x86: extend LEA's segment override warning
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef INFER_ADDR_PREFIX
48 #define INFER_ADDR_PREFIX 1
49 #endif
50
51 #ifndef DEFAULT_ARCH
52 #define DEFAULT_ARCH "i386"
53 #endif
54
55 #ifndef INLINE
56 #if __GNUC__ >= 2
57 #define INLINE __inline__
58 #else
59 #define INLINE
60 #endif
61 #endif
62
63 /* Prefixes will be emitted in the order defined below.
64 WAIT_PREFIX must be the first prefix since FWAIT is really is an
65 instruction, and so must come before any prefixes.
66 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
67 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
68 #define WAIT_PREFIX 0
69 #define SEG_PREFIX 1
70 #define ADDR_PREFIX 2
71 #define DATA_PREFIX 3
72 #define REP_PREFIX 4
73 #define HLE_PREFIX REP_PREFIX
74 #define BND_PREFIX REP_PREFIX
75 #define LOCK_PREFIX 5
76 #define REX_PREFIX 6 /* must come last. */
77 #define MAX_PREFIXES 7 /* max prefixes per opcode */
78
79 /* we define the syntax here (modulo base,index,scale syntax) */
80 #define REGISTER_PREFIX '%'
81 #define IMMEDIATE_PREFIX '$'
82 #define ABSOLUTE_PREFIX '*'
83
84 /* these are the instruction mnemonic suffixes in AT&T syntax or
85 memory operand size in Intel syntax. */
86 #define WORD_MNEM_SUFFIX 'w'
87 #define BYTE_MNEM_SUFFIX 'b'
88 #define SHORT_MNEM_SUFFIX 's'
89 #define LONG_MNEM_SUFFIX 'l'
90 #define QWORD_MNEM_SUFFIX 'q'
91 /* Intel Syntax. Use a non-ascii letter since since it never appears
92 in instructions. */
93 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
94
95 #define END_OF_INSN '\0'
96
97 /* This matches the C -> StaticRounding alias in the opcode table. */
98 #define commutative staticrounding
99
100 /*
101 'templates' is for grouping together 'template' structures for opcodes
102 of the same name. This is only used for storing the insns in the grand
103 ole hash table of insns.
104 The templates themselves start at START and range up to (but not including)
105 END.
106 */
107 typedef struct
108 {
109 const insn_template *start;
110 const insn_template *end;
111 }
112 templates;
113
114 /* 386 operand encoding bytes: see 386 book for details of this. */
115 typedef struct
116 {
117 unsigned int regmem; /* codes register or memory operand */
118 unsigned int reg; /* codes register operand (or extended opcode) */
119 unsigned int mode; /* how to interpret regmem & reg */
120 }
121 modrm_byte;
122
123 /* x86-64 extension prefix. */
124 typedef int rex_byte;
125
126 /* 386 opcode byte to code indirect addressing. */
127 typedef struct
128 {
129 unsigned base;
130 unsigned index;
131 unsigned scale;
132 }
133 sib_byte;
134
135 /* x86 arch names, types and features */
136 typedef struct
137 {
138 const char *name; /* arch name */
139 unsigned int len; /* arch string length */
140 enum processor_type type; /* arch type */
141 i386_cpu_flags flags; /* cpu feature flags */
142 unsigned int skip; /* show_arch should skip this. */
143 }
144 arch_entry;
145
146 /* Used to turn off indicated flags. */
147 typedef struct
148 {
149 const char *name; /* arch name */
150 unsigned int len; /* arch string length */
151 i386_cpu_flags flags; /* cpu feature flags */
152 }
153 noarch_entry;
154
155 static void update_code_flag (int, int);
156 static void set_code_flag (int);
157 static void set_16bit_gcc_code_flag (int);
158 static void set_intel_syntax (int);
159 static void set_intel_mnemonic (int);
160 static void set_allow_index_reg (int);
161 static void set_check (int);
162 static void set_cpu_arch (int);
163 #ifdef TE_PE
164 static void pe_directive_secrel (int);
165 #endif
166 static void signed_cons (int);
167 static char *output_invalid (int c);
168 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
169 const char *);
170 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
171 const char *);
172 static int i386_att_operand (char *);
173 static int i386_intel_operand (char *, int);
174 static int i386_intel_simplify (expressionS *);
175 static int i386_intel_parse_name (const char *, expressionS *);
176 static const reg_entry *parse_register (char *, char **);
177 static char *parse_insn (char *, char *);
178 static char *parse_operands (char *, const char *);
179 static void swap_operands (void);
180 static void swap_2_operands (int, int);
181 static enum flag_code i386_addressing_mode (void);
182 static void optimize_imm (void);
183 static void optimize_disp (void);
184 static const insn_template *match_template (char);
185 static int check_string (void);
186 static int process_suffix (void);
187 static int check_byte_reg (void);
188 static int check_long_reg (void);
189 static int check_qword_reg (void);
190 static int check_word_reg (void);
191 static int finalize_imm (void);
192 static int process_operands (void);
193 static const seg_entry *build_modrm_byte (void);
194 static void output_insn (void);
195 static void output_imm (fragS *, offsetT);
196 static void output_disp (fragS *, offsetT);
197 #ifndef I386COFF
198 static void s_bss (int);
199 #endif
200 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201 static void handle_large_common (int small ATTRIBUTE_UNUSED);
202
203 /* GNU_PROPERTY_X86_ISA_1_USED. */
204 static unsigned int x86_isa_1_used;
205 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
206 static unsigned int x86_feature_2_used;
207 /* Generate x86 used ISA and feature properties. */
208 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
209 #endif
210
211 static const char *default_arch = DEFAULT_ARCH;
212
213 /* This struct describes rounding control and SAE in the instruction. */
214 struct RC_Operation
215 {
216 enum rc_type
217 {
218 rne = 0,
219 rd,
220 ru,
221 rz,
222 saeonly
223 } type;
224 int operand;
225 };
226
227 static struct RC_Operation rc_op;
228
229 /* The struct describes masking, applied to OPERAND in the instruction.
230 MASK is a pointer to the corresponding mask register. ZEROING tells
231 whether merging or zeroing mask is used. */
232 struct Mask_Operation
233 {
234 const reg_entry *mask;
235 unsigned int zeroing;
236 /* The operand where this operation is associated. */
237 int operand;
238 };
239
240 static struct Mask_Operation mask_op;
241
242 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
243 broadcast factor. */
244 struct Broadcast_Operation
245 {
246 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
247 int type;
248
249 /* Index of broadcasted operand. */
250 int operand;
251
252 /* Number of bytes to broadcast. */
253 int bytes;
254 };
255
256 static struct Broadcast_Operation broadcast_op;
257
258 /* VEX prefix. */
259 typedef struct
260 {
261 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
262 unsigned char bytes[4];
263 unsigned int length;
264 /* Destination or source register specifier. */
265 const reg_entry *register_specifier;
266 } vex_prefix;
267
268 /* 'md_assemble ()' gathers together information and puts it into a
269 i386_insn. */
270
271 union i386_op
272 {
273 expressionS *disps;
274 expressionS *imms;
275 const reg_entry *regs;
276 };
277
278 enum i386_error
279 {
280 operand_size_mismatch,
281 operand_type_mismatch,
282 register_type_mismatch,
283 number_of_operands_mismatch,
284 invalid_instruction_suffix,
285 bad_imm4,
286 unsupported_with_intel_mnemonic,
287 unsupported_syntax,
288 unsupported,
289 invalid_vsib_address,
290 invalid_vector_register_set,
291 unsupported_vector_index_register,
292 unsupported_broadcast,
293 broadcast_needed,
294 unsupported_masking,
295 mask_not_on_destination,
296 no_default_mask,
297 unsupported_rc_sae,
298 rc_sae_operand_not_last_imm,
299 invalid_register_operand,
300 };
301
302 struct _i386_insn
303 {
304 /* TM holds the template for the insn were currently assembling. */
305 insn_template tm;
306
307 /* SUFFIX holds the instruction size suffix for byte, word, dword
308 or qword, if given. */
309 char suffix;
310
311 /* OPERANDS gives the number of given operands. */
312 unsigned int operands;
313
314 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
315 of given register, displacement, memory operands and immediate
316 operands. */
317 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
318
319 /* TYPES [i] is the type (see above #defines) which tells us how to
320 use OP[i] for the corresponding operand. */
321 i386_operand_type types[MAX_OPERANDS];
322
323 /* Displacement expression, immediate expression, or register for each
324 operand. */
325 union i386_op op[MAX_OPERANDS];
326
327 /* Flags for operands. */
328 unsigned int flags[MAX_OPERANDS];
329 #define Operand_PCrel 1
330 #define Operand_Mem 2
331
332 /* Relocation type for operand */
333 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
334
335 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
336 the base index byte below. */
337 const reg_entry *base_reg;
338 const reg_entry *index_reg;
339 unsigned int log2_scale_factor;
340
341 /* SEG gives the seg_entries of this insn. They are zero unless
342 explicit segment overrides are given. */
343 const seg_entry *seg[2];
344
345 /* Copied first memory operand string, for re-checking. */
346 char *memop1_string;
347
348 /* PREFIX holds all the given prefix opcodes (usually null).
349 PREFIXES is the number of prefix opcodes. */
350 unsigned int prefixes;
351 unsigned char prefix[MAX_PREFIXES];
352
353 /* Register is in low 3 bits of opcode. */
354 bfd_boolean short_form;
355
356 /* The operand to a branch insn indicates an absolute branch. */
357 bfd_boolean jumpabsolute;
358
359 /* Has MMX register operands. */
360 bfd_boolean has_regmmx;
361
362 /* Has XMM register operands. */
363 bfd_boolean has_regxmm;
364
365 /* Has YMM register operands. */
366 bfd_boolean has_regymm;
367
368 /* Has ZMM register operands. */
369 bfd_boolean has_regzmm;
370
371 /* Has GOTPC or TLS relocation. */
372 bfd_boolean has_gotpc_tls_reloc;
373
374 /* RM and SIB are the modrm byte and the sib byte where the
375 addressing modes of this insn are encoded. */
376 modrm_byte rm;
377 rex_byte rex;
378 rex_byte vrex;
379 sib_byte sib;
380 vex_prefix vex;
381
382 /* Masking attributes. */
383 struct Mask_Operation *mask;
384
385 /* Rounding control and SAE attributes. */
386 struct RC_Operation *rounding;
387
388 /* Broadcasting attributes. */
389 struct Broadcast_Operation *broadcast;
390
391 /* Compressed disp8*N attribute. */
392 unsigned int memshift;
393
394 /* Prefer load or store in encoding. */
395 enum
396 {
397 dir_encoding_default = 0,
398 dir_encoding_load,
399 dir_encoding_store,
400 dir_encoding_swap
401 } dir_encoding;
402
403 /* Prefer 8bit or 32bit displacement in encoding. */
404 enum
405 {
406 disp_encoding_default = 0,
407 disp_encoding_8bit,
408 disp_encoding_32bit
409 } disp_encoding;
410
411 /* Prefer the REX byte in encoding. */
412 bfd_boolean rex_encoding;
413
414 /* Disable instruction size optimization. */
415 bfd_boolean no_optimize;
416
417 /* How to encode vector instructions. */
418 enum
419 {
420 vex_encoding_default = 0,
421 vex_encoding_vex,
422 vex_encoding_vex3,
423 vex_encoding_evex
424 } vec_encoding;
425
426 /* REP prefix. */
427 const char *rep_prefix;
428
429 /* HLE prefix. */
430 const char *hle_prefix;
431
432 /* Have BND prefix. */
433 const char *bnd_prefix;
434
435 /* Have NOTRACK prefix. */
436 const char *notrack_prefix;
437
438 /* Error message. */
439 enum i386_error error;
440 };
441
442 typedef struct _i386_insn i386_insn;
443
444 /* Link RC type with corresponding string, that'll be looked for in
445 asm. */
446 struct RC_name
447 {
448 enum rc_type type;
449 const char *name;
450 unsigned int len;
451 };
452
453 static const struct RC_name RC_NamesTable[] =
454 {
455 { rne, STRING_COMMA_LEN ("rn-sae") },
456 { rd, STRING_COMMA_LEN ("rd-sae") },
457 { ru, STRING_COMMA_LEN ("ru-sae") },
458 { rz, STRING_COMMA_LEN ("rz-sae") },
459 { saeonly, STRING_COMMA_LEN ("sae") },
460 };
461
462 /* List of chars besides those in app.c:symbol_chars that can start an
463 operand. Used to prevent the scrubber eating vital white-space. */
464 const char extra_symbol_chars[] = "*%-([{}"
465 #ifdef LEX_AT
466 "@"
467 #endif
468 #ifdef LEX_QM
469 "?"
470 #endif
471 ;
472
473 #if (defined (TE_I386AIX) \
474 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
475 && !defined (TE_GNU) \
476 && !defined (TE_LINUX) \
477 && !defined (TE_NACL) \
478 && !defined (TE_FreeBSD) \
479 && !defined (TE_DragonFly) \
480 && !defined (TE_NetBSD)))
481 /* This array holds the chars that always start a comment. If the
482 pre-processor is disabled, these aren't very useful. The option
483 --divide will remove '/' from this list. */
484 const char *i386_comment_chars = "#/";
485 #define SVR4_COMMENT_CHARS 1
486 #define PREFIX_SEPARATOR '\\'
487
488 #else
489 const char *i386_comment_chars = "#";
490 #define PREFIX_SEPARATOR '/'
491 #endif
492
493 /* This array holds the chars that only start a comment at the beginning of
494 a line. If the line seems to have the form '# 123 filename'
495 .line and .file directives will appear in the pre-processed output.
496 Note that input_file.c hand checks for '#' at the beginning of the
497 first line of the input file. This is because the compiler outputs
498 #NO_APP at the beginning of its output.
499 Also note that comments started like this one will always work if
500 '/' isn't otherwise defined. */
501 const char line_comment_chars[] = "#/";
502
503 const char line_separator_chars[] = ";";
504
505 /* Chars that can be used to separate mant from exp in floating point
506 nums. */
507 const char EXP_CHARS[] = "eE";
508
509 /* Chars that mean this number is a floating point constant
510 As in 0f12.456
511 or 0d1.2345e12. */
512 const char FLT_CHARS[] = "fFdDxX";
513
514 /* Tables for lexical analysis. */
515 static char mnemonic_chars[256];
516 static char register_chars[256];
517 static char operand_chars[256];
518 static char identifier_chars[256];
519 static char digit_chars[256];
520
521 /* Lexical macros. */
522 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
523 #define is_operand_char(x) (operand_chars[(unsigned char) x])
524 #define is_register_char(x) (register_chars[(unsigned char) x])
525 #define is_space_char(x) ((x) == ' ')
526 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
527 #define is_digit_char(x) (digit_chars[(unsigned char) x])
528
529 /* All non-digit non-letter characters that may occur in an operand. */
530 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
531
532 /* md_assemble() always leaves the strings it's passed unaltered. To
533 effect this we maintain a stack of saved characters that we've smashed
534 with '\0's (indicating end of strings for various sub-fields of the
535 assembler instruction). */
536 static char save_stack[32];
537 static char *save_stack_p;
538 #define END_STRING_AND_SAVE(s) \
539 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
540 #define RESTORE_END_STRING(s) \
541 do { *(s) = *--save_stack_p; } while (0)
542
543 /* The instruction we're assembling. */
544 static i386_insn i;
545
546 /* Possible templates for current insn. */
547 static const templates *current_templates;
548
549 /* Per instruction expressionS buffers: max displacements & immediates. */
550 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
551 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
552
553 /* Current operand we are working on. */
554 static int this_operand = -1;
555
556 /* We support four different modes. FLAG_CODE variable is used to distinguish
557 these. */
558
559 enum flag_code {
560 CODE_32BIT,
561 CODE_16BIT,
562 CODE_64BIT };
563
564 static enum flag_code flag_code;
565 static unsigned int object_64bit;
566 static unsigned int disallow_64bit_reloc;
567 static int use_rela_relocations = 0;
568 /* __tls_get_addr/___tls_get_addr symbol for TLS. */
569 static const char *tls_get_addr;
570
571 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
572 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
573 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
574
575 /* The ELF ABI to use. */
576 enum x86_elf_abi
577 {
578 I386_ABI,
579 X86_64_ABI,
580 X86_64_X32_ABI
581 };
582
583 static enum x86_elf_abi x86_elf_abi = I386_ABI;
584 #endif
585
586 #if defined (TE_PE) || defined (TE_PEP)
587 /* Use big object file format. */
588 static int use_big_obj = 0;
589 #endif
590
591 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
592 /* 1 if generating code for a shared library. */
593 static int shared = 0;
594 #endif
595
596 /* 1 for intel syntax,
597 0 if att syntax. */
598 static int intel_syntax = 0;
599
600 static enum x86_64_isa
601 {
602 amd64 = 1, /* AMD64 ISA. */
603 intel64 /* Intel64 ISA. */
604 } isa64;
605
606 /* 1 for intel mnemonic,
607 0 if att mnemonic. */
608 static int intel_mnemonic = !SYSV386_COMPAT;
609
610 /* 1 if pseudo registers are permitted. */
611 static int allow_pseudo_reg = 0;
612
613 /* 1 if register prefix % not required. */
614 static int allow_naked_reg = 0;
615
616 /* 1 if the assembler should add BND prefix for all control-transferring
617 instructions supporting it, even if this prefix wasn't specified
618 explicitly. */
619 static int add_bnd_prefix = 0;
620
621 /* 1 if pseudo index register, eiz/riz, is allowed . */
622 static int allow_index_reg = 0;
623
624 /* 1 if the assembler should ignore LOCK prefix, even if it was
625 specified explicitly. */
626 static int omit_lock_prefix = 0;
627
628 /* 1 if the assembler should encode lfence, mfence, and sfence as
629 "lock addl $0, (%{re}sp)". */
630 static int avoid_fence = 0;
631
632 /* Type of the previous instruction. */
633 static struct
634 {
635 segT seg;
636 const char *file;
637 const char *name;
638 unsigned int line;
639 enum last_insn_kind
640 {
641 last_insn_other = 0,
642 last_insn_directive,
643 last_insn_prefix
644 } kind;
645 } last_insn;
646
647 /* 1 if the assembler should generate relax relocations. */
648
649 static int generate_relax_relocations
650 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
651
652 static enum check_kind
653 {
654 check_none = 0,
655 check_warning,
656 check_error
657 }
658 sse_check, operand_check = check_warning;
659
660 /* Non-zero if branches should be aligned within power of 2 boundary. */
661 static int align_branch_power = 0;
662
663 /* Types of branches to align. */
664 enum align_branch_kind
665 {
666 align_branch_none = 0,
667 align_branch_jcc = 1,
668 align_branch_fused = 2,
669 align_branch_jmp = 3,
670 align_branch_call = 4,
671 align_branch_indirect = 5,
672 align_branch_ret = 6
673 };
674
675 /* Type bits of branches to align. */
676 enum align_branch_bit
677 {
678 align_branch_jcc_bit = 1 << align_branch_jcc,
679 align_branch_fused_bit = 1 << align_branch_fused,
680 align_branch_jmp_bit = 1 << align_branch_jmp,
681 align_branch_call_bit = 1 << align_branch_call,
682 align_branch_indirect_bit = 1 << align_branch_indirect,
683 align_branch_ret_bit = 1 << align_branch_ret
684 };
685
686 static unsigned int align_branch = (align_branch_jcc_bit
687 | align_branch_fused_bit
688 | align_branch_jmp_bit);
689
690 /* The maximum padding size for fused jcc. CMP like instruction can
691 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
692 prefixes. */
693 #define MAX_FUSED_JCC_PADDING_SIZE 20
694
695 /* The maximum number of prefixes added for an instruction. */
696 static unsigned int align_branch_prefix_size = 5;
697
698 /* Optimization:
699 1. Clear the REX_W bit with register operand if possible.
700 2. Above plus use 128bit vector instruction to clear the full vector
701 register.
702 */
703 static int optimize = 0;
704
705 /* Optimization:
706 1. Clear the REX_W bit with register operand if possible.
707 2. Above plus use 128bit vector instruction to clear the full vector
708 register.
709 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
710 "testb $imm7,%r8".
711 */
712 static int optimize_for_space = 0;
713
714 /* Register prefix used for error message. */
715 static const char *register_prefix = "%";
716
717 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
718 leave, push, and pop instructions so that gcc has the same stack
719 frame as in 32 bit mode. */
720 static char stackop_size = '\0';
721
722 /* Non-zero to optimize code alignment. */
723 int optimize_align_code = 1;
724
725 /* Non-zero to quieten some warnings. */
726 static int quiet_warnings = 0;
727
728 /* CPU name. */
729 static const char *cpu_arch_name = NULL;
730 static char *cpu_sub_arch_name = NULL;
731
732 /* CPU feature flags. */
733 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
734
735 /* If we have selected a cpu we are generating instructions for. */
736 static int cpu_arch_tune_set = 0;
737
738 /* Cpu we are generating instructions for. */
739 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
740
741 /* CPU feature flags of cpu we are generating instructions for. */
742 static i386_cpu_flags cpu_arch_tune_flags;
743
744 /* CPU instruction set architecture used. */
745 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
746
747 /* CPU feature flags of instruction set architecture used. */
748 i386_cpu_flags cpu_arch_isa_flags;
749
750 /* If set, conditional jumps are not automatically promoted to handle
751 larger than a byte offset. */
752 static unsigned int no_cond_jump_promotion = 0;
753
754 /* Encode SSE instructions with VEX prefix. */
755 static unsigned int sse2avx;
756
757 /* Encode scalar AVX instructions with specific vector length. */
758 static enum
759 {
760 vex128 = 0,
761 vex256
762 } avxscalar;
763
764 /* Encode VEX WIG instructions with specific vex.w. */
765 static enum
766 {
767 vexw0 = 0,
768 vexw1
769 } vexwig;
770
771 /* Encode scalar EVEX LIG instructions with specific vector length. */
772 static enum
773 {
774 evexl128 = 0,
775 evexl256,
776 evexl512
777 } evexlig;
778
779 /* Encode EVEX WIG instructions with specific evex.w. */
780 static enum
781 {
782 evexw0 = 0,
783 evexw1
784 } evexwig;
785
786 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
787 static enum rc_type evexrcig = rne;
788
789 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
790 static symbolS *GOT_symbol;
791
792 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
793 unsigned int x86_dwarf2_return_column;
794
795 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
796 int x86_cie_data_alignment;
797
798 /* Interface to relax_segment.
799 There are 3 major relax states for 386 jump insns because the
800 different types of jumps add different sizes to frags when we're
801 figuring out what sort of jump to choose to reach a given label.
802
803 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
804 branches which are handled by md_estimate_size_before_relax() and
805 i386_generic_table_relax_frag(). */
806
807 /* Types. */
808 #define UNCOND_JUMP 0
809 #define COND_JUMP 1
810 #define COND_JUMP86 2
811 #define BRANCH_PADDING 3
812 #define BRANCH_PREFIX 4
813 #define FUSED_JCC_PADDING 5
814
815 /* Sizes. */
816 #define CODE16 1
817 #define SMALL 0
818 #define SMALL16 (SMALL | CODE16)
819 #define BIG 2
820 #define BIG16 (BIG | CODE16)
821
822 #ifndef INLINE
823 #ifdef __GNUC__
824 #define INLINE __inline__
825 #else
826 #define INLINE
827 #endif
828 #endif
829
830 #define ENCODE_RELAX_STATE(type, size) \
831 ((relax_substateT) (((type) << 2) | (size)))
832 #define TYPE_FROM_RELAX_STATE(s) \
833 ((s) >> 2)
834 #define DISP_SIZE_FROM_RELAX_STATE(s) \
835 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
836
837 /* This table is used by relax_frag to promote short jumps to long
838 ones where necessary. SMALL (short) jumps may be promoted to BIG
839 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
840 don't allow a short jump in a 32 bit code segment to be promoted to
841 a 16 bit offset jump because it's slower (requires data size
842 prefix), and doesn't work, unless the destination is in the bottom
843 64k of the code segment (The top 16 bits of eip are zeroed). */
844
845 const relax_typeS md_relax_table[] =
846 {
847 /* The fields are:
848 1) most positive reach of this state,
849 2) most negative reach of this state,
850 3) how many bytes this mode will have in the variable part of the frag
851 4) which index into the table to try if we can't fit into this one. */
852
853 /* UNCOND_JUMP states. */
854 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
855 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
856 /* dword jmp adds 4 bytes to frag:
857 0 extra opcode bytes, 4 displacement bytes. */
858 {0, 0, 4, 0},
859 /* word jmp adds 2 byte2 to frag:
860 0 extra opcode bytes, 2 displacement bytes. */
861 {0, 0, 2, 0},
862
863 /* COND_JUMP states. */
864 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
865 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
866 /* dword conditionals adds 5 bytes to frag:
867 1 extra opcode byte, 4 displacement bytes. */
868 {0, 0, 5, 0},
869 /* word conditionals add 3 bytes to frag:
870 1 extra opcode byte, 2 displacement bytes. */
871 {0, 0, 3, 0},
872
873 /* COND_JUMP86 states. */
874 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
875 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
876 /* dword conditionals adds 5 bytes to frag:
877 1 extra opcode byte, 4 displacement bytes. */
878 {0, 0, 5, 0},
879 /* word conditionals add 4 bytes to frag:
880 1 displacement byte and a 3 byte long branch insn. */
881 {0, 0, 4, 0}
882 };
883
884 static const arch_entry cpu_arch[] =
885 {
886 /* Do not replace the first two entries - i386_target_format()
887 relies on them being there in this order. */
888 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
889 CPU_GENERIC32_FLAGS, 0 },
890 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
891 CPU_GENERIC64_FLAGS, 0 },
892 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
893 CPU_NONE_FLAGS, 0 },
894 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
895 CPU_I186_FLAGS, 0 },
896 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
897 CPU_I286_FLAGS, 0 },
898 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
899 CPU_I386_FLAGS, 0 },
900 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
901 CPU_I486_FLAGS, 0 },
902 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
903 CPU_I586_FLAGS, 0 },
904 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
905 CPU_I686_FLAGS, 0 },
906 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
907 CPU_I586_FLAGS, 0 },
908 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
909 CPU_PENTIUMPRO_FLAGS, 0 },
910 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
911 CPU_P2_FLAGS, 0 },
912 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
913 CPU_P3_FLAGS, 0 },
914 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
915 CPU_P4_FLAGS, 0 },
916 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
917 CPU_CORE_FLAGS, 0 },
918 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
919 CPU_NOCONA_FLAGS, 0 },
920 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
921 CPU_CORE_FLAGS, 1 },
922 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
923 CPU_CORE_FLAGS, 0 },
924 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
925 CPU_CORE2_FLAGS, 1 },
926 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
927 CPU_CORE2_FLAGS, 0 },
928 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
929 CPU_COREI7_FLAGS, 0 },
930 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
931 CPU_L1OM_FLAGS, 0 },
932 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
933 CPU_K1OM_FLAGS, 0 },
934 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
935 CPU_IAMCU_FLAGS, 0 },
936 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
937 CPU_K6_FLAGS, 0 },
938 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
939 CPU_K6_2_FLAGS, 0 },
940 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
941 CPU_ATHLON_FLAGS, 0 },
942 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
943 CPU_K8_FLAGS, 1 },
944 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
945 CPU_K8_FLAGS, 0 },
946 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
947 CPU_K8_FLAGS, 0 },
948 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
949 CPU_AMDFAM10_FLAGS, 0 },
950 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
951 CPU_BDVER1_FLAGS, 0 },
952 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
953 CPU_BDVER2_FLAGS, 0 },
954 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
955 CPU_BDVER3_FLAGS, 0 },
956 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
957 CPU_BDVER4_FLAGS, 0 },
958 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
959 CPU_ZNVER1_FLAGS, 0 },
960 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
961 CPU_ZNVER2_FLAGS, 0 },
962 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
963 CPU_BTVER1_FLAGS, 0 },
964 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
965 CPU_BTVER2_FLAGS, 0 },
966 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
967 CPU_8087_FLAGS, 0 },
968 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
969 CPU_287_FLAGS, 0 },
970 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
971 CPU_387_FLAGS, 0 },
972 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
973 CPU_687_FLAGS, 0 },
974 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
975 CPU_CMOV_FLAGS, 0 },
976 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
977 CPU_FXSR_FLAGS, 0 },
978 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
979 CPU_MMX_FLAGS, 0 },
980 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
981 CPU_SSE_FLAGS, 0 },
982 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
983 CPU_SSE2_FLAGS, 0 },
984 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
985 CPU_SSE3_FLAGS, 0 },
986 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
987 CPU_SSSE3_FLAGS, 0 },
988 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
989 CPU_SSE4_1_FLAGS, 0 },
990 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
991 CPU_SSE4_2_FLAGS, 0 },
992 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
993 CPU_SSE4_2_FLAGS, 0 },
994 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
995 CPU_AVX_FLAGS, 0 },
996 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
997 CPU_AVX2_FLAGS, 0 },
998 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
999 CPU_AVX512F_FLAGS, 0 },
1000 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
1001 CPU_AVX512CD_FLAGS, 0 },
1002 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
1003 CPU_AVX512ER_FLAGS, 0 },
1004 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
1005 CPU_AVX512PF_FLAGS, 0 },
1006 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
1007 CPU_AVX512DQ_FLAGS, 0 },
1008 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
1009 CPU_AVX512BW_FLAGS, 0 },
1010 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
1011 CPU_AVX512VL_FLAGS, 0 },
1012 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
1013 CPU_VMX_FLAGS, 0 },
1014 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
1015 CPU_VMFUNC_FLAGS, 0 },
1016 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
1017 CPU_SMX_FLAGS, 0 },
1018 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
1019 CPU_XSAVE_FLAGS, 0 },
1020 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
1021 CPU_XSAVEOPT_FLAGS, 0 },
1022 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
1023 CPU_XSAVEC_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
1025 CPU_XSAVES_FLAGS, 0 },
1026 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
1027 CPU_AES_FLAGS, 0 },
1028 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
1029 CPU_PCLMUL_FLAGS, 0 },
1030 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
1031 CPU_PCLMUL_FLAGS, 1 },
1032 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
1033 CPU_FSGSBASE_FLAGS, 0 },
1034 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
1035 CPU_RDRND_FLAGS, 0 },
1036 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
1037 CPU_F16C_FLAGS, 0 },
1038 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
1039 CPU_BMI2_FLAGS, 0 },
1040 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
1041 CPU_FMA_FLAGS, 0 },
1042 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
1043 CPU_FMA4_FLAGS, 0 },
1044 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
1045 CPU_XOP_FLAGS, 0 },
1046 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
1047 CPU_LWP_FLAGS, 0 },
1048 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
1049 CPU_MOVBE_FLAGS, 0 },
1050 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
1051 CPU_CX16_FLAGS, 0 },
1052 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
1053 CPU_EPT_FLAGS, 0 },
1054 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
1055 CPU_LZCNT_FLAGS, 0 },
1056 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
1057 CPU_HLE_FLAGS, 0 },
1058 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
1059 CPU_RTM_FLAGS, 0 },
1060 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
1061 CPU_INVPCID_FLAGS, 0 },
1062 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
1063 CPU_CLFLUSH_FLAGS, 0 },
1064 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
1065 CPU_NOP_FLAGS, 0 },
1066 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
1067 CPU_SYSCALL_FLAGS, 0 },
1068 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
1069 CPU_RDTSCP_FLAGS, 0 },
1070 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1071 CPU_3DNOW_FLAGS, 0 },
1072 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1073 CPU_3DNOWA_FLAGS, 0 },
1074 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1075 CPU_PADLOCK_FLAGS, 0 },
1076 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1077 CPU_SVME_FLAGS, 1 },
1078 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1079 CPU_SVME_FLAGS, 0 },
1080 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1081 CPU_SSE4A_FLAGS, 0 },
1082 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1083 CPU_ABM_FLAGS, 0 },
1084 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1085 CPU_BMI_FLAGS, 0 },
1086 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1087 CPU_TBM_FLAGS, 0 },
1088 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1089 CPU_ADX_FLAGS, 0 },
1090 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1091 CPU_RDSEED_FLAGS, 0 },
1092 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1093 CPU_PRFCHW_FLAGS, 0 },
1094 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1095 CPU_SMAP_FLAGS, 0 },
1096 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1097 CPU_MPX_FLAGS, 0 },
1098 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1099 CPU_SHA_FLAGS, 0 },
1100 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1101 CPU_CLFLUSHOPT_FLAGS, 0 },
1102 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1103 CPU_PREFETCHWT1_FLAGS, 0 },
1104 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1105 CPU_SE1_FLAGS, 0 },
1106 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1107 CPU_CLWB_FLAGS, 0 },
1108 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1109 CPU_AVX512IFMA_FLAGS, 0 },
1110 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1111 CPU_AVX512VBMI_FLAGS, 0 },
1112 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1113 CPU_AVX512_4FMAPS_FLAGS, 0 },
1114 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1115 CPU_AVX512_4VNNIW_FLAGS, 0 },
1116 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1117 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1118 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1119 CPU_AVX512_VBMI2_FLAGS, 0 },
1120 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1121 CPU_AVX512_VNNI_FLAGS, 0 },
1122 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1123 CPU_AVX512_BITALG_FLAGS, 0 },
1124 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1125 CPU_CLZERO_FLAGS, 0 },
1126 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1127 CPU_MWAITX_FLAGS, 0 },
1128 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1129 CPU_OSPKE_FLAGS, 0 },
1130 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1131 CPU_RDPID_FLAGS, 0 },
1132 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1133 CPU_PTWRITE_FLAGS, 0 },
1134 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1135 CPU_IBT_FLAGS, 0 },
1136 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1137 CPU_SHSTK_FLAGS, 0 },
1138 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1139 CPU_GFNI_FLAGS, 0 },
1140 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1141 CPU_VAES_FLAGS, 0 },
1142 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1143 CPU_VPCLMULQDQ_FLAGS, 0 },
1144 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1145 CPU_WBNOINVD_FLAGS, 0 },
1146 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1147 CPU_PCONFIG_FLAGS, 0 },
1148 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1149 CPU_WAITPKG_FLAGS, 0 },
1150 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1151 CPU_CLDEMOTE_FLAGS, 0 },
1152 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1153 CPU_MOVDIRI_FLAGS, 0 },
1154 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1155 CPU_MOVDIR64B_FLAGS, 0 },
1156 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1157 CPU_AVX512_BF16_FLAGS, 0 },
1158 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1159 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1160 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1161 CPU_ENQCMD_FLAGS, 0 },
1162 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1163 CPU_RDPRU_FLAGS, 0 },
1164 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1165 CPU_MCOMMIT_FLAGS, 0 },
1166 };
1167
1168 static const noarch_entry cpu_noarch[] =
1169 {
1170 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1171 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1172 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1173 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1174 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1175 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1176 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1177 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1178 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1179 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1180 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1181 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1182 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1183 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_FLAGS },
1184 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1185 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1186 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1187 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1188 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1189 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1190 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1191 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1192 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1193 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1194 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1195 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1196 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1197 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1198 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1199 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1200 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1201 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1202 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1203 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1204 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1205 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1206 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1207 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1208 };
1209
1210 #ifdef I386COFF
1211 /* Like s_lcomm_internal in gas/read.c but the alignment string
1212 is allowed to be optional. */
1213
1214 static symbolS *
1215 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1216 {
1217 addressT align = 0;
1218
1219 SKIP_WHITESPACE ();
1220
1221 if (needs_align
1222 && *input_line_pointer == ',')
1223 {
1224 align = parse_align (needs_align - 1);
1225
1226 if (align == (addressT) -1)
1227 return NULL;
1228 }
1229 else
1230 {
1231 if (size >= 8)
1232 align = 3;
1233 else if (size >= 4)
1234 align = 2;
1235 else if (size >= 2)
1236 align = 1;
1237 else
1238 align = 0;
1239 }
1240
1241 bss_alloc (symbolP, size, align);
1242 return symbolP;
1243 }
1244
1245 static void
1246 pe_lcomm (int needs_align)
1247 {
1248 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1249 }
1250 #endif
1251
1252 const pseudo_typeS md_pseudo_table[] =
1253 {
1254 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1255 {"align", s_align_bytes, 0},
1256 #else
1257 {"align", s_align_ptwo, 0},
1258 #endif
1259 {"arch", set_cpu_arch, 0},
1260 #ifndef I386COFF
1261 {"bss", s_bss, 0},
1262 #else
1263 {"lcomm", pe_lcomm, 1},
1264 #endif
1265 {"ffloat", float_cons, 'f'},
1266 {"dfloat", float_cons, 'd'},
1267 {"tfloat", float_cons, 'x'},
1268 {"value", cons, 2},
1269 {"slong", signed_cons, 4},
1270 {"noopt", s_ignore, 0},
1271 {"optim", s_ignore, 0},
1272 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1273 {"code16", set_code_flag, CODE_16BIT},
1274 {"code32", set_code_flag, CODE_32BIT},
1275 #ifdef BFD64
1276 {"code64", set_code_flag, CODE_64BIT},
1277 #endif
1278 {"intel_syntax", set_intel_syntax, 1},
1279 {"att_syntax", set_intel_syntax, 0},
1280 {"intel_mnemonic", set_intel_mnemonic, 1},
1281 {"att_mnemonic", set_intel_mnemonic, 0},
1282 {"allow_index_reg", set_allow_index_reg, 1},
1283 {"disallow_index_reg", set_allow_index_reg, 0},
1284 {"sse_check", set_check, 0},
1285 {"operand_check", set_check, 1},
1286 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1287 {"largecomm", handle_large_common, 0},
1288 #else
1289 {"file", dwarf2_directive_file, 0},
1290 {"loc", dwarf2_directive_loc, 0},
1291 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1292 #endif
1293 #ifdef TE_PE
1294 {"secrel32", pe_directive_secrel, 0},
1295 #endif
1296 {0, 0, 0}
1297 };
1298
1299 /* For interface with expression (). */
1300 extern char *input_line_pointer;
1301
1302 /* Hash table for instruction mnemonic lookup. */
1303 static struct hash_control *op_hash;
1304
1305 /* Hash table for register lookup. */
1306 static struct hash_control *reg_hash;
1307 \f
1308 /* Various efficient no-op patterns for aligning code labels.
1309 Note: Don't try to assemble the instructions in the comments.
1310 0L and 0w are not legal. */
1311 static const unsigned char f32_1[] =
1312 {0x90}; /* nop */
1313 static const unsigned char f32_2[] =
1314 {0x66,0x90}; /* xchg %ax,%ax */
1315 static const unsigned char f32_3[] =
1316 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1317 static const unsigned char f32_4[] =
1318 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1319 static const unsigned char f32_6[] =
1320 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1321 static const unsigned char f32_7[] =
1322 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1323 static const unsigned char f16_3[] =
1324 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1325 static const unsigned char f16_4[] =
1326 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1327 static const unsigned char jump_disp8[] =
1328 {0xeb}; /* jmp disp8 */
1329 static const unsigned char jump32_disp32[] =
1330 {0xe9}; /* jmp disp32 */
1331 static const unsigned char jump16_disp32[] =
1332 {0x66,0xe9}; /* jmp disp32 */
1333 /* 32-bit NOPs patterns. */
1334 static const unsigned char *const f32_patt[] = {
1335 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1336 };
1337 /* 16-bit NOPs patterns. */
1338 static const unsigned char *const f16_patt[] = {
1339 f32_1, f32_2, f16_3, f16_4
1340 };
1341 /* nopl (%[re]ax) */
1342 static const unsigned char alt_3[] =
1343 {0x0f,0x1f,0x00};
1344 /* nopl 0(%[re]ax) */
1345 static const unsigned char alt_4[] =
1346 {0x0f,0x1f,0x40,0x00};
1347 /* nopl 0(%[re]ax,%[re]ax,1) */
1348 static const unsigned char alt_5[] =
1349 {0x0f,0x1f,0x44,0x00,0x00};
1350 /* nopw 0(%[re]ax,%[re]ax,1) */
1351 static const unsigned char alt_6[] =
1352 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1353 /* nopl 0L(%[re]ax) */
1354 static const unsigned char alt_7[] =
1355 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1356 /* nopl 0L(%[re]ax,%[re]ax,1) */
1357 static const unsigned char alt_8[] =
1358 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1359 /* nopw 0L(%[re]ax,%[re]ax,1) */
1360 static const unsigned char alt_9[] =
1361 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1362 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1363 static const unsigned char alt_10[] =
1364 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1365 /* data16 nopw %cs:0L(%eax,%eax,1) */
1366 static const unsigned char alt_11[] =
1367 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1368 /* 32-bit and 64-bit NOPs patterns. */
1369 static const unsigned char *const alt_patt[] = {
1370 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1371 alt_9, alt_10, alt_11
1372 };
1373
1374 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1375 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1376
1377 static void
1378 i386_output_nops (char *where, const unsigned char *const *patt,
1379 int count, int max_single_nop_size)
1380
1381 {
1382 /* Place the longer NOP first. */
1383 int last;
1384 int offset;
1385 const unsigned char *nops;
1386
1387 if (max_single_nop_size < 1)
1388 {
1389 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1390 max_single_nop_size);
1391 return;
1392 }
1393
1394 nops = patt[max_single_nop_size - 1];
1395
1396 /* Use the smaller one if the requsted one isn't available. */
1397 if (nops == NULL)
1398 {
1399 max_single_nop_size--;
1400 nops = patt[max_single_nop_size - 1];
1401 }
1402
1403 last = count % max_single_nop_size;
1404
1405 count -= last;
1406 for (offset = 0; offset < count; offset += max_single_nop_size)
1407 memcpy (where + offset, nops, max_single_nop_size);
1408
1409 if (last)
1410 {
1411 nops = patt[last - 1];
1412 if (nops == NULL)
1413 {
1414 /* Use the smaller one plus one-byte NOP if the needed one
1415 isn't available. */
1416 last--;
1417 nops = patt[last - 1];
1418 memcpy (where + offset, nops, last);
1419 where[offset + last] = *patt[0];
1420 }
1421 else
1422 memcpy (where + offset, nops, last);
1423 }
1424 }
1425
1426 static INLINE int
1427 fits_in_imm7 (offsetT num)
1428 {
1429 return (num & 0x7f) == num;
1430 }
1431
1432 static INLINE int
1433 fits_in_imm31 (offsetT num)
1434 {
1435 return (num & 0x7fffffff) == num;
1436 }
1437
1438 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1439 single NOP instruction LIMIT. */
1440
1441 void
1442 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1443 {
1444 const unsigned char *const *patt = NULL;
1445 int max_single_nop_size;
1446 /* Maximum number of NOPs before switching to jump over NOPs. */
1447 int max_number_of_nops;
1448
1449 switch (fragP->fr_type)
1450 {
1451 case rs_fill_nop:
1452 case rs_align_code:
1453 break;
1454 case rs_machine_dependent:
1455 /* Allow NOP padding for jumps and calls. */
1456 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1457 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1458 break;
1459 /* Fall through. */
1460 default:
1461 return;
1462 }
1463
1464 /* We need to decide which NOP sequence to use for 32bit and
1465 64bit. When -mtune= is used:
1466
1467 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1468 PROCESSOR_GENERIC32, f32_patt will be used.
1469 2. For the rest, alt_patt will be used.
1470
1471 When -mtune= isn't used, alt_patt will be used if
1472 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1473 be used.
1474
1475 When -march= or .arch is used, we can't use anything beyond
1476 cpu_arch_isa_flags. */
1477
1478 if (flag_code == CODE_16BIT)
1479 {
1480 patt = f16_patt;
1481 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1482 /* Limit number of NOPs to 2 in 16-bit mode. */
1483 max_number_of_nops = 2;
1484 }
1485 else
1486 {
1487 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1488 {
1489 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1490 switch (cpu_arch_tune)
1491 {
1492 case PROCESSOR_UNKNOWN:
1493 /* We use cpu_arch_isa_flags to check if we SHOULD
1494 optimize with nops. */
1495 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1496 patt = alt_patt;
1497 else
1498 patt = f32_patt;
1499 break;
1500 case PROCESSOR_PENTIUM4:
1501 case PROCESSOR_NOCONA:
1502 case PROCESSOR_CORE:
1503 case PROCESSOR_CORE2:
1504 case PROCESSOR_COREI7:
1505 case PROCESSOR_L1OM:
1506 case PROCESSOR_K1OM:
1507 case PROCESSOR_GENERIC64:
1508 case PROCESSOR_K6:
1509 case PROCESSOR_ATHLON:
1510 case PROCESSOR_K8:
1511 case PROCESSOR_AMDFAM10:
1512 case PROCESSOR_BD:
1513 case PROCESSOR_ZNVER:
1514 case PROCESSOR_BT:
1515 patt = alt_patt;
1516 break;
1517 case PROCESSOR_I386:
1518 case PROCESSOR_I486:
1519 case PROCESSOR_PENTIUM:
1520 case PROCESSOR_PENTIUMPRO:
1521 case PROCESSOR_IAMCU:
1522 case PROCESSOR_GENERIC32:
1523 patt = f32_patt;
1524 break;
1525 }
1526 }
1527 else
1528 {
1529 switch (fragP->tc_frag_data.tune)
1530 {
1531 case PROCESSOR_UNKNOWN:
1532 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1533 PROCESSOR_UNKNOWN. */
1534 abort ();
1535 break;
1536
1537 case PROCESSOR_I386:
1538 case PROCESSOR_I486:
1539 case PROCESSOR_PENTIUM:
1540 case PROCESSOR_IAMCU:
1541 case PROCESSOR_K6:
1542 case PROCESSOR_ATHLON:
1543 case PROCESSOR_K8:
1544 case PROCESSOR_AMDFAM10:
1545 case PROCESSOR_BD:
1546 case PROCESSOR_ZNVER:
1547 case PROCESSOR_BT:
1548 case PROCESSOR_GENERIC32:
1549 /* We use cpu_arch_isa_flags to check if we CAN optimize
1550 with nops. */
1551 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1552 patt = alt_patt;
1553 else
1554 patt = f32_patt;
1555 break;
1556 case PROCESSOR_PENTIUMPRO:
1557 case PROCESSOR_PENTIUM4:
1558 case PROCESSOR_NOCONA:
1559 case PROCESSOR_CORE:
1560 case PROCESSOR_CORE2:
1561 case PROCESSOR_COREI7:
1562 case PROCESSOR_L1OM:
1563 case PROCESSOR_K1OM:
1564 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1565 patt = alt_patt;
1566 else
1567 patt = f32_patt;
1568 break;
1569 case PROCESSOR_GENERIC64:
1570 patt = alt_patt;
1571 break;
1572 }
1573 }
1574
1575 if (patt == f32_patt)
1576 {
1577 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1578 /* Limit number of NOPs to 2 for older processors. */
1579 max_number_of_nops = 2;
1580 }
1581 else
1582 {
1583 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1584 /* Limit number of NOPs to 7 for newer processors. */
1585 max_number_of_nops = 7;
1586 }
1587 }
1588
1589 if (limit == 0)
1590 limit = max_single_nop_size;
1591
1592 if (fragP->fr_type == rs_fill_nop)
1593 {
1594 /* Output NOPs for .nop directive. */
1595 if (limit > max_single_nop_size)
1596 {
1597 as_bad_where (fragP->fr_file, fragP->fr_line,
1598 _("invalid single nop size: %d "
1599 "(expect within [0, %d])"),
1600 limit, max_single_nop_size);
1601 return;
1602 }
1603 }
1604 else if (fragP->fr_type != rs_machine_dependent)
1605 fragP->fr_var = count;
1606
1607 if ((count / max_single_nop_size) > max_number_of_nops)
1608 {
1609 /* Generate jump over NOPs. */
1610 offsetT disp = count - 2;
1611 if (fits_in_imm7 (disp))
1612 {
1613 /* Use "jmp disp8" if possible. */
1614 count = disp;
1615 where[0] = jump_disp8[0];
1616 where[1] = count;
1617 where += 2;
1618 }
1619 else
1620 {
1621 unsigned int size_of_jump;
1622
1623 if (flag_code == CODE_16BIT)
1624 {
1625 where[0] = jump16_disp32[0];
1626 where[1] = jump16_disp32[1];
1627 size_of_jump = 2;
1628 }
1629 else
1630 {
1631 where[0] = jump32_disp32[0];
1632 size_of_jump = 1;
1633 }
1634
1635 count -= size_of_jump + 4;
1636 if (!fits_in_imm31 (count))
1637 {
1638 as_bad_where (fragP->fr_file, fragP->fr_line,
1639 _("jump over nop padding out of range"));
1640 return;
1641 }
1642
1643 md_number_to_chars (where + size_of_jump, count, 4);
1644 where += size_of_jump + 4;
1645 }
1646 }
1647
1648 /* Generate multiple NOPs. */
1649 i386_output_nops (where, patt, count, limit);
1650 }
1651
1652 static INLINE int
1653 operand_type_all_zero (const union i386_operand_type *x)
1654 {
1655 switch (ARRAY_SIZE(x->array))
1656 {
1657 case 3:
1658 if (x->array[2])
1659 return 0;
1660 /* Fall through. */
1661 case 2:
1662 if (x->array[1])
1663 return 0;
1664 /* Fall through. */
1665 case 1:
1666 return !x->array[0];
1667 default:
1668 abort ();
1669 }
1670 }
1671
1672 static INLINE void
1673 operand_type_set (union i386_operand_type *x, unsigned int v)
1674 {
1675 switch (ARRAY_SIZE(x->array))
1676 {
1677 case 3:
1678 x->array[2] = v;
1679 /* Fall through. */
1680 case 2:
1681 x->array[1] = v;
1682 /* Fall through. */
1683 case 1:
1684 x->array[0] = v;
1685 /* Fall through. */
1686 break;
1687 default:
1688 abort ();
1689 }
1690
1691 x->bitfield.class = ClassNone;
1692 x->bitfield.instance = InstanceNone;
1693 }
1694
1695 static INLINE int
1696 operand_type_equal (const union i386_operand_type *x,
1697 const union i386_operand_type *y)
1698 {
1699 switch (ARRAY_SIZE(x->array))
1700 {
1701 case 3:
1702 if (x->array[2] != y->array[2])
1703 return 0;
1704 /* Fall through. */
1705 case 2:
1706 if (x->array[1] != y->array[1])
1707 return 0;
1708 /* Fall through. */
1709 case 1:
1710 return x->array[0] == y->array[0];
1711 break;
1712 default:
1713 abort ();
1714 }
1715 }
1716
1717 static INLINE int
1718 cpu_flags_all_zero (const union i386_cpu_flags *x)
1719 {
1720 switch (ARRAY_SIZE(x->array))
1721 {
1722 case 4:
1723 if (x->array[3])
1724 return 0;
1725 /* Fall through. */
1726 case 3:
1727 if (x->array[2])
1728 return 0;
1729 /* Fall through. */
1730 case 2:
1731 if (x->array[1])
1732 return 0;
1733 /* Fall through. */
1734 case 1:
1735 return !x->array[0];
1736 default:
1737 abort ();
1738 }
1739 }
1740
1741 static INLINE int
1742 cpu_flags_equal (const union i386_cpu_flags *x,
1743 const union i386_cpu_flags *y)
1744 {
1745 switch (ARRAY_SIZE(x->array))
1746 {
1747 case 4:
1748 if (x->array[3] != y->array[3])
1749 return 0;
1750 /* Fall through. */
1751 case 3:
1752 if (x->array[2] != y->array[2])
1753 return 0;
1754 /* Fall through. */
1755 case 2:
1756 if (x->array[1] != y->array[1])
1757 return 0;
1758 /* Fall through. */
1759 case 1:
1760 return x->array[0] == y->array[0];
1761 break;
1762 default:
1763 abort ();
1764 }
1765 }
1766
1767 static INLINE int
1768 cpu_flags_check_cpu64 (i386_cpu_flags f)
1769 {
1770 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1771 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1772 }
1773
1774 static INLINE i386_cpu_flags
1775 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1776 {
1777 switch (ARRAY_SIZE (x.array))
1778 {
1779 case 4:
1780 x.array [3] &= y.array [3];
1781 /* Fall through. */
1782 case 3:
1783 x.array [2] &= y.array [2];
1784 /* Fall through. */
1785 case 2:
1786 x.array [1] &= y.array [1];
1787 /* Fall through. */
1788 case 1:
1789 x.array [0] &= y.array [0];
1790 break;
1791 default:
1792 abort ();
1793 }
1794 return x;
1795 }
1796
1797 static INLINE i386_cpu_flags
1798 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1799 {
1800 switch (ARRAY_SIZE (x.array))
1801 {
1802 case 4:
1803 x.array [3] |= y.array [3];
1804 /* Fall through. */
1805 case 3:
1806 x.array [2] |= y.array [2];
1807 /* Fall through. */
1808 case 2:
1809 x.array [1] |= y.array [1];
1810 /* Fall through. */
1811 case 1:
1812 x.array [0] |= y.array [0];
1813 break;
1814 default:
1815 abort ();
1816 }
1817 return x;
1818 }
1819
1820 static INLINE i386_cpu_flags
1821 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1822 {
1823 switch (ARRAY_SIZE (x.array))
1824 {
1825 case 4:
1826 x.array [3] &= ~y.array [3];
1827 /* Fall through. */
1828 case 3:
1829 x.array [2] &= ~y.array [2];
1830 /* Fall through. */
1831 case 2:
1832 x.array [1] &= ~y.array [1];
1833 /* Fall through. */
1834 case 1:
1835 x.array [0] &= ~y.array [0];
1836 break;
1837 default:
1838 abort ();
1839 }
1840 return x;
1841 }
1842
1843 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
1844
1845 #define CPU_FLAGS_ARCH_MATCH 0x1
1846 #define CPU_FLAGS_64BIT_MATCH 0x2
1847
1848 #define CPU_FLAGS_PERFECT_MATCH \
1849 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1850
1851 /* Return CPU flags match bits. */
1852
1853 static int
1854 cpu_flags_match (const insn_template *t)
1855 {
1856 i386_cpu_flags x = t->cpu_flags;
1857 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1858
1859 x.bitfield.cpu64 = 0;
1860 x.bitfield.cpuno64 = 0;
1861
1862 if (cpu_flags_all_zero (&x))
1863 {
1864 /* This instruction is available on all archs. */
1865 match |= CPU_FLAGS_ARCH_MATCH;
1866 }
1867 else
1868 {
1869 /* This instruction is available only on some archs. */
1870 i386_cpu_flags cpu = cpu_arch_flags;
1871
1872 /* AVX512VL is no standalone feature - match it and then strip it. */
1873 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1874 return match;
1875 x.bitfield.cpuavx512vl = 0;
1876
1877 cpu = cpu_flags_and (x, cpu);
1878 if (!cpu_flags_all_zero (&cpu))
1879 {
1880 if (x.bitfield.cpuavx)
1881 {
1882 /* We need to check a few extra flags with AVX. */
1883 if (cpu.bitfield.cpuavx
1884 && (!t->opcode_modifier.sse2avx || sse2avx)
1885 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1886 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1887 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1888 match |= CPU_FLAGS_ARCH_MATCH;
1889 }
1890 else if (x.bitfield.cpuavx512f)
1891 {
1892 /* We need to check a few extra flags with AVX512F. */
1893 if (cpu.bitfield.cpuavx512f
1894 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1895 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1896 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1897 match |= CPU_FLAGS_ARCH_MATCH;
1898 }
1899 else
1900 match |= CPU_FLAGS_ARCH_MATCH;
1901 }
1902 }
1903 return match;
1904 }
1905
1906 static INLINE i386_operand_type
1907 operand_type_and (i386_operand_type x, i386_operand_type y)
1908 {
1909 if (x.bitfield.class != y.bitfield.class)
1910 x.bitfield.class = ClassNone;
1911 if (x.bitfield.instance != y.bitfield.instance)
1912 x.bitfield.instance = InstanceNone;
1913
1914 switch (ARRAY_SIZE (x.array))
1915 {
1916 case 3:
1917 x.array [2] &= y.array [2];
1918 /* Fall through. */
1919 case 2:
1920 x.array [1] &= y.array [1];
1921 /* Fall through. */
1922 case 1:
1923 x.array [0] &= y.array [0];
1924 break;
1925 default:
1926 abort ();
1927 }
1928 return x;
1929 }
1930
1931 static INLINE i386_operand_type
1932 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1933 {
1934 gas_assert (y.bitfield.class == ClassNone);
1935 gas_assert (y.bitfield.instance == InstanceNone);
1936
1937 switch (ARRAY_SIZE (x.array))
1938 {
1939 case 3:
1940 x.array [2] &= ~y.array [2];
1941 /* Fall through. */
1942 case 2:
1943 x.array [1] &= ~y.array [1];
1944 /* Fall through. */
1945 case 1:
1946 x.array [0] &= ~y.array [0];
1947 break;
1948 default:
1949 abort ();
1950 }
1951 return x;
1952 }
1953
1954 static INLINE i386_operand_type
1955 operand_type_or (i386_operand_type x, i386_operand_type y)
1956 {
1957 gas_assert (x.bitfield.class == ClassNone ||
1958 y.bitfield.class == ClassNone ||
1959 x.bitfield.class == y.bitfield.class);
1960 gas_assert (x.bitfield.instance == InstanceNone ||
1961 y.bitfield.instance == InstanceNone ||
1962 x.bitfield.instance == y.bitfield.instance);
1963
1964 switch (ARRAY_SIZE (x.array))
1965 {
1966 case 3:
1967 x.array [2] |= y.array [2];
1968 /* Fall through. */
1969 case 2:
1970 x.array [1] |= y.array [1];
1971 /* Fall through. */
1972 case 1:
1973 x.array [0] |= y.array [0];
1974 break;
1975 default:
1976 abort ();
1977 }
1978 return x;
1979 }
1980
1981 static INLINE i386_operand_type
1982 operand_type_xor (i386_operand_type x, i386_operand_type y)
1983 {
1984 gas_assert (y.bitfield.class == ClassNone);
1985 gas_assert (y.bitfield.instance == InstanceNone);
1986
1987 switch (ARRAY_SIZE (x.array))
1988 {
1989 case 3:
1990 x.array [2] ^= y.array [2];
1991 /* Fall through. */
1992 case 2:
1993 x.array [1] ^= y.array [1];
1994 /* Fall through. */
1995 case 1:
1996 x.array [0] ^= y.array [0];
1997 break;
1998 default:
1999 abort ();
2000 }
2001 return x;
2002 }
2003
2004 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2005 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2006 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2007 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
2008 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2009 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
2010 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
2011 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
2012 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2013 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2014 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2015 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2016 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2017 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2018 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2019 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2020 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2021
2022 enum operand_type
2023 {
2024 reg,
2025 imm,
2026 disp,
2027 anymem
2028 };
2029
2030 static INLINE int
2031 operand_type_check (i386_operand_type t, enum operand_type c)
2032 {
2033 switch (c)
2034 {
2035 case reg:
2036 return t.bitfield.class == Reg;
2037
2038 case imm:
2039 return (t.bitfield.imm8
2040 || t.bitfield.imm8s
2041 || t.bitfield.imm16
2042 || t.bitfield.imm32
2043 || t.bitfield.imm32s
2044 || t.bitfield.imm64);
2045
2046 case disp:
2047 return (t.bitfield.disp8
2048 || t.bitfield.disp16
2049 || t.bitfield.disp32
2050 || t.bitfield.disp32s
2051 || t.bitfield.disp64);
2052
2053 case anymem:
2054 return (t.bitfield.disp8
2055 || t.bitfield.disp16
2056 || t.bitfield.disp32
2057 || t.bitfield.disp32s
2058 || t.bitfield.disp64
2059 || t.bitfield.baseindex);
2060
2061 default:
2062 abort ();
2063 }
2064
2065 return 0;
2066 }
2067
2068 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2069 between operand GIVEN and opeand WANTED for instruction template T. */
2070
2071 static INLINE int
2072 match_operand_size (const insn_template *t, unsigned int wanted,
2073 unsigned int given)
2074 {
2075 return !((i.types[given].bitfield.byte
2076 && !t->operand_types[wanted].bitfield.byte)
2077 || (i.types[given].bitfield.word
2078 && !t->operand_types[wanted].bitfield.word)
2079 || (i.types[given].bitfield.dword
2080 && !t->operand_types[wanted].bitfield.dword)
2081 || (i.types[given].bitfield.qword
2082 && !t->operand_types[wanted].bitfield.qword)
2083 || (i.types[given].bitfield.tbyte
2084 && !t->operand_types[wanted].bitfield.tbyte));
2085 }
2086
2087 /* Return 1 if there is no conflict in SIMD register between operand
2088 GIVEN and opeand WANTED for instruction template T. */
2089
2090 static INLINE int
2091 match_simd_size (const insn_template *t, unsigned int wanted,
2092 unsigned int given)
2093 {
2094 return !((i.types[given].bitfield.xmmword
2095 && !t->operand_types[wanted].bitfield.xmmword)
2096 || (i.types[given].bitfield.ymmword
2097 && !t->operand_types[wanted].bitfield.ymmword)
2098 || (i.types[given].bitfield.zmmword
2099 && !t->operand_types[wanted].bitfield.zmmword));
2100 }
2101
2102 /* Return 1 if there is no conflict in any size between operand GIVEN
2103 and opeand WANTED for instruction template T. */
2104
2105 static INLINE int
2106 match_mem_size (const insn_template *t, unsigned int wanted,
2107 unsigned int given)
2108 {
2109 return (match_operand_size (t, wanted, given)
2110 && !((i.types[given].bitfield.unspecified
2111 && !i.broadcast
2112 && !t->operand_types[wanted].bitfield.unspecified)
2113 || (i.types[given].bitfield.fword
2114 && !t->operand_types[wanted].bitfield.fword)
2115 /* For scalar opcode templates to allow register and memory
2116 operands at the same time, some special casing is needed
2117 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2118 down-conversion vpmov*. */
2119 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2120 && !t->opcode_modifier.broadcast
2121 && (t->operand_types[wanted].bitfield.byte
2122 || t->operand_types[wanted].bitfield.word
2123 || t->operand_types[wanted].bitfield.dword
2124 || t->operand_types[wanted].bitfield.qword))
2125 ? (i.types[given].bitfield.xmmword
2126 || i.types[given].bitfield.ymmword
2127 || i.types[given].bitfield.zmmword)
2128 : !match_simd_size(t, wanted, given))));
2129 }
2130
2131 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2132 operands for instruction template T, and it has MATCH_REVERSE set if there
2133 is no size conflict on any operands for the template with operands reversed
2134 (and the template allows for reversing in the first place). */
2135
2136 #define MATCH_STRAIGHT 1
2137 #define MATCH_REVERSE 2
2138
2139 static INLINE unsigned int
2140 operand_size_match (const insn_template *t)
2141 {
2142 unsigned int j, match = MATCH_STRAIGHT;
2143
2144 /* Don't check non-absolute jump instructions. */
2145 if (t->opcode_modifier.jump
2146 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
2147 return match;
2148
2149 /* Check memory and accumulator operand size. */
2150 for (j = 0; j < i.operands; j++)
2151 {
2152 if (i.types[j].bitfield.class != Reg
2153 && i.types[j].bitfield.class != RegSIMD
2154 && t->opcode_modifier.anysize)
2155 continue;
2156
2157 if (t->operand_types[j].bitfield.class == Reg
2158 && !match_operand_size (t, j, j))
2159 {
2160 match = 0;
2161 break;
2162 }
2163
2164 if (t->operand_types[j].bitfield.class == RegSIMD
2165 && !match_simd_size (t, j, j))
2166 {
2167 match = 0;
2168 break;
2169 }
2170
2171 if (t->operand_types[j].bitfield.instance == Accum
2172 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2173 {
2174 match = 0;
2175 break;
2176 }
2177
2178 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2179 {
2180 match = 0;
2181 break;
2182 }
2183 }
2184
2185 if (!t->opcode_modifier.d)
2186 {
2187 mismatch:
2188 if (!match)
2189 i.error = operand_size_mismatch;
2190 return match;
2191 }
2192
2193 /* Check reverse. */
2194 gas_assert (i.operands >= 2 && i.operands <= 3);
2195
2196 for (j = 0; j < i.operands; j++)
2197 {
2198 unsigned int given = i.operands - j - 1;
2199
2200 if (t->operand_types[j].bitfield.class == Reg
2201 && !match_operand_size (t, j, given))
2202 goto mismatch;
2203
2204 if (t->operand_types[j].bitfield.class == RegSIMD
2205 && !match_simd_size (t, j, given))
2206 goto mismatch;
2207
2208 if (t->operand_types[j].bitfield.instance == Accum
2209 && (!match_operand_size (t, j, given)
2210 || !match_simd_size (t, j, given)))
2211 goto mismatch;
2212
2213 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2214 goto mismatch;
2215 }
2216
2217 return match | MATCH_REVERSE;
2218 }
2219
2220 static INLINE int
2221 operand_type_match (i386_operand_type overlap,
2222 i386_operand_type given)
2223 {
2224 i386_operand_type temp = overlap;
2225
2226 temp.bitfield.unspecified = 0;
2227 temp.bitfield.byte = 0;
2228 temp.bitfield.word = 0;
2229 temp.bitfield.dword = 0;
2230 temp.bitfield.fword = 0;
2231 temp.bitfield.qword = 0;
2232 temp.bitfield.tbyte = 0;
2233 temp.bitfield.xmmword = 0;
2234 temp.bitfield.ymmword = 0;
2235 temp.bitfield.zmmword = 0;
2236 if (operand_type_all_zero (&temp))
2237 goto mismatch;
2238
2239 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
2240 return 1;
2241
2242 mismatch:
2243 i.error = operand_type_mismatch;
2244 return 0;
2245 }
2246
2247 /* If given types g0 and g1 are registers they must be of the same type
2248 unless the expected operand type register overlap is null.
2249 Some Intel syntax memory operand size checking also happens here. */
2250
2251 static INLINE int
2252 operand_type_register_match (i386_operand_type g0,
2253 i386_operand_type t0,
2254 i386_operand_type g1,
2255 i386_operand_type t1)
2256 {
2257 if (g0.bitfield.class != Reg
2258 && g0.bitfield.class != RegSIMD
2259 && (!operand_type_check (g0, anymem)
2260 || g0.bitfield.unspecified
2261 || (t0.bitfield.class != Reg
2262 && t0.bitfield.class != RegSIMD)))
2263 return 1;
2264
2265 if (g1.bitfield.class != Reg
2266 && g1.bitfield.class != RegSIMD
2267 && (!operand_type_check (g1, anymem)
2268 || g1.bitfield.unspecified
2269 || (t1.bitfield.class != Reg
2270 && t1.bitfield.class != RegSIMD)))
2271 return 1;
2272
2273 if (g0.bitfield.byte == g1.bitfield.byte
2274 && g0.bitfield.word == g1.bitfield.word
2275 && g0.bitfield.dword == g1.bitfield.dword
2276 && g0.bitfield.qword == g1.bitfield.qword
2277 && g0.bitfield.xmmword == g1.bitfield.xmmword
2278 && g0.bitfield.ymmword == g1.bitfield.ymmword
2279 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2280 return 1;
2281
2282 if (!(t0.bitfield.byte & t1.bitfield.byte)
2283 && !(t0.bitfield.word & t1.bitfield.word)
2284 && !(t0.bitfield.dword & t1.bitfield.dword)
2285 && !(t0.bitfield.qword & t1.bitfield.qword)
2286 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2287 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2288 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2289 return 1;
2290
2291 i.error = register_type_mismatch;
2292
2293 return 0;
2294 }
2295
2296 static INLINE unsigned int
2297 register_number (const reg_entry *r)
2298 {
2299 unsigned int nr = r->reg_num;
2300
2301 if (r->reg_flags & RegRex)
2302 nr += 8;
2303
2304 if (r->reg_flags & RegVRex)
2305 nr += 16;
2306
2307 return nr;
2308 }
2309
2310 static INLINE unsigned int
2311 mode_from_disp_size (i386_operand_type t)
2312 {
2313 if (t.bitfield.disp8)
2314 return 1;
2315 else if (t.bitfield.disp16
2316 || t.bitfield.disp32
2317 || t.bitfield.disp32s)
2318 return 2;
2319 else
2320 return 0;
2321 }
2322
2323 static INLINE int
2324 fits_in_signed_byte (addressT num)
2325 {
2326 return num + 0x80 <= 0xff;
2327 }
2328
2329 static INLINE int
2330 fits_in_unsigned_byte (addressT num)
2331 {
2332 return num <= 0xff;
2333 }
2334
2335 static INLINE int
2336 fits_in_unsigned_word (addressT num)
2337 {
2338 return num <= 0xffff;
2339 }
2340
2341 static INLINE int
2342 fits_in_signed_word (addressT num)
2343 {
2344 return num + 0x8000 <= 0xffff;
2345 }
2346
2347 static INLINE int
2348 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2349 {
2350 #ifndef BFD64
2351 return 1;
2352 #else
2353 return num + 0x80000000 <= 0xffffffff;
2354 #endif
2355 } /* fits_in_signed_long() */
2356
2357 static INLINE int
2358 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2359 {
2360 #ifndef BFD64
2361 return 1;
2362 #else
2363 return num <= 0xffffffff;
2364 #endif
2365 } /* fits_in_unsigned_long() */
2366
2367 static INLINE int
2368 fits_in_disp8 (offsetT num)
2369 {
2370 int shift = i.memshift;
2371 unsigned int mask;
2372
2373 if (shift == -1)
2374 abort ();
2375
2376 mask = (1 << shift) - 1;
2377
2378 /* Return 0 if NUM isn't properly aligned. */
2379 if ((num & mask))
2380 return 0;
2381
2382 /* Check if NUM will fit in 8bit after shift. */
2383 return fits_in_signed_byte (num >> shift);
2384 }
2385
2386 static INLINE int
2387 fits_in_imm4 (offsetT num)
2388 {
2389 return (num & 0xf) == num;
2390 }
2391
2392 static i386_operand_type
2393 smallest_imm_type (offsetT num)
2394 {
2395 i386_operand_type t;
2396
2397 operand_type_set (&t, 0);
2398 t.bitfield.imm64 = 1;
2399
2400 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2401 {
2402 /* This code is disabled on the 486 because all the Imm1 forms
2403 in the opcode table are slower on the i486. They're the
2404 versions with the implicitly specified single-position
2405 displacement, which has another syntax if you really want to
2406 use that form. */
2407 t.bitfield.imm1 = 1;
2408 t.bitfield.imm8 = 1;
2409 t.bitfield.imm8s = 1;
2410 t.bitfield.imm16 = 1;
2411 t.bitfield.imm32 = 1;
2412 t.bitfield.imm32s = 1;
2413 }
2414 else if (fits_in_signed_byte (num))
2415 {
2416 t.bitfield.imm8 = 1;
2417 t.bitfield.imm8s = 1;
2418 t.bitfield.imm16 = 1;
2419 t.bitfield.imm32 = 1;
2420 t.bitfield.imm32s = 1;
2421 }
2422 else if (fits_in_unsigned_byte (num))
2423 {
2424 t.bitfield.imm8 = 1;
2425 t.bitfield.imm16 = 1;
2426 t.bitfield.imm32 = 1;
2427 t.bitfield.imm32s = 1;
2428 }
2429 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2430 {
2431 t.bitfield.imm16 = 1;
2432 t.bitfield.imm32 = 1;
2433 t.bitfield.imm32s = 1;
2434 }
2435 else if (fits_in_signed_long (num))
2436 {
2437 t.bitfield.imm32 = 1;
2438 t.bitfield.imm32s = 1;
2439 }
2440 else if (fits_in_unsigned_long (num))
2441 t.bitfield.imm32 = 1;
2442
2443 return t;
2444 }
2445
2446 static offsetT
2447 offset_in_range (offsetT val, int size)
2448 {
2449 addressT mask;
2450
2451 switch (size)
2452 {
2453 case 1: mask = ((addressT) 1 << 8) - 1; break;
2454 case 2: mask = ((addressT) 1 << 16) - 1; break;
2455 case 4: mask = ((addressT) 2 << 31) - 1; break;
2456 #ifdef BFD64
2457 case 8: mask = ((addressT) 2 << 63) - 1; break;
2458 #endif
2459 default: abort ();
2460 }
2461
2462 #ifdef BFD64
2463 /* If BFD64, sign extend val for 32bit address mode. */
2464 if (flag_code != CODE_64BIT
2465 || i.prefix[ADDR_PREFIX])
2466 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2467 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2468 #endif
2469
2470 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2471 {
2472 char buf1[40], buf2[40];
2473
2474 sprint_value (buf1, val);
2475 sprint_value (buf2, val & mask);
2476 as_warn (_("%s shortened to %s"), buf1, buf2);
2477 }
2478 return val & mask;
2479 }
2480
2481 enum PREFIX_GROUP
2482 {
2483 PREFIX_EXIST = 0,
2484 PREFIX_LOCK,
2485 PREFIX_REP,
2486 PREFIX_DS,
2487 PREFIX_OTHER
2488 };
2489
2490 /* Returns
2491 a. PREFIX_EXIST if attempting to add a prefix where one from the
2492 same class already exists.
2493 b. PREFIX_LOCK if lock prefix is added.
2494 c. PREFIX_REP if rep/repne prefix is added.
2495 d. PREFIX_DS if ds prefix is added.
2496 e. PREFIX_OTHER if other prefix is added.
2497 */
2498
2499 static enum PREFIX_GROUP
2500 add_prefix (unsigned int prefix)
2501 {
2502 enum PREFIX_GROUP ret = PREFIX_OTHER;
2503 unsigned int q;
2504
2505 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2506 && flag_code == CODE_64BIT)
2507 {
2508 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2509 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2510 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2511 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2512 ret = PREFIX_EXIST;
2513 q = REX_PREFIX;
2514 }
2515 else
2516 {
2517 switch (prefix)
2518 {
2519 default:
2520 abort ();
2521
2522 case DS_PREFIX_OPCODE:
2523 ret = PREFIX_DS;
2524 /* Fall through. */
2525 case CS_PREFIX_OPCODE:
2526 case ES_PREFIX_OPCODE:
2527 case FS_PREFIX_OPCODE:
2528 case GS_PREFIX_OPCODE:
2529 case SS_PREFIX_OPCODE:
2530 q = SEG_PREFIX;
2531 break;
2532
2533 case REPNE_PREFIX_OPCODE:
2534 case REPE_PREFIX_OPCODE:
2535 q = REP_PREFIX;
2536 ret = PREFIX_REP;
2537 break;
2538
2539 case LOCK_PREFIX_OPCODE:
2540 q = LOCK_PREFIX;
2541 ret = PREFIX_LOCK;
2542 break;
2543
2544 case FWAIT_OPCODE:
2545 q = WAIT_PREFIX;
2546 break;
2547
2548 case ADDR_PREFIX_OPCODE:
2549 q = ADDR_PREFIX;
2550 break;
2551
2552 case DATA_PREFIX_OPCODE:
2553 q = DATA_PREFIX;
2554 break;
2555 }
2556 if (i.prefix[q] != 0)
2557 ret = PREFIX_EXIST;
2558 }
2559
2560 if (ret)
2561 {
2562 if (!i.prefix[q])
2563 ++i.prefixes;
2564 i.prefix[q] |= prefix;
2565 }
2566 else
2567 as_bad (_("same type of prefix used twice"));
2568
2569 return ret;
2570 }
2571
2572 static void
2573 update_code_flag (int value, int check)
2574 {
2575 PRINTF_LIKE ((*as_error));
2576
2577 flag_code = (enum flag_code) value;
2578 if (flag_code == CODE_64BIT)
2579 {
2580 cpu_arch_flags.bitfield.cpu64 = 1;
2581 cpu_arch_flags.bitfield.cpuno64 = 0;
2582 }
2583 else
2584 {
2585 cpu_arch_flags.bitfield.cpu64 = 0;
2586 cpu_arch_flags.bitfield.cpuno64 = 1;
2587 }
2588 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2589 {
2590 if (check)
2591 as_error = as_fatal;
2592 else
2593 as_error = as_bad;
2594 (*as_error) (_("64bit mode not supported on `%s'."),
2595 cpu_arch_name ? cpu_arch_name : default_arch);
2596 }
2597 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2598 {
2599 if (check)
2600 as_error = as_fatal;
2601 else
2602 as_error = as_bad;
2603 (*as_error) (_("32bit mode not supported on `%s'."),
2604 cpu_arch_name ? cpu_arch_name : default_arch);
2605 }
2606 stackop_size = '\0';
2607 }
2608
2609 static void
2610 set_code_flag (int value)
2611 {
2612 update_code_flag (value, 0);
2613 }
2614
2615 static void
2616 set_16bit_gcc_code_flag (int new_code_flag)
2617 {
2618 flag_code = (enum flag_code) new_code_flag;
2619 if (flag_code != CODE_16BIT)
2620 abort ();
2621 cpu_arch_flags.bitfield.cpu64 = 0;
2622 cpu_arch_flags.bitfield.cpuno64 = 1;
2623 stackop_size = LONG_MNEM_SUFFIX;
2624 }
2625
2626 static void
2627 set_intel_syntax (int syntax_flag)
2628 {
2629 /* Find out if register prefixing is specified. */
2630 int ask_naked_reg = 0;
2631
2632 SKIP_WHITESPACE ();
2633 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2634 {
2635 char *string;
2636 int e = get_symbol_name (&string);
2637
2638 if (strcmp (string, "prefix") == 0)
2639 ask_naked_reg = 1;
2640 else if (strcmp (string, "noprefix") == 0)
2641 ask_naked_reg = -1;
2642 else
2643 as_bad (_("bad argument to syntax directive."));
2644 (void) restore_line_pointer (e);
2645 }
2646 demand_empty_rest_of_line ();
2647
2648 intel_syntax = syntax_flag;
2649
2650 if (ask_naked_reg == 0)
2651 allow_naked_reg = (intel_syntax
2652 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2653 else
2654 allow_naked_reg = (ask_naked_reg < 0);
2655
2656 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2657
2658 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2659 identifier_chars['$'] = intel_syntax ? '$' : 0;
2660 register_prefix = allow_naked_reg ? "" : "%";
2661 }
2662
2663 static void
2664 set_intel_mnemonic (int mnemonic_flag)
2665 {
2666 intel_mnemonic = mnemonic_flag;
2667 }
2668
2669 static void
2670 set_allow_index_reg (int flag)
2671 {
2672 allow_index_reg = flag;
2673 }
2674
2675 static void
2676 set_check (int what)
2677 {
2678 enum check_kind *kind;
2679 const char *str;
2680
2681 if (what)
2682 {
2683 kind = &operand_check;
2684 str = "operand";
2685 }
2686 else
2687 {
2688 kind = &sse_check;
2689 str = "sse";
2690 }
2691
2692 SKIP_WHITESPACE ();
2693
2694 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2695 {
2696 char *string;
2697 int e = get_symbol_name (&string);
2698
2699 if (strcmp (string, "none") == 0)
2700 *kind = check_none;
2701 else if (strcmp (string, "warning") == 0)
2702 *kind = check_warning;
2703 else if (strcmp (string, "error") == 0)
2704 *kind = check_error;
2705 else
2706 as_bad (_("bad argument to %s_check directive."), str);
2707 (void) restore_line_pointer (e);
2708 }
2709 else
2710 as_bad (_("missing argument for %s_check directive"), str);
2711
2712 demand_empty_rest_of_line ();
2713 }
2714
2715 static void
2716 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2717 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2718 {
2719 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2720 static const char *arch;
2721
2722 /* Intel LIOM is only supported on ELF. */
2723 if (!IS_ELF)
2724 return;
2725
2726 if (!arch)
2727 {
2728 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2729 use default_arch. */
2730 arch = cpu_arch_name;
2731 if (!arch)
2732 arch = default_arch;
2733 }
2734
2735 /* If we are targeting Intel MCU, we must enable it. */
2736 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2737 || new_flag.bitfield.cpuiamcu)
2738 return;
2739
2740 /* If we are targeting Intel L1OM, we must enable it. */
2741 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2742 || new_flag.bitfield.cpul1om)
2743 return;
2744
2745 /* If we are targeting Intel K1OM, we must enable it. */
2746 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2747 || new_flag.bitfield.cpuk1om)
2748 return;
2749
2750 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2751 #endif
2752 }
2753
2754 static void
2755 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2756 {
2757 SKIP_WHITESPACE ();
2758
2759 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2760 {
2761 char *string;
2762 int e = get_symbol_name (&string);
2763 unsigned int j;
2764 i386_cpu_flags flags;
2765
2766 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2767 {
2768 if (strcmp (string, cpu_arch[j].name) == 0)
2769 {
2770 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2771
2772 if (*string != '.')
2773 {
2774 cpu_arch_name = cpu_arch[j].name;
2775 cpu_sub_arch_name = NULL;
2776 cpu_arch_flags = cpu_arch[j].flags;
2777 if (flag_code == CODE_64BIT)
2778 {
2779 cpu_arch_flags.bitfield.cpu64 = 1;
2780 cpu_arch_flags.bitfield.cpuno64 = 0;
2781 }
2782 else
2783 {
2784 cpu_arch_flags.bitfield.cpu64 = 0;
2785 cpu_arch_flags.bitfield.cpuno64 = 1;
2786 }
2787 cpu_arch_isa = cpu_arch[j].type;
2788 cpu_arch_isa_flags = cpu_arch[j].flags;
2789 if (!cpu_arch_tune_set)
2790 {
2791 cpu_arch_tune = cpu_arch_isa;
2792 cpu_arch_tune_flags = cpu_arch_isa_flags;
2793 }
2794 break;
2795 }
2796
2797 flags = cpu_flags_or (cpu_arch_flags,
2798 cpu_arch[j].flags);
2799
2800 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2801 {
2802 if (cpu_sub_arch_name)
2803 {
2804 char *name = cpu_sub_arch_name;
2805 cpu_sub_arch_name = concat (name,
2806 cpu_arch[j].name,
2807 (const char *) NULL);
2808 free (name);
2809 }
2810 else
2811 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2812 cpu_arch_flags = flags;
2813 cpu_arch_isa_flags = flags;
2814 }
2815 else
2816 cpu_arch_isa_flags
2817 = cpu_flags_or (cpu_arch_isa_flags,
2818 cpu_arch[j].flags);
2819 (void) restore_line_pointer (e);
2820 demand_empty_rest_of_line ();
2821 return;
2822 }
2823 }
2824
2825 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2826 {
2827 /* Disable an ISA extension. */
2828 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2829 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2830 {
2831 flags = cpu_flags_and_not (cpu_arch_flags,
2832 cpu_noarch[j].flags);
2833 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2834 {
2835 if (cpu_sub_arch_name)
2836 {
2837 char *name = cpu_sub_arch_name;
2838 cpu_sub_arch_name = concat (name, string,
2839 (const char *) NULL);
2840 free (name);
2841 }
2842 else
2843 cpu_sub_arch_name = xstrdup (string);
2844 cpu_arch_flags = flags;
2845 cpu_arch_isa_flags = flags;
2846 }
2847 (void) restore_line_pointer (e);
2848 demand_empty_rest_of_line ();
2849 return;
2850 }
2851
2852 j = ARRAY_SIZE (cpu_arch);
2853 }
2854
2855 if (j >= ARRAY_SIZE (cpu_arch))
2856 as_bad (_("no such architecture: `%s'"), string);
2857
2858 *input_line_pointer = e;
2859 }
2860 else
2861 as_bad (_("missing cpu architecture"));
2862
2863 no_cond_jump_promotion = 0;
2864 if (*input_line_pointer == ','
2865 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2866 {
2867 char *string;
2868 char e;
2869
2870 ++input_line_pointer;
2871 e = get_symbol_name (&string);
2872
2873 if (strcmp (string, "nojumps") == 0)
2874 no_cond_jump_promotion = 1;
2875 else if (strcmp (string, "jumps") == 0)
2876 ;
2877 else
2878 as_bad (_("no such architecture modifier: `%s'"), string);
2879
2880 (void) restore_line_pointer (e);
2881 }
2882
2883 demand_empty_rest_of_line ();
2884 }
2885
2886 enum bfd_architecture
2887 i386_arch (void)
2888 {
2889 if (cpu_arch_isa == PROCESSOR_L1OM)
2890 {
2891 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2892 || flag_code != CODE_64BIT)
2893 as_fatal (_("Intel L1OM is 64bit ELF only"));
2894 return bfd_arch_l1om;
2895 }
2896 else if (cpu_arch_isa == PROCESSOR_K1OM)
2897 {
2898 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2899 || flag_code != CODE_64BIT)
2900 as_fatal (_("Intel K1OM is 64bit ELF only"));
2901 return bfd_arch_k1om;
2902 }
2903 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2904 {
2905 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2906 || flag_code == CODE_64BIT)
2907 as_fatal (_("Intel MCU is 32bit ELF only"));
2908 return bfd_arch_iamcu;
2909 }
2910 else
2911 return bfd_arch_i386;
2912 }
2913
2914 unsigned long
2915 i386_mach (void)
2916 {
2917 if (!strncmp (default_arch, "x86_64", 6))
2918 {
2919 if (cpu_arch_isa == PROCESSOR_L1OM)
2920 {
2921 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2922 || default_arch[6] != '\0')
2923 as_fatal (_("Intel L1OM is 64bit ELF only"));
2924 return bfd_mach_l1om;
2925 }
2926 else if (cpu_arch_isa == PROCESSOR_K1OM)
2927 {
2928 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2929 || default_arch[6] != '\0')
2930 as_fatal (_("Intel K1OM is 64bit ELF only"));
2931 return bfd_mach_k1om;
2932 }
2933 else if (default_arch[6] == '\0')
2934 return bfd_mach_x86_64;
2935 else
2936 return bfd_mach_x64_32;
2937 }
2938 else if (!strcmp (default_arch, "i386")
2939 || !strcmp (default_arch, "iamcu"))
2940 {
2941 if (cpu_arch_isa == PROCESSOR_IAMCU)
2942 {
2943 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2944 as_fatal (_("Intel MCU is 32bit ELF only"));
2945 return bfd_mach_i386_iamcu;
2946 }
2947 else
2948 return bfd_mach_i386_i386;
2949 }
2950 else
2951 as_fatal (_("unknown architecture"));
2952 }
2953 \f
2954 void
2955 md_begin (void)
2956 {
2957 const char *hash_err;
2958
2959 /* Support pseudo prefixes like {disp32}. */
2960 lex_type ['{'] = LEX_BEGIN_NAME;
2961
2962 /* Initialize op_hash hash table. */
2963 op_hash = hash_new ();
2964
2965 {
2966 const insn_template *optab;
2967 templates *core_optab;
2968
2969 /* Setup for loop. */
2970 optab = i386_optab;
2971 core_optab = XNEW (templates);
2972 core_optab->start = optab;
2973
2974 while (1)
2975 {
2976 ++optab;
2977 if (optab->name == NULL
2978 || strcmp (optab->name, (optab - 1)->name) != 0)
2979 {
2980 /* different name --> ship out current template list;
2981 add to hash table; & begin anew. */
2982 core_optab->end = optab;
2983 hash_err = hash_insert (op_hash,
2984 (optab - 1)->name,
2985 (void *) core_optab);
2986 if (hash_err)
2987 {
2988 as_fatal (_("can't hash %s: %s"),
2989 (optab - 1)->name,
2990 hash_err);
2991 }
2992 if (optab->name == NULL)
2993 break;
2994 core_optab = XNEW (templates);
2995 core_optab->start = optab;
2996 }
2997 }
2998 }
2999
3000 /* Initialize reg_hash hash table. */
3001 reg_hash = hash_new ();
3002 {
3003 const reg_entry *regtab;
3004 unsigned int regtab_size = i386_regtab_size;
3005
3006 for (regtab = i386_regtab; regtab_size--; regtab++)
3007 {
3008 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
3009 if (hash_err)
3010 as_fatal (_("can't hash %s: %s"),
3011 regtab->reg_name,
3012 hash_err);
3013 }
3014 }
3015
3016 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
3017 {
3018 int c;
3019 char *p;
3020
3021 for (c = 0; c < 256; c++)
3022 {
3023 if (ISDIGIT (c))
3024 {
3025 digit_chars[c] = c;
3026 mnemonic_chars[c] = c;
3027 register_chars[c] = c;
3028 operand_chars[c] = c;
3029 }
3030 else if (ISLOWER (c))
3031 {
3032 mnemonic_chars[c] = c;
3033 register_chars[c] = c;
3034 operand_chars[c] = c;
3035 }
3036 else if (ISUPPER (c))
3037 {
3038 mnemonic_chars[c] = TOLOWER (c);
3039 register_chars[c] = mnemonic_chars[c];
3040 operand_chars[c] = c;
3041 }
3042 else if (c == '{' || c == '}')
3043 {
3044 mnemonic_chars[c] = c;
3045 operand_chars[c] = c;
3046 }
3047
3048 if (ISALPHA (c) || ISDIGIT (c))
3049 identifier_chars[c] = c;
3050 else if (c >= 128)
3051 {
3052 identifier_chars[c] = c;
3053 operand_chars[c] = c;
3054 }
3055 }
3056
3057 #ifdef LEX_AT
3058 identifier_chars['@'] = '@';
3059 #endif
3060 #ifdef LEX_QM
3061 identifier_chars['?'] = '?';
3062 operand_chars['?'] = '?';
3063 #endif
3064 digit_chars['-'] = '-';
3065 mnemonic_chars['_'] = '_';
3066 mnemonic_chars['-'] = '-';
3067 mnemonic_chars['.'] = '.';
3068 identifier_chars['_'] = '_';
3069 identifier_chars['.'] = '.';
3070
3071 for (p = operand_special_chars; *p != '\0'; p++)
3072 operand_chars[(unsigned char) *p] = *p;
3073 }
3074
3075 if (flag_code == CODE_64BIT)
3076 {
3077 #if defined (OBJ_COFF) && defined (TE_PE)
3078 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3079 ? 32 : 16);
3080 #else
3081 x86_dwarf2_return_column = 16;
3082 #endif
3083 x86_cie_data_alignment = -8;
3084 }
3085 else
3086 {
3087 x86_dwarf2_return_column = 8;
3088 x86_cie_data_alignment = -4;
3089 }
3090
3091 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3092 can be turned into BRANCH_PREFIX frag. */
3093 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3094 abort ();
3095 }
3096
3097 void
3098 i386_print_statistics (FILE *file)
3099 {
3100 hash_print_statistics (file, "i386 opcode", op_hash);
3101 hash_print_statistics (file, "i386 register", reg_hash);
3102 }
3103 \f
3104 #ifdef DEBUG386
3105
3106 /* Debugging routines for md_assemble. */
3107 static void pte (insn_template *);
3108 static void pt (i386_operand_type);
3109 static void pe (expressionS *);
3110 static void ps (symbolS *);
3111
3112 static void
3113 pi (const char *line, i386_insn *x)
3114 {
3115 unsigned int j;
3116
3117 fprintf (stdout, "%s: template ", line);
3118 pte (&x->tm);
3119 fprintf (stdout, " address: base %s index %s scale %x\n",
3120 x->base_reg ? x->base_reg->reg_name : "none",
3121 x->index_reg ? x->index_reg->reg_name : "none",
3122 x->log2_scale_factor);
3123 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3124 x->rm.mode, x->rm.reg, x->rm.regmem);
3125 fprintf (stdout, " sib: base %x index %x scale %x\n",
3126 x->sib.base, x->sib.index, x->sib.scale);
3127 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3128 (x->rex & REX_W) != 0,
3129 (x->rex & REX_R) != 0,
3130 (x->rex & REX_X) != 0,
3131 (x->rex & REX_B) != 0);
3132 for (j = 0; j < x->operands; j++)
3133 {
3134 fprintf (stdout, " #%d: ", j + 1);
3135 pt (x->types[j]);
3136 fprintf (stdout, "\n");
3137 if (x->types[j].bitfield.class == Reg
3138 || x->types[j].bitfield.class == RegMMX
3139 || x->types[j].bitfield.class == RegSIMD
3140 || x->types[j].bitfield.class == SReg
3141 || x->types[j].bitfield.class == RegCR
3142 || x->types[j].bitfield.class == RegDR
3143 || x->types[j].bitfield.class == RegTR)
3144 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3145 if (operand_type_check (x->types[j], imm))
3146 pe (x->op[j].imms);
3147 if (operand_type_check (x->types[j], disp))
3148 pe (x->op[j].disps);
3149 }
3150 }
3151
3152 static void
3153 pte (insn_template *t)
3154 {
3155 unsigned int j;
3156 fprintf (stdout, " %d operands ", t->operands);
3157 fprintf (stdout, "opcode %x ", t->base_opcode);
3158 if (t->extension_opcode != None)
3159 fprintf (stdout, "ext %x ", t->extension_opcode);
3160 if (t->opcode_modifier.d)
3161 fprintf (stdout, "D");
3162 if (t->opcode_modifier.w)
3163 fprintf (stdout, "W");
3164 fprintf (stdout, "\n");
3165 for (j = 0; j < t->operands; j++)
3166 {
3167 fprintf (stdout, " #%d type ", j + 1);
3168 pt (t->operand_types[j]);
3169 fprintf (stdout, "\n");
3170 }
3171 }
3172
3173 static void
3174 pe (expressionS *e)
3175 {
3176 fprintf (stdout, " operation %d\n", e->X_op);
3177 fprintf (stdout, " add_number %ld (%lx)\n",
3178 (long) e->X_add_number, (long) e->X_add_number);
3179 if (e->X_add_symbol)
3180 {
3181 fprintf (stdout, " add_symbol ");
3182 ps (e->X_add_symbol);
3183 fprintf (stdout, "\n");
3184 }
3185 if (e->X_op_symbol)
3186 {
3187 fprintf (stdout, " op_symbol ");
3188 ps (e->X_op_symbol);
3189 fprintf (stdout, "\n");
3190 }
3191 }
3192
3193 static void
3194 ps (symbolS *s)
3195 {
3196 fprintf (stdout, "%s type %s%s",
3197 S_GET_NAME (s),
3198 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3199 segment_name (S_GET_SEGMENT (s)));
3200 }
3201
3202 static struct type_name
3203 {
3204 i386_operand_type mask;
3205 const char *name;
3206 }
3207 const type_names[] =
3208 {
3209 { OPERAND_TYPE_REG8, "r8" },
3210 { OPERAND_TYPE_REG16, "r16" },
3211 { OPERAND_TYPE_REG32, "r32" },
3212 { OPERAND_TYPE_REG64, "r64" },
3213 { OPERAND_TYPE_ACC8, "acc8" },
3214 { OPERAND_TYPE_ACC16, "acc16" },
3215 { OPERAND_TYPE_ACC32, "acc32" },
3216 { OPERAND_TYPE_ACC64, "acc64" },
3217 { OPERAND_TYPE_IMM8, "i8" },
3218 { OPERAND_TYPE_IMM8, "i8s" },
3219 { OPERAND_TYPE_IMM16, "i16" },
3220 { OPERAND_TYPE_IMM32, "i32" },
3221 { OPERAND_TYPE_IMM32S, "i32s" },
3222 { OPERAND_TYPE_IMM64, "i64" },
3223 { OPERAND_TYPE_IMM1, "i1" },
3224 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3225 { OPERAND_TYPE_DISP8, "d8" },
3226 { OPERAND_TYPE_DISP16, "d16" },
3227 { OPERAND_TYPE_DISP32, "d32" },
3228 { OPERAND_TYPE_DISP32S, "d32s" },
3229 { OPERAND_TYPE_DISP64, "d64" },
3230 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3231 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3232 { OPERAND_TYPE_CONTROL, "control reg" },
3233 { OPERAND_TYPE_TEST, "test reg" },
3234 { OPERAND_TYPE_DEBUG, "debug reg" },
3235 { OPERAND_TYPE_FLOATREG, "FReg" },
3236 { OPERAND_TYPE_FLOATACC, "FAcc" },
3237 { OPERAND_TYPE_SREG, "SReg" },
3238 { OPERAND_TYPE_REGMMX, "rMMX" },
3239 { OPERAND_TYPE_REGXMM, "rXMM" },
3240 { OPERAND_TYPE_REGYMM, "rYMM" },
3241 { OPERAND_TYPE_REGZMM, "rZMM" },
3242 { OPERAND_TYPE_REGMASK, "Mask reg" },
3243 };
3244
3245 static void
3246 pt (i386_operand_type t)
3247 {
3248 unsigned int j;
3249 i386_operand_type a;
3250
3251 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3252 {
3253 a = operand_type_and (t, type_names[j].mask);
3254 if (operand_type_equal (&a, &type_names[j].mask))
3255 fprintf (stdout, "%s, ", type_names[j].name);
3256 }
3257 fflush (stdout);
3258 }
3259
3260 #endif /* DEBUG386 */
3261 \f
3262 static bfd_reloc_code_real_type
3263 reloc (unsigned int size,
3264 int pcrel,
3265 int sign,
3266 bfd_reloc_code_real_type other)
3267 {
3268 if (other != NO_RELOC)
3269 {
3270 reloc_howto_type *rel;
3271
3272 if (size == 8)
3273 switch (other)
3274 {
3275 case BFD_RELOC_X86_64_GOT32:
3276 return BFD_RELOC_X86_64_GOT64;
3277 break;
3278 case BFD_RELOC_X86_64_GOTPLT64:
3279 return BFD_RELOC_X86_64_GOTPLT64;
3280 break;
3281 case BFD_RELOC_X86_64_PLTOFF64:
3282 return BFD_RELOC_X86_64_PLTOFF64;
3283 break;
3284 case BFD_RELOC_X86_64_GOTPC32:
3285 other = BFD_RELOC_X86_64_GOTPC64;
3286 break;
3287 case BFD_RELOC_X86_64_GOTPCREL:
3288 other = BFD_RELOC_X86_64_GOTPCREL64;
3289 break;
3290 case BFD_RELOC_X86_64_TPOFF32:
3291 other = BFD_RELOC_X86_64_TPOFF64;
3292 break;
3293 case BFD_RELOC_X86_64_DTPOFF32:
3294 other = BFD_RELOC_X86_64_DTPOFF64;
3295 break;
3296 default:
3297 break;
3298 }
3299
3300 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3301 if (other == BFD_RELOC_SIZE32)
3302 {
3303 if (size == 8)
3304 other = BFD_RELOC_SIZE64;
3305 if (pcrel)
3306 {
3307 as_bad (_("there are no pc-relative size relocations"));
3308 return NO_RELOC;
3309 }
3310 }
3311 #endif
3312
3313 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3314 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3315 sign = -1;
3316
3317 rel = bfd_reloc_type_lookup (stdoutput, other);
3318 if (!rel)
3319 as_bad (_("unknown relocation (%u)"), other);
3320 else if (size != bfd_get_reloc_size (rel))
3321 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3322 bfd_get_reloc_size (rel),
3323 size);
3324 else if (pcrel && !rel->pc_relative)
3325 as_bad (_("non-pc-relative relocation for pc-relative field"));
3326 else if ((rel->complain_on_overflow == complain_overflow_signed
3327 && !sign)
3328 || (rel->complain_on_overflow == complain_overflow_unsigned
3329 && sign > 0))
3330 as_bad (_("relocated field and relocation type differ in signedness"));
3331 else
3332 return other;
3333 return NO_RELOC;
3334 }
3335
3336 if (pcrel)
3337 {
3338 if (!sign)
3339 as_bad (_("there are no unsigned pc-relative relocations"));
3340 switch (size)
3341 {
3342 case 1: return BFD_RELOC_8_PCREL;
3343 case 2: return BFD_RELOC_16_PCREL;
3344 case 4: return BFD_RELOC_32_PCREL;
3345 case 8: return BFD_RELOC_64_PCREL;
3346 }
3347 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3348 }
3349 else
3350 {
3351 if (sign > 0)
3352 switch (size)
3353 {
3354 case 4: return BFD_RELOC_X86_64_32S;
3355 }
3356 else
3357 switch (size)
3358 {
3359 case 1: return BFD_RELOC_8;
3360 case 2: return BFD_RELOC_16;
3361 case 4: return BFD_RELOC_32;
3362 case 8: return BFD_RELOC_64;
3363 }
3364 as_bad (_("cannot do %s %u byte relocation"),
3365 sign > 0 ? "signed" : "unsigned", size);
3366 }
3367
3368 return NO_RELOC;
3369 }
3370
3371 /* Here we decide which fixups can be adjusted to make them relative to
3372 the beginning of the section instead of the symbol. Basically we need
3373 to make sure that the dynamic relocations are done correctly, so in
3374 some cases we force the original symbol to be used. */
3375
3376 int
3377 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3378 {
3379 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3380 if (!IS_ELF)
3381 return 1;
3382
3383 /* Don't adjust pc-relative references to merge sections in 64-bit
3384 mode. */
3385 if (use_rela_relocations
3386 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3387 && fixP->fx_pcrel)
3388 return 0;
3389
3390 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3391 and changed later by validate_fix. */
3392 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3393 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3394 return 0;
3395
3396 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3397 for size relocations. */
3398 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3399 || fixP->fx_r_type == BFD_RELOC_SIZE64
3400 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3401 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3402 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3403 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3404 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3405 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3406 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3407 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3408 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3409 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3410 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3411 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3412 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3413 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3414 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3415 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3416 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3417 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3418 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3419 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3420 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3421 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3422 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3423 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3424 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3425 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3426 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3427 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3428 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3429 return 0;
3430 #endif
3431 return 1;
3432 }
3433
3434 static int
3435 intel_float_operand (const char *mnemonic)
3436 {
3437 /* Note that the value returned is meaningful only for opcodes with (memory)
3438 operands, hence the code here is free to improperly handle opcodes that
3439 have no operands (for better performance and smaller code). */
3440
3441 if (mnemonic[0] != 'f')
3442 return 0; /* non-math */
3443
3444 switch (mnemonic[1])
3445 {
3446 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3447 the fs segment override prefix not currently handled because no
3448 call path can make opcodes without operands get here */
3449 case 'i':
3450 return 2 /* integer op */;
3451 case 'l':
3452 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3453 return 3; /* fldcw/fldenv */
3454 break;
3455 case 'n':
3456 if (mnemonic[2] != 'o' /* fnop */)
3457 return 3; /* non-waiting control op */
3458 break;
3459 case 'r':
3460 if (mnemonic[2] == 's')
3461 return 3; /* frstor/frstpm */
3462 break;
3463 case 's':
3464 if (mnemonic[2] == 'a')
3465 return 3; /* fsave */
3466 if (mnemonic[2] == 't')
3467 {
3468 switch (mnemonic[3])
3469 {
3470 case 'c': /* fstcw */
3471 case 'd': /* fstdw */
3472 case 'e': /* fstenv */
3473 case 's': /* fsts[gw] */
3474 return 3;
3475 }
3476 }
3477 break;
3478 case 'x':
3479 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3480 return 0; /* fxsave/fxrstor are not really math ops */
3481 break;
3482 }
3483
3484 return 1;
3485 }
3486
3487 /* Build the VEX prefix. */
3488
3489 static void
3490 build_vex_prefix (const insn_template *t)
3491 {
3492 unsigned int register_specifier;
3493 unsigned int implied_prefix;
3494 unsigned int vector_length;
3495 unsigned int w;
3496
3497 /* Check register specifier. */
3498 if (i.vex.register_specifier)
3499 {
3500 register_specifier =
3501 ~register_number (i.vex.register_specifier) & 0xf;
3502 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3503 }
3504 else
3505 register_specifier = 0xf;
3506
3507 /* Use 2-byte VEX prefix by swapping destination and source operand
3508 if there are more than 1 register operand. */
3509 if (i.reg_operands > 1
3510 && i.vec_encoding != vex_encoding_vex3
3511 && i.dir_encoding == dir_encoding_default
3512 && i.operands == i.reg_operands
3513 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3514 && i.tm.opcode_modifier.vexopcode == VEX0F
3515 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3516 && i.rex == REX_B)
3517 {
3518 unsigned int xchg = i.operands - 1;
3519 union i386_op temp_op;
3520 i386_operand_type temp_type;
3521
3522 temp_type = i.types[xchg];
3523 i.types[xchg] = i.types[0];
3524 i.types[0] = temp_type;
3525 temp_op = i.op[xchg];
3526 i.op[xchg] = i.op[0];
3527 i.op[0] = temp_op;
3528
3529 gas_assert (i.rm.mode == 3);
3530
3531 i.rex = REX_R;
3532 xchg = i.rm.regmem;
3533 i.rm.regmem = i.rm.reg;
3534 i.rm.reg = xchg;
3535
3536 if (i.tm.opcode_modifier.d)
3537 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3538 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3539 else /* Use the next insn. */
3540 i.tm = t[1];
3541 }
3542
3543 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3544 are no memory operands and at least 3 register ones. */
3545 if (i.reg_operands >= 3
3546 && i.vec_encoding != vex_encoding_vex3
3547 && i.reg_operands == i.operands - i.imm_operands
3548 && i.tm.opcode_modifier.vex
3549 && i.tm.opcode_modifier.commutative
3550 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3551 && i.rex == REX_B
3552 && i.vex.register_specifier
3553 && !(i.vex.register_specifier->reg_flags & RegRex))
3554 {
3555 unsigned int xchg = i.operands - i.reg_operands;
3556 union i386_op temp_op;
3557 i386_operand_type temp_type;
3558
3559 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3560 gas_assert (!i.tm.opcode_modifier.sae);
3561 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3562 &i.types[i.operands - 3]));
3563 gas_assert (i.rm.mode == 3);
3564
3565 temp_type = i.types[xchg];
3566 i.types[xchg] = i.types[xchg + 1];
3567 i.types[xchg + 1] = temp_type;
3568 temp_op = i.op[xchg];
3569 i.op[xchg] = i.op[xchg + 1];
3570 i.op[xchg + 1] = temp_op;
3571
3572 i.rex = 0;
3573 xchg = i.rm.regmem | 8;
3574 i.rm.regmem = ~register_specifier & 0xf;
3575 gas_assert (!(i.rm.regmem & 8));
3576 i.vex.register_specifier += xchg - i.rm.regmem;
3577 register_specifier = ~xchg & 0xf;
3578 }
3579
3580 if (i.tm.opcode_modifier.vex == VEXScalar)
3581 vector_length = avxscalar;
3582 else if (i.tm.opcode_modifier.vex == VEX256)
3583 vector_length = 1;
3584 else
3585 {
3586 unsigned int op;
3587
3588 /* Determine vector length from the last multi-length vector
3589 operand. */
3590 vector_length = 0;
3591 for (op = t->operands; op--;)
3592 if (t->operand_types[op].bitfield.xmmword
3593 && t->operand_types[op].bitfield.ymmword
3594 && i.types[op].bitfield.ymmword)
3595 {
3596 vector_length = 1;
3597 break;
3598 }
3599 }
3600
3601 switch ((i.tm.base_opcode >> 8) & 0xff)
3602 {
3603 case 0:
3604 implied_prefix = 0;
3605 break;
3606 case DATA_PREFIX_OPCODE:
3607 implied_prefix = 1;
3608 break;
3609 case REPE_PREFIX_OPCODE:
3610 implied_prefix = 2;
3611 break;
3612 case REPNE_PREFIX_OPCODE:
3613 implied_prefix = 3;
3614 break;
3615 default:
3616 abort ();
3617 }
3618
3619 /* Check the REX.W bit and VEXW. */
3620 if (i.tm.opcode_modifier.vexw == VEXWIG)
3621 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3622 else if (i.tm.opcode_modifier.vexw)
3623 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3624 else
3625 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3626
3627 /* Use 2-byte VEX prefix if possible. */
3628 if (w == 0
3629 && i.vec_encoding != vex_encoding_vex3
3630 && i.tm.opcode_modifier.vexopcode == VEX0F
3631 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3632 {
3633 /* 2-byte VEX prefix. */
3634 unsigned int r;
3635
3636 i.vex.length = 2;
3637 i.vex.bytes[0] = 0xc5;
3638
3639 /* Check the REX.R bit. */
3640 r = (i.rex & REX_R) ? 0 : 1;
3641 i.vex.bytes[1] = (r << 7
3642 | register_specifier << 3
3643 | vector_length << 2
3644 | implied_prefix);
3645 }
3646 else
3647 {
3648 /* 3-byte VEX prefix. */
3649 unsigned int m;
3650
3651 i.vex.length = 3;
3652
3653 switch (i.tm.opcode_modifier.vexopcode)
3654 {
3655 case VEX0F:
3656 m = 0x1;
3657 i.vex.bytes[0] = 0xc4;
3658 break;
3659 case VEX0F38:
3660 m = 0x2;
3661 i.vex.bytes[0] = 0xc4;
3662 break;
3663 case VEX0F3A:
3664 m = 0x3;
3665 i.vex.bytes[0] = 0xc4;
3666 break;
3667 case XOP08:
3668 m = 0x8;
3669 i.vex.bytes[0] = 0x8f;
3670 break;
3671 case XOP09:
3672 m = 0x9;
3673 i.vex.bytes[0] = 0x8f;
3674 break;
3675 case XOP0A:
3676 m = 0xa;
3677 i.vex.bytes[0] = 0x8f;
3678 break;
3679 default:
3680 abort ();
3681 }
3682
3683 /* The high 3 bits of the second VEX byte are 1's compliment
3684 of RXB bits from REX. */
3685 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3686
3687 i.vex.bytes[2] = (w << 7
3688 | register_specifier << 3
3689 | vector_length << 2
3690 | implied_prefix);
3691 }
3692 }
3693
3694 static INLINE bfd_boolean
3695 is_evex_encoding (const insn_template *t)
3696 {
3697 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3698 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3699 || t->opcode_modifier.sae;
3700 }
3701
3702 static INLINE bfd_boolean
3703 is_any_vex_encoding (const insn_template *t)
3704 {
3705 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3706 || is_evex_encoding (t);
3707 }
3708
3709 /* Build the EVEX prefix. */
3710
3711 static void
3712 build_evex_prefix (void)
3713 {
3714 unsigned int register_specifier;
3715 unsigned int implied_prefix;
3716 unsigned int m, w;
3717 rex_byte vrex_used = 0;
3718
3719 /* Check register specifier. */
3720 if (i.vex.register_specifier)
3721 {
3722 gas_assert ((i.vrex & REX_X) == 0);
3723
3724 register_specifier = i.vex.register_specifier->reg_num;
3725 if ((i.vex.register_specifier->reg_flags & RegRex))
3726 register_specifier += 8;
3727 /* The upper 16 registers are encoded in the fourth byte of the
3728 EVEX prefix. */
3729 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3730 i.vex.bytes[3] = 0x8;
3731 register_specifier = ~register_specifier & 0xf;
3732 }
3733 else
3734 {
3735 register_specifier = 0xf;
3736
3737 /* Encode upper 16 vector index register in the fourth byte of
3738 the EVEX prefix. */
3739 if (!(i.vrex & REX_X))
3740 i.vex.bytes[3] = 0x8;
3741 else
3742 vrex_used |= REX_X;
3743 }
3744
3745 switch ((i.tm.base_opcode >> 8) & 0xff)
3746 {
3747 case 0:
3748 implied_prefix = 0;
3749 break;
3750 case DATA_PREFIX_OPCODE:
3751 implied_prefix = 1;
3752 break;
3753 case REPE_PREFIX_OPCODE:
3754 implied_prefix = 2;
3755 break;
3756 case REPNE_PREFIX_OPCODE:
3757 implied_prefix = 3;
3758 break;
3759 default:
3760 abort ();
3761 }
3762
3763 /* 4 byte EVEX prefix. */
3764 i.vex.length = 4;
3765 i.vex.bytes[0] = 0x62;
3766
3767 /* mmmm bits. */
3768 switch (i.tm.opcode_modifier.vexopcode)
3769 {
3770 case VEX0F:
3771 m = 1;
3772 break;
3773 case VEX0F38:
3774 m = 2;
3775 break;
3776 case VEX0F3A:
3777 m = 3;
3778 break;
3779 default:
3780 abort ();
3781 break;
3782 }
3783
3784 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3785 bits from REX. */
3786 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3787
3788 /* The fifth bit of the second EVEX byte is 1's compliment of the
3789 REX_R bit in VREX. */
3790 if (!(i.vrex & REX_R))
3791 i.vex.bytes[1] |= 0x10;
3792 else
3793 vrex_used |= REX_R;
3794
3795 if ((i.reg_operands + i.imm_operands) == i.operands)
3796 {
3797 /* When all operands are registers, the REX_X bit in REX is not
3798 used. We reuse it to encode the upper 16 registers, which is
3799 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3800 as 1's compliment. */
3801 if ((i.vrex & REX_B))
3802 {
3803 vrex_used |= REX_B;
3804 i.vex.bytes[1] &= ~0x40;
3805 }
3806 }
3807
3808 /* EVEX instructions shouldn't need the REX prefix. */
3809 i.vrex &= ~vrex_used;
3810 gas_assert (i.vrex == 0);
3811
3812 /* Check the REX.W bit and VEXW. */
3813 if (i.tm.opcode_modifier.vexw == VEXWIG)
3814 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3815 else if (i.tm.opcode_modifier.vexw)
3816 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3817 else
3818 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3819
3820 /* Encode the U bit. */
3821 implied_prefix |= 0x4;
3822
3823 /* The third byte of the EVEX prefix. */
3824 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3825
3826 /* The fourth byte of the EVEX prefix. */
3827 /* The zeroing-masking bit. */
3828 if (i.mask && i.mask->zeroing)
3829 i.vex.bytes[3] |= 0x80;
3830
3831 /* Don't always set the broadcast bit if there is no RC. */
3832 if (!i.rounding)
3833 {
3834 /* Encode the vector length. */
3835 unsigned int vec_length;
3836
3837 if (!i.tm.opcode_modifier.evex
3838 || i.tm.opcode_modifier.evex == EVEXDYN)
3839 {
3840 unsigned int op;
3841
3842 /* Determine vector length from the last multi-length vector
3843 operand. */
3844 vec_length = 0;
3845 for (op = i.operands; op--;)
3846 if (i.tm.operand_types[op].bitfield.xmmword
3847 + i.tm.operand_types[op].bitfield.ymmword
3848 + i.tm.operand_types[op].bitfield.zmmword > 1)
3849 {
3850 if (i.types[op].bitfield.zmmword)
3851 {
3852 i.tm.opcode_modifier.evex = EVEX512;
3853 break;
3854 }
3855 else if (i.types[op].bitfield.ymmword)
3856 {
3857 i.tm.opcode_modifier.evex = EVEX256;
3858 break;
3859 }
3860 else if (i.types[op].bitfield.xmmword)
3861 {
3862 i.tm.opcode_modifier.evex = EVEX128;
3863 break;
3864 }
3865 else if (i.broadcast && (int) op == i.broadcast->operand)
3866 {
3867 switch (i.broadcast->bytes)
3868 {
3869 case 64:
3870 i.tm.opcode_modifier.evex = EVEX512;
3871 break;
3872 case 32:
3873 i.tm.opcode_modifier.evex = EVEX256;
3874 break;
3875 case 16:
3876 i.tm.opcode_modifier.evex = EVEX128;
3877 break;
3878 default:
3879 abort ();
3880 }
3881 break;
3882 }
3883 }
3884
3885 if (op >= MAX_OPERANDS)
3886 abort ();
3887 }
3888
3889 switch (i.tm.opcode_modifier.evex)
3890 {
3891 case EVEXLIG: /* LL' is ignored */
3892 vec_length = evexlig << 5;
3893 break;
3894 case EVEX128:
3895 vec_length = 0 << 5;
3896 break;
3897 case EVEX256:
3898 vec_length = 1 << 5;
3899 break;
3900 case EVEX512:
3901 vec_length = 2 << 5;
3902 break;
3903 default:
3904 abort ();
3905 break;
3906 }
3907 i.vex.bytes[3] |= vec_length;
3908 /* Encode the broadcast bit. */
3909 if (i.broadcast)
3910 i.vex.bytes[3] |= 0x10;
3911 }
3912 else
3913 {
3914 if (i.rounding->type != saeonly)
3915 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3916 else
3917 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3918 }
3919
3920 if (i.mask && i.mask->mask)
3921 i.vex.bytes[3] |= i.mask->mask->reg_num;
3922 }
3923
3924 static void
3925 process_immext (void)
3926 {
3927 expressionS *exp;
3928
3929 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3930 which is coded in the same place as an 8-bit immediate field
3931 would be. Here we fake an 8-bit immediate operand from the
3932 opcode suffix stored in tm.extension_opcode.
3933
3934 AVX instructions also use this encoding, for some of
3935 3 argument instructions. */
3936
3937 gas_assert (i.imm_operands <= 1
3938 && (i.operands <= 2
3939 || (is_any_vex_encoding (&i.tm)
3940 && i.operands <= 4)));
3941
3942 exp = &im_expressions[i.imm_operands++];
3943 i.op[i.operands].imms = exp;
3944 i.types[i.operands] = imm8;
3945 i.operands++;
3946 exp->X_op = O_constant;
3947 exp->X_add_number = i.tm.extension_opcode;
3948 i.tm.extension_opcode = None;
3949 }
3950
3951
3952 static int
3953 check_hle (void)
3954 {
3955 switch (i.tm.opcode_modifier.hleprefixok)
3956 {
3957 default:
3958 abort ();
3959 case HLEPrefixNone:
3960 as_bad (_("invalid instruction `%s' after `%s'"),
3961 i.tm.name, i.hle_prefix);
3962 return 0;
3963 case HLEPrefixLock:
3964 if (i.prefix[LOCK_PREFIX])
3965 return 1;
3966 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3967 return 0;
3968 case HLEPrefixAny:
3969 return 1;
3970 case HLEPrefixRelease:
3971 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3972 {
3973 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3974 i.tm.name);
3975 return 0;
3976 }
3977 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
3978 {
3979 as_bad (_("memory destination needed for instruction `%s'"
3980 " after `xrelease'"), i.tm.name);
3981 return 0;
3982 }
3983 return 1;
3984 }
3985 }
3986
3987 /* Try the shortest encoding by shortening operand size. */
3988
3989 static void
3990 optimize_encoding (void)
3991 {
3992 unsigned int j;
3993
3994 if (optimize_for_space
3995 && !is_any_vex_encoding (&i.tm)
3996 && i.reg_operands == 1
3997 && i.imm_operands == 1
3998 && !i.types[1].bitfield.byte
3999 && i.op[0].imms->X_op == O_constant
4000 && fits_in_imm7 (i.op[0].imms->X_add_number)
4001 && (i.tm.base_opcode == 0xa8
4002 || (i.tm.base_opcode == 0xf6
4003 && i.tm.extension_opcode == 0x0)))
4004 {
4005 /* Optimize: -Os:
4006 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4007 */
4008 unsigned int base_regnum = i.op[1].regs->reg_num;
4009 if (flag_code == CODE_64BIT || base_regnum < 4)
4010 {
4011 i.types[1].bitfield.byte = 1;
4012 /* Ignore the suffix. */
4013 i.suffix = 0;
4014 /* Convert to byte registers. */
4015 if (i.types[1].bitfield.word)
4016 j = 16;
4017 else if (i.types[1].bitfield.dword)
4018 j = 32;
4019 else
4020 j = 48;
4021 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4022 j += 8;
4023 i.op[1].regs -= j;
4024 }
4025 }
4026 else if (flag_code == CODE_64BIT
4027 && !is_any_vex_encoding (&i.tm)
4028 && ((i.types[1].bitfield.qword
4029 && i.reg_operands == 1
4030 && i.imm_operands == 1
4031 && i.op[0].imms->X_op == O_constant
4032 && ((i.tm.base_opcode == 0xb8
4033 && i.tm.extension_opcode == None
4034 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4035 || (fits_in_imm31 (i.op[0].imms->X_add_number)
4036 && ((i.tm.base_opcode == 0x24
4037 || i.tm.base_opcode == 0xa8)
4038 || (i.tm.base_opcode == 0x80
4039 && i.tm.extension_opcode == 0x4)
4040 || ((i.tm.base_opcode == 0xf6
4041 || (i.tm.base_opcode | 1) == 0xc7)
4042 && i.tm.extension_opcode == 0x0)))
4043 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4044 && i.tm.base_opcode == 0x83
4045 && i.tm.extension_opcode == 0x4)))
4046 || (i.types[0].bitfield.qword
4047 && ((i.reg_operands == 2
4048 && i.op[0].regs == i.op[1].regs
4049 && (i.tm.base_opcode == 0x30
4050 || i.tm.base_opcode == 0x28))
4051 || (i.reg_operands == 1
4052 && i.operands == 1
4053 && i.tm.base_opcode == 0x30)))))
4054 {
4055 /* Optimize: -O:
4056 andq $imm31, %r64 -> andl $imm31, %r32
4057 andq $imm7, %r64 -> andl $imm7, %r32
4058 testq $imm31, %r64 -> testl $imm31, %r32
4059 xorq %r64, %r64 -> xorl %r32, %r32
4060 subq %r64, %r64 -> subl %r32, %r32
4061 movq $imm31, %r64 -> movl $imm31, %r32
4062 movq $imm32, %r64 -> movl $imm32, %r32
4063 */
4064 i.tm.opcode_modifier.norex64 = 1;
4065 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
4066 {
4067 /* Handle
4068 movq $imm31, %r64 -> movl $imm31, %r32
4069 movq $imm32, %r64 -> movl $imm32, %r32
4070 */
4071 i.tm.operand_types[0].bitfield.imm32 = 1;
4072 i.tm.operand_types[0].bitfield.imm32s = 0;
4073 i.tm.operand_types[0].bitfield.imm64 = 0;
4074 i.types[0].bitfield.imm32 = 1;
4075 i.types[0].bitfield.imm32s = 0;
4076 i.types[0].bitfield.imm64 = 0;
4077 i.types[1].bitfield.dword = 1;
4078 i.types[1].bitfield.qword = 0;
4079 if ((i.tm.base_opcode | 1) == 0xc7)
4080 {
4081 /* Handle
4082 movq $imm31, %r64 -> movl $imm31, %r32
4083 */
4084 i.tm.base_opcode = 0xb8;
4085 i.tm.extension_opcode = None;
4086 i.tm.opcode_modifier.w = 0;
4087 i.tm.opcode_modifier.modrm = 0;
4088 }
4089 }
4090 }
4091 else if (optimize > 1
4092 && !optimize_for_space
4093 && !is_any_vex_encoding (&i.tm)
4094 && i.reg_operands == 2
4095 && i.op[0].regs == i.op[1].regs
4096 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4097 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4098 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4099 {
4100 /* Optimize: -O2:
4101 andb %rN, %rN -> testb %rN, %rN
4102 andw %rN, %rN -> testw %rN, %rN
4103 andq %rN, %rN -> testq %rN, %rN
4104 orb %rN, %rN -> testb %rN, %rN
4105 orw %rN, %rN -> testw %rN, %rN
4106 orq %rN, %rN -> testq %rN, %rN
4107
4108 and outside of 64-bit mode
4109
4110 andl %rN, %rN -> testl %rN, %rN
4111 orl %rN, %rN -> testl %rN, %rN
4112 */
4113 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4114 }
4115 else if (i.reg_operands == 3
4116 && i.op[0].regs == i.op[1].regs
4117 && !i.types[2].bitfield.xmmword
4118 && (i.tm.opcode_modifier.vex
4119 || ((!i.mask || i.mask->zeroing)
4120 && !i.rounding
4121 && is_evex_encoding (&i.tm)
4122 && (i.vec_encoding != vex_encoding_evex
4123 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4124 || i.tm.cpu_flags.bitfield.cpuavx512vl
4125 || (i.tm.operand_types[2].bitfield.zmmword
4126 && i.types[2].bitfield.ymmword))))
4127 && ((i.tm.base_opcode == 0x55
4128 || i.tm.base_opcode == 0x6655
4129 || i.tm.base_opcode == 0x66df
4130 || i.tm.base_opcode == 0x57
4131 || i.tm.base_opcode == 0x6657
4132 || i.tm.base_opcode == 0x66ef
4133 || i.tm.base_opcode == 0x66f8
4134 || i.tm.base_opcode == 0x66f9
4135 || i.tm.base_opcode == 0x66fa
4136 || i.tm.base_opcode == 0x66fb
4137 || i.tm.base_opcode == 0x42
4138 || i.tm.base_opcode == 0x6642
4139 || i.tm.base_opcode == 0x47
4140 || i.tm.base_opcode == 0x6647)
4141 && i.tm.extension_opcode == None))
4142 {
4143 /* Optimize: -O1:
4144 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4145 vpsubq and vpsubw:
4146 EVEX VOP %zmmM, %zmmM, %zmmN
4147 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4148 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4149 EVEX VOP %ymmM, %ymmM, %ymmN
4150 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4151 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4152 VEX VOP %ymmM, %ymmM, %ymmN
4153 -> VEX VOP %xmmM, %xmmM, %xmmN
4154 VOP, one of vpandn and vpxor:
4155 VEX VOP %ymmM, %ymmM, %ymmN
4156 -> VEX VOP %xmmM, %xmmM, %xmmN
4157 VOP, one of vpandnd and vpandnq:
4158 EVEX VOP %zmmM, %zmmM, %zmmN
4159 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4160 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4161 EVEX VOP %ymmM, %ymmM, %ymmN
4162 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4163 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4164 VOP, one of vpxord and vpxorq:
4165 EVEX VOP %zmmM, %zmmM, %zmmN
4166 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4167 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4168 EVEX VOP %ymmM, %ymmM, %ymmN
4169 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4170 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4171 VOP, one of kxord and kxorq:
4172 VEX VOP %kM, %kM, %kN
4173 -> VEX kxorw %kM, %kM, %kN
4174 VOP, one of kandnd and kandnq:
4175 VEX VOP %kM, %kM, %kN
4176 -> VEX kandnw %kM, %kM, %kN
4177 */
4178 if (is_evex_encoding (&i.tm))
4179 {
4180 if (i.vec_encoding != vex_encoding_evex)
4181 {
4182 i.tm.opcode_modifier.vex = VEX128;
4183 i.tm.opcode_modifier.vexw = VEXW0;
4184 i.tm.opcode_modifier.evex = 0;
4185 }
4186 else if (optimize > 1)
4187 i.tm.opcode_modifier.evex = EVEX128;
4188 else
4189 return;
4190 }
4191 else if (i.tm.operand_types[0].bitfield.class == RegMask)
4192 {
4193 i.tm.base_opcode &= 0xff;
4194 i.tm.opcode_modifier.vexw = VEXW0;
4195 }
4196 else
4197 i.tm.opcode_modifier.vex = VEX128;
4198
4199 if (i.tm.opcode_modifier.vex)
4200 for (j = 0; j < 3; j++)
4201 {
4202 i.types[j].bitfield.xmmword = 1;
4203 i.types[j].bitfield.ymmword = 0;
4204 }
4205 }
4206 else if (i.vec_encoding != vex_encoding_evex
4207 && !i.types[0].bitfield.zmmword
4208 && !i.types[1].bitfield.zmmword
4209 && !i.mask
4210 && !i.broadcast
4211 && is_evex_encoding (&i.tm)
4212 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4213 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4214 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4215 || (i.tm.base_opcode & ~4) == 0x66db
4216 || (i.tm.base_opcode & ~4) == 0x66eb)
4217 && i.tm.extension_opcode == None)
4218 {
4219 /* Optimize: -O1:
4220 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4221 vmovdqu32 and vmovdqu64:
4222 EVEX VOP %xmmM, %xmmN
4223 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4224 EVEX VOP %ymmM, %ymmN
4225 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4226 EVEX VOP %xmmM, mem
4227 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4228 EVEX VOP %ymmM, mem
4229 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4230 EVEX VOP mem, %xmmN
4231 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4232 EVEX VOP mem, %ymmN
4233 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4234 VOP, one of vpand, vpandn, vpor, vpxor:
4235 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4236 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4237 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4238 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4239 EVEX VOP{d,q} mem, %xmmM, %xmmN
4240 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4241 EVEX VOP{d,q} mem, %ymmM, %ymmN
4242 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4243 */
4244 for (j = 0; j < i.operands; j++)
4245 if (operand_type_check (i.types[j], disp)
4246 && i.op[j].disps->X_op == O_constant)
4247 {
4248 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4249 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4250 bytes, we choose EVEX Disp8 over VEX Disp32. */
4251 int evex_disp8, vex_disp8;
4252 unsigned int memshift = i.memshift;
4253 offsetT n = i.op[j].disps->X_add_number;
4254
4255 evex_disp8 = fits_in_disp8 (n);
4256 i.memshift = 0;
4257 vex_disp8 = fits_in_disp8 (n);
4258 if (evex_disp8 != vex_disp8)
4259 {
4260 i.memshift = memshift;
4261 return;
4262 }
4263
4264 i.types[j].bitfield.disp8 = vex_disp8;
4265 break;
4266 }
4267 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4268 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4269 i.tm.opcode_modifier.vex
4270 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4271 i.tm.opcode_modifier.vexw = VEXW0;
4272 /* VPAND, VPOR, and VPXOR are commutative. */
4273 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4274 i.tm.opcode_modifier.commutative = 1;
4275 i.tm.opcode_modifier.evex = 0;
4276 i.tm.opcode_modifier.masking = 0;
4277 i.tm.opcode_modifier.broadcast = 0;
4278 i.tm.opcode_modifier.disp8memshift = 0;
4279 i.memshift = 0;
4280 if (j < i.operands)
4281 i.types[j].bitfield.disp8
4282 = fits_in_disp8 (i.op[j].disps->X_add_number);
4283 }
4284 }
4285
4286 /* This is the guts of the machine-dependent assembler. LINE points to a
4287 machine dependent instruction. This function is supposed to emit
4288 the frags/bytes it assembles to. */
4289
4290 void
4291 md_assemble (char *line)
4292 {
4293 unsigned int j;
4294 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4295 const insn_template *t;
4296
4297 /* Initialize globals. */
4298 memset (&i, '\0', sizeof (i));
4299 for (j = 0; j < MAX_OPERANDS; j++)
4300 i.reloc[j] = NO_RELOC;
4301 memset (disp_expressions, '\0', sizeof (disp_expressions));
4302 memset (im_expressions, '\0', sizeof (im_expressions));
4303 save_stack_p = save_stack;
4304
4305 /* First parse an instruction mnemonic & call i386_operand for the operands.
4306 We assume that the scrubber has arranged it so that line[0] is the valid
4307 start of a (possibly prefixed) mnemonic. */
4308
4309 line = parse_insn (line, mnemonic);
4310 if (line == NULL)
4311 return;
4312 mnem_suffix = i.suffix;
4313
4314 line = parse_operands (line, mnemonic);
4315 this_operand = -1;
4316 xfree (i.memop1_string);
4317 i.memop1_string = NULL;
4318 if (line == NULL)
4319 return;
4320
4321 /* Now we've parsed the mnemonic into a set of templates, and have the
4322 operands at hand. */
4323
4324 /* All intel opcodes have reversed operands except for "bound" and
4325 "enter". We also don't reverse intersegment "jmp" and "call"
4326 instructions with 2 immediate operands so that the immediate segment
4327 precedes the offset, as it does when in AT&T mode. */
4328 if (intel_syntax
4329 && i.operands > 1
4330 && (strcmp (mnemonic, "bound") != 0)
4331 && (strcmp (mnemonic, "invlpga") != 0)
4332 && !(operand_type_check (i.types[0], imm)
4333 && operand_type_check (i.types[1], imm)))
4334 swap_operands ();
4335
4336 /* The order of the immediates should be reversed
4337 for 2 immediates extrq and insertq instructions */
4338 if (i.imm_operands == 2
4339 && (strcmp (mnemonic, "extrq") == 0
4340 || strcmp (mnemonic, "insertq") == 0))
4341 swap_2_operands (0, 1);
4342
4343 if (i.imm_operands)
4344 optimize_imm ();
4345
4346 /* Don't optimize displacement for movabs since it only takes 64bit
4347 displacement. */
4348 if (i.disp_operands
4349 && i.disp_encoding != disp_encoding_32bit
4350 && (flag_code != CODE_64BIT
4351 || strcmp (mnemonic, "movabs") != 0))
4352 optimize_disp ();
4353
4354 /* Next, we find a template that matches the given insn,
4355 making sure the overlap of the given operands types is consistent
4356 with the template operand types. */
4357
4358 if (!(t = match_template (mnem_suffix)))
4359 return;
4360
4361 if (sse_check != check_none
4362 && !i.tm.opcode_modifier.noavx
4363 && !i.tm.cpu_flags.bitfield.cpuavx
4364 && !i.tm.cpu_flags.bitfield.cpuavx512f
4365 && (i.tm.cpu_flags.bitfield.cpusse
4366 || i.tm.cpu_flags.bitfield.cpusse2
4367 || i.tm.cpu_flags.bitfield.cpusse3
4368 || i.tm.cpu_flags.bitfield.cpussse3
4369 || i.tm.cpu_flags.bitfield.cpusse4_1
4370 || i.tm.cpu_flags.bitfield.cpusse4_2
4371 || i.tm.cpu_flags.bitfield.cpusse4a
4372 || i.tm.cpu_flags.bitfield.cpupclmul
4373 || i.tm.cpu_flags.bitfield.cpuaes
4374 || i.tm.cpu_flags.bitfield.cpusha
4375 || i.tm.cpu_flags.bitfield.cpugfni))
4376 {
4377 (sse_check == check_warning
4378 ? as_warn
4379 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4380 }
4381
4382 /* Zap movzx and movsx suffix. The suffix has been set from
4383 "word ptr" or "byte ptr" on the source operand in Intel syntax
4384 or extracted from mnemonic in AT&T syntax. But we'll use
4385 the destination register to choose the suffix for encoding. */
4386 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4387 {
4388 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4389 there is no suffix, the default will be byte extension. */
4390 if (i.reg_operands != 2
4391 && !i.suffix
4392 && intel_syntax)
4393 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4394
4395 i.suffix = 0;
4396 }
4397
4398 if (i.tm.opcode_modifier.fwait)
4399 if (!add_prefix (FWAIT_OPCODE))
4400 return;
4401
4402 /* Check if REP prefix is OK. */
4403 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4404 {
4405 as_bad (_("invalid instruction `%s' after `%s'"),
4406 i.tm.name, i.rep_prefix);
4407 return;
4408 }
4409
4410 /* Check for lock without a lockable instruction. Destination operand
4411 must be memory unless it is xchg (0x86). */
4412 if (i.prefix[LOCK_PREFIX]
4413 && (!i.tm.opcode_modifier.islockable
4414 || i.mem_operands == 0
4415 || (i.tm.base_opcode != 0x86
4416 && !(i.flags[i.operands - 1] & Operand_Mem))))
4417 {
4418 as_bad (_("expecting lockable instruction after `lock'"));
4419 return;
4420 }
4421
4422 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4423 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4424 {
4425 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4426 return;
4427 }
4428
4429 /* Check if HLE prefix is OK. */
4430 if (i.hle_prefix && !check_hle ())
4431 return;
4432
4433 /* Check BND prefix. */
4434 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4435 as_bad (_("expecting valid branch instruction after `bnd'"));
4436
4437 /* Check NOTRACK prefix. */
4438 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4439 as_bad (_("expecting indirect branch instruction after `notrack'"));
4440
4441 if (i.tm.cpu_flags.bitfield.cpumpx)
4442 {
4443 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4444 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4445 else if (flag_code != CODE_16BIT
4446 ? i.prefix[ADDR_PREFIX]
4447 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4448 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4449 }
4450
4451 /* Insert BND prefix. */
4452 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4453 {
4454 if (!i.prefix[BND_PREFIX])
4455 add_prefix (BND_PREFIX_OPCODE);
4456 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4457 {
4458 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4459 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4460 }
4461 }
4462
4463 /* Check string instruction segment overrides. */
4464 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
4465 {
4466 gas_assert (i.mem_operands);
4467 if (!check_string ())
4468 return;
4469 i.disp_operands = 0;
4470 }
4471
4472 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4473 optimize_encoding ();
4474
4475 if (!process_suffix ())
4476 return;
4477
4478 /* Update operand types. */
4479 for (j = 0; j < i.operands; j++)
4480 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4481
4482 /* Make still unresolved immediate matches conform to size of immediate
4483 given in i.suffix. */
4484 if (!finalize_imm ())
4485 return;
4486
4487 if (i.types[0].bitfield.imm1)
4488 i.imm_operands = 0; /* kludge for shift insns. */
4489
4490 /* We only need to check those implicit registers for instructions
4491 with 3 operands or less. */
4492 if (i.operands <= 3)
4493 for (j = 0; j < i.operands; j++)
4494 if (i.types[j].bitfield.instance != InstanceNone
4495 && !i.types[j].bitfield.xmmword)
4496 i.reg_operands--;
4497
4498 /* ImmExt should be processed after SSE2AVX. */
4499 if (!i.tm.opcode_modifier.sse2avx
4500 && i.tm.opcode_modifier.immext)
4501 process_immext ();
4502
4503 /* For insns with operands there are more diddles to do to the opcode. */
4504 if (i.operands)
4505 {
4506 if (!process_operands ())
4507 return;
4508 }
4509 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4510 {
4511 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4512 as_warn (_("translating to `%sp'"), i.tm.name);
4513 }
4514
4515 if (is_any_vex_encoding (&i.tm))
4516 {
4517 if (!cpu_arch_flags.bitfield.cpui286)
4518 {
4519 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4520 i.tm.name);
4521 return;
4522 }
4523
4524 if (i.tm.opcode_modifier.vex)
4525 build_vex_prefix (t);
4526 else
4527 build_evex_prefix ();
4528 }
4529
4530 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4531 instructions may define INT_OPCODE as well, so avoid this corner
4532 case for those instructions that use MODRM. */
4533 if (i.tm.base_opcode == INT_OPCODE
4534 && !i.tm.opcode_modifier.modrm
4535 && i.op[0].imms->X_add_number == 3)
4536 {
4537 i.tm.base_opcode = INT3_OPCODE;
4538 i.imm_operands = 0;
4539 }
4540
4541 if ((i.tm.opcode_modifier.jump == JUMP
4542 || i.tm.opcode_modifier.jump == JUMP_BYTE
4543 || i.tm.opcode_modifier.jump == JUMP_DWORD)
4544 && i.op[0].disps->X_op == O_constant)
4545 {
4546 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4547 the absolute address given by the constant. Since ix86 jumps and
4548 calls are pc relative, we need to generate a reloc. */
4549 i.op[0].disps->X_add_symbol = &abs_symbol;
4550 i.op[0].disps->X_op = O_symbol;
4551 }
4552
4553 if (i.tm.opcode_modifier.rex64)
4554 i.rex |= REX_W;
4555
4556 /* For 8 bit registers we need an empty rex prefix. Also if the
4557 instruction already has a prefix, we need to convert old
4558 registers to new ones. */
4559
4560 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
4561 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4562 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
4563 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4564 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4565 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
4566 && i.rex != 0))
4567 {
4568 int x;
4569
4570 i.rex |= REX_OPCODE;
4571 for (x = 0; x < 2; x++)
4572 {
4573 /* Look for 8 bit operand that uses old registers. */
4574 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4575 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4576 {
4577 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4578 /* In case it is "hi" register, give up. */
4579 if (i.op[x].regs->reg_num > 3)
4580 as_bad (_("can't encode register '%s%s' in an "
4581 "instruction requiring REX prefix."),
4582 register_prefix, i.op[x].regs->reg_name);
4583
4584 /* Otherwise it is equivalent to the extended register.
4585 Since the encoding doesn't change this is merely
4586 cosmetic cleanup for debug output. */
4587
4588 i.op[x].regs = i.op[x].regs + 8;
4589 }
4590 }
4591 }
4592
4593 if (i.rex == 0 && i.rex_encoding)
4594 {
4595 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4596 that uses legacy register. If it is "hi" register, don't add
4597 the REX_OPCODE byte. */
4598 int x;
4599 for (x = 0; x < 2; x++)
4600 if (i.types[x].bitfield.class == Reg
4601 && i.types[x].bitfield.byte
4602 && (i.op[x].regs->reg_flags & RegRex64) == 0
4603 && i.op[x].regs->reg_num > 3)
4604 {
4605 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4606 i.rex_encoding = FALSE;
4607 break;
4608 }
4609
4610 if (i.rex_encoding)
4611 i.rex = REX_OPCODE;
4612 }
4613
4614 if (i.rex != 0)
4615 add_prefix (REX_OPCODE | i.rex);
4616
4617 /* We are ready to output the insn. */
4618 output_insn ();
4619
4620 last_insn.seg = now_seg;
4621
4622 if (i.tm.opcode_modifier.isprefix)
4623 {
4624 last_insn.kind = last_insn_prefix;
4625 last_insn.name = i.tm.name;
4626 last_insn.file = as_where (&last_insn.line);
4627 }
4628 else
4629 last_insn.kind = last_insn_other;
4630 }
4631
4632 static char *
4633 parse_insn (char *line, char *mnemonic)
4634 {
4635 char *l = line;
4636 char *token_start = l;
4637 char *mnem_p;
4638 int supported;
4639 const insn_template *t;
4640 char *dot_p = NULL;
4641
4642 while (1)
4643 {
4644 mnem_p = mnemonic;
4645 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4646 {
4647 if (*mnem_p == '.')
4648 dot_p = mnem_p;
4649 mnem_p++;
4650 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4651 {
4652 as_bad (_("no such instruction: `%s'"), token_start);
4653 return NULL;
4654 }
4655 l++;
4656 }
4657 if (!is_space_char (*l)
4658 && *l != END_OF_INSN
4659 && (intel_syntax
4660 || (*l != PREFIX_SEPARATOR
4661 && *l != ',')))
4662 {
4663 as_bad (_("invalid character %s in mnemonic"),
4664 output_invalid (*l));
4665 return NULL;
4666 }
4667 if (token_start == l)
4668 {
4669 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4670 as_bad (_("expecting prefix; got nothing"));
4671 else
4672 as_bad (_("expecting mnemonic; got nothing"));
4673 return NULL;
4674 }
4675
4676 /* Look up instruction (or prefix) via hash table. */
4677 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4678
4679 if (*l != END_OF_INSN
4680 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4681 && current_templates
4682 && current_templates->start->opcode_modifier.isprefix)
4683 {
4684 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4685 {
4686 as_bad ((flag_code != CODE_64BIT
4687 ? _("`%s' is only supported in 64-bit mode")
4688 : _("`%s' is not supported in 64-bit mode")),
4689 current_templates->start->name);
4690 return NULL;
4691 }
4692 /* If we are in 16-bit mode, do not allow addr16 or data16.
4693 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4694 if ((current_templates->start->opcode_modifier.size == SIZE16
4695 || current_templates->start->opcode_modifier.size == SIZE32)
4696 && flag_code != CODE_64BIT
4697 && ((current_templates->start->opcode_modifier.size == SIZE32)
4698 ^ (flag_code == CODE_16BIT)))
4699 {
4700 as_bad (_("redundant %s prefix"),
4701 current_templates->start->name);
4702 return NULL;
4703 }
4704 if (current_templates->start->opcode_length == 0)
4705 {
4706 /* Handle pseudo prefixes. */
4707 switch (current_templates->start->base_opcode)
4708 {
4709 case 0x0:
4710 /* {disp8} */
4711 i.disp_encoding = disp_encoding_8bit;
4712 break;
4713 case 0x1:
4714 /* {disp32} */
4715 i.disp_encoding = disp_encoding_32bit;
4716 break;
4717 case 0x2:
4718 /* {load} */
4719 i.dir_encoding = dir_encoding_load;
4720 break;
4721 case 0x3:
4722 /* {store} */
4723 i.dir_encoding = dir_encoding_store;
4724 break;
4725 case 0x4:
4726 /* {vex} */
4727 i.vec_encoding = vex_encoding_vex;
4728 break;
4729 case 0x5:
4730 /* {vex3} */
4731 i.vec_encoding = vex_encoding_vex3;
4732 break;
4733 case 0x6:
4734 /* {evex} */
4735 i.vec_encoding = vex_encoding_evex;
4736 break;
4737 case 0x7:
4738 /* {rex} */
4739 i.rex_encoding = TRUE;
4740 break;
4741 case 0x8:
4742 /* {nooptimize} */
4743 i.no_optimize = TRUE;
4744 break;
4745 default:
4746 abort ();
4747 }
4748 }
4749 else
4750 {
4751 /* Add prefix, checking for repeated prefixes. */
4752 switch (add_prefix (current_templates->start->base_opcode))
4753 {
4754 case PREFIX_EXIST:
4755 return NULL;
4756 case PREFIX_DS:
4757 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4758 i.notrack_prefix = current_templates->start->name;
4759 break;
4760 case PREFIX_REP:
4761 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4762 i.hle_prefix = current_templates->start->name;
4763 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4764 i.bnd_prefix = current_templates->start->name;
4765 else
4766 i.rep_prefix = current_templates->start->name;
4767 break;
4768 default:
4769 break;
4770 }
4771 }
4772 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4773 token_start = ++l;
4774 }
4775 else
4776 break;
4777 }
4778
4779 if (!current_templates)
4780 {
4781 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4782 Check if we should swap operand or force 32bit displacement in
4783 encoding. */
4784 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4785 i.dir_encoding = dir_encoding_swap;
4786 else if (mnem_p - 3 == dot_p
4787 && dot_p[1] == 'd'
4788 && dot_p[2] == '8')
4789 i.disp_encoding = disp_encoding_8bit;
4790 else if (mnem_p - 4 == dot_p
4791 && dot_p[1] == 'd'
4792 && dot_p[2] == '3'
4793 && dot_p[3] == '2')
4794 i.disp_encoding = disp_encoding_32bit;
4795 else
4796 goto check_suffix;
4797 mnem_p = dot_p;
4798 *dot_p = '\0';
4799 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4800 }
4801
4802 if (!current_templates)
4803 {
4804 check_suffix:
4805 if (mnem_p > mnemonic)
4806 {
4807 /* See if we can get a match by trimming off a suffix. */
4808 switch (mnem_p[-1])
4809 {
4810 case WORD_MNEM_SUFFIX:
4811 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4812 i.suffix = SHORT_MNEM_SUFFIX;
4813 else
4814 /* Fall through. */
4815 case BYTE_MNEM_SUFFIX:
4816 case QWORD_MNEM_SUFFIX:
4817 i.suffix = mnem_p[-1];
4818 mnem_p[-1] = '\0';
4819 current_templates = (const templates *) hash_find (op_hash,
4820 mnemonic);
4821 break;
4822 case SHORT_MNEM_SUFFIX:
4823 case LONG_MNEM_SUFFIX:
4824 if (!intel_syntax)
4825 {
4826 i.suffix = mnem_p[-1];
4827 mnem_p[-1] = '\0';
4828 current_templates = (const templates *) hash_find (op_hash,
4829 mnemonic);
4830 }
4831 break;
4832
4833 /* Intel Syntax. */
4834 case 'd':
4835 if (intel_syntax)
4836 {
4837 if (intel_float_operand (mnemonic) == 1)
4838 i.suffix = SHORT_MNEM_SUFFIX;
4839 else
4840 i.suffix = LONG_MNEM_SUFFIX;
4841 mnem_p[-1] = '\0';
4842 current_templates = (const templates *) hash_find (op_hash,
4843 mnemonic);
4844 }
4845 break;
4846 }
4847 }
4848
4849 if (!current_templates)
4850 {
4851 as_bad (_("no such instruction: `%s'"), token_start);
4852 return NULL;
4853 }
4854 }
4855
4856 if (current_templates->start->opcode_modifier.jump == JUMP
4857 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
4858 {
4859 /* Check for a branch hint. We allow ",pt" and ",pn" for
4860 predict taken and predict not taken respectively.
4861 I'm not sure that branch hints actually do anything on loop
4862 and jcxz insns (JumpByte) for current Pentium4 chips. They
4863 may work in the future and it doesn't hurt to accept them
4864 now. */
4865 if (l[0] == ',' && l[1] == 'p')
4866 {
4867 if (l[2] == 't')
4868 {
4869 if (!add_prefix (DS_PREFIX_OPCODE))
4870 return NULL;
4871 l += 3;
4872 }
4873 else if (l[2] == 'n')
4874 {
4875 if (!add_prefix (CS_PREFIX_OPCODE))
4876 return NULL;
4877 l += 3;
4878 }
4879 }
4880 }
4881 /* Any other comma loses. */
4882 if (*l == ',')
4883 {
4884 as_bad (_("invalid character %s in mnemonic"),
4885 output_invalid (*l));
4886 return NULL;
4887 }
4888
4889 /* Check if instruction is supported on specified architecture. */
4890 supported = 0;
4891 for (t = current_templates->start; t < current_templates->end; ++t)
4892 {
4893 supported |= cpu_flags_match (t);
4894 if (supported == CPU_FLAGS_PERFECT_MATCH)
4895 {
4896 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4897 as_warn (_("use .code16 to ensure correct addressing mode"));
4898
4899 return l;
4900 }
4901 }
4902
4903 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4904 as_bad (flag_code == CODE_64BIT
4905 ? _("`%s' is not supported in 64-bit mode")
4906 : _("`%s' is only supported in 64-bit mode"),
4907 current_templates->start->name);
4908 else
4909 as_bad (_("`%s' is not supported on `%s%s'"),
4910 current_templates->start->name,
4911 cpu_arch_name ? cpu_arch_name : default_arch,
4912 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4913
4914 return NULL;
4915 }
4916
4917 static char *
4918 parse_operands (char *l, const char *mnemonic)
4919 {
4920 char *token_start;
4921
4922 /* 1 if operand is pending after ','. */
4923 unsigned int expecting_operand = 0;
4924
4925 /* Non-zero if operand parens not balanced. */
4926 unsigned int paren_not_balanced;
4927
4928 while (*l != END_OF_INSN)
4929 {
4930 /* Skip optional white space before operand. */
4931 if (is_space_char (*l))
4932 ++l;
4933 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4934 {
4935 as_bad (_("invalid character %s before operand %d"),
4936 output_invalid (*l),
4937 i.operands + 1);
4938 return NULL;
4939 }
4940 token_start = l; /* After white space. */
4941 paren_not_balanced = 0;
4942 while (paren_not_balanced || *l != ',')
4943 {
4944 if (*l == END_OF_INSN)
4945 {
4946 if (paren_not_balanced)
4947 {
4948 if (!intel_syntax)
4949 as_bad (_("unbalanced parenthesis in operand %d."),
4950 i.operands + 1);
4951 else
4952 as_bad (_("unbalanced brackets in operand %d."),
4953 i.operands + 1);
4954 return NULL;
4955 }
4956 else
4957 break; /* we are done */
4958 }
4959 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4960 {
4961 as_bad (_("invalid character %s in operand %d"),
4962 output_invalid (*l),
4963 i.operands + 1);
4964 return NULL;
4965 }
4966 if (!intel_syntax)
4967 {
4968 if (*l == '(')
4969 ++paren_not_balanced;
4970 if (*l == ')')
4971 --paren_not_balanced;
4972 }
4973 else
4974 {
4975 if (*l == '[')
4976 ++paren_not_balanced;
4977 if (*l == ']')
4978 --paren_not_balanced;
4979 }
4980 l++;
4981 }
4982 if (l != token_start)
4983 { /* Yes, we've read in another operand. */
4984 unsigned int operand_ok;
4985 this_operand = i.operands++;
4986 if (i.operands > MAX_OPERANDS)
4987 {
4988 as_bad (_("spurious operands; (%d operands/instruction max)"),
4989 MAX_OPERANDS);
4990 return NULL;
4991 }
4992 i.types[this_operand].bitfield.unspecified = 1;
4993 /* Now parse operand adding info to 'i' as we go along. */
4994 END_STRING_AND_SAVE (l);
4995
4996 if (i.mem_operands > 1)
4997 {
4998 as_bad (_("too many memory references for `%s'"),
4999 mnemonic);
5000 return 0;
5001 }
5002
5003 if (intel_syntax)
5004 operand_ok =
5005 i386_intel_operand (token_start,
5006 intel_float_operand (mnemonic));
5007 else
5008 operand_ok = i386_att_operand (token_start);
5009
5010 RESTORE_END_STRING (l);
5011 if (!operand_ok)
5012 return NULL;
5013 }
5014 else
5015 {
5016 if (expecting_operand)
5017 {
5018 expecting_operand_after_comma:
5019 as_bad (_("expecting operand after ','; got nothing"));
5020 return NULL;
5021 }
5022 if (*l == ',')
5023 {
5024 as_bad (_("expecting operand before ','; got nothing"));
5025 return NULL;
5026 }
5027 }
5028
5029 /* Now *l must be either ',' or END_OF_INSN. */
5030 if (*l == ',')
5031 {
5032 if (*++l == END_OF_INSN)
5033 {
5034 /* Just skip it, if it's \n complain. */
5035 goto expecting_operand_after_comma;
5036 }
5037 expecting_operand = 1;
5038 }
5039 }
5040 return l;
5041 }
5042
5043 static void
5044 swap_2_operands (int xchg1, int xchg2)
5045 {
5046 union i386_op temp_op;
5047 i386_operand_type temp_type;
5048 unsigned int temp_flags;
5049 enum bfd_reloc_code_real temp_reloc;
5050
5051 temp_type = i.types[xchg2];
5052 i.types[xchg2] = i.types[xchg1];
5053 i.types[xchg1] = temp_type;
5054
5055 temp_flags = i.flags[xchg2];
5056 i.flags[xchg2] = i.flags[xchg1];
5057 i.flags[xchg1] = temp_flags;
5058
5059 temp_op = i.op[xchg2];
5060 i.op[xchg2] = i.op[xchg1];
5061 i.op[xchg1] = temp_op;
5062
5063 temp_reloc = i.reloc[xchg2];
5064 i.reloc[xchg2] = i.reloc[xchg1];
5065 i.reloc[xchg1] = temp_reloc;
5066
5067 if (i.mask)
5068 {
5069 if (i.mask->operand == xchg1)
5070 i.mask->operand = xchg2;
5071 else if (i.mask->operand == xchg2)
5072 i.mask->operand = xchg1;
5073 }
5074 if (i.broadcast)
5075 {
5076 if (i.broadcast->operand == xchg1)
5077 i.broadcast->operand = xchg2;
5078 else if (i.broadcast->operand == xchg2)
5079 i.broadcast->operand = xchg1;
5080 }
5081 if (i.rounding)
5082 {
5083 if (i.rounding->operand == xchg1)
5084 i.rounding->operand = xchg2;
5085 else if (i.rounding->operand == xchg2)
5086 i.rounding->operand = xchg1;
5087 }
5088 }
5089
5090 static void
5091 swap_operands (void)
5092 {
5093 switch (i.operands)
5094 {
5095 case 5:
5096 case 4:
5097 swap_2_operands (1, i.operands - 2);
5098 /* Fall through. */
5099 case 3:
5100 case 2:
5101 swap_2_operands (0, i.operands - 1);
5102 break;
5103 default:
5104 abort ();
5105 }
5106
5107 if (i.mem_operands == 2)
5108 {
5109 const seg_entry *temp_seg;
5110 temp_seg = i.seg[0];
5111 i.seg[0] = i.seg[1];
5112 i.seg[1] = temp_seg;
5113 }
5114 }
5115
5116 /* Try to ensure constant immediates are represented in the smallest
5117 opcode possible. */
5118 static void
5119 optimize_imm (void)
5120 {
5121 char guess_suffix = 0;
5122 int op;
5123
5124 if (i.suffix)
5125 guess_suffix = i.suffix;
5126 else if (i.reg_operands)
5127 {
5128 /* Figure out a suffix from the last register operand specified.
5129 We can't do this properly yet, i.e. excluding special register
5130 instances, but the following works for instructions with
5131 immediates. In any case, we can't set i.suffix yet. */
5132 for (op = i.operands; --op >= 0;)
5133 if (i.types[op].bitfield.class != Reg)
5134 continue;
5135 else if (i.types[op].bitfield.byte)
5136 {
5137 guess_suffix = BYTE_MNEM_SUFFIX;
5138 break;
5139 }
5140 else if (i.types[op].bitfield.word)
5141 {
5142 guess_suffix = WORD_MNEM_SUFFIX;
5143 break;
5144 }
5145 else if (i.types[op].bitfield.dword)
5146 {
5147 guess_suffix = LONG_MNEM_SUFFIX;
5148 break;
5149 }
5150 else if (i.types[op].bitfield.qword)
5151 {
5152 guess_suffix = QWORD_MNEM_SUFFIX;
5153 break;
5154 }
5155 }
5156 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5157 guess_suffix = WORD_MNEM_SUFFIX;
5158
5159 for (op = i.operands; --op >= 0;)
5160 if (operand_type_check (i.types[op], imm))
5161 {
5162 switch (i.op[op].imms->X_op)
5163 {
5164 case O_constant:
5165 /* If a suffix is given, this operand may be shortened. */
5166 switch (guess_suffix)
5167 {
5168 case LONG_MNEM_SUFFIX:
5169 i.types[op].bitfield.imm32 = 1;
5170 i.types[op].bitfield.imm64 = 1;
5171 break;
5172 case WORD_MNEM_SUFFIX:
5173 i.types[op].bitfield.imm16 = 1;
5174 i.types[op].bitfield.imm32 = 1;
5175 i.types[op].bitfield.imm32s = 1;
5176 i.types[op].bitfield.imm64 = 1;
5177 break;
5178 case BYTE_MNEM_SUFFIX:
5179 i.types[op].bitfield.imm8 = 1;
5180 i.types[op].bitfield.imm8s = 1;
5181 i.types[op].bitfield.imm16 = 1;
5182 i.types[op].bitfield.imm32 = 1;
5183 i.types[op].bitfield.imm32s = 1;
5184 i.types[op].bitfield.imm64 = 1;
5185 break;
5186 }
5187
5188 /* If this operand is at most 16 bits, convert it
5189 to a signed 16 bit number before trying to see
5190 whether it will fit in an even smaller size.
5191 This allows a 16-bit operand such as $0xffe0 to
5192 be recognised as within Imm8S range. */
5193 if ((i.types[op].bitfield.imm16)
5194 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5195 {
5196 i.op[op].imms->X_add_number =
5197 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5198 }
5199 #ifdef BFD64
5200 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5201 if ((i.types[op].bitfield.imm32)
5202 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5203 == 0))
5204 {
5205 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5206 ^ ((offsetT) 1 << 31))
5207 - ((offsetT) 1 << 31));
5208 }
5209 #endif
5210 i.types[op]
5211 = operand_type_or (i.types[op],
5212 smallest_imm_type (i.op[op].imms->X_add_number));
5213
5214 /* We must avoid matching of Imm32 templates when 64bit
5215 only immediate is available. */
5216 if (guess_suffix == QWORD_MNEM_SUFFIX)
5217 i.types[op].bitfield.imm32 = 0;
5218 break;
5219
5220 case O_absent:
5221 case O_register:
5222 abort ();
5223
5224 /* Symbols and expressions. */
5225 default:
5226 /* Convert symbolic operand to proper sizes for matching, but don't
5227 prevent matching a set of insns that only supports sizes other
5228 than those matching the insn suffix. */
5229 {
5230 i386_operand_type mask, allowed;
5231 const insn_template *t;
5232
5233 operand_type_set (&mask, 0);
5234 operand_type_set (&allowed, 0);
5235
5236 for (t = current_templates->start;
5237 t < current_templates->end;
5238 ++t)
5239 {
5240 allowed = operand_type_or (allowed, t->operand_types[op]);
5241 allowed = operand_type_and (allowed, anyimm);
5242 }
5243 switch (guess_suffix)
5244 {
5245 case QWORD_MNEM_SUFFIX:
5246 mask.bitfield.imm64 = 1;
5247 mask.bitfield.imm32s = 1;
5248 break;
5249 case LONG_MNEM_SUFFIX:
5250 mask.bitfield.imm32 = 1;
5251 break;
5252 case WORD_MNEM_SUFFIX:
5253 mask.bitfield.imm16 = 1;
5254 break;
5255 case BYTE_MNEM_SUFFIX:
5256 mask.bitfield.imm8 = 1;
5257 break;
5258 default:
5259 break;
5260 }
5261 allowed = operand_type_and (mask, allowed);
5262 if (!operand_type_all_zero (&allowed))
5263 i.types[op] = operand_type_and (i.types[op], mask);
5264 }
5265 break;
5266 }
5267 }
5268 }
5269
5270 /* Try to use the smallest displacement type too. */
5271 static void
5272 optimize_disp (void)
5273 {
5274 int op;
5275
5276 for (op = i.operands; --op >= 0;)
5277 if (operand_type_check (i.types[op], disp))
5278 {
5279 if (i.op[op].disps->X_op == O_constant)
5280 {
5281 offsetT op_disp = i.op[op].disps->X_add_number;
5282
5283 if (i.types[op].bitfield.disp16
5284 && (op_disp & ~(offsetT) 0xffff) == 0)
5285 {
5286 /* If this operand is at most 16 bits, convert
5287 to a signed 16 bit number and don't use 64bit
5288 displacement. */
5289 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5290 i.types[op].bitfield.disp64 = 0;
5291 }
5292 #ifdef BFD64
5293 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5294 if (i.types[op].bitfield.disp32
5295 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5296 {
5297 /* If this operand is at most 32 bits, convert
5298 to a signed 32 bit number and don't use 64bit
5299 displacement. */
5300 op_disp &= (((offsetT) 2 << 31) - 1);
5301 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5302 i.types[op].bitfield.disp64 = 0;
5303 }
5304 #endif
5305 if (!op_disp && i.types[op].bitfield.baseindex)
5306 {
5307 i.types[op].bitfield.disp8 = 0;
5308 i.types[op].bitfield.disp16 = 0;
5309 i.types[op].bitfield.disp32 = 0;
5310 i.types[op].bitfield.disp32s = 0;
5311 i.types[op].bitfield.disp64 = 0;
5312 i.op[op].disps = 0;
5313 i.disp_operands--;
5314 }
5315 else if (flag_code == CODE_64BIT)
5316 {
5317 if (fits_in_signed_long (op_disp))
5318 {
5319 i.types[op].bitfield.disp64 = 0;
5320 i.types[op].bitfield.disp32s = 1;
5321 }
5322 if (i.prefix[ADDR_PREFIX]
5323 && fits_in_unsigned_long (op_disp))
5324 i.types[op].bitfield.disp32 = 1;
5325 }
5326 if ((i.types[op].bitfield.disp32
5327 || i.types[op].bitfield.disp32s
5328 || i.types[op].bitfield.disp16)
5329 && fits_in_disp8 (op_disp))
5330 i.types[op].bitfield.disp8 = 1;
5331 }
5332 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5333 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5334 {
5335 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5336 i.op[op].disps, 0, i.reloc[op]);
5337 i.types[op].bitfield.disp8 = 0;
5338 i.types[op].bitfield.disp16 = 0;
5339 i.types[op].bitfield.disp32 = 0;
5340 i.types[op].bitfield.disp32s = 0;
5341 i.types[op].bitfield.disp64 = 0;
5342 }
5343 else
5344 /* We only support 64bit displacement on constants. */
5345 i.types[op].bitfield.disp64 = 0;
5346 }
5347 }
5348
5349 /* Return 1 if there is a match in broadcast bytes between operand
5350 GIVEN and instruction template T. */
5351
5352 static INLINE int
5353 match_broadcast_size (const insn_template *t, unsigned int given)
5354 {
5355 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5356 && i.types[given].bitfield.byte)
5357 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5358 && i.types[given].bitfield.word)
5359 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5360 && i.types[given].bitfield.dword)
5361 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5362 && i.types[given].bitfield.qword));
5363 }
5364
5365 /* Check if operands are valid for the instruction. */
5366
5367 static int
5368 check_VecOperands (const insn_template *t)
5369 {
5370 unsigned int op;
5371 i386_cpu_flags cpu;
5372
5373 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5374 any one operand are implicity requiring AVX512VL support if the actual
5375 operand size is YMMword or XMMword. Since this function runs after
5376 template matching, there's no need to check for YMMword/XMMword in
5377 the template. */
5378 cpu = cpu_flags_and (t->cpu_flags, avx512);
5379 if (!cpu_flags_all_zero (&cpu)
5380 && !t->cpu_flags.bitfield.cpuavx512vl
5381 && !cpu_arch_flags.bitfield.cpuavx512vl)
5382 {
5383 for (op = 0; op < t->operands; ++op)
5384 {
5385 if (t->operand_types[op].bitfield.zmmword
5386 && (i.types[op].bitfield.ymmword
5387 || i.types[op].bitfield.xmmword))
5388 {
5389 i.error = unsupported;
5390 return 1;
5391 }
5392 }
5393 }
5394
5395 /* Without VSIB byte, we can't have a vector register for index. */
5396 if (!t->opcode_modifier.vecsib
5397 && i.index_reg
5398 && (i.index_reg->reg_type.bitfield.xmmword
5399 || i.index_reg->reg_type.bitfield.ymmword
5400 || i.index_reg->reg_type.bitfield.zmmword))
5401 {
5402 i.error = unsupported_vector_index_register;
5403 return 1;
5404 }
5405
5406 /* Check if default mask is allowed. */
5407 if (t->opcode_modifier.nodefmask
5408 && (!i.mask || i.mask->mask->reg_num == 0))
5409 {
5410 i.error = no_default_mask;
5411 return 1;
5412 }
5413
5414 /* For VSIB byte, we need a vector register for index, and all vector
5415 registers must be distinct. */
5416 if (t->opcode_modifier.vecsib)
5417 {
5418 if (!i.index_reg
5419 || !((t->opcode_modifier.vecsib == VecSIB128
5420 && i.index_reg->reg_type.bitfield.xmmword)
5421 || (t->opcode_modifier.vecsib == VecSIB256
5422 && i.index_reg->reg_type.bitfield.ymmword)
5423 || (t->opcode_modifier.vecsib == VecSIB512
5424 && i.index_reg->reg_type.bitfield.zmmword)))
5425 {
5426 i.error = invalid_vsib_address;
5427 return 1;
5428 }
5429
5430 gas_assert (i.reg_operands == 2 || i.mask);
5431 if (i.reg_operands == 2 && !i.mask)
5432 {
5433 gas_assert (i.types[0].bitfield.class == RegSIMD);
5434 gas_assert (i.types[0].bitfield.xmmword
5435 || i.types[0].bitfield.ymmword);
5436 gas_assert (i.types[2].bitfield.class == RegSIMD);
5437 gas_assert (i.types[2].bitfield.xmmword
5438 || i.types[2].bitfield.ymmword);
5439 if (operand_check == check_none)
5440 return 0;
5441 if (register_number (i.op[0].regs)
5442 != register_number (i.index_reg)
5443 && register_number (i.op[2].regs)
5444 != register_number (i.index_reg)
5445 && register_number (i.op[0].regs)
5446 != register_number (i.op[2].regs))
5447 return 0;
5448 if (operand_check == check_error)
5449 {
5450 i.error = invalid_vector_register_set;
5451 return 1;
5452 }
5453 as_warn (_("mask, index, and destination registers should be distinct"));
5454 }
5455 else if (i.reg_operands == 1 && i.mask)
5456 {
5457 if (i.types[1].bitfield.class == RegSIMD
5458 && (i.types[1].bitfield.xmmword
5459 || i.types[1].bitfield.ymmword
5460 || i.types[1].bitfield.zmmword)
5461 && (register_number (i.op[1].regs)
5462 == register_number (i.index_reg)))
5463 {
5464 if (operand_check == check_error)
5465 {
5466 i.error = invalid_vector_register_set;
5467 return 1;
5468 }
5469 if (operand_check != check_none)
5470 as_warn (_("index and destination registers should be distinct"));
5471 }
5472 }
5473 }
5474
5475 /* Check if broadcast is supported by the instruction and is applied
5476 to the memory operand. */
5477 if (i.broadcast)
5478 {
5479 i386_operand_type type, overlap;
5480
5481 /* Check if specified broadcast is supported in this instruction,
5482 and its broadcast bytes match the memory operand. */
5483 op = i.broadcast->operand;
5484 if (!t->opcode_modifier.broadcast
5485 || !(i.flags[op] & Operand_Mem)
5486 || (!i.types[op].bitfield.unspecified
5487 && !match_broadcast_size (t, op)))
5488 {
5489 bad_broadcast:
5490 i.error = unsupported_broadcast;
5491 return 1;
5492 }
5493
5494 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5495 * i.broadcast->type);
5496 operand_type_set (&type, 0);
5497 switch (i.broadcast->bytes)
5498 {
5499 case 2:
5500 type.bitfield.word = 1;
5501 break;
5502 case 4:
5503 type.bitfield.dword = 1;
5504 break;
5505 case 8:
5506 type.bitfield.qword = 1;
5507 break;
5508 case 16:
5509 type.bitfield.xmmword = 1;
5510 break;
5511 case 32:
5512 type.bitfield.ymmword = 1;
5513 break;
5514 case 64:
5515 type.bitfield.zmmword = 1;
5516 break;
5517 default:
5518 goto bad_broadcast;
5519 }
5520
5521 overlap = operand_type_and (type, t->operand_types[op]);
5522 if (operand_type_all_zero (&overlap))
5523 goto bad_broadcast;
5524
5525 if (t->opcode_modifier.checkregsize)
5526 {
5527 unsigned int j;
5528
5529 type.bitfield.baseindex = 1;
5530 for (j = 0; j < i.operands; ++j)
5531 {
5532 if (j != op
5533 && !operand_type_register_match(i.types[j],
5534 t->operand_types[j],
5535 type,
5536 t->operand_types[op]))
5537 goto bad_broadcast;
5538 }
5539 }
5540 }
5541 /* If broadcast is supported in this instruction, we need to check if
5542 operand of one-element size isn't specified without broadcast. */
5543 else if (t->opcode_modifier.broadcast && i.mem_operands)
5544 {
5545 /* Find memory operand. */
5546 for (op = 0; op < i.operands; op++)
5547 if (i.flags[op] & Operand_Mem)
5548 break;
5549 gas_assert (op < i.operands);
5550 /* Check size of the memory operand. */
5551 if (match_broadcast_size (t, op))
5552 {
5553 i.error = broadcast_needed;
5554 return 1;
5555 }
5556 }
5557 else
5558 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5559
5560 /* Check if requested masking is supported. */
5561 if (i.mask)
5562 {
5563 switch (t->opcode_modifier.masking)
5564 {
5565 case BOTH_MASKING:
5566 break;
5567 case MERGING_MASKING:
5568 if (i.mask->zeroing)
5569 {
5570 case 0:
5571 i.error = unsupported_masking;
5572 return 1;
5573 }
5574 break;
5575 case DYNAMIC_MASKING:
5576 /* Memory destinations allow only merging masking. */
5577 if (i.mask->zeroing && i.mem_operands)
5578 {
5579 /* Find memory operand. */
5580 for (op = 0; op < i.operands; op++)
5581 if (i.flags[op] & Operand_Mem)
5582 break;
5583 gas_assert (op < i.operands);
5584 if (op == i.operands - 1)
5585 {
5586 i.error = unsupported_masking;
5587 return 1;
5588 }
5589 }
5590 break;
5591 default:
5592 abort ();
5593 }
5594 }
5595
5596 /* Check if masking is applied to dest operand. */
5597 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5598 {
5599 i.error = mask_not_on_destination;
5600 return 1;
5601 }
5602
5603 /* Check RC/SAE. */
5604 if (i.rounding)
5605 {
5606 if (!t->opcode_modifier.sae
5607 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
5608 {
5609 i.error = unsupported_rc_sae;
5610 return 1;
5611 }
5612 /* If the instruction has several immediate operands and one of
5613 them is rounding, the rounding operand should be the last
5614 immediate operand. */
5615 if (i.imm_operands > 1
5616 && i.rounding->operand != (int) (i.imm_operands - 1))
5617 {
5618 i.error = rc_sae_operand_not_last_imm;
5619 return 1;
5620 }
5621 }
5622
5623 /* Check vector Disp8 operand. */
5624 if (t->opcode_modifier.disp8memshift
5625 && i.disp_encoding != disp_encoding_32bit)
5626 {
5627 if (i.broadcast)
5628 i.memshift = t->opcode_modifier.broadcast - 1;
5629 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5630 i.memshift = t->opcode_modifier.disp8memshift;
5631 else
5632 {
5633 const i386_operand_type *type = NULL;
5634
5635 i.memshift = 0;
5636 for (op = 0; op < i.operands; op++)
5637 if (i.flags[op] & Operand_Mem)
5638 {
5639 if (t->opcode_modifier.evex == EVEXLIG)
5640 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5641 else if (t->operand_types[op].bitfield.xmmword
5642 + t->operand_types[op].bitfield.ymmword
5643 + t->operand_types[op].bitfield.zmmword <= 1)
5644 type = &t->operand_types[op];
5645 else if (!i.types[op].bitfield.unspecified)
5646 type = &i.types[op];
5647 }
5648 else if (i.types[op].bitfield.class == RegSIMD
5649 && t->opcode_modifier.evex != EVEXLIG)
5650 {
5651 if (i.types[op].bitfield.zmmword)
5652 i.memshift = 6;
5653 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5654 i.memshift = 5;
5655 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5656 i.memshift = 4;
5657 }
5658
5659 if (type)
5660 {
5661 if (type->bitfield.zmmword)
5662 i.memshift = 6;
5663 else if (type->bitfield.ymmword)
5664 i.memshift = 5;
5665 else if (type->bitfield.xmmword)
5666 i.memshift = 4;
5667 }
5668
5669 /* For the check in fits_in_disp8(). */
5670 if (i.memshift == 0)
5671 i.memshift = -1;
5672 }
5673
5674 for (op = 0; op < i.operands; op++)
5675 if (operand_type_check (i.types[op], disp)
5676 && i.op[op].disps->X_op == O_constant)
5677 {
5678 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5679 {
5680 i.types[op].bitfield.disp8 = 1;
5681 return 0;
5682 }
5683 i.types[op].bitfield.disp8 = 0;
5684 }
5685 }
5686
5687 i.memshift = 0;
5688
5689 return 0;
5690 }
5691
5692 /* Check if operands are valid for the instruction. Update VEX
5693 operand types. */
5694
5695 static int
5696 VEX_check_operands (const insn_template *t)
5697 {
5698 if (i.vec_encoding == vex_encoding_evex)
5699 {
5700 /* This instruction must be encoded with EVEX prefix. */
5701 if (!is_evex_encoding (t))
5702 {
5703 i.error = unsupported;
5704 return 1;
5705 }
5706 return 0;
5707 }
5708
5709 if (!t->opcode_modifier.vex)
5710 {
5711 /* This instruction template doesn't have VEX prefix. */
5712 if (i.vec_encoding != vex_encoding_default)
5713 {
5714 i.error = unsupported;
5715 return 1;
5716 }
5717 return 0;
5718 }
5719
5720 /* Check the special Imm4 cases; must be the first operand. */
5721 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
5722 {
5723 if (i.op[0].imms->X_op != O_constant
5724 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5725 {
5726 i.error = bad_imm4;
5727 return 1;
5728 }
5729
5730 /* Turn off Imm<N> so that update_imm won't complain. */
5731 operand_type_set (&i.types[0], 0);
5732 }
5733
5734 return 0;
5735 }
5736
5737 static const insn_template *
5738 match_template (char mnem_suffix)
5739 {
5740 /* Points to template once we've found it. */
5741 const insn_template *t;
5742 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5743 i386_operand_type overlap4;
5744 unsigned int found_reverse_match;
5745 i386_opcode_modifier suffix_check;
5746 i386_operand_type operand_types [MAX_OPERANDS];
5747 int addr_prefix_disp;
5748 unsigned int j, size_match, check_register;
5749 enum i386_error specific_error = 0;
5750
5751 #if MAX_OPERANDS != 5
5752 # error "MAX_OPERANDS must be 5."
5753 #endif
5754
5755 found_reverse_match = 0;
5756 addr_prefix_disp = -1;
5757
5758 /* Prepare for mnemonic suffix check. */
5759 memset (&suffix_check, 0, sizeof (suffix_check));
5760 switch (mnem_suffix)
5761 {
5762 case BYTE_MNEM_SUFFIX:
5763 suffix_check.no_bsuf = 1;
5764 break;
5765 case WORD_MNEM_SUFFIX:
5766 suffix_check.no_wsuf = 1;
5767 break;
5768 case SHORT_MNEM_SUFFIX:
5769 suffix_check.no_ssuf = 1;
5770 break;
5771 case LONG_MNEM_SUFFIX:
5772 suffix_check.no_lsuf = 1;
5773 break;
5774 case QWORD_MNEM_SUFFIX:
5775 suffix_check.no_qsuf = 1;
5776 break;
5777 default:
5778 /* NB: In Intel syntax, normally we can check for memory operand
5779 size when there is no mnemonic suffix. But jmp and call have
5780 2 different encodings with Dword memory operand size, one with
5781 No_ldSuf and the other without. i.suffix is set to
5782 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5783 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5784 suffix_check.no_ldsuf = 1;
5785 }
5786
5787 /* Must have right number of operands. */
5788 i.error = number_of_operands_mismatch;
5789
5790 for (t = current_templates->start; t < current_templates->end; t++)
5791 {
5792 addr_prefix_disp = -1;
5793 found_reverse_match = 0;
5794
5795 if (i.operands != t->operands)
5796 continue;
5797
5798 /* Check processor support. */
5799 i.error = unsupported;
5800 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
5801 continue;
5802
5803 /* Check AT&T mnemonic. */
5804 i.error = unsupported_with_intel_mnemonic;
5805 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5806 continue;
5807
5808 /* Check AT&T/Intel syntax. */
5809 i.error = unsupported_syntax;
5810 if ((intel_syntax && t->opcode_modifier.attsyntax)
5811 || (!intel_syntax && t->opcode_modifier.intelsyntax))
5812 continue;
5813
5814 /* Check Intel64/AMD64 ISA. */
5815 switch (isa64)
5816 {
5817 default:
5818 /* Default: Don't accept Intel64. */
5819 if (t->opcode_modifier.isa64 == INTEL64)
5820 continue;
5821 break;
5822 case amd64:
5823 /* -mamd64: Don't accept Intel64 and Intel64 only. */
5824 if (t->opcode_modifier.isa64 >= INTEL64)
5825 continue;
5826 break;
5827 case intel64:
5828 /* -mintel64: Don't accept AMD64. */
5829 if (t->opcode_modifier.isa64 == AMD64 && flag_code == CODE_64BIT)
5830 continue;
5831 break;
5832 }
5833
5834 /* Check the suffix. */
5835 i.error = invalid_instruction_suffix;
5836 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5837 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5838 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5839 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5840 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5841 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
5842 continue;
5843
5844 size_match = operand_size_match (t);
5845 if (!size_match)
5846 continue;
5847
5848 /* This is intentionally not
5849
5850 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
5851
5852 as the case of a missing * on the operand is accepted (perhaps with
5853 a warning, issued further down). */
5854 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5855 {
5856 i.error = operand_type_mismatch;
5857 continue;
5858 }
5859
5860 for (j = 0; j < MAX_OPERANDS; j++)
5861 operand_types[j] = t->operand_types[j];
5862
5863 /* In general, don't allow 64-bit operands in 32-bit mode. */
5864 if (i.suffix == QWORD_MNEM_SUFFIX
5865 && flag_code != CODE_64BIT
5866 && (intel_syntax
5867 ? (!t->opcode_modifier.ignoresize
5868 && !t->opcode_modifier.broadcast
5869 && !intel_float_operand (t->name))
5870 : intel_float_operand (t->name) != 2)
5871 && ((operand_types[0].bitfield.class != RegMMX
5872 && operand_types[0].bitfield.class != RegSIMD)
5873 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5874 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
5875 && (t->base_opcode != 0x0fc7
5876 || t->extension_opcode != 1 /* cmpxchg8b */))
5877 continue;
5878
5879 /* In general, don't allow 32-bit operands on pre-386. */
5880 else if (i.suffix == LONG_MNEM_SUFFIX
5881 && !cpu_arch_flags.bitfield.cpui386
5882 && (intel_syntax
5883 ? (!t->opcode_modifier.ignoresize
5884 && !intel_float_operand (t->name))
5885 : intel_float_operand (t->name) != 2)
5886 && ((operand_types[0].bitfield.class != RegMMX
5887 && operand_types[0].bitfield.class != RegSIMD)
5888 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5889 && operand_types[t->operands > 1].bitfield.class
5890 != RegSIMD)))
5891 continue;
5892
5893 /* Do not verify operands when there are none. */
5894 else
5895 {
5896 if (!t->operands)
5897 /* We've found a match; break out of loop. */
5898 break;
5899 }
5900
5901 if (!t->opcode_modifier.jump
5902 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
5903 {
5904 /* There should be only one Disp operand. */
5905 for (j = 0; j < MAX_OPERANDS; j++)
5906 if (operand_type_check (operand_types[j], disp))
5907 break;
5908 if (j < MAX_OPERANDS)
5909 {
5910 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
5911
5912 addr_prefix_disp = j;
5913
5914 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
5915 operand into Disp32/Disp32/Disp16/Disp32 operand. */
5916 switch (flag_code)
5917 {
5918 case CODE_16BIT:
5919 override = !override;
5920 /* Fall through. */
5921 case CODE_32BIT:
5922 if (operand_types[j].bitfield.disp32
5923 && operand_types[j].bitfield.disp16)
5924 {
5925 operand_types[j].bitfield.disp16 = override;
5926 operand_types[j].bitfield.disp32 = !override;
5927 }
5928 operand_types[j].bitfield.disp32s = 0;
5929 operand_types[j].bitfield.disp64 = 0;
5930 break;
5931
5932 case CODE_64BIT:
5933 if (operand_types[j].bitfield.disp32s
5934 || operand_types[j].bitfield.disp64)
5935 {
5936 operand_types[j].bitfield.disp64 &= !override;
5937 operand_types[j].bitfield.disp32s &= !override;
5938 operand_types[j].bitfield.disp32 = override;
5939 }
5940 operand_types[j].bitfield.disp16 = 0;
5941 break;
5942 }
5943 }
5944 }
5945
5946 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5947 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5948 continue;
5949
5950 /* We check register size if needed. */
5951 if (t->opcode_modifier.checkregsize)
5952 {
5953 check_register = (1 << t->operands) - 1;
5954 if (i.broadcast)
5955 check_register &= ~(1 << i.broadcast->operand);
5956 }
5957 else
5958 check_register = 0;
5959
5960 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5961 switch (t->operands)
5962 {
5963 case 1:
5964 if (!operand_type_match (overlap0, i.types[0]))
5965 continue;
5966 break;
5967 case 2:
5968 /* xchg %eax, %eax is a special case. It is an alias for nop
5969 only in 32bit mode and we can use opcode 0x90. In 64bit
5970 mode, we can't use 0x90 for xchg %eax, %eax since it should
5971 zero-extend %eax to %rax. */
5972 if (flag_code == CODE_64BIT
5973 && t->base_opcode == 0x90
5974 && i.types[0].bitfield.instance == Accum
5975 && i.types[0].bitfield.dword
5976 && i.types[1].bitfield.instance == Accum
5977 && i.types[1].bitfield.dword)
5978 continue;
5979 /* xrelease mov %eax, <disp> is another special case. It must not
5980 match the accumulator-only encoding of mov. */
5981 if (flag_code != CODE_64BIT
5982 && i.hle_prefix
5983 && t->base_opcode == 0xa0
5984 && i.types[0].bitfield.instance == Accum
5985 && (i.flags[1] & Operand_Mem))
5986 continue;
5987 /* Fall through. */
5988
5989 case 3:
5990 if (!(size_match & MATCH_STRAIGHT))
5991 goto check_reverse;
5992 /* Reverse direction of operands if swapping is possible in the first
5993 place (operands need to be symmetric) and
5994 - the load form is requested, and the template is a store form,
5995 - the store form is requested, and the template is a load form,
5996 - the non-default (swapped) form is requested. */
5997 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5998 if (t->opcode_modifier.d && i.reg_operands == i.operands
5999 && !operand_type_all_zero (&overlap1))
6000 switch (i.dir_encoding)
6001 {
6002 case dir_encoding_load:
6003 if (operand_type_check (operand_types[i.operands - 1], anymem)
6004 || t->opcode_modifier.regmem)
6005 goto check_reverse;
6006 break;
6007
6008 case dir_encoding_store:
6009 if (!operand_type_check (operand_types[i.operands - 1], anymem)
6010 && !t->opcode_modifier.regmem)
6011 goto check_reverse;
6012 break;
6013
6014 case dir_encoding_swap:
6015 goto check_reverse;
6016
6017 case dir_encoding_default:
6018 break;
6019 }
6020 /* If we want store form, we skip the current load. */
6021 if ((i.dir_encoding == dir_encoding_store
6022 || i.dir_encoding == dir_encoding_swap)
6023 && i.mem_operands == 0
6024 && t->opcode_modifier.load)
6025 continue;
6026 /* Fall through. */
6027 case 4:
6028 case 5:
6029 overlap1 = operand_type_and (i.types[1], operand_types[1]);
6030 if (!operand_type_match (overlap0, i.types[0])
6031 || !operand_type_match (overlap1, i.types[1])
6032 || ((check_register & 3) == 3
6033 && !operand_type_register_match (i.types[0],
6034 operand_types[0],
6035 i.types[1],
6036 operand_types[1])))
6037 {
6038 /* Check if other direction is valid ... */
6039 if (!t->opcode_modifier.d)
6040 continue;
6041
6042 check_reverse:
6043 if (!(size_match & MATCH_REVERSE))
6044 continue;
6045 /* Try reversing direction of operands. */
6046 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6047 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
6048 if (!operand_type_match (overlap0, i.types[0])
6049 || !operand_type_match (overlap1, i.types[i.operands - 1])
6050 || (check_register
6051 && !operand_type_register_match (i.types[0],
6052 operand_types[i.operands - 1],
6053 i.types[i.operands - 1],
6054 operand_types[0])))
6055 {
6056 /* Does not match either direction. */
6057 continue;
6058 }
6059 /* found_reverse_match holds which of D or FloatR
6060 we've found. */
6061 if (!t->opcode_modifier.d)
6062 found_reverse_match = 0;
6063 else if (operand_types[0].bitfield.tbyte)
6064 found_reverse_match = Opcode_FloatD;
6065 else if (operand_types[0].bitfield.xmmword
6066 || operand_types[i.operands - 1].bitfield.xmmword
6067 || operand_types[0].bitfield.class == RegMMX
6068 || operand_types[i.operands - 1].bitfield.class == RegMMX
6069 || is_any_vex_encoding(t))
6070 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6071 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
6072 else
6073 found_reverse_match = Opcode_D;
6074 if (t->opcode_modifier.floatr)
6075 found_reverse_match |= Opcode_FloatR;
6076 }
6077 else
6078 {
6079 /* Found a forward 2 operand match here. */
6080 switch (t->operands)
6081 {
6082 case 5:
6083 overlap4 = operand_type_and (i.types[4],
6084 operand_types[4]);
6085 /* Fall through. */
6086 case 4:
6087 overlap3 = operand_type_and (i.types[3],
6088 operand_types[3]);
6089 /* Fall through. */
6090 case 3:
6091 overlap2 = operand_type_and (i.types[2],
6092 operand_types[2]);
6093 break;
6094 }
6095
6096 switch (t->operands)
6097 {
6098 case 5:
6099 if (!operand_type_match (overlap4, i.types[4])
6100 || !operand_type_register_match (i.types[3],
6101 operand_types[3],
6102 i.types[4],
6103 operand_types[4]))
6104 continue;
6105 /* Fall through. */
6106 case 4:
6107 if (!operand_type_match (overlap3, i.types[3])
6108 || ((check_register & 0xa) == 0xa
6109 && !operand_type_register_match (i.types[1],
6110 operand_types[1],
6111 i.types[3],
6112 operand_types[3]))
6113 || ((check_register & 0xc) == 0xc
6114 && !operand_type_register_match (i.types[2],
6115 operand_types[2],
6116 i.types[3],
6117 operand_types[3])))
6118 continue;
6119 /* Fall through. */
6120 case 3:
6121 /* Here we make use of the fact that there are no
6122 reverse match 3 operand instructions. */
6123 if (!operand_type_match (overlap2, i.types[2])
6124 || ((check_register & 5) == 5
6125 && !operand_type_register_match (i.types[0],
6126 operand_types[0],
6127 i.types[2],
6128 operand_types[2]))
6129 || ((check_register & 6) == 6
6130 && !operand_type_register_match (i.types[1],
6131 operand_types[1],
6132 i.types[2],
6133 operand_types[2])))
6134 continue;
6135 break;
6136 }
6137 }
6138 /* Found either forward/reverse 2, 3 or 4 operand match here:
6139 slip through to break. */
6140 }
6141
6142 /* Check if vector and VEX operands are valid. */
6143 if (check_VecOperands (t) || VEX_check_operands (t))
6144 {
6145 specific_error = i.error;
6146 continue;
6147 }
6148
6149 /* We've found a match; break out of loop. */
6150 break;
6151 }
6152
6153 if (t == current_templates->end)
6154 {
6155 /* We found no match. */
6156 const char *err_msg;
6157 switch (specific_error ? specific_error : i.error)
6158 {
6159 default:
6160 abort ();
6161 case operand_size_mismatch:
6162 err_msg = _("operand size mismatch");
6163 break;
6164 case operand_type_mismatch:
6165 err_msg = _("operand type mismatch");
6166 break;
6167 case register_type_mismatch:
6168 err_msg = _("register type mismatch");
6169 break;
6170 case number_of_operands_mismatch:
6171 err_msg = _("number of operands mismatch");
6172 break;
6173 case invalid_instruction_suffix:
6174 err_msg = _("invalid instruction suffix");
6175 break;
6176 case bad_imm4:
6177 err_msg = _("constant doesn't fit in 4 bits");
6178 break;
6179 case unsupported_with_intel_mnemonic:
6180 err_msg = _("unsupported with Intel mnemonic");
6181 break;
6182 case unsupported_syntax:
6183 err_msg = _("unsupported syntax");
6184 break;
6185 case unsupported:
6186 as_bad (_("unsupported instruction `%s'"),
6187 current_templates->start->name);
6188 return NULL;
6189 case invalid_vsib_address:
6190 err_msg = _("invalid VSIB address");
6191 break;
6192 case invalid_vector_register_set:
6193 err_msg = _("mask, index, and destination registers must be distinct");
6194 break;
6195 case unsupported_vector_index_register:
6196 err_msg = _("unsupported vector index register");
6197 break;
6198 case unsupported_broadcast:
6199 err_msg = _("unsupported broadcast");
6200 break;
6201 case broadcast_needed:
6202 err_msg = _("broadcast is needed for operand of such type");
6203 break;
6204 case unsupported_masking:
6205 err_msg = _("unsupported masking");
6206 break;
6207 case mask_not_on_destination:
6208 err_msg = _("mask not on destination operand");
6209 break;
6210 case no_default_mask:
6211 err_msg = _("default mask isn't allowed");
6212 break;
6213 case unsupported_rc_sae:
6214 err_msg = _("unsupported static rounding/sae");
6215 break;
6216 case rc_sae_operand_not_last_imm:
6217 if (intel_syntax)
6218 err_msg = _("RC/SAE operand must precede immediate operands");
6219 else
6220 err_msg = _("RC/SAE operand must follow immediate operands");
6221 break;
6222 case invalid_register_operand:
6223 err_msg = _("invalid register operand");
6224 break;
6225 }
6226 as_bad (_("%s for `%s'"), err_msg,
6227 current_templates->start->name);
6228 return NULL;
6229 }
6230
6231 if (!quiet_warnings)
6232 {
6233 if (!intel_syntax
6234 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6235 as_warn (_("indirect %s without `*'"), t->name);
6236
6237 if (t->opcode_modifier.isprefix
6238 && t->opcode_modifier.ignoresize)
6239 {
6240 /* Warn them that a data or address size prefix doesn't
6241 affect assembly of the next line of code. */
6242 as_warn (_("stand-alone `%s' prefix"), t->name);
6243 }
6244 }
6245
6246 /* Copy the template we found. */
6247 i.tm = *t;
6248
6249 if (addr_prefix_disp != -1)
6250 i.tm.operand_types[addr_prefix_disp]
6251 = operand_types[addr_prefix_disp];
6252
6253 if (found_reverse_match)
6254 {
6255 /* If we found a reverse match we must alter the opcode direction
6256 bit and clear/flip the regmem modifier one. found_reverse_match
6257 holds bits to change (different for int & float insns). */
6258
6259 i.tm.base_opcode ^= found_reverse_match;
6260
6261 i.tm.operand_types[0] = operand_types[i.operands - 1];
6262 i.tm.operand_types[i.operands - 1] = operand_types[0];
6263
6264 /* Certain SIMD insns have their load forms specified in the opcode
6265 table, and hence we need to _set_ RegMem instead of clearing it.
6266 We need to avoid setting the bit though on insns like KMOVW. */
6267 i.tm.opcode_modifier.regmem
6268 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6269 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6270 && !i.tm.opcode_modifier.regmem;
6271 }
6272
6273 return t;
6274 }
6275
6276 static int
6277 check_string (void)
6278 {
6279 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6280 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
6281
6282 if (i.seg[op] != NULL && i.seg[op] != &es)
6283 {
6284 as_bad (_("`%s' operand %u must use `%ses' segment"),
6285 i.tm.name,
6286 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6287 register_prefix);
6288 return 0;
6289 }
6290
6291 /* There's only ever one segment override allowed per instruction.
6292 This instruction possibly has a legal segment override on the
6293 second operand, so copy the segment to where non-string
6294 instructions store it, allowing common code. */
6295 i.seg[op] = i.seg[1];
6296
6297 return 1;
6298 }
6299
6300 static int
6301 process_suffix (void)
6302 {
6303 /* If matched instruction specifies an explicit instruction mnemonic
6304 suffix, use it. */
6305 if (i.tm.opcode_modifier.size == SIZE16)
6306 i.suffix = WORD_MNEM_SUFFIX;
6307 else if (i.tm.opcode_modifier.size == SIZE32)
6308 i.suffix = LONG_MNEM_SUFFIX;
6309 else if (i.tm.opcode_modifier.size == SIZE64)
6310 i.suffix = QWORD_MNEM_SUFFIX;
6311 else if (i.reg_operands
6312 && (i.operands > 1 || i.types[0].bitfield.class == Reg))
6313 {
6314 /* If there's no instruction mnemonic suffix we try to invent one
6315 based on GPR operands. */
6316 if (!i.suffix)
6317 {
6318 /* We take i.suffix from the last register operand specified,
6319 Destination register type is more significant than source
6320 register type. crc32 in SSE4.2 prefers source register
6321 type. */
6322 unsigned int op = i.tm.base_opcode != 0xf20f38f0 ? i.operands : 1;
6323
6324 while (op--)
6325 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6326 || i.tm.operand_types[op].bitfield.instance == Accum)
6327 {
6328 if (i.types[op].bitfield.class != Reg)
6329 continue;
6330 if (i.types[op].bitfield.byte)
6331 i.suffix = BYTE_MNEM_SUFFIX;
6332 else if (i.types[op].bitfield.word)
6333 i.suffix = WORD_MNEM_SUFFIX;
6334 else if (i.types[op].bitfield.dword)
6335 i.suffix = LONG_MNEM_SUFFIX;
6336 else if (i.types[op].bitfield.qword)
6337 i.suffix = QWORD_MNEM_SUFFIX;
6338 else
6339 continue;
6340 break;
6341 }
6342 }
6343 else if (i.suffix == BYTE_MNEM_SUFFIX)
6344 {
6345 if (intel_syntax
6346 && i.tm.opcode_modifier.ignoresize
6347 && i.tm.opcode_modifier.no_bsuf)
6348 i.suffix = 0;
6349 else if (!check_byte_reg ())
6350 return 0;
6351 }
6352 else if (i.suffix == LONG_MNEM_SUFFIX)
6353 {
6354 if (intel_syntax
6355 && i.tm.opcode_modifier.ignoresize
6356 && i.tm.opcode_modifier.no_lsuf
6357 && !i.tm.opcode_modifier.todword
6358 && !i.tm.opcode_modifier.toqword)
6359 i.suffix = 0;
6360 else if (!check_long_reg ())
6361 return 0;
6362 }
6363 else if (i.suffix == QWORD_MNEM_SUFFIX)
6364 {
6365 if (intel_syntax
6366 && i.tm.opcode_modifier.ignoresize
6367 && i.tm.opcode_modifier.no_qsuf
6368 && !i.tm.opcode_modifier.todword
6369 && !i.tm.opcode_modifier.toqword)
6370 i.suffix = 0;
6371 else if (!check_qword_reg ())
6372 return 0;
6373 }
6374 else if (i.suffix == WORD_MNEM_SUFFIX)
6375 {
6376 if (intel_syntax
6377 && i.tm.opcode_modifier.ignoresize
6378 && i.tm.opcode_modifier.no_wsuf)
6379 i.suffix = 0;
6380 else if (!check_word_reg ())
6381 return 0;
6382 }
6383 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6384 /* Do nothing if the instruction is going to ignore the prefix. */
6385 ;
6386 else
6387 abort ();
6388 }
6389 else if (i.tm.opcode_modifier.defaultsize && !i.suffix)
6390 {
6391 i.suffix = stackop_size;
6392 if (stackop_size == LONG_MNEM_SUFFIX)
6393 {
6394 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6395 .code16gcc directive to support 16-bit mode with
6396 32-bit address. For IRET without a suffix, generate
6397 16-bit IRET (opcode 0xcf) to return from an interrupt
6398 handler. */
6399 if (i.tm.base_opcode == 0xcf)
6400 {
6401 i.suffix = WORD_MNEM_SUFFIX;
6402 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6403 }
6404 /* Warn about changed behavior for segment register push/pop. */
6405 else if ((i.tm.base_opcode | 1) == 0x07)
6406 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6407 i.tm.name);
6408 }
6409 }
6410 else if (!i.suffix
6411 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6412 || i.tm.opcode_modifier.jump == JUMP_BYTE
6413 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
6414 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6415 && i.tm.extension_opcode <= 3)))
6416 {
6417 switch (flag_code)
6418 {
6419 case CODE_64BIT:
6420 if (!i.tm.opcode_modifier.no_qsuf)
6421 {
6422 i.suffix = QWORD_MNEM_SUFFIX;
6423 break;
6424 }
6425 /* Fall through. */
6426 case CODE_32BIT:
6427 if (!i.tm.opcode_modifier.no_lsuf)
6428 i.suffix = LONG_MNEM_SUFFIX;
6429 break;
6430 case CODE_16BIT:
6431 if (!i.tm.opcode_modifier.no_wsuf)
6432 i.suffix = WORD_MNEM_SUFFIX;
6433 break;
6434 }
6435 }
6436
6437 if (!i.suffix
6438 && (!i.tm.opcode_modifier.defaultsize
6439 /* Also cover lret/retf/iret in 64-bit mode. */
6440 || (flag_code == CODE_64BIT
6441 && !i.tm.opcode_modifier.no_lsuf
6442 && !i.tm.opcode_modifier.no_qsuf))
6443 && !i.tm.opcode_modifier.ignoresize
6444 /* Accept FLDENV et al without suffix. */
6445 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
6446 {
6447 unsigned int suffixes, evex = 0;
6448
6449 suffixes = !i.tm.opcode_modifier.no_bsuf;
6450 if (!i.tm.opcode_modifier.no_wsuf)
6451 suffixes |= 1 << 1;
6452 if (!i.tm.opcode_modifier.no_lsuf)
6453 suffixes |= 1 << 2;
6454 if (!i.tm.opcode_modifier.no_ldsuf)
6455 suffixes |= 1 << 3;
6456 if (!i.tm.opcode_modifier.no_ssuf)
6457 suffixes |= 1 << 4;
6458 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6459 suffixes |= 1 << 5;
6460
6461 /* For [XYZ]MMWORD operands inspect operand sizes. While generally
6462 also suitable for AT&T syntax mode, it was requested that this be
6463 restricted to just Intel syntax. */
6464 if (intel_syntax)
6465 {
6466 i386_cpu_flags cpu = cpu_flags_and (i.tm.cpu_flags, avx512);
6467
6468 if (!cpu_flags_all_zero (&cpu) && !i.broadcast)
6469 {
6470 unsigned int op;
6471
6472 for (op = 0; op < i.tm.operands; ++op)
6473 {
6474 if (!cpu_arch_flags.bitfield.cpuavx512vl)
6475 {
6476 if (i.tm.operand_types[op].bitfield.ymmword)
6477 i.tm.operand_types[op].bitfield.xmmword = 0;
6478 if (i.tm.operand_types[op].bitfield.zmmword)
6479 i.tm.operand_types[op].bitfield.ymmword = 0;
6480 if (!i.tm.opcode_modifier.evex
6481 || i.tm.opcode_modifier.evex == EVEXDYN)
6482 i.tm.opcode_modifier.evex = EVEX512;
6483 }
6484
6485 if (i.tm.operand_types[op].bitfield.xmmword
6486 + i.tm.operand_types[op].bitfield.ymmword
6487 + i.tm.operand_types[op].bitfield.zmmword < 2)
6488 continue;
6489
6490 /* Any properly sized operand disambiguates the insn. */
6491 if (i.types[op].bitfield.xmmword
6492 || i.types[op].bitfield.ymmword
6493 || i.types[op].bitfield.zmmword)
6494 {
6495 suffixes &= ~(7 << 6);
6496 evex = 0;
6497 break;
6498 }
6499
6500 if ((i.flags[op] & Operand_Mem)
6501 && i.tm.operand_types[op].bitfield.unspecified)
6502 {
6503 if (i.tm.operand_types[op].bitfield.xmmword)
6504 suffixes |= 1 << 6;
6505 if (i.tm.operand_types[op].bitfield.ymmword)
6506 suffixes |= 1 << 7;
6507 if (i.tm.operand_types[op].bitfield.zmmword)
6508 suffixes |= 1 << 8;
6509 evex = EVEX512;
6510 }
6511 }
6512 }
6513 }
6514
6515 /* Are multiple suffixes / operand sizes allowed? */
6516 if (suffixes & (suffixes - 1))
6517 {
6518 if (intel_syntax
6519 && (!i.tm.opcode_modifier.defaultsize
6520 || operand_check == check_error))
6521 {
6522 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6523 return 0;
6524 }
6525 if (operand_check == check_error)
6526 {
6527 as_bad (_("no instruction mnemonic suffix given and "
6528 "no register operands; can't size `%s'"), i.tm.name);
6529 return 0;
6530 }
6531 if (operand_check == check_warning)
6532 as_warn (_("%s; using default for `%s'"),
6533 intel_syntax
6534 ? _("ambiguous operand size")
6535 : _("no instruction mnemonic suffix given and "
6536 "no register operands"),
6537 i.tm.name);
6538
6539 if (i.tm.opcode_modifier.floatmf)
6540 i.suffix = SHORT_MNEM_SUFFIX;
6541 else if (evex)
6542 i.tm.opcode_modifier.evex = evex;
6543 else if (flag_code == CODE_16BIT)
6544 i.suffix = WORD_MNEM_SUFFIX;
6545 else if (!i.tm.opcode_modifier.no_lsuf)
6546 i.suffix = LONG_MNEM_SUFFIX;
6547 else
6548 i.suffix = QWORD_MNEM_SUFFIX;
6549 }
6550 }
6551
6552 if (!i.tm.opcode_modifier.modrm && i.reg_operands && i.tm.operands < 3)
6553 i.short_form = (i.tm.operand_types[0].bitfield.class == Reg)
6554 != (i.tm.operand_types[1].bitfield.class == Reg);
6555
6556 /* Change the opcode based on the operand size given by i.suffix. */
6557 switch (i.suffix)
6558 {
6559 /* Size floating point instruction. */
6560 case LONG_MNEM_SUFFIX:
6561 if (i.tm.opcode_modifier.floatmf)
6562 {
6563 i.tm.base_opcode ^= 4;
6564 break;
6565 }
6566 /* fall through */
6567 case WORD_MNEM_SUFFIX:
6568 case QWORD_MNEM_SUFFIX:
6569 /* It's not a byte, select word/dword operation. */
6570 if (i.tm.opcode_modifier.w)
6571 {
6572 if (i.short_form)
6573 i.tm.base_opcode |= 8;
6574 else
6575 i.tm.base_opcode |= 1;
6576 }
6577 /* fall through */
6578 case SHORT_MNEM_SUFFIX:
6579 /* Now select between word & dword operations via the operand
6580 size prefix, except for instructions that will ignore this
6581 prefix anyway. */
6582 if (i.reg_operands > 0
6583 && i.types[0].bitfield.class == Reg
6584 && i.tm.opcode_modifier.addrprefixopreg
6585 && (i.tm.operand_types[0].bitfield.instance == Accum
6586 || i.operands == 1))
6587 {
6588 /* The address size override prefix changes the size of the
6589 first operand. */
6590 if ((flag_code == CODE_32BIT
6591 && i.op[0].regs->reg_type.bitfield.word)
6592 || (flag_code != CODE_32BIT
6593 && i.op[0].regs->reg_type.bitfield.dword))
6594 if (!add_prefix (ADDR_PREFIX_OPCODE))
6595 return 0;
6596 }
6597 else if (i.suffix != QWORD_MNEM_SUFFIX
6598 && !i.tm.opcode_modifier.ignoresize
6599 && !i.tm.opcode_modifier.floatmf
6600 && !is_any_vex_encoding (&i.tm)
6601 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6602 || (flag_code == CODE_64BIT
6603 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
6604 {
6605 unsigned int prefix = DATA_PREFIX_OPCODE;
6606
6607 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
6608 prefix = ADDR_PREFIX_OPCODE;
6609
6610 if (!add_prefix (prefix))
6611 return 0;
6612 }
6613
6614 /* Set mode64 for an operand. */
6615 if (i.suffix == QWORD_MNEM_SUFFIX
6616 && flag_code == CODE_64BIT
6617 && !i.tm.opcode_modifier.norex64
6618 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6619 need rex64. */
6620 && ! (i.operands == 2
6621 && i.tm.base_opcode == 0x90
6622 && i.tm.extension_opcode == None
6623 && i.types[0].bitfield.instance == Accum
6624 && i.types[0].bitfield.qword
6625 && i.types[1].bitfield.instance == Accum
6626 && i.types[1].bitfield.qword))
6627 i.rex |= REX_W;
6628
6629 break;
6630 }
6631
6632 if (i.reg_operands != 0
6633 && i.operands > 1
6634 && i.tm.opcode_modifier.addrprefixopreg
6635 && i.tm.operand_types[0].bitfield.instance != Accum)
6636 {
6637 /* Check invalid register operand when the address size override
6638 prefix changes the size of register operands. */
6639 unsigned int op;
6640 enum { need_word, need_dword, need_qword } need;
6641
6642 if (flag_code == CODE_32BIT)
6643 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6644 else
6645 {
6646 if (i.prefix[ADDR_PREFIX])
6647 need = need_dword;
6648 else
6649 need = flag_code == CODE_64BIT ? need_qword : need_word;
6650 }
6651
6652 for (op = 0; op < i.operands; op++)
6653 if (i.types[op].bitfield.class == Reg
6654 && ((need == need_word
6655 && !i.op[op].regs->reg_type.bitfield.word)
6656 || (need == need_dword
6657 && !i.op[op].regs->reg_type.bitfield.dword)
6658 || (need == need_qword
6659 && !i.op[op].regs->reg_type.bitfield.qword)))
6660 {
6661 as_bad (_("invalid register operand size for `%s'"),
6662 i.tm.name);
6663 return 0;
6664 }
6665 }
6666
6667 return 1;
6668 }
6669
6670 static int
6671 check_byte_reg (void)
6672 {
6673 int op;
6674
6675 for (op = i.operands; --op >= 0;)
6676 {
6677 /* Skip non-register operands. */
6678 if (i.types[op].bitfield.class != Reg)
6679 continue;
6680
6681 /* If this is an eight bit register, it's OK. If it's the 16 or
6682 32 bit version of an eight bit register, we will just use the
6683 low portion, and that's OK too. */
6684 if (i.types[op].bitfield.byte)
6685 continue;
6686
6687 /* I/O port address operands are OK too. */
6688 if (i.tm.operand_types[op].bitfield.instance == RegD
6689 && i.tm.operand_types[op].bitfield.word)
6690 continue;
6691
6692 /* crc32 only wants its source operand checked here. */
6693 if (i.tm.base_opcode == 0xf20f38f0 && op)
6694 continue;
6695
6696 /* Any other register is bad. */
6697 if (i.types[op].bitfield.class == Reg
6698 || i.types[op].bitfield.class == RegMMX
6699 || i.types[op].bitfield.class == RegSIMD
6700 || i.types[op].bitfield.class == SReg
6701 || i.types[op].bitfield.class == RegCR
6702 || i.types[op].bitfield.class == RegDR
6703 || i.types[op].bitfield.class == RegTR)
6704 {
6705 as_bad (_("`%s%s' not allowed with `%s%c'"),
6706 register_prefix,
6707 i.op[op].regs->reg_name,
6708 i.tm.name,
6709 i.suffix);
6710 return 0;
6711 }
6712 }
6713 return 1;
6714 }
6715
6716 static int
6717 check_long_reg (void)
6718 {
6719 int op;
6720
6721 for (op = i.operands; --op >= 0;)
6722 /* Skip non-register operands. */
6723 if (i.types[op].bitfield.class != Reg)
6724 continue;
6725 /* Reject eight bit registers, except where the template requires
6726 them. (eg. movzb) */
6727 else if (i.types[op].bitfield.byte
6728 && (i.tm.operand_types[op].bitfield.class == Reg
6729 || i.tm.operand_types[op].bitfield.instance == Accum)
6730 && (i.tm.operand_types[op].bitfield.word
6731 || i.tm.operand_types[op].bitfield.dword))
6732 {
6733 as_bad (_("`%s%s' not allowed with `%s%c'"),
6734 register_prefix,
6735 i.op[op].regs->reg_name,
6736 i.tm.name,
6737 i.suffix);
6738 return 0;
6739 }
6740 /* Error if the e prefix on a general reg is missing. */
6741 else if (i.types[op].bitfield.word
6742 && (i.tm.operand_types[op].bitfield.class == Reg
6743 || i.tm.operand_types[op].bitfield.instance == Accum)
6744 && i.tm.operand_types[op].bitfield.dword)
6745 {
6746 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6747 register_prefix, i.op[op].regs->reg_name,
6748 i.suffix);
6749 return 0;
6750 }
6751 /* Warn if the r prefix on a general reg is present. */
6752 else if (i.types[op].bitfield.qword
6753 && (i.tm.operand_types[op].bitfield.class == Reg
6754 || i.tm.operand_types[op].bitfield.instance == Accum)
6755 && i.tm.operand_types[op].bitfield.dword)
6756 {
6757 if (intel_syntax
6758 && (i.tm.opcode_modifier.toqword
6759 /* Also convert to QWORD for MOVSXD. */
6760 || i.tm.base_opcode == 0x63)
6761 && i.types[0].bitfield.class != RegSIMD)
6762 {
6763 /* Convert to QWORD. We want REX byte. */
6764 i.suffix = QWORD_MNEM_SUFFIX;
6765 }
6766 else
6767 {
6768 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6769 register_prefix, i.op[op].regs->reg_name,
6770 i.suffix);
6771 return 0;
6772 }
6773 }
6774 return 1;
6775 }
6776
6777 static int
6778 check_qword_reg (void)
6779 {
6780 int op;
6781
6782 for (op = i.operands; --op >= 0; )
6783 /* Skip non-register operands. */
6784 if (i.types[op].bitfield.class != Reg)
6785 continue;
6786 /* Reject eight bit registers, except where the template requires
6787 them. (eg. movzb) */
6788 else if (i.types[op].bitfield.byte
6789 && (i.tm.operand_types[op].bitfield.class == Reg
6790 || i.tm.operand_types[op].bitfield.instance == Accum)
6791 && (i.tm.operand_types[op].bitfield.word
6792 || i.tm.operand_types[op].bitfield.dword))
6793 {
6794 as_bad (_("`%s%s' not allowed with `%s%c'"),
6795 register_prefix,
6796 i.op[op].regs->reg_name,
6797 i.tm.name,
6798 i.suffix);
6799 return 0;
6800 }
6801 /* Warn if the r prefix on a general reg is missing. */
6802 else if ((i.types[op].bitfield.word
6803 || i.types[op].bitfield.dword)
6804 && (i.tm.operand_types[op].bitfield.class == Reg
6805 || i.tm.operand_types[op].bitfield.instance == Accum)
6806 && i.tm.operand_types[op].bitfield.qword)
6807 {
6808 /* Prohibit these changes in the 64bit mode, since the
6809 lowering is more complicated. */
6810 if (intel_syntax
6811 && i.tm.opcode_modifier.todword
6812 && i.types[0].bitfield.class != RegSIMD)
6813 {
6814 /* Convert to DWORD. We don't want REX byte. */
6815 i.suffix = LONG_MNEM_SUFFIX;
6816 }
6817 else
6818 {
6819 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6820 register_prefix, i.op[op].regs->reg_name,
6821 i.suffix);
6822 return 0;
6823 }
6824 }
6825 return 1;
6826 }
6827
6828 static int
6829 check_word_reg (void)
6830 {
6831 int op;
6832 for (op = i.operands; --op >= 0;)
6833 /* Skip non-register operands. */
6834 if (i.types[op].bitfield.class != Reg)
6835 continue;
6836 /* Reject eight bit registers, except where the template requires
6837 them. (eg. movzb) */
6838 else if (i.types[op].bitfield.byte
6839 && (i.tm.operand_types[op].bitfield.class == Reg
6840 || i.tm.operand_types[op].bitfield.instance == Accum)
6841 && (i.tm.operand_types[op].bitfield.word
6842 || i.tm.operand_types[op].bitfield.dword))
6843 {
6844 as_bad (_("`%s%s' not allowed with `%s%c'"),
6845 register_prefix,
6846 i.op[op].regs->reg_name,
6847 i.tm.name,
6848 i.suffix);
6849 return 0;
6850 }
6851 /* Error if the e or r prefix on a general reg is present. */
6852 else if ((i.types[op].bitfield.dword
6853 || i.types[op].bitfield.qword)
6854 && (i.tm.operand_types[op].bitfield.class == Reg
6855 || i.tm.operand_types[op].bitfield.instance == Accum)
6856 && i.tm.operand_types[op].bitfield.word)
6857 {
6858 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6859 register_prefix, i.op[op].regs->reg_name,
6860 i.suffix);
6861 return 0;
6862 }
6863 return 1;
6864 }
6865
6866 static int
6867 update_imm (unsigned int j)
6868 {
6869 i386_operand_type overlap = i.types[j];
6870 if ((overlap.bitfield.imm8
6871 || overlap.bitfield.imm8s
6872 || overlap.bitfield.imm16
6873 || overlap.bitfield.imm32
6874 || overlap.bitfield.imm32s
6875 || overlap.bitfield.imm64)
6876 && !operand_type_equal (&overlap, &imm8)
6877 && !operand_type_equal (&overlap, &imm8s)
6878 && !operand_type_equal (&overlap, &imm16)
6879 && !operand_type_equal (&overlap, &imm32)
6880 && !operand_type_equal (&overlap, &imm32s)
6881 && !operand_type_equal (&overlap, &imm64))
6882 {
6883 if (i.suffix)
6884 {
6885 i386_operand_type temp;
6886
6887 operand_type_set (&temp, 0);
6888 if (i.suffix == BYTE_MNEM_SUFFIX)
6889 {
6890 temp.bitfield.imm8 = overlap.bitfield.imm8;
6891 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6892 }
6893 else if (i.suffix == WORD_MNEM_SUFFIX)
6894 temp.bitfield.imm16 = overlap.bitfield.imm16;
6895 else if (i.suffix == QWORD_MNEM_SUFFIX)
6896 {
6897 temp.bitfield.imm64 = overlap.bitfield.imm64;
6898 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6899 }
6900 else
6901 temp.bitfield.imm32 = overlap.bitfield.imm32;
6902 overlap = temp;
6903 }
6904 else if (operand_type_equal (&overlap, &imm16_32_32s)
6905 || operand_type_equal (&overlap, &imm16_32)
6906 || operand_type_equal (&overlap, &imm16_32s))
6907 {
6908 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6909 overlap = imm16;
6910 else
6911 overlap = imm32s;
6912 }
6913 if (!operand_type_equal (&overlap, &imm8)
6914 && !operand_type_equal (&overlap, &imm8s)
6915 && !operand_type_equal (&overlap, &imm16)
6916 && !operand_type_equal (&overlap, &imm32)
6917 && !operand_type_equal (&overlap, &imm32s)
6918 && !operand_type_equal (&overlap, &imm64))
6919 {
6920 as_bad (_("no instruction mnemonic suffix given; "
6921 "can't determine immediate size"));
6922 return 0;
6923 }
6924 }
6925 i.types[j] = overlap;
6926
6927 return 1;
6928 }
6929
6930 static int
6931 finalize_imm (void)
6932 {
6933 unsigned int j, n;
6934
6935 /* Update the first 2 immediate operands. */
6936 n = i.operands > 2 ? 2 : i.operands;
6937 if (n)
6938 {
6939 for (j = 0; j < n; j++)
6940 if (update_imm (j) == 0)
6941 return 0;
6942
6943 /* The 3rd operand can't be immediate operand. */
6944 gas_assert (operand_type_check (i.types[2], imm) == 0);
6945 }
6946
6947 return 1;
6948 }
6949
6950 static int
6951 process_operands (void)
6952 {
6953 /* Default segment register this instruction will use for memory
6954 accesses. 0 means unknown. This is only for optimizing out
6955 unnecessary segment overrides. */
6956 const seg_entry *default_seg = 0;
6957
6958 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6959 {
6960 unsigned int dupl = i.operands;
6961 unsigned int dest = dupl - 1;
6962 unsigned int j;
6963
6964 /* The destination must be an xmm register. */
6965 gas_assert (i.reg_operands
6966 && MAX_OPERANDS > dupl
6967 && operand_type_equal (&i.types[dest], &regxmm));
6968
6969 if (i.tm.operand_types[0].bitfield.instance == Accum
6970 && i.tm.operand_types[0].bitfield.xmmword)
6971 {
6972 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6973 {
6974 /* Keep xmm0 for instructions with VEX prefix and 3
6975 sources. */
6976 i.tm.operand_types[0].bitfield.instance = InstanceNone;
6977 i.tm.operand_types[0].bitfield.class = RegSIMD;
6978 goto duplicate;
6979 }
6980 else
6981 {
6982 /* We remove the first xmm0 and keep the number of
6983 operands unchanged, which in fact duplicates the
6984 destination. */
6985 for (j = 1; j < i.operands; j++)
6986 {
6987 i.op[j - 1] = i.op[j];
6988 i.types[j - 1] = i.types[j];
6989 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6990 i.flags[j - 1] = i.flags[j];
6991 }
6992 }
6993 }
6994 else if (i.tm.opcode_modifier.implicit1stxmm0)
6995 {
6996 gas_assert ((MAX_OPERANDS - 1) > dupl
6997 && (i.tm.opcode_modifier.vexsources
6998 == VEX3SOURCES));
6999
7000 /* Add the implicit xmm0 for instructions with VEX prefix
7001 and 3 sources. */
7002 for (j = i.operands; j > 0; j--)
7003 {
7004 i.op[j] = i.op[j - 1];
7005 i.types[j] = i.types[j - 1];
7006 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
7007 i.flags[j] = i.flags[j - 1];
7008 }
7009 i.op[0].regs
7010 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7011 i.types[0] = regxmm;
7012 i.tm.operand_types[0] = regxmm;
7013
7014 i.operands += 2;
7015 i.reg_operands += 2;
7016 i.tm.operands += 2;
7017
7018 dupl++;
7019 dest++;
7020 i.op[dupl] = i.op[dest];
7021 i.types[dupl] = i.types[dest];
7022 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7023 i.flags[dupl] = i.flags[dest];
7024 }
7025 else
7026 {
7027 duplicate:
7028 i.operands++;
7029 i.reg_operands++;
7030 i.tm.operands++;
7031
7032 i.op[dupl] = i.op[dest];
7033 i.types[dupl] = i.types[dest];
7034 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7035 i.flags[dupl] = i.flags[dest];
7036 }
7037
7038 if (i.tm.opcode_modifier.immext)
7039 process_immext ();
7040 }
7041 else if (i.tm.operand_types[0].bitfield.instance == Accum
7042 && i.tm.operand_types[0].bitfield.xmmword)
7043 {
7044 unsigned int j;
7045
7046 for (j = 1; j < i.operands; j++)
7047 {
7048 i.op[j - 1] = i.op[j];
7049 i.types[j - 1] = i.types[j];
7050
7051 /* We need to adjust fields in i.tm since they are used by
7052 build_modrm_byte. */
7053 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
7054
7055 i.flags[j - 1] = i.flags[j];
7056 }
7057
7058 i.operands--;
7059 i.reg_operands--;
7060 i.tm.operands--;
7061 }
7062 else if (i.tm.opcode_modifier.implicitquadgroup)
7063 {
7064 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7065
7066 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
7067 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
7068 regnum = register_number (i.op[1].regs);
7069 first_reg_in_group = regnum & ~3;
7070 last_reg_in_group = first_reg_in_group + 3;
7071 if (regnum != first_reg_in_group)
7072 as_warn (_("source register `%s%s' implicitly denotes"
7073 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7074 register_prefix, i.op[1].regs->reg_name,
7075 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7076 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7077 i.tm.name);
7078 }
7079 else if (i.tm.opcode_modifier.regkludge)
7080 {
7081 /* The imul $imm, %reg instruction is converted into
7082 imul $imm, %reg, %reg, and the clr %reg instruction
7083 is converted into xor %reg, %reg. */
7084
7085 unsigned int first_reg_op;
7086
7087 if (operand_type_check (i.types[0], reg))
7088 first_reg_op = 0;
7089 else
7090 first_reg_op = 1;
7091 /* Pretend we saw the extra register operand. */
7092 gas_assert (i.reg_operands == 1
7093 && i.op[first_reg_op + 1].regs == 0);
7094 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7095 i.types[first_reg_op + 1] = i.types[first_reg_op];
7096 i.operands++;
7097 i.reg_operands++;
7098 }
7099
7100 if (i.tm.opcode_modifier.modrm)
7101 {
7102 /* The opcode is completed (modulo i.tm.extension_opcode which
7103 must be put into the modrm byte). Now, we make the modrm and
7104 index base bytes based on all the info we've collected. */
7105
7106 default_seg = build_modrm_byte ();
7107 }
7108 else if (i.types[0].bitfield.class == SReg)
7109 {
7110 if (flag_code != CODE_64BIT
7111 ? i.tm.base_opcode == POP_SEG_SHORT
7112 && i.op[0].regs->reg_num == 1
7113 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7114 && i.op[0].regs->reg_num < 4)
7115 {
7116 as_bad (_("you can't `%s %s%s'"),
7117 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7118 return 0;
7119 }
7120 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7121 {
7122 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7123 i.tm.opcode_length = 2;
7124 }
7125 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7126 }
7127 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7128 {
7129 default_seg = &ds;
7130 }
7131 else if (i.tm.opcode_modifier.isstring)
7132 {
7133 /* For the string instructions that allow a segment override
7134 on one of their operands, the default segment is ds. */
7135 default_seg = &ds;
7136 }
7137 else if (i.short_form)
7138 {
7139 /* The register or float register operand is in operand
7140 0 or 1. */
7141 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7142
7143 /* Register goes in low 3 bits of opcode. */
7144 i.tm.base_opcode |= i.op[op].regs->reg_num;
7145 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7146 i.rex |= REX_B;
7147 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7148 {
7149 /* Warn about some common errors, but press on regardless.
7150 The first case can be generated by gcc (<= 2.8.1). */
7151 if (i.operands == 2)
7152 {
7153 /* Reversed arguments on faddp, fsubp, etc. */
7154 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7155 register_prefix, i.op[!intel_syntax].regs->reg_name,
7156 register_prefix, i.op[intel_syntax].regs->reg_name);
7157 }
7158 else
7159 {
7160 /* Extraneous `l' suffix on fp insn. */
7161 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7162 register_prefix, i.op[0].regs->reg_name);
7163 }
7164 }
7165 }
7166
7167 if ((i.seg[0] || i.prefix[SEG_PREFIX])
7168 && !quiet_warnings
7169 && i.tm.base_opcode == 0x8d /* lea */
7170 && !is_any_vex_encoding(&i.tm))
7171 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7172
7173 /* If a segment was explicitly specified, and the specified segment
7174 is not the default, use an opcode prefix to select it. If we
7175 never figured out what the default segment is, then default_seg
7176 will be zero at this point, and the specified segment prefix will
7177 always be used. */
7178 if ((i.seg[0]) && (i.seg[0] != default_seg))
7179 {
7180 if (!add_prefix (i.seg[0]->seg_prefix))
7181 return 0;
7182 }
7183 return 1;
7184 }
7185
7186 static const seg_entry *
7187 build_modrm_byte (void)
7188 {
7189 const seg_entry *default_seg = 0;
7190 unsigned int source, dest;
7191 int vex_3_sources;
7192
7193 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7194 if (vex_3_sources)
7195 {
7196 unsigned int nds, reg_slot;
7197 expressionS *exp;
7198
7199 dest = i.operands - 1;
7200 nds = dest - 1;
7201
7202 /* There are 2 kinds of instructions:
7203 1. 5 operands: 4 register operands or 3 register operands
7204 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7205 VexW0 or VexW1. The destination must be either XMM, YMM or
7206 ZMM register.
7207 2. 4 operands: 4 register operands or 3 register operands
7208 plus 1 memory operand, with VexXDS. */
7209 gas_assert ((i.reg_operands == 4
7210 || (i.reg_operands == 3 && i.mem_operands == 1))
7211 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7212 && i.tm.opcode_modifier.vexw
7213 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
7214
7215 /* If VexW1 is set, the first non-immediate operand is the source and
7216 the second non-immediate one is encoded in the immediate operand. */
7217 if (i.tm.opcode_modifier.vexw == VEXW1)
7218 {
7219 source = i.imm_operands;
7220 reg_slot = i.imm_operands + 1;
7221 }
7222 else
7223 {
7224 source = i.imm_operands + 1;
7225 reg_slot = i.imm_operands;
7226 }
7227
7228 if (i.imm_operands == 0)
7229 {
7230 /* When there is no immediate operand, generate an 8bit
7231 immediate operand to encode the first operand. */
7232 exp = &im_expressions[i.imm_operands++];
7233 i.op[i.operands].imms = exp;
7234 i.types[i.operands] = imm8;
7235 i.operands++;
7236
7237 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7238 exp->X_op = O_constant;
7239 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7240 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7241 }
7242 else
7243 {
7244 gas_assert (i.imm_operands == 1);
7245 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7246 gas_assert (!i.tm.opcode_modifier.immext);
7247
7248 /* Turn on Imm8 again so that output_imm will generate it. */
7249 i.types[0].bitfield.imm8 = 1;
7250
7251 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7252 i.op[0].imms->X_add_number
7253 |= register_number (i.op[reg_slot].regs) << 4;
7254 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7255 }
7256
7257 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
7258 i.vex.register_specifier = i.op[nds].regs;
7259 }
7260 else
7261 source = dest = 0;
7262
7263 /* i.reg_operands MUST be the number of real register operands;
7264 implicit registers do not count. If there are 3 register
7265 operands, it must be a instruction with VexNDS. For a
7266 instruction with VexNDD, the destination register is encoded
7267 in VEX prefix. If there are 4 register operands, it must be
7268 a instruction with VEX prefix and 3 sources. */
7269 if (i.mem_operands == 0
7270 && ((i.reg_operands == 2
7271 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7272 || (i.reg_operands == 3
7273 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7274 || (i.reg_operands == 4 && vex_3_sources)))
7275 {
7276 switch (i.operands)
7277 {
7278 case 2:
7279 source = 0;
7280 break;
7281 case 3:
7282 /* When there are 3 operands, one of them may be immediate,
7283 which may be the first or the last operand. Otherwise,
7284 the first operand must be shift count register (cl) or it
7285 is an instruction with VexNDS. */
7286 gas_assert (i.imm_operands == 1
7287 || (i.imm_operands == 0
7288 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7289 || (i.types[0].bitfield.instance == RegC
7290 && i.types[0].bitfield.byte))));
7291 if (operand_type_check (i.types[0], imm)
7292 || (i.types[0].bitfield.instance == RegC
7293 && i.types[0].bitfield.byte))
7294 source = 1;
7295 else
7296 source = 0;
7297 break;
7298 case 4:
7299 /* When there are 4 operands, the first two must be 8bit
7300 immediate operands. The source operand will be the 3rd
7301 one.
7302
7303 For instructions with VexNDS, if the first operand
7304 an imm8, the source operand is the 2nd one. If the last
7305 operand is imm8, the source operand is the first one. */
7306 gas_assert ((i.imm_operands == 2
7307 && i.types[0].bitfield.imm8
7308 && i.types[1].bitfield.imm8)
7309 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7310 && i.imm_operands == 1
7311 && (i.types[0].bitfield.imm8
7312 || i.types[i.operands - 1].bitfield.imm8
7313 || i.rounding)));
7314 if (i.imm_operands == 2)
7315 source = 2;
7316 else
7317 {
7318 if (i.types[0].bitfield.imm8)
7319 source = 1;
7320 else
7321 source = 0;
7322 }
7323 break;
7324 case 5:
7325 if (is_evex_encoding (&i.tm))
7326 {
7327 /* For EVEX instructions, when there are 5 operands, the
7328 first one must be immediate operand. If the second one
7329 is immediate operand, the source operand is the 3th
7330 one. If the last one is immediate operand, the source
7331 operand is the 2nd one. */
7332 gas_assert (i.imm_operands == 2
7333 && i.tm.opcode_modifier.sae
7334 && operand_type_check (i.types[0], imm));
7335 if (operand_type_check (i.types[1], imm))
7336 source = 2;
7337 else if (operand_type_check (i.types[4], imm))
7338 source = 1;
7339 else
7340 abort ();
7341 }
7342 break;
7343 default:
7344 abort ();
7345 }
7346
7347 if (!vex_3_sources)
7348 {
7349 dest = source + 1;
7350
7351 /* RC/SAE operand could be between DEST and SRC. That happens
7352 when one operand is GPR and the other one is XMM/YMM/ZMM
7353 register. */
7354 if (i.rounding && i.rounding->operand == (int) dest)
7355 dest++;
7356
7357 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7358 {
7359 /* For instructions with VexNDS, the register-only source
7360 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7361 register. It is encoded in VEX prefix. */
7362
7363 i386_operand_type op;
7364 unsigned int vvvv;
7365
7366 /* Check register-only source operand when two source
7367 operands are swapped. */
7368 if (!i.tm.operand_types[source].bitfield.baseindex
7369 && i.tm.operand_types[dest].bitfield.baseindex)
7370 {
7371 vvvv = source;
7372 source = dest;
7373 }
7374 else
7375 vvvv = dest;
7376
7377 op = i.tm.operand_types[vvvv];
7378 if ((dest + 1) >= i.operands
7379 || ((op.bitfield.class != Reg
7380 || (!op.bitfield.dword && !op.bitfield.qword))
7381 && op.bitfield.class != RegSIMD
7382 && !operand_type_equal (&op, &regmask)))
7383 abort ();
7384 i.vex.register_specifier = i.op[vvvv].regs;
7385 dest++;
7386 }
7387 }
7388
7389 i.rm.mode = 3;
7390 /* One of the register operands will be encoded in the i.rm.reg
7391 field, the other in the combined i.rm.mode and i.rm.regmem
7392 fields. If no form of this instruction supports a memory
7393 destination operand, then we assume the source operand may
7394 sometimes be a memory operand and so we need to store the
7395 destination in the i.rm.reg field. */
7396 if (!i.tm.opcode_modifier.regmem
7397 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7398 {
7399 i.rm.reg = i.op[dest].regs->reg_num;
7400 i.rm.regmem = i.op[source].regs->reg_num;
7401 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7402 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
7403 i.has_regmmx = TRUE;
7404 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7405 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
7406 {
7407 if (i.types[dest].bitfield.zmmword
7408 || i.types[source].bitfield.zmmword)
7409 i.has_regzmm = TRUE;
7410 else if (i.types[dest].bitfield.ymmword
7411 || i.types[source].bitfield.ymmword)
7412 i.has_regymm = TRUE;
7413 else
7414 i.has_regxmm = TRUE;
7415 }
7416 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7417 i.rex |= REX_R;
7418 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7419 i.vrex |= REX_R;
7420 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7421 i.rex |= REX_B;
7422 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7423 i.vrex |= REX_B;
7424 }
7425 else
7426 {
7427 i.rm.reg = i.op[source].regs->reg_num;
7428 i.rm.regmem = i.op[dest].regs->reg_num;
7429 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7430 i.rex |= REX_B;
7431 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7432 i.vrex |= REX_B;
7433 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7434 i.rex |= REX_R;
7435 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7436 i.vrex |= REX_R;
7437 }
7438 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7439 {
7440 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
7441 abort ();
7442 i.rex &= ~REX_R;
7443 add_prefix (LOCK_PREFIX_OPCODE);
7444 }
7445 }
7446 else
7447 { /* If it's not 2 reg operands... */
7448 unsigned int mem;
7449
7450 if (i.mem_operands)
7451 {
7452 unsigned int fake_zero_displacement = 0;
7453 unsigned int op;
7454
7455 for (op = 0; op < i.operands; op++)
7456 if (i.flags[op] & Operand_Mem)
7457 break;
7458 gas_assert (op < i.operands);
7459
7460 if (i.tm.opcode_modifier.vecsib)
7461 {
7462 if (i.index_reg->reg_num == RegIZ)
7463 abort ();
7464
7465 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7466 if (!i.base_reg)
7467 {
7468 i.sib.base = NO_BASE_REGISTER;
7469 i.sib.scale = i.log2_scale_factor;
7470 i.types[op].bitfield.disp8 = 0;
7471 i.types[op].bitfield.disp16 = 0;
7472 i.types[op].bitfield.disp64 = 0;
7473 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7474 {
7475 /* Must be 32 bit */
7476 i.types[op].bitfield.disp32 = 1;
7477 i.types[op].bitfield.disp32s = 0;
7478 }
7479 else
7480 {
7481 i.types[op].bitfield.disp32 = 0;
7482 i.types[op].bitfield.disp32s = 1;
7483 }
7484 }
7485 i.sib.index = i.index_reg->reg_num;
7486 if ((i.index_reg->reg_flags & RegRex) != 0)
7487 i.rex |= REX_X;
7488 if ((i.index_reg->reg_flags & RegVRex) != 0)
7489 i.vrex |= REX_X;
7490 }
7491
7492 default_seg = &ds;
7493
7494 if (i.base_reg == 0)
7495 {
7496 i.rm.mode = 0;
7497 if (!i.disp_operands)
7498 fake_zero_displacement = 1;
7499 if (i.index_reg == 0)
7500 {
7501 i386_operand_type newdisp;
7502
7503 gas_assert (!i.tm.opcode_modifier.vecsib);
7504 /* Operand is just <disp> */
7505 if (flag_code == CODE_64BIT)
7506 {
7507 /* 64bit mode overwrites the 32bit absolute
7508 addressing by RIP relative addressing and
7509 absolute addressing is encoded by one of the
7510 redundant SIB forms. */
7511 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7512 i.sib.base = NO_BASE_REGISTER;
7513 i.sib.index = NO_INDEX_REGISTER;
7514 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7515 }
7516 else if ((flag_code == CODE_16BIT)
7517 ^ (i.prefix[ADDR_PREFIX] != 0))
7518 {
7519 i.rm.regmem = NO_BASE_REGISTER_16;
7520 newdisp = disp16;
7521 }
7522 else
7523 {
7524 i.rm.regmem = NO_BASE_REGISTER;
7525 newdisp = disp32;
7526 }
7527 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7528 i.types[op] = operand_type_or (i.types[op], newdisp);
7529 }
7530 else if (!i.tm.opcode_modifier.vecsib)
7531 {
7532 /* !i.base_reg && i.index_reg */
7533 if (i.index_reg->reg_num == RegIZ)
7534 i.sib.index = NO_INDEX_REGISTER;
7535 else
7536 i.sib.index = i.index_reg->reg_num;
7537 i.sib.base = NO_BASE_REGISTER;
7538 i.sib.scale = i.log2_scale_factor;
7539 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7540 i.types[op].bitfield.disp8 = 0;
7541 i.types[op].bitfield.disp16 = 0;
7542 i.types[op].bitfield.disp64 = 0;
7543 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7544 {
7545 /* Must be 32 bit */
7546 i.types[op].bitfield.disp32 = 1;
7547 i.types[op].bitfield.disp32s = 0;
7548 }
7549 else
7550 {
7551 i.types[op].bitfield.disp32 = 0;
7552 i.types[op].bitfield.disp32s = 1;
7553 }
7554 if ((i.index_reg->reg_flags & RegRex) != 0)
7555 i.rex |= REX_X;
7556 }
7557 }
7558 /* RIP addressing for 64bit mode. */
7559 else if (i.base_reg->reg_num == RegIP)
7560 {
7561 gas_assert (!i.tm.opcode_modifier.vecsib);
7562 i.rm.regmem = NO_BASE_REGISTER;
7563 i.types[op].bitfield.disp8 = 0;
7564 i.types[op].bitfield.disp16 = 0;
7565 i.types[op].bitfield.disp32 = 0;
7566 i.types[op].bitfield.disp32s = 1;
7567 i.types[op].bitfield.disp64 = 0;
7568 i.flags[op] |= Operand_PCrel;
7569 if (! i.disp_operands)
7570 fake_zero_displacement = 1;
7571 }
7572 else if (i.base_reg->reg_type.bitfield.word)
7573 {
7574 gas_assert (!i.tm.opcode_modifier.vecsib);
7575 switch (i.base_reg->reg_num)
7576 {
7577 case 3: /* (%bx) */
7578 if (i.index_reg == 0)
7579 i.rm.regmem = 7;
7580 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7581 i.rm.regmem = i.index_reg->reg_num - 6;
7582 break;
7583 case 5: /* (%bp) */
7584 default_seg = &ss;
7585 if (i.index_reg == 0)
7586 {
7587 i.rm.regmem = 6;
7588 if (operand_type_check (i.types[op], disp) == 0)
7589 {
7590 /* fake (%bp) into 0(%bp) */
7591 i.types[op].bitfield.disp8 = 1;
7592 fake_zero_displacement = 1;
7593 }
7594 }
7595 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7596 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7597 break;
7598 default: /* (%si) -> 4 or (%di) -> 5 */
7599 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7600 }
7601 i.rm.mode = mode_from_disp_size (i.types[op]);
7602 }
7603 else /* i.base_reg and 32/64 bit mode */
7604 {
7605 if (flag_code == CODE_64BIT
7606 && operand_type_check (i.types[op], disp))
7607 {
7608 i.types[op].bitfield.disp16 = 0;
7609 i.types[op].bitfield.disp64 = 0;
7610 if (i.prefix[ADDR_PREFIX] == 0)
7611 {
7612 i.types[op].bitfield.disp32 = 0;
7613 i.types[op].bitfield.disp32s = 1;
7614 }
7615 else
7616 {
7617 i.types[op].bitfield.disp32 = 1;
7618 i.types[op].bitfield.disp32s = 0;
7619 }
7620 }
7621
7622 if (!i.tm.opcode_modifier.vecsib)
7623 i.rm.regmem = i.base_reg->reg_num;
7624 if ((i.base_reg->reg_flags & RegRex) != 0)
7625 i.rex |= REX_B;
7626 i.sib.base = i.base_reg->reg_num;
7627 /* x86-64 ignores REX prefix bit here to avoid decoder
7628 complications. */
7629 if (!(i.base_reg->reg_flags & RegRex)
7630 && (i.base_reg->reg_num == EBP_REG_NUM
7631 || i.base_reg->reg_num == ESP_REG_NUM))
7632 default_seg = &ss;
7633 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7634 {
7635 fake_zero_displacement = 1;
7636 i.types[op].bitfield.disp8 = 1;
7637 }
7638 i.sib.scale = i.log2_scale_factor;
7639 if (i.index_reg == 0)
7640 {
7641 gas_assert (!i.tm.opcode_modifier.vecsib);
7642 /* <disp>(%esp) becomes two byte modrm with no index
7643 register. We've already stored the code for esp
7644 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7645 Any base register besides %esp will not use the
7646 extra modrm byte. */
7647 i.sib.index = NO_INDEX_REGISTER;
7648 }
7649 else if (!i.tm.opcode_modifier.vecsib)
7650 {
7651 if (i.index_reg->reg_num == RegIZ)
7652 i.sib.index = NO_INDEX_REGISTER;
7653 else
7654 i.sib.index = i.index_reg->reg_num;
7655 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7656 if ((i.index_reg->reg_flags & RegRex) != 0)
7657 i.rex |= REX_X;
7658 }
7659
7660 if (i.disp_operands
7661 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7662 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7663 i.rm.mode = 0;
7664 else
7665 {
7666 if (!fake_zero_displacement
7667 && !i.disp_operands
7668 && i.disp_encoding)
7669 {
7670 fake_zero_displacement = 1;
7671 if (i.disp_encoding == disp_encoding_8bit)
7672 i.types[op].bitfield.disp8 = 1;
7673 else
7674 i.types[op].bitfield.disp32 = 1;
7675 }
7676 i.rm.mode = mode_from_disp_size (i.types[op]);
7677 }
7678 }
7679
7680 if (fake_zero_displacement)
7681 {
7682 /* Fakes a zero displacement assuming that i.types[op]
7683 holds the correct displacement size. */
7684 expressionS *exp;
7685
7686 gas_assert (i.op[op].disps == 0);
7687 exp = &disp_expressions[i.disp_operands++];
7688 i.op[op].disps = exp;
7689 exp->X_op = O_constant;
7690 exp->X_add_number = 0;
7691 exp->X_add_symbol = (symbolS *) 0;
7692 exp->X_op_symbol = (symbolS *) 0;
7693 }
7694
7695 mem = op;
7696 }
7697 else
7698 mem = ~0;
7699
7700 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7701 {
7702 if (operand_type_check (i.types[0], imm))
7703 i.vex.register_specifier = NULL;
7704 else
7705 {
7706 /* VEX.vvvv encodes one of the sources when the first
7707 operand is not an immediate. */
7708 if (i.tm.opcode_modifier.vexw == VEXW0)
7709 i.vex.register_specifier = i.op[0].regs;
7710 else
7711 i.vex.register_specifier = i.op[1].regs;
7712 }
7713
7714 /* Destination is a XMM register encoded in the ModRM.reg
7715 and VEX.R bit. */
7716 i.rm.reg = i.op[2].regs->reg_num;
7717 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7718 i.rex |= REX_R;
7719
7720 /* ModRM.rm and VEX.B encodes the other source. */
7721 if (!i.mem_operands)
7722 {
7723 i.rm.mode = 3;
7724
7725 if (i.tm.opcode_modifier.vexw == VEXW0)
7726 i.rm.regmem = i.op[1].regs->reg_num;
7727 else
7728 i.rm.regmem = i.op[0].regs->reg_num;
7729
7730 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7731 i.rex |= REX_B;
7732 }
7733 }
7734 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7735 {
7736 i.vex.register_specifier = i.op[2].regs;
7737 if (!i.mem_operands)
7738 {
7739 i.rm.mode = 3;
7740 i.rm.regmem = i.op[1].regs->reg_num;
7741 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7742 i.rex |= REX_B;
7743 }
7744 }
7745 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7746 (if any) based on i.tm.extension_opcode. Again, we must be
7747 careful to make sure that segment/control/debug/test/MMX
7748 registers are coded into the i.rm.reg field. */
7749 else if (i.reg_operands)
7750 {
7751 unsigned int op;
7752 unsigned int vex_reg = ~0;
7753
7754 for (op = 0; op < i.operands; op++)
7755 {
7756 if (i.types[op].bitfield.class == Reg
7757 || i.types[op].bitfield.class == RegBND
7758 || i.types[op].bitfield.class == RegMask
7759 || i.types[op].bitfield.class == SReg
7760 || i.types[op].bitfield.class == RegCR
7761 || i.types[op].bitfield.class == RegDR
7762 || i.types[op].bitfield.class == RegTR)
7763 break;
7764 if (i.types[op].bitfield.class == RegSIMD)
7765 {
7766 if (i.types[op].bitfield.zmmword)
7767 i.has_regzmm = TRUE;
7768 else if (i.types[op].bitfield.ymmword)
7769 i.has_regymm = TRUE;
7770 else
7771 i.has_regxmm = TRUE;
7772 break;
7773 }
7774 if (i.types[op].bitfield.class == RegMMX)
7775 {
7776 i.has_regmmx = TRUE;
7777 break;
7778 }
7779 }
7780
7781 if (vex_3_sources)
7782 op = dest;
7783 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7784 {
7785 /* For instructions with VexNDS, the register-only
7786 source operand is encoded in VEX prefix. */
7787 gas_assert (mem != (unsigned int) ~0);
7788
7789 if (op > mem)
7790 {
7791 vex_reg = op++;
7792 gas_assert (op < i.operands);
7793 }
7794 else
7795 {
7796 /* Check register-only source operand when two source
7797 operands are swapped. */
7798 if (!i.tm.operand_types[op].bitfield.baseindex
7799 && i.tm.operand_types[op + 1].bitfield.baseindex)
7800 {
7801 vex_reg = op;
7802 op += 2;
7803 gas_assert (mem == (vex_reg + 1)
7804 && op < i.operands);
7805 }
7806 else
7807 {
7808 vex_reg = op + 1;
7809 gas_assert (vex_reg < i.operands);
7810 }
7811 }
7812 }
7813 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7814 {
7815 /* For instructions with VexNDD, the register destination
7816 is encoded in VEX prefix. */
7817 if (i.mem_operands == 0)
7818 {
7819 /* There is no memory operand. */
7820 gas_assert ((op + 2) == i.operands);
7821 vex_reg = op + 1;
7822 }
7823 else
7824 {
7825 /* There are only 2 non-immediate operands. */
7826 gas_assert (op < i.imm_operands + 2
7827 && i.operands == i.imm_operands + 2);
7828 vex_reg = i.imm_operands + 1;
7829 }
7830 }
7831 else
7832 gas_assert (op < i.operands);
7833
7834 if (vex_reg != (unsigned int) ~0)
7835 {
7836 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7837
7838 if ((type->bitfield.class != Reg
7839 || (!type->bitfield.dword && !type->bitfield.qword))
7840 && type->bitfield.class != RegSIMD
7841 && !operand_type_equal (type, &regmask))
7842 abort ();
7843
7844 i.vex.register_specifier = i.op[vex_reg].regs;
7845 }
7846
7847 /* Don't set OP operand twice. */
7848 if (vex_reg != op)
7849 {
7850 /* If there is an extension opcode to put here, the
7851 register number must be put into the regmem field. */
7852 if (i.tm.extension_opcode != None)
7853 {
7854 i.rm.regmem = i.op[op].regs->reg_num;
7855 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7856 i.rex |= REX_B;
7857 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7858 i.vrex |= REX_B;
7859 }
7860 else
7861 {
7862 i.rm.reg = i.op[op].regs->reg_num;
7863 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7864 i.rex |= REX_R;
7865 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7866 i.vrex |= REX_R;
7867 }
7868 }
7869
7870 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7871 must set it to 3 to indicate this is a register operand
7872 in the regmem field. */
7873 if (!i.mem_operands)
7874 i.rm.mode = 3;
7875 }
7876
7877 /* Fill in i.rm.reg field with extension opcode (if any). */
7878 if (i.tm.extension_opcode != None)
7879 i.rm.reg = i.tm.extension_opcode;
7880 }
7881 return default_seg;
7882 }
7883
7884 static unsigned int
7885 flip_code16 (unsigned int code16)
7886 {
7887 gas_assert (i.tm.operands == 1);
7888
7889 return !(i.prefix[REX_PREFIX] & REX_W)
7890 && (code16 ? i.tm.operand_types[0].bitfield.disp32
7891 || i.tm.operand_types[0].bitfield.disp32s
7892 : i.tm.operand_types[0].bitfield.disp16)
7893 ? CODE16 : 0;
7894 }
7895
7896 static void
7897 output_branch (void)
7898 {
7899 char *p;
7900 int size;
7901 int code16;
7902 int prefix;
7903 relax_substateT subtype;
7904 symbolS *sym;
7905 offsetT off;
7906
7907 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7908 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7909
7910 prefix = 0;
7911 if (i.prefix[DATA_PREFIX] != 0)
7912 {
7913 prefix = 1;
7914 i.prefixes -= 1;
7915 code16 ^= flip_code16(code16);
7916 }
7917 /* Pentium4 branch hints. */
7918 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7919 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7920 {
7921 prefix++;
7922 i.prefixes--;
7923 }
7924 if (i.prefix[REX_PREFIX] != 0)
7925 {
7926 prefix++;
7927 i.prefixes--;
7928 }
7929
7930 /* BND prefixed jump. */
7931 if (i.prefix[BND_PREFIX] != 0)
7932 {
7933 prefix++;
7934 i.prefixes--;
7935 }
7936
7937 if (i.prefixes != 0)
7938 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
7939
7940 /* It's always a symbol; End frag & setup for relax.
7941 Make sure there is enough room in this frag for the largest
7942 instruction we may generate in md_convert_frag. This is 2
7943 bytes for the opcode and room for the prefix and largest
7944 displacement. */
7945 frag_grow (prefix + 2 + 4);
7946 /* Prefix and 1 opcode byte go in fr_fix. */
7947 p = frag_more (prefix + 1);
7948 if (i.prefix[DATA_PREFIX] != 0)
7949 *p++ = DATA_PREFIX_OPCODE;
7950 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7951 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7952 *p++ = i.prefix[SEG_PREFIX];
7953 if (i.prefix[BND_PREFIX] != 0)
7954 *p++ = BND_PREFIX_OPCODE;
7955 if (i.prefix[REX_PREFIX] != 0)
7956 *p++ = i.prefix[REX_PREFIX];
7957 *p = i.tm.base_opcode;
7958
7959 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7960 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7961 else if (cpu_arch_flags.bitfield.cpui386)
7962 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7963 else
7964 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7965 subtype |= code16;
7966
7967 sym = i.op[0].disps->X_add_symbol;
7968 off = i.op[0].disps->X_add_number;
7969
7970 if (i.op[0].disps->X_op != O_constant
7971 && i.op[0].disps->X_op != O_symbol)
7972 {
7973 /* Handle complex expressions. */
7974 sym = make_expr_symbol (i.op[0].disps);
7975 off = 0;
7976 }
7977
7978 /* 1 possible extra opcode + 4 byte displacement go in var part.
7979 Pass reloc in fr_var. */
7980 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7981 }
7982
7983 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7984 /* Return TRUE iff PLT32 relocation should be used for branching to
7985 symbol S. */
7986
7987 static bfd_boolean
7988 need_plt32_p (symbolS *s)
7989 {
7990 /* PLT32 relocation is ELF only. */
7991 if (!IS_ELF)
7992 return FALSE;
7993
7994 #ifdef TE_SOLARIS
7995 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7996 krtld support it. */
7997 return FALSE;
7998 #endif
7999
8000 /* Since there is no need to prepare for PLT branch on x86-64, we
8001 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
8002 be used as a marker for 32-bit PC-relative branches. */
8003 if (!object_64bit)
8004 return FALSE;
8005
8006 /* Weak or undefined symbol need PLT32 relocation. */
8007 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
8008 return TRUE;
8009
8010 /* Non-global symbol doesn't need PLT32 relocation. */
8011 if (! S_IS_EXTERNAL (s))
8012 return FALSE;
8013
8014 /* Other global symbols need PLT32 relocation. NB: Symbol with
8015 non-default visibilities are treated as normal global symbol
8016 so that PLT32 relocation can be used as a marker for 32-bit
8017 PC-relative branches. It is useful for linker relaxation. */
8018 return TRUE;
8019 }
8020 #endif
8021
8022 static void
8023 output_jump (void)
8024 {
8025 char *p;
8026 int size;
8027 fixS *fixP;
8028 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
8029
8030 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
8031 {
8032 /* This is a loop or jecxz type instruction. */
8033 size = 1;
8034 if (i.prefix[ADDR_PREFIX] != 0)
8035 {
8036 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
8037 i.prefixes -= 1;
8038 }
8039 /* Pentium4 branch hints. */
8040 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8041 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8042 {
8043 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
8044 i.prefixes--;
8045 }
8046 }
8047 else
8048 {
8049 int code16;
8050
8051 code16 = 0;
8052 if (flag_code == CODE_16BIT)
8053 code16 = CODE16;
8054
8055 if (i.prefix[DATA_PREFIX] != 0)
8056 {
8057 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8058 i.prefixes -= 1;
8059 code16 ^= flip_code16(code16);
8060 }
8061
8062 size = 4;
8063 if (code16)
8064 size = 2;
8065 }
8066
8067 /* BND prefixed jump. */
8068 if (i.prefix[BND_PREFIX] != 0)
8069 {
8070 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
8071 i.prefixes -= 1;
8072 }
8073
8074 if (i.prefix[REX_PREFIX] != 0)
8075 {
8076 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
8077 i.prefixes -= 1;
8078 }
8079
8080 if (i.prefixes != 0)
8081 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8082
8083 p = frag_more (i.tm.opcode_length + size);
8084 switch (i.tm.opcode_length)
8085 {
8086 case 2:
8087 *p++ = i.tm.base_opcode >> 8;
8088 /* Fall through. */
8089 case 1:
8090 *p++ = i.tm.base_opcode;
8091 break;
8092 default:
8093 abort ();
8094 }
8095
8096 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8097 if (size == 4
8098 && jump_reloc == NO_RELOC
8099 && need_plt32_p (i.op[0].disps->X_add_symbol))
8100 jump_reloc = BFD_RELOC_X86_64_PLT32;
8101 #endif
8102
8103 jump_reloc = reloc (size, 1, 1, jump_reloc);
8104
8105 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8106 i.op[0].disps, 1, jump_reloc);
8107
8108 /* All jumps handled here are signed, but don't use a signed limit
8109 check for 32 and 16 bit jumps as we want to allow wrap around at
8110 4G and 64k respectively. */
8111 if (size == 1)
8112 fixP->fx_signed = 1;
8113 }
8114
8115 static void
8116 output_interseg_jump (void)
8117 {
8118 char *p;
8119 int size;
8120 int prefix;
8121 int code16;
8122
8123 code16 = 0;
8124 if (flag_code == CODE_16BIT)
8125 code16 = CODE16;
8126
8127 prefix = 0;
8128 if (i.prefix[DATA_PREFIX] != 0)
8129 {
8130 prefix = 1;
8131 i.prefixes -= 1;
8132 code16 ^= CODE16;
8133 }
8134
8135 gas_assert (!i.prefix[REX_PREFIX]);
8136
8137 size = 4;
8138 if (code16)
8139 size = 2;
8140
8141 if (i.prefixes != 0)
8142 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8143
8144 /* 1 opcode; 2 segment; offset */
8145 p = frag_more (prefix + 1 + 2 + size);
8146
8147 if (i.prefix[DATA_PREFIX] != 0)
8148 *p++ = DATA_PREFIX_OPCODE;
8149
8150 if (i.prefix[REX_PREFIX] != 0)
8151 *p++ = i.prefix[REX_PREFIX];
8152
8153 *p++ = i.tm.base_opcode;
8154 if (i.op[1].imms->X_op == O_constant)
8155 {
8156 offsetT n = i.op[1].imms->X_add_number;
8157
8158 if (size == 2
8159 && !fits_in_unsigned_word (n)
8160 && !fits_in_signed_word (n))
8161 {
8162 as_bad (_("16-bit jump out of range"));
8163 return;
8164 }
8165 md_number_to_chars (p, n, size);
8166 }
8167 else
8168 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8169 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8170 if (i.op[0].imms->X_op != O_constant)
8171 as_bad (_("can't handle non absolute segment in `%s'"),
8172 i.tm.name);
8173 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8174 }
8175
8176 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8177 void
8178 x86_cleanup (void)
8179 {
8180 char *p;
8181 asection *seg = now_seg;
8182 subsegT subseg = now_subseg;
8183 asection *sec;
8184 unsigned int alignment, align_size_1;
8185 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8186 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8187 unsigned int padding;
8188
8189 if (!IS_ELF || !x86_used_note)
8190 return;
8191
8192 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8193
8194 /* The .note.gnu.property section layout:
8195
8196 Field Length Contents
8197 ---- ---- ----
8198 n_namsz 4 4
8199 n_descsz 4 The note descriptor size
8200 n_type 4 NT_GNU_PROPERTY_TYPE_0
8201 n_name 4 "GNU"
8202 n_desc n_descsz The program property array
8203 .... .... ....
8204 */
8205
8206 /* Create the .note.gnu.property section. */
8207 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8208 bfd_set_section_flags (sec,
8209 (SEC_ALLOC
8210 | SEC_LOAD
8211 | SEC_DATA
8212 | SEC_HAS_CONTENTS
8213 | SEC_READONLY));
8214
8215 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8216 {
8217 align_size_1 = 7;
8218 alignment = 3;
8219 }
8220 else
8221 {
8222 align_size_1 = 3;
8223 alignment = 2;
8224 }
8225
8226 bfd_set_section_alignment (sec, alignment);
8227 elf_section_type (sec) = SHT_NOTE;
8228
8229 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8230 + 4-byte data */
8231 isa_1_descsz_raw = 4 + 4 + 4;
8232 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8233 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8234
8235 feature_2_descsz_raw = isa_1_descsz;
8236 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8237 + 4-byte data */
8238 feature_2_descsz_raw += 4 + 4 + 4;
8239 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8240 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8241 & ~align_size_1);
8242
8243 descsz = feature_2_descsz;
8244 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8245 p = frag_more (4 + 4 + 4 + 4 + descsz);
8246
8247 /* Write n_namsz. */
8248 md_number_to_chars (p, (valueT) 4, 4);
8249
8250 /* Write n_descsz. */
8251 md_number_to_chars (p + 4, (valueT) descsz, 4);
8252
8253 /* Write n_type. */
8254 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8255
8256 /* Write n_name. */
8257 memcpy (p + 4 * 3, "GNU", 4);
8258
8259 /* Write 4-byte type. */
8260 md_number_to_chars (p + 4 * 4,
8261 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8262
8263 /* Write 4-byte data size. */
8264 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8265
8266 /* Write 4-byte data. */
8267 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8268
8269 /* Zero out paddings. */
8270 padding = isa_1_descsz - isa_1_descsz_raw;
8271 if (padding)
8272 memset (p + 4 * 7, 0, padding);
8273
8274 /* Write 4-byte type. */
8275 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8276 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8277
8278 /* Write 4-byte data size. */
8279 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8280
8281 /* Write 4-byte data. */
8282 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8283 (valueT) x86_feature_2_used, 4);
8284
8285 /* Zero out paddings. */
8286 padding = feature_2_descsz - feature_2_descsz_raw;
8287 if (padding)
8288 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8289
8290 /* We probably can't restore the current segment, for there likely
8291 isn't one yet... */
8292 if (seg && subseg)
8293 subseg_set (seg, subseg);
8294 }
8295 #endif
8296
8297 static unsigned int
8298 encoding_length (const fragS *start_frag, offsetT start_off,
8299 const char *frag_now_ptr)
8300 {
8301 unsigned int len = 0;
8302
8303 if (start_frag != frag_now)
8304 {
8305 const fragS *fr = start_frag;
8306
8307 do {
8308 len += fr->fr_fix;
8309 fr = fr->fr_next;
8310 } while (fr && fr != frag_now);
8311 }
8312
8313 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8314 }
8315
8316 /* Return 1 for test, and, cmp, add, sub, inc and dec which may
8317 be macro-fused with conditional jumps. */
8318
8319 static int
8320 maybe_fused_with_jcc_p (void)
8321 {
8322 /* No RIP address. */
8323 if (i.base_reg && i.base_reg->reg_num == RegIP)
8324 return 0;
8325
8326 /* No VEX/EVEX encoding. */
8327 if (is_any_vex_encoding (&i.tm))
8328 return 0;
8329
8330 /* and, add, sub with destination register. */
8331 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8332 || i.tm.base_opcode <= 5
8333 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8334 || ((i.tm.base_opcode | 3) == 0x83
8335 && ((i.tm.extension_opcode | 1) == 0x5
8336 || i.tm.extension_opcode == 0x0)))
8337 return (i.types[1].bitfield.class == Reg
8338 || i.types[1].bitfield.instance == Accum);
8339
8340 /* test, cmp with any register. */
8341 if ((i.tm.base_opcode | 1) == 0x85
8342 || (i.tm.base_opcode | 1) == 0xa9
8343 || ((i.tm.base_opcode | 1) == 0xf7
8344 && i.tm.extension_opcode == 0)
8345 || (i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
8346 || ((i.tm.base_opcode | 3) == 0x83
8347 && (i.tm.extension_opcode == 0x7)))
8348 return (i.types[0].bitfield.class == Reg
8349 || i.types[0].bitfield.instance == Accum
8350 || i.types[1].bitfield.class == Reg
8351 || i.types[1].bitfield.instance == Accum);
8352
8353 /* inc, dec with any register. */
8354 if ((i.tm.cpu_flags.bitfield.cpuno64
8355 && (i.tm.base_opcode | 0xf) == 0x4f)
8356 || ((i.tm.base_opcode | 1) == 0xff
8357 && i.tm.extension_opcode <= 0x1))
8358 return (i.types[0].bitfield.class == Reg
8359 || i.types[0].bitfield.instance == Accum);
8360
8361 return 0;
8362 }
8363
8364 /* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8365
8366 static int
8367 add_fused_jcc_padding_frag_p (void)
8368 {
8369 /* NB: Don't work with COND_JUMP86 without i386. */
8370 if (!align_branch_power
8371 || now_seg == absolute_section
8372 || !cpu_arch_flags.bitfield.cpui386
8373 || !(align_branch & align_branch_fused_bit))
8374 return 0;
8375
8376 if (maybe_fused_with_jcc_p ())
8377 {
8378 if (last_insn.kind == last_insn_other
8379 || last_insn.seg != now_seg)
8380 return 1;
8381 if (flag_debug)
8382 as_warn_where (last_insn.file, last_insn.line,
8383 _("`%s` skips -malign-branch-boundary on `%s`"),
8384 last_insn.name, i.tm.name);
8385 }
8386
8387 return 0;
8388 }
8389
8390 /* Return 1 if a BRANCH_PREFIX frag should be generated. */
8391
8392 static int
8393 add_branch_prefix_frag_p (void)
8394 {
8395 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8396 to PadLock instructions since they include prefixes in opcode. */
8397 if (!align_branch_power
8398 || !align_branch_prefix_size
8399 || now_seg == absolute_section
8400 || i.tm.cpu_flags.bitfield.cpupadlock
8401 || !cpu_arch_flags.bitfield.cpui386)
8402 return 0;
8403
8404 /* Don't add prefix if it is a prefix or there is no operand in case
8405 that segment prefix is special. */
8406 if (!i.operands || i.tm.opcode_modifier.isprefix)
8407 return 0;
8408
8409 if (last_insn.kind == last_insn_other
8410 || last_insn.seg != now_seg)
8411 return 1;
8412
8413 if (flag_debug)
8414 as_warn_where (last_insn.file, last_insn.line,
8415 _("`%s` skips -malign-branch-boundary on `%s`"),
8416 last_insn.name, i.tm.name);
8417
8418 return 0;
8419 }
8420
8421 /* Return 1 if a BRANCH_PADDING frag should be generated. */
8422
8423 static int
8424 add_branch_padding_frag_p (enum align_branch_kind *branch_p)
8425 {
8426 int add_padding;
8427
8428 /* NB: Don't work with COND_JUMP86 without i386. */
8429 if (!align_branch_power
8430 || now_seg == absolute_section
8431 || !cpu_arch_flags.bitfield.cpui386)
8432 return 0;
8433
8434 add_padding = 0;
8435
8436 /* Check for jcc and direct jmp. */
8437 if (i.tm.opcode_modifier.jump == JUMP)
8438 {
8439 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8440 {
8441 *branch_p = align_branch_jmp;
8442 add_padding = align_branch & align_branch_jmp_bit;
8443 }
8444 else
8445 {
8446 *branch_p = align_branch_jcc;
8447 if ((align_branch & align_branch_jcc_bit))
8448 add_padding = 1;
8449 }
8450 }
8451 else if (is_any_vex_encoding (&i.tm))
8452 return 0;
8453 else if ((i.tm.base_opcode | 1) == 0xc3)
8454 {
8455 /* Near ret. */
8456 *branch_p = align_branch_ret;
8457 if ((align_branch & align_branch_ret_bit))
8458 add_padding = 1;
8459 }
8460 else
8461 {
8462 /* Check for indirect jmp, direct and indirect calls. */
8463 if (i.tm.base_opcode == 0xe8)
8464 {
8465 /* Direct call. */
8466 *branch_p = align_branch_call;
8467 if ((align_branch & align_branch_call_bit))
8468 add_padding = 1;
8469 }
8470 else if (i.tm.base_opcode == 0xff
8471 && (i.tm.extension_opcode == 2
8472 || i.tm.extension_opcode == 4))
8473 {
8474 /* Indirect call and jmp. */
8475 *branch_p = align_branch_indirect;
8476 if ((align_branch & align_branch_indirect_bit))
8477 add_padding = 1;
8478 }
8479
8480 if (add_padding
8481 && i.disp_operands
8482 && tls_get_addr
8483 && (i.op[0].disps->X_op == O_symbol
8484 || (i.op[0].disps->X_op == O_subtract
8485 && i.op[0].disps->X_op_symbol == GOT_symbol)))
8486 {
8487 symbolS *s = i.op[0].disps->X_add_symbol;
8488 /* No padding to call to global or undefined tls_get_addr. */
8489 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
8490 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
8491 return 0;
8492 }
8493 }
8494
8495 if (add_padding
8496 && last_insn.kind != last_insn_other
8497 && last_insn.seg == now_seg)
8498 {
8499 if (flag_debug)
8500 as_warn_where (last_insn.file, last_insn.line,
8501 _("`%s` skips -malign-branch-boundary on `%s`"),
8502 last_insn.name, i.tm.name);
8503 return 0;
8504 }
8505
8506 return add_padding;
8507 }
8508
8509 static void
8510 output_insn (void)
8511 {
8512 fragS *insn_start_frag;
8513 offsetT insn_start_off;
8514 fragS *fragP = NULL;
8515 enum align_branch_kind branch = align_branch_none;
8516
8517 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8518 if (IS_ELF && x86_used_note)
8519 {
8520 if (i.tm.cpu_flags.bitfield.cpucmov)
8521 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8522 if (i.tm.cpu_flags.bitfield.cpusse)
8523 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8524 if (i.tm.cpu_flags.bitfield.cpusse2)
8525 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8526 if (i.tm.cpu_flags.bitfield.cpusse3)
8527 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8528 if (i.tm.cpu_flags.bitfield.cpussse3)
8529 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8530 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8531 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8532 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8533 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8534 if (i.tm.cpu_flags.bitfield.cpuavx)
8535 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8536 if (i.tm.cpu_flags.bitfield.cpuavx2)
8537 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8538 if (i.tm.cpu_flags.bitfield.cpufma)
8539 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8540 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8541 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8542 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8543 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8544 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8545 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8546 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8547 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8548 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8549 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8550 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8551 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8552 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8553 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8554 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8555 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8556 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8557 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8558 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8559 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8560 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8561 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8562 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8563 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8564 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8565 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8566 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8567 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8568 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8569 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8570
8571 if (i.tm.cpu_flags.bitfield.cpu8087
8572 || i.tm.cpu_flags.bitfield.cpu287
8573 || i.tm.cpu_flags.bitfield.cpu387
8574 || i.tm.cpu_flags.bitfield.cpu687
8575 || i.tm.cpu_flags.bitfield.cpufisttp)
8576 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8577 if (i.has_regmmx
8578 || i.tm.base_opcode == 0xf77 /* emms */
8579 || i.tm.base_opcode == 0xf0e /* femms */)
8580 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8581 if (i.has_regxmm)
8582 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8583 if (i.has_regymm)
8584 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8585 if (i.has_regzmm)
8586 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8587 if (i.tm.cpu_flags.bitfield.cpufxsr)
8588 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8589 if (i.tm.cpu_flags.bitfield.cpuxsave)
8590 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8591 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8592 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8593 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8594 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8595 }
8596 #endif
8597
8598 /* Tie dwarf2 debug info to the address at the start of the insn.
8599 We can't do this after the insn has been output as the current
8600 frag may have been closed off. eg. by frag_var. */
8601 dwarf2_emit_insn (0);
8602
8603 insn_start_frag = frag_now;
8604 insn_start_off = frag_now_fix ();
8605
8606 if (add_branch_padding_frag_p (&branch))
8607 {
8608 char *p;
8609 /* Branch can be 8 bytes. Leave some room for prefixes. */
8610 unsigned int max_branch_padding_size = 14;
8611
8612 /* Align section to boundary. */
8613 record_alignment (now_seg, align_branch_power);
8614
8615 /* Make room for padding. */
8616 frag_grow (max_branch_padding_size);
8617
8618 /* Start of the padding. */
8619 p = frag_more (0);
8620
8621 fragP = frag_now;
8622
8623 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
8624 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
8625 NULL, 0, p);
8626
8627 fragP->tc_frag_data.branch_type = branch;
8628 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
8629 }
8630
8631 /* Output jumps. */
8632 if (i.tm.opcode_modifier.jump == JUMP)
8633 output_branch ();
8634 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8635 || i.tm.opcode_modifier.jump == JUMP_DWORD)
8636 output_jump ();
8637 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
8638 output_interseg_jump ();
8639 else
8640 {
8641 /* Output normal instructions here. */
8642 char *p;
8643 unsigned char *q;
8644 unsigned int j;
8645 unsigned int prefix;
8646
8647 if (avoid_fence
8648 && (i.tm.base_opcode == 0xfaee8
8649 || i.tm.base_opcode == 0xfaef0
8650 || i.tm.base_opcode == 0xfaef8))
8651 {
8652 /* Encode lfence, mfence, and sfence as
8653 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8654 offsetT val = 0x240483f0ULL;
8655 p = frag_more (5);
8656 md_number_to_chars (p, val, 5);
8657 return;
8658 }
8659
8660 /* Some processors fail on LOCK prefix. This options makes
8661 assembler ignore LOCK prefix and serves as a workaround. */
8662 if (omit_lock_prefix)
8663 {
8664 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8665 return;
8666 i.prefix[LOCK_PREFIX] = 0;
8667 }
8668
8669 if (branch)
8670 /* Skip if this is a branch. */
8671 ;
8672 else if (add_fused_jcc_padding_frag_p ())
8673 {
8674 /* Make room for padding. */
8675 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
8676 p = frag_more (0);
8677
8678 fragP = frag_now;
8679
8680 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
8681 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
8682 NULL, 0, p);
8683
8684 fragP->tc_frag_data.branch_type = align_branch_fused;
8685 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
8686 }
8687 else if (add_branch_prefix_frag_p ())
8688 {
8689 unsigned int max_prefix_size = align_branch_prefix_size;
8690
8691 /* Make room for padding. */
8692 frag_grow (max_prefix_size);
8693 p = frag_more (0);
8694
8695 fragP = frag_now;
8696
8697 frag_var (rs_machine_dependent, max_prefix_size, 0,
8698 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
8699 NULL, 0, p);
8700
8701 fragP->tc_frag_data.max_bytes = max_prefix_size;
8702 }
8703
8704 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8705 don't need the explicit prefix. */
8706 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8707 {
8708 switch (i.tm.opcode_length)
8709 {
8710 case 3:
8711 if (i.tm.base_opcode & 0xff000000)
8712 {
8713 prefix = (i.tm.base_opcode >> 24) & 0xff;
8714 if (!i.tm.cpu_flags.bitfield.cpupadlock
8715 || prefix != REPE_PREFIX_OPCODE
8716 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8717 add_prefix (prefix);
8718 }
8719 break;
8720 case 2:
8721 if ((i.tm.base_opcode & 0xff0000) != 0)
8722 {
8723 prefix = (i.tm.base_opcode >> 16) & 0xff;
8724 add_prefix (prefix);
8725 }
8726 break;
8727 case 1:
8728 break;
8729 case 0:
8730 /* Check for pseudo prefixes. */
8731 as_bad_where (insn_start_frag->fr_file,
8732 insn_start_frag->fr_line,
8733 _("pseudo prefix without instruction"));
8734 return;
8735 default:
8736 abort ();
8737 }
8738
8739 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8740 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8741 R_X86_64_GOTTPOFF relocation so that linker can safely
8742 perform IE->LE optimization. A dummy REX_OPCODE prefix
8743 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
8744 relocation for GDesc -> IE/LE optimization. */
8745 if (x86_elf_abi == X86_64_X32_ABI
8746 && i.operands == 2
8747 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8748 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
8749 && i.prefix[REX_PREFIX] == 0)
8750 add_prefix (REX_OPCODE);
8751 #endif
8752
8753 /* The prefix bytes. */
8754 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8755 if (*q)
8756 FRAG_APPEND_1_CHAR (*q);
8757 }
8758 else
8759 {
8760 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8761 if (*q)
8762 switch (j)
8763 {
8764 case REX_PREFIX:
8765 /* REX byte is encoded in VEX prefix. */
8766 break;
8767 case SEG_PREFIX:
8768 case ADDR_PREFIX:
8769 FRAG_APPEND_1_CHAR (*q);
8770 break;
8771 default:
8772 /* There should be no other prefixes for instructions
8773 with VEX prefix. */
8774 abort ();
8775 }
8776
8777 /* For EVEX instructions i.vrex should become 0 after
8778 build_evex_prefix. For VEX instructions upper 16 registers
8779 aren't available, so VREX should be 0. */
8780 if (i.vrex)
8781 abort ();
8782 /* Now the VEX prefix. */
8783 p = frag_more (i.vex.length);
8784 for (j = 0; j < i.vex.length; j++)
8785 p[j] = i.vex.bytes[j];
8786 }
8787
8788 /* Now the opcode; be careful about word order here! */
8789 if (i.tm.opcode_length == 1)
8790 {
8791 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8792 }
8793 else
8794 {
8795 switch (i.tm.opcode_length)
8796 {
8797 case 4:
8798 p = frag_more (4);
8799 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8800 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8801 break;
8802 case 3:
8803 p = frag_more (3);
8804 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8805 break;
8806 case 2:
8807 p = frag_more (2);
8808 break;
8809 default:
8810 abort ();
8811 break;
8812 }
8813
8814 /* Put out high byte first: can't use md_number_to_chars! */
8815 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8816 *p = i.tm.base_opcode & 0xff;
8817 }
8818
8819 /* Now the modrm byte and sib byte (if present). */
8820 if (i.tm.opcode_modifier.modrm)
8821 {
8822 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8823 | i.rm.reg << 3
8824 | i.rm.mode << 6));
8825 /* If i.rm.regmem == ESP (4)
8826 && i.rm.mode != (Register mode)
8827 && not 16 bit
8828 ==> need second modrm byte. */
8829 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8830 && i.rm.mode != 3
8831 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8832 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8833 | i.sib.index << 3
8834 | i.sib.scale << 6));
8835 }
8836
8837 if (i.disp_operands)
8838 output_disp (insn_start_frag, insn_start_off);
8839
8840 if (i.imm_operands)
8841 output_imm (insn_start_frag, insn_start_off);
8842
8843 /*
8844 * frag_now_fix () returning plain abs_section_offset when we're in the
8845 * absolute section, and abs_section_offset not getting updated as data
8846 * gets added to the frag breaks the logic below.
8847 */
8848 if (now_seg != absolute_section)
8849 {
8850 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8851 if (j > 15)
8852 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8853 j);
8854 else if (fragP)
8855 {
8856 /* NB: Don't add prefix with GOTPC relocation since
8857 output_disp() above depends on the fixed encoding
8858 length. Can't add prefix with TLS relocation since
8859 it breaks TLS linker optimization. */
8860 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
8861 /* Prefix count on the current instruction. */
8862 unsigned int count = i.vex.length;
8863 unsigned int k;
8864 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
8865 /* REX byte is encoded in VEX/EVEX prefix. */
8866 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
8867 count++;
8868
8869 /* Count prefixes for extended opcode maps. */
8870 if (!i.vex.length)
8871 switch (i.tm.opcode_length)
8872 {
8873 case 3:
8874 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
8875 {
8876 count++;
8877 switch ((i.tm.base_opcode >> 8) & 0xff)
8878 {
8879 case 0x38:
8880 case 0x3a:
8881 count++;
8882 break;
8883 default:
8884 break;
8885 }
8886 }
8887 break;
8888 case 2:
8889 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
8890 count++;
8891 break;
8892 case 1:
8893 break;
8894 default:
8895 abort ();
8896 }
8897
8898 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
8899 == BRANCH_PREFIX)
8900 {
8901 /* Set the maximum prefix size in BRANCH_PREFIX
8902 frag. */
8903 if (fragP->tc_frag_data.max_bytes > max)
8904 fragP->tc_frag_data.max_bytes = max;
8905 if (fragP->tc_frag_data.max_bytes > count)
8906 fragP->tc_frag_data.max_bytes -= count;
8907 else
8908 fragP->tc_frag_data.max_bytes = 0;
8909 }
8910 else
8911 {
8912 /* Remember the maximum prefix size in FUSED_JCC_PADDING
8913 frag. */
8914 unsigned int max_prefix_size;
8915 if (align_branch_prefix_size > max)
8916 max_prefix_size = max;
8917 else
8918 max_prefix_size = align_branch_prefix_size;
8919 if (max_prefix_size > count)
8920 fragP->tc_frag_data.max_prefix_length
8921 = max_prefix_size - count;
8922 }
8923
8924 /* Use existing segment prefix if possible. Use CS
8925 segment prefix in 64-bit mode. In 32-bit mode, use SS
8926 segment prefix with ESP/EBP base register and use DS
8927 segment prefix without ESP/EBP base register. */
8928 if (i.prefix[SEG_PREFIX])
8929 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
8930 else if (flag_code == CODE_64BIT)
8931 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
8932 else if (i.base_reg
8933 && (i.base_reg->reg_num == 4
8934 || i.base_reg->reg_num == 5))
8935 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
8936 else
8937 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
8938 }
8939 }
8940 }
8941
8942 /* NB: Don't work with COND_JUMP86 without i386. */
8943 if (align_branch_power
8944 && now_seg != absolute_section
8945 && cpu_arch_flags.bitfield.cpui386)
8946 {
8947 /* Terminate each frag so that we can add prefix and check for
8948 fused jcc. */
8949 frag_wane (frag_now);
8950 frag_new (0);
8951 }
8952
8953 #ifdef DEBUG386
8954 if (flag_debug)
8955 {
8956 pi ("" /*line*/, &i);
8957 }
8958 #endif /* DEBUG386 */
8959 }
8960
8961 /* Return the size of the displacement operand N. */
8962
8963 static int
8964 disp_size (unsigned int n)
8965 {
8966 int size = 4;
8967
8968 if (i.types[n].bitfield.disp64)
8969 size = 8;
8970 else if (i.types[n].bitfield.disp8)
8971 size = 1;
8972 else if (i.types[n].bitfield.disp16)
8973 size = 2;
8974 return size;
8975 }
8976
8977 /* Return the size of the immediate operand N. */
8978
8979 static int
8980 imm_size (unsigned int n)
8981 {
8982 int size = 4;
8983 if (i.types[n].bitfield.imm64)
8984 size = 8;
8985 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8986 size = 1;
8987 else if (i.types[n].bitfield.imm16)
8988 size = 2;
8989 return size;
8990 }
8991
8992 static void
8993 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8994 {
8995 char *p;
8996 unsigned int n;
8997
8998 for (n = 0; n < i.operands; n++)
8999 {
9000 if (operand_type_check (i.types[n], disp))
9001 {
9002 if (i.op[n].disps->X_op == O_constant)
9003 {
9004 int size = disp_size (n);
9005 offsetT val = i.op[n].disps->X_add_number;
9006
9007 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
9008 size);
9009 p = frag_more (size);
9010 md_number_to_chars (p, val, size);
9011 }
9012 else
9013 {
9014 enum bfd_reloc_code_real reloc_type;
9015 int size = disp_size (n);
9016 int sign = i.types[n].bitfield.disp32s;
9017 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
9018 fixS *fixP;
9019
9020 /* We can't have 8 bit displacement here. */
9021 gas_assert (!i.types[n].bitfield.disp8);
9022
9023 /* The PC relative address is computed relative
9024 to the instruction boundary, so in case immediate
9025 fields follows, we need to adjust the value. */
9026 if (pcrel && i.imm_operands)
9027 {
9028 unsigned int n1;
9029 int sz = 0;
9030
9031 for (n1 = 0; n1 < i.operands; n1++)
9032 if (operand_type_check (i.types[n1], imm))
9033 {
9034 /* Only one immediate is allowed for PC
9035 relative address. */
9036 gas_assert (sz == 0);
9037 sz = imm_size (n1);
9038 i.op[n].disps->X_add_number -= sz;
9039 }
9040 /* We should find the immediate. */
9041 gas_assert (sz != 0);
9042 }
9043
9044 p = frag_more (size);
9045 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
9046 if (GOT_symbol
9047 && GOT_symbol == i.op[n].disps->X_add_symbol
9048 && (((reloc_type == BFD_RELOC_32
9049 || reloc_type == BFD_RELOC_X86_64_32S
9050 || (reloc_type == BFD_RELOC_64
9051 && object_64bit))
9052 && (i.op[n].disps->X_op == O_symbol
9053 || (i.op[n].disps->X_op == O_add
9054 && ((symbol_get_value_expression
9055 (i.op[n].disps->X_op_symbol)->X_op)
9056 == O_subtract))))
9057 || reloc_type == BFD_RELOC_32_PCREL))
9058 {
9059 if (!object_64bit)
9060 {
9061 reloc_type = BFD_RELOC_386_GOTPC;
9062 i.has_gotpc_tls_reloc = TRUE;
9063 i.op[n].imms->X_add_number +=
9064 encoding_length (insn_start_frag, insn_start_off, p);
9065 }
9066 else if (reloc_type == BFD_RELOC_64)
9067 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9068 else
9069 /* Don't do the adjustment for x86-64, as there
9070 the pcrel addressing is relative to the _next_
9071 insn, and that is taken care of in other code. */
9072 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9073 }
9074 else if (align_branch_power)
9075 {
9076 switch (reloc_type)
9077 {
9078 case BFD_RELOC_386_TLS_GD:
9079 case BFD_RELOC_386_TLS_LDM:
9080 case BFD_RELOC_386_TLS_IE:
9081 case BFD_RELOC_386_TLS_IE_32:
9082 case BFD_RELOC_386_TLS_GOTIE:
9083 case BFD_RELOC_386_TLS_GOTDESC:
9084 case BFD_RELOC_386_TLS_DESC_CALL:
9085 case BFD_RELOC_X86_64_TLSGD:
9086 case BFD_RELOC_X86_64_TLSLD:
9087 case BFD_RELOC_X86_64_GOTTPOFF:
9088 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9089 case BFD_RELOC_X86_64_TLSDESC_CALL:
9090 i.has_gotpc_tls_reloc = TRUE;
9091 default:
9092 break;
9093 }
9094 }
9095 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9096 size, i.op[n].disps, pcrel,
9097 reloc_type);
9098 /* Check for "call/jmp *mem", "mov mem, %reg",
9099 "test %reg, mem" and "binop mem, %reg" where binop
9100 is one of adc, add, and, cmp, or, sbb, sub, xor
9101 instructions without data prefix. Always generate
9102 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9103 if (i.prefix[DATA_PREFIX] == 0
9104 && (generate_relax_relocations
9105 || (!object_64bit
9106 && i.rm.mode == 0
9107 && i.rm.regmem == 5))
9108 && (i.rm.mode == 2
9109 || (i.rm.mode == 0 && i.rm.regmem == 5))
9110 && !is_any_vex_encoding(&i.tm)
9111 && ((i.operands == 1
9112 && i.tm.base_opcode == 0xff
9113 && (i.rm.reg == 2 || i.rm.reg == 4))
9114 || (i.operands == 2
9115 && (i.tm.base_opcode == 0x8b
9116 || i.tm.base_opcode == 0x85
9117 || (i.tm.base_opcode & ~0x38) == 0x03))))
9118 {
9119 if (object_64bit)
9120 {
9121 fixP->fx_tcbit = i.rex != 0;
9122 if (i.base_reg
9123 && (i.base_reg->reg_num == RegIP))
9124 fixP->fx_tcbit2 = 1;
9125 }
9126 else
9127 fixP->fx_tcbit2 = 1;
9128 }
9129 }
9130 }
9131 }
9132 }
9133
9134 static void
9135 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
9136 {
9137 char *p;
9138 unsigned int n;
9139
9140 for (n = 0; n < i.operands; n++)
9141 {
9142 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9143 if (i.rounding && (int) n == i.rounding->operand)
9144 continue;
9145
9146 if (operand_type_check (i.types[n], imm))
9147 {
9148 if (i.op[n].imms->X_op == O_constant)
9149 {
9150 int size = imm_size (n);
9151 offsetT val;
9152
9153 val = offset_in_range (i.op[n].imms->X_add_number,
9154 size);
9155 p = frag_more (size);
9156 md_number_to_chars (p, val, size);
9157 }
9158 else
9159 {
9160 /* Not absolute_section.
9161 Need a 32-bit fixup (don't support 8bit
9162 non-absolute imms). Try to support other
9163 sizes ... */
9164 enum bfd_reloc_code_real reloc_type;
9165 int size = imm_size (n);
9166 int sign;
9167
9168 if (i.types[n].bitfield.imm32s
9169 && (i.suffix == QWORD_MNEM_SUFFIX
9170 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
9171 sign = 1;
9172 else
9173 sign = 0;
9174
9175 p = frag_more (size);
9176 reloc_type = reloc (size, 0, sign, i.reloc[n]);
9177
9178 /* This is tough to explain. We end up with this one if we
9179 * have operands that look like
9180 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9181 * obtain the absolute address of the GOT, and it is strongly
9182 * preferable from a performance point of view to avoid using
9183 * a runtime relocation for this. The actual sequence of
9184 * instructions often look something like:
9185 *
9186 * call .L66
9187 * .L66:
9188 * popl %ebx
9189 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9190 *
9191 * The call and pop essentially return the absolute address
9192 * of the label .L66 and store it in %ebx. The linker itself
9193 * will ultimately change the first operand of the addl so
9194 * that %ebx points to the GOT, but to keep things simple, the
9195 * .o file must have this operand set so that it generates not
9196 * the absolute address of .L66, but the absolute address of
9197 * itself. This allows the linker itself simply treat a GOTPC
9198 * relocation as asking for a pcrel offset to the GOT to be
9199 * added in, and the addend of the relocation is stored in the
9200 * operand field for the instruction itself.
9201 *
9202 * Our job here is to fix the operand so that it would add
9203 * the correct offset so that %ebx would point to itself. The
9204 * thing that is tricky is that .-.L66 will point to the
9205 * beginning of the instruction, so we need to further modify
9206 * the operand so that it will point to itself. There are
9207 * other cases where you have something like:
9208 *
9209 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9210 *
9211 * and here no correction would be required. Internally in
9212 * the assembler we treat operands of this form as not being
9213 * pcrel since the '.' is explicitly mentioned, and I wonder
9214 * whether it would simplify matters to do it this way. Who
9215 * knows. In earlier versions of the PIC patches, the
9216 * pcrel_adjust field was used to store the correction, but
9217 * since the expression is not pcrel, I felt it would be
9218 * confusing to do it this way. */
9219
9220 if ((reloc_type == BFD_RELOC_32
9221 || reloc_type == BFD_RELOC_X86_64_32S
9222 || reloc_type == BFD_RELOC_64)
9223 && GOT_symbol
9224 && GOT_symbol == i.op[n].imms->X_add_symbol
9225 && (i.op[n].imms->X_op == O_symbol
9226 || (i.op[n].imms->X_op == O_add
9227 && ((symbol_get_value_expression
9228 (i.op[n].imms->X_op_symbol)->X_op)
9229 == O_subtract))))
9230 {
9231 if (!object_64bit)
9232 reloc_type = BFD_RELOC_386_GOTPC;
9233 else if (size == 4)
9234 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9235 else if (size == 8)
9236 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9237 i.has_gotpc_tls_reloc = TRUE;
9238 i.op[n].imms->X_add_number +=
9239 encoding_length (insn_start_frag, insn_start_off, p);
9240 }
9241 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9242 i.op[n].imms, 0, reloc_type);
9243 }
9244 }
9245 }
9246 }
9247 \f
9248 /* x86_cons_fix_new is called via the expression parsing code when a
9249 reloc is needed. We use this hook to get the correct .got reloc. */
9250 static int cons_sign = -1;
9251
9252 void
9253 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
9254 expressionS *exp, bfd_reloc_code_real_type r)
9255 {
9256 r = reloc (len, 0, cons_sign, r);
9257
9258 #ifdef TE_PE
9259 if (exp->X_op == O_secrel)
9260 {
9261 exp->X_op = O_symbol;
9262 r = BFD_RELOC_32_SECREL;
9263 }
9264 #endif
9265
9266 fix_new_exp (frag, off, len, exp, 0, r);
9267 }
9268
9269 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9270 purpose of the `.dc.a' internal pseudo-op. */
9271
9272 int
9273 x86_address_bytes (void)
9274 {
9275 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9276 return 4;
9277 return stdoutput->arch_info->bits_per_address / 8;
9278 }
9279
9280 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9281 || defined (LEX_AT)
9282 # define lex_got(reloc, adjust, types) NULL
9283 #else
9284 /* Parse operands of the form
9285 <symbol>@GOTOFF+<nnn>
9286 and similar .plt or .got references.
9287
9288 If we find one, set up the correct relocation in RELOC and copy the
9289 input string, minus the `@GOTOFF' into a malloc'd buffer for
9290 parsing by the calling routine. Return this buffer, and if ADJUST
9291 is non-null set it to the length of the string we removed from the
9292 input line. Otherwise return NULL. */
9293 static char *
9294 lex_got (enum bfd_reloc_code_real *rel,
9295 int *adjust,
9296 i386_operand_type *types)
9297 {
9298 /* Some of the relocations depend on the size of what field is to
9299 be relocated. But in our callers i386_immediate and i386_displacement
9300 we don't yet know the operand size (this will be set by insn
9301 matching). Hence we record the word32 relocation here,
9302 and adjust the reloc according to the real size in reloc(). */
9303 static const struct {
9304 const char *str;
9305 int len;
9306 const enum bfd_reloc_code_real rel[2];
9307 const i386_operand_type types64;
9308 } gotrel[] = {
9309 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9310 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9311 BFD_RELOC_SIZE32 },
9312 OPERAND_TYPE_IMM32_64 },
9313 #endif
9314 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9315 BFD_RELOC_X86_64_PLTOFF64 },
9316 OPERAND_TYPE_IMM64 },
9317 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9318 BFD_RELOC_X86_64_PLT32 },
9319 OPERAND_TYPE_IMM32_32S_DISP32 },
9320 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9321 BFD_RELOC_X86_64_GOTPLT64 },
9322 OPERAND_TYPE_IMM64_DISP64 },
9323 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9324 BFD_RELOC_X86_64_GOTOFF64 },
9325 OPERAND_TYPE_IMM64_DISP64 },
9326 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9327 BFD_RELOC_X86_64_GOTPCREL },
9328 OPERAND_TYPE_IMM32_32S_DISP32 },
9329 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9330 BFD_RELOC_X86_64_TLSGD },
9331 OPERAND_TYPE_IMM32_32S_DISP32 },
9332 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9333 _dummy_first_bfd_reloc_code_real },
9334 OPERAND_TYPE_NONE },
9335 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9336 BFD_RELOC_X86_64_TLSLD },
9337 OPERAND_TYPE_IMM32_32S_DISP32 },
9338 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9339 BFD_RELOC_X86_64_GOTTPOFF },
9340 OPERAND_TYPE_IMM32_32S_DISP32 },
9341 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9342 BFD_RELOC_X86_64_TPOFF32 },
9343 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9344 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9345 _dummy_first_bfd_reloc_code_real },
9346 OPERAND_TYPE_NONE },
9347 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9348 BFD_RELOC_X86_64_DTPOFF32 },
9349 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9350 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9351 _dummy_first_bfd_reloc_code_real },
9352 OPERAND_TYPE_NONE },
9353 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9354 _dummy_first_bfd_reloc_code_real },
9355 OPERAND_TYPE_NONE },
9356 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9357 BFD_RELOC_X86_64_GOT32 },
9358 OPERAND_TYPE_IMM32_32S_64_DISP32 },
9359 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9360 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
9361 OPERAND_TYPE_IMM32_32S_DISP32 },
9362 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9363 BFD_RELOC_X86_64_TLSDESC_CALL },
9364 OPERAND_TYPE_IMM32_32S_DISP32 },
9365 };
9366 char *cp;
9367 unsigned int j;
9368
9369 #if defined (OBJ_MAYBE_ELF)
9370 if (!IS_ELF)
9371 return NULL;
9372 #endif
9373
9374 for (cp = input_line_pointer; *cp != '@'; cp++)
9375 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9376 return NULL;
9377
9378 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9379 {
9380 int len = gotrel[j].len;
9381 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9382 {
9383 if (gotrel[j].rel[object_64bit] != 0)
9384 {
9385 int first, second;
9386 char *tmpbuf, *past_reloc;
9387
9388 *rel = gotrel[j].rel[object_64bit];
9389
9390 if (types)
9391 {
9392 if (flag_code != CODE_64BIT)
9393 {
9394 types->bitfield.imm32 = 1;
9395 types->bitfield.disp32 = 1;
9396 }
9397 else
9398 *types = gotrel[j].types64;
9399 }
9400
9401 if (j != 0 && GOT_symbol == NULL)
9402 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9403
9404 /* The length of the first part of our input line. */
9405 first = cp - input_line_pointer;
9406
9407 /* The second part goes from after the reloc token until
9408 (and including) an end_of_line char or comma. */
9409 past_reloc = cp + 1 + len;
9410 cp = past_reloc;
9411 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9412 ++cp;
9413 second = cp + 1 - past_reloc;
9414
9415 /* Allocate and copy string. The trailing NUL shouldn't
9416 be necessary, but be safe. */
9417 tmpbuf = XNEWVEC (char, first + second + 2);
9418 memcpy (tmpbuf, input_line_pointer, first);
9419 if (second != 0 && *past_reloc != ' ')
9420 /* Replace the relocation token with ' ', so that
9421 errors like foo@GOTOFF1 will be detected. */
9422 tmpbuf[first++] = ' ';
9423 else
9424 /* Increment length by 1 if the relocation token is
9425 removed. */
9426 len++;
9427 if (adjust)
9428 *adjust = len;
9429 memcpy (tmpbuf + first, past_reloc, second);
9430 tmpbuf[first + second] = '\0';
9431 return tmpbuf;
9432 }
9433
9434 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9435 gotrel[j].str, 1 << (5 + object_64bit));
9436 return NULL;
9437 }
9438 }
9439
9440 /* Might be a symbol version string. Don't as_bad here. */
9441 return NULL;
9442 }
9443 #endif
9444
9445 #ifdef TE_PE
9446 #ifdef lex_got
9447 #undef lex_got
9448 #endif
9449 /* Parse operands of the form
9450 <symbol>@SECREL32+<nnn>
9451
9452 If we find one, set up the correct relocation in RELOC and copy the
9453 input string, minus the `@SECREL32' into a malloc'd buffer for
9454 parsing by the calling routine. Return this buffer, and if ADJUST
9455 is non-null set it to the length of the string we removed from the
9456 input line. Otherwise return NULL.
9457
9458 This function is copied from the ELF version above adjusted for PE targets. */
9459
9460 static char *
9461 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9462 int *adjust ATTRIBUTE_UNUSED,
9463 i386_operand_type *types)
9464 {
9465 static const struct
9466 {
9467 const char *str;
9468 int len;
9469 const enum bfd_reloc_code_real rel[2];
9470 const i386_operand_type types64;
9471 }
9472 gotrel[] =
9473 {
9474 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9475 BFD_RELOC_32_SECREL },
9476 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9477 };
9478
9479 char *cp;
9480 unsigned j;
9481
9482 for (cp = input_line_pointer; *cp != '@'; cp++)
9483 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9484 return NULL;
9485
9486 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9487 {
9488 int len = gotrel[j].len;
9489
9490 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9491 {
9492 if (gotrel[j].rel[object_64bit] != 0)
9493 {
9494 int first, second;
9495 char *tmpbuf, *past_reloc;
9496
9497 *rel = gotrel[j].rel[object_64bit];
9498 if (adjust)
9499 *adjust = len;
9500
9501 if (types)
9502 {
9503 if (flag_code != CODE_64BIT)
9504 {
9505 types->bitfield.imm32 = 1;
9506 types->bitfield.disp32 = 1;
9507 }
9508 else
9509 *types = gotrel[j].types64;
9510 }
9511
9512 /* The length of the first part of our input line. */
9513 first = cp - input_line_pointer;
9514
9515 /* The second part goes from after the reloc token until
9516 (and including) an end_of_line char or comma. */
9517 past_reloc = cp + 1 + len;
9518 cp = past_reloc;
9519 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9520 ++cp;
9521 second = cp + 1 - past_reloc;
9522
9523 /* Allocate and copy string. The trailing NUL shouldn't
9524 be necessary, but be safe. */
9525 tmpbuf = XNEWVEC (char, first + second + 2);
9526 memcpy (tmpbuf, input_line_pointer, first);
9527 if (second != 0 && *past_reloc != ' ')
9528 /* Replace the relocation token with ' ', so that
9529 errors like foo@SECLREL321 will be detected. */
9530 tmpbuf[first++] = ' ';
9531 memcpy (tmpbuf + first, past_reloc, second);
9532 tmpbuf[first + second] = '\0';
9533 return tmpbuf;
9534 }
9535
9536 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9537 gotrel[j].str, 1 << (5 + object_64bit));
9538 return NULL;
9539 }
9540 }
9541
9542 /* Might be a symbol version string. Don't as_bad here. */
9543 return NULL;
9544 }
9545
9546 #endif /* TE_PE */
9547
9548 bfd_reloc_code_real_type
9549 x86_cons (expressionS *exp, int size)
9550 {
9551 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9552
9553 intel_syntax = -intel_syntax;
9554
9555 exp->X_md = 0;
9556 if (size == 4 || (object_64bit && size == 8))
9557 {
9558 /* Handle @GOTOFF and the like in an expression. */
9559 char *save;
9560 char *gotfree_input_line;
9561 int adjust = 0;
9562
9563 save = input_line_pointer;
9564 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9565 if (gotfree_input_line)
9566 input_line_pointer = gotfree_input_line;
9567
9568 expression (exp);
9569
9570 if (gotfree_input_line)
9571 {
9572 /* expression () has merrily parsed up to the end of line,
9573 or a comma - in the wrong buffer. Transfer how far
9574 input_line_pointer has moved to the right buffer. */
9575 input_line_pointer = (save
9576 + (input_line_pointer - gotfree_input_line)
9577 + adjust);
9578 free (gotfree_input_line);
9579 if (exp->X_op == O_constant
9580 || exp->X_op == O_absent
9581 || exp->X_op == O_illegal
9582 || exp->X_op == O_register
9583 || exp->X_op == O_big)
9584 {
9585 char c = *input_line_pointer;
9586 *input_line_pointer = 0;
9587 as_bad (_("missing or invalid expression `%s'"), save);
9588 *input_line_pointer = c;
9589 }
9590 else if ((got_reloc == BFD_RELOC_386_PLT32
9591 || got_reloc == BFD_RELOC_X86_64_PLT32)
9592 && exp->X_op != O_symbol)
9593 {
9594 char c = *input_line_pointer;
9595 *input_line_pointer = 0;
9596 as_bad (_("invalid PLT expression `%s'"), save);
9597 *input_line_pointer = c;
9598 }
9599 }
9600 }
9601 else
9602 expression (exp);
9603
9604 intel_syntax = -intel_syntax;
9605
9606 if (intel_syntax)
9607 i386_intel_simplify (exp);
9608
9609 return got_reloc;
9610 }
9611
9612 static void
9613 signed_cons (int size)
9614 {
9615 if (flag_code == CODE_64BIT)
9616 cons_sign = 1;
9617 cons (size);
9618 cons_sign = -1;
9619 }
9620
9621 #ifdef TE_PE
9622 static void
9623 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9624 {
9625 expressionS exp;
9626
9627 do
9628 {
9629 expression (&exp);
9630 if (exp.X_op == O_symbol)
9631 exp.X_op = O_secrel;
9632
9633 emit_expr (&exp, 4);
9634 }
9635 while (*input_line_pointer++ == ',');
9636
9637 input_line_pointer--;
9638 demand_empty_rest_of_line ();
9639 }
9640 #endif
9641
9642 /* Handle Vector operations. */
9643
9644 static char *
9645 check_VecOperations (char *op_string, char *op_end)
9646 {
9647 const reg_entry *mask;
9648 const char *saved;
9649 char *end_op;
9650
9651 while (*op_string
9652 && (op_end == NULL || op_string < op_end))
9653 {
9654 saved = op_string;
9655 if (*op_string == '{')
9656 {
9657 op_string++;
9658
9659 /* Check broadcasts. */
9660 if (strncmp (op_string, "1to", 3) == 0)
9661 {
9662 int bcst_type;
9663
9664 if (i.broadcast)
9665 goto duplicated_vec_op;
9666
9667 op_string += 3;
9668 if (*op_string == '8')
9669 bcst_type = 8;
9670 else if (*op_string == '4')
9671 bcst_type = 4;
9672 else if (*op_string == '2')
9673 bcst_type = 2;
9674 else if (*op_string == '1'
9675 && *(op_string+1) == '6')
9676 {
9677 bcst_type = 16;
9678 op_string++;
9679 }
9680 else
9681 {
9682 as_bad (_("Unsupported broadcast: `%s'"), saved);
9683 return NULL;
9684 }
9685 op_string++;
9686
9687 broadcast_op.type = bcst_type;
9688 broadcast_op.operand = this_operand;
9689 broadcast_op.bytes = 0;
9690 i.broadcast = &broadcast_op;
9691 }
9692 /* Check masking operation. */
9693 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9694 {
9695 /* k0 can't be used for write mask. */
9696 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
9697 {
9698 as_bad (_("`%s%s' can't be used for write mask"),
9699 register_prefix, mask->reg_name);
9700 return NULL;
9701 }
9702
9703 if (!i.mask)
9704 {
9705 mask_op.mask = mask;
9706 mask_op.zeroing = 0;
9707 mask_op.operand = this_operand;
9708 i.mask = &mask_op;
9709 }
9710 else
9711 {
9712 if (i.mask->mask)
9713 goto duplicated_vec_op;
9714
9715 i.mask->mask = mask;
9716
9717 /* Only "{z}" is allowed here. No need to check
9718 zeroing mask explicitly. */
9719 if (i.mask->operand != this_operand)
9720 {
9721 as_bad (_("invalid write mask `%s'"), saved);
9722 return NULL;
9723 }
9724 }
9725
9726 op_string = end_op;
9727 }
9728 /* Check zeroing-flag for masking operation. */
9729 else if (*op_string == 'z')
9730 {
9731 if (!i.mask)
9732 {
9733 mask_op.mask = NULL;
9734 mask_op.zeroing = 1;
9735 mask_op.operand = this_operand;
9736 i.mask = &mask_op;
9737 }
9738 else
9739 {
9740 if (i.mask->zeroing)
9741 {
9742 duplicated_vec_op:
9743 as_bad (_("duplicated `%s'"), saved);
9744 return NULL;
9745 }
9746
9747 i.mask->zeroing = 1;
9748
9749 /* Only "{%k}" is allowed here. No need to check mask
9750 register explicitly. */
9751 if (i.mask->operand != this_operand)
9752 {
9753 as_bad (_("invalid zeroing-masking `%s'"),
9754 saved);
9755 return NULL;
9756 }
9757 }
9758
9759 op_string++;
9760 }
9761 else
9762 goto unknown_vec_op;
9763
9764 if (*op_string != '}')
9765 {
9766 as_bad (_("missing `}' in `%s'"), saved);
9767 return NULL;
9768 }
9769 op_string++;
9770
9771 /* Strip whitespace since the addition of pseudo prefixes
9772 changed how the scrubber treats '{'. */
9773 if (is_space_char (*op_string))
9774 ++op_string;
9775
9776 continue;
9777 }
9778 unknown_vec_op:
9779 /* We don't know this one. */
9780 as_bad (_("unknown vector operation: `%s'"), saved);
9781 return NULL;
9782 }
9783
9784 if (i.mask && i.mask->zeroing && !i.mask->mask)
9785 {
9786 as_bad (_("zeroing-masking only allowed with write mask"));
9787 return NULL;
9788 }
9789
9790 return op_string;
9791 }
9792
9793 static int
9794 i386_immediate (char *imm_start)
9795 {
9796 char *save_input_line_pointer;
9797 char *gotfree_input_line;
9798 segT exp_seg = 0;
9799 expressionS *exp;
9800 i386_operand_type types;
9801
9802 operand_type_set (&types, ~0);
9803
9804 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9805 {
9806 as_bad (_("at most %d immediate operands are allowed"),
9807 MAX_IMMEDIATE_OPERANDS);
9808 return 0;
9809 }
9810
9811 exp = &im_expressions[i.imm_operands++];
9812 i.op[this_operand].imms = exp;
9813
9814 if (is_space_char (*imm_start))
9815 ++imm_start;
9816
9817 save_input_line_pointer = input_line_pointer;
9818 input_line_pointer = imm_start;
9819
9820 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9821 if (gotfree_input_line)
9822 input_line_pointer = gotfree_input_line;
9823
9824 exp_seg = expression (exp);
9825
9826 SKIP_WHITESPACE ();
9827
9828 /* Handle vector operations. */
9829 if (*input_line_pointer == '{')
9830 {
9831 input_line_pointer = check_VecOperations (input_line_pointer,
9832 NULL);
9833 if (input_line_pointer == NULL)
9834 return 0;
9835 }
9836
9837 if (*input_line_pointer)
9838 as_bad (_("junk `%s' after expression"), input_line_pointer);
9839
9840 input_line_pointer = save_input_line_pointer;
9841 if (gotfree_input_line)
9842 {
9843 free (gotfree_input_line);
9844
9845 if (exp->X_op == O_constant || exp->X_op == O_register)
9846 exp->X_op = O_illegal;
9847 }
9848
9849 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9850 }
9851
9852 static int
9853 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9854 i386_operand_type types, const char *imm_start)
9855 {
9856 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9857 {
9858 if (imm_start)
9859 as_bad (_("missing or invalid immediate expression `%s'"),
9860 imm_start);
9861 return 0;
9862 }
9863 else if (exp->X_op == O_constant)
9864 {
9865 /* Size it properly later. */
9866 i.types[this_operand].bitfield.imm64 = 1;
9867 /* If not 64bit, sign extend val. */
9868 if (flag_code != CODE_64BIT
9869 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9870 exp->X_add_number
9871 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9872 }
9873 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9874 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9875 && exp_seg != absolute_section
9876 && exp_seg != text_section
9877 && exp_seg != data_section
9878 && exp_seg != bss_section
9879 && exp_seg != undefined_section
9880 && !bfd_is_com_section (exp_seg))
9881 {
9882 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9883 return 0;
9884 }
9885 #endif
9886 else if (!intel_syntax && exp_seg == reg_section)
9887 {
9888 if (imm_start)
9889 as_bad (_("illegal immediate register operand %s"), imm_start);
9890 return 0;
9891 }
9892 else
9893 {
9894 /* This is an address. The size of the address will be
9895 determined later, depending on destination register,
9896 suffix, or the default for the section. */
9897 i.types[this_operand].bitfield.imm8 = 1;
9898 i.types[this_operand].bitfield.imm16 = 1;
9899 i.types[this_operand].bitfield.imm32 = 1;
9900 i.types[this_operand].bitfield.imm32s = 1;
9901 i.types[this_operand].bitfield.imm64 = 1;
9902 i.types[this_operand] = operand_type_and (i.types[this_operand],
9903 types);
9904 }
9905
9906 return 1;
9907 }
9908
9909 static char *
9910 i386_scale (char *scale)
9911 {
9912 offsetT val;
9913 char *save = input_line_pointer;
9914
9915 input_line_pointer = scale;
9916 val = get_absolute_expression ();
9917
9918 switch (val)
9919 {
9920 case 1:
9921 i.log2_scale_factor = 0;
9922 break;
9923 case 2:
9924 i.log2_scale_factor = 1;
9925 break;
9926 case 4:
9927 i.log2_scale_factor = 2;
9928 break;
9929 case 8:
9930 i.log2_scale_factor = 3;
9931 break;
9932 default:
9933 {
9934 char sep = *input_line_pointer;
9935
9936 *input_line_pointer = '\0';
9937 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9938 scale);
9939 *input_line_pointer = sep;
9940 input_line_pointer = save;
9941 return NULL;
9942 }
9943 }
9944 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9945 {
9946 as_warn (_("scale factor of %d without an index register"),
9947 1 << i.log2_scale_factor);
9948 i.log2_scale_factor = 0;
9949 }
9950 scale = input_line_pointer;
9951 input_line_pointer = save;
9952 return scale;
9953 }
9954
9955 static int
9956 i386_displacement (char *disp_start, char *disp_end)
9957 {
9958 expressionS *exp;
9959 segT exp_seg = 0;
9960 char *save_input_line_pointer;
9961 char *gotfree_input_line;
9962 int override;
9963 i386_operand_type bigdisp, types = anydisp;
9964 int ret;
9965
9966 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9967 {
9968 as_bad (_("at most %d displacement operands are allowed"),
9969 MAX_MEMORY_OPERANDS);
9970 return 0;
9971 }
9972
9973 operand_type_set (&bigdisp, 0);
9974 if (i.jumpabsolute
9975 || i.types[this_operand].bitfield.baseindex
9976 || (current_templates->start->opcode_modifier.jump != JUMP
9977 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
9978 {
9979 i386_addressing_mode ();
9980 override = (i.prefix[ADDR_PREFIX] != 0);
9981 if (flag_code == CODE_64BIT)
9982 {
9983 if (!override)
9984 {
9985 bigdisp.bitfield.disp32s = 1;
9986 bigdisp.bitfield.disp64 = 1;
9987 }
9988 else
9989 bigdisp.bitfield.disp32 = 1;
9990 }
9991 else if ((flag_code == CODE_16BIT) ^ override)
9992 bigdisp.bitfield.disp16 = 1;
9993 else
9994 bigdisp.bitfield.disp32 = 1;
9995 }
9996 else
9997 {
9998 /* For PC-relative branches, the width of the displacement may be
9999 dependent upon data size, but is never dependent upon address size.
10000 Also make sure to not unintentionally match against a non-PC-relative
10001 branch template. */
10002 static templates aux_templates;
10003 const insn_template *t = current_templates->start;
10004 bfd_boolean has_intel64 = FALSE;
10005
10006 aux_templates.start = t;
10007 while (++t < current_templates->end)
10008 {
10009 if (t->opcode_modifier.jump
10010 != current_templates->start->opcode_modifier.jump)
10011 break;
10012 if ((t->opcode_modifier.isa64 >= INTEL64))
10013 has_intel64 = TRUE;
10014 }
10015 if (t < current_templates->end)
10016 {
10017 aux_templates.end = t;
10018 current_templates = &aux_templates;
10019 }
10020
10021 override = (i.prefix[DATA_PREFIX] != 0);
10022 if (flag_code == CODE_64BIT)
10023 {
10024 if ((override || i.suffix == WORD_MNEM_SUFFIX)
10025 && (!intel64 || !has_intel64))
10026 bigdisp.bitfield.disp16 = 1;
10027 else
10028 bigdisp.bitfield.disp32s = 1;
10029 }
10030 else
10031 {
10032 if (!override)
10033 override = (i.suffix == (flag_code != CODE_16BIT
10034 ? WORD_MNEM_SUFFIX
10035 : LONG_MNEM_SUFFIX));
10036 bigdisp.bitfield.disp32 = 1;
10037 if ((flag_code == CODE_16BIT) ^ override)
10038 {
10039 bigdisp.bitfield.disp32 = 0;
10040 bigdisp.bitfield.disp16 = 1;
10041 }
10042 }
10043 }
10044 i.types[this_operand] = operand_type_or (i.types[this_operand],
10045 bigdisp);
10046
10047 exp = &disp_expressions[i.disp_operands];
10048 i.op[this_operand].disps = exp;
10049 i.disp_operands++;
10050 save_input_line_pointer = input_line_pointer;
10051 input_line_pointer = disp_start;
10052 END_STRING_AND_SAVE (disp_end);
10053
10054 #ifndef GCC_ASM_O_HACK
10055 #define GCC_ASM_O_HACK 0
10056 #endif
10057 #if GCC_ASM_O_HACK
10058 END_STRING_AND_SAVE (disp_end + 1);
10059 if (i.types[this_operand].bitfield.baseIndex
10060 && displacement_string_end[-1] == '+')
10061 {
10062 /* This hack is to avoid a warning when using the "o"
10063 constraint within gcc asm statements.
10064 For instance:
10065
10066 #define _set_tssldt_desc(n,addr,limit,type) \
10067 __asm__ __volatile__ ( \
10068 "movw %w2,%0\n\t" \
10069 "movw %w1,2+%0\n\t" \
10070 "rorl $16,%1\n\t" \
10071 "movb %b1,4+%0\n\t" \
10072 "movb %4,5+%0\n\t" \
10073 "movb $0,6+%0\n\t" \
10074 "movb %h1,7+%0\n\t" \
10075 "rorl $16,%1" \
10076 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10077
10078 This works great except that the output assembler ends
10079 up looking a bit weird if it turns out that there is
10080 no offset. You end up producing code that looks like:
10081
10082 #APP
10083 movw $235,(%eax)
10084 movw %dx,2+(%eax)
10085 rorl $16,%edx
10086 movb %dl,4+(%eax)
10087 movb $137,5+(%eax)
10088 movb $0,6+(%eax)
10089 movb %dh,7+(%eax)
10090 rorl $16,%edx
10091 #NO_APP
10092
10093 So here we provide the missing zero. */
10094
10095 *displacement_string_end = '0';
10096 }
10097 #endif
10098 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10099 if (gotfree_input_line)
10100 input_line_pointer = gotfree_input_line;
10101
10102 exp_seg = expression (exp);
10103
10104 SKIP_WHITESPACE ();
10105 if (*input_line_pointer)
10106 as_bad (_("junk `%s' after expression"), input_line_pointer);
10107 #if GCC_ASM_O_HACK
10108 RESTORE_END_STRING (disp_end + 1);
10109 #endif
10110 input_line_pointer = save_input_line_pointer;
10111 if (gotfree_input_line)
10112 {
10113 free (gotfree_input_line);
10114
10115 if (exp->X_op == O_constant || exp->X_op == O_register)
10116 exp->X_op = O_illegal;
10117 }
10118
10119 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10120
10121 RESTORE_END_STRING (disp_end);
10122
10123 return ret;
10124 }
10125
10126 static int
10127 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10128 i386_operand_type types, const char *disp_start)
10129 {
10130 i386_operand_type bigdisp;
10131 int ret = 1;
10132
10133 /* We do this to make sure that the section symbol is in
10134 the symbol table. We will ultimately change the relocation
10135 to be relative to the beginning of the section. */
10136 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
10137 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10138 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10139 {
10140 if (exp->X_op != O_symbol)
10141 goto inv_disp;
10142
10143 if (S_IS_LOCAL (exp->X_add_symbol)
10144 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10145 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
10146 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
10147 exp->X_op = O_subtract;
10148 exp->X_op_symbol = GOT_symbol;
10149 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
10150 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
10151 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10152 i.reloc[this_operand] = BFD_RELOC_64;
10153 else
10154 i.reloc[this_operand] = BFD_RELOC_32;
10155 }
10156
10157 else if (exp->X_op == O_absent
10158 || exp->X_op == O_illegal
10159 || exp->X_op == O_big)
10160 {
10161 inv_disp:
10162 as_bad (_("missing or invalid displacement expression `%s'"),
10163 disp_start);
10164 ret = 0;
10165 }
10166
10167 else if (flag_code == CODE_64BIT
10168 && !i.prefix[ADDR_PREFIX]
10169 && exp->X_op == O_constant)
10170 {
10171 /* Since displacement is signed extended to 64bit, don't allow
10172 disp32 and turn off disp32s if they are out of range. */
10173 i.types[this_operand].bitfield.disp32 = 0;
10174 if (!fits_in_signed_long (exp->X_add_number))
10175 {
10176 i.types[this_operand].bitfield.disp32s = 0;
10177 if (i.types[this_operand].bitfield.baseindex)
10178 {
10179 as_bad (_("0x%lx out range of signed 32bit displacement"),
10180 (long) exp->X_add_number);
10181 ret = 0;
10182 }
10183 }
10184 }
10185
10186 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10187 else if (exp->X_op != O_constant
10188 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10189 && exp_seg != absolute_section
10190 && exp_seg != text_section
10191 && exp_seg != data_section
10192 && exp_seg != bss_section
10193 && exp_seg != undefined_section
10194 && !bfd_is_com_section (exp_seg))
10195 {
10196 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10197 ret = 0;
10198 }
10199 #endif
10200
10201 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10202 /* Constants get taken care of by optimize_disp(). */
10203 && exp->X_op != O_constant)
10204 i.types[this_operand].bitfield.disp8 = 1;
10205
10206 /* Check if this is a displacement only operand. */
10207 bigdisp = i.types[this_operand];
10208 bigdisp.bitfield.disp8 = 0;
10209 bigdisp.bitfield.disp16 = 0;
10210 bigdisp.bitfield.disp32 = 0;
10211 bigdisp.bitfield.disp32s = 0;
10212 bigdisp.bitfield.disp64 = 0;
10213 if (operand_type_all_zero (&bigdisp))
10214 i.types[this_operand] = operand_type_and (i.types[this_operand],
10215 types);
10216
10217 return ret;
10218 }
10219
10220 /* Return the active addressing mode, taking address override and
10221 registers forming the address into consideration. Update the
10222 address override prefix if necessary. */
10223
10224 static enum flag_code
10225 i386_addressing_mode (void)
10226 {
10227 enum flag_code addr_mode;
10228
10229 if (i.prefix[ADDR_PREFIX])
10230 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10231 else
10232 {
10233 addr_mode = flag_code;
10234
10235 #if INFER_ADDR_PREFIX
10236 if (i.mem_operands == 0)
10237 {
10238 /* Infer address prefix from the first memory operand. */
10239 const reg_entry *addr_reg = i.base_reg;
10240
10241 if (addr_reg == NULL)
10242 addr_reg = i.index_reg;
10243
10244 if (addr_reg)
10245 {
10246 if (addr_reg->reg_type.bitfield.dword)
10247 addr_mode = CODE_32BIT;
10248 else if (flag_code != CODE_64BIT
10249 && addr_reg->reg_type.bitfield.word)
10250 addr_mode = CODE_16BIT;
10251
10252 if (addr_mode != flag_code)
10253 {
10254 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10255 i.prefixes += 1;
10256 /* Change the size of any displacement too. At most one
10257 of Disp16 or Disp32 is set.
10258 FIXME. There doesn't seem to be any real need for
10259 separate Disp16 and Disp32 flags. The same goes for
10260 Imm16 and Imm32. Removing them would probably clean
10261 up the code quite a lot. */
10262 if (flag_code != CODE_64BIT
10263 && (i.types[this_operand].bitfield.disp16
10264 || i.types[this_operand].bitfield.disp32))
10265 i.types[this_operand]
10266 = operand_type_xor (i.types[this_operand], disp16_32);
10267 }
10268 }
10269 }
10270 #endif
10271 }
10272
10273 return addr_mode;
10274 }
10275
10276 /* Make sure the memory operand we've been dealt is valid.
10277 Return 1 on success, 0 on a failure. */
10278
10279 static int
10280 i386_index_check (const char *operand_string)
10281 {
10282 const char *kind = "base/index";
10283 enum flag_code addr_mode = i386_addressing_mode ();
10284
10285 if (current_templates->start->opcode_modifier.isstring
10286 && !current_templates->start->cpu_flags.bitfield.cpupadlock
10287 && (current_templates->end[-1].opcode_modifier.isstring
10288 || i.mem_operands))
10289 {
10290 /* Memory operands of string insns are special in that they only allow
10291 a single register (rDI, rSI, or rBX) as their memory address. */
10292 const reg_entry *expected_reg;
10293 static const char *di_si[][2] =
10294 {
10295 { "esi", "edi" },
10296 { "si", "di" },
10297 { "rsi", "rdi" }
10298 };
10299 static const char *bx[] = { "ebx", "bx", "rbx" };
10300
10301 kind = "string address";
10302
10303 if (current_templates->start->opcode_modifier.repprefixok)
10304 {
10305 int es_op = current_templates->end[-1].opcode_modifier.isstring
10306 - IS_STRING_ES_OP0;
10307 int op = 0;
10308
10309 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
10310 || ((!i.mem_operands != !intel_syntax)
10311 && current_templates->end[-1].operand_types[1]
10312 .bitfield.baseindex))
10313 op = 1;
10314 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
10315 }
10316 else
10317 expected_reg = hash_find (reg_hash, bx[addr_mode]);
10318
10319 if (i.base_reg != expected_reg
10320 || i.index_reg
10321 || operand_type_check (i.types[this_operand], disp))
10322 {
10323 /* The second memory operand must have the same size as
10324 the first one. */
10325 if (i.mem_operands
10326 && i.base_reg
10327 && !((addr_mode == CODE_64BIT
10328 && i.base_reg->reg_type.bitfield.qword)
10329 || (addr_mode == CODE_32BIT
10330 ? i.base_reg->reg_type.bitfield.dword
10331 : i.base_reg->reg_type.bitfield.word)))
10332 goto bad_address;
10333
10334 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10335 operand_string,
10336 intel_syntax ? '[' : '(',
10337 register_prefix,
10338 expected_reg->reg_name,
10339 intel_syntax ? ']' : ')');
10340 return 1;
10341 }
10342 else
10343 return 1;
10344
10345 bad_address:
10346 as_bad (_("`%s' is not a valid %s expression"),
10347 operand_string, kind);
10348 return 0;
10349 }
10350 else
10351 {
10352 if (addr_mode != CODE_16BIT)
10353 {
10354 /* 32-bit/64-bit checks. */
10355 if ((i.base_reg
10356 && ((addr_mode == CODE_64BIT
10357 ? !i.base_reg->reg_type.bitfield.qword
10358 : !i.base_reg->reg_type.bitfield.dword)
10359 || (i.index_reg && i.base_reg->reg_num == RegIP)
10360 || i.base_reg->reg_num == RegIZ))
10361 || (i.index_reg
10362 && !i.index_reg->reg_type.bitfield.xmmword
10363 && !i.index_reg->reg_type.bitfield.ymmword
10364 && !i.index_reg->reg_type.bitfield.zmmword
10365 && ((addr_mode == CODE_64BIT
10366 ? !i.index_reg->reg_type.bitfield.qword
10367 : !i.index_reg->reg_type.bitfield.dword)
10368 || !i.index_reg->reg_type.bitfield.baseindex)))
10369 goto bad_address;
10370
10371 /* bndmk, bndldx, and bndstx have special restrictions. */
10372 if (current_templates->start->base_opcode == 0xf30f1b
10373 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10374 {
10375 /* They cannot use RIP-relative addressing. */
10376 if (i.base_reg && i.base_reg->reg_num == RegIP)
10377 {
10378 as_bad (_("`%s' cannot be used here"), operand_string);
10379 return 0;
10380 }
10381
10382 /* bndldx and bndstx ignore their scale factor. */
10383 if (current_templates->start->base_opcode != 0xf30f1b
10384 && i.log2_scale_factor)
10385 as_warn (_("register scaling is being ignored here"));
10386 }
10387 }
10388 else
10389 {
10390 /* 16-bit checks. */
10391 if ((i.base_reg
10392 && (!i.base_reg->reg_type.bitfield.word
10393 || !i.base_reg->reg_type.bitfield.baseindex))
10394 || (i.index_reg
10395 && (!i.index_reg->reg_type.bitfield.word
10396 || !i.index_reg->reg_type.bitfield.baseindex
10397 || !(i.base_reg
10398 && i.base_reg->reg_num < 6
10399 && i.index_reg->reg_num >= 6
10400 && i.log2_scale_factor == 0))))
10401 goto bad_address;
10402 }
10403 }
10404 return 1;
10405 }
10406
10407 /* Handle vector immediates. */
10408
10409 static int
10410 RC_SAE_immediate (const char *imm_start)
10411 {
10412 unsigned int match_found, j;
10413 const char *pstr = imm_start;
10414 expressionS *exp;
10415
10416 if (*pstr != '{')
10417 return 0;
10418
10419 pstr++;
10420 match_found = 0;
10421 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10422 {
10423 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10424 {
10425 if (!i.rounding)
10426 {
10427 rc_op.type = RC_NamesTable[j].type;
10428 rc_op.operand = this_operand;
10429 i.rounding = &rc_op;
10430 }
10431 else
10432 {
10433 as_bad (_("duplicated `%s'"), imm_start);
10434 return 0;
10435 }
10436 pstr += RC_NamesTable[j].len;
10437 match_found = 1;
10438 break;
10439 }
10440 }
10441 if (!match_found)
10442 return 0;
10443
10444 if (*pstr++ != '}')
10445 {
10446 as_bad (_("Missing '}': '%s'"), imm_start);
10447 return 0;
10448 }
10449 /* RC/SAE immediate string should contain nothing more. */;
10450 if (*pstr != 0)
10451 {
10452 as_bad (_("Junk after '}': '%s'"), imm_start);
10453 return 0;
10454 }
10455
10456 exp = &im_expressions[i.imm_operands++];
10457 i.op[this_operand].imms = exp;
10458
10459 exp->X_op = O_constant;
10460 exp->X_add_number = 0;
10461 exp->X_add_symbol = (symbolS *) 0;
10462 exp->X_op_symbol = (symbolS *) 0;
10463
10464 i.types[this_operand].bitfield.imm8 = 1;
10465 return 1;
10466 }
10467
10468 /* Only string instructions can have a second memory operand, so
10469 reduce current_templates to just those if it contains any. */
10470 static int
10471 maybe_adjust_templates (void)
10472 {
10473 const insn_template *t;
10474
10475 gas_assert (i.mem_operands == 1);
10476
10477 for (t = current_templates->start; t < current_templates->end; ++t)
10478 if (t->opcode_modifier.isstring)
10479 break;
10480
10481 if (t < current_templates->end)
10482 {
10483 static templates aux_templates;
10484 bfd_boolean recheck;
10485
10486 aux_templates.start = t;
10487 for (; t < current_templates->end; ++t)
10488 if (!t->opcode_modifier.isstring)
10489 break;
10490 aux_templates.end = t;
10491
10492 /* Determine whether to re-check the first memory operand. */
10493 recheck = (aux_templates.start != current_templates->start
10494 || t != current_templates->end);
10495
10496 current_templates = &aux_templates;
10497
10498 if (recheck)
10499 {
10500 i.mem_operands = 0;
10501 if (i.memop1_string != NULL
10502 && i386_index_check (i.memop1_string) == 0)
10503 return 0;
10504 i.mem_operands = 1;
10505 }
10506 }
10507
10508 return 1;
10509 }
10510
10511 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
10512 on error. */
10513
10514 static int
10515 i386_att_operand (char *operand_string)
10516 {
10517 const reg_entry *r;
10518 char *end_op;
10519 char *op_string = operand_string;
10520
10521 if (is_space_char (*op_string))
10522 ++op_string;
10523
10524 /* We check for an absolute prefix (differentiating,
10525 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
10526 if (*op_string == ABSOLUTE_PREFIX)
10527 {
10528 ++op_string;
10529 if (is_space_char (*op_string))
10530 ++op_string;
10531 i.jumpabsolute = TRUE;
10532 }
10533
10534 /* Check if operand is a register. */
10535 if ((r = parse_register (op_string, &end_op)) != NULL)
10536 {
10537 i386_operand_type temp;
10538
10539 /* Check for a segment override by searching for ':' after a
10540 segment register. */
10541 op_string = end_op;
10542 if (is_space_char (*op_string))
10543 ++op_string;
10544 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
10545 {
10546 switch (r->reg_num)
10547 {
10548 case 0:
10549 i.seg[i.mem_operands] = &es;
10550 break;
10551 case 1:
10552 i.seg[i.mem_operands] = &cs;
10553 break;
10554 case 2:
10555 i.seg[i.mem_operands] = &ss;
10556 break;
10557 case 3:
10558 i.seg[i.mem_operands] = &ds;
10559 break;
10560 case 4:
10561 i.seg[i.mem_operands] = &fs;
10562 break;
10563 case 5:
10564 i.seg[i.mem_operands] = &gs;
10565 break;
10566 }
10567
10568 /* Skip the ':' and whitespace. */
10569 ++op_string;
10570 if (is_space_char (*op_string))
10571 ++op_string;
10572
10573 if (!is_digit_char (*op_string)
10574 && !is_identifier_char (*op_string)
10575 && *op_string != '('
10576 && *op_string != ABSOLUTE_PREFIX)
10577 {
10578 as_bad (_("bad memory operand `%s'"), op_string);
10579 return 0;
10580 }
10581 /* Handle case of %es:*foo. */
10582 if (*op_string == ABSOLUTE_PREFIX)
10583 {
10584 ++op_string;
10585 if (is_space_char (*op_string))
10586 ++op_string;
10587 i.jumpabsolute = TRUE;
10588 }
10589 goto do_memory_reference;
10590 }
10591
10592 /* Handle vector operations. */
10593 if (*op_string == '{')
10594 {
10595 op_string = check_VecOperations (op_string, NULL);
10596 if (op_string == NULL)
10597 return 0;
10598 }
10599
10600 if (*op_string)
10601 {
10602 as_bad (_("junk `%s' after register"), op_string);
10603 return 0;
10604 }
10605 temp = r->reg_type;
10606 temp.bitfield.baseindex = 0;
10607 i.types[this_operand] = operand_type_or (i.types[this_operand],
10608 temp);
10609 i.types[this_operand].bitfield.unspecified = 0;
10610 i.op[this_operand].regs = r;
10611 i.reg_operands++;
10612 }
10613 else if (*op_string == REGISTER_PREFIX)
10614 {
10615 as_bad (_("bad register name `%s'"), op_string);
10616 return 0;
10617 }
10618 else if (*op_string == IMMEDIATE_PREFIX)
10619 {
10620 ++op_string;
10621 if (i.jumpabsolute)
10622 {
10623 as_bad (_("immediate operand illegal with absolute jump"));
10624 return 0;
10625 }
10626 if (!i386_immediate (op_string))
10627 return 0;
10628 }
10629 else if (RC_SAE_immediate (operand_string))
10630 {
10631 /* If it is a RC or SAE immediate, do nothing. */
10632 ;
10633 }
10634 else if (is_digit_char (*op_string)
10635 || is_identifier_char (*op_string)
10636 || *op_string == '"'
10637 || *op_string == '(')
10638 {
10639 /* This is a memory reference of some sort. */
10640 char *base_string;
10641
10642 /* Start and end of displacement string expression (if found). */
10643 char *displacement_string_start;
10644 char *displacement_string_end;
10645 char *vop_start;
10646
10647 do_memory_reference:
10648 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10649 return 0;
10650 if ((i.mem_operands == 1
10651 && !current_templates->start->opcode_modifier.isstring)
10652 || i.mem_operands == 2)
10653 {
10654 as_bad (_("too many memory references for `%s'"),
10655 current_templates->start->name);
10656 return 0;
10657 }
10658
10659 /* Check for base index form. We detect the base index form by
10660 looking for an ')' at the end of the operand, searching
10661 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10662 after the '('. */
10663 base_string = op_string + strlen (op_string);
10664
10665 /* Handle vector operations. */
10666 vop_start = strchr (op_string, '{');
10667 if (vop_start && vop_start < base_string)
10668 {
10669 if (check_VecOperations (vop_start, base_string) == NULL)
10670 return 0;
10671 base_string = vop_start;
10672 }
10673
10674 --base_string;
10675 if (is_space_char (*base_string))
10676 --base_string;
10677
10678 /* If we only have a displacement, set-up for it to be parsed later. */
10679 displacement_string_start = op_string;
10680 displacement_string_end = base_string + 1;
10681
10682 if (*base_string == ')')
10683 {
10684 char *temp_string;
10685 unsigned int parens_balanced = 1;
10686 /* We've already checked that the number of left & right ()'s are
10687 equal, so this loop will not be infinite. */
10688 do
10689 {
10690 base_string--;
10691 if (*base_string == ')')
10692 parens_balanced++;
10693 if (*base_string == '(')
10694 parens_balanced--;
10695 }
10696 while (parens_balanced);
10697
10698 temp_string = base_string;
10699
10700 /* Skip past '(' and whitespace. */
10701 ++base_string;
10702 if (is_space_char (*base_string))
10703 ++base_string;
10704
10705 if (*base_string == ','
10706 || ((i.base_reg = parse_register (base_string, &end_op))
10707 != NULL))
10708 {
10709 displacement_string_end = temp_string;
10710
10711 i.types[this_operand].bitfield.baseindex = 1;
10712
10713 if (i.base_reg)
10714 {
10715 base_string = end_op;
10716 if (is_space_char (*base_string))
10717 ++base_string;
10718 }
10719
10720 /* There may be an index reg or scale factor here. */
10721 if (*base_string == ',')
10722 {
10723 ++base_string;
10724 if (is_space_char (*base_string))
10725 ++base_string;
10726
10727 if ((i.index_reg = parse_register (base_string, &end_op))
10728 != NULL)
10729 {
10730 base_string = end_op;
10731 if (is_space_char (*base_string))
10732 ++base_string;
10733 if (*base_string == ',')
10734 {
10735 ++base_string;
10736 if (is_space_char (*base_string))
10737 ++base_string;
10738 }
10739 else if (*base_string != ')')
10740 {
10741 as_bad (_("expecting `,' or `)' "
10742 "after index register in `%s'"),
10743 operand_string);
10744 return 0;
10745 }
10746 }
10747 else if (*base_string == REGISTER_PREFIX)
10748 {
10749 end_op = strchr (base_string, ',');
10750 if (end_op)
10751 *end_op = '\0';
10752 as_bad (_("bad register name `%s'"), base_string);
10753 return 0;
10754 }
10755
10756 /* Check for scale factor. */
10757 if (*base_string != ')')
10758 {
10759 char *end_scale = i386_scale (base_string);
10760
10761 if (!end_scale)
10762 return 0;
10763
10764 base_string = end_scale;
10765 if (is_space_char (*base_string))
10766 ++base_string;
10767 if (*base_string != ')')
10768 {
10769 as_bad (_("expecting `)' "
10770 "after scale factor in `%s'"),
10771 operand_string);
10772 return 0;
10773 }
10774 }
10775 else if (!i.index_reg)
10776 {
10777 as_bad (_("expecting index register or scale factor "
10778 "after `,'; got '%c'"),
10779 *base_string);
10780 return 0;
10781 }
10782 }
10783 else if (*base_string != ')')
10784 {
10785 as_bad (_("expecting `,' or `)' "
10786 "after base register in `%s'"),
10787 operand_string);
10788 return 0;
10789 }
10790 }
10791 else if (*base_string == REGISTER_PREFIX)
10792 {
10793 end_op = strchr (base_string, ',');
10794 if (end_op)
10795 *end_op = '\0';
10796 as_bad (_("bad register name `%s'"), base_string);
10797 return 0;
10798 }
10799 }
10800
10801 /* If there's an expression beginning the operand, parse it,
10802 assuming displacement_string_start and
10803 displacement_string_end are meaningful. */
10804 if (displacement_string_start != displacement_string_end)
10805 {
10806 if (!i386_displacement (displacement_string_start,
10807 displacement_string_end))
10808 return 0;
10809 }
10810
10811 /* Special case for (%dx) while doing input/output op. */
10812 if (i.base_reg
10813 && i.base_reg->reg_type.bitfield.instance == RegD
10814 && i.base_reg->reg_type.bitfield.word
10815 && i.index_reg == 0
10816 && i.log2_scale_factor == 0
10817 && i.seg[i.mem_operands] == 0
10818 && !operand_type_check (i.types[this_operand], disp))
10819 {
10820 i.types[this_operand] = i.base_reg->reg_type;
10821 return 1;
10822 }
10823
10824 if (i386_index_check (operand_string) == 0)
10825 return 0;
10826 i.flags[this_operand] |= Operand_Mem;
10827 if (i.mem_operands == 0)
10828 i.memop1_string = xstrdup (operand_string);
10829 i.mem_operands++;
10830 }
10831 else
10832 {
10833 /* It's not a memory operand; argh! */
10834 as_bad (_("invalid char %s beginning operand %d `%s'"),
10835 output_invalid (*op_string),
10836 this_operand + 1,
10837 op_string);
10838 return 0;
10839 }
10840 return 1; /* Normal return. */
10841 }
10842 \f
10843 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10844 that an rs_machine_dependent frag may reach. */
10845
10846 unsigned int
10847 i386_frag_max_var (fragS *frag)
10848 {
10849 /* The only relaxable frags are for jumps.
10850 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10851 gas_assert (frag->fr_type == rs_machine_dependent);
10852 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10853 }
10854
10855 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10856 static int
10857 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10858 {
10859 /* STT_GNU_IFUNC symbol must go through PLT. */
10860 if ((symbol_get_bfdsym (fr_symbol)->flags
10861 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10862 return 0;
10863
10864 if (!S_IS_EXTERNAL (fr_symbol))
10865 /* Symbol may be weak or local. */
10866 return !S_IS_WEAK (fr_symbol);
10867
10868 /* Global symbols with non-default visibility can't be preempted. */
10869 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10870 return 1;
10871
10872 if (fr_var != NO_RELOC)
10873 switch ((enum bfd_reloc_code_real) fr_var)
10874 {
10875 case BFD_RELOC_386_PLT32:
10876 case BFD_RELOC_X86_64_PLT32:
10877 /* Symbol with PLT relocation may be preempted. */
10878 return 0;
10879 default:
10880 abort ();
10881 }
10882
10883 /* Global symbols with default visibility in a shared library may be
10884 preempted by another definition. */
10885 return !shared;
10886 }
10887 #endif
10888
10889 /* Return the next non-empty frag. */
10890
10891 static fragS *
10892 i386_next_non_empty_frag (fragS *fragP)
10893 {
10894 /* There may be a frag with a ".fill 0" when there is no room in
10895 the current frag for frag_grow in output_insn. */
10896 for (fragP = fragP->fr_next;
10897 (fragP != NULL
10898 && fragP->fr_type == rs_fill
10899 && fragP->fr_fix == 0);
10900 fragP = fragP->fr_next)
10901 ;
10902 return fragP;
10903 }
10904
10905 /* Return the next jcc frag after BRANCH_PADDING. */
10906
10907 static fragS *
10908 i386_next_jcc_frag (fragS *fragP)
10909 {
10910 if (!fragP)
10911 return NULL;
10912
10913 if (fragP->fr_type == rs_machine_dependent
10914 && (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10915 == BRANCH_PADDING))
10916 {
10917 fragP = i386_next_non_empty_frag (fragP);
10918 if (fragP->fr_type != rs_machine_dependent)
10919 return NULL;
10920 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == COND_JUMP)
10921 return fragP;
10922 }
10923
10924 return NULL;
10925 }
10926
10927 /* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
10928
10929 static void
10930 i386_classify_machine_dependent_frag (fragS *fragP)
10931 {
10932 fragS *cmp_fragP;
10933 fragS *pad_fragP;
10934 fragS *branch_fragP;
10935 fragS *next_fragP;
10936 unsigned int max_prefix_length;
10937
10938 if (fragP->tc_frag_data.classified)
10939 return;
10940
10941 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
10942 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
10943 for (next_fragP = fragP;
10944 next_fragP != NULL;
10945 next_fragP = next_fragP->fr_next)
10946 {
10947 next_fragP->tc_frag_data.classified = 1;
10948 if (next_fragP->fr_type == rs_machine_dependent)
10949 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
10950 {
10951 case BRANCH_PADDING:
10952 /* The BRANCH_PADDING frag must be followed by a branch
10953 frag. */
10954 branch_fragP = i386_next_non_empty_frag (next_fragP);
10955 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10956 break;
10957 case FUSED_JCC_PADDING:
10958 /* Check if this is a fused jcc:
10959 FUSED_JCC_PADDING
10960 CMP like instruction
10961 BRANCH_PADDING
10962 COND_JUMP
10963 */
10964 cmp_fragP = i386_next_non_empty_frag (next_fragP);
10965 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
10966 branch_fragP = i386_next_jcc_frag (pad_fragP);
10967 if (branch_fragP)
10968 {
10969 /* The BRANCH_PADDING frag is merged with the
10970 FUSED_JCC_PADDING frag. */
10971 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10972 /* CMP like instruction size. */
10973 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
10974 frag_wane (pad_fragP);
10975 /* Skip to branch_fragP. */
10976 next_fragP = branch_fragP;
10977 }
10978 else if (next_fragP->tc_frag_data.max_prefix_length)
10979 {
10980 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
10981 a fused jcc. */
10982 next_fragP->fr_subtype
10983 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
10984 next_fragP->tc_frag_data.max_bytes
10985 = next_fragP->tc_frag_data.max_prefix_length;
10986 /* This will be updated in the BRANCH_PREFIX scan. */
10987 next_fragP->tc_frag_data.max_prefix_length = 0;
10988 }
10989 else
10990 frag_wane (next_fragP);
10991 break;
10992 }
10993 }
10994
10995 /* Stop if there is no BRANCH_PREFIX. */
10996 if (!align_branch_prefix_size)
10997 return;
10998
10999 /* Scan for BRANCH_PREFIX. */
11000 for (; fragP != NULL; fragP = fragP->fr_next)
11001 {
11002 if (fragP->fr_type != rs_machine_dependent
11003 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11004 != BRANCH_PREFIX))
11005 continue;
11006
11007 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
11008 COND_JUMP_PREFIX. */
11009 max_prefix_length = 0;
11010 for (next_fragP = fragP;
11011 next_fragP != NULL;
11012 next_fragP = next_fragP->fr_next)
11013 {
11014 if (next_fragP->fr_type == rs_fill)
11015 /* Skip rs_fill frags. */
11016 continue;
11017 else if (next_fragP->fr_type != rs_machine_dependent)
11018 /* Stop for all other frags. */
11019 break;
11020
11021 /* rs_machine_dependent frags. */
11022 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11023 == BRANCH_PREFIX)
11024 {
11025 /* Count BRANCH_PREFIX frags. */
11026 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
11027 {
11028 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
11029 frag_wane (next_fragP);
11030 }
11031 else
11032 max_prefix_length
11033 += next_fragP->tc_frag_data.max_bytes;
11034 }
11035 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11036 == BRANCH_PADDING)
11037 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11038 == FUSED_JCC_PADDING))
11039 {
11040 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
11041 fragP->tc_frag_data.u.padding_fragP = next_fragP;
11042 break;
11043 }
11044 else
11045 /* Stop for other rs_machine_dependent frags. */
11046 break;
11047 }
11048
11049 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11050
11051 /* Skip to the next frag. */
11052 fragP = next_fragP;
11053 }
11054 }
11055
11056 /* Compute padding size for
11057
11058 FUSED_JCC_PADDING
11059 CMP like instruction
11060 BRANCH_PADDING
11061 COND_JUMP/UNCOND_JUMP
11062
11063 or
11064
11065 BRANCH_PADDING
11066 COND_JUMP/UNCOND_JUMP
11067 */
11068
11069 static int
11070 i386_branch_padding_size (fragS *fragP, offsetT address)
11071 {
11072 unsigned int offset, size, padding_size;
11073 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11074
11075 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11076 if (!address)
11077 address = fragP->fr_address;
11078 address += fragP->fr_fix;
11079
11080 /* CMP like instrunction size. */
11081 size = fragP->tc_frag_data.cmp_size;
11082
11083 /* The base size of the branch frag. */
11084 size += branch_fragP->fr_fix;
11085
11086 /* Add opcode and displacement bytes for the rs_machine_dependent
11087 branch frag. */
11088 if (branch_fragP->fr_type == rs_machine_dependent)
11089 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11090
11091 /* Check if branch is within boundary and doesn't end at the last
11092 byte. */
11093 offset = address & ((1U << align_branch_power) - 1);
11094 if ((offset + size) >= (1U << align_branch_power))
11095 /* Padding needed to avoid crossing boundary. */
11096 padding_size = (1U << align_branch_power) - offset;
11097 else
11098 /* No padding needed. */
11099 padding_size = 0;
11100
11101 /* The return value may be saved in tc_frag_data.length which is
11102 unsigned byte. */
11103 if (!fits_in_unsigned_byte (padding_size))
11104 abort ();
11105
11106 return padding_size;
11107 }
11108
11109 /* i386_generic_table_relax_frag()
11110
11111 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11112 grow/shrink padding to align branch frags. Hand others to
11113 relax_frag(). */
11114
11115 long
11116 i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11117 {
11118 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11119 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11120 {
11121 long padding_size = i386_branch_padding_size (fragP, 0);
11122 long grow = padding_size - fragP->tc_frag_data.length;
11123
11124 /* When the BRANCH_PREFIX frag is used, the computed address
11125 must match the actual address and there should be no padding. */
11126 if (fragP->tc_frag_data.padding_address
11127 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11128 || padding_size))
11129 abort ();
11130
11131 /* Update the padding size. */
11132 if (grow)
11133 fragP->tc_frag_data.length = padding_size;
11134
11135 return grow;
11136 }
11137 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11138 {
11139 fragS *padding_fragP, *next_fragP;
11140 long padding_size, left_size, last_size;
11141
11142 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11143 if (!padding_fragP)
11144 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11145 return (fragP->tc_frag_data.length
11146 - fragP->tc_frag_data.last_length);
11147
11148 /* Compute the relative address of the padding frag in the very
11149 first time where the BRANCH_PREFIX frag sizes are zero. */
11150 if (!fragP->tc_frag_data.padding_address)
11151 fragP->tc_frag_data.padding_address
11152 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11153
11154 /* First update the last length from the previous interation. */
11155 left_size = fragP->tc_frag_data.prefix_length;
11156 for (next_fragP = fragP;
11157 next_fragP != padding_fragP;
11158 next_fragP = next_fragP->fr_next)
11159 if (next_fragP->fr_type == rs_machine_dependent
11160 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11161 == BRANCH_PREFIX))
11162 {
11163 if (left_size)
11164 {
11165 int max = next_fragP->tc_frag_data.max_bytes;
11166 if (max)
11167 {
11168 int size;
11169 if (max > left_size)
11170 size = left_size;
11171 else
11172 size = max;
11173 left_size -= size;
11174 next_fragP->tc_frag_data.last_length = size;
11175 }
11176 }
11177 else
11178 next_fragP->tc_frag_data.last_length = 0;
11179 }
11180
11181 /* Check the padding size for the padding frag. */
11182 padding_size = i386_branch_padding_size
11183 (padding_fragP, (fragP->fr_address
11184 + fragP->tc_frag_data.padding_address));
11185
11186 last_size = fragP->tc_frag_data.prefix_length;
11187 /* Check if there is change from the last interation. */
11188 if (padding_size == last_size)
11189 {
11190 /* Update the expected address of the padding frag. */
11191 padding_fragP->tc_frag_data.padding_address
11192 = (fragP->fr_address + padding_size
11193 + fragP->tc_frag_data.padding_address);
11194 return 0;
11195 }
11196
11197 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11198 {
11199 /* No padding if there is no sufficient room. Clear the
11200 expected address of the padding frag. */
11201 padding_fragP->tc_frag_data.padding_address = 0;
11202 padding_size = 0;
11203 }
11204 else
11205 /* Store the expected address of the padding frag. */
11206 padding_fragP->tc_frag_data.padding_address
11207 = (fragP->fr_address + padding_size
11208 + fragP->tc_frag_data.padding_address);
11209
11210 fragP->tc_frag_data.prefix_length = padding_size;
11211
11212 /* Update the length for the current interation. */
11213 left_size = padding_size;
11214 for (next_fragP = fragP;
11215 next_fragP != padding_fragP;
11216 next_fragP = next_fragP->fr_next)
11217 if (next_fragP->fr_type == rs_machine_dependent
11218 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11219 == BRANCH_PREFIX))
11220 {
11221 if (left_size)
11222 {
11223 int max = next_fragP->tc_frag_data.max_bytes;
11224 if (max)
11225 {
11226 int size;
11227 if (max > left_size)
11228 size = left_size;
11229 else
11230 size = max;
11231 left_size -= size;
11232 next_fragP->tc_frag_data.length = size;
11233 }
11234 }
11235 else
11236 next_fragP->tc_frag_data.length = 0;
11237 }
11238
11239 return (fragP->tc_frag_data.length
11240 - fragP->tc_frag_data.last_length);
11241 }
11242 return relax_frag (segment, fragP, stretch);
11243 }
11244
11245 /* md_estimate_size_before_relax()
11246
11247 Called just before relax() for rs_machine_dependent frags. The x86
11248 assembler uses these frags to handle variable size jump
11249 instructions.
11250
11251 Any symbol that is now undefined will not become defined.
11252 Return the correct fr_subtype in the frag.
11253 Return the initial "guess for variable size of frag" to caller.
11254 The guess is actually the growth beyond the fixed part. Whatever
11255 we do to grow the fixed or variable part contributes to our
11256 returned value. */
11257
11258 int
11259 md_estimate_size_before_relax (fragS *fragP, segT segment)
11260 {
11261 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11262 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11263 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11264 {
11265 i386_classify_machine_dependent_frag (fragP);
11266 return fragP->tc_frag_data.length;
11267 }
11268
11269 /* We've already got fragP->fr_subtype right; all we have to do is
11270 check for un-relaxable symbols. On an ELF system, we can't relax
11271 an externally visible symbol, because it may be overridden by a
11272 shared library. */
11273 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
11274 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11275 || (IS_ELF
11276 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11277 fragP->fr_var))
11278 #endif
11279 #if defined (OBJ_COFF) && defined (TE_PE)
11280 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
11281 && S_IS_WEAK (fragP->fr_symbol))
11282 #endif
11283 )
11284 {
11285 /* Symbol is undefined in this segment, or we need to keep a
11286 reloc so that weak symbols can be overridden. */
11287 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
11288 enum bfd_reloc_code_real reloc_type;
11289 unsigned char *opcode;
11290 int old_fr_fix;
11291
11292 if (fragP->fr_var != NO_RELOC)
11293 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
11294 else if (size == 2)
11295 reloc_type = BFD_RELOC_16_PCREL;
11296 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11297 else if (need_plt32_p (fragP->fr_symbol))
11298 reloc_type = BFD_RELOC_X86_64_PLT32;
11299 #endif
11300 else
11301 reloc_type = BFD_RELOC_32_PCREL;
11302
11303 old_fr_fix = fragP->fr_fix;
11304 opcode = (unsigned char *) fragP->fr_opcode;
11305
11306 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
11307 {
11308 case UNCOND_JUMP:
11309 /* Make jmp (0xeb) a (d)word displacement jump. */
11310 opcode[0] = 0xe9;
11311 fragP->fr_fix += size;
11312 fix_new (fragP, old_fr_fix, size,
11313 fragP->fr_symbol,
11314 fragP->fr_offset, 1,
11315 reloc_type);
11316 break;
11317
11318 case COND_JUMP86:
11319 if (size == 2
11320 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
11321 {
11322 /* Negate the condition, and branch past an
11323 unconditional jump. */
11324 opcode[0] ^= 1;
11325 opcode[1] = 3;
11326 /* Insert an unconditional jump. */
11327 opcode[2] = 0xe9;
11328 /* We added two extra opcode bytes, and have a two byte
11329 offset. */
11330 fragP->fr_fix += 2 + 2;
11331 fix_new (fragP, old_fr_fix + 2, 2,
11332 fragP->fr_symbol,
11333 fragP->fr_offset, 1,
11334 reloc_type);
11335 break;
11336 }
11337 /* Fall through. */
11338
11339 case COND_JUMP:
11340 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11341 {
11342 fixS *fixP;
11343
11344 fragP->fr_fix += 1;
11345 fixP = fix_new (fragP, old_fr_fix, 1,
11346 fragP->fr_symbol,
11347 fragP->fr_offset, 1,
11348 BFD_RELOC_8_PCREL);
11349 fixP->fx_signed = 1;
11350 break;
11351 }
11352
11353 /* This changes the byte-displacement jump 0x7N
11354 to the (d)word-displacement jump 0x0f,0x8N. */
11355 opcode[1] = opcode[0] + 0x10;
11356 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11357 /* We've added an opcode byte. */
11358 fragP->fr_fix += 1 + size;
11359 fix_new (fragP, old_fr_fix + 1, size,
11360 fragP->fr_symbol,
11361 fragP->fr_offset, 1,
11362 reloc_type);
11363 break;
11364
11365 default:
11366 BAD_CASE (fragP->fr_subtype);
11367 break;
11368 }
11369 frag_wane (fragP);
11370 return fragP->fr_fix - old_fr_fix;
11371 }
11372
11373 /* Guess size depending on current relax state. Initially the relax
11374 state will correspond to a short jump and we return 1, because
11375 the variable part of the frag (the branch offset) is one byte
11376 long. However, we can relax a section more than once and in that
11377 case we must either set fr_subtype back to the unrelaxed state,
11378 or return the value for the appropriate branch. */
11379 return md_relax_table[fragP->fr_subtype].rlx_length;
11380 }
11381
11382 /* Called after relax() is finished.
11383
11384 In: Address of frag.
11385 fr_type == rs_machine_dependent.
11386 fr_subtype is what the address relaxed to.
11387
11388 Out: Any fixSs and constants are set up.
11389 Caller will turn frag into a ".space 0". */
11390
11391 void
11392 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11393 fragS *fragP)
11394 {
11395 unsigned char *opcode;
11396 unsigned char *where_to_put_displacement = NULL;
11397 offsetT target_address;
11398 offsetT opcode_address;
11399 unsigned int extension = 0;
11400 offsetT displacement_from_opcode_start;
11401
11402 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11403 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
11404 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11405 {
11406 /* Generate nop padding. */
11407 unsigned int size = fragP->tc_frag_data.length;
11408 if (size)
11409 {
11410 if (size > fragP->tc_frag_data.max_bytes)
11411 abort ();
11412
11413 if (flag_debug)
11414 {
11415 const char *msg;
11416 const char *branch = "branch";
11417 const char *prefix = "";
11418 fragS *padding_fragP;
11419 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11420 == BRANCH_PREFIX)
11421 {
11422 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11423 switch (fragP->tc_frag_data.default_prefix)
11424 {
11425 default:
11426 abort ();
11427 break;
11428 case CS_PREFIX_OPCODE:
11429 prefix = " cs";
11430 break;
11431 case DS_PREFIX_OPCODE:
11432 prefix = " ds";
11433 break;
11434 case ES_PREFIX_OPCODE:
11435 prefix = " es";
11436 break;
11437 case FS_PREFIX_OPCODE:
11438 prefix = " fs";
11439 break;
11440 case GS_PREFIX_OPCODE:
11441 prefix = " gs";
11442 break;
11443 case SS_PREFIX_OPCODE:
11444 prefix = " ss";
11445 break;
11446 }
11447 if (padding_fragP)
11448 msg = _("%s:%u: add %d%s at 0x%llx to align "
11449 "%s within %d-byte boundary\n");
11450 else
11451 msg = _("%s:%u: add additional %d%s at 0x%llx to "
11452 "align %s within %d-byte boundary\n");
11453 }
11454 else
11455 {
11456 padding_fragP = fragP;
11457 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
11458 "%s within %d-byte boundary\n");
11459 }
11460
11461 if (padding_fragP)
11462 switch (padding_fragP->tc_frag_data.branch_type)
11463 {
11464 case align_branch_jcc:
11465 branch = "jcc";
11466 break;
11467 case align_branch_fused:
11468 branch = "fused jcc";
11469 break;
11470 case align_branch_jmp:
11471 branch = "jmp";
11472 break;
11473 case align_branch_call:
11474 branch = "call";
11475 break;
11476 case align_branch_indirect:
11477 branch = "indiret branch";
11478 break;
11479 case align_branch_ret:
11480 branch = "ret";
11481 break;
11482 default:
11483 break;
11484 }
11485
11486 fprintf (stdout, msg,
11487 fragP->fr_file, fragP->fr_line, size, prefix,
11488 (long long) fragP->fr_address, branch,
11489 1 << align_branch_power);
11490 }
11491 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11492 memset (fragP->fr_opcode,
11493 fragP->tc_frag_data.default_prefix, size);
11494 else
11495 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
11496 size, 0);
11497 fragP->fr_fix += size;
11498 }
11499 return;
11500 }
11501
11502 opcode = (unsigned char *) fragP->fr_opcode;
11503
11504 /* Address we want to reach in file space. */
11505 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
11506
11507 /* Address opcode resides at in file space. */
11508 opcode_address = fragP->fr_address + fragP->fr_fix;
11509
11510 /* Displacement from opcode start to fill into instruction. */
11511 displacement_from_opcode_start = target_address - opcode_address;
11512
11513 if ((fragP->fr_subtype & BIG) == 0)
11514 {
11515 /* Don't have to change opcode. */
11516 extension = 1; /* 1 opcode + 1 displacement */
11517 where_to_put_displacement = &opcode[1];
11518 }
11519 else
11520 {
11521 if (no_cond_jump_promotion
11522 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
11523 as_warn_where (fragP->fr_file, fragP->fr_line,
11524 _("long jump required"));
11525
11526 switch (fragP->fr_subtype)
11527 {
11528 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
11529 extension = 4; /* 1 opcode + 4 displacement */
11530 opcode[0] = 0xe9;
11531 where_to_put_displacement = &opcode[1];
11532 break;
11533
11534 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
11535 extension = 2; /* 1 opcode + 2 displacement */
11536 opcode[0] = 0xe9;
11537 where_to_put_displacement = &opcode[1];
11538 break;
11539
11540 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
11541 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
11542 extension = 5; /* 2 opcode + 4 displacement */
11543 opcode[1] = opcode[0] + 0x10;
11544 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11545 where_to_put_displacement = &opcode[2];
11546 break;
11547
11548 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
11549 extension = 3; /* 2 opcode + 2 displacement */
11550 opcode[1] = opcode[0] + 0x10;
11551 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11552 where_to_put_displacement = &opcode[2];
11553 break;
11554
11555 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
11556 extension = 4;
11557 opcode[0] ^= 1;
11558 opcode[1] = 3;
11559 opcode[2] = 0xe9;
11560 where_to_put_displacement = &opcode[3];
11561 break;
11562
11563 default:
11564 BAD_CASE (fragP->fr_subtype);
11565 break;
11566 }
11567 }
11568
11569 /* If size if less then four we are sure that the operand fits,
11570 but if it's 4, then it could be that the displacement is larger
11571 then -/+ 2GB. */
11572 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
11573 && object_64bit
11574 && ((addressT) (displacement_from_opcode_start - extension
11575 + ((addressT) 1 << 31))
11576 > (((addressT) 2 << 31) - 1)))
11577 {
11578 as_bad_where (fragP->fr_file, fragP->fr_line,
11579 _("jump target out of range"));
11580 /* Make us emit 0. */
11581 displacement_from_opcode_start = extension;
11582 }
11583 /* Now put displacement after opcode. */
11584 md_number_to_chars ((char *) where_to_put_displacement,
11585 (valueT) (displacement_from_opcode_start - extension),
11586 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
11587 fragP->fr_fix += extension;
11588 }
11589 \f
11590 /* Apply a fixup (fixP) to segment data, once it has been determined
11591 by our caller that we have all the info we need to fix it up.
11592
11593 Parameter valP is the pointer to the value of the bits.
11594
11595 On the 386, immediates, displacements, and data pointers are all in
11596 the same (little-endian) format, so we don't need to care about which
11597 we are handling. */
11598
11599 void
11600 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
11601 {
11602 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
11603 valueT value = *valP;
11604
11605 #if !defined (TE_Mach)
11606 if (fixP->fx_pcrel)
11607 {
11608 switch (fixP->fx_r_type)
11609 {
11610 default:
11611 break;
11612
11613 case BFD_RELOC_64:
11614 fixP->fx_r_type = BFD_RELOC_64_PCREL;
11615 break;
11616 case BFD_RELOC_32:
11617 case BFD_RELOC_X86_64_32S:
11618 fixP->fx_r_type = BFD_RELOC_32_PCREL;
11619 break;
11620 case BFD_RELOC_16:
11621 fixP->fx_r_type = BFD_RELOC_16_PCREL;
11622 break;
11623 case BFD_RELOC_8:
11624 fixP->fx_r_type = BFD_RELOC_8_PCREL;
11625 break;
11626 }
11627 }
11628
11629 if (fixP->fx_addsy != NULL
11630 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
11631 || fixP->fx_r_type == BFD_RELOC_64_PCREL
11632 || fixP->fx_r_type == BFD_RELOC_16_PCREL
11633 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
11634 && !use_rela_relocations)
11635 {
11636 /* This is a hack. There should be a better way to handle this.
11637 This covers for the fact that bfd_install_relocation will
11638 subtract the current location (for partial_inplace, PC relative
11639 relocations); see more below. */
11640 #ifndef OBJ_AOUT
11641 if (IS_ELF
11642 #ifdef TE_PE
11643 || OUTPUT_FLAVOR == bfd_target_coff_flavour
11644 #endif
11645 )
11646 value += fixP->fx_where + fixP->fx_frag->fr_address;
11647 #endif
11648 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11649 if (IS_ELF)
11650 {
11651 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
11652
11653 if ((sym_seg == seg
11654 || (symbol_section_p (fixP->fx_addsy)
11655 && sym_seg != absolute_section))
11656 && !generic_force_reloc (fixP))
11657 {
11658 /* Yes, we add the values in twice. This is because
11659 bfd_install_relocation subtracts them out again. I think
11660 bfd_install_relocation is broken, but I don't dare change
11661 it. FIXME. */
11662 value += fixP->fx_where + fixP->fx_frag->fr_address;
11663 }
11664 }
11665 #endif
11666 #if defined (OBJ_COFF) && defined (TE_PE)
11667 /* For some reason, the PE format does not store a
11668 section address offset for a PC relative symbol. */
11669 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
11670 || S_IS_WEAK (fixP->fx_addsy))
11671 value += md_pcrel_from (fixP);
11672 #endif
11673 }
11674 #if defined (OBJ_COFF) && defined (TE_PE)
11675 if (fixP->fx_addsy != NULL
11676 && S_IS_WEAK (fixP->fx_addsy)
11677 /* PR 16858: Do not modify weak function references. */
11678 && ! fixP->fx_pcrel)
11679 {
11680 #if !defined (TE_PEP)
11681 /* For x86 PE weak function symbols are neither PC-relative
11682 nor do they set S_IS_FUNCTION. So the only reliable way
11683 to detect them is to check the flags of their containing
11684 section. */
11685 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
11686 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
11687 ;
11688 else
11689 #endif
11690 value -= S_GET_VALUE (fixP->fx_addsy);
11691 }
11692 #endif
11693
11694 /* Fix a few things - the dynamic linker expects certain values here,
11695 and we must not disappoint it. */
11696 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11697 if (IS_ELF && fixP->fx_addsy)
11698 switch (fixP->fx_r_type)
11699 {
11700 case BFD_RELOC_386_PLT32:
11701 case BFD_RELOC_X86_64_PLT32:
11702 /* Make the jump instruction point to the address of the operand.
11703 At runtime we merely add the offset to the actual PLT entry.
11704 NB: Subtract the offset size only for jump instructions. */
11705 if (fixP->fx_pcrel)
11706 value = -4;
11707 break;
11708
11709 case BFD_RELOC_386_TLS_GD:
11710 case BFD_RELOC_386_TLS_LDM:
11711 case BFD_RELOC_386_TLS_IE_32:
11712 case BFD_RELOC_386_TLS_IE:
11713 case BFD_RELOC_386_TLS_GOTIE:
11714 case BFD_RELOC_386_TLS_GOTDESC:
11715 case BFD_RELOC_X86_64_TLSGD:
11716 case BFD_RELOC_X86_64_TLSLD:
11717 case BFD_RELOC_X86_64_GOTTPOFF:
11718 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11719 value = 0; /* Fully resolved at runtime. No addend. */
11720 /* Fallthrough */
11721 case BFD_RELOC_386_TLS_LE:
11722 case BFD_RELOC_386_TLS_LDO_32:
11723 case BFD_RELOC_386_TLS_LE_32:
11724 case BFD_RELOC_X86_64_DTPOFF32:
11725 case BFD_RELOC_X86_64_DTPOFF64:
11726 case BFD_RELOC_X86_64_TPOFF32:
11727 case BFD_RELOC_X86_64_TPOFF64:
11728 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11729 break;
11730
11731 case BFD_RELOC_386_TLS_DESC_CALL:
11732 case BFD_RELOC_X86_64_TLSDESC_CALL:
11733 value = 0; /* Fully resolved at runtime. No addend. */
11734 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11735 fixP->fx_done = 0;
11736 return;
11737
11738 case BFD_RELOC_VTABLE_INHERIT:
11739 case BFD_RELOC_VTABLE_ENTRY:
11740 fixP->fx_done = 0;
11741 return;
11742
11743 default:
11744 break;
11745 }
11746 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
11747 *valP = value;
11748 #endif /* !defined (TE_Mach) */
11749
11750 /* Are we finished with this relocation now? */
11751 if (fixP->fx_addsy == NULL)
11752 fixP->fx_done = 1;
11753 #if defined (OBJ_COFF) && defined (TE_PE)
11754 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
11755 {
11756 fixP->fx_done = 0;
11757 /* Remember value for tc_gen_reloc. */
11758 fixP->fx_addnumber = value;
11759 /* Clear out the frag for now. */
11760 value = 0;
11761 }
11762 #endif
11763 else if (use_rela_relocations)
11764 {
11765 fixP->fx_no_overflow = 1;
11766 /* Remember value for tc_gen_reloc. */
11767 fixP->fx_addnumber = value;
11768 value = 0;
11769 }
11770
11771 md_number_to_chars (p, value, fixP->fx_size);
11772 }
11773 \f
11774 const char *
11775 md_atof (int type, char *litP, int *sizeP)
11776 {
11777 /* This outputs the LITTLENUMs in REVERSE order;
11778 in accord with the bigendian 386. */
11779 return ieee_md_atof (type, litP, sizeP, FALSE);
11780 }
11781 \f
11782 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
11783
11784 static char *
11785 output_invalid (int c)
11786 {
11787 if (ISPRINT (c))
11788 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11789 "'%c'", c);
11790 else
11791 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11792 "(0x%x)", (unsigned char) c);
11793 return output_invalid_buf;
11794 }
11795
11796 /* REG_STRING starts *before* REGISTER_PREFIX. */
11797
11798 static const reg_entry *
11799 parse_real_register (char *reg_string, char **end_op)
11800 {
11801 char *s = reg_string;
11802 char *p;
11803 char reg_name_given[MAX_REG_NAME_SIZE + 1];
11804 const reg_entry *r;
11805
11806 /* Skip possible REGISTER_PREFIX and possible whitespace. */
11807 if (*s == REGISTER_PREFIX)
11808 ++s;
11809
11810 if (is_space_char (*s))
11811 ++s;
11812
11813 p = reg_name_given;
11814 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
11815 {
11816 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
11817 return (const reg_entry *) NULL;
11818 s++;
11819 }
11820
11821 /* For naked regs, make sure that we are not dealing with an identifier.
11822 This prevents confusing an identifier like `eax_var' with register
11823 `eax'. */
11824 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
11825 return (const reg_entry *) NULL;
11826
11827 *end_op = s;
11828
11829 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
11830
11831 /* Handle floating point regs, allowing spaces in the (i) part. */
11832 if (r == i386_regtab /* %st is first entry of table */)
11833 {
11834 if (!cpu_arch_flags.bitfield.cpu8087
11835 && !cpu_arch_flags.bitfield.cpu287
11836 && !cpu_arch_flags.bitfield.cpu387)
11837 return (const reg_entry *) NULL;
11838
11839 if (is_space_char (*s))
11840 ++s;
11841 if (*s == '(')
11842 {
11843 ++s;
11844 if (is_space_char (*s))
11845 ++s;
11846 if (*s >= '0' && *s <= '7')
11847 {
11848 int fpr = *s - '0';
11849 ++s;
11850 if (is_space_char (*s))
11851 ++s;
11852 if (*s == ')')
11853 {
11854 *end_op = s + 1;
11855 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
11856 know (r);
11857 return r + fpr;
11858 }
11859 }
11860 /* We have "%st(" then garbage. */
11861 return (const reg_entry *) NULL;
11862 }
11863 }
11864
11865 if (r == NULL || allow_pseudo_reg)
11866 return r;
11867
11868 if (operand_type_all_zero (&r->reg_type))
11869 return (const reg_entry *) NULL;
11870
11871 if ((r->reg_type.bitfield.dword
11872 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
11873 || r->reg_type.bitfield.class == RegCR
11874 || r->reg_type.bitfield.class == RegDR
11875 || r->reg_type.bitfield.class == RegTR)
11876 && !cpu_arch_flags.bitfield.cpui386)
11877 return (const reg_entry *) NULL;
11878
11879 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
11880 return (const reg_entry *) NULL;
11881
11882 if (!cpu_arch_flags.bitfield.cpuavx512f)
11883 {
11884 if (r->reg_type.bitfield.zmmword
11885 || r->reg_type.bitfield.class == RegMask)
11886 return (const reg_entry *) NULL;
11887
11888 if (!cpu_arch_flags.bitfield.cpuavx)
11889 {
11890 if (r->reg_type.bitfield.ymmword)
11891 return (const reg_entry *) NULL;
11892
11893 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
11894 return (const reg_entry *) NULL;
11895 }
11896 }
11897
11898 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
11899 return (const reg_entry *) NULL;
11900
11901 /* Don't allow fake index register unless allow_index_reg isn't 0. */
11902 if (!allow_index_reg && r->reg_num == RegIZ)
11903 return (const reg_entry *) NULL;
11904
11905 /* Upper 16 vector registers are only available with VREX in 64bit
11906 mode, and require EVEX encoding. */
11907 if (r->reg_flags & RegVRex)
11908 {
11909 if (!cpu_arch_flags.bitfield.cpuavx512f
11910 || flag_code != CODE_64BIT)
11911 return (const reg_entry *) NULL;
11912
11913 i.vec_encoding = vex_encoding_evex;
11914 }
11915
11916 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
11917 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
11918 && flag_code != CODE_64BIT)
11919 return (const reg_entry *) NULL;
11920
11921 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
11922 && !intel_syntax)
11923 return (const reg_entry *) NULL;
11924
11925 return r;
11926 }
11927
11928 /* REG_STRING starts *before* REGISTER_PREFIX. */
11929
11930 static const reg_entry *
11931 parse_register (char *reg_string, char **end_op)
11932 {
11933 const reg_entry *r;
11934
11935 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
11936 r = parse_real_register (reg_string, end_op);
11937 else
11938 r = NULL;
11939 if (!r)
11940 {
11941 char *save = input_line_pointer;
11942 char c;
11943 symbolS *symbolP;
11944
11945 input_line_pointer = reg_string;
11946 c = get_symbol_name (&reg_string);
11947 symbolP = symbol_find (reg_string);
11948 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
11949 {
11950 const expressionS *e = symbol_get_value_expression (symbolP);
11951
11952 know (e->X_op == O_register);
11953 know (e->X_add_number >= 0
11954 && (valueT) e->X_add_number < i386_regtab_size);
11955 r = i386_regtab + e->X_add_number;
11956 if ((r->reg_flags & RegVRex))
11957 i.vec_encoding = vex_encoding_evex;
11958 *end_op = input_line_pointer;
11959 }
11960 *input_line_pointer = c;
11961 input_line_pointer = save;
11962 }
11963 return r;
11964 }
11965
11966 int
11967 i386_parse_name (char *name, expressionS *e, char *nextcharP)
11968 {
11969 const reg_entry *r;
11970 char *end = input_line_pointer;
11971
11972 *end = *nextcharP;
11973 r = parse_register (name, &input_line_pointer);
11974 if (r && end <= input_line_pointer)
11975 {
11976 *nextcharP = *input_line_pointer;
11977 *input_line_pointer = 0;
11978 e->X_op = O_register;
11979 e->X_add_number = r - i386_regtab;
11980 return 1;
11981 }
11982 input_line_pointer = end;
11983 *end = 0;
11984 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
11985 }
11986
11987 void
11988 md_operand (expressionS *e)
11989 {
11990 char *end;
11991 const reg_entry *r;
11992
11993 switch (*input_line_pointer)
11994 {
11995 case REGISTER_PREFIX:
11996 r = parse_real_register (input_line_pointer, &end);
11997 if (r)
11998 {
11999 e->X_op = O_register;
12000 e->X_add_number = r - i386_regtab;
12001 input_line_pointer = end;
12002 }
12003 break;
12004
12005 case '[':
12006 gas_assert (intel_syntax);
12007 end = input_line_pointer++;
12008 expression (e);
12009 if (*input_line_pointer == ']')
12010 {
12011 ++input_line_pointer;
12012 e->X_op_symbol = make_expr_symbol (e);
12013 e->X_add_symbol = NULL;
12014 e->X_add_number = 0;
12015 e->X_op = O_index;
12016 }
12017 else
12018 {
12019 e->X_op = O_absent;
12020 input_line_pointer = end;
12021 }
12022 break;
12023 }
12024 }
12025
12026 \f
12027 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12028 const char *md_shortopts = "kVQ:sqnO::";
12029 #else
12030 const char *md_shortopts = "qnO::";
12031 #endif
12032
12033 #define OPTION_32 (OPTION_MD_BASE + 0)
12034 #define OPTION_64 (OPTION_MD_BASE + 1)
12035 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
12036 #define OPTION_MARCH (OPTION_MD_BASE + 3)
12037 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
12038 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
12039 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
12040 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
12041 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
12042 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
12043 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
12044 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
12045 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12046 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12047 #define OPTION_X32 (OPTION_MD_BASE + 14)
12048 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
12049 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12050 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
12051 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
12052 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
12053 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
12054 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
12055 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12056 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
12057 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
12058 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
12059 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
12060 #define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12061 #define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12062 #define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
12063 #define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
12064
12065 struct option md_longopts[] =
12066 {
12067 {"32", no_argument, NULL, OPTION_32},
12068 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12069 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12070 {"64", no_argument, NULL, OPTION_64},
12071 #endif
12072 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12073 {"x32", no_argument, NULL, OPTION_X32},
12074 {"mshared", no_argument, NULL, OPTION_MSHARED},
12075 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
12076 #endif
12077 {"divide", no_argument, NULL, OPTION_DIVIDE},
12078 {"march", required_argument, NULL, OPTION_MARCH},
12079 {"mtune", required_argument, NULL, OPTION_MTUNE},
12080 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12081 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12082 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12083 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
12084 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
12085 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
12086 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
12087 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
12088 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
12089 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
12090 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12091 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
12092 # if defined (TE_PE) || defined (TE_PEP)
12093 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12094 #endif
12095 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
12096 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
12097 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
12098 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
12099 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12100 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12101 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
12102 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
12103 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12104 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
12105 {NULL, no_argument, NULL, 0}
12106 };
12107 size_t md_longopts_size = sizeof (md_longopts);
12108
12109 int
12110 md_parse_option (int c, const char *arg)
12111 {
12112 unsigned int j;
12113 char *arch, *next, *saved, *type;
12114
12115 switch (c)
12116 {
12117 case 'n':
12118 optimize_align_code = 0;
12119 break;
12120
12121 case 'q':
12122 quiet_warnings = 1;
12123 break;
12124
12125 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12126 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12127 should be emitted or not. FIXME: Not implemented. */
12128 case 'Q':
12129 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12130 return 0;
12131 break;
12132
12133 /* -V: SVR4 argument to print version ID. */
12134 case 'V':
12135 print_version_id ();
12136 break;
12137
12138 /* -k: Ignore for FreeBSD compatibility. */
12139 case 'k':
12140 break;
12141
12142 case 's':
12143 /* -s: On i386 Solaris, this tells the native assembler to use
12144 .stab instead of .stab.excl. We always use .stab anyhow. */
12145 break;
12146
12147 case OPTION_MSHARED:
12148 shared = 1;
12149 break;
12150
12151 case OPTION_X86_USED_NOTE:
12152 if (strcasecmp (arg, "yes") == 0)
12153 x86_used_note = 1;
12154 else if (strcasecmp (arg, "no") == 0)
12155 x86_used_note = 0;
12156 else
12157 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12158 break;
12159
12160
12161 #endif
12162 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12163 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12164 case OPTION_64:
12165 {
12166 const char **list, **l;
12167
12168 list = bfd_target_list ();
12169 for (l = list; *l != NULL; l++)
12170 if (CONST_STRNEQ (*l, "elf64-x86-64")
12171 || strcmp (*l, "coff-x86-64") == 0
12172 || strcmp (*l, "pe-x86-64") == 0
12173 || strcmp (*l, "pei-x86-64") == 0
12174 || strcmp (*l, "mach-o-x86-64") == 0)
12175 {
12176 default_arch = "x86_64";
12177 break;
12178 }
12179 if (*l == NULL)
12180 as_fatal (_("no compiled in support for x86_64"));
12181 free (list);
12182 }
12183 break;
12184 #endif
12185
12186 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12187 case OPTION_X32:
12188 if (IS_ELF)
12189 {
12190 const char **list, **l;
12191
12192 list = bfd_target_list ();
12193 for (l = list; *l != NULL; l++)
12194 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12195 {
12196 default_arch = "x86_64:32";
12197 break;
12198 }
12199 if (*l == NULL)
12200 as_fatal (_("no compiled in support for 32bit x86_64"));
12201 free (list);
12202 }
12203 else
12204 as_fatal (_("32bit x86_64 is only supported for ELF"));
12205 break;
12206 #endif
12207
12208 case OPTION_32:
12209 default_arch = "i386";
12210 break;
12211
12212 case OPTION_DIVIDE:
12213 #ifdef SVR4_COMMENT_CHARS
12214 {
12215 char *n, *t;
12216 const char *s;
12217
12218 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
12219 t = n;
12220 for (s = i386_comment_chars; *s != '\0'; s++)
12221 if (*s != '/')
12222 *t++ = *s;
12223 *t = '\0';
12224 i386_comment_chars = n;
12225 }
12226 #endif
12227 break;
12228
12229 case OPTION_MARCH:
12230 saved = xstrdup (arg);
12231 arch = saved;
12232 /* Allow -march=+nosse. */
12233 if (*arch == '+')
12234 arch++;
12235 do
12236 {
12237 if (*arch == '.')
12238 as_fatal (_("invalid -march= option: `%s'"), arg);
12239 next = strchr (arch, '+');
12240 if (next)
12241 *next++ = '\0';
12242 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12243 {
12244 if (strcmp (arch, cpu_arch [j].name) == 0)
12245 {
12246 /* Processor. */
12247 if (! cpu_arch[j].flags.bitfield.cpui386)
12248 continue;
12249
12250 cpu_arch_name = cpu_arch[j].name;
12251 cpu_sub_arch_name = NULL;
12252 cpu_arch_flags = cpu_arch[j].flags;
12253 cpu_arch_isa = cpu_arch[j].type;
12254 cpu_arch_isa_flags = cpu_arch[j].flags;
12255 if (!cpu_arch_tune_set)
12256 {
12257 cpu_arch_tune = cpu_arch_isa;
12258 cpu_arch_tune_flags = cpu_arch_isa_flags;
12259 }
12260 break;
12261 }
12262 else if (*cpu_arch [j].name == '.'
12263 && strcmp (arch, cpu_arch [j].name + 1) == 0)
12264 {
12265 /* ISA extension. */
12266 i386_cpu_flags flags;
12267
12268 flags = cpu_flags_or (cpu_arch_flags,
12269 cpu_arch[j].flags);
12270
12271 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12272 {
12273 if (cpu_sub_arch_name)
12274 {
12275 char *name = cpu_sub_arch_name;
12276 cpu_sub_arch_name = concat (name,
12277 cpu_arch[j].name,
12278 (const char *) NULL);
12279 free (name);
12280 }
12281 else
12282 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
12283 cpu_arch_flags = flags;
12284 cpu_arch_isa_flags = flags;
12285 }
12286 else
12287 cpu_arch_isa_flags
12288 = cpu_flags_or (cpu_arch_isa_flags,
12289 cpu_arch[j].flags);
12290 break;
12291 }
12292 }
12293
12294 if (j >= ARRAY_SIZE (cpu_arch))
12295 {
12296 /* Disable an ISA extension. */
12297 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12298 if (strcmp (arch, cpu_noarch [j].name) == 0)
12299 {
12300 i386_cpu_flags flags;
12301
12302 flags = cpu_flags_and_not (cpu_arch_flags,
12303 cpu_noarch[j].flags);
12304 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12305 {
12306 if (cpu_sub_arch_name)
12307 {
12308 char *name = cpu_sub_arch_name;
12309 cpu_sub_arch_name = concat (arch,
12310 (const char *) NULL);
12311 free (name);
12312 }
12313 else
12314 cpu_sub_arch_name = xstrdup (arch);
12315 cpu_arch_flags = flags;
12316 cpu_arch_isa_flags = flags;
12317 }
12318 break;
12319 }
12320
12321 if (j >= ARRAY_SIZE (cpu_noarch))
12322 j = ARRAY_SIZE (cpu_arch);
12323 }
12324
12325 if (j >= ARRAY_SIZE (cpu_arch))
12326 as_fatal (_("invalid -march= option: `%s'"), arg);
12327
12328 arch = next;
12329 }
12330 while (next != NULL);
12331 free (saved);
12332 break;
12333
12334 case OPTION_MTUNE:
12335 if (*arg == '.')
12336 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12337 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12338 {
12339 if (strcmp (arg, cpu_arch [j].name) == 0)
12340 {
12341 cpu_arch_tune_set = 1;
12342 cpu_arch_tune = cpu_arch [j].type;
12343 cpu_arch_tune_flags = cpu_arch[j].flags;
12344 break;
12345 }
12346 }
12347 if (j >= ARRAY_SIZE (cpu_arch))
12348 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12349 break;
12350
12351 case OPTION_MMNEMONIC:
12352 if (strcasecmp (arg, "att") == 0)
12353 intel_mnemonic = 0;
12354 else if (strcasecmp (arg, "intel") == 0)
12355 intel_mnemonic = 1;
12356 else
12357 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
12358 break;
12359
12360 case OPTION_MSYNTAX:
12361 if (strcasecmp (arg, "att") == 0)
12362 intel_syntax = 0;
12363 else if (strcasecmp (arg, "intel") == 0)
12364 intel_syntax = 1;
12365 else
12366 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
12367 break;
12368
12369 case OPTION_MINDEX_REG:
12370 allow_index_reg = 1;
12371 break;
12372
12373 case OPTION_MNAKED_REG:
12374 allow_naked_reg = 1;
12375 break;
12376
12377 case OPTION_MSSE2AVX:
12378 sse2avx = 1;
12379 break;
12380
12381 case OPTION_MSSE_CHECK:
12382 if (strcasecmp (arg, "error") == 0)
12383 sse_check = check_error;
12384 else if (strcasecmp (arg, "warning") == 0)
12385 sse_check = check_warning;
12386 else if (strcasecmp (arg, "none") == 0)
12387 sse_check = check_none;
12388 else
12389 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
12390 break;
12391
12392 case OPTION_MOPERAND_CHECK:
12393 if (strcasecmp (arg, "error") == 0)
12394 operand_check = check_error;
12395 else if (strcasecmp (arg, "warning") == 0)
12396 operand_check = check_warning;
12397 else if (strcasecmp (arg, "none") == 0)
12398 operand_check = check_none;
12399 else
12400 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
12401 break;
12402
12403 case OPTION_MAVXSCALAR:
12404 if (strcasecmp (arg, "128") == 0)
12405 avxscalar = vex128;
12406 else if (strcasecmp (arg, "256") == 0)
12407 avxscalar = vex256;
12408 else
12409 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
12410 break;
12411
12412 case OPTION_MVEXWIG:
12413 if (strcmp (arg, "0") == 0)
12414 vexwig = vexw0;
12415 else if (strcmp (arg, "1") == 0)
12416 vexwig = vexw1;
12417 else
12418 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
12419 break;
12420
12421 case OPTION_MADD_BND_PREFIX:
12422 add_bnd_prefix = 1;
12423 break;
12424
12425 case OPTION_MEVEXLIG:
12426 if (strcmp (arg, "128") == 0)
12427 evexlig = evexl128;
12428 else if (strcmp (arg, "256") == 0)
12429 evexlig = evexl256;
12430 else if (strcmp (arg, "512") == 0)
12431 evexlig = evexl512;
12432 else
12433 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
12434 break;
12435
12436 case OPTION_MEVEXRCIG:
12437 if (strcmp (arg, "rne") == 0)
12438 evexrcig = rne;
12439 else if (strcmp (arg, "rd") == 0)
12440 evexrcig = rd;
12441 else if (strcmp (arg, "ru") == 0)
12442 evexrcig = ru;
12443 else if (strcmp (arg, "rz") == 0)
12444 evexrcig = rz;
12445 else
12446 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
12447 break;
12448
12449 case OPTION_MEVEXWIG:
12450 if (strcmp (arg, "0") == 0)
12451 evexwig = evexw0;
12452 else if (strcmp (arg, "1") == 0)
12453 evexwig = evexw1;
12454 else
12455 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
12456 break;
12457
12458 # if defined (TE_PE) || defined (TE_PEP)
12459 case OPTION_MBIG_OBJ:
12460 use_big_obj = 1;
12461 break;
12462 #endif
12463
12464 case OPTION_MOMIT_LOCK_PREFIX:
12465 if (strcasecmp (arg, "yes") == 0)
12466 omit_lock_prefix = 1;
12467 else if (strcasecmp (arg, "no") == 0)
12468 omit_lock_prefix = 0;
12469 else
12470 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
12471 break;
12472
12473 case OPTION_MFENCE_AS_LOCK_ADD:
12474 if (strcasecmp (arg, "yes") == 0)
12475 avoid_fence = 1;
12476 else if (strcasecmp (arg, "no") == 0)
12477 avoid_fence = 0;
12478 else
12479 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
12480 break;
12481
12482 case OPTION_MRELAX_RELOCATIONS:
12483 if (strcasecmp (arg, "yes") == 0)
12484 generate_relax_relocations = 1;
12485 else if (strcasecmp (arg, "no") == 0)
12486 generate_relax_relocations = 0;
12487 else
12488 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
12489 break;
12490
12491 case OPTION_MALIGN_BRANCH_BOUNDARY:
12492 {
12493 char *end;
12494 long int align = strtoul (arg, &end, 0);
12495 if (*end == '\0')
12496 {
12497 if (align == 0)
12498 {
12499 align_branch_power = 0;
12500 break;
12501 }
12502 else if (align >= 16)
12503 {
12504 int align_power;
12505 for (align_power = 0;
12506 (align & 1) == 0;
12507 align >>= 1, align_power++)
12508 continue;
12509 /* Limit alignment power to 31. */
12510 if (align == 1 && align_power < 32)
12511 {
12512 align_branch_power = align_power;
12513 break;
12514 }
12515 }
12516 }
12517 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
12518 }
12519 break;
12520
12521 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
12522 {
12523 char *end;
12524 int align = strtoul (arg, &end, 0);
12525 /* Some processors only support 5 prefixes. */
12526 if (*end == '\0' && align >= 0 && align < 6)
12527 {
12528 align_branch_prefix_size = align;
12529 break;
12530 }
12531 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
12532 arg);
12533 }
12534 break;
12535
12536 case OPTION_MALIGN_BRANCH:
12537 align_branch = 0;
12538 saved = xstrdup (arg);
12539 type = saved;
12540 do
12541 {
12542 next = strchr (type, '+');
12543 if (next)
12544 *next++ = '\0';
12545 if (strcasecmp (type, "jcc") == 0)
12546 align_branch |= align_branch_jcc_bit;
12547 else if (strcasecmp (type, "fused") == 0)
12548 align_branch |= align_branch_fused_bit;
12549 else if (strcasecmp (type, "jmp") == 0)
12550 align_branch |= align_branch_jmp_bit;
12551 else if (strcasecmp (type, "call") == 0)
12552 align_branch |= align_branch_call_bit;
12553 else if (strcasecmp (type, "ret") == 0)
12554 align_branch |= align_branch_ret_bit;
12555 else if (strcasecmp (type, "indirect") == 0)
12556 align_branch |= align_branch_indirect_bit;
12557 else
12558 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
12559 type = next;
12560 }
12561 while (next != NULL);
12562 free (saved);
12563 break;
12564
12565 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
12566 align_branch_power = 5;
12567 align_branch_prefix_size = 5;
12568 align_branch = (align_branch_jcc_bit
12569 | align_branch_fused_bit
12570 | align_branch_jmp_bit);
12571 break;
12572
12573 case OPTION_MAMD64:
12574 isa64 = amd64;
12575 break;
12576
12577 case OPTION_MINTEL64:
12578 isa64 = intel64;
12579 break;
12580
12581 case 'O':
12582 if (arg == NULL)
12583 {
12584 optimize = 1;
12585 /* Turn off -Os. */
12586 optimize_for_space = 0;
12587 }
12588 else if (*arg == 's')
12589 {
12590 optimize_for_space = 1;
12591 /* Turn on all encoding optimizations. */
12592 optimize = INT_MAX;
12593 }
12594 else
12595 {
12596 optimize = atoi (arg);
12597 /* Turn off -Os. */
12598 optimize_for_space = 0;
12599 }
12600 break;
12601
12602 default:
12603 return 0;
12604 }
12605 return 1;
12606 }
12607
12608 #define MESSAGE_TEMPLATE \
12609 " "
12610
12611 static char *
12612 output_message (FILE *stream, char *p, char *message, char *start,
12613 int *left_p, const char *name, int len)
12614 {
12615 int size = sizeof (MESSAGE_TEMPLATE);
12616 int left = *left_p;
12617
12618 /* Reserve 2 spaces for ", " or ",\0" */
12619 left -= len + 2;
12620
12621 /* Check if there is any room. */
12622 if (left >= 0)
12623 {
12624 if (p != start)
12625 {
12626 *p++ = ',';
12627 *p++ = ' ';
12628 }
12629 p = mempcpy (p, name, len);
12630 }
12631 else
12632 {
12633 /* Output the current message now and start a new one. */
12634 *p++ = ',';
12635 *p = '\0';
12636 fprintf (stream, "%s\n", message);
12637 p = start;
12638 left = size - (start - message) - len - 2;
12639
12640 gas_assert (left >= 0);
12641
12642 p = mempcpy (p, name, len);
12643 }
12644
12645 *left_p = left;
12646 return p;
12647 }
12648
12649 static void
12650 show_arch (FILE *stream, int ext, int check)
12651 {
12652 static char message[] = MESSAGE_TEMPLATE;
12653 char *start = message + 27;
12654 char *p;
12655 int size = sizeof (MESSAGE_TEMPLATE);
12656 int left;
12657 const char *name;
12658 int len;
12659 unsigned int j;
12660
12661 p = start;
12662 left = size - (start - message);
12663 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12664 {
12665 /* Should it be skipped? */
12666 if (cpu_arch [j].skip)
12667 continue;
12668
12669 name = cpu_arch [j].name;
12670 len = cpu_arch [j].len;
12671 if (*name == '.')
12672 {
12673 /* It is an extension. Skip if we aren't asked to show it. */
12674 if (ext)
12675 {
12676 name++;
12677 len--;
12678 }
12679 else
12680 continue;
12681 }
12682 else if (ext)
12683 {
12684 /* It is an processor. Skip if we show only extension. */
12685 continue;
12686 }
12687 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
12688 {
12689 /* It is an impossible processor - skip. */
12690 continue;
12691 }
12692
12693 p = output_message (stream, p, message, start, &left, name, len);
12694 }
12695
12696 /* Display disabled extensions. */
12697 if (ext)
12698 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12699 {
12700 name = cpu_noarch [j].name;
12701 len = cpu_noarch [j].len;
12702 p = output_message (stream, p, message, start, &left, name,
12703 len);
12704 }
12705
12706 *p = '\0';
12707 fprintf (stream, "%s\n", message);
12708 }
12709
12710 void
12711 md_show_usage (FILE *stream)
12712 {
12713 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12714 fprintf (stream, _("\
12715 -Qy, -Qn ignored\n\
12716 -V print assembler version number\n\
12717 -k ignored\n"));
12718 #endif
12719 fprintf (stream, _("\
12720 -n Do not optimize code alignment\n\
12721 -q quieten some warnings\n"));
12722 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12723 fprintf (stream, _("\
12724 -s ignored\n"));
12725 #endif
12726 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12727 || defined (TE_PE) || defined (TE_PEP))
12728 fprintf (stream, _("\
12729 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
12730 #endif
12731 #ifdef SVR4_COMMENT_CHARS
12732 fprintf (stream, _("\
12733 --divide do not treat `/' as a comment character\n"));
12734 #else
12735 fprintf (stream, _("\
12736 --divide ignored\n"));
12737 #endif
12738 fprintf (stream, _("\
12739 -march=CPU[,+EXTENSION...]\n\
12740 generate code for CPU and EXTENSION, CPU is one of:\n"));
12741 show_arch (stream, 0, 1);
12742 fprintf (stream, _("\
12743 EXTENSION is combination of:\n"));
12744 show_arch (stream, 1, 0);
12745 fprintf (stream, _("\
12746 -mtune=CPU optimize for CPU, CPU is one of:\n"));
12747 show_arch (stream, 0, 0);
12748 fprintf (stream, _("\
12749 -msse2avx encode SSE instructions with VEX prefix\n"));
12750 fprintf (stream, _("\
12751 -msse-check=[none|error|warning] (default: warning)\n\
12752 check SSE instructions\n"));
12753 fprintf (stream, _("\
12754 -moperand-check=[none|error|warning] (default: warning)\n\
12755 check operand combinations for validity\n"));
12756 fprintf (stream, _("\
12757 -mavxscalar=[128|256] (default: 128)\n\
12758 encode scalar AVX instructions with specific vector\n\
12759 length\n"));
12760 fprintf (stream, _("\
12761 -mvexwig=[0|1] (default: 0)\n\
12762 encode VEX instructions with specific VEX.W value\n\
12763 for VEX.W bit ignored instructions\n"));
12764 fprintf (stream, _("\
12765 -mevexlig=[128|256|512] (default: 128)\n\
12766 encode scalar EVEX instructions with specific vector\n\
12767 length\n"));
12768 fprintf (stream, _("\
12769 -mevexwig=[0|1] (default: 0)\n\
12770 encode EVEX instructions with specific EVEX.W value\n\
12771 for EVEX.W bit ignored instructions\n"));
12772 fprintf (stream, _("\
12773 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
12774 encode EVEX instructions with specific EVEX.RC value\n\
12775 for SAE-only ignored instructions\n"));
12776 fprintf (stream, _("\
12777 -mmnemonic=[att|intel] "));
12778 if (SYSV386_COMPAT)
12779 fprintf (stream, _("(default: att)\n"));
12780 else
12781 fprintf (stream, _("(default: intel)\n"));
12782 fprintf (stream, _("\
12783 use AT&T/Intel mnemonic\n"));
12784 fprintf (stream, _("\
12785 -msyntax=[att|intel] (default: att)\n\
12786 use AT&T/Intel syntax\n"));
12787 fprintf (stream, _("\
12788 -mindex-reg support pseudo index registers\n"));
12789 fprintf (stream, _("\
12790 -mnaked-reg don't require `%%' prefix for registers\n"));
12791 fprintf (stream, _("\
12792 -madd-bnd-prefix add BND prefix for all valid branches\n"));
12793 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12794 fprintf (stream, _("\
12795 -mshared disable branch optimization for shared code\n"));
12796 fprintf (stream, _("\
12797 -mx86-used-note=[no|yes] "));
12798 if (DEFAULT_X86_USED_NOTE)
12799 fprintf (stream, _("(default: yes)\n"));
12800 else
12801 fprintf (stream, _("(default: no)\n"));
12802 fprintf (stream, _("\
12803 generate x86 used ISA and feature properties\n"));
12804 #endif
12805 #if defined (TE_PE) || defined (TE_PEP)
12806 fprintf (stream, _("\
12807 -mbig-obj generate big object files\n"));
12808 #endif
12809 fprintf (stream, _("\
12810 -momit-lock-prefix=[no|yes] (default: no)\n\
12811 strip all lock prefixes\n"));
12812 fprintf (stream, _("\
12813 -mfence-as-lock-add=[no|yes] (default: no)\n\
12814 encode lfence, mfence and sfence as\n\
12815 lock addl $0x0, (%%{re}sp)\n"));
12816 fprintf (stream, _("\
12817 -mrelax-relocations=[no|yes] "));
12818 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
12819 fprintf (stream, _("(default: yes)\n"));
12820 else
12821 fprintf (stream, _("(default: no)\n"));
12822 fprintf (stream, _("\
12823 generate relax relocations\n"));
12824 fprintf (stream, _("\
12825 -malign-branch-boundary=NUM (default: 0)\n\
12826 align branches within NUM byte boundary\n"));
12827 fprintf (stream, _("\
12828 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
12829 TYPE is combination of jcc, fused, jmp, call, ret,\n\
12830 indirect\n\
12831 specify types of branches to align\n"));
12832 fprintf (stream, _("\
12833 -malign-branch-prefix-size=NUM (default: 5)\n\
12834 align branches with NUM prefixes per instruction\n"));
12835 fprintf (stream, _("\
12836 -mbranches-within-32B-boundaries\n\
12837 align branches within 32 byte boundary\n"));
12838 fprintf (stream, _("\
12839 -mamd64 accept only AMD64 ISA [default]\n"));
12840 fprintf (stream, _("\
12841 -mintel64 accept only Intel64 ISA\n"));
12842 }
12843
12844 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
12845 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12846 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12847
12848 /* Pick the target format to use. */
12849
12850 const char *
12851 i386_target_format (void)
12852 {
12853 if (!strncmp (default_arch, "x86_64", 6))
12854 {
12855 update_code_flag (CODE_64BIT, 1);
12856 if (default_arch[6] == '\0')
12857 x86_elf_abi = X86_64_ABI;
12858 else
12859 x86_elf_abi = X86_64_X32_ABI;
12860 }
12861 else if (!strcmp (default_arch, "i386"))
12862 update_code_flag (CODE_32BIT, 1);
12863 else if (!strcmp (default_arch, "iamcu"))
12864 {
12865 update_code_flag (CODE_32BIT, 1);
12866 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
12867 {
12868 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
12869 cpu_arch_name = "iamcu";
12870 cpu_sub_arch_name = NULL;
12871 cpu_arch_flags = iamcu_flags;
12872 cpu_arch_isa = PROCESSOR_IAMCU;
12873 cpu_arch_isa_flags = iamcu_flags;
12874 if (!cpu_arch_tune_set)
12875 {
12876 cpu_arch_tune = cpu_arch_isa;
12877 cpu_arch_tune_flags = cpu_arch_isa_flags;
12878 }
12879 }
12880 else if (cpu_arch_isa != PROCESSOR_IAMCU)
12881 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
12882 cpu_arch_name);
12883 }
12884 else
12885 as_fatal (_("unknown architecture"));
12886
12887 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
12888 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12889 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
12890 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12891
12892 switch (OUTPUT_FLAVOR)
12893 {
12894 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
12895 case bfd_target_aout_flavour:
12896 return AOUT_TARGET_FORMAT;
12897 #endif
12898 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
12899 # if defined (TE_PE) || defined (TE_PEP)
12900 case bfd_target_coff_flavour:
12901 if (flag_code == CODE_64BIT)
12902 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
12903 else
12904 return "pe-i386";
12905 # elif defined (TE_GO32)
12906 case bfd_target_coff_flavour:
12907 return "coff-go32";
12908 # else
12909 case bfd_target_coff_flavour:
12910 return "coff-i386";
12911 # endif
12912 #endif
12913 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12914 case bfd_target_elf_flavour:
12915 {
12916 const char *format;
12917
12918 switch (x86_elf_abi)
12919 {
12920 default:
12921 format = ELF_TARGET_FORMAT;
12922 #ifndef TE_SOLARIS
12923 tls_get_addr = "___tls_get_addr";
12924 #endif
12925 break;
12926 case X86_64_ABI:
12927 use_rela_relocations = 1;
12928 object_64bit = 1;
12929 #ifndef TE_SOLARIS
12930 tls_get_addr = "__tls_get_addr";
12931 #endif
12932 format = ELF_TARGET_FORMAT64;
12933 break;
12934 case X86_64_X32_ABI:
12935 use_rela_relocations = 1;
12936 object_64bit = 1;
12937 #ifndef TE_SOLARIS
12938 tls_get_addr = "__tls_get_addr";
12939 #endif
12940 disallow_64bit_reloc = 1;
12941 format = ELF_TARGET_FORMAT32;
12942 break;
12943 }
12944 if (cpu_arch_isa == PROCESSOR_L1OM)
12945 {
12946 if (x86_elf_abi != X86_64_ABI)
12947 as_fatal (_("Intel L1OM is 64bit only"));
12948 return ELF_TARGET_L1OM_FORMAT;
12949 }
12950 else if (cpu_arch_isa == PROCESSOR_K1OM)
12951 {
12952 if (x86_elf_abi != X86_64_ABI)
12953 as_fatal (_("Intel K1OM is 64bit only"));
12954 return ELF_TARGET_K1OM_FORMAT;
12955 }
12956 else if (cpu_arch_isa == PROCESSOR_IAMCU)
12957 {
12958 if (x86_elf_abi != I386_ABI)
12959 as_fatal (_("Intel MCU is 32bit only"));
12960 return ELF_TARGET_IAMCU_FORMAT;
12961 }
12962 else
12963 return format;
12964 }
12965 #endif
12966 #if defined (OBJ_MACH_O)
12967 case bfd_target_mach_o_flavour:
12968 if (flag_code == CODE_64BIT)
12969 {
12970 use_rela_relocations = 1;
12971 object_64bit = 1;
12972 return "mach-o-x86-64";
12973 }
12974 else
12975 return "mach-o-i386";
12976 #endif
12977 default:
12978 abort ();
12979 return NULL;
12980 }
12981 }
12982
12983 #endif /* OBJ_MAYBE_ more than one */
12984 \f
12985 symbolS *
12986 md_undefined_symbol (char *name)
12987 {
12988 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
12989 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
12990 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
12991 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
12992 {
12993 if (!GOT_symbol)
12994 {
12995 if (symbol_find (name))
12996 as_bad (_("GOT already in symbol table"));
12997 GOT_symbol = symbol_new (name, undefined_section,
12998 (valueT) 0, &zero_address_frag);
12999 };
13000 return GOT_symbol;
13001 }
13002 return 0;
13003 }
13004
13005 /* Round up a section size to the appropriate boundary. */
13006
13007 valueT
13008 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
13009 {
13010 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
13011 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
13012 {
13013 /* For a.out, force the section size to be aligned. If we don't do
13014 this, BFD will align it for us, but it will not write out the
13015 final bytes of the section. This may be a bug in BFD, but it is
13016 easier to fix it here since that is how the other a.out targets
13017 work. */
13018 int align;
13019
13020 align = bfd_section_alignment (segment);
13021 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
13022 }
13023 #endif
13024
13025 return size;
13026 }
13027
13028 /* On the i386, PC-relative offsets are relative to the start of the
13029 next instruction. That is, the address of the offset, plus its
13030 size, since the offset is always the last part of the insn. */
13031
13032 long
13033 md_pcrel_from (fixS *fixP)
13034 {
13035 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
13036 }
13037
13038 #ifndef I386COFF
13039
13040 static void
13041 s_bss (int ignore ATTRIBUTE_UNUSED)
13042 {
13043 int temp;
13044
13045 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13046 if (IS_ELF)
13047 obj_elf_section_change_hook ();
13048 #endif
13049 temp = get_absolute_expression ();
13050 subseg_set (bss_section, (subsegT) temp);
13051 demand_empty_rest_of_line ();
13052 }
13053
13054 #endif
13055
13056 /* Remember constant directive. */
13057
13058 void
13059 i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13060 {
13061 if (last_insn.kind != last_insn_directive
13062 && (bfd_section_flags (now_seg) & SEC_CODE))
13063 {
13064 last_insn.seg = now_seg;
13065 last_insn.kind = last_insn_directive;
13066 last_insn.name = "constant directive";
13067 last_insn.file = as_where (&last_insn.line);
13068 }
13069 }
13070
13071 void
13072 i386_validate_fix (fixS *fixp)
13073 {
13074 if (fixp->fx_subsy)
13075 {
13076 if (fixp->fx_subsy == GOT_symbol)
13077 {
13078 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13079 {
13080 if (!object_64bit)
13081 abort ();
13082 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13083 if (fixp->fx_tcbit2)
13084 fixp->fx_r_type = (fixp->fx_tcbit
13085 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13086 : BFD_RELOC_X86_64_GOTPCRELX);
13087 else
13088 #endif
13089 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13090 }
13091 else
13092 {
13093 if (!object_64bit)
13094 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13095 else
13096 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13097 }
13098 fixp->fx_subsy = 0;
13099 }
13100 }
13101 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13102 else if (!object_64bit)
13103 {
13104 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13105 && fixp->fx_tcbit2)
13106 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13107 }
13108 #endif
13109 }
13110
13111 arelent *
13112 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
13113 {
13114 arelent *rel;
13115 bfd_reloc_code_real_type code;
13116
13117 switch (fixp->fx_r_type)
13118 {
13119 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13120 case BFD_RELOC_SIZE32:
13121 case BFD_RELOC_SIZE64:
13122 if (S_IS_DEFINED (fixp->fx_addsy)
13123 && !S_IS_EXTERNAL (fixp->fx_addsy))
13124 {
13125 /* Resolve size relocation against local symbol to size of
13126 the symbol plus addend. */
13127 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13128 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13129 && !fits_in_unsigned_long (value))
13130 as_bad_where (fixp->fx_file, fixp->fx_line,
13131 _("symbol size computation overflow"));
13132 fixp->fx_addsy = NULL;
13133 fixp->fx_subsy = NULL;
13134 md_apply_fix (fixp, (valueT *) &value, NULL);
13135 return NULL;
13136 }
13137 #endif
13138 /* Fall through. */
13139
13140 case BFD_RELOC_X86_64_PLT32:
13141 case BFD_RELOC_X86_64_GOT32:
13142 case BFD_RELOC_X86_64_GOTPCREL:
13143 case BFD_RELOC_X86_64_GOTPCRELX:
13144 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13145 case BFD_RELOC_386_PLT32:
13146 case BFD_RELOC_386_GOT32:
13147 case BFD_RELOC_386_GOT32X:
13148 case BFD_RELOC_386_GOTOFF:
13149 case BFD_RELOC_386_GOTPC:
13150 case BFD_RELOC_386_TLS_GD:
13151 case BFD_RELOC_386_TLS_LDM:
13152 case BFD_RELOC_386_TLS_LDO_32:
13153 case BFD_RELOC_386_TLS_IE_32:
13154 case BFD_RELOC_386_TLS_IE:
13155 case BFD_RELOC_386_TLS_GOTIE:
13156 case BFD_RELOC_386_TLS_LE_32:
13157 case BFD_RELOC_386_TLS_LE:
13158 case BFD_RELOC_386_TLS_GOTDESC:
13159 case BFD_RELOC_386_TLS_DESC_CALL:
13160 case BFD_RELOC_X86_64_TLSGD:
13161 case BFD_RELOC_X86_64_TLSLD:
13162 case BFD_RELOC_X86_64_DTPOFF32:
13163 case BFD_RELOC_X86_64_DTPOFF64:
13164 case BFD_RELOC_X86_64_GOTTPOFF:
13165 case BFD_RELOC_X86_64_TPOFF32:
13166 case BFD_RELOC_X86_64_TPOFF64:
13167 case BFD_RELOC_X86_64_GOTOFF64:
13168 case BFD_RELOC_X86_64_GOTPC32:
13169 case BFD_RELOC_X86_64_GOT64:
13170 case BFD_RELOC_X86_64_GOTPCREL64:
13171 case BFD_RELOC_X86_64_GOTPC64:
13172 case BFD_RELOC_X86_64_GOTPLT64:
13173 case BFD_RELOC_X86_64_PLTOFF64:
13174 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13175 case BFD_RELOC_X86_64_TLSDESC_CALL:
13176 case BFD_RELOC_RVA:
13177 case BFD_RELOC_VTABLE_ENTRY:
13178 case BFD_RELOC_VTABLE_INHERIT:
13179 #ifdef TE_PE
13180 case BFD_RELOC_32_SECREL:
13181 #endif
13182 code = fixp->fx_r_type;
13183 break;
13184 case BFD_RELOC_X86_64_32S:
13185 if (!fixp->fx_pcrel)
13186 {
13187 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13188 code = fixp->fx_r_type;
13189 break;
13190 }
13191 /* Fall through. */
13192 default:
13193 if (fixp->fx_pcrel)
13194 {
13195 switch (fixp->fx_size)
13196 {
13197 default:
13198 as_bad_where (fixp->fx_file, fixp->fx_line,
13199 _("can not do %d byte pc-relative relocation"),
13200 fixp->fx_size);
13201 code = BFD_RELOC_32_PCREL;
13202 break;
13203 case 1: code = BFD_RELOC_8_PCREL; break;
13204 case 2: code = BFD_RELOC_16_PCREL; break;
13205 case 4: code = BFD_RELOC_32_PCREL; break;
13206 #ifdef BFD64
13207 case 8: code = BFD_RELOC_64_PCREL; break;
13208 #endif
13209 }
13210 }
13211 else
13212 {
13213 switch (fixp->fx_size)
13214 {
13215 default:
13216 as_bad_where (fixp->fx_file, fixp->fx_line,
13217 _("can not do %d byte relocation"),
13218 fixp->fx_size);
13219 code = BFD_RELOC_32;
13220 break;
13221 case 1: code = BFD_RELOC_8; break;
13222 case 2: code = BFD_RELOC_16; break;
13223 case 4: code = BFD_RELOC_32; break;
13224 #ifdef BFD64
13225 case 8: code = BFD_RELOC_64; break;
13226 #endif
13227 }
13228 }
13229 break;
13230 }
13231
13232 if ((code == BFD_RELOC_32
13233 || code == BFD_RELOC_32_PCREL
13234 || code == BFD_RELOC_X86_64_32S)
13235 && GOT_symbol
13236 && fixp->fx_addsy == GOT_symbol)
13237 {
13238 if (!object_64bit)
13239 code = BFD_RELOC_386_GOTPC;
13240 else
13241 code = BFD_RELOC_X86_64_GOTPC32;
13242 }
13243 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13244 && GOT_symbol
13245 && fixp->fx_addsy == GOT_symbol)
13246 {
13247 code = BFD_RELOC_X86_64_GOTPC64;
13248 }
13249
13250 rel = XNEW (arelent);
13251 rel->sym_ptr_ptr = XNEW (asymbol *);
13252 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
13253
13254 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
13255
13256 if (!use_rela_relocations)
13257 {
13258 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13259 vtable entry to be used in the relocation's section offset. */
13260 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13261 rel->address = fixp->fx_offset;
13262 #if defined (OBJ_COFF) && defined (TE_PE)
13263 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13264 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13265 else
13266 #endif
13267 rel->addend = 0;
13268 }
13269 /* Use the rela in 64bit mode. */
13270 else
13271 {
13272 if (disallow_64bit_reloc)
13273 switch (code)
13274 {
13275 case BFD_RELOC_X86_64_DTPOFF64:
13276 case BFD_RELOC_X86_64_TPOFF64:
13277 case BFD_RELOC_64_PCREL:
13278 case BFD_RELOC_X86_64_GOTOFF64:
13279 case BFD_RELOC_X86_64_GOT64:
13280 case BFD_RELOC_X86_64_GOTPCREL64:
13281 case BFD_RELOC_X86_64_GOTPC64:
13282 case BFD_RELOC_X86_64_GOTPLT64:
13283 case BFD_RELOC_X86_64_PLTOFF64:
13284 as_bad_where (fixp->fx_file, fixp->fx_line,
13285 _("cannot represent relocation type %s in x32 mode"),
13286 bfd_get_reloc_code_name (code));
13287 break;
13288 default:
13289 break;
13290 }
13291
13292 if (!fixp->fx_pcrel)
13293 rel->addend = fixp->fx_offset;
13294 else
13295 switch (code)
13296 {
13297 case BFD_RELOC_X86_64_PLT32:
13298 case BFD_RELOC_X86_64_GOT32:
13299 case BFD_RELOC_X86_64_GOTPCREL:
13300 case BFD_RELOC_X86_64_GOTPCRELX:
13301 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13302 case BFD_RELOC_X86_64_TLSGD:
13303 case BFD_RELOC_X86_64_TLSLD:
13304 case BFD_RELOC_X86_64_GOTTPOFF:
13305 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13306 case BFD_RELOC_X86_64_TLSDESC_CALL:
13307 rel->addend = fixp->fx_offset - fixp->fx_size;
13308 break;
13309 default:
13310 rel->addend = (section->vma
13311 - fixp->fx_size
13312 + fixp->fx_addnumber
13313 + md_pcrel_from (fixp));
13314 break;
13315 }
13316 }
13317
13318 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
13319 if (rel->howto == NULL)
13320 {
13321 as_bad_where (fixp->fx_file, fixp->fx_line,
13322 _("cannot represent relocation type %s"),
13323 bfd_get_reloc_code_name (code));
13324 /* Set howto to a garbage value so that we can keep going. */
13325 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
13326 gas_assert (rel->howto != NULL);
13327 }
13328
13329 return rel;
13330 }
13331
13332 #include "tc-i386-intel.c"
13333
13334 void
13335 tc_x86_parse_to_dw2regnum (expressionS *exp)
13336 {
13337 int saved_naked_reg;
13338 char saved_register_dot;
13339
13340 saved_naked_reg = allow_naked_reg;
13341 allow_naked_reg = 1;
13342 saved_register_dot = register_chars['.'];
13343 register_chars['.'] = '.';
13344 allow_pseudo_reg = 1;
13345 expression_and_evaluate (exp);
13346 allow_pseudo_reg = 0;
13347 register_chars['.'] = saved_register_dot;
13348 allow_naked_reg = saved_naked_reg;
13349
13350 if (exp->X_op == O_register && exp->X_add_number >= 0)
13351 {
13352 if ((addressT) exp->X_add_number < i386_regtab_size)
13353 {
13354 exp->X_op = O_constant;
13355 exp->X_add_number = i386_regtab[exp->X_add_number]
13356 .dw2_regnum[flag_code >> 1];
13357 }
13358 else
13359 exp->X_op = O_illegal;
13360 }
13361 }
13362
13363 void
13364 tc_x86_frame_initial_instructions (void)
13365 {
13366 static unsigned int sp_regno[2];
13367
13368 if (!sp_regno[flag_code >> 1])
13369 {
13370 char *saved_input = input_line_pointer;
13371 char sp[][4] = {"esp", "rsp"};
13372 expressionS exp;
13373
13374 input_line_pointer = sp[flag_code >> 1];
13375 tc_x86_parse_to_dw2regnum (&exp);
13376 gas_assert (exp.X_op == O_constant);
13377 sp_regno[flag_code >> 1] = exp.X_add_number;
13378 input_line_pointer = saved_input;
13379 }
13380
13381 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
13382 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
13383 }
13384
13385 int
13386 x86_dwarf2_addr_size (void)
13387 {
13388 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13389 if (x86_elf_abi == X86_64_X32_ABI)
13390 return 4;
13391 #endif
13392 return bfd_arch_bits_per_address (stdoutput) / 8;
13393 }
13394
13395 int
13396 i386_elf_section_type (const char *str, size_t len)
13397 {
13398 if (flag_code == CODE_64BIT
13399 && len == sizeof ("unwind") - 1
13400 && strncmp (str, "unwind", 6) == 0)
13401 return SHT_X86_64_UNWIND;
13402
13403 return -1;
13404 }
13405
13406 #ifdef TE_SOLARIS
13407 void
13408 i386_solaris_fix_up_eh_frame (segT sec)
13409 {
13410 if (flag_code == CODE_64BIT)
13411 elf_section_type (sec) = SHT_X86_64_UNWIND;
13412 }
13413 #endif
13414
13415 #ifdef TE_PE
13416 void
13417 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
13418 {
13419 expressionS exp;
13420
13421 exp.X_op = O_secrel;
13422 exp.X_add_symbol = symbol;
13423 exp.X_add_number = 0;
13424 emit_expr (&exp, size);
13425 }
13426 #endif
13427
13428 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13429 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
13430
13431 bfd_vma
13432 x86_64_section_letter (int letter, const char **ptr_msg)
13433 {
13434 if (flag_code == CODE_64BIT)
13435 {
13436 if (letter == 'l')
13437 return SHF_X86_64_LARGE;
13438
13439 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
13440 }
13441 else
13442 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
13443 return -1;
13444 }
13445
13446 bfd_vma
13447 x86_64_section_word (char *str, size_t len)
13448 {
13449 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
13450 return SHF_X86_64_LARGE;
13451
13452 return -1;
13453 }
13454
13455 static void
13456 handle_large_common (int small ATTRIBUTE_UNUSED)
13457 {
13458 if (flag_code != CODE_64BIT)
13459 {
13460 s_comm_internal (0, elf_common_parse);
13461 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
13462 }
13463 else
13464 {
13465 static segT lbss_section;
13466 asection *saved_com_section_ptr = elf_com_section_ptr;
13467 asection *saved_bss_section = bss_section;
13468
13469 if (lbss_section == NULL)
13470 {
13471 flagword applicable;
13472 segT seg = now_seg;
13473 subsegT subseg = now_subseg;
13474
13475 /* The .lbss section is for local .largecomm symbols. */
13476 lbss_section = subseg_new (".lbss", 0);
13477 applicable = bfd_applicable_section_flags (stdoutput);
13478 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
13479 seg_info (lbss_section)->bss = 1;
13480
13481 subseg_set (seg, subseg);
13482 }
13483
13484 elf_com_section_ptr = &_bfd_elf_large_com_section;
13485 bss_section = lbss_section;
13486
13487 s_comm_internal (0, elf_common_parse);
13488
13489 elf_com_section_ptr = saved_com_section_ptr;
13490 bss_section = saved_bss_section;
13491 }
13492 }
13493 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.556575 seconds and 5 git commands to generate.