN)
4945 {
4946 if (paren_not_balanced)
4947 {
4948 if (!intel_syntax)
4949 as_bad (_("unbalanced parenthesis in operand %d."),
4950 i.operands + 1);
4951 else
4952 as_bad (_("unbalanced brackets in operand %d."),
4953 i.operands + 1);
4954 return NULL;
4955 }
4956 else
4957 break; /* we are done */
4958 }
4959 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4960 {
4961 as_bad (_("invalid character %s in operand %d"),
4962 output_invalid (*l),
4963 i.operands + 1);
4964 return NULL;
4965 }
4966 if (!intel_syntax)
4967 {
4968 if (*l == '(')
4969 ++paren_not_balanced;
4970 if (*l == ')')
4971 --paren_not_balanced;
4972 }
4973 else
4974 {
4975 if (*l == '[')
4976 ++paren_not_balanced;
4977 if (*l == ']')
4978 --paren_not_balanced;
4979 }
4980 l++;
4981 }
4982 if (l != token_start)
4983 { /* Yes, we've read in another operand. */
4984 unsigned int operand_ok;
4985 this_operand = i.operands++;
4986 if (i.operands > MAX_OPERANDS)
4987 {
4988 as_bad (_("spurious operands; (%d operands/instruction max)"),
4989 MAX_OPERANDS);
4990 return NULL;
4991 }
4992 i.types[this_operand].bitfield.unspecified = 1;
4993 /* Now parse operand adding info to 'i' as we go along. */
4994 END_STRING_AND_SAVE (l);
4995
4996 if (i.mem_operands > 1)
4997 {
4998 as_bad (_("too many memory references for `%s'"),
4999 mnemonic);
5000 return 0;
5001 }
5002
5003 if (intel_syntax)
5004 operand_ok =
5005 i386_intel_operand (token_start,
5006 intel_float_operand (mnemonic));
5007 else
5008 operand_ok = i386_att_operand (token_start);
5009
5010 RESTORE_END_STRING (l);
5011 if (!operand_ok)
5012 return NULL;
5013 }
5014 else
5015 {
5016 if (expecting_operand)
5017 {
5018 expecting_operand_after_comma:
5019 as_bad (_("expecting operand after ','; got nothing"));
5020 return NULL;
5021 }
5022 if (*l == ',')
5023 {
5024 as_bad (_("expecting operand before ','; got nothing"));
5025 return NULL;
5026 }
5027 }
5028
5029 /* Now *l must be either ',' or END_OF_INSN. */
5030 if (*l == ',')
5031 {
5032 if (*++l == END_OF_INSN)
5033 {
5034 /* Just skip it, if it's \n complain. */
5035 goto expecting_operand_after_comma;
5036 }
5037 expecting_operand = 1;
5038 }
5039 }
5040 return l;
5041 }
5042
5043 static void
5044 swap_2_operands (int xchg1, int xchg2)
5045 {
5046 union i386_op temp_op;
5047 i386_operand_type temp_type;
5048 unsigned int temp_flags;
5049 enum bfd_reloc_code_real temp_reloc;
5050
5051 temp_type = i.types[xchg2];
5052 i.types[xchg2] = i.types[xchg1];
5053 i.types[xchg1] = temp_type;
5054
5055 temp_flags = i.flags[xchg2];
5056 i.flags[xchg2] = i.flags[xchg1];
5057 i.flags[xchg1] = temp_flags;
5058
5059 temp_op = i.op[xchg2];
5060 i.op[xchg2] = i.op[xchg1];
5061 i.op[xchg1] = temp_op;
5062
5063 temp_reloc = i.reloc[xchg2];
5064 i.reloc[xchg2] = i.reloc[xchg1];
5065 i.reloc[xchg1] = temp_reloc;
5066
5067 if (i.mask)
5068 {
5069 if (i.mask->operand == xchg1)
5070 i.mask->operand = xchg2;
5071 else if (i.mask->operand == xchg2)
5072 i.mask->operand = xchg1;
5073 }
5074 if (i.broadcast)
5075 {
5076 if (i.broadcast->operand == xchg1)
5077 i.broadcast->operand = xchg2;
5078 else if (i.broadcast->operand == xchg2)
5079 i.broadcast->operand = xchg1;
5080 }
5081 if (i.rounding)
5082 {
5083 if (i.rounding->operand == xchg1)
5084 i.rounding->operand = xchg2;
5085 else if (i.rounding->operand == xchg2)
5086 i.rounding->operand = xchg1;
5087 }
5088 }
5089
5090 static void
5091 swap_operands (void)
5092 {
5093 switch (i.operands)
5094 {
5095 case 5:
5096 case 4:
5097 swap_2_operands (1, i.operands - 2);
5098 /* Fall through. */
5099 case 3:
5100 case 2:
5101 swap_2_operands (0, i.operands - 1);
5102 break;
5103 default:
5104 abort ();
5105 }
5106
5107 if (i.mem_operands == 2)
5108 {
5109 const seg_entry *temp_seg;
5110 temp_seg = i.seg[0];
5111 i.seg[0] = i.seg[1];
5112 i.seg[1] = temp_seg;
5113 }
5114 }
5115
5116 /* Try to ensure constant immediates are represented in the smallest
5117 opcode possible. */
5118 static void
5119 optimize_imm (void)
5120 {
5121 char guess_suffix = 0;
5122 int op;
5123
5124 if (i.suffix)
5125 guess_suffix = i.suffix;
5126 else if (i.reg_operands)
5127 {
5128 /* Figure out a suffix from the last register operand specified.
5129 We can't do this properly yet, i.e. excluding special register
5130 instances, but the following works for instructions with
5131 immediates. In any case, we can't set i.suffix yet. */
5132 for (op = i.operands; --op >= 0;)
5133 if (i.types[op].bitfield.class != Reg)
5134 continue;
5135 else if (i.types[op].bitfield.byte)
5136 {
5137 guess_suffix = BYTE_MNEM_SUFFIX;
5138 break;
5139 }
5140 else if (i.types[op].bitfield.word)
5141 {
5142 guess_suffix = WORD_MNEM_SUFFIX;
5143 break;
5144 }
5145 else if (i.types[op].bitfield.dword)
5146 {
5147 guess_suffix = LONG_MNEM_SUFFIX;
5148 break;
5149 }
5150 else if (i.types[op].bitfield.qword)
5151 {
5152 guess_suffix = QWORD_MNEM_SUFFIX;
5153 break;
5154 }
5155 }
5156 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5157 guess_suffix = WORD_MNEM_SUFFIX;
5158
5159 for (op = i.operands; --op >= 0;)
5160 if (operand_type_check (i.types[op], imm))
5161 {
5162 switch (i.op[op].imms->X_op)
5163 {
5164 case O_constant:
5165 /* If a suffix is given, this operand may be shortened. */
5166 switch (guess_suffix)
5167 {
5168 case LONG_MNEM_SUFFIX:
5169 i.types[op].bitfield.imm32 = 1;
5170 i.types[op].bitfield.imm64 = 1;
5171 break;
5172 case WORD_MNEM_SUFFIX:
5173 i.types[op].bitfield.imm16 = 1;
5174 i.types[op].bitfield.imm32 = 1;
5175 i.types[op].bitfield.imm32s = 1;
5176 i.types[op].bitfield.imm64 = 1;
5177 break;
5178 case BYTE_MNEM_SUFFIX:
5179 i.types[op].bitfield.imm8 = 1;
5180 i.types[op].bitfield.imm8s = 1;
5181 i.types[op].bitfield.imm16 = 1;
5182 i.types[op].bitfield.imm32 = 1;
5183 i.types[op].bitfield.imm32s = 1;
5184 i.types[op].bitfield.imm64 = 1;
5185 break;
5186 }
5187
5188 /* If this operand is at most 16 bits, convert it
5189 to a signed 16 bit number before trying to see
5190 whether it will fit in an even smaller size.
5191 This allows a 16-bit operand such as $0xffe0 to
5192 be recognised as within Imm8S range. */
5193 if ((i.types[op].bitfield.imm16)
5194 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5195 {
5196 i.op[op].imms->X_add_number =
5197 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5198 }
5199 #ifdef BFD64
5200 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5201 if ((i.types[op].bitfield.imm32)
5202 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5203 == 0))
5204 {
5205 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5206 ^ ((offsetT) 1 << 31))
5207 - ((offsetT) 1 << 31));
5208 }
5209 #endif
5210 i.types[op]
5211 = operand_type_or (i.types[op],
5212 smallest_imm_type (i.op[op].imms->X_add_number));
5213
5214 /* We must avoid matching of Imm32 templates when 64bit
5215 only immediate is available. */
5216 if (guess_suffix == QWORD_MNEM_SUFFIX)
5217 i.types[op].bitfield.imm32 = 0;
5218 break;
5219
5220 case O_absent:
5221 case O_register:
5222 abort ();
5223
5224 /* Symbols and expressions. */
5225 default:
5226 /* Convert symbolic operand to proper sizes for matching, but don't
5227 prevent matching a set of insns that only supports sizes other
5228 than those matching the insn suffix. */
5229 {
5230 i386_operand_type mask, allowed;
5231 const insn_template *t;
5232
5233 operand_type_set (&mask, 0);
5234 operand_type_set (&allowed, 0);
5235
5236 for (t = current_templates->start;
5237 t < current_templates->end;
5238 ++t)
5239 {
5240 allowed = operand_type_or (allowed, t->operand_types[op]);
5241 allowed = operand_type_and (allowed, anyimm);
5242 }
5243 switch (guess_suffix)
5244 {
5245 case QWORD_MNEM_SUFFIX:
5246 mask.bitfield.imm64 = 1;
5247 mask.bitfield.imm32s = 1;
5248 break;
5249 case LONG_MNEM_SUFFIX:
5250 mask.bitfield.imm32 = 1;
5251 break;
5252 case WORD_MNEM_SUFFIX:
5253 mask.bitfield.imm16 = 1;
5254 break;
5255 case BYTE_MNEM_SUFFIX:
5256 mask.bitfield.imm8 = 1;
5257 break;
5258 default:
5259 break;
5260 }
5261 allowed = operand_type_and (mask, allowed);
5262 if (!operand_type_all_zero (&allowed))
5263 i.types[op] = operand_type_and (i.types[op], mask);
5264 }
5265 break;
5266 }
5267 }
5268 }
5269
5270 /* Try to use the smallest displacement type too. */
5271 static void
5272 optimize_disp (void)
5273 {
5274 int op;
5275
5276 for (op = i.operands; --op >= 0;)
5277 if (operand_type_check (i.types[op], disp))
5278 {
5279 if (i.op[op].disps->X_op == O_constant)
5280 {
5281 offsetT op_disp = i.op[op].disps->X_add_number;
5282
5283 if (i.types[op].bitfield.disp16
5284 && (op_disp & ~(offsetT) 0xffff) == 0)
5285 {
5286 /* If this operand is at most 16 bits, convert
5287 to a signed 16 bit number and don't use 64bit
5288 displacement. */
5289 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5290 i.types[op].bitfield.disp64 = 0;
5291 }
5292 #ifdef BFD64
5293 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5294 if (i.types[op].bitfield.disp32
5295 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5296 {
5297 /* If this operand is at most 32 bits, convert
5298 to a signed 32 bit number and don't use 64bit
5299 displacement. */
5300 op_disp &= (((offsetT) 2 << 31) - 1);
5301 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5302 i.types[op].bitfield.disp64 = 0;
5303 }
5304 #endif
5305 if (!op_disp && i.types[op].bitfield.baseindex)
5306 {
5307 i.types[op].bitfield.disp8 = 0;
5308 i.types[op].bitfield.disp16 = 0;
5309 i.types[op].bitfield.disp32 = 0;
5310 i.types[op].bitfield.disp32s = 0;
5311 i.types[op].bitfield.disp64 = 0;
5312 i.op[op].disps = 0;
5313 i.disp_operands--;
5314 }
5315 else if (flag_code == CODE_64BIT)
5316 {
5317 if (fits_in_signed_long (op_disp))
5318 {
5319 i.types[op].bitfield.disp64 = 0;
5320 i.types[op].bitfield.disp32s = 1;
5321 }
5322 if (i.prefix[ADDR_PREFIX]
5323 && fits_in_unsigned_long (op_disp))
5324 i.types[op].bitfield.disp32 = 1;
5325 }
5326 if ((i.types[op].bitfield.disp32
5327 || i.types[op].bitfield.disp32s
5328 || i.types[op].bitfield.disp16)
5329 && fits_in_disp8 (op_disp))
5330 i.types[op].bitfield.disp8 = 1;
5331 }
5332 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5333 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5334 {
5335 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5336 i.op[op].disps, 0, i.reloc[op]);
5337 i.types[op].bitfield.disp8 = 0;
5338 i.types[op].bitfield.disp16 = 0;
5339 i.types[op].bitfield.disp32 = 0;
5340 i.types[op].bitfield.disp32s = 0;
5341 i.types[op].bitfield.disp64 = 0;
5342 }
5343 else
5344 /* We only support 64bit displacement on constants. */
5345 i.types[op].bitfield.disp64 = 0;
5346 }
5347 }
5348
5349 /* Return 1 if there is a match in broadcast bytes between operand
5350 GIVEN and instruction template T. */
5351
5352 static INLINE int
5353 match_broadcast_size (const insn_template *t, unsigned int given)
5354 {
5355 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5356 && i.types[given].bitfield.byte)
5357 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5358 && i.types[given].bitfield.word)
5359 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5360 && i.types[given].bitfield.dword)
5361 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5362 && i.types[given].bitfield.qword));
5363 }
5364
5365 /* Check if operands are valid for the instruction. */
5366
5367 static int
5368 check_VecOperands (const insn_template *t)
5369 {
5370 unsigned int op;
5371 i386_cpu_flags cpu;
5372
5373 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5374 any one operand are implicity requiring AVX512VL support if the actual
5375 operand size is YMMword or XMMword. Since this function runs after
5376 template matching, there's no need to check for YMMword/XMMword in
5377 the template. */
5378 cpu = cpu_flags_and (t->cpu_flags, avx512);
5379 if (!cpu_flags_all_zero (&cpu)
5380 && !t->cpu_flags.bitfield.cpuavx512vl
5381 && !cpu_arch_flags.bitfield.cpuavx512vl)
5382 {
5383 for (op = 0; op < t->operands; ++op)
5384 {
5385 if (t->operand_types[op].bitfield.zmmword
5386 && (i.types[op].bitfield.ymmword
5387 || i.types[op].bitfield.xmmword))
5388 {
5389 i.error = unsupported;
5390 return 1;
5391 }
5392 }
5393 }
5394
5395 /* Without VSIB byte, we can't have a vector register for index. */
5396 if (!t->opcode_modifier.vecsib
5397 && i.index_reg
5398 && (i.index_reg->reg_type.bitfield.xmmword
5399 || i.index_reg->reg_type.bitfield.ymmword
5400 || i.index_reg->reg_type.bitfield.zmmword))
5401 {
5402 i.error = unsupported_vector_index_register;
5403 return 1;
5404 }
5405
5406 /* Check if default mask is allowed. */
5407 if (t->opcode_modifier.nodefmask
5408 && (!i.mask || i.mask->mask->reg_num == 0))
5409 {
5410 i.error = no_default_mask;
5411 return 1;
5412 }
5413
5414 /* For VSIB byte, we need a vector register for index, and all vector
5415 registers must be distinct. */
5416 if (t->opcode_modifier.vecsib)
5417 {
5418 if (!i.index_reg
5419 || !((t->opcode_modifier.vecsib == VecSIB128
5420 && i.index_reg->reg_type.bitfield.xmmword)
5421 || (t->opcode_modifier.vecsib == VecSIB256
5422 && i.index_reg->reg_type.bitfield.ymmword)
5423 || (t->opcode_modifier.vecsib == VecSIB512
5424 && i.index_reg->reg_type.bitfield.zmmword)))
5425 {
5426 i.error = invalid_vsib_address;
5427 return 1;
5428 }
5429
5430 gas_assert (i.reg_operands == 2 || i.mask);
5431 if (i.reg_operands == 2 && !i.mask)
5432 {
5433 gas_assert (i.types[0].bitfield.class == RegSIMD);
5434 gas_assert (i.types[0].bitfield.xmmword
5435 || i.types[0].bitfield.ymmword);
5436 gas_assert (i.types[2].bitfield.class == RegSIMD);
5437 gas_assert (i.types[2].bitfield.xmmword
5438 || i.types[2].bitfield.ymmword);
5439 if (operand_check == check_none)
5440 return 0;
5441 if (register_number (i.op[0].regs)
5442 != register_number (i.index_reg)
5443 && register_number (i.op[2].regs)
5444 != register_number (i.index_reg)
5445 && register_number (i.op[0].regs)
5446 != register_number (i.op[2].regs))
5447 return 0;
5448 if (operand_check == check_error)
5449 {
5450 i.error = invalid_vector_register_set;
5451 return 1;
5452 }
5453 as_warn (_("mask, index, and destination registers should be distinct"));
5454 }
5455 else if (i.reg_operands == 1 && i.mask)
5456 {
5457 if (i.types[1].bitfield.class == RegSIMD
5458 && (i.types[1].bitfield.xmmword
5459 || i.types[1].bitfield.ymmword
5460 || i.types[1].bitfield.zmmword)
5461 && (register_number (i.op[1].regs)
5462 == register_number (i.index_reg)))
5463 {
5464 if (operand_check == check_error)
5465 {
5466 i.error = invalid_vector_register_set;
5467 return 1;
5468 }
5469 if (operand_check != check_none)
5470 as_warn (_("index and destination registers should be distinct"));
5471 }
5472 }
5473 }
5474
5475 /* Check if broadcast is supported by the instruction and is applied
5476 to the memory operand. */
5477 if (i.broadcast)
5478 {
5479 i386_operand_type type, overlap;
5480
5481 /* Check if specified broadcast is supported in this instruction,
5482 and its broadcast bytes match the memory operand. */
5483 op = i.broadcast->operand;
5484 if (!t->opcode_modifier.broadcast
5485 || !(i.flags[op] & Operand_Mem)
5486 || (!i.types[op].bitfield.unspecified
5487 && !match_broadcast_size (t, op)))
5488 {
5489 bad_broadcast:
5490 i.error = unsupported_broadcast;
5491 return 1;
5492 }
5493
5494 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5495 * i.broadcast->type);
5496 operand_type_set (&type, 0);
5497 switch (i.broadcast->bytes)
5498 {
5499 case 2:
5500 type.bitfield.word = 1;
5501 break;
5502 case 4:
5503 type.bitfield.dword = 1;
5504 break;
5505 case 8:
5506 type.bitfield.qword = 1;
5507 break;
5508 case 16:
5509 type.bitfield.xmmword = 1;
5510 break;
5511 case 32:
5512 type.bitfield.ymmword = 1;
5513 break;
5514 case 64:
5515 type.bitfield.zmmword = 1;
5516 break;
5517 default:
5518 goto bad_broadcast;
5519 }
5520
5521 overlap = operand_type_and (type, t->operand_types[op]);
5522 if (operand_type_all_zero (&overlap))
5523 goto bad_broadcast;
5524
5525 if (t->opcode_modifier.checkregsize)
5526 {
5527 unsigned int j;
5528
5529 type.bitfield.baseindex = 1;
5530 for (j = 0; j < i.operands; ++j)
5531 {
5532 if (j != op
5533 && !operand_type_register_match(i.types[j],
5534 t->operand_types[j],
5535 type,
5536 t->operand_types[op]))
5537 goto bad_broadcast;
5538 }
5539 }
5540 }
5541 /* If broadcast is supported in this instruction, we need to check if
5542 operand of one-element size isn't specified without broadcast. */
5543 else if (t->opcode_modifier.broadcast && i.mem_operands)
5544 {
5545 /* Find memory operand. */
5546 for (op = 0; op < i.operands; op++)
5547 if (i.flags[op] & Operand_Mem)
5548 break;
5549 gas_assert (op < i.operands);
5550 /* Check size of the memory operand. */
5551 if (match_broadcast_size (t, op))
5552 {
5553 i.error = broadcast_needed;
5554 return 1;
5555 }
5556 }
5557 else
5558 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5559
5560 /* Check if requested masking is supported. */
5561 if (i.mask)
5562 {
5563 switch (t->opcode_modifier.masking)
5564 {
5565 case BOTH_MASKING:
5566 break;
5567 case MERGING_MASKING:
5568 if (i.mask->zeroing)
5569 {
5570 case 0:
5571 i.error = unsupported_masking;
5572 return 1;
5573 }
5574 break;
5575 case DYNAMIC_MASKING:
5576 /* Memory destinations allow only merging masking. */
5577 if (i.mask->zeroing && i.mem_operands)
5578 {
5579 /* Find memory operand. */
5580 for (op = 0; op < i.operands; op++)
5581 if (i.flags[op] & Operand_Mem)
5582 break;
5583 gas_assert (op < i.operands);
5584 if (op == i.operands - 1)
5585 {
5586 i.error = unsupported_masking;
5587 return 1;
5588 }
5589 }
5590 break;
5591 default:
5592 abort ();
5593 }
5594 }
5595
5596 /* Check if masking is applied to dest operand. */
5597 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5598 {
5599 i.error = mask_not_on_destination;
5600 return 1;
5601 }
5602
5603 /* Check RC/SAE. */
5604 if (i.rounding)
5605 {
5606 if (!t->opcode_modifier.sae
5607 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
5608 {
5609 i.error = unsupported_rc_sae;
5610 return 1;
5611 }
5612 /* If the instruction has several immediate operands and one of
5613 them is rounding, the rounding operand should be the last
5614 immediate operand. */
5615 if (i.imm_operands > 1
5616 && i.rounding->operand != (int) (i.imm_operands - 1))
5617 {
5618 i.error = rc_sae_operand_not_last_imm;
5619 return 1;
5620 }
5621 }
5622
5623 /* Check vector Disp8 operand. */
5624 if (t->opcode_modifier.disp8memshift
5625 && i.disp_encoding != disp_encoding_32bit)
5626 {
5627 if (i.broadcast)
5628 i.memshift = t->opcode_modifier.broadcast - 1;
5629 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5630 i.memshift = t->opcode_modifier.disp8memshift;
5631 else
5632 {
5633 const i386_operand_type *type = NULL;
5634
5635 i.memshift = 0;
5636 for (op = 0; op < i.operands; op++)
5637 if (i.flags[op] & Operand_Mem)
5638 {
5639 if (t->opcode_modifier.evex == EVEXLIG)
5640 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5641 else if (t->operand_types[op].bitfield.xmmword
5642 + t->operand_types[op].bitfield.ymmword
5643 + t->operand_types[op].bitfield.zmmword <= 1)
5644 type = &t->operand_types[op];
5645 else if (!i.types[op].bitfield.unspecified)
5646 type = &i.types[op];
5647 }
5648 else if (i.types[op].bitfield.class == RegSIMD
5649 && t->opcode_modifier.evex != EVEXLIG)
5650 {
5651 if (i.types[op].bitfield.zmmword)
5652 i.memshift = 6;
5653 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5654 i.memshift = 5;
5655 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5656 i.memshift = 4;
5657 }
5658
5659 if (type)
5660 {
5661 if (type->bitfield.zmmword)
5662 i.memshift = 6;
5663 else if (type->bitfield.ymmword)
5664 i.memshift = 5;
5665 else if (type->bitfield.xmmword)
5666 i.memshift = 4;
5667 }
5668
5669 /* For the check in fits_in_disp8(). */
5670 if (i.memshift == 0)
5671 i.memshift = -1;
5672 }
5673
5674 for (op = 0; op < i.operands; op++)
5675 if (operand_type_check (i.types[op], disp)
5676 && i.op[op].disps->X_op == O_constant)
5677 {
5678 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5679 {
5680 i.types[op].bitfield.disp8 = 1;
5681 return 0;
5682 }
5683 i.types[op].bitfield.disp8 = 0;
5684 }
5685 }
5686
5687 i.memshift = 0;
5688
5689 return 0;
5690 }
5691
5692 /* Check if operands are valid for the instruction. Update VEX
5693 operand types. */
5694
5695 static int
5696 VEX_check_operands (const insn_template *t)
5697 {
5698 if (i.vec_encoding == vex_encoding_evex)
5699 {
5700 /* This instruction must be encoded with EVEX prefix. */
5701 if (!is_evex_encoding (t))
5702 {
5703 i.error = unsupported;
5704 return 1;
5705 }
5706 return 0;
5707 }
5708
5709 if (!t->opcode_modifier.vex)
5710 {
5711 /* This instruction template doesn't have VEX prefix. */
5712 if (i.vec_encoding != vex_encoding_default)
5713 {
5714 i.error = unsupported;
5715 return 1;
5716 }
5717 return 0;
5718 }
5719
5720 /* Check the special Imm4 cases; must be the first operand. */
5721 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
5722 {
5723 if (i.op[0].imms->X_op != O_constant
5724 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5725 {
5726 i.error = bad_imm4;
5727 return 1;
5728 }
5729
5730 /* Turn off Imm<N> so that update_imm won't complain. */
5731 operand_type_set (&i.types[0], 0);
5732 }
5733
5734 return 0;
5735 }
5736
5737 static const insn_template *
5738 match_template (char mnem_suffix)
5739 {
5740 /* Points to template once we've found it. */
5741 const insn_template *t;
5742 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5743 i386_operand_type overlap4;
5744 unsigned int found_reverse_match;
5745 i386_opcode_modifier suffix_check;
5746 i386_operand_type operand_types [MAX_OPERANDS];
5747 int addr_prefix_disp;
5748 unsigned int j, size_match, check_register;
5749 enum i386_error specific_error = 0;
5750
5751 #if MAX_OPERANDS != 5
5752 # error "MAX_OPERANDS must be 5."
5753 #endif
5754
5755 found_reverse_match = 0;
5756 addr_prefix_disp = -1;
5757
5758 /* Prepare for mnemonic suffix check. */
5759 memset (&suffix_check, 0, sizeof (suffix_check));
5760 switch (mnem_suffix)
5761 {
5762 case BYTE_MNEM_SUFFIX:
5763 suffix_check.no_bsuf = 1;
5764 break;
5765 case WORD_MNEM_SUFFIX:
5766 suffix_check.no_wsuf = 1;
5767 break;
5768 case SHORT_MNEM_SUFFIX:
5769 suffix_check.no_ssuf = 1;
5770 break;
5771 case LONG_MNEM_SUFFIX:
5772 suffix_check.no_lsuf = 1;
5773 break;
5774 case QWORD_MNEM_SUFFIX:
5775 suffix_check.no_qsuf = 1;
5776 break;
5777 default:
5778 /* NB: In Intel syntax, normally we can check for memory operand
5779 size when there is no mnemonic suffix. But jmp and call have
5780 2 different encodings with Dword memory operand size, one with
5781 No_ldSuf and the other without. i.suffix is set to
5782 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5783 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5784 suffix_check.no_ldsuf = 1;
5785 }
5786
5787 /* Must have right number of operands. */
5788 i.error = number_of_operands_mismatch;
5789
5790 for (t = current_templates->start; t < current_templates->end; t++)
5791 {
5792 addr_prefix_disp = -1;
5793 found_reverse_match = 0;
5794
5795 if (i.operands != t->operands)
5796 continue;
5797
5798 /* Check processor support. */
5799 i.error = unsupported;
5800 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
5801 continue;
5802
5803 /* Check AT&T mnemonic. */
5804 i.error = unsupported_with_intel_mnemonic;
5805 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5806 continue;
5807
5808 /* Check AT&T/Intel syntax. */
5809 i.error = unsupported_syntax;
5810 if ((intel_syntax && t->opcode_modifier.attsyntax)
5811 || (!intel_syntax && t->opcode_modifier.intelsyntax))
5812 continue;
5813
5814 /* Check Intel64/AMD64 ISA. */
5815 switch (isa64)
5816 {
5817 default:
5818 /* Default: Don't accept Intel64. */
5819 if (t->opcode_modifier.isa64 == INTEL64)
5820 continue;
5821 break;
5822 case amd64:
5823 /* -mamd64: Don't accept Intel64 and Intel64 only. */
5824 if (t->opcode_modifier.isa64 >= INTEL64)
5825 continue;
5826 break;
5827 case intel64:
5828 /* -mintel64: Don't accept AMD64. */
5829 if (t->opcode_modifier.isa64 == AMD64 && flag_code == CODE_64BIT)
5830 continue;
5831 break;
5832 }
5833
5834 /* Check the suffix. */
5835 i.error = invalid_instruction_suffix;
5836 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5837 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5838 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5839 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5840 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5841 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
5842 continue;
5843
5844 size_match = operand_size_match (t);
5845 if (!size_match)
5846 continue;
5847
5848 /* This is intentionally not
5849
5850 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
5851
5852 as the case of a missing * on the operand is accepted (perhaps with
5853 a warning, issued further down). */
5854 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5855 {
5856 i.error = operand_type_mismatch;
5857 continue;
5858 }
5859
5860 for (j = 0; j < MAX_OPERANDS; j++)
5861 operand_types[j] = t->operand_types[j];
5862
5863 /* In general, don't allow 64-bit operands in 32-bit mode. */
5864 if (i.suffix == QWORD_MNEM_SUFFIX
5865 && flag_code != CODE_64BIT
5866 && (intel_syntax
5867 ? (!t->opcode_modifier.ignoresize
5868 && !t->opcode_modifier.broadcast
5869 && !intel_float_operand (t->name))
5870 : intel_float_operand (t->name) != 2)
5871 && ((operand_types[0].bitfield.class != RegMMX
5872 && operand_types[0].bitfield.class != RegSIMD)
5873 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5874 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
5875 && (t->base_opcode != 0x0fc7
5876 || t->extension_opcode != 1 /* cmpxchg8b */))
5877 continue;
5878
5879 /* In general, don't allow 32-bit operands on pre-386. */
5880 else if (i.suffix == LONG_MNEM_SUFFIX
5881 && !cpu_arch_flags.bitfield.cpui386
5882 && (intel_syntax
5883 ? (!t->opcode_modifier.ignoresize
5884 && !intel_float_operand (t->name))
5885 : intel_float_operand (t->name) != 2)
5886 && ((operand_types[0].bitfield.class != RegMMX
5887 && operand_types[0].bitfield.class != RegSIMD)
5888 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5889 && operand_types[t->operands > 1].bitfield.class
5890 != RegSIMD)))
5891 continue;
5892
5893 /* Do not verify operands when there are none. */
5894 else
5895 {
5896 if (!t->operands)
5897 /* We've found a match; break out of loop. */
5898 break;
5899 }
5900
5901 if (!t->opcode_modifier.jump
5902 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
5903 {
5904 /* There should be only one Disp operand. */
5905 for (j = 0; j < MAX_OPERANDS; j++)
5906 if (operand_type_check (operand_types[j], disp))
5907 break;
5908 if (j < MAX_OPERANDS)
5909 {
5910 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
5911
5912 addr_prefix_disp = j;
5913
5914 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
5915 operand into Disp32/Disp32/Disp16/Disp32 operand. */
5916 switch (flag_code)
5917 {
5918 case CODE_16BIT:
5919 override = !override;
5920 /* Fall through. */
5921 case CODE_32BIT:
5922 if (operand_types[j].bitfield.disp32
5923 && operand_types[j].bitfield.disp16)
5924 {
5925 operand_types[j].bitfield.disp16 = override;
5926 operand_types[j].bitfield.disp32 = !override;
5927 }
5928 operand_types[j].bitfield.disp32s = 0;
5929 operand_types[j].bitfield.disp64 = 0;
5930 break;
5931
5932 case CODE_64BIT:
5933 if (operand_types[j].bitfield.disp32s
5934 || operand_types[j].bitfield.disp64)
5935 {
5936 operand_types[j].bitfield.disp64 &= !override;
5937 operand_types[j].bitfield.disp32s &= !override;
5938 operand_types[j].bitfield.disp32 = override;
5939 }
5940 operand_types[j].bitfield.disp16 = 0;
5941 break;
5942 }
5943 }
5944 }
5945
5946 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5947 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5948 continue;
5949
5950 /* We check register size if needed. */
5951 if (t->opcode_modifier.checkregsize)
5952 {
5953 check_register = (1 << t->operands) - 1;
5954 if (i.broadcast)
5955 check_register &= ~(1 << i.broadcast->operand);
5956 }
5957 else
5958 check_register = 0;
5959
5960 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5961 switch (t->operands)
5962 {
5963 case 1:
5964 if (!operand_type_match (overlap0, i.types[0]))
5965 continue;
5966 break;
5967 case 2:
5968 /* xchg %eax, %eax is a special case. It is an alias for nop
5969 only in 32bit mode and we can use opcode 0x90. In 64bit
5970 mode, we can't use 0x90 for xchg %eax, %eax since it should
5971 zero-extend %eax to %rax. */
5972 if (flag_code == CODE_64BIT
5973 && t->base_opcode == 0x90
5974 && i.types[0].bitfield.instance == Accum
5975 && i.types[0].bitfield.dword
5976 && i.types[1].bitfield.instance == Accum
5977 && i.types[1].bitfield.dword)
5978 continue;
5979 /* xrelease mov %eax, <disp> is another special case. It must not
5980 match the accumulator-only encoding of mov. */
5981 if (flag_code != CODE_64BIT
5982 && i.hle_prefix
5983 && t->base_opcode == 0xa0
5984 && i.types[0].bitfield.instance == Accum
5985 && (i.flags[1] & Operand_Mem))
5986 continue;
5987 /* Fall through. */
5988
5989 case 3:
5990 if (!(size_match & MATCH_STRAIGHT))
5991 goto check_reverse;
5992 /* Reverse direction of operands if swapping is possible in the first
5993 place (operands need to be symmetric) and
5994 - the load form is requested, and the template is a store form,
5995 - the store form is requested, and the template is a load form,
5996 - the non-default (swapped) form is requested. */
5997 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5998 if (t->opcode_modifier.d && i.reg_operands == i.operands
5999 && !operand_type_all_zero (&overlap1))
6000 switch (i.dir_encoding)
6001 {
6002 case dir_encoding_load:
6003 if (operand_type_check (operand_types[i.operands - 1], anymem)
6004 || t->opcode_modifier.regmem)
6005 goto check_reverse;
6006 break;
6007
6008 case dir_encoding_store:
6009 if (!operand_type_check (operand_types[i.operands - 1], anymem)
6010 && !t->opcode_modifier.regmem)
6011 goto check_reverse;
6012 break;
6013
6014 case dir_encoding_swap:
6015 goto check_reverse;
6016
6017 case dir_encoding_default:
6018 break;
6019 }
6020 /* If we want store form, we skip the current load. */
6021 if ((i.dir_encoding == dir_encoding_store
6022 || i.dir_encoding == dir_encoding_swap)
6023 && i.mem_operands == 0
6024 && t->opcode_modifier.load)
6025 continue;
6026 /* Fall through. */
6027 case 4:
6028 case 5:
6029 overlap1 = operand_type_and (i.types[1], operand_types[1]);
6030 if (!operand_type_match (overlap0, i.types[0])
6031 || !operand_type_match (overlap1, i.types[1])
6032 || ((check_register & 3) == 3
6033 && !operand_type_register_match (i.types[0],
6034 operand_types[0],
6035 i.types[1],
6036 operand_types[1])))
6037 {
6038 /* Check if other direction is valid ... */
6039 if (!t->opcode_modifier.d)
6040 continue;
6041
6042 check_reverse:
6043 if (!(size_match & MATCH_REVERSE))
6044 continue;
6045 /* Try reversing direction of operands. */
6046 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6047 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
6048 if (!operand_type_match (overlap0, i.types[0])
6049 || !operand_type_match (overlap1, i.types[i.operands - 1])
6050 || (check_register
6051 && !operand_type_register_match (i.types[0],
6052 operand_types[i.operands - 1],
6053 i.types[i.operands - 1],
6054 operand_types[0])))
6055 {
6056 /* Does not match either direction. */
6057 continue;
6058 }
6059 /* found_reverse_match holds which of D or FloatR
6060 we've found. */
6061 if (!t->opcode_modifier.d)
6062 found_reverse_match = 0;
6063 else if (operand_types[0].bitfield.tbyte)
6064 found_reverse_match = Opcode_FloatD;
6065 else if (operand_types[0].bitfield.xmmword
6066 || operand_types[i.operands - 1].bitfield.xmmword
6067 || operand_types[0].bitfield.class == RegMMX
6068 || operand_types[i.operands - 1].bitfield.class == RegMMX
6069 || is_any_vex_encoding(t))
6070 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6071 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
6072 else
6073 found_reverse_match = Opcode_D;
6074 if (t->opcode_modifier.floatr)
6075 found_reverse_match |= Opcode_FloatR;
6076 }
6077 else
6078 {
6079 /* Found a forward 2 operand match here. */
6080 switch (t->operands)
6081 {
6082 case 5:
6083 overlap4 = operand_type_and (i.types[4],
6084 operand_types[4]);
6085 /* Fall through. */
6086 case 4:
6087 overlap3 = operand_type_and (i.types[3],
6088 operand_types[3]);
6089 /* Fall through. */
6090 case 3:
6091 overlap2 = operand_type_and (i.types[2],
6092 operand_types[2]);
6093 break;
6094 }
6095
6096 switch (t->operands)
6097 {
6098 case 5:
6099 if (!operand_type_match (overlap4, i.types[4])
6100 || !operand_type_register_match (i.types[3],
6101 operand_types[3],
6102 i.types[4],
6103 operand_types[4]))
6104 continue;
6105 /* Fall through. */
6106 case 4:
6107 if (!operand_type_match (overlap3, i.types[3])
6108 || ((check_register & 0xa) == 0xa
6109 && !operand_type_register_match (i.types[1],
6110 operand_types[1],
6111 i.types[3],
6112 operand_types[3]))
6113 || ((check_register & 0xc) == 0xc
6114 && !operand_type_register_match (i.types[2],
6115 operand_types[2],
6116 i.types[3],
6117 operand_types[3])))
6118 continue;
6119 /* Fall through. */
6120 case 3:
6121 /* Here we make use of the fact that there are no
6122 reverse match 3 operand instructions. */
6123 if (!operand_type_match (overlap2, i.types[2])
6124 || ((check_register & 5) == 5
6125 && !operand_type_register_match (i.types[0],
6126 operand_types[0],
6127 i.types[2],
6128 operand_types[2]))
6129 || ((check_register & 6) == 6
6130 && !operand_type_register_match (i.types[1],
6131 operand_types[1],
6132 i.types[2],
6133 operand_types[2])))
6134 continue;
6135 break;
6136 }
6137 }
6138 /* Found either forward/reverse 2, 3 or 4 operand match here:
6139 slip through to break. */
6140 }
6141
6142 /* Check if vector and VEX operands are valid. */
6143 if (check_VecOperands (t) || VEX_check_operands (t))
6144 {
6145 specific_error = i.error;
6146 continue;
6147 }
6148
6149 /* We've found a match; break out of loop. */
6150 break;
6151 }
6152
6153 if (t == current_templates->end)
6154 {
6155 /* We found no match. */
6156 const char *err_msg;
6157 switch (specific_error ? specific_error : i.error)
6158 {
6159 default:
6160 abort ();
6161 case operand_size_mismatch:
6162 err_msg = _("operand size mismatch");
6163 break;
6164 case operand_type_mismatch:
6165 err_msg = _("operand type mismatch");
6166 break;
6167 case register_type_mismatch:
6168 err_msg = _("register type mismatch");
6169 break;
6170 case number_of_operands_mismatch:
6171 err_msg = _("number of operands mismatch");
6172 break;
6173 case invalid_instruction_suffix:
6174 err_msg = _("invalid instruction suffix");
6175 break;
6176 case bad_imm4:
6177 err_msg = _("constant doesn't fit in 4 bits");
6178 break;
6179 case unsupported_with_intel_mnemonic:
6180 err_msg = _("unsupported with Intel mnemonic");
6181 break;
6182 case unsupported_syntax:
6183 err_msg = _("unsupported syntax");
6184 break;
6185 case unsupported:
6186 as_bad (_("unsupported instruction `%s'"),
6187 current_templates->start->name);
6188 return NULL;
6189 case invalid_vsib_address:
6190 err_msg = _("invalid VSIB address");
6191 break;
6192 case invalid_vector_register_set:
6193 err_msg = _("mask, index, and destination registers must be distinct");
6194 break;
6195 case unsupported_vector_index_register:
6196 err_msg = _("unsupported vector index register");
6197 break;
6198 case unsupported_broadcast:
6199 err_msg = _("unsupported broadcast");
6200 break;
6201 case broadcast_needed:
6202 err_msg = _("broadcast is needed for operand of such type");
6203 break;
6204 case unsupported_masking:
6205 err_msg = _("unsupported masking");
6206 break;
6207 case mask_not_on_destination:
6208 err_msg = _("mask not on destination operand");
6209 break;
6210 case no_default_mask:
6211 err_msg = _("default mask isn't allowed");
6212 break;
6213 case unsupported_rc_sae:
6214 err_msg = _("unsupported static rounding/sae");
6215 break;
6216 case rc_sae_operand_not_last_imm:
6217 if (intel_syntax)
6218 err_msg = _("RC/SAE operand must precede immediate operands");
6219 else
6220 err_msg = _("RC/SAE operand must follow immediate operands");
6221 break;
6222 case invalid_register_operand:
6223 err_msg = _("invalid register operand");
6224 break;
6225 }
6226 as_bad (_("%s for `%s'"), err_msg,
6227 current_templates->start->name);
6228 return NULL;
6229 }
6230
6231 if (!quiet_warnings)
6232 {
6233 if (!intel_syntax
6234 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6235 as_warn (_("indirect %s without `*'"), t->name);
6236
6237 if (t->opcode_modifier.isprefix
6238 && t->opcode_modifier.ignoresize)
6239 {
6240 /* Warn them that a data or address size prefix doesn't
6241 affect assembly of the next line of code. */
6242 as_warn (_("stand-alone `%s' prefix"), t->name);
6243 }
6244 }
6245
6246 /* Copy the template we found. */
6247 i.tm = *t;
6248
6249 if (addr_prefix_disp != -1)
6250 i.tm.operand_types[addr_prefix_disp]
6251 = operand_types[addr_prefix_disp];
6252
6253 if (found_reverse_match)
6254 {
6255 /* If we found a reverse match we must alter the opcode direction
6256 bit and clear/flip the regmem modifier one. found_reverse_match
6257 holds bits to change (different for int & float insns). */
6258
6259 i.tm.base_opcode ^= found_reverse_match;
6260
6261 i.tm.operand_types[0] = operand_types[i.operands - 1];
6262 i.tm.operand_types[i.operands - 1] = operand_types[0];
6263
6264 /* Certain SIMD insns have their load forms specified in the opcode
6265 table, and hence we need to _set_ RegMem instead of clearing it.
6266 We need to avoid setting the bit though on insns like KMOVW. */
6267 i.tm.opcode_modifier.regmem
6268 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6269 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6270 && !i.tm.opcode_modifier.regmem;
6271 }
6272
6273 return t;
6274 }
6275
6276 static int
6277 check_string (void)
6278 {
6279 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6280 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
6281
6282 if (i.seg[op] != NULL && i.seg[op] != &es)
6283 {
6284 as_bad (_("`%s' operand %u must use `%ses' segment"),
6285 i.tm.name,
6286 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6287 register_prefix);
6288 return 0;
6289 }
6290
6291 /* There's only ever one segment override allowed per instruction.
6292 This instruction possibly has a legal segment override on the
6293 second operand, so copy the segment to where non-string
6294 instructions store it, allowing common code. */
6295 i.seg[op] = i.seg[1];
6296
6297 return 1;
6298 }
6299
6300 static int
6301 process_suffix (void)
6302 {
6303 /* If matched instruction specifies an explicit instruction mnemonic
6304 suffix, use it. */
6305 if (i.tm.opcode_modifier.size == SIZE16)
6306 i.suffix = WORD_MNEM_SUFFIX;
6307 else if (i.tm.opcode_modifier.size == SIZE32)
6308 i.suffix = LONG_MNEM_SUFFIX;
6309 else if (i.tm.opcode_modifier.size == SIZE64)
6310 i.suffix = QWORD_MNEM_SUFFIX;
6311 else if (i.reg_operands
6312 && (i.operands > 1 || i.types[0].bitfield.class == Reg))
6313 {
6314 /* If there's no instruction mnemonic suffix we try to invent one
6315 based on GPR operands. */
6316 if (!i.suffix)
6317 {
6318 /* We take i.suffix from the last register operand specified,
6319 Destination register type is more significant than source
6320 register type. crc32 in SSE4.2 prefers source register
6321 type. */
6322 unsigned int op = i.tm.base_opcode != 0xf20f38f0 ? i.operands : 1;
6323
6324 while (op--)
6325 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6326 || i.tm.operand_types[op].bitfield.instance == Accum)
6327 {
6328 if (i.types[op].bitfield.class != Reg)
6329 continue;
6330 if (i.types[op].bitfield.byte)
6331 i.suffix = BYTE_MNEM_SUFFIX;
6332 else if (i.types[op].bitfield.word)
6333 i.suffix = WORD_MNEM_SUFFIX;
6334 else if (i.types[op].bitfield.dword)
6335 i.suffix = LONG_MNEM_SUFFIX;
6336 else if (i.types[op].bitfield.qword)
6337 i.suffix = QWORD_MNEM_SUFFIX;
6338 else
6339 continue;
6340 break;
6341 }
6342 }
6343 else if (i.suffix == BYTE_MNEM_SUFFIX)
6344 {
6345 if (intel_syntax
6346 && i.tm.opcode_modifier.ignoresize
6347 && i.tm.opcode_modifier.no_bsuf)
6348 i.suffix = 0;
6349 else if (!check_byte_reg ())
6350 return 0;
6351 }
6352 else if (i.suffix == LONG_MNEM_SUFFIX)
6353 {
6354 if (intel_syntax
6355 && i.tm.opcode_modifier.ignoresize
6356 && i.tm.opcode_modifier.no_lsuf
6357 && !i.tm.opcode_modifier.todword
6358 && !i.tm.opcode_modifier.toqword)
6359 i.suffix = 0;
6360 else if (!check_long_reg ())
6361 return 0;
6362 }
6363 else if (i.suffix == QWORD_MNEM_SUFFIX)
6364 {
6365 if (intel_syntax
6366 && i.tm.opcode_modifier.ignoresize
6367 && i.tm.opcode_modifier.no_qsuf
6368 && !i.tm.opcode_modifier.todword
6369 && !i.tm.opcode_modifier.toqword)
6370 i.suffix = 0;
6371 else if (!check_qword_reg ())
6372 return 0;
6373 }
6374 else if (i.suffix == WORD_MNEM_SUFFIX)
6375 {
6376 if (intel_syntax
6377 && i.tm.opcode_modifier.ignoresize
6378 && i.tm.opcode_modifier.no_wsuf)
6379 i.suffix = 0;
6380 else if (!check_word_reg ())
6381 return 0;
6382 }
6383 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6384 /* Do nothing if the instruction is going to ignore the prefix. */
6385 ;
6386 else
6387 abort ();
6388 }
6389 else if (i.tm.opcode_modifier.defaultsize && !i.suffix)
6390 {
6391 i.suffix = stackop_size;
6392 if (stackop_size == LONG_MNEM_SUFFIX)
6393 {
6394 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6395 .code16gcc directive to support 16-bit mode with
6396 32-bit address. For IRET without a suffix, generate
6397 16-bit IRET (opcode 0xcf) to return from an interrupt
6398 handler. */
6399 if (i.tm.base_opcode == 0xcf)
6400 {
6401 i.suffix = WORD_MNEM_SUFFIX;
6402 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6403 }
6404 /* Warn about changed behavior for segment register push/pop. */
6405 else if ((i.tm.base_opcode | 1) == 0x07)
6406 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6407 i.tm.name);
6408 }
6409 }
6410 else if (!i.suffix
6411 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6412 || i.tm.opcode_modifier.jump == JUMP_BYTE
6413 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
6414 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6415 && i.tm.extension_opcode <= 3)))
6416 {
6417 switch (flag_code)
6418 {
6419 case CODE_64BIT:
6420 if (!i.tm.opcode_modifier.no_qsuf)
6421 {
6422 i.suffix = QWORD_MNEM_SUFFIX;
6423 break;
6424 }
6425 /* Fall through. */
6426 case CODE_32BIT:
6427 if (!i.tm.opcode_modifier.no_lsuf)
6428 i.suffix = LONG_MNEM_SUFFIX;
6429 break;
6430 case CODE_16BIT:
6431 if (!i.tm.opcode_modifier.no_wsuf)
6432 i.suffix = WORD_MNEM_SUFFIX;
6433 break;
6434 }
6435 }
6436
6437 if (!i.suffix
6438 && (!i.tm.opcode_modifier.defaultsize
6439 /* Also cover lret/retf/iret in 64-bit mode. */
6440 || (flag_code == CODE_64BIT
6441 && !i.tm.opcode_modifier.no_lsuf
6442 && !i.tm.opcode_modifier.no_qsuf))
6443 && !i.tm.opcode_modifier.ignoresize
6444 /* Accept FLDENV et al without suffix. */
6445 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
6446 {
6447 unsigned int suffixes, evex = 0;
6448
6449 suffixes = !i.tm.opcode_modifier.no_bsuf;
6450 if (!i.tm.opcode_modifier.no_wsuf)
6451 suffixes |= 1 << 1;
6452 if (!i.tm.opcode_modifier.no_lsuf)
6453 suffixes |= 1 << 2;
6454 if (!i.tm.opcode_modifier.no_ldsuf)
6455 suffixes |= 1 << 3;
6456 if (!i.tm.opcode_modifier.no_ssuf)
6457 suffixes |= 1 << 4;
6458 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6459 suffixes |= 1 << 5;
6460
6461 /* For [XYZ]MMWORD operands inspect operand sizes. While generally
6462 also suitable for AT&T syntax mode, it was requested that this be
6463 restricted to just Intel syntax. */
6464 if (intel_syntax)
6465 {
6466 i386_cpu_flags cpu = cpu_flags_and (i.tm.cpu_flags, avx512);
6467
6468 if (!cpu_flags_all_zero (&cpu) && !i.broadcast)
6469 {
6470 unsigned int op;
6471
6472 for (op = 0; op < i.tm.operands; ++op)
6473 {
6474 if (!cpu_arch_flags.bitfield.cpuavx512vl)
6475 {
6476 if (i.tm.operand_types[op].bitfield.ymmword)
6477 i.tm.operand_types[op].bitfield.xmmword = 0;
6478 if (i.tm.operand_types[op].bitfield.zmmword)
6479 i.tm.operand_types[op].bitfield.ymmword = 0;
6480 if (!i.tm.opcode_modifier.evex
6481 || i.tm.opcode_modifier.evex == EVEXDYN)
6482 i.tm.opcode_modifier.evex = EVEX512;
6483 }
6484
6485 if (i.tm.operand_types[op].bitfield.xmmword
6486 + i.tm.operand_types[op].bitfield.ymmword
6487 + i.tm.operand_types[op].bitfield.zmmword < 2)
6488 continue;
6489
6490 /* Any properly sized operand disambiguates the insn. */
6491 if (i.types[op].bitfield.xmmword
6492 || i.types[op].bitfield.ymmword
6493 || i.types[op].bitfield.zmmword)
6494 {
6495 suffixes &= ~(7 << 6);
6496 evex = 0;
6497 break;
6498 }
6499
6500 if ((i.flags[op] & Operand_Mem)
6501 && i.tm.operand_types[op].bitfield.unspecified)
6502 {
6503 if (i.tm.operand_types[op].bitfield.xmmword)
6504 suffixes |= 1 << 6;
6505 if (i.tm.operand_types[op].bitfield.ymmword)
6506 suffixes |= 1 << 7;
6507 if (i.tm.operand_types[op].bitfield.zmmword)
6508 suffixes |= 1 << 8;
6509 evex = EVEX512;
6510 }
6511 }
6512 }
6513 }
6514
6515 /* Are multiple suffixes / operand sizes allowed? */
6516 if (suffixes & (suffixes - 1))
6517 {
6518 if (intel_syntax
6519 && (!i.tm.opcode_modifier.defaultsize
6520 || operand_check == check_error))
6521 {
6522 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6523 return 0;
6524 }
6525 if (operand_check == check_error)
6526 {
6527 as_bad (_("no instruction mnemonic suffix given and "
6528 "no register operands; can't size `%s'"), i.tm.name);
6529 return 0;
6530 }
6531 if (operand_check == check_warning)
6532 as_warn (_("%s; using default for `%s'"),
6533 intel_syntax
6534 ? _("ambiguous operand size")
6535 : _("no instruction mnemonic suffix given and "
6536 "no register operands"),
6537 i.tm.name);
6538
6539 if (i.tm.opcode_modifier.floatmf)
6540 i.suffix = SHORT_MNEM_SUFFIX;
6541 else if (evex)
6542 i.tm.opcode_modifier.evex = evex;
6543 else if (flag_code == CODE_16BIT)
6544 i.suffix = WORD_MNEM_SUFFIX;
6545 else if (!i.tm.opcode_modifier.no_lsuf)
6546 i.suffix = LONG_MNEM_SUFFIX;
6547 else
6548 i.suffix = QWORD_MNEM_SUFFIX;
6549 }
6550 }
6551
6552 if (!i.tm.opcode_modifier.modrm && i.reg_operands && i.tm.operands < 3)
6553 i.short_form = (i.tm.operand_types[0].bitfield.class == Reg)
6554 != (i.tm.operand_types[1].bitfield.class == Reg);
6555
6556 /* Change the opcode based on the operand size given by i.suffix. */
6557 switch (i.suffix)
6558 {
6559 /* Size floating point instruction. */
6560 case LONG_MNEM_SUFFIX:
6561 if (i.tm.opcode_modifier.floatmf)
6562 {
6563 i.tm.base_opcode ^= 4;
6564 break;
6565 }
6566 /* fall through */
6567 case WORD_MNEM_SUFFIX:
6568 case QWORD_MNEM_SUFFIX:
6569 /* It's not a byte, select word/dword operation. */
6570 if (i.tm.opcode_modifier.w)
6571 {
6572 if (i.short_form)
6573 i.tm.base_opcode |= 8;
6574 else
6575 i.tm.base_opcode |= 1;
6576 }
6577 /* fall through */
6578 case SHORT_MNEM_SUFFIX:
6579 /* Now select between word & dword operations via the operand
6580 size prefix, except for instructions that will ignore this
6581 prefix anyway. */
6582 if (i.reg_operands > 0
6583 && i.types[0].bitfield.class == Reg
6584 && i.tm.opcode_modifier.addrprefixopreg
6585 && (i.tm.operand_types[0].bitfield.instance == Accum
6586 || i.operands == 1))
6587 {
6588 /* The address size override prefix changes the size of the
6589 first operand. */
6590 if ((flag_code == CODE_32BIT
6591 && i.op[0].regs->reg_type.bitfield.word)
6592 || (flag_code != CODE_32BIT
6593 && i.op[0].regs->reg_type.bitfield.dword))
6594 if (!add_prefix (ADDR_PREFIX_OPCODE))
6595 return 0;
6596 }
6597 else if (i.suffix != QWORD_MNEM_SUFFIX
6598 && !i.tm.opcode_modifier.ignoresize
6599 && !i.tm.opcode_modifier.floatmf
6600 && !is_any_vex_encoding (&i.tm)
6601 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6602 || (flag_code == CODE_64BIT
6603 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
6604 {
6605 unsigned int prefix = DATA_PREFIX_OPCODE;
6606
6607 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
6608 prefix = ADDR_PREFIX_OPCODE;
6609
6610 if (!add_prefix (prefix))
6611 return 0;
6612 }
6613
6614 /* Set mode64 for an operand. */
6615 if (i.suffix == QWORD_MNEM_SUFFIX
6616 && flag_code == CODE_64BIT
6617 && !i.tm.opcode_modifier.norex64
6618 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6619 need rex64. */
6620 && ! (i.operands == 2
6621 && i.tm.base_opcode == 0x90
6622 && i.tm.extension_opcode == None
6623 && i.types[0].bitfield.instance == Accum
6624 && i.types[0].bitfield.qword
6625 && i.types[1].bitfield.instance == Accum
6626 && i.types[1].bitfield.qword))
6627 i.rex |= REX_W;
6628
6629 break;
6630 }
6631
6632 if (i.reg_operands != 0
6633 && i.operands > 1
6634 && i.tm.opcode_modifier.addrprefixopreg
6635 && i.tm.operand_types[0].bitfield.instance != Accum)
6636 {
6637 /* Check invalid register operand when the address size override
6638 prefix changes the size of register operands. */
6639 unsigned int op;
6640 enum { need_word, need_dword, need_qword } need;
6641
6642 if (flag_code == CODE_32BIT)
6643 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6644 else
6645 {
6646 if (i.prefix[ADDR_PREFIX])
6647 need = need_dword;
6648 else
6649 need = flag_code == CODE_64BIT ? need_qword : need_word;
6650 }
6651
6652 for (op = 0; op < i.operands; op++)
6653 if (i.types[op].bitfield.class == Reg
6654 && ((need == need_word
6655 && !i.op[op].regs->reg_type.bitfield.word)
6656 || (need == need_dword
6657 && !i.op[op].regs->reg_type.bitfield.dword)
6658 || (need == need_qword
6659 && !i.op[op].regs->reg_type.bitfield.qword)))
6660 {
6661 as_bad (_("invalid register operand size for `%s'"),
6662 i.tm.name);
6663 return 0;
6664 }
6665 }
6666
6667 return 1;
6668 }
6669
6670 static int
6671 check_byte_reg (void)
6672 {
6673 int op;
6674
6675 for (op = i.operands; --op >= 0;)
6676 {
6677 /* Skip non-register operands. */
6678 if (i.types[op].bitfield.class != Reg)
6679 continue;
6680
6681 /* If this is an eight bit register, it's OK. If it's the 16 or
6682 32 bit version of an eight bit register, we will just use the
6683 low portion, and that's OK too. */
6684 if (i.types[op].bitfield.byte)
6685 continue;
6686
6687 /* I/O port address operands are OK too. */
6688 if (i.tm.operand_types[op].bitfield.instance == RegD
6689 && i.tm.operand_types[op].bitfield.word)
6690 continue;
6691
6692 /* crc32 only wants its source operand checked here. */
6693 if (i.tm.base_opcode == 0xf20f38f0 && op)
6694 continue;
6695
6696 /* Any other register is bad. */
6697 if (i.types[op].bitfield.class == Reg
6698 || i.types[op].bitfield.class == RegMMX
6699 || i.types[op].bitfield.class == RegSIMD
6700 || i.types[op].bitfield.class == SReg
6701 || i.types[op].bitfield.class == RegCR
6702 || i.types[op].bitfield.class == RegDR
6703 || i.types[op].bitfield.class == RegTR)
6704 {
6705 as_bad (_("`%s%s' not allowed with `%s%c'"),
6706 register_prefix,
6707 i.op[op].regs->reg_name,
6708 i.tm.name,
6709 i.suffix);
6710 return 0;
6711 }
6712 }
6713 return 1;
6714 }
6715
6716 static int
6717 check_long_reg (void)
6718 {
6719 int op;
6720
6721 for (op = i.operands; --op >= 0;)
6722 /* Skip non-register operands. */
6723 if (i.types[op].bitfield.class != Reg)
6724 continue;
6725 /* Reject eight bit registers, except where the template requires
6726 them. (eg. movzb) */
6727 else if (i.types[op].bitfield.byte
6728 && (i.tm.operand_types[op].bitfield.class == Reg
6729 || i.tm.operand_types[op].bitfield.instance == Accum)
6730 && (i.tm.operand_types[op].bitfield.word
6731 || i.tm.operand_types[op].bitfield.dword))
6732 {
6733 as_bad (_("`%s%s' not allowed with `%s%c'"),
6734 register_prefix,
6735 i.op[op].regs->reg_name,
6736 i.tm.name,
6737 i.suffix);
6738 return 0;
6739 }
6740 /* Error if the e prefix on a general reg is missing. */
6741 else if (i.types[op].bitfield.word
6742 && (i.tm.operand_types[op].bitfield.class == Reg
6743 || i.tm.operand_types[op].bitfield.instance == Accum)
6744 && i.tm.operand_types[op].bitfield.dword)
6745 {
6746 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6747 register_prefix, i.op[op].regs->reg_name,
6748 i.suffix);
6749 return 0;
6750 }
6751 /* Warn if the r prefix on a general reg is present. */
6752 else if (i.types[op].bitfield.qword
6753 && (i.tm.operand_types[op].bitfield.class == Reg
6754 || i.tm.operand_types[op].bitfield.instance == Accum)
6755 && i.tm.operand_types[op].bitfield.dword)
6756 {
6757 if (intel_syntax
6758 && (i.tm.opcode_modifier.toqword
6759 /* Also convert to QWORD for MOVSXD. */
6760 || i.tm.base_opcode == 0x63)
6761 && i.types[0].bitfield.class != RegSIMD)
6762 {
6763 /* Convert to QWORD. We want REX byte. */
6764 i.suffix = QWORD_MNEM_SUFFIX;
6765 }
6766 else
6767 {
6768 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6769 register_prefix, i.op[op].regs->reg_name,
6770 i.suffix);
6771 return 0;
6772 }
6773 }
6774 return 1;
6775 }
6776
6777 static int
6778 check_qword_reg (void)
6779 {
6780 int op;
6781
6782 for (op = i.operands; --op >= 0; )
6783 /* Skip non-register operands. */
6784 if (i.types[op].bitfield.class != Reg)
6785 continue;
6786 /* Reject eight bit registers, except where the template requires
6787 them. (eg. movzb) */
6788 else if (i.types[op].bitfield.byte
6789 && (i.tm.operand_types[op].bitfield.class == Reg
6790 || i.tm.operand_types[op].bitfield.instance == Accum)
6791 && (i.tm.operand_types[op].bitfield.word
6792 || i.tm.operand_types[op].bitfield.dword))
6793 {
6794 as_bad (_("`%s%s' not allowed with `%s%c'"),
6795 register_prefix,
6796 i.op[op].regs->reg_name,
6797 i.tm.name,
6798 i.suffix);
6799 return 0;
6800 }
6801 /* Warn if the r prefix on a general reg is missing. */
6802 else if ((i.types[op].bitfield.word
6803 || i.types[op].bitfield.dword)
6804 && (i.tm.operand_types[op].bitfield.class == Reg
6805 || i.tm.operand_types[op].bitfield.instance == Accum)
6806 && i.tm.operand_types[op].bitfield.qword)
6807 {
6808 /* Prohibit these changes in the 64bit mode, since the
6809 lowering is more complicated. */
6810 if (intel_syntax
6811 && i.tm.opcode_modifier.todword
6812 && i.types[0].bitfield.class != RegSIMD)
6813 {
6814 /* Convert to DWORD. We don't want REX byte. */
6815 i.suffix = LONG_MNEM_SUFFIX;
6816 }
6817 else
6818 {
6819 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6820 register_prefix, i.op[op].regs->reg_name,
6821 i.suffix);
6822 return 0;
6823 }
6824 }
6825 return 1;
6826 }
6827
6828 static int
6829 check_word_reg (void)
6830 {
6831 int op;
6832 for (op = i.operands; --op >= 0;)
6833 /* Skip non-register operands. */
6834 if (i.types[op].bitfield.class != Reg)
6835 continue;
6836 /* Reject eight bit registers, except where the template requires
6837 them. (eg. movzb) */
6838 else if (i.types[op].bitfield.byte
6839 && (i.tm.operand_types[op].bitfield.class == Reg
6840 || i.tm.operand_types[op].bitfield.instance == Accum)
6841 && (i.tm.operand_types[op].bitfield.word
6842 || i.tm.operand_types[op].bitfield.dword))
6843 {
6844 as_bad (_("`%s%s' not allowed with `%s%c'"),
6845 register_prefix,
6846 i.op[op].regs->reg_name,
6847 i.tm.name,
6848 i.suffix);
6849 return 0;
6850 }
6851 /* Error if the e or r prefix on a general reg is present. */
6852 else if ((i.types[op].bitfield.dword
6853 || i.types[op].bitfield.qword)
6854 && (i.tm.operand_types[op].bitfield.class == Reg
6855 || i.tm.operand_types[op].bitfield.instance == Accum)
6856 && i.tm.operand_types[op].bitfield.word)
6857 {
6858 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6859 register_prefix, i.op[op].regs->reg_name,
6860 i.suffix);
6861 return 0;
6862 }
6863 return 1;
6864 }
6865
6866 static int
6867 update_imm (unsigned int j)
6868 {
6869 i386_operand_type overlap = i.types[j];
6870 if ((overlap.bitfield.imm8
6871 || overlap.bitfield.imm8s
6872 || overlap.bitfield.imm16
6873 || overlap.bitfield.imm32
6874 || overlap.bitfield.imm32s
6875 || overlap.bitfield.imm64)
6876 && !operand_type_equal (&overlap, &imm8)
6877 && !operand_type_equal (&overlap, &imm8s)
6878 && !operand_type_equal (&overlap, &imm16)
6879 && !operand_type_equal (&overlap, &imm32)
6880 && !operand_type_equal (&overlap, &imm32s)
6881 && !operand_type_equal (&overlap, &imm64))
6882 {
6883 if (i.suffix)
6884 {
6885 i386_operand_type temp;
6886
6887 operand_type_set (&temp, 0);
6888 if (i.suffix == BYTE_MNEM_SUFFIX)
6889 {
6890 temp.bitfield.imm8 = overlap.bitfield.imm8;
6891 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6892 }
6893 else if (i.suffix == WORD_MNEM_SUFFIX)
6894 temp.bitfield.imm16 = overlap.bitfield.imm16;
6895 else if (i.suffix == QWORD_MNEM_SUFFIX)
6896 {
6897 temp.bitfield.imm64 = overlap.bitfield.imm64;
6898 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6899 }
6900 else
6901 temp.bitfield.imm32 = overlap.bitfield.imm32;
6902 overlap = temp;
6903 }
6904 else if (operand_type_equal (&overlap, &imm16_32_32s)
6905 || operand_type_equal (&overlap, &imm16_32)
6906 || operand_type_equal (&overlap, &imm16_32s))
6907 {
6908 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6909 overlap = imm16;
6910 else
6911 overlap = imm32s;
6912 }
6913 if (!operand_type_equal (&overlap, &imm8)
6914 && !operand_type_equal (&overlap, &imm8s)
6915 && !operand_type_equal (&overlap, &imm16)
6916 && !operand_type_equal (&overlap, &imm32)
6917 && !operand_type_equal (&overlap, &imm32s)
6918 && !operand_type_equal (&overlap, &imm64))
6919 {
6920 as_bad (_("no instruction mnemonic suffix given; "
6921 "can't determine immediate size"));
6922 return 0;
6923 }
6924 }
6925 i.types[j] = overlap;
6926
6927 return 1;
6928 }
6929
6930 static int
6931 finalize_imm (void)
6932 {
6933 unsigned int j, n;
6934
6935 /* Update the first 2 immediate operands. */
6936 n = i.operands > 2 ? 2 : i.operands;
6937 if (n)
6938 {
6939 for (j = 0; j < n; j++)
6940 if (update_imm (j) == 0)
6941 return 0;
6942
6943 /* The 3rd operand can't be immediate operand. */
6944 gas_assert (operand_type_check (i.types[2], imm) == 0);
6945 }
6946
6947 return 1;
6948 }
6949
6950 static int
6951 process_operands (void)
6952 {
6953 /* Default segment register this instruction will use for memory
6954 accesses. 0 means unknown. This is only for optimizing out
6955 unnecessary segment overrides. */
6956 const seg_entry *default_seg = 0;
6957
6958 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6959 {
6960 unsigned int dupl = i.operands;
6961 unsigned int dest = dupl - 1;
6962 unsigned int j;
6963
6964 /* The destination must be an xmm register. */
6965 gas_assert (i.reg_operands
6966 && MAX_OPERANDS > dupl
6967 && operand_type_equal (&i.types[dest], &regxmm));
6968
6969 if (i.tm.operand_types[0].bitfield.instance == Accum
6970 && i.tm.operand_types[0].bitfield.xmmword)
6971 {
6972 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6973 {
6974 /* Keep xmm0 for instructions with VEX prefix and 3
6975 sources. */
6976 i.tm.operand_types[0].bitfield.instance = InstanceNone;
6977 i.tm.operand_types[0].bitfield.class = RegSIMD;
6978 goto duplicate;
6979 }
6980 else
6981 {
6982 /* We remove the first xmm0 and keep the number of
6983 operands unchanged, which in fact duplicates the
6984 destination. */
6985 for (j = 1; j < i.operands; j++)
6986 {
6987 i.op[j - 1] = i.op[j];
6988 i.types[j - 1] = i.types[j];
6989 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6990 i.flags[j - 1] = i.flags[j];
6991 }
6992 }
6993 }
6994 else if (i.tm.opcode_modifier.implicit1stxmm0)
6995 {
6996 gas_assert ((MAX_OPERANDS - 1) > dupl
6997 && (i.tm.opcode_modifier.vexsources
6998 == VEX3SOURCES));
6999
7000 /* Add the implicit xmm0 for instructions with VEX prefix
7001 and 3 sources. */
7002 for (j = i.operands; j > 0; j--)
7003 {
7004 i.op[j] = i.op[j - 1];
7005 i.types[j] = i.types[j - 1];
7006 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
7007 i.flags[j] = i.flags[j - 1];
7008 }
7009 i.op[0].regs
7010 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7011 i.types[0] = regxmm;
7012 i.tm.operand_types[0] = regxmm;
7013
7014 i.operands += 2;
7015 i.reg_operands += 2;
7016 i.tm.operands += 2;
7017
7018 dupl++;
7019 dest++;
7020 i.op[dupl] = i.op[dest];
7021 i.types[dupl] = i.types[dest];
7022 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7023 i.flags[dupl] = i.flags[dest];
7024 }
7025 else
7026 {
7027 duplicate:
7028 i.operands++;
7029 i.reg_operands++;
7030 i.tm.operands++;
7031
7032 i.op[dupl] = i.op[dest];
7033 i.types[dupl] = i.types[dest];
7034 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7035 i.flags[dupl] = i.flags[dest];
7036 }
7037
7038 if (i.tm.opcode_modifier.immext)
7039 process_immext ();
7040 }
7041 else if (i.tm.operand_types[0].bitfield.instance == Accum
7042 && i.tm.operand_types[0].bitfield.xmmword)
7043 {
7044 unsigned int j;
7045
7046 for (j = 1; j < i.operands; j++)
7047 {
7048 i.op[j - 1] = i.op[j];
7049 i.types[j - 1] = i.types[j];
7050
7051 /* We need to adjust fields in i.tm since they are used by
7052 build_modrm_byte. */
7053 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
7054
7055 i.flags[j - 1] = i.flags[j];
7056 }
7057
7058 i.operands--;
7059 i.reg_operands--;
7060 i.tm.operands--;
7061 }
7062 else if (i.tm.opcode_modifier.implicitquadgroup)
7063 {
7064 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7065
7066 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
7067 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
7068 regnum = register_number (i.op[1].regs);
7069 first_reg_in_group = regnum & ~3;
7070 last_reg_in_group = first_reg_in_group + 3;
7071 if (regnum != first_reg_in_group)
7072 as_warn (_("source register `%s%s' implicitly denotes"
7073 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7074 register_prefix, i.op[1].regs->reg_name,
7075 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7076 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7077 i.tm.name);
7078 }
7079 else if (i.tm.opcode_modifier.regkludge)
7080 {
7081 /* The imul $imm, %reg instruction is converted into
7082 imul $imm, %reg, %reg, and the clr %reg instruction
7083 is converted into xor %reg, %reg. */
7084
7085 unsigned int first_reg_op;
7086
7087 if (operand_type_check (i.types[0], reg))
7088 first_reg_op = 0;
7089 else
7090 first_reg_op = 1;
7091 /* Pretend we saw the extra register operand. */
7092 gas_assert (i.reg_operands == 1
7093 && i.op[first_reg_op + 1].regs == 0);
7094 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7095 i.types[first_reg_op + 1] = i.types[first_reg_op];
7096 i.operands++;
7097 i.reg_operands++;
7098 }
7099
7100 if (i.tm.opcode_modifier.modrm)
7101 {
7102 /* The opcode is completed (modulo i.tm.extension_opcode which
7103 must be put into the modrm byte). Now, we make the modrm and
7104 index base bytes based on all the info we've collected. */
7105
7106 default_seg = build_modrm_byte ();
7107 }
7108 else if (i.types[0].bitfield.class == SReg)
7109 {
7110 if (flag_code != CODE_64BIT
7111 ? i.tm.base_opcode == POP_SEG_SHORT
7112 && i.op[0].regs->reg_num == 1
7113 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7114 && i.op[0].regs->reg_num < 4)
7115 {
7116 as_bad (_("you can't `%s %s%s'"),
7117 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7118 return 0;
7119 }
7120 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7121 {
7122 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7123 i.tm.opcode_length = 2;
7124 }
7125 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7126 }
7127 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7128 {
7129 default_seg = &ds;
7130 }
7131 else if (i.tm.opcode_modifier.isstring)
7132 {
7133 /* For the string instructions that allow a segment override
7134 on one of their operands, the default segment is ds. */
7135 default_seg = &ds;
7136 }
7137 else if (i.short_form)
7138 {
7139 /* The register or float register operand is in operand
7140 0 or 1. */
7141 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7142
7143 /* Register goes in low 3 bits of opcode. */
7144 i.tm.base_opcode |= i.op[op].regs->reg_num;
7145 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7146 i.rex |= REX_B;
7147 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7148 {
7149 /* Warn about some common errors, but press on regardless.
7150 The first case can be generated by gcc (<= 2.8.1). */
7151 if (i.operands == 2)
7152 {
7153 /* Reversed arguments on faddp, fsubp, etc. */
7154 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7155 register_prefix, i.op[!intel_syntax].regs->reg_name,
7156 register_prefix, i.op[intel_syntax].regs->reg_name);
7157 }
7158 else
7159 {
7160 /* Extraneous `l' suffix on fp insn. */
7161 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7162 register_prefix, i.op[0].regs->reg_name);
7163 }
7164 }
7165 }
7166
7167 if (i.tm.base_opcode == 0x8d /* lea */
7168 && i.seg[0]
7169 && !quiet_warnings)
7170 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7171
7172 /* If a segment was explicitly specified, and the specified segment
7173 is not the default, use an opcode prefix to select it. If we
7174 never figured out what the default segment is, then default_seg
7175 will be zero at this point, and the specified segment prefix will
7176 always be used. */
7177 if ((i.seg[0]) && (i.seg[0] != default_seg))
7178 {
7179 if (!add_prefix (i.seg[0]->seg_prefix))
7180 return 0;
7181 }
7182 return 1;
7183 }
7184
7185 static const seg_entry *
7186 build_modrm_byte (void)
7187 {
7188 const seg_entry *default_seg = 0;
7189 unsigned int source, dest;
7190 int vex_3_sources;
7191
7192 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7193 if (vex_3_sources)
7194 {
7195 unsigned int nds, reg_slot;
7196 expressionS *exp;
7197
7198 dest = i.operands - 1;
7199 nds = dest - 1;
7200
7201 /* There are 2 kinds of instructions:
7202 1. 5 operands: 4 register operands or 3 register operands
7203 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7204 VexW0 or VexW1. The destination must be either XMM, YMM or
7205 ZMM register.
7206 2. 4 operands: 4 register operands or 3 register operands
7207 plus 1 memory operand, with VexXDS. */
7208 gas_assert ((i.reg_operands == 4
7209 || (i.reg_operands == 3 && i.mem_operands == 1))
7210 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7211 && i.tm.opcode_modifier.vexw
7212 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
7213
7214 /* If VexW1 is set, the first non-immediate operand is the source and
7215 the second non-immediate one is encoded in the immediate operand. */
7216 if (i.tm.opcode_modifier.vexw == VEXW1)
7217 {
7218 source = i.imm_operands;
7219 reg_slot = i.imm_operands + 1;
7220 }
7221 else
7222 {
7223 source = i.imm_operands + 1;
7224 reg_slot = i.imm_operands;
7225 }
7226
7227 if (i.imm_operands == 0)
7228 {
7229 /* When there is no immediate operand, generate an 8bit
7230 immediate operand to encode the first operand. */
7231 exp = &im_expressions[i.imm_operands++];
7232 i.op[i.operands].imms = exp;
7233 i.types[i.operands] = imm8;
7234 i.operands++;
7235
7236 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7237 exp->X_op = O_constant;
7238 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7239 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7240 }
7241 else
7242 {
7243 gas_assert (i.imm_operands == 1);
7244 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7245 gas_assert (!i.tm.opcode_modifier.immext);
7246
7247 /* Turn on Imm8 again so that output_imm will generate it. */
7248 i.types[0].bitfield.imm8 = 1;
7249
7250 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7251 i.op[0].imms->X_add_number
7252 |= register_number (i.op[reg_slot].regs) << 4;
7253 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7254 }
7255
7256 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
7257 i.vex.register_specifier = i.op[nds].regs;
7258 }
7259 else
7260 source = dest = 0;
7261
7262 /* i.reg_operands MUST be the number of real register operands;
7263 implicit registers do not count. If there are 3 register
7264 operands, it must be a instruction with VexNDS. For a
7265 instruction with VexNDD, the destination register is encoded
7266 in VEX prefix. If there are 4 register operands, it must be
7267 a instruction with VEX prefix and 3 sources. */
7268 if (i.mem_operands == 0
7269 && ((i.reg_operands == 2
7270 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7271 || (i.reg_operands == 3
7272 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7273 || (i.reg_operands == 4 && vex_3_sources)))
7274 {
7275 switch (i.operands)
7276 {
7277 case 2:
7278 source = 0;
7279 break;
7280 case 3:
7281 /* When there are 3 operands, one of them may be immediate,
7282 which may be the first or the last operand. Otherwise,
7283 the first operand must be shift count register (cl) or it
7284 is an instruction with VexNDS. */
7285 gas_assert (i.imm_operands == 1
7286 || (i.imm_operands == 0
7287 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7288 || (i.types[0].bitfield.instance == RegC
7289 && i.types[0].bitfield.byte))));
7290 if (operand_type_check (i.types[0], imm)
7291 || (i.types[0].bitfield.instance == RegC
7292 && i.types[0].bitfield.byte))
7293 source = 1;
7294 else
7295 source = 0;
7296 break;
7297 case 4:
7298 /* When there are 4 operands, the first two must be 8bit
7299 immediate operands. The source operand will be the 3rd
7300 one.
7301
7302 For instructions with VexNDS, if the first operand
7303 an imm8, the source operand is the 2nd one. If the last
7304 operand is imm8, the source operand is the first one. */
7305 gas_assert ((i.imm_operands == 2
7306 && i.types[0].bitfield.imm8
7307 && i.types[1].bitfield.imm8)
7308 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7309 && i.imm_operands == 1
7310 && (i.types[0].bitfield.imm8
7311 || i.types[i.operands - 1].bitfield.imm8
7312 || i.rounding)));
7313 if (i.imm_operands == 2)
7314 source = 2;
7315 else
7316 {
7317 if (i.types[0].bitfield.imm8)
7318 source = 1;
7319 else
7320 source = 0;
7321 }
7322 break;
7323 case 5:
7324 if (is_evex_encoding (&i.tm))
7325 {
7326 /* For EVEX instructions, when there are 5 operands, the
7327 first one must be immediate operand. If the second one
7328 is immediate operand, the source operand is the 3th
7329 one. If the last one is immediate operand, the source
7330 operand is the 2nd one. */
7331 gas_assert (i.imm_operands == 2
7332 && i.tm.opcode_modifier.sae
7333 && operand_type_check (i.types[0], imm));
7334 if (operand_type_check (i.types[1], imm))
7335 source = 2;
7336 else if (operand_type_check (i.types[4], imm))
7337 source = 1;
7338 else
7339 abort ();
7340 }
7341 break;
7342 default:
7343 abort ();
7344 }
7345
7346 if (!vex_3_sources)
7347 {
7348 dest = source + 1;
7349
7350 /* RC/SAE operand could be between DEST and SRC. That happens
7351 when one operand is GPR and the other one is XMM/YMM/ZMM
7352 register. */
7353 if (i.rounding && i.rounding->operand == (int) dest)
7354 dest++;
7355
7356 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7357 {
7358 /* For instructions with VexNDS, the register-only source
7359 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7360 register. It is encoded in VEX prefix. */
7361
7362 i386_operand_type op;
7363 unsigned int vvvv;
7364
7365 /* Check register-only source operand when two source
7366 operands are swapped. */
7367 if (!i.tm.operand_types[source].bitfield.baseindex
7368 && i.tm.operand_types[dest].bitfield.baseindex)
7369 {
7370 vvvv = source;
7371 source = dest;
7372 }
7373 else
7374 vvvv = dest;
7375
7376 op = i.tm.operand_types[vvvv];
7377 if ((dest + 1) >= i.operands
7378 || ((op.bitfield.class != Reg
7379 || (!op.bitfield.dword && !op.bitfield.qword))
7380 && op.bitfield.class != RegSIMD
7381 && !operand_type_equal (&op, &regmask)))
7382 abort ();
7383 i.vex.register_specifier = i.op[vvvv].regs;
7384 dest++;
7385 }
7386 }
7387
7388 i.rm.mode = 3;
7389 /* One of the register operands will be encoded in the i.rm.reg
7390 field, the other in the combined i.rm.mode and i.rm.regmem
7391 fields. If no form of this instruction supports a memory
7392 destination operand, then we assume the source operand may
7393 sometimes be a memory operand and so we need to store the
7394 destination in the i.rm.reg field. */
7395 if (!i.tm.opcode_modifier.regmem
7396 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7397 {
7398 i.rm.reg = i.op[dest].regs->reg_num;
7399 i.rm.regmem = i.op[source].regs->reg_num;
7400 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7401 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
7402 i.has_regmmx = TRUE;
7403 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7404 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
7405 {
7406 if (i.types[dest].bitfield.zmmword
7407 || i.types[source].bitfield.zmmword)
7408 i.has_regzmm = TRUE;
7409 else if (i.types[dest].bitfield.ymmword
7410 || i.types[source].bitfield.ymmword)
7411 i.has_regymm = TRUE;
7412 else
7413 i.has_regxmm = TRUE;
7414 }
7415 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7416 i.rex |= REX_R;
7417 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7418 i.vrex |= REX_R;
7419 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7420 i.rex |= REX_B;
7421 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7422 i.vrex |= REX_B;
7423 }
7424 else
7425 {
7426 i.rm.reg = i.op[source].regs->reg_num;
7427 i.rm.regmem = i.op[dest].regs->reg_num;
7428 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7429 i.rex |= REX_B;
7430 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7431 i.vrex |= REX_B;
7432 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7433 i.rex |= REX_R;
7434 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7435 i.vrex |= REX_R;
7436 }
7437 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7438 {
7439 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
7440 abort ();
7441 i.rex &= ~REX_R;
7442 add_prefix (LOCK_PREFIX_OPCODE);
7443 }
7444 }
7445 else
7446 { /* If it's not 2 reg operands... */
7447 unsigned int mem;
7448
7449 if (i.mem_operands)
7450 {
7451 unsigned int fake_zero_displacement = 0;
7452 unsigned int op;
7453
7454 for (op = 0; op < i.operands; op++)
7455 if (i.flags[op] & Operand_Mem)
7456 break;
7457 gas_assert (op < i.operands);
7458
7459 if (i.tm.opcode_modifier.vecsib)
7460 {
7461 if (i.index_reg->reg_num == RegIZ)
7462 abort ();
7463
7464 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7465 if (!i.base_reg)
7466 {
7467 i.sib.base = NO_BASE_REGISTER;
7468 i.sib.scale = i.log2_scale_factor;
7469 i.types[op].bitfield.disp8 = 0;
7470 i.types[op].bitfield.disp16 = 0;
7471 i.types[op].bitfield.disp64 = 0;
7472 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7473 {
7474 /* Must be 32 bit */
7475 i.types[op].bitfield.disp32 = 1;
7476 i.types[op].bitfield.disp32s = 0;
7477 }
7478 else
7479 {
7480 i.types[op].bitfield.disp32 = 0;
7481 i.types[op].bitfield.disp32s = 1;
7482 }
7483 }
7484 i.sib.index = i.index_reg->reg_num;
7485 if ((i.index_reg->reg_flags & RegRex) != 0)
7486 i.rex |= REX_X;
7487 if ((i.index_reg->reg_flags & RegVRex) != 0)
7488 i.vrex |= REX_X;
7489 }
7490
7491 default_seg = &ds;
7492
7493 if (i.base_reg == 0)
7494 {
7495 i.rm.mode = 0;
7496 if (!i.disp_operands)
7497 fake_zero_displacement = 1;
7498 if (i.index_reg == 0)
7499 {
7500 i386_operand_type newdisp;
7501
7502 gas_assert (!i.tm.opcode_modifier.vecsib);
7503 /* Operand is just <disp> */
7504 if (flag_code == CODE_64BIT)
7505 {
7506 /* 64bit mode overwrites the 32bit absolute
7507 addressing by RIP relative addressing and
7508 absolute addressing is encoded by one of the
7509 redundant SIB forms. */
7510 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7511 i.sib.base = NO_BASE_REGISTER;
7512 i.sib.index = NO_INDEX_REGISTER;
7513 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7514 }
7515 else if ((flag_code == CODE_16BIT)
7516 ^ (i.prefix[ADDR_PREFIX] != 0))
7517 {
7518 i.rm.regmem = NO_BASE_REGISTER_16;
7519 newdisp = disp16;
7520 }
7521 else
7522 {
7523 i.rm.regmem = NO_BASE_REGISTER;
7524 newdisp = disp32;
7525 }
7526 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7527 i.types[op] = operand_type_or (i.types[op], newdisp);
7528 }
7529 else if (!i.tm.opcode_modifier.vecsib)
7530 {
7531 /* !i.base_reg && i.index_reg */
7532 if (i.index_reg->reg_num == RegIZ)
7533 i.sib.index = NO_INDEX_REGISTER;
7534 else
7535 i.sib.index = i.index_reg->reg_num;
7536 i.sib.base = NO_BASE_REGISTER;
7537 i.sib.scale = i.log2_scale_factor;
7538 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7539 i.types[op].bitfield.disp8 = 0;
7540 i.types[op].bitfield.disp16 = 0;
7541 i.types[op].bitfield.disp64 = 0;
7542 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7543 {
7544 /* Must be 32 bit */
7545 i.types[op].bitfield.disp32 = 1;
7546 i.types[op].bitfield.disp32s = 0;
7547 }
7548 else
7549 {
7550 i.types[op].bitfield.disp32 = 0;
7551 i.types[op].bitfield.disp32s = 1;
7552 }
7553 if ((i.index_reg->reg_flags & RegRex) != 0)
7554 i.rex |= REX_X;
7555 }
7556 }
7557 /* RIP addressing for 64bit mode. */
7558 else if (i.base_reg->reg_num == RegIP)
7559 {
7560 gas_assert (!i.tm.opcode_modifier.vecsib);
7561 i.rm.regmem = NO_BASE_REGISTER;
7562 i.types[op].bitfield.disp8 = 0;
7563 i.types[op].bitfield.disp16 = 0;
7564 i.types[op].bitfield.disp32 = 0;
7565 i.types[op].bitfield.disp32s = 1;
7566 i.types[op].bitfield.disp64 = 0;
7567 i.flags[op] |= Operand_PCrel;
7568 if (! i.disp_operands)
7569 fake_zero_displacement = 1;
7570 }
7571 else if (i.base_reg->reg_type.bitfield.word)
7572 {
7573 gas_assert (!i.tm.opcode_modifier.vecsib);
7574 switch (i.base_reg->reg_num)
7575 {
7576 case 3: /* (%bx) */
7577 if (i.index_reg == 0)
7578 i.rm.regmem = 7;
7579 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7580 i.rm.regmem = i.index_reg->reg_num - 6;
7581 break;
7582 case 5: /* (%bp) */
7583 default_seg = &ss;
7584 if (i.index_reg == 0)
7585 {
7586 i.rm.regmem = 6;
7587 if (operand_type_check (i.types[op], disp) == 0)
7588 {
7589 /* fake (%bp) into 0(%bp) */
7590 i.types[op].bitfield.disp8 = 1;
7591 fake_zero_displacement = 1;
7592 }
7593 }
7594 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7595 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7596 break;
7597 default: /* (%si) -> 4 or (%di) -> 5 */
7598 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7599 }
7600 i.rm.mode = mode_from_disp_size (i.types[op]);
7601 }
7602 else /* i.base_reg and 32/64 bit mode */
7603 {
7604 if (flag_code == CODE_64BIT
7605 && operand_type_check (i.types[op], disp))
7606 {
7607 i.types[op].bitfield.disp16 = 0;
7608 i.types[op].bitfield.disp64 = 0;
7609 if (i.prefix[ADDR_PREFIX] == 0)
7610 {
7611 i.types[op].bitfield.disp32 = 0;
7612 i.types[op].bitfield.disp32s = 1;
7613 }
7614 else
7615 {
7616 i.types[op].bitfield.disp32 = 1;
7617 i.types[op].bitfield.disp32s = 0;
7618 }
7619 }
7620
7621 if (!i.tm.opcode_modifier.vecsib)
7622 i.rm.regmem = i.base_reg->reg_num;
7623 if ((i.base_reg->reg_flags & RegRex) != 0)
7624 i.rex |= REX_B;
7625 i.sib.base = i.base_reg->reg_num;
7626 /* x86-64 ignores REX prefix bit here to avoid decoder
7627 complications. */
7628 if (!(i.base_reg->reg_flags & RegRex)
7629 && (i.base_reg->reg_num == EBP_REG_NUM
7630 || i.base_reg->reg_num == ESP_REG_NUM))
7631 default_seg = &ss;
7632 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7633 {
7634 fake_zero_displacement = 1;
7635 i.types[op].bitfield.disp8 = 1;
7636 }
7637 i.sib.scale = i.log2_scale_factor;
7638 if (i.index_reg == 0)
7639 {
7640 gas_assert (!i.tm.opcode_modifier.vecsib);
7641 /* <disp>(%esp) becomes two byte modrm with no index
7642 register. We've already stored the code for esp
7643 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7644 Any base register besides %esp will not use the
7645 extra modrm byte. */
7646 i.sib.index = NO_INDEX_REGISTER;
7647 }
7648 else if (!i.tm.opcode_modifier.vecsib)
7649 {
7650 if (i.index_reg->reg_num == RegIZ)
7651 i.sib.index = NO_INDEX_REGISTER;
7652 else
7653 i.sib.index = i.index_reg->reg_num;
7654 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7655 if ((i.index_reg->reg_flags & RegRex) != 0)
7656 i.rex |= REX_X;
7657 }
7658
7659 if (i.disp_operands
7660 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7661 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7662 i.rm.mode = 0;
7663 else
7664 {
7665 if (!fake_zero_displacement
7666 && !i.disp_operands
7667 && i.disp_encoding)
7668 {
7669 fake_zero_displacement = 1;
7670 if (i.disp_encoding == disp_encoding_8bit)
7671 i.types[op].bitfield.disp8 = 1;
7672 else
7673 i.types[op].bitfield.disp32 = 1;
7674 }
7675 i.rm.mode = mode_from_disp_size (i.types[op]);
7676 }
7677 }
7678
7679 if (fake_zero_displacement)
7680 {
7681 /* Fakes a zero displacement assuming that i.types[op]
7682 holds the correct displacement size. */
7683 expressionS *exp;
7684
7685 gas_assert (i.op[op].disps == 0);
7686 exp = &disp_expressions[i.disp_operands++];
7687 i.op[op].disps = exp;
7688 exp->X_op = O_constant;
7689 exp->X_add_number = 0;
7690 exp->X_add_symbol = (symbolS *) 0;
7691 exp->X_op_symbol = (symbolS *) 0;
7692 }
7693
7694 mem = op;
7695 }
7696 else
7697 mem = ~0;
7698
7699 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7700 {
7701 if (operand_type_check (i.types[0], imm))
7702 i.vex.register_specifier = NULL;
7703 else
7704 {
7705 /* VEX.vvvv encodes one of the sources when the first
7706 operand is not an immediate. */
7707 if (i.tm.opcode_modifier.vexw == VEXW0)
7708 i.vex.register_specifier = i.op[0].regs;
7709 else
7710 i.vex.register_specifier = i.op[1].regs;
7711 }
7712
7713 /* Destination is a XMM register encoded in the ModRM.reg
7714 and VEX.R bit. */
7715 i.rm.reg = i.op[2].regs->reg_num;
7716 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7717 i.rex |= REX_R;
7718
7719 /* ModRM.rm and VEX.B encodes the other source. */
7720 if (!i.mem_operands)
7721 {
7722 i.rm.mode = 3;
7723
7724 if (i.tm.opcode_modifier.vexw == VEXW0)
7725 i.rm.regmem = i.op[1].regs->reg_num;
7726 else
7727 i.rm.regmem = i.op[0].regs->reg_num;
7728
7729 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7730 i.rex |= REX_B;
7731 }
7732 }
7733 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7734 {
7735 i.vex.register_specifier = i.op[2].regs;
7736 if (!i.mem_operands)
7737 {
7738 i.rm.mode = 3;
7739 i.rm.regmem = i.op[1].regs->reg_num;
7740 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7741 i.rex |= REX_B;
7742 }
7743 }
7744 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7745 (if any) based on i.tm.extension_opcode. Again, we must be
7746 careful to make sure that segment/control/debug/test/MMX
7747 registers are coded into the i.rm.reg field. */
7748 else if (i.reg_operands)
7749 {
7750 unsigned int op;
7751 unsigned int vex_reg = ~0;
7752
7753 for (op = 0; op < i.operands; op++)
7754 {
7755 if (i.types[op].bitfield.class == Reg
7756 || i.types[op].bitfield.class == RegBND
7757 || i.types[op].bitfield.class == RegMask
7758 || i.types[op].bitfield.class == SReg
7759 || i.types[op].bitfield.class == RegCR
7760 || i.types[op].bitfield.class == RegDR
7761 || i.types[op].bitfield.class == RegTR)
7762 break;
7763 if (i.types[op].bitfield.class == RegSIMD)
7764 {
7765 if (i.types[op].bitfield.zmmword)
7766 i.has_regzmm = TRUE;
7767 else if (i.types[op].bitfield.ymmword)
7768 i.has_regymm = TRUE;
7769 else
7770 i.has_regxmm = TRUE;
7771 break;
7772 }
7773 if (i.types[op].bitfield.class == RegMMX)
7774 {
7775 i.has_regmmx = TRUE;
7776 break;
7777 }
7778 }
7779
7780 if (vex_3_sources)
7781 op = dest;
7782 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7783 {
7784 /* For instructions with VexNDS, the register-only
7785 source operand is encoded in VEX prefix. */
7786 gas_assert (mem != (unsigned int) ~0);
7787
7788 if (op > mem)
7789 {
7790 vex_reg = op++;
7791 gas_assert (op < i.operands);
7792 }
7793 else
7794 {
7795 /* Check register-only source operand when two source
7796 operands are swapped. */
7797 if (!i.tm.operand_types[op].bitfield.baseindex
7798 && i.tm.operand_types[op + 1].bitfield.baseindex)
7799 {
7800 vex_reg = op;
7801 op += 2;
7802 gas_assert (mem == (vex_reg + 1)
7803 && op < i.operands);
7804 }
7805 else
7806 {
7807 vex_reg = op + 1;
7808 gas_assert (vex_reg < i.operands);
7809 }
7810 }
7811 }
7812 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7813 {
7814 /* For instructions with VexNDD, the register destination
7815 is encoded in VEX prefix. */
7816 if (i.mem_operands == 0)
7817 {
7818 /* There is no memory operand. */
7819 gas_assert ((op + 2) == i.operands);
7820 vex_reg = op + 1;
7821 }
7822 else
7823 {
7824 /* There are only 2 non-immediate operands. */
7825 gas_assert (op < i.imm_operands + 2
7826 && i.operands == i.imm_operands + 2);
7827 vex_reg = i.imm_operands + 1;
7828 }
7829 }
7830 else
7831 gas_assert (op < i.operands);
7832
7833 if (vex_reg != (unsigned int) ~0)
7834 {
7835 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7836
7837 if ((type->bitfield.class != Reg
7838 || (!type->bitfield.dword && !type->bitfield.qword))
7839 && type->bitfield.class != RegSIMD
7840 && !operand_type_equal (type, &regmask))
7841 abort ();
7842
7843 i.vex.register_specifier = i.op[vex_reg].regs;
7844 }
7845
7846 /* Don't set OP operand twice. */
7847 if (vex_reg != op)
7848 {
7849 /* If there is an extension opcode to put here, the
7850 register number must be put into the regmem field. */
7851 if (i.tm.extension_opcode != None)
7852 {
7853 i.rm.regmem = i.op[op].regs->reg_num;
7854 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7855 i.rex |= REX_B;
7856 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7857 i.vrex |= REX_B;
7858 }
7859 else
7860 {
7861 i.rm.reg = i.op[op].regs->reg_num;
7862 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7863 i.rex |= REX_R;
7864 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7865 i.vrex |= REX_R;
7866 }
7867 }
7868
7869 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7870 must set it to 3 to indicate this is a register operand
7871 in the regmem field. */
7872 if (!i.mem_operands)
7873 i.rm.mode = 3;
7874 }
7875
7876 /* Fill in i.rm.reg field with extension opcode (if any). */
7877 if (i.tm.extension_opcode != None)
7878 i.rm.reg = i.tm.extension_opcode;
7879 }
7880 return default_seg;
7881 }
7882
7883 static unsigned int
7884 flip_code16 (unsigned int code16)
7885 {
7886 gas_assert (i.tm.operands == 1);
7887
7888 return !(i.prefix[REX_PREFIX] & REX_W)
7889 && (code16 ? i.tm.operand_types[0].bitfield.disp32
7890 || i.tm.operand_types[0].bitfield.disp32s
7891 : i.tm.operand_types[0].bitfield.disp16)
7892 ? CODE16 : 0;
7893 }
7894
7895 static void
7896 output_branch (void)
7897 {
7898 char *p;
7899 int size;
7900 int code16;
7901 int prefix;
7902 relax_substateT subtype;
7903 symbolS *sym;
7904 offsetT off;
7905
7906 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7907 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7908
7909 prefix = 0;
7910 if (i.prefix[DATA_PREFIX] != 0)
7911 {
7912 prefix = 1;
7913 i.prefixes -= 1;
7914 code16 ^= flip_code16(code16);
7915 }
7916 /* Pentium4 branch hints. */
7917 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7918 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7919 {
7920 prefix++;
7921 i.prefixes--;
7922 }
7923 if (i.prefix[REX_PREFIX] != 0)
7924 {
7925 prefix++;
7926 i.prefixes--;
7927 }
7928
7929 /* BND prefixed jump. */
7930 if (i.prefix[BND_PREFIX] != 0)
7931 {
7932 prefix++;
7933 i.prefixes--;
7934 }
7935
7936 if (i.prefixes != 0)
7937 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
7938
7939 /* It's always a symbol; End frag & setup for relax.
7940 Make sure there is enough room in this frag for the largest
7941 instruction we may generate in md_convert_frag. This is 2
7942 bytes for the opcode and room for the prefix and largest
7943 displacement. */
7944 frag_grow (prefix + 2 + 4);
7945 /* Prefix and 1 opcode byte go in fr_fix. */
7946 p = frag_more (prefix + 1);
7947 if (i.prefix[DATA_PREFIX] != 0)
7948 *p++ = DATA_PREFIX_OPCODE;
7949 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7950 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7951 *p++ = i.prefix[SEG_PREFIX];
7952 if (i.prefix[BND_PREFIX] != 0)
7953 *p++ = BND_PREFIX_OPCODE;
7954 if (i.prefix[REX_PREFIX] != 0)
7955 *p++ = i.prefix[REX_PREFIX];
7956 *p = i.tm.base_opcode;
7957
7958 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7959 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7960 else if (cpu_arch_flags.bitfield.cpui386)
7961 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7962 else
7963 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7964 subtype |= code16;
7965
7966 sym = i.op[0].disps->X_add_symbol;
7967 off = i.op[0].disps->X_add_number;
7968
7969 if (i.op[0].disps->X_op != O_constant
7970 && i.op[0].disps->X_op != O_symbol)
7971 {
7972 /* Handle complex expressions. */
7973 sym = make_expr_symbol (i.op[0].disps);
7974 off = 0;
7975 }
7976
7977 /* 1 possible extra opcode + 4 byte displacement go in var part.
7978 Pass reloc in fr_var. */
7979 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7980 }
7981
7982 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7983 /* Return TRUE iff PLT32 relocation should be used for branching to
7984 symbol S. */
7985
7986 static bfd_boolean
7987 need_plt32_p (symbolS *s)
7988 {
7989 /* PLT32 relocation is ELF only. */
7990 if (!IS_ELF)
7991 return FALSE;
7992
7993 #ifdef TE_SOLARIS
7994 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7995 krtld support it. */
7996 return FALSE;
7997 #endif
7998
7999 /* Since there is no need to prepare for PLT branch on x86-64, we
8000 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
8001 be used as a marker for 32-bit PC-relative branches. */
8002 if (!object_64bit)
8003 return FALSE;
8004
8005 /* Weak or undefined symbol need PLT32 relocation. */
8006 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
8007 return TRUE;
8008
8009 /* Non-global symbol doesn't need PLT32 relocation. */
8010 if (! S_IS_EXTERNAL (s))
8011 return FALSE;
8012
8013 /* Other global symbols need PLT32 relocation. NB: Symbol with
8014 non-default visibilities are treated as normal global symbol
8015 so that PLT32 relocation can be used as a marker for 32-bit
8016 PC-relative branches. It is useful for linker relaxation. */
8017 return TRUE;
8018 }
8019 #endif
8020
8021 static void
8022 output_jump (void)
8023 {
8024 char *p;
8025 int size;
8026 fixS *fixP;
8027 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
8028
8029 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
8030 {
8031 /* This is a loop or jecxz type instruction. */
8032 size = 1;
8033 if (i.prefix[ADDR_PREFIX] != 0)
8034 {
8035 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
8036 i.prefixes -= 1;
8037 }
8038 /* Pentium4 branch hints. */
8039 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8040 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8041 {
8042 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
8043 i.prefixes--;
8044 }
8045 }
8046 else
8047 {
8048 int code16;
8049
8050 code16 = 0;
8051 if (flag_code == CODE_16BIT)
8052 code16 = CODE16;
8053
8054 if (i.prefix[DATA_PREFIX] != 0)
8055 {
8056 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8057 i.prefixes -= 1;
8058 code16 ^= flip_code16(code16);
8059 }
8060
8061 size = 4;
8062 if (code16)
8063 size = 2;
8064 }
8065
8066 /* BND prefixed jump. */
8067 if (i.prefix[BND_PREFIX] != 0)
8068 {
8069 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
8070 i.prefixes -= 1;
8071 }
8072
8073 if (i.prefix[REX_PREFIX] != 0)
8074 {
8075 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
8076 i.prefixes -= 1;
8077 }
8078
8079 if (i.prefixes != 0)
8080 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8081
8082 p = frag_more (i.tm.opcode_length + size);
8083 switch (i.tm.opcode_length)
8084 {
8085 case 2:
8086 *p++ = i.tm.base_opcode >> 8;
8087 /* Fall through. */
8088 case 1:
8089 *p++ = i.tm.base_opcode;
8090 break;
8091 default:
8092 abort ();
8093 }
8094
8095 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8096 if (size == 4
8097 && jump_reloc == NO_RELOC
8098 && need_plt32_p (i.op[0].disps->X_add_symbol))
8099 jump_reloc = BFD_RELOC_X86_64_PLT32;
8100 #endif
8101
8102 jump_reloc = reloc (size, 1, 1, jump_reloc);
8103
8104 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8105 i.op[0].disps, 1, jump_reloc);
8106
8107 /* All jumps handled here are signed, but don't use a signed limit
8108 check for 32 and 16 bit jumps as we want to allow wrap around at
8109 4G and 64k respectively. */
8110 if (size == 1)
8111 fixP->fx_signed = 1;
8112 }
8113
8114 static void
8115 output_interseg_jump (void)
8116 {
8117 char *p;
8118 int size;
8119 int prefix;
8120 int code16;
8121
8122 code16 = 0;
8123 if (flag_code == CODE_16BIT)
8124 code16 = CODE16;
8125
8126 prefix = 0;
8127 if (i.prefix[DATA_PREFIX] != 0)
8128 {
8129 prefix = 1;
8130 i.prefixes -= 1;
8131 code16 ^= CODE16;
8132 }
8133
8134 gas_assert (!i.prefix[REX_PREFIX]);
8135
8136 size = 4;
8137 if (code16)
8138 size = 2;
8139
8140 if (i.prefixes != 0)
8141 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8142
8143 /* 1 opcode; 2 segment; offset */
8144 p = frag_more (prefix + 1 + 2 + size);
8145
8146 if (i.prefix[DATA_PREFIX] != 0)
8147 *p++ = DATA_PREFIX_OPCODE;
8148
8149 if (i.prefix[REX_PREFIX] != 0)
8150 *p++ = i.prefix[REX_PREFIX];
8151
8152 *p++ = i.tm.base_opcode;
8153 if (i.op[1].imms->X_op == O_constant)
8154 {
8155 offsetT n = i.op[1].imms->X_add_number;
8156
8157 if (size == 2
8158 && !fits_in_unsigned_word (n)
8159 && !fits_in_signed_word (n))
8160 {
8161 as_bad (_("16-bit jump out of range"));
8162 return;
8163 }
8164 md_number_to_chars (p, n, size);
8165 }
8166 else
8167 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8168 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8169 if (i.op[0].imms->X_op != O_constant)
8170 as_bad (_("can't handle non absolute segment in `%s'"),
8171 i.tm.name);
8172 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8173 }
8174
8175 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8176 void
8177 x86_cleanup (void)
8178 {
8179 char *p;
8180 asection *seg = now_seg;
8181 subsegT subseg = now_subseg;
8182 asection *sec;
8183 unsigned int alignment, align_size_1;
8184 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8185 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8186 unsigned int padding;
8187
8188 if (!IS_ELF || !x86_used_note)
8189 return;
8190
8191 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8192
8193 /* The .note.gnu.property section layout:
8194
8195 Field Length Contents
8196 ---- ---- ----
8197 n_namsz 4 4
8198 n_descsz 4 The note descriptor size
8199 n_type 4 NT_GNU_PROPERTY_TYPE_0
8200 n_name 4 "GNU"
8201 n_desc n_descsz The program property array
8202 .... .... ....
8203 */
8204
8205 /* Create the .note.gnu.property section. */
8206 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8207 bfd_set_section_flags (sec,
8208 (SEC_ALLOC
8209 | SEC_LOAD
8210 | SEC_DATA
8211 | SEC_HAS_CONTENTS
8212 | SEC_READONLY));
8213
8214 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8215 {
8216 align_size_1 = 7;
8217 alignment = 3;
8218 }
8219 else
8220 {
8221 align_size_1 = 3;
8222 alignment = 2;
8223 }
8224
8225 bfd_set_section_alignment (sec, alignment);
8226 elf_section_type (sec) = SHT_NOTE;
8227
8228 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8229 + 4-byte data */
8230 isa_1_descsz_raw = 4 + 4 + 4;
8231 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8232 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8233
8234 feature_2_descsz_raw = isa_1_descsz;
8235 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8236 + 4-byte data */
8237 feature_2_descsz_raw += 4 + 4 + 4;
8238 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8239 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8240 & ~align_size_1);
8241
8242 descsz = feature_2_descsz;
8243 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8244 p = frag_more (4 + 4 + 4 + 4 + descsz);
8245
8246 /* Write n_namsz. */
8247 md_number_to_chars (p, (valueT) 4, 4);
8248
8249 /* Write n_descsz. */
8250 md_number_to_chars (p + 4, (valueT) descsz, 4);
8251
8252 /* Write n_type. */
8253 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8254
8255 /* Write n_name. */
8256 memcpy (p + 4 * 3, "GNU", 4);
8257
8258 /* Write 4-byte type. */
8259 md_number_to_chars (p + 4 * 4,
8260 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8261
8262 /* Write 4-byte data size. */
8263 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8264
8265 /* Write 4-byte data. */
8266 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8267
8268 /* Zero out paddings. */
8269 padding = isa_1_descsz - isa_1_descsz_raw;
8270 if (padding)
8271 memset (p + 4 * 7, 0, padding);
8272
8273 /* Write 4-byte type. */
8274 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8275 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8276
8277 /* Write 4-byte data size. */
8278 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8279
8280 /* Write 4-byte data. */
8281 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8282 (valueT) x86_feature_2_used, 4);
8283
8284 /* Zero out paddings. */
8285 padding = feature_2_descsz - feature_2_descsz_raw;
8286 if (padding)
8287 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8288
8289 /* We probably can't restore the current segment, for there likely
8290 isn't one yet... */
8291 if (seg && subseg)
8292 subseg_set (seg, subseg);
8293 }
8294 #endif
8295
8296 static unsigned int
8297 encoding_length (const fragS *start_frag, offsetT start_off,
8298 const char *frag_now_ptr)
8299 {
8300 unsigned int len = 0;
8301
8302 if (start_frag != frag_now)
8303 {
8304 const fragS *fr = start_frag;
8305
8306 do {
8307 len += fr->fr_fix;
8308 fr = fr->fr_next;
8309 } while (fr && fr != frag_now);
8310 }
8311
8312 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8313 }
8314
8315 /* Return 1 for test, and, cmp, add, sub, inc and dec which may
8316 be macro-fused with conditional jumps. */
8317
8318 static int
8319 maybe_fused_with_jcc_p (void)
8320 {
8321 /* No RIP address. */
8322 if (i.base_reg && i.base_reg->reg_num == RegIP)
8323 return 0;
8324
8325 /* No VEX/EVEX encoding. */
8326 if (is_any_vex_encoding (&i.tm))
8327 return 0;
8328
8329 /* and, add, sub with destination register. */
8330 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8331 || i.tm.base_opcode <= 5
8332 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8333 || ((i.tm.base_opcode | 3) == 0x83
8334 && ((i.tm.extension_opcode | 1) == 0x5
8335 || i.tm.extension_opcode == 0x0)))
8336 return (i.types[1].bitfield.class == Reg
8337 || i.types[1].bitfield.instance == Accum);
8338
8339 /* test, cmp with any register. */
8340 if ((i.tm.base_opcode | 1) == 0x85
8341 || (i.tm.base_opcode | 1) == 0xa9
8342 || ((i.tm.base_opcode | 1) == 0xf7
8343 && i.tm.extension_opcode == 0)
8344 || (i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
8345 || ((i.tm.base_opcode | 3) == 0x83
8346 && (i.tm.extension_opcode == 0x7)))
8347 return (i.types[0].bitfield.class == Reg
8348 || i.types[0].bitfield.instance == Accum
8349 || i.types[1].bitfield.class == Reg
8350 || i.types[1].bitfield.instance == Accum);
8351
8352 /* inc, dec with any register. */
8353 if ((i.tm.cpu_flags.bitfield.cpuno64
8354 && (i.tm.base_opcode | 0xf) == 0x4f)
8355 || ((i.tm.base_opcode | 1) == 0xff
8356 && i.tm.extension_opcode <= 0x1))
8357 return (i.types[0].bitfield.class == Reg
8358 || i.types[0].bitfield.instance == Accum);
8359
8360 return 0;
8361 }
8362
8363 /* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8364
8365 static int
8366 add_fused_jcc_padding_frag_p (void)
8367 {
8368 /* NB: Don't work with COND_JUMP86 without i386. */
8369 if (!align_branch_power
8370 || now_seg == absolute_section
8371 || !cpu_arch_flags.bitfield.cpui386
8372 || !(align_branch & align_branch_fused_bit))
8373 return 0;
8374
8375 if (maybe_fused_with_jcc_p ())
8376 {
8377 if (last_insn.kind == last_insn_other
8378 || last_insn.seg != now_seg)
8379 return 1;
8380 if (flag_debug)
8381 as_warn_where (last_insn.file, last_insn.line,
8382 _("`%s` skips -malign-branch-boundary on `%s`"),
8383 last_insn.name, i.tm.name);
8384 }
8385
8386 return 0;
8387 }
8388
8389 /* Return 1 if a BRANCH_PREFIX frag should be generated. */
8390
8391 static int
8392 add_branch_prefix_frag_p (void)
8393 {
8394 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8395 to PadLock instructions since they include prefixes in opcode. */
8396 if (!align_branch_power
8397 || !align_branch_prefix_size
8398 || now_seg == absolute_section
8399 || i.tm.cpu_flags.bitfield.cpupadlock
8400 || !cpu_arch_flags.bitfield.cpui386)
8401 return 0;
8402
8403 /* Don't add prefix if it is a prefix or there is no operand in case
8404 that segment prefix is special. */
8405 if (!i.operands || i.tm.opcode_modifier.isprefix)
8406 return 0;
8407
8408 if (last_insn.kind == last_insn_other
8409 || last_insn.seg != now_seg)
8410 return 1;
8411
8412 if (flag_debug)
8413 as_warn_where (last_insn.file, last_insn.line,
8414 _("`%s` skips -malign-branch-boundary on `%s`"),
8415 last_insn.name, i.tm.name);
8416
8417 return 0;
8418 }
8419
8420 /* Return 1 if a BRANCH_PADDING frag should be generated. */
8421
8422 static int
8423 add_branch_padding_frag_p (enum align_branch_kind *branch_p)
8424 {
8425 int add_padding;
8426
8427 /* NB: Don't work with COND_JUMP86 without i386. */
8428 if (!align_branch_power
8429 || now_seg == absolute_section
8430 || !cpu_arch_flags.bitfield.cpui386)
8431 return 0;
8432
8433 add_padding = 0;
8434
8435 /* Check for jcc and direct jmp. */
8436 if (i.tm.opcode_modifier.jump == JUMP)
8437 {
8438 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8439 {
8440 *branch_p = align_branch_jmp;
8441 add_padding = align_branch & align_branch_jmp_bit;
8442 }
8443 else
8444 {
8445 *branch_p = align_branch_jcc;
8446 if ((align_branch & align_branch_jcc_bit))
8447 add_padding = 1;
8448 }
8449 }
8450 else if (is_any_vex_encoding (&i.tm))
8451 return 0;
8452 else if ((i.tm.base_opcode | 1) == 0xc3)
8453 {
8454 /* Near ret. */
8455 *branch_p = align_branch_ret;
8456 if ((align_branch & align_branch_ret_bit))
8457 add_padding = 1;
8458 }
8459 else
8460 {
8461 /* Check for indirect jmp, direct and indirect calls. */
8462 if (i.tm.base_opcode == 0xe8)
8463 {
8464 /* Direct call. */
8465 *branch_p = align_branch_call;
8466 if ((align_branch & align_branch_call_bit))
8467 add_padding = 1;
8468 }
8469 else if (i.tm.base_opcode == 0xff
8470 && (i.tm.extension_opcode == 2
8471 || i.tm.extension_opcode == 4))
8472 {
8473 /* Indirect call and jmp. */
8474 *branch_p = align_branch_indirect;
8475 if ((align_branch & align_branch_indirect_bit))
8476 add_padding = 1;
8477 }
8478
8479 if (add_padding
8480 && i.disp_operands
8481 && tls_get_addr
8482 && (i.op[0].disps->X_op == O_symbol
8483 || (i.op[0].disps->X_op == O_subtract
8484 && i.op[0].disps->X_op_symbol == GOT_symbol)))
8485 {
8486 symbolS *s = i.op[0].disps->X_add_symbol;
8487 /* No padding to call to global or undefined tls_get_addr. */
8488 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
8489 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
8490 return 0;
8491 }
8492 }
8493
8494 if (add_padding
8495 && last_insn.kind != last_insn_other
8496 && last_insn.seg == now_seg)
8497 {
8498 if (flag_debug)
8499 as_warn_where (last_insn.file, last_insn.line,
8500 _("`%s` skips -malign-branch-boundary on `%s`"),
8501 last_insn.name, i.tm.name);
8502 return 0;
8503 }
8504
8505 return add_padding;
8506 }
8507
8508 static void
8509 output_insn (void)
8510 {
8511 fragS *insn_start_frag;
8512 offsetT insn_start_off;
8513 fragS *fragP = NULL;
8514 enum align_branch_kind branch = align_branch_none;
8515
8516 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8517 if (IS_ELF && x86_used_note)
8518 {
8519 if (i.tm.cpu_flags.bitfield.cpucmov)
8520 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8521 if (i.tm.cpu_flags.bitfield.cpusse)
8522 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8523 if (i.tm.cpu_flags.bitfield.cpusse2)
8524 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8525 if (i.tm.cpu_flags.bitfield.cpusse3)
8526 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8527 if (i.tm.cpu_flags.bitfield.cpussse3)
8528 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8529 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8530 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8531 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8532 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8533 if (i.tm.cpu_flags.bitfield.cpuavx)
8534 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8535 if (i.tm.cpu_flags.bitfield.cpuavx2)
8536 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8537 if (i.tm.cpu_flags.bitfield.cpufma)
8538 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8539 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8540 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8541 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8542 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8543 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8544 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8545 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8546 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8547 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8548 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8549 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8550 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8551 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8552 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8553 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8554 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8555 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8556 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8557 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8558 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8559 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8560 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8561 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8562 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8563 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8564 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8565 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8566 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8567 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8568 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8569
8570 if (i.tm.cpu_flags.bitfield.cpu8087
8571 || i.tm.cpu_flags.bitfield.cpu287
8572 || i.tm.cpu_flags.bitfield.cpu387
8573 || i.tm.cpu_flags.bitfield.cpu687
8574 || i.tm.cpu_flags.bitfield.cpufisttp)
8575 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8576 if (i.has_regmmx
8577 || i.tm.base_opcode == 0xf77 /* emms */
8578 || i.tm.base_opcode == 0xf0e /* femms */)
8579 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8580 if (i.has_regxmm)
8581 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8582 if (i.has_regymm)
8583 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8584 if (i.has_regzmm)
8585 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8586 if (i.tm.cpu_flags.bitfield.cpufxsr)
8587 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8588 if (i.tm.cpu_flags.bitfield.cpuxsave)
8589 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8590 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8591 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8592 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8593 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8594 }
8595 #endif
8596
8597 /* Tie dwarf2 debug info to the address at the start of the insn.
8598 We can't do this after the insn has been output as the current
8599 frag may have been closed off. eg. by frag_var. */
8600 dwarf2_emit_insn (0);
8601
8602 insn_start_frag = frag_now;
8603 insn_start_off = frag_now_fix ();
8604
8605 if (add_branch_padding_frag_p (&branch))
8606 {
8607 char *p;
8608 /* Branch can be 8 bytes. Leave some room for prefixes. */
8609 unsigned int max_branch_padding_size = 14;
8610
8611 /* Align section to boundary. */
8612 record_alignment (now_seg, align_branch_power);
8613
8614 /* Make room for padding. */
8615 frag_grow (max_branch_padding_size);
8616
8617 /* Start of the padding. */
8618 p = frag_more (0);
8619
8620 fragP = frag_now;
8621
8622 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
8623 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
8624 NULL, 0, p);
8625
8626 fragP->tc_frag_data.branch_type = branch;
8627 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
8628 }
8629
8630 /* Output jumps. */
8631 if (i.tm.opcode_modifier.jump == JUMP)
8632 output_branch ();
8633 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8634 || i.tm.opcode_modifier.jump == JUMP_DWORD)
8635 output_jump ();
8636 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
8637 output_interseg_jump ();
8638 else
8639 {
8640 /* Output normal instructions here. */
8641 char *p;
8642 unsigned char *q;
8643 unsigned int j;
8644 unsigned int prefix;
8645
8646 if (avoid_fence
8647 && (i.tm.base_opcode == 0xfaee8
8648 || i.tm.base_opcode == 0xfaef0
8649 || i.tm.base_opcode == 0xfaef8))
8650 {
8651 /* Encode lfence, mfence, and sfence as
8652 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8653 offsetT val = 0x240483f0ULL;
8654 p = frag_more (5);
8655 md_number_to_chars (p, val, 5);
8656 return;
8657 }
8658
8659 /* Some processors fail on LOCK prefix. This options makes
8660 assembler ignore LOCK prefix and serves as a workaround. */
8661 if (omit_lock_prefix)
8662 {
8663 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8664 return;
8665 i.prefix[LOCK_PREFIX] = 0;
8666 }
8667
8668 if (branch)
8669 /* Skip if this is a branch. */
8670 ;
8671 else if (add_fused_jcc_padding_frag_p ())
8672 {
8673 /* Make room for padding. */
8674 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
8675 p = frag_more (0);
8676
8677 fragP = frag_now;
8678
8679 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
8680 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
8681 NULL, 0, p);
8682
8683 fragP->tc_frag_data.branch_type = align_branch_fused;
8684 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
8685 }
8686 else if (add_branch_prefix_frag_p ())
8687 {
8688 unsigned int max_prefix_size = align_branch_prefix_size;
8689
8690 /* Make room for padding. */
8691 frag_grow (max_prefix_size);
8692 p = frag_more (0);
8693
8694 fragP = frag_now;
8695
8696 frag_var (rs_machine_dependent, max_prefix_size, 0,
8697 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
8698 NULL, 0, p);
8699
8700 fragP->tc_frag_data.max_bytes = max_prefix_size;
8701 }
8702
8703 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8704 don't need the explicit prefix. */
8705 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8706 {
8707 switch (i.tm.opcode_length)
8708 {
8709 case 3:
8710 if (i.tm.base_opcode & 0xff000000)
8711 {
8712 prefix = (i.tm.base_opcode >> 24) & 0xff;
8713 if (!i.tm.cpu_flags.bitfield.cpupadlock
8714 || prefix != REPE_PREFIX_OPCODE
8715 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8716 add_prefix (prefix);
8717 }
8718 break;
8719 case 2:
8720 if ((i.tm.base_opcode & 0xff0000) != 0)
8721 {
8722 prefix = (i.tm.base_opcode >> 16) & 0xff;
8723 add_prefix (prefix);
8724 }
8725 break;
8726 case 1:
8727 break;
8728 case 0:
8729 /* Check for pseudo prefixes. */
8730 as_bad_where (insn_start_frag->fr_file,
8731 insn_start_frag->fr_line,
8732 _("pseudo prefix without instruction"));
8733 return;
8734 default:
8735 abort ();
8736 }
8737
8738 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8739 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8740 R_X86_64_GOTTPOFF relocation so that linker can safely
8741 perform IE->LE optimization. A dummy REX_OPCODE prefix
8742 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
8743 relocation for GDesc -> IE/LE optimization. */
8744 if (x86_elf_abi == X86_64_X32_ABI
8745 && i.operands == 2
8746 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8747 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
8748 && i.prefix[REX_PREFIX] == 0)
8749 add_prefix (REX_OPCODE);
8750 #endif
8751
8752 /* The prefix bytes. */
8753 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8754 if (*q)
8755 FRAG_APPEND_1_CHAR (*q);
8756 }
8757 else
8758 {
8759 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8760 if (*q)
8761 switch (j)
8762 {
8763 case REX_PREFIX:
8764 /* REX byte is encoded in VEX prefix. */
8765 break;
8766 case SEG_PREFIX:
8767 case ADDR_PREFIX:
8768 FRAG_APPEND_1_CHAR (*q);
8769 break;
8770 default:
8771 /* There should be no other prefixes for instructions
8772 with VEX prefix. */
8773 abort ();
8774 }
8775
8776 /* For EVEX instructions i.vrex should become 0 after
8777 build_evex_prefix. For VEX instructions upper 16 registers
8778 aren't available, so VREX should be 0. */
8779 if (i.vrex)
8780 abort ();
8781 /* Now the VEX prefix. */
8782 p = frag_more (i.vex.length);
8783 for (j = 0; j < i.vex.length; j++)
8784 p[j] = i.vex.bytes[j];
8785 }
8786
8787 /* Now the opcode; be careful about word order here! */
8788 if (i.tm.opcode_length == 1)
8789 {
8790 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8791 }
8792 else
8793 {
8794 switch (i.tm.opcode_length)
8795 {
8796 case 4:
8797 p = frag_more (4);
8798 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8799 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8800 break;
8801 case 3:
8802 p = frag_more (3);
8803 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8804 break;
8805 case 2:
8806 p = frag_more (2);
8807 break;
8808 default:
8809 abort ();
8810 break;
8811 }
8812
8813 /* Put out high byte first: can't use md_number_to_chars! */
8814 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8815 *p = i.tm.base_opcode & 0xff;
8816 }
8817
8818 /* Now the modrm byte and sib byte (if present). */
8819 if (i.tm.opcode_modifier.modrm)
8820 {
8821 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8822 | i.rm.reg << 3
8823 | i.rm.mode << 6));
8824 /* If i.rm.regmem == ESP (4)
8825 && i.rm.mode != (Register mode)
8826 && not 16 bit
8827 ==> need second modrm byte. */
8828 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8829 && i.rm.mode != 3
8830 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8831 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8832 | i.sib.index << 3
8833 | i.sib.scale << 6));
8834 }
8835
8836 if (i.disp_operands)
8837 output_disp (insn_start_frag, insn_start_off);
8838
8839 if (i.imm_operands)
8840 output_imm (insn_start_frag, insn_start_off);
8841
8842 /*
8843 * frag_now_fix () returning plain abs_section_offset when we're in the
8844 * absolute section, and abs_section_offset not getting updated as data
8845 * gets added to the frag breaks the logic below.
8846 */
8847 if (now_seg != absolute_section)
8848 {
8849 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8850 if (j > 15)
8851 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8852 j);
8853 else if (fragP)
8854 {
8855 /* NB: Don't add prefix with GOTPC relocation since
8856 output_disp() above depends on the fixed encoding
8857 length. Can't add prefix with TLS relocation since
8858 it breaks TLS linker optimization. */
8859 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
8860 /* Prefix count on the current instruction. */
8861 unsigned int count = i.vex.length;
8862 unsigned int k;
8863 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
8864 /* REX byte is encoded in VEX/EVEX prefix. */
8865 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
8866 count++;
8867
8868 /* Count prefixes for extended opcode maps. */
8869 if (!i.vex.length)
8870 switch (i.tm.opcode_length)
8871 {
8872 case 3:
8873 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
8874 {
8875 count++;
8876 switch ((i.tm.base_opcode >> 8) & 0xff)
8877 {
8878 case 0x38:
8879 case 0x3a:
8880 count++;
8881 break;
8882 default:
8883 break;
8884 }
8885 }
8886 break;
8887 case 2:
8888 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
8889 count++;
8890 break;
8891 case 1:
8892 break;
8893 default:
8894 abort ();
8895 }
8896
8897 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
8898 == BRANCH_PREFIX)
8899 {
8900 /* Set the maximum prefix size in BRANCH_PREFIX
8901 frag. */
8902 if (fragP->tc_frag_data.max_bytes > max)
8903 fragP->tc_frag_data.max_bytes = max;
8904 if (fragP->tc_frag_data.max_bytes > count)
8905 fragP->tc_frag_data.max_bytes -= count;
8906 else
8907 fragP->tc_frag_data.max_bytes = 0;
8908 }
8909 else
8910 {
8911 /* Remember the maximum prefix size in FUSED_JCC_PADDING
8912 frag. */
8913 unsigned int max_prefix_size;
8914 if (align_branch_prefix_size > max)
8915 max_prefix_size = max;
8916 else
8917 max_prefix_size = align_branch_prefix_size;
8918 if (max_prefix_size > count)
8919 fragP->tc_frag_data.max_prefix_length
8920 = max_prefix_size - count;
8921 }
8922
8923 /* Use existing segment prefix if possible. Use CS
8924 segment prefix in 64-bit mode. In 32-bit mode, use SS
8925 segment prefix with ESP/EBP base register and use DS
8926 segment prefix without ESP/EBP base register. */
8927 if (i.prefix[SEG_PREFIX])
8928 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
8929 else if (flag_code == CODE_64BIT)
8930 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
8931 else if (i.base_reg
8932 && (i.base_reg->reg_num == 4
8933 || i.base_reg->reg_num == 5))
8934 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
8935 else
8936 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
8937 }
8938 }
8939 }
8940
8941 /* NB: Don't work with COND_JUMP86 without i386. */
8942 if (align_branch_power
8943 && now_seg != absolute_section
8944 && cpu_arch_flags.bitfield.cpui386)
8945 {
8946 /* Terminate each frag so that we can add prefix and check for
8947 fused jcc. */
8948 frag_wane (frag_now);
8949 frag_new (0);
8950 }
8951
8952 #ifdef DEBUG386
8953 if (flag_debug)
8954 {
8955 pi ("" /*line*/, &i);
8956 }
8957 #endif /* DEBUG386 */
8958 }
8959
8960 /* Return the size of the displacement operand N. */
8961
8962 static int
8963 disp_size (unsigned int n)
8964 {
8965 int size = 4;
8966
8967 if (i.types[n].bitfield.disp64)
8968 size = 8;
8969 else if (i.types[n].bitfield.disp8)
8970 size = 1;
8971 else if (i.types[n].bitfield.disp16)
8972 size = 2;
8973 return size;
8974 }
8975
8976 /* Return the size of the immediate operand N. */
8977
8978 static int
8979 imm_size (unsigned int n)
8980 {
8981 int size = 4;
8982 if (i.types[n].bitfield.imm64)
8983 size = 8;
8984 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8985 size = 1;
8986 else if (i.types[n].bitfield.imm16)
8987 size = 2;
8988 return size;
8989 }
8990
8991 static void
8992 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8993 {
8994 char *p;
8995 unsigned int n;
8996
8997 for (n = 0; n < i.operands; n++)
8998 {
8999 if (operand_type_check (i.types[n], disp))
9000 {
9001 if (i.op[n].disps->X_op == O_constant)
9002 {
9003 int size = disp_size (n);
9004 offsetT val = i.op[n].disps->X_add_number;
9005
9006 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
9007 size);
9008 p = frag_more (size);
9009 md_number_to_chars (p, val, size);
9010 }
9011 else
9012 {
9013 enum bfd_reloc_code_real reloc_type;
9014 int size = disp_size (n);
9015 int sign = i.types[n].bitfield.disp32s;
9016 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
9017 fixS *fixP;
9018
9019 /* We can't have 8 bit displacement here. */
9020 gas_assert (!i.types[n].bitfield.disp8);
9021
9022 /* The PC relative address is computed relative
9023 to the instruction boundary, so in case immediate
9024 fields follows, we need to adjust the value. */
9025 if (pcrel && i.imm_operands)
9026 {
9027 unsigned int n1;
9028 int sz = 0;
9029
9030 for (n1 = 0; n1 < i.operands; n1++)
9031 if (operand_type_check (i.types[n1], imm))
9032 {
9033 /* Only one immediate is allowed for PC
9034 relative address. */
9035 gas_assert (sz == 0);
9036 sz = imm_size (n1);
9037 i.op[n].disps->X_add_number -= sz;
9038 }
9039 /* We should find the immediate. */
9040 gas_assert (sz != 0);
9041 }
9042
9043 p = frag_more (size);
9044 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
9045 if (GOT_symbol
9046 && GOT_symbol == i.op[n].disps->X_add_symbol
9047 && (((reloc_type == BFD_RELOC_32
9048 || reloc_type == BFD_RELOC_X86_64_32S
9049 || (reloc_type == BFD_RELOC_64
9050 && object_64bit))
9051 && (i.op[n].disps->X_op == O_symbol
9052 || (i.op[n].disps->X_op == O_add
9053 && ((symbol_get_value_expression
9054 (i.op[n].disps->X_op_symbol)->X_op)
9055 == O_subtract))))
9056 || reloc_type == BFD_RELOC_32_PCREL))
9057 {
9058 if (!object_64bit)
9059 {
9060 reloc_type = BFD_RELOC_386_GOTPC;
9061 i.has_gotpc_tls_reloc = TRUE;
9062 i.op[n].imms->X_add_number +=
9063 encoding_length (insn_start_frag, insn_start_off, p);
9064 }
9065 else if (reloc_type == BFD_RELOC_64)
9066 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9067 else
9068 /* Don't do the adjustment for x86-64, as there
9069 the pcrel addressing is relative to the _next_
9070 insn, and that is taken care of in other code. */
9071 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9072 }
9073 else if (align_branch_power)
9074 {
9075 switch (reloc_type)
9076 {
9077 case BFD_RELOC_386_TLS_GD:
9078 case BFD_RELOC_386_TLS_LDM:
9079 case BFD_RELOC_386_TLS_IE:
9080 case BFD_RELOC_386_TLS_IE_32:
9081 case BFD_RELOC_386_TLS_GOTIE:
9082 case BFD_RELOC_386_TLS_GOTDESC:
9083 case BFD_RELOC_386_TLS_DESC_CALL:
9084 case BFD_RELOC_X86_64_TLSGD:
9085 case BFD_RELOC_X86_64_TLSLD:
9086 case BFD_RELOC_X86_64_GOTTPOFF:
9087 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9088 case BFD_RELOC_X86_64_TLSDESC_CALL:
9089 i.has_gotpc_tls_reloc = TRUE;
9090 default:
9091 break;
9092 }
9093 }
9094 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9095 size, i.op[n].disps, pcrel,
9096 reloc_type);
9097 /* Check for "call/jmp *mem", "mov mem, %reg",
9098 "test %reg, mem" and "binop mem, %reg" where binop
9099 is one of adc, add, and, cmp, or, sbb, sub, xor
9100 instructions without data prefix. Always generate
9101 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9102 if (i.prefix[DATA_PREFIX] == 0
9103 && (generate_relax_relocations
9104 || (!object_64bit
9105 && i.rm.mode == 0
9106 && i.rm.regmem == 5))
9107 && (i.rm.mode == 2
9108 || (i.rm.mode == 0 && i.rm.regmem == 5))
9109 && !is_any_vex_encoding(&i.tm)
9110 && ((i.operands == 1
9111 && i.tm.base_opcode == 0xff
9112 && (i.rm.reg == 2 || i.rm.reg == 4))
9113 || (i.operands == 2
9114 && (i.tm.base_opcode == 0x8b
9115 || i.tm.base_opcode == 0x85
9116 || (i.tm.base_opcode & ~0x38) == 0x03))))
9117 {
9118 if (object_64bit)
9119 {
9120 fixP->fx_tcbit = i.rex != 0;
9121 if (i.base_reg
9122 && (i.base_reg->reg_num == RegIP))
9123 fixP->fx_tcbit2 = 1;
9124 }
9125 else
9126 fixP->fx_tcbit2 = 1;
9127 }
9128 }
9129 }
9130 }
9131 }
9132
9133 static void
9134 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
9135 {
9136 char *p;
9137 unsigned int n;
9138
9139 for (n = 0; n < i.operands; n++)
9140 {
9141 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9142 if (i.rounding && (int) n == i.rounding->operand)
9143 continue;
9144
9145 if (operand_type_check (i.types[n], imm))
9146 {
9147 if (i.op[n].imms->X_op == O_constant)
9148 {
9149 int size = imm_size (n);
9150 offsetT val;
9151
9152 val = offset_in_range (i.op[n].imms->X_add_number,
9153 size);
9154 p = frag_more (size);
9155 md_number_to_chars (p, val, size);
9156 }
9157 else
9158 {
9159 /* Not absolute_section.
9160 Need a 32-bit fixup (don't support 8bit
9161 non-absolute imms). Try to support other
9162 sizes ... */
9163 enum bfd_reloc_code_real reloc_type;
9164 int size = imm_size (n);
9165 int sign;
9166
9167 if (i.types[n].bitfield.imm32s
9168 && (i.suffix == QWORD_MNEM_SUFFIX
9169 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
9170 sign = 1;
9171 else
9172 sign = 0;
9173
9174 p = frag_more (size);
9175 reloc_type = reloc (size, 0, sign, i.reloc[n]);
9176
9177 /* This is tough to explain. We end up with this one if we
9178 * have operands that look like
9179 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9180 * obtain the absolute address of the GOT, and it is strongly
9181 * preferable from a performance point of view to avoid using
9182 * a runtime relocation for this. The actual sequence of
9183 * instructions often look something like:
9184 *
9185 * call .L66
9186 * .L66:
9187 * popl %ebx
9188 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9189 *
9190 * The call and pop essentially return the absolute address
9191 * of the label .L66 and store it in %ebx. The linker itself
9192 * will ultimately change the first operand of the addl so
9193 * that %ebx points to the GOT, but to keep things simple, the
9194 * .o file must have this operand set so that it generates not
9195 * the absolute address of .L66, but the absolute address of
9196 * itself. This allows the linker itself simply treat a GOTPC
9197 * relocation as asking for a pcrel offset to the GOT to be
9198 * added in, and the addend of the relocation is stored in the
9199 * operand field for the instruction itself.
9200 *
9201 * Our job here is to fix the operand so that it would add
9202 * the correct offset so that %ebx would point to itself. The
9203 * thing that is tricky is that .-.L66 will point to the
9204 * beginning of the instruction, so we need to further modify
9205 * the operand so that it will point to itself. There are
9206 * other cases where you have something like:
9207 *
9208 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9209 *
9210 * and here no correction would be required. Internally in
9211 * the assembler we treat operands of this form as not being
9212 * pcrel since the '.' is explicitly mentioned, and I wonder
9213 * whether it would simplify matters to do it this way. Who
9214 * knows. In earlier versions of the PIC patches, the
9215 * pcrel_adjust field was used to store the correction, but
9216 * since the expression is not pcrel, I felt it would be
9217 * confusing to do it this way. */
9218
9219 if ((reloc_type == BFD_RELOC_32
9220 || reloc_type == BFD_RELOC_X86_64_32S
9221 || reloc_type == BFD_RELOC_64)
9222 && GOT_symbol
9223 && GOT_symbol == i.op[n].imms->X_add_symbol
9224 && (i.op[n].imms->X_op == O_symbol
9225 || (i.op[n].imms->X_op == O_add
9226 && ((symbol_get_value_expression
9227 (i.op[n].imms->X_op_symbol)->X_op)
9228 == O_subtract))))
9229 {
9230 if (!object_64bit)
9231 reloc_type = BFD_RELOC_386_GOTPC;
9232 else if (size == 4)
9233 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9234 else if (size == 8)
9235 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9236 i.has_gotpc_tls_reloc = TRUE;
9237 i.op[n].imms->X_add_number +=
9238 encoding_length (insn_start_frag, insn_start_off, p);
9239 }
9240 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9241 i.op[n].imms, 0, reloc_type);
9242 }
9243 }
9244 }
9245 }
9246 \f
9247 /* x86_cons_fix_new is called via the expression parsing code when a
9248 reloc is needed. We use this hook to get the correct .got reloc. */
9249 static int cons_sign = -1;
9250
9251 void
9252 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
9253 expressionS *exp, bfd_reloc_code_real_type r)
9254 {
9255 r = reloc (len, 0, cons_sign, r);
9256
9257 #ifdef TE_PE
9258 if (exp->X_op == O_secrel)
9259 {
9260 exp->X_op = O_symbol;
9261 r = BFD_RELOC_32_SECREL;
9262 }
9263 #endif
9264
9265 fix_new_exp (frag, off, len, exp, 0, r);
9266 }
9267
9268 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9269 purpose of the `.dc.a' internal pseudo-op. */
9270
9271 int
9272 x86_address_bytes (void)
9273 {
9274 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9275 return 4;
9276 return stdoutput->arch_info->bits_per_address / 8;
9277 }
9278
9279 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9280 || defined (LEX_AT)
9281 # define lex_got(reloc, adjust, types) NULL
9282 #else
9283 /* Parse operands of the form
9284 <symbol>@GOTOFF+<nnn>
9285 and similar .plt or .got references.
9286
9287 If we find one, set up the correct relocation in RELOC and copy the
9288 input string, minus the `@GOTOFF' into a malloc'd buffer for
9289 parsing by the calling routine. Return this buffer, and if ADJUST
9290 is non-null set it to the length of the string we removed from the
9291 input line. Otherwise return NULL. */
9292 static char *
9293 lex_got (enum bfd_reloc_code_real *rel,
9294 int *adjust,
9295 i386_operand_type *types)
9296 {
9297 /* Some of the relocations depend on the size of what field is to
9298 be relocated. But in our callers i386_immediate and i386_displacement
9299 we don't yet know the operand size (this will be set by insn
9300 matching). Hence we record the word32 relocation here,
9301 and adjust the reloc according to the real size in reloc(). */
9302 static const struct {
9303 const char *str;
9304 int len;
9305 const enum bfd_reloc_code_real rel[2];
9306 const i386_operand_type types64;
9307 } gotrel[] = {
9308 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9309 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9310 BFD_RELOC_SIZE32 },
9311 OPERAND_TYPE_IMM32_64 },
9312 #endif
9313 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9314 BFD_RELOC_X86_64_PLTOFF64 },
9315 OPERAND_TYPE_IMM64 },
9316 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9317 BFD_RELOC_X86_64_PLT32 },
9318 OPERAND_TYPE_IMM32_32S_DISP32 },
9319 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9320 BFD_RELOC_X86_64_GOTPLT64 },
9321 OPERAND_TYPE_IMM64_DISP64 },
9322 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9323 BFD_RELOC_X86_64_GOTOFF64 },
9324 OPERAND_TYPE_IMM64_DISP64 },
9325 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9326 BFD_RELOC_X86_64_GOTPCREL },
9327 OPERAND_TYPE_IMM32_32S_DISP32 },
9328 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9329 BFD_RELOC_X86_64_TLSGD },
9330 OPERAND_TYPE_IMM32_32S_DISP32 },
9331 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9332 _dummy_first_bfd_reloc_code_real },
9333 OPERAND_TYPE_NONE },
9334 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9335 BFD_RELOC_X86_64_TLSLD },
9336 OPERAND_TYPE_IMM32_32S_DISP32 },
9337 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9338 BFD_RELOC_X86_64_GOTTPOFF },
9339 OPERAND_TYPE_IMM32_32S_DISP32 },
9340 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9341 BFD_RELOC_X86_64_TPOFF32 },
9342 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9343 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9344 _dummy_first_bfd_reloc_code_real },
9345 OPERAND_TYPE_NONE },
9346 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9347 BFD_RELOC_X86_64_DTPOFF32 },
9348 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9349 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9350 _dummy_first_bfd_reloc_code_real },
9351 OPERAND_TYPE_NONE },
9352 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9353 _dummy_first_bfd_reloc_code_real },
9354 OPERAND_TYPE_NONE },
9355 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9356 BFD_RELOC_X86_64_GOT32 },
9357 OPERAND_TYPE_IMM32_32S_64_DISP32 },
9358 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9359 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
9360 OPERAND_TYPE_IMM32_32S_DISP32 },
9361 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9362 BFD_RELOC_X86_64_TLSDESC_CALL },
9363 OPERAND_TYPE_IMM32_32S_DISP32 },
9364 };
9365 char *cp;
9366 unsigned int j;
9367
9368 #if defined (OBJ_MAYBE_ELF)
9369 if (!IS_ELF)
9370 return NULL;
9371 #endif
9372
9373 for (cp = input_line_pointer; *cp != '@'; cp++)
9374 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9375 return NULL;
9376
9377 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9378 {
9379 int len = gotrel[j].len;
9380 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9381 {
9382 if (gotrel[j].rel[object_64bit] != 0)
9383 {
9384 int first, second;
9385 char *tmpbuf, *past_reloc;
9386
9387 *rel = gotrel[j].rel[object_64bit];
9388
9389 if (types)
9390 {
9391 if (flag_code != CODE_64BIT)
9392 {
9393 types->bitfield.imm32 = 1;
9394 types->bitfield.disp32 = 1;
9395 }
9396 else
9397 *types = gotrel[j].types64;
9398 }
9399
9400 if (j != 0 && GOT_symbol == NULL)
9401 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9402
9403 /* The length of the first part of our input line. */
9404 first = cp - input_line_pointer;
9405
9406 /* The second part goes from after the reloc token until
9407 (and including) an end_of_line char or comma. */
9408 past_reloc = cp + 1 + len;
9409 cp = past_reloc;
9410 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9411 ++cp;
9412 second = cp + 1 - past_reloc;
9413
9414 /* Allocate and copy string. The trailing NUL shouldn't
9415 be necessary, but be safe. */
9416 tmpbuf = XNEWVEC (char, first + second + 2);
9417 memcpy (tmpbuf, input_line_pointer, first);
9418 if (second != 0 && *past_reloc != ' ')
9419 /* Replace the relocation token with ' ', so that
9420 errors like foo@GOTOFF1 will be detected. */
9421 tmpbuf[first++] = ' ';
9422 else
9423 /* Increment length by 1 if the relocation token is
9424 removed. */
9425 len++;
9426 if (adjust)
9427 *adjust = len;
9428 memcpy (tmpbuf + first, past_reloc, second);
9429 tmpbuf[first + second] = '\0';
9430 return tmpbuf;
9431 }
9432
9433 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9434 gotrel[j].str, 1 << (5 + object_64bit));
9435 return NULL;
9436 }
9437 }
9438
9439 /* Might be a symbol version string. Don't as_bad here. */
9440 return NULL;
9441 }
9442 #endif
9443
9444 #ifdef TE_PE
9445 #ifdef lex_got
9446 #undef lex_got
9447 #endif
9448 /* Parse operands of the form
9449 <symbol>@SECREL32+<nnn>
9450
9451 If we find one, set up the correct relocation in RELOC and copy the
9452 input string, minus the `@SECREL32' into a malloc'd buffer for
9453 parsing by the calling routine. Return this buffer, and if ADJUST
9454 is non-null set it to the length of the string we removed from the
9455 input line. Otherwise return NULL.
9456
9457 This function is copied from the ELF version above adjusted for PE targets. */
9458
9459 static char *
9460 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9461 int *adjust ATTRIBUTE_UNUSED,
9462 i386_operand_type *types)
9463 {
9464 static const struct
9465 {
9466 const char *str;
9467 int len;
9468 const enum bfd_reloc_code_real rel[2];
9469 const i386_operand_type types64;
9470 }
9471 gotrel[] =
9472 {
9473 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9474 BFD_RELOC_32_SECREL },
9475 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9476 };
9477
9478 char *cp;
9479 unsigned j;
9480
9481 for (cp = input_line_pointer; *cp != '@'; cp++)
9482 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9483 return NULL;
9484
9485 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9486 {
9487 int len = gotrel[j].len;
9488
9489 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9490 {
9491 if (gotrel[j].rel[object_64bit] != 0)
9492 {
9493 int first, second;
9494 char *tmpbuf, *past_reloc;
9495
9496 *rel = gotrel[j].rel[object_64bit];
9497 if (adjust)
9498 *adjust = len;
9499
9500 if (types)
9501 {
9502 if (flag_code != CODE_64BIT)
9503 {
9504 types->bitfield.imm32 = 1;
9505 types->bitfield.disp32 = 1;
9506 }
9507 else
9508 *types = gotrel[j].types64;
9509 }
9510
9511 /* The length of the first part of our input line. */
9512 first = cp - input_line_pointer;
9513
9514 /* The second part goes from after the reloc token until
9515 (and including) an end_of_line char or comma. */
9516 past_reloc = cp + 1 + len;
9517 cp = past_reloc;
9518 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9519 ++cp;
9520 second = cp + 1 - past_reloc;
9521
9522 /* Allocate and copy string. The trailing NUL shouldn't
9523 be necessary, but be safe. */
9524 tmpbuf = XNEWVEC (char, first + second + 2);
9525 memcpy (tmpbuf, input_line_pointer, first);
9526 if (second != 0 && *past_reloc != ' ')
9527 /* Replace the relocation token with ' ', so that
9528 errors like foo@SECLREL321 will be detected. */
9529 tmpbuf[first++] = ' ';
9530 memcpy (tmpbuf + first, past_reloc, second);
9531 tmpbuf[first + second] = '\0';
9532 return tmpbuf;
9533 }
9534
9535 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9536 gotrel[j].str, 1 << (5 + object_64bit));
9537 return NULL;
9538 }
9539 }
9540
9541 /* Might be a symbol version string. Don't as_bad here. */
9542 return NULL;
9543 }
9544
9545 #endif /* TE_PE */
9546
9547 bfd_reloc_code_real_type
9548 x86_cons (expressionS *exp, int size)
9549 {
9550 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9551
9552 intel_syntax = -intel_syntax;
9553
9554 exp->X_md = 0;
9555 if (size == 4 || (object_64bit && size == 8))
9556 {
9557 /* Handle @GOTOFF and the like in an expression. */
9558 char *save;
9559 char *gotfree_input_line;
9560 int adjust = 0;
9561
9562 save = input_line_pointer;
9563 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9564 if (gotfree_input_line)
9565 input_line_pointer = gotfree_input_line;
9566
9567 expression (exp);
9568
9569 if (gotfree_input_line)
9570 {
9571 /* expression () has merrily parsed up to the end of line,
9572 or a comma - in the wrong buffer. Transfer how far
9573 input_line_pointer has moved to the right buffer. */
9574 input_line_pointer = (save
9575 + (input_line_pointer - gotfree_input_line)
9576 + adjust);
9577 free (gotfree_input_line);
9578 if (exp->X_op == O_constant
9579 || exp->X_op == O_absent
9580 || exp->X_op == O_illegal
9581 || exp->X_op == O_register
9582 || exp->X_op == O_big)
9583 {
9584 char c = *input_line_pointer;
9585 *input_line_pointer = 0;
9586 as_bad (_("missing or invalid expression `%s'"), save);
9587 *input_line_pointer = c;
9588 }
9589 else if ((got_reloc == BFD_RELOC_386_PLT32
9590 || got_reloc == BFD_RELOC_X86_64_PLT32)
9591 && exp->X_op != O_symbol)
9592 {
9593 char c = *input_line_pointer;
9594 *input_line_pointer = 0;
9595 as_bad (_("invalid PLT expression `%s'"), save);
9596 *input_line_pointer = c;
9597 }
9598 }
9599 }
9600 else
9601 expression (exp);
9602
9603 intel_syntax = -intel_syntax;
9604
9605 if (intel_syntax)
9606 i386_intel_simplify (exp);
9607
9608 return got_reloc;
9609 }
9610
9611 static void
9612 signed_cons (int size)
9613 {
9614 if (flag_code == CODE_64BIT)
9615 cons_sign = 1;
9616 cons (size);
9617 cons_sign = -1;
9618 }
9619
9620 #ifdef TE_PE
9621 static void
9622 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9623 {
9624 expressionS exp;
9625
9626 do
9627 {
9628 expression (&exp);
9629 if (exp.X_op == O_symbol)
9630 exp.X_op = O_secrel;
9631
9632 emit_expr (&exp, 4);
9633 }
9634 while (*input_line_pointer++ == ',');
9635
9636 input_line_pointer--;
9637 demand_empty_rest_of_line ();
9638 }
9639 #endif
9640
9641 /* Handle Vector operations. */
9642
9643 static char *
9644 check_VecOperations (char *op_string, char *op_end)
9645 {
9646 const reg_entry *mask;
9647 const char *saved;
9648 char *end_op;
9649
9650 while (*op_string
9651 && (op_end == NULL || op_string < op_end))
9652 {
9653 saved = op_string;
9654 if (*op_string == '{')
9655 {
9656 op_string++;
9657
9658 /* Check broadcasts. */
9659 if (strncmp (op_string, "1to", 3) == 0)
9660 {
9661 int bcst_type;
9662
9663 if (i.broadcast)
9664 goto duplicated_vec_op;
9665
9666 op_string += 3;
9667 if (*op_string == '8')
9668 bcst_type = 8;
9669 else if (*op_string == '4')
9670 bcst_type = 4;
9671 else if (*op_string == '2')
9672 bcst_type = 2;
9673 else if (*op_string == '1'
9674 && *(op_string+1) == '6')
9675 {
9676 bcst_type = 16;
9677 op_string++;
9678 }
9679 else
9680 {
9681 as_bad (_("Unsupported broadcast: `%s'"), saved);
9682 return NULL;
9683 }
9684 op_string++;
9685
9686 broadcast_op.type = bcst_type;
9687 broadcast_op.operand = this_operand;
9688 broadcast_op.bytes = 0;
9689 i.broadcast = &broadcast_op;
9690 }
9691 /* Check masking operation. */
9692 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9693 {
9694 /* k0 can't be used for write mask. */
9695 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
9696 {
9697 as_bad (_("`%s%s' can't be used for write mask"),
9698 register_prefix, mask->reg_name);
9699 return NULL;
9700 }
9701
9702 if (!i.mask)
9703 {
9704 mask_op.mask = mask;
9705 mask_op.zeroing = 0;
9706 mask_op.operand = this_operand;
9707 i.mask = &mask_op;
9708 }
9709 else
9710 {
9711 if (i.mask->mask)
9712 goto duplicated_vec_op;
9713
9714 i.mask->mask = mask;
9715
9716 /* Only "{z}" is allowed here. No need to check
9717 zeroing mask explicitly. */
9718 if (i.mask->operand != this_operand)
9719 {
9720 as_bad (_("invalid write mask `%s'"), saved);
9721 return NULL;
9722 }
9723 }
9724
9725 op_string = end_op;
9726 }
9727 /* Check zeroing-flag for masking operation. */
9728 else if (*op_string == 'z')
9729 {
9730 if (!i.mask)
9731 {
9732 mask_op.mask = NULL;
9733 mask_op.zeroing = 1;
9734 mask_op.operand = this_operand;
9735 i.mask = &mask_op;
9736 }
9737 else
9738 {
9739 if (i.mask->zeroing)
9740 {
9741 duplicated_vec_op:
9742 as_bad (_("duplicated `%s'"), saved);
9743 return NULL;
9744 }
9745
9746 i.mask->zeroing = 1;
9747
9748 /* Only "{%k}" is allowed here. No need to check mask
9749 register explicitly. */
9750 if (i.mask->operand != this_operand)
9751 {
9752 as_bad (_("invalid zeroing-masking `%s'"),
9753 saved);
9754 return NULL;
9755 }
9756 }
9757
9758 op_string++;
9759 }
9760 else
9761 goto unknown_vec_op;
9762
9763 if (*op_string != '}')
9764 {
9765 as_bad (_("missing `}' in `%s'"), saved);
9766 return NULL;
9767 }
9768 op_string++;
9769
9770 /* Strip whitespace since the addition of pseudo prefixes
9771 changed how the scrubber treats '{'. */
9772 if (is_space_char (*op_string))
9773 ++op_string;
9774
9775 continue;
9776 }
9777 unknown_vec_op:
9778 /* We don't know this one. */
9779 as_bad (_("unknown vector operation: `%s'"), saved);
9780 return NULL;
9781 }
9782
9783 if (i.mask && i.mask->zeroing && !i.mask->mask)
9784 {
9785 as_bad (_("zeroing-masking only allowed with write mask"));
9786 return NULL;
9787 }
9788
9789 return op_string;
9790 }
9791
9792 static int
9793 i386_immediate (char *imm_start)
9794 {
9795 char *save_input_line_pointer;
9796 char *gotfree_input_line;
9797 segT exp_seg = 0;
9798 expressionS *exp;
9799 i386_operand_type types;
9800
9801 operand_type_set (&types, ~0);
9802
9803 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9804 {
9805 as_bad (_("at most %d immediate operands are allowed"),
9806 MAX_IMMEDIATE_OPERANDS);
9807 return 0;
9808 }
9809
9810 exp = &im_expressions[i.imm_operands++];
9811 i.op[this_operand].imms = exp;
9812
9813 if (is_space_char (*imm_start))
9814 ++imm_start;
9815
9816 save_input_line_pointer = input_line_pointer;
9817 input_line_pointer = imm_start;
9818
9819 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9820 if (gotfree_input_line)
9821 input_line_pointer = gotfree_input_line;
9822
9823 exp_seg = expression (exp);
9824
9825 SKIP_WHITESPACE ();
9826
9827 /* Handle vector operations. */
9828 if (*input_line_pointer == '{')
9829 {
9830 input_line_pointer = check_VecOperations (input_line_pointer,
9831 NULL);
9832 if (input_line_pointer == NULL)
9833 return 0;
9834 }
9835
9836 if (*input_line_pointer)
9837 as_bad (_("junk `%s' after expression"), input_line_pointer);
9838
9839 input_line_pointer = save_input_line_pointer;
9840 if (gotfree_input_line)
9841 {
9842 free (gotfree_input_line);
9843
9844 if (exp->X_op == O_constant || exp->X_op == O_register)
9845 exp->X_op = O_illegal;
9846 }
9847
9848 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9849 }
9850
9851 static int
9852 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9853 i386_operand_type types, const char *imm_start)
9854 {
9855 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9856 {
9857 if (imm_start)
9858 as_bad (_("missing or invalid immediate expression `%s'"),
9859 imm_start);
9860 return 0;
9861 }
9862 else if (exp->X_op == O_constant)
9863 {
9864 /* Size it properly later. */
9865 i.types[this_operand].bitfield.imm64 = 1;
9866 /* If not 64bit, sign extend val. */
9867 if (flag_code != CODE_64BIT
9868 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9869 exp->X_add_number
9870 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9871 }
9872 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9873 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9874 && exp_seg != absolute_section
9875 && exp_seg != text_section
9876 && exp_seg != data_section
9877 && exp_seg != bss_section
9878 && exp_seg != undefined_section
9879 && !bfd_is_com_section (exp_seg))
9880 {
9881 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9882 return 0;
9883 }
9884 #endif
9885 else if (!intel_syntax && exp_seg == reg_section)
9886 {
9887 if (imm_start)
9888 as_bad (_("illegal immediate register operand %s"), imm_start);
9889 return 0;
9890 }
9891 else
9892 {
9893 /* This is an address. The size of the address will be
9894 determined later, depending on destination register,
9895 suffix, or the default for the section. */
9896 i.types[this_operand].bitfield.imm8 = 1;
9897 i.types[this_operand].bitfield.imm16 = 1;
9898 i.types[this_operand].bitfield.imm32 = 1;
9899 i.types[this_operand].bitfield.imm32s = 1;
9900 i.types[this_operand].bitfield.imm64 = 1;
9901 i.types[this_operand] = operand_type_and (i.types[this_operand],
9902 types);
9903 }
9904
9905 return 1;
9906 }
9907
9908 static char *
9909 i386_scale (char *scale)
9910 {
9911 offsetT val;
9912 char *save = input_line_pointer;
9913
9914 input_line_pointer = scale;
9915 val = get_absolute_expression ();
9916
9917 switch (val)
9918 {
9919 case 1:
9920 i.log2_scale_factor = 0;
9921 break;
9922 case 2:
9923 i.log2_scale_factor = 1;
9924 break;
9925 case 4:
9926 i.log2_scale_factor = 2;
9927 break;
9928 case 8:
9929 i.log2_scale_factor = 3;
9930 break;
9931 default:
9932 {
9933 char sep = *input_line_pointer;
9934
9935 *input_line_pointer = '\0';
9936 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9937 scale);
9938 *input_line_pointer = sep;
9939 input_line_pointer = save;
9940 return NULL;
9941 }
9942 }
9943 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9944 {
9945 as_warn (_("scale factor of %d without an index register"),
9946 1 << i.log2_scale_factor);
9947 i.log2_scale_factor = 0;
9948 }
9949 scale = input_line_pointer;
9950 input_line_pointer = save;
9951 return scale;
9952 }
9953
9954 static int
9955 i386_displacement (char *disp_start, char *disp_end)
9956 {
9957 expressionS *exp;
9958 segT exp_seg = 0;
9959 char *save_input_line_pointer;
9960 char *gotfree_input_line;
9961 int override;
9962 i386_operand_type bigdisp, types = anydisp;
9963 int ret;
9964
9965 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9966 {
9967 as_bad (_("at most %d displacement operands are allowed"),
9968 MAX_MEMORY_OPERANDS);
9969 return 0;
9970 }
9971
9972 operand_type_set (&bigdisp, 0);
9973 if (i.jumpabsolute
9974 || i.types[this_operand].bitfield.baseindex
9975 || (current_templates->start->opcode_modifier.jump != JUMP
9976 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
9977 {
9978 i386_addressing_mode ();
9979 override = (i.prefix[ADDR_PREFIX] != 0);
9980 if (flag_code == CODE_64BIT)
9981 {
9982 if (!override)
9983 {
9984 bigdisp.bitfield.disp32s = 1;
9985 bigdisp.bitfield.disp64 = 1;
9986 }
9987 else
9988 bigdisp.bitfield.disp32 = 1;
9989 }
9990 else if ((flag_code == CODE_16BIT) ^ override)
9991 bigdisp.bitfield.disp16 = 1;
9992 else
9993 bigdisp.bitfield.disp32 = 1;
9994 }
9995 else
9996 {
9997 /* For PC-relative branches, the width of the displacement may be
9998 dependent upon data size, but is never dependent upon address size.
9999 Also make sure to not unintentionally match against a non-PC-relative
10000 branch template. */
10001 static templates aux_templates;
10002 const insn_template *t = current_templates->start;
10003 bfd_boolean has_intel64 = FALSE;
10004
10005 aux_templates.start = t;
10006 while (++t < current_templates->end)
10007 {
10008 if (t->opcode_modifier.jump
10009 != current_templates->start->opcode_modifier.jump)
10010 break;
10011 if ((t->opcode_modifier.isa64 >= INTEL64))
10012 has_intel64 = TRUE;
10013 }
10014 if (t < current_templates->end)
10015 {
10016 aux_templates.end = t;
10017 current_templates = &aux_templates;
10018 }
10019
10020 override = (i.prefix[DATA_PREFIX] != 0);
10021 if (flag_code == CODE_64BIT)
10022 {
10023 if ((override || i.suffix == WORD_MNEM_SUFFIX)
10024 && (!intel64 || !has_intel64))
10025 bigdisp.bitfield.disp16 = 1;
10026 else
10027 bigdisp.bitfield.disp32s = 1;
10028 }
10029 else
10030 {
10031 if (!override)
10032 override = (i.suffix == (flag_code != CODE_16BIT
10033 ? WORD_MNEM_SUFFIX
10034 : LONG_MNEM_SUFFIX));
10035 bigdisp.bitfield.disp32 = 1;
10036 if ((flag_code == CODE_16BIT) ^ override)
10037 {
10038 bigdisp.bitfield.disp32 = 0;
10039 bigdisp.bitfield.disp16 = 1;
10040 }
10041 }
10042 }
10043 i.types[this_operand] = operand_type_or (i.types[this_operand],
10044 bigdisp);
10045
10046 exp = &disp_expressions[i.disp_operands];
10047 i.op[this_operand].disps = exp;
10048 i.disp_operands++;
10049 save_input_line_pointer = input_line_pointer;
10050 input_line_pointer = disp_start;
10051 END_STRING_AND_SAVE (disp_end);
10052
10053 #ifndef GCC_ASM_O_HACK
10054 #define GCC_ASM_O_HACK 0
10055 #endif
10056 #if GCC_ASM_O_HACK
10057 END_STRING_AND_SAVE (disp_end + 1);
10058 if (i.types[this_operand].bitfield.baseIndex
10059 && displacement_string_end[-1] == '+')
10060 {
10061 /* This hack is to avoid a warning when using the "o"
10062 constraint within gcc asm statements.
10063 For instance:
10064
10065 #define _set_tssldt_desc(n,addr,limit,type) \
10066 __asm__ __volatile__ ( \
10067 "movw %w2,%0\n\t" \
10068 "movw %w1,2+%0\n\t" \
10069 "rorl $16,%1\n\t" \
10070 "movb %b1,4+%0\n\t" \
10071 "movb %4,5+%0\n\t" \
10072 "movb $0,6+%0\n\t" \
10073 "movb %h1,7+%0\n\t" \
10074 "rorl $16,%1" \
10075 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10076
10077 This works great except that the output assembler ends
10078 up looking a bit weird if it turns out that there is
10079 no offset. You end up producing code that looks like:
10080
10081 #APP
10082 movw $235,(%eax)
10083 movw %dx,2+(%eax)
10084 rorl $16,%edx
10085 movb %dl,4+(%eax)
10086 movb $137,5+(%eax)
10087 movb $0,6+(%eax)
10088 movb %dh,7+(%eax)
10089 rorl $16,%edx
10090 #NO_APP
10091
10092 So here we provide the missing zero. */
10093
10094 *displacement_string_end = '0';
10095 }
10096 #endif
10097 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10098 if (gotfree_input_line)
10099 input_line_pointer = gotfree_input_line;
10100
10101 exp_seg = expression (exp);
10102
10103 SKIP_WHITESPACE ();
10104 if (*input_line_pointer)
10105 as_bad (_("junk `%s' after expression"), input_line_pointer);
10106 #if GCC_ASM_O_HACK
10107 RESTORE_END_STRING (disp_end + 1);
10108 #endif
10109 input_line_pointer = save_input_line_pointer;
10110 if (gotfree_input_line)
10111 {
10112 free (gotfree_input_line);
10113
10114 if (exp->X_op == O_constant || exp->X_op == O_register)
10115 exp->X_op = O_illegal;
10116 }
10117
10118 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10119
10120 RESTORE_END_STRING (disp_end);
10121
10122 return ret;
10123 }
10124
10125 static int
10126 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10127 i386_operand_type types, const char *disp_start)
10128 {
10129 i386_operand_type bigdisp;
10130 int ret = 1;
10131
10132 /* We do this to make sure that the section symbol is in
10133 the symbol table. We will ultimately change the relocation
10134 to be relative to the beginning of the section. */
10135 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
10136 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10137 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10138 {
10139 if (exp->X_op != O_symbol)
10140 goto inv_disp;
10141
10142 if (S_IS_LOCAL (exp->X_add_symbol)
10143 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10144 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
10145 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
10146 exp->X_op = O_subtract;
10147 exp->X_op_symbol = GOT_symbol;
10148 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
10149 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
10150 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10151 i.reloc[this_operand] = BFD_RELOC_64;
10152 else
10153 i.reloc[this_operand] = BFD_RELOC_32;
10154 }
10155
10156 else if (exp->X_op == O_absent
10157 || exp->X_op == O_illegal
10158 || exp->X_op == O_big)
10159 {
10160 inv_disp:
10161 as_bad (_("missing or invalid displacement expression `%s'"),
10162 disp_start);
10163 ret = 0;
10164 }
10165
10166 else if (flag_code == CODE_64BIT
10167 && !i.prefix[ADDR_PREFIX]
10168 && exp->X_op == O_constant)
10169 {
10170 /* Since displacement is signed extended to 64bit, don't allow
10171 disp32 and turn off disp32s if they are out of range. */
10172 i.types[this_operand].bitfield.disp32 = 0;
10173 if (!fits_in_signed_long (exp->X_add_number))
10174 {
10175 i.types[this_operand].bitfield.disp32s = 0;
10176 if (i.types[this_operand].bitfield.baseindex)
10177 {
10178 as_bad (_("0x%lx out range of signed 32bit displacement"),
10179 (long) exp->X_add_number);
10180 ret = 0;
10181 }
10182 }
10183 }
10184
10185 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10186 else if (exp->X_op != O_constant
10187 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10188 && exp_seg != absolute_section
10189 && exp_seg != text_section
10190 && exp_seg != data_section
10191 && exp_seg != bss_section
10192 && exp_seg != undefined_section
10193 && !bfd_is_com_section (exp_seg))
10194 {
10195 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10196 ret = 0;
10197 }
10198 #endif
10199
10200 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10201 /* Constants get taken care of by optimize_disp(). */
10202 && exp->X_op != O_constant)
10203 i.types[this_operand].bitfield.disp8 = 1;
10204
10205 /* Check if this is a displacement only operand. */
10206 bigdisp = i.types[this_operand];
10207 bigdisp.bitfield.disp8 = 0;
10208 bigdisp.bitfield.disp16 = 0;
10209 bigdisp.bitfield.disp32 = 0;
10210 bigdisp.bitfield.disp32s = 0;
10211 bigdisp.bitfield.disp64 = 0;
10212 if (operand_type_all_zero (&bigdisp))
10213 i.types[this_operand] = operand_type_and (i.types[this_operand],
10214 types);
10215
10216 return ret;
10217 }
10218
10219 /* Return the active addressing mode, taking address override and
10220 registers forming the address into consideration. Update the
10221 address override prefix if necessary. */
10222
10223 static enum flag_code
10224 i386_addressing_mode (void)
10225 {
10226 enum flag_code addr_mode;
10227
10228 if (i.prefix[ADDR_PREFIX])
10229 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10230 else
10231 {
10232 addr_mode = flag_code;
10233
10234 #if INFER_ADDR_PREFIX
10235 if (i.mem_operands == 0)
10236 {
10237 /* Infer address prefix from the first memory operand. */
10238 const reg_entry *addr_reg = i.base_reg;
10239
10240 if (addr_reg == NULL)
10241 addr_reg = i.index_reg;
10242
10243 if (addr_reg)
10244 {
10245 if (addr_reg->reg_type.bitfield.dword)
10246 addr_mode = CODE_32BIT;
10247 else if (flag_code != CODE_64BIT
10248 && addr_reg->reg_type.bitfield.word)
10249 addr_mode = CODE_16BIT;
10250
10251 if (addr_mode != flag_code)
10252 {
10253 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10254 i.prefixes += 1;
10255 /* Change the size of any displacement too. At most one
10256 of Disp16 or Disp32 is set.
10257 FIXME. There doesn't seem to be any real need for
10258 separate Disp16 and Disp32 flags. The same goes for
10259 Imm16 and Imm32. Removing them would probably clean
10260 up the code quite a lot. */
10261 if (flag_code != CODE_64BIT
10262 && (i.types[this_operand].bitfield.disp16
10263 || i.types[this_operand].bitfield.disp32))
10264 i.types[this_operand]
10265 = operand_type_xor (i.types[this_operand], disp16_32);
10266 }
10267 }
10268 }
10269 #endif
10270 }
10271
10272 return addr_mode;
10273 }
10274
10275 /* Make sure the memory operand we've been dealt is valid.
10276 Return 1 on success, 0 on a failure. */
10277
10278 static int
10279 i386_index_check (const char *operand_string)
10280 {
10281 const char *kind = "base/index";
10282 enum flag_code addr_mode = i386_addressing_mode ();
10283
10284 if (current_templates->start->opcode_modifier.isstring
10285 && !current_templates->start->cpu_flags.bitfield.cpupadlock
10286 && (current_templates->end[-1].opcode_modifier.isstring
10287 || i.mem_operands))
10288 {
10289 /* Memory operands of string insns are special in that they only allow
10290 a single register (rDI, rSI, or rBX) as their memory address. */
10291 const reg_entry *expected_reg;
10292 static const char *di_si[][2] =
10293 {
10294 { "esi", "edi" },
10295 { "si", "di" },
10296 { "rsi", "rdi" }
10297 };
10298 static const char *bx[] = { "ebx", "bx", "rbx" };
10299
10300 kind = "string address";
10301
10302 if (current_templates->start->opcode_modifier.repprefixok)
10303 {
10304 int es_op = current_templates->end[-1].opcode_modifier.isstring
10305 - IS_STRING_ES_OP0;
10306 int op = 0;
10307
10308 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
10309 || ((!i.mem_operands != !intel_syntax)
10310 && current_templates->end[-1].operand_types[1]
10311 .bitfield.baseindex))
10312 op = 1;
10313 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
10314 }
10315 else
10316 expected_reg = hash_find (reg_hash, bx[addr_mode]);
10317
10318 if (i.base_reg != expected_reg
10319 || i.index_reg
10320 || operand_type_check (i.types[this_operand], disp))
10321 {
10322 /* The second memory operand must have the same size as
10323 the first one. */
10324 if (i.mem_operands
10325 && i.base_reg
10326 && !((addr_mode == CODE_64BIT
10327 && i.base_reg->reg_type.bitfield.qword)
10328 || (addr_mode == CODE_32BIT
10329 ? i.base_reg->reg_type.bitfield.dword
10330 : i.base_reg->reg_type.bitfield.word)))
10331 goto bad_address;
10332
10333 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10334 operand_string,
10335 intel_syntax ? '[' : '(',
10336 register_prefix,
10337 expected_reg->reg_name,
10338 intel_syntax ? ']' : ')');
10339 return 1;
10340 }
10341 else
10342 return 1;
10343
10344 bad_address:
10345 as_bad (_("`%s' is not a valid %s expression"),
10346 operand_string, kind);
10347 return 0;
10348 }
10349 else
10350 {
10351 if (addr_mode != CODE_16BIT)
10352 {
10353 /* 32-bit/64-bit checks. */
10354 if ((i.base_reg
10355 && ((addr_mode == CODE_64BIT
10356 ? !i.base_reg->reg_type.bitfield.qword
10357 : !i.base_reg->reg_type.bitfield.dword)
10358 || (i.index_reg && i.base_reg->reg_num == RegIP)
10359 || i.base_reg->reg_num == RegIZ))
10360 || (i.index_reg
10361 && !i.index_reg->reg_type.bitfield.xmmword
10362 && !i.index_reg->reg_type.bitfield.ymmword
10363 && !i.index_reg->reg_type.bitfield.zmmword
10364 && ((addr_mode == CODE_64BIT
10365 ? !i.index_reg->reg_type.bitfield.qword
10366 : !i.index_reg->reg_type.bitfield.dword)
10367 || !i.index_reg->reg_type.bitfield.baseindex)))
10368 goto bad_address;
10369
10370 /* bndmk, bndldx, and bndstx have special restrictions. */
10371 if (current_templates->start->base_opcode == 0xf30f1b
10372 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10373 {
10374 /* They cannot use RIP-relative addressing. */
10375 if (i.base_reg && i.base_reg->reg_num == RegIP)
10376 {
10377 as_bad (_("`%s' cannot be used here"), operand_string);
10378 return 0;
10379 }
10380
10381 /* bndldx and bndstx ignore their scale factor. */
10382 if (current_templates->start->base_opcode != 0xf30f1b
10383 && i.log2_scale_factor)
10384 as_warn (_("register scaling is being ignored here"));
10385 }
10386 }
10387 else
10388 {
10389 /* 16-bit checks. */
10390 if ((i.base_reg
10391 && (!i.base_reg->reg_type.bitfield.word
10392 || !i.base_reg->reg_type.bitfield.baseindex))
10393 || (i.index_reg
10394 && (!i.index_reg->reg_type.bitfield.word
10395 || !i.index_reg->reg_type.bitfield.baseindex
10396 || !(i.base_reg
10397 && i.base_reg->reg_num < 6
10398 && i.index_reg->reg_num >= 6
10399 && i.log2_scale_factor == 0))))
10400 goto bad_address;
10401 }
10402 }
10403 return 1;
10404 }
10405
10406 /* Handle vector immediates. */
10407
10408 static int
10409 RC_SAE_immediate (const char *imm_start)
10410 {
10411 unsigned int match_found, j;
10412 const char *pstr = imm_start;
10413 expressionS *exp;
10414
10415 if (*pstr != '{')
10416 return 0;
10417
10418 pstr++;
10419 match_found = 0;
10420 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10421 {
10422 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10423 {
10424 if (!i.rounding)
10425 {
10426 rc_op.type = RC_NamesTable[j].type;
10427 rc_op.operand = this_operand;
10428 i.rounding = &rc_op;
10429 }
10430 else
10431 {
10432 as_bad (_("duplicated `%s'"), imm_start);
10433 return 0;
10434 }
10435 pstr += RC_NamesTable[j].len;
10436 match_found = 1;
10437 break;
10438 }
10439 }
10440 if (!match_found)
10441 return 0;
10442
10443 if (*pstr++ != '}')
10444 {
10445 as_bad (_("Missing '}': '%s'"), imm_start);
10446 return 0;
10447 }
10448 /* RC/SAE immediate string should contain nothing more. */;
10449 if (*pstr != 0)
10450 {
10451 as_bad (_("Junk after '}': '%s'"), imm_start);
10452 return 0;
10453 }
10454
10455 exp = &im_expressions[i.imm_operands++];
10456 i.op[this_operand].imms = exp;
10457
10458 exp->X_op = O_constant;
10459 exp->X_add_number = 0;
10460 exp->X_add_symbol = (symbolS *) 0;
10461 exp->X_op_symbol = (symbolS *) 0;
10462
10463 i.types[this_operand].bitfield.imm8 = 1;
10464 return 1;
10465 }
10466
10467 /* Only string instructions can have a second memory operand, so
10468 reduce current_templates to just those if it contains any. */
10469 static int
10470 maybe_adjust_templates (void)
10471 {
10472 const insn_template *t;
10473
10474 gas_assert (i.mem_operands == 1);
10475
10476 for (t = current_templates->start; t < current_templates->end; ++t)
10477 if (t->opcode_modifier.isstring)
10478 break;
10479
10480 if (t < current_templates->end)
10481 {
10482 static templates aux_templates;
10483 bfd_boolean recheck;
10484
10485 aux_templates.start = t;
10486 for (; t < current_templates->end; ++t)
10487 if (!t->opcode_modifier.isstring)
10488 break;
10489 aux_templates.end = t;
10490
10491 /* Determine whether to re-check the first memory operand. */
10492 recheck = (aux_templates.start != current_templates->start
10493 || t != current_templates->end);
10494
10495 current_templates = &aux_templates;
10496
10497 if (recheck)
10498 {
10499 i.mem_operands = 0;
10500 if (i.memop1_string != NULL
10501 && i386_index_check (i.memop1_string) == 0)
10502 return 0;
10503 i.mem_operands = 1;
10504 }
10505 }
10506
10507 return 1;
10508 }
10509
10510 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
10511 on error. */
10512
10513 static int
10514 i386_att_operand (char *operand_string)
10515 {
10516 const reg_entry *r;
10517 char *end_op;
10518 char *op_string = operand_string;
10519
10520 if (is_space_char (*op_string))
10521 ++op_string;
10522
10523 /* We check for an absolute prefix (differentiating,
10524 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
10525 if (*op_string == ABSOLUTE_PREFIX)
10526 {
10527 ++op_string;
10528 if (is_space_char (*op_string))
10529 ++op_string;
10530 i.jumpabsolute = TRUE;
10531 }
10532
10533 /* Check if operand is a register. */
10534 if ((r = parse_register (op_string, &end_op)) != NULL)
10535 {
10536 i386_operand_type temp;
10537
10538 /* Check for a segment override by searching for ':' after a
10539 segment register. */
10540 op_string = end_op;
10541 if (is_space_char (*op_string))
10542 ++op_string;
10543 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
10544 {
10545 switch (r->reg_num)
10546 {
10547 case 0:
10548 i.seg[i.mem_operands] = &es;
10549 break;
10550 case 1:
10551 i.seg[i.mem_operands] = &cs;
10552 break;
10553 case 2:
10554 i.seg[i.mem_operands] = &ss;
10555 break;
10556 case 3:
10557 i.seg[i.mem_operands] = &ds;
10558 break;
10559 case 4:
10560 i.seg[i.mem_operands] = &fs;
10561 break;
10562 case 5:
10563 i.seg[i.mem_operands] = &gs;
10564 break;
10565 }
10566
10567 /* Skip the ':' and whitespace. */
10568 ++op_string;
10569 if (is_space_char (*op_string))
10570 ++op_string;
10571
10572 if (!is_digit_char (*op_string)
10573 && !is_identifier_char (*op_string)
10574 && *op_string != '('
10575 && *op_string != ABSOLUTE_PREFIX)
10576 {
10577 as_bad (_("bad memory operand `%s'"), op_string);
10578 return 0;
10579 }
10580 /* Handle case of %es:*foo. */
10581 if (*op_string == ABSOLUTE_PREFIX)
10582 {
10583 ++op_string;
10584 if (is_space_char (*op_string))
10585 ++op_string;
10586 i.jumpabsolute = TRUE;
10587 }
10588 goto do_memory_reference;
10589 }
10590
10591 /* Handle vector operations. */
10592 if (*op_string == '{')
10593 {
10594 op_string = check_VecOperations (op_string, NULL);
10595 if (op_string == NULL)
10596 return 0;
10597 }
10598
10599 if (*op_string)
10600 {
10601 as_bad (_("junk `%s' after register"), op_string);
10602 return 0;
10603 }
10604 temp = r->reg_type;
10605 temp.bitfield.baseindex = 0;
10606 i.types[this_operand] = operand_type_or (i.types[this_operand],
10607 temp);
10608 i.types[this_operand].bitfield.unspecified = 0;
10609 i.op[this_operand].regs = r;
10610 i.reg_operands++;
10611 }
10612 else if (*op_string == REGISTER_PREFIX)
10613 {
10614 as_bad (_("bad register name `%s'"), op_string);
10615 return 0;
10616 }
10617 else if (*op_string == IMMEDIATE_PREFIX)
10618 {
10619 ++op_string;
10620 if (i.jumpabsolute)
10621 {
10622 as_bad (_("immediate operand illegal with absolute jump"));
10623 return 0;
10624 }
10625 if (!i386_immediate (op_string))
10626 return 0;
10627 }
10628 else if (RC_SAE_immediate (operand_string))
10629 {
10630 /* If it is a RC or SAE immediate, do nothing. */
10631 ;
10632 }
10633 else if (is_digit_char (*op_string)
10634 || is_identifier_char (*op_string)
10635 || *op_string == '"'
10636 || *op_string == '(')
10637 {
10638 /* This is a memory reference of some sort. */
10639 char *base_string;
10640
10641 /* Start and end of displacement string expression (if found). */
10642 char *displacement_string_start;
10643 char *displacement_string_end;
10644 char *vop_start;
10645
10646 do_memory_reference:
10647 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10648 return 0;
10649 if ((i.mem_operands == 1
10650 && !current_templates->start->opcode_modifier.isstring)
10651 || i.mem_operands == 2)
10652 {
10653 as_bad (_("too many memory references for `%s'"),
10654 current_templates->start->name);
10655 return 0;
10656 }
10657
10658 /* Check for base index form. We detect the base index form by
10659 looking for an ')' at the end of the operand, searching
10660 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10661 after the '('. */
10662 base_string = op_string + strlen (op_string);
10663
10664 /* Handle vector operations. */
10665 vop_start = strchr (op_string, '{');
10666 if (vop_start && vop_start < base_string)
10667 {
10668 if (check_VecOperations (vop_start, base_string) == NULL)
10669 return 0;
10670 base_string = vop_start;
10671 }
10672
10673 --base_string;
10674 if (is_space_char (*base_string))
10675 --base_string;
10676
10677 /* If we only have a displacement, set-up for it to be parsed later. */
10678 displacement_string_start = op_string;
10679 displacement_string_end = base_string + 1;
10680
10681 if (*base_string == ')')
10682 {
10683 char *temp_string;
10684 unsigned int parens_balanced = 1;
10685 /* We've already checked that the number of left & right ()'s are
10686 equal, so this loop will not be infinite. */
10687 do
10688 {
10689 base_string--;
10690 if (*base_string == ')')
10691 parens_balanced++;
10692 if (*base_string == '(')
10693 parens_balanced--;
10694 }
10695 while (parens_balanced);
10696
10697 temp_string = base_string;
10698
10699 /* Skip past '(' and whitespace. */
10700 ++base_string;
10701 if (is_space_char (*base_string))
10702 ++base_string;
10703
10704 if (*base_string == ','
10705 || ((i.base_reg = parse_register (base_string, &end_op))
10706 != NULL))
10707 {
10708 displacement_string_end = temp_string;
10709
10710 i.types[this_operand].bitfield.baseindex = 1;
10711
10712 if (i.base_reg)
10713 {
10714 base_string = end_op;
10715 if (is_space_char (*base_string))
10716 ++base_string;
10717 }
10718
10719 /* There may be an index reg or scale factor here. */
10720 if (*base_string == ',')
10721 {
10722 ++base_string;
10723 if (is_space_char (*base_string))
10724 ++base_string;
10725
10726 if ((i.index_reg = parse_register (base_string, &end_op))
10727 != NULL)
10728 {
10729 base_string = end_op;
10730 if (is_space_char (*base_string))
10731 ++base_string;
10732 if (*base_string == ',')
10733 {
10734 ++base_string;
10735 if (is_space_char (*base_string))
10736 ++base_string;
10737 }
10738 else if (*base_string != ')')
10739 {
10740 as_bad (_("expecting `,' or `)' "
10741 "after index register in `%s'"),
10742 operand_string);
10743 return 0;
10744 }
10745 }
10746 else if (*base_string == REGISTER_PREFIX)
10747 {
10748 end_op = strchr (base_string, ',');
10749 if (end_op)
10750 *end_op = '\0';
10751 as_bad (_("bad register name `%s'"), base_string);
10752 return 0;
10753 }
10754
10755 /* Check for scale factor. */
10756 if (*base_string != ')')
10757 {
10758 char *end_scale = i386_scale (base_string);
10759
10760 if (!end_scale)
10761 return 0;
10762
10763 base_string = end_scale;
10764 if (is_space_char (*base_string))
10765 ++base_string;
10766 if (*base_string != ')')
10767 {
10768 as_bad (_("expecting `)' "
10769 "after scale factor in `%s'"),
10770 operand_string);
10771 return 0;
10772 }
10773 }
10774 else if (!i.index_reg)
10775 {
10776 as_bad (_("expecting index register or scale factor "
10777 "after `,'; got '%c'"),
10778 *base_string);
10779 return 0;
10780 }
10781 }
10782 else if (*base_string != ')')
10783 {
10784 as_bad (_("expecting `,' or `)' "
10785 "after base register in `%s'"),
10786 operand_string);
10787 return 0;
10788 }
10789 }
10790 else if (*base_string == REGISTER_PREFIX)
10791 {
10792 end_op = strchr (base_string, ',');
10793 if (end_op)
10794 *end_op = '\0';
10795 as_bad (_("bad register name `%s'"), base_string);
10796 return 0;
10797 }
10798 }
10799
10800 /* If there's an expression beginning the operand, parse it,
10801 assuming displacement_string_start and
10802 displacement_string_end are meaningful. */
10803 if (displacement_string_start != displacement_string_end)
10804 {
10805 if (!i386_displacement (displacement_string_start,
10806 displacement_string_end))
10807 return 0;
10808 }
10809
10810 /* Special case for (%dx) while doing input/output op. */
10811 if (i.base_reg
10812 && i.base_reg->reg_type.bitfield.instance == RegD
10813 && i.base_reg->reg_type.bitfield.word
10814 && i.index_reg == 0
10815 && i.log2_scale_factor == 0
10816 && i.seg[i.mem_operands] == 0
10817 && !operand_type_check (i.types[this_operand], disp))
10818 {
10819 i.types[this_operand] = i.base_reg->reg_type;
10820 return 1;
10821 }
10822
10823 if (i386_index_check (operand_string) == 0)
10824 return 0;
10825 i.flags[this_operand] |= Operand_Mem;
10826 if (i.mem_operands == 0)
10827 i.memop1_string = xstrdup (operand_string);
10828 i.mem_operands++;
10829 }
10830 else
10831 {
10832 /* It's not a memory operand; argh! */
10833 as_bad (_("invalid char %s beginning operand %d `%s'"),
10834 output_invalid (*op_string),
10835 this_operand + 1,
10836 op_string);
10837 return 0;
10838 }
10839 return 1; /* Normal return. */
10840 }
10841 \f
10842 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10843 that an rs_machine_dependent frag may reach. */
10844
10845 unsigned int
10846 i386_frag_max_var (fragS *frag)
10847 {
10848 /* The only relaxable frags are for jumps.
10849 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10850 gas_assert (frag->fr_type == rs_machine_dependent);
10851 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10852 }
10853
10854 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10855 static int
10856 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10857 {
10858 /* STT_GNU_IFUNC symbol must go through PLT. */
10859 if ((symbol_get_bfdsym (fr_symbol)->flags
10860 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10861 return 0;
10862
10863 if (!S_IS_EXTERNAL (fr_symbol))
10864 /* Symbol may be weak or local. */
10865 return !S_IS_WEAK (fr_symbol);
10866
10867 /* Global symbols with non-default visibility can't be preempted. */
10868 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10869 return 1;
10870
10871 if (fr_var != NO_RELOC)
10872 switch ((enum bfd_reloc_code_real) fr_var)
10873 {
10874 case BFD_RELOC_386_PLT32:
10875 case BFD_RELOC_X86_64_PLT32:
10876 /* Symbol with PLT relocation may be preempted. */
10877 return 0;
10878 default:
10879 abort ();
10880 }
10881
10882 /* Global symbols with default visibility in a shared library may be
10883 preempted by another definition. */
10884 return !shared;
10885 }
10886 #endif
10887
10888 /* Return the next non-empty frag. */
10889
10890 static fragS *
10891 i386_next_non_empty_frag (fragS *fragP)
10892 {
10893 /* There may be a frag with a ".fill 0" when there is no room in
10894 the current frag for frag_grow in output_insn. */
10895 for (fragP = fragP->fr_next;
10896 (fragP != NULL
10897 && fragP->fr_type == rs_fill
10898 && fragP->fr_fix == 0);
10899 fragP = fragP->fr_next)
10900 ;
10901 return fragP;
10902 }
10903
10904 /* Return the next jcc frag after BRANCH_PADDING. */
10905
10906 static fragS *
10907 i386_next_jcc_frag (fragS *fragP)
10908 {
10909 if (!fragP)
10910 return NULL;
10911
10912 if (fragP->fr_type == rs_machine_dependent
10913 && (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10914 == BRANCH_PADDING))
10915 {
10916 fragP = i386_next_non_empty_frag (fragP);
10917 if (fragP->fr_type != rs_machine_dependent)
10918 return NULL;
10919 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == COND_JUMP)
10920 return fragP;
10921 }
10922
10923 return NULL;
10924 }
10925
10926 /* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
10927
10928 static void
10929 i386_classify_machine_dependent_frag (fragS *fragP)
10930 {
10931 fragS *cmp_fragP;
10932 fragS *pad_fragP;
10933 fragS *branch_fragP;
10934 fragS *next_fragP;
10935 unsigned int max_prefix_length;
10936
10937 if (fragP->tc_frag_data.classified)
10938 return;
10939
10940 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
10941 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
10942 for (next_fragP = fragP;
10943 next_fragP != NULL;
10944 next_fragP = next_fragP->fr_next)
10945 {
10946 next_fragP->tc_frag_data.classified = 1;
10947 if (next_fragP->fr_type == rs_machine_dependent)
10948 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
10949 {
10950 case BRANCH_PADDING:
10951 /* The BRANCH_PADDING frag must be followed by a branch
10952 frag. */
10953 branch_fragP = i386_next_non_empty_frag (next_fragP);
10954 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10955 break;
10956 case FUSED_JCC_PADDING:
10957 /* Check if this is a fused jcc:
10958 FUSED_JCC_PADDING
10959 CMP like instruction
10960 BRANCH_PADDING
10961 COND_JUMP
10962 */
10963 cmp_fragP = i386_next_non_empty_frag (next_fragP);
10964 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
10965 branch_fragP = i386_next_jcc_frag (pad_fragP);
10966 if (branch_fragP)
10967 {
10968 /* The BRANCH_PADDING frag is merged with the
10969 FUSED_JCC_PADDING frag. */
10970 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10971 /* CMP like instruction size. */
10972 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
10973 frag_wane (pad_fragP);
10974 /* Skip to branch_fragP. */
10975 next_fragP = branch_fragP;
10976 }
10977 else if (next_fragP->tc_frag_data.max_prefix_length)
10978 {
10979 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
10980 a fused jcc. */
10981 next_fragP->fr_subtype
10982 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
10983 next_fragP->tc_frag_data.max_bytes
10984 = next_fragP->tc_frag_data.max_prefix_length;
10985 /* This will be updated in the BRANCH_PREFIX scan. */
10986 next_fragP->tc_frag_data.max_prefix_length = 0;
10987 }
10988 else
10989 frag_wane (next_fragP);
10990 break;
10991 }
10992 }
10993
10994 /* Stop if there is no BRANCH_PREFIX. */
10995 if (!align_branch_prefix_size)
10996 return;
10997
10998 /* Scan for BRANCH_PREFIX. */
10999 for (; fragP != NULL; fragP = fragP->fr_next)
11000 {
11001 if (fragP->fr_type != rs_machine_dependent
11002 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11003 != BRANCH_PREFIX))
11004 continue;
11005
11006 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
11007 COND_JUMP_PREFIX. */
11008 max_prefix_length = 0;
11009 for (next_fragP = fragP;
11010 next_fragP != NULL;
11011 next_fragP = next_fragP->fr_next)
11012 {
11013 if (next_fragP->fr_type == rs_fill)
11014 /* Skip rs_fill frags. */
11015 continue;
11016 else if (next_fragP->fr_type != rs_machine_dependent)
11017 /* Stop for all other frags. */
11018 break;
11019
11020 /* rs_machine_dependent frags. */
11021 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11022 == BRANCH_PREFIX)
11023 {
11024 /* Count BRANCH_PREFIX frags. */
11025 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
11026 {
11027 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
11028 frag_wane (next_fragP);
11029 }
11030 else
11031 max_prefix_length
11032 += next_fragP->tc_frag_data.max_bytes;
11033 }
11034 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11035 == BRANCH_PADDING)
11036 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11037 == FUSED_JCC_PADDING))
11038 {
11039 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
11040 fragP->tc_frag_data.u.padding_fragP = next_fragP;
11041 break;
11042 }
11043 else
11044 /* Stop for other rs_machine_dependent frags. */
11045 break;
11046 }
11047
11048 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11049
11050 /* Skip to the next frag. */
11051 fragP = next_fragP;
11052 }
11053 }
11054
11055 /* Compute padding size for
11056
11057 FUSED_JCC_PADDING
11058 CMP like instruction
11059 BRANCH_PADDING
11060 COND_JUMP/UNCOND_JUMP
11061
11062 or
11063
11064 BRANCH_PADDING
11065 COND_JUMP/UNCOND_JUMP
11066 */
11067
11068 static int
11069 i386_branch_padding_size (fragS *fragP, offsetT address)
11070 {
11071 unsigned int offset, size, padding_size;
11072 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11073
11074 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11075 if (!address)
11076 address = fragP->fr_address;
11077 address += fragP->fr_fix;
11078
11079 /* CMP like instrunction size. */
11080 size = fragP->tc_frag_data.cmp_size;
11081
11082 /* The base size of the branch frag. */
11083 size += branch_fragP->fr_fix;
11084
11085 /* Add opcode and displacement bytes for the rs_machine_dependent
11086 branch frag. */
11087 if (branch_fragP->fr_type == rs_machine_dependent)
11088 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11089
11090 /* Check if branch is within boundary and doesn't end at the last
11091 byte. */
11092 offset = address & ((1U << align_branch_power) - 1);
11093 if ((offset + size) >= (1U << align_branch_power))
11094 /* Padding needed to avoid crossing boundary. */
11095 padding_size = (1U << align_branch_power) - offset;
11096 else
11097 /* No padding needed. */
11098 padding_size = 0;
11099
11100 /* The return value may be saved in tc_frag_data.length which is
11101 unsigned byte. */
11102 if (!fits_in_unsigned_byte (padding_size))
11103 abort ();
11104
11105 return padding_size;
11106 }
11107
11108 /* i386_generic_table_relax_frag()
11109
11110 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11111 grow/shrink padding to align branch frags. Hand others to
11112 relax_frag(). */
11113
11114 long
11115 i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11116 {
11117 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11118 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11119 {
11120 long padding_size = i386_branch_padding_size (fragP, 0);
11121 long grow = padding_size - fragP->tc_frag_data.length;
11122
11123 /* When the BRANCH_PREFIX frag is used, the computed address
11124 must match the actual address and there should be no padding. */
11125 if (fragP->tc_frag_data.padding_address
11126 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11127 || padding_size))
11128 abort ();
11129
11130 /* Update the padding size. */
11131 if (grow)
11132 fragP->tc_frag_data.length = padding_size;
11133
11134 return grow;
11135 }
11136 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11137 {
11138 fragS *padding_fragP, *next_fragP;
11139 long padding_size, left_size, last_size;
11140
11141 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11142 if (!padding_fragP)
11143 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11144 return (fragP->tc_frag_data.length
11145 - fragP->tc_frag_data.last_length);
11146
11147 /* Compute the relative address of the padding frag in the very
11148 first time where the BRANCH_PREFIX frag sizes are zero. */
11149 if (!fragP->tc_frag_data.padding_address)
11150 fragP->tc_frag_data.padding_address
11151 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11152
11153 /* First update the last length from the previous interation. */
11154 left_size = fragP->tc_frag_data.prefix_length;
11155 for (next_fragP = fragP;
11156 next_fragP != padding_fragP;
11157 next_fragP = next_fragP->fr_next)
11158 if (next_fragP->fr_type == rs_machine_dependent
11159 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11160 == BRANCH_PREFIX))
11161 {
11162 if (left_size)
11163 {
11164 int max = next_fragP->tc_frag_data.max_bytes;
11165 if (max)
11166 {
11167 int size;
11168 if (max > left_size)
11169 size = left_size;
11170 else
11171 size = max;
11172 left_size -= size;
11173 next_fragP->tc_frag_data.last_length = size;
11174 }
11175 }
11176 else
11177 next_fragP->tc_frag_data.last_length = 0;
11178 }
11179
11180 /* Check the padding size for the padding frag. */
11181 padding_size = i386_branch_padding_size
11182 (padding_fragP, (fragP->fr_address
11183 + fragP->tc_frag_data.padding_address));
11184
11185 last_size = fragP->tc_frag_data.prefix_length;
11186 /* Check if there is change from the last interation. */
11187 if (padding_size == last_size)
11188 {
11189 /* Update the expected address of the padding frag. */
11190 padding_fragP->tc_frag_data.padding_address
11191 = (fragP->fr_address + padding_size
11192 + fragP->tc_frag_data.padding_address);
11193 return 0;
11194 }
11195
11196 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11197 {
11198 /* No padding if there is no sufficient room. Clear the
11199 expected address of the padding frag. */
11200 padding_fragP->tc_frag_data.padding_address = 0;
11201 padding_size = 0;
11202 }
11203 else
11204 /* Store the expected address of the padding frag. */
11205 padding_fragP->tc_frag_data.padding_address
11206 = (fragP->fr_address + padding_size
11207 + fragP->tc_frag_data.padding_address);
11208
11209 fragP->tc_frag_data.prefix_length = padding_size;
11210
11211 /* Update the length for the current interation. */
11212 left_size = padding_size;
11213 for (next_fragP = fragP;
11214 next_fragP != padding_fragP;
11215 next_fragP = next_fragP->fr_next)
11216 if (next_fragP->fr_type == rs_machine_dependent
11217 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11218 == BRANCH_PREFIX))
11219 {
11220 if (left_size)
11221 {
11222 int max = next_fragP->tc_frag_data.max_bytes;
11223 if (max)
11224 {
11225 int size;
11226 if (max > left_size)
11227 size = left_size;
11228 else
11229 size = max;
11230 left_size -= size;
11231 next_fragP->tc_frag_data.length = size;
11232 }
11233 }
11234 else
11235 next_fragP->tc_frag_data.length = 0;
11236 }
11237
11238 return (fragP->tc_frag_data.length
11239 - fragP->tc_frag_data.last_length);
11240 }
11241 return relax_frag (segment, fragP, stretch);
11242 }
11243
11244 /* md_estimate_size_before_relax()
11245
11246 Called just before relax() for rs_machine_dependent frags. The x86
11247 assembler uses these frags to handle variable size jump
11248 instructions.
11249
11250 Any symbol that is now undefined will not become defined.
11251 Return the correct fr_subtype in the frag.
11252 Return the initial "guess for variable size of frag" to caller.
11253 The guess is actually the growth beyond the fixed part. Whatever
11254 we do to grow the fixed or variable part contributes to our
11255 returned value. */
11256
11257 int
11258 md_estimate_size_before_relax (fragS *fragP, segT segment)
11259 {
11260 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11261 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11262 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11263 {
11264 i386_classify_machine_dependent_frag (fragP);
11265 return fragP->tc_frag_data.length;
11266 }
11267
11268 /* We've already got fragP->fr_subtype right; all we have to do is
11269 check for un-relaxable symbols. On an ELF system, we can't relax
11270 an externally visible symbol, because it may be overridden by a
11271 shared library. */
11272 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
11273 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11274 || (IS_ELF
11275 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11276 fragP->fr_var))
11277 #endif
11278 #if defined (OBJ_COFF) && defined (TE_PE)
11279 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
11280 && S_IS_WEAK (fragP->fr_symbol))
11281 #endif
11282 )
11283 {
11284 /* Symbol is undefined in this segment, or we need to keep a
11285 reloc so that weak symbols can be overridden. */
11286 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
11287 enum bfd_reloc_code_real reloc_type;
11288 unsigned char *opcode;
11289 int old_fr_fix;
11290
11291 if (fragP->fr_var != NO_RELOC)
11292 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
11293 else if (size == 2)
11294 reloc_type = BFD_RELOC_16_PCREL;
11295 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11296 else if (need_plt32_p (fragP->fr_symbol))
11297 reloc_type = BFD_RELOC_X86_64_PLT32;
11298 #endif
11299 else
11300 reloc_type = BFD_RELOC_32_PCREL;
11301
11302 old_fr_fix = fragP->fr_fix;
11303 opcode = (unsigned char *) fragP->fr_opcode;
11304
11305 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
11306 {
11307 case UNCOND_JUMP:
11308 /* Make jmp (0xeb) a (d)word displacement jump. */
11309 opcode[0] = 0xe9;
11310 fragP->fr_fix += size;
11311 fix_new (fragP, old_fr_fix, size,
11312 fragP->fr_symbol,
11313 fragP->fr_offset, 1,
11314 reloc_type);
11315 break;
11316
11317 case COND_JUMP86:
11318 if (size == 2
11319 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
11320 {
11321 /* Negate the condition, and branch past an
11322 unconditional jump. */
11323 opcode[0] ^= 1;
11324 opcode[1] = 3;
11325 /* Insert an unconditional jump. */
11326 opcode[2] = 0xe9;
11327 /* We added two extra opcode bytes, and have a two byte
11328 offset. */
11329 fragP->fr_fix += 2 + 2;
11330 fix_new (fragP, old_fr_fix + 2, 2,
11331 fragP->fr_symbol,
11332 fragP->fr_offset, 1,
11333 reloc_type);
11334 break;
11335 }
11336 /* Fall through. */
11337
11338 case COND_JUMP:
11339 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11340 {
11341 fixS *fixP;
11342
11343 fragP->fr_fix += 1;
11344 fixP = fix_new (fragP, old_fr_fix, 1,
11345 fragP->fr_symbol,
11346 fragP->fr_offset, 1,
11347 BFD_RELOC_8_PCREL);
11348 fixP->fx_signed = 1;
11349 break;
11350 }
11351
11352 /* This changes the byte-displacement jump 0x7N
11353 to the (d)word-displacement jump 0x0f,0x8N. */
11354 opcode[1] = opcode[0] + 0x10;
11355 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11356 /* We've added an opcode byte. */
11357 fragP->fr_fix += 1 + size;
11358 fix_new (fragP, old_fr_fix + 1, size,
11359 fragP->fr_symbol,
11360 fragP->fr_offset, 1,
11361 reloc_type);
11362 break;
11363
11364 default:
11365 BAD_CASE (fragP->fr_subtype);
11366 break;
11367 }
11368 frag_wane (fragP);
11369 return fragP->fr_fix - old_fr_fix;
11370 }
11371
11372 /* Guess size depending on current relax state. Initially the relax
11373 state will correspond to a short jump and we return 1, because
11374 the variable part of the frag (the branch offset) is one byte
11375 long. However, we can relax a section more than once and in that
11376 case we must either set fr_subtype back to the unrelaxed state,
11377 or return the value for the appropriate branch. */
11378 return md_relax_table[fragP->fr_subtype].rlx_length;
11379 }
11380
11381 /* Called after relax() is finished.
11382
11383 In: Address of frag.
11384 fr_type == rs_machine_dependent.
11385 fr_subtype is what the address relaxed to.
11386
11387 Out: Any fixSs and constants are set up.
11388 Caller will turn frag into a ".space 0". */
11389
11390 void
11391 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11392 fragS *fragP)
11393 {
11394 unsigned char *opcode;
11395 unsigned char *where_to_put_displacement = NULL;
11396 offsetT target_address;
11397 offsetT opcode_address;
11398 unsigned int extension = 0;
11399 offsetT displacement_from_opcode_start;
11400
11401 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11402 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
11403 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11404 {
11405 /* Generate nop padding. */
11406 unsigned int size = fragP->tc_frag_data.length;
11407 if (size)
11408 {
11409 if (size > fragP->tc_frag_data.max_bytes)
11410 abort ();
11411
11412 if (flag_debug)
11413 {
11414 const char *msg;
11415 const char *branch = "branch";
11416 const char *prefix = "";
11417 fragS *padding_fragP;
11418 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11419 == BRANCH_PREFIX)
11420 {
11421 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11422 switch (fragP->tc_frag_data.default_prefix)
11423 {
11424 default:
11425 abort ();
11426 break;
11427 case CS_PREFIX_OPCODE:
11428 prefix = " cs";
11429 break;
11430 case DS_PREFIX_OPCODE:
11431 prefix = " ds";
11432 break;
11433 case ES_PREFIX_OPCODE:
11434 prefix = " es";
11435 break;
11436 case FS_PREFIX_OPCODE:
11437 prefix = " fs";
11438 break;
11439 case GS_PREFIX_OPCODE:
11440 prefix = " gs";
11441 break;
11442 case SS_PREFIX_OPCODE:
11443 prefix = " ss";
11444 break;
11445 }
11446 if (padding_fragP)
11447 msg = _("%s:%u: add %d%s at 0x%llx to align "
11448 "%s within %d-byte boundary\n");
11449 else
11450 msg = _("%s:%u: add additional %d%s at 0x%llx to "
11451 "align %s within %d-byte boundary\n");
11452 }
11453 else
11454 {
11455 padding_fragP = fragP;
11456 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
11457 "%s within %d-byte boundary\n");
11458 }
11459
11460 if (padding_fragP)
11461 switch (padding_fragP->tc_frag_data.branch_type)
11462 {
11463 case align_branch_jcc:
11464 branch = "jcc";
11465 break;
11466 case align_branch_fused:
11467 branch = "fused jcc";
11468 break;
11469 case align_branch_jmp:
11470 branch = "jmp";
11471 break;
11472 case align_branch_call:
11473 branch = "call";
11474 break;
11475 case align_branch_indirect:
11476 branch = "indiret branch";
11477 break;
11478 case align_branch_ret:
11479 branch = "ret";
11480 break;
11481 default:
11482 break;
11483 }
11484
11485 fprintf (stdout, msg,
11486 fragP->fr_file, fragP->fr_line, size, prefix,
11487 (long long) fragP->fr_address, branch,
11488 1 << align_branch_power);
11489 }
11490 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11491 memset (fragP->fr_opcode,
11492 fragP->tc_frag_data.default_prefix, size);
11493 else
11494 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
11495 size, 0);
11496 fragP->fr_fix += size;
11497 }
11498 return;
11499 }
11500
11501 opcode = (unsigned char *) fragP->fr_opcode;
11502
11503 /* Address we want to reach in file space. */
11504 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
11505
11506 /* Address opcode resides at in file space. */
11507 opcode_address = fragP->fr_address + fragP->fr_fix;
11508
11509 /* Displacement from opcode start to fill into instruction. */
11510 displacement_from_opcode_start = target_address - opcode_address;
11511
11512 if ((fragP->fr_subtype & BIG) == 0)
11513 {
11514 /* Don't have to change opcode. */
11515 extension = 1; /* 1 opcode + 1 displacement */
11516 where_to_put_displacement = &opcode[1];
11517 }
11518 else
11519 {
11520 if (no_cond_jump_promotion
11521 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
11522 as_warn_where (fragP->fr_file, fragP->fr_line,
11523 _("long jump required"));
11524
11525 switch (fragP->fr_subtype)
11526 {
11527 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
11528 extension = 4; /* 1 opcode + 4 displacement */
11529 opcode[0] = 0xe9;
11530 where_to_put_displacement = &opcode[1];
11531 break;
11532
11533 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
11534 extension = 2; /* 1 opcode + 2 displacement */
11535 opcode[0] = 0xe9;
11536 where_to_put_displacement = &opcode[1];
11537 break;
11538
11539 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
11540 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
11541 extension = 5; /* 2 opcode + 4 displacement */
11542 opcode[1] = opcode[0] + 0x10;
11543 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11544 where_to_put_displacement = &opcode[2];
11545 break;
11546
11547 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
11548 extension = 3; /* 2 opcode + 2 displacement */
11549 opcode[1] = opcode[0] + 0x10;
11550 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11551 where_to_put_displacement = &opcode[2];
11552 break;
11553
11554 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
11555 extension = 4;
11556 opcode[0] ^= 1;
11557 opcode[1] = 3;
11558 opcode[2] = 0xe9;
11559 where_to_put_displacement = &opcode[3];
11560 break;
11561
11562 default:
11563 BAD_CASE (fragP->fr_subtype);
11564 break;
11565 }
11566 }
11567
11568 /* If size if less then four we are sure that the operand fits,
11569 but if it's 4, then it could be that the displacement is larger
11570 then -/+ 2GB. */
11571 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
11572 && object_64bit
11573 && ((addressT) (displacement_from_opcode_start - extension
11574 + ((addressT) 1 << 31))
11575 > (((addressT) 2 << 31) - 1)))
11576 {
11577 as_bad_where (fragP->fr_file, fragP->fr_line,
11578 _("jump target out of range"));
11579 /* Make us emit 0. */
11580 displacement_from_opcode_start = extension;
11581 }
11582 /* Now put displacement after opcode. */
11583 md_number_to_chars ((char *) where_to_put_displacement,
11584 (valueT) (displacement_from_opcode_start - extension),
11585 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
11586 fragP->fr_fix += extension;
11587 }
11588 \f
11589 /* Apply a fixup (fixP) to segment data, once it has been determined
11590 by our caller that we have all the info we need to fix it up.
11591
11592 Parameter valP is the pointer to the value of the bits.
11593
11594 On the 386, immediates, displacements, and data pointers are all in
11595 the same (little-endian) format, so we don't need to care about which
11596 we are handling. */
11597
11598 void
11599 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
11600 {
11601 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
11602 valueT value = *valP;
11603
11604 #if !defined (TE_Mach)
11605 if (fixP->fx_pcrel)
11606 {
11607 switch (fixP->fx_r_type)
11608 {
11609 default:
11610 break;
11611
11612 case BFD_RELOC_64:
11613 fixP->fx_r_type = BFD_RELOC_64_PCREL;
11614 break;
11615 case BFD_RELOC_32:
11616 case BFD_RELOC_X86_64_32S:
11617 fixP->fx_r_type = BFD_RELOC_32_PCREL;
11618 break;
11619 case BFD_RELOC_16:
11620 fixP->fx_r_type = BFD_RELOC_16_PCREL;
11621 break;
11622 case BFD_RELOC_8:
11623 fixP->fx_r_type = BFD_RELOC_8_PCREL;
11624 break;
11625 }
11626 }
11627
11628 if (fixP->fx_addsy != NULL
11629 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
11630 || fixP->fx_r_type == BFD_RELOC_64_PCREL
11631 || fixP->fx_r_type == BFD_RELOC_16_PCREL
11632 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
11633 && !use_rela_relocations)
11634 {
11635 /* This is a hack. There should be a better way to handle this.
11636 This covers for the fact that bfd_install_relocation will
11637 subtract the current location (for partial_inplace, PC relative
11638 relocations); see more below. */
11639 #ifndef OBJ_AOUT
11640 if (IS_ELF
11641 #ifdef TE_PE
11642 || OUTPUT_FLAVOR == bfd_target_coff_flavour
11643 #endif
11644 )
11645 value += fixP->fx_where + fixP->fx_frag->fr_address;
11646 #endif
11647 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11648 if (IS_ELF)
11649 {
11650 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
11651
11652 if ((sym_seg == seg
11653 || (symbol_section_p (fixP->fx_addsy)
11654 && sym_seg != absolute_section))
11655 && !generic_force_reloc (fixP))
11656 {
11657 /* Yes, we add the values in twice. This is because
11658 bfd_install_relocation subtracts them out again. I think
11659 bfd_install_relocation is broken, but I don't dare change
11660 it. FIXME. */
11661 value += fixP->fx_where + fixP->fx_frag->fr_address;
11662 }
11663 }
11664 #endif
11665 #if defined (OBJ_COFF) && defined (TE_PE)
11666 /* For some reason, the PE format does not store a
11667 section address offset for a PC relative symbol. */
11668 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
11669 || S_IS_WEAK (fixP->fx_addsy))
11670 value += md_pcrel_from (fixP);
11671 #endif
11672 }
11673 #if defined (OBJ_COFF) && defined (TE_PE)
11674 if (fixP->fx_addsy != NULL
11675 && S_IS_WEAK (fixP->fx_addsy)
11676 /* PR 16858: Do not modify weak function references. */
11677 && ! fixP->fx_pcrel)
11678 {
11679 #if !defined (TE_PEP)
11680 /* For x86 PE weak function symbols are neither PC-relative
11681 nor do they set S_IS_FUNCTION. So the only reliable way
11682 to detect them is to check the flags of their containing
11683 section. */
11684 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
11685 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
11686 ;
11687 else
11688 #endif
11689 value -= S_GET_VALUE (fixP->fx_addsy);
11690 }
11691 #endif
11692
11693 /* Fix a few things - the dynamic linker expects certain values here,
11694 and we must not disappoint it. */
11695 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11696 if (IS_ELF && fixP->fx_addsy)
11697 switch (fixP->fx_r_type)
11698 {
11699 case BFD_RELOC_386_PLT32:
11700 case BFD_RELOC_X86_64_PLT32:
11701 /* Make the jump instruction point to the address of the operand.
11702 At runtime we merely add the offset to the actual PLT entry.
11703 NB: Subtract the offset size only for jump instructions. */
11704 if (fixP->fx_pcrel)
11705 value = -4;
11706 break;
11707
11708 case BFD_RELOC_386_TLS_GD:
11709 case BFD_RELOC_386_TLS_LDM:
11710 case BFD_RELOC_386_TLS_IE_32:
11711 case BFD_RELOC_386_TLS_IE:
11712 case BFD_RELOC_386_TLS_GOTIE:
11713 case BFD_RELOC_386_TLS_GOTDESC:
11714 case BFD_RELOC_X86_64_TLSGD:
11715 case BFD_RELOC_X86_64_TLSLD:
11716 case BFD_RELOC_X86_64_GOTTPOFF:
11717 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11718 value = 0; /* Fully resolved at runtime. No addend. */
11719 /* Fallthrough */
11720 case BFD_RELOC_386_TLS_LE:
11721 case BFD_RELOC_386_TLS_LDO_32:
11722 case BFD_RELOC_386_TLS_LE_32:
11723 case BFD_RELOC_X86_64_DTPOFF32:
11724 case BFD_RELOC_X86_64_DTPOFF64:
11725 case BFD_RELOC_X86_64_TPOFF32:
11726 case BFD_RELOC_X86_64_TPOFF64:
11727 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11728 break;
11729
11730 case BFD_RELOC_386_TLS_DESC_CALL:
11731 case BFD_RELOC_X86_64_TLSDESC_CALL:
11732 value = 0; /* Fully resolved at runtime. No addend. */
11733 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11734 fixP->fx_done = 0;
11735 return;
11736
11737 case BFD_RELOC_VTABLE_INHERIT:
11738 case BFD_RELOC_VTABLE_ENTRY:
11739 fixP->fx_done = 0;
11740 return;
11741
11742 default:
11743 break;
11744 }
11745 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
11746 *valP = value;
11747 #endif /* !defined (TE_Mach) */
11748
11749 /* Are we finished with this relocation now? */
11750 if (fixP->fx_addsy == NULL)
11751 fixP->fx_done = 1;
11752 #if defined (OBJ_COFF) && defined (TE_PE)
11753 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
11754 {
11755 fixP->fx_done = 0;
11756 /* Remember value for tc_gen_reloc. */
11757 fixP->fx_addnumber = value;
11758 /* Clear out the frag for now. */
11759 value = 0;
11760 }
11761 #endif
11762 else if (use_rela_relocations)
11763 {
11764 fixP->fx_no_overflow = 1;
11765 /* Remember value for tc_gen_reloc. */
11766 fixP->fx_addnumber = value;
11767 value = 0;
11768 }
11769
11770 md_number_to_chars (p, value, fixP->fx_size);
11771 }
11772 \f
11773 const char *
11774 md_atof (int type, char *litP, int *sizeP)
11775 {
11776 /* This outputs the LITTLENUMs in REVERSE order;
11777 in accord with the bigendian 386. */
11778 return ieee_md_atof (type, litP, sizeP, FALSE);
11779 }
11780 \f
11781 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
11782
11783 static char *
11784 output_invalid (int c)
11785 {
11786 if (ISPRINT (c))
11787 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11788 "'%c'", c);
11789 else
11790 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11791 "(0x%x)", (unsigned char) c);
11792 return output_invalid_buf;
11793 }
11794
11795 /* REG_STRING starts *before* REGISTER_PREFIX. */
11796
11797 static const reg_entry *
11798 parse_real_register (char *reg_string, char **end_op)
11799 {
11800 char *s = reg_string;
11801 char *p;
11802 char reg_name_given[MAX_REG_NAME_SIZE + 1];
11803 const reg_entry *r;
11804
11805 /* Skip possible REGISTER_PREFIX and possible whitespace. */
11806 if (*s == REGISTER_PREFIX)
11807 ++s;
11808
11809 if (is_space_char (*s))
11810 ++s;
11811
11812 p = reg_name_given;
11813 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
11814 {
11815 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
11816 return (const reg_entry *) NULL;
11817 s++;
11818 }
11819
11820 /* For naked regs, make sure that we are not dealing with an identifier.
11821 This prevents confusing an identifier like `eax_var' with register
11822 `eax'. */
11823 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
11824 return (const reg_entry *) NULL;
11825
11826 *end_op = s;
11827
11828 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
11829
11830 /* Handle floating point regs, allowing spaces in the (i) part. */
11831 if (r == i386_regtab /* %st is first entry of table */)
11832 {
11833 if (!cpu_arch_flags.bitfield.cpu8087
11834 && !cpu_arch_flags.bitfield.cpu287
11835 && !cpu_arch_flags.bitfield.cpu387)
11836 return (const reg_entry *) NULL;
11837
11838 if (is_space_char (*s))
11839 ++s;
11840 if (*s == '(')
11841 {
11842 ++s;
11843 if (is_space_char (*s))
11844 ++s;
11845 if (*s >= '0' && *s <= '7')
11846 {
11847 int fpr = *s - '0';
11848 ++s;
11849 if (is_space_char (*s))
11850 ++s;
11851 if (*s == ')')
11852 {
11853 *end_op = s + 1;
11854 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
11855 know (r);
11856 return r + fpr;
11857 }
11858 }
11859 /* We have "%st(" then garbage. */
11860 return (const reg_entry *) NULL;
11861 }
11862 }
11863
11864 if (r == NULL || allow_pseudo_reg)
11865 return r;
11866
11867 if (operand_type_all_zero (&r->reg_type))
11868 return (const reg_entry *) NULL;
11869
11870 if ((r->reg_type.bitfield.dword
11871 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
11872 || r->reg_type.bitfield.class == RegCR
11873 || r->reg_type.bitfield.class == RegDR
11874 || r->reg_type.bitfield.class == RegTR)
11875 && !cpu_arch_flags.bitfield.cpui386)
11876 return (const reg_entry *) NULL;
11877
11878 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
11879 return (const reg_entry *) NULL;
11880
11881 if (!cpu_arch_flags.bitfield.cpuavx512f)
11882 {
11883 if (r->reg_type.bitfield.zmmword
11884 || r->reg_type.bitfield.class == RegMask)
11885 return (const reg_entry *) NULL;
11886
11887 if (!cpu_arch_flags.bitfield.cpuavx)
11888 {
11889 if (r->reg_type.bitfield.ymmword)
11890 return (const reg_entry *) NULL;
11891
11892 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
11893 return (const reg_entry *) NULL;
11894 }
11895 }
11896
11897 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
11898 return (const reg_entry *) NULL;
11899
11900 /* Don't allow fake index register unless allow_index_reg isn't 0. */
11901 if (!allow_index_reg && r->reg_num == RegIZ)
11902 return (const reg_entry *) NULL;
11903
11904 /* Upper 16 vector registers are only available with VREX in 64bit
11905 mode, and require EVEX encoding. */
11906 if (r->reg_flags & RegVRex)
11907 {
11908 if (!cpu_arch_flags.bitfield.cpuavx512f
11909 || flag_code != CODE_64BIT)
11910 return (const reg_entry *) NULL;
11911
11912 i.vec_encoding = vex_encoding_evex;
11913 }
11914
11915 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
11916 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
11917 && flag_code != CODE_64BIT)
11918 return (const reg_entry *) NULL;
11919
11920 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
11921 && !intel_syntax)
11922 return (const reg_entry *) NULL;
11923
11924 return r;
11925 }
11926
11927 /* REG_STRING starts *before* REGISTER_PREFIX. */
11928
11929 static const reg_entry *
11930 parse_register (char *reg_string, char **end_op)
11931 {
11932 const reg_entry *r;
11933
11934 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
11935 r = parse_real_register (reg_string, end_op);
11936 else
11937 r = NULL;
11938 if (!r)
11939 {
11940 char *save = input_line_pointer;
11941 char c;
11942 symbolS *symbolP;
11943
11944 input_line_pointer = reg_string;
11945 c = get_symbol_name (&reg_string);
11946 symbolP = symbol_find (reg_string);
11947 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
11948 {
11949 const expressionS *e = symbol_get_value_expression (symbolP);
11950
11951 know (e->X_op == O_register);
11952 know (e->X_add_number >= 0
11953 && (valueT) e->X_add_number < i386_regtab_size);
11954 r = i386_regtab + e->X_add_number;
11955 if ((r->reg_flags & RegVRex))
11956 i.vec_encoding = vex_encoding_evex;
11957 *end_op = input_line_pointer;
11958 }
11959 *input_line_pointer = c;
11960 input_line_pointer = save;
11961 }
11962 return r;
11963 }
11964
11965 int
11966 i386_parse_name (char *name, expressionS *e, char *nextcharP)
11967 {
11968 const reg_entry *r;
11969 char *end = input_line_pointer;
11970
11971 *end = *nextcharP;
11972 r = parse_register (name, &input_line_pointer);
11973 if (r && end <= input_line_pointer)
11974 {
11975 *nextcharP = *input_line_pointer;
11976 *input_line_pointer = 0;
11977 e->X_op = O_register;
11978 e->X_add_number = r - i386_regtab;
11979 return 1;
11980 }
11981 input_line_pointer = end;
11982 *end = 0;
11983 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
11984 }
11985
11986 void
11987 md_operand (expressionS *e)
11988 {
11989 char *end;
11990 const reg_entry *r;
11991
11992 switch (*input_line_pointer)
11993 {
11994 case REGISTER_PREFIX:
11995 r = parse_real_register (input_line_pointer, &end);
11996 if (r)
11997 {
11998 e->X_op = O_register;
11999 e->X_add_number = r - i386_regtab;
12000 input_line_pointer = end;
12001 }
12002 break;
12003
12004 case '[':
12005 gas_assert (intel_syntax);
12006 end = input_line_pointer++;
12007 expression (e);
12008 if (*input_line_pointer == ']')
12009 {
12010 ++input_line_pointer;
12011 e->X_op_symbol = make_expr_symbol (e);
12012 e->X_add_symbol = NULL;
12013 e->X_add_number = 0;
12014 e->X_op = O_index;
12015 }
12016 else
12017 {
12018 e->X_op = O_absent;
12019 input_line_pointer = end;
12020 }
12021 break;
12022 }
12023 }
12024
12025 \f
12026 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12027 const char *md_shortopts = "kVQ:sqnO::";
12028 #else
12029 const char *md_shortopts = "qnO::";
12030 #endif
12031
12032 #define OPTION_32 (OPTION_MD_BASE + 0)
12033 #define OPTION_64 (OPTION_MD_BASE + 1)
12034 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
12035 #define OPTION_MARCH (OPTION_MD_BASE + 3)
12036 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
12037 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
12038 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
12039 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
12040 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
12041 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
12042 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
12043 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
12044 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12045 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12046 #define OPTION_X32 (OPTION_MD_BASE + 14)
12047 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
12048 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12049 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
12050 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
12051 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
12052 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
12053 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
12054 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12055 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
12056 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
12057 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
12058 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
12059 #define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12060 #define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12061 #define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
12062 #define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
12063
12064 struct option md_longopts[] =
12065 {
12066 {"32", no_argument, NULL, OPTION_32},
12067 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12068 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12069 {"64", no_argument, NULL, OPTION_64},
12070 #endif
12071 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12072 {"x32", no_argument, NULL, OPTION_X32},
12073 {"mshared", no_argument, NULL, OPTION_MSHARED},
12074 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
12075 #endif
12076 {"divide", no_argument, NULL, OPTION_DIVIDE},
12077 {"march", required_argument, NULL, OPTION_MARCH},
12078 {"mtune", required_argument, NULL, OPTION_MTUNE},
12079 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12080 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12081 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12082 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
12083 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
12084 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
12085 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
12086 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
12087 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
12088 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
12089 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12090 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
12091 # if defined (TE_PE) || defined (TE_PEP)
12092 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12093 #endif
12094 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
12095 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
12096 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
12097 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
12098 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12099 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12100 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
12101 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
12102 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12103 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
12104 {NULL, no_argument, NULL, 0}
12105 };
12106 size_t md_longopts_size = sizeof (md_longopts);
12107
12108 int
12109 md_parse_option (int c, const char *arg)
12110 {
12111 unsigned int j;
12112 char *arch, *next, *saved, *type;
12113
12114 switch (c)
12115 {
12116 case 'n':
12117 optimize_align_code = 0;
12118 break;
12119
12120 case 'q':
12121 quiet_warnings = 1;
12122 break;
12123
12124 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12125 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12126 should be emitted or not. FIXME: Not implemented. */
12127 case 'Q':
12128 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12129 return 0;
12130 break;
12131
12132 /* -V: SVR4 argument to print version ID. */
12133 case 'V':
12134 print_version_id ();
12135 break;
12136
12137 /* -k: Ignore for FreeBSD compatibility. */
12138 case 'k':
12139 break;
12140
12141 case 's':
12142 /* -s: On i386 Solaris, this tells the native assembler to use
12143 .stab instead of .stab.excl. We always use .stab anyhow. */
12144 break;
12145
12146 case OPTION_MSHARED:
12147 shared = 1;
12148 break;
12149
12150 case OPTION_X86_USED_NOTE:
12151 if (strcasecmp (arg, "yes") == 0)
12152 x86_used_note = 1;
12153 else if (strcasecmp (arg, "no") == 0)
12154 x86_used_note = 0;
12155 else
12156 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12157 break;
12158
12159
12160 #endif
12161 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12162 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12163 case OPTION_64:
12164 {
12165 const char **list, **l;
12166
12167 list = bfd_target_list ();
12168 for (l = list; *l != NULL; l++)
12169 if (CONST_STRNEQ (*l, "elf64-x86-64")
12170 || strcmp (*l, "coff-x86-64") == 0
12171 || strcmp (*l, "pe-x86-64") == 0
12172 || strcmp (*l, "pei-x86-64") == 0
12173 || strcmp (*l, "mach-o-x86-64") == 0)
12174 {
12175 default_arch = "x86_64";
12176 break;
12177 }
12178 if (*l == NULL)
12179 as_fatal (_("no compiled in support for x86_64"));
12180 free (list);
12181 }
12182 break;
12183 #endif
12184
12185 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12186 case OPTION_X32:
12187 if (IS_ELF)
12188 {
12189 const char **list, **l;
12190
12191 list = bfd_target_list ();
12192 for (l = list; *l != NULL; l++)
12193 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12194 {
12195 default_arch = "x86_64:32";
12196 break;
12197 }
12198 if (*l == NULL)
12199 as_fatal (_("no compiled in support for 32bit x86_64"));
12200 free (list);
12201 }
12202 else
12203 as_fatal (_("32bit x86_64 is only supported for ELF"));
12204 break;
12205 #endif
12206
12207 case OPTION_32:
12208 default_arch = "i386";
12209 break;
12210
12211 case OPTION_DIVIDE:
12212 #ifdef SVR4_COMMENT_CHARS
12213 {
12214 char *n, *t;
12215 const char *s;
12216
12217 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
12218 t = n;
12219 for (s = i386_comment_chars; *s != '\0'; s++)
12220 if (*s != '/')
12221 *t++ = *s;
12222 *t = '\0';
12223 i386_comment_chars = n;
12224 }
12225 #endif
12226 break;
12227
12228 case OPTION_MARCH:
12229 saved = xstrdup (arg);
12230 arch = saved;
12231 /* Allow -march=+nosse. */
12232 if (*arch == '+')
12233 arch++;
12234 do
12235 {
12236 if (*arch == '.')
12237 as_fatal (_("invalid -march= option: `%s'"), arg);
12238 next = strchr (arch, '+');
12239 if (next)
12240 *next++ = '\0';
12241 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12242 {
12243 if (strcmp (arch, cpu_arch [j].name) == 0)
12244 {
12245 /* Processor. */
12246 if (! cpu_arch[j].flags.bitfield.cpui386)
12247 continue;
12248
12249 cpu_arch_name = cpu_arch[j].name;
12250 cpu_sub_arch_name = NULL;
12251 cpu_arch_flags = cpu_arch[j].flags;
12252 cpu_arch_isa = cpu_arch[j].type;
12253 cpu_arch_isa_flags = cpu_arch[j].flags;
12254 if (!cpu_arch_tune_set)
12255 {
12256 cpu_arch_tune = cpu_arch_isa;
12257 cpu_arch_tune_flags = cpu_arch_isa_flags;
12258 }
12259 break;
12260 }
12261 else if (*cpu_arch [j].name == '.'
12262 && strcmp (arch, cpu_arch [j].name + 1) == 0)
12263 {
12264 /* ISA extension. */
12265 i386_cpu_flags flags;
12266
12267 flags = cpu_flags_or (cpu_arch_flags,
12268 cpu_arch[j].flags);
12269
12270 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12271 {
12272 if (cpu_sub_arch_name)
12273 {
12274 char *name = cpu_sub_arch_name;
12275 cpu_sub_arch_name = concat (name,
12276 cpu_arch[j].name,
12277 (const char *) NULL);
12278 free (name);
12279 }
12280 else
12281 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
12282 cpu_arch_flags = flags;
12283 cpu_arch_isa_flags = flags;
12284 }
12285 else
12286 cpu_arch_isa_flags
12287 = cpu_flags_or (cpu_arch_isa_flags,
12288 cpu_arch[j].flags);
12289 break;
12290 }
12291 }
12292
12293 if (j >= ARRAY_SIZE (cpu_arch))
12294 {
12295 /* Disable an ISA extension. */
12296 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12297 if (strcmp (arch, cpu_noarch [j].name) == 0)
12298 {
12299 i386_cpu_flags flags;
12300
12301 flags = cpu_flags_and_not (cpu_arch_flags,
12302 cpu_noarch[j].flags);
12303 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12304 {
12305 if (cpu_sub_arch_name)
12306 {
12307 char *name = cpu_sub_arch_name;
12308 cpu_sub_arch_name = concat (arch,
12309 (const char *) NULL);
12310 free (name);
12311 }
12312 else
12313 cpu_sub_arch_name = xstrdup (arch);
12314 cpu_arch_flags = flags;
12315 cpu_arch_isa_flags = flags;
12316 }
12317 break;
12318 }
12319
12320 if (j >= ARRAY_SIZE (cpu_noarch))
12321 j = ARRAY_SIZE (cpu_arch);
12322 }
12323
12324 if (j >= ARRAY_SIZE (cpu_arch))
12325 as_fatal (_("invalid -march= option: `%s'"), arg);
12326
12327 arch = next;
12328 }
12329 while (next != NULL);
12330 free (saved);
12331 break;
12332
12333 case OPTION_MTUNE:
12334 if (*arg == '.')
12335 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12336 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12337 {
12338 if (strcmp (arg, cpu_arch [j].name) == 0)
12339 {
12340 cpu_arch_tune_set = 1;
12341 cpu_arch_tune = cpu_arch [j].type;
12342 cpu_arch_tune_flags = cpu_arch[j].flags;
12343 break;
12344 }
12345 }
12346 if (j >= ARRAY_SIZE (cpu_arch))
12347 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12348 break;
12349
12350 case OPTION_MMNEMONIC:
12351 if (strcasecmp (arg, "att") == 0)
12352 intel_mnemonic = 0;
12353 else if (strcasecmp (arg, "intel") == 0)
12354 intel_mnemonic = 1;
12355 else
12356 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
12357 break;
12358
12359 case OPTION_MSYNTAX:
12360 if (strcasecmp (arg, "att") == 0)
12361 intel_syntax = 0;
12362 else if (strcasecmp (arg, "intel") == 0)
12363 intel_syntax = 1;
12364 else
12365 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
12366 break;
12367
12368 case OPTION_MINDEX_REG:
12369 allow_index_reg = 1;
12370 break;
12371
12372 case OPTION_MNAKED_REG:
12373 allow_naked_reg = 1;
12374 break;
12375
12376 case OPTION_MSSE2AVX:
12377 sse2avx = 1;
12378 break;
12379
12380 case OPTION_MSSE_CHECK:
12381 if (strcasecmp (arg, "error") == 0)
12382 sse_check = check_error;
12383 else if (strcasecmp (arg, "warning") == 0)
12384 sse_check = check_warning;
12385 else if (strcasecmp (arg, "none") == 0)
12386 sse_check = check_none;
12387 else
12388 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
12389 break;
12390
12391 case OPTION_MOPERAND_CHECK:
12392 if (strcasecmp (arg, "error") == 0)
12393 operand_check = check_error;
12394 else if (strcasecmp (arg, "warning") == 0)
12395 operand_check = check_warning;
12396 else if (strcasecmp (arg, "none") == 0)
12397 operand_check = check_none;
12398 else
12399 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
12400 break;
12401
12402 case OPTION_MAVXSCALAR:
12403 if (strcasecmp (arg, "128") == 0)
12404 avxscalar = vex128;
12405 else if (strcasecmp (arg, "256") == 0)
12406 avxscalar = vex256;
12407 else
12408 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
12409 break;
12410
12411 case OPTION_MVEXWIG:
12412 if (strcmp (arg, "0") == 0)
12413 vexwig = vexw0;
12414 else if (strcmp (arg, "1") == 0)
12415 vexwig = vexw1;
12416 else
12417 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
12418 break;
12419
12420 case OPTION_MADD_BND_PREFIX:
12421 add_bnd_prefix = 1;
12422 break;
12423
12424 case OPTION_MEVEXLIG:
12425 if (strcmp (arg, "128") == 0)
12426 evexlig = evexl128;
12427 else if (strcmp (arg, "256") == 0)
12428 evexlig = evexl256;
12429 else if (strcmp (arg, "512") == 0)
12430 evexlig = evexl512;
12431 else
12432 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
12433 break;
12434
12435 case OPTION_MEVEXRCIG:
12436 if (strcmp (arg, "rne") == 0)
12437 evexrcig = rne;
12438 else if (strcmp (arg, "rd") == 0)
12439 evexrcig = rd;
12440 else if (strcmp (arg, "ru") == 0)
12441 evexrcig = ru;
12442 else if (strcmp (arg, "rz") == 0)
12443 evexrcig = rz;
12444 else
12445 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
12446 break;
12447
12448 case OPTION_MEVEXWIG:
12449 if (strcmp (arg, "0") == 0)
12450 evexwig = evexw0;
12451 else if (strcmp (arg, "1") == 0)
12452 evexwig = evexw1;
12453 else
12454 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
12455 break;
12456
12457 # if defined (TE_PE) || defined (TE_PEP)
12458 case OPTION_MBIG_OBJ:
12459 use_big_obj = 1;
12460 break;
12461 #endif
12462
12463 case OPTION_MOMIT_LOCK_PREFIX:
12464 if (strcasecmp (arg, "yes") == 0)
12465 omit_lock_prefix = 1;
12466 else if (strcasecmp (arg, "no") == 0)
12467 omit_lock_prefix = 0;
12468 else
12469 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
12470 break;
12471
12472 case OPTION_MFENCE_AS_LOCK_ADD:
12473 if (strcasecmp (arg, "yes") == 0)
12474 avoid_fence = 1;
12475 else if (strcasecmp (arg, "no") == 0)
12476 avoid_fence = 0;
12477 else
12478 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
12479 break;
12480
12481 case OPTION_MRELAX_RELOCATIONS:
12482 if (strcasecmp (arg, "yes") == 0)
12483 generate_relax_relocations = 1;
12484 else if (strcasecmp (arg, "no") == 0)
12485 generate_relax_relocations = 0;
12486 else
12487 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
12488 break;
12489
12490 case OPTION_MALIGN_BRANCH_BOUNDARY:
12491 {
12492 char *end;
12493 long int align = strtoul (arg, &end, 0);
12494 if (*end == '\0')
12495 {
12496 if (align == 0)
12497 {
12498 align_branch_power = 0;
12499 break;
12500 }
12501 else if (align >= 16)
12502 {
12503 int align_power;
12504 for (align_power = 0;
12505 (align & 1) == 0;
12506 align >>= 1, align_power++)
12507 continue;
12508 /* Limit alignment power to 31. */
12509 if (align == 1 && align_power < 32)
12510 {
12511 align_branch_power = align_power;
12512 break;
12513 }
12514 }
12515 }
12516 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
12517 }
12518 break;
12519
12520 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
12521 {
12522 char *end;
12523 int align = strtoul (arg, &end, 0);
12524 /* Some processors only support 5 prefixes. */
12525 if (*end == '\0' && align >= 0 && align < 6)
12526 {
12527 align_branch_prefix_size = align;
12528 break;
12529 }
12530 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
12531 arg);
12532 }
12533 break;
12534
12535 case OPTION_MALIGN_BRANCH:
12536 align_branch = 0;
12537 saved = xstrdup (arg);
12538 type = saved;
12539 do
12540 {
12541 next = strchr (type, '+');
12542 if (next)
12543 *next++ = '\0';
12544 if (strcasecmp (type, "jcc") == 0)
12545 align_branch |= align_branch_jcc_bit;
12546 else if (strcasecmp (type, "fused") == 0)
12547 align_branch |= align_branch_fused_bit;
12548 else if (strcasecmp (type, "jmp") == 0)
12549 align_branch |= align_branch_jmp_bit;
12550 else if (strcasecmp (type, "call") == 0)
12551 align_branch |= align_branch_call_bit;
12552 else if (strcasecmp (type, "ret") == 0)
12553 align_branch |= align_branch_ret_bit;
12554 else if (strcasecmp (type, "indirect") == 0)
12555 align_branch |= align_branch_indirect_bit;
12556 else
12557 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
12558 type = next;
12559 }
12560 while (next != NULL);
12561 free (saved);
12562 break;
12563
12564 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
12565 align_branch_power = 5;
12566 align_branch_prefix_size = 5;
12567 align_branch = (align_branch_jcc_bit
12568 | align_branch_fused_bit
12569 | align_branch_jmp_bit);
12570 break;
12571
12572 case OPTION_MAMD64:
12573 isa64 = amd64;
12574 break;
12575
12576 case OPTION_MINTEL64:
12577 isa64 = intel64;
12578 break;
12579
12580 case 'O':
12581 if (arg == NULL)
12582 {
12583 optimize = 1;
12584 /* Turn off -Os. */
12585 optimize_for_space = 0;
12586 }
12587 else if (*arg == 's')
12588 {
12589 optimize_for_space = 1;
12590 /* Turn on all encoding optimizations. */
12591 optimize = INT_MAX;
12592 }
12593 else
12594 {
12595 optimize = atoi (arg);
12596 /* Turn off -Os. */
12597 optimize_for_space = 0;
12598 }
12599 break;
12600
12601 default:
12602 return 0;
12603 }
12604 return 1;
12605 }
12606
12607 #define MESSAGE_TEMPLATE \
12608 " "
12609
12610 static char *
12611 output_message (FILE *stream, char *p, char *message, char *start,
12612 int *left_p, const char *name, int len)
12613 {
12614 int size = sizeof (MESSAGE_TEMPLATE);
12615 int left = *left_p;
12616
12617 /* Reserve 2 spaces for ", " or ",\0" */
12618 left -= len + 2;
12619
12620 /* Check if there is any room. */
12621 if (left >= 0)
12622 {
12623 if (p != start)
12624 {
12625 *p++ = ',';
12626 *p++ = ' ';
12627 }
12628 p = mempcpy (p, name, len);
12629 }
12630 else
12631 {
12632 /* Output the current message now and start a new one. */
12633 *p++ = ',';
12634 *p = '\0';
12635 fprintf (stream, "%s\n", message);
12636 p = start;
12637 left = size - (start - message) - len - 2;
12638
12639 gas_assert (left >= 0);
12640
12641 p = mempcpy (p, name, len);
12642 }
12643
12644 *left_p = left;
12645 return p;
12646 }
12647
12648 static void
12649 show_arch (FILE *stream, int ext, int check)
12650 {
12651 static char message[] = MESSAGE_TEMPLATE;
12652 char *start = message + 27;
12653 char *p;
12654 int size = sizeof (MESSAGE_TEMPLATE);
12655 int left;
12656 const char *name;
12657 int len;
12658 unsigned int j;
12659
12660 p = start;
12661 left = size - (start - message);
12662 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12663 {
12664 /* Should it be skipped? */
12665 if (cpu_arch [j].skip)
12666 continue;
12667
12668 name = cpu_arch [j].name;
12669 len = cpu_arch [j].len;
12670 if (*name == '.')
12671 {
12672 /* It is an extension. Skip if we aren't asked to show it. */
12673 if (ext)
12674 {
12675 name++;
12676 len--;
12677 }
12678 else
12679 continue;
12680 }
12681 else if (ext)
12682 {
12683 /* It is an processor. Skip if we show only extension. */
12684 continue;
12685 }
12686 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
12687 {
12688 /* It is an impossible processor - skip. */
12689 continue;
12690 }
12691
12692 p = output_message (stream, p, message, start, &left, name, len);
12693 }
12694
12695 /* Display disabled extensions. */
12696 if (ext)
12697 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12698 {
12699 name = cpu_noarch [j].name;
12700 len = cpu_noarch [j].len;
12701 p = output_message (stream, p, message, start, &left, name,
12702 len);
12703 }
12704
12705 *p = '\0';
12706 fprintf (stream, "%s\n", message);
12707 }
12708
12709 void
12710 md_show_usage (FILE *stream)
12711 {
12712 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12713 fprintf (stream, _("\
12714 -Qy, -Qn ignored\n\
12715 -V print assembler version number\n\
12716 -k ignored\n"));
12717 #endif
12718 fprintf (stream, _("\
12719 -n Do not optimize code alignment\n\
12720 -q quieten some warnings\n"));
12721 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12722 fprintf (stream, _("\
12723 -s ignored\n"));
12724 #endif
12725 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12726 || defined (TE_PE) || defined (TE_PEP))
12727 fprintf (stream, _("\
12728 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
12729 #endif
12730 #ifdef SVR4_COMMENT_CHARS
12731 fprintf (stream, _("\
12732 --divide do not treat `/' as a comment character\n"));
12733 #else
12734 fprintf (stream, _("\
12735 --divide ignored\n"));
12736 #endif
12737 fprintf (stream, _("\
12738 -march=CPU[,+EXTENSION...]\n\
12739 generate code for CPU and EXTENSION, CPU is one of:\n"));
12740 show_arch (stream, 0, 1);
12741 fprintf (stream, _("\
12742 EXTENSION is combination of:\n"));
12743 show_arch (stream, 1, 0);
12744 fprintf (stream, _("\
12745 -mtune=CPU optimize for CPU, CPU is one of:\n"));
12746 show_arch (stream, 0, 0);
12747 fprintf (stream, _("\
12748 -msse2avx encode SSE instructions with VEX prefix\n"));
12749 fprintf (stream, _("\
12750 -msse-check=[none|error|warning] (default: warning)\n\
12751 check SSE instructions\n"));
12752 fprintf (stream, _("\
12753 -moperand-check=[none|error|warning] (default: warning)\n\
12754 check operand combinations for validity\n"));
12755 fprintf (stream, _("\
12756 -mavxscalar=[128|256] (default: 128)\n\
12757 encode scalar AVX instructions with specific vector\n\
12758 length\n"));
12759 fprintf (stream, _("\
12760 -mvexwig=[0|1] (default: 0)\n\
12761 encode VEX instructions with specific VEX.W value\n\
12762 for VEX.W bit ignored instructions\n"));
12763 fprintf (stream, _("\
12764 -mevexlig=[128|256|512] (default: 128)\n\
12765 encode scalar EVEX instructions with specific vector\n\
12766 length\n"));
12767 fprintf (stream, _("\
12768 -mevexwig=[0|1] (default: 0)\n\
12769 encode EVEX instructions with specific EVEX.W value\n\
12770 for EVEX.W bit ignored instructions\n"));
12771 fprintf (stream, _("\
12772 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
12773 encode EVEX instructions with specific EVEX.RC value\n\
12774 for SAE-only ignored instructions\n"));
12775 fprintf (stream, _("\
12776 -mmnemonic=[att|intel] "));
12777 if (SYSV386_COMPAT)
12778 fprintf (stream, _("(default: att)\n"));
12779 else
12780 fprintf (stream, _("(default: intel)\n"));
12781 fprintf (stream, _("\
12782 use AT&T/Intel mnemonic\n"));
12783 fprintf (stream, _("\
12784 -msyntax=[att|intel] (default: att)\n\
12785 use AT&T/Intel syntax\n"));
12786 fprintf (stream, _("\
12787 -mindex-reg support pseudo index registers\n"));
12788 fprintf (stream, _("\
12789 -mnaked-reg don't require `%%' prefix for registers\n"));
12790 fprintf (stream, _("\
12791 -madd-bnd-prefix add BND prefix for all valid branches\n"));
12792 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12793 fprintf (stream, _("\
12794 -mshared disable branch optimization for shared code\n"));
12795 fprintf (stream, _("\
12796 -mx86-used-note=[no|yes] "));
12797 if (DEFAULT_X86_USED_NOTE)
12798 fprintf (stream, _("(default: yes)\n"));
12799 else
12800 fprintf (stream, _("(default: no)\n"));
12801 fprintf (stream, _("\
12802 generate x86 used ISA and feature properties\n"));
12803 #endif
12804 #if defined (TE_PE) || defined (TE_PEP)
12805 fprintf (stream, _("\
12806 -mbig-obj generate big object files\n"));
12807 #endif
12808 fprintf (stream, _("\
12809 -momit-lock-prefix=[no|yes] (default: no)\n\
12810 strip all lock prefixes\n"));
12811 fprintf (stream, _("\
12812 -mfence-as-lock-add=[no|yes] (default: no)\n\
12813 encode lfence, mfence and sfence as\n\
12814 lock addl $0x0, (%%{re}sp)\n"));
12815 fprintf (stream, _("\
12816 -mrelax-relocations=[no|yes] "));
12817 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
12818 fprintf (stream, _("(default: yes)\n"));
12819 else
12820 fprintf (stream, _("(default: no)\n"));
12821 fprintf (stream, _("\
12822 generate relax relocations\n"));
12823 fprintf (stream, _("\
12824 -malign-branch-boundary=NUM (default: 0)\n\
12825 align branches within NUM byte boundary\n"));
12826 fprintf (stream, _("\
12827 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
12828 TYPE is combination of jcc, fused, jmp, call, ret,\n\
12829 indirect\n\
12830 specify types of branches to align\n"));
12831 fprintf (stream, _("\
12832 -malign-branch-prefix-size=NUM (default: 5)\n\
12833 align branches with NUM prefixes per instruction\n"));
12834 fprintf (stream, _("\
12835 -mbranches-within-32B-boundaries\n\
12836 align branches within 32 byte boundary\n"));
12837 fprintf (stream, _("\
12838 -mamd64 accept only AMD64 ISA [default]\n"));
12839 fprintf (stream, _("\
12840 -mintel64 accept only Intel64 ISA\n"));
12841 }
12842
12843 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
12844 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12845 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12846
12847 /* Pick the target format to use. */
12848
12849 const char *
12850 i386_target_format (void)
12851 {
12852 if (!strncmp (default_arch, "x86_64", 6))
12853 {
12854 update_code_flag (CODE_64BIT, 1);
12855 if (default_arch[6] == '\0')
12856 x86_elf_abi = X86_64_ABI;
12857 else
12858 x86_elf_abi = X86_64_X32_ABI;
12859 }
12860 else if (!strcmp (default_arch, "i386"))
12861 update_code_flag (CODE_32BIT, 1);
12862 else if (!strcmp (default_arch, "iamcu"))
12863 {
12864 update_code_flag (CODE_32BIT, 1);
12865 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
12866 {
12867 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
12868 cpu_arch_name = "iamcu";
12869 cpu_sub_arch_name = NULL;
12870 cpu_arch_flags = iamcu_flags;
12871 cpu_arch_isa = PROCESSOR_IAMCU;
12872 cpu_arch_isa_flags = iamcu_flags;
12873 if (!cpu_arch_tune_set)
12874 {
12875 cpu_arch_tune = cpu_arch_isa;
12876 cpu_arch_tune_flags = cpu_arch_isa_flags;
12877 }
12878 }
12879 else if (cpu_arch_isa != PROCESSOR_IAMCU)
12880 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
12881 cpu_arch_name);
12882 }
12883 else
12884 as_fatal (_("unknown architecture"));
12885
12886 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
12887 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12888 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
12889 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12890
12891 switch (OUTPUT_FLAVOR)
12892 {
12893 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
12894 case bfd_target_aout_flavour:
12895 return AOUT_TARGET_FORMAT;
12896 #endif
12897 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
12898 # if defined (TE_PE) || defined (TE_PEP)
12899 case bfd_target_coff_flavour:
12900 if (flag_code == CODE_64BIT)
12901 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
12902 else
12903 return "pe-i386";
12904 # elif defined (TE_GO32)
12905 case bfd_target_coff_flavour:
12906 return "coff-go32";
12907 # else
12908 case bfd_target_coff_flavour:
12909 return "coff-i386";
12910 # endif
12911 #endif
12912 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12913 case bfd_target_elf_flavour:
12914 {
12915 const char *format;
12916
12917 switch (x86_elf_abi)
12918 {
12919 default:
12920 format = ELF_TARGET_FORMAT;
12921 #ifndef TE_SOLARIS
12922 tls_get_addr = "___tls_get_addr";
12923 #endif
12924 break;
12925 case X86_64_ABI:
12926 use_rela_relocations = 1;
12927 object_64bit = 1;
12928 #ifndef TE_SOLARIS
12929 tls_get_addr = "__tls_get_addr";
12930 #endif
12931 format = ELF_TARGET_FORMAT64;
12932 break;
12933 case X86_64_X32_ABI:
12934 use_rela_relocations = 1;
12935 object_64bit = 1;
12936 #ifndef TE_SOLARIS
12937 tls_get_addr = "__tls_get_addr";
12938 #endif
12939 disallow_64bit_reloc = 1;
12940 format = ELF_TARGET_FORMAT32;
12941 break;
12942 }
12943 if (cpu_arch_isa == PROCESSOR_L1OM)
12944 {
12945 if (x86_elf_abi != X86_64_ABI)
12946 as_fatal (_("Intel L1OM is 64bit only"));
12947 return ELF_TARGET_L1OM_FORMAT;
12948 }
12949 else if (cpu_arch_isa == PROCESSOR_K1OM)
12950 {
12951 if (x86_elf_abi != X86_64_ABI)
12952 as_fatal (_("Intel K1OM is 64bit only"));
12953 return ELF_TARGET_K1OM_FORMAT;
12954 }
12955 else if (cpu_arch_isa == PROCESSOR_IAMCU)
12956 {
12957 if (x86_elf_abi != I386_ABI)
12958 as_fatal (_("Intel MCU is 32bit only"));
12959 return ELF_TARGET_IAMCU_FORMAT;
12960 }
12961 else
12962 return format;
12963 }
12964 #endif
12965 #if defined (OBJ_MACH_O)
12966 case bfd_target_mach_o_flavour:
12967 if (flag_code == CODE_64BIT)
12968 {
12969 use_rela_relocations = 1;
12970 object_64bit = 1;
12971 return "mach-o-x86-64";
12972 }
12973 else
12974 return "mach-o-i386";
12975 #endif
12976 default:
12977 abort ();
12978 return NULL;
12979 }
12980 }
12981
12982 #endif /* OBJ_MAYBE_ more than one */
12983 \f
12984 symbolS *
12985 md_undefined_symbol (char *name)
12986 {
12987 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
12988 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
12989 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
12990 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
12991 {
12992 if (!GOT_symbol)
12993 {
12994 if (symbol_find (name))
12995 as_bad (_("GOT already in symbol table"));
12996 GOT_symbol = symbol_new (name, undefined_section,
12997 (valueT) 0, &zero_address_frag);
12998 };
12999 return GOT_symbol;
13000 }
13001 return 0;
13002 }
13003
13004 /* Round up a section size to the appropriate boundary. */
13005
13006 valueT
13007 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
13008 {
13009 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
13010 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
13011 {
13012 /* For a.out, force the section size to be aligned. If we don't do
13013 this, BFD will align it for us, but it will not write out the
13014 final bytes of the section. This may be a bug in BFD, but it is
13015 easier to fix it here since that is how the other a.out targets
13016 work. */
13017 int align;
13018
13019 align = bfd_section_alignment (segment);
13020 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
13021 }
13022 #endif
13023
13024 return size;
13025 }
13026
13027 /* On the i386, PC-relative offsets are relative to the start of the
13028 next instruction. That is, the address of the offset, plus its
13029 size, since the offset is always the last part of the insn. */
13030
13031 long
13032 md_pcrel_from (fixS *fixP)
13033 {
13034 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
13035 }
13036
13037 #ifndef I386COFF
13038
13039 static void
13040 s_bss (int ignore ATTRIBUTE_UNUSED)
13041 {
13042 int temp;
13043
13044 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13045 if (IS_ELF)
13046 obj_elf_section_change_hook ();
13047 #endif
13048 temp = get_absolute_expression ();
13049 subseg_set (bss_section, (subsegT) temp);
13050 demand_empty_rest_of_line ();
13051 }
13052
13053 #endif
13054
13055 /* Remember constant directive. */
13056
13057 void
13058 i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13059 {
13060 if (last_insn.kind != last_insn_directive
13061 && (bfd_section_flags (now_seg) & SEC_CODE))
13062 {
13063 last_insn.seg = now_seg;
13064 last_insn.kind = last_insn_directive;
13065 last_insn.name = "constant directive";
13066 last_insn.file = as_where (&last_insn.line);
13067 }
13068 }
13069
13070 void
13071 i386_validate_fix (fixS *fixp)
13072 {
13073 if (fixp->fx_subsy)
13074 {
13075 if (fixp->fx_subsy == GOT_symbol)
13076 {
13077 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13078 {
13079 if (!object_64bit)
13080 abort ();
13081 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13082 if (fixp->fx_tcbit2)
13083 fixp->fx_r_type = (fixp->fx_tcbit
13084 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13085 : BFD_RELOC_X86_64_GOTPCRELX);
13086 else
13087 #endif
13088 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13089 }
13090 else
13091 {
13092 if (!object_64bit)
13093 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13094 else
13095 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13096 }
13097 fixp->fx_subsy = 0;
13098 }
13099 }
13100 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13101 else if (!object_64bit)
13102 {
13103 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13104 && fixp->fx_tcbit2)
13105 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13106 }
13107 #endif
13108 }
13109
13110 arelent *
13111 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
13112 {
13113 arelent *rel;
13114 bfd_reloc_code_real_type code;
13115
13116 switch (fixp->fx_r_type)
13117 {
13118 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13119 case BFD_RELOC_SIZE32:
13120 case BFD_RELOC_SIZE64:
13121 if (S_IS_DEFINED (fixp->fx_addsy)
13122 && !S_IS_EXTERNAL (fixp->fx_addsy))
13123 {
13124 /* Resolve size relocation against local symbol to size of
13125 the symbol plus addend. */
13126 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13127 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13128 && !fits_in_unsigned_long (value))
13129 as_bad_where (fixp->fx_file, fixp->fx_line,
13130 _("symbol size computation overflow"));
13131 fixp->fx_addsy = NULL;
13132 fixp->fx_subsy = NULL;
13133 md_apply_fix (fixp, (valueT *) &value, NULL);
13134 return NULL;
13135 }
13136 #endif
13137 /* Fall through. */
13138
13139 case BFD_RELOC_X86_64_PLT32:
13140 case BFD_RELOC_X86_64_GOT32:
13141 case BFD_RELOC_X86_64_GOTPCREL:
13142 case BFD_RELOC_X86_64_GOTPCRELX:
13143 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13144 case BFD_RELOC_386_PLT32:
13145 case BFD_RELOC_386_GOT32:
13146 case BFD_RELOC_386_GOT32X:
13147 case BFD_RELOC_386_GOTOFF:
13148 case BFD_RELOC_386_GOTPC:
13149 case BFD_RELOC_386_TLS_GD:
13150 case BFD_RELOC_386_TLS_LDM:
13151 case BFD_RELOC_386_TLS_LDO_32:
13152 case BFD_RELOC_386_TLS_IE_32:
13153 case BFD_RELOC_386_TLS_IE:
13154 case BFD_RELOC_386_TLS_GOTIE:
13155 case BFD_RELOC_386_TLS_LE_32:
13156 case BFD_RELOC_386_TLS_LE:
13157 case BFD_RELOC_386_TLS_GOTDESC:
13158 case BFD_RELOC_386_TLS_DESC_CALL:
13159 case BFD_RELOC_X86_64_TLSGD:
13160 case BFD_RELOC_X86_64_TLSLD:
13161 case BFD_RELOC_X86_64_DTPOFF32:
13162 case BFD_RELOC_X86_64_DTPOFF64:
13163 case BFD_RELOC_X86_64_GOTTPOFF:
13164 case BFD_RELOC_X86_64_TPOFF32:
13165 case BFD_RELOC_X86_64_TPOFF64:
13166 case BFD_RELOC_X86_64_GOTOFF64:
13167 case BFD_RELOC_X86_64_GOTPC32:
13168 case BFD_RELOC_X86_64_GOT64:
13169 case BFD_RELOC_X86_64_GOTPCREL64:
13170 case BFD_RELOC_X86_64_GOTPC64:
13171 case BFD_RELOC_X86_64_GOTPLT64:
13172 case BFD_RELOC_X86_64_PLTOFF64:
13173 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13174 case BFD_RELOC_X86_64_TLSDESC_CALL:
13175 case BFD_RELOC_RVA:
13176 case BFD_RELOC_VTABLE_ENTRY:
13177 case BFD_RELOC_VTABLE_INHERIT:
13178 #ifdef TE_PE
13179 case BFD_RELOC_32_SECREL:
13180 #endif
13181 code = fixp->fx_r_type;
13182 break;
13183 case BFD_RELOC_X86_64_32S:
13184 if (!fixp->fx_pcrel)
13185 {
13186 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13187 code = fixp->fx_r_type;
13188 break;
13189 }
13190 /* Fall through. */
13191 default:
13192 if (fixp->fx_pcrel)
13193 {
13194 switch (fixp->fx_size)
13195 {
13196 default:
13197 as_bad_where (fixp->fx_file, fixp->fx_line,
13198 _("can not do %d byte pc-relative relocation"),
13199 fixp->fx_size);
13200 code = BFD_RELOC_32_PCREL;
13201 break;
13202 case 1: code = BFD_RELOC_8_PCREL; break;
13203 case 2: code = BFD_RELOC_16_PCREL; break;
13204 case 4: code = BFD_RELOC_32_PCREL; break;
13205 #ifdef BFD64
13206 case 8: code = BFD_RELOC_64_PCREL; break;
13207 #endif
13208 }
13209 }
13210 else
13211 {
13212 switch (fixp->fx_size)
13213 {
13214 default:
13215 as_bad_where (fixp->fx_file, fixp->fx_line,
13216 _("can not do %d byte relocation"),
13217 fixp->fx_size);
13218 code = BFD_RELOC_32;
13219 break;
13220 case 1: code = BFD_RELOC_8; break;
13221 case 2: code = BFD_RELOC_16; break;
13222 case 4: code = BFD_RELOC_32; break;
13223 #ifdef BFD64
13224 case 8: code = BFD_RELOC_64; break;
13225 #endif
13226 }
13227 }
13228 break;
13229 }
13230
13231 if ((code == BFD_RELOC_32
13232 || code == BFD_RELOC_32_PCREL
13233 || code == BFD_RELOC_X86_64_32S)
13234 && GOT_symbol
13235 && fixp->fx_addsy == GOT_symbol)
13236 {
13237 if (!object_64bit)
13238 code = BFD_RELOC_386_GOTPC;
13239 else
13240 code = BFD_RELOC_X86_64_GOTPC32;
13241 }
13242 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13243 && GOT_symbol
13244 && fixp->fx_addsy == GOT_symbol)
13245 {
13246 code = BFD_RELOC_X86_64_GOTPC64;
13247 }
13248
13249 rel = XNEW (arelent);
13250 rel->sym_ptr_ptr = XNEW (asymbol *);
13251 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
13252
13253 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
13254
13255 if (!use_rela_relocations)
13256 {
13257 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13258 vtable entry to be used in the relocation's section offset. */
13259 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13260 rel->address = fixp->fx_offset;
13261 #if defined (OBJ_COFF) && defined (TE_PE)
13262 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13263 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13264 else
13265 #endif
13266 rel->addend = 0;
13267 }
13268 /* Use the rela in 64bit mode. */
13269 else
13270 {
13271 if (disallow_64bit_reloc)
13272 switch (code)
13273 {
13274 case BFD_RELOC_X86_64_DTPOFF64:
13275 case BFD_RELOC_X86_64_TPOFF64:
13276 case BFD_RELOC_64_PCREL:
13277 case BFD_RELOC_X86_64_GOTOFF64:
13278 case BFD_RELOC_X86_64_GOT64:
13279 case BFD_RELOC_X86_64_GOTPCREL64:
13280 case BFD_RELOC_X86_64_GOTPC64:
13281 case BFD_RELOC_X86_64_GOTPLT64:
13282 case BFD_RELOC_X86_64_PLTOFF64:
13283 as_bad_where (fixp->fx_file, fixp->fx_line,
13284 _("cannot represent relocation type %s in x32 mode"),
13285 bfd_get_reloc_code_name (code));
13286 break;
13287 default:
13288 break;
13289 }
13290
13291 if (!fixp->fx_pcrel)
13292 rel->addend = fixp->fx_offset;
13293 else
13294 switch (code)
13295 {
13296 case BFD_RELOC_X86_64_PLT32:
13297 case BFD_RELOC_X86_64_GOT32:
13298 case BFD_RELOC_X86_64_GOTPCREL:
13299 case BFD_RELOC_X86_64_GOTPCRELX:
13300 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13301 case BFD_RELOC_X86_64_TLSGD:
13302 case BFD_RELOC_X86_64_TLSLD:
13303 case BFD_RELOC_X86_64_GOTTPOFF:
13304 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13305 case BFD_RELOC_X86_64_TLSDESC_CALL:
13306 rel->addend = fixp->fx_offset - fixp->fx_size;
13307 break;
13308 default:
13309 rel->addend = (section->vma
13310 - fixp->fx_size
13311 + fixp->fx_addnumber
13312 + md_pcrel_from (fixp));
13313 break;
13314 }
13315 }
13316
13317 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
13318 if (rel->howto == NULL)
13319 {
13320 as_bad_where (fixp->fx_file, fixp->fx_line,
13321 _("cannot represent relocation type %s"),
13322 bfd_get_reloc_code_name (code));
13323 /* Set howto to a garbage value so that we can keep going. */
13324 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
13325 gas_assert (rel->howto != NULL);
13326 }
13327
13328 return rel;
13329 }
13330
13331 #include "tc-i386-intel.c"
13332
13333 void
13334 tc_x86_parse_to_dw2regnum (expressionS *exp)
13335 {
13336 int saved_naked_reg;
13337 char saved_register_dot;
13338
13339 saved_naked_reg = allow_naked_reg;
13340 allow_naked_reg = 1;
13341 saved_register_dot = register_chars['.'];
13342 register_chars['.'] = '.';
13343 allow_pseudo_reg = 1;
13344 expression_and_evaluate (exp);
13345 allow_pseudo_reg = 0;
13346 register_chars['.'] = saved_register_dot;
13347 allow_naked_reg = saved_naked_reg;
13348
13349 if (exp->X_op == O_register && exp->X_add_number >= 0)
13350 {
13351 if ((addressT) exp->X_add_number < i386_regtab_size)
13352 {
13353 exp->X_op = O_constant;
13354 exp->X_add_number = i386_regtab[exp->X_add_number]
13355 .dw2_regnum[flag_code >> 1];
13356 }
13357 else
13358 exp->X_op = O_illegal;
13359 }
13360 }
13361
13362 void
13363 tc_x86_frame_initial_instructions (void)
13364 {
13365 static unsigned int sp_regno[2];
13366
13367 if (!sp_regno[flag_code >> 1])
13368 {
13369 char *saved_input = input_line_pointer;
13370 char sp[][4] = {"esp", "rsp"};
13371 expressionS exp;
13372
13373 input_line_pointer = sp[flag_code >> 1];
13374 tc_x86_parse_to_dw2regnum (&exp);
13375 gas_assert (exp.X_op == O_constant);
13376 sp_regno[flag_code >> 1] = exp.X_add_number;
13377 input_line_pointer = saved_input;
13378 }
13379
13380 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
13381 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
13382 }
13383
13384 int
13385 x86_dwarf2_addr_size (void)
13386 {
13387 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13388 if (x86_elf_abi == X86_64_X32_ABI)
13389 return 4;
13390 #endif
13391 return bfd_arch_bits_per_address (stdoutput) / 8;
13392 }
13393
13394 int
13395 i386_elf_section_type (const char *str, size_t len)
13396 {
13397 if (flag_code == CODE_64BIT
13398 && len == sizeof ("unwind") - 1
13399 && strncmp (str, "unwind", 6) == 0)
13400 return SHT_X86_64_UNWIND;
13401
13402 return -1;
13403 }
13404
13405 #ifdef TE_SOLARIS
13406 void
13407 i386_solaris_fix_up_eh_frame (segT sec)
13408 {
13409 if (flag_code == CODE_64BIT)
13410 elf_section_type (sec) = SHT_X86_64_UNWIND;
13411 }
13412 #endif
13413
13414 #ifdef TE_PE
13415 void
13416 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
13417 {
13418 expressionS exp;
13419
13420 exp.X_op = O_secrel;
13421 exp.X_add_symbol = symbol;
13422 exp.X_add_number = 0;
13423 emit_expr (&exp, size);
13424 }
13425 #endif
13426
13427 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13428 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
13429
13430 bfd_vma
13431 x86_64_section_letter (int letter, const char **ptr_msg)
13432 {
13433 if (flag_code == CODE_64BIT)
13434 {
13435 if (letter == 'l')
13436 return SHF_X86_64_LARGE;
13437
13438 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
13439 }
13440 else
13441 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
13442 return -1;
13443 }
13444
13445 bfd_vma
13446 x86_64_section_word (char *str, size_t len)
13447 {
13448 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
13449 return SHF_X86_64_LARGE;
13450
13451 return -1;
13452 }
13453
13454 static void
13455 handle_large_common (int small ATTRIBUTE_UNUSED)
13456 {
13457 if (flag_code != CODE_64BIT)
13458 {
13459 s_comm_internal (0, elf_common_parse);
13460 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
13461 }
13462 else
13463 {
13464 static segT lbss_section;
13465 asection *saved_com_section_ptr = elf_com_section_ptr;
13466 asection *saved_bss_section = bss_section;
13467
13468 if (lbss_section == NULL)
13469 {
13470 flagword applicable;
13471 segT seg = now_seg;
13472 subsegT subseg = now_subseg;
13473
13474 /* The .lbss section is for local .largecomm symbols. */
13475 lbss_section = subseg_new (".lbss", 0);
13476 applicable = bfd_applicable_section_flags (stdoutput);
13477 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
13478 seg_info (lbss_section)->bss = 1;
13479
13480 subseg_set (seg, subseg);
13481 }
13482
13483 elf_com_section_ptr = &_bfd_elf_large_com_section;
13484 bss_section = lbss_section;
13485
13486 s_comm_internal (0, elf_common_parse);
13487
13488 elf_com_section_ptr = saved_com_section_ptr;
13489 bss_section = saved_bss_section;
13490 }
13491 }
13492 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.335088 seconds and 5 git commands to generate.