x86: fix AVX-512 16-bit addressing
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2017 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 #define XMMWORD_MNEM_SUFFIX 'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 #define ZMMWORD_MNEM_SUFFIX 'z'
87 /* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91 #define END_OF_INSN '\0'
92
93 /*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100 typedef struct
101 {
102 const insn_template *start;
103 const insn_template *end;
104 }
105 templates;
106
107 /* 386 operand encoding bytes: see 386 book for details of this. */
108 typedef struct
109 {
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113 }
114 modrm_byte;
115
116 /* x86-64 extension prefix. */
117 typedef int rex_byte;
118
119 /* 386 opcode byte to code indirect addressing. */
120 typedef struct
121 {
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125 }
126 sib_byte;
127
128 /* x86 arch names, types and features */
129 typedef struct
130 {
131 const char *name; /* arch name */
132 unsigned int len; /* arch string length */
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
135 unsigned int skip; /* show_arch should skip this. */
136 }
137 arch_entry;
138
139 /* Used to turn off indicated flags. */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 i386_cpu_flags flags; /* cpu feature flags */
145 }
146 noarch_entry;
147
148 static void update_code_flag (int, int);
149 static void set_code_flag (int);
150 static void set_16bit_gcc_code_flag (int);
151 static void set_intel_syntax (int);
152 static void set_intel_mnemonic (int);
153 static void set_allow_index_reg (int);
154 static void set_check (int);
155 static void set_cpu_arch (int);
156 #ifdef TE_PE
157 static void pe_directive_secrel (int);
158 #endif
159 static void signed_cons (int);
160 static char *output_invalid (int c);
161 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
162 const char *);
163 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
164 const char *);
165 static int i386_att_operand (char *);
166 static int i386_intel_operand (char *, int);
167 static int i386_intel_simplify (expressionS *);
168 static int i386_intel_parse_name (const char *, expressionS *);
169 static const reg_entry *parse_register (char *, char **);
170 static char *parse_insn (char *, char *);
171 static char *parse_operands (char *, const char *);
172 static void swap_operands (void);
173 static void swap_2_operands (int, int);
174 static void optimize_imm (void);
175 static void optimize_disp (void);
176 static const insn_template *match_template (char);
177 static int check_string (void);
178 static int process_suffix (void);
179 static int check_byte_reg (void);
180 static int check_long_reg (void);
181 static int check_qword_reg (void);
182 static int check_word_reg (void);
183 static int finalize_imm (void);
184 static int process_operands (void);
185 static const seg_entry *build_modrm_byte (void);
186 static void output_insn (void);
187 static void output_imm (fragS *, offsetT);
188 static void output_disp (fragS *, offsetT);
189 #ifndef I386COFF
190 static void s_bss (int);
191 #endif
192 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
193 static void handle_large_common (int small ATTRIBUTE_UNUSED);
194 #endif
195
196 static const char *default_arch = DEFAULT_ARCH;
197
198 /* This struct describes rounding control and SAE in the instruction. */
199 struct RC_Operation
200 {
201 enum rc_type
202 {
203 rne = 0,
204 rd,
205 ru,
206 rz,
207 saeonly
208 } type;
209 int operand;
210 };
211
212 static struct RC_Operation rc_op;
213
214 /* The struct describes masking, applied to OPERAND in the instruction.
215 MASK is a pointer to the corresponding mask register. ZEROING tells
216 whether merging or zeroing mask is used. */
217 struct Mask_Operation
218 {
219 const reg_entry *mask;
220 unsigned int zeroing;
221 /* The operand where this operation is associated. */
222 int operand;
223 };
224
225 static struct Mask_Operation mask_op;
226
227 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
228 broadcast factor. */
229 struct Broadcast_Operation
230 {
231 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
232 int type;
233
234 /* Index of broadcasted operand. */
235 int operand;
236 };
237
238 static struct Broadcast_Operation broadcast_op;
239
240 /* VEX prefix. */
241 typedef struct
242 {
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248 } vex_prefix;
249
250 /* 'md_assemble ()' gathers together information and puts it into a
251 i386_insn. */
252
253 union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
260 enum i386_error
261 {
262 operand_size_mismatch,
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
268 old_gcc_only,
269 unsupported_with_intel_mnemonic,
270 unsupported_syntax,
271 unsupported,
272 invalid_vsib_address,
273 invalid_vector_register_set,
274 unsupported_vector_index_register,
275 unsupported_broadcast,
276 broadcast_not_on_src_operand,
277 broadcast_needed,
278 unsupported_masking,
279 mask_not_on_destination,
280 no_default_mask,
281 unsupported_rc_sae,
282 rc_sae_operand_not_last_imm,
283 invalid_register_operand,
284 try_vector_disp8
285 };
286
287 struct _i386_insn
288 {
289 /* TM holds the template for the insn were currently assembling. */
290 insn_template tm;
291
292 /* SUFFIX holds the instruction size suffix for byte, word, dword
293 or qword, if given. */
294 char suffix;
295
296 /* OPERANDS gives the number of given operands. */
297 unsigned int operands;
298
299 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
300 of given register, displacement, memory operands and immediate
301 operands. */
302 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
303
304 /* TYPES [i] is the type (see above #defines) which tells us how to
305 use OP[i] for the corresponding operand. */
306 i386_operand_type types[MAX_OPERANDS];
307
308 /* Displacement expression, immediate expression, or register for each
309 operand. */
310 union i386_op op[MAX_OPERANDS];
311
312 /* Flags for operands. */
313 unsigned int flags[MAX_OPERANDS];
314 #define Operand_PCrel 1
315
316 /* Relocation type for operand */
317 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
318
319 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
320 the base index byte below. */
321 const reg_entry *base_reg;
322 const reg_entry *index_reg;
323 unsigned int log2_scale_factor;
324
325 /* SEG gives the seg_entries of this insn. They are zero unless
326 explicit segment overrides are given. */
327 const seg_entry *seg[2];
328
329 /* Copied first memory operand string, for re-checking. */
330 char *memop1_string;
331
332 /* PREFIX holds all the given prefix opcodes (usually null).
333 PREFIXES is the number of prefix opcodes. */
334 unsigned int prefixes;
335 unsigned char prefix[MAX_PREFIXES];
336
337 /* RM and SIB are the modrm byte and the sib byte where the
338 addressing modes of this insn are encoded. */
339 modrm_byte rm;
340 rex_byte rex;
341 rex_byte vrex;
342 sib_byte sib;
343 vex_prefix vex;
344
345 /* Masking attributes. */
346 struct Mask_Operation *mask;
347
348 /* Rounding control and SAE attributes. */
349 struct RC_Operation *rounding;
350
351 /* Broadcasting attributes. */
352 struct Broadcast_Operation *broadcast;
353
354 /* Compressed disp8*N attribute. */
355 unsigned int memshift;
356
357 /* Prefer load or store in encoding. */
358 enum
359 {
360 dir_encoding_default = 0,
361 dir_encoding_load,
362 dir_encoding_store
363 } dir_encoding;
364
365 /* Prefer 8bit or 32bit displacement in encoding. */
366 enum
367 {
368 disp_encoding_default = 0,
369 disp_encoding_8bit,
370 disp_encoding_32bit
371 } disp_encoding;
372
373 /* How to encode vector instructions. */
374 enum
375 {
376 vex_encoding_default = 0,
377 vex_encoding_vex2,
378 vex_encoding_vex3,
379 vex_encoding_evex
380 } vec_encoding;
381
382 /* REP prefix. */
383 const char *rep_prefix;
384
385 /* HLE prefix. */
386 const char *hle_prefix;
387
388 /* Have BND prefix. */
389 const char *bnd_prefix;
390
391 /* Have NOTRACK prefix. */
392 const char *notrack_prefix;
393
394 /* Error message. */
395 enum i386_error error;
396 };
397
398 typedef struct _i386_insn i386_insn;
399
400 /* Link RC type with corresponding string, that'll be looked for in
401 asm. */
402 struct RC_name
403 {
404 enum rc_type type;
405 const char *name;
406 unsigned int len;
407 };
408
409 static const struct RC_name RC_NamesTable[] =
410 {
411 { rne, STRING_COMMA_LEN ("rn-sae") },
412 { rd, STRING_COMMA_LEN ("rd-sae") },
413 { ru, STRING_COMMA_LEN ("ru-sae") },
414 { rz, STRING_COMMA_LEN ("rz-sae") },
415 { saeonly, STRING_COMMA_LEN ("sae") },
416 };
417
418 /* List of chars besides those in app.c:symbol_chars that can start an
419 operand. Used to prevent the scrubber eating vital white-space. */
420 const char extra_symbol_chars[] = "*%-([{}"
421 #ifdef LEX_AT
422 "@"
423 #endif
424 #ifdef LEX_QM
425 "?"
426 #endif
427 ;
428
429 #if (defined (TE_I386AIX) \
430 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
431 && !defined (TE_GNU) \
432 && !defined (TE_LINUX) \
433 && !defined (TE_NACL) \
434 && !defined (TE_NETWARE) \
435 && !defined (TE_FreeBSD) \
436 && !defined (TE_DragonFly) \
437 && !defined (TE_NetBSD)))
438 /* This array holds the chars that always start a comment. If the
439 pre-processor is disabled, these aren't very useful. The option
440 --divide will remove '/' from this list. */
441 const char *i386_comment_chars = "#/";
442 #define SVR4_COMMENT_CHARS 1
443 #define PREFIX_SEPARATOR '\\'
444
445 #else
446 const char *i386_comment_chars = "#";
447 #define PREFIX_SEPARATOR '/'
448 #endif
449
450 /* This array holds the chars that only start a comment at the beginning of
451 a line. If the line seems to have the form '# 123 filename'
452 .line and .file directives will appear in the pre-processed output.
453 Note that input_file.c hand checks for '#' at the beginning of the
454 first line of the input file. This is because the compiler outputs
455 #NO_APP at the beginning of its output.
456 Also note that comments started like this one will always work if
457 '/' isn't otherwise defined. */
458 const char line_comment_chars[] = "#/";
459
460 const char line_separator_chars[] = ";";
461
462 /* Chars that can be used to separate mant from exp in floating point
463 nums. */
464 const char EXP_CHARS[] = "eE";
465
466 /* Chars that mean this number is a floating point constant
467 As in 0f12.456
468 or 0d1.2345e12. */
469 const char FLT_CHARS[] = "fFdDxX";
470
471 /* Tables for lexical analysis. */
472 static char mnemonic_chars[256];
473 static char register_chars[256];
474 static char operand_chars[256];
475 static char identifier_chars[256];
476 static char digit_chars[256];
477
478 /* Lexical macros. */
479 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
480 #define is_operand_char(x) (operand_chars[(unsigned char) x])
481 #define is_register_char(x) (register_chars[(unsigned char) x])
482 #define is_space_char(x) ((x) == ' ')
483 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
484 #define is_digit_char(x) (digit_chars[(unsigned char) x])
485
486 /* All non-digit non-letter characters that may occur in an operand. */
487 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
488
489 /* md_assemble() always leaves the strings it's passed unaltered. To
490 effect this we maintain a stack of saved characters that we've smashed
491 with '\0's (indicating end of strings for various sub-fields of the
492 assembler instruction). */
493 static char save_stack[32];
494 static char *save_stack_p;
495 #define END_STRING_AND_SAVE(s) \
496 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
497 #define RESTORE_END_STRING(s) \
498 do { *(s) = *--save_stack_p; } while (0)
499
500 /* The instruction we're assembling. */
501 static i386_insn i;
502
503 /* Possible templates for current insn. */
504 static const templates *current_templates;
505
506 /* Per instruction expressionS buffers: max displacements & immediates. */
507 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
508 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
509
510 /* Current operand we are working on. */
511 static int this_operand = -1;
512
513 /* We support four different modes. FLAG_CODE variable is used to distinguish
514 these. */
515
516 enum flag_code {
517 CODE_32BIT,
518 CODE_16BIT,
519 CODE_64BIT };
520
521 static enum flag_code flag_code;
522 static unsigned int object_64bit;
523 static unsigned int disallow_64bit_reloc;
524 static int use_rela_relocations = 0;
525
526 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
527 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
528 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
529
530 /* The ELF ABI to use. */
531 enum x86_elf_abi
532 {
533 I386_ABI,
534 X86_64_ABI,
535 X86_64_X32_ABI
536 };
537
538 static enum x86_elf_abi x86_elf_abi = I386_ABI;
539 #endif
540
541 #if defined (TE_PE) || defined (TE_PEP)
542 /* Use big object file format. */
543 static int use_big_obj = 0;
544 #endif
545
546 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
547 /* 1 if generating code for a shared library. */
548 static int shared = 0;
549 #endif
550
551 /* 1 for intel syntax,
552 0 if att syntax. */
553 static int intel_syntax = 0;
554
555 /* 1 for Intel64 ISA,
556 0 if AMD64 ISA. */
557 static int intel64;
558
559 /* 1 for intel mnemonic,
560 0 if att mnemonic. */
561 static int intel_mnemonic = !SYSV386_COMPAT;
562
563 /* 1 if support old (<= 2.8.1) versions of gcc. */
564 static int old_gcc = OLDGCC_COMPAT;
565
566 /* 1 if pseudo registers are permitted. */
567 static int allow_pseudo_reg = 0;
568
569 /* 1 if register prefix % not required. */
570 static int allow_naked_reg = 0;
571
572 /* 1 if the assembler should add BND prefix for all control-transferring
573 instructions supporting it, even if this prefix wasn't specified
574 explicitly. */
575 static int add_bnd_prefix = 0;
576
577 /* 1 if pseudo index register, eiz/riz, is allowed . */
578 static int allow_index_reg = 0;
579
580 /* 1 if the assembler should ignore LOCK prefix, even if it was
581 specified explicitly. */
582 static int omit_lock_prefix = 0;
583
584 /* 1 if the assembler should encode lfence, mfence, and sfence as
585 "lock addl $0, (%{re}sp)". */
586 static int avoid_fence = 0;
587
588 /* 1 if the assembler should generate relax relocations. */
589
590 static int generate_relax_relocations
591 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
592
593 static enum check_kind
594 {
595 check_none = 0,
596 check_warning,
597 check_error
598 }
599 sse_check, operand_check = check_warning;
600
601 /* Register prefix used for error message. */
602 static const char *register_prefix = "%";
603
604 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
605 leave, push, and pop instructions so that gcc has the same stack
606 frame as in 32 bit mode. */
607 static char stackop_size = '\0';
608
609 /* Non-zero to optimize code alignment. */
610 int optimize_align_code = 1;
611
612 /* Non-zero to quieten some warnings. */
613 static int quiet_warnings = 0;
614
615 /* CPU name. */
616 static const char *cpu_arch_name = NULL;
617 static char *cpu_sub_arch_name = NULL;
618
619 /* CPU feature flags. */
620 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
621
622 /* If we have selected a cpu we are generating instructions for. */
623 static int cpu_arch_tune_set = 0;
624
625 /* Cpu we are generating instructions for. */
626 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
627
628 /* CPU feature flags of cpu we are generating instructions for. */
629 static i386_cpu_flags cpu_arch_tune_flags;
630
631 /* CPU instruction set architecture used. */
632 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
633
634 /* CPU feature flags of instruction set architecture used. */
635 i386_cpu_flags cpu_arch_isa_flags;
636
637 /* If set, conditional jumps are not automatically promoted to handle
638 larger than a byte offset. */
639 static unsigned int no_cond_jump_promotion = 0;
640
641 /* Encode SSE instructions with VEX prefix. */
642 static unsigned int sse2avx;
643
644 /* Encode scalar AVX instructions with specific vector length. */
645 static enum
646 {
647 vex128 = 0,
648 vex256
649 } avxscalar;
650
651 /* Encode scalar EVEX LIG instructions with specific vector length. */
652 static enum
653 {
654 evexl128 = 0,
655 evexl256,
656 evexl512
657 } evexlig;
658
659 /* Encode EVEX WIG instructions with specific evex.w. */
660 static enum
661 {
662 evexw0 = 0,
663 evexw1
664 } evexwig;
665
666 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
667 static enum rc_type evexrcig = rne;
668
669 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
670 static symbolS *GOT_symbol;
671
672 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
673 unsigned int x86_dwarf2_return_column;
674
675 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
676 int x86_cie_data_alignment;
677
678 /* Interface to relax_segment.
679 There are 3 major relax states for 386 jump insns because the
680 different types of jumps add different sizes to frags when we're
681 figuring out what sort of jump to choose to reach a given label. */
682
683 /* Types. */
684 #define UNCOND_JUMP 0
685 #define COND_JUMP 1
686 #define COND_JUMP86 2
687
688 /* Sizes. */
689 #define CODE16 1
690 #define SMALL 0
691 #define SMALL16 (SMALL | CODE16)
692 #define BIG 2
693 #define BIG16 (BIG | CODE16)
694
695 #ifndef INLINE
696 #ifdef __GNUC__
697 #define INLINE __inline__
698 #else
699 #define INLINE
700 #endif
701 #endif
702
703 #define ENCODE_RELAX_STATE(type, size) \
704 ((relax_substateT) (((type) << 2) | (size)))
705 #define TYPE_FROM_RELAX_STATE(s) \
706 ((s) >> 2)
707 #define DISP_SIZE_FROM_RELAX_STATE(s) \
708 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
709
710 /* This table is used by relax_frag to promote short jumps to long
711 ones where necessary. SMALL (short) jumps may be promoted to BIG
712 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
713 don't allow a short jump in a 32 bit code segment to be promoted to
714 a 16 bit offset jump because it's slower (requires data size
715 prefix), and doesn't work, unless the destination is in the bottom
716 64k of the code segment (The top 16 bits of eip are zeroed). */
717
718 const relax_typeS md_relax_table[] =
719 {
720 /* The fields are:
721 1) most positive reach of this state,
722 2) most negative reach of this state,
723 3) how many bytes this mode will have in the variable part of the frag
724 4) which index into the table to try if we can't fit into this one. */
725
726 /* UNCOND_JUMP states. */
727 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
728 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
729 /* dword jmp adds 4 bytes to frag:
730 0 extra opcode bytes, 4 displacement bytes. */
731 {0, 0, 4, 0},
732 /* word jmp adds 2 byte2 to frag:
733 0 extra opcode bytes, 2 displacement bytes. */
734 {0, 0, 2, 0},
735
736 /* COND_JUMP states. */
737 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
738 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
739 /* dword conditionals adds 5 bytes to frag:
740 1 extra opcode byte, 4 displacement bytes. */
741 {0, 0, 5, 0},
742 /* word conditionals add 3 bytes to frag:
743 1 extra opcode byte, 2 displacement bytes. */
744 {0, 0, 3, 0},
745
746 /* COND_JUMP86 states. */
747 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
748 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
749 /* dword conditionals adds 5 bytes to frag:
750 1 extra opcode byte, 4 displacement bytes. */
751 {0, 0, 5, 0},
752 /* word conditionals add 4 bytes to frag:
753 1 displacement byte and a 3 byte long branch insn. */
754 {0, 0, 4, 0}
755 };
756
757 static const arch_entry cpu_arch[] =
758 {
759 /* Do not replace the first two entries - i386_target_format()
760 relies on them being there in this order. */
761 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
762 CPU_GENERIC32_FLAGS, 0 },
763 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
764 CPU_GENERIC64_FLAGS, 0 },
765 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
766 CPU_NONE_FLAGS, 0 },
767 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
768 CPU_I186_FLAGS, 0 },
769 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
770 CPU_I286_FLAGS, 0 },
771 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
772 CPU_I386_FLAGS, 0 },
773 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
774 CPU_I486_FLAGS, 0 },
775 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
776 CPU_I586_FLAGS, 0 },
777 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
778 CPU_I686_FLAGS, 0 },
779 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
780 CPU_I586_FLAGS, 0 },
781 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
782 CPU_PENTIUMPRO_FLAGS, 0 },
783 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
784 CPU_P2_FLAGS, 0 },
785 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
786 CPU_P3_FLAGS, 0 },
787 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
788 CPU_P4_FLAGS, 0 },
789 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
790 CPU_CORE_FLAGS, 0 },
791 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
792 CPU_NOCONA_FLAGS, 0 },
793 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
794 CPU_CORE_FLAGS, 1 },
795 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
796 CPU_CORE_FLAGS, 0 },
797 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
798 CPU_CORE2_FLAGS, 1 },
799 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
800 CPU_CORE2_FLAGS, 0 },
801 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
802 CPU_COREI7_FLAGS, 0 },
803 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
804 CPU_L1OM_FLAGS, 0 },
805 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
806 CPU_K1OM_FLAGS, 0 },
807 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
808 CPU_IAMCU_FLAGS, 0 },
809 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
810 CPU_K6_FLAGS, 0 },
811 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
812 CPU_K6_2_FLAGS, 0 },
813 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
814 CPU_ATHLON_FLAGS, 0 },
815 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
816 CPU_K8_FLAGS, 1 },
817 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
818 CPU_K8_FLAGS, 0 },
819 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
820 CPU_K8_FLAGS, 0 },
821 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
822 CPU_AMDFAM10_FLAGS, 0 },
823 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
824 CPU_BDVER1_FLAGS, 0 },
825 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
826 CPU_BDVER2_FLAGS, 0 },
827 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
828 CPU_BDVER3_FLAGS, 0 },
829 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
830 CPU_BDVER4_FLAGS, 0 },
831 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
832 CPU_ZNVER1_FLAGS, 0 },
833 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
834 CPU_BTVER1_FLAGS, 0 },
835 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
836 CPU_BTVER2_FLAGS, 0 },
837 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
838 CPU_8087_FLAGS, 0 },
839 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
840 CPU_287_FLAGS, 0 },
841 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
842 CPU_387_FLAGS, 0 },
843 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
844 CPU_687_FLAGS, 0 },
845 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
846 CPU_MMX_FLAGS, 0 },
847 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
848 CPU_SSE_FLAGS, 0 },
849 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
850 CPU_SSE2_FLAGS, 0 },
851 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
852 CPU_SSE3_FLAGS, 0 },
853 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
854 CPU_SSSE3_FLAGS, 0 },
855 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
856 CPU_SSE4_1_FLAGS, 0 },
857 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
858 CPU_SSE4_2_FLAGS, 0 },
859 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
860 CPU_SSE4_2_FLAGS, 0 },
861 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
862 CPU_AVX_FLAGS, 0 },
863 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
864 CPU_AVX2_FLAGS, 0 },
865 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
866 CPU_AVX512F_FLAGS, 0 },
867 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
868 CPU_AVX512CD_FLAGS, 0 },
869 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
870 CPU_AVX512ER_FLAGS, 0 },
871 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
872 CPU_AVX512PF_FLAGS, 0 },
873 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
874 CPU_AVX512DQ_FLAGS, 0 },
875 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
876 CPU_AVX512BW_FLAGS, 0 },
877 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
878 CPU_AVX512VL_FLAGS, 0 },
879 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
880 CPU_VMX_FLAGS, 0 },
881 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
882 CPU_VMFUNC_FLAGS, 0 },
883 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
884 CPU_SMX_FLAGS, 0 },
885 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
886 CPU_XSAVE_FLAGS, 0 },
887 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
888 CPU_XSAVEOPT_FLAGS, 0 },
889 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
890 CPU_XSAVEC_FLAGS, 0 },
891 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
892 CPU_XSAVES_FLAGS, 0 },
893 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
894 CPU_AES_FLAGS, 0 },
895 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
896 CPU_PCLMUL_FLAGS, 0 },
897 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
898 CPU_PCLMUL_FLAGS, 1 },
899 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
900 CPU_FSGSBASE_FLAGS, 0 },
901 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
902 CPU_RDRND_FLAGS, 0 },
903 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
904 CPU_F16C_FLAGS, 0 },
905 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
906 CPU_BMI2_FLAGS, 0 },
907 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
908 CPU_FMA_FLAGS, 0 },
909 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
910 CPU_FMA4_FLAGS, 0 },
911 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
912 CPU_XOP_FLAGS, 0 },
913 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
914 CPU_LWP_FLAGS, 0 },
915 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
916 CPU_MOVBE_FLAGS, 0 },
917 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
918 CPU_CX16_FLAGS, 0 },
919 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
920 CPU_EPT_FLAGS, 0 },
921 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
922 CPU_LZCNT_FLAGS, 0 },
923 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
924 CPU_HLE_FLAGS, 0 },
925 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
926 CPU_RTM_FLAGS, 0 },
927 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
928 CPU_INVPCID_FLAGS, 0 },
929 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
930 CPU_CLFLUSH_FLAGS, 0 },
931 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
932 CPU_NOP_FLAGS, 0 },
933 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
934 CPU_SYSCALL_FLAGS, 0 },
935 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
936 CPU_RDTSCP_FLAGS, 0 },
937 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
938 CPU_3DNOW_FLAGS, 0 },
939 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
940 CPU_3DNOWA_FLAGS, 0 },
941 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
942 CPU_PADLOCK_FLAGS, 0 },
943 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
944 CPU_SVME_FLAGS, 1 },
945 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
946 CPU_SVME_FLAGS, 0 },
947 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
948 CPU_SSE4A_FLAGS, 0 },
949 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
950 CPU_ABM_FLAGS, 0 },
951 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
952 CPU_BMI_FLAGS, 0 },
953 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
954 CPU_TBM_FLAGS, 0 },
955 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
956 CPU_ADX_FLAGS, 0 },
957 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
958 CPU_RDSEED_FLAGS, 0 },
959 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
960 CPU_PRFCHW_FLAGS, 0 },
961 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
962 CPU_SMAP_FLAGS, 0 },
963 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
964 CPU_MPX_FLAGS, 0 },
965 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
966 CPU_SHA_FLAGS, 0 },
967 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
968 CPU_CLFLUSHOPT_FLAGS, 0 },
969 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
970 CPU_PREFETCHWT1_FLAGS, 0 },
971 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
972 CPU_SE1_FLAGS, 0 },
973 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
974 CPU_CLWB_FLAGS, 0 },
975 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
976 CPU_AVX512IFMA_FLAGS, 0 },
977 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
978 CPU_AVX512VBMI_FLAGS, 0 },
979 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
980 CPU_AVX512_4FMAPS_FLAGS, 0 },
981 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
982 CPU_AVX512_4VNNIW_FLAGS, 0 },
983 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
984 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
985 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
986 CPU_AVX512_VBMI2_FLAGS, 0 },
987 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
988 CPU_AVX512_VNNI_FLAGS, 0 },
989 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
990 CPU_AVX512_BITALG_FLAGS, 0 },
991 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
992 CPU_CLZERO_FLAGS, 0 },
993 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
994 CPU_MWAITX_FLAGS, 0 },
995 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
996 CPU_OSPKE_FLAGS, 0 },
997 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
998 CPU_RDPID_FLAGS, 0 },
999 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1000 CPU_PTWRITE_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".cet"), PROCESSOR_UNKNOWN,
1002 CPU_CET_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1004 CPU_GFNI_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1006 CPU_VAES_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1008 CPU_VPCLMULQDQ_FLAGS, 0 },
1009 };
1010
1011 static const noarch_entry cpu_noarch[] =
1012 {
1013 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1014 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1015 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1016 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1017 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1018 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1019 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1020 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1021 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1022 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1023 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1024 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1025 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1026 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1027 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1028 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1029 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1030 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1031 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1032 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1033 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1034 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1035 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1036 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1037 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1038 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1039 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1040 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1041 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1042 };
1043
1044 #ifdef I386COFF
1045 /* Like s_lcomm_internal in gas/read.c but the alignment string
1046 is allowed to be optional. */
1047
1048 static symbolS *
1049 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1050 {
1051 addressT align = 0;
1052
1053 SKIP_WHITESPACE ();
1054
1055 if (needs_align
1056 && *input_line_pointer == ',')
1057 {
1058 align = parse_align (needs_align - 1);
1059
1060 if (align == (addressT) -1)
1061 return NULL;
1062 }
1063 else
1064 {
1065 if (size >= 8)
1066 align = 3;
1067 else if (size >= 4)
1068 align = 2;
1069 else if (size >= 2)
1070 align = 1;
1071 else
1072 align = 0;
1073 }
1074
1075 bss_alloc (symbolP, size, align);
1076 return symbolP;
1077 }
1078
1079 static void
1080 pe_lcomm (int needs_align)
1081 {
1082 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1083 }
1084 #endif
1085
1086 const pseudo_typeS md_pseudo_table[] =
1087 {
1088 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1089 {"align", s_align_bytes, 0},
1090 #else
1091 {"align", s_align_ptwo, 0},
1092 #endif
1093 {"arch", set_cpu_arch, 0},
1094 #ifndef I386COFF
1095 {"bss", s_bss, 0},
1096 #else
1097 {"lcomm", pe_lcomm, 1},
1098 #endif
1099 {"ffloat", float_cons, 'f'},
1100 {"dfloat", float_cons, 'd'},
1101 {"tfloat", float_cons, 'x'},
1102 {"value", cons, 2},
1103 {"slong", signed_cons, 4},
1104 {"noopt", s_ignore, 0},
1105 {"optim", s_ignore, 0},
1106 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1107 {"code16", set_code_flag, CODE_16BIT},
1108 {"code32", set_code_flag, CODE_32BIT},
1109 #ifdef BFD64
1110 {"code64", set_code_flag, CODE_64BIT},
1111 #endif
1112 {"intel_syntax", set_intel_syntax, 1},
1113 {"att_syntax", set_intel_syntax, 0},
1114 {"intel_mnemonic", set_intel_mnemonic, 1},
1115 {"att_mnemonic", set_intel_mnemonic, 0},
1116 {"allow_index_reg", set_allow_index_reg, 1},
1117 {"disallow_index_reg", set_allow_index_reg, 0},
1118 {"sse_check", set_check, 0},
1119 {"operand_check", set_check, 1},
1120 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1121 {"largecomm", handle_large_common, 0},
1122 #else
1123 {"file", (void (*) (int)) dwarf2_directive_file, 0},
1124 {"loc", dwarf2_directive_loc, 0},
1125 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1126 #endif
1127 #ifdef TE_PE
1128 {"secrel32", pe_directive_secrel, 0},
1129 #endif
1130 {0, 0, 0}
1131 };
1132
1133 /* For interface with expression (). */
1134 extern char *input_line_pointer;
1135
1136 /* Hash table for instruction mnemonic lookup. */
1137 static struct hash_control *op_hash;
1138
1139 /* Hash table for register lookup. */
1140 static struct hash_control *reg_hash;
1141 \f
1142 void
1143 i386_align_code (fragS *fragP, int count)
1144 {
1145 /* Various efficient no-op patterns for aligning code labels.
1146 Note: Don't try to assemble the instructions in the comments.
1147 0L and 0w are not legal. */
1148 static const unsigned char f32_1[] =
1149 {0x90}; /* nop */
1150 static const unsigned char f32_2[] =
1151 {0x66,0x90}; /* xchg %ax,%ax */
1152 static const unsigned char f32_3[] =
1153 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1154 static const unsigned char f32_4[] =
1155 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1156 static const unsigned char f32_5[] =
1157 {0x90, /* nop */
1158 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1159 static const unsigned char f32_6[] =
1160 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1161 static const unsigned char f32_7[] =
1162 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1163 static const unsigned char f32_8[] =
1164 {0x90, /* nop */
1165 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1166 static const unsigned char f32_9[] =
1167 {0x89,0xf6, /* movl %esi,%esi */
1168 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1169 static const unsigned char f32_10[] =
1170 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1171 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1172 static const unsigned char f32_11[] =
1173 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1174 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1175 static const unsigned char f32_12[] =
1176 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1177 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1178 static const unsigned char f32_13[] =
1179 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1180 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1181 static const unsigned char f32_14[] =
1182 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1183 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1184 static const unsigned char f16_3[] =
1185 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1186 static const unsigned char f16_4[] =
1187 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1188 static const unsigned char f16_5[] =
1189 {0x90, /* nop */
1190 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1191 static const unsigned char f16_6[] =
1192 {0x89,0xf6, /* mov %si,%si */
1193 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1194 static const unsigned char f16_7[] =
1195 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1196 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1197 static const unsigned char f16_8[] =
1198 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1199 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1200 static const unsigned char jump_31[] =
1201 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1202 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1203 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1204 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1205 static const unsigned char *const f32_patt[] = {
1206 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1207 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1208 };
1209 static const unsigned char *const f16_patt[] = {
1210 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1211 };
1212 /* nopl (%[re]ax) */
1213 static const unsigned char alt_3[] =
1214 {0x0f,0x1f,0x00};
1215 /* nopl 0(%[re]ax) */
1216 static const unsigned char alt_4[] =
1217 {0x0f,0x1f,0x40,0x00};
1218 /* nopl 0(%[re]ax,%[re]ax,1) */
1219 static const unsigned char alt_5[] =
1220 {0x0f,0x1f,0x44,0x00,0x00};
1221 /* nopw 0(%[re]ax,%[re]ax,1) */
1222 static const unsigned char alt_6[] =
1223 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1224 /* nopl 0L(%[re]ax) */
1225 static const unsigned char alt_7[] =
1226 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1227 /* nopl 0L(%[re]ax,%[re]ax,1) */
1228 static const unsigned char alt_8[] =
1229 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1230 /* nopw 0L(%[re]ax,%[re]ax,1) */
1231 static const unsigned char alt_9[] =
1232 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1233 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1234 static const unsigned char alt_10[] =
1235 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1236 static const unsigned char *const alt_patt[] = {
1237 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1238 alt_9, alt_10
1239 };
1240
1241 /* Only align for at least a positive non-zero boundary. */
1242 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1243 return;
1244
1245 /* We need to decide which NOP sequence to use for 32bit and
1246 64bit. When -mtune= is used:
1247
1248 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1249 PROCESSOR_GENERIC32, f32_patt will be used.
1250 2. For the rest, alt_patt will be used.
1251
1252 When -mtune= isn't used, alt_patt will be used if
1253 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1254 be used.
1255
1256 When -march= or .arch is used, we can't use anything beyond
1257 cpu_arch_isa_flags. */
1258
1259 if (flag_code == CODE_16BIT)
1260 {
1261 if (count > 8)
1262 {
1263 memcpy (fragP->fr_literal + fragP->fr_fix,
1264 jump_31, count);
1265 /* Adjust jump offset. */
1266 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1267 }
1268 else
1269 memcpy (fragP->fr_literal + fragP->fr_fix,
1270 f16_patt[count - 1], count);
1271 }
1272 else
1273 {
1274 const unsigned char *const *patt = NULL;
1275
1276 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1277 {
1278 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1279 switch (cpu_arch_tune)
1280 {
1281 case PROCESSOR_UNKNOWN:
1282 /* We use cpu_arch_isa_flags to check if we SHOULD
1283 optimize with nops. */
1284 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1285 patt = alt_patt;
1286 else
1287 patt = f32_patt;
1288 break;
1289 case PROCESSOR_PENTIUM4:
1290 case PROCESSOR_NOCONA:
1291 case PROCESSOR_CORE:
1292 case PROCESSOR_CORE2:
1293 case PROCESSOR_COREI7:
1294 case PROCESSOR_L1OM:
1295 case PROCESSOR_K1OM:
1296 case PROCESSOR_GENERIC64:
1297 case PROCESSOR_K6:
1298 case PROCESSOR_ATHLON:
1299 case PROCESSOR_K8:
1300 case PROCESSOR_AMDFAM10:
1301 case PROCESSOR_BD:
1302 case PROCESSOR_ZNVER:
1303 case PROCESSOR_BT:
1304 patt = alt_patt;
1305 break;
1306 case PROCESSOR_I386:
1307 case PROCESSOR_I486:
1308 case PROCESSOR_PENTIUM:
1309 case PROCESSOR_PENTIUMPRO:
1310 case PROCESSOR_IAMCU:
1311 case PROCESSOR_GENERIC32:
1312 patt = f32_patt;
1313 break;
1314 }
1315 }
1316 else
1317 {
1318 switch (fragP->tc_frag_data.tune)
1319 {
1320 case PROCESSOR_UNKNOWN:
1321 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1322 PROCESSOR_UNKNOWN. */
1323 abort ();
1324 break;
1325
1326 case PROCESSOR_I386:
1327 case PROCESSOR_I486:
1328 case PROCESSOR_PENTIUM:
1329 case PROCESSOR_IAMCU:
1330 case PROCESSOR_K6:
1331 case PROCESSOR_ATHLON:
1332 case PROCESSOR_K8:
1333 case PROCESSOR_AMDFAM10:
1334 case PROCESSOR_BD:
1335 case PROCESSOR_ZNVER:
1336 case PROCESSOR_BT:
1337 case PROCESSOR_GENERIC32:
1338 /* We use cpu_arch_isa_flags to check if we CAN optimize
1339 with nops. */
1340 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1341 patt = alt_patt;
1342 else
1343 patt = f32_patt;
1344 break;
1345 case PROCESSOR_PENTIUMPRO:
1346 case PROCESSOR_PENTIUM4:
1347 case PROCESSOR_NOCONA:
1348 case PROCESSOR_CORE:
1349 case PROCESSOR_CORE2:
1350 case PROCESSOR_COREI7:
1351 case PROCESSOR_L1OM:
1352 case PROCESSOR_K1OM:
1353 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1354 patt = alt_patt;
1355 else
1356 patt = f32_patt;
1357 break;
1358 case PROCESSOR_GENERIC64:
1359 patt = alt_patt;
1360 break;
1361 }
1362 }
1363
1364 if (patt == f32_patt)
1365 {
1366 /* If the padding is less than 15 bytes, we use the normal
1367 ones. Otherwise, we use a jump instruction and adjust
1368 its offset. */
1369 int limit;
1370
1371 /* For 64bit, the limit is 3 bytes. */
1372 if (flag_code == CODE_64BIT
1373 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1374 limit = 3;
1375 else
1376 limit = 15;
1377 if (count < limit)
1378 memcpy (fragP->fr_literal + fragP->fr_fix,
1379 patt[count - 1], count);
1380 else
1381 {
1382 memcpy (fragP->fr_literal + fragP->fr_fix,
1383 jump_31, count);
1384 /* Adjust jump offset. */
1385 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1386 }
1387 }
1388 else
1389 {
1390 /* Maximum length of an instruction is 10 byte. If the
1391 padding is greater than 10 bytes and we don't use jump,
1392 we have to break it into smaller pieces. */
1393 int padding = count;
1394 while (padding > 10)
1395 {
1396 padding -= 10;
1397 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1398 patt [9], 10);
1399 }
1400
1401 if (padding)
1402 memcpy (fragP->fr_literal + fragP->fr_fix,
1403 patt [padding - 1], padding);
1404 }
1405 }
1406 fragP->fr_var = count;
1407 }
1408
1409 static INLINE int
1410 operand_type_all_zero (const union i386_operand_type *x)
1411 {
1412 switch (ARRAY_SIZE(x->array))
1413 {
1414 case 3:
1415 if (x->array[2])
1416 return 0;
1417 /* Fall through. */
1418 case 2:
1419 if (x->array[1])
1420 return 0;
1421 /* Fall through. */
1422 case 1:
1423 return !x->array[0];
1424 default:
1425 abort ();
1426 }
1427 }
1428
1429 static INLINE void
1430 operand_type_set (union i386_operand_type *x, unsigned int v)
1431 {
1432 switch (ARRAY_SIZE(x->array))
1433 {
1434 case 3:
1435 x->array[2] = v;
1436 /* Fall through. */
1437 case 2:
1438 x->array[1] = v;
1439 /* Fall through. */
1440 case 1:
1441 x->array[0] = v;
1442 /* Fall through. */
1443 break;
1444 default:
1445 abort ();
1446 }
1447 }
1448
1449 static INLINE int
1450 operand_type_equal (const union i386_operand_type *x,
1451 const union i386_operand_type *y)
1452 {
1453 switch (ARRAY_SIZE(x->array))
1454 {
1455 case 3:
1456 if (x->array[2] != y->array[2])
1457 return 0;
1458 /* Fall through. */
1459 case 2:
1460 if (x->array[1] != y->array[1])
1461 return 0;
1462 /* Fall through. */
1463 case 1:
1464 return x->array[0] == y->array[0];
1465 break;
1466 default:
1467 abort ();
1468 }
1469 }
1470
1471 static INLINE int
1472 cpu_flags_all_zero (const union i386_cpu_flags *x)
1473 {
1474 switch (ARRAY_SIZE(x->array))
1475 {
1476 case 4:
1477 if (x->array[3])
1478 return 0;
1479 /* Fall through. */
1480 case 3:
1481 if (x->array[2])
1482 return 0;
1483 /* Fall through. */
1484 case 2:
1485 if (x->array[1])
1486 return 0;
1487 /* Fall through. */
1488 case 1:
1489 return !x->array[0];
1490 default:
1491 abort ();
1492 }
1493 }
1494
1495 static INLINE int
1496 cpu_flags_equal (const union i386_cpu_flags *x,
1497 const union i386_cpu_flags *y)
1498 {
1499 switch (ARRAY_SIZE(x->array))
1500 {
1501 case 4:
1502 if (x->array[3] != y->array[3])
1503 return 0;
1504 /* Fall through. */
1505 case 3:
1506 if (x->array[2] != y->array[2])
1507 return 0;
1508 /* Fall through. */
1509 case 2:
1510 if (x->array[1] != y->array[1])
1511 return 0;
1512 /* Fall through. */
1513 case 1:
1514 return x->array[0] == y->array[0];
1515 break;
1516 default:
1517 abort ();
1518 }
1519 }
1520
1521 static INLINE int
1522 cpu_flags_check_cpu64 (i386_cpu_flags f)
1523 {
1524 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1525 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1526 }
1527
1528 static INLINE i386_cpu_flags
1529 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1530 {
1531 switch (ARRAY_SIZE (x.array))
1532 {
1533 case 4:
1534 x.array [3] &= y.array [3];
1535 /* Fall through. */
1536 case 3:
1537 x.array [2] &= y.array [2];
1538 /* Fall through. */
1539 case 2:
1540 x.array [1] &= y.array [1];
1541 /* Fall through. */
1542 case 1:
1543 x.array [0] &= y.array [0];
1544 break;
1545 default:
1546 abort ();
1547 }
1548 return x;
1549 }
1550
1551 static INLINE i386_cpu_flags
1552 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1553 {
1554 switch (ARRAY_SIZE (x.array))
1555 {
1556 case 4:
1557 x.array [3] |= y.array [3];
1558 /* Fall through. */
1559 case 3:
1560 x.array [2] |= y.array [2];
1561 /* Fall through. */
1562 case 2:
1563 x.array [1] |= y.array [1];
1564 /* Fall through. */
1565 case 1:
1566 x.array [0] |= y.array [0];
1567 break;
1568 default:
1569 abort ();
1570 }
1571 return x;
1572 }
1573
1574 static INLINE i386_cpu_flags
1575 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1576 {
1577 switch (ARRAY_SIZE (x.array))
1578 {
1579 case 4:
1580 x.array [3] &= ~y.array [3];
1581 /* Fall through. */
1582 case 3:
1583 x.array [2] &= ~y.array [2];
1584 /* Fall through. */
1585 case 2:
1586 x.array [1] &= ~y.array [1];
1587 /* Fall through. */
1588 case 1:
1589 x.array [0] &= ~y.array [0];
1590 break;
1591 default:
1592 abort ();
1593 }
1594 return x;
1595 }
1596
1597 #define CPU_FLAGS_ARCH_MATCH 0x1
1598 #define CPU_FLAGS_64BIT_MATCH 0x2
1599 #define CPU_FLAGS_AES_MATCH 0x4
1600 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1601 #define CPU_FLAGS_AVX_MATCH 0x10
1602
1603 #define CPU_FLAGS_32BIT_MATCH \
1604 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1605 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1606 #define CPU_FLAGS_PERFECT_MATCH \
1607 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1608
1609 /* Return CPU flags match bits. */
1610
1611 static int
1612 cpu_flags_match (const insn_template *t)
1613 {
1614 i386_cpu_flags x = t->cpu_flags;
1615 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1616
1617 x.bitfield.cpu64 = 0;
1618 x.bitfield.cpuno64 = 0;
1619
1620 if (cpu_flags_all_zero (&x))
1621 {
1622 /* This instruction is available on all archs. */
1623 match |= CPU_FLAGS_32BIT_MATCH;
1624 }
1625 else
1626 {
1627 /* This instruction is available only on some archs. */
1628 i386_cpu_flags cpu = cpu_arch_flags;
1629
1630 cpu = cpu_flags_and (x, cpu);
1631 if (!cpu_flags_all_zero (&cpu))
1632 {
1633 if (x.bitfield.cpuavx)
1634 {
1635 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1636 if (cpu.bitfield.cpuavx)
1637 {
1638 /* Check SSE2AVX. */
1639 if (!t->opcode_modifier.sse2avx|| sse2avx)
1640 {
1641 match |= (CPU_FLAGS_ARCH_MATCH
1642 | CPU_FLAGS_AVX_MATCH);
1643 /* Check AES. */
1644 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1645 match |= CPU_FLAGS_AES_MATCH;
1646 /* Check PCLMUL. */
1647 if (!x.bitfield.cpupclmul
1648 || cpu.bitfield.cpupclmul)
1649 match |= CPU_FLAGS_PCLMUL_MATCH;
1650 }
1651 }
1652 else
1653 match |= CPU_FLAGS_ARCH_MATCH;
1654 }
1655 else if (x.bitfield.cpuavx512vl)
1656 {
1657 /* Match AVX512VL. */
1658 if (cpu.bitfield.cpuavx512vl)
1659 {
1660 /* Need another match. */
1661 cpu.bitfield.cpuavx512vl = 0;
1662 if (!cpu_flags_all_zero (&cpu))
1663 match |= CPU_FLAGS_32BIT_MATCH;
1664 else
1665 match |= CPU_FLAGS_ARCH_MATCH;
1666 }
1667 else
1668 match |= CPU_FLAGS_ARCH_MATCH;
1669 }
1670 else
1671 match |= CPU_FLAGS_32BIT_MATCH;
1672 }
1673 }
1674 return match;
1675 }
1676
1677 static INLINE i386_operand_type
1678 operand_type_and (i386_operand_type x, i386_operand_type y)
1679 {
1680 switch (ARRAY_SIZE (x.array))
1681 {
1682 case 3:
1683 x.array [2] &= y.array [2];
1684 /* Fall through. */
1685 case 2:
1686 x.array [1] &= y.array [1];
1687 /* Fall through. */
1688 case 1:
1689 x.array [0] &= y.array [0];
1690 break;
1691 default:
1692 abort ();
1693 }
1694 return x;
1695 }
1696
1697 static INLINE i386_operand_type
1698 operand_type_or (i386_operand_type x, i386_operand_type y)
1699 {
1700 switch (ARRAY_SIZE (x.array))
1701 {
1702 case 3:
1703 x.array [2] |= y.array [2];
1704 /* Fall through. */
1705 case 2:
1706 x.array [1] |= y.array [1];
1707 /* Fall through. */
1708 case 1:
1709 x.array [0] |= y.array [0];
1710 break;
1711 default:
1712 abort ();
1713 }
1714 return x;
1715 }
1716
1717 static INLINE i386_operand_type
1718 operand_type_xor (i386_operand_type x, i386_operand_type y)
1719 {
1720 switch (ARRAY_SIZE (x.array))
1721 {
1722 case 3:
1723 x.array [2] ^= y.array [2];
1724 /* Fall through. */
1725 case 2:
1726 x.array [1] ^= y.array [1];
1727 /* Fall through. */
1728 case 1:
1729 x.array [0] ^= y.array [0];
1730 break;
1731 default:
1732 abort ();
1733 }
1734 return x;
1735 }
1736
1737 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1738 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1739 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1740 static const i386_operand_type inoutportreg
1741 = OPERAND_TYPE_INOUTPORTREG;
1742 static const i386_operand_type reg16_inoutportreg
1743 = OPERAND_TYPE_REG16_INOUTPORTREG;
1744 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1745 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1746 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1747 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1748 static const i386_operand_type anydisp
1749 = OPERAND_TYPE_ANYDISP;
1750 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1751 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1752 static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1753 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1754 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1755 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1756 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1757 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1758 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1759 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1760 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1761 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1762 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1763 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1764
1765 enum operand_type
1766 {
1767 reg,
1768 imm,
1769 disp,
1770 anymem
1771 };
1772
1773 static INLINE int
1774 operand_type_check (i386_operand_type t, enum operand_type c)
1775 {
1776 switch (c)
1777 {
1778 case reg:
1779 return (t.bitfield.reg8
1780 || t.bitfield.reg16
1781 || t.bitfield.reg32
1782 || t.bitfield.reg64);
1783
1784 case imm:
1785 return (t.bitfield.imm8
1786 || t.bitfield.imm8s
1787 || t.bitfield.imm16
1788 || t.bitfield.imm32
1789 || t.bitfield.imm32s
1790 || t.bitfield.imm64);
1791
1792 case disp:
1793 return (t.bitfield.disp8
1794 || t.bitfield.disp16
1795 || t.bitfield.disp32
1796 || t.bitfield.disp32s
1797 || t.bitfield.disp64);
1798
1799 case anymem:
1800 return (t.bitfield.disp8
1801 || t.bitfield.disp16
1802 || t.bitfield.disp32
1803 || t.bitfield.disp32s
1804 || t.bitfield.disp64
1805 || t.bitfield.baseindex);
1806
1807 default:
1808 abort ();
1809 }
1810
1811 return 0;
1812 }
1813
1814 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1815 operand J for instruction template T. */
1816
1817 static INLINE int
1818 match_reg_size (const insn_template *t, unsigned int j)
1819 {
1820 return !((i.types[j].bitfield.byte
1821 && !t->operand_types[j].bitfield.byte)
1822 || (i.types[j].bitfield.word
1823 && !t->operand_types[j].bitfield.word)
1824 || (i.types[j].bitfield.dword
1825 && !t->operand_types[j].bitfield.dword)
1826 || (i.types[j].bitfield.qword
1827 && !t->operand_types[j].bitfield.qword));
1828 }
1829
1830 /* Return 1 if there is no conflict in any size on operand J for
1831 instruction template T. */
1832
1833 static INLINE int
1834 match_mem_size (const insn_template *t, unsigned int j)
1835 {
1836 return (match_reg_size (t, j)
1837 && !((i.types[j].bitfield.unspecified
1838 && !i.broadcast
1839 && !t->operand_types[j].bitfield.unspecified)
1840 || (i.types[j].bitfield.fword
1841 && !t->operand_types[j].bitfield.fword)
1842 || (i.types[j].bitfield.tbyte
1843 && !t->operand_types[j].bitfield.tbyte)
1844 || (i.types[j].bitfield.xmmword
1845 && !t->operand_types[j].bitfield.xmmword)
1846 || (i.types[j].bitfield.ymmword
1847 && !t->operand_types[j].bitfield.ymmword)
1848 || (i.types[j].bitfield.zmmword
1849 && !t->operand_types[j].bitfield.zmmword)));
1850 }
1851
1852 /* Return 1 if there is no size conflict on any operands for
1853 instruction template T. */
1854
1855 static INLINE int
1856 operand_size_match (const insn_template *t)
1857 {
1858 unsigned int j;
1859 int match = 1;
1860
1861 /* Don't check jump instructions. */
1862 if (t->opcode_modifier.jump
1863 || t->opcode_modifier.jumpbyte
1864 || t->opcode_modifier.jumpdword
1865 || t->opcode_modifier.jumpintersegment)
1866 return match;
1867
1868 /* Check memory and accumulator operand size. */
1869 for (j = 0; j < i.operands; j++)
1870 {
1871 if (t->operand_types[j].bitfield.anysize)
1872 continue;
1873
1874 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1875 {
1876 match = 0;
1877 break;
1878 }
1879
1880 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1881 {
1882 match = 0;
1883 break;
1884 }
1885 }
1886
1887 if (match)
1888 return match;
1889 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1890 {
1891 mismatch:
1892 i.error = operand_size_mismatch;
1893 return 0;
1894 }
1895
1896 /* Check reverse. */
1897 gas_assert (i.operands == 2);
1898
1899 match = 1;
1900 for (j = 0; j < 2; j++)
1901 {
1902 if (t->operand_types[j].bitfield.acc
1903 && !match_reg_size (t, j ? 0 : 1))
1904 goto mismatch;
1905
1906 if (i.types[j].bitfield.mem
1907 && !match_mem_size (t, j ? 0 : 1))
1908 goto mismatch;
1909 }
1910
1911 return match;
1912 }
1913
1914 static INLINE int
1915 operand_type_match (i386_operand_type overlap,
1916 i386_operand_type given)
1917 {
1918 i386_operand_type temp = overlap;
1919
1920 temp.bitfield.jumpabsolute = 0;
1921 temp.bitfield.unspecified = 0;
1922 temp.bitfield.byte = 0;
1923 temp.bitfield.word = 0;
1924 temp.bitfield.dword = 0;
1925 temp.bitfield.fword = 0;
1926 temp.bitfield.qword = 0;
1927 temp.bitfield.tbyte = 0;
1928 temp.bitfield.xmmword = 0;
1929 temp.bitfield.ymmword = 0;
1930 temp.bitfield.zmmword = 0;
1931 if (operand_type_all_zero (&temp))
1932 goto mismatch;
1933
1934 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1935 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1936 return 1;
1937
1938 mismatch:
1939 i.error = operand_type_mismatch;
1940 return 0;
1941 }
1942
1943 /* If given types g0 and g1 are registers they must be of the same type
1944 unless the expected operand type register overlap is null.
1945 Note that Acc in a template matches every size of reg. */
1946
1947 static INLINE int
1948 operand_type_register_match (i386_operand_type m0,
1949 i386_operand_type g0,
1950 i386_operand_type t0,
1951 i386_operand_type m1,
1952 i386_operand_type g1,
1953 i386_operand_type t1)
1954 {
1955 if (!operand_type_check (g0, reg))
1956 return 1;
1957
1958 if (!operand_type_check (g1, reg))
1959 return 1;
1960
1961 if (g0.bitfield.reg8 == g1.bitfield.reg8
1962 && g0.bitfield.reg16 == g1.bitfield.reg16
1963 && g0.bitfield.reg32 == g1.bitfield.reg32
1964 && g0.bitfield.reg64 == g1.bitfield.reg64)
1965 return 1;
1966
1967 if (m0.bitfield.acc)
1968 {
1969 t0.bitfield.reg8 = 1;
1970 t0.bitfield.reg16 = 1;
1971 t0.bitfield.reg32 = 1;
1972 t0.bitfield.reg64 = 1;
1973 }
1974
1975 if (m1.bitfield.acc)
1976 {
1977 t1.bitfield.reg8 = 1;
1978 t1.bitfield.reg16 = 1;
1979 t1.bitfield.reg32 = 1;
1980 t1.bitfield.reg64 = 1;
1981 }
1982
1983 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1984 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1985 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1986 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1987 return 1;
1988
1989 i.error = register_type_mismatch;
1990
1991 return 0;
1992 }
1993
1994 static INLINE unsigned int
1995 register_number (const reg_entry *r)
1996 {
1997 unsigned int nr = r->reg_num;
1998
1999 if (r->reg_flags & RegRex)
2000 nr += 8;
2001
2002 if (r->reg_flags & RegVRex)
2003 nr += 16;
2004
2005 return nr;
2006 }
2007
2008 static INLINE unsigned int
2009 mode_from_disp_size (i386_operand_type t)
2010 {
2011 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
2012 return 1;
2013 else if (t.bitfield.disp16
2014 || t.bitfield.disp32
2015 || t.bitfield.disp32s)
2016 return 2;
2017 else
2018 return 0;
2019 }
2020
2021 static INLINE int
2022 fits_in_signed_byte (addressT num)
2023 {
2024 return num + 0x80 <= 0xff;
2025 }
2026
2027 static INLINE int
2028 fits_in_unsigned_byte (addressT num)
2029 {
2030 return num <= 0xff;
2031 }
2032
2033 static INLINE int
2034 fits_in_unsigned_word (addressT num)
2035 {
2036 return num <= 0xffff;
2037 }
2038
2039 static INLINE int
2040 fits_in_signed_word (addressT num)
2041 {
2042 return num + 0x8000 <= 0xffff;
2043 }
2044
2045 static INLINE int
2046 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2047 {
2048 #ifndef BFD64
2049 return 1;
2050 #else
2051 return num + 0x80000000 <= 0xffffffff;
2052 #endif
2053 } /* fits_in_signed_long() */
2054
2055 static INLINE int
2056 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2057 {
2058 #ifndef BFD64
2059 return 1;
2060 #else
2061 return num <= 0xffffffff;
2062 #endif
2063 } /* fits_in_unsigned_long() */
2064
2065 static INLINE int
2066 fits_in_vec_disp8 (offsetT num)
2067 {
2068 int shift = i.memshift;
2069 unsigned int mask;
2070
2071 if (shift == -1)
2072 abort ();
2073
2074 mask = (1 << shift) - 1;
2075
2076 /* Return 0 if NUM isn't properly aligned. */
2077 if ((num & mask))
2078 return 0;
2079
2080 /* Check if NUM will fit in 8bit after shift. */
2081 return fits_in_signed_byte (num >> shift);
2082 }
2083
2084 static INLINE int
2085 fits_in_imm4 (offsetT num)
2086 {
2087 return (num & 0xf) == num;
2088 }
2089
2090 static i386_operand_type
2091 smallest_imm_type (offsetT num)
2092 {
2093 i386_operand_type t;
2094
2095 operand_type_set (&t, 0);
2096 t.bitfield.imm64 = 1;
2097
2098 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2099 {
2100 /* This code is disabled on the 486 because all the Imm1 forms
2101 in the opcode table are slower on the i486. They're the
2102 versions with the implicitly specified single-position
2103 displacement, which has another syntax if you really want to
2104 use that form. */
2105 t.bitfield.imm1 = 1;
2106 t.bitfield.imm8 = 1;
2107 t.bitfield.imm8s = 1;
2108 t.bitfield.imm16 = 1;
2109 t.bitfield.imm32 = 1;
2110 t.bitfield.imm32s = 1;
2111 }
2112 else if (fits_in_signed_byte (num))
2113 {
2114 t.bitfield.imm8 = 1;
2115 t.bitfield.imm8s = 1;
2116 t.bitfield.imm16 = 1;
2117 t.bitfield.imm32 = 1;
2118 t.bitfield.imm32s = 1;
2119 }
2120 else if (fits_in_unsigned_byte (num))
2121 {
2122 t.bitfield.imm8 = 1;
2123 t.bitfield.imm16 = 1;
2124 t.bitfield.imm32 = 1;
2125 t.bitfield.imm32s = 1;
2126 }
2127 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2128 {
2129 t.bitfield.imm16 = 1;
2130 t.bitfield.imm32 = 1;
2131 t.bitfield.imm32s = 1;
2132 }
2133 else if (fits_in_signed_long (num))
2134 {
2135 t.bitfield.imm32 = 1;
2136 t.bitfield.imm32s = 1;
2137 }
2138 else if (fits_in_unsigned_long (num))
2139 t.bitfield.imm32 = 1;
2140
2141 return t;
2142 }
2143
2144 static offsetT
2145 offset_in_range (offsetT val, int size)
2146 {
2147 addressT mask;
2148
2149 switch (size)
2150 {
2151 case 1: mask = ((addressT) 1 << 8) - 1; break;
2152 case 2: mask = ((addressT) 1 << 16) - 1; break;
2153 case 4: mask = ((addressT) 2 << 31) - 1; break;
2154 #ifdef BFD64
2155 case 8: mask = ((addressT) 2 << 63) - 1; break;
2156 #endif
2157 default: abort ();
2158 }
2159
2160 #ifdef BFD64
2161 /* If BFD64, sign extend val for 32bit address mode. */
2162 if (flag_code != CODE_64BIT
2163 || i.prefix[ADDR_PREFIX])
2164 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2165 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2166 #endif
2167
2168 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2169 {
2170 char buf1[40], buf2[40];
2171
2172 sprint_value (buf1, val);
2173 sprint_value (buf2, val & mask);
2174 as_warn (_("%s shortened to %s"), buf1, buf2);
2175 }
2176 return val & mask;
2177 }
2178
2179 enum PREFIX_GROUP
2180 {
2181 PREFIX_EXIST = 0,
2182 PREFIX_LOCK,
2183 PREFIX_REP,
2184 PREFIX_DS,
2185 PREFIX_OTHER
2186 };
2187
2188 /* Returns
2189 a. PREFIX_EXIST if attempting to add a prefix where one from the
2190 same class already exists.
2191 b. PREFIX_LOCK if lock prefix is added.
2192 c. PREFIX_REP if rep/repne prefix is added.
2193 d. PREFIX_DS if ds prefix is added.
2194 e. PREFIX_OTHER if other prefix is added.
2195 */
2196
2197 static enum PREFIX_GROUP
2198 add_prefix (unsigned int prefix)
2199 {
2200 enum PREFIX_GROUP ret = PREFIX_OTHER;
2201 unsigned int q;
2202
2203 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2204 && flag_code == CODE_64BIT)
2205 {
2206 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2207 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2208 && (prefix & (REX_R | REX_X | REX_B))))
2209 ret = PREFIX_EXIST;
2210 q = REX_PREFIX;
2211 }
2212 else
2213 {
2214 switch (prefix)
2215 {
2216 default:
2217 abort ();
2218
2219 case DS_PREFIX_OPCODE:
2220 ret = PREFIX_DS;
2221 /* Fall through. */
2222 case CS_PREFIX_OPCODE:
2223 case ES_PREFIX_OPCODE:
2224 case FS_PREFIX_OPCODE:
2225 case GS_PREFIX_OPCODE:
2226 case SS_PREFIX_OPCODE:
2227 q = SEG_PREFIX;
2228 break;
2229
2230 case REPNE_PREFIX_OPCODE:
2231 case REPE_PREFIX_OPCODE:
2232 q = REP_PREFIX;
2233 ret = PREFIX_REP;
2234 break;
2235
2236 case LOCK_PREFIX_OPCODE:
2237 q = LOCK_PREFIX;
2238 ret = PREFIX_LOCK;
2239 break;
2240
2241 case FWAIT_OPCODE:
2242 q = WAIT_PREFIX;
2243 break;
2244
2245 case ADDR_PREFIX_OPCODE:
2246 q = ADDR_PREFIX;
2247 break;
2248
2249 case DATA_PREFIX_OPCODE:
2250 q = DATA_PREFIX;
2251 break;
2252 }
2253 if (i.prefix[q] != 0)
2254 ret = PREFIX_EXIST;
2255 }
2256
2257 if (ret)
2258 {
2259 if (!i.prefix[q])
2260 ++i.prefixes;
2261 i.prefix[q] |= prefix;
2262 }
2263 else
2264 as_bad (_("same type of prefix used twice"));
2265
2266 return ret;
2267 }
2268
2269 static void
2270 update_code_flag (int value, int check)
2271 {
2272 PRINTF_LIKE ((*as_error));
2273
2274 flag_code = (enum flag_code) value;
2275 if (flag_code == CODE_64BIT)
2276 {
2277 cpu_arch_flags.bitfield.cpu64 = 1;
2278 cpu_arch_flags.bitfield.cpuno64 = 0;
2279 }
2280 else
2281 {
2282 cpu_arch_flags.bitfield.cpu64 = 0;
2283 cpu_arch_flags.bitfield.cpuno64 = 1;
2284 }
2285 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2286 {
2287 if (check)
2288 as_error = as_fatal;
2289 else
2290 as_error = as_bad;
2291 (*as_error) (_("64bit mode not supported on `%s'."),
2292 cpu_arch_name ? cpu_arch_name : default_arch);
2293 }
2294 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2295 {
2296 if (check)
2297 as_error = as_fatal;
2298 else
2299 as_error = as_bad;
2300 (*as_error) (_("32bit mode not supported on `%s'."),
2301 cpu_arch_name ? cpu_arch_name : default_arch);
2302 }
2303 stackop_size = '\0';
2304 }
2305
2306 static void
2307 set_code_flag (int value)
2308 {
2309 update_code_flag (value, 0);
2310 }
2311
2312 static void
2313 set_16bit_gcc_code_flag (int new_code_flag)
2314 {
2315 flag_code = (enum flag_code) new_code_flag;
2316 if (flag_code != CODE_16BIT)
2317 abort ();
2318 cpu_arch_flags.bitfield.cpu64 = 0;
2319 cpu_arch_flags.bitfield.cpuno64 = 1;
2320 stackop_size = LONG_MNEM_SUFFIX;
2321 }
2322
2323 static void
2324 set_intel_syntax (int syntax_flag)
2325 {
2326 /* Find out if register prefixing is specified. */
2327 int ask_naked_reg = 0;
2328
2329 SKIP_WHITESPACE ();
2330 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2331 {
2332 char *string;
2333 int e = get_symbol_name (&string);
2334
2335 if (strcmp (string, "prefix") == 0)
2336 ask_naked_reg = 1;
2337 else if (strcmp (string, "noprefix") == 0)
2338 ask_naked_reg = -1;
2339 else
2340 as_bad (_("bad argument to syntax directive."));
2341 (void) restore_line_pointer (e);
2342 }
2343 demand_empty_rest_of_line ();
2344
2345 intel_syntax = syntax_flag;
2346
2347 if (ask_naked_reg == 0)
2348 allow_naked_reg = (intel_syntax
2349 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2350 else
2351 allow_naked_reg = (ask_naked_reg < 0);
2352
2353 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2354
2355 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2356 identifier_chars['$'] = intel_syntax ? '$' : 0;
2357 register_prefix = allow_naked_reg ? "" : "%";
2358 }
2359
2360 static void
2361 set_intel_mnemonic (int mnemonic_flag)
2362 {
2363 intel_mnemonic = mnemonic_flag;
2364 }
2365
2366 static void
2367 set_allow_index_reg (int flag)
2368 {
2369 allow_index_reg = flag;
2370 }
2371
2372 static void
2373 set_check (int what)
2374 {
2375 enum check_kind *kind;
2376 const char *str;
2377
2378 if (what)
2379 {
2380 kind = &operand_check;
2381 str = "operand";
2382 }
2383 else
2384 {
2385 kind = &sse_check;
2386 str = "sse";
2387 }
2388
2389 SKIP_WHITESPACE ();
2390
2391 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2392 {
2393 char *string;
2394 int e = get_symbol_name (&string);
2395
2396 if (strcmp (string, "none") == 0)
2397 *kind = check_none;
2398 else if (strcmp (string, "warning") == 0)
2399 *kind = check_warning;
2400 else if (strcmp (string, "error") == 0)
2401 *kind = check_error;
2402 else
2403 as_bad (_("bad argument to %s_check directive."), str);
2404 (void) restore_line_pointer (e);
2405 }
2406 else
2407 as_bad (_("missing argument for %s_check directive"), str);
2408
2409 demand_empty_rest_of_line ();
2410 }
2411
2412 static void
2413 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2414 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2415 {
2416 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2417 static const char *arch;
2418
2419 /* Intel LIOM is only supported on ELF. */
2420 if (!IS_ELF)
2421 return;
2422
2423 if (!arch)
2424 {
2425 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2426 use default_arch. */
2427 arch = cpu_arch_name;
2428 if (!arch)
2429 arch = default_arch;
2430 }
2431
2432 /* If we are targeting Intel MCU, we must enable it. */
2433 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2434 || new_flag.bitfield.cpuiamcu)
2435 return;
2436
2437 /* If we are targeting Intel L1OM, we must enable it. */
2438 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2439 || new_flag.bitfield.cpul1om)
2440 return;
2441
2442 /* If we are targeting Intel K1OM, we must enable it. */
2443 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2444 || new_flag.bitfield.cpuk1om)
2445 return;
2446
2447 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2448 #endif
2449 }
2450
2451 static void
2452 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2453 {
2454 SKIP_WHITESPACE ();
2455
2456 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2457 {
2458 char *string;
2459 int e = get_symbol_name (&string);
2460 unsigned int j;
2461 i386_cpu_flags flags;
2462
2463 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2464 {
2465 if (strcmp (string, cpu_arch[j].name) == 0)
2466 {
2467 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2468
2469 if (*string != '.')
2470 {
2471 cpu_arch_name = cpu_arch[j].name;
2472 cpu_sub_arch_name = NULL;
2473 cpu_arch_flags = cpu_arch[j].flags;
2474 if (flag_code == CODE_64BIT)
2475 {
2476 cpu_arch_flags.bitfield.cpu64 = 1;
2477 cpu_arch_flags.bitfield.cpuno64 = 0;
2478 }
2479 else
2480 {
2481 cpu_arch_flags.bitfield.cpu64 = 0;
2482 cpu_arch_flags.bitfield.cpuno64 = 1;
2483 }
2484 cpu_arch_isa = cpu_arch[j].type;
2485 cpu_arch_isa_flags = cpu_arch[j].flags;
2486 if (!cpu_arch_tune_set)
2487 {
2488 cpu_arch_tune = cpu_arch_isa;
2489 cpu_arch_tune_flags = cpu_arch_isa_flags;
2490 }
2491 break;
2492 }
2493
2494 flags = cpu_flags_or (cpu_arch_flags,
2495 cpu_arch[j].flags);
2496
2497 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2498 {
2499 if (cpu_sub_arch_name)
2500 {
2501 char *name = cpu_sub_arch_name;
2502 cpu_sub_arch_name = concat (name,
2503 cpu_arch[j].name,
2504 (const char *) NULL);
2505 free (name);
2506 }
2507 else
2508 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2509 cpu_arch_flags = flags;
2510 cpu_arch_isa_flags = flags;
2511 }
2512 (void) restore_line_pointer (e);
2513 demand_empty_rest_of_line ();
2514 return;
2515 }
2516 }
2517
2518 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2519 {
2520 /* Disable an ISA extension. */
2521 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2522 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2523 {
2524 flags = cpu_flags_and_not (cpu_arch_flags,
2525 cpu_noarch[j].flags);
2526 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2527 {
2528 if (cpu_sub_arch_name)
2529 {
2530 char *name = cpu_sub_arch_name;
2531 cpu_sub_arch_name = concat (name, string,
2532 (const char *) NULL);
2533 free (name);
2534 }
2535 else
2536 cpu_sub_arch_name = xstrdup (string);
2537 cpu_arch_flags = flags;
2538 cpu_arch_isa_flags = flags;
2539 }
2540 (void) restore_line_pointer (e);
2541 demand_empty_rest_of_line ();
2542 return;
2543 }
2544
2545 j = ARRAY_SIZE (cpu_arch);
2546 }
2547
2548 if (j >= ARRAY_SIZE (cpu_arch))
2549 as_bad (_("no such architecture: `%s'"), string);
2550
2551 *input_line_pointer = e;
2552 }
2553 else
2554 as_bad (_("missing cpu architecture"));
2555
2556 no_cond_jump_promotion = 0;
2557 if (*input_line_pointer == ','
2558 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2559 {
2560 char *string;
2561 char e;
2562
2563 ++input_line_pointer;
2564 e = get_symbol_name (&string);
2565
2566 if (strcmp (string, "nojumps") == 0)
2567 no_cond_jump_promotion = 1;
2568 else if (strcmp (string, "jumps") == 0)
2569 ;
2570 else
2571 as_bad (_("no such architecture modifier: `%s'"), string);
2572
2573 (void) restore_line_pointer (e);
2574 }
2575
2576 demand_empty_rest_of_line ();
2577 }
2578
2579 enum bfd_architecture
2580 i386_arch (void)
2581 {
2582 if (cpu_arch_isa == PROCESSOR_L1OM)
2583 {
2584 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2585 || flag_code != CODE_64BIT)
2586 as_fatal (_("Intel L1OM is 64bit ELF only"));
2587 return bfd_arch_l1om;
2588 }
2589 else if (cpu_arch_isa == PROCESSOR_K1OM)
2590 {
2591 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2592 || flag_code != CODE_64BIT)
2593 as_fatal (_("Intel K1OM is 64bit ELF only"));
2594 return bfd_arch_k1om;
2595 }
2596 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2597 {
2598 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2599 || flag_code == CODE_64BIT)
2600 as_fatal (_("Intel MCU is 32bit ELF only"));
2601 return bfd_arch_iamcu;
2602 }
2603 else
2604 return bfd_arch_i386;
2605 }
2606
2607 unsigned long
2608 i386_mach (void)
2609 {
2610 if (!strncmp (default_arch, "x86_64", 6))
2611 {
2612 if (cpu_arch_isa == PROCESSOR_L1OM)
2613 {
2614 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2615 || default_arch[6] != '\0')
2616 as_fatal (_("Intel L1OM is 64bit ELF only"));
2617 return bfd_mach_l1om;
2618 }
2619 else if (cpu_arch_isa == PROCESSOR_K1OM)
2620 {
2621 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2622 || default_arch[6] != '\0')
2623 as_fatal (_("Intel K1OM is 64bit ELF only"));
2624 return bfd_mach_k1om;
2625 }
2626 else if (default_arch[6] == '\0')
2627 return bfd_mach_x86_64;
2628 else
2629 return bfd_mach_x64_32;
2630 }
2631 else if (!strcmp (default_arch, "i386")
2632 || !strcmp (default_arch, "iamcu"))
2633 {
2634 if (cpu_arch_isa == PROCESSOR_IAMCU)
2635 {
2636 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2637 as_fatal (_("Intel MCU is 32bit ELF only"));
2638 return bfd_mach_i386_iamcu;
2639 }
2640 else
2641 return bfd_mach_i386_i386;
2642 }
2643 else
2644 as_fatal (_("unknown architecture"));
2645 }
2646 \f
2647 void
2648 md_begin (void)
2649 {
2650 const char *hash_err;
2651
2652 /* Support pseudo prefixes like {disp32}. */
2653 lex_type ['{'] = LEX_BEGIN_NAME;
2654
2655 /* Initialize op_hash hash table. */
2656 op_hash = hash_new ();
2657
2658 {
2659 const insn_template *optab;
2660 templates *core_optab;
2661
2662 /* Setup for loop. */
2663 optab = i386_optab;
2664 core_optab = XNEW (templates);
2665 core_optab->start = optab;
2666
2667 while (1)
2668 {
2669 ++optab;
2670 if (optab->name == NULL
2671 || strcmp (optab->name, (optab - 1)->name) != 0)
2672 {
2673 /* different name --> ship out current template list;
2674 add to hash table; & begin anew. */
2675 core_optab->end = optab;
2676 hash_err = hash_insert (op_hash,
2677 (optab - 1)->name,
2678 (void *) core_optab);
2679 if (hash_err)
2680 {
2681 as_fatal (_("can't hash %s: %s"),
2682 (optab - 1)->name,
2683 hash_err);
2684 }
2685 if (optab->name == NULL)
2686 break;
2687 core_optab = XNEW (templates);
2688 core_optab->start = optab;
2689 }
2690 }
2691 }
2692
2693 /* Initialize reg_hash hash table. */
2694 reg_hash = hash_new ();
2695 {
2696 const reg_entry *regtab;
2697 unsigned int regtab_size = i386_regtab_size;
2698
2699 for (regtab = i386_regtab; regtab_size--; regtab++)
2700 {
2701 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2702 if (hash_err)
2703 as_fatal (_("can't hash %s: %s"),
2704 regtab->reg_name,
2705 hash_err);
2706 }
2707 }
2708
2709 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2710 {
2711 int c;
2712 char *p;
2713
2714 for (c = 0; c < 256; c++)
2715 {
2716 if (ISDIGIT (c))
2717 {
2718 digit_chars[c] = c;
2719 mnemonic_chars[c] = c;
2720 register_chars[c] = c;
2721 operand_chars[c] = c;
2722 }
2723 else if (ISLOWER (c))
2724 {
2725 mnemonic_chars[c] = c;
2726 register_chars[c] = c;
2727 operand_chars[c] = c;
2728 }
2729 else if (ISUPPER (c))
2730 {
2731 mnemonic_chars[c] = TOLOWER (c);
2732 register_chars[c] = mnemonic_chars[c];
2733 operand_chars[c] = c;
2734 }
2735 else if (c == '{' || c == '}')
2736 {
2737 mnemonic_chars[c] = c;
2738 operand_chars[c] = c;
2739 }
2740
2741 if (ISALPHA (c) || ISDIGIT (c))
2742 identifier_chars[c] = c;
2743 else if (c >= 128)
2744 {
2745 identifier_chars[c] = c;
2746 operand_chars[c] = c;
2747 }
2748 }
2749
2750 #ifdef LEX_AT
2751 identifier_chars['@'] = '@';
2752 #endif
2753 #ifdef LEX_QM
2754 identifier_chars['?'] = '?';
2755 operand_chars['?'] = '?';
2756 #endif
2757 digit_chars['-'] = '-';
2758 mnemonic_chars['_'] = '_';
2759 mnemonic_chars['-'] = '-';
2760 mnemonic_chars['.'] = '.';
2761 identifier_chars['_'] = '_';
2762 identifier_chars['.'] = '.';
2763
2764 for (p = operand_special_chars; *p != '\0'; p++)
2765 operand_chars[(unsigned char) *p] = *p;
2766 }
2767
2768 if (flag_code == CODE_64BIT)
2769 {
2770 #if defined (OBJ_COFF) && defined (TE_PE)
2771 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2772 ? 32 : 16);
2773 #else
2774 x86_dwarf2_return_column = 16;
2775 #endif
2776 x86_cie_data_alignment = -8;
2777 }
2778 else
2779 {
2780 x86_dwarf2_return_column = 8;
2781 x86_cie_data_alignment = -4;
2782 }
2783 }
2784
2785 void
2786 i386_print_statistics (FILE *file)
2787 {
2788 hash_print_statistics (file, "i386 opcode", op_hash);
2789 hash_print_statistics (file, "i386 register", reg_hash);
2790 }
2791 \f
2792 #ifdef DEBUG386
2793
2794 /* Debugging routines for md_assemble. */
2795 static void pte (insn_template *);
2796 static void pt (i386_operand_type);
2797 static void pe (expressionS *);
2798 static void ps (symbolS *);
2799
2800 static void
2801 pi (char *line, i386_insn *x)
2802 {
2803 unsigned int j;
2804
2805 fprintf (stdout, "%s: template ", line);
2806 pte (&x->tm);
2807 fprintf (stdout, " address: base %s index %s scale %x\n",
2808 x->base_reg ? x->base_reg->reg_name : "none",
2809 x->index_reg ? x->index_reg->reg_name : "none",
2810 x->log2_scale_factor);
2811 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2812 x->rm.mode, x->rm.reg, x->rm.regmem);
2813 fprintf (stdout, " sib: base %x index %x scale %x\n",
2814 x->sib.base, x->sib.index, x->sib.scale);
2815 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2816 (x->rex & REX_W) != 0,
2817 (x->rex & REX_R) != 0,
2818 (x->rex & REX_X) != 0,
2819 (x->rex & REX_B) != 0);
2820 for (j = 0; j < x->operands; j++)
2821 {
2822 fprintf (stdout, " #%d: ", j + 1);
2823 pt (x->types[j]);
2824 fprintf (stdout, "\n");
2825 if (x->types[j].bitfield.reg8
2826 || x->types[j].bitfield.reg16
2827 || x->types[j].bitfield.reg32
2828 || x->types[j].bitfield.reg64
2829 || x->types[j].bitfield.regmmx
2830 || x->types[j].bitfield.regxmm
2831 || x->types[j].bitfield.regymm
2832 || x->types[j].bitfield.regzmm
2833 || x->types[j].bitfield.sreg2
2834 || x->types[j].bitfield.sreg3
2835 || x->types[j].bitfield.control
2836 || x->types[j].bitfield.debug
2837 || x->types[j].bitfield.test)
2838 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2839 if (operand_type_check (x->types[j], imm))
2840 pe (x->op[j].imms);
2841 if (operand_type_check (x->types[j], disp))
2842 pe (x->op[j].disps);
2843 }
2844 }
2845
2846 static void
2847 pte (insn_template *t)
2848 {
2849 unsigned int j;
2850 fprintf (stdout, " %d operands ", t->operands);
2851 fprintf (stdout, "opcode %x ", t->base_opcode);
2852 if (t->extension_opcode != None)
2853 fprintf (stdout, "ext %x ", t->extension_opcode);
2854 if (t->opcode_modifier.d)
2855 fprintf (stdout, "D");
2856 if (t->opcode_modifier.w)
2857 fprintf (stdout, "W");
2858 fprintf (stdout, "\n");
2859 for (j = 0; j < t->operands; j++)
2860 {
2861 fprintf (stdout, " #%d type ", j + 1);
2862 pt (t->operand_types[j]);
2863 fprintf (stdout, "\n");
2864 }
2865 }
2866
2867 static void
2868 pe (expressionS *e)
2869 {
2870 fprintf (stdout, " operation %d\n", e->X_op);
2871 fprintf (stdout, " add_number %ld (%lx)\n",
2872 (long) e->X_add_number, (long) e->X_add_number);
2873 if (e->X_add_symbol)
2874 {
2875 fprintf (stdout, " add_symbol ");
2876 ps (e->X_add_symbol);
2877 fprintf (stdout, "\n");
2878 }
2879 if (e->X_op_symbol)
2880 {
2881 fprintf (stdout, " op_symbol ");
2882 ps (e->X_op_symbol);
2883 fprintf (stdout, "\n");
2884 }
2885 }
2886
2887 static void
2888 ps (symbolS *s)
2889 {
2890 fprintf (stdout, "%s type %s%s",
2891 S_GET_NAME (s),
2892 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2893 segment_name (S_GET_SEGMENT (s)));
2894 }
2895
2896 static struct type_name
2897 {
2898 i386_operand_type mask;
2899 const char *name;
2900 }
2901 const type_names[] =
2902 {
2903 { OPERAND_TYPE_REG8, "r8" },
2904 { OPERAND_TYPE_REG16, "r16" },
2905 { OPERAND_TYPE_REG32, "r32" },
2906 { OPERAND_TYPE_REG64, "r64" },
2907 { OPERAND_TYPE_IMM8, "i8" },
2908 { OPERAND_TYPE_IMM8, "i8s" },
2909 { OPERAND_TYPE_IMM16, "i16" },
2910 { OPERAND_TYPE_IMM32, "i32" },
2911 { OPERAND_TYPE_IMM32S, "i32s" },
2912 { OPERAND_TYPE_IMM64, "i64" },
2913 { OPERAND_TYPE_IMM1, "i1" },
2914 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2915 { OPERAND_TYPE_DISP8, "d8" },
2916 { OPERAND_TYPE_DISP16, "d16" },
2917 { OPERAND_TYPE_DISP32, "d32" },
2918 { OPERAND_TYPE_DISP32S, "d32s" },
2919 { OPERAND_TYPE_DISP64, "d64" },
2920 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
2921 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2922 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2923 { OPERAND_TYPE_CONTROL, "control reg" },
2924 { OPERAND_TYPE_TEST, "test reg" },
2925 { OPERAND_TYPE_DEBUG, "debug reg" },
2926 { OPERAND_TYPE_FLOATREG, "FReg" },
2927 { OPERAND_TYPE_FLOATACC, "FAcc" },
2928 { OPERAND_TYPE_SREG2, "SReg2" },
2929 { OPERAND_TYPE_SREG3, "SReg3" },
2930 { OPERAND_TYPE_ACC, "Acc" },
2931 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2932 { OPERAND_TYPE_REGMMX, "rMMX" },
2933 { OPERAND_TYPE_REGXMM, "rXMM" },
2934 { OPERAND_TYPE_REGYMM, "rYMM" },
2935 { OPERAND_TYPE_REGZMM, "rZMM" },
2936 { OPERAND_TYPE_REGMASK, "Mask reg" },
2937 { OPERAND_TYPE_ESSEG, "es" },
2938 };
2939
2940 static void
2941 pt (i386_operand_type t)
2942 {
2943 unsigned int j;
2944 i386_operand_type a;
2945
2946 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2947 {
2948 a = operand_type_and (t, type_names[j].mask);
2949 if (!operand_type_all_zero (&a))
2950 fprintf (stdout, "%s, ", type_names[j].name);
2951 }
2952 fflush (stdout);
2953 }
2954
2955 #endif /* DEBUG386 */
2956 \f
2957 static bfd_reloc_code_real_type
2958 reloc (unsigned int size,
2959 int pcrel,
2960 int sign,
2961 bfd_reloc_code_real_type other)
2962 {
2963 if (other != NO_RELOC)
2964 {
2965 reloc_howto_type *rel;
2966
2967 if (size == 8)
2968 switch (other)
2969 {
2970 case BFD_RELOC_X86_64_GOT32:
2971 return BFD_RELOC_X86_64_GOT64;
2972 break;
2973 case BFD_RELOC_X86_64_GOTPLT64:
2974 return BFD_RELOC_X86_64_GOTPLT64;
2975 break;
2976 case BFD_RELOC_X86_64_PLTOFF64:
2977 return BFD_RELOC_X86_64_PLTOFF64;
2978 break;
2979 case BFD_RELOC_X86_64_GOTPC32:
2980 other = BFD_RELOC_X86_64_GOTPC64;
2981 break;
2982 case BFD_RELOC_X86_64_GOTPCREL:
2983 other = BFD_RELOC_X86_64_GOTPCREL64;
2984 break;
2985 case BFD_RELOC_X86_64_TPOFF32:
2986 other = BFD_RELOC_X86_64_TPOFF64;
2987 break;
2988 case BFD_RELOC_X86_64_DTPOFF32:
2989 other = BFD_RELOC_X86_64_DTPOFF64;
2990 break;
2991 default:
2992 break;
2993 }
2994
2995 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2996 if (other == BFD_RELOC_SIZE32)
2997 {
2998 if (size == 8)
2999 other = BFD_RELOC_SIZE64;
3000 if (pcrel)
3001 {
3002 as_bad (_("there are no pc-relative size relocations"));
3003 return NO_RELOC;
3004 }
3005 }
3006 #endif
3007
3008 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3009 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3010 sign = -1;
3011
3012 rel = bfd_reloc_type_lookup (stdoutput, other);
3013 if (!rel)
3014 as_bad (_("unknown relocation (%u)"), other);
3015 else if (size != bfd_get_reloc_size (rel))
3016 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3017 bfd_get_reloc_size (rel),
3018 size);
3019 else if (pcrel && !rel->pc_relative)
3020 as_bad (_("non-pc-relative relocation for pc-relative field"));
3021 else if ((rel->complain_on_overflow == complain_overflow_signed
3022 && !sign)
3023 || (rel->complain_on_overflow == complain_overflow_unsigned
3024 && sign > 0))
3025 as_bad (_("relocated field and relocation type differ in signedness"));
3026 else
3027 return other;
3028 return NO_RELOC;
3029 }
3030
3031 if (pcrel)
3032 {
3033 if (!sign)
3034 as_bad (_("there are no unsigned pc-relative relocations"));
3035 switch (size)
3036 {
3037 case 1: return BFD_RELOC_8_PCREL;
3038 case 2: return BFD_RELOC_16_PCREL;
3039 case 4: return BFD_RELOC_32_PCREL;
3040 case 8: return BFD_RELOC_64_PCREL;
3041 }
3042 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3043 }
3044 else
3045 {
3046 if (sign > 0)
3047 switch (size)
3048 {
3049 case 4: return BFD_RELOC_X86_64_32S;
3050 }
3051 else
3052 switch (size)
3053 {
3054 case 1: return BFD_RELOC_8;
3055 case 2: return BFD_RELOC_16;
3056 case 4: return BFD_RELOC_32;
3057 case 8: return BFD_RELOC_64;
3058 }
3059 as_bad (_("cannot do %s %u byte relocation"),
3060 sign > 0 ? "signed" : "unsigned", size);
3061 }
3062
3063 return NO_RELOC;
3064 }
3065
3066 /* Here we decide which fixups can be adjusted to make them relative to
3067 the beginning of the section instead of the symbol. Basically we need
3068 to make sure that the dynamic relocations are done correctly, so in
3069 some cases we force the original symbol to be used. */
3070
3071 int
3072 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3073 {
3074 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3075 if (!IS_ELF)
3076 return 1;
3077
3078 /* Don't adjust pc-relative references to merge sections in 64-bit
3079 mode. */
3080 if (use_rela_relocations
3081 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3082 && fixP->fx_pcrel)
3083 return 0;
3084
3085 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3086 and changed later by validate_fix. */
3087 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3088 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3089 return 0;
3090
3091 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3092 for size relocations. */
3093 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3094 || fixP->fx_r_type == BFD_RELOC_SIZE64
3095 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3096 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3097 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3098 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3099 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3100 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3101 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3102 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3103 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3104 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3105 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3106 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3107 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3108 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3109 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3110 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3111 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3112 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3113 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3114 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3115 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3116 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3117 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3118 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3119 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3120 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3121 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3122 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3123 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3124 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3125 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3126 return 0;
3127 #endif
3128 return 1;
3129 }
3130
3131 static int
3132 intel_float_operand (const char *mnemonic)
3133 {
3134 /* Note that the value returned is meaningful only for opcodes with (memory)
3135 operands, hence the code here is free to improperly handle opcodes that
3136 have no operands (for better performance and smaller code). */
3137
3138 if (mnemonic[0] != 'f')
3139 return 0; /* non-math */
3140
3141 switch (mnemonic[1])
3142 {
3143 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3144 the fs segment override prefix not currently handled because no
3145 call path can make opcodes without operands get here */
3146 case 'i':
3147 return 2 /* integer op */;
3148 case 'l':
3149 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3150 return 3; /* fldcw/fldenv */
3151 break;
3152 case 'n':
3153 if (mnemonic[2] != 'o' /* fnop */)
3154 return 3; /* non-waiting control op */
3155 break;
3156 case 'r':
3157 if (mnemonic[2] == 's')
3158 return 3; /* frstor/frstpm */
3159 break;
3160 case 's':
3161 if (mnemonic[2] == 'a')
3162 return 3; /* fsave */
3163 if (mnemonic[2] == 't')
3164 {
3165 switch (mnemonic[3])
3166 {
3167 case 'c': /* fstcw */
3168 case 'd': /* fstdw */
3169 case 'e': /* fstenv */
3170 case 's': /* fsts[gw] */
3171 return 3;
3172 }
3173 }
3174 break;
3175 case 'x':
3176 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3177 return 0; /* fxsave/fxrstor are not really math ops */
3178 break;
3179 }
3180
3181 return 1;
3182 }
3183
3184 /* Build the VEX prefix. */
3185
3186 static void
3187 build_vex_prefix (const insn_template *t)
3188 {
3189 unsigned int register_specifier;
3190 unsigned int implied_prefix;
3191 unsigned int vector_length;
3192
3193 /* Check register specifier. */
3194 if (i.vex.register_specifier)
3195 {
3196 register_specifier =
3197 ~register_number (i.vex.register_specifier) & 0xf;
3198 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3199 }
3200 else
3201 register_specifier = 0xf;
3202
3203 /* Use 2-byte VEX prefix by swapping destination and source
3204 operand. */
3205 if (i.vec_encoding != vex_encoding_vex3
3206 && i.dir_encoding == dir_encoding_default
3207 && i.operands == i.reg_operands
3208 && i.tm.opcode_modifier.vexopcode == VEX0F
3209 && i.tm.opcode_modifier.load
3210 && i.rex == REX_B)
3211 {
3212 unsigned int xchg = i.operands - 1;
3213 union i386_op temp_op;
3214 i386_operand_type temp_type;
3215
3216 temp_type = i.types[xchg];
3217 i.types[xchg] = i.types[0];
3218 i.types[0] = temp_type;
3219 temp_op = i.op[xchg];
3220 i.op[xchg] = i.op[0];
3221 i.op[0] = temp_op;
3222
3223 gas_assert (i.rm.mode == 3);
3224
3225 i.rex = REX_R;
3226 xchg = i.rm.regmem;
3227 i.rm.regmem = i.rm.reg;
3228 i.rm.reg = xchg;
3229
3230 /* Use the next insn. */
3231 i.tm = t[1];
3232 }
3233
3234 if (i.tm.opcode_modifier.vex == VEXScalar)
3235 vector_length = avxscalar;
3236 else
3237 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
3238
3239 switch ((i.tm.base_opcode >> 8) & 0xff)
3240 {
3241 case 0:
3242 implied_prefix = 0;
3243 break;
3244 case DATA_PREFIX_OPCODE:
3245 implied_prefix = 1;
3246 break;
3247 case REPE_PREFIX_OPCODE:
3248 implied_prefix = 2;
3249 break;
3250 case REPNE_PREFIX_OPCODE:
3251 implied_prefix = 3;
3252 break;
3253 default:
3254 abort ();
3255 }
3256
3257 /* Use 2-byte VEX prefix if possible. */
3258 if (i.vec_encoding != vex_encoding_vex3
3259 && i.tm.opcode_modifier.vexopcode == VEX0F
3260 && i.tm.opcode_modifier.vexw != VEXW1
3261 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3262 {
3263 /* 2-byte VEX prefix. */
3264 unsigned int r;
3265
3266 i.vex.length = 2;
3267 i.vex.bytes[0] = 0xc5;
3268
3269 /* Check the REX.R bit. */
3270 r = (i.rex & REX_R) ? 0 : 1;
3271 i.vex.bytes[1] = (r << 7
3272 | register_specifier << 3
3273 | vector_length << 2
3274 | implied_prefix);
3275 }
3276 else
3277 {
3278 /* 3-byte VEX prefix. */
3279 unsigned int m, w;
3280
3281 i.vex.length = 3;
3282
3283 switch (i.tm.opcode_modifier.vexopcode)
3284 {
3285 case VEX0F:
3286 m = 0x1;
3287 i.vex.bytes[0] = 0xc4;
3288 break;
3289 case VEX0F38:
3290 m = 0x2;
3291 i.vex.bytes[0] = 0xc4;
3292 break;
3293 case VEX0F3A:
3294 m = 0x3;
3295 i.vex.bytes[0] = 0xc4;
3296 break;
3297 case XOP08:
3298 m = 0x8;
3299 i.vex.bytes[0] = 0x8f;
3300 break;
3301 case XOP09:
3302 m = 0x9;
3303 i.vex.bytes[0] = 0x8f;
3304 break;
3305 case XOP0A:
3306 m = 0xa;
3307 i.vex.bytes[0] = 0x8f;
3308 break;
3309 default:
3310 abort ();
3311 }
3312
3313 /* The high 3 bits of the second VEX byte are 1's compliment
3314 of RXB bits from REX. */
3315 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3316
3317 /* Check the REX.W bit. */
3318 w = (i.rex & REX_W) ? 1 : 0;
3319 if (i.tm.opcode_modifier.vexw == VEXW1)
3320 w = 1;
3321
3322 i.vex.bytes[2] = (w << 7
3323 | register_specifier << 3
3324 | vector_length << 2
3325 | implied_prefix);
3326 }
3327 }
3328
3329 /* Build the EVEX prefix. */
3330
3331 static void
3332 build_evex_prefix (void)
3333 {
3334 unsigned int register_specifier;
3335 unsigned int implied_prefix;
3336 unsigned int m, w;
3337 rex_byte vrex_used = 0;
3338
3339 /* Check register specifier. */
3340 if (i.vex.register_specifier)
3341 {
3342 gas_assert ((i.vrex & REX_X) == 0);
3343
3344 register_specifier = i.vex.register_specifier->reg_num;
3345 if ((i.vex.register_specifier->reg_flags & RegRex))
3346 register_specifier += 8;
3347 /* The upper 16 registers are encoded in the fourth byte of the
3348 EVEX prefix. */
3349 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3350 i.vex.bytes[3] = 0x8;
3351 register_specifier = ~register_specifier & 0xf;
3352 }
3353 else
3354 {
3355 register_specifier = 0xf;
3356
3357 /* Encode upper 16 vector index register in the fourth byte of
3358 the EVEX prefix. */
3359 if (!(i.vrex & REX_X))
3360 i.vex.bytes[3] = 0x8;
3361 else
3362 vrex_used |= REX_X;
3363 }
3364
3365 switch ((i.tm.base_opcode >> 8) & 0xff)
3366 {
3367 case 0:
3368 implied_prefix = 0;
3369 break;
3370 case DATA_PREFIX_OPCODE:
3371 implied_prefix = 1;
3372 break;
3373 case REPE_PREFIX_OPCODE:
3374 implied_prefix = 2;
3375 break;
3376 case REPNE_PREFIX_OPCODE:
3377 implied_prefix = 3;
3378 break;
3379 default:
3380 abort ();
3381 }
3382
3383 /* 4 byte EVEX prefix. */
3384 i.vex.length = 4;
3385 i.vex.bytes[0] = 0x62;
3386
3387 /* mmmm bits. */
3388 switch (i.tm.opcode_modifier.vexopcode)
3389 {
3390 case VEX0F:
3391 m = 1;
3392 break;
3393 case VEX0F38:
3394 m = 2;
3395 break;
3396 case VEX0F3A:
3397 m = 3;
3398 break;
3399 default:
3400 abort ();
3401 break;
3402 }
3403
3404 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3405 bits from REX. */
3406 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3407
3408 /* The fifth bit of the second EVEX byte is 1's compliment of the
3409 REX_R bit in VREX. */
3410 if (!(i.vrex & REX_R))
3411 i.vex.bytes[1] |= 0x10;
3412 else
3413 vrex_used |= REX_R;
3414
3415 if ((i.reg_operands + i.imm_operands) == i.operands)
3416 {
3417 /* When all operands are registers, the REX_X bit in REX is not
3418 used. We reuse it to encode the upper 16 registers, which is
3419 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3420 as 1's compliment. */
3421 if ((i.vrex & REX_B))
3422 {
3423 vrex_used |= REX_B;
3424 i.vex.bytes[1] &= ~0x40;
3425 }
3426 }
3427
3428 /* EVEX instructions shouldn't need the REX prefix. */
3429 i.vrex &= ~vrex_used;
3430 gas_assert (i.vrex == 0);
3431
3432 /* Check the REX.W bit. */
3433 w = (i.rex & REX_W) ? 1 : 0;
3434 if (i.tm.opcode_modifier.vexw)
3435 {
3436 if (i.tm.opcode_modifier.vexw == VEXW1)
3437 w = 1;
3438 }
3439 /* If w is not set it means we are dealing with WIG instruction. */
3440 else if (!w)
3441 {
3442 if (evexwig == evexw1)
3443 w = 1;
3444 }
3445
3446 /* Encode the U bit. */
3447 implied_prefix |= 0x4;
3448
3449 /* The third byte of the EVEX prefix. */
3450 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3451
3452 /* The fourth byte of the EVEX prefix. */
3453 /* The zeroing-masking bit. */
3454 if (i.mask && i.mask->zeroing)
3455 i.vex.bytes[3] |= 0x80;
3456
3457 /* Don't always set the broadcast bit if there is no RC. */
3458 if (!i.rounding)
3459 {
3460 /* Encode the vector length. */
3461 unsigned int vec_length;
3462
3463 switch (i.tm.opcode_modifier.evex)
3464 {
3465 case EVEXLIG: /* LL' is ignored */
3466 vec_length = evexlig << 5;
3467 break;
3468 case EVEX128:
3469 vec_length = 0 << 5;
3470 break;
3471 case EVEX256:
3472 vec_length = 1 << 5;
3473 break;
3474 case EVEX512:
3475 vec_length = 2 << 5;
3476 break;
3477 default:
3478 abort ();
3479 break;
3480 }
3481 i.vex.bytes[3] |= vec_length;
3482 /* Encode the broadcast bit. */
3483 if (i.broadcast)
3484 i.vex.bytes[3] |= 0x10;
3485 }
3486 else
3487 {
3488 if (i.rounding->type != saeonly)
3489 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3490 else
3491 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3492 }
3493
3494 if (i.mask && i.mask->mask)
3495 i.vex.bytes[3] |= i.mask->mask->reg_num;
3496 }
3497
3498 static void
3499 process_immext (void)
3500 {
3501 expressionS *exp;
3502
3503 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3504 && i.operands > 0)
3505 {
3506 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3507 with an opcode suffix which is coded in the same place as an
3508 8-bit immediate field would be.
3509 Here we check those operands and remove them afterwards. */
3510 unsigned int x;
3511
3512 for (x = 0; x < i.operands; x++)
3513 if (register_number (i.op[x].regs) != x)
3514 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3515 register_prefix, i.op[x].regs->reg_name, x + 1,
3516 i.tm.name);
3517
3518 i.operands = 0;
3519 }
3520
3521 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3522 {
3523 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3524 suffix which is coded in the same place as an 8-bit immediate
3525 field would be.
3526 Here we check those operands and remove them afterwards. */
3527 unsigned int x;
3528
3529 if (i.operands != 3)
3530 abort();
3531
3532 for (x = 0; x < 2; x++)
3533 if (register_number (i.op[x].regs) != x)
3534 goto bad_register_operand;
3535
3536 /* Check for third operand for mwaitx/monitorx insn. */
3537 if (register_number (i.op[x].regs)
3538 != (x + (i.tm.extension_opcode == 0xfb)))
3539 {
3540 bad_register_operand:
3541 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3542 register_prefix, i.op[x].regs->reg_name, x+1,
3543 i.tm.name);
3544 }
3545
3546 i.operands = 0;
3547 }
3548
3549 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3550 which is coded in the same place as an 8-bit immediate field
3551 would be. Here we fake an 8-bit immediate operand from the
3552 opcode suffix stored in tm.extension_opcode.
3553
3554 AVX instructions also use this encoding, for some of
3555 3 argument instructions. */
3556
3557 gas_assert (i.imm_operands <= 1
3558 && (i.operands <= 2
3559 || ((i.tm.opcode_modifier.vex
3560 || i.tm.opcode_modifier.evex)
3561 && i.operands <= 4)));
3562
3563 exp = &im_expressions[i.imm_operands++];
3564 i.op[i.operands].imms = exp;
3565 i.types[i.operands] = imm8;
3566 i.operands++;
3567 exp->X_op = O_constant;
3568 exp->X_add_number = i.tm.extension_opcode;
3569 i.tm.extension_opcode = None;
3570 }
3571
3572
3573 static int
3574 check_hle (void)
3575 {
3576 switch (i.tm.opcode_modifier.hleprefixok)
3577 {
3578 default:
3579 abort ();
3580 case HLEPrefixNone:
3581 as_bad (_("invalid instruction `%s' after `%s'"),
3582 i.tm.name, i.hle_prefix);
3583 return 0;
3584 case HLEPrefixLock:
3585 if (i.prefix[LOCK_PREFIX])
3586 return 1;
3587 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3588 return 0;
3589 case HLEPrefixAny:
3590 return 1;
3591 case HLEPrefixRelease:
3592 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3593 {
3594 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3595 i.tm.name);
3596 return 0;
3597 }
3598 if (i.mem_operands == 0
3599 || !operand_type_check (i.types[i.operands - 1], anymem))
3600 {
3601 as_bad (_("memory destination needed for instruction `%s'"
3602 " after `xrelease'"), i.tm.name);
3603 return 0;
3604 }
3605 return 1;
3606 }
3607 }
3608
3609 /* This is the guts of the machine-dependent assembler. LINE points to a
3610 machine dependent instruction. This function is supposed to emit
3611 the frags/bytes it assembles to. */
3612
3613 void
3614 md_assemble (char *line)
3615 {
3616 unsigned int j;
3617 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
3618 const insn_template *t;
3619
3620 /* Initialize globals. */
3621 memset (&i, '\0', sizeof (i));
3622 for (j = 0; j < MAX_OPERANDS; j++)
3623 i.reloc[j] = NO_RELOC;
3624 memset (disp_expressions, '\0', sizeof (disp_expressions));
3625 memset (im_expressions, '\0', sizeof (im_expressions));
3626 save_stack_p = save_stack;
3627
3628 /* First parse an instruction mnemonic & call i386_operand for the operands.
3629 We assume that the scrubber has arranged it so that line[0] is the valid
3630 start of a (possibly prefixed) mnemonic. */
3631
3632 line = parse_insn (line, mnemonic);
3633 if (line == NULL)
3634 return;
3635 mnem_suffix = i.suffix;
3636
3637 line = parse_operands (line, mnemonic);
3638 this_operand = -1;
3639 xfree (i.memop1_string);
3640 i.memop1_string = NULL;
3641 if (line == NULL)
3642 return;
3643
3644 /* Now we've parsed the mnemonic into a set of templates, and have the
3645 operands at hand. */
3646
3647 /* All intel opcodes have reversed operands except for "bound" and
3648 "enter". We also don't reverse intersegment "jmp" and "call"
3649 instructions with 2 immediate operands so that the immediate segment
3650 precedes the offset, as it does when in AT&T mode. */
3651 if (intel_syntax
3652 && i.operands > 1
3653 && (strcmp (mnemonic, "bound") != 0)
3654 && (strcmp (mnemonic, "invlpga") != 0)
3655 && !(operand_type_check (i.types[0], imm)
3656 && operand_type_check (i.types[1], imm)))
3657 swap_operands ();
3658
3659 /* The order of the immediates should be reversed
3660 for 2 immediates extrq and insertq instructions */
3661 if (i.imm_operands == 2
3662 && (strcmp (mnemonic, "extrq") == 0
3663 || strcmp (mnemonic, "insertq") == 0))
3664 swap_2_operands (0, 1);
3665
3666 if (i.imm_operands)
3667 optimize_imm ();
3668
3669 /* Don't optimize displacement for movabs since it only takes 64bit
3670 displacement. */
3671 if (i.disp_operands
3672 && i.disp_encoding != disp_encoding_32bit
3673 && (flag_code != CODE_64BIT
3674 || strcmp (mnemonic, "movabs") != 0))
3675 optimize_disp ();
3676
3677 /* Next, we find a template that matches the given insn,
3678 making sure the overlap of the given operands types is consistent
3679 with the template operand types. */
3680
3681 if (!(t = match_template (mnem_suffix)))
3682 return;
3683
3684 if (sse_check != check_none
3685 && !i.tm.opcode_modifier.noavx
3686 && (i.tm.cpu_flags.bitfield.cpusse
3687 || i.tm.cpu_flags.bitfield.cpusse2
3688 || i.tm.cpu_flags.bitfield.cpusse3
3689 || i.tm.cpu_flags.bitfield.cpussse3
3690 || i.tm.cpu_flags.bitfield.cpusse4_1
3691 || i.tm.cpu_flags.bitfield.cpusse4_2))
3692 {
3693 (sse_check == check_warning
3694 ? as_warn
3695 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3696 }
3697
3698 /* Zap movzx and movsx suffix. The suffix has been set from
3699 "word ptr" or "byte ptr" on the source operand in Intel syntax
3700 or extracted from mnemonic in AT&T syntax. But we'll use
3701 the destination register to choose the suffix for encoding. */
3702 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3703 {
3704 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3705 there is no suffix, the default will be byte extension. */
3706 if (i.reg_operands != 2
3707 && !i.suffix
3708 && intel_syntax)
3709 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3710
3711 i.suffix = 0;
3712 }
3713
3714 if (i.tm.opcode_modifier.fwait)
3715 if (!add_prefix (FWAIT_OPCODE))
3716 return;
3717
3718 /* Check if REP prefix is OK. */
3719 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3720 {
3721 as_bad (_("invalid instruction `%s' after `%s'"),
3722 i.tm.name, i.rep_prefix);
3723 return;
3724 }
3725
3726 /* Check for lock without a lockable instruction. Destination operand
3727 must be memory unless it is xchg (0x86). */
3728 if (i.prefix[LOCK_PREFIX]
3729 && (!i.tm.opcode_modifier.islockable
3730 || i.mem_operands == 0
3731 || (i.tm.base_opcode != 0x86
3732 && !operand_type_check (i.types[i.operands - 1], anymem))))
3733 {
3734 as_bad (_("expecting lockable instruction after `lock'"));
3735 return;
3736 }
3737
3738 /* Check if HLE prefix is OK. */
3739 if (i.hle_prefix && !check_hle ())
3740 return;
3741
3742 /* Check BND prefix. */
3743 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3744 as_bad (_("expecting valid branch instruction after `bnd'"));
3745
3746 /* Check NOTRACK prefix. */
3747 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
3748 as_bad (_("expecting indirect branch instruction after `notrack'"));
3749
3750 if (i.tm.cpu_flags.bitfield.cpumpx)
3751 {
3752 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
3753 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3754 else if (flag_code != CODE_16BIT
3755 ? i.prefix[ADDR_PREFIX]
3756 : i.mem_operands && !i.prefix[ADDR_PREFIX])
3757 as_bad (_("16-bit address isn't allowed in MPX instructions"));
3758 }
3759
3760 /* Insert BND prefix. */
3761 if (add_bnd_prefix
3762 && i.tm.opcode_modifier.bndprefixok
3763 && !i.prefix[BND_PREFIX])
3764 add_prefix (BND_PREFIX_OPCODE);
3765
3766 /* Check string instruction segment overrides. */
3767 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3768 {
3769 if (!check_string ())
3770 return;
3771 i.disp_operands = 0;
3772 }
3773
3774 if (!process_suffix ())
3775 return;
3776
3777 /* Update operand types. */
3778 for (j = 0; j < i.operands; j++)
3779 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3780
3781 /* Make still unresolved immediate matches conform to size of immediate
3782 given in i.suffix. */
3783 if (!finalize_imm ())
3784 return;
3785
3786 if (i.types[0].bitfield.imm1)
3787 i.imm_operands = 0; /* kludge for shift insns. */
3788
3789 /* We only need to check those implicit registers for instructions
3790 with 3 operands or less. */
3791 if (i.operands <= 3)
3792 for (j = 0; j < i.operands; j++)
3793 if (i.types[j].bitfield.inoutportreg
3794 || i.types[j].bitfield.shiftcount
3795 || i.types[j].bitfield.acc
3796 || i.types[j].bitfield.floatacc)
3797 i.reg_operands--;
3798
3799 /* ImmExt should be processed after SSE2AVX. */
3800 if (!i.tm.opcode_modifier.sse2avx
3801 && i.tm.opcode_modifier.immext)
3802 process_immext ();
3803
3804 /* For insns with operands there are more diddles to do to the opcode. */
3805 if (i.operands)
3806 {
3807 if (!process_operands ())
3808 return;
3809 }
3810 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3811 {
3812 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3813 as_warn (_("translating to `%sp'"), i.tm.name);
3814 }
3815
3816 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3817 {
3818 if (flag_code == CODE_16BIT)
3819 {
3820 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3821 i.tm.name);
3822 return;
3823 }
3824
3825 if (i.tm.opcode_modifier.vex)
3826 build_vex_prefix (t);
3827 else
3828 build_evex_prefix ();
3829 }
3830
3831 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3832 instructions may define INT_OPCODE as well, so avoid this corner
3833 case for those instructions that use MODRM. */
3834 if (i.tm.base_opcode == INT_OPCODE
3835 && !i.tm.opcode_modifier.modrm
3836 && i.op[0].imms->X_add_number == 3)
3837 {
3838 i.tm.base_opcode = INT3_OPCODE;
3839 i.imm_operands = 0;
3840 }
3841
3842 if ((i.tm.opcode_modifier.jump
3843 || i.tm.opcode_modifier.jumpbyte
3844 || i.tm.opcode_modifier.jumpdword)
3845 && i.op[0].disps->X_op == O_constant)
3846 {
3847 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3848 the absolute address given by the constant. Since ix86 jumps and
3849 calls are pc relative, we need to generate a reloc. */
3850 i.op[0].disps->X_add_symbol = &abs_symbol;
3851 i.op[0].disps->X_op = O_symbol;
3852 }
3853
3854 if (i.tm.opcode_modifier.rex64)
3855 i.rex |= REX_W;
3856
3857 /* For 8 bit registers we need an empty rex prefix. Also if the
3858 instruction already has a prefix, we need to convert old
3859 registers to new ones. */
3860
3861 if ((i.types[0].bitfield.reg8
3862 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3863 || (i.types[1].bitfield.reg8
3864 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3865 || ((i.types[0].bitfield.reg8
3866 || i.types[1].bitfield.reg8)
3867 && i.rex != 0))
3868 {
3869 int x;
3870
3871 i.rex |= REX_OPCODE;
3872 for (x = 0; x < 2; x++)
3873 {
3874 /* Look for 8 bit operand that uses old registers. */
3875 if (i.types[x].bitfield.reg8
3876 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3877 {
3878 /* In case it is "hi" register, give up. */
3879 if (i.op[x].regs->reg_num > 3)
3880 as_bad (_("can't encode register '%s%s' in an "
3881 "instruction requiring REX prefix."),
3882 register_prefix, i.op[x].regs->reg_name);
3883
3884 /* Otherwise it is equivalent to the extended register.
3885 Since the encoding doesn't change this is merely
3886 cosmetic cleanup for debug output. */
3887
3888 i.op[x].regs = i.op[x].regs + 8;
3889 }
3890 }
3891 }
3892
3893 if (i.rex != 0)
3894 add_prefix (REX_OPCODE | i.rex);
3895
3896 /* We are ready to output the insn. */
3897 output_insn ();
3898 }
3899
3900 static char *
3901 parse_insn (char *line, char *mnemonic)
3902 {
3903 char *l = line;
3904 char *token_start = l;
3905 char *mnem_p;
3906 int supported;
3907 const insn_template *t;
3908 char *dot_p = NULL;
3909
3910 while (1)
3911 {
3912 mnem_p = mnemonic;
3913 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3914 {
3915 if (*mnem_p == '.')
3916 dot_p = mnem_p;
3917 mnem_p++;
3918 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3919 {
3920 as_bad (_("no such instruction: `%s'"), token_start);
3921 return NULL;
3922 }
3923 l++;
3924 }
3925 if (!is_space_char (*l)
3926 && *l != END_OF_INSN
3927 && (intel_syntax
3928 || (*l != PREFIX_SEPARATOR
3929 && *l != ',')))
3930 {
3931 as_bad (_("invalid character %s in mnemonic"),
3932 output_invalid (*l));
3933 return NULL;
3934 }
3935 if (token_start == l)
3936 {
3937 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3938 as_bad (_("expecting prefix; got nothing"));
3939 else
3940 as_bad (_("expecting mnemonic; got nothing"));
3941 return NULL;
3942 }
3943
3944 /* Look up instruction (or prefix) via hash table. */
3945 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3946
3947 if (*l != END_OF_INSN
3948 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3949 && current_templates
3950 && current_templates->start->opcode_modifier.isprefix)
3951 {
3952 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3953 {
3954 as_bad ((flag_code != CODE_64BIT
3955 ? _("`%s' is only supported in 64-bit mode")
3956 : _("`%s' is not supported in 64-bit mode")),
3957 current_templates->start->name);
3958 return NULL;
3959 }
3960 /* If we are in 16-bit mode, do not allow addr16 or data16.
3961 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3962 if ((current_templates->start->opcode_modifier.size16
3963 || current_templates->start->opcode_modifier.size32)
3964 && flag_code != CODE_64BIT
3965 && (current_templates->start->opcode_modifier.size32
3966 ^ (flag_code == CODE_16BIT)))
3967 {
3968 as_bad (_("redundant %s prefix"),
3969 current_templates->start->name);
3970 return NULL;
3971 }
3972 if (current_templates->start->opcode_length == 0)
3973 {
3974 /* Handle pseudo prefixes. */
3975 switch (current_templates->start->base_opcode)
3976 {
3977 case 0x0:
3978 /* {disp8} */
3979 i.disp_encoding = disp_encoding_8bit;
3980 break;
3981 case 0x1:
3982 /* {disp32} */
3983 i.disp_encoding = disp_encoding_32bit;
3984 break;
3985 case 0x2:
3986 /* {load} */
3987 i.dir_encoding = dir_encoding_load;
3988 break;
3989 case 0x3:
3990 /* {store} */
3991 i.dir_encoding = dir_encoding_store;
3992 break;
3993 case 0x4:
3994 /* {vex2} */
3995 i.vec_encoding = vex_encoding_vex2;
3996 break;
3997 case 0x5:
3998 /* {vex3} */
3999 i.vec_encoding = vex_encoding_vex3;
4000 break;
4001 case 0x6:
4002 /* {evex} */
4003 i.vec_encoding = vex_encoding_evex;
4004 break;
4005 default:
4006 abort ();
4007 }
4008 }
4009 else
4010 {
4011 /* Add prefix, checking for repeated prefixes. */
4012 switch (add_prefix (current_templates->start->base_opcode))
4013 {
4014 case PREFIX_EXIST:
4015 return NULL;
4016 case PREFIX_DS:
4017 if (current_templates->start->cpu_flags.bitfield.cpucet)
4018 i.notrack_prefix = current_templates->start->name;
4019 break;
4020 case PREFIX_REP:
4021 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4022 i.hle_prefix = current_templates->start->name;
4023 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4024 i.bnd_prefix = current_templates->start->name;
4025 else
4026 i.rep_prefix = current_templates->start->name;
4027 break;
4028 default:
4029 break;
4030 }
4031 }
4032 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4033 token_start = ++l;
4034 }
4035 else
4036 break;
4037 }
4038
4039 if (!current_templates)
4040 {
4041 /* Check if we should swap operand or force 32bit displacement in
4042 encoding. */
4043 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4044 i.dir_encoding = dir_encoding_store;
4045 else if (mnem_p - 3 == dot_p
4046 && dot_p[1] == 'd'
4047 && dot_p[2] == '8')
4048 i.disp_encoding = disp_encoding_8bit;
4049 else if (mnem_p - 4 == dot_p
4050 && dot_p[1] == 'd'
4051 && dot_p[2] == '3'
4052 && dot_p[3] == '2')
4053 i.disp_encoding = disp_encoding_32bit;
4054 else
4055 goto check_suffix;
4056 mnem_p = dot_p;
4057 *dot_p = '\0';
4058 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4059 }
4060
4061 if (!current_templates)
4062 {
4063 check_suffix:
4064 /* See if we can get a match by trimming off a suffix. */
4065 switch (mnem_p[-1])
4066 {
4067 case WORD_MNEM_SUFFIX:
4068 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4069 i.suffix = SHORT_MNEM_SUFFIX;
4070 else
4071 /* Fall through. */
4072 case BYTE_MNEM_SUFFIX:
4073 case QWORD_MNEM_SUFFIX:
4074 i.suffix = mnem_p[-1];
4075 mnem_p[-1] = '\0';
4076 current_templates = (const templates *) hash_find (op_hash,
4077 mnemonic);
4078 break;
4079 case SHORT_MNEM_SUFFIX:
4080 case LONG_MNEM_SUFFIX:
4081 if (!intel_syntax)
4082 {
4083 i.suffix = mnem_p[-1];
4084 mnem_p[-1] = '\0';
4085 current_templates = (const templates *) hash_find (op_hash,
4086 mnemonic);
4087 }
4088 break;
4089
4090 /* Intel Syntax. */
4091 case 'd':
4092 if (intel_syntax)
4093 {
4094 if (intel_float_operand (mnemonic) == 1)
4095 i.suffix = SHORT_MNEM_SUFFIX;
4096 else
4097 i.suffix = LONG_MNEM_SUFFIX;
4098 mnem_p[-1] = '\0';
4099 current_templates = (const templates *) hash_find (op_hash,
4100 mnemonic);
4101 }
4102 break;
4103 }
4104 if (!current_templates)
4105 {
4106 as_bad (_("no such instruction: `%s'"), token_start);
4107 return NULL;
4108 }
4109 }
4110
4111 if (current_templates->start->opcode_modifier.jump
4112 || current_templates->start->opcode_modifier.jumpbyte)
4113 {
4114 /* Check for a branch hint. We allow ",pt" and ",pn" for
4115 predict taken and predict not taken respectively.
4116 I'm not sure that branch hints actually do anything on loop
4117 and jcxz insns (JumpByte) for current Pentium4 chips. They
4118 may work in the future and it doesn't hurt to accept them
4119 now. */
4120 if (l[0] == ',' && l[1] == 'p')
4121 {
4122 if (l[2] == 't')
4123 {
4124 if (!add_prefix (DS_PREFIX_OPCODE))
4125 return NULL;
4126 l += 3;
4127 }
4128 else if (l[2] == 'n')
4129 {
4130 if (!add_prefix (CS_PREFIX_OPCODE))
4131 return NULL;
4132 l += 3;
4133 }
4134 }
4135 }
4136 /* Any other comma loses. */
4137 if (*l == ',')
4138 {
4139 as_bad (_("invalid character %s in mnemonic"),
4140 output_invalid (*l));
4141 return NULL;
4142 }
4143
4144 /* Check if instruction is supported on specified architecture. */
4145 supported = 0;
4146 for (t = current_templates->start; t < current_templates->end; ++t)
4147 {
4148 supported |= cpu_flags_match (t);
4149 if (supported == CPU_FLAGS_PERFECT_MATCH)
4150 goto skip;
4151 }
4152
4153 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4154 {
4155 as_bad (flag_code == CODE_64BIT
4156 ? _("`%s' is not supported in 64-bit mode")
4157 : _("`%s' is only supported in 64-bit mode"),
4158 current_templates->start->name);
4159 return NULL;
4160 }
4161 if (supported != CPU_FLAGS_PERFECT_MATCH)
4162 {
4163 as_bad (_("`%s' is not supported on `%s%s'"),
4164 current_templates->start->name,
4165 cpu_arch_name ? cpu_arch_name : default_arch,
4166 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4167 return NULL;
4168 }
4169
4170 skip:
4171 if (!cpu_arch_flags.bitfield.cpui386
4172 && (flag_code != CODE_16BIT))
4173 {
4174 as_warn (_("use .code16 to ensure correct addressing mode"));
4175 }
4176
4177 return l;
4178 }
4179
4180 static char *
4181 parse_operands (char *l, const char *mnemonic)
4182 {
4183 char *token_start;
4184
4185 /* 1 if operand is pending after ','. */
4186 unsigned int expecting_operand = 0;
4187
4188 /* Non-zero if operand parens not balanced. */
4189 unsigned int paren_not_balanced;
4190
4191 while (*l != END_OF_INSN)
4192 {
4193 /* Skip optional white space before operand. */
4194 if (is_space_char (*l))
4195 ++l;
4196 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4197 {
4198 as_bad (_("invalid character %s before operand %d"),
4199 output_invalid (*l),
4200 i.operands + 1);
4201 return NULL;
4202 }
4203 token_start = l; /* After white space. */
4204 paren_not_balanced = 0;
4205 while (paren_not_balanced || *l != ',')
4206 {
4207 if (*l == END_OF_INSN)
4208 {
4209 if (paren_not_balanced)
4210 {
4211 if (!intel_syntax)
4212 as_bad (_("unbalanced parenthesis in operand %d."),
4213 i.operands + 1);
4214 else
4215 as_bad (_("unbalanced brackets in operand %d."),
4216 i.operands + 1);
4217 return NULL;
4218 }
4219 else
4220 break; /* we are done */
4221 }
4222 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4223 {
4224 as_bad (_("invalid character %s in operand %d"),
4225 output_invalid (*l),
4226 i.operands + 1);
4227 return NULL;
4228 }
4229 if (!intel_syntax)
4230 {
4231 if (*l == '(')
4232 ++paren_not_balanced;
4233 if (*l == ')')
4234 --paren_not_balanced;
4235 }
4236 else
4237 {
4238 if (*l == '[')
4239 ++paren_not_balanced;
4240 if (*l == ']')
4241 --paren_not_balanced;
4242 }
4243 l++;
4244 }
4245 if (l != token_start)
4246 { /* Yes, we've read in another operand. */
4247 unsigned int operand_ok;
4248 this_operand = i.operands++;
4249 if (i.operands > MAX_OPERANDS)
4250 {
4251 as_bad (_("spurious operands; (%d operands/instruction max)"),
4252 MAX_OPERANDS);
4253 return NULL;
4254 }
4255 i.types[this_operand].bitfield.unspecified = 1;
4256 /* Now parse operand adding info to 'i' as we go along. */
4257 END_STRING_AND_SAVE (l);
4258
4259 if (intel_syntax)
4260 operand_ok =
4261 i386_intel_operand (token_start,
4262 intel_float_operand (mnemonic));
4263 else
4264 operand_ok = i386_att_operand (token_start);
4265
4266 RESTORE_END_STRING (l);
4267 if (!operand_ok)
4268 return NULL;
4269 }
4270 else
4271 {
4272 if (expecting_operand)
4273 {
4274 expecting_operand_after_comma:
4275 as_bad (_("expecting operand after ','; got nothing"));
4276 return NULL;
4277 }
4278 if (*l == ',')
4279 {
4280 as_bad (_("expecting operand before ','; got nothing"));
4281 return NULL;
4282 }
4283 }
4284
4285 /* Now *l must be either ',' or END_OF_INSN. */
4286 if (*l == ',')
4287 {
4288 if (*++l == END_OF_INSN)
4289 {
4290 /* Just skip it, if it's \n complain. */
4291 goto expecting_operand_after_comma;
4292 }
4293 expecting_operand = 1;
4294 }
4295 }
4296 return l;
4297 }
4298
4299 static void
4300 swap_2_operands (int xchg1, int xchg2)
4301 {
4302 union i386_op temp_op;
4303 i386_operand_type temp_type;
4304 enum bfd_reloc_code_real temp_reloc;
4305
4306 temp_type = i.types[xchg2];
4307 i.types[xchg2] = i.types[xchg1];
4308 i.types[xchg1] = temp_type;
4309 temp_op = i.op[xchg2];
4310 i.op[xchg2] = i.op[xchg1];
4311 i.op[xchg1] = temp_op;
4312 temp_reloc = i.reloc[xchg2];
4313 i.reloc[xchg2] = i.reloc[xchg1];
4314 i.reloc[xchg1] = temp_reloc;
4315
4316 if (i.mask)
4317 {
4318 if (i.mask->operand == xchg1)
4319 i.mask->operand = xchg2;
4320 else if (i.mask->operand == xchg2)
4321 i.mask->operand = xchg1;
4322 }
4323 if (i.broadcast)
4324 {
4325 if (i.broadcast->operand == xchg1)
4326 i.broadcast->operand = xchg2;
4327 else if (i.broadcast->operand == xchg2)
4328 i.broadcast->operand = xchg1;
4329 }
4330 if (i.rounding)
4331 {
4332 if (i.rounding->operand == xchg1)
4333 i.rounding->operand = xchg2;
4334 else if (i.rounding->operand == xchg2)
4335 i.rounding->operand = xchg1;
4336 }
4337 }
4338
4339 static void
4340 swap_operands (void)
4341 {
4342 switch (i.operands)
4343 {
4344 case 5:
4345 case 4:
4346 swap_2_operands (1, i.operands - 2);
4347 /* Fall through. */
4348 case 3:
4349 case 2:
4350 swap_2_operands (0, i.operands - 1);
4351 break;
4352 default:
4353 abort ();
4354 }
4355
4356 if (i.mem_operands == 2)
4357 {
4358 const seg_entry *temp_seg;
4359 temp_seg = i.seg[0];
4360 i.seg[0] = i.seg[1];
4361 i.seg[1] = temp_seg;
4362 }
4363 }
4364
4365 /* Try to ensure constant immediates are represented in the smallest
4366 opcode possible. */
4367 static void
4368 optimize_imm (void)
4369 {
4370 char guess_suffix = 0;
4371 int op;
4372
4373 if (i.suffix)
4374 guess_suffix = i.suffix;
4375 else if (i.reg_operands)
4376 {
4377 /* Figure out a suffix from the last register operand specified.
4378 We can't do this properly yet, ie. excluding InOutPortReg,
4379 but the following works for instructions with immediates.
4380 In any case, we can't set i.suffix yet. */
4381 for (op = i.operands; --op >= 0;)
4382 if (i.types[op].bitfield.reg8)
4383 {
4384 guess_suffix = BYTE_MNEM_SUFFIX;
4385 break;
4386 }
4387 else if (i.types[op].bitfield.reg16)
4388 {
4389 guess_suffix = WORD_MNEM_SUFFIX;
4390 break;
4391 }
4392 else if (i.types[op].bitfield.reg32)
4393 {
4394 guess_suffix = LONG_MNEM_SUFFIX;
4395 break;
4396 }
4397 else if (i.types[op].bitfield.reg64)
4398 {
4399 guess_suffix = QWORD_MNEM_SUFFIX;
4400 break;
4401 }
4402 }
4403 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4404 guess_suffix = WORD_MNEM_SUFFIX;
4405
4406 for (op = i.operands; --op >= 0;)
4407 if (operand_type_check (i.types[op], imm))
4408 {
4409 switch (i.op[op].imms->X_op)
4410 {
4411 case O_constant:
4412 /* If a suffix is given, this operand may be shortened. */
4413 switch (guess_suffix)
4414 {
4415 case LONG_MNEM_SUFFIX:
4416 i.types[op].bitfield.imm32 = 1;
4417 i.types[op].bitfield.imm64 = 1;
4418 break;
4419 case WORD_MNEM_SUFFIX:
4420 i.types[op].bitfield.imm16 = 1;
4421 i.types[op].bitfield.imm32 = 1;
4422 i.types[op].bitfield.imm32s = 1;
4423 i.types[op].bitfield.imm64 = 1;
4424 break;
4425 case BYTE_MNEM_SUFFIX:
4426 i.types[op].bitfield.imm8 = 1;
4427 i.types[op].bitfield.imm8s = 1;
4428 i.types[op].bitfield.imm16 = 1;
4429 i.types[op].bitfield.imm32 = 1;
4430 i.types[op].bitfield.imm32s = 1;
4431 i.types[op].bitfield.imm64 = 1;
4432 break;
4433 }
4434
4435 /* If this operand is at most 16 bits, convert it
4436 to a signed 16 bit number before trying to see
4437 whether it will fit in an even smaller size.
4438 This allows a 16-bit operand such as $0xffe0 to
4439 be recognised as within Imm8S range. */
4440 if ((i.types[op].bitfield.imm16)
4441 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4442 {
4443 i.op[op].imms->X_add_number =
4444 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4445 }
4446 #ifdef BFD64
4447 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4448 if ((i.types[op].bitfield.imm32)
4449 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4450 == 0))
4451 {
4452 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4453 ^ ((offsetT) 1 << 31))
4454 - ((offsetT) 1 << 31));
4455 }
4456 #endif
4457 i.types[op]
4458 = operand_type_or (i.types[op],
4459 smallest_imm_type (i.op[op].imms->X_add_number));
4460
4461 /* We must avoid matching of Imm32 templates when 64bit
4462 only immediate is available. */
4463 if (guess_suffix == QWORD_MNEM_SUFFIX)
4464 i.types[op].bitfield.imm32 = 0;
4465 break;
4466
4467 case O_absent:
4468 case O_register:
4469 abort ();
4470
4471 /* Symbols and expressions. */
4472 default:
4473 /* Convert symbolic operand to proper sizes for matching, but don't
4474 prevent matching a set of insns that only supports sizes other
4475 than those matching the insn suffix. */
4476 {
4477 i386_operand_type mask, allowed;
4478 const insn_template *t;
4479
4480 operand_type_set (&mask, 0);
4481 operand_type_set (&allowed, 0);
4482
4483 for (t = current_templates->start;
4484 t < current_templates->end;
4485 ++t)
4486 allowed = operand_type_or (allowed,
4487 t->operand_types[op]);
4488 switch (guess_suffix)
4489 {
4490 case QWORD_MNEM_SUFFIX:
4491 mask.bitfield.imm64 = 1;
4492 mask.bitfield.imm32s = 1;
4493 break;
4494 case LONG_MNEM_SUFFIX:
4495 mask.bitfield.imm32 = 1;
4496 break;
4497 case WORD_MNEM_SUFFIX:
4498 mask.bitfield.imm16 = 1;
4499 break;
4500 case BYTE_MNEM_SUFFIX:
4501 mask.bitfield.imm8 = 1;
4502 break;
4503 default:
4504 break;
4505 }
4506 allowed = operand_type_and (mask, allowed);
4507 if (!operand_type_all_zero (&allowed))
4508 i.types[op] = operand_type_and (i.types[op], mask);
4509 }
4510 break;
4511 }
4512 }
4513 }
4514
4515 /* Try to use the smallest displacement type too. */
4516 static void
4517 optimize_disp (void)
4518 {
4519 int op;
4520
4521 for (op = i.operands; --op >= 0;)
4522 if (operand_type_check (i.types[op], disp))
4523 {
4524 if (i.op[op].disps->X_op == O_constant)
4525 {
4526 offsetT op_disp = i.op[op].disps->X_add_number;
4527
4528 if (i.types[op].bitfield.disp16
4529 && (op_disp & ~(offsetT) 0xffff) == 0)
4530 {
4531 /* If this operand is at most 16 bits, convert
4532 to a signed 16 bit number and don't use 64bit
4533 displacement. */
4534 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4535 i.types[op].bitfield.disp64 = 0;
4536 }
4537 #ifdef BFD64
4538 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4539 if (i.types[op].bitfield.disp32
4540 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4541 {
4542 /* If this operand is at most 32 bits, convert
4543 to a signed 32 bit number and don't use 64bit
4544 displacement. */
4545 op_disp &= (((offsetT) 2 << 31) - 1);
4546 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4547 i.types[op].bitfield.disp64 = 0;
4548 }
4549 #endif
4550 if (!op_disp && i.types[op].bitfield.baseindex)
4551 {
4552 i.types[op].bitfield.disp8 = 0;
4553 i.types[op].bitfield.disp16 = 0;
4554 i.types[op].bitfield.disp32 = 0;
4555 i.types[op].bitfield.disp32s = 0;
4556 i.types[op].bitfield.disp64 = 0;
4557 i.op[op].disps = 0;
4558 i.disp_operands--;
4559 }
4560 else if (flag_code == CODE_64BIT)
4561 {
4562 if (fits_in_signed_long (op_disp))
4563 {
4564 i.types[op].bitfield.disp64 = 0;
4565 i.types[op].bitfield.disp32s = 1;
4566 }
4567 if (i.prefix[ADDR_PREFIX]
4568 && fits_in_unsigned_long (op_disp))
4569 i.types[op].bitfield.disp32 = 1;
4570 }
4571 if ((i.types[op].bitfield.disp32
4572 || i.types[op].bitfield.disp32s
4573 || i.types[op].bitfield.disp16)
4574 && fits_in_signed_byte (op_disp))
4575 i.types[op].bitfield.disp8 = 1;
4576 }
4577 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4578 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4579 {
4580 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4581 i.op[op].disps, 0, i.reloc[op]);
4582 i.types[op].bitfield.disp8 = 0;
4583 i.types[op].bitfield.disp16 = 0;
4584 i.types[op].bitfield.disp32 = 0;
4585 i.types[op].bitfield.disp32s = 0;
4586 i.types[op].bitfield.disp64 = 0;
4587 }
4588 else
4589 /* We only support 64bit displacement on constants. */
4590 i.types[op].bitfield.disp64 = 0;
4591 }
4592 }
4593
4594 /* Check if operands are valid for the instruction. */
4595
4596 static int
4597 check_VecOperands (const insn_template *t)
4598 {
4599 unsigned int op;
4600
4601 /* Without VSIB byte, we can't have a vector register for index. */
4602 if (!t->opcode_modifier.vecsib
4603 && i.index_reg
4604 && (i.index_reg->reg_type.bitfield.regxmm
4605 || i.index_reg->reg_type.bitfield.regymm
4606 || i.index_reg->reg_type.bitfield.regzmm))
4607 {
4608 i.error = unsupported_vector_index_register;
4609 return 1;
4610 }
4611
4612 /* Check if default mask is allowed. */
4613 if (t->opcode_modifier.nodefmask
4614 && (!i.mask || i.mask->mask->reg_num == 0))
4615 {
4616 i.error = no_default_mask;
4617 return 1;
4618 }
4619
4620 /* For VSIB byte, we need a vector register for index, and all vector
4621 registers must be distinct. */
4622 if (t->opcode_modifier.vecsib)
4623 {
4624 if (!i.index_reg
4625 || !((t->opcode_modifier.vecsib == VecSIB128
4626 && i.index_reg->reg_type.bitfield.regxmm)
4627 || (t->opcode_modifier.vecsib == VecSIB256
4628 && i.index_reg->reg_type.bitfield.regymm)
4629 || (t->opcode_modifier.vecsib == VecSIB512
4630 && i.index_reg->reg_type.bitfield.regzmm)))
4631 {
4632 i.error = invalid_vsib_address;
4633 return 1;
4634 }
4635
4636 gas_assert (i.reg_operands == 2 || i.mask);
4637 if (i.reg_operands == 2 && !i.mask)
4638 {
4639 gas_assert (i.types[0].bitfield.regxmm
4640 || i.types[0].bitfield.regymm);
4641 gas_assert (i.types[2].bitfield.regxmm
4642 || i.types[2].bitfield.regymm);
4643 if (operand_check == check_none)
4644 return 0;
4645 if (register_number (i.op[0].regs)
4646 != register_number (i.index_reg)
4647 && register_number (i.op[2].regs)
4648 != register_number (i.index_reg)
4649 && register_number (i.op[0].regs)
4650 != register_number (i.op[2].regs))
4651 return 0;
4652 if (operand_check == check_error)
4653 {
4654 i.error = invalid_vector_register_set;
4655 return 1;
4656 }
4657 as_warn (_("mask, index, and destination registers should be distinct"));
4658 }
4659 else if (i.reg_operands == 1 && i.mask)
4660 {
4661 if ((i.types[1].bitfield.regxmm
4662 || i.types[1].bitfield.regymm
4663 || i.types[1].bitfield.regzmm)
4664 && (register_number (i.op[1].regs)
4665 == register_number (i.index_reg)))
4666 {
4667 if (operand_check == check_error)
4668 {
4669 i.error = invalid_vector_register_set;
4670 return 1;
4671 }
4672 if (operand_check != check_none)
4673 as_warn (_("index and destination registers should be distinct"));
4674 }
4675 }
4676 }
4677
4678 /* Check if broadcast is supported by the instruction and is applied
4679 to the memory operand. */
4680 if (i.broadcast)
4681 {
4682 int broadcasted_opnd_size;
4683
4684 /* Check if specified broadcast is supported in this instruction,
4685 and it's applied to memory operand of DWORD or QWORD type,
4686 depending on VecESize. */
4687 if (i.broadcast->type != t->opcode_modifier.broadcast
4688 || !i.types[i.broadcast->operand].bitfield.mem
4689 || (t->opcode_modifier.vecesize == 0
4690 && !i.types[i.broadcast->operand].bitfield.dword
4691 && !i.types[i.broadcast->operand].bitfield.unspecified)
4692 || (t->opcode_modifier.vecesize == 1
4693 && !i.types[i.broadcast->operand].bitfield.qword
4694 && !i.types[i.broadcast->operand].bitfield.unspecified))
4695 goto bad_broadcast;
4696
4697 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4698 if (i.broadcast->type == BROADCAST_1TO16)
4699 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4700 else if (i.broadcast->type == BROADCAST_1TO8)
4701 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4702 else if (i.broadcast->type == BROADCAST_1TO4)
4703 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4704 else if (i.broadcast->type == BROADCAST_1TO2)
4705 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
4706 else
4707 goto bad_broadcast;
4708
4709 if ((broadcasted_opnd_size == 256
4710 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4711 || (broadcasted_opnd_size == 512
4712 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4713 {
4714 bad_broadcast:
4715 i.error = unsupported_broadcast;
4716 return 1;
4717 }
4718 }
4719 /* If broadcast is supported in this instruction, we need to check if
4720 operand of one-element size isn't specified without broadcast. */
4721 else if (t->opcode_modifier.broadcast && i.mem_operands)
4722 {
4723 /* Find memory operand. */
4724 for (op = 0; op < i.operands; op++)
4725 if (operand_type_check (i.types[op], anymem))
4726 break;
4727 gas_assert (op < i.operands);
4728 /* Check size of the memory operand. */
4729 if ((t->opcode_modifier.vecesize == 0
4730 && i.types[op].bitfield.dword)
4731 || (t->opcode_modifier.vecesize == 1
4732 && i.types[op].bitfield.qword))
4733 {
4734 i.error = broadcast_needed;
4735 return 1;
4736 }
4737 }
4738
4739 /* Check if requested masking is supported. */
4740 if (i.mask
4741 && (!t->opcode_modifier.masking
4742 || (i.mask->zeroing
4743 && t->opcode_modifier.masking == MERGING_MASKING)))
4744 {
4745 i.error = unsupported_masking;
4746 return 1;
4747 }
4748
4749 /* Check if masking is applied to dest operand. */
4750 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4751 {
4752 i.error = mask_not_on_destination;
4753 return 1;
4754 }
4755
4756 /* Check RC/SAE. */
4757 if (i.rounding)
4758 {
4759 if ((i.rounding->type != saeonly
4760 && !t->opcode_modifier.staticrounding)
4761 || (i.rounding->type == saeonly
4762 && (t->opcode_modifier.staticrounding
4763 || !t->opcode_modifier.sae)))
4764 {
4765 i.error = unsupported_rc_sae;
4766 return 1;
4767 }
4768 /* If the instruction has several immediate operands and one of
4769 them is rounding, the rounding operand should be the last
4770 immediate operand. */
4771 if (i.imm_operands > 1
4772 && i.rounding->operand != (int) (i.imm_operands - 1))
4773 {
4774 i.error = rc_sae_operand_not_last_imm;
4775 return 1;
4776 }
4777 }
4778
4779 /* Check vector Disp8 operand. */
4780 if (t->opcode_modifier.disp8memshift)
4781 {
4782 if (i.broadcast)
4783 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4784 else
4785 i.memshift = t->opcode_modifier.disp8memshift;
4786
4787 for (op = 0; op < i.operands; op++)
4788 if (operand_type_check (i.types[op], disp)
4789 && i.op[op].disps->X_op == O_constant)
4790 {
4791 offsetT value = i.op[op].disps->X_add_number;
4792 int vec_disp8_ok
4793 = (i.disp_encoding != disp_encoding_32bit
4794 && fits_in_vec_disp8 (value));
4795 if (t->operand_types [op].bitfield.vec_disp8)
4796 {
4797 if (vec_disp8_ok)
4798 i.types[op].bitfield.vec_disp8 = 1;
4799 else
4800 {
4801 /* Vector insn doesn't allow plain Disp8. */
4802 i.types[op].bitfield.disp8 = 0;
4803 }
4804 }
4805 else if (flag_code != CODE_16BIT)
4806 {
4807 /* One form of this instruction supports vector Disp8.
4808 Try vector Disp8 if we need to use Disp32. */
4809 if (vec_disp8_ok && !fits_in_signed_byte (value))
4810 {
4811 i.error = try_vector_disp8;
4812 return 1;
4813 }
4814 }
4815 }
4816 }
4817 else
4818 i.memshift = -1;
4819
4820 return 0;
4821 }
4822
4823 /* Check if operands are valid for the instruction. Update VEX
4824 operand types. */
4825
4826 static int
4827 VEX_check_operands (const insn_template *t)
4828 {
4829 if (i.vec_encoding == vex_encoding_evex)
4830 {
4831 /* This instruction must be encoded with EVEX prefix. */
4832 if (!t->opcode_modifier.evex)
4833 {
4834 i.error = unsupported;
4835 return 1;
4836 }
4837 return 0;
4838 }
4839
4840 if (!t->opcode_modifier.vex)
4841 {
4842 /* This instruction template doesn't have VEX prefix. */
4843 if (i.vec_encoding != vex_encoding_default)
4844 {
4845 i.error = unsupported;
4846 return 1;
4847 }
4848 return 0;
4849 }
4850
4851 /* Only check VEX_Imm4, which must be the first operand. */
4852 if (t->operand_types[0].bitfield.vec_imm4)
4853 {
4854 if (i.op[0].imms->X_op != O_constant
4855 || !fits_in_imm4 (i.op[0].imms->X_add_number))
4856 {
4857 i.error = bad_imm4;
4858 return 1;
4859 }
4860
4861 /* Turn off Imm8 so that update_imm won't complain. */
4862 i.types[0] = vec_imm4;
4863 }
4864
4865 return 0;
4866 }
4867
4868 static const insn_template *
4869 match_template (char mnem_suffix)
4870 {
4871 /* Points to template once we've found it. */
4872 const insn_template *t;
4873 i386_operand_type overlap0, overlap1, overlap2, overlap3;
4874 i386_operand_type overlap4;
4875 unsigned int found_reverse_match;
4876 i386_opcode_modifier suffix_check, mnemsuf_check;
4877 i386_operand_type operand_types [MAX_OPERANDS];
4878 int addr_prefix_disp;
4879 unsigned int j;
4880 unsigned int found_cpu_match;
4881 unsigned int check_register;
4882 enum i386_error specific_error = 0;
4883
4884 #if MAX_OPERANDS != 5
4885 # error "MAX_OPERANDS must be 5."
4886 #endif
4887
4888 found_reverse_match = 0;
4889 addr_prefix_disp = -1;
4890
4891 memset (&suffix_check, 0, sizeof (suffix_check));
4892 if (i.suffix == BYTE_MNEM_SUFFIX)
4893 suffix_check.no_bsuf = 1;
4894 else if (i.suffix == WORD_MNEM_SUFFIX)
4895 suffix_check.no_wsuf = 1;
4896 else if (i.suffix == SHORT_MNEM_SUFFIX)
4897 suffix_check.no_ssuf = 1;
4898 else if (i.suffix == LONG_MNEM_SUFFIX)
4899 suffix_check.no_lsuf = 1;
4900 else if (i.suffix == QWORD_MNEM_SUFFIX)
4901 suffix_check.no_qsuf = 1;
4902 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4903 suffix_check.no_ldsuf = 1;
4904
4905 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
4906 if (intel_syntax)
4907 {
4908 switch (mnem_suffix)
4909 {
4910 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
4911 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
4912 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
4913 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
4914 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
4915 }
4916 }
4917
4918 /* Must have right number of operands. */
4919 i.error = number_of_operands_mismatch;
4920
4921 for (t = current_templates->start; t < current_templates->end; t++)
4922 {
4923 addr_prefix_disp = -1;
4924
4925 if (i.operands != t->operands)
4926 continue;
4927
4928 /* Check processor support. */
4929 i.error = unsupported;
4930 found_cpu_match = (cpu_flags_match (t)
4931 == CPU_FLAGS_PERFECT_MATCH);
4932 if (!found_cpu_match)
4933 continue;
4934
4935 /* Check old gcc support. */
4936 i.error = old_gcc_only;
4937 if (!old_gcc && t->opcode_modifier.oldgcc)
4938 continue;
4939
4940 /* Check AT&T mnemonic. */
4941 i.error = unsupported_with_intel_mnemonic;
4942 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4943 continue;
4944
4945 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
4946 i.error = unsupported_syntax;
4947 if ((intel_syntax && t->opcode_modifier.attsyntax)
4948 || (!intel_syntax && t->opcode_modifier.intelsyntax)
4949 || (intel64 && t->opcode_modifier.amd64)
4950 || (!intel64 && t->opcode_modifier.intel64))
4951 continue;
4952
4953 /* Check the suffix, except for some instructions in intel mode. */
4954 i.error = invalid_instruction_suffix;
4955 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4956 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4957 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4958 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4959 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4960 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4961 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4962 continue;
4963 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
4964 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
4965 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
4966 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
4967 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
4968 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
4969 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
4970 continue;
4971
4972 if (!operand_size_match (t))
4973 continue;
4974
4975 for (j = 0; j < MAX_OPERANDS; j++)
4976 operand_types[j] = t->operand_types[j];
4977
4978 /* In general, don't allow 64-bit operands in 32-bit mode. */
4979 if (i.suffix == QWORD_MNEM_SUFFIX
4980 && flag_code != CODE_64BIT
4981 && (intel_syntax
4982 ? (!t->opcode_modifier.ignoresize
4983 && !intel_float_operand (t->name))
4984 : intel_float_operand (t->name) != 2)
4985 && ((!operand_types[0].bitfield.regmmx
4986 && !operand_types[0].bitfield.regxmm
4987 && !operand_types[0].bitfield.regymm
4988 && !operand_types[0].bitfield.regzmm)
4989 || (!operand_types[t->operands > 1].bitfield.regmmx
4990 && operand_types[t->operands > 1].bitfield.regxmm
4991 && operand_types[t->operands > 1].bitfield.regymm
4992 && operand_types[t->operands > 1].bitfield.regzmm))
4993 && (t->base_opcode != 0x0fc7
4994 || t->extension_opcode != 1 /* cmpxchg8b */))
4995 continue;
4996
4997 /* In general, don't allow 32-bit operands on pre-386. */
4998 else if (i.suffix == LONG_MNEM_SUFFIX
4999 && !cpu_arch_flags.bitfield.cpui386
5000 && (intel_syntax
5001 ? (!t->opcode_modifier.ignoresize
5002 && !intel_float_operand (t->name))
5003 : intel_float_operand (t->name) != 2)
5004 && ((!operand_types[0].bitfield.regmmx
5005 && !operand_types[0].bitfield.regxmm)
5006 || (!operand_types[t->operands > 1].bitfield.regmmx
5007 && operand_types[t->operands > 1].bitfield.regxmm)))
5008 continue;
5009
5010 /* Do not verify operands when there are none. */
5011 else
5012 {
5013 if (!t->operands)
5014 /* We've found a match; break out of loop. */
5015 break;
5016 }
5017
5018 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5019 into Disp32/Disp16/Disp32 operand. */
5020 if (i.prefix[ADDR_PREFIX] != 0)
5021 {
5022 /* There should be only one Disp operand. */
5023 switch (flag_code)
5024 {
5025 case CODE_16BIT:
5026 for (j = 0; j < MAX_OPERANDS; j++)
5027 {
5028 if (operand_types[j].bitfield.disp16)
5029 {
5030 addr_prefix_disp = j;
5031 operand_types[j].bitfield.disp32 = 1;
5032 operand_types[j].bitfield.disp16 = 0;
5033 break;
5034 }
5035 }
5036 break;
5037 case CODE_32BIT:
5038 for (j = 0; j < MAX_OPERANDS; j++)
5039 {
5040 if (operand_types[j].bitfield.disp32)
5041 {
5042 addr_prefix_disp = j;
5043 operand_types[j].bitfield.disp32 = 0;
5044 operand_types[j].bitfield.disp16 = 1;
5045 break;
5046 }
5047 }
5048 break;
5049 case CODE_64BIT:
5050 for (j = 0; j < MAX_OPERANDS; j++)
5051 {
5052 if (operand_types[j].bitfield.disp64)
5053 {
5054 addr_prefix_disp = j;
5055 operand_types[j].bitfield.disp64 = 0;
5056 operand_types[j].bitfield.disp32 = 1;
5057 break;
5058 }
5059 }
5060 break;
5061 }
5062 }
5063
5064 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5065 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5066 continue;
5067
5068 /* We check register size if needed. */
5069 check_register = t->opcode_modifier.checkregsize;
5070 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5071 switch (t->operands)
5072 {
5073 case 1:
5074 if (!operand_type_match (overlap0, i.types[0]))
5075 continue;
5076 break;
5077 case 2:
5078 /* xchg %eax, %eax is a special case. It is an alias for nop
5079 only in 32bit mode and we can use opcode 0x90. In 64bit
5080 mode, we can't use 0x90 for xchg %eax, %eax since it should
5081 zero-extend %eax to %rax. */
5082 if (flag_code == CODE_64BIT
5083 && t->base_opcode == 0x90
5084 && operand_type_equal (&i.types [0], &acc32)
5085 && operand_type_equal (&i.types [1], &acc32))
5086 continue;
5087 /* If we want store form, we reverse direction of operands. */
5088 if (i.dir_encoding == dir_encoding_store
5089 && t->opcode_modifier.d)
5090 goto check_reverse;
5091 /* Fall through. */
5092
5093 case 3:
5094 /* If we want store form, we skip the current load. */
5095 if (i.dir_encoding == dir_encoding_store
5096 && i.mem_operands == 0
5097 && t->opcode_modifier.load)
5098 continue;
5099 /* Fall through. */
5100 case 4:
5101 case 5:
5102 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5103 if (!operand_type_match (overlap0, i.types[0])
5104 || !operand_type_match (overlap1, i.types[1])
5105 || (check_register
5106 && !operand_type_register_match (overlap0, i.types[0],
5107 operand_types[0],
5108 overlap1, i.types[1],
5109 operand_types[1])))
5110 {
5111 /* Check if other direction is valid ... */
5112 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
5113 continue;
5114
5115 check_reverse:
5116 /* Try reversing direction of operands. */
5117 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5118 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5119 if (!operand_type_match (overlap0, i.types[0])
5120 || !operand_type_match (overlap1, i.types[1])
5121 || (check_register
5122 && !operand_type_register_match (overlap0,
5123 i.types[0],
5124 operand_types[1],
5125 overlap1,
5126 i.types[1],
5127 operand_types[0])))
5128 {
5129 /* Does not match either direction. */
5130 continue;
5131 }
5132 /* found_reverse_match holds which of D or FloatDR
5133 we've found. */
5134 if (t->opcode_modifier.d)
5135 found_reverse_match = Opcode_D;
5136 else if (t->opcode_modifier.floatd)
5137 found_reverse_match = Opcode_FloatD;
5138 else
5139 found_reverse_match = 0;
5140 if (t->opcode_modifier.floatr)
5141 found_reverse_match |= Opcode_FloatR;
5142 }
5143 else
5144 {
5145 /* Found a forward 2 operand match here. */
5146 switch (t->operands)
5147 {
5148 case 5:
5149 overlap4 = operand_type_and (i.types[4],
5150 operand_types[4]);
5151 /* Fall through. */
5152 case 4:
5153 overlap3 = operand_type_and (i.types[3],
5154 operand_types[3]);
5155 /* Fall through. */
5156 case 3:
5157 overlap2 = operand_type_and (i.types[2],
5158 operand_types[2]);
5159 break;
5160 }
5161
5162 switch (t->operands)
5163 {
5164 case 5:
5165 if (!operand_type_match (overlap4, i.types[4])
5166 || !operand_type_register_match (overlap3,
5167 i.types[3],
5168 operand_types[3],
5169 overlap4,
5170 i.types[4],
5171 operand_types[4]))
5172 continue;
5173 /* Fall through. */
5174 case 4:
5175 if (!operand_type_match (overlap3, i.types[3])
5176 || (check_register
5177 && !operand_type_register_match (overlap2,
5178 i.types[2],
5179 operand_types[2],
5180 overlap3,
5181 i.types[3],
5182 operand_types[3])))
5183 continue;
5184 /* Fall through. */
5185 case 3:
5186 /* Here we make use of the fact that there are no
5187 reverse match 3 operand instructions, and all 3
5188 operand instructions only need to be checked for
5189 register consistency between operands 2 and 3. */
5190 if (!operand_type_match (overlap2, i.types[2])
5191 || (check_register
5192 && !operand_type_register_match (overlap1,
5193 i.types[1],
5194 operand_types[1],
5195 overlap2,
5196 i.types[2],
5197 operand_types[2])))
5198 continue;
5199 break;
5200 }
5201 }
5202 /* Found either forward/reverse 2, 3 or 4 operand match here:
5203 slip through to break. */
5204 }
5205 if (!found_cpu_match)
5206 {
5207 found_reverse_match = 0;
5208 continue;
5209 }
5210
5211 /* Check if vector and VEX operands are valid. */
5212 if (check_VecOperands (t) || VEX_check_operands (t))
5213 {
5214 specific_error = i.error;
5215 continue;
5216 }
5217
5218 /* We've found a match; break out of loop. */
5219 break;
5220 }
5221
5222 if (t == current_templates->end)
5223 {
5224 /* We found no match. */
5225 const char *err_msg;
5226 switch (specific_error ? specific_error : i.error)
5227 {
5228 default:
5229 abort ();
5230 case operand_size_mismatch:
5231 err_msg = _("operand size mismatch");
5232 break;
5233 case operand_type_mismatch:
5234 err_msg = _("operand type mismatch");
5235 break;
5236 case register_type_mismatch:
5237 err_msg = _("register type mismatch");
5238 break;
5239 case number_of_operands_mismatch:
5240 err_msg = _("number of operands mismatch");
5241 break;
5242 case invalid_instruction_suffix:
5243 err_msg = _("invalid instruction suffix");
5244 break;
5245 case bad_imm4:
5246 err_msg = _("constant doesn't fit in 4 bits");
5247 break;
5248 case old_gcc_only:
5249 err_msg = _("only supported with old gcc");
5250 break;
5251 case unsupported_with_intel_mnemonic:
5252 err_msg = _("unsupported with Intel mnemonic");
5253 break;
5254 case unsupported_syntax:
5255 err_msg = _("unsupported syntax");
5256 break;
5257 case unsupported:
5258 as_bad (_("unsupported instruction `%s'"),
5259 current_templates->start->name);
5260 return NULL;
5261 case invalid_vsib_address:
5262 err_msg = _("invalid VSIB address");
5263 break;
5264 case invalid_vector_register_set:
5265 err_msg = _("mask, index, and destination registers must be distinct");
5266 break;
5267 case unsupported_vector_index_register:
5268 err_msg = _("unsupported vector index register");
5269 break;
5270 case unsupported_broadcast:
5271 err_msg = _("unsupported broadcast");
5272 break;
5273 case broadcast_not_on_src_operand:
5274 err_msg = _("broadcast not on source memory operand");
5275 break;
5276 case broadcast_needed:
5277 err_msg = _("broadcast is needed for operand of such type");
5278 break;
5279 case unsupported_masking:
5280 err_msg = _("unsupported masking");
5281 break;
5282 case mask_not_on_destination:
5283 err_msg = _("mask not on destination operand");
5284 break;
5285 case no_default_mask:
5286 err_msg = _("default mask isn't allowed");
5287 break;
5288 case unsupported_rc_sae:
5289 err_msg = _("unsupported static rounding/sae");
5290 break;
5291 case rc_sae_operand_not_last_imm:
5292 if (intel_syntax)
5293 err_msg = _("RC/SAE operand must precede immediate operands");
5294 else
5295 err_msg = _("RC/SAE operand must follow immediate operands");
5296 break;
5297 case invalid_register_operand:
5298 err_msg = _("invalid register operand");
5299 break;
5300 }
5301 as_bad (_("%s for `%s'"), err_msg,
5302 current_templates->start->name);
5303 return NULL;
5304 }
5305
5306 if (!quiet_warnings)
5307 {
5308 if (!intel_syntax
5309 && (i.types[0].bitfield.jumpabsolute
5310 != operand_types[0].bitfield.jumpabsolute))
5311 {
5312 as_warn (_("indirect %s without `*'"), t->name);
5313 }
5314
5315 if (t->opcode_modifier.isprefix
5316 && t->opcode_modifier.ignoresize)
5317 {
5318 /* Warn them that a data or address size prefix doesn't
5319 affect assembly of the next line of code. */
5320 as_warn (_("stand-alone `%s' prefix"), t->name);
5321 }
5322 }
5323
5324 /* Copy the template we found. */
5325 i.tm = *t;
5326
5327 if (addr_prefix_disp != -1)
5328 i.tm.operand_types[addr_prefix_disp]
5329 = operand_types[addr_prefix_disp];
5330
5331 if (found_reverse_match)
5332 {
5333 /* If we found a reverse match we must alter the opcode
5334 direction bit. found_reverse_match holds bits to change
5335 (different for int & float insns). */
5336
5337 i.tm.base_opcode ^= found_reverse_match;
5338
5339 i.tm.operand_types[0] = operand_types[1];
5340 i.tm.operand_types[1] = operand_types[0];
5341 }
5342
5343 return t;
5344 }
5345
5346 static int
5347 check_string (void)
5348 {
5349 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5350 if (i.tm.operand_types[mem_op].bitfield.esseg)
5351 {
5352 if (i.seg[0] != NULL && i.seg[0] != &es)
5353 {
5354 as_bad (_("`%s' operand %d must use `%ses' segment"),
5355 i.tm.name,
5356 mem_op + 1,
5357 register_prefix);
5358 return 0;
5359 }
5360 /* There's only ever one segment override allowed per instruction.
5361 This instruction possibly has a legal segment override on the
5362 second operand, so copy the segment to where non-string
5363 instructions store it, allowing common code. */
5364 i.seg[0] = i.seg[1];
5365 }
5366 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5367 {
5368 if (i.seg[1] != NULL && i.seg[1] != &es)
5369 {
5370 as_bad (_("`%s' operand %d must use `%ses' segment"),
5371 i.tm.name,
5372 mem_op + 2,
5373 register_prefix);
5374 return 0;
5375 }
5376 }
5377 return 1;
5378 }
5379
5380 static int
5381 process_suffix (void)
5382 {
5383 /* If matched instruction specifies an explicit instruction mnemonic
5384 suffix, use it. */
5385 if (i.tm.opcode_modifier.size16)
5386 i.suffix = WORD_MNEM_SUFFIX;
5387 else if (i.tm.opcode_modifier.size32)
5388 i.suffix = LONG_MNEM_SUFFIX;
5389 else if (i.tm.opcode_modifier.size64)
5390 i.suffix = QWORD_MNEM_SUFFIX;
5391 else if (i.reg_operands)
5392 {
5393 /* If there's no instruction mnemonic suffix we try to invent one
5394 based on register operands. */
5395 if (!i.suffix)
5396 {
5397 /* We take i.suffix from the last register operand specified,
5398 Destination register type is more significant than source
5399 register type. crc32 in SSE4.2 prefers source register
5400 type. */
5401 if (i.tm.base_opcode == 0xf20f38f1)
5402 {
5403 if (i.types[0].bitfield.reg16)
5404 i.suffix = WORD_MNEM_SUFFIX;
5405 else if (i.types[0].bitfield.reg32)
5406 i.suffix = LONG_MNEM_SUFFIX;
5407 else if (i.types[0].bitfield.reg64)
5408 i.suffix = QWORD_MNEM_SUFFIX;
5409 }
5410 else if (i.tm.base_opcode == 0xf20f38f0)
5411 {
5412 if (i.types[0].bitfield.reg8)
5413 i.suffix = BYTE_MNEM_SUFFIX;
5414 }
5415
5416 if (!i.suffix)
5417 {
5418 int op;
5419
5420 if (i.tm.base_opcode == 0xf20f38f1
5421 || i.tm.base_opcode == 0xf20f38f0)
5422 {
5423 /* We have to know the operand size for crc32. */
5424 as_bad (_("ambiguous memory operand size for `%s`"),
5425 i.tm.name);
5426 return 0;
5427 }
5428
5429 for (op = i.operands; --op >= 0;)
5430 if (!i.tm.operand_types[op].bitfield.inoutportreg
5431 && !i.tm.operand_types[op].bitfield.shiftcount)
5432 {
5433 if (i.types[op].bitfield.reg8)
5434 {
5435 i.suffix = BYTE_MNEM_SUFFIX;
5436 break;
5437 }
5438 else if (i.types[op].bitfield.reg16)
5439 {
5440 i.suffix = WORD_MNEM_SUFFIX;
5441 break;
5442 }
5443 else if (i.types[op].bitfield.reg32)
5444 {
5445 i.suffix = LONG_MNEM_SUFFIX;
5446 break;
5447 }
5448 else if (i.types[op].bitfield.reg64)
5449 {
5450 i.suffix = QWORD_MNEM_SUFFIX;
5451 break;
5452 }
5453 }
5454 }
5455 }
5456 else if (i.suffix == BYTE_MNEM_SUFFIX)
5457 {
5458 if (intel_syntax
5459 && i.tm.opcode_modifier.ignoresize
5460 && i.tm.opcode_modifier.no_bsuf)
5461 i.suffix = 0;
5462 else if (!check_byte_reg ())
5463 return 0;
5464 }
5465 else if (i.suffix == LONG_MNEM_SUFFIX)
5466 {
5467 if (intel_syntax
5468 && i.tm.opcode_modifier.ignoresize
5469 && i.tm.opcode_modifier.no_lsuf)
5470 i.suffix = 0;
5471 else if (!check_long_reg ())
5472 return 0;
5473 }
5474 else if (i.suffix == QWORD_MNEM_SUFFIX)
5475 {
5476 if (intel_syntax
5477 && i.tm.opcode_modifier.ignoresize
5478 && i.tm.opcode_modifier.no_qsuf)
5479 i.suffix = 0;
5480 else if (!check_qword_reg ())
5481 return 0;
5482 }
5483 else if (i.suffix == WORD_MNEM_SUFFIX)
5484 {
5485 if (intel_syntax
5486 && i.tm.opcode_modifier.ignoresize
5487 && i.tm.opcode_modifier.no_wsuf)
5488 i.suffix = 0;
5489 else if (!check_word_reg ())
5490 return 0;
5491 }
5492 else if (i.suffix == XMMWORD_MNEM_SUFFIX
5493 || i.suffix == YMMWORD_MNEM_SUFFIX
5494 || i.suffix == ZMMWORD_MNEM_SUFFIX)
5495 {
5496 /* Skip if the instruction has x/y/z suffix. match_template
5497 should check if it is a valid suffix. */
5498 }
5499 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5500 /* Do nothing if the instruction is going to ignore the prefix. */
5501 ;
5502 else
5503 abort ();
5504 }
5505 else if (i.tm.opcode_modifier.defaultsize
5506 && !i.suffix
5507 /* exclude fldenv/frstor/fsave/fstenv */
5508 && i.tm.opcode_modifier.no_ssuf)
5509 {
5510 i.suffix = stackop_size;
5511 }
5512 else if (intel_syntax
5513 && !i.suffix
5514 && (i.tm.operand_types[0].bitfield.jumpabsolute
5515 || i.tm.opcode_modifier.jumpbyte
5516 || i.tm.opcode_modifier.jumpintersegment
5517 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5518 && i.tm.extension_opcode <= 3)))
5519 {
5520 switch (flag_code)
5521 {
5522 case CODE_64BIT:
5523 if (!i.tm.opcode_modifier.no_qsuf)
5524 {
5525 i.suffix = QWORD_MNEM_SUFFIX;
5526 break;
5527 }
5528 /* Fall through. */
5529 case CODE_32BIT:
5530 if (!i.tm.opcode_modifier.no_lsuf)
5531 i.suffix = LONG_MNEM_SUFFIX;
5532 break;
5533 case CODE_16BIT:
5534 if (!i.tm.opcode_modifier.no_wsuf)
5535 i.suffix = WORD_MNEM_SUFFIX;
5536 break;
5537 }
5538 }
5539
5540 if (!i.suffix)
5541 {
5542 if (!intel_syntax)
5543 {
5544 if (i.tm.opcode_modifier.w)
5545 {
5546 as_bad (_("no instruction mnemonic suffix given and "
5547 "no register operands; can't size instruction"));
5548 return 0;
5549 }
5550 }
5551 else
5552 {
5553 unsigned int suffixes;
5554
5555 suffixes = !i.tm.opcode_modifier.no_bsuf;
5556 if (!i.tm.opcode_modifier.no_wsuf)
5557 suffixes |= 1 << 1;
5558 if (!i.tm.opcode_modifier.no_lsuf)
5559 suffixes |= 1 << 2;
5560 if (!i.tm.opcode_modifier.no_ldsuf)
5561 suffixes |= 1 << 3;
5562 if (!i.tm.opcode_modifier.no_ssuf)
5563 suffixes |= 1 << 4;
5564 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
5565 suffixes |= 1 << 5;
5566
5567 /* There are more than suffix matches. */
5568 if (i.tm.opcode_modifier.w
5569 || ((suffixes & (suffixes - 1))
5570 && !i.tm.opcode_modifier.defaultsize
5571 && !i.tm.opcode_modifier.ignoresize))
5572 {
5573 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5574 return 0;
5575 }
5576 }
5577 }
5578
5579 /* Change the opcode based on the operand size given by i.suffix;
5580 We don't need to change things for byte insns. */
5581
5582 if (i.suffix
5583 && i.suffix != BYTE_MNEM_SUFFIX
5584 && i.suffix != XMMWORD_MNEM_SUFFIX
5585 && i.suffix != YMMWORD_MNEM_SUFFIX
5586 && i.suffix != ZMMWORD_MNEM_SUFFIX)
5587 {
5588 /* It's not a byte, select word/dword operation. */
5589 if (i.tm.opcode_modifier.w)
5590 {
5591 if (i.tm.opcode_modifier.shortform)
5592 i.tm.base_opcode |= 8;
5593 else
5594 i.tm.base_opcode |= 1;
5595 }
5596
5597 /* Now select between word & dword operations via the operand
5598 size prefix, except for instructions that will ignore this
5599 prefix anyway. */
5600 if (i.tm.opcode_modifier.addrprefixop0)
5601 {
5602 /* The address size override prefix changes the size of the
5603 first operand. */
5604 if ((flag_code == CODE_32BIT
5605 && i.op->regs[0].reg_type.bitfield.reg16)
5606 || (flag_code != CODE_32BIT
5607 && i.op->regs[0].reg_type.bitfield.reg32))
5608 if (!add_prefix (ADDR_PREFIX_OPCODE))
5609 return 0;
5610 }
5611 else if (i.suffix != QWORD_MNEM_SUFFIX
5612 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5613 && !i.tm.opcode_modifier.ignoresize
5614 && !i.tm.opcode_modifier.floatmf
5615 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5616 || (flag_code == CODE_64BIT
5617 && i.tm.opcode_modifier.jumpbyte)))
5618 {
5619 unsigned int prefix = DATA_PREFIX_OPCODE;
5620
5621 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5622 prefix = ADDR_PREFIX_OPCODE;
5623
5624 if (!add_prefix (prefix))
5625 return 0;
5626 }
5627
5628 /* Set mode64 for an operand. */
5629 if (i.suffix == QWORD_MNEM_SUFFIX
5630 && flag_code == CODE_64BIT
5631 && !i.tm.opcode_modifier.norex64)
5632 {
5633 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5634 need rex64. cmpxchg8b is also a special case. */
5635 if (! (i.operands == 2
5636 && i.tm.base_opcode == 0x90
5637 && i.tm.extension_opcode == None
5638 && operand_type_equal (&i.types [0], &acc64)
5639 && operand_type_equal (&i.types [1], &acc64))
5640 && ! (i.operands == 1
5641 && i.tm.base_opcode == 0xfc7
5642 && i.tm.extension_opcode == 1
5643 && !operand_type_check (i.types [0], reg)
5644 && operand_type_check (i.types [0], anymem)))
5645 i.rex |= REX_W;
5646 }
5647
5648 /* Size floating point instruction. */
5649 if (i.suffix == LONG_MNEM_SUFFIX)
5650 if (i.tm.opcode_modifier.floatmf)
5651 i.tm.base_opcode ^= 4;
5652 }
5653
5654 return 1;
5655 }
5656
5657 static int
5658 check_byte_reg (void)
5659 {
5660 int op;
5661
5662 for (op = i.operands; --op >= 0;)
5663 {
5664 /* If this is an eight bit register, it's OK. If it's the 16 or
5665 32 bit version of an eight bit register, we will just use the
5666 low portion, and that's OK too. */
5667 if (i.types[op].bitfield.reg8)
5668 continue;
5669
5670 /* I/O port address operands are OK too. */
5671 if (i.tm.operand_types[op].bitfield.inoutportreg)
5672 continue;
5673
5674 /* crc32 doesn't generate this warning. */
5675 if (i.tm.base_opcode == 0xf20f38f0)
5676 continue;
5677
5678 if ((i.types[op].bitfield.reg16
5679 || i.types[op].bitfield.reg32
5680 || i.types[op].bitfield.reg64)
5681 && i.op[op].regs->reg_num < 4
5682 /* Prohibit these changes in 64bit mode, since the lowering
5683 would be more complicated. */
5684 && flag_code != CODE_64BIT)
5685 {
5686 #if REGISTER_WARNINGS
5687 if (!quiet_warnings)
5688 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5689 register_prefix,
5690 (i.op[op].regs + (i.types[op].bitfield.reg16
5691 ? REGNAM_AL - REGNAM_AX
5692 : REGNAM_AL - REGNAM_EAX))->reg_name,
5693 register_prefix,
5694 i.op[op].regs->reg_name,
5695 i.suffix);
5696 #endif
5697 continue;
5698 }
5699 /* Any other register is bad. */
5700 if (i.types[op].bitfield.reg16
5701 || i.types[op].bitfield.reg32
5702 || i.types[op].bitfield.reg64
5703 || i.types[op].bitfield.regmmx
5704 || i.types[op].bitfield.regxmm
5705 || i.types[op].bitfield.regymm
5706 || i.types[op].bitfield.regzmm
5707 || i.types[op].bitfield.sreg2
5708 || i.types[op].bitfield.sreg3
5709 || i.types[op].bitfield.control
5710 || i.types[op].bitfield.debug
5711 || i.types[op].bitfield.test
5712 || i.types[op].bitfield.floatreg
5713 || i.types[op].bitfield.floatacc)
5714 {
5715 as_bad (_("`%s%s' not allowed with `%s%c'"),
5716 register_prefix,
5717 i.op[op].regs->reg_name,
5718 i.tm.name,
5719 i.suffix);
5720 return 0;
5721 }
5722 }
5723 return 1;
5724 }
5725
5726 static int
5727 check_long_reg (void)
5728 {
5729 int op;
5730
5731 for (op = i.operands; --op >= 0;)
5732 /* Reject eight bit registers, except where the template requires
5733 them. (eg. movzb) */
5734 if (i.types[op].bitfield.reg8
5735 && (i.tm.operand_types[op].bitfield.reg16
5736 || i.tm.operand_types[op].bitfield.reg32
5737 || i.tm.operand_types[op].bitfield.acc))
5738 {
5739 as_bad (_("`%s%s' not allowed with `%s%c'"),
5740 register_prefix,
5741 i.op[op].regs->reg_name,
5742 i.tm.name,
5743 i.suffix);
5744 return 0;
5745 }
5746 /* Warn if the e prefix on a general reg is missing. */
5747 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5748 && i.types[op].bitfield.reg16
5749 && (i.tm.operand_types[op].bitfield.reg32
5750 || i.tm.operand_types[op].bitfield.acc))
5751 {
5752 /* Prohibit these changes in the 64bit mode, since the
5753 lowering is more complicated. */
5754 if (flag_code == CODE_64BIT)
5755 {
5756 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5757 register_prefix, i.op[op].regs->reg_name,
5758 i.suffix);
5759 return 0;
5760 }
5761 #if REGISTER_WARNINGS
5762 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5763 register_prefix,
5764 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5765 register_prefix, i.op[op].regs->reg_name, i.suffix);
5766 #endif
5767 }
5768 /* Warn if the r prefix on a general reg is present. */
5769 else if (i.types[op].bitfield.reg64
5770 && (i.tm.operand_types[op].bitfield.reg32
5771 || i.tm.operand_types[op].bitfield.acc))
5772 {
5773 if (intel_syntax
5774 && i.tm.opcode_modifier.toqword
5775 && !i.types[0].bitfield.regxmm)
5776 {
5777 /* Convert to QWORD. We want REX byte. */
5778 i.suffix = QWORD_MNEM_SUFFIX;
5779 }
5780 else
5781 {
5782 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5783 register_prefix, i.op[op].regs->reg_name,
5784 i.suffix);
5785 return 0;
5786 }
5787 }
5788 return 1;
5789 }
5790
5791 static int
5792 check_qword_reg (void)
5793 {
5794 int op;
5795
5796 for (op = i.operands; --op >= 0; )
5797 /* Reject eight bit registers, except where the template requires
5798 them. (eg. movzb) */
5799 if (i.types[op].bitfield.reg8
5800 && (i.tm.operand_types[op].bitfield.reg16
5801 || i.tm.operand_types[op].bitfield.reg32
5802 || i.tm.operand_types[op].bitfield.acc))
5803 {
5804 as_bad (_("`%s%s' not allowed with `%s%c'"),
5805 register_prefix,
5806 i.op[op].regs->reg_name,
5807 i.tm.name,
5808 i.suffix);
5809 return 0;
5810 }
5811 /* Warn if the r prefix on a general reg is missing. */
5812 else if ((i.types[op].bitfield.reg16
5813 || i.types[op].bitfield.reg32)
5814 && (i.tm.operand_types[op].bitfield.reg64
5815 || i.tm.operand_types[op].bitfield.acc))
5816 {
5817 /* Prohibit these changes in the 64bit mode, since the
5818 lowering is more complicated. */
5819 if (intel_syntax
5820 && i.tm.opcode_modifier.todword
5821 && !i.types[0].bitfield.regxmm)
5822 {
5823 /* Convert to DWORD. We don't want REX byte. */
5824 i.suffix = LONG_MNEM_SUFFIX;
5825 }
5826 else
5827 {
5828 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5829 register_prefix, i.op[op].regs->reg_name,
5830 i.suffix);
5831 return 0;
5832 }
5833 }
5834 return 1;
5835 }
5836
5837 static int
5838 check_word_reg (void)
5839 {
5840 int op;
5841 for (op = i.operands; --op >= 0;)
5842 /* Reject eight bit registers, except where the template requires
5843 them. (eg. movzb) */
5844 if (i.types[op].bitfield.reg8
5845 && (i.tm.operand_types[op].bitfield.reg16
5846 || i.tm.operand_types[op].bitfield.reg32
5847 || i.tm.operand_types[op].bitfield.acc))
5848 {
5849 as_bad (_("`%s%s' not allowed with `%s%c'"),
5850 register_prefix,
5851 i.op[op].regs->reg_name,
5852 i.tm.name,
5853 i.suffix);
5854 return 0;
5855 }
5856 /* Warn if the e or r prefix on a general reg is present. */
5857 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5858 && (i.types[op].bitfield.reg32
5859 || i.types[op].bitfield.reg64)
5860 && (i.tm.operand_types[op].bitfield.reg16
5861 || i.tm.operand_types[op].bitfield.acc))
5862 {
5863 /* Prohibit these changes in the 64bit mode, since the
5864 lowering is more complicated. */
5865 if (flag_code == CODE_64BIT)
5866 {
5867 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5868 register_prefix, i.op[op].regs->reg_name,
5869 i.suffix);
5870 return 0;
5871 }
5872 #if REGISTER_WARNINGS
5873 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5874 register_prefix,
5875 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5876 register_prefix, i.op[op].regs->reg_name, i.suffix);
5877 #endif
5878 }
5879 return 1;
5880 }
5881
5882 static int
5883 update_imm (unsigned int j)
5884 {
5885 i386_operand_type overlap = i.types[j];
5886 if ((overlap.bitfield.imm8
5887 || overlap.bitfield.imm8s
5888 || overlap.bitfield.imm16
5889 || overlap.bitfield.imm32
5890 || overlap.bitfield.imm32s
5891 || overlap.bitfield.imm64)
5892 && !operand_type_equal (&overlap, &imm8)
5893 && !operand_type_equal (&overlap, &imm8s)
5894 && !operand_type_equal (&overlap, &imm16)
5895 && !operand_type_equal (&overlap, &imm32)
5896 && !operand_type_equal (&overlap, &imm32s)
5897 && !operand_type_equal (&overlap, &imm64))
5898 {
5899 if (i.suffix)
5900 {
5901 i386_operand_type temp;
5902
5903 operand_type_set (&temp, 0);
5904 if (i.suffix == BYTE_MNEM_SUFFIX)
5905 {
5906 temp.bitfield.imm8 = overlap.bitfield.imm8;
5907 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5908 }
5909 else if (i.suffix == WORD_MNEM_SUFFIX)
5910 temp.bitfield.imm16 = overlap.bitfield.imm16;
5911 else if (i.suffix == QWORD_MNEM_SUFFIX)
5912 {
5913 temp.bitfield.imm64 = overlap.bitfield.imm64;
5914 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5915 }
5916 else
5917 temp.bitfield.imm32 = overlap.bitfield.imm32;
5918 overlap = temp;
5919 }
5920 else if (operand_type_equal (&overlap, &imm16_32_32s)
5921 || operand_type_equal (&overlap, &imm16_32)
5922 || operand_type_equal (&overlap, &imm16_32s))
5923 {
5924 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5925 overlap = imm16;
5926 else
5927 overlap = imm32s;
5928 }
5929 if (!operand_type_equal (&overlap, &imm8)
5930 && !operand_type_equal (&overlap, &imm8s)
5931 && !operand_type_equal (&overlap, &imm16)
5932 && !operand_type_equal (&overlap, &imm32)
5933 && !operand_type_equal (&overlap, &imm32s)
5934 && !operand_type_equal (&overlap, &imm64))
5935 {
5936 as_bad (_("no instruction mnemonic suffix given; "
5937 "can't determine immediate size"));
5938 return 0;
5939 }
5940 }
5941 i.types[j] = overlap;
5942
5943 return 1;
5944 }
5945
5946 static int
5947 finalize_imm (void)
5948 {
5949 unsigned int j, n;
5950
5951 /* Update the first 2 immediate operands. */
5952 n = i.operands > 2 ? 2 : i.operands;
5953 if (n)
5954 {
5955 for (j = 0; j < n; j++)
5956 if (update_imm (j) == 0)
5957 return 0;
5958
5959 /* The 3rd operand can't be immediate operand. */
5960 gas_assert (operand_type_check (i.types[2], imm) == 0);
5961 }
5962
5963 return 1;
5964 }
5965
5966 static int
5967 bad_implicit_operand (int xmm)
5968 {
5969 const char *ireg = xmm ? "xmm0" : "ymm0";
5970
5971 if (intel_syntax)
5972 as_bad (_("the last operand of `%s' must be `%s%s'"),
5973 i.tm.name, register_prefix, ireg);
5974 else
5975 as_bad (_("the first operand of `%s' must be `%s%s'"),
5976 i.tm.name, register_prefix, ireg);
5977 return 0;
5978 }
5979
5980 static int
5981 process_operands (void)
5982 {
5983 /* Default segment register this instruction will use for memory
5984 accesses. 0 means unknown. This is only for optimizing out
5985 unnecessary segment overrides. */
5986 const seg_entry *default_seg = 0;
5987
5988 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
5989 {
5990 unsigned int dupl = i.operands;
5991 unsigned int dest = dupl - 1;
5992 unsigned int j;
5993
5994 /* The destination must be an xmm register. */
5995 gas_assert (i.reg_operands
5996 && MAX_OPERANDS > dupl
5997 && operand_type_equal (&i.types[dest], &regxmm));
5998
5999 if (i.tm.opcode_modifier.firstxmm0)
6000 {
6001 /* The first operand is implicit and must be xmm0. */
6002 gas_assert (operand_type_equal (&i.types[0], &regxmm));
6003 if (register_number (i.op[0].regs) != 0)
6004 return bad_implicit_operand (1);
6005
6006 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6007 {
6008 /* Keep xmm0 for instructions with VEX prefix and 3
6009 sources. */
6010 goto duplicate;
6011 }
6012 else
6013 {
6014 /* We remove the first xmm0 and keep the number of
6015 operands unchanged, which in fact duplicates the
6016 destination. */
6017 for (j = 1; j < i.operands; j++)
6018 {
6019 i.op[j - 1] = i.op[j];
6020 i.types[j - 1] = i.types[j];
6021 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6022 }
6023 }
6024 }
6025 else if (i.tm.opcode_modifier.implicit1stxmm0)
6026 {
6027 gas_assert ((MAX_OPERANDS - 1) > dupl
6028 && (i.tm.opcode_modifier.vexsources
6029 == VEX3SOURCES));
6030
6031 /* Add the implicit xmm0 for instructions with VEX prefix
6032 and 3 sources. */
6033 for (j = i.operands; j > 0; j--)
6034 {
6035 i.op[j] = i.op[j - 1];
6036 i.types[j] = i.types[j - 1];
6037 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6038 }
6039 i.op[0].regs
6040 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6041 i.types[0] = regxmm;
6042 i.tm.operand_types[0] = regxmm;
6043
6044 i.operands += 2;
6045 i.reg_operands += 2;
6046 i.tm.operands += 2;
6047
6048 dupl++;
6049 dest++;
6050 i.op[dupl] = i.op[dest];
6051 i.types[dupl] = i.types[dest];
6052 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6053 }
6054 else
6055 {
6056 duplicate:
6057 i.operands++;
6058 i.reg_operands++;
6059 i.tm.operands++;
6060
6061 i.op[dupl] = i.op[dest];
6062 i.types[dupl] = i.types[dest];
6063 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6064 }
6065
6066 if (i.tm.opcode_modifier.immext)
6067 process_immext ();
6068 }
6069 else if (i.tm.opcode_modifier.firstxmm0)
6070 {
6071 unsigned int j;
6072
6073 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
6074 gas_assert (i.reg_operands
6075 && (operand_type_equal (&i.types[0], &regxmm)
6076 || operand_type_equal (&i.types[0], &regymm)
6077 || operand_type_equal (&i.types[0], &regzmm)));
6078 if (register_number (i.op[0].regs) != 0)
6079 return bad_implicit_operand (i.types[0].bitfield.regxmm);
6080
6081 for (j = 1; j < i.operands; j++)
6082 {
6083 i.op[j - 1] = i.op[j];
6084 i.types[j - 1] = i.types[j];
6085
6086 /* We need to adjust fields in i.tm since they are used by
6087 build_modrm_byte. */
6088 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6089 }
6090
6091 i.operands--;
6092 i.reg_operands--;
6093 i.tm.operands--;
6094 }
6095 else if (i.tm.opcode_modifier.implicitquadgroup)
6096 {
6097 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6098 gas_assert (i.operands >= 2
6099 && (operand_type_equal (&i.types[1], &regxmm)
6100 || operand_type_equal (&i.types[1], &regymm)
6101 || operand_type_equal (&i.types[1], &regzmm)));
6102 unsigned int regnum = register_number (i.op[1].regs);
6103 unsigned int first_reg_in_group = regnum & ~3;
6104 unsigned int last_reg_in_group = first_reg_in_group + 3;
6105 if (regnum != first_reg_in_group) {
6106 as_warn (_("the second source register `%s%s' implicitly denotes"
6107 " `%s%.3s%d' to `%s%.3s%d' source group in `%s'"),
6108 register_prefix, i.op[1].regs->reg_name,
6109 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6110 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6111 i.tm.name);
6112 }
6113 }
6114 else if (i.tm.opcode_modifier.regkludge)
6115 {
6116 /* The imul $imm, %reg instruction is converted into
6117 imul $imm, %reg, %reg, and the clr %reg instruction
6118 is converted into xor %reg, %reg. */
6119
6120 unsigned int first_reg_op;
6121
6122 if (operand_type_check (i.types[0], reg))
6123 first_reg_op = 0;
6124 else
6125 first_reg_op = 1;
6126 /* Pretend we saw the extra register operand. */
6127 gas_assert (i.reg_operands == 1
6128 && i.op[first_reg_op + 1].regs == 0);
6129 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6130 i.types[first_reg_op + 1] = i.types[first_reg_op];
6131 i.operands++;
6132 i.reg_operands++;
6133 }
6134
6135 if (i.tm.opcode_modifier.shortform)
6136 {
6137 if (i.types[0].bitfield.sreg2
6138 || i.types[0].bitfield.sreg3)
6139 {
6140 if (i.tm.base_opcode == POP_SEG_SHORT
6141 && i.op[0].regs->reg_num == 1)
6142 {
6143 as_bad (_("you can't `pop %scs'"), register_prefix);
6144 return 0;
6145 }
6146 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6147 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6148 i.rex |= REX_B;
6149 }
6150 else
6151 {
6152 /* The register or float register operand is in operand
6153 0 or 1. */
6154 unsigned int op;
6155
6156 if (i.types[0].bitfield.floatreg
6157 || operand_type_check (i.types[0], reg))
6158 op = 0;
6159 else
6160 op = 1;
6161 /* Register goes in low 3 bits of opcode. */
6162 i.tm.base_opcode |= i.op[op].regs->reg_num;
6163 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6164 i.rex |= REX_B;
6165 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6166 {
6167 /* Warn about some common errors, but press on regardless.
6168 The first case can be generated by gcc (<= 2.8.1). */
6169 if (i.operands == 2)
6170 {
6171 /* Reversed arguments on faddp, fsubp, etc. */
6172 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6173 register_prefix, i.op[!intel_syntax].regs->reg_name,
6174 register_prefix, i.op[intel_syntax].regs->reg_name);
6175 }
6176 else
6177 {
6178 /* Extraneous `l' suffix on fp insn. */
6179 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6180 register_prefix, i.op[0].regs->reg_name);
6181 }
6182 }
6183 }
6184 }
6185 else if (i.tm.opcode_modifier.modrm)
6186 {
6187 /* The opcode is completed (modulo i.tm.extension_opcode which
6188 must be put into the modrm byte). Now, we make the modrm and
6189 index base bytes based on all the info we've collected. */
6190
6191 default_seg = build_modrm_byte ();
6192 }
6193 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6194 {
6195 default_seg = &ds;
6196 }
6197 else if (i.tm.opcode_modifier.isstring)
6198 {
6199 /* For the string instructions that allow a segment override
6200 on one of their operands, the default segment is ds. */
6201 default_seg = &ds;
6202 }
6203
6204 if (i.tm.base_opcode == 0x8d /* lea */
6205 && i.seg[0]
6206 && !quiet_warnings)
6207 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6208
6209 /* If a segment was explicitly specified, and the specified segment
6210 is not the default, use an opcode prefix to select it. If we
6211 never figured out what the default segment is, then default_seg
6212 will be zero at this point, and the specified segment prefix will
6213 always be used. */
6214 if ((i.seg[0]) && (i.seg[0] != default_seg))
6215 {
6216 if (!add_prefix (i.seg[0]->seg_prefix))
6217 return 0;
6218 }
6219 return 1;
6220 }
6221
6222 static const seg_entry *
6223 build_modrm_byte (void)
6224 {
6225 const seg_entry *default_seg = 0;
6226 unsigned int source, dest;
6227 int vex_3_sources;
6228
6229 /* The first operand of instructions with VEX prefix and 3 sources
6230 must be VEX_Imm4. */
6231 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6232 if (vex_3_sources)
6233 {
6234 unsigned int nds, reg_slot;
6235 expressionS *exp;
6236
6237 if (i.tm.opcode_modifier.veximmext
6238 && i.tm.opcode_modifier.immext)
6239 {
6240 dest = i.operands - 2;
6241 gas_assert (dest == 3);
6242 }
6243 else
6244 dest = i.operands - 1;
6245 nds = dest - 1;
6246
6247 /* There are 2 kinds of instructions:
6248 1. 5 operands: 4 register operands or 3 register operands
6249 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6250 VexW0 or VexW1. The destination must be either XMM, YMM or
6251 ZMM register.
6252 2. 4 operands: 4 register operands or 3 register operands
6253 plus 1 memory operand, VexXDS, and VexImmExt */
6254 gas_assert ((i.reg_operands == 4
6255 || (i.reg_operands == 3 && i.mem_operands == 1))
6256 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6257 && (i.tm.opcode_modifier.veximmext
6258 || (i.imm_operands == 1
6259 && i.types[0].bitfield.vec_imm4
6260 && (i.tm.opcode_modifier.vexw == VEXW0
6261 || i.tm.opcode_modifier.vexw == VEXW1)
6262 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
6263 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
6264 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
6265
6266 if (i.imm_operands == 0)
6267 {
6268 /* When there is no immediate operand, generate an 8bit
6269 immediate operand to encode the first operand. */
6270 exp = &im_expressions[i.imm_operands++];
6271 i.op[i.operands].imms = exp;
6272 i.types[i.operands] = imm8;
6273 i.operands++;
6274 /* If VexW1 is set, the first operand is the source and
6275 the second operand is encoded in the immediate operand. */
6276 if (i.tm.opcode_modifier.vexw == VEXW1)
6277 {
6278 source = 0;
6279 reg_slot = 1;
6280 }
6281 else
6282 {
6283 source = 1;
6284 reg_slot = 0;
6285 }
6286
6287 /* FMA swaps REG and NDS. */
6288 if (i.tm.cpu_flags.bitfield.cpufma)
6289 {
6290 unsigned int tmp;
6291 tmp = reg_slot;
6292 reg_slot = nds;
6293 nds = tmp;
6294 }
6295
6296 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6297 &regxmm)
6298 || operand_type_equal (&i.tm.operand_types[reg_slot],
6299 &regymm)
6300 || operand_type_equal (&i.tm.operand_types[reg_slot],
6301 &regzmm));
6302 exp->X_op = O_constant;
6303 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6304 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6305 }
6306 else
6307 {
6308 unsigned int imm_slot;
6309
6310 if (i.tm.opcode_modifier.vexw == VEXW0)
6311 {
6312 /* If VexW0 is set, the third operand is the source and
6313 the second operand is encoded in the immediate
6314 operand. */
6315 source = 2;
6316 reg_slot = 1;
6317 }
6318 else
6319 {
6320 /* VexW1 is set, the second operand is the source and
6321 the third operand is encoded in the immediate
6322 operand. */
6323 source = 1;
6324 reg_slot = 2;
6325 }
6326
6327 if (i.tm.opcode_modifier.immext)
6328 {
6329 /* When ImmExt is set, the immediate byte is the last
6330 operand. */
6331 imm_slot = i.operands - 1;
6332 source--;
6333 reg_slot--;
6334 }
6335 else
6336 {
6337 imm_slot = 0;
6338
6339 /* Turn on Imm8 so that output_imm will generate it. */
6340 i.types[imm_slot].bitfield.imm8 = 1;
6341 }
6342
6343 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6344 &regxmm)
6345 || operand_type_equal (&i.tm.operand_types[reg_slot],
6346 &regymm)
6347 || operand_type_equal (&i.tm.operand_types[reg_slot],
6348 &regzmm));
6349 i.op[imm_slot].imms->X_add_number
6350 |= register_number (i.op[reg_slot].regs) << 4;
6351 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6352 }
6353
6354 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6355 || operand_type_equal (&i.tm.operand_types[nds],
6356 &regymm)
6357 || operand_type_equal (&i.tm.operand_types[nds],
6358 &regzmm));
6359 i.vex.register_specifier = i.op[nds].regs;
6360 }
6361 else
6362 source = dest = 0;
6363
6364 /* i.reg_operands MUST be the number of real register operands;
6365 implicit registers do not count. If there are 3 register
6366 operands, it must be a instruction with VexNDS. For a
6367 instruction with VexNDD, the destination register is encoded
6368 in VEX prefix. If there are 4 register operands, it must be
6369 a instruction with VEX prefix and 3 sources. */
6370 if (i.mem_operands == 0
6371 && ((i.reg_operands == 2
6372 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6373 || (i.reg_operands == 3
6374 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6375 || (i.reg_operands == 4 && vex_3_sources)))
6376 {
6377 switch (i.operands)
6378 {
6379 case 2:
6380 source = 0;
6381 break;
6382 case 3:
6383 /* When there are 3 operands, one of them may be immediate,
6384 which may be the first or the last operand. Otherwise,
6385 the first operand must be shift count register (cl) or it
6386 is an instruction with VexNDS. */
6387 gas_assert (i.imm_operands == 1
6388 || (i.imm_operands == 0
6389 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6390 || i.types[0].bitfield.shiftcount)));
6391 if (operand_type_check (i.types[0], imm)
6392 || i.types[0].bitfield.shiftcount)
6393 source = 1;
6394 else
6395 source = 0;
6396 break;
6397 case 4:
6398 /* When there are 4 operands, the first two must be 8bit
6399 immediate operands. The source operand will be the 3rd
6400 one.
6401
6402 For instructions with VexNDS, if the first operand
6403 an imm8, the source operand is the 2nd one. If the last
6404 operand is imm8, the source operand is the first one. */
6405 gas_assert ((i.imm_operands == 2
6406 && i.types[0].bitfield.imm8
6407 && i.types[1].bitfield.imm8)
6408 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6409 && i.imm_operands == 1
6410 && (i.types[0].bitfield.imm8
6411 || i.types[i.operands - 1].bitfield.imm8
6412 || i.rounding)));
6413 if (i.imm_operands == 2)
6414 source = 2;
6415 else
6416 {
6417 if (i.types[0].bitfield.imm8)
6418 source = 1;
6419 else
6420 source = 0;
6421 }
6422 break;
6423 case 5:
6424 if (i.tm.opcode_modifier.evex)
6425 {
6426 /* For EVEX instructions, when there are 5 operands, the
6427 first one must be immediate operand. If the second one
6428 is immediate operand, the source operand is the 3th
6429 one. If the last one is immediate operand, the source
6430 operand is the 2nd one. */
6431 gas_assert (i.imm_operands == 2
6432 && i.tm.opcode_modifier.sae
6433 && operand_type_check (i.types[0], imm));
6434 if (operand_type_check (i.types[1], imm))
6435 source = 2;
6436 else if (operand_type_check (i.types[4], imm))
6437 source = 1;
6438 else
6439 abort ();
6440 }
6441 break;
6442 default:
6443 abort ();
6444 }
6445
6446 if (!vex_3_sources)
6447 {
6448 dest = source + 1;
6449
6450 /* RC/SAE operand could be between DEST and SRC. That happens
6451 when one operand is GPR and the other one is XMM/YMM/ZMM
6452 register. */
6453 if (i.rounding && i.rounding->operand == (int) dest)
6454 dest++;
6455
6456 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6457 {
6458 /* For instructions with VexNDS, the register-only source
6459 operand must be 32/64bit integer, XMM, YMM or ZMM
6460 register. It is encoded in VEX prefix. We need to
6461 clear RegMem bit before calling operand_type_equal. */
6462
6463 i386_operand_type op;
6464 unsigned int vvvv;
6465
6466 /* Check register-only source operand when two source
6467 operands are swapped. */
6468 if (!i.tm.operand_types[source].bitfield.baseindex
6469 && i.tm.operand_types[dest].bitfield.baseindex)
6470 {
6471 vvvv = source;
6472 source = dest;
6473 }
6474 else
6475 vvvv = dest;
6476
6477 op = i.tm.operand_types[vvvv];
6478 op.bitfield.regmem = 0;
6479 if ((dest + 1) >= i.operands
6480 || (!op.bitfield.reg32
6481 && op.bitfield.reg64
6482 && !operand_type_equal (&op, &regxmm)
6483 && !operand_type_equal (&op, &regymm)
6484 && !operand_type_equal (&op, &regzmm)
6485 && !operand_type_equal (&op, &regmask)))
6486 abort ();
6487 i.vex.register_specifier = i.op[vvvv].regs;
6488 dest++;
6489 }
6490 }
6491
6492 i.rm.mode = 3;
6493 /* One of the register operands will be encoded in the i.tm.reg
6494 field, the other in the combined i.tm.mode and i.tm.regmem
6495 fields. If no form of this instruction supports a memory
6496 destination operand, then we assume the source operand may
6497 sometimes be a memory operand and so we need to store the
6498 destination in the i.rm.reg field. */
6499 if (!i.tm.operand_types[dest].bitfield.regmem
6500 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6501 {
6502 i.rm.reg = i.op[dest].regs->reg_num;
6503 i.rm.regmem = i.op[source].regs->reg_num;
6504 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6505 i.rex |= REX_R;
6506 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6507 i.vrex |= REX_R;
6508 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6509 i.rex |= REX_B;
6510 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6511 i.vrex |= REX_B;
6512 }
6513 else
6514 {
6515 i.rm.reg = i.op[source].regs->reg_num;
6516 i.rm.regmem = i.op[dest].regs->reg_num;
6517 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6518 i.rex |= REX_B;
6519 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6520 i.vrex |= REX_B;
6521 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6522 i.rex |= REX_R;
6523 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6524 i.vrex |= REX_R;
6525 }
6526 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6527 {
6528 if (!i.types[0].bitfield.control
6529 && !i.types[1].bitfield.control)
6530 abort ();
6531 i.rex &= ~(REX_R | REX_B);
6532 add_prefix (LOCK_PREFIX_OPCODE);
6533 }
6534 }
6535 else
6536 { /* If it's not 2 reg operands... */
6537 unsigned int mem;
6538
6539 if (i.mem_operands)
6540 {
6541 unsigned int fake_zero_displacement = 0;
6542 unsigned int op;
6543
6544 for (op = 0; op < i.operands; op++)
6545 if (operand_type_check (i.types[op], anymem))
6546 break;
6547 gas_assert (op < i.operands);
6548
6549 if (i.tm.opcode_modifier.vecsib)
6550 {
6551 if (i.index_reg->reg_num == RegEiz
6552 || i.index_reg->reg_num == RegRiz)
6553 abort ();
6554
6555 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6556 if (!i.base_reg)
6557 {
6558 i.sib.base = NO_BASE_REGISTER;
6559 i.sib.scale = i.log2_scale_factor;
6560 /* No Vec_Disp8 if there is no base. */
6561 i.types[op].bitfield.vec_disp8 = 0;
6562 i.types[op].bitfield.disp8 = 0;
6563 i.types[op].bitfield.disp16 = 0;
6564 i.types[op].bitfield.disp64 = 0;
6565 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6566 {
6567 /* Must be 32 bit */
6568 i.types[op].bitfield.disp32 = 1;
6569 i.types[op].bitfield.disp32s = 0;
6570 }
6571 else
6572 {
6573 i.types[op].bitfield.disp32 = 0;
6574 i.types[op].bitfield.disp32s = 1;
6575 }
6576 }
6577 i.sib.index = i.index_reg->reg_num;
6578 if ((i.index_reg->reg_flags & RegRex) != 0)
6579 i.rex |= REX_X;
6580 if ((i.index_reg->reg_flags & RegVRex) != 0)
6581 i.vrex |= REX_X;
6582 }
6583
6584 default_seg = &ds;
6585
6586 if (i.base_reg == 0)
6587 {
6588 i.rm.mode = 0;
6589 if (!i.disp_operands)
6590 fake_zero_displacement = 1;
6591 if (i.index_reg == 0)
6592 {
6593 gas_assert (!i.tm.opcode_modifier.vecsib);
6594 /* Operand is just <disp> */
6595 if (flag_code == CODE_64BIT)
6596 {
6597 /* 64bit mode overwrites the 32bit absolute
6598 addressing by RIP relative addressing and
6599 absolute addressing is encoded by one of the
6600 redundant SIB forms. */
6601 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6602 i.sib.base = NO_BASE_REGISTER;
6603 i.sib.index = NO_INDEX_REGISTER;
6604 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6605 ? disp32s : disp32);
6606 }
6607 else if ((flag_code == CODE_16BIT)
6608 ^ (i.prefix[ADDR_PREFIX] != 0))
6609 {
6610 i.rm.regmem = NO_BASE_REGISTER_16;
6611 i.types[op] = disp16;
6612 }
6613 else
6614 {
6615 i.rm.regmem = NO_BASE_REGISTER;
6616 i.types[op] = disp32;
6617 }
6618 }
6619 else if (!i.tm.opcode_modifier.vecsib)
6620 {
6621 /* !i.base_reg && i.index_reg */
6622 if (i.index_reg->reg_num == RegEiz
6623 || i.index_reg->reg_num == RegRiz)
6624 i.sib.index = NO_INDEX_REGISTER;
6625 else
6626 i.sib.index = i.index_reg->reg_num;
6627 i.sib.base = NO_BASE_REGISTER;
6628 i.sib.scale = i.log2_scale_factor;
6629 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6630 /* No Vec_Disp8 if there is no base. */
6631 i.types[op].bitfield.vec_disp8 = 0;
6632 i.types[op].bitfield.disp8 = 0;
6633 i.types[op].bitfield.disp16 = 0;
6634 i.types[op].bitfield.disp64 = 0;
6635 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6636 {
6637 /* Must be 32 bit */
6638 i.types[op].bitfield.disp32 = 1;
6639 i.types[op].bitfield.disp32s = 0;
6640 }
6641 else
6642 {
6643 i.types[op].bitfield.disp32 = 0;
6644 i.types[op].bitfield.disp32s = 1;
6645 }
6646 if ((i.index_reg->reg_flags & RegRex) != 0)
6647 i.rex |= REX_X;
6648 }
6649 }
6650 /* RIP addressing for 64bit mode. */
6651 else if (i.base_reg->reg_num == RegRip ||
6652 i.base_reg->reg_num == RegEip)
6653 {
6654 gas_assert (!i.tm.opcode_modifier.vecsib);
6655 i.rm.regmem = NO_BASE_REGISTER;
6656 i.types[op].bitfield.disp8 = 0;
6657 i.types[op].bitfield.disp16 = 0;
6658 i.types[op].bitfield.disp32 = 0;
6659 i.types[op].bitfield.disp32s = 1;
6660 i.types[op].bitfield.disp64 = 0;
6661 i.types[op].bitfield.vec_disp8 = 0;
6662 i.flags[op] |= Operand_PCrel;
6663 if (! i.disp_operands)
6664 fake_zero_displacement = 1;
6665 }
6666 else if (i.base_reg->reg_type.bitfield.reg16)
6667 {
6668 gas_assert (!i.tm.opcode_modifier.vecsib);
6669 switch (i.base_reg->reg_num)
6670 {
6671 case 3: /* (%bx) */
6672 if (i.index_reg == 0)
6673 i.rm.regmem = 7;
6674 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6675 i.rm.regmem = i.index_reg->reg_num - 6;
6676 break;
6677 case 5: /* (%bp) */
6678 default_seg = &ss;
6679 if (i.index_reg == 0)
6680 {
6681 i.rm.regmem = 6;
6682 if (operand_type_check (i.types[op], disp) == 0)
6683 {
6684 /* fake (%bp) into 0(%bp) */
6685 if (i.tm.operand_types[op].bitfield.vec_disp8)
6686 i.types[op].bitfield.vec_disp8 = 1;
6687 else
6688 i.types[op].bitfield.disp8 = 1;
6689 fake_zero_displacement = 1;
6690 }
6691 }
6692 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6693 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6694 break;
6695 default: /* (%si) -> 4 or (%di) -> 5 */
6696 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6697 }
6698 i.rm.mode = mode_from_disp_size (i.types[op]);
6699 }
6700 else /* i.base_reg and 32/64 bit mode */
6701 {
6702 if (flag_code == CODE_64BIT
6703 && operand_type_check (i.types[op], disp))
6704 {
6705 i386_operand_type temp;
6706 operand_type_set (&temp, 0);
6707 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6708 temp.bitfield.vec_disp8
6709 = i.types[op].bitfield.vec_disp8;
6710 i.types[op] = temp;
6711 if (i.prefix[ADDR_PREFIX] == 0)
6712 i.types[op].bitfield.disp32s = 1;
6713 else
6714 i.types[op].bitfield.disp32 = 1;
6715 }
6716
6717 if (!i.tm.opcode_modifier.vecsib)
6718 i.rm.regmem = i.base_reg->reg_num;
6719 if ((i.base_reg->reg_flags & RegRex) != 0)
6720 i.rex |= REX_B;
6721 i.sib.base = i.base_reg->reg_num;
6722 /* x86-64 ignores REX prefix bit here to avoid decoder
6723 complications. */
6724 if (!(i.base_reg->reg_flags & RegRex)
6725 && (i.base_reg->reg_num == EBP_REG_NUM
6726 || i.base_reg->reg_num == ESP_REG_NUM))
6727 default_seg = &ss;
6728 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6729 {
6730 fake_zero_displacement = 1;
6731 if (i.tm.operand_types [op].bitfield.vec_disp8)
6732 i.types[op].bitfield.vec_disp8 = 1;
6733 else
6734 i.types[op].bitfield.disp8 = 1;
6735 }
6736 i.sib.scale = i.log2_scale_factor;
6737 if (i.index_reg == 0)
6738 {
6739 gas_assert (!i.tm.opcode_modifier.vecsib);
6740 /* <disp>(%esp) becomes two byte modrm with no index
6741 register. We've already stored the code for esp
6742 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6743 Any base register besides %esp will not use the
6744 extra modrm byte. */
6745 i.sib.index = NO_INDEX_REGISTER;
6746 }
6747 else if (!i.tm.opcode_modifier.vecsib)
6748 {
6749 if (i.index_reg->reg_num == RegEiz
6750 || i.index_reg->reg_num == RegRiz)
6751 i.sib.index = NO_INDEX_REGISTER;
6752 else
6753 i.sib.index = i.index_reg->reg_num;
6754 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6755 if ((i.index_reg->reg_flags & RegRex) != 0)
6756 i.rex |= REX_X;
6757 }
6758
6759 if (i.disp_operands
6760 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6761 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6762 i.rm.mode = 0;
6763 else
6764 {
6765 if (!fake_zero_displacement
6766 && !i.disp_operands
6767 && i.disp_encoding)
6768 {
6769 fake_zero_displacement = 1;
6770 if (i.disp_encoding == disp_encoding_8bit)
6771 i.types[op].bitfield.disp8 = 1;
6772 else
6773 i.types[op].bitfield.disp32 = 1;
6774 }
6775 i.rm.mode = mode_from_disp_size (i.types[op]);
6776 }
6777 }
6778
6779 if (fake_zero_displacement)
6780 {
6781 /* Fakes a zero displacement assuming that i.types[op]
6782 holds the correct displacement size. */
6783 expressionS *exp;
6784
6785 gas_assert (i.op[op].disps == 0);
6786 exp = &disp_expressions[i.disp_operands++];
6787 i.op[op].disps = exp;
6788 exp->X_op = O_constant;
6789 exp->X_add_number = 0;
6790 exp->X_add_symbol = (symbolS *) 0;
6791 exp->X_op_symbol = (symbolS *) 0;
6792 }
6793
6794 mem = op;
6795 }
6796 else
6797 mem = ~0;
6798
6799 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6800 {
6801 if (operand_type_check (i.types[0], imm))
6802 i.vex.register_specifier = NULL;
6803 else
6804 {
6805 /* VEX.vvvv encodes one of the sources when the first
6806 operand is not an immediate. */
6807 if (i.tm.opcode_modifier.vexw == VEXW0)
6808 i.vex.register_specifier = i.op[0].regs;
6809 else
6810 i.vex.register_specifier = i.op[1].regs;
6811 }
6812
6813 /* Destination is a XMM register encoded in the ModRM.reg
6814 and VEX.R bit. */
6815 i.rm.reg = i.op[2].regs->reg_num;
6816 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6817 i.rex |= REX_R;
6818
6819 /* ModRM.rm and VEX.B encodes the other source. */
6820 if (!i.mem_operands)
6821 {
6822 i.rm.mode = 3;
6823
6824 if (i.tm.opcode_modifier.vexw == VEXW0)
6825 i.rm.regmem = i.op[1].regs->reg_num;
6826 else
6827 i.rm.regmem = i.op[0].regs->reg_num;
6828
6829 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6830 i.rex |= REX_B;
6831 }
6832 }
6833 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6834 {
6835 i.vex.register_specifier = i.op[2].regs;
6836 if (!i.mem_operands)
6837 {
6838 i.rm.mode = 3;
6839 i.rm.regmem = i.op[1].regs->reg_num;
6840 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6841 i.rex |= REX_B;
6842 }
6843 }
6844 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6845 (if any) based on i.tm.extension_opcode. Again, we must be
6846 careful to make sure that segment/control/debug/test/MMX
6847 registers are coded into the i.rm.reg field. */
6848 else if (i.reg_operands)
6849 {
6850 unsigned int op;
6851 unsigned int vex_reg = ~0;
6852
6853 for (op = 0; op < i.operands; op++)
6854 if (i.types[op].bitfield.reg8
6855 || i.types[op].bitfield.reg16
6856 || i.types[op].bitfield.reg32
6857 || i.types[op].bitfield.reg64
6858 || i.types[op].bitfield.regmmx
6859 || i.types[op].bitfield.regxmm
6860 || i.types[op].bitfield.regymm
6861 || i.types[op].bitfield.regbnd
6862 || i.types[op].bitfield.regzmm
6863 || i.types[op].bitfield.regmask
6864 || i.types[op].bitfield.sreg2
6865 || i.types[op].bitfield.sreg3
6866 || i.types[op].bitfield.control
6867 || i.types[op].bitfield.debug
6868 || i.types[op].bitfield.test)
6869 break;
6870
6871 if (vex_3_sources)
6872 op = dest;
6873 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6874 {
6875 /* For instructions with VexNDS, the register-only
6876 source operand is encoded in VEX prefix. */
6877 gas_assert (mem != (unsigned int) ~0);
6878
6879 if (op > mem)
6880 {
6881 vex_reg = op++;
6882 gas_assert (op < i.operands);
6883 }
6884 else
6885 {
6886 /* Check register-only source operand when two source
6887 operands are swapped. */
6888 if (!i.tm.operand_types[op].bitfield.baseindex
6889 && i.tm.operand_types[op + 1].bitfield.baseindex)
6890 {
6891 vex_reg = op;
6892 op += 2;
6893 gas_assert (mem == (vex_reg + 1)
6894 && op < i.operands);
6895 }
6896 else
6897 {
6898 vex_reg = op + 1;
6899 gas_assert (vex_reg < i.operands);
6900 }
6901 }
6902 }
6903 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6904 {
6905 /* For instructions with VexNDD, the register destination
6906 is encoded in VEX prefix. */
6907 if (i.mem_operands == 0)
6908 {
6909 /* There is no memory operand. */
6910 gas_assert ((op + 2) == i.operands);
6911 vex_reg = op + 1;
6912 }
6913 else
6914 {
6915 /* There are only 2 operands. */
6916 gas_assert (op < 2 && i.operands == 2);
6917 vex_reg = 1;
6918 }
6919 }
6920 else
6921 gas_assert (op < i.operands);
6922
6923 if (vex_reg != (unsigned int) ~0)
6924 {
6925 i386_operand_type *type = &i.tm.operand_types[vex_reg];
6926
6927 if (type->bitfield.reg32 != 1
6928 && type->bitfield.reg64 != 1
6929 && !operand_type_equal (type, &regxmm)
6930 && !operand_type_equal (type, &regymm)
6931 && !operand_type_equal (type, &regzmm)
6932 && !operand_type_equal (type, &regmask))
6933 abort ();
6934
6935 i.vex.register_specifier = i.op[vex_reg].regs;
6936 }
6937
6938 /* Don't set OP operand twice. */
6939 if (vex_reg != op)
6940 {
6941 /* If there is an extension opcode to put here, the
6942 register number must be put into the regmem field. */
6943 if (i.tm.extension_opcode != None)
6944 {
6945 i.rm.regmem = i.op[op].regs->reg_num;
6946 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6947 i.rex |= REX_B;
6948 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6949 i.vrex |= REX_B;
6950 }
6951 else
6952 {
6953 i.rm.reg = i.op[op].regs->reg_num;
6954 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6955 i.rex |= REX_R;
6956 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6957 i.vrex |= REX_R;
6958 }
6959 }
6960
6961 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6962 must set it to 3 to indicate this is a register operand
6963 in the regmem field. */
6964 if (!i.mem_operands)
6965 i.rm.mode = 3;
6966 }
6967
6968 /* Fill in i.rm.reg field with extension opcode (if any). */
6969 if (i.tm.extension_opcode != None)
6970 i.rm.reg = i.tm.extension_opcode;
6971 }
6972 return default_seg;
6973 }
6974
6975 static void
6976 output_branch (void)
6977 {
6978 char *p;
6979 int size;
6980 int code16;
6981 int prefix;
6982 relax_substateT subtype;
6983 symbolS *sym;
6984 offsetT off;
6985
6986 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6987 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6988
6989 prefix = 0;
6990 if (i.prefix[DATA_PREFIX] != 0)
6991 {
6992 prefix = 1;
6993 i.prefixes -= 1;
6994 code16 ^= CODE16;
6995 }
6996 /* Pentium4 branch hints. */
6997 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6998 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6999 {
7000 prefix++;
7001 i.prefixes--;
7002 }
7003 if (i.prefix[REX_PREFIX] != 0)
7004 {
7005 prefix++;
7006 i.prefixes--;
7007 }
7008
7009 /* BND prefixed jump. */
7010 if (i.prefix[BND_PREFIX] != 0)
7011 {
7012 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7013 i.prefixes -= 1;
7014 }
7015
7016 if (i.prefixes != 0 && !intel_syntax)
7017 as_warn (_("skipping prefixes on this instruction"));
7018
7019 /* It's always a symbol; End frag & setup for relax.
7020 Make sure there is enough room in this frag for the largest
7021 instruction we may generate in md_convert_frag. This is 2
7022 bytes for the opcode and room for the prefix and largest
7023 displacement. */
7024 frag_grow (prefix + 2 + 4);
7025 /* Prefix and 1 opcode byte go in fr_fix. */
7026 p = frag_more (prefix + 1);
7027 if (i.prefix[DATA_PREFIX] != 0)
7028 *p++ = DATA_PREFIX_OPCODE;
7029 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7030 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7031 *p++ = i.prefix[SEG_PREFIX];
7032 if (i.prefix[REX_PREFIX] != 0)
7033 *p++ = i.prefix[REX_PREFIX];
7034 *p = i.tm.base_opcode;
7035
7036 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7037 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7038 else if (cpu_arch_flags.bitfield.cpui386)
7039 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7040 else
7041 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7042 subtype |= code16;
7043
7044 sym = i.op[0].disps->X_add_symbol;
7045 off = i.op[0].disps->X_add_number;
7046
7047 if (i.op[0].disps->X_op != O_constant
7048 && i.op[0].disps->X_op != O_symbol)
7049 {
7050 /* Handle complex expressions. */
7051 sym = make_expr_symbol (i.op[0].disps);
7052 off = 0;
7053 }
7054
7055 /* 1 possible extra opcode + 4 byte displacement go in var part.
7056 Pass reloc in fr_var. */
7057 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7058 }
7059
7060 static void
7061 output_jump (void)
7062 {
7063 char *p;
7064 int size;
7065 fixS *fixP;
7066
7067 if (i.tm.opcode_modifier.jumpbyte)
7068 {
7069 /* This is a loop or jecxz type instruction. */
7070 size = 1;
7071 if (i.prefix[ADDR_PREFIX] != 0)
7072 {
7073 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7074 i.prefixes -= 1;
7075 }
7076 /* Pentium4 branch hints. */
7077 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7078 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7079 {
7080 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7081 i.prefixes--;
7082 }
7083 }
7084 else
7085 {
7086 int code16;
7087
7088 code16 = 0;
7089 if (flag_code == CODE_16BIT)
7090 code16 = CODE16;
7091
7092 if (i.prefix[DATA_PREFIX] != 0)
7093 {
7094 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7095 i.prefixes -= 1;
7096 code16 ^= CODE16;
7097 }
7098
7099 size = 4;
7100 if (code16)
7101 size = 2;
7102 }
7103
7104 if (i.prefix[REX_PREFIX] != 0)
7105 {
7106 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7107 i.prefixes -= 1;
7108 }
7109
7110 /* BND prefixed jump. */
7111 if (i.prefix[BND_PREFIX] != 0)
7112 {
7113 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7114 i.prefixes -= 1;
7115 }
7116
7117 if (i.prefixes != 0 && !intel_syntax)
7118 as_warn (_("skipping prefixes on this instruction"));
7119
7120 p = frag_more (i.tm.opcode_length + size);
7121 switch (i.tm.opcode_length)
7122 {
7123 case 2:
7124 *p++ = i.tm.base_opcode >> 8;
7125 /* Fall through. */
7126 case 1:
7127 *p++ = i.tm.base_opcode;
7128 break;
7129 default:
7130 abort ();
7131 }
7132
7133 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7134 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
7135
7136 /* All jumps handled here are signed, but don't use a signed limit
7137 check for 32 and 16 bit jumps as we want to allow wrap around at
7138 4G and 64k respectively. */
7139 if (size == 1)
7140 fixP->fx_signed = 1;
7141 }
7142
7143 static void
7144 output_interseg_jump (void)
7145 {
7146 char *p;
7147 int size;
7148 int prefix;
7149 int code16;
7150
7151 code16 = 0;
7152 if (flag_code == CODE_16BIT)
7153 code16 = CODE16;
7154
7155 prefix = 0;
7156 if (i.prefix[DATA_PREFIX] != 0)
7157 {
7158 prefix = 1;
7159 i.prefixes -= 1;
7160 code16 ^= CODE16;
7161 }
7162 if (i.prefix[REX_PREFIX] != 0)
7163 {
7164 prefix++;
7165 i.prefixes -= 1;
7166 }
7167
7168 size = 4;
7169 if (code16)
7170 size = 2;
7171
7172 if (i.prefixes != 0 && !intel_syntax)
7173 as_warn (_("skipping prefixes on this instruction"));
7174
7175 /* 1 opcode; 2 segment; offset */
7176 p = frag_more (prefix + 1 + 2 + size);
7177
7178 if (i.prefix[DATA_PREFIX] != 0)
7179 *p++ = DATA_PREFIX_OPCODE;
7180
7181 if (i.prefix[REX_PREFIX] != 0)
7182 *p++ = i.prefix[REX_PREFIX];
7183
7184 *p++ = i.tm.base_opcode;
7185 if (i.op[1].imms->X_op == O_constant)
7186 {
7187 offsetT n = i.op[1].imms->X_add_number;
7188
7189 if (size == 2
7190 && !fits_in_unsigned_word (n)
7191 && !fits_in_signed_word (n))
7192 {
7193 as_bad (_("16-bit jump out of range"));
7194 return;
7195 }
7196 md_number_to_chars (p, n, size);
7197 }
7198 else
7199 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7200 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7201 if (i.op[0].imms->X_op != O_constant)
7202 as_bad (_("can't handle non absolute segment in `%s'"),
7203 i.tm.name);
7204 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7205 }
7206
7207 static void
7208 output_insn (void)
7209 {
7210 fragS *insn_start_frag;
7211 offsetT insn_start_off;
7212
7213 /* Tie dwarf2 debug info to the address at the start of the insn.
7214 We can't do this after the insn has been output as the current
7215 frag may have been closed off. eg. by frag_var. */
7216 dwarf2_emit_insn (0);
7217
7218 insn_start_frag = frag_now;
7219 insn_start_off = frag_now_fix ();
7220
7221 /* Output jumps. */
7222 if (i.tm.opcode_modifier.jump)
7223 output_branch ();
7224 else if (i.tm.opcode_modifier.jumpbyte
7225 || i.tm.opcode_modifier.jumpdword)
7226 output_jump ();
7227 else if (i.tm.opcode_modifier.jumpintersegment)
7228 output_interseg_jump ();
7229 else
7230 {
7231 /* Output normal instructions here. */
7232 char *p;
7233 unsigned char *q;
7234 unsigned int j;
7235 unsigned int prefix;
7236
7237 if (avoid_fence
7238 && i.tm.base_opcode == 0xfae
7239 && i.operands == 1
7240 && i.imm_operands == 1
7241 && (i.op[0].imms->X_add_number == 0xe8
7242 || i.op[0].imms->X_add_number == 0xf0
7243 || i.op[0].imms->X_add_number == 0xf8))
7244 {
7245 /* Encode lfence, mfence, and sfence as
7246 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7247 offsetT val = 0x240483f0ULL;
7248 p = frag_more (5);
7249 md_number_to_chars (p, val, 5);
7250 return;
7251 }
7252
7253 /* Some processors fail on LOCK prefix. This options makes
7254 assembler ignore LOCK prefix and serves as a workaround. */
7255 if (omit_lock_prefix)
7256 {
7257 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7258 return;
7259 i.prefix[LOCK_PREFIX] = 0;
7260 }
7261
7262 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7263 don't need the explicit prefix. */
7264 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7265 {
7266 switch (i.tm.opcode_length)
7267 {
7268 case 3:
7269 if (i.tm.base_opcode & 0xff000000)
7270 {
7271 prefix = (i.tm.base_opcode >> 24) & 0xff;
7272 goto check_prefix;
7273 }
7274 break;
7275 case 2:
7276 if ((i.tm.base_opcode & 0xff0000) != 0)
7277 {
7278 prefix = (i.tm.base_opcode >> 16) & 0xff;
7279 if (i.tm.cpu_flags.bitfield.cpupadlock)
7280 {
7281 check_prefix:
7282 if (prefix != REPE_PREFIX_OPCODE
7283 || (i.prefix[REP_PREFIX]
7284 != REPE_PREFIX_OPCODE))
7285 add_prefix (prefix);
7286 }
7287 else
7288 add_prefix (prefix);
7289 }
7290 break;
7291 case 1:
7292 break;
7293 default:
7294 abort ();
7295 }
7296
7297 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7298 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7299 R_X86_64_GOTTPOFF relocation so that linker can safely
7300 perform IE->LE optimization. */
7301 if (x86_elf_abi == X86_64_X32_ABI
7302 && i.operands == 2
7303 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7304 && i.prefix[REX_PREFIX] == 0)
7305 add_prefix (REX_OPCODE);
7306 #endif
7307
7308 /* The prefix bytes. */
7309 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7310 if (*q)
7311 FRAG_APPEND_1_CHAR (*q);
7312 }
7313 else
7314 {
7315 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7316 if (*q)
7317 switch (j)
7318 {
7319 case REX_PREFIX:
7320 /* REX byte is encoded in VEX prefix. */
7321 break;
7322 case SEG_PREFIX:
7323 case ADDR_PREFIX:
7324 FRAG_APPEND_1_CHAR (*q);
7325 break;
7326 default:
7327 /* There should be no other prefixes for instructions
7328 with VEX prefix. */
7329 abort ();
7330 }
7331
7332 /* For EVEX instructions i.vrex should become 0 after
7333 build_evex_prefix. For VEX instructions upper 16 registers
7334 aren't available, so VREX should be 0. */
7335 if (i.vrex)
7336 abort ();
7337 /* Now the VEX prefix. */
7338 p = frag_more (i.vex.length);
7339 for (j = 0; j < i.vex.length; j++)
7340 p[j] = i.vex.bytes[j];
7341 }
7342
7343 /* Now the opcode; be careful about word order here! */
7344 if (i.tm.opcode_length == 1)
7345 {
7346 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7347 }
7348 else
7349 {
7350 switch (i.tm.opcode_length)
7351 {
7352 case 4:
7353 p = frag_more (4);
7354 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7355 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7356 break;
7357 case 3:
7358 p = frag_more (3);
7359 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7360 break;
7361 case 2:
7362 p = frag_more (2);
7363 break;
7364 default:
7365 abort ();
7366 break;
7367 }
7368
7369 /* Put out high byte first: can't use md_number_to_chars! */
7370 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7371 *p = i.tm.base_opcode & 0xff;
7372 }
7373
7374 /* Now the modrm byte and sib byte (if present). */
7375 if (i.tm.opcode_modifier.modrm)
7376 {
7377 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7378 | i.rm.reg << 3
7379 | i.rm.mode << 6));
7380 /* If i.rm.regmem == ESP (4)
7381 && i.rm.mode != (Register mode)
7382 && not 16 bit
7383 ==> need second modrm byte. */
7384 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7385 && i.rm.mode != 3
7386 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
7387 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7388 | i.sib.index << 3
7389 | i.sib.scale << 6));
7390 }
7391
7392 if (i.disp_operands)
7393 output_disp (insn_start_frag, insn_start_off);
7394
7395 if (i.imm_operands)
7396 output_imm (insn_start_frag, insn_start_off);
7397 }
7398
7399 #ifdef DEBUG386
7400 if (flag_debug)
7401 {
7402 pi ("" /*line*/, &i);
7403 }
7404 #endif /* DEBUG386 */
7405 }
7406
7407 /* Return the size of the displacement operand N. */
7408
7409 static int
7410 disp_size (unsigned int n)
7411 {
7412 int size = 4;
7413
7414 /* Vec_Disp8 has to be 8bit. */
7415 if (i.types[n].bitfield.vec_disp8)
7416 size = 1;
7417 else if (i.types[n].bitfield.disp64)
7418 size = 8;
7419 else if (i.types[n].bitfield.disp8)
7420 size = 1;
7421 else if (i.types[n].bitfield.disp16)
7422 size = 2;
7423 return size;
7424 }
7425
7426 /* Return the size of the immediate operand N. */
7427
7428 static int
7429 imm_size (unsigned int n)
7430 {
7431 int size = 4;
7432 if (i.types[n].bitfield.imm64)
7433 size = 8;
7434 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7435 size = 1;
7436 else if (i.types[n].bitfield.imm16)
7437 size = 2;
7438 return size;
7439 }
7440
7441 static void
7442 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7443 {
7444 char *p;
7445 unsigned int n;
7446
7447 for (n = 0; n < i.operands; n++)
7448 {
7449 if (i.types[n].bitfield.vec_disp8
7450 || operand_type_check (i.types[n], disp))
7451 {
7452 if (i.op[n].disps->X_op == O_constant)
7453 {
7454 int size = disp_size (n);
7455 offsetT val = i.op[n].disps->X_add_number;
7456
7457 if (i.types[n].bitfield.vec_disp8)
7458 val >>= i.memshift;
7459 val = offset_in_range (val, size);
7460 p = frag_more (size);
7461 md_number_to_chars (p, val, size);
7462 }
7463 else
7464 {
7465 enum bfd_reloc_code_real reloc_type;
7466 int size = disp_size (n);
7467 int sign = i.types[n].bitfield.disp32s;
7468 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7469 fixS *fixP;
7470
7471 /* We can't have 8 bit displacement here. */
7472 gas_assert (!i.types[n].bitfield.disp8);
7473
7474 /* The PC relative address is computed relative
7475 to the instruction boundary, so in case immediate
7476 fields follows, we need to adjust the value. */
7477 if (pcrel && i.imm_operands)
7478 {
7479 unsigned int n1;
7480 int sz = 0;
7481
7482 for (n1 = 0; n1 < i.operands; n1++)
7483 if (operand_type_check (i.types[n1], imm))
7484 {
7485 /* Only one immediate is allowed for PC
7486 relative address. */
7487 gas_assert (sz == 0);
7488 sz = imm_size (n1);
7489 i.op[n].disps->X_add_number -= sz;
7490 }
7491 /* We should find the immediate. */
7492 gas_assert (sz != 0);
7493 }
7494
7495 p = frag_more (size);
7496 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7497 if (GOT_symbol
7498 && GOT_symbol == i.op[n].disps->X_add_symbol
7499 && (((reloc_type == BFD_RELOC_32
7500 || reloc_type == BFD_RELOC_X86_64_32S
7501 || (reloc_type == BFD_RELOC_64
7502 && object_64bit))
7503 && (i.op[n].disps->X_op == O_symbol
7504 || (i.op[n].disps->X_op == O_add
7505 && ((symbol_get_value_expression
7506 (i.op[n].disps->X_op_symbol)->X_op)
7507 == O_subtract))))
7508 || reloc_type == BFD_RELOC_32_PCREL))
7509 {
7510 offsetT add;
7511
7512 if (insn_start_frag == frag_now)
7513 add = (p - frag_now->fr_literal) - insn_start_off;
7514 else
7515 {
7516 fragS *fr;
7517
7518 add = insn_start_frag->fr_fix - insn_start_off;
7519 for (fr = insn_start_frag->fr_next;
7520 fr && fr != frag_now; fr = fr->fr_next)
7521 add += fr->fr_fix;
7522 add += p - frag_now->fr_literal;
7523 }
7524
7525 if (!object_64bit)
7526 {
7527 reloc_type = BFD_RELOC_386_GOTPC;
7528 i.op[n].imms->X_add_number += add;
7529 }
7530 else if (reloc_type == BFD_RELOC_64)
7531 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7532 else
7533 /* Don't do the adjustment for x86-64, as there
7534 the pcrel addressing is relative to the _next_
7535 insn, and that is taken care of in other code. */
7536 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7537 }
7538 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7539 size, i.op[n].disps, pcrel,
7540 reloc_type);
7541 /* Check for "call/jmp *mem", "mov mem, %reg",
7542 "test %reg, mem" and "binop mem, %reg" where binop
7543 is one of adc, add, and, cmp, or, sbb, sub, xor
7544 instructions. Always generate R_386_GOT32X for
7545 "sym*GOT" operand in 32-bit mode. */
7546 if ((generate_relax_relocations
7547 || (!object_64bit
7548 && i.rm.mode == 0
7549 && i.rm.regmem == 5))
7550 && (i.rm.mode == 2
7551 || (i.rm.mode == 0 && i.rm.regmem == 5))
7552 && ((i.operands == 1
7553 && i.tm.base_opcode == 0xff
7554 && (i.rm.reg == 2 || i.rm.reg == 4))
7555 || (i.operands == 2
7556 && (i.tm.base_opcode == 0x8b
7557 || i.tm.base_opcode == 0x85
7558 || (i.tm.base_opcode & 0xc7) == 0x03))))
7559 {
7560 if (object_64bit)
7561 {
7562 fixP->fx_tcbit = i.rex != 0;
7563 if (i.base_reg
7564 && (i.base_reg->reg_num == RegRip
7565 || i.base_reg->reg_num == RegEip))
7566 fixP->fx_tcbit2 = 1;
7567 }
7568 else
7569 fixP->fx_tcbit2 = 1;
7570 }
7571 }
7572 }
7573 }
7574 }
7575
7576 static void
7577 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7578 {
7579 char *p;
7580 unsigned int n;
7581
7582 for (n = 0; n < i.operands; n++)
7583 {
7584 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7585 if (i.rounding && (int) n == i.rounding->operand)
7586 continue;
7587
7588 if (operand_type_check (i.types[n], imm))
7589 {
7590 if (i.op[n].imms->X_op == O_constant)
7591 {
7592 int size = imm_size (n);
7593 offsetT val;
7594
7595 val = offset_in_range (i.op[n].imms->X_add_number,
7596 size);
7597 p = frag_more (size);
7598 md_number_to_chars (p, val, size);
7599 }
7600 else
7601 {
7602 /* Not absolute_section.
7603 Need a 32-bit fixup (don't support 8bit
7604 non-absolute imms). Try to support other
7605 sizes ... */
7606 enum bfd_reloc_code_real reloc_type;
7607 int size = imm_size (n);
7608 int sign;
7609
7610 if (i.types[n].bitfield.imm32s
7611 && (i.suffix == QWORD_MNEM_SUFFIX
7612 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7613 sign = 1;
7614 else
7615 sign = 0;
7616
7617 p = frag_more (size);
7618 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7619
7620 /* This is tough to explain. We end up with this one if we
7621 * have operands that look like
7622 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7623 * obtain the absolute address of the GOT, and it is strongly
7624 * preferable from a performance point of view to avoid using
7625 * a runtime relocation for this. The actual sequence of
7626 * instructions often look something like:
7627 *
7628 * call .L66
7629 * .L66:
7630 * popl %ebx
7631 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7632 *
7633 * The call and pop essentially return the absolute address
7634 * of the label .L66 and store it in %ebx. The linker itself
7635 * will ultimately change the first operand of the addl so
7636 * that %ebx points to the GOT, but to keep things simple, the
7637 * .o file must have this operand set so that it generates not
7638 * the absolute address of .L66, but the absolute address of
7639 * itself. This allows the linker itself simply treat a GOTPC
7640 * relocation as asking for a pcrel offset to the GOT to be
7641 * added in, and the addend of the relocation is stored in the
7642 * operand field for the instruction itself.
7643 *
7644 * Our job here is to fix the operand so that it would add
7645 * the correct offset so that %ebx would point to itself. The
7646 * thing that is tricky is that .-.L66 will point to the
7647 * beginning of the instruction, so we need to further modify
7648 * the operand so that it will point to itself. There are
7649 * other cases where you have something like:
7650 *
7651 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7652 *
7653 * and here no correction would be required. Internally in
7654 * the assembler we treat operands of this form as not being
7655 * pcrel since the '.' is explicitly mentioned, and I wonder
7656 * whether it would simplify matters to do it this way. Who
7657 * knows. In earlier versions of the PIC patches, the
7658 * pcrel_adjust field was used to store the correction, but
7659 * since the expression is not pcrel, I felt it would be
7660 * confusing to do it this way. */
7661
7662 if ((reloc_type == BFD_RELOC_32
7663 || reloc_type == BFD_RELOC_X86_64_32S
7664 || reloc_type == BFD_RELOC_64)
7665 && GOT_symbol
7666 && GOT_symbol == i.op[n].imms->X_add_symbol
7667 && (i.op[n].imms->X_op == O_symbol
7668 || (i.op[n].imms->X_op == O_add
7669 && ((symbol_get_value_expression
7670 (i.op[n].imms->X_op_symbol)->X_op)
7671 == O_subtract))))
7672 {
7673 offsetT add;
7674
7675 if (insn_start_frag == frag_now)
7676 add = (p - frag_now->fr_literal) - insn_start_off;
7677 else
7678 {
7679 fragS *fr;
7680
7681 add = insn_start_frag->fr_fix - insn_start_off;
7682 for (fr = insn_start_frag->fr_next;
7683 fr && fr != frag_now; fr = fr->fr_next)
7684 add += fr->fr_fix;
7685 add += p - frag_now->fr_literal;
7686 }
7687
7688 if (!object_64bit)
7689 reloc_type = BFD_RELOC_386_GOTPC;
7690 else if (size == 4)
7691 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7692 else if (size == 8)
7693 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7694 i.op[n].imms->X_add_number += add;
7695 }
7696 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7697 i.op[n].imms, 0, reloc_type);
7698 }
7699 }
7700 }
7701 }
7702 \f
7703 /* x86_cons_fix_new is called via the expression parsing code when a
7704 reloc is needed. We use this hook to get the correct .got reloc. */
7705 static int cons_sign = -1;
7706
7707 void
7708 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7709 expressionS *exp, bfd_reloc_code_real_type r)
7710 {
7711 r = reloc (len, 0, cons_sign, r);
7712
7713 #ifdef TE_PE
7714 if (exp->X_op == O_secrel)
7715 {
7716 exp->X_op = O_symbol;
7717 r = BFD_RELOC_32_SECREL;
7718 }
7719 #endif
7720
7721 fix_new_exp (frag, off, len, exp, 0, r);
7722 }
7723
7724 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7725 purpose of the `.dc.a' internal pseudo-op. */
7726
7727 int
7728 x86_address_bytes (void)
7729 {
7730 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7731 return 4;
7732 return stdoutput->arch_info->bits_per_address / 8;
7733 }
7734
7735 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7736 || defined (LEX_AT)
7737 # define lex_got(reloc, adjust, types) NULL
7738 #else
7739 /* Parse operands of the form
7740 <symbol>@GOTOFF+<nnn>
7741 and similar .plt or .got references.
7742
7743 If we find one, set up the correct relocation in RELOC and copy the
7744 input string, minus the `@GOTOFF' into a malloc'd buffer for
7745 parsing by the calling routine. Return this buffer, and if ADJUST
7746 is non-null set it to the length of the string we removed from the
7747 input line. Otherwise return NULL. */
7748 static char *
7749 lex_got (enum bfd_reloc_code_real *rel,
7750 int *adjust,
7751 i386_operand_type *types)
7752 {
7753 /* Some of the relocations depend on the size of what field is to
7754 be relocated. But in our callers i386_immediate and i386_displacement
7755 we don't yet know the operand size (this will be set by insn
7756 matching). Hence we record the word32 relocation here,
7757 and adjust the reloc according to the real size in reloc(). */
7758 static const struct {
7759 const char *str;
7760 int len;
7761 const enum bfd_reloc_code_real rel[2];
7762 const i386_operand_type types64;
7763 } gotrel[] = {
7764 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7765 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7766 BFD_RELOC_SIZE32 },
7767 OPERAND_TYPE_IMM32_64 },
7768 #endif
7769 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7770 BFD_RELOC_X86_64_PLTOFF64 },
7771 OPERAND_TYPE_IMM64 },
7772 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7773 BFD_RELOC_X86_64_PLT32 },
7774 OPERAND_TYPE_IMM32_32S_DISP32 },
7775 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7776 BFD_RELOC_X86_64_GOTPLT64 },
7777 OPERAND_TYPE_IMM64_DISP64 },
7778 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7779 BFD_RELOC_X86_64_GOTOFF64 },
7780 OPERAND_TYPE_IMM64_DISP64 },
7781 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7782 BFD_RELOC_X86_64_GOTPCREL },
7783 OPERAND_TYPE_IMM32_32S_DISP32 },
7784 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7785 BFD_RELOC_X86_64_TLSGD },
7786 OPERAND_TYPE_IMM32_32S_DISP32 },
7787 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7788 _dummy_first_bfd_reloc_code_real },
7789 OPERAND_TYPE_NONE },
7790 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7791 BFD_RELOC_X86_64_TLSLD },
7792 OPERAND_TYPE_IMM32_32S_DISP32 },
7793 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7794 BFD_RELOC_X86_64_GOTTPOFF },
7795 OPERAND_TYPE_IMM32_32S_DISP32 },
7796 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7797 BFD_RELOC_X86_64_TPOFF32 },
7798 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7799 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7800 _dummy_first_bfd_reloc_code_real },
7801 OPERAND_TYPE_NONE },
7802 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7803 BFD_RELOC_X86_64_DTPOFF32 },
7804 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7805 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7806 _dummy_first_bfd_reloc_code_real },
7807 OPERAND_TYPE_NONE },
7808 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7809 _dummy_first_bfd_reloc_code_real },
7810 OPERAND_TYPE_NONE },
7811 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7812 BFD_RELOC_X86_64_GOT32 },
7813 OPERAND_TYPE_IMM32_32S_64_DISP32 },
7814 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7815 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7816 OPERAND_TYPE_IMM32_32S_DISP32 },
7817 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7818 BFD_RELOC_X86_64_TLSDESC_CALL },
7819 OPERAND_TYPE_IMM32_32S_DISP32 },
7820 };
7821 char *cp;
7822 unsigned int j;
7823
7824 #if defined (OBJ_MAYBE_ELF)
7825 if (!IS_ELF)
7826 return NULL;
7827 #endif
7828
7829 for (cp = input_line_pointer; *cp != '@'; cp++)
7830 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7831 return NULL;
7832
7833 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7834 {
7835 int len = gotrel[j].len;
7836 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7837 {
7838 if (gotrel[j].rel[object_64bit] != 0)
7839 {
7840 int first, second;
7841 char *tmpbuf, *past_reloc;
7842
7843 *rel = gotrel[j].rel[object_64bit];
7844
7845 if (types)
7846 {
7847 if (flag_code != CODE_64BIT)
7848 {
7849 types->bitfield.imm32 = 1;
7850 types->bitfield.disp32 = 1;
7851 }
7852 else
7853 *types = gotrel[j].types64;
7854 }
7855
7856 if (j != 0 && GOT_symbol == NULL)
7857 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7858
7859 /* The length of the first part of our input line. */
7860 first = cp - input_line_pointer;
7861
7862 /* The second part goes from after the reloc token until
7863 (and including) an end_of_line char or comma. */
7864 past_reloc = cp + 1 + len;
7865 cp = past_reloc;
7866 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7867 ++cp;
7868 second = cp + 1 - past_reloc;
7869
7870 /* Allocate and copy string. The trailing NUL shouldn't
7871 be necessary, but be safe. */
7872 tmpbuf = XNEWVEC (char, first + second + 2);
7873 memcpy (tmpbuf, input_line_pointer, first);
7874 if (second != 0 && *past_reloc != ' ')
7875 /* Replace the relocation token with ' ', so that
7876 errors like foo@GOTOFF1 will be detected. */
7877 tmpbuf[first++] = ' ';
7878 else
7879 /* Increment length by 1 if the relocation token is
7880 removed. */
7881 len++;
7882 if (adjust)
7883 *adjust = len;
7884 memcpy (tmpbuf + first, past_reloc, second);
7885 tmpbuf[first + second] = '\0';
7886 return tmpbuf;
7887 }
7888
7889 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7890 gotrel[j].str, 1 << (5 + object_64bit));
7891 return NULL;
7892 }
7893 }
7894
7895 /* Might be a symbol version string. Don't as_bad here. */
7896 return NULL;
7897 }
7898 #endif
7899
7900 #ifdef TE_PE
7901 #ifdef lex_got
7902 #undef lex_got
7903 #endif
7904 /* Parse operands of the form
7905 <symbol>@SECREL32+<nnn>
7906
7907 If we find one, set up the correct relocation in RELOC and copy the
7908 input string, minus the `@SECREL32' into a malloc'd buffer for
7909 parsing by the calling routine. Return this buffer, and if ADJUST
7910 is non-null set it to the length of the string we removed from the
7911 input line. Otherwise return NULL.
7912
7913 This function is copied from the ELF version above adjusted for PE targets. */
7914
7915 static char *
7916 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7917 int *adjust ATTRIBUTE_UNUSED,
7918 i386_operand_type *types)
7919 {
7920 static const struct
7921 {
7922 const char *str;
7923 int len;
7924 const enum bfd_reloc_code_real rel[2];
7925 const i386_operand_type types64;
7926 }
7927 gotrel[] =
7928 {
7929 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7930 BFD_RELOC_32_SECREL },
7931 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7932 };
7933
7934 char *cp;
7935 unsigned j;
7936
7937 for (cp = input_line_pointer; *cp != '@'; cp++)
7938 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7939 return NULL;
7940
7941 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7942 {
7943 int len = gotrel[j].len;
7944
7945 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7946 {
7947 if (gotrel[j].rel[object_64bit] != 0)
7948 {
7949 int first, second;
7950 char *tmpbuf, *past_reloc;
7951
7952 *rel = gotrel[j].rel[object_64bit];
7953 if (adjust)
7954 *adjust = len;
7955
7956 if (types)
7957 {
7958 if (flag_code != CODE_64BIT)
7959 {
7960 types->bitfield.imm32 = 1;
7961 types->bitfield.disp32 = 1;
7962 }
7963 else
7964 *types = gotrel[j].types64;
7965 }
7966
7967 /* The length of the first part of our input line. */
7968 first = cp - input_line_pointer;
7969
7970 /* The second part goes from after the reloc token until
7971 (and including) an end_of_line char or comma. */
7972 past_reloc = cp + 1 + len;
7973 cp = past_reloc;
7974 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7975 ++cp;
7976 second = cp + 1 - past_reloc;
7977
7978 /* Allocate and copy string. The trailing NUL shouldn't
7979 be necessary, but be safe. */
7980 tmpbuf = XNEWVEC (char, first + second + 2);
7981 memcpy (tmpbuf, input_line_pointer, first);
7982 if (second != 0 && *past_reloc != ' ')
7983 /* Replace the relocation token with ' ', so that
7984 errors like foo@SECLREL321 will be detected. */
7985 tmpbuf[first++] = ' ';
7986 memcpy (tmpbuf + first, past_reloc, second);
7987 tmpbuf[first + second] = '\0';
7988 return tmpbuf;
7989 }
7990
7991 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7992 gotrel[j].str, 1 << (5 + object_64bit));
7993 return NULL;
7994 }
7995 }
7996
7997 /* Might be a symbol version string. Don't as_bad here. */
7998 return NULL;
7999 }
8000
8001 #endif /* TE_PE */
8002
8003 bfd_reloc_code_real_type
8004 x86_cons (expressionS *exp, int size)
8005 {
8006 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8007
8008 intel_syntax = -intel_syntax;
8009
8010 exp->X_md = 0;
8011 if (size == 4 || (object_64bit && size == 8))
8012 {
8013 /* Handle @GOTOFF and the like in an expression. */
8014 char *save;
8015 char *gotfree_input_line;
8016 int adjust = 0;
8017
8018 save = input_line_pointer;
8019 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8020 if (gotfree_input_line)
8021 input_line_pointer = gotfree_input_line;
8022
8023 expression (exp);
8024
8025 if (gotfree_input_line)
8026 {
8027 /* expression () has merrily parsed up to the end of line,
8028 or a comma - in the wrong buffer. Transfer how far
8029 input_line_pointer has moved to the right buffer. */
8030 input_line_pointer = (save
8031 + (input_line_pointer - gotfree_input_line)
8032 + adjust);
8033 free (gotfree_input_line);
8034 if (exp->X_op == O_constant
8035 || exp->X_op == O_absent
8036 || exp->X_op == O_illegal
8037 || exp->X_op == O_register
8038 || exp->X_op == O_big)
8039 {
8040 char c = *input_line_pointer;
8041 *input_line_pointer = 0;
8042 as_bad (_("missing or invalid expression `%s'"), save);
8043 *input_line_pointer = c;
8044 }
8045 }
8046 }
8047 else
8048 expression (exp);
8049
8050 intel_syntax = -intel_syntax;
8051
8052 if (intel_syntax)
8053 i386_intel_simplify (exp);
8054
8055 return got_reloc;
8056 }
8057
8058 static void
8059 signed_cons (int size)
8060 {
8061 if (flag_code == CODE_64BIT)
8062 cons_sign = 1;
8063 cons (size);
8064 cons_sign = -1;
8065 }
8066
8067 #ifdef TE_PE
8068 static void
8069 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8070 {
8071 expressionS exp;
8072
8073 do
8074 {
8075 expression (&exp);
8076 if (exp.X_op == O_symbol)
8077 exp.X_op = O_secrel;
8078
8079 emit_expr (&exp, 4);
8080 }
8081 while (*input_line_pointer++ == ',');
8082
8083 input_line_pointer--;
8084 demand_empty_rest_of_line ();
8085 }
8086 #endif
8087
8088 /* Handle Vector operations. */
8089
8090 static char *
8091 check_VecOperations (char *op_string, char *op_end)
8092 {
8093 const reg_entry *mask;
8094 const char *saved;
8095 char *end_op;
8096
8097 while (*op_string
8098 && (op_end == NULL || op_string < op_end))
8099 {
8100 saved = op_string;
8101 if (*op_string == '{')
8102 {
8103 op_string++;
8104
8105 /* Check broadcasts. */
8106 if (strncmp (op_string, "1to", 3) == 0)
8107 {
8108 int bcst_type;
8109
8110 if (i.broadcast)
8111 goto duplicated_vec_op;
8112
8113 op_string += 3;
8114 if (*op_string == '8')
8115 bcst_type = BROADCAST_1TO8;
8116 else if (*op_string == '4')
8117 bcst_type = BROADCAST_1TO4;
8118 else if (*op_string == '2')
8119 bcst_type = BROADCAST_1TO2;
8120 else if (*op_string == '1'
8121 && *(op_string+1) == '6')
8122 {
8123 bcst_type = BROADCAST_1TO16;
8124 op_string++;
8125 }
8126 else
8127 {
8128 as_bad (_("Unsupported broadcast: `%s'"), saved);
8129 return NULL;
8130 }
8131 op_string++;
8132
8133 broadcast_op.type = bcst_type;
8134 broadcast_op.operand = this_operand;
8135 i.broadcast = &broadcast_op;
8136 }
8137 /* Check masking operation. */
8138 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8139 {
8140 /* k0 can't be used for write mask. */
8141 if (mask->reg_num == 0)
8142 {
8143 as_bad (_("`%s' can't be used for write mask"),
8144 op_string);
8145 return NULL;
8146 }
8147
8148 if (!i.mask)
8149 {
8150 mask_op.mask = mask;
8151 mask_op.zeroing = 0;
8152 mask_op.operand = this_operand;
8153 i.mask = &mask_op;
8154 }
8155 else
8156 {
8157 if (i.mask->mask)
8158 goto duplicated_vec_op;
8159
8160 i.mask->mask = mask;
8161
8162 /* Only "{z}" is allowed here. No need to check
8163 zeroing mask explicitly. */
8164 if (i.mask->operand != this_operand)
8165 {
8166 as_bad (_("invalid write mask `%s'"), saved);
8167 return NULL;
8168 }
8169 }
8170
8171 op_string = end_op;
8172 }
8173 /* Check zeroing-flag for masking operation. */
8174 else if (*op_string == 'z')
8175 {
8176 if (!i.mask)
8177 {
8178 mask_op.mask = NULL;
8179 mask_op.zeroing = 1;
8180 mask_op.operand = this_operand;
8181 i.mask = &mask_op;
8182 }
8183 else
8184 {
8185 if (i.mask->zeroing)
8186 {
8187 duplicated_vec_op:
8188 as_bad (_("duplicated `%s'"), saved);
8189 return NULL;
8190 }
8191
8192 i.mask->zeroing = 1;
8193
8194 /* Only "{%k}" is allowed here. No need to check mask
8195 register explicitly. */
8196 if (i.mask->operand != this_operand)
8197 {
8198 as_bad (_("invalid zeroing-masking `%s'"),
8199 saved);
8200 return NULL;
8201 }
8202 }
8203
8204 op_string++;
8205 }
8206 else
8207 goto unknown_vec_op;
8208
8209 if (*op_string != '}')
8210 {
8211 as_bad (_("missing `}' in `%s'"), saved);
8212 return NULL;
8213 }
8214 op_string++;
8215 continue;
8216 }
8217 unknown_vec_op:
8218 /* We don't know this one. */
8219 as_bad (_("unknown vector operation: `%s'"), saved);
8220 return NULL;
8221 }
8222
8223 return op_string;
8224 }
8225
8226 static int
8227 i386_immediate (char *imm_start)
8228 {
8229 char *save_input_line_pointer;
8230 char *gotfree_input_line;
8231 segT exp_seg = 0;
8232 expressionS *exp;
8233 i386_operand_type types;
8234
8235 operand_type_set (&types, ~0);
8236
8237 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8238 {
8239 as_bad (_("at most %d immediate operands are allowed"),
8240 MAX_IMMEDIATE_OPERANDS);
8241 return 0;
8242 }
8243
8244 exp = &im_expressions[i.imm_operands++];
8245 i.op[this_operand].imms = exp;
8246
8247 if (is_space_char (*imm_start))
8248 ++imm_start;
8249
8250 save_input_line_pointer = input_line_pointer;
8251 input_line_pointer = imm_start;
8252
8253 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8254 if (gotfree_input_line)
8255 input_line_pointer = gotfree_input_line;
8256
8257 exp_seg = expression (exp);
8258
8259 SKIP_WHITESPACE ();
8260
8261 /* Handle vector operations. */
8262 if (*input_line_pointer == '{')
8263 {
8264 input_line_pointer = check_VecOperations (input_line_pointer,
8265 NULL);
8266 if (input_line_pointer == NULL)
8267 return 0;
8268 }
8269
8270 if (*input_line_pointer)
8271 as_bad (_("junk `%s' after expression"), input_line_pointer);
8272
8273 input_line_pointer = save_input_line_pointer;
8274 if (gotfree_input_line)
8275 {
8276 free (gotfree_input_line);
8277
8278 if (exp->X_op == O_constant || exp->X_op == O_register)
8279 exp->X_op = O_illegal;
8280 }
8281
8282 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8283 }
8284
8285 static int
8286 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8287 i386_operand_type types, const char *imm_start)
8288 {
8289 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8290 {
8291 if (imm_start)
8292 as_bad (_("missing or invalid immediate expression `%s'"),
8293 imm_start);
8294 return 0;
8295 }
8296 else if (exp->X_op == O_constant)
8297 {
8298 /* Size it properly later. */
8299 i.types[this_operand].bitfield.imm64 = 1;
8300 /* If not 64bit, sign extend val. */
8301 if (flag_code != CODE_64BIT
8302 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8303 exp->X_add_number
8304 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8305 }
8306 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8307 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8308 && exp_seg != absolute_section
8309 && exp_seg != text_section
8310 && exp_seg != data_section
8311 && exp_seg != bss_section
8312 && exp_seg != undefined_section
8313 && !bfd_is_com_section (exp_seg))
8314 {
8315 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8316 return 0;
8317 }
8318 #endif
8319 else if (!intel_syntax && exp_seg == reg_section)
8320 {
8321 if (imm_start)
8322 as_bad (_("illegal immediate register operand %s"), imm_start);
8323 return 0;
8324 }
8325 else
8326 {
8327 /* This is an address. The size of the address will be
8328 determined later, depending on destination register,
8329 suffix, or the default for the section. */
8330 i.types[this_operand].bitfield.imm8 = 1;
8331 i.types[this_operand].bitfield.imm16 = 1;
8332 i.types[this_operand].bitfield.imm32 = 1;
8333 i.types[this_operand].bitfield.imm32s = 1;
8334 i.types[this_operand].bitfield.imm64 = 1;
8335 i.types[this_operand] = operand_type_and (i.types[this_operand],
8336 types);
8337 }
8338
8339 return 1;
8340 }
8341
8342 static char *
8343 i386_scale (char *scale)
8344 {
8345 offsetT val;
8346 char *save = input_line_pointer;
8347
8348 input_line_pointer = scale;
8349 val = get_absolute_expression ();
8350
8351 switch (val)
8352 {
8353 case 1:
8354 i.log2_scale_factor = 0;
8355 break;
8356 case 2:
8357 i.log2_scale_factor = 1;
8358 break;
8359 case 4:
8360 i.log2_scale_factor = 2;
8361 break;
8362 case 8:
8363 i.log2_scale_factor = 3;
8364 break;
8365 default:
8366 {
8367 char sep = *input_line_pointer;
8368
8369 *input_line_pointer = '\0';
8370 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8371 scale);
8372 *input_line_pointer = sep;
8373 input_line_pointer = save;
8374 return NULL;
8375 }
8376 }
8377 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8378 {
8379 as_warn (_("scale factor of %d without an index register"),
8380 1 << i.log2_scale_factor);
8381 i.log2_scale_factor = 0;
8382 }
8383 scale = input_line_pointer;
8384 input_line_pointer = save;
8385 return scale;
8386 }
8387
8388 static int
8389 i386_displacement (char *disp_start, char *disp_end)
8390 {
8391 expressionS *exp;
8392 segT exp_seg = 0;
8393 char *save_input_line_pointer;
8394 char *gotfree_input_line;
8395 int override;
8396 i386_operand_type bigdisp, types = anydisp;
8397 int ret;
8398
8399 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8400 {
8401 as_bad (_("at most %d displacement operands are allowed"),
8402 MAX_MEMORY_OPERANDS);
8403 return 0;
8404 }
8405
8406 operand_type_set (&bigdisp, 0);
8407 if ((i.types[this_operand].bitfield.jumpabsolute)
8408 || (!current_templates->start->opcode_modifier.jump
8409 && !current_templates->start->opcode_modifier.jumpdword))
8410 {
8411 bigdisp.bitfield.disp32 = 1;
8412 override = (i.prefix[ADDR_PREFIX] != 0);
8413 if (flag_code == CODE_64BIT)
8414 {
8415 if (!override)
8416 {
8417 bigdisp.bitfield.disp32s = 1;
8418 bigdisp.bitfield.disp64 = 1;
8419 }
8420 }
8421 else if ((flag_code == CODE_16BIT) ^ override)
8422 {
8423 bigdisp.bitfield.disp32 = 0;
8424 bigdisp.bitfield.disp16 = 1;
8425 }
8426 }
8427 else
8428 {
8429 /* For PC-relative branches, the width of the displacement
8430 is dependent upon data size, not address size. */
8431 override = (i.prefix[DATA_PREFIX] != 0);
8432 if (flag_code == CODE_64BIT)
8433 {
8434 if (override || i.suffix == WORD_MNEM_SUFFIX)
8435 bigdisp.bitfield.disp16 = 1;
8436 else
8437 {
8438 bigdisp.bitfield.disp32 = 1;
8439 bigdisp.bitfield.disp32s = 1;
8440 }
8441 }
8442 else
8443 {
8444 if (!override)
8445 override = (i.suffix == (flag_code != CODE_16BIT
8446 ? WORD_MNEM_SUFFIX
8447 : LONG_MNEM_SUFFIX));
8448 bigdisp.bitfield.disp32 = 1;
8449 if ((flag_code == CODE_16BIT) ^ override)
8450 {
8451 bigdisp.bitfield.disp32 = 0;
8452 bigdisp.bitfield.disp16 = 1;
8453 }
8454 }
8455 }
8456 i.types[this_operand] = operand_type_or (i.types[this_operand],
8457 bigdisp);
8458
8459 exp = &disp_expressions[i.disp_operands];
8460 i.op[this_operand].disps = exp;
8461 i.disp_operands++;
8462 save_input_line_pointer = input_line_pointer;
8463 input_line_pointer = disp_start;
8464 END_STRING_AND_SAVE (disp_end);
8465
8466 #ifndef GCC_ASM_O_HACK
8467 #define GCC_ASM_O_HACK 0
8468 #endif
8469 #if GCC_ASM_O_HACK
8470 END_STRING_AND_SAVE (disp_end + 1);
8471 if (i.types[this_operand].bitfield.baseIndex
8472 && displacement_string_end[-1] == '+')
8473 {
8474 /* This hack is to avoid a warning when using the "o"
8475 constraint within gcc asm statements.
8476 For instance:
8477
8478 #define _set_tssldt_desc(n,addr,limit,type) \
8479 __asm__ __volatile__ ( \
8480 "movw %w2,%0\n\t" \
8481 "movw %w1,2+%0\n\t" \
8482 "rorl $16,%1\n\t" \
8483 "movb %b1,4+%0\n\t" \
8484 "movb %4,5+%0\n\t" \
8485 "movb $0,6+%0\n\t" \
8486 "movb %h1,7+%0\n\t" \
8487 "rorl $16,%1" \
8488 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8489
8490 This works great except that the output assembler ends
8491 up looking a bit weird if it turns out that there is
8492 no offset. You end up producing code that looks like:
8493
8494 #APP
8495 movw $235,(%eax)
8496 movw %dx,2+(%eax)
8497 rorl $16,%edx
8498 movb %dl,4+(%eax)
8499 movb $137,5+(%eax)
8500 movb $0,6+(%eax)
8501 movb %dh,7+(%eax)
8502 rorl $16,%edx
8503 #NO_APP
8504
8505 So here we provide the missing zero. */
8506
8507 *displacement_string_end = '0';
8508 }
8509 #endif
8510 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8511 if (gotfree_input_line)
8512 input_line_pointer = gotfree_input_line;
8513
8514 exp_seg = expression (exp);
8515
8516 SKIP_WHITESPACE ();
8517 if (*input_line_pointer)
8518 as_bad (_("junk `%s' after expression"), input_line_pointer);
8519 #if GCC_ASM_O_HACK
8520 RESTORE_END_STRING (disp_end + 1);
8521 #endif
8522 input_line_pointer = save_input_line_pointer;
8523 if (gotfree_input_line)
8524 {
8525 free (gotfree_input_line);
8526
8527 if (exp->X_op == O_constant || exp->X_op == O_register)
8528 exp->X_op = O_illegal;
8529 }
8530
8531 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8532
8533 RESTORE_END_STRING (disp_end);
8534
8535 return ret;
8536 }
8537
8538 static int
8539 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8540 i386_operand_type types, const char *disp_start)
8541 {
8542 i386_operand_type bigdisp;
8543 int ret = 1;
8544
8545 /* We do this to make sure that the section symbol is in
8546 the symbol table. We will ultimately change the relocation
8547 to be relative to the beginning of the section. */
8548 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8549 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8550 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8551 {
8552 if (exp->X_op != O_symbol)
8553 goto inv_disp;
8554
8555 if (S_IS_LOCAL (exp->X_add_symbol)
8556 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8557 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8558 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8559 exp->X_op = O_subtract;
8560 exp->X_op_symbol = GOT_symbol;
8561 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8562 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8563 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8564 i.reloc[this_operand] = BFD_RELOC_64;
8565 else
8566 i.reloc[this_operand] = BFD_RELOC_32;
8567 }
8568
8569 else if (exp->X_op == O_absent
8570 || exp->X_op == O_illegal
8571 || exp->X_op == O_big)
8572 {
8573 inv_disp:
8574 as_bad (_("missing or invalid displacement expression `%s'"),
8575 disp_start);
8576 ret = 0;
8577 }
8578
8579 else if (flag_code == CODE_64BIT
8580 && !i.prefix[ADDR_PREFIX]
8581 && exp->X_op == O_constant)
8582 {
8583 /* Since displacement is signed extended to 64bit, don't allow
8584 disp32 and turn off disp32s if they are out of range. */
8585 i.types[this_operand].bitfield.disp32 = 0;
8586 if (!fits_in_signed_long (exp->X_add_number))
8587 {
8588 i.types[this_operand].bitfield.disp32s = 0;
8589 if (i.types[this_operand].bitfield.baseindex)
8590 {
8591 as_bad (_("0x%lx out range of signed 32bit displacement"),
8592 (long) exp->X_add_number);
8593 ret = 0;
8594 }
8595 }
8596 }
8597
8598 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8599 else if (exp->X_op != O_constant
8600 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8601 && exp_seg != absolute_section
8602 && exp_seg != text_section
8603 && exp_seg != data_section
8604 && exp_seg != bss_section
8605 && exp_seg != undefined_section
8606 && !bfd_is_com_section (exp_seg))
8607 {
8608 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8609 ret = 0;
8610 }
8611 #endif
8612
8613 /* Check if this is a displacement only operand. */
8614 bigdisp = i.types[this_operand];
8615 bigdisp.bitfield.disp8 = 0;
8616 bigdisp.bitfield.disp16 = 0;
8617 bigdisp.bitfield.disp32 = 0;
8618 bigdisp.bitfield.disp32s = 0;
8619 bigdisp.bitfield.disp64 = 0;
8620 if (operand_type_all_zero (&bigdisp))
8621 i.types[this_operand] = operand_type_and (i.types[this_operand],
8622 types);
8623
8624 return ret;
8625 }
8626
8627 /* Return the active addressing mode, taking address override and
8628 registers forming the address into consideration. Update the
8629 address override prefix if necessary. */
8630
8631 static enum flag_code
8632 i386_addressing_mode (void)
8633 {
8634 enum flag_code addr_mode;
8635
8636 if (i.prefix[ADDR_PREFIX])
8637 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8638 else
8639 {
8640 addr_mode = flag_code;
8641
8642 #if INFER_ADDR_PREFIX
8643 if (i.mem_operands == 0)
8644 {
8645 /* Infer address prefix from the first memory operand. */
8646 const reg_entry *addr_reg = i.base_reg;
8647
8648 if (addr_reg == NULL)
8649 addr_reg = i.index_reg;
8650
8651 if (addr_reg)
8652 {
8653 if (addr_reg->reg_num == RegEip
8654 || addr_reg->reg_num == RegEiz
8655 || addr_reg->reg_type.bitfield.reg32)
8656 addr_mode = CODE_32BIT;
8657 else if (flag_code != CODE_64BIT
8658 && addr_reg->reg_type.bitfield.reg16)
8659 addr_mode = CODE_16BIT;
8660
8661 if (addr_mode != flag_code)
8662 {
8663 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8664 i.prefixes += 1;
8665 /* Change the size of any displacement too. At most one
8666 of Disp16 or Disp32 is set.
8667 FIXME. There doesn't seem to be any real need for
8668 separate Disp16 and Disp32 flags. The same goes for
8669 Imm16 and Imm32. Removing them would probably clean
8670 up the code quite a lot. */
8671 if (flag_code != CODE_64BIT
8672 && (i.types[this_operand].bitfield.disp16
8673 || i.types[this_operand].bitfield.disp32))
8674 i.types[this_operand]
8675 = operand_type_xor (i.types[this_operand], disp16_32);
8676 }
8677 }
8678 }
8679 #endif
8680 }
8681
8682 return addr_mode;
8683 }
8684
8685 /* Make sure the memory operand we've been dealt is valid.
8686 Return 1 on success, 0 on a failure. */
8687
8688 static int
8689 i386_index_check (const char *operand_string)
8690 {
8691 const char *kind = "base/index";
8692 enum flag_code addr_mode = i386_addressing_mode ();
8693
8694 if (current_templates->start->opcode_modifier.isstring
8695 && !current_templates->start->opcode_modifier.immext
8696 && (current_templates->end[-1].opcode_modifier.isstring
8697 || i.mem_operands))
8698 {
8699 /* Memory operands of string insns are special in that they only allow
8700 a single register (rDI, rSI, or rBX) as their memory address. */
8701 const reg_entry *expected_reg;
8702 static const char *di_si[][2] =
8703 {
8704 { "esi", "edi" },
8705 { "si", "di" },
8706 { "rsi", "rdi" }
8707 };
8708 static const char *bx[] = { "ebx", "bx", "rbx" };
8709
8710 kind = "string address";
8711
8712 if (current_templates->start->opcode_modifier.repprefixok)
8713 {
8714 i386_operand_type type = current_templates->end[-1].operand_types[0];
8715
8716 if (!type.bitfield.baseindex
8717 || ((!i.mem_operands != !intel_syntax)
8718 && current_templates->end[-1].operand_types[1]
8719 .bitfield.baseindex))
8720 type = current_templates->end[-1].operand_types[1];
8721 expected_reg = hash_find (reg_hash,
8722 di_si[addr_mode][type.bitfield.esseg]);
8723
8724 }
8725 else
8726 expected_reg = hash_find (reg_hash, bx[addr_mode]);
8727
8728 if (i.base_reg != expected_reg
8729 || i.index_reg
8730 || operand_type_check (i.types[this_operand], disp))
8731 {
8732 /* The second memory operand must have the same size as
8733 the first one. */
8734 if (i.mem_operands
8735 && i.base_reg
8736 && !((addr_mode == CODE_64BIT
8737 && i.base_reg->reg_type.bitfield.reg64)
8738 || (addr_mode == CODE_32BIT
8739 ? i.base_reg->reg_type.bitfield.reg32
8740 : i.base_reg->reg_type.bitfield.reg16)))
8741 goto bad_address;
8742
8743 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8744 operand_string,
8745 intel_syntax ? '[' : '(',
8746 register_prefix,
8747 expected_reg->reg_name,
8748 intel_syntax ? ']' : ')');
8749 return 1;
8750 }
8751 else
8752 return 1;
8753
8754 bad_address:
8755 as_bad (_("`%s' is not a valid %s expression"),
8756 operand_string, kind);
8757 return 0;
8758 }
8759 else
8760 {
8761 if (addr_mode != CODE_16BIT)
8762 {
8763 /* 32-bit/64-bit checks. */
8764 if ((i.base_reg
8765 && (addr_mode == CODE_64BIT
8766 ? !i.base_reg->reg_type.bitfield.reg64
8767 : !i.base_reg->reg_type.bitfield.reg32)
8768 && (i.index_reg
8769 || (i.base_reg->reg_num
8770 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8771 || (i.index_reg
8772 && !i.index_reg->reg_type.bitfield.regxmm
8773 && !i.index_reg->reg_type.bitfield.regymm
8774 && !i.index_reg->reg_type.bitfield.regzmm
8775 && ((addr_mode == CODE_64BIT
8776 ? !(i.index_reg->reg_type.bitfield.reg64
8777 || i.index_reg->reg_num == RegRiz)
8778 : !(i.index_reg->reg_type.bitfield.reg32
8779 || i.index_reg->reg_num == RegEiz))
8780 || !i.index_reg->reg_type.bitfield.baseindex)))
8781 goto bad_address;
8782
8783 /* bndmk, bndldx, and bndstx have special restrictions. */
8784 if (current_templates->start->base_opcode == 0xf30f1b
8785 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
8786 {
8787 /* They cannot use RIP-relative addressing. */
8788 if (i.base_reg && i.base_reg->reg_num == RegRip)
8789 {
8790 as_bad (_("`%s' cannot be used here"), operand_string);
8791 return 0;
8792 }
8793
8794 /* bndldx and bndstx ignore their scale factor. */
8795 if (current_templates->start->base_opcode != 0xf30f1b
8796 && i.log2_scale_factor)
8797 as_warn (_("register scaling is being ignored here"));
8798 }
8799 }
8800 else
8801 {
8802 /* 16-bit checks. */
8803 if ((i.base_reg
8804 && (!i.base_reg->reg_type.bitfield.reg16
8805 || !i.base_reg->reg_type.bitfield.baseindex))
8806 || (i.index_reg
8807 && (!i.index_reg->reg_type.bitfield.reg16
8808 || !i.index_reg->reg_type.bitfield.baseindex
8809 || !(i.base_reg
8810 && i.base_reg->reg_num < 6
8811 && i.index_reg->reg_num >= 6
8812 && i.log2_scale_factor == 0))))
8813 goto bad_address;
8814 }
8815 }
8816 return 1;
8817 }
8818
8819 /* Handle vector immediates. */
8820
8821 static int
8822 RC_SAE_immediate (const char *imm_start)
8823 {
8824 unsigned int match_found, j;
8825 const char *pstr = imm_start;
8826 expressionS *exp;
8827
8828 if (*pstr != '{')
8829 return 0;
8830
8831 pstr++;
8832 match_found = 0;
8833 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8834 {
8835 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8836 {
8837 if (!i.rounding)
8838 {
8839 rc_op.type = RC_NamesTable[j].type;
8840 rc_op.operand = this_operand;
8841 i.rounding = &rc_op;
8842 }
8843 else
8844 {
8845 as_bad (_("duplicated `%s'"), imm_start);
8846 return 0;
8847 }
8848 pstr += RC_NamesTable[j].len;
8849 match_found = 1;
8850 break;
8851 }
8852 }
8853 if (!match_found)
8854 return 0;
8855
8856 if (*pstr++ != '}')
8857 {
8858 as_bad (_("Missing '}': '%s'"), imm_start);
8859 return 0;
8860 }
8861 /* RC/SAE immediate string should contain nothing more. */;
8862 if (*pstr != 0)
8863 {
8864 as_bad (_("Junk after '}': '%s'"), imm_start);
8865 return 0;
8866 }
8867
8868 exp = &im_expressions[i.imm_operands++];
8869 i.op[this_operand].imms = exp;
8870
8871 exp->X_op = O_constant;
8872 exp->X_add_number = 0;
8873 exp->X_add_symbol = (symbolS *) 0;
8874 exp->X_op_symbol = (symbolS *) 0;
8875
8876 i.types[this_operand].bitfield.imm8 = 1;
8877 return 1;
8878 }
8879
8880 /* Only string instructions can have a second memory operand, so
8881 reduce current_templates to just those if it contains any. */
8882 static int
8883 maybe_adjust_templates (void)
8884 {
8885 const insn_template *t;
8886
8887 gas_assert (i.mem_operands == 1);
8888
8889 for (t = current_templates->start; t < current_templates->end; ++t)
8890 if (t->opcode_modifier.isstring)
8891 break;
8892
8893 if (t < current_templates->end)
8894 {
8895 static templates aux_templates;
8896 bfd_boolean recheck;
8897
8898 aux_templates.start = t;
8899 for (; t < current_templates->end; ++t)
8900 if (!t->opcode_modifier.isstring)
8901 break;
8902 aux_templates.end = t;
8903
8904 /* Determine whether to re-check the first memory operand. */
8905 recheck = (aux_templates.start != current_templates->start
8906 || t != current_templates->end);
8907
8908 current_templates = &aux_templates;
8909
8910 if (recheck)
8911 {
8912 i.mem_operands = 0;
8913 if (i.memop1_string != NULL
8914 && i386_index_check (i.memop1_string) == 0)
8915 return 0;
8916 i.mem_operands = 1;
8917 }
8918 }
8919
8920 return 1;
8921 }
8922
8923 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
8924 on error. */
8925
8926 static int
8927 i386_att_operand (char *operand_string)
8928 {
8929 const reg_entry *r;
8930 char *end_op;
8931 char *op_string = operand_string;
8932
8933 if (is_space_char (*op_string))
8934 ++op_string;
8935
8936 /* We check for an absolute prefix (differentiating,
8937 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
8938 if (*op_string == ABSOLUTE_PREFIX)
8939 {
8940 ++op_string;
8941 if (is_space_char (*op_string))
8942 ++op_string;
8943 i.types[this_operand].bitfield.jumpabsolute = 1;
8944 }
8945
8946 /* Check if operand is a register. */
8947 if ((r = parse_register (op_string, &end_op)) != NULL)
8948 {
8949 i386_operand_type temp;
8950
8951 /* Check for a segment override by searching for ':' after a
8952 segment register. */
8953 op_string = end_op;
8954 if (is_space_char (*op_string))
8955 ++op_string;
8956 if (*op_string == ':'
8957 && (r->reg_type.bitfield.sreg2
8958 || r->reg_type.bitfield.sreg3))
8959 {
8960 switch (r->reg_num)
8961 {
8962 case 0:
8963 i.seg[i.mem_operands] = &es;
8964 break;
8965 case 1:
8966 i.seg[i.mem_operands] = &cs;
8967 break;
8968 case 2:
8969 i.seg[i.mem_operands] = &ss;
8970 break;
8971 case 3:
8972 i.seg[i.mem_operands] = &ds;
8973 break;
8974 case 4:
8975 i.seg[i.mem_operands] = &fs;
8976 break;
8977 case 5:
8978 i.seg[i.mem_operands] = &gs;
8979 break;
8980 }
8981
8982 /* Skip the ':' and whitespace. */
8983 ++op_string;
8984 if (is_space_char (*op_string))
8985 ++op_string;
8986
8987 if (!is_digit_char (*op_string)
8988 && !is_identifier_char (*op_string)
8989 && *op_string != '('
8990 && *op_string != ABSOLUTE_PREFIX)
8991 {
8992 as_bad (_("bad memory operand `%s'"), op_string);
8993 return 0;
8994 }
8995 /* Handle case of %es:*foo. */
8996 if (*op_string == ABSOLUTE_PREFIX)
8997 {
8998 ++op_string;
8999 if (is_space_char (*op_string))
9000 ++op_string;
9001 i.types[this_operand].bitfield.jumpabsolute = 1;
9002 }
9003 goto do_memory_reference;
9004 }
9005
9006 /* Handle vector operations. */
9007 if (*op_string == '{')
9008 {
9009 op_string = check_VecOperations (op_string, NULL);
9010 if (op_string == NULL)
9011 return 0;
9012 }
9013
9014 if (*op_string)
9015 {
9016 as_bad (_("junk `%s' after register"), op_string);
9017 return 0;
9018 }
9019 temp = r->reg_type;
9020 temp.bitfield.baseindex = 0;
9021 i.types[this_operand] = operand_type_or (i.types[this_operand],
9022 temp);
9023 i.types[this_operand].bitfield.unspecified = 0;
9024 i.op[this_operand].regs = r;
9025 i.reg_operands++;
9026 }
9027 else if (*op_string == REGISTER_PREFIX)
9028 {
9029 as_bad (_("bad register name `%s'"), op_string);
9030 return 0;
9031 }
9032 else if (*op_string == IMMEDIATE_PREFIX)
9033 {
9034 ++op_string;
9035 if (i.types[this_operand].bitfield.jumpabsolute)
9036 {
9037 as_bad (_("immediate operand illegal with absolute jump"));
9038 return 0;
9039 }
9040 if (!i386_immediate (op_string))
9041 return 0;
9042 }
9043 else if (RC_SAE_immediate (operand_string))
9044 {
9045 /* If it is a RC or SAE immediate, do nothing. */
9046 ;
9047 }
9048 else if (is_digit_char (*op_string)
9049 || is_identifier_char (*op_string)
9050 || *op_string == '"'
9051 || *op_string == '(')
9052 {
9053 /* This is a memory reference of some sort. */
9054 char *base_string;
9055
9056 /* Start and end of displacement string expression (if found). */
9057 char *displacement_string_start;
9058 char *displacement_string_end;
9059 char *vop_start;
9060
9061 do_memory_reference:
9062 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9063 return 0;
9064 if ((i.mem_operands == 1
9065 && !current_templates->start->opcode_modifier.isstring)
9066 || i.mem_operands == 2)
9067 {
9068 as_bad (_("too many memory references for `%s'"),
9069 current_templates->start->name);
9070 return 0;
9071 }
9072
9073 /* Check for base index form. We detect the base index form by
9074 looking for an ')' at the end of the operand, searching
9075 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9076 after the '('. */
9077 base_string = op_string + strlen (op_string);
9078
9079 /* Handle vector operations. */
9080 vop_start = strchr (op_string, '{');
9081 if (vop_start && vop_start < base_string)
9082 {
9083 if (check_VecOperations (vop_start, base_string) == NULL)
9084 return 0;
9085 base_string = vop_start;
9086 }
9087
9088 --base_string;
9089 if (is_space_char (*base_string))
9090 --base_string;
9091
9092 /* If we only have a displacement, set-up for it to be parsed later. */
9093 displacement_string_start = op_string;
9094 displacement_string_end = base_string + 1;
9095
9096 if (*base_string == ')')
9097 {
9098 char *temp_string;
9099 unsigned int parens_balanced = 1;
9100 /* We've already checked that the number of left & right ()'s are
9101 equal, so this loop will not be infinite. */
9102 do
9103 {
9104 base_string--;
9105 if (*base_string == ')')
9106 parens_balanced++;
9107 if (*base_string == '(')
9108 parens_balanced--;
9109 }
9110 while (parens_balanced);
9111
9112 temp_string = base_string;
9113
9114 /* Skip past '(' and whitespace. */
9115 ++base_string;
9116 if (is_space_char (*base_string))
9117 ++base_string;
9118
9119 if (*base_string == ','
9120 || ((i.base_reg = parse_register (base_string, &end_op))
9121 != NULL))
9122 {
9123 displacement_string_end = temp_string;
9124
9125 i.types[this_operand].bitfield.baseindex = 1;
9126
9127 if (i.base_reg)
9128 {
9129 base_string = end_op;
9130 if (is_space_char (*base_string))
9131 ++base_string;
9132 }
9133
9134 /* There may be an index reg or scale factor here. */
9135 if (*base_string == ',')
9136 {
9137 ++base_string;
9138 if (is_space_char (*base_string))
9139 ++base_string;
9140
9141 if ((i.index_reg = parse_register (base_string, &end_op))
9142 != NULL)
9143 {
9144 base_string = end_op;
9145 if (is_space_char (*base_string))
9146 ++base_string;
9147 if (*base_string == ',')
9148 {
9149 ++base_string;
9150 if (is_space_char (*base_string))
9151 ++base_string;
9152 }
9153 else if (*base_string != ')')
9154 {
9155 as_bad (_("expecting `,' or `)' "
9156 "after index register in `%s'"),
9157 operand_string);
9158 return 0;
9159 }
9160 }
9161 else if (*base_string == REGISTER_PREFIX)
9162 {
9163 end_op = strchr (base_string, ',');
9164 if (end_op)
9165 *end_op = '\0';
9166 as_bad (_("bad register name `%s'"), base_string);
9167 return 0;
9168 }
9169
9170 /* Check for scale factor. */
9171 if (*base_string != ')')
9172 {
9173 char *end_scale = i386_scale (base_string);
9174
9175 if (!end_scale)
9176 return 0;
9177
9178 base_string = end_scale;
9179 if (is_space_char (*base_string))
9180 ++base_string;
9181 if (*base_string != ')')
9182 {
9183 as_bad (_("expecting `)' "
9184 "after scale factor in `%s'"),
9185 operand_string);
9186 return 0;
9187 }
9188 }
9189 else if (!i.index_reg)
9190 {
9191 as_bad (_("expecting index register or scale factor "
9192 "after `,'; got '%c'"),
9193 *base_string);
9194 return 0;
9195 }
9196 }
9197 else if (*base_string != ')')
9198 {
9199 as_bad (_("expecting `,' or `)' "
9200 "after base register in `%s'"),
9201 operand_string);
9202 return 0;
9203 }
9204 }
9205 else if (*base_string == REGISTER_PREFIX)
9206 {
9207 end_op = strchr (base_string, ',');
9208 if (end_op)
9209 *end_op = '\0';
9210 as_bad (_("bad register name `%s'"), base_string);
9211 return 0;
9212 }
9213 }
9214
9215 /* If there's an expression beginning the operand, parse it,
9216 assuming displacement_string_start and
9217 displacement_string_end are meaningful. */
9218 if (displacement_string_start != displacement_string_end)
9219 {
9220 if (!i386_displacement (displacement_string_start,
9221 displacement_string_end))
9222 return 0;
9223 }
9224
9225 /* Special case for (%dx) while doing input/output op. */
9226 if (i.base_reg
9227 && operand_type_equal (&i.base_reg->reg_type,
9228 &reg16_inoutportreg)
9229 && i.index_reg == 0
9230 && i.log2_scale_factor == 0
9231 && i.seg[i.mem_operands] == 0
9232 && !operand_type_check (i.types[this_operand], disp))
9233 {
9234 i.types[this_operand] = inoutportreg;
9235 return 1;
9236 }
9237
9238 if (i386_index_check (operand_string) == 0)
9239 return 0;
9240 i.types[this_operand].bitfield.mem = 1;
9241 if (i.mem_operands == 0)
9242 i.memop1_string = xstrdup (operand_string);
9243 i.mem_operands++;
9244 }
9245 else
9246 {
9247 /* It's not a memory operand; argh! */
9248 as_bad (_("invalid char %s beginning operand %d `%s'"),
9249 output_invalid (*op_string),
9250 this_operand + 1,
9251 op_string);
9252 return 0;
9253 }
9254 return 1; /* Normal return. */
9255 }
9256 \f
9257 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9258 that an rs_machine_dependent frag may reach. */
9259
9260 unsigned int
9261 i386_frag_max_var (fragS *frag)
9262 {
9263 /* The only relaxable frags are for jumps.
9264 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9265 gas_assert (frag->fr_type == rs_machine_dependent);
9266 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9267 }
9268
9269 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9270 static int
9271 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9272 {
9273 /* STT_GNU_IFUNC symbol must go through PLT. */
9274 if ((symbol_get_bfdsym (fr_symbol)->flags
9275 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9276 return 0;
9277
9278 if (!S_IS_EXTERNAL (fr_symbol))
9279 /* Symbol may be weak or local. */
9280 return !S_IS_WEAK (fr_symbol);
9281
9282 /* Global symbols with non-default visibility can't be preempted. */
9283 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9284 return 1;
9285
9286 if (fr_var != NO_RELOC)
9287 switch ((enum bfd_reloc_code_real) fr_var)
9288 {
9289 case BFD_RELOC_386_PLT32:
9290 case BFD_RELOC_X86_64_PLT32:
9291 /* Symbol with PLT relocation may be preempted. */
9292 return 0;
9293 default:
9294 abort ();
9295 }
9296
9297 /* Global symbols with default visibility in a shared library may be
9298 preempted by another definition. */
9299 return !shared;
9300 }
9301 #endif
9302
9303 /* md_estimate_size_before_relax()
9304
9305 Called just before relax() for rs_machine_dependent frags. The x86
9306 assembler uses these frags to handle variable size jump
9307 instructions.
9308
9309 Any symbol that is now undefined will not become defined.
9310 Return the correct fr_subtype in the frag.
9311 Return the initial "guess for variable size of frag" to caller.
9312 The guess is actually the growth beyond the fixed part. Whatever
9313 we do to grow the fixed or variable part contributes to our
9314 returned value. */
9315
9316 int
9317 md_estimate_size_before_relax (fragS *fragP, segT segment)
9318 {
9319 /* We've already got fragP->fr_subtype right; all we have to do is
9320 check for un-relaxable symbols. On an ELF system, we can't relax
9321 an externally visible symbol, because it may be overridden by a
9322 shared library. */
9323 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9324 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9325 || (IS_ELF
9326 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9327 fragP->fr_var))
9328 #endif
9329 #if defined (OBJ_COFF) && defined (TE_PE)
9330 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9331 && S_IS_WEAK (fragP->fr_symbol))
9332 #endif
9333 )
9334 {
9335 /* Symbol is undefined in this segment, or we need to keep a
9336 reloc so that weak symbols can be overridden. */
9337 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9338 enum bfd_reloc_code_real reloc_type;
9339 unsigned char *opcode;
9340 int old_fr_fix;
9341
9342 if (fragP->fr_var != NO_RELOC)
9343 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9344 else if (size == 2)
9345 reloc_type = BFD_RELOC_16_PCREL;
9346 else
9347 reloc_type = BFD_RELOC_32_PCREL;
9348
9349 old_fr_fix = fragP->fr_fix;
9350 opcode = (unsigned char *) fragP->fr_opcode;
9351
9352 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9353 {
9354 case UNCOND_JUMP:
9355 /* Make jmp (0xeb) a (d)word displacement jump. */
9356 opcode[0] = 0xe9;
9357 fragP->fr_fix += size;
9358 fix_new (fragP, old_fr_fix, size,
9359 fragP->fr_symbol,
9360 fragP->fr_offset, 1,
9361 reloc_type);
9362 break;
9363
9364 case COND_JUMP86:
9365 if (size == 2
9366 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9367 {
9368 /* Negate the condition, and branch past an
9369 unconditional jump. */
9370 opcode[0] ^= 1;
9371 opcode[1] = 3;
9372 /* Insert an unconditional jump. */
9373 opcode[2] = 0xe9;
9374 /* We added two extra opcode bytes, and have a two byte
9375 offset. */
9376 fragP->fr_fix += 2 + 2;
9377 fix_new (fragP, old_fr_fix + 2, 2,
9378 fragP->fr_symbol,
9379 fragP->fr_offset, 1,
9380 reloc_type);
9381 break;
9382 }
9383 /* Fall through. */
9384
9385 case COND_JUMP:
9386 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9387 {
9388 fixS *fixP;
9389
9390 fragP->fr_fix += 1;
9391 fixP = fix_new (fragP, old_fr_fix, 1,
9392 fragP->fr_symbol,
9393 fragP->fr_offset, 1,
9394 BFD_RELOC_8_PCREL);
9395 fixP->fx_signed = 1;
9396 break;
9397 }
9398
9399 /* This changes the byte-displacement jump 0x7N
9400 to the (d)word-displacement jump 0x0f,0x8N. */
9401 opcode[1] = opcode[0] + 0x10;
9402 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9403 /* We've added an opcode byte. */
9404 fragP->fr_fix += 1 + size;
9405 fix_new (fragP, old_fr_fix + 1, size,
9406 fragP->fr_symbol,
9407 fragP->fr_offset, 1,
9408 reloc_type);
9409 break;
9410
9411 default:
9412 BAD_CASE (fragP->fr_subtype);
9413 break;
9414 }
9415 frag_wane (fragP);
9416 return fragP->fr_fix - old_fr_fix;
9417 }
9418
9419 /* Guess size depending on current relax state. Initially the relax
9420 state will correspond to a short jump and we return 1, because
9421 the variable part of the frag (the branch offset) is one byte
9422 long. However, we can relax a section more than once and in that
9423 case we must either set fr_subtype back to the unrelaxed state,
9424 or return the value for the appropriate branch. */
9425 return md_relax_table[fragP->fr_subtype].rlx_length;
9426 }
9427
9428 /* Called after relax() is finished.
9429
9430 In: Address of frag.
9431 fr_type == rs_machine_dependent.
9432 fr_subtype is what the address relaxed to.
9433
9434 Out: Any fixSs and constants are set up.
9435 Caller will turn frag into a ".space 0". */
9436
9437 void
9438 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9439 fragS *fragP)
9440 {
9441 unsigned char *opcode;
9442 unsigned char *where_to_put_displacement = NULL;
9443 offsetT target_address;
9444 offsetT opcode_address;
9445 unsigned int extension = 0;
9446 offsetT displacement_from_opcode_start;
9447
9448 opcode = (unsigned char *) fragP->fr_opcode;
9449
9450 /* Address we want to reach in file space. */
9451 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9452
9453 /* Address opcode resides at in file space. */
9454 opcode_address = fragP->fr_address + fragP->fr_fix;
9455
9456 /* Displacement from opcode start to fill into instruction. */
9457 displacement_from_opcode_start = target_address - opcode_address;
9458
9459 if ((fragP->fr_subtype & BIG) == 0)
9460 {
9461 /* Don't have to change opcode. */
9462 extension = 1; /* 1 opcode + 1 displacement */
9463 where_to_put_displacement = &opcode[1];
9464 }
9465 else
9466 {
9467 if (no_cond_jump_promotion
9468 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9469 as_warn_where (fragP->fr_file, fragP->fr_line,
9470 _("long jump required"));
9471
9472 switch (fragP->fr_subtype)
9473 {
9474 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9475 extension = 4; /* 1 opcode + 4 displacement */
9476 opcode[0] = 0xe9;
9477 where_to_put_displacement = &opcode[1];
9478 break;
9479
9480 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9481 extension = 2; /* 1 opcode + 2 displacement */
9482 opcode[0] = 0xe9;
9483 where_to_put_displacement = &opcode[1];
9484 break;
9485
9486 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9487 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9488 extension = 5; /* 2 opcode + 4 displacement */
9489 opcode[1] = opcode[0] + 0x10;
9490 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9491 where_to_put_displacement = &opcode[2];
9492 break;
9493
9494 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9495 extension = 3; /* 2 opcode + 2 displacement */
9496 opcode[1] = opcode[0] + 0x10;
9497 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9498 where_to_put_displacement = &opcode[2];
9499 break;
9500
9501 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9502 extension = 4;
9503 opcode[0] ^= 1;
9504 opcode[1] = 3;
9505 opcode[2] = 0xe9;
9506 where_to_put_displacement = &opcode[3];
9507 break;
9508
9509 default:
9510 BAD_CASE (fragP->fr_subtype);
9511 break;
9512 }
9513 }
9514
9515 /* If size if less then four we are sure that the operand fits,
9516 but if it's 4, then it could be that the displacement is larger
9517 then -/+ 2GB. */
9518 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9519 && object_64bit
9520 && ((addressT) (displacement_from_opcode_start - extension
9521 + ((addressT) 1 << 31))
9522 > (((addressT) 2 << 31) - 1)))
9523 {
9524 as_bad_where (fragP->fr_file, fragP->fr_line,
9525 _("jump target out of range"));
9526 /* Make us emit 0. */
9527 displacement_from_opcode_start = extension;
9528 }
9529 /* Now put displacement after opcode. */
9530 md_number_to_chars ((char *) where_to_put_displacement,
9531 (valueT) (displacement_from_opcode_start - extension),
9532 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9533 fragP->fr_fix += extension;
9534 }
9535 \f
9536 /* Apply a fixup (fixP) to segment data, once it has been determined
9537 by our caller that we have all the info we need to fix it up.
9538
9539 Parameter valP is the pointer to the value of the bits.
9540
9541 On the 386, immediates, displacements, and data pointers are all in
9542 the same (little-endian) format, so we don't need to care about which
9543 we are handling. */
9544
9545 void
9546 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9547 {
9548 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9549 valueT value = *valP;
9550
9551 #if !defined (TE_Mach)
9552 if (fixP->fx_pcrel)
9553 {
9554 switch (fixP->fx_r_type)
9555 {
9556 default:
9557 break;
9558
9559 case BFD_RELOC_64:
9560 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9561 break;
9562 case BFD_RELOC_32:
9563 case BFD_RELOC_X86_64_32S:
9564 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9565 break;
9566 case BFD_RELOC_16:
9567 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9568 break;
9569 case BFD_RELOC_8:
9570 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9571 break;
9572 }
9573 }
9574
9575 if (fixP->fx_addsy != NULL
9576 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9577 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9578 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9579 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9580 && !use_rela_relocations)
9581 {
9582 /* This is a hack. There should be a better way to handle this.
9583 This covers for the fact that bfd_install_relocation will
9584 subtract the current location (for partial_inplace, PC relative
9585 relocations); see more below. */
9586 #ifndef OBJ_AOUT
9587 if (IS_ELF
9588 #ifdef TE_PE
9589 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9590 #endif
9591 )
9592 value += fixP->fx_where + fixP->fx_frag->fr_address;
9593 #endif
9594 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9595 if (IS_ELF)
9596 {
9597 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9598
9599 if ((sym_seg == seg
9600 || (symbol_section_p (fixP->fx_addsy)
9601 && sym_seg != absolute_section))
9602 && !generic_force_reloc (fixP))
9603 {
9604 /* Yes, we add the values in twice. This is because
9605 bfd_install_relocation subtracts them out again. I think
9606 bfd_install_relocation is broken, but I don't dare change
9607 it. FIXME. */
9608 value += fixP->fx_where + fixP->fx_frag->fr_address;
9609 }
9610 }
9611 #endif
9612 #if defined (OBJ_COFF) && defined (TE_PE)
9613 /* For some reason, the PE format does not store a
9614 section address offset for a PC relative symbol. */
9615 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9616 || S_IS_WEAK (fixP->fx_addsy))
9617 value += md_pcrel_from (fixP);
9618 #endif
9619 }
9620 #if defined (OBJ_COFF) && defined (TE_PE)
9621 if (fixP->fx_addsy != NULL
9622 && S_IS_WEAK (fixP->fx_addsy)
9623 /* PR 16858: Do not modify weak function references. */
9624 && ! fixP->fx_pcrel)
9625 {
9626 #if !defined (TE_PEP)
9627 /* For x86 PE weak function symbols are neither PC-relative
9628 nor do they set S_IS_FUNCTION. So the only reliable way
9629 to detect them is to check the flags of their containing
9630 section. */
9631 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9632 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9633 ;
9634 else
9635 #endif
9636 value -= S_GET_VALUE (fixP->fx_addsy);
9637 }
9638 #endif
9639
9640 /* Fix a few things - the dynamic linker expects certain values here,
9641 and we must not disappoint it. */
9642 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9643 if (IS_ELF && fixP->fx_addsy)
9644 switch (fixP->fx_r_type)
9645 {
9646 case BFD_RELOC_386_PLT32:
9647 case BFD_RELOC_X86_64_PLT32:
9648 /* Make the jump instruction point to the address of the operand. At
9649 runtime we merely add the offset to the actual PLT entry. */
9650 value = -4;
9651 break;
9652
9653 case BFD_RELOC_386_TLS_GD:
9654 case BFD_RELOC_386_TLS_LDM:
9655 case BFD_RELOC_386_TLS_IE_32:
9656 case BFD_RELOC_386_TLS_IE:
9657 case BFD_RELOC_386_TLS_GOTIE:
9658 case BFD_RELOC_386_TLS_GOTDESC:
9659 case BFD_RELOC_X86_64_TLSGD:
9660 case BFD_RELOC_X86_64_TLSLD:
9661 case BFD_RELOC_X86_64_GOTTPOFF:
9662 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9663 value = 0; /* Fully resolved at runtime. No addend. */
9664 /* Fallthrough */
9665 case BFD_RELOC_386_TLS_LE:
9666 case BFD_RELOC_386_TLS_LDO_32:
9667 case BFD_RELOC_386_TLS_LE_32:
9668 case BFD_RELOC_X86_64_DTPOFF32:
9669 case BFD_RELOC_X86_64_DTPOFF64:
9670 case BFD_RELOC_X86_64_TPOFF32:
9671 case BFD_RELOC_X86_64_TPOFF64:
9672 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9673 break;
9674
9675 case BFD_RELOC_386_TLS_DESC_CALL:
9676 case BFD_RELOC_X86_64_TLSDESC_CALL:
9677 value = 0; /* Fully resolved at runtime. No addend. */
9678 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9679 fixP->fx_done = 0;
9680 return;
9681
9682 case BFD_RELOC_VTABLE_INHERIT:
9683 case BFD_RELOC_VTABLE_ENTRY:
9684 fixP->fx_done = 0;
9685 return;
9686
9687 default:
9688 break;
9689 }
9690 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9691 *valP = value;
9692 #endif /* !defined (TE_Mach) */
9693
9694 /* Are we finished with this relocation now? */
9695 if (fixP->fx_addsy == NULL)
9696 fixP->fx_done = 1;
9697 #if defined (OBJ_COFF) && defined (TE_PE)
9698 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9699 {
9700 fixP->fx_done = 0;
9701 /* Remember value for tc_gen_reloc. */
9702 fixP->fx_addnumber = value;
9703 /* Clear out the frag for now. */
9704 value = 0;
9705 }
9706 #endif
9707 else if (use_rela_relocations)
9708 {
9709 fixP->fx_no_overflow = 1;
9710 /* Remember value for tc_gen_reloc. */
9711 fixP->fx_addnumber = value;
9712 value = 0;
9713 }
9714
9715 md_number_to_chars (p, value, fixP->fx_size);
9716 }
9717 \f
9718 const char *
9719 md_atof (int type, char *litP, int *sizeP)
9720 {
9721 /* This outputs the LITTLENUMs in REVERSE order;
9722 in accord with the bigendian 386. */
9723 return ieee_md_atof (type, litP, sizeP, FALSE);
9724 }
9725 \f
9726 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9727
9728 static char *
9729 output_invalid (int c)
9730 {
9731 if (ISPRINT (c))
9732 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9733 "'%c'", c);
9734 else
9735 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9736 "(0x%x)", (unsigned char) c);
9737 return output_invalid_buf;
9738 }
9739
9740 /* REG_STRING starts *before* REGISTER_PREFIX. */
9741
9742 static const reg_entry *
9743 parse_real_register (char *reg_string, char **end_op)
9744 {
9745 char *s = reg_string;
9746 char *p;
9747 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9748 const reg_entry *r;
9749
9750 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9751 if (*s == REGISTER_PREFIX)
9752 ++s;
9753
9754 if (is_space_char (*s))
9755 ++s;
9756
9757 p = reg_name_given;
9758 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9759 {
9760 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9761 return (const reg_entry *) NULL;
9762 s++;
9763 }
9764
9765 /* For naked regs, make sure that we are not dealing with an identifier.
9766 This prevents confusing an identifier like `eax_var' with register
9767 `eax'. */
9768 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9769 return (const reg_entry *) NULL;
9770
9771 *end_op = s;
9772
9773 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9774
9775 /* Handle floating point regs, allowing spaces in the (i) part. */
9776 if (r == i386_regtab /* %st is first entry of table */)
9777 {
9778 if (is_space_char (*s))
9779 ++s;
9780 if (*s == '(')
9781 {
9782 ++s;
9783 if (is_space_char (*s))
9784 ++s;
9785 if (*s >= '0' && *s <= '7')
9786 {
9787 int fpr = *s - '0';
9788 ++s;
9789 if (is_space_char (*s))
9790 ++s;
9791 if (*s == ')')
9792 {
9793 *end_op = s + 1;
9794 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9795 know (r);
9796 return r + fpr;
9797 }
9798 }
9799 /* We have "%st(" then garbage. */
9800 return (const reg_entry *) NULL;
9801 }
9802 }
9803
9804 if (r == NULL || allow_pseudo_reg)
9805 return r;
9806
9807 if (operand_type_all_zero (&r->reg_type))
9808 return (const reg_entry *) NULL;
9809
9810 if ((r->reg_type.bitfield.reg32
9811 || r->reg_type.bitfield.sreg3
9812 || r->reg_type.bitfield.control
9813 || r->reg_type.bitfield.debug
9814 || r->reg_type.bitfield.test)
9815 && !cpu_arch_flags.bitfield.cpui386)
9816 return (const reg_entry *) NULL;
9817
9818 if (r->reg_type.bitfield.floatreg
9819 && !cpu_arch_flags.bitfield.cpu8087
9820 && !cpu_arch_flags.bitfield.cpu287
9821 && !cpu_arch_flags.bitfield.cpu387)
9822 return (const reg_entry *) NULL;
9823
9824 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
9825 return (const reg_entry *) NULL;
9826
9827 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpuregxmm)
9828 return (const reg_entry *) NULL;
9829
9830 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuregymm)
9831 return (const reg_entry *) NULL;
9832
9833 if (r->reg_type.bitfield.regzmm && !cpu_arch_flags.bitfield.cpuregzmm)
9834 return (const reg_entry *) NULL;
9835
9836 if (r->reg_type.bitfield.regmask
9837 && !cpu_arch_flags.bitfield.cpuregmask)
9838 return (const reg_entry *) NULL;
9839
9840 /* Don't allow fake index register unless allow_index_reg isn't 0. */
9841 if (!allow_index_reg
9842 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9843 return (const reg_entry *) NULL;
9844
9845 /* Upper 16 vector register is only available with VREX in 64bit
9846 mode. */
9847 if ((r->reg_flags & RegVRex))
9848 {
9849 if (i.vec_encoding == vex_encoding_default)
9850 i.vec_encoding = vex_encoding_evex;
9851
9852 if (!cpu_arch_flags.bitfield.cpuvrex
9853 || i.vec_encoding != vex_encoding_evex
9854 || flag_code != CODE_64BIT)
9855 return (const reg_entry *) NULL;
9856 }
9857
9858 if (((r->reg_flags & (RegRex64 | RegRex))
9859 || r->reg_type.bitfield.reg64)
9860 && (!cpu_arch_flags.bitfield.cpulm
9861 || !operand_type_equal (&r->reg_type, &control))
9862 && flag_code != CODE_64BIT)
9863 return (const reg_entry *) NULL;
9864
9865 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9866 return (const reg_entry *) NULL;
9867
9868 return r;
9869 }
9870
9871 /* REG_STRING starts *before* REGISTER_PREFIX. */
9872
9873 static const reg_entry *
9874 parse_register (char *reg_string, char **end_op)
9875 {
9876 const reg_entry *r;
9877
9878 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9879 r = parse_real_register (reg_string, end_op);
9880 else
9881 r = NULL;
9882 if (!r)
9883 {
9884 char *save = input_line_pointer;
9885 char c;
9886 symbolS *symbolP;
9887
9888 input_line_pointer = reg_string;
9889 c = get_symbol_name (&reg_string);
9890 symbolP = symbol_find (reg_string);
9891 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9892 {
9893 const expressionS *e = symbol_get_value_expression (symbolP);
9894
9895 know (e->X_op == O_register);
9896 know (e->X_add_number >= 0
9897 && (valueT) e->X_add_number < i386_regtab_size);
9898 r = i386_regtab + e->X_add_number;
9899 if ((r->reg_flags & RegVRex))
9900 i.vec_encoding = vex_encoding_evex;
9901 *end_op = input_line_pointer;
9902 }
9903 *input_line_pointer = c;
9904 input_line_pointer = save;
9905 }
9906 return r;
9907 }
9908
9909 int
9910 i386_parse_name (char *name, expressionS *e, char *nextcharP)
9911 {
9912 const reg_entry *r;
9913 char *end = input_line_pointer;
9914
9915 *end = *nextcharP;
9916 r = parse_register (name, &input_line_pointer);
9917 if (r && end <= input_line_pointer)
9918 {
9919 *nextcharP = *input_line_pointer;
9920 *input_line_pointer = 0;
9921 e->X_op = O_register;
9922 e->X_add_number = r - i386_regtab;
9923 return 1;
9924 }
9925 input_line_pointer = end;
9926 *end = 0;
9927 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
9928 }
9929
9930 void
9931 md_operand (expressionS *e)
9932 {
9933 char *end;
9934 const reg_entry *r;
9935
9936 switch (*input_line_pointer)
9937 {
9938 case REGISTER_PREFIX:
9939 r = parse_real_register (input_line_pointer, &end);
9940 if (r)
9941 {
9942 e->X_op = O_register;
9943 e->X_add_number = r - i386_regtab;
9944 input_line_pointer = end;
9945 }
9946 break;
9947
9948 case '[':
9949 gas_assert (intel_syntax);
9950 end = input_line_pointer++;
9951 expression (e);
9952 if (*input_line_pointer == ']')
9953 {
9954 ++input_line_pointer;
9955 e->X_op_symbol = make_expr_symbol (e);
9956 e->X_add_symbol = NULL;
9957 e->X_add_number = 0;
9958 e->X_op = O_index;
9959 }
9960 else
9961 {
9962 e->X_op = O_absent;
9963 input_line_pointer = end;
9964 }
9965 break;
9966 }
9967 }
9968
9969 \f
9970 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9971 const char *md_shortopts = "kVQ:sqn";
9972 #else
9973 const char *md_shortopts = "qn";
9974 #endif
9975
9976 #define OPTION_32 (OPTION_MD_BASE + 0)
9977 #define OPTION_64 (OPTION_MD_BASE + 1)
9978 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9979 #define OPTION_MARCH (OPTION_MD_BASE + 3)
9980 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
9981 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9982 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9983 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9984 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9985 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9986 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9987 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9988 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9989 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9990 #define OPTION_X32 (OPTION_MD_BASE + 14)
9991 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9992 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9993 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9994 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
9995 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
9996 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
9997 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
9998 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
9999 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
10000 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
10001 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 25)
10002
10003 struct option md_longopts[] =
10004 {
10005 {"32", no_argument, NULL, OPTION_32},
10006 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10007 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10008 {"64", no_argument, NULL, OPTION_64},
10009 #endif
10010 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10011 {"x32", no_argument, NULL, OPTION_X32},
10012 {"mshared", no_argument, NULL, OPTION_MSHARED},
10013 #endif
10014 {"divide", no_argument, NULL, OPTION_DIVIDE},
10015 {"march", required_argument, NULL, OPTION_MARCH},
10016 {"mtune", required_argument, NULL, OPTION_MTUNE},
10017 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10018 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10019 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10020 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10021 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
10022 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10023 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10024 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10025 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10026 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10027 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10028 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10029 # if defined (TE_PE) || defined (TE_PEP)
10030 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10031 #endif
10032 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10033 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10034 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10035 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10036 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10037 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10038 {NULL, no_argument, NULL, 0}
10039 };
10040 size_t md_longopts_size = sizeof (md_longopts);
10041
10042 int
10043 md_parse_option (int c, const char *arg)
10044 {
10045 unsigned int j;
10046 char *arch, *next, *saved;
10047
10048 switch (c)
10049 {
10050 case 'n':
10051 optimize_align_code = 0;
10052 break;
10053
10054 case 'q':
10055 quiet_warnings = 1;
10056 break;
10057
10058 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10059 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10060 should be emitted or not. FIXME: Not implemented. */
10061 case 'Q':
10062 break;
10063
10064 /* -V: SVR4 argument to print version ID. */
10065 case 'V':
10066 print_version_id ();
10067 break;
10068
10069 /* -k: Ignore for FreeBSD compatibility. */
10070 case 'k':
10071 break;
10072
10073 case 's':
10074 /* -s: On i386 Solaris, this tells the native assembler to use
10075 .stab instead of .stab.excl. We always use .stab anyhow. */
10076 break;
10077
10078 case OPTION_MSHARED:
10079 shared = 1;
10080 break;
10081 #endif
10082 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10083 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10084 case OPTION_64:
10085 {
10086 const char **list, **l;
10087
10088 list = bfd_target_list ();
10089 for (l = list; *l != NULL; l++)
10090 if (CONST_STRNEQ (*l, "elf64-x86-64")
10091 || strcmp (*l, "coff-x86-64") == 0
10092 || strcmp (*l, "pe-x86-64") == 0
10093 || strcmp (*l, "pei-x86-64") == 0
10094 || strcmp (*l, "mach-o-x86-64") == 0)
10095 {
10096 default_arch = "x86_64";
10097 break;
10098 }
10099 if (*l == NULL)
10100 as_fatal (_("no compiled in support for x86_64"));
10101 free (list);
10102 }
10103 break;
10104 #endif
10105
10106 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10107 case OPTION_X32:
10108 if (IS_ELF)
10109 {
10110 const char **list, **l;
10111
10112 list = bfd_target_list ();
10113 for (l = list; *l != NULL; l++)
10114 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10115 {
10116 default_arch = "x86_64:32";
10117 break;
10118 }
10119 if (*l == NULL)
10120 as_fatal (_("no compiled in support for 32bit x86_64"));
10121 free (list);
10122 }
10123 else
10124 as_fatal (_("32bit x86_64 is only supported for ELF"));
10125 break;
10126 #endif
10127
10128 case OPTION_32:
10129 default_arch = "i386";
10130 break;
10131
10132 case OPTION_DIVIDE:
10133 #ifdef SVR4_COMMENT_CHARS
10134 {
10135 char *n, *t;
10136 const char *s;
10137
10138 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10139 t = n;
10140 for (s = i386_comment_chars; *s != '\0'; s++)
10141 if (*s != '/')
10142 *t++ = *s;
10143 *t = '\0';
10144 i386_comment_chars = n;
10145 }
10146 #endif
10147 break;
10148
10149 case OPTION_MARCH:
10150 saved = xstrdup (arg);
10151 arch = saved;
10152 /* Allow -march=+nosse. */
10153 if (*arch == '+')
10154 arch++;
10155 do
10156 {
10157 if (*arch == '.')
10158 as_fatal (_("invalid -march= option: `%s'"), arg);
10159 next = strchr (arch, '+');
10160 if (next)
10161 *next++ = '\0';
10162 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10163 {
10164 if (strcmp (arch, cpu_arch [j].name) == 0)
10165 {
10166 /* Processor. */
10167 if (! cpu_arch[j].flags.bitfield.cpui386)
10168 continue;
10169
10170 cpu_arch_name = cpu_arch[j].name;
10171 cpu_sub_arch_name = NULL;
10172 cpu_arch_flags = cpu_arch[j].flags;
10173 cpu_arch_isa = cpu_arch[j].type;
10174 cpu_arch_isa_flags = cpu_arch[j].flags;
10175 if (!cpu_arch_tune_set)
10176 {
10177 cpu_arch_tune = cpu_arch_isa;
10178 cpu_arch_tune_flags = cpu_arch_isa_flags;
10179 }
10180 break;
10181 }
10182 else if (*cpu_arch [j].name == '.'
10183 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10184 {
10185 /* ISA extension. */
10186 i386_cpu_flags flags;
10187
10188 flags = cpu_flags_or (cpu_arch_flags,
10189 cpu_arch[j].flags);
10190
10191 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10192 {
10193 if (cpu_sub_arch_name)
10194 {
10195 char *name = cpu_sub_arch_name;
10196 cpu_sub_arch_name = concat (name,
10197 cpu_arch[j].name,
10198 (const char *) NULL);
10199 free (name);
10200 }
10201 else
10202 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10203 cpu_arch_flags = flags;
10204 cpu_arch_isa_flags = flags;
10205 }
10206 break;
10207 }
10208 }
10209
10210 if (j >= ARRAY_SIZE (cpu_arch))
10211 {
10212 /* Disable an ISA extension. */
10213 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10214 if (strcmp (arch, cpu_noarch [j].name) == 0)
10215 {
10216 i386_cpu_flags flags;
10217
10218 flags = cpu_flags_and_not (cpu_arch_flags,
10219 cpu_noarch[j].flags);
10220 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10221 {
10222 if (cpu_sub_arch_name)
10223 {
10224 char *name = cpu_sub_arch_name;
10225 cpu_sub_arch_name = concat (arch,
10226 (const char *) NULL);
10227 free (name);
10228 }
10229 else
10230 cpu_sub_arch_name = xstrdup (arch);
10231 cpu_arch_flags = flags;
10232 cpu_arch_isa_flags = flags;
10233 }
10234 break;
10235 }
10236
10237 if (j >= ARRAY_SIZE (cpu_noarch))
10238 j = ARRAY_SIZE (cpu_arch);
10239 }
10240
10241 if (j >= ARRAY_SIZE (cpu_arch))
10242 as_fatal (_("invalid -march= option: `%s'"), arg);
10243
10244 arch = next;
10245 }
10246 while (next != NULL);
10247 free (saved);
10248 break;
10249
10250 case OPTION_MTUNE:
10251 if (*arg == '.')
10252 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10253 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10254 {
10255 if (strcmp (arg, cpu_arch [j].name) == 0)
10256 {
10257 cpu_arch_tune_set = 1;
10258 cpu_arch_tune = cpu_arch [j].type;
10259 cpu_arch_tune_flags = cpu_arch[j].flags;
10260 break;
10261 }
10262 }
10263 if (j >= ARRAY_SIZE (cpu_arch))
10264 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10265 break;
10266
10267 case OPTION_MMNEMONIC:
10268 if (strcasecmp (arg, "att") == 0)
10269 intel_mnemonic = 0;
10270 else if (strcasecmp (arg, "intel") == 0)
10271 intel_mnemonic = 1;
10272 else
10273 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10274 break;
10275
10276 case OPTION_MSYNTAX:
10277 if (strcasecmp (arg, "att") == 0)
10278 intel_syntax = 0;
10279 else if (strcasecmp (arg, "intel") == 0)
10280 intel_syntax = 1;
10281 else
10282 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10283 break;
10284
10285 case OPTION_MINDEX_REG:
10286 allow_index_reg = 1;
10287 break;
10288
10289 case OPTION_MNAKED_REG:
10290 allow_naked_reg = 1;
10291 break;
10292
10293 case OPTION_MOLD_GCC:
10294 old_gcc = 1;
10295 break;
10296
10297 case OPTION_MSSE2AVX:
10298 sse2avx = 1;
10299 break;
10300
10301 case OPTION_MSSE_CHECK:
10302 if (strcasecmp (arg, "error") == 0)
10303 sse_check = check_error;
10304 else if (strcasecmp (arg, "warning") == 0)
10305 sse_check = check_warning;
10306 else if (strcasecmp (arg, "none") == 0)
10307 sse_check = check_none;
10308 else
10309 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10310 break;
10311
10312 case OPTION_MOPERAND_CHECK:
10313 if (strcasecmp (arg, "error") == 0)
10314 operand_check = check_error;
10315 else if (strcasecmp (arg, "warning") == 0)
10316 operand_check = check_warning;
10317 else if (strcasecmp (arg, "none") == 0)
10318 operand_check = check_none;
10319 else
10320 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10321 break;
10322
10323 case OPTION_MAVXSCALAR:
10324 if (strcasecmp (arg, "128") == 0)
10325 avxscalar = vex128;
10326 else if (strcasecmp (arg, "256") == 0)
10327 avxscalar = vex256;
10328 else
10329 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10330 break;
10331
10332 case OPTION_MADD_BND_PREFIX:
10333 add_bnd_prefix = 1;
10334 break;
10335
10336 case OPTION_MEVEXLIG:
10337 if (strcmp (arg, "128") == 0)
10338 evexlig = evexl128;
10339 else if (strcmp (arg, "256") == 0)
10340 evexlig = evexl256;
10341 else if (strcmp (arg, "512") == 0)
10342 evexlig = evexl512;
10343 else
10344 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10345 break;
10346
10347 case OPTION_MEVEXRCIG:
10348 if (strcmp (arg, "rne") == 0)
10349 evexrcig = rne;
10350 else if (strcmp (arg, "rd") == 0)
10351 evexrcig = rd;
10352 else if (strcmp (arg, "ru") == 0)
10353 evexrcig = ru;
10354 else if (strcmp (arg, "rz") == 0)
10355 evexrcig = rz;
10356 else
10357 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10358 break;
10359
10360 case OPTION_MEVEXWIG:
10361 if (strcmp (arg, "0") == 0)
10362 evexwig = evexw0;
10363 else if (strcmp (arg, "1") == 0)
10364 evexwig = evexw1;
10365 else
10366 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10367 break;
10368
10369 # if defined (TE_PE) || defined (TE_PEP)
10370 case OPTION_MBIG_OBJ:
10371 use_big_obj = 1;
10372 break;
10373 #endif
10374
10375 case OPTION_MOMIT_LOCK_PREFIX:
10376 if (strcasecmp (arg, "yes") == 0)
10377 omit_lock_prefix = 1;
10378 else if (strcasecmp (arg, "no") == 0)
10379 omit_lock_prefix = 0;
10380 else
10381 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10382 break;
10383
10384 case OPTION_MFENCE_AS_LOCK_ADD:
10385 if (strcasecmp (arg, "yes") == 0)
10386 avoid_fence = 1;
10387 else if (strcasecmp (arg, "no") == 0)
10388 avoid_fence = 0;
10389 else
10390 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10391 break;
10392
10393 case OPTION_MRELAX_RELOCATIONS:
10394 if (strcasecmp (arg, "yes") == 0)
10395 generate_relax_relocations = 1;
10396 else if (strcasecmp (arg, "no") == 0)
10397 generate_relax_relocations = 0;
10398 else
10399 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10400 break;
10401
10402 case OPTION_MAMD64:
10403 intel64 = 0;
10404 break;
10405
10406 case OPTION_MINTEL64:
10407 intel64 = 1;
10408 break;
10409
10410 default:
10411 return 0;
10412 }
10413 return 1;
10414 }
10415
10416 #define MESSAGE_TEMPLATE \
10417 " "
10418
10419 static char *
10420 output_message (FILE *stream, char *p, char *message, char *start,
10421 int *left_p, const char *name, int len)
10422 {
10423 int size = sizeof (MESSAGE_TEMPLATE);
10424 int left = *left_p;
10425
10426 /* Reserve 2 spaces for ", " or ",\0" */
10427 left -= len + 2;
10428
10429 /* Check if there is any room. */
10430 if (left >= 0)
10431 {
10432 if (p != start)
10433 {
10434 *p++ = ',';
10435 *p++ = ' ';
10436 }
10437 p = mempcpy (p, name, len);
10438 }
10439 else
10440 {
10441 /* Output the current message now and start a new one. */
10442 *p++ = ',';
10443 *p = '\0';
10444 fprintf (stream, "%s\n", message);
10445 p = start;
10446 left = size - (start - message) - len - 2;
10447
10448 gas_assert (left >= 0);
10449
10450 p = mempcpy (p, name, len);
10451 }
10452
10453 *left_p = left;
10454 return p;
10455 }
10456
10457 static void
10458 show_arch (FILE *stream, int ext, int check)
10459 {
10460 static char message[] = MESSAGE_TEMPLATE;
10461 char *start = message + 27;
10462 char *p;
10463 int size = sizeof (MESSAGE_TEMPLATE);
10464 int left;
10465 const char *name;
10466 int len;
10467 unsigned int j;
10468
10469 p = start;
10470 left = size - (start - message);
10471 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10472 {
10473 /* Should it be skipped? */
10474 if (cpu_arch [j].skip)
10475 continue;
10476
10477 name = cpu_arch [j].name;
10478 len = cpu_arch [j].len;
10479 if (*name == '.')
10480 {
10481 /* It is an extension. Skip if we aren't asked to show it. */
10482 if (ext)
10483 {
10484 name++;
10485 len--;
10486 }
10487 else
10488 continue;
10489 }
10490 else if (ext)
10491 {
10492 /* It is an processor. Skip if we show only extension. */
10493 continue;
10494 }
10495 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10496 {
10497 /* It is an impossible processor - skip. */
10498 continue;
10499 }
10500
10501 p = output_message (stream, p, message, start, &left, name, len);
10502 }
10503
10504 /* Display disabled extensions. */
10505 if (ext)
10506 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10507 {
10508 name = cpu_noarch [j].name;
10509 len = cpu_noarch [j].len;
10510 p = output_message (stream, p, message, start, &left, name,
10511 len);
10512 }
10513
10514 *p = '\0';
10515 fprintf (stream, "%s\n", message);
10516 }
10517
10518 void
10519 md_show_usage (FILE *stream)
10520 {
10521 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10522 fprintf (stream, _("\
10523 -Q ignored\n\
10524 -V print assembler version number\n\
10525 -k ignored\n"));
10526 #endif
10527 fprintf (stream, _("\
10528 -n Do not optimize code alignment\n\
10529 -q quieten some warnings\n"));
10530 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10531 fprintf (stream, _("\
10532 -s ignored\n"));
10533 #endif
10534 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10535 || defined (TE_PE) || defined (TE_PEP))
10536 fprintf (stream, _("\
10537 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10538 #endif
10539 #ifdef SVR4_COMMENT_CHARS
10540 fprintf (stream, _("\
10541 --divide do not treat `/' as a comment character\n"));
10542 #else
10543 fprintf (stream, _("\
10544 --divide ignored\n"));
10545 #endif
10546 fprintf (stream, _("\
10547 -march=CPU[,+EXTENSION...]\n\
10548 generate code for CPU and EXTENSION, CPU is one of:\n"));
10549 show_arch (stream, 0, 1);
10550 fprintf (stream, _("\
10551 EXTENSION is combination of:\n"));
10552 show_arch (stream, 1, 0);
10553 fprintf (stream, _("\
10554 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10555 show_arch (stream, 0, 0);
10556 fprintf (stream, _("\
10557 -msse2avx encode SSE instructions with VEX prefix\n"));
10558 fprintf (stream, _("\
10559 -msse-check=[none|error|warning]\n\
10560 check SSE instructions\n"));
10561 fprintf (stream, _("\
10562 -moperand-check=[none|error|warning]\n\
10563 check operand combinations for validity\n"));
10564 fprintf (stream, _("\
10565 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10566 length\n"));
10567 fprintf (stream, _("\
10568 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10569 length\n"));
10570 fprintf (stream, _("\
10571 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10572 for EVEX.W bit ignored instructions\n"));
10573 fprintf (stream, _("\
10574 -mevexrcig=[rne|rd|ru|rz]\n\
10575 encode EVEX instructions with specific EVEX.RC value\n\
10576 for SAE-only ignored instructions\n"));
10577 fprintf (stream, _("\
10578 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10579 fprintf (stream, _("\
10580 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10581 fprintf (stream, _("\
10582 -mindex-reg support pseudo index registers\n"));
10583 fprintf (stream, _("\
10584 -mnaked-reg don't require `%%' prefix for registers\n"));
10585 fprintf (stream, _("\
10586 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
10587 fprintf (stream, _("\
10588 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10589 fprintf (stream, _("\
10590 -mshared disable branch optimization for shared code\n"));
10591 # if defined (TE_PE) || defined (TE_PEP)
10592 fprintf (stream, _("\
10593 -mbig-obj generate big object files\n"));
10594 #endif
10595 fprintf (stream, _("\
10596 -momit-lock-prefix=[no|yes]\n\
10597 strip all lock prefixes\n"));
10598 fprintf (stream, _("\
10599 -mfence-as-lock-add=[no|yes]\n\
10600 encode lfence, mfence and sfence as\n\
10601 lock addl $0x0, (%%{re}sp)\n"));
10602 fprintf (stream, _("\
10603 -mrelax-relocations=[no|yes]\n\
10604 generate relax relocations\n"));
10605 fprintf (stream, _("\
10606 -mamd64 accept only AMD64 ISA\n"));
10607 fprintf (stream, _("\
10608 -mintel64 accept only Intel64 ISA\n"));
10609 }
10610
10611 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10612 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10613 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10614
10615 /* Pick the target format to use. */
10616
10617 const char *
10618 i386_target_format (void)
10619 {
10620 if (!strncmp (default_arch, "x86_64", 6))
10621 {
10622 update_code_flag (CODE_64BIT, 1);
10623 if (default_arch[6] == '\0')
10624 x86_elf_abi = X86_64_ABI;
10625 else
10626 x86_elf_abi = X86_64_X32_ABI;
10627 }
10628 else if (!strcmp (default_arch, "i386"))
10629 update_code_flag (CODE_32BIT, 1);
10630 else if (!strcmp (default_arch, "iamcu"))
10631 {
10632 update_code_flag (CODE_32BIT, 1);
10633 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10634 {
10635 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10636 cpu_arch_name = "iamcu";
10637 cpu_sub_arch_name = NULL;
10638 cpu_arch_flags = iamcu_flags;
10639 cpu_arch_isa = PROCESSOR_IAMCU;
10640 cpu_arch_isa_flags = iamcu_flags;
10641 if (!cpu_arch_tune_set)
10642 {
10643 cpu_arch_tune = cpu_arch_isa;
10644 cpu_arch_tune_flags = cpu_arch_isa_flags;
10645 }
10646 }
10647 else if (cpu_arch_isa != PROCESSOR_IAMCU)
10648 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10649 cpu_arch_name);
10650 }
10651 else
10652 as_fatal (_("unknown architecture"));
10653
10654 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10655 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10656 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10657 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10658
10659 switch (OUTPUT_FLAVOR)
10660 {
10661 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10662 case bfd_target_aout_flavour:
10663 return AOUT_TARGET_FORMAT;
10664 #endif
10665 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10666 # if defined (TE_PE) || defined (TE_PEP)
10667 case bfd_target_coff_flavour:
10668 if (flag_code == CODE_64BIT)
10669 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10670 else
10671 return "pe-i386";
10672 # elif defined (TE_GO32)
10673 case bfd_target_coff_flavour:
10674 return "coff-go32";
10675 # else
10676 case bfd_target_coff_flavour:
10677 return "coff-i386";
10678 # endif
10679 #endif
10680 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10681 case bfd_target_elf_flavour:
10682 {
10683 const char *format;
10684
10685 switch (x86_elf_abi)
10686 {
10687 default:
10688 format = ELF_TARGET_FORMAT;
10689 break;
10690 case X86_64_ABI:
10691 use_rela_relocations = 1;
10692 object_64bit = 1;
10693 format = ELF_TARGET_FORMAT64;
10694 break;
10695 case X86_64_X32_ABI:
10696 use_rela_relocations = 1;
10697 object_64bit = 1;
10698 disallow_64bit_reloc = 1;
10699 format = ELF_TARGET_FORMAT32;
10700 break;
10701 }
10702 if (cpu_arch_isa == PROCESSOR_L1OM)
10703 {
10704 if (x86_elf_abi != X86_64_ABI)
10705 as_fatal (_("Intel L1OM is 64bit only"));
10706 return ELF_TARGET_L1OM_FORMAT;
10707 }
10708 else if (cpu_arch_isa == PROCESSOR_K1OM)
10709 {
10710 if (x86_elf_abi != X86_64_ABI)
10711 as_fatal (_("Intel K1OM is 64bit only"));
10712 return ELF_TARGET_K1OM_FORMAT;
10713 }
10714 else if (cpu_arch_isa == PROCESSOR_IAMCU)
10715 {
10716 if (x86_elf_abi != I386_ABI)
10717 as_fatal (_("Intel MCU is 32bit only"));
10718 return ELF_TARGET_IAMCU_FORMAT;
10719 }
10720 else
10721 return format;
10722 }
10723 #endif
10724 #if defined (OBJ_MACH_O)
10725 case bfd_target_mach_o_flavour:
10726 if (flag_code == CODE_64BIT)
10727 {
10728 use_rela_relocations = 1;
10729 object_64bit = 1;
10730 return "mach-o-x86-64";
10731 }
10732 else
10733 return "mach-o-i386";
10734 #endif
10735 default:
10736 abort ();
10737 return NULL;
10738 }
10739 }
10740
10741 #endif /* OBJ_MAYBE_ more than one */
10742 \f
10743 symbolS *
10744 md_undefined_symbol (char *name)
10745 {
10746 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10747 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10748 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10749 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10750 {
10751 if (!GOT_symbol)
10752 {
10753 if (symbol_find (name))
10754 as_bad (_("GOT already in symbol table"));
10755 GOT_symbol = symbol_new (name, undefined_section,
10756 (valueT) 0, &zero_address_frag);
10757 };
10758 return GOT_symbol;
10759 }
10760 return 0;
10761 }
10762
10763 /* Round up a section size to the appropriate boundary. */
10764
10765 valueT
10766 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10767 {
10768 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10769 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10770 {
10771 /* For a.out, force the section size to be aligned. If we don't do
10772 this, BFD will align it for us, but it will not write out the
10773 final bytes of the section. This may be a bug in BFD, but it is
10774 easier to fix it here since that is how the other a.out targets
10775 work. */
10776 int align;
10777
10778 align = bfd_get_section_alignment (stdoutput, segment);
10779 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
10780 }
10781 #endif
10782
10783 return size;
10784 }
10785
10786 /* On the i386, PC-relative offsets are relative to the start of the
10787 next instruction. That is, the address of the offset, plus its
10788 size, since the offset is always the last part of the insn. */
10789
10790 long
10791 md_pcrel_from (fixS *fixP)
10792 {
10793 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10794 }
10795
10796 #ifndef I386COFF
10797
10798 static void
10799 s_bss (int ignore ATTRIBUTE_UNUSED)
10800 {
10801 int temp;
10802
10803 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10804 if (IS_ELF)
10805 obj_elf_section_change_hook ();
10806 #endif
10807 temp = get_absolute_expression ();
10808 subseg_set (bss_section, (subsegT) temp);
10809 demand_empty_rest_of_line ();
10810 }
10811
10812 #endif
10813
10814 void
10815 i386_validate_fix (fixS *fixp)
10816 {
10817 if (fixp->fx_subsy)
10818 {
10819 if (fixp->fx_subsy == GOT_symbol)
10820 {
10821 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10822 {
10823 if (!object_64bit)
10824 abort ();
10825 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10826 if (fixp->fx_tcbit2)
10827 fixp->fx_r_type = (fixp->fx_tcbit
10828 ? BFD_RELOC_X86_64_REX_GOTPCRELX
10829 : BFD_RELOC_X86_64_GOTPCRELX);
10830 else
10831 #endif
10832 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10833 }
10834 else
10835 {
10836 if (!object_64bit)
10837 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10838 else
10839 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10840 }
10841 fixp->fx_subsy = 0;
10842 }
10843 }
10844 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10845 else if (!object_64bit)
10846 {
10847 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
10848 && fixp->fx_tcbit2)
10849 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
10850 }
10851 #endif
10852 }
10853
10854 arelent *
10855 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10856 {
10857 arelent *rel;
10858 bfd_reloc_code_real_type code;
10859
10860 switch (fixp->fx_r_type)
10861 {
10862 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10863 case BFD_RELOC_SIZE32:
10864 case BFD_RELOC_SIZE64:
10865 if (S_IS_DEFINED (fixp->fx_addsy)
10866 && !S_IS_EXTERNAL (fixp->fx_addsy))
10867 {
10868 /* Resolve size relocation against local symbol to size of
10869 the symbol plus addend. */
10870 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10871 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10872 && !fits_in_unsigned_long (value))
10873 as_bad_where (fixp->fx_file, fixp->fx_line,
10874 _("symbol size computation overflow"));
10875 fixp->fx_addsy = NULL;
10876 fixp->fx_subsy = NULL;
10877 md_apply_fix (fixp, (valueT *) &value, NULL);
10878 return NULL;
10879 }
10880 #endif
10881 /* Fall through. */
10882
10883 case BFD_RELOC_X86_64_PLT32:
10884 case BFD_RELOC_X86_64_GOT32:
10885 case BFD_RELOC_X86_64_GOTPCREL:
10886 case BFD_RELOC_X86_64_GOTPCRELX:
10887 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10888 case BFD_RELOC_386_PLT32:
10889 case BFD_RELOC_386_GOT32:
10890 case BFD_RELOC_386_GOT32X:
10891 case BFD_RELOC_386_GOTOFF:
10892 case BFD_RELOC_386_GOTPC:
10893 case BFD_RELOC_386_TLS_GD:
10894 case BFD_RELOC_386_TLS_LDM:
10895 case BFD_RELOC_386_TLS_LDO_32:
10896 case BFD_RELOC_386_TLS_IE_32:
10897 case BFD_RELOC_386_TLS_IE:
10898 case BFD_RELOC_386_TLS_GOTIE:
10899 case BFD_RELOC_386_TLS_LE_32:
10900 case BFD_RELOC_386_TLS_LE:
10901 case BFD_RELOC_386_TLS_GOTDESC:
10902 case BFD_RELOC_386_TLS_DESC_CALL:
10903 case BFD_RELOC_X86_64_TLSGD:
10904 case BFD_RELOC_X86_64_TLSLD:
10905 case BFD_RELOC_X86_64_DTPOFF32:
10906 case BFD_RELOC_X86_64_DTPOFF64:
10907 case BFD_RELOC_X86_64_GOTTPOFF:
10908 case BFD_RELOC_X86_64_TPOFF32:
10909 case BFD_RELOC_X86_64_TPOFF64:
10910 case BFD_RELOC_X86_64_GOTOFF64:
10911 case BFD_RELOC_X86_64_GOTPC32:
10912 case BFD_RELOC_X86_64_GOT64:
10913 case BFD_RELOC_X86_64_GOTPCREL64:
10914 case BFD_RELOC_X86_64_GOTPC64:
10915 case BFD_RELOC_X86_64_GOTPLT64:
10916 case BFD_RELOC_X86_64_PLTOFF64:
10917 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10918 case BFD_RELOC_X86_64_TLSDESC_CALL:
10919 case BFD_RELOC_RVA:
10920 case BFD_RELOC_VTABLE_ENTRY:
10921 case BFD_RELOC_VTABLE_INHERIT:
10922 #ifdef TE_PE
10923 case BFD_RELOC_32_SECREL:
10924 #endif
10925 code = fixp->fx_r_type;
10926 break;
10927 case BFD_RELOC_X86_64_32S:
10928 if (!fixp->fx_pcrel)
10929 {
10930 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10931 code = fixp->fx_r_type;
10932 break;
10933 }
10934 /* Fall through. */
10935 default:
10936 if (fixp->fx_pcrel)
10937 {
10938 switch (fixp->fx_size)
10939 {
10940 default:
10941 as_bad_where (fixp->fx_file, fixp->fx_line,
10942 _("can not do %d byte pc-relative relocation"),
10943 fixp->fx_size);
10944 code = BFD_RELOC_32_PCREL;
10945 break;
10946 case 1: code = BFD_RELOC_8_PCREL; break;
10947 case 2: code = BFD_RELOC_16_PCREL; break;
10948 case 4: code = BFD_RELOC_32_PCREL; break;
10949 #ifdef BFD64
10950 case 8: code = BFD_RELOC_64_PCREL; break;
10951 #endif
10952 }
10953 }
10954 else
10955 {
10956 switch (fixp->fx_size)
10957 {
10958 default:
10959 as_bad_where (fixp->fx_file, fixp->fx_line,
10960 _("can not do %d byte relocation"),
10961 fixp->fx_size);
10962 code = BFD_RELOC_32;
10963 break;
10964 case 1: code = BFD_RELOC_8; break;
10965 case 2: code = BFD_RELOC_16; break;
10966 case 4: code = BFD_RELOC_32; break;
10967 #ifdef BFD64
10968 case 8: code = BFD_RELOC_64; break;
10969 #endif
10970 }
10971 }
10972 break;
10973 }
10974
10975 if ((code == BFD_RELOC_32
10976 || code == BFD_RELOC_32_PCREL
10977 || code == BFD_RELOC_X86_64_32S)
10978 && GOT_symbol
10979 && fixp->fx_addsy == GOT_symbol)
10980 {
10981 if (!object_64bit)
10982 code = BFD_RELOC_386_GOTPC;
10983 else
10984 code = BFD_RELOC_X86_64_GOTPC32;
10985 }
10986 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10987 && GOT_symbol
10988 && fixp->fx_addsy == GOT_symbol)
10989 {
10990 code = BFD_RELOC_X86_64_GOTPC64;
10991 }
10992
10993 rel = XNEW (arelent);
10994 rel->sym_ptr_ptr = XNEW (asymbol *);
10995 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10996
10997 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
10998
10999 if (!use_rela_relocations)
11000 {
11001 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11002 vtable entry to be used in the relocation's section offset. */
11003 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11004 rel->address = fixp->fx_offset;
11005 #if defined (OBJ_COFF) && defined (TE_PE)
11006 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11007 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11008 else
11009 #endif
11010 rel->addend = 0;
11011 }
11012 /* Use the rela in 64bit mode. */
11013 else
11014 {
11015 if (disallow_64bit_reloc)
11016 switch (code)
11017 {
11018 case BFD_RELOC_X86_64_DTPOFF64:
11019 case BFD_RELOC_X86_64_TPOFF64:
11020 case BFD_RELOC_64_PCREL:
11021 case BFD_RELOC_X86_64_GOTOFF64:
11022 case BFD_RELOC_X86_64_GOT64:
11023 case BFD_RELOC_X86_64_GOTPCREL64:
11024 case BFD_RELOC_X86_64_GOTPC64:
11025 case BFD_RELOC_X86_64_GOTPLT64:
11026 case BFD_RELOC_X86_64_PLTOFF64:
11027 as_bad_where (fixp->fx_file, fixp->fx_line,
11028 _("cannot represent relocation type %s in x32 mode"),
11029 bfd_get_reloc_code_name (code));
11030 break;
11031 default:
11032 break;
11033 }
11034
11035 if (!fixp->fx_pcrel)
11036 rel->addend = fixp->fx_offset;
11037 else
11038 switch (code)
11039 {
11040 case BFD_RELOC_X86_64_PLT32:
11041 case BFD_RELOC_X86_64_GOT32:
11042 case BFD_RELOC_X86_64_GOTPCREL:
11043 case BFD_RELOC_X86_64_GOTPCRELX:
11044 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11045 case BFD_RELOC_X86_64_TLSGD:
11046 case BFD_RELOC_X86_64_TLSLD:
11047 case BFD_RELOC_X86_64_GOTTPOFF:
11048 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11049 case BFD_RELOC_X86_64_TLSDESC_CALL:
11050 rel->addend = fixp->fx_offset - fixp->fx_size;
11051 break;
11052 default:
11053 rel->addend = (section->vma
11054 - fixp->fx_size
11055 + fixp->fx_addnumber
11056 + md_pcrel_from (fixp));
11057 break;
11058 }
11059 }
11060
11061 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11062 if (rel->howto == NULL)
11063 {
11064 as_bad_where (fixp->fx_file, fixp->fx_line,
11065 _("cannot represent relocation type %s"),
11066 bfd_get_reloc_code_name (code));
11067 /* Set howto to a garbage value so that we can keep going. */
11068 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
11069 gas_assert (rel->howto != NULL);
11070 }
11071
11072 return rel;
11073 }
11074
11075 #include "tc-i386-intel.c"
11076
11077 void
11078 tc_x86_parse_to_dw2regnum (expressionS *exp)
11079 {
11080 int saved_naked_reg;
11081 char saved_register_dot;
11082
11083 saved_naked_reg = allow_naked_reg;
11084 allow_naked_reg = 1;
11085 saved_register_dot = register_chars['.'];
11086 register_chars['.'] = '.';
11087 allow_pseudo_reg = 1;
11088 expression_and_evaluate (exp);
11089 allow_pseudo_reg = 0;
11090 register_chars['.'] = saved_register_dot;
11091 allow_naked_reg = saved_naked_reg;
11092
11093 if (exp->X_op == O_register && exp->X_add_number >= 0)
11094 {
11095 if ((addressT) exp->X_add_number < i386_regtab_size)
11096 {
11097 exp->X_op = O_constant;
11098 exp->X_add_number = i386_regtab[exp->X_add_number]
11099 .dw2_regnum[flag_code >> 1];
11100 }
11101 else
11102 exp->X_op = O_illegal;
11103 }
11104 }
11105
11106 void
11107 tc_x86_frame_initial_instructions (void)
11108 {
11109 static unsigned int sp_regno[2];
11110
11111 if (!sp_regno[flag_code >> 1])
11112 {
11113 char *saved_input = input_line_pointer;
11114 char sp[][4] = {"esp", "rsp"};
11115 expressionS exp;
11116
11117 input_line_pointer = sp[flag_code >> 1];
11118 tc_x86_parse_to_dw2regnum (&exp);
11119 gas_assert (exp.X_op == O_constant);
11120 sp_regno[flag_code >> 1] = exp.X_add_number;
11121 input_line_pointer = saved_input;
11122 }
11123
11124 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11125 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11126 }
11127
11128 int
11129 x86_dwarf2_addr_size (void)
11130 {
11131 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11132 if (x86_elf_abi == X86_64_X32_ABI)
11133 return 4;
11134 #endif
11135 return bfd_arch_bits_per_address (stdoutput) / 8;
11136 }
11137
11138 int
11139 i386_elf_section_type (const char *str, size_t len)
11140 {
11141 if (flag_code == CODE_64BIT
11142 && len == sizeof ("unwind") - 1
11143 && strncmp (str, "unwind", 6) == 0)
11144 return SHT_X86_64_UNWIND;
11145
11146 return -1;
11147 }
11148
11149 #ifdef TE_SOLARIS
11150 void
11151 i386_solaris_fix_up_eh_frame (segT sec)
11152 {
11153 if (flag_code == CODE_64BIT)
11154 elf_section_type (sec) = SHT_X86_64_UNWIND;
11155 }
11156 #endif
11157
11158 #ifdef TE_PE
11159 void
11160 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11161 {
11162 expressionS exp;
11163
11164 exp.X_op = O_secrel;
11165 exp.X_add_symbol = symbol;
11166 exp.X_add_number = 0;
11167 emit_expr (&exp, size);
11168 }
11169 #endif
11170
11171 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11172 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11173
11174 bfd_vma
11175 x86_64_section_letter (int letter, const char **ptr_msg)
11176 {
11177 if (flag_code == CODE_64BIT)
11178 {
11179 if (letter == 'l')
11180 return SHF_X86_64_LARGE;
11181
11182 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11183 }
11184 else
11185 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11186 return -1;
11187 }
11188
11189 bfd_vma
11190 x86_64_section_word (char *str, size_t len)
11191 {
11192 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11193 return SHF_X86_64_LARGE;
11194
11195 return -1;
11196 }
11197
11198 static void
11199 handle_large_common (int small ATTRIBUTE_UNUSED)
11200 {
11201 if (flag_code != CODE_64BIT)
11202 {
11203 s_comm_internal (0, elf_common_parse);
11204 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11205 }
11206 else
11207 {
11208 static segT lbss_section;
11209 asection *saved_com_section_ptr = elf_com_section_ptr;
11210 asection *saved_bss_section = bss_section;
11211
11212 if (lbss_section == NULL)
11213 {
11214 flagword applicable;
11215 segT seg = now_seg;
11216 subsegT subseg = now_subseg;
11217
11218 /* The .lbss section is for local .largecomm symbols. */
11219 lbss_section = subseg_new (".lbss", 0);
11220 applicable = bfd_applicable_section_flags (stdoutput);
11221 bfd_set_section_flags (stdoutput, lbss_section,
11222 applicable & SEC_ALLOC);
11223 seg_info (lbss_section)->bss = 1;
11224
11225 subseg_set (seg, subseg);
11226 }
11227
11228 elf_com_section_ptr = &_bfd_elf_large_com_section;
11229 bss_section = lbss_section;
11230
11231 s_comm_internal (0, elf_common_parse);
11232
11233 elf_com_section_ptr = saved_com_section_ptr;
11234 bss_section = saved_bss_section;
11235 }
11236 }
11237 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.369734 seconds and 5 git commands to generate.