x86: Remove restriction on NOTRACK prefix position
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2017 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 #define XMMWORD_MNEM_SUFFIX 'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 #define ZMMWORD_MNEM_SUFFIX 'z'
87 /* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91 #define END_OF_INSN '\0'
92
93 /*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100 typedef struct
101 {
102 const insn_template *start;
103 const insn_template *end;
104 }
105 templates;
106
107 /* 386 operand encoding bytes: see 386 book for details of this. */
108 typedef struct
109 {
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113 }
114 modrm_byte;
115
116 /* x86-64 extension prefix. */
117 typedef int rex_byte;
118
119 /* 386 opcode byte to code indirect addressing. */
120 typedef struct
121 {
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125 }
126 sib_byte;
127
128 /* x86 arch names, types and features */
129 typedef struct
130 {
131 const char *name; /* arch name */
132 unsigned int len; /* arch string length */
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
135 unsigned int skip; /* show_arch should skip this. */
136 }
137 arch_entry;
138
139 /* Used to turn off indicated flags. */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 i386_cpu_flags flags; /* cpu feature flags */
145 }
146 noarch_entry;
147
148 static void update_code_flag (int, int);
149 static void set_code_flag (int);
150 static void set_16bit_gcc_code_flag (int);
151 static void set_intel_syntax (int);
152 static void set_intel_mnemonic (int);
153 static void set_allow_index_reg (int);
154 static void set_check (int);
155 static void set_cpu_arch (int);
156 #ifdef TE_PE
157 static void pe_directive_secrel (int);
158 #endif
159 static void signed_cons (int);
160 static char *output_invalid (int c);
161 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
162 const char *);
163 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
164 const char *);
165 static int i386_att_operand (char *);
166 static int i386_intel_operand (char *, int);
167 static int i386_intel_simplify (expressionS *);
168 static int i386_intel_parse_name (const char *, expressionS *);
169 static const reg_entry *parse_register (char *, char **);
170 static char *parse_insn (char *, char *);
171 static char *parse_operands (char *, const char *);
172 static void swap_operands (void);
173 static void swap_2_operands (int, int);
174 static void optimize_imm (void);
175 static void optimize_disp (void);
176 static const insn_template *match_template (char);
177 static int check_string (void);
178 static int process_suffix (void);
179 static int check_byte_reg (void);
180 static int check_long_reg (void);
181 static int check_qword_reg (void);
182 static int check_word_reg (void);
183 static int finalize_imm (void);
184 static int process_operands (void);
185 static const seg_entry *build_modrm_byte (void);
186 static void output_insn (void);
187 static void output_imm (fragS *, offsetT);
188 static void output_disp (fragS *, offsetT);
189 #ifndef I386COFF
190 static void s_bss (int);
191 #endif
192 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
193 static void handle_large_common (int small ATTRIBUTE_UNUSED);
194 #endif
195
196 static const char *default_arch = DEFAULT_ARCH;
197
198 /* This struct describes rounding control and SAE in the instruction. */
199 struct RC_Operation
200 {
201 enum rc_type
202 {
203 rne = 0,
204 rd,
205 ru,
206 rz,
207 saeonly
208 } type;
209 int operand;
210 };
211
212 static struct RC_Operation rc_op;
213
214 /* The struct describes masking, applied to OPERAND in the instruction.
215 MASK is a pointer to the corresponding mask register. ZEROING tells
216 whether merging or zeroing mask is used. */
217 struct Mask_Operation
218 {
219 const reg_entry *mask;
220 unsigned int zeroing;
221 /* The operand where this operation is associated. */
222 int operand;
223 };
224
225 static struct Mask_Operation mask_op;
226
227 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
228 broadcast factor. */
229 struct Broadcast_Operation
230 {
231 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
232 int type;
233
234 /* Index of broadcasted operand. */
235 int operand;
236 };
237
238 static struct Broadcast_Operation broadcast_op;
239
240 /* VEX prefix. */
241 typedef struct
242 {
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248 } vex_prefix;
249
250 /* 'md_assemble ()' gathers together information and puts it into a
251 i386_insn. */
252
253 union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
260 enum i386_error
261 {
262 operand_size_mismatch,
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
268 old_gcc_only,
269 unsupported_with_intel_mnemonic,
270 unsupported_syntax,
271 unsupported,
272 invalid_vsib_address,
273 invalid_vector_register_set,
274 unsupported_vector_index_register,
275 unsupported_broadcast,
276 broadcast_not_on_src_operand,
277 broadcast_needed,
278 unsupported_masking,
279 mask_not_on_destination,
280 no_default_mask,
281 unsupported_rc_sae,
282 rc_sae_operand_not_last_imm,
283 invalid_register_operand,
284 try_vector_disp8
285 };
286
287 struct _i386_insn
288 {
289 /* TM holds the template for the insn were currently assembling. */
290 insn_template tm;
291
292 /* SUFFIX holds the instruction size suffix for byte, word, dword
293 or qword, if given. */
294 char suffix;
295
296 /* OPERANDS gives the number of given operands. */
297 unsigned int operands;
298
299 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
300 of given register, displacement, memory operands and immediate
301 operands. */
302 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
303
304 /* TYPES [i] is the type (see above #defines) which tells us how to
305 use OP[i] for the corresponding operand. */
306 i386_operand_type types[MAX_OPERANDS];
307
308 /* Displacement expression, immediate expression, or register for each
309 operand. */
310 union i386_op op[MAX_OPERANDS];
311
312 /* Flags for operands. */
313 unsigned int flags[MAX_OPERANDS];
314 #define Operand_PCrel 1
315
316 /* Relocation type for operand */
317 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
318
319 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
320 the base index byte below. */
321 const reg_entry *base_reg;
322 const reg_entry *index_reg;
323 unsigned int log2_scale_factor;
324
325 /* SEG gives the seg_entries of this insn. They are zero unless
326 explicit segment overrides are given. */
327 const seg_entry *seg[2];
328
329 /* Copied first memory operand string, for re-checking. */
330 char *memop1_string;
331
332 /* PREFIX holds all the given prefix opcodes (usually null).
333 PREFIXES is the number of prefix opcodes. */
334 unsigned int prefixes;
335 unsigned char prefix[MAX_PREFIXES];
336
337 /* RM and SIB are the modrm byte and the sib byte where the
338 addressing modes of this insn are encoded. */
339 modrm_byte rm;
340 rex_byte rex;
341 rex_byte vrex;
342 sib_byte sib;
343 vex_prefix vex;
344
345 /* Masking attributes. */
346 struct Mask_Operation *mask;
347
348 /* Rounding control and SAE attributes. */
349 struct RC_Operation *rounding;
350
351 /* Broadcasting attributes. */
352 struct Broadcast_Operation *broadcast;
353
354 /* Compressed disp8*N attribute. */
355 unsigned int memshift;
356
357 /* Prefer load or store in encoding. */
358 enum
359 {
360 dir_encoding_default = 0,
361 dir_encoding_load,
362 dir_encoding_store
363 } dir_encoding;
364
365 /* Prefer 8bit or 32bit displacement in encoding. */
366 enum
367 {
368 disp_encoding_default = 0,
369 disp_encoding_8bit,
370 disp_encoding_32bit
371 } disp_encoding;
372
373 /* How to encode vector instructions. */
374 enum
375 {
376 vex_encoding_default = 0,
377 vex_encoding_vex2,
378 vex_encoding_vex3,
379 vex_encoding_evex
380 } vec_encoding;
381
382 /* REP prefix. */
383 const char *rep_prefix;
384
385 /* HLE prefix. */
386 const char *hle_prefix;
387
388 /* Have BND prefix. */
389 const char *bnd_prefix;
390
391 /* Have NOTRACK prefix. */
392 const char *notrack_prefix;
393
394 /* Error message. */
395 enum i386_error error;
396 };
397
398 typedef struct _i386_insn i386_insn;
399
400 /* Link RC type with corresponding string, that'll be looked for in
401 asm. */
402 struct RC_name
403 {
404 enum rc_type type;
405 const char *name;
406 unsigned int len;
407 };
408
409 static const struct RC_name RC_NamesTable[] =
410 {
411 { rne, STRING_COMMA_LEN ("rn-sae") },
412 { rd, STRING_COMMA_LEN ("rd-sae") },
413 { ru, STRING_COMMA_LEN ("ru-sae") },
414 { rz, STRING_COMMA_LEN ("rz-sae") },
415 { saeonly, STRING_COMMA_LEN ("sae") },
416 };
417
418 /* List of chars besides those in app.c:symbol_chars that can start an
419 operand. Used to prevent the scrubber eating vital white-space. */
420 const char extra_symbol_chars[] = "*%-([{}"
421 #ifdef LEX_AT
422 "@"
423 #endif
424 #ifdef LEX_QM
425 "?"
426 #endif
427 ;
428
429 #if (defined (TE_I386AIX) \
430 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
431 && !defined (TE_GNU) \
432 && !defined (TE_LINUX) \
433 && !defined (TE_NACL) \
434 && !defined (TE_NETWARE) \
435 && !defined (TE_FreeBSD) \
436 && !defined (TE_DragonFly) \
437 && !defined (TE_NetBSD)))
438 /* This array holds the chars that always start a comment. If the
439 pre-processor is disabled, these aren't very useful. The option
440 --divide will remove '/' from this list. */
441 const char *i386_comment_chars = "#/";
442 #define SVR4_COMMENT_CHARS 1
443 #define PREFIX_SEPARATOR '\\'
444
445 #else
446 const char *i386_comment_chars = "#";
447 #define PREFIX_SEPARATOR '/'
448 #endif
449
450 /* This array holds the chars that only start a comment at the beginning of
451 a line. If the line seems to have the form '# 123 filename'
452 .line and .file directives will appear in the pre-processed output.
453 Note that input_file.c hand checks for '#' at the beginning of the
454 first line of the input file. This is because the compiler outputs
455 #NO_APP at the beginning of its output.
456 Also note that comments started like this one will always work if
457 '/' isn't otherwise defined. */
458 const char line_comment_chars[] = "#/";
459
460 const char line_separator_chars[] = ";";
461
462 /* Chars that can be used to separate mant from exp in floating point
463 nums. */
464 const char EXP_CHARS[] = "eE";
465
466 /* Chars that mean this number is a floating point constant
467 As in 0f12.456
468 or 0d1.2345e12. */
469 const char FLT_CHARS[] = "fFdDxX";
470
471 /* Tables for lexical analysis. */
472 static char mnemonic_chars[256];
473 static char register_chars[256];
474 static char operand_chars[256];
475 static char identifier_chars[256];
476 static char digit_chars[256];
477
478 /* Lexical macros. */
479 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
480 #define is_operand_char(x) (operand_chars[(unsigned char) x])
481 #define is_register_char(x) (register_chars[(unsigned char) x])
482 #define is_space_char(x) ((x) == ' ')
483 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
484 #define is_digit_char(x) (digit_chars[(unsigned char) x])
485
486 /* All non-digit non-letter characters that may occur in an operand. */
487 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
488
489 /* md_assemble() always leaves the strings it's passed unaltered. To
490 effect this we maintain a stack of saved characters that we've smashed
491 with '\0's (indicating end of strings for various sub-fields of the
492 assembler instruction). */
493 static char save_stack[32];
494 static char *save_stack_p;
495 #define END_STRING_AND_SAVE(s) \
496 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
497 #define RESTORE_END_STRING(s) \
498 do { *(s) = *--save_stack_p; } while (0)
499
500 /* The instruction we're assembling. */
501 static i386_insn i;
502
503 /* Possible templates for current insn. */
504 static const templates *current_templates;
505
506 /* Per instruction expressionS buffers: max displacements & immediates. */
507 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
508 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
509
510 /* Current operand we are working on. */
511 static int this_operand = -1;
512
513 /* We support four different modes. FLAG_CODE variable is used to distinguish
514 these. */
515
516 enum flag_code {
517 CODE_32BIT,
518 CODE_16BIT,
519 CODE_64BIT };
520
521 static enum flag_code flag_code;
522 static unsigned int object_64bit;
523 static unsigned int disallow_64bit_reloc;
524 static int use_rela_relocations = 0;
525
526 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
527 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
528 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
529
530 /* The ELF ABI to use. */
531 enum x86_elf_abi
532 {
533 I386_ABI,
534 X86_64_ABI,
535 X86_64_X32_ABI
536 };
537
538 static enum x86_elf_abi x86_elf_abi = I386_ABI;
539 #endif
540
541 #if defined (TE_PE) || defined (TE_PEP)
542 /* Use big object file format. */
543 static int use_big_obj = 0;
544 #endif
545
546 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
547 /* 1 if generating code for a shared library. */
548 static int shared = 0;
549 #endif
550
551 /* 1 for intel syntax,
552 0 if att syntax. */
553 static int intel_syntax = 0;
554
555 /* 1 for Intel64 ISA,
556 0 if AMD64 ISA. */
557 static int intel64;
558
559 /* 1 for intel mnemonic,
560 0 if att mnemonic. */
561 static int intel_mnemonic = !SYSV386_COMPAT;
562
563 /* 1 if support old (<= 2.8.1) versions of gcc. */
564 static int old_gcc = OLDGCC_COMPAT;
565
566 /* 1 if pseudo registers are permitted. */
567 static int allow_pseudo_reg = 0;
568
569 /* 1 if register prefix % not required. */
570 static int allow_naked_reg = 0;
571
572 /* 1 if the assembler should add BND prefix for all control-transferring
573 instructions supporting it, even if this prefix wasn't specified
574 explicitly. */
575 static int add_bnd_prefix = 0;
576
577 /* 1 if pseudo index register, eiz/riz, is allowed . */
578 static int allow_index_reg = 0;
579
580 /* 1 if the assembler should ignore LOCK prefix, even if it was
581 specified explicitly. */
582 static int omit_lock_prefix = 0;
583
584 /* 1 if the assembler should encode lfence, mfence, and sfence as
585 "lock addl $0, (%{re}sp)". */
586 static int avoid_fence = 0;
587
588 /* 1 if the assembler should generate relax relocations. */
589
590 static int generate_relax_relocations
591 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
592
593 static enum check_kind
594 {
595 check_none = 0,
596 check_warning,
597 check_error
598 }
599 sse_check, operand_check = check_warning;
600
601 /* Register prefix used for error message. */
602 static const char *register_prefix = "%";
603
604 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
605 leave, push, and pop instructions so that gcc has the same stack
606 frame as in 32 bit mode. */
607 static char stackop_size = '\0';
608
609 /* Non-zero to optimize code alignment. */
610 int optimize_align_code = 1;
611
612 /* Non-zero to quieten some warnings. */
613 static int quiet_warnings = 0;
614
615 /* CPU name. */
616 static const char *cpu_arch_name = NULL;
617 static char *cpu_sub_arch_name = NULL;
618
619 /* CPU feature flags. */
620 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
621
622 /* If we have selected a cpu we are generating instructions for. */
623 static int cpu_arch_tune_set = 0;
624
625 /* Cpu we are generating instructions for. */
626 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
627
628 /* CPU feature flags of cpu we are generating instructions for. */
629 static i386_cpu_flags cpu_arch_tune_flags;
630
631 /* CPU instruction set architecture used. */
632 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
633
634 /* CPU feature flags of instruction set architecture used. */
635 i386_cpu_flags cpu_arch_isa_flags;
636
637 /* If set, conditional jumps are not automatically promoted to handle
638 larger than a byte offset. */
639 static unsigned int no_cond_jump_promotion = 0;
640
641 /* Encode SSE instructions with VEX prefix. */
642 static unsigned int sse2avx;
643
644 /* Encode scalar AVX instructions with specific vector length. */
645 static enum
646 {
647 vex128 = 0,
648 vex256
649 } avxscalar;
650
651 /* Encode scalar EVEX LIG instructions with specific vector length. */
652 static enum
653 {
654 evexl128 = 0,
655 evexl256,
656 evexl512
657 } evexlig;
658
659 /* Encode EVEX WIG instructions with specific evex.w. */
660 static enum
661 {
662 evexw0 = 0,
663 evexw1
664 } evexwig;
665
666 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
667 static enum rc_type evexrcig = rne;
668
669 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
670 static symbolS *GOT_symbol;
671
672 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
673 unsigned int x86_dwarf2_return_column;
674
675 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
676 int x86_cie_data_alignment;
677
678 /* Interface to relax_segment.
679 There are 3 major relax states for 386 jump insns because the
680 different types of jumps add different sizes to frags when we're
681 figuring out what sort of jump to choose to reach a given label. */
682
683 /* Types. */
684 #define UNCOND_JUMP 0
685 #define COND_JUMP 1
686 #define COND_JUMP86 2
687
688 /* Sizes. */
689 #define CODE16 1
690 #define SMALL 0
691 #define SMALL16 (SMALL | CODE16)
692 #define BIG 2
693 #define BIG16 (BIG | CODE16)
694
695 #ifndef INLINE
696 #ifdef __GNUC__
697 #define INLINE __inline__
698 #else
699 #define INLINE
700 #endif
701 #endif
702
703 #define ENCODE_RELAX_STATE(type, size) \
704 ((relax_substateT) (((type) << 2) | (size)))
705 #define TYPE_FROM_RELAX_STATE(s) \
706 ((s) >> 2)
707 #define DISP_SIZE_FROM_RELAX_STATE(s) \
708 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
709
710 /* This table is used by relax_frag to promote short jumps to long
711 ones where necessary. SMALL (short) jumps may be promoted to BIG
712 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
713 don't allow a short jump in a 32 bit code segment to be promoted to
714 a 16 bit offset jump because it's slower (requires data size
715 prefix), and doesn't work, unless the destination is in the bottom
716 64k of the code segment (The top 16 bits of eip are zeroed). */
717
718 const relax_typeS md_relax_table[] =
719 {
720 /* The fields are:
721 1) most positive reach of this state,
722 2) most negative reach of this state,
723 3) how many bytes this mode will have in the variable part of the frag
724 4) which index into the table to try if we can't fit into this one. */
725
726 /* UNCOND_JUMP states. */
727 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
728 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
729 /* dword jmp adds 4 bytes to frag:
730 0 extra opcode bytes, 4 displacement bytes. */
731 {0, 0, 4, 0},
732 /* word jmp adds 2 byte2 to frag:
733 0 extra opcode bytes, 2 displacement bytes. */
734 {0, 0, 2, 0},
735
736 /* COND_JUMP states. */
737 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
738 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
739 /* dword conditionals adds 5 bytes to frag:
740 1 extra opcode byte, 4 displacement bytes. */
741 {0, 0, 5, 0},
742 /* word conditionals add 3 bytes to frag:
743 1 extra opcode byte, 2 displacement bytes. */
744 {0, 0, 3, 0},
745
746 /* COND_JUMP86 states. */
747 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
748 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
749 /* dword conditionals adds 5 bytes to frag:
750 1 extra opcode byte, 4 displacement bytes. */
751 {0, 0, 5, 0},
752 /* word conditionals add 4 bytes to frag:
753 1 displacement byte and a 3 byte long branch insn. */
754 {0, 0, 4, 0}
755 };
756
757 static const arch_entry cpu_arch[] =
758 {
759 /* Do not replace the first two entries - i386_target_format()
760 relies on them being there in this order. */
761 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
762 CPU_GENERIC32_FLAGS, 0 },
763 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
764 CPU_GENERIC64_FLAGS, 0 },
765 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
766 CPU_NONE_FLAGS, 0 },
767 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
768 CPU_I186_FLAGS, 0 },
769 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
770 CPU_I286_FLAGS, 0 },
771 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
772 CPU_I386_FLAGS, 0 },
773 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
774 CPU_I486_FLAGS, 0 },
775 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
776 CPU_I586_FLAGS, 0 },
777 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
778 CPU_I686_FLAGS, 0 },
779 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
780 CPU_I586_FLAGS, 0 },
781 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
782 CPU_PENTIUMPRO_FLAGS, 0 },
783 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
784 CPU_P2_FLAGS, 0 },
785 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
786 CPU_P3_FLAGS, 0 },
787 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
788 CPU_P4_FLAGS, 0 },
789 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
790 CPU_CORE_FLAGS, 0 },
791 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
792 CPU_NOCONA_FLAGS, 0 },
793 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
794 CPU_CORE_FLAGS, 1 },
795 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
796 CPU_CORE_FLAGS, 0 },
797 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
798 CPU_CORE2_FLAGS, 1 },
799 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
800 CPU_CORE2_FLAGS, 0 },
801 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
802 CPU_COREI7_FLAGS, 0 },
803 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
804 CPU_L1OM_FLAGS, 0 },
805 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
806 CPU_K1OM_FLAGS, 0 },
807 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
808 CPU_IAMCU_FLAGS, 0 },
809 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
810 CPU_K6_FLAGS, 0 },
811 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
812 CPU_K6_2_FLAGS, 0 },
813 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
814 CPU_ATHLON_FLAGS, 0 },
815 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
816 CPU_K8_FLAGS, 1 },
817 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
818 CPU_K8_FLAGS, 0 },
819 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
820 CPU_K8_FLAGS, 0 },
821 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
822 CPU_AMDFAM10_FLAGS, 0 },
823 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
824 CPU_BDVER1_FLAGS, 0 },
825 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
826 CPU_BDVER2_FLAGS, 0 },
827 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
828 CPU_BDVER3_FLAGS, 0 },
829 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
830 CPU_BDVER4_FLAGS, 0 },
831 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
832 CPU_ZNVER1_FLAGS, 0 },
833 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
834 CPU_BTVER1_FLAGS, 0 },
835 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
836 CPU_BTVER2_FLAGS, 0 },
837 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
838 CPU_8087_FLAGS, 0 },
839 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
840 CPU_287_FLAGS, 0 },
841 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
842 CPU_387_FLAGS, 0 },
843 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
844 CPU_687_FLAGS, 0 },
845 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
846 CPU_MMX_FLAGS, 0 },
847 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
848 CPU_SSE_FLAGS, 0 },
849 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
850 CPU_SSE2_FLAGS, 0 },
851 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
852 CPU_SSE3_FLAGS, 0 },
853 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
854 CPU_SSSE3_FLAGS, 0 },
855 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
856 CPU_SSE4_1_FLAGS, 0 },
857 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
858 CPU_SSE4_2_FLAGS, 0 },
859 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
860 CPU_SSE4_2_FLAGS, 0 },
861 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
862 CPU_AVX_FLAGS, 0 },
863 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
864 CPU_AVX2_FLAGS, 0 },
865 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
866 CPU_AVX512F_FLAGS, 0 },
867 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
868 CPU_AVX512CD_FLAGS, 0 },
869 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
870 CPU_AVX512ER_FLAGS, 0 },
871 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
872 CPU_AVX512PF_FLAGS, 0 },
873 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
874 CPU_AVX512DQ_FLAGS, 0 },
875 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
876 CPU_AVX512BW_FLAGS, 0 },
877 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
878 CPU_AVX512VL_FLAGS, 0 },
879 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
880 CPU_VMX_FLAGS, 0 },
881 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
882 CPU_VMFUNC_FLAGS, 0 },
883 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
884 CPU_SMX_FLAGS, 0 },
885 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
886 CPU_XSAVE_FLAGS, 0 },
887 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
888 CPU_XSAVEOPT_FLAGS, 0 },
889 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
890 CPU_XSAVEC_FLAGS, 0 },
891 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
892 CPU_XSAVES_FLAGS, 0 },
893 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
894 CPU_AES_FLAGS, 0 },
895 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
896 CPU_PCLMUL_FLAGS, 0 },
897 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
898 CPU_PCLMUL_FLAGS, 1 },
899 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
900 CPU_FSGSBASE_FLAGS, 0 },
901 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
902 CPU_RDRND_FLAGS, 0 },
903 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
904 CPU_F16C_FLAGS, 0 },
905 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
906 CPU_BMI2_FLAGS, 0 },
907 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
908 CPU_FMA_FLAGS, 0 },
909 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
910 CPU_FMA4_FLAGS, 0 },
911 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
912 CPU_XOP_FLAGS, 0 },
913 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
914 CPU_LWP_FLAGS, 0 },
915 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
916 CPU_MOVBE_FLAGS, 0 },
917 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
918 CPU_CX16_FLAGS, 0 },
919 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
920 CPU_EPT_FLAGS, 0 },
921 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
922 CPU_LZCNT_FLAGS, 0 },
923 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
924 CPU_HLE_FLAGS, 0 },
925 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
926 CPU_RTM_FLAGS, 0 },
927 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
928 CPU_INVPCID_FLAGS, 0 },
929 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
930 CPU_CLFLUSH_FLAGS, 0 },
931 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
932 CPU_NOP_FLAGS, 0 },
933 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
934 CPU_SYSCALL_FLAGS, 0 },
935 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
936 CPU_RDTSCP_FLAGS, 0 },
937 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
938 CPU_3DNOW_FLAGS, 0 },
939 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
940 CPU_3DNOWA_FLAGS, 0 },
941 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
942 CPU_PADLOCK_FLAGS, 0 },
943 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
944 CPU_SVME_FLAGS, 1 },
945 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
946 CPU_SVME_FLAGS, 0 },
947 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
948 CPU_SSE4A_FLAGS, 0 },
949 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
950 CPU_ABM_FLAGS, 0 },
951 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
952 CPU_BMI_FLAGS, 0 },
953 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
954 CPU_TBM_FLAGS, 0 },
955 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
956 CPU_ADX_FLAGS, 0 },
957 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
958 CPU_RDSEED_FLAGS, 0 },
959 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
960 CPU_PRFCHW_FLAGS, 0 },
961 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
962 CPU_SMAP_FLAGS, 0 },
963 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
964 CPU_MPX_FLAGS, 0 },
965 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
966 CPU_SHA_FLAGS, 0 },
967 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
968 CPU_CLFLUSHOPT_FLAGS, 0 },
969 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
970 CPU_PREFETCHWT1_FLAGS, 0 },
971 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
972 CPU_SE1_FLAGS, 0 },
973 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
974 CPU_CLWB_FLAGS, 0 },
975 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
976 CPU_AVX512IFMA_FLAGS, 0 },
977 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
978 CPU_AVX512VBMI_FLAGS, 0 },
979 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
980 CPU_AVX512_4FMAPS_FLAGS, 0 },
981 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
982 CPU_AVX512_4VNNIW_FLAGS, 0 },
983 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
984 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
985 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
986 CPU_CLZERO_FLAGS, 0 },
987 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
988 CPU_MWAITX_FLAGS, 0 },
989 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
990 CPU_OSPKE_FLAGS, 0 },
991 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
992 CPU_RDPID_FLAGS, 0 },
993 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
994 CPU_PTWRITE_FLAGS, 0 },
995 { STRING_COMMA_LEN (".cet"), PROCESSOR_UNKNOWN,
996 CPU_CET_FLAGS, 0 },
997 };
998
999 static const noarch_entry cpu_noarch[] =
1000 {
1001 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1002 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1003 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1004 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1005 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1006 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1007 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1008 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1009 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1010 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1011 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1012 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1013 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1014 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1015 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1016 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1017 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1018 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1019 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1020 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1021 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1022 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1023 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1024 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1025 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1026 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1027 };
1028
1029 #ifdef I386COFF
1030 /* Like s_lcomm_internal in gas/read.c but the alignment string
1031 is allowed to be optional. */
1032
1033 static symbolS *
1034 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1035 {
1036 addressT align = 0;
1037
1038 SKIP_WHITESPACE ();
1039
1040 if (needs_align
1041 && *input_line_pointer == ',')
1042 {
1043 align = parse_align (needs_align - 1);
1044
1045 if (align == (addressT) -1)
1046 return NULL;
1047 }
1048 else
1049 {
1050 if (size >= 8)
1051 align = 3;
1052 else if (size >= 4)
1053 align = 2;
1054 else if (size >= 2)
1055 align = 1;
1056 else
1057 align = 0;
1058 }
1059
1060 bss_alloc (symbolP, size, align);
1061 return symbolP;
1062 }
1063
1064 static void
1065 pe_lcomm (int needs_align)
1066 {
1067 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1068 }
1069 #endif
1070
1071 const pseudo_typeS md_pseudo_table[] =
1072 {
1073 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1074 {"align", s_align_bytes, 0},
1075 #else
1076 {"align", s_align_ptwo, 0},
1077 #endif
1078 {"arch", set_cpu_arch, 0},
1079 #ifndef I386COFF
1080 {"bss", s_bss, 0},
1081 #else
1082 {"lcomm", pe_lcomm, 1},
1083 #endif
1084 {"ffloat", float_cons, 'f'},
1085 {"dfloat", float_cons, 'd'},
1086 {"tfloat", float_cons, 'x'},
1087 {"value", cons, 2},
1088 {"slong", signed_cons, 4},
1089 {"noopt", s_ignore, 0},
1090 {"optim", s_ignore, 0},
1091 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1092 {"code16", set_code_flag, CODE_16BIT},
1093 {"code32", set_code_flag, CODE_32BIT},
1094 {"code64", set_code_flag, CODE_64BIT},
1095 {"intel_syntax", set_intel_syntax, 1},
1096 {"att_syntax", set_intel_syntax, 0},
1097 {"intel_mnemonic", set_intel_mnemonic, 1},
1098 {"att_mnemonic", set_intel_mnemonic, 0},
1099 {"allow_index_reg", set_allow_index_reg, 1},
1100 {"disallow_index_reg", set_allow_index_reg, 0},
1101 {"sse_check", set_check, 0},
1102 {"operand_check", set_check, 1},
1103 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1104 {"largecomm", handle_large_common, 0},
1105 #else
1106 {"file", (void (*) (int)) dwarf2_directive_file, 0},
1107 {"loc", dwarf2_directive_loc, 0},
1108 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1109 #endif
1110 #ifdef TE_PE
1111 {"secrel32", pe_directive_secrel, 0},
1112 #endif
1113 {0, 0, 0}
1114 };
1115
1116 /* For interface with expression (). */
1117 extern char *input_line_pointer;
1118
1119 /* Hash table for instruction mnemonic lookup. */
1120 static struct hash_control *op_hash;
1121
1122 /* Hash table for register lookup. */
1123 static struct hash_control *reg_hash;
1124 \f
1125 void
1126 i386_align_code (fragS *fragP, int count)
1127 {
1128 /* Various efficient no-op patterns for aligning code labels.
1129 Note: Don't try to assemble the instructions in the comments.
1130 0L and 0w are not legal. */
1131 static const unsigned char f32_1[] =
1132 {0x90}; /* nop */
1133 static const unsigned char f32_2[] =
1134 {0x66,0x90}; /* xchg %ax,%ax */
1135 static const unsigned char f32_3[] =
1136 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1137 static const unsigned char f32_4[] =
1138 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1139 static const unsigned char f32_5[] =
1140 {0x90, /* nop */
1141 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1142 static const unsigned char f32_6[] =
1143 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1144 static const unsigned char f32_7[] =
1145 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1146 static const unsigned char f32_8[] =
1147 {0x90, /* nop */
1148 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1149 static const unsigned char f32_9[] =
1150 {0x89,0xf6, /* movl %esi,%esi */
1151 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1152 static const unsigned char f32_10[] =
1153 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1154 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1155 static const unsigned char f32_11[] =
1156 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1157 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1158 static const unsigned char f32_12[] =
1159 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1160 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1161 static const unsigned char f32_13[] =
1162 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1163 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1164 static const unsigned char f32_14[] =
1165 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1166 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1167 static const unsigned char f16_3[] =
1168 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1169 static const unsigned char f16_4[] =
1170 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1171 static const unsigned char f16_5[] =
1172 {0x90, /* nop */
1173 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1174 static const unsigned char f16_6[] =
1175 {0x89,0xf6, /* mov %si,%si */
1176 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1177 static const unsigned char f16_7[] =
1178 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1179 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1180 static const unsigned char f16_8[] =
1181 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1182 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1183 static const unsigned char jump_31[] =
1184 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1185 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1186 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1187 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1188 static const unsigned char *const f32_patt[] = {
1189 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1190 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1191 };
1192 static const unsigned char *const f16_patt[] = {
1193 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1194 };
1195 /* nopl (%[re]ax) */
1196 static const unsigned char alt_3[] =
1197 {0x0f,0x1f,0x00};
1198 /* nopl 0(%[re]ax) */
1199 static const unsigned char alt_4[] =
1200 {0x0f,0x1f,0x40,0x00};
1201 /* nopl 0(%[re]ax,%[re]ax,1) */
1202 static const unsigned char alt_5[] =
1203 {0x0f,0x1f,0x44,0x00,0x00};
1204 /* nopw 0(%[re]ax,%[re]ax,1) */
1205 static const unsigned char alt_6[] =
1206 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1207 /* nopl 0L(%[re]ax) */
1208 static const unsigned char alt_7[] =
1209 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1210 /* nopl 0L(%[re]ax,%[re]ax,1) */
1211 static const unsigned char alt_8[] =
1212 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1213 /* nopw 0L(%[re]ax,%[re]ax,1) */
1214 static const unsigned char alt_9[] =
1215 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1216 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1217 static const unsigned char alt_10[] =
1218 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1219 static const unsigned char *const alt_patt[] = {
1220 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1221 alt_9, alt_10
1222 };
1223
1224 /* Only align for at least a positive non-zero boundary. */
1225 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1226 return;
1227
1228 /* We need to decide which NOP sequence to use for 32bit and
1229 64bit. When -mtune= is used:
1230
1231 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1232 PROCESSOR_GENERIC32, f32_patt will be used.
1233 2. For the rest, alt_patt will be used.
1234
1235 When -mtune= isn't used, alt_patt will be used if
1236 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1237 be used.
1238
1239 When -march= or .arch is used, we can't use anything beyond
1240 cpu_arch_isa_flags. */
1241
1242 if (flag_code == CODE_16BIT)
1243 {
1244 if (count > 8)
1245 {
1246 memcpy (fragP->fr_literal + fragP->fr_fix,
1247 jump_31, count);
1248 /* Adjust jump offset. */
1249 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1250 }
1251 else
1252 memcpy (fragP->fr_literal + fragP->fr_fix,
1253 f16_patt[count - 1], count);
1254 }
1255 else
1256 {
1257 const unsigned char *const *patt = NULL;
1258
1259 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1260 {
1261 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1262 switch (cpu_arch_tune)
1263 {
1264 case PROCESSOR_UNKNOWN:
1265 /* We use cpu_arch_isa_flags to check if we SHOULD
1266 optimize with nops. */
1267 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1268 patt = alt_patt;
1269 else
1270 patt = f32_patt;
1271 break;
1272 case PROCESSOR_PENTIUM4:
1273 case PROCESSOR_NOCONA:
1274 case PROCESSOR_CORE:
1275 case PROCESSOR_CORE2:
1276 case PROCESSOR_COREI7:
1277 case PROCESSOR_L1OM:
1278 case PROCESSOR_K1OM:
1279 case PROCESSOR_GENERIC64:
1280 case PROCESSOR_K6:
1281 case PROCESSOR_ATHLON:
1282 case PROCESSOR_K8:
1283 case PROCESSOR_AMDFAM10:
1284 case PROCESSOR_BD:
1285 case PROCESSOR_ZNVER:
1286 case PROCESSOR_BT:
1287 patt = alt_patt;
1288 break;
1289 case PROCESSOR_I386:
1290 case PROCESSOR_I486:
1291 case PROCESSOR_PENTIUM:
1292 case PROCESSOR_PENTIUMPRO:
1293 case PROCESSOR_IAMCU:
1294 case PROCESSOR_GENERIC32:
1295 patt = f32_patt;
1296 break;
1297 }
1298 }
1299 else
1300 {
1301 switch (fragP->tc_frag_data.tune)
1302 {
1303 case PROCESSOR_UNKNOWN:
1304 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1305 PROCESSOR_UNKNOWN. */
1306 abort ();
1307 break;
1308
1309 case PROCESSOR_I386:
1310 case PROCESSOR_I486:
1311 case PROCESSOR_PENTIUM:
1312 case PROCESSOR_IAMCU:
1313 case PROCESSOR_K6:
1314 case PROCESSOR_ATHLON:
1315 case PROCESSOR_K8:
1316 case PROCESSOR_AMDFAM10:
1317 case PROCESSOR_BD:
1318 case PROCESSOR_ZNVER:
1319 case PROCESSOR_BT:
1320 case PROCESSOR_GENERIC32:
1321 /* We use cpu_arch_isa_flags to check if we CAN optimize
1322 with nops. */
1323 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1324 patt = alt_patt;
1325 else
1326 patt = f32_patt;
1327 break;
1328 case PROCESSOR_PENTIUMPRO:
1329 case PROCESSOR_PENTIUM4:
1330 case PROCESSOR_NOCONA:
1331 case PROCESSOR_CORE:
1332 case PROCESSOR_CORE2:
1333 case PROCESSOR_COREI7:
1334 case PROCESSOR_L1OM:
1335 case PROCESSOR_K1OM:
1336 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1337 patt = alt_patt;
1338 else
1339 patt = f32_patt;
1340 break;
1341 case PROCESSOR_GENERIC64:
1342 patt = alt_patt;
1343 break;
1344 }
1345 }
1346
1347 if (patt == f32_patt)
1348 {
1349 /* If the padding is less than 15 bytes, we use the normal
1350 ones. Otherwise, we use a jump instruction and adjust
1351 its offset. */
1352 int limit;
1353
1354 /* For 64bit, the limit is 3 bytes. */
1355 if (flag_code == CODE_64BIT
1356 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1357 limit = 3;
1358 else
1359 limit = 15;
1360 if (count < limit)
1361 memcpy (fragP->fr_literal + fragP->fr_fix,
1362 patt[count - 1], count);
1363 else
1364 {
1365 memcpy (fragP->fr_literal + fragP->fr_fix,
1366 jump_31, count);
1367 /* Adjust jump offset. */
1368 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1369 }
1370 }
1371 else
1372 {
1373 /* Maximum length of an instruction is 10 byte. If the
1374 padding is greater than 10 bytes and we don't use jump,
1375 we have to break it into smaller pieces. */
1376 int padding = count;
1377 while (padding > 10)
1378 {
1379 padding -= 10;
1380 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1381 patt [9], 10);
1382 }
1383
1384 if (padding)
1385 memcpy (fragP->fr_literal + fragP->fr_fix,
1386 patt [padding - 1], padding);
1387 }
1388 }
1389 fragP->fr_var = count;
1390 }
1391
1392 static INLINE int
1393 operand_type_all_zero (const union i386_operand_type *x)
1394 {
1395 switch (ARRAY_SIZE(x->array))
1396 {
1397 case 3:
1398 if (x->array[2])
1399 return 0;
1400 /* Fall through. */
1401 case 2:
1402 if (x->array[1])
1403 return 0;
1404 /* Fall through. */
1405 case 1:
1406 return !x->array[0];
1407 default:
1408 abort ();
1409 }
1410 }
1411
1412 static INLINE void
1413 operand_type_set (union i386_operand_type *x, unsigned int v)
1414 {
1415 switch (ARRAY_SIZE(x->array))
1416 {
1417 case 3:
1418 x->array[2] = v;
1419 /* Fall through. */
1420 case 2:
1421 x->array[1] = v;
1422 /* Fall through. */
1423 case 1:
1424 x->array[0] = v;
1425 /* Fall through. */
1426 break;
1427 default:
1428 abort ();
1429 }
1430 }
1431
1432 static INLINE int
1433 operand_type_equal (const union i386_operand_type *x,
1434 const union i386_operand_type *y)
1435 {
1436 switch (ARRAY_SIZE(x->array))
1437 {
1438 case 3:
1439 if (x->array[2] != y->array[2])
1440 return 0;
1441 /* Fall through. */
1442 case 2:
1443 if (x->array[1] != y->array[1])
1444 return 0;
1445 /* Fall through. */
1446 case 1:
1447 return x->array[0] == y->array[0];
1448 break;
1449 default:
1450 abort ();
1451 }
1452 }
1453
1454 static INLINE int
1455 cpu_flags_all_zero (const union i386_cpu_flags *x)
1456 {
1457 switch (ARRAY_SIZE(x->array))
1458 {
1459 case 3:
1460 if (x->array[2])
1461 return 0;
1462 /* Fall through. */
1463 case 2:
1464 if (x->array[1])
1465 return 0;
1466 /* Fall through. */
1467 case 1:
1468 return !x->array[0];
1469 default:
1470 abort ();
1471 }
1472 }
1473
1474 static INLINE int
1475 cpu_flags_equal (const union i386_cpu_flags *x,
1476 const union i386_cpu_flags *y)
1477 {
1478 switch (ARRAY_SIZE(x->array))
1479 {
1480 case 3:
1481 if (x->array[2] != y->array[2])
1482 return 0;
1483 /* Fall through. */
1484 case 2:
1485 if (x->array[1] != y->array[1])
1486 return 0;
1487 /* Fall through. */
1488 case 1:
1489 return x->array[0] == y->array[0];
1490 break;
1491 default:
1492 abort ();
1493 }
1494 }
1495
1496 static INLINE int
1497 cpu_flags_check_cpu64 (i386_cpu_flags f)
1498 {
1499 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1500 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1501 }
1502
1503 static INLINE i386_cpu_flags
1504 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1505 {
1506 switch (ARRAY_SIZE (x.array))
1507 {
1508 case 3:
1509 x.array [2] &= y.array [2];
1510 /* Fall through. */
1511 case 2:
1512 x.array [1] &= y.array [1];
1513 /* Fall through. */
1514 case 1:
1515 x.array [0] &= y.array [0];
1516 break;
1517 default:
1518 abort ();
1519 }
1520 return x;
1521 }
1522
1523 static INLINE i386_cpu_flags
1524 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1525 {
1526 switch (ARRAY_SIZE (x.array))
1527 {
1528 case 3:
1529 x.array [2] |= y.array [2];
1530 /* Fall through. */
1531 case 2:
1532 x.array [1] |= y.array [1];
1533 /* Fall through. */
1534 case 1:
1535 x.array [0] |= y.array [0];
1536 break;
1537 default:
1538 abort ();
1539 }
1540 return x;
1541 }
1542
1543 static INLINE i386_cpu_flags
1544 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1545 {
1546 switch (ARRAY_SIZE (x.array))
1547 {
1548 case 3:
1549 x.array [2] &= ~y.array [2];
1550 /* Fall through. */
1551 case 2:
1552 x.array [1] &= ~y.array [1];
1553 /* Fall through. */
1554 case 1:
1555 x.array [0] &= ~y.array [0];
1556 break;
1557 default:
1558 abort ();
1559 }
1560 return x;
1561 }
1562
1563 #define CPU_FLAGS_ARCH_MATCH 0x1
1564 #define CPU_FLAGS_64BIT_MATCH 0x2
1565 #define CPU_FLAGS_AES_MATCH 0x4
1566 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1567 #define CPU_FLAGS_AVX_MATCH 0x10
1568
1569 #define CPU_FLAGS_32BIT_MATCH \
1570 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1571 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1572 #define CPU_FLAGS_PERFECT_MATCH \
1573 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1574
1575 /* Return CPU flags match bits. */
1576
1577 static int
1578 cpu_flags_match (const insn_template *t)
1579 {
1580 i386_cpu_flags x = t->cpu_flags;
1581 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1582
1583 x.bitfield.cpu64 = 0;
1584 x.bitfield.cpuno64 = 0;
1585
1586 if (cpu_flags_all_zero (&x))
1587 {
1588 /* This instruction is available on all archs. */
1589 match |= CPU_FLAGS_32BIT_MATCH;
1590 }
1591 else
1592 {
1593 /* This instruction is available only on some archs. */
1594 i386_cpu_flags cpu = cpu_arch_flags;
1595
1596 cpu = cpu_flags_and (x, cpu);
1597 if (!cpu_flags_all_zero (&cpu))
1598 {
1599 if (x.bitfield.cpuavx)
1600 {
1601 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1602 if (cpu.bitfield.cpuavx)
1603 {
1604 /* Check SSE2AVX. */
1605 if (!t->opcode_modifier.sse2avx|| sse2avx)
1606 {
1607 match |= (CPU_FLAGS_ARCH_MATCH
1608 | CPU_FLAGS_AVX_MATCH);
1609 /* Check AES. */
1610 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1611 match |= CPU_FLAGS_AES_MATCH;
1612 /* Check PCLMUL. */
1613 if (!x.bitfield.cpupclmul
1614 || cpu.bitfield.cpupclmul)
1615 match |= CPU_FLAGS_PCLMUL_MATCH;
1616 }
1617 }
1618 else
1619 match |= CPU_FLAGS_ARCH_MATCH;
1620 }
1621 else if (x.bitfield.cpuavx512vl)
1622 {
1623 /* Match AVX512VL. */
1624 if (cpu.bitfield.cpuavx512vl)
1625 {
1626 /* Need another match. */
1627 cpu.bitfield.cpuavx512vl = 0;
1628 if (!cpu_flags_all_zero (&cpu))
1629 match |= CPU_FLAGS_32BIT_MATCH;
1630 else
1631 match |= CPU_FLAGS_ARCH_MATCH;
1632 }
1633 else
1634 match |= CPU_FLAGS_ARCH_MATCH;
1635 }
1636 else
1637 match |= CPU_FLAGS_32BIT_MATCH;
1638 }
1639 }
1640 return match;
1641 }
1642
1643 static INLINE i386_operand_type
1644 operand_type_and (i386_operand_type x, i386_operand_type y)
1645 {
1646 switch (ARRAY_SIZE (x.array))
1647 {
1648 case 3:
1649 x.array [2] &= y.array [2];
1650 /* Fall through. */
1651 case 2:
1652 x.array [1] &= y.array [1];
1653 /* Fall through. */
1654 case 1:
1655 x.array [0] &= y.array [0];
1656 break;
1657 default:
1658 abort ();
1659 }
1660 return x;
1661 }
1662
1663 static INLINE i386_operand_type
1664 operand_type_or (i386_operand_type x, i386_operand_type y)
1665 {
1666 switch (ARRAY_SIZE (x.array))
1667 {
1668 case 3:
1669 x.array [2] |= y.array [2];
1670 /* Fall through. */
1671 case 2:
1672 x.array [1] |= y.array [1];
1673 /* Fall through. */
1674 case 1:
1675 x.array [0] |= y.array [0];
1676 break;
1677 default:
1678 abort ();
1679 }
1680 return x;
1681 }
1682
1683 static INLINE i386_operand_type
1684 operand_type_xor (i386_operand_type x, i386_operand_type y)
1685 {
1686 switch (ARRAY_SIZE (x.array))
1687 {
1688 case 3:
1689 x.array [2] ^= y.array [2];
1690 /* Fall through. */
1691 case 2:
1692 x.array [1] ^= y.array [1];
1693 /* Fall through. */
1694 case 1:
1695 x.array [0] ^= y.array [0];
1696 break;
1697 default:
1698 abort ();
1699 }
1700 return x;
1701 }
1702
1703 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1704 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1705 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1706 static const i386_operand_type inoutportreg
1707 = OPERAND_TYPE_INOUTPORTREG;
1708 static const i386_operand_type reg16_inoutportreg
1709 = OPERAND_TYPE_REG16_INOUTPORTREG;
1710 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1711 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1712 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1713 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1714 static const i386_operand_type anydisp
1715 = OPERAND_TYPE_ANYDISP;
1716 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1717 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1718 static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1719 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1720 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1721 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1722 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1723 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1724 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1725 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1726 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1727 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1728 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1729 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1730
1731 enum operand_type
1732 {
1733 reg,
1734 imm,
1735 disp,
1736 anymem
1737 };
1738
1739 static INLINE int
1740 operand_type_check (i386_operand_type t, enum operand_type c)
1741 {
1742 switch (c)
1743 {
1744 case reg:
1745 return (t.bitfield.reg8
1746 || t.bitfield.reg16
1747 || t.bitfield.reg32
1748 || t.bitfield.reg64);
1749
1750 case imm:
1751 return (t.bitfield.imm8
1752 || t.bitfield.imm8s
1753 || t.bitfield.imm16
1754 || t.bitfield.imm32
1755 || t.bitfield.imm32s
1756 || t.bitfield.imm64);
1757
1758 case disp:
1759 return (t.bitfield.disp8
1760 || t.bitfield.disp16
1761 || t.bitfield.disp32
1762 || t.bitfield.disp32s
1763 || t.bitfield.disp64);
1764
1765 case anymem:
1766 return (t.bitfield.disp8
1767 || t.bitfield.disp16
1768 || t.bitfield.disp32
1769 || t.bitfield.disp32s
1770 || t.bitfield.disp64
1771 || t.bitfield.baseindex);
1772
1773 default:
1774 abort ();
1775 }
1776
1777 return 0;
1778 }
1779
1780 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1781 operand J for instruction template T. */
1782
1783 static INLINE int
1784 match_reg_size (const insn_template *t, unsigned int j)
1785 {
1786 return !((i.types[j].bitfield.byte
1787 && !t->operand_types[j].bitfield.byte)
1788 || (i.types[j].bitfield.word
1789 && !t->operand_types[j].bitfield.word)
1790 || (i.types[j].bitfield.dword
1791 && !t->operand_types[j].bitfield.dword)
1792 || (i.types[j].bitfield.qword
1793 && !t->operand_types[j].bitfield.qword));
1794 }
1795
1796 /* Return 1 if there is no conflict in any size on operand J for
1797 instruction template T. */
1798
1799 static INLINE int
1800 match_mem_size (const insn_template *t, unsigned int j)
1801 {
1802 return (match_reg_size (t, j)
1803 && !((i.types[j].bitfield.unspecified
1804 && !i.broadcast
1805 && !t->operand_types[j].bitfield.unspecified)
1806 || (i.types[j].bitfield.fword
1807 && !t->operand_types[j].bitfield.fword)
1808 || (i.types[j].bitfield.tbyte
1809 && !t->operand_types[j].bitfield.tbyte)
1810 || (i.types[j].bitfield.xmmword
1811 && !t->operand_types[j].bitfield.xmmword)
1812 || (i.types[j].bitfield.ymmword
1813 && !t->operand_types[j].bitfield.ymmword)
1814 || (i.types[j].bitfield.zmmword
1815 && !t->operand_types[j].bitfield.zmmword)));
1816 }
1817
1818 /* Return 1 if there is no size conflict on any operands for
1819 instruction template T. */
1820
1821 static INLINE int
1822 operand_size_match (const insn_template *t)
1823 {
1824 unsigned int j;
1825 int match = 1;
1826
1827 /* Don't check jump instructions. */
1828 if (t->opcode_modifier.jump
1829 || t->opcode_modifier.jumpbyte
1830 || t->opcode_modifier.jumpdword
1831 || t->opcode_modifier.jumpintersegment)
1832 return match;
1833
1834 /* Check memory and accumulator operand size. */
1835 for (j = 0; j < i.operands; j++)
1836 {
1837 if (t->operand_types[j].bitfield.anysize)
1838 continue;
1839
1840 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1841 {
1842 match = 0;
1843 break;
1844 }
1845
1846 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1847 {
1848 match = 0;
1849 break;
1850 }
1851 }
1852
1853 if (match)
1854 return match;
1855 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1856 {
1857 mismatch:
1858 i.error = operand_size_mismatch;
1859 return 0;
1860 }
1861
1862 /* Check reverse. */
1863 gas_assert (i.operands == 2);
1864
1865 match = 1;
1866 for (j = 0; j < 2; j++)
1867 {
1868 if (t->operand_types[j].bitfield.acc
1869 && !match_reg_size (t, j ? 0 : 1))
1870 goto mismatch;
1871
1872 if (i.types[j].bitfield.mem
1873 && !match_mem_size (t, j ? 0 : 1))
1874 goto mismatch;
1875 }
1876
1877 return match;
1878 }
1879
1880 static INLINE int
1881 operand_type_match (i386_operand_type overlap,
1882 i386_operand_type given)
1883 {
1884 i386_operand_type temp = overlap;
1885
1886 temp.bitfield.jumpabsolute = 0;
1887 temp.bitfield.unspecified = 0;
1888 temp.bitfield.byte = 0;
1889 temp.bitfield.word = 0;
1890 temp.bitfield.dword = 0;
1891 temp.bitfield.fword = 0;
1892 temp.bitfield.qword = 0;
1893 temp.bitfield.tbyte = 0;
1894 temp.bitfield.xmmword = 0;
1895 temp.bitfield.ymmword = 0;
1896 temp.bitfield.zmmword = 0;
1897 if (operand_type_all_zero (&temp))
1898 goto mismatch;
1899
1900 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1901 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1902 return 1;
1903
1904 mismatch:
1905 i.error = operand_type_mismatch;
1906 return 0;
1907 }
1908
1909 /* If given types g0 and g1 are registers they must be of the same type
1910 unless the expected operand type register overlap is null.
1911 Note that Acc in a template matches every size of reg. */
1912
1913 static INLINE int
1914 operand_type_register_match (i386_operand_type m0,
1915 i386_operand_type g0,
1916 i386_operand_type t0,
1917 i386_operand_type m1,
1918 i386_operand_type g1,
1919 i386_operand_type t1)
1920 {
1921 if (!operand_type_check (g0, reg))
1922 return 1;
1923
1924 if (!operand_type_check (g1, reg))
1925 return 1;
1926
1927 if (g0.bitfield.reg8 == g1.bitfield.reg8
1928 && g0.bitfield.reg16 == g1.bitfield.reg16
1929 && g0.bitfield.reg32 == g1.bitfield.reg32
1930 && g0.bitfield.reg64 == g1.bitfield.reg64)
1931 return 1;
1932
1933 if (m0.bitfield.acc)
1934 {
1935 t0.bitfield.reg8 = 1;
1936 t0.bitfield.reg16 = 1;
1937 t0.bitfield.reg32 = 1;
1938 t0.bitfield.reg64 = 1;
1939 }
1940
1941 if (m1.bitfield.acc)
1942 {
1943 t1.bitfield.reg8 = 1;
1944 t1.bitfield.reg16 = 1;
1945 t1.bitfield.reg32 = 1;
1946 t1.bitfield.reg64 = 1;
1947 }
1948
1949 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1950 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1951 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1952 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1953 return 1;
1954
1955 i.error = register_type_mismatch;
1956
1957 return 0;
1958 }
1959
1960 static INLINE unsigned int
1961 register_number (const reg_entry *r)
1962 {
1963 unsigned int nr = r->reg_num;
1964
1965 if (r->reg_flags & RegRex)
1966 nr += 8;
1967
1968 if (r->reg_flags & RegVRex)
1969 nr += 16;
1970
1971 return nr;
1972 }
1973
1974 static INLINE unsigned int
1975 mode_from_disp_size (i386_operand_type t)
1976 {
1977 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
1978 return 1;
1979 else if (t.bitfield.disp16
1980 || t.bitfield.disp32
1981 || t.bitfield.disp32s)
1982 return 2;
1983 else
1984 return 0;
1985 }
1986
1987 static INLINE int
1988 fits_in_signed_byte (addressT num)
1989 {
1990 return num + 0x80 <= 0xff;
1991 }
1992
1993 static INLINE int
1994 fits_in_unsigned_byte (addressT num)
1995 {
1996 return num <= 0xff;
1997 }
1998
1999 static INLINE int
2000 fits_in_unsigned_word (addressT num)
2001 {
2002 return num <= 0xffff;
2003 }
2004
2005 static INLINE int
2006 fits_in_signed_word (addressT num)
2007 {
2008 return num + 0x8000 <= 0xffff;
2009 }
2010
2011 static INLINE int
2012 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2013 {
2014 #ifndef BFD64
2015 return 1;
2016 #else
2017 return num + 0x80000000 <= 0xffffffff;
2018 #endif
2019 } /* fits_in_signed_long() */
2020
2021 static INLINE int
2022 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2023 {
2024 #ifndef BFD64
2025 return 1;
2026 #else
2027 return num <= 0xffffffff;
2028 #endif
2029 } /* fits_in_unsigned_long() */
2030
2031 static INLINE int
2032 fits_in_vec_disp8 (offsetT num)
2033 {
2034 int shift = i.memshift;
2035 unsigned int mask;
2036
2037 if (shift == -1)
2038 abort ();
2039
2040 mask = (1 << shift) - 1;
2041
2042 /* Return 0 if NUM isn't properly aligned. */
2043 if ((num & mask))
2044 return 0;
2045
2046 /* Check if NUM will fit in 8bit after shift. */
2047 return fits_in_signed_byte (num >> shift);
2048 }
2049
2050 static INLINE int
2051 fits_in_imm4 (offsetT num)
2052 {
2053 return (num & 0xf) == num;
2054 }
2055
2056 static i386_operand_type
2057 smallest_imm_type (offsetT num)
2058 {
2059 i386_operand_type t;
2060
2061 operand_type_set (&t, 0);
2062 t.bitfield.imm64 = 1;
2063
2064 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2065 {
2066 /* This code is disabled on the 486 because all the Imm1 forms
2067 in the opcode table are slower on the i486. They're the
2068 versions with the implicitly specified single-position
2069 displacement, which has another syntax if you really want to
2070 use that form. */
2071 t.bitfield.imm1 = 1;
2072 t.bitfield.imm8 = 1;
2073 t.bitfield.imm8s = 1;
2074 t.bitfield.imm16 = 1;
2075 t.bitfield.imm32 = 1;
2076 t.bitfield.imm32s = 1;
2077 }
2078 else if (fits_in_signed_byte (num))
2079 {
2080 t.bitfield.imm8 = 1;
2081 t.bitfield.imm8s = 1;
2082 t.bitfield.imm16 = 1;
2083 t.bitfield.imm32 = 1;
2084 t.bitfield.imm32s = 1;
2085 }
2086 else if (fits_in_unsigned_byte (num))
2087 {
2088 t.bitfield.imm8 = 1;
2089 t.bitfield.imm16 = 1;
2090 t.bitfield.imm32 = 1;
2091 t.bitfield.imm32s = 1;
2092 }
2093 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2094 {
2095 t.bitfield.imm16 = 1;
2096 t.bitfield.imm32 = 1;
2097 t.bitfield.imm32s = 1;
2098 }
2099 else if (fits_in_signed_long (num))
2100 {
2101 t.bitfield.imm32 = 1;
2102 t.bitfield.imm32s = 1;
2103 }
2104 else if (fits_in_unsigned_long (num))
2105 t.bitfield.imm32 = 1;
2106
2107 return t;
2108 }
2109
2110 static offsetT
2111 offset_in_range (offsetT val, int size)
2112 {
2113 addressT mask;
2114
2115 switch (size)
2116 {
2117 case 1: mask = ((addressT) 1 << 8) - 1; break;
2118 case 2: mask = ((addressT) 1 << 16) - 1; break;
2119 case 4: mask = ((addressT) 2 << 31) - 1; break;
2120 #ifdef BFD64
2121 case 8: mask = ((addressT) 2 << 63) - 1; break;
2122 #endif
2123 default: abort ();
2124 }
2125
2126 #ifdef BFD64
2127 /* If BFD64, sign extend val for 32bit address mode. */
2128 if (flag_code != CODE_64BIT
2129 || i.prefix[ADDR_PREFIX])
2130 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2131 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2132 #endif
2133
2134 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2135 {
2136 char buf1[40], buf2[40];
2137
2138 sprint_value (buf1, val);
2139 sprint_value (buf2, val & mask);
2140 as_warn (_("%s shortened to %s"), buf1, buf2);
2141 }
2142 return val & mask;
2143 }
2144
2145 enum PREFIX_GROUP
2146 {
2147 PREFIX_EXIST = 0,
2148 PREFIX_LOCK,
2149 PREFIX_REP,
2150 PREFIX_DS,
2151 PREFIX_OTHER
2152 };
2153
2154 /* Returns
2155 a. PREFIX_EXIST if attempting to add a prefix where one from the
2156 same class already exists.
2157 b. PREFIX_LOCK if lock prefix is added.
2158 c. PREFIX_REP if rep/repne prefix is added.
2159 d. PREFIX_DS if ds prefix is added.
2160 e. PREFIX_OTHER if other prefix is added.
2161 */
2162
2163 static enum PREFIX_GROUP
2164 add_prefix (unsigned int prefix)
2165 {
2166 enum PREFIX_GROUP ret = PREFIX_OTHER;
2167 unsigned int q;
2168
2169 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2170 && flag_code == CODE_64BIT)
2171 {
2172 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2173 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2174 && (prefix & (REX_R | REX_X | REX_B))))
2175 ret = PREFIX_EXIST;
2176 q = REX_PREFIX;
2177 }
2178 else
2179 {
2180 switch (prefix)
2181 {
2182 default:
2183 abort ();
2184
2185 case DS_PREFIX_OPCODE:
2186 ret = PREFIX_DS;
2187 /* Fall through. */
2188 case CS_PREFIX_OPCODE:
2189 case ES_PREFIX_OPCODE:
2190 case FS_PREFIX_OPCODE:
2191 case GS_PREFIX_OPCODE:
2192 case SS_PREFIX_OPCODE:
2193 q = SEG_PREFIX;
2194 break;
2195
2196 case REPNE_PREFIX_OPCODE:
2197 case REPE_PREFIX_OPCODE:
2198 q = REP_PREFIX;
2199 ret = PREFIX_REP;
2200 break;
2201
2202 case LOCK_PREFIX_OPCODE:
2203 q = LOCK_PREFIX;
2204 ret = PREFIX_LOCK;
2205 break;
2206
2207 case FWAIT_OPCODE:
2208 q = WAIT_PREFIX;
2209 break;
2210
2211 case ADDR_PREFIX_OPCODE:
2212 q = ADDR_PREFIX;
2213 break;
2214
2215 case DATA_PREFIX_OPCODE:
2216 q = DATA_PREFIX;
2217 break;
2218 }
2219 if (i.prefix[q] != 0)
2220 ret = PREFIX_EXIST;
2221 }
2222
2223 if (ret)
2224 {
2225 if (!i.prefix[q])
2226 ++i.prefixes;
2227 i.prefix[q] |= prefix;
2228 }
2229 else
2230 as_bad (_("same type of prefix used twice"));
2231
2232 return ret;
2233 }
2234
2235 static void
2236 update_code_flag (int value, int check)
2237 {
2238 PRINTF_LIKE ((*as_error));
2239
2240 flag_code = (enum flag_code) value;
2241 if (flag_code == CODE_64BIT)
2242 {
2243 cpu_arch_flags.bitfield.cpu64 = 1;
2244 cpu_arch_flags.bitfield.cpuno64 = 0;
2245 }
2246 else
2247 {
2248 cpu_arch_flags.bitfield.cpu64 = 0;
2249 cpu_arch_flags.bitfield.cpuno64 = 1;
2250 }
2251 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2252 {
2253 if (check)
2254 as_error = as_fatal;
2255 else
2256 as_error = as_bad;
2257 (*as_error) (_("64bit mode not supported on `%s'."),
2258 cpu_arch_name ? cpu_arch_name : default_arch);
2259 }
2260 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2261 {
2262 if (check)
2263 as_error = as_fatal;
2264 else
2265 as_error = as_bad;
2266 (*as_error) (_("32bit mode not supported on `%s'."),
2267 cpu_arch_name ? cpu_arch_name : default_arch);
2268 }
2269 stackop_size = '\0';
2270 }
2271
2272 static void
2273 set_code_flag (int value)
2274 {
2275 update_code_flag (value, 0);
2276 }
2277
2278 static void
2279 set_16bit_gcc_code_flag (int new_code_flag)
2280 {
2281 flag_code = (enum flag_code) new_code_flag;
2282 if (flag_code != CODE_16BIT)
2283 abort ();
2284 cpu_arch_flags.bitfield.cpu64 = 0;
2285 cpu_arch_flags.bitfield.cpuno64 = 1;
2286 stackop_size = LONG_MNEM_SUFFIX;
2287 }
2288
2289 static void
2290 set_intel_syntax (int syntax_flag)
2291 {
2292 /* Find out if register prefixing is specified. */
2293 int ask_naked_reg = 0;
2294
2295 SKIP_WHITESPACE ();
2296 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2297 {
2298 char *string;
2299 int e = get_symbol_name (&string);
2300
2301 if (strcmp (string, "prefix") == 0)
2302 ask_naked_reg = 1;
2303 else if (strcmp (string, "noprefix") == 0)
2304 ask_naked_reg = -1;
2305 else
2306 as_bad (_("bad argument to syntax directive."));
2307 (void) restore_line_pointer (e);
2308 }
2309 demand_empty_rest_of_line ();
2310
2311 intel_syntax = syntax_flag;
2312
2313 if (ask_naked_reg == 0)
2314 allow_naked_reg = (intel_syntax
2315 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2316 else
2317 allow_naked_reg = (ask_naked_reg < 0);
2318
2319 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2320
2321 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2322 identifier_chars['$'] = intel_syntax ? '$' : 0;
2323 register_prefix = allow_naked_reg ? "" : "%";
2324 }
2325
2326 static void
2327 set_intel_mnemonic (int mnemonic_flag)
2328 {
2329 intel_mnemonic = mnemonic_flag;
2330 }
2331
2332 static void
2333 set_allow_index_reg (int flag)
2334 {
2335 allow_index_reg = flag;
2336 }
2337
2338 static void
2339 set_check (int what)
2340 {
2341 enum check_kind *kind;
2342 const char *str;
2343
2344 if (what)
2345 {
2346 kind = &operand_check;
2347 str = "operand";
2348 }
2349 else
2350 {
2351 kind = &sse_check;
2352 str = "sse";
2353 }
2354
2355 SKIP_WHITESPACE ();
2356
2357 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2358 {
2359 char *string;
2360 int e = get_symbol_name (&string);
2361
2362 if (strcmp (string, "none") == 0)
2363 *kind = check_none;
2364 else if (strcmp (string, "warning") == 0)
2365 *kind = check_warning;
2366 else if (strcmp (string, "error") == 0)
2367 *kind = check_error;
2368 else
2369 as_bad (_("bad argument to %s_check directive."), str);
2370 (void) restore_line_pointer (e);
2371 }
2372 else
2373 as_bad (_("missing argument for %s_check directive"), str);
2374
2375 demand_empty_rest_of_line ();
2376 }
2377
2378 static void
2379 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2380 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2381 {
2382 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2383 static const char *arch;
2384
2385 /* Intel LIOM is only supported on ELF. */
2386 if (!IS_ELF)
2387 return;
2388
2389 if (!arch)
2390 {
2391 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2392 use default_arch. */
2393 arch = cpu_arch_name;
2394 if (!arch)
2395 arch = default_arch;
2396 }
2397
2398 /* If we are targeting Intel MCU, we must enable it. */
2399 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2400 || new_flag.bitfield.cpuiamcu)
2401 return;
2402
2403 /* If we are targeting Intel L1OM, we must enable it. */
2404 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2405 || new_flag.bitfield.cpul1om)
2406 return;
2407
2408 /* If we are targeting Intel K1OM, we must enable it. */
2409 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2410 || new_flag.bitfield.cpuk1om)
2411 return;
2412
2413 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2414 #endif
2415 }
2416
2417 static void
2418 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2419 {
2420 SKIP_WHITESPACE ();
2421
2422 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2423 {
2424 char *string;
2425 int e = get_symbol_name (&string);
2426 unsigned int j;
2427 i386_cpu_flags flags;
2428
2429 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2430 {
2431 if (strcmp (string, cpu_arch[j].name) == 0)
2432 {
2433 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2434
2435 if (*string != '.')
2436 {
2437 cpu_arch_name = cpu_arch[j].name;
2438 cpu_sub_arch_name = NULL;
2439 cpu_arch_flags = cpu_arch[j].flags;
2440 if (flag_code == CODE_64BIT)
2441 {
2442 cpu_arch_flags.bitfield.cpu64 = 1;
2443 cpu_arch_flags.bitfield.cpuno64 = 0;
2444 }
2445 else
2446 {
2447 cpu_arch_flags.bitfield.cpu64 = 0;
2448 cpu_arch_flags.bitfield.cpuno64 = 1;
2449 }
2450 cpu_arch_isa = cpu_arch[j].type;
2451 cpu_arch_isa_flags = cpu_arch[j].flags;
2452 if (!cpu_arch_tune_set)
2453 {
2454 cpu_arch_tune = cpu_arch_isa;
2455 cpu_arch_tune_flags = cpu_arch_isa_flags;
2456 }
2457 break;
2458 }
2459
2460 flags = cpu_flags_or (cpu_arch_flags,
2461 cpu_arch[j].flags);
2462
2463 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2464 {
2465 if (cpu_sub_arch_name)
2466 {
2467 char *name = cpu_sub_arch_name;
2468 cpu_sub_arch_name = concat (name,
2469 cpu_arch[j].name,
2470 (const char *) NULL);
2471 free (name);
2472 }
2473 else
2474 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2475 cpu_arch_flags = flags;
2476 cpu_arch_isa_flags = flags;
2477 }
2478 (void) restore_line_pointer (e);
2479 demand_empty_rest_of_line ();
2480 return;
2481 }
2482 }
2483
2484 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2485 {
2486 /* Disable an ISA extension. */
2487 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2488 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2489 {
2490 flags = cpu_flags_and_not (cpu_arch_flags,
2491 cpu_noarch[j].flags);
2492 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2493 {
2494 if (cpu_sub_arch_name)
2495 {
2496 char *name = cpu_sub_arch_name;
2497 cpu_sub_arch_name = concat (name, string,
2498 (const char *) NULL);
2499 free (name);
2500 }
2501 else
2502 cpu_sub_arch_name = xstrdup (string);
2503 cpu_arch_flags = flags;
2504 cpu_arch_isa_flags = flags;
2505 }
2506 (void) restore_line_pointer (e);
2507 demand_empty_rest_of_line ();
2508 return;
2509 }
2510
2511 j = ARRAY_SIZE (cpu_arch);
2512 }
2513
2514 if (j >= ARRAY_SIZE (cpu_arch))
2515 as_bad (_("no such architecture: `%s'"), string);
2516
2517 *input_line_pointer = e;
2518 }
2519 else
2520 as_bad (_("missing cpu architecture"));
2521
2522 no_cond_jump_promotion = 0;
2523 if (*input_line_pointer == ','
2524 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2525 {
2526 char *string;
2527 char e;
2528
2529 ++input_line_pointer;
2530 e = get_symbol_name (&string);
2531
2532 if (strcmp (string, "nojumps") == 0)
2533 no_cond_jump_promotion = 1;
2534 else if (strcmp (string, "jumps") == 0)
2535 ;
2536 else
2537 as_bad (_("no such architecture modifier: `%s'"), string);
2538
2539 (void) restore_line_pointer (e);
2540 }
2541
2542 demand_empty_rest_of_line ();
2543 }
2544
2545 enum bfd_architecture
2546 i386_arch (void)
2547 {
2548 if (cpu_arch_isa == PROCESSOR_L1OM)
2549 {
2550 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2551 || flag_code != CODE_64BIT)
2552 as_fatal (_("Intel L1OM is 64bit ELF only"));
2553 return bfd_arch_l1om;
2554 }
2555 else if (cpu_arch_isa == PROCESSOR_K1OM)
2556 {
2557 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2558 || flag_code != CODE_64BIT)
2559 as_fatal (_("Intel K1OM is 64bit ELF only"));
2560 return bfd_arch_k1om;
2561 }
2562 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2563 {
2564 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2565 || flag_code == CODE_64BIT)
2566 as_fatal (_("Intel MCU is 32bit ELF only"));
2567 return bfd_arch_iamcu;
2568 }
2569 else
2570 return bfd_arch_i386;
2571 }
2572
2573 unsigned long
2574 i386_mach (void)
2575 {
2576 if (!strncmp (default_arch, "x86_64", 6))
2577 {
2578 if (cpu_arch_isa == PROCESSOR_L1OM)
2579 {
2580 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2581 || default_arch[6] != '\0')
2582 as_fatal (_("Intel L1OM is 64bit ELF only"));
2583 return bfd_mach_l1om;
2584 }
2585 else if (cpu_arch_isa == PROCESSOR_K1OM)
2586 {
2587 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2588 || default_arch[6] != '\0')
2589 as_fatal (_("Intel K1OM is 64bit ELF only"));
2590 return bfd_mach_k1om;
2591 }
2592 else if (default_arch[6] == '\0')
2593 return bfd_mach_x86_64;
2594 else
2595 return bfd_mach_x64_32;
2596 }
2597 else if (!strcmp (default_arch, "i386")
2598 || !strcmp (default_arch, "iamcu"))
2599 {
2600 if (cpu_arch_isa == PROCESSOR_IAMCU)
2601 {
2602 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2603 as_fatal (_("Intel MCU is 32bit ELF only"));
2604 return bfd_mach_i386_iamcu;
2605 }
2606 else
2607 return bfd_mach_i386_i386;
2608 }
2609 else
2610 as_fatal (_("unknown architecture"));
2611 }
2612 \f
2613 void
2614 md_begin (void)
2615 {
2616 const char *hash_err;
2617
2618 /* Support pseudo prefixes like {disp32}. */
2619 lex_type ['{'] = LEX_BEGIN_NAME;
2620
2621 /* Initialize op_hash hash table. */
2622 op_hash = hash_new ();
2623
2624 {
2625 const insn_template *optab;
2626 templates *core_optab;
2627
2628 /* Setup for loop. */
2629 optab = i386_optab;
2630 core_optab = XNEW (templates);
2631 core_optab->start = optab;
2632
2633 while (1)
2634 {
2635 ++optab;
2636 if (optab->name == NULL
2637 || strcmp (optab->name, (optab - 1)->name) != 0)
2638 {
2639 /* different name --> ship out current template list;
2640 add to hash table; & begin anew. */
2641 core_optab->end = optab;
2642 hash_err = hash_insert (op_hash,
2643 (optab - 1)->name,
2644 (void *) core_optab);
2645 if (hash_err)
2646 {
2647 as_fatal (_("can't hash %s: %s"),
2648 (optab - 1)->name,
2649 hash_err);
2650 }
2651 if (optab->name == NULL)
2652 break;
2653 core_optab = XNEW (templates);
2654 core_optab->start = optab;
2655 }
2656 }
2657 }
2658
2659 /* Initialize reg_hash hash table. */
2660 reg_hash = hash_new ();
2661 {
2662 const reg_entry *regtab;
2663 unsigned int regtab_size = i386_regtab_size;
2664
2665 for (regtab = i386_regtab; regtab_size--; regtab++)
2666 {
2667 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2668 if (hash_err)
2669 as_fatal (_("can't hash %s: %s"),
2670 regtab->reg_name,
2671 hash_err);
2672 }
2673 }
2674
2675 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2676 {
2677 int c;
2678 char *p;
2679
2680 for (c = 0; c < 256; c++)
2681 {
2682 if (ISDIGIT (c))
2683 {
2684 digit_chars[c] = c;
2685 mnemonic_chars[c] = c;
2686 register_chars[c] = c;
2687 operand_chars[c] = c;
2688 }
2689 else if (ISLOWER (c))
2690 {
2691 mnemonic_chars[c] = c;
2692 register_chars[c] = c;
2693 operand_chars[c] = c;
2694 }
2695 else if (ISUPPER (c))
2696 {
2697 mnemonic_chars[c] = TOLOWER (c);
2698 register_chars[c] = mnemonic_chars[c];
2699 operand_chars[c] = c;
2700 }
2701 else if (c == '{' || c == '}')
2702 {
2703 mnemonic_chars[c] = c;
2704 operand_chars[c] = c;
2705 }
2706
2707 if (ISALPHA (c) || ISDIGIT (c))
2708 identifier_chars[c] = c;
2709 else if (c >= 128)
2710 {
2711 identifier_chars[c] = c;
2712 operand_chars[c] = c;
2713 }
2714 }
2715
2716 #ifdef LEX_AT
2717 identifier_chars['@'] = '@';
2718 #endif
2719 #ifdef LEX_QM
2720 identifier_chars['?'] = '?';
2721 operand_chars['?'] = '?';
2722 #endif
2723 digit_chars['-'] = '-';
2724 mnemonic_chars['_'] = '_';
2725 mnemonic_chars['-'] = '-';
2726 mnemonic_chars['.'] = '.';
2727 identifier_chars['_'] = '_';
2728 identifier_chars['.'] = '.';
2729
2730 for (p = operand_special_chars; *p != '\0'; p++)
2731 operand_chars[(unsigned char) *p] = *p;
2732 }
2733
2734 if (flag_code == CODE_64BIT)
2735 {
2736 #if defined (OBJ_COFF) && defined (TE_PE)
2737 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2738 ? 32 : 16);
2739 #else
2740 x86_dwarf2_return_column = 16;
2741 #endif
2742 x86_cie_data_alignment = -8;
2743 }
2744 else
2745 {
2746 x86_dwarf2_return_column = 8;
2747 x86_cie_data_alignment = -4;
2748 }
2749 }
2750
2751 void
2752 i386_print_statistics (FILE *file)
2753 {
2754 hash_print_statistics (file, "i386 opcode", op_hash);
2755 hash_print_statistics (file, "i386 register", reg_hash);
2756 }
2757 \f
2758 #ifdef DEBUG386
2759
2760 /* Debugging routines for md_assemble. */
2761 static void pte (insn_template *);
2762 static void pt (i386_operand_type);
2763 static void pe (expressionS *);
2764 static void ps (symbolS *);
2765
2766 static void
2767 pi (char *line, i386_insn *x)
2768 {
2769 unsigned int j;
2770
2771 fprintf (stdout, "%s: template ", line);
2772 pte (&x->tm);
2773 fprintf (stdout, " address: base %s index %s scale %x\n",
2774 x->base_reg ? x->base_reg->reg_name : "none",
2775 x->index_reg ? x->index_reg->reg_name : "none",
2776 x->log2_scale_factor);
2777 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2778 x->rm.mode, x->rm.reg, x->rm.regmem);
2779 fprintf (stdout, " sib: base %x index %x scale %x\n",
2780 x->sib.base, x->sib.index, x->sib.scale);
2781 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2782 (x->rex & REX_W) != 0,
2783 (x->rex & REX_R) != 0,
2784 (x->rex & REX_X) != 0,
2785 (x->rex & REX_B) != 0);
2786 for (j = 0; j < x->operands; j++)
2787 {
2788 fprintf (stdout, " #%d: ", j + 1);
2789 pt (x->types[j]);
2790 fprintf (stdout, "\n");
2791 if (x->types[j].bitfield.reg8
2792 || x->types[j].bitfield.reg16
2793 || x->types[j].bitfield.reg32
2794 || x->types[j].bitfield.reg64
2795 || x->types[j].bitfield.regmmx
2796 || x->types[j].bitfield.regxmm
2797 || x->types[j].bitfield.regymm
2798 || x->types[j].bitfield.regzmm
2799 || x->types[j].bitfield.sreg2
2800 || x->types[j].bitfield.sreg3
2801 || x->types[j].bitfield.control
2802 || x->types[j].bitfield.debug
2803 || x->types[j].bitfield.test)
2804 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2805 if (operand_type_check (x->types[j], imm))
2806 pe (x->op[j].imms);
2807 if (operand_type_check (x->types[j], disp))
2808 pe (x->op[j].disps);
2809 }
2810 }
2811
2812 static void
2813 pte (insn_template *t)
2814 {
2815 unsigned int j;
2816 fprintf (stdout, " %d operands ", t->operands);
2817 fprintf (stdout, "opcode %x ", t->base_opcode);
2818 if (t->extension_opcode != None)
2819 fprintf (stdout, "ext %x ", t->extension_opcode);
2820 if (t->opcode_modifier.d)
2821 fprintf (stdout, "D");
2822 if (t->opcode_modifier.w)
2823 fprintf (stdout, "W");
2824 fprintf (stdout, "\n");
2825 for (j = 0; j < t->operands; j++)
2826 {
2827 fprintf (stdout, " #%d type ", j + 1);
2828 pt (t->operand_types[j]);
2829 fprintf (stdout, "\n");
2830 }
2831 }
2832
2833 static void
2834 pe (expressionS *e)
2835 {
2836 fprintf (stdout, " operation %d\n", e->X_op);
2837 fprintf (stdout, " add_number %ld (%lx)\n",
2838 (long) e->X_add_number, (long) e->X_add_number);
2839 if (e->X_add_symbol)
2840 {
2841 fprintf (stdout, " add_symbol ");
2842 ps (e->X_add_symbol);
2843 fprintf (stdout, "\n");
2844 }
2845 if (e->X_op_symbol)
2846 {
2847 fprintf (stdout, " op_symbol ");
2848 ps (e->X_op_symbol);
2849 fprintf (stdout, "\n");
2850 }
2851 }
2852
2853 static void
2854 ps (symbolS *s)
2855 {
2856 fprintf (stdout, "%s type %s%s",
2857 S_GET_NAME (s),
2858 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2859 segment_name (S_GET_SEGMENT (s)));
2860 }
2861
2862 static struct type_name
2863 {
2864 i386_operand_type mask;
2865 const char *name;
2866 }
2867 const type_names[] =
2868 {
2869 { OPERAND_TYPE_REG8, "r8" },
2870 { OPERAND_TYPE_REG16, "r16" },
2871 { OPERAND_TYPE_REG32, "r32" },
2872 { OPERAND_TYPE_REG64, "r64" },
2873 { OPERAND_TYPE_IMM8, "i8" },
2874 { OPERAND_TYPE_IMM8, "i8s" },
2875 { OPERAND_TYPE_IMM16, "i16" },
2876 { OPERAND_TYPE_IMM32, "i32" },
2877 { OPERAND_TYPE_IMM32S, "i32s" },
2878 { OPERAND_TYPE_IMM64, "i64" },
2879 { OPERAND_TYPE_IMM1, "i1" },
2880 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2881 { OPERAND_TYPE_DISP8, "d8" },
2882 { OPERAND_TYPE_DISP16, "d16" },
2883 { OPERAND_TYPE_DISP32, "d32" },
2884 { OPERAND_TYPE_DISP32S, "d32s" },
2885 { OPERAND_TYPE_DISP64, "d64" },
2886 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
2887 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2888 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2889 { OPERAND_TYPE_CONTROL, "control reg" },
2890 { OPERAND_TYPE_TEST, "test reg" },
2891 { OPERAND_TYPE_DEBUG, "debug reg" },
2892 { OPERAND_TYPE_FLOATREG, "FReg" },
2893 { OPERAND_TYPE_FLOATACC, "FAcc" },
2894 { OPERAND_TYPE_SREG2, "SReg2" },
2895 { OPERAND_TYPE_SREG3, "SReg3" },
2896 { OPERAND_TYPE_ACC, "Acc" },
2897 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2898 { OPERAND_TYPE_REGMMX, "rMMX" },
2899 { OPERAND_TYPE_REGXMM, "rXMM" },
2900 { OPERAND_TYPE_REGYMM, "rYMM" },
2901 { OPERAND_TYPE_REGZMM, "rZMM" },
2902 { OPERAND_TYPE_REGMASK, "Mask reg" },
2903 { OPERAND_TYPE_ESSEG, "es" },
2904 };
2905
2906 static void
2907 pt (i386_operand_type t)
2908 {
2909 unsigned int j;
2910 i386_operand_type a;
2911
2912 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2913 {
2914 a = operand_type_and (t, type_names[j].mask);
2915 if (!operand_type_all_zero (&a))
2916 fprintf (stdout, "%s, ", type_names[j].name);
2917 }
2918 fflush (stdout);
2919 }
2920
2921 #endif /* DEBUG386 */
2922 \f
2923 static bfd_reloc_code_real_type
2924 reloc (unsigned int size,
2925 int pcrel,
2926 int sign,
2927 bfd_reloc_code_real_type other)
2928 {
2929 if (other != NO_RELOC)
2930 {
2931 reloc_howto_type *rel;
2932
2933 if (size == 8)
2934 switch (other)
2935 {
2936 case BFD_RELOC_X86_64_GOT32:
2937 return BFD_RELOC_X86_64_GOT64;
2938 break;
2939 case BFD_RELOC_X86_64_GOTPLT64:
2940 return BFD_RELOC_X86_64_GOTPLT64;
2941 break;
2942 case BFD_RELOC_X86_64_PLTOFF64:
2943 return BFD_RELOC_X86_64_PLTOFF64;
2944 break;
2945 case BFD_RELOC_X86_64_GOTPC32:
2946 other = BFD_RELOC_X86_64_GOTPC64;
2947 break;
2948 case BFD_RELOC_X86_64_GOTPCREL:
2949 other = BFD_RELOC_X86_64_GOTPCREL64;
2950 break;
2951 case BFD_RELOC_X86_64_TPOFF32:
2952 other = BFD_RELOC_X86_64_TPOFF64;
2953 break;
2954 case BFD_RELOC_X86_64_DTPOFF32:
2955 other = BFD_RELOC_X86_64_DTPOFF64;
2956 break;
2957 default:
2958 break;
2959 }
2960
2961 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2962 if (other == BFD_RELOC_SIZE32)
2963 {
2964 if (size == 8)
2965 other = BFD_RELOC_SIZE64;
2966 if (pcrel)
2967 {
2968 as_bad (_("there are no pc-relative size relocations"));
2969 return NO_RELOC;
2970 }
2971 }
2972 #endif
2973
2974 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2975 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
2976 sign = -1;
2977
2978 rel = bfd_reloc_type_lookup (stdoutput, other);
2979 if (!rel)
2980 as_bad (_("unknown relocation (%u)"), other);
2981 else if (size != bfd_get_reloc_size (rel))
2982 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2983 bfd_get_reloc_size (rel),
2984 size);
2985 else if (pcrel && !rel->pc_relative)
2986 as_bad (_("non-pc-relative relocation for pc-relative field"));
2987 else if ((rel->complain_on_overflow == complain_overflow_signed
2988 && !sign)
2989 || (rel->complain_on_overflow == complain_overflow_unsigned
2990 && sign > 0))
2991 as_bad (_("relocated field and relocation type differ in signedness"));
2992 else
2993 return other;
2994 return NO_RELOC;
2995 }
2996
2997 if (pcrel)
2998 {
2999 if (!sign)
3000 as_bad (_("there are no unsigned pc-relative relocations"));
3001 switch (size)
3002 {
3003 case 1: return BFD_RELOC_8_PCREL;
3004 case 2: return BFD_RELOC_16_PCREL;
3005 case 4: return BFD_RELOC_32_PCREL;
3006 case 8: return BFD_RELOC_64_PCREL;
3007 }
3008 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3009 }
3010 else
3011 {
3012 if (sign > 0)
3013 switch (size)
3014 {
3015 case 4: return BFD_RELOC_X86_64_32S;
3016 }
3017 else
3018 switch (size)
3019 {
3020 case 1: return BFD_RELOC_8;
3021 case 2: return BFD_RELOC_16;
3022 case 4: return BFD_RELOC_32;
3023 case 8: return BFD_RELOC_64;
3024 }
3025 as_bad (_("cannot do %s %u byte relocation"),
3026 sign > 0 ? "signed" : "unsigned", size);
3027 }
3028
3029 return NO_RELOC;
3030 }
3031
3032 /* Here we decide which fixups can be adjusted to make them relative to
3033 the beginning of the section instead of the symbol. Basically we need
3034 to make sure that the dynamic relocations are done correctly, so in
3035 some cases we force the original symbol to be used. */
3036
3037 int
3038 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3039 {
3040 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3041 if (!IS_ELF)
3042 return 1;
3043
3044 /* Don't adjust pc-relative references to merge sections in 64-bit
3045 mode. */
3046 if (use_rela_relocations
3047 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3048 && fixP->fx_pcrel)
3049 return 0;
3050
3051 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3052 and changed later by validate_fix. */
3053 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3054 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3055 return 0;
3056
3057 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3058 for size relocations. */
3059 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3060 || fixP->fx_r_type == BFD_RELOC_SIZE64
3061 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3062 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3063 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3064 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3065 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3066 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3067 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3068 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3069 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3070 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3071 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3072 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3073 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3074 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3075 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3076 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3077 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3078 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3079 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3080 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3081 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3082 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3083 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3084 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3085 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3086 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3087 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3088 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3089 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3090 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3091 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3092 return 0;
3093 #endif
3094 return 1;
3095 }
3096
3097 static int
3098 intel_float_operand (const char *mnemonic)
3099 {
3100 /* Note that the value returned is meaningful only for opcodes with (memory)
3101 operands, hence the code here is free to improperly handle opcodes that
3102 have no operands (for better performance and smaller code). */
3103
3104 if (mnemonic[0] != 'f')
3105 return 0; /* non-math */
3106
3107 switch (mnemonic[1])
3108 {
3109 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3110 the fs segment override prefix not currently handled because no
3111 call path can make opcodes without operands get here */
3112 case 'i':
3113 return 2 /* integer op */;
3114 case 'l':
3115 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3116 return 3; /* fldcw/fldenv */
3117 break;
3118 case 'n':
3119 if (mnemonic[2] != 'o' /* fnop */)
3120 return 3; /* non-waiting control op */
3121 break;
3122 case 'r':
3123 if (mnemonic[2] == 's')
3124 return 3; /* frstor/frstpm */
3125 break;
3126 case 's':
3127 if (mnemonic[2] == 'a')
3128 return 3; /* fsave */
3129 if (mnemonic[2] == 't')
3130 {
3131 switch (mnemonic[3])
3132 {
3133 case 'c': /* fstcw */
3134 case 'd': /* fstdw */
3135 case 'e': /* fstenv */
3136 case 's': /* fsts[gw] */
3137 return 3;
3138 }
3139 }
3140 break;
3141 case 'x':
3142 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3143 return 0; /* fxsave/fxrstor are not really math ops */
3144 break;
3145 }
3146
3147 return 1;
3148 }
3149
3150 /* Build the VEX prefix. */
3151
3152 static void
3153 build_vex_prefix (const insn_template *t)
3154 {
3155 unsigned int register_specifier;
3156 unsigned int implied_prefix;
3157 unsigned int vector_length;
3158
3159 /* Check register specifier. */
3160 if (i.vex.register_specifier)
3161 {
3162 register_specifier =
3163 ~register_number (i.vex.register_specifier) & 0xf;
3164 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3165 }
3166 else
3167 register_specifier = 0xf;
3168
3169 /* Use 2-byte VEX prefix by swapping destination and source
3170 operand. */
3171 if (i.vec_encoding != vex_encoding_vex3
3172 && i.dir_encoding == dir_encoding_default
3173 && i.operands == i.reg_operands
3174 && i.tm.opcode_modifier.vexopcode == VEX0F
3175 && i.tm.opcode_modifier.load
3176 && i.rex == REX_B)
3177 {
3178 unsigned int xchg = i.operands - 1;
3179 union i386_op temp_op;
3180 i386_operand_type temp_type;
3181
3182 temp_type = i.types[xchg];
3183 i.types[xchg] = i.types[0];
3184 i.types[0] = temp_type;
3185 temp_op = i.op[xchg];
3186 i.op[xchg] = i.op[0];
3187 i.op[0] = temp_op;
3188
3189 gas_assert (i.rm.mode == 3);
3190
3191 i.rex = REX_R;
3192 xchg = i.rm.regmem;
3193 i.rm.regmem = i.rm.reg;
3194 i.rm.reg = xchg;
3195
3196 /* Use the next insn. */
3197 i.tm = t[1];
3198 }
3199
3200 if (i.tm.opcode_modifier.vex == VEXScalar)
3201 vector_length = avxscalar;
3202 else
3203 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
3204
3205 switch ((i.tm.base_opcode >> 8) & 0xff)
3206 {
3207 case 0:
3208 implied_prefix = 0;
3209 break;
3210 case DATA_PREFIX_OPCODE:
3211 implied_prefix = 1;
3212 break;
3213 case REPE_PREFIX_OPCODE:
3214 implied_prefix = 2;
3215 break;
3216 case REPNE_PREFIX_OPCODE:
3217 implied_prefix = 3;
3218 break;
3219 default:
3220 abort ();
3221 }
3222
3223 /* Use 2-byte VEX prefix if possible. */
3224 if (i.vec_encoding != vex_encoding_vex3
3225 && i.tm.opcode_modifier.vexopcode == VEX0F
3226 && i.tm.opcode_modifier.vexw != VEXW1
3227 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3228 {
3229 /* 2-byte VEX prefix. */
3230 unsigned int r;
3231
3232 i.vex.length = 2;
3233 i.vex.bytes[0] = 0xc5;
3234
3235 /* Check the REX.R bit. */
3236 r = (i.rex & REX_R) ? 0 : 1;
3237 i.vex.bytes[1] = (r << 7
3238 | register_specifier << 3
3239 | vector_length << 2
3240 | implied_prefix);
3241 }
3242 else
3243 {
3244 /* 3-byte VEX prefix. */
3245 unsigned int m, w;
3246
3247 i.vex.length = 3;
3248
3249 switch (i.tm.opcode_modifier.vexopcode)
3250 {
3251 case VEX0F:
3252 m = 0x1;
3253 i.vex.bytes[0] = 0xc4;
3254 break;
3255 case VEX0F38:
3256 m = 0x2;
3257 i.vex.bytes[0] = 0xc4;
3258 break;
3259 case VEX0F3A:
3260 m = 0x3;
3261 i.vex.bytes[0] = 0xc4;
3262 break;
3263 case XOP08:
3264 m = 0x8;
3265 i.vex.bytes[0] = 0x8f;
3266 break;
3267 case XOP09:
3268 m = 0x9;
3269 i.vex.bytes[0] = 0x8f;
3270 break;
3271 case XOP0A:
3272 m = 0xa;
3273 i.vex.bytes[0] = 0x8f;
3274 break;
3275 default:
3276 abort ();
3277 }
3278
3279 /* The high 3 bits of the second VEX byte are 1's compliment
3280 of RXB bits from REX. */
3281 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3282
3283 /* Check the REX.W bit. */
3284 w = (i.rex & REX_W) ? 1 : 0;
3285 if (i.tm.opcode_modifier.vexw == VEXW1)
3286 w = 1;
3287
3288 i.vex.bytes[2] = (w << 7
3289 | register_specifier << 3
3290 | vector_length << 2
3291 | implied_prefix);
3292 }
3293 }
3294
3295 /* Build the EVEX prefix. */
3296
3297 static void
3298 build_evex_prefix (void)
3299 {
3300 unsigned int register_specifier;
3301 unsigned int implied_prefix;
3302 unsigned int m, w;
3303 rex_byte vrex_used = 0;
3304
3305 /* Check register specifier. */
3306 if (i.vex.register_specifier)
3307 {
3308 gas_assert ((i.vrex & REX_X) == 0);
3309
3310 register_specifier = i.vex.register_specifier->reg_num;
3311 if ((i.vex.register_specifier->reg_flags & RegRex))
3312 register_specifier += 8;
3313 /* The upper 16 registers are encoded in the fourth byte of the
3314 EVEX prefix. */
3315 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3316 i.vex.bytes[3] = 0x8;
3317 register_specifier = ~register_specifier & 0xf;
3318 }
3319 else
3320 {
3321 register_specifier = 0xf;
3322
3323 /* Encode upper 16 vector index register in the fourth byte of
3324 the EVEX prefix. */
3325 if (!(i.vrex & REX_X))
3326 i.vex.bytes[3] = 0x8;
3327 else
3328 vrex_used |= REX_X;
3329 }
3330
3331 switch ((i.tm.base_opcode >> 8) & 0xff)
3332 {
3333 case 0:
3334 implied_prefix = 0;
3335 break;
3336 case DATA_PREFIX_OPCODE:
3337 implied_prefix = 1;
3338 break;
3339 case REPE_PREFIX_OPCODE:
3340 implied_prefix = 2;
3341 break;
3342 case REPNE_PREFIX_OPCODE:
3343 implied_prefix = 3;
3344 break;
3345 default:
3346 abort ();
3347 }
3348
3349 /* 4 byte EVEX prefix. */
3350 i.vex.length = 4;
3351 i.vex.bytes[0] = 0x62;
3352
3353 /* mmmm bits. */
3354 switch (i.tm.opcode_modifier.vexopcode)
3355 {
3356 case VEX0F:
3357 m = 1;
3358 break;
3359 case VEX0F38:
3360 m = 2;
3361 break;
3362 case VEX0F3A:
3363 m = 3;
3364 break;
3365 default:
3366 abort ();
3367 break;
3368 }
3369
3370 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3371 bits from REX. */
3372 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3373
3374 /* The fifth bit of the second EVEX byte is 1's compliment of the
3375 REX_R bit in VREX. */
3376 if (!(i.vrex & REX_R))
3377 i.vex.bytes[1] |= 0x10;
3378 else
3379 vrex_used |= REX_R;
3380
3381 if ((i.reg_operands + i.imm_operands) == i.operands)
3382 {
3383 /* When all operands are registers, the REX_X bit in REX is not
3384 used. We reuse it to encode the upper 16 registers, which is
3385 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3386 as 1's compliment. */
3387 if ((i.vrex & REX_B))
3388 {
3389 vrex_used |= REX_B;
3390 i.vex.bytes[1] &= ~0x40;
3391 }
3392 }
3393
3394 /* EVEX instructions shouldn't need the REX prefix. */
3395 i.vrex &= ~vrex_used;
3396 gas_assert (i.vrex == 0);
3397
3398 /* Check the REX.W bit. */
3399 w = (i.rex & REX_W) ? 1 : 0;
3400 if (i.tm.opcode_modifier.vexw)
3401 {
3402 if (i.tm.opcode_modifier.vexw == VEXW1)
3403 w = 1;
3404 }
3405 /* If w is not set it means we are dealing with WIG instruction. */
3406 else if (!w)
3407 {
3408 if (evexwig == evexw1)
3409 w = 1;
3410 }
3411
3412 /* Encode the U bit. */
3413 implied_prefix |= 0x4;
3414
3415 /* The third byte of the EVEX prefix. */
3416 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3417
3418 /* The fourth byte of the EVEX prefix. */
3419 /* The zeroing-masking bit. */
3420 if (i.mask && i.mask->zeroing)
3421 i.vex.bytes[3] |= 0x80;
3422
3423 /* Don't always set the broadcast bit if there is no RC. */
3424 if (!i.rounding)
3425 {
3426 /* Encode the vector length. */
3427 unsigned int vec_length;
3428
3429 switch (i.tm.opcode_modifier.evex)
3430 {
3431 case EVEXLIG: /* LL' is ignored */
3432 vec_length = evexlig << 5;
3433 break;
3434 case EVEX128:
3435 vec_length = 0 << 5;
3436 break;
3437 case EVEX256:
3438 vec_length = 1 << 5;
3439 break;
3440 case EVEX512:
3441 vec_length = 2 << 5;
3442 break;
3443 default:
3444 abort ();
3445 break;
3446 }
3447 i.vex.bytes[3] |= vec_length;
3448 /* Encode the broadcast bit. */
3449 if (i.broadcast)
3450 i.vex.bytes[3] |= 0x10;
3451 }
3452 else
3453 {
3454 if (i.rounding->type != saeonly)
3455 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3456 else
3457 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3458 }
3459
3460 if (i.mask && i.mask->mask)
3461 i.vex.bytes[3] |= i.mask->mask->reg_num;
3462 }
3463
3464 static void
3465 process_immext (void)
3466 {
3467 expressionS *exp;
3468
3469 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3470 && i.operands > 0)
3471 {
3472 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3473 with an opcode suffix which is coded in the same place as an
3474 8-bit immediate field would be.
3475 Here we check those operands and remove them afterwards. */
3476 unsigned int x;
3477
3478 for (x = 0; x < i.operands; x++)
3479 if (register_number (i.op[x].regs) != x)
3480 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3481 register_prefix, i.op[x].regs->reg_name, x + 1,
3482 i.tm.name);
3483
3484 i.operands = 0;
3485 }
3486
3487 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3488 {
3489 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3490 suffix which is coded in the same place as an 8-bit immediate
3491 field would be.
3492 Here we check those operands and remove them afterwards. */
3493 unsigned int x;
3494
3495 if (i.operands != 3)
3496 abort();
3497
3498 for (x = 0; x < 2; x++)
3499 if (register_number (i.op[x].regs) != x)
3500 goto bad_register_operand;
3501
3502 /* Check for third operand for mwaitx/monitorx insn. */
3503 if (register_number (i.op[x].regs)
3504 != (x + (i.tm.extension_opcode == 0xfb)))
3505 {
3506 bad_register_operand:
3507 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3508 register_prefix, i.op[x].regs->reg_name, x+1,
3509 i.tm.name);
3510 }
3511
3512 i.operands = 0;
3513 }
3514
3515 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3516 which is coded in the same place as an 8-bit immediate field
3517 would be. Here we fake an 8-bit immediate operand from the
3518 opcode suffix stored in tm.extension_opcode.
3519
3520 AVX instructions also use this encoding, for some of
3521 3 argument instructions. */
3522
3523 gas_assert (i.imm_operands <= 1
3524 && (i.operands <= 2
3525 || ((i.tm.opcode_modifier.vex
3526 || i.tm.opcode_modifier.evex)
3527 && i.operands <= 4)));
3528
3529 exp = &im_expressions[i.imm_operands++];
3530 i.op[i.operands].imms = exp;
3531 i.types[i.operands] = imm8;
3532 i.operands++;
3533 exp->X_op = O_constant;
3534 exp->X_add_number = i.tm.extension_opcode;
3535 i.tm.extension_opcode = None;
3536 }
3537
3538
3539 static int
3540 check_hle (void)
3541 {
3542 switch (i.tm.opcode_modifier.hleprefixok)
3543 {
3544 default:
3545 abort ();
3546 case HLEPrefixNone:
3547 as_bad (_("invalid instruction `%s' after `%s'"),
3548 i.tm.name, i.hle_prefix);
3549 return 0;
3550 case HLEPrefixLock:
3551 if (i.prefix[LOCK_PREFIX])
3552 return 1;
3553 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3554 return 0;
3555 case HLEPrefixAny:
3556 return 1;
3557 case HLEPrefixRelease:
3558 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3559 {
3560 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3561 i.tm.name);
3562 return 0;
3563 }
3564 if (i.mem_operands == 0
3565 || !operand_type_check (i.types[i.operands - 1], anymem))
3566 {
3567 as_bad (_("memory destination needed for instruction `%s'"
3568 " after `xrelease'"), i.tm.name);
3569 return 0;
3570 }
3571 return 1;
3572 }
3573 }
3574
3575 /* This is the guts of the machine-dependent assembler. LINE points to a
3576 machine dependent instruction. This function is supposed to emit
3577 the frags/bytes it assembles to. */
3578
3579 void
3580 md_assemble (char *line)
3581 {
3582 unsigned int j;
3583 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
3584 const insn_template *t;
3585
3586 /* Initialize globals. */
3587 memset (&i, '\0', sizeof (i));
3588 for (j = 0; j < MAX_OPERANDS; j++)
3589 i.reloc[j] = NO_RELOC;
3590 memset (disp_expressions, '\0', sizeof (disp_expressions));
3591 memset (im_expressions, '\0', sizeof (im_expressions));
3592 save_stack_p = save_stack;
3593
3594 /* First parse an instruction mnemonic & call i386_operand for the operands.
3595 We assume that the scrubber has arranged it so that line[0] is the valid
3596 start of a (possibly prefixed) mnemonic. */
3597
3598 line = parse_insn (line, mnemonic);
3599 if (line == NULL)
3600 return;
3601 mnem_suffix = i.suffix;
3602
3603 line = parse_operands (line, mnemonic);
3604 this_operand = -1;
3605 xfree (i.memop1_string);
3606 i.memop1_string = NULL;
3607 if (line == NULL)
3608 return;
3609
3610 /* Now we've parsed the mnemonic into a set of templates, and have the
3611 operands at hand. */
3612
3613 /* All intel opcodes have reversed operands except for "bound" and
3614 "enter". We also don't reverse intersegment "jmp" and "call"
3615 instructions with 2 immediate operands so that the immediate segment
3616 precedes the offset, as it does when in AT&T mode. */
3617 if (intel_syntax
3618 && i.operands > 1
3619 && (strcmp (mnemonic, "bound") != 0)
3620 && (strcmp (mnemonic, "invlpga") != 0)
3621 && !(operand_type_check (i.types[0], imm)
3622 && operand_type_check (i.types[1], imm)))
3623 swap_operands ();
3624
3625 /* The order of the immediates should be reversed
3626 for 2 immediates extrq and insertq instructions */
3627 if (i.imm_operands == 2
3628 && (strcmp (mnemonic, "extrq") == 0
3629 || strcmp (mnemonic, "insertq") == 0))
3630 swap_2_operands (0, 1);
3631
3632 if (i.imm_operands)
3633 optimize_imm ();
3634
3635 /* Don't optimize displacement for movabs since it only takes 64bit
3636 displacement. */
3637 if (i.disp_operands
3638 && i.disp_encoding != disp_encoding_32bit
3639 && (flag_code != CODE_64BIT
3640 || strcmp (mnemonic, "movabs") != 0))
3641 optimize_disp ();
3642
3643 /* Next, we find a template that matches the given insn,
3644 making sure the overlap of the given operands types is consistent
3645 with the template operand types. */
3646
3647 if (!(t = match_template (mnem_suffix)))
3648 return;
3649
3650 if (sse_check != check_none
3651 && !i.tm.opcode_modifier.noavx
3652 && (i.tm.cpu_flags.bitfield.cpusse
3653 || i.tm.cpu_flags.bitfield.cpusse2
3654 || i.tm.cpu_flags.bitfield.cpusse3
3655 || i.tm.cpu_flags.bitfield.cpussse3
3656 || i.tm.cpu_flags.bitfield.cpusse4_1
3657 || i.tm.cpu_flags.bitfield.cpusse4_2))
3658 {
3659 (sse_check == check_warning
3660 ? as_warn
3661 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3662 }
3663
3664 /* Zap movzx and movsx suffix. The suffix has been set from
3665 "word ptr" or "byte ptr" on the source operand in Intel syntax
3666 or extracted from mnemonic in AT&T syntax. But we'll use
3667 the destination register to choose the suffix for encoding. */
3668 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3669 {
3670 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3671 there is no suffix, the default will be byte extension. */
3672 if (i.reg_operands != 2
3673 && !i.suffix
3674 && intel_syntax)
3675 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3676
3677 i.suffix = 0;
3678 }
3679
3680 if (i.tm.opcode_modifier.fwait)
3681 if (!add_prefix (FWAIT_OPCODE))
3682 return;
3683
3684 /* Check if REP prefix is OK. */
3685 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3686 {
3687 as_bad (_("invalid instruction `%s' after `%s'"),
3688 i.tm.name, i.rep_prefix);
3689 return;
3690 }
3691
3692 /* Check for lock without a lockable instruction. Destination operand
3693 must be memory unless it is xchg (0x86). */
3694 if (i.prefix[LOCK_PREFIX]
3695 && (!i.tm.opcode_modifier.islockable
3696 || i.mem_operands == 0
3697 || (i.tm.base_opcode != 0x86
3698 && !operand_type_check (i.types[i.operands - 1], anymem))))
3699 {
3700 as_bad (_("expecting lockable instruction after `lock'"));
3701 return;
3702 }
3703
3704 /* Check if HLE prefix is OK. */
3705 if (i.hle_prefix && !check_hle ())
3706 return;
3707
3708 /* Check BND prefix. */
3709 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3710 as_bad (_("expecting valid branch instruction after `bnd'"));
3711
3712 /* Check NOTRACK prefix. */
3713 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
3714 as_bad (_("expecting indirect branch instruction after `notrack'"));
3715
3716 if (i.tm.cpu_flags.bitfield.cpumpx)
3717 {
3718 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
3719 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3720 else if (flag_code != CODE_16BIT
3721 ? i.prefix[ADDR_PREFIX]
3722 : i.mem_operands && !i.prefix[ADDR_PREFIX])
3723 as_bad (_("16-bit address isn't allowed in MPX instructions"));
3724 }
3725
3726 /* Insert BND prefix. */
3727 if (add_bnd_prefix
3728 && i.tm.opcode_modifier.bndprefixok
3729 && !i.prefix[BND_PREFIX])
3730 add_prefix (BND_PREFIX_OPCODE);
3731
3732 /* Check string instruction segment overrides. */
3733 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3734 {
3735 if (!check_string ())
3736 return;
3737 i.disp_operands = 0;
3738 }
3739
3740 if (!process_suffix ())
3741 return;
3742
3743 /* Update operand types. */
3744 for (j = 0; j < i.operands; j++)
3745 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3746
3747 /* Make still unresolved immediate matches conform to size of immediate
3748 given in i.suffix. */
3749 if (!finalize_imm ())
3750 return;
3751
3752 if (i.types[0].bitfield.imm1)
3753 i.imm_operands = 0; /* kludge for shift insns. */
3754
3755 /* We only need to check those implicit registers for instructions
3756 with 3 operands or less. */
3757 if (i.operands <= 3)
3758 for (j = 0; j < i.operands; j++)
3759 if (i.types[j].bitfield.inoutportreg
3760 || i.types[j].bitfield.shiftcount
3761 || i.types[j].bitfield.acc
3762 || i.types[j].bitfield.floatacc)
3763 i.reg_operands--;
3764
3765 /* ImmExt should be processed after SSE2AVX. */
3766 if (!i.tm.opcode_modifier.sse2avx
3767 && i.tm.opcode_modifier.immext)
3768 process_immext ();
3769
3770 /* For insns with operands there are more diddles to do to the opcode. */
3771 if (i.operands)
3772 {
3773 if (!process_operands ())
3774 return;
3775 }
3776 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3777 {
3778 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3779 as_warn (_("translating to `%sp'"), i.tm.name);
3780 }
3781
3782 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3783 {
3784 if (flag_code == CODE_16BIT)
3785 {
3786 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3787 i.tm.name);
3788 return;
3789 }
3790
3791 if (i.tm.opcode_modifier.vex)
3792 build_vex_prefix (t);
3793 else
3794 build_evex_prefix ();
3795 }
3796
3797 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3798 instructions may define INT_OPCODE as well, so avoid this corner
3799 case for those instructions that use MODRM. */
3800 if (i.tm.base_opcode == INT_OPCODE
3801 && !i.tm.opcode_modifier.modrm
3802 && i.op[0].imms->X_add_number == 3)
3803 {
3804 i.tm.base_opcode = INT3_OPCODE;
3805 i.imm_operands = 0;
3806 }
3807
3808 if ((i.tm.opcode_modifier.jump
3809 || i.tm.opcode_modifier.jumpbyte
3810 || i.tm.opcode_modifier.jumpdword)
3811 && i.op[0].disps->X_op == O_constant)
3812 {
3813 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3814 the absolute address given by the constant. Since ix86 jumps and
3815 calls are pc relative, we need to generate a reloc. */
3816 i.op[0].disps->X_add_symbol = &abs_symbol;
3817 i.op[0].disps->X_op = O_symbol;
3818 }
3819
3820 if (i.tm.opcode_modifier.rex64)
3821 i.rex |= REX_W;
3822
3823 /* For 8 bit registers we need an empty rex prefix. Also if the
3824 instruction already has a prefix, we need to convert old
3825 registers to new ones. */
3826
3827 if ((i.types[0].bitfield.reg8
3828 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3829 || (i.types[1].bitfield.reg8
3830 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3831 || ((i.types[0].bitfield.reg8
3832 || i.types[1].bitfield.reg8)
3833 && i.rex != 0))
3834 {
3835 int x;
3836
3837 i.rex |= REX_OPCODE;
3838 for (x = 0; x < 2; x++)
3839 {
3840 /* Look for 8 bit operand that uses old registers. */
3841 if (i.types[x].bitfield.reg8
3842 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3843 {
3844 /* In case it is "hi" register, give up. */
3845 if (i.op[x].regs->reg_num > 3)
3846 as_bad (_("can't encode register '%s%s' in an "
3847 "instruction requiring REX prefix."),
3848 register_prefix, i.op[x].regs->reg_name);
3849
3850 /* Otherwise it is equivalent to the extended register.
3851 Since the encoding doesn't change this is merely
3852 cosmetic cleanup for debug output. */
3853
3854 i.op[x].regs = i.op[x].regs + 8;
3855 }
3856 }
3857 }
3858
3859 if (i.rex != 0)
3860 add_prefix (REX_OPCODE | i.rex);
3861
3862 /* We are ready to output the insn. */
3863 output_insn ();
3864 }
3865
3866 static char *
3867 parse_insn (char *line, char *mnemonic)
3868 {
3869 char *l = line;
3870 char *token_start = l;
3871 char *mnem_p;
3872 int supported;
3873 const insn_template *t;
3874 char *dot_p = NULL;
3875
3876 while (1)
3877 {
3878 mnem_p = mnemonic;
3879 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3880 {
3881 if (*mnem_p == '.')
3882 dot_p = mnem_p;
3883 mnem_p++;
3884 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3885 {
3886 as_bad (_("no such instruction: `%s'"), token_start);
3887 return NULL;
3888 }
3889 l++;
3890 }
3891 if (!is_space_char (*l)
3892 && *l != END_OF_INSN
3893 && (intel_syntax
3894 || (*l != PREFIX_SEPARATOR
3895 && *l != ',')))
3896 {
3897 as_bad (_("invalid character %s in mnemonic"),
3898 output_invalid (*l));
3899 return NULL;
3900 }
3901 if (token_start == l)
3902 {
3903 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3904 as_bad (_("expecting prefix; got nothing"));
3905 else
3906 as_bad (_("expecting mnemonic; got nothing"));
3907 return NULL;
3908 }
3909
3910 /* Look up instruction (or prefix) via hash table. */
3911 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3912
3913 if (*l != END_OF_INSN
3914 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3915 && current_templates
3916 && current_templates->start->opcode_modifier.isprefix)
3917 {
3918 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3919 {
3920 as_bad ((flag_code != CODE_64BIT
3921 ? _("`%s' is only supported in 64-bit mode")
3922 : _("`%s' is not supported in 64-bit mode")),
3923 current_templates->start->name);
3924 return NULL;
3925 }
3926 /* If we are in 16-bit mode, do not allow addr16 or data16.
3927 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3928 if ((current_templates->start->opcode_modifier.size16
3929 || current_templates->start->opcode_modifier.size32)
3930 && flag_code != CODE_64BIT
3931 && (current_templates->start->opcode_modifier.size32
3932 ^ (flag_code == CODE_16BIT)))
3933 {
3934 as_bad (_("redundant %s prefix"),
3935 current_templates->start->name);
3936 return NULL;
3937 }
3938 if (current_templates->start->opcode_length == 0)
3939 {
3940 /* Handle pseudo prefixes. */
3941 switch (current_templates->start->base_opcode)
3942 {
3943 case 0x0:
3944 /* {disp8} */
3945 i.disp_encoding = disp_encoding_8bit;
3946 break;
3947 case 0x1:
3948 /* {disp32} */
3949 i.disp_encoding = disp_encoding_32bit;
3950 break;
3951 case 0x2:
3952 /* {load} */
3953 i.dir_encoding = dir_encoding_load;
3954 break;
3955 case 0x3:
3956 /* {store} */
3957 i.dir_encoding = dir_encoding_store;
3958 break;
3959 case 0x4:
3960 /* {vex2} */
3961 i.vec_encoding = vex_encoding_vex2;
3962 break;
3963 case 0x5:
3964 /* {vex3} */
3965 i.vec_encoding = vex_encoding_vex3;
3966 break;
3967 case 0x6:
3968 /* {evex} */
3969 i.vec_encoding = vex_encoding_evex;
3970 break;
3971 default:
3972 abort ();
3973 }
3974 }
3975 else
3976 {
3977 /* Add prefix, checking for repeated prefixes. */
3978 switch (add_prefix (current_templates->start->base_opcode))
3979 {
3980 case PREFIX_EXIST:
3981 return NULL;
3982 case PREFIX_DS:
3983 if (current_templates->start->cpu_flags.bitfield.cpucet)
3984 i.notrack_prefix = current_templates->start->name;
3985 break;
3986 case PREFIX_REP:
3987 if (current_templates->start->cpu_flags.bitfield.cpuhle)
3988 i.hle_prefix = current_templates->start->name;
3989 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
3990 i.bnd_prefix = current_templates->start->name;
3991 else
3992 i.rep_prefix = current_templates->start->name;
3993 break;
3994 default:
3995 break;
3996 }
3997 }
3998 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3999 token_start = ++l;
4000 }
4001 else
4002 break;
4003 }
4004
4005 if (!current_templates)
4006 {
4007 /* Check if we should swap operand or force 32bit displacement in
4008 encoding. */
4009 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4010 i.dir_encoding = dir_encoding_store;
4011 else if (mnem_p - 3 == dot_p
4012 && dot_p[1] == 'd'
4013 && dot_p[2] == '8')
4014 i.disp_encoding = disp_encoding_8bit;
4015 else if (mnem_p - 4 == dot_p
4016 && dot_p[1] == 'd'
4017 && dot_p[2] == '3'
4018 && dot_p[3] == '2')
4019 i.disp_encoding = disp_encoding_32bit;
4020 else
4021 goto check_suffix;
4022 mnem_p = dot_p;
4023 *dot_p = '\0';
4024 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4025 }
4026
4027 if (!current_templates)
4028 {
4029 check_suffix:
4030 /* See if we can get a match by trimming off a suffix. */
4031 switch (mnem_p[-1])
4032 {
4033 case WORD_MNEM_SUFFIX:
4034 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4035 i.suffix = SHORT_MNEM_SUFFIX;
4036 else
4037 /* Fall through. */
4038 case BYTE_MNEM_SUFFIX:
4039 case QWORD_MNEM_SUFFIX:
4040 i.suffix = mnem_p[-1];
4041 mnem_p[-1] = '\0';
4042 current_templates = (const templates *) hash_find (op_hash,
4043 mnemonic);
4044 break;
4045 case SHORT_MNEM_SUFFIX:
4046 case LONG_MNEM_SUFFIX:
4047 if (!intel_syntax)
4048 {
4049 i.suffix = mnem_p[-1];
4050 mnem_p[-1] = '\0';
4051 current_templates = (const templates *) hash_find (op_hash,
4052 mnemonic);
4053 }
4054 break;
4055
4056 /* Intel Syntax. */
4057 case 'd':
4058 if (intel_syntax)
4059 {
4060 if (intel_float_operand (mnemonic) == 1)
4061 i.suffix = SHORT_MNEM_SUFFIX;
4062 else
4063 i.suffix = LONG_MNEM_SUFFIX;
4064 mnem_p[-1] = '\0';
4065 current_templates = (const templates *) hash_find (op_hash,
4066 mnemonic);
4067 }
4068 break;
4069 }
4070 if (!current_templates)
4071 {
4072 as_bad (_("no such instruction: `%s'"), token_start);
4073 return NULL;
4074 }
4075 }
4076
4077 if (current_templates->start->opcode_modifier.jump
4078 || current_templates->start->opcode_modifier.jumpbyte)
4079 {
4080 /* Check for a branch hint. We allow ",pt" and ",pn" for
4081 predict taken and predict not taken respectively.
4082 I'm not sure that branch hints actually do anything on loop
4083 and jcxz insns (JumpByte) for current Pentium4 chips. They
4084 may work in the future and it doesn't hurt to accept them
4085 now. */
4086 if (l[0] == ',' && l[1] == 'p')
4087 {
4088 if (l[2] == 't')
4089 {
4090 if (!add_prefix (DS_PREFIX_OPCODE))
4091 return NULL;
4092 l += 3;
4093 }
4094 else if (l[2] == 'n')
4095 {
4096 if (!add_prefix (CS_PREFIX_OPCODE))
4097 return NULL;
4098 l += 3;
4099 }
4100 }
4101 }
4102 /* Any other comma loses. */
4103 if (*l == ',')
4104 {
4105 as_bad (_("invalid character %s in mnemonic"),
4106 output_invalid (*l));
4107 return NULL;
4108 }
4109
4110 /* Check if instruction is supported on specified architecture. */
4111 supported = 0;
4112 for (t = current_templates->start; t < current_templates->end; ++t)
4113 {
4114 supported |= cpu_flags_match (t);
4115 if (supported == CPU_FLAGS_PERFECT_MATCH)
4116 goto skip;
4117 }
4118
4119 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4120 {
4121 as_bad (flag_code == CODE_64BIT
4122 ? _("`%s' is not supported in 64-bit mode")
4123 : _("`%s' is only supported in 64-bit mode"),
4124 current_templates->start->name);
4125 return NULL;
4126 }
4127 if (supported != CPU_FLAGS_PERFECT_MATCH)
4128 {
4129 as_bad (_("`%s' is not supported on `%s%s'"),
4130 current_templates->start->name,
4131 cpu_arch_name ? cpu_arch_name : default_arch,
4132 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4133 return NULL;
4134 }
4135
4136 skip:
4137 if (!cpu_arch_flags.bitfield.cpui386
4138 && (flag_code != CODE_16BIT))
4139 {
4140 as_warn (_("use .code16 to ensure correct addressing mode"));
4141 }
4142
4143 return l;
4144 }
4145
4146 static char *
4147 parse_operands (char *l, const char *mnemonic)
4148 {
4149 char *token_start;
4150
4151 /* 1 if operand is pending after ','. */
4152 unsigned int expecting_operand = 0;
4153
4154 /* Non-zero if operand parens not balanced. */
4155 unsigned int paren_not_balanced;
4156
4157 while (*l != END_OF_INSN)
4158 {
4159 /* Skip optional white space before operand. */
4160 if (is_space_char (*l))
4161 ++l;
4162 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4163 {
4164 as_bad (_("invalid character %s before operand %d"),
4165 output_invalid (*l),
4166 i.operands + 1);
4167 return NULL;
4168 }
4169 token_start = l; /* After white space. */
4170 paren_not_balanced = 0;
4171 while (paren_not_balanced || *l != ',')
4172 {
4173 if (*l == END_OF_INSN)
4174 {
4175 if (paren_not_balanced)
4176 {
4177 if (!intel_syntax)
4178 as_bad (_("unbalanced parenthesis in operand %d."),
4179 i.operands + 1);
4180 else
4181 as_bad (_("unbalanced brackets in operand %d."),
4182 i.operands + 1);
4183 return NULL;
4184 }
4185 else
4186 break; /* we are done */
4187 }
4188 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4189 {
4190 as_bad (_("invalid character %s in operand %d"),
4191 output_invalid (*l),
4192 i.operands + 1);
4193 return NULL;
4194 }
4195 if (!intel_syntax)
4196 {
4197 if (*l == '(')
4198 ++paren_not_balanced;
4199 if (*l == ')')
4200 --paren_not_balanced;
4201 }
4202 else
4203 {
4204 if (*l == '[')
4205 ++paren_not_balanced;
4206 if (*l == ']')
4207 --paren_not_balanced;
4208 }
4209 l++;
4210 }
4211 if (l != token_start)
4212 { /* Yes, we've read in another operand. */
4213 unsigned int operand_ok;
4214 this_operand = i.operands++;
4215 if (i.operands > MAX_OPERANDS)
4216 {
4217 as_bad (_("spurious operands; (%d operands/instruction max)"),
4218 MAX_OPERANDS);
4219 return NULL;
4220 }
4221 i.types[this_operand].bitfield.unspecified = 1;
4222 /* Now parse operand adding info to 'i' as we go along. */
4223 END_STRING_AND_SAVE (l);
4224
4225 if (intel_syntax)
4226 operand_ok =
4227 i386_intel_operand (token_start,
4228 intel_float_operand (mnemonic));
4229 else
4230 operand_ok = i386_att_operand (token_start);
4231
4232 RESTORE_END_STRING (l);
4233 if (!operand_ok)
4234 return NULL;
4235 }
4236 else
4237 {
4238 if (expecting_operand)
4239 {
4240 expecting_operand_after_comma:
4241 as_bad (_("expecting operand after ','; got nothing"));
4242 return NULL;
4243 }
4244 if (*l == ',')
4245 {
4246 as_bad (_("expecting operand before ','; got nothing"));
4247 return NULL;
4248 }
4249 }
4250
4251 /* Now *l must be either ',' or END_OF_INSN. */
4252 if (*l == ',')
4253 {
4254 if (*++l == END_OF_INSN)
4255 {
4256 /* Just skip it, if it's \n complain. */
4257 goto expecting_operand_after_comma;
4258 }
4259 expecting_operand = 1;
4260 }
4261 }
4262 return l;
4263 }
4264
4265 static void
4266 swap_2_operands (int xchg1, int xchg2)
4267 {
4268 union i386_op temp_op;
4269 i386_operand_type temp_type;
4270 enum bfd_reloc_code_real temp_reloc;
4271
4272 temp_type = i.types[xchg2];
4273 i.types[xchg2] = i.types[xchg1];
4274 i.types[xchg1] = temp_type;
4275 temp_op = i.op[xchg2];
4276 i.op[xchg2] = i.op[xchg1];
4277 i.op[xchg1] = temp_op;
4278 temp_reloc = i.reloc[xchg2];
4279 i.reloc[xchg2] = i.reloc[xchg1];
4280 i.reloc[xchg1] = temp_reloc;
4281
4282 if (i.mask)
4283 {
4284 if (i.mask->operand == xchg1)
4285 i.mask->operand = xchg2;
4286 else if (i.mask->operand == xchg2)
4287 i.mask->operand = xchg1;
4288 }
4289 if (i.broadcast)
4290 {
4291 if (i.broadcast->operand == xchg1)
4292 i.broadcast->operand = xchg2;
4293 else if (i.broadcast->operand == xchg2)
4294 i.broadcast->operand = xchg1;
4295 }
4296 if (i.rounding)
4297 {
4298 if (i.rounding->operand == xchg1)
4299 i.rounding->operand = xchg2;
4300 else if (i.rounding->operand == xchg2)
4301 i.rounding->operand = xchg1;
4302 }
4303 }
4304
4305 static void
4306 swap_operands (void)
4307 {
4308 switch (i.operands)
4309 {
4310 case 5:
4311 case 4:
4312 swap_2_operands (1, i.operands - 2);
4313 /* Fall through. */
4314 case 3:
4315 case 2:
4316 swap_2_operands (0, i.operands - 1);
4317 break;
4318 default:
4319 abort ();
4320 }
4321
4322 if (i.mem_operands == 2)
4323 {
4324 const seg_entry *temp_seg;
4325 temp_seg = i.seg[0];
4326 i.seg[0] = i.seg[1];
4327 i.seg[1] = temp_seg;
4328 }
4329 }
4330
4331 /* Try to ensure constant immediates are represented in the smallest
4332 opcode possible. */
4333 static void
4334 optimize_imm (void)
4335 {
4336 char guess_suffix = 0;
4337 int op;
4338
4339 if (i.suffix)
4340 guess_suffix = i.suffix;
4341 else if (i.reg_operands)
4342 {
4343 /* Figure out a suffix from the last register operand specified.
4344 We can't do this properly yet, ie. excluding InOutPortReg,
4345 but the following works for instructions with immediates.
4346 In any case, we can't set i.suffix yet. */
4347 for (op = i.operands; --op >= 0;)
4348 if (i.types[op].bitfield.reg8)
4349 {
4350 guess_suffix = BYTE_MNEM_SUFFIX;
4351 break;
4352 }
4353 else if (i.types[op].bitfield.reg16)
4354 {
4355 guess_suffix = WORD_MNEM_SUFFIX;
4356 break;
4357 }
4358 else if (i.types[op].bitfield.reg32)
4359 {
4360 guess_suffix = LONG_MNEM_SUFFIX;
4361 break;
4362 }
4363 else if (i.types[op].bitfield.reg64)
4364 {
4365 guess_suffix = QWORD_MNEM_SUFFIX;
4366 break;
4367 }
4368 }
4369 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4370 guess_suffix = WORD_MNEM_SUFFIX;
4371
4372 for (op = i.operands; --op >= 0;)
4373 if (operand_type_check (i.types[op], imm))
4374 {
4375 switch (i.op[op].imms->X_op)
4376 {
4377 case O_constant:
4378 /* If a suffix is given, this operand may be shortened. */
4379 switch (guess_suffix)
4380 {
4381 case LONG_MNEM_SUFFIX:
4382 i.types[op].bitfield.imm32 = 1;
4383 i.types[op].bitfield.imm64 = 1;
4384 break;
4385 case WORD_MNEM_SUFFIX:
4386 i.types[op].bitfield.imm16 = 1;
4387 i.types[op].bitfield.imm32 = 1;
4388 i.types[op].bitfield.imm32s = 1;
4389 i.types[op].bitfield.imm64 = 1;
4390 break;
4391 case BYTE_MNEM_SUFFIX:
4392 i.types[op].bitfield.imm8 = 1;
4393 i.types[op].bitfield.imm8s = 1;
4394 i.types[op].bitfield.imm16 = 1;
4395 i.types[op].bitfield.imm32 = 1;
4396 i.types[op].bitfield.imm32s = 1;
4397 i.types[op].bitfield.imm64 = 1;
4398 break;
4399 }
4400
4401 /* If this operand is at most 16 bits, convert it
4402 to a signed 16 bit number before trying to see
4403 whether it will fit in an even smaller size.
4404 This allows a 16-bit operand such as $0xffe0 to
4405 be recognised as within Imm8S range. */
4406 if ((i.types[op].bitfield.imm16)
4407 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4408 {
4409 i.op[op].imms->X_add_number =
4410 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4411 }
4412 #ifdef BFD64
4413 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4414 if ((i.types[op].bitfield.imm32)
4415 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4416 == 0))
4417 {
4418 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4419 ^ ((offsetT) 1 << 31))
4420 - ((offsetT) 1 << 31));
4421 }
4422 #endif
4423 i.types[op]
4424 = operand_type_or (i.types[op],
4425 smallest_imm_type (i.op[op].imms->X_add_number));
4426
4427 /* We must avoid matching of Imm32 templates when 64bit
4428 only immediate is available. */
4429 if (guess_suffix == QWORD_MNEM_SUFFIX)
4430 i.types[op].bitfield.imm32 = 0;
4431 break;
4432
4433 case O_absent:
4434 case O_register:
4435 abort ();
4436
4437 /* Symbols and expressions. */
4438 default:
4439 /* Convert symbolic operand to proper sizes for matching, but don't
4440 prevent matching a set of insns that only supports sizes other
4441 than those matching the insn suffix. */
4442 {
4443 i386_operand_type mask, allowed;
4444 const insn_template *t;
4445
4446 operand_type_set (&mask, 0);
4447 operand_type_set (&allowed, 0);
4448
4449 for (t = current_templates->start;
4450 t < current_templates->end;
4451 ++t)
4452 allowed = operand_type_or (allowed,
4453 t->operand_types[op]);
4454 switch (guess_suffix)
4455 {
4456 case QWORD_MNEM_SUFFIX:
4457 mask.bitfield.imm64 = 1;
4458 mask.bitfield.imm32s = 1;
4459 break;
4460 case LONG_MNEM_SUFFIX:
4461 mask.bitfield.imm32 = 1;
4462 break;
4463 case WORD_MNEM_SUFFIX:
4464 mask.bitfield.imm16 = 1;
4465 break;
4466 case BYTE_MNEM_SUFFIX:
4467 mask.bitfield.imm8 = 1;
4468 break;
4469 default:
4470 break;
4471 }
4472 allowed = operand_type_and (mask, allowed);
4473 if (!operand_type_all_zero (&allowed))
4474 i.types[op] = operand_type_and (i.types[op], mask);
4475 }
4476 break;
4477 }
4478 }
4479 }
4480
4481 /* Try to use the smallest displacement type too. */
4482 static void
4483 optimize_disp (void)
4484 {
4485 int op;
4486
4487 for (op = i.operands; --op >= 0;)
4488 if (operand_type_check (i.types[op], disp))
4489 {
4490 if (i.op[op].disps->X_op == O_constant)
4491 {
4492 offsetT op_disp = i.op[op].disps->X_add_number;
4493
4494 if (i.types[op].bitfield.disp16
4495 && (op_disp & ~(offsetT) 0xffff) == 0)
4496 {
4497 /* If this operand is at most 16 bits, convert
4498 to a signed 16 bit number and don't use 64bit
4499 displacement. */
4500 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4501 i.types[op].bitfield.disp64 = 0;
4502 }
4503 #ifdef BFD64
4504 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4505 if (i.types[op].bitfield.disp32
4506 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4507 {
4508 /* If this operand is at most 32 bits, convert
4509 to a signed 32 bit number and don't use 64bit
4510 displacement. */
4511 op_disp &= (((offsetT) 2 << 31) - 1);
4512 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4513 i.types[op].bitfield.disp64 = 0;
4514 }
4515 #endif
4516 if (!op_disp && i.types[op].bitfield.baseindex)
4517 {
4518 i.types[op].bitfield.disp8 = 0;
4519 i.types[op].bitfield.disp16 = 0;
4520 i.types[op].bitfield.disp32 = 0;
4521 i.types[op].bitfield.disp32s = 0;
4522 i.types[op].bitfield.disp64 = 0;
4523 i.op[op].disps = 0;
4524 i.disp_operands--;
4525 }
4526 else if (flag_code == CODE_64BIT)
4527 {
4528 if (fits_in_signed_long (op_disp))
4529 {
4530 i.types[op].bitfield.disp64 = 0;
4531 i.types[op].bitfield.disp32s = 1;
4532 }
4533 if (i.prefix[ADDR_PREFIX]
4534 && fits_in_unsigned_long (op_disp))
4535 i.types[op].bitfield.disp32 = 1;
4536 }
4537 if ((i.types[op].bitfield.disp32
4538 || i.types[op].bitfield.disp32s
4539 || i.types[op].bitfield.disp16)
4540 && fits_in_signed_byte (op_disp))
4541 i.types[op].bitfield.disp8 = 1;
4542 }
4543 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4544 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4545 {
4546 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4547 i.op[op].disps, 0, i.reloc[op]);
4548 i.types[op].bitfield.disp8 = 0;
4549 i.types[op].bitfield.disp16 = 0;
4550 i.types[op].bitfield.disp32 = 0;
4551 i.types[op].bitfield.disp32s = 0;
4552 i.types[op].bitfield.disp64 = 0;
4553 }
4554 else
4555 /* We only support 64bit displacement on constants. */
4556 i.types[op].bitfield.disp64 = 0;
4557 }
4558 }
4559
4560 /* Check if operands are valid for the instruction. */
4561
4562 static int
4563 check_VecOperands (const insn_template *t)
4564 {
4565 unsigned int op;
4566
4567 /* Without VSIB byte, we can't have a vector register for index. */
4568 if (!t->opcode_modifier.vecsib
4569 && i.index_reg
4570 && (i.index_reg->reg_type.bitfield.regxmm
4571 || i.index_reg->reg_type.bitfield.regymm
4572 || i.index_reg->reg_type.bitfield.regzmm))
4573 {
4574 i.error = unsupported_vector_index_register;
4575 return 1;
4576 }
4577
4578 /* Check if default mask is allowed. */
4579 if (t->opcode_modifier.nodefmask
4580 && (!i.mask || i.mask->mask->reg_num == 0))
4581 {
4582 i.error = no_default_mask;
4583 return 1;
4584 }
4585
4586 /* For VSIB byte, we need a vector register for index, and all vector
4587 registers must be distinct. */
4588 if (t->opcode_modifier.vecsib)
4589 {
4590 if (!i.index_reg
4591 || !((t->opcode_modifier.vecsib == VecSIB128
4592 && i.index_reg->reg_type.bitfield.regxmm)
4593 || (t->opcode_modifier.vecsib == VecSIB256
4594 && i.index_reg->reg_type.bitfield.regymm)
4595 || (t->opcode_modifier.vecsib == VecSIB512
4596 && i.index_reg->reg_type.bitfield.regzmm)))
4597 {
4598 i.error = invalid_vsib_address;
4599 return 1;
4600 }
4601
4602 gas_assert (i.reg_operands == 2 || i.mask);
4603 if (i.reg_operands == 2 && !i.mask)
4604 {
4605 gas_assert (i.types[0].bitfield.regxmm
4606 || i.types[0].bitfield.regymm);
4607 gas_assert (i.types[2].bitfield.regxmm
4608 || i.types[2].bitfield.regymm);
4609 if (operand_check == check_none)
4610 return 0;
4611 if (register_number (i.op[0].regs)
4612 != register_number (i.index_reg)
4613 && register_number (i.op[2].regs)
4614 != register_number (i.index_reg)
4615 && register_number (i.op[0].regs)
4616 != register_number (i.op[2].regs))
4617 return 0;
4618 if (operand_check == check_error)
4619 {
4620 i.error = invalid_vector_register_set;
4621 return 1;
4622 }
4623 as_warn (_("mask, index, and destination registers should be distinct"));
4624 }
4625 else if (i.reg_operands == 1 && i.mask)
4626 {
4627 if ((i.types[1].bitfield.regymm
4628 || i.types[1].bitfield.regzmm)
4629 && (register_number (i.op[1].regs)
4630 == register_number (i.index_reg)))
4631 {
4632 if (operand_check == check_error)
4633 {
4634 i.error = invalid_vector_register_set;
4635 return 1;
4636 }
4637 if (operand_check != check_none)
4638 as_warn (_("index and destination registers should be distinct"));
4639 }
4640 }
4641 }
4642
4643 /* Check if broadcast is supported by the instruction and is applied
4644 to the memory operand. */
4645 if (i.broadcast)
4646 {
4647 int broadcasted_opnd_size;
4648
4649 /* Check if specified broadcast is supported in this instruction,
4650 and it's applied to memory operand of DWORD or QWORD type,
4651 depending on VecESize. */
4652 if (i.broadcast->type != t->opcode_modifier.broadcast
4653 || !i.types[i.broadcast->operand].bitfield.mem
4654 || (t->opcode_modifier.vecesize == 0
4655 && !i.types[i.broadcast->operand].bitfield.dword
4656 && !i.types[i.broadcast->operand].bitfield.unspecified)
4657 || (t->opcode_modifier.vecesize == 1
4658 && !i.types[i.broadcast->operand].bitfield.qword
4659 && !i.types[i.broadcast->operand].bitfield.unspecified))
4660 goto bad_broadcast;
4661
4662 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4663 if (i.broadcast->type == BROADCAST_1TO16)
4664 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4665 else if (i.broadcast->type == BROADCAST_1TO8)
4666 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4667 else if (i.broadcast->type == BROADCAST_1TO4)
4668 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4669 else if (i.broadcast->type == BROADCAST_1TO2)
4670 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
4671 else
4672 goto bad_broadcast;
4673
4674 if ((broadcasted_opnd_size == 256
4675 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4676 || (broadcasted_opnd_size == 512
4677 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4678 {
4679 bad_broadcast:
4680 i.error = unsupported_broadcast;
4681 return 1;
4682 }
4683 }
4684 /* If broadcast is supported in this instruction, we need to check if
4685 operand of one-element size isn't specified without broadcast. */
4686 else if (t->opcode_modifier.broadcast && i.mem_operands)
4687 {
4688 /* Find memory operand. */
4689 for (op = 0; op < i.operands; op++)
4690 if (operand_type_check (i.types[op], anymem))
4691 break;
4692 gas_assert (op < i.operands);
4693 /* Check size of the memory operand. */
4694 if ((t->opcode_modifier.vecesize == 0
4695 && i.types[op].bitfield.dword)
4696 || (t->opcode_modifier.vecesize == 1
4697 && i.types[op].bitfield.qword))
4698 {
4699 i.error = broadcast_needed;
4700 return 1;
4701 }
4702 }
4703
4704 /* Check if requested masking is supported. */
4705 if (i.mask
4706 && (!t->opcode_modifier.masking
4707 || (i.mask->zeroing
4708 && t->opcode_modifier.masking == MERGING_MASKING)))
4709 {
4710 i.error = unsupported_masking;
4711 return 1;
4712 }
4713
4714 /* Check if masking is applied to dest operand. */
4715 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4716 {
4717 i.error = mask_not_on_destination;
4718 return 1;
4719 }
4720
4721 /* Check RC/SAE. */
4722 if (i.rounding)
4723 {
4724 if ((i.rounding->type != saeonly
4725 && !t->opcode_modifier.staticrounding)
4726 || (i.rounding->type == saeonly
4727 && (t->opcode_modifier.staticrounding
4728 || !t->opcode_modifier.sae)))
4729 {
4730 i.error = unsupported_rc_sae;
4731 return 1;
4732 }
4733 /* If the instruction has several immediate operands and one of
4734 them is rounding, the rounding operand should be the last
4735 immediate operand. */
4736 if (i.imm_operands > 1
4737 && i.rounding->operand != (int) (i.imm_operands - 1))
4738 {
4739 i.error = rc_sae_operand_not_last_imm;
4740 return 1;
4741 }
4742 }
4743
4744 /* Check vector Disp8 operand. */
4745 if (t->opcode_modifier.disp8memshift)
4746 {
4747 if (i.broadcast)
4748 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4749 else
4750 i.memshift = t->opcode_modifier.disp8memshift;
4751
4752 for (op = 0; op < i.operands; op++)
4753 if (operand_type_check (i.types[op], disp)
4754 && i.op[op].disps->X_op == O_constant)
4755 {
4756 offsetT value = i.op[op].disps->X_add_number;
4757 int vec_disp8_ok
4758 = (i.disp_encoding != disp_encoding_32bit
4759 && fits_in_vec_disp8 (value));
4760 if (t->operand_types [op].bitfield.vec_disp8)
4761 {
4762 if (vec_disp8_ok)
4763 i.types[op].bitfield.vec_disp8 = 1;
4764 else
4765 {
4766 /* Vector insn can only have Vec_Disp8/Disp32 in
4767 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4768 mode. */
4769 i.types[op].bitfield.disp8 = 0;
4770 if (flag_code != CODE_16BIT)
4771 i.types[op].bitfield.disp16 = 0;
4772 }
4773 }
4774 else if (flag_code != CODE_16BIT)
4775 {
4776 /* One form of this instruction supports vector Disp8.
4777 Try vector Disp8 if we need to use Disp32. */
4778 if (vec_disp8_ok && !fits_in_signed_byte (value))
4779 {
4780 i.error = try_vector_disp8;
4781 return 1;
4782 }
4783 }
4784 }
4785 }
4786 else
4787 i.memshift = -1;
4788
4789 return 0;
4790 }
4791
4792 /* Check if operands are valid for the instruction. Update VEX
4793 operand types. */
4794
4795 static int
4796 VEX_check_operands (const insn_template *t)
4797 {
4798 if (i.vec_encoding == vex_encoding_evex)
4799 {
4800 /* This instruction must be encoded with EVEX prefix. */
4801 if (!t->opcode_modifier.evex)
4802 {
4803 i.error = unsupported;
4804 return 1;
4805 }
4806 return 0;
4807 }
4808
4809 if (!t->opcode_modifier.vex)
4810 {
4811 /* This instruction template doesn't have VEX prefix. */
4812 if (i.vec_encoding != vex_encoding_default)
4813 {
4814 i.error = unsupported;
4815 return 1;
4816 }
4817 return 0;
4818 }
4819
4820 /* Only check VEX_Imm4, which must be the first operand. */
4821 if (t->operand_types[0].bitfield.vec_imm4)
4822 {
4823 if (i.op[0].imms->X_op != O_constant
4824 || !fits_in_imm4 (i.op[0].imms->X_add_number))
4825 {
4826 i.error = bad_imm4;
4827 return 1;
4828 }
4829
4830 /* Turn off Imm8 so that update_imm won't complain. */
4831 i.types[0] = vec_imm4;
4832 }
4833
4834 return 0;
4835 }
4836
4837 static const insn_template *
4838 match_template (char mnem_suffix)
4839 {
4840 /* Points to template once we've found it. */
4841 const insn_template *t;
4842 i386_operand_type overlap0, overlap1, overlap2, overlap3;
4843 i386_operand_type overlap4;
4844 unsigned int found_reverse_match;
4845 i386_opcode_modifier suffix_check, mnemsuf_check;
4846 i386_operand_type operand_types [MAX_OPERANDS];
4847 int addr_prefix_disp;
4848 unsigned int j;
4849 unsigned int found_cpu_match;
4850 unsigned int check_register;
4851 enum i386_error specific_error = 0;
4852
4853 #if MAX_OPERANDS != 5
4854 # error "MAX_OPERANDS must be 5."
4855 #endif
4856
4857 found_reverse_match = 0;
4858 addr_prefix_disp = -1;
4859
4860 memset (&suffix_check, 0, sizeof (suffix_check));
4861 if (i.suffix == BYTE_MNEM_SUFFIX)
4862 suffix_check.no_bsuf = 1;
4863 else if (i.suffix == WORD_MNEM_SUFFIX)
4864 suffix_check.no_wsuf = 1;
4865 else if (i.suffix == SHORT_MNEM_SUFFIX)
4866 suffix_check.no_ssuf = 1;
4867 else if (i.suffix == LONG_MNEM_SUFFIX)
4868 suffix_check.no_lsuf = 1;
4869 else if (i.suffix == QWORD_MNEM_SUFFIX)
4870 suffix_check.no_qsuf = 1;
4871 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4872 suffix_check.no_ldsuf = 1;
4873
4874 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
4875 if (intel_syntax)
4876 {
4877 switch (mnem_suffix)
4878 {
4879 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
4880 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
4881 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
4882 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
4883 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
4884 }
4885 }
4886
4887 /* Must have right number of operands. */
4888 i.error = number_of_operands_mismatch;
4889
4890 for (t = current_templates->start; t < current_templates->end; t++)
4891 {
4892 addr_prefix_disp = -1;
4893
4894 if (i.operands != t->operands)
4895 continue;
4896
4897 /* Check processor support. */
4898 i.error = unsupported;
4899 found_cpu_match = (cpu_flags_match (t)
4900 == CPU_FLAGS_PERFECT_MATCH);
4901 if (!found_cpu_match)
4902 continue;
4903
4904 /* Check old gcc support. */
4905 i.error = old_gcc_only;
4906 if (!old_gcc && t->opcode_modifier.oldgcc)
4907 continue;
4908
4909 /* Check AT&T mnemonic. */
4910 i.error = unsupported_with_intel_mnemonic;
4911 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4912 continue;
4913
4914 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
4915 i.error = unsupported_syntax;
4916 if ((intel_syntax && t->opcode_modifier.attsyntax)
4917 || (!intel_syntax && t->opcode_modifier.intelsyntax)
4918 || (intel64 && t->opcode_modifier.amd64)
4919 || (!intel64 && t->opcode_modifier.intel64))
4920 continue;
4921
4922 /* Check the suffix, except for some instructions in intel mode. */
4923 i.error = invalid_instruction_suffix;
4924 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4925 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4926 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4927 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4928 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4929 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4930 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4931 continue;
4932 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
4933 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
4934 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
4935 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
4936 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
4937 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
4938 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
4939 continue;
4940
4941 if (!operand_size_match (t))
4942 continue;
4943
4944 for (j = 0; j < MAX_OPERANDS; j++)
4945 operand_types[j] = t->operand_types[j];
4946
4947 /* In general, don't allow 64-bit operands in 32-bit mode. */
4948 if (i.suffix == QWORD_MNEM_SUFFIX
4949 && flag_code != CODE_64BIT
4950 && (intel_syntax
4951 ? (!t->opcode_modifier.ignoresize
4952 && !intel_float_operand (t->name))
4953 : intel_float_operand (t->name) != 2)
4954 && ((!operand_types[0].bitfield.regmmx
4955 && !operand_types[0].bitfield.regxmm
4956 && !operand_types[0].bitfield.regymm
4957 && !operand_types[0].bitfield.regzmm)
4958 || (!operand_types[t->operands > 1].bitfield.regmmx
4959 && operand_types[t->operands > 1].bitfield.regxmm
4960 && operand_types[t->operands > 1].bitfield.regymm
4961 && operand_types[t->operands > 1].bitfield.regzmm))
4962 && (t->base_opcode != 0x0fc7
4963 || t->extension_opcode != 1 /* cmpxchg8b */))
4964 continue;
4965
4966 /* In general, don't allow 32-bit operands on pre-386. */
4967 else if (i.suffix == LONG_MNEM_SUFFIX
4968 && !cpu_arch_flags.bitfield.cpui386
4969 && (intel_syntax
4970 ? (!t->opcode_modifier.ignoresize
4971 && !intel_float_operand (t->name))
4972 : intel_float_operand (t->name) != 2)
4973 && ((!operand_types[0].bitfield.regmmx
4974 && !operand_types[0].bitfield.regxmm)
4975 || (!operand_types[t->operands > 1].bitfield.regmmx
4976 && operand_types[t->operands > 1].bitfield.regxmm)))
4977 continue;
4978
4979 /* Do not verify operands when there are none. */
4980 else
4981 {
4982 if (!t->operands)
4983 /* We've found a match; break out of loop. */
4984 break;
4985 }
4986
4987 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4988 into Disp32/Disp16/Disp32 operand. */
4989 if (i.prefix[ADDR_PREFIX] != 0)
4990 {
4991 /* There should be only one Disp operand. */
4992 switch (flag_code)
4993 {
4994 case CODE_16BIT:
4995 for (j = 0; j < MAX_OPERANDS; j++)
4996 {
4997 if (operand_types[j].bitfield.disp16)
4998 {
4999 addr_prefix_disp = j;
5000 operand_types[j].bitfield.disp32 = 1;
5001 operand_types[j].bitfield.disp16 = 0;
5002 break;
5003 }
5004 }
5005 break;
5006 case CODE_32BIT:
5007 for (j = 0; j < MAX_OPERANDS; j++)
5008 {
5009 if (operand_types[j].bitfield.disp32)
5010 {
5011 addr_prefix_disp = j;
5012 operand_types[j].bitfield.disp32 = 0;
5013 operand_types[j].bitfield.disp16 = 1;
5014 break;
5015 }
5016 }
5017 break;
5018 case CODE_64BIT:
5019 for (j = 0; j < MAX_OPERANDS; j++)
5020 {
5021 if (operand_types[j].bitfield.disp64)
5022 {
5023 addr_prefix_disp = j;
5024 operand_types[j].bitfield.disp64 = 0;
5025 operand_types[j].bitfield.disp32 = 1;
5026 break;
5027 }
5028 }
5029 break;
5030 }
5031 }
5032
5033 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5034 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5035 continue;
5036
5037 /* We check register size if needed. */
5038 check_register = t->opcode_modifier.checkregsize;
5039 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5040 switch (t->operands)
5041 {
5042 case 1:
5043 if (!operand_type_match (overlap0, i.types[0]))
5044 continue;
5045 break;
5046 case 2:
5047 /* xchg %eax, %eax is a special case. It is an alias for nop
5048 only in 32bit mode and we can use opcode 0x90. In 64bit
5049 mode, we can't use 0x90 for xchg %eax, %eax since it should
5050 zero-extend %eax to %rax. */
5051 if (flag_code == CODE_64BIT
5052 && t->base_opcode == 0x90
5053 && operand_type_equal (&i.types [0], &acc32)
5054 && operand_type_equal (&i.types [1], &acc32))
5055 continue;
5056 /* If we want store form, we reverse direction of operands. */
5057 if (i.dir_encoding == dir_encoding_store
5058 && t->opcode_modifier.d)
5059 goto check_reverse;
5060 /* Fall through. */
5061
5062 case 3:
5063 /* If we want store form, we skip the current load. */
5064 if (i.dir_encoding == dir_encoding_store
5065 && i.mem_operands == 0
5066 && t->opcode_modifier.load)
5067 continue;
5068 /* Fall through. */
5069 case 4:
5070 case 5:
5071 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5072 if (!operand_type_match (overlap0, i.types[0])
5073 || !operand_type_match (overlap1, i.types[1])
5074 || (check_register
5075 && !operand_type_register_match (overlap0, i.types[0],
5076 operand_types[0],
5077 overlap1, i.types[1],
5078 operand_types[1])))
5079 {
5080 /* Check if other direction is valid ... */
5081 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
5082 continue;
5083
5084 check_reverse:
5085 /* Try reversing direction of operands. */
5086 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5087 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5088 if (!operand_type_match (overlap0, i.types[0])
5089 || !operand_type_match (overlap1, i.types[1])
5090 || (check_register
5091 && !operand_type_register_match (overlap0,
5092 i.types[0],
5093 operand_types[1],
5094 overlap1,
5095 i.types[1],
5096 operand_types[0])))
5097 {
5098 /* Does not match either direction. */
5099 continue;
5100 }
5101 /* found_reverse_match holds which of D or FloatDR
5102 we've found. */
5103 if (t->opcode_modifier.d)
5104 found_reverse_match = Opcode_D;
5105 else if (t->opcode_modifier.floatd)
5106 found_reverse_match = Opcode_FloatD;
5107 else
5108 found_reverse_match = 0;
5109 if (t->opcode_modifier.floatr)
5110 found_reverse_match |= Opcode_FloatR;
5111 }
5112 else
5113 {
5114 /* Found a forward 2 operand match here. */
5115 switch (t->operands)
5116 {
5117 case 5:
5118 overlap4 = operand_type_and (i.types[4],
5119 operand_types[4]);
5120 /* Fall through. */
5121 case 4:
5122 overlap3 = operand_type_and (i.types[3],
5123 operand_types[3]);
5124 /* Fall through. */
5125 case 3:
5126 overlap2 = operand_type_and (i.types[2],
5127 operand_types[2]);
5128 break;
5129 }
5130
5131 switch (t->operands)
5132 {
5133 case 5:
5134 if (!operand_type_match (overlap4, i.types[4])
5135 || !operand_type_register_match (overlap3,
5136 i.types[3],
5137 operand_types[3],
5138 overlap4,
5139 i.types[4],
5140 operand_types[4]))
5141 continue;
5142 /* Fall through. */
5143 case 4:
5144 if (!operand_type_match (overlap3, i.types[3])
5145 || (check_register
5146 && !operand_type_register_match (overlap2,
5147 i.types[2],
5148 operand_types[2],
5149 overlap3,
5150 i.types[3],
5151 operand_types[3])))
5152 continue;
5153 /* Fall through. */
5154 case 3:
5155 /* Here we make use of the fact that there are no
5156 reverse match 3 operand instructions, and all 3
5157 operand instructions only need to be checked for
5158 register consistency between operands 2 and 3. */
5159 if (!operand_type_match (overlap2, i.types[2])
5160 || (check_register
5161 && !operand_type_register_match (overlap1,
5162 i.types[1],
5163 operand_types[1],
5164 overlap2,
5165 i.types[2],
5166 operand_types[2])))
5167 continue;
5168 break;
5169 }
5170 }
5171 /* Found either forward/reverse 2, 3 or 4 operand match here:
5172 slip through to break. */
5173 }
5174 if (!found_cpu_match)
5175 {
5176 found_reverse_match = 0;
5177 continue;
5178 }
5179
5180 /* Check if vector and VEX operands are valid. */
5181 if (check_VecOperands (t) || VEX_check_operands (t))
5182 {
5183 specific_error = i.error;
5184 continue;
5185 }
5186
5187 /* We've found a match; break out of loop. */
5188 break;
5189 }
5190
5191 if (t == current_templates->end)
5192 {
5193 /* We found no match. */
5194 const char *err_msg;
5195 switch (specific_error ? specific_error : i.error)
5196 {
5197 default:
5198 abort ();
5199 case operand_size_mismatch:
5200 err_msg = _("operand size mismatch");
5201 break;
5202 case operand_type_mismatch:
5203 err_msg = _("operand type mismatch");
5204 break;
5205 case register_type_mismatch:
5206 err_msg = _("register type mismatch");
5207 break;
5208 case number_of_operands_mismatch:
5209 err_msg = _("number of operands mismatch");
5210 break;
5211 case invalid_instruction_suffix:
5212 err_msg = _("invalid instruction suffix");
5213 break;
5214 case bad_imm4:
5215 err_msg = _("constant doesn't fit in 4 bits");
5216 break;
5217 case old_gcc_only:
5218 err_msg = _("only supported with old gcc");
5219 break;
5220 case unsupported_with_intel_mnemonic:
5221 err_msg = _("unsupported with Intel mnemonic");
5222 break;
5223 case unsupported_syntax:
5224 err_msg = _("unsupported syntax");
5225 break;
5226 case unsupported:
5227 as_bad (_("unsupported instruction `%s'"),
5228 current_templates->start->name);
5229 return NULL;
5230 case invalid_vsib_address:
5231 err_msg = _("invalid VSIB address");
5232 break;
5233 case invalid_vector_register_set:
5234 err_msg = _("mask, index, and destination registers must be distinct");
5235 break;
5236 case unsupported_vector_index_register:
5237 err_msg = _("unsupported vector index register");
5238 break;
5239 case unsupported_broadcast:
5240 err_msg = _("unsupported broadcast");
5241 break;
5242 case broadcast_not_on_src_operand:
5243 err_msg = _("broadcast not on source memory operand");
5244 break;
5245 case broadcast_needed:
5246 err_msg = _("broadcast is needed for operand of such type");
5247 break;
5248 case unsupported_masking:
5249 err_msg = _("unsupported masking");
5250 break;
5251 case mask_not_on_destination:
5252 err_msg = _("mask not on destination operand");
5253 break;
5254 case no_default_mask:
5255 err_msg = _("default mask isn't allowed");
5256 break;
5257 case unsupported_rc_sae:
5258 err_msg = _("unsupported static rounding/sae");
5259 break;
5260 case rc_sae_operand_not_last_imm:
5261 if (intel_syntax)
5262 err_msg = _("RC/SAE operand must precede immediate operands");
5263 else
5264 err_msg = _("RC/SAE operand must follow immediate operands");
5265 break;
5266 case invalid_register_operand:
5267 err_msg = _("invalid register operand");
5268 break;
5269 }
5270 as_bad (_("%s for `%s'"), err_msg,
5271 current_templates->start->name);
5272 return NULL;
5273 }
5274
5275 if (!quiet_warnings)
5276 {
5277 if (!intel_syntax
5278 && (i.types[0].bitfield.jumpabsolute
5279 != operand_types[0].bitfield.jumpabsolute))
5280 {
5281 as_warn (_("indirect %s without `*'"), t->name);
5282 }
5283
5284 if (t->opcode_modifier.isprefix
5285 && t->opcode_modifier.ignoresize)
5286 {
5287 /* Warn them that a data or address size prefix doesn't
5288 affect assembly of the next line of code. */
5289 as_warn (_("stand-alone `%s' prefix"), t->name);
5290 }
5291 }
5292
5293 /* Copy the template we found. */
5294 i.tm = *t;
5295
5296 if (addr_prefix_disp != -1)
5297 i.tm.operand_types[addr_prefix_disp]
5298 = operand_types[addr_prefix_disp];
5299
5300 if (found_reverse_match)
5301 {
5302 /* If we found a reverse match we must alter the opcode
5303 direction bit. found_reverse_match holds bits to change
5304 (different for int & float insns). */
5305
5306 i.tm.base_opcode ^= found_reverse_match;
5307
5308 i.tm.operand_types[0] = operand_types[1];
5309 i.tm.operand_types[1] = operand_types[0];
5310 }
5311
5312 return t;
5313 }
5314
5315 static int
5316 check_string (void)
5317 {
5318 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5319 if (i.tm.operand_types[mem_op].bitfield.esseg)
5320 {
5321 if (i.seg[0] != NULL && i.seg[0] != &es)
5322 {
5323 as_bad (_("`%s' operand %d must use `%ses' segment"),
5324 i.tm.name,
5325 mem_op + 1,
5326 register_prefix);
5327 return 0;
5328 }
5329 /* There's only ever one segment override allowed per instruction.
5330 This instruction possibly has a legal segment override on the
5331 second operand, so copy the segment to where non-string
5332 instructions store it, allowing common code. */
5333 i.seg[0] = i.seg[1];
5334 }
5335 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5336 {
5337 if (i.seg[1] != NULL && i.seg[1] != &es)
5338 {
5339 as_bad (_("`%s' operand %d must use `%ses' segment"),
5340 i.tm.name,
5341 mem_op + 2,
5342 register_prefix);
5343 return 0;
5344 }
5345 }
5346 return 1;
5347 }
5348
5349 static int
5350 process_suffix (void)
5351 {
5352 /* If matched instruction specifies an explicit instruction mnemonic
5353 suffix, use it. */
5354 if (i.tm.opcode_modifier.size16)
5355 i.suffix = WORD_MNEM_SUFFIX;
5356 else if (i.tm.opcode_modifier.size32)
5357 i.suffix = LONG_MNEM_SUFFIX;
5358 else if (i.tm.opcode_modifier.size64)
5359 i.suffix = QWORD_MNEM_SUFFIX;
5360 else if (i.reg_operands)
5361 {
5362 /* If there's no instruction mnemonic suffix we try to invent one
5363 based on register operands. */
5364 if (!i.suffix)
5365 {
5366 /* We take i.suffix from the last register operand specified,
5367 Destination register type is more significant than source
5368 register type. crc32 in SSE4.2 prefers source register
5369 type. */
5370 if (i.tm.base_opcode == 0xf20f38f1)
5371 {
5372 if (i.types[0].bitfield.reg16)
5373 i.suffix = WORD_MNEM_SUFFIX;
5374 else if (i.types[0].bitfield.reg32)
5375 i.suffix = LONG_MNEM_SUFFIX;
5376 else if (i.types[0].bitfield.reg64)
5377 i.suffix = QWORD_MNEM_SUFFIX;
5378 }
5379 else if (i.tm.base_opcode == 0xf20f38f0)
5380 {
5381 if (i.types[0].bitfield.reg8)
5382 i.suffix = BYTE_MNEM_SUFFIX;
5383 }
5384
5385 if (!i.suffix)
5386 {
5387 int op;
5388
5389 if (i.tm.base_opcode == 0xf20f38f1
5390 || i.tm.base_opcode == 0xf20f38f0)
5391 {
5392 /* We have to know the operand size for crc32. */
5393 as_bad (_("ambiguous memory operand size for `%s`"),
5394 i.tm.name);
5395 return 0;
5396 }
5397
5398 for (op = i.operands; --op >= 0;)
5399 if (!i.tm.operand_types[op].bitfield.inoutportreg)
5400 {
5401 if (i.types[op].bitfield.reg8)
5402 {
5403 i.suffix = BYTE_MNEM_SUFFIX;
5404 break;
5405 }
5406 else if (i.types[op].bitfield.reg16)
5407 {
5408 i.suffix = WORD_MNEM_SUFFIX;
5409 break;
5410 }
5411 else if (i.types[op].bitfield.reg32)
5412 {
5413 i.suffix = LONG_MNEM_SUFFIX;
5414 break;
5415 }
5416 else if (i.types[op].bitfield.reg64)
5417 {
5418 i.suffix = QWORD_MNEM_SUFFIX;
5419 break;
5420 }
5421 }
5422 }
5423 }
5424 else if (i.suffix == BYTE_MNEM_SUFFIX)
5425 {
5426 if (intel_syntax
5427 && i.tm.opcode_modifier.ignoresize
5428 && i.tm.opcode_modifier.no_bsuf)
5429 i.suffix = 0;
5430 else if (!check_byte_reg ())
5431 return 0;
5432 }
5433 else if (i.suffix == LONG_MNEM_SUFFIX)
5434 {
5435 if (intel_syntax
5436 && i.tm.opcode_modifier.ignoresize
5437 && i.tm.opcode_modifier.no_lsuf)
5438 i.suffix = 0;
5439 else if (!check_long_reg ())
5440 return 0;
5441 }
5442 else if (i.suffix == QWORD_MNEM_SUFFIX)
5443 {
5444 if (intel_syntax
5445 && i.tm.opcode_modifier.ignoresize
5446 && i.tm.opcode_modifier.no_qsuf)
5447 i.suffix = 0;
5448 else if (!check_qword_reg ())
5449 return 0;
5450 }
5451 else if (i.suffix == WORD_MNEM_SUFFIX)
5452 {
5453 if (intel_syntax
5454 && i.tm.opcode_modifier.ignoresize
5455 && i.tm.opcode_modifier.no_wsuf)
5456 i.suffix = 0;
5457 else if (!check_word_reg ())
5458 return 0;
5459 }
5460 else if (i.suffix == XMMWORD_MNEM_SUFFIX
5461 || i.suffix == YMMWORD_MNEM_SUFFIX
5462 || i.suffix == ZMMWORD_MNEM_SUFFIX)
5463 {
5464 /* Skip if the instruction has x/y/z suffix. match_template
5465 should check if it is a valid suffix. */
5466 }
5467 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5468 /* Do nothing if the instruction is going to ignore the prefix. */
5469 ;
5470 else
5471 abort ();
5472 }
5473 else if (i.tm.opcode_modifier.defaultsize
5474 && !i.suffix
5475 /* exclude fldenv/frstor/fsave/fstenv */
5476 && i.tm.opcode_modifier.no_ssuf)
5477 {
5478 i.suffix = stackop_size;
5479 }
5480 else if (intel_syntax
5481 && !i.suffix
5482 && (i.tm.operand_types[0].bitfield.jumpabsolute
5483 || i.tm.opcode_modifier.jumpbyte
5484 || i.tm.opcode_modifier.jumpintersegment
5485 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5486 && i.tm.extension_opcode <= 3)))
5487 {
5488 switch (flag_code)
5489 {
5490 case CODE_64BIT:
5491 if (!i.tm.opcode_modifier.no_qsuf)
5492 {
5493 i.suffix = QWORD_MNEM_SUFFIX;
5494 break;
5495 }
5496 /* Fall through. */
5497 case CODE_32BIT:
5498 if (!i.tm.opcode_modifier.no_lsuf)
5499 i.suffix = LONG_MNEM_SUFFIX;
5500 break;
5501 case CODE_16BIT:
5502 if (!i.tm.opcode_modifier.no_wsuf)
5503 i.suffix = WORD_MNEM_SUFFIX;
5504 break;
5505 }
5506 }
5507
5508 if (!i.suffix)
5509 {
5510 if (!intel_syntax)
5511 {
5512 if (i.tm.opcode_modifier.w)
5513 {
5514 as_bad (_("no instruction mnemonic suffix given and "
5515 "no register operands; can't size instruction"));
5516 return 0;
5517 }
5518 }
5519 else
5520 {
5521 unsigned int suffixes;
5522
5523 suffixes = !i.tm.opcode_modifier.no_bsuf;
5524 if (!i.tm.opcode_modifier.no_wsuf)
5525 suffixes |= 1 << 1;
5526 if (!i.tm.opcode_modifier.no_lsuf)
5527 suffixes |= 1 << 2;
5528 if (!i.tm.opcode_modifier.no_ldsuf)
5529 suffixes |= 1 << 3;
5530 if (!i.tm.opcode_modifier.no_ssuf)
5531 suffixes |= 1 << 4;
5532 if (!i.tm.opcode_modifier.no_qsuf)
5533 suffixes |= 1 << 5;
5534
5535 /* There are more than suffix matches. */
5536 if (i.tm.opcode_modifier.w
5537 || ((suffixes & (suffixes - 1))
5538 && !i.tm.opcode_modifier.defaultsize
5539 && !i.tm.opcode_modifier.ignoresize))
5540 {
5541 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5542 return 0;
5543 }
5544 }
5545 }
5546
5547 /* Change the opcode based on the operand size given by i.suffix;
5548 We don't need to change things for byte insns. */
5549
5550 if (i.suffix
5551 && i.suffix != BYTE_MNEM_SUFFIX
5552 && i.suffix != XMMWORD_MNEM_SUFFIX
5553 && i.suffix != YMMWORD_MNEM_SUFFIX
5554 && i.suffix != ZMMWORD_MNEM_SUFFIX)
5555 {
5556 /* It's not a byte, select word/dword operation. */
5557 if (i.tm.opcode_modifier.w)
5558 {
5559 if (i.tm.opcode_modifier.shortform)
5560 i.tm.base_opcode |= 8;
5561 else
5562 i.tm.base_opcode |= 1;
5563 }
5564
5565 /* Now select between word & dword operations via the operand
5566 size prefix, except for instructions that will ignore this
5567 prefix anyway. */
5568 if (i.tm.opcode_modifier.addrprefixop0)
5569 {
5570 /* The address size override prefix changes the size of the
5571 first operand. */
5572 if ((flag_code == CODE_32BIT
5573 && i.op->regs[0].reg_type.bitfield.reg16)
5574 || (flag_code != CODE_32BIT
5575 && i.op->regs[0].reg_type.bitfield.reg32))
5576 if (!add_prefix (ADDR_PREFIX_OPCODE))
5577 return 0;
5578 }
5579 else if (i.suffix != QWORD_MNEM_SUFFIX
5580 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5581 && !i.tm.opcode_modifier.ignoresize
5582 && !i.tm.opcode_modifier.floatmf
5583 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5584 || (flag_code == CODE_64BIT
5585 && i.tm.opcode_modifier.jumpbyte)))
5586 {
5587 unsigned int prefix = DATA_PREFIX_OPCODE;
5588
5589 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5590 prefix = ADDR_PREFIX_OPCODE;
5591
5592 if (!add_prefix (prefix))
5593 return 0;
5594 }
5595
5596 /* Set mode64 for an operand. */
5597 if (i.suffix == QWORD_MNEM_SUFFIX
5598 && flag_code == CODE_64BIT
5599 && !i.tm.opcode_modifier.norex64)
5600 {
5601 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5602 need rex64. cmpxchg8b is also a special case. */
5603 if (! (i.operands == 2
5604 && i.tm.base_opcode == 0x90
5605 && i.tm.extension_opcode == None
5606 && operand_type_equal (&i.types [0], &acc64)
5607 && operand_type_equal (&i.types [1], &acc64))
5608 && ! (i.operands == 1
5609 && i.tm.base_opcode == 0xfc7
5610 && i.tm.extension_opcode == 1
5611 && !operand_type_check (i.types [0], reg)
5612 && operand_type_check (i.types [0], anymem)))
5613 i.rex |= REX_W;
5614 }
5615
5616 /* Size floating point instruction. */
5617 if (i.suffix == LONG_MNEM_SUFFIX)
5618 if (i.tm.opcode_modifier.floatmf)
5619 i.tm.base_opcode ^= 4;
5620 }
5621
5622 return 1;
5623 }
5624
5625 static int
5626 check_byte_reg (void)
5627 {
5628 int op;
5629
5630 for (op = i.operands; --op >= 0;)
5631 {
5632 /* If this is an eight bit register, it's OK. If it's the 16 or
5633 32 bit version of an eight bit register, we will just use the
5634 low portion, and that's OK too. */
5635 if (i.types[op].bitfield.reg8)
5636 continue;
5637
5638 /* I/O port address operands are OK too. */
5639 if (i.tm.operand_types[op].bitfield.inoutportreg)
5640 continue;
5641
5642 /* crc32 doesn't generate this warning. */
5643 if (i.tm.base_opcode == 0xf20f38f0)
5644 continue;
5645
5646 if ((i.types[op].bitfield.reg16
5647 || i.types[op].bitfield.reg32
5648 || i.types[op].bitfield.reg64)
5649 && i.op[op].regs->reg_num < 4
5650 /* Prohibit these changes in 64bit mode, since the lowering
5651 would be more complicated. */
5652 && flag_code != CODE_64BIT)
5653 {
5654 #if REGISTER_WARNINGS
5655 if (!quiet_warnings)
5656 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5657 register_prefix,
5658 (i.op[op].regs + (i.types[op].bitfield.reg16
5659 ? REGNAM_AL - REGNAM_AX
5660 : REGNAM_AL - REGNAM_EAX))->reg_name,
5661 register_prefix,
5662 i.op[op].regs->reg_name,
5663 i.suffix);
5664 #endif
5665 continue;
5666 }
5667 /* Any other register is bad. */
5668 if (i.types[op].bitfield.reg16
5669 || i.types[op].bitfield.reg32
5670 || i.types[op].bitfield.reg64
5671 || i.types[op].bitfield.regmmx
5672 || i.types[op].bitfield.regxmm
5673 || i.types[op].bitfield.regymm
5674 || i.types[op].bitfield.regzmm
5675 || i.types[op].bitfield.sreg2
5676 || i.types[op].bitfield.sreg3
5677 || i.types[op].bitfield.control
5678 || i.types[op].bitfield.debug
5679 || i.types[op].bitfield.test
5680 || i.types[op].bitfield.floatreg
5681 || i.types[op].bitfield.floatacc)
5682 {
5683 as_bad (_("`%s%s' not allowed with `%s%c'"),
5684 register_prefix,
5685 i.op[op].regs->reg_name,
5686 i.tm.name,
5687 i.suffix);
5688 return 0;
5689 }
5690 }
5691 return 1;
5692 }
5693
5694 static int
5695 check_long_reg (void)
5696 {
5697 int op;
5698
5699 for (op = i.operands; --op >= 0;)
5700 /* Reject eight bit registers, except where the template requires
5701 them. (eg. movzb) */
5702 if (i.types[op].bitfield.reg8
5703 && (i.tm.operand_types[op].bitfield.reg16
5704 || i.tm.operand_types[op].bitfield.reg32
5705 || i.tm.operand_types[op].bitfield.acc))
5706 {
5707 as_bad (_("`%s%s' not allowed with `%s%c'"),
5708 register_prefix,
5709 i.op[op].regs->reg_name,
5710 i.tm.name,
5711 i.suffix);
5712 return 0;
5713 }
5714 /* Warn if the e prefix on a general reg is missing. */
5715 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5716 && i.types[op].bitfield.reg16
5717 && (i.tm.operand_types[op].bitfield.reg32
5718 || i.tm.operand_types[op].bitfield.acc))
5719 {
5720 /* Prohibit these changes in the 64bit mode, since the
5721 lowering is more complicated. */
5722 if (flag_code == CODE_64BIT)
5723 {
5724 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5725 register_prefix, i.op[op].regs->reg_name,
5726 i.suffix);
5727 return 0;
5728 }
5729 #if REGISTER_WARNINGS
5730 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5731 register_prefix,
5732 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5733 register_prefix, i.op[op].regs->reg_name, i.suffix);
5734 #endif
5735 }
5736 /* Warn if the r prefix on a general reg is present. */
5737 else if (i.types[op].bitfield.reg64
5738 && (i.tm.operand_types[op].bitfield.reg32
5739 || i.tm.operand_types[op].bitfield.acc))
5740 {
5741 if (intel_syntax
5742 && i.tm.opcode_modifier.toqword
5743 && !i.types[0].bitfield.regxmm)
5744 {
5745 /* Convert to QWORD. We want REX byte. */
5746 i.suffix = QWORD_MNEM_SUFFIX;
5747 }
5748 else
5749 {
5750 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5751 register_prefix, i.op[op].regs->reg_name,
5752 i.suffix);
5753 return 0;
5754 }
5755 }
5756 return 1;
5757 }
5758
5759 static int
5760 check_qword_reg (void)
5761 {
5762 int op;
5763
5764 for (op = i.operands; --op >= 0; )
5765 /* Reject eight bit registers, except where the template requires
5766 them. (eg. movzb) */
5767 if (i.types[op].bitfield.reg8
5768 && (i.tm.operand_types[op].bitfield.reg16
5769 || i.tm.operand_types[op].bitfield.reg32
5770 || i.tm.operand_types[op].bitfield.acc))
5771 {
5772 as_bad (_("`%s%s' not allowed with `%s%c'"),
5773 register_prefix,
5774 i.op[op].regs->reg_name,
5775 i.tm.name,
5776 i.suffix);
5777 return 0;
5778 }
5779 /* Warn if the r prefix on a general reg is missing. */
5780 else if ((i.types[op].bitfield.reg16
5781 || i.types[op].bitfield.reg32)
5782 && (i.tm.operand_types[op].bitfield.reg64
5783 || i.tm.operand_types[op].bitfield.acc))
5784 {
5785 /* Prohibit these changes in the 64bit mode, since the
5786 lowering is more complicated. */
5787 if (intel_syntax
5788 && i.tm.opcode_modifier.todword
5789 && !i.types[0].bitfield.regxmm)
5790 {
5791 /* Convert to DWORD. We don't want REX byte. */
5792 i.suffix = LONG_MNEM_SUFFIX;
5793 }
5794 else
5795 {
5796 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5797 register_prefix, i.op[op].regs->reg_name,
5798 i.suffix);
5799 return 0;
5800 }
5801 }
5802 return 1;
5803 }
5804
5805 static int
5806 check_word_reg (void)
5807 {
5808 int op;
5809 for (op = i.operands; --op >= 0;)
5810 /* Reject eight bit registers, except where the template requires
5811 them. (eg. movzb) */
5812 if (i.types[op].bitfield.reg8
5813 && (i.tm.operand_types[op].bitfield.reg16
5814 || i.tm.operand_types[op].bitfield.reg32
5815 || i.tm.operand_types[op].bitfield.acc))
5816 {
5817 as_bad (_("`%s%s' not allowed with `%s%c'"),
5818 register_prefix,
5819 i.op[op].regs->reg_name,
5820 i.tm.name,
5821 i.suffix);
5822 return 0;
5823 }
5824 /* Warn if the e or r prefix on a general reg is present. */
5825 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5826 && (i.types[op].bitfield.reg32
5827 || i.types[op].bitfield.reg64)
5828 && (i.tm.operand_types[op].bitfield.reg16
5829 || i.tm.operand_types[op].bitfield.acc))
5830 {
5831 /* Prohibit these changes in the 64bit mode, since the
5832 lowering is more complicated. */
5833 if (flag_code == CODE_64BIT)
5834 {
5835 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5836 register_prefix, i.op[op].regs->reg_name,
5837 i.suffix);
5838 return 0;
5839 }
5840 #if REGISTER_WARNINGS
5841 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5842 register_prefix,
5843 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5844 register_prefix, i.op[op].regs->reg_name, i.suffix);
5845 #endif
5846 }
5847 return 1;
5848 }
5849
5850 static int
5851 update_imm (unsigned int j)
5852 {
5853 i386_operand_type overlap = i.types[j];
5854 if ((overlap.bitfield.imm8
5855 || overlap.bitfield.imm8s
5856 || overlap.bitfield.imm16
5857 || overlap.bitfield.imm32
5858 || overlap.bitfield.imm32s
5859 || overlap.bitfield.imm64)
5860 && !operand_type_equal (&overlap, &imm8)
5861 && !operand_type_equal (&overlap, &imm8s)
5862 && !operand_type_equal (&overlap, &imm16)
5863 && !operand_type_equal (&overlap, &imm32)
5864 && !operand_type_equal (&overlap, &imm32s)
5865 && !operand_type_equal (&overlap, &imm64))
5866 {
5867 if (i.suffix)
5868 {
5869 i386_operand_type temp;
5870
5871 operand_type_set (&temp, 0);
5872 if (i.suffix == BYTE_MNEM_SUFFIX)
5873 {
5874 temp.bitfield.imm8 = overlap.bitfield.imm8;
5875 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5876 }
5877 else if (i.suffix == WORD_MNEM_SUFFIX)
5878 temp.bitfield.imm16 = overlap.bitfield.imm16;
5879 else if (i.suffix == QWORD_MNEM_SUFFIX)
5880 {
5881 temp.bitfield.imm64 = overlap.bitfield.imm64;
5882 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5883 }
5884 else
5885 temp.bitfield.imm32 = overlap.bitfield.imm32;
5886 overlap = temp;
5887 }
5888 else if (operand_type_equal (&overlap, &imm16_32_32s)
5889 || operand_type_equal (&overlap, &imm16_32)
5890 || operand_type_equal (&overlap, &imm16_32s))
5891 {
5892 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5893 overlap = imm16;
5894 else
5895 overlap = imm32s;
5896 }
5897 if (!operand_type_equal (&overlap, &imm8)
5898 && !operand_type_equal (&overlap, &imm8s)
5899 && !operand_type_equal (&overlap, &imm16)
5900 && !operand_type_equal (&overlap, &imm32)
5901 && !operand_type_equal (&overlap, &imm32s)
5902 && !operand_type_equal (&overlap, &imm64))
5903 {
5904 as_bad (_("no instruction mnemonic suffix given; "
5905 "can't determine immediate size"));
5906 return 0;
5907 }
5908 }
5909 i.types[j] = overlap;
5910
5911 return 1;
5912 }
5913
5914 static int
5915 finalize_imm (void)
5916 {
5917 unsigned int j, n;
5918
5919 /* Update the first 2 immediate operands. */
5920 n = i.operands > 2 ? 2 : i.operands;
5921 if (n)
5922 {
5923 for (j = 0; j < n; j++)
5924 if (update_imm (j) == 0)
5925 return 0;
5926
5927 /* The 3rd operand can't be immediate operand. */
5928 gas_assert (operand_type_check (i.types[2], imm) == 0);
5929 }
5930
5931 return 1;
5932 }
5933
5934 static int
5935 bad_implicit_operand (int xmm)
5936 {
5937 const char *ireg = xmm ? "xmm0" : "ymm0";
5938
5939 if (intel_syntax)
5940 as_bad (_("the last operand of `%s' must be `%s%s'"),
5941 i.tm.name, register_prefix, ireg);
5942 else
5943 as_bad (_("the first operand of `%s' must be `%s%s'"),
5944 i.tm.name, register_prefix, ireg);
5945 return 0;
5946 }
5947
5948 static int
5949 process_operands (void)
5950 {
5951 /* Default segment register this instruction will use for memory
5952 accesses. 0 means unknown. This is only for optimizing out
5953 unnecessary segment overrides. */
5954 const seg_entry *default_seg = 0;
5955
5956 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
5957 {
5958 unsigned int dupl = i.operands;
5959 unsigned int dest = dupl - 1;
5960 unsigned int j;
5961
5962 /* The destination must be an xmm register. */
5963 gas_assert (i.reg_operands
5964 && MAX_OPERANDS > dupl
5965 && operand_type_equal (&i.types[dest], &regxmm));
5966
5967 if (i.tm.opcode_modifier.firstxmm0)
5968 {
5969 /* The first operand is implicit and must be xmm0. */
5970 gas_assert (operand_type_equal (&i.types[0], &regxmm));
5971 if (register_number (i.op[0].regs) != 0)
5972 return bad_implicit_operand (1);
5973
5974 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
5975 {
5976 /* Keep xmm0 for instructions with VEX prefix and 3
5977 sources. */
5978 goto duplicate;
5979 }
5980 else
5981 {
5982 /* We remove the first xmm0 and keep the number of
5983 operands unchanged, which in fact duplicates the
5984 destination. */
5985 for (j = 1; j < i.operands; j++)
5986 {
5987 i.op[j - 1] = i.op[j];
5988 i.types[j - 1] = i.types[j];
5989 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5990 }
5991 }
5992 }
5993 else if (i.tm.opcode_modifier.implicit1stxmm0)
5994 {
5995 gas_assert ((MAX_OPERANDS - 1) > dupl
5996 && (i.tm.opcode_modifier.vexsources
5997 == VEX3SOURCES));
5998
5999 /* Add the implicit xmm0 for instructions with VEX prefix
6000 and 3 sources. */
6001 for (j = i.operands; j > 0; j--)
6002 {
6003 i.op[j] = i.op[j - 1];
6004 i.types[j] = i.types[j - 1];
6005 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6006 }
6007 i.op[0].regs
6008 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6009 i.types[0] = regxmm;
6010 i.tm.operand_types[0] = regxmm;
6011
6012 i.operands += 2;
6013 i.reg_operands += 2;
6014 i.tm.operands += 2;
6015
6016 dupl++;
6017 dest++;
6018 i.op[dupl] = i.op[dest];
6019 i.types[dupl] = i.types[dest];
6020 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6021 }
6022 else
6023 {
6024 duplicate:
6025 i.operands++;
6026 i.reg_operands++;
6027 i.tm.operands++;
6028
6029 i.op[dupl] = i.op[dest];
6030 i.types[dupl] = i.types[dest];
6031 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6032 }
6033
6034 if (i.tm.opcode_modifier.immext)
6035 process_immext ();
6036 }
6037 else if (i.tm.opcode_modifier.firstxmm0)
6038 {
6039 unsigned int j;
6040
6041 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
6042 gas_assert (i.reg_operands
6043 && (operand_type_equal (&i.types[0], &regxmm)
6044 || operand_type_equal (&i.types[0], &regymm)
6045 || operand_type_equal (&i.types[0], &regzmm)));
6046 if (register_number (i.op[0].regs) != 0)
6047 return bad_implicit_operand (i.types[0].bitfield.regxmm);
6048
6049 for (j = 1; j < i.operands; j++)
6050 {
6051 i.op[j - 1] = i.op[j];
6052 i.types[j - 1] = i.types[j];
6053
6054 /* We need to adjust fields in i.tm since they are used by
6055 build_modrm_byte. */
6056 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6057 }
6058
6059 i.operands--;
6060 i.reg_operands--;
6061 i.tm.operands--;
6062 }
6063 else if (i.tm.opcode_modifier.implicitquadgroup)
6064 {
6065 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6066 gas_assert (i.operands >= 2
6067 && (operand_type_equal (&i.types[1], &regxmm)
6068 || operand_type_equal (&i.types[1], &regymm)
6069 || operand_type_equal (&i.types[1], &regzmm)));
6070 unsigned int regnum = register_number (i.op[1].regs);
6071 unsigned int first_reg_in_group = regnum & ~3;
6072 unsigned int last_reg_in_group = first_reg_in_group + 3;
6073 if (regnum != first_reg_in_group) {
6074 as_warn (_("the second source register `%s%s' implicitly denotes"
6075 " `%s%.3s%d' to `%s%.3s%d' source group in `%s'"),
6076 register_prefix, i.op[1].regs->reg_name,
6077 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6078 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6079 i.tm.name);
6080 }
6081 }
6082 else if (i.tm.opcode_modifier.regkludge)
6083 {
6084 /* The imul $imm, %reg instruction is converted into
6085 imul $imm, %reg, %reg, and the clr %reg instruction
6086 is converted into xor %reg, %reg. */
6087
6088 unsigned int first_reg_op;
6089
6090 if (operand_type_check (i.types[0], reg))
6091 first_reg_op = 0;
6092 else
6093 first_reg_op = 1;
6094 /* Pretend we saw the extra register operand. */
6095 gas_assert (i.reg_operands == 1
6096 && i.op[first_reg_op + 1].regs == 0);
6097 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6098 i.types[first_reg_op + 1] = i.types[first_reg_op];
6099 i.operands++;
6100 i.reg_operands++;
6101 }
6102
6103 if (i.tm.opcode_modifier.shortform)
6104 {
6105 if (i.types[0].bitfield.sreg2
6106 || i.types[0].bitfield.sreg3)
6107 {
6108 if (i.tm.base_opcode == POP_SEG_SHORT
6109 && i.op[0].regs->reg_num == 1)
6110 {
6111 as_bad (_("you can't `pop %scs'"), register_prefix);
6112 return 0;
6113 }
6114 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6115 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6116 i.rex |= REX_B;
6117 }
6118 else
6119 {
6120 /* The register or float register operand is in operand
6121 0 or 1. */
6122 unsigned int op;
6123
6124 if (i.types[0].bitfield.floatreg
6125 || operand_type_check (i.types[0], reg))
6126 op = 0;
6127 else
6128 op = 1;
6129 /* Register goes in low 3 bits of opcode. */
6130 i.tm.base_opcode |= i.op[op].regs->reg_num;
6131 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6132 i.rex |= REX_B;
6133 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6134 {
6135 /* Warn about some common errors, but press on regardless.
6136 The first case can be generated by gcc (<= 2.8.1). */
6137 if (i.operands == 2)
6138 {
6139 /* Reversed arguments on faddp, fsubp, etc. */
6140 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6141 register_prefix, i.op[!intel_syntax].regs->reg_name,
6142 register_prefix, i.op[intel_syntax].regs->reg_name);
6143 }
6144 else
6145 {
6146 /* Extraneous `l' suffix on fp insn. */
6147 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6148 register_prefix, i.op[0].regs->reg_name);
6149 }
6150 }
6151 }
6152 }
6153 else if (i.tm.opcode_modifier.modrm)
6154 {
6155 /* The opcode is completed (modulo i.tm.extension_opcode which
6156 must be put into the modrm byte). Now, we make the modrm and
6157 index base bytes based on all the info we've collected. */
6158
6159 default_seg = build_modrm_byte ();
6160 }
6161 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6162 {
6163 default_seg = &ds;
6164 }
6165 else if (i.tm.opcode_modifier.isstring)
6166 {
6167 /* For the string instructions that allow a segment override
6168 on one of their operands, the default segment is ds. */
6169 default_seg = &ds;
6170 }
6171
6172 if (i.tm.base_opcode == 0x8d /* lea */
6173 && i.seg[0]
6174 && !quiet_warnings)
6175 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6176
6177 /* If a segment was explicitly specified, and the specified segment
6178 is not the default, use an opcode prefix to select it. If we
6179 never figured out what the default segment is, then default_seg
6180 will be zero at this point, and the specified segment prefix will
6181 always be used. */
6182 if ((i.seg[0]) && (i.seg[0] != default_seg))
6183 {
6184 if (!add_prefix (i.seg[0]->seg_prefix))
6185 return 0;
6186 }
6187 return 1;
6188 }
6189
6190 static const seg_entry *
6191 build_modrm_byte (void)
6192 {
6193 const seg_entry *default_seg = 0;
6194 unsigned int source, dest;
6195 int vex_3_sources;
6196
6197 /* The first operand of instructions with VEX prefix and 3 sources
6198 must be VEX_Imm4. */
6199 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6200 if (vex_3_sources)
6201 {
6202 unsigned int nds, reg_slot;
6203 expressionS *exp;
6204
6205 if (i.tm.opcode_modifier.veximmext
6206 && i.tm.opcode_modifier.immext)
6207 {
6208 dest = i.operands - 2;
6209 gas_assert (dest == 3);
6210 }
6211 else
6212 dest = i.operands - 1;
6213 nds = dest - 1;
6214
6215 /* There are 2 kinds of instructions:
6216 1. 5 operands: 4 register operands or 3 register operands
6217 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6218 VexW0 or VexW1. The destination must be either XMM, YMM or
6219 ZMM register.
6220 2. 4 operands: 4 register operands or 3 register operands
6221 plus 1 memory operand, VexXDS, and VexImmExt */
6222 gas_assert ((i.reg_operands == 4
6223 || (i.reg_operands == 3 && i.mem_operands == 1))
6224 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6225 && (i.tm.opcode_modifier.veximmext
6226 || (i.imm_operands == 1
6227 && i.types[0].bitfield.vec_imm4
6228 && (i.tm.opcode_modifier.vexw == VEXW0
6229 || i.tm.opcode_modifier.vexw == VEXW1)
6230 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
6231 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
6232 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
6233
6234 if (i.imm_operands == 0)
6235 {
6236 /* When there is no immediate operand, generate an 8bit
6237 immediate operand to encode the first operand. */
6238 exp = &im_expressions[i.imm_operands++];
6239 i.op[i.operands].imms = exp;
6240 i.types[i.operands] = imm8;
6241 i.operands++;
6242 /* If VexW1 is set, the first operand is the source and
6243 the second operand is encoded in the immediate operand. */
6244 if (i.tm.opcode_modifier.vexw == VEXW1)
6245 {
6246 source = 0;
6247 reg_slot = 1;
6248 }
6249 else
6250 {
6251 source = 1;
6252 reg_slot = 0;
6253 }
6254
6255 /* FMA swaps REG and NDS. */
6256 if (i.tm.cpu_flags.bitfield.cpufma)
6257 {
6258 unsigned int tmp;
6259 tmp = reg_slot;
6260 reg_slot = nds;
6261 nds = tmp;
6262 }
6263
6264 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6265 &regxmm)
6266 || operand_type_equal (&i.tm.operand_types[reg_slot],
6267 &regymm)
6268 || operand_type_equal (&i.tm.operand_types[reg_slot],
6269 &regzmm));
6270 exp->X_op = O_constant;
6271 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6272 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6273 }
6274 else
6275 {
6276 unsigned int imm_slot;
6277
6278 if (i.tm.opcode_modifier.vexw == VEXW0)
6279 {
6280 /* If VexW0 is set, the third operand is the source and
6281 the second operand is encoded in the immediate
6282 operand. */
6283 source = 2;
6284 reg_slot = 1;
6285 }
6286 else
6287 {
6288 /* VexW1 is set, the second operand is the source and
6289 the third operand is encoded in the immediate
6290 operand. */
6291 source = 1;
6292 reg_slot = 2;
6293 }
6294
6295 if (i.tm.opcode_modifier.immext)
6296 {
6297 /* When ImmExt is set, the immediate byte is the last
6298 operand. */
6299 imm_slot = i.operands - 1;
6300 source--;
6301 reg_slot--;
6302 }
6303 else
6304 {
6305 imm_slot = 0;
6306
6307 /* Turn on Imm8 so that output_imm will generate it. */
6308 i.types[imm_slot].bitfield.imm8 = 1;
6309 }
6310
6311 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6312 &regxmm)
6313 || operand_type_equal (&i.tm.operand_types[reg_slot],
6314 &regymm)
6315 || operand_type_equal (&i.tm.operand_types[reg_slot],
6316 &regzmm));
6317 i.op[imm_slot].imms->X_add_number
6318 |= register_number (i.op[reg_slot].regs) << 4;
6319 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6320 }
6321
6322 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6323 || operand_type_equal (&i.tm.operand_types[nds],
6324 &regymm)
6325 || operand_type_equal (&i.tm.operand_types[nds],
6326 &regzmm));
6327 i.vex.register_specifier = i.op[nds].regs;
6328 }
6329 else
6330 source = dest = 0;
6331
6332 /* i.reg_operands MUST be the number of real register operands;
6333 implicit registers do not count. If there are 3 register
6334 operands, it must be a instruction with VexNDS. For a
6335 instruction with VexNDD, the destination register is encoded
6336 in VEX prefix. If there are 4 register operands, it must be
6337 a instruction with VEX prefix and 3 sources. */
6338 if (i.mem_operands == 0
6339 && ((i.reg_operands == 2
6340 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6341 || (i.reg_operands == 3
6342 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6343 || (i.reg_operands == 4 && vex_3_sources)))
6344 {
6345 switch (i.operands)
6346 {
6347 case 2:
6348 source = 0;
6349 break;
6350 case 3:
6351 /* When there are 3 operands, one of them may be immediate,
6352 which may be the first or the last operand. Otherwise,
6353 the first operand must be shift count register (cl) or it
6354 is an instruction with VexNDS. */
6355 gas_assert (i.imm_operands == 1
6356 || (i.imm_operands == 0
6357 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6358 || i.types[0].bitfield.shiftcount)));
6359 if (operand_type_check (i.types[0], imm)
6360 || i.types[0].bitfield.shiftcount)
6361 source = 1;
6362 else
6363 source = 0;
6364 break;
6365 case 4:
6366 /* When there are 4 operands, the first two must be 8bit
6367 immediate operands. The source operand will be the 3rd
6368 one.
6369
6370 For instructions with VexNDS, if the first operand
6371 an imm8, the source operand is the 2nd one. If the last
6372 operand is imm8, the source operand is the first one. */
6373 gas_assert ((i.imm_operands == 2
6374 && i.types[0].bitfield.imm8
6375 && i.types[1].bitfield.imm8)
6376 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6377 && i.imm_operands == 1
6378 && (i.types[0].bitfield.imm8
6379 || i.types[i.operands - 1].bitfield.imm8
6380 || i.rounding)));
6381 if (i.imm_operands == 2)
6382 source = 2;
6383 else
6384 {
6385 if (i.types[0].bitfield.imm8)
6386 source = 1;
6387 else
6388 source = 0;
6389 }
6390 break;
6391 case 5:
6392 if (i.tm.opcode_modifier.evex)
6393 {
6394 /* For EVEX instructions, when there are 5 operands, the
6395 first one must be immediate operand. If the second one
6396 is immediate operand, the source operand is the 3th
6397 one. If the last one is immediate operand, the source
6398 operand is the 2nd one. */
6399 gas_assert (i.imm_operands == 2
6400 && i.tm.opcode_modifier.sae
6401 && operand_type_check (i.types[0], imm));
6402 if (operand_type_check (i.types[1], imm))
6403 source = 2;
6404 else if (operand_type_check (i.types[4], imm))
6405 source = 1;
6406 else
6407 abort ();
6408 }
6409 break;
6410 default:
6411 abort ();
6412 }
6413
6414 if (!vex_3_sources)
6415 {
6416 dest = source + 1;
6417
6418 /* RC/SAE operand could be between DEST and SRC. That happens
6419 when one operand is GPR and the other one is XMM/YMM/ZMM
6420 register. */
6421 if (i.rounding && i.rounding->operand == (int) dest)
6422 dest++;
6423
6424 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6425 {
6426 /* For instructions with VexNDS, the register-only source
6427 operand must be 32/64bit integer, XMM, YMM or ZMM
6428 register. It is encoded in VEX prefix. We need to
6429 clear RegMem bit before calling operand_type_equal. */
6430
6431 i386_operand_type op;
6432 unsigned int vvvv;
6433
6434 /* Check register-only source operand when two source
6435 operands are swapped. */
6436 if (!i.tm.operand_types[source].bitfield.baseindex
6437 && i.tm.operand_types[dest].bitfield.baseindex)
6438 {
6439 vvvv = source;
6440 source = dest;
6441 }
6442 else
6443 vvvv = dest;
6444
6445 op = i.tm.operand_types[vvvv];
6446 op.bitfield.regmem = 0;
6447 if ((dest + 1) >= i.operands
6448 || (!op.bitfield.reg32
6449 && op.bitfield.reg64
6450 && !operand_type_equal (&op, &regxmm)
6451 && !operand_type_equal (&op, &regymm)
6452 && !operand_type_equal (&op, &regzmm)
6453 && !operand_type_equal (&op, &regmask)))
6454 abort ();
6455 i.vex.register_specifier = i.op[vvvv].regs;
6456 dest++;
6457 }
6458 }
6459
6460 i.rm.mode = 3;
6461 /* One of the register operands will be encoded in the i.tm.reg
6462 field, the other in the combined i.tm.mode and i.tm.regmem
6463 fields. If no form of this instruction supports a memory
6464 destination operand, then we assume the source operand may
6465 sometimes be a memory operand and so we need to store the
6466 destination in the i.rm.reg field. */
6467 if (!i.tm.operand_types[dest].bitfield.regmem
6468 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6469 {
6470 i.rm.reg = i.op[dest].regs->reg_num;
6471 i.rm.regmem = i.op[source].regs->reg_num;
6472 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6473 i.rex |= REX_R;
6474 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6475 i.vrex |= REX_R;
6476 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6477 i.rex |= REX_B;
6478 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6479 i.vrex |= REX_B;
6480 }
6481 else
6482 {
6483 i.rm.reg = i.op[source].regs->reg_num;
6484 i.rm.regmem = i.op[dest].regs->reg_num;
6485 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6486 i.rex |= REX_B;
6487 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6488 i.vrex |= REX_B;
6489 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6490 i.rex |= REX_R;
6491 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6492 i.vrex |= REX_R;
6493 }
6494 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6495 {
6496 if (!i.types[0].bitfield.control
6497 && !i.types[1].bitfield.control)
6498 abort ();
6499 i.rex &= ~(REX_R | REX_B);
6500 add_prefix (LOCK_PREFIX_OPCODE);
6501 }
6502 }
6503 else
6504 { /* If it's not 2 reg operands... */
6505 unsigned int mem;
6506
6507 if (i.mem_operands)
6508 {
6509 unsigned int fake_zero_displacement = 0;
6510 unsigned int op;
6511
6512 for (op = 0; op < i.operands; op++)
6513 if (operand_type_check (i.types[op], anymem))
6514 break;
6515 gas_assert (op < i.operands);
6516
6517 if (i.tm.opcode_modifier.vecsib)
6518 {
6519 if (i.index_reg->reg_num == RegEiz
6520 || i.index_reg->reg_num == RegRiz)
6521 abort ();
6522
6523 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6524 if (!i.base_reg)
6525 {
6526 i.sib.base = NO_BASE_REGISTER;
6527 i.sib.scale = i.log2_scale_factor;
6528 /* No Vec_Disp8 if there is no base. */
6529 i.types[op].bitfield.vec_disp8 = 0;
6530 i.types[op].bitfield.disp8 = 0;
6531 i.types[op].bitfield.disp16 = 0;
6532 i.types[op].bitfield.disp64 = 0;
6533 if (flag_code != CODE_64BIT)
6534 {
6535 /* Must be 32 bit */
6536 i.types[op].bitfield.disp32 = 1;
6537 i.types[op].bitfield.disp32s = 0;
6538 }
6539 else
6540 {
6541 i.types[op].bitfield.disp32 = 0;
6542 i.types[op].bitfield.disp32s = 1;
6543 }
6544 }
6545 i.sib.index = i.index_reg->reg_num;
6546 if ((i.index_reg->reg_flags & RegRex) != 0)
6547 i.rex |= REX_X;
6548 if ((i.index_reg->reg_flags & RegVRex) != 0)
6549 i.vrex |= REX_X;
6550 }
6551
6552 default_seg = &ds;
6553
6554 if (i.base_reg == 0)
6555 {
6556 i.rm.mode = 0;
6557 if (!i.disp_operands)
6558 {
6559 fake_zero_displacement = 1;
6560 /* Instructions with VSIB byte need 32bit displacement
6561 if there is no base register. */
6562 if (i.tm.opcode_modifier.vecsib)
6563 i.types[op].bitfield.disp32 = 1;
6564 }
6565 if (i.index_reg == 0)
6566 {
6567 gas_assert (!i.tm.opcode_modifier.vecsib);
6568 /* Operand is just <disp> */
6569 if (flag_code == CODE_64BIT)
6570 {
6571 /* 64bit mode overwrites the 32bit absolute
6572 addressing by RIP relative addressing and
6573 absolute addressing is encoded by one of the
6574 redundant SIB forms. */
6575 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6576 i.sib.base = NO_BASE_REGISTER;
6577 i.sib.index = NO_INDEX_REGISTER;
6578 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6579 ? disp32s : disp32);
6580 }
6581 else if ((flag_code == CODE_16BIT)
6582 ^ (i.prefix[ADDR_PREFIX] != 0))
6583 {
6584 i.rm.regmem = NO_BASE_REGISTER_16;
6585 i.types[op] = disp16;
6586 }
6587 else
6588 {
6589 i.rm.regmem = NO_BASE_REGISTER;
6590 i.types[op] = disp32;
6591 }
6592 }
6593 else if (!i.tm.opcode_modifier.vecsib)
6594 {
6595 /* !i.base_reg && i.index_reg */
6596 if (i.index_reg->reg_num == RegEiz
6597 || i.index_reg->reg_num == RegRiz)
6598 i.sib.index = NO_INDEX_REGISTER;
6599 else
6600 i.sib.index = i.index_reg->reg_num;
6601 i.sib.base = NO_BASE_REGISTER;
6602 i.sib.scale = i.log2_scale_factor;
6603 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6604 /* No Vec_Disp8 if there is no base. */
6605 i.types[op].bitfield.vec_disp8 = 0;
6606 i.types[op].bitfield.disp8 = 0;
6607 i.types[op].bitfield.disp16 = 0;
6608 i.types[op].bitfield.disp64 = 0;
6609 if (flag_code != CODE_64BIT)
6610 {
6611 /* Must be 32 bit */
6612 i.types[op].bitfield.disp32 = 1;
6613 i.types[op].bitfield.disp32s = 0;
6614 }
6615 else
6616 {
6617 i.types[op].bitfield.disp32 = 0;
6618 i.types[op].bitfield.disp32s = 1;
6619 }
6620 if ((i.index_reg->reg_flags & RegRex) != 0)
6621 i.rex |= REX_X;
6622 }
6623 }
6624 /* RIP addressing for 64bit mode. */
6625 else if (i.base_reg->reg_num == RegRip ||
6626 i.base_reg->reg_num == RegEip)
6627 {
6628 gas_assert (!i.tm.opcode_modifier.vecsib);
6629 i.rm.regmem = NO_BASE_REGISTER;
6630 i.types[op].bitfield.disp8 = 0;
6631 i.types[op].bitfield.disp16 = 0;
6632 i.types[op].bitfield.disp32 = 0;
6633 i.types[op].bitfield.disp32s = 1;
6634 i.types[op].bitfield.disp64 = 0;
6635 i.types[op].bitfield.vec_disp8 = 0;
6636 i.flags[op] |= Operand_PCrel;
6637 if (! i.disp_operands)
6638 fake_zero_displacement = 1;
6639 }
6640 else if (i.base_reg->reg_type.bitfield.reg16)
6641 {
6642 gas_assert (!i.tm.opcode_modifier.vecsib);
6643 switch (i.base_reg->reg_num)
6644 {
6645 case 3: /* (%bx) */
6646 if (i.index_reg == 0)
6647 i.rm.regmem = 7;
6648 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6649 i.rm.regmem = i.index_reg->reg_num - 6;
6650 break;
6651 case 5: /* (%bp) */
6652 default_seg = &ss;
6653 if (i.index_reg == 0)
6654 {
6655 i.rm.regmem = 6;
6656 if (operand_type_check (i.types[op], disp) == 0)
6657 {
6658 /* fake (%bp) into 0(%bp) */
6659 if (i.tm.operand_types[op].bitfield.vec_disp8)
6660 i.types[op].bitfield.vec_disp8 = 1;
6661 else
6662 i.types[op].bitfield.disp8 = 1;
6663 fake_zero_displacement = 1;
6664 }
6665 }
6666 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6667 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6668 break;
6669 default: /* (%si) -> 4 or (%di) -> 5 */
6670 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6671 }
6672 i.rm.mode = mode_from_disp_size (i.types[op]);
6673 }
6674 else /* i.base_reg and 32/64 bit mode */
6675 {
6676 if (flag_code == CODE_64BIT
6677 && operand_type_check (i.types[op], disp))
6678 {
6679 i386_operand_type temp;
6680 operand_type_set (&temp, 0);
6681 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6682 temp.bitfield.vec_disp8
6683 = i.types[op].bitfield.vec_disp8;
6684 i.types[op] = temp;
6685 if (i.prefix[ADDR_PREFIX] == 0)
6686 i.types[op].bitfield.disp32s = 1;
6687 else
6688 i.types[op].bitfield.disp32 = 1;
6689 }
6690
6691 if (!i.tm.opcode_modifier.vecsib)
6692 i.rm.regmem = i.base_reg->reg_num;
6693 if ((i.base_reg->reg_flags & RegRex) != 0)
6694 i.rex |= REX_B;
6695 i.sib.base = i.base_reg->reg_num;
6696 /* x86-64 ignores REX prefix bit here to avoid decoder
6697 complications. */
6698 if (!(i.base_reg->reg_flags & RegRex)
6699 && (i.base_reg->reg_num == EBP_REG_NUM
6700 || i.base_reg->reg_num == ESP_REG_NUM))
6701 default_seg = &ss;
6702 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6703 {
6704 fake_zero_displacement = 1;
6705 if (i.tm.operand_types [op].bitfield.vec_disp8)
6706 i.types[op].bitfield.vec_disp8 = 1;
6707 else
6708 i.types[op].bitfield.disp8 = 1;
6709 }
6710 i.sib.scale = i.log2_scale_factor;
6711 if (i.index_reg == 0)
6712 {
6713 gas_assert (!i.tm.opcode_modifier.vecsib);
6714 /* <disp>(%esp) becomes two byte modrm with no index
6715 register. We've already stored the code for esp
6716 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6717 Any base register besides %esp will not use the
6718 extra modrm byte. */
6719 i.sib.index = NO_INDEX_REGISTER;
6720 }
6721 else if (!i.tm.opcode_modifier.vecsib)
6722 {
6723 if (i.index_reg->reg_num == RegEiz
6724 || i.index_reg->reg_num == RegRiz)
6725 i.sib.index = NO_INDEX_REGISTER;
6726 else
6727 i.sib.index = i.index_reg->reg_num;
6728 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6729 if ((i.index_reg->reg_flags & RegRex) != 0)
6730 i.rex |= REX_X;
6731 }
6732
6733 if (i.disp_operands
6734 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6735 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6736 i.rm.mode = 0;
6737 else
6738 {
6739 if (!fake_zero_displacement
6740 && !i.disp_operands
6741 && i.disp_encoding)
6742 {
6743 fake_zero_displacement = 1;
6744 if (i.disp_encoding == disp_encoding_8bit)
6745 i.types[op].bitfield.disp8 = 1;
6746 else
6747 i.types[op].bitfield.disp32 = 1;
6748 }
6749 i.rm.mode = mode_from_disp_size (i.types[op]);
6750 }
6751 }
6752
6753 if (fake_zero_displacement)
6754 {
6755 /* Fakes a zero displacement assuming that i.types[op]
6756 holds the correct displacement size. */
6757 expressionS *exp;
6758
6759 gas_assert (i.op[op].disps == 0);
6760 exp = &disp_expressions[i.disp_operands++];
6761 i.op[op].disps = exp;
6762 exp->X_op = O_constant;
6763 exp->X_add_number = 0;
6764 exp->X_add_symbol = (symbolS *) 0;
6765 exp->X_op_symbol = (symbolS *) 0;
6766 }
6767
6768 mem = op;
6769 }
6770 else
6771 mem = ~0;
6772
6773 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6774 {
6775 if (operand_type_check (i.types[0], imm))
6776 i.vex.register_specifier = NULL;
6777 else
6778 {
6779 /* VEX.vvvv encodes one of the sources when the first
6780 operand is not an immediate. */
6781 if (i.tm.opcode_modifier.vexw == VEXW0)
6782 i.vex.register_specifier = i.op[0].regs;
6783 else
6784 i.vex.register_specifier = i.op[1].regs;
6785 }
6786
6787 /* Destination is a XMM register encoded in the ModRM.reg
6788 and VEX.R bit. */
6789 i.rm.reg = i.op[2].regs->reg_num;
6790 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6791 i.rex |= REX_R;
6792
6793 /* ModRM.rm and VEX.B encodes the other source. */
6794 if (!i.mem_operands)
6795 {
6796 i.rm.mode = 3;
6797
6798 if (i.tm.opcode_modifier.vexw == VEXW0)
6799 i.rm.regmem = i.op[1].regs->reg_num;
6800 else
6801 i.rm.regmem = i.op[0].regs->reg_num;
6802
6803 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6804 i.rex |= REX_B;
6805 }
6806 }
6807 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6808 {
6809 i.vex.register_specifier = i.op[2].regs;
6810 if (!i.mem_operands)
6811 {
6812 i.rm.mode = 3;
6813 i.rm.regmem = i.op[1].regs->reg_num;
6814 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6815 i.rex |= REX_B;
6816 }
6817 }
6818 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6819 (if any) based on i.tm.extension_opcode. Again, we must be
6820 careful to make sure that segment/control/debug/test/MMX
6821 registers are coded into the i.rm.reg field. */
6822 else if (i.reg_operands)
6823 {
6824 unsigned int op;
6825 unsigned int vex_reg = ~0;
6826
6827 for (op = 0; op < i.operands; op++)
6828 if (i.types[op].bitfield.reg8
6829 || i.types[op].bitfield.reg16
6830 || i.types[op].bitfield.reg32
6831 || i.types[op].bitfield.reg64
6832 || i.types[op].bitfield.regmmx
6833 || i.types[op].bitfield.regxmm
6834 || i.types[op].bitfield.regymm
6835 || i.types[op].bitfield.regbnd
6836 || i.types[op].bitfield.regzmm
6837 || i.types[op].bitfield.regmask
6838 || i.types[op].bitfield.sreg2
6839 || i.types[op].bitfield.sreg3
6840 || i.types[op].bitfield.control
6841 || i.types[op].bitfield.debug
6842 || i.types[op].bitfield.test)
6843 break;
6844
6845 if (vex_3_sources)
6846 op = dest;
6847 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6848 {
6849 /* For instructions with VexNDS, the register-only
6850 source operand is encoded in VEX prefix. */
6851 gas_assert (mem != (unsigned int) ~0);
6852
6853 if (op > mem)
6854 {
6855 vex_reg = op++;
6856 gas_assert (op < i.operands);
6857 }
6858 else
6859 {
6860 /* Check register-only source operand when two source
6861 operands are swapped. */
6862 if (!i.tm.operand_types[op].bitfield.baseindex
6863 && i.tm.operand_types[op + 1].bitfield.baseindex)
6864 {
6865 vex_reg = op;
6866 op += 2;
6867 gas_assert (mem == (vex_reg + 1)
6868 && op < i.operands);
6869 }
6870 else
6871 {
6872 vex_reg = op + 1;
6873 gas_assert (vex_reg < i.operands);
6874 }
6875 }
6876 }
6877 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6878 {
6879 /* For instructions with VexNDD, the register destination
6880 is encoded in VEX prefix. */
6881 if (i.mem_operands == 0)
6882 {
6883 /* There is no memory operand. */
6884 gas_assert ((op + 2) == i.operands);
6885 vex_reg = op + 1;
6886 }
6887 else
6888 {
6889 /* There are only 2 operands. */
6890 gas_assert (op < 2 && i.operands == 2);
6891 vex_reg = 1;
6892 }
6893 }
6894 else
6895 gas_assert (op < i.operands);
6896
6897 if (vex_reg != (unsigned int) ~0)
6898 {
6899 i386_operand_type *type = &i.tm.operand_types[vex_reg];
6900
6901 if (type->bitfield.reg32 != 1
6902 && type->bitfield.reg64 != 1
6903 && !operand_type_equal (type, &regxmm)
6904 && !operand_type_equal (type, &regymm)
6905 && !operand_type_equal (type, &regzmm)
6906 && !operand_type_equal (type, &regmask))
6907 abort ();
6908
6909 i.vex.register_specifier = i.op[vex_reg].regs;
6910 }
6911
6912 /* Don't set OP operand twice. */
6913 if (vex_reg != op)
6914 {
6915 /* If there is an extension opcode to put here, the
6916 register number must be put into the regmem field. */
6917 if (i.tm.extension_opcode != None)
6918 {
6919 i.rm.regmem = i.op[op].regs->reg_num;
6920 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6921 i.rex |= REX_B;
6922 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6923 i.vrex |= REX_B;
6924 }
6925 else
6926 {
6927 i.rm.reg = i.op[op].regs->reg_num;
6928 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6929 i.rex |= REX_R;
6930 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6931 i.vrex |= REX_R;
6932 }
6933 }
6934
6935 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6936 must set it to 3 to indicate this is a register operand
6937 in the regmem field. */
6938 if (!i.mem_operands)
6939 i.rm.mode = 3;
6940 }
6941
6942 /* Fill in i.rm.reg field with extension opcode (if any). */
6943 if (i.tm.extension_opcode != None)
6944 i.rm.reg = i.tm.extension_opcode;
6945 }
6946 return default_seg;
6947 }
6948
6949 static void
6950 output_branch (void)
6951 {
6952 char *p;
6953 int size;
6954 int code16;
6955 int prefix;
6956 relax_substateT subtype;
6957 symbolS *sym;
6958 offsetT off;
6959
6960 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6961 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6962
6963 prefix = 0;
6964 if (i.prefix[DATA_PREFIX] != 0)
6965 {
6966 prefix = 1;
6967 i.prefixes -= 1;
6968 code16 ^= CODE16;
6969 }
6970 /* Pentium4 branch hints. */
6971 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6972 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6973 {
6974 prefix++;
6975 i.prefixes--;
6976 }
6977 if (i.prefix[REX_PREFIX] != 0)
6978 {
6979 prefix++;
6980 i.prefixes--;
6981 }
6982
6983 /* BND prefixed jump. */
6984 if (i.prefix[BND_PREFIX] != 0)
6985 {
6986 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6987 i.prefixes -= 1;
6988 }
6989
6990 if (i.prefixes != 0 && !intel_syntax)
6991 as_warn (_("skipping prefixes on this instruction"));
6992
6993 /* It's always a symbol; End frag & setup for relax.
6994 Make sure there is enough room in this frag for the largest
6995 instruction we may generate in md_convert_frag. This is 2
6996 bytes for the opcode and room for the prefix and largest
6997 displacement. */
6998 frag_grow (prefix + 2 + 4);
6999 /* Prefix and 1 opcode byte go in fr_fix. */
7000 p = frag_more (prefix + 1);
7001 if (i.prefix[DATA_PREFIX] != 0)
7002 *p++ = DATA_PREFIX_OPCODE;
7003 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7004 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7005 *p++ = i.prefix[SEG_PREFIX];
7006 if (i.prefix[REX_PREFIX] != 0)
7007 *p++ = i.prefix[REX_PREFIX];
7008 *p = i.tm.base_opcode;
7009
7010 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7011 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7012 else if (cpu_arch_flags.bitfield.cpui386)
7013 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7014 else
7015 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7016 subtype |= code16;
7017
7018 sym = i.op[0].disps->X_add_symbol;
7019 off = i.op[0].disps->X_add_number;
7020
7021 if (i.op[0].disps->X_op != O_constant
7022 && i.op[0].disps->X_op != O_symbol)
7023 {
7024 /* Handle complex expressions. */
7025 sym = make_expr_symbol (i.op[0].disps);
7026 off = 0;
7027 }
7028
7029 /* 1 possible extra opcode + 4 byte displacement go in var part.
7030 Pass reloc in fr_var. */
7031 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7032 }
7033
7034 static void
7035 output_jump (void)
7036 {
7037 char *p;
7038 int size;
7039 fixS *fixP;
7040
7041 if (i.tm.opcode_modifier.jumpbyte)
7042 {
7043 /* This is a loop or jecxz type instruction. */
7044 size = 1;
7045 if (i.prefix[ADDR_PREFIX] != 0)
7046 {
7047 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7048 i.prefixes -= 1;
7049 }
7050 /* Pentium4 branch hints. */
7051 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7052 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7053 {
7054 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7055 i.prefixes--;
7056 }
7057 }
7058 else
7059 {
7060 int code16;
7061
7062 code16 = 0;
7063 if (flag_code == CODE_16BIT)
7064 code16 = CODE16;
7065
7066 if (i.prefix[DATA_PREFIX] != 0)
7067 {
7068 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7069 i.prefixes -= 1;
7070 code16 ^= CODE16;
7071 }
7072
7073 size = 4;
7074 if (code16)
7075 size = 2;
7076 }
7077
7078 if (i.prefix[REX_PREFIX] != 0)
7079 {
7080 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7081 i.prefixes -= 1;
7082 }
7083
7084 /* BND prefixed jump. */
7085 if (i.prefix[BND_PREFIX] != 0)
7086 {
7087 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7088 i.prefixes -= 1;
7089 }
7090
7091 if (i.prefixes != 0 && !intel_syntax)
7092 as_warn (_("skipping prefixes on this instruction"));
7093
7094 p = frag_more (i.tm.opcode_length + size);
7095 switch (i.tm.opcode_length)
7096 {
7097 case 2:
7098 *p++ = i.tm.base_opcode >> 8;
7099 /* Fall through. */
7100 case 1:
7101 *p++ = i.tm.base_opcode;
7102 break;
7103 default:
7104 abort ();
7105 }
7106
7107 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7108 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
7109
7110 /* All jumps handled here are signed, but don't use a signed limit
7111 check for 32 and 16 bit jumps as we want to allow wrap around at
7112 4G and 64k respectively. */
7113 if (size == 1)
7114 fixP->fx_signed = 1;
7115 }
7116
7117 static void
7118 output_interseg_jump (void)
7119 {
7120 char *p;
7121 int size;
7122 int prefix;
7123 int code16;
7124
7125 code16 = 0;
7126 if (flag_code == CODE_16BIT)
7127 code16 = CODE16;
7128
7129 prefix = 0;
7130 if (i.prefix[DATA_PREFIX] != 0)
7131 {
7132 prefix = 1;
7133 i.prefixes -= 1;
7134 code16 ^= CODE16;
7135 }
7136 if (i.prefix[REX_PREFIX] != 0)
7137 {
7138 prefix++;
7139 i.prefixes -= 1;
7140 }
7141
7142 size = 4;
7143 if (code16)
7144 size = 2;
7145
7146 if (i.prefixes != 0 && !intel_syntax)
7147 as_warn (_("skipping prefixes on this instruction"));
7148
7149 /* 1 opcode; 2 segment; offset */
7150 p = frag_more (prefix + 1 + 2 + size);
7151
7152 if (i.prefix[DATA_PREFIX] != 0)
7153 *p++ = DATA_PREFIX_OPCODE;
7154
7155 if (i.prefix[REX_PREFIX] != 0)
7156 *p++ = i.prefix[REX_PREFIX];
7157
7158 *p++ = i.tm.base_opcode;
7159 if (i.op[1].imms->X_op == O_constant)
7160 {
7161 offsetT n = i.op[1].imms->X_add_number;
7162
7163 if (size == 2
7164 && !fits_in_unsigned_word (n)
7165 && !fits_in_signed_word (n))
7166 {
7167 as_bad (_("16-bit jump out of range"));
7168 return;
7169 }
7170 md_number_to_chars (p, n, size);
7171 }
7172 else
7173 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7174 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7175 if (i.op[0].imms->X_op != O_constant)
7176 as_bad (_("can't handle non absolute segment in `%s'"),
7177 i.tm.name);
7178 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7179 }
7180
7181 static void
7182 output_insn (void)
7183 {
7184 fragS *insn_start_frag;
7185 offsetT insn_start_off;
7186
7187 /* Tie dwarf2 debug info to the address at the start of the insn.
7188 We can't do this after the insn has been output as the current
7189 frag may have been closed off. eg. by frag_var. */
7190 dwarf2_emit_insn (0);
7191
7192 insn_start_frag = frag_now;
7193 insn_start_off = frag_now_fix ();
7194
7195 /* Output jumps. */
7196 if (i.tm.opcode_modifier.jump)
7197 output_branch ();
7198 else if (i.tm.opcode_modifier.jumpbyte
7199 || i.tm.opcode_modifier.jumpdword)
7200 output_jump ();
7201 else if (i.tm.opcode_modifier.jumpintersegment)
7202 output_interseg_jump ();
7203 else
7204 {
7205 /* Output normal instructions here. */
7206 char *p;
7207 unsigned char *q;
7208 unsigned int j;
7209 unsigned int prefix;
7210
7211 if (avoid_fence
7212 && i.tm.base_opcode == 0xfae
7213 && i.operands == 1
7214 && i.imm_operands == 1
7215 && (i.op[0].imms->X_add_number == 0xe8
7216 || i.op[0].imms->X_add_number == 0xf0
7217 || i.op[0].imms->X_add_number == 0xf8))
7218 {
7219 /* Encode lfence, mfence, and sfence as
7220 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7221 offsetT val = 0x240483f0ULL;
7222 p = frag_more (5);
7223 md_number_to_chars (p, val, 5);
7224 return;
7225 }
7226
7227 /* Some processors fail on LOCK prefix. This options makes
7228 assembler ignore LOCK prefix and serves as a workaround. */
7229 if (omit_lock_prefix)
7230 {
7231 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7232 return;
7233 i.prefix[LOCK_PREFIX] = 0;
7234 }
7235
7236 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7237 don't need the explicit prefix. */
7238 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7239 {
7240 switch (i.tm.opcode_length)
7241 {
7242 case 3:
7243 if (i.tm.base_opcode & 0xff000000)
7244 {
7245 prefix = (i.tm.base_opcode >> 24) & 0xff;
7246 goto check_prefix;
7247 }
7248 break;
7249 case 2:
7250 if ((i.tm.base_opcode & 0xff0000) != 0)
7251 {
7252 prefix = (i.tm.base_opcode >> 16) & 0xff;
7253 if (i.tm.cpu_flags.bitfield.cpupadlock)
7254 {
7255 check_prefix:
7256 if (prefix != REPE_PREFIX_OPCODE
7257 || (i.prefix[REP_PREFIX]
7258 != REPE_PREFIX_OPCODE))
7259 add_prefix (prefix);
7260 }
7261 else
7262 add_prefix (prefix);
7263 }
7264 break;
7265 case 1:
7266 break;
7267 default:
7268 abort ();
7269 }
7270
7271 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7272 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7273 R_X86_64_GOTTPOFF relocation so that linker can safely
7274 perform IE->LE optimization. */
7275 if (x86_elf_abi == X86_64_X32_ABI
7276 && i.operands == 2
7277 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7278 && i.prefix[REX_PREFIX] == 0)
7279 add_prefix (REX_OPCODE);
7280 #endif
7281
7282 /* The prefix bytes. */
7283 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7284 if (*q)
7285 FRAG_APPEND_1_CHAR (*q);
7286 }
7287 else
7288 {
7289 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7290 if (*q)
7291 switch (j)
7292 {
7293 case REX_PREFIX:
7294 /* REX byte is encoded in VEX prefix. */
7295 break;
7296 case SEG_PREFIX:
7297 case ADDR_PREFIX:
7298 FRAG_APPEND_1_CHAR (*q);
7299 break;
7300 default:
7301 /* There should be no other prefixes for instructions
7302 with VEX prefix. */
7303 abort ();
7304 }
7305
7306 /* For EVEX instructions i.vrex should become 0 after
7307 build_evex_prefix. For VEX instructions upper 16 registers
7308 aren't available, so VREX should be 0. */
7309 if (i.vrex)
7310 abort ();
7311 /* Now the VEX prefix. */
7312 p = frag_more (i.vex.length);
7313 for (j = 0; j < i.vex.length; j++)
7314 p[j] = i.vex.bytes[j];
7315 }
7316
7317 /* Now the opcode; be careful about word order here! */
7318 if (i.tm.opcode_length == 1)
7319 {
7320 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7321 }
7322 else
7323 {
7324 switch (i.tm.opcode_length)
7325 {
7326 case 4:
7327 p = frag_more (4);
7328 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7329 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7330 break;
7331 case 3:
7332 p = frag_more (3);
7333 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7334 break;
7335 case 2:
7336 p = frag_more (2);
7337 break;
7338 default:
7339 abort ();
7340 break;
7341 }
7342
7343 /* Put out high byte first: can't use md_number_to_chars! */
7344 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7345 *p = i.tm.base_opcode & 0xff;
7346 }
7347
7348 /* Now the modrm byte and sib byte (if present). */
7349 if (i.tm.opcode_modifier.modrm)
7350 {
7351 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7352 | i.rm.reg << 3
7353 | i.rm.mode << 6));
7354 /* If i.rm.regmem == ESP (4)
7355 && i.rm.mode != (Register mode)
7356 && not 16 bit
7357 ==> need second modrm byte. */
7358 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7359 && i.rm.mode != 3
7360 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
7361 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7362 | i.sib.index << 3
7363 | i.sib.scale << 6));
7364 }
7365
7366 if (i.disp_operands)
7367 output_disp (insn_start_frag, insn_start_off);
7368
7369 if (i.imm_operands)
7370 output_imm (insn_start_frag, insn_start_off);
7371 }
7372
7373 #ifdef DEBUG386
7374 if (flag_debug)
7375 {
7376 pi ("" /*line*/, &i);
7377 }
7378 #endif /* DEBUG386 */
7379 }
7380
7381 /* Return the size of the displacement operand N. */
7382
7383 static int
7384 disp_size (unsigned int n)
7385 {
7386 int size = 4;
7387
7388 /* Vec_Disp8 has to be 8bit. */
7389 if (i.types[n].bitfield.vec_disp8)
7390 size = 1;
7391 else if (i.types[n].bitfield.disp64)
7392 size = 8;
7393 else if (i.types[n].bitfield.disp8)
7394 size = 1;
7395 else if (i.types[n].bitfield.disp16)
7396 size = 2;
7397 return size;
7398 }
7399
7400 /* Return the size of the immediate operand N. */
7401
7402 static int
7403 imm_size (unsigned int n)
7404 {
7405 int size = 4;
7406 if (i.types[n].bitfield.imm64)
7407 size = 8;
7408 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7409 size = 1;
7410 else if (i.types[n].bitfield.imm16)
7411 size = 2;
7412 return size;
7413 }
7414
7415 static void
7416 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7417 {
7418 char *p;
7419 unsigned int n;
7420
7421 for (n = 0; n < i.operands; n++)
7422 {
7423 if (i.types[n].bitfield.vec_disp8
7424 || operand_type_check (i.types[n], disp))
7425 {
7426 if (i.op[n].disps->X_op == O_constant)
7427 {
7428 int size = disp_size (n);
7429 offsetT val = i.op[n].disps->X_add_number;
7430
7431 if (i.types[n].bitfield.vec_disp8)
7432 val >>= i.memshift;
7433 val = offset_in_range (val, size);
7434 p = frag_more (size);
7435 md_number_to_chars (p, val, size);
7436 }
7437 else
7438 {
7439 enum bfd_reloc_code_real reloc_type;
7440 int size = disp_size (n);
7441 int sign = i.types[n].bitfield.disp32s;
7442 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7443 fixS *fixP;
7444
7445 /* We can't have 8 bit displacement here. */
7446 gas_assert (!i.types[n].bitfield.disp8);
7447
7448 /* The PC relative address is computed relative
7449 to the instruction boundary, so in case immediate
7450 fields follows, we need to adjust the value. */
7451 if (pcrel && i.imm_operands)
7452 {
7453 unsigned int n1;
7454 int sz = 0;
7455
7456 for (n1 = 0; n1 < i.operands; n1++)
7457 if (operand_type_check (i.types[n1], imm))
7458 {
7459 /* Only one immediate is allowed for PC
7460 relative address. */
7461 gas_assert (sz == 0);
7462 sz = imm_size (n1);
7463 i.op[n].disps->X_add_number -= sz;
7464 }
7465 /* We should find the immediate. */
7466 gas_assert (sz != 0);
7467 }
7468
7469 p = frag_more (size);
7470 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7471 if (GOT_symbol
7472 && GOT_symbol == i.op[n].disps->X_add_symbol
7473 && (((reloc_type == BFD_RELOC_32
7474 || reloc_type == BFD_RELOC_X86_64_32S
7475 || (reloc_type == BFD_RELOC_64
7476 && object_64bit))
7477 && (i.op[n].disps->X_op == O_symbol
7478 || (i.op[n].disps->X_op == O_add
7479 && ((symbol_get_value_expression
7480 (i.op[n].disps->X_op_symbol)->X_op)
7481 == O_subtract))))
7482 || reloc_type == BFD_RELOC_32_PCREL))
7483 {
7484 offsetT add;
7485
7486 if (insn_start_frag == frag_now)
7487 add = (p - frag_now->fr_literal) - insn_start_off;
7488 else
7489 {
7490 fragS *fr;
7491
7492 add = insn_start_frag->fr_fix - insn_start_off;
7493 for (fr = insn_start_frag->fr_next;
7494 fr && fr != frag_now; fr = fr->fr_next)
7495 add += fr->fr_fix;
7496 add += p - frag_now->fr_literal;
7497 }
7498
7499 if (!object_64bit)
7500 {
7501 reloc_type = BFD_RELOC_386_GOTPC;
7502 i.op[n].imms->X_add_number += add;
7503 }
7504 else if (reloc_type == BFD_RELOC_64)
7505 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7506 else
7507 /* Don't do the adjustment for x86-64, as there
7508 the pcrel addressing is relative to the _next_
7509 insn, and that is taken care of in other code. */
7510 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7511 }
7512 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7513 size, i.op[n].disps, pcrel,
7514 reloc_type);
7515 /* Check for "call/jmp *mem", "mov mem, %reg",
7516 "test %reg, mem" and "binop mem, %reg" where binop
7517 is one of adc, add, and, cmp, or, sbb, sub, xor
7518 instructions. Always generate R_386_GOT32X for
7519 "sym*GOT" operand in 32-bit mode. */
7520 if ((generate_relax_relocations
7521 || (!object_64bit
7522 && i.rm.mode == 0
7523 && i.rm.regmem == 5))
7524 && (i.rm.mode == 2
7525 || (i.rm.mode == 0 && i.rm.regmem == 5))
7526 && ((i.operands == 1
7527 && i.tm.base_opcode == 0xff
7528 && (i.rm.reg == 2 || i.rm.reg == 4))
7529 || (i.operands == 2
7530 && (i.tm.base_opcode == 0x8b
7531 || i.tm.base_opcode == 0x85
7532 || (i.tm.base_opcode & 0xc7) == 0x03))))
7533 {
7534 if (object_64bit)
7535 {
7536 fixP->fx_tcbit = i.rex != 0;
7537 if (i.base_reg
7538 && (i.base_reg->reg_num == RegRip
7539 || i.base_reg->reg_num == RegEip))
7540 fixP->fx_tcbit2 = 1;
7541 }
7542 else
7543 fixP->fx_tcbit2 = 1;
7544 }
7545 }
7546 }
7547 }
7548 }
7549
7550 static void
7551 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7552 {
7553 char *p;
7554 unsigned int n;
7555
7556 for (n = 0; n < i.operands; n++)
7557 {
7558 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7559 if (i.rounding && (int) n == i.rounding->operand)
7560 continue;
7561
7562 if (operand_type_check (i.types[n], imm))
7563 {
7564 if (i.op[n].imms->X_op == O_constant)
7565 {
7566 int size = imm_size (n);
7567 offsetT val;
7568
7569 val = offset_in_range (i.op[n].imms->X_add_number,
7570 size);
7571 p = frag_more (size);
7572 md_number_to_chars (p, val, size);
7573 }
7574 else
7575 {
7576 /* Not absolute_section.
7577 Need a 32-bit fixup (don't support 8bit
7578 non-absolute imms). Try to support other
7579 sizes ... */
7580 enum bfd_reloc_code_real reloc_type;
7581 int size = imm_size (n);
7582 int sign;
7583
7584 if (i.types[n].bitfield.imm32s
7585 && (i.suffix == QWORD_MNEM_SUFFIX
7586 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7587 sign = 1;
7588 else
7589 sign = 0;
7590
7591 p = frag_more (size);
7592 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7593
7594 /* This is tough to explain. We end up with this one if we
7595 * have operands that look like
7596 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7597 * obtain the absolute address of the GOT, and it is strongly
7598 * preferable from a performance point of view to avoid using
7599 * a runtime relocation for this. The actual sequence of
7600 * instructions often look something like:
7601 *
7602 * call .L66
7603 * .L66:
7604 * popl %ebx
7605 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7606 *
7607 * The call and pop essentially return the absolute address
7608 * of the label .L66 and store it in %ebx. The linker itself
7609 * will ultimately change the first operand of the addl so
7610 * that %ebx points to the GOT, but to keep things simple, the
7611 * .o file must have this operand set so that it generates not
7612 * the absolute address of .L66, but the absolute address of
7613 * itself. This allows the linker itself simply treat a GOTPC
7614 * relocation as asking for a pcrel offset to the GOT to be
7615 * added in, and the addend of the relocation is stored in the
7616 * operand field for the instruction itself.
7617 *
7618 * Our job here is to fix the operand so that it would add
7619 * the correct offset so that %ebx would point to itself. The
7620 * thing that is tricky is that .-.L66 will point to the
7621 * beginning of the instruction, so we need to further modify
7622 * the operand so that it will point to itself. There are
7623 * other cases where you have something like:
7624 *
7625 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7626 *
7627 * and here no correction would be required. Internally in
7628 * the assembler we treat operands of this form as not being
7629 * pcrel since the '.' is explicitly mentioned, and I wonder
7630 * whether it would simplify matters to do it this way. Who
7631 * knows. In earlier versions of the PIC patches, the
7632 * pcrel_adjust field was used to store the correction, but
7633 * since the expression is not pcrel, I felt it would be
7634 * confusing to do it this way. */
7635
7636 if ((reloc_type == BFD_RELOC_32
7637 || reloc_type == BFD_RELOC_X86_64_32S
7638 || reloc_type == BFD_RELOC_64)
7639 && GOT_symbol
7640 && GOT_symbol == i.op[n].imms->X_add_symbol
7641 && (i.op[n].imms->X_op == O_symbol
7642 || (i.op[n].imms->X_op == O_add
7643 && ((symbol_get_value_expression
7644 (i.op[n].imms->X_op_symbol)->X_op)
7645 == O_subtract))))
7646 {
7647 offsetT add;
7648
7649 if (insn_start_frag == frag_now)
7650 add = (p - frag_now->fr_literal) - insn_start_off;
7651 else
7652 {
7653 fragS *fr;
7654
7655 add = insn_start_frag->fr_fix - insn_start_off;
7656 for (fr = insn_start_frag->fr_next;
7657 fr && fr != frag_now; fr = fr->fr_next)
7658 add += fr->fr_fix;
7659 add += p - frag_now->fr_literal;
7660 }
7661
7662 if (!object_64bit)
7663 reloc_type = BFD_RELOC_386_GOTPC;
7664 else if (size == 4)
7665 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7666 else if (size == 8)
7667 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7668 i.op[n].imms->X_add_number += add;
7669 }
7670 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7671 i.op[n].imms, 0, reloc_type);
7672 }
7673 }
7674 }
7675 }
7676 \f
7677 /* x86_cons_fix_new is called via the expression parsing code when a
7678 reloc is needed. We use this hook to get the correct .got reloc. */
7679 static int cons_sign = -1;
7680
7681 void
7682 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7683 expressionS *exp, bfd_reloc_code_real_type r)
7684 {
7685 r = reloc (len, 0, cons_sign, r);
7686
7687 #ifdef TE_PE
7688 if (exp->X_op == O_secrel)
7689 {
7690 exp->X_op = O_symbol;
7691 r = BFD_RELOC_32_SECREL;
7692 }
7693 #endif
7694
7695 fix_new_exp (frag, off, len, exp, 0, r);
7696 }
7697
7698 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7699 purpose of the `.dc.a' internal pseudo-op. */
7700
7701 int
7702 x86_address_bytes (void)
7703 {
7704 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7705 return 4;
7706 return stdoutput->arch_info->bits_per_address / 8;
7707 }
7708
7709 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7710 || defined (LEX_AT)
7711 # define lex_got(reloc, adjust, types) NULL
7712 #else
7713 /* Parse operands of the form
7714 <symbol>@GOTOFF+<nnn>
7715 and similar .plt or .got references.
7716
7717 If we find one, set up the correct relocation in RELOC and copy the
7718 input string, minus the `@GOTOFF' into a malloc'd buffer for
7719 parsing by the calling routine. Return this buffer, and if ADJUST
7720 is non-null set it to the length of the string we removed from the
7721 input line. Otherwise return NULL. */
7722 static char *
7723 lex_got (enum bfd_reloc_code_real *rel,
7724 int *adjust,
7725 i386_operand_type *types)
7726 {
7727 /* Some of the relocations depend on the size of what field is to
7728 be relocated. But in our callers i386_immediate and i386_displacement
7729 we don't yet know the operand size (this will be set by insn
7730 matching). Hence we record the word32 relocation here,
7731 and adjust the reloc according to the real size in reloc(). */
7732 static const struct {
7733 const char *str;
7734 int len;
7735 const enum bfd_reloc_code_real rel[2];
7736 const i386_operand_type types64;
7737 } gotrel[] = {
7738 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7739 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7740 BFD_RELOC_SIZE32 },
7741 OPERAND_TYPE_IMM32_64 },
7742 #endif
7743 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7744 BFD_RELOC_X86_64_PLTOFF64 },
7745 OPERAND_TYPE_IMM64 },
7746 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7747 BFD_RELOC_X86_64_PLT32 },
7748 OPERAND_TYPE_IMM32_32S_DISP32 },
7749 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7750 BFD_RELOC_X86_64_GOTPLT64 },
7751 OPERAND_TYPE_IMM64_DISP64 },
7752 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7753 BFD_RELOC_X86_64_GOTOFF64 },
7754 OPERAND_TYPE_IMM64_DISP64 },
7755 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7756 BFD_RELOC_X86_64_GOTPCREL },
7757 OPERAND_TYPE_IMM32_32S_DISP32 },
7758 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7759 BFD_RELOC_X86_64_TLSGD },
7760 OPERAND_TYPE_IMM32_32S_DISP32 },
7761 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7762 _dummy_first_bfd_reloc_code_real },
7763 OPERAND_TYPE_NONE },
7764 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7765 BFD_RELOC_X86_64_TLSLD },
7766 OPERAND_TYPE_IMM32_32S_DISP32 },
7767 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7768 BFD_RELOC_X86_64_GOTTPOFF },
7769 OPERAND_TYPE_IMM32_32S_DISP32 },
7770 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7771 BFD_RELOC_X86_64_TPOFF32 },
7772 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7773 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7774 _dummy_first_bfd_reloc_code_real },
7775 OPERAND_TYPE_NONE },
7776 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7777 BFD_RELOC_X86_64_DTPOFF32 },
7778 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7779 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7780 _dummy_first_bfd_reloc_code_real },
7781 OPERAND_TYPE_NONE },
7782 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7783 _dummy_first_bfd_reloc_code_real },
7784 OPERAND_TYPE_NONE },
7785 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7786 BFD_RELOC_X86_64_GOT32 },
7787 OPERAND_TYPE_IMM32_32S_64_DISP32 },
7788 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7789 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7790 OPERAND_TYPE_IMM32_32S_DISP32 },
7791 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7792 BFD_RELOC_X86_64_TLSDESC_CALL },
7793 OPERAND_TYPE_IMM32_32S_DISP32 },
7794 };
7795 char *cp;
7796 unsigned int j;
7797
7798 #if defined (OBJ_MAYBE_ELF)
7799 if (!IS_ELF)
7800 return NULL;
7801 #endif
7802
7803 for (cp = input_line_pointer; *cp != '@'; cp++)
7804 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7805 return NULL;
7806
7807 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7808 {
7809 int len = gotrel[j].len;
7810 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7811 {
7812 if (gotrel[j].rel[object_64bit] != 0)
7813 {
7814 int first, second;
7815 char *tmpbuf, *past_reloc;
7816
7817 *rel = gotrel[j].rel[object_64bit];
7818
7819 if (types)
7820 {
7821 if (flag_code != CODE_64BIT)
7822 {
7823 types->bitfield.imm32 = 1;
7824 types->bitfield.disp32 = 1;
7825 }
7826 else
7827 *types = gotrel[j].types64;
7828 }
7829
7830 if (j != 0 && GOT_symbol == NULL)
7831 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7832
7833 /* The length of the first part of our input line. */
7834 first = cp - input_line_pointer;
7835
7836 /* The second part goes from after the reloc token until
7837 (and including) an end_of_line char or comma. */
7838 past_reloc = cp + 1 + len;
7839 cp = past_reloc;
7840 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7841 ++cp;
7842 second = cp + 1 - past_reloc;
7843
7844 /* Allocate and copy string. The trailing NUL shouldn't
7845 be necessary, but be safe. */
7846 tmpbuf = XNEWVEC (char, first + second + 2);
7847 memcpy (tmpbuf, input_line_pointer, first);
7848 if (second != 0 && *past_reloc != ' ')
7849 /* Replace the relocation token with ' ', so that
7850 errors like foo@GOTOFF1 will be detected. */
7851 tmpbuf[first++] = ' ';
7852 else
7853 /* Increment length by 1 if the relocation token is
7854 removed. */
7855 len++;
7856 if (adjust)
7857 *adjust = len;
7858 memcpy (tmpbuf + first, past_reloc, second);
7859 tmpbuf[first + second] = '\0';
7860 return tmpbuf;
7861 }
7862
7863 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7864 gotrel[j].str, 1 << (5 + object_64bit));
7865 return NULL;
7866 }
7867 }
7868
7869 /* Might be a symbol version string. Don't as_bad here. */
7870 return NULL;
7871 }
7872 #endif
7873
7874 #ifdef TE_PE
7875 #ifdef lex_got
7876 #undef lex_got
7877 #endif
7878 /* Parse operands of the form
7879 <symbol>@SECREL32+<nnn>
7880
7881 If we find one, set up the correct relocation in RELOC and copy the
7882 input string, minus the `@SECREL32' into a malloc'd buffer for
7883 parsing by the calling routine. Return this buffer, and if ADJUST
7884 is non-null set it to the length of the string we removed from the
7885 input line. Otherwise return NULL.
7886
7887 This function is copied from the ELF version above adjusted for PE targets. */
7888
7889 static char *
7890 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7891 int *adjust ATTRIBUTE_UNUSED,
7892 i386_operand_type *types)
7893 {
7894 static const struct
7895 {
7896 const char *str;
7897 int len;
7898 const enum bfd_reloc_code_real rel[2];
7899 const i386_operand_type types64;
7900 }
7901 gotrel[] =
7902 {
7903 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7904 BFD_RELOC_32_SECREL },
7905 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7906 };
7907
7908 char *cp;
7909 unsigned j;
7910
7911 for (cp = input_line_pointer; *cp != '@'; cp++)
7912 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7913 return NULL;
7914
7915 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7916 {
7917 int len = gotrel[j].len;
7918
7919 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7920 {
7921 if (gotrel[j].rel[object_64bit] != 0)
7922 {
7923 int first, second;
7924 char *tmpbuf, *past_reloc;
7925
7926 *rel = gotrel[j].rel[object_64bit];
7927 if (adjust)
7928 *adjust = len;
7929
7930 if (types)
7931 {
7932 if (flag_code != CODE_64BIT)
7933 {
7934 types->bitfield.imm32 = 1;
7935 types->bitfield.disp32 = 1;
7936 }
7937 else
7938 *types = gotrel[j].types64;
7939 }
7940
7941 /* The length of the first part of our input line. */
7942 first = cp - input_line_pointer;
7943
7944 /* The second part goes from after the reloc token until
7945 (and including) an end_of_line char or comma. */
7946 past_reloc = cp + 1 + len;
7947 cp = past_reloc;
7948 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7949 ++cp;
7950 second = cp + 1 - past_reloc;
7951
7952 /* Allocate and copy string. The trailing NUL shouldn't
7953 be necessary, but be safe. */
7954 tmpbuf = XNEWVEC (char, first + second + 2);
7955 memcpy (tmpbuf, input_line_pointer, first);
7956 if (second != 0 && *past_reloc != ' ')
7957 /* Replace the relocation token with ' ', so that
7958 errors like foo@SECLREL321 will be detected. */
7959 tmpbuf[first++] = ' ';
7960 memcpy (tmpbuf + first, past_reloc, second);
7961 tmpbuf[first + second] = '\0';
7962 return tmpbuf;
7963 }
7964
7965 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7966 gotrel[j].str, 1 << (5 + object_64bit));
7967 return NULL;
7968 }
7969 }
7970
7971 /* Might be a symbol version string. Don't as_bad here. */
7972 return NULL;
7973 }
7974
7975 #endif /* TE_PE */
7976
7977 bfd_reloc_code_real_type
7978 x86_cons (expressionS *exp, int size)
7979 {
7980 bfd_reloc_code_real_type got_reloc = NO_RELOC;
7981
7982 intel_syntax = -intel_syntax;
7983
7984 exp->X_md = 0;
7985 if (size == 4 || (object_64bit && size == 8))
7986 {
7987 /* Handle @GOTOFF and the like in an expression. */
7988 char *save;
7989 char *gotfree_input_line;
7990 int adjust = 0;
7991
7992 save = input_line_pointer;
7993 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
7994 if (gotfree_input_line)
7995 input_line_pointer = gotfree_input_line;
7996
7997 expression (exp);
7998
7999 if (gotfree_input_line)
8000 {
8001 /* expression () has merrily parsed up to the end of line,
8002 or a comma - in the wrong buffer. Transfer how far
8003 input_line_pointer has moved to the right buffer. */
8004 input_line_pointer = (save
8005 + (input_line_pointer - gotfree_input_line)
8006 + adjust);
8007 free (gotfree_input_line);
8008 if (exp->X_op == O_constant
8009 || exp->X_op == O_absent
8010 || exp->X_op == O_illegal
8011 || exp->X_op == O_register
8012 || exp->X_op == O_big)
8013 {
8014 char c = *input_line_pointer;
8015 *input_line_pointer = 0;
8016 as_bad (_("missing or invalid expression `%s'"), save);
8017 *input_line_pointer = c;
8018 }
8019 }
8020 }
8021 else
8022 expression (exp);
8023
8024 intel_syntax = -intel_syntax;
8025
8026 if (intel_syntax)
8027 i386_intel_simplify (exp);
8028
8029 return got_reloc;
8030 }
8031
8032 static void
8033 signed_cons (int size)
8034 {
8035 if (flag_code == CODE_64BIT)
8036 cons_sign = 1;
8037 cons (size);
8038 cons_sign = -1;
8039 }
8040
8041 #ifdef TE_PE
8042 static void
8043 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8044 {
8045 expressionS exp;
8046
8047 do
8048 {
8049 expression (&exp);
8050 if (exp.X_op == O_symbol)
8051 exp.X_op = O_secrel;
8052
8053 emit_expr (&exp, 4);
8054 }
8055 while (*input_line_pointer++ == ',');
8056
8057 input_line_pointer--;
8058 demand_empty_rest_of_line ();
8059 }
8060 #endif
8061
8062 /* Handle Vector operations. */
8063
8064 static char *
8065 check_VecOperations (char *op_string, char *op_end)
8066 {
8067 const reg_entry *mask;
8068 const char *saved;
8069 char *end_op;
8070
8071 while (*op_string
8072 && (op_end == NULL || op_string < op_end))
8073 {
8074 saved = op_string;
8075 if (*op_string == '{')
8076 {
8077 op_string++;
8078
8079 /* Check broadcasts. */
8080 if (strncmp (op_string, "1to", 3) == 0)
8081 {
8082 int bcst_type;
8083
8084 if (i.broadcast)
8085 goto duplicated_vec_op;
8086
8087 op_string += 3;
8088 if (*op_string == '8')
8089 bcst_type = BROADCAST_1TO8;
8090 else if (*op_string == '4')
8091 bcst_type = BROADCAST_1TO4;
8092 else if (*op_string == '2')
8093 bcst_type = BROADCAST_1TO2;
8094 else if (*op_string == '1'
8095 && *(op_string+1) == '6')
8096 {
8097 bcst_type = BROADCAST_1TO16;
8098 op_string++;
8099 }
8100 else
8101 {
8102 as_bad (_("Unsupported broadcast: `%s'"), saved);
8103 return NULL;
8104 }
8105 op_string++;
8106
8107 broadcast_op.type = bcst_type;
8108 broadcast_op.operand = this_operand;
8109 i.broadcast = &broadcast_op;
8110 }
8111 /* Check masking operation. */
8112 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8113 {
8114 /* k0 can't be used for write mask. */
8115 if (mask->reg_num == 0)
8116 {
8117 as_bad (_("`%s' can't be used for write mask"),
8118 op_string);
8119 return NULL;
8120 }
8121
8122 if (!i.mask)
8123 {
8124 mask_op.mask = mask;
8125 mask_op.zeroing = 0;
8126 mask_op.operand = this_operand;
8127 i.mask = &mask_op;
8128 }
8129 else
8130 {
8131 if (i.mask->mask)
8132 goto duplicated_vec_op;
8133
8134 i.mask->mask = mask;
8135
8136 /* Only "{z}" is allowed here. No need to check
8137 zeroing mask explicitly. */
8138 if (i.mask->operand != this_operand)
8139 {
8140 as_bad (_("invalid write mask `%s'"), saved);
8141 return NULL;
8142 }
8143 }
8144
8145 op_string = end_op;
8146 }
8147 /* Check zeroing-flag for masking operation. */
8148 else if (*op_string == 'z')
8149 {
8150 if (!i.mask)
8151 {
8152 mask_op.mask = NULL;
8153 mask_op.zeroing = 1;
8154 mask_op.operand = this_operand;
8155 i.mask = &mask_op;
8156 }
8157 else
8158 {
8159 if (i.mask->zeroing)
8160 {
8161 duplicated_vec_op:
8162 as_bad (_("duplicated `%s'"), saved);
8163 return NULL;
8164 }
8165
8166 i.mask->zeroing = 1;
8167
8168 /* Only "{%k}" is allowed here. No need to check mask
8169 register explicitly. */
8170 if (i.mask->operand != this_operand)
8171 {
8172 as_bad (_("invalid zeroing-masking `%s'"),
8173 saved);
8174 return NULL;
8175 }
8176 }
8177
8178 op_string++;
8179 }
8180 else
8181 goto unknown_vec_op;
8182
8183 if (*op_string != '}')
8184 {
8185 as_bad (_("missing `}' in `%s'"), saved);
8186 return NULL;
8187 }
8188 op_string++;
8189 continue;
8190 }
8191 unknown_vec_op:
8192 /* We don't know this one. */
8193 as_bad (_("unknown vector operation: `%s'"), saved);
8194 return NULL;
8195 }
8196
8197 return op_string;
8198 }
8199
8200 static int
8201 i386_immediate (char *imm_start)
8202 {
8203 char *save_input_line_pointer;
8204 char *gotfree_input_line;
8205 segT exp_seg = 0;
8206 expressionS *exp;
8207 i386_operand_type types;
8208
8209 operand_type_set (&types, ~0);
8210
8211 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8212 {
8213 as_bad (_("at most %d immediate operands are allowed"),
8214 MAX_IMMEDIATE_OPERANDS);
8215 return 0;
8216 }
8217
8218 exp = &im_expressions[i.imm_operands++];
8219 i.op[this_operand].imms = exp;
8220
8221 if (is_space_char (*imm_start))
8222 ++imm_start;
8223
8224 save_input_line_pointer = input_line_pointer;
8225 input_line_pointer = imm_start;
8226
8227 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8228 if (gotfree_input_line)
8229 input_line_pointer = gotfree_input_line;
8230
8231 exp_seg = expression (exp);
8232
8233 SKIP_WHITESPACE ();
8234
8235 /* Handle vector operations. */
8236 if (*input_line_pointer == '{')
8237 {
8238 input_line_pointer = check_VecOperations (input_line_pointer,
8239 NULL);
8240 if (input_line_pointer == NULL)
8241 return 0;
8242 }
8243
8244 if (*input_line_pointer)
8245 as_bad (_("junk `%s' after expression"), input_line_pointer);
8246
8247 input_line_pointer = save_input_line_pointer;
8248 if (gotfree_input_line)
8249 {
8250 free (gotfree_input_line);
8251
8252 if (exp->X_op == O_constant || exp->X_op == O_register)
8253 exp->X_op = O_illegal;
8254 }
8255
8256 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8257 }
8258
8259 static int
8260 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8261 i386_operand_type types, const char *imm_start)
8262 {
8263 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8264 {
8265 if (imm_start)
8266 as_bad (_("missing or invalid immediate expression `%s'"),
8267 imm_start);
8268 return 0;
8269 }
8270 else if (exp->X_op == O_constant)
8271 {
8272 /* Size it properly later. */
8273 i.types[this_operand].bitfield.imm64 = 1;
8274 /* If not 64bit, sign extend val. */
8275 if (flag_code != CODE_64BIT
8276 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8277 exp->X_add_number
8278 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8279 }
8280 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8281 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8282 && exp_seg != absolute_section
8283 && exp_seg != text_section
8284 && exp_seg != data_section
8285 && exp_seg != bss_section
8286 && exp_seg != undefined_section
8287 && !bfd_is_com_section (exp_seg))
8288 {
8289 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8290 return 0;
8291 }
8292 #endif
8293 else if (!intel_syntax && exp_seg == reg_section)
8294 {
8295 if (imm_start)
8296 as_bad (_("illegal immediate register operand %s"), imm_start);
8297 return 0;
8298 }
8299 else
8300 {
8301 /* This is an address. The size of the address will be
8302 determined later, depending on destination register,
8303 suffix, or the default for the section. */
8304 i.types[this_operand].bitfield.imm8 = 1;
8305 i.types[this_operand].bitfield.imm16 = 1;
8306 i.types[this_operand].bitfield.imm32 = 1;
8307 i.types[this_operand].bitfield.imm32s = 1;
8308 i.types[this_operand].bitfield.imm64 = 1;
8309 i.types[this_operand] = operand_type_and (i.types[this_operand],
8310 types);
8311 }
8312
8313 return 1;
8314 }
8315
8316 static char *
8317 i386_scale (char *scale)
8318 {
8319 offsetT val;
8320 char *save = input_line_pointer;
8321
8322 input_line_pointer = scale;
8323 val = get_absolute_expression ();
8324
8325 switch (val)
8326 {
8327 case 1:
8328 i.log2_scale_factor = 0;
8329 break;
8330 case 2:
8331 i.log2_scale_factor = 1;
8332 break;
8333 case 4:
8334 i.log2_scale_factor = 2;
8335 break;
8336 case 8:
8337 i.log2_scale_factor = 3;
8338 break;
8339 default:
8340 {
8341 char sep = *input_line_pointer;
8342
8343 *input_line_pointer = '\0';
8344 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8345 scale);
8346 *input_line_pointer = sep;
8347 input_line_pointer = save;
8348 return NULL;
8349 }
8350 }
8351 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8352 {
8353 as_warn (_("scale factor of %d without an index register"),
8354 1 << i.log2_scale_factor);
8355 i.log2_scale_factor = 0;
8356 }
8357 scale = input_line_pointer;
8358 input_line_pointer = save;
8359 return scale;
8360 }
8361
8362 static int
8363 i386_displacement (char *disp_start, char *disp_end)
8364 {
8365 expressionS *exp;
8366 segT exp_seg = 0;
8367 char *save_input_line_pointer;
8368 char *gotfree_input_line;
8369 int override;
8370 i386_operand_type bigdisp, types = anydisp;
8371 int ret;
8372
8373 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8374 {
8375 as_bad (_("at most %d displacement operands are allowed"),
8376 MAX_MEMORY_OPERANDS);
8377 return 0;
8378 }
8379
8380 operand_type_set (&bigdisp, 0);
8381 if ((i.types[this_operand].bitfield.jumpabsolute)
8382 || (!current_templates->start->opcode_modifier.jump
8383 && !current_templates->start->opcode_modifier.jumpdword))
8384 {
8385 bigdisp.bitfield.disp32 = 1;
8386 override = (i.prefix[ADDR_PREFIX] != 0);
8387 if (flag_code == CODE_64BIT)
8388 {
8389 if (!override)
8390 {
8391 bigdisp.bitfield.disp32s = 1;
8392 bigdisp.bitfield.disp64 = 1;
8393 }
8394 }
8395 else if ((flag_code == CODE_16BIT) ^ override)
8396 {
8397 bigdisp.bitfield.disp32 = 0;
8398 bigdisp.bitfield.disp16 = 1;
8399 }
8400 }
8401 else
8402 {
8403 /* For PC-relative branches, the width of the displacement
8404 is dependent upon data size, not address size. */
8405 override = (i.prefix[DATA_PREFIX] != 0);
8406 if (flag_code == CODE_64BIT)
8407 {
8408 if (override || i.suffix == WORD_MNEM_SUFFIX)
8409 bigdisp.bitfield.disp16 = 1;
8410 else
8411 {
8412 bigdisp.bitfield.disp32 = 1;
8413 bigdisp.bitfield.disp32s = 1;
8414 }
8415 }
8416 else
8417 {
8418 if (!override)
8419 override = (i.suffix == (flag_code != CODE_16BIT
8420 ? WORD_MNEM_SUFFIX
8421 : LONG_MNEM_SUFFIX));
8422 bigdisp.bitfield.disp32 = 1;
8423 if ((flag_code == CODE_16BIT) ^ override)
8424 {
8425 bigdisp.bitfield.disp32 = 0;
8426 bigdisp.bitfield.disp16 = 1;
8427 }
8428 }
8429 }
8430 i.types[this_operand] = operand_type_or (i.types[this_operand],
8431 bigdisp);
8432
8433 exp = &disp_expressions[i.disp_operands];
8434 i.op[this_operand].disps = exp;
8435 i.disp_operands++;
8436 save_input_line_pointer = input_line_pointer;
8437 input_line_pointer = disp_start;
8438 END_STRING_AND_SAVE (disp_end);
8439
8440 #ifndef GCC_ASM_O_HACK
8441 #define GCC_ASM_O_HACK 0
8442 #endif
8443 #if GCC_ASM_O_HACK
8444 END_STRING_AND_SAVE (disp_end + 1);
8445 if (i.types[this_operand].bitfield.baseIndex
8446 && displacement_string_end[-1] == '+')
8447 {
8448 /* This hack is to avoid a warning when using the "o"
8449 constraint within gcc asm statements.
8450 For instance:
8451
8452 #define _set_tssldt_desc(n,addr,limit,type) \
8453 __asm__ __volatile__ ( \
8454 "movw %w2,%0\n\t" \
8455 "movw %w1,2+%0\n\t" \
8456 "rorl $16,%1\n\t" \
8457 "movb %b1,4+%0\n\t" \
8458 "movb %4,5+%0\n\t" \
8459 "movb $0,6+%0\n\t" \
8460 "movb %h1,7+%0\n\t" \
8461 "rorl $16,%1" \
8462 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8463
8464 This works great except that the output assembler ends
8465 up looking a bit weird if it turns out that there is
8466 no offset. You end up producing code that looks like:
8467
8468 #APP
8469 movw $235,(%eax)
8470 movw %dx,2+(%eax)
8471 rorl $16,%edx
8472 movb %dl,4+(%eax)
8473 movb $137,5+(%eax)
8474 movb $0,6+(%eax)
8475 movb %dh,7+(%eax)
8476 rorl $16,%edx
8477 #NO_APP
8478
8479 So here we provide the missing zero. */
8480
8481 *displacement_string_end = '0';
8482 }
8483 #endif
8484 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8485 if (gotfree_input_line)
8486 input_line_pointer = gotfree_input_line;
8487
8488 exp_seg = expression (exp);
8489
8490 SKIP_WHITESPACE ();
8491 if (*input_line_pointer)
8492 as_bad (_("junk `%s' after expression"), input_line_pointer);
8493 #if GCC_ASM_O_HACK
8494 RESTORE_END_STRING (disp_end + 1);
8495 #endif
8496 input_line_pointer = save_input_line_pointer;
8497 if (gotfree_input_line)
8498 {
8499 free (gotfree_input_line);
8500
8501 if (exp->X_op == O_constant || exp->X_op == O_register)
8502 exp->X_op = O_illegal;
8503 }
8504
8505 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8506
8507 RESTORE_END_STRING (disp_end);
8508
8509 return ret;
8510 }
8511
8512 static int
8513 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8514 i386_operand_type types, const char *disp_start)
8515 {
8516 i386_operand_type bigdisp;
8517 int ret = 1;
8518
8519 /* We do this to make sure that the section symbol is in
8520 the symbol table. We will ultimately change the relocation
8521 to be relative to the beginning of the section. */
8522 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8523 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8524 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8525 {
8526 if (exp->X_op != O_symbol)
8527 goto inv_disp;
8528
8529 if (S_IS_LOCAL (exp->X_add_symbol)
8530 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8531 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8532 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8533 exp->X_op = O_subtract;
8534 exp->X_op_symbol = GOT_symbol;
8535 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8536 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8537 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8538 i.reloc[this_operand] = BFD_RELOC_64;
8539 else
8540 i.reloc[this_operand] = BFD_RELOC_32;
8541 }
8542
8543 else if (exp->X_op == O_absent
8544 || exp->X_op == O_illegal
8545 || exp->X_op == O_big)
8546 {
8547 inv_disp:
8548 as_bad (_("missing or invalid displacement expression `%s'"),
8549 disp_start);
8550 ret = 0;
8551 }
8552
8553 else if (flag_code == CODE_64BIT
8554 && !i.prefix[ADDR_PREFIX]
8555 && exp->X_op == O_constant)
8556 {
8557 /* Since displacement is signed extended to 64bit, don't allow
8558 disp32 and turn off disp32s if they are out of range. */
8559 i.types[this_operand].bitfield.disp32 = 0;
8560 if (!fits_in_signed_long (exp->X_add_number))
8561 {
8562 i.types[this_operand].bitfield.disp32s = 0;
8563 if (i.types[this_operand].bitfield.baseindex)
8564 {
8565 as_bad (_("0x%lx out range of signed 32bit displacement"),
8566 (long) exp->X_add_number);
8567 ret = 0;
8568 }
8569 }
8570 }
8571
8572 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8573 else if (exp->X_op != O_constant
8574 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8575 && exp_seg != absolute_section
8576 && exp_seg != text_section
8577 && exp_seg != data_section
8578 && exp_seg != bss_section
8579 && exp_seg != undefined_section
8580 && !bfd_is_com_section (exp_seg))
8581 {
8582 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8583 ret = 0;
8584 }
8585 #endif
8586
8587 /* Check if this is a displacement only operand. */
8588 bigdisp = i.types[this_operand];
8589 bigdisp.bitfield.disp8 = 0;
8590 bigdisp.bitfield.disp16 = 0;
8591 bigdisp.bitfield.disp32 = 0;
8592 bigdisp.bitfield.disp32s = 0;
8593 bigdisp.bitfield.disp64 = 0;
8594 if (operand_type_all_zero (&bigdisp))
8595 i.types[this_operand] = operand_type_and (i.types[this_operand],
8596 types);
8597
8598 return ret;
8599 }
8600
8601 /* Make sure the memory operand we've been dealt is valid.
8602 Return 1 on success, 0 on a failure. */
8603
8604 static int
8605 i386_index_check (const char *operand_string)
8606 {
8607 const char *kind = "base/index";
8608 enum flag_code addr_mode;
8609
8610 if (i.prefix[ADDR_PREFIX])
8611 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8612 else
8613 {
8614 addr_mode = flag_code;
8615
8616 #if INFER_ADDR_PREFIX
8617 if (i.mem_operands == 0)
8618 {
8619 /* Infer address prefix from the first memory operand. */
8620 const reg_entry *addr_reg = i.base_reg;
8621
8622 if (addr_reg == NULL)
8623 addr_reg = i.index_reg;
8624
8625 if (addr_reg)
8626 {
8627 if (addr_reg->reg_num == RegEip
8628 || addr_reg->reg_num == RegEiz
8629 || addr_reg->reg_type.bitfield.reg32)
8630 addr_mode = CODE_32BIT;
8631 else if (flag_code != CODE_64BIT
8632 && addr_reg->reg_type.bitfield.reg16)
8633 addr_mode = CODE_16BIT;
8634
8635 if (addr_mode != flag_code)
8636 {
8637 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8638 i.prefixes += 1;
8639 /* Change the size of any displacement too. At most one
8640 of Disp16 or Disp32 is set.
8641 FIXME. There doesn't seem to be any real need for
8642 separate Disp16 and Disp32 flags. The same goes for
8643 Imm16 and Imm32. Removing them would probably clean
8644 up the code quite a lot. */
8645 if (flag_code != CODE_64BIT
8646 && (i.types[this_operand].bitfield.disp16
8647 || i.types[this_operand].bitfield.disp32))
8648 i.types[this_operand]
8649 = operand_type_xor (i.types[this_operand], disp16_32);
8650 }
8651 }
8652 }
8653 #endif
8654 }
8655
8656 if (current_templates->start->opcode_modifier.isstring
8657 && !current_templates->start->opcode_modifier.immext
8658 && (current_templates->end[-1].opcode_modifier.isstring
8659 || i.mem_operands))
8660 {
8661 /* Memory operands of string insns are special in that they only allow
8662 a single register (rDI, rSI, or rBX) as their memory address. */
8663 const reg_entry *expected_reg;
8664 static const char *di_si[][2] =
8665 {
8666 { "esi", "edi" },
8667 { "si", "di" },
8668 { "rsi", "rdi" }
8669 };
8670 static const char *bx[] = { "ebx", "bx", "rbx" };
8671
8672 kind = "string address";
8673
8674 if (current_templates->start->opcode_modifier.repprefixok)
8675 {
8676 i386_operand_type type = current_templates->end[-1].operand_types[0];
8677
8678 if (!type.bitfield.baseindex
8679 || ((!i.mem_operands != !intel_syntax)
8680 && current_templates->end[-1].operand_types[1]
8681 .bitfield.baseindex))
8682 type = current_templates->end[-1].operand_types[1];
8683 expected_reg = hash_find (reg_hash,
8684 di_si[addr_mode][type.bitfield.esseg]);
8685
8686 }
8687 else
8688 expected_reg = hash_find (reg_hash, bx[addr_mode]);
8689
8690 if (i.base_reg != expected_reg
8691 || i.index_reg
8692 || operand_type_check (i.types[this_operand], disp))
8693 {
8694 /* The second memory operand must have the same size as
8695 the first one. */
8696 if (i.mem_operands
8697 && i.base_reg
8698 && !((addr_mode == CODE_64BIT
8699 && i.base_reg->reg_type.bitfield.reg64)
8700 || (addr_mode == CODE_32BIT
8701 ? i.base_reg->reg_type.bitfield.reg32
8702 : i.base_reg->reg_type.bitfield.reg16)))
8703 goto bad_address;
8704
8705 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8706 operand_string,
8707 intel_syntax ? '[' : '(',
8708 register_prefix,
8709 expected_reg->reg_name,
8710 intel_syntax ? ']' : ')');
8711 return 1;
8712 }
8713 else
8714 return 1;
8715
8716 bad_address:
8717 as_bad (_("`%s' is not a valid %s expression"),
8718 operand_string, kind);
8719 return 0;
8720 }
8721 else
8722 {
8723 if (addr_mode != CODE_16BIT)
8724 {
8725 /* 32-bit/64-bit checks. */
8726 if ((i.base_reg
8727 && (addr_mode == CODE_64BIT
8728 ? !i.base_reg->reg_type.bitfield.reg64
8729 : !i.base_reg->reg_type.bitfield.reg32)
8730 && (i.index_reg
8731 || (i.base_reg->reg_num
8732 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8733 || (i.index_reg
8734 && !i.index_reg->reg_type.bitfield.regxmm
8735 && !i.index_reg->reg_type.bitfield.regymm
8736 && !i.index_reg->reg_type.bitfield.regzmm
8737 && ((addr_mode == CODE_64BIT
8738 ? !(i.index_reg->reg_type.bitfield.reg64
8739 || i.index_reg->reg_num == RegRiz)
8740 : !(i.index_reg->reg_type.bitfield.reg32
8741 || i.index_reg->reg_num == RegEiz))
8742 || !i.index_reg->reg_type.bitfield.baseindex)))
8743 goto bad_address;
8744
8745 /* bndmk, bndldx, and bndstx have special restrictions. */
8746 if (current_templates->start->base_opcode == 0xf30f1b
8747 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
8748 {
8749 /* They cannot use RIP-relative addressing. */
8750 if (i.base_reg && i.base_reg->reg_num == RegRip)
8751 {
8752 as_bad (_("`%s' cannot be used here"), operand_string);
8753 return 0;
8754 }
8755
8756 /* bndldx and bndstx ignore their scale factor. */
8757 if (current_templates->start->base_opcode != 0xf30f1b
8758 && i.log2_scale_factor)
8759 as_warn (_("register scaling is being ignored here"));
8760 }
8761 }
8762 else
8763 {
8764 /* 16-bit checks. */
8765 if ((i.base_reg
8766 && (!i.base_reg->reg_type.bitfield.reg16
8767 || !i.base_reg->reg_type.bitfield.baseindex))
8768 || (i.index_reg
8769 && (!i.index_reg->reg_type.bitfield.reg16
8770 || !i.index_reg->reg_type.bitfield.baseindex
8771 || !(i.base_reg
8772 && i.base_reg->reg_num < 6
8773 && i.index_reg->reg_num >= 6
8774 && i.log2_scale_factor == 0))))
8775 goto bad_address;
8776 }
8777 }
8778 return 1;
8779 }
8780
8781 /* Handle vector immediates. */
8782
8783 static int
8784 RC_SAE_immediate (const char *imm_start)
8785 {
8786 unsigned int match_found, j;
8787 const char *pstr = imm_start;
8788 expressionS *exp;
8789
8790 if (*pstr != '{')
8791 return 0;
8792
8793 pstr++;
8794 match_found = 0;
8795 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8796 {
8797 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8798 {
8799 if (!i.rounding)
8800 {
8801 rc_op.type = RC_NamesTable[j].type;
8802 rc_op.operand = this_operand;
8803 i.rounding = &rc_op;
8804 }
8805 else
8806 {
8807 as_bad (_("duplicated `%s'"), imm_start);
8808 return 0;
8809 }
8810 pstr += RC_NamesTable[j].len;
8811 match_found = 1;
8812 break;
8813 }
8814 }
8815 if (!match_found)
8816 return 0;
8817
8818 if (*pstr++ != '}')
8819 {
8820 as_bad (_("Missing '}': '%s'"), imm_start);
8821 return 0;
8822 }
8823 /* RC/SAE immediate string should contain nothing more. */;
8824 if (*pstr != 0)
8825 {
8826 as_bad (_("Junk after '}': '%s'"), imm_start);
8827 return 0;
8828 }
8829
8830 exp = &im_expressions[i.imm_operands++];
8831 i.op[this_operand].imms = exp;
8832
8833 exp->X_op = O_constant;
8834 exp->X_add_number = 0;
8835 exp->X_add_symbol = (symbolS *) 0;
8836 exp->X_op_symbol = (symbolS *) 0;
8837
8838 i.types[this_operand].bitfield.imm8 = 1;
8839 return 1;
8840 }
8841
8842 /* Only string instructions can have a second memory operand, so
8843 reduce current_templates to just those if it contains any. */
8844 static int
8845 maybe_adjust_templates (void)
8846 {
8847 const insn_template *t;
8848
8849 gas_assert (i.mem_operands == 1);
8850
8851 for (t = current_templates->start; t < current_templates->end; ++t)
8852 if (t->opcode_modifier.isstring)
8853 break;
8854
8855 if (t < current_templates->end)
8856 {
8857 static templates aux_templates;
8858 bfd_boolean recheck;
8859
8860 aux_templates.start = t;
8861 for (; t < current_templates->end; ++t)
8862 if (!t->opcode_modifier.isstring)
8863 break;
8864 aux_templates.end = t;
8865
8866 /* Determine whether to re-check the first memory operand. */
8867 recheck = (aux_templates.start != current_templates->start
8868 || t != current_templates->end);
8869
8870 current_templates = &aux_templates;
8871
8872 if (recheck)
8873 {
8874 i.mem_operands = 0;
8875 if (i.memop1_string != NULL
8876 && i386_index_check (i.memop1_string) == 0)
8877 return 0;
8878 i.mem_operands = 1;
8879 }
8880 }
8881
8882 return 1;
8883 }
8884
8885 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
8886 on error. */
8887
8888 static int
8889 i386_att_operand (char *operand_string)
8890 {
8891 const reg_entry *r;
8892 char *end_op;
8893 char *op_string = operand_string;
8894
8895 if (is_space_char (*op_string))
8896 ++op_string;
8897
8898 /* We check for an absolute prefix (differentiating,
8899 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
8900 if (*op_string == ABSOLUTE_PREFIX)
8901 {
8902 ++op_string;
8903 if (is_space_char (*op_string))
8904 ++op_string;
8905 i.types[this_operand].bitfield.jumpabsolute = 1;
8906 }
8907
8908 /* Check if operand is a register. */
8909 if ((r = parse_register (op_string, &end_op)) != NULL)
8910 {
8911 i386_operand_type temp;
8912
8913 /* Check for a segment override by searching for ':' after a
8914 segment register. */
8915 op_string = end_op;
8916 if (is_space_char (*op_string))
8917 ++op_string;
8918 if (*op_string == ':'
8919 && (r->reg_type.bitfield.sreg2
8920 || r->reg_type.bitfield.sreg3))
8921 {
8922 switch (r->reg_num)
8923 {
8924 case 0:
8925 i.seg[i.mem_operands] = &es;
8926 break;
8927 case 1:
8928 i.seg[i.mem_operands] = &cs;
8929 break;
8930 case 2:
8931 i.seg[i.mem_operands] = &ss;
8932 break;
8933 case 3:
8934 i.seg[i.mem_operands] = &ds;
8935 break;
8936 case 4:
8937 i.seg[i.mem_operands] = &fs;
8938 break;
8939 case 5:
8940 i.seg[i.mem_operands] = &gs;
8941 break;
8942 }
8943
8944 /* Skip the ':' and whitespace. */
8945 ++op_string;
8946 if (is_space_char (*op_string))
8947 ++op_string;
8948
8949 if (!is_digit_char (*op_string)
8950 && !is_identifier_char (*op_string)
8951 && *op_string != '('
8952 && *op_string != ABSOLUTE_PREFIX)
8953 {
8954 as_bad (_("bad memory operand `%s'"), op_string);
8955 return 0;
8956 }
8957 /* Handle case of %es:*foo. */
8958 if (*op_string == ABSOLUTE_PREFIX)
8959 {
8960 ++op_string;
8961 if (is_space_char (*op_string))
8962 ++op_string;
8963 i.types[this_operand].bitfield.jumpabsolute = 1;
8964 }
8965 goto do_memory_reference;
8966 }
8967
8968 /* Handle vector operations. */
8969 if (*op_string == '{')
8970 {
8971 op_string = check_VecOperations (op_string, NULL);
8972 if (op_string == NULL)
8973 return 0;
8974 }
8975
8976 if (*op_string)
8977 {
8978 as_bad (_("junk `%s' after register"), op_string);
8979 return 0;
8980 }
8981 temp = r->reg_type;
8982 temp.bitfield.baseindex = 0;
8983 i.types[this_operand] = operand_type_or (i.types[this_operand],
8984 temp);
8985 i.types[this_operand].bitfield.unspecified = 0;
8986 i.op[this_operand].regs = r;
8987 i.reg_operands++;
8988 }
8989 else if (*op_string == REGISTER_PREFIX)
8990 {
8991 as_bad (_("bad register name `%s'"), op_string);
8992 return 0;
8993 }
8994 else if (*op_string == IMMEDIATE_PREFIX)
8995 {
8996 ++op_string;
8997 if (i.types[this_operand].bitfield.jumpabsolute)
8998 {
8999 as_bad (_("immediate operand illegal with absolute jump"));
9000 return 0;
9001 }
9002 if (!i386_immediate (op_string))
9003 return 0;
9004 }
9005 else if (RC_SAE_immediate (operand_string))
9006 {
9007 /* If it is a RC or SAE immediate, do nothing. */
9008 ;
9009 }
9010 else if (is_digit_char (*op_string)
9011 || is_identifier_char (*op_string)
9012 || *op_string == '"'
9013 || *op_string == '(')
9014 {
9015 /* This is a memory reference of some sort. */
9016 char *base_string;
9017
9018 /* Start and end of displacement string expression (if found). */
9019 char *displacement_string_start;
9020 char *displacement_string_end;
9021 char *vop_start;
9022
9023 do_memory_reference:
9024 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9025 return 0;
9026 if ((i.mem_operands == 1
9027 && !current_templates->start->opcode_modifier.isstring)
9028 || i.mem_operands == 2)
9029 {
9030 as_bad (_("too many memory references for `%s'"),
9031 current_templates->start->name);
9032 return 0;
9033 }
9034
9035 /* Check for base index form. We detect the base index form by
9036 looking for an ')' at the end of the operand, searching
9037 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9038 after the '('. */
9039 base_string = op_string + strlen (op_string);
9040
9041 /* Handle vector operations. */
9042 vop_start = strchr (op_string, '{');
9043 if (vop_start && vop_start < base_string)
9044 {
9045 if (check_VecOperations (vop_start, base_string) == NULL)
9046 return 0;
9047 base_string = vop_start;
9048 }
9049
9050 --base_string;
9051 if (is_space_char (*base_string))
9052 --base_string;
9053
9054 /* If we only have a displacement, set-up for it to be parsed later. */
9055 displacement_string_start = op_string;
9056 displacement_string_end = base_string + 1;
9057
9058 if (*base_string == ')')
9059 {
9060 char *temp_string;
9061 unsigned int parens_balanced = 1;
9062 /* We've already checked that the number of left & right ()'s are
9063 equal, so this loop will not be infinite. */
9064 do
9065 {
9066 base_string--;
9067 if (*base_string == ')')
9068 parens_balanced++;
9069 if (*base_string == '(')
9070 parens_balanced--;
9071 }
9072 while (parens_balanced);
9073
9074 temp_string = base_string;
9075
9076 /* Skip past '(' and whitespace. */
9077 ++base_string;
9078 if (is_space_char (*base_string))
9079 ++base_string;
9080
9081 if (*base_string == ','
9082 || ((i.base_reg = parse_register (base_string, &end_op))
9083 != NULL))
9084 {
9085 displacement_string_end = temp_string;
9086
9087 i.types[this_operand].bitfield.baseindex = 1;
9088
9089 if (i.base_reg)
9090 {
9091 base_string = end_op;
9092 if (is_space_char (*base_string))
9093 ++base_string;
9094 }
9095
9096 /* There may be an index reg or scale factor here. */
9097 if (*base_string == ',')
9098 {
9099 ++base_string;
9100 if (is_space_char (*base_string))
9101 ++base_string;
9102
9103 if ((i.index_reg = parse_register (base_string, &end_op))
9104 != NULL)
9105 {
9106 base_string = end_op;
9107 if (is_space_char (*base_string))
9108 ++base_string;
9109 if (*base_string == ',')
9110 {
9111 ++base_string;
9112 if (is_space_char (*base_string))
9113 ++base_string;
9114 }
9115 else if (*base_string != ')')
9116 {
9117 as_bad (_("expecting `,' or `)' "
9118 "after index register in `%s'"),
9119 operand_string);
9120 return 0;
9121 }
9122 }
9123 else if (*base_string == REGISTER_PREFIX)
9124 {
9125 end_op = strchr (base_string, ',');
9126 if (end_op)
9127 *end_op = '\0';
9128 as_bad (_("bad register name `%s'"), base_string);
9129 return 0;
9130 }
9131
9132 /* Check for scale factor. */
9133 if (*base_string != ')')
9134 {
9135 char *end_scale = i386_scale (base_string);
9136
9137 if (!end_scale)
9138 return 0;
9139
9140 base_string = end_scale;
9141 if (is_space_char (*base_string))
9142 ++base_string;
9143 if (*base_string != ')')
9144 {
9145 as_bad (_("expecting `)' "
9146 "after scale factor in `%s'"),
9147 operand_string);
9148 return 0;
9149 }
9150 }
9151 else if (!i.index_reg)
9152 {
9153 as_bad (_("expecting index register or scale factor "
9154 "after `,'; got '%c'"),
9155 *base_string);
9156 return 0;
9157 }
9158 }
9159 else if (*base_string != ')')
9160 {
9161 as_bad (_("expecting `,' or `)' "
9162 "after base register in `%s'"),
9163 operand_string);
9164 return 0;
9165 }
9166 }
9167 else if (*base_string == REGISTER_PREFIX)
9168 {
9169 end_op = strchr (base_string, ',');
9170 if (end_op)
9171 *end_op = '\0';
9172 as_bad (_("bad register name `%s'"), base_string);
9173 return 0;
9174 }
9175 }
9176
9177 /* If there's an expression beginning the operand, parse it,
9178 assuming displacement_string_start and
9179 displacement_string_end are meaningful. */
9180 if (displacement_string_start != displacement_string_end)
9181 {
9182 if (!i386_displacement (displacement_string_start,
9183 displacement_string_end))
9184 return 0;
9185 }
9186
9187 /* Special case for (%dx) while doing input/output op. */
9188 if (i.base_reg
9189 && operand_type_equal (&i.base_reg->reg_type,
9190 &reg16_inoutportreg)
9191 && i.index_reg == 0
9192 && i.log2_scale_factor == 0
9193 && i.seg[i.mem_operands] == 0
9194 && !operand_type_check (i.types[this_operand], disp))
9195 {
9196 i.types[this_operand] = inoutportreg;
9197 return 1;
9198 }
9199
9200 if (i386_index_check (operand_string) == 0)
9201 return 0;
9202 i.types[this_operand].bitfield.mem = 1;
9203 if (i.mem_operands == 0)
9204 i.memop1_string = xstrdup (operand_string);
9205 i.mem_operands++;
9206 }
9207 else
9208 {
9209 /* It's not a memory operand; argh! */
9210 as_bad (_("invalid char %s beginning operand %d `%s'"),
9211 output_invalid (*op_string),
9212 this_operand + 1,
9213 op_string);
9214 return 0;
9215 }
9216 return 1; /* Normal return. */
9217 }
9218 \f
9219 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9220 that an rs_machine_dependent frag may reach. */
9221
9222 unsigned int
9223 i386_frag_max_var (fragS *frag)
9224 {
9225 /* The only relaxable frags are for jumps.
9226 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9227 gas_assert (frag->fr_type == rs_machine_dependent);
9228 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9229 }
9230
9231 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9232 static int
9233 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9234 {
9235 /* STT_GNU_IFUNC symbol must go through PLT. */
9236 if ((symbol_get_bfdsym (fr_symbol)->flags
9237 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9238 return 0;
9239
9240 if (!S_IS_EXTERNAL (fr_symbol))
9241 /* Symbol may be weak or local. */
9242 return !S_IS_WEAK (fr_symbol);
9243
9244 /* Global symbols with non-default visibility can't be preempted. */
9245 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9246 return 1;
9247
9248 if (fr_var != NO_RELOC)
9249 switch ((enum bfd_reloc_code_real) fr_var)
9250 {
9251 case BFD_RELOC_386_PLT32:
9252 case BFD_RELOC_X86_64_PLT32:
9253 /* Symbol with PLT relocation may be preempted. */
9254 return 0;
9255 default:
9256 abort ();
9257 }
9258
9259 /* Global symbols with default visibility in a shared library may be
9260 preempted by another definition. */
9261 return !shared;
9262 }
9263 #endif
9264
9265 /* md_estimate_size_before_relax()
9266
9267 Called just before relax() for rs_machine_dependent frags. The x86
9268 assembler uses these frags to handle variable size jump
9269 instructions.
9270
9271 Any symbol that is now undefined will not become defined.
9272 Return the correct fr_subtype in the frag.
9273 Return the initial "guess for variable size of frag" to caller.
9274 The guess is actually the growth beyond the fixed part. Whatever
9275 we do to grow the fixed or variable part contributes to our
9276 returned value. */
9277
9278 int
9279 md_estimate_size_before_relax (fragS *fragP, segT segment)
9280 {
9281 /* We've already got fragP->fr_subtype right; all we have to do is
9282 check for un-relaxable symbols. On an ELF system, we can't relax
9283 an externally visible symbol, because it may be overridden by a
9284 shared library. */
9285 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9286 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9287 || (IS_ELF
9288 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9289 fragP->fr_var))
9290 #endif
9291 #if defined (OBJ_COFF) && defined (TE_PE)
9292 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9293 && S_IS_WEAK (fragP->fr_symbol))
9294 #endif
9295 )
9296 {
9297 /* Symbol is undefined in this segment, or we need to keep a
9298 reloc so that weak symbols can be overridden. */
9299 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9300 enum bfd_reloc_code_real reloc_type;
9301 unsigned char *opcode;
9302 int old_fr_fix;
9303
9304 if (fragP->fr_var != NO_RELOC)
9305 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9306 else if (size == 2)
9307 reloc_type = BFD_RELOC_16_PCREL;
9308 else
9309 reloc_type = BFD_RELOC_32_PCREL;
9310
9311 old_fr_fix = fragP->fr_fix;
9312 opcode = (unsigned char *) fragP->fr_opcode;
9313
9314 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9315 {
9316 case UNCOND_JUMP:
9317 /* Make jmp (0xeb) a (d)word displacement jump. */
9318 opcode[0] = 0xe9;
9319 fragP->fr_fix += size;
9320 fix_new (fragP, old_fr_fix, size,
9321 fragP->fr_symbol,
9322 fragP->fr_offset, 1,
9323 reloc_type);
9324 break;
9325
9326 case COND_JUMP86:
9327 if (size == 2
9328 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9329 {
9330 /* Negate the condition, and branch past an
9331 unconditional jump. */
9332 opcode[0] ^= 1;
9333 opcode[1] = 3;
9334 /* Insert an unconditional jump. */
9335 opcode[2] = 0xe9;
9336 /* We added two extra opcode bytes, and have a two byte
9337 offset. */
9338 fragP->fr_fix += 2 + 2;
9339 fix_new (fragP, old_fr_fix + 2, 2,
9340 fragP->fr_symbol,
9341 fragP->fr_offset, 1,
9342 reloc_type);
9343 break;
9344 }
9345 /* Fall through. */
9346
9347 case COND_JUMP:
9348 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9349 {
9350 fixS *fixP;
9351
9352 fragP->fr_fix += 1;
9353 fixP = fix_new (fragP, old_fr_fix, 1,
9354 fragP->fr_symbol,
9355 fragP->fr_offset, 1,
9356 BFD_RELOC_8_PCREL);
9357 fixP->fx_signed = 1;
9358 break;
9359 }
9360
9361 /* This changes the byte-displacement jump 0x7N
9362 to the (d)word-displacement jump 0x0f,0x8N. */
9363 opcode[1] = opcode[0] + 0x10;
9364 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9365 /* We've added an opcode byte. */
9366 fragP->fr_fix += 1 + size;
9367 fix_new (fragP, old_fr_fix + 1, size,
9368 fragP->fr_symbol,
9369 fragP->fr_offset, 1,
9370 reloc_type);
9371 break;
9372
9373 default:
9374 BAD_CASE (fragP->fr_subtype);
9375 break;
9376 }
9377 frag_wane (fragP);
9378 return fragP->fr_fix - old_fr_fix;
9379 }
9380
9381 /* Guess size depending on current relax state. Initially the relax
9382 state will correspond to a short jump and we return 1, because
9383 the variable part of the frag (the branch offset) is one byte
9384 long. However, we can relax a section more than once and in that
9385 case we must either set fr_subtype back to the unrelaxed state,
9386 or return the value for the appropriate branch. */
9387 return md_relax_table[fragP->fr_subtype].rlx_length;
9388 }
9389
9390 /* Called after relax() is finished.
9391
9392 In: Address of frag.
9393 fr_type == rs_machine_dependent.
9394 fr_subtype is what the address relaxed to.
9395
9396 Out: Any fixSs and constants are set up.
9397 Caller will turn frag into a ".space 0". */
9398
9399 void
9400 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9401 fragS *fragP)
9402 {
9403 unsigned char *opcode;
9404 unsigned char *where_to_put_displacement = NULL;
9405 offsetT target_address;
9406 offsetT opcode_address;
9407 unsigned int extension = 0;
9408 offsetT displacement_from_opcode_start;
9409
9410 opcode = (unsigned char *) fragP->fr_opcode;
9411
9412 /* Address we want to reach in file space. */
9413 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9414
9415 /* Address opcode resides at in file space. */
9416 opcode_address = fragP->fr_address + fragP->fr_fix;
9417
9418 /* Displacement from opcode start to fill into instruction. */
9419 displacement_from_opcode_start = target_address - opcode_address;
9420
9421 if ((fragP->fr_subtype & BIG) == 0)
9422 {
9423 /* Don't have to change opcode. */
9424 extension = 1; /* 1 opcode + 1 displacement */
9425 where_to_put_displacement = &opcode[1];
9426 }
9427 else
9428 {
9429 if (no_cond_jump_promotion
9430 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9431 as_warn_where (fragP->fr_file, fragP->fr_line,
9432 _("long jump required"));
9433
9434 switch (fragP->fr_subtype)
9435 {
9436 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9437 extension = 4; /* 1 opcode + 4 displacement */
9438 opcode[0] = 0xe9;
9439 where_to_put_displacement = &opcode[1];
9440 break;
9441
9442 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9443 extension = 2; /* 1 opcode + 2 displacement */
9444 opcode[0] = 0xe9;
9445 where_to_put_displacement = &opcode[1];
9446 break;
9447
9448 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9449 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9450 extension = 5; /* 2 opcode + 4 displacement */
9451 opcode[1] = opcode[0] + 0x10;
9452 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9453 where_to_put_displacement = &opcode[2];
9454 break;
9455
9456 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9457 extension = 3; /* 2 opcode + 2 displacement */
9458 opcode[1] = opcode[0] + 0x10;
9459 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9460 where_to_put_displacement = &opcode[2];
9461 break;
9462
9463 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9464 extension = 4;
9465 opcode[0] ^= 1;
9466 opcode[1] = 3;
9467 opcode[2] = 0xe9;
9468 where_to_put_displacement = &opcode[3];
9469 break;
9470
9471 default:
9472 BAD_CASE (fragP->fr_subtype);
9473 break;
9474 }
9475 }
9476
9477 /* If size if less then four we are sure that the operand fits,
9478 but if it's 4, then it could be that the displacement is larger
9479 then -/+ 2GB. */
9480 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9481 && object_64bit
9482 && ((addressT) (displacement_from_opcode_start - extension
9483 + ((addressT) 1 << 31))
9484 > (((addressT) 2 << 31) - 1)))
9485 {
9486 as_bad_where (fragP->fr_file, fragP->fr_line,
9487 _("jump target out of range"));
9488 /* Make us emit 0. */
9489 displacement_from_opcode_start = extension;
9490 }
9491 /* Now put displacement after opcode. */
9492 md_number_to_chars ((char *) where_to_put_displacement,
9493 (valueT) (displacement_from_opcode_start - extension),
9494 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9495 fragP->fr_fix += extension;
9496 }
9497 \f
9498 /* Apply a fixup (fixP) to segment data, once it has been determined
9499 by our caller that we have all the info we need to fix it up.
9500
9501 Parameter valP is the pointer to the value of the bits.
9502
9503 On the 386, immediates, displacements, and data pointers are all in
9504 the same (little-endian) format, so we don't need to care about which
9505 we are handling. */
9506
9507 void
9508 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9509 {
9510 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9511 valueT value = *valP;
9512
9513 #if !defined (TE_Mach)
9514 if (fixP->fx_pcrel)
9515 {
9516 switch (fixP->fx_r_type)
9517 {
9518 default:
9519 break;
9520
9521 case BFD_RELOC_64:
9522 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9523 break;
9524 case BFD_RELOC_32:
9525 case BFD_RELOC_X86_64_32S:
9526 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9527 break;
9528 case BFD_RELOC_16:
9529 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9530 break;
9531 case BFD_RELOC_8:
9532 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9533 break;
9534 }
9535 }
9536
9537 if (fixP->fx_addsy != NULL
9538 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9539 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9540 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9541 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9542 && !use_rela_relocations)
9543 {
9544 /* This is a hack. There should be a better way to handle this.
9545 This covers for the fact that bfd_install_relocation will
9546 subtract the current location (for partial_inplace, PC relative
9547 relocations); see more below. */
9548 #ifndef OBJ_AOUT
9549 if (IS_ELF
9550 #ifdef TE_PE
9551 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9552 #endif
9553 )
9554 value += fixP->fx_where + fixP->fx_frag->fr_address;
9555 #endif
9556 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9557 if (IS_ELF)
9558 {
9559 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9560
9561 if ((sym_seg == seg
9562 || (symbol_section_p (fixP->fx_addsy)
9563 && sym_seg != absolute_section))
9564 && !generic_force_reloc (fixP))
9565 {
9566 /* Yes, we add the values in twice. This is because
9567 bfd_install_relocation subtracts them out again. I think
9568 bfd_install_relocation is broken, but I don't dare change
9569 it. FIXME. */
9570 value += fixP->fx_where + fixP->fx_frag->fr_address;
9571 }
9572 }
9573 #endif
9574 #if defined (OBJ_COFF) && defined (TE_PE)
9575 /* For some reason, the PE format does not store a
9576 section address offset for a PC relative symbol. */
9577 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9578 || S_IS_WEAK (fixP->fx_addsy))
9579 value += md_pcrel_from (fixP);
9580 #endif
9581 }
9582 #if defined (OBJ_COFF) && defined (TE_PE)
9583 if (fixP->fx_addsy != NULL
9584 && S_IS_WEAK (fixP->fx_addsy)
9585 /* PR 16858: Do not modify weak function references. */
9586 && ! fixP->fx_pcrel)
9587 {
9588 #if !defined (TE_PEP)
9589 /* For x86 PE weak function symbols are neither PC-relative
9590 nor do they set S_IS_FUNCTION. So the only reliable way
9591 to detect them is to check the flags of their containing
9592 section. */
9593 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9594 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9595 ;
9596 else
9597 #endif
9598 value -= S_GET_VALUE (fixP->fx_addsy);
9599 }
9600 #endif
9601
9602 /* Fix a few things - the dynamic linker expects certain values here,
9603 and we must not disappoint it. */
9604 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9605 if (IS_ELF && fixP->fx_addsy)
9606 switch (fixP->fx_r_type)
9607 {
9608 case BFD_RELOC_386_PLT32:
9609 case BFD_RELOC_X86_64_PLT32:
9610 /* Make the jump instruction point to the address of the operand. At
9611 runtime we merely add the offset to the actual PLT entry. */
9612 value = -4;
9613 break;
9614
9615 case BFD_RELOC_386_TLS_GD:
9616 case BFD_RELOC_386_TLS_LDM:
9617 case BFD_RELOC_386_TLS_IE_32:
9618 case BFD_RELOC_386_TLS_IE:
9619 case BFD_RELOC_386_TLS_GOTIE:
9620 case BFD_RELOC_386_TLS_GOTDESC:
9621 case BFD_RELOC_X86_64_TLSGD:
9622 case BFD_RELOC_X86_64_TLSLD:
9623 case BFD_RELOC_X86_64_GOTTPOFF:
9624 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9625 value = 0; /* Fully resolved at runtime. No addend. */
9626 /* Fallthrough */
9627 case BFD_RELOC_386_TLS_LE:
9628 case BFD_RELOC_386_TLS_LDO_32:
9629 case BFD_RELOC_386_TLS_LE_32:
9630 case BFD_RELOC_X86_64_DTPOFF32:
9631 case BFD_RELOC_X86_64_DTPOFF64:
9632 case BFD_RELOC_X86_64_TPOFF32:
9633 case BFD_RELOC_X86_64_TPOFF64:
9634 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9635 break;
9636
9637 case BFD_RELOC_386_TLS_DESC_CALL:
9638 case BFD_RELOC_X86_64_TLSDESC_CALL:
9639 value = 0; /* Fully resolved at runtime. No addend. */
9640 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9641 fixP->fx_done = 0;
9642 return;
9643
9644 case BFD_RELOC_VTABLE_INHERIT:
9645 case BFD_RELOC_VTABLE_ENTRY:
9646 fixP->fx_done = 0;
9647 return;
9648
9649 default:
9650 break;
9651 }
9652 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9653 *valP = value;
9654 #endif /* !defined (TE_Mach) */
9655
9656 /* Are we finished with this relocation now? */
9657 if (fixP->fx_addsy == NULL)
9658 fixP->fx_done = 1;
9659 #if defined (OBJ_COFF) && defined (TE_PE)
9660 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9661 {
9662 fixP->fx_done = 0;
9663 /* Remember value for tc_gen_reloc. */
9664 fixP->fx_addnumber = value;
9665 /* Clear out the frag for now. */
9666 value = 0;
9667 }
9668 #endif
9669 else if (use_rela_relocations)
9670 {
9671 fixP->fx_no_overflow = 1;
9672 /* Remember value for tc_gen_reloc. */
9673 fixP->fx_addnumber = value;
9674 value = 0;
9675 }
9676
9677 md_number_to_chars (p, value, fixP->fx_size);
9678 }
9679 \f
9680 const char *
9681 md_atof (int type, char *litP, int *sizeP)
9682 {
9683 /* This outputs the LITTLENUMs in REVERSE order;
9684 in accord with the bigendian 386. */
9685 return ieee_md_atof (type, litP, sizeP, FALSE);
9686 }
9687 \f
9688 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9689
9690 static char *
9691 output_invalid (int c)
9692 {
9693 if (ISPRINT (c))
9694 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9695 "'%c'", c);
9696 else
9697 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9698 "(0x%x)", (unsigned char) c);
9699 return output_invalid_buf;
9700 }
9701
9702 /* REG_STRING starts *before* REGISTER_PREFIX. */
9703
9704 static const reg_entry *
9705 parse_real_register (char *reg_string, char **end_op)
9706 {
9707 char *s = reg_string;
9708 char *p;
9709 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9710 const reg_entry *r;
9711
9712 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9713 if (*s == REGISTER_PREFIX)
9714 ++s;
9715
9716 if (is_space_char (*s))
9717 ++s;
9718
9719 p = reg_name_given;
9720 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9721 {
9722 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9723 return (const reg_entry *) NULL;
9724 s++;
9725 }
9726
9727 /* For naked regs, make sure that we are not dealing with an identifier.
9728 This prevents confusing an identifier like `eax_var' with register
9729 `eax'. */
9730 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9731 return (const reg_entry *) NULL;
9732
9733 *end_op = s;
9734
9735 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9736
9737 /* Handle floating point regs, allowing spaces in the (i) part. */
9738 if (r == i386_regtab /* %st is first entry of table */)
9739 {
9740 if (is_space_char (*s))
9741 ++s;
9742 if (*s == '(')
9743 {
9744 ++s;
9745 if (is_space_char (*s))
9746 ++s;
9747 if (*s >= '0' && *s <= '7')
9748 {
9749 int fpr = *s - '0';
9750 ++s;
9751 if (is_space_char (*s))
9752 ++s;
9753 if (*s == ')')
9754 {
9755 *end_op = s + 1;
9756 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9757 know (r);
9758 return r + fpr;
9759 }
9760 }
9761 /* We have "%st(" then garbage. */
9762 return (const reg_entry *) NULL;
9763 }
9764 }
9765
9766 if (r == NULL || allow_pseudo_reg)
9767 return r;
9768
9769 if (operand_type_all_zero (&r->reg_type))
9770 return (const reg_entry *) NULL;
9771
9772 if ((r->reg_type.bitfield.reg32
9773 || r->reg_type.bitfield.sreg3
9774 || r->reg_type.bitfield.control
9775 || r->reg_type.bitfield.debug
9776 || r->reg_type.bitfield.test)
9777 && !cpu_arch_flags.bitfield.cpui386)
9778 return (const reg_entry *) NULL;
9779
9780 if (r->reg_type.bitfield.floatreg
9781 && !cpu_arch_flags.bitfield.cpu8087
9782 && !cpu_arch_flags.bitfield.cpu287
9783 && !cpu_arch_flags.bitfield.cpu387)
9784 return (const reg_entry *) NULL;
9785
9786 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
9787 return (const reg_entry *) NULL;
9788
9789 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpuregxmm)
9790 return (const reg_entry *) NULL;
9791
9792 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuregymm)
9793 return (const reg_entry *) NULL;
9794
9795 if (r->reg_type.bitfield.regzmm && !cpu_arch_flags.bitfield.cpuregzmm)
9796 return (const reg_entry *) NULL;
9797
9798 if (r->reg_type.bitfield.regmask
9799 && !cpu_arch_flags.bitfield.cpuregmask)
9800 return (const reg_entry *) NULL;
9801
9802 /* Don't allow fake index register unless allow_index_reg isn't 0. */
9803 if (!allow_index_reg
9804 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9805 return (const reg_entry *) NULL;
9806
9807 /* Upper 16 vector register is only available with VREX in 64bit
9808 mode. */
9809 if ((r->reg_flags & RegVRex))
9810 {
9811 if (i.vec_encoding == vex_encoding_default)
9812 i.vec_encoding = vex_encoding_evex;
9813
9814 if (!cpu_arch_flags.bitfield.cpuvrex
9815 || i.vec_encoding != vex_encoding_evex
9816 || flag_code != CODE_64BIT)
9817 return (const reg_entry *) NULL;
9818 }
9819
9820 if (((r->reg_flags & (RegRex64 | RegRex))
9821 || r->reg_type.bitfield.reg64)
9822 && (!cpu_arch_flags.bitfield.cpulm
9823 || !operand_type_equal (&r->reg_type, &control))
9824 && flag_code != CODE_64BIT)
9825 return (const reg_entry *) NULL;
9826
9827 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9828 return (const reg_entry *) NULL;
9829
9830 return r;
9831 }
9832
9833 /* REG_STRING starts *before* REGISTER_PREFIX. */
9834
9835 static const reg_entry *
9836 parse_register (char *reg_string, char **end_op)
9837 {
9838 const reg_entry *r;
9839
9840 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9841 r = parse_real_register (reg_string, end_op);
9842 else
9843 r = NULL;
9844 if (!r)
9845 {
9846 char *save = input_line_pointer;
9847 char c;
9848 symbolS *symbolP;
9849
9850 input_line_pointer = reg_string;
9851 c = get_symbol_name (&reg_string);
9852 symbolP = symbol_find (reg_string);
9853 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9854 {
9855 const expressionS *e = symbol_get_value_expression (symbolP);
9856
9857 know (e->X_op == O_register);
9858 know (e->X_add_number >= 0
9859 && (valueT) e->X_add_number < i386_regtab_size);
9860 r = i386_regtab + e->X_add_number;
9861 if ((r->reg_flags & RegVRex))
9862 i.vec_encoding = vex_encoding_evex;
9863 *end_op = input_line_pointer;
9864 }
9865 *input_line_pointer = c;
9866 input_line_pointer = save;
9867 }
9868 return r;
9869 }
9870
9871 int
9872 i386_parse_name (char *name, expressionS *e, char *nextcharP)
9873 {
9874 const reg_entry *r;
9875 char *end = input_line_pointer;
9876
9877 *end = *nextcharP;
9878 r = parse_register (name, &input_line_pointer);
9879 if (r && end <= input_line_pointer)
9880 {
9881 *nextcharP = *input_line_pointer;
9882 *input_line_pointer = 0;
9883 e->X_op = O_register;
9884 e->X_add_number = r - i386_regtab;
9885 return 1;
9886 }
9887 input_line_pointer = end;
9888 *end = 0;
9889 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
9890 }
9891
9892 void
9893 md_operand (expressionS *e)
9894 {
9895 char *end;
9896 const reg_entry *r;
9897
9898 switch (*input_line_pointer)
9899 {
9900 case REGISTER_PREFIX:
9901 r = parse_real_register (input_line_pointer, &end);
9902 if (r)
9903 {
9904 e->X_op = O_register;
9905 e->X_add_number = r - i386_regtab;
9906 input_line_pointer = end;
9907 }
9908 break;
9909
9910 case '[':
9911 gas_assert (intel_syntax);
9912 end = input_line_pointer++;
9913 expression (e);
9914 if (*input_line_pointer == ']')
9915 {
9916 ++input_line_pointer;
9917 e->X_op_symbol = make_expr_symbol (e);
9918 e->X_add_symbol = NULL;
9919 e->X_add_number = 0;
9920 e->X_op = O_index;
9921 }
9922 else
9923 {
9924 e->X_op = O_absent;
9925 input_line_pointer = end;
9926 }
9927 break;
9928 }
9929 }
9930
9931 \f
9932 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9933 const char *md_shortopts = "kVQ:sqn";
9934 #else
9935 const char *md_shortopts = "qn";
9936 #endif
9937
9938 #define OPTION_32 (OPTION_MD_BASE + 0)
9939 #define OPTION_64 (OPTION_MD_BASE + 1)
9940 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9941 #define OPTION_MARCH (OPTION_MD_BASE + 3)
9942 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
9943 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9944 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9945 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9946 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9947 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9948 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9949 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9950 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9951 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9952 #define OPTION_X32 (OPTION_MD_BASE + 14)
9953 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9954 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9955 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9956 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
9957 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
9958 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
9959 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
9960 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
9961 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
9962 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
9963 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 25)
9964
9965 struct option md_longopts[] =
9966 {
9967 {"32", no_argument, NULL, OPTION_32},
9968 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9969 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9970 {"64", no_argument, NULL, OPTION_64},
9971 #endif
9972 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9973 {"x32", no_argument, NULL, OPTION_X32},
9974 {"mshared", no_argument, NULL, OPTION_MSHARED},
9975 #endif
9976 {"divide", no_argument, NULL, OPTION_DIVIDE},
9977 {"march", required_argument, NULL, OPTION_MARCH},
9978 {"mtune", required_argument, NULL, OPTION_MTUNE},
9979 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9980 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9981 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9982 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9983 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
9984 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
9985 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
9986 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
9987 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
9988 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
9989 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
9990 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
9991 # if defined (TE_PE) || defined (TE_PEP)
9992 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
9993 #endif
9994 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
9995 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
9996 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
9997 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
9998 {"mamd64", no_argument, NULL, OPTION_MAMD64},
9999 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10000 {NULL, no_argument, NULL, 0}
10001 };
10002 size_t md_longopts_size = sizeof (md_longopts);
10003
10004 int
10005 md_parse_option (int c, const char *arg)
10006 {
10007 unsigned int j;
10008 char *arch, *next, *saved;
10009
10010 switch (c)
10011 {
10012 case 'n':
10013 optimize_align_code = 0;
10014 break;
10015
10016 case 'q':
10017 quiet_warnings = 1;
10018 break;
10019
10020 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10021 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10022 should be emitted or not. FIXME: Not implemented. */
10023 case 'Q':
10024 break;
10025
10026 /* -V: SVR4 argument to print version ID. */
10027 case 'V':
10028 print_version_id ();
10029 break;
10030
10031 /* -k: Ignore for FreeBSD compatibility. */
10032 case 'k':
10033 break;
10034
10035 case 's':
10036 /* -s: On i386 Solaris, this tells the native assembler to use
10037 .stab instead of .stab.excl. We always use .stab anyhow. */
10038 break;
10039
10040 case OPTION_MSHARED:
10041 shared = 1;
10042 break;
10043 #endif
10044 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10045 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10046 case OPTION_64:
10047 {
10048 const char **list, **l;
10049
10050 list = bfd_target_list ();
10051 for (l = list; *l != NULL; l++)
10052 if (CONST_STRNEQ (*l, "elf64-x86-64")
10053 || strcmp (*l, "coff-x86-64") == 0
10054 || strcmp (*l, "pe-x86-64") == 0
10055 || strcmp (*l, "pei-x86-64") == 0
10056 || strcmp (*l, "mach-o-x86-64") == 0)
10057 {
10058 default_arch = "x86_64";
10059 break;
10060 }
10061 if (*l == NULL)
10062 as_fatal (_("no compiled in support for x86_64"));
10063 free (list);
10064 }
10065 break;
10066 #endif
10067
10068 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10069 case OPTION_X32:
10070 if (IS_ELF)
10071 {
10072 const char **list, **l;
10073
10074 list = bfd_target_list ();
10075 for (l = list; *l != NULL; l++)
10076 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10077 {
10078 default_arch = "x86_64:32";
10079 break;
10080 }
10081 if (*l == NULL)
10082 as_fatal (_("no compiled in support for 32bit x86_64"));
10083 free (list);
10084 }
10085 else
10086 as_fatal (_("32bit x86_64 is only supported for ELF"));
10087 break;
10088 #endif
10089
10090 case OPTION_32:
10091 default_arch = "i386";
10092 break;
10093
10094 case OPTION_DIVIDE:
10095 #ifdef SVR4_COMMENT_CHARS
10096 {
10097 char *n, *t;
10098 const char *s;
10099
10100 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10101 t = n;
10102 for (s = i386_comment_chars; *s != '\0'; s++)
10103 if (*s != '/')
10104 *t++ = *s;
10105 *t = '\0';
10106 i386_comment_chars = n;
10107 }
10108 #endif
10109 break;
10110
10111 case OPTION_MARCH:
10112 saved = xstrdup (arg);
10113 arch = saved;
10114 /* Allow -march=+nosse. */
10115 if (*arch == '+')
10116 arch++;
10117 do
10118 {
10119 if (*arch == '.')
10120 as_fatal (_("invalid -march= option: `%s'"), arg);
10121 next = strchr (arch, '+');
10122 if (next)
10123 *next++ = '\0';
10124 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10125 {
10126 if (strcmp (arch, cpu_arch [j].name) == 0)
10127 {
10128 /* Processor. */
10129 if (! cpu_arch[j].flags.bitfield.cpui386)
10130 continue;
10131
10132 cpu_arch_name = cpu_arch[j].name;
10133 cpu_sub_arch_name = NULL;
10134 cpu_arch_flags = cpu_arch[j].flags;
10135 cpu_arch_isa = cpu_arch[j].type;
10136 cpu_arch_isa_flags = cpu_arch[j].flags;
10137 if (!cpu_arch_tune_set)
10138 {
10139 cpu_arch_tune = cpu_arch_isa;
10140 cpu_arch_tune_flags = cpu_arch_isa_flags;
10141 }
10142 break;
10143 }
10144 else if (*cpu_arch [j].name == '.'
10145 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10146 {
10147 /* ISA extension. */
10148 i386_cpu_flags flags;
10149
10150 flags = cpu_flags_or (cpu_arch_flags,
10151 cpu_arch[j].flags);
10152
10153 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10154 {
10155 if (cpu_sub_arch_name)
10156 {
10157 char *name = cpu_sub_arch_name;
10158 cpu_sub_arch_name = concat (name,
10159 cpu_arch[j].name,
10160 (const char *) NULL);
10161 free (name);
10162 }
10163 else
10164 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10165 cpu_arch_flags = flags;
10166 cpu_arch_isa_flags = flags;
10167 }
10168 break;
10169 }
10170 }
10171
10172 if (j >= ARRAY_SIZE (cpu_arch))
10173 {
10174 /* Disable an ISA extension. */
10175 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10176 if (strcmp (arch, cpu_noarch [j].name) == 0)
10177 {
10178 i386_cpu_flags flags;
10179
10180 flags = cpu_flags_and_not (cpu_arch_flags,
10181 cpu_noarch[j].flags);
10182 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10183 {
10184 if (cpu_sub_arch_name)
10185 {
10186 char *name = cpu_sub_arch_name;
10187 cpu_sub_arch_name = concat (arch,
10188 (const char *) NULL);
10189 free (name);
10190 }
10191 else
10192 cpu_sub_arch_name = xstrdup (arch);
10193 cpu_arch_flags = flags;
10194 cpu_arch_isa_flags = flags;
10195 }
10196 break;
10197 }
10198
10199 if (j >= ARRAY_SIZE (cpu_noarch))
10200 j = ARRAY_SIZE (cpu_arch);
10201 }
10202
10203 if (j >= ARRAY_SIZE (cpu_arch))
10204 as_fatal (_("invalid -march= option: `%s'"), arg);
10205
10206 arch = next;
10207 }
10208 while (next != NULL);
10209 free (saved);
10210 break;
10211
10212 case OPTION_MTUNE:
10213 if (*arg == '.')
10214 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10215 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10216 {
10217 if (strcmp (arg, cpu_arch [j].name) == 0)
10218 {
10219 cpu_arch_tune_set = 1;
10220 cpu_arch_tune = cpu_arch [j].type;
10221 cpu_arch_tune_flags = cpu_arch[j].flags;
10222 break;
10223 }
10224 }
10225 if (j >= ARRAY_SIZE (cpu_arch))
10226 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10227 break;
10228
10229 case OPTION_MMNEMONIC:
10230 if (strcasecmp (arg, "att") == 0)
10231 intel_mnemonic = 0;
10232 else if (strcasecmp (arg, "intel") == 0)
10233 intel_mnemonic = 1;
10234 else
10235 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10236 break;
10237
10238 case OPTION_MSYNTAX:
10239 if (strcasecmp (arg, "att") == 0)
10240 intel_syntax = 0;
10241 else if (strcasecmp (arg, "intel") == 0)
10242 intel_syntax = 1;
10243 else
10244 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10245 break;
10246
10247 case OPTION_MINDEX_REG:
10248 allow_index_reg = 1;
10249 break;
10250
10251 case OPTION_MNAKED_REG:
10252 allow_naked_reg = 1;
10253 break;
10254
10255 case OPTION_MOLD_GCC:
10256 old_gcc = 1;
10257 break;
10258
10259 case OPTION_MSSE2AVX:
10260 sse2avx = 1;
10261 break;
10262
10263 case OPTION_MSSE_CHECK:
10264 if (strcasecmp (arg, "error") == 0)
10265 sse_check = check_error;
10266 else if (strcasecmp (arg, "warning") == 0)
10267 sse_check = check_warning;
10268 else if (strcasecmp (arg, "none") == 0)
10269 sse_check = check_none;
10270 else
10271 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10272 break;
10273
10274 case OPTION_MOPERAND_CHECK:
10275 if (strcasecmp (arg, "error") == 0)
10276 operand_check = check_error;
10277 else if (strcasecmp (arg, "warning") == 0)
10278 operand_check = check_warning;
10279 else if (strcasecmp (arg, "none") == 0)
10280 operand_check = check_none;
10281 else
10282 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10283 break;
10284
10285 case OPTION_MAVXSCALAR:
10286 if (strcasecmp (arg, "128") == 0)
10287 avxscalar = vex128;
10288 else if (strcasecmp (arg, "256") == 0)
10289 avxscalar = vex256;
10290 else
10291 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10292 break;
10293
10294 case OPTION_MADD_BND_PREFIX:
10295 add_bnd_prefix = 1;
10296 break;
10297
10298 case OPTION_MEVEXLIG:
10299 if (strcmp (arg, "128") == 0)
10300 evexlig = evexl128;
10301 else if (strcmp (arg, "256") == 0)
10302 evexlig = evexl256;
10303 else if (strcmp (arg, "512") == 0)
10304 evexlig = evexl512;
10305 else
10306 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10307 break;
10308
10309 case OPTION_MEVEXRCIG:
10310 if (strcmp (arg, "rne") == 0)
10311 evexrcig = rne;
10312 else if (strcmp (arg, "rd") == 0)
10313 evexrcig = rd;
10314 else if (strcmp (arg, "ru") == 0)
10315 evexrcig = ru;
10316 else if (strcmp (arg, "rz") == 0)
10317 evexrcig = rz;
10318 else
10319 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10320 break;
10321
10322 case OPTION_MEVEXWIG:
10323 if (strcmp (arg, "0") == 0)
10324 evexwig = evexw0;
10325 else if (strcmp (arg, "1") == 0)
10326 evexwig = evexw1;
10327 else
10328 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10329 break;
10330
10331 # if defined (TE_PE) || defined (TE_PEP)
10332 case OPTION_MBIG_OBJ:
10333 use_big_obj = 1;
10334 break;
10335 #endif
10336
10337 case OPTION_MOMIT_LOCK_PREFIX:
10338 if (strcasecmp (arg, "yes") == 0)
10339 omit_lock_prefix = 1;
10340 else if (strcasecmp (arg, "no") == 0)
10341 omit_lock_prefix = 0;
10342 else
10343 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10344 break;
10345
10346 case OPTION_MFENCE_AS_LOCK_ADD:
10347 if (strcasecmp (arg, "yes") == 0)
10348 avoid_fence = 1;
10349 else if (strcasecmp (arg, "no") == 0)
10350 avoid_fence = 0;
10351 else
10352 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10353 break;
10354
10355 case OPTION_MRELAX_RELOCATIONS:
10356 if (strcasecmp (arg, "yes") == 0)
10357 generate_relax_relocations = 1;
10358 else if (strcasecmp (arg, "no") == 0)
10359 generate_relax_relocations = 0;
10360 else
10361 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10362 break;
10363
10364 case OPTION_MAMD64:
10365 intel64 = 0;
10366 break;
10367
10368 case OPTION_MINTEL64:
10369 intel64 = 1;
10370 break;
10371
10372 default:
10373 return 0;
10374 }
10375 return 1;
10376 }
10377
10378 #define MESSAGE_TEMPLATE \
10379 " "
10380
10381 static char *
10382 output_message (FILE *stream, char *p, char *message, char *start,
10383 int *left_p, const char *name, int len)
10384 {
10385 int size = sizeof (MESSAGE_TEMPLATE);
10386 int left = *left_p;
10387
10388 /* Reserve 2 spaces for ", " or ",\0" */
10389 left -= len + 2;
10390
10391 /* Check if there is any room. */
10392 if (left >= 0)
10393 {
10394 if (p != start)
10395 {
10396 *p++ = ',';
10397 *p++ = ' ';
10398 }
10399 p = mempcpy (p, name, len);
10400 }
10401 else
10402 {
10403 /* Output the current message now and start a new one. */
10404 *p++ = ',';
10405 *p = '\0';
10406 fprintf (stream, "%s\n", message);
10407 p = start;
10408 left = size - (start - message) - len - 2;
10409
10410 gas_assert (left >= 0);
10411
10412 p = mempcpy (p, name, len);
10413 }
10414
10415 *left_p = left;
10416 return p;
10417 }
10418
10419 static void
10420 show_arch (FILE *stream, int ext, int check)
10421 {
10422 static char message[] = MESSAGE_TEMPLATE;
10423 char *start = message + 27;
10424 char *p;
10425 int size = sizeof (MESSAGE_TEMPLATE);
10426 int left;
10427 const char *name;
10428 int len;
10429 unsigned int j;
10430
10431 p = start;
10432 left = size - (start - message);
10433 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10434 {
10435 /* Should it be skipped? */
10436 if (cpu_arch [j].skip)
10437 continue;
10438
10439 name = cpu_arch [j].name;
10440 len = cpu_arch [j].len;
10441 if (*name == '.')
10442 {
10443 /* It is an extension. Skip if we aren't asked to show it. */
10444 if (ext)
10445 {
10446 name++;
10447 len--;
10448 }
10449 else
10450 continue;
10451 }
10452 else if (ext)
10453 {
10454 /* It is an processor. Skip if we show only extension. */
10455 continue;
10456 }
10457 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10458 {
10459 /* It is an impossible processor - skip. */
10460 continue;
10461 }
10462
10463 p = output_message (stream, p, message, start, &left, name, len);
10464 }
10465
10466 /* Display disabled extensions. */
10467 if (ext)
10468 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10469 {
10470 name = cpu_noarch [j].name;
10471 len = cpu_noarch [j].len;
10472 p = output_message (stream, p, message, start, &left, name,
10473 len);
10474 }
10475
10476 *p = '\0';
10477 fprintf (stream, "%s\n", message);
10478 }
10479
10480 void
10481 md_show_usage (FILE *stream)
10482 {
10483 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10484 fprintf (stream, _("\
10485 -Q ignored\n\
10486 -V print assembler version number\n\
10487 -k ignored\n"));
10488 #endif
10489 fprintf (stream, _("\
10490 -n Do not optimize code alignment\n\
10491 -q quieten some warnings\n"));
10492 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10493 fprintf (stream, _("\
10494 -s ignored\n"));
10495 #endif
10496 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10497 || defined (TE_PE) || defined (TE_PEP))
10498 fprintf (stream, _("\
10499 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10500 #endif
10501 #ifdef SVR4_COMMENT_CHARS
10502 fprintf (stream, _("\
10503 --divide do not treat `/' as a comment character\n"));
10504 #else
10505 fprintf (stream, _("\
10506 --divide ignored\n"));
10507 #endif
10508 fprintf (stream, _("\
10509 -march=CPU[,+EXTENSION...]\n\
10510 generate code for CPU and EXTENSION, CPU is one of:\n"));
10511 show_arch (stream, 0, 1);
10512 fprintf (stream, _("\
10513 EXTENSION is combination of:\n"));
10514 show_arch (stream, 1, 0);
10515 fprintf (stream, _("\
10516 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10517 show_arch (stream, 0, 0);
10518 fprintf (stream, _("\
10519 -msse2avx encode SSE instructions with VEX prefix\n"));
10520 fprintf (stream, _("\
10521 -msse-check=[none|error|warning]\n\
10522 check SSE instructions\n"));
10523 fprintf (stream, _("\
10524 -moperand-check=[none|error|warning]\n\
10525 check operand combinations for validity\n"));
10526 fprintf (stream, _("\
10527 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10528 length\n"));
10529 fprintf (stream, _("\
10530 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10531 length\n"));
10532 fprintf (stream, _("\
10533 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10534 for EVEX.W bit ignored instructions\n"));
10535 fprintf (stream, _("\
10536 -mevexrcig=[rne|rd|ru|rz]\n\
10537 encode EVEX instructions with specific EVEX.RC value\n\
10538 for SAE-only ignored instructions\n"));
10539 fprintf (stream, _("\
10540 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10541 fprintf (stream, _("\
10542 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10543 fprintf (stream, _("\
10544 -mindex-reg support pseudo index registers\n"));
10545 fprintf (stream, _("\
10546 -mnaked-reg don't require `%%' prefix for registers\n"));
10547 fprintf (stream, _("\
10548 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
10549 fprintf (stream, _("\
10550 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10551 fprintf (stream, _("\
10552 -mshared disable branch optimization for shared code\n"));
10553 # if defined (TE_PE) || defined (TE_PEP)
10554 fprintf (stream, _("\
10555 -mbig-obj generate big object files\n"));
10556 #endif
10557 fprintf (stream, _("\
10558 -momit-lock-prefix=[no|yes]\n\
10559 strip all lock prefixes\n"));
10560 fprintf (stream, _("\
10561 -mfence-as-lock-add=[no|yes]\n\
10562 encode lfence, mfence and sfence as\n\
10563 lock addl $0x0, (%%{re}sp)\n"));
10564 fprintf (stream, _("\
10565 -mrelax-relocations=[no|yes]\n\
10566 generate relax relocations\n"));
10567 fprintf (stream, _("\
10568 -mamd64 accept only AMD64 ISA\n"));
10569 fprintf (stream, _("\
10570 -mintel64 accept only Intel64 ISA\n"));
10571 }
10572
10573 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10574 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10575 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10576
10577 /* Pick the target format to use. */
10578
10579 const char *
10580 i386_target_format (void)
10581 {
10582 if (!strncmp (default_arch, "x86_64", 6))
10583 {
10584 update_code_flag (CODE_64BIT, 1);
10585 if (default_arch[6] == '\0')
10586 x86_elf_abi = X86_64_ABI;
10587 else
10588 x86_elf_abi = X86_64_X32_ABI;
10589 }
10590 else if (!strcmp (default_arch, "i386"))
10591 update_code_flag (CODE_32BIT, 1);
10592 else if (!strcmp (default_arch, "iamcu"))
10593 {
10594 update_code_flag (CODE_32BIT, 1);
10595 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10596 {
10597 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10598 cpu_arch_name = "iamcu";
10599 cpu_sub_arch_name = NULL;
10600 cpu_arch_flags = iamcu_flags;
10601 cpu_arch_isa = PROCESSOR_IAMCU;
10602 cpu_arch_isa_flags = iamcu_flags;
10603 if (!cpu_arch_tune_set)
10604 {
10605 cpu_arch_tune = cpu_arch_isa;
10606 cpu_arch_tune_flags = cpu_arch_isa_flags;
10607 }
10608 }
10609 else if (cpu_arch_isa != PROCESSOR_IAMCU)
10610 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10611 cpu_arch_name);
10612 }
10613 else
10614 as_fatal (_("unknown architecture"));
10615
10616 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10617 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10618 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10619 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10620
10621 switch (OUTPUT_FLAVOR)
10622 {
10623 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10624 case bfd_target_aout_flavour:
10625 return AOUT_TARGET_FORMAT;
10626 #endif
10627 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10628 # if defined (TE_PE) || defined (TE_PEP)
10629 case bfd_target_coff_flavour:
10630 if (flag_code == CODE_64BIT)
10631 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10632 else
10633 return "pe-i386";
10634 # elif defined (TE_GO32)
10635 case bfd_target_coff_flavour:
10636 return "coff-go32";
10637 # else
10638 case bfd_target_coff_flavour:
10639 return "coff-i386";
10640 # endif
10641 #endif
10642 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10643 case bfd_target_elf_flavour:
10644 {
10645 const char *format;
10646
10647 switch (x86_elf_abi)
10648 {
10649 default:
10650 format = ELF_TARGET_FORMAT;
10651 break;
10652 case X86_64_ABI:
10653 use_rela_relocations = 1;
10654 object_64bit = 1;
10655 format = ELF_TARGET_FORMAT64;
10656 break;
10657 case X86_64_X32_ABI:
10658 use_rela_relocations = 1;
10659 object_64bit = 1;
10660 disallow_64bit_reloc = 1;
10661 format = ELF_TARGET_FORMAT32;
10662 break;
10663 }
10664 if (cpu_arch_isa == PROCESSOR_L1OM)
10665 {
10666 if (x86_elf_abi != X86_64_ABI)
10667 as_fatal (_("Intel L1OM is 64bit only"));
10668 return ELF_TARGET_L1OM_FORMAT;
10669 }
10670 else if (cpu_arch_isa == PROCESSOR_K1OM)
10671 {
10672 if (x86_elf_abi != X86_64_ABI)
10673 as_fatal (_("Intel K1OM is 64bit only"));
10674 return ELF_TARGET_K1OM_FORMAT;
10675 }
10676 else if (cpu_arch_isa == PROCESSOR_IAMCU)
10677 {
10678 if (x86_elf_abi != I386_ABI)
10679 as_fatal (_("Intel MCU is 32bit only"));
10680 return ELF_TARGET_IAMCU_FORMAT;
10681 }
10682 else
10683 return format;
10684 }
10685 #endif
10686 #if defined (OBJ_MACH_O)
10687 case bfd_target_mach_o_flavour:
10688 if (flag_code == CODE_64BIT)
10689 {
10690 use_rela_relocations = 1;
10691 object_64bit = 1;
10692 return "mach-o-x86-64";
10693 }
10694 else
10695 return "mach-o-i386";
10696 #endif
10697 default:
10698 abort ();
10699 return NULL;
10700 }
10701 }
10702
10703 #endif /* OBJ_MAYBE_ more than one */
10704 \f
10705 symbolS *
10706 md_undefined_symbol (char *name)
10707 {
10708 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10709 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10710 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10711 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10712 {
10713 if (!GOT_symbol)
10714 {
10715 if (symbol_find (name))
10716 as_bad (_("GOT already in symbol table"));
10717 GOT_symbol = symbol_new (name, undefined_section,
10718 (valueT) 0, &zero_address_frag);
10719 };
10720 return GOT_symbol;
10721 }
10722 return 0;
10723 }
10724
10725 /* Round up a section size to the appropriate boundary. */
10726
10727 valueT
10728 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10729 {
10730 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10731 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10732 {
10733 /* For a.out, force the section size to be aligned. If we don't do
10734 this, BFD will align it for us, but it will not write out the
10735 final bytes of the section. This may be a bug in BFD, but it is
10736 easier to fix it here since that is how the other a.out targets
10737 work. */
10738 int align;
10739
10740 align = bfd_get_section_alignment (stdoutput, segment);
10741 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
10742 }
10743 #endif
10744
10745 return size;
10746 }
10747
10748 /* On the i386, PC-relative offsets are relative to the start of the
10749 next instruction. That is, the address of the offset, plus its
10750 size, since the offset is always the last part of the insn. */
10751
10752 long
10753 md_pcrel_from (fixS *fixP)
10754 {
10755 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10756 }
10757
10758 #ifndef I386COFF
10759
10760 static void
10761 s_bss (int ignore ATTRIBUTE_UNUSED)
10762 {
10763 int temp;
10764
10765 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10766 if (IS_ELF)
10767 obj_elf_section_change_hook ();
10768 #endif
10769 temp = get_absolute_expression ();
10770 subseg_set (bss_section, (subsegT) temp);
10771 demand_empty_rest_of_line ();
10772 }
10773
10774 #endif
10775
10776 void
10777 i386_validate_fix (fixS *fixp)
10778 {
10779 if (fixp->fx_subsy)
10780 {
10781 if (fixp->fx_subsy == GOT_symbol)
10782 {
10783 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10784 {
10785 if (!object_64bit)
10786 abort ();
10787 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10788 if (fixp->fx_tcbit2)
10789 fixp->fx_r_type = (fixp->fx_tcbit
10790 ? BFD_RELOC_X86_64_REX_GOTPCRELX
10791 : BFD_RELOC_X86_64_GOTPCRELX);
10792 else
10793 #endif
10794 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10795 }
10796 else
10797 {
10798 if (!object_64bit)
10799 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10800 else
10801 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10802 }
10803 fixp->fx_subsy = 0;
10804 }
10805 }
10806 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10807 else if (!object_64bit)
10808 {
10809 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
10810 && fixp->fx_tcbit2)
10811 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
10812 }
10813 #endif
10814 }
10815
10816 arelent *
10817 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10818 {
10819 arelent *rel;
10820 bfd_reloc_code_real_type code;
10821
10822 switch (fixp->fx_r_type)
10823 {
10824 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10825 case BFD_RELOC_SIZE32:
10826 case BFD_RELOC_SIZE64:
10827 if (S_IS_DEFINED (fixp->fx_addsy)
10828 && !S_IS_EXTERNAL (fixp->fx_addsy))
10829 {
10830 /* Resolve size relocation against local symbol to size of
10831 the symbol plus addend. */
10832 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10833 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10834 && !fits_in_unsigned_long (value))
10835 as_bad_where (fixp->fx_file, fixp->fx_line,
10836 _("symbol size computation overflow"));
10837 fixp->fx_addsy = NULL;
10838 fixp->fx_subsy = NULL;
10839 md_apply_fix (fixp, (valueT *) &value, NULL);
10840 return NULL;
10841 }
10842 #endif
10843 /* Fall through. */
10844
10845 case BFD_RELOC_X86_64_PLT32:
10846 case BFD_RELOC_X86_64_GOT32:
10847 case BFD_RELOC_X86_64_GOTPCREL:
10848 case BFD_RELOC_X86_64_GOTPCRELX:
10849 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10850 case BFD_RELOC_386_PLT32:
10851 case BFD_RELOC_386_GOT32:
10852 case BFD_RELOC_386_GOT32X:
10853 case BFD_RELOC_386_GOTOFF:
10854 case BFD_RELOC_386_GOTPC:
10855 case BFD_RELOC_386_TLS_GD:
10856 case BFD_RELOC_386_TLS_LDM:
10857 case BFD_RELOC_386_TLS_LDO_32:
10858 case BFD_RELOC_386_TLS_IE_32:
10859 case BFD_RELOC_386_TLS_IE:
10860 case BFD_RELOC_386_TLS_GOTIE:
10861 case BFD_RELOC_386_TLS_LE_32:
10862 case BFD_RELOC_386_TLS_LE:
10863 case BFD_RELOC_386_TLS_GOTDESC:
10864 case BFD_RELOC_386_TLS_DESC_CALL:
10865 case BFD_RELOC_X86_64_TLSGD:
10866 case BFD_RELOC_X86_64_TLSLD:
10867 case BFD_RELOC_X86_64_DTPOFF32:
10868 case BFD_RELOC_X86_64_DTPOFF64:
10869 case BFD_RELOC_X86_64_GOTTPOFF:
10870 case BFD_RELOC_X86_64_TPOFF32:
10871 case BFD_RELOC_X86_64_TPOFF64:
10872 case BFD_RELOC_X86_64_GOTOFF64:
10873 case BFD_RELOC_X86_64_GOTPC32:
10874 case BFD_RELOC_X86_64_GOT64:
10875 case BFD_RELOC_X86_64_GOTPCREL64:
10876 case BFD_RELOC_X86_64_GOTPC64:
10877 case BFD_RELOC_X86_64_GOTPLT64:
10878 case BFD_RELOC_X86_64_PLTOFF64:
10879 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10880 case BFD_RELOC_X86_64_TLSDESC_CALL:
10881 case BFD_RELOC_RVA:
10882 case BFD_RELOC_VTABLE_ENTRY:
10883 case BFD_RELOC_VTABLE_INHERIT:
10884 #ifdef TE_PE
10885 case BFD_RELOC_32_SECREL:
10886 #endif
10887 code = fixp->fx_r_type;
10888 break;
10889 case BFD_RELOC_X86_64_32S:
10890 if (!fixp->fx_pcrel)
10891 {
10892 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10893 code = fixp->fx_r_type;
10894 break;
10895 }
10896 /* Fall through. */
10897 default:
10898 if (fixp->fx_pcrel)
10899 {
10900 switch (fixp->fx_size)
10901 {
10902 default:
10903 as_bad_where (fixp->fx_file, fixp->fx_line,
10904 _("can not do %d byte pc-relative relocation"),
10905 fixp->fx_size);
10906 code = BFD_RELOC_32_PCREL;
10907 break;
10908 case 1: code = BFD_RELOC_8_PCREL; break;
10909 case 2: code = BFD_RELOC_16_PCREL; break;
10910 case 4: code = BFD_RELOC_32_PCREL; break;
10911 #ifdef BFD64
10912 case 8: code = BFD_RELOC_64_PCREL; break;
10913 #endif
10914 }
10915 }
10916 else
10917 {
10918 switch (fixp->fx_size)
10919 {
10920 default:
10921 as_bad_where (fixp->fx_file, fixp->fx_line,
10922 _("can not do %d byte relocation"),
10923 fixp->fx_size);
10924 code = BFD_RELOC_32;
10925 break;
10926 case 1: code = BFD_RELOC_8; break;
10927 case 2: code = BFD_RELOC_16; break;
10928 case 4: code = BFD_RELOC_32; break;
10929 #ifdef BFD64
10930 case 8: code = BFD_RELOC_64; break;
10931 #endif
10932 }
10933 }
10934 break;
10935 }
10936
10937 if ((code == BFD_RELOC_32
10938 || code == BFD_RELOC_32_PCREL
10939 || code == BFD_RELOC_X86_64_32S)
10940 && GOT_symbol
10941 && fixp->fx_addsy == GOT_symbol)
10942 {
10943 if (!object_64bit)
10944 code = BFD_RELOC_386_GOTPC;
10945 else
10946 code = BFD_RELOC_X86_64_GOTPC32;
10947 }
10948 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10949 && GOT_symbol
10950 && fixp->fx_addsy == GOT_symbol)
10951 {
10952 code = BFD_RELOC_X86_64_GOTPC64;
10953 }
10954
10955 rel = XNEW (arelent);
10956 rel->sym_ptr_ptr = XNEW (asymbol *);
10957 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10958
10959 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
10960
10961 if (!use_rela_relocations)
10962 {
10963 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10964 vtable entry to be used in the relocation's section offset. */
10965 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10966 rel->address = fixp->fx_offset;
10967 #if defined (OBJ_COFF) && defined (TE_PE)
10968 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10969 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10970 else
10971 #endif
10972 rel->addend = 0;
10973 }
10974 /* Use the rela in 64bit mode. */
10975 else
10976 {
10977 if (disallow_64bit_reloc)
10978 switch (code)
10979 {
10980 case BFD_RELOC_X86_64_DTPOFF64:
10981 case BFD_RELOC_X86_64_TPOFF64:
10982 case BFD_RELOC_64_PCREL:
10983 case BFD_RELOC_X86_64_GOTOFF64:
10984 case BFD_RELOC_X86_64_GOT64:
10985 case BFD_RELOC_X86_64_GOTPCREL64:
10986 case BFD_RELOC_X86_64_GOTPC64:
10987 case BFD_RELOC_X86_64_GOTPLT64:
10988 case BFD_RELOC_X86_64_PLTOFF64:
10989 as_bad_where (fixp->fx_file, fixp->fx_line,
10990 _("cannot represent relocation type %s in x32 mode"),
10991 bfd_get_reloc_code_name (code));
10992 break;
10993 default:
10994 break;
10995 }
10996
10997 if (!fixp->fx_pcrel)
10998 rel->addend = fixp->fx_offset;
10999 else
11000 switch (code)
11001 {
11002 case BFD_RELOC_X86_64_PLT32:
11003 case BFD_RELOC_X86_64_GOT32:
11004 case BFD_RELOC_X86_64_GOTPCREL:
11005 case BFD_RELOC_X86_64_GOTPCRELX:
11006 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11007 case BFD_RELOC_X86_64_TLSGD:
11008 case BFD_RELOC_X86_64_TLSLD:
11009 case BFD_RELOC_X86_64_GOTTPOFF:
11010 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11011 case BFD_RELOC_X86_64_TLSDESC_CALL:
11012 rel->addend = fixp->fx_offset - fixp->fx_size;
11013 break;
11014 default:
11015 rel->addend = (section->vma
11016 - fixp->fx_size
11017 + fixp->fx_addnumber
11018 + md_pcrel_from (fixp));
11019 break;
11020 }
11021 }
11022
11023 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11024 if (rel->howto == NULL)
11025 {
11026 as_bad_where (fixp->fx_file, fixp->fx_line,
11027 _("cannot represent relocation type %s"),
11028 bfd_get_reloc_code_name (code));
11029 /* Set howto to a garbage value so that we can keep going. */
11030 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
11031 gas_assert (rel->howto != NULL);
11032 }
11033
11034 return rel;
11035 }
11036
11037 #include "tc-i386-intel.c"
11038
11039 void
11040 tc_x86_parse_to_dw2regnum (expressionS *exp)
11041 {
11042 int saved_naked_reg;
11043 char saved_register_dot;
11044
11045 saved_naked_reg = allow_naked_reg;
11046 allow_naked_reg = 1;
11047 saved_register_dot = register_chars['.'];
11048 register_chars['.'] = '.';
11049 allow_pseudo_reg = 1;
11050 expression_and_evaluate (exp);
11051 allow_pseudo_reg = 0;
11052 register_chars['.'] = saved_register_dot;
11053 allow_naked_reg = saved_naked_reg;
11054
11055 if (exp->X_op == O_register && exp->X_add_number >= 0)
11056 {
11057 if ((addressT) exp->X_add_number < i386_regtab_size)
11058 {
11059 exp->X_op = O_constant;
11060 exp->X_add_number = i386_regtab[exp->X_add_number]
11061 .dw2_regnum[flag_code >> 1];
11062 }
11063 else
11064 exp->X_op = O_illegal;
11065 }
11066 }
11067
11068 void
11069 tc_x86_frame_initial_instructions (void)
11070 {
11071 static unsigned int sp_regno[2];
11072
11073 if (!sp_regno[flag_code >> 1])
11074 {
11075 char *saved_input = input_line_pointer;
11076 char sp[][4] = {"esp", "rsp"};
11077 expressionS exp;
11078
11079 input_line_pointer = sp[flag_code >> 1];
11080 tc_x86_parse_to_dw2regnum (&exp);
11081 gas_assert (exp.X_op == O_constant);
11082 sp_regno[flag_code >> 1] = exp.X_add_number;
11083 input_line_pointer = saved_input;
11084 }
11085
11086 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11087 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11088 }
11089
11090 int
11091 x86_dwarf2_addr_size (void)
11092 {
11093 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11094 if (x86_elf_abi == X86_64_X32_ABI)
11095 return 4;
11096 #endif
11097 return bfd_arch_bits_per_address (stdoutput) / 8;
11098 }
11099
11100 int
11101 i386_elf_section_type (const char *str, size_t len)
11102 {
11103 if (flag_code == CODE_64BIT
11104 && len == sizeof ("unwind") - 1
11105 && strncmp (str, "unwind", 6) == 0)
11106 return SHT_X86_64_UNWIND;
11107
11108 return -1;
11109 }
11110
11111 #ifdef TE_SOLARIS
11112 void
11113 i386_solaris_fix_up_eh_frame (segT sec)
11114 {
11115 if (flag_code == CODE_64BIT)
11116 elf_section_type (sec) = SHT_X86_64_UNWIND;
11117 }
11118 #endif
11119
11120 #ifdef TE_PE
11121 void
11122 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11123 {
11124 expressionS exp;
11125
11126 exp.X_op = O_secrel;
11127 exp.X_add_symbol = symbol;
11128 exp.X_add_number = 0;
11129 emit_expr (&exp, size);
11130 }
11131 #endif
11132
11133 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11134 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11135
11136 bfd_vma
11137 x86_64_section_letter (int letter, const char **ptr_msg)
11138 {
11139 if (flag_code == CODE_64BIT)
11140 {
11141 if (letter == 'l')
11142 return SHF_X86_64_LARGE;
11143
11144 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11145 }
11146 else
11147 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11148 return -1;
11149 }
11150
11151 bfd_vma
11152 x86_64_section_word (char *str, size_t len)
11153 {
11154 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11155 return SHF_X86_64_LARGE;
11156
11157 return -1;
11158 }
11159
11160 static void
11161 handle_large_common (int small ATTRIBUTE_UNUSED)
11162 {
11163 if (flag_code != CODE_64BIT)
11164 {
11165 s_comm_internal (0, elf_common_parse);
11166 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11167 }
11168 else
11169 {
11170 static segT lbss_section;
11171 asection *saved_com_section_ptr = elf_com_section_ptr;
11172 asection *saved_bss_section = bss_section;
11173
11174 if (lbss_section == NULL)
11175 {
11176 flagword applicable;
11177 segT seg = now_seg;
11178 subsegT subseg = now_subseg;
11179
11180 /* The .lbss section is for local .largecomm symbols. */
11181 lbss_section = subseg_new (".lbss", 0);
11182 applicable = bfd_applicable_section_flags (stdoutput);
11183 bfd_set_section_flags (stdoutput, lbss_section,
11184 applicable & SEC_ALLOC);
11185 seg_info (lbss_section)->bss = 1;
11186
11187 subseg_set (seg, subseg);
11188 }
11189
11190 elf_com_section_ptr = &_bfd_elf_large_com_section;
11191 bss_section = lbss_section;
11192
11193 s_comm_internal (0, elf_common_parse);
11194
11195 elf_com_section_ptr = saved_com_section_ptr;
11196 bss_section = saved_bss_section;
11197 }
11198 }
11199 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.260115 seconds and 5 git commands to generate.