The VGATHER group of instructions requires that all three involved
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
4 2012
5 Free Software Foundation, Inc.
6
7 This file is part of GAS, the GNU Assembler.
8
9 GAS is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GAS is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GAS; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23
24 /* Intel 80386 machine specific gas.
25 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
26 x86_64 support by Jan Hubicka (jh@suse.cz)
27 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
28 Bugs & suggestions are completely welcome. This is free software.
29 Please help us make it better. */
30
31 #include "as.h"
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "dwarf2dbg.h"
35 #include "dw2gencfi.h"
36 #include "elf/x86-64.h"
37 #include "opcodes/i386-init.h"
38
39 #ifndef REGISTER_WARNINGS
40 #define REGISTER_WARNINGS 1
41 #endif
42
43 #ifndef INFER_ADDR_PREFIX
44 #define INFER_ADDR_PREFIX 1
45 #endif
46
47 #ifndef DEFAULT_ARCH
48 #define DEFAULT_ARCH "i386"
49 #endif
50
51 #ifndef INLINE
52 #if __GNUC__ >= 2
53 #define INLINE __inline__
54 #else
55 #define INLINE
56 #endif
57 #endif
58
59 /* Prefixes will be emitted in the order defined below.
60 WAIT_PREFIX must be the first prefix since FWAIT is really is an
61 instruction, and so must come before any prefixes.
62 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
63 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
64 #define WAIT_PREFIX 0
65 #define SEG_PREFIX 1
66 #define ADDR_PREFIX 2
67 #define DATA_PREFIX 3
68 #define REP_PREFIX 4
69 #define HLE_PREFIX REP_PREFIX
70 #define LOCK_PREFIX 5
71 #define REX_PREFIX 6 /* must come last. */
72 #define MAX_PREFIXES 7 /* max prefixes per opcode */
73
74 /* we define the syntax here (modulo base,index,scale syntax) */
75 #define REGISTER_PREFIX '%'
76 #define IMMEDIATE_PREFIX '$'
77 #define ABSOLUTE_PREFIX '*'
78
79 /* these are the instruction mnemonic suffixes in AT&T syntax or
80 memory operand size in Intel syntax. */
81 #define WORD_MNEM_SUFFIX 'w'
82 #define BYTE_MNEM_SUFFIX 'b'
83 #define SHORT_MNEM_SUFFIX 's'
84 #define LONG_MNEM_SUFFIX 'l'
85 #define QWORD_MNEM_SUFFIX 'q'
86 #define XMMWORD_MNEM_SUFFIX 'x'
87 #define YMMWORD_MNEM_SUFFIX 'y'
88 /* Intel Syntax. Use a non-ascii letter since since it never appears
89 in instructions. */
90 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
91
92 #define END_OF_INSN '\0'
93
94 /*
95 'templates' is for grouping together 'template' structures for opcodes
96 of the same name. This is only used for storing the insns in the grand
97 ole hash table of insns.
98 The templates themselves start at START and range up to (but not including)
99 END.
100 */
101 typedef struct
102 {
103 const insn_template *start;
104 const insn_template *end;
105 }
106 templates;
107
108 /* 386 operand encoding bytes: see 386 book for details of this. */
109 typedef struct
110 {
111 unsigned int regmem; /* codes register or memory operand */
112 unsigned int reg; /* codes register operand (or extended opcode) */
113 unsigned int mode; /* how to interpret regmem & reg */
114 }
115 modrm_byte;
116
117 /* x86-64 extension prefix. */
118 typedef int rex_byte;
119
120 /* 386 opcode byte to code indirect addressing. */
121 typedef struct
122 {
123 unsigned base;
124 unsigned index;
125 unsigned scale;
126 }
127 sib_byte;
128
129 /* x86 arch names, types and features */
130 typedef struct
131 {
132 const char *name; /* arch name */
133 unsigned int len; /* arch string length */
134 enum processor_type type; /* arch type */
135 i386_cpu_flags flags; /* cpu feature flags */
136 unsigned int skip; /* show_arch should skip this. */
137 unsigned int negated; /* turn off indicated flags. */
138 }
139 arch_entry;
140
141 static void update_code_flag (int, int);
142 static void set_code_flag (int);
143 static void set_16bit_gcc_code_flag (int);
144 static void set_intel_syntax (int);
145 static void set_intel_mnemonic (int);
146 static void set_allow_index_reg (int);
147 static void set_check (int);
148 static void set_cpu_arch (int);
149 #ifdef TE_PE
150 static void pe_directive_secrel (int);
151 #endif
152 static void signed_cons (int);
153 static char *output_invalid (int c);
154 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
155 const char *);
156 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
157 const char *);
158 static int i386_att_operand (char *);
159 static int i386_intel_operand (char *, int);
160 static int i386_intel_simplify (expressionS *);
161 static int i386_intel_parse_name (const char *, expressionS *);
162 static const reg_entry *parse_register (char *, char **);
163 static char *parse_insn (char *, char *);
164 static char *parse_operands (char *, const char *);
165 static void swap_operands (void);
166 static void swap_2_operands (int, int);
167 static void optimize_imm (void);
168 static void optimize_disp (void);
169 static const insn_template *match_template (void);
170 static int check_string (void);
171 static int process_suffix (void);
172 static int check_byte_reg (void);
173 static int check_long_reg (void);
174 static int check_qword_reg (void);
175 static int check_word_reg (void);
176 static int finalize_imm (void);
177 static int process_operands (void);
178 static const seg_entry *build_modrm_byte (void);
179 static void output_insn (void);
180 static void output_imm (fragS *, offsetT);
181 static void output_disp (fragS *, offsetT);
182 #ifndef I386COFF
183 static void s_bss (int);
184 #endif
185 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
186 static void handle_large_common (int small ATTRIBUTE_UNUSED);
187 #endif
188
189 static const char *default_arch = DEFAULT_ARCH;
190
191 /* VEX prefix. */
192 typedef struct
193 {
194 /* VEX prefix is either 2 byte or 3 byte. */
195 unsigned char bytes[3];
196 unsigned int length;
197 /* Destination or source register specifier. */
198 const reg_entry *register_specifier;
199 } vex_prefix;
200
201 /* 'md_assemble ()' gathers together information and puts it into a
202 i386_insn. */
203
204 union i386_op
205 {
206 expressionS *disps;
207 expressionS *imms;
208 const reg_entry *regs;
209 };
210
211 enum i386_error
212 {
213 operand_size_mismatch,
214 operand_type_mismatch,
215 register_type_mismatch,
216 number_of_operands_mismatch,
217 invalid_instruction_suffix,
218 bad_imm4,
219 old_gcc_only,
220 unsupported_with_intel_mnemonic,
221 unsupported_syntax,
222 unsupported,
223 invalid_vsib_address,
224 invalid_vector_register_set,
225 unsupported_vector_index_register
226 };
227
228 struct _i386_insn
229 {
230 /* TM holds the template for the insn were currently assembling. */
231 insn_template tm;
232
233 /* SUFFIX holds the instruction size suffix for byte, word, dword
234 or qword, if given. */
235 char suffix;
236
237 /* OPERANDS gives the number of given operands. */
238 unsigned int operands;
239
240 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
241 of given register, displacement, memory operands and immediate
242 operands. */
243 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
244
245 /* TYPES [i] is the type (see above #defines) which tells us how to
246 use OP[i] for the corresponding operand. */
247 i386_operand_type types[MAX_OPERANDS];
248
249 /* Displacement expression, immediate expression, or register for each
250 operand. */
251 union i386_op op[MAX_OPERANDS];
252
253 /* Flags for operands. */
254 unsigned int flags[MAX_OPERANDS];
255 #define Operand_PCrel 1
256
257 /* Relocation type for operand */
258 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
259
260 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
261 the base index byte below. */
262 const reg_entry *base_reg;
263 const reg_entry *index_reg;
264 unsigned int log2_scale_factor;
265
266 /* SEG gives the seg_entries of this insn. They are zero unless
267 explicit segment overrides are given. */
268 const seg_entry *seg[2];
269
270 /* PREFIX holds all the given prefix opcodes (usually null).
271 PREFIXES is the number of prefix opcodes. */
272 unsigned int prefixes;
273 unsigned char prefix[MAX_PREFIXES];
274
275 /* RM and SIB are the modrm byte and the sib byte where the
276 addressing modes of this insn are encoded. */
277 modrm_byte rm;
278 rex_byte rex;
279 sib_byte sib;
280 vex_prefix vex;
281
282 /* Swap operand in encoding. */
283 unsigned int swap_operand;
284
285 /* Prefer 8bit or 32bit displacement in encoding. */
286 enum
287 {
288 disp_encoding_default = 0,
289 disp_encoding_8bit,
290 disp_encoding_32bit
291 } disp_encoding;
292
293 /* Have HLE prefix. */
294 unsigned int have_hle;
295
296 /* Error message. */
297 enum i386_error error;
298 };
299
300 typedef struct _i386_insn i386_insn;
301
302 /* List of chars besides those in app.c:symbol_chars that can start an
303 operand. Used to prevent the scrubber eating vital white-space. */
304 const char extra_symbol_chars[] = "*%-(["
305 #ifdef LEX_AT
306 "@"
307 #endif
308 #ifdef LEX_QM
309 "?"
310 #endif
311 ;
312
313 #if (defined (TE_I386AIX) \
314 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
315 && !defined (TE_GNU) \
316 && !defined (TE_LINUX) \
317 && !defined (TE_NACL) \
318 && !defined (TE_NETWARE) \
319 && !defined (TE_FreeBSD) \
320 && !defined (TE_DragonFly) \
321 && !defined (TE_NetBSD)))
322 /* This array holds the chars that always start a comment. If the
323 pre-processor is disabled, these aren't very useful. The option
324 --divide will remove '/' from this list. */
325 const char *i386_comment_chars = "#/";
326 #define SVR4_COMMENT_CHARS 1
327 #define PREFIX_SEPARATOR '\\'
328
329 #else
330 const char *i386_comment_chars = "#";
331 #define PREFIX_SEPARATOR '/'
332 #endif
333
334 /* This array holds the chars that only start a comment at the beginning of
335 a line. If the line seems to have the form '# 123 filename'
336 .line and .file directives will appear in the pre-processed output.
337 Note that input_file.c hand checks for '#' at the beginning of the
338 first line of the input file. This is because the compiler outputs
339 #NO_APP at the beginning of its output.
340 Also note that comments started like this one will always work if
341 '/' isn't otherwise defined. */
342 const char line_comment_chars[] = "#/";
343
344 const char line_separator_chars[] = ";";
345
346 /* Chars that can be used to separate mant from exp in floating point
347 nums. */
348 const char EXP_CHARS[] = "eE";
349
350 /* Chars that mean this number is a floating point constant
351 As in 0f12.456
352 or 0d1.2345e12. */
353 const char FLT_CHARS[] = "fFdDxX";
354
355 /* Tables for lexical analysis. */
356 static char mnemonic_chars[256];
357 static char register_chars[256];
358 static char operand_chars[256];
359 static char identifier_chars[256];
360 static char digit_chars[256];
361
362 /* Lexical macros. */
363 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
364 #define is_operand_char(x) (operand_chars[(unsigned char) x])
365 #define is_register_char(x) (register_chars[(unsigned char) x])
366 #define is_space_char(x) ((x) == ' ')
367 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
368 #define is_digit_char(x) (digit_chars[(unsigned char) x])
369
370 /* All non-digit non-letter characters that may occur in an operand. */
371 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
372
373 /* md_assemble() always leaves the strings it's passed unaltered. To
374 effect this we maintain a stack of saved characters that we've smashed
375 with '\0's (indicating end of strings for various sub-fields of the
376 assembler instruction). */
377 static char save_stack[32];
378 static char *save_stack_p;
379 #define END_STRING_AND_SAVE(s) \
380 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
381 #define RESTORE_END_STRING(s) \
382 do { *(s) = *--save_stack_p; } while (0)
383
384 /* The instruction we're assembling. */
385 static i386_insn i;
386
387 /* Possible templates for current insn. */
388 static const templates *current_templates;
389
390 /* Per instruction expressionS buffers: max displacements & immediates. */
391 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
392 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
393
394 /* Current operand we are working on. */
395 static int this_operand = -1;
396
397 /* We support four different modes. FLAG_CODE variable is used to distinguish
398 these. */
399
400 enum flag_code {
401 CODE_32BIT,
402 CODE_16BIT,
403 CODE_64BIT };
404
405 static enum flag_code flag_code;
406 static unsigned int object_64bit;
407 static unsigned int disallow_64bit_reloc;
408 static int use_rela_relocations = 0;
409
410 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
411 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
412 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
413
414 /* The ELF ABI to use. */
415 enum x86_elf_abi
416 {
417 I386_ABI,
418 X86_64_ABI,
419 X86_64_X32_ABI
420 };
421
422 static enum x86_elf_abi x86_elf_abi = I386_ABI;
423 #endif
424
425 /* The names used to print error messages. */
426 static const char *flag_code_names[] =
427 {
428 "32",
429 "16",
430 "64"
431 };
432
433 /* 1 for intel syntax,
434 0 if att syntax. */
435 static int intel_syntax = 0;
436
437 /* 1 for intel mnemonic,
438 0 if att mnemonic. */
439 static int intel_mnemonic = !SYSV386_COMPAT;
440
441 /* 1 if support old (<= 2.8.1) versions of gcc. */
442 static int old_gcc = OLDGCC_COMPAT;
443
444 /* 1 if pseudo registers are permitted. */
445 static int allow_pseudo_reg = 0;
446
447 /* 1 if register prefix % not required. */
448 static int allow_naked_reg = 0;
449
450 /* 1 if pseudo index register, eiz/riz, is allowed . */
451 static int allow_index_reg = 0;
452
453 static enum check_kind
454 {
455 check_none = 0,
456 check_warning,
457 check_error
458 }
459 sse_check, operand_check = check_warning;
460
461 /* Register prefix used for error message. */
462 static const char *register_prefix = "%";
463
464 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
465 leave, push, and pop instructions so that gcc has the same stack
466 frame as in 32 bit mode. */
467 static char stackop_size = '\0';
468
469 /* Non-zero to optimize code alignment. */
470 int optimize_align_code = 1;
471
472 /* Non-zero to quieten some warnings. */
473 static int quiet_warnings = 0;
474
475 /* CPU name. */
476 static const char *cpu_arch_name = NULL;
477 static char *cpu_sub_arch_name = NULL;
478
479 /* CPU feature flags. */
480 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
481
482 /* If we have selected a cpu we are generating instructions for. */
483 static int cpu_arch_tune_set = 0;
484
485 /* Cpu we are generating instructions for. */
486 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
487
488 /* CPU feature flags of cpu we are generating instructions for. */
489 static i386_cpu_flags cpu_arch_tune_flags;
490
491 /* CPU instruction set architecture used. */
492 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
493
494 /* CPU feature flags of instruction set architecture used. */
495 i386_cpu_flags cpu_arch_isa_flags;
496
497 /* If set, conditional jumps are not automatically promoted to handle
498 larger than a byte offset. */
499 static unsigned int no_cond_jump_promotion = 0;
500
501 /* Encode SSE instructions with VEX prefix. */
502 static unsigned int sse2avx;
503
504 /* Encode scalar AVX instructions with specific vector length. */
505 static enum
506 {
507 vex128 = 0,
508 vex256
509 } avxscalar;
510
511 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
512 static symbolS *GOT_symbol;
513
514 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
515 unsigned int x86_dwarf2_return_column;
516
517 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
518 int x86_cie_data_alignment;
519
520 /* Interface to relax_segment.
521 There are 3 major relax states for 386 jump insns because the
522 different types of jumps add different sizes to frags when we're
523 figuring out what sort of jump to choose to reach a given label. */
524
525 /* Types. */
526 #define UNCOND_JUMP 0
527 #define COND_JUMP 1
528 #define COND_JUMP86 2
529
530 /* Sizes. */
531 #define CODE16 1
532 #define SMALL 0
533 #define SMALL16 (SMALL | CODE16)
534 #define BIG 2
535 #define BIG16 (BIG | CODE16)
536
537 #ifndef INLINE
538 #ifdef __GNUC__
539 #define INLINE __inline__
540 #else
541 #define INLINE
542 #endif
543 #endif
544
545 #define ENCODE_RELAX_STATE(type, size) \
546 ((relax_substateT) (((type) << 2) | (size)))
547 #define TYPE_FROM_RELAX_STATE(s) \
548 ((s) >> 2)
549 #define DISP_SIZE_FROM_RELAX_STATE(s) \
550 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
551
552 /* This table is used by relax_frag to promote short jumps to long
553 ones where necessary. SMALL (short) jumps may be promoted to BIG
554 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
555 don't allow a short jump in a 32 bit code segment to be promoted to
556 a 16 bit offset jump because it's slower (requires data size
557 prefix), and doesn't work, unless the destination is in the bottom
558 64k of the code segment (The top 16 bits of eip are zeroed). */
559
560 const relax_typeS md_relax_table[] =
561 {
562 /* The fields are:
563 1) most positive reach of this state,
564 2) most negative reach of this state,
565 3) how many bytes this mode will have in the variable part of the frag
566 4) which index into the table to try if we can't fit into this one. */
567
568 /* UNCOND_JUMP states. */
569 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
570 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
571 /* dword jmp adds 4 bytes to frag:
572 0 extra opcode bytes, 4 displacement bytes. */
573 {0, 0, 4, 0},
574 /* word jmp adds 2 byte2 to frag:
575 0 extra opcode bytes, 2 displacement bytes. */
576 {0, 0, 2, 0},
577
578 /* COND_JUMP states. */
579 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
580 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
581 /* dword conditionals adds 5 bytes to frag:
582 1 extra opcode byte, 4 displacement bytes. */
583 {0, 0, 5, 0},
584 /* word conditionals add 3 bytes to frag:
585 1 extra opcode byte, 2 displacement bytes. */
586 {0, 0, 3, 0},
587
588 /* COND_JUMP86 states. */
589 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
590 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
591 /* dword conditionals adds 5 bytes to frag:
592 1 extra opcode byte, 4 displacement bytes. */
593 {0, 0, 5, 0},
594 /* word conditionals add 4 bytes to frag:
595 1 displacement byte and a 3 byte long branch insn. */
596 {0, 0, 4, 0}
597 };
598
599 static const arch_entry cpu_arch[] =
600 {
601 /* Do not replace the first two entries - i386_target_format()
602 relies on them being there in this order. */
603 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
604 CPU_GENERIC32_FLAGS, 0, 0 },
605 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
606 CPU_GENERIC64_FLAGS, 0, 0 },
607 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
608 CPU_NONE_FLAGS, 0, 0 },
609 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
610 CPU_I186_FLAGS, 0, 0 },
611 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
612 CPU_I286_FLAGS, 0, 0 },
613 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
614 CPU_I386_FLAGS, 0, 0 },
615 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
616 CPU_I486_FLAGS, 0, 0 },
617 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
618 CPU_I586_FLAGS, 0, 0 },
619 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
620 CPU_I686_FLAGS, 0, 0 },
621 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
622 CPU_I586_FLAGS, 0, 0 },
623 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
624 CPU_PENTIUMPRO_FLAGS, 0, 0 },
625 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
626 CPU_P2_FLAGS, 0, 0 },
627 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
628 CPU_P3_FLAGS, 0, 0 },
629 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
630 CPU_P4_FLAGS, 0, 0 },
631 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
632 CPU_CORE_FLAGS, 0, 0 },
633 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
634 CPU_NOCONA_FLAGS, 0, 0 },
635 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
636 CPU_CORE_FLAGS, 1, 0 },
637 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
638 CPU_CORE_FLAGS, 0, 0 },
639 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
640 CPU_CORE2_FLAGS, 1, 0 },
641 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
642 CPU_CORE2_FLAGS, 0, 0 },
643 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
644 CPU_COREI7_FLAGS, 0, 0 },
645 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
646 CPU_L1OM_FLAGS, 0, 0 },
647 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
648 CPU_K1OM_FLAGS, 0, 0 },
649 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
650 CPU_K6_FLAGS, 0, 0 },
651 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
652 CPU_K6_2_FLAGS, 0, 0 },
653 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
654 CPU_ATHLON_FLAGS, 0, 0 },
655 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
656 CPU_K8_FLAGS, 1, 0 },
657 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
658 CPU_K8_FLAGS, 0, 0 },
659 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
660 CPU_K8_FLAGS, 0, 0 },
661 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
662 CPU_AMDFAM10_FLAGS, 0, 0 },
663 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
664 CPU_BDVER1_FLAGS, 0, 0 },
665 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
666 CPU_BDVER2_FLAGS, 0, 0 },
667 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
668 CPU_8087_FLAGS, 0, 0 },
669 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
670 CPU_287_FLAGS, 0, 0 },
671 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
672 CPU_387_FLAGS, 0, 0 },
673 { STRING_COMMA_LEN (".no87"), PROCESSOR_UNKNOWN,
674 CPU_ANY87_FLAGS, 0, 1 },
675 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
676 CPU_MMX_FLAGS, 0, 0 },
677 { STRING_COMMA_LEN (".nommx"), PROCESSOR_UNKNOWN,
678 CPU_3DNOWA_FLAGS, 0, 1 },
679 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
680 CPU_SSE_FLAGS, 0, 0 },
681 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
682 CPU_SSE2_FLAGS, 0, 0 },
683 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
684 CPU_SSE3_FLAGS, 0, 0 },
685 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
686 CPU_SSSE3_FLAGS, 0, 0 },
687 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
688 CPU_SSE4_1_FLAGS, 0, 0 },
689 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
690 CPU_SSE4_2_FLAGS, 0, 0 },
691 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
692 CPU_SSE4_2_FLAGS, 0, 0 },
693 { STRING_COMMA_LEN (".nosse"), PROCESSOR_UNKNOWN,
694 CPU_ANY_SSE_FLAGS, 0, 1 },
695 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
696 CPU_AVX_FLAGS, 0, 0 },
697 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
698 CPU_AVX2_FLAGS, 0, 0 },
699 { STRING_COMMA_LEN (".noavx"), PROCESSOR_UNKNOWN,
700 CPU_ANY_AVX_FLAGS, 0, 1 },
701 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
702 CPU_VMX_FLAGS, 0, 0 },
703 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
704 CPU_VMFUNC_FLAGS, 0, 0 },
705 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
706 CPU_SMX_FLAGS, 0, 0 },
707 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
708 CPU_XSAVE_FLAGS, 0, 0 },
709 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
710 CPU_XSAVEOPT_FLAGS, 0, 0 },
711 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
712 CPU_AES_FLAGS, 0, 0 },
713 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
714 CPU_PCLMUL_FLAGS, 0, 0 },
715 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
716 CPU_PCLMUL_FLAGS, 1, 0 },
717 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
718 CPU_FSGSBASE_FLAGS, 0, 0 },
719 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
720 CPU_RDRND_FLAGS, 0, 0 },
721 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
722 CPU_F16C_FLAGS, 0, 0 },
723 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
724 CPU_BMI2_FLAGS, 0, 0 },
725 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
726 CPU_FMA_FLAGS, 0, 0 },
727 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
728 CPU_FMA4_FLAGS, 0, 0 },
729 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
730 CPU_XOP_FLAGS, 0, 0 },
731 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
732 CPU_LWP_FLAGS, 0, 0 },
733 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
734 CPU_MOVBE_FLAGS, 0, 0 },
735 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
736 CPU_EPT_FLAGS, 0, 0 },
737 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
738 CPU_LZCNT_FLAGS, 0, 0 },
739 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
740 CPU_HLE_FLAGS, 0, 0 },
741 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
742 CPU_RTM_FLAGS, 0, 0 },
743 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
744 CPU_INVPCID_FLAGS, 0, 0 },
745 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
746 CPU_CLFLUSH_FLAGS, 0, 0 },
747 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
748 CPU_NOP_FLAGS, 0, 0 },
749 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
750 CPU_SYSCALL_FLAGS, 0, 0 },
751 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
752 CPU_RDTSCP_FLAGS, 0, 0 },
753 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
754 CPU_3DNOW_FLAGS, 0, 0 },
755 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
756 CPU_3DNOWA_FLAGS, 0, 0 },
757 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
758 CPU_PADLOCK_FLAGS, 0, 0 },
759 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
760 CPU_SVME_FLAGS, 1, 0 },
761 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
762 CPU_SVME_FLAGS, 0, 0 },
763 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
764 CPU_SSE4A_FLAGS, 0, 0 },
765 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
766 CPU_ABM_FLAGS, 0, 0 },
767 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
768 CPU_BMI_FLAGS, 0, 0 },
769 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
770 CPU_TBM_FLAGS, 0, 0 },
771 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
772 CPU_ADX_FLAGS, 0, 0 },
773 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
774 CPU_RDSEED_FLAGS, 0, 0 },
775 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
776 CPU_PRFCHW_FLAGS, 0, 0 },
777 };
778
779 #ifdef I386COFF
780 /* Like s_lcomm_internal in gas/read.c but the alignment string
781 is allowed to be optional. */
782
783 static symbolS *
784 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
785 {
786 addressT align = 0;
787
788 SKIP_WHITESPACE ();
789
790 if (needs_align
791 && *input_line_pointer == ',')
792 {
793 align = parse_align (needs_align - 1);
794
795 if (align == (addressT) -1)
796 return NULL;
797 }
798 else
799 {
800 if (size >= 8)
801 align = 3;
802 else if (size >= 4)
803 align = 2;
804 else if (size >= 2)
805 align = 1;
806 else
807 align = 0;
808 }
809
810 bss_alloc (symbolP, size, align);
811 return symbolP;
812 }
813
814 static void
815 pe_lcomm (int needs_align)
816 {
817 s_comm_internal (needs_align * 2, pe_lcomm_internal);
818 }
819 #endif
820
821 const pseudo_typeS md_pseudo_table[] =
822 {
823 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
824 {"align", s_align_bytes, 0},
825 #else
826 {"align", s_align_ptwo, 0},
827 #endif
828 {"arch", set_cpu_arch, 0},
829 #ifndef I386COFF
830 {"bss", s_bss, 0},
831 #else
832 {"lcomm", pe_lcomm, 1},
833 #endif
834 {"ffloat", float_cons, 'f'},
835 {"dfloat", float_cons, 'd'},
836 {"tfloat", float_cons, 'x'},
837 {"value", cons, 2},
838 {"slong", signed_cons, 4},
839 {"noopt", s_ignore, 0},
840 {"optim", s_ignore, 0},
841 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
842 {"code16", set_code_flag, CODE_16BIT},
843 {"code32", set_code_flag, CODE_32BIT},
844 {"code64", set_code_flag, CODE_64BIT},
845 {"intel_syntax", set_intel_syntax, 1},
846 {"att_syntax", set_intel_syntax, 0},
847 {"intel_mnemonic", set_intel_mnemonic, 1},
848 {"att_mnemonic", set_intel_mnemonic, 0},
849 {"allow_index_reg", set_allow_index_reg, 1},
850 {"disallow_index_reg", set_allow_index_reg, 0},
851 {"sse_check", set_check, 0},
852 {"operand_check", set_check, 1},
853 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
854 {"largecomm", handle_large_common, 0},
855 #else
856 {"file", (void (*) (int)) dwarf2_directive_file, 0},
857 {"loc", dwarf2_directive_loc, 0},
858 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
859 #endif
860 #ifdef TE_PE
861 {"secrel32", pe_directive_secrel, 0},
862 #endif
863 {0, 0, 0}
864 };
865
866 /* For interface with expression (). */
867 extern char *input_line_pointer;
868
869 /* Hash table for instruction mnemonic lookup. */
870 static struct hash_control *op_hash;
871
872 /* Hash table for register lookup. */
873 static struct hash_control *reg_hash;
874 \f
875 void
876 i386_align_code (fragS *fragP, int count)
877 {
878 /* Various efficient no-op patterns for aligning code labels.
879 Note: Don't try to assemble the instructions in the comments.
880 0L and 0w are not legal. */
881 static const char f32_1[] =
882 {0x90}; /* nop */
883 static const char f32_2[] =
884 {0x66,0x90}; /* xchg %ax,%ax */
885 static const char f32_3[] =
886 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
887 static const char f32_4[] =
888 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
889 static const char f32_5[] =
890 {0x90, /* nop */
891 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
892 static const char f32_6[] =
893 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
894 static const char f32_7[] =
895 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
896 static const char f32_8[] =
897 {0x90, /* nop */
898 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
899 static const char f32_9[] =
900 {0x89,0xf6, /* movl %esi,%esi */
901 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
902 static const char f32_10[] =
903 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
904 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
905 static const char f32_11[] =
906 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
907 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
908 static const char f32_12[] =
909 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
910 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
911 static const char f32_13[] =
912 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
913 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
914 static const char f32_14[] =
915 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
916 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
917 static const char f16_3[] =
918 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
919 static const char f16_4[] =
920 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
921 static const char f16_5[] =
922 {0x90, /* nop */
923 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
924 static const char f16_6[] =
925 {0x89,0xf6, /* mov %si,%si */
926 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
927 static const char f16_7[] =
928 {0x8d,0x74,0x00, /* lea 0(%si),%si */
929 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
930 static const char f16_8[] =
931 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
932 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
933 static const char jump_31[] =
934 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
935 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
936 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
937 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
938 static const char *const f32_patt[] = {
939 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
940 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
941 };
942 static const char *const f16_patt[] = {
943 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
944 };
945 /* nopl (%[re]ax) */
946 static const char alt_3[] =
947 {0x0f,0x1f,0x00};
948 /* nopl 0(%[re]ax) */
949 static const char alt_4[] =
950 {0x0f,0x1f,0x40,0x00};
951 /* nopl 0(%[re]ax,%[re]ax,1) */
952 static const char alt_5[] =
953 {0x0f,0x1f,0x44,0x00,0x00};
954 /* nopw 0(%[re]ax,%[re]ax,1) */
955 static const char alt_6[] =
956 {0x66,0x0f,0x1f,0x44,0x00,0x00};
957 /* nopl 0L(%[re]ax) */
958 static const char alt_7[] =
959 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
960 /* nopl 0L(%[re]ax,%[re]ax,1) */
961 static const char alt_8[] =
962 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
963 /* nopw 0L(%[re]ax,%[re]ax,1) */
964 static const char alt_9[] =
965 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
966 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
967 static const char alt_10[] =
968 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
969 /* data16
970 nopw %cs:0L(%[re]ax,%[re]ax,1) */
971 static const char alt_long_11[] =
972 {0x66,
973 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
974 /* data16
975 data16
976 nopw %cs:0L(%[re]ax,%[re]ax,1) */
977 static const char alt_long_12[] =
978 {0x66,
979 0x66,
980 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
981 /* data16
982 data16
983 data16
984 nopw %cs:0L(%[re]ax,%[re]ax,1) */
985 static const char alt_long_13[] =
986 {0x66,
987 0x66,
988 0x66,
989 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
990 /* data16
991 data16
992 data16
993 data16
994 nopw %cs:0L(%[re]ax,%[re]ax,1) */
995 static const char alt_long_14[] =
996 {0x66,
997 0x66,
998 0x66,
999 0x66,
1000 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1001 /* data16
1002 data16
1003 data16
1004 data16
1005 data16
1006 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1007 static const char alt_long_15[] =
1008 {0x66,
1009 0x66,
1010 0x66,
1011 0x66,
1012 0x66,
1013 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1014 /* nopl 0(%[re]ax,%[re]ax,1)
1015 nopw 0(%[re]ax,%[re]ax,1) */
1016 static const char alt_short_11[] =
1017 {0x0f,0x1f,0x44,0x00,0x00,
1018 0x66,0x0f,0x1f,0x44,0x00,0x00};
1019 /* nopw 0(%[re]ax,%[re]ax,1)
1020 nopw 0(%[re]ax,%[re]ax,1) */
1021 static const char alt_short_12[] =
1022 {0x66,0x0f,0x1f,0x44,0x00,0x00,
1023 0x66,0x0f,0x1f,0x44,0x00,0x00};
1024 /* nopw 0(%[re]ax,%[re]ax,1)
1025 nopl 0L(%[re]ax) */
1026 static const char alt_short_13[] =
1027 {0x66,0x0f,0x1f,0x44,0x00,0x00,
1028 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1029 /* nopl 0L(%[re]ax)
1030 nopl 0L(%[re]ax) */
1031 static const char alt_short_14[] =
1032 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
1033 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1034 /* nopl 0L(%[re]ax)
1035 nopl 0L(%[re]ax,%[re]ax,1) */
1036 static const char alt_short_15[] =
1037 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
1038 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1039 static const char *const alt_short_patt[] = {
1040 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1041 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
1042 alt_short_14, alt_short_15
1043 };
1044 static const char *const alt_long_patt[] = {
1045 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1046 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
1047 alt_long_14, alt_long_15
1048 };
1049
1050 /* Only align for at least a positive non-zero boundary. */
1051 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1052 return;
1053
1054 /* We need to decide which NOP sequence to use for 32bit and
1055 64bit. When -mtune= is used:
1056
1057 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1058 PROCESSOR_GENERIC32, f32_patt will be used.
1059 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
1060 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_COREI7, and
1061 PROCESSOR_GENERIC64, alt_long_patt will be used.
1062 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
1063 PROCESSOR_AMDFAM10, and PROCESSOR_BD, alt_short_patt
1064 will be used.
1065
1066 When -mtune= isn't used, alt_long_patt will be used if
1067 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1068 be used.
1069
1070 When -march= or .arch is used, we can't use anything beyond
1071 cpu_arch_isa_flags. */
1072
1073 if (flag_code == CODE_16BIT)
1074 {
1075 if (count > 8)
1076 {
1077 memcpy (fragP->fr_literal + fragP->fr_fix,
1078 jump_31, count);
1079 /* Adjust jump offset. */
1080 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1081 }
1082 else
1083 memcpy (fragP->fr_literal + fragP->fr_fix,
1084 f16_patt[count - 1], count);
1085 }
1086 else
1087 {
1088 const char *const *patt = NULL;
1089
1090 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1091 {
1092 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1093 switch (cpu_arch_tune)
1094 {
1095 case PROCESSOR_UNKNOWN:
1096 /* We use cpu_arch_isa_flags to check if we SHOULD
1097 optimize with nops. */
1098 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1099 patt = alt_long_patt;
1100 else
1101 patt = f32_patt;
1102 break;
1103 case PROCESSOR_PENTIUM4:
1104 case PROCESSOR_NOCONA:
1105 case PROCESSOR_CORE:
1106 case PROCESSOR_CORE2:
1107 case PROCESSOR_COREI7:
1108 case PROCESSOR_L1OM:
1109 case PROCESSOR_K1OM:
1110 case PROCESSOR_GENERIC64:
1111 patt = alt_long_patt;
1112 break;
1113 case PROCESSOR_K6:
1114 case PROCESSOR_ATHLON:
1115 case PROCESSOR_K8:
1116 case PROCESSOR_AMDFAM10:
1117 case PROCESSOR_BD:
1118 patt = alt_short_patt;
1119 break;
1120 case PROCESSOR_I386:
1121 case PROCESSOR_I486:
1122 case PROCESSOR_PENTIUM:
1123 case PROCESSOR_PENTIUMPRO:
1124 case PROCESSOR_GENERIC32:
1125 patt = f32_patt;
1126 break;
1127 }
1128 }
1129 else
1130 {
1131 switch (fragP->tc_frag_data.tune)
1132 {
1133 case PROCESSOR_UNKNOWN:
1134 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1135 PROCESSOR_UNKNOWN. */
1136 abort ();
1137 break;
1138
1139 case PROCESSOR_I386:
1140 case PROCESSOR_I486:
1141 case PROCESSOR_PENTIUM:
1142 case PROCESSOR_K6:
1143 case PROCESSOR_ATHLON:
1144 case PROCESSOR_K8:
1145 case PROCESSOR_AMDFAM10:
1146 case PROCESSOR_BD:
1147 case PROCESSOR_GENERIC32:
1148 /* We use cpu_arch_isa_flags to check if we CAN optimize
1149 with nops. */
1150 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1151 patt = alt_short_patt;
1152 else
1153 patt = f32_patt;
1154 break;
1155 case PROCESSOR_PENTIUMPRO:
1156 case PROCESSOR_PENTIUM4:
1157 case PROCESSOR_NOCONA:
1158 case PROCESSOR_CORE:
1159 case PROCESSOR_CORE2:
1160 case PROCESSOR_COREI7:
1161 case PROCESSOR_L1OM:
1162 case PROCESSOR_K1OM:
1163 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1164 patt = alt_long_patt;
1165 else
1166 patt = f32_patt;
1167 break;
1168 case PROCESSOR_GENERIC64:
1169 patt = alt_long_patt;
1170 break;
1171 }
1172 }
1173
1174 if (patt == f32_patt)
1175 {
1176 /* If the padding is less than 15 bytes, we use the normal
1177 ones. Otherwise, we use a jump instruction and adjust
1178 its offset. */
1179 int limit;
1180
1181 /* For 64bit, the limit is 3 bytes. */
1182 if (flag_code == CODE_64BIT
1183 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1184 limit = 3;
1185 else
1186 limit = 15;
1187 if (count < limit)
1188 memcpy (fragP->fr_literal + fragP->fr_fix,
1189 patt[count - 1], count);
1190 else
1191 {
1192 memcpy (fragP->fr_literal + fragP->fr_fix,
1193 jump_31, count);
1194 /* Adjust jump offset. */
1195 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1196 }
1197 }
1198 else
1199 {
1200 /* Maximum length of an instruction is 15 byte. If the
1201 padding is greater than 15 bytes and we don't use jump,
1202 we have to break it into smaller pieces. */
1203 int padding = count;
1204 while (padding > 15)
1205 {
1206 padding -= 15;
1207 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1208 patt [14], 15);
1209 }
1210
1211 if (padding)
1212 memcpy (fragP->fr_literal + fragP->fr_fix,
1213 patt [padding - 1], padding);
1214 }
1215 }
1216 fragP->fr_var = count;
1217 }
1218
1219 static INLINE int
1220 operand_type_all_zero (const union i386_operand_type *x)
1221 {
1222 switch (ARRAY_SIZE(x->array))
1223 {
1224 case 3:
1225 if (x->array[2])
1226 return 0;
1227 case 2:
1228 if (x->array[1])
1229 return 0;
1230 case 1:
1231 return !x->array[0];
1232 default:
1233 abort ();
1234 }
1235 }
1236
1237 static INLINE void
1238 operand_type_set (union i386_operand_type *x, unsigned int v)
1239 {
1240 switch (ARRAY_SIZE(x->array))
1241 {
1242 case 3:
1243 x->array[2] = v;
1244 case 2:
1245 x->array[1] = v;
1246 case 1:
1247 x->array[0] = v;
1248 break;
1249 default:
1250 abort ();
1251 }
1252 }
1253
1254 static INLINE int
1255 operand_type_equal (const union i386_operand_type *x,
1256 const union i386_operand_type *y)
1257 {
1258 switch (ARRAY_SIZE(x->array))
1259 {
1260 case 3:
1261 if (x->array[2] != y->array[2])
1262 return 0;
1263 case 2:
1264 if (x->array[1] != y->array[1])
1265 return 0;
1266 case 1:
1267 return x->array[0] == y->array[0];
1268 break;
1269 default:
1270 abort ();
1271 }
1272 }
1273
1274 static INLINE int
1275 cpu_flags_all_zero (const union i386_cpu_flags *x)
1276 {
1277 switch (ARRAY_SIZE(x->array))
1278 {
1279 case 3:
1280 if (x->array[2])
1281 return 0;
1282 case 2:
1283 if (x->array[1])
1284 return 0;
1285 case 1:
1286 return !x->array[0];
1287 default:
1288 abort ();
1289 }
1290 }
1291
1292 static INLINE void
1293 cpu_flags_set (union i386_cpu_flags *x, unsigned int v)
1294 {
1295 switch (ARRAY_SIZE(x->array))
1296 {
1297 case 3:
1298 x->array[2] = v;
1299 case 2:
1300 x->array[1] = v;
1301 case 1:
1302 x->array[0] = v;
1303 break;
1304 default:
1305 abort ();
1306 }
1307 }
1308
1309 static INLINE int
1310 cpu_flags_equal (const union i386_cpu_flags *x,
1311 const union i386_cpu_flags *y)
1312 {
1313 switch (ARRAY_SIZE(x->array))
1314 {
1315 case 3:
1316 if (x->array[2] != y->array[2])
1317 return 0;
1318 case 2:
1319 if (x->array[1] != y->array[1])
1320 return 0;
1321 case 1:
1322 return x->array[0] == y->array[0];
1323 break;
1324 default:
1325 abort ();
1326 }
1327 }
1328
1329 static INLINE int
1330 cpu_flags_check_cpu64 (i386_cpu_flags f)
1331 {
1332 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1333 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1334 }
1335
1336 static INLINE i386_cpu_flags
1337 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1338 {
1339 switch (ARRAY_SIZE (x.array))
1340 {
1341 case 3:
1342 x.array [2] &= y.array [2];
1343 case 2:
1344 x.array [1] &= y.array [1];
1345 case 1:
1346 x.array [0] &= y.array [0];
1347 break;
1348 default:
1349 abort ();
1350 }
1351 return x;
1352 }
1353
1354 static INLINE i386_cpu_flags
1355 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1356 {
1357 switch (ARRAY_SIZE (x.array))
1358 {
1359 case 3:
1360 x.array [2] |= y.array [2];
1361 case 2:
1362 x.array [1] |= y.array [1];
1363 case 1:
1364 x.array [0] |= y.array [0];
1365 break;
1366 default:
1367 abort ();
1368 }
1369 return x;
1370 }
1371
1372 static INLINE i386_cpu_flags
1373 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1374 {
1375 switch (ARRAY_SIZE (x.array))
1376 {
1377 case 3:
1378 x.array [2] &= ~y.array [2];
1379 case 2:
1380 x.array [1] &= ~y.array [1];
1381 case 1:
1382 x.array [0] &= ~y.array [0];
1383 break;
1384 default:
1385 abort ();
1386 }
1387 return x;
1388 }
1389
1390 #define CPU_FLAGS_ARCH_MATCH 0x1
1391 #define CPU_FLAGS_64BIT_MATCH 0x2
1392 #define CPU_FLAGS_AES_MATCH 0x4
1393 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1394 #define CPU_FLAGS_AVX_MATCH 0x10
1395
1396 #define CPU_FLAGS_32BIT_MATCH \
1397 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1398 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1399 #define CPU_FLAGS_PERFECT_MATCH \
1400 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1401
1402 /* Return CPU flags match bits. */
1403
1404 static int
1405 cpu_flags_match (const insn_template *t)
1406 {
1407 i386_cpu_flags x = t->cpu_flags;
1408 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1409
1410 x.bitfield.cpu64 = 0;
1411 x.bitfield.cpuno64 = 0;
1412
1413 if (cpu_flags_all_zero (&x))
1414 {
1415 /* This instruction is available on all archs. */
1416 match |= CPU_FLAGS_32BIT_MATCH;
1417 }
1418 else
1419 {
1420 /* This instruction is available only on some archs. */
1421 i386_cpu_flags cpu = cpu_arch_flags;
1422
1423 cpu.bitfield.cpu64 = 0;
1424 cpu.bitfield.cpuno64 = 0;
1425 cpu = cpu_flags_and (x, cpu);
1426 if (!cpu_flags_all_zero (&cpu))
1427 {
1428 if (x.bitfield.cpuavx)
1429 {
1430 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1431 if (cpu.bitfield.cpuavx)
1432 {
1433 /* Check SSE2AVX. */
1434 if (!t->opcode_modifier.sse2avx|| sse2avx)
1435 {
1436 match |= (CPU_FLAGS_ARCH_MATCH
1437 | CPU_FLAGS_AVX_MATCH);
1438 /* Check AES. */
1439 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1440 match |= CPU_FLAGS_AES_MATCH;
1441 /* Check PCLMUL. */
1442 if (!x.bitfield.cpupclmul
1443 || cpu.bitfield.cpupclmul)
1444 match |= CPU_FLAGS_PCLMUL_MATCH;
1445 }
1446 }
1447 else
1448 match |= CPU_FLAGS_ARCH_MATCH;
1449 }
1450 else
1451 match |= CPU_FLAGS_32BIT_MATCH;
1452 }
1453 }
1454 return match;
1455 }
1456
1457 static INLINE i386_operand_type
1458 operand_type_and (i386_operand_type x, i386_operand_type y)
1459 {
1460 switch (ARRAY_SIZE (x.array))
1461 {
1462 case 3:
1463 x.array [2] &= y.array [2];
1464 case 2:
1465 x.array [1] &= y.array [1];
1466 case 1:
1467 x.array [0] &= y.array [0];
1468 break;
1469 default:
1470 abort ();
1471 }
1472 return x;
1473 }
1474
1475 static INLINE i386_operand_type
1476 operand_type_or (i386_operand_type x, i386_operand_type y)
1477 {
1478 switch (ARRAY_SIZE (x.array))
1479 {
1480 case 3:
1481 x.array [2] |= y.array [2];
1482 case 2:
1483 x.array [1] |= y.array [1];
1484 case 1:
1485 x.array [0] |= y.array [0];
1486 break;
1487 default:
1488 abort ();
1489 }
1490 return x;
1491 }
1492
1493 static INLINE i386_operand_type
1494 operand_type_xor (i386_operand_type x, i386_operand_type y)
1495 {
1496 switch (ARRAY_SIZE (x.array))
1497 {
1498 case 3:
1499 x.array [2] ^= y.array [2];
1500 case 2:
1501 x.array [1] ^= y.array [1];
1502 case 1:
1503 x.array [0] ^= y.array [0];
1504 break;
1505 default:
1506 abort ();
1507 }
1508 return x;
1509 }
1510
1511 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1512 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1513 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1514 static const i386_operand_type inoutportreg
1515 = OPERAND_TYPE_INOUTPORTREG;
1516 static const i386_operand_type reg16_inoutportreg
1517 = OPERAND_TYPE_REG16_INOUTPORTREG;
1518 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1519 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1520 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1521 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1522 static const i386_operand_type anydisp
1523 = OPERAND_TYPE_ANYDISP;
1524 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1525 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1526 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1527 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1528 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1529 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1530 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1531 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1532 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1533 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1534 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1535 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1536
1537 enum operand_type
1538 {
1539 reg,
1540 imm,
1541 disp,
1542 anymem
1543 };
1544
1545 static INLINE int
1546 operand_type_check (i386_operand_type t, enum operand_type c)
1547 {
1548 switch (c)
1549 {
1550 case reg:
1551 return (t.bitfield.reg8
1552 || t.bitfield.reg16
1553 || t.bitfield.reg32
1554 || t.bitfield.reg64);
1555
1556 case imm:
1557 return (t.bitfield.imm8
1558 || t.bitfield.imm8s
1559 || t.bitfield.imm16
1560 || t.bitfield.imm32
1561 || t.bitfield.imm32s
1562 || t.bitfield.imm64);
1563
1564 case disp:
1565 return (t.bitfield.disp8
1566 || t.bitfield.disp16
1567 || t.bitfield.disp32
1568 || t.bitfield.disp32s
1569 || t.bitfield.disp64);
1570
1571 case anymem:
1572 return (t.bitfield.disp8
1573 || t.bitfield.disp16
1574 || t.bitfield.disp32
1575 || t.bitfield.disp32s
1576 || t.bitfield.disp64
1577 || t.bitfield.baseindex);
1578
1579 default:
1580 abort ();
1581 }
1582
1583 return 0;
1584 }
1585
1586 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1587 operand J for instruction template T. */
1588
1589 static INLINE int
1590 match_reg_size (const insn_template *t, unsigned int j)
1591 {
1592 return !((i.types[j].bitfield.byte
1593 && !t->operand_types[j].bitfield.byte)
1594 || (i.types[j].bitfield.word
1595 && !t->operand_types[j].bitfield.word)
1596 || (i.types[j].bitfield.dword
1597 && !t->operand_types[j].bitfield.dword)
1598 || (i.types[j].bitfield.qword
1599 && !t->operand_types[j].bitfield.qword));
1600 }
1601
1602 /* Return 1 if there is no conflict in any size on operand J for
1603 instruction template T. */
1604
1605 static INLINE int
1606 match_mem_size (const insn_template *t, unsigned int j)
1607 {
1608 return (match_reg_size (t, j)
1609 && !((i.types[j].bitfield.unspecified
1610 && !t->operand_types[j].bitfield.unspecified)
1611 || (i.types[j].bitfield.fword
1612 && !t->operand_types[j].bitfield.fword)
1613 || (i.types[j].bitfield.tbyte
1614 && !t->operand_types[j].bitfield.tbyte)
1615 || (i.types[j].bitfield.xmmword
1616 && !t->operand_types[j].bitfield.xmmword)
1617 || (i.types[j].bitfield.ymmword
1618 && !t->operand_types[j].bitfield.ymmword)));
1619 }
1620
1621 /* Return 1 if there is no size conflict on any operands for
1622 instruction template T. */
1623
1624 static INLINE int
1625 operand_size_match (const insn_template *t)
1626 {
1627 unsigned int j;
1628 int match = 1;
1629
1630 /* Don't check jump instructions. */
1631 if (t->opcode_modifier.jump
1632 || t->opcode_modifier.jumpbyte
1633 || t->opcode_modifier.jumpdword
1634 || t->opcode_modifier.jumpintersegment)
1635 return match;
1636
1637 /* Check memory and accumulator operand size. */
1638 for (j = 0; j < i.operands; j++)
1639 {
1640 if (t->operand_types[j].bitfield.anysize)
1641 continue;
1642
1643 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1644 {
1645 match = 0;
1646 break;
1647 }
1648
1649 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1650 {
1651 match = 0;
1652 break;
1653 }
1654 }
1655
1656 if (match)
1657 return match;
1658 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1659 {
1660 mismatch:
1661 i.error = operand_size_mismatch;
1662 return 0;
1663 }
1664
1665 /* Check reverse. */
1666 gas_assert (i.operands == 2);
1667
1668 match = 1;
1669 for (j = 0; j < 2; j++)
1670 {
1671 if (t->operand_types[j].bitfield.acc
1672 && !match_reg_size (t, j ? 0 : 1))
1673 goto mismatch;
1674
1675 if (i.types[j].bitfield.mem
1676 && !match_mem_size (t, j ? 0 : 1))
1677 goto mismatch;
1678 }
1679
1680 return match;
1681 }
1682
1683 static INLINE int
1684 operand_type_match (i386_operand_type overlap,
1685 i386_operand_type given)
1686 {
1687 i386_operand_type temp = overlap;
1688
1689 temp.bitfield.jumpabsolute = 0;
1690 temp.bitfield.unspecified = 0;
1691 temp.bitfield.byte = 0;
1692 temp.bitfield.word = 0;
1693 temp.bitfield.dword = 0;
1694 temp.bitfield.fword = 0;
1695 temp.bitfield.qword = 0;
1696 temp.bitfield.tbyte = 0;
1697 temp.bitfield.xmmword = 0;
1698 temp.bitfield.ymmword = 0;
1699 if (operand_type_all_zero (&temp))
1700 goto mismatch;
1701
1702 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1703 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1704 return 1;
1705
1706 mismatch:
1707 i.error = operand_type_mismatch;
1708 return 0;
1709 }
1710
1711 /* If given types g0 and g1 are registers they must be of the same type
1712 unless the expected operand type register overlap is null.
1713 Note that Acc in a template matches every size of reg. */
1714
1715 static INLINE int
1716 operand_type_register_match (i386_operand_type m0,
1717 i386_operand_type g0,
1718 i386_operand_type t0,
1719 i386_operand_type m1,
1720 i386_operand_type g1,
1721 i386_operand_type t1)
1722 {
1723 if (!operand_type_check (g0, reg))
1724 return 1;
1725
1726 if (!operand_type_check (g1, reg))
1727 return 1;
1728
1729 if (g0.bitfield.reg8 == g1.bitfield.reg8
1730 && g0.bitfield.reg16 == g1.bitfield.reg16
1731 && g0.bitfield.reg32 == g1.bitfield.reg32
1732 && g0.bitfield.reg64 == g1.bitfield.reg64)
1733 return 1;
1734
1735 if (m0.bitfield.acc)
1736 {
1737 t0.bitfield.reg8 = 1;
1738 t0.bitfield.reg16 = 1;
1739 t0.bitfield.reg32 = 1;
1740 t0.bitfield.reg64 = 1;
1741 }
1742
1743 if (m1.bitfield.acc)
1744 {
1745 t1.bitfield.reg8 = 1;
1746 t1.bitfield.reg16 = 1;
1747 t1.bitfield.reg32 = 1;
1748 t1.bitfield.reg64 = 1;
1749 }
1750
1751 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1752 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1753 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1754 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1755 return 1;
1756
1757 i.error = register_type_mismatch;
1758
1759 return 0;
1760 }
1761
1762 static INLINE unsigned int
1763 register_number (const reg_entry *r)
1764 {
1765 unsigned int nr = r->reg_num;
1766
1767 if (r->reg_flags & RegRex)
1768 nr += 8;
1769
1770 return nr;
1771 }
1772
1773 static INLINE unsigned int
1774 mode_from_disp_size (i386_operand_type t)
1775 {
1776 if (t.bitfield.disp8)
1777 return 1;
1778 else if (t.bitfield.disp16
1779 || t.bitfield.disp32
1780 || t.bitfield.disp32s)
1781 return 2;
1782 else
1783 return 0;
1784 }
1785
1786 static INLINE int
1787 fits_in_signed_byte (offsetT num)
1788 {
1789 return (num >= -128) && (num <= 127);
1790 }
1791
1792 static INLINE int
1793 fits_in_unsigned_byte (offsetT num)
1794 {
1795 return (num & 0xff) == num;
1796 }
1797
1798 static INLINE int
1799 fits_in_unsigned_word (offsetT num)
1800 {
1801 return (num & 0xffff) == num;
1802 }
1803
1804 static INLINE int
1805 fits_in_signed_word (offsetT num)
1806 {
1807 return (-32768 <= num) && (num <= 32767);
1808 }
1809
1810 static INLINE int
1811 fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
1812 {
1813 #ifndef BFD64
1814 return 1;
1815 #else
1816 return (!(((offsetT) -1 << 31) & num)
1817 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
1818 #endif
1819 } /* fits_in_signed_long() */
1820
1821 static INLINE int
1822 fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
1823 {
1824 #ifndef BFD64
1825 return 1;
1826 #else
1827 return (num & (((offsetT) 2 << 31) - 1)) == num;
1828 #endif
1829 } /* fits_in_unsigned_long() */
1830
1831 static INLINE int
1832 fits_in_imm4 (offsetT num)
1833 {
1834 return (num & 0xf) == num;
1835 }
1836
1837 static i386_operand_type
1838 smallest_imm_type (offsetT num)
1839 {
1840 i386_operand_type t;
1841
1842 operand_type_set (&t, 0);
1843 t.bitfield.imm64 = 1;
1844
1845 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
1846 {
1847 /* This code is disabled on the 486 because all the Imm1 forms
1848 in the opcode table are slower on the i486. They're the
1849 versions with the implicitly specified single-position
1850 displacement, which has another syntax if you really want to
1851 use that form. */
1852 t.bitfield.imm1 = 1;
1853 t.bitfield.imm8 = 1;
1854 t.bitfield.imm8s = 1;
1855 t.bitfield.imm16 = 1;
1856 t.bitfield.imm32 = 1;
1857 t.bitfield.imm32s = 1;
1858 }
1859 else if (fits_in_signed_byte (num))
1860 {
1861 t.bitfield.imm8 = 1;
1862 t.bitfield.imm8s = 1;
1863 t.bitfield.imm16 = 1;
1864 t.bitfield.imm32 = 1;
1865 t.bitfield.imm32s = 1;
1866 }
1867 else if (fits_in_unsigned_byte (num))
1868 {
1869 t.bitfield.imm8 = 1;
1870 t.bitfield.imm16 = 1;
1871 t.bitfield.imm32 = 1;
1872 t.bitfield.imm32s = 1;
1873 }
1874 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
1875 {
1876 t.bitfield.imm16 = 1;
1877 t.bitfield.imm32 = 1;
1878 t.bitfield.imm32s = 1;
1879 }
1880 else if (fits_in_signed_long (num))
1881 {
1882 t.bitfield.imm32 = 1;
1883 t.bitfield.imm32s = 1;
1884 }
1885 else if (fits_in_unsigned_long (num))
1886 t.bitfield.imm32 = 1;
1887
1888 return t;
1889 }
1890
1891 static offsetT
1892 offset_in_range (offsetT val, int size)
1893 {
1894 addressT mask;
1895
1896 switch (size)
1897 {
1898 case 1: mask = ((addressT) 1 << 8) - 1; break;
1899 case 2: mask = ((addressT) 1 << 16) - 1; break;
1900 case 4: mask = ((addressT) 2 << 31) - 1; break;
1901 #ifdef BFD64
1902 case 8: mask = ((addressT) 2 << 63) - 1; break;
1903 #endif
1904 default: abort ();
1905 }
1906
1907 #ifdef BFD64
1908 /* If BFD64, sign extend val for 32bit address mode. */
1909 if (flag_code != CODE_64BIT
1910 || i.prefix[ADDR_PREFIX])
1911 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
1912 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
1913 #endif
1914
1915 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
1916 {
1917 char buf1[40], buf2[40];
1918
1919 sprint_value (buf1, val);
1920 sprint_value (buf2, val & mask);
1921 as_warn (_("%s shortened to %s"), buf1, buf2);
1922 }
1923 return val & mask;
1924 }
1925
1926 enum PREFIX_GROUP
1927 {
1928 PREFIX_EXIST = 0,
1929 PREFIX_LOCK,
1930 PREFIX_REP,
1931 PREFIX_OTHER
1932 };
1933
1934 /* Returns
1935 a. PREFIX_EXIST if attempting to add a prefix where one from the
1936 same class already exists.
1937 b. PREFIX_LOCK if lock prefix is added.
1938 c. PREFIX_REP if rep/repne prefix is added.
1939 d. PREFIX_OTHER if other prefix is added.
1940 */
1941
1942 static enum PREFIX_GROUP
1943 add_prefix (unsigned int prefix)
1944 {
1945 enum PREFIX_GROUP ret = PREFIX_OTHER;
1946 unsigned int q;
1947
1948 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
1949 && flag_code == CODE_64BIT)
1950 {
1951 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
1952 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
1953 && (prefix & (REX_R | REX_X | REX_B))))
1954 ret = PREFIX_EXIST;
1955 q = REX_PREFIX;
1956 }
1957 else
1958 {
1959 switch (prefix)
1960 {
1961 default:
1962 abort ();
1963
1964 case CS_PREFIX_OPCODE:
1965 case DS_PREFIX_OPCODE:
1966 case ES_PREFIX_OPCODE:
1967 case FS_PREFIX_OPCODE:
1968 case GS_PREFIX_OPCODE:
1969 case SS_PREFIX_OPCODE:
1970 q = SEG_PREFIX;
1971 break;
1972
1973 case REPNE_PREFIX_OPCODE:
1974 case REPE_PREFIX_OPCODE:
1975 q = REP_PREFIX;
1976 ret = PREFIX_REP;
1977 break;
1978
1979 case LOCK_PREFIX_OPCODE:
1980 q = LOCK_PREFIX;
1981 ret = PREFIX_LOCK;
1982 break;
1983
1984 case FWAIT_OPCODE:
1985 q = WAIT_PREFIX;
1986 break;
1987
1988 case ADDR_PREFIX_OPCODE:
1989 q = ADDR_PREFIX;
1990 break;
1991
1992 case DATA_PREFIX_OPCODE:
1993 q = DATA_PREFIX;
1994 break;
1995 }
1996 if (i.prefix[q] != 0)
1997 ret = PREFIX_EXIST;
1998 }
1999
2000 if (ret)
2001 {
2002 if (!i.prefix[q])
2003 ++i.prefixes;
2004 i.prefix[q] |= prefix;
2005 }
2006 else
2007 as_bad (_("same type of prefix used twice"));
2008
2009 return ret;
2010 }
2011
2012 static void
2013 update_code_flag (int value, int check)
2014 {
2015 PRINTF_LIKE ((*as_error));
2016
2017 flag_code = (enum flag_code) value;
2018 if (flag_code == CODE_64BIT)
2019 {
2020 cpu_arch_flags.bitfield.cpu64 = 1;
2021 cpu_arch_flags.bitfield.cpuno64 = 0;
2022 }
2023 else
2024 {
2025 cpu_arch_flags.bitfield.cpu64 = 0;
2026 cpu_arch_flags.bitfield.cpuno64 = 1;
2027 }
2028 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2029 {
2030 if (check)
2031 as_error = as_fatal;
2032 else
2033 as_error = as_bad;
2034 (*as_error) (_("64bit mode not supported on `%s'."),
2035 cpu_arch_name ? cpu_arch_name : default_arch);
2036 }
2037 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2038 {
2039 if (check)
2040 as_error = as_fatal;
2041 else
2042 as_error = as_bad;
2043 (*as_error) (_("32bit mode not supported on `%s'."),
2044 cpu_arch_name ? cpu_arch_name : default_arch);
2045 }
2046 stackop_size = '\0';
2047 }
2048
2049 static void
2050 set_code_flag (int value)
2051 {
2052 update_code_flag (value, 0);
2053 }
2054
2055 static void
2056 set_16bit_gcc_code_flag (int new_code_flag)
2057 {
2058 flag_code = (enum flag_code) new_code_flag;
2059 if (flag_code != CODE_16BIT)
2060 abort ();
2061 cpu_arch_flags.bitfield.cpu64 = 0;
2062 cpu_arch_flags.bitfield.cpuno64 = 1;
2063 stackop_size = LONG_MNEM_SUFFIX;
2064 }
2065
2066 static void
2067 set_intel_syntax (int syntax_flag)
2068 {
2069 /* Find out if register prefixing is specified. */
2070 int ask_naked_reg = 0;
2071
2072 SKIP_WHITESPACE ();
2073 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2074 {
2075 char *string = input_line_pointer;
2076 int e = get_symbol_end ();
2077
2078 if (strcmp (string, "prefix") == 0)
2079 ask_naked_reg = 1;
2080 else if (strcmp (string, "noprefix") == 0)
2081 ask_naked_reg = -1;
2082 else
2083 as_bad (_("bad argument to syntax directive."));
2084 *input_line_pointer = e;
2085 }
2086 demand_empty_rest_of_line ();
2087
2088 intel_syntax = syntax_flag;
2089
2090 if (ask_naked_reg == 0)
2091 allow_naked_reg = (intel_syntax
2092 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2093 else
2094 allow_naked_reg = (ask_naked_reg < 0);
2095
2096 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2097
2098 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2099 identifier_chars['$'] = intel_syntax ? '$' : 0;
2100 register_prefix = allow_naked_reg ? "" : "%";
2101 }
2102
2103 static void
2104 set_intel_mnemonic (int mnemonic_flag)
2105 {
2106 intel_mnemonic = mnemonic_flag;
2107 }
2108
2109 static void
2110 set_allow_index_reg (int flag)
2111 {
2112 allow_index_reg = flag;
2113 }
2114
2115 static void
2116 set_check (int what)
2117 {
2118 enum check_kind *kind;
2119 const char *str;
2120
2121 if (what)
2122 {
2123 kind = &operand_check;
2124 str = "operand";
2125 }
2126 else
2127 {
2128 kind = &sse_check;
2129 str = "sse";
2130 }
2131
2132 SKIP_WHITESPACE ();
2133
2134 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2135 {
2136 char *string = input_line_pointer;
2137 int e = get_symbol_end ();
2138
2139 if (strcmp (string, "none") == 0)
2140 *kind = check_none;
2141 else if (strcmp (string, "warning") == 0)
2142 *kind = check_warning;
2143 else if (strcmp (string, "error") == 0)
2144 *kind = check_error;
2145 else
2146 as_bad (_("bad argument to %s_check directive."), str);
2147 *input_line_pointer = e;
2148 }
2149 else
2150 as_bad (_("missing argument for %s_check directive"), str);
2151
2152 demand_empty_rest_of_line ();
2153 }
2154
2155 static void
2156 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2157 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2158 {
2159 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2160 static const char *arch;
2161
2162 /* Intel LIOM is only supported on ELF. */
2163 if (!IS_ELF)
2164 return;
2165
2166 if (!arch)
2167 {
2168 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2169 use default_arch. */
2170 arch = cpu_arch_name;
2171 if (!arch)
2172 arch = default_arch;
2173 }
2174
2175 /* If we are targeting Intel L1OM, we must enable it. */
2176 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2177 || new_flag.bitfield.cpul1om)
2178 return;
2179
2180 /* If we are targeting Intel K1OM, we must enable it. */
2181 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2182 || new_flag.bitfield.cpuk1om)
2183 return;
2184
2185 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2186 #endif
2187 }
2188
2189 static void
2190 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2191 {
2192 SKIP_WHITESPACE ();
2193
2194 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2195 {
2196 char *string = input_line_pointer;
2197 int e = get_symbol_end ();
2198 unsigned int j;
2199 i386_cpu_flags flags;
2200
2201 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2202 {
2203 if (strcmp (string, cpu_arch[j].name) == 0)
2204 {
2205 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2206
2207 if (*string != '.')
2208 {
2209 cpu_arch_name = cpu_arch[j].name;
2210 cpu_sub_arch_name = NULL;
2211 cpu_arch_flags = cpu_arch[j].flags;
2212 if (flag_code == CODE_64BIT)
2213 {
2214 cpu_arch_flags.bitfield.cpu64 = 1;
2215 cpu_arch_flags.bitfield.cpuno64 = 0;
2216 }
2217 else
2218 {
2219 cpu_arch_flags.bitfield.cpu64 = 0;
2220 cpu_arch_flags.bitfield.cpuno64 = 1;
2221 }
2222 cpu_arch_isa = cpu_arch[j].type;
2223 cpu_arch_isa_flags = cpu_arch[j].flags;
2224 if (!cpu_arch_tune_set)
2225 {
2226 cpu_arch_tune = cpu_arch_isa;
2227 cpu_arch_tune_flags = cpu_arch_isa_flags;
2228 }
2229 break;
2230 }
2231
2232 if (!cpu_arch[j].negated)
2233 flags = cpu_flags_or (cpu_arch_flags,
2234 cpu_arch[j].flags);
2235 else
2236 flags = cpu_flags_and_not (cpu_arch_flags,
2237 cpu_arch[j].flags);
2238 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2239 {
2240 if (cpu_sub_arch_name)
2241 {
2242 char *name = cpu_sub_arch_name;
2243 cpu_sub_arch_name = concat (name,
2244 cpu_arch[j].name,
2245 (const char *) NULL);
2246 free (name);
2247 }
2248 else
2249 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2250 cpu_arch_flags = flags;
2251 cpu_arch_isa_flags = flags;
2252 }
2253 *input_line_pointer = e;
2254 demand_empty_rest_of_line ();
2255 return;
2256 }
2257 }
2258 if (j >= ARRAY_SIZE (cpu_arch))
2259 as_bad (_("no such architecture: `%s'"), string);
2260
2261 *input_line_pointer = e;
2262 }
2263 else
2264 as_bad (_("missing cpu architecture"));
2265
2266 no_cond_jump_promotion = 0;
2267 if (*input_line_pointer == ','
2268 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2269 {
2270 char *string = ++input_line_pointer;
2271 int e = get_symbol_end ();
2272
2273 if (strcmp (string, "nojumps") == 0)
2274 no_cond_jump_promotion = 1;
2275 else if (strcmp (string, "jumps") == 0)
2276 ;
2277 else
2278 as_bad (_("no such architecture modifier: `%s'"), string);
2279
2280 *input_line_pointer = e;
2281 }
2282
2283 demand_empty_rest_of_line ();
2284 }
2285
2286 enum bfd_architecture
2287 i386_arch (void)
2288 {
2289 if (cpu_arch_isa == PROCESSOR_L1OM)
2290 {
2291 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2292 || flag_code != CODE_64BIT)
2293 as_fatal (_("Intel L1OM is 64bit ELF only"));
2294 return bfd_arch_l1om;
2295 }
2296 else if (cpu_arch_isa == PROCESSOR_K1OM)
2297 {
2298 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2299 || flag_code != CODE_64BIT)
2300 as_fatal (_("Intel K1OM is 64bit ELF only"));
2301 return bfd_arch_k1om;
2302 }
2303 else
2304 return bfd_arch_i386;
2305 }
2306
2307 unsigned long
2308 i386_mach (void)
2309 {
2310 if (!strncmp (default_arch, "x86_64", 6))
2311 {
2312 if (cpu_arch_isa == PROCESSOR_L1OM)
2313 {
2314 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2315 || default_arch[6] != '\0')
2316 as_fatal (_("Intel L1OM is 64bit ELF only"));
2317 return bfd_mach_l1om;
2318 }
2319 else if (cpu_arch_isa == PROCESSOR_K1OM)
2320 {
2321 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2322 || default_arch[6] != '\0')
2323 as_fatal (_("Intel K1OM is 64bit ELF only"));
2324 return bfd_mach_k1om;
2325 }
2326 else if (default_arch[6] == '\0')
2327 return bfd_mach_x86_64;
2328 else
2329 return bfd_mach_x64_32;
2330 }
2331 else if (!strcmp (default_arch, "i386"))
2332 return bfd_mach_i386_i386;
2333 else
2334 as_fatal (_("unknown architecture"));
2335 }
2336 \f
2337 void
2338 md_begin (void)
2339 {
2340 const char *hash_err;
2341
2342 /* Initialize op_hash hash table. */
2343 op_hash = hash_new ();
2344
2345 {
2346 const insn_template *optab;
2347 templates *core_optab;
2348
2349 /* Setup for loop. */
2350 optab = i386_optab;
2351 core_optab = (templates *) xmalloc (sizeof (templates));
2352 core_optab->start = optab;
2353
2354 while (1)
2355 {
2356 ++optab;
2357 if (optab->name == NULL
2358 || strcmp (optab->name, (optab - 1)->name) != 0)
2359 {
2360 /* different name --> ship out current template list;
2361 add to hash table; & begin anew. */
2362 core_optab->end = optab;
2363 hash_err = hash_insert (op_hash,
2364 (optab - 1)->name,
2365 (void *) core_optab);
2366 if (hash_err)
2367 {
2368 as_fatal (_("internal Error: Can't hash %s: %s"),
2369 (optab - 1)->name,
2370 hash_err);
2371 }
2372 if (optab->name == NULL)
2373 break;
2374 core_optab = (templates *) xmalloc (sizeof (templates));
2375 core_optab->start = optab;
2376 }
2377 }
2378 }
2379
2380 /* Initialize reg_hash hash table. */
2381 reg_hash = hash_new ();
2382 {
2383 const reg_entry *regtab;
2384 unsigned int regtab_size = i386_regtab_size;
2385
2386 for (regtab = i386_regtab; regtab_size--; regtab++)
2387 {
2388 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2389 if (hash_err)
2390 as_fatal (_("internal Error: Can't hash %s: %s"),
2391 regtab->reg_name,
2392 hash_err);
2393 }
2394 }
2395
2396 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2397 {
2398 int c;
2399 char *p;
2400
2401 for (c = 0; c < 256; c++)
2402 {
2403 if (ISDIGIT (c))
2404 {
2405 digit_chars[c] = c;
2406 mnemonic_chars[c] = c;
2407 register_chars[c] = c;
2408 operand_chars[c] = c;
2409 }
2410 else if (ISLOWER (c))
2411 {
2412 mnemonic_chars[c] = c;
2413 register_chars[c] = c;
2414 operand_chars[c] = c;
2415 }
2416 else if (ISUPPER (c))
2417 {
2418 mnemonic_chars[c] = TOLOWER (c);
2419 register_chars[c] = mnemonic_chars[c];
2420 operand_chars[c] = c;
2421 }
2422
2423 if (ISALPHA (c) || ISDIGIT (c))
2424 identifier_chars[c] = c;
2425 else if (c >= 128)
2426 {
2427 identifier_chars[c] = c;
2428 operand_chars[c] = c;
2429 }
2430 }
2431
2432 #ifdef LEX_AT
2433 identifier_chars['@'] = '@';
2434 #endif
2435 #ifdef LEX_QM
2436 identifier_chars['?'] = '?';
2437 operand_chars['?'] = '?';
2438 #endif
2439 digit_chars['-'] = '-';
2440 mnemonic_chars['_'] = '_';
2441 mnemonic_chars['-'] = '-';
2442 mnemonic_chars['.'] = '.';
2443 identifier_chars['_'] = '_';
2444 identifier_chars['.'] = '.';
2445
2446 for (p = operand_special_chars; *p != '\0'; p++)
2447 operand_chars[(unsigned char) *p] = *p;
2448 }
2449
2450 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2451 if (IS_ELF)
2452 {
2453 record_alignment (text_section, 2);
2454 record_alignment (data_section, 2);
2455 record_alignment (bss_section, 2);
2456 }
2457 #endif
2458
2459 if (flag_code == CODE_64BIT)
2460 {
2461 #if defined (OBJ_COFF) && defined (TE_PE)
2462 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2463 ? 32 : 16);
2464 #else
2465 x86_dwarf2_return_column = 16;
2466 #endif
2467 x86_cie_data_alignment = -8;
2468 }
2469 else
2470 {
2471 x86_dwarf2_return_column = 8;
2472 x86_cie_data_alignment = -4;
2473 }
2474 }
2475
2476 void
2477 i386_print_statistics (FILE *file)
2478 {
2479 hash_print_statistics (file, "i386 opcode", op_hash);
2480 hash_print_statistics (file, "i386 register", reg_hash);
2481 }
2482 \f
2483 #ifdef DEBUG386
2484
2485 /* Debugging routines for md_assemble. */
2486 static void pte (insn_template *);
2487 static void pt (i386_operand_type);
2488 static void pe (expressionS *);
2489 static void ps (symbolS *);
2490
2491 static void
2492 pi (char *line, i386_insn *x)
2493 {
2494 unsigned int j;
2495
2496 fprintf (stdout, "%s: template ", line);
2497 pte (&x->tm);
2498 fprintf (stdout, " address: base %s index %s scale %x\n",
2499 x->base_reg ? x->base_reg->reg_name : "none",
2500 x->index_reg ? x->index_reg->reg_name : "none",
2501 x->log2_scale_factor);
2502 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2503 x->rm.mode, x->rm.reg, x->rm.regmem);
2504 fprintf (stdout, " sib: base %x index %x scale %x\n",
2505 x->sib.base, x->sib.index, x->sib.scale);
2506 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2507 (x->rex & REX_W) != 0,
2508 (x->rex & REX_R) != 0,
2509 (x->rex & REX_X) != 0,
2510 (x->rex & REX_B) != 0);
2511 for (j = 0; j < x->operands; j++)
2512 {
2513 fprintf (stdout, " #%d: ", j + 1);
2514 pt (x->types[j]);
2515 fprintf (stdout, "\n");
2516 if (x->types[j].bitfield.reg8
2517 || x->types[j].bitfield.reg16
2518 || x->types[j].bitfield.reg32
2519 || x->types[j].bitfield.reg64
2520 || x->types[j].bitfield.regmmx
2521 || x->types[j].bitfield.regxmm
2522 || x->types[j].bitfield.regymm
2523 || x->types[j].bitfield.sreg2
2524 || x->types[j].bitfield.sreg3
2525 || x->types[j].bitfield.control
2526 || x->types[j].bitfield.debug
2527 || x->types[j].bitfield.test)
2528 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2529 if (operand_type_check (x->types[j], imm))
2530 pe (x->op[j].imms);
2531 if (operand_type_check (x->types[j], disp))
2532 pe (x->op[j].disps);
2533 }
2534 }
2535
2536 static void
2537 pte (insn_template *t)
2538 {
2539 unsigned int j;
2540 fprintf (stdout, " %d operands ", t->operands);
2541 fprintf (stdout, "opcode %x ", t->base_opcode);
2542 if (t->extension_opcode != None)
2543 fprintf (stdout, "ext %x ", t->extension_opcode);
2544 if (t->opcode_modifier.d)
2545 fprintf (stdout, "D");
2546 if (t->opcode_modifier.w)
2547 fprintf (stdout, "W");
2548 fprintf (stdout, "\n");
2549 for (j = 0; j < t->operands; j++)
2550 {
2551 fprintf (stdout, " #%d type ", j + 1);
2552 pt (t->operand_types[j]);
2553 fprintf (stdout, "\n");
2554 }
2555 }
2556
2557 static void
2558 pe (expressionS *e)
2559 {
2560 fprintf (stdout, " operation %d\n", e->X_op);
2561 fprintf (stdout, " add_number %ld (%lx)\n",
2562 (long) e->X_add_number, (long) e->X_add_number);
2563 if (e->X_add_symbol)
2564 {
2565 fprintf (stdout, " add_symbol ");
2566 ps (e->X_add_symbol);
2567 fprintf (stdout, "\n");
2568 }
2569 if (e->X_op_symbol)
2570 {
2571 fprintf (stdout, " op_symbol ");
2572 ps (e->X_op_symbol);
2573 fprintf (stdout, "\n");
2574 }
2575 }
2576
2577 static void
2578 ps (symbolS *s)
2579 {
2580 fprintf (stdout, "%s type %s%s",
2581 S_GET_NAME (s),
2582 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2583 segment_name (S_GET_SEGMENT (s)));
2584 }
2585
2586 static struct type_name
2587 {
2588 i386_operand_type mask;
2589 const char *name;
2590 }
2591 const type_names[] =
2592 {
2593 { OPERAND_TYPE_REG8, "r8" },
2594 { OPERAND_TYPE_REG16, "r16" },
2595 { OPERAND_TYPE_REG32, "r32" },
2596 { OPERAND_TYPE_REG64, "r64" },
2597 { OPERAND_TYPE_IMM8, "i8" },
2598 { OPERAND_TYPE_IMM8, "i8s" },
2599 { OPERAND_TYPE_IMM16, "i16" },
2600 { OPERAND_TYPE_IMM32, "i32" },
2601 { OPERAND_TYPE_IMM32S, "i32s" },
2602 { OPERAND_TYPE_IMM64, "i64" },
2603 { OPERAND_TYPE_IMM1, "i1" },
2604 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2605 { OPERAND_TYPE_DISP8, "d8" },
2606 { OPERAND_TYPE_DISP16, "d16" },
2607 { OPERAND_TYPE_DISP32, "d32" },
2608 { OPERAND_TYPE_DISP32S, "d32s" },
2609 { OPERAND_TYPE_DISP64, "d64" },
2610 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2611 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2612 { OPERAND_TYPE_CONTROL, "control reg" },
2613 { OPERAND_TYPE_TEST, "test reg" },
2614 { OPERAND_TYPE_DEBUG, "debug reg" },
2615 { OPERAND_TYPE_FLOATREG, "FReg" },
2616 { OPERAND_TYPE_FLOATACC, "FAcc" },
2617 { OPERAND_TYPE_SREG2, "SReg2" },
2618 { OPERAND_TYPE_SREG3, "SReg3" },
2619 { OPERAND_TYPE_ACC, "Acc" },
2620 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2621 { OPERAND_TYPE_REGMMX, "rMMX" },
2622 { OPERAND_TYPE_REGXMM, "rXMM" },
2623 { OPERAND_TYPE_REGYMM, "rYMM" },
2624 { OPERAND_TYPE_ESSEG, "es" },
2625 };
2626
2627 static void
2628 pt (i386_operand_type t)
2629 {
2630 unsigned int j;
2631 i386_operand_type a;
2632
2633 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2634 {
2635 a = operand_type_and (t, type_names[j].mask);
2636 if (!operand_type_all_zero (&a))
2637 fprintf (stdout, "%s, ", type_names[j].name);
2638 }
2639 fflush (stdout);
2640 }
2641
2642 #endif /* DEBUG386 */
2643 \f
2644 static bfd_reloc_code_real_type
2645 reloc (unsigned int size,
2646 int pcrel,
2647 int sign,
2648 bfd_reloc_code_real_type other)
2649 {
2650 if (other != NO_RELOC)
2651 {
2652 reloc_howto_type *rel;
2653
2654 if (size == 8)
2655 switch (other)
2656 {
2657 case BFD_RELOC_X86_64_GOT32:
2658 return BFD_RELOC_X86_64_GOT64;
2659 break;
2660 case BFD_RELOC_X86_64_PLTOFF64:
2661 return BFD_RELOC_X86_64_PLTOFF64;
2662 break;
2663 case BFD_RELOC_X86_64_GOTPC32:
2664 other = BFD_RELOC_X86_64_GOTPC64;
2665 break;
2666 case BFD_RELOC_X86_64_GOTPCREL:
2667 other = BFD_RELOC_X86_64_GOTPCREL64;
2668 break;
2669 case BFD_RELOC_X86_64_TPOFF32:
2670 other = BFD_RELOC_X86_64_TPOFF64;
2671 break;
2672 case BFD_RELOC_X86_64_DTPOFF32:
2673 other = BFD_RELOC_X86_64_DTPOFF64;
2674 break;
2675 default:
2676 break;
2677 }
2678
2679 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2680 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
2681 sign = -1;
2682
2683 rel = bfd_reloc_type_lookup (stdoutput, other);
2684 if (!rel)
2685 as_bad (_("unknown relocation (%u)"), other);
2686 else if (size != bfd_get_reloc_size (rel))
2687 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2688 bfd_get_reloc_size (rel),
2689 size);
2690 else if (pcrel && !rel->pc_relative)
2691 as_bad (_("non-pc-relative relocation for pc-relative field"));
2692 else if ((rel->complain_on_overflow == complain_overflow_signed
2693 && !sign)
2694 || (rel->complain_on_overflow == complain_overflow_unsigned
2695 && sign > 0))
2696 as_bad (_("relocated field and relocation type differ in signedness"));
2697 else
2698 return other;
2699 return NO_RELOC;
2700 }
2701
2702 if (pcrel)
2703 {
2704 if (!sign)
2705 as_bad (_("there are no unsigned pc-relative relocations"));
2706 switch (size)
2707 {
2708 case 1: return BFD_RELOC_8_PCREL;
2709 case 2: return BFD_RELOC_16_PCREL;
2710 case 4: return BFD_RELOC_32_PCREL;
2711 case 8: return BFD_RELOC_64_PCREL;
2712 }
2713 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2714 }
2715 else
2716 {
2717 if (sign > 0)
2718 switch (size)
2719 {
2720 case 4: return BFD_RELOC_X86_64_32S;
2721 }
2722 else
2723 switch (size)
2724 {
2725 case 1: return BFD_RELOC_8;
2726 case 2: return BFD_RELOC_16;
2727 case 4: return BFD_RELOC_32;
2728 case 8: return BFD_RELOC_64;
2729 }
2730 as_bad (_("cannot do %s %u byte relocation"),
2731 sign > 0 ? "signed" : "unsigned", size);
2732 }
2733
2734 return NO_RELOC;
2735 }
2736
2737 /* Here we decide which fixups can be adjusted to make them relative to
2738 the beginning of the section instead of the symbol. Basically we need
2739 to make sure that the dynamic relocations are done correctly, so in
2740 some cases we force the original symbol to be used. */
2741
2742 int
2743 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2744 {
2745 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2746 if (!IS_ELF)
2747 return 1;
2748
2749 /* Don't adjust pc-relative references to merge sections in 64-bit
2750 mode. */
2751 if (use_rela_relocations
2752 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2753 && fixP->fx_pcrel)
2754 return 0;
2755
2756 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2757 and changed later by validate_fix. */
2758 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2759 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2760 return 0;
2761
2762 /* adjust_reloc_syms doesn't know about the GOT. */
2763 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2764 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2765 || fixP->fx_r_type == BFD_RELOC_386_GOT32
2766 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2767 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2768 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2769 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
2770 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2771 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
2772 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2773 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
2774 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2775 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
2776 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2777 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
2778 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
2779 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2780 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2781 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
2782 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
2783 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2784 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
2785 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2786 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
2787 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2788 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
2789 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2790 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2791 return 0;
2792 #endif
2793 return 1;
2794 }
2795
2796 static int
2797 intel_float_operand (const char *mnemonic)
2798 {
2799 /* Note that the value returned is meaningful only for opcodes with (memory)
2800 operands, hence the code here is free to improperly handle opcodes that
2801 have no operands (for better performance and smaller code). */
2802
2803 if (mnemonic[0] != 'f')
2804 return 0; /* non-math */
2805
2806 switch (mnemonic[1])
2807 {
2808 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2809 the fs segment override prefix not currently handled because no
2810 call path can make opcodes without operands get here */
2811 case 'i':
2812 return 2 /* integer op */;
2813 case 'l':
2814 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
2815 return 3; /* fldcw/fldenv */
2816 break;
2817 case 'n':
2818 if (mnemonic[2] != 'o' /* fnop */)
2819 return 3; /* non-waiting control op */
2820 break;
2821 case 'r':
2822 if (mnemonic[2] == 's')
2823 return 3; /* frstor/frstpm */
2824 break;
2825 case 's':
2826 if (mnemonic[2] == 'a')
2827 return 3; /* fsave */
2828 if (mnemonic[2] == 't')
2829 {
2830 switch (mnemonic[3])
2831 {
2832 case 'c': /* fstcw */
2833 case 'd': /* fstdw */
2834 case 'e': /* fstenv */
2835 case 's': /* fsts[gw] */
2836 return 3;
2837 }
2838 }
2839 break;
2840 case 'x':
2841 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
2842 return 0; /* fxsave/fxrstor are not really math ops */
2843 break;
2844 }
2845
2846 return 1;
2847 }
2848
2849 /* Build the VEX prefix. */
2850
2851 static void
2852 build_vex_prefix (const insn_template *t)
2853 {
2854 unsigned int register_specifier;
2855 unsigned int implied_prefix;
2856 unsigned int vector_length;
2857
2858 /* Check register specifier. */
2859 if (i.vex.register_specifier)
2860 register_specifier = ~register_number (i.vex.register_specifier) & 0xf;
2861 else
2862 register_specifier = 0xf;
2863
2864 /* Use 2-byte VEX prefix by swappping destination and source
2865 operand. */
2866 if (!i.swap_operand
2867 && i.operands == i.reg_operands
2868 && i.tm.opcode_modifier.vexopcode == VEX0F
2869 && i.tm.opcode_modifier.s
2870 && i.rex == REX_B)
2871 {
2872 unsigned int xchg = i.operands - 1;
2873 union i386_op temp_op;
2874 i386_operand_type temp_type;
2875
2876 temp_type = i.types[xchg];
2877 i.types[xchg] = i.types[0];
2878 i.types[0] = temp_type;
2879 temp_op = i.op[xchg];
2880 i.op[xchg] = i.op[0];
2881 i.op[0] = temp_op;
2882
2883 gas_assert (i.rm.mode == 3);
2884
2885 i.rex = REX_R;
2886 xchg = i.rm.regmem;
2887 i.rm.regmem = i.rm.reg;
2888 i.rm.reg = xchg;
2889
2890 /* Use the next insn. */
2891 i.tm = t[1];
2892 }
2893
2894 if (i.tm.opcode_modifier.vex == VEXScalar)
2895 vector_length = avxscalar;
2896 else
2897 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
2898
2899 switch ((i.tm.base_opcode >> 8) & 0xff)
2900 {
2901 case 0:
2902 implied_prefix = 0;
2903 break;
2904 case DATA_PREFIX_OPCODE:
2905 implied_prefix = 1;
2906 break;
2907 case REPE_PREFIX_OPCODE:
2908 implied_prefix = 2;
2909 break;
2910 case REPNE_PREFIX_OPCODE:
2911 implied_prefix = 3;
2912 break;
2913 default:
2914 abort ();
2915 }
2916
2917 /* Use 2-byte VEX prefix if possible. */
2918 if (i.tm.opcode_modifier.vexopcode == VEX0F
2919 && i.tm.opcode_modifier.vexw != VEXW1
2920 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
2921 {
2922 /* 2-byte VEX prefix. */
2923 unsigned int r;
2924
2925 i.vex.length = 2;
2926 i.vex.bytes[0] = 0xc5;
2927
2928 /* Check the REX.R bit. */
2929 r = (i.rex & REX_R) ? 0 : 1;
2930 i.vex.bytes[1] = (r << 7
2931 | register_specifier << 3
2932 | vector_length << 2
2933 | implied_prefix);
2934 }
2935 else
2936 {
2937 /* 3-byte VEX prefix. */
2938 unsigned int m, w;
2939
2940 i.vex.length = 3;
2941
2942 switch (i.tm.opcode_modifier.vexopcode)
2943 {
2944 case VEX0F:
2945 m = 0x1;
2946 i.vex.bytes[0] = 0xc4;
2947 break;
2948 case VEX0F38:
2949 m = 0x2;
2950 i.vex.bytes[0] = 0xc4;
2951 break;
2952 case VEX0F3A:
2953 m = 0x3;
2954 i.vex.bytes[0] = 0xc4;
2955 break;
2956 case XOP08:
2957 m = 0x8;
2958 i.vex.bytes[0] = 0x8f;
2959 break;
2960 case XOP09:
2961 m = 0x9;
2962 i.vex.bytes[0] = 0x8f;
2963 break;
2964 case XOP0A:
2965 m = 0xa;
2966 i.vex.bytes[0] = 0x8f;
2967 break;
2968 default:
2969 abort ();
2970 }
2971
2972 /* The high 3 bits of the second VEX byte are 1's compliment
2973 of RXB bits from REX. */
2974 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
2975
2976 /* Check the REX.W bit. */
2977 w = (i.rex & REX_W) ? 1 : 0;
2978 if (i.tm.opcode_modifier.vexw)
2979 {
2980 if (w)
2981 abort ();
2982
2983 if (i.tm.opcode_modifier.vexw == VEXW1)
2984 w = 1;
2985 }
2986
2987 i.vex.bytes[2] = (w << 7
2988 | register_specifier << 3
2989 | vector_length << 2
2990 | implied_prefix);
2991 }
2992 }
2993
2994 static void
2995 process_immext (void)
2996 {
2997 expressionS *exp;
2998
2999 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3000 && i.operands > 0)
3001 {
3002 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3003 with an opcode suffix which is coded in the same place as an
3004 8-bit immediate field would be.
3005 Here we check those operands and remove them afterwards. */
3006 unsigned int x;
3007
3008 for (x = 0; x < i.operands; x++)
3009 if (register_number (i.op[x].regs) != x)
3010 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3011 register_prefix, i.op[x].regs->reg_name, x + 1,
3012 i.tm.name);
3013
3014 i.operands = 0;
3015 }
3016
3017 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3018 which is coded in the same place as an 8-bit immediate field
3019 would be. Here we fake an 8-bit immediate operand from the
3020 opcode suffix stored in tm.extension_opcode.
3021
3022 AVX instructions also use this encoding, for some of
3023 3 argument instructions. */
3024
3025 gas_assert (i.imm_operands == 0
3026 && (i.operands <= 2
3027 || (i.tm.opcode_modifier.vex
3028 && i.operands <= 4)));
3029
3030 exp = &im_expressions[i.imm_operands++];
3031 i.op[i.operands].imms = exp;
3032 i.types[i.operands] = imm8;
3033 i.operands++;
3034 exp->X_op = O_constant;
3035 exp->X_add_number = i.tm.extension_opcode;
3036 i.tm.extension_opcode = None;
3037 }
3038
3039
3040 static int
3041 check_hle (void)
3042 {
3043 switch (i.tm.opcode_modifier.hleprefixok)
3044 {
3045 default:
3046 abort ();
3047 case HLEPrefixNone:
3048 if (i.prefix[HLE_PREFIX] == XACQUIRE_PREFIX_OPCODE)
3049 as_bad (_("invalid instruction `%s' after `xacquire'"),
3050 i.tm.name);
3051 else
3052 as_bad (_("invalid instruction `%s' after `xrelease'"),
3053 i.tm.name);
3054 return 0;
3055 case HLEPrefixLock:
3056 if (i.prefix[LOCK_PREFIX])
3057 return 1;
3058 if (i.prefix[HLE_PREFIX] == XACQUIRE_PREFIX_OPCODE)
3059 as_bad (_("missing `lock' with `xacquire'"));
3060 else
3061 as_bad (_("missing `lock' with `xrelease'"));
3062 return 0;
3063 case HLEPrefixAny:
3064 return 1;
3065 case HLEPrefixRelease:
3066 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3067 {
3068 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3069 i.tm.name);
3070 return 0;
3071 }
3072 if (i.mem_operands == 0
3073 || !operand_type_check (i.types[i.operands - 1], anymem))
3074 {
3075 as_bad (_("memory destination needed for instruction `%s'"
3076 " after `xrelease'"), i.tm.name);
3077 return 0;
3078 }
3079 return 1;
3080 }
3081 }
3082
3083 /* This is the guts of the machine-dependent assembler. LINE points to a
3084 machine dependent instruction. This function is supposed to emit
3085 the frags/bytes it assembles to. */
3086
3087 void
3088 md_assemble (char *line)
3089 {
3090 unsigned int j;
3091 char mnemonic[MAX_MNEM_SIZE];
3092 const insn_template *t;
3093
3094 /* Initialize globals. */
3095 memset (&i, '\0', sizeof (i));
3096 for (j = 0; j < MAX_OPERANDS; j++)
3097 i.reloc[j] = NO_RELOC;
3098 memset (disp_expressions, '\0', sizeof (disp_expressions));
3099 memset (im_expressions, '\0', sizeof (im_expressions));
3100 save_stack_p = save_stack;
3101
3102 /* First parse an instruction mnemonic & call i386_operand for the operands.
3103 We assume that the scrubber has arranged it so that line[0] is the valid
3104 start of a (possibly prefixed) mnemonic. */
3105
3106 line = parse_insn (line, mnemonic);
3107 if (line == NULL)
3108 return;
3109
3110 line = parse_operands (line, mnemonic);
3111 this_operand = -1;
3112 if (line == NULL)
3113 return;
3114
3115 /* Now we've parsed the mnemonic into a set of templates, and have the
3116 operands at hand. */
3117
3118 /* All intel opcodes have reversed operands except for "bound" and
3119 "enter". We also don't reverse intersegment "jmp" and "call"
3120 instructions with 2 immediate operands so that the immediate segment
3121 precedes the offset, as it does when in AT&T mode. */
3122 if (intel_syntax
3123 && i.operands > 1
3124 && (strcmp (mnemonic, "bound") != 0)
3125 && (strcmp (mnemonic, "invlpga") != 0)
3126 && !(operand_type_check (i.types[0], imm)
3127 && operand_type_check (i.types[1], imm)))
3128 swap_operands ();
3129
3130 /* The order of the immediates should be reversed
3131 for 2 immediates extrq and insertq instructions */
3132 if (i.imm_operands == 2
3133 && (strcmp (mnemonic, "extrq") == 0
3134 || strcmp (mnemonic, "insertq") == 0))
3135 swap_2_operands (0, 1);
3136
3137 if (i.imm_operands)
3138 optimize_imm ();
3139
3140 /* Don't optimize displacement for movabs since it only takes 64bit
3141 displacement. */
3142 if (i.disp_operands
3143 && i.disp_encoding != disp_encoding_32bit
3144 && (flag_code != CODE_64BIT
3145 || strcmp (mnemonic, "movabs") != 0))
3146 optimize_disp ();
3147
3148 /* Next, we find a template that matches the given insn,
3149 making sure the overlap of the given operands types is consistent
3150 with the template operand types. */
3151
3152 if (!(t = match_template ()))
3153 return;
3154
3155 if (sse_check != check_none
3156 && !i.tm.opcode_modifier.noavx
3157 && (i.tm.cpu_flags.bitfield.cpusse
3158 || i.tm.cpu_flags.bitfield.cpusse2
3159 || i.tm.cpu_flags.bitfield.cpusse3
3160 || i.tm.cpu_flags.bitfield.cpussse3
3161 || i.tm.cpu_flags.bitfield.cpusse4_1
3162 || i.tm.cpu_flags.bitfield.cpusse4_2))
3163 {
3164 (sse_check == check_warning
3165 ? as_warn
3166 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3167 }
3168
3169 /* Zap movzx and movsx suffix. The suffix has been set from
3170 "word ptr" or "byte ptr" on the source operand in Intel syntax
3171 or extracted from mnemonic in AT&T syntax. But we'll use
3172 the destination register to choose the suffix for encoding. */
3173 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3174 {
3175 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3176 there is no suffix, the default will be byte extension. */
3177 if (i.reg_operands != 2
3178 && !i.suffix
3179 && intel_syntax)
3180 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3181
3182 i.suffix = 0;
3183 }
3184
3185 if (i.tm.opcode_modifier.fwait)
3186 if (!add_prefix (FWAIT_OPCODE))
3187 return;
3188
3189 /* Check for lock without a lockable instruction. Destination operand
3190 must be memory unless it is xchg (0x86). */
3191 if (i.prefix[LOCK_PREFIX]
3192 && (!i.tm.opcode_modifier.islockable
3193 || i.mem_operands == 0
3194 || (i.tm.base_opcode != 0x86
3195 && !operand_type_check (i.types[i.operands - 1], anymem))))
3196 {
3197 as_bad (_("expecting lockable instruction after `lock'"));
3198 return;
3199 }
3200
3201 /* Check if HLE prefix is OK. */
3202 if (i.have_hle && !check_hle ())
3203 return;
3204
3205 /* Check string instruction segment overrides. */
3206 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3207 {
3208 if (!check_string ())
3209 return;
3210 i.disp_operands = 0;
3211 }
3212
3213 if (!process_suffix ())
3214 return;
3215
3216 /* Update operand types. */
3217 for (j = 0; j < i.operands; j++)
3218 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3219
3220 /* Make still unresolved immediate matches conform to size of immediate
3221 given in i.suffix. */
3222 if (!finalize_imm ())
3223 return;
3224
3225 if (i.types[0].bitfield.imm1)
3226 i.imm_operands = 0; /* kludge for shift insns. */
3227
3228 /* We only need to check those implicit registers for instructions
3229 with 3 operands or less. */
3230 if (i.operands <= 3)
3231 for (j = 0; j < i.operands; j++)
3232 if (i.types[j].bitfield.inoutportreg
3233 || i.types[j].bitfield.shiftcount
3234 || i.types[j].bitfield.acc
3235 || i.types[j].bitfield.floatacc)
3236 i.reg_operands--;
3237
3238 /* ImmExt should be processed after SSE2AVX. */
3239 if (!i.tm.opcode_modifier.sse2avx
3240 && i.tm.opcode_modifier.immext)
3241 process_immext ();
3242
3243 /* For insns with operands there are more diddles to do to the opcode. */
3244 if (i.operands)
3245 {
3246 if (!process_operands ())
3247 return;
3248 }
3249 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3250 {
3251 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3252 as_warn (_("translating to `%sp'"), i.tm.name);
3253 }
3254
3255 if (i.tm.opcode_modifier.vex)
3256 build_vex_prefix (t);
3257
3258 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3259 instructions may define INT_OPCODE as well, so avoid this corner
3260 case for those instructions that use MODRM. */
3261 if (i.tm.base_opcode == INT_OPCODE
3262 && !i.tm.opcode_modifier.modrm
3263 && i.op[0].imms->X_add_number == 3)
3264 {
3265 i.tm.base_opcode = INT3_OPCODE;
3266 i.imm_operands = 0;
3267 }
3268
3269 if ((i.tm.opcode_modifier.jump
3270 || i.tm.opcode_modifier.jumpbyte
3271 || i.tm.opcode_modifier.jumpdword)
3272 && i.op[0].disps->X_op == O_constant)
3273 {
3274 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3275 the absolute address given by the constant. Since ix86 jumps and
3276 calls are pc relative, we need to generate a reloc. */
3277 i.op[0].disps->X_add_symbol = &abs_symbol;
3278 i.op[0].disps->X_op = O_symbol;
3279 }
3280
3281 if (i.tm.opcode_modifier.rex64)
3282 i.rex |= REX_W;
3283
3284 /* For 8 bit registers we need an empty rex prefix. Also if the
3285 instruction already has a prefix, we need to convert old
3286 registers to new ones. */
3287
3288 if ((i.types[0].bitfield.reg8
3289 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3290 || (i.types[1].bitfield.reg8
3291 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3292 || ((i.types[0].bitfield.reg8
3293 || i.types[1].bitfield.reg8)
3294 && i.rex != 0))
3295 {
3296 int x;
3297
3298 i.rex |= REX_OPCODE;
3299 for (x = 0; x < 2; x++)
3300 {
3301 /* Look for 8 bit operand that uses old registers. */
3302 if (i.types[x].bitfield.reg8
3303 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3304 {
3305 /* In case it is "hi" register, give up. */
3306 if (i.op[x].regs->reg_num > 3)
3307 as_bad (_("can't encode register '%s%s' in an "
3308 "instruction requiring REX prefix."),
3309 register_prefix, i.op[x].regs->reg_name);
3310
3311 /* Otherwise it is equivalent to the extended register.
3312 Since the encoding doesn't change this is merely
3313 cosmetic cleanup for debug output. */
3314
3315 i.op[x].regs = i.op[x].regs + 8;
3316 }
3317 }
3318 }
3319
3320 if (i.rex != 0)
3321 add_prefix (REX_OPCODE | i.rex);
3322
3323 /* We are ready to output the insn. */
3324 output_insn ();
3325 }
3326
3327 static char *
3328 parse_insn (char *line, char *mnemonic)
3329 {
3330 char *l = line;
3331 char *token_start = l;
3332 char *mnem_p;
3333 int supported;
3334 const insn_template *t;
3335 char *dot_p = NULL;
3336
3337 /* Non-zero if we found a prefix only acceptable with string insns. */
3338 const char *expecting_string_instruction = NULL;
3339
3340 while (1)
3341 {
3342 mnem_p = mnemonic;
3343 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3344 {
3345 if (*mnem_p == '.')
3346 dot_p = mnem_p;
3347 mnem_p++;
3348 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3349 {
3350 as_bad (_("no such instruction: `%s'"), token_start);
3351 return NULL;
3352 }
3353 l++;
3354 }
3355 if (!is_space_char (*l)
3356 && *l != END_OF_INSN
3357 && (intel_syntax
3358 || (*l != PREFIX_SEPARATOR
3359 && *l != ',')))
3360 {
3361 as_bad (_("invalid character %s in mnemonic"),
3362 output_invalid (*l));
3363 return NULL;
3364 }
3365 if (token_start == l)
3366 {
3367 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3368 as_bad (_("expecting prefix; got nothing"));
3369 else
3370 as_bad (_("expecting mnemonic; got nothing"));
3371 return NULL;
3372 }
3373
3374 /* Look up instruction (or prefix) via hash table. */
3375 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3376
3377 if (*l != END_OF_INSN
3378 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3379 && current_templates
3380 && current_templates->start->opcode_modifier.isprefix)
3381 {
3382 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3383 {
3384 as_bad ((flag_code != CODE_64BIT
3385 ? _("`%s' is only supported in 64-bit mode")
3386 : _("`%s' is not supported in 64-bit mode")),
3387 current_templates->start->name);
3388 return NULL;
3389 }
3390 /* If we are in 16-bit mode, do not allow addr16 or data16.
3391 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3392 if ((current_templates->start->opcode_modifier.size16
3393 || current_templates->start->opcode_modifier.size32)
3394 && flag_code != CODE_64BIT
3395 && (current_templates->start->opcode_modifier.size32
3396 ^ (flag_code == CODE_16BIT)))
3397 {
3398 as_bad (_("redundant %s prefix"),
3399 current_templates->start->name);
3400 return NULL;
3401 }
3402 /* Add prefix, checking for repeated prefixes. */
3403 switch (add_prefix (current_templates->start->base_opcode))
3404 {
3405 case PREFIX_EXIST:
3406 return NULL;
3407 case PREFIX_REP:
3408 if (current_templates->start->cpu_flags.bitfield.cpuhle)
3409 i.have_hle = 1;
3410 else
3411 expecting_string_instruction = current_templates->start->name;
3412 break;
3413 default:
3414 break;
3415 }
3416 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3417 token_start = ++l;
3418 }
3419 else
3420 break;
3421 }
3422
3423 if (!current_templates)
3424 {
3425 /* Check if we should swap operand or force 32bit displacement in
3426 encoding. */
3427 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3428 i.swap_operand = 1;
3429 else if (mnem_p - 3 == dot_p
3430 && dot_p[1] == 'd'
3431 && dot_p[2] == '8')
3432 i.disp_encoding = disp_encoding_8bit;
3433 else if (mnem_p - 4 == dot_p
3434 && dot_p[1] == 'd'
3435 && dot_p[2] == '3'
3436 && dot_p[3] == '2')
3437 i.disp_encoding = disp_encoding_32bit;
3438 else
3439 goto check_suffix;
3440 mnem_p = dot_p;
3441 *dot_p = '\0';
3442 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3443 }
3444
3445 if (!current_templates)
3446 {
3447 check_suffix:
3448 /* See if we can get a match by trimming off a suffix. */
3449 switch (mnem_p[-1])
3450 {
3451 case WORD_MNEM_SUFFIX:
3452 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3453 i.suffix = SHORT_MNEM_SUFFIX;
3454 else
3455 case BYTE_MNEM_SUFFIX:
3456 case QWORD_MNEM_SUFFIX:
3457 i.suffix = mnem_p[-1];
3458 mnem_p[-1] = '\0';
3459 current_templates = (const templates *) hash_find (op_hash,
3460 mnemonic);
3461 break;
3462 case SHORT_MNEM_SUFFIX:
3463 case LONG_MNEM_SUFFIX:
3464 if (!intel_syntax)
3465 {
3466 i.suffix = mnem_p[-1];
3467 mnem_p[-1] = '\0';
3468 current_templates = (const templates *) hash_find (op_hash,
3469 mnemonic);
3470 }
3471 break;
3472
3473 /* Intel Syntax. */
3474 case 'd':
3475 if (intel_syntax)
3476 {
3477 if (intel_float_operand (mnemonic) == 1)
3478 i.suffix = SHORT_MNEM_SUFFIX;
3479 else
3480 i.suffix = LONG_MNEM_SUFFIX;
3481 mnem_p[-1] = '\0';
3482 current_templates = (const templates *) hash_find (op_hash,
3483 mnemonic);
3484 }
3485 break;
3486 }
3487 if (!current_templates)
3488 {
3489 as_bad (_("no such instruction: `%s'"), token_start);
3490 return NULL;
3491 }
3492 }
3493
3494 if (current_templates->start->opcode_modifier.jump
3495 || current_templates->start->opcode_modifier.jumpbyte)
3496 {
3497 /* Check for a branch hint. We allow ",pt" and ",pn" for
3498 predict taken and predict not taken respectively.
3499 I'm not sure that branch hints actually do anything on loop
3500 and jcxz insns (JumpByte) for current Pentium4 chips. They
3501 may work in the future and it doesn't hurt to accept them
3502 now. */
3503 if (l[0] == ',' && l[1] == 'p')
3504 {
3505 if (l[2] == 't')
3506 {
3507 if (!add_prefix (DS_PREFIX_OPCODE))
3508 return NULL;
3509 l += 3;
3510 }
3511 else if (l[2] == 'n')
3512 {
3513 if (!add_prefix (CS_PREFIX_OPCODE))
3514 return NULL;
3515 l += 3;
3516 }
3517 }
3518 }
3519 /* Any other comma loses. */
3520 if (*l == ',')
3521 {
3522 as_bad (_("invalid character %s in mnemonic"),
3523 output_invalid (*l));
3524 return NULL;
3525 }
3526
3527 /* Check if instruction is supported on specified architecture. */
3528 supported = 0;
3529 for (t = current_templates->start; t < current_templates->end; ++t)
3530 {
3531 supported |= cpu_flags_match (t);
3532 if (supported == CPU_FLAGS_PERFECT_MATCH)
3533 goto skip;
3534 }
3535
3536 if (!(supported & CPU_FLAGS_64BIT_MATCH))
3537 {
3538 as_bad (flag_code == CODE_64BIT
3539 ? _("`%s' is not supported in 64-bit mode")
3540 : _("`%s' is only supported in 64-bit mode"),
3541 current_templates->start->name);
3542 return NULL;
3543 }
3544 if (supported != CPU_FLAGS_PERFECT_MATCH)
3545 {
3546 as_bad (_("`%s' is not supported on `%s%s'"),
3547 current_templates->start->name,
3548 cpu_arch_name ? cpu_arch_name : default_arch,
3549 cpu_sub_arch_name ? cpu_sub_arch_name : "");
3550 return NULL;
3551 }
3552
3553 skip:
3554 if (!cpu_arch_flags.bitfield.cpui386
3555 && (flag_code != CODE_16BIT))
3556 {
3557 as_warn (_("use .code16 to ensure correct addressing mode"));
3558 }
3559
3560 /* Check for rep/repne without a string (or other allowed) instruction. */
3561 if (expecting_string_instruction)
3562 {
3563 static templates override;
3564
3565 for (t = current_templates->start; t < current_templates->end; ++t)
3566 if (t->opcode_modifier.repprefixok)
3567 break;
3568 if (t >= current_templates->end)
3569 {
3570 as_bad (_("expecting string instruction after `%s'"),
3571 expecting_string_instruction);
3572 return NULL;
3573 }
3574 for (override.start = t; t < current_templates->end; ++t)
3575 if (!t->opcode_modifier.repprefixok)
3576 break;
3577 override.end = t;
3578 current_templates = &override;
3579 }
3580
3581 return l;
3582 }
3583
3584 static char *
3585 parse_operands (char *l, const char *mnemonic)
3586 {
3587 char *token_start;
3588
3589 /* 1 if operand is pending after ','. */
3590 unsigned int expecting_operand = 0;
3591
3592 /* Non-zero if operand parens not balanced. */
3593 unsigned int paren_not_balanced;
3594
3595 while (*l != END_OF_INSN)
3596 {
3597 /* Skip optional white space before operand. */
3598 if (is_space_char (*l))
3599 ++l;
3600 if (!is_operand_char (*l) && *l != END_OF_INSN)
3601 {
3602 as_bad (_("invalid character %s before operand %d"),
3603 output_invalid (*l),
3604 i.operands + 1);
3605 return NULL;
3606 }
3607 token_start = l; /* after white space */
3608 paren_not_balanced = 0;
3609 while (paren_not_balanced || *l != ',')
3610 {
3611 if (*l == END_OF_INSN)
3612 {
3613 if (paren_not_balanced)
3614 {
3615 if (!intel_syntax)
3616 as_bad (_("unbalanced parenthesis in operand %d."),
3617 i.operands + 1);
3618 else
3619 as_bad (_("unbalanced brackets in operand %d."),
3620 i.operands + 1);
3621 return NULL;
3622 }
3623 else
3624 break; /* we are done */
3625 }
3626 else if (!is_operand_char (*l) && !is_space_char (*l))
3627 {
3628 as_bad (_("invalid character %s in operand %d"),
3629 output_invalid (*l),
3630 i.operands + 1);
3631 return NULL;
3632 }
3633 if (!intel_syntax)
3634 {
3635 if (*l == '(')
3636 ++paren_not_balanced;
3637 if (*l == ')')
3638 --paren_not_balanced;
3639 }
3640 else
3641 {
3642 if (*l == '[')
3643 ++paren_not_balanced;
3644 if (*l == ']')
3645 --paren_not_balanced;
3646 }
3647 l++;
3648 }
3649 if (l != token_start)
3650 { /* Yes, we've read in another operand. */
3651 unsigned int operand_ok;
3652 this_operand = i.operands++;
3653 i.types[this_operand].bitfield.unspecified = 1;
3654 if (i.operands > MAX_OPERANDS)
3655 {
3656 as_bad (_("spurious operands; (%d operands/instruction max)"),
3657 MAX_OPERANDS);
3658 return NULL;
3659 }
3660 /* Now parse operand adding info to 'i' as we go along. */
3661 END_STRING_AND_SAVE (l);
3662
3663 if (intel_syntax)
3664 operand_ok =
3665 i386_intel_operand (token_start,
3666 intel_float_operand (mnemonic));
3667 else
3668 operand_ok = i386_att_operand (token_start);
3669
3670 RESTORE_END_STRING (l);
3671 if (!operand_ok)
3672 return NULL;
3673 }
3674 else
3675 {
3676 if (expecting_operand)
3677 {
3678 expecting_operand_after_comma:
3679 as_bad (_("expecting operand after ','; got nothing"));
3680 return NULL;
3681 }
3682 if (*l == ',')
3683 {
3684 as_bad (_("expecting operand before ','; got nothing"));
3685 return NULL;
3686 }
3687 }
3688
3689 /* Now *l must be either ',' or END_OF_INSN. */
3690 if (*l == ',')
3691 {
3692 if (*++l == END_OF_INSN)
3693 {
3694 /* Just skip it, if it's \n complain. */
3695 goto expecting_operand_after_comma;
3696 }
3697 expecting_operand = 1;
3698 }
3699 }
3700 return l;
3701 }
3702
3703 static void
3704 swap_2_operands (int xchg1, int xchg2)
3705 {
3706 union i386_op temp_op;
3707 i386_operand_type temp_type;
3708 enum bfd_reloc_code_real temp_reloc;
3709
3710 temp_type = i.types[xchg2];
3711 i.types[xchg2] = i.types[xchg1];
3712 i.types[xchg1] = temp_type;
3713 temp_op = i.op[xchg2];
3714 i.op[xchg2] = i.op[xchg1];
3715 i.op[xchg1] = temp_op;
3716 temp_reloc = i.reloc[xchg2];
3717 i.reloc[xchg2] = i.reloc[xchg1];
3718 i.reloc[xchg1] = temp_reloc;
3719 }
3720
3721 static void
3722 swap_operands (void)
3723 {
3724 switch (i.operands)
3725 {
3726 case 5:
3727 case 4:
3728 swap_2_operands (1, i.operands - 2);
3729 case 3:
3730 case 2:
3731 swap_2_operands (0, i.operands - 1);
3732 break;
3733 default:
3734 abort ();
3735 }
3736
3737 if (i.mem_operands == 2)
3738 {
3739 const seg_entry *temp_seg;
3740 temp_seg = i.seg[0];
3741 i.seg[0] = i.seg[1];
3742 i.seg[1] = temp_seg;
3743 }
3744 }
3745
3746 /* Try to ensure constant immediates are represented in the smallest
3747 opcode possible. */
3748 static void
3749 optimize_imm (void)
3750 {
3751 char guess_suffix = 0;
3752 int op;
3753
3754 if (i.suffix)
3755 guess_suffix = i.suffix;
3756 else if (i.reg_operands)
3757 {
3758 /* Figure out a suffix from the last register operand specified.
3759 We can't do this properly yet, ie. excluding InOutPortReg,
3760 but the following works for instructions with immediates.
3761 In any case, we can't set i.suffix yet. */
3762 for (op = i.operands; --op >= 0;)
3763 if (i.types[op].bitfield.reg8)
3764 {
3765 guess_suffix = BYTE_MNEM_SUFFIX;
3766 break;
3767 }
3768 else if (i.types[op].bitfield.reg16)
3769 {
3770 guess_suffix = WORD_MNEM_SUFFIX;
3771 break;
3772 }
3773 else if (i.types[op].bitfield.reg32)
3774 {
3775 guess_suffix = LONG_MNEM_SUFFIX;
3776 break;
3777 }
3778 else if (i.types[op].bitfield.reg64)
3779 {
3780 guess_suffix = QWORD_MNEM_SUFFIX;
3781 break;
3782 }
3783 }
3784 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
3785 guess_suffix = WORD_MNEM_SUFFIX;
3786
3787 for (op = i.operands; --op >= 0;)
3788 if (operand_type_check (i.types[op], imm))
3789 {
3790 switch (i.op[op].imms->X_op)
3791 {
3792 case O_constant:
3793 /* If a suffix is given, this operand may be shortened. */
3794 switch (guess_suffix)
3795 {
3796 case LONG_MNEM_SUFFIX:
3797 i.types[op].bitfield.imm32 = 1;
3798 i.types[op].bitfield.imm64 = 1;
3799 break;
3800 case WORD_MNEM_SUFFIX:
3801 i.types[op].bitfield.imm16 = 1;
3802 i.types[op].bitfield.imm32 = 1;
3803 i.types[op].bitfield.imm32s = 1;
3804 i.types[op].bitfield.imm64 = 1;
3805 break;
3806 case BYTE_MNEM_SUFFIX:
3807 i.types[op].bitfield.imm8 = 1;
3808 i.types[op].bitfield.imm8s = 1;
3809 i.types[op].bitfield.imm16 = 1;
3810 i.types[op].bitfield.imm32 = 1;
3811 i.types[op].bitfield.imm32s = 1;
3812 i.types[op].bitfield.imm64 = 1;
3813 break;
3814 }
3815
3816 /* If this operand is at most 16 bits, convert it
3817 to a signed 16 bit number before trying to see
3818 whether it will fit in an even smaller size.
3819 This allows a 16-bit operand such as $0xffe0 to
3820 be recognised as within Imm8S range. */
3821 if ((i.types[op].bitfield.imm16)
3822 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
3823 {
3824 i.op[op].imms->X_add_number =
3825 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
3826 }
3827 if ((i.types[op].bitfield.imm32)
3828 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
3829 == 0))
3830 {
3831 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
3832 ^ ((offsetT) 1 << 31))
3833 - ((offsetT) 1 << 31));
3834 }
3835 i.types[op]
3836 = operand_type_or (i.types[op],
3837 smallest_imm_type (i.op[op].imms->X_add_number));
3838
3839 /* We must avoid matching of Imm32 templates when 64bit
3840 only immediate is available. */
3841 if (guess_suffix == QWORD_MNEM_SUFFIX)
3842 i.types[op].bitfield.imm32 = 0;
3843 break;
3844
3845 case O_absent:
3846 case O_register:
3847 abort ();
3848
3849 /* Symbols and expressions. */
3850 default:
3851 /* Convert symbolic operand to proper sizes for matching, but don't
3852 prevent matching a set of insns that only supports sizes other
3853 than those matching the insn suffix. */
3854 {
3855 i386_operand_type mask, allowed;
3856 const insn_template *t;
3857
3858 operand_type_set (&mask, 0);
3859 operand_type_set (&allowed, 0);
3860
3861 for (t = current_templates->start;
3862 t < current_templates->end;
3863 ++t)
3864 allowed = operand_type_or (allowed,
3865 t->operand_types[op]);
3866 switch (guess_suffix)
3867 {
3868 case QWORD_MNEM_SUFFIX:
3869 mask.bitfield.imm64 = 1;
3870 mask.bitfield.imm32s = 1;
3871 break;
3872 case LONG_MNEM_SUFFIX:
3873 mask.bitfield.imm32 = 1;
3874 break;
3875 case WORD_MNEM_SUFFIX:
3876 mask.bitfield.imm16 = 1;
3877 break;
3878 case BYTE_MNEM_SUFFIX:
3879 mask.bitfield.imm8 = 1;
3880 break;
3881 default:
3882 break;
3883 }
3884 allowed = operand_type_and (mask, allowed);
3885 if (!operand_type_all_zero (&allowed))
3886 i.types[op] = operand_type_and (i.types[op], mask);
3887 }
3888 break;
3889 }
3890 }
3891 }
3892
3893 /* Try to use the smallest displacement type too. */
3894 static void
3895 optimize_disp (void)
3896 {
3897 int op;
3898
3899 for (op = i.operands; --op >= 0;)
3900 if (operand_type_check (i.types[op], disp))
3901 {
3902 if (i.op[op].disps->X_op == O_constant)
3903 {
3904 offsetT op_disp = i.op[op].disps->X_add_number;
3905
3906 if (i.types[op].bitfield.disp16
3907 && (op_disp & ~(offsetT) 0xffff) == 0)
3908 {
3909 /* If this operand is at most 16 bits, convert
3910 to a signed 16 bit number and don't use 64bit
3911 displacement. */
3912 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
3913 i.types[op].bitfield.disp64 = 0;
3914 }
3915 if (i.types[op].bitfield.disp32
3916 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
3917 {
3918 /* If this operand is at most 32 bits, convert
3919 to a signed 32 bit number and don't use 64bit
3920 displacement. */
3921 op_disp &= (((offsetT) 2 << 31) - 1);
3922 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
3923 i.types[op].bitfield.disp64 = 0;
3924 }
3925 if (!op_disp && i.types[op].bitfield.baseindex)
3926 {
3927 i.types[op].bitfield.disp8 = 0;
3928 i.types[op].bitfield.disp16 = 0;
3929 i.types[op].bitfield.disp32 = 0;
3930 i.types[op].bitfield.disp32s = 0;
3931 i.types[op].bitfield.disp64 = 0;
3932 i.op[op].disps = 0;
3933 i.disp_operands--;
3934 }
3935 else if (flag_code == CODE_64BIT)
3936 {
3937 if (fits_in_signed_long (op_disp))
3938 {
3939 i.types[op].bitfield.disp64 = 0;
3940 i.types[op].bitfield.disp32s = 1;
3941 }
3942 if (i.prefix[ADDR_PREFIX]
3943 && fits_in_unsigned_long (op_disp))
3944 i.types[op].bitfield.disp32 = 1;
3945 }
3946 if ((i.types[op].bitfield.disp32
3947 || i.types[op].bitfield.disp32s
3948 || i.types[op].bitfield.disp16)
3949 && fits_in_signed_byte (op_disp))
3950 i.types[op].bitfield.disp8 = 1;
3951 }
3952 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3953 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
3954 {
3955 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
3956 i.op[op].disps, 0, i.reloc[op]);
3957 i.types[op].bitfield.disp8 = 0;
3958 i.types[op].bitfield.disp16 = 0;
3959 i.types[op].bitfield.disp32 = 0;
3960 i.types[op].bitfield.disp32s = 0;
3961 i.types[op].bitfield.disp64 = 0;
3962 }
3963 else
3964 /* We only support 64bit displacement on constants. */
3965 i.types[op].bitfield.disp64 = 0;
3966 }
3967 }
3968
3969 /* Check if operands are valid for the instruction. */
3970
3971 static int
3972 check_VecOperands (const insn_template *t)
3973 {
3974 /* Without VSIB byte, we can't have a vector register for index. */
3975 if (!t->opcode_modifier.vecsib
3976 && i.index_reg
3977 && (i.index_reg->reg_type.bitfield.regxmm
3978 || i.index_reg->reg_type.bitfield.regymm))
3979 {
3980 i.error = unsupported_vector_index_register;
3981 return 1;
3982 }
3983
3984 /* For VSIB byte, we need a vector register for index, and all vector
3985 registers must be distinct. */
3986 if (t->opcode_modifier.vecsib)
3987 {
3988 if (!i.index_reg
3989 || !((t->opcode_modifier.vecsib == VecSIB128
3990 && i.index_reg->reg_type.bitfield.regxmm)
3991 || (t->opcode_modifier.vecsib == VecSIB256
3992 && i.index_reg->reg_type.bitfield.regymm)))
3993 {
3994 i.error = invalid_vsib_address;
3995 return 1;
3996 }
3997
3998 gas_assert (i.reg_operands == 2);
3999 gas_assert (i.types[0].bitfield.regxmm
4000 || i.types[0].bitfield.regymm);
4001 gas_assert (i.types[2].bitfield.regxmm
4002 || i.types[2].bitfield.regymm);
4003
4004 if (operand_check == check_none)
4005 return 0;
4006 if (register_number (i.op[0].regs) != register_number (i.index_reg)
4007 && register_number (i.op[2].regs) != register_number (i.index_reg)
4008 && register_number (i.op[0].regs) != register_number (i.op[2].regs))
4009 return 0;
4010 if (operand_check == check_error)
4011 {
4012 i.error = invalid_vector_register_set;
4013 return 1;
4014 }
4015 as_warn (_("mask, index, and destination registers should be distinct"));
4016 }
4017
4018 return 0;
4019 }
4020
4021 /* Check if operands are valid for the instruction. Update VEX
4022 operand types. */
4023
4024 static int
4025 VEX_check_operands (const insn_template *t)
4026 {
4027 if (!t->opcode_modifier.vex)
4028 return 0;
4029
4030 /* Only check VEX_Imm4, which must be the first operand. */
4031 if (t->operand_types[0].bitfield.vec_imm4)
4032 {
4033 if (i.op[0].imms->X_op != O_constant
4034 || !fits_in_imm4 (i.op[0].imms->X_add_number))
4035 {
4036 i.error = bad_imm4;
4037 return 1;
4038 }
4039
4040 /* Turn off Imm8 so that update_imm won't complain. */
4041 i.types[0] = vec_imm4;
4042 }
4043
4044 return 0;
4045 }
4046
4047 static const insn_template *
4048 match_template (void)
4049 {
4050 /* Points to template once we've found it. */
4051 const insn_template *t;
4052 i386_operand_type overlap0, overlap1, overlap2, overlap3;
4053 i386_operand_type overlap4;
4054 unsigned int found_reverse_match;
4055 i386_opcode_modifier suffix_check;
4056 i386_operand_type operand_types [MAX_OPERANDS];
4057 int addr_prefix_disp;
4058 unsigned int j;
4059 unsigned int found_cpu_match;
4060 unsigned int check_register;
4061 enum i386_error specific_error = 0;
4062
4063 #if MAX_OPERANDS != 5
4064 # error "MAX_OPERANDS must be 5."
4065 #endif
4066
4067 found_reverse_match = 0;
4068 addr_prefix_disp = -1;
4069
4070 memset (&suffix_check, 0, sizeof (suffix_check));
4071 if (i.suffix == BYTE_MNEM_SUFFIX)
4072 suffix_check.no_bsuf = 1;
4073 else if (i.suffix == WORD_MNEM_SUFFIX)
4074 suffix_check.no_wsuf = 1;
4075 else if (i.suffix == SHORT_MNEM_SUFFIX)
4076 suffix_check.no_ssuf = 1;
4077 else if (i.suffix == LONG_MNEM_SUFFIX)
4078 suffix_check.no_lsuf = 1;
4079 else if (i.suffix == QWORD_MNEM_SUFFIX)
4080 suffix_check.no_qsuf = 1;
4081 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4082 suffix_check.no_ldsuf = 1;
4083
4084 /* Must have right number of operands. */
4085 i.error = number_of_operands_mismatch;
4086
4087 for (t = current_templates->start; t < current_templates->end; t++)
4088 {
4089 addr_prefix_disp = -1;
4090
4091 if (i.operands != t->operands)
4092 continue;
4093
4094 /* Check processor support. */
4095 i.error = unsupported;
4096 found_cpu_match = (cpu_flags_match (t)
4097 == CPU_FLAGS_PERFECT_MATCH);
4098 if (!found_cpu_match)
4099 continue;
4100
4101 /* Check old gcc support. */
4102 i.error = old_gcc_only;
4103 if (!old_gcc && t->opcode_modifier.oldgcc)
4104 continue;
4105
4106 /* Check AT&T mnemonic. */
4107 i.error = unsupported_with_intel_mnemonic;
4108 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4109 continue;
4110
4111 /* Check AT&T/Intel syntax. */
4112 i.error = unsupported_syntax;
4113 if ((intel_syntax && t->opcode_modifier.attsyntax)
4114 || (!intel_syntax && t->opcode_modifier.intelsyntax))
4115 continue;
4116
4117 /* Check the suffix, except for some instructions in intel mode. */
4118 i.error = invalid_instruction_suffix;
4119 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4120 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4121 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4122 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4123 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4124 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4125 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4126 continue;
4127
4128 if (!operand_size_match (t))
4129 continue;
4130
4131 for (j = 0; j < MAX_OPERANDS; j++)
4132 operand_types[j] = t->operand_types[j];
4133
4134 /* In general, don't allow 64-bit operands in 32-bit mode. */
4135 if (i.suffix == QWORD_MNEM_SUFFIX
4136 && flag_code != CODE_64BIT
4137 && (intel_syntax
4138 ? (!t->opcode_modifier.ignoresize
4139 && !intel_float_operand (t->name))
4140 : intel_float_operand (t->name) != 2)
4141 && ((!operand_types[0].bitfield.regmmx
4142 && !operand_types[0].bitfield.regxmm
4143 && !operand_types[0].bitfield.regymm)
4144 || (!operand_types[t->operands > 1].bitfield.regmmx
4145 && !!operand_types[t->operands > 1].bitfield.regxmm
4146 && !!operand_types[t->operands > 1].bitfield.regymm))
4147 && (t->base_opcode != 0x0fc7
4148 || t->extension_opcode != 1 /* cmpxchg8b */))
4149 continue;
4150
4151 /* In general, don't allow 32-bit operands on pre-386. */
4152 else if (i.suffix == LONG_MNEM_SUFFIX
4153 && !cpu_arch_flags.bitfield.cpui386
4154 && (intel_syntax
4155 ? (!t->opcode_modifier.ignoresize
4156 && !intel_float_operand (t->name))
4157 : intel_float_operand (t->name) != 2)
4158 && ((!operand_types[0].bitfield.regmmx
4159 && !operand_types[0].bitfield.regxmm)
4160 || (!operand_types[t->operands > 1].bitfield.regmmx
4161 && !!operand_types[t->operands > 1].bitfield.regxmm)))
4162 continue;
4163
4164 /* Do not verify operands when there are none. */
4165 else
4166 {
4167 if (!t->operands)
4168 /* We've found a match; break out of loop. */
4169 break;
4170 }
4171
4172 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4173 into Disp32/Disp16/Disp32 operand. */
4174 if (i.prefix[ADDR_PREFIX] != 0)
4175 {
4176 /* There should be only one Disp operand. */
4177 switch (flag_code)
4178 {
4179 case CODE_16BIT:
4180 for (j = 0; j < MAX_OPERANDS; j++)
4181 {
4182 if (operand_types[j].bitfield.disp16)
4183 {
4184 addr_prefix_disp = j;
4185 operand_types[j].bitfield.disp32 = 1;
4186 operand_types[j].bitfield.disp16 = 0;
4187 break;
4188 }
4189 }
4190 break;
4191 case CODE_32BIT:
4192 for (j = 0; j < MAX_OPERANDS; j++)
4193 {
4194 if (operand_types[j].bitfield.disp32)
4195 {
4196 addr_prefix_disp = j;
4197 operand_types[j].bitfield.disp32 = 0;
4198 operand_types[j].bitfield.disp16 = 1;
4199 break;
4200 }
4201 }
4202 break;
4203 case CODE_64BIT:
4204 for (j = 0; j < MAX_OPERANDS; j++)
4205 {
4206 if (operand_types[j].bitfield.disp64)
4207 {
4208 addr_prefix_disp = j;
4209 operand_types[j].bitfield.disp64 = 0;
4210 operand_types[j].bitfield.disp32 = 1;
4211 break;
4212 }
4213 }
4214 break;
4215 }
4216 }
4217
4218 /* We check register size if needed. */
4219 check_register = t->opcode_modifier.checkregsize;
4220 overlap0 = operand_type_and (i.types[0], operand_types[0]);
4221 switch (t->operands)
4222 {
4223 case 1:
4224 if (!operand_type_match (overlap0, i.types[0]))
4225 continue;
4226 break;
4227 case 2:
4228 /* xchg %eax, %eax is a special case. It is an aliase for nop
4229 only in 32bit mode and we can use opcode 0x90. In 64bit
4230 mode, we can't use 0x90 for xchg %eax, %eax since it should
4231 zero-extend %eax to %rax. */
4232 if (flag_code == CODE_64BIT
4233 && t->base_opcode == 0x90
4234 && operand_type_equal (&i.types [0], &acc32)
4235 && operand_type_equal (&i.types [1], &acc32))
4236 continue;
4237 if (i.swap_operand)
4238 {
4239 /* If we swap operand in encoding, we either match
4240 the next one or reverse direction of operands. */
4241 if (t->opcode_modifier.s)
4242 continue;
4243 else if (t->opcode_modifier.d)
4244 goto check_reverse;
4245 }
4246
4247 case 3:
4248 /* If we swap operand in encoding, we match the next one. */
4249 if (i.swap_operand && t->opcode_modifier.s)
4250 continue;
4251 case 4:
4252 case 5:
4253 overlap1 = operand_type_and (i.types[1], operand_types[1]);
4254 if (!operand_type_match (overlap0, i.types[0])
4255 || !operand_type_match (overlap1, i.types[1])
4256 || (check_register
4257 && !operand_type_register_match (overlap0, i.types[0],
4258 operand_types[0],
4259 overlap1, i.types[1],
4260 operand_types[1])))
4261 {
4262 /* Check if other direction is valid ... */
4263 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
4264 continue;
4265
4266 check_reverse:
4267 /* Try reversing direction of operands. */
4268 overlap0 = operand_type_and (i.types[0], operand_types[1]);
4269 overlap1 = operand_type_and (i.types[1], operand_types[0]);
4270 if (!operand_type_match (overlap0, i.types[0])
4271 || !operand_type_match (overlap1, i.types[1])
4272 || (check_register
4273 && !operand_type_register_match (overlap0,
4274 i.types[0],
4275 operand_types[1],
4276 overlap1,
4277 i.types[1],
4278 operand_types[0])))
4279 {
4280 /* Does not match either direction. */
4281 continue;
4282 }
4283 /* found_reverse_match holds which of D or FloatDR
4284 we've found. */
4285 if (t->opcode_modifier.d)
4286 found_reverse_match = Opcode_D;
4287 else if (t->opcode_modifier.floatd)
4288 found_reverse_match = Opcode_FloatD;
4289 else
4290 found_reverse_match = 0;
4291 if (t->opcode_modifier.floatr)
4292 found_reverse_match |= Opcode_FloatR;
4293 }
4294 else
4295 {
4296 /* Found a forward 2 operand match here. */
4297 switch (t->operands)
4298 {
4299 case 5:
4300 overlap4 = operand_type_and (i.types[4],
4301 operand_types[4]);
4302 case 4:
4303 overlap3 = operand_type_and (i.types[3],
4304 operand_types[3]);
4305 case 3:
4306 overlap2 = operand_type_and (i.types[2],
4307 operand_types[2]);
4308 break;
4309 }
4310
4311 switch (t->operands)
4312 {
4313 case 5:
4314 if (!operand_type_match (overlap4, i.types[4])
4315 || !operand_type_register_match (overlap3,
4316 i.types[3],
4317 operand_types[3],
4318 overlap4,
4319 i.types[4],
4320 operand_types[4]))
4321 continue;
4322 case 4:
4323 if (!operand_type_match (overlap3, i.types[3])
4324 || (check_register
4325 && !operand_type_register_match (overlap2,
4326 i.types[2],
4327 operand_types[2],
4328 overlap3,
4329 i.types[3],
4330 operand_types[3])))
4331 continue;
4332 case 3:
4333 /* Here we make use of the fact that there are no
4334 reverse match 3 operand instructions, and all 3
4335 operand instructions only need to be checked for
4336 register consistency between operands 2 and 3. */
4337 if (!operand_type_match (overlap2, i.types[2])
4338 || (check_register
4339 && !operand_type_register_match (overlap1,
4340 i.types[1],
4341 operand_types[1],
4342 overlap2,
4343 i.types[2],
4344 operand_types[2])))
4345 continue;
4346 break;
4347 }
4348 }
4349 /* Found either forward/reverse 2, 3 or 4 operand match here:
4350 slip through to break. */
4351 }
4352 if (!found_cpu_match)
4353 {
4354 found_reverse_match = 0;
4355 continue;
4356 }
4357
4358 /* Check if vector and VEX operands are valid. */
4359 if (check_VecOperands (t) || VEX_check_operands (t))
4360 {
4361 specific_error = i.error;
4362 continue;
4363 }
4364
4365 /* We've found a match; break out of loop. */
4366 break;
4367 }
4368
4369 if (t == current_templates->end)
4370 {
4371 /* We found no match. */
4372 const char *err_msg;
4373 switch (specific_error ? specific_error : i.error)
4374 {
4375 default:
4376 abort ();
4377 case operand_size_mismatch:
4378 err_msg = _("operand size mismatch");
4379 break;
4380 case operand_type_mismatch:
4381 err_msg = _("operand type mismatch");
4382 break;
4383 case register_type_mismatch:
4384 err_msg = _("register type mismatch");
4385 break;
4386 case number_of_operands_mismatch:
4387 err_msg = _("number of operands mismatch");
4388 break;
4389 case invalid_instruction_suffix:
4390 err_msg = _("invalid instruction suffix");
4391 break;
4392 case bad_imm4:
4393 err_msg = _("constant doesn't fit in 4 bits");
4394 break;
4395 case old_gcc_only:
4396 err_msg = _("only supported with old gcc");
4397 break;
4398 case unsupported_with_intel_mnemonic:
4399 err_msg = _("unsupported with Intel mnemonic");
4400 break;
4401 case unsupported_syntax:
4402 err_msg = _("unsupported syntax");
4403 break;
4404 case unsupported:
4405 as_bad (_("unsupported instruction `%s'"),
4406 current_templates->start->name);
4407 return NULL;
4408 case invalid_vsib_address:
4409 err_msg = _("invalid VSIB address");
4410 break;
4411 case invalid_vector_register_set:
4412 err_msg = _("mask, index, and destination registers must be distinct");
4413 break;
4414 case unsupported_vector_index_register:
4415 err_msg = _("unsupported vector index register");
4416 break;
4417 }
4418 as_bad (_("%s for `%s'"), err_msg,
4419 current_templates->start->name);
4420 return NULL;
4421 }
4422
4423 if (!quiet_warnings)
4424 {
4425 if (!intel_syntax
4426 && (i.types[0].bitfield.jumpabsolute
4427 != operand_types[0].bitfield.jumpabsolute))
4428 {
4429 as_warn (_("indirect %s without `*'"), t->name);
4430 }
4431
4432 if (t->opcode_modifier.isprefix
4433 && t->opcode_modifier.ignoresize)
4434 {
4435 /* Warn them that a data or address size prefix doesn't
4436 affect assembly of the next line of code. */
4437 as_warn (_("stand-alone `%s' prefix"), t->name);
4438 }
4439 }
4440
4441 /* Copy the template we found. */
4442 i.tm = *t;
4443
4444 if (addr_prefix_disp != -1)
4445 i.tm.operand_types[addr_prefix_disp]
4446 = operand_types[addr_prefix_disp];
4447
4448 if (found_reverse_match)
4449 {
4450 /* If we found a reverse match we must alter the opcode
4451 direction bit. found_reverse_match holds bits to change
4452 (different for int & float insns). */
4453
4454 i.tm.base_opcode ^= found_reverse_match;
4455
4456 i.tm.operand_types[0] = operand_types[1];
4457 i.tm.operand_types[1] = operand_types[0];
4458 }
4459
4460 return t;
4461 }
4462
4463 static int
4464 check_string (void)
4465 {
4466 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
4467 if (i.tm.operand_types[mem_op].bitfield.esseg)
4468 {
4469 if (i.seg[0] != NULL && i.seg[0] != &es)
4470 {
4471 as_bad (_("`%s' operand %d must use `%ses' segment"),
4472 i.tm.name,
4473 mem_op + 1,
4474 register_prefix);
4475 return 0;
4476 }
4477 /* There's only ever one segment override allowed per instruction.
4478 This instruction possibly has a legal segment override on the
4479 second operand, so copy the segment to where non-string
4480 instructions store it, allowing common code. */
4481 i.seg[0] = i.seg[1];
4482 }
4483 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
4484 {
4485 if (i.seg[1] != NULL && i.seg[1] != &es)
4486 {
4487 as_bad (_("`%s' operand %d must use `%ses' segment"),
4488 i.tm.name,
4489 mem_op + 2,
4490 register_prefix);
4491 return 0;
4492 }
4493 }
4494 return 1;
4495 }
4496
4497 static int
4498 process_suffix (void)
4499 {
4500 /* If matched instruction specifies an explicit instruction mnemonic
4501 suffix, use it. */
4502 if (i.tm.opcode_modifier.size16)
4503 i.suffix = WORD_MNEM_SUFFIX;
4504 else if (i.tm.opcode_modifier.size32)
4505 i.suffix = LONG_MNEM_SUFFIX;
4506 else if (i.tm.opcode_modifier.size64)
4507 i.suffix = QWORD_MNEM_SUFFIX;
4508 else if (i.reg_operands)
4509 {
4510 /* If there's no instruction mnemonic suffix we try to invent one
4511 based on register operands. */
4512 if (!i.suffix)
4513 {
4514 /* We take i.suffix from the last register operand specified,
4515 Destination register type is more significant than source
4516 register type. crc32 in SSE4.2 prefers source register
4517 type. */
4518 if (i.tm.base_opcode == 0xf20f38f1)
4519 {
4520 if (i.types[0].bitfield.reg16)
4521 i.suffix = WORD_MNEM_SUFFIX;
4522 else if (i.types[0].bitfield.reg32)
4523 i.suffix = LONG_MNEM_SUFFIX;
4524 else if (i.types[0].bitfield.reg64)
4525 i.suffix = QWORD_MNEM_SUFFIX;
4526 }
4527 else if (i.tm.base_opcode == 0xf20f38f0)
4528 {
4529 if (i.types[0].bitfield.reg8)
4530 i.suffix = BYTE_MNEM_SUFFIX;
4531 }
4532
4533 if (!i.suffix)
4534 {
4535 int op;
4536
4537 if (i.tm.base_opcode == 0xf20f38f1
4538 || i.tm.base_opcode == 0xf20f38f0)
4539 {
4540 /* We have to know the operand size for crc32. */
4541 as_bad (_("ambiguous memory operand size for `%s`"),
4542 i.tm.name);
4543 return 0;
4544 }
4545
4546 for (op = i.operands; --op >= 0;)
4547 if (!i.tm.operand_types[op].bitfield.inoutportreg)
4548 {
4549 if (i.types[op].bitfield.reg8)
4550 {
4551 i.suffix = BYTE_MNEM_SUFFIX;
4552 break;
4553 }
4554 else if (i.types[op].bitfield.reg16)
4555 {
4556 i.suffix = WORD_MNEM_SUFFIX;
4557 break;
4558 }
4559 else if (i.types[op].bitfield.reg32)
4560 {
4561 i.suffix = LONG_MNEM_SUFFIX;
4562 break;
4563 }
4564 else if (i.types[op].bitfield.reg64)
4565 {
4566 i.suffix = QWORD_MNEM_SUFFIX;
4567 break;
4568 }
4569 }
4570 }
4571 }
4572 else if (i.suffix == BYTE_MNEM_SUFFIX)
4573 {
4574 if (intel_syntax
4575 && i.tm.opcode_modifier.ignoresize
4576 && i.tm.opcode_modifier.no_bsuf)
4577 i.suffix = 0;
4578 else if (!check_byte_reg ())
4579 return 0;
4580 }
4581 else if (i.suffix == LONG_MNEM_SUFFIX)
4582 {
4583 if (intel_syntax
4584 && i.tm.opcode_modifier.ignoresize
4585 && i.tm.opcode_modifier.no_lsuf)
4586 i.suffix = 0;
4587 else if (!check_long_reg ())
4588 return 0;
4589 }
4590 else if (i.suffix == QWORD_MNEM_SUFFIX)
4591 {
4592 if (intel_syntax
4593 && i.tm.opcode_modifier.ignoresize
4594 && i.tm.opcode_modifier.no_qsuf)
4595 i.suffix = 0;
4596 else if (!check_qword_reg ())
4597 return 0;
4598 }
4599 else if (i.suffix == WORD_MNEM_SUFFIX)
4600 {
4601 if (intel_syntax
4602 && i.tm.opcode_modifier.ignoresize
4603 && i.tm.opcode_modifier.no_wsuf)
4604 i.suffix = 0;
4605 else if (!check_word_reg ())
4606 return 0;
4607 }
4608 else if (i.suffix == XMMWORD_MNEM_SUFFIX
4609 || i.suffix == YMMWORD_MNEM_SUFFIX)
4610 {
4611 /* Skip if the instruction has x/y suffix. match_template
4612 should check if it is a valid suffix. */
4613 }
4614 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
4615 /* Do nothing if the instruction is going to ignore the prefix. */
4616 ;
4617 else
4618 abort ();
4619 }
4620 else if (i.tm.opcode_modifier.defaultsize
4621 && !i.suffix
4622 /* exclude fldenv/frstor/fsave/fstenv */
4623 && i.tm.opcode_modifier.no_ssuf)
4624 {
4625 i.suffix = stackop_size;
4626 }
4627 else if (intel_syntax
4628 && !i.suffix
4629 && (i.tm.operand_types[0].bitfield.jumpabsolute
4630 || i.tm.opcode_modifier.jumpbyte
4631 || i.tm.opcode_modifier.jumpintersegment
4632 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
4633 && i.tm.extension_opcode <= 3)))
4634 {
4635 switch (flag_code)
4636 {
4637 case CODE_64BIT:
4638 if (!i.tm.opcode_modifier.no_qsuf)
4639 {
4640 i.suffix = QWORD_MNEM_SUFFIX;
4641 break;
4642 }
4643 case CODE_32BIT:
4644 if (!i.tm.opcode_modifier.no_lsuf)
4645 i.suffix = LONG_MNEM_SUFFIX;
4646 break;
4647 case CODE_16BIT:
4648 if (!i.tm.opcode_modifier.no_wsuf)
4649 i.suffix = WORD_MNEM_SUFFIX;
4650 break;
4651 }
4652 }
4653
4654 if (!i.suffix)
4655 {
4656 if (!intel_syntax)
4657 {
4658 if (i.tm.opcode_modifier.w)
4659 {
4660 as_bad (_("no instruction mnemonic suffix given and "
4661 "no register operands; can't size instruction"));
4662 return 0;
4663 }
4664 }
4665 else
4666 {
4667 unsigned int suffixes;
4668
4669 suffixes = !i.tm.opcode_modifier.no_bsuf;
4670 if (!i.tm.opcode_modifier.no_wsuf)
4671 suffixes |= 1 << 1;
4672 if (!i.tm.opcode_modifier.no_lsuf)
4673 suffixes |= 1 << 2;
4674 if (!i.tm.opcode_modifier.no_ldsuf)
4675 suffixes |= 1 << 3;
4676 if (!i.tm.opcode_modifier.no_ssuf)
4677 suffixes |= 1 << 4;
4678 if (!i.tm.opcode_modifier.no_qsuf)
4679 suffixes |= 1 << 5;
4680
4681 /* There are more than suffix matches. */
4682 if (i.tm.opcode_modifier.w
4683 || ((suffixes & (suffixes - 1))
4684 && !i.tm.opcode_modifier.defaultsize
4685 && !i.tm.opcode_modifier.ignoresize))
4686 {
4687 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4688 return 0;
4689 }
4690 }
4691 }
4692
4693 /* Change the opcode based on the operand size given by i.suffix;
4694 We don't need to change things for byte insns. */
4695
4696 if (i.suffix
4697 && i.suffix != BYTE_MNEM_SUFFIX
4698 && i.suffix != XMMWORD_MNEM_SUFFIX
4699 && i.suffix != YMMWORD_MNEM_SUFFIX)
4700 {
4701 /* It's not a byte, select word/dword operation. */
4702 if (i.tm.opcode_modifier.w)
4703 {
4704 if (i.tm.opcode_modifier.shortform)
4705 i.tm.base_opcode |= 8;
4706 else
4707 i.tm.base_opcode |= 1;
4708 }
4709
4710 /* Now select between word & dword operations via the operand
4711 size prefix, except for instructions that will ignore this
4712 prefix anyway. */
4713 if (i.tm.opcode_modifier.addrprefixop0)
4714 {
4715 /* The address size override prefix changes the size of the
4716 first operand. */
4717 if ((flag_code == CODE_32BIT
4718 && i.op->regs[0].reg_type.bitfield.reg16)
4719 || (flag_code != CODE_32BIT
4720 && i.op->regs[0].reg_type.bitfield.reg32))
4721 if (!add_prefix (ADDR_PREFIX_OPCODE))
4722 return 0;
4723 }
4724 else if (i.suffix != QWORD_MNEM_SUFFIX
4725 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
4726 && !i.tm.opcode_modifier.ignoresize
4727 && !i.tm.opcode_modifier.floatmf
4728 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
4729 || (flag_code == CODE_64BIT
4730 && i.tm.opcode_modifier.jumpbyte)))
4731 {
4732 unsigned int prefix = DATA_PREFIX_OPCODE;
4733
4734 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
4735 prefix = ADDR_PREFIX_OPCODE;
4736
4737 if (!add_prefix (prefix))
4738 return 0;
4739 }
4740
4741 /* Set mode64 for an operand. */
4742 if (i.suffix == QWORD_MNEM_SUFFIX
4743 && flag_code == CODE_64BIT
4744 && !i.tm.opcode_modifier.norex64)
4745 {
4746 /* Special case for xchg %rax,%rax. It is NOP and doesn't
4747 need rex64. cmpxchg8b is also a special case. */
4748 if (! (i.operands == 2
4749 && i.tm.base_opcode == 0x90
4750 && i.tm.extension_opcode == None
4751 && operand_type_equal (&i.types [0], &acc64)
4752 && operand_type_equal (&i.types [1], &acc64))
4753 && ! (i.operands == 1
4754 && i.tm.base_opcode == 0xfc7
4755 && i.tm.extension_opcode == 1
4756 && !operand_type_check (i.types [0], reg)
4757 && operand_type_check (i.types [0], anymem)))
4758 i.rex |= REX_W;
4759 }
4760
4761 /* Size floating point instruction. */
4762 if (i.suffix == LONG_MNEM_SUFFIX)
4763 if (i.tm.opcode_modifier.floatmf)
4764 i.tm.base_opcode ^= 4;
4765 }
4766
4767 return 1;
4768 }
4769
4770 static int
4771 check_byte_reg (void)
4772 {
4773 int op;
4774
4775 for (op = i.operands; --op >= 0;)
4776 {
4777 /* If this is an eight bit register, it's OK. If it's the 16 or
4778 32 bit version of an eight bit register, we will just use the
4779 low portion, and that's OK too. */
4780 if (i.types[op].bitfield.reg8)
4781 continue;
4782
4783 /* I/O port address operands are OK too. */
4784 if (i.tm.operand_types[op].bitfield.inoutportreg)
4785 continue;
4786
4787 /* crc32 doesn't generate this warning. */
4788 if (i.tm.base_opcode == 0xf20f38f0)
4789 continue;
4790
4791 if ((i.types[op].bitfield.reg16
4792 || i.types[op].bitfield.reg32
4793 || i.types[op].bitfield.reg64)
4794 && i.op[op].regs->reg_num < 4
4795 /* Prohibit these changes in 64bit mode, since the lowering
4796 would be more complicated. */
4797 && flag_code != CODE_64BIT)
4798 {
4799 #if REGISTER_WARNINGS
4800 if (!quiet_warnings)
4801 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4802 register_prefix,
4803 (i.op[op].regs + (i.types[op].bitfield.reg16
4804 ? REGNAM_AL - REGNAM_AX
4805 : REGNAM_AL - REGNAM_EAX))->reg_name,
4806 register_prefix,
4807 i.op[op].regs->reg_name,
4808 i.suffix);
4809 #endif
4810 continue;
4811 }
4812 /* Any other register is bad. */
4813 if (i.types[op].bitfield.reg16
4814 || i.types[op].bitfield.reg32
4815 || i.types[op].bitfield.reg64
4816 || i.types[op].bitfield.regmmx
4817 || i.types[op].bitfield.regxmm
4818 || i.types[op].bitfield.regymm
4819 || i.types[op].bitfield.sreg2
4820 || i.types[op].bitfield.sreg3
4821 || i.types[op].bitfield.control
4822 || i.types[op].bitfield.debug
4823 || i.types[op].bitfield.test
4824 || i.types[op].bitfield.floatreg
4825 || i.types[op].bitfield.floatacc)
4826 {
4827 as_bad (_("`%s%s' not allowed with `%s%c'"),
4828 register_prefix,
4829 i.op[op].regs->reg_name,
4830 i.tm.name,
4831 i.suffix);
4832 return 0;
4833 }
4834 }
4835 return 1;
4836 }
4837
4838 static int
4839 check_long_reg (void)
4840 {
4841 int op;
4842
4843 for (op = i.operands; --op >= 0;)
4844 /* Reject eight bit registers, except where the template requires
4845 them. (eg. movzb) */
4846 if (i.types[op].bitfield.reg8
4847 && (i.tm.operand_types[op].bitfield.reg16
4848 || i.tm.operand_types[op].bitfield.reg32
4849 || i.tm.operand_types[op].bitfield.acc))
4850 {
4851 as_bad (_("`%s%s' not allowed with `%s%c'"),
4852 register_prefix,
4853 i.op[op].regs->reg_name,
4854 i.tm.name,
4855 i.suffix);
4856 return 0;
4857 }
4858 /* Warn if the e prefix on a general reg is missing. */
4859 else if ((!quiet_warnings || flag_code == CODE_64BIT)
4860 && i.types[op].bitfield.reg16
4861 && (i.tm.operand_types[op].bitfield.reg32
4862 || i.tm.operand_types[op].bitfield.acc))
4863 {
4864 /* Prohibit these changes in the 64bit mode, since the
4865 lowering is more complicated. */
4866 if (flag_code == CODE_64BIT)
4867 {
4868 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
4869 register_prefix, i.op[op].regs->reg_name,
4870 i.suffix);
4871 return 0;
4872 }
4873 #if REGISTER_WARNINGS
4874 else
4875 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4876 register_prefix,
4877 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
4878 register_prefix,
4879 i.op[op].regs->reg_name,
4880 i.suffix);
4881 #endif
4882 }
4883 /* Warn if the r prefix on a general reg is missing. */
4884 else if (i.types[op].bitfield.reg64
4885 && (i.tm.operand_types[op].bitfield.reg32
4886 || i.tm.operand_types[op].bitfield.acc))
4887 {
4888 if (intel_syntax
4889 && i.tm.opcode_modifier.toqword
4890 && !i.types[0].bitfield.regxmm)
4891 {
4892 /* Convert to QWORD. We want REX byte. */
4893 i.suffix = QWORD_MNEM_SUFFIX;
4894 }
4895 else
4896 {
4897 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
4898 register_prefix, i.op[op].regs->reg_name,
4899 i.suffix);
4900 return 0;
4901 }
4902 }
4903 return 1;
4904 }
4905
4906 static int
4907 check_qword_reg (void)
4908 {
4909 int op;
4910
4911 for (op = i.operands; --op >= 0; )
4912 /* Reject eight bit registers, except where the template requires
4913 them. (eg. movzb) */
4914 if (i.types[op].bitfield.reg8
4915 && (i.tm.operand_types[op].bitfield.reg16
4916 || i.tm.operand_types[op].bitfield.reg32
4917 || i.tm.operand_types[op].bitfield.acc))
4918 {
4919 as_bad (_("`%s%s' not allowed with `%s%c'"),
4920 register_prefix,
4921 i.op[op].regs->reg_name,
4922 i.tm.name,
4923 i.suffix);
4924 return 0;
4925 }
4926 /* Warn if the e prefix on a general reg is missing. */
4927 else if ((i.types[op].bitfield.reg16
4928 || i.types[op].bitfield.reg32)
4929 && (i.tm.operand_types[op].bitfield.reg32
4930 || i.tm.operand_types[op].bitfield.acc))
4931 {
4932 /* Prohibit these changes in the 64bit mode, since the
4933 lowering is more complicated. */
4934 if (intel_syntax
4935 && i.tm.opcode_modifier.todword
4936 && !i.types[0].bitfield.regxmm)
4937 {
4938 /* Convert to DWORD. We don't want REX byte. */
4939 i.suffix = LONG_MNEM_SUFFIX;
4940 }
4941 else
4942 {
4943 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
4944 register_prefix, i.op[op].regs->reg_name,
4945 i.suffix);
4946 return 0;
4947 }
4948 }
4949 return 1;
4950 }
4951
4952 static int
4953 check_word_reg (void)
4954 {
4955 int op;
4956 for (op = i.operands; --op >= 0;)
4957 /* Reject eight bit registers, except where the template requires
4958 them. (eg. movzb) */
4959 if (i.types[op].bitfield.reg8
4960 && (i.tm.operand_types[op].bitfield.reg16
4961 || i.tm.operand_types[op].bitfield.reg32
4962 || i.tm.operand_types[op].bitfield.acc))
4963 {
4964 as_bad (_("`%s%s' not allowed with `%s%c'"),
4965 register_prefix,
4966 i.op[op].regs->reg_name,
4967 i.tm.name,
4968 i.suffix);
4969 return 0;
4970 }
4971 /* Warn if the e prefix on a general reg is present. */
4972 else if ((!quiet_warnings || flag_code == CODE_64BIT)
4973 && i.types[op].bitfield.reg32
4974 && (i.tm.operand_types[op].bitfield.reg16
4975 || i.tm.operand_types[op].bitfield.acc))
4976 {
4977 /* Prohibit these changes in the 64bit mode, since the
4978 lowering is more complicated. */
4979 if (flag_code == CODE_64BIT)
4980 {
4981 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
4982 register_prefix, i.op[op].regs->reg_name,
4983 i.suffix);
4984 return 0;
4985 }
4986 else
4987 #if REGISTER_WARNINGS
4988 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4989 register_prefix,
4990 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
4991 register_prefix,
4992 i.op[op].regs->reg_name,
4993 i.suffix);
4994 #endif
4995 }
4996 return 1;
4997 }
4998
4999 static int
5000 update_imm (unsigned int j)
5001 {
5002 i386_operand_type overlap = i.types[j];
5003 if ((overlap.bitfield.imm8
5004 || overlap.bitfield.imm8s
5005 || overlap.bitfield.imm16
5006 || overlap.bitfield.imm32
5007 || overlap.bitfield.imm32s
5008 || overlap.bitfield.imm64)
5009 && !operand_type_equal (&overlap, &imm8)
5010 && !operand_type_equal (&overlap, &imm8s)
5011 && !operand_type_equal (&overlap, &imm16)
5012 && !operand_type_equal (&overlap, &imm32)
5013 && !operand_type_equal (&overlap, &imm32s)
5014 && !operand_type_equal (&overlap, &imm64))
5015 {
5016 if (i.suffix)
5017 {
5018 i386_operand_type temp;
5019
5020 operand_type_set (&temp, 0);
5021 if (i.suffix == BYTE_MNEM_SUFFIX)
5022 {
5023 temp.bitfield.imm8 = overlap.bitfield.imm8;
5024 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5025 }
5026 else if (i.suffix == WORD_MNEM_SUFFIX)
5027 temp.bitfield.imm16 = overlap.bitfield.imm16;
5028 else if (i.suffix == QWORD_MNEM_SUFFIX)
5029 {
5030 temp.bitfield.imm64 = overlap.bitfield.imm64;
5031 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5032 }
5033 else
5034 temp.bitfield.imm32 = overlap.bitfield.imm32;
5035 overlap = temp;
5036 }
5037 else if (operand_type_equal (&overlap, &imm16_32_32s)
5038 || operand_type_equal (&overlap, &imm16_32)
5039 || operand_type_equal (&overlap, &imm16_32s))
5040 {
5041 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5042 overlap = imm16;
5043 else
5044 overlap = imm32s;
5045 }
5046 if (!operand_type_equal (&overlap, &imm8)
5047 && !operand_type_equal (&overlap, &imm8s)
5048 && !operand_type_equal (&overlap, &imm16)
5049 && !operand_type_equal (&overlap, &imm32)
5050 && !operand_type_equal (&overlap, &imm32s)
5051 && !operand_type_equal (&overlap, &imm64))
5052 {
5053 as_bad (_("no instruction mnemonic suffix given; "
5054 "can't determine immediate size"));
5055 return 0;
5056 }
5057 }
5058 i.types[j] = overlap;
5059
5060 return 1;
5061 }
5062
5063 static int
5064 finalize_imm (void)
5065 {
5066 unsigned int j, n;
5067
5068 /* Update the first 2 immediate operands. */
5069 n = i.operands > 2 ? 2 : i.operands;
5070 if (n)
5071 {
5072 for (j = 0; j < n; j++)
5073 if (update_imm (j) == 0)
5074 return 0;
5075
5076 /* The 3rd operand can't be immediate operand. */
5077 gas_assert (operand_type_check (i.types[2], imm) == 0);
5078 }
5079
5080 return 1;
5081 }
5082
5083 static int
5084 bad_implicit_operand (int xmm)
5085 {
5086 const char *ireg = xmm ? "xmm0" : "ymm0";
5087
5088 if (intel_syntax)
5089 as_bad (_("the last operand of `%s' must be `%s%s'"),
5090 i.tm.name, register_prefix, ireg);
5091 else
5092 as_bad (_("the first operand of `%s' must be `%s%s'"),
5093 i.tm.name, register_prefix, ireg);
5094 return 0;
5095 }
5096
5097 static int
5098 process_operands (void)
5099 {
5100 /* Default segment register this instruction will use for memory
5101 accesses. 0 means unknown. This is only for optimizing out
5102 unnecessary segment overrides. */
5103 const seg_entry *default_seg = 0;
5104
5105 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
5106 {
5107 unsigned int dupl = i.operands;
5108 unsigned int dest = dupl - 1;
5109 unsigned int j;
5110
5111 /* The destination must be an xmm register. */
5112 gas_assert (i.reg_operands
5113 && MAX_OPERANDS > dupl
5114 && operand_type_equal (&i.types[dest], &regxmm));
5115
5116 if (i.tm.opcode_modifier.firstxmm0)
5117 {
5118 /* The first operand is implicit and must be xmm0. */
5119 gas_assert (operand_type_equal (&i.types[0], &regxmm));
5120 if (register_number (i.op[0].regs) != 0)
5121 return bad_implicit_operand (1);
5122
5123 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
5124 {
5125 /* Keep xmm0 for instructions with VEX prefix and 3
5126 sources. */
5127 goto duplicate;
5128 }
5129 else
5130 {
5131 /* We remove the first xmm0 and keep the number of
5132 operands unchanged, which in fact duplicates the
5133 destination. */
5134 for (j = 1; j < i.operands; j++)
5135 {
5136 i.op[j - 1] = i.op[j];
5137 i.types[j - 1] = i.types[j];
5138 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5139 }
5140 }
5141 }
5142 else if (i.tm.opcode_modifier.implicit1stxmm0)
5143 {
5144 gas_assert ((MAX_OPERANDS - 1) > dupl
5145 && (i.tm.opcode_modifier.vexsources
5146 == VEX3SOURCES));
5147
5148 /* Add the implicit xmm0 for instructions with VEX prefix
5149 and 3 sources. */
5150 for (j = i.operands; j > 0; j--)
5151 {
5152 i.op[j] = i.op[j - 1];
5153 i.types[j] = i.types[j - 1];
5154 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
5155 }
5156 i.op[0].regs
5157 = (const reg_entry *) hash_find (reg_hash, "xmm0");
5158 i.types[0] = regxmm;
5159 i.tm.operand_types[0] = regxmm;
5160
5161 i.operands += 2;
5162 i.reg_operands += 2;
5163 i.tm.operands += 2;
5164
5165 dupl++;
5166 dest++;
5167 i.op[dupl] = i.op[dest];
5168 i.types[dupl] = i.types[dest];
5169 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5170 }
5171 else
5172 {
5173 duplicate:
5174 i.operands++;
5175 i.reg_operands++;
5176 i.tm.operands++;
5177
5178 i.op[dupl] = i.op[dest];
5179 i.types[dupl] = i.types[dest];
5180 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5181 }
5182
5183 if (i.tm.opcode_modifier.immext)
5184 process_immext ();
5185 }
5186 else if (i.tm.opcode_modifier.firstxmm0)
5187 {
5188 unsigned int j;
5189
5190 /* The first operand is implicit and must be xmm0/ymm0. */
5191 gas_assert (i.reg_operands
5192 && (operand_type_equal (&i.types[0], &regxmm)
5193 || operand_type_equal (&i.types[0], &regymm)));
5194 if (register_number (i.op[0].regs) != 0)
5195 return bad_implicit_operand (i.types[0].bitfield.regxmm);
5196
5197 for (j = 1; j < i.operands; j++)
5198 {
5199 i.op[j - 1] = i.op[j];
5200 i.types[j - 1] = i.types[j];
5201
5202 /* We need to adjust fields in i.tm since they are used by
5203 build_modrm_byte. */
5204 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5205 }
5206
5207 i.operands--;
5208 i.reg_operands--;
5209 i.tm.operands--;
5210 }
5211 else if (i.tm.opcode_modifier.regkludge)
5212 {
5213 /* The imul $imm, %reg instruction is converted into
5214 imul $imm, %reg, %reg, and the clr %reg instruction
5215 is converted into xor %reg, %reg. */
5216
5217 unsigned int first_reg_op;
5218
5219 if (operand_type_check (i.types[0], reg))
5220 first_reg_op = 0;
5221 else
5222 first_reg_op = 1;
5223 /* Pretend we saw the extra register operand. */
5224 gas_assert (i.reg_operands == 1
5225 && i.op[first_reg_op + 1].regs == 0);
5226 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
5227 i.types[first_reg_op + 1] = i.types[first_reg_op];
5228 i.operands++;
5229 i.reg_operands++;
5230 }
5231
5232 if (i.tm.opcode_modifier.shortform)
5233 {
5234 if (i.types[0].bitfield.sreg2
5235 || i.types[0].bitfield.sreg3)
5236 {
5237 if (i.tm.base_opcode == POP_SEG_SHORT
5238 && i.op[0].regs->reg_num == 1)
5239 {
5240 as_bad (_("you can't `pop %scs'"), register_prefix);
5241 return 0;
5242 }
5243 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
5244 if ((i.op[0].regs->reg_flags & RegRex) != 0)
5245 i.rex |= REX_B;
5246 }
5247 else
5248 {
5249 /* The register or float register operand is in operand
5250 0 or 1. */
5251 unsigned int op;
5252
5253 if (i.types[0].bitfield.floatreg
5254 || operand_type_check (i.types[0], reg))
5255 op = 0;
5256 else
5257 op = 1;
5258 /* Register goes in low 3 bits of opcode. */
5259 i.tm.base_opcode |= i.op[op].regs->reg_num;
5260 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5261 i.rex |= REX_B;
5262 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
5263 {
5264 /* Warn about some common errors, but press on regardless.
5265 The first case can be generated by gcc (<= 2.8.1). */
5266 if (i.operands == 2)
5267 {
5268 /* Reversed arguments on faddp, fsubp, etc. */
5269 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
5270 register_prefix, i.op[!intel_syntax].regs->reg_name,
5271 register_prefix, i.op[intel_syntax].regs->reg_name);
5272 }
5273 else
5274 {
5275 /* Extraneous `l' suffix on fp insn. */
5276 as_warn (_("translating to `%s %s%s'"), i.tm.name,
5277 register_prefix, i.op[0].regs->reg_name);
5278 }
5279 }
5280 }
5281 }
5282 else if (i.tm.opcode_modifier.modrm)
5283 {
5284 /* The opcode is completed (modulo i.tm.extension_opcode which
5285 must be put into the modrm byte). Now, we make the modrm and
5286 index base bytes based on all the info we've collected. */
5287
5288 default_seg = build_modrm_byte ();
5289 }
5290 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
5291 {
5292 default_seg = &ds;
5293 }
5294 else if (i.tm.opcode_modifier.isstring)
5295 {
5296 /* For the string instructions that allow a segment override
5297 on one of their operands, the default segment is ds. */
5298 default_seg = &ds;
5299 }
5300
5301 if (i.tm.base_opcode == 0x8d /* lea */
5302 && i.seg[0]
5303 && !quiet_warnings)
5304 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
5305
5306 /* If a segment was explicitly specified, and the specified segment
5307 is not the default, use an opcode prefix to select it. If we
5308 never figured out what the default segment is, then default_seg
5309 will be zero at this point, and the specified segment prefix will
5310 always be used. */
5311 if ((i.seg[0]) && (i.seg[0] != default_seg))
5312 {
5313 if (!add_prefix (i.seg[0]->seg_prefix))
5314 return 0;
5315 }
5316 return 1;
5317 }
5318
5319 static const seg_entry *
5320 build_modrm_byte (void)
5321 {
5322 const seg_entry *default_seg = 0;
5323 unsigned int source, dest;
5324 int vex_3_sources;
5325
5326 /* The first operand of instructions with VEX prefix and 3 sources
5327 must be VEX_Imm4. */
5328 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
5329 if (vex_3_sources)
5330 {
5331 unsigned int nds, reg_slot;
5332 expressionS *exp;
5333
5334 if (i.tm.opcode_modifier.veximmext
5335 && i.tm.opcode_modifier.immext)
5336 {
5337 dest = i.operands - 2;
5338 gas_assert (dest == 3);
5339 }
5340 else
5341 dest = i.operands - 1;
5342 nds = dest - 1;
5343
5344 /* There are 2 kinds of instructions:
5345 1. 5 operands: 4 register operands or 3 register operands
5346 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
5347 VexW0 or VexW1. The destination must be either XMM or YMM
5348 register.
5349 2. 4 operands: 4 register operands or 3 register operands
5350 plus 1 memory operand, VexXDS, and VexImmExt */
5351 gas_assert ((i.reg_operands == 4
5352 || (i.reg_operands == 3 && i.mem_operands == 1))
5353 && i.tm.opcode_modifier.vexvvvv == VEXXDS
5354 && (i.tm.opcode_modifier.veximmext
5355 || (i.imm_operands == 1
5356 && i.types[0].bitfield.vec_imm4
5357 && (i.tm.opcode_modifier.vexw == VEXW0
5358 || i.tm.opcode_modifier.vexw == VEXW1)
5359 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
5360 || operand_type_equal (&i.tm.operand_types[dest], &regymm)))));
5361
5362 if (i.imm_operands == 0)
5363 {
5364 /* When there is no immediate operand, generate an 8bit
5365 immediate operand to encode the first operand. */
5366 exp = &im_expressions[i.imm_operands++];
5367 i.op[i.operands].imms = exp;
5368 i.types[i.operands] = imm8;
5369 i.operands++;
5370 /* If VexW1 is set, the first operand is the source and
5371 the second operand is encoded in the immediate operand. */
5372 if (i.tm.opcode_modifier.vexw == VEXW1)
5373 {
5374 source = 0;
5375 reg_slot = 1;
5376 }
5377 else
5378 {
5379 source = 1;
5380 reg_slot = 0;
5381 }
5382
5383 /* FMA swaps REG and NDS. */
5384 if (i.tm.cpu_flags.bitfield.cpufma)
5385 {
5386 unsigned int tmp;
5387 tmp = reg_slot;
5388 reg_slot = nds;
5389 nds = tmp;
5390 }
5391
5392 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
5393 &regxmm)
5394 || operand_type_equal (&i.tm.operand_types[reg_slot],
5395 &regymm));
5396 exp->X_op = O_constant;
5397 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
5398 }
5399 else
5400 {
5401 unsigned int imm_slot;
5402
5403 if (i.tm.opcode_modifier.vexw == VEXW0)
5404 {
5405 /* If VexW0 is set, the third operand is the source and
5406 the second operand is encoded in the immediate
5407 operand. */
5408 source = 2;
5409 reg_slot = 1;
5410 }
5411 else
5412 {
5413 /* VexW1 is set, the second operand is the source and
5414 the third operand is encoded in the immediate
5415 operand. */
5416 source = 1;
5417 reg_slot = 2;
5418 }
5419
5420 if (i.tm.opcode_modifier.immext)
5421 {
5422 /* When ImmExt is set, the immdiate byte is the last
5423 operand. */
5424 imm_slot = i.operands - 1;
5425 source--;
5426 reg_slot--;
5427 }
5428 else
5429 {
5430 imm_slot = 0;
5431
5432 /* Turn on Imm8 so that output_imm will generate it. */
5433 i.types[imm_slot].bitfield.imm8 = 1;
5434 }
5435
5436 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
5437 &regxmm)
5438 || operand_type_equal (&i.tm.operand_types[reg_slot],
5439 &regymm));
5440 i.op[imm_slot].imms->X_add_number
5441 |= register_number (i.op[reg_slot].regs) << 4;
5442 }
5443
5444 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
5445 || operand_type_equal (&i.tm.operand_types[nds],
5446 &regymm));
5447 i.vex.register_specifier = i.op[nds].regs;
5448 }
5449 else
5450 source = dest = 0;
5451
5452 /* i.reg_operands MUST be the number of real register operands;
5453 implicit registers do not count. If there are 3 register
5454 operands, it must be a instruction with VexNDS. For a
5455 instruction with VexNDD, the destination register is encoded
5456 in VEX prefix. If there are 4 register operands, it must be
5457 a instruction with VEX prefix and 3 sources. */
5458 if (i.mem_operands == 0
5459 && ((i.reg_operands == 2
5460 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
5461 || (i.reg_operands == 3
5462 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
5463 || (i.reg_operands == 4 && vex_3_sources)))
5464 {
5465 switch (i.operands)
5466 {
5467 case 2:
5468 source = 0;
5469 break;
5470 case 3:
5471 /* When there are 3 operands, one of them may be immediate,
5472 which may be the first or the last operand. Otherwise,
5473 the first operand must be shift count register (cl) or it
5474 is an instruction with VexNDS. */
5475 gas_assert (i.imm_operands == 1
5476 || (i.imm_operands == 0
5477 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
5478 || i.types[0].bitfield.shiftcount)));
5479 if (operand_type_check (i.types[0], imm)
5480 || i.types[0].bitfield.shiftcount)
5481 source = 1;
5482 else
5483 source = 0;
5484 break;
5485 case 4:
5486 /* When there are 4 operands, the first two must be 8bit
5487 immediate operands. The source operand will be the 3rd
5488 one.
5489
5490 For instructions with VexNDS, if the first operand
5491 an imm8, the source operand is the 2nd one. If the last
5492 operand is imm8, the source operand is the first one. */
5493 gas_assert ((i.imm_operands == 2
5494 && i.types[0].bitfield.imm8
5495 && i.types[1].bitfield.imm8)
5496 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
5497 && i.imm_operands == 1
5498 && (i.types[0].bitfield.imm8
5499 || i.types[i.operands - 1].bitfield.imm8)));
5500 if (i.imm_operands == 2)
5501 source = 2;
5502 else
5503 {
5504 if (i.types[0].bitfield.imm8)
5505 source = 1;
5506 else
5507 source = 0;
5508 }
5509 break;
5510 case 5:
5511 break;
5512 default:
5513 abort ();
5514 }
5515
5516 if (!vex_3_sources)
5517 {
5518 dest = source + 1;
5519
5520 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
5521 {
5522 /* For instructions with VexNDS, the register-only
5523 source operand must be 32/64bit integer, XMM or
5524 YMM register. It is encoded in VEX prefix. We
5525 need to clear RegMem bit before calling
5526 operand_type_equal. */
5527
5528 i386_operand_type op;
5529 unsigned int vvvv;
5530
5531 /* Check register-only source operand when two source
5532 operands are swapped. */
5533 if (!i.tm.operand_types[source].bitfield.baseindex
5534 && i.tm.operand_types[dest].bitfield.baseindex)
5535 {
5536 vvvv = source;
5537 source = dest;
5538 }
5539 else
5540 vvvv = dest;
5541
5542 op = i.tm.operand_types[vvvv];
5543 op.bitfield.regmem = 0;
5544 if ((dest + 1) >= i.operands
5545 || (op.bitfield.reg32 != 1
5546 && !op.bitfield.reg64 != 1
5547 && !operand_type_equal (&op, &regxmm)
5548 && !operand_type_equal (&op, &regymm)))
5549 abort ();
5550 i.vex.register_specifier = i.op[vvvv].regs;
5551 dest++;
5552 }
5553 }
5554
5555 i.rm.mode = 3;
5556 /* One of the register operands will be encoded in the i.tm.reg
5557 field, the other in the combined i.tm.mode and i.tm.regmem
5558 fields. If no form of this instruction supports a memory
5559 destination operand, then we assume the source operand may
5560 sometimes be a memory operand and so we need to store the
5561 destination in the i.rm.reg field. */
5562 if (!i.tm.operand_types[dest].bitfield.regmem
5563 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
5564 {
5565 i.rm.reg = i.op[dest].regs->reg_num;
5566 i.rm.regmem = i.op[source].regs->reg_num;
5567 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
5568 i.rex |= REX_R;
5569 if ((i.op[source].regs->reg_flags & RegRex) != 0)
5570 i.rex |= REX_B;
5571 }
5572 else
5573 {
5574 i.rm.reg = i.op[source].regs->reg_num;
5575 i.rm.regmem = i.op[dest].regs->reg_num;
5576 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
5577 i.rex |= REX_B;
5578 if ((i.op[source].regs->reg_flags & RegRex) != 0)
5579 i.rex |= REX_R;
5580 }
5581 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
5582 {
5583 if (!i.types[0].bitfield.control
5584 && !i.types[1].bitfield.control)
5585 abort ();
5586 i.rex &= ~(REX_R | REX_B);
5587 add_prefix (LOCK_PREFIX_OPCODE);
5588 }
5589 }
5590 else
5591 { /* If it's not 2 reg operands... */
5592 unsigned int mem;
5593
5594 if (i.mem_operands)
5595 {
5596 unsigned int fake_zero_displacement = 0;
5597 unsigned int op;
5598
5599 for (op = 0; op < i.operands; op++)
5600 if (operand_type_check (i.types[op], anymem))
5601 break;
5602 gas_assert (op < i.operands);
5603
5604 if (i.tm.opcode_modifier.vecsib)
5605 {
5606 if (i.index_reg->reg_num == RegEiz
5607 || i.index_reg->reg_num == RegRiz)
5608 abort ();
5609
5610 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5611 if (!i.base_reg)
5612 {
5613 i.sib.base = NO_BASE_REGISTER;
5614 i.sib.scale = i.log2_scale_factor;
5615 i.types[op].bitfield.disp8 = 0;
5616 i.types[op].bitfield.disp16 = 0;
5617 i.types[op].bitfield.disp64 = 0;
5618 if (flag_code != CODE_64BIT)
5619 {
5620 /* Must be 32 bit */
5621 i.types[op].bitfield.disp32 = 1;
5622 i.types[op].bitfield.disp32s = 0;
5623 }
5624 else
5625 {
5626 i.types[op].bitfield.disp32 = 0;
5627 i.types[op].bitfield.disp32s = 1;
5628 }
5629 }
5630 i.sib.index = i.index_reg->reg_num;
5631 if ((i.index_reg->reg_flags & RegRex) != 0)
5632 i.rex |= REX_X;
5633 }
5634
5635 default_seg = &ds;
5636
5637 if (i.base_reg == 0)
5638 {
5639 i.rm.mode = 0;
5640 if (!i.disp_operands)
5641 {
5642 fake_zero_displacement = 1;
5643 /* Instructions with VSIB byte need 32bit displacement
5644 if there is no base register. */
5645 if (i.tm.opcode_modifier.vecsib)
5646 i.types[op].bitfield.disp32 = 1;
5647 }
5648 if (i.index_reg == 0)
5649 {
5650 gas_assert (!i.tm.opcode_modifier.vecsib);
5651 /* Operand is just <disp> */
5652 if (flag_code == CODE_64BIT)
5653 {
5654 /* 64bit mode overwrites the 32bit absolute
5655 addressing by RIP relative addressing and
5656 absolute addressing is encoded by one of the
5657 redundant SIB forms. */
5658 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5659 i.sib.base = NO_BASE_REGISTER;
5660 i.sib.index = NO_INDEX_REGISTER;
5661 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
5662 ? disp32s : disp32);
5663 }
5664 else if ((flag_code == CODE_16BIT)
5665 ^ (i.prefix[ADDR_PREFIX] != 0))
5666 {
5667 i.rm.regmem = NO_BASE_REGISTER_16;
5668 i.types[op] = disp16;
5669 }
5670 else
5671 {
5672 i.rm.regmem = NO_BASE_REGISTER;
5673 i.types[op] = disp32;
5674 }
5675 }
5676 else if (!i.tm.opcode_modifier.vecsib)
5677 {
5678 /* !i.base_reg && i.index_reg */
5679 if (i.index_reg->reg_num == RegEiz
5680 || i.index_reg->reg_num == RegRiz)
5681 i.sib.index = NO_INDEX_REGISTER;
5682 else
5683 i.sib.index = i.index_reg->reg_num;
5684 i.sib.base = NO_BASE_REGISTER;
5685 i.sib.scale = i.log2_scale_factor;
5686 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5687 i.types[op].bitfield.disp8 = 0;
5688 i.types[op].bitfield.disp16 = 0;
5689 i.types[op].bitfield.disp64 = 0;
5690 if (flag_code != CODE_64BIT)
5691 {
5692 /* Must be 32 bit */
5693 i.types[op].bitfield.disp32 = 1;
5694 i.types[op].bitfield.disp32s = 0;
5695 }
5696 else
5697 {
5698 i.types[op].bitfield.disp32 = 0;
5699 i.types[op].bitfield.disp32s = 1;
5700 }
5701 if ((i.index_reg->reg_flags & RegRex) != 0)
5702 i.rex |= REX_X;
5703 }
5704 }
5705 /* RIP addressing for 64bit mode. */
5706 else if (i.base_reg->reg_num == RegRip ||
5707 i.base_reg->reg_num == RegEip)
5708 {
5709 gas_assert (!i.tm.opcode_modifier.vecsib);
5710 i.rm.regmem = NO_BASE_REGISTER;
5711 i.types[op].bitfield.disp8 = 0;
5712 i.types[op].bitfield.disp16 = 0;
5713 i.types[op].bitfield.disp32 = 0;
5714 i.types[op].bitfield.disp32s = 1;
5715 i.types[op].bitfield.disp64 = 0;
5716 i.flags[op] |= Operand_PCrel;
5717 if (! i.disp_operands)
5718 fake_zero_displacement = 1;
5719 }
5720 else if (i.base_reg->reg_type.bitfield.reg16)
5721 {
5722 gas_assert (!i.tm.opcode_modifier.vecsib);
5723 switch (i.base_reg->reg_num)
5724 {
5725 case 3: /* (%bx) */
5726 if (i.index_reg == 0)
5727 i.rm.regmem = 7;
5728 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
5729 i.rm.regmem = i.index_reg->reg_num - 6;
5730 break;
5731 case 5: /* (%bp) */
5732 default_seg = &ss;
5733 if (i.index_reg == 0)
5734 {
5735 i.rm.regmem = 6;
5736 if (operand_type_check (i.types[op], disp) == 0)
5737 {
5738 /* fake (%bp) into 0(%bp) */
5739 i.types[op].bitfield.disp8 = 1;
5740 fake_zero_displacement = 1;
5741 }
5742 }
5743 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
5744 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
5745 break;
5746 default: /* (%si) -> 4 or (%di) -> 5 */
5747 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
5748 }
5749 i.rm.mode = mode_from_disp_size (i.types[op]);
5750 }
5751 else /* i.base_reg and 32/64 bit mode */
5752 {
5753 if (flag_code == CODE_64BIT
5754 && operand_type_check (i.types[op], disp))
5755 {
5756 i386_operand_type temp;
5757 operand_type_set (&temp, 0);
5758 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
5759 i.types[op] = temp;
5760 if (i.prefix[ADDR_PREFIX] == 0)
5761 i.types[op].bitfield.disp32s = 1;
5762 else
5763 i.types[op].bitfield.disp32 = 1;
5764 }
5765
5766 if (!i.tm.opcode_modifier.vecsib)
5767 i.rm.regmem = i.base_reg->reg_num;
5768 if ((i.base_reg->reg_flags & RegRex) != 0)
5769 i.rex |= REX_B;
5770 i.sib.base = i.base_reg->reg_num;
5771 /* x86-64 ignores REX prefix bit here to avoid decoder
5772 complications. */
5773 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
5774 {
5775 default_seg = &ss;
5776 if (i.disp_operands == 0)
5777 {
5778 fake_zero_displacement = 1;
5779 i.types[op].bitfield.disp8 = 1;
5780 }
5781 }
5782 else if (i.base_reg->reg_num == ESP_REG_NUM)
5783 {
5784 default_seg = &ss;
5785 }
5786 i.sib.scale = i.log2_scale_factor;
5787 if (i.index_reg == 0)
5788 {
5789 gas_assert (!i.tm.opcode_modifier.vecsib);
5790 /* <disp>(%esp) becomes two byte modrm with no index
5791 register. We've already stored the code for esp
5792 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
5793 Any base register besides %esp will not use the
5794 extra modrm byte. */
5795 i.sib.index = NO_INDEX_REGISTER;
5796 }
5797 else if (!i.tm.opcode_modifier.vecsib)
5798 {
5799 if (i.index_reg->reg_num == RegEiz
5800 || i.index_reg->reg_num == RegRiz)
5801 i.sib.index = NO_INDEX_REGISTER;
5802 else
5803 i.sib.index = i.index_reg->reg_num;
5804 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5805 if ((i.index_reg->reg_flags & RegRex) != 0)
5806 i.rex |= REX_X;
5807 }
5808
5809 if (i.disp_operands
5810 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5811 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
5812 i.rm.mode = 0;
5813 else
5814 {
5815 if (!fake_zero_displacement
5816 && !i.disp_operands
5817 && i.disp_encoding)
5818 {
5819 fake_zero_displacement = 1;
5820 if (i.disp_encoding == disp_encoding_8bit)
5821 i.types[op].bitfield.disp8 = 1;
5822 else
5823 i.types[op].bitfield.disp32 = 1;
5824 }
5825 i.rm.mode = mode_from_disp_size (i.types[op]);
5826 }
5827 }
5828
5829 if (fake_zero_displacement)
5830 {
5831 /* Fakes a zero displacement assuming that i.types[op]
5832 holds the correct displacement size. */
5833 expressionS *exp;
5834
5835 gas_assert (i.op[op].disps == 0);
5836 exp = &disp_expressions[i.disp_operands++];
5837 i.op[op].disps = exp;
5838 exp->X_op = O_constant;
5839 exp->X_add_number = 0;
5840 exp->X_add_symbol = (symbolS *) 0;
5841 exp->X_op_symbol = (symbolS *) 0;
5842 }
5843
5844 mem = op;
5845 }
5846 else
5847 mem = ~0;
5848
5849 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5850 {
5851 if (operand_type_check (i.types[0], imm))
5852 i.vex.register_specifier = NULL;
5853 else
5854 {
5855 /* VEX.vvvv encodes one of the sources when the first
5856 operand is not an immediate. */
5857 if (i.tm.opcode_modifier.vexw == VEXW0)
5858 i.vex.register_specifier = i.op[0].regs;
5859 else
5860 i.vex.register_specifier = i.op[1].regs;
5861 }
5862
5863 /* Destination is a XMM register encoded in the ModRM.reg
5864 and VEX.R bit. */
5865 i.rm.reg = i.op[2].regs->reg_num;
5866 if ((i.op[2].regs->reg_flags & RegRex) != 0)
5867 i.rex |= REX_R;
5868
5869 /* ModRM.rm and VEX.B encodes the other source. */
5870 if (!i.mem_operands)
5871 {
5872 i.rm.mode = 3;
5873
5874 if (i.tm.opcode_modifier.vexw == VEXW0)
5875 i.rm.regmem = i.op[1].regs->reg_num;
5876 else
5877 i.rm.regmem = i.op[0].regs->reg_num;
5878
5879 if ((i.op[1].regs->reg_flags & RegRex) != 0)
5880 i.rex |= REX_B;
5881 }
5882 }
5883 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
5884 {
5885 i.vex.register_specifier = i.op[2].regs;
5886 if (!i.mem_operands)
5887 {
5888 i.rm.mode = 3;
5889 i.rm.regmem = i.op[1].regs->reg_num;
5890 if ((i.op[1].regs->reg_flags & RegRex) != 0)
5891 i.rex |= REX_B;
5892 }
5893 }
5894 /* Fill in i.rm.reg or i.rm.regmem field with register operand
5895 (if any) based on i.tm.extension_opcode. Again, we must be
5896 careful to make sure that segment/control/debug/test/MMX
5897 registers are coded into the i.rm.reg field. */
5898 else if (i.reg_operands)
5899 {
5900 unsigned int op;
5901 unsigned int vex_reg = ~0;
5902
5903 for (op = 0; op < i.operands; op++)
5904 if (i.types[op].bitfield.reg8
5905 || i.types[op].bitfield.reg16
5906 || i.types[op].bitfield.reg32
5907 || i.types[op].bitfield.reg64
5908 || i.types[op].bitfield.regmmx
5909 || i.types[op].bitfield.regxmm
5910 || i.types[op].bitfield.regymm
5911 || i.types[op].bitfield.sreg2
5912 || i.types[op].bitfield.sreg3
5913 || i.types[op].bitfield.control
5914 || i.types[op].bitfield.debug
5915 || i.types[op].bitfield.test)
5916 break;
5917
5918 if (vex_3_sources)
5919 op = dest;
5920 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
5921 {
5922 /* For instructions with VexNDS, the register-only
5923 source operand is encoded in VEX prefix. */
5924 gas_assert (mem != (unsigned int) ~0);
5925
5926 if (op > mem)
5927 {
5928 vex_reg = op++;
5929 gas_assert (op < i.operands);
5930 }
5931 else
5932 {
5933 /* Check register-only source operand when two source
5934 operands are swapped. */
5935 if (!i.tm.operand_types[op].bitfield.baseindex
5936 && i.tm.operand_types[op + 1].bitfield.baseindex)
5937 {
5938 vex_reg = op;
5939 op += 2;
5940 gas_assert (mem == (vex_reg + 1)
5941 && op < i.operands);
5942 }
5943 else
5944 {
5945 vex_reg = op + 1;
5946 gas_assert (vex_reg < i.operands);
5947 }
5948 }
5949 }
5950 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
5951 {
5952 /* For instructions with VexNDD, the register destination
5953 is encoded in VEX prefix. */
5954 if (i.mem_operands == 0)
5955 {
5956 /* There is no memory operand. */
5957 gas_assert ((op + 2) == i.operands);
5958 vex_reg = op + 1;
5959 }
5960 else
5961 {
5962 /* There are only 2 operands. */
5963 gas_assert (op < 2 && i.operands == 2);
5964 vex_reg = 1;
5965 }
5966 }
5967 else
5968 gas_assert (op < i.operands);
5969
5970 if (vex_reg != (unsigned int) ~0)
5971 {
5972 i386_operand_type *type = &i.tm.operand_types[vex_reg];
5973
5974 if (type->bitfield.reg32 != 1
5975 && type->bitfield.reg64 != 1
5976 && !operand_type_equal (type, &regxmm)
5977 && !operand_type_equal (type, &regymm))
5978 abort ();
5979
5980 i.vex.register_specifier = i.op[vex_reg].regs;
5981 }
5982
5983 /* Don't set OP operand twice. */
5984 if (vex_reg != op)
5985 {
5986 /* If there is an extension opcode to put here, the
5987 register number must be put into the regmem field. */
5988 if (i.tm.extension_opcode != None)
5989 {
5990 i.rm.regmem = i.op[op].regs->reg_num;
5991 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5992 i.rex |= REX_B;
5993 }
5994 else
5995 {
5996 i.rm.reg = i.op[op].regs->reg_num;
5997 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5998 i.rex |= REX_R;
5999 }
6000 }
6001
6002 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6003 must set it to 3 to indicate this is a register operand
6004 in the regmem field. */
6005 if (!i.mem_operands)
6006 i.rm.mode = 3;
6007 }
6008
6009 /* Fill in i.rm.reg field with extension opcode (if any). */
6010 if (i.tm.extension_opcode != None)
6011 i.rm.reg = i.tm.extension_opcode;
6012 }
6013 return default_seg;
6014 }
6015
6016 static void
6017 output_branch (void)
6018 {
6019 char *p;
6020 int size;
6021 int code16;
6022 int prefix;
6023 relax_substateT subtype;
6024 symbolS *sym;
6025 offsetT off;
6026
6027 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6028 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6029
6030 prefix = 0;
6031 if (i.prefix[DATA_PREFIX] != 0)
6032 {
6033 prefix = 1;
6034 i.prefixes -= 1;
6035 code16 ^= CODE16;
6036 }
6037 /* Pentium4 branch hints. */
6038 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6039 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6040 {
6041 prefix++;
6042 i.prefixes--;
6043 }
6044 if (i.prefix[REX_PREFIX] != 0)
6045 {
6046 prefix++;
6047 i.prefixes--;
6048 }
6049
6050 if (i.prefixes != 0 && !intel_syntax)
6051 as_warn (_("skipping prefixes on this instruction"));
6052
6053 /* It's always a symbol; End frag & setup for relax.
6054 Make sure there is enough room in this frag for the largest
6055 instruction we may generate in md_convert_frag. This is 2
6056 bytes for the opcode and room for the prefix and largest
6057 displacement. */
6058 frag_grow (prefix + 2 + 4);
6059 /* Prefix and 1 opcode byte go in fr_fix. */
6060 p = frag_more (prefix + 1);
6061 if (i.prefix[DATA_PREFIX] != 0)
6062 *p++ = DATA_PREFIX_OPCODE;
6063 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6064 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6065 *p++ = i.prefix[SEG_PREFIX];
6066 if (i.prefix[REX_PREFIX] != 0)
6067 *p++ = i.prefix[REX_PREFIX];
6068 *p = i.tm.base_opcode;
6069
6070 if ((unsigned char) *p == JUMP_PC_RELATIVE)
6071 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
6072 else if (cpu_arch_flags.bitfield.cpui386)
6073 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
6074 else
6075 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
6076 subtype |= code16;
6077
6078 sym = i.op[0].disps->X_add_symbol;
6079 off = i.op[0].disps->X_add_number;
6080
6081 if (i.op[0].disps->X_op != O_constant
6082 && i.op[0].disps->X_op != O_symbol)
6083 {
6084 /* Handle complex expressions. */
6085 sym = make_expr_symbol (i.op[0].disps);
6086 off = 0;
6087 }
6088
6089 /* 1 possible extra opcode + 4 byte displacement go in var part.
6090 Pass reloc in fr_var. */
6091 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
6092 }
6093
6094 static void
6095 output_jump (void)
6096 {
6097 char *p;
6098 int size;
6099 fixS *fixP;
6100
6101 if (i.tm.opcode_modifier.jumpbyte)
6102 {
6103 /* This is a loop or jecxz type instruction. */
6104 size = 1;
6105 if (i.prefix[ADDR_PREFIX] != 0)
6106 {
6107 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
6108 i.prefixes -= 1;
6109 }
6110 /* Pentium4 branch hints. */
6111 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6112 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6113 {
6114 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
6115 i.prefixes--;
6116 }
6117 }
6118 else
6119 {
6120 int code16;
6121
6122 code16 = 0;
6123 if (flag_code == CODE_16BIT)
6124 code16 = CODE16;
6125
6126 if (i.prefix[DATA_PREFIX] != 0)
6127 {
6128 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
6129 i.prefixes -= 1;
6130 code16 ^= CODE16;
6131 }
6132
6133 size = 4;
6134 if (code16)
6135 size = 2;
6136 }
6137
6138 if (i.prefix[REX_PREFIX] != 0)
6139 {
6140 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
6141 i.prefixes -= 1;
6142 }
6143
6144 if (i.prefixes != 0 && !intel_syntax)
6145 as_warn (_("skipping prefixes on this instruction"));
6146
6147 p = frag_more (i.tm.opcode_length + size);
6148 switch (i.tm.opcode_length)
6149 {
6150 case 2:
6151 *p++ = i.tm.base_opcode >> 8;
6152 case 1:
6153 *p++ = i.tm.base_opcode;
6154 break;
6155 default:
6156 abort ();
6157 }
6158
6159 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6160 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
6161
6162 /* All jumps handled here are signed, but don't use a signed limit
6163 check for 32 and 16 bit jumps as we want to allow wrap around at
6164 4G and 64k respectively. */
6165 if (size == 1)
6166 fixP->fx_signed = 1;
6167 }
6168
6169 static void
6170 output_interseg_jump (void)
6171 {
6172 char *p;
6173 int size;
6174 int prefix;
6175 int code16;
6176
6177 code16 = 0;
6178 if (flag_code == CODE_16BIT)
6179 code16 = CODE16;
6180
6181 prefix = 0;
6182 if (i.prefix[DATA_PREFIX] != 0)
6183 {
6184 prefix = 1;
6185 i.prefixes -= 1;
6186 code16 ^= CODE16;
6187 }
6188 if (i.prefix[REX_PREFIX] != 0)
6189 {
6190 prefix++;
6191 i.prefixes -= 1;
6192 }
6193
6194 size = 4;
6195 if (code16)
6196 size = 2;
6197
6198 if (i.prefixes != 0 && !intel_syntax)
6199 as_warn (_("skipping prefixes on this instruction"));
6200
6201 /* 1 opcode; 2 segment; offset */
6202 p = frag_more (prefix + 1 + 2 + size);
6203
6204 if (i.prefix[DATA_PREFIX] != 0)
6205 *p++ = DATA_PREFIX_OPCODE;
6206
6207 if (i.prefix[REX_PREFIX] != 0)
6208 *p++ = i.prefix[REX_PREFIX];
6209
6210 *p++ = i.tm.base_opcode;
6211 if (i.op[1].imms->X_op == O_constant)
6212 {
6213 offsetT n = i.op[1].imms->X_add_number;
6214
6215 if (size == 2
6216 && !fits_in_unsigned_word (n)
6217 && !fits_in_signed_word (n))
6218 {
6219 as_bad (_("16-bit jump out of range"));
6220 return;
6221 }
6222 md_number_to_chars (p, n, size);
6223 }
6224 else
6225 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6226 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
6227 if (i.op[0].imms->X_op != O_constant)
6228 as_bad (_("can't handle non absolute segment in `%s'"),
6229 i.tm.name);
6230 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
6231 }
6232
6233 static void
6234 output_insn (void)
6235 {
6236 fragS *insn_start_frag;
6237 offsetT insn_start_off;
6238
6239 /* Tie dwarf2 debug info to the address at the start of the insn.
6240 We can't do this after the insn has been output as the current
6241 frag may have been closed off. eg. by frag_var. */
6242 dwarf2_emit_insn (0);
6243
6244 insn_start_frag = frag_now;
6245 insn_start_off = frag_now_fix ();
6246
6247 /* Output jumps. */
6248 if (i.tm.opcode_modifier.jump)
6249 output_branch ();
6250 else if (i.tm.opcode_modifier.jumpbyte
6251 || i.tm.opcode_modifier.jumpdword)
6252 output_jump ();
6253 else if (i.tm.opcode_modifier.jumpintersegment)
6254 output_interseg_jump ();
6255 else
6256 {
6257 /* Output normal instructions here. */
6258 char *p;
6259 unsigned char *q;
6260 unsigned int j;
6261 unsigned int prefix;
6262
6263 /* Since the VEX prefix contains the implicit prefix, we don't
6264 need the explicit prefix. */
6265 if (!i.tm.opcode_modifier.vex)
6266 {
6267 switch (i.tm.opcode_length)
6268 {
6269 case 3:
6270 if (i.tm.base_opcode & 0xff000000)
6271 {
6272 prefix = (i.tm.base_opcode >> 24) & 0xff;
6273 goto check_prefix;
6274 }
6275 break;
6276 case 2:
6277 if ((i.tm.base_opcode & 0xff0000) != 0)
6278 {
6279 prefix = (i.tm.base_opcode >> 16) & 0xff;
6280 if (i.tm.cpu_flags.bitfield.cpupadlock)
6281 {
6282 check_prefix:
6283 if (prefix != REPE_PREFIX_OPCODE
6284 || (i.prefix[REP_PREFIX]
6285 != REPE_PREFIX_OPCODE))
6286 add_prefix (prefix);
6287 }
6288 else
6289 add_prefix (prefix);
6290 }
6291 break;
6292 case 1:
6293 break;
6294 default:
6295 abort ();
6296 }
6297
6298 /* The prefix bytes. */
6299 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
6300 if (*q)
6301 FRAG_APPEND_1_CHAR (*q);
6302 }
6303 else
6304 {
6305 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
6306 if (*q)
6307 switch (j)
6308 {
6309 case REX_PREFIX:
6310 /* REX byte is encoded in VEX prefix. */
6311 break;
6312 case SEG_PREFIX:
6313 case ADDR_PREFIX:
6314 FRAG_APPEND_1_CHAR (*q);
6315 break;
6316 default:
6317 /* There should be no other prefixes for instructions
6318 with VEX prefix. */
6319 abort ();
6320 }
6321
6322 /* Now the VEX prefix. */
6323 p = frag_more (i.vex.length);
6324 for (j = 0; j < i.vex.length; j++)
6325 p[j] = i.vex.bytes[j];
6326 }
6327
6328 /* Now the opcode; be careful about word order here! */
6329 if (i.tm.opcode_length == 1)
6330 {
6331 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
6332 }
6333 else
6334 {
6335 switch (i.tm.opcode_length)
6336 {
6337 case 3:
6338 p = frag_more (3);
6339 *p++ = (i.tm.base_opcode >> 16) & 0xff;
6340 break;
6341 case 2:
6342 p = frag_more (2);
6343 break;
6344 default:
6345 abort ();
6346 break;
6347 }
6348
6349 /* Put out high byte first: can't use md_number_to_chars! */
6350 *p++ = (i.tm.base_opcode >> 8) & 0xff;
6351 *p = i.tm.base_opcode & 0xff;
6352 }
6353
6354 /* Now the modrm byte and sib byte (if present). */
6355 if (i.tm.opcode_modifier.modrm)
6356 {
6357 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
6358 | i.rm.reg << 3
6359 | i.rm.mode << 6));
6360 /* If i.rm.regmem == ESP (4)
6361 && i.rm.mode != (Register mode)
6362 && not 16 bit
6363 ==> need second modrm byte. */
6364 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
6365 && i.rm.mode != 3
6366 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
6367 FRAG_APPEND_1_CHAR ((i.sib.base << 0
6368 | i.sib.index << 3
6369 | i.sib.scale << 6));
6370 }
6371
6372 if (i.disp_operands)
6373 output_disp (insn_start_frag, insn_start_off);
6374
6375 if (i.imm_operands)
6376 output_imm (insn_start_frag, insn_start_off);
6377 }
6378
6379 #ifdef DEBUG386
6380 if (flag_debug)
6381 {
6382 pi ("" /*line*/, &i);
6383 }
6384 #endif /* DEBUG386 */
6385 }
6386
6387 /* Return the size of the displacement operand N. */
6388
6389 static int
6390 disp_size (unsigned int n)
6391 {
6392 int size = 4;
6393 if (i.types[n].bitfield.disp64)
6394 size = 8;
6395 else if (i.types[n].bitfield.disp8)
6396 size = 1;
6397 else if (i.types[n].bitfield.disp16)
6398 size = 2;
6399 return size;
6400 }
6401
6402 /* Return the size of the immediate operand N. */
6403
6404 static int
6405 imm_size (unsigned int n)
6406 {
6407 int size = 4;
6408 if (i.types[n].bitfield.imm64)
6409 size = 8;
6410 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
6411 size = 1;
6412 else if (i.types[n].bitfield.imm16)
6413 size = 2;
6414 return size;
6415 }
6416
6417 static void
6418 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
6419 {
6420 char *p;
6421 unsigned int n;
6422
6423 for (n = 0; n < i.operands; n++)
6424 {
6425 if (operand_type_check (i.types[n], disp))
6426 {
6427 if (i.op[n].disps->X_op == O_constant)
6428 {
6429 int size = disp_size (n);
6430 offsetT val;
6431
6432 val = offset_in_range (i.op[n].disps->X_add_number,
6433 size);
6434 p = frag_more (size);
6435 md_number_to_chars (p, val, size);
6436 }
6437 else
6438 {
6439 enum bfd_reloc_code_real reloc_type;
6440 int size = disp_size (n);
6441 int sign = i.types[n].bitfield.disp32s;
6442 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
6443
6444 /* We can't have 8 bit displacement here. */
6445 gas_assert (!i.types[n].bitfield.disp8);
6446
6447 /* The PC relative address is computed relative
6448 to the instruction boundary, so in case immediate
6449 fields follows, we need to adjust the value. */
6450 if (pcrel && i.imm_operands)
6451 {
6452 unsigned int n1;
6453 int sz = 0;
6454
6455 for (n1 = 0; n1 < i.operands; n1++)
6456 if (operand_type_check (i.types[n1], imm))
6457 {
6458 /* Only one immediate is allowed for PC
6459 relative address. */
6460 gas_assert (sz == 0);
6461 sz = imm_size (n1);
6462 i.op[n].disps->X_add_number -= sz;
6463 }
6464 /* We should find the immediate. */
6465 gas_assert (sz != 0);
6466 }
6467
6468 p = frag_more (size);
6469 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
6470 if (GOT_symbol
6471 && GOT_symbol == i.op[n].disps->X_add_symbol
6472 && (((reloc_type == BFD_RELOC_32
6473 || reloc_type == BFD_RELOC_X86_64_32S
6474 || (reloc_type == BFD_RELOC_64
6475 && object_64bit))
6476 && (i.op[n].disps->X_op == O_symbol
6477 || (i.op[n].disps->X_op == O_add
6478 && ((symbol_get_value_expression
6479 (i.op[n].disps->X_op_symbol)->X_op)
6480 == O_subtract))))
6481 || reloc_type == BFD_RELOC_32_PCREL))
6482 {
6483 offsetT add;
6484
6485 if (insn_start_frag == frag_now)
6486 add = (p - frag_now->fr_literal) - insn_start_off;
6487 else
6488 {
6489 fragS *fr;
6490
6491 add = insn_start_frag->fr_fix - insn_start_off;
6492 for (fr = insn_start_frag->fr_next;
6493 fr && fr != frag_now; fr = fr->fr_next)
6494 add += fr->fr_fix;
6495 add += p - frag_now->fr_literal;
6496 }
6497
6498 if (!object_64bit)
6499 {
6500 reloc_type = BFD_RELOC_386_GOTPC;
6501 i.op[n].imms->X_add_number += add;
6502 }
6503 else if (reloc_type == BFD_RELOC_64)
6504 reloc_type = BFD_RELOC_X86_64_GOTPC64;
6505 else
6506 /* Don't do the adjustment for x86-64, as there
6507 the pcrel addressing is relative to the _next_
6508 insn, and that is taken care of in other code. */
6509 reloc_type = BFD_RELOC_X86_64_GOTPC32;
6510 }
6511 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6512 i.op[n].disps, pcrel, reloc_type);
6513 }
6514 }
6515 }
6516 }
6517
6518 static void
6519 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
6520 {
6521 char *p;
6522 unsigned int n;
6523
6524 for (n = 0; n < i.operands; n++)
6525 {
6526 if (operand_type_check (i.types[n], imm))
6527 {
6528 if (i.op[n].imms->X_op == O_constant)
6529 {
6530 int size = imm_size (n);
6531 offsetT val;
6532
6533 val = offset_in_range (i.op[n].imms->X_add_number,
6534 size);
6535 p = frag_more (size);
6536 md_number_to_chars (p, val, size);
6537 }
6538 else
6539 {
6540 /* Not absolute_section.
6541 Need a 32-bit fixup (don't support 8bit
6542 non-absolute imms). Try to support other
6543 sizes ... */
6544 enum bfd_reloc_code_real reloc_type;
6545 int size = imm_size (n);
6546 int sign;
6547
6548 if (i.types[n].bitfield.imm32s
6549 && (i.suffix == QWORD_MNEM_SUFFIX
6550 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
6551 sign = 1;
6552 else
6553 sign = 0;
6554
6555 p = frag_more (size);
6556 reloc_type = reloc (size, 0, sign, i.reloc[n]);
6557
6558 /* This is tough to explain. We end up with this one if we
6559 * have operands that look like
6560 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
6561 * obtain the absolute address of the GOT, and it is strongly
6562 * preferable from a performance point of view to avoid using
6563 * a runtime relocation for this. The actual sequence of
6564 * instructions often look something like:
6565 *
6566 * call .L66
6567 * .L66:
6568 * popl %ebx
6569 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
6570 *
6571 * The call and pop essentially return the absolute address
6572 * of the label .L66 and store it in %ebx. The linker itself
6573 * will ultimately change the first operand of the addl so
6574 * that %ebx points to the GOT, but to keep things simple, the
6575 * .o file must have this operand set so that it generates not
6576 * the absolute address of .L66, but the absolute address of
6577 * itself. This allows the linker itself simply treat a GOTPC
6578 * relocation as asking for a pcrel offset to the GOT to be
6579 * added in, and the addend of the relocation is stored in the
6580 * operand field for the instruction itself.
6581 *
6582 * Our job here is to fix the operand so that it would add
6583 * the correct offset so that %ebx would point to itself. The
6584 * thing that is tricky is that .-.L66 will point to the
6585 * beginning of the instruction, so we need to further modify
6586 * the operand so that it will point to itself. There are
6587 * other cases where you have something like:
6588 *
6589 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
6590 *
6591 * and here no correction would be required. Internally in
6592 * the assembler we treat operands of this form as not being
6593 * pcrel since the '.' is explicitly mentioned, and I wonder
6594 * whether it would simplify matters to do it this way. Who
6595 * knows. In earlier versions of the PIC patches, the
6596 * pcrel_adjust field was used to store the correction, but
6597 * since the expression is not pcrel, I felt it would be
6598 * confusing to do it this way. */
6599
6600 if ((reloc_type == BFD_RELOC_32
6601 || reloc_type == BFD_RELOC_X86_64_32S
6602 || reloc_type == BFD_RELOC_64)
6603 && GOT_symbol
6604 && GOT_symbol == i.op[n].imms->X_add_symbol
6605 && (i.op[n].imms->X_op == O_symbol
6606 || (i.op[n].imms->X_op == O_add
6607 && ((symbol_get_value_expression
6608 (i.op[n].imms->X_op_symbol)->X_op)
6609 == O_subtract))))
6610 {
6611 offsetT add;
6612
6613 if (insn_start_frag == frag_now)
6614 add = (p - frag_now->fr_literal) - insn_start_off;
6615 else
6616 {
6617 fragS *fr;
6618
6619 add = insn_start_frag->fr_fix - insn_start_off;
6620 for (fr = insn_start_frag->fr_next;
6621 fr && fr != frag_now; fr = fr->fr_next)
6622 add += fr->fr_fix;
6623 add += p - frag_now->fr_literal;
6624 }
6625
6626 if (!object_64bit)
6627 reloc_type = BFD_RELOC_386_GOTPC;
6628 else if (size == 4)
6629 reloc_type = BFD_RELOC_X86_64_GOTPC32;
6630 else if (size == 8)
6631 reloc_type = BFD_RELOC_X86_64_GOTPC64;
6632 i.op[n].imms->X_add_number += add;
6633 }
6634 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6635 i.op[n].imms, 0, reloc_type);
6636 }
6637 }
6638 }
6639 }
6640 \f
6641 /* x86_cons_fix_new is called via the expression parsing code when a
6642 reloc is needed. We use this hook to get the correct .got reloc. */
6643 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
6644 static int cons_sign = -1;
6645
6646 void
6647 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
6648 expressionS *exp)
6649 {
6650 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
6651
6652 got_reloc = NO_RELOC;
6653
6654 #ifdef TE_PE
6655 if (exp->X_op == O_secrel)
6656 {
6657 exp->X_op = O_symbol;
6658 r = BFD_RELOC_32_SECREL;
6659 }
6660 #endif
6661
6662 fix_new_exp (frag, off, len, exp, 0, r);
6663 }
6664
6665 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
6666 purpose of the `.dc.a' internal pseudo-op. */
6667
6668 int
6669 x86_address_bytes (void)
6670 {
6671 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
6672 return 4;
6673 return stdoutput->arch_info->bits_per_address / 8;
6674 }
6675
6676 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
6677 || defined (LEX_AT)
6678 # define lex_got(reloc, adjust, types) NULL
6679 #else
6680 /* Parse operands of the form
6681 <symbol>@GOTOFF+<nnn>
6682 and similar .plt or .got references.
6683
6684 If we find one, set up the correct relocation in RELOC and copy the
6685 input string, minus the `@GOTOFF' into a malloc'd buffer for
6686 parsing by the calling routine. Return this buffer, and if ADJUST
6687 is non-null set it to the length of the string we removed from the
6688 input line. Otherwise return NULL. */
6689 static char *
6690 lex_got (enum bfd_reloc_code_real *rel,
6691 int *adjust,
6692 i386_operand_type *types)
6693 {
6694 /* Some of the relocations depend on the size of what field is to
6695 be relocated. But in our callers i386_immediate and i386_displacement
6696 we don't yet know the operand size (this will be set by insn
6697 matching). Hence we record the word32 relocation here,
6698 and adjust the reloc according to the real size in reloc(). */
6699 static const struct {
6700 const char *str;
6701 int len;
6702 const enum bfd_reloc_code_real rel[2];
6703 const i386_operand_type types64;
6704 } gotrel[] = {
6705 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
6706 BFD_RELOC_X86_64_PLTOFF64 },
6707 OPERAND_TYPE_IMM64 },
6708 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
6709 BFD_RELOC_X86_64_PLT32 },
6710 OPERAND_TYPE_IMM32_32S_DISP32 },
6711 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
6712 BFD_RELOC_X86_64_GOTPLT64 },
6713 OPERAND_TYPE_IMM64_DISP64 },
6714 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
6715 BFD_RELOC_X86_64_GOTOFF64 },
6716 OPERAND_TYPE_IMM64_DISP64 },
6717 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
6718 BFD_RELOC_X86_64_GOTPCREL },
6719 OPERAND_TYPE_IMM32_32S_DISP32 },
6720 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
6721 BFD_RELOC_X86_64_TLSGD },
6722 OPERAND_TYPE_IMM32_32S_DISP32 },
6723 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
6724 _dummy_first_bfd_reloc_code_real },
6725 OPERAND_TYPE_NONE },
6726 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
6727 BFD_RELOC_X86_64_TLSLD },
6728 OPERAND_TYPE_IMM32_32S_DISP32 },
6729 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
6730 BFD_RELOC_X86_64_GOTTPOFF },
6731 OPERAND_TYPE_IMM32_32S_DISP32 },
6732 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
6733 BFD_RELOC_X86_64_TPOFF32 },
6734 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
6735 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
6736 _dummy_first_bfd_reloc_code_real },
6737 OPERAND_TYPE_NONE },
6738 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
6739 BFD_RELOC_X86_64_DTPOFF32 },
6740 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
6741 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
6742 _dummy_first_bfd_reloc_code_real },
6743 OPERAND_TYPE_NONE },
6744 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
6745 _dummy_first_bfd_reloc_code_real },
6746 OPERAND_TYPE_NONE },
6747 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
6748 BFD_RELOC_X86_64_GOT32 },
6749 OPERAND_TYPE_IMM32_32S_64_DISP32 },
6750 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
6751 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
6752 OPERAND_TYPE_IMM32_32S_DISP32 },
6753 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
6754 BFD_RELOC_X86_64_TLSDESC_CALL },
6755 OPERAND_TYPE_IMM32_32S_DISP32 },
6756 };
6757 char *cp;
6758 unsigned int j;
6759
6760 #if defined (OBJ_MAYBE_ELF)
6761 if (!IS_ELF)
6762 return NULL;
6763 #endif
6764
6765 for (cp = input_line_pointer; *cp != '@'; cp++)
6766 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
6767 return NULL;
6768
6769 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
6770 {
6771 int len = gotrel[j].len;
6772 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
6773 {
6774 if (gotrel[j].rel[object_64bit] != 0)
6775 {
6776 int first, second;
6777 char *tmpbuf, *past_reloc;
6778
6779 *rel = gotrel[j].rel[object_64bit];
6780 if (adjust)
6781 *adjust = len;
6782
6783 if (types)
6784 {
6785 if (flag_code != CODE_64BIT)
6786 {
6787 types->bitfield.imm32 = 1;
6788 types->bitfield.disp32 = 1;
6789 }
6790 else
6791 *types = gotrel[j].types64;
6792 }
6793
6794 if (GOT_symbol == NULL)
6795 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
6796
6797 /* The length of the first part of our input line. */
6798 first = cp - input_line_pointer;
6799
6800 /* The second part goes from after the reloc token until
6801 (and including) an end_of_line char or comma. */
6802 past_reloc = cp + 1 + len;
6803 cp = past_reloc;
6804 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
6805 ++cp;
6806 second = cp + 1 - past_reloc;
6807
6808 /* Allocate and copy string. The trailing NUL shouldn't
6809 be necessary, but be safe. */
6810 tmpbuf = (char *) xmalloc (first + second + 2);
6811 memcpy (tmpbuf, input_line_pointer, first);
6812 if (second != 0 && *past_reloc != ' ')
6813 /* Replace the relocation token with ' ', so that
6814 errors like foo@GOTOFF1 will be detected. */
6815 tmpbuf[first++] = ' ';
6816 memcpy (tmpbuf + first, past_reloc, second);
6817 tmpbuf[first + second] = '\0';
6818 return tmpbuf;
6819 }
6820
6821 as_bad (_("@%s reloc is not supported with %d-bit output format"),
6822 gotrel[j].str, 1 << (5 + object_64bit));
6823 return NULL;
6824 }
6825 }
6826
6827 /* Might be a symbol version string. Don't as_bad here. */
6828 return NULL;
6829 }
6830 #endif
6831
6832 #ifdef TE_PE
6833 #ifdef lex_got
6834 #undef lex_got
6835 #endif
6836 /* Parse operands of the form
6837 <symbol>@SECREL32+<nnn>
6838
6839 If we find one, set up the correct relocation in RELOC and copy the
6840 input string, minus the `@SECREL32' into a malloc'd buffer for
6841 parsing by the calling routine. Return this buffer, and if ADJUST
6842 is non-null set it to the length of the string we removed from the
6843 input line. Otherwise return NULL.
6844
6845 This function is copied from the ELF version above adjusted for PE targets. */
6846
6847 static char *
6848 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
6849 int *adjust ATTRIBUTE_UNUSED,
6850 i386_operand_type *types ATTRIBUTE_UNUSED)
6851 {
6852 static const struct
6853 {
6854 const char *str;
6855 int len;
6856 const enum bfd_reloc_code_real rel[2];
6857 const i386_operand_type types64;
6858 }
6859 gotrel[] =
6860 {
6861 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
6862 BFD_RELOC_32_SECREL },
6863 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
6864 };
6865
6866 char *cp;
6867 unsigned j;
6868
6869 for (cp = input_line_pointer; *cp != '@'; cp++)
6870 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
6871 return NULL;
6872
6873 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
6874 {
6875 int len = gotrel[j].len;
6876
6877 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
6878 {
6879 if (gotrel[j].rel[object_64bit] != 0)
6880 {
6881 int first, second;
6882 char *tmpbuf, *past_reloc;
6883
6884 *rel = gotrel[j].rel[object_64bit];
6885 if (adjust)
6886 *adjust = len;
6887
6888 if (types)
6889 {
6890 if (flag_code != CODE_64BIT)
6891 {
6892 types->bitfield.imm32 = 1;
6893 types->bitfield.disp32 = 1;
6894 }
6895 else
6896 *types = gotrel[j].types64;
6897 }
6898
6899 /* The length of the first part of our input line. */
6900 first = cp - input_line_pointer;
6901
6902 /* The second part goes from after the reloc token until
6903 (and including) an end_of_line char or comma. */
6904 past_reloc = cp + 1 + len;
6905 cp = past_reloc;
6906 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
6907 ++cp;
6908 second = cp + 1 - past_reloc;
6909
6910 /* Allocate and copy string. The trailing NUL shouldn't
6911 be necessary, but be safe. */
6912 tmpbuf = (char *) xmalloc (first + second + 2);
6913 memcpy (tmpbuf, input_line_pointer, first);
6914 if (second != 0 && *past_reloc != ' ')
6915 /* Replace the relocation token with ' ', so that
6916 errors like foo@SECLREL321 will be detected. */
6917 tmpbuf[first++] = ' ';
6918 memcpy (tmpbuf + first, past_reloc, second);
6919 tmpbuf[first + second] = '\0';
6920 return tmpbuf;
6921 }
6922
6923 as_bad (_("@%s reloc is not supported with %d-bit output format"),
6924 gotrel[j].str, 1 << (5 + object_64bit));
6925 return NULL;
6926 }
6927 }
6928
6929 /* Might be a symbol version string. Don't as_bad here. */
6930 return NULL;
6931 }
6932
6933 #endif /* TE_PE */
6934
6935 void
6936 x86_cons (expressionS *exp, int size)
6937 {
6938 intel_syntax = -intel_syntax;
6939
6940 exp->X_md = 0;
6941 if (size == 4 || (object_64bit && size == 8))
6942 {
6943 /* Handle @GOTOFF and the like in an expression. */
6944 char *save;
6945 char *gotfree_input_line;
6946 int adjust = 0;
6947
6948 save = input_line_pointer;
6949 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
6950 if (gotfree_input_line)
6951 input_line_pointer = gotfree_input_line;
6952
6953 expression (exp);
6954
6955 if (gotfree_input_line)
6956 {
6957 /* expression () has merrily parsed up to the end of line,
6958 or a comma - in the wrong buffer. Transfer how far
6959 input_line_pointer has moved to the right buffer. */
6960 input_line_pointer = (save
6961 + (input_line_pointer - gotfree_input_line)
6962 + adjust);
6963 free (gotfree_input_line);
6964 if (exp->X_op == O_constant
6965 || exp->X_op == O_absent
6966 || exp->X_op == O_illegal
6967 || exp->X_op == O_register
6968 || exp->X_op == O_big)
6969 {
6970 char c = *input_line_pointer;
6971 *input_line_pointer = 0;
6972 as_bad (_("missing or invalid expression `%s'"), save);
6973 *input_line_pointer = c;
6974 }
6975 }
6976 }
6977 else
6978 expression (exp);
6979
6980 intel_syntax = -intel_syntax;
6981
6982 if (intel_syntax)
6983 i386_intel_simplify (exp);
6984 }
6985
6986 static void
6987 signed_cons (int size)
6988 {
6989 if (flag_code == CODE_64BIT)
6990 cons_sign = 1;
6991 cons (size);
6992 cons_sign = -1;
6993 }
6994
6995 #ifdef TE_PE
6996 static void
6997 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6998 {
6999 expressionS exp;
7000
7001 do
7002 {
7003 expression (&exp);
7004 if (exp.X_op == O_symbol)
7005 exp.X_op = O_secrel;
7006
7007 emit_expr (&exp, 4);
7008 }
7009 while (*input_line_pointer++ == ',');
7010
7011 input_line_pointer--;
7012 demand_empty_rest_of_line ();
7013 }
7014 #endif
7015
7016 static int
7017 i386_immediate (char *imm_start)
7018 {
7019 char *save_input_line_pointer;
7020 char *gotfree_input_line;
7021 segT exp_seg = 0;
7022 expressionS *exp;
7023 i386_operand_type types;
7024
7025 operand_type_set (&types, ~0);
7026
7027 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
7028 {
7029 as_bad (_("at most %d immediate operands are allowed"),
7030 MAX_IMMEDIATE_OPERANDS);
7031 return 0;
7032 }
7033
7034 exp = &im_expressions[i.imm_operands++];
7035 i.op[this_operand].imms = exp;
7036
7037 if (is_space_char (*imm_start))
7038 ++imm_start;
7039
7040 save_input_line_pointer = input_line_pointer;
7041 input_line_pointer = imm_start;
7042
7043 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
7044 if (gotfree_input_line)
7045 input_line_pointer = gotfree_input_line;
7046
7047 exp_seg = expression (exp);
7048
7049 SKIP_WHITESPACE ();
7050 if (*input_line_pointer)
7051 as_bad (_("junk `%s' after expression"), input_line_pointer);
7052
7053 input_line_pointer = save_input_line_pointer;
7054 if (gotfree_input_line)
7055 {
7056 free (gotfree_input_line);
7057
7058 if (exp->X_op == O_constant || exp->X_op == O_register)
7059 exp->X_op = O_illegal;
7060 }
7061
7062 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
7063 }
7064
7065 static int
7066 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
7067 i386_operand_type types, const char *imm_start)
7068 {
7069 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
7070 {
7071 if (imm_start)
7072 as_bad (_("missing or invalid immediate expression `%s'"),
7073 imm_start);
7074 return 0;
7075 }
7076 else if (exp->X_op == O_constant)
7077 {
7078 /* Size it properly later. */
7079 i.types[this_operand].bitfield.imm64 = 1;
7080 /* If not 64bit, sign extend val. */
7081 if (flag_code != CODE_64BIT
7082 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
7083 exp->X_add_number
7084 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
7085 }
7086 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
7087 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
7088 && exp_seg != absolute_section
7089 && exp_seg != text_section
7090 && exp_seg != data_section
7091 && exp_seg != bss_section
7092 && exp_seg != undefined_section
7093 && !bfd_is_com_section (exp_seg))
7094 {
7095 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
7096 return 0;
7097 }
7098 #endif
7099 else if (!intel_syntax && exp->X_op == O_register)
7100 {
7101 if (imm_start)
7102 as_bad (_("illegal immediate register operand %s"), imm_start);
7103 return 0;
7104 }
7105 else
7106 {
7107 /* This is an address. The size of the address will be
7108 determined later, depending on destination register,
7109 suffix, or the default for the section. */
7110 i.types[this_operand].bitfield.imm8 = 1;
7111 i.types[this_operand].bitfield.imm16 = 1;
7112 i.types[this_operand].bitfield.imm32 = 1;
7113 i.types[this_operand].bitfield.imm32s = 1;
7114 i.types[this_operand].bitfield.imm64 = 1;
7115 i.types[this_operand] = operand_type_and (i.types[this_operand],
7116 types);
7117 }
7118
7119 return 1;
7120 }
7121
7122 static char *
7123 i386_scale (char *scale)
7124 {
7125 offsetT val;
7126 char *save = input_line_pointer;
7127
7128 input_line_pointer = scale;
7129 val = get_absolute_expression ();
7130
7131 switch (val)
7132 {
7133 case 1:
7134 i.log2_scale_factor = 0;
7135 break;
7136 case 2:
7137 i.log2_scale_factor = 1;
7138 break;
7139 case 4:
7140 i.log2_scale_factor = 2;
7141 break;
7142 case 8:
7143 i.log2_scale_factor = 3;
7144 break;
7145 default:
7146 {
7147 char sep = *input_line_pointer;
7148
7149 *input_line_pointer = '\0';
7150 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
7151 scale);
7152 *input_line_pointer = sep;
7153 input_line_pointer = save;
7154 return NULL;
7155 }
7156 }
7157 if (i.log2_scale_factor != 0 && i.index_reg == 0)
7158 {
7159 as_warn (_("scale factor of %d without an index register"),
7160 1 << i.log2_scale_factor);
7161 i.log2_scale_factor = 0;
7162 }
7163 scale = input_line_pointer;
7164 input_line_pointer = save;
7165 return scale;
7166 }
7167
7168 static int
7169 i386_displacement (char *disp_start, char *disp_end)
7170 {
7171 expressionS *exp;
7172 segT exp_seg = 0;
7173 char *save_input_line_pointer;
7174 char *gotfree_input_line;
7175 int override;
7176 i386_operand_type bigdisp, types = anydisp;
7177 int ret;
7178
7179 if (i.disp_operands == MAX_MEMORY_OPERANDS)
7180 {
7181 as_bad (_("at most %d displacement operands are allowed"),
7182 MAX_MEMORY_OPERANDS);
7183 return 0;
7184 }
7185
7186 operand_type_set (&bigdisp, 0);
7187 if ((i.types[this_operand].bitfield.jumpabsolute)
7188 || (!current_templates->start->opcode_modifier.jump
7189 && !current_templates->start->opcode_modifier.jumpdword))
7190 {
7191 bigdisp.bitfield.disp32 = 1;
7192 override = (i.prefix[ADDR_PREFIX] != 0);
7193 if (flag_code == CODE_64BIT)
7194 {
7195 if (!override)
7196 {
7197 bigdisp.bitfield.disp32s = 1;
7198 bigdisp.bitfield.disp64 = 1;
7199 }
7200 }
7201 else if ((flag_code == CODE_16BIT) ^ override)
7202 {
7203 bigdisp.bitfield.disp32 = 0;
7204 bigdisp.bitfield.disp16 = 1;
7205 }
7206 }
7207 else
7208 {
7209 /* For PC-relative branches, the width of the displacement
7210 is dependent upon data size, not address size. */
7211 override = (i.prefix[DATA_PREFIX] != 0);
7212 if (flag_code == CODE_64BIT)
7213 {
7214 if (override || i.suffix == WORD_MNEM_SUFFIX)
7215 bigdisp.bitfield.disp16 = 1;
7216 else
7217 {
7218 bigdisp.bitfield.disp32 = 1;
7219 bigdisp.bitfield.disp32s = 1;
7220 }
7221 }
7222 else
7223 {
7224 if (!override)
7225 override = (i.suffix == (flag_code != CODE_16BIT
7226 ? WORD_MNEM_SUFFIX
7227 : LONG_MNEM_SUFFIX));
7228 bigdisp.bitfield.disp32 = 1;
7229 if ((flag_code == CODE_16BIT) ^ override)
7230 {
7231 bigdisp.bitfield.disp32 = 0;
7232 bigdisp.bitfield.disp16 = 1;
7233 }
7234 }
7235 }
7236 i.types[this_operand] = operand_type_or (i.types[this_operand],
7237 bigdisp);
7238
7239 exp = &disp_expressions[i.disp_operands];
7240 i.op[this_operand].disps = exp;
7241 i.disp_operands++;
7242 save_input_line_pointer = input_line_pointer;
7243 input_line_pointer = disp_start;
7244 END_STRING_AND_SAVE (disp_end);
7245
7246 #ifndef GCC_ASM_O_HACK
7247 #define GCC_ASM_O_HACK 0
7248 #endif
7249 #if GCC_ASM_O_HACK
7250 END_STRING_AND_SAVE (disp_end + 1);
7251 if (i.types[this_operand].bitfield.baseIndex
7252 && displacement_string_end[-1] == '+')
7253 {
7254 /* This hack is to avoid a warning when using the "o"
7255 constraint within gcc asm statements.
7256 For instance:
7257
7258 #define _set_tssldt_desc(n,addr,limit,type) \
7259 __asm__ __volatile__ ( \
7260 "movw %w2,%0\n\t" \
7261 "movw %w1,2+%0\n\t" \
7262 "rorl $16,%1\n\t" \
7263 "movb %b1,4+%0\n\t" \
7264 "movb %4,5+%0\n\t" \
7265 "movb $0,6+%0\n\t" \
7266 "movb %h1,7+%0\n\t" \
7267 "rorl $16,%1" \
7268 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
7269
7270 This works great except that the output assembler ends
7271 up looking a bit weird if it turns out that there is
7272 no offset. You end up producing code that looks like:
7273
7274 #APP
7275 movw $235,(%eax)
7276 movw %dx,2+(%eax)
7277 rorl $16,%edx
7278 movb %dl,4+(%eax)
7279 movb $137,5+(%eax)
7280 movb $0,6+(%eax)
7281 movb %dh,7+(%eax)
7282 rorl $16,%edx
7283 #NO_APP
7284
7285 So here we provide the missing zero. */
7286
7287 *displacement_string_end = '0';
7288 }
7289 #endif
7290 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
7291 if (gotfree_input_line)
7292 input_line_pointer = gotfree_input_line;
7293
7294 exp_seg = expression (exp);
7295
7296 SKIP_WHITESPACE ();
7297 if (*input_line_pointer)
7298 as_bad (_("junk `%s' after expression"), input_line_pointer);
7299 #if GCC_ASM_O_HACK
7300 RESTORE_END_STRING (disp_end + 1);
7301 #endif
7302 input_line_pointer = save_input_line_pointer;
7303 if (gotfree_input_line)
7304 {
7305 free (gotfree_input_line);
7306
7307 if (exp->X_op == O_constant || exp->X_op == O_register)
7308 exp->X_op = O_illegal;
7309 }
7310
7311 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
7312
7313 RESTORE_END_STRING (disp_end);
7314
7315 return ret;
7316 }
7317
7318 static int
7319 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
7320 i386_operand_type types, const char *disp_start)
7321 {
7322 i386_operand_type bigdisp;
7323 int ret = 1;
7324
7325 /* We do this to make sure that the section symbol is in
7326 the symbol table. We will ultimately change the relocation
7327 to be relative to the beginning of the section. */
7328 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
7329 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
7330 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
7331 {
7332 if (exp->X_op != O_symbol)
7333 goto inv_disp;
7334
7335 if (S_IS_LOCAL (exp->X_add_symbol)
7336 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
7337 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
7338 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
7339 exp->X_op = O_subtract;
7340 exp->X_op_symbol = GOT_symbol;
7341 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
7342 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
7343 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
7344 i.reloc[this_operand] = BFD_RELOC_64;
7345 else
7346 i.reloc[this_operand] = BFD_RELOC_32;
7347 }
7348
7349 else if (exp->X_op == O_absent
7350 || exp->X_op == O_illegal
7351 || exp->X_op == O_big)
7352 {
7353 inv_disp:
7354 as_bad (_("missing or invalid displacement expression `%s'"),
7355 disp_start);
7356 ret = 0;
7357 }
7358
7359 else if (flag_code == CODE_64BIT
7360 && !i.prefix[ADDR_PREFIX]
7361 && exp->X_op == O_constant)
7362 {
7363 /* Since displacement is signed extended to 64bit, don't allow
7364 disp32 and turn off disp32s if they are out of range. */
7365 i.types[this_operand].bitfield.disp32 = 0;
7366 if (!fits_in_signed_long (exp->X_add_number))
7367 {
7368 i.types[this_operand].bitfield.disp32s = 0;
7369 if (i.types[this_operand].bitfield.baseindex)
7370 {
7371 as_bad (_("0x%lx out range of signed 32bit displacement"),
7372 (long) exp->X_add_number);
7373 ret = 0;
7374 }
7375 }
7376 }
7377
7378 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
7379 else if (exp->X_op != O_constant
7380 && OUTPUT_FLAVOR == bfd_target_aout_flavour
7381 && exp_seg != absolute_section
7382 && exp_seg != text_section
7383 && exp_seg != data_section
7384 && exp_seg != bss_section
7385 && exp_seg != undefined_section
7386 && !bfd_is_com_section (exp_seg))
7387 {
7388 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
7389 ret = 0;
7390 }
7391 #endif
7392
7393 /* Check if this is a displacement only operand. */
7394 bigdisp = i.types[this_operand];
7395 bigdisp.bitfield.disp8 = 0;
7396 bigdisp.bitfield.disp16 = 0;
7397 bigdisp.bitfield.disp32 = 0;
7398 bigdisp.bitfield.disp32s = 0;
7399 bigdisp.bitfield.disp64 = 0;
7400 if (operand_type_all_zero (&bigdisp))
7401 i.types[this_operand] = operand_type_and (i.types[this_operand],
7402 types);
7403
7404 return ret;
7405 }
7406
7407 /* Make sure the memory operand we've been dealt is valid.
7408 Return 1 on success, 0 on a failure. */
7409
7410 static int
7411 i386_index_check (const char *operand_string)
7412 {
7413 int ok;
7414 const char *kind = "base/index";
7415 #if INFER_ADDR_PREFIX
7416 int fudged = 0;
7417
7418 tryprefix:
7419 #endif
7420 ok = 1;
7421 if (current_templates->start->opcode_modifier.isstring
7422 && !current_templates->start->opcode_modifier.immext
7423 && (current_templates->end[-1].opcode_modifier.isstring
7424 || i.mem_operands))
7425 {
7426 /* Memory operands of string insns are special in that they only allow
7427 a single register (rDI, rSI, or rBX) as their memory address. */
7428 unsigned int expected;
7429
7430 kind = "string address";
7431
7432 if (current_templates->start->opcode_modifier.w)
7433 {
7434 i386_operand_type type = current_templates->end[-1].operand_types[0];
7435
7436 if (!type.bitfield.baseindex
7437 || ((!i.mem_operands != !intel_syntax)
7438 && current_templates->end[-1].operand_types[1]
7439 .bitfield.baseindex))
7440 type = current_templates->end[-1].operand_types[1];
7441 expected = type.bitfield.esseg ? 7 /* rDI */ : 6 /* rSI */;
7442 }
7443 else
7444 expected = 3 /* rBX */;
7445
7446 if (!i.base_reg || i.index_reg
7447 || operand_type_check (i.types[this_operand], disp))
7448 ok = -1;
7449 else if (!(flag_code == CODE_64BIT
7450 ? i.prefix[ADDR_PREFIX]
7451 ? i.base_reg->reg_type.bitfield.reg32
7452 : i.base_reg->reg_type.bitfield.reg64
7453 : (flag_code == CODE_16BIT) ^ !i.prefix[ADDR_PREFIX]
7454 ? i.base_reg->reg_type.bitfield.reg32
7455 : i.base_reg->reg_type.bitfield.reg16))
7456 ok = 0;
7457 else if (register_number (i.base_reg) != expected)
7458 ok = -1;
7459
7460 if (ok < 0)
7461 {
7462 unsigned int j;
7463
7464 for (j = 0; j < i386_regtab_size; ++j)
7465 if ((flag_code == CODE_64BIT
7466 ? i.prefix[ADDR_PREFIX]
7467 ? i386_regtab[j].reg_type.bitfield.reg32
7468 : i386_regtab[j].reg_type.bitfield.reg64
7469 : (flag_code == CODE_16BIT) ^ !i.prefix[ADDR_PREFIX]
7470 ? i386_regtab[j].reg_type.bitfield.reg32
7471 : i386_regtab[j].reg_type.bitfield.reg16)
7472 && register_number(i386_regtab + j) == expected)
7473 break;
7474 gas_assert (j < i386_regtab_size);
7475 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
7476 operand_string,
7477 intel_syntax ? '[' : '(',
7478 register_prefix,
7479 i386_regtab[j].reg_name,
7480 intel_syntax ? ']' : ')');
7481 ok = 1;
7482 }
7483 }
7484 else if (flag_code == CODE_64BIT)
7485 {
7486 if ((i.base_reg
7487 && ((i.prefix[ADDR_PREFIX] == 0
7488 && !i.base_reg->reg_type.bitfield.reg64)
7489 || (i.prefix[ADDR_PREFIX]
7490 && !i.base_reg->reg_type.bitfield.reg32))
7491 && (i.index_reg
7492 || i.base_reg->reg_num !=
7493 (i.prefix[ADDR_PREFIX] == 0 ? RegRip : RegEip)))
7494 || (i.index_reg
7495 && !(i.index_reg->reg_type.bitfield.regxmm
7496 || i.index_reg->reg_type.bitfield.regymm)
7497 && (!i.index_reg->reg_type.bitfield.baseindex
7498 || (i.prefix[ADDR_PREFIX] == 0
7499 && i.index_reg->reg_num != RegRiz
7500 && !i.index_reg->reg_type.bitfield.reg64
7501 )
7502 || (i.prefix[ADDR_PREFIX]
7503 && i.index_reg->reg_num != RegEiz
7504 && !i.index_reg->reg_type.bitfield.reg32))))
7505 ok = 0;
7506 }
7507 else
7508 {
7509 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
7510 {
7511 /* 16bit checks. */
7512 if ((i.base_reg
7513 && (!i.base_reg->reg_type.bitfield.reg16
7514 || !i.base_reg->reg_type.bitfield.baseindex))
7515 || (i.index_reg
7516 && (!i.index_reg->reg_type.bitfield.reg16
7517 || !i.index_reg->reg_type.bitfield.baseindex
7518 || !(i.base_reg
7519 && i.base_reg->reg_num < 6
7520 && i.index_reg->reg_num >= 6
7521 && i.log2_scale_factor == 0))))
7522 ok = 0;
7523 }
7524 else
7525 {
7526 /* 32bit checks. */
7527 if ((i.base_reg
7528 && !i.base_reg->reg_type.bitfield.reg32)
7529 || (i.index_reg
7530 && !i.index_reg->reg_type.bitfield.regxmm
7531 && !i.index_reg->reg_type.bitfield.regymm
7532 && ((!i.index_reg->reg_type.bitfield.reg32
7533 && i.index_reg->reg_num != RegEiz)
7534 || !i.index_reg->reg_type.bitfield.baseindex)))
7535 ok = 0;
7536 }
7537 }
7538 if (!ok)
7539 {
7540 #if INFER_ADDR_PREFIX
7541 if (!i.mem_operands && !i.prefix[ADDR_PREFIX])
7542 {
7543 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
7544 i.prefixes += 1;
7545 /* Change the size of any displacement too. At most one of
7546 Disp16 or Disp32 is set.
7547 FIXME. There doesn't seem to be any real need for separate
7548 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
7549 Removing them would probably clean up the code quite a lot. */
7550 if (flag_code != CODE_64BIT
7551 && (i.types[this_operand].bitfield.disp16
7552 || i.types[this_operand].bitfield.disp32))
7553 i.types[this_operand]
7554 = operand_type_xor (i.types[this_operand], disp16_32);
7555 fudged = 1;
7556 goto tryprefix;
7557 }
7558 if (fudged)
7559 as_bad (_("`%s' is not a valid %s expression"),
7560 operand_string,
7561 kind);
7562 else
7563 #endif
7564 as_bad (_("`%s' is not a valid %s-bit %s expression"),
7565 operand_string,
7566 flag_code_names[i.prefix[ADDR_PREFIX]
7567 ? flag_code == CODE_32BIT
7568 ? CODE_16BIT
7569 : CODE_32BIT
7570 : flag_code],
7571 kind);
7572 }
7573 return ok;
7574 }
7575
7576 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
7577 on error. */
7578
7579 static int
7580 i386_att_operand (char *operand_string)
7581 {
7582 const reg_entry *r;
7583 char *end_op;
7584 char *op_string = operand_string;
7585
7586 if (is_space_char (*op_string))
7587 ++op_string;
7588
7589 /* We check for an absolute prefix (differentiating,
7590 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
7591 if (*op_string == ABSOLUTE_PREFIX)
7592 {
7593 ++op_string;
7594 if (is_space_char (*op_string))
7595 ++op_string;
7596 i.types[this_operand].bitfield.jumpabsolute = 1;
7597 }
7598
7599 /* Check if operand is a register. */
7600 if ((r = parse_register (op_string, &end_op)) != NULL)
7601 {
7602 i386_operand_type temp;
7603
7604 /* Check for a segment override by searching for ':' after a
7605 segment register. */
7606 op_string = end_op;
7607 if (is_space_char (*op_string))
7608 ++op_string;
7609 if (*op_string == ':'
7610 && (r->reg_type.bitfield.sreg2
7611 || r->reg_type.bitfield.sreg3))
7612 {
7613 switch (r->reg_num)
7614 {
7615 case 0:
7616 i.seg[i.mem_operands] = &es;
7617 break;
7618 case 1:
7619 i.seg[i.mem_operands] = &cs;
7620 break;
7621 case 2:
7622 i.seg[i.mem_operands] = &ss;
7623 break;
7624 case 3:
7625 i.seg[i.mem_operands] = &ds;
7626 break;
7627 case 4:
7628 i.seg[i.mem_operands] = &fs;
7629 break;
7630 case 5:
7631 i.seg[i.mem_operands] = &gs;
7632 break;
7633 }
7634
7635 /* Skip the ':' and whitespace. */
7636 ++op_string;
7637 if (is_space_char (*op_string))
7638 ++op_string;
7639
7640 if (!is_digit_char (*op_string)
7641 && !is_identifier_char (*op_string)
7642 && *op_string != '('
7643 && *op_string != ABSOLUTE_PREFIX)
7644 {
7645 as_bad (_("bad memory operand `%s'"), op_string);
7646 return 0;
7647 }
7648 /* Handle case of %es:*foo. */
7649 if (*op_string == ABSOLUTE_PREFIX)
7650 {
7651 ++op_string;
7652 if (is_space_char (*op_string))
7653 ++op_string;
7654 i.types[this_operand].bitfield.jumpabsolute = 1;
7655 }
7656 goto do_memory_reference;
7657 }
7658 if (*op_string)
7659 {
7660 as_bad (_("junk `%s' after register"), op_string);
7661 return 0;
7662 }
7663 temp = r->reg_type;
7664 temp.bitfield.baseindex = 0;
7665 i.types[this_operand] = operand_type_or (i.types[this_operand],
7666 temp);
7667 i.types[this_operand].bitfield.unspecified = 0;
7668 i.op[this_operand].regs = r;
7669 i.reg_operands++;
7670 }
7671 else if (*op_string == REGISTER_PREFIX)
7672 {
7673 as_bad (_("bad register name `%s'"), op_string);
7674 return 0;
7675 }
7676 else if (*op_string == IMMEDIATE_PREFIX)
7677 {
7678 ++op_string;
7679 if (i.types[this_operand].bitfield.jumpabsolute)
7680 {
7681 as_bad (_("immediate operand illegal with absolute jump"));
7682 return 0;
7683 }
7684 if (!i386_immediate (op_string))
7685 return 0;
7686 }
7687 else if (is_digit_char (*op_string)
7688 || is_identifier_char (*op_string)
7689 || *op_string == '(')
7690 {
7691 /* This is a memory reference of some sort. */
7692 char *base_string;
7693
7694 /* Start and end of displacement string expression (if found). */
7695 char *displacement_string_start;
7696 char *displacement_string_end;
7697
7698 do_memory_reference:
7699 if ((i.mem_operands == 1
7700 && !current_templates->start->opcode_modifier.isstring)
7701 || i.mem_operands == 2)
7702 {
7703 as_bad (_("too many memory references for `%s'"),
7704 current_templates->start->name);
7705 return 0;
7706 }
7707
7708 /* Check for base index form. We detect the base index form by
7709 looking for an ')' at the end of the operand, searching
7710 for the '(' matching it, and finding a REGISTER_PREFIX or ','
7711 after the '('. */
7712 base_string = op_string + strlen (op_string);
7713
7714 --base_string;
7715 if (is_space_char (*base_string))
7716 --base_string;
7717
7718 /* If we only have a displacement, set-up for it to be parsed later. */
7719 displacement_string_start = op_string;
7720 displacement_string_end = base_string + 1;
7721
7722 if (*base_string == ')')
7723 {
7724 char *temp_string;
7725 unsigned int parens_balanced = 1;
7726 /* We've already checked that the number of left & right ()'s are
7727 equal, so this loop will not be infinite. */
7728 do
7729 {
7730 base_string--;
7731 if (*base_string == ')')
7732 parens_balanced++;
7733 if (*base_string == '(')
7734 parens_balanced--;
7735 }
7736 while (parens_balanced);
7737
7738 temp_string = base_string;
7739
7740 /* Skip past '(' and whitespace. */
7741 ++base_string;
7742 if (is_space_char (*base_string))
7743 ++base_string;
7744
7745 if (*base_string == ','
7746 || ((i.base_reg = parse_register (base_string, &end_op))
7747 != NULL))
7748 {
7749 displacement_string_end = temp_string;
7750
7751 i.types[this_operand].bitfield.baseindex = 1;
7752
7753 if (i.base_reg)
7754 {
7755 base_string = end_op;
7756 if (is_space_char (*base_string))
7757 ++base_string;
7758 }
7759
7760 /* There may be an index reg or scale factor here. */
7761 if (*base_string == ',')
7762 {
7763 ++base_string;
7764 if (is_space_char (*base_string))
7765 ++base_string;
7766
7767 if ((i.index_reg = parse_register (base_string, &end_op))
7768 != NULL)
7769 {
7770 base_string = end_op;
7771 if (is_space_char (*base_string))
7772 ++base_string;
7773 if (*base_string == ',')
7774 {
7775 ++base_string;
7776 if (is_space_char (*base_string))
7777 ++base_string;
7778 }
7779 else if (*base_string != ')')
7780 {
7781 as_bad (_("expecting `,' or `)' "
7782 "after index register in `%s'"),
7783 operand_string);
7784 return 0;
7785 }
7786 }
7787 else if (*base_string == REGISTER_PREFIX)
7788 {
7789 as_bad (_("bad register name `%s'"), base_string);
7790 return 0;
7791 }
7792
7793 /* Check for scale factor. */
7794 if (*base_string != ')')
7795 {
7796 char *end_scale = i386_scale (base_string);
7797
7798 if (!end_scale)
7799 return 0;
7800
7801 base_string = end_scale;
7802 if (is_space_char (*base_string))
7803 ++base_string;
7804 if (*base_string != ')')
7805 {
7806 as_bad (_("expecting `)' "
7807 "after scale factor in `%s'"),
7808 operand_string);
7809 return 0;
7810 }
7811 }
7812 else if (!i.index_reg)
7813 {
7814 as_bad (_("expecting index register or scale factor "
7815 "after `,'; got '%c'"),
7816 *base_string);
7817 return 0;
7818 }
7819 }
7820 else if (*base_string != ')')
7821 {
7822 as_bad (_("expecting `,' or `)' "
7823 "after base register in `%s'"),
7824 operand_string);
7825 return 0;
7826 }
7827 }
7828 else if (*base_string == REGISTER_PREFIX)
7829 {
7830 as_bad (_("bad register name `%s'"), base_string);
7831 return 0;
7832 }
7833 }
7834
7835 /* If there's an expression beginning the operand, parse it,
7836 assuming displacement_string_start and
7837 displacement_string_end are meaningful. */
7838 if (displacement_string_start != displacement_string_end)
7839 {
7840 if (!i386_displacement (displacement_string_start,
7841 displacement_string_end))
7842 return 0;
7843 }
7844
7845 /* Special case for (%dx) while doing input/output op. */
7846 if (i.base_reg
7847 && operand_type_equal (&i.base_reg->reg_type,
7848 &reg16_inoutportreg)
7849 && i.index_reg == 0
7850 && i.log2_scale_factor == 0
7851 && i.seg[i.mem_operands] == 0
7852 && !operand_type_check (i.types[this_operand], disp))
7853 {
7854 i.types[this_operand] = inoutportreg;
7855 return 1;
7856 }
7857
7858 if (i386_index_check (operand_string) == 0)
7859 return 0;
7860 i.types[this_operand].bitfield.mem = 1;
7861 i.mem_operands++;
7862 }
7863 else
7864 {
7865 /* It's not a memory operand; argh! */
7866 as_bad (_("invalid char %s beginning operand %d `%s'"),
7867 output_invalid (*op_string),
7868 this_operand + 1,
7869 op_string);
7870 return 0;
7871 }
7872 return 1; /* Normal return. */
7873 }
7874 \f
7875 /* Calculate the maximum variable size (i.e., excluding fr_fix)
7876 that an rs_machine_dependent frag may reach. */
7877
7878 unsigned int
7879 i386_frag_max_var (fragS *frag)
7880 {
7881 /* The only relaxable frags are for jumps.
7882 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
7883 gas_assert (frag->fr_type == rs_machine_dependent);
7884 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
7885 }
7886
7887 /* md_estimate_size_before_relax()
7888
7889 Called just before relax() for rs_machine_dependent frags. The x86
7890 assembler uses these frags to handle variable size jump
7891 instructions.
7892
7893 Any symbol that is now undefined will not become defined.
7894 Return the correct fr_subtype in the frag.
7895 Return the initial "guess for variable size of frag" to caller.
7896 The guess is actually the growth beyond the fixed part. Whatever
7897 we do to grow the fixed or variable part contributes to our
7898 returned value. */
7899
7900 int
7901 md_estimate_size_before_relax (fragS *fragP, segT segment)
7902 {
7903 /* We've already got fragP->fr_subtype right; all we have to do is
7904 check for un-relaxable symbols. On an ELF system, we can't relax
7905 an externally visible symbol, because it may be overridden by a
7906 shared library. */
7907 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
7908 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7909 || (IS_ELF
7910 && (S_IS_EXTERNAL (fragP->fr_symbol)
7911 || S_IS_WEAK (fragP->fr_symbol)
7912 || ((symbol_get_bfdsym (fragP->fr_symbol)->flags
7913 & BSF_GNU_INDIRECT_FUNCTION))))
7914 #endif
7915 #if defined (OBJ_COFF) && defined (TE_PE)
7916 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
7917 && S_IS_WEAK (fragP->fr_symbol))
7918 #endif
7919 )
7920 {
7921 /* Symbol is undefined in this segment, or we need to keep a
7922 reloc so that weak symbols can be overridden. */
7923 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
7924 enum bfd_reloc_code_real reloc_type;
7925 unsigned char *opcode;
7926 int old_fr_fix;
7927
7928 if (fragP->fr_var != NO_RELOC)
7929 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
7930 else if (size == 2)
7931 reloc_type = BFD_RELOC_16_PCREL;
7932 else
7933 reloc_type = BFD_RELOC_32_PCREL;
7934
7935 old_fr_fix = fragP->fr_fix;
7936 opcode = (unsigned char *) fragP->fr_opcode;
7937
7938 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
7939 {
7940 case UNCOND_JUMP:
7941 /* Make jmp (0xeb) a (d)word displacement jump. */
7942 opcode[0] = 0xe9;
7943 fragP->fr_fix += size;
7944 fix_new (fragP, old_fr_fix, size,
7945 fragP->fr_symbol,
7946 fragP->fr_offset, 1,
7947 reloc_type);
7948 break;
7949
7950 case COND_JUMP86:
7951 if (size == 2
7952 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
7953 {
7954 /* Negate the condition, and branch past an
7955 unconditional jump. */
7956 opcode[0] ^= 1;
7957 opcode[1] = 3;
7958 /* Insert an unconditional jump. */
7959 opcode[2] = 0xe9;
7960 /* We added two extra opcode bytes, and have a two byte
7961 offset. */
7962 fragP->fr_fix += 2 + 2;
7963 fix_new (fragP, old_fr_fix + 2, 2,
7964 fragP->fr_symbol,
7965 fragP->fr_offset, 1,
7966 reloc_type);
7967 break;
7968 }
7969 /* Fall through. */
7970
7971 case COND_JUMP:
7972 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
7973 {
7974 fixS *fixP;
7975
7976 fragP->fr_fix += 1;
7977 fixP = fix_new (fragP, old_fr_fix, 1,
7978 fragP->fr_symbol,
7979 fragP->fr_offset, 1,
7980 BFD_RELOC_8_PCREL);
7981 fixP->fx_signed = 1;
7982 break;
7983 }
7984
7985 /* This changes the byte-displacement jump 0x7N
7986 to the (d)word-displacement jump 0x0f,0x8N. */
7987 opcode[1] = opcode[0] + 0x10;
7988 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7989 /* We've added an opcode byte. */
7990 fragP->fr_fix += 1 + size;
7991 fix_new (fragP, old_fr_fix + 1, size,
7992 fragP->fr_symbol,
7993 fragP->fr_offset, 1,
7994 reloc_type);
7995 break;
7996
7997 default:
7998 BAD_CASE (fragP->fr_subtype);
7999 break;
8000 }
8001 frag_wane (fragP);
8002 return fragP->fr_fix - old_fr_fix;
8003 }
8004
8005 /* Guess size depending on current relax state. Initially the relax
8006 state will correspond to a short jump and we return 1, because
8007 the variable part of the frag (the branch offset) is one byte
8008 long. However, we can relax a section more than once and in that
8009 case we must either set fr_subtype back to the unrelaxed state,
8010 or return the value for the appropriate branch. */
8011 return md_relax_table[fragP->fr_subtype].rlx_length;
8012 }
8013
8014 /* Called after relax() is finished.
8015
8016 In: Address of frag.
8017 fr_type == rs_machine_dependent.
8018 fr_subtype is what the address relaxed to.
8019
8020 Out: Any fixSs and constants are set up.
8021 Caller will turn frag into a ".space 0". */
8022
8023 void
8024 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
8025 fragS *fragP)
8026 {
8027 unsigned char *opcode;
8028 unsigned char *where_to_put_displacement = NULL;
8029 offsetT target_address;
8030 offsetT opcode_address;
8031 unsigned int extension = 0;
8032 offsetT displacement_from_opcode_start;
8033
8034 opcode = (unsigned char *) fragP->fr_opcode;
8035
8036 /* Address we want to reach in file space. */
8037 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
8038
8039 /* Address opcode resides at in file space. */
8040 opcode_address = fragP->fr_address + fragP->fr_fix;
8041
8042 /* Displacement from opcode start to fill into instruction. */
8043 displacement_from_opcode_start = target_address - opcode_address;
8044
8045 if ((fragP->fr_subtype & BIG) == 0)
8046 {
8047 /* Don't have to change opcode. */
8048 extension = 1; /* 1 opcode + 1 displacement */
8049 where_to_put_displacement = &opcode[1];
8050 }
8051 else
8052 {
8053 if (no_cond_jump_promotion
8054 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
8055 as_warn_where (fragP->fr_file, fragP->fr_line,
8056 _("long jump required"));
8057
8058 switch (fragP->fr_subtype)
8059 {
8060 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
8061 extension = 4; /* 1 opcode + 4 displacement */
8062 opcode[0] = 0xe9;
8063 where_to_put_displacement = &opcode[1];
8064 break;
8065
8066 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
8067 extension = 2; /* 1 opcode + 2 displacement */
8068 opcode[0] = 0xe9;
8069 where_to_put_displacement = &opcode[1];
8070 break;
8071
8072 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
8073 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
8074 extension = 5; /* 2 opcode + 4 displacement */
8075 opcode[1] = opcode[0] + 0x10;
8076 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
8077 where_to_put_displacement = &opcode[2];
8078 break;
8079
8080 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
8081 extension = 3; /* 2 opcode + 2 displacement */
8082 opcode[1] = opcode[0] + 0x10;
8083 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
8084 where_to_put_displacement = &opcode[2];
8085 break;
8086
8087 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
8088 extension = 4;
8089 opcode[0] ^= 1;
8090 opcode[1] = 3;
8091 opcode[2] = 0xe9;
8092 where_to_put_displacement = &opcode[3];
8093 break;
8094
8095 default:
8096 BAD_CASE (fragP->fr_subtype);
8097 break;
8098 }
8099 }
8100
8101 /* If size if less then four we are sure that the operand fits,
8102 but if it's 4, then it could be that the displacement is larger
8103 then -/+ 2GB. */
8104 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
8105 && object_64bit
8106 && ((addressT) (displacement_from_opcode_start - extension
8107 + ((addressT) 1 << 31))
8108 > (((addressT) 2 << 31) - 1)))
8109 {
8110 as_bad_where (fragP->fr_file, fragP->fr_line,
8111 _("jump target out of range"));
8112 /* Make us emit 0. */
8113 displacement_from_opcode_start = extension;
8114 }
8115 /* Now put displacement after opcode. */
8116 md_number_to_chars ((char *) where_to_put_displacement,
8117 (valueT) (displacement_from_opcode_start - extension),
8118 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
8119 fragP->fr_fix += extension;
8120 }
8121 \f
8122 /* Apply a fixup (fixP) to segment data, once it has been determined
8123 by our caller that we have all the info we need to fix it up.
8124
8125 Parameter valP is the pointer to the value of the bits.
8126
8127 On the 386, immediates, displacements, and data pointers are all in
8128 the same (little-endian) format, so we don't need to care about which
8129 we are handling. */
8130
8131 void
8132 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
8133 {
8134 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
8135 valueT value = *valP;
8136
8137 #if !defined (TE_Mach)
8138 if (fixP->fx_pcrel)
8139 {
8140 switch (fixP->fx_r_type)
8141 {
8142 default:
8143 break;
8144
8145 case BFD_RELOC_64:
8146 fixP->fx_r_type = BFD_RELOC_64_PCREL;
8147 break;
8148 case BFD_RELOC_32:
8149 case BFD_RELOC_X86_64_32S:
8150 fixP->fx_r_type = BFD_RELOC_32_PCREL;
8151 break;
8152 case BFD_RELOC_16:
8153 fixP->fx_r_type = BFD_RELOC_16_PCREL;
8154 break;
8155 case BFD_RELOC_8:
8156 fixP->fx_r_type = BFD_RELOC_8_PCREL;
8157 break;
8158 }
8159 }
8160
8161 if (fixP->fx_addsy != NULL
8162 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
8163 || fixP->fx_r_type == BFD_RELOC_64_PCREL
8164 || fixP->fx_r_type == BFD_RELOC_16_PCREL
8165 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
8166 && !use_rela_relocations)
8167 {
8168 /* This is a hack. There should be a better way to handle this.
8169 This covers for the fact that bfd_install_relocation will
8170 subtract the current location (for partial_inplace, PC relative
8171 relocations); see more below. */
8172 #ifndef OBJ_AOUT
8173 if (IS_ELF
8174 #ifdef TE_PE
8175 || OUTPUT_FLAVOR == bfd_target_coff_flavour
8176 #endif
8177 )
8178 value += fixP->fx_where + fixP->fx_frag->fr_address;
8179 #endif
8180 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8181 if (IS_ELF)
8182 {
8183 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
8184
8185 if ((sym_seg == seg
8186 || (symbol_section_p (fixP->fx_addsy)
8187 && sym_seg != absolute_section))
8188 && !generic_force_reloc (fixP))
8189 {
8190 /* Yes, we add the values in twice. This is because
8191 bfd_install_relocation subtracts them out again. I think
8192 bfd_install_relocation is broken, but I don't dare change
8193 it. FIXME. */
8194 value += fixP->fx_where + fixP->fx_frag->fr_address;
8195 }
8196 }
8197 #endif
8198 #if defined (OBJ_COFF) && defined (TE_PE)
8199 /* For some reason, the PE format does not store a
8200 section address offset for a PC relative symbol. */
8201 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
8202 || S_IS_WEAK (fixP->fx_addsy))
8203 value += md_pcrel_from (fixP);
8204 #endif
8205 }
8206 #if defined (OBJ_COFF) && defined (TE_PE)
8207 if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
8208 {
8209 value -= S_GET_VALUE (fixP->fx_addsy);
8210 }
8211 #endif
8212
8213 /* Fix a few things - the dynamic linker expects certain values here,
8214 and we must not disappoint it. */
8215 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8216 if (IS_ELF && fixP->fx_addsy)
8217 switch (fixP->fx_r_type)
8218 {
8219 case BFD_RELOC_386_PLT32:
8220 case BFD_RELOC_X86_64_PLT32:
8221 /* Make the jump instruction point to the address of the operand. At
8222 runtime we merely add the offset to the actual PLT entry. */
8223 value = -4;
8224 break;
8225
8226 case BFD_RELOC_386_TLS_GD:
8227 case BFD_RELOC_386_TLS_LDM:
8228 case BFD_RELOC_386_TLS_IE_32:
8229 case BFD_RELOC_386_TLS_IE:
8230 case BFD_RELOC_386_TLS_GOTIE:
8231 case BFD_RELOC_386_TLS_GOTDESC:
8232 case BFD_RELOC_X86_64_TLSGD:
8233 case BFD_RELOC_X86_64_TLSLD:
8234 case BFD_RELOC_X86_64_GOTTPOFF:
8235 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
8236 value = 0; /* Fully resolved at runtime. No addend. */
8237 /* Fallthrough */
8238 case BFD_RELOC_386_TLS_LE:
8239 case BFD_RELOC_386_TLS_LDO_32:
8240 case BFD_RELOC_386_TLS_LE_32:
8241 case BFD_RELOC_X86_64_DTPOFF32:
8242 case BFD_RELOC_X86_64_DTPOFF64:
8243 case BFD_RELOC_X86_64_TPOFF32:
8244 case BFD_RELOC_X86_64_TPOFF64:
8245 S_SET_THREAD_LOCAL (fixP->fx_addsy);
8246 break;
8247
8248 case BFD_RELOC_386_TLS_DESC_CALL:
8249 case BFD_RELOC_X86_64_TLSDESC_CALL:
8250 value = 0; /* Fully resolved at runtime. No addend. */
8251 S_SET_THREAD_LOCAL (fixP->fx_addsy);
8252 fixP->fx_done = 0;
8253 return;
8254
8255 case BFD_RELOC_386_GOT32:
8256 case BFD_RELOC_X86_64_GOT32:
8257 value = 0; /* Fully resolved at runtime. No addend. */
8258 break;
8259
8260 case BFD_RELOC_VTABLE_INHERIT:
8261 case BFD_RELOC_VTABLE_ENTRY:
8262 fixP->fx_done = 0;
8263 return;
8264
8265 default:
8266 break;
8267 }
8268 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
8269 *valP = value;
8270 #endif /* !defined (TE_Mach) */
8271
8272 /* Are we finished with this relocation now? */
8273 if (fixP->fx_addsy == NULL)
8274 fixP->fx_done = 1;
8275 #if defined (OBJ_COFF) && defined (TE_PE)
8276 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
8277 {
8278 fixP->fx_done = 0;
8279 /* Remember value for tc_gen_reloc. */
8280 fixP->fx_addnumber = value;
8281 /* Clear out the frag for now. */
8282 value = 0;
8283 }
8284 #endif
8285 else if (use_rela_relocations)
8286 {
8287 fixP->fx_no_overflow = 1;
8288 /* Remember value for tc_gen_reloc. */
8289 fixP->fx_addnumber = value;
8290 value = 0;
8291 }
8292
8293 md_number_to_chars (p, value, fixP->fx_size);
8294 }
8295 \f
8296 char *
8297 md_atof (int type, char *litP, int *sizeP)
8298 {
8299 /* This outputs the LITTLENUMs in REVERSE order;
8300 in accord with the bigendian 386. */
8301 return ieee_md_atof (type, litP, sizeP, FALSE);
8302 }
8303 \f
8304 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
8305
8306 static char *
8307 output_invalid (int c)
8308 {
8309 if (ISPRINT (c))
8310 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
8311 "'%c'", c);
8312 else
8313 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
8314 "(0x%x)", (unsigned char) c);
8315 return output_invalid_buf;
8316 }
8317
8318 /* REG_STRING starts *before* REGISTER_PREFIX. */
8319
8320 static const reg_entry *
8321 parse_real_register (char *reg_string, char **end_op)
8322 {
8323 char *s = reg_string;
8324 char *p;
8325 char reg_name_given[MAX_REG_NAME_SIZE + 1];
8326 const reg_entry *r;
8327
8328 /* Skip possible REGISTER_PREFIX and possible whitespace. */
8329 if (*s == REGISTER_PREFIX)
8330 ++s;
8331
8332 if (is_space_char (*s))
8333 ++s;
8334
8335 p = reg_name_given;
8336 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
8337 {
8338 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
8339 return (const reg_entry *) NULL;
8340 s++;
8341 }
8342
8343 /* For naked regs, make sure that we are not dealing with an identifier.
8344 This prevents confusing an identifier like `eax_var' with register
8345 `eax'. */
8346 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
8347 return (const reg_entry *) NULL;
8348
8349 *end_op = s;
8350
8351 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
8352
8353 /* Handle floating point regs, allowing spaces in the (i) part. */
8354 if (r == i386_regtab /* %st is first entry of table */)
8355 {
8356 if (is_space_char (*s))
8357 ++s;
8358 if (*s == '(')
8359 {
8360 ++s;
8361 if (is_space_char (*s))
8362 ++s;
8363 if (*s >= '0' && *s <= '7')
8364 {
8365 int fpr = *s - '0';
8366 ++s;
8367 if (is_space_char (*s))
8368 ++s;
8369 if (*s == ')')
8370 {
8371 *end_op = s + 1;
8372 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
8373 know (r);
8374 return r + fpr;
8375 }
8376 }
8377 /* We have "%st(" then garbage. */
8378 return (const reg_entry *) NULL;
8379 }
8380 }
8381
8382 if (r == NULL || allow_pseudo_reg)
8383 return r;
8384
8385 if (operand_type_all_zero (&r->reg_type))
8386 return (const reg_entry *) NULL;
8387
8388 if ((r->reg_type.bitfield.reg32
8389 || r->reg_type.bitfield.sreg3
8390 || r->reg_type.bitfield.control
8391 || r->reg_type.bitfield.debug
8392 || r->reg_type.bitfield.test)
8393 && !cpu_arch_flags.bitfield.cpui386)
8394 return (const reg_entry *) NULL;
8395
8396 if (r->reg_type.bitfield.floatreg
8397 && !cpu_arch_flags.bitfield.cpu8087
8398 && !cpu_arch_flags.bitfield.cpu287
8399 && !cpu_arch_flags.bitfield.cpu387)
8400 return (const reg_entry *) NULL;
8401
8402 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
8403 return (const reg_entry *) NULL;
8404
8405 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
8406 return (const reg_entry *) NULL;
8407
8408 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
8409 return (const reg_entry *) NULL;
8410
8411 /* Don't allow fake index register unless allow_index_reg isn't 0. */
8412 if (!allow_index_reg
8413 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
8414 return (const reg_entry *) NULL;
8415
8416 if (((r->reg_flags & (RegRex64 | RegRex))
8417 || r->reg_type.bitfield.reg64)
8418 && (!cpu_arch_flags.bitfield.cpulm
8419 || !operand_type_equal (&r->reg_type, &control))
8420 && flag_code != CODE_64BIT)
8421 return (const reg_entry *) NULL;
8422
8423 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
8424 return (const reg_entry *) NULL;
8425
8426 return r;
8427 }
8428
8429 /* REG_STRING starts *before* REGISTER_PREFIX. */
8430
8431 static const reg_entry *
8432 parse_register (char *reg_string, char **end_op)
8433 {
8434 const reg_entry *r;
8435
8436 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
8437 r = parse_real_register (reg_string, end_op);
8438 else
8439 r = NULL;
8440 if (!r)
8441 {
8442 char *save = input_line_pointer;
8443 char c;
8444 symbolS *symbolP;
8445
8446 input_line_pointer = reg_string;
8447 c = get_symbol_end ();
8448 symbolP = symbol_find (reg_string);
8449 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
8450 {
8451 const expressionS *e = symbol_get_value_expression (symbolP);
8452
8453 know (e->X_op == O_register);
8454 know (e->X_add_number >= 0
8455 && (valueT) e->X_add_number < i386_regtab_size);
8456 r = i386_regtab + e->X_add_number;
8457 *end_op = input_line_pointer;
8458 }
8459 *input_line_pointer = c;
8460 input_line_pointer = save;
8461 }
8462 return r;
8463 }
8464
8465 int
8466 i386_parse_name (char *name, expressionS *e, char *nextcharP)
8467 {
8468 const reg_entry *r;
8469 char *end = input_line_pointer;
8470
8471 *end = *nextcharP;
8472 r = parse_register (name, &input_line_pointer);
8473 if (r && end <= input_line_pointer)
8474 {
8475 *nextcharP = *input_line_pointer;
8476 *input_line_pointer = 0;
8477 e->X_op = O_register;
8478 e->X_add_number = r - i386_regtab;
8479 return 1;
8480 }
8481 input_line_pointer = end;
8482 *end = 0;
8483 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
8484 }
8485
8486 void
8487 md_operand (expressionS *e)
8488 {
8489 char *end;
8490 const reg_entry *r;
8491
8492 switch (*input_line_pointer)
8493 {
8494 case REGISTER_PREFIX:
8495 r = parse_real_register (input_line_pointer, &end);
8496 if (r)
8497 {
8498 e->X_op = O_register;
8499 e->X_add_number = r - i386_regtab;
8500 input_line_pointer = end;
8501 }
8502 break;
8503
8504 case '[':
8505 gas_assert (intel_syntax);
8506 end = input_line_pointer++;
8507 expression (e);
8508 if (*input_line_pointer == ']')
8509 {
8510 ++input_line_pointer;
8511 e->X_op_symbol = make_expr_symbol (e);
8512 e->X_add_symbol = NULL;
8513 e->X_add_number = 0;
8514 e->X_op = O_index;
8515 }
8516 else
8517 {
8518 e->X_op = O_absent;
8519 input_line_pointer = end;
8520 }
8521 break;
8522 }
8523 }
8524
8525 \f
8526 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8527 const char *md_shortopts = "kVQ:sqn";
8528 #else
8529 const char *md_shortopts = "qn";
8530 #endif
8531
8532 #define OPTION_32 (OPTION_MD_BASE + 0)
8533 #define OPTION_64 (OPTION_MD_BASE + 1)
8534 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
8535 #define OPTION_MARCH (OPTION_MD_BASE + 3)
8536 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
8537 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
8538 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
8539 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
8540 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
8541 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
8542 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
8543 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
8544 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
8545 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
8546 #define OPTION_X32 (OPTION_MD_BASE + 14)
8547
8548 struct option md_longopts[] =
8549 {
8550 {"32", no_argument, NULL, OPTION_32},
8551 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
8552 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
8553 {"64", no_argument, NULL, OPTION_64},
8554 #endif
8555 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8556 {"x32", no_argument, NULL, OPTION_X32},
8557 #endif
8558 {"divide", no_argument, NULL, OPTION_DIVIDE},
8559 {"march", required_argument, NULL, OPTION_MARCH},
8560 {"mtune", required_argument, NULL, OPTION_MTUNE},
8561 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
8562 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
8563 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
8564 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
8565 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
8566 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
8567 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
8568 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
8569 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
8570 {NULL, no_argument, NULL, 0}
8571 };
8572 size_t md_longopts_size = sizeof (md_longopts);
8573
8574 int
8575 md_parse_option (int c, char *arg)
8576 {
8577 unsigned int j;
8578 char *arch, *next;
8579
8580 switch (c)
8581 {
8582 case 'n':
8583 optimize_align_code = 0;
8584 break;
8585
8586 case 'q':
8587 quiet_warnings = 1;
8588 break;
8589
8590 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8591 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
8592 should be emitted or not. FIXME: Not implemented. */
8593 case 'Q':
8594 break;
8595
8596 /* -V: SVR4 argument to print version ID. */
8597 case 'V':
8598 print_version_id ();
8599 break;
8600
8601 /* -k: Ignore for FreeBSD compatibility. */
8602 case 'k':
8603 break;
8604
8605 case 's':
8606 /* -s: On i386 Solaris, this tells the native assembler to use
8607 .stab instead of .stab.excl. We always use .stab anyhow. */
8608 break;
8609 #endif
8610 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
8611 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
8612 case OPTION_64:
8613 {
8614 const char **list, **l;
8615
8616 list = bfd_target_list ();
8617 for (l = list; *l != NULL; l++)
8618 if (CONST_STRNEQ (*l, "elf64-x86-64")
8619 || strcmp (*l, "coff-x86-64") == 0
8620 || strcmp (*l, "pe-x86-64") == 0
8621 || strcmp (*l, "pei-x86-64") == 0
8622 || strcmp (*l, "mach-o-x86-64") == 0)
8623 {
8624 default_arch = "x86_64";
8625 break;
8626 }
8627 if (*l == NULL)
8628 as_fatal (_("no compiled in support for x86_64"));
8629 free (list);
8630 }
8631 break;
8632 #endif
8633
8634 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8635 case OPTION_X32:
8636 if (IS_ELF)
8637 {
8638 const char **list, **l;
8639
8640 list = bfd_target_list ();
8641 for (l = list; *l != NULL; l++)
8642 if (CONST_STRNEQ (*l, "elf32-x86-64"))
8643 {
8644 default_arch = "x86_64:32";
8645 break;
8646 }
8647 if (*l == NULL)
8648 as_fatal (_("no compiled in support for 32bit x86_64"));
8649 free (list);
8650 }
8651 else
8652 as_fatal (_("32bit x86_64 is only supported for ELF"));
8653 break;
8654 #endif
8655
8656 case OPTION_32:
8657 default_arch = "i386";
8658 break;
8659
8660 case OPTION_DIVIDE:
8661 #ifdef SVR4_COMMENT_CHARS
8662 {
8663 char *n, *t;
8664 const char *s;
8665
8666 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
8667 t = n;
8668 for (s = i386_comment_chars; *s != '\0'; s++)
8669 if (*s != '/')
8670 *t++ = *s;
8671 *t = '\0';
8672 i386_comment_chars = n;
8673 }
8674 #endif
8675 break;
8676
8677 case OPTION_MARCH:
8678 arch = xstrdup (arg);
8679 do
8680 {
8681 if (*arch == '.')
8682 as_fatal (_("invalid -march= option: `%s'"), arg);
8683 next = strchr (arch, '+');
8684 if (next)
8685 *next++ = '\0';
8686 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
8687 {
8688 if (strcmp (arch, cpu_arch [j].name) == 0)
8689 {
8690 /* Processor. */
8691 if (! cpu_arch[j].flags.bitfield.cpui386)
8692 continue;
8693
8694 cpu_arch_name = cpu_arch[j].name;
8695 cpu_sub_arch_name = NULL;
8696 cpu_arch_flags = cpu_arch[j].flags;
8697 cpu_arch_isa = cpu_arch[j].type;
8698 cpu_arch_isa_flags = cpu_arch[j].flags;
8699 if (!cpu_arch_tune_set)
8700 {
8701 cpu_arch_tune = cpu_arch_isa;
8702 cpu_arch_tune_flags = cpu_arch_isa_flags;
8703 }
8704 break;
8705 }
8706 else if (*cpu_arch [j].name == '.'
8707 && strcmp (arch, cpu_arch [j].name + 1) == 0)
8708 {
8709 /* ISA entension. */
8710 i386_cpu_flags flags;
8711
8712 if (!cpu_arch[j].negated)
8713 flags = cpu_flags_or (cpu_arch_flags,
8714 cpu_arch[j].flags);
8715 else
8716 flags = cpu_flags_and_not (cpu_arch_flags,
8717 cpu_arch[j].flags);
8718 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
8719 {
8720 if (cpu_sub_arch_name)
8721 {
8722 char *name = cpu_sub_arch_name;
8723 cpu_sub_arch_name = concat (name,
8724 cpu_arch[j].name,
8725 (const char *) NULL);
8726 free (name);
8727 }
8728 else
8729 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
8730 cpu_arch_flags = flags;
8731 cpu_arch_isa_flags = flags;
8732 }
8733 break;
8734 }
8735 }
8736
8737 if (j >= ARRAY_SIZE (cpu_arch))
8738 as_fatal (_("invalid -march= option: `%s'"), arg);
8739
8740 arch = next;
8741 }
8742 while (next != NULL );
8743 break;
8744
8745 case OPTION_MTUNE:
8746 if (*arg == '.')
8747 as_fatal (_("invalid -mtune= option: `%s'"), arg);
8748 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
8749 {
8750 if (strcmp (arg, cpu_arch [j].name) == 0)
8751 {
8752 cpu_arch_tune_set = 1;
8753 cpu_arch_tune = cpu_arch [j].type;
8754 cpu_arch_tune_flags = cpu_arch[j].flags;
8755 break;
8756 }
8757 }
8758 if (j >= ARRAY_SIZE (cpu_arch))
8759 as_fatal (_("invalid -mtune= option: `%s'"), arg);
8760 break;
8761
8762 case OPTION_MMNEMONIC:
8763 if (strcasecmp (arg, "att") == 0)
8764 intel_mnemonic = 0;
8765 else if (strcasecmp (arg, "intel") == 0)
8766 intel_mnemonic = 1;
8767 else
8768 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
8769 break;
8770
8771 case OPTION_MSYNTAX:
8772 if (strcasecmp (arg, "att") == 0)
8773 intel_syntax = 0;
8774 else if (strcasecmp (arg, "intel") == 0)
8775 intel_syntax = 1;
8776 else
8777 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
8778 break;
8779
8780 case OPTION_MINDEX_REG:
8781 allow_index_reg = 1;
8782 break;
8783
8784 case OPTION_MNAKED_REG:
8785 allow_naked_reg = 1;
8786 break;
8787
8788 case OPTION_MOLD_GCC:
8789 old_gcc = 1;
8790 break;
8791
8792 case OPTION_MSSE2AVX:
8793 sse2avx = 1;
8794 break;
8795
8796 case OPTION_MSSE_CHECK:
8797 if (strcasecmp (arg, "error") == 0)
8798 sse_check = check_error;
8799 else if (strcasecmp (arg, "warning") == 0)
8800 sse_check = check_warning;
8801 else if (strcasecmp (arg, "none") == 0)
8802 sse_check = check_none;
8803 else
8804 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
8805 break;
8806
8807 case OPTION_MOPERAND_CHECK:
8808 if (strcasecmp (arg, "error") == 0)
8809 operand_check = check_error;
8810 else if (strcasecmp (arg, "warning") == 0)
8811 operand_check = check_warning;
8812 else if (strcasecmp (arg, "none") == 0)
8813 operand_check = check_none;
8814 else
8815 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
8816 break;
8817
8818 case OPTION_MAVXSCALAR:
8819 if (strcasecmp (arg, "128") == 0)
8820 avxscalar = vex128;
8821 else if (strcasecmp (arg, "256") == 0)
8822 avxscalar = vex256;
8823 else
8824 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
8825 break;
8826
8827 default:
8828 return 0;
8829 }
8830 return 1;
8831 }
8832
8833 #define MESSAGE_TEMPLATE \
8834 " "
8835
8836 static void
8837 show_arch (FILE *stream, int ext, int check)
8838 {
8839 static char message[] = MESSAGE_TEMPLATE;
8840 char *start = message + 27;
8841 char *p;
8842 int size = sizeof (MESSAGE_TEMPLATE);
8843 int left;
8844 const char *name;
8845 int len;
8846 unsigned int j;
8847
8848 p = start;
8849 left = size - (start - message);
8850 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
8851 {
8852 /* Should it be skipped? */
8853 if (cpu_arch [j].skip)
8854 continue;
8855
8856 name = cpu_arch [j].name;
8857 len = cpu_arch [j].len;
8858 if (*name == '.')
8859 {
8860 /* It is an extension. Skip if we aren't asked to show it. */
8861 if (ext)
8862 {
8863 name++;
8864 len--;
8865 }
8866 else
8867 continue;
8868 }
8869 else if (ext)
8870 {
8871 /* It is an processor. Skip if we show only extension. */
8872 continue;
8873 }
8874 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
8875 {
8876 /* It is an impossible processor - skip. */
8877 continue;
8878 }
8879
8880 /* Reserve 2 spaces for ", " or ",\0" */
8881 left -= len + 2;
8882
8883 /* Check if there is any room. */
8884 if (left >= 0)
8885 {
8886 if (p != start)
8887 {
8888 *p++ = ',';
8889 *p++ = ' ';
8890 }
8891 p = mempcpy (p, name, len);
8892 }
8893 else
8894 {
8895 /* Output the current message now and start a new one. */
8896 *p++ = ',';
8897 *p = '\0';
8898 fprintf (stream, "%s\n", message);
8899 p = start;
8900 left = size - (start - message) - len - 2;
8901
8902 gas_assert (left >= 0);
8903
8904 p = mempcpy (p, name, len);
8905 }
8906 }
8907
8908 *p = '\0';
8909 fprintf (stream, "%s\n", message);
8910 }
8911
8912 void
8913 md_show_usage (FILE *stream)
8914 {
8915 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8916 fprintf (stream, _("\
8917 -Q ignored\n\
8918 -V print assembler version number\n\
8919 -k ignored\n"));
8920 #endif
8921 fprintf (stream, _("\
8922 -n Do not optimize code alignment\n\
8923 -q quieten some warnings\n"));
8924 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8925 fprintf (stream, _("\
8926 -s ignored\n"));
8927 #endif
8928 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
8929 || defined (TE_PE) || defined (TE_PEP))
8930 fprintf (stream, _("\
8931 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
8932 #endif
8933 #ifdef SVR4_COMMENT_CHARS
8934 fprintf (stream, _("\
8935 --divide do not treat `/' as a comment character\n"));
8936 #else
8937 fprintf (stream, _("\
8938 --divide ignored\n"));
8939 #endif
8940 fprintf (stream, _("\
8941 -march=CPU[,+EXTENSION...]\n\
8942 generate code for CPU and EXTENSION, CPU is one of:\n"));
8943 show_arch (stream, 0, 1);
8944 fprintf (stream, _("\
8945 EXTENSION is combination of:\n"));
8946 show_arch (stream, 1, 0);
8947 fprintf (stream, _("\
8948 -mtune=CPU optimize for CPU, CPU is one of:\n"));
8949 show_arch (stream, 0, 0);
8950 fprintf (stream, _("\
8951 -msse2avx encode SSE instructions with VEX prefix\n"));
8952 fprintf (stream, _("\
8953 -msse-check=[none|error|warning]\n\
8954 check SSE instructions\n"));
8955 fprintf (stream, _("\
8956 -moperand-check=[none|error|warning]\n\
8957 check operand combinations for validity\n"));
8958 fprintf (stream, _("\
8959 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
8960 length\n"));
8961 fprintf (stream, _("\
8962 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
8963 fprintf (stream, _("\
8964 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
8965 fprintf (stream, _("\
8966 -mindex-reg support pseudo index registers\n"));
8967 fprintf (stream, _("\
8968 -mnaked-reg don't require `%%' prefix for registers\n"));
8969 fprintf (stream, _("\
8970 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
8971 }
8972
8973 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
8974 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
8975 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
8976
8977 /* Pick the target format to use. */
8978
8979 const char *
8980 i386_target_format (void)
8981 {
8982 if (!strncmp (default_arch, "x86_64", 6))
8983 {
8984 update_code_flag (CODE_64BIT, 1);
8985 if (default_arch[6] == '\0')
8986 x86_elf_abi = X86_64_ABI;
8987 else
8988 x86_elf_abi = X86_64_X32_ABI;
8989 }
8990 else if (!strcmp (default_arch, "i386"))
8991 update_code_flag (CODE_32BIT, 1);
8992 else
8993 as_fatal (_("unknown architecture"));
8994
8995 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
8996 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
8997 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
8998 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
8999
9000 switch (OUTPUT_FLAVOR)
9001 {
9002 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
9003 case bfd_target_aout_flavour:
9004 return AOUT_TARGET_FORMAT;
9005 #endif
9006 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
9007 # if defined (TE_PE) || defined (TE_PEP)
9008 case bfd_target_coff_flavour:
9009 return flag_code == CODE_64BIT ? "pe-x86-64" : "pe-i386";
9010 # elif defined (TE_GO32)
9011 case bfd_target_coff_flavour:
9012 return "coff-go32";
9013 # else
9014 case bfd_target_coff_flavour:
9015 return "coff-i386";
9016 # endif
9017 #endif
9018 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
9019 case bfd_target_elf_flavour:
9020 {
9021 const char *format;
9022
9023 switch (x86_elf_abi)
9024 {
9025 default:
9026 format = ELF_TARGET_FORMAT;
9027 break;
9028 case X86_64_ABI:
9029 use_rela_relocations = 1;
9030 object_64bit = 1;
9031 format = ELF_TARGET_FORMAT64;
9032 break;
9033 case X86_64_X32_ABI:
9034 use_rela_relocations = 1;
9035 object_64bit = 1;
9036 disallow_64bit_reloc = 1;
9037 format = ELF_TARGET_FORMAT32;
9038 break;
9039 }
9040 if (cpu_arch_isa == PROCESSOR_L1OM)
9041 {
9042 if (x86_elf_abi != X86_64_ABI)
9043 as_fatal (_("Intel L1OM is 64bit only"));
9044 return ELF_TARGET_L1OM_FORMAT;
9045 }
9046 if (cpu_arch_isa == PROCESSOR_K1OM)
9047 {
9048 if (x86_elf_abi != X86_64_ABI)
9049 as_fatal (_("Intel K1OM is 64bit only"));
9050 return ELF_TARGET_K1OM_FORMAT;
9051 }
9052 else
9053 return format;
9054 }
9055 #endif
9056 #if defined (OBJ_MACH_O)
9057 case bfd_target_mach_o_flavour:
9058 if (flag_code == CODE_64BIT)
9059 {
9060 use_rela_relocations = 1;
9061 object_64bit = 1;
9062 return "mach-o-x86-64";
9063 }
9064 else
9065 return "mach-o-i386";
9066 #endif
9067 default:
9068 abort ();
9069 return NULL;
9070 }
9071 }
9072
9073 #endif /* OBJ_MAYBE_ more than one */
9074
9075 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
9076 void
9077 i386_elf_emit_arch_note (void)
9078 {
9079 if (IS_ELF && cpu_arch_name != NULL)
9080 {
9081 char *p;
9082 asection *seg = now_seg;
9083 subsegT subseg = now_subseg;
9084 Elf_Internal_Note i_note;
9085 Elf_External_Note e_note;
9086 asection *note_secp;
9087 int len;
9088
9089 /* Create the .note section. */
9090 note_secp = subseg_new (".note", 0);
9091 bfd_set_section_flags (stdoutput,
9092 note_secp,
9093 SEC_HAS_CONTENTS | SEC_READONLY);
9094
9095 /* Process the arch string. */
9096 len = strlen (cpu_arch_name);
9097
9098 i_note.namesz = len + 1;
9099 i_note.descsz = 0;
9100 i_note.type = NT_ARCH;
9101 p = frag_more (sizeof (e_note.namesz));
9102 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
9103 p = frag_more (sizeof (e_note.descsz));
9104 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
9105 p = frag_more (sizeof (e_note.type));
9106 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
9107 p = frag_more (len + 1);
9108 strcpy (p, cpu_arch_name);
9109
9110 frag_align (2, 0, 0);
9111
9112 subseg_set (seg, subseg);
9113 }
9114 }
9115 #endif
9116 \f
9117 symbolS *
9118 md_undefined_symbol (char *name)
9119 {
9120 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
9121 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
9122 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
9123 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
9124 {
9125 if (!GOT_symbol)
9126 {
9127 if (symbol_find (name))
9128 as_bad (_("GOT already in symbol table"));
9129 GOT_symbol = symbol_new (name, undefined_section,
9130 (valueT) 0, &zero_address_frag);
9131 };
9132 return GOT_symbol;
9133 }
9134 return 0;
9135 }
9136
9137 /* Round up a section size to the appropriate boundary. */
9138
9139 valueT
9140 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
9141 {
9142 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9143 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
9144 {
9145 /* For a.out, force the section size to be aligned. If we don't do
9146 this, BFD will align it for us, but it will not write out the
9147 final bytes of the section. This may be a bug in BFD, but it is
9148 easier to fix it here since that is how the other a.out targets
9149 work. */
9150 int align;
9151
9152 align = bfd_get_section_alignment (stdoutput, segment);
9153 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
9154 }
9155 #endif
9156
9157 return size;
9158 }
9159
9160 /* On the i386, PC-relative offsets are relative to the start of the
9161 next instruction. That is, the address of the offset, plus its
9162 size, since the offset is always the last part of the insn. */
9163
9164 long
9165 md_pcrel_from (fixS *fixP)
9166 {
9167 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
9168 }
9169
9170 #ifndef I386COFF
9171
9172 static void
9173 s_bss (int ignore ATTRIBUTE_UNUSED)
9174 {
9175 int temp;
9176
9177 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9178 if (IS_ELF)
9179 obj_elf_section_change_hook ();
9180 #endif
9181 temp = get_absolute_expression ();
9182 subseg_set (bss_section, (subsegT) temp);
9183 demand_empty_rest_of_line ();
9184 }
9185
9186 #endif
9187
9188 void
9189 i386_validate_fix (fixS *fixp)
9190 {
9191 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
9192 {
9193 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
9194 {
9195 if (!object_64bit)
9196 abort ();
9197 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
9198 }
9199 else
9200 {
9201 if (!object_64bit)
9202 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
9203 else
9204 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
9205 }
9206 fixp->fx_subsy = 0;
9207 }
9208 }
9209
9210 arelent *
9211 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
9212 {
9213 arelent *rel;
9214 bfd_reloc_code_real_type code;
9215
9216 switch (fixp->fx_r_type)
9217 {
9218 case BFD_RELOC_X86_64_PLT32:
9219 case BFD_RELOC_X86_64_GOT32:
9220 case BFD_RELOC_X86_64_GOTPCREL:
9221 case BFD_RELOC_386_PLT32:
9222 case BFD_RELOC_386_GOT32:
9223 case BFD_RELOC_386_GOTOFF:
9224 case BFD_RELOC_386_GOTPC:
9225 case BFD_RELOC_386_TLS_GD:
9226 case BFD_RELOC_386_TLS_LDM:
9227 case BFD_RELOC_386_TLS_LDO_32:
9228 case BFD_RELOC_386_TLS_IE_32:
9229 case BFD_RELOC_386_TLS_IE:
9230 case BFD_RELOC_386_TLS_GOTIE:
9231 case BFD_RELOC_386_TLS_LE_32:
9232 case BFD_RELOC_386_TLS_LE:
9233 case BFD_RELOC_386_TLS_GOTDESC:
9234 case BFD_RELOC_386_TLS_DESC_CALL:
9235 case BFD_RELOC_X86_64_TLSGD:
9236 case BFD_RELOC_X86_64_TLSLD:
9237 case BFD_RELOC_X86_64_DTPOFF32:
9238 case BFD_RELOC_X86_64_DTPOFF64:
9239 case BFD_RELOC_X86_64_GOTTPOFF:
9240 case BFD_RELOC_X86_64_TPOFF32:
9241 case BFD_RELOC_X86_64_TPOFF64:
9242 case BFD_RELOC_X86_64_GOTOFF64:
9243 case BFD_RELOC_X86_64_GOTPC32:
9244 case BFD_RELOC_X86_64_GOT64:
9245 case BFD_RELOC_X86_64_GOTPCREL64:
9246 case BFD_RELOC_X86_64_GOTPC64:
9247 case BFD_RELOC_X86_64_GOTPLT64:
9248 case BFD_RELOC_X86_64_PLTOFF64:
9249 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9250 case BFD_RELOC_X86_64_TLSDESC_CALL:
9251 case BFD_RELOC_RVA:
9252 case BFD_RELOC_VTABLE_ENTRY:
9253 case BFD_RELOC_VTABLE_INHERIT:
9254 #ifdef TE_PE
9255 case BFD_RELOC_32_SECREL:
9256 #endif
9257 code = fixp->fx_r_type;
9258 break;
9259 case BFD_RELOC_X86_64_32S:
9260 if (!fixp->fx_pcrel)
9261 {
9262 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
9263 code = fixp->fx_r_type;
9264 break;
9265 }
9266 default:
9267 if (fixp->fx_pcrel)
9268 {
9269 switch (fixp->fx_size)
9270 {
9271 default:
9272 as_bad_where (fixp->fx_file, fixp->fx_line,
9273 _("can not do %d byte pc-relative relocation"),
9274 fixp->fx_size);
9275 code = BFD_RELOC_32_PCREL;
9276 break;
9277 case 1: code = BFD_RELOC_8_PCREL; break;
9278 case 2: code = BFD_RELOC_16_PCREL; break;
9279 case 4: code = BFD_RELOC_32_PCREL; break;
9280 #ifdef BFD64
9281 case 8: code = BFD_RELOC_64_PCREL; break;
9282 #endif
9283 }
9284 }
9285 else
9286 {
9287 switch (fixp->fx_size)
9288 {
9289 default:
9290 as_bad_where (fixp->fx_file, fixp->fx_line,
9291 _("can not do %d byte relocation"),
9292 fixp->fx_size);
9293 code = BFD_RELOC_32;
9294 break;
9295 case 1: code = BFD_RELOC_8; break;
9296 case 2: code = BFD_RELOC_16; break;
9297 case 4: code = BFD_RELOC_32; break;
9298 #ifdef BFD64
9299 case 8: code = BFD_RELOC_64; break;
9300 #endif
9301 }
9302 }
9303 break;
9304 }
9305
9306 if ((code == BFD_RELOC_32
9307 || code == BFD_RELOC_32_PCREL
9308 || code == BFD_RELOC_X86_64_32S)
9309 && GOT_symbol
9310 && fixp->fx_addsy == GOT_symbol)
9311 {
9312 if (!object_64bit)
9313 code = BFD_RELOC_386_GOTPC;
9314 else
9315 code = BFD_RELOC_X86_64_GOTPC32;
9316 }
9317 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
9318 && GOT_symbol
9319 && fixp->fx_addsy == GOT_symbol)
9320 {
9321 code = BFD_RELOC_X86_64_GOTPC64;
9322 }
9323
9324 rel = (arelent *) xmalloc (sizeof (arelent));
9325 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
9326 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
9327
9328 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
9329
9330 if (!use_rela_relocations)
9331 {
9332 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
9333 vtable entry to be used in the relocation's section offset. */
9334 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
9335 rel->address = fixp->fx_offset;
9336 #if defined (OBJ_COFF) && defined (TE_PE)
9337 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
9338 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
9339 else
9340 #endif
9341 rel->addend = 0;
9342 }
9343 /* Use the rela in 64bit mode. */
9344 else
9345 {
9346 if (disallow_64bit_reloc)
9347 switch (code)
9348 {
9349 case BFD_RELOC_X86_64_DTPOFF64:
9350 case BFD_RELOC_X86_64_TPOFF64:
9351 case BFD_RELOC_64_PCREL:
9352 case BFD_RELOC_X86_64_GOTOFF64:
9353 case BFD_RELOC_X86_64_GOT64:
9354 case BFD_RELOC_X86_64_GOTPCREL64:
9355 case BFD_RELOC_X86_64_GOTPC64:
9356 case BFD_RELOC_X86_64_GOTPLT64:
9357 case BFD_RELOC_X86_64_PLTOFF64:
9358 as_bad_where (fixp->fx_file, fixp->fx_line,
9359 _("cannot represent relocation type %s in x32 mode"),
9360 bfd_get_reloc_code_name (code));
9361 break;
9362 default:
9363 break;
9364 }
9365
9366 if (!fixp->fx_pcrel)
9367 rel->addend = fixp->fx_offset;
9368 else
9369 switch (code)
9370 {
9371 case BFD_RELOC_X86_64_PLT32:
9372 case BFD_RELOC_X86_64_GOT32:
9373 case BFD_RELOC_X86_64_GOTPCREL:
9374 case BFD_RELOC_X86_64_TLSGD:
9375 case BFD_RELOC_X86_64_TLSLD:
9376 case BFD_RELOC_X86_64_GOTTPOFF:
9377 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9378 case BFD_RELOC_X86_64_TLSDESC_CALL:
9379 rel->addend = fixp->fx_offset - fixp->fx_size;
9380 break;
9381 default:
9382 rel->addend = (section->vma
9383 - fixp->fx_size
9384 + fixp->fx_addnumber
9385 + md_pcrel_from (fixp));
9386 break;
9387 }
9388 }
9389
9390 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
9391 if (rel->howto == NULL)
9392 {
9393 as_bad_where (fixp->fx_file, fixp->fx_line,
9394 _("cannot represent relocation type %s"),
9395 bfd_get_reloc_code_name (code));
9396 /* Set howto to a garbage value so that we can keep going. */
9397 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9398 gas_assert (rel->howto != NULL);
9399 }
9400
9401 return rel;
9402 }
9403
9404 #include "tc-i386-intel.c"
9405
9406 void
9407 tc_x86_parse_to_dw2regnum (expressionS *exp)
9408 {
9409 int saved_naked_reg;
9410 char saved_register_dot;
9411
9412 saved_naked_reg = allow_naked_reg;
9413 allow_naked_reg = 1;
9414 saved_register_dot = register_chars['.'];
9415 register_chars['.'] = '.';
9416 allow_pseudo_reg = 1;
9417 expression_and_evaluate (exp);
9418 allow_pseudo_reg = 0;
9419 register_chars['.'] = saved_register_dot;
9420 allow_naked_reg = saved_naked_reg;
9421
9422 if (exp->X_op == O_register && exp->X_add_number >= 0)
9423 {
9424 if ((addressT) exp->X_add_number < i386_regtab_size)
9425 {
9426 exp->X_op = O_constant;
9427 exp->X_add_number = i386_regtab[exp->X_add_number]
9428 .dw2_regnum[flag_code >> 1];
9429 }
9430 else
9431 exp->X_op = O_illegal;
9432 }
9433 }
9434
9435 void
9436 tc_x86_frame_initial_instructions (void)
9437 {
9438 static unsigned int sp_regno[2];
9439
9440 if (!sp_regno[flag_code >> 1])
9441 {
9442 char *saved_input = input_line_pointer;
9443 char sp[][4] = {"esp", "rsp"};
9444 expressionS exp;
9445
9446 input_line_pointer = sp[flag_code >> 1];
9447 tc_x86_parse_to_dw2regnum (&exp);
9448 gas_assert (exp.X_op == O_constant);
9449 sp_regno[flag_code >> 1] = exp.X_add_number;
9450 input_line_pointer = saved_input;
9451 }
9452
9453 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
9454 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
9455 }
9456
9457 int
9458 x86_dwarf2_addr_size (void)
9459 {
9460 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
9461 if (x86_elf_abi == X86_64_X32_ABI)
9462 return 4;
9463 #endif
9464 return bfd_arch_bits_per_address (stdoutput) / 8;
9465 }
9466
9467 int
9468 i386_elf_section_type (const char *str, size_t len)
9469 {
9470 if (flag_code == CODE_64BIT
9471 && len == sizeof ("unwind") - 1
9472 && strncmp (str, "unwind", 6) == 0)
9473 return SHT_X86_64_UNWIND;
9474
9475 return -1;
9476 }
9477
9478 #ifdef TE_SOLARIS
9479 void
9480 i386_solaris_fix_up_eh_frame (segT sec)
9481 {
9482 if (flag_code == CODE_64BIT)
9483 elf_section_type (sec) = SHT_X86_64_UNWIND;
9484 }
9485 #endif
9486
9487 #ifdef TE_PE
9488 void
9489 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
9490 {
9491 expressionS exp;
9492
9493 exp.X_op = O_secrel;
9494 exp.X_add_symbol = symbol;
9495 exp.X_add_number = 0;
9496 emit_expr (&exp, size);
9497 }
9498 #endif
9499
9500 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9501 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
9502
9503 bfd_vma
9504 x86_64_section_letter (int letter, char **ptr_msg)
9505 {
9506 if (flag_code == CODE_64BIT)
9507 {
9508 if (letter == 'l')
9509 return SHF_X86_64_LARGE;
9510
9511 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
9512 }
9513 else
9514 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
9515 return -1;
9516 }
9517
9518 bfd_vma
9519 x86_64_section_word (char *str, size_t len)
9520 {
9521 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
9522 return SHF_X86_64_LARGE;
9523
9524 return -1;
9525 }
9526
9527 static void
9528 handle_large_common (int small ATTRIBUTE_UNUSED)
9529 {
9530 if (flag_code != CODE_64BIT)
9531 {
9532 s_comm_internal (0, elf_common_parse);
9533 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
9534 }
9535 else
9536 {
9537 static segT lbss_section;
9538 asection *saved_com_section_ptr = elf_com_section_ptr;
9539 asection *saved_bss_section = bss_section;
9540
9541 if (lbss_section == NULL)
9542 {
9543 flagword applicable;
9544 segT seg = now_seg;
9545 subsegT subseg = now_subseg;
9546
9547 /* The .lbss section is for local .largecomm symbols. */
9548 lbss_section = subseg_new (".lbss", 0);
9549 applicable = bfd_applicable_section_flags (stdoutput);
9550 bfd_set_section_flags (stdoutput, lbss_section,
9551 applicable & SEC_ALLOC);
9552 seg_info (lbss_section)->bss = 1;
9553
9554 subseg_set (seg, subseg);
9555 }
9556
9557 elf_com_section_ptr = &_bfd_elf_large_com_section;
9558 bss_section = lbss_section;
9559
9560 s_comm_internal (0, elf_common_parse);
9561
9562 elf_com_section_ptr = saved_com_section_ptr;
9563 bss_section = saved_bss_section;
9564 }
9565 }
9566 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.221586 seconds and 5 git commands to generate.