* elf32-hppa.c (elf32_hppa_size_dynamic_sections): Always
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 Bugs & suggestions are completely welcome. This is free software.
27 Please help us make it better. */
28
29 #include <ctype.h>
30
31 #include "as.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "opcode/i386.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef SCALE1_WHEN_NO_INDEX
45 /* Specifying a scale factor besides 1 when there is no index is
46 futile. eg. `mov (%ebx,2),%al' does exactly the same as
47 `mov (%ebx),%al'. To slavishly follow what the programmer
48 specified, set SCALE1_WHEN_NO_INDEX to 0. */
49 #define SCALE1_WHEN_NO_INDEX 1
50 #endif
51
52 #define true 1
53 #define false 0
54
55 static unsigned int mode_from_disp_size PARAMS ((unsigned int));
56 static int fits_in_signed_byte PARAMS ((offsetT));
57 static int fits_in_unsigned_byte PARAMS ((offsetT));
58 static int fits_in_unsigned_word PARAMS ((offsetT));
59 static int fits_in_signed_word PARAMS ((offsetT));
60 static int fits_in_unsigned_long PARAMS ((offsetT));
61 static int fits_in_signed_long PARAMS ((offsetT));
62 static int smallest_imm_type PARAMS ((offsetT));
63 static offsetT offset_in_range PARAMS ((offsetT, int));
64 static int add_prefix PARAMS ((unsigned int));
65 static void set_code_flag PARAMS ((int));
66 static void set_16bit_gcc_code_flag PARAMS ((int));
67 static void set_intel_syntax PARAMS ((int));
68 static void set_cpu_arch PARAMS ((int));
69
70 #ifdef BFD_ASSEMBLER
71 static bfd_reloc_code_real_type reloc
72 PARAMS ((int, int, int, bfd_reloc_code_real_type));
73 #define RELOC_ENUM enum bfd_reloc_code_real
74 #else
75 #define RELOC_ENUM int
76 #endif
77
78 #ifndef DEFAULT_ARCH
79 #define DEFAULT_ARCH "i386"
80 #endif
81 static char *default_arch = DEFAULT_ARCH;
82
83 /* 'md_assemble ()' gathers together information and puts it into a
84 i386_insn. */
85
86 union i386_op
87 {
88 expressionS *disps;
89 expressionS *imms;
90 const reg_entry *regs;
91 };
92
93 struct _i386_insn
94 {
95 /* TM holds the template for the insn were currently assembling. */
96 template tm;
97
98 /* SUFFIX holds the instruction mnemonic suffix if given.
99 (e.g. 'l' for 'movl') */
100 char suffix;
101
102 /* OPERANDS gives the number of given operands. */
103 unsigned int operands;
104
105 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
106 of given register, displacement, memory operands and immediate
107 operands. */
108 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
109
110 /* TYPES [i] is the type (see above #defines) which tells us how to
111 use OP[i] for the corresponding operand. */
112 unsigned int types[MAX_OPERANDS];
113
114 /* Displacement expression, immediate expression, or register for each
115 operand. */
116 union i386_op op[MAX_OPERANDS];
117
118 /* Flags for operands. */
119 unsigned int flags[MAX_OPERANDS];
120 #define Operand_PCrel 1
121
122 /* Relocation type for operand */
123 RELOC_ENUM reloc[MAX_OPERANDS];
124
125 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
126 the base index byte below. */
127 const reg_entry *base_reg;
128 const reg_entry *index_reg;
129 unsigned int log2_scale_factor;
130
131 /* SEG gives the seg_entries of this insn. They are zero unless
132 explicit segment overrides are given. */
133 const seg_entry *seg[2];
134
135 /* PREFIX holds all the given prefix opcodes (usually null).
136 PREFIXES is the number of prefix opcodes. */
137 unsigned int prefixes;
138 unsigned char prefix[MAX_PREFIXES];
139
140 /* RM and SIB are the modrm byte and the sib byte where the
141 addressing modes of this insn are encoded. */
142
143 modrm_byte rm;
144 rex_byte rex;
145 sib_byte sib;
146 };
147
148 typedef struct _i386_insn i386_insn;
149
150 /* List of chars besides those in app.c:symbol_chars that can start an
151 operand. Used to prevent the scrubber eating vital white-space. */
152 #ifdef LEX_AT
153 const char extra_symbol_chars[] = "*%-(@";
154 #else
155 const char extra_symbol_chars[] = "*%-(";
156 #endif
157
158 /* This array holds the chars that always start a comment. If the
159 pre-processor is disabled, these aren't very useful. */
160 #if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
161 /* Putting '/' here makes it impossible to use the divide operator.
162 However, we need it for compatibility with SVR4 systems. */
163 const char comment_chars[] = "#/";
164 #define PREFIX_SEPARATOR '\\'
165 #else
166 const char comment_chars[] = "#";
167 #define PREFIX_SEPARATOR '/'
168 #endif
169
170 /* This array holds the chars that only start a comment at the beginning of
171 a line. If the line seems to have the form '# 123 filename'
172 .line and .file directives will appear in the pre-processed output.
173 Note that input_file.c hand checks for '#' at the beginning of the
174 first line of the input file. This is because the compiler outputs
175 #NO_APP at the beginning of its output.
176 Also note that comments started like this one will always work if
177 '/' isn't otherwise defined. */
178 #if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
179 const char line_comment_chars[] = "";
180 #else
181 const char line_comment_chars[] = "/";
182 #endif
183
184 const char line_separator_chars[] = ";";
185
186 /* Chars that can be used to separate mant from exp in floating point
187 nums. */
188 const char EXP_CHARS[] = "eE";
189
190 /* Chars that mean this number is a floating point constant
191 As in 0f12.456
192 or 0d1.2345e12. */
193 const char FLT_CHARS[] = "fFdDxX";
194
195 /* Tables for lexical analysis. */
196 static char mnemonic_chars[256];
197 static char register_chars[256];
198 static char operand_chars[256];
199 static char identifier_chars[256];
200 static char digit_chars[256];
201
202 /* Lexical macros. */
203 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
204 #define is_operand_char(x) (operand_chars[(unsigned char) x])
205 #define is_register_char(x) (register_chars[(unsigned char) x])
206 #define is_space_char(x) ((x) == ' ')
207 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
208 #define is_digit_char(x) (digit_chars[(unsigned char) x])
209
210 /* All non-digit non-letter charcters that may occur in an operand. */
211 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
212
213 /* md_assemble() always leaves the strings it's passed unaltered. To
214 effect this we maintain a stack of saved characters that we've smashed
215 with '\0's (indicating end of strings for various sub-fields of the
216 assembler instruction). */
217 static char save_stack[32];
218 static char *save_stack_p;
219 #define END_STRING_AND_SAVE(s) \
220 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
221 #define RESTORE_END_STRING(s) \
222 do { *(s) = *--save_stack_p; } while (0)
223
224 /* The instruction we're assembling. */
225 static i386_insn i;
226
227 /* Possible templates for current insn. */
228 static const templates *current_templates;
229
230 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
231 static expressionS disp_expressions[2], im_expressions[2];
232
233 /* Current operand we are working on. */
234 static int this_operand;
235
236 /* We support four different modes. FLAG_CODE variable is used to distinguish
237 these. */
238
239 enum flag_code {
240 CODE_32BIT,
241 CODE_16BIT,
242 CODE_64BIT };
243 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
244
245 static enum flag_code flag_code;
246 static int use_rela_relocations = 0;
247
248 /* The names used to print error messages. */
249 static const char *flag_code_names[] =
250 {
251 "32",
252 "16",
253 "64"
254 };
255
256 /* 1 for intel syntax,
257 0 if att syntax. */
258 static int intel_syntax = 0;
259
260 /* 1 if register prefix % not required. */
261 static int allow_naked_reg = 0;
262
263 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
264 leave, push, and pop instructions so that gcc has the same stack
265 frame as in 32 bit mode. */
266 static char stackop_size = '\0';
267
268 /* Non-zero to quieten some warnings. */
269 static int quiet_warnings = 0;
270
271 /* CPU name. */
272 static const char *cpu_arch_name = NULL;
273
274 /* CPU feature flags. */
275 static unsigned int cpu_arch_flags = CpuUnknownFlags|CpuNo64;
276
277 /* If set, conditional jumps are not automatically promoted to handle
278 larger than a byte offset. */
279 static unsigned int no_cond_jump_promotion = 0;
280
281 /* Interface to relax_segment.
282 There are 3 major relax states for 386 jump insns because the
283 different types of jumps add different sizes to frags when we're
284 figuring out what sort of jump to choose to reach a given label. */
285
286 /* Types. */
287 #define UNCOND_JUMP 0
288 #define COND_JUMP 1
289 #define COND_JUMP86 2
290
291 /* Sizes. */
292 #define CODE16 1
293 #define SMALL 0
294 #define SMALL16 (SMALL|CODE16)
295 #define BIG 2
296 #define BIG16 (BIG|CODE16)
297
298 #ifndef INLINE
299 #ifdef __GNUC__
300 #define INLINE __inline__
301 #else
302 #define INLINE
303 #endif
304 #endif
305
306 #define ENCODE_RELAX_STATE(type, size) \
307 ((relax_substateT) (((type) << 2) | (size)))
308 #define TYPE_FROM_RELAX_STATE(s) \
309 ((s) >> 2)
310 #define DISP_SIZE_FROM_RELAX_STATE(s) \
311 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
312
313 /* This table is used by relax_frag to promote short jumps to long
314 ones where necessary. SMALL (short) jumps may be promoted to BIG
315 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
316 don't allow a short jump in a 32 bit code segment to be promoted to
317 a 16 bit offset jump because it's slower (requires data size
318 prefix), and doesn't work, unless the destination is in the bottom
319 64k of the code segment (The top 16 bits of eip are zeroed). */
320
321 const relax_typeS md_relax_table[] =
322 {
323 /* The fields are:
324 1) most positive reach of this state,
325 2) most negative reach of this state,
326 3) how many bytes this mode will have in the variable part of the frag
327 4) which index into the table to try if we can't fit into this one. */
328
329 /* UNCOND_JUMP states. */
330 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
331 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
332 /* dword jmp adds 4 bytes to frag:
333 0 extra opcode bytes, 4 displacement bytes. */
334 {0, 0, 4, 0},
335 /* word jmp adds 2 byte2 to frag:
336 0 extra opcode bytes, 2 displacement bytes. */
337 {0, 0, 2, 0},
338
339 /* COND_JUMP states. */
340 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
341 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
342 /* dword conditionals adds 5 bytes to frag:
343 1 extra opcode byte, 4 displacement bytes. */
344 {0, 0, 5, 0},
345 /* word conditionals add 3 bytes to frag:
346 1 extra opcode byte, 2 displacement bytes. */
347 {0, 0, 3, 0},
348
349 /* COND_JUMP86 states. */
350 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
351 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
352 /* dword conditionals adds 5 bytes to frag:
353 1 extra opcode byte, 4 displacement bytes. */
354 {0, 0, 5, 0},
355 /* word conditionals add 4 bytes to frag:
356 1 displacement byte and a 3 byte long branch insn. */
357 {0, 0, 4, 0}
358 };
359
360 static const arch_entry cpu_arch[] = {
361 {"i8086", Cpu086 },
362 {"i186", Cpu086|Cpu186 },
363 {"i286", Cpu086|Cpu186|Cpu286 },
364 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
365 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
366 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
367 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
368 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
369 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
370 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
371 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
372 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
373 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
374 {NULL, 0 }
375 };
376
377 void
378 i386_align_code (fragP, count)
379 fragS *fragP;
380 int count;
381 {
382 /* Various efficient no-op patterns for aligning code labels.
383 Note: Don't try to assemble the instructions in the comments.
384 0L and 0w are not legal. */
385 static const char f32_1[] =
386 {0x90}; /* nop */
387 static const char f32_2[] =
388 {0x89,0xf6}; /* movl %esi,%esi */
389 static const char f32_3[] =
390 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
391 static const char f32_4[] =
392 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
393 static const char f32_5[] =
394 {0x90, /* nop */
395 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
396 static const char f32_6[] =
397 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
398 static const char f32_7[] =
399 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
400 static const char f32_8[] =
401 {0x90, /* nop */
402 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
403 static const char f32_9[] =
404 {0x89,0xf6, /* movl %esi,%esi */
405 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
406 static const char f32_10[] =
407 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
408 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
409 static const char f32_11[] =
410 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
411 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
412 static const char f32_12[] =
413 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
414 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
415 static const char f32_13[] =
416 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
417 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
418 static const char f32_14[] =
419 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
420 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
421 static const char f32_15[] =
422 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
423 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
424 static const char f16_3[] =
425 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
426 static const char f16_4[] =
427 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
428 static const char f16_5[] =
429 {0x90, /* nop */
430 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
431 static const char f16_6[] =
432 {0x89,0xf6, /* mov %si,%si */
433 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
434 static const char f16_7[] =
435 {0x8d,0x74,0x00, /* lea 0(%si),%si */
436 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
437 static const char f16_8[] =
438 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
439 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
440 static const char *const f32_patt[] = {
441 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
442 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
443 };
444 static const char *const f16_patt[] = {
445 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
446 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
447 };
448
449 /* ??? We can't use these fillers for x86_64, since they often kills the
450 upper halves. Solve later. */
451 if (flag_code == CODE_64BIT)
452 count = 1;
453
454 if (count > 0 && count <= 15)
455 {
456 if (flag_code == CODE_16BIT)
457 {
458 memcpy (fragP->fr_literal + fragP->fr_fix,
459 f16_patt[count - 1], count);
460 if (count > 8)
461 /* Adjust jump offset. */
462 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
463 }
464 else
465 memcpy (fragP->fr_literal + fragP->fr_fix,
466 f32_patt[count - 1], count);
467 fragP->fr_var = count;
468 }
469 }
470
471 static char *output_invalid PARAMS ((int c));
472 static int i386_operand PARAMS ((char *operand_string));
473 static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
474 static const reg_entry *parse_register PARAMS ((char *reg_string,
475 char **end_op));
476
477 #ifndef I386COFF
478 static void s_bss PARAMS ((int));
479 #endif
480
481 symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
482
483 static INLINE unsigned int
484 mode_from_disp_size (t)
485 unsigned int t;
486 {
487 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
488 }
489
490 static INLINE int
491 fits_in_signed_byte (num)
492 offsetT num;
493 {
494 return (num >= -128) && (num <= 127);
495 }
496
497 static INLINE int
498 fits_in_unsigned_byte (num)
499 offsetT num;
500 {
501 return (num & 0xff) == num;
502 }
503
504 static INLINE int
505 fits_in_unsigned_word (num)
506 offsetT num;
507 {
508 return (num & 0xffff) == num;
509 }
510
511 static INLINE int
512 fits_in_signed_word (num)
513 offsetT num;
514 {
515 return (-32768 <= num) && (num <= 32767);
516 }
517 static INLINE int
518 fits_in_signed_long (num)
519 offsetT num ATTRIBUTE_UNUSED;
520 {
521 #ifndef BFD64
522 return 1;
523 #else
524 return (!(((offsetT) -1 << 31) & num)
525 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
526 #endif
527 } /* fits_in_signed_long() */
528 static INLINE int
529 fits_in_unsigned_long (num)
530 offsetT num ATTRIBUTE_UNUSED;
531 {
532 #ifndef BFD64
533 return 1;
534 #else
535 return (num & (((offsetT) 2 << 31) - 1)) == num;
536 #endif
537 } /* fits_in_unsigned_long() */
538
539 static int
540 smallest_imm_type (num)
541 offsetT num;
542 {
543 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64)
544 && !(cpu_arch_flags & (CpuUnknown)))
545 {
546 /* This code is disabled on the 486 because all the Imm1 forms
547 in the opcode table are slower on the i486. They're the
548 versions with the implicitly specified single-position
549 displacement, which has another syntax if you really want to
550 use that form. */
551 if (num == 1)
552 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
553 }
554 return (fits_in_signed_byte (num)
555 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
556 : fits_in_unsigned_byte (num)
557 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
558 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
559 ? (Imm16 | Imm32 | Imm32S | Imm64)
560 : fits_in_signed_long (num)
561 ? (Imm32 | Imm32S | Imm64)
562 : fits_in_unsigned_long (num)
563 ? (Imm32 | Imm64)
564 : Imm64);
565 }
566
567 static offsetT
568 offset_in_range (val, size)
569 offsetT val;
570 int size;
571 {
572 addressT mask;
573
574 switch (size)
575 {
576 case 1: mask = ((addressT) 1 << 8) - 1; break;
577 case 2: mask = ((addressT) 1 << 16) - 1; break;
578 case 4: mask = ((addressT) 2 << 31) - 1; break;
579 #ifdef BFD64
580 case 8: mask = ((addressT) 2 << 63) - 1; break;
581 #endif
582 default: abort ();
583 }
584
585 /* If BFD64, sign extend val. */
586 if (!use_rela_relocations)
587 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
588 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
589
590 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
591 {
592 char buf1[40], buf2[40];
593
594 sprint_value (buf1, val);
595 sprint_value (buf2, val & mask);
596 as_warn (_("%s shortened to %s"), buf1, buf2);
597 }
598 return val & mask;
599 }
600
601 /* Returns 0 if attempting to add a prefix where one from the same
602 class already exists, 1 if non rep/repne added, 2 if rep/repne
603 added. */
604 static int
605 add_prefix (prefix)
606 unsigned int prefix;
607 {
608 int ret = 1;
609 int q;
610
611 if (prefix >= 0x40 && prefix < 0x50 && flag_code == CODE_64BIT)
612 q = REX_PREFIX;
613 else
614 switch (prefix)
615 {
616 default:
617 abort ();
618
619 case CS_PREFIX_OPCODE:
620 case DS_PREFIX_OPCODE:
621 case ES_PREFIX_OPCODE:
622 case FS_PREFIX_OPCODE:
623 case GS_PREFIX_OPCODE:
624 case SS_PREFIX_OPCODE:
625 q = SEG_PREFIX;
626 break;
627
628 case REPNE_PREFIX_OPCODE:
629 case REPE_PREFIX_OPCODE:
630 ret = 2;
631 /* fall thru */
632 case LOCK_PREFIX_OPCODE:
633 q = LOCKREP_PREFIX;
634 break;
635
636 case FWAIT_OPCODE:
637 q = WAIT_PREFIX;
638 break;
639
640 case ADDR_PREFIX_OPCODE:
641 q = ADDR_PREFIX;
642 break;
643
644 case DATA_PREFIX_OPCODE:
645 q = DATA_PREFIX;
646 break;
647 }
648
649 if (i.prefix[q])
650 {
651 as_bad (_("same type of prefix used twice"));
652 return 0;
653 }
654
655 i.prefixes += 1;
656 i.prefix[q] = prefix;
657 return ret;
658 }
659
660 static void
661 set_code_flag (value)
662 int value;
663 {
664 flag_code = value;
665 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
666 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
667 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
668 {
669 as_bad (_("64bit mode not supported on this CPU."));
670 }
671 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
672 {
673 as_bad (_("32bit mode not supported on this CPU."));
674 }
675 stackop_size = '\0';
676 }
677
678 static void
679 set_16bit_gcc_code_flag (new_code_flag)
680 int new_code_flag;
681 {
682 flag_code = new_code_flag;
683 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
684 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
685 stackop_size = 'l';
686 }
687
688 static void
689 set_intel_syntax (syntax_flag)
690 int syntax_flag;
691 {
692 /* Find out if register prefixing is specified. */
693 int ask_naked_reg = 0;
694
695 SKIP_WHITESPACE ();
696 if (! is_end_of_line[(unsigned char) *input_line_pointer])
697 {
698 char *string = input_line_pointer;
699 int e = get_symbol_end ();
700
701 if (strcmp (string, "prefix") == 0)
702 ask_naked_reg = 1;
703 else if (strcmp (string, "noprefix") == 0)
704 ask_naked_reg = -1;
705 else
706 as_bad (_("bad argument to syntax directive."));
707 *input_line_pointer = e;
708 }
709 demand_empty_rest_of_line ();
710
711 intel_syntax = syntax_flag;
712
713 if (ask_naked_reg == 0)
714 {
715 #ifdef BFD_ASSEMBLER
716 allow_naked_reg = (intel_syntax
717 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
718 #else
719 /* Conservative default. */
720 allow_naked_reg = 0;
721 #endif
722 }
723 else
724 allow_naked_reg = (ask_naked_reg < 0);
725 }
726
727 static void
728 set_cpu_arch (dummy)
729 int dummy ATTRIBUTE_UNUSED;
730 {
731 SKIP_WHITESPACE ();
732
733 if (! is_end_of_line[(unsigned char) *input_line_pointer])
734 {
735 char *string = input_line_pointer;
736 int e = get_symbol_end ();
737 int i;
738
739 for (i = 0; cpu_arch[i].name; i++)
740 {
741 if (strcmp (string, cpu_arch[i].name) == 0)
742 {
743 cpu_arch_name = cpu_arch[i].name;
744 cpu_arch_flags = (cpu_arch[i].flags
745 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
746 break;
747 }
748 }
749 if (!cpu_arch[i].name)
750 as_bad (_("no such architecture: `%s'"), string);
751
752 *input_line_pointer = e;
753 }
754 else
755 as_bad (_("missing cpu architecture"));
756
757 no_cond_jump_promotion = 0;
758 if (*input_line_pointer == ','
759 && ! is_end_of_line[(unsigned char) input_line_pointer[1]])
760 {
761 char *string = ++input_line_pointer;
762 int e = get_symbol_end ();
763
764 if (strcmp (string, "nojumps") == 0)
765 no_cond_jump_promotion = 1;
766 else if (strcmp (string, "jumps") == 0)
767 ;
768 else
769 as_bad (_("no such architecture modifier: `%s'"), string);
770
771 *input_line_pointer = e;
772 }
773
774 demand_empty_rest_of_line ();
775 }
776
777 const pseudo_typeS md_pseudo_table[] =
778 {
779 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
780 {"align", s_align_bytes, 0},
781 #else
782 {"align", s_align_ptwo, 0},
783 #endif
784 {"arch", set_cpu_arch, 0},
785 #ifndef I386COFF
786 {"bss", s_bss, 0},
787 #endif
788 {"ffloat", float_cons, 'f'},
789 {"dfloat", float_cons, 'd'},
790 {"tfloat", float_cons, 'x'},
791 {"value", cons, 2},
792 {"noopt", s_ignore, 0},
793 {"optim", s_ignore, 0},
794 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
795 {"code16", set_code_flag, CODE_16BIT},
796 {"code32", set_code_flag, CODE_32BIT},
797 {"code64", set_code_flag, CODE_64BIT},
798 {"intel_syntax", set_intel_syntax, 1},
799 {"att_syntax", set_intel_syntax, 0},
800 {"file", dwarf2_directive_file, 0},
801 {"loc", dwarf2_directive_loc, 0},
802 {0, 0, 0}
803 };
804
805 /* For interface with expression (). */
806 extern char *input_line_pointer;
807
808 /* Hash table for instruction mnemonic lookup. */
809 static struct hash_control *op_hash;
810
811 /* Hash table for register lookup. */
812 static struct hash_control *reg_hash;
813 \f
814 #ifdef BFD_ASSEMBLER
815 unsigned long
816 i386_mach ()
817 {
818 if (!strcmp (default_arch, "x86_64"))
819 return bfd_mach_x86_64;
820 else if (!strcmp (default_arch, "i386"))
821 return bfd_mach_i386_i386;
822 else
823 as_fatal (_("Unknown architecture"));
824 }
825 #endif
826 \f
827 void
828 md_begin ()
829 {
830 const char *hash_err;
831
832 /* Initialize op_hash hash table. */
833 op_hash = hash_new ();
834
835 {
836 register const template *optab;
837 register templates *core_optab;
838
839 /* Setup for loop. */
840 optab = i386_optab;
841 core_optab = (templates *) xmalloc (sizeof (templates));
842 core_optab->start = optab;
843
844 while (1)
845 {
846 ++optab;
847 if (optab->name == NULL
848 || strcmp (optab->name, (optab - 1)->name) != 0)
849 {
850 /* different name --> ship out current template list;
851 add to hash table; & begin anew. */
852 core_optab->end = optab;
853 hash_err = hash_insert (op_hash,
854 (optab - 1)->name,
855 (PTR) core_optab);
856 if (hash_err)
857 {
858 as_fatal (_("Internal Error: Can't hash %s: %s"),
859 (optab - 1)->name,
860 hash_err);
861 }
862 if (optab->name == NULL)
863 break;
864 core_optab = (templates *) xmalloc (sizeof (templates));
865 core_optab->start = optab;
866 }
867 }
868 }
869
870 /* Initialize reg_hash hash table. */
871 reg_hash = hash_new ();
872 {
873 register const reg_entry *regtab;
874
875 for (regtab = i386_regtab;
876 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
877 regtab++)
878 {
879 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
880 if (hash_err)
881 as_fatal (_("Internal Error: Can't hash %s: %s"),
882 regtab->reg_name,
883 hash_err);
884 }
885 }
886
887 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
888 {
889 register int c;
890 register char *p;
891
892 for (c = 0; c < 256; c++)
893 {
894 if (isdigit (c))
895 {
896 digit_chars[c] = c;
897 mnemonic_chars[c] = c;
898 register_chars[c] = c;
899 operand_chars[c] = c;
900 }
901 else if (islower (c))
902 {
903 mnemonic_chars[c] = c;
904 register_chars[c] = c;
905 operand_chars[c] = c;
906 }
907 else if (isupper (c))
908 {
909 mnemonic_chars[c] = tolower (c);
910 register_chars[c] = mnemonic_chars[c];
911 operand_chars[c] = c;
912 }
913
914 if (isalpha (c) || isdigit (c))
915 identifier_chars[c] = c;
916 else if (c >= 128)
917 {
918 identifier_chars[c] = c;
919 operand_chars[c] = c;
920 }
921 }
922
923 #ifdef LEX_AT
924 identifier_chars['@'] = '@';
925 #endif
926 digit_chars['-'] = '-';
927 identifier_chars['_'] = '_';
928 identifier_chars['.'] = '.';
929
930 for (p = operand_special_chars; *p != '\0'; p++)
931 operand_chars[(unsigned char) *p] = *p;
932 }
933
934 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
935 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
936 {
937 record_alignment (text_section, 2);
938 record_alignment (data_section, 2);
939 record_alignment (bss_section, 2);
940 }
941 #endif
942 }
943
944 void
945 i386_print_statistics (file)
946 FILE *file;
947 {
948 hash_print_statistics (file, "i386 opcode", op_hash);
949 hash_print_statistics (file, "i386 register", reg_hash);
950 }
951 \f
952 #ifdef DEBUG386
953
954 /* Debugging routines for md_assemble. */
955 static void pi PARAMS ((char *, i386_insn *));
956 static void pte PARAMS ((template *));
957 static void pt PARAMS ((unsigned int));
958 static void pe PARAMS ((expressionS *));
959 static void ps PARAMS ((symbolS *));
960
961 static void
962 pi (line, x)
963 char *line;
964 i386_insn *x;
965 {
966 unsigned int i;
967
968 fprintf (stdout, "%s: template ", line);
969 pte (&x->tm);
970 fprintf (stdout, " address: base %s index %s scale %x\n",
971 x->base_reg ? x->base_reg->reg_name : "none",
972 x->index_reg ? x->index_reg->reg_name : "none",
973 x->log2_scale_factor);
974 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
975 x->rm.mode, x->rm.reg, x->rm.regmem);
976 fprintf (stdout, " sib: base %x index %x scale %x\n",
977 x->sib.base, x->sib.index, x->sib.scale);
978 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
979 x->rex.mode64, x->rex.extX, x->rex.extY, x->rex.extZ);
980 for (i = 0; i < x->operands; i++)
981 {
982 fprintf (stdout, " #%d: ", i + 1);
983 pt (x->types[i]);
984 fprintf (stdout, "\n");
985 if (x->types[i]
986 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
987 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
988 if (x->types[i] & Imm)
989 pe (x->op[i].imms);
990 if (x->types[i] & Disp)
991 pe (x->op[i].disps);
992 }
993 }
994
995 static void
996 pte (t)
997 template *t;
998 {
999 unsigned int i;
1000 fprintf (stdout, " %d operands ", t->operands);
1001 fprintf (stdout, "opcode %x ", t->base_opcode);
1002 if (t->extension_opcode != None)
1003 fprintf (stdout, "ext %x ", t->extension_opcode);
1004 if (t->opcode_modifier & D)
1005 fprintf (stdout, "D");
1006 if (t->opcode_modifier & W)
1007 fprintf (stdout, "W");
1008 fprintf (stdout, "\n");
1009 for (i = 0; i < t->operands; i++)
1010 {
1011 fprintf (stdout, " #%d type ", i + 1);
1012 pt (t->operand_types[i]);
1013 fprintf (stdout, "\n");
1014 }
1015 }
1016
1017 static void
1018 pe (e)
1019 expressionS *e;
1020 {
1021 fprintf (stdout, " operation %d\n", e->X_op);
1022 fprintf (stdout, " add_number %ld (%lx)\n",
1023 (long) e->X_add_number, (long) e->X_add_number);
1024 if (e->X_add_symbol)
1025 {
1026 fprintf (stdout, " add_symbol ");
1027 ps (e->X_add_symbol);
1028 fprintf (stdout, "\n");
1029 }
1030 if (e->X_op_symbol)
1031 {
1032 fprintf (stdout, " op_symbol ");
1033 ps (e->X_op_symbol);
1034 fprintf (stdout, "\n");
1035 }
1036 }
1037
1038 static void
1039 ps (s)
1040 symbolS *s;
1041 {
1042 fprintf (stdout, "%s type %s%s",
1043 S_GET_NAME (s),
1044 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1045 segment_name (S_GET_SEGMENT (s)));
1046 }
1047
1048 struct type_name
1049 {
1050 unsigned int mask;
1051 char *tname;
1052 }
1053
1054 type_names[] =
1055 {
1056 { Reg8, "r8" },
1057 { Reg16, "r16" },
1058 { Reg32, "r32" },
1059 { Reg64, "r64" },
1060 { Imm8, "i8" },
1061 { Imm8S, "i8s" },
1062 { Imm16, "i16" },
1063 { Imm32, "i32" },
1064 { Imm32S, "i32s" },
1065 { Imm64, "i64" },
1066 { Imm1, "i1" },
1067 { BaseIndex, "BaseIndex" },
1068 { Disp8, "d8" },
1069 { Disp16, "d16" },
1070 { Disp32, "d32" },
1071 { Disp32S, "d32s" },
1072 { Disp64, "d64" },
1073 { InOutPortReg, "InOutPortReg" },
1074 { ShiftCount, "ShiftCount" },
1075 { Control, "control reg" },
1076 { Test, "test reg" },
1077 { Debug, "debug reg" },
1078 { FloatReg, "FReg" },
1079 { FloatAcc, "FAcc" },
1080 { SReg2, "SReg2" },
1081 { SReg3, "SReg3" },
1082 { Acc, "Acc" },
1083 { JumpAbsolute, "Jump Absolute" },
1084 { RegMMX, "rMMX" },
1085 { RegXMM, "rXMM" },
1086 { EsSeg, "es" },
1087 { 0, "" }
1088 };
1089
1090 static void
1091 pt (t)
1092 unsigned int t;
1093 {
1094 register struct type_name *ty;
1095
1096 for (ty = type_names; ty->mask; ty++)
1097 if (t & ty->mask)
1098 fprintf (stdout, "%s, ", ty->tname);
1099 fflush (stdout);
1100 }
1101
1102 #endif /* DEBUG386 */
1103 \f
1104 int
1105 tc_i386_force_relocation (fixp)
1106 struct fix *fixp;
1107 {
1108 #ifdef BFD_ASSEMBLER
1109 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1110 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1111 return 1;
1112 return 0;
1113 #else
1114 /* For COFF. */
1115 return fixp->fx_r_type == 7;
1116 #endif
1117 }
1118
1119 #ifdef BFD_ASSEMBLER
1120
1121 static bfd_reloc_code_real_type
1122 reloc (size, pcrel, sign, other)
1123 int size;
1124 int pcrel;
1125 int sign;
1126 bfd_reloc_code_real_type other;
1127 {
1128 if (other != NO_RELOC)
1129 return other;
1130
1131 if (pcrel)
1132 {
1133 if (!sign)
1134 as_bad (_("There are no unsigned pc-relative relocations"));
1135 switch (size)
1136 {
1137 case 1: return BFD_RELOC_8_PCREL;
1138 case 2: return BFD_RELOC_16_PCREL;
1139 case 4: return BFD_RELOC_32_PCREL;
1140 }
1141 as_bad (_("can not do %d byte pc-relative relocation"), size);
1142 }
1143 else
1144 {
1145 if (sign)
1146 switch (size)
1147 {
1148 case 4: return BFD_RELOC_X86_64_32S;
1149 }
1150 else
1151 switch (size)
1152 {
1153 case 1: return BFD_RELOC_8;
1154 case 2: return BFD_RELOC_16;
1155 case 4: return BFD_RELOC_32;
1156 case 8: return BFD_RELOC_64;
1157 }
1158 as_bad (_("can not do %s %d byte relocation"),
1159 sign ? "signed" : "unsigned", size);
1160 }
1161
1162 abort ();
1163 return BFD_RELOC_NONE;
1164 }
1165
1166 /* Here we decide which fixups can be adjusted to make them relative to
1167 the beginning of the section instead of the symbol. Basically we need
1168 to make sure that the dynamic relocations are done correctly, so in
1169 some cases we force the original symbol to be used. */
1170
1171 int
1172 tc_i386_fix_adjustable (fixP)
1173 fixS *fixP;
1174 {
1175 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1176 /* Prevent all adjustments to global symbols, or else dynamic
1177 linking will not work correctly. */
1178 if (S_IS_EXTERNAL (fixP->fx_addsy)
1179 || S_IS_WEAK (fixP->fx_addsy))
1180 return 0;
1181 #endif
1182 /* adjust_reloc_syms doesn't know about the GOT. */
1183 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1184 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1185 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1186 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1187 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1188 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1189 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1190 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1191 return 0;
1192 return 1;
1193 }
1194 #else
1195 #define reloc(SIZE,PCREL,SIGN,OTHER) 0
1196 #define BFD_RELOC_16 0
1197 #define BFD_RELOC_32 0
1198 #define BFD_RELOC_16_PCREL 0
1199 #define BFD_RELOC_32_PCREL 0
1200 #define BFD_RELOC_386_PLT32 0
1201 #define BFD_RELOC_386_GOT32 0
1202 #define BFD_RELOC_386_GOTOFF 0
1203 #define BFD_RELOC_X86_64_PLT32 0
1204 #define BFD_RELOC_X86_64_GOT32 0
1205 #define BFD_RELOC_X86_64_GOTPCREL 0
1206 #endif
1207
1208 static int intel_float_operand PARAMS ((char *mnemonic));
1209
1210 static int
1211 intel_float_operand (mnemonic)
1212 char *mnemonic;
1213 {
1214 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
1215 return 2;
1216
1217 if (mnemonic[0] == 'f')
1218 return 1;
1219
1220 return 0;
1221 }
1222
1223 /* This is the guts of the machine-dependent assembler. LINE points to a
1224 machine dependent instruction. This function is supposed to emit
1225 the frags/bytes it assembles to. */
1226
1227 void
1228 md_assemble (line)
1229 char *line;
1230 {
1231 /* Points to template once we've found it. */
1232 const template *t;
1233
1234 int j;
1235
1236 char mnemonic[MAX_MNEM_SIZE];
1237
1238 /* Initialize globals. */
1239 memset (&i, '\0', sizeof (i));
1240 for (j = 0; j < MAX_OPERANDS; j++)
1241 i.reloc[j] = NO_RELOC;
1242 memset (disp_expressions, '\0', sizeof (disp_expressions));
1243 memset (im_expressions, '\0', sizeof (im_expressions));
1244 save_stack_p = save_stack;
1245
1246 /* First parse an instruction mnemonic & call i386_operand for the operands.
1247 We assume that the scrubber has arranged it so that line[0] is the valid
1248 start of a (possibly prefixed) mnemonic. */
1249 {
1250 char *l = line;
1251 char *token_start = l;
1252 char *mnem_p;
1253
1254 /* Non-zero if we found a prefix only acceptable with string insns. */
1255 const char *expecting_string_instruction = NULL;
1256
1257 while (1)
1258 {
1259 mnem_p = mnemonic;
1260 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1261 {
1262 mnem_p++;
1263 if (mnem_p >= mnemonic + sizeof (mnemonic))
1264 {
1265 as_bad (_("no such instruction: `%s'"), token_start);
1266 return;
1267 }
1268 l++;
1269 }
1270 if (!is_space_char (*l)
1271 && *l != END_OF_INSN
1272 && *l != PREFIX_SEPARATOR
1273 && *l != ',')
1274 {
1275 as_bad (_("invalid character %s in mnemonic"),
1276 output_invalid (*l));
1277 return;
1278 }
1279 if (token_start == l)
1280 {
1281 if (*l == PREFIX_SEPARATOR)
1282 as_bad (_("expecting prefix; got nothing"));
1283 else
1284 as_bad (_("expecting mnemonic; got nothing"));
1285 return;
1286 }
1287
1288 /* Look up instruction (or prefix) via hash table. */
1289 current_templates = hash_find (op_hash, mnemonic);
1290
1291 if (*l != END_OF_INSN
1292 && (! is_space_char (*l) || l[1] != END_OF_INSN)
1293 && current_templates
1294 && (current_templates->start->opcode_modifier & IsPrefix))
1295 {
1296 /* If we are in 16-bit mode, do not allow addr16 or data16.
1297 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1298 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1299 && (((current_templates->start->opcode_modifier & Size32) != 0)
1300 ^ (flag_code == CODE_16BIT)))
1301 {
1302 as_bad (_("redundant %s prefix"),
1303 current_templates->start->name);
1304 return;
1305 }
1306 /* Add prefix, checking for repeated prefixes. */
1307 switch (add_prefix (current_templates->start->base_opcode))
1308 {
1309 case 0:
1310 return;
1311 case 2:
1312 expecting_string_instruction = current_templates->start->name;
1313 break;
1314 }
1315 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1316 token_start = ++l;
1317 }
1318 else
1319 break;
1320 }
1321
1322 if (!current_templates)
1323 {
1324 /* See if we can get a match by trimming off a suffix. */
1325 switch (mnem_p[-1])
1326 {
1327 case WORD_MNEM_SUFFIX:
1328 case BYTE_MNEM_SUFFIX:
1329 case QWORD_MNEM_SUFFIX:
1330 i.suffix = mnem_p[-1];
1331 mnem_p[-1] = '\0';
1332 current_templates = hash_find (op_hash, mnemonic);
1333 break;
1334 case SHORT_MNEM_SUFFIX:
1335 case LONG_MNEM_SUFFIX:
1336 if (!intel_syntax)
1337 {
1338 i.suffix = mnem_p[-1];
1339 mnem_p[-1] = '\0';
1340 current_templates = hash_find (op_hash, mnemonic);
1341 }
1342 break;
1343
1344 /* Intel Syntax. */
1345 case 'd':
1346 if (intel_syntax)
1347 {
1348 if (intel_float_operand (mnemonic))
1349 i.suffix = SHORT_MNEM_SUFFIX;
1350 else
1351 i.suffix = LONG_MNEM_SUFFIX;
1352 mnem_p[-1] = '\0';
1353 current_templates = hash_find (op_hash, mnemonic);
1354 }
1355 break;
1356 }
1357 if (!current_templates)
1358 {
1359 as_bad (_("no such instruction: `%s'"), token_start);
1360 return;
1361 }
1362 }
1363
1364 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1365 {
1366 /* Check for a branch hint. We allow ",pt" and ",pn" for
1367 predict taken and predict not taken respectively.
1368 I'm not sure that branch hints actually do anything on loop
1369 and jcxz insns (JumpByte) for current Pentium4 chips. They
1370 may work in the future and it doesn't hurt to accept them
1371 now. */
1372 if (l[0] == ',' && l[1] == 'p')
1373 {
1374 if (l[2] == 't')
1375 {
1376 if (! add_prefix (DS_PREFIX_OPCODE))
1377 return;
1378 l += 3;
1379 }
1380 else if (l[2] == 'n')
1381 {
1382 if (! add_prefix (CS_PREFIX_OPCODE))
1383 return;
1384 l += 3;
1385 }
1386 }
1387 }
1388 /* Any other comma loses. */
1389 if (*l == ',')
1390 {
1391 as_bad (_("invalid character %s in mnemonic"),
1392 output_invalid (*l));
1393 return;
1394 }
1395
1396 /* Check if instruction is supported on specified architecture. */
1397 if (cpu_arch_flags != 0)
1398 {
1399 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1400 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
1401 {
1402 as_warn (_("`%s' is not supported on `%s'"),
1403 current_templates->start->name, cpu_arch_name);
1404 }
1405 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1406 {
1407 as_warn (_("use .code16 to ensure correct addressing mode"));
1408 }
1409 }
1410
1411 /* Check for rep/repne without a string instruction. */
1412 if (expecting_string_instruction
1413 && !(current_templates->start->opcode_modifier & IsString))
1414 {
1415 as_bad (_("expecting string instruction after `%s'"),
1416 expecting_string_instruction);
1417 return;
1418 }
1419
1420 /* There may be operands to parse. */
1421 if (*l != END_OF_INSN)
1422 {
1423 /* 1 if operand is pending after ','. */
1424 unsigned int expecting_operand = 0;
1425
1426 /* Non-zero if operand parens not balanced. */
1427 unsigned int paren_not_balanced;
1428
1429 do
1430 {
1431 /* Skip optional white space before operand. */
1432 if (is_space_char (*l))
1433 ++l;
1434 if (!is_operand_char (*l) && *l != END_OF_INSN)
1435 {
1436 as_bad (_("invalid character %s before operand %d"),
1437 output_invalid (*l),
1438 i.operands + 1);
1439 return;
1440 }
1441 token_start = l; /* after white space */
1442 paren_not_balanced = 0;
1443 while (paren_not_balanced || *l != ',')
1444 {
1445 if (*l == END_OF_INSN)
1446 {
1447 if (paren_not_balanced)
1448 {
1449 if (!intel_syntax)
1450 as_bad (_("unbalanced parenthesis in operand %d."),
1451 i.operands + 1);
1452 else
1453 as_bad (_("unbalanced brackets in operand %d."),
1454 i.operands + 1);
1455 return;
1456 }
1457 else
1458 break; /* we are done */
1459 }
1460 else if (!is_operand_char (*l) && !is_space_char (*l))
1461 {
1462 as_bad (_("invalid character %s in operand %d"),
1463 output_invalid (*l),
1464 i.operands + 1);
1465 return;
1466 }
1467 if (!intel_syntax)
1468 {
1469 if (*l == '(')
1470 ++paren_not_balanced;
1471 if (*l == ')')
1472 --paren_not_balanced;
1473 }
1474 else
1475 {
1476 if (*l == '[')
1477 ++paren_not_balanced;
1478 if (*l == ']')
1479 --paren_not_balanced;
1480 }
1481 l++;
1482 }
1483 if (l != token_start)
1484 { /* Yes, we've read in another operand. */
1485 unsigned int operand_ok;
1486 this_operand = i.operands++;
1487 if (i.operands > MAX_OPERANDS)
1488 {
1489 as_bad (_("spurious operands; (%d operands/instruction max)"),
1490 MAX_OPERANDS);
1491 return;
1492 }
1493 /* Now parse operand adding info to 'i' as we go along. */
1494 END_STRING_AND_SAVE (l);
1495
1496 if (intel_syntax)
1497 operand_ok =
1498 i386_intel_operand (token_start,
1499 intel_float_operand (mnemonic));
1500 else
1501 operand_ok = i386_operand (token_start);
1502
1503 RESTORE_END_STRING (l);
1504 if (!operand_ok)
1505 return;
1506 }
1507 else
1508 {
1509 if (expecting_operand)
1510 {
1511 expecting_operand_after_comma:
1512 as_bad (_("expecting operand after ','; got nothing"));
1513 return;
1514 }
1515 if (*l == ',')
1516 {
1517 as_bad (_("expecting operand before ','; got nothing"));
1518 return;
1519 }
1520 }
1521
1522 /* Now *l must be either ',' or END_OF_INSN. */
1523 if (*l == ',')
1524 {
1525 if (*++l == END_OF_INSN)
1526 {
1527 /* Just skip it, if it's \n complain. */
1528 goto expecting_operand_after_comma;
1529 }
1530 expecting_operand = 1;
1531 }
1532 }
1533 while (*l != END_OF_INSN);
1534 }
1535 }
1536
1537 /* Now we've parsed the mnemonic into a set of templates, and have the
1538 operands at hand.
1539
1540 Next, we find a template that matches the given insn,
1541 making sure the overlap of the given operands types is consistent
1542 with the template operand types. */
1543
1544 #define MATCH(overlap, given, template) \
1545 ((overlap & ~JumpAbsolute) \
1546 && ((given) & (BaseIndex|JumpAbsolute)) == ((overlap) & (BaseIndex|JumpAbsolute)))
1547
1548 /* If given types r0 and r1 are registers they must be of the same type
1549 unless the expected operand type register overlap is null.
1550 Note that Acc in a template matches every size of reg. */
1551 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1552 ( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \
1553 ((g0) & Reg) == ((g1) & Reg) || \
1554 ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
1555
1556 {
1557 register unsigned int overlap0, overlap1;
1558 unsigned int overlap2;
1559 unsigned int found_reverse_match;
1560 int suffix_check;
1561
1562 /* All intel opcodes have reversed operands except for "bound" and
1563 "enter". We also don't reverse intersegment "jmp" and "call"
1564 instructions with 2 immediate operands so that the immediate segment
1565 precedes the offset, as it does when in AT&T mode. "enter" and the
1566 intersegment "jmp" and "call" instructions are the only ones that
1567 have two immediate operands. */
1568 if (intel_syntax && i.operands > 1
1569 && (strcmp (mnemonic, "bound") != 0)
1570 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1571 {
1572 union i386_op temp_op;
1573 unsigned int temp_type;
1574 RELOC_ENUM temp_reloc;
1575 int xchg1 = 0;
1576 int xchg2 = 0;
1577
1578 if (i.operands == 2)
1579 {
1580 xchg1 = 0;
1581 xchg2 = 1;
1582 }
1583 else if (i.operands == 3)
1584 {
1585 xchg1 = 0;
1586 xchg2 = 2;
1587 }
1588 temp_type = i.types[xchg2];
1589 i.types[xchg2] = i.types[xchg1];
1590 i.types[xchg1] = temp_type;
1591 temp_op = i.op[xchg2];
1592 i.op[xchg2] = i.op[xchg1];
1593 i.op[xchg1] = temp_op;
1594 temp_reloc = i.reloc[xchg2];
1595 i.reloc[xchg2] = i.reloc[xchg1];
1596 i.reloc[xchg1] = temp_reloc;
1597
1598 if (i.mem_operands == 2)
1599 {
1600 const seg_entry *temp_seg;
1601 temp_seg = i.seg[0];
1602 i.seg[0] = i.seg[1];
1603 i.seg[1] = temp_seg;
1604 }
1605 }
1606
1607 if (i.imm_operands)
1608 {
1609 /* Try to ensure constant immediates are represented in the smallest
1610 opcode possible. */
1611 char guess_suffix = 0;
1612 int op;
1613
1614 if (i.suffix)
1615 guess_suffix = i.suffix;
1616 else if (i.reg_operands)
1617 {
1618 /* Figure out a suffix from the last register operand specified.
1619 We can't do this properly yet, ie. excluding InOutPortReg,
1620 but the following works for instructions with immediates.
1621 In any case, we can't set i.suffix yet. */
1622 for (op = i.operands; --op >= 0;)
1623 if (i.types[op] & Reg)
1624 {
1625 if (i.types[op] & Reg8)
1626 guess_suffix = BYTE_MNEM_SUFFIX;
1627 else if (i.types[op] & Reg16)
1628 guess_suffix = WORD_MNEM_SUFFIX;
1629 else if (i.types[op] & Reg32)
1630 guess_suffix = LONG_MNEM_SUFFIX;
1631 else if (i.types[op] & Reg64)
1632 guess_suffix = QWORD_MNEM_SUFFIX;
1633 break;
1634 }
1635 }
1636 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1637 guess_suffix = WORD_MNEM_SUFFIX;
1638
1639 for (op = i.operands; --op >= 0;)
1640 if (i.types[op] & Imm)
1641 {
1642 switch (i.op[op].imms->X_op)
1643 {
1644 case O_constant:
1645 /* If a suffix is given, this operand may be shortened. */
1646 switch (guess_suffix)
1647 {
1648 case LONG_MNEM_SUFFIX:
1649 i.types[op] |= Imm32 | Imm64;
1650 break;
1651 case WORD_MNEM_SUFFIX:
1652 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1653 break;
1654 case BYTE_MNEM_SUFFIX:
1655 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1656 break;
1657 }
1658
1659 /* If this operand is at most 16 bits, convert it
1660 to a signed 16 bit number before trying to see
1661 whether it will fit in an even smaller size.
1662 This allows a 16-bit operand such as $0xffe0 to
1663 be recognised as within Imm8S range. */
1664 if ((i.types[op] & Imm16)
1665 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
1666 {
1667 i.op[op].imms->X_add_number =
1668 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1669 }
1670 if ((i.types[op] & Imm32)
1671 && (i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1)) == 0)
1672 {
1673 i.op[op].imms->X_add_number =
1674 (i.op[op].imms->X_add_number ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1675 }
1676 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
1677 /* We must avoid matching of Imm32 templates when 64bit only immediate is available. */
1678 if (guess_suffix == QWORD_MNEM_SUFFIX)
1679 i.types[op] &= ~Imm32;
1680 break;
1681 case O_absent:
1682 case O_register:
1683 abort ();
1684 /* Symbols and expressions. */
1685 default:
1686 /* Convert symbolic operand to proper sizes for matching. */
1687 switch (guess_suffix)
1688 {
1689 case QWORD_MNEM_SUFFIX:
1690 i.types[op] = Imm64 | Imm32S;
1691 break;
1692 case LONG_MNEM_SUFFIX:
1693 i.types[op] = Imm32 | Imm64;
1694 break;
1695 case WORD_MNEM_SUFFIX:
1696 i.types[op] = Imm16 | Imm32 | Imm64;
1697 break;
1698 break;
1699 case BYTE_MNEM_SUFFIX:
1700 i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
1701 break;
1702 break;
1703 }
1704 break;
1705 }
1706 }
1707 }
1708
1709 if (i.disp_operands)
1710 {
1711 /* Try to use the smallest displacement type too. */
1712 int op;
1713
1714 for (op = i.operands; --op >= 0;)
1715 if ((i.types[op] & Disp)
1716 && i.op[op].disps->X_op == O_constant)
1717 {
1718 offsetT disp = i.op[op].disps->X_add_number;
1719
1720 if (i.types[op] & Disp16)
1721 {
1722 /* We know this operand is at most 16 bits, so
1723 convert to a signed 16 bit number before trying
1724 to see whether it will fit in an even smaller
1725 size. */
1726
1727 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
1728 }
1729 else if (i.types[op] & Disp32)
1730 {
1731 /* We know this operand is at most 32 bits, so convert to a
1732 signed 32 bit number before trying to see whether it will
1733 fit in an even smaller size. */
1734 disp &= (((offsetT) 2 << 31) - 1);
1735 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1736 }
1737 if (flag_code == CODE_64BIT)
1738 {
1739 if (fits_in_signed_long (disp))
1740 i.types[op] |= Disp32S;
1741 if (fits_in_unsigned_long (disp))
1742 i.types[op] |= Disp32;
1743 }
1744 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
1745 && fits_in_signed_byte (disp))
1746 i.types[op] |= Disp8;
1747 }
1748 }
1749
1750 overlap0 = 0;
1751 overlap1 = 0;
1752 overlap2 = 0;
1753 found_reverse_match = 0;
1754 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
1755 ? No_bSuf
1756 : (i.suffix == WORD_MNEM_SUFFIX
1757 ? No_wSuf
1758 : (i.suffix == SHORT_MNEM_SUFFIX
1759 ? No_sSuf
1760 : (i.suffix == LONG_MNEM_SUFFIX
1761 ? No_lSuf
1762 : (i.suffix == QWORD_MNEM_SUFFIX
1763 ? No_qSuf
1764 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0))))));
1765
1766 for (t = current_templates->start;
1767 t < current_templates->end;
1768 t++)
1769 {
1770 /* Must have right number of operands. */
1771 if (i.operands != t->operands)
1772 continue;
1773
1774 /* Check the suffix, except for some instructions in intel mode. */
1775 if ((t->opcode_modifier & suffix_check)
1776 && !(intel_syntax
1777 && (t->opcode_modifier & IgnoreSize))
1778 && !(intel_syntax
1779 && t->base_opcode == 0xd9
1780 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
1781 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
1782 continue;
1783
1784 /* Do not verify operands when there are none. */
1785 else if (!t->operands)
1786 {
1787 if (t->cpu_flags & ~cpu_arch_flags)
1788 continue;
1789 /* We've found a match; break out of loop. */
1790 break;
1791 }
1792
1793 overlap0 = i.types[0] & t->operand_types[0];
1794 switch (t->operands)
1795 {
1796 case 1:
1797 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
1798 continue;
1799 break;
1800 case 2:
1801 case 3:
1802 overlap1 = i.types[1] & t->operand_types[1];
1803 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
1804 || !MATCH (overlap1, i.types[1], t->operand_types[1])
1805 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1806 t->operand_types[0],
1807 overlap1, i.types[1],
1808 t->operand_types[1]))
1809 {
1810 /* Check if other direction is valid ... */
1811 if ((t->opcode_modifier & (D|FloatD)) == 0)
1812 continue;
1813
1814 /* Try reversing direction of operands. */
1815 overlap0 = i.types[0] & t->operand_types[1];
1816 overlap1 = i.types[1] & t->operand_types[0];
1817 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
1818 || !MATCH (overlap1, i.types[1], t->operand_types[0])
1819 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1820 t->operand_types[1],
1821 overlap1, i.types[1],
1822 t->operand_types[0]))
1823 {
1824 /* Does not match either direction. */
1825 continue;
1826 }
1827 /* found_reverse_match holds which of D or FloatDR
1828 we've found. */
1829 found_reverse_match = t->opcode_modifier & (D|FloatDR);
1830 }
1831 /* Found a forward 2 operand match here. */
1832 else if (t->operands == 3)
1833 {
1834 /* Here we make use of the fact that there are no
1835 reverse match 3 operand instructions, and all 3
1836 operand instructions only need to be checked for
1837 register consistency between operands 2 and 3. */
1838 overlap2 = i.types[2] & t->operand_types[2];
1839 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
1840 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
1841 t->operand_types[1],
1842 overlap2, i.types[2],
1843 t->operand_types[2]))
1844
1845 continue;
1846 }
1847 /* Found either forward/reverse 2 or 3 operand match here:
1848 slip through to break. */
1849 }
1850 if (t->cpu_flags & ~cpu_arch_flags)
1851 {
1852 found_reverse_match = 0;
1853 continue;
1854 }
1855 /* We've found a match; break out of loop. */
1856 break;
1857 }
1858 if (t == current_templates->end)
1859 {
1860 /* We found no match. */
1861 as_bad (_("suffix or operands invalid for `%s'"),
1862 current_templates->start->name);
1863 return;
1864 }
1865
1866 if (!quiet_warnings)
1867 {
1868 if (!intel_syntax
1869 && ((i.types[0] & JumpAbsolute)
1870 != (t->operand_types[0] & JumpAbsolute)))
1871 {
1872 as_warn (_("indirect %s without `*'"), t->name);
1873 }
1874
1875 if ((t->opcode_modifier & (IsPrefix|IgnoreSize))
1876 == (IsPrefix|IgnoreSize))
1877 {
1878 /* Warn them that a data or address size prefix doesn't
1879 affect assembly of the next line of code. */
1880 as_warn (_("stand-alone `%s' prefix"), t->name);
1881 }
1882 }
1883
1884 /* Copy the template we found. */
1885 i.tm = *t;
1886 if (found_reverse_match)
1887 {
1888 /* If we found a reverse match we must alter the opcode
1889 direction bit. found_reverse_match holds bits to change
1890 (different for int & float insns). */
1891
1892 i.tm.base_opcode ^= found_reverse_match;
1893
1894 i.tm.operand_types[0] = t->operand_types[1];
1895 i.tm.operand_types[1] = t->operand_types[0];
1896 }
1897
1898 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1899 if (SYSV386_COMPAT
1900 && intel_syntax
1901 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1902 i.tm.base_opcode ^= FloatR;
1903
1904 if (i.tm.opcode_modifier & FWait)
1905 if (! add_prefix (FWAIT_OPCODE))
1906 return;
1907
1908 /* Check string instruction segment overrides. */
1909 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1910 {
1911 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
1912 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
1913 {
1914 if (i.seg[0] != NULL && i.seg[0] != &es)
1915 {
1916 as_bad (_("`%s' operand %d must use `%%es' segment"),
1917 i.tm.name,
1918 mem_op + 1);
1919 return;
1920 }
1921 /* There's only ever one segment override allowed per instruction.
1922 This instruction possibly has a legal segment override on the
1923 second operand, so copy the segment to where non-string
1924 instructions store it, allowing common code. */
1925 i.seg[0] = i.seg[1];
1926 }
1927 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
1928 {
1929 if (i.seg[1] != NULL && i.seg[1] != &es)
1930 {
1931 as_bad (_("`%s' operand %d must use `%%es' segment"),
1932 i.tm.name,
1933 mem_op + 2);
1934 return;
1935 }
1936 }
1937 }
1938
1939 if (i.reg_operands && flag_code < CODE_64BIT)
1940 {
1941 int op;
1942 for (op = i.operands; --op >= 0;)
1943 if ((i.types[op] & Reg)
1944 && (i.op[op].regs->reg_flags & (RegRex64|RegRex)))
1945 {
1946 as_bad (_("Extended register `%%%s' available only in 64bit mode."),
1947 i.op[op].regs->reg_name);
1948 return;
1949 }
1950 }
1951
1952 /* If matched instruction specifies an explicit instruction mnemonic
1953 suffix, use it. */
1954 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
1955 {
1956 if (i.tm.opcode_modifier & Size16)
1957 i.suffix = WORD_MNEM_SUFFIX;
1958 else if (i.tm.opcode_modifier & Size64)
1959 i.suffix = QWORD_MNEM_SUFFIX;
1960 else
1961 i.suffix = LONG_MNEM_SUFFIX;
1962 }
1963 else if (i.reg_operands)
1964 {
1965 /* If there's no instruction mnemonic suffix we try to invent one
1966 based on register operands. */
1967 if (!i.suffix)
1968 {
1969 /* We take i.suffix from the last register operand specified,
1970 Destination register type is more significant than source
1971 register type. */
1972 int op;
1973 for (op = i.operands; --op >= 0;)
1974 if ((i.types[op] & Reg)
1975 && !(i.tm.operand_types[op] & InOutPortReg))
1976 {
1977 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
1978 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
1979 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
1980 LONG_MNEM_SUFFIX);
1981 break;
1982 }
1983 }
1984 else if (i.suffix == BYTE_MNEM_SUFFIX)
1985 {
1986 int op;
1987 for (op = i.operands; --op >= 0;)
1988 {
1989 /* If this is an eight bit register, it's OK. If it's
1990 the 16 or 32 bit version of an eight bit register,
1991 we will just use the low portion, and that's OK too. */
1992 if (i.types[op] & Reg8)
1993 continue;
1994
1995 /* movzx and movsx should not generate this warning. */
1996 if (intel_syntax
1997 && (i.tm.base_opcode == 0xfb7
1998 || i.tm.base_opcode == 0xfb6
1999 || i.tm.base_opcode == 0x63
2000 || i.tm.base_opcode == 0xfbe
2001 || i.tm.base_opcode == 0xfbf))
2002 continue;
2003
2004 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
2005 #if 0
2006 /* Check that the template allows eight bit regs
2007 This kills insns such as `orb $1,%edx', which
2008 maybe should be allowed. */
2009 && (i.tm.operand_types[op] & (Reg8|InOutPortReg))
2010 #endif
2011 )
2012 {
2013 /* Prohibit these changes in the 64bit mode, since
2014 the lowering is more complicated. */
2015 if (flag_code == CODE_64BIT
2016 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2017 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2018 i.op[op].regs->reg_name,
2019 i.suffix);
2020 #if REGISTER_WARNINGS
2021 if (!quiet_warnings
2022 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2023 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2024 (i.op[op].regs
2025 + (i.types[op] & Reg16
2026 ? REGNAM_AL - REGNAM_AX
2027 : REGNAM_AL - REGNAM_EAX))->reg_name,
2028 i.op[op].regs->reg_name,
2029 i.suffix);
2030 #endif
2031 continue;
2032 }
2033 /* Any other register is bad. */
2034 if (i.types[op] & (Reg | RegMMX | RegXMM
2035 | SReg2 | SReg3
2036 | Control | Debug | Test
2037 | FloatReg | FloatAcc))
2038 {
2039 as_bad (_("`%%%s' not allowed with `%s%c'"),
2040 i.op[op].regs->reg_name,
2041 i.tm.name,
2042 i.suffix);
2043 return;
2044 }
2045 }
2046 }
2047 else if (i.suffix == LONG_MNEM_SUFFIX)
2048 {
2049 int op;
2050
2051 for (op = i.operands; --op >= 0;)
2052 /* Reject eight bit registers, except where the template
2053 requires them. (eg. movzb) */
2054 if ((i.types[op] & Reg8) != 0
2055 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2056 {
2057 as_bad (_("`%%%s' not allowed with `%s%c'"),
2058 i.op[op].regs->reg_name,
2059 i.tm.name,
2060 i.suffix);
2061 return;
2062 }
2063 /* Warn if the e prefix on a general reg is missing. */
2064 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2065 && (i.types[op] & Reg16) != 0
2066 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2067 {
2068 /* Prohibit these changes in the 64bit mode, since
2069 the lowering is more complicated. */
2070 if (flag_code == CODE_64BIT)
2071 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2072 i.op[op].regs->reg_name,
2073 i.suffix);
2074 #if REGISTER_WARNINGS
2075 else
2076 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2077 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2078 i.op[op].regs->reg_name,
2079 i.suffix);
2080 #endif
2081 }
2082 /* Warn if the r prefix on a general reg is missing. */
2083 else if ((i.types[op] & Reg64) != 0
2084 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2085 {
2086 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2087 i.op[op].regs->reg_name,
2088 i.suffix);
2089 }
2090 }
2091 else if (i.suffix == QWORD_MNEM_SUFFIX)
2092 {
2093 int op;
2094
2095 for (op = i.operands; --op >= 0; )
2096 /* Reject eight bit registers, except where the template
2097 requires them. (eg. movzb) */
2098 if ((i.types[op] & Reg8) != 0
2099 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2100 {
2101 as_bad (_("`%%%s' not allowed with `%s%c'"),
2102 i.op[op].regs->reg_name,
2103 i.tm.name,
2104 i.suffix);
2105 return;
2106 }
2107 /* Warn if the e prefix on a general reg is missing. */
2108 else if (((i.types[op] & Reg16) != 0
2109 || (i.types[op] & Reg32) != 0)
2110 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
2111 {
2112 /* Prohibit these changes in the 64bit mode, since
2113 the lowering is more complicated. */
2114 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2115 i.op[op].regs->reg_name,
2116 i.suffix);
2117 }
2118 }
2119 else if (i.suffix == WORD_MNEM_SUFFIX)
2120 {
2121 int op;
2122 for (op = i.operands; --op >= 0;)
2123 /* Reject eight bit registers, except where the template
2124 requires them. (eg. movzb) */
2125 if ((i.types[op] & Reg8) != 0
2126 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
2127 {
2128 as_bad (_("`%%%s' not allowed with `%s%c'"),
2129 i.op[op].regs->reg_name,
2130 i.tm.name,
2131 i.suffix);
2132 return;
2133 }
2134 /* Warn if the e prefix on a general reg is present. */
2135 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2136 && (i.types[op] & Reg32) != 0
2137 && (i.tm.operand_types[op] & (Reg16|Acc)) != 0)
2138 {
2139 /* Prohibit these changes in the 64bit mode, since
2140 the lowering is more complicated. */
2141 if (flag_code == CODE_64BIT)
2142 as_bad (_("Incorrect register `%%%s' used with`%c' suffix"),
2143 i.op[op].regs->reg_name,
2144 i.suffix);
2145 else
2146 #if REGISTER_WARNINGS
2147 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2148 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2149 i.op[op].regs->reg_name,
2150 i.suffix);
2151 #endif
2152 }
2153 }
2154 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2155 /* Do nothing if the instruction is going to ignore the prefix. */
2156 ;
2157 else
2158 abort ();
2159 }
2160 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2161 {
2162 i.suffix = stackop_size;
2163 }
2164 /* Make still unresolved immediate matches conform to size of immediate
2165 given in i.suffix. Note: overlap2 cannot be an immediate! */
2166 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
2167 && overlap0 != Imm8 && overlap0 != Imm8S
2168 && overlap0 != Imm16 && overlap0 != Imm32S
2169 && overlap0 != Imm32 && overlap0 != Imm64)
2170 {
2171 if (i.suffix)
2172 {
2173 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
2174 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
2175 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
2176 }
2177 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2178 || overlap0 == (Imm16 | Imm32)
2179 || overlap0 == (Imm16 | Imm32S))
2180 {
2181 overlap0 =
2182 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
2183 }
2184 if (overlap0 != Imm8 && overlap0 != Imm8S
2185 && overlap0 != Imm16 && overlap0 != Imm32S
2186 && overlap0 != Imm32 && overlap0 != Imm64)
2187 {
2188 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2189 return;
2190 }
2191 }
2192 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
2193 && overlap1 != Imm8 && overlap1 != Imm8S
2194 && overlap1 != Imm16 && overlap1 != Imm32S
2195 && overlap1 != Imm32 && overlap1 != Imm64)
2196 {
2197 if (i.suffix)
2198 {
2199 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
2200 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 :
2201 (i.suffix == QWORD_MNEM_SUFFIX ? Imm64 | Imm32S : Imm32)));
2202 }
2203 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2204 || overlap1 == (Imm16 | Imm32)
2205 || overlap1 == (Imm16 | Imm32S))
2206 {
2207 overlap1 =
2208 ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32S;
2209 }
2210 if (overlap1 != Imm8 && overlap1 != Imm8S
2211 && overlap1 != Imm16 && overlap1 != Imm32S
2212 && overlap1 != Imm32 && overlap1 != Imm64)
2213 {
2214 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2215 return;
2216 }
2217 }
2218 assert ((overlap2 & Imm) == 0);
2219
2220 i.types[0] = overlap0;
2221 if (overlap0 & ImplicitRegister)
2222 i.reg_operands--;
2223 if (overlap0 & Imm1)
2224 i.imm_operands = 0; /* kludge for shift insns. */
2225
2226 i.types[1] = overlap1;
2227 if (overlap1 & ImplicitRegister)
2228 i.reg_operands--;
2229
2230 i.types[2] = overlap2;
2231 if (overlap2 & ImplicitRegister)
2232 i.reg_operands--;
2233
2234 /* Finalize opcode. First, we change the opcode based on the operand
2235 size given by i.suffix: We need not change things for byte insns. */
2236
2237 if (!i.suffix && (i.tm.opcode_modifier & W))
2238 {
2239 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2240 return;
2241 }
2242
2243 /* For movzx and movsx, need to check the register type. */
2244 if (intel_syntax
2245 && (i.tm.base_opcode == 0xfb6 || i.tm.base_opcode == 0xfbe))
2246 if (i.suffix && i.suffix == BYTE_MNEM_SUFFIX)
2247 {
2248 unsigned int prefix = DATA_PREFIX_OPCODE;
2249
2250 if ((i.op[1].regs->reg_type & Reg16) != 0)
2251 if (!add_prefix (prefix))
2252 return;
2253 }
2254
2255 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2256 {
2257 /* It's not a byte, select word/dword operation. */
2258 if (i.tm.opcode_modifier & W)
2259 {
2260 if (i.tm.opcode_modifier & ShortForm)
2261 i.tm.base_opcode |= 8;
2262 else
2263 i.tm.base_opcode |= 1;
2264 }
2265 /* Now select between word & dword operations via the operand
2266 size prefix, except for instructions that will ignore this
2267 prefix anyway. */
2268 if (i.suffix != QWORD_MNEM_SUFFIX
2269 && (i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2270 && !(i.tm.opcode_modifier & IgnoreSize))
2271 {
2272 unsigned int prefix = DATA_PREFIX_OPCODE;
2273 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2274 prefix = ADDR_PREFIX_OPCODE;
2275
2276 if (! add_prefix (prefix))
2277 return;
2278 }
2279
2280 /* Set mode64 for an operand. */
2281 if (i.suffix == QWORD_MNEM_SUFFIX
2282 && !(i.tm.opcode_modifier & NoRex64))
2283 {
2284 i.rex.mode64 = 1;
2285 if (flag_code < CODE_64BIT)
2286 {
2287 as_bad (_("64bit operations available only in 64bit modes."));
2288 return;
2289 }
2290 }
2291
2292 /* Size floating point instruction. */
2293 if (i.suffix == LONG_MNEM_SUFFIX)
2294 {
2295 if (i.tm.opcode_modifier & FloatMF)
2296 i.tm.base_opcode ^= 4;
2297 }
2298 }
2299
2300 if (i.tm.opcode_modifier & ImmExt)
2301 {
2302 /* These AMD 3DNow! and Intel Katmai New Instructions have an
2303 opcode suffix which is coded in the same place as an 8-bit
2304 immediate field would be. Here we fake an 8-bit immediate
2305 operand from the opcode suffix stored in tm.extension_opcode. */
2306
2307 expressionS *exp;
2308
2309 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
2310
2311 exp = &im_expressions[i.imm_operands++];
2312 i.op[i.operands].imms = exp;
2313 i.types[i.operands++] = Imm8;
2314 exp->X_op = O_constant;
2315 exp->X_add_number = i.tm.extension_opcode;
2316 i.tm.extension_opcode = None;
2317 }
2318
2319 /* For insns with operands there are more diddles to do to the opcode. */
2320 if (i.operands)
2321 {
2322 /* Default segment register this instruction will use
2323 for memory accesses. 0 means unknown.
2324 This is only for optimizing out unnecessary segment overrides. */
2325 const seg_entry *default_seg = 0;
2326
2327 /* The imul $imm, %reg instruction is converted into
2328 imul $imm, %reg, %reg, and the clr %reg instruction
2329 is converted into xor %reg, %reg. */
2330 if (i.tm.opcode_modifier & regKludge)
2331 {
2332 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2333 /* Pretend we saw the extra register operand. */
2334 assert (i.op[first_reg_op + 1].regs == 0);
2335 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2336 i.types[first_reg_op + 1] = i.types[first_reg_op];
2337 i.reg_operands = 2;
2338 }
2339
2340 if (i.tm.opcode_modifier & ShortForm)
2341 {
2342 /* The register or float register operand is in operand 0 or 1. */
2343 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2344 /* Register goes in low 3 bits of opcode. */
2345 i.tm.base_opcode |= i.op[op].regs->reg_num;
2346 if (i.op[op].regs->reg_flags & RegRex)
2347 i.rex.extZ = 1;
2348 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2349 {
2350 /* Warn about some common errors, but press on regardless.
2351 The first case can be generated by gcc (<= 2.8.1). */
2352 if (i.operands == 2)
2353 {
2354 /* Reversed arguments on faddp, fsubp, etc. */
2355 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2356 i.op[1].regs->reg_name,
2357 i.op[0].regs->reg_name);
2358 }
2359 else
2360 {
2361 /* Extraneous `l' suffix on fp insn. */
2362 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2363 i.op[0].regs->reg_name);
2364 }
2365 }
2366 }
2367 else if (i.tm.opcode_modifier & Modrm)
2368 {
2369 /* The opcode is completed (modulo i.tm.extension_opcode which
2370 must be put into the modrm byte).
2371 Now, we make the modrm & index base bytes based on all the
2372 info we've collected. */
2373
2374 /* i.reg_operands MUST be the number of real register operands;
2375 implicit registers do not count. */
2376 if (i.reg_operands == 2)
2377 {
2378 unsigned int source, dest;
2379 source = ((i.types[0]
2380 & (Reg | RegMMX | RegXMM
2381 | SReg2 | SReg3
2382 | Control | Debug | Test))
2383 ? 0 : 1);
2384 dest = source + 1;
2385
2386 i.rm.mode = 3;
2387 /* One of the register operands will be encoded in the
2388 i.tm.reg field, the other in the combined i.tm.mode
2389 and i.tm.regmem fields. If no form of this
2390 instruction supports a memory destination operand,
2391 then we assume the source operand may sometimes be
2392 a memory operand and so we need to store the
2393 destination in the i.rm.reg field. */
2394 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2395 {
2396 i.rm.reg = i.op[dest].regs->reg_num;
2397 i.rm.regmem = i.op[source].regs->reg_num;
2398 if (i.op[dest].regs->reg_flags & RegRex)
2399 i.rex.extX = 1;
2400 if (i.op[source].regs->reg_flags & RegRex)
2401 i.rex.extZ = 1;
2402 }
2403 else
2404 {
2405 i.rm.reg = i.op[source].regs->reg_num;
2406 i.rm.regmem = i.op[dest].regs->reg_num;
2407 if (i.op[dest].regs->reg_flags & RegRex)
2408 i.rex.extZ = 1;
2409 if (i.op[source].regs->reg_flags & RegRex)
2410 i.rex.extX = 1;
2411 }
2412 }
2413 else
2414 { /* If it's not 2 reg operands... */
2415 if (i.mem_operands)
2416 {
2417 unsigned int fake_zero_displacement = 0;
2418 unsigned int op = ((i.types[0] & AnyMem)
2419 ? 0
2420 : (i.types[1] & AnyMem) ? 1 : 2);
2421
2422 default_seg = &ds;
2423
2424 if (! i.base_reg)
2425 {
2426 i.rm.mode = 0;
2427 if (! i.disp_operands)
2428 fake_zero_displacement = 1;
2429 if (! i.index_reg)
2430 {
2431 /* Operand is just <disp> */
2432 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
2433 {
2434 i.rm.regmem = NO_BASE_REGISTER_16;
2435 i.types[op] &= ~Disp;
2436 i.types[op] |= Disp16;
2437 }
2438 else if (flag_code != CODE_64BIT)
2439 {
2440 i.rm.regmem = NO_BASE_REGISTER;
2441 i.types[op] &= ~Disp;
2442 i.types[op] |= Disp32;
2443 }
2444 else
2445 {
2446 /* 64bit mode overwrites the 32bit
2447 absolute addressing by RIP relative
2448 addressing and absolute addressing
2449 is encoded by one of the redundant
2450 SIB forms. */
2451
2452 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2453 i.sib.base = NO_BASE_REGISTER;
2454 i.sib.index = NO_INDEX_REGISTER;
2455 i.types[op] &= ~Disp;
2456 i.types[op] |= Disp32S;
2457 }
2458 }
2459 else /* ! i.base_reg && i.index_reg */
2460 {
2461 i.sib.index = i.index_reg->reg_num;
2462 i.sib.base = NO_BASE_REGISTER;
2463 i.sib.scale = i.log2_scale_factor;
2464 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2465 i.types[op] &= ~Disp;
2466 if (flag_code != CODE_64BIT)
2467 i.types[op] |= Disp32; /* Must be 32 bit */
2468 else
2469 i.types[op] |= Disp32S;
2470 if (i.index_reg->reg_flags & RegRex)
2471 i.rex.extY = 1;
2472 }
2473 }
2474 /* RIP addressing for 64bit mode. */
2475 else if (i.base_reg->reg_type == BaseIndex)
2476 {
2477 i.rm.regmem = NO_BASE_REGISTER;
2478 i.types[op] &= ~Disp;
2479 i.types[op] |= Disp32S;
2480 i.flags[op] = Operand_PCrel;
2481 }
2482 else if (i.base_reg->reg_type & Reg16)
2483 {
2484 switch (i.base_reg->reg_num)
2485 {
2486 case 3: /* (%bx) */
2487 if (! i.index_reg)
2488 i.rm.regmem = 7;
2489 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2490 i.rm.regmem = i.index_reg->reg_num - 6;
2491 break;
2492 case 5: /* (%bp) */
2493 default_seg = &ss;
2494 if (! i.index_reg)
2495 {
2496 i.rm.regmem = 6;
2497 if ((i.types[op] & Disp) == 0)
2498 {
2499 /* fake (%bp) into 0(%bp) */
2500 i.types[op] |= Disp8;
2501 fake_zero_displacement = 1;
2502 }
2503 }
2504 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2505 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2506 break;
2507 default: /* (%si) -> 4 or (%di) -> 5 */
2508 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2509 }
2510 i.rm.mode = mode_from_disp_size (i.types[op]);
2511 }
2512 else /* i.base_reg and 32/64 bit mode */
2513 {
2514 if (flag_code == CODE_64BIT
2515 && (i.types[op] & Disp))
2516 {
2517 if (i.types[op] & Disp8)
2518 i.types[op] = Disp8 | Disp32S;
2519 else
2520 i.types[op] = Disp32S;
2521 }
2522 i.rm.regmem = i.base_reg->reg_num;
2523 if (i.base_reg->reg_flags & RegRex)
2524 i.rex.extZ = 1;
2525 i.sib.base = i.base_reg->reg_num;
2526 /* x86-64 ignores REX prefix bit here to avoid
2527 decoder complications. */
2528 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2529 {
2530 default_seg = &ss;
2531 if (i.disp_operands == 0)
2532 {
2533 fake_zero_displacement = 1;
2534 i.types[op] |= Disp8;
2535 }
2536 }
2537 else if (i.base_reg->reg_num == ESP_REG_NUM)
2538 {
2539 default_seg = &ss;
2540 }
2541 i.sib.scale = i.log2_scale_factor;
2542 if (! i.index_reg)
2543 {
2544 /* <disp>(%esp) becomes two byte modrm
2545 with no index register. We've already
2546 stored the code for esp in i.rm.regmem
2547 ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. Any
2548 base register besides %esp will not use
2549 the extra modrm byte. */
2550 i.sib.index = NO_INDEX_REGISTER;
2551 #if ! SCALE1_WHEN_NO_INDEX
2552 /* Another case where we force the second
2553 modrm byte. */
2554 if (i.log2_scale_factor)
2555 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2556 #endif
2557 }
2558 else
2559 {
2560 i.sib.index = i.index_reg->reg_num;
2561 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2562 if (i.index_reg->reg_flags & RegRex)
2563 i.rex.extY = 1;
2564 }
2565 i.rm.mode = mode_from_disp_size (i.types[op]);
2566 }
2567
2568 if (fake_zero_displacement)
2569 {
2570 /* Fakes a zero displacement assuming that i.types[op]
2571 holds the correct displacement size. */
2572 expressionS *exp;
2573
2574 assert (i.op[op].disps == 0);
2575 exp = &disp_expressions[i.disp_operands++];
2576 i.op[op].disps = exp;
2577 exp->X_op = O_constant;
2578 exp->X_add_number = 0;
2579 exp->X_add_symbol = (symbolS *) 0;
2580 exp->X_op_symbol = (symbolS *) 0;
2581 }
2582 }
2583
2584 /* Fill in i.rm.reg or i.rm.regmem field with register
2585 operand (if any) based on i.tm.extension_opcode.
2586 Again, we must be careful to make sure that
2587 segment/control/debug/test/MMX registers are coded
2588 into the i.rm.reg field. */
2589 if (i.reg_operands)
2590 {
2591 unsigned int op =
2592 ((i.types[0]
2593 & (Reg | RegMMX | RegXMM
2594 | SReg2 | SReg3
2595 | Control | Debug | Test))
2596 ? 0
2597 : ((i.types[1]
2598 & (Reg | RegMMX | RegXMM
2599 | SReg2 | SReg3
2600 | Control | Debug | Test))
2601 ? 1
2602 : 2));
2603 /* If there is an extension opcode to put here, the
2604 register number must be put into the regmem field. */
2605 if (i.tm.extension_opcode != None)
2606 {
2607 i.rm.regmem = i.op[op].regs->reg_num;
2608 if (i.op[op].regs->reg_flags & RegRex)
2609 i.rex.extZ = 1;
2610 }
2611 else
2612 {
2613 i.rm.reg = i.op[op].regs->reg_num;
2614 if (i.op[op].regs->reg_flags & RegRex)
2615 i.rex.extX = 1;
2616 }
2617
2618 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2
2619 we must set it to 3 to indicate this is a register
2620 operand in the regmem field. */
2621 if (!i.mem_operands)
2622 i.rm.mode = 3;
2623 }
2624
2625 /* Fill in i.rm.reg field with extension opcode (if any). */
2626 if (i.tm.extension_opcode != None)
2627 i.rm.reg = i.tm.extension_opcode;
2628 }
2629 }
2630 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2631 {
2632 if (i.tm.base_opcode == POP_SEG_SHORT
2633 && i.op[0].regs->reg_num == 1)
2634 {
2635 as_bad (_("you can't `pop %%cs'"));
2636 return;
2637 }
2638 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2639 if (i.op[0].regs->reg_flags & RegRex)
2640 i.rex.extZ = 1;
2641 }
2642 else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32)
2643 {
2644 default_seg = &ds;
2645 }
2646 else if ((i.tm.opcode_modifier & IsString) != 0)
2647 {
2648 /* For the string instructions that allow a segment override
2649 on one of their operands, the default segment is ds. */
2650 default_seg = &ds;
2651 }
2652
2653 /* If a segment was explicitly specified,
2654 and the specified segment is not the default,
2655 use an opcode prefix to select it.
2656 If we never figured out what the default segment is,
2657 then default_seg will be zero at this point,
2658 and the specified segment prefix will always be used. */
2659 if ((i.seg[0]) && (i.seg[0] != default_seg))
2660 {
2661 if (! add_prefix (i.seg[0]->seg_prefix))
2662 return;
2663 }
2664 }
2665 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2666 {
2667 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2668 as_warn (_("translating to `%sp'"), i.tm.name);
2669 }
2670 }
2671
2672 /* Handle conversion of 'int $3' --> special int3 insn. */
2673 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
2674 {
2675 i.tm.base_opcode = INT3_OPCODE;
2676 i.imm_operands = 0;
2677 }
2678
2679 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
2680 && i.op[0].disps->X_op == O_constant)
2681 {
2682 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2683 the absolute address given by the constant. Since ix86 jumps and
2684 calls are pc relative, we need to generate a reloc. */
2685 i.op[0].disps->X_add_symbol = &abs_symbol;
2686 i.op[0].disps->X_op = O_symbol;
2687 }
2688
2689 if (i.tm.opcode_modifier & Rex64)
2690 i.rex.mode64 = 1;
2691
2692 /* For 8bit registers we would need an empty rex prefix.
2693 Also in the case instruction is already having prefix,
2694 we need to convert old registers to new ones. */
2695
2696 if (((i.types[0] & Reg8) && (i.op[0].regs->reg_flags & RegRex64))
2697 || ((i.types[1] & Reg8) && (i.op[1].regs->reg_flags & RegRex64))
2698 || ((i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2699 && ((i.types[0] & Reg8) || (i.types[1] & Reg8))))
2700 {
2701 int x;
2702 i.rex.empty = 1;
2703 for (x = 0; x < 2; x++)
2704 {
2705 /* Look for 8bit operand that does use old registers. */
2706 if (i.types[x] & Reg8
2707 && !(i.op[x].regs->reg_flags & RegRex64))
2708 {
2709 /* In case it is "hi" register, give up. */
2710 if (i.op[x].regs->reg_num > 3)
2711 as_bad (_("Can't encode registers '%%%s' in the instruction requiring REX prefix.\n"),
2712 i.op[x].regs->reg_name);
2713
2714 /* Otherwise it is equivalent to the extended register.
2715 Since the encoding don't change this is merely cosmetical
2716 cleanup for debug output. */
2717
2718 i.op[x].regs = i.op[x].regs + 8;
2719 }
2720 }
2721 }
2722
2723 if (i.rex.mode64 || i.rex.extX || i.rex.extY || i.rex.extZ || i.rex.empty)
2724 add_prefix (0x40
2725 | (i.rex.mode64 ? 8 : 0)
2726 | (i.rex.extX ? 4 : 0)
2727 | (i.rex.extY ? 2 : 0)
2728 | (i.rex.extZ ? 1 : 0));
2729
2730 /* We are ready to output the insn. */
2731 {
2732 register char *p;
2733
2734 /* Tie dwarf2 debug info to the address at the start of the insn.
2735 We can't do this after the insn has been output as the current
2736 frag may have been closed off. eg. by frag_var. */
2737 dwarf2_emit_insn (0);
2738
2739 /* Output jumps. */
2740 if (i.tm.opcode_modifier & Jump)
2741 {
2742 int code16;
2743 int prefix;
2744
2745 code16 = 0;
2746 if (flag_code == CODE_16BIT)
2747 code16 = CODE16;
2748
2749 prefix = 0;
2750 if (i.prefix[DATA_PREFIX])
2751 {
2752 prefix = 1;
2753 i.prefixes -= 1;
2754 code16 ^= CODE16;
2755 }
2756 /* Pentium4 branch hints. */
2757 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2758 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2759 {
2760 prefix++;
2761 i.prefixes--;
2762 }
2763 if (i.prefix[REX_PREFIX])
2764 {
2765 prefix++;
2766 i.prefixes--;
2767 }
2768
2769 if (i.prefixes != 0 && !intel_syntax)
2770 as_warn (_("skipping prefixes on this instruction"));
2771
2772 /* It's always a symbol; End frag & setup for relax.
2773 Make sure there is enough room in this frag for the largest
2774 instruction we may generate in md_convert_frag. This is 2
2775 bytes for the opcode and room for the prefix and largest
2776 displacement. */
2777 frag_grow (prefix + 2 + 4);
2778 /* Prefix and 1 opcode byte go in fr_fix. */
2779 p = frag_more (prefix + 1);
2780 if (i.prefix[DATA_PREFIX])
2781 *p++ = DATA_PREFIX_OPCODE;
2782 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
2783 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
2784 *p++ = i.prefix[SEG_PREFIX];
2785 if (i.prefix[REX_PREFIX])
2786 *p++ = i.prefix[REX_PREFIX];
2787 *p = i.tm.base_opcode;
2788 /* 1 possible extra opcode + displacement go in var part.
2789 Pass reloc in fr_var. */
2790 frag_var (rs_machine_dependent,
2791 1 + 4,
2792 i.reloc[0],
2793 ((unsigned char) *p == JUMP_PC_RELATIVE
2794 ? ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL) | code16
2795 : ((cpu_arch_flags & Cpu386) != 0
2796 ? ENCODE_RELAX_STATE (COND_JUMP, SMALL) | code16
2797 : ENCODE_RELAX_STATE (COND_JUMP86, SMALL) | code16)),
2798 i.op[0].disps->X_add_symbol,
2799 i.op[0].disps->X_add_number,
2800 p);
2801 }
2802 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
2803 {
2804 int size;
2805
2806 if (i.tm.opcode_modifier & JumpByte)
2807 {
2808 /* This is a loop or jecxz type instruction. */
2809 size = 1;
2810 if (i.prefix[ADDR_PREFIX])
2811 {
2812 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
2813 i.prefixes -= 1;
2814 }
2815 /* Pentium4 branch hints. */
2816 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2817 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2818 {
2819 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
2820 i.prefixes--;
2821 }
2822 }
2823 else
2824 {
2825 int code16;
2826
2827 code16 = 0;
2828 if (flag_code == CODE_16BIT)
2829 code16 = CODE16;
2830
2831 if (i.prefix[DATA_PREFIX])
2832 {
2833 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
2834 i.prefixes -= 1;
2835 code16 ^= CODE16;
2836 }
2837
2838 size = 4;
2839 if (code16)
2840 size = 2;
2841 }
2842
2843 if (i.prefix[REX_PREFIX])
2844 {
2845 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
2846 i.prefixes -= 1;
2847 }
2848
2849 if (i.prefixes != 0 && !intel_syntax)
2850 as_warn (_("skipping prefixes on this instruction"));
2851
2852 p = frag_more (1 + size);
2853 *p++ = i.tm.base_opcode;
2854
2855 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2856 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
2857 }
2858 else if (i.tm.opcode_modifier & JumpInterSegment)
2859 {
2860 int size;
2861 int prefix;
2862 int code16;
2863
2864 code16 = 0;
2865 if (flag_code == CODE_16BIT)
2866 code16 = CODE16;
2867
2868 prefix = 0;
2869 if (i.prefix[DATA_PREFIX])
2870 {
2871 prefix = 1;
2872 i.prefixes -= 1;
2873 code16 ^= CODE16;
2874 }
2875 if (i.prefix[REX_PREFIX])
2876 {
2877 prefix++;
2878 i.prefixes -= 1;
2879 }
2880
2881 size = 4;
2882 if (code16)
2883 size = 2;
2884
2885 if (i.prefixes != 0 && !intel_syntax)
2886 as_warn (_("skipping prefixes on this instruction"));
2887
2888 /* 1 opcode; 2 segment; offset */
2889 p = frag_more (prefix + 1 + 2 + size);
2890
2891 if (i.prefix[DATA_PREFIX])
2892 *p++ = DATA_PREFIX_OPCODE;
2893
2894 if (i.prefix[REX_PREFIX])
2895 *p++ = i.prefix[REX_PREFIX];
2896
2897 *p++ = i.tm.base_opcode;
2898 if (i.op[1].imms->X_op == O_constant)
2899 {
2900 offsetT n = i.op[1].imms->X_add_number;
2901
2902 if (size == 2
2903 && !fits_in_unsigned_word (n)
2904 && !fits_in_signed_word (n))
2905 {
2906 as_bad (_("16-bit jump out of range"));
2907 return;
2908 }
2909 md_number_to_chars (p, n, size);
2910 }
2911 else
2912 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2913 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
2914 if (i.op[0].imms->X_op != O_constant)
2915 as_bad (_("can't handle non absolute segment in `%s'"),
2916 i.tm.name);
2917 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
2918 }
2919 else
2920 {
2921 /* Output normal instructions here. */
2922 unsigned char *q;
2923
2924 /* All opcodes on i386 have eighter 1 or 2 bytes. We may use third
2925 byte for the SSE instructions to specify prefix they require. */
2926 if (i.tm.base_opcode & 0xff0000)
2927 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
2928
2929 /* The prefix bytes. */
2930 for (q = i.prefix;
2931 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
2932 q++)
2933 {
2934 if (*q)
2935 {
2936 p = frag_more (1);
2937 md_number_to_chars (p, (valueT) *q, 1);
2938 }
2939 }
2940
2941 /* Now the opcode; be careful about word order here! */
2942 if (fits_in_unsigned_byte (i.tm.base_opcode))
2943 {
2944 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
2945 }
2946 else
2947 {
2948 p = frag_more (2);
2949 /* Put out high byte first: can't use md_number_to_chars! */
2950 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2951 *p = i.tm.base_opcode & 0xff;
2952 }
2953
2954 /* Now the modrm byte and sib byte (if present). */
2955 if (i.tm.opcode_modifier & Modrm)
2956 {
2957 p = frag_more (1);
2958 md_number_to_chars (p,
2959 (valueT) (i.rm.regmem << 0
2960 | i.rm.reg << 3
2961 | i.rm.mode << 6),
2962 1);
2963 /* If i.rm.regmem == ESP (4)
2964 && i.rm.mode != (Register mode)
2965 && not 16 bit
2966 ==> need second modrm byte. */
2967 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
2968 && i.rm.mode != 3
2969 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
2970 {
2971 p = frag_more (1);
2972 md_number_to_chars (p,
2973 (valueT) (i.sib.base << 0
2974 | i.sib.index << 3
2975 | i.sib.scale << 6),
2976 1);
2977 }
2978 }
2979
2980 if (i.disp_operands)
2981 {
2982 register unsigned int n;
2983
2984 for (n = 0; n < i.operands; n++)
2985 {
2986 if (i.types[n] & Disp)
2987 {
2988 if (i.op[n].disps->X_op == O_constant)
2989 {
2990 int size;
2991 offsetT val;
2992
2993 size = 4;
2994 if (i.types[n] & (Disp8 | Disp16 | Disp64))
2995 {
2996 size = 2;
2997 if (i.types[n] & Disp8)
2998 size = 1;
2999 if (i.types[n] & Disp64)
3000 size = 8;
3001 }
3002 val = offset_in_range (i.op[n].disps->X_add_number,
3003 size);
3004 p = frag_more (size);
3005 md_number_to_chars (p, val, size);
3006 }
3007 else
3008 {
3009 int size = 4;
3010 int sign = 0;
3011 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3012
3013 /* The PC relative address is computed relative
3014 to the instruction boundary, so in case immediate
3015 fields follows, we need to adjust the value. */
3016 if (pcrel && i.imm_operands)
3017 {
3018 int imm_size = 4;
3019 register unsigned int n1;
3020
3021 for (n1 = 0; n1 < i.operands; n1++)
3022 if (i.types[n1] & Imm)
3023 {
3024 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
3025 {
3026 imm_size = 2;
3027 if (i.types[n1] & (Imm8 | Imm8S))
3028 imm_size = 1;
3029 if (i.types[n1] & Imm64)
3030 imm_size = 8;
3031 }
3032 break;
3033 }
3034 /* We should find the immediate. */
3035 if (n1 == i.operands)
3036 abort ();
3037 i.op[n].disps->X_add_number -= imm_size;
3038 }
3039
3040 if (i.types[n] & Disp32S)
3041 sign = 1;
3042
3043 if (i.types[n] & (Disp16 | Disp64))
3044 {
3045 size = 2;
3046 if (i.types[n] & Disp64)
3047 size = 8;
3048 }
3049
3050 p = frag_more (size);
3051 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3052 i.op[n].disps, pcrel,
3053 reloc (size, pcrel, sign, i.reloc[n]));
3054 }
3055 }
3056 }
3057 }
3058
3059 /* Output immediate. */
3060 if (i.imm_operands)
3061 {
3062 register unsigned int n;
3063
3064 for (n = 0; n < i.operands; n++)
3065 {
3066 if (i.types[n] & Imm)
3067 {
3068 if (i.op[n].imms->X_op == O_constant)
3069 {
3070 int size;
3071 offsetT val;
3072
3073 size = 4;
3074 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3075 {
3076 size = 2;
3077 if (i.types[n] & (Imm8 | Imm8S))
3078 size = 1;
3079 else if (i.types[n] & Imm64)
3080 size = 8;
3081 }
3082 val = offset_in_range (i.op[n].imms->X_add_number,
3083 size);
3084 p = frag_more (size);
3085 md_number_to_chars (p, val, size);
3086 }
3087 else
3088 {
3089 /* Not absolute_section.
3090 Need a 32-bit fixup (don't support 8bit
3091 non-absolute imms). Try to support other
3092 sizes ... */
3093 RELOC_ENUM reloc_type;
3094 int size = 4;
3095 int sign = 0;
3096
3097 if ((i.types[n] & (Imm32S))
3098 && i.suffix == QWORD_MNEM_SUFFIX)
3099 sign = 1;
3100 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3101 {
3102 size = 2;
3103 if (i.types[n] & (Imm8 | Imm8S))
3104 size = 1;
3105 if (i.types[n] & Imm64)
3106 size = 8;
3107 }
3108
3109 p = frag_more (size);
3110 reloc_type = reloc (size, 0, sign, i.reloc[n]);
3111 #ifdef BFD_ASSEMBLER
3112 if (reloc_type == BFD_RELOC_32
3113 && GOT_symbol
3114 && GOT_symbol == i.op[n].imms->X_add_symbol
3115 && (i.op[n].imms->X_op == O_symbol
3116 || (i.op[n].imms->X_op == O_add
3117 && ((symbol_get_value_expression
3118 (i.op[n].imms->X_op_symbol)->X_op)
3119 == O_subtract))))
3120 {
3121 /* We don't support dynamic linking on x86-64 yet. */
3122 if (flag_code == CODE_64BIT)
3123 abort ();
3124 reloc_type = BFD_RELOC_386_GOTPC;
3125 i.op[n].imms->X_add_number += 3;
3126 }
3127 #endif
3128 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3129 i.op[n].imms, 0, reloc_type);
3130 }
3131 }
3132 }
3133 }
3134 }
3135
3136 #ifdef DEBUG386
3137 if (flag_debug)
3138 {
3139 pi (line, &i);
3140 }
3141 #endif /* DEBUG386 */
3142 }
3143 }
3144 \f
3145 #ifndef LEX_AT
3146 static char *lex_got PARAMS ((RELOC_ENUM *, int *));
3147
3148 /* Parse operands of the form
3149 <symbol>@GOTOFF+<nnn>
3150 and similar .plt or .got references.
3151
3152 If we find one, set up the correct relocation in RELOC and copy the
3153 input string, minus the `@GOTOFF' into a malloc'd buffer for
3154 parsing by the calling routine. Return this buffer, and if ADJUST
3155 is non-null set it to the length of the string we removed from the
3156 input line. Otherwise return NULL. */
3157 static char *
3158 lex_got (reloc, adjust)
3159 RELOC_ENUM *reloc;
3160 int *adjust;
3161 {
3162 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3163 static const struct {
3164 const char *str;
3165 const RELOC_ENUM rel[NUM_FLAG_CODE];
3166 } gotrel[] = {
3167 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3168 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3169 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
3170 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
3171 };
3172 char *cp;
3173 unsigned int j;
3174
3175 for (cp = input_line_pointer; *cp != '@'; cp++)
3176 if (is_end_of_line[(unsigned char) *cp])
3177 return NULL;
3178
3179 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3180 {
3181 int len;
3182
3183 len = strlen (gotrel[j].str);
3184 if (strncmp (cp + 1, gotrel[j].str, len) == 0)
3185 {
3186 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3187 {
3188 int first;
3189 char *tmpbuf;
3190
3191 *reloc = gotrel[j].rel[(unsigned int) flag_code];
3192
3193 if (GOT_symbol == NULL)
3194 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3195
3196 /* Replace the relocation token with ' ', so that
3197 errors like foo@GOTOFF1 will be detected. */
3198 first = cp - input_line_pointer;
3199 tmpbuf = xmalloc (strlen (input_line_pointer));
3200 memcpy (tmpbuf, input_line_pointer, first);
3201 tmpbuf[first] = ' ';
3202 strcpy (tmpbuf + first + 1, cp + 1 + len);
3203 if (adjust)
3204 *adjust = len;
3205 return tmpbuf;
3206 }
3207
3208 as_bad (_("@%s reloc is not supported in %s bit mode"),
3209 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3210 return NULL;
3211 }
3212 }
3213
3214 /* Might be a symbol version string. Don't as_bad here. */
3215 return NULL;
3216 }
3217
3218 /* x86_cons_fix_new is called via the expression parsing code when a
3219 reloc is needed. We use this hook to get the correct .got reloc. */
3220 static RELOC_ENUM got_reloc = NO_RELOC;
3221
3222 void
3223 x86_cons_fix_new (frag, off, len, exp)
3224 fragS *frag;
3225 unsigned int off;
3226 unsigned int len;
3227 expressionS *exp;
3228 {
3229 RELOC_ENUM r = reloc (len, 0, 0, got_reloc);
3230 got_reloc = NO_RELOC;
3231 fix_new_exp (frag, off, len, exp, 0, r);
3232 }
3233
3234 void
3235 x86_cons (exp, size)
3236 expressionS *exp;
3237 int size;
3238 {
3239 if (size == 4)
3240 {
3241 /* Handle @GOTOFF and the like in an expression. */
3242 char *save;
3243 char *gotfree_input_line;
3244 int adjust;
3245
3246 save = input_line_pointer;
3247 gotfree_input_line = lex_got (&got_reloc, &adjust);
3248 if (gotfree_input_line)
3249 input_line_pointer = gotfree_input_line;
3250
3251 expression (exp);
3252
3253 if (gotfree_input_line)
3254 {
3255 /* expression () has merrily parsed up to the end of line,
3256 or a comma - in the wrong buffer. Transfer how far
3257 input_line_pointer has moved to the right buffer. */
3258 input_line_pointer = (save
3259 + (input_line_pointer - gotfree_input_line)
3260 + adjust);
3261 free (gotfree_input_line);
3262 }
3263 }
3264 else
3265 expression (exp);
3266 }
3267 #endif
3268
3269 static int i386_immediate PARAMS ((char *));
3270
3271 static int
3272 i386_immediate (imm_start)
3273 char *imm_start;
3274 {
3275 char *save_input_line_pointer;
3276 #ifndef LEX_AT
3277 char *gotfree_input_line;
3278 #endif
3279 segT exp_seg = 0;
3280 expressionS *exp;
3281
3282 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3283 {
3284 as_bad (_("only 1 or 2 immediate operands are allowed"));
3285 return 0;
3286 }
3287
3288 exp = &im_expressions[i.imm_operands++];
3289 i.op[this_operand].imms = exp;
3290
3291 if (is_space_char (*imm_start))
3292 ++imm_start;
3293
3294 save_input_line_pointer = input_line_pointer;
3295 input_line_pointer = imm_start;
3296
3297 #ifndef LEX_AT
3298 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3299 if (gotfree_input_line)
3300 input_line_pointer = gotfree_input_line;
3301 #endif
3302
3303 exp_seg = expression (exp);
3304
3305 SKIP_WHITESPACE ();
3306 if (*input_line_pointer)
3307 as_bad (_("junk `%s' after expression"), input_line_pointer);
3308
3309 input_line_pointer = save_input_line_pointer;
3310 #ifndef LEX_AT
3311 if (gotfree_input_line)
3312 free (gotfree_input_line);
3313 #endif
3314
3315 if (exp->X_op == O_absent || exp->X_op == O_big)
3316 {
3317 /* Missing or bad expr becomes absolute 0. */
3318 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
3319 imm_start);
3320 exp->X_op = O_constant;
3321 exp->X_add_number = 0;
3322 exp->X_add_symbol = (symbolS *) 0;
3323 exp->X_op_symbol = (symbolS *) 0;
3324 }
3325 else if (exp->X_op == O_constant)
3326 {
3327 /* Size it properly later. */
3328 i.types[this_operand] |= Imm64;
3329 /* If BFD64, sign extend val. */
3330 if (!use_rela_relocations)
3331 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3332 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
3333 }
3334 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3335 else if (1
3336 #ifdef BFD_ASSEMBLER
3337 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3338 #endif
3339 && exp_seg != text_section
3340 && exp_seg != data_section
3341 && exp_seg != bss_section
3342 && exp_seg != undefined_section
3343 #ifdef BFD_ASSEMBLER
3344 && !bfd_is_com_section (exp_seg)
3345 #endif
3346 )
3347 {
3348 #ifdef BFD_ASSEMBLER
3349 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3350 #else
3351 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3352 #endif
3353 return 0;
3354 }
3355 #endif
3356 else
3357 {
3358 /* This is an address. The size of the address will be
3359 determined later, depending on destination register,
3360 suffix, or the default for the section. */
3361 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
3362 }
3363
3364 return 1;
3365 }
3366
3367 static char *i386_scale PARAMS ((char *));
3368
3369 static char *
3370 i386_scale (scale)
3371 char *scale;
3372 {
3373 offsetT val;
3374 char *save = input_line_pointer;
3375
3376 input_line_pointer = scale;
3377 val = get_absolute_expression ();
3378
3379 switch (val)
3380 {
3381 case 0:
3382 case 1:
3383 i.log2_scale_factor = 0;
3384 break;
3385 case 2:
3386 i.log2_scale_factor = 1;
3387 break;
3388 case 4:
3389 i.log2_scale_factor = 2;
3390 break;
3391 case 8:
3392 i.log2_scale_factor = 3;
3393 break;
3394 default:
3395 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
3396 scale);
3397 input_line_pointer = save;
3398 return NULL;
3399 }
3400 if (i.log2_scale_factor != 0 && ! i.index_reg)
3401 {
3402 as_warn (_("scale factor of %d without an index register"),
3403 1 << i.log2_scale_factor);
3404 #if SCALE1_WHEN_NO_INDEX
3405 i.log2_scale_factor = 0;
3406 #endif
3407 }
3408 scale = input_line_pointer;
3409 input_line_pointer = save;
3410 return scale;
3411 }
3412
3413 static int i386_displacement PARAMS ((char *, char *));
3414
3415 static int
3416 i386_displacement (disp_start, disp_end)
3417 char *disp_start;
3418 char *disp_end;
3419 {
3420 register expressionS *exp;
3421 segT exp_seg = 0;
3422 char *save_input_line_pointer;
3423 #ifndef LEX_AT
3424 char *gotfree_input_line;
3425 #endif
3426 int bigdisp = Disp32;
3427
3428 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3429 bigdisp = Disp16;
3430 if (flag_code == CODE_64BIT)
3431 bigdisp = Disp64;
3432 i.types[this_operand] |= bigdisp;
3433
3434 exp = &disp_expressions[i.disp_operands];
3435 i.op[this_operand].disps = exp;
3436 i.disp_operands++;
3437 save_input_line_pointer = input_line_pointer;
3438 input_line_pointer = disp_start;
3439 END_STRING_AND_SAVE (disp_end);
3440
3441 #ifndef GCC_ASM_O_HACK
3442 #define GCC_ASM_O_HACK 0
3443 #endif
3444 #if GCC_ASM_O_HACK
3445 END_STRING_AND_SAVE (disp_end + 1);
3446 if ((i.types[this_operand] & BaseIndex) != 0
3447 && displacement_string_end[-1] == '+')
3448 {
3449 /* This hack is to avoid a warning when using the "o"
3450 constraint within gcc asm statements.
3451 For instance:
3452
3453 #define _set_tssldt_desc(n,addr,limit,type) \
3454 __asm__ __volatile__ ( \
3455 "movw %w2,%0\n\t" \
3456 "movw %w1,2+%0\n\t" \
3457 "rorl $16,%1\n\t" \
3458 "movb %b1,4+%0\n\t" \
3459 "movb %4,5+%0\n\t" \
3460 "movb $0,6+%0\n\t" \
3461 "movb %h1,7+%0\n\t" \
3462 "rorl $16,%1" \
3463 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3464
3465 This works great except that the output assembler ends
3466 up looking a bit weird if it turns out that there is
3467 no offset. You end up producing code that looks like:
3468
3469 #APP
3470 movw $235,(%eax)
3471 movw %dx,2+(%eax)
3472 rorl $16,%edx
3473 movb %dl,4+(%eax)
3474 movb $137,5+(%eax)
3475 movb $0,6+(%eax)
3476 movb %dh,7+(%eax)
3477 rorl $16,%edx
3478 #NO_APP
3479
3480 So here we provide the missing zero. */
3481
3482 *displacement_string_end = '0';
3483 }
3484 #endif
3485 #ifndef LEX_AT
3486 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3487 if (gotfree_input_line)
3488 input_line_pointer = gotfree_input_line;
3489 #endif
3490
3491 exp_seg = expression (exp);
3492
3493 SKIP_WHITESPACE ();
3494 if (*input_line_pointer)
3495 as_bad (_("junk `%s' after expression"), input_line_pointer);
3496 #if GCC_ASM_O_HACK
3497 RESTORE_END_STRING (disp_end + 1);
3498 #endif
3499 RESTORE_END_STRING (disp_end);
3500 input_line_pointer = save_input_line_pointer;
3501 #ifndef LEX_AT
3502 if (gotfree_input_line)
3503 free (gotfree_input_line);
3504 #endif
3505
3506 #ifdef BFD_ASSEMBLER
3507 /* We do this to make sure that the section symbol is in
3508 the symbol table. We will ultimately change the relocation
3509 to be relative to the beginning of the section. */
3510 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
3511 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3512 {
3513 if (exp->X_op != O_symbol)
3514 {
3515 as_bad (_("bad expression used with @%s"),
3516 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
3517 ? "GOTPCREL"
3518 : "GOTOFF"));
3519 return 0;
3520 }
3521
3522 if (S_IS_LOCAL (exp->X_add_symbol)
3523 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3524 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
3525 exp->X_op = O_subtract;
3526 exp->X_op_symbol = GOT_symbol;
3527 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3528 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
3529 else
3530 i.reloc[this_operand] = BFD_RELOC_32;
3531 }
3532 #endif
3533
3534 if (exp->X_op == O_absent || exp->X_op == O_big)
3535 {
3536 /* Missing or bad expr becomes absolute 0. */
3537 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
3538 disp_start);
3539 exp->X_op = O_constant;
3540 exp->X_add_number = 0;
3541 exp->X_add_symbol = (symbolS *) 0;
3542 exp->X_op_symbol = (symbolS *) 0;
3543 }
3544
3545 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3546 if (exp->X_op != O_constant
3547 #ifdef BFD_ASSEMBLER
3548 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3549 #endif
3550 && exp_seg != text_section
3551 && exp_seg != data_section
3552 && exp_seg != bss_section
3553 && exp_seg != undefined_section)
3554 {
3555 #ifdef BFD_ASSEMBLER
3556 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3557 #else
3558 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3559 #endif
3560 return 0;
3561 }
3562 #endif
3563 else if (flag_code == CODE_64BIT)
3564 i.types[this_operand] |= Disp32S | Disp32;
3565 return 1;
3566 }
3567
3568 static int i386_index_check PARAMS ((const char *));
3569
3570 /* Make sure the memory operand we've been dealt is valid.
3571 Return 1 on success, 0 on a failure. */
3572
3573 static int
3574 i386_index_check (operand_string)
3575 const char *operand_string;
3576 {
3577 int ok;
3578 #if INFER_ADDR_PREFIX
3579 int fudged = 0;
3580
3581 tryprefix:
3582 #endif
3583 ok = 1;
3584 if (flag_code == CODE_64BIT)
3585 {
3586 /* 64bit checks. */
3587 if ((i.base_reg
3588 && ((i.base_reg->reg_type & Reg64) == 0)
3589 && (i.base_reg->reg_type != BaseIndex
3590 || i.index_reg))
3591 || (i.index_reg
3592 && ((i.index_reg->reg_type & (Reg64|BaseIndex))
3593 != (Reg64|BaseIndex))))
3594 ok = 0;
3595 }
3596 else
3597 {
3598 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3599 {
3600 /* 16bit checks. */
3601 if ((i.base_reg
3602 && ((i.base_reg->reg_type & (Reg16|BaseIndex|RegRex))
3603 != (Reg16|BaseIndex)))
3604 || (i.index_reg
3605 && (((i.index_reg->reg_type & (Reg16|BaseIndex))
3606 != (Reg16|BaseIndex))
3607 || ! (i.base_reg
3608 && i.base_reg->reg_num < 6
3609 && i.index_reg->reg_num >= 6
3610 && i.log2_scale_factor == 0))))
3611 ok = 0;
3612 }
3613 else
3614 {
3615 /* 32bit checks. */
3616 if ((i.base_reg
3617 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
3618 || (i.index_reg
3619 && ((i.index_reg->reg_type & (Reg32|BaseIndex|RegRex))
3620 != (Reg32|BaseIndex))))
3621 ok = 0;
3622 }
3623 }
3624 if (!ok)
3625 {
3626 #if INFER_ADDR_PREFIX
3627 if (flag_code != CODE_64BIT
3628 && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
3629 {
3630 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
3631 i.prefixes += 1;
3632 /* Change the size of any displacement too. At most one of
3633 Disp16 or Disp32 is set.
3634 FIXME. There doesn't seem to be any real need for separate
3635 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
3636 Removing them would probably clean up the code quite a lot. */
3637 if (i.types[this_operand] & (Disp16|Disp32))
3638 i.types[this_operand] ^= (Disp16|Disp32);
3639 fudged = 1;
3640 goto tryprefix;
3641 }
3642 if (fudged)
3643 as_bad (_("`%s' is not a valid base/index expression"),
3644 operand_string);
3645 else
3646 #endif
3647 as_bad (_("`%s' is not a valid %s bit base/index expression"),
3648 operand_string,
3649 flag_code_names[flag_code]);
3650 return 0;
3651 }
3652 return 1;
3653 }
3654
3655 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
3656 on error. */
3657
3658 static int
3659 i386_operand (operand_string)
3660 char *operand_string;
3661 {
3662 const reg_entry *r;
3663 char *end_op;
3664 char *op_string = operand_string;
3665
3666 if (is_space_char (*op_string))
3667 ++op_string;
3668
3669 /* We check for an absolute prefix (differentiating,
3670 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
3671 if (*op_string == ABSOLUTE_PREFIX)
3672 {
3673 ++op_string;
3674 if (is_space_char (*op_string))
3675 ++op_string;
3676 i.types[this_operand] |= JumpAbsolute;
3677 }
3678
3679 /* Check if operand is a register. */
3680 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
3681 && (r = parse_register (op_string, &end_op)) != NULL)
3682 {
3683 /* Check for a segment override by searching for ':' after a
3684 segment register. */
3685 op_string = end_op;
3686 if (is_space_char (*op_string))
3687 ++op_string;
3688 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
3689 {
3690 switch (r->reg_num)
3691 {
3692 case 0:
3693 i.seg[i.mem_operands] = &es;
3694 break;
3695 case 1:
3696 i.seg[i.mem_operands] = &cs;
3697 break;
3698 case 2:
3699 i.seg[i.mem_operands] = &ss;
3700 break;
3701 case 3:
3702 i.seg[i.mem_operands] = &ds;
3703 break;
3704 case 4:
3705 i.seg[i.mem_operands] = &fs;
3706 break;
3707 case 5:
3708 i.seg[i.mem_operands] = &gs;
3709 break;
3710 }
3711
3712 /* Skip the ':' and whitespace. */
3713 ++op_string;
3714 if (is_space_char (*op_string))
3715 ++op_string;
3716
3717 if (!is_digit_char (*op_string)
3718 && !is_identifier_char (*op_string)
3719 && *op_string != '('
3720 && *op_string != ABSOLUTE_PREFIX)
3721 {
3722 as_bad (_("bad memory operand `%s'"), op_string);
3723 return 0;
3724 }
3725 /* Handle case of %es:*foo. */
3726 if (*op_string == ABSOLUTE_PREFIX)
3727 {
3728 ++op_string;
3729 if (is_space_char (*op_string))
3730 ++op_string;
3731 i.types[this_operand] |= JumpAbsolute;
3732 }
3733 goto do_memory_reference;
3734 }
3735 if (*op_string)
3736 {
3737 as_bad (_("junk `%s' after register"), op_string);
3738 return 0;
3739 }
3740 i.types[this_operand] |= r->reg_type & ~BaseIndex;
3741 i.op[this_operand].regs = r;
3742 i.reg_operands++;
3743 }
3744 else if (*op_string == REGISTER_PREFIX)
3745 {
3746 as_bad (_("bad register name `%s'"), op_string);
3747 return 0;
3748 }
3749 else if (*op_string == IMMEDIATE_PREFIX)
3750 {
3751 ++op_string;
3752 if (i.types[this_operand] & JumpAbsolute)
3753 {
3754 as_bad (_("immediate operand illegal with absolute jump"));
3755 return 0;
3756 }
3757 if (!i386_immediate (op_string))
3758 return 0;
3759 }
3760 else if (is_digit_char (*op_string)
3761 || is_identifier_char (*op_string)
3762 || *op_string == '(')
3763 {
3764 /* This is a memory reference of some sort. */
3765 char *base_string;
3766
3767 /* Start and end of displacement string expression (if found). */
3768 char *displacement_string_start;
3769 char *displacement_string_end;
3770
3771 do_memory_reference:
3772 if ((i.mem_operands == 1
3773 && (current_templates->start->opcode_modifier & IsString) == 0)
3774 || i.mem_operands == 2)
3775 {
3776 as_bad (_("too many memory references for `%s'"),
3777 current_templates->start->name);
3778 return 0;
3779 }
3780
3781 /* Check for base index form. We detect the base index form by
3782 looking for an ')' at the end of the operand, searching
3783 for the '(' matching it, and finding a REGISTER_PREFIX or ','
3784 after the '('. */
3785 base_string = op_string + strlen (op_string);
3786
3787 --base_string;
3788 if (is_space_char (*base_string))
3789 --base_string;
3790
3791 /* If we only have a displacement, set-up for it to be parsed later. */
3792 displacement_string_start = op_string;
3793 displacement_string_end = base_string + 1;
3794
3795 if (*base_string == ')')
3796 {
3797 char *temp_string;
3798 unsigned int parens_balanced = 1;
3799 /* We've already checked that the number of left & right ()'s are
3800 equal, so this loop will not be infinite. */
3801 do
3802 {
3803 base_string--;
3804 if (*base_string == ')')
3805 parens_balanced++;
3806 if (*base_string == '(')
3807 parens_balanced--;
3808 }
3809 while (parens_balanced);
3810
3811 temp_string = base_string;
3812
3813 /* Skip past '(' and whitespace. */
3814 ++base_string;
3815 if (is_space_char (*base_string))
3816 ++base_string;
3817
3818 if (*base_string == ','
3819 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3820 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
3821 {
3822 displacement_string_end = temp_string;
3823
3824 i.types[this_operand] |= BaseIndex;
3825
3826 if (i.base_reg)
3827 {
3828 base_string = end_op;
3829 if (is_space_char (*base_string))
3830 ++base_string;
3831 }
3832
3833 /* There may be an index reg or scale factor here. */
3834 if (*base_string == ',')
3835 {
3836 ++base_string;
3837 if (is_space_char (*base_string))
3838 ++base_string;
3839
3840 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3841 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
3842 {
3843 base_string = end_op;
3844 if (is_space_char (*base_string))
3845 ++base_string;
3846 if (*base_string == ',')
3847 {
3848 ++base_string;
3849 if (is_space_char (*base_string))
3850 ++base_string;
3851 }
3852 else if (*base_string != ')')
3853 {
3854 as_bad (_("expecting `,' or `)' after index register in `%s'"),
3855 operand_string);
3856 return 0;
3857 }
3858 }
3859 else if (*base_string == REGISTER_PREFIX)
3860 {
3861 as_bad (_("bad register name `%s'"), base_string);
3862 return 0;
3863 }
3864
3865 /* Check for scale factor. */
3866 if (*base_string != ')')
3867 {
3868 char *end_scale = i386_scale (base_string);
3869
3870 if (!end_scale)
3871 return 0;
3872
3873 base_string = end_scale;
3874 if (is_space_char (*base_string))
3875 ++base_string;
3876 if (*base_string != ')')
3877 {
3878 as_bad (_("expecting `)' after scale factor in `%s'"),
3879 operand_string);
3880 return 0;
3881 }
3882 }
3883 else if (!i.index_reg)
3884 {
3885 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
3886 *base_string);
3887 return 0;
3888 }
3889 }
3890 else if (*base_string != ')')
3891 {
3892 as_bad (_("expecting `,' or `)' after base register in `%s'"),
3893 operand_string);
3894 return 0;
3895 }
3896 }
3897 else if (*base_string == REGISTER_PREFIX)
3898 {
3899 as_bad (_("bad register name `%s'"), base_string);
3900 return 0;
3901 }
3902 }
3903
3904 /* If there's an expression beginning the operand, parse it,
3905 assuming displacement_string_start and
3906 displacement_string_end are meaningful. */
3907 if (displacement_string_start != displacement_string_end)
3908 {
3909 if (!i386_displacement (displacement_string_start,
3910 displacement_string_end))
3911 return 0;
3912 }
3913
3914 /* Special case for (%dx) while doing input/output op. */
3915 if (i.base_reg
3916 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
3917 && i.index_reg == 0
3918 && i.log2_scale_factor == 0
3919 && i.seg[i.mem_operands] == 0
3920 && (i.types[this_operand] & Disp) == 0)
3921 {
3922 i.types[this_operand] = InOutPortReg;
3923 return 1;
3924 }
3925
3926 if (i386_index_check (operand_string) == 0)
3927 return 0;
3928 i.mem_operands++;
3929 }
3930 else
3931 {
3932 /* It's not a memory operand; argh! */
3933 as_bad (_("invalid char %s beginning operand %d `%s'"),
3934 output_invalid (*op_string),
3935 this_operand + 1,
3936 op_string);
3937 return 0;
3938 }
3939 return 1; /* Normal return. */
3940 }
3941 \f
3942 /* md_estimate_size_before_relax()
3943
3944 Called just before relax() for rs_machine_dependent frags. The x86
3945 assembler uses these frags to handle variable size jump
3946 instructions.
3947
3948 Any symbol that is now undefined will not become defined.
3949 Return the correct fr_subtype in the frag.
3950 Return the initial "guess for variable size of frag" to caller.
3951 The guess is actually the growth beyond the fixed part. Whatever
3952 we do to grow the fixed or variable part contributes to our
3953 returned value. */
3954
3955 int
3956 md_estimate_size_before_relax (fragP, segment)
3957 register fragS *fragP;
3958 register segT segment;
3959 {
3960 /* We've already got fragP->fr_subtype right; all we have to do is
3961 check for un-relaxable symbols. On an ELF system, we can't relax
3962 an externally visible symbol, because it may be overridden by a
3963 shared library. */
3964 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
3965 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3966 || S_IS_EXTERNAL (fragP->fr_symbol)
3967 || S_IS_WEAK (fragP->fr_symbol)
3968 #endif
3969 )
3970 {
3971 /* Symbol is undefined in this segment, or we need to keep a
3972 reloc so that weak symbols can be overridden. */
3973 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
3974 RELOC_ENUM reloc_type;
3975 unsigned char *opcode;
3976 int old_fr_fix;
3977
3978 if (fragP->fr_var != NO_RELOC)
3979 reloc_type = fragP->fr_var;
3980 else if (size == 2)
3981 reloc_type = BFD_RELOC_16_PCREL;
3982 else
3983 reloc_type = BFD_RELOC_32_PCREL;
3984
3985 old_fr_fix = fragP->fr_fix;
3986 opcode = (unsigned char *) fragP->fr_opcode;
3987
3988 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
3989 {
3990 case UNCOND_JUMP:
3991 /* Make jmp (0xeb) a (d)word displacement jump. */
3992 opcode[0] = 0xe9;
3993 fragP->fr_fix += size;
3994 fix_new (fragP, old_fr_fix, size,
3995 fragP->fr_symbol,
3996 fragP->fr_offset, 1,
3997 reloc_type);
3998 break;
3999
4000 case COND_JUMP86:
4001 if (no_cond_jump_promotion)
4002 goto relax_guess;
4003
4004 if (size == 2)
4005 {
4006 /* Negate the condition, and branch past an
4007 unconditional jump. */
4008 opcode[0] ^= 1;
4009 opcode[1] = 3;
4010 /* Insert an unconditional jump. */
4011 opcode[2] = 0xe9;
4012 /* We added two extra opcode bytes, and have a two byte
4013 offset. */
4014 fragP->fr_fix += 2 + 2;
4015 fix_new (fragP, old_fr_fix + 2, 2,
4016 fragP->fr_symbol,
4017 fragP->fr_offset, 1,
4018 reloc_type);
4019 break;
4020 }
4021 /* Fall through. */
4022
4023 case COND_JUMP:
4024 if (no_cond_jump_promotion)
4025 goto relax_guess;
4026
4027 /* This changes the byte-displacement jump 0x7N
4028 to the (d)word-displacement jump 0x0f,0x8N. */
4029 opcode[1] = opcode[0] + 0x10;
4030 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4031 /* We've added an opcode byte. */
4032 fragP->fr_fix += 1 + size;
4033 fix_new (fragP, old_fr_fix + 1, size,
4034 fragP->fr_symbol,
4035 fragP->fr_offset, 1,
4036 reloc_type);
4037 break;
4038
4039 default:
4040 BAD_CASE (fragP->fr_subtype);
4041 break;
4042 }
4043 frag_wane (fragP);
4044 return fragP->fr_fix - old_fr_fix;
4045 }
4046
4047 relax_guess:
4048 /* Guess size depending on current relax state. Initially the relax
4049 state will correspond to a short jump and we return 1, because
4050 the variable part of the frag (the branch offset) is one byte
4051 long. However, we can relax a section more than once and in that
4052 case we must either set fr_subtype back to the unrelaxed state,
4053 or return the value for the appropriate branch. */
4054 return md_relax_table[fragP->fr_subtype].rlx_length;
4055 }
4056
4057 /* Called after relax() is finished.
4058
4059 In: Address of frag.
4060 fr_type == rs_machine_dependent.
4061 fr_subtype is what the address relaxed to.
4062
4063 Out: Any fixSs and constants are set up.
4064 Caller will turn frag into a ".space 0". */
4065
4066 #ifndef BFD_ASSEMBLER
4067 void
4068 md_convert_frag (headers, sec, fragP)
4069 object_headers *headers ATTRIBUTE_UNUSED;
4070 segT sec ATTRIBUTE_UNUSED;
4071 register fragS *fragP;
4072 #else
4073 void
4074 md_convert_frag (abfd, sec, fragP)
4075 bfd *abfd ATTRIBUTE_UNUSED;
4076 segT sec ATTRIBUTE_UNUSED;
4077 register fragS *fragP;
4078 #endif
4079 {
4080 register unsigned char *opcode;
4081 unsigned char *where_to_put_displacement = NULL;
4082 offsetT target_address;
4083 offsetT opcode_address;
4084 unsigned int extension = 0;
4085 offsetT displacement_from_opcode_start;
4086
4087 opcode = (unsigned char *) fragP->fr_opcode;
4088
4089 /* Address we want to reach in file space. */
4090 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
4091 #ifdef BFD_ASSEMBLER
4092 /* Not needed otherwise? */
4093 {
4094 /* Local symbols which have already been resolved have a NULL frag. */
4095 fragS *sym_frag = symbol_get_frag (fragP->fr_symbol);
4096 if (sym_frag)
4097 target_address += sym_frag->fr_address;
4098 }
4099 #endif
4100
4101 /* Address opcode resides at in file space. */
4102 opcode_address = fragP->fr_address + fragP->fr_fix;
4103
4104 /* Displacement from opcode start to fill into instruction. */
4105 displacement_from_opcode_start = target_address - opcode_address;
4106
4107 if ((fragP->fr_subtype & BIG) == 0)
4108 {
4109 /* Don't have to change opcode. */
4110 extension = 1; /* 1 opcode + 1 displacement */
4111 where_to_put_displacement = &opcode[1];
4112 }
4113 else
4114 {
4115 if (no_cond_jump_promotion
4116 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4117 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
4118
4119 switch (fragP->fr_subtype)
4120 {
4121 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4122 extension = 4; /* 1 opcode + 4 displacement */
4123 opcode[0] = 0xe9;
4124 where_to_put_displacement = &opcode[1];
4125 break;
4126
4127 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4128 extension = 2; /* 1 opcode + 2 displacement */
4129 opcode[0] = 0xe9;
4130 where_to_put_displacement = &opcode[1];
4131 break;
4132
4133 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4134 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4135 extension = 5; /* 2 opcode + 4 displacement */
4136 opcode[1] = opcode[0] + 0x10;
4137 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4138 where_to_put_displacement = &opcode[2];
4139 break;
4140
4141 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4142 extension = 3; /* 2 opcode + 2 displacement */
4143 opcode[1] = opcode[0] + 0x10;
4144 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4145 where_to_put_displacement = &opcode[2];
4146 break;
4147
4148 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4149 extension = 4;
4150 opcode[0] ^= 1;
4151 opcode[1] = 3;
4152 opcode[2] = 0xe9;
4153 where_to_put_displacement = &opcode[3];
4154 break;
4155
4156 default:
4157 BAD_CASE (fragP->fr_subtype);
4158 break;
4159 }
4160 }
4161
4162 /* Now put displacement after opcode. */
4163 md_number_to_chars ((char *) where_to_put_displacement,
4164 (valueT) (displacement_from_opcode_start - extension),
4165 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
4166 fragP->fr_fix += extension;
4167 }
4168 \f
4169 /* Size of byte displacement jmp. */
4170 int md_short_jump_size = 2;
4171
4172 /* Size of dword displacement jmp. */
4173 int md_long_jump_size = 5;
4174
4175 /* Size of relocation record. */
4176 const int md_reloc_size = 8;
4177
4178 void
4179 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4180 char *ptr;
4181 addressT from_addr, to_addr;
4182 fragS *frag ATTRIBUTE_UNUSED;
4183 symbolS *to_symbol ATTRIBUTE_UNUSED;
4184 {
4185 offsetT offset;
4186
4187 offset = to_addr - (from_addr + 2);
4188 /* Opcode for byte-disp jump. */
4189 md_number_to_chars (ptr, (valueT) 0xeb, 1);
4190 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4191 }
4192
4193 void
4194 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4195 char *ptr;
4196 addressT from_addr, to_addr;
4197 fragS *frag ATTRIBUTE_UNUSED;
4198 symbolS *to_symbol ATTRIBUTE_UNUSED;
4199 {
4200 offsetT offset;
4201
4202 offset = to_addr - (from_addr + 5);
4203 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4204 md_number_to_chars (ptr + 1, (valueT) offset, 4);
4205 }
4206 \f
4207 /* Apply a fixup (fixS) to segment data, once it has been determined
4208 by our caller that we have all the info we need to fix it up.
4209
4210 On the 386, immediates, displacements, and data pointers are all in
4211 the same (little-endian) format, so we don't need to care about which
4212 we are handling. */
4213
4214 int
4215 md_apply_fix3 (fixP, valp, seg)
4216 /* The fix we're to put in. */
4217 fixS *fixP;
4218
4219 /* Pointer to the value of the bits. */
4220 valueT *valp;
4221
4222 /* Segment fix is from. */
4223 segT seg ATTRIBUTE_UNUSED;
4224 {
4225 register char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4226 valueT value = *valp;
4227
4228 #if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
4229 if (fixP->fx_pcrel)
4230 {
4231 switch (fixP->fx_r_type)
4232 {
4233 default:
4234 break;
4235
4236 case BFD_RELOC_32:
4237 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4238 break;
4239 case BFD_RELOC_16:
4240 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4241 break;
4242 case BFD_RELOC_8:
4243 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4244 break;
4245 }
4246 }
4247
4248 /* This is a hack. There should be a better way to handle this.
4249 This covers for the fact that bfd_install_relocation will
4250 subtract the current location (for partial_inplace, PC relative
4251 relocations); see more below. */
4252 if ((fixP->fx_r_type == BFD_RELOC_32_PCREL
4253 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4254 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4255 && fixP->fx_addsy && !use_rela_relocations)
4256 {
4257 #ifndef OBJ_AOUT
4258 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4259 #ifdef TE_PE
4260 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4261 #endif
4262 )
4263 value += fixP->fx_where + fixP->fx_frag->fr_address;
4264 #endif
4265 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4266 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
4267 {
4268 segT fseg = S_GET_SEGMENT (fixP->fx_addsy);
4269
4270 if ((fseg == seg
4271 || (symbol_section_p (fixP->fx_addsy)
4272 && fseg != absolute_section))
4273 && ! S_IS_EXTERNAL (fixP->fx_addsy)
4274 && ! S_IS_WEAK (fixP->fx_addsy)
4275 && S_IS_DEFINED (fixP->fx_addsy)
4276 && ! S_IS_COMMON (fixP->fx_addsy))
4277 {
4278 /* Yes, we add the values in twice. This is because
4279 bfd_perform_relocation subtracts them out again. I think
4280 bfd_perform_relocation is broken, but I don't dare change
4281 it. FIXME. */
4282 value += fixP->fx_where + fixP->fx_frag->fr_address;
4283 }
4284 }
4285 #endif
4286 #if defined (OBJ_COFF) && defined (TE_PE)
4287 /* For some reason, the PE format does not store a section
4288 address offset for a PC relative symbol. */
4289 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4290 value += md_pcrel_from (fixP);
4291 #endif
4292 }
4293
4294 /* Fix a few things - the dynamic linker expects certain values here,
4295 and we must not dissappoint it. */
4296 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4297 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4298 && fixP->fx_addsy)
4299 switch (fixP->fx_r_type)
4300 {
4301 case BFD_RELOC_386_PLT32:
4302 case BFD_RELOC_X86_64_PLT32:
4303 /* Make the jump instruction point to the address of the operand. At
4304 runtime we merely add the offset to the actual PLT entry. */
4305 value = -4;
4306 break;
4307 case BFD_RELOC_386_GOTPC:
4308
4309 /* This is tough to explain. We end up with this one if we have
4310 * operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
4311 * here is to obtain the absolute address of the GOT, and it is strongly
4312 * preferable from a performance point of view to avoid using a runtime
4313 * relocation for this. The actual sequence of instructions often look
4314 * something like:
4315 *
4316 * call .L66
4317 * .L66:
4318 * popl %ebx
4319 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
4320 *
4321 * The call and pop essentially return the absolute address of
4322 * the label .L66 and store it in %ebx. The linker itself will
4323 * ultimately change the first operand of the addl so that %ebx points to
4324 * the GOT, but to keep things simple, the .o file must have this operand
4325 * set so that it generates not the absolute address of .L66, but the
4326 * absolute address of itself. This allows the linker itself simply
4327 * treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
4328 * added in, and the addend of the relocation is stored in the operand
4329 * field for the instruction itself.
4330 *
4331 * Our job here is to fix the operand so that it would add the correct
4332 * offset so that %ebx would point to itself. The thing that is tricky is
4333 * that .-.L66 will point to the beginning of the instruction, so we need
4334 * to further modify the operand so that it will point to itself.
4335 * There are other cases where you have something like:
4336 *
4337 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
4338 *
4339 * and here no correction would be required. Internally in the assembler
4340 * we treat operands of this form as not being pcrel since the '.' is
4341 * explicitly mentioned, and I wonder whether it would simplify matters
4342 * to do it this way. Who knows. In earlier versions of the PIC patches,
4343 * the pcrel_adjust field was used to store the correction, but since the
4344 * expression is not pcrel, I felt it would be confusing to do it this
4345 * way. */
4346
4347 value -= 1;
4348 break;
4349 case BFD_RELOC_386_GOT32:
4350 case BFD_RELOC_X86_64_GOT32:
4351 value = 0; /* Fully resolved at runtime. No addend. */
4352 break;
4353 case BFD_RELOC_386_GOTOFF:
4354 case BFD_RELOC_X86_64_GOTPCREL:
4355 break;
4356
4357 case BFD_RELOC_VTABLE_INHERIT:
4358 case BFD_RELOC_VTABLE_ENTRY:
4359 fixP->fx_done = 0;
4360 return 1;
4361
4362 default:
4363 break;
4364 }
4365 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4366 *valp = value;
4367 #endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
4368
4369 #ifndef BFD_ASSEMBLER
4370 md_number_to_chars (p, value, fixP->fx_size);
4371 #else
4372 /* Are we finished with this relocation now? */
4373 if (fixP->fx_addsy == 0 && fixP->fx_pcrel == 0)
4374 fixP->fx_done = 1;
4375 else if (use_rela_relocations)
4376 {
4377 fixP->fx_no_overflow = 1;
4378 value = 0;
4379 }
4380 md_number_to_chars (p, value, fixP->fx_size);
4381 #endif
4382
4383 return 1;
4384 }
4385 \f
4386 #define MAX_LITTLENUMS 6
4387
4388 /* Turn the string pointed to by litP into a floating point constant
4389 of type TYPE, and emit the appropriate bytes. The number of
4390 LITTLENUMS emitted is stored in *SIZEP. An error message is
4391 returned, or NULL on OK. */
4392
4393 char *
4394 md_atof (type, litP, sizeP)
4395 int type;
4396 char *litP;
4397 int *sizeP;
4398 {
4399 int prec;
4400 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4401 LITTLENUM_TYPE *wordP;
4402 char *t;
4403
4404 switch (type)
4405 {
4406 case 'f':
4407 case 'F':
4408 prec = 2;
4409 break;
4410
4411 case 'd':
4412 case 'D':
4413 prec = 4;
4414 break;
4415
4416 case 'x':
4417 case 'X':
4418 prec = 5;
4419 break;
4420
4421 default:
4422 *sizeP = 0;
4423 return _("Bad call to md_atof ()");
4424 }
4425 t = atof_ieee (input_line_pointer, type, words);
4426 if (t)
4427 input_line_pointer = t;
4428
4429 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4430 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4431 the bigendian 386. */
4432 for (wordP = words + prec - 1; prec--;)
4433 {
4434 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4435 litP += sizeof (LITTLENUM_TYPE);
4436 }
4437 return 0;
4438 }
4439 \f
4440 char output_invalid_buf[8];
4441
4442 static char *
4443 output_invalid (c)
4444 int c;
4445 {
4446 if (isprint (c))
4447 sprintf (output_invalid_buf, "'%c'", c);
4448 else
4449 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4450 return output_invalid_buf;
4451 }
4452
4453 /* REG_STRING starts *before* REGISTER_PREFIX. */
4454
4455 static const reg_entry *
4456 parse_register (reg_string, end_op)
4457 char *reg_string;
4458 char **end_op;
4459 {
4460 char *s = reg_string;
4461 char *p;
4462 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4463 const reg_entry *r;
4464
4465 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4466 if (*s == REGISTER_PREFIX)
4467 ++s;
4468
4469 if (is_space_char (*s))
4470 ++s;
4471
4472 p = reg_name_given;
4473 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
4474 {
4475 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
4476 return (const reg_entry *) NULL;
4477 s++;
4478 }
4479
4480 /* For naked regs, make sure that we are not dealing with an identifier.
4481 This prevents confusing an identifier like `eax_var' with register
4482 `eax'. */
4483 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4484 return (const reg_entry *) NULL;
4485
4486 *end_op = s;
4487
4488 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4489
4490 /* Handle floating point regs, allowing spaces in the (i) part. */
4491 if (r == i386_regtab /* %st is first entry of table */)
4492 {
4493 if (is_space_char (*s))
4494 ++s;
4495 if (*s == '(')
4496 {
4497 ++s;
4498 if (is_space_char (*s))
4499 ++s;
4500 if (*s >= '0' && *s <= '7')
4501 {
4502 r = &i386_float_regtab[*s - '0'];
4503 ++s;
4504 if (is_space_char (*s))
4505 ++s;
4506 if (*s == ')')
4507 {
4508 *end_op = s + 1;
4509 return r;
4510 }
4511 }
4512 /* We have "%st(" then garbage. */
4513 return (const reg_entry *) NULL;
4514 }
4515 }
4516
4517 return r;
4518 }
4519 \f
4520 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4521 const char *md_shortopts = "kVQ:sq";
4522 #else
4523 const char *md_shortopts = "q";
4524 #endif
4525
4526 struct option md_longopts[] = {
4527 #define OPTION_32 (OPTION_MD_BASE + 0)
4528 {"32", no_argument, NULL, OPTION_32},
4529 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4530 #define OPTION_64 (OPTION_MD_BASE + 1)
4531 {"64", no_argument, NULL, OPTION_64},
4532 #endif
4533 {NULL, no_argument, NULL, 0}
4534 };
4535 size_t md_longopts_size = sizeof (md_longopts);
4536
4537 int
4538 md_parse_option (c, arg)
4539 int c;
4540 char *arg ATTRIBUTE_UNUSED;
4541 {
4542 switch (c)
4543 {
4544 case 'q':
4545 quiet_warnings = 1;
4546 break;
4547
4548 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4549 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4550 should be emitted or not. FIXME: Not implemented. */
4551 case 'Q':
4552 break;
4553
4554 /* -V: SVR4 argument to print version ID. */
4555 case 'V':
4556 print_version_id ();
4557 break;
4558
4559 /* -k: Ignore for FreeBSD compatibility. */
4560 case 'k':
4561 break;
4562
4563 case 's':
4564 /* -s: On i386 Solaris, this tells the native assembler to use
4565 .stab instead of .stab.excl. We always use .stab anyhow. */
4566 break;
4567
4568 case OPTION_64:
4569 {
4570 const char **list, **l;
4571
4572 list = bfd_target_list ();
4573 for (l = list; *l != NULL; l++)
4574 if (strcmp (*l, "elf64-x86-64") == 0)
4575 {
4576 default_arch = "x86_64";
4577 break;
4578 }
4579 if (*l == NULL)
4580 as_fatal (_("No compiled in support for x86_64"));
4581 free (list);
4582 }
4583 break;
4584 #endif
4585
4586 case OPTION_32:
4587 default_arch = "i386";
4588 break;
4589
4590 default:
4591 return 0;
4592 }
4593 return 1;
4594 }
4595
4596 void
4597 md_show_usage (stream)
4598 FILE *stream;
4599 {
4600 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4601 fprintf (stream, _("\
4602 -Q ignored\n\
4603 -V print assembler version number\n\
4604 -k ignored\n\
4605 -q quieten some warnings\n\
4606 -s ignored\n"));
4607 #else
4608 fprintf (stream, _("\
4609 -q quieten some warnings\n"));
4610 #endif
4611 }
4612
4613 #ifdef BFD_ASSEMBLER
4614 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
4615 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
4616
4617 /* Pick the target format to use. */
4618
4619 const char *
4620 i386_target_format ()
4621 {
4622 if (!strcmp (default_arch, "x86_64"))
4623 set_code_flag (CODE_64BIT);
4624 else if (!strcmp (default_arch, "i386"))
4625 set_code_flag (CODE_32BIT);
4626 else
4627 as_fatal (_("Unknown architecture"));
4628 switch (OUTPUT_FLAVOR)
4629 {
4630 #ifdef OBJ_MAYBE_AOUT
4631 case bfd_target_aout_flavour:
4632 return AOUT_TARGET_FORMAT;
4633 #endif
4634 #ifdef OBJ_MAYBE_COFF
4635 case bfd_target_coff_flavour:
4636 return "coff-i386";
4637 #endif
4638 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
4639 case bfd_target_elf_flavour:
4640 {
4641 if (flag_code == CODE_64BIT)
4642 use_rela_relocations = 1;
4643 return flag_code == CODE_64BIT ? "elf64-x86-64" : "elf32-i386";
4644 }
4645 #endif
4646 default:
4647 abort ();
4648 return NULL;
4649 }
4650 }
4651
4652 #endif /* OBJ_MAYBE_ more than one */
4653 #endif /* BFD_ASSEMBLER */
4654 \f
4655 symbolS *
4656 md_undefined_symbol (name)
4657 char *name;
4658 {
4659 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
4660 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
4661 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
4662 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
4663 {
4664 if (!GOT_symbol)
4665 {
4666 if (symbol_find (name))
4667 as_bad (_("GOT already in symbol table"));
4668 GOT_symbol = symbol_new (name, undefined_section,
4669 (valueT) 0, &zero_address_frag);
4670 };
4671 return GOT_symbol;
4672 }
4673 return 0;
4674 }
4675
4676 /* Round up a section size to the appropriate boundary. */
4677
4678 valueT
4679 md_section_align (segment, size)
4680 segT segment ATTRIBUTE_UNUSED;
4681 valueT size;
4682 {
4683 #ifdef BFD_ASSEMBLER
4684 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4685 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
4686 {
4687 /* For a.out, force the section size to be aligned. If we don't do
4688 this, BFD will align it for us, but it will not write out the
4689 final bytes of the section. This may be a bug in BFD, but it is
4690 easier to fix it here since that is how the other a.out targets
4691 work. */
4692 int align;
4693
4694 align = bfd_get_section_alignment (stdoutput, segment);
4695 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
4696 }
4697 #endif
4698 #endif
4699
4700 return size;
4701 }
4702
4703 /* On the i386, PC-relative offsets are relative to the start of the
4704 next instruction. That is, the address of the offset, plus its
4705 size, since the offset is always the last part of the insn. */
4706
4707 long
4708 md_pcrel_from (fixP)
4709 fixS *fixP;
4710 {
4711 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
4712 }
4713
4714 #ifndef I386COFF
4715
4716 static void
4717 s_bss (ignore)
4718 int ignore ATTRIBUTE_UNUSED;
4719 {
4720 register int temp;
4721
4722 temp = get_absolute_expression ();
4723 subseg_set (bss_section, (subsegT) temp);
4724 demand_empty_rest_of_line ();
4725 }
4726
4727 #endif
4728
4729 #ifdef BFD_ASSEMBLER
4730
4731 void
4732 i386_validate_fix (fixp)
4733 fixS *fixp;
4734 {
4735 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
4736 {
4737 /* GOTOFF relocation are nonsense in 64bit mode. */
4738 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
4739 {
4740 if (flag_code != CODE_64BIT)
4741 abort ();
4742 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
4743 }
4744 else
4745 {
4746 if (flag_code == CODE_64BIT)
4747 abort ();
4748 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
4749 }
4750 fixp->fx_subsy = 0;
4751 }
4752 }
4753
4754 arelent *
4755 tc_gen_reloc (section, fixp)
4756 asection *section ATTRIBUTE_UNUSED;
4757 fixS *fixp;
4758 {
4759 arelent *rel;
4760 bfd_reloc_code_real_type code;
4761
4762 switch (fixp->fx_r_type)
4763 {
4764 case BFD_RELOC_X86_64_PLT32:
4765 case BFD_RELOC_X86_64_GOT32:
4766 case BFD_RELOC_X86_64_GOTPCREL:
4767 case BFD_RELOC_386_PLT32:
4768 case BFD_RELOC_386_GOT32:
4769 case BFD_RELOC_386_GOTOFF:
4770 case BFD_RELOC_386_GOTPC:
4771 case BFD_RELOC_X86_64_32S:
4772 case BFD_RELOC_RVA:
4773 case BFD_RELOC_VTABLE_ENTRY:
4774 case BFD_RELOC_VTABLE_INHERIT:
4775 code = fixp->fx_r_type;
4776 break;
4777 default:
4778 if (fixp->fx_pcrel)
4779 {
4780 switch (fixp->fx_size)
4781 {
4782 default:
4783 as_bad (_("can not do %d byte pc-relative relocation"),
4784 fixp->fx_size);
4785 code = BFD_RELOC_32_PCREL;
4786 break;
4787 case 1: code = BFD_RELOC_8_PCREL; break;
4788 case 2: code = BFD_RELOC_16_PCREL; break;
4789 case 4: code = BFD_RELOC_32_PCREL; break;
4790 }
4791 }
4792 else
4793 {
4794 switch (fixp->fx_size)
4795 {
4796 default:
4797 as_bad (_("can not do %d byte relocation"), fixp->fx_size);
4798 code = BFD_RELOC_32;
4799 break;
4800 case 1: code = BFD_RELOC_8; break;
4801 case 2: code = BFD_RELOC_16; break;
4802 case 4: code = BFD_RELOC_32; break;
4803 case 8: code = BFD_RELOC_64; break;
4804 }
4805 }
4806 break;
4807 }
4808
4809 if (code == BFD_RELOC_32
4810 && GOT_symbol
4811 && fixp->fx_addsy == GOT_symbol)
4812 {
4813 /* We don't support GOTPC on 64bit targets. */
4814 if (flag_code == CODE_64BIT)
4815 abort ();
4816 code = BFD_RELOC_386_GOTPC;
4817 }
4818
4819 rel = (arelent *) xmalloc (sizeof (arelent));
4820 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
4821 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
4822
4823 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
4824 if (!use_rela_relocations)
4825 {
4826 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
4827 vtable entry to be used in the relocation's section offset. */
4828 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
4829 rel->address = fixp->fx_offset;
4830
4831 if (fixp->fx_pcrel)
4832 rel->addend = fixp->fx_addnumber;
4833 else
4834 rel->addend = 0;
4835 }
4836 /* Use the rela in 64bit mode. */
4837 else
4838 {
4839 rel->addend = fixp->fx_offset;
4840 if (fixp->fx_pcrel)
4841 rel->addend -= fixp->fx_size;
4842 }
4843
4844 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
4845 if (rel->howto == NULL)
4846 {
4847 as_bad_where (fixp->fx_file, fixp->fx_line,
4848 _("cannot represent relocation type %s"),
4849 bfd_get_reloc_code_name (code));
4850 /* Set howto to a garbage value so that we can keep going. */
4851 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
4852 assert (rel->howto != NULL);
4853 }
4854
4855 return rel;
4856 }
4857
4858 #else /* ! BFD_ASSEMBLER */
4859
4860 #if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
4861 void
4862 tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
4863 char *where;
4864 fixS *fixP;
4865 relax_addressT segment_address_in_file;
4866 {
4867 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
4868 Out: GNU LD relocation length code: 0, 1, or 2. */
4869
4870 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
4871 long r_symbolnum;
4872
4873 know (fixP->fx_addsy != NULL);
4874
4875 md_number_to_chars (where,
4876 (valueT) (fixP->fx_frag->fr_address
4877 + fixP->fx_where - segment_address_in_file),
4878 4);
4879
4880 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
4881 ? S_GET_TYPE (fixP->fx_addsy)
4882 : fixP->fx_addsy->sy_number);
4883
4884 where[6] = (r_symbolnum >> 16) & 0x0ff;
4885 where[5] = (r_symbolnum >> 8) & 0x0ff;
4886 where[4] = r_symbolnum & 0x0ff;
4887 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
4888 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
4889 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
4890 }
4891
4892 #endif /* OBJ_AOUT or OBJ_BOUT. */
4893
4894 #if defined (I386COFF)
4895
4896 short
4897 tc_coff_fix2rtype (fixP)
4898 fixS *fixP;
4899 {
4900 if (fixP->fx_r_type == R_IMAGEBASE)
4901 return R_IMAGEBASE;
4902
4903 return (fixP->fx_pcrel ?
4904 (fixP->fx_size == 1 ? R_PCRBYTE :
4905 fixP->fx_size == 2 ? R_PCRWORD :
4906 R_PCRLONG) :
4907 (fixP->fx_size == 1 ? R_RELBYTE :
4908 fixP->fx_size == 2 ? R_RELWORD :
4909 R_DIR32));
4910 }
4911
4912 int
4913 tc_coff_sizemachdep (frag)
4914 fragS *frag;
4915 {
4916 if (frag->fr_next)
4917 return (frag->fr_next->fr_address - frag->fr_address);
4918 else
4919 return 0;
4920 }
4921
4922 #endif /* I386COFF */
4923
4924 #endif /* ! BFD_ASSEMBLER */
4925 \f
4926 /* Parse operands using Intel syntax. This implements a recursive descent
4927 parser based on the BNF grammar published in Appendix B of the MASM 6.1
4928 Programmer's Guide.
4929
4930 FIXME: We do not recognize the full operand grammar defined in the MASM
4931 documentation. In particular, all the structure/union and
4932 high-level macro operands are missing.
4933
4934 Uppercase words are terminals, lower case words are non-terminals.
4935 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
4936 bars '|' denote choices. Most grammar productions are implemented in
4937 functions called 'intel_<production>'.
4938
4939 Initial production is 'expr'.
4940
4941 addOp + | -
4942
4943 alpha [a-zA-Z]
4944
4945 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
4946
4947 constant digits [[ radixOverride ]]
4948
4949 dataType BYTE | WORD | DWORD | QWORD | XWORD
4950
4951 digits decdigit
4952 | digits decdigit
4953 | digits hexdigit
4954
4955 decdigit [0-9]
4956
4957 e05 e05 addOp e06
4958 | e06
4959
4960 e06 e06 mulOp e09
4961 | e09
4962
4963 e09 OFFSET e10
4964 | e09 PTR e10
4965 | e09 : e10
4966 | e10
4967
4968 e10 e10 [ expr ]
4969 | e11
4970
4971 e11 ( expr )
4972 | [ expr ]
4973 | constant
4974 | dataType
4975 | id
4976 | $
4977 | register
4978
4979 => expr SHORT e05
4980 | e05
4981
4982 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
4983 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
4984
4985 hexdigit a | b | c | d | e | f
4986 | A | B | C | D | E | F
4987
4988 id alpha
4989 | id alpha
4990 | id decdigit
4991
4992 mulOp * | / | MOD
4993
4994 quote " | '
4995
4996 register specialRegister
4997 | gpRegister
4998 | byteRegister
4999
5000 segmentRegister CS | DS | ES | FS | GS | SS
5001
5002 specialRegister CR0 | CR2 | CR3
5003 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
5004 | TR3 | TR4 | TR5 | TR6 | TR7
5005
5006 We simplify the grammar in obvious places (e.g., register parsing is
5007 done by calling parse_register) and eliminate immediate left recursion
5008 to implement a recursive-descent parser.
5009
5010 expr SHORT e05
5011 | e05
5012
5013 e05 e06 e05'
5014
5015 e05' addOp e06 e05'
5016 | Empty
5017
5018 e06 e09 e06'
5019
5020 e06' mulOp e09 e06'
5021 | Empty
5022
5023 e09 OFFSET e10 e09'
5024 | e10 e09'
5025
5026 e09' PTR e10 e09'
5027 | : e10 e09'
5028 | Empty
5029
5030 e10 e11 e10'
5031
5032 e10' [ expr ] e10'
5033 | Empty
5034
5035 e11 ( expr )
5036 | [ expr ]
5037 | BYTE
5038 | WORD
5039 | DWORD
5040 | QWORD
5041 | XWORD
5042 | .
5043 | $
5044 | register
5045 | id
5046 | constant */
5047
5048 /* Parsing structure for the intel syntax parser. Used to implement the
5049 semantic actions for the operand grammar. */
5050 struct intel_parser_s
5051 {
5052 char *op_string; /* The string being parsed. */
5053 int got_a_float; /* Whether the operand is a float. */
5054 int op_modifier; /* Operand modifier. */
5055 int is_mem; /* 1 if operand is memory reference. */
5056 const reg_entry *reg; /* Last register reference found. */
5057 char *disp; /* Displacement string being built. */
5058 };
5059
5060 static struct intel_parser_s intel_parser;
5061
5062 /* Token structure for parsing intel syntax. */
5063 struct intel_token
5064 {
5065 int code; /* Token code. */
5066 const reg_entry *reg; /* Register entry for register tokens. */
5067 char *str; /* String representation. */
5068 };
5069
5070 static struct intel_token cur_token, prev_token;
5071
5072 /* Token codes for the intel parser. Since T_SHORT is already used
5073 by COFF, undefine it first to prevent a warning. */
5074 #define T_NIL -1
5075 #define T_CONST 1
5076 #define T_REG 2
5077 #define T_BYTE 3
5078 #define T_WORD 4
5079 #define T_DWORD 5
5080 #define T_QWORD 6
5081 #define T_XWORD 7
5082 #undef T_SHORT
5083 #define T_SHORT 8
5084 #define T_OFFSET 9
5085 #define T_PTR 10
5086 #define T_ID 11
5087
5088 /* Prototypes for intel parser functions. */
5089 static int intel_match_token PARAMS ((int code));
5090 static void intel_get_token PARAMS ((void));
5091 static void intel_putback_token PARAMS ((void));
5092 static int intel_expr PARAMS ((void));
5093 static int intel_e05 PARAMS ((void));
5094 static int intel_e05_1 PARAMS ((void));
5095 static int intel_e06 PARAMS ((void));
5096 static int intel_e06_1 PARAMS ((void));
5097 static int intel_e09 PARAMS ((void));
5098 static int intel_e09_1 PARAMS ((void));
5099 static int intel_e10 PARAMS ((void));
5100 static int intel_e10_1 PARAMS ((void));
5101 static int intel_e11 PARAMS ((void));
5102
5103 static int
5104 i386_intel_operand (operand_string, got_a_float)
5105 char *operand_string;
5106 int got_a_float;
5107 {
5108 int ret;
5109 char *p;
5110
5111 /* Initialize token holders. */
5112 cur_token.code = prev_token.code = T_NIL;
5113 cur_token.reg = prev_token.reg = NULL;
5114 cur_token.str = prev_token.str = NULL;
5115
5116 /* Initialize parser structure. */
5117 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
5118 if (p == NULL)
5119 abort ();
5120 strcpy (intel_parser.op_string, operand_string);
5121 intel_parser.got_a_float = got_a_float;
5122 intel_parser.op_modifier = -1;
5123 intel_parser.is_mem = 0;
5124 intel_parser.reg = NULL;
5125 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
5126 if (intel_parser.disp == NULL)
5127 abort ();
5128 intel_parser.disp[0] = '\0';
5129
5130 /* Read the first token and start the parser. */
5131 intel_get_token ();
5132 ret = intel_expr ();
5133
5134 if (ret)
5135 {
5136 /* If we found a memory reference, hand it over to i386_displacement
5137 to fill in the rest of the operand fields. */
5138 if (intel_parser.is_mem)
5139 {
5140 if ((i.mem_operands == 1
5141 && (current_templates->start->opcode_modifier & IsString) == 0)
5142 || i.mem_operands == 2)
5143 {
5144 as_bad (_("too many memory references for '%s'"),
5145 current_templates->start->name);
5146 ret = 0;
5147 }
5148 else
5149 {
5150 char *s = intel_parser.disp;
5151 i.mem_operands++;
5152
5153 /* Add the displacement expression. */
5154 if (*s != '\0')
5155 ret = i386_displacement (s, s + strlen (s))
5156 && i386_index_check (s);
5157 }
5158 }
5159
5160 /* Constant and OFFSET expressions are handled by i386_immediate. */
5161 else if (intel_parser.op_modifier == OFFSET_FLAT
5162 || intel_parser.reg == NULL)
5163 ret = i386_immediate (intel_parser.disp);
5164 }
5165
5166 free (p);
5167 free (intel_parser.disp);
5168
5169 return ret;
5170 }
5171
5172 /* expr SHORT e05
5173 | e05 */
5174 static int
5175 intel_expr ()
5176 {
5177 /* expr SHORT e05 */
5178 if (cur_token.code == T_SHORT)
5179 {
5180 intel_parser.op_modifier = SHORT;
5181 intel_match_token (T_SHORT);
5182
5183 return (intel_e05 ());
5184 }
5185
5186 /* expr e05 */
5187 else
5188 return intel_e05 ();
5189 }
5190
5191 /* e05 e06 e05'
5192
5193 e05' addOp e06 e05'
5194 | Empty */
5195 static int
5196 intel_e05 ()
5197 {
5198 return (intel_e06 () && intel_e05_1 ());
5199 }
5200
5201 static int
5202 intel_e05_1 ()
5203 {
5204 /* e05' addOp e06 e05' */
5205 if (cur_token.code == '+' || cur_token.code == '-')
5206 {
5207 strcat (intel_parser.disp, cur_token.str);
5208 intel_match_token (cur_token.code);
5209
5210 return (intel_e06 () && intel_e05_1 ());
5211 }
5212
5213 /* e05' Empty */
5214 else
5215 return 1;
5216 }
5217
5218 /* e06 e09 e06'
5219
5220 e06' mulOp e09 e06'
5221 | Empty */
5222 static int
5223 intel_e06 ()
5224 {
5225 return (intel_e09 () && intel_e06_1 ());
5226 }
5227
5228 static int
5229 intel_e06_1 ()
5230 {
5231 /* e06' mulOp e09 e06' */
5232 if (cur_token.code == '*' || cur_token.code == '/')
5233 {
5234 strcat (intel_parser.disp, cur_token.str);
5235 intel_match_token (cur_token.code);
5236
5237 return (intel_e09 () && intel_e06_1 ());
5238 }
5239
5240 /* e06' Empty */
5241 else
5242 return 1;
5243 }
5244
5245 /* e09 OFFSET e10 e09'
5246 | e10 e09'
5247
5248 e09' PTR e10 e09'
5249 | : e10 e09'
5250 | Empty */
5251 static int
5252 intel_e09 ()
5253 {
5254 /* e09 OFFSET e10 e09' */
5255 if (cur_token.code == T_OFFSET)
5256 {
5257 intel_parser.is_mem = 0;
5258 intel_parser.op_modifier = OFFSET_FLAT;
5259 intel_match_token (T_OFFSET);
5260
5261 return (intel_e10 () && intel_e09_1 ());
5262 }
5263
5264 /* e09 e10 e09' */
5265 else
5266 return (intel_e10 () && intel_e09_1 ());
5267 }
5268
5269 static int
5270 intel_e09_1 ()
5271 {
5272 /* e09' PTR e10 e09' */
5273 if (cur_token.code == T_PTR)
5274 {
5275 if (prev_token.code == T_BYTE)
5276 i.suffix = BYTE_MNEM_SUFFIX;
5277
5278 else if (prev_token.code == T_WORD)
5279 {
5280 if (intel_parser.got_a_float == 2) /* "fi..." */
5281 i.suffix = SHORT_MNEM_SUFFIX;
5282 else
5283 i.suffix = WORD_MNEM_SUFFIX;
5284 }
5285
5286 else if (prev_token.code == T_DWORD)
5287 {
5288 if (intel_parser.got_a_float == 1) /* "f..." */
5289 i.suffix = SHORT_MNEM_SUFFIX;
5290 else
5291 i.suffix = LONG_MNEM_SUFFIX;
5292 }
5293
5294 else if (prev_token.code == T_QWORD)
5295 {
5296 if (intel_parser.got_a_float == 1) /* "f..." */
5297 i.suffix = LONG_MNEM_SUFFIX;
5298 else
5299 i.suffix = QWORD_MNEM_SUFFIX;
5300 }
5301
5302 else if (prev_token.code == T_XWORD)
5303 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5304
5305 else
5306 {
5307 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
5308 return 0;
5309 }
5310
5311 intel_match_token (T_PTR);
5312
5313 return (intel_e10 () && intel_e09_1 ());
5314 }
5315
5316 /* e09 : e10 e09' */
5317 else if (cur_token.code == ':')
5318 {
5319 /* Mark as a memory operand only if it's not already known to be an
5320 offset expression. */
5321 if (intel_parser.op_modifier != OFFSET_FLAT)
5322 intel_parser.is_mem = 1;
5323
5324 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5325 }
5326
5327 /* e09' Empty */
5328 else
5329 return 1;
5330 }
5331
5332 /* e10 e11 e10'
5333
5334 e10' [ expr ] e10'
5335 | Empty */
5336 static int
5337 intel_e10 ()
5338 {
5339 return (intel_e11 () && intel_e10_1 ());
5340 }
5341
5342 static int
5343 intel_e10_1 ()
5344 {
5345 /* e10' [ expr ] e10' */
5346 if (cur_token.code == '[')
5347 {
5348 intel_match_token ('[');
5349
5350 /* Mark as a memory operand only if it's not already known to be an
5351 offset expression. If it's an offset expression, we need to keep
5352 the brace in. */
5353 if (intel_parser.op_modifier != OFFSET_FLAT)
5354 intel_parser.is_mem = 1;
5355 else
5356 strcat (intel_parser.disp, "[");
5357
5358 /* Add a '+' to the displacement string if necessary. */
5359 if (*intel_parser.disp != '\0'
5360 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5361 strcat (intel_parser.disp, "+");
5362
5363 if (intel_expr () && intel_match_token (']'))
5364 {
5365 /* Preserve brackets when the operand is an offset expression. */
5366 if (intel_parser.op_modifier == OFFSET_FLAT)
5367 strcat (intel_parser.disp, "]");
5368
5369 return intel_e10_1 ();
5370 }
5371 else
5372 return 0;
5373 }
5374
5375 /* e10' Empty */
5376 else
5377 return 1;
5378 }
5379
5380 /* e11 ( expr )
5381 | [ expr ]
5382 | BYTE
5383 | WORD
5384 | DWORD
5385 | QWORD
5386 | XWORD
5387 | $
5388 | .
5389 | register
5390 | id
5391 | constant */
5392 static int
5393 intel_e11 ()
5394 {
5395 /* e11 ( expr ) */
5396 if (cur_token.code == '(')
5397 {
5398 intel_match_token ('(');
5399 strcat (intel_parser.disp, "(");
5400
5401 if (intel_expr () && intel_match_token (')'))
5402 {
5403 strcat (intel_parser.disp, ")");
5404 return 1;
5405 }
5406 else
5407 return 0;
5408 }
5409
5410 /* e11 [ expr ] */
5411 else if (cur_token.code == '[')
5412 {
5413 intel_match_token ('[');
5414
5415 /* Mark as a memory operand only if it's not already known to be an
5416 offset expression. If it's an offset expression, we need to keep
5417 the brace in. */
5418 if (intel_parser.op_modifier != OFFSET_FLAT)
5419 intel_parser.is_mem = 1;
5420 else
5421 strcat (intel_parser.disp, "[");
5422
5423 /* Operands for jump/call inside brackets denote absolute addresses. */
5424 if (current_templates->start->opcode_modifier & Jump
5425 || current_templates->start->opcode_modifier & JumpDword
5426 || current_templates->start->opcode_modifier & JumpByte
5427 || current_templates->start->opcode_modifier & JumpInterSegment)
5428 i.types[this_operand] |= JumpAbsolute;
5429
5430 /* Add a '+' to the displacement string if necessary. */
5431 if (*intel_parser.disp != '\0'
5432 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5433 strcat (intel_parser.disp, "+");
5434
5435 if (intel_expr () && intel_match_token (']'))
5436 {
5437 /* Preserve brackets when the operand is an offset expression. */
5438 if (intel_parser.op_modifier == OFFSET_FLAT)
5439 strcat (intel_parser.disp, "]");
5440
5441 return 1;
5442 }
5443 else
5444 return 0;
5445 }
5446
5447 /* e11 BYTE
5448 | WORD
5449 | DWORD
5450 | QWORD
5451 | XWORD */
5452 else if (cur_token.code == T_BYTE
5453 || cur_token.code == T_WORD
5454 || cur_token.code == T_DWORD
5455 || cur_token.code == T_QWORD
5456 || cur_token.code == T_XWORD)
5457 {
5458 intel_match_token (cur_token.code);
5459
5460 return 1;
5461 }
5462
5463 /* e11 $
5464 | . */
5465 else if (cur_token.code == '$' || cur_token.code == '.')
5466 {
5467 strcat (intel_parser.disp, cur_token.str);
5468 intel_match_token (cur_token.code);
5469
5470 /* Mark as a memory operand only if it's not already known to be an
5471 offset expression. */
5472 if (intel_parser.op_modifier != OFFSET_FLAT)
5473 intel_parser.is_mem = 1;
5474
5475 return 1;
5476 }
5477
5478 /* e11 register */
5479 else if (cur_token.code == T_REG)
5480 {
5481 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5482
5483 intel_match_token (T_REG);
5484
5485 /* Check for segment change. */
5486 if (cur_token.code == ':')
5487 {
5488 if (reg->reg_type & (SReg2 | SReg3))
5489 {
5490 switch (reg->reg_num)
5491 {
5492 case 0:
5493 i.seg[i.mem_operands] = &es;
5494 break;
5495 case 1:
5496 i.seg[i.mem_operands] = &cs;
5497 break;
5498 case 2:
5499 i.seg[i.mem_operands] = &ss;
5500 break;
5501 case 3:
5502 i.seg[i.mem_operands] = &ds;
5503 break;
5504 case 4:
5505 i.seg[i.mem_operands] = &fs;
5506 break;
5507 case 5:
5508 i.seg[i.mem_operands] = &gs;
5509 break;
5510 }
5511 }
5512 else
5513 {
5514 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5515 return 0;
5516 }
5517 }
5518
5519 /* Not a segment register. Check for register scaling. */
5520 else if (cur_token.code == '*')
5521 {
5522 if (!intel_parser.is_mem)
5523 {
5524 as_bad (_("Register scaling only allowed in memory operands."));
5525 return 0;
5526 }
5527
5528 /* What follows must be a valid scale. */
5529 if (intel_match_token ('*')
5530 && strchr ("01248", *cur_token.str))
5531 {
5532 i.index_reg = reg;
5533 i.types[this_operand] |= BaseIndex;
5534
5535 /* Set the scale after setting the register (otherwise,
5536 i386_scale will complain) */
5537 i386_scale (cur_token.str);
5538 intel_match_token (T_CONST);
5539 }
5540 else
5541 {
5542 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5543 cur_token.str);
5544 return 0;
5545 }
5546 }
5547
5548 /* No scaling. If this is a memory operand, the register is either a
5549 base register (first occurrence) or an index register (second
5550 occurrence). */
5551 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
5552 {
5553 if (i.base_reg && i.index_reg)
5554 {
5555 as_bad (_("Too many register references in memory operand.\n"));
5556 return 0;
5557 }
5558
5559 if (i.base_reg == NULL)
5560 i.base_reg = reg;
5561 else
5562 i.index_reg = reg;
5563
5564 i.types[this_operand] |= BaseIndex;
5565 }
5566
5567 /* Offset modifier. Add the register to the displacement string to be
5568 parsed as an immediate expression after we're done. */
5569 else if (intel_parser.op_modifier == OFFSET_FLAT)
5570 strcat (intel_parser.disp, reg->reg_name);
5571
5572 /* It's neither base nor index nor offset. */
5573 else
5574 {
5575 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
5576 i.op[this_operand].regs = reg;
5577 i.reg_operands++;
5578 }
5579
5580 /* Since registers are not part of the displacement string (except
5581 when we're parsing offset operands), we may need to remove any
5582 preceding '+' from the displacement string. */
5583 if (*intel_parser.disp != '\0'
5584 && intel_parser.op_modifier != OFFSET_FLAT)
5585 {
5586 char *s = intel_parser.disp;
5587 s += strlen (s) - 1;
5588 if (*s == '+')
5589 *s = '\0';
5590 }
5591
5592 return 1;
5593 }
5594
5595 /* e11 id */
5596 else if (cur_token.code == T_ID)
5597 {
5598 /* Add the identifier to the displacement string. */
5599 strcat (intel_parser.disp, cur_token.str);
5600 intel_match_token (T_ID);
5601
5602 /* The identifier represents a memory reference only if it's not
5603 preceded by an offset modifier. */
5604 if (intel_parser.op_modifier != OFFSET_FLAT)
5605 intel_parser.is_mem = 1;
5606
5607 return 1;
5608 }
5609
5610 /* e11 constant */
5611 else if (cur_token.code == T_CONST
5612 || cur_token.code == '-'
5613 || cur_token.code == '+')
5614 {
5615 char *save_str;
5616
5617 /* Allow constants that start with `+' or `-'. */
5618 if (cur_token.code == '-' || cur_token.code == '+')
5619 {
5620 strcat (intel_parser.disp, cur_token.str);
5621 intel_match_token (cur_token.code);
5622 if (cur_token.code != T_CONST)
5623 {
5624 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
5625 cur_token.str);
5626 return 0;
5627 }
5628 }
5629
5630 save_str = (char *) malloc (strlen (cur_token.str) + 1);
5631 if (save_str == NULL)
5632 abort ();
5633 strcpy (save_str, cur_token.str);
5634
5635 /* Get the next token to check for register scaling. */
5636 intel_match_token (cur_token.code);
5637
5638 /* Check if this constant is a scaling factor for an index register. */
5639 if (cur_token.code == '*')
5640 {
5641 if (intel_match_token ('*') && cur_token.code == T_REG)
5642 {
5643 if (!intel_parser.is_mem)
5644 {
5645 as_bad (_("Register scaling only allowed in memory operands."));
5646 return 0;
5647 }
5648
5649 /* The constant is followed by `* reg', so it must be
5650 a valid scale. */
5651 if (strchr ("01248", *save_str))
5652 {
5653 i.index_reg = cur_token.reg;
5654 i.types[this_operand] |= BaseIndex;
5655
5656 /* Set the scale after setting the register (otherwise,
5657 i386_scale will complain) */
5658 i386_scale (save_str);
5659 intel_match_token (T_REG);
5660
5661 /* Since registers are not part of the displacement
5662 string, we may need to remove any preceding '+' from
5663 the displacement string. */
5664 if (*intel_parser.disp != '\0')
5665 {
5666 char *s = intel_parser.disp;
5667 s += strlen (s) - 1;
5668 if (*s == '+')
5669 *s = '\0';
5670 }
5671
5672 free (save_str);
5673
5674 return 1;
5675 }
5676 else
5677 return 0;
5678 }
5679
5680 /* The constant was not used for register scaling. Since we have
5681 already consumed the token following `*' we now need to put it
5682 back in the stream. */
5683 else
5684 intel_putback_token ();
5685 }
5686
5687 /* Add the constant to the displacement string. */
5688 strcat (intel_parser.disp, save_str);
5689 free (save_str);
5690
5691 return 1;
5692 }
5693
5694 as_bad (_("Unrecognized token '%s'"), cur_token.str);
5695 return 0;
5696 }
5697
5698 /* Match the given token against cur_token. If they match, read the next
5699 token from the operand string. */
5700 static int
5701 intel_match_token (code)
5702 int code;
5703 {
5704 if (cur_token.code == code)
5705 {
5706 intel_get_token ();
5707 return 1;
5708 }
5709 else
5710 {
5711 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
5712 return 0;
5713 }
5714 }
5715
5716 /* Read a new token from intel_parser.op_string and store it in cur_token. */
5717 static void
5718 intel_get_token ()
5719 {
5720 char *end_op;
5721 const reg_entry *reg;
5722 struct intel_token new_token;
5723
5724 new_token.code = T_NIL;
5725 new_token.reg = NULL;
5726 new_token.str = NULL;
5727
5728 /* Free the memory allocated to the previous token and move
5729 cur_token to prev_token. */
5730 if (prev_token.str)
5731 free (prev_token.str);
5732
5733 prev_token = cur_token;
5734
5735 /* Skip whitespace. */
5736 while (is_space_char (*intel_parser.op_string))
5737 intel_parser.op_string++;
5738
5739 /* Return an empty token if we find nothing else on the line. */
5740 if (*intel_parser.op_string == '\0')
5741 {
5742 cur_token = new_token;
5743 return;
5744 }
5745
5746 /* The new token cannot be larger than the remainder of the operand
5747 string. */
5748 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
5749 if (new_token.str == NULL)
5750 abort ();
5751 new_token.str[0] = '\0';
5752
5753 if (strchr ("0123456789", *intel_parser.op_string))
5754 {
5755 char *p = new_token.str;
5756 char *q = intel_parser.op_string;
5757 new_token.code = T_CONST;
5758
5759 /* Allow any kind of identifier char to encompass floating point and
5760 hexadecimal numbers. */
5761 while (is_identifier_char (*q))
5762 *p++ = *q++;
5763 *p = '\0';
5764
5765 /* Recognize special symbol names [0-9][bf]. */
5766 if (strlen (intel_parser.op_string) == 2
5767 && (intel_parser.op_string[1] == 'b'
5768 || intel_parser.op_string[1] == 'f'))
5769 new_token.code = T_ID;
5770 }
5771
5772 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
5773 {
5774 new_token.code = *intel_parser.op_string;
5775 new_token.str[0] = *intel_parser.op_string;
5776 new_token.str[1] = '\0';
5777 }
5778
5779 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
5780 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
5781 {
5782 new_token.code = T_REG;
5783 new_token.reg = reg;
5784
5785 if (*intel_parser.op_string == REGISTER_PREFIX)
5786 {
5787 new_token.str[0] = REGISTER_PREFIX;
5788 new_token.str[1] = '\0';
5789 }
5790
5791 strcat (new_token.str, reg->reg_name);
5792 }
5793
5794 else if (is_identifier_char (*intel_parser.op_string))
5795 {
5796 char *p = new_token.str;
5797 char *q = intel_parser.op_string;
5798
5799 /* A '.' or '$' followed by an identifier char is an identifier.
5800 Otherwise, it's operator '.' followed by an expression. */
5801 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
5802 {
5803 new_token.code = *q;
5804 new_token.str[0] = *q;
5805 new_token.str[1] = '\0';
5806 }
5807 else
5808 {
5809 while (is_identifier_char (*q) || *q == '@')
5810 *p++ = *q++;
5811 *p = '\0';
5812
5813 if (strcasecmp (new_token.str, "BYTE") == 0)
5814 new_token.code = T_BYTE;
5815
5816 else if (strcasecmp (new_token.str, "WORD") == 0)
5817 new_token.code = T_WORD;
5818
5819 else if (strcasecmp (new_token.str, "DWORD") == 0)
5820 new_token.code = T_DWORD;
5821
5822 else if (strcasecmp (new_token.str, "QWORD") == 0)
5823 new_token.code = T_QWORD;
5824
5825 else if (strcasecmp (new_token.str, "XWORD") == 0)
5826 new_token.code = T_XWORD;
5827
5828 else if (strcasecmp (new_token.str, "PTR") == 0)
5829 new_token.code = T_PTR;
5830
5831 else if (strcasecmp (new_token.str, "SHORT") == 0)
5832 new_token.code = T_SHORT;
5833
5834 else if (strcasecmp (new_token.str, "OFFSET") == 0)
5835 {
5836 new_token.code = T_OFFSET;
5837
5838 /* ??? This is not mentioned in the MASM grammar but gcc
5839 makes use of it with -mintel-syntax. OFFSET may be
5840 followed by FLAT: */
5841 if (strncasecmp (q, " FLAT:", 6) == 0)
5842 strcat (new_token.str, " FLAT:");
5843 }
5844
5845 /* ??? This is not mentioned in the MASM grammar. */
5846 else if (strcasecmp (new_token.str, "FLAT") == 0)
5847 new_token.code = T_OFFSET;
5848
5849 else
5850 new_token.code = T_ID;
5851 }
5852 }
5853
5854 else
5855 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
5856
5857 intel_parser.op_string += strlen (new_token.str);
5858 cur_token = new_token;
5859 }
5860
5861 /* Put cur_token back into the token stream and make cur_token point to
5862 prev_token. */
5863 static void
5864 intel_putback_token ()
5865 {
5866 intel_parser.op_string -= strlen (cur_token.str);
5867 free (cur_token.str);
5868 cur_token = prev_token;
5869
5870 /* Forget prev_token. */
5871 prev_token.code = T_NIL;
5872 prev_token.reg = NULL;
5873 prev_token.str = NULL;
5874 }
This page took 0.259115 seconds and 5 git commands to generate.