Improve performance of large restore commands
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
4 2012
5 Free Software Foundation, Inc.
6
7 This file is part of GAS, the GNU Assembler.
8
9 GAS is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GAS is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GAS; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23
24 /* Intel 80386 machine specific gas.
25 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
26 x86_64 support by Jan Hubicka (jh@suse.cz)
27 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
28 Bugs & suggestions are completely welcome. This is free software.
29 Please help us make it better. */
30
31 #include "as.h"
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "dwarf2dbg.h"
35 #include "dw2gencfi.h"
36 #include "elf/x86-64.h"
37 #include "opcodes/i386-init.h"
38
39 #ifndef REGISTER_WARNINGS
40 #define REGISTER_WARNINGS 1
41 #endif
42
43 #ifndef INFER_ADDR_PREFIX
44 #define INFER_ADDR_PREFIX 1
45 #endif
46
47 #ifndef DEFAULT_ARCH
48 #define DEFAULT_ARCH "i386"
49 #endif
50
51 #ifndef INLINE
52 #if __GNUC__ >= 2
53 #define INLINE __inline__
54 #else
55 #define INLINE
56 #endif
57 #endif
58
59 /* Prefixes will be emitted in the order defined below.
60 WAIT_PREFIX must be the first prefix since FWAIT is really is an
61 instruction, and so must come before any prefixes.
62 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
63 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
64 #define WAIT_PREFIX 0
65 #define SEG_PREFIX 1
66 #define ADDR_PREFIX 2
67 #define DATA_PREFIX 3
68 #define REP_PREFIX 4
69 #define HLE_PREFIX REP_PREFIX
70 #define BND_PREFIX REP_PREFIX
71 #define LOCK_PREFIX 5
72 #define REX_PREFIX 6 /* must come last. */
73 #define MAX_PREFIXES 7 /* max prefixes per opcode */
74
75 /* we define the syntax here (modulo base,index,scale syntax) */
76 #define REGISTER_PREFIX '%'
77 #define IMMEDIATE_PREFIX '$'
78 #define ABSOLUTE_PREFIX '*'
79
80 /* these are the instruction mnemonic suffixes in AT&T syntax or
81 memory operand size in Intel syntax. */
82 #define WORD_MNEM_SUFFIX 'w'
83 #define BYTE_MNEM_SUFFIX 'b'
84 #define SHORT_MNEM_SUFFIX 's'
85 #define LONG_MNEM_SUFFIX 'l'
86 #define QWORD_MNEM_SUFFIX 'q'
87 #define XMMWORD_MNEM_SUFFIX 'x'
88 #define YMMWORD_MNEM_SUFFIX 'y'
89 #define ZMMWORD_MNEM_SUFFIX 'z'
90 /* Intel Syntax. Use a non-ascii letter since since it never appears
91 in instructions. */
92 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
93
94 #define END_OF_INSN '\0'
95
96 /*
97 'templates' is for grouping together 'template' structures for opcodes
98 of the same name. This is only used for storing the insns in the grand
99 ole hash table of insns.
100 The templates themselves start at START and range up to (but not including)
101 END.
102 */
103 typedef struct
104 {
105 const insn_template *start;
106 const insn_template *end;
107 }
108 templates;
109
110 /* 386 operand encoding bytes: see 386 book for details of this. */
111 typedef struct
112 {
113 unsigned int regmem; /* codes register or memory operand */
114 unsigned int reg; /* codes register operand (or extended opcode) */
115 unsigned int mode; /* how to interpret regmem & reg */
116 }
117 modrm_byte;
118
119 /* x86-64 extension prefix. */
120 typedef int rex_byte;
121
122 /* 386 opcode byte to code indirect addressing. */
123 typedef struct
124 {
125 unsigned base;
126 unsigned index;
127 unsigned scale;
128 }
129 sib_byte;
130
131 /* x86 arch names, types and features */
132 typedef struct
133 {
134 const char *name; /* arch name */
135 unsigned int len; /* arch string length */
136 enum processor_type type; /* arch type */
137 i386_cpu_flags flags; /* cpu feature flags */
138 unsigned int skip; /* show_arch should skip this. */
139 unsigned int negated; /* turn off indicated flags. */
140 }
141 arch_entry;
142
143 static void update_code_flag (int, int);
144 static void set_code_flag (int);
145 static void set_16bit_gcc_code_flag (int);
146 static void set_intel_syntax (int);
147 static void set_intel_mnemonic (int);
148 static void set_allow_index_reg (int);
149 static void set_check (int);
150 static void set_cpu_arch (int);
151 #ifdef TE_PE
152 static void pe_directive_secrel (int);
153 #endif
154 static void signed_cons (int);
155 static char *output_invalid (int c);
156 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
157 const char *);
158 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
159 const char *);
160 static int i386_att_operand (char *);
161 static int i386_intel_operand (char *, int);
162 static int i386_intel_simplify (expressionS *);
163 static int i386_intel_parse_name (const char *, expressionS *);
164 static const reg_entry *parse_register (char *, char **);
165 static char *parse_insn (char *, char *);
166 static char *parse_operands (char *, const char *);
167 static void swap_operands (void);
168 static void swap_2_operands (int, int);
169 static void optimize_imm (void);
170 static void optimize_disp (void);
171 static const insn_template *match_template (void);
172 static int check_string (void);
173 static int process_suffix (void);
174 static int check_byte_reg (void);
175 static int check_long_reg (void);
176 static int check_qword_reg (void);
177 static int check_word_reg (void);
178 static int finalize_imm (void);
179 static int process_operands (void);
180 static const seg_entry *build_modrm_byte (void);
181 static void output_insn (void);
182 static void output_imm (fragS *, offsetT);
183 static void output_disp (fragS *, offsetT);
184 #ifndef I386COFF
185 static void s_bss (int);
186 #endif
187 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
188 static void handle_large_common (int small ATTRIBUTE_UNUSED);
189 #endif
190
191 static const char *default_arch = DEFAULT_ARCH;
192
193 /* This struct describes rounding control and SAE in the instruction. */
194 struct RC_Operation
195 {
196 enum rc_type
197 {
198 rne = 0,
199 rd,
200 ru,
201 rz,
202 saeonly
203 } type;
204 int operand;
205 };
206
207 static struct RC_Operation rc_op;
208
209 /* The struct describes masking, applied to OPERAND in the instruction.
210 MASK is a pointer to the corresponding mask register. ZEROING tells
211 whether merging or zeroing mask is used. */
212 struct Mask_Operation
213 {
214 const reg_entry *mask;
215 unsigned int zeroing;
216 /* The operand where this operation is associated. */
217 int operand;
218 };
219
220 static struct Mask_Operation mask_op;
221
222 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
223 broadcast factor. */
224 struct Broadcast_Operation
225 {
226 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
227 int type;
228
229 /* Index of broadcasted operand. */
230 int operand;
231 };
232
233 static struct Broadcast_Operation broadcast_op;
234
235 /* VEX prefix. */
236 typedef struct
237 {
238 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
239 unsigned char bytes[4];
240 unsigned int length;
241 /* Destination or source register specifier. */
242 const reg_entry *register_specifier;
243 } vex_prefix;
244
245 /* 'md_assemble ()' gathers together information and puts it into a
246 i386_insn. */
247
248 union i386_op
249 {
250 expressionS *disps;
251 expressionS *imms;
252 const reg_entry *regs;
253 };
254
255 enum i386_error
256 {
257 operand_size_mismatch,
258 operand_type_mismatch,
259 register_type_mismatch,
260 number_of_operands_mismatch,
261 invalid_instruction_suffix,
262 bad_imm4,
263 old_gcc_only,
264 unsupported_with_intel_mnemonic,
265 unsupported_syntax,
266 unsupported,
267 invalid_vsib_address,
268 invalid_vector_register_set,
269 unsupported_vector_index_register,
270 unsupported_broadcast,
271 broadcast_not_on_src_operand,
272 broadcast_needed,
273 unsupported_masking,
274 mask_not_on_destination,
275 no_default_mask,
276 unsupported_rc_sae,
277 rc_sae_operand_not_last_imm,
278 invalid_register_operand,
279 try_vector_disp8
280 };
281
282 struct _i386_insn
283 {
284 /* TM holds the template for the insn were currently assembling. */
285 insn_template tm;
286
287 /* SUFFIX holds the instruction size suffix for byte, word, dword
288 or qword, if given. */
289 char suffix;
290
291 /* OPERANDS gives the number of given operands. */
292 unsigned int operands;
293
294 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
295 of given register, displacement, memory operands and immediate
296 operands. */
297 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
298
299 /* TYPES [i] is the type (see above #defines) which tells us how to
300 use OP[i] for the corresponding operand. */
301 i386_operand_type types[MAX_OPERANDS];
302
303 /* Displacement expression, immediate expression, or register for each
304 operand. */
305 union i386_op op[MAX_OPERANDS];
306
307 /* Flags for operands. */
308 unsigned int flags[MAX_OPERANDS];
309 #define Operand_PCrel 1
310
311 /* Relocation type for operand */
312 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
313
314 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
315 the base index byte below. */
316 const reg_entry *base_reg;
317 const reg_entry *index_reg;
318 unsigned int log2_scale_factor;
319
320 /* SEG gives the seg_entries of this insn. They are zero unless
321 explicit segment overrides are given. */
322 const seg_entry *seg[2];
323
324 /* PREFIX holds all the given prefix opcodes (usually null).
325 PREFIXES is the number of prefix opcodes. */
326 unsigned int prefixes;
327 unsigned char prefix[MAX_PREFIXES];
328
329 /* RM and SIB are the modrm byte and the sib byte where the
330 addressing modes of this insn are encoded. */
331 modrm_byte rm;
332 rex_byte rex;
333 rex_byte vrex;
334 sib_byte sib;
335 vex_prefix vex;
336
337 /* Masking attributes. */
338 struct Mask_Operation *mask;
339
340 /* Rounding control and SAE attributes. */
341 struct RC_Operation *rounding;
342
343 /* Broadcasting attributes. */
344 struct Broadcast_Operation *broadcast;
345
346 /* Compressed disp8*N attribute. */
347 unsigned int memshift;
348
349 /* Swap operand in encoding. */
350 unsigned int swap_operand;
351
352 /* Prefer 8bit or 32bit displacement in encoding. */
353 enum
354 {
355 disp_encoding_default = 0,
356 disp_encoding_8bit,
357 disp_encoding_32bit
358 } disp_encoding;
359
360 /* REP prefix. */
361 const char *rep_prefix;
362
363 /* HLE prefix. */
364 const char *hle_prefix;
365
366 /* Have BND prefix. */
367 const char *bnd_prefix;
368
369 /* Need VREX to support upper 16 registers. */
370 int need_vrex;
371
372 /* Error message. */
373 enum i386_error error;
374 };
375
376 typedef struct _i386_insn i386_insn;
377
378 /* Link RC type with corresponding string, that'll be looked for in
379 asm. */
380 struct RC_name
381 {
382 enum rc_type type;
383 const char *name;
384 unsigned int len;
385 };
386
387 static const struct RC_name RC_NamesTable[] =
388 {
389 { rne, STRING_COMMA_LEN ("rn-sae") },
390 { rd, STRING_COMMA_LEN ("rd-sae") },
391 { ru, STRING_COMMA_LEN ("ru-sae") },
392 { rz, STRING_COMMA_LEN ("rz-sae") },
393 { saeonly, STRING_COMMA_LEN ("sae") },
394 };
395
396 /* List of chars besides those in app.c:symbol_chars that can start an
397 operand. Used to prevent the scrubber eating vital white-space. */
398 const char extra_symbol_chars[] = "*%-([{"
399 #ifdef LEX_AT
400 "@"
401 #endif
402 #ifdef LEX_QM
403 "?"
404 #endif
405 ;
406
407 #if (defined (TE_I386AIX) \
408 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
409 && !defined (TE_GNU) \
410 && !defined (TE_LINUX) \
411 && !defined (TE_NACL) \
412 && !defined (TE_NETWARE) \
413 && !defined (TE_FreeBSD) \
414 && !defined (TE_DragonFly) \
415 && !defined (TE_NetBSD)))
416 /* This array holds the chars that always start a comment. If the
417 pre-processor is disabled, these aren't very useful. The option
418 --divide will remove '/' from this list. */
419 const char *i386_comment_chars = "#/";
420 #define SVR4_COMMENT_CHARS 1
421 #define PREFIX_SEPARATOR '\\'
422
423 #else
424 const char *i386_comment_chars = "#";
425 #define PREFIX_SEPARATOR '/'
426 #endif
427
428 /* This array holds the chars that only start a comment at the beginning of
429 a line. If the line seems to have the form '# 123 filename'
430 .line and .file directives will appear in the pre-processed output.
431 Note that input_file.c hand checks for '#' at the beginning of the
432 first line of the input file. This is because the compiler outputs
433 #NO_APP at the beginning of its output.
434 Also note that comments started like this one will always work if
435 '/' isn't otherwise defined. */
436 const char line_comment_chars[] = "#/";
437
438 const char line_separator_chars[] = ";";
439
440 /* Chars that can be used to separate mant from exp in floating point
441 nums. */
442 const char EXP_CHARS[] = "eE";
443
444 /* Chars that mean this number is a floating point constant
445 As in 0f12.456
446 or 0d1.2345e12. */
447 const char FLT_CHARS[] = "fFdDxX";
448
449 /* Tables for lexical analysis. */
450 static char mnemonic_chars[256];
451 static char register_chars[256];
452 static char operand_chars[256];
453 static char identifier_chars[256];
454 static char digit_chars[256];
455
456 /* Lexical macros. */
457 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
458 #define is_operand_char(x) (operand_chars[(unsigned char) x])
459 #define is_register_char(x) (register_chars[(unsigned char) x])
460 #define is_space_char(x) ((x) == ' ')
461 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
462 #define is_digit_char(x) (digit_chars[(unsigned char) x])
463
464 /* All non-digit non-letter characters that may occur in an operand. */
465 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
466
467 /* md_assemble() always leaves the strings it's passed unaltered. To
468 effect this we maintain a stack of saved characters that we've smashed
469 with '\0's (indicating end of strings for various sub-fields of the
470 assembler instruction). */
471 static char save_stack[32];
472 static char *save_stack_p;
473 #define END_STRING_AND_SAVE(s) \
474 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
475 #define RESTORE_END_STRING(s) \
476 do { *(s) = *--save_stack_p; } while (0)
477
478 /* The instruction we're assembling. */
479 static i386_insn i;
480
481 /* Possible templates for current insn. */
482 static const templates *current_templates;
483
484 /* Per instruction expressionS buffers: max displacements & immediates. */
485 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
486 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
487
488 /* Current operand we are working on. */
489 static int this_operand = -1;
490
491 /* We support four different modes. FLAG_CODE variable is used to distinguish
492 these. */
493
494 enum flag_code {
495 CODE_32BIT,
496 CODE_16BIT,
497 CODE_64BIT };
498
499 static enum flag_code flag_code;
500 static unsigned int object_64bit;
501 static unsigned int disallow_64bit_reloc;
502 static int use_rela_relocations = 0;
503
504 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
505 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
506 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
507
508 /* The ELF ABI to use. */
509 enum x86_elf_abi
510 {
511 I386_ABI,
512 X86_64_ABI,
513 X86_64_X32_ABI
514 };
515
516 static enum x86_elf_abi x86_elf_abi = I386_ABI;
517 #endif
518
519 /* 1 for intel syntax,
520 0 if att syntax. */
521 static int intel_syntax = 0;
522
523 /* 1 for intel mnemonic,
524 0 if att mnemonic. */
525 static int intel_mnemonic = !SYSV386_COMPAT;
526
527 /* 1 if support old (<= 2.8.1) versions of gcc. */
528 static int old_gcc = OLDGCC_COMPAT;
529
530 /* 1 if pseudo registers are permitted. */
531 static int allow_pseudo_reg = 0;
532
533 /* 1 if register prefix % not required. */
534 static int allow_naked_reg = 0;
535
536 /* 1 if the assembler should add BND prefix for all control-tranferring
537 instructions supporting it, even if this prefix wasn't specified
538 explicitly. */
539 static int add_bnd_prefix = 0;
540
541 /* 1 if pseudo index register, eiz/riz, is allowed . */
542 static int allow_index_reg = 0;
543
544 static enum check_kind
545 {
546 check_none = 0,
547 check_warning,
548 check_error
549 }
550 sse_check, operand_check = check_warning;
551
552 /* Register prefix used for error message. */
553 static const char *register_prefix = "%";
554
555 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
556 leave, push, and pop instructions so that gcc has the same stack
557 frame as in 32 bit mode. */
558 static char stackop_size = '\0';
559
560 /* Non-zero to optimize code alignment. */
561 int optimize_align_code = 1;
562
563 /* Non-zero to quieten some warnings. */
564 static int quiet_warnings = 0;
565
566 /* CPU name. */
567 static const char *cpu_arch_name = NULL;
568 static char *cpu_sub_arch_name = NULL;
569
570 /* CPU feature flags. */
571 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
572
573 /* If we have selected a cpu we are generating instructions for. */
574 static int cpu_arch_tune_set = 0;
575
576 /* Cpu we are generating instructions for. */
577 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
578
579 /* CPU feature flags of cpu we are generating instructions for. */
580 static i386_cpu_flags cpu_arch_tune_flags;
581
582 /* CPU instruction set architecture used. */
583 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
584
585 /* CPU feature flags of instruction set architecture used. */
586 i386_cpu_flags cpu_arch_isa_flags;
587
588 /* If set, conditional jumps are not automatically promoted to handle
589 larger than a byte offset. */
590 static unsigned int no_cond_jump_promotion = 0;
591
592 /* Encode SSE instructions with VEX prefix. */
593 static unsigned int sse2avx;
594
595 /* Encode scalar AVX instructions with specific vector length. */
596 static enum
597 {
598 vex128 = 0,
599 vex256
600 } avxscalar;
601
602 /* Encode scalar EVEX LIG instructions with specific vector length. */
603 static enum
604 {
605 evexl128 = 0,
606 evexl256,
607 evexl512
608 } evexlig;
609
610 /* Encode EVEX WIG instructions with specific evex.w. */
611 static enum
612 {
613 evexw0 = 0,
614 evexw1
615 } evexwig;
616
617 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
618 static symbolS *GOT_symbol;
619
620 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
621 unsigned int x86_dwarf2_return_column;
622
623 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
624 int x86_cie_data_alignment;
625
626 /* Interface to relax_segment.
627 There are 3 major relax states for 386 jump insns because the
628 different types of jumps add different sizes to frags when we're
629 figuring out what sort of jump to choose to reach a given label. */
630
631 /* Types. */
632 #define UNCOND_JUMP 0
633 #define COND_JUMP 1
634 #define COND_JUMP86 2
635
636 /* Sizes. */
637 #define CODE16 1
638 #define SMALL 0
639 #define SMALL16 (SMALL | CODE16)
640 #define BIG 2
641 #define BIG16 (BIG | CODE16)
642
643 #ifndef INLINE
644 #ifdef __GNUC__
645 #define INLINE __inline__
646 #else
647 #define INLINE
648 #endif
649 #endif
650
651 #define ENCODE_RELAX_STATE(type, size) \
652 ((relax_substateT) (((type) << 2) | (size)))
653 #define TYPE_FROM_RELAX_STATE(s) \
654 ((s) >> 2)
655 #define DISP_SIZE_FROM_RELAX_STATE(s) \
656 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
657
658 /* This table is used by relax_frag to promote short jumps to long
659 ones where necessary. SMALL (short) jumps may be promoted to BIG
660 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
661 don't allow a short jump in a 32 bit code segment to be promoted to
662 a 16 bit offset jump because it's slower (requires data size
663 prefix), and doesn't work, unless the destination is in the bottom
664 64k of the code segment (The top 16 bits of eip are zeroed). */
665
666 const relax_typeS md_relax_table[] =
667 {
668 /* The fields are:
669 1) most positive reach of this state,
670 2) most negative reach of this state,
671 3) how many bytes this mode will have in the variable part of the frag
672 4) which index into the table to try if we can't fit into this one. */
673
674 /* UNCOND_JUMP states. */
675 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
676 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
677 /* dword jmp adds 4 bytes to frag:
678 0 extra opcode bytes, 4 displacement bytes. */
679 {0, 0, 4, 0},
680 /* word jmp adds 2 byte2 to frag:
681 0 extra opcode bytes, 2 displacement bytes. */
682 {0, 0, 2, 0},
683
684 /* COND_JUMP states. */
685 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
686 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
687 /* dword conditionals adds 5 bytes to frag:
688 1 extra opcode byte, 4 displacement bytes. */
689 {0, 0, 5, 0},
690 /* word conditionals add 3 bytes to frag:
691 1 extra opcode byte, 2 displacement bytes. */
692 {0, 0, 3, 0},
693
694 /* COND_JUMP86 states. */
695 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
696 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
697 /* dword conditionals adds 5 bytes to frag:
698 1 extra opcode byte, 4 displacement bytes. */
699 {0, 0, 5, 0},
700 /* word conditionals add 4 bytes to frag:
701 1 displacement byte and a 3 byte long branch insn. */
702 {0, 0, 4, 0}
703 };
704
705 static const arch_entry cpu_arch[] =
706 {
707 /* Do not replace the first two entries - i386_target_format()
708 relies on them being there in this order. */
709 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
710 CPU_GENERIC32_FLAGS, 0, 0 },
711 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
712 CPU_GENERIC64_FLAGS, 0, 0 },
713 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
714 CPU_NONE_FLAGS, 0, 0 },
715 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
716 CPU_I186_FLAGS, 0, 0 },
717 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
718 CPU_I286_FLAGS, 0, 0 },
719 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
720 CPU_I386_FLAGS, 0, 0 },
721 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
722 CPU_I486_FLAGS, 0, 0 },
723 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
724 CPU_I586_FLAGS, 0, 0 },
725 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
726 CPU_I686_FLAGS, 0, 0 },
727 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
728 CPU_I586_FLAGS, 0, 0 },
729 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
730 CPU_PENTIUMPRO_FLAGS, 0, 0 },
731 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
732 CPU_P2_FLAGS, 0, 0 },
733 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
734 CPU_P3_FLAGS, 0, 0 },
735 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
736 CPU_P4_FLAGS, 0, 0 },
737 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
738 CPU_CORE_FLAGS, 0, 0 },
739 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
740 CPU_NOCONA_FLAGS, 0, 0 },
741 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
742 CPU_CORE_FLAGS, 1, 0 },
743 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
744 CPU_CORE_FLAGS, 0, 0 },
745 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
746 CPU_CORE2_FLAGS, 1, 0 },
747 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
748 CPU_CORE2_FLAGS, 0, 0 },
749 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
750 CPU_COREI7_FLAGS, 0, 0 },
751 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
752 CPU_L1OM_FLAGS, 0, 0 },
753 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
754 CPU_K1OM_FLAGS, 0, 0 },
755 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
756 CPU_K6_FLAGS, 0, 0 },
757 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
758 CPU_K6_2_FLAGS, 0, 0 },
759 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
760 CPU_ATHLON_FLAGS, 0, 0 },
761 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
762 CPU_K8_FLAGS, 1, 0 },
763 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
764 CPU_K8_FLAGS, 0, 0 },
765 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
766 CPU_K8_FLAGS, 0, 0 },
767 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
768 CPU_AMDFAM10_FLAGS, 0, 0 },
769 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
770 CPU_BDVER1_FLAGS, 0, 0 },
771 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
772 CPU_BDVER2_FLAGS, 0, 0 },
773 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
774 CPU_BDVER3_FLAGS, 0, 0 },
775 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
776 CPU_BDVER4_FLAGS, 0, 0 },
777 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
778 CPU_BTVER1_FLAGS, 0, 0 },
779 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
780 CPU_BTVER2_FLAGS, 0, 0 },
781 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
782 CPU_8087_FLAGS, 0, 0 },
783 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
784 CPU_287_FLAGS, 0, 0 },
785 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
786 CPU_387_FLAGS, 0, 0 },
787 { STRING_COMMA_LEN (".no87"), PROCESSOR_UNKNOWN,
788 CPU_ANY87_FLAGS, 0, 1 },
789 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
790 CPU_MMX_FLAGS, 0, 0 },
791 { STRING_COMMA_LEN (".nommx"), PROCESSOR_UNKNOWN,
792 CPU_3DNOWA_FLAGS, 0, 1 },
793 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
794 CPU_SSE_FLAGS, 0, 0 },
795 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
796 CPU_SSE2_FLAGS, 0, 0 },
797 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
798 CPU_SSE3_FLAGS, 0, 0 },
799 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
800 CPU_SSSE3_FLAGS, 0, 0 },
801 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
802 CPU_SSE4_1_FLAGS, 0, 0 },
803 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
804 CPU_SSE4_2_FLAGS, 0, 0 },
805 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
806 CPU_SSE4_2_FLAGS, 0, 0 },
807 { STRING_COMMA_LEN (".nosse"), PROCESSOR_UNKNOWN,
808 CPU_ANY_SSE_FLAGS, 0, 1 },
809 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
810 CPU_AVX_FLAGS, 0, 0 },
811 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
812 CPU_AVX2_FLAGS, 0, 0 },
813 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
814 CPU_AVX512F_FLAGS, 0, 0 },
815 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
816 CPU_AVX512CD_FLAGS, 0, 0 },
817 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
818 CPU_AVX512ER_FLAGS, 0, 0 },
819 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
820 CPU_AVX512PF_FLAGS, 0, 0 },
821 { STRING_COMMA_LEN (".noavx"), PROCESSOR_UNKNOWN,
822 CPU_ANY_AVX_FLAGS, 0, 1 },
823 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
824 CPU_VMX_FLAGS, 0, 0 },
825 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
826 CPU_VMFUNC_FLAGS, 0, 0 },
827 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
828 CPU_SMX_FLAGS, 0, 0 },
829 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
830 CPU_XSAVE_FLAGS, 0, 0 },
831 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
832 CPU_XSAVEOPT_FLAGS, 0, 0 },
833 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
834 CPU_AES_FLAGS, 0, 0 },
835 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
836 CPU_PCLMUL_FLAGS, 0, 0 },
837 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
838 CPU_PCLMUL_FLAGS, 1, 0 },
839 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
840 CPU_FSGSBASE_FLAGS, 0, 0 },
841 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
842 CPU_RDRND_FLAGS, 0, 0 },
843 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
844 CPU_F16C_FLAGS, 0, 0 },
845 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
846 CPU_BMI2_FLAGS, 0, 0 },
847 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
848 CPU_FMA_FLAGS, 0, 0 },
849 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
850 CPU_FMA4_FLAGS, 0, 0 },
851 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
852 CPU_XOP_FLAGS, 0, 0 },
853 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
854 CPU_LWP_FLAGS, 0, 0 },
855 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
856 CPU_MOVBE_FLAGS, 0, 0 },
857 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
858 CPU_CX16_FLAGS, 0, 0 },
859 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
860 CPU_EPT_FLAGS, 0, 0 },
861 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
862 CPU_LZCNT_FLAGS, 0, 0 },
863 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
864 CPU_HLE_FLAGS, 0, 0 },
865 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
866 CPU_RTM_FLAGS, 0, 0 },
867 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
868 CPU_INVPCID_FLAGS, 0, 0 },
869 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
870 CPU_CLFLUSH_FLAGS, 0, 0 },
871 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
872 CPU_NOP_FLAGS, 0, 0 },
873 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
874 CPU_SYSCALL_FLAGS, 0, 0 },
875 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
876 CPU_RDTSCP_FLAGS, 0, 0 },
877 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
878 CPU_3DNOW_FLAGS, 0, 0 },
879 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
880 CPU_3DNOWA_FLAGS, 0, 0 },
881 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
882 CPU_PADLOCK_FLAGS, 0, 0 },
883 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
884 CPU_SVME_FLAGS, 1, 0 },
885 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
886 CPU_SVME_FLAGS, 0, 0 },
887 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
888 CPU_SSE4A_FLAGS, 0, 0 },
889 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
890 CPU_ABM_FLAGS, 0, 0 },
891 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
892 CPU_BMI_FLAGS, 0, 0 },
893 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
894 CPU_TBM_FLAGS, 0, 0 },
895 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
896 CPU_ADX_FLAGS, 0, 0 },
897 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
898 CPU_RDSEED_FLAGS, 0, 0 },
899 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
900 CPU_PRFCHW_FLAGS, 0, 0 },
901 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
902 CPU_SMAP_FLAGS, 0, 0 },
903 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
904 CPU_MPX_FLAGS, 0, 0 },
905 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
906 CPU_SHA_FLAGS, 0, 0 },
907 };
908
909 #ifdef I386COFF
910 /* Like s_lcomm_internal in gas/read.c but the alignment string
911 is allowed to be optional. */
912
913 static symbolS *
914 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
915 {
916 addressT align = 0;
917
918 SKIP_WHITESPACE ();
919
920 if (needs_align
921 && *input_line_pointer == ',')
922 {
923 align = parse_align (needs_align - 1);
924
925 if (align == (addressT) -1)
926 return NULL;
927 }
928 else
929 {
930 if (size >= 8)
931 align = 3;
932 else if (size >= 4)
933 align = 2;
934 else if (size >= 2)
935 align = 1;
936 else
937 align = 0;
938 }
939
940 bss_alloc (symbolP, size, align);
941 return symbolP;
942 }
943
944 static void
945 pe_lcomm (int needs_align)
946 {
947 s_comm_internal (needs_align * 2, pe_lcomm_internal);
948 }
949 #endif
950
951 const pseudo_typeS md_pseudo_table[] =
952 {
953 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
954 {"align", s_align_bytes, 0},
955 #else
956 {"align", s_align_ptwo, 0},
957 #endif
958 {"arch", set_cpu_arch, 0},
959 #ifndef I386COFF
960 {"bss", s_bss, 0},
961 #else
962 {"lcomm", pe_lcomm, 1},
963 #endif
964 {"ffloat", float_cons, 'f'},
965 {"dfloat", float_cons, 'd'},
966 {"tfloat", float_cons, 'x'},
967 {"value", cons, 2},
968 {"slong", signed_cons, 4},
969 {"noopt", s_ignore, 0},
970 {"optim", s_ignore, 0},
971 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
972 {"code16", set_code_flag, CODE_16BIT},
973 {"code32", set_code_flag, CODE_32BIT},
974 {"code64", set_code_flag, CODE_64BIT},
975 {"intel_syntax", set_intel_syntax, 1},
976 {"att_syntax", set_intel_syntax, 0},
977 {"intel_mnemonic", set_intel_mnemonic, 1},
978 {"att_mnemonic", set_intel_mnemonic, 0},
979 {"allow_index_reg", set_allow_index_reg, 1},
980 {"disallow_index_reg", set_allow_index_reg, 0},
981 {"sse_check", set_check, 0},
982 {"operand_check", set_check, 1},
983 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
984 {"largecomm", handle_large_common, 0},
985 #else
986 {"file", (void (*) (int)) dwarf2_directive_file, 0},
987 {"loc", dwarf2_directive_loc, 0},
988 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
989 #endif
990 #ifdef TE_PE
991 {"secrel32", pe_directive_secrel, 0},
992 #endif
993 {0, 0, 0}
994 };
995
996 /* For interface with expression (). */
997 extern char *input_line_pointer;
998
999 /* Hash table for instruction mnemonic lookup. */
1000 static struct hash_control *op_hash;
1001
1002 /* Hash table for register lookup. */
1003 static struct hash_control *reg_hash;
1004 \f
1005 void
1006 i386_align_code (fragS *fragP, int count)
1007 {
1008 /* Various efficient no-op patterns for aligning code labels.
1009 Note: Don't try to assemble the instructions in the comments.
1010 0L and 0w are not legal. */
1011 static const char f32_1[] =
1012 {0x90}; /* nop */
1013 static const char f32_2[] =
1014 {0x66,0x90}; /* xchg %ax,%ax */
1015 static const char f32_3[] =
1016 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1017 static const char f32_4[] =
1018 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1019 static const char f32_5[] =
1020 {0x90, /* nop */
1021 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1022 static const char f32_6[] =
1023 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1024 static const char f32_7[] =
1025 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1026 static const char f32_8[] =
1027 {0x90, /* nop */
1028 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1029 static const char f32_9[] =
1030 {0x89,0xf6, /* movl %esi,%esi */
1031 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1032 static const char f32_10[] =
1033 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1034 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1035 static const char f32_11[] =
1036 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1037 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1038 static const char f32_12[] =
1039 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1040 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1041 static const char f32_13[] =
1042 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1043 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1044 static const char f32_14[] =
1045 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1046 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1047 static const char f16_3[] =
1048 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1049 static const char f16_4[] =
1050 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1051 static const char f16_5[] =
1052 {0x90, /* nop */
1053 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1054 static const char f16_6[] =
1055 {0x89,0xf6, /* mov %si,%si */
1056 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1057 static const char f16_7[] =
1058 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1059 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1060 static const char f16_8[] =
1061 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1062 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1063 static const char jump_31[] =
1064 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1065 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1066 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1067 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1068 static const char *const f32_patt[] = {
1069 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1070 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1071 };
1072 static const char *const f16_patt[] = {
1073 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1074 };
1075 /* nopl (%[re]ax) */
1076 static const char alt_3[] =
1077 {0x0f,0x1f,0x00};
1078 /* nopl 0(%[re]ax) */
1079 static const char alt_4[] =
1080 {0x0f,0x1f,0x40,0x00};
1081 /* nopl 0(%[re]ax,%[re]ax,1) */
1082 static const char alt_5[] =
1083 {0x0f,0x1f,0x44,0x00,0x00};
1084 /* nopw 0(%[re]ax,%[re]ax,1) */
1085 static const char alt_6[] =
1086 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1087 /* nopl 0L(%[re]ax) */
1088 static const char alt_7[] =
1089 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1090 /* nopl 0L(%[re]ax,%[re]ax,1) */
1091 static const char alt_8[] =
1092 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1093 /* nopw 0L(%[re]ax,%[re]ax,1) */
1094 static const char alt_9[] =
1095 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1096 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1097 static const char alt_10[] =
1098 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1099 /* data16
1100 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1101 static const char alt_long_11[] =
1102 {0x66,
1103 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1104 /* data16
1105 data16
1106 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1107 static const char alt_long_12[] =
1108 {0x66,
1109 0x66,
1110 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1111 /* data16
1112 data16
1113 data16
1114 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1115 static const char alt_long_13[] =
1116 {0x66,
1117 0x66,
1118 0x66,
1119 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1120 /* data16
1121 data16
1122 data16
1123 data16
1124 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1125 static const char alt_long_14[] =
1126 {0x66,
1127 0x66,
1128 0x66,
1129 0x66,
1130 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1131 /* data16
1132 data16
1133 data16
1134 data16
1135 data16
1136 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1137 static const char alt_long_15[] =
1138 {0x66,
1139 0x66,
1140 0x66,
1141 0x66,
1142 0x66,
1143 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1144 /* nopl 0(%[re]ax,%[re]ax,1)
1145 nopw 0(%[re]ax,%[re]ax,1) */
1146 static const char alt_short_11[] =
1147 {0x0f,0x1f,0x44,0x00,0x00,
1148 0x66,0x0f,0x1f,0x44,0x00,0x00};
1149 /* nopw 0(%[re]ax,%[re]ax,1)
1150 nopw 0(%[re]ax,%[re]ax,1) */
1151 static const char alt_short_12[] =
1152 {0x66,0x0f,0x1f,0x44,0x00,0x00,
1153 0x66,0x0f,0x1f,0x44,0x00,0x00};
1154 /* nopw 0(%[re]ax,%[re]ax,1)
1155 nopl 0L(%[re]ax) */
1156 static const char alt_short_13[] =
1157 {0x66,0x0f,0x1f,0x44,0x00,0x00,
1158 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1159 /* nopl 0L(%[re]ax)
1160 nopl 0L(%[re]ax) */
1161 static const char alt_short_14[] =
1162 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
1163 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1164 /* nopl 0L(%[re]ax)
1165 nopl 0L(%[re]ax,%[re]ax,1) */
1166 static const char alt_short_15[] =
1167 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
1168 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1169 static const char *const alt_short_patt[] = {
1170 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1171 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
1172 alt_short_14, alt_short_15
1173 };
1174 static const char *const alt_long_patt[] = {
1175 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1176 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
1177 alt_long_14, alt_long_15
1178 };
1179
1180 /* Only align for at least a positive non-zero boundary. */
1181 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1182 return;
1183
1184 /* We need to decide which NOP sequence to use for 32bit and
1185 64bit. When -mtune= is used:
1186
1187 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1188 PROCESSOR_GENERIC32, f32_patt will be used.
1189 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
1190 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_COREI7, and
1191 PROCESSOR_GENERIC64, alt_long_patt will be used.
1192 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
1193 PROCESSOR_AMDFAM10, PROCESSOR_BD and PROCESSOR_BT, alt_short_patt
1194 will be used.
1195
1196 When -mtune= isn't used, alt_long_patt will be used if
1197 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1198 be used.
1199
1200 When -march= or .arch is used, we can't use anything beyond
1201 cpu_arch_isa_flags. */
1202
1203 if (flag_code == CODE_16BIT)
1204 {
1205 if (count > 8)
1206 {
1207 memcpy (fragP->fr_literal + fragP->fr_fix,
1208 jump_31, count);
1209 /* Adjust jump offset. */
1210 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1211 }
1212 else
1213 memcpy (fragP->fr_literal + fragP->fr_fix,
1214 f16_patt[count - 1], count);
1215 }
1216 else
1217 {
1218 const char *const *patt = NULL;
1219
1220 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1221 {
1222 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1223 switch (cpu_arch_tune)
1224 {
1225 case PROCESSOR_UNKNOWN:
1226 /* We use cpu_arch_isa_flags to check if we SHOULD
1227 optimize with nops. */
1228 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1229 patt = alt_long_patt;
1230 else
1231 patt = f32_patt;
1232 break;
1233 case PROCESSOR_PENTIUM4:
1234 case PROCESSOR_NOCONA:
1235 case PROCESSOR_CORE:
1236 case PROCESSOR_CORE2:
1237 case PROCESSOR_COREI7:
1238 case PROCESSOR_L1OM:
1239 case PROCESSOR_K1OM:
1240 case PROCESSOR_GENERIC64:
1241 patt = alt_long_patt;
1242 break;
1243 case PROCESSOR_K6:
1244 case PROCESSOR_ATHLON:
1245 case PROCESSOR_K8:
1246 case PROCESSOR_AMDFAM10:
1247 case PROCESSOR_BD:
1248 case PROCESSOR_BT:
1249 patt = alt_short_patt;
1250 break;
1251 case PROCESSOR_I386:
1252 case PROCESSOR_I486:
1253 case PROCESSOR_PENTIUM:
1254 case PROCESSOR_PENTIUMPRO:
1255 case PROCESSOR_GENERIC32:
1256 patt = f32_patt;
1257 break;
1258 }
1259 }
1260 else
1261 {
1262 switch (fragP->tc_frag_data.tune)
1263 {
1264 case PROCESSOR_UNKNOWN:
1265 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1266 PROCESSOR_UNKNOWN. */
1267 abort ();
1268 break;
1269
1270 case PROCESSOR_I386:
1271 case PROCESSOR_I486:
1272 case PROCESSOR_PENTIUM:
1273 case PROCESSOR_K6:
1274 case PROCESSOR_ATHLON:
1275 case PROCESSOR_K8:
1276 case PROCESSOR_AMDFAM10:
1277 case PROCESSOR_BD:
1278 case PROCESSOR_BT:
1279 case PROCESSOR_GENERIC32:
1280 /* We use cpu_arch_isa_flags to check if we CAN optimize
1281 with nops. */
1282 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1283 patt = alt_short_patt;
1284 else
1285 patt = f32_patt;
1286 break;
1287 case PROCESSOR_PENTIUMPRO:
1288 case PROCESSOR_PENTIUM4:
1289 case PROCESSOR_NOCONA:
1290 case PROCESSOR_CORE:
1291 case PROCESSOR_CORE2:
1292 case PROCESSOR_COREI7:
1293 case PROCESSOR_L1OM:
1294 case PROCESSOR_K1OM:
1295 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1296 patt = alt_long_patt;
1297 else
1298 patt = f32_patt;
1299 break;
1300 case PROCESSOR_GENERIC64:
1301 patt = alt_long_patt;
1302 break;
1303 }
1304 }
1305
1306 if (patt == f32_patt)
1307 {
1308 /* If the padding is less than 15 bytes, we use the normal
1309 ones. Otherwise, we use a jump instruction and adjust
1310 its offset. */
1311 int limit;
1312
1313 /* For 64bit, the limit is 3 bytes. */
1314 if (flag_code == CODE_64BIT
1315 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1316 limit = 3;
1317 else
1318 limit = 15;
1319 if (count < limit)
1320 memcpy (fragP->fr_literal + fragP->fr_fix,
1321 patt[count - 1], count);
1322 else
1323 {
1324 memcpy (fragP->fr_literal + fragP->fr_fix,
1325 jump_31, count);
1326 /* Adjust jump offset. */
1327 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1328 }
1329 }
1330 else
1331 {
1332 /* Maximum length of an instruction is 15 byte. If the
1333 padding is greater than 15 bytes and we don't use jump,
1334 we have to break it into smaller pieces. */
1335 int padding = count;
1336 while (padding > 15)
1337 {
1338 padding -= 15;
1339 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1340 patt [14], 15);
1341 }
1342
1343 if (padding)
1344 memcpy (fragP->fr_literal + fragP->fr_fix,
1345 patt [padding - 1], padding);
1346 }
1347 }
1348 fragP->fr_var = count;
1349 }
1350
1351 static INLINE int
1352 operand_type_all_zero (const union i386_operand_type *x)
1353 {
1354 switch (ARRAY_SIZE(x->array))
1355 {
1356 case 3:
1357 if (x->array[2])
1358 return 0;
1359 case 2:
1360 if (x->array[1])
1361 return 0;
1362 case 1:
1363 return !x->array[0];
1364 default:
1365 abort ();
1366 }
1367 }
1368
1369 static INLINE void
1370 operand_type_set (union i386_operand_type *x, unsigned int v)
1371 {
1372 switch (ARRAY_SIZE(x->array))
1373 {
1374 case 3:
1375 x->array[2] = v;
1376 case 2:
1377 x->array[1] = v;
1378 case 1:
1379 x->array[0] = v;
1380 break;
1381 default:
1382 abort ();
1383 }
1384 }
1385
1386 static INLINE int
1387 operand_type_equal (const union i386_operand_type *x,
1388 const union i386_operand_type *y)
1389 {
1390 switch (ARRAY_SIZE(x->array))
1391 {
1392 case 3:
1393 if (x->array[2] != y->array[2])
1394 return 0;
1395 case 2:
1396 if (x->array[1] != y->array[1])
1397 return 0;
1398 case 1:
1399 return x->array[0] == y->array[0];
1400 break;
1401 default:
1402 abort ();
1403 }
1404 }
1405
1406 static INLINE int
1407 cpu_flags_all_zero (const union i386_cpu_flags *x)
1408 {
1409 switch (ARRAY_SIZE(x->array))
1410 {
1411 case 3:
1412 if (x->array[2])
1413 return 0;
1414 case 2:
1415 if (x->array[1])
1416 return 0;
1417 case 1:
1418 return !x->array[0];
1419 default:
1420 abort ();
1421 }
1422 }
1423
1424 static INLINE void
1425 cpu_flags_set (union i386_cpu_flags *x, unsigned int v)
1426 {
1427 switch (ARRAY_SIZE(x->array))
1428 {
1429 case 3:
1430 x->array[2] = v;
1431 case 2:
1432 x->array[1] = v;
1433 case 1:
1434 x->array[0] = v;
1435 break;
1436 default:
1437 abort ();
1438 }
1439 }
1440
1441 static INLINE int
1442 cpu_flags_equal (const union i386_cpu_flags *x,
1443 const union i386_cpu_flags *y)
1444 {
1445 switch (ARRAY_SIZE(x->array))
1446 {
1447 case 3:
1448 if (x->array[2] != y->array[2])
1449 return 0;
1450 case 2:
1451 if (x->array[1] != y->array[1])
1452 return 0;
1453 case 1:
1454 return x->array[0] == y->array[0];
1455 break;
1456 default:
1457 abort ();
1458 }
1459 }
1460
1461 static INLINE int
1462 cpu_flags_check_cpu64 (i386_cpu_flags f)
1463 {
1464 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1465 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1466 }
1467
1468 static INLINE i386_cpu_flags
1469 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1470 {
1471 switch (ARRAY_SIZE (x.array))
1472 {
1473 case 3:
1474 x.array [2] &= y.array [2];
1475 case 2:
1476 x.array [1] &= y.array [1];
1477 case 1:
1478 x.array [0] &= y.array [0];
1479 break;
1480 default:
1481 abort ();
1482 }
1483 return x;
1484 }
1485
1486 static INLINE i386_cpu_flags
1487 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1488 {
1489 switch (ARRAY_SIZE (x.array))
1490 {
1491 case 3:
1492 x.array [2] |= y.array [2];
1493 case 2:
1494 x.array [1] |= y.array [1];
1495 case 1:
1496 x.array [0] |= y.array [0];
1497 break;
1498 default:
1499 abort ();
1500 }
1501 return x;
1502 }
1503
1504 static INLINE i386_cpu_flags
1505 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1506 {
1507 switch (ARRAY_SIZE (x.array))
1508 {
1509 case 3:
1510 x.array [2] &= ~y.array [2];
1511 case 2:
1512 x.array [1] &= ~y.array [1];
1513 case 1:
1514 x.array [0] &= ~y.array [0];
1515 break;
1516 default:
1517 abort ();
1518 }
1519 return x;
1520 }
1521
1522 #define CPU_FLAGS_ARCH_MATCH 0x1
1523 #define CPU_FLAGS_64BIT_MATCH 0x2
1524 #define CPU_FLAGS_AES_MATCH 0x4
1525 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1526 #define CPU_FLAGS_AVX_MATCH 0x10
1527
1528 #define CPU_FLAGS_32BIT_MATCH \
1529 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1530 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1531 #define CPU_FLAGS_PERFECT_MATCH \
1532 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1533
1534 /* Return CPU flags match bits. */
1535
1536 static int
1537 cpu_flags_match (const insn_template *t)
1538 {
1539 i386_cpu_flags x = t->cpu_flags;
1540 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1541
1542 x.bitfield.cpu64 = 0;
1543 x.bitfield.cpuno64 = 0;
1544
1545 if (cpu_flags_all_zero (&x))
1546 {
1547 /* This instruction is available on all archs. */
1548 match |= CPU_FLAGS_32BIT_MATCH;
1549 }
1550 else
1551 {
1552 /* This instruction is available only on some archs. */
1553 i386_cpu_flags cpu = cpu_arch_flags;
1554
1555 cpu.bitfield.cpu64 = 0;
1556 cpu.bitfield.cpuno64 = 0;
1557 cpu = cpu_flags_and (x, cpu);
1558 if (!cpu_flags_all_zero (&cpu))
1559 {
1560 if (x.bitfield.cpuavx)
1561 {
1562 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1563 if (cpu.bitfield.cpuavx)
1564 {
1565 /* Check SSE2AVX. */
1566 if (!t->opcode_modifier.sse2avx|| sse2avx)
1567 {
1568 match |= (CPU_FLAGS_ARCH_MATCH
1569 | CPU_FLAGS_AVX_MATCH);
1570 /* Check AES. */
1571 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1572 match |= CPU_FLAGS_AES_MATCH;
1573 /* Check PCLMUL. */
1574 if (!x.bitfield.cpupclmul
1575 || cpu.bitfield.cpupclmul)
1576 match |= CPU_FLAGS_PCLMUL_MATCH;
1577 }
1578 }
1579 else
1580 match |= CPU_FLAGS_ARCH_MATCH;
1581 }
1582 else
1583 match |= CPU_FLAGS_32BIT_MATCH;
1584 }
1585 }
1586 return match;
1587 }
1588
1589 static INLINE i386_operand_type
1590 operand_type_and (i386_operand_type x, i386_operand_type y)
1591 {
1592 switch (ARRAY_SIZE (x.array))
1593 {
1594 case 3:
1595 x.array [2] &= y.array [2];
1596 case 2:
1597 x.array [1] &= y.array [1];
1598 case 1:
1599 x.array [0] &= y.array [0];
1600 break;
1601 default:
1602 abort ();
1603 }
1604 return x;
1605 }
1606
1607 static INLINE i386_operand_type
1608 operand_type_or (i386_operand_type x, i386_operand_type y)
1609 {
1610 switch (ARRAY_SIZE (x.array))
1611 {
1612 case 3:
1613 x.array [2] |= y.array [2];
1614 case 2:
1615 x.array [1] |= y.array [1];
1616 case 1:
1617 x.array [0] |= y.array [0];
1618 break;
1619 default:
1620 abort ();
1621 }
1622 return x;
1623 }
1624
1625 static INLINE i386_operand_type
1626 operand_type_xor (i386_operand_type x, i386_operand_type y)
1627 {
1628 switch (ARRAY_SIZE (x.array))
1629 {
1630 case 3:
1631 x.array [2] ^= y.array [2];
1632 case 2:
1633 x.array [1] ^= y.array [1];
1634 case 1:
1635 x.array [0] ^= y.array [0];
1636 break;
1637 default:
1638 abort ();
1639 }
1640 return x;
1641 }
1642
1643 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1644 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1645 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1646 static const i386_operand_type inoutportreg
1647 = OPERAND_TYPE_INOUTPORTREG;
1648 static const i386_operand_type reg16_inoutportreg
1649 = OPERAND_TYPE_REG16_INOUTPORTREG;
1650 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1651 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1652 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1653 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1654 static const i386_operand_type anydisp
1655 = OPERAND_TYPE_ANYDISP;
1656 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1657 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1658 static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1659 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1660 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1661 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1662 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1663 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1664 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1665 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1666 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1667 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1668 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1669 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1670 static const i386_operand_type regbnd = OPERAND_TYPE_REGBND;
1671 static const i386_operand_type vec_disp8 = OPERAND_TYPE_VEC_DISP8;
1672
1673 enum operand_type
1674 {
1675 reg,
1676 imm,
1677 disp,
1678 anymem
1679 };
1680
1681 static INLINE int
1682 operand_type_check (i386_operand_type t, enum operand_type c)
1683 {
1684 switch (c)
1685 {
1686 case reg:
1687 return (t.bitfield.reg8
1688 || t.bitfield.reg16
1689 || t.bitfield.reg32
1690 || t.bitfield.reg64);
1691
1692 case imm:
1693 return (t.bitfield.imm8
1694 || t.bitfield.imm8s
1695 || t.bitfield.imm16
1696 || t.bitfield.imm32
1697 || t.bitfield.imm32s
1698 || t.bitfield.imm64);
1699
1700 case disp:
1701 return (t.bitfield.disp8
1702 || t.bitfield.disp16
1703 || t.bitfield.disp32
1704 || t.bitfield.disp32s
1705 || t.bitfield.disp64);
1706
1707 case anymem:
1708 return (t.bitfield.disp8
1709 || t.bitfield.disp16
1710 || t.bitfield.disp32
1711 || t.bitfield.disp32s
1712 || t.bitfield.disp64
1713 || t.bitfield.baseindex);
1714
1715 default:
1716 abort ();
1717 }
1718
1719 return 0;
1720 }
1721
1722 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1723 operand J for instruction template T. */
1724
1725 static INLINE int
1726 match_reg_size (const insn_template *t, unsigned int j)
1727 {
1728 return !((i.types[j].bitfield.byte
1729 && !t->operand_types[j].bitfield.byte)
1730 || (i.types[j].bitfield.word
1731 && !t->operand_types[j].bitfield.word)
1732 || (i.types[j].bitfield.dword
1733 && !t->operand_types[j].bitfield.dword)
1734 || (i.types[j].bitfield.qword
1735 && !t->operand_types[j].bitfield.qword));
1736 }
1737
1738 /* Return 1 if there is no conflict in any size on operand J for
1739 instruction template T. */
1740
1741 static INLINE int
1742 match_mem_size (const insn_template *t, unsigned int j)
1743 {
1744 return (match_reg_size (t, j)
1745 && !((i.types[j].bitfield.unspecified
1746 && !t->operand_types[j].bitfield.unspecified)
1747 || (i.types[j].bitfield.fword
1748 && !t->operand_types[j].bitfield.fword)
1749 || (i.types[j].bitfield.tbyte
1750 && !t->operand_types[j].bitfield.tbyte)
1751 || (i.types[j].bitfield.xmmword
1752 && !t->operand_types[j].bitfield.xmmword)
1753 || (i.types[j].bitfield.ymmword
1754 && !t->operand_types[j].bitfield.ymmword)
1755 || (i.types[j].bitfield.zmmword
1756 && !t->operand_types[j].bitfield.zmmword)));
1757 }
1758
1759 /* Return 1 if there is no size conflict on any operands for
1760 instruction template T. */
1761
1762 static INLINE int
1763 operand_size_match (const insn_template *t)
1764 {
1765 unsigned int j;
1766 int match = 1;
1767
1768 /* Don't check jump instructions. */
1769 if (t->opcode_modifier.jump
1770 || t->opcode_modifier.jumpbyte
1771 || t->opcode_modifier.jumpdword
1772 || t->opcode_modifier.jumpintersegment)
1773 return match;
1774
1775 /* Check memory and accumulator operand size. */
1776 for (j = 0; j < i.operands; j++)
1777 {
1778 if (t->operand_types[j].bitfield.anysize)
1779 continue;
1780
1781 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1782 {
1783 match = 0;
1784 break;
1785 }
1786
1787 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1788 {
1789 match = 0;
1790 break;
1791 }
1792 }
1793
1794 if (match)
1795 return match;
1796 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1797 {
1798 mismatch:
1799 i.error = operand_size_mismatch;
1800 return 0;
1801 }
1802
1803 /* Check reverse. */
1804 gas_assert (i.operands == 2);
1805
1806 match = 1;
1807 for (j = 0; j < 2; j++)
1808 {
1809 if (t->operand_types[j].bitfield.acc
1810 && !match_reg_size (t, j ? 0 : 1))
1811 goto mismatch;
1812
1813 if (i.types[j].bitfield.mem
1814 && !match_mem_size (t, j ? 0 : 1))
1815 goto mismatch;
1816 }
1817
1818 return match;
1819 }
1820
1821 static INLINE int
1822 operand_type_match (i386_operand_type overlap,
1823 i386_operand_type given)
1824 {
1825 i386_operand_type temp = overlap;
1826
1827 temp.bitfield.jumpabsolute = 0;
1828 temp.bitfield.unspecified = 0;
1829 temp.bitfield.byte = 0;
1830 temp.bitfield.word = 0;
1831 temp.bitfield.dword = 0;
1832 temp.bitfield.fword = 0;
1833 temp.bitfield.qword = 0;
1834 temp.bitfield.tbyte = 0;
1835 temp.bitfield.xmmword = 0;
1836 temp.bitfield.ymmword = 0;
1837 temp.bitfield.zmmword = 0;
1838 if (operand_type_all_zero (&temp))
1839 goto mismatch;
1840
1841 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1842 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1843 return 1;
1844
1845 mismatch:
1846 i.error = operand_type_mismatch;
1847 return 0;
1848 }
1849
1850 /* If given types g0 and g1 are registers they must be of the same type
1851 unless the expected operand type register overlap is null.
1852 Note that Acc in a template matches every size of reg. */
1853
1854 static INLINE int
1855 operand_type_register_match (i386_operand_type m0,
1856 i386_operand_type g0,
1857 i386_operand_type t0,
1858 i386_operand_type m1,
1859 i386_operand_type g1,
1860 i386_operand_type t1)
1861 {
1862 if (!operand_type_check (g0, reg))
1863 return 1;
1864
1865 if (!operand_type_check (g1, reg))
1866 return 1;
1867
1868 if (g0.bitfield.reg8 == g1.bitfield.reg8
1869 && g0.bitfield.reg16 == g1.bitfield.reg16
1870 && g0.bitfield.reg32 == g1.bitfield.reg32
1871 && g0.bitfield.reg64 == g1.bitfield.reg64)
1872 return 1;
1873
1874 if (m0.bitfield.acc)
1875 {
1876 t0.bitfield.reg8 = 1;
1877 t0.bitfield.reg16 = 1;
1878 t0.bitfield.reg32 = 1;
1879 t0.bitfield.reg64 = 1;
1880 }
1881
1882 if (m1.bitfield.acc)
1883 {
1884 t1.bitfield.reg8 = 1;
1885 t1.bitfield.reg16 = 1;
1886 t1.bitfield.reg32 = 1;
1887 t1.bitfield.reg64 = 1;
1888 }
1889
1890 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1891 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1892 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1893 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1894 return 1;
1895
1896 i.error = register_type_mismatch;
1897
1898 return 0;
1899 }
1900
1901 static INLINE unsigned int
1902 register_number (const reg_entry *r)
1903 {
1904 unsigned int nr = r->reg_num;
1905
1906 if (r->reg_flags & RegRex)
1907 nr += 8;
1908
1909 return nr;
1910 }
1911
1912 static INLINE unsigned int
1913 mode_from_disp_size (i386_operand_type t)
1914 {
1915 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
1916 return 1;
1917 else if (t.bitfield.disp16
1918 || t.bitfield.disp32
1919 || t.bitfield.disp32s)
1920 return 2;
1921 else
1922 return 0;
1923 }
1924
1925 static INLINE int
1926 fits_in_signed_byte (offsetT num)
1927 {
1928 return (num >= -128) && (num <= 127);
1929 }
1930
1931 static INLINE int
1932 fits_in_unsigned_byte (offsetT num)
1933 {
1934 return (num & 0xff) == num;
1935 }
1936
1937 static INLINE int
1938 fits_in_unsigned_word (offsetT num)
1939 {
1940 return (num & 0xffff) == num;
1941 }
1942
1943 static INLINE int
1944 fits_in_signed_word (offsetT num)
1945 {
1946 return (-32768 <= num) && (num <= 32767);
1947 }
1948
1949 static INLINE int
1950 fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
1951 {
1952 #ifndef BFD64
1953 return 1;
1954 #else
1955 return (!(((offsetT) -1 << 31) & num)
1956 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
1957 #endif
1958 } /* fits_in_signed_long() */
1959
1960 static INLINE int
1961 fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
1962 {
1963 #ifndef BFD64
1964 return 1;
1965 #else
1966 return (num & (((offsetT) 2 << 31) - 1)) == num;
1967 #endif
1968 } /* fits_in_unsigned_long() */
1969
1970 static INLINE int
1971 fits_in_vec_disp8 (offsetT num)
1972 {
1973 int shift = i.memshift;
1974 unsigned int mask;
1975
1976 if (shift == -1)
1977 abort ();
1978
1979 mask = (1 << shift) - 1;
1980
1981 /* Return 0 if NUM isn't properly aligned. */
1982 if ((num & mask))
1983 return 0;
1984
1985 /* Check if NUM will fit in 8bit after shift. */
1986 return fits_in_signed_byte (num >> shift);
1987 }
1988
1989 static INLINE int
1990 fits_in_imm4 (offsetT num)
1991 {
1992 return (num & 0xf) == num;
1993 }
1994
1995 static i386_operand_type
1996 smallest_imm_type (offsetT num)
1997 {
1998 i386_operand_type t;
1999
2000 operand_type_set (&t, 0);
2001 t.bitfield.imm64 = 1;
2002
2003 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2004 {
2005 /* This code is disabled on the 486 because all the Imm1 forms
2006 in the opcode table are slower on the i486. They're the
2007 versions with the implicitly specified single-position
2008 displacement, which has another syntax if you really want to
2009 use that form. */
2010 t.bitfield.imm1 = 1;
2011 t.bitfield.imm8 = 1;
2012 t.bitfield.imm8s = 1;
2013 t.bitfield.imm16 = 1;
2014 t.bitfield.imm32 = 1;
2015 t.bitfield.imm32s = 1;
2016 }
2017 else if (fits_in_signed_byte (num))
2018 {
2019 t.bitfield.imm8 = 1;
2020 t.bitfield.imm8s = 1;
2021 t.bitfield.imm16 = 1;
2022 t.bitfield.imm32 = 1;
2023 t.bitfield.imm32s = 1;
2024 }
2025 else if (fits_in_unsigned_byte (num))
2026 {
2027 t.bitfield.imm8 = 1;
2028 t.bitfield.imm16 = 1;
2029 t.bitfield.imm32 = 1;
2030 t.bitfield.imm32s = 1;
2031 }
2032 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2033 {
2034 t.bitfield.imm16 = 1;
2035 t.bitfield.imm32 = 1;
2036 t.bitfield.imm32s = 1;
2037 }
2038 else if (fits_in_signed_long (num))
2039 {
2040 t.bitfield.imm32 = 1;
2041 t.bitfield.imm32s = 1;
2042 }
2043 else if (fits_in_unsigned_long (num))
2044 t.bitfield.imm32 = 1;
2045
2046 return t;
2047 }
2048
2049 static offsetT
2050 offset_in_range (offsetT val, int size)
2051 {
2052 addressT mask;
2053
2054 switch (size)
2055 {
2056 case 1: mask = ((addressT) 1 << 8) - 1; break;
2057 case 2: mask = ((addressT) 1 << 16) - 1; break;
2058 case 4: mask = ((addressT) 2 << 31) - 1; break;
2059 #ifdef BFD64
2060 case 8: mask = ((addressT) 2 << 63) - 1; break;
2061 #endif
2062 default: abort ();
2063 }
2064
2065 #ifdef BFD64
2066 /* If BFD64, sign extend val for 32bit address mode. */
2067 if (flag_code != CODE_64BIT
2068 || i.prefix[ADDR_PREFIX])
2069 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2070 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2071 #endif
2072
2073 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2074 {
2075 char buf1[40], buf2[40];
2076
2077 sprint_value (buf1, val);
2078 sprint_value (buf2, val & mask);
2079 as_warn (_("%s shortened to %s"), buf1, buf2);
2080 }
2081 return val & mask;
2082 }
2083
2084 enum PREFIX_GROUP
2085 {
2086 PREFIX_EXIST = 0,
2087 PREFIX_LOCK,
2088 PREFIX_REP,
2089 PREFIX_OTHER
2090 };
2091
2092 /* Returns
2093 a. PREFIX_EXIST if attempting to add a prefix where one from the
2094 same class already exists.
2095 b. PREFIX_LOCK if lock prefix is added.
2096 c. PREFIX_REP if rep/repne prefix is added.
2097 d. PREFIX_OTHER if other prefix is added.
2098 */
2099
2100 static enum PREFIX_GROUP
2101 add_prefix (unsigned int prefix)
2102 {
2103 enum PREFIX_GROUP ret = PREFIX_OTHER;
2104 unsigned int q;
2105
2106 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2107 && flag_code == CODE_64BIT)
2108 {
2109 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2110 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2111 && (prefix & (REX_R | REX_X | REX_B))))
2112 ret = PREFIX_EXIST;
2113 q = REX_PREFIX;
2114 }
2115 else
2116 {
2117 switch (prefix)
2118 {
2119 default:
2120 abort ();
2121
2122 case CS_PREFIX_OPCODE:
2123 case DS_PREFIX_OPCODE:
2124 case ES_PREFIX_OPCODE:
2125 case FS_PREFIX_OPCODE:
2126 case GS_PREFIX_OPCODE:
2127 case SS_PREFIX_OPCODE:
2128 q = SEG_PREFIX;
2129 break;
2130
2131 case REPNE_PREFIX_OPCODE:
2132 case REPE_PREFIX_OPCODE:
2133 q = REP_PREFIX;
2134 ret = PREFIX_REP;
2135 break;
2136
2137 case LOCK_PREFIX_OPCODE:
2138 q = LOCK_PREFIX;
2139 ret = PREFIX_LOCK;
2140 break;
2141
2142 case FWAIT_OPCODE:
2143 q = WAIT_PREFIX;
2144 break;
2145
2146 case ADDR_PREFIX_OPCODE:
2147 q = ADDR_PREFIX;
2148 break;
2149
2150 case DATA_PREFIX_OPCODE:
2151 q = DATA_PREFIX;
2152 break;
2153 }
2154 if (i.prefix[q] != 0)
2155 ret = PREFIX_EXIST;
2156 }
2157
2158 if (ret)
2159 {
2160 if (!i.prefix[q])
2161 ++i.prefixes;
2162 i.prefix[q] |= prefix;
2163 }
2164 else
2165 as_bad (_("same type of prefix used twice"));
2166
2167 return ret;
2168 }
2169
2170 static void
2171 update_code_flag (int value, int check)
2172 {
2173 PRINTF_LIKE ((*as_error));
2174
2175 flag_code = (enum flag_code) value;
2176 if (flag_code == CODE_64BIT)
2177 {
2178 cpu_arch_flags.bitfield.cpu64 = 1;
2179 cpu_arch_flags.bitfield.cpuno64 = 0;
2180 }
2181 else
2182 {
2183 cpu_arch_flags.bitfield.cpu64 = 0;
2184 cpu_arch_flags.bitfield.cpuno64 = 1;
2185 }
2186 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2187 {
2188 if (check)
2189 as_error = as_fatal;
2190 else
2191 as_error = as_bad;
2192 (*as_error) (_("64bit mode not supported on `%s'."),
2193 cpu_arch_name ? cpu_arch_name : default_arch);
2194 }
2195 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2196 {
2197 if (check)
2198 as_error = as_fatal;
2199 else
2200 as_error = as_bad;
2201 (*as_error) (_("32bit mode not supported on `%s'."),
2202 cpu_arch_name ? cpu_arch_name : default_arch);
2203 }
2204 stackop_size = '\0';
2205 }
2206
2207 static void
2208 set_code_flag (int value)
2209 {
2210 update_code_flag (value, 0);
2211 }
2212
2213 static void
2214 set_16bit_gcc_code_flag (int new_code_flag)
2215 {
2216 flag_code = (enum flag_code) new_code_flag;
2217 if (flag_code != CODE_16BIT)
2218 abort ();
2219 cpu_arch_flags.bitfield.cpu64 = 0;
2220 cpu_arch_flags.bitfield.cpuno64 = 1;
2221 stackop_size = LONG_MNEM_SUFFIX;
2222 }
2223
2224 static void
2225 set_intel_syntax (int syntax_flag)
2226 {
2227 /* Find out if register prefixing is specified. */
2228 int ask_naked_reg = 0;
2229
2230 SKIP_WHITESPACE ();
2231 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2232 {
2233 char *string = input_line_pointer;
2234 int e = get_symbol_end ();
2235
2236 if (strcmp (string, "prefix") == 0)
2237 ask_naked_reg = 1;
2238 else if (strcmp (string, "noprefix") == 0)
2239 ask_naked_reg = -1;
2240 else
2241 as_bad (_("bad argument to syntax directive."));
2242 *input_line_pointer = e;
2243 }
2244 demand_empty_rest_of_line ();
2245
2246 intel_syntax = syntax_flag;
2247
2248 if (ask_naked_reg == 0)
2249 allow_naked_reg = (intel_syntax
2250 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2251 else
2252 allow_naked_reg = (ask_naked_reg < 0);
2253
2254 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2255
2256 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2257 identifier_chars['$'] = intel_syntax ? '$' : 0;
2258 register_prefix = allow_naked_reg ? "" : "%";
2259 }
2260
2261 static void
2262 set_intel_mnemonic (int mnemonic_flag)
2263 {
2264 intel_mnemonic = mnemonic_flag;
2265 }
2266
2267 static void
2268 set_allow_index_reg (int flag)
2269 {
2270 allow_index_reg = flag;
2271 }
2272
2273 static void
2274 set_check (int what)
2275 {
2276 enum check_kind *kind;
2277 const char *str;
2278
2279 if (what)
2280 {
2281 kind = &operand_check;
2282 str = "operand";
2283 }
2284 else
2285 {
2286 kind = &sse_check;
2287 str = "sse";
2288 }
2289
2290 SKIP_WHITESPACE ();
2291
2292 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2293 {
2294 char *string = input_line_pointer;
2295 int e = get_symbol_end ();
2296
2297 if (strcmp (string, "none") == 0)
2298 *kind = check_none;
2299 else if (strcmp (string, "warning") == 0)
2300 *kind = check_warning;
2301 else if (strcmp (string, "error") == 0)
2302 *kind = check_error;
2303 else
2304 as_bad (_("bad argument to %s_check directive."), str);
2305 *input_line_pointer = e;
2306 }
2307 else
2308 as_bad (_("missing argument for %s_check directive"), str);
2309
2310 demand_empty_rest_of_line ();
2311 }
2312
2313 static void
2314 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2315 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2316 {
2317 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2318 static const char *arch;
2319
2320 /* Intel LIOM is only supported on ELF. */
2321 if (!IS_ELF)
2322 return;
2323
2324 if (!arch)
2325 {
2326 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2327 use default_arch. */
2328 arch = cpu_arch_name;
2329 if (!arch)
2330 arch = default_arch;
2331 }
2332
2333 /* If we are targeting Intel L1OM, we must enable it. */
2334 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2335 || new_flag.bitfield.cpul1om)
2336 return;
2337
2338 /* If we are targeting Intel K1OM, we must enable it. */
2339 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2340 || new_flag.bitfield.cpuk1om)
2341 return;
2342
2343 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2344 #endif
2345 }
2346
2347 static void
2348 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2349 {
2350 SKIP_WHITESPACE ();
2351
2352 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2353 {
2354 char *string = input_line_pointer;
2355 int e = get_symbol_end ();
2356 unsigned int j;
2357 i386_cpu_flags flags;
2358
2359 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2360 {
2361 if (strcmp (string, cpu_arch[j].name) == 0)
2362 {
2363 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2364
2365 if (*string != '.')
2366 {
2367 cpu_arch_name = cpu_arch[j].name;
2368 cpu_sub_arch_name = NULL;
2369 cpu_arch_flags = cpu_arch[j].flags;
2370 if (flag_code == CODE_64BIT)
2371 {
2372 cpu_arch_flags.bitfield.cpu64 = 1;
2373 cpu_arch_flags.bitfield.cpuno64 = 0;
2374 }
2375 else
2376 {
2377 cpu_arch_flags.bitfield.cpu64 = 0;
2378 cpu_arch_flags.bitfield.cpuno64 = 1;
2379 }
2380 cpu_arch_isa = cpu_arch[j].type;
2381 cpu_arch_isa_flags = cpu_arch[j].flags;
2382 if (!cpu_arch_tune_set)
2383 {
2384 cpu_arch_tune = cpu_arch_isa;
2385 cpu_arch_tune_flags = cpu_arch_isa_flags;
2386 }
2387 break;
2388 }
2389
2390 if (!cpu_arch[j].negated)
2391 flags = cpu_flags_or (cpu_arch_flags,
2392 cpu_arch[j].flags);
2393 else
2394 flags = cpu_flags_and_not (cpu_arch_flags,
2395 cpu_arch[j].flags);
2396 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2397 {
2398 if (cpu_sub_arch_name)
2399 {
2400 char *name = cpu_sub_arch_name;
2401 cpu_sub_arch_name = concat (name,
2402 cpu_arch[j].name,
2403 (const char *) NULL);
2404 free (name);
2405 }
2406 else
2407 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2408 cpu_arch_flags = flags;
2409 cpu_arch_isa_flags = flags;
2410 }
2411 *input_line_pointer = e;
2412 demand_empty_rest_of_line ();
2413 return;
2414 }
2415 }
2416 if (j >= ARRAY_SIZE (cpu_arch))
2417 as_bad (_("no such architecture: `%s'"), string);
2418
2419 *input_line_pointer = e;
2420 }
2421 else
2422 as_bad (_("missing cpu architecture"));
2423
2424 no_cond_jump_promotion = 0;
2425 if (*input_line_pointer == ','
2426 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2427 {
2428 char *string = ++input_line_pointer;
2429 int e = get_symbol_end ();
2430
2431 if (strcmp (string, "nojumps") == 0)
2432 no_cond_jump_promotion = 1;
2433 else if (strcmp (string, "jumps") == 0)
2434 ;
2435 else
2436 as_bad (_("no such architecture modifier: `%s'"), string);
2437
2438 *input_line_pointer = e;
2439 }
2440
2441 demand_empty_rest_of_line ();
2442 }
2443
2444 enum bfd_architecture
2445 i386_arch (void)
2446 {
2447 if (cpu_arch_isa == PROCESSOR_L1OM)
2448 {
2449 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2450 || flag_code != CODE_64BIT)
2451 as_fatal (_("Intel L1OM is 64bit ELF only"));
2452 return bfd_arch_l1om;
2453 }
2454 else if (cpu_arch_isa == PROCESSOR_K1OM)
2455 {
2456 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2457 || flag_code != CODE_64BIT)
2458 as_fatal (_("Intel K1OM is 64bit ELF only"));
2459 return bfd_arch_k1om;
2460 }
2461 else
2462 return bfd_arch_i386;
2463 }
2464
2465 unsigned long
2466 i386_mach (void)
2467 {
2468 if (!strncmp (default_arch, "x86_64", 6))
2469 {
2470 if (cpu_arch_isa == PROCESSOR_L1OM)
2471 {
2472 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2473 || default_arch[6] != '\0')
2474 as_fatal (_("Intel L1OM is 64bit ELF only"));
2475 return bfd_mach_l1om;
2476 }
2477 else if (cpu_arch_isa == PROCESSOR_K1OM)
2478 {
2479 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2480 || default_arch[6] != '\0')
2481 as_fatal (_("Intel K1OM is 64bit ELF only"));
2482 return bfd_mach_k1om;
2483 }
2484 else if (default_arch[6] == '\0')
2485 return bfd_mach_x86_64;
2486 else
2487 return bfd_mach_x64_32;
2488 }
2489 else if (!strcmp (default_arch, "i386"))
2490 return bfd_mach_i386_i386;
2491 else
2492 as_fatal (_("unknown architecture"));
2493 }
2494 \f
2495 void
2496 md_begin (void)
2497 {
2498 const char *hash_err;
2499
2500 /* Initialize op_hash hash table. */
2501 op_hash = hash_new ();
2502
2503 {
2504 const insn_template *optab;
2505 templates *core_optab;
2506
2507 /* Setup for loop. */
2508 optab = i386_optab;
2509 core_optab = (templates *) xmalloc (sizeof (templates));
2510 core_optab->start = optab;
2511
2512 while (1)
2513 {
2514 ++optab;
2515 if (optab->name == NULL
2516 || strcmp (optab->name, (optab - 1)->name) != 0)
2517 {
2518 /* different name --> ship out current template list;
2519 add to hash table; & begin anew. */
2520 core_optab->end = optab;
2521 hash_err = hash_insert (op_hash,
2522 (optab - 1)->name,
2523 (void *) core_optab);
2524 if (hash_err)
2525 {
2526 as_fatal (_("can't hash %s: %s"),
2527 (optab - 1)->name,
2528 hash_err);
2529 }
2530 if (optab->name == NULL)
2531 break;
2532 core_optab = (templates *) xmalloc (sizeof (templates));
2533 core_optab->start = optab;
2534 }
2535 }
2536 }
2537
2538 /* Initialize reg_hash hash table. */
2539 reg_hash = hash_new ();
2540 {
2541 const reg_entry *regtab;
2542 unsigned int regtab_size = i386_regtab_size;
2543
2544 for (regtab = i386_regtab; regtab_size--; regtab++)
2545 {
2546 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2547 if (hash_err)
2548 as_fatal (_("can't hash %s: %s"),
2549 regtab->reg_name,
2550 hash_err);
2551 }
2552 }
2553
2554 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2555 {
2556 int c;
2557 char *p;
2558
2559 for (c = 0; c < 256; c++)
2560 {
2561 if (ISDIGIT (c))
2562 {
2563 digit_chars[c] = c;
2564 mnemonic_chars[c] = c;
2565 register_chars[c] = c;
2566 operand_chars[c] = c;
2567 }
2568 else if (ISLOWER (c))
2569 {
2570 mnemonic_chars[c] = c;
2571 register_chars[c] = c;
2572 operand_chars[c] = c;
2573 }
2574 else if (ISUPPER (c))
2575 {
2576 mnemonic_chars[c] = TOLOWER (c);
2577 register_chars[c] = mnemonic_chars[c];
2578 operand_chars[c] = c;
2579 }
2580 else if (c == '{' || c == '}')
2581 operand_chars[c] = c;
2582
2583 if (ISALPHA (c) || ISDIGIT (c))
2584 identifier_chars[c] = c;
2585 else if (c >= 128)
2586 {
2587 identifier_chars[c] = c;
2588 operand_chars[c] = c;
2589 }
2590 }
2591
2592 #ifdef LEX_AT
2593 identifier_chars['@'] = '@';
2594 #endif
2595 #ifdef LEX_QM
2596 identifier_chars['?'] = '?';
2597 operand_chars['?'] = '?';
2598 #endif
2599 digit_chars['-'] = '-';
2600 mnemonic_chars['_'] = '_';
2601 mnemonic_chars['-'] = '-';
2602 mnemonic_chars['.'] = '.';
2603 identifier_chars['_'] = '_';
2604 identifier_chars['.'] = '.';
2605
2606 for (p = operand_special_chars; *p != '\0'; p++)
2607 operand_chars[(unsigned char) *p] = *p;
2608 }
2609
2610 if (flag_code == CODE_64BIT)
2611 {
2612 #if defined (OBJ_COFF) && defined (TE_PE)
2613 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2614 ? 32 : 16);
2615 #else
2616 x86_dwarf2_return_column = 16;
2617 #endif
2618 x86_cie_data_alignment = -8;
2619 }
2620 else
2621 {
2622 x86_dwarf2_return_column = 8;
2623 x86_cie_data_alignment = -4;
2624 }
2625 }
2626
2627 void
2628 i386_print_statistics (FILE *file)
2629 {
2630 hash_print_statistics (file, "i386 opcode", op_hash);
2631 hash_print_statistics (file, "i386 register", reg_hash);
2632 }
2633 \f
2634 #ifdef DEBUG386
2635
2636 /* Debugging routines for md_assemble. */
2637 static void pte (insn_template *);
2638 static void pt (i386_operand_type);
2639 static void pe (expressionS *);
2640 static void ps (symbolS *);
2641
2642 static void
2643 pi (char *line, i386_insn *x)
2644 {
2645 unsigned int j;
2646
2647 fprintf (stdout, "%s: template ", line);
2648 pte (&x->tm);
2649 fprintf (stdout, " address: base %s index %s scale %x\n",
2650 x->base_reg ? x->base_reg->reg_name : "none",
2651 x->index_reg ? x->index_reg->reg_name : "none",
2652 x->log2_scale_factor);
2653 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2654 x->rm.mode, x->rm.reg, x->rm.regmem);
2655 fprintf (stdout, " sib: base %x index %x scale %x\n",
2656 x->sib.base, x->sib.index, x->sib.scale);
2657 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2658 (x->rex & REX_W) != 0,
2659 (x->rex & REX_R) != 0,
2660 (x->rex & REX_X) != 0,
2661 (x->rex & REX_B) != 0);
2662 for (j = 0; j < x->operands; j++)
2663 {
2664 fprintf (stdout, " #%d: ", j + 1);
2665 pt (x->types[j]);
2666 fprintf (stdout, "\n");
2667 if (x->types[j].bitfield.reg8
2668 || x->types[j].bitfield.reg16
2669 || x->types[j].bitfield.reg32
2670 || x->types[j].bitfield.reg64
2671 || x->types[j].bitfield.regmmx
2672 || x->types[j].bitfield.regxmm
2673 || x->types[j].bitfield.regymm
2674 || x->types[j].bitfield.regzmm
2675 || x->types[j].bitfield.sreg2
2676 || x->types[j].bitfield.sreg3
2677 || x->types[j].bitfield.control
2678 || x->types[j].bitfield.debug
2679 || x->types[j].bitfield.test)
2680 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2681 if (operand_type_check (x->types[j], imm))
2682 pe (x->op[j].imms);
2683 if (operand_type_check (x->types[j], disp))
2684 pe (x->op[j].disps);
2685 }
2686 }
2687
2688 static void
2689 pte (insn_template *t)
2690 {
2691 unsigned int j;
2692 fprintf (stdout, " %d operands ", t->operands);
2693 fprintf (stdout, "opcode %x ", t->base_opcode);
2694 if (t->extension_opcode != None)
2695 fprintf (stdout, "ext %x ", t->extension_opcode);
2696 if (t->opcode_modifier.d)
2697 fprintf (stdout, "D");
2698 if (t->opcode_modifier.w)
2699 fprintf (stdout, "W");
2700 fprintf (stdout, "\n");
2701 for (j = 0; j < t->operands; j++)
2702 {
2703 fprintf (stdout, " #%d type ", j + 1);
2704 pt (t->operand_types[j]);
2705 fprintf (stdout, "\n");
2706 }
2707 }
2708
2709 static void
2710 pe (expressionS *e)
2711 {
2712 fprintf (stdout, " operation %d\n", e->X_op);
2713 fprintf (stdout, " add_number %ld (%lx)\n",
2714 (long) e->X_add_number, (long) e->X_add_number);
2715 if (e->X_add_symbol)
2716 {
2717 fprintf (stdout, " add_symbol ");
2718 ps (e->X_add_symbol);
2719 fprintf (stdout, "\n");
2720 }
2721 if (e->X_op_symbol)
2722 {
2723 fprintf (stdout, " op_symbol ");
2724 ps (e->X_op_symbol);
2725 fprintf (stdout, "\n");
2726 }
2727 }
2728
2729 static void
2730 ps (symbolS *s)
2731 {
2732 fprintf (stdout, "%s type %s%s",
2733 S_GET_NAME (s),
2734 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2735 segment_name (S_GET_SEGMENT (s)));
2736 }
2737
2738 static struct type_name
2739 {
2740 i386_operand_type mask;
2741 const char *name;
2742 }
2743 const type_names[] =
2744 {
2745 { OPERAND_TYPE_REG8, "r8" },
2746 { OPERAND_TYPE_REG16, "r16" },
2747 { OPERAND_TYPE_REG32, "r32" },
2748 { OPERAND_TYPE_REG64, "r64" },
2749 { OPERAND_TYPE_IMM8, "i8" },
2750 { OPERAND_TYPE_IMM8, "i8s" },
2751 { OPERAND_TYPE_IMM16, "i16" },
2752 { OPERAND_TYPE_IMM32, "i32" },
2753 { OPERAND_TYPE_IMM32S, "i32s" },
2754 { OPERAND_TYPE_IMM64, "i64" },
2755 { OPERAND_TYPE_IMM1, "i1" },
2756 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2757 { OPERAND_TYPE_DISP8, "d8" },
2758 { OPERAND_TYPE_DISP16, "d16" },
2759 { OPERAND_TYPE_DISP32, "d32" },
2760 { OPERAND_TYPE_DISP32S, "d32s" },
2761 { OPERAND_TYPE_DISP64, "d64" },
2762 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
2763 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2764 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2765 { OPERAND_TYPE_CONTROL, "control reg" },
2766 { OPERAND_TYPE_TEST, "test reg" },
2767 { OPERAND_TYPE_DEBUG, "debug reg" },
2768 { OPERAND_TYPE_FLOATREG, "FReg" },
2769 { OPERAND_TYPE_FLOATACC, "FAcc" },
2770 { OPERAND_TYPE_SREG2, "SReg2" },
2771 { OPERAND_TYPE_SREG3, "SReg3" },
2772 { OPERAND_TYPE_ACC, "Acc" },
2773 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2774 { OPERAND_TYPE_REGMMX, "rMMX" },
2775 { OPERAND_TYPE_REGXMM, "rXMM" },
2776 { OPERAND_TYPE_REGYMM, "rYMM" },
2777 { OPERAND_TYPE_REGZMM, "rZMM" },
2778 { OPERAND_TYPE_REGMASK, "Mask reg" },
2779 { OPERAND_TYPE_ESSEG, "es" },
2780 };
2781
2782 static void
2783 pt (i386_operand_type t)
2784 {
2785 unsigned int j;
2786 i386_operand_type a;
2787
2788 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2789 {
2790 a = operand_type_and (t, type_names[j].mask);
2791 if (!operand_type_all_zero (&a))
2792 fprintf (stdout, "%s, ", type_names[j].name);
2793 }
2794 fflush (stdout);
2795 }
2796
2797 #endif /* DEBUG386 */
2798 \f
2799 static bfd_reloc_code_real_type
2800 reloc (unsigned int size,
2801 int pcrel,
2802 int sign,
2803 bfd_reloc_code_real_type other)
2804 {
2805 if (other != NO_RELOC)
2806 {
2807 reloc_howto_type *rel;
2808
2809 if (size == 8)
2810 switch (other)
2811 {
2812 case BFD_RELOC_X86_64_GOT32:
2813 return BFD_RELOC_X86_64_GOT64;
2814 break;
2815 case BFD_RELOC_X86_64_PLTOFF64:
2816 return BFD_RELOC_X86_64_PLTOFF64;
2817 break;
2818 case BFD_RELOC_X86_64_GOTPC32:
2819 other = BFD_RELOC_X86_64_GOTPC64;
2820 break;
2821 case BFD_RELOC_X86_64_GOTPCREL:
2822 other = BFD_RELOC_X86_64_GOTPCREL64;
2823 break;
2824 case BFD_RELOC_X86_64_TPOFF32:
2825 other = BFD_RELOC_X86_64_TPOFF64;
2826 break;
2827 case BFD_RELOC_X86_64_DTPOFF32:
2828 other = BFD_RELOC_X86_64_DTPOFF64;
2829 break;
2830 default:
2831 break;
2832 }
2833
2834 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2835 if (other == BFD_RELOC_SIZE32)
2836 {
2837 if (size == 8)
2838 return BFD_RELOC_SIZE64;
2839 if (pcrel)
2840 as_bad (_("there are no pc-relative size relocations"));
2841 }
2842 #endif
2843
2844 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2845 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
2846 sign = -1;
2847
2848 rel = bfd_reloc_type_lookup (stdoutput, other);
2849 if (!rel)
2850 as_bad (_("unknown relocation (%u)"), other);
2851 else if (size != bfd_get_reloc_size (rel))
2852 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2853 bfd_get_reloc_size (rel),
2854 size);
2855 else if (pcrel && !rel->pc_relative)
2856 as_bad (_("non-pc-relative relocation for pc-relative field"));
2857 else if ((rel->complain_on_overflow == complain_overflow_signed
2858 && !sign)
2859 || (rel->complain_on_overflow == complain_overflow_unsigned
2860 && sign > 0))
2861 as_bad (_("relocated field and relocation type differ in signedness"));
2862 else
2863 return other;
2864 return NO_RELOC;
2865 }
2866
2867 if (pcrel)
2868 {
2869 if (!sign)
2870 as_bad (_("there are no unsigned pc-relative relocations"));
2871 switch (size)
2872 {
2873 case 1: return BFD_RELOC_8_PCREL;
2874 case 2: return BFD_RELOC_16_PCREL;
2875 case 4: return BFD_RELOC_32_PCREL;
2876 case 8: return BFD_RELOC_64_PCREL;
2877 }
2878 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2879 }
2880 else
2881 {
2882 if (sign > 0)
2883 switch (size)
2884 {
2885 case 4: return BFD_RELOC_X86_64_32S;
2886 }
2887 else
2888 switch (size)
2889 {
2890 case 1: return BFD_RELOC_8;
2891 case 2: return BFD_RELOC_16;
2892 case 4: return BFD_RELOC_32;
2893 case 8: return BFD_RELOC_64;
2894 }
2895 as_bad (_("cannot do %s %u byte relocation"),
2896 sign > 0 ? "signed" : "unsigned", size);
2897 }
2898
2899 return NO_RELOC;
2900 }
2901
2902 /* Here we decide which fixups can be adjusted to make them relative to
2903 the beginning of the section instead of the symbol. Basically we need
2904 to make sure that the dynamic relocations are done correctly, so in
2905 some cases we force the original symbol to be used. */
2906
2907 int
2908 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2909 {
2910 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2911 if (!IS_ELF)
2912 return 1;
2913
2914 /* Don't adjust pc-relative references to merge sections in 64-bit
2915 mode. */
2916 if (use_rela_relocations
2917 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2918 && fixP->fx_pcrel)
2919 return 0;
2920
2921 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2922 and changed later by validate_fix. */
2923 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2924 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2925 return 0;
2926
2927 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
2928 for size relocations. */
2929 if (fixP->fx_r_type == BFD_RELOC_SIZE32
2930 || fixP->fx_r_type == BFD_RELOC_SIZE64
2931 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2932 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2933 || fixP->fx_r_type == BFD_RELOC_386_GOT32
2934 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2935 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2936 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2937 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
2938 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2939 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
2940 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2941 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
2942 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2943 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
2944 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2945 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
2946 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
2947 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2948 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2949 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
2950 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
2951 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2952 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
2953 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2954 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
2955 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2956 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
2957 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2958 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2959 return 0;
2960 #endif
2961 return 1;
2962 }
2963
2964 static int
2965 intel_float_operand (const char *mnemonic)
2966 {
2967 /* Note that the value returned is meaningful only for opcodes with (memory)
2968 operands, hence the code here is free to improperly handle opcodes that
2969 have no operands (for better performance and smaller code). */
2970
2971 if (mnemonic[0] != 'f')
2972 return 0; /* non-math */
2973
2974 switch (mnemonic[1])
2975 {
2976 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2977 the fs segment override prefix not currently handled because no
2978 call path can make opcodes without operands get here */
2979 case 'i':
2980 return 2 /* integer op */;
2981 case 'l':
2982 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
2983 return 3; /* fldcw/fldenv */
2984 break;
2985 case 'n':
2986 if (mnemonic[2] != 'o' /* fnop */)
2987 return 3; /* non-waiting control op */
2988 break;
2989 case 'r':
2990 if (mnemonic[2] == 's')
2991 return 3; /* frstor/frstpm */
2992 break;
2993 case 's':
2994 if (mnemonic[2] == 'a')
2995 return 3; /* fsave */
2996 if (mnemonic[2] == 't')
2997 {
2998 switch (mnemonic[3])
2999 {
3000 case 'c': /* fstcw */
3001 case 'd': /* fstdw */
3002 case 'e': /* fstenv */
3003 case 's': /* fsts[gw] */
3004 return 3;
3005 }
3006 }
3007 break;
3008 case 'x':
3009 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3010 return 0; /* fxsave/fxrstor are not really math ops */
3011 break;
3012 }
3013
3014 return 1;
3015 }
3016
3017 /* Build the VEX prefix. */
3018
3019 static void
3020 build_vex_prefix (const insn_template *t)
3021 {
3022 unsigned int register_specifier;
3023 unsigned int implied_prefix;
3024 unsigned int vector_length;
3025
3026 /* Check register specifier. */
3027 if (i.vex.register_specifier)
3028 {
3029 register_specifier =
3030 ~register_number (i.vex.register_specifier) & 0xf;
3031 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3032 }
3033 else
3034 register_specifier = 0xf;
3035
3036 /* Use 2-byte VEX prefix by swappping destination and source
3037 operand. */
3038 if (!i.swap_operand
3039 && i.operands == i.reg_operands
3040 && i.tm.opcode_modifier.vexopcode == VEX0F
3041 && i.tm.opcode_modifier.s
3042 && i.rex == REX_B)
3043 {
3044 unsigned int xchg = i.operands - 1;
3045 union i386_op temp_op;
3046 i386_operand_type temp_type;
3047
3048 temp_type = i.types[xchg];
3049 i.types[xchg] = i.types[0];
3050 i.types[0] = temp_type;
3051 temp_op = i.op[xchg];
3052 i.op[xchg] = i.op[0];
3053 i.op[0] = temp_op;
3054
3055 gas_assert (i.rm.mode == 3);
3056
3057 i.rex = REX_R;
3058 xchg = i.rm.regmem;
3059 i.rm.regmem = i.rm.reg;
3060 i.rm.reg = xchg;
3061
3062 /* Use the next insn. */
3063 i.tm = t[1];
3064 }
3065
3066 if (i.tm.opcode_modifier.vex == VEXScalar)
3067 vector_length = avxscalar;
3068 else
3069 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
3070
3071 switch ((i.tm.base_opcode >> 8) & 0xff)
3072 {
3073 case 0:
3074 implied_prefix = 0;
3075 break;
3076 case DATA_PREFIX_OPCODE:
3077 implied_prefix = 1;
3078 break;
3079 case REPE_PREFIX_OPCODE:
3080 implied_prefix = 2;
3081 break;
3082 case REPNE_PREFIX_OPCODE:
3083 implied_prefix = 3;
3084 break;
3085 default:
3086 abort ();
3087 }
3088
3089 /* Use 2-byte VEX prefix if possible. */
3090 if (i.tm.opcode_modifier.vexopcode == VEX0F
3091 && i.tm.opcode_modifier.vexw != VEXW1
3092 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3093 {
3094 /* 2-byte VEX prefix. */
3095 unsigned int r;
3096
3097 i.vex.length = 2;
3098 i.vex.bytes[0] = 0xc5;
3099
3100 /* Check the REX.R bit. */
3101 r = (i.rex & REX_R) ? 0 : 1;
3102 i.vex.bytes[1] = (r << 7
3103 | register_specifier << 3
3104 | vector_length << 2
3105 | implied_prefix);
3106 }
3107 else
3108 {
3109 /* 3-byte VEX prefix. */
3110 unsigned int m, w;
3111
3112 i.vex.length = 3;
3113
3114 switch (i.tm.opcode_modifier.vexopcode)
3115 {
3116 case VEX0F:
3117 m = 0x1;
3118 i.vex.bytes[0] = 0xc4;
3119 break;
3120 case VEX0F38:
3121 m = 0x2;
3122 i.vex.bytes[0] = 0xc4;
3123 break;
3124 case VEX0F3A:
3125 m = 0x3;
3126 i.vex.bytes[0] = 0xc4;
3127 break;
3128 case XOP08:
3129 m = 0x8;
3130 i.vex.bytes[0] = 0x8f;
3131 break;
3132 case XOP09:
3133 m = 0x9;
3134 i.vex.bytes[0] = 0x8f;
3135 break;
3136 case XOP0A:
3137 m = 0xa;
3138 i.vex.bytes[0] = 0x8f;
3139 break;
3140 default:
3141 abort ();
3142 }
3143
3144 /* The high 3 bits of the second VEX byte are 1's compliment
3145 of RXB bits from REX. */
3146 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3147
3148 /* Check the REX.W bit. */
3149 w = (i.rex & REX_W) ? 1 : 0;
3150 if (i.tm.opcode_modifier.vexw)
3151 {
3152 if (w)
3153 abort ();
3154
3155 if (i.tm.opcode_modifier.vexw == VEXW1)
3156 w = 1;
3157 }
3158
3159 i.vex.bytes[2] = (w << 7
3160 | register_specifier << 3
3161 | vector_length << 2
3162 | implied_prefix);
3163 }
3164 }
3165
3166 /* Build the EVEX prefix. */
3167
3168 static void
3169 build_evex_prefix (void)
3170 {
3171 unsigned int register_specifier;
3172 unsigned int implied_prefix;
3173 unsigned int m, w;
3174 rex_byte vrex_used = 0;
3175
3176 /* Check register specifier. */
3177 if (i.vex.register_specifier)
3178 {
3179 gas_assert ((i.vrex & REX_X) == 0);
3180
3181 register_specifier = i.vex.register_specifier->reg_num;
3182 if ((i.vex.register_specifier->reg_flags & RegRex))
3183 register_specifier += 8;
3184 /* The upper 16 registers are encoded in the fourth byte of the
3185 EVEX prefix. */
3186 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3187 i.vex.bytes[3] = 0x8;
3188 register_specifier = ~register_specifier & 0xf;
3189 }
3190 else
3191 {
3192 register_specifier = 0xf;
3193
3194 /* Encode upper 16 vector index register in the fourth byte of
3195 the EVEX prefix. */
3196 if (!(i.vrex & REX_X))
3197 i.vex.bytes[3] = 0x8;
3198 else
3199 vrex_used |= REX_X;
3200 }
3201
3202 switch ((i.tm.base_opcode >> 8) & 0xff)
3203 {
3204 case 0:
3205 implied_prefix = 0;
3206 break;
3207 case DATA_PREFIX_OPCODE:
3208 implied_prefix = 1;
3209 break;
3210 case REPE_PREFIX_OPCODE:
3211 implied_prefix = 2;
3212 break;
3213 case REPNE_PREFIX_OPCODE:
3214 implied_prefix = 3;
3215 break;
3216 default:
3217 abort ();
3218 }
3219
3220 /* 4 byte EVEX prefix. */
3221 i.vex.length = 4;
3222 i.vex.bytes[0] = 0x62;
3223
3224 /* mmmm bits. */
3225 switch (i.tm.opcode_modifier.vexopcode)
3226 {
3227 case VEX0F:
3228 m = 1;
3229 break;
3230 case VEX0F38:
3231 m = 2;
3232 break;
3233 case VEX0F3A:
3234 m = 3;
3235 break;
3236 default:
3237 abort ();
3238 break;
3239 }
3240
3241 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3242 bits from REX. */
3243 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3244
3245 /* The fifth bit of the second EVEX byte is 1's compliment of the
3246 REX_R bit in VREX. */
3247 if (!(i.vrex & REX_R))
3248 i.vex.bytes[1] |= 0x10;
3249 else
3250 vrex_used |= REX_R;
3251
3252 if ((i.reg_operands + i.imm_operands) == i.operands)
3253 {
3254 /* When all operands are registers, the REX_X bit in REX is not
3255 used. We reuse it to encode the upper 16 registers, which is
3256 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3257 as 1's compliment. */
3258 if ((i.vrex & REX_B))
3259 {
3260 vrex_used |= REX_B;
3261 i.vex.bytes[1] &= ~0x40;
3262 }
3263 }
3264
3265 /* EVEX instructions shouldn't need the REX prefix. */
3266 i.vrex &= ~vrex_used;
3267 gas_assert (i.vrex == 0);
3268
3269 /* Check the REX.W bit. */
3270 w = (i.rex & REX_W) ? 1 : 0;
3271 if (i.tm.opcode_modifier.vexw)
3272 {
3273 if (i.tm.opcode_modifier.vexw == VEXW1)
3274 w = 1;
3275 }
3276 /* If w is not set it means we are dealing with WIG instruction. */
3277 else if (!w)
3278 {
3279 if (evexwig == evexw1)
3280 w = 1;
3281 }
3282
3283 /* Encode the U bit. */
3284 implied_prefix |= 0x4;
3285
3286 /* The third byte of the EVEX prefix. */
3287 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3288
3289 /* The fourth byte of the EVEX prefix. */
3290 /* The zeroing-masking bit. */
3291 if (i.mask && i.mask->zeroing)
3292 i.vex.bytes[3] |= 0x80;
3293
3294 /* Don't always set the broadcast bit if there is no RC. */
3295 if (!i.rounding)
3296 {
3297 /* Encode the vector length. */
3298 unsigned int vec_length;
3299
3300 switch (i.tm.opcode_modifier.evex)
3301 {
3302 case EVEXLIG: /* LL' is ignored */
3303 vec_length = evexlig << 5;
3304 break;
3305 case EVEX128:
3306 vec_length = 0 << 5;
3307 break;
3308 case EVEX256:
3309 vec_length = 1 << 5;
3310 break;
3311 case EVEX512:
3312 vec_length = 2 << 5;
3313 break;
3314 default:
3315 abort ();
3316 break;
3317 }
3318 i.vex.bytes[3] |= vec_length;
3319 /* Encode the broadcast bit. */
3320 if (i.broadcast)
3321 i.vex.bytes[3] |= 0x10;
3322 }
3323 else
3324 {
3325 if (i.rounding->type != saeonly)
3326 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3327 else
3328 i.vex.bytes[3] |= 0x10;
3329 }
3330
3331 if (i.mask && i.mask->mask)
3332 i.vex.bytes[3] |= i.mask->mask->reg_num;
3333 }
3334
3335 static void
3336 process_immext (void)
3337 {
3338 expressionS *exp;
3339
3340 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3341 && i.operands > 0)
3342 {
3343 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3344 with an opcode suffix which is coded in the same place as an
3345 8-bit immediate field would be.
3346 Here we check those operands and remove them afterwards. */
3347 unsigned int x;
3348
3349 for (x = 0; x < i.operands; x++)
3350 if (register_number (i.op[x].regs) != x)
3351 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3352 register_prefix, i.op[x].regs->reg_name, x + 1,
3353 i.tm.name);
3354
3355 i.operands = 0;
3356 }
3357
3358 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3359 which is coded in the same place as an 8-bit immediate field
3360 would be. Here we fake an 8-bit immediate operand from the
3361 opcode suffix stored in tm.extension_opcode.
3362
3363 AVX instructions also use this encoding, for some of
3364 3 argument instructions. */
3365
3366 gas_assert (i.imm_operands <= 1
3367 && (i.operands <= 2
3368 || ((i.tm.opcode_modifier.vex
3369 || i.tm.opcode_modifier.evex)
3370 && i.operands <= 4)));
3371
3372 exp = &im_expressions[i.imm_operands++];
3373 i.op[i.operands].imms = exp;
3374 i.types[i.operands] = imm8;
3375 i.operands++;
3376 exp->X_op = O_constant;
3377 exp->X_add_number = i.tm.extension_opcode;
3378 i.tm.extension_opcode = None;
3379 }
3380
3381
3382 static int
3383 check_hle (void)
3384 {
3385 switch (i.tm.opcode_modifier.hleprefixok)
3386 {
3387 default:
3388 abort ();
3389 case HLEPrefixNone:
3390 as_bad (_("invalid instruction `%s' after `%s'"),
3391 i.tm.name, i.hle_prefix);
3392 return 0;
3393 case HLEPrefixLock:
3394 if (i.prefix[LOCK_PREFIX])
3395 return 1;
3396 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3397 return 0;
3398 case HLEPrefixAny:
3399 return 1;
3400 case HLEPrefixRelease:
3401 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3402 {
3403 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3404 i.tm.name);
3405 return 0;
3406 }
3407 if (i.mem_operands == 0
3408 || !operand_type_check (i.types[i.operands - 1], anymem))
3409 {
3410 as_bad (_("memory destination needed for instruction `%s'"
3411 " after `xrelease'"), i.tm.name);
3412 return 0;
3413 }
3414 return 1;
3415 }
3416 }
3417
3418 /* This is the guts of the machine-dependent assembler. LINE points to a
3419 machine dependent instruction. This function is supposed to emit
3420 the frags/bytes it assembles to. */
3421
3422 void
3423 md_assemble (char *line)
3424 {
3425 unsigned int j;
3426 char mnemonic[MAX_MNEM_SIZE];
3427 const insn_template *t;
3428
3429 /* Initialize globals. */
3430 memset (&i, '\0', sizeof (i));
3431 for (j = 0; j < MAX_OPERANDS; j++)
3432 i.reloc[j] = NO_RELOC;
3433 memset (disp_expressions, '\0', sizeof (disp_expressions));
3434 memset (im_expressions, '\0', sizeof (im_expressions));
3435 save_stack_p = save_stack;
3436
3437 /* First parse an instruction mnemonic & call i386_operand for the operands.
3438 We assume that the scrubber has arranged it so that line[0] is the valid
3439 start of a (possibly prefixed) mnemonic. */
3440
3441 line = parse_insn (line, mnemonic);
3442 if (line == NULL)
3443 return;
3444
3445 line = parse_operands (line, mnemonic);
3446 this_operand = -1;
3447 if (line == NULL)
3448 return;
3449
3450 /* Now we've parsed the mnemonic into a set of templates, and have the
3451 operands at hand. */
3452
3453 /* All intel opcodes have reversed operands except for "bound" and
3454 "enter". We also don't reverse intersegment "jmp" and "call"
3455 instructions with 2 immediate operands so that the immediate segment
3456 precedes the offset, as it does when in AT&T mode. */
3457 if (intel_syntax
3458 && i.operands > 1
3459 && (strcmp (mnemonic, "bound") != 0)
3460 && (strcmp (mnemonic, "invlpga") != 0)
3461 && !(operand_type_check (i.types[0], imm)
3462 && operand_type_check (i.types[1], imm)))
3463 swap_operands ();
3464
3465 /* The order of the immediates should be reversed
3466 for 2 immediates extrq and insertq instructions */
3467 if (i.imm_operands == 2
3468 && (strcmp (mnemonic, "extrq") == 0
3469 || strcmp (mnemonic, "insertq") == 0))
3470 swap_2_operands (0, 1);
3471
3472 if (i.imm_operands)
3473 optimize_imm ();
3474
3475 /* Don't optimize displacement for movabs since it only takes 64bit
3476 displacement. */
3477 if (i.disp_operands
3478 && i.disp_encoding != disp_encoding_32bit
3479 && (flag_code != CODE_64BIT
3480 || strcmp (mnemonic, "movabs") != 0))
3481 optimize_disp ();
3482
3483 /* Next, we find a template that matches the given insn,
3484 making sure the overlap of the given operands types is consistent
3485 with the template operand types. */
3486
3487 if (!(t = match_template ()))
3488 return;
3489
3490 if (sse_check != check_none
3491 && !i.tm.opcode_modifier.noavx
3492 && (i.tm.cpu_flags.bitfield.cpusse
3493 || i.tm.cpu_flags.bitfield.cpusse2
3494 || i.tm.cpu_flags.bitfield.cpusse3
3495 || i.tm.cpu_flags.bitfield.cpussse3
3496 || i.tm.cpu_flags.bitfield.cpusse4_1
3497 || i.tm.cpu_flags.bitfield.cpusse4_2))
3498 {
3499 (sse_check == check_warning
3500 ? as_warn
3501 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3502 }
3503
3504 /* Zap movzx and movsx suffix. The suffix has been set from
3505 "word ptr" or "byte ptr" on the source operand in Intel syntax
3506 or extracted from mnemonic in AT&T syntax. But we'll use
3507 the destination register to choose the suffix for encoding. */
3508 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3509 {
3510 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3511 there is no suffix, the default will be byte extension. */
3512 if (i.reg_operands != 2
3513 && !i.suffix
3514 && intel_syntax)
3515 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3516
3517 i.suffix = 0;
3518 }
3519
3520 if (i.tm.opcode_modifier.fwait)
3521 if (!add_prefix (FWAIT_OPCODE))
3522 return;
3523
3524 /* Check if REP prefix is OK. */
3525 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3526 {
3527 as_bad (_("invalid instruction `%s' after `%s'"),
3528 i.tm.name, i.rep_prefix);
3529 return;
3530 }
3531
3532 /* Check for lock without a lockable instruction. Destination operand
3533 must be memory unless it is xchg (0x86). */
3534 if (i.prefix[LOCK_PREFIX]
3535 && (!i.tm.opcode_modifier.islockable
3536 || i.mem_operands == 0
3537 || (i.tm.base_opcode != 0x86
3538 && !operand_type_check (i.types[i.operands - 1], anymem))))
3539 {
3540 as_bad (_("expecting lockable instruction after `lock'"));
3541 return;
3542 }
3543
3544 /* Check if HLE prefix is OK. */
3545 if (i.hle_prefix && !check_hle ())
3546 return;
3547
3548 /* Check BND prefix. */
3549 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3550 as_bad (_("expecting valid branch instruction after `bnd'"));
3551
3552 if (i.tm.cpu_flags.bitfield.cpumpx
3553 && flag_code == CODE_64BIT
3554 && i.prefix[ADDR_PREFIX])
3555 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3556
3557 /* Insert BND prefix. */
3558 if (add_bnd_prefix
3559 && i.tm.opcode_modifier.bndprefixok
3560 && !i.prefix[BND_PREFIX])
3561 add_prefix (BND_PREFIX_OPCODE);
3562
3563 /* Check string instruction segment overrides. */
3564 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3565 {
3566 if (!check_string ())
3567 return;
3568 i.disp_operands = 0;
3569 }
3570
3571 if (!process_suffix ())
3572 return;
3573
3574 /* Update operand types. */
3575 for (j = 0; j < i.operands; j++)
3576 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3577
3578 /* Make still unresolved immediate matches conform to size of immediate
3579 given in i.suffix. */
3580 if (!finalize_imm ())
3581 return;
3582
3583 if (i.types[0].bitfield.imm1)
3584 i.imm_operands = 0; /* kludge for shift insns. */
3585
3586 /* We only need to check those implicit registers for instructions
3587 with 3 operands or less. */
3588 if (i.operands <= 3)
3589 for (j = 0; j < i.operands; j++)
3590 if (i.types[j].bitfield.inoutportreg
3591 || i.types[j].bitfield.shiftcount
3592 || i.types[j].bitfield.acc
3593 || i.types[j].bitfield.floatacc)
3594 i.reg_operands--;
3595
3596 /* ImmExt should be processed after SSE2AVX. */
3597 if (!i.tm.opcode_modifier.sse2avx
3598 && i.tm.opcode_modifier.immext)
3599 process_immext ();
3600
3601 /* For insns with operands there are more diddles to do to the opcode. */
3602 if (i.operands)
3603 {
3604 if (!process_operands ())
3605 return;
3606 }
3607 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3608 {
3609 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3610 as_warn (_("translating to `%sp'"), i.tm.name);
3611 }
3612
3613 if (i.tm.opcode_modifier.vex)
3614 build_vex_prefix (t);
3615
3616 if (i.tm.opcode_modifier.evex)
3617 build_evex_prefix ();
3618
3619 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3620 instructions may define INT_OPCODE as well, so avoid this corner
3621 case for those instructions that use MODRM. */
3622 if (i.tm.base_opcode == INT_OPCODE
3623 && !i.tm.opcode_modifier.modrm
3624 && i.op[0].imms->X_add_number == 3)
3625 {
3626 i.tm.base_opcode = INT3_OPCODE;
3627 i.imm_operands = 0;
3628 }
3629
3630 if ((i.tm.opcode_modifier.jump
3631 || i.tm.opcode_modifier.jumpbyte
3632 || i.tm.opcode_modifier.jumpdword)
3633 && i.op[0].disps->X_op == O_constant)
3634 {
3635 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3636 the absolute address given by the constant. Since ix86 jumps and
3637 calls are pc relative, we need to generate a reloc. */
3638 i.op[0].disps->X_add_symbol = &abs_symbol;
3639 i.op[0].disps->X_op = O_symbol;
3640 }
3641
3642 if (i.tm.opcode_modifier.rex64)
3643 i.rex |= REX_W;
3644
3645 /* For 8 bit registers we need an empty rex prefix. Also if the
3646 instruction already has a prefix, we need to convert old
3647 registers to new ones. */
3648
3649 if ((i.types[0].bitfield.reg8
3650 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3651 || (i.types[1].bitfield.reg8
3652 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3653 || ((i.types[0].bitfield.reg8
3654 || i.types[1].bitfield.reg8)
3655 && i.rex != 0))
3656 {
3657 int x;
3658
3659 i.rex |= REX_OPCODE;
3660 for (x = 0; x < 2; x++)
3661 {
3662 /* Look for 8 bit operand that uses old registers. */
3663 if (i.types[x].bitfield.reg8
3664 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3665 {
3666 /* In case it is "hi" register, give up. */
3667 if (i.op[x].regs->reg_num > 3)
3668 as_bad (_("can't encode register '%s%s' in an "
3669 "instruction requiring REX prefix."),
3670 register_prefix, i.op[x].regs->reg_name);
3671
3672 /* Otherwise it is equivalent to the extended register.
3673 Since the encoding doesn't change this is merely
3674 cosmetic cleanup for debug output. */
3675
3676 i.op[x].regs = i.op[x].regs + 8;
3677 }
3678 }
3679 }
3680
3681 if (i.rex != 0)
3682 add_prefix (REX_OPCODE | i.rex);
3683
3684 /* We are ready to output the insn. */
3685 output_insn ();
3686 }
3687
3688 static char *
3689 parse_insn (char *line, char *mnemonic)
3690 {
3691 char *l = line;
3692 char *token_start = l;
3693 char *mnem_p;
3694 int supported;
3695 const insn_template *t;
3696 char *dot_p = NULL;
3697
3698 while (1)
3699 {
3700 mnem_p = mnemonic;
3701 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3702 {
3703 if (*mnem_p == '.')
3704 dot_p = mnem_p;
3705 mnem_p++;
3706 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3707 {
3708 as_bad (_("no such instruction: `%s'"), token_start);
3709 return NULL;
3710 }
3711 l++;
3712 }
3713 if (!is_space_char (*l)
3714 && *l != END_OF_INSN
3715 && (intel_syntax
3716 || (*l != PREFIX_SEPARATOR
3717 && *l != ',')))
3718 {
3719 as_bad (_("invalid character %s in mnemonic"),
3720 output_invalid (*l));
3721 return NULL;
3722 }
3723 if (token_start == l)
3724 {
3725 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3726 as_bad (_("expecting prefix; got nothing"));
3727 else
3728 as_bad (_("expecting mnemonic; got nothing"));
3729 return NULL;
3730 }
3731
3732 /* Look up instruction (or prefix) via hash table. */
3733 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3734
3735 if (*l != END_OF_INSN
3736 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3737 && current_templates
3738 && current_templates->start->opcode_modifier.isprefix)
3739 {
3740 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3741 {
3742 as_bad ((flag_code != CODE_64BIT
3743 ? _("`%s' is only supported in 64-bit mode")
3744 : _("`%s' is not supported in 64-bit mode")),
3745 current_templates->start->name);
3746 return NULL;
3747 }
3748 /* If we are in 16-bit mode, do not allow addr16 or data16.
3749 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3750 if ((current_templates->start->opcode_modifier.size16
3751 || current_templates->start->opcode_modifier.size32)
3752 && flag_code != CODE_64BIT
3753 && (current_templates->start->opcode_modifier.size32
3754 ^ (flag_code == CODE_16BIT)))
3755 {
3756 as_bad (_("redundant %s prefix"),
3757 current_templates->start->name);
3758 return NULL;
3759 }
3760 /* Add prefix, checking for repeated prefixes. */
3761 switch (add_prefix (current_templates->start->base_opcode))
3762 {
3763 case PREFIX_EXIST:
3764 return NULL;
3765 case PREFIX_REP:
3766 if (current_templates->start->cpu_flags.bitfield.cpuhle)
3767 i.hle_prefix = current_templates->start->name;
3768 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
3769 i.bnd_prefix = current_templates->start->name;
3770 else
3771 i.rep_prefix = current_templates->start->name;
3772 break;
3773 default:
3774 break;
3775 }
3776 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3777 token_start = ++l;
3778 }
3779 else
3780 break;
3781 }
3782
3783 if (!current_templates)
3784 {
3785 /* Check if we should swap operand or force 32bit displacement in
3786 encoding. */
3787 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3788 i.swap_operand = 1;
3789 else if (mnem_p - 3 == dot_p
3790 && dot_p[1] == 'd'
3791 && dot_p[2] == '8')
3792 i.disp_encoding = disp_encoding_8bit;
3793 else if (mnem_p - 4 == dot_p
3794 && dot_p[1] == 'd'
3795 && dot_p[2] == '3'
3796 && dot_p[3] == '2')
3797 i.disp_encoding = disp_encoding_32bit;
3798 else
3799 goto check_suffix;
3800 mnem_p = dot_p;
3801 *dot_p = '\0';
3802 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3803 }
3804
3805 if (!current_templates)
3806 {
3807 check_suffix:
3808 /* See if we can get a match by trimming off a suffix. */
3809 switch (mnem_p[-1])
3810 {
3811 case WORD_MNEM_SUFFIX:
3812 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3813 i.suffix = SHORT_MNEM_SUFFIX;
3814 else
3815 case BYTE_MNEM_SUFFIX:
3816 case QWORD_MNEM_SUFFIX:
3817 i.suffix = mnem_p[-1];
3818 mnem_p[-1] = '\0';
3819 current_templates = (const templates *) hash_find (op_hash,
3820 mnemonic);
3821 break;
3822 case SHORT_MNEM_SUFFIX:
3823 case LONG_MNEM_SUFFIX:
3824 if (!intel_syntax)
3825 {
3826 i.suffix = mnem_p[-1];
3827 mnem_p[-1] = '\0';
3828 current_templates = (const templates *) hash_find (op_hash,
3829 mnemonic);
3830 }
3831 break;
3832
3833 /* Intel Syntax. */
3834 case 'd':
3835 if (intel_syntax)
3836 {
3837 if (intel_float_operand (mnemonic) == 1)
3838 i.suffix = SHORT_MNEM_SUFFIX;
3839 else
3840 i.suffix = LONG_MNEM_SUFFIX;
3841 mnem_p[-1] = '\0';
3842 current_templates = (const templates *) hash_find (op_hash,
3843 mnemonic);
3844 }
3845 break;
3846 }
3847 if (!current_templates)
3848 {
3849 as_bad (_("no such instruction: `%s'"), token_start);
3850 return NULL;
3851 }
3852 }
3853
3854 if (current_templates->start->opcode_modifier.jump
3855 || current_templates->start->opcode_modifier.jumpbyte)
3856 {
3857 /* Check for a branch hint. We allow ",pt" and ",pn" for
3858 predict taken and predict not taken respectively.
3859 I'm not sure that branch hints actually do anything on loop
3860 and jcxz insns (JumpByte) for current Pentium4 chips. They
3861 may work in the future and it doesn't hurt to accept them
3862 now. */
3863 if (l[0] == ',' && l[1] == 'p')
3864 {
3865 if (l[2] == 't')
3866 {
3867 if (!add_prefix (DS_PREFIX_OPCODE))
3868 return NULL;
3869 l += 3;
3870 }
3871 else if (l[2] == 'n')
3872 {
3873 if (!add_prefix (CS_PREFIX_OPCODE))
3874 return NULL;
3875 l += 3;
3876 }
3877 }
3878 }
3879 /* Any other comma loses. */
3880 if (*l == ',')
3881 {
3882 as_bad (_("invalid character %s in mnemonic"),
3883 output_invalid (*l));
3884 return NULL;
3885 }
3886
3887 /* Check if instruction is supported on specified architecture. */
3888 supported = 0;
3889 for (t = current_templates->start; t < current_templates->end; ++t)
3890 {
3891 supported |= cpu_flags_match (t);
3892 if (supported == CPU_FLAGS_PERFECT_MATCH)
3893 goto skip;
3894 }
3895
3896 if (!(supported & CPU_FLAGS_64BIT_MATCH))
3897 {
3898 as_bad (flag_code == CODE_64BIT
3899 ? _("`%s' is not supported in 64-bit mode")
3900 : _("`%s' is only supported in 64-bit mode"),
3901 current_templates->start->name);
3902 return NULL;
3903 }
3904 if (supported != CPU_FLAGS_PERFECT_MATCH)
3905 {
3906 as_bad (_("`%s' is not supported on `%s%s'"),
3907 current_templates->start->name,
3908 cpu_arch_name ? cpu_arch_name : default_arch,
3909 cpu_sub_arch_name ? cpu_sub_arch_name : "");
3910 return NULL;
3911 }
3912
3913 skip:
3914 if (!cpu_arch_flags.bitfield.cpui386
3915 && (flag_code != CODE_16BIT))
3916 {
3917 as_warn (_("use .code16 to ensure correct addressing mode"));
3918 }
3919
3920 return l;
3921 }
3922
3923 static char *
3924 parse_operands (char *l, const char *mnemonic)
3925 {
3926 char *token_start;
3927
3928 /* 1 if operand is pending after ','. */
3929 unsigned int expecting_operand = 0;
3930
3931 /* Non-zero if operand parens not balanced. */
3932 unsigned int paren_not_balanced;
3933
3934 while (*l != END_OF_INSN)
3935 {
3936 /* Skip optional white space before operand. */
3937 if (is_space_char (*l))
3938 ++l;
3939 if (!is_operand_char (*l) && *l != END_OF_INSN)
3940 {
3941 as_bad (_("invalid character %s before operand %d"),
3942 output_invalid (*l),
3943 i.operands + 1);
3944 return NULL;
3945 }
3946 token_start = l; /* after white space */
3947 paren_not_balanced = 0;
3948 while (paren_not_balanced || *l != ',')
3949 {
3950 if (*l == END_OF_INSN)
3951 {
3952 if (paren_not_balanced)
3953 {
3954 if (!intel_syntax)
3955 as_bad (_("unbalanced parenthesis in operand %d."),
3956 i.operands + 1);
3957 else
3958 as_bad (_("unbalanced brackets in operand %d."),
3959 i.operands + 1);
3960 return NULL;
3961 }
3962 else
3963 break; /* we are done */
3964 }
3965 else if (!is_operand_char (*l) && !is_space_char (*l))
3966 {
3967 as_bad (_("invalid character %s in operand %d"),
3968 output_invalid (*l),
3969 i.operands + 1);
3970 return NULL;
3971 }
3972 if (!intel_syntax)
3973 {
3974 if (*l == '(')
3975 ++paren_not_balanced;
3976 if (*l == ')')
3977 --paren_not_balanced;
3978 }
3979 else
3980 {
3981 if (*l == '[')
3982 ++paren_not_balanced;
3983 if (*l == ']')
3984 --paren_not_balanced;
3985 }
3986 l++;
3987 }
3988 if (l != token_start)
3989 { /* Yes, we've read in another operand. */
3990 unsigned int operand_ok;
3991 this_operand = i.operands++;
3992 i.types[this_operand].bitfield.unspecified = 1;
3993 if (i.operands > MAX_OPERANDS)
3994 {
3995 as_bad (_("spurious operands; (%d operands/instruction max)"),
3996 MAX_OPERANDS);
3997 return NULL;
3998 }
3999 /* Now parse operand adding info to 'i' as we go along. */
4000 END_STRING_AND_SAVE (l);
4001
4002 if (intel_syntax)
4003 operand_ok =
4004 i386_intel_operand (token_start,
4005 intel_float_operand (mnemonic));
4006 else
4007 operand_ok = i386_att_operand (token_start);
4008
4009 RESTORE_END_STRING (l);
4010 if (!operand_ok)
4011 return NULL;
4012 }
4013 else
4014 {
4015 if (expecting_operand)
4016 {
4017 expecting_operand_after_comma:
4018 as_bad (_("expecting operand after ','; got nothing"));
4019 return NULL;
4020 }
4021 if (*l == ',')
4022 {
4023 as_bad (_("expecting operand before ','; got nothing"));
4024 return NULL;
4025 }
4026 }
4027
4028 /* Now *l must be either ',' or END_OF_INSN. */
4029 if (*l == ',')
4030 {
4031 if (*++l == END_OF_INSN)
4032 {
4033 /* Just skip it, if it's \n complain. */
4034 goto expecting_operand_after_comma;
4035 }
4036 expecting_operand = 1;
4037 }
4038 }
4039 return l;
4040 }
4041
4042 static void
4043 swap_2_operands (int xchg1, int xchg2)
4044 {
4045 union i386_op temp_op;
4046 i386_operand_type temp_type;
4047 enum bfd_reloc_code_real temp_reloc;
4048
4049 temp_type = i.types[xchg2];
4050 i.types[xchg2] = i.types[xchg1];
4051 i.types[xchg1] = temp_type;
4052 temp_op = i.op[xchg2];
4053 i.op[xchg2] = i.op[xchg1];
4054 i.op[xchg1] = temp_op;
4055 temp_reloc = i.reloc[xchg2];
4056 i.reloc[xchg2] = i.reloc[xchg1];
4057 i.reloc[xchg1] = temp_reloc;
4058
4059 if (i.mask)
4060 {
4061 if (i.mask->operand == xchg1)
4062 i.mask->operand = xchg2;
4063 else if (i.mask->operand == xchg2)
4064 i.mask->operand = xchg1;
4065 }
4066 if (i.broadcast)
4067 {
4068 if (i.broadcast->operand == xchg1)
4069 i.broadcast->operand = xchg2;
4070 else if (i.broadcast->operand == xchg2)
4071 i.broadcast->operand = xchg1;
4072 }
4073 if (i.rounding)
4074 {
4075 if (i.rounding->operand == xchg1)
4076 i.rounding->operand = xchg2;
4077 else if (i.rounding->operand == xchg2)
4078 i.rounding->operand = xchg1;
4079 }
4080 }
4081
4082 static void
4083 swap_operands (void)
4084 {
4085 switch (i.operands)
4086 {
4087 case 5:
4088 case 4:
4089 swap_2_operands (1, i.operands - 2);
4090 case 3:
4091 case 2:
4092 swap_2_operands (0, i.operands - 1);
4093 break;
4094 default:
4095 abort ();
4096 }
4097
4098 if (i.mem_operands == 2)
4099 {
4100 const seg_entry *temp_seg;
4101 temp_seg = i.seg[0];
4102 i.seg[0] = i.seg[1];
4103 i.seg[1] = temp_seg;
4104 }
4105 }
4106
4107 /* Try to ensure constant immediates are represented in the smallest
4108 opcode possible. */
4109 static void
4110 optimize_imm (void)
4111 {
4112 char guess_suffix = 0;
4113 int op;
4114
4115 if (i.suffix)
4116 guess_suffix = i.suffix;
4117 else if (i.reg_operands)
4118 {
4119 /* Figure out a suffix from the last register operand specified.
4120 We can't do this properly yet, ie. excluding InOutPortReg,
4121 but the following works for instructions with immediates.
4122 In any case, we can't set i.suffix yet. */
4123 for (op = i.operands; --op >= 0;)
4124 if (i.types[op].bitfield.reg8)
4125 {
4126 guess_suffix = BYTE_MNEM_SUFFIX;
4127 break;
4128 }
4129 else if (i.types[op].bitfield.reg16)
4130 {
4131 guess_suffix = WORD_MNEM_SUFFIX;
4132 break;
4133 }
4134 else if (i.types[op].bitfield.reg32)
4135 {
4136 guess_suffix = LONG_MNEM_SUFFIX;
4137 break;
4138 }
4139 else if (i.types[op].bitfield.reg64)
4140 {
4141 guess_suffix = QWORD_MNEM_SUFFIX;
4142 break;
4143 }
4144 }
4145 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4146 guess_suffix = WORD_MNEM_SUFFIX;
4147
4148 for (op = i.operands; --op >= 0;)
4149 if (operand_type_check (i.types[op], imm))
4150 {
4151 switch (i.op[op].imms->X_op)
4152 {
4153 case O_constant:
4154 /* If a suffix is given, this operand may be shortened. */
4155 switch (guess_suffix)
4156 {
4157 case LONG_MNEM_SUFFIX:
4158 i.types[op].bitfield.imm32 = 1;
4159 i.types[op].bitfield.imm64 = 1;
4160 break;
4161 case WORD_MNEM_SUFFIX:
4162 i.types[op].bitfield.imm16 = 1;
4163 i.types[op].bitfield.imm32 = 1;
4164 i.types[op].bitfield.imm32s = 1;
4165 i.types[op].bitfield.imm64 = 1;
4166 break;
4167 case BYTE_MNEM_SUFFIX:
4168 i.types[op].bitfield.imm8 = 1;
4169 i.types[op].bitfield.imm8s = 1;
4170 i.types[op].bitfield.imm16 = 1;
4171 i.types[op].bitfield.imm32 = 1;
4172 i.types[op].bitfield.imm32s = 1;
4173 i.types[op].bitfield.imm64 = 1;
4174 break;
4175 }
4176
4177 /* If this operand is at most 16 bits, convert it
4178 to a signed 16 bit number before trying to see
4179 whether it will fit in an even smaller size.
4180 This allows a 16-bit operand such as $0xffe0 to
4181 be recognised as within Imm8S range. */
4182 if ((i.types[op].bitfield.imm16)
4183 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4184 {
4185 i.op[op].imms->X_add_number =
4186 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4187 }
4188 if ((i.types[op].bitfield.imm32)
4189 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4190 == 0))
4191 {
4192 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4193 ^ ((offsetT) 1 << 31))
4194 - ((offsetT) 1 << 31));
4195 }
4196 i.types[op]
4197 = operand_type_or (i.types[op],
4198 smallest_imm_type (i.op[op].imms->X_add_number));
4199
4200 /* We must avoid matching of Imm32 templates when 64bit
4201 only immediate is available. */
4202 if (guess_suffix == QWORD_MNEM_SUFFIX)
4203 i.types[op].bitfield.imm32 = 0;
4204 break;
4205
4206 case O_absent:
4207 case O_register:
4208 abort ();
4209
4210 /* Symbols and expressions. */
4211 default:
4212 /* Convert symbolic operand to proper sizes for matching, but don't
4213 prevent matching a set of insns that only supports sizes other
4214 than those matching the insn suffix. */
4215 {
4216 i386_operand_type mask, allowed;
4217 const insn_template *t;
4218
4219 operand_type_set (&mask, 0);
4220 operand_type_set (&allowed, 0);
4221
4222 for (t = current_templates->start;
4223 t < current_templates->end;
4224 ++t)
4225 allowed = operand_type_or (allowed,
4226 t->operand_types[op]);
4227 switch (guess_suffix)
4228 {
4229 case QWORD_MNEM_SUFFIX:
4230 mask.bitfield.imm64 = 1;
4231 mask.bitfield.imm32s = 1;
4232 break;
4233 case LONG_MNEM_SUFFIX:
4234 mask.bitfield.imm32 = 1;
4235 break;
4236 case WORD_MNEM_SUFFIX:
4237 mask.bitfield.imm16 = 1;
4238 break;
4239 case BYTE_MNEM_SUFFIX:
4240 mask.bitfield.imm8 = 1;
4241 break;
4242 default:
4243 break;
4244 }
4245 allowed = operand_type_and (mask, allowed);
4246 if (!operand_type_all_zero (&allowed))
4247 i.types[op] = operand_type_and (i.types[op], mask);
4248 }
4249 break;
4250 }
4251 }
4252 }
4253
4254 /* Try to use the smallest displacement type too. */
4255 static void
4256 optimize_disp (void)
4257 {
4258 int op;
4259
4260 for (op = i.operands; --op >= 0;)
4261 if (operand_type_check (i.types[op], disp))
4262 {
4263 if (i.op[op].disps->X_op == O_constant)
4264 {
4265 offsetT op_disp = i.op[op].disps->X_add_number;
4266
4267 if (i.types[op].bitfield.disp16
4268 && (op_disp & ~(offsetT) 0xffff) == 0)
4269 {
4270 /* If this operand is at most 16 bits, convert
4271 to a signed 16 bit number and don't use 64bit
4272 displacement. */
4273 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4274 i.types[op].bitfield.disp64 = 0;
4275 }
4276 if (i.types[op].bitfield.disp32
4277 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4278 {
4279 /* If this operand is at most 32 bits, convert
4280 to a signed 32 bit number and don't use 64bit
4281 displacement. */
4282 op_disp &= (((offsetT) 2 << 31) - 1);
4283 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4284 i.types[op].bitfield.disp64 = 0;
4285 }
4286 if (!op_disp && i.types[op].bitfield.baseindex)
4287 {
4288 i.types[op].bitfield.disp8 = 0;
4289 i.types[op].bitfield.disp16 = 0;
4290 i.types[op].bitfield.disp32 = 0;
4291 i.types[op].bitfield.disp32s = 0;
4292 i.types[op].bitfield.disp64 = 0;
4293 i.op[op].disps = 0;
4294 i.disp_operands--;
4295 }
4296 else if (flag_code == CODE_64BIT)
4297 {
4298 if (fits_in_signed_long (op_disp))
4299 {
4300 i.types[op].bitfield.disp64 = 0;
4301 i.types[op].bitfield.disp32s = 1;
4302 }
4303 if (i.prefix[ADDR_PREFIX]
4304 && fits_in_unsigned_long (op_disp))
4305 i.types[op].bitfield.disp32 = 1;
4306 }
4307 if ((i.types[op].bitfield.disp32
4308 || i.types[op].bitfield.disp32s
4309 || i.types[op].bitfield.disp16)
4310 && fits_in_signed_byte (op_disp))
4311 i.types[op].bitfield.disp8 = 1;
4312 }
4313 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4314 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4315 {
4316 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4317 i.op[op].disps, 0, i.reloc[op]);
4318 i.types[op].bitfield.disp8 = 0;
4319 i.types[op].bitfield.disp16 = 0;
4320 i.types[op].bitfield.disp32 = 0;
4321 i.types[op].bitfield.disp32s = 0;
4322 i.types[op].bitfield.disp64 = 0;
4323 }
4324 else
4325 /* We only support 64bit displacement on constants. */
4326 i.types[op].bitfield.disp64 = 0;
4327 }
4328 }
4329
4330 /* Check if operands are valid for the instruction. */
4331
4332 static int
4333 check_VecOperands (const insn_template *t)
4334 {
4335 unsigned int op;
4336
4337 /* Without VSIB byte, we can't have a vector register for index. */
4338 if (!t->opcode_modifier.vecsib
4339 && i.index_reg
4340 && (i.index_reg->reg_type.bitfield.regxmm
4341 || i.index_reg->reg_type.bitfield.regymm
4342 || i.index_reg->reg_type.bitfield.regzmm))
4343 {
4344 i.error = unsupported_vector_index_register;
4345 return 1;
4346 }
4347
4348 /* For VSIB byte, we need a vector register for index, and all vector
4349 registers must be distinct. */
4350 if (t->opcode_modifier.vecsib)
4351 {
4352 if (!i.index_reg
4353 || !((t->opcode_modifier.vecsib == VecSIB128
4354 && i.index_reg->reg_type.bitfield.regxmm)
4355 || (t->opcode_modifier.vecsib == VecSIB256
4356 && i.index_reg->reg_type.bitfield.regymm)
4357 || (t->opcode_modifier.vecsib == VecSIB512
4358 && i.index_reg->reg_type.bitfield.regzmm)))
4359 {
4360 i.error = invalid_vsib_address;
4361 return 1;
4362 }
4363
4364 gas_assert (i.reg_operands == 2 || i.mask);
4365 if (i.reg_operands == 2 && !i.mask)
4366 {
4367 gas_assert (i.types[0].bitfield.regxmm
4368 || i.types[0].bitfield.regymm
4369 || i.types[0].bitfield.regzmm);
4370 gas_assert (i.types[2].bitfield.regxmm
4371 || i.types[2].bitfield.regymm
4372 || i.types[2].bitfield.regzmm);
4373 if (operand_check == check_none)
4374 return 0;
4375 if (register_number (i.op[0].regs)
4376 != register_number (i.index_reg)
4377 && register_number (i.op[2].regs)
4378 != register_number (i.index_reg)
4379 && register_number (i.op[0].regs)
4380 != register_number (i.op[2].regs))
4381 return 0;
4382 if (operand_check == check_error)
4383 {
4384 i.error = invalid_vector_register_set;
4385 return 1;
4386 }
4387 as_warn (_("mask, index, and destination registers should be distinct"));
4388 }
4389 }
4390
4391 /* Check if broadcast is supported by the instruction and is applied
4392 to the memory operand. */
4393 if (i.broadcast)
4394 {
4395 int broadcasted_opnd_size;
4396
4397 /* Check if specified broadcast is supported in this instruction,
4398 and it's applied to memory operand of DWORD or QWORD type,
4399 depending on VecESize. */
4400 if (i.broadcast->type != t->opcode_modifier.broadcast
4401 || !i.types[i.broadcast->operand].bitfield.mem
4402 || (t->opcode_modifier.vecesize == 0
4403 && !i.types[i.broadcast->operand].bitfield.dword
4404 && !i.types[i.broadcast->operand].bitfield.unspecified)
4405 || (t->opcode_modifier.vecesize == 1
4406 && !i.types[i.broadcast->operand].bitfield.qword
4407 && !i.types[i.broadcast->operand].bitfield.unspecified))
4408 goto bad_broadcast;
4409
4410 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4411 if (i.broadcast->type == BROADCAST_1TO16)
4412 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4413 else if (i.broadcast->type == BROADCAST_1TO8)
4414 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4415 else
4416 goto bad_broadcast;
4417
4418 if ((broadcasted_opnd_size == 256
4419 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4420 || (broadcasted_opnd_size == 512
4421 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4422 {
4423 bad_broadcast:
4424 i.error = unsupported_broadcast;
4425 return 1;
4426 }
4427 }
4428 /* If broadcast is supported in this instruction, we need to check if
4429 operand of one-element size isn't specified without broadcast. */
4430 else if (t->opcode_modifier.broadcast && i.mem_operands)
4431 {
4432 /* Find memory operand. */
4433 for (op = 0; op < i.operands; op++)
4434 if (operand_type_check (i.types[op], anymem))
4435 break;
4436 gas_assert (op < i.operands);
4437 /* Check size of the memory operand. */
4438 if ((t->opcode_modifier.vecesize == 0
4439 && i.types[op].bitfield.dword)
4440 || (t->opcode_modifier.vecesize == 1
4441 && i.types[op].bitfield.qword))
4442 {
4443 i.error = broadcast_needed;
4444 return 1;
4445 }
4446 }
4447
4448 /* Check if requested masking is supported. */
4449 if (i.mask
4450 && (!t->opcode_modifier.masking
4451 || (i.mask->zeroing
4452 && t->opcode_modifier.masking == MERGING_MASKING)))
4453 {
4454 i.error = unsupported_masking;
4455 return 1;
4456 }
4457
4458 /* Check if masking is applied to dest operand. */
4459 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4460 {
4461 i.error = mask_not_on_destination;
4462 return 1;
4463 }
4464
4465 /* Check if default mask is allowed. */
4466 if (t->opcode_modifier.nodefmask
4467 && (!i.mask || i.mask->mask->reg_num == 0))
4468 {
4469 i.error = no_default_mask;
4470 return 1;
4471 }
4472
4473 /* Check RC/SAE. */
4474 if (i.rounding)
4475 {
4476 if ((i.rounding->type != saeonly
4477 && !t->opcode_modifier.staticrounding)
4478 || (i.rounding->type == saeonly
4479 && (t->opcode_modifier.staticrounding
4480 || !t->opcode_modifier.sae)))
4481 {
4482 i.error = unsupported_rc_sae;
4483 return 1;
4484 }
4485 /* If the instruction has several immediate operands and one of
4486 them is rounding, the rounding operand should be the last
4487 immediate operand. */
4488 if (i.imm_operands > 1
4489 && i.rounding->operand != (int) (i.imm_operands - 1))
4490 {
4491 i.error = rc_sae_operand_not_last_imm;
4492 return 1;
4493 }
4494 }
4495
4496 /* Check vector Disp8 operand. */
4497 if (t->opcode_modifier.disp8memshift)
4498 {
4499 if (i.broadcast)
4500 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4501 else
4502 i.memshift = t->opcode_modifier.disp8memshift;
4503
4504 for (op = 0; op < i.operands; op++)
4505 if (operand_type_check (i.types[op], disp)
4506 && i.op[op].disps->X_op == O_constant)
4507 {
4508 offsetT value = i.op[op].disps->X_add_number;
4509 int vec_disp8_ok = fits_in_vec_disp8 (value);
4510 if (t->operand_types [op].bitfield.vec_disp8)
4511 {
4512 if (vec_disp8_ok)
4513 i.types[op].bitfield.vec_disp8 = 1;
4514 else
4515 {
4516 /* Vector insn can only have Vec_Disp8/Disp32 in
4517 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4518 mode. */
4519 i.types[op].bitfield.disp8 = 0;
4520 if (flag_code != CODE_16BIT)
4521 i.types[op].bitfield.disp16 = 0;
4522 }
4523 }
4524 else if (flag_code != CODE_16BIT)
4525 {
4526 /* One form of this instruction supports vector Disp8.
4527 Try vector Disp8 if we need to use Disp32. */
4528 if (vec_disp8_ok && !fits_in_signed_byte (value))
4529 {
4530 i.error = try_vector_disp8;
4531 return 1;
4532 }
4533 }
4534 }
4535 }
4536 else
4537 i.memshift = -1;
4538
4539 return 0;
4540 }
4541
4542 /* Check if operands are valid for the instruction. Update VEX
4543 operand types. */
4544
4545 static int
4546 VEX_check_operands (const insn_template *t)
4547 {
4548 /* VREX is only valid with EVEX prefix. */
4549 if (i.need_vrex && !t->opcode_modifier.evex)
4550 {
4551 i.error = invalid_register_operand;
4552 return 1;
4553 }
4554
4555 if (!t->opcode_modifier.vex)
4556 return 0;
4557
4558 /* Only check VEX_Imm4, which must be the first operand. */
4559 if (t->operand_types[0].bitfield.vec_imm4)
4560 {
4561 if (i.op[0].imms->X_op != O_constant
4562 || !fits_in_imm4 (i.op[0].imms->X_add_number))
4563 {
4564 i.error = bad_imm4;
4565 return 1;
4566 }
4567
4568 /* Turn off Imm8 so that update_imm won't complain. */
4569 i.types[0] = vec_imm4;
4570 }
4571
4572 return 0;
4573 }
4574
4575 static const insn_template *
4576 match_template (void)
4577 {
4578 /* Points to template once we've found it. */
4579 const insn_template *t;
4580 i386_operand_type overlap0, overlap1, overlap2, overlap3;
4581 i386_operand_type overlap4;
4582 unsigned int found_reverse_match;
4583 i386_opcode_modifier suffix_check;
4584 i386_operand_type operand_types [MAX_OPERANDS];
4585 int addr_prefix_disp;
4586 unsigned int j;
4587 unsigned int found_cpu_match;
4588 unsigned int check_register;
4589 enum i386_error specific_error = 0;
4590
4591 #if MAX_OPERANDS != 5
4592 # error "MAX_OPERANDS must be 5."
4593 #endif
4594
4595 found_reverse_match = 0;
4596 addr_prefix_disp = -1;
4597
4598 memset (&suffix_check, 0, sizeof (suffix_check));
4599 if (i.suffix == BYTE_MNEM_SUFFIX)
4600 suffix_check.no_bsuf = 1;
4601 else if (i.suffix == WORD_MNEM_SUFFIX)
4602 suffix_check.no_wsuf = 1;
4603 else if (i.suffix == SHORT_MNEM_SUFFIX)
4604 suffix_check.no_ssuf = 1;
4605 else if (i.suffix == LONG_MNEM_SUFFIX)
4606 suffix_check.no_lsuf = 1;
4607 else if (i.suffix == QWORD_MNEM_SUFFIX)
4608 suffix_check.no_qsuf = 1;
4609 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4610 suffix_check.no_ldsuf = 1;
4611
4612 /* Must have right number of operands. */
4613 i.error = number_of_operands_mismatch;
4614
4615 for (t = current_templates->start; t < current_templates->end; t++)
4616 {
4617 addr_prefix_disp = -1;
4618
4619 if (i.operands != t->operands)
4620 continue;
4621
4622 /* Check processor support. */
4623 i.error = unsupported;
4624 found_cpu_match = (cpu_flags_match (t)
4625 == CPU_FLAGS_PERFECT_MATCH);
4626 if (!found_cpu_match)
4627 continue;
4628
4629 /* Check old gcc support. */
4630 i.error = old_gcc_only;
4631 if (!old_gcc && t->opcode_modifier.oldgcc)
4632 continue;
4633
4634 /* Check AT&T mnemonic. */
4635 i.error = unsupported_with_intel_mnemonic;
4636 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4637 continue;
4638
4639 /* Check AT&T/Intel syntax. */
4640 i.error = unsupported_syntax;
4641 if ((intel_syntax && t->opcode_modifier.attsyntax)
4642 || (!intel_syntax && t->opcode_modifier.intelsyntax))
4643 continue;
4644
4645 /* Check the suffix, except for some instructions in intel mode. */
4646 i.error = invalid_instruction_suffix;
4647 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4648 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4649 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4650 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4651 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4652 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4653 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4654 continue;
4655
4656 if (!operand_size_match (t))
4657 continue;
4658
4659 for (j = 0; j < MAX_OPERANDS; j++)
4660 operand_types[j] = t->operand_types[j];
4661
4662 /* In general, don't allow 64-bit operands in 32-bit mode. */
4663 if (i.suffix == QWORD_MNEM_SUFFIX
4664 && flag_code != CODE_64BIT
4665 && (intel_syntax
4666 ? (!t->opcode_modifier.ignoresize
4667 && !intel_float_operand (t->name))
4668 : intel_float_operand (t->name) != 2)
4669 && ((!operand_types[0].bitfield.regmmx
4670 && !operand_types[0].bitfield.regxmm
4671 && !operand_types[0].bitfield.regymm
4672 && !operand_types[0].bitfield.regzmm)
4673 || (!operand_types[t->operands > 1].bitfield.regmmx
4674 && !!operand_types[t->operands > 1].bitfield.regxmm
4675 && !!operand_types[t->operands > 1].bitfield.regymm
4676 && !!operand_types[t->operands > 1].bitfield.regzmm))
4677 && (t->base_opcode != 0x0fc7
4678 || t->extension_opcode != 1 /* cmpxchg8b */))
4679 continue;
4680
4681 /* In general, don't allow 32-bit operands on pre-386. */
4682 else if (i.suffix == LONG_MNEM_SUFFIX
4683 && !cpu_arch_flags.bitfield.cpui386
4684 && (intel_syntax
4685 ? (!t->opcode_modifier.ignoresize
4686 && !intel_float_operand (t->name))
4687 : intel_float_operand (t->name) != 2)
4688 && ((!operand_types[0].bitfield.regmmx
4689 && !operand_types[0].bitfield.regxmm)
4690 || (!operand_types[t->operands > 1].bitfield.regmmx
4691 && !!operand_types[t->operands > 1].bitfield.regxmm)))
4692 continue;
4693
4694 /* Do not verify operands when there are none. */
4695 else
4696 {
4697 if (!t->operands)
4698 /* We've found a match; break out of loop. */
4699 break;
4700 }
4701
4702 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4703 into Disp32/Disp16/Disp32 operand. */
4704 if (i.prefix[ADDR_PREFIX] != 0)
4705 {
4706 /* There should be only one Disp operand. */
4707 switch (flag_code)
4708 {
4709 case CODE_16BIT:
4710 for (j = 0; j < MAX_OPERANDS; j++)
4711 {
4712 if (operand_types[j].bitfield.disp16)
4713 {
4714 addr_prefix_disp = j;
4715 operand_types[j].bitfield.disp32 = 1;
4716 operand_types[j].bitfield.disp16 = 0;
4717 break;
4718 }
4719 }
4720 break;
4721 case CODE_32BIT:
4722 for (j = 0; j < MAX_OPERANDS; j++)
4723 {
4724 if (operand_types[j].bitfield.disp32)
4725 {
4726 addr_prefix_disp = j;
4727 operand_types[j].bitfield.disp32 = 0;
4728 operand_types[j].bitfield.disp16 = 1;
4729 break;
4730 }
4731 }
4732 break;
4733 case CODE_64BIT:
4734 for (j = 0; j < MAX_OPERANDS; j++)
4735 {
4736 if (operand_types[j].bitfield.disp64)
4737 {
4738 addr_prefix_disp = j;
4739 operand_types[j].bitfield.disp64 = 0;
4740 operand_types[j].bitfield.disp32 = 1;
4741 break;
4742 }
4743 }
4744 break;
4745 }
4746 }
4747
4748 /* We check register size if needed. */
4749 check_register = t->opcode_modifier.checkregsize;
4750 overlap0 = operand_type_and (i.types[0], operand_types[0]);
4751 switch (t->operands)
4752 {
4753 case 1:
4754 if (!operand_type_match (overlap0, i.types[0]))
4755 continue;
4756 break;
4757 case 2:
4758 /* xchg %eax, %eax is a special case. It is an aliase for nop
4759 only in 32bit mode and we can use opcode 0x90. In 64bit
4760 mode, we can't use 0x90 for xchg %eax, %eax since it should
4761 zero-extend %eax to %rax. */
4762 if (flag_code == CODE_64BIT
4763 && t->base_opcode == 0x90
4764 && operand_type_equal (&i.types [0], &acc32)
4765 && operand_type_equal (&i.types [1], &acc32))
4766 continue;
4767 if (i.swap_operand)
4768 {
4769 /* If we swap operand in encoding, we either match
4770 the next one or reverse direction of operands. */
4771 if (t->opcode_modifier.s)
4772 continue;
4773 else if (t->opcode_modifier.d)
4774 goto check_reverse;
4775 }
4776
4777 case 3:
4778 /* If we swap operand in encoding, we match the next one. */
4779 if (i.swap_operand && t->opcode_modifier.s)
4780 continue;
4781 case 4:
4782 case 5:
4783 overlap1 = operand_type_and (i.types[1], operand_types[1]);
4784 if (!operand_type_match (overlap0, i.types[0])
4785 || !operand_type_match (overlap1, i.types[1])
4786 || (check_register
4787 && !operand_type_register_match (overlap0, i.types[0],
4788 operand_types[0],
4789 overlap1, i.types[1],
4790 operand_types[1])))
4791 {
4792 /* Check if other direction is valid ... */
4793 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
4794 continue;
4795
4796 check_reverse:
4797 /* Try reversing direction of operands. */
4798 overlap0 = operand_type_and (i.types[0], operand_types[1]);
4799 overlap1 = operand_type_and (i.types[1], operand_types[0]);
4800 if (!operand_type_match (overlap0, i.types[0])
4801 || !operand_type_match (overlap1, i.types[1])
4802 || (check_register
4803 && !operand_type_register_match (overlap0,
4804 i.types[0],
4805 operand_types[1],
4806 overlap1,
4807 i.types[1],
4808 operand_types[0])))
4809 {
4810 /* Does not match either direction. */
4811 continue;
4812 }
4813 /* found_reverse_match holds which of D or FloatDR
4814 we've found. */
4815 if (t->opcode_modifier.d)
4816 found_reverse_match = Opcode_D;
4817 else if (t->opcode_modifier.floatd)
4818 found_reverse_match = Opcode_FloatD;
4819 else
4820 found_reverse_match = 0;
4821 if (t->opcode_modifier.floatr)
4822 found_reverse_match |= Opcode_FloatR;
4823 }
4824 else
4825 {
4826 /* Found a forward 2 operand match here. */
4827 switch (t->operands)
4828 {
4829 case 5:
4830 overlap4 = operand_type_and (i.types[4],
4831 operand_types[4]);
4832 case 4:
4833 overlap3 = operand_type_and (i.types[3],
4834 operand_types[3]);
4835 case 3:
4836 overlap2 = operand_type_and (i.types[2],
4837 operand_types[2]);
4838 break;
4839 }
4840
4841 switch (t->operands)
4842 {
4843 case 5:
4844 if (!operand_type_match (overlap4, i.types[4])
4845 || !operand_type_register_match (overlap3,
4846 i.types[3],
4847 operand_types[3],
4848 overlap4,
4849 i.types[4],
4850 operand_types[4]))
4851 continue;
4852 case 4:
4853 if (!operand_type_match (overlap3, i.types[3])
4854 || (check_register
4855 && !operand_type_register_match (overlap2,
4856 i.types[2],
4857 operand_types[2],
4858 overlap3,
4859 i.types[3],
4860 operand_types[3])))
4861 continue;
4862 case 3:
4863 /* Here we make use of the fact that there are no
4864 reverse match 3 operand instructions, and all 3
4865 operand instructions only need to be checked for
4866 register consistency between operands 2 and 3. */
4867 if (!operand_type_match (overlap2, i.types[2])
4868 || (check_register
4869 && !operand_type_register_match (overlap1,
4870 i.types[1],
4871 operand_types[1],
4872 overlap2,
4873 i.types[2],
4874 operand_types[2])))
4875 continue;
4876 break;
4877 }
4878 }
4879 /* Found either forward/reverse 2, 3 or 4 operand match here:
4880 slip through to break. */
4881 }
4882 if (!found_cpu_match)
4883 {
4884 found_reverse_match = 0;
4885 continue;
4886 }
4887
4888 /* Check if vector and VEX operands are valid. */
4889 if (check_VecOperands (t) || VEX_check_operands (t))
4890 {
4891 specific_error = i.error;
4892 continue;
4893 }
4894
4895 /* We've found a match; break out of loop. */
4896 break;
4897 }
4898
4899 if (t == current_templates->end)
4900 {
4901 /* We found no match. */
4902 const char *err_msg;
4903 switch (specific_error ? specific_error : i.error)
4904 {
4905 default:
4906 abort ();
4907 case operand_size_mismatch:
4908 err_msg = _("operand size mismatch");
4909 break;
4910 case operand_type_mismatch:
4911 err_msg = _("operand type mismatch");
4912 break;
4913 case register_type_mismatch:
4914 err_msg = _("register type mismatch");
4915 break;
4916 case number_of_operands_mismatch:
4917 err_msg = _("number of operands mismatch");
4918 break;
4919 case invalid_instruction_suffix:
4920 err_msg = _("invalid instruction suffix");
4921 break;
4922 case bad_imm4:
4923 err_msg = _("constant doesn't fit in 4 bits");
4924 break;
4925 case old_gcc_only:
4926 err_msg = _("only supported with old gcc");
4927 break;
4928 case unsupported_with_intel_mnemonic:
4929 err_msg = _("unsupported with Intel mnemonic");
4930 break;
4931 case unsupported_syntax:
4932 err_msg = _("unsupported syntax");
4933 break;
4934 case unsupported:
4935 as_bad (_("unsupported instruction `%s'"),
4936 current_templates->start->name);
4937 return NULL;
4938 case invalid_vsib_address:
4939 err_msg = _("invalid VSIB address");
4940 break;
4941 case invalid_vector_register_set:
4942 err_msg = _("mask, index, and destination registers must be distinct");
4943 break;
4944 case unsupported_vector_index_register:
4945 err_msg = _("unsupported vector index register");
4946 break;
4947 case unsupported_broadcast:
4948 err_msg = _("unsupported broadcast");
4949 break;
4950 case broadcast_not_on_src_operand:
4951 err_msg = _("broadcast not on source memory operand");
4952 break;
4953 case broadcast_needed:
4954 err_msg = _("broadcast is needed for operand of such type");
4955 break;
4956 case unsupported_masking:
4957 err_msg = _("unsupported masking");
4958 break;
4959 case mask_not_on_destination:
4960 err_msg = _("mask not on destination operand");
4961 break;
4962 case no_default_mask:
4963 err_msg = _("default mask isn't allowed");
4964 break;
4965 case unsupported_rc_sae:
4966 err_msg = _("unsupported static rounding/sae");
4967 break;
4968 case rc_sae_operand_not_last_imm:
4969 if (intel_syntax)
4970 err_msg = _("RC/SAE operand must precede immediate operands");
4971 else
4972 err_msg = _("RC/SAE operand must follow immediate operands");
4973 break;
4974 case invalid_register_operand:
4975 err_msg = _("invalid register operand");
4976 break;
4977 }
4978 as_bad (_("%s for `%s'"), err_msg,
4979 current_templates->start->name);
4980 return NULL;
4981 }
4982
4983 if (!quiet_warnings)
4984 {
4985 if (!intel_syntax
4986 && (i.types[0].bitfield.jumpabsolute
4987 != operand_types[0].bitfield.jumpabsolute))
4988 {
4989 as_warn (_("indirect %s without `*'"), t->name);
4990 }
4991
4992 if (t->opcode_modifier.isprefix
4993 && t->opcode_modifier.ignoresize)
4994 {
4995 /* Warn them that a data or address size prefix doesn't
4996 affect assembly of the next line of code. */
4997 as_warn (_("stand-alone `%s' prefix"), t->name);
4998 }
4999 }
5000
5001 /* Copy the template we found. */
5002 i.tm = *t;
5003
5004 if (addr_prefix_disp != -1)
5005 i.tm.operand_types[addr_prefix_disp]
5006 = operand_types[addr_prefix_disp];
5007
5008 if (found_reverse_match)
5009 {
5010 /* If we found a reverse match we must alter the opcode
5011 direction bit. found_reverse_match holds bits to change
5012 (different for int & float insns). */
5013
5014 i.tm.base_opcode ^= found_reverse_match;
5015
5016 i.tm.operand_types[0] = operand_types[1];
5017 i.tm.operand_types[1] = operand_types[0];
5018 }
5019
5020 return t;
5021 }
5022
5023 static int
5024 check_string (void)
5025 {
5026 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5027 if (i.tm.operand_types[mem_op].bitfield.esseg)
5028 {
5029 if (i.seg[0] != NULL && i.seg[0] != &es)
5030 {
5031 as_bad (_("`%s' operand %d must use `%ses' segment"),
5032 i.tm.name,
5033 mem_op + 1,
5034 register_prefix);
5035 return 0;
5036 }
5037 /* There's only ever one segment override allowed per instruction.
5038 This instruction possibly has a legal segment override on the
5039 second operand, so copy the segment to where non-string
5040 instructions store it, allowing common code. */
5041 i.seg[0] = i.seg[1];
5042 }
5043 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5044 {
5045 if (i.seg[1] != NULL && i.seg[1] != &es)
5046 {
5047 as_bad (_("`%s' operand %d must use `%ses' segment"),
5048 i.tm.name,
5049 mem_op + 2,
5050 register_prefix);
5051 return 0;
5052 }
5053 }
5054 return 1;
5055 }
5056
5057 static int
5058 process_suffix (void)
5059 {
5060 /* If matched instruction specifies an explicit instruction mnemonic
5061 suffix, use it. */
5062 if (i.tm.opcode_modifier.size16)
5063 i.suffix = WORD_MNEM_SUFFIX;
5064 else if (i.tm.opcode_modifier.size32)
5065 i.suffix = LONG_MNEM_SUFFIX;
5066 else if (i.tm.opcode_modifier.size64)
5067 i.suffix = QWORD_MNEM_SUFFIX;
5068 else if (i.reg_operands)
5069 {
5070 /* If there's no instruction mnemonic suffix we try to invent one
5071 based on register operands. */
5072 if (!i.suffix)
5073 {
5074 /* We take i.suffix from the last register operand specified,
5075 Destination register type is more significant than source
5076 register type. crc32 in SSE4.2 prefers source register
5077 type. */
5078 if (i.tm.base_opcode == 0xf20f38f1)
5079 {
5080 if (i.types[0].bitfield.reg16)
5081 i.suffix = WORD_MNEM_SUFFIX;
5082 else if (i.types[0].bitfield.reg32)
5083 i.suffix = LONG_MNEM_SUFFIX;
5084 else if (i.types[0].bitfield.reg64)
5085 i.suffix = QWORD_MNEM_SUFFIX;
5086 }
5087 else if (i.tm.base_opcode == 0xf20f38f0)
5088 {
5089 if (i.types[0].bitfield.reg8)
5090 i.suffix = BYTE_MNEM_SUFFIX;
5091 }
5092
5093 if (!i.suffix)
5094 {
5095 int op;
5096
5097 if (i.tm.base_opcode == 0xf20f38f1
5098 || i.tm.base_opcode == 0xf20f38f0)
5099 {
5100 /* We have to know the operand size for crc32. */
5101 as_bad (_("ambiguous memory operand size for `%s`"),
5102 i.tm.name);
5103 return 0;
5104 }
5105
5106 for (op = i.operands; --op >= 0;)
5107 if (!i.tm.operand_types[op].bitfield.inoutportreg)
5108 {
5109 if (i.types[op].bitfield.reg8)
5110 {
5111 i.suffix = BYTE_MNEM_SUFFIX;
5112 break;
5113 }
5114 else if (i.types[op].bitfield.reg16)
5115 {
5116 i.suffix = WORD_MNEM_SUFFIX;
5117 break;
5118 }
5119 else if (i.types[op].bitfield.reg32)
5120 {
5121 i.suffix = LONG_MNEM_SUFFIX;
5122 break;
5123 }
5124 else if (i.types[op].bitfield.reg64)
5125 {
5126 i.suffix = QWORD_MNEM_SUFFIX;
5127 break;
5128 }
5129 }
5130 }
5131 }
5132 else if (i.suffix == BYTE_MNEM_SUFFIX)
5133 {
5134 if (intel_syntax
5135 && i.tm.opcode_modifier.ignoresize
5136 && i.tm.opcode_modifier.no_bsuf)
5137 i.suffix = 0;
5138 else if (!check_byte_reg ())
5139 return 0;
5140 }
5141 else if (i.suffix == LONG_MNEM_SUFFIX)
5142 {
5143 if (intel_syntax
5144 && i.tm.opcode_modifier.ignoresize
5145 && i.tm.opcode_modifier.no_lsuf)
5146 i.suffix = 0;
5147 else if (!check_long_reg ())
5148 return 0;
5149 }
5150 else if (i.suffix == QWORD_MNEM_SUFFIX)
5151 {
5152 if (intel_syntax
5153 && i.tm.opcode_modifier.ignoresize
5154 && i.tm.opcode_modifier.no_qsuf)
5155 i.suffix = 0;
5156 else if (!check_qword_reg ())
5157 return 0;
5158 }
5159 else if (i.suffix == WORD_MNEM_SUFFIX)
5160 {
5161 if (intel_syntax
5162 && i.tm.opcode_modifier.ignoresize
5163 && i.tm.opcode_modifier.no_wsuf)
5164 i.suffix = 0;
5165 else if (!check_word_reg ())
5166 return 0;
5167 }
5168 else if (i.suffix == XMMWORD_MNEM_SUFFIX
5169 || i.suffix == YMMWORD_MNEM_SUFFIX
5170 || i.suffix == ZMMWORD_MNEM_SUFFIX)
5171 {
5172 /* Skip if the instruction has x/y/z suffix. match_template
5173 should check if it is a valid suffix. */
5174 }
5175 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5176 /* Do nothing if the instruction is going to ignore the prefix. */
5177 ;
5178 else
5179 abort ();
5180 }
5181 else if (i.tm.opcode_modifier.defaultsize
5182 && !i.suffix
5183 /* exclude fldenv/frstor/fsave/fstenv */
5184 && i.tm.opcode_modifier.no_ssuf)
5185 {
5186 i.suffix = stackop_size;
5187 }
5188 else if (intel_syntax
5189 && !i.suffix
5190 && (i.tm.operand_types[0].bitfield.jumpabsolute
5191 || i.tm.opcode_modifier.jumpbyte
5192 || i.tm.opcode_modifier.jumpintersegment
5193 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5194 && i.tm.extension_opcode <= 3)))
5195 {
5196 switch (flag_code)
5197 {
5198 case CODE_64BIT:
5199 if (!i.tm.opcode_modifier.no_qsuf)
5200 {
5201 i.suffix = QWORD_MNEM_SUFFIX;
5202 break;
5203 }
5204 case CODE_32BIT:
5205 if (!i.tm.opcode_modifier.no_lsuf)
5206 i.suffix = LONG_MNEM_SUFFIX;
5207 break;
5208 case CODE_16BIT:
5209 if (!i.tm.opcode_modifier.no_wsuf)
5210 i.suffix = WORD_MNEM_SUFFIX;
5211 break;
5212 }
5213 }
5214
5215 if (!i.suffix)
5216 {
5217 if (!intel_syntax)
5218 {
5219 if (i.tm.opcode_modifier.w)
5220 {
5221 as_bad (_("no instruction mnemonic suffix given and "
5222 "no register operands; can't size instruction"));
5223 return 0;
5224 }
5225 }
5226 else
5227 {
5228 unsigned int suffixes;
5229
5230 suffixes = !i.tm.opcode_modifier.no_bsuf;
5231 if (!i.tm.opcode_modifier.no_wsuf)
5232 suffixes |= 1 << 1;
5233 if (!i.tm.opcode_modifier.no_lsuf)
5234 suffixes |= 1 << 2;
5235 if (!i.tm.opcode_modifier.no_ldsuf)
5236 suffixes |= 1 << 3;
5237 if (!i.tm.opcode_modifier.no_ssuf)
5238 suffixes |= 1 << 4;
5239 if (!i.tm.opcode_modifier.no_qsuf)
5240 suffixes |= 1 << 5;
5241
5242 /* There are more than suffix matches. */
5243 if (i.tm.opcode_modifier.w
5244 || ((suffixes & (suffixes - 1))
5245 && !i.tm.opcode_modifier.defaultsize
5246 && !i.tm.opcode_modifier.ignoresize))
5247 {
5248 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5249 return 0;
5250 }
5251 }
5252 }
5253
5254 /* Change the opcode based on the operand size given by i.suffix;
5255 We don't need to change things for byte insns. */
5256
5257 if (i.suffix
5258 && i.suffix != BYTE_MNEM_SUFFIX
5259 && i.suffix != XMMWORD_MNEM_SUFFIX
5260 && i.suffix != YMMWORD_MNEM_SUFFIX
5261 && i.suffix != ZMMWORD_MNEM_SUFFIX)
5262 {
5263 /* It's not a byte, select word/dword operation. */
5264 if (i.tm.opcode_modifier.w)
5265 {
5266 if (i.tm.opcode_modifier.shortform)
5267 i.tm.base_opcode |= 8;
5268 else
5269 i.tm.base_opcode |= 1;
5270 }
5271
5272 /* Now select between word & dword operations via the operand
5273 size prefix, except for instructions that will ignore this
5274 prefix anyway. */
5275 if (i.tm.opcode_modifier.addrprefixop0)
5276 {
5277 /* The address size override prefix changes the size of the
5278 first operand. */
5279 if ((flag_code == CODE_32BIT
5280 && i.op->regs[0].reg_type.bitfield.reg16)
5281 || (flag_code != CODE_32BIT
5282 && i.op->regs[0].reg_type.bitfield.reg32))
5283 if (!add_prefix (ADDR_PREFIX_OPCODE))
5284 return 0;
5285 }
5286 else if (i.suffix != QWORD_MNEM_SUFFIX
5287 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5288 && !i.tm.opcode_modifier.ignoresize
5289 && !i.tm.opcode_modifier.floatmf
5290 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5291 || (flag_code == CODE_64BIT
5292 && i.tm.opcode_modifier.jumpbyte)))
5293 {
5294 unsigned int prefix = DATA_PREFIX_OPCODE;
5295
5296 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5297 prefix = ADDR_PREFIX_OPCODE;
5298
5299 if (!add_prefix (prefix))
5300 return 0;
5301 }
5302
5303 /* Set mode64 for an operand. */
5304 if (i.suffix == QWORD_MNEM_SUFFIX
5305 && flag_code == CODE_64BIT
5306 && !i.tm.opcode_modifier.norex64)
5307 {
5308 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5309 need rex64. cmpxchg8b is also a special case. */
5310 if (! (i.operands == 2
5311 && i.tm.base_opcode == 0x90
5312 && i.tm.extension_opcode == None
5313 && operand_type_equal (&i.types [0], &acc64)
5314 && operand_type_equal (&i.types [1], &acc64))
5315 && ! (i.operands == 1
5316 && i.tm.base_opcode == 0xfc7
5317 && i.tm.extension_opcode == 1
5318 && !operand_type_check (i.types [0], reg)
5319 && operand_type_check (i.types [0], anymem)))
5320 i.rex |= REX_W;
5321 }
5322
5323 /* Size floating point instruction. */
5324 if (i.suffix == LONG_MNEM_SUFFIX)
5325 if (i.tm.opcode_modifier.floatmf)
5326 i.tm.base_opcode ^= 4;
5327 }
5328
5329 return 1;
5330 }
5331
5332 static int
5333 check_byte_reg (void)
5334 {
5335 int op;
5336
5337 for (op = i.operands; --op >= 0;)
5338 {
5339 /* If this is an eight bit register, it's OK. If it's the 16 or
5340 32 bit version of an eight bit register, we will just use the
5341 low portion, and that's OK too. */
5342 if (i.types[op].bitfield.reg8)
5343 continue;
5344
5345 /* I/O port address operands are OK too. */
5346 if (i.tm.operand_types[op].bitfield.inoutportreg)
5347 continue;
5348
5349 /* crc32 doesn't generate this warning. */
5350 if (i.tm.base_opcode == 0xf20f38f0)
5351 continue;
5352
5353 if ((i.types[op].bitfield.reg16
5354 || i.types[op].bitfield.reg32
5355 || i.types[op].bitfield.reg64)
5356 && i.op[op].regs->reg_num < 4
5357 /* Prohibit these changes in 64bit mode, since the lowering
5358 would be more complicated. */
5359 && flag_code != CODE_64BIT)
5360 {
5361 #if REGISTER_WARNINGS
5362 if (!quiet_warnings)
5363 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5364 register_prefix,
5365 (i.op[op].regs + (i.types[op].bitfield.reg16
5366 ? REGNAM_AL - REGNAM_AX
5367 : REGNAM_AL - REGNAM_EAX))->reg_name,
5368 register_prefix,
5369 i.op[op].regs->reg_name,
5370 i.suffix);
5371 #endif
5372 continue;
5373 }
5374 /* Any other register is bad. */
5375 if (i.types[op].bitfield.reg16
5376 || i.types[op].bitfield.reg32
5377 || i.types[op].bitfield.reg64
5378 || i.types[op].bitfield.regmmx
5379 || i.types[op].bitfield.regxmm
5380 || i.types[op].bitfield.regymm
5381 || i.types[op].bitfield.regzmm
5382 || i.types[op].bitfield.sreg2
5383 || i.types[op].bitfield.sreg3
5384 || i.types[op].bitfield.control
5385 || i.types[op].bitfield.debug
5386 || i.types[op].bitfield.test
5387 || i.types[op].bitfield.floatreg
5388 || i.types[op].bitfield.floatacc)
5389 {
5390 as_bad (_("`%s%s' not allowed with `%s%c'"),
5391 register_prefix,
5392 i.op[op].regs->reg_name,
5393 i.tm.name,
5394 i.suffix);
5395 return 0;
5396 }
5397 }
5398 return 1;
5399 }
5400
5401 static int
5402 check_long_reg (void)
5403 {
5404 int op;
5405
5406 for (op = i.operands; --op >= 0;)
5407 /* Reject eight bit registers, except where the template requires
5408 them. (eg. movzb) */
5409 if (i.types[op].bitfield.reg8
5410 && (i.tm.operand_types[op].bitfield.reg16
5411 || i.tm.operand_types[op].bitfield.reg32
5412 || i.tm.operand_types[op].bitfield.acc))
5413 {
5414 as_bad (_("`%s%s' not allowed with `%s%c'"),
5415 register_prefix,
5416 i.op[op].regs->reg_name,
5417 i.tm.name,
5418 i.suffix);
5419 return 0;
5420 }
5421 /* Warn if the e prefix on a general reg is missing. */
5422 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5423 && i.types[op].bitfield.reg16
5424 && (i.tm.operand_types[op].bitfield.reg32
5425 || i.tm.operand_types[op].bitfield.acc))
5426 {
5427 /* Prohibit these changes in the 64bit mode, since the
5428 lowering is more complicated. */
5429 if (flag_code == CODE_64BIT)
5430 {
5431 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5432 register_prefix, i.op[op].regs->reg_name,
5433 i.suffix);
5434 return 0;
5435 }
5436 #if REGISTER_WARNINGS
5437 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5438 register_prefix,
5439 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5440 register_prefix, i.op[op].regs->reg_name, i.suffix);
5441 #endif
5442 }
5443 /* Warn if the r prefix on a general reg is missing. */
5444 else if (i.types[op].bitfield.reg64
5445 && (i.tm.operand_types[op].bitfield.reg32
5446 || i.tm.operand_types[op].bitfield.acc))
5447 {
5448 if (intel_syntax
5449 && i.tm.opcode_modifier.toqword
5450 && !i.types[0].bitfield.regxmm)
5451 {
5452 /* Convert to QWORD. We want REX byte. */
5453 i.suffix = QWORD_MNEM_SUFFIX;
5454 }
5455 else
5456 {
5457 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5458 register_prefix, i.op[op].regs->reg_name,
5459 i.suffix);
5460 return 0;
5461 }
5462 }
5463 return 1;
5464 }
5465
5466 static int
5467 check_qword_reg (void)
5468 {
5469 int op;
5470
5471 for (op = i.operands; --op >= 0; )
5472 /* Reject eight bit registers, except where the template requires
5473 them. (eg. movzb) */
5474 if (i.types[op].bitfield.reg8
5475 && (i.tm.operand_types[op].bitfield.reg16
5476 || i.tm.operand_types[op].bitfield.reg32
5477 || i.tm.operand_types[op].bitfield.acc))
5478 {
5479 as_bad (_("`%s%s' not allowed with `%s%c'"),
5480 register_prefix,
5481 i.op[op].regs->reg_name,
5482 i.tm.name,
5483 i.suffix);
5484 return 0;
5485 }
5486 /* Warn if the e prefix on a general reg is missing. */
5487 else if ((i.types[op].bitfield.reg16
5488 || i.types[op].bitfield.reg32)
5489 && (i.tm.operand_types[op].bitfield.reg32
5490 || i.tm.operand_types[op].bitfield.acc))
5491 {
5492 /* Prohibit these changes in the 64bit mode, since the
5493 lowering is more complicated. */
5494 if (intel_syntax
5495 && i.tm.opcode_modifier.todword
5496 && !i.types[0].bitfield.regxmm)
5497 {
5498 /* Convert to DWORD. We don't want REX byte. */
5499 i.suffix = LONG_MNEM_SUFFIX;
5500 }
5501 else
5502 {
5503 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5504 register_prefix, i.op[op].regs->reg_name,
5505 i.suffix);
5506 return 0;
5507 }
5508 }
5509 return 1;
5510 }
5511
5512 static int
5513 check_word_reg (void)
5514 {
5515 int op;
5516 for (op = i.operands; --op >= 0;)
5517 /* Reject eight bit registers, except where the template requires
5518 them. (eg. movzb) */
5519 if (i.types[op].bitfield.reg8
5520 && (i.tm.operand_types[op].bitfield.reg16
5521 || i.tm.operand_types[op].bitfield.reg32
5522 || i.tm.operand_types[op].bitfield.acc))
5523 {
5524 as_bad (_("`%s%s' not allowed with `%s%c'"),
5525 register_prefix,
5526 i.op[op].regs->reg_name,
5527 i.tm.name,
5528 i.suffix);
5529 return 0;
5530 }
5531 /* Warn if the e prefix on a general reg is present. */
5532 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5533 && i.types[op].bitfield.reg32
5534 && (i.tm.operand_types[op].bitfield.reg16
5535 || i.tm.operand_types[op].bitfield.acc))
5536 {
5537 /* Prohibit these changes in the 64bit mode, since the
5538 lowering is more complicated. */
5539 if (flag_code == CODE_64BIT)
5540 {
5541 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5542 register_prefix, i.op[op].regs->reg_name,
5543 i.suffix);
5544 return 0;
5545 }
5546 #if REGISTER_WARNINGS
5547 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5548 register_prefix,
5549 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5550 register_prefix, i.op[op].regs->reg_name, i.suffix);
5551 #endif
5552 }
5553 return 1;
5554 }
5555
5556 static int
5557 update_imm (unsigned int j)
5558 {
5559 i386_operand_type overlap = i.types[j];
5560 if ((overlap.bitfield.imm8
5561 || overlap.bitfield.imm8s
5562 || overlap.bitfield.imm16
5563 || overlap.bitfield.imm32
5564 || overlap.bitfield.imm32s
5565 || overlap.bitfield.imm64)
5566 && !operand_type_equal (&overlap, &imm8)
5567 && !operand_type_equal (&overlap, &imm8s)
5568 && !operand_type_equal (&overlap, &imm16)
5569 && !operand_type_equal (&overlap, &imm32)
5570 && !operand_type_equal (&overlap, &imm32s)
5571 && !operand_type_equal (&overlap, &imm64))
5572 {
5573 if (i.suffix)
5574 {
5575 i386_operand_type temp;
5576
5577 operand_type_set (&temp, 0);
5578 if (i.suffix == BYTE_MNEM_SUFFIX)
5579 {
5580 temp.bitfield.imm8 = overlap.bitfield.imm8;
5581 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5582 }
5583 else if (i.suffix == WORD_MNEM_SUFFIX)
5584 temp.bitfield.imm16 = overlap.bitfield.imm16;
5585 else if (i.suffix == QWORD_MNEM_SUFFIX)
5586 {
5587 temp.bitfield.imm64 = overlap.bitfield.imm64;
5588 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5589 }
5590 else
5591 temp.bitfield.imm32 = overlap.bitfield.imm32;
5592 overlap = temp;
5593 }
5594 else if (operand_type_equal (&overlap, &imm16_32_32s)
5595 || operand_type_equal (&overlap, &imm16_32)
5596 || operand_type_equal (&overlap, &imm16_32s))
5597 {
5598 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5599 overlap = imm16;
5600 else
5601 overlap = imm32s;
5602 }
5603 if (!operand_type_equal (&overlap, &imm8)
5604 && !operand_type_equal (&overlap, &imm8s)
5605 && !operand_type_equal (&overlap, &imm16)
5606 && !operand_type_equal (&overlap, &imm32)
5607 && !operand_type_equal (&overlap, &imm32s)
5608 && !operand_type_equal (&overlap, &imm64))
5609 {
5610 as_bad (_("no instruction mnemonic suffix given; "
5611 "can't determine immediate size"));
5612 return 0;
5613 }
5614 }
5615 i.types[j] = overlap;
5616
5617 return 1;
5618 }
5619
5620 static int
5621 finalize_imm (void)
5622 {
5623 unsigned int j, n;
5624
5625 /* Update the first 2 immediate operands. */
5626 n = i.operands > 2 ? 2 : i.operands;
5627 if (n)
5628 {
5629 for (j = 0; j < n; j++)
5630 if (update_imm (j) == 0)
5631 return 0;
5632
5633 /* The 3rd operand can't be immediate operand. */
5634 gas_assert (operand_type_check (i.types[2], imm) == 0);
5635 }
5636
5637 return 1;
5638 }
5639
5640 static int
5641 bad_implicit_operand (int xmm)
5642 {
5643 const char *ireg = xmm ? "xmm0" : "ymm0";
5644
5645 if (intel_syntax)
5646 as_bad (_("the last operand of `%s' must be `%s%s'"),
5647 i.tm.name, register_prefix, ireg);
5648 else
5649 as_bad (_("the first operand of `%s' must be `%s%s'"),
5650 i.tm.name, register_prefix, ireg);
5651 return 0;
5652 }
5653
5654 static int
5655 process_operands (void)
5656 {
5657 /* Default segment register this instruction will use for memory
5658 accesses. 0 means unknown. This is only for optimizing out
5659 unnecessary segment overrides. */
5660 const seg_entry *default_seg = 0;
5661
5662 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
5663 {
5664 unsigned int dupl = i.operands;
5665 unsigned int dest = dupl - 1;
5666 unsigned int j;
5667
5668 /* The destination must be an xmm register. */
5669 gas_assert (i.reg_operands
5670 && MAX_OPERANDS > dupl
5671 && operand_type_equal (&i.types[dest], &regxmm));
5672
5673 if (i.tm.opcode_modifier.firstxmm0)
5674 {
5675 /* The first operand is implicit and must be xmm0. */
5676 gas_assert (operand_type_equal (&i.types[0], &regxmm));
5677 if (register_number (i.op[0].regs) != 0)
5678 return bad_implicit_operand (1);
5679
5680 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
5681 {
5682 /* Keep xmm0 for instructions with VEX prefix and 3
5683 sources. */
5684 goto duplicate;
5685 }
5686 else
5687 {
5688 /* We remove the first xmm0 and keep the number of
5689 operands unchanged, which in fact duplicates the
5690 destination. */
5691 for (j = 1; j < i.operands; j++)
5692 {
5693 i.op[j - 1] = i.op[j];
5694 i.types[j - 1] = i.types[j];
5695 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5696 }
5697 }
5698 }
5699 else if (i.tm.opcode_modifier.implicit1stxmm0)
5700 {
5701 gas_assert ((MAX_OPERANDS - 1) > dupl
5702 && (i.tm.opcode_modifier.vexsources
5703 == VEX3SOURCES));
5704
5705 /* Add the implicit xmm0 for instructions with VEX prefix
5706 and 3 sources. */
5707 for (j = i.operands; j > 0; j--)
5708 {
5709 i.op[j] = i.op[j - 1];
5710 i.types[j] = i.types[j - 1];
5711 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
5712 }
5713 i.op[0].regs
5714 = (const reg_entry *) hash_find (reg_hash, "xmm0");
5715 i.types[0] = regxmm;
5716 i.tm.operand_types[0] = regxmm;
5717
5718 i.operands += 2;
5719 i.reg_operands += 2;
5720 i.tm.operands += 2;
5721
5722 dupl++;
5723 dest++;
5724 i.op[dupl] = i.op[dest];
5725 i.types[dupl] = i.types[dest];
5726 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5727 }
5728 else
5729 {
5730 duplicate:
5731 i.operands++;
5732 i.reg_operands++;
5733 i.tm.operands++;
5734
5735 i.op[dupl] = i.op[dest];
5736 i.types[dupl] = i.types[dest];
5737 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5738 }
5739
5740 if (i.tm.opcode_modifier.immext)
5741 process_immext ();
5742 }
5743 else if (i.tm.opcode_modifier.firstxmm0)
5744 {
5745 unsigned int j;
5746
5747 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
5748 gas_assert (i.reg_operands
5749 && (operand_type_equal (&i.types[0], &regxmm)
5750 || operand_type_equal (&i.types[0], &regymm)
5751 || operand_type_equal (&i.types[0], &regzmm)));
5752 if (register_number (i.op[0].regs) != 0)
5753 return bad_implicit_operand (i.types[0].bitfield.regxmm);
5754
5755 for (j = 1; j < i.operands; j++)
5756 {
5757 i.op[j - 1] = i.op[j];
5758 i.types[j - 1] = i.types[j];
5759
5760 /* We need to adjust fields in i.tm since they are used by
5761 build_modrm_byte. */
5762 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5763 }
5764
5765 i.operands--;
5766 i.reg_operands--;
5767 i.tm.operands--;
5768 }
5769 else if (i.tm.opcode_modifier.regkludge)
5770 {
5771 /* The imul $imm, %reg instruction is converted into
5772 imul $imm, %reg, %reg, and the clr %reg instruction
5773 is converted into xor %reg, %reg. */
5774
5775 unsigned int first_reg_op;
5776
5777 if (operand_type_check (i.types[0], reg))
5778 first_reg_op = 0;
5779 else
5780 first_reg_op = 1;
5781 /* Pretend we saw the extra register operand. */
5782 gas_assert (i.reg_operands == 1
5783 && i.op[first_reg_op + 1].regs == 0);
5784 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
5785 i.types[first_reg_op + 1] = i.types[first_reg_op];
5786 i.operands++;
5787 i.reg_operands++;
5788 }
5789
5790 if (i.tm.opcode_modifier.shortform)
5791 {
5792 if (i.types[0].bitfield.sreg2
5793 || i.types[0].bitfield.sreg3)
5794 {
5795 if (i.tm.base_opcode == POP_SEG_SHORT
5796 && i.op[0].regs->reg_num == 1)
5797 {
5798 as_bad (_("you can't `pop %scs'"), register_prefix);
5799 return 0;
5800 }
5801 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
5802 if ((i.op[0].regs->reg_flags & RegRex) != 0)
5803 i.rex |= REX_B;
5804 }
5805 else
5806 {
5807 /* The register or float register operand is in operand
5808 0 or 1. */
5809 unsigned int op;
5810
5811 if (i.types[0].bitfield.floatreg
5812 || operand_type_check (i.types[0], reg))
5813 op = 0;
5814 else
5815 op = 1;
5816 /* Register goes in low 3 bits of opcode. */
5817 i.tm.base_opcode |= i.op[op].regs->reg_num;
5818 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5819 i.rex |= REX_B;
5820 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
5821 {
5822 /* Warn about some common errors, but press on regardless.
5823 The first case can be generated by gcc (<= 2.8.1). */
5824 if (i.operands == 2)
5825 {
5826 /* Reversed arguments on faddp, fsubp, etc. */
5827 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
5828 register_prefix, i.op[!intel_syntax].regs->reg_name,
5829 register_prefix, i.op[intel_syntax].regs->reg_name);
5830 }
5831 else
5832 {
5833 /* Extraneous `l' suffix on fp insn. */
5834 as_warn (_("translating to `%s %s%s'"), i.tm.name,
5835 register_prefix, i.op[0].regs->reg_name);
5836 }
5837 }
5838 }
5839 }
5840 else if (i.tm.opcode_modifier.modrm)
5841 {
5842 /* The opcode is completed (modulo i.tm.extension_opcode which
5843 must be put into the modrm byte). Now, we make the modrm and
5844 index base bytes based on all the info we've collected. */
5845
5846 default_seg = build_modrm_byte ();
5847 }
5848 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
5849 {
5850 default_seg = &ds;
5851 }
5852 else if (i.tm.opcode_modifier.isstring)
5853 {
5854 /* For the string instructions that allow a segment override
5855 on one of their operands, the default segment is ds. */
5856 default_seg = &ds;
5857 }
5858
5859 if (i.tm.base_opcode == 0x8d /* lea */
5860 && i.seg[0]
5861 && !quiet_warnings)
5862 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
5863
5864 /* If a segment was explicitly specified, and the specified segment
5865 is not the default, use an opcode prefix to select it. If we
5866 never figured out what the default segment is, then default_seg
5867 will be zero at this point, and the specified segment prefix will
5868 always be used. */
5869 if ((i.seg[0]) && (i.seg[0] != default_seg))
5870 {
5871 if (!add_prefix (i.seg[0]->seg_prefix))
5872 return 0;
5873 }
5874 return 1;
5875 }
5876
5877 static const seg_entry *
5878 build_modrm_byte (void)
5879 {
5880 const seg_entry *default_seg = 0;
5881 unsigned int source, dest;
5882 int vex_3_sources;
5883
5884 /* The first operand of instructions with VEX prefix and 3 sources
5885 must be VEX_Imm4. */
5886 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
5887 if (vex_3_sources)
5888 {
5889 unsigned int nds, reg_slot;
5890 expressionS *exp;
5891
5892 if (i.tm.opcode_modifier.veximmext
5893 && i.tm.opcode_modifier.immext)
5894 {
5895 dest = i.operands - 2;
5896 gas_assert (dest == 3);
5897 }
5898 else
5899 dest = i.operands - 1;
5900 nds = dest - 1;
5901
5902 /* There are 2 kinds of instructions:
5903 1. 5 operands: 4 register operands or 3 register operands
5904 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
5905 VexW0 or VexW1. The destination must be either XMM, YMM or
5906 ZMM register.
5907 2. 4 operands: 4 register operands or 3 register operands
5908 plus 1 memory operand, VexXDS, and VexImmExt */
5909 gas_assert ((i.reg_operands == 4
5910 || (i.reg_operands == 3 && i.mem_operands == 1))
5911 && i.tm.opcode_modifier.vexvvvv == VEXXDS
5912 && (i.tm.opcode_modifier.veximmext
5913 || (i.imm_operands == 1
5914 && i.types[0].bitfield.vec_imm4
5915 && (i.tm.opcode_modifier.vexw == VEXW0
5916 || i.tm.opcode_modifier.vexw == VEXW1)
5917 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
5918 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
5919 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
5920
5921 if (i.imm_operands == 0)
5922 {
5923 /* When there is no immediate operand, generate an 8bit
5924 immediate operand to encode the first operand. */
5925 exp = &im_expressions[i.imm_operands++];
5926 i.op[i.operands].imms = exp;
5927 i.types[i.operands] = imm8;
5928 i.operands++;
5929 /* If VexW1 is set, the first operand is the source and
5930 the second operand is encoded in the immediate operand. */
5931 if (i.tm.opcode_modifier.vexw == VEXW1)
5932 {
5933 source = 0;
5934 reg_slot = 1;
5935 }
5936 else
5937 {
5938 source = 1;
5939 reg_slot = 0;
5940 }
5941
5942 /* FMA swaps REG and NDS. */
5943 if (i.tm.cpu_flags.bitfield.cpufma)
5944 {
5945 unsigned int tmp;
5946 tmp = reg_slot;
5947 reg_slot = nds;
5948 nds = tmp;
5949 }
5950
5951 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
5952 &regxmm)
5953 || operand_type_equal (&i.tm.operand_types[reg_slot],
5954 &regymm)
5955 || operand_type_equal (&i.tm.operand_types[reg_slot],
5956 &regzmm));
5957 exp->X_op = O_constant;
5958 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
5959 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
5960 }
5961 else
5962 {
5963 unsigned int imm_slot;
5964
5965 if (i.tm.opcode_modifier.vexw == VEXW0)
5966 {
5967 /* If VexW0 is set, the third operand is the source and
5968 the second operand is encoded in the immediate
5969 operand. */
5970 source = 2;
5971 reg_slot = 1;
5972 }
5973 else
5974 {
5975 /* VexW1 is set, the second operand is the source and
5976 the third operand is encoded in the immediate
5977 operand. */
5978 source = 1;
5979 reg_slot = 2;
5980 }
5981
5982 if (i.tm.opcode_modifier.immext)
5983 {
5984 /* When ImmExt is set, the immdiate byte is the last
5985 operand. */
5986 imm_slot = i.operands - 1;
5987 source--;
5988 reg_slot--;
5989 }
5990 else
5991 {
5992 imm_slot = 0;
5993
5994 /* Turn on Imm8 so that output_imm will generate it. */
5995 i.types[imm_slot].bitfield.imm8 = 1;
5996 }
5997
5998 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
5999 &regxmm)
6000 || operand_type_equal (&i.tm.operand_types[reg_slot],
6001 &regymm)
6002 || operand_type_equal (&i.tm.operand_types[reg_slot],
6003 &regzmm));
6004 i.op[imm_slot].imms->X_add_number
6005 |= register_number (i.op[reg_slot].regs) << 4;
6006 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6007 }
6008
6009 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6010 || operand_type_equal (&i.tm.operand_types[nds],
6011 &regymm)
6012 || operand_type_equal (&i.tm.operand_types[nds],
6013 &regzmm));
6014 i.vex.register_specifier = i.op[nds].regs;
6015 }
6016 else
6017 source = dest = 0;
6018
6019 /* i.reg_operands MUST be the number of real register operands;
6020 implicit registers do not count. If there are 3 register
6021 operands, it must be a instruction with VexNDS. For a
6022 instruction with VexNDD, the destination register is encoded
6023 in VEX prefix. If there are 4 register operands, it must be
6024 a instruction with VEX prefix and 3 sources. */
6025 if (i.mem_operands == 0
6026 && ((i.reg_operands == 2
6027 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6028 || (i.reg_operands == 3
6029 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6030 || (i.reg_operands == 4 && vex_3_sources)))
6031 {
6032 switch (i.operands)
6033 {
6034 case 2:
6035 source = 0;
6036 break;
6037 case 3:
6038 /* When there are 3 operands, one of them may be immediate,
6039 which may be the first or the last operand. Otherwise,
6040 the first operand must be shift count register (cl) or it
6041 is an instruction with VexNDS. */
6042 gas_assert (i.imm_operands == 1
6043 || (i.imm_operands == 0
6044 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6045 || i.types[0].bitfield.shiftcount)));
6046 if (operand_type_check (i.types[0], imm)
6047 || i.types[0].bitfield.shiftcount)
6048 source = 1;
6049 else
6050 source = 0;
6051 break;
6052 case 4:
6053 /* When there are 4 operands, the first two must be 8bit
6054 immediate operands. The source operand will be the 3rd
6055 one.
6056
6057 For instructions with VexNDS, if the first operand
6058 an imm8, the source operand is the 2nd one. If the last
6059 operand is imm8, the source operand is the first one. */
6060 gas_assert ((i.imm_operands == 2
6061 && i.types[0].bitfield.imm8
6062 && i.types[1].bitfield.imm8)
6063 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6064 && i.imm_operands == 1
6065 && (i.types[0].bitfield.imm8
6066 || i.types[i.operands - 1].bitfield.imm8
6067 || i.rounding)));
6068 if (i.imm_operands == 2)
6069 source = 2;
6070 else
6071 {
6072 if (i.types[0].bitfield.imm8)
6073 source = 1;
6074 else
6075 source = 0;
6076 }
6077 break;
6078 case 5:
6079 if (i.tm.opcode_modifier.evex)
6080 {
6081 /* For EVEX instructions, when there are 5 operands, the
6082 first one must be immediate operand. If the second one
6083 is immediate operand, the source operand is the 3th
6084 one. If the last one is immediate operand, the source
6085 operand is the 2nd one. */
6086 gas_assert (i.imm_operands == 2
6087 && i.tm.opcode_modifier.sae
6088 && operand_type_check (i.types[0], imm));
6089 if (operand_type_check (i.types[1], imm))
6090 source = 2;
6091 else if (operand_type_check (i.types[4], imm))
6092 source = 1;
6093 else
6094 abort ();
6095 }
6096 break;
6097 default:
6098 abort ();
6099 }
6100
6101 if (!vex_3_sources)
6102 {
6103 dest = source + 1;
6104
6105 /* RC/SAE operand could be between DEST and SRC. That happens
6106 when one operand is GPR and the other one is XMM/YMM/ZMM
6107 register. */
6108 if (i.rounding && i.rounding->operand == (int) dest)
6109 dest++;
6110
6111 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6112 {
6113 /* For instructions with VexNDS, the register-only source
6114 operand must be 32/64bit integer, XMM, YMM or ZMM
6115 register. It is encoded in VEX prefix. We need to
6116 clear RegMem bit before calling operand_type_equal. */
6117
6118 i386_operand_type op;
6119 unsigned int vvvv;
6120
6121 /* Check register-only source operand when two source
6122 operands are swapped. */
6123 if (!i.tm.operand_types[source].bitfield.baseindex
6124 && i.tm.operand_types[dest].bitfield.baseindex)
6125 {
6126 vvvv = source;
6127 source = dest;
6128 }
6129 else
6130 vvvv = dest;
6131
6132 op = i.tm.operand_types[vvvv];
6133 op.bitfield.regmem = 0;
6134 if ((dest + 1) >= i.operands
6135 || (op.bitfield.reg32 != 1
6136 && !op.bitfield.reg64 != 1
6137 && !operand_type_equal (&op, &regxmm)
6138 && !operand_type_equal (&op, &regymm)
6139 && !operand_type_equal (&op, &regzmm)
6140 && !operand_type_equal (&op, &regmask)))
6141 abort ();
6142 i.vex.register_specifier = i.op[vvvv].regs;
6143 dest++;
6144 }
6145 }
6146
6147 i.rm.mode = 3;
6148 /* One of the register operands will be encoded in the i.tm.reg
6149 field, the other in the combined i.tm.mode and i.tm.regmem
6150 fields. If no form of this instruction supports a memory
6151 destination operand, then we assume the source operand may
6152 sometimes be a memory operand and so we need to store the
6153 destination in the i.rm.reg field. */
6154 if (!i.tm.operand_types[dest].bitfield.regmem
6155 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6156 {
6157 i.rm.reg = i.op[dest].regs->reg_num;
6158 i.rm.regmem = i.op[source].regs->reg_num;
6159 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6160 i.rex |= REX_R;
6161 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6162 i.vrex |= REX_R;
6163 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6164 i.rex |= REX_B;
6165 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6166 i.vrex |= REX_B;
6167 }
6168 else
6169 {
6170 i.rm.reg = i.op[source].regs->reg_num;
6171 i.rm.regmem = i.op[dest].regs->reg_num;
6172 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6173 i.rex |= REX_B;
6174 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6175 i.vrex |= REX_B;
6176 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6177 i.rex |= REX_R;
6178 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6179 i.vrex |= REX_R;
6180 }
6181 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6182 {
6183 if (!i.types[0].bitfield.control
6184 && !i.types[1].bitfield.control)
6185 abort ();
6186 i.rex &= ~(REX_R | REX_B);
6187 add_prefix (LOCK_PREFIX_OPCODE);
6188 }
6189 }
6190 else
6191 { /* If it's not 2 reg operands... */
6192 unsigned int mem;
6193
6194 if (i.mem_operands)
6195 {
6196 unsigned int fake_zero_displacement = 0;
6197 unsigned int op;
6198
6199 for (op = 0; op < i.operands; op++)
6200 if (operand_type_check (i.types[op], anymem))
6201 break;
6202 gas_assert (op < i.operands);
6203
6204 if (i.tm.opcode_modifier.vecsib)
6205 {
6206 if (i.index_reg->reg_num == RegEiz
6207 || i.index_reg->reg_num == RegRiz)
6208 abort ();
6209
6210 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6211 if (!i.base_reg)
6212 {
6213 i.sib.base = NO_BASE_REGISTER;
6214 i.sib.scale = i.log2_scale_factor;
6215 /* No Vec_Disp8 if there is no base. */
6216 i.types[op].bitfield.vec_disp8 = 0;
6217 i.types[op].bitfield.disp8 = 0;
6218 i.types[op].bitfield.disp16 = 0;
6219 i.types[op].bitfield.disp64 = 0;
6220 if (flag_code != CODE_64BIT)
6221 {
6222 /* Must be 32 bit */
6223 i.types[op].bitfield.disp32 = 1;
6224 i.types[op].bitfield.disp32s = 0;
6225 }
6226 else
6227 {
6228 i.types[op].bitfield.disp32 = 0;
6229 i.types[op].bitfield.disp32s = 1;
6230 }
6231 }
6232 i.sib.index = i.index_reg->reg_num;
6233 if ((i.index_reg->reg_flags & RegRex) != 0)
6234 i.rex |= REX_X;
6235 if ((i.index_reg->reg_flags & RegVRex) != 0)
6236 i.vrex |= REX_X;
6237 }
6238
6239 default_seg = &ds;
6240
6241 if (i.base_reg == 0)
6242 {
6243 i.rm.mode = 0;
6244 if (!i.disp_operands)
6245 {
6246 fake_zero_displacement = 1;
6247 /* Instructions with VSIB byte need 32bit displacement
6248 if there is no base register. */
6249 if (i.tm.opcode_modifier.vecsib)
6250 i.types[op].bitfield.disp32 = 1;
6251 }
6252 if (i.index_reg == 0)
6253 {
6254 gas_assert (!i.tm.opcode_modifier.vecsib);
6255 /* Operand is just <disp> */
6256 if (flag_code == CODE_64BIT)
6257 {
6258 /* 64bit mode overwrites the 32bit absolute
6259 addressing by RIP relative addressing and
6260 absolute addressing is encoded by one of the
6261 redundant SIB forms. */
6262 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6263 i.sib.base = NO_BASE_REGISTER;
6264 i.sib.index = NO_INDEX_REGISTER;
6265 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6266 ? disp32s : disp32);
6267 }
6268 else if ((flag_code == CODE_16BIT)
6269 ^ (i.prefix[ADDR_PREFIX] != 0))
6270 {
6271 i.rm.regmem = NO_BASE_REGISTER_16;
6272 i.types[op] = disp16;
6273 }
6274 else
6275 {
6276 i.rm.regmem = NO_BASE_REGISTER;
6277 i.types[op] = disp32;
6278 }
6279 }
6280 else if (!i.tm.opcode_modifier.vecsib)
6281 {
6282 /* !i.base_reg && i.index_reg */
6283 if (i.index_reg->reg_num == RegEiz
6284 || i.index_reg->reg_num == RegRiz)
6285 i.sib.index = NO_INDEX_REGISTER;
6286 else
6287 i.sib.index = i.index_reg->reg_num;
6288 i.sib.base = NO_BASE_REGISTER;
6289 i.sib.scale = i.log2_scale_factor;
6290 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6291 /* No Vec_Disp8 if there is no base. */
6292 i.types[op].bitfield.vec_disp8 = 0;
6293 i.types[op].bitfield.disp8 = 0;
6294 i.types[op].bitfield.disp16 = 0;
6295 i.types[op].bitfield.disp64 = 0;
6296 if (flag_code != CODE_64BIT)
6297 {
6298 /* Must be 32 bit */
6299 i.types[op].bitfield.disp32 = 1;
6300 i.types[op].bitfield.disp32s = 0;
6301 }
6302 else
6303 {
6304 i.types[op].bitfield.disp32 = 0;
6305 i.types[op].bitfield.disp32s = 1;
6306 }
6307 if ((i.index_reg->reg_flags & RegRex) != 0)
6308 i.rex |= REX_X;
6309 }
6310 }
6311 /* RIP addressing for 64bit mode. */
6312 else if (i.base_reg->reg_num == RegRip ||
6313 i.base_reg->reg_num == RegEip)
6314 {
6315 gas_assert (!i.tm.opcode_modifier.vecsib);
6316 i.rm.regmem = NO_BASE_REGISTER;
6317 i.types[op].bitfield.disp8 = 0;
6318 i.types[op].bitfield.disp16 = 0;
6319 i.types[op].bitfield.disp32 = 0;
6320 i.types[op].bitfield.disp32s = 1;
6321 i.types[op].bitfield.disp64 = 0;
6322 i.types[op].bitfield.vec_disp8 = 0;
6323 i.flags[op] |= Operand_PCrel;
6324 if (! i.disp_operands)
6325 fake_zero_displacement = 1;
6326 }
6327 else if (i.base_reg->reg_type.bitfield.reg16)
6328 {
6329 gas_assert (!i.tm.opcode_modifier.vecsib);
6330 switch (i.base_reg->reg_num)
6331 {
6332 case 3: /* (%bx) */
6333 if (i.index_reg == 0)
6334 i.rm.regmem = 7;
6335 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6336 i.rm.regmem = i.index_reg->reg_num - 6;
6337 break;
6338 case 5: /* (%bp) */
6339 default_seg = &ss;
6340 if (i.index_reg == 0)
6341 {
6342 i.rm.regmem = 6;
6343 if (operand_type_check (i.types[op], disp) == 0)
6344 {
6345 /* fake (%bp) into 0(%bp) */
6346 if (i.tm.operand_types[op].bitfield.vec_disp8)
6347 i.types[op].bitfield.vec_disp8 = 1;
6348 else
6349 i.types[op].bitfield.disp8 = 1;
6350 fake_zero_displacement = 1;
6351 }
6352 }
6353 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6354 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6355 break;
6356 default: /* (%si) -> 4 or (%di) -> 5 */
6357 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6358 }
6359 i.rm.mode = mode_from_disp_size (i.types[op]);
6360 }
6361 else /* i.base_reg and 32/64 bit mode */
6362 {
6363 if (flag_code == CODE_64BIT
6364 && operand_type_check (i.types[op], disp))
6365 {
6366 i386_operand_type temp;
6367 operand_type_set (&temp, 0);
6368 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6369 temp.bitfield.vec_disp8
6370 = i.types[op].bitfield.vec_disp8;
6371 i.types[op] = temp;
6372 if (i.prefix[ADDR_PREFIX] == 0)
6373 i.types[op].bitfield.disp32s = 1;
6374 else
6375 i.types[op].bitfield.disp32 = 1;
6376 }
6377
6378 if (!i.tm.opcode_modifier.vecsib)
6379 i.rm.regmem = i.base_reg->reg_num;
6380 if ((i.base_reg->reg_flags & RegRex) != 0)
6381 i.rex |= REX_B;
6382 i.sib.base = i.base_reg->reg_num;
6383 /* x86-64 ignores REX prefix bit here to avoid decoder
6384 complications. */
6385 if (!(i.base_reg->reg_flags & RegRex)
6386 && (i.base_reg->reg_num == EBP_REG_NUM
6387 || i.base_reg->reg_num == ESP_REG_NUM))
6388 default_seg = &ss;
6389 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6390 {
6391 fake_zero_displacement = 1;
6392 if (i.tm.operand_types [op].bitfield.vec_disp8)
6393 i.types[op].bitfield.vec_disp8 = 1;
6394 else
6395 i.types[op].bitfield.disp8 = 1;
6396 }
6397 i.sib.scale = i.log2_scale_factor;
6398 if (i.index_reg == 0)
6399 {
6400 gas_assert (!i.tm.opcode_modifier.vecsib);
6401 /* <disp>(%esp) becomes two byte modrm with no index
6402 register. We've already stored the code for esp
6403 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6404 Any base register besides %esp will not use the
6405 extra modrm byte. */
6406 i.sib.index = NO_INDEX_REGISTER;
6407 }
6408 else if (!i.tm.opcode_modifier.vecsib)
6409 {
6410 if (i.index_reg->reg_num == RegEiz
6411 || i.index_reg->reg_num == RegRiz)
6412 i.sib.index = NO_INDEX_REGISTER;
6413 else
6414 i.sib.index = i.index_reg->reg_num;
6415 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6416 if ((i.index_reg->reg_flags & RegRex) != 0)
6417 i.rex |= REX_X;
6418 }
6419
6420 if (i.disp_operands
6421 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6422 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6423 i.rm.mode = 0;
6424 else
6425 {
6426 if (!fake_zero_displacement
6427 && !i.disp_operands
6428 && i.disp_encoding)
6429 {
6430 fake_zero_displacement = 1;
6431 if (i.disp_encoding == disp_encoding_8bit)
6432 i.types[op].bitfield.disp8 = 1;
6433 else
6434 i.types[op].bitfield.disp32 = 1;
6435 }
6436 i.rm.mode = mode_from_disp_size (i.types[op]);
6437 }
6438 }
6439
6440 if (fake_zero_displacement)
6441 {
6442 /* Fakes a zero displacement assuming that i.types[op]
6443 holds the correct displacement size. */
6444 expressionS *exp;
6445
6446 gas_assert (i.op[op].disps == 0);
6447 exp = &disp_expressions[i.disp_operands++];
6448 i.op[op].disps = exp;
6449 exp->X_op = O_constant;
6450 exp->X_add_number = 0;
6451 exp->X_add_symbol = (symbolS *) 0;
6452 exp->X_op_symbol = (symbolS *) 0;
6453 }
6454
6455 mem = op;
6456 }
6457 else
6458 mem = ~0;
6459
6460 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6461 {
6462 if (operand_type_check (i.types[0], imm))
6463 i.vex.register_specifier = NULL;
6464 else
6465 {
6466 /* VEX.vvvv encodes one of the sources when the first
6467 operand is not an immediate. */
6468 if (i.tm.opcode_modifier.vexw == VEXW0)
6469 i.vex.register_specifier = i.op[0].regs;
6470 else
6471 i.vex.register_specifier = i.op[1].regs;
6472 }
6473
6474 /* Destination is a XMM register encoded in the ModRM.reg
6475 and VEX.R bit. */
6476 i.rm.reg = i.op[2].regs->reg_num;
6477 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6478 i.rex |= REX_R;
6479
6480 /* ModRM.rm and VEX.B encodes the other source. */
6481 if (!i.mem_operands)
6482 {
6483 i.rm.mode = 3;
6484
6485 if (i.tm.opcode_modifier.vexw == VEXW0)
6486 i.rm.regmem = i.op[1].regs->reg_num;
6487 else
6488 i.rm.regmem = i.op[0].regs->reg_num;
6489
6490 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6491 i.rex |= REX_B;
6492 }
6493 }
6494 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6495 {
6496 i.vex.register_specifier = i.op[2].regs;
6497 if (!i.mem_operands)
6498 {
6499 i.rm.mode = 3;
6500 i.rm.regmem = i.op[1].regs->reg_num;
6501 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6502 i.rex |= REX_B;
6503 }
6504 }
6505 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6506 (if any) based on i.tm.extension_opcode. Again, we must be
6507 careful to make sure that segment/control/debug/test/MMX
6508 registers are coded into the i.rm.reg field. */
6509 else if (i.reg_operands)
6510 {
6511 unsigned int op;
6512 unsigned int vex_reg = ~0;
6513
6514 for (op = 0; op < i.operands; op++)
6515 if (i.types[op].bitfield.reg8
6516 || i.types[op].bitfield.reg16
6517 || i.types[op].bitfield.reg32
6518 || i.types[op].bitfield.reg64
6519 || i.types[op].bitfield.regmmx
6520 || i.types[op].bitfield.regxmm
6521 || i.types[op].bitfield.regymm
6522 || i.types[op].bitfield.regbnd
6523 || i.types[op].bitfield.regzmm
6524 || i.types[op].bitfield.regmask
6525 || i.types[op].bitfield.sreg2
6526 || i.types[op].bitfield.sreg3
6527 || i.types[op].bitfield.control
6528 || i.types[op].bitfield.debug
6529 || i.types[op].bitfield.test)
6530 break;
6531
6532 if (vex_3_sources)
6533 op = dest;
6534 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6535 {
6536 /* For instructions with VexNDS, the register-only
6537 source operand is encoded in VEX prefix. */
6538 gas_assert (mem != (unsigned int) ~0);
6539
6540 if (op > mem)
6541 {
6542 vex_reg = op++;
6543 gas_assert (op < i.operands);
6544 }
6545 else
6546 {
6547 /* Check register-only source operand when two source
6548 operands are swapped. */
6549 if (!i.tm.operand_types[op].bitfield.baseindex
6550 && i.tm.operand_types[op + 1].bitfield.baseindex)
6551 {
6552 vex_reg = op;
6553 op += 2;
6554 gas_assert (mem == (vex_reg + 1)
6555 && op < i.operands);
6556 }
6557 else
6558 {
6559 vex_reg = op + 1;
6560 gas_assert (vex_reg < i.operands);
6561 }
6562 }
6563 }
6564 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6565 {
6566 /* For instructions with VexNDD, the register destination
6567 is encoded in VEX prefix. */
6568 if (i.mem_operands == 0)
6569 {
6570 /* There is no memory operand. */
6571 gas_assert ((op + 2) == i.operands);
6572 vex_reg = op + 1;
6573 }
6574 else
6575 {
6576 /* There are only 2 operands. */
6577 gas_assert (op < 2 && i.operands == 2);
6578 vex_reg = 1;
6579 }
6580 }
6581 else
6582 gas_assert (op < i.operands);
6583
6584 if (vex_reg != (unsigned int) ~0)
6585 {
6586 i386_operand_type *type = &i.tm.operand_types[vex_reg];
6587
6588 if (type->bitfield.reg32 != 1
6589 && type->bitfield.reg64 != 1
6590 && !operand_type_equal (type, &regxmm)
6591 && !operand_type_equal (type, &regymm)
6592 && !operand_type_equal (type, &regzmm)
6593 && !operand_type_equal (type, &regmask))
6594 abort ();
6595
6596 i.vex.register_specifier = i.op[vex_reg].regs;
6597 }
6598
6599 /* Don't set OP operand twice. */
6600 if (vex_reg != op)
6601 {
6602 /* If there is an extension opcode to put here, the
6603 register number must be put into the regmem field. */
6604 if (i.tm.extension_opcode != None)
6605 {
6606 i.rm.regmem = i.op[op].regs->reg_num;
6607 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6608 i.rex |= REX_B;
6609 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6610 i.vrex |= REX_B;
6611 }
6612 else
6613 {
6614 i.rm.reg = i.op[op].regs->reg_num;
6615 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6616 i.rex |= REX_R;
6617 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6618 i.vrex |= REX_R;
6619 }
6620 }
6621
6622 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6623 must set it to 3 to indicate this is a register operand
6624 in the regmem field. */
6625 if (!i.mem_operands)
6626 i.rm.mode = 3;
6627 }
6628
6629 /* Fill in i.rm.reg field with extension opcode (if any). */
6630 if (i.tm.extension_opcode != None)
6631 i.rm.reg = i.tm.extension_opcode;
6632 }
6633 return default_seg;
6634 }
6635
6636 static void
6637 output_branch (void)
6638 {
6639 char *p;
6640 int size;
6641 int code16;
6642 int prefix;
6643 relax_substateT subtype;
6644 symbolS *sym;
6645 offsetT off;
6646
6647 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6648 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6649
6650 prefix = 0;
6651 if (i.prefix[DATA_PREFIX] != 0)
6652 {
6653 prefix = 1;
6654 i.prefixes -= 1;
6655 code16 ^= CODE16;
6656 }
6657 /* Pentium4 branch hints. */
6658 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6659 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6660 {
6661 prefix++;
6662 i.prefixes--;
6663 }
6664 if (i.prefix[REX_PREFIX] != 0)
6665 {
6666 prefix++;
6667 i.prefixes--;
6668 }
6669
6670 /* BND prefixed jump. */
6671 if (i.prefix[BND_PREFIX] != 0)
6672 {
6673 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6674 i.prefixes -= 1;
6675 }
6676
6677 if (i.prefixes != 0 && !intel_syntax)
6678 as_warn (_("skipping prefixes on this instruction"));
6679
6680 /* It's always a symbol; End frag & setup for relax.
6681 Make sure there is enough room in this frag for the largest
6682 instruction we may generate in md_convert_frag. This is 2
6683 bytes for the opcode and room for the prefix and largest
6684 displacement. */
6685 frag_grow (prefix + 2 + 4);
6686 /* Prefix and 1 opcode byte go in fr_fix. */
6687 p = frag_more (prefix + 1);
6688 if (i.prefix[DATA_PREFIX] != 0)
6689 *p++ = DATA_PREFIX_OPCODE;
6690 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6691 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6692 *p++ = i.prefix[SEG_PREFIX];
6693 if (i.prefix[REX_PREFIX] != 0)
6694 *p++ = i.prefix[REX_PREFIX];
6695 *p = i.tm.base_opcode;
6696
6697 if ((unsigned char) *p == JUMP_PC_RELATIVE)
6698 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
6699 else if (cpu_arch_flags.bitfield.cpui386)
6700 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
6701 else
6702 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
6703 subtype |= code16;
6704
6705 sym = i.op[0].disps->X_add_symbol;
6706 off = i.op[0].disps->X_add_number;
6707
6708 if (i.op[0].disps->X_op != O_constant
6709 && i.op[0].disps->X_op != O_symbol)
6710 {
6711 /* Handle complex expressions. */
6712 sym = make_expr_symbol (i.op[0].disps);
6713 off = 0;
6714 }
6715
6716 /* 1 possible extra opcode + 4 byte displacement go in var part.
6717 Pass reloc in fr_var. */
6718 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
6719 }
6720
6721 static void
6722 output_jump (void)
6723 {
6724 char *p;
6725 int size;
6726 fixS *fixP;
6727
6728 if (i.tm.opcode_modifier.jumpbyte)
6729 {
6730 /* This is a loop or jecxz type instruction. */
6731 size = 1;
6732 if (i.prefix[ADDR_PREFIX] != 0)
6733 {
6734 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
6735 i.prefixes -= 1;
6736 }
6737 /* Pentium4 branch hints. */
6738 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6739 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6740 {
6741 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
6742 i.prefixes--;
6743 }
6744 }
6745 else
6746 {
6747 int code16;
6748
6749 code16 = 0;
6750 if (flag_code == CODE_16BIT)
6751 code16 = CODE16;
6752
6753 if (i.prefix[DATA_PREFIX] != 0)
6754 {
6755 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
6756 i.prefixes -= 1;
6757 code16 ^= CODE16;
6758 }
6759
6760 size = 4;
6761 if (code16)
6762 size = 2;
6763 }
6764
6765 if (i.prefix[REX_PREFIX] != 0)
6766 {
6767 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
6768 i.prefixes -= 1;
6769 }
6770
6771 /* BND prefixed jump. */
6772 if (i.prefix[BND_PREFIX] != 0)
6773 {
6774 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6775 i.prefixes -= 1;
6776 }
6777
6778 if (i.prefixes != 0 && !intel_syntax)
6779 as_warn (_("skipping prefixes on this instruction"));
6780
6781 p = frag_more (i.tm.opcode_length + size);
6782 switch (i.tm.opcode_length)
6783 {
6784 case 2:
6785 *p++ = i.tm.base_opcode >> 8;
6786 case 1:
6787 *p++ = i.tm.base_opcode;
6788 break;
6789 default:
6790 abort ();
6791 }
6792
6793 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6794 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
6795
6796 /* All jumps handled here are signed, but don't use a signed limit
6797 check for 32 and 16 bit jumps as we want to allow wrap around at
6798 4G and 64k respectively. */
6799 if (size == 1)
6800 fixP->fx_signed = 1;
6801 }
6802
6803 static void
6804 output_interseg_jump (void)
6805 {
6806 char *p;
6807 int size;
6808 int prefix;
6809 int code16;
6810
6811 code16 = 0;
6812 if (flag_code == CODE_16BIT)
6813 code16 = CODE16;
6814
6815 prefix = 0;
6816 if (i.prefix[DATA_PREFIX] != 0)
6817 {
6818 prefix = 1;
6819 i.prefixes -= 1;
6820 code16 ^= CODE16;
6821 }
6822 if (i.prefix[REX_PREFIX] != 0)
6823 {
6824 prefix++;
6825 i.prefixes -= 1;
6826 }
6827
6828 size = 4;
6829 if (code16)
6830 size = 2;
6831
6832 if (i.prefixes != 0 && !intel_syntax)
6833 as_warn (_("skipping prefixes on this instruction"));
6834
6835 /* 1 opcode; 2 segment; offset */
6836 p = frag_more (prefix + 1 + 2 + size);
6837
6838 if (i.prefix[DATA_PREFIX] != 0)
6839 *p++ = DATA_PREFIX_OPCODE;
6840
6841 if (i.prefix[REX_PREFIX] != 0)
6842 *p++ = i.prefix[REX_PREFIX];
6843
6844 *p++ = i.tm.base_opcode;
6845 if (i.op[1].imms->X_op == O_constant)
6846 {
6847 offsetT n = i.op[1].imms->X_add_number;
6848
6849 if (size == 2
6850 && !fits_in_unsigned_word (n)
6851 && !fits_in_signed_word (n))
6852 {
6853 as_bad (_("16-bit jump out of range"));
6854 return;
6855 }
6856 md_number_to_chars (p, n, size);
6857 }
6858 else
6859 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6860 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
6861 if (i.op[0].imms->X_op != O_constant)
6862 as_bad (_("can't handle non absolute segment in `%s'"),
6863 i.tm.name);
6864 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
6865 }
6866
6867 static void
6868 output_insn (void)
6869 {
6870 fragS *insn_start_frag;
6871 offsetT insn_start_off;
6872
6873 /* Tie dwarf2 debug info to the address at the start of the insn.
6874 We can't do this after the insn has been output as the current
6875 frag may have been closed off. eg. by frag_var. */
6876 dwarf2_emit_insn (0);
6877
6878 insn_start_frag = frag_now;
6879 insn_start_off = frag_now_fix ();
6880
6881 /* Output jumps. */
6882 if (i.tm.opcode_modifier.jump)
6883 output_branch ();
6884 else if (i.tm.opcode_modifier.jumpbyte
6885 || i.tm.opcode_modifier.jumpdword)
6886 output_jump ();
6887 else if (i.tm.opcode_modifier.jumpintersegment)
6888 output_interseg_jump ();
6889 else
6890 {
6891 /* Output normal instructions here. */
6892 char *p;
6893 unsigned char *q;
6894 unsigned int j;
6895 unsigned int prefix;
6896
6897 /* Since the VEX/EVEX prefix contains the implicit prefix, we
6898 don't need the explicit prefix. */
6899 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
6900 {
6901 switch (i.tm.opcode_length)
6902 {
6903 case 3:
6904 if (i.tm.base_opcode & 0xff000000)
6905 {
6906 prefix = (i.tm.base_opcode >> 24) & 0xff;
6907 goto check_prefix;
6908 }
6909 break;
6910 case 2:
6911 if ((i.tm.base_opcode & 0xff0000) != 0)
6912 {
6913 prefix = (i.tm.base_opcode >> 16) & 0xff;
6914 if (i.tm.cpu_flags.bitfield.cpupadlock)
6915 {
6916 check_prefix:
6917 if (prefix != REPE_PREFIX_OPCODE
6918 || (i.prefix[REP_PREFIX]
6919 != REPE_PREFIX_OPCODE))
6920 add_prefix (prefix);
6921 }
6922 else
6923 add_prefix (prefix);
6924 }
6925 break;
6926 case 1:
6927 break;
6928 default:
6929 abort ();
6930 }
6931
6932 /* The prefix bytes. */
6933 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
6934 if (*q)
6935 FRAG_APPEND_1_CHAR (*q);
6936 }
6937 else
6938 {
6939 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
6940 if (*q)
6941 switch (j)
6942 {
6943 case REX_PREFIX:
6944 /* REX byte is encoded in VEX prefix. */
6945 break;
6946 case SEG_PREFIX:
6947 case ADDR_PREFIX:
6948 FRAG_APPEND_1_CHAR (*q);
6949 break;
6950 default:
6951 /* There should be no other prefixes for instructions
6952 with VEX prefix. */
6953 abort ();
6954 }
6955
6956 /* For EVEX instructions i.vrex should become 0 after
6957 build_evex_prefix. For VEX instructions upper 16 registers
6958 aren't available, so VREX should be 0. */
6959 if (i.vrex)
6960 abort ();
6961 /* Now the VEX prefix. */
6962 p = frag_more (i.vex.length);
6963 for (j = 0; j < i.vex.length; j++)
6964 p[j] = i.vex.bytes[j];
6965 }
6966
6967 /* Now the opcode; be careful about word order here! */
6968 if (i.tm.opcode_length == 1)
6969 {
6970 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
6971 }
6972 else
6973 {
6974 switch (i.tm.opcode_length)
6975 {
6976 case 4:
6977 p = frag_more (4);
6978 *p++ = (i.tm.base_opcode >> 24) & 0xff;
6979 *p++ = (i.tm.base_opcode >> 16) & 0xff;
6980 break;
6981 case 3:
6982 p = frag_more (3);
6983 *p++ = (i.tm.base_opcode >> 16) & 0xff;
6984 break;
6985 case 2:
6986 p = frag_more (2);
6987 break;
6988 default:
6989 abort ();
6990 break;
6991 }
6992
6993 /* Put out high byte first: can't use md_number_to_chars! */
6994 *p++ = (i.tm.base_opcode >> 8) & 0xff;
6995 *p = i.tm.base_opcode & 0xff;
6996 }
6997
6998 /* Now the modrm byte and sib byte (if present). */
6999 if (i.tm.opcode_modifier.modrm)
7000 {
7001 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7002 | i.rm.reg << 3
7003 | i.rm.mode << 6));
7004 /* If i.rm.regmem == ESP (4)
7005 && i.rm.mode != (Register mode)
7006 && not 16 bit
7007 ==> need second modrm byte. */
7008 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7009 && i.rm.mode != 3
7010 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
7011 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7012 | i.sib.index << 3
7013 | i.sib.scale << 6));
7014 }
7015
7016 if (i.disp_operands)
7017 output_disp (insn_start_frag, insn_start_off);
7018
7019 if (i.imm_operands)
7020 output_imm (insn_start_frag, insn_start_off);
7021 }
7022
7023 #ifdef DEBUG386
7024 if (flag_debug)
7025 {
7026 pi ("" /*line*/, &i);
7027 }
7028 #endif /* DEBUG386 */
7029 }
7030
7031 /* Return the size of the displacement operand N. */
7032
7033 static int
7034 disp_size (unsigned int n)
7035 {
7036 int size = 4;
7037
7038 /* Vec_Disp8 has to be 8bit. */
7039 if (i.types[n].bitfield.vec_disp8)
7040 size = 1;
7041 else if (i.types[n].bitfield.disp64)
7042 size = 8;
7043 else if (i.types[n].bitfield.disp8)
7044 size = 1;
7045 else if (i.types[n].bitfield.disp16)
7046 size = 2;
7047 return size;
7048 }
7049
7050 /* Return the size of the immediate operand N. */
7051
7052 static int
7053 imm_size (unsigned int n)
7054 {
7055 int size = 4;
7056 if (i.types[n].bitfield.imm64)
7057 size = 8;
7058 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7059 size = 1;
7060 else if (i.types[n].bitfield.imm16)
7061 size = 2;
7062 return size;
7063 }
7064
7065 static void
7066 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7067 {
7068 char *p;
7069 unsigned int n;
7070
7071 for (n = 0; n < i.operands; n++)
7072 {
7073 if (i.types[n].bitfield.vec_disp8
7074 || operand_type_check (i.types[n], disp))
7075 {
7076 if (i.op[n].disps->X_op == O_constant)
7077 {
7078 int size = disp_size (n);
7079 offsetT val = i.op[n].disps->X_add_number;
7080
7081 if (i.types[n].bitfield.vec_disp8)
7082 val >>= i.memshift;
7083 val = offset_in_range (val, size);
7084 p = frag_more (size);
7085 md_number_to_chars (p, val, size);
7086 }
7087 else
7088 {
7089 enum bfd_reloc_code_real reloc_type;
7090 int size = disp_size (n);
7091 int sign = i.types[n].bitfield.disp32s;
7092 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7093
7094 /* We can't have 8 bit displacement here. */
7095 gas_assert (!i.types[n].bitfield.disp8);
7096
7097 /* The PC relative address is computed relative
7098 to the instruction boundary, so in case immediate
7099 fields follows, we need to adjust the value. */
7100 if (pcrel && i.imm_operands)
7101 {
7102 unsigned int n1;
7103 int sz = 0;
7104
7105 for (n1 = 0; n1 < i.operands; n1++)
7106 if (operand_type_check (i.types[n1], imm))
7107 {
7108 /* Only one immediate is allowed for PC
7109 relative address. */
7110 gas_assert (sz == 0);
7111 sz = imm_size (n1);
7112 i.op[n].disps->X_add_number -= sz;
7113 }
7114 /* We should find the immediate. */
7115 gas_assert (sz != 0);
7116 }
7117
7118 p = frag_more (size);
7119 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7120 if (GOT_symbol
7121 && GOT_symbol == i.op[n].disps->X_add_symbol
7122 && (((reloc_type == BFD_RELOC_32
7123 || reloc_type == BFD_RELOC_X86_64_32S
7124 || (reloc_type == BFD_RELOC_64
7125 && object_64bit))
7126 && (i.op[n].disps->X_op == O_symbol
7127 || (i.op[n].disps->X_op == O_add
7128 && ((symbol_get_value_expression
7129 (i.op[n].disps->X_op_symbol)->X_op)
7130 == O_subtract))))
7131 || reloc_type == BFD_RELOC_32_PCREL))
7132 {
7133 offsetT add;
7134
7135 if (insn_start_frag == frag_now)
7136 add = (p - frag_now->fr_literal) - insn_start_off;
7137 else
7138 {
7139 fragS *fr;
7140
7141 add = insn_start_frag->fr_fix - insn_start_off;
7142 for (fr = insn_start_frag->fr_next;
7143 fr && fr != frag_now; fr = fr->fr_next)
7144 add += fr->fr_fix;
7145 add += p - frag_now->fr_literal;
7146 }
7147
7148 if (!object_64bit)
7149 {
7150 reloc_type = BFD_RELOC_386_GOTPC;
7151 i.op[n].imms->X_add_number += add;
7152 }
7153 else if (reloc_type == BFD_RELOC_64)
7154 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7155 else
7156 /* Don't do the adjustment for x86-64, as there
7157 the pcrel addressing is relative to the _next_
7158 insn, and that is taken care of in other code. */
7159 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7160 }
7161 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7162 i.op[n].disps, pcrel, reloc_type);
7163 }
7164 }
7165 }
7166 }
7167
7168 static void
7169 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7170 {
7171 char *p;
7172 unsigned int n;
7173
7174 for (n = 0; n < i.operands; n++)
7175 {
7176 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7177 if (i.rounding && (int) n == i.rounding->operand)
7178 continue;
7179
7180 if (operand_type_check (i.types[n], imm))
7181 {
7182 if (i.op[n].imms->X_op == O_constant)
7183 {
7184 int size = imm_size (n);
7185 offsetT val;
7186
7187 val = offset_in_range (i.op[n].imms->X_add_number,
7188 size);
7189 p = frag_more (size);
7190 md_number_to_chars (p, val, size);
7191 }
7192 else
7193 {
7194 /* Not absolute_section.
7195 Need a 32-bit fixup (don't support 8bit
7196 non-absolute imms). Try to support other
7197 sizes ... */
7198 enum bfd_reloc_code_real reloc_type;
7199 int size = imm_size (n);
7200 int sign;
7201
7202 if (i.types[n].bitfield.imm32s
7203 && (i.suffix == QWORD_MNEM_SUFFIX
7204 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7205 sign = 1;
7206 else
7207 sign = 0;
7208
7209 p = frag_more (size);
7210 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7211
7212 /* This is tough to explain. We end up with this one if we
7213 * have operands that look like
7214 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7215 * obtain the absolute address of the GOT, and it is strongly
7216 * preferable from a performance point of view to avoid using
7217 * a runtime relocation for this. The actual sequence of
7218 * instructions often look something like:
7219 *
7220 * call .L66
7221 * .L66:
7222 * popl %ebx
7223 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7224 *
7225 * The call and pop essentially return the absolute address
7226 * of the label .L66 and store it in %ebx. The linker itself
7227 * will ultimately change the first operand of the addl so
7228 * that %ebx points to the GOT, but to keep things simple, the
7229 * .o file must have this operand set so that it generates not
7230 * the absolute address of .L66, but the absolute address of
7231 * itself. This allows the linker itself simply treat a GOTPC
7232 * relocation as asking for a pcrel offset to the GOT to be
7233 * added in, and the addend of the relocation is stored in the
7234 * operand field for the instruction itself.
7235 *
7236 * Our job here is to fix the operand so that it would add
7237 * the correct offset so that %ebx would point to itself. The
7238 * thing that is tricky is that .-.L66 will point to the
7239 * beginning of the instruction, so we need to further modify
7240 * the operand so that it will point to itself. There are
7241 * other cases where you have something like:
7242 *
7243 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7244 *
7245 * and here no correction would be required. Internally in
7246 * the assembler we treat operands of this form as not being
7247 * pcrel since the '.' is explicitly mentioned, and I wonder
7248 * whether it would simplify matters to do it this way. Who
7249 * knows. In earlier versions of the PIC patches, the
7250 * pcrel_adjust field was used to store the correction, but
7251 * since the expression is not pcrel, I felt it would be
7252 * confusing to do it this way. */
7253
7254 if ((reloc_type == BFD_RELOC_32
7255 || reloc_type == BFD_RELOC_X86_64_32S
7256 || reloc_type == BFD_RELOC_64)
7257 && GOT_symbol
7258 && GOT_symbol == i.op[n].imms->X_add_symbol
7259 && (i.op[n].imms->X_op == O_symbol
7260 || (i.op[n].imms->X_op == O_add
7261 && ((symbol_get_value_expression
7262 (i.op[n].imms->X_op_symbol)->X_op)
7263 == O_subtract))))
7264 {
7265 offsetT add;
7266
7267 if (insn_start_frag == frag_now)
7268 add = (p - frag_now->fr_literal) - insn_start_off;
7269 else
7270 {
7271 fragS *fr;
7272
7273 add = insn_start_frag->fr_fix - insn_start_off;
7274 for (fr = insn_start_frag->fr_next;
7275 fr && fr != frag_now; fr = fr->fr_next)
7276 add += fr->fr_fix;
7277 add += p - frag_now->fr_literal;
7278 }
7279
7280 if (!object_64bit)
7281 reloc_type = BFD_RELOC_386_GOTPC;
7282 else if (size == 4)
7283 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7284 else if (size == 8)
7285 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7286 i.op[n].imms->X_add_number += add;
7287 }
7288 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7289 i.op[n].imms, 0, reloc_type);
7290 }
7291 }
7292 }
7293 }
7294 \f
7295 /* x86_cons_fix_new is called via the expression parsing code when a
7296 reloc is needed. We use this hook to get the correct .got reloc. */
7297 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
7298 static int cons_sign = -1;
7299
7300 void
7301 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7302 expressionS *exp)
7303 {
7304 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
7305
7306 got_reloc = NO_RELOC;
7307
7308 #ifdef TE_PE
7309 if (exp->X_op == O_secrel)
7310 {
7311 exp->X_op = O_symbol;
7312 r = BFD_RELOC_32_SECREL;
7313 }
7314 #endif
7315
7316 fix_new_exp (frag, off, len, exp, 0, r);
7317 }
7318
7319 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7320 purpose of the `.dc.a' internal pseudo-op. */
7321
7322 int
7323 x86_address_bytes (void)
7324 {
7325 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7326 return 4;
7327 return stdoutput->arch_info->bits_per_address / 8;
7328 }
7329
7330 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7331 || defined (LEX_AT)
7332 # define lex_got(reloc, adjust, types) NULL
7333 #else
7334 /* Parse operands of the form
7335 <symbol>@GOTOFF+<nnn>
7336 and similar .plt or .got references.
7337
7338 If we find one, set up the correct relocation in RELOC and copy the
7339 input string, minus the `@GOTOFF' into a malloc'd buffer for
7340 parsing by the calling routine. Return this buffer, and if ADJUST
7341 is non-null set it to the length of the string we removed from the
7342 input line. Otherwise return NULL. */
7343 static char *
7344 lex_got (enum bfd_reloc_code_real *rel,
7345 int *adjust,
7346 i386_operand_type *types)
7347 {
7348 /* Some of the relocations depend on the size of what field is to
7349 be relocated. But in our callers i386_immediate and i386_displacement
7350 we don't yet know the operand size (this will be set by insn
7351 matching). Hence we record the word32 relocation here,
7352 and adjust the reloc according to the real size in reloc(). */
7353 static const struct {
7354 const char *str;
7355 int len;
7356 const enum bfd_reloc_code_real rel[2];
7357 const i386_operand_type types64;
7358 } gotrel[] = {
7359 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7360 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7361 BFD_RELOC_SIZE32 },
7362 OPERAND_TYPE_IMM32_64 },
7363 #endif
7364 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7365 BFD_RELOC_X86_64_PLTOFF64 },
7366 OPERAND_TYPE_IMM64 },
7367 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7368 BFD_RELOC_X86_64_PLT32 },
7369 OPERAND_TYPE_IMM32_32S_DISP32 },
7370 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7371 BFD_RELOC_X86_64_GOTPLT64 },
7372 OPERAND_TYPE_IMM64_DISP64 },
7373 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7374 BFD_RELOC_X86_64_GOTOFF64 },
7375 OPERAND_TYPE_IMM64_DISP64 },
7376 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7377 BFD_RELOC_X86_64_GOTPCREL },
7378 OPERAND_TYPE_IMM32_32S_DISP32 },
7379 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7380 BFD_RELOC_X86_64_TLSGD },
7381 OPERAND_TYPE_IMM32_32S_DISP32 },
7382 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7383 _dummy_first_bfd_reloc_code_real },
7384 OPERAND_TYPE_NONE },
7385 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7386 BFD_RELOC_X86_64_TLSLD },
7387 OPERAND_TYPE_IMM32_32S_DISP32 },
7388 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7389 BFD_RELOC_X86_64_GOTTPOFF },
7390 OPERAND_TYPE_IMM32_32S_DISP32 },
7391 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7392 BFD_RELOC_X86_64_TPOFF32 },
7393 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7394 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7395 _dummy_first_bfd_reloc_code_real },
7396 OPERAND_TYPE_NONE },
7397 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7398 BFD_RELOC_X86_64_DTPOFF32 },
7399 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7400 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7401 _dummy_first_bfd_reloc_code_real },
7402 OPERAND_TYPE_NONE },
7403 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7404 _dummy_first_bfd_reloc_code_real },
7405 OPERAND_TYPE_NONE },
7406 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7407 BFD_RELOC_X86_64_GOT32 },
7408 OPERAND_TYPE_IMM32_32S_64_DISP32 },
7409 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7410 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7411 OPERAND_TYPE_IMM32_32S_DISP32 },
7412 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7413 BFD_RELOC_X86_64_TLSDESC_CALL },
7414 OPERAND_TYPE_IMM32_32S_DISP32 },
7415 };
7416 char *cp;
7417 unsigned int j;
7418
7419 #if defined (OBJ_MAYBE_ELF)
7420 if (!IS_ELF)
7421 return NULL;
7422 #endif
7423
7424 for (cp = input_line_pointer; *cp != '@'; cp++)
7425 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7426 return NULL;
7427
7428 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7429 {
7430 int len = gotrel[j].len;
7431 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7432 {
7433 if (gotrel[j].rel[object_64bit] != 0)
7434 {
7435 int first, second;
7436 char *tmpbuf, *past_reloc;
7437
7438 *rel = gotrel[j].rel[object_64bit];
7439
7440 if (types)
7441 {
7442 if (flag_code != CODE_64BIT)
7443 {
7444 types->bitfield.imm32 = 1;
7445 types->bitfield.disp32 = 1;
7446 }
7447 else
7448 *types = gotrel[j].types64;
7449 }
7450
7451 if (j != 0 && GOT_symbol == NULL)
7452 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7453
7454 /* The length of the first part of our input line. */
7455 first = cp - input_line_pointer;
7456
7457 /* The second part goes from after the reloc token until
7458 (and including) an end_of_line char or comma. */
7459 past_reloc = cp + 1 + len;
7460 cp = past_reloc;
7461 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7462 ++cp;
7463 second = cp + 1 - past_reloc;
7464
7465 /* Allocate and copy string. The trailing NUL shouldn't
7466 be necessary, but be safe. */
7467 tmpbuf = (char *) xmalloc (first + second + 2);
7468 memcpy (tmpbuf, input_line_pointer, first);
7469 if (second != 0 && *past_reloc != ' ')
7470 /* Replace the relocation token with ' ', so that
7471 errors like foo@GOTOFF1 will be detected. */
7472 tmpbuf[first++] = ' ';
7473 else
7474 /* Increment length by 1 if the relocation token is
7475 removed. */
7476 len++;
7477 if (adjust)
7478 *adjust = len;
7479 memcpy (tmpbuf + first, past_reloc, second);
7480 tmpbuf[first + second] = '\0';
7481 return tmpbuf;
7482 }
7483
7484 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7485 gotrel[j].str, 1 << (5 + object_64bit));
7486 return NULL;
7487 }
7488 }
7489
7490 /* Might be a symbol version string. Don't as_bad here. */
7491 return NULL;
7492 }
7493 #endif
7494
7495 #ifdef TE_PE
7496 #ifdef lex_got
7497 #undef lex_got
7498 #endif
7499 /* Parse operands of the form
7500 <symbol>@SECREL32+<nnn>
7501
7502 If we find one, set up the correct relocation in RELOC and copy the
7503 input string, minus the `@SECREL32' into a malloc'd buffer for
7504 parsing by the calling routine. Return this buffer, and if ADJUST
7505 is non-null set it to the length of the string we removed from the
7506 input line. Otherwise return NULL.
7507
7508 This function is copied from the ELF version above adjusted for PE targets. */
7509
7510 static char *
7511 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7512 int *adjust ATTRIBUTE_UNUSED,
7513 i386_operand_type *types ATTRIBUTE_UNUSED)
7514 {
7515 static const struct
7516 {
7517 const char *str;
7518 int len;
7519 const enum bfd_reloc_code_real rel[2];
7520 const i386_operand_type types64;
7521 }
7522 gotrel[] =
7523 {
7524 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7525 BFD_RELOC_32_SECREL },
7526 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7527 };
7528
7529 char *cp;
7530 unsigned j;
7531
7532 for (cp = input_line_pointer; *cp != '@'; cp++)
7533 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7534 return NULL;
7535
7536 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7537 {
7538 int len = gotrel[j].len;
7539
7540 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7541 {
7542 if (gotrel[j].rel[object_64bit] != 0)
7543 {
7544 int first, second;
7545 char *tmpbuf, *past_reloc;
7546
7547 *rel = gotrel[j].rel[object_64bit];
7548 if (adjust)
7549 *adjust = len;
7550
7551 if (types)
7552 {
7553 if (flag_code != CODE_64BIT)
7554 {
7555 types->bitfield.imm32 = 1;
7556 types->bitfield.disp32 = 1;
7557 }
7558 else
7559 *types = gotrel[j].types64;
7560 }
7561
7562 /* The length of the first part of our input line. */
7563 first = cp - input_line_pointer;
7564
7565 /* The second part goes from after the reloc token until
7566 (and including) an end_of_line char or comma. */
7567 past_reloc = cp + 1 + len;
7568 cp = past_reloc;
7569 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7570 ++cp;
7571 second = cp + 1 - past_reloc;
7572
7573 /* Allocate and copy string. The trailing NUL shouldn't
7574 be necessary, but be safe. */
7575 tmpbuf = (char *) xmalloc (first + second + 2);
7576 memcpy (tmpbuf, input_line_pointer, first);
7577 if (second != 0 && *past_reloc != ' ')
7578 /* Replace the relocation token with ' ', so that
7579 errors like foo@SECLREL321 will be detected. */
7580 tmpbuf[first++] = ' ';
7581 memcpy (tmpbuf + first, past_reloc, second);
7582 tmpbuf[first + second] = '\0';
7583 return tmpbuf;
7584 }
7585
7586 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7587 gotrel[j].str, 1 << (5 + object_64bit));
7588 return NULL;
7589 }
7590 }
7591
7592 /* Might be a symbol version string. Don't as_bad here. */
7593 return NULL;
7594 }
7595
7596 #endif /* TE_PE */
7597
7598 void
7599 x86_cons (expressionS *exp, int size)
7600 {
7601 intel_syntax = -intel_syntax;
7602
7603 exp->X_md = 0;
7604 if (size == 4 || (object_64bit && size == 8))
7605 {
7606 /* Handle @GOTOFF and the like in an expression. */
7607 char *save;
7608 char *gotfree_input_line;
7609 int adjust = 0;
7610
7611 save = input_line_pointer;
7612 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
7613 if (gotfree_input_line)
7614 input_line_pointer = gotfree_input_line;
7615
7616 expression (exp);
7617
7618 if (gotfree_input_line)
7619 {
7620 /* expression () has merrily parsed up to the end of line,
7621 or a comma - in the wrong buffer. Transfer how far
7622 input_line_pointer has moved to the right buffer. */
7623 input_line_pointer = (save
7624 + (input_line_pointer - gotfree_input_line)
7625 + adjust);
7626 free (gotfree_input_line);
7627 if (exp->X_op == O_constant
7628 || exp->X_op == O_absent
7629 || exp->X_op == O_illegal
7630 || exp->X_op == O_register
7631 || exp->X_op == O_big)
7632 {
7633 char c = *input_line_pointer;
7634 *input_line_pointer = 0;
7635 as_bad (_("missing or invalid expression `%s'"), save);
7636 *input_line_pointer = c;
7637 }
7638 }
7639 }
7640 else
7641 expression (exp);
7642
7643 intel_syntax = -intel_syntax;
7644
7645 if (intel_syntax)
7646 i386_intel_simplify (exp);
7647 }
7648
7649 static void
7650 signed_cons (int size)
7651 {
7652 if (flag_code == CODE_64BIT)
7653 cons_sign = 1;
7654 cons (size);
7655 cons_sign = -1;
7656 }
7657
7658 #ifdef TE_PE
7659 static void
7660 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
7661 {
7662 expressionS exp;
7663
7664 do
7665 {
7666 expression (&exp);
7667 if (exp.X_op == O_symbol)
7668 exp.X_op = O_secrel;
7669
7670 emit_expr (&exp, 4);
7671 }
7672 while (*input_line_pointer++ == ',');
7673
7674 input_line_pointer--;
7675 demand_empty_rest_of_line ();
7676 }
7677 #endif
7678
7679 /* Handle Vector operations. */
7680
7681 static char *
7682 check_VecOperations (char *op_string, char *op_end)
7683 {
7684 const reg_entry *mask;
7685 const char *saved;
7686 char *end_op;
7687
7688 while (*op_string
7689 && (op_end == NULL || op_string < op_end))
7690 {
7691 saved = op_string;
7692 if (*op_string == '{')
7693 {
7694 op_string++;
7695
7696 /* Check broadcasts. */
7697 if (strncmp (op_string, "1to", 3) == 0)
7698 {
7699 int bcst_type;
7700
7701 if (i.broadcast)
7702 goto duplicated_vec_op;
7703
7704 op_string += 3;
7705 if (*op_string == '8')
7706 bcst_type = BROADCAST_1TO8;
7707 else if (*op_string == '1'
7708 && *(op_string+1) == '6')
7709 {
7710 bcst_type = BROADCAST_1TO16;
7711 op_string++;
7712 }
7713 else
7714 {
7715 as_bad (_("Unsupported broadcast: `%s'"), saved);
7716 return NULL;
7717 }
7718 op_string++;
7719
7720 broadcast_op.type = bcst_type;
7721 broadcast_op.operand = this_operand;
7722 i.broadcast = &broadcast_op;
7723 }
7724 /* Check masking operation. */
7725 else if ((mask = parse_register (op_string, &end_op)) != NULL)
7726 {
7727 /* k0 can't be used for write mask. */
7728 if (mask->reg_num == 0)
7729 {
7730 as_bad (_("`%s' can't be used for write mask"),
7731 op_string);
7732 return NULL;
7733 }
7734
7735 if (!i.mask)
7736 {
7737 mask_op.mask = mask;
7738 mask_op.zeroing = 0;
7739 mask_op.operand = this_operand;
7740 i.mask = &mask_op;
7741 }
7742 else
7743 {
7744 if (i.mask->mask)
7745 goto duplicated_vec_op;
7746
7747 i.mask->mask = mask;
7748
7749 /* Only "{z}" is allowed here. No need to check
7750 zeroing mask explicitly. */
7751 if (i.mask->operand != this_operand)
7752 {
7753 as_bad (_("invalid write mask `%s'"), saved);
7754 return NULL;
7755 }
7756 }
7757
7758 op_string = end_op;
7759 }
7760 /* Check zeroing-flag for masking operation. */
7761 else if (*op_string == 'z')
7762 {
7763 if (!i.mask)
7764 {
7765 mask_op.mask = NULL;
7766 mask_op.zeroing = 1;
7767 mask_op.operand = this_operand;
7768 i.mask = &mask_op;
7769 }
7770 else
7771 {
7772 if (i.mask->zeroing)
7773 {
7774 duplicated_vec_op:
7775 as_bad (_("duplicated `%s'"), saved);
7776 return NULL;
7777 }
7778
7779 i.mask->zeroing = 1;
7780
7781 /* Only "{%k}" is allowed here. No need to check mask
7782 register explicitly. */
7783 if (i.mask->operand != this_operand)
7784 {
7785 as_bad (_("invalid zeroing-masking `%s'"),
7786 saved);
7787 return NULL;
7788 }
7789 }
7790
7791 op_string++;
7792 }
7793 else
7794 goto unknown_vec_op;
7795
7796 if (*op_string != '}')
7797 {
7798 as_bad (_("missing `}' in `%s'"), saved);
7799 return NULL;
7800 }
7801 op_string++;
7802 continue;
7803 }
7804 unknown_vec_op:
7805 /* We don't know this one. */
7806 as_bad (_("unknown vector operation: `%s'"), saved);
7807 return NULL;
7808 }
7809
7810 return op_string;
7811 }
7812
7813 static int
7814 i386_immediate (char *imm_start)
7815 {
7816 char *save_input_line_pointer;
7817 char *gotfree_input_line;
7818 segT exp_seg = 0;
7819 expressionS *exp;
7820 i386_operand_type types;
7821
7822 operand_type_set (&types, ~0);
7823
7824 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
7825 {
7826 as_bad (_("at most %d immediate operands are allowed"),
7827 MAX_IMMEDIATE_OPERANDS);
7828 return 0;
7829 }
7830
7831 exp = &im_expressions[i.imm_operands++];
7832 i.op[this_operand].imms = exp;
7833
7834 if (is_space_char (*imm_start))
7835 ++imm_start;
7836
7837 save_input_line_pointer = input_line_pointer;
7838 input_line_pointer = imm_start;
7839
7840 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
7841 if (gotfree_input_line)
7842 input_line_pointer = gotfree_input_line;
7843
7844 exp_seg = expression (exp);
7845
7846 SKIP_WHITESPACE ();
7847
7848 /* Handle vector operations. */
7849 if (*input_line_pointer == '{')
7850 {
7851 input_line_pointer = check_VecOperations (input_line_pointer,
7852 NULL);
7853 if (input_line_pointer == NULL)
7854 return 0;
7855 }
7856
7857 if (*input_line_pointer)
7858 as_bad (_("junk `%s' after expression"), input_line_pointer);
7859
7860 input_line_pointer = save_input_line_pointer;
7861 if (gotfree_input_line)
7862 {
7863 free (gotfree_input_line);
7864
7865 if (exp->X_op == O_constant || exp->X_op == O_register)
7866 exp->X_op = O_illegal;
7867 }
7868
7869 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
7870 }
7871
7872 static int
7873 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
7874 i386_operand_type types, const char *imm_start)
7875 {
7876 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
7877 {
7878 if (imm_start)
7879 as_bad (_("missing or invalid immediate expression `%s'"),
7880 imm_start);
7881 return 0;
7882 }
7883 else if (exp->X_op == O_constant)
7884 {
7885 /* Size it properly later. */
7886 i.types[this_operand].bitfield.imm64 = 1;
7887 /* If not 64bit, sign extend val. */
7888 if (flag_code != CODE_64BIT
7889 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
7890 exp->X_add_number
7891 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
7892 }
7893 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
7894 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
7895 && exp_seg != absolute_section
7896 && exp_seg != text_section
7897 && exp_seg != data_section
7898 && exp_seg != bss_section
7899 && exp_seg != undefined_section
7900 && !bfd_is_com_section (exp_seg))
7901 {
7902 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
7903 return 0;
7904 }
7905 #endif
7906 else if (!intel_syntax && exp->X_op == O_register)
7907 {
7908 if (imm_start)
7909 as_bad (_("illegal immediate register operand %s"), imm_start);
7910 return 0;
7911 }
7912 else
7913 {
7914 /* This is an address. The size of the address will be
7915 determined later, depending on destination register,
7916 suffix, or the default for the section. */
7917 i.types[this_operand].bitfield.imm8 = 1;
7918 i.types[this_operand].bitfield.imm16 = 1;
7919 i.types[this_operand].bitfield.imm32 = 1;
7920 i.types[this_operand].bitfield.imm32s = 1;
7921 i.types[this_operand].bitfield.imm64 = 1;
7922 i.types[this_operand] = operand_type_and (i.types[this_operand],
7923 types);
7924 }
7925
7926 return 1;
7927 }
7928
7929 static char *
7930 i386_scale (char *scale)
7931 {
7932 offsetT val;
7933 char *save = input_line_pointer;
7934
7935 input_line_pointer = scale;
7936 val = get_absolute_expression ();
7937
7938 switch (val)
7939 {
7940 case 1:
7941 i.log2_scale_factor = 0;
7942 break;
7943 case 2:
7944 i.log2_scale_factor = 1;
7945 break;
7946 case 4:
7947 i.log2_scale_factor = 2;
7948 break;
7949 case 8:
7950 i.log2_scale_factor = 3;
7951 break;
7952 default:
7953 {
7954 char sep = *input_line_pointer;
7955
7956 *input_line_pointer = '\0';
7957 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
7958 scale);
7959 *input_line_pointer = sep;
7960 input_line_pointer = save;
7961 return NULL;
7962 }
7963 }
7964 if (i.log2_scale_factor != 0 && i.index_reg == 0)
7965 {
7966 as_warn (_("scale factor of %d without an index register"),
7967 1 << i.log2_scale_factor);
7968 i.log2_scale_factor = 0;
7969 }
7970 scale = input_line_pointer;
7971 input_line_pointer = save;
7972 return scale;
7973 }
7974
7975 static int
7976 i386_displacement (char *disp_start, char *disp_end)
7977 {
7978 expressionS *exp;
7979 segT exp_seg = 0;
7980 char *save_input_line_pointer;
7981 char *gotfree_input_line;
7982 int override;
7983 i386_operand_type bigdisp, types = anydisp;
7984 int ret;
7985
7986 if (i.disp_operands == MAX_MEMORY_OPERANDS)
7987 {
7988 as_bad (_("at most %d displacement operands are allowed"),
7989 MAX_MEMORY_OPERANDS);
7990 return 0;
7991 }
7992
7993 operand_type_set (&bigdisp, 0);
7994 if ((i.types[this_operand].bitfield.jumpabsolute)
7995 || (!current_templates->start->opcode_modifier.jump
7996 && !current_templates->start->opcode_modifier.jumpdword))
7997 {
7998 bigdisp.bitfield.disp32 = 1;
7999 override = (i.prefix[ADDR_PREFIX] != 0);
8000 if (flag_code == CODE_64BIT)
8001 {
8002 if (!override)
8003 {
8004 bigdisp.bitfield.disp32s = 1;
8005 bigdisp.bitfield.disp64 = 1;
8006 }
8007 }
8008 else if ((flag_code == CODE_16BIT) ^ override)
8009 {
8010 bigdisp.bitfield.disp32 = 0;
8011 bigdisp.bitfield.disp16 = 1;
8012 }
8013 }
8014 else
8015 {
8016 /* For PC-relative branches, the width of the displacement
8017 is dependent upon data size, not address size. */
8018 override = (i.prefix[DATA_PREFIX] != 0);
8019 if (flag_code == CODE_64BIT)
8020 {
8021 if (override || i.suffix == WORD_MNEM_SUFFIX)
8022 bigdisp.bitfield.disp16 = 1;
8023 else
8024 {
8025 bigdisp.bitfield.disp32 = 1;
8026 bigdisp.bitfield.disp32s = 1;
8027 }
8028 }
8029 else
8030 {
8031 if (!override)
8032 override = (i.suffix == (flag_code != CODE_16BIT
8033 ? WORD_MNEM_SUFFIX
8034 : LONG_MNEM_SUFFIX));
8035 bigdisp.bitfield.disp32 = 1;
8036 if ((flag_code == CODE_16BIT) ^ override)
8037 {
8038 bigdisp.bitfield.disp32 = 0;
8039 bigdisp.bitfield.disp16 = 1;
8040 }
8041 }
8042 }
8043 i.types[this_operand] = operand_type_or (i.types[this_operand],
8044 bigdisp);
8045
8046 exp = &disp_expressions[i.disp_operands];
8047 i.op[this_operand].disps = exp;
8048 i.disp_operands++;
8049 save_input_line_pointer = input_line_pointer;
8050 input_line_pointer = disp_start;
8051 END_STRING_AND_SAVE (disp_end);
8052
8053 #ifndef GCC_ASM_O_HACK
8054 #define GCC_ASM_O_HACK 0
8055 #endif
8056 #if GCC_ASM_O_HACK
8057 END_STRING_AND_SAVE (disp_end + 1);
8058 if (i.types[this_operand].bitfield.baseIndex
8059 && displacement_string_end[-1] == '+')
8060 {
8061 /* This hack is to avoid a warning when using the "o"
8062 constraint within gcc asm statements.
8063 For instance:
8064
8065 #define _set_tssldt_desc(n,addr,limit,type) \
8066 __asm__ __volatile__ ( \
8067 "movw %w2,%0\n\t" \
8068 "movw %w1,2+%0\n\t" \
8069 "rorl $16,%1\n\t" \
8070 "movb %b1,4+%0\n\t" \
8071 "movb %4,5+%0\n\t" \
8072 "movb $0,6+%0\n\t" \
8073 "movb %h1,7+%0\n\t" \
8074 "rorl $16,%1" \
8075 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8076
8077 This works great except that the output assembler ends
8078 up looking a bit weird if it turns out that there is
8079 no offset. You end up producing code that looks like:
8080
8081 #APP
8082 movw $235,(%eax)
8083 movw %dx,2+(%eax)
8084 rorl $16,%edx
8085 movb %dl,4+(%eax)
8086 movb $137,5+(%eax)
8087 movb $0,6+(%eax)
8088 movb %dh,7+(%eax)
8089 rorl $16,%edx
8090 #NO_APP
8091
8092 So here we provide the missing zero. */
8093
8094 *displacement_string_end = '0';
8095 }
8096 #endif
8097 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8098 if (gotfree_input_line)
8099 input_line_pointer = gotfree_input_line;
8100
8101 exp_seg = expression (exp);
8102
8103 SKIP_WHITESPACE ();
8104 if (*input_line_pointer)
8105 as_bad (_("junk `%s' after expression"), input_line_pointer);
8106 #if GCC_ASM_O_HACK
8107 RESTORE_END_STRING (disp_end + 1);
8108 #endif
8109 input_line_pointer = save_input_line_pointer;
8110 if (gotfree_input_line)
8111 {
8112 free (gotfree_input_line);
8113
8114 if (exp->X_op == O_constant || exp->X_op == O_register)
8115 exp->X_op = O_illegal;
8116 }
8117
8118 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8119
8120 RESTORE_END_STRING (disp_end);
8121
8122 return ret;
8123 }
8124
8125 static int
8126 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8127 i386_operand_type types, const char *disp_start)
8128 {
8129 i386_operand_type bigdisp;
8130 int ret = 1;
8131
8132 /* We do this to make sure that the section symbol is in
8133 the symbol table. We will ultimately change the relocation
8134 to be relative to the beginning of the section. */
8135 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8136 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8137 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8138 {
8139 if (exp->X_op != O_symbol)
8140 goto inv_disp;
8141
8142 if (S_IS_LOCAL (exp->X_add_symbol)
8143 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8144 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8145 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8146 exp->X_op = O_subtract;
8147 exp->X_op_symbol = GOT_symbol;
8148 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8149 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8150 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8151 i.reloc[this_operand] = BFD_RELOC_64;
8152 else
8153 i.reloc[this_operand] = BFD_RELOC_32;
8154 }
8155
8156 else if (exp->X_op == O_absent
8157 || exp->X_op == O_illegal
8158 || exp->X_op == O_big)
8159 {
8160 inv_disp:
8161 as_bad (_("missing or invalid displacement expression `%s'"),
8162 disp_start);
8163 ret = 0;
8164 }
8165
8166 else if (flag_code == CODE_64BIT
8167 && !i.prefix[ADDR_PREFIX]
8168 && exp->X_op == O_constant)
8169 {
8170 /* Since displacement is signed extended to 64bit, don't allow
8171 disp32 and turn off disp32s if they are out of range. */
8172 i.types[this_operand].bitfield.disp32 = 0;
8173 if (!fits_in_signed_long (exp->X_add_number))
8174 {
8175 i.types[this_operand].bitfield.disp32s = 0;
8176 if (i.types[this_operand].bitfield.baseindex)
8177 {
8178 as_bad (_("0x%lx out range of signed 32bit displacement"),
8179 (long) exp->X_add_number);
8180 ret = 0;
8181 }
8182 }
8183 }
8184
8185 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8186 else if (exp->X_op != O_constant
8187 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8188 && exp_seg != absolute_section
8189 && exp_seg != text_section
8190 && exp_seg != data_section
8191 && exp_seg != bss_section
8192 && exp_seg != undefined_section
8193 && !bfd_is_com_section (exp_seg))
8194 {
8195 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8196 ret = 0;
8197 }
8198 #endif
8199
8200 /* Check if this is a displacement only operand. */
8201 bigdisp = i.types[this_operand];
8202 bigdisp.bitfield.disp8 = 0;
8203 bigdisp.bitfield.disp16 = 0;
8204 bigdisp.bitfield.disp32 = 0;
8205 bigdisp.bitfield.disp32s = 0;
8206 bigdisp.bitfield.disp64 = 0;
8207 if (operand_type_all_zero (&bigdisp))
8208 i.types[this_operand] = operand_type_and (i.types[this_operand],
8209 types);
8210
8211 return ret;
8212 }
8213
8214 /* Make sure the memory operand we've been dealt is valid.
8215 Return 1 on success, 0 on a failure. */
8216
8217 static int
8218 i386_index_check (const char *operand_string)
8219 {
8220 const char *kind = "base/index";
8221 enum flag_code addr_mode;
8222
8223 if (i.prefix[ADDR_PREFIX])
8224 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8225 else
8226 {
8227 addr_mode = flag_code;
8228
8229 #if INFER_ADDR_PREFIX
8230 if (i.mem_operands == 0)
8231 {
8232 /* Infer address prefix from the first memory operand. */
8233 const reg_entry *addr_reg = i.base_reg;
8234
8235 if (addr_reg == NULL)
8236 addr_reg = i.index_reg;
8237
8238 if (addr_reg)
8239 {
8240 if (addr_reg->reg_num == RegEip
8241 || addr_reg->reg_num == RegEiz
8242 || addr_reg->reg_type.bitfield.reg32)
8243 addr_mode = CODE_32BIT;
8244 else if (flag_code != CODE_64BIT
8245 && addr_reg->reg_type.bitfield.reg16)
8246 addr_mode = CODE_16BIT;
8247
8248 if (addr_mode != flag_code)
8249 {
8250 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8251 i.prefixes += 1;
8252 /* Change the size of any displacement too. At most one
8253 of Disp16 or Disp32 is set.
8254 FIXME. There doesn't seem to be any real need for
8255 separate Disp16 and Disp32 flags. The same goes for
8256 Imm16 and Imm32. Removing them would probably clean
8257 up the code quite a lot. */
8258 if (flag_code != CODE_64BIT
8259 && (i.types[this_operand].bitfield.disp16
8260 || i.types[this_operand].bitfield.disp32))
8261 i.types[this_operand]
8262 = operand_type_xor (i.types[this_operand], disp16_32);
8263 }
8264 }
8265 }
8266 #endif
8267 }
8268
8269 if (current_templates->start->opcode_modifier.isstring
8270 && !current_templates->start->opcode_modifier.immext
8271 && (current_templates->end[-1].opcode_modifier.isstring
8272 || i.mem_operands))
8273 {
8274 /* Memory operands of string insns are special in that they only allow
8275 a single register (rDI, rSI, or rBX) as their memory address. */
8276 const reg_entry *expected_reg;
8277 static const char *di_si[][2] =
8278 {
8279 { "esi", "edi" },
8280 { "si", "di" },
8281 { "rsi", "rdi" }
8282 };
8283 static const char *bx[] = { "ebx", "bx", "rbx" };
8284
8285 kind = "string address";
8286
8287 if (current_templates->start->opcode_modifier.w)
8288 {
8289 i386_operand_type type = current_templates->end[-1].operand_types[0];
8290
8291 if (!type.bitfield.baseindex
8292 || ((!i.mem_operands != !intel_syntax)
8293 && current_templates->end[-1].operand_types[1]
8294 .bitfield.baseindex))
8295 type = current_templates->end[-1].operand_types[1];
8296 expected_reg = hash_find (reg_hash,
8297 di_si[addr_mode][type.bitfield.esseg]);
8298
8299 }
8300 else
8301 expected_reg = hash_find (reg_hash, bx[addr_mode]);
8302
8303 if (i.base_reg != expected_reg
8304 || i.index_reg
8305 || operand_type_check (i.types[this_operand], disp))
8306 {
8307 /* The second memory operand must have the same size as
8308 the first one. */
8309 if (i.mem_operands
8310 && i.base_reg
8311 && !((addr_mode == CODE_64BIT
8312 && i.base_reg->reg_type.bitfield.reg64)
8313 || (addr_mode == CODE_32BIT
8314 ? i.base_reg->reg_type.bitfield.reg32
8315 : i.base_reg->reg_type.bitfield.reg16)))
8316 goto bad_address;
8317
8318 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8319 operand_string,
8320 intel_syntax ? '[' : '(',
8321 register_prefix,
8322 expected_reg->reg_name,
8323 intel_syntax ? ']' : ')');
8324 return 1;
8325 }
8326 else
8327 return 1;
8328
8329 bad_address:
8330 as_bad (_("`%s' is not a valid %s expression"),
8331 operand_string, kind);
8332 return 0;
8333 }
8334 else
8335 {
8336 if (addr_mode != CODE_16BIT)
8337 {
8338 /* 32-bit/64-bit checks. */
8339 if ((i.base_reg
8340 && (addr_mode == CODE_64BIT
8341 ? !i.base_reg->reg_type.bitfield.reg64
8342 : !i.base_reg->reg_type.bitfield.reg32)
8343 && (i.index_reg
8344 || (i.base_reg->reg_num
8345 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8346 || (i.index_reg
8347 && !i.index_reg->reg_type.bitfield.regxmm
8348 && !i.index_reg->reg_type.bitfield.regymm
8349 && !i.index_reg->reg_type.bitfield.regzmm
8350 && ((addr_mode == CODE_64BIT
8351 ? !(i.index_reg->reg_type.bitfield.reg64
8352 || i.index_reg->reg_num == RegRiz)
8353 : !(i.index_reg->reg_type.bitfield.reg32
8354 || i.index_reg->reg_num == RegEiz))
8355 || !i.index_reg->reg_type.bitfield.baseindex)))
8356 goto bad_address;
8357 }
8358 else
8359 {
8360 /* 16-bit checks. */
8361 if ((i.base_reg
8362 && (!i.base_reg->reg_type.bitfield.reg16
8363 || !i.base_reg->reg_type.bitfield.baseindex))
8364 || (i.index_reg
8365 && (!i.index_reg->reg_type.bitfield.reg16
8366 || !i.index_reg->reg_type.bitfield.baseindex
8367 || !(i.base_reg
8368 && i.base_reg->reg_num < 6
8369 && i.index_reg->reg_num >= 6
8370 && i.log2_scale_factor == 0))))
8371 goto bad_address;
8372 }
8373 }
8374 return 1;
8375 }
8376
8377 /* Handle vector immediates. */
8378
8379 static int
8380 RC_SAE_immediate (const char *imm_start)
8381 {
8382 unsigned int match_found, j;
8383 const char *pstr = imm_start;
8384 expressionS *exp;
8385
8386 if (*pstr != '{')
8387 return 0;
8388
8389 pstr++;
8390 match_found = 0;
8391 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8392 {
8393 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8394 {
8395 if (!i.rounding)
8396 {
8397 rc_op.type = RC_NamesTable[j].type;
8398 rc_op.operand = this_operand;
8399 i.rounding = &rc_op;
8400 }
8401 else
8402 {
8403 as_bad (_("duplicated `%s'"), imm_start);
8404 return 0;
8405 }
8406 pstr += RC_NamesTable[j].len;
8407 match_found = 1;
8408 break;
8409 }
8410 }
8411 if (!match_found)
8412 return 0;
8413
8414 if (*pstr++ != '}')
8415 {
8416 as_bad (_("Missing '}': '%s'"), imm_start);
8417 return 0;
8418 }
8419 /* RC/SAE immediate string should contain nothing more. */;
8420 if (*pstr != 0)
8421 {
8422 as_bad (_("Junk after '}': '%s'"), imm_start);
8423 return 0;
8424 }
8425
8426 exp = &im_expressions[i.imm_operands++];
8427 i.op[this_operand].imms = exp;
8428
8429 exp->X_op = O_constant;
8430 exp->X_add_number = 0;
8431 exp->X_add_symbol = (symbolS *) 0;
8432 exp->X_op_symbol = (symbolS *) 0;
8433
8434 i.types[this_operand].bitfield.imm8 = 1;
8435 return 1;
8436 }
8437
8438 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
8439 on error. */
8440
8441 static int
8442 i386_att_operand (char *operand_string)
8443 {
8444 const reg_entry *r;
8445 char *end_op;
8446 char *op_string = operand_string;
8447
8448 if (is_space_char (*op_string))
8449 ++op_string;
8450
8451 /* We check for an absolute prefix (differentiating,
8452 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
8453 if (*op_string == ABSOLUTE_PREFIX)
8454 {
8455 ++op_string;
8456 if (is_space_char (*op_string))
8457 ++op_string;
8458 i.types[this_operand].bitfield.jumpabsolute = 1;
8459 }
8460
8461 /* Check if operand is a register. */
8462 if ((r = parse_register (op_string, &end_op)) != NULL)
8463 {
8464 i386_operand_type temp;
8465
8466 /* Check for a segment override by searching for ':' after a
8467 segment register. */
8468 op_string = end_op;
8469 if (is_space_char (*op_string))
8470 ++op_string;
8471 if (*op_string == ':'
8472 && (r->reg_type.bitfield.sreg2
8473 || r->reg_type.bitfield.sreg3))
8474 {
8475 switch (r->reg_num)
8476 {
8477 case 0:
8478 i.seg[i.mem_operands] = &es;
8479 break;
8480 case 1:
8481 i.seg[i.mem_operands] = &cs;
8482 break;
8483 case 2:
8484 i.seg[i.mem_operands] = &ss;
8485 break;
8486 case 3:
8487 i.seg[i.mem_operands] = &ds;
8488 break;
8489 case 4:
8490 i.seg[i.mem_operands] = &fs;
8491 break;
8492 case 5:
8493 i.seg[i.mem_operands] = &gs;
8494 break;
8495 }
8496
8497 /* Skip the ':' and whitespace. */
8498 ++op_string;
8499 if (is_space_char (*op_string))
8500 ++op_string;
8501
8502 if (!is_digit_char (*op_string)
8503 && !is_identifier_char (*op_string)
8504 && *op_string != '('
8505 && *op_string != ABSOLUTE_PREFIX)
8506 {
8507 as_bad (_("bad memory operand `%s'"), op_string);
8508 return 0;
8509 }
8510 /* Handle case of %es:*foo. */
8511 if (*op_string == ABSOLUTE_PREFIX)
8512 {
8513 ++op_string;
8514 if (is_space_char (*op_string))
8515 ++op_string;
8516 i.types[this_operand].bitfield.jumpabsolute = 1;
8517 }
8518 goto do_memory_reference;
8519 }
8520
8521 /* Handle vector operations. */
8522 if (*op_string == '{')
8523 {
8524 op_string = check_VecOperations (op_string, NULL);
8525 if (op_string == NULL)
8526 return 0;
8527 }
8528
8529 if (*op_string)
8530 {
8531 as_bad (_("junk `%s' after register"), op_string);
8532 return 0;
8533 }
8534 temp = r->reg_type;
8535 temp.bitfield.baseindex = 0;
8536 i.types[this_operand] = operand_type_or (i.types[this_operand],
8537 temp);
8538 i.types[this_operand].bitfield.unspecified = 0;
8539 i.op[this_operand].regs = r;
8540 i.reg_operands++;
8541 }
8542 else if (*op_string == REGISTER_PREFIX)
8543 {
8544 as_bad (_("bad register name `%s'"), op_string);
8545 return 0;
8546 }
8547 else if (*op_string == IMMEDIATE_PREFIX)
8548 {
8549 ++op_string;
8550 if (i.types[this_operand].bitfield.jumpabsolute)
8551 {
8552 as_bad (_("immediate operand illegal with absolute jump"));
8553 return 0;
8554 }
8555 if (!i386_immediate (op_string))
8556 return 0;
8557 }
8558 else if (RC_SAE_immediate (operand_string))
8559 {
8560 /* If it is a RC or SAE immediate, do nothing. */
8561 ;
8562 }
8563 else if (is_digit_char (*op_string)
8564 || is_identifier_char (*op_string)
8565 || *op_string == '(')
8566 {
8567 /* This is a memory reference of some sort. */
8568 char *base_string;
8569
8570 /* Start and end of displacement string expression (if found). */
8571 char *displacement_string_start;
8572 char *displacement_string_end;
8573 char *vop_start;
8574
8575 do_memory_reference:
8576 if ((i.mem_operands == 1
8577 && !current_templates->start->opcode_modifier.isstring)
8578 || i.mem_operands == 2)
8579 {
8580 as_bad (_("too many memory references for `%s'"),
8581 current_templates->start->name);
8582 return 0;
8583 }
8584
8585 /* Check for base index form. We detect the base index form by
8586 looking for an ')' at the end of the operand, searching
8587 for the '(' matching it, and finding a REGISTER_PREFIX or ','
8588 after the '('. */
8589 base_string = op_string + strlen (op_string);
8590
8591 /* Handle vector operations. */
8592 vop_start = strchr (op_string, '{');
8593 if (vop_start && vop_start < base_string)
8594 {
8595 if (check_VecOperations (vop_start, base_string) == NULL)
8596 return 0;
8597 base_string = vop_start;
8598 }
8599
8600 --base_string;
8601 if (is_space_char (*base_string))
8602 --base_string;
8603
8604 /* If we only have a displacement, set-up for it to be parsed later. */
8605 displacement_string_start = op_string;
8606 displacement_string_end = base_string + 1;
8607
8608 if (*base_string == ')')
8609 {
8610 char *temp_string;
8611 unsigned int parens_balanced = 1;
8612 /* We've already checked that the number of left & right ()'s are
8613 equal, so this loop will not be infinite. */
8614 do
8615 {
8616 base_string--;
8617 if (*base_string == ')')
8618 parens_balanced++;
8619 if (*base_string == '(')
8620 parens_balanced--;
8621 }
8622 while (parens_balanced);
8623
8624 temp_string = base_string;
8625
8626 /* Skip past '(' and whitespace. */
8627 ++base_string;
8628 if (is_space_char (*base_string))
8629 ++base_string;
8630
8631 if (*base_string == ','
8632 || ((i.base_reg = parse_register (base_string, &end_op))
8633 != NULL))
8634 {
8635 displacement_string_end = temp_string;
8636
8637 i.types[this_operand].bitfield.baseindex = 1;
8638
8639 if (i.base_reg)
8640 {
8641 base_string = end_op;
8642 if (is_space_char (*base_string))
8643 ++base_string;
8644 }
8645
8646 /* There may be an index reg or scale factor here. */
8647 if (*base_string == ',')
8648 {
8649 ++base_string;
8650 if (is_space_char (*base_string))
8651 ++base_string;
8652
8653 if ((i.index_reg = parse_register (base_string, &end_op))
8654 != NULL)
8655 {
8656 base_string = end_op;
8657 if (is_space_char (*base_string))
8658 ++base_string;
8659 if (*base_string == ',')
8660 {
8661 ++base_string;
8662 if (is_space_char (*base_string))
8663 ++base_string;
8664 }
8665 else if (*base_string != ')')
8666 {
8667 as_bad (_("expecting `,' or `)' "
8668 "after index register in `%s'"),
8669 operand_string);
8670 return 0;
8671 }
8672 }
8673 else if (*base_string == REGISTER_PREFIX)
8674 {
8675 end_op = strchr (base_string, ',');
8676 if (end_op)
8677 *end_op = '\0';
8678 as_bad (_("bad register name `%s'"), base_string);
8679 return 0;
8680 }
8681
8682 /* Check for scale factor. */
8683 if (*base_string != ')')
8684 {
8685 char *end_scale = i386_scale (base_string);
8686
8687 if (!end_scale)
8688 return 0;
8689
8690 base_string = end_scale;
8691 if (is_space_char (*base_string))
8692 ++base_string;
8693 if (*base_string != ')')
8694 {
8695 as_bad (_("expecting `)' "
8696 "after scale factor in `%s'"),
8697 operand_string);
8698 return 0;
8699 }
8700 }
8701 else if (!i.index_reg)
8702 {
8703 as_bad (_("expecting index register or scale factor "
8704 "after `,'; got '%c'"),
8705 *base_string);
8706 return 0;
8707 }
8708 }
8709 else if (*base_string != ')')
8710 {
8711 as_bad (_("expecting `,' or `)' "
8712 "after base register in `%s'"),
8713 operand_string);
8714 return 0;
8715 }
8716 }
8717 else if (*base_string == REGISTER_PREFIX)
8718 {
8719 end_op = strchr (base_string, ',');
8720 if (end_op)
8721 *end_op = '\0';
8722 as_bad (_("bad register name `%s'"), base_string);
8723 return 0;
8724 }
8725 }
8726
8727 /* If there's an expression beginning the operand, parse it,
8728 assuming displacement_string_start and
8729 displacement_string_end are meaningful. */
8730 if (displacement_string_start != displacement_string_end)
8731 {
8732 if (!i386_displacement (displacement_string_start,
8733 displacement_string_end))
8734 return 0;
8735 }
8736
8737 /* Special case for (%dx) while doing input/output op. */
8738 if (i.base_reg
8739 && operand_type_equal (&i.base_reg->reg_type,
8740 &reg16_inoutportreg)
8741 && i.index_reg == 0
8742 && i.log2_scale_factor == 0
8743 && i.seg[i.mem_operands] == 0
8744 && !operand_type_check (i.types[this_operand], disp))
8745 {
8746 i.types[this_operand] = inoutportreg;
8747 return 1;
8748 }
8749
8750 if (i386_index_check (operand_string) == 0)
8751 return 0;
8752 i.types[this_operand].bitfield.mem = 1;
8753 i.mem_operands++;
8754 }
8755 else
8756 {
8757 /* It's not a memory operand; argh! */
8758 as_bad (_("invalid char %s beginning operand %d `%s'"),
8759 output_invalid (*op_string),
8760 this_operand + 1,
8761 op_string);
8762 return 0;
8763 }
8764 return 1; /* Normal return. */
8765 }
8766 \f
8767 /* Calculate the maximum variable size (i.e., excluding fr_fix)
8768 that an rs_machine_dependent frag may reach. */
8769
8770 unsigned int
8771 i386_frag_max_var (fragS *frag)
8772 {
8773 /* The only relaxable frags are for jumps.
8774 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
8775 gas_assert (frag->fr_type == rs_machine_dependent);
8776 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
8777 }
8778
8779 /* md_estimate_size_before_relax()
8780
8781 Called just before relax() for rs_machine_dependent frags. The x86
8782 assembler uses these frags to handle variable size jump
8783 instructions.
8784
8785 Any symbol that is now undefined will not become defined.
8786 Return the correct fr_subtype in the frag.
8787 Return the initial "guess for variable size of frag" to caller.
8788 The guess is actually the growth beyond the fixed part. Whatever
8789 we do to grow the fixed or variable part contributes to our
8790 returned value. */
8791
8792 int
8793 md_estimate_size_before_relax (fragS *fragP, segT segment)
8794 {
8795 /* We've already got fragP->fr_subtype right; all we have to do is
8796 check for un-relaxable symbols. On an ELF system, we can't relax
8797 an externally visible symbol, because it may be overridden by a
8798 shared library. */
8799 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
8800 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8801 || (IS_ELF
8802 && (S_IS_EXTERNAL (fragP->fr_symbol)
8803 || S_IS_WEAK (fragP->fr_symbol)
8804 || ((symbol_get_bfdsym (fragP->fr_symbol)->flags
8805 & BSF_GNU_INDIRECT_FUNCTION))))
8806 #endif
8807 #if defined (OBJ_COFF) && defined (TE_PE)
8808 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
8809 && S_IS_WEAK (fragP->fr_symbol))
8810 #endif
8811 )
8812 {
8813 /* Symbol is undefined in this segment, or we need to keep a
8814 reloc so that weak symbols can be overridden. */
8815 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
8816 enum bfd_reloc_code_real reloc_type;
8817 unsigned char *opcode;
8818 int old_fr_fix;
8819
8820 if (fragP->fr_var != NO_RELOC)
8821 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
8822 else if (size == 2)
8823 reloc_type = BFD_RELOC_16_PCREL;
8824 else
8825 reloc_type = BFD_RELOC_32_PCREL;
8826
8827 old_fr_fix = fragP->fr_fix;
8828 opcode = (unsigned char *) fragP->fr_opcode;
8829
8830 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
8831 {
8832 case UNCOND_JUMP:
8833 /* Make jmp (0xeb) a (d)word displacement jump. */
8834 opcode[0] = 0xe9;
8835 fragP->fr_fix += size;
8836 fix_new (fragP, old_fr_fix, size,
8837 fragP->fr_symbol,
8838 fragP->fr_offset, 1,
8839 reloc_type);
8840 break;
8841
8842 case COND_JUMP86:
8843 if (size == 2
8844 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
8845 {
8846 /* Negate the condition, and branch past an
8847 unconditional jump. */
8848 opcode[0] ^= 1;
8849 opcode[1] = 3;
8850 /* Insert an unconditional jump. */
8851 opcode[2] = 0xe9;
8852 /* We added two extra opcode bytes, and have a two byte
8853 offset. */
8854 fragP->fr_fix += 2 + 2;
8855 fix_new (fragP, old_fr_fix + 2, 2,
8856 fragP->fr_symbol,
8857 fragP->fr_offset, 1,
8858 reloc_type);
8859 break;
8860 }
8861 /* Fall through. */
8862
8863 case COND_JUMP:
8864 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
8865 {
8866 fixS *fixP;
8867
8868 fragP->fr_fix += 1;
8869 fixP = fix_new (fragP, old_fr_fix, 1,
8870 fragP->fr_symbol,
8871 fragP->fr_offset, 1,
8872 BFD_RELOC_8_PCREL);
8873 fixP->fx_signed = 1;
8874 break;
8875 }
8876
8877 /* This changes the byte-displacement jump 0x7N
8878 to the (d)word-displacement jump 0x0f,0x8N. */
8879 opcode[1] = opcode[0] + 0x10;
8880 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
8881 /* We've added an opcode byte. */
8882 fragP->fr_fix += 1 + size;
8883 fix_new (fragP, old_fr_fix + 1, size,
8884 fragP->fr_symbol,
8885 fragP->fr_offset, 1,
8886 reloc_type);
8887 break;
8888
8889 default:
8890 BAD_CASE (fragP->fr_subtype);
8891 break;
8892 }
8893 frag_wane (fragP);
8894 return fragP->fr_fix - old_fr_fix;
8895 }
8896
8897 /* Guess size depending on current relax state. Initially the relax
8898 state will correspond to a short jump and we return 1, because
8899 the variable part of the frag (the branch offset) is one byte
8900 long. However, we can relax a section more than once and in that
8901 case we must either set fr_subtype back to the unrelaxed state,
8902 or return the value for the appropriate branch. */
8903 return md_relax_table[fragP->fr_subtype].rlx_length;
8904 }
8905
8906 /* Called after relax() is finished.
8907
8908 In: Address of frag.
8909 fr_type == rs_machine_dependent.
8910 fr_subtype is what the address relaxed to.
8911
8912 Out: Any fixSs and constants are set up.
8913 Caller will turn frag into a ".space 0". */
8914
8915 void
8916 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
8917 fragS *fragP)
8918 {
8919 unsigned char *opcode;
8920 unsigned char *where_to_put_displacement = NULL;
8921 offsetT target_address;
8922 offsetT opcode_address;
8923 unsigned int extension = 0;
8924 offsetT displacement_from_opcode_start;
8925
8926 opcode = (unsigned char *) fragP->fr_opcode;
8927
8928 /* Address we want to reach in file space. */
8929 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
8930
8931 /* Address opcode resides at in file space. */
8932 opcode_address = fragP->fr_address + fragP->fr_fix;
8933
8934 /* Displacement from opcode start to fill into instruction. */
8935 displacement_from_opcode_start = target_address - opcode_address;
8936
8937 if ((fragP->fr_subtype & BIG) == 0)
8938 {
8939 /* Don't have to change opcode. */
8940 extension = 1; /* 1 opcode + 1 displacement */
8941 where_to_put_displacement = &opcode[1];
8942 }
8943 else
8944 {
8945 if (no_cond_jump_promotion
8946 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
8947 as_warn_where (fragP->fr_file, fragP->fr_line,
8948 _("long jump required"));
8949
8950 switch (fragP->fr_subtype)
8951 {
8952 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
8953 extension = 4; /* 1 opcode + 4 displacement */
8954 opcode[0] = 0xe9;
8955 where_to_put_displacement = &opcode[1];
8956 break;
8957
8958 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
8959 extension = 2; /* 1 opcode + 2 displacement */
8960 opcode[0] = 0xe9;
8961 where_to_put_displacement = &opcode[1];
8962 break;
8963
8964 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
8965 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
8966 extension = 5; /* 2 opcode + 4 displacement */
8967 opcode[1] = opcode[0] + 0x10;
8968 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
8969 where_to_put_displacement = &opcode[2];
8970 break;
8971
8972 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
8973 extension = 3; /* 2 opcode + 2 displacement */
8974 opcode[1] = opcode[0] + 0x10;
8975 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
8976 where_to_put_displacement = &opcode[2];
8977 break;
8978
8979 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
8980 extension = 4;
8981 opcode[0] ^= 1;
8982 opcode[1] = 3;
8983 opcode[2] = 0xe9;
8984 where_to_put_displacement = &opcode[3];
8985 break;
8986
8987 default:
8988 BAD_CASE (fragP->fr_subtype);
8989 break;
8990 }
8991 }
8992
8993 /* If size if less then four we are sure that the operand fits,
8994 but if it's 4, then it could be that the displacement is larger
8995 then -/+ 2GB. */
8996 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
8997 && object_64bit
8998 && ((addressT) (displacement_from_opcode_start - extension
8999 + ((addressT) 1 << 31))
9000 > (((addressT) 2 << 31) - 1)))
9001 {
9002 as_bad_where (fragP->fr_file, fragP->fr_line,
9003 _("jump target out of range"));
9004 /* Make us emit 0. */
9005 displacement_from_opcode_start = extension;
9006 }
9007 /* Now put displacement after opcode. */
9008 md_number_to_chars ((char *) where_to_put_displacement,
9009 (valueT) (displacement_from_opcode_start - extension),
9010 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9011 fragP->fr_fix += extension;
9012 }
9013 \f
9014 /* Apply a fixup (fixP) to segment data, once it has been determined
9015 by our caller that we have all the info we need to fix it up.
9016
9017 Parameter valP is the pointer to the value of the bits.
9018
9019 On the 386, immediates, displacements, and data pointers are all in
9020 the same (little-endian) format, so we don't need to care about which
9021 we are handling. */
9022
9023 void
9024 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9025 {
9026 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9027 valueT value = *valP;
9028
9029 #if !defined (TE_Mach)
9030 if (fixP->fx_pcrel)
9031 {
9032 switch (fixP->fx_r_type)
9033 {
9034 default:
9035 break;
9036
9037 case BFD_RELOC_64:
9038 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9039 break;
9040 case BFD_RELOC_32:
9041 case BFD_RELOC_X86_64_32S:
9042 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9043 break;
9044 case BFD_RELOC_16:
9045 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9046 break;
9047 case BFD_RELOC_8:
9048 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9049 break;
9050 }
9051 }
9052
9053 if (fixP->fx_addsy != NULL
9054 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9055 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9056 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9057 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9058 && !use_rela_relocations)
9059 {
9060 /* This is a hack. There should be a better way to handle this.
9061 This covers for the fact that bfd_install_relocation will
9062 subtract the current location (for partial_inplace, PC relative
9063 relocations); see more below. */
9064 #ifndef OBJ_AOUT
9065 if (IS_ELF
9066 #ifdef TE_PE
9067 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9068 #endif
9069 )
9070 value += fixP->fx_where + fixP->fx_frag->fr_address;
9071 #endif
9072 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9073 if (IS_ELF)
9074 {
9075 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9076
9077 if ((sym_seg == seg
9078 || (symbol_section_p (fixP->fx_addsy)
9079 && sym_seg != absolute_section))
9080 && !generic_force_reloc (fixP))
9081 {
9082 /* Yes, we add the values in twice. This is because
9083 bfd_install_relocation subtracts them out again. I think
9084 bfd_install_relocation is broken, but I don't dare change
9085 it. FIXME. */
9086 value += fixP->fx_where + fixP->fx_frag->fr_address;
9087 }
9088 }
9089 #endif
9090 #if defined (OBJ_COFF) && defined (TE_PE)
9091 /* For some reason, the PE format does not store a
9092 section address offset for a PC relative symbol. */
9093 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9094 || S_IS_WEAK (fixP->fx_addsy))
9095 value += md_pcrel_from (fixP);
9096 #endif
9097 }
9098 #if defined (OBJ_COFF) && defined (TE_PE)
9099 if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9100 {
9101 value -= S_GET_VALUE (fixP->fx_addsy);
9102 }
9103 #endif
9104
9105 /* Fix a few things - the dynamic linker expects certain values here,
9106 and we must not disappoint it. */
9107 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9108 if (IS_ELF && fixP->fx_addsy)
9109 switch (fixP->fx_r_type)
9110 {
9111 case BFD_RELOC_386_PLT32:
9112 case BFD_RELOC_X86_64_PLT32:
9113 /* Make the jump instruction point to the address of the operand. At
9114 runtime we merely add the offset to the actual PLT entry. */
9115 value = -4;
9116 break;
9117
9118 case BFD_RELOC_386_TLS_GD:
9119 case BFD_RELOC_386_TLS_LDM:
9120 case BFD_RELOC_386_TLS_IE_32:
9121 case BFD_RELOC_386_TLS_IE:
9122 case BFD_RELOC_386_TLS_GOTIE:
9123 case BFD_RELOC_386_TLS_GOTDESC:
9124 case BFD_RELOC_X86_64_TLSGD:
9125 case BFD_RELOC_X86_64_TLSLD:
9126 case BFD_RELOC_X86_64_GOTTPOFF:
9127 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9128 value = 0; /* Fully resolved at runtime. No addend. */
9129 /* Fallthrough */
9130 case BFD_RELOC_386_TLS_LE:
9131 case BFD_RELOC_386_TLS_LDO_32:
9132 case BFD_RELOC_386_TLS_LE_32:
9133 case BFD_RELOC_X86_64_DTPOFF32:
9134 case BFD_RELOC_X86_64_DTPOFF64:
9135 case BFD_RELOC_X86_64_TPOFF32:
9136 case BFD_RELOC_X86_64_TPOFF64:
9137 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9138 break;
9139
9140 case BFD_RELOC_386_TLS_DESC_CALL:
9141 case BFD_RELOC_X86_64_TLSDESC_CALL:
9142 value = 0; /* Fully resolved at runtime. No addend. */
9143 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9144 fixP->fx_done = 0;
9145 return;
9146
9147 case BFD_RELOC_386_GOT32:
9148 case BFD_RELOC_X86_64_GOT32:
9149 value = 0; /* Fully resolved at runtime. No addend. */
9150 break;
9151
9152 case BFD_RELOC_VTABLE_INHERIT:
9153 case BFD_RELOC_VTABLE_ENTRY:
9154 fixP->fx_done = 0;
9155 return;
9156
9157 default:
9158 break;
9159 }
9160 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9161 *valP = value;
9162 #endif /* !defined (TE_Mach) */
9163
9164 /* Are we finished with this relocation now? */
9165 if (fixP->fx_addsy == NULL)
9166 fixP->fx_done = 1;
9167 #if defined (OBJ_COFF) && defined (TE_PE)
9168 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9169 {
9170 fixP->fx_done = 0;
9171 /* Remember value for tc_gen_reloc. */
9172 fixP->fx_addnumber = value;
9173 /* Clear out the frag for now. */
9174 value = 0;
9175 }
9176 #endif
9177 else if (use_rela_relocations)
9178 {
9179 fixP->fx_no_overflow = 1;
9180 /* Remember value for tc_gen_reloc. */
9181 fixP->fx_addnumber = value;
9182 value = 0;
9183 }
9184
9185 md_number_to_chars (p, value, fixP->fx_size);
9186 }
9187 \f
9188 char *
9189 md_atof (int type, char *litP, int *sizeP)
9190 {
9191 /* This outputs the LITTLENUMs in REVERSE order;
9192 in accord with the bigendian 386. */
9193 return ieee_md_atof (type, litP, sizeP, FALSE);
9194 }
9195 \f
9196 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9197
9198 static char *
9199 output_invalid (int c)
9200 {
9201 if (ISPRINT (c))
9202 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9203 "'%c'", c);
9204 else
9205 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9206 "(0x%x)", (unsigned char) c);
9207 return output_invalid_buf;
9208 }
9209
9210 /* REG_STRING starts *before* REGISTER_PREFIX. */
9211
9212 static const reg_entry *
9213 parse_real_register (char *reg_string, char **end_op)
9214 {
9215 char *s = reg_string;
9216 char *p;
9217 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9218 const reg_entry *r;
9219
9220 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9221 if (*s == REGISTER_PREFIX)
9222 ++s;
9223
9224 if (is_space_char (*s))
9225 ++s;
9226
9227 p = reg_name_given;
9228 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9229 {
9230 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9231 return (const reg_entry *) NULL;
9232 s++;
9233 }
9234
9235 /* For naked regs, make sure that we are not dealing with an identifier.
9236 This prevents confusing an identifier like `eax_var' with register
9237 `eax'. */
9238 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9239 return (const reg_entry *) NULL;
9240
9241 *end_op = s;
9242
9243 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9244
9245 /* Handle floating point regs, allowing spaces in the (i) part. */
9246 if (r == i386_regtab /* %st is first entry of table */)
9247 {
9248 if (is_space_char (*s))
9249 ++s;
9250 if (*s == '(')
9251 {
9252 ++s;
9253 if (is_space_char (*s))
9254 ++s;
9255 if (*s >= '0' && *s <= '7')
9256 {
9257 int fpr = *s - '0';
9258 ++s;
9259 if (is_space_char (*s))
9260 ++s;
9261 if (*s == ')')
9262 {
9263 *end_op = s + 1;
9264 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9265 know (r);
9266 return r + fpr;
9267 }
9268 }
9269 /* We have "%st(" then garbage. */
9270 return (const reg_entry *) NULL;
9271 }
9272 }
9273
9274 if (r == NULL || allow_pseudo_reg)
9275 return r;
9276
9277 if (operand_type_all_zero (&r->reg_type))
9278 return (const reg_entry *) NULL;
9279
9280 if ((r->reg_type.bitfield.reg32
9281 || r->reg_type.bitfield.sreg3
9282 || r->reg_type.bitfield.control
9283 || r->reg_type.bitfield.debug
9284 || r->reg_type.bitfield.test)
9285 && !cpu_arch_flags.bitfield.cpui386)
9286 return (const reg_entry *) NULL;
9287
9288 if (r->reg_type.bitfield.floatreg
9289 && !cpu_arch_flags.bitfield.cpu8087
9290 && !cpu_arch_flags.bitfield.cpu287
9291 && !cpu_arch_flags.bitfield.cpu387)
9292 return (const reg_entry *) NULL;
9293
9294 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
9295 return (const reg_entry *) NULL;
9296
9297 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
9298 return (const reg_entry *) NULL;
9299
9300 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
9301 return (const reg_entry *) NULL;
9302
9303 if ((r->reg_type.bitfield.regzmm || r->reg_type.bitfield.regmask)
9304 && !cpu_arch_flags.bitfield.cpuavx512f)
9305 return (const reg_entry *) NULL;
9306
9307 /* Don't allow fake index register unless allow_index_reg isn't 0. */
9308 if (!allow_index_reg
9309 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9310 return (const reg_entry *) NULL;
9311
9312 /* Upper 16 vector register is only available with VREX in 64bit
9313 mode. */
9314 if ((r->reg_flags & RegVRex))
9315 {
9316 if (!cpu_arch_flags.bitfield.cpuvrex
9317 || flag_code != CODE_64BIT)
9318 return (const reg_entry *) NULL;
9319
9320 i.need_vrex = 1;
9321 }
9322
9323 if (((r->reg_flags & (RegRex64 | RegRex))
9324 || r->reg_type.bitfield.reg64)
9325 && (!cpu_arch_flags.bitfield.cpulm
9326 || !operand_type_equal (&r->reg_type, &control))
9327 && flag_code != CODE_64BIT)
9328 return (const reg_entry *) NULL;
9329
9330 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9331 return (const reg_entry *) NULL;
9332
9333 return r;
9334 }
9335
9336 /* REG_STRING starts *before* REGISTER_PREFIX. */
9337
9338 static const reg_entry *
9339 parse_register (char *reg_string, char **end_op)
9340 {
9341 const reg_entry *r;
9342
9343 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9344 r = parse_real_register (reg_string, end_op);
9345 else
9346 r = NULL;
9347 if (!r)
9348 {
9349 char *save = input_line_pointer;
9350 char c;
9351 symbolS *symbolP;
9352
9353 input_line_pointer = reg_string;
9354 c = get_symbol_end ();
9355 symbolP = symbol_find (reg_string);
9356 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9357 {
9358 const expressionS *e = symbol_get_value_expression (symbolP);
9359
9360 know (e->X_op == O_register);
9361 know (e->X_add_number >= 0
9362 && (valueT) e->X_add_number < i386_regtab_size);
9363 r = i386_regtab + e->X_add_number;
9364 *end_op = input_line_pointer;
9365 }
9366 *input_line_pointer = c;
9367 input_line_pointer = save;
9368 }
9369 return r;
9370 }
9371
9372 int
9373 i386_parse_name (char *name, expressionS *e, char *nextcharP)
9374 {
9375 const reg_entry *r;
9376 char *end = input_line_pointer;
9377
9378 *end = *nextcharP;
9379 r = parse_register (name, &input_line_pointer);
9380 if (r && end <= input_line_pointer)
9381 {
9382 *nextcharP = *input_line_pointer;
9383 *input_line_pointer = 0;
9384 e->X_op = O_register;
9385 e->X_add_number = r - i386_regtab;
9386 return 1;
9387 }
9388 input_line_pointer = end;
9389 *end = 0;
9390 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
9391 }
9392
9393 void
9394 md_operand (expressionS *e)
9395 {
9396 char *end;
9397 const reg_entry *r;
9398
9399 switch (*input_line_pointer)
9400 {
9401 case REGISTER_PREFIX:
9402 r = parse_real_register (input_line_pointer, &end);
9403 if (r)
9404 {
9405 e->X_op = O_register;
9406 e->X_add_number = r - i386_regtab;
9407 input_line_pointer = end;
9408 }
9409 break;
9410
9411 case '[':
9412 gas_assert (intel_syntax);
9413 end = input_line_pointer++;
9414 expression (e);
9415 if (*input_line_pointer == ']')
9416 {
9417 ++input_line_pointer;
9418 e->X_op_symbol = make_expr_symbol (e);
9419 e->X_add_symbol = NULL;
9420 e->X_add_number = 0;
9421 e->X_op = O_index;
9422 }
9423 else
9424 {
9425 e->X_op = O_absent;
9426 input_line_pointer = end;
9427 }
9428 break;
9429 }
9430 }
9431
9432 \f
9433 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9434 const char *md_shortopts = "kVQ:sqn";
9435 #else
9436 const char *md_shortopts = "qn";
9437 #endif
9438
9439 #define OPTION_32 (OPTION_MD_BASE + 0)
9440 #define OPTION_64 (OPTION_MD_BASE + 1)
9441 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9442 #define OPTION_MARCH (OPTION_MD_BASE + 3)
9443 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
9444 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9445 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9446 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9447 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9448 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9449 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9450 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9451 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9452 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9453 #define OPTION_X32 (OPTION_MD_BASE + 14)
9454 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9455 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9456 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9457
9458 struct option md_longopts[] =
9459 {
9460 {"32", no_argument, NULL, OPTION_32},
9461 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9462 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9463 {"64", no_argument, NULL, OPTION_64},
9464 #endif
9465 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9466 {"x32", no_argument, NULL, OPTION_X32},
9467 #endif
9468 {"divide", no_argument, NULL, OPTION_DIVIDE},
9469 {"march", required_argument, NULL, OPTION_MARCH},
9470 {"mtune", required_argument, NULL, OPTION_MTUNE},
9471 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9472 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9473 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9474 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9475 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
9476 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
9477 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
9478 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
9479 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
9480 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
9481 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
9482 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
9483 {NULL, no_argument, NULL, 0}
9484 };
9485 size_t md_longopts_size = sizeof (md_longopts);
9486
9487 int
9488 md_parse_option (int c, char *arg)
9489 {
9490 unsigned int j;
9491 char *arch, *next;
9492
9493 switch (c)
9494 {
9495 case 'n':
9496 optimize_align_code = 0;
9497 break;
9498
9499 case 'q':
9500 quiet_warnings = 1;
9501 break;
9502
9503 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9504 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
9505 should be emitted or not. FIXME: Not implemented. */
9506 case 'Q':
9507 break;
9508
9509 /* -V: SVR4 argument to print version ID. */
9510 case 'V':
9511 print_version_id ();
9512 break;
9513
9514 /* -k: Ignore for FreeBSD compatibility. */
9515 case 'k':
9516 break;
9517
9518 case 's':
9519 /* -s: On i386 Solaris, this tells the native assembler to use
9520 .stab instead of .stab.excl. We always use .stab anyhow. */
9521 break;
9522 #endif
9523 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9524 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9525 case OPTION_64:
9526 {
9527 const char **list, **l;
9528
9529 list = bfd_target_list ();
9530 for (l = list; *l != NULL; l++)
9531 if (CONST_STRNEQ (*l, "elf64-x86-64")
9532 || strcmp (*l, "coff-x86-64") == 0
9533 || strcmp (*l, "pe-x86-64") == 0
9534 || strcmp (*l, "pei-x86-64") == 0
9535 || strcmp (*l, "mach-o-x86-64") == 0)
9536 {
9537 default_arch = "x86_64";
9538 break;
9539 }
9540 if (*l == NULL)
9541 as_fatal (_("no compiled in support for x86_64"));
9542 free (list);
9543 }
9544 break;
9545 #endif
9546
9547 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9548 case OPTION_X32:
9549 if (IS_ELF)
9550 {
9551 const char **list, **l;
9552
9553 list = bfd_target_list ();
9554 for (l = list; *l != NULL; l++)
9555 if (CONST_STRNEQ (*l, "elf32-x86-64"))
9556 {
9557 default_arch = "x86_64:32";
9558 break;
9559 }
9560 if (*l == NULL)
9561 as_fatal (_("no compiled in support for 32bit x86_64"));
9562 free (list);
9563 }
9564 else
9565 as_fatal (_("32bit x86_64 is only supported for ELF"));
9566 break;
9567 #endif
9568
9569 case OPTION_32:
9570 default_arch = "i386";
9571 break;
9572
9573 case OPTION_DIVIDE:
9574 #ifdef SVR4_COMMENT_CHARS
9575 {
9576 char *n, *t;
9577 const char *s;
9578
9579 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
9580 t = n;
9581 for (s = i386_comment_chars; *s != '\0'; s++)
9582 if (*s != '/')
9583 *t++ = *s;
9584 *t = '\0';
9585 i386_comment_chars = n;
9586 }
9587 #endif
9588 break;
9589
9590 case OPTION_MARCH:
9591 arch = xstrdup (arg);
9592 do
9593 {
9594 if (*arch == '.')
9595 as_fatal (_("invalid -march= option: `%s'"), arg);
9596 next = strchr (arch, '+');
9597 if (next)
9598 *next++ = '\0';
9599 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9600 {
9601 if (strcmp (arch, cpu_arch [j].name) == 0)
9602 {
9603 /* Processor. */
9604 if (! cpu_arch[j].flags.bitfield.cpui386)
9605 continue;
9606
9607 cpu_arch_name = cpu_arch[j].name;
9608 cpu_sub_arch_name = NULL;
9609 cpu_arch_flags = cpu_arch[j].flags;
9610 cpu_arch_isa = cpu_arch[j].type;
9611 cpu_arch_isa_flags = cpu_arch[j].flags;
9612 if (!cpu_arch_tune_set)
9613 {
9614 cpu_arch_tune = cpu_arch_isa;
9615 cpu_arch_tune_flags = cpu_arch_isa_flags;
9616 }
9617 break;
9618 }
9619 else if (*cpu_arch [j].name == '.'
9620 && strcmp (arch, cpu_arch [j].name + 1) == 0)
9621 {
9622 /* ISA entension. */
9623 i386_cpu_flags flags;
9624
9625 if (!cpu_arch[j].negated)
9626 flags = cpu_flags_or (cpu_arch_flags,
9627 cpu_arch[j].flags);
9628 else
9629 flags = cpu_flags_and_not (cpu_arch_flags,
9630 cpu_arch[j].flags);
9631 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
9632 {
9633 if (cpu_sub_arch_name)
9634 {
9635 char *name = cpu_sub_arch_name;
9636 cpu_sub_arch_name = concat (name,
9637 cpu_arch[j].name,
9638 (const char *) NULL);
9639 free (name);
9640 }
9641 else
9642 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
9643 cpu_arch_flags = flags;
9644 cpu_arch_isa_flags = flags;
9645 }
9646 break;
9647 }
9648 }
9649
9650 if (j >= ARRAY_SIZE (cpu_arch))
9651 as_fatal (_("invalid -march= option: `%s'"), arg);
9652
9653 arch = next;
9654 }
9655 while (next != NULL );
9656 break;
9657
9658 case OPTION_MTUNE:
9659 if (*arg == '.')
9660 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9661 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9662 {
9663 if (strcmp (arg, cpu_arch [j].name) == 0)
9664 {
9665 cpu_arch_tune_set = 1;
9666 cpu_arch_tune = cpu_arch [j].type;
9667 cpu_arch_tune_flags = cpu_arch[j].flags;
9668 break;
9669 }
9670 }
9671 if (j >= ARRAY_SIZE (cpu_arch))
9672 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9673 break;
9674
9675 case OPTION_MMNEMONIC:
9676 if (strcasecmp (arg, "att") == 0)
9677 intel_mnemonic = 0;
9678 else if (strcasecmp (arg, "intel") == 0)
9679 intel_mnemonic = 1;
9680 else
9681 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
9682 break;
9683
9684 case OPTION_MSYNTAX:
9685 if (strcasecmp (arg, "att") == 0)
9686 intel_syntax = 0;
9687 else if (strcasecmp (arg, "intel") == 0)
9688 intel_syntax = 1;
9689 else
9690 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
9691 break;
9692
9693 case OPTION_MINDEX_REG:
9694 allow_index_reg = 1;
9695 break;
9696
9697 case OPTION_MNAKED_REG:
9698 allow_naked_reg = 1;
9699 break;
9700
9701 case OPTION_MOLD_GCC:
9702 old_gcc = 1;
9703 break;
9704
9705 case OPTION_MSSE2AVX:
9706 sse2avx = 1;
9707 break;
9708
9709 case OPTION_MSSE_CHECK:
9710 if (strcasecmp (arg, "error") == 0)
9711 sse_check = check_error;
9712 else if (strcasecmp (arg, "warning") == 0)
9713 sse_check = check_warning;
9714 else if (strcasecmp (arg, "none") == 0)
9715 sse_check = check_none;
9716 else
9717 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
9718 break;
9719
9720 case OPTION_MOPERAND_CHECK:
9721 if (strcasecmp (arg, "error") == 0)
9722 operand_check = check_error;
9723 else if (strcasecmp (arg, "warning") == 0)
9724 operand_check = check_warning;
9725 else if (strcasecmp (arg, "none") == 0)
9726 operand_check = check_none;
9727 else
9728 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
9729 break;
9730
9731 case OPTION_MAVXSCALAR:
9732 if (strcasecmp (arg, "128") == 0)
9733 avxscalar = vex128;
9734 else if (strcasecmp (arg, "256") == 0)
9735 avxscalar = vex256;
9736 else
9737 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
9738 break;
9739
9740 case OPTION_MADD_BND_PREFIX:
9741 add_bnd_prefix = 1;
9742 break;
9743
9744 case OPTION_MEVEXLIG:
9745 if (strcmp (arg, "128") == 0)
9746 evexlig = evexl128;
9747 else if (strcmp (arg, "256") == 0)
9748 evexlig = evexl256;
9749 else if (strcmp (arg, "512") == 0)
9750 evexlig = evexl512;
9751 else
9752 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
9753 break;
9754
9755 case OPTION_MEVEXWIG:
9756 if (strcmp (arg, "0") == 0)
9757 evexwig = evexw0;
9758 else if (strcmp (arg, "1") == 0)
9759 evexwig = evexw1;
9760 else
9761 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
9762 break;
9763
9764 default:
9765 return 0;
9766 }
9767 return 1;
9768 }
9769
9770 #define MESSAGE_TEMPLATE \
9771 " "
9772
9773 static void
9774 show_arch (FILE *stream, int ext, int check)
9775 {
9776 static char message[] = MESSAGE_TEMPLATE;
9777 char *start = message + 27;
9778 char *p;
9779 int size = sizeof (MESSAGE_TEMPLATE);
9780 int left;
9781 const char *name;
9782 int len;
9783 unsigned int j;
9784
9785 p = start;
9786 left = size - (start - message);
9787 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9788 {
9789 /* Should it be skipped? */
9790 if (cpu_arch [j].skip)
9791 continue;
9792
9793 name = cpu_arch [j].name;
9794 len = cpu_arch [j].len;
9795 if (*name == '.')
9796 {
9797 /* It is an extension. Skip if we aren't asked to show it. */
9798 if (ext)
9799 {
9800 name++;
9801 len--;
9802 }
9803 else
9804 continue;
9805 }
9806 else if (ext)
9807 {
9808 /* It is an processor. Skip if we show only extension. */
9809 continue;
9810 }
9811 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
9812 {
9813 /* It is an impossible processor - skip. */
9814 continue;
9815 }
9816
9817 /* Reserve 2 spaces for ", " or ",\0" */
9818 left -= len + 2;
9819
9820 /* Check if there is any room. */
9821 if (left >= 0)
9822 {
9823 if (p != start)
9824 {
9825 *p++ = ',';
9826 *p++ = ' ';
9827 }
9828 p = mempcpy (p, name, len);
9829 }
9830 else
9831 {
9832 /* Output the current message now and start a new one. */
9833 *p++ = ',';
9834 *p = '\0';
9835 fprintf (stream, "%s\n", message);
9836 p = start;
9837 left = size - (start - message) - len - 2;
9838
9839 gas_assert (left >= 0);
9840
9841 p = mempcpy (p, name, len);
9842 }
9843 }
9844
9845 *p = '\0';
9846 fprintf (stream, "%s\n", message);
9847 }
9848
9849 void
9850 md_show_usage (FILE *stream)
9851 {
9852 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9853 fprintf (stream, _("\
9854 -Q ignored\n\
9855 -V print assembler version number\n\
9856 -k ignored\n"));
9857 #endif
9858 fprintf (stream, _("\
9859 -n Do not optimize code alignment\n\
9860 -q quieten some warnings\n"));
9861 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9862 fprintf (stream, _("\
9863 -s ignored\n"));
9864 #endif
9865 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9866 || defined (TE_PE) || defined (TE_PEP))
9867 fprintf (stream, _("\
9868 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
9869 #endif
9870 #ifdef SVR4_COMMENT_CHARS
9871 fprintf (stream, _("\
9872 --divide do not treat `/' as a comment character\n"));
9873 #else
9874 fprintf (stream, _("\
9875 --divide ignored\n"));
9876 #endif
9877 fprintf (stream, _("\
9878 -march=CPU[,+EXTENSION...]\n\
9879 generate code for CPU and EXTENSION, CPU is one of:\n"));
9880 show_arch (stream, 0, 1);
9881 fprintf (stream, _("\
9882 EXTENSION is combination of:\n"));
9883 show_arch (stream, 1, 0);
9884 fprintf (stream, _("\
9885 -mtune=CPU optimize for CPU, CPU is one of:\n"));
9886 show_arch (stream, 0, 0);
9887 fprintf (stream, _("\
9888 -msse2avx encode SSE instructions with VEX prefix\n"));
9889 fprintf (stream, _("\
9890 -msse-check=[none|error|warning]\n\
9891 check SSE instructions\n"));
9892 fprintf (stream, _("\
9893 -moperand-check=[none|error|warning]\n\
9894 check operand combinations for validity\n"));
9895 fprintf (stream, _("\
9896 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
9897 length\n"));
9898 fprintf (stream, _("\
9899 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
9900 length\n"));
9901 fprintf (stream, _("\
9902 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
9903 for EVEX.W bit ignored instructions\n"));
9904 fprintf (stream, _("\
9905 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
9906 fprintf (stream, _("\
9907 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
9908 fprintf (stream, _("\
9909 -mindex-reg support pseudo index registers\n"));
9910 fprintf (stream, _("\
9911 -mnaked-reg don't require `%%' prefix for registers\n"));
9912 fprintf (stream, _("\
9913 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
9914 fprintf (stream, _("\
9915 -madd-bnd-prefix add BND prefix for all valid branches\n"));
9916 }
9917
9918 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
9919 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9920 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9921
9922 /* Pick the target format to use. */
9923
9924 const char *
9925 i386_target_format (void)
9926 {
9927 if (!strncmp (default_arch, "x86_64", 6))
9928 {
9929 update_code_flag (CODE_64BIT, 1);
9930 if (default_arch[6] == '\0')
9931 x86_elf_abi = X86_64_ABI;
9932 else
9933 x86_elf_abi = X86_64_X32_ABI;
9934 }
9935 else if (!strcmp (default_arch, "i386"))
9936 update_code_flag (CODE_32BIT, 1);
9937 else
9938 as_fatal (_("unknown architecture"));
9939
9940 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
9941 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
9942 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
9943 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
9944
9945 switch (OUTPUT_FLAVOR)
9946 {
9947 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
9948 case bfd_target_aout_flavour:
9949 return AOUT_TARGET_FORMAT;
9950 #endif
9951 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
9952 # if defined (TE_PE) || defined (TE_PEP)
9953 case bfd_target_coff_flavour:
9954 return flag_code == CODE_64BIT ? "pe-x86-64" : "pe-i386";
9955 # elif defined (TE_GO32)
9956 case bfd_target_coff_flavour:
9957 return "coff-go32";
9958 # else
9959 case bfd_target_coff_flavour:
9960 return "coff-i386";
9961 # endif
9962 #endif
9963 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
9964 case bfd_target_elf_flavour:
9965 {
9966 const char *format;
9967
9968 switch (x86_elf_abi)
9969 {
9970 default:
9971 format = ELF_TARGET_FORMAT;
9972 break;
9973 case X86_64_ABI:
9974 use_rela_relocations = 1;
9975 object_64bit = 1;
9976 format = ELF_TARGET_FORMAT64;
9977 break;
9978 case X86_64_X32_ABI:
9979 use_rela_relocations = 1;
9980 object_64bit = 1;
9981 disallow_64bit_reloc = 1;
9982 format = ELF_TARGET_FORMAT32;
9983 break;
9984 }
9985 if (cpu_arch_isa == PROCESSOR_L1OM)
9986 {
9987 if (x86_elf_abi != X86_64_ABI)
9988 as_fatal (_("Intel L1OM is 64bit only"));
9989 return ELF_TARGET_L1OM_FORMAT;
9990 }
9991 if (cpu_arch_isa == PROCESSOR_K1OM)
9992 {
9993 if (x86_elf_abi != X86_64_ABI)
9994 as_fatal (_("Intel K1OM is 64bit only"));
9995 return ELF_TARGET_K1OM_FORMAT;
9996 }
9997 else
9998 return format;
9999 }
10000 #endif
10001 #if defined (OBJ_MACH_O)
10002 case bfd_target_mach_o_flavour:
10003 if (flag_code == CODE_64BIT)
10004 {
10005 use_rela_relocations = 1;
10006 object_64bit = 1;
10007 return "mach-o-x86-64";
10008 }
10009 else
10010 return "mach-o-i386";
10011 #endif
10012 default:
10013 abort ();
10014 return NULL;
10015 }
10016 }
10017
10018 #endif /* OBJ_MAYBE_ more than one */
10019
10020 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
10021 void
10022 i386_elf_emit_arch_note (void)
10023 {
10024 if (IS_ELF && cpu_arch_name != NULL)
10025 {
10026 char *p;
10027 asection *seg = now_seg;
10028 subsegT subseg = now_subseg;
10029 Elf_Internal_Note i_note;
10030 Elf_External_Note e_note;
10031 asection *note_secp;
10032 int len;
10033
10034 /* Create the .note section. */
10035 note_secp = subseg_new (".note", 0);
10036 bfd_set_section_flags (stdoutput,
10037 note_secp,
10038 SEC_HAS_CONTENTS | SEC_READONLY);
10039
10040 /* Process the arch string. */
10041 len = strlen (cpu_arch_name);
10042
10043 i_note.namesz = len + 1;
10044 i_note.descsz = 0;
10045 i_note.type = NT_ARCH;
10046 p = frag_more (sizeof (e_note.namesz));
10047 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
10048 p = frag_more (sizeof (e_note.descsz));
10049 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
10050 p = frag_more (sizeof (e_note.type));
10051 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
10052 p = frag_more (len + 1);
10053 strcpy (p, cpu_arch_name);
10054
10055 frag_align (2, 0, 0);
10056
10057 subseg_set (seg, subseg);
10058 }
10059 }
10060 #endif
10061 \f
10062 symbolS *
10063 md_undefined_symbol (char *name)
10064 {
10065 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10066 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10067 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10068 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10069 {
10070 if (!GOT_symbol)
10071 {
10072 if (symbol_find (name))
10073 as_bad (_("GOT already in symbol table"));
10074 GOT_symbol = symbol_new (name, undefined_section,
10075 (valueT) 0, &zero_address_frag);
10076 };
10077 return GOT_symbol;
10078 }
10079 return 0;
10080 }
10081
10082 /* Round up a section size to the appropriate boundary. */
10083
10084 valueT
10085 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10086 {
10087 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10088 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10089 {
10090 /* For a.out, force the section size to be aligned. If we don't do
10091 this, BFD will align it for us, but it will not write out the
10092 final bytes of the section. This may be a bug in BFD, but it is
10093 easier to fix it here since that is how the other a.out targets
10094 work. */
10095 int align;
10096
10097 align = bfd_get_section_alignment (stdoutput, segment);
10098 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
10099 }
10100 #endif
10101
10102 return size;
10103 }
10104
10105 /* On the i386, PC-relative offsets are relative to the start of the
10106 next instruction. That is, the address of the offset, plus its
10107 size, since the offset is always the last part of the insn. */
10108
10109 long
10110 md_pcrel_from (fixS *fixP)
10111 {
10112 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10113 }
10114
10115 #ifndef I386COFF
10116
10117 static void
10118 s_bss (int ignore ATTRIBUTE_UNUSED)
10119 {
10120 int temp;
10121
10122 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10123 if (IS_ELF)
10124 obj_elf_section_change_hook ();
10125 #endif
10126 temp = get_absolute_expression ();
10127 subseg_set (bss_section, (subsegT) temp);
10128 demand_empty_rest_of_line ();
10129 }
10130
10131 #endif
10132
10133 void
10134 i386_validate_fix (fixS *fixp)
10135 {
10136 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
10137 {
10138 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10139 {
10140 if (!object_64bit)
10141 abort ();
10142 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10143 }
10144 else
10145 {
10146 if (!object_64bit)
10147 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10148 else
10149 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10150 }
10151 fixp->fx_subsy = 0;
10152 }
10153 }
10154
10155 arelent *
10156 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10157 {
10158 arelent *rel;
10159 bfd_reloc_code_real_type code;
10160
10161 switch (fixp->fx_r_type)
10162 {
10163 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10164 case BFD_RELOC_SIZE32:
10165 case BFD_RELOC_SIZE64:
10166 if (S_IS_DEFINED (fixp->fx_addsy)
10167 && !S_IS_EXTERNAL (fixp->fx_addsy))
10168 {
10169 /* Resolve size relocation against local symbol to size of
10170 the symbol plus addend. */
10171 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10172 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10173 && !fits_in_unsigned_long (value))
10174 as_bad_where (fixp->fx_file, fixp->fx_line,
10175 _("symbol size computation overflow"));
10176 fixp->fx_addsy = NULL;
10177 fixp->fx_subsy = NULL;
10178 md_apply_fix (fixp, (valueT *) &value, NULL);
10179 return NULL;
10180 }
10181 #endif
10182
10183 case BFD_RELOC_X86_64_PLT32:
10184 case BFD_RELOC_X86_64_GOT32:
10185 case BFD_RELOC_X86_64_GOTPCREL:
10186 case BFD_RELOC_386_PLT32:
10187 case BFD_RELOC_386_GOT32:
10188 case BFD_RELOC_386_GOTOFF:
10189 case BFD_RELOC_386_GOTPC:
10190 case BFD_RELOC_386_TLS_GD:
10191 case BFD_RELOC_386_TLS_LDM:
10192 case BFD_RELOC_386_TLS_LDO_32:
10193 case BFD_RELOC_386_TLS_IE_32:
10194 case BFD_RELOC_386_TLS_IE:
10195 case BFD_RELOC_386_TLS_GOTIE:
10196 case BFD_RELOC_386_TLS_LE_32:
10197 case BFD_RELOC_386_TLS_LE:
10198 case BFD_RELOC_386_TLS_GOTDESC:
10199 case BFD_RELOC_386_TLS_DESC_CALL:
10200 case BFD_RELOC_X86_64_TLSGD:
10201 case BFD_RELOC_X86_64_TLSLD:
10202 case BFD_RELOC_X86_64_DTPOFF32:
10203 case BFD_RELOC_X86_64_DTPOFF64:
10204 case BFD_RELOC_X86_64_GOTTPOFF:
10205 case BFD_RELOC_X86_64_TPOFF32:
10206 case BFD_RELOC_X86_64_TPOFF64:
10207 case BFD_RELOC_X86_64_GOTOFF64:
10208 case BFD_RELOC_X86_64_GOTPC32:
10209 case BFD_RELOC_X86_64_GOT64:
10210 case BFD_RELOC_X86_64_GOTPCREL64:
10211 case BFD_RELOC_X86_64_GOTPC64:
10212 case BFD_RELOC_X86_64_GOTPLT64:
10213 case BFD_RELOC_X86_64_PLTOFF64:
10214 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10215 case BFD_RELOC_X86_64_TLSDESC_CALL:
10216 case BFD_RELOC_RVA:
10217 case BFD_RELOC_VTABLE_ENTRY:
10218 case BFD_RELOC_VTABLE_INHERIT:
10219 #ifdef TE_PE
10220 case BFD_RELOC_32_SECREL:
10221 #endif
10222 code = fixp->fx_r_type;
10223 break;
10224 case BFD_RELOC_X86_64_32S:
10225 if (!fixp->fx_pcrel)
10226 {
10227 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10228 code = fixp->fx_r_type;
10229 break;
10230 }
10231 default:
10232 if (fixp->fx_pcrel)
10233 {
10234 switch (fixp->fx_size)
10235 {
10236 default:
10237 as_bad_where (fixp->fx_file, fixp->fx_line,
10238 _("can not do %d byte pc-relative relocation"),
10239 fixp->fx_size);
10240 code = BFD_RELOC_32_PCREL;
10241 break;
10242 case 1: code = BFD_RELOC_8_PCREL; break;
10243 case 2: code = BFD_RELOC_16_PCREL; break;
10244 case 4: code = BFD_RELOC_32_PCREL; break;
10245 #ifdef BFD64
10246 case 8: code = BFD_RELOC_64_PCREL; break;
10247 #endif
10248 }
10249 }
10250 else
10251 {
10252 switch (fixp->fx_size)
10253 {
10254 default:
10255 as_bad_where (fixp->fx_file, fixp->fx_line,
10256 _("can not do %d byte relocation"),
10257 fixp->fx_size);
10258 code = BFD_RELOC_32;
10259 break;
10260 case 1: code = BFD_RELOC_8; break;
10261 case 2: code = BFD_RELOC_16; break;
10262 case 4: code = BFD_RELOC_32; break;
10263 #ifdef BFD64
10264 case 8: code = BFD_RELOC_64; break;
10265 #endif
10266 }
10267 }
10268 break;
10269 }
10270
10271 if ((code == BFD_RELOC_32
10272 || code == BFD_RELOC_32_PCREL
10273 || code == BFD_RELOC_X86_64_32S)
10274 && GOT_symbol
10275 && fixp->fx_addsy == GOT_symbol)
10276 {
10277 if (!object_64bit)
10278 code = BFD_RELOC_386_GOTPC;
10279 else
10280 code = BFD_RELOC_X86_64_GOTPC32;
10281 }
10282 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10283 && GOT_symbol
10284 && fixp->fx_addsy == GOT_symbol)
10285 {
10286 code = BFD_RELOC_X86_64_GOTPC64;
10287 }
10288
10289 rel = (arelent *) xmalloc (sizeof (arelent));
10290 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
10291 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10292
10293 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
10294
10295 if (!use_rela_relocations)
10296 {
10297 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10298 vtable entry to be used in the relocation's section offset. */
10299 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10300 rel->address = fixp->fx_offset;
10301 #if defined (OBJ_COFF) && defined (TE_PE)
10302 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10303 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10304 else
10305 #endif
10306 rel->addend = 0;
10307 }
10308 /* Use the rela in 64bit mode. */
10309 else
10310 {
10311 if (disallow_64bit_reloc)
10312 switch (code)
10313 {
10314 case BFD_RELOC_X86_64_DTPOFF64:
10315 case BFD_RELOC_X86_64_TPOFF64:
10316 case BFD_RELOC_64_PCREL:
10317 case BFD_RELOC_X86_64_GOTOFF64:
10318 case BFD_RELOC_X86_64_GOT64:
10319 case BFD_RELOC_X86_64_GOTPCREL64:
10320 case BFD_RELOC_X86_64_GOTPC64:
10321 case BFD_RELOC_X86_64_GOTPLT64:
10322 case BFD_RELOC_X86_64_PLTOFF64:
10323 as_bad_where (fixp->fx_file, fixp->fx_line,
10324 _("cannot represent relocation type %s in x32 mode"),
10325 bfd_get_reloc_code_name (code));
10326 break;
10327 default:
10328 break;
10329 }
10330
10331 if (!fixp->fx_pcrel)
10332 rel->addend = fixp->fx_offset;
10333 else
10334 switch (code)
10335 {
10336 case BFD_RELOC_X86_64_PLT32:
10337 case BFD_RELOC_X86_64_GOT32:
10338 case BFD_RELOC_X86_64_GOTPCREL:
10339 case BFD_RELOC_X86_64_TLSGD:
10340 case BFD_RELOC_X86_64_TLSLD:
10341 case BFD_RELOC_X86_64_GOTTPOFF:
10342 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10343 case BFD_RELOC_X86_64_TLSDESC_CALL:
10344 rel->addend = fixp->fx_offset - fixp->fx_size;
10345 break;
10346 default:
10347 rel->addend = (section->vma
10348 - fixp->fx_size
10349 + fixp->fx_addnumber
10350 + md_pcrel_from (fixp));
10351 break;
10352 }
10353 }
10354
10355 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
10356 if (rel->howto == NULL)
10357 {
10358 as_bad_where (fixp->fx_file, fixp->fx_line,
10359 _("cannot represent relocation type %s"),
10360 bfd_get_reloc_code_name (code));
10361 /* Set howto to a garbage value so that we can keep going. */
10362 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
10363 gas_assert (rel->howto != NULL);
10364 }
10365
10366 return rel;
10367 }
10368
10369 #include "tc-i386-intel.c"
10370
10371 void
10372 tc_x86_parse_to_dw2regnum (expressionS *exp)
10373 {
10374 int saved_naked_reg;
10375 char saved_register_dot;
10376
10377 saved_naked_reg = allow_naked_reg;
10378 allow_naked_reg = 1;
10379 saved_register_dot = register_chars['.'];
10380 register_chars['.'] = '.';
10381 allow_pseudo_reg = 1;
10382 expression_and_evaluate (exp);
10383 allow_pseudo_reg = 0;
10384 register_chars['.'] = saved_register_dot;
10385 allow_naked_reg = saved_naked_reg;
10386
10387 if (exp->X_op == O_register && exp->X_add_number >= 0)
10388 {
10389 if ((addressT) exp->X_add_number < i386_regtab_size)
10390 {
10391 exp->X_op = O_constant;
10392 exp->X_add_number = i386_regtab[exp->X_add_number]
10393 .dw2_regnum[flag_code >> 1];
10394 }
10395 else
10396 exp->X_op = O_illegal;
10397 }
10398 }
10399
10400 void
10401 tc_x86_frame_initial_instructions (void)
10402 {
10403 static unsigned int sp_regno[2];
10404
10405 if (!sp_regno[flag_code >> 1])
10406 {
10407 char *saved_input = input_line_pointer;
10408 char sp[][4] = {"esp", "rsp"};
10409 expressionS exp;
10410
10411 input_line_pointer = sp[flag_code >> 1];
10412 tc_x86_parse_to_dw2regnum (&exp);
10413 gas_assert (exp.X_op == O_constant);
10414 sp_regno[flag_code >> 1] = exp.X_add_number;
10415 input_line_pointer = saved_input;
10416 }
10417
10418 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
10419 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
10420 }
10421
10422 int
10423 x86_dwarf2_addr_size (void)
10424 {
10425 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10426 if (x86_elf_abi == X86_64_X32_ABI)
10427 return 4;
10428 #endif
10429 return bfd_arch_bits_per_address (stdoutput) / 8;
10430 }
10431
10432 int
10433 i386_elf_section_type (const char *str, size_t len)
10434 {
10435 if (flag_code == CODE_64BIT
10436 && len == sizeof ("unwind") - 1
10437 && strncmp (str, "unwind", 6) == 0)
10438 return SHT_X86_64_UNWIND;
10439
10440 return -1;
10441 }
10442
10443 #ifdef TE_SOLARIS
10444 void
10445 i386_solaris_fix_up_eh_frame (segT sec)
10446 {
10447 if (flag_code == CODE_64BIT)
10448 elf_section_type (sec) = SHT_X86_64_UNWIND;
10449 }
10450 #endif
10451
10452 #ifdef TE_PE
10453 void
10454 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10455 {
10456 expressionS exp;
10457
10458 exp.X_op = O_secrel;
10459 exp.X_add_symbol = symbol;
10460 exp.X_add_number = 0;
10461 emit_expr (&exp, size);
10462 }
10463 #endif
10464
10465 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10466 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
10467
10468 bfd_vma
10469 x86_64_section_letter (int letter, char **ptr_msg)
10470 {
10471 if (flag_code == CODE_64BIT)
10472 {
10473 if (letter == 'l')
10474 return SHF_X86_64_LARGE;
10475
10476 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
10477 }
10478 else
10479 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
10480 return -1;
10481 }
10482
10483 bfd_vma
10484 x86_64_section_word (char *str, size_t len)
10485 {
10486 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
10487 return SHF_X86_64_LARGE;
10488
10489 return -1;
10490 }
10491
10492 static void
10493 handle_large_common (int small ATTRIBUTE_UNUSED)
10494 {
10495 if (flag_code != CODE_64BIT)
10496 {
10497 s_comm_internal (0, elf_common_parse);
10498 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
10499 }
10500 else
10501 {
10502 static segT lbss_section;
10503 asection *saved_com_section_ptr = elf_com_section_ptr;
10504 asection *saved_bss_section = bss_section;
10505
10506 if (lbss_section == NULL)
10507 {
10508 flagword applicable;
10509 segT seg = now_seg;
10510 subsegT subseg = now_subseg;
10511
10512 /* The .lbss section is for local .largecomm symbols. */
10513 lbss_section = subseg_new (".lbss", 0);
10514 applicable = bfd_applicable_section_flags (stdoutput);
10515 bfd_set_section_flags (stdoutput, lbss_section,
10516 applicable & SEC_ALLOC);
10517 seg_info (lbss_section)->bss = 1;
10518
10519 subseg_set (seg, subseg);
10520 }
10521
10522 elf_com_section_ptr = &_bfd_elf_large_com_section;
10523 bss_section = lbss_section;
10524
10525 s_comm_internal (0, elf_common_parse);
10526
10527 elf_com_section_ptr = saved_com_section_ptr;
10528 bss_section = saved_bss_section;
10529 }
10530 }
10531 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.234485 seconds and 5 git commands to generate.