* ld-sh/sh.exp: Use --oformat srec, not -oformat srec.
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989, 91, 92, 93, 94, 95, 96, 97, 98, 99, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* Intel 80386 machine specific gas.
23 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
24 x86_64 support by Jan Hubicka (jh@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include <ctype.h>
29
30 #include "as.h"
31 #include "subsegs.h"
32 #include "dwarf2dbg.h"
33 #include "opcode/i386.h"
34
35 #ifndef REGISTER_WARNINGS
36 #define REGISTER_WARNINGS 1
37 #endif
38
39 #ifndef INFER_ADDR_PREFIX
40 #define INFER_ADDR_PREFIX 1
41 #endif
42
43 #ifndef SCALE1_WHEN_NO_INDEX
44 /* Specifying a scale factor besides 1 when there is no index is
45 futile. eg. `mov (%ebx,2),%al' does exactly the same as
46 `mov (%ebx),%al'. To slavishly follow what the programmer
47 specified, set SCALE1_WHEN_NO_INDEX to 0. */
48 #define SCALE1_WHEN_NO_INDEX 1
49 #endif
50
51 #define true 1
52 #define false 0
53
54 static unsigned int mode_from_disp_size PARAMS ((unsigned int));
55 static int fits_in_signed_byte PARAMS ((offsetT));
56 static int fits_in_unsigned_byte PARAMS ((offsetT));
57 static int fits_in_unsigned_word PARAMS ((offsetT));
58 static int fits_in_signed_word PARAMS ((offsetT));
59 static int fits_in_unsigned_long PARAMS ((offsetT));
60 static int fits_in_signed_long PARAMS ((offsetT));
61 static int smallest_imm_type PARAMS ((offsetT));
62 static offsetT offset_in_range PARAMS ((offsetT, int));
63 static int add_prefix PARAMS ((unsigned int));
64 static void set_code_flag PARAMS ((int));
65 static void set_16bit_gcc_code_flag PARAMS ((int));
66 static void set_intel_syntax PARAMS ((int));
67 static void set_cpu_arch PARAMS ((int));
68
69 #ifdef BFD_ASSEMBLER
70 static bfd_reloc_code_real_type reloc
71 PARAMS ((int, int, int, bfd_reloc_code_real_type));
72 #endif
73
74 #ifndef DEFAULT_ARCH
75 #define DEFAULT_ARCH "i386"
76 #endif
77 static char *default_arch = DEFAULT_ARCH;
78
79 /* 'md_assemble ()' gathers together information and puts it into a
80 i386_insn. */
81
82 union i386_op
83 {
84 expressionS *disps;
85 expressionS *imms;
86 const reg_entry *regs;
87 };
88
89 struct _i386_insn
90 {
91 /* TM holds the template for the insn were currently assembling. */
92 template tm;
93
94 /* SUFFIX holds the instruction mnemonic suffix if given.
95 (e.g. 'l' for 'movl') */
96 char suffix;
97
98 /* OPERANDS gives the number of given operands. */
99 unsigned int operands;
100
101 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
102 of given register, displacement, memory operands and immediate
103 operands. */
104 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
105
106 /* TYPES [i] is the type (see above #defines) which tells us how to
107 use OP[i] for the corresponding operand. */
108 unsigned int types[MAX_OPERANDS];
109
110 /* Displacement expression, immediate expression, or register for each
111 operand. */
112 union i386_op op[MAX_OPERANDS];
113
114 /* Flags for operands. */
115 unsigned int flags[MAX_OPERANDS];
116 #define Operand_PCrel 1
117
118 /* Relocation type for operand */
119 #ifdef BFD_ASSEMBLER
120 enum bfd_reloc_code_real disp_reloc[MAX_OPERANDS];
121 #else
122 int disp_reloc[MAX_OPERANDS];
123 #endif
124
125 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
126 the base index byte below. */
127 const reg_entry *base_reg;
128 const reg_entry *index_reg;
129 unsigned int log2_scale_factor;
130
131 /* SEG gives the seg_entries of this insn. They are zero unless
132 explicit segment overrides are given. */
133 const seg_entry *seg[2];
134
135 /* PREFIX holds all the given prefix opcodes (usually null).
136 PREFIXES is the number of prefix opcodes. */
137 unsigned int prefixes;
138 unsigned char prefix[MAX_PREFIXES];
139
140 /* RM and SIB are the modrm byte and the sib byte where the
141 addressing modes of this insn are encoded. */
142
143 modrm_byte rm;
144 rex_byte rex;
145 sib_byte sib;
146 };
147
148 typedef struct _i386_insn i386_insn;
149
150 /* List of chars besides those in app.c:symbol_chars that can start an
151 operand. Used to prevent the scrubber eating vital white-space. */
152 #ifdef LEX_AT
153 const char extra_symbol_chars[] = "*%-(@";
154 #else
155 const char extra_symbol_chars[] = "*%-(";
156 #endif
157
158 /* This array holds the chars that always start a comment. If the
159 pre-processor is disabled, these aren't very useful. */
160 #if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
161 /* Putting '/' here makes it impossible to use the divide operator.
162 However, we need it for compatibility with SVR4 systems. */
163 const char comment_chars[] = "#/";
164 #define PREFIX_SEPARATOR '\\'
165 #else
166 const char comment_chars[] = "#";
167 #define PREFIX_SEPARATOR '/'
168 #endif
169
170 /* This array holds the chars that only start a comment at the beginning of
171 a line. If the line seems to have the form '# 123 filename'
172 .line and .file directives will appear in the pre-processed output.
173 Note that input_file.c hand checks for '#' at the beginning of the
174 first line of the input file. This is because the compiler outputs
175 #NO_APP at the beginning of its output.
176 Also note that comments started like this one will always work if
177 '/' isn't otherwise defined. */
178 #if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
179 const char line_comment_chars[] = "";
180 #else
181 const char line_comment_chars[] = "/";
182 #endif
183
184 const char line_separator_chars[] = ";";
185
186 /* Chars that can be used to separate mant from exp in floating point
187 nums. */
188 const char EXP_CHARS[] = "eE";
189
190 /* Chars that mean this number is a floating point constant
191 As in 0f12.456
192 or 0d1.2345e12. */
193 const char FLT_CHARS[] = "fFdDxX";
194
195 /* Tables for lexical analysis. */
196 static char mnemonic_chars[256];
197 static char register_chars[256];
198 static char operand_chars[256];
199 static char identifier_chars[256];
200 static char digit_chars[256];
201
202 /* Lexical macros. */
203 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
204 #define is_operand_char(x) (operand_chars[(unsigned char) x])
205 #define is_register_char(x) (register_chars[(unsigned char) x])
206 #define is_space_char(x) ((x) == ' ')
207 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
208 #define is_digit_char(x) (digit_chars[(unsigned char) x])
209
210 /* All non-digit non-letter charcters that may occur in an operand. */
211 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
212
213 /* md_assemble() always leaves the strings it's passed unaltered. To
214 effect this we maintain a stack of saved characters that we've smashed
215 with '\0's (indicating end of strings for various sub-fields of the
216 assembler instruction). */
217 static char save_stack[32];
218 static char *save_stack_p;
219 #define END_STRING_AND_SAVE(s) \
220 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
221 #define RESTORE_END_STRING(s) \
222 do { *(s) = *--save_stack_p; } while (0)
223
224 /* The instruction we're assembling. */
225 static i386_insn i;
226
227 /* Possible templates for current insn. */
228 static const templates *current_templates;
229
230 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
231 static expressionS disp_expressions[2], im_expressions[2];
232
233 /* Current operand we are working on. */
234 static int this_operand;
235
236 /* We support four different modes. FLAG_CODE variable is used to distinguish
237 these. */
238
239 enum flag_code {
240 CODE_32BIT,
241 CODE_16BIT,
242 CODE_64BIT };
243
244 static enum flag_code flag_code;
245 static int use_rela_relocations = 0;
246
247 /* The names used to print error messages. */
248 static const char *flag_code_names[] =
249 {
250 "32",
251 "16",
252 "64"
253 };
254
255 /* 1 for intel syntax,
256 0 if att syntax. */
257 static int intel_syntax = 0;
258
259 /* 1 if register prefix % not required. */
260 static int allow_naked_reg = 0;
261
262 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
263 leave, push, and pop instructions so that gcc has the same stack
264 frame as in 32 bit mode. */
265 static char stackop_size = '\0';
266
267 /* Non-zero to quieten some warnings. */
268 static int quiet_warnings = 0;
269
270 /* CPU name. */
271 static const char *cpu_arch_name = NULL;
272
273 /* CPU feature flags. */
274 static unsigned int cpu_arch_flags = CpuUnknownFlags|CpuNo64;
275
276 /* Interface to relax_segment.
277 There are 2 relax states for 386 jump insns: one for conditional &
278 one for unconditional jumps. This is because these two types of
279 jumps add different sizes to frags when we're figuring out what
280 sort of jump to choose to reach a given label. */
281
282 /* Types. */
283 #define COND_JUMP 1
284 #define UNCOND_JUMP 2
285 /* Sizes. */
286 #define CODE16 1
287 #define SMALL 0
288 #define SMALL16 (SMALL|CODE16)
289 #define BIG 2
290 #define BIG16 (BIG|CODE16)
291
292 #ifndef INLINE
293 #ifdef __GNUC__
294 #define INLINE __inline__
295 #else
296 #define INLINE
297 #endif
298 #endif
299
300 #define ENCODE_RELAX_STATE(type,size) \
301 ((relax_substateT) ((type<<2) | (size)))
302 #define SIZE_FROM_RELAX_STATE(s) \
303 ( (((s) & 0x3) == BIG ? 4 : (((s) & 0x3) == BIG16 ? 2 : 1)) )
304
305 /* This table is used by relax_frag to promote short jumps to long
306 ones where necessary. SMALL (short) jumps may be promoted to BIG
307 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
308 don't allow a short jump in a 32 bit code segment to be promoted to
309 a 16 bit offset jump because it's slower (requires data size
310 prefix), and doesn't work, unless the destination is in the bottom
311 64k of the code segment (The top 16 bits of eip are zeroed). */
312
313 const relax_typeS md_relax_table[] =
314 {
315 /* The fields are:
316 1) most positive reach of this state,
317 2) most negative reach of this state,
318 3) how many bytes this mode will add to the size of the current frag
319 4) which index into the table to try if we can't fit into this one. */
320 {1, 1, 0, 0},
321 {1, 1, 0, 0},
322 {1, 1, 0, 0},
323 {1, 1, 0, 0},
324
325 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
326 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
327 /* dword conditionals adds 4 bytes to frag:
328 1 extra opcode byte, 3 extra displacement bytes. */
329 {0, 0, 4, 0},
330 /* word conditionals add 2 bytes to frag:
331 1 extra opcode byte, 1 extra displacement byte. */
332 {0, 0, 2, 0},
333
334 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
335 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
336 /* dword jmp adds 3 bytes to frag:
337 0 extra opcode bytes, 3 extra displacement bytes. */
338 {0, 0, 3, 0},
339 /* word jmp adds 1 byte to frag:
340 0 extra opcode bytes, 1 extra displacement byte. */
341 {0, 0, 1, 0}
342
343 };
344
345 static const arch_entry cpu_arch[] = {
346 {"i8086", Cpu086 },
347 {"i186", Cpu086|Cpu186 },
348 {"i286", Cpu086|Cpu186|Cpu286 },
349 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
350 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
351 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
352 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
353 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
354 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
355 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
356 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
357 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
358 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
359 {NULL, 0 }
360 };
361
362 void
363 i386_align_code (fragP, count)
364 fragS *fragP;
365 int count;
366 {
367 /* Various efficient no-op patterns for aligning code labels.
368 Note: Don't try to assemble the instructions in the comments.
369 0L and 0w are not legal. */
370 static const char f32_1[] =
371 {0x90}; /* nop */
372 static const char f32_2[] =
373 {0x89,0xf6}; /* movl %esi,%esi */
374 static const char f32_3[] =
375 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
376 static const char f32_4[] =
377 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
378 static const char f32_5[] =
379 {0x90, /* nop */
380 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
381 static const char f32_6[] =
382 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
383 static const char f32_7[] =
384 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
385 static const char f32_8[] =
386 {0x90, /* nop */
387 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
388 static const char f32_9[] =
389 {0x89,0xf6, /* movl %esi,%esi */
390 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
391 static const char f32_10[] =
392 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
393 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
394 static const char f32_11[] =
395 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
396 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
397 static const char f32_12[] =
398 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
399 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
400 static const char f32_13[] =
401 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
402 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
403 static const char f32_14[] =
404 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
405 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
406 static const char f32_15[] =
407 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
408 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
409 static const char f16_3[] =
410 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
411 static const char f16_4[] =
412 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
413 static const char f16_5[] =
414 {0x90, /* nop */
415 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
416 static const char f16_6[] =
417 {0x89,0xf6, /* mov %si,%si */
418 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
419 static const char f16_7[] =
420 {0x8d,0x74,0x00, /* lea 0(%si),%si */
421 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
422 static const char f16_8[] =
423 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
424 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
425 static const char *const f32_patt[] = {
426 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
427 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
428 };
429 static const char *const f16_patt[] = {
430 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
431 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
432 };
433
434 /* ??? We can't use these fillers for x86_64, since they often kills the
435 upper halves. Solve later. */
436 if (flag_code == CODE_64BIT)
437 count = 1;
438
439 if (count > 0 && count <= 15)
440 {
441 if (flag_code == CODE_16BIT)
442 {
443 memcpy (fragP->fr_literal + fragP->fr_fix,
444 f16_patt[count - 1], count);
445 if (count > 8)
446 /* Adjust jump offset. */
447 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
448 }
449 else
450 memcpy (fragP->fr_literal + fragP->fr_fix,
451 f32_patt[count - 1], count);
452 fragP->fr_var = count;
453 }
454 }
455
456 static char *output_invalid PARAMS ((int c));
457 static int i386_operand PARAMS ((char *operand_string));
458 static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
459 static const reg_entry *parse_register PARAMS ((char *reg_string,
460 char **end_op));
461
462 #ifndef I386COFF
463 static void s_bss PARAMS ((int));
464 #endif
465
466 symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
467
468 static INLINE unsigned int
469 mode_from_disp_size (t)
470 unsigned int t;
471 {
472 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
473 }
474
475 static INLINE int
476 fits_in_signed_byte (num)
477 offsetT num;
478 {
479 return (num >= -128) && (num <= 127);
480 }
481
482 static INLINE int
483 fits_in_unsigned_byte (num)
484 offsetT num;
485 {
486 return (num & 0xff) == num;
487 }
488
489 static INLINE int
490 fits_in_unsigned_word (num)
491 offsetT num;
492 {
493 return (num & 0xffff) == num;
494 }
495
496 static INLINE int
497 fits_in_signed_word (num)
498 offsetT num;
499 {
500 return (-32768 <= num) && (num <= 32767);
501 }
502 static INLINE int
503 fits_in_signed_long (num)
504 offsetT num ATTRIBUTE_UNUSED;
505 {
506 #ifndef BFD64
507 return 1;
508 #else
509 return (!(((offsetT) -1 << 31) & num)
510 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
511 #endif
512 } /* fits_in_signed_long() */
513 static INLINE int
514 fits_in_unsigned_long (num)
515 offsetT num ATTRIBUTE_UNUSED;
516 {
517 #ifndef BFD64
518 return 1;
519 #else
520 return (num & (((offsetT) 2 << 31) - 1)) == num;
521 #endif
522 } /* fits_in_unsigned_long() */
523
524 static int
525 smallest_imm_type (num)
526 offsetT num;
527 {
528 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64)
529 && !(cpu_arch_flags & (CpuUnknown)))
530 {
531 /* This code is disabled on the 486 because all the Imm1 forms
532 in the opcode table are slower on the i486. They're the
533 versions with the implicitly specified single-position
534 displacement, which has another syntax if you really want to
535 use that form. */
536 if (num == 1)
537 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
538 }
539 return (fits_in_signed_byte (num)
540 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
541 : fits_in_unsigned_byte (num)
542 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
543 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
544 ? (Imm16 | Imm32 | Imm32S | Imm64)
545 : fits_in_signed_long (num)
546 ? (Imm32 | Imm32S | Imm64)
547 : fits_in_unsigned_long (num)
548 ? (Imm32 | Imm64)
549 : Imm64);
550 }
551
552 static offsetT
553 offset_in_range (val, size)
554 offsetT val;
555 int size;
556 {
557 addressT mask;
558
559 switch (size)
560 {
561 case 1: mask = ((addressT) 1 << 8) - 1; break;
562 case 2: mask = ((addressT) 1 << 16) - 1; break;
563 case 4: mask = ((addressT) 2 << 31) - 1; break;
564 #ifdef BFD64
565 case 8: mask = ((addressT) 2 << 63) - 1; break;
566 #endif
567 default: abort ();
568 }
569
570 /* If BFD64, sign extend val. */
571 if (!use_rela_relocations)
572 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
573 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
574
575 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
576 {
577 char buf1[40], buf2[40];
578
579 sprint_value (buf1, val);
580 sprint_value (buf2, val & mask);
581 as_warn (_("%s shortened to %s"), buf1, buf2);
582 }
583 return val & mask;
584 }
585
586 /* Returns 0 if attempting to add a prefix where one from the same
587 class already exists, 1 if non rep/repne added, 2 if rep/repne
588 added. */
589 static int
590 add_prefix (prefix)
591 unsigned int prefix;
592 {
593 int ret = 1;
594 int q;
595
596 if (prefix >= 0x40 && prefix < 0x50 && flag_code == CODE_64BIT)
597 q = REX_PREFIX;
598 else
599 switch (prefix)
600 {
601 default:
602 abort ();
603
604 case CS_PREFIX_OPCODE:
605 case DS_PREFIX_OPCODE:
606 case ES_PREFIX_OPCODE:
607 case FS_PREFIX_OPCODE:
608 case GS_PREFIX_OPCODE:
609 case SS_PREFIX_OPCODE:
610 q = SEG_PREFIX;
611 break;
612
613 case REPNE_PREFIX_OPCODE:
614 case REPE_PREFIX_OPCODE:
615 ret = 2;
616 /* fall thru */
617 case LOCK_PREFIX_OPCODE:
618 q = LOCKREP_PREFIX;
619 break;
620
621 case FWAIT_OPCODE:
622 q = WAIT_PREFIX;
623 break;
624
625 case ADDR_PREFIX_OPCODE:
626 q = ADDR_PREFIX;
627 break;
628
629 case DATA_PREFIX_OPCODE:
630 q = DATA_PREFIX;
631 break;
632 }
633
634 if (i.prefix[q])
635 {
636 as_bad (_("same type of prefix used twice"));
637 return 0;
638 }
639
640 i.prefixes += 1;
641 i.prefix[q] = prefix;
642 return ret;
643 }
644
645 static void
646 set_code_flag (value)
647 int value;
648 {
649 flag_code = value;
650 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
651 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
652 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
653 {
654 as_bad (_("64bit mode not supported on this CPU."));
655 }
656 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
657 {
658 as_bad (_("32bit mode not supported on this CPU."));
659 }
660 stackop_size = '\0';
661 }
662
663 static void
664 set_16bit_gcc_code_flag (new_code_flag)
665 int new_code_flag;
666 {
667 flag_code = new_code_flag;
668 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
669 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
670 stackop_size = 'l';
671 }
672
673 static void
674 set_intel_syntax (syntax_flag)
675 int syntax_flag;
676 {
677 /* Find out if register prefixing is specified. */
678 int ask_naked_reg = 0;
679
680 SKIP_WHITESPACE ();
681 if (! is_end_of_line[(unsigned char) *input_line_pointer])
682 {
683 char *string = input_line_pointer;
684 int e = get_symbol_end ();
685
686 if (strcmp (string, "prefix") == 0)
687 ask_naked_reg = 1;
688 else if (strcmp (string, "noprefix") == 0)
689 ask_naked_reg = -1;
690 else
691 as_bad (_("bad argument to syntax directive."));
692 *input_line_pointer = e;
693 }
694 demand_empty_rest_of_line ();
695
696 intel_syntax = syntax_flag;
697
698 if (ask_naked_reg == 0)
699 {
700 #ifdef BFD_ASSEMBLER
701 allow_naked_reg = (intel_syntax
702 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
703 #else
704 /* Conservative default. */
705 allow_naked_reg = 0;
706 #endif
707 }
708 else
709 allow_naked_reg = (ask_naked_reg < 0);
710 }
711
712 static void
713 set_cpu_arch (dummy)
714 int dummy ATTRIBUTE_UNUSED;
715 {
716 SKIP_WHITESPACE ();
717
718 if (! is_end_of_line[(unsigned char) *input_line_pointer])
719 {
720 char *string = input_line_pointer;
721 int e = get_symbol_end ();
722 int i;
723
724 for (i = 0; cpu_arch[i].name; i++)
725 {
726 if (strcmp (string, cpu_arch[i].name) == 0)
727 {
728 cpu_arch_name = cpu_arch[i].name;
729 cpu_arch_flags = cpu_arch[i].flags | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
730 break;
731 }
732 }
733 if (!cpu_arch[i].name)
734 as_bad (_("no such architecture: `%s'"), string);
735
736 *input_line_pointer = e;
737 }
738 else
739 as_bad (_("missing cpu architecture"));
740
741 demand_empty_rest_of_line ();
742 }
743
744 const pseudo_typeS md_pseudo_table[] =
745 {
746 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
747 {"align", s_align_bytes, 0},
748 #else
749 {"align", s_align_ptwo, 0},
750 #endif
751 {"arch", set_cpu_arch, 0},
752 #ifndef I386COFF
753 {"bss", s_bss, 0},
754 #endif
755 {"ffloat", float_cons, 'f'},
756 {"dfloat", float_cons, 'd'},
757 {"tfloat", float_cons, 'x'},
758 {"value", cons, 2},
759 {"noopt", s_ignore, 0},
760 {"optim", s_ignore, 0},
761 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
762 {"code16", set_code_flag, CODE_16BIT},
763 {"code32", set_code_flag, CODE_32BIT},
764 {"code64", set_code_flag, CODE_64BIT},
765 {"intel_syntax", set_intel_syntax, 1},
766 {"att_syntax", set_intel_syntax, 0},
767 {"file", dwarf2_directive_file, 0},
768 {"loc", dwarf2_directive_loc, 0},
769 {0, 0, 0}
770 };
771
772 /* For interface with expression (). */
773 extern char *input_line_pointer;
774
775 /* Hash table for instruction mnemonic lookup. */
776 static struct hash_control *op_hash;
777
778 /* Hash table for register lookup. */
779 static struct hash_control *reg_hash;
780 \f
781 void
782 md_begin ()
783 {
784 const char *hash_err;
785
786 /* Initialize op_hash hash table. */
787 op_hash = hash_new ();
788
789 {
790 register const template *optab;
791 register templates *core_optab;
792
793 /* Setup for loop. */
794 optab = i386_optab;
795 core_optab = (templates *) xmalloc (sizeof (templates));
796 core_optab->start = optab;
797
798 while (1)
799 {
800 ++optab;
801 if (optab->name == NULL
802 || strcmp (optab->name, (optab - 1)->name) != 0)
803 {
804 /* different name --> ship out current template list;
805 add to hash table; & begin anew. */
806 core_optab->end = optab;
807 hash_err = hash_insert (op_hash,
808 (optab - 1)->name,
809 (PTR) core_optab);
810 if (hash_err)
811 {
812 as_fatal (_("Internal Error: Can't hash %s: %s"),
813 (optab - 1)->name,
814 hash_err);
815 }
816 if (optab->name == NULL)
817 break;
818 core_optab = (templates *) xmalloc (sizeof (templates));
819 core_optab->start = optab;
820 }
821 }
822 }
823
824 /* Initialize reg_hash hash table. */
825 reg_hash = hash_new ();
826 {
827 register const reg_entry *regtab;
828
829 for (regtab = i386_regtab;
830 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
831 regtab++)
832 {
833 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
834 if (hash_err)
835 as_fatal (_("Internal Error: Can't hash %s: %s"),
836 regtab->reg_name,
837 hash_err);
838 }
839 }
840
841 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
842 {
843 register int c;
844 register char *p;
845
846 for (c = 0; c < 256; c++)
847 {
848 if (isdigit (c))
849 {
850 digit_chars[c] = c;
851 mnemonic_chars[c] = c;
852 register_chars[c] = c;
853 operand_chars[c] = c;
854 }
855 else if (islower (c))
856 {
857 mnemonic_chars[c] = c;
858 register_chars[c] = c;
859 operand_chars[c] = c;
860 }
861 else if (isupper (c))
862 {
863 mnemonic_chars[c] = tolower (c);
864 register_chars[c] = mnemonic_chars[c];
865 operand_chars[c] = c;
866 }
867
868 if (isalpha (c) || isdigit (c))
869 identifier_chars[c] = c;
870 else if (c >= 128)
871 {
872 identifier_chars[c] = c;
873 operand_chars[c] = c;
874 }
875 }
876
877 #ifdef LEX_AT
878 identifier_chars['@'] = '@';
879 #endif
880 digit_chars['-'] = '-';
881 identifier_chars['_'] = '_';
882 identifier_chars['.'] = '.';
883
884 for (p = operand_special_chars; *p != '\0'; p++)
885 operand_chars[(unsigned char) *p] = *p;
886 }
887
888 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
889 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
890 {
891 record_alignment (text_section, 2);
892 record_alignment (data_section, 2);
893 record_alignment (bss_section, 2);
894 }
895 #endif
896 }
897
898 void
899 i386_print_statistics (file)
900 FILE *file;
901 {
902 hash_print_statistics (file, "i386 opcode", op_hash);
903 hash_print_statistics (file, "i386 register", reg_hash);
904 }
905 \f
906 #ifdef DEBUG386
907
908 /* Debugging routines for md_assemble. */
909 static void pi PARAMS ((char *, i386_insn *));
910 static void pte PARAMS ((template *));
911 static void pt PARAMS ((unsigned int));
912 static void pe PARAMS ((expressionS *));
913 static void ps PARAMS ((symbolS *));
914
915 static void
916 pi (line, x)
917 char *line;
918 i386_insn *x;
919 {
920 unsigned int i;
921
922 fprintf (stdout, "%s: template ", line);
923 pte (&x->tm);
924 fprintf (stdout, " address: base %s index %s scale %x\n",
925 x->base_reg ? x->base_reg->reg_name : "none",
926 x->index_reg ? x->index_reg->reg_name : "none",
927 x->log2_scale_factor);
928 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
929 x->rm.mode, x->rm.reg, x->rm.regmem);
930 fprintf (stdout, " sib: base %x index %x scale %x\n",
931 x->sib.base, x->sib.index, x->sib.scale);
932 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
933 x->rex.mode64, x->rex.extX, x->rex.extY, x->rex.extZ);
934 for (i = 0; i < x->operands; i++)
935 {
936 fprintf (stdout, " #%d: ", i + 1);
937 pt (x->types[i]);
938 fprintf (stdout, "\n");
939 if (x->types[i]
940 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
941 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
942 if (x->types[i] & Imm)
943 pe (x->op[i].imms);
944 if (x->types[i] & Disp)
945 pe (x->op[i].disps);
946 }
947 }
948
949 static void
950 pte (t)
951 template *t;
952 {
953 unsigned int i;
954 fprintf (stdout, " %d operands ", t->operands);
955 fprintf (stdout, "opcode %x ", t->base_opcode);
956 if (t->extension_opcode != None)
957 fprintf (stdout, "ext %x ", t->extension_opcode);
958 if (t->opcode_modifier & D)
959 fprintf (stdout, "D");
960 if (t->opcode_modifier & W)
961 fprintf (stdout, "W");
962 fprintf (stdout, "\n");
963 for (i = 0; i < t->operands; i++)
964 {
965 fprintf (stdout, " #%d type ", i + 1);
966 pt (t->operand_types[i]);
967 fprintf (stdout, "\n");
968 }
969 }
970
971 static void
972 pe (e)
973 expressionS *e;
974 {
975 fprintf (stdout, " operation %d\n", e->X_op);
976 fprintf (stdout, " add_number %ld (%lx)\n",
977 (long) e->X_add_number, (long) e->X_add_number);
978 if (e->X_add_symbol)
979 {
980 fprintf (stdout, " add_symbol ");
981 ps (e->X_add_symbol);
982 fprintf (stdout, "\n");
983 }
984 if (e->X_op_symbol)
985 {
986 fprintf (stdout, " op_symbol ");
987 ps (e->X_op_symbol);
988 fprintf (stdout, "\n");
989 }
990 }
991
992 static void
993 ps (s)
994 symbolS *s;
995 {
996 fprintf (stdout, "%s type %s%s",
997 S_GET_NAME (s),
998 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
999 segment_name (S_GET_SEGMENT (s)));
1000 }
1001
1002 struct type_name
1003 {
1004 unsigned int mask;
1005 char *tname;
1006 }
1007
1008 type_names[] =
1009 {
1010 { Reg8, "r8" },
1011 { Reg16, "r16" },
1012 { Reg32, "r32" },
1013 { Reg64, "r64" },
1014 { Imm8, "i8" },
1015 { Imm8S, "i8s" },
1016 { Imm16, "i16" },
1017 { Imm32, "i32" },
1018 { Imm32S, "i32s" },
1019 { Imm64, "i64" },
1020 { Imm1, "i1" },
1021 { BaseIndex, "BaseIndex" },
1022 { Disp8, "d8" },
1023 { Disp16, "d16" },
1024 { Disp32, "d32" },
1025 { Disp32S, "d32s" },
1026 { Disp64, "d64" },
1027 { InOutPortReg, "InOutPortReg" },
1028 { ShiftCount, "ShiftCount" },
1029 { Control, "control reg" },
1030 { Test, "test reg" },
1031 { Debug, "debug reg" },
1032 { FloatReg, "FReg" },
1033 { FloatAcc, "FAcc" },
1034 { SReg2, "SReg2" },
1035 { SReg3, "SReg3" },
1036 { Acc, "Acc" },
1037 { JumpAbsolute, "Jump Absolute" },
1038 { RegMMX, "rMMX" },
1039 { RegXMM, "rXMM" },
1040 { EsSeg, "es" },
1041 { 0, "" }
1042 };
1043
1044 static void
1045 pt (t)
1046 unsigned int t;
1047 {
1048 register struct type_name *ty;
1049
1050 for (ty = type_names; ty->mask; ty++)
1051 if (t & ty->mask)
1052 fprintf (stdout, "%s, ", ty->tname);
1053 fflush (stdout);
1054 }
1055
1056 #endif /* DEBUG386 */
1057 \f
1058 int
1059 tc_i386_force_relocation (fixp)
1060 struct fix *fixp;
1061 {
1062 #ifdef BFD_ASSEMBLER
1063 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1064 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1065 return 1;
1066 return 0;
1067 #else
1068 /* For COFF. */
1069 return fixp->fx_r_type == 7;
1070 #endif
1071 }
1072
1073 #ifdef BFD_ASSEMBLER
1074
1075 static bfd_reloc_code_real_type
1076 reloc (size, pcrel, sign, other)
1077 int size;
1078 int pcrel;
1079 int sign;
1080 bfd_reloc_code_real_type other;
1081 {
1082 if (other != NO_RELOC)
1083 return other;
1084
1085 if (pcrel)
1086 {
1087 if (!sign)
1088 as_bad(_("There are no unsigned pc-relative relocations"));
1089 switch (size)
1090 {
1091 case 1: return BFD_RELOC_8_PCREL;
1092 case 2: return BFD_RELOC_16_PCREL;
1093 case 4: return BFD_RELOC_32_PCREL;
1094 }
1095 as_bad (_("can not do %d byte pc-relative relocation"), size);
1096 }
1097 else
1098 {
1099 if (sign)
1100 switch (size)
1101 {
1102 case 4: return BFD_RELOC_X86_64_32S;
1103 }
1104 else
1105 switch (size)
1106 {
1107 case 1: return BFD_RELOC_8;
1108 case 2: return BFD_RELOC_16;
1109 case 4: return BFD_RELOC_32;
1110 case 8: return BFD_RELOC_64;
1111 }
1112 as_bad (_("can not do %s %d byte relocation"),
1113 sign ? "signed" : "unsigned", size);
1114 }
1115
1116 abort();
1117 return BFD_RELOC_NONE;
1118 }
1119
1120 /* Here we decide which fixups can be adjusted to make them relative to
1121 the beginning of the section instead of the symbol. Basically we need
1122 to make sure that the dynamic relocations are done correctly, so in
1123 some cases we force the original symbol to be used. */
1124
1125 int
1126 tc_i386_fix_adjustable (fixP)
1127 fixS *fixP;
1128 {
1129 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1130 /* Prevent all adjustments to global symbols, or else dynamic
1131 linking will not work correctly. */
1132 if (S_IS_EXTERNAL (fixP->fx_addsy)
1133 || S_IS_WEAK (fixP->fx_addsy))
1134 return 0;
1135 #endif
1136 /* adjust_reloc_syms doesn't know about the GOT. */
1137 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1138 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1139 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1140 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1141 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1142 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1143 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1144 return 0;
1145 return 1;
1146 }
1147 #else
1148 #define reloc(SIZE,PCREL,SIGN,OTHER) 0
1149 #define BFD_RELOC_16 0
1150 #define BFD_RELOC_32 0
1151 #define BFD_RELOC_16_PCREL 0
1152 #define BFD_RELOC_32_PCREL 0
1153 #define BFD_RELOC_386_PLT32 0
1154 #define BFD_RELOC_386_GOT32 0
1155 #define BFD_RELOC_386_GOTOFF 0
1156 #define BFD_RELOC_X86_64_PLT32 0
1157 #define BFD_RELOC_X86_64_GOT32 0
1158 #define BFD_RELOC_X86_64_GOTPCREL 0
1159 #endif
1160
1161 static int intel_float_operand PARAMS ((char *mnemonic));
1162
1163 static int
1164 intel_float_operand (mnemonic)
1165 char *mnemonic;
1166 {
1167 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
1168 return 2;
1169
1170 if (mnemonic[0] == 'f')
1171 return 1;
1172
1173 return 0;
1174 }
1175
1176 /* This is the guts of the machine-dependent assembler. LINE points to a
1177 machine dependent instruction. This function is supposed to emit
1178 the frags/bytes it assembles to. */
1179
1180 void
1181 md_assemble (line)
1182 char *line;
1183 {
1184 /* Points to template once we've found it. */
1185 const template *t;
1186
1187 /* Count the size of the instruction generated. */
1188 int insn_size = 0;
1189
1190 int j;
1191
1192 char mnemonic[MAX_MNEM_SIZE];
1193
1194 /* Initialize globals. */
1195 memset (&i, '\0', sizeof (i));
1196 for (j = 0; j < MAX_OPERANDS; j++)
1197 i.disp_reloc[j] = NO_RELOC;
1198 memset (disp_expressions, '\0', sizeof (disp_expressions));
1199 memset (im_expressions, '\0', sizeof (im_expressions));
1200 save_stack_p = save_stack;
1201
1202 /* First parse an instruction mnemonic & call i386_operand for the operands.
1203 We assume that the scrubber has arranged it so that line[0] is the valid
1204 start of a (possibly prefixed) mnemonic. */
1205 {
1206 char *l = line;
1207 char *token_start = l;
1208 char *mnem_p;
1209
1210 /* Non-zero if we found a prefix only acceptable with string insns. */
1211 const char *expecting_string_instruction = NULL;
1212
1213 while (1)
1214 {
1215 mnem_p = mnemonic;
1216 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1217 {
1218 mnem_p++;
1219 if (mnem_p >= mnemonic + sizeof (mnemonic))
1220 {
1221 as_bad (_("no such instruction: `%s'"), token_start);
1222 return;
1223 }
1224 l++;
1225 }
1226 if (!is_space_char (*l)
1227 && *l != END_OF_INSN
1228 && *l != PREFIX_SEPARATOR)
1229 {
1230 as_bad (_("invalid character %s in mnemonic"),
1231 output_invalid (*l));
1232 return;
1233 }
1234 if (token_start == l)
1235 {
1236 if (*l == PREFIX_SEPARATOR)
1237 as_bad (_("expecting prefix; got nothing"));
1238 else
1239 as_bad (_("expecting mnemonic; got nothing"));
1240 return;
1241 }
1242
1243 /* Look up instruction (or prefix) via hash table. */
1244 current_templates = hash_find (op_hash, mnemonic);
1245
1246 if (*l != END_OF_INSN
1247 && (! is_space_char (*l) || l[1] != END_OF_INSN)
1248 && current_templates
1249 && (current_templates->start->opcode_modifier & IsPrefix))
1250 {
1251 /* If we are in 16-bit mode, do not allow addr16 or data16.
1252 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1253 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1254 && (((current_templates->start->opcode_modifier & Size32) != 0)
1255 ^ (flag_code == CODE_16BIT)))
1256 {
1257 as_bad (_("redundant %s prefix"),
1258 current_templates->start->name);
1259 return;
1260 }
1261 /* Add prefix, checking for repeated prefixes. */
1262 switch (add_prefix (current_templates->start->base_opcode))
1263 {
1264 case 0:
1265 return;
1266 case 2:
1267 expecting_string_instruction = current_templates->start->name;
1268 break;
1269 }
1270 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1271 token_start = ++l;
1272 }
1273 else
1274 break;
1275 }
1276
1277 if (!current_templates)
1278 {
1279 /* See if we can get a match by trimming off a suffix. */
1280 switch (mnem_p[-1])
1281 {
1282 case WORD_MNEM_SUFFIX:
1283 case BYTE_MNEM_SUFFIX:
1284 case QWORD_MNEM_SUFFIX:
1285 i.suffix = mnem_p[-1];
1286 mnem_p[-1] = '\0';
1287 current_templates = hash_find (op_hash, mnemonic);
1288 break;
1289 case SHORT_MNEM_SUFFIX:
1290 case LONG_MNEM_SUFFIX:
1291 if (!intel_syntax)
1292 {
1293 i.suffix = mnem_p[-1];
1294 mnem_p[-1] = '\0';
1295 current_templates = hash_find (op_hash, mnemonic);
1296 }
1297 break;
1298
1299 /* Intel Syntax. */
1300 case 'd':
1301 if (intel_syntax)
1302 {
1303 if (intel_float_operand (mnemonic))
1304 i.suffix = SHORT_MNEM_SUFFIX;
1305 else
1306 i.suffix = LONG_MNEM_SUFFIX;
1307 mnem_p[-1] = '\0';
1308 current_templates = hash_find (op_hash, mnemonic);
1309 }
1310 break;
1311 }
1312 if (!current_templates)
1313 {
1314 as_bad (_("no such instruction: `%s'"), token_start);
1315 return;
1316 }
1317 }
1318
1319 /* Check if instruction is supported on specified architecture. */
1320 if (cpu_arch_flags != 0)
1321 {
1322 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1323 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
1324 {
1325 as_warn (_("`%s' is not supported on `%s'"),
1326 current_templates->start->name, cpu_arch_name);
1327 }
1328 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1329 {
1330 as_warn (_("use .code16 to ensure correct addressing mode"));
1331 }
1332 }
1333
1334 /* Check for rep/repne without a string instruction. */
1335 if (expecting_string_instruction
1336 && !(current_templates->start->opcode_modifier & IsString))
1337 {
1338 as_bad (_("expecting string instruction after `%s'"),
1339 expecting_string_instruction);
1340 return;
1341 }
1342
1343 /* There may be operands to parse. */
1344 if (*l != END_OF_INSN)
1345 {
1346 /* 1 if operand is pending after ','. */
1347 unsigned int expecting_operand = 0;
1348
1349 /* Non-zero if operand parens not balanced. */
1350 unsigned int paren_not_balanced;
1351
1352 do
1353 {
1354 /* Skip optional white space before operand. */
1355 if (is_space_char (*l))
1356 ++l;
1357 if (!is_operand_char (*l) && *l != END_OF_INSN)
1358 {
1359 as_bad (_("invalid character %s before operand %d"),
1360 output_invalid (*l),
1361 i.operands + 1);
1362 return;
1363 }
1364 token_start = l; /* after white space */
1365 paren_not_balanced = 0;
1366 while (paren_not_balanced || *l != ',')
1367 {
1368 if (*l == END_OF_INSN)
1369 {
1370 if (paren_not_balanced)
1371 {
1372 if (!intel_syntax)
1373 as_bad (_("unbalanced parenthesis in operand %d."),
1374 i.operands + 1);
1375 else
1376 as_bad (_("unbalanced brackets in operand %d."),
1377 i.operands + 1);
1378 return;
1379 }
1380 else
1381 break; /* we are done */
1382 }
1383 else if (!is_operand_char (*l) && !is_space_char (*l))
1384 {
1385 as_bad (_("invalid character %s in operand %d"),
1386 output_invalid (*l),
1387 i.operands + 1);
1388 return;
1389 }
1390 if (!intel_syntax)
1391 {
1392 if (*l == '(')
1393 ++paren_not_balanced;
1394 if (*l == ')')
1395 --paren_not_balanced;
1396 }
1397 else
1398 {
1399 if (*l == '[')
1400 ++paren_not_balanced;
1401 if (*l == ']')
1402 --paren_not_balanced;
1403 }
1404 l++;
1405 }
1406 if (l != token_start)
1407 { /* Yes, we've read in another operand. */
1408 unsigned int operand_ok;
1409 this_operand = i.operands++;
1410 if (i.operands > MAX_OPERANDS)
1411 {
1412 as_bad (_("spurious operands; (%d operands/instruction max)"),
1413 MAX_OPERANDS);
1414 return;
1415 }
1416 /* Now parse operand adding info to 'i' as we go along. */
1417 END_STRING_AND_SAVE (l);
1418
1419 if (intel_syntax)
1420 operand_ok =
1421 i386_intel_operand (token_start,
1422 intel_float_operand (mnemonic));
1423 else
1424 operand_ok = i386_operand (token_start);
1425
1426 RESTORE_END_STRING (l);
1427 if (!operand_ok)
1428 return;
1429 }
1430 else
1431 {
1432 if (expecting_operand)
1433 {
1434 expecting_operand_after_comma:
1435 as_bad (_("expecting operand after ','; got nothing"));
1436 return;
1437 }
1438 if (*l == ',')
1439 {
1440 as_bad (_("expecting operand before ','; got nothing"));
1441 return;
1442 }
1443 }
1444
1445 /* Now *l must be either ',' or END_OF_INSN. */
1446 if (*l == ',')
1447 {
1448 if (*++l == END_OF_INSN)
1449 {
1450 /* Just skip it, if it's \n complain. */
1451 goto expecting_operand_after_comma;
1452 }
1453 expecting_operand = 1;
1454 }
1455 }
1456 while (*l != END_OF_INSN);
1457 }
1458 }
1459
1460 /* Now we've parsed the mnemonic into a set of templates, and have the
1461 operands at hand.
1462
1463 Next, we find a template that matches the given insn,
1464 making sure the overlap of the given operands types is consistent
1465 with the template operand types. */
1466
1467 #define MATCH(overlap, given, template) \
1468 ((overlap & ~JumpAbsolute) \
1469 && ((given) & (BaseIndex|JumpAbsolute)) == ((overlap) & (BaseIndex|JumpAbsolute)))
1470
1471 /* If given types r0 and r1 are registers they must be of the same type
1472 unless the expected operand type register overlap is null.
1473 Note that Acc in a template matches every size of reg. */
1474 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1475 ( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \
1476 ((g0) & Reg) == ((g1) & Reg) || \
1477 ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
1478
1479 {
1480 register unsigned int overlap0, overlap1;
1481 unsigned int overlap2;
1482 unsigned int found_reverse_match;
1483 int suffix_check;
1484
1485 /* All intel opcodes have reversed operands except for "bound" and
1486 "enter". We also don't reverse intersegment "jmp" and "call"
1487 instructions with 2 immediate operands so that the immediate segment
1488 precedes the offset, as it does when in AT&T mode. "enter" and the
1489 intersegment "jmp" and "call" instructions are the only ones that
1490 have two immediate operands. */
1491 if (intel_syntax && i.operands > 1
1492 && (strcmp (mnemonic, "bound") != 0)
1493 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1494 {
1495 union i386_op temp_op;
1496 unsigned int temp_type;
1497 #ifdef BFD_ASSEMBLER
1498 enum bfd_reloc_code_real temp_reloc;
1499 #else
1500 int temp_reloc;
1501 #endif
1502 int xchg1 = 0;
1503 int xchg2 = 0;
1504
1505 if (i.operands == 2)
1506 {
1507 xchg1 = 0;
1508 xchg2 = 1;
1509 }
1510 else if (i.operands == 3)
1511 {
1512 xchg1 = 0;
1513 xchg2 = 2;
1514 }
1515 temp_type = i.types[xchg2];
1516 i.types[xchg2] = i.types[xchg1];
1517 i.types[xchg1] = temp_type;
1518 temp_op = i.op[xchg2];
1519 i.op[xchg2] = i.op[xchg1];
1520 i.op[xchg1] = temp_op;
1521 temp_reloc = i.disp_reloc[xchg2];
1522 i.disp_reloc[xchg2] = i.disp_reloc[xchg1];
1523 i.disp_reloc[xchg1] = temp_reloc;
1524
1525 if (i.mem_operands == 2)
1526 {
1527 const seg_entry *temp_seg;
1528 temp_seg = i.seg[0];
1529 i.seg[0] = i.seg[1];
1530 i.seg[1] = temp_seg;
1531 }
1532 }
1533
1534 if (i.imm_operands)
1535 {
1536 /* Try to ensure constant immediates are represented in the smallest
1537 opcode possible. */
1538 char guess_suffix = 0;
1539 int op;
1540
1541 if (i.suffix)
1542 guess_suffix = i.suffix;
1543 else if (i.reg_operands)
1544 {
1545 /* Figure out a suffix from the last register operand specified.
1546 We can't do this properly yet, ie. excluding InOutPortReg,
1547 but the following works for instructions with immediates.
1548 In any case, we can't set i.suffix yet. */
1549 for (op = i.operands; --op >= 0;)
1550 if (i.types[op] & Reg)
1551 {
1552 if (i.types[op] & Reg8)
1553 guess_suffix = BYTE_MNEM_SUFFIX;
1554 else if (i.types[op] & Reg16)
1555 guess_suffix = WORD_MNEM_SUFFIX;
1556 else if (i.types[op] & Reg32)
1557 guess_suffix = LONG_MNEM_SUFFIX;
1558 else if (i.types[op] & Reg64)
1559 guess_suffix = QWORD_MNEM_SUFFIX;
1560 break;
1561 }
1562 }
1563 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1564 guess_suffix = WORD_MNEM_SUFFIX;
1565
1566 for (op = i.operands; --op >= 0;)
1567 if (i.types[op] & Imm)
1568 {
1569 switch (i.op[op].imms->X_op)
1570 {
1571 case O_constant:
1572 /* If a suffix is given, this operand may be shortened. */
1573 switch (guess_suffix)
1574 {
1575 case LONG_MNEM_SUFFIX:
1576 i.types[op] |= Imm32 | Imm64;
1577 break;
1578 case WORD_MNEM_SUFFIX:
1579 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1580 break;
1581 case BYTE_MNEM_SUFFIX:
1582 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1583 break;
1584 }
1585
1586 /* If this operand is at most 16 bits, convert it to a
1587 signed 16 bit number before trying to see whether it will
1588 fit in an even smaller size. This allows a 16-bit operand
1589 such as $0xffe0 to be recognised as within Imm8S range. */
1590 if ((i.types[op] & Imm16)
1591 && (i.op[op].imms->X_add_number & ~(offsetT)0xffff) == 0)
1592 {
1593 i.op[op].imms->X_add_number =
1594 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1595 }
1596 if ((i.types[op] & Imm32)
1597 && (i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1)) == 0)
1598 {
1599 i.op[op].imms->X_add_number =
1600 (i.op[op].imms->X_add_number ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1601 }
1602 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
1603 /* We must avoid matching of Imm32 templates when 64bit only immediate is available. */
1604 if (guess_suffix == QWORD_MNEM_SUFFIX)
1605 i.types[op] &= ~Imm32;
1606 break;
1607 case O_absent:
1608 case O_register:
1609 abort();
1610 /* Symbols and expressions. */
1611 default:
1612 /* Convert symbolic operand to proper sizes for matching. */
1613 switch (guess_suffix)
1614 {
1615 case QWORD_MNEM_SUFFIX:
1616 i.types[op] = Imm64 | Imm32S;
1617 break;
1618 case LONG_MNEM_SUFFIX:
1619 i.types[op] = Imm32 | Imm64;
1620 break;
1621 case WORD_MNEM_SUFFIX:
1622 i.types[op] = Imm16 | Imm32 | Imm64;
1623 break;
1624 break;
1625 case BYTE_MNEM_SUFFIX:
1626 i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
1627 break;
1628 break;
1629 }
1630 break;
1631 }
1632 }
1633 }
1634
1635 if (i.disp_operands)
1636 {
1637 /* Try to use the smallest displacement type too. */
1638 int op;
1639
1640 for (op = i.operands; --op >= 0;)
1641 if ((i.types[op] & Disp)
1642 && i.op[op].imms->X_op == O_constant)
1643 {
1644 offsetT disp = i.op[op].disps->X_add_number;
1645
1646 if (i.types[op] & Disp16)
1647 {
1648 /* We know this operand is at most 16 bits, so
1649 convert to a signed 16 bit number before trying
1650 to see whether it will fit in an even smaller
1651 size. */
1652
1653 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
1654 }
1655 else if (i.types[op] & Disp32)
1656 {
1657 /* We know this operand is at most 32 bits, so convert to a
1658 signed 32 bit number before trying to see whether it will
1659 fit in an even smaller size. */
1660 disp &= (((offsetT) 2 << 31) - 1);
1661 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1662 }
1663 if (flag_code == CODE_64BIT)
1664 {
1665 if (fits_in_signed_long (disp))
1666 i.types[op] |= Disp32S;
1667 if (fits_in_unsigned_long (disp))
1668 i.types[op] |= Disp32;
1669 }
1670 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
1671 && fits_in_signed_byte (disp))
1672 i.types[op] |= Disp8;
1673 }
1674 }
1675
1676 overlap0 = 0;
1677 overlap1 = 0;
1678 overlap2 = 0;
1679 found_reverse_match = 0;
1680 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
1681 ? No_bSuf
1682 : (i.suffix == WORD_MNEM_SUFFIX
1683 ? No_wSuf
1684 : (i.suffix == SHORT_MNEM_SUFFIX
1685 ? No_sSuf
1686 : (i.suffix == LONG_MNEM_SUFFIX
1687 ? No_lSuf
1688 : (i.suffix == QWORD_MNEM_SUFFIX
1689 ? No_qSuf
1690 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0))))));
1691
1692 for (t = current_templates->start;
1693 t < current_templates->end;
1694 t++)
1695 {
1696 /* Must have right number of operands. */
1697 if (i.operands != t->operands)
1698 continue;
1699
1700 /* Check the suffix, except for some instructions in intel mode. */
1701 if ((t->opcode_modifier & suffix_check)
1702 && !(intel_syntax
1703 && (t->opcode_modifier & IgnoreSize))
1704 && !(intel_syntax
1705 && t->base_opcode == 0xd9
1706 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
1707 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
1708 continue;
1709
1710 /* Do not verify operands when there are none. */
1711 else if (!t->operands)
1712 {
1713 if (t->cpu_flags & ~cpu_arch_flags)
1714 continue;
1715 /* We've found a match; break out of loop. */
1716 break;
1717 }
1718
1719 overlap0 = i.types[0] & t->operand_types[0];
1720 switch (t->operands)
1721 {
1722 case 1:
1723 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
1724 continue;
1725 break;
1726 case 2:
1727 case 3:
1728 overlap1 = i.types[1] & t->operand_types[1];
1729 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
1730 || !MATCH (overlap1, i.types[1], t->operand_types[1])
1731 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1732 t->operand_types[0],
1733 overlap1, i.types[1],
1734 t->operand_types[1]))
1735 {
1736 /* Check if other direction is valid ... */
1737 if ((t->opcode_modifier & (D|FloatD)) == 0)
1738 continue;
1739
1740 /* Try reversing direction of operands. */
1741 overlap0 = i.types[0] & t->operand_types[1];
1742 overlap1 = i.types[1] & t->operand_types[0];
1743 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
1744 || !MATCH (overlap1, i.types[1], t->operand_types[0])
1745 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1746 t->operand_types[1],
1747 overlap1, i.types[1],
1748 t->operand_types[0]))
1749 {
1750 /* Does not match either direction. */
1751 continue;
1752 }
1753 /* found_reverse_match holds which of D or FloatDR
1754 we've found. */
1755 found_reverse_match = t->opcode_modifier & (D|FloatDR);
1756 }
1757 /* Found a forward 2 operand match here. */
1758 else if (t->operands == 3)
1759 {
1760 /* Here we make use of the fact that there are no
1761 reverse match 3 operand instructions, and all 3
1762 operand instructions only need to be checked for
1763 register consistency between operands 2 and 3. */
1764 overlap2 = i.types[2] & t->operand_types[2];
1765 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
1766 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
1767 t->operand_types[1],
1768 overlap2, i.types[2],
1769 t->operand_types[2]))
1770
1771 continue;
1772 }
1773 /* Found either forward/reverse 2 or 3 operand match here:
1774 slip through to break. */
1775 }
1776 if (t->cpu_flags & ~cpu_arch_flags)
1777 {
1778 found_reverse_match = 0;
1779 continue;
1780 }
1781 /* We've found a match; break out of loop. */
1782 break;
1783 }
1784 if (t == current_templates->end)
1785 {
1786 /* We found no match. */
1787 as_bad (_("suffix or operands invalid for `%s'"),
1788 current_templates->start->name);
1789 return;
1790 }
1791
1792 if (!quiet_warnings)
1793 {
1794 if (!intel_syntax
1795 && ((i.types[0] & JumpAbsolute)
1796 != (t->operand_types[0] & JumpAbsolute)))
1797 {
1798 as_warn (_("indirect %s without `*'"), t->name);
1799 }
1800
1801 if ((t->opcode_modifier & (IsPrefix|IgnoreSize))
1802 == (IsPrefix|IgnoreSize))
1803 {
1804 /* Warn them that a data or address size prefix doesn't
1805 affect assembly of the next line of code. */
1806 as_warn (_("stand-alone `%s' prefix"), t->name);
1807 }
1808 }
1809
1810 /* Copy the template we found. */
1811 i.tm = *t;
1812 if (found_reverse_match)
1813 {
1814 /* If we found a reverse match we must alter the opcode
1815 direction bit. found_reverse_match holds bits to change
1816 (different for int & float insns). */
1817
1818 i.tm.base_opcode ^= found_reverse_match;
1819
1820 i.tm.operand_types[0] = t->operand_types[1];
1821 i.tm.operand_types[1] = t->operand_types[0];
1822 }
1823
1824 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1825 if (SYSV386_COMPAT
1826 && intel_syntax
1827 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1828 i.tm.base_opcode ^= FloatR;
1829
1830 if (i.tm.opcode_modifier & FWait)
1831 if (! add_prefix (FWAIT_OPCODE))
1832 return;
1833
1834 /* Check string instruction segment overrides. */
1835 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1836 {
1837 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
1838 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
1839 {
1840 if (i.seg[0] != NULL && i.seg[0] != &es)
1841 {
1842 as_bad (_("`%s' operand %d must use `%%es' segment"),
1843 i.tm.name,
1844 mem_op + 1);
1845 return;
1846 }
1847 /* There's only ever one segment override allowed per instruction.
1848 This instruction possibly has a legal segment override on the
1849 second operand, so copy the segment to where non-string
1850 instructions store it, allowing common code. */
1851 i.seg[0] = i.seg[1];
1852 }
1853 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
1854 {
1855 if (i.seg[1] != NULL && i.seg[1] != &es)
1856 {
1857 as_bad (_("`%s' operand %d must use `%%es' segment"),
1858 i.tm.name,
1859 mem_op + 2);
1860 return;
1861 }
1862 }
1863 }
1864
1865 if (i.reg_operands && flag_code < CODE_64BIT)
1866 {
1867 int op;
1868 for (op = i.operands; --op >= 0; )
1869 if ((i.types[op] & Reg)
1870 && (i.op[op].regs->reg_flags & (RegRex64|RegRex)))
1871 {
1872 as_bad (_("Extended register `%%%s' available only in 64bit mode."),
1873 i.op[op].regs->reg_name);
1874 return;
1875 }
1876 }
1877
1878 /* If matched instruction specifies an explicit instruction mnemonic
1879 suffix, use it. */
1880 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
1881 {
1882 if (i.tm.opcode_modifier & Size16)
1883 i.suffix = WORD_MNEM_SUFFIX;
1884 else if (i.tm.opcode_modifier & Size64)
1885 i.suffix = QWORD_MNEM_SUFFIX;
1886 else
1887 i.suffix = LONG_MNEM_SUFFIX;
1888 }
1889 else if (i.reg_operands)
1890 {
1891 /* If there's no instruction mnemonic suffix we try to invent one
1892 based on register operands. */
1893 if (!i.suffix)
1894 {
1895 /* We take i.suffix from the last register operand specified,
1896 Destination register type is more significant than source
1897 register type. */
1898 int op;
1899 for (op = i.operands; --op >= 0;)
1900 if ((i.types[op] & Reg)
1901 && !(i.tm.operand_types[op] & InOutPortReg))
1902 {
1903 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
1904 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
1905 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
1906 LONG_MNEM_SUFFIX);
1907 break;
1908 }
1909 }
1910 else if (i.suffix == BYTE_MNEM_SUFFIX)
1911 {
1912 int op;
1913 for (op = i.operands; --op >= 0;)
1914 {
1915 /* If this is an eight bit register, it's OK. If it's
1916 the 16 or 32 bit version of an eight bit register,
1917 we will just use the low portion, and that's OK too. */
1918 if (i.types[op] & Reg8)
1919 continue;
1920
1921 /* movzx and movsx should not generate this warning. */
1922 if (intel_syntax
1923 && (i.tm.base_opcode == 0xfb7
1924 || i.tm.base_opcode == 0xfb6
1925 || i.tm.base_opcode == 0x63
1926 || i.tm.base_opcode == 0xfbe
1927 || i.tm.base_opcode == 0xfbf))
1928 continue;
1929
1930 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
1931 #if 0
1932 /* Check that the template allows eight bit regs
1933 This kills insns such as `orb $1,%edx', which
1934 maybe should be allowed. */
1935 && (i.tm.operand_types[op] & (Reg8|InOutPortReg))
1936 #endif
1937 )
1938 {
1939 /* Prohibit these changes in the 64bit mode, since
1940 the lowering is more complicated. */
1941 if (flag_code == CODE_64BIT
1942 && (i.tm.operand_types[op] & InOutPortReg) == 0)
1943 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
1944 i.op[op].regs->reg_name,
1945 i.suffix);
1946 #if REGISTER_WARNINGS
1947 if (!quiet_warnings
1948 && (i.tm.operand_types[op] & InOutPortReg) == 0)
1949 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
1950 (i.op[op].regs - (i.types[op] & Reg16 ? 8 : 16))->reg_name,
1951 i.op[op].regs->reg_name,
1952 i.suffix);
1953 #endif
1954 continue;
1955 }
1956 /* Any other register is bad. */
1957 if (i.types[op] & (Reg | RegMMX | RegXMM
1958 | SReg2 | SReg3
1959 | Control | Debug | Test
1960 | FloatReg | FloatAcc))
1961 {
1962 as_bad (_("`%%%s' not allowed with `%s%c'"),
1963 i.op[op].regs->reg_name,
1964 i.tm.name,
1965 i.suffix);
1966 return;
1967 }
1968 }
1969 }
1970 else if (i.suffix == LONG_MNEM_SUFFIX)
1971 {
1972 int op;
1973
1974 for (op = i.operands; --op >= 0;)
1975 /* Reject eight bit registers, except where the template
1976 requires them. (eg. movzb) */
1977 if ((i.types[op] & Reg8) != 0
1978 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
1979 {
1980 as_bad (_("`%%%s' not allowed with `%s%c'"),
1981 i.op[op].regs->reg_name,
1982 i.tm.name,
1983 i.suffix);
1984 return;
1985 }
1986 /* Warn if the e prefix on a general reg is missing. */
1987 else if ((!quiet_warnings || flag_code == CODE_64BIT)
1988 && (i.types[op] & Reg16) != 0
1989 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
1990 {
1991 /* Prohibit these changes in the 64bit mode, since
1992 the lowering is more complicated. */
1993 if (flag_code == CODE_64BIT)
1994 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
1995 i.op[op].regs->reg_name,
1996 i.suffix);
1997 #if REGISTER_WARNINGS
1998 else
1999 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2000 (i.op[op].regs + 8)->reg_name,
2001 i.op[op].regs->reg_name,
2002 i.suffix);
2003 #endif
2004 }
2005 /* Warn if the r prefix on a general reg is missing. */
2006 else if ((i.types[op] & Reg64) != 0
2007 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2008 {
2009 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2010 i.op[op].regs->reg_name,
2011 i.suffix);
2012 }
2013 }
2014 else if (i.suffix == QWORD_MNEM_SUFFIX)
2015 {
2016 int op;
2017
2018 for (op = i.operands; --op >= 0; )
2019 /* Reject eight bit registers, except where the template
2020 requires them. (eg. movzb) */
2021 if ((i.types[op] & Reg8) != 0
2022 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2023 {
2024 as_bad (_("`%%%s' not allowed with `%s%c'"),
2025 i.op[op].regs->reg_name,
2026 i.tm.name,
2027 i.suffix);
2028 return;
2029 }
2030 /* Warn if the e prefix on a general reg is missing. */
2031 else if (((i.types[op] & Reg16) != 0
2032 || (i.types[op] & Reg32) != 0)
2033 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2034 {
2035 /* Prohibit these changes in the 64bit mode, since
2036 the lowering is more complicated. */
2037 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2038 i.op[op].regs->reg_name,
2039 i.suffix);
2040 }
2041 }
2042 else if (i.suffix == WORD_MNEM_SUFFIX)
2043 {
2044 int op;
2045 for (op = i.operands; --op >= 0;)
2046 /* Reject eight bit registers, except where the template
2047 requires them. (eg. movzb) */
2048 if ((i.types[op] & Reg8) != 0
2049 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2050 {
2051 as_bad (_("`%%%s' not allowed with `%s%c'"),
2052 i.op[op].regs->reg_name,
2053 i.tm.name,
2054 i.suffix);
2055 return;
2056 }
2057 /* Warn if the e prefix on a general reg is present. */
2058 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2059 && (i.types[op] & Reg32) != 0
2060 && (i.tm.operand_types[op] & (Reg16|Acc)) != 0)
2061 {
2062 /* Prohibit these changes in the 64bit mode, since
2063 the lowering is more complicated. */
2064 if (flag_code == CODE_64BIT)
2065 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2066 i.op[op].regs->reg_name,
2067 i.suffix);
2068 else
2069 #if REGISTER_WARNINGS
2070 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2071 (i.op[op].regs - 8)->reg_name,
2072 i.op[op].regs->reg_name,
2073 i.suffix);
2074 #endif
2075 }
2076 }
2077 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2078 /* Do nothing if the instruction is going to ignore the prefix. */
2079 ;
2080 else
2081 abort ();
2082 }
2083 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2084 {
2085 i.suffix = stackop_size;
2086 }
2087 /* Make still unresolved immediate matches conform to size of immediate
2088 given in i.suffix. Note: overlap2 cannot be an immediate! */
2089 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
2090 && overlap0 != Imm8 && overlap0 != Imm8S
2091 && overlap0 != Imm16 && overlap0 != Imm32S
2092 && overlap0 != Imm32 && overlap0 != Imm64)
2093 {
2094 if (i.suffix)
2095 {
2096 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
2097 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
2098 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
2099 }
2100 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2101 || overlap0 == (Imm16 | Imm32)
2102 || overlap0 == (Imm16 | Imm32S))
2103 {
2104 overlap0 =
2105 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
2106 }
2107 if (overlap0 != Imm8 && overlap0 != Imm8S
2108 && overlap0 != Imm16 && overlap0 != Imm32S
2109 && overlap0 != Imm32 && overlap0 != Imm64)
2110 {
2111 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2112 return;
2113 }
2114 }
2115 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
2116 && overlap1 != Imm8 && overlap1 != Imm8S
2117 && overlap1 != Imm16 && overlap1 != Imm32S
2118 && overlap1 != Imm32 && overlap1 != Imm64)
2119 {
2120 if (i.suffix)
2121 {
2122 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
2123 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
2124 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
2125 }
2126 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2127 || overlap1 == (Imm16 | Imm32)
2128 || overlap1 == (Imm16 | Imm32S))
2129 {
2130 overlap1 =
2131 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
2132 }
2133 if (overlap1 != Imm8 && overlap1 != Imm8S
2134 && overlap1 != Imm16 && overlap1 != Imm32S
2135 && overlap1 != Imm32 && overlap1 != Imm64)
2136 {
2137 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2138 return;
2139 }
2140 }
2141 assert ((overlap2 & Imm) == 0);
2142
2143 i.types[0] = overlap0;
2144 if (overlap0 & ImplicitRegister)
2145 i.reg_operands--;
2146 if (overlap0 & Imm1)
2147 i.imm_operands = 0; /* kludge for shift insns. */
2148
2149 i.types[1] = overlap1;
2150 if (overlap1 & ImplicitRegister)
2151 i.reg_operands--;
2152
2153 i.types[2] = overlap2;
2154 if (overlap2 & ImplicitRegister)
2155 i.reg_operands--;
2156
2157 /* Finalize opcode. First, we change the opcode based on the operand
2158 size given by i.suffix: We need not change things for byte insns. */
2159
2160 if (!i.suffix && (i.tm.opcode_modifier & W))
2161 {
2162 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2163 return;
2164 }
2165
2166 /* For movzx and movsx, need to check the register type. */
2167 if (intel_syntax
2168 && (i.tm.base_opcode == 0xfb6 || i.tm.base_opcode == 0xfbe))
2169 if (i.suffix && i.suffix == BYTE_MNEM_SUFFIX)
2170 {
2171 unsigned int prefix = DATA_PREFIX_OPCODE;
2172
2173 if ((i.op[1].regs->reg_type & Reg16) != 0)
2174 if (!add_prefix (prefix))
2175 return;
2176 }
2177
2178 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2179 {
2180 /* It's not a byte, select word/dword operation. */
2181 if (i.tm.opcode_modifier & W)
2182 {
2183 if (i.tm.opcode_modifier & ShortForm)
2184 i.tm.base_opcode |= 8;
2185 else
2186 i.tm.base_opcode |= 1;
2187 }
2188 /* Now select between word & dword operations via the operand
2189 size prefix, except for instructions that will ignore this
2190 prefix anyway. */
2191 if (i.suffix != QWORD_MNEM_SUFFIX
2192 && (i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2193 && !(i.tm.opcode_modifier & IgnoreSize))
2194 {
2195 unsigned int prefix = DATA_PREFIX_OPCODE;
2196 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2197 prefix = ADDR_PREFIX_OPCODE;
2198
2199 if (! add_prefix (prefix))
2200 return;
2201 }
2202
2203 /* Set mode64 for an operand. */
2204 if (i.suffix == QWORD_MNEM_SUFFIX
2205 && !(i.tm.opcode_modifier & NoRex64))
2206 {
2207 i.rex.mode64 = 1;
2208 if (flag_code < CODE_64BIT)
2209 {
2210 as_bad (_("64bit operations available only in 64bit modes."));
2211 return;
2212 }
2213 }
2214
2215 /* Size floating point instruction. */
2216 if (i.suffix == LONG_MNEM_SUFFIX)
2217 {
2218 if (i.tm.opcode_modifier & FloatMF)
2219 i.tm.base_opcode ^= 4;
2220 }
2221 }
2222
2223 if (i.tm.opcode_modifier & ImmExt)
2224 {
2225 /* These AMD 3DNow! and Intel Katmai New Instructions have an
2226 opcode suffix which is coded in the same place as an 8-bit
2227 immediate field would be. Here we fake an 8-bit immediate
2228 operand from the opcode suffix stored in tm.extension_opcode. */
2229
2230 expressionS *exp;
2231
2232 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
2233
2234 exp = &im_expressions[i.imm_operands++];
2235 i.op[i.operands].imms = exp;
2236 i.types[i.operands++] = Imm8;
2237 exp->X_op = O_constant;
2238 exp->X_add_number = i.tm.extension_opcode;
2239 i.tm.extension_opcode = None;
2240 }
2241
2242 /* For insns with operands there are more diddles to do to the opcode. */
2243 if (i.operands)
2244 {
2245 /* Default segment register this instruction will use
2246 for memory accesses. 0 means unknown.
2247 This is only for optimizing out unnecessary segment overrides. */
2248 const seg_entry *default_seg = 0;
2249
2250 /* The imul $imm, %reg instruction is converted into
2251 imul $imm, %reg, %reg, and the clr %reg instruction
2252 is converted into xor %reg, %reg. */
2253 if (i.tm.opcode_modifier & regKludge)
2254 {
2255 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2256 /* Pretend we saw the extra register operand. */
2257 assert (i.op[first_reg_op + 1].regs == 0);
2258 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2259 i.types[first_reg_op + 1] = i.types[first_reg_op];
2260 i.reg_operands = 2;
2261 }
2262
2263 if (i.tm.opcode_modifier & ShortForm)
2264 {
2265 /* The register or float register operand is in operand 0 or 1. */
2266 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2267 /* Register goes in low 3 bits of opcode. */
2268 i.tm.base_opcode |= i.op[op].regs->reg_num;
2269 if (i.op[op].regs->reg_flags & RegRex)
2270 i.rex.extZ=1;
2271 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2272 {
2273 /* Warn about some common errors, but press on regardless.
2274 The first case can be generated by gcc (<= 2.8.1). */
2275 if (i.operands == 2)
2276 {
2277 /* Reversed arguments on faddp, fsubp, etc. */
2278 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2279 i.op[1].regs->reg_name,
2280 i.op[0].regs->reg_name);
2281 }
2282 else
2283 {
2284 /* Extraneous `l' suffix on fp insn. */
2285 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2286 i.op[0].regs->reg_name);
2287 }
2288 }
2289 }
2290 else if (i.tm.opcode_modifier & Modrm)
2291 {
2292 /* The opcode is completed (modulo i.tm.extension_opcode which
2293 must be put into the modrm byte).
2294 Now, we make the modrm & index base bytes based on all the
2295 info we've collected. */
2296
2297 /* i.reg_operands MUST be the number of real register operands;
2298 implicit registers do not count. */
2299 if (i.reg_operands == 2)
2300 {
2301 unsigned int source, dest;
2302 source = ((i.types[0]
2303 & (Reg | RegMMX | RegXMM
2304 | SReg2 | SReg3
2305 | Control | Debug | Test))
2306 ? 0 : 1);
2307 dest = source + 1;
2308
2309 i.rm.mode = 3;
2310 /* One of the register operands will be encoded in the
2311 i.tm.reg field, the other in the combined i.tm.mode
2312 and i.tm.regmem fields. If no form of this
2313 instruction supports a memory destination operand,
2314 then we assume the source operand may sometimes be
2315 a memory operand and so we need to store the
2316 destination in the i.rm.reg field. */
2317 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2318 {
2319 i.rm.reg = i.op[dest].regs->reg_num;
2320 i.rm.regmem = i.op[source].regs->reg_num;
2321 if (i.op[dest].regs->reg_flags & RegRex)
2322 i.rex.extX=1;
2323 if (i.op[source].regs->reg_flags & RegRex)
2324 i.rex.extZ=1;
2325 }
2326 else
2327 {
2328 i.rm.reg = i.op[source].regs->reg_num;
2329 i.rm.regmem = i.op[dest].regs->reg_num;
2330 if (i.op[dest].regs->reg_flags & RegRex)
2331 i.rex.extZ=1;
2332 if (i.op[source].regs->reg_flags & RegRex)
2333 i.rex.extX=1;
2334 }
2335 }
2336 else
2337 { /* If it's not 2 reg operands... */
2338 if (i.mem_operands)
2339 {
2340 unsigned int fake_zero_displacement = 0;
2341 unsigned int op = ((i.types[0] & AnyMem)
2342 ? 0
2343 : (i.types[1] & AnyMem) ? 1 : 2);
2344
2345 default_seg = &ds;
2346
2347 if (! i.base_reg)
2348 {
2349 i.rm.mode = 0;
2350 if (! i.disp_operands)
2351 fake_zero_displacement = 1;
2352 if (! i.index_reg)
2353 {
2354 /* Operand is just <disp> */
2355 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
2356 {
2357 i.rm.regmem = NO_BASE_REGISTER_16;
2358 i.types[op] &= ~Disp;
2359 i.types[op] |= Disp16;
2360 }
2361 else if (flag_code != CODE_64BIT)
2362 {
2363 i.rm.regmem = NO_BASE_REGISTER;
2364 i.types[op] &= ~Disp;
2365 i.types[op] |= Disp32;
2366 }
2367 else
2368 {
2369 /* 64bit mode overwrites the 32bit absolute addressing
2370 by RIP relative addressing and absolute addressing
2371 is encoded by one of the redundant SIB forms. */
2372
2373 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2374 i.sib.base = NO_BASE_REGISTER;
2375 i.sib.index = NO_INDEX_REGISTER;
2376 i.types[op] &= ~Disp;
2377 i.types[op] |= Disp32S;
2378 }
2379 }
2380 else /* ! i.base_reg && i.index_reg */
2381 {
2382 i.sib.index = i.index_reg->reg_num;
2383 i.sib.base = NO_BASE_REGISTER;
2384 i.sib.scale = i.log2_scale_factor;
2385 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2386 i.types[op] &= ~Disp;
2387 if (flag_code != CODE_64BIT)
2388 i.types[op] |= Disp32; /* Must be 32 bit */
2389 else
2390 i.types[op] |= Disp32S;
2391 if (i.index_reg->reg_flags & RegRex)
2392 i.rex.extY=1;
2393 }
2394 }
2395 /* RIP addressing for 64bit mode. */
2396 else if (i.base_reg->reg_type == BaseIndex)
2397 {
2398 i.rm.regmem = NO_BASE_REGISTER;
2399 i.types[op] &= ~Disp;
2400 i.types[op] |= Disp32S;
2401 i.flags[op] = Operand_PCrel;
2402 }
2403 else if (i.base_reg->reg_type & Reg16)
2404 {
2405 switch (i.base_reg->reg_num)
2406 {
2407 case 3: /* (%bx) */
2408 if (! i.index_reg)
2409 i.rm.regmem = 7;
2410 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2411 i.rm.regmem = i.index_reg->reg_num - 6;
2412 break;
2413 case 5: /* (%bp) */
2414 default_seg = &ss;
2415 if (! i.index_reg)
2416 {
2417 i.rm.regmem = 6;
2418 if ((i.types[op] & Disp) == 0)
2419 {
2420 /* fake (%bp) into 0(%bp) */
2421 i.types[op] |= Disp8;
2422 fake_zero_displacement = 1;
2423 }
2424 }
2425 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2426 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2427 break;
2428 default: /* (%si) -> 4 or (%di) -> 5 */
2429 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2430 }
2431 i.rm.mode = mode_from_disp_size (i.types[op]);
2432 }
2433 else /* i.base_reg and 32/64 bit mode */
2434 {
2435 if (flag_code == CODE_64BIT
2436 && (i.types[op] & Disp))
2437 {
2438 if (i.types[op] & Disp8)
2439 i.types[op] = Disp8 | Disp32S;
2440 else
2441 i.types[op] = Disp32S;
2442 }
2443 i.rm.regmem = i.base_reg->reg_num;
2444 if (i.base_reg->reg_flags & RegRex)
2445 i.rex.extZ=1;
2446 i.sib.base = i.base_reg->reg_num;
2447 /* x86-64 ignores REX prefix bit here to avoid
2448 decoder complications. */
2449 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2450 {
2451 default_seg = &ss;
2452 if (i.disp_operands == 0)
2453 {
2454 fake_zero_displacement = 1;
2455 i.types[op] |= Disp8;
2456 }
2457 }
2458 else if (i.base_reg->reg_num == ESP_REG_NUM)
2459 {
2460 default_seg = &ss;
2461 }
2462 i.sib.scale = i.log2_scale_factor;
2463 if (! i.index_reg)
2464 {
2465 /* <disp>(%esp) becomes two byte modrm
2466 with no index register. We've already
2467 stored the code for esp in i.rm.regmem
2468 ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. Any
2469 base register besides %esp will not use
2470 the extra modrm byte. */
2471 i.sib.index = NO_INDEX_REGISTER;
2472 #if ! SCALE1_WHEN_NO_INDEX
2473 /* Another case where we force the second
2474 modrm byte. */
2475 if (i.log2_scale_factor)
2476 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2477 #endif
2478 }
2479 else
2480 {
2481 i.sib.index = i.index_reg->reg_num;
2482 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2483 if (i.index_reg->reg_flags & RegRex)
2484 i.rex.extY=1;
2485 }
2486 i.rm.mode = mode_from_disp_size (i.types[op]);
2487 }
2488
2489 if (fake_zero_displacement)
2490 {
2491 /* Fakes a zero displacement assuming that i.types[op]
2492 holds the correct displacement size. */
2493 expressionS *exp;
2494
2495 assert (i.op[op].disps == 0);
2496 exp = &disp_expressions[i.disp_operands++];
2497 i.op[op].disps = exp;
2498 exp->X_op = O_constant;
2499 exp->X_add_number = 0;
2500 exp->X_add_symbol = (symbolS *) 0;
2501 exp->X_op_symbol = (symbolS *) 0;
2502 }
2503 }
2504
2505 /* Fill in i.rm.reg or i.rm.regmem field with register
2506 operand (if any) based on i.tm.extension_opcode.
2507 Again, we must be careful to make sure that
2508 segment/control/debug/test/MMX registers are coded
2509 into the i.rm.reg field. */
2510 if (i.reg_operands)
2511 {
2512 unsigned int op =
2513 ((i.types[0]
2514 & (Reg | RegMMX | RegXMM
2515 | SReg2 | SReg3
2516 | Control | Debug | Test))
2517 ? 0
2518 : ((i.types[1]
2519 & (Reg | RegMMX | RegXMM
2520 | SReg2 | SReg3
2521 | Control | Debug | Test))
2522 ? 1
2523 : 2));
2524 /* If there is an extension opcode to put here, the
2525 register number must be put into the regmem field. */
2526 if (i.tm.extension_opcode != None)
2527 {
2528 i.rm.regmem = i.op[op].regs->reg_num;
2529 if (i.op[op].regs->reg_flags & RegRex)
2530 i.rex.extZ=1;
2531 }
2532 else
2533 {
2534 i.rm.reg = i.op[op].regs->reg_num;
2535 if (i.op[op].regs->reg_flags & RegRex)
2536 i.rex.extX=1;
2537 }
2538
2539 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2
2540 we must set it to 3 to indicate this is a register
2541 operand in the regmem field. */
2542 if (!i.mem_operands)
2543 i.rm.mode = 3;
2544 }
2545
2546 /* Fill in i.rm.reg field with extension opcode (if any). */
2547 if (i.tm.extension_opcode != None)
2548 i.rm.reg = i.tm.extension_opcode;
2549 }
2550 }
2551 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2552 {
2553 if (i.tm.base_opcode == POP_SEG_SHORT
2554 && i.op[0].regs->reg_num == 1)
2555 {
2556 as_bad (_("you can't `pop %%cs'"));
2557 return;
2558 }
2559 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2560 if (i.op[0].regs->reg_flags & RegRex)
2561 i.rex.extZ = 1;
2562 }
2563 else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32)
2564 {
2565 default_seg = &ds;
2566 }
2567 else if ((i.tm.opcode_modifier & IsString) != 0)
2568 {
2569 /* For the string instructions that allow a segment override
2570 on one of their operands, the default segment is ds. */
2571 default_seg = &ds;
2572 }
2573
2574 /* If a segment was explicitly specified,
2575 and the specified segment is not the default,
2576 use an opcode prefix to select it.
2577 If we never figured out what the default segment is,
2578 then default_seg will be zero at this point,
2579 and the specified segment prefix will always be used. */
2580 if ((i.seg[0]) && (i.seg[0] != default_seg))
2581 {
2582 if (! add_prefix (i.seg[0]->seg_prefix))
2583 return;
2584 }
2585 }
2586 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2587 {
2588 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2589 as_warn (_("translating to `%sp'"), i.tm.name);
2590 }
2591 }
2592
2593 /* Handle conversion of 'int $3' --> special int3 insn. */
2594 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
2595 {
2596 i.tm.base_opcode = INT3_OPCODE;
2597 i.imm_operands = 0;
2598 }
2599
2600 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
2601 && i.op[0].disps->X_op == O_constant)
2602 {
2603 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2604 the absolute address given by the constant. Since ix86 jumps and
2605 calls are pc relative, we need to generate a reloc. */
2606 i.op[0].disps->X_add_symbol = &abs_symbol;
2607 i.op[0].disps->X_op = O_symbol;
2608 }
2609
2610 if (i.tm.opcode_modifier & Rex64)
2611 i.rex.mode64 = 1;
2612
2613 /* For 8bit registers we would need an empty rex prefix.
2614 Also in the case instruction is already having prefix,
2615 we need to convert old registers to new ones. */
2616
2617 if (((i.types[0] & Reg8) && (i.op[0].regs->reg_flags & RegRex64))
2618 || ((i.types[1] & Reg8) && (i.op[1].regs->reg_flags & RegRex64))
2619 || ((i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2620 && ((i.types[0] & Reg8) || (i.types[1] & Reg8))))
2621 {
2622 int x;
2623 i.rex.empty=1;
2624 for (x = 0; x < 2; x++)
2625 {
2626 /* Look for 8bit operand that does use old registers. */
2627 if (i.types[x] & Reg8
2628 && !(i.op[x].regs->reg_flags & RegRex64))
2629 {
2630 /* In case it is "hi" register, give up. */
2631 if (i.op[x].regs->reg_num > 3)
2632 as_bad (_("Can't encode registers '%%%s' in the instruction requiring REX prefix.\n"),
2633 i.op[x].regs->reg_name);
2634
2635 /* Otherwise it is equivalent to the extended register.
2636 Since the encoding don't change this is merely cosmetical
2637 cleanup for debug output. */
2638
2639 i.op[x].regs = i.op[x].regs + 8;
2640 }
2641 }
2642 }
2643
2644 if (i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2645 add_prefix (0x40
2646 | (i.rex.mode64 ? 8 : 0)
2647 | (i.rex.extX ? 4 : 0)
2648 | (i.rex.extY ? 2 : 0)
2649 | (i.rex.extZ ? 1 : 0));
2650
2651 /* We are ready to output the insn. */
2652 {
2653 register char *p;
2654
2655 /* Output jumps. */
2656 if (i.tm.opcode_modifier & Jump)
2657 {
2658 int size;
2659 int code16;
2660 int prefix;
2661
2662 code16 = 0;
2663 if (flag_code == CODE_16BIT)
2664 code16 = CODE16;
2665
2666 prefix = 0;
2667 if (i.prefix[DATA_PREFIX])
2668 {
2669 prefix = 1;
2670 i.prefixes -= 1;
2671 code16 ^= CODE16;
2672 }
2673 if (i.prefix[REX_PREFIX])
2674 {
2675 prefix++;
2676 i.prefixes --;
2677 }
2678
2679 size = 4;
2680 if (code16)
2681 size = 2;
2682
2683 if (i.prefixes != 0 && !intel_syntax)
2684 as_warn (_("skipping prefixes on this instruction"));
2685
2686 /* It's always a symbol; End frag & setup for relax.
2687 Make sure there is enough room in this frag for the largest
2688 instruction we may generate in md_convert_frag. This is 2
2689 bytes for the opcode and room for the prefix and largest
2690 displacement. */
2691 frag_grow (prefix + 2 + size);
2692 insn_size += prefix + 1;
2693 /* Prefix and 1 opcode byte go in fr_fix. */
2694 p = frag_more (prefix + 1);
2695 if (i.prefix[DATA_PREFIX])
2696 *p++ = DATA_PREFIX_OPCODE;
2697 if (i.prefix[REX_PREFIX])
2698 *p++ = i.prefix[REX_PREFIX];
2699 *p = i.tm.base_opcode;
2700 /* 1 possible extra opcode + displacement go in var part.
2701 Pass reloc in fr_var. */
2702 frag_var (rs_machine_dependent,
2703 1 + size,
2704 i.disp_reloc[0],
2705 ((unsigned char) *p == JUMP_PC_RELATIVE
2706 ? ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL) | code16
2707 : ENCODE_RELAX_STATE (COND_JUMP, SMALL) | code16),
2708 i.op[0].disps->X_add_symbol,
2709 i.op[0].disps->X_add_number,
2710 p);
2711 }
2712 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
2713 {
2714 int size;
2715
2716 if (i.tm.opcode_modifier & JumpByte)
2717 {
2718 /* This is a loop or jecxz type instruction. */
2719 size = 1;
2720 if (i.prefix[ADDR_PREFIX])
2721 {
2722 insn_size += 1;
2723 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
2724 i.prefixes -= 1;
2725 }
2726 }
2727 else
2728 {
2729 int code16;
2730
2731 code16 = 0;
2732 if (flag_code == CODE_16BIT)
2733 code16 = CODE16;
2734
2735 if (i.prefix[DATA_PREFIX])
2736 {
2737 insn_size += 1;
2738 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
2739 i.prefixes -= 1;
2740 code16 ^= CODE16;
2741 }
2742
2743 size = 4;
2744 if (code16)
2745 size = 2;
2746 }
2747
2748 if (i.prefix[REX_PREFIX])
2749 {
2750 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
2751 insn_size++;
2752 i.prefixes -= 1;
2753 }
2754
2755 if (i.prefixes != 0 && !intel_syntax)
2756 as_warn (_("skipping prefixes on this instruction"));
2757
2758 if (fits_in_unsigned_byte (i.tm.base_opcode))
2759 {
2760 insn_size += 1 + size;
2761 p = frag_more (1 + size);
2762 }
2763 else
2764 {
2765 /* Opcode can be at most two bytes. */
2766 insn_size += 2 + size;
2767 p = frag_more (2 + size);
2768 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2769 }
2770 *p++ = i.tm.base_opcode & 0xff;
2771
2772 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2773 i.op[0].disps, 1, reloc (size, 1, 1, i.disp_reloc[0]));
2774 }
2775 else if (i.tm.opcode_modifier & JumpInterSegment)
2776 {
2777 int size;
2778 int prefix;
2779 int code16;
2780
2781 code16 = 0;
2782 if (flag_code == CODE_16BIT)
2783 code16 = CODE16;
2784
2785 prefix = 0;
2786 if (i.prefix[DATA_PREFIX])
2787 {
2788 prefix = 1;
2789 i.prefixes -= 1;
2790 code16 ^= CODE16;
2791 }
2792 if (i.prefix[REX_PREFIX])
2793 {
2794 prefix++;
2795 i.prefixes -= 1;
2796 }
2797
2798 size = 4;
2799 if (code16)
2800 size = 2;
2801
2802 if (i.prefixes != 0 && !intel_syntax)
2803 as_warn (_("skipping prefixes on this instruction"));
2804
2805 /* 1 opcode; 2 segment; offset */
2806 insn_size += prefix + 1 + 2 + size;
2807 p = frag_more (prefix + 1 + 2 + size);
2808
2809 if (i.prefix[DATA_PREFIX])
2810 *p++ = DATA_PREFIX_OPCODE;
2811
2812 if (i.prefix[REX_PREFIX])
2813 *p++ = i.prefix[REX_PREFIX];
2814
2815 *p++ = i.tm.base_opcode;
2816 if (i.op[1].imms->X_op == O_constant)
2817 {
2818 offsetT n = i.op[1].imms->X_add_number;
2819
2820 if (size == 2
2821 && !fits_in_unsigned_word (n)
2822 && !fits_in_signed_word (n))
2823 {
2824 as_bad (_("16-bit jump out of range"));
2825 return;
2826 }
2827 md_number_to_chars (p, n, size);
2828 }
2829 else
2830 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2831 i.op[1].imms, 0, reloc (size, 0, 0, i.disp_reloc[0]));
2832 if (i.op[0].imms->X_op != O_constant)
2833 as_bad (_("can't handle non absolute segment in `%s'"),
2834 i.tm.name);
2835 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
2836 }
2837 else
2838 {
2839 /* Output normal instructions here. */
2840 unsigned char *q;
2841
2842 /* All opcodes on i386 have eighter 1 or 2 bytes. We may use third
2843 byte for the SSE instructions to specify prefix they require. */
2844 if (i.tm.base_opcode & 0xff0000)
2845 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
2846
2847 /* The prefix bytes. */
2848 for (q = i.prefix;
2849 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
2850 q++)
2851 {
2852 if (*q)
2853 {
2854 insn_size += 1;
2855 p = frag_more (1);
2856 md_number_to_chars (p, (valueT) *q, 1);
2857 }
2858 }
2859
2860 /* Now the opcode; be careful about word order here! */
2861 if (fits_in_unsigned_byte (i.tm.base_opcode))
2862 {
2863 insn_size += 1;
2864 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
2865 }
2866 else
2867 {
2868 insn_size += 2;
2869 p = frag_more (2);
2870 /* Put out high byte first: can't use md_number_to_chars! */
2871 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2872 *p = i.tm.base_opcode & 0xff;
2873 }
2874
2875 /* Now the modrm byte and sib byte (if present). */
2876 if (i.tm.opcode_modifier & Modrm)
2877 {
2878 insn_size += 1;
2879 p = frag_more (1);
2880 md_number_to_chars (p,
2881 (valueT) (i.rm.regmem << 0
2882 | i.rm.reg << 3
2883 | i.rm.mode << 6),
2884 1);
2885 /* If i.rm.regmem == ESP (4)
2886 && i.rm.mode != (Register mode)
2887 && not 16 bit
2888 ==> need second modrm byte. */
2889 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
2890 && i.rm.mode != 3
2891 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
2892 {
2893 insn_size += 1;
2894 p = frag_more (1);
2895 md_number_to_chars (p,
2896 (valueT) (i.sib.base << 0
2897 | i.sib.index << 3
2898 | i.sib.scale << 6),
2899 1);
2900 }
2901 }
2902
2903 if (i.disp_operands)
2904 {
2905 register unsigned int n;
2906
2907 for (n = 0; n < i.operands; n++)
2908 {
2909 if (i.types[n] & Disp)
2910 {
2911 if (i.op[n].disps->X_op == O_constant)
2912 {
2913 int size;
2914 offsetT val;
2915
2916 size = 4;
2917 if (i.types[n] & (Disp8 | Disp16 | Disp64))
2918 {
2919 size = 2;
2920 if (i.types[n] & Disp8)
2921 size = 1;
2922 if (i.types[n] & Disp64)
2923 size = 8;
2924 }
2925 val = offset_in_range (i.op[n].disps->X_add_number,
2926 size);
2927 insn_size += size;
2928 p = frag_more (size);
2929 md_number_to_chars (p, val, size);
2930 }
2931 else
2932 {
2933 int size = 4;
2934 int sign = 0;
2935 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
2936
2937 /* The PC relative address is computed relative
2938 to the instruction boundary, so in case immediate
2939 fields follows, we need to adjust the value. */
2940 if (pcrel && i.imm_operands)
2941 {
2942 int imm_size = 4;
2943 register unsigned int n1;
2944
2945 for (n1 = 0; n1 < i.operands; n1++)
2946 if (i.types[n1] & Imm)
2947 {
2948 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
2949 {
2950 imm_size = 2;
2951 if (i.types[n1] & (Imm8 | Imm8S))
2952 imm_size = 1;
2953 if (i.types[n1] & Imm64)
2954 imm_size = 8;
2955 }
2956 break;
2957 }
2958 /* We should find the immediate. */
2959 if (n1 == i.operands)
2960 abort();
2961 i.op[n].disps->X_add_number -= imm_size;
2962 }
2963
2964 if (i.types[n] & Disp32S)
2965 sign = 1;
2966
2967 if (i.types[n] & (Disp16 | Disp64))
2968 {
2969 size = 2;
2970 if (i.types[n] & Disp64)
2971 size = 8;
2972 }
2973
2974 insn_size += size;
2975 p = frag_more (size);
2976 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2977 i.op[n].disps, pcrel,
2978 reloc (size, pcrel, sign, i.disp_reloc[n]));
2979 }
2980 }
2981 }
2982 }
2983
2984 /* Output immediate. */
2985 if (i.imm_operands)
2986 {
2987 register unsigned int n;
2988
2989 for (n = 0; n < i.operands; n++)
2990 {
2991 if (i.types[n] & Imm)
2992 {
2993 if (i.op[n].imms->X_op == O_constant)
2994 {
2995 int size;
2996 offsetT val;
2997
2998 size = 4;
2999 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3000 {
3001 size = 2;
3002 if (i.types[n] & (Imm8 | Imm8S))
3003 size = 1;
3004 else if (i.types[n] & Imm64)
3005 size = 8;
3006 }
3007 val = offset_in_range (i.op[n].imms->X_add_number,
3008 size);
3009 insn_size += size;
3010 p = frag_more (size);
3011 md_number_to_chars (p, val, size);
3012 }
3013 else
3014 {
3015 /* Not absolute_section.
3016 Need a 32-bit fixup (don't support 8bit
3017 non-absolute imms). Try to support other
3018 sizes ... */
3019 #ifdef BFD_ASSEMBLER
3020 enum bfd_reloc_code_real reloc_type;
3021 #else
3022 int reloc_type;
3023 #endif
3024 int size = 4;
3025 int sign = 0;
3026
3027 if ((i.types[n] & (Imm32S))
3028 && i.suffix == QWORD_MNEM_SUFFIX)
3029 sign = 1;
3030 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3031 {
3032 size = 2;
3033 if (i.types[n] & (Imm8 | Imm8S))
3034 size = 1;
3035 if (i.types[n] & Imm64)
3036 size = 8;
3037 }
3038
3039 insn_size += size;
3040 p = frag_more (size);
3041 reloc_type = reloc (size, 0, sign, i.disp_reloc[0]);
3042 #ifdef BFD_ASSEMBLER
3043 if (reloc_type == BFD_RELOC_32
3044 && GOT_symbol
3045 && GOT_symbol == i.op[n].imms->X_add_symbol
3046 && (i.op[n].imms->X_op == O_symbol
3047 || (i.op[n].imms->X_op == O_add
3048 && ((symbol_get_value_expression
3049 (i.op[n].imms->X_op_symbol)->X_op)
3050 == O_subtract))))
3051 {
3052 /* We don't support dynamic linking on x86-64 yet. */
3053 if (flag_code == CODE_64BIT)
3054 abort();
3055 reloc_type = BFD_RELOC_386_GOTPC;
3056 i.op[n].imms->X_add_number += 3;
3057 }
3058 #endif
3059 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3060 i.op[n].imms, 0, reloc_type);
3061 }
3062 }
3063 }
3064 }
3065 }
3066
3067 dwarf2_emit_insn (insn_size);
3068
3069 #ifdef DEBUG386
3070 if (flag_debug)
3071 {
3072 pi (line, &i);
3073 }
3074 #endif /* DEBUG386 */
3075 }
3076 }
3077 \f
3078 static int i386_immediate PARAMS ((char *));
3079
3080 static int
3081 i386_immediate (imm_start)
3082 char *imm_start;
3083 {
3084 char *save_input_line_pointer;
3085 segT exp_seg = 0;
3086 expressionS *exp;
3087
3088 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3089 {
3090 as_bad (_("only 1 or 2 immediate operands are allowed"));
3091 return 0;
3092 }
3093
3094 exp = &im_expressions[i.imm_operands++];
3095 i.op[this_operand].imms = exp;
3096
3097 if (is_space_char (*imm_start))
3098 ++imm_start;
3099
3100 save_input_line_pointer = input_line_pointer;
3101 input_line_pointer = imm_start;
3102
3103 #ifndef LEX_AT
3104 {
3105 /* We can have operands of the form
3106 <symbol>@GOTOFF+<nnn>
3107 Take the easy way out here and copy everything
3108 into a temporary buffer... */
3109 register char *cp;
3110
3111 cp = strchr (input_line_pointer, '@');
3112 if (cp != NULL)
3113 {
3114 char *tmpbuf;
3115 int len = 0;
3116 int first;
3117
3118 /* GOT relocations are not supported in 16 bit mode. */
3119 if (flag_code == CODE_16BIT)
3120 as_bad (_("GOT relocations not supported in 16 bit mode"));
3121
3122 if (GOT_symbol == NULL)
3123 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3124
3125 if (strncmp (cp + 1, "PLT", 3) == 0)
3126 {
3127 if (flag_code == CODE_64BIT)
3128 i.disp_reloc[this_operand] = BFD_RELOC_X86_64_PLT32;
3129 else
3130 i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
3131 len = 3;
3132 }
3133 else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
3134 {
3135 if (flag_code == CODE_64BIT)
3136 as_bad ("GOTOFF relocations are unsupported in 64bit mode.");
3137 i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF;
3138 len = 6;
3139 }
3140 else if (strncmp (cp + 1, "GOTPCREL", 8) == 0)
3141 {
3142 if (flag_code == CODE_64BIT)
3143 i.disp_reloc[this_operand] = BFD_RELOC_X86_64_GOTPCREL;
3144 else
3145 as_bad ("GOTPCREL relocations are supported only in 64bit mode.");
3146 len = 8;
3147 }
3148 else if (strncmp (cp + 1, "GOT", 3) == 0)
3149 {
3150 if (flag_code == CODE_64BIT)
3151 i.disp_reloc[this_operand] = BFD_RELOC_X86_64_GOT32;
3152 else
3153 i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
3154 len = 3;
3155 }
3156 else
3157 as_bad (_("bad reloc specifier in expression"));
3158
3159 /* Replace the relocation token with ' ', so that errors like
3160 foo@GOTOFF1 will be detected. */
3161 first = cp - input_line_pointer;
3162 tmpbuf = (char *) alloca (strlen (input_line_pointer));
3163 memcpy (tmpbuf, input_line_pointer, first);
3164 tmpbuf[first] = ' ';
3165 strcpy (tmpbuf + first + 1, cp + 1 + len);
3166 input_line_pointer = tmpbuf;
3167 }
3168 }
3169 #endif
3170
3171 exp_seg = expression (exp);
3172
3173 SKIP_WHITESPACE ();
3174 if (*input_line_pointer)
3175 as_bad (_("ignoring junk `%s' after expression"), input_line_pointer);
3176
3177 input_line_pointer = save_input_line_pointer;
3178
3179 if (exp->X_op == O_absent || exp->X_op == O_big)
3180 {
3181 /* Missing or bad expr becomes absolute 0. */
3182 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
3183 imm_start);
3184 exp->X_op = O_constant;
3185 exp->X_add_number = 0;
3186 exp->X_add_symbol = (symbolS *) 0;
3187 exp->X_op_symbol = (symbolS *) 0;
3188 }
3189 else if (exp->X_op == O_constant)
3190 {
3191 /* Size it properly later. */
3192 i.types[this_operand] |= Imm64;
3193 /* If BFD64, sign extend val. */
3194 if (!use_rela_relocations)
3195 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3196 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
3197 }
3198 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3199 else if (1
3200 #ifdef BFD_ASSEMBLER
3201 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3202 #endif
3203 && exp_seg != text_section
3204 && exp_seg != data_section
3205 && exp_seg != bss_section
3206 && exp_seg != undefined_section
3207 #ifdef BFD_ASSEMBLER
3208 && !bfd_is_com_section (exp_seg)
3209 #endif
3210 )
3211 {
3212 #ifdef BFD_ASSEMBLER
3213 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3214 #else
3215 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3216 #endif
3217 return 0;
3218 }
3219 #endif
3220 else
3221 {
3222 /* This is an address. The size of the address will be
3223 determined later, depending on destination register,
3224 suffix, or the default for the section. */
3225 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
3226 }
3227
3228 return 1;
3229 }
3230
3231 static int i386_scale PARAMS ((char *));
3232
3233 static int
3234 i386_scale (scale)
3235 char *scale;
3236 {
3237 if (!isdigit (*scale))
3238 goto bad_scale;
3239
3240 switch (*scale)
3241 {
3242 case '0':
3243 case '1':
3244 i.log2_scale_factor = 0;
3245 break;
3246 case '2':
3247 i.log2_scale_factor = 1;
3248 break;
3249 case '4':
3250 i.log2_scale_factor = 2;
3251 break;
3252 case '8':
3253 i.log2_scale_factor = 3;
3254 break;
3255 default:
3256 bad_scale:
3257 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
3258 scale);
3259 return 0;
3260 }
3261 if (i.log2_scale_factor != 0 && ! i.index_reg)
3262 {
3263 as_warn (_("scale factor of %d without an index register"),
3264 1 << i.log2_scale_factor);
3265 #if SCALE1_WHEN_NO_INDEX
3266 i.log2_scale_factor = 0;
3267 #endif
3268 }
3269 return 1;
3270 }
3271
3272 static int i386_displacement PARAMS ((char *, char *));
3273
3274 static int
3275 i386_displacement (disp_start, disp_end)
3276 char *disp_start;
3277 char *disp_end;
3278 {
3279 register expressionS *exp;
3280 segT exp_seg = 0;
3281 char *save_input_line_pointer;
3282 int bigdisp = Disp32;
3283
3284 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3285 bigdisp = Disp16;
3286 if (flag_code == CODE_64BIT)
3287 bigdisp = Disp64;
3288 i.types[this_operand] |= bigdisp;
3289
3290 exp = &disp_expressions[i.disp_operands];
3291 i.op[this_operand].disps = exp;
3292 i.disp_operands++;
3293 save_input_line_pointer = input_line_pointer;
3294 input_line_pointer = disp_start;
3295 END_STRING_AND_SAVE (disp_end);
3296
3297 #ifndef GCC_ASM_O_HACK
3298 #define GCC_ASM_O_HACK 0
3299 #endif
3300 #if GCC_ASM_O_HACK
3301 END_STRING_AND_SAVE (disp_end + 1);
3302 if ((i.types[this_operand] & BaseIndex) != 0
3303 && displacement_string_end[-1] == '+')
3304 {
3305 /* This hack is to avoid a warning when using the "o"
3306 constraint within gcc asm statements.
3307 For instance:
3308
3309 #define _set_tssldt_desc(n,addr,limit,type) \
3310 __asm__ __volatile__ ( \
3311 "movw %w2,%0\n\t" \
3312 "movw %w1,2+%0\n\t" \
3313 "rorl $16,%1\n\t" \
3314 "movb %b1,4+%0\n\t" \
3315 "movb %4,5+%0\n\t" \
3316 "movb $0,6+%0\n\t" \
3317 "movb %h1,7+%0\n\t" \
3318 "rorl $16,%1" \
3319 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3320
3321 This works great except that the output assembler ends
3322 up looking a bit weird if it turns out that there is
3323 no offset. You end up producing code that looks like:
3324
3325 #APP
3326 movw $235,(%eax)
3327 movw %dx,2+(%eax)
3328 rorl $16,%edx
3329 movb %dl,4+(%eax)
3330 movb $137,5+(%eax)
3331 movb $0,6+(%eax)
3332 movb %dh,7+(%eax)
3333 rorl $16,%edx
3334 #NO_APP
3335
3336 So here we provide the missing zero. */
3337
3338 *displacement_string_end = '0';
3339 }
3340 #endif
3341 #ifndef LEX_AT
3342 {
3343 /* We can have operands of the form
3344 <symbol>@GOTOFF+<nnn>
3345 Take the easy way out here and copy everything
3346 into a temporary buffer... */
3347 register char *cp;
3348
3349 cp = strchr (input_line_pointer, '@');
3350 if (cp != NULL)
3351 {
3352 char *tmpbuf;
3353 int len = 0;
3354 int first;
3355
3356 /* GOT relocations are not supported in 16 bit mode. */
3357 if (flag_code == CODE_16BIT)
3358 as_bad (_("GOT relocations not supported in 16 bit mode"));
3359
3360 if (GOT_symbol == NULL)
3361 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3362
3363 if (strncmp (cp + 1, "PLT", 3) == 0)
3364 {
3365 if (flag_code == CODE_64BIT)
3366 i.disp_reloc[this_operand] = BFD_RELOC_X86_64_PLT32;
3367 else
3368 i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
3369 len = 3;
3370 }
3371 else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
3372 {
3373 if (flag_code == CODE_64BIT)
3374 as_bad ("GOTOFF relocation is not supported in 64bit mode.");
3375 i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF;
3376 len = 6;
3377 }
3378 else if (strncmp (cp + 1, "GOTPCREL", 8) == 0)
3379 {
3380 if (flag_code != CODE_64BIT)
3381 as_bad ("GOTPCREL relocation is supported only in 64bit mode.");
3382 i.disp_reloc[this_operand] = BFD_RELOC_X86_64_GOTPCREL;
3383 len = 8;
3384 }
3385 else if (strncmp (cp + 1, "GOT", 3) == 0)
3386 {
3387 if (flag_code == CODE_64BIT)
3388 i.disp_reloc[this_operand] = BFD_RELOC_X86_64_GOT32;
3389 else
3390 i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
3391 len = 3;
3392 }
3393 else
3394 as_bad (_("bad reloc specifier in expression"));
3395
3396 /* Replace the relocation token with ' ', so that errors like
3397 foo@GOTOFF1 will be detected. */
3398 first = cp - input_line_pointer;
3399 tmpbuf = (char *) alloca (strlen (input_line_pointer));
3400 memcpy (tmpbuf, input_line_pointer, first);
3401 tmpbuf[first] = ' ';
3402 strcpy (tmpbuf + first + 1, cp + 1 + len);
3403 input_line_pointer = tmpbuf;
3404 }
3405 }
3406 #endif
3407
3408 exp_seg = expression (exp);
3409
3410 #ifdef BFD_ASSEMBLER
3411 /* We do this to make sure that the section symbol is in
3412 the symbol table. We will ultimately change the relocation
3413 to be relative to the beginning of the section. */
3414 if (i.disp_reloc[this_operand] == BFD_RELOC_386_GOTOFF
3415 || i.disp_reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3416 {
3417 if (S_IS_LOCAL(exp->X_add_symbol)
3418 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3419 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
3420 assert (exp->X_op == O_symbol);
3421 exp->X_op = O_subtract;
3422 exp->X_op_symbol = GOT_symbol;
3423 i.disp_reloc[this_operand] = BFD_RELOC_32;
3424 }
3425 #endif
3426
3427 SKIP_WHITESPACE ();
3428 if (*input_line_pointer)
3429 as_bad (_("ignoring junk `%s' after expression"),
3430 input_line_pointer);
3431 #if GCC_ASM_O_HACK
3432 RESTORE_END_STRING (disp_end + 1);
3433 #endif
3434 RESTORE_END_STRING (disp_end);
3435 input_line_pointer = save_input_line_pointer;
3436
3437 if (exp->X_op == O_absent || exp->X_op == O_big)
3438 {
3439 /* Missing or bad expr becomes absolute 0. */
3440 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
3441 disp_start);
3442 exp->X_op = O_constant;
3443 exp->X_add_number = 0;
3444 exp->X_add_symbol = (symbolS *) 0;
3445 exp->X_op_symbol = (symbolS *) 0;
3446 }
3447
3448 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3449 if (exp->X_op != O_constant
3450 #ifdef BFD_ASSEMBLER
3451 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3452 #endif
3453 && exp_seg != text_section
3454 && exp_seg != data_section
3455 && exp_seg != bss_section
3456 && exp_seg != undefined_section)
3457 {
3458 #ifdef BFD_ASSEMBLER
3459 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3460 #else
3461 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3462 #endif
3463 return 0;
3464 }
3465 #endif
3466 else if (flag_code == CODE_64BIT)
3467 i.types[this_operand] |= Disp32S | Disp32;
3468 return 1;
3469 }
3470
3471 static int i386_index_check PARAMS((const char *));
3472
3473 /* Make sure the memory operand we've been dealt is valid.
3474 Return 1 on success, 0 on a failure. */
3475
3476 static int
3477 i386_index_check (operand_string)
3478 const char *operand_string;
3479 {
3480 int ok;
3481 #if INFER_ADDR_PREFIX
3482 int fudged = 0;
3483
3484 tryprefix:
3485 #endif
3486 ok = 1;
3487 if (flag_code == CODE_64BIT)
3488 {
3489 /* 64bit checks. */
3490 if ((i.base_reg
3491 && ((i.base_reg->reg_type & Reg64) == 0)
3492 && (i.base_reg->reg_type != BaseIndex
3493 || i.index_reg))
3494 || (i.index_reg
3495 && ((i.index_reg->reg_type & (Reg64|BaseIndex))
3496 != (Reg64|BaseIndex))))
3497 ok = 0;
3498 }
3499 else
3500 {
3501 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3502 {
3503 /* 16bit checks. */
3504 if ((i.base_reg
3505 && ((i.base_reg->reg_type & (Reg16|BaseIndex|RegRex))
3506 != (Reg16|BaseIndex)))
3507 || (i.index_reg
3508 && (((i.index_reg->reg_type & (Reg16|BaseIndex))
3509 != (Reg16|BaseIndex))
3510 || ! (i.base_reg
3511 && i.base_reg->reg_num < 6
3512 && i.index_reg->reg_num >= 6
3513 && i.log2_scale_factor == 0))))
3514 ok = 0;
3515 }
3516 else
3517 {
3518 /* 32bit checks. */
3519 if ((i.base_reg
3520 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
3521 || (i.index_reg
3522 && ((i.index_reg->reg_type & (Reg32|BaseIndex|RegRex))
3523 != (Reg32|BaseIndex))))
3524 ok = 0;
3525 }
3526 }
3527 if (!ok)
3528 {
3529 #if INFER_ADDR_PREFIX
3530 if (flag_code != CODE_64BIT
3531 && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
3532 {
3533 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
3534 i.prefixes += 1;
3535 /* Change the size of any displacement too. At most one of
3536 Disp16 or Disp32 is set.
3537 FIXME. There doesn't seem to be any real need for separate
3538 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
3539 Removing them would probably clean up the code quite a lot. */
3540 if (i.types[this_operand] & (Disp16|Disp32))
3541 i.types[this_operand] ^= (Disp16|Disp32);
3542 fudged = 1;
3543 goto tryprefix;
3544 }
3545 if (fudged)
3546 as_bad (_("`%s' is not a valid base/index expression"),
3547 operand_string);
3548 else
3549 #endif
3550 as_bad (_("`%s' is not a valid %s bit base/index expression"),
3551 operand_string,
3552 flag_code_names[flag_code]);
3553 return 0;
3554 }
3555 return 1;
3556 }
3557
3558 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
3559 on error. */
3560
3561 static int
3562 i386_operand (operand_string)
3563 char *operand_string;
3564 {
3565 const reg_entry *r;
3566 char *end_op;
3567 char *op_string = operand_string;
3568
3569 if (is_space_char (*op_string))
3570 ++op_string;
3571
3572 /* We check for an absolute prefix (differentiating,
3573 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
3574 if (*op_string == ABSOLUTE_PREFIX)
3575 {
3576 ++op_string;
3577 if (is_space_char (*op_string))
3578 ++op_string;
3579 i.types[this_operand] |= JumpAbsolute;
3580 }
3581
3582 /* Check if operand is a register. */
3583 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
3584 && (r = parse_register (op_string, &end_op)) != NULL)
3585 {
3586 /* Check for a segment override by searching for ':' after a
3587 segment register. */
3588 op_string = end_op;
3589 if (is_space_char (*op_string))
3590 ++op_string;
3591 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
3592 {
3593 switch (r->reg_num)
3594 {
3595 case 0:
3596 i.seg[i.mem_operands] = &es;
3597 break;
3598 case 1:
3599 i.seg[i.mem_operands] = &cs;
3600 break;
3601 case 2:
3602 i.seg[i.mem_operands] = &ss;
3603 break;
3604 case 3:
3605 i.seg[i.mem_operands] = &ds;
3606 break;
3607 case 4:
3608 i.seg[i.mem_operands] = &fs;
3609 break;
3610 case 5:
3611 i.seg[i.mem_operands] = &gs;
3612 break;
3613 }
3614
3615 /* Skip the ':' and whitespace. */
3616 ++op_string;
3617 if (is_space_char (*op_string))
3618 ++op_string;
3619
3620 if (!is_digit_char (*op_string)
3621 && !is_identifier_char (*op_string)
3622 && *op_string != '('
3623 && *op_string != ABSOLUTE_PREFIX)
3624 {
3625 as_bad (_("bad memory operand `%s'"), op_string);
3626 return 0;
3627 }
3628 /* Handle case of %es:*foo. */
3629 if (*op_string == ABSOLUTE_PREFIX)
3630 {
3631 ++op_string;
3632 if (is_space_char (*op_string))
3633 ++op_string;
3634 i.types[this_operand] |= JumpAbsolute;
3635 }
3636 goto do_memory_reference;
3637 }
3638 if (*op_string)
3639 {
3640 as_bad (_("junk `%s' after register"), op_string);
3641 return 0;
3642 }
3643 i.types[this_operand] |= r->reg_type & ~BaseIndex;
3644 i.op[this_operand].regs = r;
3645 i.reg_operands++;
3646 }
3647 else if (*op_string == REGISTER_PREFIX)
3648 {
3649 as_bad (_("bad register name `%s'"), op_string);
3650 return 0;
3651 }
3652 else if (*op_string == IMMEDIATE_PREFIX)
3653 {
3654 ++op_string;
3655 if (i.types[this_operand] & JumpAbsolute)
3656 {
3657 as_bad (_("immediate operand illegal with absolute jump"));
3658 return 0;
3659 }
3660 if (!i386_immediate (op_string))
3661 return 0;
3662 }
3663 else if (is_digit_char (*op_string)
3664 || is_identifier_char (*op_string)
3665 || *op_string == '(' )
3666 {
3667 /* This is a memory reference of some sort. */
3668 char *base_string;
3669
3670 /* Start and end of displacement string expression (if found). */
3671 char *displacement_string_start;
3672 char *displacement_string_end;
3673
3674 do_memory_reference:
3675 if ((i.mem_operands == 1
3676 && (current_templates->start->opcode_modifier & IsString) == 0)
3677 || i.mem_operands == 2)
3678 {
3679 as_bad (_("too many memory references for `%s'"),
3680 current_templates->start->name);
3681 return 0;
3682 }
3683
3684 /* Check for base index form. We detect the base index form by
3685 looking for an ')' at the end of the operand, searching
3686 for the '(' matching it, and finding a REGISTER_PREFIX or ','
3687 after the '('. */
3688 base_string = op_string + strlen (op_string);
3689
3690 --base_string;
3691 if (is_space_char (*base_string))
3692 --base_string;
3693
3694 /* If we only have a displacement, set-up for it to be parsed later. */
3695 displacement_string_start = op_string;
3696 displacement_string_end = base_string + 1;
3697
3698 if (*base_string == ')')
3699 {
3700 char *temp_string;
3701 unsigned int parens_balanced = 1;
3702 /* We've already checked that the number of left & right ()'s are
3703 equal, so this loop will not be infinite. */
3704 do
3705 {
3706 base_string--;
3707 if (*base_string == ')')
3708 parens_balanced++;
3709 if (*base_string == '(')
3710 parens_balanced--;
3711 }
3712 while (parens_balanced);
3713
3714 temp_string = base_string;
3715
3716 /* Skip past '(' and whitespace. */
3717 ++base_string;
3718 if (is_space_char (*base_string))
3719 ++base_string;
3720
3721 if (*base_string == ','
3722 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3723 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
3724 {
3725 displacement_string_end = temp_string;
3726
3727 i.types[this_operand] |= BaseIndex;
3728
3729 if (i.base_reg)
3730 {
3731 base_string = end_op;
3732 if (is_space_char (*base_string))
3733 ++base_string;
3734 }
3735
3736 /* There may be an index reg or scale factor here. */
3737 if (*base_string == ',')
3738 {
3739 ++base_string;
3740 if (is_space_char (*base_string))
3741 ++base_string;
3742
3743 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3744 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
3745 {
3746 base_string = end_op;
3747 if (is_space_char (*base_string))
3748 ++base_string;
3749 if (*base_string == ',')
3750 {
3751 ++base_string;
3752 if (is_space_char (*base_string))
3753 ++base_string;
3754 }
3755 else if (*base_string != ')' )
3756 {
3757 as_bad (_("expecting `,' or `)' after index register in `%s'"),
3758 operand_string);
3759 return 0;
3760 }
3761 }
3762 else if (*base_string == REGISTER_PREFIX)
3763 {
3764 as_bad (_("bad register name `%s'"), base_string);
3765 return 0;
3766 }
3767
3768 /* Check for scale factor. */
3769 if (isdigit ((unsigned char) *base_string))
3770 {
3771 if (!i386_scale (base_string))
3772 return 0;
3773
3774 ++base_string;
3775 if (is_space_char (*base_string))
3776 ++base_string;
3777 if (*base_string != ')')
3778 {
3779 as_bad (_("expecting `)' after scale factor in `%s'"),
3780 operand_string);
3781 return 0;
3782 }
3783 }
3784 else if (!i.index_reg)
3785 {
3786 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
3787 *base_string);
3788 return 0;
3789 }
3790 }
3791 else if (*base_string != ')')
3792 {
3793 as_bad (_("expecting `,' or `)' after base register in `%s'"),
3794 operand_string);
3795 return 0;
3796 }
3797 }
3798 else if (*base_string == REGISTER_PREFIX)
3799 {
3800 as_bad (_("bad register name `%s'"), base_string);
3801 return 0;
3802 }
3803 }
3804
3805 /* If there's an expression beginning the operand, parse it,
3806 assuming displacement_string_start and
3807 displacement_string_end are meaningful. */
3808 if (displacement_string_start != displacement_string_end)
3809 {
3810 if (!i386_displacement (displacement_string_start,
3811 displacement_string_end))
3812 return 0;
3813 }
3814
3815 /* Special case for (%dx) while doing input/output op. */
3816 if (i.base_reg
3817 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
3818 && i.index_reg == 0
3819 && i.log2_scale_factor == 0
3820 && i.seg[i.mem_operands] == 0
3821 && (i.types[this_operand] & Disp) == 0)
3822 {
3823 i.types[this_operand] = InOutPortReg;
3824 return 1;
3825 }
3826
3827 if (i386_index_check (operand_string) == 0)
3828 return 0;
3829 i.mem_operands++;
3830 }
3831 else
3832 {
3833 /* It's not a memory operand; argh! */
3834 as_bad (_("invalid char %s beginning operand %d `%s'"),
3835 output_invalid (*op_string),
3836 this_operand + 1,
3837 op_string);
3838 return 0;
3839 }
3840 return 1; /* Normal return. */
3841 }
3842 \f
3843 /* md_estimate_size_before_relax()
3844
3845 Called just before relax() for rs_machine_dependent frags. The x86
3846 assembler uses these frags to handle variable size jump
3847 instructions.
3848
3849 Any symbol that is now undefined will not become defined.
3850 Return the correct fr_subtype in the frag.
3851 Return the initial "guess for variable size of frag" to caller.
3852 The guess is actually the growth beyond the fixed part. Whatever
3853 we do to grow the fixed or variable part contributes to our
3854 returned value. */
3855
3856 int
3857 md_estimate_size_before_relax (fragP, segment)
3858 register fragS *fragP;
3859 register segT segment;
3860 {
3861 /* We've already got fragP->fr_subtype right; all we have to do is
3862 check for un-relaxable symbols. On an ELF system, we can't relax
3863 an externally visible symbol, because it may be overridden by a
3864 shared library. */
3865 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
3866 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3867 || S_IS_EXTERNAL (fragP->fr_symbol)
3868 || S_IS_WEAK (fragP->fr_symbol)
3869 #endif
3870 )
3871 {
3872 /* Symbol is undefined in this segment, or we need to keep a
3873 reloc so that weak symbols can be overridden. */
3874 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
3875 #ifdef BFD_ASSEMBLER
3876 enum bfd_reloc_code_real reloc_type;
3877 #else
3878 int reloc_type;
3879 #endif
3880 unsigned char *opcode;
3881 int old_fr_fix;
3882
3883 if (fragP->fr_var != NO_RELOC)
3884 reloc_type = fragP->fr_var;
3885 else if (size == 2)
3886 reloc_type = BFD_RELOC_16_PCREL;
3887 else
3888 reloc_type = BFD_RELOC_32_PCREL;
3889
3890 old_fr_fix = fragP->fr_fix;
3891 opcode = (unsigned char *) fragP->fr_opcode;
3892
3893 switch (opcode[0])
3894 {
3895 case JUMP_PC_RELATIVE:
3896 /* Make jmp (0xeb) a dword displacement jump. */
3897 opcode[0] = 0xe9;
3898 fragP->fr_fix += size;
3899 fix_new (fragP, old_fr_fix, size,
3900 fragP->fr_symbol,
3901 fragP->fr_offset, 1,
3902 reloc_type);
3903 break;
3904
3905 default:
3906 /* This changes the byte-displacement jump 0x7N
3907 to the dword-displacement jump 0x0f,0x8N. */
3908 opcode[1] = opcode[0] + 0x10;
3909 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
3910 /* We've added an opcode byte. */
3911 fragP->fr_fix += 1 + size;
3912 fix_new (fragP, old_fr_fix + 1, size,
3913 fragP->fr_symbol,
3914 fragP->fr_offset, 1,
3915 reloc_type);
3916 break;
3917 }
3918 frag_wane (fragP);
3919 return fragP->fr_fix - old_fr_fix;
3920 }
3921 /* Guess a short jump. */
3922 return 1;
3923 }
3924
3925 /* Called after relax() is finished.
3926
3927 In: Address of frag.
3928 fr_type == rs_machine_dependent.
3929 fr_subtype is what the address relaxed to.
3930
3931 Out: Any fixSs and constants are set up.
3932 Caller will turn frag into a ".space 0". */
3933
3934 #ifndef BFD_ASSEMBLER
3935 void
3936 md_convert_frag (headers, sec, fragP)
3937 object_headers *headers ATTRIBUTE_UNUSED;
3938 segT sec ATTRIBUTE_UNUSED;
3939 register fragS *fragP;
3940 #else
3941 void
3942 md_convert_frag (abfd, sec, fragP)
3943 bfd *abfd ATTRIBUTE_UNUSED;
3944 segT sec ATTRIBUTE_UNUSED;
3945 register fragS *fragP;
3946 #endif
3947 {
3948 register unsigned char *opcode;
3949 unsigned char *where_to_put_displacement = NULL;
3950 offsetT target_address;
3951 offsetT opcode_address;
3952 unsigned int extension = 0;
3953 offsetT displacement_from_opcode_start;
3954
3955 opcode = (unsigned char *) fragP->fr_opcode;
3956
3957 /* Address we want to reach in file space. */
3958 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
3959 #ifdef BFD_ASSEMBLER
3960 /* Not needed otherwise? */
3961 target_address += symbol_get_frag (fragP->fr_symbol)->fr_address;
3962 #endif
3963
3964 /* Address opcode resides at in file space. */
3965 opcode_address = fragP->fr_address + fragP->fr_fix;
3966
3967 /* Displacement from opcode start to fill into instruction. */
3968 displacement_from_opcode_start = target_address - opcode_address;
3969
3970 switch (fragP->fr_subtype)
3971 {
3972 case ENCODE_RELAX_STATE (COND_JUMP, SMALL):
3973 case ENCODE_RELAX_STATE (COND_JUMP, SMALL16):
3974 case ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL):
3975 case ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL16):
3976 /* Don't have to change opcode. */
3977 extension = 1; /* 1 opcode + 1 displacement */
3978 where_to_put_displacement = &opcode[1];
3979 break;
3980
3981 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
3982 extension = 5; /* 2 opcode + 4 displacement */
3983 opcode[1] = opcode[0] + 0x10;
3984 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
3985 where_to_put_displacement = &opcode[2];
3986 break;
3987
3988 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
3989 extension = 4; /* 1 opcode + 4 displacement */
3990 opcode[0] = 0xe9;
3991 where_to_put_displacement = &opcode[1];
3992 break;
3993
3994 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
3995 extension = 3; /* 2 opcode + 2 displacement */
3996 opcode[1] = opcode[0] + 0x10;
3997 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
3998 where_to_put_displacement = &opcode[2];
3999 break;
4000
4001 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4002 extension = 2; /* 1 opcode + 2 displacement */
4003 opcode[0] = 0xe9;
4004 where_to_put_displacement = &opcode[1];
4005 break;
4006
4007 default:
4008 BAD_CASE (fragP->fr_subtype);
4009 break;
4010 }
4011 /* Now put displacement after opcode. */
4012 md_number_to_chars ((char *) where_to_put_displacement,
4013 (valueT) (displacement_from_opcode_start - extension),
4014 SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
4015 fragP->fr_fix += extension;
4016 }
4017 \f
4018 /* Size of byte displacement jmp. */
4019 int md_short_jump_size = 2;
4020
4021 /* Size of dword displacement jmp. */
4022 int md_long_jump_size = 5;
4023
4024 /* Size of relocation record. */
4025 const int md_reloc_size = 8;
4026
4027 void
4028 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4029 char *ptr;
4030 addressT from_addr, to_addr;
4031 fragS *frag ATTRIBUTE_UNUSED;
4032 symbolS *to_symbol ATTRIBUTE_UNUSED;
4033 {
4034 offsetT offset;
4035
4036 offset = to_addr - (from_addr + 2);
4037 /* Opcode for byte-disp jump. */
4038 md_number_to_chars (ptr, (valueT) 0xeb, 1);
4039 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4040 }
4041
4042 void
4043 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4044 char *ptr;
4045 addressT from_addr, to_addr;
4046 fragS *frag ATTRIBUTE_UNUSED;
4047 symbolS *to_symbol ATTRIBUTE_UNUSED;
4048 {
4049 offsetT offset;
4050
4051 offset = to_addr - (from_addr + 5);
4052 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4053 md_number_to_chars (ptr + 1, (valueT) offset, 4);
4054 }
4055 \f
4056 /* Apply a fixup (fixS) to segment data, once it has been determined
4057 by our caller that we have all the info we need to fix it up.
4058
4059 On the 386, immediates, displacements, and data pointers are all in
4060 the same (little-endian) format, so we don't need to care about which
4061 we are handling. */
4062
4063 int
4064 md_apply_fix3 (fixP, valp, seg)
4065 /* The fix we're to put in. */
4066 fixS *fixP;
4067
4068 /* Pointer to the value of the bits. */
4069 valueT *valp;
4070
4071 /* Segment fix is from. */
4072 segT seg ATTRIBUTE_UNUSED;
4073 {
4074 register char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4075 valueT value = *valp;
4076
4077 #if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
4078 if (fixP->fx_pcrel)
4079 {
4080 switch (fixP->fx_r_type)
4081 {
4082 default:
4083 break;
4084
4085 case BFD_RELOC_32:
4086 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4087 break;
4088 case BFD_RELOC_16:
4089 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4090 break;
4091 case BFD_RELOC_8:
4092 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4093 break;
4094 }
4095 }
4096
4097 /* This is a hack. There should be a better way to handle this.
4098 This covers for the fact that bfd_install_relocation will
4099 subtract the current location (for partial_inplace, PC relative
4100 relocations); see more below. */
4101 if ((fixP->fx_r_type == BFD_RELOC_32_PCREL
4102 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4103 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4104 && fixP->fx_addsy)
4105 {
4106 #ifndef OBJ_AOUT
4107 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4108 #ifdef TE_PE
4109 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4110 #endif
4111 )
4112 value += fixP->fx_where + fixP->fx_frag->fr_address;
4113 #endif
4114 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4115 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
4116 {
4117 segT fseg = S_GET_SEGMENT (fixP->fx_addsy);
4118
4119 if ((fseg == seg
4120 || (symbol_section_p (fixP->fx_addsy)
4121 && fseg != absolute_section))
4122 && ! S_IS_EXTERNAL (fixP->fx_addsy)
4123 && ! S_IS_WEAK (fixP->fx_addsy)
4124 && S_IS_DEFINED (fixP->fx_addsy)
4125 && ! S_IS_COMMON (fixP->fx_addsy))
4126 {
4127 /* Yes, we add the values in twice. This is because
4128 bfd_perform_relocation subtracts them out again. I think
4129 bfd_perform_relocation is broken, but I don't dare change
4130 it. FIXME. */
4131 value += fixP->fx_where + fixP->fx_frag->fr_address;
4132 }
4133 }
4134 #endif
4135 #if defined (OBJ_COFF) && defined (TE_PE)
4136 /* For some reason, the PE format does not store a section
4137 address offset for a PC relative symbol. */
4138 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4139 value += md_pcrel_from (fixP);
4140 #endif
4141 }
4142
4143 /* Fix a few things - the dynamic linker expects certain values here,
4144 and we must not dissappoint it. */
4145 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4146 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4147 && fixP->fx_addsy)
4148 switch (fixP->fx_r_type)
4149 {
4150 case BFD_RELOC_386_PLT32:
4151 case BFD_RELOC_X86_64_PLT32:
4152 /* Make the jump instruction point to the address of the operand. At
4153 runtime we merely add the offset to the actual PLT entry. */
4154 value = -4;
4155 break;
4156 case BFD_RELOC_386_GOTPC:
4157
4158 /* This is tough to explain. We end up with this one if we have
4159 * operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
4160 * here is to obtain the absolute address of the GOT, and it is strongly
4161 * preferable from a performance point of view to avoid using a runtime
4162 * relocation for this. The actual sequence of instructions often look
4163 * something like:
4164 *
4165 * call .L66
4166 * .L66:
4167 * popl %ebx
4168 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
4169 *
4170 * The call and pop essentially return the absolute address of
4171 * the label .L66 and store it in %ebx. The linker itself will
4172 * ultimately change the first operand of the addl so that %ebx points to
4173 * the GOT, but to keep things simple, the .o file must have this operand
4174 * set so that it generates not the absolute address of .L66, but the
4175 * absolute address of itself. This allows the linker itself simply
4176 * treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
4177 * added in, and the addend of the relocation is stored in the operand
4178 * field for the instruction itself.
4179 *
4180 * Our job here is to fix the operand so that it would add the correct
4181 * offset so that %ebx would point to itself. The thing that is tricky is
4182 * that .-.L66 will point to the beginning of the instruction, so we need
4183 * to further modify the operand so that it will point to itself.
4184 * There are other cases where you have something like:
4185 *
4186 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
4187 *
4188 * and here no correction would be required. Internally in the assembler
4189 * we treat operands of this form as not being pcrel since the '.' is
4190 * explicitly mentioned, and I wonder whether it would simplify matters
4191 * to do it this way. Who knows. In earlier versions of the PIC patches,
4192 * the pcrel_adjust field was used to store the correction, but since the
4193 * expression is not pcrel, I felt it would be confusing to do it this
4194 * way. */
4195
4196 value -= 1;
4197 break;
4198 case BFD_RELOC_386_GOT32:
4199 case BFD_RELOC_X86_64_GOT32:
4200 value = 0; /* Fully resolved at runtime. No addend. */
4201 break;
4202 case BFD_RELOC_386_GOTOFF:
4203 case BFD_RELOC_X86_64_GOTPCREL:
4204 break;
4205
4206 case BFD_RELOC_VTABLE_INHERIT:
4207 case BFD_RELOC_VTABLE_ENTRY:
4208 fixP->fx_done = 0;
4209 return 1;
4210
4211 default:
4212 break;
4213 }
4214 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4215 *valp = value;
4216 #endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
4217
4218 #ifndef BFD_ASSEMBLER
4219 md_number_to_chars (p, value, fixP->fx_size);
4220 #else
4221 /* Are we finished with this relocation now? */
4222 if (fixP->fx_addsy == 0 && fixP->fx_pcrel == 0)
4223 fixP->fx_done = 1;
4224 else if (use_rela_relocations)
4225 {
4226 fixP->fx_no_overflow = 1;
4227 value = 0;
4228 }
4229 md_number_to_chars (p, value, fixP->fx_size);
4230 #endif
4231
4232 return 1;
4233 }
4234 \f
4235 #define MAX_LITTLENUMS 6
4236
4237 /* Turn the string pointed to by litP into a floating point constant
4238 of type TYPE, and emit the appropriate bytes. The number of
4239 LITTLENUMS emitted is stored in *SIZEP. An error message is
4240 returned, or NULL on OK. */
4241
4242 char *
4243 md_atof (type, litP, sizeP)
4244 int type;
4245 char *litP;
4246 int *sizeP;
4247 {
4248 int prec;
4249 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4250 LITTLENUM_TYPE *wordP;
4251 char *t;
4252
4253 switch (type)
4254 {
4255 case 'f':
4256 case 'F':
4257 prec = 2;
4258 break;
4259
4260 case 'd':
4261 case 'D':
4262 prec = 4;
4263 break;
4264
4265 case 'x':
4266 case 'X':
4267 prec = 5;
4268 break;
4269
4270 default:
4271 *sizeP = 0;
4272 return _("Bad call to md_atof ()");
4273 }
4274 t = atof_ieee (input_line_pointer, type, words);
4275 if (t)
4276 input_line_pointer = t;
4277
4278 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4279 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4280 the bigendian 386. */
4281 for (wordP = words + prec - 1; prec--;)
4282 {
4283 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4284 litP += sizeof (LITTLENUM_TYPE);
4285 }
4286 return 0;
4287 }
4288 \f
4289 char output_invalid_buf[8];
4290
4291 static char *
4292 output_invalid (c)
4293 int c;
4294 {
4295 if (isprint (c))
4296 sprintf (output_invalid_buf, "'%c'", c);
4297 else
4298 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4299 return output_invalid_buf;
4300 }
4301
4302 /* REG_STRING starts *before* REGISTER_PREFIX. */
4303
4304 static const reg_entry *
4305 parse_register (reg_string, end_op)
4306 char *reg_string;
4307 char **end_op;
4308 {
4309 char *s = reg_string;
4310 char *p;
4311 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4312 const reg_entry *r;
4313
4314 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4315 if (*s == REGISTER_PREFIX)
4316 ++s;
4317
4318 if (is_space_char (*s))
4319 ++s;
4320
4321 p = reg_name_given;
4322 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
4323 {
4324 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
4325 return (const reg_entry *) NULL;
4326 s++;
4327 }
4328
4329 /* For naked regs, make sure that we are not dealing with an identifier.
4330 This prevents confusing an identifier like `eax_var' with register
4331 `eax'. */
4332 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4333 return (const reg_entry *) NULL;
4334
4335 *end_op = s;
4336
4337 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4338
4339 /* Handle floating point regs, allowing spaces in the (i) part. */
4340 if (r == i386_regtab /* %st is first entry of table */)
4341 {
4342 if (is_space_char (*s))
4343 ++s;
4344 if (*s == '(')
4345 {
4346 ++s;
4347 if (is_space_char (*s))
4348 ++s;
4349 if (*s >= '0' && *s <= '7')
4350 {
4351 r = &i386_float_regtab[*s - '0'];
4352 ++s;
4353 if (is_space_char (*s))
4354 ++s;
4355 if (*s == ')')
4356 {
4357 *end_op = s + 1;
4358 return r;
4359 }
4360 }
4361 /* We have "%st(" then garbage. */
4362 return (const reg_entry *) NULL;
4363 }
4364 }
4365
4366 return r;
4367 }
4368 \f
4369 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4370 const char *md_shortopts = "kVQ:sq";
4371 #else
4372 const char *md_shortopts = "q";
4373 #endif
4374
4375 struct option md_longopts[] = {
4376 #define OPTION_32 (OPTION_MD_BASE + 0)
4377 {"32", no_argument, NULL, OPTION_32},
4378 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4379 #define OPTION_64 (OPTION_MD_BASE + 1)
4380 {"64", no_argument, NULL, OPTION_64},
4381 #endif
4382 {NULL, no_argument, NULL, 0}
4383 };
4384 size_t md_longopts_size = sizeof (md_longopts);
4385
4386 int
4387 md_parse_option (c, arg)
4388 int c;
4389 char *arg ATTRIBUTE_UNUSED;
4390 {
4391 switch (c)
4392 {
4393 case 'q':
4394 quiet_warnings = 1;
4395 break;
4396
4397 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4398 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4399 should be emitted or not. FIXME: Not implemented. */
4400 case 'Q':
4401 break;
4402
4403 /* -V: SVR4 argument to print version ID. */
4404 case 'V':
4405 print_version_id ();
4406 break;
4407
4408 /* -k: Ignore for FreeBSD compatibility. */
4409 case 'k':
4410 break;
4411
4412 case 's':
4413 /* -s: On i386 Solaris, this tells the native assembler to use
4414 .stab instead of .stab.excl. We always use .stab anyhow. */
4415 break;
4416
4417 case OPTION_64:
4418 {
4419 const char **list, **l;
4420
4421 list = bfd_target_list ();
4422 for (l = list; *l != NULL; l++)
4423 if (strcmp (*l, "elf64-x86-64") == 0)
4424 {
4425 default_arch = "x86_64";
4426 break;
4427 }
4428 if (*l == NULL)
4429 as_fatal (_("No compiled in support for x86_64"));
4430 free (list);
4431 }
4432 break;
4433 #endif
4434
4435 case OPTION_32:
4436 default_arch = "i386";
4437 break;
4438
4439 default:
4440 return 0;
4441 }
4442 return 1;
4443 }
4444
4445 void
4446 md_show_usage (stream)
4447 FILE *stream;
4448 {
4449 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4450 fprintf (stream, _("\
4451 -Q ignored\n\
4452 -V print assembler version number\n\
4453 -k ignored\n\
4454 -q quieten some warnings\n\
4455 -s ignored\n"));
4456 #else
4457 fprintf (stream, _("\
4458 -q quieten some warnings\n"));
4459 #endif
4460 }
4461
4462 #ifdef BFD_ASSEMBLER
4463 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
4464 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
4465
4466 /* Pick the target format to use. */
4467
4468 const char *
4469 i386_target_format ()
4470 {
4471 if (!strcmp (default_arch, "x86_64"))
4472 set_code_flag (CODE_64BIT);
4473 else if (!strcmp (default_arch, "i386"))
4474 set_code_flag (CODE_32BIT);
4475 else
4476 as_fatal (_("Unknown architecture"));
4477 switch (OUTPUT_FLAVOR)
4478 {
4479 #ifdef OBJ_MAYBE_AOUT
4480 case bfd_target_aout_flavour:
4481 return AOUT_TARGET_FORMAT;
4482 #endif
4483 #ifdef OBJ_MAYBE_COFF
4484 case bfd_target_coff_flavour:
4485 return "coff-i386";
4486 #endif
4487 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
4488 case bfd_target_elf_flavour:
4489 {
4490 if (flag_code == CODE_64BIT)
4491 use_rela_relocations = 1;
4492 return flag_code == CODE_64BIT ? "elf64-x86-64" : "elf32-i386";
4493 }
4494 #endif
4495 default:
4496 abort ();
4497 return NULL;
4498 }
4499 }
4500
4501 #endif /* OBJ_MAYBE_ more than one */
4502 #endif /* BFD_ASSEMBLER */
4503 \f
4504 symbolS *
4505 md_undefined_symbol (name)
4506 char *name;
4507 {
4508 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
4509 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
4510 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
4511 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
4512 {
4513 if (!GOT_symbol)
4514 {
4515 if (symbol_find (name))
4516 as_bad (_("GOT already in symbol table"));
4517 GOT_symbol = symbol_new (name, undefined_section,
4518 (valueT) 0, &zero_address_frag);
4519 };
4520 return GOT_symbol;
4521 }
4522 return 0;
4523 }
4524
4525 /* Round up a section size to the appropriate boundary. */
4526
4527 valueT
4528 md_section_align (segment, size)
4529 segT segment ATTRIBUTE_UNUSED;
4530 valueT size;
4531 {
4532 #ifdef BFD_ASSEMBLER
4533 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4534 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
4535 {
4536 /* For a.out, force the section size to be aligned. If we don't do
4537 this, BFD will align it for us, but it will not write out the
4538 final bytes of the section. This may be a bug in BFD, but it is
4539 easier to fix it here since that is how the other a.out targets
4540 work. */
4541 int align;
4542
4543 align = bfd_get_section_alignment (stdoutput, segment);
4544 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
4545 }
4546 #endif
4547 #endif
4548
4549 return size;
4550 }
4551
4552 /* On the i386, PC-relative offsets are relative to the start of the
4553 next instruction. That is, the address of the offset, plus its
4554 size, since the offset is always the last part of the insn. */
4555
4556 long
4557 md_pcrel_from (fixP)
4558 fixS *fixP;
4559 {
4560 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
4561 }
4562
4563 #ifndef I386COFF
4564
4565 static void
4566 s_bss (ignore)
4567 int ignore ATTRIBUTE_UNUSED;
4568 {
4569 register int temp;
4570
4571 temp = get_absolute_expression ();
4572 subseg_set (bss_section, (subsegT) temp);
4573 demand_empty_rest_of_line ();
4574 }
4575
4576 #endif
4577
4578 #ifdef BFD_ASSEMBLER
4579
4580 void
4581 i386_validate_fix (fixp)
4582 fixS *fixp;
4583 {
4584 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
4585 {
4586 /* GOTOFF relocation are nonsense in 64bit mode. */
4587 if (flag_code == CODE_64BIT)
4588 abort();
4589 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
4590 fixp->fx_subsy = 0;
4591 }
4592 }
4593
4594 arelent *
4595 tc_gen_reloc (section, fixp)
4596 asection *section ATTRIBUTE_UNUSED;
4597 fixS *fixp;
4598 {
4599 arelent *rel;
4600 bfd_reloc_code_real_type code;
4601
4602 switch (fixp->fx_r_type)
4603 {
4604 case BFD_RELOC_X86_64_PLT32:
4605 case BFD_RELOC_X86_64_GOT32:
4606 case BFD_RELOC_X86_64_GOTPCREL:
4607 case BFD_RELOC_386_PLT32:
4608 case BFD_RELOC_386_GOT32:
4609 case BFD_RELOC_386_GOTOFF:
4610 case BFD_RELOC_386_GOTPC:
4611 case BFD_RELOC_X86_64_32S:
4612 case BFD_RELOC_RVA:
4613 case BFD_RELOC_VTABLE_ENTRY:
4614 case BFD_RELOC_VTABLE_INHERIT:
4615 code = fixp->fx_r_type;
4616 break;
4617 default:
4618 if (fixp->fx_pcrel)
4619 {
4620 switch (fixp->fx_size)
4621 {
4622 default:
4623 as_bad (_("can not do %d byte pc-relative relocation"),
4624 fixp->fx_size);
4625 code = BFD_RELOC_32_PCREL;
4626 break;
4627 case 1: code = BFD_RELOC_8_PCREL; break;
4628 case 2: code = BFD_RELOC_16_PCREL; break;
4629 case 4: code = BFD_RELOC_32_PCREL; break;
4630 }
4631 }
4632 else
4633 {
4634 switch (fixp->fx_size)
4635 {
4636 default:
4637 as_bad (_("can not do %d byte relocation"), fixp->fx_size);
4638 code = BFD_RELOC_32;
4639 break;
4640 case 1: code = BFD_RELOC_8; break;
4641 case 2: code = BFD_RELOC_16; break;
4642 case 4: code = BFD_RELOC_32; break;
4643 case 8: code = BFD_RELOC_64; break;
4644 }
4645 }
4646 break;
4647 }
4648
4649 if (code == BFD_RELOC_32
4650 && GOT_symbol
4651 && fixp->fx_addsy == GOT_symbol)
4652 {
4653 /* We don't support GOTPC on 64bit targets. */
4654 if (flag_code == CODE_64BIT)
4655 abort();
4656 code = BFD_RELOC_386_GOTPC;
4657 }
4658
4659 rel = (arelent *) xmalloc (sizeof (arelent));
4660 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
4661 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
4662
4663 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
4664 if (!use_rela_relocations)
4665 {
4666 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
4667 vtable entry to be used in the relocation's section offset. */
4668 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
4669 rel->address = fixp->fx_offset;
4670
4671 if (fixp->fx_pcrel)
4672 rel->addend = fixp->fx_addnumber;
4673 else
4674 rel->addend = 0;
4675 }
4676 /* Use the rela in 64bit mode. */
4677 else
4678 {
4679 rel->addend = fixp->fx_offset;
4680 #ifdef OBJ_ELF
4681 /* Ohhh, this is ugly. The problem is that if this is a local global
4682 symbol, the relocation will entirely be performed at link time, not
4683 at assembly time. bfd_perform_reloc doesn't know about this sort
4684 of thing, and as a result we need to fake it out here. */
4685 if ((S_IS_EXTERN (fixp->fx_addsy) || S_IS_WEAK (fixp->fx_addsy))
4686 && !S_IS_COMMON(fixp->fx_addsy))
4687 rel->addend -= symbol_get_bfdsym (fixp->fx_addsy)->value;
4688 #endif
4689 if (fixp->fx_pcrel)
4690 rel->addend -= fixp->fx_size;
4691 }
4692
4693
4694 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
4695 if (rel->howto == NULL)
4696 {
4697 as_bad_where (fixp->fx_file, fixp->fx_line,
4698 _("cannot represent relocation type %s"),
4699 bfd_get_reloc_code_name (code));
4700 /* Set howto to a garbage value so that we can keep going. */
4701 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
4702 assert (rel->howto != NULL);
4703 }
4704
4705 return rel;
4706 }
4707
4708 #else /* ! BFD_ASSEMBLER */
4709
4710 #if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
4711 void
4712 tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
4713 char *where;
4714 fixS *fixP;
4715 relax_addressT segment_address_in_file;
4716 {
4717 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
4718 Out: GNU LD relocation length code: 0, 1, or 2. */
4719
4720 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
4721 long r_symbolnum;
4722
4723 know (fixP->fx_addsy != NULL);
4724
4725 md_number_to_chars (where,
4726 (valueT) (fixP->fx_frag->fr_address
4727 + fixP->fx_where - segment_address_in_file),
4728 4);
4729
4730 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
4731 ? S_GET_TYPE (fixP->fx_addsy)
4732 : fixP->fx_addsy->sy_number);
4733
4734 where[6] = (r_symbolnum >> 16) & 0x0ff;
4735 where[5] = (r_symbolnum >> 8) & 0x0ff;
4736 where[4] = r_symbolnum & 0x0ff;
4737 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
4738 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
4739 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
4740 }
4741
4742 #endif /* OBJ_AOUT or OBJ_BOUT. */
4743
4744 #if defined (I386COFF)
4745
4746 short
4747 tc_coff_fix2rtype (fixP)
4748 fixS *fixP;
4749 {
4750 if (fixP->fx_r_type == R_IMAGEBASE)
4751 return R_IMAGEBASE;
4752
4753 return (fixP->fx_pcrel ?
4754 (fixP->fx_size == 1 ? R_PCRBYTE :
4755 fixP->fx_size == 2 ? R_PCRWORD :
4756 R_PCRLONG) :
4757 (fixP->fx_size == 1 ? R_RELBYTE :
4758 fixP->fx_size == 2 ? R_RELWORD :
4759 R_DIR32));
4760 }
4761
4762 int
4763 tc_coff_sizemachdep (frag)
4764 fragS *frag;
4765 {
4766 if (frag->fr_next)
4767 return (frag->fr_next->fr_address - frag->fr_address);
4768 else
4769 return 0;
4770 }
4771
4772 #endif /* I386COFF */
4773
4774 #endif /* ! BFD_ASSEMBLER */
4775 \f
4776 /* Parse operands using Intel syntax. This implements a recursive descent
4777 parser based on the BNF grammar published in Appendix B of the MASM 6.1
4778 Programmer's Guide.
4779
4780 FIXME: We do not recognize the full operand grammar defined in the MASM
4781 documentation. In particular, all the structure/union and
4782 high-level macro operands are missing.
4783
4784 Uppercase words are terminals, lower case words are non-terminals.
4785 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
4786 bars '|' denote choices. Most grammar productions are implemented in
4787 functions called 'intel_<production>'.
4788
4789 Initial production is 'expr'.
4790
4791 addOp + | -
4792
4793 alpha [a-zA-Z]
4794
4795 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
4796
4797 constant digits [[ radixOverride ]]
4798
4799 dataType BYTE | WORD | DWORD | QWORD | XWORD
4800
4801 digits decdigit
4802 | digits decdigit
4803 | digits hexdigit
4804
4805 decdigit [0-9]
4806
4807 e05 e05 addOp e06
4808 | e06
4809
4810 e06 e06 mulOp e09
4811 | e09
4812
4813 e09 OFFSET e10
4814 | e09 PTR e10
4815 | e09 : e10
4816 | e10
4817
4818 e10 e10 [ expr ]
4819 | e11
4820
4821 e11 ( expr )
4822 | [ expr ]
4823 | constant
4824 | dataType
4825 | id
4826 | $
4827 | register
4828
4829 => expr SHORT e05
4830 | e05
4831
4832 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
4833 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
4834
4835 hexdigit a | b | c | d | e | f
4836 | A | B | C | D | E | F
4837
4838 id alpha
4839 | id alpha
4840 | id decdigit
4841
4842 mulOp * | / | MOD
4843
4844 quote " | '
4845
4846 register specialRegister
4847 | gpRegister
4848 | byteRegister
4849
4850 segmentRegister CS | DS | ES | FS | GS | SS
4851
4852 specialRegister CR0 | CR2 | CR3
4853 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
4854 | TR3 | TR4 | TR5 | TR6 | TR7
4855
4856 We simplify the grammar in obvious places (e.g., register parsing is
4857 done by calling parse_register) and eliminate immediate left recursion
4858 to implement a recursive-descent parser.
4859
4860 expr SHORT e05
4861 | e05
4862
4863 e05 e06 e05'
4864
4865 e05' addOp e06 e05'
4866 | Empty
4867
4868 e06 e09 e06'
4869
4870 e06' mulOp e09 e06'
4871 | Empty
4872
4873 e09 OFFSET e10 e09'
4874 | e10 e09'
4875
4876 e09' PTR e10 e09'
4877 | : e10 e09'
4878 | Empty
4879
4880 e10 e11 e10'
4881
4882 e10' [ expr ] e10'
4883 | Empty
4884
4885 e11 ( expr )
4886 | [ expr ]
4887 | BYTE
4888 | WORD
4889 | DWORD
4890 | QWORD
4891 | XWORD
4892 | .
4893 | $
4894 | register
4895 | id
4896 | constant */
4897
4898 /* Parsing structure for the intel syntax parser. Used to implement the
4899 semantic actions for the operand grammar. */
4900 struct intel_parser_s
4901 {
4902 char *op_string; /* The string being parsed. */
4903 int got_a_float; /* Whether the operand is a float. */
4904 int op_modifier; /* Operand modifier. */
4905 int is_mem; /* 1 if operand is memory reference. */
4906 const reg_entry *reg; /* Last register reference found. */
4907 char *disp; /* Displacement string being built. */
4908 };
4909
4910 static struct intel_parser_s intel_parser;
4911
4912 /* Token structure for parsing intel syntax. */
4913 struct intel_token
4914 {
4915 int code; /* Token code. */
4916 const reg_entry *reg; /* Register entry for register tokens. */
4917 char *str; /* String representation. */
4918 };
4919
4920 static struct intel_token cur_token, prev_token;
4921
4922
4923 /* Token codes for the intel parser. Since T_SHORT is already used
4924 by COFF, undefine it first to prevent a warning. */
4925 #define T_NIL -1
4926 #define T_CONST 1
4927 #define T_REG 2
4928 #define T_BYTE 3
4929 #define T_WORD 4
4930 #define T_DWORD 5
4931 #define T_QWORD 6
4932 #define T_XWORD 7
4933 #undef T_SHORT
4934 #define T_SHORT 8
4935 #define T_OFFSET 9
4936 #define T_PTR 10
4937 #define T_ID 11
4938
4939 /* Prototypes for intel parser functions. */
4940 static int intel_match_token PARAMS ((int code));
4941 static void intel_get_token PARAMS ((void));
4942 static void intel_putback_token PARAMS ((void));
4943 static int intel_expr PARAMS ((void));
4944 static int intel_e05 PARAMS ((void));
4945 static int intel_e05_1 PARAMS ((void));
4946 static int intel_e06 PARAMS ((void));
4947 static int intel_e06_1 PARAMS ((void));
4948 static int intel_e09 PARAMS ((void));
4949 static int intel_e09_1 PARAMS ((void));
4950 static int intel_e10 PARAMS ((void));
4951 static int intel_e10_1 PARAMS ((void));
4952 static int intel_e11 PARAMS ((void));
4953
4954 static int
4955 i386_intel_operand (operand_string, got_a_float)
4956 char *operand_string;
4957 int got_a_float;
4958 {
4959 int ret;
4960 char *p;
4961
4962 /* Initialize token holders. */
4963 cur_token.code = prev_token.code = T_NIL;
4964 cur_token.reg = prev_token.reg = NULL;
4965 cur_token.str = prev_token.str = NULL;
4966
4967 /* Initialize parser structure. */
4968 p = intel_parser.op_string = (char *)malloc (strlen (operand_string) + 1);
4969 if (p == NULL)
4970 abort ();
4971 strcpy (intel_parser.op_string, operand_string);
4972 intel_parser.got_a_float = got_a_float;
4973 intel_parser.op_modifier = -1;
4974 intel_parser.is_mem = 0;
4975 intel_parser.reg = NULL;
4976 intel_parser.disp = (char *)malloc (strlen (operand_string) + 1);
4977 if (intel_parser.disp == NULL)
4978 abort ();
4979 intel_parser.disp[0] = '\0';
4980
4981 /* Read the first token and start the parser. */
4982 intel_get_token ();
4983 ret = intel_expr ();
4984
4985 if (ret)
4986 {
4987 /* If we found a memory reference, hand it over to i386_displacement
4988 to fill in the rest of the operand fields. */
4989 if (intel_parser.is_mem)
4990 {
4991 if ((i.mem_operands == 1
4992 && (current_templates->start->opcode_modifier & IsString) == 0)
4993 || i.mem_operands == 2)
4994 {
4995 as_bad (_("too many memory references for '%s'"),
4996 current_templates->start->name);
4997 ret = 0;
4998 }
4999 else
5000 {
5001 char *s = intel_parser.disp;
5002 i.mem_operands++;
5003
5004 /* Add the displacement expression. */
5005 if (*s != '\0')
5006 ret = i386_displacement (s, s + strlen (s))
5007 && i386_index_check (s);
5008 }
5009 }
5010
5011 /* Constant and OFFSET expressions are handled by i386_immediate. */
5012 else if (intel_parser.op_modifier == OFFSET_FLAT
5013 || intel_parser.reg == NULL)
5014 ret = i386_immediate (intel_parser.disp);
5015 }
5016
5017 free (p);
5018 free (intel_parser.disp);
5019
5020 return ret;
5021 }
5022
5023 /* expr SHORT e05
5024 | e05 */
5025 static int
5026 intel_expr ()
5027 {
5028 /* expr SHORT e05 */
5029 if (cur_token.code == T_SHORT)
5030 {
5031 intel_parser.op_modifier = SHORT;
5032 intel_match_token (T_SHORT);
5033
5034 return (intel_e05 ());
5035 }
5036
5037 /* expr e05 */
5038 else
5039 return intel_e05 ();
5040 }
5041
5042 /* e05 e06 e05'
5043
5044 e05' addOp e06 e05'
5045 | Empty */
5046 static int
5047 intel_e05 ()
5048 {
5049 return (intel_e06 () && intel_e05_1 ());
5050 }
5051
5052 static int
5053 intel_e05_1 ()
5054 {
5055 /* e05' addOp e06 e05' */
5056 if (cur_token.code == '+' || cur_token.code == '-')
5057 {
5058 strcat (intel_parser.disp, cur_token.str);
5059 intel_match_token (cur_token.code);
5060
5061 return (intel_e06 () && intel_e05_1 ());
5062 }
5063
5064 /* e05' Empty */
5065 else
5066 return 1;
5067 }
5068
5069 /* e06 e09 e06'
5070
5071 e06' mulOp e09 e06'
5072 | Empty */
5073 static int
5074 intel_e06 ()
5075 {
5076 return (intel_e09 () && intel_e06_1 ());
5077 }
5078
5079 static int
5080 intel_e06_1 ()
5081 {
5082 /* e06' mulOp e09 e06' */
5083 if (cur_token.code == '*' || cur_token.code == '/')
5084 {
5085 strcat (intel_parser.disp, cur_token.str);
5086 intel_match_token (cur_token.code);
5087
5088 return (intel_e09 () && intel_e06_1 ());
5089 }
5090
5091 /* e06' Empty */
5092 else
5093 return 1;
5094 }
5095
5096 /* e09 OFFSET e10 e09'
5097 | e10 e09'
5098
5099 e09' PTR e10 e09'
5100 | : e10 e09'
5101 | Empty */
5102 static int
5103 intel_e09 ()
5104 {
5105 /* e09 OFFSET e10 e09' */
5106 if (cur_token.code == T_OFFSET)
5107 {
5108 intel_parser.is_mem = 0;
5109 intel_parser.op_modifier = OFFSET_FLAT;
5110 intel_match_token (T_OFFSET);
5111
5112 return (intel_e10 () && intel_e09_1 ());
5113 }
5114
5115 /* e09 e10 e09' */
5116 else
5117 return (intel_e10 () && intel_e09_1 ());
5118 }
5119
5120 static int
5121 intel_e09_1 ()
5122 {
5123 /* e09' PTR e10 e09' */
5124 if (cur_token.code == T_PTR)
5125 {
5126 if (prev_token.code == T_BYTE)
5127 i.suffix = BYTE_MNEM_SUFFIX;
5128
5129 else if (prev_token.code == T_WORD)
5130 {
5131 if (intel_parser.got_a_float == 2) /* "fi..." */
5132 i.suffix = SHORT_MNEM_SUFFIX;
5133 else
5134 i.suffix = WORD_MNEM_SUFFIX;
5135 }
5136
5137 else if (prev_token.code == T_DWORD)
5138 {
5139 if (intel_parser.got_a_float == 1) /* "f..." */
5140 i.suffix = SHORT_MNEM_SUFFIX;
5141 else
5142 i.suffix = LONG_MNEM_SUFFIX;
5143 }
5144
5145 else if (prev_token.code == T_QWORD)
5146 {
5147 if (intel_parser.got_a_float == 1) /* "f..." */
5148 i.suffix = LONG_MNEM_SUFFIX;
5149 else
5150 i.suffix = QWORD_MNEM_SUFFIX;
5151 }
5152
5153 else if (prev_token.code == T_XWORD)
5154 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5155
5156 else
5157 {
5158 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
5159 return 0;
5160 }
5161
5162 intel_match_token (T_PTR);
5163
5164 return (intel_e10 () && intel_e09_1 ());
5165 }
5166
5167 /* e09 : e10 e09' */
5168 else if (cur_token.code == ':')
5169 {
5170 /* Mark as a memory operand only if it's not already known to be an
5171 offset expression. */
5172 if (intel_parser.op_modifier != OFFSET_FLAT)
5173 intel_parser.is_mem = 1;
5174
5175 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5176 }
5177
5178 /* e09' Empty */
5179 else
5180 return 1;
5181 }
5182
5183 /* e10 e11 e10'
5184
5185 e10' [ expr ] e10'
5186 | Empty */
5187 static int
5188 intel_e10 ()
5189 {
5190 return (intel_e11 () && intel_e10_1 ());
5191 }
5192
5193 static int
5194 intel_e10_1 ()
5195 {
5196 /* e10' [ expr ] e10' */
5197 if (cur_token.code == '[')
5198 {
5199 intel_match_token ('[');
5200
5201 /* Mark as a memory operand only if it's not already known to be an
5202 offset expression. If it's an offset expression, we need to keep
5203 the brace in. */
5204 if (intel_parser.op_modifier != OFFSET_FLAT)
5205 intel_parser.is_mem = 1;
5206 else
5207 strcat (intel_parser.disp, "[");
5208
5209 /* Add a '+' to the displacement string if necessary. */
5210 if (*intel_parser.disp != '\0'
5211 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5212 strcat (intel_parser.disp, "+");
5213
5214 if (intel_expr () && intel_match_token (']'))
5215 {
5216 /* Preserve brackets when the operand is an offset expression. */
5217 if (intel_parser.op_modifier == OFFSET_FLAT)
5218 strcat (intel_parser.disp, "]");
5219
5220 return intel_e10_1 ();
5221 }
5222 else
5223 return 0;
5224 }
5225
5226 /* e10' Empty */
5227 else
5228 return 1;
5229 }
5230
5231 /* e11 ( expr )
5232 | [ expr ]
5233 | BYTE
5234 | WORD
5235 | DWORD
5236 | QWORD
5237 | XWORD
5238 | $
5239 | .
5240 | register
5241 | id
5242 | constant */
5243 static int
5244 intel_e11 ()
5245 {
5246 /* e11 ( expr ) */
5247 if (cur_token.code == '(')
5248 {
5249 intel_match_token ('(');
5250 strcat (intel_parser.disp, "(");
5251
5252 if (intel_expr () && intel_match_token (')'))
5253 {
5254 strcat (intel_parser.disp, ")");
5255 return 1;
5256 }
5257 else
5258 return 0;
5259 }
5260
5261 /* e11 [ expr ] */
5262 else if (cur_token.code == '[')
5263 {
5264 intel_match_token ('[');
5265
5266 /* Mark as a memory operand only if it's not already known to be an
5267 offset expression. If it's an offset expression, we need to keep
5268 the brace in. */
5269 if (intel_parser.op_modifier != OFFSET_FLAT)
5270 intel_parser.is_mem = 1;
5271 else
5272 strcat (intel_parser.disp, "[");
5273
5274 /* Operands for jump/call inside brackets denote absolute addresses. */
5275 if (current_templates->start->opcode_modifier & Jump
5276 || current_templates->start->opcode_modifier & JumpDword
5277 || current_templates->start->opcode_modifier & JumpByte
5278 || current_templates->start->opcode_modifier & JumpInterSegment)
5279 i.types[this_operand] |= JumpAbsolute;
5280
5281 /* Add a '+' to the displacement string if necessary. */
5282 if (*intel_parser.disp != '\0'
5283 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5284 strcat (intel_parser.disp, "+");
5285
5286 if (intel_expr () && intel_match_token (']'))
5287 {
5288 /* Preserve brackets when the operand is an offset expression. */
5289 if (intel_parser.op_modifier == OFFSET_FLAT)
5290 strcat (intel_parser.disp, "]");
5291
5292 return 1;
5293 }
5294 else
5295 return 0;
5296 }
5297
5298 /* e11 BYTE
5299 | WORD
5300 | DWORD
5301 | QWORD
5302 | XWORD */
5303 else if (cur_token.code == T_BYTE
5304 || cur_token.code == T_WORD
5305 || cur_token.code == T_DWORD
5306 || cur_token.code == T_QWORD
5307 || cur_token.code == T_XWORD)
5308 {
5309 intel_match_token (cur_token.code);
5310
5311 return 1;
5312 }
5313
5314 /* e11 $
5315 | . */
5316 else if (cur_token.code == '$' || cur_token.code == '.')
5317 {
5318 strcat (intel_parser.disp, cur_token.str);
5319 intel_match_token (cur_token.code);
5320
5321 /* Mark as a memory operand only if it's not already known to be an
5322 offset expression. */
5323 if (intel_parser.op_modifier != OFFSET_FLAT)
5324 intel_parser.is_mem = 1;
5325
5326 return 1;
5327 }
5328
5329 /* e11 register */
5330 else if (cur_token.code == T_REG)
5331 {
5332 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5333
5334 intel_match_token (T_REG);
5335
5336 /* Check for segment change. */
5337 if (cur_token.code == ':')
5338 {
5339 if (reg->reg_type & (SReg2 | SReg3))
5340 {
5341 switch (reg->reg_num)
5342 {
5343 case 0:
5344 i.seg[i.mem_operands] = &es;
5345 break;
5346 case 1:
5347 i.seg[i.mem_operands] = &cs;
5348 break;
5349 case 2:
5350 i.seg[i.mem_operands] = &ss;
5351 break;
5352 case 3:
5353 i.seg[i.mem_operands] = &ds;
5354 break;
5355 case 4:
5356 i.seg[i.mem_operands] = &fs;
5357 break;
5358 case 5:
5359 i.seg[i.mem_operands] = &gs;
5360 break;
5361 }
5362 }
5363 else
5364 {
5365 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5366 return 0;
5367 }
5368 }
5369
5370 /* Not a segment register. Check for register scaling. */
5371 else if (cur_token.code == '*')
5372 {
5373 if (!intel_parser.is_mem)
5374 {
5375 as_bad (_("Register scaling only allowed in memory operands."));
5376 return 0;
5377 }
5378
5379 /* What follows must be a valid scale. */
5380 if (intel_match_token ('*')
5381 && strchr ("01248", *cur_token.str))
5382 {
5383 i.index_reg = reg;
5384 i.types[this_operand] |= BaseIndex;
5385
5386 /* Set the scale after setting the register (otherwise,
5387 i386_scale will complain) */
5388 i386_scale (cur_token.str);
5389 intel_match_token (T_CONST);
5390 }
5391 else
5392 {
5393 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5394 cur_token.str);
5395 return 0;
5396 }
5397 }
5398
5399 /* No scaling. If this is a memory operand, the register is either a
5400 base register (first occurrence) or an index register (second
5401 occurrence). */
5402 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
5403 {
5404 if (i.base_reg && i.index_reg)
5405 {
5406 as_bad (_("Too many register references in memory operand.\n"));
5407 return 0;
5408 }
5409
5410 if (i.base_reg == NULL)
5411 i.base_reg = reg;
5412 else
5413 i.index_reg = reg;
5414
5415 i.types[this_operand] |= BaseIndex;
5416 }
5417
5418 /* Offset modifier. Add the register to the displacement string to be
5419 parsed as an immediate expression after we're done. */
5420 else if (intel_parser.op_modifier == OFFSET_FLAT)
5421 strcat (intel_parser.disp, reg->reg_name);
5422
5423 /* It's neither base nor index nor offset. */
5424 else
5425 {
5426 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
5427 i.op[this_operand].regs = reg;
5428 i.reg_operands++;
5429 }
5430
5431 /* Since registers are not part of the displacement string (except
5432 when we're parsing offset operands), we may need to remove any
5433 preceding '+' from the displacement string. */
5434 if (*intel_parser.disp != '\0'
5435 && intel_parser.op_modifier != OFFSET_FLAT)
5436 {
5437 char *s = intel_parser.disp;
5438 s += strlen (s) - 1;
5439 if (*s == '+')
5440 *s = '\0';
5441 }
5442
5443 return 1;
5444 }
5445
5446 /* e11 id */
5447 else if (cur_token.code == T_ID)
5448 {
5449 /* Add the identifier to the displacement string. */
5450 strcat (intel_parser.disp, cur_token.str);
5451 intel_match_token (T_ID);
5452
5453 /* The identifier represents a memory reference only if it's not
5454 preceded by an offset modifier. */
5455 if (intel_parser.op_modifier != OFFSET_FLAT)
5456 intel_parser.is_mem = 1;
5457
5458 return 1;
5459 }
5460
5461 /* e11 constant */
5462 else if (cur_token.code == T_CONST
5463 || cur_token.code == '-'
5464 || cur_token.code == '+')
5465 {
5466 char *save_str;
5467
5468 /* Allow constants that start with `+' or `-'. */
5469 if (cur_token.code == '-' || cur_token.code == '+')
5470 {
5471 strcat (intel_parser.disp, cur_token.str);
5472 intel_match_token (cur_token.code);
5473 if (cur_token.code != T_CONST)
5474 {
5475 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
5476 cur_token.str);
5477 return 0;
5478 }
5479 }
5480
5481 save_str = (char *)malloc (strlen (cur_token.str) + 1);
5482 if (save_str == NULL)
5483 abort ();
5484 strcpy (save_str, cur_token.str);
5485
5486 /* Get the next token to check for register scaling. */
5487 intel_match_token (cur_token.code);
5488
5489 /* Check if this constant is a scaling factor for an index register. */
5490 if (cur_token.code == '*')
5491 {
5492 if (intel_match_token ('*') && cur_token.code == T_REG)
5493 {
5494 if (!intel_parser.is_mem)
5495 {
5496 as_bad (_("Register scaling only allowed in memory operands."));
5497 return 0;
5498 }
5499
5500 /* The constant is followed by `* reg', so it must be
5501 a valid scale. */
5502 if (strchr ("01248", *save_str))
5503 {
5504 i.index_reg = cur_token.reg;
5505 i.types[this_operand] |= BaseIndex;
5506
5507 /* Set the scale after setting the register (otherwise,
5508 i386_scale will complain) */
5509 i386_scale (save_str);
5510 intel_match_token (T_REG);
5511
5512 /* Since registers are not part of the displacement
5513 string, we may need to remove any preceding '+' from
5514 the displacement string. */
5515 if (*intel_parser.disp != '\0')
5516 {
5517 char *s = intel_parser.disp;
5518 s += strlen (s) - 1;
5519 if (*s == '+')
5520 *s = '\0';
5521 }
5522
5523 free (save_str);
5524
5525 return 1;
5526 }
5527 else
5528 return 0;
5529 }
5530
5531 /* The constant was not used for register scaling. Since we have
5532 already consumed the token following `*' we now need to put it
5533 back in the stream. */
5534 else
5535 intel_putback_token ();
5536 }
5537
5538 /* Add the constant to the displacement string. */
5539 strcat (intel_parser.disp, save_str);
5540 free (save_str);
5541
5542 return 1;
5543 }
5544
5545 as_bad (_("Unrecognized token '%s'"), cur_token.str);
5546 return 0;
5547 }
5548
5549 /* Match the given token against cur_token. If they match, read the next
5550 token from the operand string. */
5551 static int
5552 intel_match_token (code)
5553 int code;
5554 {
5555 if (cur_token.code == code)
5556 {
5557 intel_get_token ();
5558 return 1;
5559 }
5560 else
5561 {
5562 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
5563 return 0;
5564 }
5565 }
5566
5567 /* Read a new token from intel_parser.op_string and store it in cur_token. */
5568 static void
5569 intel_get_token ()
5570 {
5571 char *end_op;
5572 const reg_entry *reg;
5573 struct intel_token new_token;
5574
5575 new_token.code = T_NIL;
5576 new_token.reg = NULL;
5577 new_token.str = NULL;
5578
5579 /* Free the memory allocated to the previous token and move
5580 cur_token to prev_token. */
5581 if (prev_token.str)
5582 free (prev_token.str);
5583
5584 prev_token = cur_token;
5585
5586 /* Skip whitespace. */
5587 while (is_space_char (*intel_parser.op_string))
5588 intel_parser.op_string++;
5589
5590 /* Return an empty token if we find nothing else on the line. */
5591 if (*intel_parser.op_string == '\0')
5592 {
5593 cur_token = new_token;
5594 return;
5595 }
5596
5597 /* The new token cannot be larger than the remainder of the operand
5598 string. */
5599 new_token.str = (char *)malloc (strlen (intel_parser.op_string) + 1);
5600 if (new_token.str == NULL)
5601 abort ();
5602 new_token.str[0] = '\0';
5603
5604 if (strchr ("0123456789", *intel_parser.op_string))
5605 {
5606 char *p = new_token.str;
5607 char *q = intel_parser.op_string;
5608 new_token.code = T_CONST;
5609
5610 /* Allow any kind of identifier char to encompass floating point and
5611 hexadecimal numbers. */
5612 while (is_identifier_char (*q))
5613 *p++ = *q++;
5614 *p = '\0';
5615
5616 /* Recognize special symbol names [0-9][bf]. */
5617 if (strlen (intel_parser.op_string) == 2
5618 && (intel_parser.op_string[1] == 'b'
5619 || intel_parser.op_string[1] == 'f'))
5620 new_token.code = T_ID;
5621 }
5622
5623 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
5624 {
5625 new_token.code = *intel_parser.op_string;
5626 new_token.str[0] = *intel_parser.op_string;
5627 new_token.str[1] = '\0';
5628 }
5629
5630 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
5631 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
5632 {
5633 new_token.code = T_REG;
5634 new_token.reg = reg;
5635
5636 if (*intel_parser.op_string == REGISTER_PREFIX)
5637 {
5638 new_token.str[0] = REGISTER_PREFIX;
5639 new_token.str[1] = '\0';
5640 }
5641
5642 strcat (new_token.str, reg->reg_name);
5643 }
5644
5645 else if (is_identifier_char (*intel_parser.op_string))
5646 {
5647 char *p = new_token.str;
5648 char *q = intel_parser.op_string;
5649
5650 /* A '.' or '$' followed by an identifier char is an identifier.
5651 Otherwise, it's operator '.' followed by an expression. */
5652 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
5653 {
5654 new_token.code = *q;
5655 new_token.str[0] = *q;
5656 new_token.str[1] = '\0';
5657 }
5658 else
5659 {
5660 while (is_identifier_char (*q) || *q == '@')
5661 *p++ = *q++;
5662 *p = '\0';
5663
5664 if (strcasecmp (new_token.str, "BYTE") == 0)
5665 new_token.code = T_BYTE;
5666
5667 else if (strcasecmp (new_token.str, "WORD") == 0)
5668 new_token.code = T_WORD;
5669
5670 else if (strcasecmp (new_token.str, "DWORD") == 0)
5671 new_token.code = T_DWORD;
5672
5673 else if (strcasecmp (new_token.str, "QWORD") == 0)
5674 new_token.code = T_QWORD;
5675
5676 else if (strcasecmp (new_token.str, "XWORD") == 0)
5677 new_token.code = T_XWORD;
5678
5679 else if (strcasecmp (new_token.str, "PTR") == 0)
5680 new_token.code = T_PTR;
5681
5682 else if (strcasecmp (new_token.str, "SHORT") == 0)
5683 new_token.code = T_SHORT;
5684
5685 else if (strcasecmp (new_token.str, "OFFSET") == 0)
5686 {
5687 new_token.code = T_OFFSET;
5688
5689 /* ??? This is not mentioned in the MASM grammar but gcc
5690 makes use of it with -mintel-syntax. OFFSET may be
5691 followed by FLAT: */
5692 if (strncasecmp (q, " FLAT:", 6) == 0)
5693 strcat (new_token.str, " FLAT:");
5694 }
5695
5696 /* ??? This is not mentioned in the MASM grammar. */
5697 else if (strcasecmp (new_token.str, "FLAT") == 0)
5698 new_token.code = T_OFFSET;
5699
5700 else
5701 new_token.code = T_ID;
5702 }
5703 }
5704
5705 else
5706 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
5707
5708 intel_parser.op_string += strlen (new_token.str);
5709 cur_token = new_token;
5710 }
5711
5712 /* Put cur_token back into the token stream and make cur_token point to
5713 prev_token. */
5714 static void
5715 intel_putback_token ()
5716 {
5717 intel_parser.op_string -= strlen (cur_token.str);
5718 free (cur_token.str);
5719 cur_token = prev_token;
5720
5721 /* Forget prev_token. */
5722 prev_token.code = T_NIL;
5723 prev_token.reg = NULL;
5724 prev_token.str = NULL;
5725 }
This page took 0.26443 seconds and 5 git commands to generate.