x86: drop/replace IgnoreSize
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef INFER_ADDR_PREFIX
48 #define INFER_ADDR_PREFIX 1
49 #endif
50
51 #ifndef DEFAULT_ARCH
52 #define DEFAULT_ARCH "i386"
53 #endif
54
55 #ifndef INLINE
56 #if __GNUC__ >= 2
57 #define INLINE __inline__
58 #else
59 #define INLINE
60 #endif
61 #endif
62
63 /* Prefixes will be emitted in the order defined below.
64 WAIT_PREFIX must be the first prefix since FWAIT is really is an
65 instruction, and so must come before any prefixes.
66 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
67 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
68 #define WAIT_PREFIX 0
69 #define SEG_PREFIX 1
70 #define ADDR_PREFIX 2
71 #define DATA_PREFIX 3
72 #define REP_PREFIX 4
73 #define HLE_PREFIX REP_PREFIX
74 #define BND_PREFIX REP_PREFIX
75 #define LOCK_PREFIX 5
76 #define REX_PREFIX 6 /* must come last. */
77 #define MAX_PREFIXES 7 /* max prefixes per opcode */
78
79 /* we define the syntax here (modulo base,index,scale syntax) */
80 #define REGISTER_PREFIX '%'
81 #define IMMEDIATE_PREFIX '$'
82 #define ABSOLUTE_PREFIX '*'
83
84 /* these are the instruction mnemonic suffixes in AT&T syntax or
85 memory operand size in Intel syntax. */
86 #define WORD_MNEM_SUFFIX 'w'
87 #define BYTE_MNEM_SUFFIX 'b'
88 #define SHORT_MNEM_SUFFIX 's'
89 #define LONG_MNEM_SUFFIX 'l'
90 #define QWORD_MNEM_SUFFIX 'q'
91 /* Intel Syntax. Use a non-ascii letter since since it never appears
92 in instructions. */
93 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
94
95 #define END_OF_INSN '\0'
96
97 /* This matches the C -> StaticRounding alias in the opcode table. */
98 #define commutative staticrounding
99
100 /*
101 'templates' is for grouping together 'template' structures for opcodes
102 of the same name. This is only used for storing the insns in the grand
103 ole hash table of insns.
104 The templates themselves start at START and range up to (but not including)
105 END.
106 */
107 typedef struct
108 {
109 const insn_template *start;
110 const insn_template *end;
111 }
112 templates;
113
114 /* 386 operand encoding bytes: see 386 book for details of this. */
115 typedef struct
116 {
117 unsigned int regmem; /* codes register or memory operand */
118 unsigned int reg; /* codes register operand (or extended opcode) */
119 unsigned int mode; /* how to interpret regmem & reg */
120 }
121 modrm_byte;
122
123 /* x86-64 extension prefix. */
124 typedef int rex_byte;
125
126 /* 386 opcode byte to code indirect addressing. */
127 typedef struct
128 {
129 unsigned base;
130 unsigned index;
131 unsigned scale;
132 }
133 sib_byte;
134
135 /* x86 arch names, types and features */
136 typedef struct
137 {
138 const char *name; /* arch name */
139 unsigned int len; /* arch string length */
140 enum processor_type type; /* arch type */
141 i386_cpu_flags flags; /* cpu feature flags */
142 unsigned int skip; /* show_arch should skip this. */
143 }
144 arch_entry;
145
146 /* Used to turn off indicated flags. */
147 typedef struct
148 {
149 const char *name; /* arch name */
150 unsigned int len; /* arch string length */
151 i386_cpu_flags flags; /* cpu feature flags */
152 }
153 noarch_entry;
154
155 static void update_code_flag (int, int);
156 static void set_code_flag (int);
157 static void set_16bit_gcc_code_flag (int);
158 static void set_intel_syntax (int);
159 static void set_intel_mnemonic (int);
160 static void set_allow_index_reg (int);
161 static void set_check (int);
162 static void set_cpu_arch (int);
163 #ifdef TE_PE
164 static void pe_directive_secrel (int);
165 #endif
166 static void signed_cons (int);
167 static char *output_invalid (int c);
168 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
169 const char *);
170 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
171 const char *);
172 static int i386_att_operand (char *);
173 static int i386_intel_operand (char *, int);
174 static int i386_intel_simplify (expressionS *);
175 static int i386_intel_parse_name (const char *, expressionS *);
176 static const reg_entry *parse_register (char *, char **);
177 static char *parse_insn (char *, char *);
178 static char *parse_operands (char *, const char *);
179 static void swap_operands (void);
180 static void swap_2_operands (int, int);
181 static enum flag_code i386_addressing_mode (void);
182 static void optimize_imm (void);
183 static void optimize_disp (void);
184 static const insn_template *match_template (char);
185 static int check_string (void);
186 static int process_suffix (void);
187 static int check_byte_reg (void);
188 static int check_long_reg (void);
189 static int check_qword_reg (void);
190 static int check_word_reg (void);
191 static int finalize_imm (void);
192 static int process_operands (void);
193 static const seg_entry *build_modrm_byte (void);
194 static void output_insn (void);
195 static void output_imm (fragS *, offsetT);
196 static void output_disp (fragS *, offsetT);
197 #ifndef I386COFF
198 static void s_bss (int);
199 #endif
200 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201 static void handle_large_common (int small ATTRIBUTE_UNUSED);
202
203 /* GNU_PROPERTY_X86_ISA_1_USED. */
204 static unsigned int x86_isa_1_used;
205 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
206 static unsigned int x86_feature_2_used;
207 /* Generate x86 used ISA and feature properties. */
208 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
209 #endif
210
211 static const char *default_arch = DEFAULT_ARCH;
212
213 /* This struct describes rounding control and SAE in the instruction. */
214 struct RC_Operation
215 {
216 enum rc_type
217 {
218 rne = 0,
219 rd,
220 ru,
221 rz,
222 saeonly
223 } type;
224 int operand;
225 };
226
227 static struct RC_Operation rc_op;
228
229 /* The struct describes masking, applied to OPERAND in the instruction.
230 MASK is a pointer to the corresponding mask register. ZEROING tells
231 whether merging or zeroing mask is used. */
232 struct Mask_Operation
233 {
234 const reg_entry *mask;
235 unsigned int zeroing;
236 /* The operand where this operation is associated. */
237 int operand;
238 };
239
240 static struct Mask_Operation mask_op;
241
242 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
243 broadcast factor. */
244 struct Broadcast_Operation
245 {
246 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
247 int type;
248
249 /* Index of broadcasted operand. */
250 int operand;
251
252 /* Number of bytes to broadcast. */
253 int bytes;
254 };
255
256 static struct Broadcast_Operation broadcast_op;
257
258 /* VEX prefix. */
259 typedef struct
260 {
261 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
262 unsigned char bytes[4];
263 unsigned int length;
264 /* Destination or source register specifier. */
265 const reg_entry *register_specifier;
266 } vex_prefix;
267
268 /* 'md_assemble ()' gathers together information and puts it into a
269 i386_insn. */
270
271 union i386_op
272 {
273 expressionS *disps;
274 expressionS *imms;
275 const reg_entry *regs;
276 };
277
278 enum i386_error
279 {
280 operand_size_mismatch,
281 operand_type_mismatch,
282 register_type_mismatch,
283 number_of_operands_mismatch,
284 invalid_instruction_suffix,
285 bad_imm4,
286 unsupported_with_intel_mnemonic,
287 unsupported_syntax,
288 unsupported,
289 invalid_vsib_address,
290 invalid_vector_register_set,
291 unsupported_vector_index_register,
292 unsupported_broadcast,
293 broadcast_needed,
294 unsupported_masking,
295 mask_not_on_destination,
296 no_default_mask,
297 unsupported_rc_sae,
298 rc_sae_operand_not_last_imm,
299 invalid_register_operand,
300 };
301
302 struct _i386_insn
303 {
304 /* TM holds the template for the insn were currently assembling. */
305 insn_template tm;
306
307 /* SUFFIX holds the instruction size suffix for byte, word, dword
308 or qword, if given. */
309 char suffix;
310
311 /* OPERANDS gives the number of given operands. */
312 unsigned int operands;
313
314 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
315 of given register, displacement, memory operands and immediate
316 operands. */
317 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
318
319 /* TYPES [i] is the type (see above #defines) which tells us how to
320 use OP[i] for the corresponding operand. */
321 i386_operand_type types[MAX_OPERANDS];
322
323 /* Displacement expression, immediate expression, or register for each
324 operand. */
325 union i386_op op[MAX_OPERANDS];
326
327 /* Flags for operands. */
328 unsigned int flags[MAX_OPERANDS];
329 #define Operand_PCrel 1
330 #define Operand_Mem 2
331
332 /* Relocation type for operand */
333 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
334
335 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
336 the base index byte below. */
337 const reg_entry *base_reg;
338 const reg_entry *index_reg;
339 unsigned int log2_scale_factor;
340
341 /* SEG gives the seg_entries of this insn. They are zero unless
342 explicit segment overrides are given. */
343 const seg_entry *seg[2];
344
345 /* Copied first memory operand string, for re-checking. */
346 char *memop1_string;
347
348 /* PREFIX holds all the given prefix opcodes (usually null).
349 PREFIXES is the number of prefix opcodes. */
350 unsigned int prefixes;
351 unsigned char prefix[MAX_PREFIXES];
352
353 /* Register is in low 3 bits of opcode. */
354 bfd_boolean short_form;
355
356 /* The operand to a branch insn indicates an absolute branch. */
357 bfd_boolean jumpabsolute;
358
359 /* Has MMX register operands. */
360 bfd_boolean has_regmmx;
361
362 /* Has XMM register operands. */
363 bfd_boolean has_regxmm;
364
365 /* Has YMM register operands. */
366 bfd_boolean has_regymm;
367
368 /* Has ZMM register operands. */
369 bfd_boolean has_regzmm;
370
371 /* Has GOTPC or TLS relocation. */
372 bfd_boolean has_gotpc_tls_reloc;
373
374 /* RM and SIB are the modrm byte and the sib byte where the
375 addressing modes of this insn are encoded. */
376 modrm_byte rm;
377 rex_byte rex;
378 rex_byte vrex;
379 sib_byte sib;
380 vex_prefix vex;
381
382 /* Masking attributes. */
383 struct Mask_Operation *mask;
384
385 /* Rounding control and SAE attributes. */
386 struct RC_Operation *rounding;
387
388 /* Broadcasting attributes. */
389 struct Broadcast_Operation *broadcast;
390
391 /* Compressed disp8*N attribute. */
392 unsigned int memshift;
393
394 /* Prefer load or store in encoding. */
395 enum
396 {
397 dir_encoding_default = 0,
398 dir_encoding_load,
399 dir_encoding_store,
400 dir_encoding_swap
401 } dir_encoding;
402
403 /* Prefer 8bit or 32bit displacement in encoding. */
404 enum
405 {
406 disp_encoding_default = 0,
407 disp_encoding_8bit,
408 disp_encoding_32bit
409 } disp_encoding;
410
411 /* Prefer the REX byte in encoding. */
412 bfd_boolean rex_encoding;
413
414 /* Disable instruction size optimization. */
415 bfd_boolean no_optimize;
416
417 /* How to encode vector instructions. */
418 enum
419 {
420 vex_encoding_default = 0,
421 vex_encoding_vex,
422 vex_encoding_vex3,
423 vex_encoding_evex
424 } vec_encoding;
425
426 /* REP prefix. */
427 const char *rep_prefix;
428
429 /* HLE prefix. */
430 const char *hle_prefix;
431
432 /* Have BND prefix. */
433 const char *bnd_prefix;
434
435 /* Have NOTRACK prefix. */
436 const char *notrack_prefix;
437
438 /* Error message. */
439 enum i386_error error;
440 };
441
442 typedef struct _i386_insn i386_insn;
443
444 /* Link RC type with corresponding string, that'll be looked for in
445 asm. */
446 struct RC_name
447 {
448 enum rc_type type;
449 const char *name;
450 unsigned int len;
451 };
452
453 static const struct RC_name RC_NamesTable[] =
454 {
455 { rne, STRING_COMMA_LEN ("rn-sae") },
456 { rd, STRING_COMMA_LEN ("rd-sae") },
457 { ru, STRING_COMMA_LEN ("ru-sae") },
458 { rz, STRING_COMMA_LEN ("rz-sae") },
459 { saeonly, STRING_COMMA_LEN ("sae") },
460 };
461
462 /* List of chars besides those in app.c:symbol_chars that can start an
463 operand. Used to prevent the scrubber eating vital white-space. */
464 const char extra_symbol_chars[] = "*%-([{}"
465 #ifdef LEX_AT
466 "@"
467 #endif
468 #ifdef LEX_QM
469 "?"
470 #endif
471 ;
472
473 #if (defined (TE_I386AIX) \
474 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
475 && !defined (TE_GNU) \
476 && !defined (TE_LINUX) \
477 && !defined (TE_NACL) \
478 && !defined (TE_FreeBSD) \
479 && !defined (TE_DragonFly) \
480 && !defined (TE_NetBSD)))
481 /* This array holds the chars that always start a comment. If the
482 pre-processor is disabled, these aren't very useful. The option
483 --divide will remove '/' from this list. */
484 const char *i386_comment_chars = "#/";
485 #define SVR4_COMMENT_CHARS 1
486 #define PREFIX_SEPARATOR '\\'
487
488 #else
489 const char *i386_comment_chars = "#";
490 #define PREFIX_SEPARATOR '/'
491 #endif
492
493 /* This array holds the chars that only start a comment at the beginning of
494 a line. If the line seems to have the form '# 123 filename'
495 .line and .file directives will appear in the pre-processed output.
496 Note that input_file.c hand checks for '#' at the beginning of the
497 first line of the input file. This is because the compiler outputs
498 #NO_APP at the beginning of its output.
499 Also note that comments started like this one will always work if
500 '/' isn't otherwise defined. */
501 const char line_comment_chars[] = "#/";
502
503 const char line_separator_chars[] = ";";
504
505 /* Chars that can be used to separate mant from exp in floating point
506 nums. */
507 const char EXP_CHARS[] = "eE";
508
509 /* Chars that mean this number is a floating point constant
510 As in 0f12.456
511 or 0d1.2345e12. */
512 const char FLT_CHARS[] = "fFdDxX";
513
514 /* Tables for lexical analysis. */
515 static char mnemonic_chars[256];
516 static char register_chars[256];
517 static char operand_chars[256];
518 static char identifier_chars[256];
519 static char digit_chars[256];
520
521 /* Lexical macros. */
522 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
523 #define is_operand_char(x) (operand_chars[(unsigned char) x])
524 #define is_register_char(x) (register_chars[(unsigned char) x])
525 #define is_space_char(x) ((x) == ' ')
526 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
527 #define is_digit_char(x) (digit_chars[(unsigned char) x])
528
529 /* All non-digit non-letter characters that may occur in an operand. */
530 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
531
532 /* md_assemble() always leaves the strings it's passed unaltered. To
533 effect this we maintain a stack of saved characters that we've smashed
534 with '\0's (indicating end of strings for various sub-fields of the
535 assembler instruction). */
536 static char save_stack[32];
537 static char *save_stack_p;
538 #define END_STRING_AND_SAVE(s) \
539 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
540 #define RESTORE_END_STRING(s) \
541 do { *(s) = *--save_stack_p; } while (0)
542
543 /* The instruction we're assembling. */
544 static i386_insn i;
545
546 /* Possible templates for current insn. */
547 static const templates *current_templates;
548
549 /* Per instruction expressionS buffers: max displacements & immediates. */
550 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
551 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
552
553 /* Current operand we are working on. */
554 static int this_operand = -1;
555
556 /* We support four different modes. FLAG_CODE variable is used to distinguish
557 these. */
558
559 enum flag_code {
560 CODE_32BIT,
561 CODE_16BIT,
562 CODE_64BIT };
563
564 static enum flag_code flag_code;
565 static unsigned int object_64bit;
566 static unsigned int disallow_64bit_reloc;
567 static int use_rela_relocations = 0;
568 /* __tls_get_addr/___tls_get_addr symbol for TLS. */
569 static const char *tls_get_addr;
570
571 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
572 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
573 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
574
575 /* The ELF ABI to use. */
576 enum x86_elf_abi
577 {
578 I386_ABI,
579 X86_64_ABI,
580 X86_64_X32_ABI
581 };
582
583 static enum x86_elf_abi x86_elf_abi = I386_ABI;
584 #endif
585
586 #if defined (TE_PE) || defined (TE_PEP)
587 /* Use big object file format. */
588 static int use_big_obj = 0;
589 #endif
590
591 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
592 /* 1 if generating code for a shared library. */
593 static int shared = 0;
594 #endif
595
596 /* 1 for intel syntax,
597 0 if att syntax. */
598 static int intel_syntax = 0;
599
600 static enum x86_64_isa
601 {
602 amd64 = 1, /* AMD64 ISA. */
603 intel64 /* Intel64 ISA. */
604 } isa64;
605
606 /* 1 for intel mnemonic,
607 0 if att mnemonic. */
608 static int intel_mnemonic = !SYSV386_COMPAT;
609
610 /* 1 if pseudo registers are permitted. */
611 static int allow_pseudo_reg = 0;
612
613 /* 1 if register prefix % not required. */
614 static int allow_naked_reg = 0;
615
616 /* 1 if the assembler should add BND prefix for all control-transferring
617 instructions supporting it, even if this prefix wasn't specified
618 explicitly. */
619 static int add_bnd_prefix = 0;
620
621 /* 1 if pseudo index register, eiz/riz, is allowed . */
622 static int allow_index_reg = 0;
623
624 /* 1 if the assembler should ignore LOCK prefix, even if it was
625 specified explicitly. */
626 static int omit_lock_prefix = 0;
627
628 /* 1 if the assembler should encode lfence, mfence, and sfence as
629 "lock addl $0, (%{re}sp)". */
630 static int avoid_fence = 0;
631
632 /* Type of the previous instruction. */
633 static struct
634 {
635 segT seg;
636 const char *file;
637 const char *name;
638 unsigned int line;
639 enum last_insn_kind
640 {
641 last_insn_other = 0,
642 last_insn_directive,
643 last_insn_prefix
644 } kind;
645 } last_insn;
646
647 /* 1 if the assembler should generate relax relocations. */
648
649 static int generate_relax_relocations
650 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
651
652 static enum check_kind
653 {
654 check_none = 0,
655 check_warning,
656 check_error
657 }
658 sse_check, operand_check = check_warning;
659
660 /* Non-zero if branches should be aligned within power of 2 boundary. */
661 static int align_branch_power = 0;
662
663 /* Types of branches to align. */
664 enum align_branch_kind
665 {
666 align_branch_none = 0,
667 align_branch_jcc = 1,
668 align_branch_fused = 2,
669 align_branch_jmp = 3,
670 align_branch_call = 4,
671 align_branch_indirect = 5,
672 align_branch_ret = 6
673 };
674
675 /* Type bits of branches to align. */
676 enum align_branch_bit
677 {
678 align_branch_jcc_bit = 1 << align_branch_jcc,
679 align_branch_fused_bit = 1 << align_branch_fused,
680 align_branch_jmp_bit = 1 << align_branch_jmp,
681 align_branch_call_bit = 1 << align_branch_call,
682 align_branch_indirect_bit = 1 << align_branch_indirect,
683 align_branch_ret_bit = 1 << align_branch_ret
684 };
685
686 static unsigned int align_branch = (align_branch_jcc_bit
687 | align_branch_fused_bit
688 | align_branch_jmp_bit);
689
690 /* Types of condition jump used by macro-fusion. */
691 enum mf_jcc_kind
692 {
693 mf_jcc_jo = 0, /* base opcode 0x70 */
694 mf_jcc_jc, /* base opcode 0x72 */
695 mf_jcc_je, /* base opcode 0x74 */
696 mf_jcc_jna, /* base opcode 0x76 */
697 mf_jcc_js, /* base opcode 0x78 */
698 mf_jcc_jp, /* base opcode 0x7a */
699 mf_jcc_jl, /* base opcode 0x7c */
700 mf_jcc_jle, /* base opcode 0x7e */
701 };
702
703 /* Types of compare flag-modifying insntructions used by macro-fusion. */
704 enum mf_cmp_kind
705 {
706 mf_cmp_test_and, /* test/cmp */
707 mf_cmp_alu_cmp, /* add/sub/cmp */
708 mf_cmp_incdec /* inc/dec */
709 };
710
711 /* The maximum padding size for fused jcc. CMP like instruction can
712 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
713 prefixes. */
714 #define MAX_FUSED_JCC_PADDING_SIZE 20
715
716 /* The maximum number of prefixes added for an instruction. */
717 static unsigned int align_branch_prefix_size = 5;
718
719 /* Optimization:
720 1. Clear the REX_W bit with register operand if possible.
721 2. Above plus use 128bit vector instruction to clear the full vector
722 register.
723 */
724 static int optimize = 0;
725
726 /* Optimization:
727 1. Clear the REX_W bit with register operand if possible.
728 2. Above plus use 128bit vector instruction to clear the full vector
729 register.
730 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
731 "testb $imm7,%r8".
732 */
733 static int optimize_for_space = 0;
734
735 /* Register prefix used for error message. */
736 static const char *register_prefix = "%";
737
738 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
739 leave, push, and pop instructions so that gcc has the same stack
740 frame as in 32 bit mode. */
741 static char stackop_size = '\0';
742
743 /* Non-zero to optimize code alignment. */
744 int optimize_align_code = 1;
745
746 /* Non-zero to quieten some warnings. */
747 static int quiet_warnings = 0;
748
749 /* CPU name. */
750 static const char *cpu_arch_name = NULL;
751 static char *cpu_sub_arch_name = NULL;
752
753 /* CPU feature flags. */
754 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
755
756 /* If we have selected a cpu we are generating instructions for. */
757 static int cpu_arch_tune_set = 0;
758
759 /* Cpu we are generating instructions for. */
760 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
761
762 /* CPU feature flags of cpu we are generating instructions for. */
763 static i386_cpu_flags cpu_arch_tune_flags;
764
765 /* CPU instruction set architecture used. */
766 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
767
768 /* CPU feature flags of instruction set architecture used. */
769 i386_cpu_flags cpu_arch_isa_flags;
770
771 /* If set, conditional jumps are not automatically promoted to handle
772 larger than a byte offset. */
773 static unsigned int no_cond_jump_promotion = 0;
774
775 /* Encode SSE instructions with VEX prefix. */
776 static unsigned int sse2avx;
777
778 /* Encode scalar AVX instructions with specific vector length. */
779 static enum
780 {
781 vex128 = 0,
782 vex256
783 } avxscalar;
784
785 /* Encode VEX WIG instructions with specific vex.w. */
786 static enum
787 {
788 vexw0 = 0,
789 vexw1
790 } vexwig;
791
792 /* Encode scalar EVEX LIG instructions with specific vector length. */
793 static enum
794 {
795 evexl128 = 0,
796 evexl256,
797 evexl512
798 } evexlig;
799
800 /* Encode EVEX WIG instructions with specific evex.w. */
801 static enum
802 {
803 evexw0 = 0,
804 evexw1
805 } evexwig;
806
807 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
808 static enum rc_type evexrcig = rne;
809
810 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
811 static symbolS *GOT_symbol;
812
813 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
814 unsigned int x86_dwarf2_return_column;
815
816 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
817 int x86_cie_data_alignment;
818
819 /* Interface to relax_segment.
820 There are 3 major relax states for 386 jump insns because the
821 different types of jumps add different sizes to frags when we're
822 figuring out what sort of jump to choose to reach a given label.
823
824 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
825 branches which are handled by md_estimate_size_before_relax() and
826 i386_generic_table_relax_frag(). */
827
828 /* Types. */
829 #define UNCOND_JUMP 0
830 #define COND_JUMP 1
831 #define COND_JUMP86 2
832 #define BRANCH_PADDING 3
833 #define BRANCH_PREFIX 4
834 #define FUSED_JCC_PADDING 5
835
836 /* Sizes. */
837 #define CODE16 1
838 #define SMALL 0
839 #define SMALL16 (SMALL | CODE16)
840 #define BIG 2
841 #define BIG16 (BIG | CODE16)
842
843 #ifndef INLINE
844 #ifdef __GNUC__
845 #define INLINE __inline__
846 #else
847 #define INLINE
848 #endif
849 #endif
850
851 #define ENCODE_RELAX_STATE(type, size) \
852 ((relax_substateT) (((type) << 2) | (size)))
853 #define TYPE_FROM_RELAX_STATE(s) \
854 ((s) >> 2)
855 #define DISP_SIZE_FROM_RELAX_STATE(s) \
856 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
857
858 /* This table is used by relax_frag to promote short jumps to long
859 ones where necessary. SMALL (short) jumps may be promoted to BIG
860 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
861 don't allow a short jump in a 32 bit code segment to be promoted to
862 a 16 bit offset jump because it's slower (requires data size
863 prefix), and doesn't work, unless the destination is in the bottom
864 64k of the code segment (The top 16 bits of eip are zeroed). */
865
866 const relax_typeS md_relax_table[] =
867 {
868 /* The fields are:
869 1) most positive reach of this state,
870 2) most negative reach of this state,
871 3) how many bytes this mode will have in the variable part of the frag
872 4) which index into the table to try if we can't fit into this one. */
873
874 /* UNCOND_JUMP states. */
875 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
876 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
877 /* dword jmp adds 4 bytes to frag:
878 0 extra opcode bytes, 4 displacement bytes. */
879 {0, 0, 4, 0},
880 /* word jmp adds 2 byte2 to frag:
881 0 extra opcode bytes, 2 displacement bytes. */
882 {0, 0, 2, 0},
883
884 /* COND_JUMP states. */
885 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
886 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
887 /* dword conditionals adds 5 bytes to frag:
888 1 extra opcode byte, 4 displacement bytes. */
889 {0, 0, 5, 0},
890 /* word conditionals add 3 bytes to frag:
891 1 extra opcode byte, 2 displacement bytes. */
892 {0, 0, 3, 0},
893
894 /* COND_JUMP86 states. */
895 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
896 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
897 /* dword conditionals adds 5 bytes to frag:
898 1 extra opcode byte, 4 displacement bytes. */
899 {0, 0, 5, 0},
900 /* word conditionals add 4 bytes to frag:
901 1 displacement byte and a 3 byte long branch insn. */
902 {0, 0, 4, 0}
903 };
904
905 static const arch_entry cpu_arch[] =
906 {
907 /* Do not replace the first two entries - i386_target_format()
908 relies on them being there in this order. */
909 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
910 CPU_GENERIC32_FLAGS, 0 },
911 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
912 CPU_GENERIC64_FLAGS, 0 },
913 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
914 CPU_NONE_FLAGS, 0 },
915 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
916 CPU_I186_FLAGS, 0 },
917 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
918 CPU_I286_FLAGS, 0 },
919 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
920 CPU_I386_FLAGS, 0 },
921 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
922 CPU_I486_FLAGS, 0 },
923 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
924 CPU_I586_FLAGS, 0 },
925 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
926 CPU_I686_FLAGS, 0 },
927 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
928 CPU_I586_FLAGS, 0 },
929 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
930 CPU_PENTIUMPRO_FLAGS, 0 },
931 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
932 CPU_P2_FLAGS, 0 },
933 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
934 CPU_P3_FLAGS, 0 },
935 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
936 CPU_P4_FLAGS, 0 },
937 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
938 CPU_CORE_FLAGS, 0 },
939 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
940 CPU_NOCONA_FLAGS, 0 },
941 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
942 CPU_CORE_FLAGS, 1 },
943 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
944 CPU_CORE_FLAGS, 0 },
945 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
946 CPU_CORE2_FLAGS, 1 },
947 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
948 CPU_CORE2_FLAGS, 0 },
949 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
950 CPU_COREI7_FLAGS, 0 },
951 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
952 CPU_L1OM_FLAGS, 0 },
953 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
954 CPU_K1OM_FLAGS, 0 },
955 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
956 CPU_IAMCU_FLAGS, 0 },
957 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
958 CPU_K6_FLAGS, 0 },
959 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
960 CPU_K6_2_FLAGS, 0 },
961 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
962 CPU_ATHLON_FLAGS, 0 },
963 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
964 CPU_K8_FLAGS, 1 },
965 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
966 CPU_K8_FLAGS, 0 },
967 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
968 CPU_K8_FLAGS, 0 },
969 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
970 CPU_AMDFAM10_FLAGS, 0 },
971 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
972 CPU_BDVER1_FLAGS, 0 },
973 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
974 CPU_BDVER2_FLAGS, 0 },
975 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
976 CPU_BDVER3_FLAGS, 0 },
977 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
978 CPU_BDVER4_FLAGS, 0 },
979 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
980 CPU_ZNVER1_FLAGS, 0 },
981 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
982 CPU_ZNVER2_FLAGS, 0 },
983 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
984 CPU_BTVER1_FLAGS, 0 },
985 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
986 CPU_BTVER2_FLAGS, 0 },
987 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
988 CPU_8087_FLAGS, 0 },
989 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
990 CPU_287_FLAGS, 0 },
991 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
992 CPU_387_FLAGS, 0 },
993 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
994 CPU_687_FLAGS, 0 },
995 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
996 CPU_CMOV_FLAGS, 0 },
997 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
998 CPU_FXSR_FLAGS, 0 },
999 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
1000 CPU_MMX_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
1002 CPU_SSE_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
1004 CPU_SSE2_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
1006 CPU_SSE3_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1008 CPU_SSE4A_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
1010 CPU_SSSE3_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
1012 CPU_SSE4_1_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
1014 CPU_SSE4_2_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
1016 CPU_SSE4_2_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
1018 CPU_AVX_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
1020 CPU_AVX2_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
1022 CPU_AVX512F_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
1024 CPU_AVX512CD_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
1026 CPU_AVX512ER_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
1028 CPU_AVX512PF_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
1030 CPU_AVX512DQ_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
1032 CPU_AVX512BW_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
1034 CPU_AVX512VL_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
1036 CPU_VMX_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
1038 CPU_VMFUNC_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
1040 CPU_SMX_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
1042 CPU_XSAVE_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
1044 CPU_XSAVEOPT_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
1046 CPU_XSAVEC_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
1048 CPU_XSAVES_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
1050 CPU_AES_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
1052 CPU_PCLMUL_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
1054 CPU_PCLMUL_FLAGS, 1 },
1055 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
1056 CPU_FSGSBASE_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
1058 CPU_RDRND_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
1060 CPU_F16C_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
1062 CPU_BMI2_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
1064 CPU_FMA_FLAGS, 0 },
1065 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
1066 CPU_FMA4_FLAGS, 0 },
1067 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
1068 CPU_XOP_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
1070 CPU_LWP_FLAGS, 0 },
1071 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
1072 CPU_MOVBE_FLAGS, 0 },
1073 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
1074 CPU_CX16_FLAGS, 0 },
1075 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
1076 CPU_EPT_FLAGS, 0 },
1077 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
1078 CPU_LZCNT_FLAGS, 0 },
1079 { STRING_COMMA_LEN (".popcnt"), PROCESSOR_UNKNOWN,
1080 CPU_POPCNT_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
1082 CPU_HLE_FLAGS, 0 },
1083 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
1084 CPU_RTM_FLAGS, 0 },
1085 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
1086 CPU_INVPCID_FLAGS, 0 },
1087 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
1088 CPU_CLFLUSH_FLAGS, 0 },
1089 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
1090 CPU_NOP_FLAGS, 0 },
1091 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
1092 CPU_SYSCALL_FLAGS, 0 },
1093 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
1094 CPU_RDTSCP_FLAGS, 0 },
1095 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1096 CPU_3DNOW_FLAGS, 0 },
1097 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1098 CPU_3DNOWA_FLAGS, 0 },
1099 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1100 CPU_PADLOCK_FLAGS, 0 },
1101 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1102 CPU_SVME_FLAGS, 1 },
1103 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1104 CPU_SVME_FLAGS, 0 },
1105 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1106 CPU_SSE4A_FLAGS, 0 },
1107 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1108 CPU_ABM_FLAGS, 0 },
1109 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1110 CPU_BMI_FLAGS, 0 },
1111 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1112 CPU_TBM_FLAGS, 0 },
1113 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1114 CPU_ADX_FLAGS, 0 },
1115 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1116 CPU_RDSEED_FLAGS, 0 },
1117 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1118 CPU_PRFCHW_FLAGS, 0 },
1119 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1120 CPU_SMAP_FLAGS, 0 },
1121 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1122 CPU_MPX_FLAGS, 0 },
1123 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1124 CPU_SHA_FLAGS, 0 },
1125 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1126 CPU_CLFLUSHOPT_FLAGS, 0 },
1127 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1128 CPU_PREFETCHWT1_FLAGS, 0 },
1129 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1130 CPU_SE1_FLAGS, 0 },
1131 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1132 CPU_CLWB_FLAGS, 0 },
1133 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1134 CPU_AVX512IFMA_FLAGS, 0 },
1135 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1136 CPU_AVX512VBMI_FLAGS, 0 },
1137 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1138 CPU_AVX512_4FMAPS_FLAGS, 0 },
1139 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1140 CPU_AVX512_4VNNIW_FLAGS, 0 },
1141 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1142 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1143 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1144 CPU_AVX512_VBMI2_FLAGS, 0 },
1145 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1146 CPU_AVX512_VNNI_FLAGS, 0 },
1147 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1148 CPU_AVX512_BITALG_FLAGS, 0 },
1149 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1150 CPU_CLZERO_FLAGS, 0 },
1151 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1152 CPU_MWAITX_FLAGS, 0 },
1153 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1154 CPU_OSPKE_FLAGS, 0 },
1155 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1156 CPU_RDPID_FLAGS, 0 },
1157 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1158 CPU_PTWRITE_FLAGS, 0 },
1159 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1160 CPU_IBT_FLAGS, 0 },
1161 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1162 CPU_SHSTK_FLAGS, 0 },
1163 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1164 CPU_GFNI_FLAGS, 0 },
1165 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1166 CPU_VAES_FLAGS, 0 },
1167 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1168 CPU_VPCLMULQDQ_FLAGS, 0 },
1169 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1170 CPU_WBNOINVD_FLAGS, 0 },
1171 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1172 CPU_PCONFIG_FLAGS, 0 },
1173 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1174 CPU_WAITPKG_FLAGS, 0 },
1175 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1176 CPU_CLDEMOTE_FLAGS, 0 },
1177 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1178 CPU_MOVDIRI_FLAGS, 0 },
1179 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1180 CPU_MOVDIR64B_FLAGS, 0 },
1181 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1182 CPU_AVX512_BF16_FLAGS, 0 },
1183 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1184 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1185 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1186 CPU_ENQCMD_FLAGS, 0 },
1187 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1188 CPU_RDPRU_FLAGS, 0 },
1189 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1190 CPU_MCOMMIT_FLAGS, 0 },
1191 { STRING_COMMA_LEN (".sev_es"), PROCESSOR_UNKNOWN,
1192 CPU_SEV_ES_FLAGS, 0 },
1193 };
1194
1195 static const noarch_entry cpu_noarch[] =
1196 {
1197 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1198 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1199 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1200 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1201 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1202 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1203 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1204 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1205 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1206 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1207 { STRING_COMMA_LEN ("nosse4a"), CPU_ANY_SSE4A_FLAGS },
1208 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1209 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1210 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1211 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1212 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1213 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1214 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1215 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1216 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1217 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1218 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1219 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1220 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1221 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1222 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1223 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1224 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1225 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1226 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1227 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1228 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1229 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1230 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1231 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1232 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1233 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1234 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1235 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1236 };
1237
1238 #ifdef I386COFF
1239 /* Like s_lcomm_internal in gas/read.c but the alignment string
1240 is allowed to be optional. */
1241
1242 static symbolS *
1243 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1244 {
1245 addressT align = 0;
1246
1247 SKIP_WHITESPACE ();
1248
1249 if (needs_align
1250 && *input_line_pointer == ',')
1251 {
1252 align = parse_align (needs_align - 1);
1253
1254 if (align == (addressT) -1)
1255 return NULL;
1256 }
1257 else
1258 {
1259 if (size >= 8)
1260 align = 3;
1261 else if (size >= 4)
1262 align = 2;
1263 else if (size >= 2)
1264 align = 1;
1265 else
1266 align = 0;
1267 }
1268
1269 bss_alloc (symbolP, size, align);
1270 return symbolP;
1271 }
1272
1273 static void
1274 pe_lcomm (int needs_align)
1275 {
1276 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1277 }
1278 #endif
1279
1280 const pseudo_typeS md_pseudo_table[] =
1281 {
1282 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1283 {"align", s_align_bytes, 0},
1284 #else
1285 {"align", s_align_ptwo, 0},
1286 #endif
1287 {"arch", set_cpu_arch, 0},
1288 #ifndef I386COFF
1289 {"bss", s_bss, 0},
1290 #else
1291 {"lcomm", pe_lcomm, 1},
1292 #endif
1293 {"ffloat", float_cons, 'f'},
1294 {"dfloat", float_cons, 'd'},
1295 {"tfloat", float_cons, 'x'},
1296 {"value", cons, 2},
1297 {"slong", signed_cons, 4},
1298 {"noopt", s_ignore, 0},
1299 {"optim", s_ignore, 0},
1300 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1301 {"code16", set_code_flag, CODE_16BIT},
1302 {"code32", set_code_flag, CODE_32BIT},
1303 #ifdef BFD64
1304 {"code64", set_code_flag, CODE_64BIT},
1305 #endif
1306 {"intel_syntax", set_intel_syntax, 1},
1307 {"att_syntax", set_intel_syntax, 0},
1308 {"intel_mnemonic", set_intel_mnemonic, 1},
1309 {"att_mnemonic", set_intel_mnemonic, 0},
1310 {"allow_index_reg", set_allow_index_reg, 1},
1311 {"disallow_index_reg", set_allow_index_reg, 0},
1312 {"sse_check", set_check, 0},
1313 {"operand_check", set_check, 1},
1314 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1315 {"largecomm", handle_large_common, 0},
1316 #else
1317 {"file", dwarf2_directive_file, 0},
1318 {"loc", dwarf2_directive_loc, 0},
1319 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1320 #endif
1321 #ifdef TE_PE
1322 {"secrel32", pe_directive_secrel, 0},
1323 #endif
1324 {0, 0, 0}
1325 };
1326
1327 /* For interface with expression (). */
1328 extern char *input_line_pointer;
1329
1330 /* Hash table for instruction mnemonic lookup. */
1331 static struct hash_control *op_hash;
1332
1333 /* Hash table for register lookup. */
1334 static struct hash_control *reg_hash;
1335 \f
1336 /* Various efficient no-op patterns for aligning code labels.
1337 Note: Don't try to assemble the instructions in the comments.
1338 0L and 0w are not legal. */
1339 static const unsigned char f32_1[] =
1340 {0x90}; /* nop */
1341 static const unsigned char f32_2[] =
1342 {0x66,0x90}; /* xchg %ax,%ax */
1343 static const unsigned char f32_3[] =
1344 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1345 static const unsigned char f32_4[] =
1346 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1347 static const unsigned char f32_6[] =
1348 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1349 static const unsigned char f32_7[] =
1350 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1351 static const unsigned char f16_3[] =
1352 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1353 static const unsigned char f16_4[] =
1354 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1355 static const unsigned char jump_disp8[] =
1356 {0xeb}; /* jmp disp8 */
1357 static const unsigned char jump32_disp32[] =
1358 {0xe9}; /* jmp disp32 */
1359 static const unsigned char jump16_disp32[] =
1360 {0x66,0xe9}; /* jmp disp32 */
1361 /* 32-bit NOPs patterns. */
1362 static const unsigned char *const f32_patt[] = {
1363 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1364 };
1365 /* 16-bit NOPs patterns. */
1366 static const unsigned char *const f16_patt[] = {
1367 f32_1, f32_2, f16_3, f16_4
1368 };
1369 /* nopl (%[re]ax) */
1370 static const unsigned char alt_3[] =
1371 {0x0f,0x1f,0x00};
1372 /* nopl 0(%[re]ax) */
1373 static const unsigned char alt_4[] =
1374 {0x0f,0x1f,0x40,0x00};
1375 /* nopl 0(%[re]ax,%[re]ax,1) */
1376 static const unsigned char alt_5[] =
1377 {0x0f,0x1f,0x44,0x00,0x00};
1378 /* nopw 0(%[re]ax,%[re]ax,1) */
1379 static const unsigned char alt_6[] =
1380 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1381 /* nopl 0L(%[re]ax) */
1382 static const unsigned char alt_7[] =
1383 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1384 /* nopl 0L(%[re]ax,%[re]ax,1) */
1385 static const unsigned char alt_8[] =
1386 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1387 /* nopw 0L(%[re]ax,%[re]ax,1) */
1388 static const unsigned char alt_9[] =
1389 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1390 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1391 static const unsigned char alt_10[] =
1392 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1393 /* data16 nopw %cs:0L(%eax,%eax,1) */
1394 static const unsigned char alt_11[] =
1395 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1396 /* 32-bit and 64-bit NOPs patterns. */
1397 static const unsigned char *const alt_patt[] = {
1398 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1399 alt_9, alt_10, alt_11
1400 };
1401
1402 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1403 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1404
1405 static void
1406 i386_output_nops (char *where, const unsigned char *const *patt,
1407 int count, int max_single_nop_size)
1408
1409 {
1410 /* Place the longer NOP first. */
1411 int last;
1412 int offset;
1413 const unsigned char *nops;
1414
1415 if (max_single_nop_size < 1)
1416 {
1417 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1418 max_single_nop_size);
1419 return;
1420 }
1421
1422 nops = patt[max_single_nop_size - 1];
1423
1424 /* Use the smaller one if the requsted one isn't available. */
1425 if (nops == NULL)
1426 {
1427 max_single_nop_size--;
1428 nops = patt[max_single_nop_size - 1];
1429 }
1430
1431 last = count % max_single_nop_size;
1432
1433 count -= last;
1434 for (offset = 0; offset < count; offset += max_single_nop_size)
1435 memcpy (where + offset, nops, max_single_nop_size);
1436
1437 if (last)
1438 {
1439 nops = patt[last - 1];
1440 if (nops == NULL)
1441 {
1442 /* Use the smaller one plus one-byte NOP if the needed one
1443 isn't available. */
1444 last--;
1445 nops = patt[last - 1];
1446 memcpy (where + offset, nops, last);
1447 where[offset + last] = *patt[0];
1448 }
1449 else
1450 memcpy (where + offset, nops, last);
1451 }
1452 }
1453
1454 static INLINE int
1455 fits_in_imm7 (offsetT num)
1456 {
1457 return (num & 0x7f) == num;
1458 }
1459
1460 static INLINE int
1461 fits_in_imm31 (offsetT num)
1462 {
1463 return (num & 0x7fffffff) == num;
1464 }
1465
1466 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1467 single NOP instruction LIMIT. */
1468
1469 void
1470 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1471 {
1472 const unsigned char *const *patt = NULL;
1473 int max_single_nop_size;
1474 /* Maximum number of NOPs before switching to jump over NOPs. */
1475 int max_number_of_nops;
1476
1477 switch (fragP->fr_type)
1478 {
1479 case rs_fill_nop:
1480 case rs_align_code:
1481 break;
1482 case rs_machine_dependent:
1483 /* Allow NOP padding for jumps and calls. */
1484 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1485 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1486 break;
1487 /* Fall through. */
1488 default:
1489 return;
1490 }
1491
1492 /* We need to decide which NOP sequence to use for 32bit and
1493 64bit. When -mtune= is used:
1494
1495 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1496 PROCESSOR_GENERIC32, f32_patt will be used.
1497 2. For the rest, alt_patt will be used.
1498
1499 When -mtune= isn't used, alt_patt will be used if
1500 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1501 be used.
1502
1503 When -march= or .arch is used, we can't use anything beyond
1504 cpu_arch_isa_flags. */
1505
1506 if (flag_code == CODE_16BIT)
1507 {
1508 patt = f16_patt;
1509 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1510 /* Limit number of NOPs to 2 in 16-bit mode. */
1511 max_number_of_nops = 2;
1512 }
1513 else
1514 {
1515 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1516 {
1517 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1518 switch (cpu_arch_tune)
1519 {
1520 case PROCESSOR_UNKNOWN:
1521 /* We use cpu_arch_isa_flags to check if we SHOULD
1522 optimize with nops. */
1523 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1524 patt = alt_patt;
1525 else
1526 patt = f32_patt;
1527 break;
1528 case PROCESSOR_PENTIUM4:
1529 case PROCESSOR_NOCONA:
1530 case PROCESSOR_CORE:
1531 case PROCESSOR_CORE2:
1532 case PROCESSOR_COREI7:
1533 case PROCESSOR_L1OM:
1534 case PROCESSOR_K1OM:
1535 case PROCESSOR_GENERIC64:
1536 case PROCESSOR_K6:
1537 case PROCESSOR_ATHLON:
1538 case PROCESSOR_K8:
1539 case PROCESSOR_AMDFAM10:
1540 case PROCESSOR_BD:
1541 case PROCESSOR_ZNVER:
1542 case PROCESSOR_BT:
1543 patt = alt_patt;
1544 break;
1545 case PROCESSOR_I386:
1546 case PROCESSOR_I486:
1547 case PROCESSOR_PENTIUM:
1548 case PROCESSOR_PENTIUMPRO:
1549 case PROCESSOR_IAMCU:
1550 case PROCESSOR_GENERIC32:
1551 patt = f32_patt;
1552 break;
1553 }
1554 }
1555 else
1556 {
1557 switch (fragP->tc_frag_data.tune)
1558 {
1559 case PROCESSOR_UNKNOWN:
1560 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1561 PROCESSOR_UNKNOWN. */
1562 abort ();
1563 break;
1564
1565 case PROCESSOR_I386:
1566 case PROCESSOR_I486:
1567 case PROCESSOR_PENTIUM:
1568 case PROCESSOR_IAMCU:
1569 case PROCESSOR_K6:
1570 case PROCESSOR_ATHLON:
1571 case PROCESSOR_K8:
1572 case PROCESSOR_AMDFAM10:
1573 case PROCESSOR_BD:
1574 case PROCESSOR_ZNVER:
1575 case PROCESSOR_BT:
1576 case PROCESSOR_GENERIC32:
1577 /* We use cpu_arch_isa_flags to check if we CAN optimize
1578 with nops. */
1579 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1580 patt = alt_patt;
1581 else
1582 patt = f32_patt;
1583 break;
1584 case PROCESSOR_PENTIUMPRO:
1585 case PROCESSOR_PENTIUM4:
1586 case PROCESSOR_NOCONA:
1587 case PROCESSOR_CORE:
1588 case PROCESSOR_CORE2:
1589 case PROCESSOR_COREI7:
1590 case PROCESSOR_L1OM:
1591 case PROCESSOR_K1OM:
1592 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1593 patt = alt_patt;
1594 else
1595 patt = f32_patt;
1596 break;
1597 case PROCESSOR_GENERIC64:
1598 patt = alt_patt;
1599 break;
1600 }
1601 }
1602
1603 if (patt == f32_patt)
1604 {
1605 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1606 /* Limit number of NOPs to 2 for older processors. */
1607 max_number_of_nops = 2;
1608 }
1609 else
1610 {
1611 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1612 /* Limit number of NOPs to 7 for newer processors. */
1613 max_number_of_nops = 7;
1614 }
1615 }
1616
1617 if (limit == 0)
1618 limit = max_single_nop_size;
1619
1620 if (fragP->fr_type == rs_fill_nop)
1621 {
1622 /* Output NOPs for .nop directive. */
1623 if (limit > max_single_nop_size)
1624 {
1625 as_bad_where (fragP->fr_file, fragP->fr_line,
1626 _("invalid single nop size: %d "
1627 "(expect within [0, %d])"),
1628 limit, max_single_nop_size);
1629 return;
1630 }
1631 }
1632 else if (fragP->fr_type != rs_machine_dependent)
1633 fragP->fr_var = count;
1634
1635 if ((count / max_single_nop_size) > max_number_of_nops)
1636 {
1637 /* Generate jump over NOPs. */
1638 offsetT disp = count - 2;
1639 if (fits_in_imm7 (disp))
1640 {
1641 /* Use "jmp disp8" if possible. */
1642 count = disp;
1643 where[0] = jump_disp8[0];
1644 where[1] = count;
1645 where += 2;
1646 }
1647 else
1648 {
1649 unsigned int size_of_jump;
1650
1651 if (flag_code == CODE_16BIT)
1652 {
1653 where[0] = jump16_disp32[0];
1654 where[1] = jump16_disp32[1];
1655 size_of_jump = 2;
1656 }
1657 else
1658 {
1659 where[0] = jump32_disp32[0];
1660 size_of_jump = 1;
1661 }
1662
1663 count -= size_of_jump + 4;
1664 if (!fits_in_imm31 (count))
1665 {
1666 as_bad_where (fragP->fr_file, fragP->fr_line,
1667 _("jump over nop padding out of range"));
1668 return;
1669 }
1670
1671 md_number_to_chars (where + size_of_jump, count, 4);
1672 where += size_of_jump + 4;
1673 }
1674 }
1675
1676 /* Generate multiple NOPs. */
1677 i386_output_nops (where, patt, count, limit);
1678 }
1679
1680 static INLINE int
1681 operand_type_all_zero (const union i386_operand_type *x)
1682 {
1683 switch (ARRAY_SIZE(x->array))
1684 {
1685 case 3:
1686 if (x->array[2])
1687 return 0;
1688 /* Fall through. */
1689 case 2:
1690 if (x->array[1])
1691 return 0;
1692 /* Fall through. */
1693 case 1:
1694 return !x->array[0];
1695 default:
1696 abort ();
1697 }
1698 }
1699
1700 static INLINE void
1701 operand_type_set (union i386_operand_type *x, unsigned int v)
1702 {
1703 switch (ARRAY_SIZE(x->array))
1704 {
1705 case 3:
1706 x->array[2] = v;
1707 /* Fall through. */
1708 case 2:
1709 x->array[1] = v;
1710 /* Fall through. */
1711 case 1:
1712 x->array[0] = v;
1713 /* Fall through. */
1714 break;
1715 default:
1716 abort ();
1717 }
1718
1719 x->bitfield.class = ClassNone;
1720 x->bitfield.instance = InstanceNone;
1721 }
1722
1723 static INLINE int
1724 operand_type_equal (const union i386_operand_type *x,
1725 const union i386_operand_type *y)
1726 {
1727 switch (ARRAY_SIZE(x->array))
1728 {
1729 case 3:
1730 if (x->array[2] != y->array[2])
1731 return 0;
1732 /* Fall through. */
1733 case 2:
1734 if (x->array[1] != y->array[1])
1735 return 0;
1736 /* Fall through. */
1737 case 1:
1738 return x->array[0] == y->array[0];
1739 break;
1740 default:
1741 abort ();
1742 }
1743 }
1744
1745 static INLINE int
1746 cpu_flags_all_zero (const union i386_cpu_flags *x)
1747 {
1748 switch (ARRAY_SIZE(x->array))
1749 {
1750 case 4:
1751 if (x->array[3])
1752 return 0;
1753 /* Fall through. */
1754 case 3:
1755 if (x->array[2])
1756 return 0;
1757 /* Fall through. */
1758 case 2:
1759 if (x->array[1])
1760 return 0;
1761 /* Fall through. */
1762 case 1:
1763 return !x->array[0];
1764 default:
1765 abort ();
1766 }
1767 }
1768
1769 static INLINE int
1770 cpu_flags_equal (const union i386_cpu_flags *x,
1771 const union i386_cpu_flags *y)
1772 {
1773 switch (ARRAY_SIZE(x->array))
1774 {
1775 case 4:
1776 if (x->array[3] != y->array[3])
1777 return 0;
1778 /* Fall through. */
1779 case 3:
1780 if (x->array[2] != y->array[2])
1781 return 0;
1782 /* Fall through. */
1783 case 2:
1784 if (x->array[1] != y->array[1])
1785 return 0;
1786 /* Fall through. */
1787 case 1:
1788 return x->array[0] == y->array[0];
1789 break;
1790 default:
1791 abort ();
1792 }
1793 }
1794
1795 static INLINE int
1796 cpu_flags_check_cpu64 (i386_cpu_flags f)
1797 {
1798 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1799 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1800 }
1801
1802 static INLINE i386_cpu_flags
1803 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1804 {
1805 switch (ARRAY_SIZE (x.array))
1806 {
1807 case 4:
1808 x.array [3] &= y.array [3];
1809 /* Fall through. */
1810 case 3:
1811 x.array [2] &= y.array [2];
1812 /* Fall through. */
1813 case 2:
1814 x.array [1] &= y.array [1];
1815 /* Fall through. */
1816 case 1:
1817 x.array [0] &= y.array [0];
1818 break;
1819 default:
1820 abort ();
1821 }
1822 return x;
1823 }
1824
1825 static INLINE i386_cpu_flags
1826 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1827 {
1828 switch (ARRAY_SIZE (x.array))
1829 {
1830 case 4:
1831 x.array [3] |= y.array [3];
1832 /* Fall through. */
1833 case 3:
1834 x.array [2] |= y.array [2];
1835 /* Fall through. */
1836 case 2:
1837 x.array [1] |= y.array [1];
1838 /* Fall through. */
1839 case 1:
1840 x.array [0] |= y.array [0];
1841 break;
1842 default:
1843 abort ();
1844 }
1845 return x;
1846 }
1847
1848 static INLINE i386_cpu_flags
1849 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1850 {
1851 switch (ARRAY_SIZE (x.array))
1852 {
1853 case 4:
1854 x.array [3] &= ~y.array [3];
1855 /* Fall through. */
1856 case 3:
1857 x.array [2] &= ~y.array [2];
1858 /* Fall through. */
1859 case 2:
1860 x.array [1] &= ~y.array [1];
1861 /* Fall through. */
1862 case 1:
1863 x.array [0] &= ~y.array [0];
1864 break;
1865 default:
1866 abort ();
1867 }
1868 return x;
1869 }
1870
1871 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
1872
1873 #define CPU_FLAGS_ARCH_MATCH 0x1
1874 #define CPU_FLAGS_64BIT_MATCH 0x2
1875
1876 #define CPU_FLAGS_PERFECT_MATCH \
1877 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1878
1879 /* Return CPU flags match bits. */
1880
1881 static int
1882 cpu_flags_match (const insn_template *t)
1883 {
1884 i386_cpu_flags x = t->cpu_flags;
1885 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1886
1887 x.bitfield.cpu64 = 0;
1888 x.bitfield.cpuno64 = 0;
1889
1890 if (cpu_flags_all_zero (&x))
1891 {
1892 /* This instruction is available on all archs. */
1893 match |= CPU_FLAGS_ARCH_MATCH;
1894 }
1895 else
1896 {
1897 /* This instruction is available only on some archs. */
1898 i386_cpu_flags cpu = cpu_arch_flags;
1899
1900 /* AVX512VL is no standalone feature - match it and then strip it. */
1901 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1902 return match;
1903 x.bitfield.cpuavx512vl = 0;
1904
1905 cpu = cpu_flags_and (x, cpu);
1906 if (!cpu_flags_all_zero (&cpu))
1907 {
1908 if (x.bitfield.cpuavx)
1909 {
1910 /* We need to check a few extra flags with AVX. */
1911 if (cpu.bitfield.cpuavx
1912 && (!t->opcode_modifier.sse2avx || sse2avx)
1913 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1914 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1915 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1916 match |= CPU_FLAGS_ARCH_MATCH;
1917 }
1918 else if (x.bitfield.cpuavx512f)
1919 {
1920 /* We need to check a few extra flags with AVX512F. */
1921 if (cpu.bitfield.cpuavx512f
1922 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1923 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1924 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1925 match |= CPU_FLAGS_ARCH_MATCH;
1926 }
1927 else
1928 match |= CPU_FLAGS_ARCH_MATCH;
1929 }
1930 }
1931 return match;
1932 }
1933
1934 static INLINE i386_operand_type
1935 operand_type_and (i386_operand_type x, i386_operand_type y)
1936 {
1937 if (x.bitfield.class != y.bitfield.class)
1938 x.bitfield.class = ClassNone;
1939 if (x.bitfield.instance != y.bitfield.instance)
1940 x.bitfield.instance = InstanceNone;
1941
1942 switch (ARRAY_SIZE (x.array))
1943 {
1944 case 3:
1945 x.array [2] &= y.array [2];
1946 /* Fall through. */
1947 case 2:
1948 x.array [1] &= y.array [1];
1949 /* Fall through. */
1950 case 1:
1951 x.array [0] &= y.array [0];
1952 break;
1953 default:
1954 abort ();
1955 }
1956 return x;
1957 }
1958
1959 static INLINE i386_operand_type
1960 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1961 {
1962 gas_assert (y.bitfield.class == ClassNone);
1963 gas_assert (y.bitfield.instance == InstanceNone);
1964
1965 switch (ARRAY_SIZE (x.array))
1966 {
1967 case 3:
1968 x.array [2] &= ~y.array [2];
1969 /* Fall through. */
1970 case 2:
1971 x.array [1] &= ~y.array [1];
1972 /* Fall through. */
1973 case 1:
1974 x.array [0] &= ~y.array [0];
1975 break;
1976 default:
1977 abort ();
1978 }
1979 return x;
1980 }
1981
1982 static INLINE i386_operand_type
1983 operand_type_or (i386_operand_type x, i386_operand_type y)
1984 {
1985 gas_assert (x.bitfield.class == ClassNone ||
1986 y.bitfield.class == ClassNone ||
1987 x.bitfield.class == y.bitfield.class);
1988 gas_assert (x.bitfield.instance == InstanceNone ||
1989 y.bitfield.instance == InstanceNone ||
1990 x.bitfield.instance == y.bitfield.instance);
1991
1992 switch (ARRAY_SIZE (x.array))
1993 {
1994 case 3:
1995 x.array [2] |= y.array [2];
1996 /* Fall through. */
1997 case 2:
1998 x.array [1] |= y.array [1];
1999 /* Fall through. */
2000 case 1:
2001 x.array [0] |= y.array [0];
2002 break;
2003 default:
2004 abort ();
2005 }
2006 return x;
2007 }
2008
2009 static INLINE i386_operand_type
2010 operand_type_xor (i386_operand_type x, i386_operand_type y)
2011 {
2012 gas_assert (y.bitfield.class == ClassNone);
2013 gas_assert (y.bitfield.instance == InstanceNone);
2014
2015 switch (ARRAY_SIZE (x.array))
2016 {
2017 case 3:
2018 x.array [2] ^= y.array [2];
2019 /* Fall through. */
2020 case 2:
2021 x.array [1] ^= y.array [1];
2022 /* Fall through. */
2023 case 1:
2024 x.array [0] ^= y.array [0];
2025 break;
2026 default:
2027 abort ();
2028 }
2029 return x;
2030 }
2031
2032 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2033 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2034 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2035 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
2036 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2037 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
2038 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
2039 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
2040 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2041 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2042 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2043 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2044 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2045 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2046 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2047 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2048 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2049
2050 enum operand_type
2051 {
2052 reg,
2053 imm,
2054 disp,
2055 anymem
2056 };
2057
2058 static INLINE int
2059 operand_type_check (i386_operand_type t, enum operand_type c)
2060 {
2061 switch (c)
2062 {
2063 case reg:
2064 return t.bitfield.class == Reg;
2065
2066 case imm:
2067 return (t.bitfield.imm8
2068 || t.bitfield.imm8s
2069 || t.bitfield.imm16
2070 || t.bitfield.imm32
2071 || t.bitfield.imm32s
2072 || t.bitfield.imm64);
2073
2074 case disp:
2075 return (t.bitfield.disp8
2076 || t.bitfield.disp16
2077 || t.bitfield.disp32
2078 || t.bitfield.disp32s
2079 || t.bitfield.disp64);
2080
2081 case anymem:
2082 return (t.bitfield.disp8
2083 || t.bitfield.disp16
2084 || t.bitfield.disp32
2085 || t.bitfield.disp32s
2086 || t.bitfield.disp64
2087 || t.bitfield.baseindex);
2088
2089 default:
2090 abort ();
2091 }
2092
2093 return 0;
2094 }
2095
2096 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2097 between operand GIVEN and opeand WANTED for instruction template T. */
2098
2099 static INLINE int
2100 match_operand_size (const insn_template *t, unsigned int wanted,
2101 unsigned int given)
2102 {
2103 return !((i.types[given].bitfield.byte
2104 && !t->operand_types[wanted].bitfield.byte)
2105 || (i.types[given].bitfield.word
2106 && !t->operand_types[wanted].bitfield.word)
2107 || (i.types[given].bitfield.dword
2108 && !t->operand_types[wanted].bitfield.dword)
2109 || (i.types[given].bitfield.qword
2110 && !t->operand_types[wanted].bitfield.qword)
2111 || (i.types[given].bitfield.tbyte
2112 && !t->operand_types[wanted].bitfield.tbyte));
2113 }
2114
2115 /* Return 1 if there is no conflict in SIMD register between operand
2116 GIVEN and opeand WANTED for instruction template T. */
2117
2118 static INLINE int
2119 match_simd_size (const insn_template *t, unsigned int wanted,
2120 unsigned int given)
2121 {
2122 return !((i.types[given].bitfield.xmmword
2123 && !t->operand_types[wanted].bitfield.xmmword)
2124 || (i.types[given].bitfield.ymmword
2125 && !t->operand_types[wanted].bitfield.ymmword)
2126 || (i.types[given].bitfield.zmmword
2127 && !t->operand_types[wanted].bitfield.zmmword));
2128 }
2129
2130 /* Return 1 if there is no conflict in any size between operand GIVEN
2131 and opeand WANTED for instruction template T. */
2132
2133 static INLINE int
2134 match_mem_size (const insn_template *t, unsigned int wanted,
2135 unsigned int given)
2136 {
2137 return (match_operand_size (t, wanted, given)
2138 && !((i.types[given].bitfield.unspecified
2139 && !i.broadcast
2140 && !t->operand_types[wanted].bitfield.unspecified)
2141 || (i.types[given].bitfield.fword
2142 && !t->operand_types[wanted].bitfield.fword)
2143 /* For scalar opcode templates to allow register and memory
2144 operands at the same time, some special casing is needed
2145 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2146 down-conversion vpmov*. */
2147 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2148 && !t->opcode_modifier.broadcast
2149 && (t->operand_types[wanted].bitfield.byte
2150 || t->operand_types[wanted].bitfield.word
2151 || t->operand_types[wanted].bitfield.dword
2152 || t->operand_types[wanted].bitfield.qword))
2153 ? (i.types[given].bitfield.xmmword
2154 || i.types[given].bitfield.ymmword
2155 || i.types[given].bitfield.zmmword)
2156 : !match_simd_size(t, wanted, given))));
2157 }
2158
2159 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2160 operands for instruction template T, and it has MATCH_REVERSE set if there
2161 is no size conflict on any operands for the template with operands reversed
2162 (and the template allows for reversing in the first place). */
2163
2164 #define MATCH_STRAIGHT 1
2165 #define MATCH_REVERSE 2
2166
2167 static INLINE unsigned int
2168 operand_size_match (const insn_template *t)
2169 {
2170 unsigned int j, match = MATCH_STRAIGHT;
2171
2172 /* Don't check non-absolute jump instructions. */
2173 if (t->opcode_modifier.jump
2174 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
2175 return match;
2176
2177 /* Check memory and accumulator operand size. */
2178 for (j = 0; j < i.operands; j++)
2179 {
2180 if (i.types[j].bitfield.class != Reg
2181 && i.types[j].bitfield.class != RegSIMD
2182 && t->opcode_modifier.anysize)
2183 continue;
2184
2185 if (t->operand_types[j].bitfield.class == Reg
2186 && !match_operand_size (t, j, j))
2187 {
2188 match = 0;
2189 break;
2190 }
2191
2192 if (t->operand_types[j].bitfield.class == RegSIMD
2193 && !match_simd_size (t, j, j))
2194 {
2195 match = 0;
2196 break;
2197 }
2198
2199 if (t->operand_types[j].bitfield.instance == Accum
2200 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2201 {
2202 match = 0;
2203 break;
2204 }
2205
2206 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2207 {
2208 match = 0;
2209 break;
2210 }
2211 }
2212
2213 if (!t->opcode_modifier.d)
2214 {
2215 mismatch:
2216 if (!match)
2217 i.error = operand_size_mismatch;
2218 return match;
2219 }
2220
2221 /* Check reverse. */
2222 gas_assert (i.operands >= 2 && i.operands <= 3);
2223
2224 for (j = 0; j < i.operands; j++)
2225 {
2226 unsigned int given = i.operands - j - 1;
2227
2228 if (t->operand_types[j].bitfield.class == Reg
2229 && !match_operand_size (t, j, given))
2230 goto mismatch;
2231
2232 if (t->operand_types[j].bitfield.class == RegSIMD
2233 && !match_simd_size (t, j, given))
2234 goto mismatch;
2235
2236 if (t->operand_types[j].bitfield.instance == Accum
2237 && (!match_operand_size (t, j, given)
2238 || !match_simd_size (t, j, given)))
2239 goto mismatch;
2240
2241 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2242 goto mismatch;
2243 }
2244
2245 return match | MATCH_REVERSE;
2246 }
2247
2248 static INLINE int
2249 operand_type_match (i386_operand_type overlap,
2250 i386_operand_type given)
2251 {
2252 i386_operand_type temp = overlap;
2253
2254 temp.bitfield.unspecified = 0;
2255 temp.bitfield.byte = 0;
2256 temp.bitfield.word = 0;
2257 temp.bitfield.dword = 0;
2258 temp.bitfield.fword = 0;
2259 temp.bitfield.qword = 0;
2260 temp.bitfield.tbyte = 0;
2261 temp.bitfield.xmmword = 0;
2262 temp.bitfield.ymmword = 0;
2263 temp.bitfield.zmmword = 0;
2264 if (operand_type_all_zero (&temp))
2265 goto mismatch;
2266
2267 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
2268 return 1;
2269
2270 mismatch:
2271 i.error = operand_type_mismatch;
2272 return 0;
2273 }
2274
2275 /* If given types g0 and g1 are registers they must be of the same type
2276 unless the expected operand type register overlap is null.
2277 Some Intel syntax memory operand size checking also happens here. */
2278
2279 static INLINE int
2280 operand_type_register_match (i386_operand_type g0,
2281 i386_operand_type t0,
2282 i386_operand_type g1,
2283 i386_operand_type t1)
2284 {
2285 if (g0.bitfield.class != Reg
2286 && g0.bitfield.class != RegSIMD
2287 && (!operand_type_check (g0, anymem)
2288 || g0.bitfield.unspecified
2289 || (t0.bitfield.class != Reg
2290 && t0.bitfield.class != RegSIMD)))
2291 return 1;
2292
2293 if (g1.bitfield.class != Reg
2294 && g1.bitfield.class != RegSIMD
2295 && (!operand_type_check (g1, anymem)
2296 || g1.bitfield.unspecified
2297 || (t1.bitfield.class != Reg
2298 && t1.bitfield.class != RegSIMD)))
2299 return 1;
2300
2301 if (g0.bitfield.byte == g1.bitfield.byte
2302 && g0.bitfield.word == g1.bitfield.word
2303 && g0.bitfield.dword == g1.bitfield.dword
2304 && g0.bitfield.qword == g1.bitfield.qword
2305 && g0.bitfield.xmmword == g1.bitfield.xmmword
2306 && g0.bitfield.ymmword == g1.bitfield.ymmword
2307 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2308 return 1;
2309
2310 if (!(t0.bitfield.byte & t1.bitfield.byte)
2311 && !(t0.bitfield.word & t1.bitfield.word)
2312 && !(t0.bitfield.dword & t1.bitfield.dword)
2313 && !(t0.bitfield.qword & t1.bitfield.qword)
2314 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2315 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2316 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2317 return 1;
2318
2319 i.error = register_type_mismatch;
2320
2321 return 0;
2322 }
2323
2324 static INLINE unsigned int
2325 register_number (const reg_entry *r)
2326 {
2327 unsigned int nr = r->reg_num;
2328
2329 if (r->reg_flags & RegRex)
2330 nr += 8;
2331
2332 if (r->reg_flags & RegVRex)
2333 nr += 16;
2334
2335 return nr;
2336 }
2337
2338 static INLINE unsigned int
2339 mode_from_disp_size (i386_operand_type t)
2340 {
2341 if (t.bitfield.disp8)
2342 return 1;
2343 else if (t.bitfield.disp16
2344 || t.bitfield.disp32
2345 || t.bitfield.disp32s)
2346 return 2;
2347 else
2348 return 0;
2349 }
2350
2351 static INLINE int
2352 fits_in_signed_byte (addressT num)
2353 {
2354 return num + 0x80 <= 0xff;
2355 }
2356
2357 static INLINE int
2358 fits_in_unsigned_byte (addressT num)
2359 {
2360 return num <= 0xff;
2361 }
2362
2363 static INLINE int
2364 fits_in_unsigned_word (addressT num)
2365 {
2366 return num <= 0xffff;
2367 }
2368
2369 static INLINE int
2370 fits_in_signed_word (addressT num)
2371 {
2372 return num + 0x8000 <= 0xffff;
2373 }
2374
2375 static INLINE int
2376 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2377 {
2378 #ifndef BFD64
2379 return 1;
2380 #else
2381 return num + 0x80000000 <= 0xffffffff;
2382 #endif
2383 } /* fits_in_signed_long() */
2384
2385 static INLINE int
2386 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2387 {
2388 #ifndef BFD64
2389 return 1;
2390 #else
2391 return num <= 0xffffffff;
2392 #endif
2393 } /* fits_in_unsigned_long() */
2394
2395 static INLINE int
2396 fits_in_disp8 (offsetT num)
2397 {
2398 int shift = i.memshift;
2399 unsigned int mask;
2400
2401 if (shift == -1)
2402 abort ();
2403
2404 mask = (1 << shift) - 1;
2405
2406 /* Return 0 if NUM isn't properly aligned. */
2407 if ((num & mask))
2408 return 0;
2409
2410 /* Check if NUM will fit in 8bit after shift. */
2411 return fits_in_signed_byte (num >> shift);
2412 }
2413
2414 static INLINE int
2415 fits_in_imm4 (offsetT num)
2416 {
2417 return (num & 0xf) == num;
2418 }
2419
2420 static i386_operand_type
2421 smallest_imm_type (offsetT num)
2422 {
2423 i386_operand_type t;
2424
2425 operand_type_set (&t, 0);
2426 t.bitfield.imm64 = 1;
2427
2428 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2429 {
2430 /* This code is disabled on the 486 because all the Imm1 forms
2431 in the opcode table are slower on the i486. They're the
2432 versions with the implicitly specified single-position
2433 displacement, which has another syntax if you really want to
2434 use that form. */
2435 t.bitfield.imm1 = 1;
2436 t.bitfield.imm8 = 1;
2437 t.bitfield.imm8s = 1;
2438 t.bitfield.imm16 = 1;
2439 t.bitfield.imm32 = 1;
2440 t.bitfield.imm32s = 1;
2441 }
2442 else if (fits_in_signed_byte (num))
2443 {
2444 t.bitfield.imm8 = 1;
2445 t.bitfield.imm8s = 1;
2446 t.bitfield.imm16 = 1;
2447 t.bitfield.imm32 = 1;
2448 t.bitfield.imm32s = 1;
2449 }
2450 else if (fits_in_unsigned_byte (num))
2451 {
2452 t.bitfield.imm8 = 1;
2453 t.bitfield.imm16 = 1;
2454 t.bitfield.imm32 = 1;
2455 t.bitfield.imm32s = 1;
2456 }
2457 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2458 {
2459 t.bitfield.imm16 = 1;
2460 t.bitfield.imm32 = 1;
2461 t.bitfield.imm32s = 1;
2462 }
2463 else if (fits_in_signed_long (num))
2464 {
2465 t.bitfield.imm32 = 1;
2466 t.bitfield.imm32s = 1;
2467 }
2468 else if (fits_in_unsigned_long (num))
2469 t.bitfield.imm32 = 1;
2470
2471 return t;
2472 }
2473
2474 static offsetT
2475 offset_in_range (offsetT val, int size)
2476 {
2477 addressT mask;
2478
2479 switch (size)
2480 {
2481 case 1: mask = ((addressT) 1 << 8) - 1; break;
2482 case 2: mask = ((addressT) 1 << 16) - 1; break;
2483 case 4: mask = ((addressT) 2 << 31) - 1; break;
2484 #ifdef BFD64
2485 case 8: mask = ((addressT) 2 << 63) - 1; break;
2486 #endif
2487 default: abort ();
2488 }
2489
2490 #ifdef BFD64
2491 /* If BFD64, sign extend val for 32bit address mode. */
2492 if (flag_code != CODE_64BIT
2493 || i.prefix[ADDR_PREFIX])
2494 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2495 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2496 #endif
2497
2498 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2499 {
2500 char buf1[40], buf2[40];
2501
2502 sprint_value (buf1, val);
2503 sprint_value (buf2, val & mask);
2504 as_warn (_("%s shortened to %s"), buf1, buf2);
2505 }
2506 return val & mask;
2507 }
2508
2509 enum PREFIX_GROUP
2510 {
2511 PREFIX_EXIST = 0,
2512 PREFIX_LOCK,
2513 PREFIX_REP,
2514 PREFIX_DS,
2515 PREFIX_OTHER
2516 };
2517
2518 /* Returns
2519 a. PREFIX_EXIST if attempting to add a prefix where one from the
2520 same class already exists.
2521 b. PREFIX_LOCK if lock prefix is added.
2522 c. PREFIX_REP if rep/repne prefix is added.
2523 d. PREFIX_DS if ds prefix is added.
2524 e. PREFIX_OTHER if other prefix is added.
2525 */
2526
2527 static enum PREFIX_GROUP
2528 add_prefix (unsigned int prefix)
2529 {
2530 enum PREFIX_GROUP ret = PREFIX_OTHER;
2531 unsigned int q;
2532
2533 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2534 && flag_code == CODE_64BIT)
2535 {
2536 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2537 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2538 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2539 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2540 ret = PREFIX_EXIST;
2541 q = REX_PREFIX;
2542 }
2543 else
2544 {
2545 switch (prefix)
2546 {
2547 default:
2548 abort ();
2549
2550 case DS_PREFIX_OPCODE:
2551 ret = PREFIX_DS;
2552 /* Fall through. */
2553 case CS_PREFIX_OPCODE:
2554 case ES_PREFIX_OPCODE:
2555 case FS_PREFIX_OPCODE:
2556 case GS_PREFIX_OPCODE:
2557 case SS_PREFIX_OPCODE:
2558 q = SEG_PREFIX;
2559 break;
2560
2561 case REPNE_PREFIX_OPCODE:
2562 case REPE_PREFIX_OPCODE:
2563 q = REP_PREFIX;
2564 ret = PREFIX_REP;
2565 break;
2566
2567 case LOCK_PREFIX_OPCODE:
2568 q = LOCK_PREFIX;
2569 ret = PREFIX_LOCK;
2570 break;
2571
2572 case FWAIT_OPCODE:
2573 q = WAIT_PREFIX;
2574 break;
2575
2576 case ADDR_PREFIX_OPCODE:
2577 q = ADDR_PREFIX;
2578 break;
2579
2580 case DATA_PREFIX_OPCODE:
2581 q = DATA_PREFIX;
2582 break;
2583 }
2584 if (i.prefix[q] != 0)
2585 ret = PREFIX_EXIST;
2586 }
2587
2588 if (ret)
2589 {
2590 if (!i.prefix[q])
2591 ++i.prefixes;
2592 i.prefix[q] |= prefix;
2593 }
2594 else
2595 as_bad (_("same type of prefix used twice"));
2596
2597 return ret;
2598 }
2599
2600 static void
2601 update_code_flag (int value, int check)
2602 {
2603 PRINTF_LIKE ((*as_error));
2604
2605 flag_code = (enum flag_code) value;
2606 if (flag_code == CODE_64BIT)
2607 {
2608 cpu_arch_flags.bitfield.cpu64 = 1;
2609 cpu_arch_flags.bitfield.cpuno64 = 0;
2610 }
2611 else
2612 {
2613 cpu_arch_flags.bitfield.cpu64 = 0;
2614 cpu_arch_flags.bitfield.cpuno64 = 1;
2615 }
2616 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2617 {
2618 if (check)
2619 as_error = as_fatal;
2620 else
2621 as_error = as_bad;
2622 (*as_error) (_("64bit mode not supported on `%s'."),
2623 cpu_arch_name ? cpu_arch_name : default_arch);
2624 }
2625 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2626 {
2627 if (check)
2628 as_error = as_fatal;
2629 else
2630 as_error = as_bad;
2631 (*as_error) (_("32bit mode not supported on `%s'."),
2632 cpu_arch_name ? cpu_arch_name : default_arch);
2633 }
2634 stackop_size = '\0';
2635 }
2636
2637 static void
2638 set_code_flag (int value)
2639 {
2640 update_code_flag (value, 0);
2641 }
2642
2643 static void
2644 set_16bit_gcc_code_flag (int new_code_flag)
2645 {
2646 flag_code = (enum flag_code) new_code_flag;
2647 if (flag_code != CODE_16BIT)
2648 abort ();
2649 cpu_arch_flags.bitfield.cpu64 = 0;
2650 cpu_arch_flags.bitfield.cpuno64 = 1;
2651 stackop_size = LONG_MNEM_SUFFIX;
2652 }
2653
2654 static void
2655 set_intel_syntax (int syntax_flag)
2656 {
2657 /* Find out if register prefixing is specified. */
2658 int ask_naked_reg = 0;
2659
2660 SKIP_WHITESPACE ();
2661 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2662 {
2663 char *string;
2664 int e = get_symbol_name (&string);
2665
2666 if (strcmp (string, "prefix") == 0)
2667 ask_naked_reg = 1;
2668 else if (strcmp (string, "noprefix") == 0)
2669 ask_naked_reg = -1;
2670 else
2671 as_bad (_("bad argument to syntax directive."));
2672 (void) restore_line_pointer (e);
2673 }
2674 demand_empty_rest_of_line ();
2675
2676 intel_syntax = syntax_flag;
2677
2678 if (ask_naked_reg == 0)
2679 allow_naked_reg = (intel_syntax
2680 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2681 else
2682 allow_naked_reg = (ask_naked_reg < 0);
2683
2684 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2685
2686 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2687 identifier_chars['$'] = intel_syntax ? '$' : 0;
2688 register_prefix = allow_naked_reg ? "" : "%";
2689 }
2690
2691 static void
2692 set_intel_mnemonic (int mnemonic_flag)
2693 {
2694 intel_mnemonic = mnemonic_flag;
2695 }
2696
2697 static void
2698 set_allow_index_reg (int flag)
2699 {
2700 allow_index_reg = flag;
2701 }
2702
2703 static void
2704 set_check (int what)
2705 {
2706 enum check_kind *kind;
2707 const char *str;
2708
2709 if (what)
2710 {
2711 kind = &operand_check;
2712 str = "operand";
2713 }
2714 else
2715 {
2716 kind = &sse_check;
2717 str = "sse";
2718 }
2719
2720 SKIP_WHITESPACE ();
2721
2722 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2723 {
2724 char *string;
2725 int e = get_symbol_name (&string);
2726
2727 if (strcmp (string, "none") == 0)
2728 *kind = check_none;
2729 else if (strcmp (string, "warning") == 0)
2730 *kind = check_warning;
2731 else if (strcmp (string, "error") == 0)
2732 *kind = check_error;
2733 else
2734 as_bad (_("bad argument to %s_check directive."), str);
2735 (void) restore_line_pointer (e);
2736 }
2737 else
2738 as_bad (_("missing argument for %s_check directive"), str);
2739
2740 demand_empty_rest_of_line ();
2741 }
2742
2743 static void
2744 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2745 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2746 {
2747 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2748 static const char *arch;
2749
2750 /* Intel LIOM is only supported on ELF. */
2751 if (!IS_ELF)
2752 return;
2753
2754 if (!arch)
2755 {
2756 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2757 use default_arch. */
2758 arch = cpu_arch_name;
2759 if (!arch)
2760 arch = default_arch;
2761 }
2762
2763 /* If we are targeting Intel MCU, we must enable it. */
2764 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2765 || new_flag.bitfield.cpuiamcu)
2766 return;
2767
2768 /* If we are targeting Intel L1OM, we must enable it. */
2769 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2770 || new_flag.bitfield.cpul1om)
2771 return;
2772
2773 /* If we are targeting Intel K1OM, we must enable it. */
2774 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2775 || new_flag.bitfield.cpuk1om)
2776 return;
2777
2778 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2779 #endif
2780 }
2781
2782 static void
2783 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2784 {
2785 SKIP_WHITESPACE ();
2786
2787 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2788 {
2789 char *string;
2790 int e = get_symbol_name (&string);
2791 unsigned int j;
2792 i386_cpu_flags flags;
2793
2794 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2795 {
2796 if (strcmp (string, cpu_arch[j].name) == 0)
2797 {
2798 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2799
2800 if (*string != '.')
2801 {
2802 cpu_arch_name = cpu_arch[j].name;
2803 cpu_sub_arch_name = NULL;
2804 cpu_arch_flags = cpu_arch[j].flags;
2805 if (flag_code == CODE_64BIT)
2806 {
2807 cpu_arch_flags.bitfield.cpu64 = 1;
2808 cpu_arch_flags.bitfield.cpuno64 = 0;
2809 }
2810 else
2811 {
2812 cpu_arch_flags.bitfield.cpu64 = 0;
2813 cpu_arch_flags.bitfield.cpuno64 = 1;
2814 }
2815 cpu_arch_isa = cpu_arch[j].type;
2816 cpu_arch_isa_flags = cpu_arch[j].flags;
2817 if (!cpu_arch_tune_set)
2818 {
2819 cpu_arch_tune = cpu_arch_isa;
2820 cpu_arch_tune_flags = cpu_arch_isa_flags;
2821 }
2822 break;
2823 }
2824
2825 flags = cpu_flags_or (cpu_arch_flags,
2826 cpu_arch[j].flags);
2827
2828 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2829 {
2830 if (cpu_sub_arch_name)
2831 {
2832 char *name = cpu_sub_arch_name;
2833 cpu_sub_arch_name = concat (name,
2834 cpu_arch[j].name,
2835 (const char *) NULL);
2836 free (name);
2837 }
2838 else
2839 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2840 cpu_arch_flags = flags;
2841 cpu_arch_isa_flags = flags;
2842 }
2843 else
2844 cpu_arch_isa_flags
2845 = cpu_flags_or (cpu_arch_isa_flags,
2846 cpu_arch[j].flags);
2847 (void) restore_line_pointer (e);
2848 demand_empty_rest_of_line ();
2849 return;
2850 }
2851 }
2852
2853 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2854 {
2855 /* Disable an ISA extension. */
2856 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2857 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2858 {
2859 flags = cpu_flags_and_not (cpu_arch_flags,
2860 cpu_noarch[j].flags);
2861 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2862 {
2863 if (cpu_sub_arch_name)
2864 {
2865 char *name = cpu_sub_arch_name;
2866 cpu_sub_arch_name = concat (name, string,
2867 (const char *) NULL);
2868 free (name);
2869 }
2870 else
2871 cpu_sub_arch_name = xstrdup (string);
2872 cpu_arch_flags = flags;
2873 cpu_arch_isa_flags = flags;
2874 }
2875 (void) restore_line_pointer (e);
2876 demand_empty_rest_of_line ();
2877 return;
2878 }
2879
2880 j = ARRAY_SIZE (cpu_arch);
2881 }
2882
2883 if (j >= ARRAY_SIZE (cpu_arch))
2884 as_bad (_("no such architecture: `%s'"), string);
2885
2886 *input_line_pointer = e;
2887 }
2888 else
2889 as_bad (_("missing cpu architecture"));
2890
2891 no_cond_jump_promotion = 0;
2892 if (*input_line_pointer == ','
2893 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2894 {
2895 char *string;
2896 char e;
2897
2898 ++input_line_pointer;
2899 e = get_symbol_name (&string);
2900
2901 if (strcmp (string, "nojumps") == 0)
2902 no_cond_jump_promotion = 1;
2903 else if (strcmp (string, "jumps") == 0)
2904 ;
2905 else
2906 as_bad (_("no such architecture modifier: `%s'"), string);
2907
2908 (void) restore_line_pointer (e);
2909 }
2910
2911 demand_empty_rest_of_line ();
2912 }
2913
2914 enum bfd_architecture
2915 i386_arch (void)
2916 {
2917 if (cpu_arch_isa == PROCESSOR_L1OM)
2918 {
2919 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2920 || flag_code != CODE_64BIT)
2921 as_fatal (_("Intel L1OM is 64bit ELF only"));
2922 return bfd_arch_l1om;
2923 }
2924 else if (cpu_arch_isa == PROCESSOR_K1OM)
2925 {
2926 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2927 || flag_code != CODE_64BIT)
2928 as_fatal (_("Intel K1OM is 64bit ELF only"));
2929 return bfd_arch_k1om;
2930 }
2931 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2932 {
2933 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2934 || flag_code == CODE_64BIT)
2935 as_fatal (_("Intel MCU is 32bit ELF only"));
2936 return bfd_arch_iamcu;
2937 }
2938 else
2939 return bfd_arch_i386;
2940 }
2941
2942 unsigned long
2943 i386_mach (void)
2944 {
2945 if (!strncmp (default_arch, "x86_64", 6))
2946 {
2947 if (cpu_arch_isa == PROCESSOR_L1OM)
2948 {
2949 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2950 || default_arch[6] != '\0')
2951 as_fatal (_("Intel L1OM is 64bit ELF only"));
2952 return bfd_mach_l1om;
2953 }
2954 else if (cpu_arch_isa == PROCESSOR_K1OM)
2955 {
2956 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2957 || default_arch[6] != '\0')
2958 as_fatal (_("Intel K1OM is 64bit ELF only"));
2959 return bfd_mach_k1om;
2960 }
2961 else if (default_arch[6] == '\0')
2962 return bfd_mach_x86_64;
2963 else
2964 return bfd_mach_x64_32;
2965 }
2966 else if (!strcmp (default_arch, "i386")
2967 || !strcmp (default_arch, "iamcu"))
2968 {
2969 if (cpu_arch_isa == PROCESSOR_IAMCU)
2970 {
2971 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2972 as_fatal (_("Intel MCU is 32bit ELF only"));
2973 return bfd_mach_i386_iamcu;
2974 }
2975 else
2976 return bfd_mach_i386_i386;
2977 }
2978 else
2979 as_fatal (_("unknown architecture"));
2980 }
2981 \f
2982 void
2983 md_begin (void)
2984 {
2985 const char *hash_err;
2986
2987 /* Support pseudo prefixes like {disp32}. */
2988 lex_type ['{'] = LEX_BEGIN_NAME;
2989
2990 /* Initialize op_hash hash table. */
2991 op_hash = hash_new ();
2992
2993 {
2994 const insn_template *optab;
2995 templates *core_optab;
2996
2997 /* Setup for loop. */
2998 optab = i386_optab;
2999 core_optab = XNEW (templates);
3000 core_optab->start = optab;
3001
3002 while (1)
3003 {
3004 ++optab;
3005 if (optab->name == NULL
3006 || strcmp (optab->name, (optab - 1)->name) != 0)
3007 {
3008 /* different name --> ship out current template list;
3009 add to hash table; & begin anew. */
3010 core_optab->end = optab;
3011 hash_err = hash_insert (op_hash,
3012 (optab - 1)->name,
3013 (void *) core_optab);
3014 if (hash_err)
3015 {
3016 as_fatal (_("can't hash %s: %s"),
3017 (optab - 1)->name,
3018 hash_err);
3019 }
3020 if (optab->name == NULL)
3021 break;
3022 core_optab = XNEW (templates);
3023 core_optab->start = optab;
3024 }
3025 }
3026 }
3027
3028 /* Initialize reg_hash hash table. */
3029 reg_hash = hash_new ();
3030 {
3031 const reg_entry *regtab;
3032 unsigned int regtab_size = i386_regtab_size;
3033
3034 for (regtab = i386_regtab; regtab_size--; regtab++)
3035 {
3036 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
3037 if (hash_err)
3038 as_fatal (_("can't hash %s: %s"),
3039 regtab->reg_name,
3040 hash_err);
3041 }
3042 }
3043
3044 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
3045 {
3046 int c;
3047 char *p;
3048
3049 for (c = 0; c < 256; c++)
3050 {
3051 if (ISDIGIT (c))
3052 {
3053 digit_chars[c] = c;
3054 mnemonic_chars[c] = c;
3055 register_chars[c] = c;
3056 operand_chars[c] = c;
3057 }
3058 else if (ISLOWER (c))
3059 {
3060 mnemonic_chars[c] = c;
3061 register_chars[c] = c;
3062 operand_chars[c] = c;
3063 }
3064 else if (ISUPPER (c))
3065 {
3066 mnemonic_chars[c] = TOLOWER (c);
3067 register_chars[c] = mnemonic_chars[c];
3068 operand_chars[c] = c;
3069 }
3070 else if (c == '{' || c == '}')
3071 {
3072 mnemonic_chars[c] = c;
3073 operand_chars[c] = c;
3074 }
3075
3076 if (ISALPHA (c) || ISDIGIT (c))
3077 identifier_chars[c] = c;
3078 else if (c >= 128)
3079 {
3080 identifier_chars[c] = c;
3081 operand_chars[c] = c;
3082 }
3083 }
3084
3085 #ifdef LEX_AT
3086 identifier_chars['@'] = '@';
3087 #endif
3088 #ifdef LEX_QM
3089 identifier_chars['?'] = '?';
3090 operand_chars['?'] = '?';
3091 #endif
3092 digit_chars['-'] = '-';
3093 mnemonic_chars['_'] = '_';
3094 mnemonic_chars['-'] = '-';
3095 mnemonic_chars['.'] = '.';
3096 identifier_chars['_'] = '_';
3097 identifier_chars['.'] = '.';
3098
3099 for (p = operand_special_chars; *p != '\0'; p++)
3100 operand_chars[(unsigned char) *p] = *p;
3101 }
3102
3103 if (flag_code == CODE_64BIT)
3104 {
3105 #if defined (OBJ_COFF) && defined (TE_PE)
3106 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3107 ? 32 : 16);
3108 #else
3109 x86_dwarf2_return_column = 16;
3110 #endif
3111 x86_cie_data_alignment = -8;
3112 }
3113 else
3114 {
3115 x86_dwarf2_return_column = 8;
3116 x86_cie_data_alignment = -4;
3117 }
3118
3119 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3120 can be turned into BRANCH_PREFIX frag. */
3121 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3122 abort ();
3123 }
3124
3125 void
3126 i386_print_statistics (FILE *file)
3127 {
3128 hash_print_statistics (file, "i386 opcode", op_hash);
3129 hash_print_statistics (file, "i386 register", reg_hash);
3130 }
3131 \f
3132 #ifdef DEBUG386
3133
3134 /* Debugging routines for md_assemble. */
3135 static void pte (insn_template *);
3136 static void pt (i386_operand_type);
3137 static void pe (expressionS *);
3138 static void ps (symbolS *);
3139
3140 static void
3141 pi (const char *line, i386_insn *x)
3142 {
3143 unsigned int j;
3144
3145 fprintf (stdout, "%s: template ", line);
3146 pte (&x->tm);
3147 fprintf (stdout, " address: base %s index %s scale %x\n",
3148 x->base_reg ? x->base_reg->reg_name : "none",
3149 x->index_reg ? x->index_reg->reg_name : "none",
3150 x->log2_scale_factor);
3151 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3152 x->rm.mode, x->rm.reg, x->rm.regmem);
3153 fprintf (stdout, " sib: base %x index %x scale %x\n",
3154 x->sib.base, x->sib.index, x->sib.scale);
3155 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3156 (x->rex & REX_W) != 0,
3157 (x->rex & REX_R) != 0,
3158 (x->rex & REX_X) != 0,
3159 (x->rex & REX_B) != 0);
3160 for (j = 0; j < x->operands; j++)
3161 {
3162 fprintf (stdout, " #%d: ", j + 1);
3163 pt (x->types[j]);
3164 fprintf (stdout, "\n");
3165 if (x->types[j].bitfield.class == Reg
3166 || x->types[j].bitfield.class == RegMMX
3167 || x->types[j].bitfield.class == RegSIMD
3168 || x->types[j].bitfield.class == SReg
3169 || x->types[j].bitfield.class == RegCR
3170 || x->types[j].bitfield.class == RegDR
3171 || x->types[j].bitfield.class == RegTR)
3172 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3173 if (operand_type_check (x->types[j], imm))
3174 pe (x->op[j].imms);
3175 if (operand_type_check (x->types[j], disp))
3176 pe (x->op[j].disps);
3177 }
3178 }
3179
3180 static void
3181 pte (insn_template *t)
3182 {
3183 unsigned int j;
3184 fprintf (stdout, " %d operands ", t->operands);
3185 fprintf (stdout, "opcode %x ", t->base_opcode);
3186 if (t->extension_opcode != None)
3187 fprintf (stdout, "ext %x ", t->extension_opcode);
3188 if (t->opcode_modifier.d)
3189 fprintf (stdout, "D");
3190 if (t->opcode_modifier.w)
3191 fprintf (stdout, "W");
3192 fprintf (stdout, "\n");
3193 for (j = 0; j < t->operands; j++)
3194 {
3195 fprintf (stdout, " #%d type ", j + 1);
3196 pt (t->operand_types[j]);
3197 fprintf (stdout, "\n");
3198 }
3199 }
3200
3201 static void
3202 pe (expressionS *e)
3203 {
3204 fprintf (stdout, " operation %d\n", e->X_op);
3205 fprintf (stdout, " add_number %ld (%lx)\n",
3206 (long) e->X_add_number, (long) e->X_add_number);
3207 if (e->X_add_symbol)
3208 {
3209 fprintf (stdout, " add_symbol ");
3210 ps (e->X_add_symbol);
3211 fprintf (stdout, "\n");
3212 }
3213 if (e->X_op_symbol)
3214 {
3215 fprintf (stdout, " op_symbol ");
3216 ps (e->X_op_symbol);
3217 fprintf (stdout, "\n");
3218 }
3219 }
3220
3221 static void
3222 ps (symbolS *s)
3223 {
3224 fprintf (stdout, "%s type %s%s",
3225 S_GET_NAME (s),
3226 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3227 segment_name (S_GET_SEGMENT (s)));
3228 }
3229
3230 static struct type_name
3231 {
3232 i386_operand_type mask;
3233 const char *name;
3234 }
3235 const type_names[] =
3236 {
3237 { OPERAND_TYPE_REG8, "r8" },
3238 { OPERAND_TYPE_REG16, "r16" },
3239 { OPERAND_TYPE_REG32, "r32" },
3240 { OPERAND_TYPE_REG64, "r64" },
3241 { OPERAND_TYPE_ACC8, "acc8" },
3242 { OPERAND_TYPE_ACC16, "acc16" },
3243 { OPERAND_TYPE_ACC32, "acc32" },
3244 { OPERAND_TYPE_ACC64, "acc64" },
3245 { OPERAND_TYPE_IMM8, "i8" },
3246 { OPERAND_TYPE_IMM8, "i8s" },
3247 { OPERAND_TYPE_IMM16, "i16" },
3248 { OPERAND_TYPE_IMM32, "i32" },
3249 { OPERAND_TYPE_IMM32S, "i32s" },
3250 { OPERAND_TYPE_IMM64, "i64" },
3251 { OPERAND_TYPE_IMM1, "i1" },
3252 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3253 { OPERAND_TYPE_DISP8, "d8" },
3254 { OPERAND_TYPE_DISP16, "d16" },
3255 { OPERAND_TYPE_DISP32, "d32" },
3256 { OPERAND_TYPE_DISP32S, "d32s" },
3257 { OPERAND_TYPE_DISP64, "d64" },
3258 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3259 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3260 { OPERAND_TYPE_CONTROL, "control reg" },
3261 { OPERAND_TYPE_TEST, "test reg" },
3262 { OPERAND_TYPE_DEBUG, "debug reg" },
3263 { OPERAND_TYPE_FLOATREG, "FReg" },
3264 { OPERAND_TYPE_FLOATACC, "FAcc" },
3265 { OPERAND_TYPE_SREG, "SReg" },
3266 { OPERAND_TYPE_REGMMX, "rMMX" },
3267 { OPERAND_TYPE_REGXMM, "rXMM" },
3268 { OPERAND_TYPE_REGYMM, "rYMM" },
3269 { OPERAND_TYPE_REGZMM, "rZMM" },
3270 { OPERAND_TYPE_REGMASK, "Mask reg" },
3271 };
3272
3273 static void
3274 pt (i386_operand_type t)
3275 {
3276 unsigned int j;
3277 i386_operand_type a;
3278
3279 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3280 {
3281 a = operand_type_and (t, type_names[j].mask);
3282 if (operand_type_equal (&a, &type_names[j].mask))
3283 fprintf (stdout, "%s, ", type_names[j].name);
3284 }
3285 fflush (stdout);
3286 }
3287
3288 #endif /* DEBUG386 */
3289 \f
3290 static bfd_reloc_code_real_type
3291 reloc (unsigned int size,
3292 int pcrel,
3293 int sign,
3294 bfd_reloc_code_real_type other)
3295 {
3296 if (other != NO_RELOC)
3297 {
3298 reloc_howto_type *rel;
3299
3300 if (size == 8)
3301 switch (other)
3302 {
3303 case BFD_RELOC_X86_64_GOT32:
3304 return BFD_RELOC_X86_64_GOT64;
3305 break;
3306 case BFD_RELOC_X86_64_GOTPLT64:
3307 return BFD_RELOC_X86_64_GOTPLT64;
3308 break;
3309 case BFD_RELOC_X86_64_PLTOFF64:
3310 return BFD_RELOC_X86_64_PLTOFF64;
3311 break;
3312 case BFD_RELOC_X86_64_GOTPC32:
3313 other = BFD_RELOC_X86_64_GOTPC64;
3314 break;
3315 case BFD_RELOC_X86_64_GOTPCREL:
3316 other = BFD_RELOC_X86_64_GOTPCREL64;
3317 break;
3318 case BFD_RELOC_X86_64_TPOFF32:
3319 other = BFD_RELOC_X86_64_TPOFF64;
3320 break;
3321 case BFD_RELOC_X86_64_DTPOFF32:
3322 other = BFD_RELOC_X86_64_DTPOFF64;
3323 break;
3324 default:
3325 break;
3326 }
3327
3328 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3329 if (other == BFD_RELOC_SIZE32)
3330 {
3331 if (size == 8)
3332 other = BFD_RELOC_SIZE64;
3333 if (pcrel)
3334 {
3335 as_bad (_("there are no pc-relative size relocations"));
3336 return NO_RELOC;
3337 }
3338 }
3339 #endif
3340
3341 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3342 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3343 sign = -1;
3344
3345 rel = bfd_reloc_type_lookup (stdoutput, other);
3346 if (!rel)
3347 as_bad (_("unknown relocation (%u)"), other);
3348 else if (size != bfd_get_reloc_size (rel))
3349 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3350 bfd_get_reloc_size (rel),
3351 size);
3352 else if (pcrel && !rel->pc_relative)
3353 as_bad (_("non-pc-relative relocation for pc-relative field"));
3354 else if ((rel->complain_on_overflow == complain_overflow_signed
3355 && !sign)
3356 || (rel->complain_on_overflow == complain_overflow_unsigned
3357 && sign > 0))
3358 as_bad (_("relocated field and relocation type differ in signedness"));
3359 else
3360 return other;
3361 return NO_RELOC;
3362 }
3363
3364 if (pcrel)
3365 {
3366 if (!sign)
3367 as_bad (_("there are no unsigned pc-relative relocations"));
3368 switch (size)
3369 {
3370 case 1: return BFD_RELOC_8_PCREL;
3371 case 2: return BFD_RELOC_16_PCREL;
3372 case 4: return BFD_RELOC_32_PCREL;
3373 case 8: return BFD_RELOC_64_PCREL;
3374 }
3375 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3376 }
3377 else
3378 {
3379 if (sign > 0)
3380 switch (size)
3381 {
3382 case 4: return BFD_RELOC_X86_64_32S;
3383 }
3384 else
3385 switch (size)
3386 {
3387 case 1: return BFD_RELOC_8;
3388 case 2: return BFD_RELOC_16;
3389 case 4: return BFD_RELOC_32;
3390 case 8: return BFD_RELOC_64;
3391 }
3392 as_bad (_("cannot do %s %u byte relocation"),
3393 sign > 0 ? "signed" : "unsigned", size);
3394 }
3395
3396 return NO_RELOC;
3397 }
3398
3399 /* Here we decide which fixups can be adjusted to make them relative to
3400 the beginning of the section instead of the symbol. Basically we need
3401 to make sure that the dynamic relocations are done correctly, so in
3402 some cases we force the original symbol to be used. */
3403
3404 int
3405 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3406 {
3407 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3408 if (!IS_ELF)
3409 return 1;
3410
3411 /* Don't adjust pc-relative references to merge sections in 64-bit
3412 mode. */
3413 if (use_rela_relocations
3414 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3415 && fixP->fx_pcrel)
3416 return 0;
3417
3418 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3419 and changed later by validate_fix. */
3420 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3421 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3422 return 0;
3423
3424 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3425 for size relocations. */
3426 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3427 || fixP->fx_r_type == BFD_RELOC_SIZE64
3428 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3429 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3430 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3431 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3432 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3433 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3434 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3435 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3436 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3437 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3438 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3439 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3440 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3441 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3442 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3443 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3444 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3445 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3446 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3447 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3448 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3449 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3450 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3451 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3452 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3453 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3454 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3455 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3456 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3457 return 0;
3458 #endif
3459 return 1;
3460 }
3461
3462 static int
3463 intel_float_operand (const char *mnemonic)
3464 {
3465 /* Note that the value returned is meaningful only for opcodes with (memory)
3466 operands, hence the code here is free to improperly handle opcodes that
3467 have no operands (for better performance and smaller code). */
3468
3469 if (mnemonic[0] != 'f')
3470 return 0; /* non-math */
3471
3472 switch (mnemonic[1])
3473 {
3474 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3475 the fs segment override prefix not currently handled because no
3476 call path can make opcodes without operands get here */
3477 case 'i':
3478 return 2 /* integer op */;
3479 case 'l':
3480 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3481 return 3; /* fldcw/fldenv */
3482 break;
3483 case 'n':
3484 if (mnemonic[2] != 'o' /* fnop */)
3485 return 3; /* non-waiting control op */
3486 break;
3487 case 'r':
3488 if (mnemonic[2] == 's')
3489 return 3; /* frstor/frstpm */
3490 break;
3491 case 's':
3492 if (mnemonic[2] == 'a')
3493 return 3; /* fsave */
3494 if (mnemonic[2] == 't')
3495 {
3496 switch (mnemonic[3])
3497 {
3498 case 'c': /* fstcw */
3499 case 'd': /* fstdw */
3500 case 'e': /* fstenv */
3501 case 's': /* fsts[gw] */
3502 return 3;
3503 }
3504 }
3505 break;
3506 case 'x':
3507 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3508 return 0; /* fxsave/fxrstor are not really math ops */
3509 break;
3510 }
3511
3512 return 1;
3513 }
3514
3515 /* Build the VEX prefix. */
3516
3517 static void
3518 build_vex_prefix (const insn_template *t)
3519 {
3520 unsigned int register_specifier;
3521 unsigned int implied_prefix;
3522 unsigned int vector_length;
3523 unsigned int w;
3524
3525 /* Check register specifier. */
3526 if (i.vex.register_specifier)
3527 {
3528 register_specifier =
3529 ~register_number (i.vex.register_specifier) & 0xf;
3530 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3531 }
3532 else
3533 register_specifier = 0xf;
3534
3535 /* Use 2-byte VEX prefix by swapping destination and source operand
3536 if there are more than 1 register operand. */
3537 if (i.reg_operands > 1
3538 && i.vec_encoding != vex_encoding_vex3
3539 && i.dir_encoding == dir_encoding_default
3540 && i.operands == i.reg_operands
3541 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3542 && i.tm.opcode_modifier.vexopcode == VEX0F
3543 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3544 && i.rex == REX_B)
3545 {
3546 unsigned int xchg = i.operands - 1;
3547 union i386_op temp_op;
3548 i386_operand_type temp_type;
3549
3550 temp_type = i.types[xchg];
3551 i.types[xchg] = i.types[0];
3552 i.types[0] = temp_type;
3553 temp_op = i.op[xchg];
3554 i.op[xchg] = i.op[0];
3555 i.op[0] = temp_op;
3556
3557 gas_assert (i.rm.mode == 3);
3558
3559 i.rex = REX_R;
3560 xchg = i.rm.regmem;
3561 i.rm.regmem = i.rm.reg;
3562 i.rm.reg = xchg;
3563
3564 if (i.tm.opcode_modifier.d)
3565 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3566 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3567 else /* Use the next insn. */
3568 i.tm = t[1];
3569 }
3570
3571 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3572 are no memory operands and at least 3 register ones. */
3573 if (i.reg_operands >= 3
3574 && i.vec_encoding != vex_encoding_vex3
3575 && i.reg_operands == i.operands - i.imm_operands
3576 && i.tm.opcode_modifier.vex
3577 && i.tm.opcode_modifier.commutative
3578 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3579 && i.rex == REX_B
3580 && i.vex.register_specifier
3581 && !(i.vex.register_specifier->reg_flags & RegRex))
3582 {
3583 unsigned int xchg = i.operands - i.reg_operands;
3584 union i386_op temp_op;
3585 i386_operand_type temp_type;
3586
3587 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3588 gas_assert (!i.tm.opcode_modifier.sae);
3589 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3590 &i.types[i.operands - 3]));
3591 gas_assert (i.rm.mode == 3);
3592
3593 temp_type = i.types[xchg];
3594 i.types[xchg] = i.types[xchg + 1];
3595 i.types[xchg + 1] = temp_type;
3596 temp_op = i.op[xchg];
3597 i.op[xchg] = i.op[xchg + 1];
3598 i.op[xchg + 1] = temp_op;
3599
3600 i.rex = 0;
3601 xchg = i.rm.regmem | 8;
3602 i.rm.regmem = ~register_specifier & 0xf;
3603 gas_assert (!(i.rm.regmem & 8));
3604 i.vex.register_specifier += xchg - i.rm.regmem;
3605 register_specifier = ~xchg & 0xf;
3606 }
3607
3608 if (i.tm.opcode_modifier.vex == VEXScalar)
3609 vector_length = avxscalar;
3610 else if (i.tm.opcode_modifier.vex == VEX256)
3611 vector_length = 1;
3612 else
3613 {
3614 unsigned int op;
3615
3616 /* Determine vector length from the last multi-length vector
3617 operand. */
3618 vector_length = 0;
3619 for (op = t->operands; op--;)
3620 if (t->operand_types[op].bitfield.xmmword
3621 && t->operand_types[op].bitfield.ymmword
3622 && i.types[op].bitfield.ymmword)
3623 {
3624 vector_length = 1;
3625 break;
3626 }
3627 }
3628
3629 switch ((i.tm.base_opcode >> 8) & 0xff)
3630 {
3631 case 0:
3632 implied_prefix = 0;
3633 break;
3634 case DATA_PREFIX_OPCODE:
3635 implied_prefix = 1;
3636 break;
3637 case REPE_PREFIX_OPCODE:
3638 implied_prefix = 2;
3639 break;
3640 case REPNE_PREFIX_OPCODE:
3641 implied_prefix = 3;
3642 break;
3643 default:
3644 abort ();
3645 }
3646
3647 /* Check the REX.W bit and VEXW. */
3648 if (i.tm.opcode_modifier.vexw == VEXWIG)
3649 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3650 else if (i.tm.opcode_modifier.vexw)
3651 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3652 else
3653 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3654
3655 /* Use 2-byte VEX prefix if possible. */
3656 if (w == 0
3657 && i.vec_encoding != vex_encoding_vex3
3658 && i.tm.opcode_modifier.vexopcode == VEX0F
3659 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3660 {
3661 /* 2-byte VEX prefix. */
3662 unsigned int r;
3663
3664 i.vex.length = 2;
3665 i.vex.bytes[0] = 0xc5;
3666
3667 /* Check the REX.R bit. */
3668 r = (i.rex & REX_R) ? 0 : 1;
3669 i.vex.bytes[1] = (r << 7
3670 | register_specifier << 3
3671 | vector_length << 2
3672 | implied_prefix);
3673 }
3674 else
3675 {
3676 /* 3-byte VEX prefix. */
3677 unsigned int m;
3678
3679 i.vex.length = 3;
3680
3681 switch (i.tm.opcode_modifier.vexopcode)
3682 {
3683 case VEX0F:
3684 m = 0x1;
3685 i.vex.bytes[0] = 0xc4;
3686 break;
3687 case VEX0F38:
3688 m = 0x2;
3689 i.vex.bytes[0] = 0xc4;
3690 break;
3691 case VEX0F3A:
3692 m = 0x3;
3693 i.vex.bytes[0] = 0xc4;
3694 break;
3695 case XOP08:
3696 m = 0x8;
3697 i.vex.bytes[0] = 0x8f;
3698 break;
3699 case XOP09:
3700 m = 0x9;
3701 i.vex.bytes[0] = 0x8f;
3702 break;
3703 case XOP0A:
3704 m = 0xa;
3705 i.vex.bytes[0] = 0x8f;
3706 break;
3707 default:
3708 abort ();
3709 }
3710
3711 /* The high 3 bits of the second VEX byte are 1's compliment
3712 of RXB bits from REX. */
3713 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3714
3715 i.vex.bytes[2] = (w << 7
3716 | register_specifier << 3
3717 | vector_length << 2
3718 | implied_prefix);
3719 }
3720 }
3721
3722 static INLINE bfd_boolean
3723 is_evex_encoding (const insn_template *t)
3724 {
3725 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3726 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3727 || t->opcode_modifier.sae;
3728 }
3729
3730 static INLINE bfd_boolean
3731 is_any_vex_encoding (const insn_template *t)
3732 {
3733 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3734 || is_evex_encoding (t);
3735 }
3736
3737 /* Build the EVEX prefix. */
3738
3739 static void
3740 build_evex_prefix (void)
3741 {
3742 unsigned int register_specifier;
3743 unsigned int implied_prefix;
3744 unsigned int m, w;
3745 rex_byte vrex_used = 0;
3746
3747 /* Check register specifier. */
3748 if (i.vex.register_specifier)
3749 {
3750 gas_assert ((i.vrex & REX_X) == 0);
3751
3752 register_specifier = i.vex.register_specifier->reg_num;
3753 if ((i.vex.register_specifier->reg_flags & RegRex))
3754 register_specifier += 8;
3755 /* The upper 16 registers are encoded in the fourth byte of the
3756 EVEX prefix. */
3757 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3758 i.vex.bytes[3] = 0x8;
3759 register_specifier = ~register_specifier & 0xf;
3760 }
3761 else
3762 {
3763 register_specifier = 0xf;
3764
3765 /* Encode upper 16 vector index register in the fourth byte of
3766 the EVEX prefix. */
3767 if (!(i.vrex & REX_X))
3768 i.vex.bytes[3] = 0x8;
3769 else
3770 vrex_used |= REX_X;
3771 }
3772
3773 switch ((i.tm.base_opcode >> 8) & 0xff)
3774 {
3775 case 0:
3776 implied_prefix = 0;
3777 break;
3778 case DATA_PREFIX_OPCODE:
3779 implied_prefix = 1;
3780 break;
3781 case REPE_PREFIX_OPCODE:
3782 implied_prefix = 2;
3783 break;
3784 case REPNE_PREFIX_OPCODE:
3785 implied_prefix = 3;
3786 break;
3787 default:
3788 abort ();
3789 }
3790
3791 /* 4 byte EVEX prefix. */
3792 i.vex.length = 4;
3793 i.vex.bytes[0] = 0x62;
3794
3795 /* mmmm bits. */
3796 switch (i.tm.opcode_modifier.vexopcode)
3797 {
3798 case VEX0F:
3799 m = 1;
3800 break;
3801 case VEX0F38:
3802 m = 2;
3803 break;
3804 case VEX0F3A:
3805 m = 3;
3806 break;
3807 default:
3808 abort ();
3809 break;
3810 }
3811
3812 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3813 bits from REX. */
3814 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3815
3816 /* The fifth bit of the second EVEX byte is 1's compliment of the
3817 REX_R bit in VREX. */
3818 if (!(i.vrex & REX_R))
3819 i.vex.bytes[1] |= 0x10;
3820 else
3821 vrex_used |= REX_R;
3822
3823 if ((i.reg_operands + i.imm_operands) == i.operands)
3824 {
3825 /* When all operands are registers, the REX_X bit in REX is not
3826 used. We reuse it to encode the upper 16 registers, which is
3827 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3828 as 1's compliment. */
3829 if ((i.vrex & REX_B))
3830 {
3831 vrex_used |= REX_B;
3832 i.vex.bytes[1] &= ~0x40;
3833 }
3834 }
3835
3836 /* EVEX instructions shouldn't need the REX prefix. */
3837 i.vrex &= ~vrex_used;
3838 gas_assert (i.vrex == 0);
3839
3840 /* Check the REX.W bit and VEXW. */
3841 if (i.tm.opcode_modifier.vexw == VEXWIG)
3842 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3843 else if (i.tm.opcode_modifier.vexw)
3844 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3845 else
3846 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3847
3848 /* Encode the U bit. */
3849 implied_prefix |= 0x4;
3850
3851 /* The third byte of the EVEX prefix. */
3852 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3853
3854 /* The fourth byte of the EVEX prefix. */
3855 /* The zeroing-masking bit. */
3856 if (i.mask && i.mask->zeroing)
3857 i.vex.bytes[3] |= 0x80;
3858
3859 /* Don't always set the broadcast bit if there is no RC. */
3860 if (!i.rounding)
3861 {
3862 /* Encode the vector length. */
3863 unsigned int vec_length;
3864
3865 if (!i.tm.opcode_modifier.evex
3866 || i.tm.opcode_modifier.evex == EVEXDYN)
3867 {
3868 unsigned int op;
3869
3870 /* Determine vector length from the last multi-length vector
3871 operand. */
3872 vec_length = 0;
3873 for (op = i.operands; op--;)
3874 if (i.tm.operand_types[op].bitfield.xmmword
3875 + i.tm.operand_types[op].bitfield.ymmword
3876 + i.tm.operand_types[op].bitfield.zmmword > 1)
3877 {
3878 if (i.types[op].bitfield.zmmword)
3879 {
3880 i.tm.opcode_modifier.evex = EVEX512;
3881 break;
3882 }
3883 else if (i.types[op].bitfield.ymmword)
3884 {
3885 i.tm.opcode_modifier.evex = EVEX256;
3886 break;
3887 }
3888 else if (i.types[op].bitfield.xmmword)
3889 {
3890 i.tm.opcode_modifier.evex = EVEX128;
3891 break;
3892 }
3893 else if (i.broadcast && (int) op == i.broadcast->operand)
3894 {
3895 switch (i.broadcast->bytes)
3896 {
3897 case 64:
3898 i.tm.opcode_modifier.evex = EVEX512;
3899 break;
3900 case 32:
3901 i.tm.opcode_modifier.evex = EVEX256;
3902 break;
3903 case 16:
3904 i.tm.opcode_modifier.evex = EVEX128;
3905 break;
3906 default:
3907 abort ();
3908 }
3909 break;
3910 }
3911 }
3912
3913 if (op >= MAX_OPERANDS)
3914 abort ();
3915 }
3916
3917 switch (i.tm.opcode_modifier.evex)
3918 {
3919 case EVEXLIG: /* LL' is ignored */
3920 vec_length = evexlig << 5;
3921 break;
3922 case EVEX128:
3923 vec_length = 0 << 5;
3924 break;
3925 case EVEX256:
3926 vec_length = 1 << 5;
3927 break;
3928 case EVEX512:
3929 vec_length = 2 << 5;
3930 break;
3931 default:
3932 abort ();
3933 break;
3934 }
3935 i.vex.bytes[3] |= vec_length;
3936 /* Encode the broadcast bit. */
3937 if (i.broadcast)
3938 i.vex.bytes[3] |= 0x10;
3939 }
3940 else
3941 {
3942 if (i.rounding->type != saeonly)
3943 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3944 else
3945 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3946 }
3947
3948 if (i.mask && i.mask->mask)
3949 i.vex.bytes[3] |= i.mask->mask->reg_num;
3950 }
3951
3952 static void
3953 process_immext (void)
3954 {
3955 expressionS *exp;
3956
3957 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3958 which is coded in the same place as an 8-bit immediate field
3959 would be. Here we fake an 8-bit immediate operand from the
3960 opcode suffix stored in tm.extension_opcode.
3961
3962 AVX instructions also use this encoding, for some of
3963 3 argument instructions. */
3964
3965 gas_assert (i.imm_operands <= 1
3966 && (i.operands <= 2
3967 || (is_any_vex_encoding (&i.tm)
3968 && i.operands <= 4)));
3969
3970 exp = &im_expressions[i.imm_operands++];
3971 i.op[i.operands].imms = exp;
3972 i.types[i.operands] = imm8;
3973 i.operands++;
3974 exp->X_op = O_constant;
3975 exp->X_add_number = i.tm.extension_opcode;
3976 i.tm.extension_opcode = None;
3977 }
3978
3979
3980 static int
3981 check_hle (void)
3982 {
3983 switch (i.tm.opcode_modifier.hleprefixok)
3984 {
3985 default:
3986 abort ();
3987 case HLEPrefixNone:
3988 as_bad (_("invalid instruction `%s' after `%s'"),
3989 i.tm.name, i.hle_prefix);
3990 return 0;
3991 case HLEPrefixLock:
3992 if (i.prefix[LOCK_PREFIX])
3993 return 1;
3994 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3995 return 0;
3996 case HLEPrefixAny:
3997 return 1;
3998 case HLEPrefixRelease:
3999 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
4000 {
4001 as_bad (_("instruction `%s' after `xacquire' not allowed"),
4002 i.tm.name);
4003 return 0;
4004 }
4005 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
4006 {
4007 as_bad (_("memory destination needed for instruction `%s'"
4008 " after `xrelease'"), i.tm.name);
4009 return 0;
4010 }
4011 return 1;
4012 }
4013 }
4014
4015 /* Try the shortest encoding by shortening operand size. */
4016
4017 static void
4018 optimize_encoding (void)
4019 {
4020 unsigned int j;
4021
4022 if (optimize_for_space
4023 && !is_any_vex_encoding (&i.tm)
4024 && i.reg_operands == 1
4025 && i.imm_operands == 1
4026 && !i.types[1].bitfield.byte
4027 && i.op[0].imms->X_op == O_constant
4028 && fits_in_imm7 (i.op[0].imms->X_add_number)
4029 && (i.tm.base_opcode == 0xa8
4030 || (i.tm.base_opcode == 0xf6
4031 && i.tm.extension_opcode == 0x0)))
4032 {
4033 /* Optimize: -Os:
4034 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4035 */
4036 unsigned int base_regnum = i.op[1].regs->reg_num;
4037 if (flag_code == CODE_64BIT || base_regnum < 4)
4038 {
4039 i.types[1].bitfield.byte = 1;
4040 /* Ignore the suffix. */
4041 i.suffix = 0;
4042 /* Convert to byte registers. */
4043 if (i.types[1].bitfield.word)
4044 j = 16;
4045 else if (i.types[1].bitfield.dword)
4046 j = 32;
4047 else
4048 j = 48;
4049 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4050 j += 8;
4051 i.op[1].regs -= j;
4052 }
4053 }
4054 else if (flag_code == CODE_64BIT
4055 && !is_any_vex_encoding (&i.tm)
4056 && ((i.types[1].bitfield.qword
4057 && i.reg_operands == 1
4058 && i.imm_operands == 1
4059 && i.op[0].imms->X_op == O_constant
4060 && ((i.tm.base_opcode == 0xb8
4061 && i.tm.extension_opcode == None
4062 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4063 || (fits_in_imm31 (i.op[0].imms->X_add_number)
4064 && ((i.tm.base_opcode == 0x24
4065 || i.tm.base_opcode == 0xa8)
4066 || (i.tm.base_opcode == 0x80
4067 && i.tm.extension_opcode == 0x4)
4068 || ((i.tm.base_opcode == 0xf6
4069 || (i.tm.base_opcode | 1) == 0xc7)
4070 && i.tm.extension_opcode == 0x0)))
4071 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4072 && i.tm.base_opcode == 0x83
4073 && i.tm.extension_opcode == 0x4)))
4074 || (i.types[0].bitfield.qword
4075 && ((i.reg_operands == 2
4076 && i.op[0].regs == i.op[1].regs
4077 && (i.tm.base_opcode == 0x30
4078 || i.tm.base_opcode == 0x28))
4079 || (i.reg_operands == 1
4080 && i.operands == 1
4081 && i.tm.base_opcode == 0x30)))))
4082 {
4083 /* Optimize: -O:
4084 andq $imm31, %r64 -> andl $imm31, %r32
4085 andq $imm7, %r64 -> andl $imm7, %r32
4086 testq $imm31, %r64 -> testl $imm31, %r32
4087 xorq %r64, %r64 -> xorl %r32, %r32
4088 subq %r64, %r64 -> subl %r32, %r32
4089 movq $imm31, %r64 -> movl $imm31, %r32
4090 movq $imm32, %r64 -> movl $imm32, %r32
4091 */
4092 i.tm.opcode_modifier.norex64 = 1;
4093 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
4094 {
4095 /* Handle
4096 movq $imm31, %r64 -> movl $imm31, %r32
4097 movq $imm32, %r64 -> movl $imm32, %r32
4098 */
4099 i.tm.operand_types[0].bitfield.imm32 = 1;
4100 i.tm.operand_types[0].bitfield.imm32s = 0;
4101 i.tm.operand_types[0].bitfield.imm64 = 0;
4102 i.types[0].bitfield.imm32 = 1;
4103 i.types[0].bitfield.imm32s = 0;
4104 i.types[0].bitfield.imm64 = 0;
4105 i.types[1].bitfield.dword = 1;
4106 i.types[1].bitfield.qword = 0;
4107 if ((i.tm.base_opcode | 1) == 0xc7)
4108 {
4109 /* Handle
4110 movq $imm31, %r64 -> movl $imm31, %r32
4111 */
4112 i.tm.base_opcode = 0xb8;
4113 i.tm.extension_opcode = None;
4114 i.tm.opcode_modifier.w = 0;
4115 i.tm.opcode_modifier.modrm = 0;
4116 }
4117 }
4118 }
4119 else if (optimize > 1
4120 && !optimize_for_space
4121 && !is_any_vex_encoding (&i.tm)
4122 && i.reg_operands == 2
4123 && i.op[0].regs == i.op[1].regs
4124 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4125 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4126 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4127 {
4128 /* Optimize: -O2:
4129 andb %rN, %rN -> testb %rN, %rN
4130 andw %rN, %rN -> testw %rN, %rN
4131 andq %rN, %rN -> testq %rN, %rN
4132 orb %rN, %rN -> testb %rN, %rN
4133 orw %rN, %rN -> testw %rN, %rN
4134 orq %rN, %rN -> testq %rN, %rN
4135
4136 and outside of 64-bit mode
4137
4138 andl %rN, %rN -> testl %rN, %rN
4139 orl %rN, %rN -> testl %rN, %rN
4140 */
4141 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4142 }
4143 else if (i.reg_operands == 3
4144 && i.op[0].regs == i.op[1].regs
4145 && !i.types[2].bitfield.xmmword
4146 && (i.tm.opcode_modifier.vex
4147 || ((!i.mask || i.mask->zeroing)
4148 && !i.rounding
4149 && is_evex_encoding (&i.tm)
4150 && (i.vec_encoding != vex_encoding_evex
4151 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4152 || i.tm.cpu_flags.bitfield.cpuavx512vl
4153 || (i.tm.operand_types[2].bitfield.zmmword
4154 && i.types[2].bitfield.ymmword))))
4155 && ((i.tm.base_opcode == 0x55
4156 || i.tm.base_opcode == 0x6655
4157 || i.tm.base_opcode == 0x66df
4158 || i.tm.base_opcode == 0x57
4159 || i.tm.base_opcode == 0x6657
4160 || i.tm.base_opcode == 0x66ef
4161 || i.tm.base_opcode == 0x66f8
4162 || i.tm.base_opcode == 0x66f9
4163 || i.tm.base_opcode == 0x66fa
4164 || i.tm.base_opcode == 0x66fb
4165 || i.tm.base_opcode == 0x42
4166 || i.tm.base_opcode == 0x6642
4167 || i.tm.base_opcode == 0x47
4168 || i.tm.base_opcode == 0x6647)
4169 && i.tm.extension_opcode == None))
4170 {
4171 /* Optimize: -O1:
4172 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4173 vpsubq and vpsubw:
4174 EVEX VOP %zmmM, %zmmM, %zmmN
4175 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4176 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4177 EVEX VOP %ymmM, %ymmM, %ymmN
4178 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4179 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4180 VEX VOP %ymmM, %ymmM, %ymmN
4181 -> VEX VOP %xmmM, %xmmM, %xmmN
4182 VOP, one of vpandn and vpxor:
4183 VEX VOP %ymmM, %ymmM, %ymmN
4184 -> VEX VOP %xmmM, %xmmM, %xmmN
4185 VOP, one of vpandnd and vpandnq:
4186 EVEX VOP %zmmM, %zmmM, %zmmN
4187 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4188 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4189 EVEX VOP %ymmM, %ymmM, %ymmN
4190 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4191 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4192 VOP, one of vpxord and vpxorq:
4193 EVEX VOP %zmmM, %zmmM, %zmmN
4194 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4195 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4196 EVEX VOP %ymmM, %ymmM, %ymmN
4197 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4198 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4199 VOP, one of kxord and kxorq:
4200 VEX VOP %kM, %kM, %kN
4201 -> VEX kxorw %kM, %kM, %kN
4202 VOP, one of kandnd and kandnq:
4203 VEX VOP %kM, %kM, %kN
4204 -> VEX kandnw %kM, %kM, %kN
4205 */
4206 if (is_evex_encoding (&i.tm))
4207 {
4208 if (i.vec_encoding != vex_encoding_evex)
4209 {
4210 i.tm.opcode_modifier.vex = VEX128;
4211 i.tm.opcode_modifier.vexw = VEXW0;
4212 i.tm.opcode_modifier.evex = 0;
4213 }
4214 else if (optimize > 1)
4215 i.tm.opcode_modifier.evex = EVEX128;
4216 else
4217 return;
4218 }
4219 else if (i.tm.operand_types[0].bitfield.class == RegMask)
4220 {
4221 i.tm.base_opcode &= 0xff;
4222 i.tm.opcode_modifier.vexw = VEXW0;
4223 }
4224 else
4225 i.tm.opcode_modifier.vex = VEX128;
4226
4227 if (i.tm.opcode_modifier.vex)
4228 for (j = 0; j < 3; j++)
4229 {
4230 i.types[j].bitfield.xmmword = 1;
4231 i.types[j].bitfield.ymmword = 0;
4232 }
4233 }
4234 else if (i.vec_encoding != vex_encoding_evex
4235 && !i.types[0].bitfield.zmmword
4236 && !i.types[1].bitfield.zmmword
4237 && !i.mask
4238 && !i.broadcast
4239 && is_evex_encoding (&i.tm)
4240 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4241 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4242 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4243 || (i.tm.base_opcode & ~4) == 0x66db
4244 || (i.tm.base_opcode & ~4) == 0x66eb)
4245 && i.tm.extension_opcode == None)
4246 {
4247 /* Optimize: -O1:
4248 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4249 vmovdqu32 and vmovdqu64:
4250 EVEX VOP %xmmM, %xmmN
4251 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4252 EVEX VOP %ymmM, %ymmN
4253 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4254 EVEX VOP %xmmM, mem
4255 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4256 EVEX VOP %ymmM, mem
4257 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4258 EVEX VOP mem, %xmmN
4259 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4260 EVEX VOP mem, %ymmN
4261 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4262 VOP, one of vpand, vpandn, vpor, vpxor:
4263 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4264 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4265 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4266 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4267 EVEX VOP{d,q} mem, %xmmM, %xmmN
4268 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4269 EVEX VOP{d,q} mem, %ymmM, %ymmN
4270 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4271 */
4272 for (j = 0; j < i.operands; j++)
4273 if (operand_type_check (i.types[j], disp)
4274 && i.op[j].disps->X_op == O_constant)
4275 {
4276 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4277 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4278 bytes, we choose EVEX Disp8 over VEX Disp32. */
4279 int evex_disp8, vex_disp8;
4280 unsigned int memshift = i.memshift;
4281 offsetT n = i.op[j].disps->X_add_number;
4282
4283 evex_disp8 = fits_in_disp8 (n);
4284 i.memshift = 0;
4285 vex_disp8 = fits_in_disp8 (n);
4286 if (evex_disp8 != vex_disp8)
4287 {
4288 i.memshift = memshift;
4289 return;
4290 }
4291
4292 i.types[j].bitfield.disp8 = vex_disp8;
4293 break;
4294 }
4295 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4296 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4297 i.tm.opcode_modifier.vex
4298 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4299 i.tm.opcode_modifier.vexw = VEXW0;
4300 /* VPAND, VPOR, and VPXOR are commutative. */
4301 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4302 i.tm.opcode_modifier.commutative = 1;
4303 i.tm.opcode_modifier.evex = 0;
4304 i.tm.opcode_modifier.masking = 0;
4305 i.tm.opcode_modifier.broadcast = 0;
4306 i.tm.opcode_modifier.disp8memshift = 0;
4307 i.memshift = 0;
4308 if (j < i.operands)
4309 i.types[j].bitfield.disp8
4310 = fits_in_disp8 (i.op[j].disps->X_add_number);
4311 }
4312 }
4313
4314 /* This is the guts of the machine-dependent assembler. LINE points to a
4315 machine dependent instruction. This function is supposed to emit
4316 the frags/bytes it assembles to. */
4317
4318 void
4319 md_assemble (char *line)
4320 {
4321 unsigned int j;
4322 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4323 const insn_template *t;
4324
4325 /* Initialize globals. */
4326 memset (&i, '\0', sizeof (i));
4327 for (j = 0; j < MAX_OPERANDS; j++)
4328 i.reloc[j] = NO_RELOC;
4329 memset (disp_expressions, '\0', sizeof (disp_expressions));
4330 memset (im_expressions, '\0', sizeof (im_expressions));
4331 save_stack_p = save_stack;
4332
4333 /* First parse an instruction mnemonic & call i386_operand for the operands.
4334 We assume that the scrubber has arranged it so that line[0] is the valid
4335 start of a (possibly prefixed) mnemonic. */
4336
4337 line = parse_insn (line, mnemonic);
4338 if (line == NULL)
4339 return;
4340 mnem_suffix = i.suffix;
4341
4342 line = parse_operands (line, mnemonic);
4343 this_operand = -1;
4344 xfree (i.memop1_string);
4345 i.memop1_string = NULL;
4346 if (line == NULL)
4347 return;
4348
4349 /* Now we've parsed the mnemonic into a set of templates, and have the
4350 operands at hand. */
4351
4352 /* All Intel opcodes have reversed operands except for "bound", "enter",
4353 "monitor*", "mwait*", "tpause", and "umwait". We also don't reverse
4354 intersegment "jmp" and "call" instructions with 2 immediate operands so
4355 that the immediate segment precedes the offset, as it does when in AT&T
4356 mode. */
4357 if (intel_syntax
4358 && i.operands > 1
4359 && (strcmp (mnemonic, "bound") != 0)
4360 && (strcmp (mnemonic, "invlpga") != 0)
4361 && (strncmp (mnemonic, "monitor", 7) != 0)
4362 && (strncmp (mnemonic, "mwait", 5) != 0)
4363 && (strcmp (mnemonic, "tpause") != 0)
4364 && (strcmp (mnemonic, "umwait") != 0)
4365 && !(operand_type_check (i.types[0], imm)
4366 && operand_type_check (i.types[1], imm)))
4367 swap_operands ();
4368
4369 /* The order of the immediates should be reversed
4370 for 2 immediates extrq and insertq instructions */
4371 if (i.imm_operands == 2
4372 && (strcmp (mnemonic, "extrq") == 0
4373 || strcmp (mnemonic, "insertq") == 0))
4374 swap_2_operands (0, 1);
4375
4376 if (i.imm_operands)
4377 optimize_imm ();
4378
4379 /* Don't optimize displacement for movabs since it only takes 64bit
4380 displacement. */
4381 if (i.disp_operands
4382 && i.disp_encoding != disp_encoding_32bit
4383 && (flag_code != CODE_64BIT
4384 || strcmp (mnemonic, "movabs") != 0))
4385 optimize_disp ();
4386
4387 /* Next, we find a template that matches the given insn,
4388 making sure the overlap of the given operands types is consistent
4389 with the template operand types. */
4390
4391 if (!(t = match_template (mnem_suffix)))
4392 return;
4393
4394 if (sse_check != check_none
4395 && !i.tm.opcode_modifier.noavx
4396 && !i.tm.cpu_flags.bitfield.cpuavx
4397 && !i.tm.cpu_flags.bitfield.cpuavx512f
4398 && (i.tm.cpu_flags.bitfield.cpusse
4399 || i.tm.cpu_flags.bitfield.cpusse2
4400 || i.tm.cpu_flags.bitfield.cpusse3
4401 || i.tm.cpu_flags.bitfield.cpussse3
4402 || i.tm.cpu_flags.bitfield.cpusse4_1
4403 || i.tm.cpu_flags.bitfield.cpusse4_2
4404 || i.tm.cpu_flags.bitfield.cpusse4a
4405 || i.tm.cpu_flags.bitfield.cpupclmul
4406 || i.tm.cpu_flags.bitfield.cpuaes
4407 || i.tm.cpu_flags.bitfield.cpusha
4408 || i.tm.cpu_flags.bitfield.cpugfni))
4409 {
4410 (sse_check == check_warning
4411 ? as_warn
4412 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4413 }
4414
4415 if (i.tm.opcode_modifier.fwait)
4416 if (!add_prefix (FWAIT_OPCODE))
4417 return;
4418
4419 /* Check if REP prefix is OK. */
4420 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4421 {
4422 as_bad (_("invalid instruction `%s' after `%s'"),
4423 i.tm.name, i.rep_prefix);
4424 return;
4425 }
4426
4427 /* Check for lock without a lockable instruction. Destination operand
4428 must be memory unless it is xchg (0x86). */
4429 if (i.prefix[LOCK_PREFIX]
4430 && (!i.tm.opcode_modifier.islockable
4431 || i.mem_operands == 0
4432 || (i.tm.base_opcode != 0x86
4433 && !(i.flags[i.operands - 1] & Operand_Mem))))
4434 {
4435 as_bad (_("expecting lockable instruction after `lock'"));
4436 return;
4437 }
4438
4439 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4440 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4441 {
4442 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4443 return;
4444 }
4445
4446 /* Check if HLE prefix is OK. */
4447 if (i.hle_prefix && !check_hle ())
4448 return;
4449
4450 /* Check BND prefix. */
4451 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4452 as_bad (_("expecting valid branch instruction after `bnd'"));
4453
4454 /* Check NOTRACK prefix. */
4455 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4456 as_bad (_("expecting indirect branch instruction after `notrack'"));
4457
4458 if (i.tm.cpu_flags.bitfield.cpumpx)
4459 {
4460 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4461 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4462 else if (flag_code != CODE_16BIT
4463 ? i.prefix[ADDR_PREFIX]
4464 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4465 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4466 }
4467
4468 /* Insert BND prefix. */
4469 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4470 {
4471 if (!i.prefix[BND_PREFIX])
4472 add_prefix (BND_PREFIX_OPCODE);
4473 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4474 {
4475 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4476 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4477 }
4478 }
4479
4480 /* Check string instruction segment overrides. */
4481 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
4482 {
4483 gas_assert (i.mem_operands);
4484 if (!check_string ())
4485 return;
4486 i.disp_operands = 0;
4487 }
4488
4489 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4490 optimize_encoding ();
4491
4492 if (!process_suffix ())
4493 return;
4494
4495 /* Update operand types. */
4496 for (j = 0; j < i.operands; j++)
4497 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4498
4499 /* Make still unresolved immediate matches conform to size of immediate
4500 given in i.suffix. */
4501 if (!finalize_imm ())
4502 return;
4503
4504 if (i.types[0].bitfield.imm1)
4505 i.imm_operands = 0; /* kludge for shift insns. */
4506
4507 /* We only need to check those implicit registers for instructions
4508 with 3 operands or less. */
4509 if (i.operands <= 3)
4510 for (j = 0; j < i.operands; j++)
4511 if (i.types[j].bitfield.instance != InstanceNone
4512 && !i.types[j].bitfield.xmmword)
4513 i.reg_operands--;
4514
4515 /* ImmExt should be processed after SSE2AVX. */
4516 if (!i.tm.opcode_modifier.sse2avx
4517 && i.tm.opcode_modifier.immext)
4518 process_immext ();
4519
4520 /* For insns with operands there are more diddles to do to the opcode. */
4521 if (i.operands)
4522 {
4523 if (!process_operands ())
4524 return;
4525 }
4526 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4527 {
4528 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4529 as_warn (_("translating to `%sp'"), i.tm.name);
4530 }
4531
4532 if (is_any_vex_encoding (&i.tm))
4533 {
4534 if (!cpu_arch_flags.bitfield.cpui286)
4535 {
4536 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4537 i.tm.name);
4538 return;
4539 }
4540
4541 if (i.tm.opcode_modifier.vex)
4542 build_vex_prefix (t);
4543 else
4544 build_evex_prefix ();
4545 }
4546
4547 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4548 instructions may define INT_OPCODE as well, so avoid this corner
4549 case for those instructions that use MODRM. */
4550 if (i.tm.base_opcode == INT_OPCODE
4551 && !i.tm.opcode_modifier.modrm
4552 && i.op[0].imms->X_add_number == 3)
4553 {
4554 i.tm.base_opcode = INT3_OPCODE;
4555 i.imm_operands = 0;
4556 }
4557
4558 if ((i.tm.opcode_modifier.jump == JUMP
4559 || i.tm.opcode_modifier.jump == JUMP_BYTE
4560 || i.tm.opcode_modifier.jump == JUMP_DWORD)
4561 && i.op[0].disps->X_op == O_constant)
4562 {
4563 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4564 the absolute address given by the constant. Since ix86 jumps and
4565 calls are pc relative, we need to generate a reloc. */
4566 i.op[0].disps->X_add_symbol = &abs_symbol;
4567 i.op[0].disps->X_op = O_symbol;
4568 }
4569
4570 /* For 8 bit registers we need an empty rex prefix. Also if the
4571 instruction already has a prefix, we need to convert old
4572 registers to new ones. */
4573
4574 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
4575 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4576 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
4577 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4578 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4579 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
4580 && i.rex != 0))
4581 {
4582 int x;
4583
4584 i.rex |= REX_OPCODE;
4585 for (x = 0; x < 2; x++)
4586 {
4587 /* Look for 8 bit operand that uses old registers. */
4588 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4589 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4590 {
4591 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4592 /* In case it is "hi" register, give up. */
4593 if (i.op[x].regs->reg_num > 3)
4594 as_bad (_("can't encode register '%s%s' in an "
4595 "instruction requiring REX prefix."),
4596 register_prefix, i.op[x].regs->reg_name);
4597
4598 /* Otherwise it is equivalent to the extended register.
4599 Since the encoding doesn't change this is merely
4600 cosmetic cleanup for debug output. */
4601
4602 i.op[x].regs = i.op[x].regs + 8;
4603 }
4604 }
4605 }
4606
4607 if (i.rex == 0 && i.rex_encoding)
4608 {
4609 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4610 that uses legacy register. If it is "hi" register, don't add
4611 the REX_OPCODE byte. */
4612 int x;
4613 for (x = 0; x < 2; x++)
4614 if (i.types[x].bitfield.class == Reg
4615 && i.types[x].bitfield.byte
4616 && (i.op[x].regs->reg_flags & RegRex64) == 0
4617 && i.op[x].regs->reg_num > 3)
4618 {
4619 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4620 i.rex_encoding = FALSE;
4621 break;
4622 }
4623
4624 if (i.rex_encoding)
4625 i.rex = REX_OPCODE;
4626 }
4627
4628 if (i.rex != 0)
4629 add_prefix (REX_OPCODE | i.rex);
4630
4631 /* We are ready to output the insn. */
4632 output_insn ();
4633
4634 last_insn.seg = now_seg;
4635
4636 if (i.tm.opcode_modifier.isprefix)
4637 {
4638 last_insn.kind = last_insn_prefix;
4639 last_insn.name = i.tm.name;
4640 last_insn.file = as_where (&last_insn.line);
4641 }
4642 else
4643 last_insn.kind = last_insn_other;
4644 }
4645
4646 static char *
4647 parse_insn (char *line, char *mnemonic)
4648 {
4649 char *l = line;
4650 char *token_start = l;
4651 char *mnem_p;
4652 int supported;
4653 const insn_template *t;
4654 char *dot_p = NULL;
4655
4656 while (1)
4657 {
4658 mnem_p = mnemonic;
4659 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4660 {
4661 if (*mnem_p == '.')
4662 dot_p = mnem_p;
4663 mnem_p++;
4664 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4665 {
4666 as_bad (_("no such instruction: `%s'"), token_start);
4667 return NULL;
4668 }
4669 l++;
4670 }
4671 if (!is_space_char (*l)
4672 && *l != END_OF_INSN
4673 && (intel_syntax
4674 || (*l != PREFIX_SEPARATOR
4675 && *l != ',')))
4676 {
4677 as_bad (_("invalid character %s in mnemonic"),
4678 output_invalid (*l));
4679 return NULL;
4680 }
4681 if (token_start == l)
4682 {
4683 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4684 as_bad (_("expecting prefix; got nothing"));
4685 else
4686 as_bad (_("expecting mnemonic; got nothing"));
4687 return NULL;
4688 }
4689
4690 /* Look up instruction (or prefix) via hash table. */
4691 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4692
4693 if (*l != END_OF_INSN
4694 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4695 && current_templates
4696 && current_templates->start->opcode_modifier.isprefix)
4697 {
4698 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4699 {
4700 as_bad ((flag_code != CODE_64BIT
4701 ? _("`%s' is only supported in 64-bit mode")
4702 : _("`%s' is not supported in 64-bit mode")),
4703 current_templates->start->name);
4704 return NULL;
4705 }
4706 /* If we are in 16-bit mode, do not allow addr16 or data16.
4707 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4708 if ((current_templates->start->opcode_modifier.size == SIZE16
4709 || current_templates->start->opcode_modifier.size == SIZE32)
4710 && flag_code != CODE_64BIT
4711 && ((current_templates->start->opcode_modifier.size == SIZE32)
4712 ^ (flag_code == CODE_16BIT)))
4713 {
4714 as_bad (_("redundant %s prefix"),
4715 current_templates->start->name);
4716 return NULL;
4717 }
4718 if (current_templates->start->opcode_length == 0)
4719 {
4720 /* Handle pseudo prefixes. */
4721 switch (current_templates->start->base_opcode)
4722 {
4723 case 0x0:
4724 /* {disp8} */
4725 i.disp_encoding = disp_encoding_8bit;
4726 break;
4727 case 0x1:
4728 /* {disp32} */
4729 i.disp_encoding = disp_encoding_32bit;
4730 break;
4731 case 0x2:
4732 /* {load} */
4733 i.dir_encoding = dir_encoding_load;
4734 break;
4735 case 0x3:
4736 /* {store} */
4737 i.dir_encoding = dir_encoding_store;
4738 break;
4739 case 0x4:
4740 /* {vex} */
4741 i.vec_encoding = vex_encoding_vex;
4742 break;
4743 case 0x5:
4744 /* {vex3} */
4745 i.vec_encoding = vex_encoding_vex3;
4746 break;
4747 case 0x6:
4748 /* {evex} */
4749 i.vec_encoding = vex_encoding_evex;
4750 break;
4751 case 0x7:
4752 /* {rex} */
4753 i.rex_encoding = TRUE;
4754 break;
4755 case 0x8:
4756 /* {nooptimize} */
4757 i.no_optimize = TRUE;
4758 break;
4759 default:
4760 abort ();
4761 }
4762 }
4763 else
4764 {
4765 /* Add prefix, checking for repeated prefixes. */
4766 switch (add_prefix (current_templates->start->base_opcode))
4767 {
4768 case PREFIX_EXIST:
4769 return NULL;
4770 case PREFIX_DS:
4771 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4772 i.notrack_prefix = current_templates->start->name;
4773 break;
4774 case PREFIX_REP:
4775 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4776 i.hle_prefix = current_templates->start->name;
4777 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4778 i.bnd_prefix = current_templates->start->name;
4779 else
4780 i.rep_prefix = current_templates->start->name;
4781 break;
4782 default:
4783 break;
4784 }
4785 }
4786 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4787 token_start = ++l;
4788 }
4789 else
4790 break;
4791 }
4792
4793 if (!current_templates)
4794 {
4795 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4796 Check if we should swap operand or force 32bit displacement in
4797 encoding. */
4798 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4799 i.dir_encoding = dir_encoding_swap;
4800 else if (mnem_p - 3 == dot_p
4801 && dot_p[1] == 'd'
4802 && dot_p[2] == '8')
4803 i.disp_encoding = disp_encoding_8bit;
4804 else if (mnem_p - 4 == dot_p
4805 && dot_p[1] == 'd'
4806 && dot_p[2] == '3'
4807 && dot_p[3] == '2')
4808 i.disp_encoding = disp_encoding_32bit;
4809 else
4810 goto check_suffix;
4811 mnem_p = dot_p;
4812 *dot_p = '\0';
4813 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4814 }
4815
4816 if (!current_templates)
4817 {
4818 check_suffix:
4819 if (mnem_p > mnemonic)
4820 {
4821 /* See if we can get a match by trimming off a suffix. */
4822 switch (mnem_p[-1])
4823 {
4824 case WORD_MNEM_SUFFIX:
4825 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4826 i.suffix = SHORT_MNEM_SUFFIX;
4827 else
4828 /* Fall through. */
4829 case BYTE_MNEM_SUFFIX:
4830 case QWORD_MNEM_SUFFIX:
4831 i.suffix = mnem_p[-1];
4832 mnem_p[-1] = '\0';
4833 current_templates = (const templates *) hash_find (op_hash,
4834 mnemonic);
4835 break;
4836 case SHORT_MNEM_SUFFIX:
4837 case LONG_MNEM_SUFFIX:
4838 if (!intel_syntax)
4839 {
4840 i.suffix = mnem_p[-1];
4841 mnem_p[-1] = '\0';
4842 current_templates = (const templates *) hash_find (op_hash,
4843 mnemonic);
4844 }
4845 break;
4846
4847 /* Intel Syntax. */
4848 case 'd':
4849 if (intel_syntax)
4850 {
4851 if (intel_float_operand (mnemonic) == 1)
4852 i.suffix = SHORT_MNEM_SUFFIX;
4853 else
4854 i.suffix = LONG_MNEM_SUFFIX;
4855 mnem_p[-1] = '\0';
4856 current_templates = (const templates *) hash_find (op_hash,
4857 mnemonic);
4858 }
4859 break;
4860 }
4861 }
4862
4863 if (!current_templates)
4864 {
4865 as_bad (_("no such instruction: `%s'"), token_start);
4866 return NULL;
4867 }
4868 }
4869
4870 if (current_templates->start->opcode_modifier.jump == JUMP
4871 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
4872 {
4873 /* Check for a branch hint. We allow ",pt" and ",pn" for
4874 predict taken and predict not taken respectively.
4875 I'm not sure that branch hints actually do anything on loop
4876 and jcxz insns (JumpByte) for current Pentium4 chips. They
4877 may work in the future and it doesn't hurt to accept them
4878 now. */
4879 if (l[0] == ',' && l[1] == 'p')
4880 {
4881 if (l[2] == 't')
4882 {
4883 if (!add_prefix (DS_PREFIX_OPCODE))
4884 return NULL;
4885 l += 3;
4886 }
4887 else if (l[2] == 'n')
4888 {
4889 if (!add_prefix (CS_PREFIX_OPCODE))
4890 return NULL;
4891 l += 3;
4892 }
4893 }
4894 }
4895 /* Any other comma loses. */
4896 if (*l == ',')
4897 {
4898 as_bad (_("invalid character %s in mnemonic"),
4899 output_invalid (*l));
4900 return NULL;
4901 }
4902
4903 /* Check if instruction is supported on specified architecture. */
4904 supported = 0;
4905 for (t = current_templates->start; t < current_templates->end; ++t)
4906 {
4907 supported |= cpu_flags_match (t);
4908 if (supported == CPU_FLAGS_PERFECT_MATCH)
4909 {
4910 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4911 as_warn (_("use .code16 to ensure correct addressing mode"));
4912
4913 return l;
4914 }
4915 }
4916
4917 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4918 as_bad (flag_code == CODE_64BIT
4919 ? _("`%s' is not supported in 64-bit mode")
4920 : _("`%s' is only supported in 64-bit mode"),
4921 current_templates->start->name);
4922 else
4923 as_bad (_("`%s' is not supported on `%s%s'"),
4924 current_templates->start->name,
4925 cpu_arch_name ? cpu_arch_name : default_arch,
4926 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4927
4928 return NULL;
4929 }
4930
4931 static char *
4932 parse_operands (char *l, const char *mnemonic)
4933 {
4934 char *token_start;
4935
4936 /* 1 if operand is pending after ','. */
4937 unsigned int expecting_operand = 0;
4938
4939 /* Non-zero if operand parens not balanced. */
4940 unsigned int paren_not_balanced;
4941
4942 while (*l != END_OF_INSN)
4943 {
4944 /* Skip optional white space before operand. */
4945 if (is_space_char (*l))
4946 ++l;
4947 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4948 {
4949 as_bad (_("invalid character %s before operand %d"),
4950 output_invalid (*l),
4951 i.operands + 1);
4952 return NULL;
4953 }
4954 token_start = l; /* After white space. */
4955 paren_not_balanced = 0;
4956 while (paren_not_balanced || *l != ',')
4957 {
4958 if (*l == END_OF_INSN)
4959 {
4960 if (paren_not_balanced)
4961 {
4962 if (!intel_syntax)
4963 as_bad (_("unbalanced parenthesis in operand %d."),
4964 i.operands + 1);
4965 else
4966 as_bad (_("unbalanced brackets in operand %d."),
4967 i.operands + 1);
4968 return NULL;
4969 }
4970 else
4971 break; /* we are done */
4972 }
4973 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4974 {
4975 as_bad (_("invalid character %s in operand %d"),
4976 output_invalid (*l),
4977 i.operands + 1);
4978 return NULL;
4979 }
4980 if (!intel_syntax)
4981 {
4982 if (*l == '(')
4983 ++paren_not_balanced;
4984 if (*l == ')')
4985 --paren_not_balanced;
4986 }
4987 else
4988 {
4989 if (*l == '[')
4990 ++paren_not_balanced;
4991 if (*l == ']')
4992 --paren_not_balanced;
4993 }
4994 l++;
4995 }
4996 if (l != token_start)
4997 { /* Yes, we've read in another operand. */
4998 unsigned int operand_ok;
4999 this_operand = i.operands++;
5000 if (i.operands > MAX_OPERANDS)
5001 {
5002 as_bad (_("spurious operands; (%d operands/instruction max)"),
5003 MAX_OPERANDS);
5004 return NULL;
5005 }
5006 i.types[this_operand].bitfield.unspecified = 1;
5007 /* Now parse operand adding info to 'i' as we go along. */
5008 END_STRING_AND_SAVE (l);
5009
5010 if (i.mem_operands > 1)
5011 {
5012 as_bad (_("too many memory references for `%s'"),
5013 mnemonic);
5014 return 0;
5015 }
5016
5017 if (intel_syntax)
5018 operand_ok =
5019 i386_intel_operand (token_start,
5020 intel_float_operand (mnemonic));
5021 else
5022 operand_ok = i386_att_operand (token_start);
5023
5024 RESTORE_END_STRING (l);
5025 if (!operand_ok)
5026 return NULL;
5027 }
5028 else
5029 {
5030 if (expecting_operand)
5031 {
5032 expecting_operand_after_comma:
5033 as_bad (_("expecting operand after ','; got nothing"));
5034 return NULL;
5035 }
5036 if (*l == ',')
5037 {
5038 as_bad (_("expecting operand before ','; got nothing"));
5039 return NULL;
5040 }
5041 }
5042
5043 /* Now *l must be either ',' or END_OF_INSN. */
5044 if (*l == ',')
5045 {
5046 if (*++l == END_OF_INSN)
5047 {
5048 /* Just skip it, if it's \n complain. */
5049 goto expecting_operand_after_comma;
5050 }
5051 expecting_operand = 1;
5052 }
5053 }
5054 return l;
5055 }
5056
5057 static void
5058 swap_2_operands (int xchg1, int xchg2)
5059 {
5060 union i386_op temp_op;
5061 i386_operand_type temp_type;
5062 unsigned int temp_flags;
5063 enum bfd_reloc_code_real temp_reloc;
5064
5065 temp_type = i.types[xchg2];
5066 i.types[xchg2] = i.types[xchg1];
5067 i.types[xchg1] = temp_type;
5068
5069 temp_flags = i.flags[xchg2];
5070 i.flags[xchg2] = i.flags[xchg1];
5071 i.flags[xchg1] = temp_flags;
5072
5073 temp_op = i.op[xchg2];
5074 i.op[xchg2] = i.op[xchg1];
5075 i.op[xchg1] = temp_op;
5076
5077 temp_reloc = i.reloc[xchg2];
5078 i.reloc[xchg2] = i.reloc[xchg1];
5079 i.reloc[xchg1] = temp_reloc;
5080
5081 if (i.mask)
5082 {
5083 if (i.mask->operand == xchg1)
5084 i.mask->operand = xchg2;
5085 else if (i.mask->operand == xchg2)
5086 i.mask->operand = xchg1;
5087 }
5088 if (i.broadcast)
5089 {
5090 if (i.broadcast->operand == xchg1)
5091 i.broadcast->operand = xchg2;
5092 else if (i.broadcast->operand == xchg2)
5093 i.broadcast->operand = xchg1;
5094 }
5095 if (i.rounding)
5096 {
5097 if (i.rounding->operand == xchg1)
5098 i.rounding->operand = xchg2;
5099 else if (i.rounding->operand == xchg2)
5100 i.rounding->operand = xchg1;
5101 }
5102 }
5103
5104 static void
5105 swap_operands (void)
5106 {
5107 switch (i.operands)
5108 {
5109 case 5:
5110 case 4:
5111 swap_2_operands (1, i.operands - 2);
5112 /* Fall through. */
5113 case 3:
5114 case 2:
5115 swap_2_operands (0, i.operands - 1);
5116 break;
5117 default:
5118 abort ();
5119 }
5120
5121 if (i.mem_operands == 2)
5122 {
5123 const seg_entry *temp_seg;
5124 temp_seg = i.seg[0];
5125 i.seg[0] = i.seg[1];
5126 i.seg[1] = temp_seg;
5127 }
5128 }
5129
5130 /* Try to ensure constant immediates are represented in the smallest
5131 opcode possible. */
5132 static void
5133 optimize_imm (void)
5134 {
5135 char guess_suffix = 0;
5136 int op;
5137
5138 if (i.suffix)
5139 guess_suffix = i.suffix;
5140 else if (i.reg_operands)
5141 {
5142 /* Figure out a suffix from the last register operand specified.
5143 We can't do this properly yet, i.e. excluding special register
5144 instances, but the following works for instructions with
5145 immediates. In any case, we can't set i.suffix yet. */
5146 for (op = i.operands; --op >= 0;)
5147 if (i.types[op].bitfield.class != Reg)
5148 continue;
5149 else if (i.types[op].bitfield.byte)
5150 {
5151 guess_suffix = BYTE_MNEM_SUFFIX;
5152 break;
5153 }
5154 else if (i.types[op].bitfield.word)
5155 {
5156 guess_suffix = WORD_MNEM_SUFFIX;
5157 break;
5158 }
5159 else if (i.types[op].bitfield.dword)
5160 {
5161 guess_suffix = LONG_MNEM_SUFFIX;
5162 break;
5163 }
5164 else if (i.types[op].bitfield.qword)
5165 {
5166 guess_suffix = QWORD_MNEM_SUFFIX;
5167 break;
5168 }
5169 }
5170 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5171 guess_suffix = WORD_MNEM_SUFFIX;
5172
5173 for (op = i.operands; --op >= 0;)
5174 if (operand_type_check (i.types[op], imm))
5175 {
5176 switch (i.op[op].imms->X_op)
5177 {
5178 case O_constant:
5179 /* If a suffix is given, this operand may be shortened. */
5180 switch (guess_suffix)
5181 {
5182 case LONG_MNEM_SUFFIX:
5183 i.types[op].bitfield.imm32 = 1;
5184 i.types[op].bitfield.imm64 = 1;
5185 break;
5186 case WORD_MNEM_SUFFIX:
5187 i.types[op].bitfield.imm16 = 1;
5188 i.types[op].bitfield.imm32 = 1;
5189 i.types[op].bitfield.imm32s = 1;
5190 i.types[op].bitfield.imm64 = 1;
5191 break;
5192 case BYTE_MNEM_SUFFIX:
5193 i.types[op].bitfield.imm8 = 1;
5194 i.types[op].bitfield.imm8s = 1;
5195 i.types[op].bitfield.imm16 = 1;
5196 i.types[op].bitfield.imm32 = 1;
5197 i.types[op].bitfield.imm32s = 1;
5198 i.types[op].bitfield.imm64 = 1;
5199 break;
5200 }
5201
5202 /* If this operand is at most 16 bits, convert it
5203 to a signed 16 bit number before trying to see
5204 whether it will fit in an even smaller size.
5205 This allows a 16-bit operand such as $0xffe0 to
5206 be recognised as within Imm8S range. */
5207 if ((i.types[op].bitfield.imm16)
5208 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5209 {
5210 i.op[op].imms->X_add_number =
5211 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5212 }
5213 #ifdef BFD64
5214 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5215 if ((i.types[op].bitfield.imm32)
5216 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5217 == 0))
5218 {
5219 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5220 ^ ((offsetT) 1 << 31))
5221 - ((offsetT) 1 << 31));
5222 }
5223 #endif
5224 i.types[op]
5225 = operand_type_or (i.types[op],
5226 smallest_imm_type (i.op[op].imms->X_add_number));
5227
5228 /* We must avoid matching of Imm32 templates when 64bit
5229 only immediate is available. */
5230 if (guess_suffix == QWORD_MNEM_SUFFIX)
5231 i.types[op].bitfield.imm32 = 0;
5232 break;
5233
5234 case O_absent:
5235 case O_register:
5236 abort ();
5237
5238 /* Symbols and expressions. */
5239 default:
5240 /* Convert symbolic operand to proper sizes for matching, but don't
5241 prevent matching a set of insns that only supports sizes other
5242 than those matching the insn suffix. */
5243 {
5244 i386_operand_type mask, allowed;
5245 const insn_template *t;
5246
5247 operand_type_set (&mask, 0);
5248 operand_type_set (&allowed, 0);
5249
5250 for (t = current_templates->start;
5251 t < current_templates->end;
5252 ++t)
5253 {
5254 allowed = operand_type_or (allowed, t->operand_types[op]);
5255 allowed = operand_type_and (allowed, anyimm);
5256 }
5257 switch (guess_suffix)
5258 {
5259 case QWORD_MNEM_SUFFIX:
5260 mask.bitfield.imm64 = 1;
5261 mask.bitfield.imm32s = 1;
5262 break;
5263 case LONG_MNEM_SUFFIX:
5264 mask.bitfield.imm32 = 1;
5265 break;
5266 case WORD_MNEM_SUFFIX:
5267 mask.bitfield.imm16 = 1;
5268 break;
5269 case BYTE_MNEM_SUFFIX:
5270 mask.bitfield.imm8 = 1;
5271 break;
5272 default:
5273 break;
5274 }
5275 allowed = operand_type_and (mask, allowed);
5276 if (!operand_type_all_zero (&allowed))
5277 i.types[op] = operand_type_and (i.types[op], mask);
5278 }
5279 break;
5280 }
5281 }
5282 }
5283
5284 /* Try to use the smallest displacement type too. */
5285 static void
5286 optimize_disp (void)
5287 {
5288 int op;
5289
5290 for (op = i.operands; --op >= 0;)
5291 if (operand_type_check (i.types[op], disp))
5292 {
5293 if (i.op[op].disps->X_op == O_constant)
5294 {
5295 offsetT op_disp = i.op[op].disps->X_add_number;
5296
5297 if (i.types[op].bitfield.disp16
5298 && (op_disp & ~(offsetT) 0xffff) == 0)
5299 {
5300 /* If this operand is at most 16 bits, convert
5301 to a signed 16 bit number and don't use 64bit
5302 displacement. */
5303 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5304 i.types[op].bitfield.disp64 = 0;
5305 }
5306 #ifdef BFD64
5307 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5308 if (i.types[op].bitfield.disp32
5309 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5310 {
5311 /* If this operand is at most 32 bits, convert
5312 to a signed 32 bit number and don't use 64bit
5313 displacement. */
5314 op_disp &= (((offsetT) 2 << 31) - 1);
5315 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5316 i.types[op].bitfield.disp64 = 0;
5317 }
5318 #endif
5319 if (!op_disp && i.types[op].bitfield.baseindex)
5320 {
5321 i.types[op].bitfield.disp8 = 0;
5322 i.types[op].bitfield.disp16 = 0;
5323 i.types[op].bitfield.disp32 = 0;
5324 i.types[op].bitfield.disp32s = 0;
5325 i.types[op].bitfield.disp64 = 0;
5326 i.op[op].disps = 0;
5327 i.disp_operands--;
5328 }
5329 else if (flag_code == CODE_64BIT)
5330 {
5331 if (fits_in_signed_long (op_disp))
5332 {
5333 i.types[op].bitfield.disp64 = 0;
5334 i.types[op].bitfield.disp32s = 1;
5335 }
5336 if (i.prefix[ADDR_PREFIX]
5337 && fits_in_unsigned_long (op_disp))
5338 i.types[op].bitfield.disp32 = 1;
5339 }
5340 if ((i.types[op].bitfield.disp32
5341 || i.types[op].bitfield.disp32s
5342 || i.types[op].bitfield.disp16)
5343 && fits_in_disp8 (op_disp))
5344 i.types[op].bitfield.disp8 = 1;
5345 }
5346 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5347 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5348 {
5349 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5350 i.op[op].disps, 0, i.reloc[op]);
5351 i.types[op].bitfield.disp8 = 0;
5352 i.types[op].bitfield.disp16 = 0;
5353 i.types[op].bitfield.disp32 = 0;
5354 i.types[op].bitfield.disp32s = 0;
5355 i.types[op].bitfield.disp64 = 0;
5356 }
5357 else
5358 /* We only support 64bit displacement on constants. */
5359 i.types[op].bitfield.disp64 = 0;
5360 }
5361 }
5362
5363 /* Return 1 if there is a match in broadcast bytes between operand
5364 GIVEN and instruction template T. */
5365
5366 static INLINE int
5367 match_broadcast_size (const insn_template *t, unsigned int given)
5368 {
5369 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5370 && i.types[given].bitfield.byte)
5371 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5372 && i.types[given].bitfield.word)
5373 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5374 && i.types[given].bitfield.dword)
5375 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5376 && i.types[given].bitfield.qword));
5377 }
5378
5379 /* Check if operands are valid for the instruction. */
5380
5381 static int
5382 check_VecOperands (const insn_template *t)
5383 {
5384 unsigned int op;
5385 i386_cpu_flags cpu;
5386
5387 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5388 any one operand are implicity requiring AVX512VL support if the actual
5389 operand size is YMMword or XMMword. Since this function runs after
5390 template matching, there's no need to check for YMMword/XMMword in
5391 the template. */
5392 cpu = cpu_flags_and (t->cpu_flags, avx512);
5393 if (!cpu_flags_all_zero (&cpu)
5394 && !t->cpu_flags.bitfield.cpuavx512vl
5395 && !cpu_arch_flags.bitfield.cpuavx512vl)
5396 {
5397 for (op = 0; op < t->operands; ++op)
5398 {
5399 if (t->operand_types[op].bitfield.zmmword
5400 && (i.types[op].bitfield.ymmword
5401 || i.types[op].bitfield.xmmword))
5402 {
5403 i.error = unsupported;
5404 return 1;
5405 }
5406 }
5407 }
5408
5409 /* Without VSIB byte, we can't have a vector register for index. */
5410 if (!t->opcode_modifier.vecsib
5411 && i.index_reg
5412 && (i.index_reg->reg_type.bitfield.xmmword
5413 || i.index_reg->reg_type.bitfield.ymmword
5414 || i.index_reg->reg_type.bitfield.zmmword))
5415 {
5416 i.error = unsupported_vector_index_register;
5417 return 1;
5418 }
5419
5420 /* Check if default mask is allowed. */
5421 if (t->opcode_modifier.nodefmask
5422 && (!i.mask || i.mask->mask->reg_num == 0))
5423 {
5424 i.error = no_default_mask;
5425 return 1;
5426 }
5427
5428 /* For VSIB byte, we need a vector register for index, and all vector
5429 registers must be distinct. */
5430 if (t->opcode_modifier.vecsib)
5431 {
5432 if (!i.index_reg
5433 || !((t->opcode_modifier.vecsib == VecSIB128
5434 && i.index_reg->reg_type.bitfield.xmmword)
5435 || (t->opcode_modifier.vecsib == VecSIB256
5436 && i.index_reg->reg_type.bitfield.ymmword)
5437 || (t->opcode_modifier.vecsib == VecSIB512
5438 && i.index_reg->reg_type.bitfield.zmmword)))
5439 {
5440 i.error = invalid_vsib_address;
5441 return 1;
5442 }
5443
5444 gas_assert (i.reg_operands == 2 || i.mask);
5445 if (i.reg_operands == 2 && !i.mask)
5446 {
5447 gas_assert (i.types[0].bitfield.class == RegSIMD);
5448 gas_assert (i.types[0].bitfield.xmmword
5449 || i.types[0].bitfield.ymmword);
5450 gas_assert (i.types[2].bitfield.class == RegSIMD);
5451 gas_assert (i.types[2].bitfield.xmmword
5452 || i.types[2].bitfield.ymmword);
5453 if (operand_check == check_none)
5454 return 0;
5455 if (register_number (i.op[0].regs)
5456 != register_number (i.index_reg)
5457 && register_number (i.op[2].regs)
5458 != register_number (i.index_reg)
5459 && register_number (i.op[0].regs)
5460 != register_number (i.op[2].regs))
5461 return 0;
5462 if (operand_check == check_error)
5463 {
5464 i.error = invalid_vector_register_set;
5465 return 1;
5466 }
5467 as_warn (_("mask, index, and destination registers should be distinct"));
5468 }
5469 else if (i.reg_operands == 1 && i.mask)
5470 {
5471 if (i.types[1].bitfield.class == RegSIMD
5472 && (i.types[1].bitfield.xmmword
5473 || i.types[1].bitfield.ymmword
5474 || i.types[1].bitfield.zmmword)
5475 && (register_number (i.op[1].regs)
5476 == register_number (i.index_reg)))
5477 {
5478 if (operand_check == check_error)
5479 {
5480 i.error = invalid_vector_register_set;
5481 return 1;
5482 }
5483 if (operand_check != check_none)
5484 as_warn (_("index and destination registers should be distinct"));
5485 }
5486 }
5487 }
5488
5489 /* Check if broadcast is supported by the instruction and is applied
5490 to the memory operand. */
5491 if (i.broadcast)
5492 {
5493 i386_operand_type type, overlap;
5494
5495 /* Check if specified broadcast is supported in this instruction,
5496 and its broadcast bytes match the memory operand. */
5497 op = i.broadcast->operand;
5498 if (!t->opcode_modifier.broadcast
5499 || !(i.flags[op] & Operand_Mem)
5500 || (!i.types[op].bitfield.unspecified
5501 && !match_broadcast_size (t, op)))
5502 {
5503 bad_broadcast:
5504 i.error = unsupported_broadcast;
5505 return 1;
5506 }
5507
5508 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5509 * i.broadcast->type);
5510 operand_type_set (&type, 0);
5511 switch (i.broadcast->bytes)
5512 {
5513 case 2:
5514 type.bitfield.word = 1;
5515 break;
5516 case 4:
5517 type.bitfield.dword = 1;
5518 break;
5519 case 8:
5520 type.bitfield.qword = 1;
5521 break;
5522 case 16:
5523 type.bitfield.xmmword = 1;
5524 break;
5525 case 32:
5526 type.bitfield.ymmword = 1;
5527 break;
5528 case 64:
5529 type.bitfield.zmmword = 1;
5530 break;
5531 default:
5532 goto bad_broadcast;
5533 }
5534
5535 overlap = operand_type_and (type, t->operand_types[op]);
5536 if (operand_type_all_zero (&overlap))
5537 goto bad_broadcast;
5538
5539 if (t->opcode_modifier.checkregsize)
5540 {
5541 unsigned int j;
5542
5543 type.bitfield.baseindex = 1;
5544 for (j = 0; j < i.operands; ++j)
5545 {
5546 if (j != op
5547 && !operand_type_register_match(i.types[j],
5548 t->operand_types[j],
5549 type,
5550 t->operand_types[op]))
5551 goto bad_broadcast;
5552 }
5553 }
5554 }
5555 /* If broadcast is supported in this instruction, we need to check if
5556 operand of one-element size isn't specified without broadcast. */
5557 else if (t->opcode_modifier.broadcast && i.mem_operands)
5558 {
5559 /* Find memory operand. */
5560 for (op = 0; op < i.operands; op++)
5561 if (i.flags[op] & Operand_Mem)
5562 break;
5563 gas_assert (op < i.operands);
5564 /* Check size of the memory operand. */
5565 if (match_broadcast_size (t, op))
5566 {
5567 i.error = broadcast_needed;
5568 return 1;
5569 }
5570 }
5571 else
5572 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5573
5574 /* Check if requested masking is supported. */
5575 if (i.mask)
5576 {
5577 switch (t->opcode_modifier.masking)
5578 {
5579 case BOTH_MASKING:
5580 break;
5581 case MERGING_MASKING:
5582 if (i.mask->zeroing)
5583 {
5584 case 0:
5585 i.error = unsupported_masking;
5586 return 1;
5587 }
5588 break;
5589 case DYNAMIC_MASKING:
5590 /* Memory destinations allow only merging masking. */
5591 if (i.mask->zeroing && i.mem_operands)
5592 {
5593 /* Find memory operand. */
5594 for (op = 0; op < i.operands; op++)
5595 if (i.flags[op] & Operand_Mem)
5596 break;
5597 gas_assert (op < i.operands);
5598 if (op == i.operands - 1)
5599 {
5600 i.error = unsupported_masking;
5601 return 1;
5602 }
5603 }
5604 break;
5605 default:
5606 abort ();
5607 }
5608 }
5609
5610 /* Check if masking is applied to dest operand. */
5611 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5612 {
5613 i.error = mask_not_on_destination;
5614 return 1;
5615 }
5616
5617 /* Check RC/SAE. */
5618 if (i.rounding)
5619 {
5620 if (!t->opcode_modifier.sae
5621 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
5622 {
5623 i.error = unsupported_rc_sae;
5624 return 1;
5625 }
5626 /* If the instruction has several immediate operands and one of
5627 them is rounding, the rounding operand should be the last
5628 immediate operand. */
5629 if (i.imm_operands > 1
5630 && i.rounding->operand != (int) (i.imm_operands - 1))
5631 {
5632 i.error = rc_sae_operand_not_last_imm;
5633 return 1;
5634 }
5635 }
5636
5637 /* Check vector Disp8 operand. */
5638 if (t->opcode_modifier.disp8memshift
5639 && i.disp_encoding != disp_encoding_32bit)
5640 {
5641 if (i.broadcast)
5642 i.memshift = t->opcode_modifier.broadcast - 1;
5643 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5644 i.memshift = t->opcode_modifier.disp8memshift;
5645 else
5646 {
5647 const i386_operand_type *type = NULL;
5648
5649 i.memshift = 0;
5650 for (op = 0; op < i.operands; op++)
5651 if (i.flags[op] & Operand_Mem)
5652 {
5653 if (t->opcode_modifier.evex == EVEXLIG)
5654 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5655 else if (t->operand_types[op].bitfield.xmmword
5656 + t->operand_types[op].bitfield.ymmword
5657 + t->operand_types[op].bitfield.zmmword <= 1)
5658 type = &t->operand_types[op];
5659 else if (!i.types[op].bitfield.unspecified)
5660 type = &i.types[op];
5661 }
5662 else if (i.types[op].bitfield.class == RegSIMD
5663 && t->opcode_modifier.evex != EVEXLIG)
5664 {
5665 if (i.types[op].bitfield.zmmword)
5666 i.memshift = 6;
5667 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5668 i.memshift = 5;
5669 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5670 i.memshift = 4;
5671 }
5672
5673 if (type)
5674 {
5675 if (type->bitfield.zmmword)
5676 i.memshift = 6;
5677 else if (type->bitfield.ymmword)
5678 i.memshift = 5;
5679 else if (type->bitfield.xmmword)
5680 i.memshift = 4;
5681 }
5682
5683 /* For the check in fits_in_disp8(). */
5684 if (i.memshift == 0)
5685 i.memshift = -1;
5686 }
5687
5688 for (op = 0; op < i.operands; op++)
5689 if (operand_type_check (i.types[op], disp)
5690 && i.op[op].disps->X_op == O_constant)
5691 {
5692 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5693 {
5694 i.types[op].bitfield.disp8 = 1;
5695 return 0;
5696 }
5697 i.types[op].bitfield.disp8 = 0;
5698 }
5699 }
5700
5701 i.memshift = 0;
5702
5703 return 0;
5704 }
5705
5706 /* Check if operands are valid for the instruction. Update VEX
5707 operand types. */
5708
5709 static int
5710 VEX_check_operands (const insn_template *t)
5711 {
5712 if (i.vec_encoding == vex_encoding_evex)
5713 {
5714 /* This instruction must be encoded with EVEX prefix. */
5715 if (!is_evex_encoding (t))
5716 {
5717 i.error = unsupported;
5718 return 1;
5719 }
5720 return 0;
5721 }
5722
5723 if (!t->opcode_modifier.vex)
5724 {
5725 /* This instruction template doesn't have VEX prefix. */
5726 if (i.vec_encoding != vex_encoding_default)
5727 {
5728 i.error = unsupported;
5729 return 1;
5730 }
5731 return 0;
5732 }
5733
5734 /* Check the special Imm4 cases; must be the first operand. */
5735 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
5736 {
5737 if (i.op[0].imms->X_op != O_constant
5738 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5739 {
5740 i.error = bad_imm4;
5741 return 1;
5742 }
5743
5744 /* Turn off Imm<N> so that update_imm won't complain. */
5745 operand_type_set (&i.types[0], 0);
5746 }
5747
5748 return 0;
5749 }
5750
5751 static const insn_template *
5752 match_template (char mnem_suffix)
5753 {
5754 /* Points to template once we've found it. */
5755 const insn_template *t;
5756 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5757 i386_operand_type overlap4;
5758 unsigned int found_reverse_match;
5759 i386_opcode_modifier suffix_check;
5760 i386_operand_type operand_types [MAX_OPERANDS];
5761 int addr_prefix_disp;
5762 unsigned int j, size_match, check_register;
5763 enum i386_error specific_error = 0;
5764
5765 #if MAX_OPERANDS != 5
5766 # error "MAX_OPERANDS must be 5."
5767 #endif
5768
5769 found_reverse_match = 0;
5770 addr_prefix_disp = -1;
5771
5772 /* Prepare for mnemonic suffix check. */
5773 memset (&suffix_check, 0, sizeof (suffix_check));
5774 switch (mnem_suffix)
5775 {
5776 case BYTE_MNEM_SUFFIX:
5777 suffix_check.no_bsuf = 1;
5778 break;
5779 case WORD_MNEM_SUFFIX:
5780 suffix_check.no_wsuf = 1;
5781 break;
5782 case SHORT_MNEM_SUFFIX:
5783 suffix_check.no_ssuf = 1;
5784 break;
5785 case LONG_MNEM_SUFFIX:
5786 suffix_check.no_lsuf = 1;
5787 break;
5788 case QWORD_MNEM_SUFFIX:
5789 suffix_check.no_qsuf = 1;
5790 break;
5791 default:
5792 /* NB: In Intel syntax, normally we can check for memory operand
5793 size when there is no mnemonic suffix. But jmp and call have
5794 2 different encodings with Dword memory operand size, one with
5795 No_ldSuf and the other without. i.suffix is set to
5796 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5797 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5798 suffix_check.no_ldsuf = 1;
5799 }
5800
5801 /* Must have right number of operands. */
5802 i.error = number_of_operands_mismatch;
5803
5804 for (t = current_templates->start; t < current_templates->end; t++)
5805 {
5806 addr_prefix_disp = -1;
5807 found_reverse_match = 0;
5808
5809 if (i.operands != t->operands)
5810 continue;
5811
5812 /* Check processor support. */
5813 i.error = unsupported;
5814 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
5815 continue;
5816
5817 /* Check AT&T mnemonic. */
5818 i.error = unsupported_with_intel_mnemonic;
5819 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5820 continue;
5821
5822 /* Check AT&T/Intel syntax. */
5823 i.error = unsupported_syntax;
5824 if ((intel_syntax && t->opcode_modifier.attsyntax)
5825 || (!intel_syntax && t->opcode_modifier.intelsyntax))
5826 continue;
5827
5828 /* Check Intel64/AMD64 ISA. */
5829 switch (isa64)
5830 {
5831 default:
5832 /* Default: Don't accept Intel64. */
5833 if (t->opcode_modifier.isa64 == INTEL64)
5834 continue;
5835 break;
5836 case amd64:
5837 /* -mamd64: Don't accept Intel64 and Intel64 only. */
5838 if (t->opcode_modifier.isa64 >= INTEL64)
5839 continue;
5840 break;
5841 case intel64:
5842 /* -mintel64: Don't accept AMD64. */
5843 if (t->opcode_modifier.isa64 == AMD64 && flag_code == CODE_64BIT)
5844 continue;
5845 break;
5846 }
5847
5848 /* Check the suffix. */
5849 i.error = invalid_instruction_suffix;
5850 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5851 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5852 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5853 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5854 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5855 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
5856 continue;
5857
5858 size_match = operand_size_match (t);
5859 if (!size_match)
5860 continue;
5861
5862 /* This is intentionally not
5863
5864 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
5865
5866 as the case of a missing * on the operand is accepted (perhaps with
5867 a warning, issued further down). */
5868 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5869 {
5870 i.error = operand_type_mismatch;
5871 continue;
5872 }
5873
5874 for (j = 0; j < MAX_OPERANDS; j++)
5875 operand_types[j] = t->operand_types[j];
5876
5877 /* In general, don't allow
5878 - 64-bit operands outside of 64-bit mode,
5879 - 32-bit operands on pre-386. */
5880 j = i.imm_operands + (t->operands > i.imm_operands + 1);
5881 if (((i.suffix == QWORD_MNEM_SUFFIX
5882 && flag_code != CODE_64BIT
5883 && (t->base_opcode != 0x0fc7
5884 || t->extension_opcode != 1 /* cmpxchg8b */))
5885 || (i.suffix == LONG_MNEM_SUFFIX
5886 && !cpu_arch_flags.bitfield.cpui386))
5887 && (intel_syntax
5888 ? (t->opcode_modifier.mnemonicsize != IGNORESIZE
5889 && !intel_float_operand (t->name))
5890 : intel_float_operand (t->name) != 2)
5891 && (t->operands == i.imm_operands
5892 || (operand_types[i.imm_operands].bitfield.class != RegMMX
5893 && operand_types[i.imm_operands].bitfield.class != RegSIMD
5894 && operand_types[i.imm_operands].bitfield.class != RegMask)
5895 || (operand_types[j].bitfield.class != RegMMX
5896 && operand_types[j].bitfield.class != RegSIMD
5897 && operand_types[j].bitfield.class != RegMask))
5898 && !t->opcode_modifier.vecsib)
5899 continue;
5900
5901 /* Do not verify operands when there are none. */
5902 if (!t->operands)
5903 /* We've found a match; break out of loop. */
5904 break;
5905
5906 if (!t->opcode_modifier.jump
5907 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
5908 {
5909 /* There should be only one Disp operand. */
5910 for (j = 0; j < MAX_OPERANDS; j++)
5911 if (operand_type_check (operand_types[j], disp))
5912 break;
5913 if (j < MAX_OPERANDS)
5914 {
5915 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
5916
5917 addr_prefix_disp = j;
5918
5919 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
5920 operand into Disp32/Disp32/Disp16/Disp32 operand. */
5921 switch (flag_code)
5922 {
5923 case CODE_16BIT:
5924 override = !override;
5925 /* Fall through. */
5926 case CODE_32BIT:
5927 if (operand_types[j].bitfield.disp32
5928 && operand_types[j].bitfield.disp16)
5929 {
5930 operand_types[j].bitfield.disp16 = override;
5931 operand_types[j].bitfield.disp32 = !override;
5932 }
5933 operand_types[j].bitfield.disp32s = 0;
5934 operand_types[j].bitfield.disp64 = 0;
5935 break;
5936
5937 case CODE_64BIT:
5938 if (operand_types[j].bitfield.disp32s
5939 || operand_types[j].bitfield.disp64)
5940 {
5941 operand_types[j].bitfield.disp64 &= !override;
5942 operand_types[j].bitfield.disp32s &= !override;
5943 operand_types[j].bitfield.disp32 = override;
5944 }
5945 operand_types[j].bitfield.disp16 = 0;
5946 break;
5947 }
5948 }
5949 }
5950
5951 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5952 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5953 continue;
5954
5955 /* We check register size if needed. */
5956 if (t->opcode_modifier.checkregsize)
5957 {
5958 check_register = (1 << t->operands) - 1;
5959 if (i.broadcast)
5960 check_register &= ~(1 << i.broadcast->operand);
5961 }
5962 else
5963 check_register = 0;
5964
5965 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5966 switch (t->operands)
5967 {
5968 case 1:
5969 if (!operand_type_match (overlap0, i.types[0]))
5970 continue;
5971 break;
5972 case 2:
5973 /* xchg %eax, %eax is a special case. It is an alias for nop
5974 only in 32bit mode and we can use opcode 0x90. In 64bit
5975 mode, we can't use 0x90 for xchg %eax, %eax since it should
5976 zero-extend %eax to %rax. */
5977 if (flag_code == CODE_64BIT
5978 && t->base_opcode == 0x90
5979 && i.types[0].bitfield.instance == Accum
5980 && i.types[0].bitfield.dword
5981 && i.types[1].bitfield.instance == Accum
5982 && i.types[1].bitfield.dword)
5983 continue;
5984 /* xrelease mov %eax, <disp> is another special case. It must not
5985 match the accumulator-only encoding of mov. */
5986 if (flag_code != CODE_64BIT
5987 && i.hle_prefix
5988 && t->base_opcode == 0xa0
5989 && i.types[0].bitfield.instance == Accum
5990 && (i.flags[1] & Operand_Mem))
5991 continue;
5992 /* Fall through. */
5993
5994 case 3:
5995 if (!(size_match & MATCH_STRAIGHT))
5996 goto check_reverse;
5997 /* Reverse direction of operands if swapping is possible in the first
5998 place (operands need to be symmetric) and
5999 - the load form is requested, and the template is a store form,
6000 - the store form is requested, and the template is a load form,
6001 - the non-default (swapped) form is requested. */
6002 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
6003 if (t->opcode_modifier.d && i.reg_operands == i.operands
6004 && !operand_type_all_zero (&overlap1))
6005 switch (i.dir_encoding)
6006 {
6007 case dir_encoding_load:
6008 if (operand_type_check (operand_types[i.operands - 1], anymem)
6009 || t->opcode_modifier.regmem)
6010 goto check_reverse;
6011 break;
6012
6013 case dir_encoding_store:
6014 if (!operand_type_check (operand_types[i.operands - 1], anymem)
6015 && !t->opcode_modifier.regmem)
6016 goto check_reverse;
6017 break;
6018
6019 case dir_encoding_swap:
6020 goto check_reverse;
6021
6022 case dir_encoding_default:
6023 break;
6024 }
6025 /* If we want store form, we skip the current load. */
6026 if ((i.dir_encoding == dir_encoding_store
6027 || i.dir_encoding == dir_encoding_swap)
6028 && i.mem_operands == 0
6029 && t->opcode_modifier.load)
6030 continue;
6031 /* Fall through. */
6032 case 4:
6033 case 5:
6034 overlap1 = operand_type_and (i.types[1], operand_types[1]);
6035 if (!operand_type_match (overlap0, i.types[0])
6036 || !operand_type_match (overlap1, i.types[1])
6037 || ((check_register & 3) == 3
6038 && !operand_type_register_match (i.types[0],
6039 operand_types[0],
6040 i.types[1],
6041 operand_types[1])))
6042 {
6043 /* Check if other direction is valid ... */
6044 if (!t->opcode_modifier.d)
6045 continue;
6046
6047 check_reverse:
6048 if (!(size_match & MATCH_REVERSE))
6049 continue;
6050 /* Try reversing direction of operands. */
6051 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6052 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
6053 if (!operand_type_match (overlap0, i.types[0])
6054 || !operand_type_match (overlap1, i.types[i.operands - 1])
6055 || (check_register
6056 && !operand_type_register_match (i.types[0],
6057 operand_types[i.operands - 1],
6058 i.types[i.operands - 1],
6059 operand_types[0])))
6060 {
6061 /* Does not match either direction. */
6062 continue;
6063 }
6064 /* found_reverse_match holds which of D or FloatR
6065 we've found. */
6066 if (!t->opcode_modifier.d)
6067 found_reverse_match = 0;
6068 else if (operand_types[0].bitfield.tbyte)
6069 found_reverse_match = Opcode_FloatD;
6070 else if (operand_types[0].bitfield.xmmword
6071 || operand_types[i.operands - 1].bitfield.xmmword
6072 || operand_types[0].bitfield.class == RegMMX
6073 || operand_types[i.operands - 1].bitfield.class == RegMMX
6074 || is_any_vex_encoding(t))
6075 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6076 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
6077 else
6078 found_reverse_match = Opcode_D;
6079 if (t->opcode_modifier.floatr)
6080 found_reverse_match |= Opcode_FloatR;
6081 }
6082 else
6083 {
6084 /* Found a forward 2 operand match here. */
6085 switch (t->operands)
6086 {
6087 case 5:
6088 overlap4 = operand_type_and (i.types[4],
6089 operand_types[4]);
6090 /* Fall through. */
6091 case 4:
6092 overlap3 = operand_type_and (i.types[3],
6093 operand_types[3]);
6094 /* Fall through. */
6095 case 3:
6096 overlap2 = operand_type_and (i.types[2],
6097 operand_types[2]);
6098 break;
6099 }
6100
6101 switch (t->operands)
6102 {
6103 case 5:
6104 if (!operand_type_match (overlap4, i.types[4])
6105 || !operand_type_register_match (i.types[3],
6106 operand_types[3],
6107 i.types[4],
6108 operand_types[4]))
6109 continue;
6110 /* Fall through. */
6111 case 4:
6112 if (!operand_type_match (overlap3, i.types[3])
6113 || ((check_register & 0xa) == 0xa
6114 && !operand_type_register_match (i.types[1],
6115 operand_types[1],
6116 i.types[3],
6117 operand_types[3]))
6118 || ((check_register & 0xc) == 0xc
6119 && !operand_type_register_match (i.types[2],
6120 operand_types[2],
6121 i.types[3],
6122 operand_types[3])))
6123 continue;
6124 /* Fall through. */
6125 case 3:
6126 /* Here we make use of the fact that there are no
6127 reverse match 3 operand instructions. */
6128 if (!operand_type_match (overlap2, i.types[2])
6129 || ((check_register & 5) == 5
6130 && !operand_type_register_match (i.types[0],
6131 operand_types[0],
6132 i.types[2],
6133 operand_types[2]))
6134 || ((check_register & 6) == 6
6135 && !operand_type_register_match (i.types[1],
6136 operand_types[1],
6137 i.types[2],
6138 operand_types[2])))
6139 continue;
6140 break;
6141 }
6142 }
6143 /* Found either forward/reverse 2, 3 or 4 operand match here:
6144 slip through to break. */
6145 }
6146
6147 /* Check if vector and VEX operands are valid. */
6148 if (check_VecOperands (t) || VEX_check_operands (t))
6149 {
6150 specific_error = i.error;
6151 continue;
6152 }
6153
6154 /* We've found a match; break out of loop. */
6155 break;
6156 }
6157
6158 if (t == current_templates->end)
6159 {
6160 /* We found no match. */
6161 const char *err_msg;
6162 switch (specific_error ? specific_error : i.error)
6163 {
6164 default:
6165 abort ();
6166 case operand_size_mismatch:
6167 err_msg = _("operand size mismatch");
6168 break;
6169 case operand_type_mismatch:
6170 err_msg = _("operand type mismatch");
6171 break;
6172 case register_type_mismatch:
6173 err_msg = _("register type mismatch");
6174 break;
6175 case number_of_operands_mismatch:
6176 err_msg = _("number of operands mismatch");
6177 break;
6178 case invalid_instruction_suffix:
6179 err_msg = _("invalid instruction suffix");
6180 break;
6181 case bad_imm4:
6182 err_msg = _("constant doesn't fit in 4 bits");
6183 break;
6184 case unsupported_with_intel_mnemonic:
6185 err_msg = _("unsupported with Intel mnemonic");
6186 break;
6187 case unsupported_syntax:
6188 err_msg = _("unsupported syntax");
6189 break;
6190 case unsupported:
6191 as_bad (_("unsupported instruction `%s'"),
6192 current_templates->start->name);
6193 return NULL;
6194 case invalid_vsib_address:
6195 err_msg = _("invalid VSIB address");
6196 break;
6197 case invalid_vector_register_set:
6198 err_msg = _("mask, index, and destination registers must be distinct");
6199 break;
6200 case unsupported_vector_index_register:
6201 err_msg = _("unsupported vector index register");
6202 break;
6203 case unsupported_broadcast:
6204 err_msg = _("unsupported broadcast");
6205 break;
6206 case broadcast_needed:
6207 err_msg = _("broadcast is needed for operand of such type");
6208 break;
6209 case unsupported_masking:
6210 err_msg = _("unsupported masking");
6211 break;
6212 case mask_not_on_destination:
6213 err_msg = _("mask not on destination operand");
6214 break;
6215 case no_default_mask:
6216 err_msg = _("default mask isn't allowed");
6217 break;
6218 case unsupported_rc_sae:
6219 err_msg = _("unsupported static rounding/sae");
6220 break;
6221 case rc_sae_operand_not_last_imm:
6222 if (intel_syntax)
6223 err_msg = _("RC/SAE operand must precede immediate operands");
6224 else
6225 err_msg = _("RC/SAE operand must follow immediate operands");
6226 break;
6227 case invalid_register_operand:
6228 err_msg = _("invalid register operand");
6229 break;
6230 }
6231 as_bad (_("%s for `%s'"), err_msg,
6232 current_templates->start->name);
6233 return NULL;
6234 }
6235
6236 if (!quiet_warnings)
6237 {
6238 if (!intel_syntax
6239 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6240 as_warn (_("indirect %s without `*'"), t->name);
6241
6242 if (t->opcode_modifier.isprefix
6243 && t->opcode_modifier.mnemonicsize == IGNORESIZE)
6244 {
6245 /* Warn them that a data or address size prefix doesn't
6246 affect assembly of the next line of code. */
6247 as_warn (_("stand-alone `%s' prefix"), t->name);
6248 }
6249 }
6250
6251 /* Copy the template we found. */
6252 i.tm = *t;
6253
6254 if (addr_prefix_disp != -1)
6255 i.tm.operand_types[addr_prefix_disp]
6256 = operand_types[addr_prefix_disp];
6257
6258 if (found_reverse_match)
6259 {
6260 /* If we found a reverse match we must alter the opcode direction
6261 bit and clear/flip the regmem modifier one. found_reverse_match
6262 holds bits to change (different for int & float insns). */
6263
6264 i.tm.base_opcode ^= found_reverse_match;
6265
6266 i.tm.operand_types[0] = operand_types[i.operands - 1];
6267 i.tm.operand_types[i.operands - 1] = operand_types[0];
6268
6269 /* Certain SIMD insns have their load forms specified in the opcode
6270 table, and hence we need to _set_ RegMem instead of clearing it.
6271 We need to avoid setting the bit though on insns like KMOVW. */
6272 i.tm.opcode_modifier.regmem
6273 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6274 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6275 && !i.tm.opcode_modifier.regmem;
6276 }
6277
6278 return t;
6279 }
6280
6281 static int
6282 check_string (void)
6283 {
6284 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6285 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
6286
6287 if (i.seg[op] != NULL && i.seg[op] != &es)
6288 {
6289 as_bad (_("`%s' operand %u must use `%ses' segment"),
6290 i.tm.name,
6291 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6292 register_prefix);
6293 return 0;
6294 }
6295
6296 /* There's only ever one segment override allowed per instruction.
6297 This instruction possibly has a legal segment override on the
6298 second operand, so copy the segment to where non-string
6299 instructions store it, allowing common code. */
6300 i.seg[op] = i.seg[1];
6301
6302 return 1;
6303 }
6304
6305 static int
6306 process_suffix (void)
6307 {
6308 /* If matched instruction specifies an explicit instruction mnemonic
6309 suffix, use it. */
6310 if (i.tm.opcode_modifier.size == SIZE16)
6311 i.suffix = WORD_MNEM_SUFFIX;
6312 else if (i.tm.opcode_modifier.size == SIZE32)
6313 i.suffix = LONG_MNEM_SUFFIX;
6314 else if (i.tm.opcode_modifier.size == SIZE64)
6315 i.suffix = QWORD_MNEM_SUFFIX;
6316 else if (i.reg_operands
6317 && (i.operands > 1 || i.types[0].bitfield.class == Reg)
6318 && !i.tm.opcode_modifier.addrprefixopreg)
6319 {
6320 unsigned int numop = i.operands;
6321
6322 /* movsx/movzx want only their source operand considered here, for the
6323 ambiguity checking below. The suffix will be replaced afterwards
6324 to represent the destination (register). */
6325 if (((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w)
6326 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6327 --i.operands;
6328
6329 /* crc32 needs REX.W set regardless of suffix / source operand size. */
6330 if (i.tm.base_opcode == 0xf20f38f0
6331 && i.tm.operand_types[1].bitfield.qword)
6332 i.rex |= REX_W;
6333
6334 /* If there's no instruction mnemonic suffix we try to invent one
6335 based on GPR operands. */
6336 if (!i.suffix)
6337 {
6338 /* We take i.suffix from the last register operand specified,
6339 Destination register type is more significant than source
6340 register type. crc32 in SSE4.2 prefers source register
6341 type. */
6342 unsigned int op = i.tm.base_opcode != 0xf20f38f0 ? i.operands : 1;
6343
6344 while (op--)
6345 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6346 || i.tm.operand_types[op].bitfield.instance == Accum)
6347 {
6348 if (i.types[op].bitfield.class != Reg)
6349 continue;
6350 if (i.types[op].bitfield.byte)
6351 i.suffix = BYTE_MNEM_SUFFIX;
6352 else if (i.types[op].bitfield.word)
6353 i.suffix = WORD_MNEM_SUFFIX;
6354 else if (i.types[op].bitfield.dword)
6355 i.suffix = LONG_MNEM_SUFFIX;
6356 else if (i.types[op].bitfield.qword)
6357 i.suffix = QWORD_MNEM_SUFFIX;
6358 else
6359 continue;
6360 break;
6361 }
6362
6363 /* As an exception, movsx/movzx silently default to a byte source
6364 in AT&T mode. */
6365 if ((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w
6366 && !i.suffix && !intel_syntax)
6367 i.suffix = BYTE_MNEM_SUFFIX;
6368 }
6369 else if (i.suffix == BYTE_MNEM_SUFFIX)
6370 {
6371 if (intel_syntax
6372 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6373 && i.tm.opcode_modifier.no_bsuf)
6374 i.suffix = 0;
6375 else if (!check_byte_reg ())
6376 return 0;
6377 }
6378 else if (i.suffix == LONG_MNEM_SUFFIX)
6379 {
6380 if (intel_syntax
6381 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6382 && i.tm.opcode_modifier.no_lsuf
6383 && !i.tm.opcode_modifier.todword
6384 && !i.tm.opcode_modifier.toqword)
6385 i.suffix = 0;
6386 else if (!check_long_reg ())
6387 return 0;
6388 }
6389 else if (i.suffix == QWORD_MNEM_SUFFIX)
6390 {
6391 if (intel_syntax
6392 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6393 && i.tm.opcode_modifier.no_qsuf
6394 && !i.tm.opcode_modifier.todword
6395 && !i.tm.opcode_modifier.toqword)
6396 i.suffix = 0;
6397 else if (!check_qword_reg ())
6398 return 0;
6399 }
6400 else if (i.suffix == WORD_MNEM_SUFFIX)
6401 {
6402 if (intel_syntax
6403 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6404 && i.tm.opcode_modifier.no_wsuf)
6405 i.suffix = 0;
6406 else if (!check_word_reg ())
6407 return 0;
6408 }
6409 else if (intel_syntax
6410 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE)
6411 /* Do nothing if the instruction is going to ignore the prefix. */
6412 ;
6413 else
6414 abort ();
6415
6416 /* Undo the movsx/movzx change done above. */
6417 i.operands = numop;
6418 }
6419 else if (i.tm.opcode_modifier.mnemonicsize == DEFAULTSIZE
6420 && !i.suffix)
6421 {
6422 i.suffix = stackop_size;
6423 if (stackop_size == LONG_MNEM_SUFFIX)
6424 {
6425 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6426 .code16gcc directive to support 16-bit mode with
6427 32-bit address. For IRET without a suffix, generate
6428 16-bit IRET (opcode 0xcf) to return from an interrupt
6429 handler. */
6430 if (i.tm.base_opcode == 0xcf)
6431 {
6432 i.suffix = WORD_MNEM_SUFFIX;
6433 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6434 }
6435 /* Warn about changed behavior for segment register push/pop. */
6436 else if ((i.tm.base_opcode | 1) == 0x07)
6437 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6438 i.tm.name);
6439 }
6440 }
6441 else if (!i.suffix
6442 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6443 || i.tm.opcode_modifier.jump == JUMP_BYTE
6444 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
6445 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6446 && i.tm.extension_opcode <= 3)))
6447 {
6448 switch (flag_code)
6449 {
6450 case CODE_64BIT:
6451 if (!i.tm.opcode_modifier.no_qsuf)
6452 {
6453 i.suffix = QWORD_MNEM_SUFFIX;
6454 break;
6455 }
6456 /* Fall through. */
6457 case CODE_32BIT:
6458 if (!i.tm.opcode_modifier.no_lsuf)
6459 i.suffix = LONG_MNEM_SUFFIX;
6460 break;
6461 case CODE_16BIT:
6462 if (!i.tm.opcode_modifier.no_wsuf)
6463 i.suffix = WORD_MNEM_SUFFIX;
6464 break;
6465 }
6466 }
6467
6468 if (!i.suffix
6469 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
6470 /* Also cover lret/retf/iret in 64-bit mode. */
6471 || (flag_code == CODE_64BIT
6472 && !i.tm.opcode_modifier.no_lsuf
6473 && !i.tm.opcode_modifier.no_qsuf))
6474 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
6475 /* Accept FLDENV et al without suffix. */
6476 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
6477 {
6478 unsigned int suffixes, evex = 0;
6479
6480 suffixes = !i.tm.opcode_modifier.no_bsuf;
6481 if (!i.tm.opcode_modifier.no_wsuf)
6482 suffixes |= 1 << 1;
6483 if (!i.tm.opcode_modifier.no_lsuf)
6484 suffixes |= 1 << 2;
6485 if (!i.tm.opcode_modifier.no_ldsuf)
6486 suffixes |= 1 << 3;
6487 if (!i.tm.opcode_modifier.no_ssuf)
6488 suffixes |= 1 << 4;
6489 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6490 suffixes |= 1 << 5;
6491
6492 /* For [XYZ]MMWORD operands inspect operand sizes. While generally
6493 also suitable for AT&T syntax mode, it was requested that this be
6494 restricted to just Intel syntax. */
6495 if (intel_syntax && is_any_vex_encoding (&i.tm) && !i.broadcast)
6496 {
6497 unsigned int op;
6498
6499 for (op = 0; op < i.tm.operands; ++op)
6500 {
6501 if (is_evex_encoding (&i.tm)
6502 && !cpu_arch_flags.bitfield.cpuavx512vl)
6503 {
6504 if (i.tm.operand_types[op].bitfield.ymmword)
6505 i.tm.operand_types[op].bitfield.xmmword = 0;
6506 if (i.tm.operand_types[op].bitfield.zmmword)
6507 i.tm.operand_types[op].bitfield.ymmword = 0;
6508 if (!i.tm.opcode_modifier.evex
6509 || i.tm.opcode_modifier.evex == EVEXDYN)
6510 i.tm.opcode_modifier.evex = EVEX512;
6511 }
6512
6513 if (i.tm.operand_types[op].bitfield.xmmword
6514 + i.tm.operand_types[op].bitfield.ymmword
6515 + i.tm.operand_types[op].bitfield.zmmword < 2)
6516 continue;
6517
6518 /* Any properly sized operand disambiguates the insn. */
6519 if (i.types[op].bitfield.xmmword
6520 || i.types[op].bitfield.ymmword
6521 || i.types[op].bitfield.zmmword)
6522 {
6523 suffixes &= ~(7 << 6);
6524 evex = 0;
6525 break;
6526 }
6527
6528 if ((i.flags[op] & Operand_Mem)
6529 && i.tm.operand_types[op].bitfield.unspecified)
6530 {
6531 if (i.tm.operand_types[op].bitfield.xmmword)
6532 suffixes |= 1 << 6;
6533 if (i.tm.operand_types[op].bitfield.ymmword)
6534 suffixes |= 1 << 7;
6535 if (i.tm.operand_types[op].bitfield.zmmword)
6536 suffixes |= 1 << 8;
6537 if (is_evex_encoding (&i.tm))
6538 evex = EVEX512;
6539 }
6540 }
6541 }
6542
6543 /* Are multiple suffixes / operand sizes allowed? */
6544 if (suffixes & (suffixes - 1))
6545 {
6546 if (intel_syntax
6547 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
6548 || operand_check == check_error))
6549 {
6550 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6551 return 0;
6552 }
6553 if (operand_check == check_error)
6554 {
6555 as_bad (_("no instruction mnemonic suffix given and "
6556 "no register operands; can't size `%s'"), i.tm.name);
6557 return 0;
6558 }
6559 if (operand_check == check_warning)
6560 as_warn (_("%s; using default for `%s'"),
6561 intel_syntax
6562 ? _("ambiguous operand size")
6563 : _("no instruction mnemonic suffix given and "
6564 "no register operands"),
6565 i.tm.name);
6566
6567 if (i.tm.opcode_modifier.floatmf)
6568 i.suffix = SHORT_MNEM_SUFFIX;
6569 else if ((i.tm.base_opcode | 8) == 0xfbe
6570 || (i.tm.base_opcode == 0x63
6571 && i.tm.cpu_flags.bitfield.cpu64))
6572 /* handled below */;
6573 else if (evex)
6574 i.tm.opcode_modifier.evex = evex;
6575 else if (flag_code == CODE_16BIT)
6576 i.suffix = WORD_MNEM_SUFFIX;
6577 else if (!i.tm.opcode_modifier.no_lsuf)
6578 i.suffix = LONG_MNEM_SUFFIX;
6579 else
6580 i.suffix = QWORD_MNEM_SUFFIX;
6581 }
6582 }
6583
6584 if ((i.tm.base_opcode | 8) == 0xfbe
6585 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6586 {
6587 /* In Intel syntax, movsx/movzx must have a "suffix" (checked above).
6588 In AT&T syntax, if there is no suffix (warned about above), the default
6589 will be byte extension. */
6590 if (i.tm.opcode_modifier.w && i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
6591 i.tm.base_opcode |= 1;
6592
6593 /* For further processing, the suffix should represent the destination
6594 (register). This is already the case when one was used with
6595 mov[sz][bw]*, but we need to replace it for mov[sz]x, or if there was
6596 no suffix to begin with. */
6597 if (i.tm.opcode_modifier.w || i.tm.base_opcode == 0x63 || !i.suffix)
6598 {
6599 if (i.types[1].bitfield.word)
6600 i.suffix = WORD_MNEM_SUFFIX;
6601 else if (i.types[1].bitfield.qword)
6602 i.suffix = QWORD_MNEM_SUFFIX;
6603 else
6604 i.suffix = LONG_MNEM_SUFFIX;
6605
6606 i.tm.opcode_modifier.w = 0;
6607 }
6608 }
6609
6610 if (!i.tm.opcode_modifier.modrm && i.reg_operands && i.tm.operands < 3)
6611 i.short_form = (i.tm.operand_types[0].bitfield.class == Reg)
6612 != (i.tm.operand_types[1].bitfield.class == Reg);
6613
6614 /* Change the opcode based on the operand size given by i.suffix. */
6615 switch (i.suffix)
6616 {
6617 /* Size floating point instruction. */
6618 case LONG_MNEM_SUFFIX:
6619 if (i.tm.opcode_modifier.floatmf)
6620 {
6621 i.tm.base_opcode ^= 4;
6622 break;
6623 }
6624 /* fall through */
6625 case WORD_MNEM_SUFFIX:
6626 case QWORD_MNEM_SUFFIX:
6627 /* It's not a byte, select word/dword operation. */
6628 if (i.tm.opcode_modifier.w)
6629 {
6630 if (i.short_form)
6631 i.tm.base_opcode |= 8;
6632 else
6633 i.tm.base_opcode |= 1;
6634 }
6635 /* fall through */
6636 case SHORT_MNEM_SUFFIX:
6637 /* Now select between word & dword operations via the operand
6638 size prefix, except for instructions that will ignore this
6639 prefix anyway. */
6640 if (i.suffix != QWORD_MNEM_SUFFIX
6641 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
6642 && !i.tm.opcode_modifier.floatmf
6643 && !is_any_vex_encoding (&i.tm)
6644 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6645 || (flag_code == CODE_64BIT
6646 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
6647 {
6648 unsigned int prefix = DATA_PREFIX_OPCODE;
6649
6650 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
6651 prefix = ADDR_PREFIX_OPCODE;
6652
6653 if (!add_prefix (prefix))
6654 return 0;
6655 }
6656
6657 /* Set mode64 for an operand. */
6658 if (i.suffix == QWORD_MNEM_SUFFIX
6659 && flag_code == CODE_64BIT
6660 && !i.tm.opcode_modifier.norex64
6661 && !i.tm.opcode_modifier.vexw
6662 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6663 need rex64. */
6664 && ! (i.operands == 2
6665 && i.tm.base_opcode == 0x90
6666 && i.tm.extension_opcode == None
6667 && i.types[0].bitfield.instance == Accum
6668 && i.types[0].bitfield.qword
6669 && i.types[1].bitfield.instance == Accum
6670 && i.types[1].bitfield.qword))
6671 i.rex |= REX_W;
6672
6673 break;
6674 }
6675
6676 if (i.tm.opcode_modifier.addrprefixopreg)
6677 {
6678 gas_assert (!i.suffix);
6679 gas_assert (i.reg_operands);
6680
6681 if (i.tm.operand_types[0].bitfield.instance == Accum
6682 || i.operands == 1)
6683 {
6684 /* The address size override prefix changes the size of the
6685 first operand. */
6686 if (flag_code == CODE_64BIT
6687 && i.op[0].regs->reg_type.bitfield.word)
6688 {
6689 as_bad (_("16-bit addressing unavailable for `%s'"),
6690 i.tm.name);
6691 return 0;
6692 }
6693
6694 if ((flag_code == CODE_32BIT
6695 ? i.op[0].regs->reg_type.bitfield.word
6696 : i.op[0].regs->reg_type.bitfield.dword)
6697 && !add_prefix (ADDR_PREFIX_OPCODE))
6698 return 0;
6699 }
6700 else
6701 {
6702 /* Check invalid register operand when the address size override
6703 prefix changes the size of register operands. */
6704 unsigned int op;
6705 enum { need_word, need_dword, need_qword } need;
6706
6707 if (flag_code == CODE_32BIT)
6708 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6709 else if (i.prefix[ADDR_PREFIX])
6710 need = need_dword;
6711 else
6712 need = flag_code == CODE_64BIT ? need_qword : need_word;
6713
6714 for (op = 0; op < i.operands; op++)
6715 {
6716 if (i.types[op].bitfield.class != Reg)
6717 continue;
6718
6719 switch (need)
6720 {
6721 case need_word:
6722 if (i.op[op].regs->reg_type.bitfield.word)
6723 continue;
6724 break;
6725 case need_dword:
6726 if (i.op[op].regs->reg_type.bitfield.dword)
6727 continue;
6728 break;
6729 case need_qword:
6730 if (i.op[op].regs->reg_type.bitfield.qword)
6731 continue;
6732 break;
6733 }
6734
6735 as_bad (_("invalid register operand size for `%s'"),
6736 i.tm.name);
6737 return 0;
6738 }
6739 }
6740 }
6741
6742 return 1;
6743 }
6744
6745 static int
6746 check_byte_reg (void)
6747 {
6748 int op;
6749
6750 for (op = i.operands; --op >= 0;)
6751 {
6752 /* Skip non-register operands. */
6753 if (i.types[op].bitfield.class != Reg)
6754 continue;
6755
6756 /* If this is an eight bit register, it's OK. If it's the 16 or
6757 32 bit version of an eight bit register, we will just use the
6758 low portion, and that's OK too. */
6759 if (i.types[op].bitfield.byte)
6760 continue;
6761
6762 /* I/O port address operands are OK too. */
6763 if (i.tm.operand_types[op].bitfield.instance == RegD
6764 && i.tm.operand_types[op].bitfield.word)
6765 continue;
6766
6767 /* crc32 only wants its source operand checked here. */
6768 if (i.tm.base_opcode == 0xf20f38f0 && op)
6769 continue;
6770
6771 /* Any other register is bad. */
6772 if (i.types[op].bitfield.class == Reg
6773 || i.types[op].bitfield.class == RegMMX
6774 || i.types[op].bitfield.class == RegSIMD
6775 || i.types[op].bitfield.class == SReg
6776 || i.types[op].bitfield.class == RegCR
6777 || i.types[op].bitfield.class == RegDR
6778 || i.types[op].bitfield.class == RegTR)
6779 {
6780 as_bad (_("`%s%s' not allowed with `%s%c'"),
6781 register_prefix,
6782 i.op[op].regs->reg_name,
6783 i.tm.name,
6784 i.suffix);
6785 return 0;
6786 }
6787 }
6788 return 1;
6789 }
6790
6791 static int
6792 check_long_reg (void)
6793 {
6794 int op;
6795
6796 for (op = i.operands; --op >= 0;)
6797 /* Skip non-register operands. */
6798 if (i.types[op].bitfield.class != Reg)
6799 continue;
6800 /* Reject eight bit registers, except where the template requires
6801 them. (eg. movzb) */
6802 else if (i.types[op].bitfield.byte
6803 && (i.tm.operand_types[op].bitfield.class == Reg
6804 || i.tm.operand_types[op].bitfield.instance == Accum)
6805 && (i.tm.operand_types[op].bitfield.word
6806 || i.tm.operand_types[op].bitfield.dword))
6807 {
6808 as_bad (_("`%s%s' not allowed with `%s%c'"),
6809 register_prefix,
6810 i.op[op].regs->reg_name,
6811 i.tm.name,
6812 i.suffix);
6813 return 0;
6814 }
6815 /* Error if the e prefix on a general reg is missing. */
6816 else if (i.types[op].bitfield.word
6817 && (i.tm.operand_types[op].bitfield.class == Reg
6818 || i.tm.operand_types[op].bitfield.instance == Accum)
6819 && i.tm.operand_types[op].bitfield.dword)
6820 {
6821 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6822 register_prefix, i.op[op].regs->reg_name,
6823 i.suffix);
6824 return 0;
6825 }
6826 /* Warn if the r prefix on a general reg is present. */
6827 else if (i.types[op].bitfield.qword
6828 && (i.tm.operand_types[op].bitfield.class == Reg
6829 || i.tm.operand_types[op].bitfield.instance == Accum)
6830 && i.tm.operand_types[op].bitfield.dword)
6831 {
6832 if (intel_syntax
6833 && i.tm.opcode_modifier.toqword
6834 && i.types[0].bitfield.class != RegSIMD)
6835 {
6836 /* Convert to QWORD. We want REX byte. */
6837 i.suffix = QWORD_MNEM_SUFFIX;
6838 }
6839 else
6840 {
6841 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6842 register_prefix, i.op[op].regs->reg_name,
6843 i.suffix);
6844 return 0;
6845 }
6846 }
6847 return 1;
6848 }
6849
6850 static int
6851 check_qword_reg (void)
6852 {
6853 int op;
6854
6855 for (op = i.operands; --op >= 0; )
6856 /* Skip non-register operands. */
6857 if (i.types[op].bitfield.class != Reg)
6858 continue;
6859 /* Reject eight bit registers, except where the template requires
6860 them. (eg. movzb) */
6861 else if (i.types[op].bitfield.byte
6862 && (i.tm.operand_types[op].bitfield.class == Reg
6863 || i.tm.operand_types[op].bitfield.instance == Accum)
6864 && (i.tm.operand_types[op].bitfield.word
6865 || i.tm.operand_types[op].bitfield.dword))
6866 {
6867 as_bad (_("`%s%s' not allowed with `%s%c'"),
6868 register_prefix,
6869 i.op[op].regs->reg_name,
6870 i.tm.name,
6871 i.suffix);
6872 return 0;
6873 }
6874 /* Warn if the r prefix on a general reg is missing. */
6875 else if ((i.types[op].bitfield.word
6876 || i.types[op].bitfield.dword)
6877 && (i.tm.operand_types[op].bitfield.class == Reg
6878 || i.tm.operand_types[op].bitfield.instance == Accum)
6879 && i.tm.operand_types[op].bitfield.qword)
6880 {
6881 /* Prohibit these changes in the 64bit mode, since the
6882 lowering is more complicated. */
6883 if (intel_syntax
6884 && i.tm.opcode_modifier.todword
6885 && i.types[0].bitfield.class != RegSIMD)
6886 {
6887 /* Convert to DWORD. We don't want REX byte. */
6888 i.suffix = LONG_MNEM_SUFFIX;
6889 }
6890 else
6891 {
6892 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6893 register_prefix, i.op[op].regs->reg_name,
6894 i.suffix);
6895 return 0;
6896 }
6897 }
6898 return 1;
6899 }
6900
6901 static int
6902 check_word_reg (void)
6903 {
6904 int op;
6905 for (op = i.operands; --op >= 0;)
6906 /* Skip non-register operands. */
6907 if (i.types[op].bitfield.class != Reg)
6908 continue;
6909 /* Reject eight bit registers, except where the template requires
6910 them. (eg. movzb) */
6911 else if (i.types[op].bitfield.byte
6912 && (i.tm.operand_types[op].bitfield.class == Reg
6913 || i.tm.operand_types[op].bitfield.instance == Accum)
6914 && (i.tm.operand_types[op].bitfield.word
6915 || i.tm.operand_types[op].bitfield.dword))
6916 {
6917 as_bad (_("`%s%s' not allowed with `%s%c'"),
6918 register_prefix,
6919 i.op[op].regs->reg_name,
6920 i.tm.name,
6921 i.suffix);
6922 return 0;
6923 }
6924 /* Error if the e or r prefix on a general reg is present. */
6925 else if ((i.types[op].bitfield.dword
6926 || i.types[op].bitfield.qword)
6927 && (i.tm.operand_types[op].bitfield.class == Reg
6928 || i.tm.operand_types[op].bitfield.instance == Accum)
6929 && i.tm.operand_types[op].bitfield.word)
6930 {
6931 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6932 register_prefix, i.op[op].regs->reg_name,
6933 i.suffix);
6934 return 0;
6935 }
6936 return 1;
6937 }
6938
6939 static int
6940 update_imm (unsigned int j)
6941 {
6942 i386_operand_type overlap = i.types[j];
6943 if ((overlap.bitfield.imm8
6944 || overlap.bitfield.imm8s
6945 || overlap.bitfield.imm16
6946 || overlap.bitfield.imm32
6947 || overlap.bitfield.imm32s
6948 || overlap.bitfield.imm64)
6949 && !operand_type_equal (&overlap, &imm8)
6950 && !operand_type_equal (&overlap, &imm8s)
6951 && !operand_type_equal (&overlap, &imm16)
6952 && !operand_type_equal (&overlap, &imm32)
6953 && !operand_type_equal (&overlap, &imm32s)
6954 && !operand_type_equal (&overlap, &imm64))
6955 {
6956 if (i.suffix)
6957 {
6958 i386_operand_type temp;
6959
6960 operand_type_set (&temp, 0);
6961 if (i.suffix == BYTE_MNEM_SUFFIX)
6962 {
6963 temp.bitfield.imm8 = overlap.bitfield.imm8;
6964 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6965 }
6966 else if (i.suffix == WORD_MNEM_SUFFIX)
6967 temp.bitfield.imm16 = overlap.bitfield.imm16;
6968 else if (i.suffix == QWORD_MNEM_SUFFIX)
6969 {
6970 temp.bitfield.imm64 = overlap.bitfield.imm64;
6971 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6972 }
6973 else
6974 temp.bitfield.imm32 = overlap.bitfield.imm32;
6975 overlap = temp;
6976 }
6977 else if (operand_type_equal (&overlap, &imm16_32_32s)
6978 || operand_type_equal (&overlap, &imm16_32)
6979 || operand_type_equal (&overlap, &imm16_32s))
6980 {
6981 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6982 overlap = imm16;
6983 else
6984 overlap = imm32s;
6985 }
6986 if (!operand_type_equal (&overlap, &imm8)
6987 && !operand_type_equal (&overlap, &imm8s)
6988 && !operand_type_equal (&overlap, &imm16)
6989 && !operand_type_equal (&overlap, &imm32)
6990 && !operand_type_equal (&overlap, &imm32s)
6991 && !operand_type_equal (&overlap, &imm64))
6992 {
6993 as_bad (_("no instruction mnemonic suffix given; "
6994 "can't determine immediate size"));
6995 return 0;
6996 }
6997 }
6998 i.types[j] = overlap;
6999
7000 return 1;
7001 }
7002
7003 static int
7004 finalize_imm (void)
7005 {
7006 unsigned int j, n;
7007
7008 /* Update the first 2 immediate operands. */
7009 n = i.operands > 2 ? 2 : i.operands;
7010 if (n)
7011 {
7012 for (j = 0; j < n; j++)
7013 if (update_imm (j) == 0)
7014 return 0;
7015
7016 /* The 3rd operand can't be immediate operand. */
7017 gas_assert (operand_type_check (i.types[2], imm) == 0);
7018 }
7019
7020 return 1;
7021 }
7022
7023 static int
7024 process_operands (void)
7025 {
7026 /* Default segment register this instruction will use for memory
7027 accesses. 0 means unknown. This is only for optimizing out
7028 unnecessary segment overrides. */
7029 const seg_entry *default_seg = 0;
7030
7031 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
7032 {
7033 unsigned int dupl = i.operands;
7034 unsigned int dest = dupl - 1;
7035 unsigned int j;
7036
7037 /* The destination must be an xmm register. */
7038 gas_assert (i.reg_operands
7039 && MAX_OPERANDS > dupl
7040 && operand_type_equal (&i.types[dest], &regxmm));
7041
7042 if (i.tm.operand_types[0].bitfield.instance == Accum
7043 && i.tm.operand_types[0].bitfield.xmmword)
7044 {
7045 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
7046 {
7047 /* Keep xmm0 for instructions with VEX prefix and 3
7048 sources. */
7049 i.tm.operand_types[0].bitfield.instance = InstanceNone;
7050 i.tm.operand_types[0].bitfield.class = RegSIMD;
7051 goto duplicate;
7052 }
7053 else
7054 {
7055 /* We remove the first xmm0 and keep the number of
7056 operands unchanged, which in fact duplicates the
7057 destination. */
7058 for (j = 1; j < i.operands; j++)
7059 {
7060 i.op[j - 1] = i.op[j];
7061 i.types[j - 1] = i.types[j];
7062 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
7063 i.flags[j - 1] = i.flags[j];
7064 }
7065 }
7066 }
7067 else if (i.tm.opcode_modifier.implicit1stxmm0)
7068 {
7069 gas_assert ((MAX_OPERANDS - 1) > dupl
7070 && (i.tm.opcode_modifier.vexsources
7071 == VEX3SOURCES));
7072
7073 /* Add the implicit xmm0 for instructions with VEX prefix
7074 and 3 sources. */
7075 for (j = i.operands; j > 0; j--)
7076 {
7077 i.op[j] = i.op[j - 1];
7078 i.types[j] = i.types[j - 1];
7079 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
7080 i.flags[j] = i.flags[j - 1];
7081 }
7082 i.op[0].regs
7083 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7084 i.types[0] = regxmm;
7085 i.tm.operand_types[0] = regxmm;
7086
7087 i.operands += 2;
7088 i.reg_operands += 2;
7089 i.tm.operands += 2;
7090
7091 dupl++;
7092 dest++;
7093 i.op[dupl] = i.op[dest];
7094 i.types[dupl] = i.types[dest];
7095 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7096 i.flags[dupl] = i.flags[dest];
7097 }
7098 else
7099 {
7100 duplicate:
7101 i.operands++;
7102 i.reg_operands++;
7103 i.tm.operands++;
7104
7105 i.op[dupl] = i.op[dest];
7106 i.types[dupl] = i.types[dest];
7107 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7108 i.flags[dupl] = i.flags[dest];
7109 }
7110
7111 if (i.tm.opcode_modifier.immext)
7112 process_immext ();
7113 }
7114 else if (i.tm.operand_types[0].bitfield.instance == Accum
7115 && i.tm.operand_types[0].bitfield.xmmword)
7116 {
7117 unsigned int j;
7118
7119 for (j = 1; j < i.operands; j++)
7120 {
7121 i.op[j - 1] = i.op[j];
7122 i.types[j - 1] = i.types[j];
7123
7124 /* We need to adjust fields in i.tm since they are used by
7125 build_modrm_byte. */
7126 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
7127
7128 i.flags[j - 1] = i.flags[j];
7129 }
7130
7131 i.operands--;
7132 i.reg_operands--;
7133 i.tm.operands--;
7134 }
7135 else if (i.tm.opcode_modifier.implicitquadgroup)
7136 {
7137 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7138
7139 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
7140 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
7141 regnum = register_number (i.op[1].regs);
7142 first_reg_in_group = regnum & ~3;
7143 last_reg_in_group = first_reg_in_group + 3;
7144 if (regnum != first_reg_in_group)
7145 as_warn (_("source register `%s%s' implicitly denotes"
7146 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7147 register_prefix, i.op[1].regs->reg_name,
7148 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7149 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7150 i.tm.name);
7151 }
7152 else if (i.tm.opcode_modifier.regkludge)
7153 {
7154 /* The imul $imm, %reg instruction is converted into
7155 imul $imm, %reg, %reg, and the clr %reg instruction
7156 is converted into xor %reg, %reg. */
7157
7158 unsigned int first_reg_op;
7159
7160 if (operand_type_check (i.types[0], reg))
7161 first_reg_op = 0;
7162 else
7163 first_reg_op = 1;
7164 /* Pretend we saw the extra register operand. */
7165 gas_assert (i.reg_operands == 1
7166 && i.op[first_reg_op + 1].regs == 0);
7167 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7168 i.types[first_reg_op + 1] = i.types[first_reg_op];
7169 i.operands++;
7170 i.reg_operands++;
7171 }
7172
7173 if (i.tm.opcode_modifier.modrm)
7174 {
7175 /* The opcode is completed (modulo i.tm.extension_opcode which
7176 must be put into the modrm byte). Now, we make the modrm and
7177 index base bytes based on all the info we've collected. */
7178
7179 default_seg = build_modrm_byte ();
7180 }
7181 else if (i.types[0].bitfield.class == SReg)
7182 {
7183 if (flag_code != CODE_64BIT
7184 ? i.tm.base_opcode == POP_SEG_SHORT
7185 && i.op[0].regs->reg_num == 1
7186 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7187 && i.op[0].regs->reg_num < 4)
7188 {
7189 as_bad (_("you can't `%s %s%s'"),
7190 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7191 return 0;
7192 }
7193 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7194 {
7195 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7196 i.tm.opcode_length = 2;
7197 }
7198 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7199 }
7200 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7201 {
7202 default_seg = &ds;
7203 }
7204 else if (i.tm.opcode_modifier.isstring)
7205 {
7206 /* For the string instructions that allow a segment override
7207 on one of their operands, the default segment is ds. */
7208 default_seg = &ds;
7209 }
7210 else if (i.short_form)
7211 {
7212 /* The register or float register operand is in operand
7213 0 or 1. */
7214 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7215
7216 /* Register goes in low 3 bits of opcode. */
7217 i.tm.base_opcode |= i.op[op].regs->reg_num;
7218 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7219 i.rex |= REX_B;
7220 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7221 {
7222 /* Warn about some common errors, but press on regardless.
7223 The first case can be generated by gcc (<= 2.8.1). */
7224 if (i.operands == 2)
7225 {
7226 /* Reversed arguments on faddp, fsubp, etc. */
7227 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7228 register_prefix, i.op[!intel_syntax].regs->reg_name,
7229 register_prefix, i.op[intel_syntax].regs->reg_name);
7230 }
7231 else
7232 {
7233 /* Extraneous `l' suffix on fp insn. */
7234 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7235 register_prefix, i.op[0].regs->reg_name);
7236 }
7237 }
7238 }
7239
7240 if ((i.seg[0] || i.prefix[SEG_PREFIX])
7241 && i.tm.base_opcode == 0x8d /* lea */
7242 && !is_any_vex_encoding(&i.tm))
7243 {
7244 if (!quiet_warnings)
7245 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7246 if (optimize)
7247 {
7248 i.seg[0] = NULL;
7249 i.prefix[SEG_PREFIX] = 0;
7250 }
7251 }
7252
7253 /* If a segment was explicitly specified, and the specified segment
7254 is neither the default nor the one already recorded from a prefix,
7255 use an opcode prefix to select it. If we never figured out what
7256 the default segment is, then default_seg will be zero at this
7257 point, and the specified segment prefix will always be used. */
7258 if (i.seg[0]
7259 && i.seg[0] != default_seg
7260 && i.seg[0]->seg_prefix != i.prefix[SEG_PREFIX])
7261 {
7262 if (!add_prefix (i.seg[0]->seg_prefix))
7263 return 0;
7264 }
7265 return 1;
7266 }
7267
7268 static const seg_entry *
7269 build_modrm_byte (void)
7270 {
7271 const seg_entry *default_seg = 0;
7272 unsigned int source, dest;
7273 int vex_3_sources;
7274
7275 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7276 if (vex_3_sources)
7277 {
7278 unsigned int nds, reg_slot;
7279 expressionS *exp;
7280
7281 dest = i.operands - 1;
7282 nds = dest - 1;
7283
7284 /* There are 2 kinds of instructions:
7285 1. 5 operands: 4 register operands or 3 register operands
7286 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7287 VexW0 or VexW1. The destination must be either XMM, YMM or
7288 ZMM register.
7289 2. 4 operands: 4 register operands or 3 register operands
7290 plus 1 memory operand, with VexXDS. */
7291 gas_assert ((i.reg_operands == 4
7292 || (i.reg_operands == 3 && i.mem_operands == 1))
7293 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7294 && i.tm.opcode_modifier.vexw
7295 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
7296
7297 /* If VexW1 is set, the first non-immediate operand is the source and
7298 the second non-immediate one is encoded in the immediate operand. */
7299 if (i.tm.opcode_modifier.vexw == VEXW1)
7300 {
7301 source = i.imm_operands;
7302 reg_slot = i.imm_operands + 1;
7303 }
7304 else
7305 {
7306 source = i.imm_operands + 1;
7307 reg_slot = i.imm_operands;
7308 }
7309
7310 if (i.imm_operands == 0)
7311 {
7312 /* When there is no immediate operand, generate an 8bit
7313 immediate operand to encode the first operand. */
7314 exp = &im_expressions[i.imm_operands++];
7315 i.op[i.operands].imms = exp;
7316 i.types[i.operands] = imm8;
7317 i.operands++;
7318
7319 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7320 exp->X_op = O_constant;
7321 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7322 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7323 }
7324 else
7325 {
7326 gas_assert (i.imm_operands == 1);
7327 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7328 gas_assert (!i.tm.opcode_modifier.immext);
7329
7330 /* Turn on Imm8 again so that output_imm will generate it. */
7331 i.types[0].bitfield.imm8 = 1;
7332
7333 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7334 i.op[0].imms->X_add_number
7335 |= register_number (i.op[reg_slot].regs) << 4;
7336 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7337 }
7338
7339 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
7340 i.vex.register_specifier = i.op[nds].regs;
7341 }
7342 else
7343 source = dest = 0;
7344
7345 /* i.reg_operands MUST be the number of real register operands;
7346 implicit registers do not count. If there are 3 register
7347 operands, it must be a instruction with VexNDS. For a
7348 instruction with VexNDD, the destination register is encoded
7349 in VEX prefix. If there are 4 register operands, it must be
7350 a instruction with VEX prefix and 3 sources. */
7351 if (i.mem_operands == 0
7352 && ((i.reg_operands == 2
7353 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7354 || (i.reg_operands == 3
7355 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7356 || (i.reg_operands == 4 && vex_3_sources)))
7357 {
7358 switch (i.operands)
7359 {
7360 case 2:
7361 source = 0;
7362 break;
7363 case 3:
7364 /* When there are 3 operands, one of them may be immediate,
7365 which may be the first or the last operand. Otherwise,
7366 the first operand must be shift count register (cl) or it
7367 is an instruction with VexNDS. */
7368 gas_assert (i.imm_operands == 1
7369 || (i.imm_operands == 0
7370 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7371 || (i.types[0].bitfield.instance == RegC
7372 && i.types[0].bitfield.byte))));
7373 if (operand_type_check (i.types[0], imm)
7374 || (i.types[0].bitfield.instance == RegC
7375 && i.types[0].bitfield.byte))
7376 source = 1;
7377 else
7378 source = 0;
7379 break;
7380 case 4:
7381 /* When there are 4 operands, the first two must be 8bit
7382 immediate operands. The source operand will be the 3rd
7383 one.
7384
7385 For instructions with VexNDS, if the first operand
7386 an imm8, the source operand is the 2nd one. If the last
7387 operand is imm8, the source operand is the first one. */
7388 gas_assert ((i.imm_operands == 2
7389 && i.types[0].bitfield.imm8
7390 && i.types[1].bitfield.imm8)
7391 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7392 && i.imm_operands == 1
7393 && (i.types[0].bitfield.imm8
7394 || i.types[i.operands - 1].bitfield.imm8
7395 || i.rounding)));
7396 if (i.imm_operands == 2)
7397 source = 2;
7398 else
7399 {
7400 if (i.types[0].bitfield.imm8)
7401 source = 1;
7402 else
7403 source = 0;
7404 }
7405 break;
7406 case 5:
7407 if (is_evex_encoding (&i.tm))
7408 {
7409 /* For EVEX instructions, when there are 5 operands, the
7410 first one must be immediate operand. If the second one
7411 is immediate operand, the source operand is the 3th
7412 one. If the last one is immediate operand, the source
7413 operand is the 2nd one. */
7414 gas_assert (i.imm_operands == 2
7415 && i.tm.opcode_modifier.sae
7416 && operand_type_check (i.types[0], imm));
7417 if (operand_type_check (i.types[1], imm))
7418 source = 2;
7419 else if (operand_type_check (i.types[4], imm))
7420 source = 1;
7421 else
7422 abort ();
7423 }
7424 break;
7425 default:
7426 abort ();
7427 }
7428
7429 if (!vex_3_sources)
7430 {
7431 dest = source + 1;
7432
7433 /* RC/SAE operand could be between DEST and SRC. That happens
7434 when one operand is GPR and the other one is XMM/YMM/ZMM
7435 register. */
7436 if (i.rounding && i.rounding->operand == (int) dest)
7437 dest++;
7438
7439 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7440 {
7441 /* For instructions with VexNDS, the register-only source
7442 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7443 register. It is encoded in VEX prefix. */
7444
7445 i386_operand_type op;
7446 unsigned int vvvv;
7447
7448 /* Check register-only source operand when two source
7449 operands are swapped. */
7450 if (!i.tm.operand_types[source].bitfield.baseindex
7451 && i.tm.operand_types[dest].bitfield.baseindex)
7452 {
7453 vvvv = source;
7454 source = dest;
7455 }
7456 else
7457 vvvv = dest;
7458
7459 op = i.tm.operand_types[vvvv];
7460 if ((dest + 1) >= i.operands
7461 || ((op.bitfield.class != Reg
7462 || (!op.bitfield.dword && !op.bitfield.qword))
7463 && op.bitfield.class != RegSIMD
7464 && !operand_type_equal (&op, &regmask)))
7465 abort ();
7466 i.vex.register_specifier = i.op[vvvv].regs;
7467 dest++;
7468 }
7469 }
7470
7471 i.rm.mode = 3;
7472 /* One of the register operands will be encoded in the i.rm.reg
7473 field, the other in the combined i.rm.mode and i.rm.regmem
7474 fields. If no form of this instruction supports a memory
7475 destination operand, then we assume the source operand may
7476 sometimes be a memory operand and so we need to store the
7477 destination in the i.rm.reg field. */
7478 if (!i.tm.opcode_modifier.regmem
7479 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7480 {
7481 i.rm.reg = i.op[dest].regs->reg_num;
7482 i.rm.regmem = i.op[source].regs->reg_num;
7483 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7484 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
7485 i.has_regmmx = TRUE;
7486 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7487 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
7488 {
7489 if (i.types[dest].bitfield.zmmword
7490 || i.types[source].bitfield.zmmword)
7491 i.has_regzmm = TRUE;
7492 else if (i.types[dest].bitfield.ymmword
7493 || i.types[source].bitfield.ymmword)
7494 i.has_regymm = TRUE;
7495 else
7496 i.has_regxmm = TRUE;
7497 }
7498 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7499 i.rex |= REX_R;
7500 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7501 i.vrex |= REX_R;
7502 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7503 i.rex |= REX_B;
7504 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7505 i.vrex |= REX_B;
7506 }
7507 else
7508 {
7509 i.rm.reg = i.op[source].regs->reg_num;
7510 i.rm.regmem = i.op[dest].regs->reg_num;
7511 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7512 i.rex |= REX_B;
7513 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7514 i.vrex |= REX_B;
7515 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7516 i.rex |= REX_R;
7517 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7518 i.vrex |= REX_R;
7519 }
7520 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7521 {
7522 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
7523 abort ();
7524 i.rex &= ~REX_R;
7525 add_prefix (LOCK_PREFIX_OPCODE);
7526 }
7527 }
7528 else
7529 { /* If it's not 2 reg operands... */
7530 unsigned int mem;
7531
7532 if (i.mem_operands)
7533 {
7534 unsigned int fake_zero_displacement = 0;
7535 unsigned int op;
7536
7537 for (op = 0; op < i.operands; op++)
7538 if (i.flags[op] & Operand_Mem)
7539 break;
7540 gas_assert (op < i.operands);
7541
7542 if (i.tm.opcode_modifier.vecsib)
7543 {
7544 if (i.index_reg->reg_num == RegIZ)
7545 abort ();
7546
7547 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7548 if (!i.base_reg)
7549 {
7550 i.sib.base = NO_BASE_REGISTER;
7551 i.sib.scale = i.log2_scale_factor;
7552 i.types[op].bitfield.disp8 = 0;
7553 i.types[op].bitfield.disp16 = 0;
7554 i.types[op].bitfield.disp64 = 0;
7555 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7556 {
7557 /* Must be 32 bit */
7558 i.types[op].bitfield.disp32 = 1;
7559 i.types[op].bitfield.disp32s = 0;
7560 }
7561 else
7562 {
7563 i.types[op].bitfield.disp32 = 0;
7564 i.types[op].bitfield.disp32s = 1;
7565 }
7566 }
7567 i.sib.index = i.index_reg->reg_num;
7568 if ((i.index_reg->reg_flags & RegRex) != 0)
7569 i.rex |= REX_X;
7570 if ((i.index_reg->reg_flags & RegVRex) != 0)
7571 i.vrex |= REX_X;
7572 }
7573
7574 default_seg = &ds;
7575
7576 if (i.base_reg == 0)
7577 {
7578 i.rm.mode = 0;
7579 if (!i.disp_operands)
7580 fake_zero_displacement = 1;
7581 if (i.index_reg == 0)
7582 {
7583 i386_operand_type newdisp;
7584
7585 gas_assert (!i.tm.opcode_modifier.vecsib);
7586 /* Operand is just <disp> */
7587 if (flag_code == CODE_64BIT)
7588 {
7589 /* 64bit mode overwrites the 32bit absolute
7590 addressing by RIP relative addressing and
7591 absolute addressing is encoded by one of the
7592 redundant SIB forms. */
7593 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7594 i.sib.base = NO_BASE_REGISTER;
7595 i.sib.index = NO_INDEX_REGISTER;
7596 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7597 }
7598 else if ((flag_code == CODE_16BIT)
7599 ^ (i.prefix[ADDR_PREFIX] != 0))
7600 {
7601 i.rm.regmem = NO_BASE_REGISTER_16;
7602 newdisp = disp16;
7603 }
7604 else
7605 {
7606 i.rm.regmem = NO_BASE_REGISTER;
7607 newdisp = disp32;
7608 }
7609 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7610 i.types[op] = operand_type_or (i.types[op], newdisp);
7611 }
7612 else if (!i.tm.opcode_modifier.vecsib)
7613 {
7614 /* !i.base_reg && i.index_reg */
7615 if (i.index_reg->reg_num == RegIZ)
7616 i.sib.index = NO_INDEX_REGISTER;
7617 else
7618 i.sib.index = i.index_reg->reg_num;
7619 i.sib.base = NO_BASE_REGISTER;
7620 i.sib.scale = i.log2_scale_factor;
7621 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7622 i.types[op].bitfield.disp8 = 0;
7623 i.types[op].bitfield.disp16 = 0;
7624 i.types[op].bitfield.disp64 = 0;
7625 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7626 {
7627 /* Must be 32 bit */
7628 i.types[op].bitfield.disp32 = 1;
7629 i.types[op].bitfield.disp32s = 0;
7630 }
7631 else
7632 {
7633 i.types[op].bitfield.disp32 = 0;
7634 i.types[op].bitfield.disp32s = 1;
7635 }
7636 if ((i.index_reg->reg_flags & RegRex) != 0)
7637 i.rex |= REX_X;
7638 }
7639 }
7640 /* RIP addressing for 64bit mode. */
7641 else if (i.base_reg->reg_num == RegIP)
7642 {
7643 gas_assert (!i.tm.opcode_modifier.vecsib);
7644 i.rm.regmem = NO_BASE_REGISTER;
7645 i.types[op].bitfield.disp8 = 0;
7646 i.types[op].bitfield.disp16 = 0;
7647 i.types[op].bitfield.disp32 = 0;
7648 i.types[op].bitfield.disp32s = 1;
7649 i.types[op].bitfield.disp64 = 0;
7650 i.flags[op] |= Operand_PCrel;
7651 if (! i.disp_operands)
7652 fake_zero_displacement = 1;
7653 }
7654 else if (i.base_reg->reg_type.bitfield.word)
7655 {
7656 gas_assert (!i.tm.opcode_modifier.vecsib);
7657 switch (i.base_reg->reg_num)
7658 {
7659 case 3: /* (%bx) */
7660 if (i.index_reg == 0)
7661 i.rm.regmem = 7;
7662 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7663 i.rm.regmem = i.index_reg->reg_num - 6;
7664 break;
7665 case 5: /* (%bp) */
7666 default_seg = &ss;
7667 if (i.index_reg == 0)
7668 {
7669 i.rm.regmem = 6;
7670 if (operand_type_check (i.types[op], disp) == 0)
7671 {
7672 /* fake (%bp) into 0(%bp) */
7673 i.types[op].bitfield.disp8 = 1;
7674 fake_zero_displacement = 1;
7675 }
7676 }
7677 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7678 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7679 break;
7680 default: /* (%si) -> 4 or (%di) -> 5 */
7681 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7682 }
7683 i.rm.mode = mode_from_disp_size (i.types[op]);
7684 }
7685 else /* i.base_reg and 32/64 bit mode */
7686 {
7687 if (flag_code == CODE_64BIT
7688 && operand_type_check (i.types[op], disp))
7689 {
7690 i.types[op].bitfield.disp16 = 0;
7691 i.types[op].bitfield.disp64 = 0;
7692 if (i.prefix[ADDR_PREFIX] == 0)
7693 {
7694 i.types[op].bitfield.disp32 = 0;
7695 i.types[op].bitfield.disp32s = 1;
7696 }
7697 else
7698 {
7699 i.types[op].bitfield.disp32 = 1;
7700 i.types[op].bitfield.disp32s = 0;
7701 }
7702 }
7703
7704 if (!i.tm.opcode_modifier.vecsib)
7705 i.rm.regmem = i.base_reg->reg_num;
7706 if ((i.base_reg->reg_flags & RegRex) != 0)
7707 i.rex |= REX_B;
7708 i.sib.base = i.base_reg->reg_num;
7709 /* x86-64 ignores REX prefix bit here to avoid decoder
7710 complications. */
7711 if (!(i.base_reg->reg_flags & RegRex)
7712 && (i.base_reg->reg_num == EBP_REG_NUM
7713 || i.base_reg->reg_num == ESP_REG_NUM))
7714 default_seg = &ss;
7715 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7716 {
7717 fake_zero_displacement = 1;
7718 i.types[op].bitfield.disp8 = 1;
7719 }
7720 i.sib.scale = i.log2_scale_factor;
7721 if (i.index_reg == 0)
7722 {
7723 gas_assert (!i.tm.opcode_modifier.vecsib);
7724 /* <disp>(%esp) becomes two byte modrm with no index
7725 register. We've already stored the code for esp
7726 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7727 Any base register besides %esp will not use the
7728 extra modrm byte. */
7729 i.sib.index = NO_INDEX_REGISTER;
7730 }
7731 else if (!i.tm.opcode_modifier.vecsib)
7732 {
7733 if (i.index_reg->reg_num == RegIZ)
7734 i.sib.index = NO_INDEX_REGISTER;
7735 else
7736 i.sib.index = i.index_reg->reg_num;
7737 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7738 if ((i.index_reg->reg_flags & RegRex) != 0)
7739 i.rex |= REX_X;
7740 }
7741
7742 if (i.disp_operands
7743 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7744 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7745 i.rm.mode = 0;
7746 else
7747 {
7748 if (!fake_zero_displacement
7749 && !i.disp_operands
7750 && i.disp_encoding)
7751 {
7752 fake_zero_displacement = 1;
7753 if (i.disp_encoding == disp_encoding_8bit)
7754 i.types[op].bitfield.disp8 = 1;
7755 else
7756 i.types[op].bitfield.disp32 = 1;
7757 }
7758 i.rm.mode = mode_from_disp_size (i.types[op]);
7759 }
7760 }
7761
7762 if (fake_zero_displacement)
7763 {
7764 /* Fakes a zero displacement assuming that i.types[op]
7765 holds the correct displacement size. */
7766 expressionS *exp;
7767
7768 gas_assert (i.op[op].disps == 0);
7769 exp = &disp_expressions[i.disp_operands++];
7770 i.op[op].disps = exp;
7771 exp->X_op = O_constant;
7772 exp->X_add_number = 0;
7773 exp->X_add_symbol = (symbolS *) 0;
7774 exp->X_op_symbol = (symbolS *) 0;
7775 }
7776
7777 mem = op;
7778 }
7779 else
7780 mem = ~0;
7781
7782 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7783 {
7784 if (operand_type_check (i.types[0], imm))
7785 i.vex.register_specifier = NULL;
7786 else
7787 {
7788 /* VEX.vvvv encodes one of the sources when the first
7789 operand is not an immediate. */
7790 if (i.tm.opcode_modifier.vexw == VEXW0)
7791 i.vex.register_specifier = i.op[0].regs;
7792 else
7793 i.vex.register_specifier = i.op[1].regs;
7794 }
7795
7796 /* Destination is a XMM register encoded in the ModRM.reg
7797 and VEX.R bit. */
7798 i.rm.reg = i.op[2].regs->reg_num;
7799 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7800 i.rex |= REX_R;
7801
7802 /* ModRM.rm and VEX.B encodes the other source. */
7803 if (!i.mem_operands)
7804 {
7805 i.rm.mode = 3;
7806
7807 if (i.tm.opcode_modifier.vexw == VEXW0)
7808 i.rm.regmem = i.op[1].regs->reg_num;
7809 else
7810 i.rm.regmem = i.op[0].regs->reg_num;
7811
7812 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7813 i.rex |= REX_B;
7814 }
7815 }
7816 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7817 {
7818 i.vex.register_specifier = i.op[2].regs;
7819 if (!i.mem_operands)
7820 {
7821 i.rm.mode = 3;
7822 i.rm.regmem = i.op[1].regs->reg_num;
7823 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7824 i.rex |= REX_B;
7825 }
7826 }
7827 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7828 (if any) based on i.tm.extension_opcode. Again, we must be
7829 careful to make sure that segment/control/debug/test/MMX
7830 registers are coded into the i.rm.reg field. */
7831 else if (i.reg_operands)
7832 {
7833 unsigned int op;
7834 unsigned int vex_reg = ~0;
7835
7836 for (op = 0; op < i.operands; op++)
7837 {
7838 if (i.types[op].bitfield.class == Reg
7839 || i.types[op].bitfield.class == RegBND
7840 || i.types[op].bitfield.class == RegMask
7841 || i.types[op].bitfield.class == SReg
7842 || i.types[op].bitfield.class == RegCR
7843 || i.types[op].bitfield.class == RegDR
7844 || i.types[op].bitfield.class == RegTR)
7845 break;
7846 if (i.types[op].bitfield.class == RegSIMD)
7847 {
7848 if (i.types[op].bitfield.zmmword)
7849 i.has_regzmm = TRUE;
7850 else if (i.types[op].bitfield.ymmword)
7851 i.has_regymm = TRUE;
7852 else
7853 i.has_regxmm = TRUE;
7854 break;
7855 }
7856 if (i.types[op].bitfield.class == RegMMX)
7857 {
7858 i.has_regmmx = TRUE;
7859 break;
7860 }
7861 }
7862
7863 if (vex_3_sources)
7864 op = dest;
7865 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7866 {
7867 /* For instructions with VexNDS, the register-only
7868 source operand is encoded in VEX prefix. */
7869 gas_assert (mem != (unsigned int) ~0);
7870
7871 if (op > mem)
7872 {
7873 vex_reg = op++;
7874 gas_assert (op < i.operands);
7875 }
7876 else
7877 {
7878 /* Check register-only source operand when two source
7879 operands are swapped. */
7880 if (!i.tm.operand_types[op].bitfield.baseindex
7881 && i.tm.operand_types[op + 1].bitfield.baseindex)
7882 {
7883 vex_reg = op;
7884 op += 2;
7885 gas_assert (mem == (vex_reg + 1)
7886 && op < i.operands);
7887 }
7888 else
7889 {
7890 vex_reg = op + 1;
7891 gas_assert (vex_reg < i.operands);
7892 }
7893 }
7894 }
7895 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7896 {
7897 /* For instructions with VexNDD, the register destination
7898 is encoded in VEX prefix. */
7899 if (i.mem_operands == 0)
7900 {
7901 /* There is no memory operand. */
7902 gas_assert ((op + 2) == i.operands);
7903 vex_reg = op + 1;
7904 }
7905 else
7906 {
7907 /* There are only 2 non-immediate operands. */
7908 gas_assert (op < i.imm_operands + 2
7909 && i.operands == i.imm_operands + 2);
7910 vex_reg = i.imm_operands + 1;
7911 }
7912 }
7913 else
7914 gas_assert (op < i.operands);
7915
7916 if (vex_reg != (unsigned int) ~0)
7917 {
7918 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7919
7920 if ((type->bitfield.class != Reg
7921 || (!type->bitfield.dword && !type->bitfield.qword))
7922 && type->bitfield.class != RegSIMD
7923 && !operand_type_equal (type, &regmask))
7924 abort ();
7925
7926 i.vex.register_specifier = i.op[vex_reg].regs;
7927 }
7928
7929 /* Don't set OP operand twice. */
7930 if (vex_reg != op)
7931 {
7932 /* If there is an extension opcode to put here, the
7933 register number must be put into the regmem field. */
7934 if (i.tm.extension_opcode != None)
7935 {
7936 i.rm.regmem = i.op[op].regs->reg_num;
7937 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7938 i.rex |= REX_B;
7939 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7940 i.vrex |= REX_B;
7941 }
7942 else
7943 {
7944 i.rm.reg = i.op[op].regs->reg_num;
7945 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7946 i.rex |= REX_R;
7947 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7948 i.vrex |= REX_R;
7949 }
7950 }
7951
7952 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7953 must set it to 3 to indicate this is a register operand
7954 in the regmem field. */
7955 if (!i.mem_operands)
7956 i.rm.mode = 3;
7957 }
7958
7959 /* Fill in i.rm.reg field with extension opcode (if any). */
7960 if (i.tm.extension_opcode != None)
7961 i.rm.reg = i.tm.extension_opcode;
7962 }
7963 return default_seg;
7964 }
7965
7966 static unsigned int
7967 flip_code16 (unsigned int code16)
7968 {
7969 gas_assert (i.tm.operands == 1);
7970
7971 return !(i.prefix[REX_PREFIX] & REX_W)
7972 && (code16 ? i.tm.operand_types[0].bitfield.disp32
7973 || i.tm.operand_types[0].bitfield.disp32s
7974 : i.tm.operand_types[0].bitfield.disp16)
7975 ? CODE16 : 0;
7976 }
7977
7978 static void
7979 output_branch (void)
7980 {
7981 char *p;
7982 int size;
7983 int code16;
7984 int prefix;
7985 relax_substateT subtype;
7986 symbolS *sym;
7987 offsetT off;
7988
7989 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7990 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7991
7992 prefix = 0;
7993 if (i.prefix[DATA_PREFIX] != 0)
7994 {
7995 prefix = 1;
7996 i.prefixes -= 1;
7997 code16 ^= flip_code16(code16);
7998 }
7999 /* Pentium4 branch hints. */
8000 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8001 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8002 {
8003 prefix++;
8004 i.prefixes--;
8005 }
8006 if (i.prefix[REX_PREFIX] != 0)
8007 {
8008 prefix++;
8009 i.prefixes--;
8010 }
8011
8012 /* BND prefixed jump. */
8013 if (i.prefix[BND_PREFIX] != 0)
8014 {
8015 prefix++;
8016 i.prefixes--;
8017 }
8018
8019 if (i.prefixes != 0)
8020 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8021
8022 /* It's always a symbol; End frag & setup for relax.
8023 Make sure there is enough room in this frag for the largest
8024 instruction we may generate in md_convert_frag. This is 2
8025 bytes for the opcode and room for the prefix and largest
8026 displacement. */
8027 frag_grow (prefix + 2 + 4);
8028 /* Prefix and 1 opcode byte go in fr_fix. */
8029 p = frag_more (prefix + 1);
8030 if (i.prefix[DATA_PREFIX] != 0)
8031 *p++ = DATA_PREFIX_OPCODE;
8032 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
8033 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
8034 *p++ = i.prefix[SEG_PREFIX];
8035 if (i.prefix[BND_PREFIX] != 0)
8036 *p++ = BND_PREFIX_OPCODE;
8037 if (i.prefix[REX_PREFIX] != 0)
8038 *p++ = i.prefix[REX_PREFIX];
8039 *p = i.tm.base_opcode;
8040
8041 if ((unsigned char) *p == JUMP_PC_RELATIVE)
8042 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
8043 else if (cpu_arch_flags.bitfield.cpui386)
8044 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
8045 else
8046 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
8047 subtype |= code16;
8048
8049 sym = i.op[0].disps->X_add_symbol;
8050 off = i.op[0].disps->X_add_number;
8051
8052 if (i.op[0].disps->X_op != O_constant
8053 && i.op[0].disps->X_op != O_symbol)
8054 {
8055 /* Handle complex expressions. */
8056 sym = make_expr_symbol (i.op[0].disps);
8057 off = 0;
8058 }
8059
8060 /* 1 possible extra opcode + 4 byte displacement go in var part.
8061 Pass reloc in fr_var. */
8062 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
8063 }
8064
8065 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8066 /* Return TRUE iff PLT32 relocation should be used for branching to
8067 symbol S. */
8068
8069 static bfd_boolean
8070 need_plt32_p (symbolS *s)
8071 {
8072 /* PLT32 relocation is ELF only. */
8073 if (!IS_ELF)
8074 return FALSE;
8075
8076 #ifdef TE_SOLARIS
8077 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
8078 krtld support it. */
8079 return FALSE;
8080 #endif
8081
8082 /* Since there is no need to prepare for PLT branch on x86-64, we
8083 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
8084 be used as a marker for 32-bit PC-relative branches. */
8085 if (!object_64bit)
8086 return FALSE;
8087
8088 /* Weak or undefined symbol need PLT32 relocation. */
8089 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
8090 return TRUE;
8091
8092 /* Non-global symbol doesn't need PLT32 relocation. */
8093 if (! S_IS_EXTERNAL (s))
8094 return FALSE;
8095
8096 /* Other global symbols need PLT32 relocation. NB: Symbol with
8097 non-default visibilities are treated as normal global symbol
8098 so that PLT32 relocation can be used as a marker for 32-bit
8099 PC-relative branches. It is useful for linker relaxation. */
8100 return TRUE;
8101 }
8102 #endif
8103
8104 static void
8105 output_jump (void)
8106 {
8107 char *p;
8108 int size;
8109 fixS *fixP;
8110 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
8111
8112 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
8113 {
8114 /* This is a loop or jecxz type instruction. */
8115 size = 1;
8116 if (i.prefix[ADDR_PREFIX] != 0)
8117 {
8118 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
8119 i.prefixes -= 1;
8120 }
8121 /* Pentium4 branch hints. */
8122 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8123 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8124 {
8125 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
8126 i.prefixes--;
8127 }
8128 }
8129 else
8130 {
8131 int code16;
8132
8133 code16 = 0;
8134 if (flag_code == CODE_16BIT)
8135 code16 = CODE16;
8136
8137 if (i.prefix[DATA_PREFIX] != 0)
8138 {
8139 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8140 i.prefixes -= 1;
8141 code16 ^= flip_code16(code16);
8142 }
8143
8144 size = 4;
8145 if (code16)
8146 size = 2;
8147 }
8148
8149 /* BND prefixed jump. */
8150 if (i.prefix[BND_PREFIX] != 0)
8151 {
8152 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
8153 i.prefixes -= 1;
8154 }
8155
8156 if (i.prefix[REX_PREFIX] != 0)
8157 {
8158 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
8159 i.prefixes -= 1;
8160 }
8161
8162 if (i.prefixes != 0)
8163 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8164
8165 p = frag_more (i.tm.opcode_length + size);
8166 switch (i.tm.opcode_length)
8167 {
8168 case 2:
8169 *p++ = i.tm.base_opcode >> 8;
8170 /* Fall through. */
8171 case 1:
8172 *p++ = i.tm.base_opcode;
8173 break;
8174 default:
8175 abort ();
8176 }
8177
8178 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8179 if (size == 4
8180 && jump_reloc == NO_RELOC
8181 && need_plt32_p (i.op[0].disps->X_add_symbol))
8182 jump_reloc = BFD_RELOC_X86_64_PLT32;
8183 #endif
8184
8185 jump_reloc = reloc (size, 1, 1, jump_reloc);
8186
8187 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8188 i.op[0].disps, 1, jump_reloc);
8189
8190 /* All jumps handled here are signed, but don't use a signed limit
8191 check for 32 and 16 bit jumps as we want to allow wrap around at
8192 4G and 64k respectively. */
8193 if (size == 1)
8194 fixP->fx_signed = 1;
8195 }
8196
8197 static void
8198 output_interseg_jump (void)
8199 {
8200 char *p;
8201 int size;
8202 int prefix;
8203 int code16;
8204
8205 code16 = 0;
8206 if (flag_code == CODE_16BIT)
8207 code16 = CODE16;
8208
8209 prefix = 0;
8210 if (i.prefix[DATA_PREFIX] != 0)
8211 {
8212 prefix = 1;
8213 i.prefixes -= 1;
8214 code16 ^= CODE16;
8215 }
8216
8217 gas_assert (!i.prefix[REX_PREFIX]);
8218
8219 size = 4;
8220 if (code16)
8221 size = 2;
8222
8223 if (i.prefixes != 0)
8224 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8225
8226 /* 1 opcode; 2 segment; offset */
8227 p = frag_more (prefix + 1 + 2 + size);
8228
8229 if (i.prefix[DATA_PREFIX] != 0)
8230 *p++ = DATA_PREFIX_OPCODE;
8231
8232 if (i.prefix[REX_PREFIX] != 0)
8233 *p++ = i.prefix[REX_PREFIX];
8234
8235 *p++ = i.tm.base_opcode;
8236 if (i.op[1].imms->X_op == O_constant)
8237 {
8238 offsetT n = i.op[1].imms->X_add_number;
8239
8240 if (size == 2
8241 && !fits_in_unsigned_word (n)
8242 && !fits_in_signed_word (n))
8243 {
8244 as_bad (_("16-bit jump out of range"));
8245 return;
8246 }
8247 md_number_to_chars (p, n, size);
8248 }
8249 else
8250 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8251 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8252 if (i.op[0].imms->X_op != O_constant)
8253 as_bad (_("can't handle non absolute segment in `%s'"),
8254 i.tm.name);
8255 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8256 }
8257
8258 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8259 void
8260 x86_cleanup (void)
8261 {
8262 char *p;
8263 asection *seg = now_seg;
8264 subsegT subseg = now_subseg;
8265 asection *sec;
8266 unsigned int alignment, align_size_1;
8267 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8268 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8269 unsigned int padding;
8270
8271 if (!IS_ELF || !x86_used_note)
8272 return;
8273
8274 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8275
8276 /* The .note.gnu.property section layout:
8277
8278 Field Length Contents
8279 ---- ---- ----
8280 n_namsz 4 4
8281 n_descsz 4 The note descriptor size
8282 n_type 4 NT_GNU_PROPERTY_TYPE_0
8283 n_name 4 "GNU"
8284 n_desc n_descsz The program property array
8285 .... .... ....
8286 */
8287
8288 /* Create the .note.gnu.property section. */
8289 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8290 bfd_set_section_flags (sec,
8291 (SEC_ALLOC
8292 | SEC_LOAD
8293 | SEC_DATA
8294 | SEC_HAS_CONTENTS
8295 | SEC_READONLY));
8296
8297 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8298 {
8299 align_size_1 = 7;
8300 alignment = 3;
8301 }
8302 else
8303 {
8304 align_size_1 = 3;
8305 alignment = 2;
8306 }
8307
8308 bfd_set_section_alignment (sec, alignment);
8309 elf_section_type (sec) = SHT_NOTE;
8310
8311 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8312 + 4-byte data */
8313 isa_1_descsz_raw = 4 + 4 + 4;
8314 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8315 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8316
8317 feature_2_descsz_raw = isa_1_descsz;
8318 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8319 + 4-byte data */
8320 feature_2_descsz_raw += 4 + 4 + 4;
8321 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8322 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8323 & ~align_size_1);
8324
8325 descsz = feature_2_descsz;
8326 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8327 p = frag_more (4 + 4 + 4 + 4 + descsz);
8328
8329 /* Write n_namsz. */
8330 md_number_to_chars (p, (valueT) 4, 4);
8331
8332 /* Write n_descsz. */
8333 md_number_to_chars (p + 4, (valueT) descsz, 4);
8334
8335 /* Write n_type. */
8336 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8337
8338 /* Write n_name. */
8339 memcpy (p + 4 * 3, "GNU", 4);
8340
8341 /* Write 4-byte type. */
8342 md_number_to_chars (p + 4 * 4,
8343 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8344
8345 /* Write 4-byte data size. */
8346 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8347
8348 /* Write 4-byte data. */
8349 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8350
8351 /* Zero out paddings. */
8352 padding = isa_1_descsz - isa_1_descsz_raw;
8353 if (padding)
8354 memset (p + 4 * 7, 0, padding);
8355
8356 /* Write 4-byte type. */
8357 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8358 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8359
8360 /* Write 4-byte data size. */
8361 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8362
8363 /* Write 4-byte data. */
8364 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8365 (valueT) x86_feature_2_used, 4);
8366
8367 /* Zero out paddings. */
8368 padding = feature_2_descsz - feature_2_descsz_raw;
8369 if (padding)
8370 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8371
8372 /* We probably can't restore the current segment, for there likely
8373 isn't one yet... */
8374 if (seg && subseg)
8375 subseg_set (seg, subseg);
8376 }
8377 #endif
8378
8379 static unsigned int
8380 encoding_length (const fragS *start_frag, offsetT start_off,
8381 const char *frag_now_ptr)
8382 {
8383 unsigned int len = 0;
8384
8385 if (start_frag != frag_now)
8386 {
8387 const fragS *fr = start_frag;
8388
8389 do {
8390 len += fr->fr_fix;
8391 fr = fr->fr_next;
8392 } while (fr && fr != frag_now);
8393 }
8394
8395 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8396 }
8397
8398 /* Return 1 for test, and, cmp, add, sub, inc and dec which may
8399 be macro-fused with conditional jumps.
8400 NB: If TEST/AND/CMP/ADD/SUB/INC/DEC is of RIP relative address,
8401 or is one of the following format:
8402
8403 cmp m, imm
8404 add m, imm
8405 sub m, imm
8406 test m, imm
8407 and m, imm
8408 inc m
8409 dec m
8410
8411 it is unfusible. */
8412
8413 static int
8414 maybe_fused_with_jcc_p (enum mf_cmp_kind* mf_cmp_p)
8415 {
8416 /* No RIP address. */
8417 if (i.base_reg && i.base_reg->reg_num == RegIP)
8418 return 0;
8419
8420 /* No VEX/EVEX encoding. */
8421 if (is_any_vex_encoding (&i.tm))
8422 return 0;
8423
8424 /* add, sub without add/sub m, imm. */
8425 if (i.tm.base_opcode <= 5
8426 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8427 || ((i.tm.base_opcode | 3) == 0x83
8428 && (i.tm.extension_opcode == 0x5
8429 || i.tm.extension_opcode == 0x0)))
8430 {
8431 *mf_cmp_p = mf_cmp_alu_cmp;
8432 return !(i.mem_operands && i.imm_operands);
8433 }
8434
8435 /* and without and m, imm. */
8436 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8437 || ((i.tm.base_opcode | 3) == 0x83
8438 && i.tm.extension_opcode == 0x4))
8439 {
8440 *mf_cmp_p = mf_cmp_test_and;
8441 return !(i.mem_operands && i.imm_operands);
8442 }
8443
8444 /* test without test m imm. */
8445 if ((i.tm.base_opcode | 1) == 0x85
8446 || (i.tm.base_opcode | 1) == 0xa9
8447 || ((i.tm.base_opcode | 1) == 0xf7
8448 && i.tm.extension_opcode == 0))
8449 {
8450 *mf_cmp_p = mf_cmp_test_and;
8451 return !(i.mem_operands && i.imm_operands);
8452 }
8453
8454 /* cmp without cmp m, imm. */
8455 if ((i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
8456 || ((i.tm.base_opcode | 3) == 0x83
8457 && (i.tm.extension_opcode == 0x7)))
8458 {
8459 *mf_cmp_p = mf_cmp_alu_cmp;
8460 return !(i.mem_operands && i.imm_operands);
8461 }
8462
8463 /* inc, dec without inc/dec m. */
8464 if ((i.tm.cpu_flags.bitfield.cpuno64
8465 && (i.tm.base_opcode | 0xf) == 0x4f)
8466 || ((i.tm.base_opcode | 1) == 0xff
8467 && i.tm.extension_opcode <= 0x1))
8468 {
8469 *mf_cmp_p = mf_cmp_incdec;
8470 return !i.mem_operands;
8471 }
8472
8473 return 0;
8474 }
8475
8476 /* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8477
8478 static int
8479 add_fused_jcc_padding_frag_p (enum mf_cmp_kind* mf_cmp_p)
8480 {
8481 /* NB: Don't work with COND_JUMP86 without i386. */
8482 if (!align_branch_power
8483 || now_seg == absolute_section
8484 || !cpu_arch_flags.bitfield.cpui386
8485 || !(align_branch & align_branch_fused_bit))
8486 return 0;
8487
8488 if (maybe_fused_with_jcc_p (mf_cmp_p))
8489 {
8490 if (last_insn.kind == last_insn_other
8491 || last_insn.seg != now_seg)
8492 return 1;
8493 if (flag_debug)
8494 as_warn_where (last_insn.file, last_insn.line,
8495 _("`%s` skips -malign-branch-boundary on `%s`"),
8496 last_insn.name, i.tm.name);
8497 }
8498
8499 return 0;
8500 }
8501
8502 /* Return 1 if a BRANCH_PREFIX frag should be generated. */
8503
8504 static int
8505 add_branch_prefix_frag_p (void)
8506 {
8507 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8508 to PadLock instructions since they include prefixes in opcode. */
8509 if (!align_branch_power
8510 || !align_branch_prefix_size
8511 || now_seg == absolute_section
8512 || i.tm.cpu_flags.bitfield.cpupadlock
8513 || !cpu_arch_flags.bitfield.cpui386)
8514 return 0;
8515
8516 /* Don't add prefix if it is a prefix or there is no operand in case
8517 that segment prefix is special. */
8518 if (!i.operands || i.tm.opcode_modifier.isprefix)
8519 return 0;
8520
8521 if (last_insn.kind == last_insn_other
8522 || last_insn.seg != now_seg)
8523 return 1;
8524
8525 if (flag_debug)
8526 as_warn_where (last_insn.file, last_insn.line,
8527 _("`%s` skips -malign-branch-boundary on `%s`"),
8528 last_insn.name, i.tm.name);
8529
8530 return 0;
8531 }
8532
8533 /* Return 1 if a BRANCH_PADDING frag should be generated. */
8534
8535 static int
8536 add_branch_padding_frag_p (enum align_branch_kind *branch_p,
8537 enum mf_jcc_kind *mf_jcc_p)
8538 {
8539 int add_padding;
8540
8541 /* NB: Don't work with COND_JUMP86 without i386. */
8542 if (!align_branch_power
8543 || now_seg == absolute_section
8544 || !cpu_arch_flags.bitfield.cpui386)
8545 return 0;
8546
8547 add_padding = 0;
8548
8549 /* Check for jcc and direct jmp. */
8550 if (i.tm.opcode_modifier.jump == JUMP)
8551 {
8552 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8553 {
8554 *branch_p = align_branch_jmp;
8555 add_padding = align_branch & align_branch_jmp_bit;
8556 }
8557 else
8558 {
8559 /* Because J<cc> and JN<cc> share same group in macro-fusible table,
8560 igore the lowest bit. */
8561 *mf_jcc_p = (i.tm.base_opcode & 0x0e) >> 1;
8562 *branch_p = align_branch_jcc;
8563 if ((align_branch & align_branch_jcc_bit))
8564 add_padding = 1;
8565 }
8566 }
8567 else if (is_any_vex_encoding (&i.tm))
8568 return 0;
8569 else if ((i.tm.base_opcode | 1) == 0xc3)
8570 {
8571 /* Near ret. */
8572 *branch_p = align_branch_ret;
8573 if ((align_branch & align_branch_ret_bit))
8574 add_padding = 1;
8575 }
8576 else
8577 {
8578 /* Check for indirect jmp, direct and indirect calls. */
8579 if (i.tm.base_opcode == 0xe8)
8580 {
8581 /* Direct call. */
8582 *branch_p = align_branch_call;
8583 if ((align_branch & align_branch_call_bit))
8584 add_padding = 1;
8585 }
8586 else if (i.tm.base_opcode == 0xff
8587 && (i.tm.extension_opcode == 2
8588 || i.tm.extension_opcode == 4))
8589 {
8590 /* Indirect call and jmp. */
8591 *branch_p = align_branch_indirect;
8592 if ((align_branch & align_branch_indirect_bit))
8593 add_padding = 1;
8594 }
8595
8596 if (add_padding
8597 && i.disp_operands
8598 && tls_get_addr
8599 && (i.op[0].disps->X_op == O_symbol
8600 || (i.op[0].disps->X_op == O_subtract
8601 && i.op[0].disps->X_op_symbol == GOT_symbol)))
8602 {
8603 symbolS *s = i.op[0].disps->X_add_symbol;
8604 /* No padding to call to global or undefined tls_get_addr. */
8605 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
8606 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
8607 return 0;
8608 }
8609 }
8610
8611 if (add_padding
8612 && last_insn.kind != last_insn_other
8613 && last_insn.seg == now_seg)
8614 {
8615 if (flag_debug)
8616 as_warn_where (last_insn.file, last_insn.line,
8617 _("`%s` skips -malign-branch-boundary on `%s`"),
8618 last_insn.name, i.tm.name);
8619 return 0;
8620 }
8621
8622 return add_padding;
8623 }
8624
8625 static void
8626 output_insn (void)
8627 {
8628 fragS *insn_start_frag;
8629 offsetT insn_start_off;
8630 fragS *fragP = NULL;
8631 enum align_branch_kind branch = align_branch_none;
8632 /* The initializer is arbitrary just to avoid uninitialized error.
8633 it's actually either assigned in add_branch_padding_frag_p
8634 or never be used. */
8635 enum mf_jcc_kind mf_jcc = mf_jcc_jo;
8636
8637 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8638 if (IS_ELF && x86_used_note)
8639 {
8640 if (i.tm.cpu_flags.bitfield.cpucmov)
8641 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8642 if (i.tm.cpu_flags.bitfield.cpusse)
8643 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8644 if (i.tm.cpu_flags.bitfield.cpusse2)
8645 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8646 if (i.tm.cpu_flags.bitfield.cpusse3)
8647 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8648 if (i.tm.cpu_flags.bitfield.cpussse3)
8649 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8650 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8651 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8652 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8653 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8654 if (i.tm.cpu_flags.bitfield.cpuavx)
8655 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8656 if (i.tm.cpu_flags.bitfield.cpuavx2)
8657 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8658 if (i.tm.cpu_flags.bitfield.cpufma)
8659 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8660 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8661 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8662 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8663 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8664 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8665 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8666 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8667 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8668 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8669 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8670 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8671 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8672 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8673 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8674 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8675 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8676 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8677 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8678 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8679 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8680 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8681 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8682 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8683 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8684 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8685 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8686 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8687 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8688 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8689 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8690
8691 if (i.tm.cpu_flags.bitfield.cpu8087
8692 || i.tm.cpu_flags.bitfield.cpu287
8693 || i.tm.cpu_flags.bitfield.cpu387
8694 || i.tm.cpu_flags.bitfield.cpu687
8695 || i.tm.cpu_flags.bitfield.cpufisttp)
8696 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8697 if (i.has_regmmx
8698 || i.tm.base_opcode == 0xf77 /* emms */
8699 || i.tm.base_opcode == 0xf0e /* femms */
8700 || i.tm.base_opcode == 0xf2a /* cvtpi2ps */
8701 || i.tm.base_opcode == 0x660f2a /* cvtpi2pd */)
8702 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8703 if (i.has_regxmm)
8704 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8705 if (i.has_regymm)
8706 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8707 if (i.has_regzmm)
8708 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8709 if (i.tm.cpu_flags.bitfield.cpufxsr)
8710 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8711 if (i.tm.cpu_flags.bitfield.cpuxsave)
8712 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8713 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8714 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8715 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8716 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8717 }
8718 #endif
8719
8720 /* Tie dwarf2 debug info to the address at the start of the insn.
8721 We can't do this after the insn has been output as the current
8722 frag may have been closed off. eg. by frag_var. */
8723 dwarf2_emit_insn (0);
8724
8725 insn_start_frag = frag_now;
8726 insn_start_off = frag_now_fix ();
8727
8728 if (add_branch_padding_frag_p (&branch, &mf_jcc))
8729 {
8730 char *p;
8731 /* Branch can be 8 bytes. Leave some room for prefixes. */
8732 unsigned int max_branch_padding_size = 14;
8733
8734 /* Align section to boundary. */
8735 record_alignment (now_seg, align_branch_power);
8736
8737 /* Make room for padding. */
8738 frag_grow (max_branch_padding_size);
8739
8740 /* Start of the padding. */
8741 p = frag_more (0);
8742
8743 fragP = frag_now;
8744
8745 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
8746 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
8747 NULL, 0, p);
8748
8749 fragP->tc_frag_data.mf_type = mf_jcc;
8750 fragP->tc_frag_data.branch_type = branch;
8751 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
8752 }
8753
8754 /* Output jumps. */
8755 if (i.tm.opcode_modifier.jump == JUMP)
8756 output_branch ();
8757 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8758 || i.tm.opcode_modifier.jump == JUMP_DWORD)
8759 output_jump ();
8760 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
8761 output_interseg_jump ();
8762 else
8763 {
8764 /* Output normal instructions here. */
8765 char *p;
8766 unsigned char *q;
8767 unsigned int j;
8768 unsigned int prefix;
8769 enum mf_cmp_kind mf_cmp;
8770
8771 if (avoid_fence
8772 && (i.tm.base_opcode == 0xfaee8
8773 || i.tm.base_opcode == 0xfaef0
8774 || i.tm.base_opcode == 0xfaef8))
8775 {
8776 /* Encode lfence, mfence, and sfence as
8777 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8778 offsetT val = 0x240483f0ULL;
8779 p = frag_more (5);
8780 md_number_to_chars (p, val, 5);
8781 return;
8782 }
8783
8784 /* Some processors fail on LOCK prefix. This options makes
8785 assembler ignore LOCK prefix and serves as a workaround. */
8786 if (omit_lock_prefix)
8787 {
8788 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8789 return;
8790 i.prefix[LOCK_PREFIX] = 0;
8791 }
8792
8793 if (branch)
8794 /* Skip if this is a branch. */
8795 ;
8796 else if (add_fused_jcc_padding_frag_p (&mf_cmp))
8797 {
8798 /* Make room for padding. */
8799 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
8800 p = frag_more (0);
8801
8802 fragP = frag_now;
8803
8804 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
8805 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
8806 NULL, 0, p);
8807
8808 fragP->tc_frag_data.mf_type = mf_cmp;
8809 fragP->tc_frag_data.branch_type = align_branch_fused;
8810 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
8811 }
8812 else if (add_branch_prefix_frag_p ())
8813 {
8814 unsigned int max_prefix_size = align_branch_prefix_size;
8815
8816 /* Make room for padding. */
8817 frag_grow (max_prefix_size);
8818 p = frag_more (0);
8819
8820 fragP = frag_now;
8821
8822 frag_var (rs_machine_dependent, max_prefix_size, 0,
8823 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
8824 NULL, 0, p);
8825
8826 fragP->tc_frag_data.max_bytes = max_prefix_size;
8827 }
8828
8829 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8830 don't need the explicit prefix. */
8831 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8832 {
8833 switch (i.tm.opcode_length)
8834 {
8835 case 3:
8836 if (i.tm.base_opcode & 0xff000000)
8837 {
8838 prefix = (i.tm.base_opcode >> 24) & 0xff;
8839 if (!i.tm.cpu_flags.bitfield.cpupadlock
8840 || prefix != REPE_PREFIX_OPCODE
8841 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8842 add_prefix (prefix);
8843 }
8844 break;
8845 case 2:
8846 if ((i.tm.base_opcode & 0xff0000) != 0)
8847 {
8848 prefix = (i.tm.base_opcode >> 16) & 0xff;
8849 add_prefix (prefix);
8850 }
8851 break;
8852 case 1:
8853 break;
8854 case 0:
8855 /* Check for pseudo prefixes. */
8856 as_bad_where (insn_start_frag->fr_file,
8857 insn_start_frag->fr_line,
8858 _("pseudo prefix without instruction"));
8859 return;
8860 default:
8861 abort ();
8862 }
8863
8864 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8865 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8866 R_X86_64_GOTTPOFF relocation so that linker can safely
8867 perform IE->LE optimization. A dummy REX_OPCODE prefix
8868 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
8869 relocation for GDesc -> IE/LE optimization. */
8870 if (x86_elf_abi == X86_64_X32_ABI
8871 && i.operands == 2
8872 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8873 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
8874 && i.prefix[REX_PREFIX] == 0)
8875 add_prefix (REX_OPCODE);
8876 #endif
8877
8878 /* The prefix bytes. */
8879 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8880 if (*q)
8881 FRAG_APPEND_1_CHAR (*q);
8882 }
8883 else
8884 {
8885 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8886 if (*q)
8887 switch (j)
8888 {
8889 case REX_PREFIX:
8890 /* REX byte is encoded in VEX prefix. */
8891 break;
8892 case SEG_PREFIX:
8893 case ADDR_PREFIX:
8894 FRAG_APPEND_1_CHAR (*q);
8895 break;
8896 default:
8897 /* There should be no other prefixes for instructions
8898 with VEX prefix. */
8899 abort ();
8900 }
8901
8902 /* For EVEX instructions i.vrex should become 0 after
8903 build_evex_prefix. For VEX instructions upper 16 registers
8904 aren't available, so VREX should be 0. */
8905 if (i.vrex)
8906 abort ();
8907 /* Now the VEX prefix. */
8908 p = frag_more (i.vex.length);
8909 for (j = 0; j < i.vex.length; j++)
8910 p[j] = i.vex.bytes[j];
8911 }
8912
8913 /* Now the opcode; be careful about word order here! */
8914 if (i.tm.opcode_length == 1)
8915 {
8916 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8917 }
8918 else
8919 {
8920 switch (i.tm.opcode_length)
8921 {
8922 case 4:
8923 p = frag_more (4);
8924 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8925 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8926 break;
8927 case 3:
8928 p = frag_more (3);
8929 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8930 break;
8931 case 2:
8932 p = frag_more (2);
8933 break;
8934 default:
8935 abort ();
8936 break;
8937 }
8938
8939 /* Put out high byte first: can't use md_number_to_chars! */
8940 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8941 *p = i.tm.base_opcode & 0xff;
8942 }
8943
8944 /* Now the modrm byte and sib byte (if present). */
8945 if (i.tm.opcode_modifier.modrm)
8946 {
8947 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8948 | i.rm.reg << 3
8949 | i.rm.mode << 6));
8950 /* If i.rm.regmem == ESP (4)
8951 && i.rm.mode != (Register mode)
8952 && not 16 bit
8953 ==> need second modrm byte. */
8954 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8955 && i.rm.mode != 3
8956 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8957 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8958 | i.sib.index << 3
8959 | i.sib.scale << 6));
8960 }
8961
8962 if (i.disp_operands)
8963 output_disp (insn_start_frag, insn_start_off);
8964
8965 if (i.imm_operands)
8966 output_imm (insn_start_frag, insn_start_off);
8967
8968 /*
8969 * frag_now_fix () returning plain abs_section_offset when we're in the
8970 * absolute section, and abs_section_offset not getting updated as data
8971 * gets added to the frag breaks the logic below.
8972 */
8973 if (now_seg != absolute_section)
8974 {
8975 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8976 if (j > 15)
8977 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8978 j);
8979 else if (fragP)
8980 {
8981 /* NB: Don't add prefix with GOTPC relocation since
8982 output_disp() above depends on the fixed encoding
8983 length. Can't add prefix with TLS relocation since
8984 it breaks TLS linker optimization. */
8985 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
8986 /* Prefix count on the current instruction. */
8987 unsigned int count = i.vex.length;
8988 unsigned int k;
8989 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
8990 /* REX byte is encoded in VEX/EVEX prefix. */
8991 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
8992 count++;
8993
8994 /* Count prefixes for extended opcode maps. */
8995 if (!i.vex.length)
8996 switch (i.tm.opcode_length)
8997 {
8998 case 3:
8999 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
9000 {
9001 count++;
9002 switch ((i.tm.base_opcode >> 8) & 0xff)
9003 {
9004 case 0x38:
9005 case 0x3a:
9006 count++;
9007 break;
9008 default:
9009 break;
9010 }
9011 }
9012 break;
9013 case 2:
9014 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
9015 count++;
9016 break;
9017 case 1:
9018 break;
9019 default:
9020 abort ();
9021 }
9022
9023 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
9024 == BRANCH_PREFIX)
9025 {
9026 /* Set the maximum prefix size in BRANCH_PREFIX
9027 frag. */
9028 if (fragP->tc_frag_data.max_bytes > max)
9029 fragP->tc_frag_data.max_bytes = max;
9030 if (fragP->tc_frag_data.max_bytes > count)
9031 fragP->tc_frag_data.max_bytes -= count;
9032 else
9033 fragP->tc_frag_data.max_bytes = 0;
9034 }
9035 else
9036 {
9037 /* Remember the maximum prefix size in FUSED_JCC_PADDING
9038 frag. */
9039 unsigned int max_prefix_size;
9040 if (align_branch_prefix_size > max)
9041 max_prefix_size = max;
9042 else
9043 max_prefix_size = align_branch_prefix_size;
9044 if (max_prefix_size > count)
9045 fragP->tc_frag_data.max_prefix_length
9046 = max_prefix_size - count;
9047 }
9048
9049 /* Use existing segment prefix if possible. Use CS
9050 segment prefix in 64-bit mode. In 32-bit mode, use SS
9051 segment prefix with ESP/EBP base register and use DS
9052 segment prefix without ESP/EBP base register. */
9053 if (i.prefix[SEG_PREFIX])
9054 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
9055 else if (flag_code == CODE_64BIT)
9056 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
9057 else if (i.base_reg
9058 && (i.base_reg->reg_num == 4
9059 || i.base_reg->reg_num == 5))
9060 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
9061 else
9062 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
9063 }
9064 }
9065 }
9066
9067 /* NB: Don't work with COND_JUMP86 without i386. */
9068 if (align_branch_power
9069 && now_seg != absolute_section
9070 && cpu_arch_flags.bitfield.cpui386)
9071 {
9072 /* Terminate each frag so that we can add prefix and check for
9073 fused jcc. */
9074 frag_wane (frag_now);
9075 frag_new (0);
9076 }
9077
9078 #ifdef DEBUG386
9079 if (flag_debug)
9080 {
9081 pi ("" /*line*/, &i);
9082 }
9083 #endif /* DEBUG386 */
9084 }
9085
9086 /* Return the size of the displacement operand N. */
9087
9088 static int
9089 disp_size (unsigned int n)
9090 {
9091 int size = 4;
9092
9093 if (i.types[n].bitfield.disp64)
9094 size = 8;
9095 else if (i.types[n].bitfield.disp8)
9096 size = 1;
9097 else if (i.types[n].bitfield.disp16)
9098 size = 2;
9099 return size;
9100 }
9101
9102 /* Return the size of the immediate operand N. */
9103
9104 static int
9105 imm_size (unsigned int n)
9106 {
9107 int size = 4;
9108 if (i.types[n].bitfield.imm64)
9109 size = 8;
9110 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
9111 size = 1;
9112 else if (i.types[n].bitfield.imm16)
9113 size = 2;
9114 return size;
9115 }
9116
9117 static void
9118 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
9119 {
9120 char *p;
9121 unsigned int n;
9122
9123 for (n = 0; n < i.operands; n++)
9124 {
9125 if (operand_type_check (i.types[n], disp))
9126 {
9127 if (i.op[n].disps->X_op == O_constant)
9128 {
9129 int size = disp_size (n);
9130 offsetT val = i.op[n].disps->X_add_number;
9131
9132 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
9133 size);
9134 p = frag_more (size);
9135 md_number_to_chars (p, val, size);
9136 }
9137 else
9138 {
9139 enum bfd_reloc_code_real reloc_type;
9140 int size = disp_size (n);
9141 int sign = i.types[n].bitfield.disp32s;
9142 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
9143 fixS *fixP;
9144
9145 /* We can't have 8 bit displacement here. */
9146 gas_assert (!i.types[n].bitfield.disp8);
9147
9148 /* The PC relative address is computed relative
9149 to the instruction boundary, so in case immediate
9150 fields follows, we need to adjust the value. */
9151 if (pcrel && i.imm_operands)
9152 {
9153 unsigned int n1;
9154 int sz = 0;
9155
9156 for (n1 = 0; n1 < i.operands; n1++)
9157 if (operand_type_check (i.types[n1], imm))
9158 {
9159 /* Only one immediate is allowed for PC
9160 relative address. */
9161 gas_assert (sz == 0);
9162 sz = imm_size (n1);
9163 i.op[n].disps->X_add_number -= sz;
9164 }
9165 /* We should find the immediate. */
9166 gas_assert (sz != 0);
9167 }
9168
9169 p = frag_more (size);
9170 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
9171 if (GOT_symbol
9172 && GOT_symbol == i.op[n].disps->X_add_symbol
9173 && (((reloc_type == BFD_RELOC_32
9174 || reloc_type == BFD_RELOC_X86_64_32S
9175 || (reloc_type == BFD_RELOC_64
9176 && object_64bit))
9177 && (i.op[n].disps->X_op == O_symbol
9178 || (i.op[n].disps->X_op == O_add
9179 && ((symbol_get_value_expression
9180 (i.op[n].disps->X_op_symbol)->X_op)
9181 == O_subtract))))
9182 || reloc_type == BFD_RELOC_32_PCREL))
9183 {
9184 if (!object_64bit)
9185 {
9186 reloc_type = BFD_RELOC_386_GOTPC;
9187 i.has_gotpc_tls_reloc = TRUE;
9188 i.op[n].imms->X_add_number +=
9189 encoding_length (insn_start_frag, insn_start_off, p);
9190 }
9191 else if (reloc_type == BFD_RELOC_64)
9192 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9193 else
9194 /* Don't do the adjustment for x86-64, as there
9195 the pcrel addressing is relative to the _next_
9196 insn, and that is taken care of in other code. */
9197 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9198 }
9199 else if (align_branch_power)
9200 {
9201 switch (reloc_type)
9202 {
9203 case BFD_RELOC_386_TLS_GD:
9204 case BFD_RELOC_386_TLS_LDM:
9205 case BFD_RELOC_386_TLS_IE:
9206 case BFD_RELOC_386_TLS_IE_32:
9207 case BFD_RELOC_386_TLS_GOTIE:
9208 case BFD_RELOC_386_TLS_GOTDESC:
9209 case BFD_RELOC_386_TLS_DESC_CALL:
9210 case BFD_RELOC_X86_64_TLSGD:
9211 case BFD_RELOC_X86_64_TLSLD:
9212 case BFD_RELOC_X86_64_GOTTPOFF:
9213 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9214 case BFD_RELOC_X86_64_TLSDESC_CALL:
9215 i.has_gotpc_tls_reloc = TRUE;
9216 default:
9217 break;
9218 }
9219 }
9220 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9221 size, i.op[n].disps, pcrel,
9222 reloc_type);
9223 /* Check for "call/jmp *mem", "mov mem, %reg",
9224 "test %reg, mem" and "binop mem, %reg" where binop
9225 is one of adc, add, and, cmp, or, sbb, sub, xor
9226 instructions without data prefix. Always generate
9227 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9228 if (i.prefix[DATA_PREFIX] == 0
9229 && (generate_relax_relocations
9230 || (!object_64bit
9231 && i.rm.mode == 0
9232 && i.rm.regmem == 5))
9233 && (i.rm.mode == 2
9234 || (i.rm.mode == 0 && i.rm.regmem == 5))
9235 && !is_any_vex_encoding(&i.tm)
9236 && ((i.operands == 1
9237 && i.tm.base_opcode == 0xff
9238 && (i.rm.reg == 2 || i.rm.reg == 4))
9239 || (i.operands == 2
9240 && (i.tm.base_opcode == 0x8b
9241 || i.tm.base_opcode == 0x85
9242 || (i.tm.base_opcode & ~0x38) == 0x03))))
9243 {
9244 if (object_64bit)
9245 {
9246 fixP->fx_tcbit = i.rex != 0;
9247 if (i.base_reg
9248 && (i.base_reg->reg_num == RegIP))
9249 fixP->fx_tcbit2 = 1;
9250 }
9251 else
9252 fixP->fx_tcbit2 = 1;
9253 }
9254 }
9255 }
9256 }
9257 }
9258
9259 static void
9260 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
9261 {
9262 char *p;
9263 unsigned int n;
9264
9265 for (n = 0; n < i.operands; n++)
9266 {
9267 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9268 if (i.rounding && (int) n == i.rounding->operand)
9269 continue;
9270
9271 if (operand_type_check (i.types[n], imm))
9272 {
9273 if (i.op[n].imms->X_op == O_constant)
9274 {
9275 int size = imm_size (n);
9276 offsetT val;
9277
9278 val = offset_in_range (i.op[n].imms->X_add_number,
9279 size);
9280 p = frag_more (size);
9281 md_number_to_chars (p, val, size);
9282 }
9283 else
9284 {
9285 /* Not absolute_section.
9286 Need a 32-bit fixup (don't support 8bit
9287 non-absolute imms). Try to support other
9288 sizes ... */
9289 enum bfd_reloc_code_real reloc_type;
9290 int size = imm_size (n);
9291 int sign;
9292
9293 if (i.types[n].bitfield.imm32s
9294 && (i.suffix == QWORD_MNEM_SUFFIX
9295 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
9296 sign = 1;
9297 else
9298 sign = 0;
9299
9300 p = frag_more (size);
9301 reloc_type = reloc (size, 0, sign, i.reloc[n]);
9302
9303 /* This is tough to explain. We end up with this one if we
9304 * have operands that look like
9305 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9306 * obtain the absolute address of the GOT, and it is strongly
9307 * preferable from a performance point of view to avoid using
9308 * a runtime relocation for this. The actual sequence of
9309 * instructions often look something like:
9310 *
9311 * call .L66
9312 * .L66:
9313 * popl %ebx
9314 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9315 *
9316 * The call and pop essentially return the absolute address
9317 * of the label .L66 and store it in %ebx. The linker itself
9318 * will ultimately change the first operand of the addl so
9319 * that %ebx points to the GOT, but to keep things simple, the
9320 * .o file must have this operand set so that it generates not
9321 * the absolute address of .L66, but the absolute address of
9322 * itself. This allows the linker itself simply treat a GOTPC
9323 * relocation as asking for a pcrel offset to the GOT to be
9324 * added in, and the addend of the relocation is stored in the
9325 * operand field for the instruction itself.
9326 *
9327 * Our job here is to fix the operand so that it would add
9328 * the correct offset so that %ebx would point to itself. The
9329 * thing that is tricky is that .-.L66 will point to the
9330 * beginning of the instruction, so we need to further modify
9331 * the operand so that it will point to itself. There are
9332 * other cases where you have something like:
9333 *
9334 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9335 *
9336 * and here no correction would be required. Internally in
9337 * the assembler we treat operands of this form as not being
9338 * pcrel since the '.' is explicitly mentioned, and I wonder
9339 * whether it would simplify matters to do it this way. Who
9340 * knows. In earlier versions of the PIC patches, the
9341 * pcrel_adjust field was used to store the correction, but
9342 * since the expression is not pcrel, I felt it would be
9343 * confusing to do it this way. */
9344
9345 if ((reloc_type == BFD_RELOC_32
9346 || reloc_type == BFD_RELOC_X86_64_32S
9347 || reloc_type == BFD_RELOC_64)
9348 && GOT_symbol
9349 && GOT_symbol == i.op[n].imms->X_add_symbol
9350 && (i.op[n].imms->X_op == O_symbol
9351 || (i.op[n].imms->X_op == O_add
9352 && ((symbol_get_value_expression
9353 (i.op[n].imms->X_op_symbol)->X_op)
9354 == O_subtract))))
9355 {
9356 if (!object_64bit)
9357 reloc_type = BFD_RELOC_386_GOTPC;
9358 else if (size == 4)
9359 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9360 else if (size == 8)
9361 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9362 i.has_gotpc_tls_reloc = TRUE;
9363 i.op[n].imms->X_add_number +=
9364 encoding_length (insn_start_frag, insn_start_off, p);
9365 }
9366 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9367 i.op[n].imms, 0, reloc_type);
9368 }
9369 }
9370 }
9371 }
9372 \f
9373 /* x86_cons_fix_new is called via the expression parsing code when a
9374 reloc is needed. We use this hook to get the correct .got reloc. */
9375 static int cons_sign = -1;
9376
9377 void
9378 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
9379 expressionS *exp, bfd_reloc_code_real_type r)
9380 {
9381 r = reloc (len, 0, cons_sign, r);
9382
9383 #ifdef TE_PE
9384 if (exp->X_op == O_secrel)
9385 {
9386 exp->X_op = O_symbol;
9387 r = BFD_RELOC_32_SECREL;
9388 }
9389 #endif
9390
9391 fix_new_exp (frag, off, len, exp, 0, r);
9392 }
9393
9394 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9395 purpose of the `.dc.a' internal pseudo-op. */
9396
9397 int
9398 x86_address_bytes (void)
9399 {
9400 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9401 return 4;
9402 return stdoutput->arch_info->bits_per_address / 8;
9403 }
9404
9405 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9406 || defined (LEX_AT)
9407 # define lex_got(reloc, adjust, types) NULL
9408 #else
9409 /* Parse operands of the form
9410 <symbol>@GOTOFF+<nnn>
9411 and similar .plt or .got references.
9412
9413 If we find one, set up the correct relocation in RELOC and copy the
9414 input string, minus the `@GOTOFF' into a malloc'd buffer for
9415 parsing by the calling routine. Return this buffer, and if ADJUST
9416 is non-null set it to the length of the string we removed from the
9417 input line. Otherwise return NULL. */
9418 static char *
9419 lex_got (enum bfd_reloc_code_real *rel,
9420 int *adjust,
9421 i386_operand_type *types)
9422 {
9423 /* Some of the relocations depend on the size of what field is to
9424 be relocated. But in our callers i386_immediate and i386_displacement
9425 we don't yet know the operand size (this will be set by insn
9426 matching). Hence we record the word32 relocation here,
9427 and adjust the reloc according to the real size in reloc(). */
9428 static const struct {
9429 const char *str;
9430 int len;
9431 const enum bfd_reloc_code_real rel[2];
9432 const i386_operand_type types64;
9433 } gotrel[] = {
9434 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9435 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9436 BFD_RELOC_SIZE32 },
9437 OPERAND_TYPE_IMM32_64 },
9438 #endif
9439 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9440 BFD_RELOC_X86_64_PLTOFF64 },
9441 OPERAND_TYPE_IMM64 },
9442 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9443 BFD_RELOC_X86_64_PLT32 },
9444 OPERAND_TYPE_IMM32_32S_DISP32 },
9445 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9446 BFD_RELOC_X86_64_GOTPLT64 },
9447 OPERAND_TYPE_IMM64_DISP64 },
9448 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9449 BFD_RELOC_X86_64_GOTOFF64 },
9450 OPERAND_TYPE_IMM64_DISP64 },
9451 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9452 BFD_RELOC_X86_64_GOTPCREL },
9453 OPERAND_TYPE_IMM32_32S_DISP32 },
9454 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9455 BFD_RELOC_X86_64_TLSGD },
9456 OPERAND_TYPE_IMM32_32S_DISP32 },
9457 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9458 _dummy_first_bfd_reloc_code_real },
9459 OPERAND_TYPE_NONE },
9460 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9461 BFD_RELOC_X86_64_TLSLD },
9462 OPERAND_TYPE_IMM32_32S_DISP32 },
9463 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9464 BFD_RELOC_X86_64_GOTTPOFF },
9465 OPERAND_TYPE_IMM32_32S_DISP32 },
9466 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9467 BFD_RELOC_X86_64_TPOFF32 },
9468 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9469 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9470 _dummy_first_bfd_reloc_code_real },
9471 OPERAND_TYPE_NONE },
9472 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9473 BFD_RELOC_X86_64_DTPOFF32 },
9474 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9475 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9476 _dummy_first_bfd_reloc_code_real },
9477 OPERAND_TYPE_NONE },
9478 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9479 _dummy_first_bfd_reloc_code_real },
9480 OPERAND_TYPE_NONE },
9481 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9482 BFD_RELOC_X86_64_GOT32 },
9483 OPERAND_TYPE_IMM32_32S_64_DISP32 },
9484 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9485 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
9486 OPERAND_TYPE_IMM32_32S_DISP32 },
9487 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9488 BFD_RELOC_X86_64_TLSDESC_CALL },
9489 OPERAND_TYPE_IMM32_32S_DISP32 },
9490 };
9491 char *cp;
9492 unsigned int j;
9493
9494 #if defined (OBJ_MAYBE_ELF)
9495 if (!IS_ELF)
9496 return NULL;
9497 #endif
9498
9499 for (cp = input_line_pointer; *cp != '@'; cp++)
9500 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9501 return NULL;
9502
9503 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9504 {
9505 int len = gotrel[j].len;
9506 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9507 {
9508 if (gotrel[j].rel[object_64bit] != 0)
9509 {
9510 int first, second;
9511 char *tmpbuf, *past_reloc;
9512
9513 *rel = gotrel[j].rel[object_64bit];
9514
9515 if (types)
9516 {
9517 if (flag_code != CODE_64BIT)
9518 {
9519 types->bitfield.imm32 = 1;
9520 types->bitfield.disp32 = 1;
9521 }
9522 else
9523 *types = gotrel[j].types64;
9524 }
9525
9526 if (j != 0 && GOT_symbol == NULL)
9527 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9528
9529 /* The length of the first part of our input line. */
9530 first = cp - input_line_pointer;
9531
9532 /* The second part goes from after the reloc token until
9533 (and including) an end_of_line char or comma. */
9534 past_reloc = cp + 1 + len;
9535 cp = past_reloc;
9536 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9537 ++cp;
9538 second = cp + 1 - past_reloc;
9539
9540 /* Allocate and copy string. The trailing NUL shouldn't
9541 be necessary, but be safe. */
9542 tmpbuf = XNEWVEC (char, first + second + 2);
9543 memcpy (tmpbuf, input_line_pointer, first);
9544 if (second != 0 && *past_reloc != ' ')
9545 /* Replace the relocation token with ' ', so that
9546 errors like foo@GOTOFF1 will be detected. */
9547 tmpbuf[first++] = ' ';
9548 else
9549 /* Increment length by 1 if the relocation token is
9550 removed. */
9551 len++;
9552 if (adjust)
9553 *adjust = len;
9554 memcpy (tmpbuf + first, past_reloc, second);
9555 tmpbuf[first + second] = '\0';
9556 return tmpbuf;
9557 }
9558
9559 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9560 gotrel[j].str, 1 << (5 + object_64bit));
9561 return NULL;
9562 }
9563 }
9564
9565 /* Might be a symbol version string. Don't as_bad here. */
9566 return NULL;
9567 }
9568 #endif
9569
9570 #ifdef TE_PE
9571 #ifdef lex_got
9572 #undef lex_got
9573 #endif
9574 /* Parse operands of the form
9575 <symbol>@SECREL32+<nnn>
9576
9577 If we find one, set up the correct relocation in RELOC and copy the
9578 input string, minus the `@SECREL32' into a malloc'd buffer for
9579 parsing by the calling routine. Return this buffer, and if ADJUST
9580 is non-null set it to the length of the string we removed from the
9581 input line. Otherwise return NULL.
9582
9583 This function is copied from the ELF version above adjusted for PE targets. */
9584
9585 static char *
9586 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9587 int *adjust ATTRIBUTE_UNUSED,
9588 i386_operand_type *types)
9589 {
9590 static const struct
9591 {
9592 const char *str;
9593 int len;
9594 const enum bfd_reloc_code_real rel[2];
9595 const i386_operand_type types64;
9596 }
9597 gotrel[] =
9598 {
9599 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9600 BFD_RELOC_32_SECREL },
9601 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9602 };
9603
9604 char *cp;
9605 unsigned j;
9606
9607 for (cp = input_line_pointer; *cp != '@'; cp++)
9608 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9609 return NULL;
9610
9611 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9612 {
9613 int len = gotrel[j].len;
9614
9615 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9616 {
9617 if (gotrel[j].rel[object_64bit] != 0)
9618 {
9619 int first, second;
9620 char *tmpbuf, *past_reloc;
9621
9622 *rel = gotrel[j].rel[object_64bit];
9623 if (adjust)
9624 *adjust = len;
9625
9626 if (types)
9627 {
9628 if (flag_code != CODE_64BIT)
9629 {
9630 types->bitfield.imm32 = 1;
9631 types->bitfield.disp32 = 1;
9632 }
9633 else
9634 *types = gotrel[j].types64;
9635 }
9636
9637 /* The length of the first part of our input line. */
9638 first = cp - input_line_pointer;
9639
9640 /* The second part goes from after the reloc token until
9641 (and including) an end_of_line char or comma. */
9642 past_reloc = cp + 1 + len;
9643 cp = past_reloc;
9644 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9645 ++cp;
9646 second = cp + 1 - past_reloc;
9647
9648 /* Allocate and copy string. The trailing NUL shouldn't
9649 be necessary, but be safe. */
9650 tmpbuf = XNEWVEC (char, first + second + 2);
9651 memcpy (tmpbuf, input_line_pointer, first);
9652 if (second != 0 && *past_reloc != ' ')
9653 /* Replace the relocation token with ' ', so that
9654 errors like foo@SECLREL321 will be detected. */
9655 tmpbuf[first++] = ' ';
9656 memcpy (tmpbuf + first, past_reloc, second);
9657 tmpbuf[first + second] = '\0';
9658 return tmpbuf;
9659 }
9660
9661 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9662 gotrel[j].str, 1 << (5 + object_64bit));
9663 return NULL;
9664 }
9665 }
9666
9667 /* Might be a symbol version string. Don't as_bad here. */
9668 return NULL;
9669 }
9670
9671 #endif /* TE_PE */
9672
9673 bfd_reloc_code_real_type
9674 x86_cons (expressionS *exp, int size)
9675 {
9676 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9677
9678 intel_syntax = -intel_syntax;
9679
9680 exp->X_md = 0;
9681 if (size == 4 || (object_64bit && size == 8))
9682 {
9683 /* Handle @GOTOFF and the like in an expression. */
9684 char *save;
9685 char *gotfree_input_line;
9686 int adjust = 0;
9687
9688 save = input_line_pointer;
9689 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9690 if (gotfree_input_line)
9691 input_line_pointer = gotfree_input_line;
9692
9693 expression (exp);
9694
9695 if (gotfree_input_line)
9696 {
9697 /* expression () has merrily parsed up to the end of line,
9698 or a comma - in the wrong buffer. Transfer how far
9699 input_line_pointer has moved to the right buffer. */
9700 input_line_pointer = (save
9701 + (input_line_pointer - gotfree_input_line)
9702 + adjust);
9703 free (gotfree_input_line);
9704 if (exp->X_op == O_constant
9705 || exp->X_op == O_absent
9706 || exp->X_op == O_illegal
9707 || exp->X_op == O_register
9708 || exp->X_op == O_big)
9709 {
9710 char c = *input_line_pointer;
9711 *input_line_pointer = 0;
9712 as_bad (_("missing or invalid expression `%s'"), save);
9713 *input_line_pointer = c;
9714 }
9715 else if ((got_reloc == BFD_RELOC_386_PLT32
9716 || got_reloc == BFD_RELOC_X86_64_PLT32)
9717 && exp->X_op != O_symbol)
9718 {
9719 char c = *input_line_pointer;
9720 *input_line_pointer = 0;
9721 as_bad (_("invalid PLT expression `%s'"), save);
9722 *input_line_pointer = c;
9723 }
9724 }
9725 }
9726 else
9727 expression (exp);
9728
9729 intel_syntax = -intel_syntax;
9730
9731 if (intel_syntax)
9732 i386_intel_simplify (exp);
9733
9734 return got_reloc;
9735 }
9736
9737 static void
9738 signed_cons (int size)
9739 {
9740 if (flag_code == CODE_64BIT)
9741 cons_sign = 1;
9742 cons (size);
9743 cons_sign = -1;
9744 }
9745
9746 #ifdef TE_PE
9747 static void
9748 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9749 {
9750 expressionS exp;
9751
9752 do
9753 {
9754 expression (&exp);
9755 if (exp.X_op == O_symbol)
9756 exp.X_op = O_secrel;
9757
9758 emit_expr (&exp, 4);
9759 }
9760 while (*input_line_pointer++ == ',');
9761
9762 input_line_pointer--;
9763 demand_empty_rest_of_line ();
9764 }
9765 #endif
9766
9767 /* Handle Vector operations. */
9768
9769 static char *
9770 check_VecOperations (char *op_string, char *op_end)
9771 {
9772 const reg_entry *mask;
9773 const char *saved;
9774 char *end_op;
9775
9776 while (*op_string
9777 && (op_end == NULL || op_string < op_end))
9778 {
9779 saved = op_string;
9780 if (*op_string == '{')
9781 {
9782 op_string++;
9783
9784 /* Check broadcasts. */
9785 if (strncmp (op_string, "1to", 3) == 0)
9786 {
9787 int bcst_type;
9788
9789 if (i.broadcast)
9790 goto duplicated_vec_op;
9791
9792 op_string += 3;
9793 if (*op_string == '8')
9794 bcst_type = 8;
9795 else if (*op_string == '4')
9796 bcst_type = 4;
9797 else if (*op_string == '2')
9798 bcst_type = 2;
9799 else if (*op_string == '1'
9800 && *(op_string+1) == '6')
9801 {
9802 bcst_type = 16;
9803 op_string++;
9804 }
9805 else
9806 {
9807 as_bad (_("Unsupported broadcast: `%s'"), saved);
9808 return NULL;
9809 }
9810 op_string++;
9811
9812 broadcast_op.type = bcst_type;
9813 broadcast_op.operand = this_operand;
9814 broadcast_op.bytes = 0;
9815 i.broadcast = &broadcast_op;
9816 }
9817 /* Check masking operation. */
9818 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9819 {
9820 /* k0 can't be used for write mask. */
9821 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
9822 {
9823 as_bad (_("`%s%s' can't be used for write mask"),
9824 register_prefix, mask->reg_name);
9825 return NULL;
9826 }
9827
9828 if (!i.mask)
9829 {
9830 mask_op.mask = mask;
9831 mask_op.zeroing = 0;
9832 mask_op.operand = this_operand;
9833 i.mask = &mask_op;
9834 }
9835 else
9836 {
9837 if (i.mask->mask)
9838 goto duplicated_vec_op;
9839
9840 i.mask->mask = mask;
9841
9842 /* Only "{z}" is allowed here. No need to check
9843 zeroing mask explicitly. */
9844 if (i.mask->operand != this_operand)
9845 {
9846 as_bad (_("invalid write mask `%s'"), saved);
9847 return NULL;
9848 }
9849 }
9850
9851 op_string = end_op;
9852 }
9853 /* Check zeroing-flag for masking operation. */
9854 else if (*op_string == 'z')
9855 {
9856 if (!i.mask)
9857 {
9858 mask_op.mask = NULL;
9859 mask_op.zeroing = 1;
9860 mask_op.operand = this_operand;
9861 i.mask = &mask_op;
9862 }
9863 else
9864 {
9865 if (i.mask->zeroing)
9866 {
9867 duplicated_vec_op:
9868 as_bad (_("duplicated `%s'"), saved);
9869 return NULL;
9870 }
9871
9872 i.mask->zeroing = 1;
9873
9874 /* Only "{%k}" is allowed here. No need to check mask
9875 register explicitly. */
9876 if (i.mask->operand != this_operand)
9877 {
9878 as_bad (_("invalid zeroing-masking `%s'"),
9879 saved);
9880 return NULL;
9881 }
9882 }
9883
9884 op_string++;
9885 }
9886 else
9887 goto unknown_vec_op;
9888
9889 if (*op_string != '}')
9890 {
9891 as_bad (_("missing `}' in `%s'"), saved);
9892 return NULL;
9893 }
9894 op_string++;
9895
9896 /* Strip whitespace since the addition of pseudo prefixes
9897 changed how the scrubber treats '{'. */
9898 if (is_space_char (*op_string))
9899 ++op_string;
9900
9901 continue;
9902 }
9903 unknown_vec_op:
9904 /* We don't know this one. */
9905 as_bad (_("unknown vector operation: `%s'"), saved);
9906 return NULL;
9907 }
9908
9909 if (i.mask && i.mask->zeroing && !i.mask->mask)
9910 {
9911 as_bad (_("zeroing-masking only allowed with write mask"));
9912 return NULL;
9913 }
9914
9915 return op_string;
9916 }
9917
9918 static int
9919 i386_immediate (char *imm_start)
9920 {
9921 char *save_input_line_pointer;
9922 char *gotfree_input_line;
9923 segT exp_seg = 0;
9924 expressionS *exp;
9925 i386_operand_type types;
9926
9927 operand_type_set (&types, ~0);
9928
9929 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9930 {
9931 as_bad (_("at most %d immediate operands are allowed"),
9932 MAX_IMMEDIATE_OPERANDS);
9933 return 0;
9934 }
9935
9936 exp = &im_expressions[i.imm_operands++];
9937 i.op[this_operand].imms = exp;
9938
9939 if (is_space_char (*imm_start))
9940 ++imm_start;
9941
9942 save_input_line_pointer = input_line_pointer;
9943 input_line_pointer = imm_start;
9944
9945 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9946 if (gotfree_input_line)
9947 input_line_pointer = gotfree_input_line;
9948
9949 exp_seg = expression (exp);
9950
9951 SKIP_WHITESPACE ();
9952
9953 /* Handle vector operations. */
9954 if (*input_line_pointer == '{')
9955 {
9956 input_line_pointer = check_VecOperations (input_line_pointer,
9957 NULL);
9958 if (input_line_pointer == NULL)
9959 return 0;
9960 }
9961
9962 if (*input_line_pointer)
9963 as_bad (_("junk `%s' after expression"), input_line_pointer);
9964
9965 input_line_pointer = save_input_line_pointer;
9966 if (gotfree_input_line)
9967 {
9968 free (gotfree_input_line);
9969
9970 if (exp->X_op == O_constant || exp->X_op == O_register)
9971 exp->X_op = O_illegal;
9972 }
9973
9974 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9975 }
9976
9977 static int
9978 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9979 i386_operand_type types, const char *imm_start)
9980 {
9981 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9982 {
9983 if (imm_start)
9984 as_bad (_("missing or invalid immediate expression `%s'"),
9985 imm_start);
9986 return 0;
9987 }
9988 else if (exp->X_op == O_constant)
9989 {
9990 /* Size it properly later. */
9991 i.types[this_operand].bitfield.imm64 = 1;
9992 /* If not 64bit, sign extend val. */
9993 if (flag_code != CODE_64BIT
9994 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9995 exp->X_add_number
9996 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9997 }
9998 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9999 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
10000 && exp_seg != absolute_section
10001 && exp_seg != text_section
10002 && exp_seg != data_section
10003 && exp_seg != bss_section
10004 && exp_seg != undefined_section
10005 && !bfd_is_com_section (exp_seg))
10006 {
10007 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10008 return 0;
10009 }
10010 #endif
10011 else if (!intel_syntax && exp_seg == reg_section)
10012 {
10013 if (imm_start)
10014 as_bad (_("illegal immediate register operand %s"), imm_start);
10015 return 0;
10016 }
10017 else
10018 {
10019 /* This is an address. The size of the address will be
10020 determined later, depending on destination register,
10021 suffix, or the default for the section. */
10022 i.types[this_operand].bitfield.imm8 = 1;
10023 i.types[this_operand].bitfield.imm16 = 1;
10024 i.types[this_operand].bitfield.imm32 = 1;
10025 i.types[this_operand].bitfield.imm32s = 1;
10026 i.types[this_operand].bitfield.imm64 = 1;
10027 i.types[this_operand] = operand_type_and (i.types[this_operand],
10028 types);
10029 }
10030
10031 return 1;
10032 }
10033
10034 static char *
10035 i386_scale (char *scale)
10036 {
10037 offsetT val;
10038 char *save = input_line_pointer;
10039
10040 input_line_pointer = scale;
10041 val = get_absolute_expression ();
10042
10043 switch (val)
10044 {
10045 case 1:
10046 i.log2_scale_factor = 0;
10047 break;
10048 case 2:
10049 i.log2_scale_factor = 1;
10050 break;
10051 case 4:
10052 i.log2_scale_factor = 2;
10053 break;
10054 case 8:
10055 i.log2_scale_factor = 3;
10056 break;
10057 default:
10058 {
10059 char sep = *input_line_pointer;
10060
10061 *input_line_pointer = '\0';
10062 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
10063 scale);
10064 *input_line_pointer = sep;
10065 input_line_pointer = save;
10066 return NULL;
10067 }
10068 }
10069 if (i.log2_scale_factor != 0 && i.index_reg == 0)
10070 {
10071 as_warn (_("scale factor of %d without an index register"),
10072 1 << i.log2_scale_factor);
10073 i.log2_scale_factor = 0;
10074 }
10075 scale = input_line_pointer;
10076 input_line_pointer = save;
10077 return scale;
10078 }
10079
10080 static int
10081 i386_displacement (char *disp_start, char *disp_end)
10082 {
10083 expressionS *exp;
10084 segT exp_seg = 0;
10085 char *save_input_line_pointer;
10086 char *gotfree_input_line;
10087 int override;
10088 i386_operand_type bigdisp, types = anydisp;
10089 int ret;
10090
10091 if (i.disp_operands == MAX_MEMORY_OPERANDS)
10092 {
10093 as_bad (_("at most %d displacement operands are allowed"),
10094 MAX_MEMORY_OPERANDS);
10095 return 0;
10096 }
10097
10098 operand_type_set (&bigdisp, 0);
10099 if (i.jumpabsolute
10100 || i.types[this_operand].bitfield.baseindex
10101 || (current_templates->start->opcode_modifier.jump != JUMP
10102 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
10103 {
10104 i386_addressing_mode ();
10105 override = (i.prefix[ADDR_PREFIX] != 0);
10106 if (flag_code == CODE_64BIT)
10107 {
10108 if (!override)
10109 {
10110 bigdisp.bitfield.disp32s = 1;
10111 bigdisp.bitfield.disp64 = 1;
10112 }
10113 else
10114 bigdisp.bitfield.disp32 = 1;
10115 }
10116 else if ((flag_code == CODE_16BIT) ^ override)
10117 bigdisp.bitfield.disp16 = 1;
10118 else
10119 bigdisp.bitfield.disp32 = 1;
10120 }
10121 else
10122 {
10123 /* For PC-relative branches, the width of the displacement may be
10124 dependent upon data size, but is never dependent upon address size.
10125 Also make sure to not unintentionally match against a non-PC-relative
10126 branch template. */
10127 static templates aux_templates;
10128 const insn_template *t = current_templates->start;
10129 bfd_boolean has_intel64 = FALSE;
10130
10131 aux_templates.start = t;
10132 while (++t < current_templates->end)
10133 {
10134 if (t->opcode_modifier.jump
10135 != current_templates->start->opcode_modifier.jump)
10136 break;
10137 if ((t->opcode_modifier.isa64 >= INTEL64))
10138 has_intel64 = TRUE;
10139 }
10140 if (t < current_templates->end)
10141 {
10142 aux_templates.end = t;
10143 current_templates = &aux_templates;
10144 }
10145
10146 override = (i.prefix[DATA_PREFIX] != 0);
10147 if (flag_code == CODE_64BIT)
10148 {
10149 if ((override || i.suffix == WORD_MNEM_SUFFIX)
10150 && (!intel64 || !has_intel64))
10151 bigdisp.bitfield.disp16 = 1;
10152 else
10153 bigdisp.bitfield.disp32s = 1;
10154 }
10155 else
10156 {
10157 if (!override)
10158 override = (i.suffix == (flag_code != CODE_16BIT
10159 ? WORD_MNEM_SUFFIX
10160 : LONG_MNEM_SUFFIX));
10161 bigdisp.bitfield.disp32 = 1;
10162 if ((flag_code == CODE_16BIT) ^ override)
10163 {
10164 bigdisp.bitfield.disp32 = 0;
10165 bigdisp.bitfield.disp16 = 1;
10166 }
10167 }
10168 }
10169 i.types[this_operand] = operand_type_or (i.types[this_operand],
10170 bigdisp);
10171
10172 exp = &disp_expressions[i.disp_operands];
10173 i.op[this_operand].disps = exp;
10174 i.disp_operands++;
10175 save_input_line_pointer = input_line_pointer;
10176 input_line_pointer = disp_start;
10177 END_STRING_AND_SAVE (disp_end);
10178
10179 #ifndef GCC_ASM_O_HACK
10180 #define GCC_ASM_O_HACK 0
10181 #endif
10182 #if GCC_ASM_O_HACK
10183 END_STRING_AND_SAVE (disp_end + 1);
10184 if (i.types[this_operand].bitfield.baseIndex
10185 && displacement_string_end[-1] == '+')
10186 {
10187 /* This hack is to avoid a warning when using the "o"
10188 constraint within gcc asm statements.
10189 For instance:
10190
10191 #define _set_tssldt_desc(n,addr,limit,type) \
10192 __asm__ __volatile__ ( \
10193 "movw %w2,%0\n\t" \
10194 "movw %w1,2+%0\n\t" \
10195 "rorl $16,%1\n\t" \
10196 "movb %b1,4+%0\n\t" \
10197 "movb %4,5+%0\n\t" \
10198 "movb $0,6+%0\n\t" \
10199 "movb %h1,7+%0\n\t" \
10200 "rorl $16,%1" \
10201 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10202
10203 This works great except that the output assembler ends
10204 up looking a bit weird if it turns out that there is
10205 no offset. You end up producing code that looks like:
10206
10207 #APP
10208 movw $235,(%eax)
10209 movw %dx,2+(%eax)
10210 rorl $16,%edx
10211 movb %dl,4+(%eax)
10212 movb $137,5+(%eax)
10213 movb $0,6+(%eax)
10214 movb %dh,7+(%eax)
10215 rorl $16,%edx
10216 #NO_APP
10217
10218 So here we provide the missing zero. */
10219
10220 *displacement_string_end = '0';
10221 }
10222 #endif
10223 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10224 if (gotfree_input_line)
10225 input_line_pointer = gotfree_input_line;
10226
10227 exp_seg = expression (exp);
10228
10229 SKIP_WHITESPACE ();
10230 if (*input_line_pointer)
10231 as_bad (_("junk `%s' after expression"), input_line_pointer);
10232 #if GCC_ASM_O_HACK
10233 RESTORE_END_STRING (disp_end + 1);
10234 #endif
10235 input_line_pointer = save_input_line_pointer;
10236 if (gotfree_input_line)
10237 {
10238 free (gotfree_input_line);
10239
10240 if (exp->X_op == O_constant || exp->X_op == O_register)
10241 exp->X_op = O_illegal;
10242 }
10243
10244 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10245
10246 RESTORE_END_STRING (disp_end);
10247
10248 return ret;
10249 }
10250
10251 static int
10252 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10253 i386_operand_type types, const char *disp_start)
10254 {
10255 i386_operand_type bigdisp;
10256 int ret = 1;
10257
10258 /* We do this to make sure that the section symbol is in
10259 the symbol table. We will ultimately change the relocation
10260 to be relative to the beginning of the section. */
10261 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
10262 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10263 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10264 {
10265 if (exp->X_op != O_symbol)
10266 goto inv_disp;
10267
10268 if (S_IS_LOCAL (exp->X_add_symbol)
10269 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10270 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
10271 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
10272 exp->X_op = O_subtract;
10273 exp->X_op_symbol = GOT_symbol;
10274 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
10275 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
10276 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10277 i.reloc[this_operand] = BFD_RELOC_64;
10278 else
10279 i.reloc[this_operand] = BFD_RELOC_32;
10280 }
10281
10282 else if (exp->X_op == O_absent
10283 || exp->X_op == O_illegal
10284 || exp->X_op == O_big)
10285 {
10286 inv_disp:
10287 as_bad (_("missing or invalid displacement expression `%s'"),
10288 disp_start);
10289 ret = 0;
10290 }
10291
10292 else if (flag_code == CODE_64BIT
10293 && !i.prefix[ADDR_PREFIX]
10294 && exp->X_op == O_constant)
10295 {
10296 /* Since displacement is signed extended to 64bit, don't allow
10297 disp32 and turn off disp32s if they are out of range. */
10298 i.types[this_operand].bitfield.disp32 = 0;
10299 if (!fits_in_signed_long (exp->X_add_number))
10300 {
10301 i.types[this_operand].bitfield.disp32s = 0;
10302 if (i.types[this_operand].bitfield.baseindex)
10303 {
10304 as_bad (_("0x%lx out range of signed 32bit displacement"),
10305 (long) exp->X_add_number);
10306 ret = 0;
10307 }
10308 }
10309 }
10310
10311 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10312 else if (exp->X_op != O_constant
10313 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10314 && exp_seg != absolute_section
10315 && exp_seg != text_section
10316 && exp_seg != data_section
10317 && exp_seg != bss_section
10318 && exp_seg != undefined_section
10319 && !bfd_is_com_section (exp_seg))
10320 {
10321 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10322 ret = 0;
10323 }
10324 #endif
10325
10326 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10327 /* Constants get taken care of by optimize_disp(). */
10328 && exp->X_op != O_constant)
10329 i.types[this_operand].bitfield.disp8 = 1;
10330
10331 /* Check if this is a displacement only operand. */
10332 bigdisp = i.types[this_operand];
10333 bigdisp.bitfield.disp8 = 0;
10334 bigdisp.bitfield.disp16 = 0;
10335 bigdisp.bitfield.disp32 = 0;
10336 bigdisp.bitfield.disp32s = 0;
10337 bigdisp.bitfield.disp64 = 0;
10338 if (operand_type_all_zero (&bigdisp))
10339 i.types[this_operand] = operand_type_and (i.types[this_operand],
10340 types);
10341
10342 return ret;
10343 }
10344
10345 /* Return the active addressing mode, taking address override and
10346 registers forming the address into consideration. Update the
10347 address override prefix if necessary. */
10348
10349 static enum flag_code
10350 i386_addressing_mode (void)
10351 {
10352 enum flag_code addr_mode;
10353
10354 if (i.prefix[ADDR_PREFIX])
10355 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10356 else if (flag_code == CODE_16BIT
10357 && current_templates->start->cpu_flags.bitfield.cpumpx
10358 /* Avoid replacing the "16-bit addressing not allowed" diagnostic
10359 from md_assemble() by "is not a valid base/index expression"
10360 when there is a base and/or index. */
10361 && !i.types[this_operand].bitfield.baseindex)
10362 {
10363 /* MPX insn memory operands with neither base nor index must be forced
10364 to use 32-bit addressing in 16-bit mode. */
10365 addr_mode = CODE_32BIT;
10366 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10367 ++i.prefixes;
10368 gas_assert (!i.types[this_operand].bitfield.disp16);
10369 gas_assert (!i.types[this_operand].bitfield.disp32);
10370 }
10371 else
10372 {
10373 addr_mode = flag_code;
10374
10375 #if INFER_ADDR_PREFIX
10376 if (i.mem_operands == 0)
10377 {
10378 /* Infer address prefix from the first memory operand. */
10379 const reg_entry *addr_reg = i.base_reg;
10380
10381 if (addr_reg == NULL)
10382 addr_reg = i.index_reg;
10383
10384 if (addr_reg)
10385 {
10386 if (addr_reg->reg_type.bitfield.dword)
10387 addr_mode = CODE_32BIT;
10388 else if (flag_code != CODE_64BIT
10389 && addr_reg->reg_type.bitfield.word)
10390 addr_mode = CODE_16BIT;
10391
10392 if (addr_mode != flag_code)
10393 {
10394 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10395 i.prefixes += 1;
10396 /* Change the size of any displacement too. At most one
10397 of Disp16 or Disp32 is set.
10398 FIXME. There doesn't seem to be any real need for
10399 separate Disp16 and Disp32 flags. The same goes for
10400 Imm16 and Imm32. Removing them would probably clean
10401 up the code quite a lot. */
10402 if (flag_code != CODE_64BIT
10403 && (i.types[this_operand].bitfield.disp16
10404 || i.types[this_operand].bitfield.disp32))
10405 i.types[this_operand]
10406 = operand_type_xor (i.types[this_operand], disp16_32);
10407 }
10408 }
10409 }
10410 #endif
10411 }
10412
10413 return addr_mode;
10414 }
10415
10416 /* Make sure the memory operand we've been dealt is valid.
10417 Return 1 on success, 0 on a failure. */
10418
10419 static int
10420 i386_index_check (const char *operand_string)
10421 {
10422 const char *kind = "base/index";
10423 enum flag_code addr_mode = i386_addressing_mode ();
10424
10425 if (current_templates->start->opcode_modifier.isstring
10426 && !current_templates->start->cpu_flags.bitfield.cpupadlock
10427 && (current_templates->end[-1].opcode_modifier.isstring
10428 || i.mem_operands))
10429 {
10430 /* Memory operands of string insns are special in that they only allow
10431 a single register (rDI, rSI, or rBX) as their memory address. */
10432 const reg_entry *expected_reg;
10433 static const char *di_si[][2] =
10434 {
10435 { "esi", "edi" },
10436 { "si", "di" },
10437 { "rsi", "rdi" }
10438 };
10439 static const char *bx[] = { "ebx", "bx", "rbx" };
10440
10441 kind = "string address";
10442
10443 if (current_templates->start->opcode_modifier.repprefixok)
10444 {
10445 int es_op = current_templates->end[-1].opcode_modifier.isstring
10446 - IS_STRING_ES_OP0;
10447 int op = 0;
10448
10449 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
10450 || ((!i.mem_operands != !intel_syntax)
10451 && current_templates->end[-1].operand_types[1]
10452 .bitfield.baseindex))
10453 op = 1;
10454 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
10455 }
10456 else
10457 expected_reg = hash_find (reg_hash, bx[addr_mode]);
10458
10459 if (i.base_reg != expected_reg
10460 || i.index_reg
10461 || operand_type_check (i.types[this_operand], disp))
10462 {
10463 /* The second memory operand must have the same size as
10464 the first one. */
10465 if (i.mem_operands
10466 && i.base_reg
10467 && !((addr_mode == CODE_64BIT
10468 && i.base_reg->reg_type.bitfield.qword)
10469 || (addr_mode == CODE_32BIT
10470 ? i.base_reg->reg_type.bitfield.dword
10471 : i.base_reg->reg_type.bitfield.word)))
10472 goto bad_address;
10473
10474 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10475 operand_string,
10476 intel_syntax ? '[' : '(',
10477 register_prefix,
10478 expected_reg->reg_name,
10479 intel_syntax ? ']' : ')');
10480 return 1;
10481 }
10482 else
10483 return 1;
10484
10485 bad_address:
10486 as_bad (_("`%s' is not a valid %s expression"),
10487 operand_string, kind);
10488 return 0;
10489 }
10490 else
10491 {
10492 if (addr_mode != CODE_16BIT)
10493 {
10494 /* 32-bit/64-bit checks. */
10495 if ((i.base_reg
10496 && ((addr_mode == CODE_64BIT
10497 ? !i.base_reg->reg_type.bitfield.qword
10498 : !i.base_reg->reg_type.bitfield.dword)
10499 || (i.index_reg && i.base_reg->reg_num == RegIP)
10500 || i.base_reg->reg_num == RegIZ))
10501 || (i.index_reg
10502 && !i.index_reg->reg_type.bitfield.xmmword
10503 && !i.index_reg->reg_type.bitfield.ymmword
10504 && !i.index_reg->reg_type.bitfield.zmmword
10505 && ((addr_mode == CODE_64BIT
10506 ? !i.index_reg->reg_type.bitfield.qword
10507 : !i.index_reg->reg_type.bitfield.dword)
10508 || !i.index_reg->reg_type.bitfield.baseindex)))
10509 goto bad_address;
10510
10511 /* bndmk, bndldx, and bndstx have special restrictions. */
10512 if (current_templates->start->base_opcode == 0xf30f1b
10513 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10514 {
10515 /* They cannot use RIP-relative addressing. */
10516 if (i.base_reg && i.base_reg->reg_num == RegIP)
10517 {
10518 as_bad (_("`%s' cannot be used here"), operand_string);
10519 return 0;
10520 }
10521
10522 /* bndldx and bndstx ignore their scale factor. */
10523 if (current_templates->start->base_opcode != 0xf30f1b
10524 && i.log2_scale_factor)
10525 as_warn (_("register scaling is being ignored here"));
10526 }
10527 }
10528 else
10529 {
10530 /* 16-bit checks. */
10531 if ((i.base_reg
10532 && (!i.base_reg->reg_type.bitfield.word
10533 || !i.base_reg->reg_type.bitfield.baseindex))
10534 || (i.index_reg
10535 && (!i.index_reg->reg_type.bitfield.word
10536 || !i.index_reg->reg_type.bitfield.baseindex
10537 || !(i.base_reg
10538 && i.base_reg->reg_num < 6
10539 && i.index_reg->reg_num >= 6
10540 && i.log2_scale_factor == 0))))
10541 goto bad_address;
10542 }
10543 }
10544 return 1;
10545 }
10546
10547 /* Handle vector immediates. */
10548
10549 static int
10550 RC_SAE_immediate (const char *imm_start)
10551 {
10552 unsigned int match_found, j;
10553 const char *pstr = imm_start;
10554 expressionS *exp;
10555
10556 if (*pstr != '{')
10557 return 0;
10558
10559 pstr++;
10560 match_found = 0;
10561 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10562 {
10563 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10564 {
10565 if (!i.rounding)
10566 {
10567 rc_op.type = RC_NamesTable[j].type;
10568 rc_op.operand = this_operand;
10569 i.rounding = &rc_op;
10570 }
10571 else
10572 {
10573 as_bad (_("duplicated `%s'"), imm_start);
10574 return 0;
10575 }
10576 pstr += RC_NamesTable[j].len;
10577 match_found = 1;
10578 break;
10579 }
10580 }
10581 if (!match_found)
10582 return 0;
10583
10584 if (*pstr++ != '}')
10585 {
10586 as_bad (_("Missing '}': '%s'"), imm_start);
10587 return 0;
10588 }
10589 /* RC/SAE immediate string should contain nothing more. */;
10590 if (*pstr != 0)
10591 {
10592 as_bad (_("Junk after '}': '%s'"), imm_start);
10593 return 0;
10594 }
10595
10596 exp = &im_expressions[i.imm_operands++];
10597 i.op[this_operand].imms = exp;
10598
10599 exp->X_op = O_constant;
10600 exp->X_add_number = 0;
10601 exp->X_add_symbol = (symbolS *) 0;
10602 exp->X_op_symbol = (symbolS *) 0;
10603
10604 i.types[this_operand].bitfield.imm8 = 1;
10605 return 1;
10606 }
10607
10608 /* Only string instructions can have a second memory operand, so
10609 reduce current_templates to just those if it contains any. */
10610 static int
10611 maybe_adjust_templates (void)
10612 {
10613 const insn_template *t;
10614
10615 gas_assert (i.mem_operands == 1);
10616
10617 for (t = current_templates->start; t < current_templates->end; ++t)
10618 if (t->opcode_modifier.isstring)
10619 break;
10620
10621 if (t < current_templates->end)
10622 {
10623 static templates aux_templates;
10624 bfd_boolean recheck;
10625
10626 aux_templates.start = t;
10627 for (; t < current_templates->end; ++t)
10628 if (!t->opcode_modifier.isstring)
10629 break;
10630 aux_templates.end = t;
10631
10632 /* Determine whether to re-check the first memory operand. */
10633 recheck = (aux_templates.start != current_templates->start
10634 || t != current_templates->end);
10635
10636 current_templates = &aux_templates;
10637
10638 if (recheck)
10639 {
10640 i.mem_operands = 0;
10641 if (i.memop1_string != NULL
10642 && i386_index_check (i.memop1_string) == 0)
10643 return 0;
10644 i.mem_operands = 1;
10645 }
10646 }
10647
10648 return 1;
10649 }
10650
10651 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
10652 on error. */
10653
10654 static int
10655 i386_att_operand (char *operand_string)
10656 {
10657 const reg_entry *r;
10658 char *end_op;
10659 char *op_string = operand_string;
10660
10661 if (is_space_char (*op_string))
10662 ++op_string;
10663
10664 /* We check for an absolute prefix (differentiating,
10665 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
10666 if (*op_string == ABSOLUTE_PREFIX)
10667 {
10668 ++op_string;
10669 if (is_space_char (*op_string))
10670 ++op_string;
10671 i.jumpabsolute = TRUE;
10672 }
10673
10674 /* Check if operand is a register. */
10675 if ((r = parse_register (op_string, &end_op)) != NULL)
10676 {
10677 i386_operand_type temp;
10678
10679 /* Check for a segment override by searching for ':' after a
10680 segment register. */
10681 op_string = end_op;
10682 if (is_space_char (*op_string))
10683 ++op_string;
10684 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
10685 {
10686 switch (r->reg_num)
10687 {
10688 case 0:
10689 i.seg[i.mem_operands] = &es;
10690 break;
10691 case 1:
10692 i.seg[i.mem_operands] = &cs;
10693 break;
10694 case 2:
10695 i.seg[i.mem_operands] = &ss;
10696 break;
10697 case 3:
10698 i.seg[i.mem_operands] = &ds;
10699 break;
10700 case 4:
10701 i.seg[i.mem_operands] = &fs;
10702 break;
10703 case 5:
10704 i.seg[i.mem_operands] = &gs;
10705 break;
10706 }
10707
10708 /* Skip the ':' and whitespace. */
10709 ++op_string;
10710 if (is_space_char (*op_string))
10711 ++op_string;
10712
10713 if (!is_digit_char (*op_string)
10714 && !is_identifier_char (*op_string)
10715 && *op_string != '('
10716 && *op_string != ABSOLUTE_PREFIX)
10717 {
10718 as_bad (_("bad memory operand `%s'"), op_string);
10719 return 0;
10720 }
10721 /* Handle case of %es:*foo. */
10722 if (*op_string == ABSOLUTE_PREFIX)
10723 {
10724 ++op_string;
10725 if (is_space_char (*op_string))
10726 ++op_string;
10727 i.jumpabsolute = TRUE;
10728 }
10729 goto do_memory_reference;
10730 }
10731
10732 /* Handle vector operations. */
10733 if (*op_string == '{')
10734 {
10735 op_string = check_VecOperations (op_string, NULL);
10736 if (op_string == NULL)
10737 return 0;
10738 }
10739
10740 if (*op_string)
10741 {
10742 as_bad (_("junk `%s' after register"), op_string);
10743 return 0;
10744 }
10745 temp = r->reg_type;
10746 temp.bitfield.baseindex = 0;
10747 i.types[this_operand] = operand_type_or (i.types[this_operand],
10748 temp);
10749 i.types[this_operand].bitfield.unspecified = 0;
10750 i.op[this_operand].regs = r;
10751 i.reg_operands++;
10752 }
10753 else if (*op_string == REGISTER_PREFIX)
10754 {
10755 as_bad (_("bad register name `%s'"), op_string);
10756 return 0;
10757 }
10758 else if (*op_string == IMMEDIATE_PREFIX)
10759 {
10760 ++op_string;
10761 if (i.jumpabsolute)
10762 {
10763 as_bad (_("immediate operand illegal with absolute jump"));
10764 return 0;
10765 }
10766 if (!i386_immediate (op_string))
10767 return 0;
10768 }
10769 else if (RC_SAE_immediate (operand_string))
10770 {
10771 /* If it is a RC or SAE immediate, do nothing. */
10772 ;
10773 }
10774 else if (is_digit_char (*op_string)
10775 || is_identifier_char (*op_string)
10776 || *op_string == '"'
10777 || *op_string == '(')
10778 {
10779 /* This is a memory reference of some sort. */
10780 char *base_string;
10781
10782 /* Start and end of displacement string expression (if found). */
10783 char *displacement_string_start;
10784 char *displacement_string_end;
10785 char *vop_start;
10786
10787 do_memory_reference:
10788 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10789 return 0;
10790 if ((i.mem_operands == 1
10791 && !current_templates->start->opcode_modifier.isstring)
10792 || i.mem_operands == 2)
10793 {
10794 as_bad (_("too many memory references for `%s'"),
10795 current_templates->start->name);
10796 return 0;
10797 }
10798
10799 /* Check for base index form. We detect the base index form by
10800 looking for an ')' at the end of the operand, searching
10801 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10802 after the '('. */
10803 base_string = op_string + strlen (op_string);
10804
10805 /* Handle vector operations. */
10806 vop_start = strchr (op_string, '{');
10807 if (vop_start && vop_start < base_string)
10808 {
10809 if (check_VecOperations (vop_start, base_string) == NULL)
10810 return 0;
10811 base_string = vop_start;
10812 }
10813
10814 --base_string;
10815 if (is_space_char (*base_string))
10816 --base_string;
10817
10818 /* If we only have a displacement, set-up for it to be parsed later. */
10819 displacement_string_start = op_string;
10820 displacement_string_end = base_string + 1;
10821
10822 if (*base_string == ')')
10823 {
10824 char *temp_string;
10825 unsigned int parens_balanced = 1;
10826 /* We've already checked that the number of left & right ()'s are
10827 equal, so this loop will not be infinite. */
10828 do
10829 {
10830 base_string--;
10831 if (*base_string == ')')
10832 parens_balanced++;
10833 if (*base_string == '(')
10834 parens_balanced--;
10835 }
10836 while (parens_balanced);
10837
10838 temp_string = base_string;
10839
10840 /* Skip past '(' and whitespace. */
10841 ++base_string;
10842 if (is_space_char (*base_string))
10843 ++base_string;
10844
10845 if (*base_string == ','
10846 || ((i.base_reg = parse_register (base_string, &end_op))
10847 != NULL))
10848 {
10849 displacement_string_end = temp_string;
10850
10851 i.types[this_operand].bitfield.baseindex = 1;
10852
10853 if (i.base_reg)
10854 {
10855 base_string = end_op;
10856 if (is_space_char (*base_string))
10857 ++base_string;
10858 }
10859
10860 /* There may be an index reg or scale factor here. */
10861 if (*base_string == ',')
10862 {
10863 ++base_string;
10864 if (is_space_char (*base_string))
10865 ++base_string;
10866
10867 if ((i.index_reg = parse_register (base_string, &end_op))
10868 != NULL)
10869 {
10870 base_string = end_op;
10871 if (is_space_char (*base_string))
10872 ++base_string;
10873 if (*base_string == ',')
10874 {
10875 ++base_string;
10876 if (is_space_char (*base_string))
10877 ++base_string;
10878 }
10879 else if (*base_string != ')')
10880 {
10881 as_bad (_("expecting `,' or `)' "
10882 "after index register in `%s'"),
10883 operand_string);
10884 return 0;
10885 }
10886 }
10887 else if (*base_string == REGISTER_PREFIX)
10888 {
10889 end_op = strchr (base_string, ',');
10890 if (end_op)
10891 *end_op = '\0';
10892 as_bad (_("bad register name `%s'"), base_string);
10893 return 0;
10894 }
10895
10896 /* Check for scale factor. */
10897 if (*base_string != ')')
10898 {
10899 char *end_scale = i386_scale (base_string);
10900
10901 if (!end_scale)
10902 return 0;
10903
10904 base_string = end_scale;
10905 if (is_space_char (*base_string))
10906 ++base_string;
10907 if (*base_string != ')')
10908 {
10909 as_bad (_("expecting `)' "
10910 "after scale factor in `%s'"),
10911 operand_string);
10912 return 0;
10913 }
10914 }
10915 else if (!i.index_reg)
10916 {
10917 as_bad (_("expecting index register or scale factor "
10918 "after `,'; got '%c'"),
10919 *base_string);
10920 return 0;
10921 }
10922 }
10923 else if (*base_string != ')')
10924 {
10925 as_bad (_("expecting `,' or `)' "
10926 "after base register in `%s'"),
10927 operand_string);
10928 return 0;
10929 }
10930 }
10931 else if (*base_string == REGISTER_PREFIX)
10932 {
10933 end_op = strchr (base_string, ',');
10934 if (end_op)
10935 *end_op = '\0';
10936 as_bad (_("bad register name `%s'"), base_string);
10937 return 0;
10938 }
10939 }
10940
10941 /* If there's an expression beginning the operand, parse it,
10942 assuming displacement_string_start and
10943 displacement_string_end are meaningful. */
10944 if (displacement_string_start != displacement_string_end)
10945 {
10946 if (!i386_displacement (displacement_string_start,
10947 displacement_string_end))
10948 return 0;
10949 }
10950
10951 /* Special case for (%dx) while doing input/output op. */
10952 if (i.base_reg
10953 && i.base_reg->reg_type.bitfield.instance == RegD
10954 && i.base_reg->reg_type.bitfield.word
10955 && i.index_reg == 0
10956 && i.log2_scale_factor == 0
10957 && i.seg[i.mem_operands] == 0
10958 && !operand_type_check (i.types[this_operand], disp))
10959 {
10960 i.types[this_operand] = i.base_reg->reg_type;
10961 return 1;
10962 }
10963
10964 if (i386_index_check (operand_string) == 0)
10965 return 0;
10966 i.flags[this_operand] |= Operand_Mem;
10967 if (i.mem_operands == 0)
10968 i.memop1_string = xstrdup (operand_string);
10969 i.mem_operands++;
10970 }
10971 else
10972 {
10973 /* It's not a memory operand; argh! */
10974 as_bad (_("invalid char %s beginning operand %d `%s'"),
10975 output_invalid (*op_string),
10976 this_operand + 1,
10977 op_string);
10978 return 0;
10979 }
10980 return 1; /* Normal return. */
10981 }
10982 \f
10983 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10984 that an rs_machine_dependent frag may reach. */
10985
10986 unsigned int
10987 i386_frag_max_var (fragS *frag)
10988 {
10989 /* The only relaxable frags are for jumps.
10990 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10991 gas_assert (frag->fr_type == rs_machine_dependent);
10992 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10993 }
10994
10995 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10996 static int
10997 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10998 {
10999 /* STT_GNU_IFUNC symbol must go through PLT. */
11000 if ((symbol_get_bfdsym (fr_symbol)->flags
11001 & BSF_GNU_INDIRECT_FUNCTION) != 0)
11002 return 0;
11003
11004 if (!S_IS_EXTERNAL (fr_symbol))
11005 /* Symbol may be weak or local. */
11006 return !S_IS_WEAK (fr_symbol);
11007
11008 /* Global symbols with non-default visibility can't be preempted. */
11009 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
11010 return 1;
11011
11012 if (fr_var != NO_RELOC)
11013 switch ((enum bfd_reloc_code_real) fr_var)
11014 {
11015 case BFD_RELOC_386_PLT32:
11016 case BFD_RELOC_X86_64_PLT32:
11017 /* Symbol with PLT relocation may be preempted. */
11018 return 0;
11019 default:
11020 abort ();
11021 }
11022
11023 /* Global symbols with default visibility in a shared library may be
11024 preempted by another definition. */
11025 return !shared;
11026 }
11027 #endif
11028
11029 /* Table 3-2. Macro-Fusible Instructions in Haswell Microarchitecture
11030 Note also work for Skylake and Cascadelake.
11031 ---------------------------------------------------------------------
11032 | JCC | ADD/SUB/CMP | INC/DEC | TEST/AND |
11033 | ------ | ----------- | ------- | -------- |
11034 | Jo | N | N | Y |
11035 | Jno | N | N | Y |
11036 | Jc/Jb | Y | N | Y |
11037 | Jae/Jnb | Y | N | Y |
11038 | Je/Jz | Y | Y | Y |
11039 | Jne/Jnz | Y | Y | Y |
11040 | Jna/Jbe | Y | N | Y |
11041 | Ja/Jnbe | Y | N | Y |
11042 | Js | N | N | Y |
11043 | Jns | N | N | Y |
11044 | Jp/Jpe | N | N | Y |
11045 | Jnp/Jpo | N | N | Y |
11046 | Jl/Jnge | Y | Y | Y |
11047 | Jge/Jnl | Y | Y | Y |
11048 | Jle/Jng | Y | Y | Y |
11049 | Jg/Jnle | Y | Y | Y |
11050 --------------------------------------------------------------------- */
11051 static int
11052 i386_macro_fusible_p (enum mf_cmp_kind mf_cmp, enum mf_jcc_kind mf_jcc)
11053 {
11054 if (mf_cmp == mf_cmp_alu_cmp)
11055 return ((mf_jcc >= mf_jcc_jc && mf_jcc <= mf_jcc_jna)
11056 || mf_jcc == mf_jcc_jl || mf_jcc == mf_jcc_jle);
11057 if (mf_cmp == mf_cmp_incdec)
11058 return (mf_jcc == mf_jcc_je || mf_jcc == mf_jcc_jl
11059 || mf_jcc == mf_jcc_jle);
11060 if (mf_cmp == mf_cmp_test_and)
11061 return 1;
11062 return 0;
11063 }
11064
11065 /* Return the next non-empty frag. */
11066
11067 static fragS *
11068 i386_next_non_empty_frag (fragS *fragP)
11069 {
11070 /* There may be a frag with a ".fill 0" when there is no room in
11071 the current frag for frag_grow in output_insn. */
11072 for (fragP = fragP->fr_next;
11073 (fragP != NULL
11074 && fragP->fr_type == rs_fill
11075 && fragP->fr_fix == 0);
11076 fragP = fragP->fr_next)
11077 ;
11078 return fragP;
11079 }
11080
11081 /* Return the next jcc frag after BRANCH_PADDING. */
11082
11083 static fragS *
11084 i386_next_fusible_jcc_frag (fragS *maybe_cmp_fragP, fragS *pad_fragP)
11085 {
11086 fragS *branch_fragP;
11087 if (!pad_fragP)
11088 return NULL;
11089
11090 if (pad_fragP->fr_type == rs_machine_dependent
11091 && (TYPE_FROM_RELAX_STATE (pad_fragP->fr_subtype)
11092 == BRANCH_PADDING))
11093 {
11094 branch_fragP = i386_next_non_empty_frag (pad_fragP);
11095 if (branch_fragP->fr_type != rs_machine_dependent)
11096 return NULL;
11097 if (TYPE_FROM_RELAX_STATE (branch_fragP->fr_subtype) == COND_JUMP
11098 && i386_macro_fusible_p (maybe_cmp_fragP->tc_frag_data.mf_type,
11099 pad_fragP->tc_frag_data.mf_type))
11100 return branch_fragP;
11101 }
11102
11103 return NULL;
11104 }
11105
11106 /* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
11107
11108 static void
11109 i386_classify_machine_dependent_frag (fragS *fragP)
11110 {
11111 fragS *cmp_fragP;
11112 fragS *pad_fragP;
11113 fragS *branch_fragP;
11114 fragS *next_fragP;
11115 unsigned int max_prefix_length;
11116
11117 if (fragP->tc_frag_data.classified)
11118 return;
11119
11120 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
11121 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
11122 for (next_fragP = fragP;
11123 next_fragP != NULL;
11124 next_fragP = next_fragP->fr_next)
11125 {
11126 next_fragP->tc_frag_data.classified = 1;
11127 if (next_fragP->fr_type == rs_machine_dependent)
11128 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
11129 {
11130 case BRANCH_PADDING:
11131 /* The BRANCH_PADDING frag must be followed by a branch
11132 frag. */
11133 branch_fragP = i386_next_non_empty_frag (next_fragP);
11134 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11135 break;
11136 case FUSED_JCC_PADDING:
11137 /* Check if this is a fused jcc:
11138 FUSED_JCC_PADDING
11139 CMP like instruction
11140 BRANCH_PADDING
11141 COND_JUMP
11142 */
11143 cmp_fragP = i386_next_non_empty_frag (next_fragP);
11144 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
11145 branch_fragP = i386_next_fusible_jcc_frag (next_fragP, pad_fragP);
11146 if (branch_fragP)
11147 {
11148 /* The BRANCH_PADDING frag is merged with the
11149 FUSED_JCC_PADDING frag. */
11150 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11151 /* CMP like instruction size. */
11152 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
11153 frag_wane (pad_fragP);
11154 /* Skip to branch_fragP. */
11155 next_fragP = branch_fragP;
11156 }
11157 else if (next_fragP->tc_frag_data.max_prefix_length)
11158 {
11159 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
11160 a fused jcc. */
11161 next_fragP->fr_subtype
11162 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
11163 next_fragP->tc_frag_data.max_bytes
11164 = next_fragP->tc_frag_data.max_prefix_length;
11165 /* This will be updated in the BRANCH_PREFIX scan. */
11166 next_fragP->tc_frag_data.max_prefix_length = 0;
11167 }
11168 else
11169 frag_wane (next_fragP);
11170 break;
11171 }
11172 }
11173
11174 /* Stop if there is no BRANCH_PREFIX. */
11175 if (!align_branch_prefix_size)
11176 return;
11177
11178 /* Scan for BRANCH_PREFIX. */
11179 for (; fragP != NULL; fragP = fragP->fr_next)
11180 {
11181 if (fragP->fr_type != rs_machine_dependent
11182 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11183 != BRANCH_PREFIX))
11184 continue;
11185
11186 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
11187 COND_JUMP_PREFIX. */
11188 max_prefix_length = 0;
11189 for (next_fragP = fragP;
11190 next_fragP != NULL;
11191 next_fragP = next_fragP->fr_next)
11192 {
11193 if (next_fragP->fr_type == rs_fill)
11194 /* Skip rs_fill frags. */
11195 continue;
11196 else if (next_fragP->fr_type != rs_machine_dependent)
11197 /* Stop for all other frags. */
11198 break;
11199
11200 /* rs_machine_dependent frags. */
11201 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11202 == BRANCH_PREFIX)
11203 {
11204 /* Count BRANCH_PREFIX frags. */
11205 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
11206 {
11207 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
11208 frag_wane (next_fragP);
11209 }
11210 else
11211 max_prefix_length
11212 += next_fragP->tc_frag_data.max_bytes;
11213 }
11214 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11215 == BRANCH_PADDING)
11216 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11217 == FUSED_JCC_PADDING))
11218 {
11219 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
11220 fragP->tc_frag_data.u.padding_fragP = next_fragP;
11221 break;
11222 }
11223 else
11224 /* Stop for other rs_machine_dependent frags. */
11225 break;
11226 }
11227
11228 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11229
11230 /* Skip to the next frag. */
11231 fragP = next_fragP;
11232 }
11233 }
11234
11235 /* Compute padding size for
11236
11237 FUSED_JCC_PADDING
11238 CMP like instruction
11239 BRANCH_PADDING
11240 COND_JUMP/UNCOND_JUMP
11241
11242 or
11243
11244 BRANCH_PADDING
11245 COND_JUMP/UNCOND_JUMP
11246 */
11247
11248 static int
11249 i386_branch_padding_size (fragS *fragP, offsetT address)
11250 {
11251 unsigned int offset, size, padding_size;
11252 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11253
11254 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11255 if (!address)
11256 address = fragP->fr_address;
11257 address += fragP->fr_fix;
11258
11259 /* CMP like instrunction size. */
11260 size = fragP->tc_frag_data.cmp_size;
11261
11262 /* The base size of the branch frag. */
11263 size += branch_fragP->fr_fix;
11264
11265 /* Add opcode and displacement bytes for the rs_machine_dependent
11266 branch frag. */
11267 if (branch_fragP->fr_type == rs_machine_dependent)
11268 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11269
11270 /* Check if branch is within boundary and doesn't end at the last
11271 byte. */
11272 offset = address & ((1U << align_branch_power) - 1);
11273 if ((offset + size) >= (1U << align_branch_power))
11274 /* Padding needed to avoid crossing boundary. */
11275 padding_size = (1U << align_branch_power) - offset;
11276 else
11277 /* No padding needed. */
11278 padding_size = 0;
11279
11280 /* The return value may be saved in tc_frag_data.length which is
11281 unsigned byte. */
11282 if (!fits_in_unsigned_byte (padding_size))
11283 abort ();
11284
11285 return padding_size;
11286 }
11287
11288 /* i386_generic_table_relax_frag()
11289
11290 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11291 grow/shrink padding to align branch frags. Hand others to
11292 relax_frag(). */
11293
11294 long
11295 i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11296 {
11297 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11298 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11299 {
11300 long padding_size = i386_branch_padding_size (fragP, 0);
11301 long grow = padding_size - fragP->tc_frag_data.length;
11302
11303 /* When the BRANCH_PREFIX frag is used, the computed address
11304 must match the actual address and there should be no padding. */
11305 if (fragP->tc_frag_data.padding_address
11306 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11307 || padding_size))
11308 abort ();
11309
11310 /* Update the padding size. */
11311 if (grow)
11312 fragP->tc_frag_data.length = padding_size;
11313
11314 return grow;
11315 }
11316 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11317 {
11318 fragS *padding_fragP, *next_fragP;
11319 long padding_size, left_size, last_size;
11320
11321 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11322 if (!padding_fragP)
11323 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11324 return (fragP->tc_frag_data.length
11325 - fragP->tc_frag_data.last_length);
11326
11327 /* Compute the relative address of the padding frag in the very
11328 first time where the BRANCH_PREFIX frag sizes are zero. */
11329 if (!fragP->tc_frag_data.padding_address)
11330 fragP->tc_frag_data.padding_address
11331 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11332
11333 /* First update the last length from the previous interation. */
11334 left_size = fragP->tc_frag_data.prefix_length;
11335 for (next_fragP = fragP;
11336 next_fragP != padding_fragP;
11337 next_fragP = next_fragP->fr_next)
11338 if (next_fragP->fr_type == rs_machine_dependent
11339 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11340 == BRANCH_PREFIX))
11341 {
11342 if (left_size)
11343 {
11344 int max = next_fragP->tc_frag_data.max_bytes;
11345 if (max)
11346 {
11347 int size;
11348 if (max > left_size)
11349 size = left_size;
11350 else
11351 size = max;
11352 left_size -= size;
11353 next_fragP->tc_frag_data.last_length = size;
11354 }
11355 }
11356 else
11357 next_fragP->tc_frag_data.last_length = 0;
11358 }
11359
11360 /* Check the padding size for the padding frag. */
11361 padding_size = i386_branch_padding_size
11362 (padding_fragP, (fragP->fr_address
11363 + fragP->tc_frag_data.padding_address));
11364
11365 last_size = fragP->tc_frag_data.prefix_length;
11366 /* Check if there is change from the last interation. */
11367 if (padding_size == last_size)
11368 {
11369 /* Update the expected address of the padding frag. */
11370 padding_fragP->tc_frag_data.padding_address
11371 = (fragP->fr_address + padding_size
11372 + fragP->tc_frag_data.padding_address);
11373 return 0;
11374 }
11375
11376 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11377 {
11378 /* No padding if there is no sufficient room. Clear the
11379 expected address of the padding frag. */
11380 padding_fragP->tc_frag_data.padding_address = 0;
11381 padding_size = 0;
11382 }
11383 else
11384 /* Store the expected address of the padding frag. */
11385 padding_fragP->tc_frag_data.padding_address
11386 = (fragP->fr_address + padding_size
11387 + fragP->tc_frag_data.padding_address);
11388
11389 fragP->tc_frag_data.prefix_length = padding_size;
11390
11391 /* Update the length for the current interation. */
11392 left_size = padding_size;
11393 for (next_fragP = fragP;
11394 next_fragP != padding_fragP;
11395 next_fragP = next_fragP->fr_next)
11396 if (next_fragP->fr_type == rs_machine_dependent
11397 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11398 == BRANCH_PREFIX))
11399 {
11400 if (left_size)
11401 {
11402 int max = next_fragP->tc_frag_data.max_bytes;
11403 if (max)
11404 {
11405 int size;
11406 if (max > left_size)
11407 size = left_size;
11408 else
11409 size = max;
11410 left_size -= size;
11411 next_fragP->tc_frag_data.length = size;
11412 }
11413 }
11414 else
11415 next_fragP->tc_frag_data.length = 0;
11416 }
11417
11418 return (fragP->tc_frag_data.length
11419 - fragP->tc_frag_data.last_length);
11420 }
11421 return relax_frag (segment, fragP, stretch);
11422 }
11423
11424 /* md_estimate_size_before_relax()
11425
11426 Called just before relax() for rs_machine_dependent frags. The x86
11427 assembler uses these frags to handle variable size jump
11428 instructions.
11429
11430 Any symbol that is now undefined will not become defined.
11431 Return the correct fr_subtype in the frag.
11432 Return the initial "guess for variable size of frag" to caller.
11433 The guess is actually the growth beyond the fixed part. Whatever
11434 we do to grow the fixed or variable part contributes to our
11435 returned value. */
11436
11437 int
11438 md_estimate_size_before_relax (fragS *fragP, segT segment)
11439 {
11440 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11441 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11442 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11443 {
11444 i386_classify_machine_dependent_frag (fragP);
11445 return fragP->tc_frag_data.length;
11446 }
11447
11448 /* We've already got fragP->fr_subtype right; all we have to do is
11449 check for un-relaxable symbols. On an ELF system, we can't relax
11450 an externally visible symbol, because it may be overridden by a
11451 shared library. */
11452 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
11453 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11454 || (IS_ELF
11455 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11456 fragP->fr_var))
11457 #endif
11458 #if defined (OBJ_COFF) && defined (TE_PE)
11459 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
11460 && S_IS_WEAK (fragP->fr_symbol))
11461 #endif
11462 )
11463 {
11464 /* Symbol is undefined in this segment, or we need to keep a
11465 reloc so that weak symbols can be overridden. */
11466 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
11467 enum bfd_reloc_code_real reloc_type;
11468 unsigned char *opcode;
11469 int old_fr_fix;
11470
11471 if (fragP->fr_var != NO_RELOC)
11472 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
11473 else if (size == 2)
11474 reloc_type = BFD_RELOC_16_PCREL;
11475 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11476 else if (need_plt32_p (fragP->fr_symbol))
11477 reloc_type = BFD_RELOC_X86_64_PLT32;
11478 #endif
11479 else
11480 reloc_type = BFD_RELOC_32_PCREL;
11481
11482 old_fr_fix = fragP->fr_fix;
11483 opcode = (unsigned char *) fragP->fr_opcode;
11484
11485 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
11486 {
11487 case UNCOND_JUMP:
11488 /* Make jmp (0xeb) a (d)word displacement jump. */
11489 opcode[0] = 0xe9;
11490 fragP->fr_fix += size;
11491 fix_new (fragP, old_fr_fix, size,
11492 fragP->fr_symbol,
11493 fragP->fr_offset, 1,
11494 reloc_type);
11495 break;
11496
11497 case COND_JUMP86:
11498 if (size == 2
11499 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
11500 {
11501 /* Negate the condition, and branch past an
11502 unconditional jump. */
11503 opcode[0] ^= 1;
11504 opcode[1] = 3;
11505 /* Insert an unconditional jump. */
11506 opcode[2] = 0xe9;
11507 /* We added two extra opcode bytes, and have a two byte
11508 offset. */
11509 fragP->fr_fix += 2 + 2;
11510 fix_new (fragP, old_fr_fix + 2, 2,
11511 fragP->fr_symbol,
11512 fragP->fr_offset, 1,
11513 reloc_type);
11514 break;
11515 }
11516 /* Fall through. */
11517
11518 case COND_JUMP:
11519 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11520 {
11521 fixS *fixP;
11522
11523 fragP->fr_fix += 1;
11524 fixP = fix_new (fragP, old_fr_fix, 1,
11525 fragP->fr_symbol,
11526 fragP->fr_offset, 1,
11527 BFD_RELOC_8_PCREL);
11528 fixP->fx_signed = 1;
11529 break;
11530 }
11531
11532 /* This changes the byte-displacement jump 0x7N
11533 to the (d)word-displacement jump 0x0f,0x8N. */
11534 opcode[1] = opcode[0] + 0x10;
11535 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11536 /* We've added an opcode byte. */
11537 fragP->fr_fix += 1 + size;
11538 fix_new (fragP, old_fr_fix + 1, size,
11539 fragP->fr_symbol,
11540 fragP->fr_offset, 1,
11541 reloc_type);
11542 break;
11543
11544 default:
11545 BAD_CASE (fragP->fr_subtype);
11546 break;
11547 }
11548 frag_wane (fragP);
11549 return fragP->fr_fix - old_fr_fix;
11550 }
11551
11552 /* Guess size depending on current relax state. Initially the relax
11553 state will correspond to a short jump and we return 1, because
11554 the variable part of the frag (the branch offset) is one byte
11555 long. However, we can relax a section more than once and in that
11556 case we must either set fr_subtype back to the unrelaxed state,
11557 or return the value for the appropriate branch. */
11558 return md_relax_table[fragP->fr_subtype].rlx_length;
11559 }
11560
11561 /* Called after relax() is finished.
11562
11563 In: Address of frag.
11564 fr_type == rs_machine_dependent.
11565 fr_subtype is what the address relaxed to.
11566
11567 Out: Any fixSs and constants are set up.
11568 Caller will turn frag into a ".space 0". */
11569
11570 void
11571 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11572 fragS *fragP)
11573 {
11574 unsigned char *opcode;
11575 unsigned char *where_to_put_displacement = NULL;
11576 offsetT target_address;
11577 offsetT opcode_address;
11578 unsigned int extension = 0;
11579 offsetT displacement_from_opcode_start;
11580
11581 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11582 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
11583 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11584 {
11585 /* Generate nop padding. */
11586 unsigned int size = fragP->tc_frag_data.length;
11587 if (size)
11588 {
11589 if (size > fragP->tc_frag_data.max_bytes)
11590 abort ();
11591
11592 if (flag_debug)
11593 {
11594 const char *msg;
11595 const char *branch = "branch";
11596 const char *prefix = "";
11597 fragS *padding_fragP;
11598 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11599 == BRANCH_PREFIX)
11600 {
11601 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11602 switch (fragP->tc_frag_data.default_prefix)
11603 {
11604 default:
11605 abort ();
11606 break;
11607 case CS_PREFIX_OPCODE:
11608 prefix = " cs";
11609 break;
11610 case DS_PREFIX_OPCODE:
11611 prefix = " ds";
11612 break;
11613 case ES_PREFIX_OPCODE:
11614 prefix = " es";
11615 break;
11616 case FS_PREFIX_OPCODE:
11617 prefix = " fs";
11618 break;
11619 case GS_PREFIX_OPCODE:
11620 prefix = " gs";
11621 break;
11622 case SS_PREFIX_OPCODE:
11623 prefix = " ss";
11624 break;
11625 }
11626 if (padding_fragP)
11627 msg = _("%s:%u: add %d%s at 0x%llx to align "
11628 "%s within %d-byte boundary\n");
11629 else
11630 msg = _("%s:%u: add additional %d%s at 0x%llx to "
11631 "align %s within %d-byte boundary\n");
11632 }
11633 else
11634 {
11635 padding_fragP = fragP;
11636 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
11637 "%s within %d-byte boundary\n");
11638 }
11639
11640 if (padding_fragP)
11641 switch (padding_fragP->tc_frag_data.branch_type)
11642 {
11643 case align_branch_jcc:
11644 branch = "jcc";
11645 break;
11646 case align_branch_fused:
11647 branch = "fused jcc";
11648 break;
11649 case align_branch_jmp:
11650 branch = "jmp";
11651 break;
11652 case align_branch_call:
11653 branch = "call";
11654 break;
11655 case align_branch_indirect:
11656 branch = "indiret branch";
11657 break;
11658 case align_branch_ret:
11659 branch = "ret";
11660 break;
11661 default:
11662 break;
11663 }
11664
11665 fprintf (stdout, msg,
11666 fragP->fr_file, fragP->fr_line, size, prefix,
11667 (long long) fragP->fr_address, branch,
11668 1 << align_branch_power);
11669 }
11670 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11671 memset (fragP->fr_opcode,
11672 fragP->tc_frag_data.default_prefix, size);
11673 else
11674 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
11675 size, 0);
11676 fragP->fr_fix += size;
11677 }
11678 return;
11679 }
11680
11681 opcode = (unsigned char *) fragP->fr_opcode;
11682
11683 /* Address we want to reach in file space. */
11684 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
11685
11686 /* Address opcode resides at in file space. */
11687 opcode_address = fragP->fr_address + fragP->fr_fix;
11688
11689 /* Displacement from opcode start to fill into instruction. */
11690 displacement_from_opcode_start = target_address - opcode_address;
11691
11692 if ((fragP->fr_subtype & BIG) == 0)
11693 {
11694 /* Don't have to change opcode. */
11695 extension = 1; /* 1 opcode + 1 displacement */
11696 where_to_put_displacement = &opcode[1];
11697 }
11698 else
11699 {
11700 if (no_cond_jump_promotion
11701 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
11702 as_warn_where (fragP->fr_file, fragP->fr_line,
11703 _("long jump required"));
11704
11705 switch (fragP->fr_subtype)
11706 {
11707 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
11708 extension = 4; /* 1 opcode + 4 displacement */
11709 opcode[0] = 0xe9;
11710 where_to_put_displacement = &opcode[1];
11711 break;
11712
11713 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
11714 extension = 2; /* 1 opcode + 2 displacement */
11715 opcode[0] = 0xe9;
11716 where_to_put_displacement = &opcode[1];
11717 break;
11718
11719 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
11720 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
11721 extension = 5; /* 2 opcode + 4 displacement */
11722 opcode[1] = opcode[0] + 0x10;
11723 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11724 where_to_put_displacement = &opcode[2];
11725 break;
11726
11727 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
11728 extension = 3; /* 2 opcode + 2 displacement */
11729 opcode[1] = opcode[0] + 0x10;
11730 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11731 where_to_put_displacement = &opcode[2];
11732 break;
11733
11734 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
11735 extension = 4;
11736 opcode[0] ^= 1;
11737 opcode[1] = 3;
11738 opcode[2] = 0xe9;
11739 where_to_put_displacement = &opcode[3];
11740 break;
11741
11742 default:
11743 BAD_CASE (fragP->fr_subtype);
11744 break;
11745 }
11746 }
11747
11748 /* If size if less then four we are sure that the operand fits,
11749 but if it's 4, then it could be that the displacement is larger
11750 then -/+ 2GB. */
11751 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
11752 && object_64bit
11753 && ((addressT) (displacement_from_opcode_start - extension
11754 + ((addressT) 1 << 31))
11755 > (((addressT) 2 << 31) - 1)))
11756 {
11757 as_bad_where (fragP->fr_file, fragP->fr_line,
11758 _("jump target out of range"));
11759 /* Make us emit 0. */
11760 displacement_from_opcode_start = extension;
11761 }
11762 /* Now put displacement after opcode. */
11763 md_number_to_chars ((char *) where_to_put_displacement,
11764 (valueT) (displacement_from_opcode_start - extension),
11765 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
11766 fragP->fr_fix += extension;
11767 }
11768 \f
11769 /* Apply a fixup (fixP) to segment data, once it has been determined
11770 by our caller that we have all the info we need to fix it up.
11771
11772 Parameter valP is the pointer to the value of the bits.
11773
11774 On the 386, immediates, displacements, and data pointers are all in
11775 the same (little-endian) format, so we don't need to care about which
11776 we are handling. */
11777
11778 void
11779 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
11780 {
11781 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
11782 valueT value = *valP;
11783
11784 #if !defined (TE_Mach)
11785 if (fixP->fx_pcrel)
11786 {
11787 switch (fixP->fx_r_type)
11788 {
11789 default:
11790 break;
11791
11792 case BFD_RELOC_64:
11793 fixP->fx_r_type = BFD_RELOC_64_PCREL;
11794 break;
11795 case BFD_RELOC_32:
11796 case BFD_RELOC_X86_64_32S:
11797 fixP->fx_r_type = BFD_RELOC_32_PCREL;
11798 break;
11799 case BFD_RELOC_16:
11800 fixP->fx_r_type = BFD_RELOC_16_PCREL;
11801 break;
11802 case BFD_RELOC_8:
11803 fixP->fx_r_type = BFD_RELOC_8_PCREL;
11804 break;
11805 }
11806 }
11807
11808 if (fixP->fx_addsy != NULL
11809 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
11810 || fixP->fx_r_type == BFD_RELOC_64_PCREL
11811 || fixP->fx_r_type == BFD_RELOC_16_PCREL
11812 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
11813 && !use_rela_relocations)
11814 {
11815 /* This is a hack. There should be a better way to handle this.
11816 This covers for the fact that bfd_install_relocation will
11817 subtract the current location (for partial_inplace, PC relative
11818 relocations); see more below. */
11819 #ifndef OBJ_AOUT
11820 if (IS_ELF
11821 #ifdef TE_PE
11822 || OUTPUT_FLAVOR == bfd_target_coff_flavour
11823 #endif
11824 )
11825 value += fixP->fx_where + fixP->fx_frag->fr_address;
11826 #endif
11827 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11828 if (IS_ELF)
11829 {
11830 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
11831
11832 if ((sym_seg == seg
11833 || (symbol_section_p (fixP->fx_addsy)
11834 && sym_seg != absolute_section))
11835 && !generic_force_reloc (fixP))
11836 {
11837 /* Yes, we add the values in twice. This is because
11838 bfd_install_relocation subtracts them out again. I think
11839 bfd_install_relocation is broken, but I don't dare change
11840 it. FIXME. */
11841 value += fixP->fx_where + fixP->fx_frag->fr_address;
11842 }
11843 }
11844 #endif
11845 #if defined (OBJ_COFF) && defined (TE_PE)
11846 /* For some reason, the PE format does not store a
11847 section address offset for a PC relative symbol. */
11848 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
11849 || S_IS_WEAK (fixP->fx_addsy))
11850 value += md_pcrel_from (fixP);
11851 #endif
11852 }
11853 #if defined (OBJ_COFF) && defined (TE_PE)
11854 if (fixP->fx_addsy != NULL
11855 && S_IS_WEAK (fixP->fx_addsy)
11856 /* PR 16858: Do not modify weak function references. */
11857 && ! fixP->fx_pcrel)
11858 {
11859 #if !defined (TE_PEP)
11860 /* For x86 PE weak function symbols are neither PC-relative
11861 nor do they set S_IS_FUNCTION. So the only reliable way
11862 to detect them is to check the flags of their containing
11863 section. */
11864 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
11865 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
11866 ;
11867 else
11868 #endif
11869 value -= S_GET_VALUE (fixP->fx_addsy);
11870 }
11871 #endif
11872
11873 /* Fix a few things - the dynamic linker expects certain values here,
11874 and we must not disappoint it. */
11875 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11876 if (IS_ELF && fixP->fx_addsy)
11877 switch (fixP->fx_r_type)
11878 {
11879 case BFD_RELOC_386_PLT32:
11880 case BFD_RELOC_X86_64_PLT32:
11881 /* Make the jump instruction point to the address of the operand.
11882 At runtime we merely add the offset to the actual PLT entry.
11883 NB: Subtract the offset size only for jump instructions. */
11884 if (fixP->fx_pcrel)
11885 value = -4;
11886 break;
11887
11888 case BFD_RELOC_386_TLS_GD:
11889 case BFD_RELOC_386_TLS_LDM:
11890 case BFD_RELOC_386_TLS_IE_32:
11891 case BFD_RELOC_386_TLS_IE:
11892 case BFD_RELOC_386_TLS_GOTIE:
11893 case BFD_RELOC_386_TLS_GOTDESC:
11894 case BFD_RELOC_X86_64_TLSGD:
11895 case BFD_RELOC_X86_64_TLSLD:
11896 case BFD_RELOC_X86_64_GOTTPOFF:
11897 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11898 value = 0; /* Fully resolved at runtime. No addend. */
11899 /* Fallthrough */
11900 case BFD_RELOC_386_TLS_LE:
11901 case BFD_RELOC_386_TLS_LDO_32:
11902 case BFD_RELOC_386_TLS_LE_32:
11903 case BFD_RELOC_X86_64_DTPOFF32:
11904 case BFD_RELOC_X86_64_DTPOFF64:
11905 case BFD_RELOC_X86_64_TPOFF32:
11906 case BFD_RELOC_X86_64_TPOFF64:
11907 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11908 break;
11909
11910 case BFD_RELOC_386_TLS_DESC_CALL:
11911 case BFD_RELOC_X86_64_TLSDESC_CALL:
11912 value = 0; /* Fully resolved at runtime. No addend. */
11913 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11914 fixP->fx_done = 0;
11915 return;
11916
11917 case BFD_RELOC_VTABLE_INHERIT:
11918 case BFD_RELOC_VTABLE_ENTRY:
11919 fixP->fx_done = 0;
11920 return;
11921
11922 default:
11923 break;
11924 }
11925 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
11926 *valP = value;
11927 #endif /* !defined (TE_Mach) */
11928
11929 /* Are we finished with this relocation now? */
11930 if (fixP->fx_addsy == NULL)
11931 fixP->fx_done = 1;
11932 #if defined (OBJ_COFF) && defined (TE_PE)
11933 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
11934 {
11935 fixP->fx_done = 0;
11936 /* Remember value for tc_gen_reloc. */
11937 fixP->fx_addnumber = value;
11938 /* Clear out the frag for now. */
11939 value = 0;
11940 }
11941 #endif
11942 else if (use_rela_relocations)
11943 {
11944 fixP->fx_no_overflow = 1;
11945 /* Remember value for tc_gen_reloc. */
11946 fixP->fx_addnumber = value;
11947 value = 0;
11948 }
11949
11950 md_number_to_chars (p, value, fixP->fx_size);
11951 }
11952 \f
11953 const char *
11954 md_atof (int type, char *litP, int *sizeP)
11955 {
11956 /* This outputs the LITTLENUMs in REVERSE order;
11957 in accord with the bigendian 386. */
11958 return ieee_md_atof (type, litP, sizeP, FALSE);
11959 }
11960 \f
11961 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
11962
11963 static char *
11964 output_invalid (int c)
11965 {
11966 if (ISPRINT (c))
11967 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11968 "'%c'", c);
11969 else
11970 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11971 "(0x%x)", (unsigned char) c);
11972 return output_invalid_buf;
11973 }
11974
11975 /* REG_STRING starts *before* REGISTER_PREFIX. */
11976
11977 static const reg_entry *
11978 parse_real_register (char *reg_string, char **end_op)
11979 {
11980 char *s = reg_string;
11981 char *p;
11982 char reg_name_given[MAX_REG_NAME_SIZE + 1];
11983 const reg_entry *r;
11984
11985 /* Skip possible REGISTER_PREFIX and possible whitespace. */
11986 if (*s == REGISTER_PREFIX)
11987 ++s;
11988
11989 if (is_space_char (*s))
11990 ++s;
11991
11992 p = reg_name_given;
11993 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
11994 {
11995 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
11996 return (const reg_entry *) NULL;
11997 s++;
11998 }
11999
12000 /* For naked regs, make sure that we are not dealing with an identifier.
12001 This prevents confusing an identifier like `eax_var' with register
12002 `eax'. */
12003 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
12004 return (const reg_entry *) NULL;
12005
12006 *end_op = s;
12007
12008 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
12009
12010 /* Handle floating point regs, allowing spaces in the (i) part. */
12011 if (r == i386_regtab /* %st is first entry of table */)
12012 {
12013 if (!cpu_arch_flags.bitfield.cpu8087
12014 && !cpu_arch_flags.bitfield.cpu287
12015 && !cpu_arch_flags.bitfield.cpu387)
12016 return (const reg_entry *) NULL;
12017
12018 if (is_space_char (*s))
12019 ++s;
12020 if (*s == '(')
12021 {
12022 ++s;
12023 if (is_space_char (*s))
12024 ++s;
12025 if (*s >= '0' && *s <= '7')
12026 {
12027 int fpr = *s - '0';
12028 ++s;
12029 if (is_space_char (*s))
12030 ++s;
12031 if (*s == ')')
12032 {
12033 *end_op = s + 1;
12034 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
12035 know (r);
12036 return r + fpr;
12037 }
12038 }
12039 /* We have "%st(" then garbage. */
12040 return (const reg_entry *) NULL;
12041 }
12042 }
12043
12044 if (r == NULL || allow_pseudo_reg)
12045 return r;
12046
12047 if (operand_type_all_zero (&r->reg_type))
12048 return (const reg_entry *) NULL;
12049
12050 if ((r->reg_type.bitfield.dword
12051 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
12052 || r->reg_type.bitfield.class == RegCR
12053 || r->reg_type.bitfield.class == RegDR
12054 || r->reg_type.bitfield.class == RegTR)
12055 && !cpu_arch_flags.bitfield.cpui386)
12056 return (const reg_entry *) NULL;
12057
12058 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
12059 return (const reg_entry *) NULL;
12060
12061 if (!cpu_arch_flags.bitfield.cpuavx512f)
12062 {
12063 if (r->reg_type.bitfield.zmmword
12064 || r->reg_type.bitfield.class == RegMask)
12065 return (const reg_entry *) NULL;
12066
12067 if (!cpu_arch_flags.bitfield.cpuavx)
12068 {
12069 if (r->reg_type.bitfield.ymmword)
12070 return (const reg_entry *) NULL;
12071
12072 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
12073 return (const reg_entry *) NULL;
12074 }
12075 }
12076
12077 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
12078 return (const reg_entry *) NULL;
12079
12080 /* Don't allow fake index register unless allow_index_reg isn't 0. */
12081 if (!allow_index_reg && r->reg_num == RegIZ)
12082 return (const reg_entry *) NULL;
12083
12084 /* Upper 16 vector registers are only available with VREX in 64bit
12085 mode, and require EVEX encoding. */
12086 if (r->reg_flags & RegVRex)
12087 {
12088 if (!cpu_arch_flags.bitfield.cpuavx512f
12089 || flag_code != CODE_64BIT)
12090 return (const reg_entry *) NULL;
12091
12092 i.vec_encoding = vex_encoding_evex;
12093 }
12094
12095 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
12096 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
12097 && flag_code != CODE_64BIT)
12098 return (const reg_entry *) NULL;
12099
12100 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
12101 && !intel_syntax)
12102 return (const reg_entry *) NULL;
12103
12104 return r;
12105 }
12106
12107 /* REG_STRING starts *before* REGISTER_PREFIX. */
12108
12109 static const reg_entry *
12110 parse_register (char *reg_string, char **end_op)
12111 {
12112 const reg_entry *r;
12113
12114 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
12115 r = parse_real_register (reg_string, end_op);
12116 else
12117 r = NULL;
12118 if (!r)
12119 {
12120 char *save = input_line_pointer;
12121 char c;
12122 symbolS *symbolP;
12123
12124 input_line_pointer = reg_string;
12125 c = get_symbol_name (&reg_string);
12126 symbolP = symbol_find (reg_string);
12127 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
12128 {
12129 const expressionS *e = symbol_get_value_expression (symbolP);
12130
12131 know (e->X_op == O_register);
12132 know (e->X_add_number >= 0
12133 && (valueT) e->X_add_number < i386_regtab_size);
12134 r = i386_regtab + e->X_add_number;
12135 if ((r->reg_flags & RegVRex))
12136 i.vec_encoding = vex_encoding_evex;
12137 *end_op = input_line_pointer;
12138 }
12139 *input_line_pointer = c;
12140 input_line_pointer = save;
12141 }
12142 return r;
12143 }
12144
12145 int
12146 i386_parse_name (char *name, expressionS *e, char *nextcharP)
12147 {
12148 const reg_entry *r;
12149 char *end = input_line_pointer;
12150
12151 *end = *nextcharP;
12152 r = parse_register (name, &input_line_pointer);
12153 if (r && end <= input_line_pointer)
12154 {
12155 *nextcharP = *input_line_pointer;
12156 *input_line_pointer = 0;
12157 e->X_op = O_register;
12158 e->X_add_number = r - i386_regtab;
12159 return 1;
12160 }
12161 input_line_pointer = end;
12162 *end = 0;
12163 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
12164 }
12165
12166 void
12167 md_operand (expressionS *e)
12168 {
12169 char *end;
12170 const reg_entry *r;
12171
12172 switch (*input_line_pointer)
12173 {
12174 case REGISTER_PREFIX:
12175 r = parse_real_register (input_line_pointer, &end);
12176 if (r)
12177 {
12178 e->X_op = O_register;
12179 e->X_add_number = r - i386_regtab;
12180 input_line_pointer = end;
12181 }
12182 break;
12183
12184 case '[':
12185 gas_assert (intel_syntax);
12186 end = input_line_pointer++;
12187 expression (e);
12188 if (*input_line_pointer == ']')
12189 {
12190 ++input_line_pointer;
12191 e->X_op_symbol = make_expr_symbol (e);
12192 e->X_add_symbol = NULL;
12193 e->X_add_number = 0;
12194 e->X_op = O_index;
12195 }
12196 else
12197 {
12198 e->X_op = O_absent;
12199 input_line_pointer = end;
12200 }
12201 break;
12202 }
12203 }
12204
12205 \f
12206 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12207 const char *md_shortopts = "kVQ:sqnO::";
12208 #else
12209 const char *md_shortopts = "qnO::";
12210 #endif
12211
12212 #define OPTION_32 (OPTION_MD_BASE + 0)
12213 #define OPTION_64 (OPTION_MD_BASE + 1)
12214 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
12215 #define OPTION_MARCH (OPTION_MD_BASE + 3)
12216 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
12217 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
12218 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
12219 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
12220 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
12221 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
12222 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
12223 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
12224 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12225 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12226 #define OPTION_X32 (OPTION_MD_BASE + 14)
12227 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
12228 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12229 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
12230 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
12231 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
12232 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
12233 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
12234 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12235 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
12236 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
12237 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
12238 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
12239 #define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12240 #define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12241 #define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
12242 #define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
12243
12244 struct option md_longopts[] =
12245 {
12246 {"32", no_argument, NULL, OPTION_32},
12247 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12248 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12249 {"64", no_argument, NULL, OPTION_64},
12250 #endif
12251 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12252 {"x32", no_argument, NULL, OPTION_X32},
12253 {"mshared", no_argument, NULL, OPTION_MSHARED},
12254 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
12255 #endif
12256 {"divide", no_argument, NULL, OPTION_DIVIDE},
12257 {"march", required_argument, NULL, OPTION_MARCH},
12258 {"mtune", required_argument, NULL, OPTION_MTUNE},
12259 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12260 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12261 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12262 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
12263 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
12264 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
12265 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
12266 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
12267 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
12268 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
12269 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12270 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
12271 # if defined (TE_PE) || defined (TE_PEP)
12272 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12273 #endif
12274 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
12275 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
12276 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
12277 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
12278 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12279 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12280 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
12281 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
12282 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12283 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
12284 {NULL, no_argument, NULL, 0}
12285 };
12286 size_t md_longopts_size = sizeof (md_longopts);
12287
12288 int
12289 md_parse_option (int c, const char *arg)
12290 {
12291 unsigned int j;
12292 char *arch, *next, *saved, *type;
12293
12294 switch (c)
12295 {
12296 case 'n':
12297 optimize_align_code = 0;
12298 break;
12299
12300 case 'q':
12301 quiet_warnings = 1;
12302 break;
12303
12304 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12305 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12306 should be emitted or not. FIXME: Not implemented. */
12307 case 'Q':
12308 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12309 return 0;
12310 break;
12311
12312 /* -V: SVR4 argument to print version ID. */
12313 case 'V':
12314 print_version_id ();
12315 break;
12316
12317 /* -k: Ignore for FreeBSD compatibility. */
12318 case 'k':
12319 break;
12320
12321 case 's':
12322 /* -s: On i386 Solaris, this tells the native assembler to use
12323 .stab instead of .stab.excl. We always use .stab anyhow. */
12324 break;
12325
12326 case OPTION_MSHARED:
12327 shared = 1;
12328 break;
12329
12330 case OPTION_X86_USED_NOTE:
12331 if (strcasecmp (arg, "yes") == 0)
12332 x86_used_note = 1;
12333 else if (strcasecmp (arg, "no") == 0)
12334 x86_used_note = 0;
12335 else
12336 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12337 break;
12338
12339
12340 #endif
12341 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12342 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12343 case OPTION_64:
12344 {
12345 const char **list, **l;
12346
12347 list = bfd_target_list ();
12348 for (l = list; *l != NULL; l++)
12349 if (CONST_STRNEQ (*l, "elf64-x86-64")
12350 || strcmp (*l, "coff-x86-64") == 0
12351 || strcmp (*l, "pe-x86-64") == 0
12352 || strcmp (*l, "pei-x86-64") == 0
12353 || strcmp (*l, "mach-o-x86-64") == 0)
12354 {
12355 default_arch = "x86_64";
12356 break;
12357 }
12358 if (*l == NULL)
12359 as_fatal (_("no compiled in support for x86_64"));
12360 free (list);
12361 }
12362 break;
12363 #endif
12364
12365 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12366 case OPTION_X32:
12367 if (IS_ELF)
12368 {
12369 const char **list, **l;
12370
12371 list = bfd_target_list ();
12372 for (l = list; *l != NULL; l++)
12373 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12374 {
12375 default_arch = "x86_64:32";
12376 break;
12377 }
12378 if (*l == NULL)
12379 as_fatal (_("no compiled in support for 32bit x86_64"));
12380 free (list);
12381 }
12382 else
12383 as_fatal (_("32bit x86_64 is only supported for ELF"));
12384 break;
12385 #endif
12386
12387 case OPTION_32:
12388 default_arch = "i386";
12389 break;
12390
12391 case OPTION_DIVIDE:
12392 #ifdef SVR4_COMMENT_CHARS
12393 {
12394 char *n, *t;
12395 const char *s;
12396
12397 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
12398 t = n;
12399 for (s = i386_comment_chars; *s != '\0'; s++)
12400 if (*s != '/')
12401 *t++ = *s;
12402 *t = '\0';
12403 i386_comment_chars = n;
12404 }
12405 #endif
12406 break;
12407
12408 case OPTION_MARCH:
12409 saved = xstrdup (arg);
12410 arch = saved;
12411 /* Allow -march=+nosse. */
12412 if (*arch == '+')
12413 arch++;
12414 do
12415 {
12416 if (*arch == '.')
12417 as_fatal (_("invalid -march= option: `%s'"), arg);
12418 next = strchr (arch, '+');
12419 if (next)
12420 *next++ = '\0';
12421 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12422 {
12423 if (strcmp (arch, cpu_arch [j].name) == 0)
12424 {
12425 /* Processor. */
12426 if (! cpu_arch[j].flags.bitfield.cpui386)
12427 continue;
12428
12429 cpu_arch_name = cpu_arch[j].name;
12430 cpu_sub_arch_name = NULL;
12431 cpu_arch_flags = cpu_arch[j].flags;
12432 cpu_arch_isa = cpu_arch[j].type;
12433 cpu_arch_isa_flags = cpu_arch[j].flags;
12434 if (!cpu_arch_tune_set)
12435 {
12436 cpu_arch_tune = cpu_arch_isa;
12437 cpu_arch_tune_flags = cpu_arch_isa_flags;
12438 }
12439 break;
12440 }
12441 else if (*cpu_arch [j].name == '.'
12442 && strcmp (arch, cpu_arch [j].name + 1) == 0)
12443 {
12444 /* ISA extension. */
12445 i386_cpu_flags flags;
12446
12447 flags = cpu_flags_or (cpu_arch_flags,
12448 cpu_arch[j].flags);
12449
12450 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12451 {
12452 if (cpu_sub_arch_name)
12453 {
12454 char *name = cpu_sub_arch_name;
12455 cpu_sub_arch_name = concat (name,
12456 cpu_arch[j].name,
12457 (const char *) NULL);
12458 free (name);
12459 }
12460 else
12461 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
12462 cpu_arch_flags = flags;
12463 cpu_arch_isa_flags = flags;
12464 }
12465 else
12466 cpu_arch_isa_flags
12467 = cpu_flags_or (cpu_arch_isa_flags,
12468 cpu_arch[j].flags);
12469 break;
12470 }
12471 }
12472
12473 if (j >= ARRAY_SIZE (cpu_arch))
12474 {
12475 /* Disable an ISA extension. */
12476 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12477 if (strcmp (arch, cpu_noarch [j].name) == 0)
12478 {
12479 i386_cpu_flags flags;
12480
12481 flags = cpu_flags_and_not (cpu_arch_flags,
12482 cpu_noarch[j].flags);
12483 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12484 {
12485 if (cpu_sub_arch_name)
12486 {
12487 char *name = cpu_sub_arch_name;
12488 cpu_sub_arch_name = concat (arch,
12489 (const char *) NULL);
12490 free (name);
12491 }
12492 else
12493 cpu_sub_arch_name = xstrdup (arch);
12494 cpu_arch_flags = flags;
12495 cpu_arch_isa_flags = flags;
12496 }
12497 break;
12498 }
12499
12500 if (j >= ARRAY_SIZE (cpu_noarch))
12501 j = ARRAY_SIZE (cpu_arch);
12502 }
12503
12504 if (j >= ARRAY_SIZE (cpu_arch))
12505 as_fatal (_("invalid -march= option: `%s'"), arg);
12506
12507 arch = next;
12508 }
12509 while (next != NULL);
12510 free (saved);
12511 break;
12512
12513 case OPTION_MTUNE:
12514 if (*arg == '.')
12515 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12516 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12517 {
12518 if (strcmp (arg, cpu_arch [j].name) == 0)
12519 {
12520 cpu_arch_tune_set = 1;
12521 cpu_arch_tune = cpu_arch [j].type;
12522 cpu_arch_tune_flags = cpu_arch[j].flags;
12523 break;
12524 }
12525 }
12526 if (j >= ARRAY_SIZE (cpu_arch))
12527 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12528 break;
12529
12530 case OPTION_MMNEMONIC:
12531 if (strcasecmp (arg, "att") == 0)
12532 intel_mnemonic = 0;
12533 else if (strcasecmp (arg, "intel") == 0)
12534 intel_mnemonic = 1;
12535 else
12536 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
12537 break;
12538
12539 case OPTION_MSYNTAX:
12540 if (strcasecmp (arg, "att") == 0)
12541 intel_syntax = 0;
12542 else if (strcasecmp (arg, "intel") == 0)
12543 intel_syntax = 1;
12544 else
12545 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
12546 break;
12547
12548 case OPTION_MINDEX_REG:
12549 allow_index_reg = 1;
12550 break;
12551
12552 case OPTION_MNAKED_REG:
12553 allow_naked_reg = 1;
12554 break;
12555
12556 case OPTION_MSSE2AVX:
12557 sse2avx = 1;
12558 break;
12559
12560 case OPTION_MSSE_CHECK:
12561 if (strcasecmp (arg, "error") == 0)
12562 sse_check = check_error;
12563 else if (strcasecmp (arg, "warning") == 0)
12564 sse_check = check_warning;
12565 else if (strcasecmp (arg, "none") == 0)
12566 sse_check = check_none;
12567 else
12568 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
12569 break;
12570
12571 case OPTION_MOPERAND_CHECK:
12572 if (strcasecmp (arg, "error") == 0)
12573 operand_check = check_error;
12574 else if (strcasecmp (arg, "warning") == 0)
12575 operand_check = check_warning;
12576 else if (strcasecmp (arg, "none") == 0)
12577 operand_check = check_none;
12578 else
12579 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
12580 break;
12581
12582 case OPTION_MAVXSCALAR:
12583 if (strcasecmp (arg, "128") == 0)
12584 avxscalar = vex128;
12585 else if (strcasecmp (arg, "256") == 0)
12586 avxscalar = vex256;
12587 else
12588 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
12589 break;
12590
12591 case OPTION_MVEXWIG:
12592 if (strcmp (arg, "0") == 0)
12593 vexwig = vexw0;
12594 else if (strcmp (arg, "1") == 0)
12595 vexwig = vexw1;
12596 else
12597 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
12598 break;
12599
12600 case OPTION_MADD_BND_PREFIX:
12601 add_bnd_prefix = 1;
12602 break;
12603
12604 case OPTION_MEVEXLIG:
12605 if (strcmp (arg, "128") == 0)
12606 evexlig = evexl128;
12607 else if (strcmp (arg, "256") == 0)
12608 evexlig = evexl256;
12609 else if (strcmp (arg, "512") == 0)
12610 evexlig = evexl512;
12611 else
12612 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
12613 break;
12614
12615 case OPTION_MEVEXRCIG:
12616 if (strcmp (arg, "rne") == 0)
12617 evexrcig = rne;
12618 else if (strcmp (arg, "rd") == 0)
12619 evexrcig = rd;
12620 else if (strcmp (arg, "ru") == 0)
12621 evexrcig = ru;
12622 else if (strcmp (arg, "rz") == 0)
12623 evexrcig = rz;
12624 else
12625 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
12626 break;
12627
12628 case OPTION_MEVEXWIG:
12629 if (strcmp (arg, "0") == 0)
12630 evexwig = evexw0;
12631 else if (strcmp (arg, "1") == 0)
12632 evexwig = evexw1;
12633 else
12634 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
12635 break;
12636
12637 # if defined (TE_PE) || defined (TE_PEP)
12638 case OPTION_MBIG_OBJ:
12639 use_big_obj = 1;
12640 break;
12641 #endif
12642
12643 case OPTION_MOMIT_LOCK_PREFIX:
12644 if (strcasecmp (arg, "yes") == 0)
12645 omit_lock_prefix = 1;
12646 else if (strcasecmp (arg, "no") == 0)
12647 omit_lock_prefix = 0;
12648 else
12649 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
12650 break;
12651
12652 case OPTION_MFENCE_AS_LOCK_ADD:
12653 if (strcasecmp (arg, "yes") == 0)
12654 avoid_fence = 1;
12655 else if (strcasecmp (arg, "no") == 0)
12656 avoid_fence = 0;
12657 else
12658 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
12659 break;
12660
12661 case OPTION_MRELAX_RELOCATIONS:
12662 if (strcasecmp (arg, "yes") == 0)
12663 generate_relax_relocations = 1;
12664 else if (strcasecmp (arg, "no") == 0)
12665 generate_relax_relocations = 0;
12666 else
12667 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
12668 break;
12669
12670 case OPTION_MALIGN_BRANCH_BOUNDARY:
12671 {
12672 char *end;
12673 long int align = strtoul (arg, &end, 0);
12674 if (*end == '\0')
12675 {
12676 if (align == 0)
12677 {
12678 align_branch_power = 0;
12679 break;
12680 }
12681 else if (align >= 16)
12682 {
12683 int align_power;
12684 for (align_power = 0;
12685 (align & 1) == 0;
12686 align >>= 1, align_power++)
12687 continue;
12688 /* Limit alignment power to 31. */
12689 if (align == 1 && align_power < 32)
12690 {
12691 align_branch_power = align_power;
12692 break;
12693 }
12694 }
12695 }
12696 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
12697 }
12698 break;
12699
12700 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
12701 {
12702 char *end;
12703 int align = strtoul (arg, &end, 0);
12704 /* Some processors only support 5 prefixes. */
12705 if (*end == '\0' && align >= 0 && align < 6)
12706 {
12707 align_branch_prefix_size = align;
12708 break;
12709 }
12710 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
12711 arg);
12712 }
12713 break;
12714
12715 case OPTION_MALIGN_BRANCH:
12716 align_branch = 0;
12717 saved = xstrdup (arg);
12718 type = saved;
12719 do
12720 {
12721 next = strchr (type, '+');
12722 if (next)
12723 *next++ = '\0';
12724 if (strcasecmp (type, "jcc") == 0)
12725 align_branch |= align_branch_jcc_bit;
12726 else if (strcasecmp (type, "fused") == 0)
12727 align_branch |= align_branch_fused_bit;
12728 else if (strcasecmp (type, "jmp") == 0)
12729 align_branch |= align_branch_jmp_bit;
12730 else if (strcasecmp (type, "call") == 0)
12731 align_branch |= align_branch_call_bit;
12732 else if (strcasecmp (type, "ret") == 0)
12733 align_branch |= align_branch_ret_bit;
12734 else if (strcasecmp (type, "indirect") == 0)
12735 align_branch |= align_branch_indirect_bit;
12736 else
12737 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
12738 type = next;
12739 }
12740 while (next != NULL);
12741 free (saved);
12742 break;
12743
12744 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
12745 align_branch_power = 5;
12746 align_branch_prefix_size = 5;
12747 align_branch = (align_branch_jcc_bit
12748 | align_branch_fused_bit
12749 | align_branch_jmp_bit);
12750 break;
12751
12752 case OPTION_MAMD64:
12753 isa64 = amd64;
12754 break;
12755
12756 case OPTION_MINTEL64:
12757 isa64 = intel64;
12758 break;
12759
12760 case 'O':
12761 if (arg == NULL)
12762 {
12763 optimize = 1;
12764 /* Turn off -Os. */
12765 optimize_for_space = 0;
12766 }
12767 else if (*arg == 's')
12768 {
12769 optimize_for_space = 1;
12770 /* Turn on all encoding optimizations. */
12771 optimize = INT_MAX;
12772 }
12773 else
12774 {
12775 optimize = atoi (arg);
12776 /* Turn off -Os. */
12777 optimize_for_space = 0;
12778 }
12779 break;
12780
12781 default:
12782 return 0;
12783 }
12784 return 1;
12785 }
12786
12787 #define MESSAGE_TEMPLATE \
12788 " "
12789
12790 static char *
12791 output_message (FILE *stream, char *p, char *message, char *start,
12792 int *left_p, const char *name, int len)
12793 {
12794 int size = sizeof (MESSAGE_TEMPLATE);
12795 int left = *left_p;
12796
12797 /* Reserve 2 spaces for ", " or ",\0" */
12798 left -= len + 2;
12799
12800 /* Check if there is any room. */
12801 if (left >= 0)
12802 {
12803 if (p != start)
12804 {
12805 *p++ = ',';
12806 *p++ = ' ';
12807 }
12808 p = mempcpy (p, name, len);
12809 }
12810 else
12811 {
12812 /* Output the current message now and start a new one. */
12813 *p++ = ',';
12814 *p = '\0';
12815 fprintf (stream, "%s\n", message);
12816 p = start;
12817 left = size - (start - message) - len - 2;
12818
12819 gas_assert (left >= 0);
12820
12821 p = mempcpy (p, name, len);
12822 }
12823
12824 *left_p = left;
12825 return p;
12826 }
12827
12828 static void
12829 show_arch (FILE *stream, int ext, int check)
12830 {
12831 static char message[] = MESSAGE_TEMPLATE;
12832 char *start = message + 27;
12833 char *p;
12834 int size = sizeof (MESSAGE_TEMPLATE);
12835 int left;
12836 const char *name;
12837 int len;
12838 unsigned int j;
12839
12840 p = start;
12841 left = size - (start - message);
12842 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12843 {
12844 /* Should it be skipped? */
12845 if (cpu_arch [j].skip)
12846 continue;
12847
12848 name = cpu_arch [j].name;
12849 len = cpu_arch [j].len;
12850 if (*name == '.')
12851 {
12852 /* It is an extension. Skip if we aren't asked to show it. */
12853 if (ext)
12854 {
12855 name++;
12856 len--;
12857 }
12858 else
12859 continue;
12860 }
12861 else if (ext)
12862 {
12863 /* It is an processor. Skip if we show only extension. */
12864 continue;
12865 }
12866 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
12867 {
12868 /* It is an impossible processor - skip. */
12869 continue;
12870 }
12871
12872 p = output_message (stream, p, message, start, &left, name, len);
12873 }
12874
12875 /* Display disabled extensions. */
12876 if (ext)
12877 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12878 {
12879 name = cpu_noarch [j].name;
12880 len = cpu_noarch [j].len;
12881 p = output_message (stream, p, message, start, &left, name,
12882 len);
12883 }
12884
12885 *p = '\0';
12886 fprintf (stream, "%s\n", message);
12887 }
12888
12889 void
12890 md_show_usage (FILE *stream)
12891 {
12892 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12893 fprintf (stream, _("\
12894 -Qy, -Qn ignored\n\
12895 -V print assembler version number\n\
12896 -k ignored\n"));
12897 #endif
12898 fprintf (stream, _("\
12899 -n Do not optimize code alignment\n\
12900 -q quieten some warnings\n"));
12901 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12902 fprintf (stream, _("\
12903 -s ignored\n"));
12904 #endif
12905 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12906 || defined (TE_PE) || defined (TE_PEP))
12907 fprintf (stream, _("\
12908 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
12909 #endif
12910 #ifdef SVR4_COMMENT_CHARS
12911 fprintf (stream, _("\
12912 --divide do not treat `/' as a comment character\n"));
12913 #else
12914 fprintf (stream, _("\
12915 --divide ignored\n"));
12916 #endif
12917 fprintf (stream, _("\
12918 -march=CPU[,+EXTENSION...]\n\
12919 generate code for CPU and EXTENSION, CPU is one of:\n"));
12920 show_arch (stream, 0, 1);
12921 fprintf (stream, _("\
12922 EXTENSION is combination of:\n"));
12923 show_arch (stream, 1, 0);
12924 fprintf (stream, _("\
12925 -mtune=CPU optimize for CPU, CPU is one of:\n"));
12926 show_arch (stream, 0, 0);
12927 fprintf (stream, _("\
12928 -msse2avx encode SSE instructions with VEX prefix\n"));
12929 fprintf (stream, _("\
12930 -msse-check=[none|error|warning] (default: warning)\n\
12931 check SSE instructions\n"));
12932 fprintf (stream, _("\
12933 -moperand-check=[none|error|warning] (default: warning)\n\
12934 check operand combinations for validity\n"));
12935 fprintf (stream, _("\
12936 -mavxscalar=[128|256] (default: 128)\n\
12937 encode scalar AVX instructions with specific vector\n\
12938 length\n"));
12939 fprintf (stream, _("\
12940 -mvexwig=[0|1] (default: 0)\n\
12941 encode VEX instructions with specific VEX.W value\n\
12942 for VEX.W bit ignored instructions\n"));
12943 fprintf (stream, _("\
12944 -mevexlig=[128|256|512] (default: 128)\n\
12945 encode scalar EVEX instructions with specific vector\n\
12946 length\n"));
12947 fprintf (stream, _("\
12948 -mevexwig=[0|1] (default: 0)\n\
12949 encode EVEX instructions with specific EVEX.W value\n\
12950 for EVEX.W bit ignored instructions\n"));
12951 fprintf (stream, _("\
12952 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
12953 encode EVEX instructions with specific EVEX.RC value\n\
12954 for SAE-only ignored instructions\n"));
12955 fprintf (stream, _("\
12956 -mmnemonic=[att|intel] "));
12957 if (SYSV386_COMPAT)
12958 fprintf (stream, _("(default: att)\n"));
12959 else
12960 fprintf (stream, _("(default: intel)\n"));
12961 fprintf (stream, _("\
12962 use AT&T/Intel mnemonic\n"));
12963 fprintf (stream, _("\
12964 -msyntax=[att|intel] (default: att)\n\
12965 use AT&T/Intel syntax\n"));
12966 fprintf (stream, _("\
12967 -mindex-reg support pseudo index registers\n"));
12968 fprintf (stream, _("\
12969 -mnaked-reg don't require `%%' prefix for registers\n"));
12970 fprintf (stream, _("\
12971 -madd-bnd-prefix add BND prefix for all valid branches\n"));
12972 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12973 fprintf (stream, _("\
12974 -mshared disable branch optimization for shared code\n"));
12975 fprintf (stream, _("\
12976 -mx86-used-note=[no|yes] "));
12977 if (DEFAULT_X86_USED_NOTE)
12978 fprintf (stream, _("(default: yes)\n"));
12979 else
12980 fprintf (stream, _("(default: no)\n"));
12981 fprintf (stream, _("\
12982 generate x86 used ISA and feature properties\n"));
12983 #endif
12984 #if defined (TE_PE) || defined (TE_PEP)
12985 fprintf (stream, _("\
12986 -mbig-obj generate big object files\n"));
12987 #endif
12988 fprintf (stream, _("\
12989 -momit-lock-prefix=[no|yes] (default: no)\n\
12990 strip all lock prefixes\n"));
12991 fprintf (stream, _("\
12992 -mfence-as-lock-add=[no|yes] (default: no)\n\
12993 encode lfence, mfence and sfence as\n\
12994 lock addl $0x0, (%%{re}sp)\n"));
12995 fprintf (stream, _("\
12996 -mrelax-relocations=[no|yes] "));
12997 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
12998 fprintf (stream, _("(default: yes)\n"));
12999 else
13000 fprintf (stream, _("(default: no)\n"));
13001 fprintf (stream, _("\
13002 generate relax relocations\n"));
13003 fprintf (stream, _("\
13004 -malign-branch-boundary=NUM (default: 0)\n\
13005 align branches within NUM byte boundary\n"));
13006 fprintf (stream, _("\
13007 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
13008 TYPE is combination of jcc, fused, jmp, call, ret,\n\
13009 indirect\n\
13010 specify types of branches to align\n"));
13011 fprintf (stream, _("\
13012 -malign-branch-prefix-size=NUM (default: 5)\n\
13013 align branches with NUM prefixes per instruction\n"));
13014 fprintf (stream, _("\
13015 -mbranches-within-32B-boundaries\n\
13016 align branches within 32 byte boundary\n"));
13017 fprintf (stream, _("\
13018 -mamd64 accept only AMD64 ISA [default]\n"));
13019 fprintf (stream, _("\
13020 -mintel64 accept only Intel64 ISA\n"));
13021 }
13022
13023 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
13024 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
13025 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
13026
13027 /* Pick the target format to use. */
13028
13029 const char *
13030 i386_target_format (void)
13031 {
13032 if (!strncmp (default_arch, "x86_64", 6))
13033 {
13034 update_code_flag (CODE_64BIT, 1);
13035 if (default_arch[6] == '\0')
13036 x86_elf_abi = X86_64_ABI;
13037 else
13038 x86_elf_abi = X86_64_X32_ABI;
13039 }
13040 else if (!strcmp (default_arch, "i386"))
13041 update_code_flag (CODE_32BIT, 1);
13042 else if (!strcmp (default_arch, "iamcu"))
13043 {
13044 update_code_flag (CODE_32BIT, 1);
13045 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
13046 {
13047 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
13048 cpu_arch_name = "iamcu";
13049 cpu_sub_arch_name = NULL;
13050 cpu_arch_flags = iamcu_flags;
13051 cpu_arch_isa = PROCESSOR_IAMCU;
13052 cpu_arch_isa_flags = iamcu_flags;
13053 if (!cpu_arch_tune_set)
13054 {
13055 cpu_arch_tune = cpu_arch_isa;
13056 cpu_arch_tune_flags = cpu_arch_isa_flags;
13057 }
13058 }
13059 else if (cpu_arch_isa != PROCESSOR_IAMCU)
13060 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
13061 cpu_arch_name);
13062 }
13063 else
13064 as_fatal (_("unknown architecture"));
13065
13066 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
13067 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13068 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
13069 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13070
13071 switch (OUTPUT_FLAVOR)
13072 {
13073 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
13074 case bfd_target_aout_flavour:
13075 return AOUT_TARGET_FORMAT;
13076 #endif
13077 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
13078 # if defined (TE_PE) || defined (TE_PEP)
13079 case bfd_target_coff_flavour:
13080 if (flag_code == CODE_64BIT)
13081 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
13082 else
13083 return "pe-i386";
13084 # elif defined (TE_GO32)
13085 case bfd_target_coff_flavour:
13086 return "coff-go32";
13087 # else
13088 case bfd_target_coff_flavour:
13089 return "coff-i386";
13090 # endif
13091 #endif
13092 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13093 case bfd_target_elf_flavour:
13094 {
13095 const char *format;
13096
13097 switch (x86_elf_abi)
13098 {
13099 default:
13100 format = ELF_TARGET_FORMAT;
13101 #ifndef TE_SOLARIS
13102 tls_get_addr = "___tls_get_addr";
13103 #endif
13104 break;
13105 case X86_64_ABI:
13106 use_rela_relocations = 1;
13107 object_64bit = 1;
13108 #ifndef TE_SOLARIS
13109 tls_get_addr = "__tls_get_addr";
13110 #endif
13111 format = ELF_TARGET_FORMAT64;
13112 break;
13113 case X86_64_X32_ABI:
13114 use_rela_relocations = 1;
13115 object_64bit = 1;
13116 #ifndef TE_SOLARIS
13117 tls_get_addr = "__tls_get_addr";
13118 #endif
13119 disallow_64bit_reloc = 1;
13120 format = ELF_TARGET_FORMAT32;
13121 break;
13122 }
13123 if (cpu_arch_isa == PROCESSOR_L1OM)
13124 {
13125 if (x86_elf_abi != X86_64_ABI)
13126 as_fatal (_("Intel L1OM is 64bit only"));
13127 return ELF_TARGET_L1OM_FORMAT;
13128 }
13129 else if (cpu_arch_isa == PROCESSOR_K1OM)
13130 {
13131 if (x86_elf_abi != X86_64_ABI)
13132 as_fatal (_("Intel K1OM is 64bit only"));
13133 return ELF_TARGET_K1OM_FORMAT;
13134 }
13135 else if (cpu_arch_isa == PROCESSOR_IAMCU)
13136 {
13137 if (x86_elf_abi != I386_ABI)
13138 as_fatal (_("Intel MCU is 32bit only"));
13139 return ELF_TARGET_IAMCU_FORMAT;
13140 }
13141 else
13142 return format;
13143 }
13144 #endif
13145 #if defined (OBJ_MACH_O)
13146 case bfd_target_mach_o_flavour:
13147 if (flag_code == CODE_64BIT)
13148 {
13149 use_rela_relocations = 1;
13150 object_64bit = 1;
13151 return "mach-o-x86-64";
13152 }
13153 else
13154 return "mach-o-i386";
13155 #endif
13156 default:
13157 abort ();
13158 return NULL;
13159 }
13160 }
13161
13162 #endif /* OBJ_MAYBE_ more than one */
13163 \f
13164 symbolS *
13165 md_undefined_symbol (char *name)
13166 {
13167 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
13168 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
13169 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
13170 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
13171 {
13172 if (!GOT_symbol)
13173 {
13174 if (symbol_find (name))
13175 as_bad (_("GOT already in symbol table"));
13176 GOT_symbol = symbol_new (name, undefined_section,
13177 (valueT) 0, &zero_address_frag);
13178 };
13179 return GOT_symbol;
13180 }
13181 return 0;
13182 }
13183
13184 /* Round up a section size to the appropriate boundary. */
13185
13186 valueT
13187 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
13188 {
13189 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
13190 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
13191 {
13192 /* For a.out, force the section size to be aligned. If we don't do
13193 this, BFD will align it for us, but it will not write out the
13194 final bytes of the section. This may be a bug in BFD, but it is
13195 easier to fix it here since that is how the other a.out targets
13196 work. */
13197 int align;
13198
13199 align = bfd_section_alignment (segment);
13200 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
13201 }
13202 #endif
13203
13204 return size;
13205 }
13206
13207 /* On the i386, PC-relative offsets are relative to the start of the
13208 next instruction. That is, the address of the offset, plus its
13209 size, since the offset is always the last part of the insn. */
13210
13211 long
13212 md_pcrel_from (fixS *fixP)
13213 {
13214 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
13215 }
13216
13217 #ifndef I386COFF
13218
13219 static void
13220 s_bss (int ignore ATTRIBUTE_UNUSED)
13221 {
13222 int temp;
13223
13224 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13225 if (IS_ELF)
13226 obj_elf_section_change_hook ();
13227 #endif
13228 temp = get_absolute_expression ();
13229 subseg_set (bss_section, (subsegT) temp);
13230 demand_empty_rest_of_line ();
13231 }
13232
13233 #endif
13234
13235 /* Remember constant directive. */
13236
13237 void
13238 i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13239 {
13240 if (last_insn.kind != last_insn_directive
13241 && (bfd_section_flags (now_seg) & SEC_CODE))
13242 {
13243 last_insn.seg = now_seg;
13244 last_insn.kind = last_insn_directive;
13245 last_insn.name = "constant directive";
13246 last_insn.file = as_where (&last_insn.line);
13247 }
13248 }
13249
13250 void
13251 i386_validate_fix (fixS *fixp)
13252 {
13253 if (fixp->fx_subsy)
13254 {
13255 if (fixp->fx_subsy == GOT_symbol)
13256 {
13257 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13258 {
13259 if (!object_64bit)
13260 abort ();
13261 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13262 if (fixp->fx_tcbit2)
13263 fixp->fx_r_type = (fixp->fx_tcbit
13264 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13265 : BFD_RELOC_X86_64_GOTPCRELX);
13266 else
13267 #endif
13268 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13269 }
13270 else
13271 {
13272 if (!object_64bit)
13273 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13274 else
13275 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13276 }
13277 fixp->fx_subsy = 0;
13278 }
13279 }
13280 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13281 else if (!object_64bit)
13282 {
13283 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13284 && fixp->fx_tcbit2)
13285 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13286 }
13287 #endif
13288 }
13289
13290 arelent *
13291 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
13292 {
13293 arelent *rel;
13294 bfd_reloc_code_real_type code;
13295
13296 switch (fixp->fx_r_type)
13297 {
13298 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13299 case BFD_RELOC_SIZE32:
13300 case BFD_RELOC_SIZE64:
13301 if (S_IS_DEFINED (fixp->fx_addsy)
13302 && !S_IS_EXTERNAL (fixp->fx_addsy))
13303 {
13304 /* Resolve size relocation against local symbol to size of
13305 the symbol plus addend. */
13306 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13307 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13308 && !fits_in_unsigned_long (value))
13309 as_bad_where (fixp->fx_file, fixp->fx_line,
13310 _("symbol size computation overflow"));
13311 fixp->fx_addsy = NULL;
13312 fixp->fx_subsy = NULL;
13313 md_apply_fix (fixp, (valueT *) &value, NULL);
13314 return NULL;
13315 }
13316 #endif
13317 /* Fall through. */
13318
13319 case BFD_RELOC_X86_64_PLT32:
13320 case BFD_RELOC_X86_64_GOT32:
13321 case BFD_RELOC_X86_64_GOTPCREL:
13322 case BFD_RELOC_X86_64_GOTPCRELX:
13323 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13324 case BFD_RELOC_386_PLT32:
13325 case BFD_RELOC_386_GOT32:
13326 case BFD_RELOC_386_GOT32X:
13327 case BFD_RELOC_386_GOTOFF:
13328 case BFD_RELOC_386_GOTPC:
13329 case BFD_RELOC_386_TLS_GD:
13330 case BFD_RELOC_386_TLS_LDM:
13331 case BFD_RELOC_386_TLS_LDO_32:
13332 case BFD_RELOC_386_TLS_IE_32:
13333 case BFD_RELOC_386_TLS_IE:
13334 case BFD_RELOC_386_TLS_GOTIE:
13335 case BFD_RELOC_386_TLS_LE_32:
13336 case BFD_RELOC_386_TLS_LE:
13337 case BFD_RELOC_386_TLS_GOTDESC:
13338 case BFD_RELOC_386_TLS_DESC_CALL:
13339 case BFD_RELOC_X86_64_TLSGD:
13340 case BFD_RELOC_X86_64_TLSLD:
13341 case BFD_RELOC_X86_64_DTPOFF32:
13342 case BFD_RELOC_X86_64_DTPOFF64:
13343 case BFD_RELOC_X86_64_GOTTPOFF:
13344 case BFD_RELOC_X86_64_TPOFF32:
13345 case BFD_RELOC_X86_64_TPOFF64:
13346 case BFD_RELOC_X86_64_GOTOFF64:
13347 case BFD_RELOC_X86_64_GOTPC32:
13348 case BFD_RELOC_X86_64_GOT64:
13349 case BFD_RELOC_X86_64_GOTPCREL64:
13350 case BFD_RELOC_X86_64_GOTPC64:
13351 case BFD_RELOC_X86_64_GOTPLT64:
13352 case BFD_RELOC_X86_64_PLTOFF64:
13353 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13354 case BFD_RELOC_X86_64_TLSDESC_CALL:
13355 case BFD_RELOC_RVA:
13356 case BFD_RELOC_VTABLE_ENTRY:
13357 case BFD_RELOC_VTABLE_INHERIT:
13358 #ifdef TE_PE
13359 case BFD_RELOC_32_SECREL:
13360 #endif
13361 code = fixp->fx_r_type;
13362 break;
13363 case BFD_RELOC_X86_64_32S:
13364 if (!fixp->fx_pcrel)
13365 {
13366 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13367 code = fixp->fx_r_type;
13368 break;
13369 }
13370 /* Fall through. */
13371 default:
13372 if (fixp->fx_pcrel)
13373 {
13374 switch (fixp->fx_size)
13375 {
13376 default:
13377 as_bad_where (fixp->fx_file, fixp->fx_line,
13378 _("can not do %d byte pc-relative relocation"),
13379 fixp->fx_size);
13380 code = BFD_RELOC_32_PCREL;
13381 break;
13382 case 1: code = BFD_RELOC_8_PCREL; break;
13383 case 2: code = BFD_RELOC_16_PCREL; break;
13384 case 4: code = BFD_RELOC_32_PCREL; break;
13385 #ifdef BFD64
13386 case 8: code = BFD_RELOC_64_PCREL; break;
13387 #endif
13388 }
13389 }
13390 else
13391 {
13392 switch (fixp->fx_size)
13393 {
13394 default:
13395 as_bad_where (fixp->fx_file, fixp->fx_line,
13396 _("can not do %d byte relocation"),
13397 fixp->fx_size);
13398 code = BFD_RELOC_32;
13399 break;
13400 case 1: code = BFD_RELOC_8; break;
13401 case 2: code = BFD_RELOC_16; break;
13402 case 4: code = BFD_RELOC_32; break;
13403 #ifdef BFD64
13404 case 8: code = BFD_RELOC_64; break;
13405 #endif
13406 }
13407 }
13408 break;
13409 }
13410
13411 if ((code == BFD_RELOC_32
13412 || code == BFD_RELOC_32_PCREL
13413 || code == BFD_RELOC_X86_64_32S)
13414 && GOT_symbol
13415 && fixp->fx_addsy == GOT_symbol)
13416 {
13417 if (!object_64bit)
13418 code = BFD_RELOC_386_GOTPC;
13419 else
13420 code = BFD_RELOC_X86_64_GOTPC32;
13421 }
13422 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13423 && GOT_symbol
13424 && fixp->fx_addsy == GOT_symbol)
13425 {
13426 code = BFD_RELOC_X86_64_GOTPC64;
13427 }
13428
13429 rel = XNEW (arelent);
13430 rel->sym_ptr_ptr = XNEW (asymbol *);
13431 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
13432
13433 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
13434
13435 if (!use_rela_relocations)
13436 {
13437 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13438 vtable entry to be used in the relocation's section offset. */
13439 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13440 rel->address = fixp->fx_offset;
13441 #if defined (OBJ_COFF) && defined (TE_PE)
13442 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13443 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13444 else
13445 #endif
13446 rel->addend = 0;
13447 }
13448 /* Use the rela in 64bit mode. */
13449 else
13450 {
13451 if (disallow_64bit_reloc)
13452 switch (code)
13453 {
13454 case BFD_RELOC_X86_64_DTPOFF64:
13455 case BFD_RELOC_X86_64_TPOFF64:
13456 case BFD_RELOC_64_PCREL:
13457 case BFD_RELOC_X86_64_GOTOFF64:
13458 case BFD_RELOC_X86_64_GOT64:
13459 case BFD_RELOC_X86_64_GOTPCREL64:
13460 case BFD_RELOC_X86_64_GOTPC64:
13461 case BFD_RELOC_X86_64_GOTPLT64:
13462 case BFD_RELOC_X86_64_PLTOFF64:
13463 as_bad_where (fixp->fx_file, fixp->fx_line,
13464 _("cannot represent relocation type %s in x32 mode"),
13465 bfd_get_reloc_code_name (code));
13466 break;
13467 default:
13468 break;
13469 }
13470
13471 if (!fixp->fx_pcrel)
13472 rel->addend = fixp->fx_offset;
13473 else
13474 switch (code)
13475 {
13476 case BFD_RELOC_X86_64_PLT32:
13477 case BFD_RELOC_X86_64_GOT32:
13478 case BFD_RELOC_X86_64_GOTPCREL:
13479 case BFD_RELOC_X86_64_GOTPCRELX:
13480 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13481 case BFD_RELOC_X86_64_TLSGD:
13482 case BFD_RELOC_X86_64_TLSLD:
13483 case BFD_RELOC_X86_64_GOTTPOFF:
13484 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13485 case BFD_RELOC_X86_64_TLSDESC_CALL:
13486 rel->addend = fixp->fx_offset - fixp->fx_size;
13487 break;
13488 default:
13489 rel->addend = (section->vma
13490 - fixp->fx_size
13491 + fixp->fx_addnumber
13492 + md_pcrel_from (fixp));
13493 break;
13494 }
13495 }
13496
13497 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
13498 if (rel->howto == NULL)
13499 {
13500 as_bad_where (fixp->fx_file, fixp->fx_line,
13501 _("cannot represent relocation type %s"),
13502 bfd_get_reloc_code_name (code));
13503 /* Set howto to a garbage value so that we can keep going. */
13504 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
13505 gas_assert (rel->howto != NULL);
13506 }
13507
13508 return rel;
13509 }
13510
13511 #include "tc-i386-intel.c"
13512
13513 void
13514 tc_x86_parse_to_dw2regnum (expressionS *exp)
13515 {
13516 int saved_naked_reg;
13517 char saved_register_dot;
13518
13519 saved_naked_reg = allow_naked_reg;
13520 allow_naked_reg = 1;
13521 saved_register_dot = register_chars['.'];
13522 register_chars['.'] = '.';
13523 allow_pseudo_reg = 1;
13524 expression_and_evaluate (exp);
13525 allow_pseudo_reg = 0;
13526 register_chars['.'] = saved_register_dot;
13527 allow_naked_reg = saved_naked_reg;
13528
13529 if (exp->X_op == O_register && exp->X_add_number >= 0)
13530 {
13531 if ((addressT) exp->X_add_number < i386_regtab_size)
13532 {
13533 exp->X_op = O_constant;
13534 exp->X_add_number = i386_regtab[exp->X_add_number]
13535 .dw2_regnum[flag_code >> 1];
13536 }
13537 else
13538 exp->X_op = O_illegal;
13539 }
13540 }
13541
13542 void
13543 tc_x86_frame_initial_instructions (void)
13544 {
13545 static unsigned int sp_regno[2];
13546
13547 if (!sp_regno[flag_code >> 1])
13548 {
13549 char *saved_input = input_line_pointer;
13550 char sp[][4] = {"esp", "rsp"};
13551 expressionS exp;
13552
13553 input_line_pointer = sp[flag_code >> 1];
13554 tc_x86_parse_to_dw2regnum (&exp);
13555 gas_assert (exp.X_op == O_constant);
13556 sp_regno[flag_code >> 1] = exp.X_add_number;
13557 input_line_pointer = saved_input;
13558 }
13559
13560 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
13561 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
13562 }
13563
13564 int
13565 x86_dwarf2_addr_size (void)
13566 {
13567 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13568 if (x86_elf_abi == X86_64_X32_ABI)
13569 return 4;
13570 #endif
13571 return bfd_arch_bits_per_address (stdoutput) / 8;
13572 }
13573
13574 int
13575 i386_elf_section_type (const char *str, size_t len)
13576 {
13577 if (flag_code == CODE_64BIT
13578 && len == sizeof ("unwind") - 1
13579 && strncmp (str, "unwind", 6) == 0)
13580 return SHT_X86_64_UNWIND;
13581
13582 return -1;
13583 }
13584
13585 #ifdef TE_SOLARIS
13586 void
13587 i386_solaris_fix_up_eh_frame (segT sec)
13588 {
13589 if (flag_code == CODE_64BIT)
13590 elf_section_type (sec) = SHT_X86_64_UNWIND;
13591 }
13592 #endif
13593
13594 #ifdef TE_PE
13595 void
13596 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
13597 {
13598 expressionS exp;
13599
13600 exp.X_op = O_secrel;
13601 exp.X_add_symbol = symbol;
13602 exp.X_add_number = 0;
13603 emit_expr (&exp, size);
13604 }
13605 #endif
13606
13607 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13608 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
13609
13610 bfd_vma
13611 x86_64_section_letter (int letter, const char **ptr_msg)
13612 {
13613 if (flag_code == CODE_64BIT)
13614 {
13615 if (letter == 'l')
13616 return SHF_X86_64_LARGE;
13617
13618 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
13619 }
13620 else
13621 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
13622 return -1;
13623 }
13624
13625 bfd_vma
13626 x86_64_section_word (char *str, size_t len)
13627 {
13628 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
13629 return SHF_X86_64_LARGE;
13630
13631 return -1;
13632 }
13633
13634 static void
13635 handle_large_common (int small ATTRIBUTE_UNUSED)
13636 {
13637 if (flag_code != CODE_64BIT)
13638 {
13639 s_comm_internal (0, elf_common_parse);
13640 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
13641 }
13642 else
13643 {
13644 static segT lbss_section;
13645 asection *saved_com_section_ptr = elf_com_section_ptr;
13646 asection *saved_bss_section = bss_section;
13647
13648 if (lbss_section == NULL)
13649 {
13650 flagword applicable;
13651 segT seg = now_seg;
13652 subsegT subseg = now_subseg;
13653
13654 /* The .lbss section is for local .largecomm symbols. */
13655 lbss_section = subseg_new (".lbss", 0);
13656 applicable = bfd_applicable_section_flags (stdoutput);
13657 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
13658 seg_info (lbss_section)->bss = 1;
13659
13660 subseg_set (seg, subseg);
13661 }
13662
13663 elf_com_section_ptr = &_bfd_elf_large_com_section;
13664 bss_section = lbss_section;
13665
13666 s_comm_internal (0, elf_common_parse);
13667
13668 elf_com_section_ptr = saved_com_section_ptr;
13669 bss_section = saved_bss_section;
13670 }
13671 }
13672 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.29929 seconds and 5 git commands to generate.