x86/Intel: fix operand checking for MOVSD
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2016 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 #define XMMWORD_MNEM_SUFFIX 'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 #define ZMMWORD_MNEM_SUFFIX 'z'
87 /* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91 #define END_OF_INSN '\0'
92
93 /*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100 typedef struct
101 {
102 const insn_template *start;
103 const insn_template *end;
104 }
105 templates;
106
107 /* 386 operand encoding bytes: see 386 book for details of this. */
108 typedef struct
109 {
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113 }
114 modrm_byte;
115
116 /* x86-64 extension prefix. */
117 typedef int rex_byte;
118
119 /* 386 opcode byte to code indirect addressing. */
120 typedef struct
121 {
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125 }
126 sib_byte;
127
128 /* x86 arch names, types and features */
129 typedef struct
130 {
131 const char *name; /* arch name */
132 unsigned int len; /* arch string length */
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
135 unsigned int skip; /* show_arch should skip this. */
136 }
137 arch_entry;
138
139 /* Used to turn off indicated flags. */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 i386_cpu_flags flags; /* cpu feature flags */
145 }
146 noarch_entry;
147
148 static void update_code_flag (int, int);
149 static void set_code_flag (int);
150 static void set_16bit_gcc_code_flag (int);
151 static void set_intel_syntax (int);
152 static void set_intel_mnemonic (int);
153 static void set_allow_index_reg (int);
154 static void set_check (int);
155 static void set_cpu_arch (int);
156 #ifdef TE_PE
157 static void pe_directive_secrel (int);
158 #endif
159 static void signed_cons (int);
160 static char *output_invalid (int c);
161 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
162 const char *);
163 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
164 const char *);
165 static int i386_att_operand (char *);
166 static int i386_intel_operand (char *, int);
167 static int i386_intel_simplify (expressionS *);
168 static int i386_intel_parse_name (const char *, expressionS *);
169 static const reg_entry *parse_register (char *, char **);
170 static char *parse_insn (char *, char *);
171 static char *parse_operands (char *, const char *);
172 static void swap_operands (void);
173 static void swap_2_operands (int, int);
174 static void optimize_imm (void);
175 static void optimize_disp (void);
176 static const insn_template *match_template (void);
177 static int check_string (void);
178 static int process_suffix (void);
179 static int check_byte_reg (void);
180 static int check_long_reg (void);
181 static int check_qword_reg (void);
182 static int check_word_reg (void);
183 static int finalize_imm (void);
184 static int process_operands (void);
185 static const seg_entry *build_modrm_byte (void);
186 static void output_insn (void);
187 static void output_imm (fragS *, offsetT);
188 static void output_disp (fragS *, offsetT);
189 #ifndef I386COFF
190 static void s_bss (int);
191 #endif
192 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
193 static void handle_large_common (int small ATTRIBUTE_UNUSED);
194 #endif
195
196 static const char *default_arch = DEFAULT_ARCH;
197
198 /* This struct describes rounding control and SAE in the instruction. */
199 struct RC_Operation
200 {
201 enum rc_type
202 {
203 rne = 0,
204 rd,
205 ru,
206 rz,
207 saeonly
208 } type;
209 int operand;
210 };
211
212 static struct RC_Operation rc_op;
213
214 /* The struct describes masking, applied to OPERAND in the instruction.
215 MASK is a pointer to the corresponding mask register. ZEROING tells
216 whether merging or zeroing mask is used. */
217 struct Mask_Operation
218 {
219 const reg_entry *mask;
220 unsigned int zeroing;
221 /* The operand where this operation is associated. */
222 int operand;
223 };
224
225 static struct Mask_Operation mask_op;
226
227 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
228 broadcast factor. */
229 struct Broadcast_Operation
230 {
231 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
232 int type;
233
234 /* Index of broadcasted operand. */
235 int operand;
236 };
237
238 static struct Broadcast_Operation broadcast_op;
239
240 /* VEX prefix. */
241 typedef struct
242 {
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248 } vex_prefix;
249
250 /* 'md_assemble ()' gathers together information and puts it into a
251 i386_insn. */
252
253 union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
260 enum i386_error
261 {
262 operand_size_mismatch,
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
268 old_gcc_only,
269 unsupported_with_intel_mnemonic,
270 unsupported_syntax,
271 unsupported,
272 invalid_vsib_address,
273 invalid_vector_register_set,
274 unsupported_vector_index_register,
275 unsupported_broadcast,
276 broadcast_not_on_src_operand,
277 broadcast_needed,
278 unsupported_masking,
279 mask_not_on_destination,
280 no_default_mask,
281 unsupported_rc_sae,
282 rc_sae_operand_not_last_imm,
283 invalid_register_operand,
284 try_vector_disp8
285 };
286
287 struct _i386_insn
288 {
289 /* TM holds the template for the insn were currently assembling. */
290 insn_template tm;
291
292 /* SUFFIX holds the instruction size suffix for byte, word, dword
293 or qword, if given. */
294 char suffix;
295
296 /* OPERANDS gives the number of given operands. */
297 unsigned int operands;
298
299 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
300 of given register, displacement, memory operands and immediate
301 operands. */
302 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
303
304 /* TYPES [i] is the type (see above #defines) which tells us how to
305 use OP[i] for the corresponding operand. */
306 i386_operand_type types[MAX_OPERANDS];
307
308 /* Displacement expression, immediate expression, or register for each
309 operand. */
310 union i386_op op[MAX_OPERANDS];
311
312 /* Flags for operands. */
313 unsigned int flags[MAX_OPERANDS];
314 #define Operand_PCrel 1
315
316 /* Relocation type for operand */
317 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
318
319 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
320 the base index byte below. */
321 const reg_entry *base_reg;
322 const reg_entry *index_reg;
323 unsigned int log2_scale_factor;
324
325 /* SEG gives the seg_entries of this insn. They are zero unless
326 explicit segment overrides are given. */
327 const seg_entry *seg[2];
328
329 /* Copied first memory operand string, for re-checking. */
330 char *memop1_string;
331
332 /* PREFIX holds all the given prefix opcodes (usually null).
333 PREFIXES is the number of prefix opcodes. */
334 unsigned int prefixes;
335 unsigned char prefix[MAX_PREFIXES];
336
337 /* RM and SIB are the modrm byte and the sib byte where the
338 addressing modes of this insn are encoded. */
339 modrm_byte rm;
340 rex_byte rex;
341 rex_byte vrex;
342 sib_byte sib;
343 vex_prefix vex;
344
345 /* Masking attributes. */
346 struct Mask_Operation *mask;
347
348 /* Rounding control and SAE attributes. */
349 struct RC_Operation *rounding;
350
351 /* Broadcasting attributes. */
352 struct Broadcast_Operation *broadcast;
353
354 /* Compressed disp8*N attribute. */
355 unsigned int memshift;
356
357 /* Swap operand in encoding. */
358 unsigned int swap_operand;
359
360 /* Prefer 8bit or 32bit displacement in encoding. */
361 enum
362 {
363 disp_encoding_default = 0,
364 disp_encoding_8bit,
365 disp_encoding_32bit
366 } disp_encoding;
367
368 /* REP prefix. */
369 const char *rep_prefix;
370
371 /* HLE prefix. */
372 const char *hle_prefix;
373
374 /* Have BND prefix. */
375 const char *bnd_prefix;
376
377 /* Need VREX to support upper 16 registers. */
378 int need_vrex;
379
380 /* Error message. */
381 enum i386_error error;
382 };
383
384 typedef struct _i386_insn i386_insn;
385
386 /* Link RC type with corresponding string, that'll be looked for in
387 asm. */
388 struct RC_name
389 {
390 enum rc_type type;
391 const char *name;
392 unsigned int len;
393 };
394
395 static const struct RC_name RC_NamesTable[] =
396 {
397 { rne, STRING_COMMA_LEN ("rn-sae") },
398 { rd, STRING_COMMA_LEN ("rd-sae") },
399 { ru, STRING_COMMA_LEN ("ru-sae") },
400 { rz, STRING_COMMA_LEN ("rz-sae") },
401 { saeonly, STRING_COMMA_LEN ("sae") },
402 };
403
404 /* List of chars besides those in app.c:symbol_chars that can start an
405 operand. Used to prevent the scrubber eating vital white-space. */
406 const char extra_symbol_chars[] = "*%-([{"
407 #ifdef LEX_AT
408 "@"
409 #endif
410 #ifdef LEX_QM
411 "?"
412 #endif
413 ;
414
415 #if (defined (TE_I386AIX) \
416 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
417 && !defined (TE_GNU) \
418 && !defined (TE_LINUX) \
419 && !defined (TE_NACL) \
420 && !defined (TE_NETWARE) \
421 && !defined (TE_FreeBSD) \
422 && !defined (TE_DragonFly) \
423 && !defined (TE_NetBSD)))
424 /* This array holds the chars that always start a comment. If the
425 pre-processor is disabled, these aren't very useful. The option
426 --divide will remove '/' from this list. */
427 const char *i386_comment_chars = "#/";
428 #define SVR4_COMMENT_CHARS 1
429 #define PREFIX_SEPARATOR '\\'
430
431 #else
432 const char *i386_comment_chars = "#";
433 #define PREFIX_SEPARATOR '/'
434 #endif
435
436 /* This array holds the chars that only start a comment at the beginning of
437 a line. If the line seems to have the form '# 123 filename'
438 .line and .file directives will appear in the pre-processed output.
439 Note that input_file.c hand checks for '#' at the beginning of the
440 first line of the input file. This is because the compiler outputs
441 #NO_APP at the beginning of its output.
442 Also note that comments started like this one will always work if
443 '/' isn't otherwise defined. */
444 const char line_comment_chars[] = "#/";
445
446 const char line_separator_chars[] = ";";
447
448 /* Chars that can be used to separate mant from exp in floating point
449 nums. */
450 const char EXP_CHARS[] = "eE";
451
452 /* Chars that mean this number is a floating point constant
453 As in 0f12.456
454 or 0d1.2345e12. */
455 const char FLT_CHARS[] = "fFdDxX";
456
457 /* Tables for lexical analysis. */
458 static char mnemonic_chars[256];
459 static char register_chars[256];
460 static char operand_chars[256];
461 static char identifier_chars[256];
462 static char digit_chars[256];
463
464 /* Lexical macros. */
465 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
466 #define is_operand_char(x) (operand_chars[(unsigned char) x])
467 #define is_register_char(x) (register_chars[(unsigned char) x])
468 #define is_space_char(x) ((x) == ' ')
469 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
470 #define is_digit_char(x) (digit_chars[(unsigned char) x])
471
472 /* All non-digit non-letter characters that may occur in an operand. */
473 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
474
475 /* md_assemble() always leaves the strings it's passed unaltered. To
476 effect this we maintain a stack of saved characters that we've smashed
477 with '\0's (indicating end of strings for various sub-fields of the
478 assembler instruction). */
479 static char save_stack[32];
480 static char *save_stack_p;
481 #define END_STRING_AND_SAVE(s) \
482 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
483 #define RESTORE_END_STRING(s) \
484 do { *(s) = *--save_stack_p; } while (0)
485
486 /* The instruction we're assembling. */
487 static i386_insn i;
488
489 /* Possible templates for current insn. */
490 static const templates *current_templates;
491
492 /* Per instruction expressionS buffers: max displacements & immediates. */
493 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
494 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
495
496 /* Current operand we are working on. */
497 static int this_operand = -1;
498
499 /* We support four different modes. FLAG_CODE variable is used to distinguish
500 these. */
501
502 enum flag_code {
503 CODE_32BIT,
504 CODE_16BIT,
505 CODE_64BIT };
506
507 static enum flag_code flag_code;
508 static unsigned int object_64bit;
509 static unsigned int disallow_64bit_reloc;
510 static int use_rela_relocations = 0;
511
512 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
513 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
514 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
515
516 /* The ELF ABI to use. */
517 enum x86_elf_abi
518 {
519 I386_ABI,
520 X86_64_ABI,
521 X86_64_X32_ABI
522 };
523
524 static enum x86_elf_abi x86_elf_abi = I386_ABI;
525 #endif
526
527 #if defined (TE_PE) || defined (TE_PEP)
528 /* Use big object file format. */
529 static int use_big_obj = 0;
530 #endif
531
532 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
533 /* 1 if generating code for a shared library. */
534 static int shared = 0;
535 #endif
536
537 /* 1 for intel syntax,
538 0 if att syntax. */
539 static int intel_syntax = 0;
540
541 /* 1 for Intel64 ISA,
542 0 if AMD64 ISA. */
543 static int intel64;
544
545 /* 1 for intel mnemonic,
546 0 if att mnemonic. */
547 static int intel_mnemonic = !SYSV386_COMPAT;
548
549 /* 1 if support old (<= 2.8.1) versions of gcc. */
550 static int old_gcc = OLDGCC_COMPAT;
551
552 /* 1 if pseudo registers are permitted. */
553 static int allow_pseudo_reg = 0;
554
555 /* 1 if register prefix % not required. */
556 static int allow_naked_reg = 0;
557
558 /* 1 if the assembler should add BND prefix for all control-tranferring
559 instructions supporting it, even if this prefix wasn't specified
560 explicitly. */
561 static int add_bnd_prefix = 0;
562
563 /* 1 if pseudo index register, eiz/riz, is allowed . */
564 static int allow_index_reg = 0;
565
566 /* 1 if the assembler should ignore LOCK prefix, even if it was
567 specified explicitly. */
568 static int omit_lock_prefix = 0;
569
570 /* 1 if the assembler should encode lfence, mfence, and sfence as
571 "lock addl $0, (%{re}sp)". */
572 static int avoid_fence = 0;
573
574 /* 1 if the assembler should generate relax relocations. */
575
576 static int generate_relax_relocations
577 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
578
579 static enum check_kind
580 {
581 check_none = 0,
582 check_warning,
583 check_error
584 }
585 sse_check, operand_check = check_warning;
586
587 /* Register prefix used for error message. */
588 static const char *register_prefix = "%";
589
590 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
591 leave, push, and pop instructions so that gcc has the same stack
592 frame as in 32 bit mode. */
593 static char stackop_size = '\0';
594
595 /* Non-zero to optimize code alignment. */
596 int optimize_align_code = 1;
597
598 /* Non-zero to quieten some warnings. */
599 static int quiet_warnings = 0;
600
601 /* CPU name. */
602 static const char *cpu_arch_name = NULL;
603 static char *cpu_sub_arch_name = NULL;
604
605 /* CPU feature flags. */
606 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
607
608 /* If we have selected a cpu we are generating instructions for. */
609 static int cpu_arch_tune_set = 0;
610
611 /* Cpu we are generating instructions for. */
612 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
613
614 /* CPU feature flags of cpu we are generating instructions for. */
615 static i386_cpu_flags cpu_arch_tune_flags;
616
617 /* CPU instruction set architecture used. */
618 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
619
620 /* CPU feature flags of instruction set architecture used. */
621 i386_cpu_flags cpu_arch_isa_flags;
622
623 /* If set, conditional jumps are not automatically promoted to handle
624 larger than a byte offset. */
625 static unsigned int no_cond_jump_promotion = 0;
626
627 /* Encode SSE instructions with VEX prefix. */
628 static unsigned int sse2avx;
629
630 /* Encode scalar AVX instructions with specific vector length. */
631 static enum
632 {
633 vex128 = 0,
634 vex256
635 } avxscalar;
636
637 /* Encode scalar EVEX LIG instructions with specific vector length. */
638 static enum
639 {
640 evexl128 = 0,
641 evexl256,
642 evexl512
643 } evexlig;
644
645 /* Encode EVEX WIG instructions with specific evex.w. */
646 static enum
647 {
648 evexw0 = 0,
649 evexw1
650 } evexwig;
651
652 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
653 static enum rc_type evexrcig = rne;
654
655 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
656 static symbolS *GOT_symbol;
657
658 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
659 unsigned int x86_dwarf2_return_column;
660
661 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
662 int x86_cie_data_alignment;
663
664 /* Interface to relax_segment.
665 There are 3 major relax states for 386 jump insns because the
666 different types of jumps add different sizes to frags when we're
667 figuring out what sort of jump to choose to reach a given label. */
668
669 /* Types. */
670 #define UNCOND_JUMP 0
671 #define COND_JUMP 1
672 #define COND_JUMP86 2
673
674 /* Sizes. */
675 #define CODE16 1
676 #define SMALL 0
677 #define SMALL16 (SMALL | CODE16)
678 #define BIG 2
679 #define BIG16 (BIG | CODE16)
680
681 #ifndef INLINE
682 #ifdef __GNUC__
683 #define INLINE __inline__
684 #else
685 #define INLINE
686 #endif
687 #endif
688
689 #define ENCODE_RELAX_STATE(type, size) \
690 ((relax_substateT) (((type) << 2) | (size)))
691 #define TYPE_FROM_RELAX_STATE(s) \
692 ((s) >> 2)
693 #define DISP_SIZE_FROM_RELAX_STATE(s) \
694 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
695
696 /* This table is used by relax_frag to promote short jumps to long
697 ones where necessary. SMALL (short) jumps may be promoted to BIG
698 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
699 don't allow a short jump in a 32 bit code segment to be promoted to
700 a 16 bit offset jump because it's slower (requires data size
701 prefix), and doesn't work, unless the destination is in the bottom
702 64k of the code segment (The top 16 bits of eip are zeroed). */
703
704 const relax_typeS md_relax_table[] =
705 {
706 /* The fields are:
707 1) most positive reach of this state,
708 2) most negative reach of this state,
709 3) how many bytes this mode will have in the variable part of the frag
710 4) which index into the table to try if we can't fit into this one. */
711
712 /* UNCOND_JUMP states. */
713 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
714 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
715 /* dword jmp adds 4 bytes to frag:
716 0 extra opcode bytes, 4 displacement bytes. */
717 {0, 0, 4, 0},
718 /* word jmp adds 2 byte2 to frag:
719 0 extra opcode bytes, 2 displacement bytes. */
720 {0, 0, 2, 0},
721
722 /* COND_JUMP states. */
723 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
724 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
725 /* dword conditionals adds 5 bytes to frag:
726 1 extra opcode byte, 4 displacement bytes. */
727 {0, 0, 5, 0},
728 /* word conditionals add 3 bytes to frag:
729 1 extra opcode byte, 2 displacement bytes. */
730 {0, 0, 3, 0},
731
732 /* COND_JUMP86 states. */
733 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
734 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
735 /* dword conditionals adds 5 bytes to frag:
736 1 extra opcode byte, 4 displacement bytes. */
737 {0, 0, 5, 0},
738 /* word conditionals add 4 bytes to frag:
739 1 displacement byte and a 3 byte long branch insn. */
740 {0, 0, 4, 0}
741 };
742
743 static const arch_entry cpu_arch[] =
744 {
745 /* Do not replace the first two entries - i386_target_format()
746 relies on them being there in this order. */
747 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
748 CPU_GENERIC32_FLAGS, 0 },
749 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
750 CPU_GENERIC64_FLAGS, 0 },
751 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
752 CPU_NONE_FLAGS, 0 },
753 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
754 CPU_I186_FLAGS, 0 },
755 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
756 CPU_I286_FLAGS, 0 },
757 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
758 CPU_I386_FLAGS, 0 },
759 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
760 CPU_I486_FLAGS, 0 },
761 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
762 CPU_I586_FLAGS, 0 },
763 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
764 CPU_I686_FLAGS, 0 },
765 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
766 CPU_I586_FLAGS, 0 },
767 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
768 CPU_PENTIUMPRO_FLAGS, 0 },
769 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
770 CPU_P2_FLAGS, 0 },
771 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
772 CPU_P3_FLAGS, 0 },
773 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
774 CPU_P4_FLAGS, 0 },
775 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
776 CPU_CORE_FLAGS, 0 },
777 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
778 CPU_NOCONA_FLAGS, 0 },
779 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
780 CPU_CORE_FLAGS, 1 },
781 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
782 CPU_CORE_FLAGS, 0 },
783 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
784 CPU_CORE2_FLAGS, 1 },
785 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
786 CPU_CORE2_FLAGS, 0 },
787 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
788 CPU_COREI7_FLAGS, 0 },
789 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
790 CPU_L1OM_FLAGS, 0 },
791 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
792 CPU_K1OM_FLAGS, 0 },
793 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
794 CPU_IAMCU_FLAGS, 0 },
795 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
796 CPU_K6_FLAGS, 0 },
797 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
798 CPU_K6_2_FLAGS, 0 },
799 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
800 CPU_ATHLON_FLAGS, 0 },
801 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
802 CPU_K8_FLAGS, 1 },
803 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
804 CPU_K8_FLAGS, 0 },
805 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
806 CPU_K8_FLAGS, 0 },
807 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
808 CPU_AMDFAM10_FLAGS, 0 },
809 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
810 CPU_BDVER1_FLAGS, 0 },
811 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
812 CPU_BDVER2_FLAGS, 0 },
813 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
814 CPU_BDVER3_FLAGS, 0 },
815 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
816 CPU_BDVER4_FLAGS, 0 },
817 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
818 CPU_ZNVER1_FLAGS, 0 },
819 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
820 CPU_BTVER1_FLAGS, 0 },
821 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
822 CPU_BTVER2_FLAGS, 0 },
823 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
824 CPU_8087_FLAGS, 0 },
825 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
826 CPU_287_FLAGS, 0 },
827 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
828 CPU_387_FLAGS, 0 },
829 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
830 CPU_687_FLAGS, 0 },
831 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
832 CPU_MMX_FLAGS, 0 },
833 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
834 CPU_SSE_FLAGS, 0 },
835 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
836 CPU_SSE2_FLAGS, 0 },
837 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
838 CPU_SSE3_FLAGS, 0 },
839 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
840 CPU_SSSE3_FLAGS, 0 },
841 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
842 CPU_SSE4_1_FLAGS, 0 },
843 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
844 CPU_SSE4_2_FLAGS, 0 },
845 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
846 CPU_SSE4_2_FLAGS, 0 },
847 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
848 CPU_AVX_FLAGS, 0 },
849 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
850 CPU_AVX2_FLAGS, 0 },
851 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
852 CPU_AVX512F_FLAGS, 0 },
853 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
854 CPU_AVX512CD_FLAGS, 0 },
855 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
856 CPU_AVX512ER_FLAGS, 0 },
857 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
858 CPU_AVX512PF_FLAGS, 0 },
859 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
860 CPU_AVX512DQ_FLAGS, 0 },
861 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
862 CPU_AVX512BW_FLAGS, 0 },
863 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
864 CPU_AVX512VL_FLAGS, 0 },
865 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
866 CPU_VMX_FLAGS, 0 },
867 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
868 CPU_VMFUNC_FLAGS, 0 },
869 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
870 CPU_SMX_FLAGS, 0 },
871 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
872 CPU_XSAVE_FLAGS, 0 },
873 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
874 CPU_XSAVEOPT_FLAGS, 0 },
875 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
876 CPU_XSAVEC_FLAGS, 0 },
877 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
878 CPU_XSAVES_FLAGS, 0 },
879 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
880 CPU_AES_FLAGS, 0 },
881 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
882 CPU_PCLMUL_FLAGS, 0 },
883 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
884 CPU_PCLMUL_FLAGS, 1 },
885 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
886 CPU_FSGSBASE_FLAGS, 0 },
887 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
888 CPU_RDRND_FLAGS, 0 },
889 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
890 CPU_F16C_FLAGS, 0 },
891 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
892 CPU_BMI2_FLAGS, 0 },
893 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
894 CPU_FMA_FLAGS, 0 },
895 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
896 CPU_FMA4_FLAGS, 0 },
897 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
898 CPU_XOP_FLAGS, 0 },
899 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
900 CPU_LWP_FLAGS, 0 },
901 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
902 CPU_MOVBE_FLAGS, 0 },
903 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
904 CPU_CX16_FLAGS, 0 },
905 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
906 CPU_EPT_FLAGS, 0 },
907 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
908 CPU_LZCNT_FLAGS, 0 },
909 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
910 CPU_HLE_FLAGS, 0 },
911 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
912 CPU_RTM_FLAGS, 0 },
913 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
914 CPU_INVPCID_FLAGS, 0 },
915 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
916 CPU_CLFLUSH_FLAGS, 0 },
917 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
918 CPU_NOP_FLAGS, 0 },
919 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
920 CPU_SYSCALL_FLAGS, 0 },
921 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
922 CPU_RDTSCP_FLAGS, 0 },
923 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
924 CPU_3DNOW_FLAGS, 0 },
925 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
926 CPU_3DNOWA_FLAGS, 0 },
927 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
928 CPU_PADLOCK_FLAGS, 0 },
929 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
930 CPU_SVME_FLAGS, 1 },
931 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
932 CPU_SVME_FLAGS, 0 },
933 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
934 CPU_SSE4A_FLAGS, 0 },
935 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
936 CPU_ABM_FLAGS, 0 },
937 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
938 CPU_BMI_FLAGS, 0 },
939 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
940 CPU_TBM_FLAGS, 0 },
941 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
942 CPU_ADX_FLAGS, 0 },
943 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
944 CPU_RDSEED_FLAGS, 0 },
945 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
946 CPU_PRFCHW_FLAGS, 0 },
947 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
948 CPU_SMAP_FLAGS, 0 },
949 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
950 CPU_MPX_FLAGS, 0 },
951 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
952 CPU_SHA_FLAGS, 0 },
953 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
954 CPU_CLFLUSHOPT_FLAGS, 0 },
955 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
956 CPU_PREFETCHWT1_FLAGS, 0 },
957 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
958 CPU_SE1_FLAGS, 0 },
959 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
960 CPU_CLWB_FLAGS, 0 },
961 { STRING_COMMA_LEN (".pcommit"), PROCESSOR_UNKNOWN,
962 CPU_PCOMMIT_FLAGS, 0 },
963 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
964 CPU_AVX512IFMA_FLAGS, 0 },
965 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
966 CPU_AVX512VBMI_FLAGS, 0 },
967 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
968 CPU_CLZERO_FLAGS, 0 },
969 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
970 CPU_MWAITX_FLAGS, 0 },
971 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
972 CPU_OSPKE_FLAGS, 0 },
973 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
974 CPU_RDPID_FLAGS, 0 },
975 };
976
977 static const noarch_entry cpu_noarch[] =
978 {
979 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
980 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
981 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
982 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
983 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
984 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
985 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
986 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
987 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
988 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
989 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
990 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
991 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
992 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
993 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
994 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
995 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
996 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
997 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
998 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
999 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1000 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1001 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1002 };
1003
1004 #ifdef I386COFF
1005 /* Like s_lcomm_internal in gas/read.c but the alignment string
1006 is allowed to be optional. */
1007
1008 static symbolS *
1009 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1010 {
1011 addressT align = 0;
1012
1013 SKIP_WHITESPACE ();
1014
1015 if (needs_align
1016 && *input_line_pointer == ',')
1017 {
1018 align = parse_align (needs_align - 1);
1019
1020 if (align == (addressT) -1)
1021 return NULL;
1022 }
1023 else
1024 {
1025 if (size >= 8)
1026 align = 3;
1027 else if (size >= 4)
1028 align = 2;
1029 else if (size >= 2)
1030 align = 1;
1031 else
1032 align = 0;
1033 }
1034
1035 bss_alloc (symbolP, size, align);
1036 return symbolP;
1037 }
1038
1039 static void
1040 pe_lcomm (int needs_align)
1041 {
1042 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1043 }
1044 #endif
1045
1046 const pseudo_typeS md_pseudo_table[] =
1047 {
1048 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1049 {"align", s_align_bytes, 0},
1050 #else
1051 {"align", s_align_ptwo, 0},
1052 #endif
1053 {"arch", set_cpu_arch, 0},
1054 #ifndef I386COFF
1055 {"bss", s_bss, 0},
1056 #else
1057 {"lcomm", pe_lcomm, 1},
1058 #endif
1059 {"ffloat", float_cons, 'f'},
1060 {"dfloat", float_cons, 'd'},
1061 {"tfloat", float_cons, 'x'},
1062 {"value", cons, 2},
1063 {"slong", signed_cons, 4},
1064 {"noopt", s_ignore, 0},
1065 {"optim", s_ignore, 0},
1066 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1067 {"code16", set_code_flag, CODE_16BIT},
1068 {"code32", set_code_flag, CODE_32BIT},
1069 {"code64", set_code_flag, CODE_64BIT},
1070 {"intel_syntax", set_intel_syntax, 1},
1071 {"att_syntax", set_intel_syntax, 0},
1072 {"intel_mnemonic", set_intel_mnemonic, 1},
1073 {"att_mnemonic", set_intel_mnemonic, 0},
1074 {"allow_index_reg", set_allow_index_reg, 1},
1075 {"disallow_index_reg", set_allow_index_reg, 0},
1076 {"sse_check", set_check, 0},
1077 {"operand_check", set_check, 1},
1078 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1079 {"largecomm", handle_large_common, 0},
1080 #else
1081 {"file", (void (*) (int)) dwarf2_directive_file, 0},
1082 {"loc", dwarf2_directive_loc, 0},
1083 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1084 #endif
1085 #ifdef TE_PE
1086 {"secrel32", pe_directive_secrel, 0},
1087 #endif
1088 {0, 0, 0}
1089 };
1090
1091 /* For interface with expression (). */
1092 extern char *input_line_pointer;
1093
1094 /* Hash table for instruction mnemonic lookup. */
1095 static struct hash_control *op_hash;
1096
1097 /* Hash table for register lookup. */
1098 static struct hash_control *reg_hash;
1099 \f
1100 void
1101 i386_align_code (fragS *fragP, int count)
1102 {
1103 /* Various efficient no-op patterns for aligning code labels.
1104 Note: Don't try to assemble the instructions in the comments.
1105 0L and 0w are not legal. */
1106 static const unsigned char f32_1[] =
1107 {0x90}; /* nop */
1108 static const unsigned char f32_2[] =
1109 {0x66,0x90}; /* xchg %ax,%ax */
1110 static const unsigned char f32_3[] =
1111 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1112 static const unsigned char f32_4[] =
1113 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1114 static const unsigned char f32_5[] =
1115 {0x90, /* nop */
1116 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1117 static const unsigned char f32_6[] =
1118 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1119 static const unsigned char f32_7[] =
1120 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1121 static const unsigned char f32_8[] =
1122 {0x90, /* nop */
1123 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1124 static const unsigned char f32_9[] =
1125 {0x89,0xf6, /* movl %esi,%esi */
1126 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1127 static const unsigned char f32_10[] =
1128 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1129 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1130 static const unsigned char f32_11[] =
1131 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1132 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1133 static const unsigned char f32_12[] =
1134 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1135 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1136 static const unsigned char f32_13[] =
1137 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1138 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1139 static const unsigned char f32_14[] =
1140 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1141 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1142 static const unsigned char f16_3[] =
1143 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1144 static const unsigned char f16_4[] =
1145 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1146 static const unsigned char f16_5[] =
1147 {0x90, /* nop */
1148 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1149 static const unsigned char f16_6[] =
1150 {0x89,0xf6, /* mov %si,%si */
1151 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1152 static const unsigned char f16_7[] =
1153 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1154 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1155 static const unsigned char f16_8[] =
1156 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1157 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1158 static const unsigned char jump_31[] =
1159 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1160 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1161 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1162 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1163 static const unsigned char *const f32_patt[] = {
1164 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1165 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1166 };
1167 static const unsigned char *const f16_patt[] = {
1168 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1169 };
1170 /* nopl (%[re]ax) */
1171 static const unsigned char alt_3[] =
1172 {0x0f,0x1f,0x00};
1173 /* nopl 0(%[re]ax) */
1174 static const unsigned char alt_4[] =
1175 {0x0f,0x1f,0x40,0x00};
1176 /* nopl 0(%[re]ax,%[re]ax,1) */
1177 static const unsigned char alt_5[] =
1178 {0x0f,0x1f,0x44,0x00,0x00};
1179 /* nopw 0(%[re]ax,%[re]ax,1) */
1180 static const unsigned char alt_6[] =
1181 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1182 /* nopl 0L(%[re]ax) */
1183 static const unsigned char alt_7[] =
1184 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1185 /* nopl 0L(%[re]ax,%[re]ax,1) */
1186 static const unsigned char alt_8[] =
1187 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1188 /* nopw 0L(%[re]ax,%[re]ax,1) */
1189 static const unsigned char alt_9[] =
1190 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1191 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1192 static const unsigned char alt_10[] =
1193 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1194 static const unsigned char *const alt_patt[] = {
1195 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1196 alt_9, alt_10
1197 };
1198
1199 /* Only align for at least a positive non-zero boundary. */
1200 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1201 return;
1202
1203 /* We need to decide which NOP sequence to use for 32bit and
1204 64bit. When -mtune= is used:
1205
1206 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1207 PROCESSOR_GENERIC32, f32_patt will be used.
1208 2. For the rest, alt_patt will be used.
1209
1210 When -mtune= isn't used, alt_patt will be used if
1211 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1212 be used.
1213
1214 When -march= or .arch is used, we can't use anything beyond
1215 cpu_arch_isa_flags. */
1216
1217 if (flag_code == CODE_16BIT)
1218 {
1219 if (count > 8)
1220 {
1221 memcpy (fragP->fr_literal + fragP->fr_fix,
1222 jump_31, count);
1223 /* Adjust jump offset. */
1224 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1225 }
1226 else
1227 memcpy (fragP->fr_literal + fragP->fr_fix,
1228 f16_patt[count - 1], count);
1229 }
1230 else
1231 {
1232 const unsigned char *const *patt = NULL;
1233
1234 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1235 {
1236 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1237 switch (cpu_arch_tune)
1238 {
1239 case PROCESSOR_UNKNOWN:
1240 /* We use cpu_arch_isa_flags to check if we SHOULD
1241 optimize with nops. */
1242 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1243 patt = alt_patt;
1244 else
1245 patt = f32_patt;
1246 break;
1247 case PROCESSOR_PENTIUM4:
1248 case PROCESSOR_NOCONA:
1249 case PROCESSOR_CORE:
1250 case PROCESSOR_CORE2:
1251 case PROCESSOR_COREI7:
1252 case PROCESSOR_L1OM:
1253 case PROCESSOR_K1OM:
1254 case PROCESSOR_GENERIC64:
1255 case PROCESSOR_K6:
1256 case PROCESSOR_ATHLON:
1257 case PROCESSOR_K8:
1258 case PROCESSOR_AMDFAM10:
1259 case PROCESSOR_BD:
1260 case PROCESSOR_ZNVER:
1261 case PROCESSOR_BT:
1262 patt = alt_patt;
1263 break;
1264 case PROCESSOR_I386:
1265 case PROCESSOR_I486:
1266 case PROCESSOR_PENTIUM:
1267 case PROCESSOR_PENTIUMPRO:
1268 case PROCESSOR_IAMCU:
1269 case PROCESSOR_GENERIC32:
1270 patt = f32_patt;
1271 break;
1272 }
1273 }
1274 else
1275 {
1276 switch (fragP->tc_frag_data.tune)
1277 {
1278 case PROCESSOR_UNKNOWN:
1279 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1280 PROCESSOR_UNKNOWN. */
1281 abort ();
1282 break;
1283
1284 case PROCESSOR_I386:
1285 case PROCESSOR_I486:
1286 case PROCESSOR_PENTIUM:
1287 case PROCESSOR_IAMCU:
1288 case PROCESSOR_K6:
1289 case PROCESSOR_ATHLON:
1290 case PROCESSOR_K8:
1291 case PROCESSOR_AMDFAM10:
1292 case PROCESSOR_BD:
1293 case PROCESSOR_ZNVER:
1294 case PROCESSOR_BT:
1295 case PROCESSOR_GENERIC32:
1296 /* We use cpu_arch_isa_flags to check if we CAN optimize
1297 with nops. */
1298 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1299 patt = alt_patt;
1300 else
1301 patt = f32_patt;
1302 break;
1303 case PROCESSOR_PENTIUMPRO:
1304 case PROCESSOR_PENTIUM4:
1305 case PROCESSOR_NOCONA:
1306 case PROCESSOR_CORE:
1307 case PROCESSOR_CORE2:
1308 case PROCESSOR_COREI7:
1309 case PROCESSOR_L1OM:
1310 case PROCESSOR_K1OM:
1311 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1312 patt = alt_patt;
1313 else
1314 patt = f32_patt;
1315 break;
1316 case PROCESSOR_GENERIC64:
1317 patt = alt_patt;
1318 break;
1319 }
1320 }
1321
1322 if (patt == f32_patt)
1323 {
1324 /* If the padding is less than 15 bytes, we use the normal
1325 ones. Otherwise, we use a jump instruction and adjust
1326 its offset. */
1327 int limit;
1328
1329 /* For 64bit, the limit is 3 bytes. */
1330 if (flag_code == CODE_64BIT
1331 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1332 limit = 3;
1333 else
1334 limit = 15;
1335 if (count < limit)
1336 memcpy (fragP->fr_literal + fragP->fr_fix,
1337 patt[count - 1], count);
1338 else
1339 {
1340 memcpy (fragP->fr_literal + fragP->fr_fix,
1341 jump_31, count);
1342 /* Adjust jump offset. */
1343 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1344 }
1345 }
1346 else
1347 {
1348 /* Maximum length of an instruction is 10 byte. If the
1349 padding is greater than 10 bytes and we don't use jump,
1350 we have to break it into smaller pieces. */
1351 int padding = count;
1352 while (padding > 10)
1353 {
1354 padding -= 10;
1355 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1356 patt [9], 10);
1357 }
1358
1359 if (padding)
1360 memcpy (fragP->fr_literal + fragP->fr_fix,
1361 patt [padding - 1], padding);
1362 }
1363 }
1364 fragP->fr_var = count;
1365 }
1366
1367 static INLINE int
1368 operand_type_all_zero (const union i386_operand_type *x)
1369 {
1370 switch (ARRAY_SIZE(x->array))
1371 {
1372 case 3:
1373 if (x->array[2])
1374 return 0;
1375 case 2:
1376 if (x->array[1])
1377 return 0;
1378 case 1:
1379 return !x->array[0];
1380 default:
1381 abort ();
1382 }
1383 }
1384
1385 static INLINE void
1386 operand_type_set (union i386_operand_type *x, unsigned int v)
1387 {
1388 switch (ARRAY_SIZE(x->array))
1389 {
1390 case 3:
1391 x->array[2] = v;
1392 case 2:
1393 x->array[1] = v;
1394 case 1:
1395 x->array[0] = v;
1396 break;
1397 default:
1398 abort ();
1399 }
1400 }
1401
1402 static INLINE int
1403 operand_type_equal (const union i386_operand_type *x,
1404 const union i386_operand_type *y)
1405 {
1406 switch (ARRAY_SIZE(x->array))
1407 {
1408 case 3:
1409 if (x->array[2] != y->array[2])
1410 return 0;
1411 case 2:
1412 if (x->array[1] != y->array[1])
1413 return 0;
1414 case 1:
1415 return x->array[0] == y->array[0];
1416 break;
1417 default:
1418 abort ();
1419 }
1420 }
1421
1422 static INLINE int
1423 cpu_flags_all_zero (const union i386_cpu_flags *x)
1424 {
1425 switch (ARRAY_SIZE(x->array))
1426 {
1427 case 3:
1428 if (x->array[2])
1429 return 0;
1430 case 2:
1431 if (x->array[1])
1432 return 0;
1433 case 1:
1434 return !x->array[0];
1435 default:
1436 abort ();
1437 }
1438 }
1439
1440 static INLINE int
1441 cpu_flags_equal (const union i386_cpu_flags *x,
1442 const union i386_cpu_flags *y)
1443 {
1444 switch (ARRAY_SIZE(x->array))
1445 {
1446 case 3:
1447 if (x->array[2] != y->array[2])
1448 return 0;
1449 case 2:
1450 if (x->array[1] != y->array[1])
1451 return 0;
1452 case 1:
1453 return x->array[0] == y->array[0];
1454 break;
1455 default:
1456 abort ();
1457 }
1458 }
1459
1460 static INLINE int
1461 cpu_flags_check_cpu64 (i386_cpu_flags f)
1462 {
1463 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1464 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1465 }
1466
1467 static INLINE i386_cpu_flags
1468 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1469 {
1470 switch (ARRAY_SIZE (x.array))
1471 {
1472 case 3:
1473 x.array [2] &= y.array [2];
1474 case 2:
1475 x.array [1] &= y.array [1];
1476 case 1:
1477 x.array [0] &= y.array [0];
1478 break;
1479 default:
1480 abort ();
1481 }
1482 return x;
1483 }
1484
1485 static INLINE i386_cpu_flags
1486 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1487 {
1488 switch (ARRAY_SIZE (x.array))
1489 {
1490 case 3:
1491 x.array [2] |= y.array [2];
1492 case 2:
1493 x.array [1] |= y.array [1];
1494 case 1:
1495 x.array [0] |= y.array [0];
1496 break;
1497 default:
1498 abort ();
1499 }
1500 return x;
1501 }
1502
1503 static INLINE i386_cpu_flags
1504 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1505 {
1506 switch (ARRAY_SIZE (x.array))
1507 {
1508 case 3:
1509 x.array [2] &= ~y.array [2];
1510 case 2:
1511 x.array [1] &= ~y.array [1];
1512 case 1:
1513 x.array [0] &= ~y.array [0];
1514 break;
1515 default:
1516 abort ();
1517 }
1518 return x;
1519 }
1520
1521 static int
1522 valid_iamcu_cpu_flags (const i386_cpu_flags *flags)
1523 {
1524 if (cpu_arch_isa == PROCESSOR_IAMCU)
1525 {
1526 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_COMPAT_FLAGS;
1527 i386_cpu_flags compat_flags;
1528 compat_flags = cpu_flags_and_not (*flags, iamcu_flags);
1529 return cpu_flags_all_zero (&compat_flags);
1530 }
1531 else
1532 return 1;
1533 }
1534
1535 #define CPU_FLAGS_ARCH_MATCH 0x1
1536 #define CPU_FLAGS_64BIT_MATCH 0x2
1537 #define CPU_FLAGS_AES_MATCH 0x4
1538 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1539 #define CPU_FLAGS_AVX_MATCH 0x10
1540
1541 #define CPU_FLAGS_32BIT_MATCH \
1542 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1543 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1544 #define CPU_FLAGS_PERFECT_MATCH \
1545 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1546
1547 /* Return CPU flags match bits. */
1548
1549 static int
1550 cpu_flags_match (const insn_template *t)
1551 {
1552 i386_cpu_flags x = t->cpu_flags;
1553 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1554
1555 x.bitfield.cpu64 = 0;
1556 x.bitfield.cpuno64 = 0;
1557
1558 if (cpu_flags_all_zero (&x))
1559 {
1560 /* This instruction is available on all archs. */
1561 match |= CPU_FLAGS_32BIT_MATCH;
1562 }
1563 else
1564 {
1565 /* This instruction is available only on some archs. */
1566 i386_cpu_flags cpu = cpu_arch_flags;
1567
1568 cpu = cpu_flags_and (x, cpu);
1569 if (!cpu_flags_all_zero (&cpu))
1570 {
1571 if (x.bitfield.cpuavx)
1572 {
1573 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1574 if (cpu.bitfield.cpuavx)
1575 {
1576 /* Check SSE2AVX. */
1577 if (!t->opcode_modifier.sse2avx|| sse2avx)
1578 {
1579 match |= (CPU_FLAGS_ARCH_MATCH
1580 | CPU_FLAGS_AVX_MATCH);
1581 /* Check AES. */
1582 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1583 match |= CPU_FLAGS_AES_MATCH;
1584 /* Check PCLMUL. */
1585 if (!x.bitfield.cpupclmul
1586 || cpu.bitfield.cpupclmul)
1587 match |= CPU_FLAGS_PCLMUL_MATCH;
1588 }
1589 }
1590 else
1591 match |= CPU_FLAGS_ARCH_MATCH;
1592 }
1593 else if (x.bitfield.cpuavx512vl)
1594 {
1595 /* Match AVX512VL. */
1596 if (cpu.bitfield.cpuavx512vl)
1597 {
1598 /* Need another match. */
1599 cpu.bitfield.cpuavx512vl = 0;
1600 if (!cpu_flags_all_zero (&cpu))
1601 match |= CPU_FLAGS_32BIT_MATCH;
1602 else
1603 match |= CPU_FLAGS_ARCH_MATCH;
1604 }
1605 else
1606 match |= CPU_FLAGS_ARCH_MATCH;
1607 }
1608 else
1609 match |= CPU_FLAGS_32BIT_MATCH;
1610 }
1611 }
1612 return match;
1613 }
1614
1615 static INLINE i386_operand_type
1616 operand_type_and (i386_operand_type x, i386_operand_type y)
1617 {
1618 switch (ARRAY_SIZE (x.array))
1619 {
1620 case 3:
1621 x.array [2] &= y.array [2];
1622 case 2:
1623 x.array [1] &= y.array [1];
1624 case 1:
1625 x.array [0] &= y.array [0];
1626 break;
1627 default:
1628 abort ();
1629 }
1630 return x;
1631 }
1632
1633 static INLINE i386_operand_type
1634 operand_type_or (i386_operand_type x, i386_operand_type y)
1635 {
1636 switch (ARRAY_SIZE (x.array))
1637 {
1638 case 3:
1639 x.array [2] |= y.array [2];
1640 case 2:
1641 x.array [1] |= y.array [1];
1642 case 1:
1643 x.array [0] |= y.array [0];
1644 break;
1645 default:
1646 abort ();
1647 }
1648 return x;
1649 }
1650
1651 static INLINE i386_operand_type
1652 operand_type_xor (i386_operand_type x, i386_operand_type y)
1653 {
1654 switch (ARRAY_SIZE (x.array))
1655 {
1656 case 3:
1657 x.array [2] ^= y.array [2];
1658 case 2:
1659 x.array [1] ^= y.array [1];
1660 case 1:
1661 x.array [0] ^= y.array [0];
1662 break;
1663 default:
1664 abort ();
1665 }
1666 return x;
1667 }
1668
1669 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1670 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1671 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1672 static const i386_operand_type inoutportreg
1673 = OPERAND_TYPE_INOUTPORTREG;
1674 static const i386_operand_type reg16_inoutportreg
1675 = OPERAND_TYPE_REG16_INOUTPORTREG;
1676 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1677 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1678 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1679 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1680 static const i386_operand_type anydisp
1681 = OPERAND_TYPE_ANYDISP;
1682 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1683 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1684 static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1685 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1686 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1687 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1688 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1689 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1690 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1691 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1692 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1693 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1694 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1695 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1696
1697 enum operand_type
1698 {
1699 reg,
1700 imm,
1701 disp,
1702 anymem
1703 };
1704
1705 static INLINE int
1706 operand_type_check (i386_operand_type t, enum operand_type c)
1707 {
1708 switch (c)
1709 {
1710 case reg:
1711 return (t.bitfield.reg8
1712 || t.bitfield.reg16
1713 || t.bitfield.reg32
1714 || t.bitfield.reg64);
1715
1716 case imm:
1717 return (t.bitfield.imm8
1718 || t.bitfield.imm8s
1719 || t.bitfield.imm16
1720 || t.bitfield.imm32
1721 || t.bitfield.imm32s
1722 || t.bitfield.imm64);
1723
1724 case disp:
1725 return (t.bitfield.disp8
1726 || t.bitfield.disp16
1727 || t.bitfield.disp32
1728 || t.bitfield.disp32s
1729 || t.bitfield.disp64);
1730
1731 case anymem:
1732 return (t.bitfield.disp8
1733 || t.bitfield.disp16
1734 || t.bitfield.disp32
1735 || t.bitfield.disp32s
1736 || t.bitfield.disp64
1737 || t.bitfield.baseindex);
1738
1739 default:
1740 abort ();
1741 }
1742
1743 return 0;
1744 }
1745
1746 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1747 operand J for instruction template T. */
1748
1749 static INLINE int
1750 match_reg_size (const insn_template *t, unsigned int j)
1751 {
1752 return !((i.types[j].bitfield.byte
1753 && !t->operand_types[j].bitfield.byte)
1754 || (i.types[j].bitfield.word
1755 && !t->operand_types[j].bitfield.word)
1756 || (i.types[j].bitfield.dword
1757 && !t->operand_types[j].bitfield.dword)
1758 || (i.types[j].bitfield.qword
1759 && !t->operand_types[j].bitfield.qword));
1760 }
1761
1762 /* Return 1 if there is no conflict in any size on operand J for
1763 instruction template T. */
1764
1765 static INLINE int
1766 match_mem_size (const insn_template *t, unsigned int j)
1767 {
1768 return (match_reg_size (t, j)
1769 && !((i.types[j].bitfield.unspecified
1770 && !i.broadcast
1771 && !t->operand_types[j].bitfield.unspecified)
1772 || (i.types[j].bitfield.fword
1773 && !t->operand_types[j].bitfield.fword)
1774 || (i.types[j].bitfield.tbyte
1775 && !t->operand_types[j].bitfield.tbyte)
1776 || (i.types[j].bitfield.xmmword
1777 && !t->operand_types[j].bitfield.xmmword)
1778 || (i.types[j].bitfield.ymmword
1779 && !t->operand_types[j].bitfield.ymmword)
1780 || (i.types[j].bitfield.zmmword
1781 && !t->operand_types[j].bitfield.zmmword)));
1782 }
1783
1784 /* Return 1 if there is no size conflict on any operands for
1785 instruction template T. */
1786
1787 static INLINE int
1788 operand_size_match (const insn_template *t)
1789 {
1790 unsigned int j;
1791 int match = 1;
1792
1793 /* Don't check jump instructions. */
1794 if (t->opcode_modifier.jump
1795 || t->opcode_modifier.jumpbyte
1796 || t->opcode_modifier.jumpdword
1797 || t->opcode_modifier.jumpintersegment)
1798 return match;
1799
1800 /* Check memory and accumulator operand size. */
1801 for (j = 0; j < i.operands; j++)
1802 {
1803 if (t->operand_types[j].bitfield.anysize)
1804 continue;
1805
1806 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1807 {
1808 match = 0;
1809 break;
1810 }
1811
1812 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1813 {
1814 match = 0;
1815 break;
1816 }
1817 }
1818
1819 if (match)
1820 return match;
1821 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1822 {
1823 mismatch:
1824 i.error = operand_size_mismatch;
1825 return 0;
1826 }
1827
1828 /* Check reverse. */
1829 gas_assert (i.operands == 2);
1830
1831 match = 1;
1832 for (j = 0; j < 2; j++)
1833 {
1834 if (t->operand_types[j].bitfield.acc
1835 && !match_reg_size (t, j ? 0 : 1))
1836 goto mismatch;
1837
1838 if (i.types[j].bitfield.mem
1839 && !match_mem_size (t, j ? 0 : 1))
1840 goto mismatch;
1841 }
1842
1843 return match;
1844 }
1845
1846 static INLINE int
1847 operand_type_match (i386_operand_type overlap,
1848 i386_operand_type given)
1849 {
1850 i386_operand_type temp = overlap;
1851
1852 temp.bitfield.jumpabsolute = 0;
1853 temp.bitfield.unspecified = 0;
1854 temp.bitfield.byte = 0;
1855 temp.bitfield.word = 0;
1856 temp.bitfield.dword = 0;
1857 temp.bitfield.fword = 0;
1858 temp.bitfield.qword = 0;
1859 temp.bitfield.tbyte = 0;
1860 temp.bitfield.xmmword = 0;
1861 temp.bitfield.ymmword = 0;
1862 temp.bitfield.zmmword = 0;
1863 if (operand_type_all_zero (&temp))
1864 goto mismatch;
1865
1866 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1867 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1868 return 1;
1869
1870 mismatch:
1871 i.error = operand_type_mismatch;
1872 return 0;
1873 }
1874
1875 /* If given types g0 and g1 are registers they must be of the same type
1876 unless the expected operand type register overlap is null.
1877 Note that Acc in a template matches every size of reg. */
1878
1879 static INLINE int
1880 operand_type_register_match (i386_operand_type m0,
1881 i386_operand_type g0,
1882 i386_operand_type t0,
1883 i386_operand_type m1,
1884 i386_operand_type g1,
1885 i386_operand_type t1)
1886 {
1887 if (!operand_type_check (g0, reg))
1888 return 1;
1889
1890 if (!operand_type_check (g1, reg))
1891 return 1;
1892
1893 if (g0.bitfield.reg8 == g1.bitfield.reg8
1894 && g0.bitfield.reg16 == g1.bitfield.reg16
1895 && g0.bitfield.reg32 == g1.bitfield.reg32
1896 && g0.bitfield.reg64 == g1.bitfield.reg64)
1897 return 1;
1898
1899 if (m0.bitfield.acc)
1900 {
1901 t0.bitfield.reg8 = 1;
1902 t0.bitfield.reg16 = 1;
1903 t0.bitfield.reg32 = 1;
1904 t0.bitfield.reg64 = 1;
1905 }
1906
1907 if (m1.bitfield.acc)
1908 {
1909 t1.bitfield.reg8 = 1;
1910 t1.bitfield.reg16 = 1;
1911 t1.bitfield.reg32 = 1;
1912 t1.bitfield.reg64 = 1;
1913 }
1914
1915 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1916 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1917 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1918 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1919 return 1;
1920
1921 i.error = register_type_mismatch;
1922
1923 return 0;
1924 }
1925
1926 static INLINE unsigned int
1927 register_number (const reg_entry *r)
1928 {
1929 unsigned int nr = r->reg_num;
1930
1931 if (r->reg_flags & RegRex)
1932 nr += 8;
1933
1934 if (r->reg_flags & RegVRex)
1935 nr += 16;
1936
1937 return nr;
1938 }
1939
1940 static INLINE unsigned int
1941 mode_from_disp_size (i386_operand_type t)
1942 {
1943 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
1944 return 1;
1945 else if (t.bitfield.disp16
1946 || t.bitfield.disp32
1947 || t.bitfield.disp32s)
1948 return 2;
1949 else
1950 return 0;
1951 }
1952
1953 static INLINE int
1954 fits_in_signed_byte (addressT num)
1955 {
1956 return num + 0x80 <= 0xff;
1957 }
1958
1959 static INLINE int
1960 fits_in_unsigned_byte (addressT num)
1961 {
1962 return num <= 0xff;
1963 }
1964
1965 static INLINE int
1966 fits_in_unsigned_word (addressT num)
1967 {
1968 return num <= 0xffff;
1969 }
1970
1971 static INLINE int
1972 fits_in_signed_word (addressT num)
1973 {
1974 return num + 0x8000 <= 0xffff;
1975 }
1976
1977 static INLINE int
1978 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
1979 {
1980 #ifndef BFD64
1981 return 1;
1982 #else
1983 return num + 0x80000000 <= 0xffffffff;
1984 #endif
1985 } /* fits_in_signed_long() */
1986
1987 static INLINE int
1988 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
1989 {
1990 #ifndef BFD64
1991 return 1;
1992 #else
1993 return num <= 0xffffffff;
1994 #endif
1995 } /* fits_in_unsigned_long() */
1996
1997 static INLINE int
1998 fits_in_vec_disp8 (offsetT num)
1999 {
2000 int shift = i.memshift;
2001 unsigned int mask;
2002
2003 if (shift == -1)
2004 abort ();
2005
2006 mask = (1 << shift) - 1;
2007
2008 /* Return 0 if NUM isn't properly aligned. */
2009 if ((num & mask))
2010 return 0;
2011
2012 /* Check if NUM will fit in 8bit after shift. */
2013 return fits_in_signed_byte (num >> shift);
2014 }
2015
2016 static INLINE int
2017 fits_in_imm4 (offsetT num)
2018 {
2019 return (num & 0xf) == num;
2020 }
2021
2022 static i386_operand_type
2023 smallest_imm_type (offsetT num)
2024 {
2025 i386_operand_type t;
2026
2027 operand_type_set (&t, 0);
2028 t.bitfield.imm64 = 1;
2029
2030 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2031 {
2032 /* This code is disabled on the 486 because all the Imm1 forms
2033 in the opcode table are slower on the i486. They're the
2034 versions with the implicitly specified single-position
2035 displacement, which has another syntax if you really want to
2036 use that form. */
2037 t.bitfield.imm1 = 1;
2038 t.bitfield.imm8 = 1;
2039 t.bitfield.imm8s = 1;
2040 t.bitfield.imm16 = 1;
2041 t.bitfield.imm32 = 1;
2042 t.bitfield.imm32s = 1;
2043 }
2044 else if (fits_in_signed_byte (num))
2045 {
2046 t.bitfield.imm8 = 1;
2047 t.bitfield.imm8s = 1;
2048 t.bitfield.imm16 = 1;
2049 t.bitfield.imm32 = 1;
2050 t.bitfield.imm32s = 1;
2051 }
2052 else if (fits_in_unsigned_byte (num))
2053 {
2054 t.bitfield.imm8 = 1;
2055 t.bitfield.imm16 = 1;
2056 t.bitfield.imm32 = 1;
2057 t.bitfield.imm32s = 1;
2058 }
2059 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2060 {
2061 t.bitfield.imm16 = 1;
2062 t.bitfield.imm32 = 1;
2063 t.bitfield.imm32s = 1;
2064 }
2065 else if (fits_in_signed_long (num))
2066 {
2067 t.bitfield.imm32 = 1;
2068 t.bitfield.imm32s = 1;
2069 }
2070 else if (fits_in_unsigned_long (num))
2071 t.bitfield.imm32 = 1;
2072
2073 return t;
2074 }
2075
2076 static offsetT
2077 offset_in_range (offsetT val, int size)
2078 {
2079 addressT mask;
2080
2081 switch (size)
2082 {
2083 case 1: mask = ((addressT) 1 << 8) - 1; break;
2084 case 2: mask = ((addressT) 1 << 16) - 1; break;
2085 case 4: mask = ((addressT) 2 << 31) - 1; break;
2086 #ifdef BFD64
2087 case 8: mask = ((addressT) 2 << 63) - 1; break;
2088 #endif
2089 default: abort ();
2090 }
2091
2092 #ifdef BFD64
2093 /* If BFD64, sign extend val for 32bit address mode. */
2094 if (flag_code != CODE_64BIT
2095 || i.prefix[ADDR_PREFIX])
2096 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2097 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2098 #endif
2099
2100 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2101 {
2102 char buf1[40], buf2[40];
2103
2104 sprint_value (buf1, val);
2105 sprint_value (buf2, val & mask);
2106 as_warn (_("%s shortened to %s"), buf1, buf2);
2107 }
2108 return val & mask;
2109 }
2110
2111 enum PREFIX_GROUP
2112 {
2113 PREFIX_EXIST = 0,
2114 PREFIX_LOCK,
2115 PREFIX_REP,
2116 PREFIX_OTHER
2117 };
2118
2119 /* Returns
2120 a. PREFIX_EXIST if attempting to add a prefix where one from the
2121 same class already exists.
2122 b. PREFIX_LOCK if lock prefix is added.
2123 c. PREFIX_REP if rep/repne prefix is added.
2124 d. PREFIX_OTHER if other prefix is added.
2125 */
2126
2127 static enum PREFIX_GROUP
2128 add_prefix (unsigned int prefix)
2129 {
2130 enum PREFIX_GROUP ret = PREFIX_OTHER;
2131 unsigned int q;
2132
2133 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2134 && flag_code == CODE_64BIT)
2135 {
2136 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2137 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2138 && (prefix & (REX_R | REX_X | REX_B))))
2139 ret = PREFIX_EXIST;
2140 q = REX_PREFIX;
2141 }
2142 else
2143 {
2144 switch (prefix)
2145 {
2146 default:
2147 abort ();
2148
2149 case CS_PREFIX_OPCODE:
2150 case DS_PREFIX_OPCODE:
2151 case ES_PREFIX_OPCODE:
2152 case FS_PREFIX_OPCODE:
2153 case GS_PREFIX_OPCODE:
2154 case SS_PREFIX_OPCODE:
2155 q = SEG_PREFIX;
2156 break;
2157
2158 case REPNE_PREFIX_OPCODE:
2159 case REPE_PREFIX_OPCODE:
2160 q = REP_PREFIX;
2161 ret = PREFIX_REP;
2162 break;
2163
2164 case LOCK_PREFIX_OPCODE:
2165 q = LOCK_PREFIX;
2166 ret = PREFIX_LOCK;
2167 break;
2168
2169 case FWAIT_OPCODE:
2170 q = WAIT_PREFIX;
2171 break;
2172
2173 case ADDR_PREFIX_OPCODE:
2174 q = ADDR_PREFIX;
2175 break;
2176
2177 case DATA_PREFIX_OPCODE:
2178 q = DATA_PREFIX;
2179 break;
2180 }
2181 if (i.prefix[q] != 0)
2182 ret = PREFIX_EXIST;
2183 }
2184
2185 if (ret)
2186 {
2187 if (!i.prefix[q])
2188 ++i.prefixes;
2189 i.prefix[q] |= prefix;
2190 }
2191 else
2192 as_bad (_("same type of prefix used twice"));
2193
2194 return ret;
2195 }
2196
2197 static void
2198 update_code_flag (int value, int check)
2199 {
2200 PRINTF_LIKE ((*as_error));
2201
2202 flag_code = (enum flag_code) value;
2203 if (flag_code == CODE_64BIT)
2204 {
2205 cpu_arch_flags.bitfield.cpu64 = 1;
2206 cpu_arch_flags.bitfield.cpuno64 = 0;
2207 }
2208 else
2209 {
2210 cpu_arch_flags.bitfield.cpu64 = 0;
2211 cpu_arch_flags.bitfield.cpuno64 = 1;
2212 }
2213 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2214 {
2215 if (check)
2216 as_error = as_fatal;
2217 else
2218 as_error = as_bad;
2219 (*as_error) (_("64bit mode not supported on `%s'."),
2220 cpu_arch_name ? cpu_arch_name : default_arch);
2221 }
2222 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2223 {
2224 if (check)
2225 as_error = as_fatal;
2226 else
2227 as_error = as_bad;
2228 (*as_error) (_("32bit mode not supported on `%s'."),
2229 cpu_arch_name ? cpu_arch_name : default_arch);
2230 }
2231 stackop_size = '\0';
2232 }
2233
2234 static void
2235 set_code_flag (int value)
2236 {
2237 update_code_flag (value, 0);
2238 }
2239
2240 static void
2241 set_16bit_gcc_code_flag (int new_code_flag)
2242 {
2243 flag_code = (enum flag_code) new_code_flag;
2244 if (flag_code != CODE_16BIT)
2245 abort ();
2246 cpu_arch_flags.bitfield.cpu64 = 0;
2247 cpu_arch_flags.bitfield.cpuno64 = 1;
2248 stackop_size = LONG_MNEM_SUFFIX;
2249 }
2250
2251 static void
2252 set_intel_syntax (int syntax_flag)
2253 {
2254 /* Find out if register prefixing is specified. */
2255 int ask_naked_reg = 0;
2256
2257 SKIP_WHITESPACE ();
2258 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2259 {
2260 char *string;
2261 int e = get_symbol_name (&string);
2262
2263 if (strcmp (string, "prefix") == 0)
2264 ask_naked_reg = 1;
2265 else if (strcmp (string, "noprefix") == 0)
2266 ask_naked_reg = -1;
2267 else
2268 as_bad (_("bad argument to syntax directive."));
2269 (void) restore_line_pointer (e);
2270 }
2271 demand_empty_rest_of_line ();
2272
2273 intel_syntax = syntax_flag;
2274
2275 if (ask_naked_reg == 0)
2276 allow_naked_reg = (intel_syntax
2277 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2278 else
2279 allow_naked_reg = (ask_naked_reg < 0);
2280
2281 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2282
2283 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2284 identifier_chars['$'] = intel_syntax ? '$' : 0;
2285 register_prefix = allow_naked_reg ? "" : "%";
2286 }
2287
2288 static void
2289 set_intel_mnemonic (int mnemonic_flag)
2290 {
2291 intel_mnemonic = mnemonic_flag;
2292 }
2293
2294 static void
2295 set_allow_index_reg (int flag)
2296 {
2297 allow_index_reg = flag;
2298 }
2299
2300 static void
2301 set_check (int what)
2302 {
2303 enum check_kind *kind;
2304 const char *str;
2305
2306 if (what)
2307 {
2308 kind = &operand_check;
2309 str = "operand";
2310 }
2311 else
2312 {
2313 kind = &sse_check;
2314 str = "sse";
2315 }
2316
2317 SKIP_WHITESPACE ();
2318
2319 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2320 {
2321 char *string;
2322 int e = get_symbol_name (&string);
2323
2324 if (strcmp (string, "none") == 0)
2325 *kind = check_none;
2326 else if (strcmp (string, "warning") == 0)
2327 *kind = check_warning;
2328 else if (strcmp (string, "error") == 0)
2329 *kind = check_error;
2330 else
2331 as_bad (_("bad argument to %s_check directive."), str);
2332 (void) restore_line_pointer (e);
2333 }
2334 else
2335 as_bad (_("missing argument for %s_check directive"), str);
2336
2337 demand_empty_rest_of_line ();
2338 }
2339
2340 static void
2341 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2342 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2343 {
2344 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2345 static const char *arch;
2346
2347 /* Intel LIOM is only supported on ELF. */
2348 if (!IS_ELF)
2349 return;
2350
2351 if (!arch)
2352 {
2353 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2354 use default_arch. */
2355 arch = cpu_arch_name;
2356 if (!arch)
2357 arch = default_arch;
2358 }
2359
2360 /* If we are targeting Intel MCU, we must enable it. */
2361 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2362 || new_flag.bitfield.cpuiamcu)
2363 return;
2364
2365 /* If we are targeting Intel L1OM, we must enable it. */
2366 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2367 || new_flag.bitfield.cpul1om)
2368 return;
2369
2370 /* If we are targeting Intel K1OM, we must enable it. */
2371 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2372 || new_flag.bitfield.cpuk1om)
2373 return;
2374
2375 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2376 #endif
2377 }
2378
2379 static void
2380 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2381 {
2382 SKIP_WHITESPACE ();
2383
2384 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2385 {
2386 char *string;
2387 int e = get_symbol_name (&string);
2388 unsigned int j;
2389 i386_cpu_flags flags;
2390
2391 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2392 {
2393 if (strcmp (string, cpu_arch[j].name) == 0)
2394 {
2395 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2396
2397 if (*string != '.')
2398 {
2399 cpu_arch_name = cpu_arch[j].name;
2400 cpu_sub_arch_name = NULL;
2401 cpu_arch_flags = cpu_arch[j].flags;
2402 if (flag_code == CODE_64BIT)
2403 {
2404 cpu_arch_flags.bitfield.cpu64 = 1;
2405 cpu_arch_flags.bitfield.cpuno64 = 0;
2406 }
2407 else
2408 {
2409 cpu_arch_flags.bitfield.cpu64 = 0;
2410 cpu_arch_flags.bitfield.cpuno64 = 1;
2411 }
2412 cpu_arch_isa = cpu_arch[j].type;
2413 cpu_arch_isa_flags = cpu_arch[j].flags;
2414 if (!cpu_arch_tune_set)
2415 {
2416 cpu_arch_tune = cpu_arch_isa;
2417 cpu_arch_tune_flags = cpu_arch_isa_flags;
2418 }
2419 break;
2420 }
2421
2422 flags = cpu_flags_or (cpu_arch_flags,
2423 cpu_arch[j].flags);
2424
2425 if (!valid_iamcu_cpu_flags (&flags))
2426 as_fatal (_("`%s' isn't valid for Intel MCU"),
2427 cpu_arch[j].name);
2428 else if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2429 {
2430 if (cpu_sub_arch_name)
2431 {
2432 char *name = cpu_sub_arch_name;
2433 cpu_sub_arch_name = concat (name,
2434 cpu_arch[j].name,
2435 (const char *) NULL);
2436 free (name);
2437 }
2438 else
2439 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2440 cpu_arch_flags = flags;
2441 cpu_arch_isa_flags = flags;
2442 }
2443 (void) restore_line_pointer (e);
2444 demand_empty_rest_of_line ();
2445 return;
2446 }
2447 }
2448
2449 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2450 {
2451 /* Disable an ISA entension. */
2452 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2453 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2454 {
2455 flags = cpu_flags_and_not (cpu_arch_flags,
2456 cpu_noarch[j].flags);
2457 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2458 {
2459 if (cpu_sub_arch_name)
2460 {
2461 char *name = cpu_sub_arch_name;
2462 cpu_sub_arch_name = concat (name, string,
2463 (const char *) NULL);
2464 free (name);
2465 }
2466 else
2467 cpu_sub_arch_name = xstrdup (string);
2468 cpu_arch_flags = flags;
2469 cpu_arch_isa_flags = flags;
2470 }
2471 (void) restore_line_pointer (e);
2472 demand_empty_rest_of_line ();
2473 return;
2474 }
2475
2476 j = ARRAY_SIZE (cpu_arch);
2477 }
2478
2479 if (j >= ARRAY_SIZE (cpu_arch))
2480 as_bad (_("no such architecture: `%s'"), string);
2481
2482 *input_line_pointer = e;
2483 }
2484 else
2485 as_bad (_("missing cpu architecture"));
2486
2487 no_cond_jump_promotion = 0;
2488 if (*input_line_pointer == ','
2489 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2490 {
2491 char *string;
2492 char e;
2493
2494 ++input_line_pointer;
2495 e = get_symbol_name (&string);
2496
2497 if (strcmp (string, "nojumps") == 0)
2498 no_cond_jump_promotion = 1;
2499 else if (strcmp (string, "jumps") == 0)
2500 ;
2501 else
2502 as_bad (_("no such architecture modifier: `%s'"), string);
2503
2504 (void) restore_line_pointer (e);
2505 }
2506
2507 demand_empty_rest_of_line ();
2508 }
2509
2510 enum bfd_architecture
2511 i386_arch (void)
2512 {
2513 if (cpu_arch_isa == PROCESSOR_L1OM)
2514 {
2515 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2516 || flag_code != CODE_64BIT)
2517 as_fatal (_("Intel L1OM is 64bit ELF only"));
2518 return bfd_arch_l1om;
2519 }
2520 else if (cpu_arch_isa == PROCESSOR_K1OM)
2521 {
2522 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2523 || flag_code != CODE_64BIT)
2524 as_fatal (_("Intel K1OM is 64bit ELF only"));
2525 return bfd_arch_k1om;
2526 }
2527 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2528 {
2529 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2530 || flag_code == CODE_64BIT)
2531 as_fatal (_("Intel MCU is 32bit ELF only"));
2532 return bfd_arch_iamcu;
2533 }
2534 else
2535 return bfd_arch_i386;
2536 }
2537
2538 unsigned long
2539 i386_mach (void)
2540 {
2541 if (!strncmp (default_arch, "x86_64", 6))
2542 {
2543 if (cpu_arch_isa == PROCESSOR_L1OM)
2544 {
2545 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2546 || default_arch[6] != '\0')
2547 as_fatal (_("Intel L1OM is 64bit ELF only"));
2548 return bfd_mach_l1om;
2549 }
2550 else if (cpu_arch_isa == PROCESSOR_K1OM)
2551 {
2552 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2553 || default_arch[6] != '\0')
2554 as_fatal (_("Intel K1OM is 64bit ELF only"));
2555 return bfd_mach_k1om;
2556 }
2557 else if (default_arch[6] == '\0')
2558 return bfd_mach_x86_64;
2559 else
2560 return bfd_mach_x64_32;
2561 }
2562 else if (!strcmp (default_arch, "i386")
2563 || !strcmp (default_arch, "iamcu"))
2564 {
2565 if (cpu_arch_isa == PROCESSOR_IAMCU)
2566 {
2567 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2568 as_fatal (_("Intel MCU is 32bit ELF only"));
2569 return bfd_mach_i386_iamcu;
2570 }
2571 else
2572 return bfd_mach_i386_i386;
2573 }
2574 else
2575 as_fatal (_("unknown architecture"));
2576 }
2577 \f
2578 void
2579 md_begin (void)
2580 {
2581 const char *hash_err;
2582
2583 /* Initialize op_hash hash table. */
2584 op_hash = hash_new ();
2585
2586 {
2587 const insn_template *optab;
2588 templates *core_optab;
2589
2590 /* Setup for loop. */
2591 optab = i386_optab;
2592 core_optab = XNEW (templates);
2593 core_optab->start = optab;
2594
2595 while (1)
2596 {
2597 ++optab;
2598 if (optab->name == NULL
2599 || strcmp (optab->name, (optab - 1)->name) != 0)
2600 {
2601 /* different name --> ship out current template list;
2602 add to hash table; & begin anew. */
2603 core_optab->end = optab;
2604 hash_err = hash_insert (op_hash,
2605 (optab - 1)->name,
2606 (void *) core_optab);
2607 if (hash_err)
2608 {
2609 as_fatal (_("can't hash %s: %s"),
2610 (optab - 1)->name,
2611 hash_err);
2612 }
2613 if (optab->name == NULL)
2614 break;
2615 core_optab = XNEW (templates);
2616 core_optab->start = optab;
2617 }
2618 }
2619 }
2620
2621 /* Initialize reg_hash hash table. */
2622 reg_hash = hash_new ();
2623 {
2624 const reg_entry *regtab;
2625 unsigned int regtab_size = i386_regtab_size;
2626
2627 for (regtab = i386_regtab; regtab_size--; regtab++)
2628 {
2629 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2630 if (hash_err)
2631 as_fatal (_("can't hash %s: %s"),
2632 regtab->reg_name,
2633 hash_err);
2634 }
2635 }
2636
2637 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2638 {
2639 int c;
2640 char *p;
2641
2642 for (c = 0; c < 256; c++)
2643 {
2644 if (ISDIGIT (c))
2645 {
2646 digit_chars[c] = c;
2647 mnemonic_chars[c] = c;
2648 register_chars[c] = c;
2649 operand_chars[c] = c;
2650 }
2651 else if (ISLOWER (c))
2652 {
2653 mnemonic_chars[c] = c;
2654 register_chars[c] = c;
2655 operand_chars[c] = c;
2656 }
2657 else if (ISUPPER (c))
2658 {
2659 mnemonic_chars[c] = TOLOWER (c);
2660 register_chars[c] = mnemonic_chars[c];
2661 operand_chars[c] = c;
2662 }
2663 else if (c == '{' || c == '}')
2664 operand_chars[c] = c;
2665
2666 if (ISALPHA (c) || ISDIGIT (c))
2667 identifier_chars[c] = c;
2668 else if (c >= 128)
2669 {
2670 identifier_chars[c] = c;
2671 operand_chars[c] = c;
2672 }
2673 }
2674
2675 #ifdef LEX_AT
2676 identifier_chars['@'] = '@';
2677 #endif
2678 #ifdef LEX_QM
2679 identifier_chars['?'] = '?';
2680 operand_chars['?'] = '?';
2681 #endif
2682 digit_chars['-'] = '-';
2683 mnemonic_chars['_'] = '_';
2684 mnemonic_chars['-'] = '-';
2685 mnemonic_chars['.'] = '.';
2686 identifier_chars['_'] = '_';
2687 identifier_chars['.'] = '.';
2688
2689 for (p = operand_special_chars; *p != '\0'; p++)
2690 operand_chars[(unsigned char) *p] = *p;
2691 }
2692
2693 if (flag_code == CODE_64BIT)
2694 {
2695 #if defined (OBJ_COFF) && defined (TE_PE)
2696 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2697 ? 32 : 16);
2698 #else
2699 x86_dwarf2_return_column = 16;
2700 #endif
2701 x86_cie_data_alignment = -8;
2702 }
2703 else
2704 {
2705 x86_dwarf2_return_column = 8;
2706 x86_cie_data_alignment = -4;
2707 }
2708 }
2709
2710 void
2711 i386_print_statistics (FILE *file)
2712 {
2713 hash_print_statistics (file, "i386 opcode", op_hash);
2714 hash_print_statistics (file, "i386 register", reg_hash);
2715 }
2716 \f
2717 #ifdef DEBUG386
2718
2719 /* Debugging routines for md_assemble. */
2720 static void pte (insn_template *);
2721 static void pt (i386_operand_type);
2722 static void pe (expressionS *);
2723 static void ps (symbolS *);
2724
2725 static void
2726 pi (char *line, i386_insn *x)
2727 {
2728 unsigned int j;
2729
2730 fprintf (stdout, "%s: template ", line);
2731 pte (&x->tm);
2732 fprintf (stdout, " address: base %s index %s scale %x\n",
2733 x->base_reg ? x->base_reg->reg_name : "none",
2734 x->index_reg ? x->index_reg->reg_name : "none",
2735 x->log2_scale_factor);
2736 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2737 x->rm.mode, x->rm.reg, x->rm.regmem);
2738 fprintf (stdout, " sib: base %x index %x scale %x\n",
2739 x->sib.base, x->sib.index, x->sib.scale);
2740 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2741 (x->rex & REX_W) != 0,
2742 (x->rex & REX_R) != 0,
2743 (x->rex & REX_X) != 0,
2744 (x->rex & REX_B) != 0);
2745 for (j = 0; j < x->operands; j++)
2746 {
2747 fprintf (stdout, " #%d: ", j + 1);
2748 pt (x->types[j]);
2749 fprintf (stdout, "\n");
2750 if (x->types[j].bitfield.reg8
2751 || x->types[j].bitfield.reg16
2752 || x->types[j].bitfield.reg32
2753 || x->types[j].bitfield.reg64
2754 || x->types[j].bitfield.regmmx
2755 || x->types[j].bitfield.regxmm
2756 || x->types[j].bitfield.regymm
2757 || x->types[j].bitfield.regzmm
2758 || x->types[j].bitfield.sreg2
2759 || x->types[j].bitfield.sreg3
2760 || x->types[j].bitfield.control
2761 || x->types[j].bitfield.debug
2762 || x->types[j].bitfield.test)
2763 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2764 if (operand_type_check (x->types[j], imm))
2765 pe (x->op[j].imms);
2766 if (operand_type_check (x->types[j], disp))
2767 pe (x->op[j].disps);
2768 }
2769 }
2770
2771 static void
2772 pte (insn_template *t)
2773 {
2774 unsigned int j;
2775 fprintf (stdout, " %d operands ", t->operands);
2776 fprintf (stdout, "opcode %x ", t->base_opcode);
2777 if (t->extension_opcode != None)
2778 fprintf (stdout, "ext %x ", t->extension_opcode);
2779 if (t->opcode_modifier.d)
2780 fprintf (stdout, "D");
2781 if (t->opcode_modifier.w)
2782 fprintf (stdout, "W");
2783 fprintf (stdout, "\n");
2784 for (j = 0; j < t->operands; j++)
2785 {
2786 fprintf (stdout, " #%d type ", j + 1);
2787 pt (t->operand_types[j]);
2788 fprintf (stdout, "\n");
2789 }
2790 }
2791
2792 static void
2793 pe (expressionS *e)
2794 {
2795 fprintf (stdout, " operation %d\n", e->X_op);
2796 fprintf (stdout, " add_number %ld (%lx)\n",
2797 (long) e->X_add_number, (long) e->X_add_number);
2798 if (e->X_add_symbol)
2799 {
2800 fprintf (stdout, " add_symbol ");
2801 ps (e->X_add_symbol);
2802 fprintf (stdout, "\n");
2803 }
2804 if (e->X_op_symbol)
2805 {
2806 fprintf (stdout, " op_symbol ");
2807 ps (e->X_op_symbol);
2808 fprintf (stdout, "\n");
2809 }
2810 }
2811
2812 static void
2813 ps (symbolS *s)
2814 {
2815 fprintf (stdout, "%s type %s%s",
2816 S_GET_NAME (s),
2817 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2818 segment_name (S_GET_SEGMENT (s)));
2819 }
2820
2821 static struct type_name
2822 {
2823 i386_operand_type mask;
2824 const char *name;
2825 }
2826 const type_names[] =
2827 {
2828 { OPERAND_TYPE_REG8, "r8" },
2829 { OPERAND_TYPE_REG16, "r16" },
2830 { OPERAND_TYPE_REG32, "r32" },
2831 { OPERAND_TYPE_REG64, "r64" },
2832 { OPERAND_TYPE_IMM8, "i8" },
2833 { OPERAND_TYPE_IMM8, "i8s" },
2834 { OPERAND_TYPE_IMM16, "i16" },
2835 { OPERAND_TYPE_IMM32, "i32" },
2836 { OPERAND_TYPE_IMM32S, "i32s" },
2837 { OPERAND_TYPE_IMM64, "i64" },
2838 { OPERAND_TYPE_IMM1, "i1" },
2839 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2840 { OPERAND_TYPE_DISP8, "d8" },
2841 { OPERAND_TYPE_DISP16, "d16" },
2842 { OPERAND_TYPE_DISP32, "d32" },
2843 { OPERAND_TYPE_DISP32S, "d32s" },
2844 { OPERAND_TYPE_DISP64, "d64" },
2845 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
2846 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2847 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2848 { OPERAND_TYPE_CONTROL, "control reg" },
2849 { OPERAND_TYPE_TEST, "test reg" },
2850 { OPERAND_TYPE_DEBUG, "debug reg" },
2851 { OPERAND_TYPE_FLOATREG, "FReg" },
2852 { OPERAND_TYPE_FLOATACC, "FAcc" },
2853 { OPERAND_TYPE_SREG2, "SReg2" },
2854 { OPERAND_TYPE_SREG3, "SReg3" },
2855 { OPERAND_TYPE_ACC, "Acc" },
2856 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2857 { OPERAND_TYPE_REGMMX, "rMMX" },
2858 { OPERAND_TYPE_REGXMM, "rXMM" },
2859 { OPERAND_TYPE_REGYMM, "rYMM" },
2860 { OPERAND_TYPE_REGZMM, "rZMM" },
2861 { OPERAND_TYPE_REGMASK, "Mask reg" },
2862 { OPERAND_TYPE_ESSEG, "es" },
2863 };
2864
2865 static void
2866 pt (i386_operand_type t)
2867 {
2868 unsigned int j;
2869 i386_operand_type a;
2870
2871 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2872 {
2873 a = operand_type_and (t, type_names[j].mask);
2874 if (!operand_type_all_zero (&a))
2875 fprintf (stdout, "%s, ", type_names[j].name);
2876 }
2877 fflush (stdout);
2878 }
2879
2880 #endif /* DEBUG386 */
2881 \f
2882 static bfd_reloc_code_real_type
2883 reloc (unsigned int size,
2884 int pcrel,
2885 int sign,
2886 bfd_reloc_code_real_type other)
2887 {
2888 if (other != NO_RELOC)
2889 {
2890 reloc_howto_type *rel;
2891
2892 if (size == 8)
2893 switch (other)
2894 {
2895 case BFD_RELOC_X86_64_GOT32:
2896 return BFD_RELOC_X86_64_GOT64;
2897 break;
2898 case BFD_RELOC_X86_64_GOTPLT64:
2899 return BFD_RELOC_X86_64_GOTPLT64;
2900 break;
2901 case BFD_RELOC_X86_64_PLTOFF64:
2902 return BFD_RELOC_X86_64_PLTOFF64;
2903 break;
2904 case BFD_RELOC_X86_64_GOTPC32:
2905 other = BFD_RELOC_X86_64_GOTPC64;
2906 break;
2907 case BFD_RELOC_X86_64_GOTPCREL:
2908 other = BFD_RELOC_X86_64_GOTPCREL64;
2909 break;
2910 case BFD_RELOC_X86_64_TPOFF32:
2911 other = BFD_RELOC_X86_64_TPOFF64;
2912 break;
2913 case BFD_RELOC_X86_64_DTPOFF32:
2914 other = BFD_RELOC_X86_64_DTPOFF64;
2915 break;
2916 default:
2917 break;
2918 }
2919
2920 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2921 if (other == BFD_RELOC_SIZE32)
2922 {
2923 if (size == 8)
2924 other = BFD_RELOC_SIZE64;
2925 if (pcrel)
2926 {
2927 as_bad (_("there are no pc-relative size relocations"));
2928 return NO_RELOC;
2929 }
2930 }
2931 #endif
2932
2933 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2934 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
2935 sign = -1;
2936
2937 rel = bfd_reloc_type_lookup (stdoutput, other);
2938 if (!rel)
2939 as_bad (_("unknown relocation (%u)"), other);
2940 else if (size != bfd_get_reloc_size (rel))
2941 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2942 bfd_get_reloc_size (rel),
2943 size);
2944 else if (pcrel && !rel->pc_relative)
2945 as_bad (_("non-pc-relative relocation for pc-relative field"));
2946 else if ((rel->complain_on_overflow == complain_overflow_signed
2947 && !sign)
2948 || (rel->complain_on_overflow == complain_overflow_unsigned
2949 && sign > 0))
2950 as_bad (_("relocated field and relocation type differ in signedness"));
2951 else
2952 return other;
2953 return NO_RELOC;
2954 }
2955
2956 if (pcrel)
2957 {
2958 if (!sign)
2959 as_bad (_("there are no unsigned pc-relative relocations"));
2960 switch (size)
2961 {
2962 case 1: return BFD_RELOC_8_PCREL;
2963 case 2: return BFD_RELOC_16_PCREL;
2964 case 4: return BFD_RELOC_32_PCREL;
2965 case 8: return BFD_RELOC_64_PCREL;
2966 }
2967 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2968 }
2969 else
2970 {
2971 if (sign > 0)
2972 switch (size)
2973 {
2974 case 4: return BFD_RELOC_X86_64_32S;
2975 }
2976 else
2977 switch (size)
2978 {
2979 case 1: return BFD_RELOC_8;
2980 case 2: return BFD_RELOC_16;
2981 case 4: return BFD_RELOC_32;
2982 case 8: return BFD_RELOC_64;
2983 }
2984 as_bad (_("cannot do %s %u byte relocation"),
2985 sign > 0 ? "signed" : "unsigned", size);
2986 }
2987
2988 return NO_RELOC;
2989 }
2990
2991 /* Here we decide which fixups can be adjusted to make them relative to
2992 the beginning of the section instead of the symbol. Basically we need
2993 to make sure that the dynamic relocations are done correctly, so in
2994 some cases we force the original symbol to be used. */
2995
2996 int
2997 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2998 {
2999 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3000 if (!IS_ELF)
3001 return 1;
3002
3003 /* Don't adjust pc-relative references to merge sections in 64-bit
3004 mode. */
3005 if (use_rela_relocations
3006 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3007 && fixP->fx_pcrel)
3008 return 0;
3009
3010 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3011 and changed later by validate_fix. */
3012 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3013 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3014 return 0;
3015
3016 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3017 for size relocations. */
3018 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3019 || fixP->fx_r_type == BFD_RELOC_SIZE64
3020 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3021 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3022 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3023 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3024 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3025 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3026 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3027 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3028 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3029 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3030 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3031 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3032 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3033 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3034 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3035 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3036 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3037 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3038 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3039 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3040 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3041 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3042 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3043 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3044 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3045 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3046 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3047 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3048 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3049 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3050 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3051 return 0;
3052 #endif
3053 return 1;
3054 }
3055
3056 static int
3057 intel_float_operand (const char *mnemonic)
3058 {
3059 /* Note that the value returned is meaningful only for opcodes with (memory)
3060 operands, hence the code here is free to improperly handle opcodes that
3061 have no operands (for better performance and smaller code). */
3062
3063 if (mnemonic[0] != 'f')
3064 return 0; /* non-math */
3065
3066 switch (mnemonic[1])
3067 {
3068 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3069 the fs segment override prefix not currently handled because no
3070 call path can make opcodes without operands get here */
3071 case 'i':
3072 return 2 /* integer op */;
3073 case 'l':
3074 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3075 return 3; /* fldcw/fldenv */
3076 break;
3077 case 'n':
3078 if (mnemonic[2] != 'o' /* fnop */)
3079 return 3; /* non-waiting control op */
3080 break;
3081 case 'r':
3082 if (mnemonic[2] == 's')
3083 return 3; /* frstor/frstpm */
3084 break;
3085 case 's':
3086 if (mnemonic[2] == 'a')
3087 return 3; /* fsave */
3088 if (mnemonic[2] == 't')
3089 {
3090 switch (mnemonic[3])
3091 {
3092 case 'c': /* fstcw */
3093 case 'd': /* fstdw */
3094 case 'e': /* fstenv */
3095 case 's': /* fsts[gw] */
3096 return 3;
3097 }
3098 }
3099 break;
3100 case 'x':
3101 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3102 return 0; /* fxsave/fxrstor are not really math ops */
3103 break;
3104 }
3105
3106 return 1;
3107 }
3108
3109 /* Build the VEX prefix. */
3110
3111 static void
3112 build_vex_prefix (const insn_template *t)
3113 {
3114 unsigned int register_specifier;
3115 unsigned int implied_prefix;
3116 unsigned int vector_length;
3117
3118 /* Check register specifier. */
3119 if (i.vex.register_specifier)
3120 {
3121 register_specifier =
3122 ~register_number (i.vex.register_specifier) & 0xf;
3123 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3124 }
3125 else
3126 register_specifier = 0xf;
3127
3128 /* Use 2-byte VEX prefix by swappping destination and source
3129 operand. */
3130 if (!i.swap_operand
3131 && i.operands == i.reg_operands
3132 && i.tm.opcode_modifier.vexopcode == VEX0F
3133 && i.tm.opcode_modifier.s
3134 && i.rex == REX_B)
3135 {
3136 unsigned int xchg = i.operands - 1;
3137 union i386_op temp_op;
3138 i386_operand_type temp_type;
3139
3140 temp_type = i.types[xchg];
3141 i.types[xchg] = i.types[0];
3142 i.types[0] = temp_type;
3143 temp_op = i.op[xchg];
3144 i.op[xchg] = i.op[0];
3145 i.op[0] = temp_op;
3146
3147 gas_assert (i.rm.mode == 3);
3148
3149 i.rex = REX_R;
3150 xchg = i.rm.regmem;
3151 i.rm.regmem = i.rm.reg;
3152 i.rm.reg = xchg;
3153
3154 /* Use the next insn. */
3155 i.tm = t[1];
3156 }
3157
3158 if (i.tm.opcode_modifier.vex == VEXScalar)
3159 vector_length = avxscalar;
3160 else
3161 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
3162
3163 switch ((i.tm.base_opcode >> 8) & 0xff)
3164 {
3165 case 0:
3166 implied_prefix = 0;
3167 break;
3168 case DATA_PREFIX_OPCODE:
3169 implied_prefix = 1;
3170 break;
3171 case REPE_PREFIX_OPCODE:
3172 implied_prefix = 2;
3173 break;
3174 case REPNE_PREFIX_OPCODE:
3175 implied_prefix = 3;
3176 break;
3177 default:
3178 abort ();
3179 }
3180
3181 /* Use 2-byte VEX prefix if possible. */
3182 if (i.tm.opcode_modifier.vexopcode == VEX0F
3183 && i.tm.opcode_modifier.vexw != VEXW1
3184 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3185 {
3186 /* 2-byte VEX prefix. */
3187 unsigned int r;
3188
3189 i.vex.length = 2;
3190 i.vex.bytes[0] = 0xc5;
3191
3192 /* Check the REX.R bit. */
3193 r = (i.rex & REX_R) ? 0 : 1;
3194 i.vex.bytes[1] = (r << 7
3195 | register_specifier << 3
3196 | vector_length << 2
3197 | implied_prefix);
3198 }
3199 else
3200 {
3201 /* 3-byte VEX prefix. */
3202 unsigned int m, w;
3203
3204 i.vex.length = 3;
3205
3206 switch (i.tm.opcode_modifier.vexopcode)
3207 {
3208 case VEX0F:
3209 m = 0x1;
3210 i.vex.bytes[0] = 0xc4;
3211 break;
3212 case VEX0F38:
3213 m = 0x2;
3214 i.vex.bytes[0] = 0xc4;
3215 break;
3216 case VEX0F3A:
3217 m = 0x3;
3218 i.vex.bytes[0] = 0xc4;
3219 break;
3220 case XOP08:
3221 m = 0x8;
3222 i.vex.bytes[0] = 0x8f;
3223 break;
3224 case XOP09:
3225 m = 0x9;
3226 i.vex.bytes[0] = 0x8f;
3227 break;
3228 case XOP0A:
3229 m = 0xa;
3230 i.vex.bytes[0] = 0x8f;
3231 break;
3232 default:
3233 abort ();
3234 }
3235
3236 /* The high 3 bits of the second VEX byte are 1's compliment
3237 of RXB bits from REX. */
3238 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3239
3240 /* Check the REX.W bit. */
3241 w = (i.rex & REX_W) ? 1 : 0;
3242 if (i.tm.opcode_modifier.vexw == VEXW1)
3243 w = 1;
3244
3245 i.vex.bytes[2] = (w << 7
3246 | register_specifier << 3
3247 | vector_length << 2
3248 | implied_prefix);
3249 }
3250 }
3251
3252 /* Build the EVEX prefix. */
3253
3254 static void
3255 build_evex_prefix (void)
3256 {
3257 unsigned int register_specifier;
3258 unsigned int implied_prefix;
3259 unsigned int m, w;
3260 rex_byte vrex_used = 0;
3261
3262 /* Check register specifier. */
3263 if (i.vex.register_specifier)
3264 {
3265 gas_assert ((i.vrex & REX_X) == 0);
3266
3267 register_specifier = i.vex.register_specifier->reg_num;
3268 if ((i.vex.register_specifier->reg_flags & RegRex))
3269 register_specifier += 8;
3270 /* The upper 16 registers are encoded in the fourth byte of the
3271 EVEX prefix. */
3272 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3273 i.vex.bytes[3] = 0x8;
3274 register_specifier = ~register_specifier & 0xf;
3275 }
3276 else
3277 {
3278 register_specifier = 0xf;
3279
3280 /* Encode upper 16 vector index register in the fourth byte of
3281 the EVEX prefix. */
3282 if (!(i.vrex & REX_X))
3283 i.vex.bytes[3] = 0x8;
3284 else
3285 vrex_used |= REX_X;
3286 }
3287
3288 switch ((i.tm.base_opcode >> 8) & 0xff)
3289 {
3290 case 0:
3291 implied_prefix = 0;
3292 break;
3293 case DATA_PREFIX_OPCODE:
3294 implied_prefix = 1;
3295 break;
3296 case REPE_PREFIX_OPCODE:
3297 implied_prefix = 2;
3298 break;
3299 case REPNE_PREFIX_OPCODE:
3300 implied_prefix = 3;
3301 break;
3302 default:
3303 abort ();
3304 }
3305
3306 /* 4 byte EVEX prefix. */
3307 i.vex.length = 4;
3308 i.vex.bytes[0] = 0x62;
3309
3310 /* mmmm bits. */
3311 switch (i.tm.opcode_modifier.vexopcode)
3312 {
3313 case VEX0F:
3314 m = 1;
3315 break;
3316 case VEX0F38:
3317 m = 2;
3318 break;
3319 case VEX0F3A:
3320 m = 3;
3321 break;
3322 default:
3323 abort ();
3324 break;
3325 }
3326
3327 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3328 bits from REX. */
3329 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3330
3331 /* The fifth bit of the second EVEX byte is 1's compliment of the
3332 REX_R bit in VREX. */
3333 if (!(i.vrex & REX_R))
3334 i.vex.bytes[1] |= 0x10;
3335 else
3336 vrex_used |= REX_R;
3337
3338 if ((i.reg_operands + i.imm_operands) == i.operands)
3339 {
3340 /* When all operands are registers, the REX_X bit in REX is not
3341 used. We reuse it to encode the upper 16 registers, which is
3342 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3343 as 1's compliment. */
3344 if ((i.vrex & REX_B))
3345 {
3346 vrex_used |= REX_B;
3347 i.vex.bytes[1] &= ~0x40;
3348 }
3349 }
3350
3351 /* EVEX instructions shouldn't need the REX prefix. */
3352 i.vrex &= ~vrex_used;
3353 gas_assert (i.vrex == 0);
3354
3355 /* Check the REX.W bit. */
3356 w = (i.rex & REX_W) ? 1 : 0;
3357 if (i.tm.opcode_modifier.vexw)
3358 {
3359 if (i.tm.opcode_modifier.vexw == VEXW1)
3360 w = 1;
3361 }
3362 /* If w is not set it means we are dealing with WIG instruction. */
3363 else if (!w)
3364 {
3365 if (evexwig == evexw1)
3366 w = 1;
3367 }
3368
3369 /* Encode the U bit. */
3370 implied_prefix |= 0x4;
3371
3372 /* The third byte of the EVEX prefix. */
3373 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3374
3375 /* The fourth byte of the EVEX prefix. */
3376 /* The zeroing-masking bit. */
3377 if (i.mask && i.mask->zeroing)
3378 i.vex.bytes[3] |= 0x80;
3379
3380 /* Don't always set the broadcast bit if there is no RC. */
3381 if (!i.rounding)
3382 {
3383 /* Encode the vector length. */
3384 unsigned int vec_length;
3385
3386 switch (i.tm.opcode_modifier.evex)
3387 {
3388 case EVEXLIG: /* LL' is ignored */
3389 vec_length = evexlig << 5;
3390 break;
3391 case EVEX128:
3392 vec_length = 0 << 5;
3393 break;
3394 case EVEX256:
3395 vec_length = 1 << 5;
3396 break;
3397 case EVEX512:
3398 vec_length = 2 << 5;
3399 break;
3400 default:
3401 abort ();
3402 break;
3403 }
3404 i.vex.bytes[3] |= vec_length;
3405 /* Encode the broadcast bit. */
3406 if (i.broadcast)
3407 i.vex.bytes[3] |= 0x10;
3408 }
3409 else
3410 {
3411 if (i.rounding->type != saeonly)
3412 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3413 else
3414 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3415 }
3416
3417 if (i.mask && i.mask->mask)
3418 i.vex.bytes[3] |= i.mask->mask->reg_num;
3419 }
3420
3421 static void
3422 process_immext (void)
3423 {
3424 expressionS *exp;
3425
3426 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3427 && i.operands > 0)
3428 {
3429 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3430 with an opcode suffix which is coded in the same place as an
3431 8-bit immediate field would be.
3432 Here we check those operands and remove them afterwards. */
3433 unsigned int x;
3434
3435 for (x = 0; x < i.operands; x++)
3436 if (register_number (i.op[x].regs) != x)
3437 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3438 register_prefix, i.op[x].regs->reg_name, x + 1,
3439 i.tm.name);
3440
3441 i.operands = 0;
3442 }
3443
3444 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3445 {
3446 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3447 suffix which is coded in the same place as an 8-bit immediate
3448 field would be.
3449 Here we check those operands and remove them afterwards. */
3450 unsigned int x;
3451
3452 if (i.operands != 3)
3453 abort();
3454
3455 for (x = 0; x < 2; x++)
3456 if (register_number (i.op[x].regs) != x)
3457 goto bad_register_operand;
3458
3459 /* Check for third operand for mwaitx/monitorx insn. */
3460 if (register_number (i.op[x].regs)
3461 != (x + (i.tm.extension_opcode == 0xfb)))
3462 {
3463 bad_register_operand:
3464 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3465 register_prefix, i.op[x].regs->reg_name, x+1,
3466 i.tm.name);
3467 }
3468
3469 i.operands = 0;
3470 }
3471
3472 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3473 which is coded in the same place as an 8-bit immediate field
3474 would be. Here we fake an 8-bit immediate operand from the
3475 opcode suffix stored in tm.extension_opcode.
3476
3477 AVX instructions also use this encoding, for some of
3478 3 argument instructions. */
3479
3480 gas_assert (i.imm_operands <= 1
3481 && (i.operands <= 2
3482 || ((i.tm.opcode_modifier.vex
3483 || i.tm.opcode_modifier.evex)
3484 && i.operands <= 4)));
3485
3486 exp = &im_expressions[i.imm_operands++];
3487 i.op[i.operands].imms = exp;
3488 i.types[i.operands] = imm8;
3489 i.operands++;
3490 exp->X_op = O_constant;
3491 exp->X_add_number = i.tm.extension_opcode;
3492 i.tm.extension_opcode = None;
3493 }
3494
3495
3496 static int
3497 check_hle (void)
3498 {
3499 switch (i.tm.opcode_modifier.hleprefixok)
3500 {
3501 default:
3502 abort ();
3503 case HLEPrefixNone:
3504 as_bad (_("invalid instruction `%s' after `%s'"),
3505 i.tm.name, i.hle_prefix);
3506 return 0;
3507 case HLEPrefixLock:
3508 if (i.prefix[LOCK_PREFIX])
3509 return 1;
3510 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3511 return 0;
3512 case HLEPrefixAny:
3513 return 1;
3514 case HLEPrefixRelease:
3515 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3516 {
3517 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3518 i.tm.name);
3519 return 0;
3520 }
3521 if (i.mem_operands == 0
3522 || !operand_type_check (i.types[i.operands - 1], anymem))
3523 {
3524 as_bad (_("memory destination needed for instruction `%s'"
3525 " after `xrelease'"), i.tm.name);
3526 return 0;
3527 }
3528 return 1;
3529 }
3530 }
3531
3532 /* This is the guts of the machine-dependent assembler. LINE points to a
3533 machine dependent instruction. This function is supposed to emit
3534 the frags/bytes it assembles to. */
3535
3536 void
3537 md_assemble (char *line)
3538 {
3539 unsigned int j;
3540 char mnemonic[MAX_MNEM_SIZE];
3541 const insn_template *t;
3542
3543 /* Initialize globals. */
3544 memset (&i, '\0', sizeof (i));
3545 for (j = 0; j < MAX_OPERANDS; j++)
3546 i.reloc[j] = NO_RELOC;
3547 memset (disp_expressions, '\0', sizeof (disp_expressions));
3548 memset (im_expressions, '\0', sizeof (im_expressions));
3549 save_stack_p = save_stack;
3550
3551 /* First parse an instruction mnemonic & call i386_operand for the operands.
3552 We assume that the scrubber has arranged it so that line[0] is the valid
3553 start of a (possibly prefixed) mnemonic. */
3554
3555 line = parse_insn (line, mnemonic);
3556 if (line == NULL)
3557 return;
3558
3559 line = parse_operands (line, mnemonic);
3560 this_operand = -1;
3561 xfree (i.memop1_string);
3562 i.memop1_string = NULL;
3563 if (line == NULL)
3564 return;
3565
3566 /* Now we've parsed the mnemonic into a set of templates, and have the
3567 operands at hand. */
3568
3569 /* All intel opcodes have reversed operands except for "bound" and
3570 "enter". We also don't reverse intersegment "jmp" and "call"
3571 instructions with 2 immediate operands so that the immediate segment
3572 precedes the offset, as it does when in AT&T mode. */
3573 if (intel_syntax
3574 && i.operands > 1
3575 && (strcmp (mnemonic, "bound") != 0)
3576 && (strcmp (mnemonic, "invlpga") != 0)
3577 && !(operand_type_check (i.types[0], imm)
3578 && operand_type_check (i.types[1], imm)))
3579 swap_operands ();
3580
3581 /* The order of the immediates should be reversed
3582 for 2 immediates extrq and insertq instructions */
3583 if (i.imm_operands == 2
3584 && (strcmp (mnemonic, "extrq") == 0
3585 || strcmp (mnemonic, "insertq") == 0))
3586 swap_2_operands (0, 1);
3587
3588 if (i.imm_operands)
3589 optimize_imm ();
3590
3591 /* Don't optimize displacement for movabs since it only takes 64bit
3592 displacement. */
3593 if (i.disp_operands
3594 && i.disp_encoding != disp_encoding_32bit
3595 && (flag_code != CODE_64BIT
3596 || strcmp (mnemonic, "movabs") != 0))
3597 optimize_disp ();
3598
3599 /* Next, we find a template that matches the given insn,
3600 making sure the overlap of the given operands types is consistent
3601 with the template operand types. */
3602
3603 if (!(t = match_template ()))
3604 return;
3605
3606 if (sse_check != check_none
3607 && !i.tm.opcode_modifier.noavx
3608 && (i.tm.cpu_flags.bitfield.cpusse
3609 || i.tm.cpu_flags.bitfield.cpusse2
3610 || i.tm.cpu_flags.bitfield.cpusse3
3611 || i.tm.cpu_flags.bitfield.cpussse3
3612 || i.tm.cpu_flags.bitfield.cpusse4_1
3613 || i.tm.cpu_flags.bitfield.cpusse4_2))
3614 {
3615 (sse_check == check_warning
3616 ? as_warn
3617 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3618 }
3619
3620 /* Zap movzx and movsx suffix. The suffix has been set from
3621 "word ptr" or "byte ptr" on the source operand in Intel syntax
3622 or extracted from mnemonic in AT&T syntax. But we'll use
3623 the destination register to choose the suffix for encoding. */
3624 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3625 {
3626 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3627 there is no suffix, the default will be byte extension. */
3628 if (i.reg_operands != 2
3629 && !i.suffix
3630 && intel_syntax)
3631 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3632
3633 i.suffix = 0;
3634 }
3635
3636 if (i.tm.opcode_modifier.fwait)
3637 if (!add_prefix (FWAIT_OPCODE))
3638 return;
3639
3640 /* Check if REP prefix is OK. */
3641 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3642 {
3643 as_bad (_("invalid instruction `%s' after `%s'"),
3644 i.tm.name, i.rep_prefix);
3645 return;
3646 }
3647
3648 /* Check for lock without a lockable instruction. Destination operand
3649 must be memory unless it is xchg (0x86). */
3650 if (i.prefix[LOCK_PREFIX]
3651 && (!i.tm.opcode_modifier.islockable
3652 || i.mem_operands == 0
3653 || (i.tm.base_opcode != 0x86
3654 && !operand_type_check (i.types[i.operands - 1], anymem))))
3655 {
3656 as_bad (_("expecting lockable instruction after `lock'"));
3657 return;
3658 }
3659
3660 /* Check if HLE prefix is OK. */
3661 if (i.hle_prefix && !check_hle ())
3662 return;
3663
3664 /* Check BND prefix. */
3665 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3666 as_bad (_("expecting valid branch instruction after `bnd'"));
3667
3668 if (i.tm.cpu_flags.bitfield.cpumpx
3669 && flag_code == CODE_64BIT
3670 && i.prefix[ADDR_PREFIX])
3671 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3672
3673 /* Insert BND prefix. */
3674 if (add_bnd_prefix
3675 && i.tm.opcode_modifier.bndprefixok
3676 && !i.prefix[BND_PREFIX])
3677 add_prefix (BND_PREFIX_OPCODE);
3678
3679 /* Check string instruction segment overrides. */
3680 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3681 {
3682 if (!check_string ())
3683 return;
3684 i.disp_operands = 0;
3685 }
3686
3687 if (!process_suffix ())
3688 return;
3689
3690 /* Update operand types. */
3691 for (j = 0; j < i.operands; j++)
3692 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3693
3694 /* Make still unresolved immediate matches conform to size of immediate
3695 given in i.suffix. */
3696 if (!finalize_imm ())
3697 return;
3698
3699 if (i.types[0].bitfield.imm1)
3700 i.imm_operands = 0; /* kludge for shift insns. */
3701
3702 /* We only need to check those implicit registers for instructions
3703 with 3 operands or less. */
3704 if (i.operands <= 3)
3705 for (j = 0; j < i.operands; j++)
3706 if (i.types[j].bitfield.inoutportreg
3707 || i.types[j].bitfield.shiftcount
3708 || i.types[j].bitfield.acc
3709 || i.types[j].bitfield.floatacc)
3710 i.reg_operands--;
3711
3712 /* ImmExt should be processed after SSE2AVX. */
3713 if (!i.tm.opcode_modifier.sse2avx
3714 && i.tm.opcode_modifier.immext)
3715 process_immext ();
3716
3717 /* For insns with operands there are more diddles to do to the opcode. */
3718 if (i.operands)
3719 {
3720 if (!process_operands ())
3721 return;
3722 }
3723 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3724 {
3725 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3726 as_warn (_("translating to `%sp'"), i.tm.name);
3727 }
3728
3729 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3730 {
3731 if (flag_code == CODE_16BIT)
3732 {
3733 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3734 i.tm.name);
3735 return;
3736 }
3737
3738 if (i.tm.opcode_modifier.vex)
3739 build_vex_prefix (t);
3740 else
3741 build_evex_prefix ();
3742 }
3743
3744 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3745 instructions may define INT_OPCODE as well, so avoid this corner
3746 case for those instructions that use MODRM. */
3747 if (i.tm.base_opcode == INT_OPCODE
3748 && !i.tm.opcode_modifier.modrm
3749 && i.op[0].imms->X_add_number == 3)
3750 {
3751 i.tm.base_opcode = INT3_OPCODE;
3752 i.imm_operands = 0;
3753 }
3754
3755 if ((i.tm.opcode_modifier.jump
3756 || i.tm.opcode_modifier.jumpbyte
3757 || i.tm.opcode_modifier.jumpdword)
3758 && i.op[0].disps->X_op == O_constant)
3759 {
3760 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3761 the absolute address given by the constant. Since ix86 jumps and
3762 calls are pc relative, we need to generate a reloc. */
3763 i.op[0].disps->X_add_symbol = &abs_symbol;
3764 i.op[0].disps->X_op = O_symbol;
3765 }
3766
3767 if (i.tm.opcode_modifier.rex64)
3768 i.rex |= REX_W;
3769
3770 /* For 8 bit registers we need an empty rex prefix. Also if the
3771 instruction already has a prefix, we need to convert old
3772 registers to new ones. */
3773
3774 if ((i.types[0].bitfield.reg8
3775 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3776 || (i.types[1].bitfield.reg8
3777 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3778 || ((i.types[0].bitfield.reg8
3779 || i.types[1].bitfield.reg8)
3780 && i.rex != 0))
3781 {
3782 int x;
3783
3784 i.rex |= REX_OPCODE;
3785 for (x = 0; x < 2; x++)
3786 {
3787 /* Look for 8 bit operand that uses old registers. */
3788 if (i.types[x].bitfield.reg8
3789 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3790 {
3791 /* In case it is "hi" register, give up. */
3792 if (i.op[x].regs->reg_num > 3)
3793 as_bad (_("can't encode register '%s%s' in an "
3794 "instruction requiring REX prefix."),
3795 register_prefix, i.op[x].regs->reg_name);
3796
3797 /* Otherwise it is equivalent to the extended register.
3798 Since the encoding doesn't change this is merely
3799 cosmetic cleanup for debug output. */
3800
3801 i.op[x].regs = i.op[x].regs + 8;
3802 }
3803 }
3804 }
3805
3806 if (i.rex != 0)
3807 add_prefix (REX_OPCODE | i.rex);
3808
3809 /* We are ready to output the insn. */
3810 output_insn ();
3811 }
3812
3813 static char *
3814 parse_insn (char *line, char *mnemonic)
3815 {
3816 char *l = line;
3817 char *token_start = l;
3818 char *mnem_p;
3819 int supported;
3820 const insn_template *t;
3821 char *dot_p = NULL;
3822
3823 while (1)
3824 {
3825 mnem_p = mnemonic;
3826 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3827 {
3828 if (*mnem_p == '.')
3829 dot_p = mnem_p;
3830 mnem_p++;
3831 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3832 {
3833 as_bad (_("no such instruction: `%s'"), token_start);
3834 return NULL;
3835 }
3836 l++;
3837 }
3838 if (!is_space_char (*l)
3839 && *l != END_OF_INSN
3840 && (intel_syntax
3841 || (*l != PREFIX_SEPARATOR
3842 && *l != ',')))
3843 {
3844 as_bad (_("invalid character %s in mnemonic"),
3845 output_invalid (*l));
3846 return NULL;
3847 }
3848 if (token_start == l)
3849 {
3850 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3851 as_bad (_("expecting prefix; got nothing"));
3852 else
3853 as_bad (_("expecting mnemonic; got nothing"));
3854 return NULL;
3855 }
3856
3857 /* Look up instruction (or prefix) via hash table. */
3858 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3859
3860 if (*l != END_OF_INSN
3861 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3862 && current_templates
3863 && current_templates->start->opcode_modifier.isprefix)
3864 {
3865 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3866 {
3867 as_bad ((flag_code != CODE_64BIT
3868 ? _("`%s' is only supported in 64-bit mode")
3869 : _("`%s' is not supported in 64-bit mode")),
3870 current_templates->start->name);
3871 return NULL;
3872 }
3873 /* If we are in 16-bit mode, do not allow addr16 or data16.
3874 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3875 if ((current_templates->start->opcode_modifier.size16
3876 || current_templates->start->opcode_modifier.size32)
3877 && flag_code != CODE_64BIT
3878 && (current_templates->start->opcode_modifier.size32
3879 ^ (flag_code == CODE_16BIT)))
3880 {
3881 as_bad (_("redundant %s prefix"),
3882 current_templates->start->name);
3883 return NULL;
3884 }
3885 /* Add prefix, checking for repeated prefixes. */
3886 switch (add_prefix (current_templates->start->base_opcode))
3887 {
3888 case PREFIX_EXIST:
3889 return NULL;
3890 case PREFIX_REP:
3891 if (current_templates->start->cpu_flags.bitfield.cpuhle)
3892 i.hle_prefix = current_templates->start->name;
3893 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
3894 i.bnd_prefix = current_templates->start->name;
3895 else
3896 i.rep_prefix = current_templates->start->name;
3897 break;
3898 default:
3899 break;
3900 }
3901 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3902 token_start = ++l;
3903 }
3904 else
3905 break;
3906 }
3907
3908 if (!current_templates)
3909 {
3910 /* Check if we should swap operand or force 32bit displacement in
3911 encoding. */
3912 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3913 i.swap_operand = 1;
3914 else if (mnem_p - 3 == dot_p
3915 && dot_p[1] == 'd'
3916 && dot_p[2] == '8')
3917 i.disp_encoding = disp_encoding_8bit;
3918 else if (mnem_p - 4 == dot_p
3919 && dot_p[1] == 'd'
3920 && dot_p[2] == '3'
3921 && dot_p[3] == '2')
3922 i.disp_encoding = disp_encoding_32bit;
3923 else
3924 goto check_suffix;
3925 mnem_p = dot_p;
3926 *dot_p = '\0';
3927 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3928 }
3929
3930 if (!current_templates)
3931 {
3932 check_suffix:
3933 /* See if we can get a match by trimming off a suffix. */
3934 switch (mnem_p[-1])
3935 {
3936 case WORD_MNEM_SUFFIX:
3937 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3938 i.suffix = SHORT_MNEM_SUFFIX;
3939 else
3940 case BYTE_MNEM_SUFFIX:
3941 case QWORD_MNEM_SUFFIX:
3942 i.suffix = mnem_p[-1];
3943 mnem_p[-1] = '\0';
3944 current_templates = (const templates *) hash_find (op_hash,
3945 mnemonic);
3946 break;
3947 case SHORT_MNEM_SUFFIX:
3948 case LONG_MNEM_SUFFIX:
3949 if (!intel_syntax)
3950 {
3951 i.suffix = mnem_p[-1];
3952 mnem_p[-1] = '\0';
3953 current_templates = (const templates *) hash_find (op_hash,
3954 mnemonic);
3955 }
3956 break;
3957
3958 /* Intel Syntax. */
3959 case 'd':
3960 if (intel_syntax)
3961 {
3962 if (intel_float_operand (mnemonic) == 1)
3963 i.suffix = SHORT_MNEM_SUFFIX;
3964 else
3965 i.suffix = LONG_MNEM_SUFFIX;
3966 mnem_p[-1] = '\0';
3967 current_templates = (const templates *) hash_find (op_hash,
3968 mnemonic);
3969 }
3970 break;
3971 }
3972 if (!current_templates)
3973 {
3974 as_bad (_("no such instruction: `%s'"), token_start);
3975 return NULL;
3976 }
3977 }
3978
3979 if (current_templates->start->opcode_modifier.jump
3980 || current_templates->start->opcode_modifier.jumpbyte)
3981 {
3982 /* Check for a branch hint. We allow ",pt" and ",pn" for
3983 predict taken and predict not taken respectively.
3984 I'm not sure that branch hints actually do anything on loop
3985 and jcxz insns (JumpByte) for current Pentium4 chips. They
3986 may work in the future and it doesn't hurt to accept them
3987 now. */
3988 if (l[0] == ',' && l[1] == 'p')
3989 {
3990 if (l[2] == 't')
3991 {
3992 if (!add_prefix (DS_PREFIX_OPCODE))
3993 return NULL;
3994 l += 3;
3995 }
3996 else if (l[2] == 'n')
3997 {
3998 if (!add_prefix (CS_PREFIX_OPCODE))
3999 return NULL;
4000 l += 3;
4001 }
4002 }
4003 }
4004 /* Any other comma loses. */
4005 if (*l == ',')
4006 {
4007 as_bad (_("invalid character %s in mnemonic"),
4008 output_invalid (*l));
4009 return NULL;
4010 }
4011
4012 /* Check if instruction is supported on specified architecture. */
4013 supported = 0;
4014 for (t = current_templates->start; t < current_templates->end; ++t)
4015 {
4016 supported |= cpu_flags_match (t);
4017 if (supported == CPU_FLAGS_PERFECT_MATCH)
4018 goto skip;
4019 }
4020
4021 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4022 {
4023 as_bad (flag_code == CODE_64BIT
4024 ? _("`%s' is not supported in 64-bit mode")
4025 : _("`%s' is only supported in 64-bit mode"),
4026 current_templates->start->name);
4027 return NULL;
4028 }
4029 if (supported != CPU_FLAGS_PERFECT_MATCH)
4030 {
4031 as_bad (_("`%s' is not supported on `%s%s'"),
4032 current_templates->start->name,
4033 cpu_arch_name ? cpu_arch_name : default_arch,
4034 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4035 return NULL;
4036 }
4037
4038 skip:
4039 if (!cpu_arch_flags.bitfield.cpui386
4040 && (flag_code != CODE_16BIT))
4041 {
4042 as_warn (_("use .code16 to ensure correct addressing mode"));
4043 }
4044
4045 return l;
4046 }
4047
4048 static char *
4049 parse_operands (char *l, const char *mnemonic)
4050 {
4051 char *token_start;
4052
4053 /* 1 if operand is pending after ','. */
4054 unsigned int expecting_operand = 0;
4055
4056 /* Non-zero if operand parens not balanced. */
4057 unsigned int paren_not_balanced;
4058
4059 while (*l != END_OF_INSN)
4060 {
4061 /* Skip optional white space before operand. */
4062 if (is_space_char (*l))
4063 ++l;
4064 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4065 {
4066 as_bad (_("invalid character %s before operand %d"),
4067 output_invalid (*l),
4068 i.operands + 1);
4069 return NULL;
4070 }
4071 token_start = l; /* After white space. */
4072 paren_not_balanced = 0;
4073 while (paren_not_balanced || *l != ',')
4074 {
4075 if (*l == END_OF_INSN)
4076 {
4077 if (paren_not_balanced)
4078 {
4079 if (!intel_syntax)
4080 as_bad (_("unbalanced parenthesis in operand %d."),
4081 i.operands + 1);
4082 else
4083 as_bad (_("unbalanced brackets in operand %d."),
4084 i.operands + 1);
4085 return NULL;
4086 }
4087 else
4088 break; /* we are done */
4089 }
4090 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4091 {
4092 as_bad (_("invalid character %s in operand %d"),
4093 output_invalid (*l),
4094 i.operands + 1);
4095 return NULL;
4096 }
4097 if (!intel_syntax)
4098 {
4099 if (*l == '(')
4100 ++paren_not_balanced;
4101 if (*l == ')')
4102 --paren_not_balanced;
4103 }
4104 else
4105 {
4106 if (*l == '[')
4107 ++paren_not_balanced;
4108 if (*l == ']')
4109 --paren_not_balanced;
4110 }
4111 l++;
4112 }
4113 if (l != token_start)
4114 { /* Yes, we've read in another operand. */
4115 unsigned int operand_ok;
4116 this_operand = i.operands++;
4117 i.types[this_operand].bitfield.unspecified = 1;
4118 if (i.operands > MAX_OPERANDS)
4119 {
4120 as_bad (_("spurious operands; (%d operands/instruction max)"),
4121 MAX_OPERANDS);
4122 return NULL;
4123 }
4124 /* Now parse operand adding info to 'i' as we go along. */
4125 END_STRING_AND_SAVE (l);
4126
4127 if (intel_syntax)
4128 operand_ok =
4129 i386_intel_operand (token_start,
4130 intel_float_operand (mnemonic));
4131 else
4132 operand_ok = i386_att_operand (token_start);
4133
4134 RESTORE_END_STRING (l);
4135 if (!operand_ok)
4136 return NULL;
4137 }
4138 else
4139 {
4140 if (expecting_operand)
4141 {
4142 expecting_operand_after_comma:
4143 as_bad (_("expecting operand after ','; got nothing"));
4144 return NULL;
4145 }
4146 if (*l == ',')
4147 {
4148 as_bad (_("expecting operand before ','; got nothing"));
4149 return NULL;
4150 }
4151 }
4152
4153 /* Now *l must be either ',' or END_OF_INSN. */
4154 if (*l == ',')
4155 {
4156 if (*++l == END_OF_INSN)
4157 {
4158 /* Just skip it, if it's \n complain. */
4159 goto expecting_operand_after_comma;
4160 }
4161 expecting_operand = 1;
4162 }
4163 }
4164 return l;
4165 }
4166
4167 static void
4168 swap_2_operands (int xchg1, int xchg2)
4169 {
4170 union i386_op temp_op;
4171 i386_operand_type temp_type;
4172 enum bfd_reloc_code_real temp_reloc;
4173
4174 temp_type = i.types[xchg2];
4175 i.types[xchg2] = i.types[xchg1];
4176 i.types[xchg1] = temp_type;
4177 temp_op = i.op[xchg2];
4178 i.op[xchg2] = i.op[xchg1];
4179 i.op[xchg1] = temp_op;
4180 temp_reloc = i.reloc[xchg2];
4181 i.reloc[xchg2] = i.reloc[xchg1];
4182 i.reloc[xchg1] = temp_reloc;
4183
4184 if (i.mask)
4185 {
4186 if (i.mask->operand == xchg1)
4187 i.mask->operand = xchg2;
4188 else if (i.mask->operand == xchg2)
4189 i.mask->operand = xchg1;
4190 }
4191 if (i.broadcast)
4192 {
4193 if (i.broadcast->operand == xchg1)
4194 i.broadcast->operand = xchg2;
4195 else if (i.broadcast->operand == xchg2)
4196 i.broadcast->operand = xchg1;
4197 }
4198 if (i.rounding)
4199 {
4200 if (i.rounding->operand == xchg1)
4201 i.rounding->operand = xchg2;
4202 else if (i.rounding->operand == xchg2)
4203 i.rounding->operand = xchg1;
4204 }
4205 }
4206
4207 static void
4208 swap_operands (void)
4209 {
4210 switch (i.operands)
4211 {
4212 case 5:
4213 case 4:
4214 swap_2_operands (1, i.operands - 2);
4215 case 3:
4216 case 2:
4217 swap_2_operands (0, i.operands - 1);
4218 break;
4219 default:
4220 abort ();
4221 }
4222
4223 if (i.mem_operands == 2)
4224 {
4225 const seg_entry *temp_seg;
4226 temp_seg = i.seg[0];
4227 i.seg[0] = i.seg[1];
4228 i.seg[1] = temp_seg;
4229 }
4230 }
4231
4232 /* Try to ensure constant immediates are represented in the smallest
4233 opcode possible. */
4234 static void
4235 optimize_imm (void)
4236 {
4237 char guess_suffix = 0;
4238 int op;
4239
4240 if (i.suffix)
4241 guess_suffix = i.suffix;
4242 else if (i.reg_operands)
4243 {
4244 /* Figure out a suffix from the last register operand specified.
4245 We can't do this properly yet, ie. excluding InOutPortReg,
4246 but the following works for instructions with immediates.
4247 In any case, we can't set i.suffix yet. */
4248 for (op = i.operands; --op >= 0;)
4249 if (i.types[op].bitfield.reg8)
4250 {
4251 guess_suffix = BYTE_MNEM_SUFFIX;
4252 break;
4253 }
4254 else if (i.types[op].bitfield.reg16)
4255 {
4256 guess_suffix = WORD_MNEM_SUFFIX;
4257 break;
4258 }
4259 else if (i.types[op].bitfield.reg32)
4260 {
4261 guess_suffix = LONG_MNEM_SUFFIX;
4262 break;
4263 }
4264 else if (i.types[op].bitfield.reg64)
4265 {
4266 guess_suffix = QWORD_MNEM_SUFFIX;
4267 break;
4268 }
4269 }
4270 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4271 guess_suffix = WORD_MNEM_SUFFIX;
4272
4273 for (op = i.operands; --op >= 0;)
4274 if (operand_type_check (i.types[op], imm))
4275 {
4276 switch (i.op[op].imms->X_op)
4277 {
4278 case O_constant:
4279 /* If a suffix is given, this operand may be shortened. */
4280 switch (guess_suffix)
4281 {
4282 case LONG_MNEM_SUFFIX:
4283 i.types[op].bitfield.imm32 = 1;
4284 i.types[op].bitfield.imm64 = 1;
4285 break;
4286 case WORD_MNEM_SUFFIX:
4287 i.types[op].bitfield.imm16 = 1;
4288 i.types[op].bitfield.imm32 = 1;
4289 i.types[op].bitfield.imm32s = 1;
4290 i.types[op].bitfield.imm64 = 1;
4291 break;
4292 case BYTE_MNEM_SUFFIX:
4293 i.types[op].bitfield.imm8 = 1;
4294 i.types[op].bitfield.imm8s = 1;
4295 i.types[op].bitfield.imm16 = 1;
4296 i.types[op].bitfield.imm32 = 1;
4297 i.types[op].bitfield.imm32s = 1;
4298 i.types[op].bitfield.imm64 = 1;
4299 break;
4300 }
4301
4302 /* If this operand is at most 16 bits, convert it
4303 to a signed 16 bit number before trying to see
4304 whether it will fit in an even smaller size.
4305 This allows a 16-bit operand such as $0xffe0 to
4306 be recognised as within Imm8S range. */
4307 if ((i.types[op].bitfield.imm16)
4308 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4309 {
4310 i.op[op].imms->X_add_number =
4311 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4312 }
4313 #ifdef BFD64
4314 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4315 if ((i.types[op].bitfield.imm32)
4316 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4317 == 0))
4318 {
4319 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4320 ^ ((offsetT) 1 << 31))
4321 - ((offsetT) 1 << 31));
4322 }
4323 #endif
4324 i.types[op]
4325 = operand_type_or (i.types[op],
4326 smallest_imm_type (i.op[op].imms->X_add_number));
4327
4328 /* We must avoid matching of Imm32 templates when 64bit
4329 only immediate is available. */
4330 if (guess_suffix == QWORD_MNEM_SUFFIX)
4331 i.types[op].bitfield.imm32 = 0;
4332 break;
4333
4334 case O_absent:
4335 case O_register:
4336 abort ();
4337
4338 /* Symbols and expressions. */
4339 default:
4340 /* Convert symbolic operand to proper sizes for matching, but don't
4341 prevent matching a set of insns that only supports sizes other
4342 than those matching the insn suffix. */
4343 {
4344 i386_operand_type mask, allowed;
4345 const insn_template *t;
4346
4347 operand_type_set (&mask, 0);
4348 operand_type_set (&allowed, 0);
4349
4350 for (t = current_templates->start;
4351 t < current_templates->end;
4352 ++t)
4353 allowed = operand_type_or (allowed,
4354 t->operand_types[op]);
4355 switch (guess_suffix)
4356 {
4357 case QWORD_MNEM_SUFFIX:
4358 mask.bitfield.imm64 = 1;
4359 mask.bitfield.imm32s = 1;
4360 break;
4361 case LONG_MNEM_SUFFIX:
4362 mask.bitfield.imm32 = 1;
4363 break;
4364 case WORD_MNEM_SUFFIX:
4365 mask.bitfield.imm16 = 1;
4366 break;
4367 case BYTE_MNEM_SUFFIX:
4368 mask.bitfield.imm8 = 1;
4369 break;
4370 default:
4371 break;
4372 }
4373 allowed = operand_type_and (mask, allowed);
4374 if (!operand_type_all_zero (&allowed))
4375 i.types[op] = operand_type_and (i.types[op], mask);
4376 }
4377 break;
4378 }
4379 }
4380 }
4381
4382 /* Try to use the smallest displacement type too. */
4383 static void
4384 optimize_disp (void)
4385 {
4386 int op;
4387
4388 for (op = i.operands; --op >= 0;)
4389 if (operand_type_check (i.types[op], disp))
4390 {
4391 if (i.op[op].disps->X_op == O_constant)
4392 {
4393 offsetT op_disp = i.op[op].disps->X_add_number;
4394
4395 if (i.types[op].bitfield.disp16
4396 && (op_disp & ~(offsetT) 0xffff) == 0)
4397 {
4398 /* If this operand is at most 16 bits, convert
4399 to a signed 16 bit number and don't use 64bit
4400 displacement. */
4401 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4402 i.types[op].bitfield.disp64 = 0;
4403 }
4404 #ifdef BFD64
4405 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4406 if (i.types[op].bitfield.disp32
4407 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4408 {
4409 /* If this operand is at most 32 bits, convert
4410 to a signed 32 bit number and don't use 64bit
4411 displacement. */
4412 op_disp &= (((offsetT) 2 << 31) - 1);
4413 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4414 i.types[op].bitfield.disp64 = 0;
4415 }
4416 #endif
4417 if (!op_disp && i.types[op].bitfield.baseindex)
4418 {
4419 i.types[op].bitfield.disp8 = 0;
4420 i.types[op].bitfield.disp16 = 0;
4421 i.types[op].bitfield.disp32 = 0;
4422 i.types[op].bitfield.disp32s = 0;
4423 i.types[op].bitfield.disp64 = 0;
4424 i.op[op].disps = 0;
4425 i.disp_operands--;
4426 }
4427 else if (flag_code == CODE_64BIT)
4428 {
4429 if (fits_in_signed_long (op_disp))
4430 {
4431 i.types[op].bitfield.disp64 = 0;
4432 i.types[op].bitfield.disp32s = 1;
4433 }
4434 if (i.prefix[ADDR_PREFIX]
4435 && fits_in_unsigned_long (op_disp))
4436 i.types[op].bitfield.disp32 = 1;
4437 }
4438 if ((i.types[op].bitfield.disp32
4439 || i.types[op].bitfield.disp32s
4440 || i.types[op].bitfield.disp16)
4441 && fits_in_signed_byte (op_disp))
4442 i.types[op].bitfield.disp8 = 1;
4443 }
4444 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4445 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4446 {
4447 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4448 i.op[op].disps, 0, i.reloc[op]);
4449 i.types[op].bitfield.disp8 = 0;
4450 i.types[op].bitfield.disp16 = 0;
4451 i.types[op].bitfield.disp32 = 0;
4452 i.types[op].bitfield.disp32s = 0;
4453 i.types[op].bitfield.disp64 = 0;
4454 }
4455 else
4456 /* We only support 64bit displacement on constants. */
4457 i.types[op].bitfield.disp64 = 0;
4458 }
4459 }
4460
4461 /* Check if operands are valid for the instruction. */
4462
4463 static int
4464 check_VecOperands (const insn_template *t)
4465 {
4466 unsigned int op;
4467
4468 /* Without VSIB byte, we can't have a vector register for index. */
4469 if (!t->opcode_modifier.vecsib
4470 && i.index_reg
4471 && (i.index_reg->reg_type.bitfield.regxmm
4472 || i.index_reg->reg_type.bitfield.regymm
4473 || i.index_reg->reg_type.bitfield.regzmm))
4474 {
4475 i.error = unsupported_vector_index_register;
4476 return 1;
4477 }
4478
4479 /* Check if default mask is allowed. */
4480 if (t->opcode_modifier.nodefmask
4481 && (!i.mask || i.mask->mask->reg_num == 0))
4482 {
4483 i.error = no_default_mask;
4484 return 1;
4485 }
4486
4487 /* For VSIB byte, we need a vector register for index, and all vector
4488 registers must be distinct. */
4489 if (t->opcode_modifier.vecsib)
4490 {
4491 if (!i.index_reg
4492 || !((t->opcode_modifier.vecsib == VecSIB128
4493 && i.index_reg->reg_type.bitfield.regxmm)
4494 || (t->opcode_modifier.vecsib == VecSIB256
4495 && i.index_reg->reg_type.bitfield.regymm)
4496 || (t->opcode_modifier.vecsib == VecSIB512
4497 && i.index_reg->reg_type.bitfield.regzmm)))
4498 {
4499 i.error = invalid_vsib_address;
4500 return 1;
4501 }
4502
4503 gas_assert (i.reg_operands == 2 || i.mask);
4504 if (i.reg_operands == 2 && !i.mask)
4505 {
4506 gas_assert (i.types[0].bitfield.regxmm
4507 || i.types[0].bitfield.regymm);
4508 gas_assert (i.types[2].bitfield.regxmm
4509 || i.types[2].bitfield.regymm);
4510 if (operand_check == check_none)
4511 return 0;
4512 if (register_number (i.op[0].regs)
4513 != register_number (i.index_reg)
4514 && register_number (i.op[2].regs)
4515 != register_number (i.index_reg)
4516 && register_number (i.op[0].regs)
4517 != register_number (i.op[2].regs))
4518 return 0;
4519 if (operand_check == check_error)
4520 {
4521 i.error = invalid_vector_register_set;
4522 return 1;
4523 }
4524 as_warn (_("mask, index, and destination registers should be distinct"));
4525 }
4526 else if (i.reg_operands == 1 && i.mask)
4527 {
4528 if ((i.types[1].bitfield.regymm
4529 || i.types[1].bitfield.regzmm)
4530 && (register_number (i.op[1].regs)
4531 == register_number (i.index_reg)))
4532 {
4533 if (operand_check == check_error)
4534 {
4535 i.error = invalid_vector_register_set;
4536 return 1;
4537 }
4538 if (operand_check != check_none)
4539 as_warn (_("index and destination registers should be distinct"));
4540 }
4541 }
4542 }
4543
4544 /* Check if broadcast is supported by the instruction and is applied
4545 to the memory operand. */
4546 if (i.broadcast)
4547 {
4548 int broadcasted_opnd_size;
4549
4550 /* Check if specified broadcast is supported in this instruction,
4551 and it's applied to memory operand of DWORD or QWORD type,
4552 depending on VecESize. */
4553 if (i.broadcast->type != t->opcode_modifier.broadcast
4554 || !i.types[i.broadcast->operand].bitfield.mem
4555 || (t->opcode_modifier.vecesize == 0
4556 && !i.types[i.broadcast->operand].bitfield.dword
4557 && !i.types[i.broadcast->operand].bitfield.unspecified)
4558 || (t->opcode_modifier.vecesize == 1
4559 && !i.types[i.broadcast->operand].bitfield.qword
4560 && !i.types[i.broadcast->operand].bitfield.unspecified))
4561 goto bad_broadcast;
4562
4563 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4564 if (i.broadcast->type == BROADCAST_1TO16)
4565 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4566 else if (i.broadcast->type == BROADCAST_1TO8)
4567 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4568 else if (i.broadcast->type == BROADCAST_1TO4)
4569 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4570 else if (i.broadcast->type == BROADCAST_1TO2)
4571 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
4572 else
4573 goto bad_broadcast;
4574
4575 if ((broadcasted_opnd_size == 256
4576 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4577 || (broadcasted_opnd_size == 512
4578 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4579 {
4580 bad_broadcast:
4581 i.error = unsupported_broadcast;
4582 return 1;
4583 }
4584 }
4585 /* If broadcast is supported in this instruction, we need to check if
4586 operand of one-element size isn't specified without broadcast. */
4587 else if (t->opcode_modifier.broadcast && i.mem_operands)
4588 {
4589 /* Find memory operand. */
4590 for (op = 0; op < i.operands; op++)
4591 if (operand_type_check (i.types[op], anymem))
4592 break;
4593 gas_assert (op < i.operands);
4594 /* Check size of the memory operand. */
4595 if ((t->opcode_modifier.vecesize == 0
4596 && i.types[op].bitfield.dword)
4597 || (t->opcode_modifier.vecesize == 1
4598 && i.types[op].bitfield.qword))
4599 {
4600 i.error = broadcast_needed;
4601 return 1;
4602 }
4603 }
4604
4605 /* Check if requested masking is supported. */
4606 if (i.mask
4607 && (!t->opcode_modifier.masking
4608 || (i.mask->zeroing
4609 && t->opcode_modifier.masking == MERGING_MASKING)))
4610 {
4611 i.error = unsupported_masking;
4612 return 1;
4613 }
4614
4615 /* Check if masking is applied to dest operand. */
4616 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4617 {
4618 i.error = mask_not_on_destination;
4619 return 1;
4620 }
4621
4622 /* Check RC/SAE. */
4623 if (i.rounding)
4624 {
4625 if ((i.rounding->type != saeonly
4626 && !t->opcode_modifier.staticrounding)
4627 || (i.rounding->type == saeonly
4628 && (t->opcode_modifier.staticrounding
4629 || !t->opcode_modifier.sae)))
4630 {
4631 i.error = unsupported_rc_sae;
4632 return 1;
4633 }
4634 /* If the instruction has several immediate operands and one of
4635 them is rounding, the rounding operand should be the last
4636 immediate operand. */
4637 if (i.imm_operands > 1
4638 && i.rounding->operand != (int) (i.imm_operands - 1))
4639 {
4640 i.error = rc_sae_operand_not_last_imm;
4641 return 1;
4642 }
4643 }
4644
4645 /* Check vector Disp8 operand. */
4646 if (t->opcode_modifier.disp8memshift)
4647 {
4648 if (i.broadcast)
4649 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4650 else
4651 i.memshift = t->opcode_modifier.disp8memshift;
4652
4653 for (op = 0; op < i.operands; op++)
4654 if (operand_type_check (i.types[op], disp)
4655 && i.op[op].disps->X_op == O_constant)
4656 {
4657 offsetT value = i.op[op].disps->X_add_number;
4658 int vec_disp8_ok
4659 = (i.disp_encoding != disp_encoding_32bit
4660 && fits_in_vec_disp8 (value));
4661 if (t->operand_types [op].bitfield.vec_disp8)
4662 {
4663 if (vec_disp8_ok)
4664 i.types[op].bitfield.vec_disp8 = 1;
4665 else
4666 {
4667 /* Vector insn can only have Vec_Disp8/Disp32 in
4668 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4669 mode. */
4670 i.types[op].bitfield.disp8 = 0;
4671 if (flag_code != CODE_16BIT)
4672 i.types[op].bitfield.disp16 = 0;
4673 }
4674 }
4675 else if (flag_code != CODE_16BIT)
4676 {
4677 /* One form of this instruction supports vector Disp8.
4678 Try vector Disp8 if we need to use Disp32. */
4679 if (vec_disp8_ok && !fits_in_signed_byte (value))
4680 {
4681 i.error = try_vector_disp8;
4682 return 1;
4683 }
4684 }
4685 }
4686 }
4687 else
4688 i.memshift = -1;
4689
4690 return 0;
4691 }
4692
4693 /* Check if operands are valid for the instruction. Update VEX
4694 operand types. */
4695
4696 static int
4697 VEX_check_operands (const insn_template *t)
4698 {
4699 /* VREX is only valid with EVEX prefix. */
4700 if (i.need_vrex && !t->opcode_modifier.evex)
4701 {
4702 i.error = invalid_register_operand;
4703 return 1;
4704 }
4705
4706 if (!t->opcode_modifier.vex)
4707 return 0;
4708
4709 /* Only check VEX_Imm4, which must be the first operand. */
4710 if (t->operand_types[0].bitfield.vec_imm4)
4711 {
4712 if (i.op[0].imms->X_op != O_constant
4713 || !fits_in_imm4 (i.op[0].imms->X_add_number))
4714 {
4715 i.error = bad_imm4;
4716 return 1;
4717 }
4718
4719 /* Turn off Imm8 so that update_imm won't complain. */
4720 i.types[0] = vec_imm4;
4721 }
4722
4723 return 0;
4724 }
4725
4726 static const insn_template *
4727 match_template (void)
4728 {
4729 /* Points to template once we've found it. */
4730 const insn_template *t;
4731 i386_operand_type overlap0, overlap1, overlap2, overlap3;
4732 i386_operand_type overlap4;
4733 unsigned int found_reverse_match;
4734 i386_opcode_modifier suffix_check;
4735 i386_operand_type operand_types [MAX_OPERANDS];
4736 int addr_prefix_disp;
4737 unsigned int j;
4738 unsigned int found_cpu_match;
4739 unsigned int check_register;
4740 enum i386_error specific_error = 0;
4741
4742 #if MAX_OPERANDS != 5
4743 # error "MAX_OPERANDS must be 5."
4744 #endif
4745
4746 found_reverse_match = 0;
4747 addr_prefix_disp = -1;
4748
4749 memset (&suffix_check, 0, sizeof (suffix_check));
4750 if (i.suffix == BYTE_MNEM_SUFFIX)
4751 suffix_check.no_bsuf = 1;
4752 else if (i.suffix == WORD_MNEM_SUFFIX)
4753 suffix_check.no_wsuf = 1;
4754 else if (i.suffix == SHORT_MNEM_SUFFIX)
4755 suffix_check.no_ssuf = 1;
4756 else if (i.suffix == LONG_MNEM_SUFFIX)
4757 suffix_check.no_lsuf = 1;
4758 else if (i.suffix == QWORD_MNEM_SUFFIX)
4759 suffix_check.no_qsuf = 1;
4760 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4761 suffix_check.no_ldsuf = 1;
4762
4763 /* Must have right number of operands. */
4764 i.error = number_of_operands_mismatch;
4765
4766 for (t = current_templates->start; t < current_templates->end; t++)
4767 {
4768 addr_prefix_disp = -1;
4769
4770 if (i.operands != t->operands)
4771 continue;
4772
4773 /* Check processor support. */
4774 i.error = unsupported;
4775 found_cpu_match = (cpu_flags_match (t)
4776 == CPU_FLAGS_PERFECT_MATCH);
4777 if (!found_cpu_match)
4778 continue;
4779
4780 /* Check old gcc support. */
4781 i.error = old_gcc_only;
4782 if (!old_gcc && t->opcode_modifier.oldgcc)
4783 continue;
4784
4785 /* Check AT&T mnemonic. */
4786 i.error = unsupported_with_intel_mnemonic;
4787 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4788 continue;
4789
4790 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
4791 i.error = unsupported_syntax;
4792 if ((intel_syntax && t->opcode_modifier.attsyntax)
4793 || (!intel_syntax && t->opcode_modifier.intelsyntax)
4794 || (intel64 && t->opcode_modifier.amd64)
4795 || (!intel64 && t->opcode_modifier.intel64))
4796 continue;
4797
4798 /* Check the suffix, except for some instructions in intel mode. */
4799 i.error = invalid_instruction_suffix;
4800 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4801 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4802 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4803 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4804 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4805 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4806 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4807 continue;
4808
4809 if (!operand_size_match (t))
4810 continue;
4811
4812 for (j = 0; j < MAX_OPERANDS; j++)
4813 operand_types[j] = t->operand_types[j];
4814
4815 /* In general, don't allow 64-bit operands in 32-bit mode. */
4816 if (i.suffix == QWORD_MNEM_SUFFIX
4817 && flag_code != CODE_64BIT
4818 && (intel_syntax
4819 ? (!t->opcode_modifier.ignoresize
4820 && !intel_float_operand (t->name))
4821 : intel_float_operand (t->name) != 2)
4822 && ((!operand_types[0].bitfield.regmmx
4823 && !operand_types[0].bitfield.regxmm
4824 && !operand_types[0].bitfield.regymm
4825 && !operand_types[0].bitfield.regzmm)
4826 || (!operand_types[t->operands > 1].bitfield.regmmx
4827 && operand_types[t->operands > 1].bitfield.regxmm
4828 && operand_types[t->operands > 1].bitfield.regymm
4829 && operand_types[t->operands > 1].bitfield.regzmm))
4830 && (t->base_opcode != 0x0fc7
4831 || t->extension_opcode != 1 /* cmpxchg8b */))
4832 continue;
4833
4834 /* In general, don't allow 32-bit operands on pre-386. */
4835 else if (i.suffix == LONG_MNEM_SUFFIX
4836 && !cpu_arch_flags.bitfield.cpui386
4837 && (intel_syntax
4838 ? (!t->opcode_modifier.ignoresize
4839 && !intel_float_operand (t->name))
4840 : intel_float_operand (t->name) != 2)
4841 && ((!operand_types[0].bitfield.regmmx
4842 && !operand_types[0].bitfield.regxmm)
4843 || (!operand_types[t->operands > 1].bitfield.regmmx
4844 && operand_types[t->operands > 1].bitfield.regxmm)))
4845 continue;
4846
4847 /* Do not verify operands when there are none. */
4848 else
4849 {
4850 if (!t->operands)
4851 /* We've found a match; break out of loop. */
4852 break;
4853 }
4854
4855 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4856 into Disp32/Disp16/Disp32 operand. */
4857 if (i.prefix[ADDR_PREFIX] != 0)
4858 {
4859 /* There should be only one Disp operand. */
4860 switch (flag_code)
4861 {
4862 case CODE_16BIT:
4863 for (j = 0; j < MAX_OPERANDS; j++)
4864 {
4865 if (operand_types[j].bitfield.disp16)
4866 {
4867 addr_prefix_disp = j;
4868 operand_types[j].bitfield.disp32 = 1;
4869 operand_types[j].bitfield.disp16 = 0;
4870 break;
4871 }
4872 }
4873 break;
4874 case CODE_32BIT:
4875 for (j = 0; j < MAX_OPERANDS; j++)
4876 {
4877 if (operand_types[j].bitfield.disp32)
4878 {
4879 addr_prefix_disp = j;
4880 operand_types[j].bitfield.disp32 = 0;
4881 operand_types[j].bitfield.disp16 = 1;
4882 break;
4883 }
4884 }
4885 break;
4886 case CODE_64BIT:
4887 for (j = 0; j < MAX_OPERANDS; j++)
4888 {
4889 if (operand_types[j].bitfield.disp64)
4890 {
4891 addr_prefix_disp = j;
4892 operand_types[j].bitfield.disp64 = 0;
4893 operand_types[j].bitfield.disp32 = 1;
4894 break;
4895 }
4896 }
4897 break;
4898 }
4899 }
4900
4901 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
4902 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
4903 continue;
4904
4905 /* We check register size if needed. */
4906 check_register = t->opcode_modifier.checkregsize;
4907 overlap0 = operand_type_and (i.types[0], operand_types[0]);
4908 switch (t->operands)
4909 {
4910 case 1:
4911 if (!operand_type_match (overlap0, i.types[0]))
4912 continue;
4913 break;
4914 case 2:
4915 /* xchg %eax, %eax is a special case. It is an aliase for nop
4916 only in 32bit mode and we can use opcode 0x90. In 64bit
4917 mode, we can't use 0x90 for xchg %eax, %eax since it should
4918 zero-extend %eax to %rax. */
4919 if (flag_code == CODE_64BIT
4920 && t->base_opcode == 0x90
4921 && operand_type_equal (&i.types [0], &acc32)
4922 && operand_type_equal (&i.types [1], &acc32))
4923 continue;
4924 if (i.swap_operand)
4925 {
4926 /* If we swap operand in encoding, we either match
4927 the next one or reverse direction of operands. */
4928 if (t->opcode_modifier.s)
4929 continue;
4930 else if (t->opcode_modifier.d)
4931 goto check_reverse;
4932 }
4933
4934 case 3:
4935 /* If we swap operand in encoding, we match the next one. */
4936 if (i.swap_operand && t->opcode_modifier.s)
4937 continue;
4938 case 4:
4939 case 5:
4940 overlap1 = operand_type_and (i.types[1], operand_types[1]);
4941 if (!operand_type_match (overlap0, i.types[0])
4942 || !operand_type_match (overlap1, i.types[1])
4943 || (check_register
4944 && !operand_type_register_match (overlap0, i.types[0],
4945 operand_types[0],
4946 overlap1, i.types[1],
4947 operand_types[1])))
4948 {
4949 /* Check if other direction is valid ... */
4950 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
4951 continue;
4952
4953 check_reverse:
4954 /* Try reversing direction of operands. */
4955 overlap0 = operand_type_and (i.types[0], operand_types[1]);
4956 overlap1 = operand_type_and (i.types[1], operand_types[0]);
4957 if (!operand_type_match (overlap0, i.types[0])
4958 || !operand_type_match (overlap1, i.types[1])
4959 || (check_register
4960 && !operand_type_register_match (overlap0,
4961 i.types[0],
4962 operand_types[1],
4963 overlap1,
4964 i.types[1],
4965 operand_types[0])))
4966 {
4967 /* Does not match either direction. */
4968 continue;
4969 }
4970 /* found_reverse_match holds which of D or FloatDR
4971 we've found. */
4972 if (t->opcode_modifier.d)
4973 found_reverse_match = Opcode_D;
4974 else if (t->opcode_modifier.floatd)
4975 found_reverse_match = Opcode_FloatD;
4976 else
4977 found_reverse_match = 0;
4978 if (t->opcode_modifier.floatr)
4979 found_reverse_match |= Opcode_FloatR;
4980 }
4981 else
4982 {
4983 /* Found a forward 2 operand match here. */
4984 switch (t->operands)
4985 {
4986 case 5:
4987 overlap4 = operand_type_and (i.types[4],
4988 operand_types[4]);
4989 case 4:
4990 overlap3 = operand_type_and (i.types[3],
4991 operand_types[3]);
4992 case 3:
4993 overlap2 = operand_type_and (i.types[2],
4994 operand_types[2]);
4995 break;
4996 }
4997
4998 switch (t->operands)
4999 {
5000 case 5:
5001 if (!operand_type_match (overlap4, i.types[4])
5002 || !operand_type_register_match (overlap3,
5003 i.types[3],
5004 operand_types[3],
5005 overlap4,
5006 i.types[4],
5007 operand_types[4]))
5008 continue;
5009 case 4:
5010 if (!operand_type_match (overlap3, i.types[3])
5011 || (check_register
5012 && !operand_type_register_match (overlap2,
5013 i.types[2],
5014 operand_types[2],
5015 overlap3,
5016 i.types[3],
5017 operand_types[3])))
5018 continue;
5019 case 3:
5020 /* Here we make use of the fact that there are no
5021 reverse match 3 operand instructions, and all 3
5022 operand instructions only need to be checked for
5023 register consistency between operands 2 and 3. */
5024 if (!operand_type_match (overlap2, i.types[2])
5025 || (check_register
5026 && !operand_type_register_match (overlap1,
5027 i.types[1],
5028 operand_types[1],
5029 overlap2,
5030 i.types[2],
5031 operand_types[2])))
5032 continue;
5033 break;
5034 }
5035 }
5036 /* Found either forward/reverse 2, 3 or 4 operand match here:
5037 slip through to break. */
5038 }
5039 if (!found_cpu_match)
5040 {
5041 found_reverse_match = 0;
5042 continue;
5043 }
5044
5045 /* Check if vector and VEX operands are valid. */
5046 if (check_VecOperands (t) || VEX_check_operands (t))
5047 {
5048 specific_error = i.error;
5049 continue;
5050 }
5051
5052 /* We've found a match; break out of loop. */
5053 break;
5054 }
5055
5056 if (t == current_templates->end)
5057 {
5058 /* We found no match. */
5059 const char *err_msg;
5060 switch (specific_error ? specific_error : i.error)
5061 {
5062 default:
5063 abort ();
5064 case operand_size_mismatch:
5065 err_msg = _("operand size mismatch");
5066 break;
5067 case operand_type_mismatch:
5068 err_msg = _("operand type mismatch");
5069 break;
5070 case register_type_mismatch:
5071 err_msg = _("register type mismatch");
5072 break;
5073 case number_of_operands_mismatch:
5074 err_msg = _("number of operands mismatch");
5075 break;
5076 case invalid_instruction_suffix:
5077 err_msg = _("invalid instruction suffix");
5078 break;
5079 case bad_imm4:
5080 err_msg = _("constant doesn't fit in 4 bits");
5081 break;
5082 case old_gcc_only:
5083 err_msg = _("only supported with old gcc");
5084 break;
5085 case unsupported_with_intel_mnemonic:
5086 err_msg = _("unsupported with Intel mnemonic");
5087 break;
5088 case unsupported_syntax:
5089 err_msg = _("unsupported syntax");
5090 break;
5091 case unsupported:
5092 as_bad (_("unsupported instruction `%s'"),
5093 current_templates->start->name);
5094 return NULL;
5095 case invalid_vsib_address:
5096 err_msg = _("invalid VSIB address");
5097 break;
5098 case invalid_vector_register_set:
5099 err_msg = _("mask, index, and destination registers must be distinct");
5100 break;
5101 case unsupported_vector_index_register:
5102 err_msg = _("unsupported vector index register");
5103 break;
5104 case unsupported_broadcast:
5105 err_msg = _("unsupported broadcast");
5106 break;
5107 case broadcast_not_on_src_operand:
5108 err_msg = _("broadcast not on source memory operand");
5109 break;
5110 case broadcast_needed:
5111 err_msg = _("broadcast is needed for operand of such type");
5112 break;
5113 case unsupported_masking:
5114 err_msg = _("unsupported masking");
5115 break;
5116 case mask_not_on_destination:
5117 err_msg = _("mask not on destination operand");
5118 break;
5119 case no_default_mask:
5120 err_msg = _("default mask isn't allowed");
5121 break;
5122 case unsupported_rc_sae:
5123 err_msg = _("unsupported static rounding/sae");
5124 break;
5125 case rc_sae_operand_not_last_imm:
5126 if (intel_syntax)
5127 err_msg = _("RC/SAE operand must precede immediate operands");
5128 else
5129 err_msg = _("RC/SAE operand must follow immediate operands");
5130 break;
5131 case invalid_register_operand:
5132 err_msg = _("invalid register operand");
5133 break;
5134 }
5135 as_bad (_("%s for `%s'"), err_msg,
5136 current_templates->start->name);
5137 return NULL;
5138 }
5139
5140 if (!quiet_warnings)
5141 {
5142 if (!intel_syntax
5143 && (i.types[0].bitfield.jumpabsolute
5144 != operand_types[0].bitfield.jumpabsolute))
5145 {
5146 as_warn (_("indirect %s without `*'"), t->name);
5147 }
5148
5149 if (t->opcode_modifier.isprefix
5150 && t->opcode_modifier.ignoresize)
5151 {
5152 /* Warn them that a data or address size prefix doesn't
5153 affect assembly of the next line of code. */
5154 as_warn (_("stand-alone `%s' prefix"), t->name);
5155 }
5156 }
5157
5158 /* Copy the template we found. */
5159 i.tm = *t;
5160
5161 if (addr_prefix_disp != -1)
5162 i.tm.operand_types[addr_prefix_disp]
5163 = operand_types[addr_prefix_disp];
5164
5165 if (found_reverse_match)
5166 {
5167 /* If we found a reverse match we must alter the opcode
5168 direction bit. found_reverse_match holds bits to change
5169 (different for int & float insns). */
5170
5171 i.tm.base_opcode ^= found_reverse_match;
5172
5173 i.tm.operand_types[0] = operand_types[1];
5174 i.tm.operand_types[1] = operand_types[0];
5175 }
5176
5177 return t;
5178 }
5179
5180 static int
5181 check_string (void)
5182 {
5183 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5184 if (i.tm.operand_types[mem_op].bitfield.esseg)
5185 {
5186 if (i.seg[0] != NULL && i.seg[0] != &es)
5187 {
5188 as_bad (_("`%s' operand %d must use `%ses' segment"),
5189 i.tm.name,
5190 mem_op + 1,
5191 register_prefix);
5192 return 0;
5193 }
5194 /* There's only ever one segment override allowed per instruction.
5195 This instruction possibly has a legal segment override on the
5196 second operand, so copy the segment to where non-string
5197 instructions store it, allowing common code. */
5198 i.seg[0] = i.seg[1];
5199 }
5200 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5201 {
5202 if (i.seg[1] != NULL && i.seg[1] != &es)
5203 {
5204 as_bad (_("`%s' operand %d must use `%ses' segment"),
5205 i.tm.name,
5206 mem_op + 2,
5207 register_prefix);
5208 return 0;
5209 }
5210 }
5211 return 1;
5212 }
5213
5214 static int
5215 process_suffix (void)
5216 {
5217 /* If matched instruction specifies an explicit instruction mnemonic
5218 suffix, use it. */
5219 if (i.tm.opcode_modifier.size16)
5220 i.suffix = WORD_MNEM_SUFFIX;
5221 else if (i.tm.opcode_modifier.size32)
5222 i.suffix = LONG_MNEM_SUFFIX;
5223 else if (i.tm.opcode_modifier.size64)
5224 i.suffix = QWORD_MNEM_SUFFIX;
5225 else if (i.reg_operands)
5226 {
5227 /* If there's no instruction mnemonic suffix we try to invent one
5228 based on register operands. */
5229 if (!i.suffix)
5230 {
5231 /* We take i.suffix from the last register operand specified,
5232 Destination register type is more significant than source
5233 register type. crc32 in SSE4.2 prefers source register
5234 type. */
5235 if (i.tm.base_opcode == 0xf20f38f1)
5236 {
5237 if (i.types[0].bitfield.reg16)
5238 i.suffix = WORD_MNEM_SUFFIX;
5239 else if (i.types[0].bitfield.reg32)
5240 i.suffix = LONG_MNEM_SUFFIX;
5241 else if (i.types[0].bitfield.reg64)
5242 i.suffix = QWORD_MNEM_SUFFIX;
5243 }
5244 else if (i.tm.base_opcode == 0xf20f38f0)
5245 {
5246 if (i.types[0].bitfield.reg8)
5247 i.suffix = BYTE_MNEM_SUFFIX;
5248 }
5249
5250 if (!i.suffix)
5251 {
5252 int op;
5253
5254 if (i.tm.base_opcode == 0xf20f38f1
5255 || i.tm.base_opcode == 0xf20f38f0)
5256 {
5257 /* We have to know the operand size for crc32. */
5258 as_bad (_("ambiguous memory operand size for `%s`"),
5259 i.tm.name);
5260 return 0;
5261 }
5262
5263 for (op = i.operands; --op >= 0;)
5264 if (!i.tm.operand_types[op].bitfield.inoutportreg)
5265 {
5266 if (i.types[op].bitfield.reg8)
5267 {
5268 i.suffix = BYTE_MNEM_SUFFIX;
5269 break;
5270 }
5271 else if (i.types[op].bitfield.reg16)
5272 {
5273 i.suffix = WORD_MNEM_SUFFIX;
5274 break;
5275 }
5276 else if (i.types[op].bitfield.reg32)
5277 {
5278 i.suffix = LONG_MNEM_SUFFIX;
5279 break;
5280 }
5281 else if (i.types[op].bitfield.reg64)
5282 {
5283 i.suffix = QWORD_MNEM_SUFFIX;
5284 break;
5285 }
5286 }
5287 }
5288 }
5289 else if (i.suffix == BYTE_MNEM_SUFFIX)
5290 {
5291 if (intel_syntax
5292 && i.tm.opcode_modifier.ignoresize
5293 && i.tm.opcode_modifier.no_bsuf)
5294 i.suffix = 0;
5295 else if (!check_byte_reg ())
5296 return 0;
5297 }
5298 else if (i.suffix == LONG_MNEM_SUFFIX)
5299 {
5300 if (intel_syntax
5301 && i.tm.opcode_modifier.ignoresize
5302 && i.tm.opcode_modifier.no_lsuf)
5303 i.suffix = 0;
5304 else if (!check_long_reg ())
5305 return 0;
5306 }
5307 else if (i.suffix == QWORD_MNEM_SUFFIX)
5308 {
5309 if (intel_syntax
5310 && i.tm.opcode_modifier.ignoresize
5311 && i.tm.opcode_modifier.no_qsuf)
5312 i.suffix = 0;
5313 else if (!check_qword_reg ())
5314 return 0;
5315 }
5316 else if (i.suffix == WORD_MNEM_SUFFIX)
5317 {
5318 if (intel_syntax
5319 && i.tm.opcode_modifier.ignoresize
5320 && i.tm.opcode_modifier.no_wsuf)
5321 i.suffix = 0;
5322 else if (!check_word_reg ())
5323 return 0;
5324 }
5325 else if (i.suffix == XMMWORD_MNEM_SUFFIX
5326 || i.suffix == YMMWORD_MNEM_SUFFIX
5327 || i.suffix == ZMMWORD_MNEM_SUFFIX)
5328 {
5329 /* Skip if the instruction has x/y/z suffix. match_template
5330 should check if it is a valid suffix. */
5331 }
5332 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5333 /* Do nothing if the instruction is going to ignore the prefix. */
5334 ;
5335 else
5336 abort ();
5337 }
5338 else if (i.tm.opcode_modifier.defaultsize
5339 && !i.suffix
5340 /* exclude fldenv/frstor/fsave/fstenv */
5341 && i.tm.opcode_modifier.no_ssuf)
5342 {
5343 i.suffix = stackop_size;
5344 }
5345 else if (intel_syntax
5346 && !i.suffix
5347 && (i.tm.operand_types[0].bitfield.jumpabsolute
5348 || i.tm.opcode_modifier.jumpbyte
5349 || i.tm.opcode_modifier.jumpintersegment
5350 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5351 && i.tm.extension_opcode <= 3)))
5352 {
5353 switch (flag_code)
5354 {
5355 case CODE_64BIT:
5356 if (!i.tm.opcode_modifier.no_qsuf)
5357 {
5358 i.suffix = QWORD_MNEM_SUFFIX;
5359 break;
5360 }
5361 case CODE_32BIT:
5362 if (!i.tm.opcode_modifier.no_lsuf)
5363 i.suffix = LONG_MNEM_SUFFIX;
5364 break;
5365 case CODE_16BIT:
5366 if (!i.tm.opcode_modifier.no_wsuf)
5367 i.suffix = WORD_MNEM_SUFFIX;
5368 break;
5369 }
5370 }
5371
5372 if (!i.suffix)
5373 {
5374 if (!intel_syntax)
5375 {
5376 if (i.tm.opcode_modifier.w)
5377 {
5378 as_bad (_("no instruction mnemonic suffix given and "
5379 "no register operands; can't size instruction"));
5380 return 0;
5381 }
5382 }
5383 else
5384 {
5385 unsigned int suffixes;
5386
5387 suffixes = !i.tm.opcode_modifier.no_bsuf;
5388 if (!i.tm.opcode_modifier.no_wsuf)
5389 suffixes |= 1 << 1;
5390 if (!i.tm.opcode_modifier.no_lsuf)
5391 suffixes |= 1 << 2;
5392 if (!i.tm.opcode_modifier.no_ldsuf)
5393 suffixes |= 1 << 3;
5394 if (!i.tm.opcode_modifier.no_ssuf)
5395 suffixes |= 1 << 4;
5396 if (!i.tm.opcode_modifier.no_qsuf)
5397 suffixes |= 1 << 5;
5398
5399 /* There are more than suffix matches. */
5400 if (i.tm.opcode_modifier.w
5401 || ((suffixes & (suffixes - 1))
5402 && !i.tm.opcode_modifier.defaultsize
5403 && !i.tm.opcode_modifier.ignoresize))
5404 {
5405 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5406 return 0;
5407 }
5408 }
5409 }
5410
5411 /* Change the opcode based on the operand size given by i.suffix;
5412 We don't need to change things for byte insns. */
5413
5414 if (i.suffix
5415 && i.suffix != BYTE_MNEM_SUFFIX
5416 && i.suffix != XMMWORD_MNEM_SUFFIX
5417 && i.suffix != YMMWORD_MNEM_SUFFIX
5418 && i.suffix != ZMMWORD_MNEM_SUFFIX)
5419 {
5420 /* It's not a byte, select word/dword operation. */
5421 if (i.tm.opcode_modifier.w)
5422 {
5423 if (i.tm.opcode_modifier.shortform)
5424 i.tm.base_opcode |= 8;
5425 else
5426 i.tm.base_opcode |= 1;
5427 }
5428
5429 /* Now select between word & dword operations via the operand
5430 size prefix, except for instructions that will ignore this
5431 prefix anyway. */
5432 if (i.tm.opcode_modifier.addrprefixop0)
5433 {
5434 /* The address size override prefix changes the size of the
5435 first operand. */
5436 if ((flag_code == CODE_32BIT
5437 && i.op->regs[0].reg_type.bitfield.reg16)
5438 || (flag_code != CODE_32BIT
5439 && i.op->regs[0].reg_type.bitfield.reg32))
5440 if (!add_prefix (ADDR_PREFIX_OPCODE))
5441 return 0;
5442 }
5443 else if (i.suffix != QWORD_MNEM_SUFFIX
5444 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5445 && !i.tm.opcode_modifier.ignoresize
5446 && !i.tm.opcode_modifier.floatmf
5447 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5448 || (flag_code == CODE_64BIT
5449 && i.tm.opcode_modifier.jumpbyte)))
5450 {
5451 unsigned int prefix = DATA_PREFIX_OPCODE;
5452
5453 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5454 prefix = ADDR_PREFIX_OPCODE;
5455
5456 if (!add_prefix (prefix))
5457 return 0;
5458 }
5459
5460 /* Set mode64 for an operand. */
5461 if (i.suffix == QWORD_MNEM_SUFFIX
5462 && flag_code == CODE_64BIT
5463 && !i.tm.opcode_modifier.norex64)
5464 {
5465 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5466 need rex64. cmpxchg8b is also a special case. */
5467 if (! (i.operands == 2
5468 && i.tm.base_opcode == 0x90
5469 && i.tm.extension_opcode == None
5470 && operand_type_equal (&i.types [0], &acc64)
5471 && operand_type_equal (&i.types [1], &acc64))
5472 && ! (i.operands == 1
5473 && i.tm.base_opcode == 0xfc7
5474 && i.tm.extension_opcode == 1
5475 && !operand_type_check (i.types [0], reg)
5476 && operand_type_check (i.types [0], anymem)))
5477 i.rex |= REX_W;
5478 }
5479
5480 /* Size floating point instruction. */
5481 if (i.suffix == LONG_MNEM_SUFFIX)
5482 if (i.tm.opcode_modifier.floatmf)
5483 i.tm.base_opcode ^= 4;
5484 }
5485
5486 return 1;
5487 }
5488
5489 static int
5490 check_byte_reg (void)
5491 {
5492 int op;
5493
5494 for (op = i.operands; --op >= 0;)
5495 {
5496 /* If this is an eight bit register, it's OK. If it's the 16 or
5497 32 bit version of an eight bit register, we will just use the
5498 low portion, and that's OK too. */
5499 if (i.types[op].bitfield.reg8)
5500 continue;
5501
5502 /* I/O port address operands are OK too. */
5503 if (i.tm.operand_types[op].bitfield.inoutportreg)
5504 continue;
5505
5506 /* crc32 doesn't generate this warning. */
5507 if (i.tm.base_opcode == 0xf20f38f0)
5508 continue;
5509
5510 if ((i.types[op].bitfield.reg16
5511 || i.types[op].bitfield.reg32
5512 || i.types[op].bitfield.reg64)
5513 && i.op[op].regs->reg_num < 4
5514 /* Prohibit these changes in 64bit mode, since the lowering
5515 would be more complicated. */
5516 && flag_code != CODE_64BIT)
5517 {
5518 #if REGISTER_WARNINGS
5519 if (!quiet_warnings)
5520 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5521 register_prefix,
5522 (i.op[op].regs + (i.types[op].bitfield.reg16
5523 ? REGNAM_AL - REGNAM_AX
5524 : REGNAM_AL - REGNAM_EAX))->reg_name,
5525 register_prefix,
5526 i.op[op].regs->reg_name,
5527 i.suffix);
5528 #endif
5529 continue;
5530 }
5531 /* Any other register is bad. */
5532 if (i.types[op].bitfield.reg16
5533 || i.types[op].bitfield.reg32
5534 || i.types[op].bitfield.reg64
5535 || i.types[op].bitfield.regmmx
5536 || i.types[op].bitfield.regxmm
5537 || i.types[op].bitfield.regymm
5538 || i.types[op].bitfield.regzmm
5539 || i.types[op].bitfield.sreg2
5540 || i.types[op].bitfield.sreg3
5541 || i.types[op].bitfield.control
5542 || i.types[op].bitfield.debug
5543 || i.types[op].bitfield.test
5544 || i.types[op].bitfield.floatreg
5545 || i.types[op].bitfield.floatacc)
5546 {
5547 as_bad (_("`%s%s' not allowed with `%s%c'"),
5548 register_prefix,
5549 i.op[op].regs->reg_name,
5550 i.tm.name,
5551 i.suffix);
5552 return 0;
5553 }
5554 }
5555 return 1;
5556 }
5557
5558 static int
5559 check_long_reg (void)
5560 {
5561 int op;
5562
5563 for (op = i.operands; --op >= 0;)
5564 /* Reject eight bit registers, except where the template requires
5565 them. (eg. movzb) */
5566 if (i.types[op].bitfield.reg8
5567 && (i.tm.operand_types[op].bitfield.reg16
5568 || i.tm.operand_types[op].bitfield.reg32
5569 || i.tm.operand_types[op].bitfield.acc))
5570 {
5571 as_bad (_("`%s%s' not allowed with `%s%c'"),
5572 register_prefix,
5573 i.op[op].regs->reg_name,
5574 i.tm.name,
5575 i.suffix);
5576 return 0;
5577 }
5578 /* Warn if the e prefix on a general reg is missing. */
5579 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5580 && i.types[op].bitfield.reg16
5581 && (i.tm.operand_types[op].bitfield.reg32
5582 || i.tm.operand_types[op].bitfield.acc))
5583 {
5584 /* Prohibit these changes in the 64bit mode, since the
5585 lowering is more complicated. */
5586 if (flag_code == CODE_64BIT)
5587 {
5588 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5589 register_prefix, i.op[op].regs->reg_name,
5590 i.suffix);
5591 return 0;
5592 }
5593 #if REGISTER_WARNINGS
5594 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5595 register_prefix,
5596 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5597 register_prefix, i.op[op].regs->reg_name, i.suffix);
5598 #endif
5599 }
5600 /* Warn if the r prefix on a general reg is present. */
5601 else if (i.types[op].bitfield.reg64
5602 && (i.tm.operand_types[op].bitfield.reg32
5603 || i.tm.operand_types[op].bitfield.acc))
5604 {
5605 if (intel_syntax
5606 && i.tm.opcode_modifier.toqword
5607 && !i.types[0].bitfield.regxmm)
5608 {
5609 /* Convert to QWORD. We want REX byte. */
5610 i.suffix = QWORD_MNEM_SUFFIX;
5611 }
5612 else
5613 {
5614 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5615 register_prefix, i.op[op].regs->reg_name,
5616 i.suffix);
5617 return 0;
5618 }
5619 }
5620 return 1;
5621 }
5622
5623 static int
5624 check_qword_reg (void)
5625 {
5626 int op;
5627
5628 for (op = i.operands; --op >= 0; )
5629 /* Reject eight bit registers, except where the template requires
5630 them. (eg. movzb) */
5631 if (i.types[op].bitfield.reg8
5632 && (i.tm.operand_types[op].bitfield.reg16
5633 || i.tm.operand_types[op].bitfield.reg32
5634 || i.tm.operand_types[op].bitfield.acc))
5635 {
5636 as_bad (_("`%s%s' not allowed with `%s%c'"),
5637 register_prefix,
5638 i.op[op].regs->reg_name,
5639 i.tm.name,
5640 i.suffix);
5641 return 0;
5642 }
5643 /* Warn if the r prefix on a general reg is missing. */
5644 else if ((i.types[op].bitfield.reg16
5645 || i.types[op].bitfield.reg32)
5646 && (i.tm.operand_types[op].bitfield.reg32
5647 || i.tm.operand_types[op].bitfield.acc))
5648 {
5649 /* Prohibit these changes in the 64bit mode, since the
5650 lowering is more complicated. */
5651 if (intel_syntax
5652 && i.tm.opcode_modifier.todword
5653 && !i.types[0].bitfield.regxmm)
5654 {
5655 /* Convert to DWORD. We don't want REX byte. */
5656 i.suffix = LONG_MNEM_SUFFIX;
5657 }
5658 else
5659 {
5660 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5661 register_prefix, i.op[op].regs->reg_name,
5662 i.suffix);
5663 return 0;
5664 }
5665 }
5666 return 1;
5667 }
5668
5669 static int
5670 check_word_reg (void)
5671 {
5672 int op;
5673 for (op = i.operands; --op >= 0;)
5674 /* Reject eight bit registers, except where the template requires
5675 them. (eg. movzb) */
5676 if (i.types[op].bitfield.reg8
5677 && (i.tm.operand_types[op].bitfield.reg16
5678 || i.tm.operand_types[op].bitfield.reg32
5679 || i.tm.operand_types[op].bitfield.acc))
5680 {
5681 as_bad (_("`%s%s' not allowed with `%s%c'"),
5682 register_prefix,
5683 i.op[op].regs->reg_name,
5684 i.tm.name,
5685 i.suffix);
5686 return 0;
5687 }
5688 /* Warn if the e or r prefix on a general reg is present. */
5689 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5690 && (i.types[op].bitfield.reg32
5691 || i.types[op].bitfield.reg64)
5692 && (i.tm.operand_types[op].bitfield.reg16
5693 || i.tm.operand_types[op].bitfield.acc))
5694 {
5695 /* Prohibit these changes in the 64bit mode, since the
5696 lowering is more complicated. */
5697 if (flag_code == CODE_64BIT)
5698 {
5699 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5700 register_prefix, i.op[op].regs->reg_name,
5701 i.suffix);
5702 return 0;
5703 }
5704 #if REGISTER_WARNINGS
5705 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5706 register_prefix,
5707 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5708 register_prefix, i.op[op].regs->reg_name, i.suffix);
5709 #endif
5710 }
5711 return 1;
5712 }
5713
5714 static int
5715 update_imm (unsigned int j)
5716 {
5717 i386_operand_type overlap = i.types[j];
5718 if ((overlap.bitfield.imm8
5719 || overlap.bitfield.imm8s
5720 || overlap.bitfield.imm16
5721 || overlap.bitfield.imm32
5722 || overlap.bitfield.imm32s
5723 || overlap.bitfield.imm64)
5724 && !operand_type_equal (&overlap, &imm8)
5725 && !operand_type_equal (&overlap, &imm8s)
5726 && !operand_type_equal (&overlap, &imm16)
5727 && !operand_type_equal (&overlap, &imm32)
5728 && !operand_type_equal (&overlap, &imm32s)
5729 && !operand_type_equal (&overlap, &imm64))
5730 {
5731 if (i.suffix)
5732 {
5733 i386_operand_type temp;
5734
5735 operand_type_set (&temp, 0);
5736 if (i.suffix == BYTE_MNEM_SUFFIX)
5737 {
5738 temp.bitfield.imm8 = overlap.bitfield.imm8;
5739 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5740 }
5741 else if (i.suffix == WORD_MNEM_SUFFIX)
5742 temp.bitfield.imm16 = overlap.bitfield.imm16;
5743 else if (i.suffix == QWORD_MNEM_SUFFIX)
5744 {
5745 temp.bitfield.imm64 = overlap.bitfield.imm64;
5746 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5747 }
5748 else
5749 temp.bitfield.imm32 = overlap.bitfield.imm32;
5750 overlap = temp;
5751 }
5752 else if (operand_type_equal (&overlap, &imm16_32_32s)
5753 || operand_type_equal (&overlap, &imm16_32)
5754 || operand_type_equal (&overlap, &imm16_32s))
5755 {
5756 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5757 overlap = imm16;
5758 else
5759 overlap = imm32s;
5760 }
5761 if (!operand_type_equal (&overlap, &imm8)
5762 && !operand_type_equal (&overlap, &imm8s)
5763 && !operand_type_equal (&overlap, &imm16)
5764 && !operand_type_equal (&overlap, &imm32)
5765 && !operand_type_equal (&overlap, &imm32s)
5766 && !operand_type_equal (&overlap, &imm64))
5767 {
5768 as_bad (_("no instruction mnemonic suffix given; "
5769 "can't determine immediate size"));
5770 return 0;
5771 }
5772 }
5773 i.types[j] = overlap;
5774
5775 return 1;
5776 }
5777
5778 static int
5779 finalize_imm (void)
5780 {
5781 unsigned int j, n;
5782
5783 /* Update the first 2 immediate operands. */
5784 n = i.operands > 2 ? 2 : i.operands;
5785 if (n)
5786 {
5787 for (j = 0; j < n; j++)
5788 if (update_imm (j) == 0)
5789 return 0;
5790
5791 /* The 3rd operand can't be immediate operand. */
5792 gas_assert (operand_type_check (i.types[2], imm) == 0);
5793 }
5794
5795 return 1;
5796 }
5797
5798 static int
5799 bad_implicit_operand (int xmm)
5800 {
5801 const char *ireg = xmm ? "xmm0" : "ymm0";
5802
5803 if (intel_syntax)
5804 as_bad (_("the last operand of `%s' must be `%s%s'"),
5805 i.tm.name, register_prefix, ireg);
5806 else
5807 as_bad (_("the first operand of `%s' must be `%s%s'"),
5808 i.tm.name, register_prefix, ireg);
5809 return 0;
5810 }
5811
5812 static int
5813 process_operands (void)
5814 {
5815 /* Default segment register this instruction will use for memory
5816 accesses. 0 means unknown. This is only for optimizing out
5817 unnecessary segment overrides. */
5818 const seg_entry *default_seg = 0;
5819
5820 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
5821 {
5822 unsigned int dupl = i.operands;
5823 unsigned int dest = dupl - 1;
5824 unsigned int j;
5825
5826 /* The destination must be an xmm register. */
5827 gas_assert (i.reg_operands
5828 && MAX_OPERANDS > dupl
5829 && operand_type_equal (&i.types[dest], &regxmm));
5830
5831 if (i.tm.opcode_modifier.firstxmm0)
5832 {
5833 /* The first operand is implicit and must be xmm0. */
5834 gas_assert (operand_type_equal (&i.types[0], &regxmm));
5835 if (register_number (i.op[0].regs) != 0)
5836 return bad_implicit_operand (1);
5837
5838 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
5839 {
5840 /* Keep xmm0 for instructions with VEX prefix and 3
5841 sources. */
5842 goto duplicate;
5843 }
5844 else
5845 {
5846 /* We remove the first xmm0 and keep the number of
5847 operands unchanged, which in fact duplicates the
5848 destination. */
5849 for (j = 1; j < i.operands; j++)
5850 {
5851 i.op[j - 1] = i.op[j];
5852 i.types[j - 1] = i.types[j];
5853 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5854 }
5855 }
5856 }
5857 else if (i.tm.opcode_modifier.implicit1stxmm0)
5858 {
5859 gas_assert ((MAX_OPERANDS - 1) > dupl
5860 && (i.tm.opcode_modifier.vexsources
5861 == VEX3SOURCES));
5862
5863 /* Add the implicit xmm0 for instructions with VEX prefix
5864 and 3 sources. */
5865 for (j = i.operands; j > 0; j--)
5866 {
5867 i.op[j] = i.op[j - 1];
5868 i.types[j] = i.types[j - 1];
5869 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
5870 }
5871 i.op[0].regs
5872 = (const reg_entry *) hash_find (reg_hash, "xmm0");
5873 i.types[0] = regxmm;
5874 i.tm.operand_types[0] = regxmm;
5875
5876 i.operands += 2;
5877 i.reg_operands += 2;
5878 i.tm.operands += 2;
5879
5880 dupl++;
5881 dest++;
5882 i.op[dupl] = i.op[dest];
5883 i.types[dupl] = i.types[dest];
5884 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5885 }
5886 else
5887 {
5888 duplicate:
5889 i.operands++;
5890 i.reg_operands++;
5891 i.tm.operands++;
5892
5893 i.op[dupl] = i.op[dest];
5894 i.types[dupl] = i.types[dest];
5895 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5896 }
5897
5898 if (i.tm.opcode_modifier.immext)
5899 process_immext ();
5900 }
5901 else if (i.tm.opcode_modifier.firstxmm0)
5902 {
5903 unsigned int j;
5904
5905 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
5906 gas_assert (i.reg_operands
5907 && (operand_type_equal (&i.types[0], &regxmm)
5908 || operand_type_equal (&i.types[0], &regymm)
5909 || operand_type_equal (&i.types[0], &regzmm)));
5910 if (register_number (i.op[0].regs) != 0)
5911 return bad_implicit_operand (i.types[0].bitfield.regxmm);
5912
5913 for (j = 1; j < i.operands; j++)
5914 {
5915 i.op[j - 1] = i.op[j];
5916 i.types[j - 1] = i.types[j];
5917
5918 /* We need to adjust fields in i.tm since they are used by
5919 build_modrm_byte. */
5920 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5921 }
5922
5923 i.operands--;
5924 i.reg_operands--;
5925 i.tm.operands--;
5926 }
5927 else if (i.tm.opcode_modifier.regkludge)
5928 {
5929 /* The imul $imm, %reg instruction is converted into
5930 imul $imm, %reg, %reg, and the clr %reg instruction
5931 is converted into xor %reg, %reg. */
5932
5933 unsigned int first_reg_op;
5934
5935 if (operand_type_check (i.types[0], reg))
5936 first_reg_op = 0;
5937 else
5938 first_reg_op = 1;
5939 /* Pretend we saw the extra register operand. */
5940 gas_assert (i.reg_operands == 1
5941 && i.op[first_reg_op + 1].regs == 0);
5942 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
5943 i.types[first_reg_op + 1] = i.types[first_reg_op];
5944 i.operands++;
5945 i.reg_operands++;
5946 }
5947
5948 if (i.tm.opcode_modifier.shortform)
5949 {
5950 if (i.types[0].bitfield.sreg2
5951 || i.types[0].bitfield.sreg3)
5952 {
5953 if (i.tm.base_opcode == POP_SEG_SHORT
5954 && i.op[0].regs->reg_num == 1)
5955 {
5956 as_bad (_("you can't `pop %scs'"), register_prefix);
5957 return 0;
5958 }
5959 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
5960 if ((i.op[0].regs->reg_flags & RegRex) != 0)
5961 i.rex |= REX_B;
5962 }
5963 else
5964 {
5965 /* The register or float register operand is in operand
5966 0 or 1. */
5967 unsigned int op;
5968
5969 if (i.types[0].bitfield.floatreg
5970 || operand_type_check (i.types[0], reg))
5971 op = 0;
5972 else
5973 op = 1;
5974 /* Register goes in low 3 bits of opcode. */
5975 i.tm.base_opcode |= i.op[op].regs->reg_num;
5976 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5977 i.rex |= REX_B;
5978 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
5979 {
5980 /* Warn about some common errors, but press on regardless.
5981 The first case can be generated by gcc (<= 2.8.1). */
5982 if (i.operands == 2)
5983 {
5984 /* Reversed arguments on faddp, fsubp, etc. */
5985 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
5986 register_prefix, i.op[!intel_syntax].regs->reg_name,
5987 register_prefix, i.op[intel_syntax].regs->reg_name);
5988 }
5989 else
5990 {
5991 /* Extraneous `l' suffix on fp insn. */
5992 as_warn (_("translating to `%s %s%s'"), i.tm.name,
5993 register_prefix, i.op[0].regs->reg_name);
5994 }
5995 }
5996 }
5997 }
5998 else if (i.tm.opcode_modifier.modrm)
5999 {
6000 /* The opcode is completed (modulo i.tm.extension_opcode which
6001 must be put into the modrm byte). Now, we make the modrm and
6002 index base bytes based on all the info we've collected. */
6003
6004 default_seg = build_modrm_byte ();
6005 }
6006 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6007 {
6008 default_seg = &ds;
6009 }
6010 else if (i.tm.opcode_modifier.isstring)
6011 {
6012 /* For the string instructions that allow a segment override
6013 on one of their operands, the default segment is ds. */
6014 default_seg = &ds;
6015 }
6016
6017 if (i.tm.base_opcode == 0x8d /* lea */
6018 && i.seg[0]
6019 && !quiet_warnings)
6020 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6021
6022 /* If a segment was explicitly specified, and the specified segment
6023 is not the default, use an opcode prefix to select it. If we
6024 never figured out what the default segment is, then default_seg
6025 will be zero at this point, and the specified segment prefix will
6026 always be used. */
6027 if ((i.seg[0]) && (i.seg[0] != default_seg))
6028 {
6029 if (!add_prefix (i.seg[0]->seg_prefix))
6030 return 0;
6031 }
6032 return 1;
6033 }
6034
6035 static const seg_entry *
6036 build_modrm_byte (void)
6037 {
6038 const seg_entry *default_seg = 0;
6039 unsigned int source, dest;
6040 int vex_3_sources;
6041
6042 /* The first operand of instructions with VEX prefix and 3 sources
6043 must be VEX_Imm4. */
6044 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6045 if (vex_3_sources)
6046 {
6047 unsigned int nds, reg_slot;
6048 expressionS *exp;
6049
6050 if (i.tm.opcode_modifier.veximmext
6051 && i.tm.opcode_modifier.immext)
6052 {
6053 dest = i.operands - 2;
6054 gas_assert (dest == 3);
6055 }
6056 else
6057 dest = i.operands - 1;
6058 nds = dest - 1;
6059
6060 /* There are 2 kinds of instructions:
6061 1. 5 operands: 4 register operands or 3 register operands
6062 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6063 VexW0 or VexW1. The destination must be either XMM, YMM or
6064 ZMM register.
6065 2. 4 operands: 4 register operands or 3 register operands
6066 plus 1 memory operand, VexXDS, and VexImmExt */
6067 gas_assert ((i.reg_operands == 4
6068 || (i.reg_operands == 3 && i.mem_operands == 1))
6069 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6070 && (i.tm.opcode_modifier.veximmext
6071 || (i.imm_operands == 1
6072 && i.types[0].bitfield.vec_imm4
6073 && (i.tm.opcode_modifier.vexw == VEXW0
6074 || i.tm.opcode_modifier.vexw == VEXW1)
6075 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
6076 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
6077 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
6078
6079 if (i.imm_operands == 0)
6080 {
6081 /* When there is no immediate operand, generate an 8bit
6082 immediate operand to encode the first operand. */
6083 exp = &im_expressions[i.imm_operands++];
6084 i.op[i.operands].imms = exp;
6085 i.types[i.operands] = imm8;
6086 i.operands++;
6087 /* If VexW1 is set, the first operand is the source and
6088 the second operand is encoded in the immediate operand. */
6089 if (i.tm.opcode_modifier.vexw == VEXW1)
6090 {
6091 source = 0;
6092 reg_slot = 1;
6093 }
6094 else
6095 {
6096 source = 1;
6097 reg_slot = 0;
6098 }
6099
6100 /* FMA swaps REG and NDS. */
6101 if (i.tm.cpu_flags.bitfield.cpufma)
6102 {
6103 unsigned int tmp;
6104 tmp = reg_slot;
6105 reg_slot = nds;
6106 nds = tmp;
6107 }
6108
6109 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6110 &regxmm)
6111 || operand_type_equal (&i.tm.operand_types[reg_slot],
6112 &regymm)
6113 || operand_type_equal (&i.tm.operand_types[reg_slot],
6114 &regzmm));
6115 exp->X_op = O_constant;
6116 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6117 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6118 }
6119 else
6120 {
6121 unsigned int imm_slot;
6122
6123 if (i.tm.opcode_modifier.vexw == VEXW0)
6124 {
6125 /* If VexW0 is set, the third operand is the source and
6126 the second operand is encoded in the immediate
6127 operand. */
6128 source = 2;
6129 reg_slot = 1;
6130 }
6131 else
6132 {
6133 /* VexW1 is set, the second operand is the source and
6134 the third operand is encoded in the immediate
6135 operand. */
6136 source = 1;
6137 reg_slot = 2;
6138 }
6139
6140 if (i.tm.opcode_modifier.immext)
6141 {
6142 /* When ImmExt is set, the immdiate byte is the last
6143 operand. */
6144 imm_slot = i.operands - 1;
6145 source--;
6146 reg_slot--;
6147 }
6148 else
6149 {
6150 imm_slot = 0;
6151
6152 /* Turn on Imm8 so that output_imm will generate it. */
6153 i.types[imm_slot].bitfield.imm8 = 1;
6154 }
6155
6156 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6157 &regxmm)
6158 || operand_type_equal (&i.tm.operand_types[reg_slot],
6159 &regymm)
6160 || operand_type_equal (&i.tm.operand_types[reg_slot],
6161 &regzmm));
6162 i.op[imm_slot].imms->X_add_number
6163 |= register_number (i.op[reg_slot].regs) << 4;
6164 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6165 }
6166
6167 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6168 || operand_type_equal (&i.tm.operand_types[nds],
6169 &regymm)
6170 || operand_type_equal (&i.tm.operand_types[nds],
6171 &regzmm));
6172 i.vex.register_specifier = i.op[nds].regs;
6173 }
6174 else
6175 source = dest = 0;
6176
6177 /* i.reg_operands MUST be the number of real register operands;
6178 implicit registers do not count. If there are 3 register
6179 operands, it must be a instruction with VexNDS. For a
6180 instruction with VexNDD, the destination register is encoded
6181 in VEX prefix. If there are 4 register operands, it must be
6182 a instruction with VEX prefix and 3 sources. */
6183 if (i.mem_operands == 0
6184 && ((i.reg_operands == 2
6185 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6186 || (i.reg_operands == 3
6187 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6188 || (i.reg_operands == 4 && vex_3_sources)))
6189 {
6190 switch (i.operands)
6191 {
6192 case 2:
6193 source = 0;
6194 break;
6195 case 3:
6196 /* When there are 3 operands, one of them may be immediate,
6197 which may be the first or the last operand. Otherwise,
6198 the first operand must be shift count register (cl) or it
6199 is an instruction with VexNDS. */
6200 gas_assert (i.imm_operands == 1
6201 || (i.imm_operands == 0
6202 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6203 || i.types[0].bitfield.shiftcount)));
6204 if (operand_type_check (i.types[0], imm)
6205 || i.types[0].bitfield.shiftcount)
6206 source = 1;
6207 else
6208 source = 0;
6209 break;
6210 case 4:
6211 /* When there are 4 operands, the first two must be 8bit
6212 immediate operands. The source operand will be the 3rd
6213 one.
6214
6215 For instructions with VexNDS, if the first operand
6216 an imm8, the source operand is the 2nd one. If the last
6217 operand is imm8, the source operand is the first one. */
6218 gas_assert ((i.imm_operands == 2
6219 && i.types[0].bitfield.imm8
6220 && i.types[1].bitfield.imm8)
6221 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6222 && i.imm_operands == 1
6223 && (i.types[0].bitfield.imm8
6224 || i.types[i.operands - 1].bitfield.imm8
6225 || i.rounding)));
6226 if (i.imm_operands == 2)
6227 source = 2;
6228 else
6229 {
6230 if (i.types[0].bitfield.imm8)
6231 source = 1;
6232 else
6233 source = 0;
6234 }
6235 break;
6236 case 5:
6237 if (i.tm.opcode_modifier.evex)
6238 {
6239 /* For EVEX instructions, when there are 5 operands, the
6240 first one must be immediate operand. If the second one
6241 is immediate operand, the source operand is the 3th
6242 one. If the last one is immediate operand, the source
6243 operand is the 2nd one. */
6244 gas_assert (i.imm_operands == 2
6245 && i.tm.opcode_modifier.sae
6246 && operand_type_check (i.types[0], imm));
6247 if (operand_type_check (i.types[1], imm))
6248 source = 2;
6249 else if (operand_type_check (i.types[4], imm))
6250 source = 1;
6251 else
6252 abort ();
6253 }
6254 break;
6255 default:
6256 abort ();
6257 }
6258
6259 if (!vex_3_sources)
6260 {
6261 dest = source + 1;
6262
6263 /* RC/SAE operand could be between DEST and SRC. That happens
6264 when one operand is GPR and the other one is XMM/YMM/ZMM
6265 register. */
6266 if (i.rounding && i.rounding->operand == (int) dest)
6267 dest++;
6268
6269 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6270 {
6271 /* For instructions with VexNDS, the register-only source
6272 operand must be 32/64bit integer, XMM, YMM or ZMM
6273 register. It is encoded in VEX prefix. We need to
6274 clear RegMem bit before calling operand_type_equal. */
6275
6276 i386_operand_type op;
6277 unsigned int vvvv;
6278
6279 /* Check register-only source operand when two source
6280 operands are swapped. */
6281 if (!i.tm.operand_types[source].bitfield.baseindex
6282 && i.tm.operand_types[dest].bitfield.baseindex)
6283 {
6284 vvvv = source;
6285 source = dest;
6286 }
6287 else
6288 vvvv = dest;
6289
6290 op = i.tm.operand_types[vvvv];
6291 op.bitfield.regmem = 0;
6292 if ((dest + 1) >= i.operands
6293 || (!op.bitfield.reg32
6294 && op.bitfield.reg64
6295 && !operand_type_equal (&op, &regxmm)
6296 && !operand_type_equal (&op, &regymm)
6297 && !operand_type_equal (&op, &regzmm)
6298 && !operand_type_equal (&op, &regmask)))
6299 abort ();
6300 i.vex.register_specifier = i.op[vvvv].regs;
6301 dest++;
6302 }
6303 }
6304
6305 i.rm.mode = 3;
6306 /* One of the register operands will be encoded in the i.tm.reg
6307 field, the other in the combined i.tm.mode and i.tm.regmem
6308 fields. If no form of this instruction supports a memory
6309 destination operand, then we assume the source operand may
6310 sometimes be a memory operand and so we need to store the
6311 destination in the i.rm.reg field. */
6312 if (!i.tm.operand_types[dest].bitfield.regmem
6313 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6314 {
6315 i.rm.reg = i.op[dest].regs->reg_num;
6316 i.rm.regmem = i.op[source].regs->reg_num;
6317 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6318 i.rex |= REX_R;
6319 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6320 i.vrex |= REX_R;
6321 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6322 i.rex |= REX_B;
6323 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6324 i.vrex |= REX_B;
6325 }
6326 else
6327 {
6328 i.rm.reg = i.op[source].regs->reg_num;
6329 i.rm.regmem = i.op[dest].regs->reg_num;
6330 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6331 i.rex |= REX_B;
6332 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6333 i.vrex |= REX_B;
6334 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6335 i.rex |= REX_R;
6336 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6337 i.vrex |= REX_R;
6338 }
6339 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6340 {
6341 if (!i.types[0].bitfield.control
6342 && !i.types[1].bitfield.control)
6343 abort ();
6344 i.rex &= ~(REX_R | REX_B);
6345 add_prefix (LOCK_PREFIX_OPCODE);
6346 }
6347 }
6348 else
6349 { /* If it's not 2 reg operands... */
6350 unsigned int mem;
6351
6352 if (i.mem_operands)
6353 {
6354 unsigned int fake_zero_displacement = 0;
6355 unsigned int op;
6356
6357 for (op = 0; op < i.operands; op++)
6358 if (operand_type_check (i.types[op], anymem))
6359 break;
6360 gas_assert (op < i.operands);
6361
6362 if (i.tm.opcode_modifier.vecsib)
6363 {
6364 if (i.index_reg->reg_num == RegEiz
6365 || i.index_reg->reg_num == RegRiz)
6366 abort ();
6367
6368 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6369 if (!i.base_reg)
6370 {
6371 i.sib.base = NO_BASE_REGISTER;
6372 i.sib.scale = i.log2_scale_factor;
6373 /* No Vec_Disp8 if there is no base. */
6374 i.types[op].bitfield.vec_disp8 = 0;
6375 i.types[op].bitfield.disp8 = 0;
6376 i.types[op].bitfield.disp16 = 0;
6377 i.types[op].bitfield.disp64 = 0;
6378 if (flag_code != CODE_64BIT)
6379 {
6380 /* Must be 32 bit */
6381 i.types[op].bitfield.disp32 = 1;
6382 i.types[op].bitfield.disp32s = 0;
6383 }
6384 else
6385 {
6386 i.types[op].bitfield.disp32 = 0;
6387 i.types[op].bitfield.disp32s = 1;
6388 }
6389 }
6390 i.sib.index = i.index_reg->reg_num;
6391 if ((i.index_reg->reg_flags & RegRex) != 0)
6392 i.rex |= REX_X;
6393 if ((i.index_reg->reg_flags & RegVRex) != 0)
6394 i.vrex |= REX_X;
6395 }
6396
6397 default_seg = &ds;
6398
6399 if (i.base_reg == 0)
6400 {
6401 i.rm.mode = 0;
6402 if (!i.disp_operands)
6403 {
6404 fake_zero_displacement = 1;
6405 /* Instructions with VSIB byte need 32bit displacement
6406 if there is no base register. */
6407 if (i.tm.opcode_modifier.vecsib)
6408 i.types[op].bitfield.disp32 = 1;
6409 }
6410 if (i.index_reg == 0)
6411 {
6412 gas_assert (!i.tm.opcode_modifier.vecsib);
6413 /* Operand is just <disp> */
6414 if (flag_code == CODE_64BIT)
6415 {
6416 /* 64bit mode overwrites the 32bit absolute
6417 addressing by RIP relative addressing and
6418 absolute addressing is encoded by one of the
6419 redundant SIB forms. */
6420 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6421 i.sib.base = NO_BASE_REGISTER;
6422 i.sib.index = NO_INDEX_REGISTER;
6423 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6424 ? disp32s : disp32);
6425 }
6426 else if ((flag_code == CODE_16BIT)
6427 ^ (i.prefix[ADDR_PREFIX] != 0))
6428 {
6429 i.rm.regmem = NO_BASE_REGISTER_16;
6430 i.types[op] = disp16;
6431 }
6432 else
6433 {
6434 i.rm.regmem = NO_BASE_REGISTER;
6435 i.types[op] = disp32;
6436 }
6437 }
6438 else if (!i.tm.opcode_modifier.vecsib)
6439 {
6440 /* !i.base_reg && i.index_reg */
6441 if (i.index_reg->reg_num == RegEiz
6442 || i.index_reg->reg_num == RegRiz)
6443 i.sib.index = NO_INDEX_REGISTER;
6444 else
6445 i.sib.index = i.index_reg->reg_num;
6446 i.sib.base = NO_BASE_REGISTER;
6447 i.sib.scale = i.log2_scale_factor;
6448 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6449 /* No Vec_Disp8 if there is no base. */
6450 i.types[op].bitfield.vec_disp8 = 0;
6451 i.types[op].bitfield.disp8 = 0;
6452 i.types[op].bitfield.disp16 = 0;
6453 i.types[op].bitfield.disp64 = 0;
6454 if (flag_code != CODE_64BIT)
6455 {
6456 /* Must be 32 bit */
6457 i.types[op].bitfield.disp32 = 1;
6458 i.types[op].bitfield.disp32s = 0;
6459 }
6460 else
6461 {
6462 i.types[op].bitfield.disp32 = 0;
6463 i.types[op].bitfield.disp32s = 1;
6464 }
6465 if ((i.index_reg->reg_flags & RegRex) != 0)
6466 i.rex |= REX_X;
6467 }
6468 }
6469 /* RIP addressing for 64bit mode. */
6470 else if (i.base_reg->reg_num == RegRip ||
6471 i.base_reg->reg_num == RegEip)
6472 {
6473 gas_assert (!i.tm.opcode_modifier.vecsib);
6474 i.rm.regmem = NO_BASE_REGISTER;
6475 i.types[op].bitfield.disp8 = 0;
6476 i.types[op].bitfield.disp16 = 0;
6477 i.types[op].bitfield.disp32 = 0;
6478 i.types[op].bitfield.disp32s = 1;
6479 i.types[op].bitfield.disp64 = 0;
6480 i.types[op].bitfield.vec_disp8 = 0;
6481 i.flags[op] |= Operand_PCrel;
6482 if (! i.disp_operands)
6483 fake_zero_displacement = 1;
6484 }
6485 else if (i.base_reg->reg_type.bitfield.reg16)
6486 {
6487 gas_assert (!i.tm.opcode_modifier.vecsib);
6488 switch (i.base_reg->reg_num)
6489 {
6490 case 3: /* (%bx) */
6491 if (i.index_reg == 0)
6492 i.rm.regmem = 7;
6493 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6494 i.rm.regmem = i.index_reg->reg_num - 6;
6495 break;
6496 case 5: /* (%bp) */
6497 default_seg = &ss;
6498 if (i.index_reg == 0)
6499 {
6500 i.rm.regmem = 6;
6501 if (operand_type_check (i.types[op], disp) == 0)
6502 {
6503 /* fake (%bp) into 0(%bp) */
6504 if (i.tm.operand_types[op].bitfield.vec_disp8)
6505 i.types[op].bitfield.vec_disp8 = 1;
6506 else
6507 i.types[op].bitfield.disp8 = 1;
6508 fake_zero_displacement = 1;
6509 }
6510 }
6511 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6512 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6513 break;
6514 default: /* (%si) -> 4 or (%di) -> 5 */
6515 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6516 }
6517 i.rm.mode = mode_from_disp_size (i.types[op]);
6518 }
6519 else /* i.base_reg and 32/64 bit mode */
6520 {
6521 if (flag_code == CODE_64BIT
6522 && operand_type_check (i.types[op], disp))
6523 {
6524 i386_operand_type temp;
6525 operand_type_set (&temp, 0);
6526 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6527 temp.bitfield.vec_disp8
6528 = i.types[op].bitfield.vec_disp8;
6529 i.types[op] = temp;
6530 if (i.prefix[ADDR_PREFIX] == 0)
6531 i.types[op].bitfield.disp32s = 1;
6532 else
6533 i.types[op].bitfield.disp32 = 1;
6534 }
6535
6536 if (!i.tm.opcode_modifier.vecsib)
6537 i.rm.regmem = i.base_reg->reg_num;
6538 if ((i.base_reg->reg_flags & RegRex) != 0)
6539 i.rex |= REX_B;
6540 i.sib.base = i.base_reg->reg_num;
6541 /* x86-64 ignores REX prefix bit here to avoid decoder
6542 complications. */
6543 if (!(i.base_reg->reg_flags & RegRex)
6544 && (i.base_reg->reg_num == EBP_REG_NUM
6545 || i.base_reg->reg_num == ESP_REG_NUM))
6546 default_seg = &ss;
6547 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6548 {
6549 fake_zero_displacement = 1;
6550 if (i.tm.operand_types [op].bitfield.vec_disp8)
6551 i.types[op].bitfield.vec_disp8 = 1;
6552 else
6553 i.types[op].bitfield.disp8 = 1;
6554 }
6555 i.sib.scale = i.log2_scale_factor;
6556 if (i.index_reg == 0)
6557 {
6558 gas_assert (!i.tm.opcode_modifier.vecsib);
6559 /* <disp>(%esp) becomes two byte modrm with no index
6560 register. We've already stored the code for esp
6561 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6562 Any base register besides %esp will not use the
6563 extra modrm byte. */
6564 i.sib.index = NO_INDEX_REGISTER;
6565 }
6566 else if (!i.tm.opcode_modifier.vecsib)
6567 {
6568 if (i.index_reg->reg_num == RegEiz
6569 || i.index_reg->reg_num == RegRiz)
6570 i.sib.index = NO_INDEX_REGISTER;
6571 else
6572 i.sib.index = i.index_reg->reg_num;
6573 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6574 if ((i.index_reg->reg_flags & RegRex) != 0)
6575 i.rex |= REX_X;
6576 }
6577
6578 if (i.disp_operands
6579 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6580 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6581 i.rm.mode = 0;
6582 else
6583 {
6584 if (!fake_zero_displacement
6585 && !i.disp_operands
6586 && i.disp_encoding)
6587 {
6588 fake_zero_displacement = 1;
6589 if (i.disp_encoding == disp_encoding_8bit)
6590 i.types[op].bitfield.disp8 = 1;
6591 else
6592 i.types[op].bitfield.disp32 = 1;
6593 }
6594 i.rm.mode = mode_from_disp_size (i.types[op]);
6595 }
6596 }
6597
6598 if (fake_zero_displacement)
6599 {
6600 /* Fakes a zero displacement assuming that i.types[op]
6601 holds the correct displacement size. */
6602 expressionS *exp;
6603
6604 gas_assert (i.op[op].disps == 0);
6605 exp = &disp_expressions[i.disp_operands++];
6606 i.op[op].disps = exp;
6607 exp->X_op = O_constant;
6608 exp->X_add_number = 0;
6609 exp->X_add_symbol = (symbolS *) 0;
6610 exp->X_op_symbol = (symbolS *) 0;
6611 }
6612
6613 mem = op;
6614 }
6615 else
6616 mem = ~0;
6617
6618 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6619 {
6620 if (operand_type_check (i.types[0], imm))
6621 i.vex.register_specifier = NULL;
6622 else
6623 {
6624 /* VEX.vvvv encodes one of the sources when the first
6625 operand is not an immediate. */
6626 if (i.tm.opcode_modifier.vexw == VEXW0)
6627 i.vex.register_specifier = i.op[0].regs;
6628 else
6629 i.vex.register_specifier = i.op[1].regs;
6630 }
6631
6632 /* Destination is a XMM register encoded in the ModRM.reg
6633 and VEX.R bit. */
6634 i.rm.reg = i.op[2].regs->reg_num;
6635 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6636 i.rex |= REX_R;
6637
6638 /* ModRM.rm and VEX.B encodes the other source. */
6639 if (!i.mem_operands)
6640 {
6641 i.rm.mode = 3;
6642
6643 if (i.tm.opcode_modifier.vexw == VEXW0)
6644 i.rm.regmem = i.op[1].regs->reg_num;
6645 else
6646 i.rm.regmem = i.op[0].regs->reg_num;
6647
6648 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6649 i.rex |= REX_B;
6650 }
6651 }
6652 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6653 {
6654 i.vex.register_specifier = i.op[2].regs;
6655 if (!i.mem_operands)
6656 {
6657 i.rm.mode = 3;
6658 i.rm.regmem = i.op[1].regs->reg_num;
6659 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6660 i.rex |= REX_B;
6661 }
6662 }
6663 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6664 (if any) based on i.tm.extension_opcode. Again, we must be
6665 careful to make sure that segment/control/debug/test/MMX
6666 registers are coded into the i.rm.reg field. */
6667 else if (i.reg_operands)
6668 {
6669 unsigned int op;
6670 unsigned int vex_reg = ~0;
6671
6672 for (op = 0; op < i.operands; op++)
6673 if (i.types[op].bitfield.reg8
6674 || i.types[op].bitfield.reg16
6675 || i.types[op].bitfield.reg32
6676 || i.types[op].bitfield.reg64
6677 || i.types[op].bitfield.regmmx
6678 || i.types[op].bitfield.regxmm
6679 || i.types[op].bitfield.regymm
6680 || i.types[op].bitfield.regbnd
6681 || i.types[op].bitfield.regzmm
6682 || i.types[op].bitfield.regmask
6683 || i.types[op].bitfield.sreg2
6684 || i.types[op].bitfield.sreg3
6685 || i.types[op].bitfield.control
6686 || i.types[op].bitfield.debug
6687 || i.types[op].bitfield.test)
6688 break;
6689
6690 if (vex_3_sources)
6691 op = dest;
6692 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6693 {
6694 /* For instructions with VexNDS, the register-only
6695 source operand is encoded in VEX prefix. */
6696 gas_assert (mem != (unsigned int) ~0);
6697
6698 if (op > mem)
6699 {
6700 vex_reg = op++;
6701 gas_assert (op < i.operands);
6702 }
6703 else
6704 {
6705 /* Check register-only source operand when two source
6706 operands are swapped. */
6707 if (!i.tm.operand_types[op].bitfield.baseindex
6708 && i.tm.operand_types[op + 1].bitfield.baseindex)
6709 {
6710 vex_reg = op;
6711 op += 2;
6712 gas_assert (mem == (vex_reg + 1)
6713 && op < i.operands);
6714 }
6715 else
6716 {
6717 vex_reg = op + 1;
6718 gas_assert (vex_reg < i.operands);
6719 }
6720 }
6721 }
6722 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6723 {
6724 /* For instructions with VexNDD, the register destination
6725 is encoded in VEX prefix. */
6726 if (i.mem_operands == 0)
6727 {
6728 /* There is no memory operand. */
6729 gas_assert ((op + 2) == i.operands);
6730 vex_reg = op + 1;
6731 }
6732 else
6733 {
6734 /* There are only 2 operands. */
6735 gas_assert (op < 2 && i.operands == 2);
6736 vex_reg = 1;
6737 }
6738 }
6739 else
6740 gas_assert (op < i.operands);
6741
6742 if (vex_reg != (unsigned int) ~0)
6743 {
6744 i386_operand_type *type = &i.tm.operand_types[vex_reg];
6745
6746 if (type->bitfield.reg32 != 1
6747 && type->bitfield.reg64 != 1
6748 && !operand_type_equal (type, &regxmm)
6749 && !operand_type_equal (type, &regymm)
6750 && !operand_type_equal (type, &regzmm)
6751 && !operand_type_equal (type, &regmask))
6752 abort ();
6753
6754 i.vex.register_specifier = i.op[vex_reg].regs;
6755 }
6756
6757 /* Don't set OP operand twice. */
6758 if (vex_reg != op)
6759 {
6760 /* If there is an extension opcode to put here, the
6761 register number must be put into the regmem field. */
6762 if (i.tm.extension_opcode != None)
6763 {
6764 i.rm.regmem = i.op[op].regs->reg_num;
6765 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6766 i.rex |= REX_B;
6767 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6768 i.vrex |= REX_B;
6769 }
6770 else
6771 {
6772 i.rm.reg = i.op[op].regs->reg_num;
6773 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6774 i.rex |= REX_R;
6775 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6776 i.vrex |= REX_R;
6777 }
6778 }
6779
6780 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6781 must set it to 3 to indicate this is a register operand
6782 in the regmem field. */
6783 if (!i.mem_operands)
6784 i.rm.mode = 3;
6785 }
6786
6787 /* Fill in i.rm.reg field with extension opcode (if any). */
6788 if (i.tm.extension_opcode != None)
6789 i.rm.reg = i.tm.extension_opcode;
6790 }
6791 return default_seg;
6792 }
6793
6794 static void
6795 output_branch (void)
6796 {
6797 char *p;
6798 int size;
6799 int code16;
6800 int prefix;
6801 relax_substateT subtype;
6802 symbolS *sym;
6803 offsetT off;
6804
6805 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6806 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6807
6808 prefix = 0;
6809 if (i.prefix[DATA_PREFIX] != 0)
6810 {
6811 prefix = 1;
6812 i.prefixes -= 1;
6813 code16 ^= CODE16;
6814 }
6815 /* Pentium4 branch hints. */
6816 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6817 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6818 {
6819 prefix++;
6820 i.prefixes--;
6821 }
6822 if (i.prefix[REX_PREFIX] != 0)
6823 {
6824 prefix++;
6825 i.prefixes--;
6826 }
6827
6828 /* BND prefixed jump. */
6829 if (i.prefix[BND_PREFIX] != 0)
6830 {
6831 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6832 i.prefixes -= 1;
6833 }
6834
6835 if (i.prefixes != 0 && !intel_syntax)
6836 as_warn (_("skipping prefixes on this instruction"));
6837
6838 /* It's always a symbol; End frag & setup for relax.
6839 Make sure there is enough room in this frag for the largest
6840 instruction we may generate in md_convert_frag. This is 2
6841 bytes for the opcode and room for the prefix and largest
6842 displacement. */
6843 frag_grow (prefix + 2 + 4);
6844 /* Prefix and 1 opcode byte go in fr_fix. */
6845 p = frag_more (prefix + 1);
6846 if (i.prefix[DATA_PREFIX] != 0)
6847 *p++ = DATA_PREFIX_OPCODE;
6848 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6849 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6850 *p++ = i.prefix[SEG_PREFIX];
6851 if (i.prefix[REX_PREFIX] != 0)
6852 *p++ = i.prefix[REX_PREFIX];
6853 *p = i.tm.base_opcode;
6854
6855 if ((unsigned char) *p == JUMP_PC_RELATIVE)
6856 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
6857 else if (cpu_arch_flags.bitfield.cpui386)
6858 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
6859 else
6860 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
6861 subtype |= code16;
6862
6863 sym = i.op[0].disps->X_add_symbol;
6864 off = i.op[0].disps->X_add_number;
6865
6866 if (i.op[0].disps->X_op != O_constant
6867 && i.op[0].disps->X_op != O_symbol)
6868 {
6869 /* Handle complex expressions. */
6870 sym = make_expr_symbol (i.op[0].disps);
6871 off = 0;
6872 }
6873
6874 /* 1 possible extra opcode + 4 byte displacement go in var part.
6875 Pass reloc in fr_var. */
6876 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
6877 }
6878
6879 static void
6880 output_jump (void)
6881 {
6882 char *p;
6883 int size;
6884 fixS *fixP;
6885
6886 if (i.tm.opcode_modifier.jumpbyte)
6887 {
6888 /* This is a loop or jecxz type instruction. */
6889 size = 1;
6890 if (i.prefix[ADDR_PREFIX] != 0)
6891 {
6892 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
6893 i.prefixes -= 1;
6894 }
6895 /* Pentium4 branch hints. */
6896 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6897 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6898 {
6899 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
6900 i.prefixes--;
6901 }
6902 }
6903 else
6904 {
6905 int code16;
6906
6907 code16 = 0;
6908 if (flag_code == CODE_16BIT)
6909 code16 = CODE16;
6910
6911 if (i.prefix[DATA_PREFIX] != 0)
6912 {
6913 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
6914 i.prefixes -= 1;
6915 code16 ^= CODE16;
6916 }
6917
6918 size = 4;
6919 if (code16)
6920 size = 2;
6921 }
6922
6923 if (i.prefix[REX_PREFIX] != 0)
6924 {
6925 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
6926 i.prefixes -= 1;
6927 }
6928
6929 /* BND prefixed jump. */
6930 if (i.prefix[BND_PREFIX] != 0)
6931 {
6932 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6933 i.prefixes -= 1;
6934 }
6935
6936 if (i.prefixes != 0 && !intel_syntax)
6937 as_warn (_("skipping prefixes on this instruction"));
6938
6939 p = frag_more (i.tm.opcode_length + size);
6940 switch (i.tm.opcode_length)
6941 {
6942 case 2:
6943 *p++ = i.tm.base_opcode >> 8;
6944 case 1:
6945 *p++ = i.tm.base_opcode;
6946 break;
6947 default:
6948 abort ();
6949 }
6950
6951 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6952 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
6953
6954 /* All jumps handled here are signed, but don't use a signed limit
6955 check for 32 and 16 bit jumps as we want to allow wrap around at
6956 4G and 64k respectively. */
6957 if (size == 1)
6958 fixP->fx_signed = 1;
6959 }
6960
6961 static void
6962 output_interseg_jump (void)
6963 {
6964 char *p;
6965 int size;
6966 int prefix;
6967 int code16;
6968
6969 code16 = 0;
6970 if (flag_code == CODE_16BIT)
6971 code16 = CODE16;
6972
6973 prefix = 0;
6974 if (i.prefix[DATA_PREFIX] != 0)
6975 {
6976 prefix = 1;
6977 i.prefixes -= 1;
6978 code16 ^= CODE16;
6979 }
6980 if (i.prefix[REX_PREFIX] != 0)
6981 {
6982 prefix++;
6983 i.prefixes -= 1;
6984 }
6985
6986 size = 4;
6987 if (code16)
6988 size = 2;
6989
6990 if (i.prefixes != 0 && !intel_syntax)
6991 as_warn (_("skipping prefixes on this instruction"));
6992
6993 /* 1 opcode; 2 segment; offset */
6994 p = frag_more (prefix + 1 + 2 + size);
6995
6996 if (i.prefix[DATA_PREFIX] != 0)
6997 *p++ = DATA_PREFIX_OPCODE;
6998
6999 if (i.prefix[REX_PREFIX] != 0)
7000 *p++ = i.prefix[REX_PREFIX];
7001
7002 *p++ = i.tm.base_opcode;
7003 if (i.op[1].imms->X_op == O_constant)
7004 {
7005 offsetT n = i.op[1].imms->X_add_number;
7006
7007 if (size == 2
7008 && !fits_in_unsigned_word (n)
7009 && !fits_in_signed_word (n))
7010 {
7011 as_bad (_("16-bit jump out of range"));
7012 return;
7013 }
7014 md_number_to_chars (p, n, size);
7015 }
7016 else
7017 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7018 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7019 if (i.op[0].imms->X_op != O_constant)
7020 as_bad (_("can't handle non absolute segment in `%s'"),
7021 i.tm.name);
7022 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7023 }
7024
7025 static void
7026 output_insn (void)
7027 {
7028 fragS *insn_start_frag;
7029 offsetT insn_start_off;
7030
7031 /* Tie dwarf2 debug info to the address at the start of the insn.
7032 We can't do this after the insn has been output as the current
7033 frag may have been closed off. eg. by frag_var. */
7034 dwarf2_emit_insn (0);
7035
7036 insn_start_frag = frag_now;
7037 insn_start_off = frag_now_fix ();
7038
7039 /* Output jumps. */
7040 if (i.tm.opcode_modifier.jump)
7041 output_branch ();
7042 else if (i.tm.opcode_modifier.jumpbyte
7043 || i.tm.opcode_modifier.jumpdword)
7044 output_jump ();
7045 else if (i.tm.opcode_modifier.jumpintersegment)
7046 output_interseg_jump ();
7047 else
7048 {
7049 /* Output normal instructions here. */
7050 char *p;
7051 unsigned char *q;
7052 unsigned int j;
7053 unsigned int prefix;
7054
7055 if (avoid_fence
7056 && i.tm.base_opcode == 0xfae
7057 && i.operands == 1
7058 && i.imm_operands == 1
7059 && (i.op[0].imms->X_add_number == 0xe8
7060 || i.op[0].imms->X_add_number == 0xf0
7061 || i.op[0].imms->X_add_number == 0xf8))
7062 {
7063 /* Encode lfence, mfence, and sfence as
7064 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7065 offsetT val = 0x240483f0ULL;
7066 p = frag_more (5);
7067 md_number_to_chars (p, val, 5);
7068 return;
7069 }
7070
7071 /* Some processors fail on LOCK prefix. This options makes
7072 assembler ignore LOCK prefix and serves as a workaround. */
7073 if (omit_lock_prefix)
7074 {
7075 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7076 return;
7077 i.prefix[LOCK_PREFIX] = 0;
7078 }
7079
7080 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7081 don't need the explicit prefix. */
7082 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7083 {
7084 switch (i.tm.opcode_length)
7085 {
7086 case 3:
7087 if (i.tm.base_opcode & 0xff000000)
7088 {
7089 prefix = (i.tm.base_opcode >> 24) & 0xff;
7090 goto check_prefix;
7091 }
7092 break;
7093 case 2:
7094 if ((i.tm.base_opcode & 0xff0000) != 0)
7095 {
7096 prefix = (i.tm.base_opcode >> 16) & 0xff;
7097 if (i.tm.cpu_flags.bitfield.cpupadlock)
7098 {
7099 check_prefix:
7100 if (prefix != REPE_PREFIX_OPCODE
7101 || (i.prefix[REP_PREFIX]
7102 != REPE_PREFIX_OPCODE))
7103 add_prefix (prefix);
7104 }
7105 else
7106 add_prefix (prefix);
7107 }
7108 break;
7109 case 1:
7110 break;
7111 default:
7112 abort ();
7113 }
7114
7115 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7116 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7117 R_X86_64_GOTTPOFF relocation so that linker can safely
7118 perform IE->LE optimization. */
7119 if (x86_elf_abi == X86_64_X32_ABI
7120 && i.operands == 2
7121 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7122 && i.prefix[REX_PREFIX] == 0)
7123 add_prefix (REX_OPCODE);
7124 #endif
7125
7126 /* The prefix bytes. */
7127 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7128 if (*q)
7129 FRAG_APPEND_1_CHAR (*q);
7130 }
7131 else
7132 {
7133 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7134 if (*q)
7135 switch (j)
7136 {
7137 case REX_PREFIX:
7138 /* REX byte is encoded in VEX prefix. */
7139 break;
7140 case SEG_PREFIX:
7141 case ADDR_PREFIX:
7142 FRAG_APPEND_1_CHAR (*q);
7143 break;
7144 default:
7145 /* There should be no other prefixes for instructions
7146 with VEX prefix. */
7147 abort ();
7148 }
7149
7150 /* For EVEX instructions i.vrex should become 0 after
7151 build_evex_prefix. For VEX instructions upper 16 registers
7152 aren't available, so VREX should be 0. */
7153 if (i.vrex)
7154 abort ();
7155 /* Now the VEX prefix. */
7156 p = frag_more (i.vex.length);
7157 for (j = 0; j < i.vex.length; j++)
7158 p[j] = i.vex.bytes[j];
7159 }
7160
7161 /* Now the opcode; be careful about word order here! */
7162 if (i.tm.opcode_length == 1)
7163 {
7164 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7165 }
7166 else
7167 {
7168 switch (i.tm.opcode_length)
7169 {
7170 case 4:
7171 p = frag_more (4);
7172 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7173 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7174 break;
7175 case 3:
7176 p = frag_more (3);
7177 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7178 break;
7179 case 2:
7180 p = frag_more (2);
7181 break;
7182 default:
7183 abort ();
7184 break;
7185 }
7186
7187 /* Put out high byte first: can't use md_number_to_chars! */
7188 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7189 *p = i.tm.base_opcode & 0xff;
7190 }
7191
7192 /* Now the modrm byte and sib byte (if present). */
7193 if (i.tm.opcode_modifier.modrm)
7194 {
7195 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7196 | i.rm.reg << 3
7197 | i.rm.mode << 6));
7198 /* If i.rm.regmem == ESP (4)
7199 && i.rm.mode != (Register mode)
7200 && not 16 bit
7201 ==> need second modrm byte. */
7202 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7203 && i.rm.mode != 3
7204 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
7205 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7206 | i.sib.index << 3
7207 | i.sib.scale << 6));
7208 }
7209
7210 if (i.disp_operands)
7211 output_disp (insn_start_frag, insn_start_off);
7212
7213 if (i.imm_operands)
7214 output_imm (insn_start_frag, insn_start_off);
7215 }
7216
7217 #ifdef DEBUG386
7218 if (flag_debug)
7219 {
7220 pi ("" /*line*/, &i);
7221 }
7222 #endif /* DEBUG386 */
7223 }
7224
7225 /* Return the size of the displacement operand N. */
7226
7227 static int
7228 disp_size (unsigned int n)
7229 {
7230 int size = 4;
7231
7232 /* Vec_Disp8 has to be 8bit. */
7233 if (i.types[n].bitfield.vec_disp8)
7234 size = 1;
7235 else if (i.types[n].bitfield.disp64)
7236 size = 8;
7237 else if (i.types[n].bitfield.disp8)
7238 size = 1;
7239 else if (i.types[n].bitfield.disp16)
7240 size = 2;
7241 return size;
7242 }
7243
7244 /* Return the size of the immediate operand N. */
7245
7246 static int
7247 imm_size (unsigned int n)
7248 {
7249 int size = 4;
7250 if (i.types[n].bitfield.imm64)
7251 size = 8;
7252 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7253 size = 1;
7254 else if (i.types[n].bitfield.imm16)
7255 size = 2;
7256 return size;
7257 }
7258
7259 static void
7260 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7261 {
7262 char *p;
7263 unsigned int n;
7264
7265 for (n = 0; n < i.operands; n++)
7266 {
7267 if (i.types[n].bitfield.vec_disp8
7268 || operand_type_check (i.types[n], disp))
7269 {
7270 if (i.op[n].disps->X_op == O_constant)
7271 {
7272 int size = disp_size (n);
7273 offsetT val = i.op[n].disps->X_add_number;
7274
7275 if (i.types[n].bitfield.vec_disp8)
7276 val >>= i.memshift;
7277 val = offset_in_range (val, size);
7278 p = frag_more (size);
7279 md_number_to_chars (p, val, size);
7280 }
7281 else
7282 {
7283 enum bfd_reloc_code_real reloc_type;
7284 int size = disp_size (n);
7285 int sign = i.types[n].bitfield.disp32s;
7286 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7287 fixS *fixP;
7288
7289 /* We can't have 8 bit displacement here. */
7290 gas_assert (!i.types[n].bitfield.disp8);
7291
7292 /* The PC relative address is computed relative
7293 to the instruction boundary, so in case immediate
7294 fields follows, we need to adjust the value. */
7295 if (pcrel && i.imm_operands)
7296 {
7297 unsigned int n1;
7298 int sz = 0;
7299
7300 for (n1 = 0; n1 < i.operands; n1++)
7301 if (operand_type_check (i.types[n1], imm))
7302 {
7303 /* Only one immediate is allowed for PC
7304 relative address. */
7305 gas_assert (sz == 0);
7306 sz = imm_size (n1);
7307 i.op[n].disps->X_add_number -= sz;
7308 }
7309 /* We should find the immediate. */
7310 gas_assert (sz != 0);
7311 }
7312
7313 p = frag_more (size);
7314 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7315 if (GOT_symbol
7316 && GOT_symbol == i.op[n].disps->X_add_symbol
7317 && (((reloc_type == BFD_RELOC_32
7318 || reloc_type == BFD_RELOC_X86_64_32S
7319 || (reloc_type == BFD_RELOC_64
7320 && object_64bit))
7321 && (i.op[n].disps->X_op == O_symbol
7322 || (i.op[n].disps->X_op == O_add
7323 && ((symbol_get_value_expression
7324 (i.op[n].disps->X_op_symbol)->X_op)
7325 == O_subtract))))
7326 || reloc_type == BFD_RELOC_32_PCREL))
7327 {
7328 offsetT add;
7329
7330 if (insn_start_frag == frag_now)
7331 add = (p - frag_now->fr_literal) - insn_start_off;
7332 else
7333 {
7334 fragS *fr;
7335
7336 add = insn_start_frag->fr_fix - insn_start_off;
7337 for (fr = insn_start_frag->fr_next;
7338 fr && fr != frag_now; fr = fr->fr_next)
7339 add += fr->fr_fix;
7340 add += p - frag_now->fr_literal;
7341 }
7342
7343 if (!object_64bit)
7344 {
7345 reloc_type = BFD_RELOC_386_GOTPC;
7346 i.op[n].imms->X_add_number += add;
7347 }
7348 else if (reloc_type == BFD_RELOC_64)
7349 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7350 else
7351 /* Don't do the adjustment for x86-64, as there
7352 the pcrel addressing is relative to the _next_
7353 insn, and that is taken care of in other code. */
7354 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7355 }
7356 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7357 size, i.op[n].disps, pcrel,
7358 reloc_type);
7359 /* Check for "call/jmp *mem", "mov mem, %reg",
7360 "test %reg, mem" and "binop mem, %reg" where binop
7361 is one of adc, add, and, cmp, or, sbb, sub, xor
7362 instructions. Always generate R_386_GOT32X for
7363 "sym*GOT" operand in 32-bit mode. */
7364 if ((generate_relax_relocations
7365 || (!object_64bit
7366 && i.rm.mode == 0
7367 && i.rm.regmem == 5))
7368 && (i.rm.mode == 2
7369 || (i.rm.mode == 0 && i.rm.regmem == 5))
7370 && ((i.operands == 1
7371 && i.tm.base_opcode == 0xff
7372 && (i.rm.reg == 2 || i.rm.reg == 4))
7373 || (i.operands == 2
7374 && (i.tm.base_opcode == 0x8b
7375 || i.tm.base_opcode == 0x85
7376 || (i.tm.base_opcode & 0xc7) == 0x03))))
7377 {
7378 if (object_64bit)
7379 {
7380 fixP->fx_tcbit = i.rex != 0;
7381 if (i.base_reg
7382 && (i.base_reg->reg_num == RegRip
7383 || i.base_reg->reg_num == RegEip))
7384 fixP->fx_tcbit2 = 1;
7385 }
7386 else
7387 fixP->fx_tcbit2 = 1;
7388 }
7389 }
7390 }
7391 }
7392 }
7393
7394 static void
7395 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7396 {
7397 char *p;
7398 unsigned int n;
7399
7400 for (n = 0; n < i.operands; n++)
7401 {
7402 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7403 if (i.rounding && (int) n == i.rounding->operand)
7404 continue;
7405
7406 if (operand_type_check (i.types[n], imm))
7407 {
7408 if (i.op[n].imms->X_op == O_constant)
7409 {
7410 int size = imm_size (n);
7411 offsetT val;
7412
7413 val = offset_in_range (i.op[n].imms->X_add_number,
7414 size);
7415 p = frag_more (size);
7416 md_number_to_chars (p, val, size);
7417 }
7418 else
7419 {
7420 /* Not absolute_section.
7421 Need a 32-bit fixup (don't support 8bit
7422 non-absolute imms). Try to support other
7423 sizes ... */
7424 enum bfd_reloc_code_real reloc_type;
7425 int size = imm_size (n);
7426 int sign;
7427
7428 if (i.types[n].bitfield.imm32s
7429 && (i.suffix == QWORD_MNEM_SUFFIX
7430 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7431 sign = 1;
7432 else
7433 sign = 0;
7434
7435 p = frag_more (size);
7436 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7437
7438 /* This is tough to explain. We end up with this one if we
7439 * have operands that look like
7440 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7441 * obtain the absolute address of the GOT, and it is strongly
7442 * preferable from a performance point of view to avoid using
7443 * a runtime relocation for this. The actual sequence of
7444 * instructions often look something like:
7445 *
7446 * call .L66
7447 * .L66:
7448 * popl %ebx
7449 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7450 *
7451 * The call and pop essentially return the absolute address
7452 * of the label .L66 and store it in %ebx. The linker itself
7453 * will ultimately change the first operand of the addl so
7454 * that %ebx points to the GOT, but to keep things simple, the
7455 * .o file must have this operand set so that it generates not
7456 * the absolute address of .L66, but the absolute address of
7457 * itself. This allows the linker itself simply treat a GOTPC
7458 * relocation as asking for a pcrel offset to the GOT to be
7459 * added in, and the addend of the relocation is stored in the
7460 * operand field for the instruction itself.
7461 *
7462 * Our job here is to fix the operand so that it would add
7463 * the correct offset so that %ebx would point to itself. The
7464 * thing that is tricky is that .-.L66 will point to the
7465 * beginning of the instruction, so we need to further modify
7466 * the operand so that it will point to itself. There are
7467 * other cases where you have something like:
7468 *
7469 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7470 *
7471 * and here no correction would be required. Internally in
7472 * the assembler we treat operands of this form as not being
7473 * pcrel since the '.' is explicitly mentioned, and I wonder
7474 * whether it would simplify matters to do it this way. Who
7475 * knows. In earlier versions of the PIC patches, the
7476 * pcrel_adjust field was used to store the correction, but
7477 * since the expression is not pcrel, I felt it would be
7478 * confusing to do it this way. */
7479
7480 if ((reloc_type == BFD_RELOC_32
7481 || reloc_type == BFD_RELOC_X86_64_32S
7482 || reloc_type == BFD_RELOC_64)
7483 && GOT_symbol
7484 && GOT_symbol == i.op[n].imms->X_add_symbol
7485 && (i.op[n].imms->X_op == O_symbol
7486 || (i.op[n].imms->X_op == O_add
7487 && ((symbol_get_value_expression
7488 (i.op[n].imms->X_op_symbol)->X_op)
7489 == O_subtract))))
7490 {
7491 offsetT add;
7492
7493 if (insn_start_frag == frag_now)
7494 add = (p - frag_now->fr_literal) - insn_start_off;
7495 else
7496 {
7497 fragS *fr;
7498
7499 add = insn_start_frag->fr_fix - insn_start_off;
7500 for (fr = insn_start_frag->fr_next;
7501 fr && fr != frag_now; fr = fr->fr_next)
7502 add += fr->fr_fix;
7503 add += p - frag_now->fr_literal;
7504 }
7505
7506 if (!object_64bit)
7507 reloc_type = BFD_RELOC_386_GOTPC;
7508 else if (size == 4)
7509 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7510 else if (size == 8)
7511 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7512 i.op[n].imms->X_add_number += add;
7513 }
7514 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7515 i.op[n].imms, 0, reloc_type);
7516 }
7517 }
7518 }
7519 }
7520 \f
7521 /* x86_cons_fix_new is called via the expression parsing code when a
7522 reloc is needed. We use this hook to get the correct .got reloc. */
7523 static int cons_sign = -1;
7524
7525 void
7526 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7527 expressionS *exp, bfd_reloc_code_real_type r)
7528 {
7529 r = reloc (len, 0, cons_sign, r);
7530
7531 #ifdef TE_PE
7532 if (exp->X_op == O_secrel)
7533 {
7534 exp->X_op = O_symbol;
7535 r = BFD_RELOC_32_SECREL;
7536 }
7537 #endif
7538
7539 fix_new_exp (frag, off, len, exp, 0, r);
7540 }
7541
7542 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7543 purpose of the `.dc.a' internal pseudo-op. */
7544
7545 int
7546 x86_address_bytes (void)
7547 {
7548 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7549 return 4;
7550 return stdoutput->arch_info->bits_per_address / 8;
7551 }
7552
7553 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7554 || defined (LEX_AT)
7555 # define lex_got(reloc, adjust, types) NULL
7556 #else
7557 /* Parse operands of the form
7558 <symbol>@GOTOFF+<nnn>
7559 and similar .plt or .got references.
7560
7561 If we find one, set up the correct relocation in RELOC and copy the
7562 input string, minus the `@GOTOFF' into a malloc'd buffer for
7563 parsing by the calling routine. Return this buffer, and if ADJUST
7564 is non-null set it to the length of the string we removed from the
7565 input line. Otherwise return NULL. */
7566 static char *
7567 lex_got (enum bfd_reloc_code_real *rel,
7568 int *adjust,
7569 i386_operand_type *types)
7570 {
7571 /* Some of the relocations depend on the size of what field is to
7572 be relocated. But in our callers i386_immediate and i386_displacement
7573 we don't yet know the operand size (this will be set by insn
7574 matching). Hence we record the word32 relocation here,
7575 and adjust the reloc according to the real size in reloc(). */
7576 static const struct {
7577 const char *str;
7578 int len;
7579 const enum bfd_reloc_code_real rel[2];
7580 const i386_operand_type types64;
7581 } gotrel[] = {
7582 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7583 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7584 BFD_RELOC_SIZE32 },
7585 OPERAND_TYPE_IMM32_64 },
7586 #endif
7587 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7588 BFD_RELOC_X86_64_PLTOFF64 },
7589 OPERAND_TYPE_IMM64 },
7590 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7591 BFD_RELOC_X86_64_PLT32 },
7592 OPERAND_TYPE_IMM32_32S_DISP32 },
7593 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7594 BFD_RELOC_X86_64_GOTPLT64 },
7595 OPERAND_TYPE_IMM64_DISP64 },
7596 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7597 BFD_RELOC_X86_64_GOTOFF64 },
7598 OPERAND_TYPE_IMM64_DISP64 },
7599 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7600 BFD_RELOC_X86_64_GOTPCREL },
7601 OPERAND_TYPE_IMM32_32S_DISP32 },
7602 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7603 BFD_RELOC_X86_64_TLSGD },
7604 OPERAND_TYPE_IMM32_32S_DISP32 },
7605 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7606 _dummy_first_bfd_reloc_code_real },
7607 OPERAND_TYPE_NONE },
7608 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7609 BFD_RELOC_X86_64_TLSLD },
7610 OPERAND_TYPE_IMM32_32S_DISP32 },
7611 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7612 BFD_RELOC_X86_64_GOTTPOFF },
7613 OPERAND_TYPE_IMM32_32S_DISP32 },
7614 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7615 BFD_RELOC_X86_64_TPOFF32 },
7616 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7617 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7618 _dummy_first_bfd_reloc_code_real },
7619 OPERAND_TYPE_NONE },
7620 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7621 BFD_RELOC_X86_64_DTPOFF32 },
7622 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7623 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7624 _dummy_first_bfd_reloc_code_real },
7625 OPERAND_TYPE_NONE },
7626 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7627 _dummy_first_bfd_reloc_code_real },
7628 OPERAND_TYPE_NONE },
7629 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7630 BFD_RELOC_X86_64_GOT32 },
7631 OPERAND_TYPE_IMM32_32S_64_DISP32 },
7632 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7633 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7634 OPERAND_TYPE_IMM32_32S_DISP32 },
7635 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7636 BFD_RELOC_X86_64_TLSDESC_CALL },
7637 OPERAND_TYPE_IMM32_32S_DISP32 },
7638 };
7639 char *cp;
7640 unsigned int j;
7641
7642 #if defined (OBJ_MAYBE_ELF)
7643 if (!IS_ELF)
7644 return NULL;
7645 #endif
7646
7647 for (cp = input_line_pointer; *cp != '@'; cp++)
7648 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7649 return NULL;
7650
7651 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7652 {
7653 int len = gotrel[j].len;
7654 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7655 {
7656 if (gotrel[j].rel[object_64bit] != 0)
7657 {
7658 int first, second;
7659 char *tmpbuf, *past_reloc;
7660
7661 *rel = gotrel[j].rel[object_64bit];
7662
7663 if (types)
7664 {
7665 if (flag_code != CODE_64BIT)
7666 {
7667 types->bitfield.imm32 = 1;
7668 types->bitfield.disp32 = 1;
7669 }
7670 else
7671 *types = gotrel[j].types64;
7672 }
7673
7674 if (j != 0 && GOT_symbol == NULL)
7675 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7676
7677 /* The length of the first part of our input line. */
7678 first = cp - input_line_pointer;
7679
7680 /* The second part goes from after the reloc token until
7681 (and including) an end_of_line char or comma. */
7682 past_reloc = cp + 1 + len;
7683 cp = past_reloc;
7684 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7685 ++cp;
7686 second = cp + 1 - past_reloc;
7687
7688 /* Allocate and copy string. The trailing NUL shouldn't
7689 be necessary, but be safe. */
7690 tmpbuf = XNEWVEC (char, first + second + 2);
7691 memcpy (tmpbuf, input_line_pointer, first);
7692 if (second != 0 && *past_reloc != ' ')
7693 /* Replace the relocation token with ' ', so that
7694 errors like foo@GOTOFF1 will be detected. */
7695 tmpbuf[first++] = ' ';
7696 else
7697 /* Increment length by 1 if the relocation token is
7698 removed. */
7699 len++;
7700 if (adjust)
7701 *adjust = len;
7702 memcpy (tmpbuf + first, past_reloc, second);
7703 tmpbuf[first + second] = '\0';
7704 return tmpbuf;
7705 }
7706
7707 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7708 gotrel[j].str, 1 << (5 + object_64bit));
7709 return NULL;
7710 }
7711 }
7712
7713 /* Might be a symbol version string. Don't as_bad here. */
7714 return NULL;
7715 }
7716 #endif
7717
7718 #ifdef TE_PE
7719 #ifdef lex_got
7720 #undef lex_got
7721 #endif
7722 /* Parse operands of the form
7723 <symbol>@SECREL32+<nnn>
7724
7725 If we find one, set up the correct relocation in RELOC and copy the
7726 input string, minus the `@SECREL32' into a malloc'd buffer for
7727 parsing by the calling routine. Return this buffer, and if ADJUST
7728 is non-null set it to the length of the string we removed from the
7729 input line. Otherwise return NULL.
7730
7731 This function is copied from the ELF version above adjusted for PE targets. */
7732
7733 static char *
7734 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7735 int *adjust ATTRIBUTE_UNUSED,
7736 i386_operand_type *types)
7737 {
7738 static const struct
7739 {
7740 const char *str;
7741 int len;
7742 const enum bfd_reloc_code_real rel[2];
7743 const i386_operand_type types64;
7744 }
7745 gotrel[] =
7746 {
7747 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7748 BFD_RELOC_32_SECREL },
7749 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7750 };
7751
7752 char *cp;
7753 unsigned j;
7754
7755 for (cp = input_line_pointer; *cp != '@'; cp++)
7756 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7757 return NULL;
7758
7759 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7760 {
7761 int len = gotrel[j].len;
7762
7763 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7764 {
7765 if (gotrel[j].rel[object_64bit] != 0)
7766 {
7767 int first, second;
7768 char *tmpbuf, *past_reloc;
7769
7770 *rel = gotrel[j].rel[object_64bit];
7771 if (adjust)
7772 *adjust = len;
7773
7774 if (types)
7775 {
7776 if (flag_code != CODE_64BIT)
7777 {
7778 types->bitfield.imm32 = 1;
7779 types->bitfield.disp32 = 1;
7780 }
7781 else
7782 *types = gotrel[j].types64;
7783 }
7784
7785 /* The length of the first part of our input line. */
7786 first = cp - input_line_pointer;
7787
7788 /* The second part goes from after the reloc token until
7789 (and including) an end_of_line char or comma. */
7790 past_reloc = cp + 1 + len;
7791 cp = past_reloc;
7792 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7793 ++cp;
7794 second = cp + 1 - past_reloc;
7795
7796 /* Allocate and copy string. The trailing NUL shouldn't
7797 be necessary, but be safe. */
7798 tmpbuf = XNEWVEC (char, first + second + 2);
7799 memcpy (tmpbuf, input_line_pointer, first);
7800 if (second != 0 && *past_reloc != ' ')
7801 /* Replace the relocation token with ' ', so that
7802 errors like foo@SECLREL321 will be detected. */
7803 tmpbuf[first++] = ' ';
7804 memcpy (tmpbuf + first, past_reloc, second);
7805 tmpbuf[first + second] = '\0';
7806 return tmpbuf;
7807 }
7808
7809 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7810 gotrel[j].str, 1 << (5 + object_64bit));
7811 return NULL;
7812 }
7813 }
7814
7815 /* Might be a symbol version string. Don't as_bad here. */
7816 return NULL;
7817 }
7818
7819 #endif /* TE_PE */
7820
7821 bfd_reloc_code_real_type
7822 x86_cons (expressionS *exp, int size)
7823 {
7824 bfd_reloc_code_real_type got_reloc = NO_RELOC;
7825
7826 intel_syntax = -intel_syntax;
7827
7828 exp->X_md = 0;
7829 if (size == 4 || (object_64bit && size == 8))
7830 {
7831 /* Handle @GOTOFF and the like in an expression. */
7832 char *save;
7833 char *gotfree_input_line;
7834 int adjust = 0;
7835
7836 save = input_line_pointer;
7837 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
7838 if (gotfree_input_line)
7839 input_line_pointer = gotfree_input_line;
7840
7841 expression (exp);
7842
7843 if (gotfree_input_line)
7844 {
7845 /* expression () has merrily parsed up to the end of line,
7846 or a comma - in the wrong buffer. Transfer how far
7847 input_line_pointer has moved to the right buffer. */
7848 input_line_pointer = (save
7849 + (input_line_pointer - gotfree_input_line)
7850 + adjust);
7851 free (gotfree_input_line);
7852 if (exp->X_op == O_constant
7853 || exp->X_op == O_absent
7854 || exp->X_op == O_illegal
7855 || exp->X_op == O_register
7856 || exp->X_op == O_big)
7857 {
7858 char c = *input_line_pointer;
7859 *input_line_pointer = 0;
7860 as_bad (_("missing or invalid expression `%s'"), save);
7861 *input_line_pointer = c;
7862 }
7863 }
7864 }
7865 else
7866 expression (exp);
7867
7868 intel_syntax = -intel_syntax;
7869
7870 if (intel_syntax)
7871 i386_intel_simplify (exp);
7872
7873 return got_reloc;
7874 }
7875
7876 static void
7877 signed_cons (int size)
7878 {
7879 if (flag_code == CODE_64BIT)
7880 cons_sign = 1;
7881 cons (size);
7882 cons_sign = -1;
7883 }
7884
7885 #ifdef TE_PE
7886 static void
7887 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
7888 {
7889 expressionS exp;
7890
7891 do
7892 {
7893 expression (&exp);
7894 if (exp.X_op == O_symbol)
7895 exp.X_op = O_secrel;
7896
7897 emit_expr (&exp, 4);
7898 }
7899 while (*input_line_pointer++ == ',');
7900
7901 input_line_pointer--;
7902 demand_empty_rest_of_line ();
7903 }
7904 #endif
7905
7906 /* Handle Vector operations. */
7907
7908 static char *
7909 check_VecOperations (char *op_string, char *op_end)
7910 {
7911 const reg_entry *mask;
7912 const char *saved;
7913 char *end_op;
7914
7915 while (*op_string
7916 && (op_end == NULL || op_string < op_end))
7917 {
7918 saved = op_string;
7919 if (*op_string == '{')
7920 {
7921 op_string++;
7922
7923 /* Check broadcasts. */
7924 if (strncmp (op_string, "1to", 3) == 0)
7925 {
7926 int bcst_type;
7927
7928 if (i.broadcast)
7929 goto duplicated_vec_op;
7930
7931 op_string += 3;
7932 if (*op_string == '8')
7933 bcst_type = BROADCAST_1TO8;
7934 else if (*op_string == '4')
7935 bcst_type = BROADCAST_1TO4;
7936 else if (*op_string == '2')
7937 bcst_type = BROADCAST_1TO2;
7938 else if (*op_string == '1'
7939 && *(op_string+1) == '6')
7940 {
7941 bcst_type = BROADCAST_1TO16;
7942 op_string++;
7943 }
7944 else
7945 {
7946 as_bad (_("Unsupported broadcast: `%s'"), saved);
7947 return NULL;
7948 }
7949 op_string++;
7950
7951 broadcast_op.type = bcst_type;
7952 broadcast_op.operand = this_operand;
7953 i.broadcast = &broadcast_op;
7954 }
7955 /* Check masking operation. */
7956 else if ((mask = parse_register (op_string, &end_op)) != NULL)
7957 {
7958 /* k0 can't be used for write mask. */
7959 if (mask->reg_num == 0)
7960 {
7961 as_bad (_("`%s' can't be used for write mask"),
7962 op_string);
7963 return NULL;
7964 }
7965
7966 if (!i.mask)
7967 {
7968 mask_op.mask = mask;
7969 mask_op.zeroing = 0;
7970 mask_op.operand = this_operand;
7971 i.mask = &mask_op;
7972 }
7973 else
7974 {
7975 if (i.mask->mask)
7976 goto duplicated_vec_op;
7977
7978 i.mask->mask = mask;
7979
7980 /* Only "{z}" is allowed here. No need to check
7981 zeroing mask explicitly. */
7982 if (i.mask->operand != this_operand)
7983 {
7984 as_bad (_("invalid write mask `%s'"), saved);
7985 return NULL;
7986 }
7987 }
7988
7989 op_string = end_op;
7990 }
7991 /* Check zeroing-flag for masking operation. */
7992 else if (*op_string == 'z')
7993 {
7994 if (!i.mask)
7995 {
7996 mask_op.mask = NULL;
7997 mask_op.zeroing = 1;
7998 mask_op.operand = this_operand;
7999 i.mask = &mask_op;
8000 }
8001 else
8002 {
8003 if (i.mask->zeroing)
8004 {
8005 duplicated_vec_op:
8006 as_bad (_("duplicated `%s'"), saved);
8007 return NULL;
8008 }
8009
8010 i.mask->zeroing = 1;
8011
8012 /* Only "{%k}" is allowed here. No need to check mask
8013 register explicitly. */
8014 if (i.mask->operand != this_operand)
8015 {
8016 as_bad (_("invalid zeroing-masking `%s'"),
8017 saved);
8018 return NULL;
8019 }
8020 }
8021
8022 op_string++;
8023 }
8024 else
8025 goto unknown_vec_op;
8026
8027 if (*op_string != '}')
8028 {
8029 as_bad (_("missing `}' in `%s'"), saved);
8030 return NULL;
8031 }
8032 op_string++;
8033 continue;
8034 }
8035 unknown_vec_op:
8036 /* We don't know this one. */
8037 as_bad (_("unknown vector operation: `%s'"), saved);
8038 return NULL;
8039 }
8040
8041 return op_string;
8042 }
8043
8044 static int
8045 i386_immediate (char *imm_start)
8046 {
8047 char *save_input_line_pointer;
8048 char *gotfree_input_line;
8049 segT exp_seg = 0;
8050 expressionS *exp;
8051 i386_operand_type types;
8052
8053 operand_type_set (&types, ~0);
8054
8055 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8056 {
8057 as_bad (_("at most %d immediate operands are allowed"),
8058 MAX_IMMEDIATE_OPERANDS);
8059 return 0;
8060 }
8061
8062 exp = &im_expressions[i.imm_operands++];
8063 i.op[this_operand].imms = exp;
8064
8065 if (is_space_char (*imm_start))
8066 ++imm_start;
8067
8068 save_input_line_pointer = input_line_pointer;
8069 input_line_pointer = imm_start;
8070
8071 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8072 if (gotfree_input_line)
8073 input_line_pointer = gotfree_input_line;
8074
8075 exp_seg = expression (exp);
8076
8077 SKIP_WHITESPACE ();
8078
8079 /* Handle vector operations. */
8080 if (*input_line_pointer == '{')
8081 {
8082 input_line_pointer = check_VecOperations (input_line_pointer,
8083 NULL);
8084 if (input_line_pointer == NULL)
8085 return 0;
8086 }
8087
8088 if (*input_line_pointer)
8089 as_bad (_("junk `%s' after expression"), input_line_pointer);
8090
8091 input_line_pointer = save_input_line_pointer;
8092 if (gotfree_input_line)
8093 {
8094 free (gotfree_input_line);
8095
8096 if (exp->X_op == O_constant || exp->X_op == O_register)
8097 exp->X_op = O_illegal;
8098 }
8099
8100 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8101 }
8102
8103 static int
8104 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8105 i386_operand_type types, const char *imm_start)
8106 {
8107 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8108 {
8109 if (imm_start)
8110 as_bad (_("missing or invalid immediate expression `%s'"),
8111 imm_start);
8112 return 0;
8113 }
8114 else if (exp->X_op == O_constant)
8115 {
8116 /* Size it properly later. */
8117 i.types[this_operand].bitfield.imm64 = 1;
8118 /* If not 64bit, sign extend val. */
8119 if (flag_code != CODE_64BIT
8120 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8121 exp->X_add_number
8122 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8123 }
8124 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8125 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8126 && exp_seg != absolute_section
8127 && exp_seg != text_section
8128 && exp_seg != data_section
8129 && exp_seg != bss_section
8130 && exp_seg != undefined_section
8131 && !bfd_is_com_section (exp_seg))
8132 {
8133 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8134 return 0;
8135 }
8136 #endif
8137 else if (!intel_syntax && exp_seg == reg_section)
8138 {
8139 if (imm_start)
8140 as_bad (_("illegal immediate register operand %s"), imm_start);
8141 return 0;
8142 }
8143 else
8144 {
8145 /* This is an address. The size of the address will be
8146 determined later, depending on destination register,
8147 suffix, or the default for the section. */
8148 i.types[this_operand].bitfield.imm8 = 1;
8149 i.types[this_operand].bitfield.imm16 = 1;
8150 i.types[this_operand].bitfield.imm32 = 1;
8151 i.types[this_operand].bitfield.imm32s = 1;
8152 i.types[this_operand].bitfield.imm64 = 1;
8153 i.types[this_operand] = operand_type_and (i.types[this_operand],
8154 types);
8155 }
8156
8157 return 1;
8158 }
8159
8160 static char *
8161 i386_scale (char *scale)
8162 {
8163 offsetT val;
8164 char *save = input_line_pointer;
8165
8166 input_line_pointer = scale;
8167 val = get_absolute_expression ();
8168
8169 switch (val)
8170 {
8171 case 1:
8172 i.log2_scale_factor = 0;
8173 break;
8174 case 2:
8175 i.log2_scale_factor = 1;
8176 break;
8177 case 4:
8178 i.log2_scale_factor = 2;
8179 break;
8180 case 8:
8181 i.log2_scale_factor = 3;
8182 break;
8183 default:
8184 {
8185 char sep = *input_line_pointer;
8186
8187 *input_line_pointer = '\0';
8188 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8189 scale);
8190 *input_line_pointer = sep;
8191 input_line_pointer = save;
8192 return NULL;
8193 }
8194 }
8195 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8196 {
8197 as_warn (_("scale factor of %d without an index register"),
8198 1 << i.log2_scale_factor);
8199 i.log2_scale_factor = 0;
8200 }
8201 scale = input_line_pointer;
8202 input_line_pointer = save;
8203 return scale;
8204 }
8205
8206 static int
8207 i386_displacement (char *disp_start, char *disp_end)
8208 {
8209 expressionS *exp;
8210 segT exp_seg = 0;
8211 char *save_input_line_pointer;
8212 char *gotfree_input_line;
8213 int override;
8214 i386_operand_type bigdisp, types = anydisp;
8215 int ret;
8216
8217 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8218 {
8219 as_bad (_("at most %d displacement operands are allowed"),
8220 MAX_MEMORY_OPERANDS);
8221 return 0;
8222 }
8223
8224 operand_type_set (&bigdisp, 0);
8225 if ((i.types[this_operand].bitfield.jumpabsolute)
8226 || (!current_templates->start->opcode_modifier.jump
8227 && !current_templates->start->opcode_modifier.jumpdword))
8228 {
8229 bigdisp.bitfield.disp32 = 1;
8230 override = (i.prefix[ADDR_PREFIX] != 0);
8231 if (flag_code == CODE_64BIT)
8232 {
8233 if (!override)
8234 {
8235 bigdisp.bitfield.disp32s = 1;
8236 bigdisp.bitfield.disp64 = 1;
8237 }
8238 }
8239 else if ((flag_code == CODE_16BIT) ^ override)
8240 {
8241 bigdisp.bitfield.disp32 = 0;
8242 bigdisp.bitfield.disp16 = 1;
8243 }
8244 }
8245 else
8246 {
8247 /* For PC-relative branches, the width of the displacement
8248 is dependent upon data size, not address size. */
8249 override = (i.prefix[DATA_PREFIX] != 0);
8250 if (flag_code == CODE_64BIT)
8251 {
8252 if (override || i.suffix == WORD_MNEM_SUFFIX)
8253 bigdisp.bitfield.disp16 = 1;
8254 else
8255 {
8256 bigdisp.bitfield.disp32 = 1;
8257 bigdisp.bitfield.disp32s = 1;
8258 }
8259 }
8260 else
8261 {
8262 if (!override)
8263 override = (i.suffix == (flag_code != CODE_16BIT
8264 ? WORD_MNEM_SUFFIX
8265 : LONG_MNEM_SUFFIX));
8266 bigdisp.bitfield.disp32 = 1;
8267 if ((flag_code == CODE_16BIT) ^ override)
8268 {
8269 bigdisp.bitfield.disp32 = 0;
8270 bigdisp.bitfield.disp16 = 1;
8271 }
8272 }
8273 }
8274 i.types[this_operand] = operand_type_or (i.types[this_operand],
8275 bigdisp);
8276
8277 exp = &disp_expressions[i.disp_operands];
8278 i.op[this_operand].disps = exp;
8279 i.disp_operands++;
8280 save_input_line_pointer = input_line_pointer;
8281 input_line_pointer = disp_start;
8282 END_STRING_AND_SAVE (disp_end);
8283
8284 #ifndef GCC_ASM_O_HACK
8285 #define GCC_ASM_O_HACK 0
8286 #endif
8287 #if GCC_ASM_O_HACK
8288 END_STRING_AND_SAVE (disp_end + 1);
8289 if (i.types[this_operand].bitfield.baseIndex
8290 && displacement_string_end[-1] == '+')
8291 {
8292 /* This hack is to avoid a warning when using the "o"
8293 constraint within gcc asm statements.
8294 For instance:
8295
8296 #define _set_tssldt_desc(n,addr,limit,type) \
8297 __asm__ __volatile__ ( \
8298 "movw %w2,%0\n\t" \
8299 "movw %w1,2+%0\n\t" \
8300 "rorl $16,%1\n\t" \
8301 "movb %b1,4+%0\n\t" \
8302 "movb %4,5+%0\n\t" \
8303 "movb $0,6+%0\n\t" \
8304 "movb %h1,7+%0\n\t" \
8305 "rorl $16,%1" \
8306 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8307
8308 This works great except that the output assembler ends
8309 up looking a bit weird if it turns out that there is
8310 no offset. You end up producing code that looks like:
8311
8312 #APP
8313 movw $235,(%eax)
8314 movw %dx,2+(%eax)
8315 rorl $16,%edx
8316 movb %dl,4+(%eax)
8317 movb $137,5+(%eax)
8318 movb $0,6+(%eax)
8319 movb %dh,7+(%eax)
8320 rorl $16,%edx
8321 #NO_APP
8322
8323 So here we provide the missing zero. */
8324
8325 *displacement_string_end = '0';
8326 }
8327 #endif
8328 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8329 if (gotfree_input_line)
8330 input_line_pointer = gotfree_input_line;
8331
8332 exp_seg = expression (exp);
8333
8334 SKIP_WHITESPACE ();
8335 if (*input_line_pointer)
8336 as_bad (_("junk `%s' after expression"), input_line_pointer);
8337 #if GCC_ASM_O_HACK
8338 RESTORE_END_STRING (disp_end + 1);
8339 #endif
8340 input_line_pointer = save_input_line_pointer;
8341 if (gotfree_input_line)
8342 {
8343 free (gotfree_input_line);
8344
8345 if (exp->X_op == O_constant || exp->X_op == O_register)
8346 exp->X_op = O_illegal;
8347 }
8348
8349 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8350
8351 RESTORE_END_STRING (disp_end);
8352
8353 return ret;
8354 }
8355
8356 static int
8357 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8358 i386_operand_type types, const char *disp_start)
8359 {
8360 i386_operand_type bigdisp;
8361 int ret = 1;
8362
8363 /* We do this to make sure that the section symbol is in
8364 the symbol table. We will ultimately change the relocation
8365 to be relative to the beginning of the section. */
8366 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8367 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8368 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8369 {
8370 if (exp->X_op != O_symbol)
8371 goto inv_disp;
8372
8373 if (S_IS_LOCAL (exp->X_add_symbol)
8374 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8375 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8376 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8377 exp->X_op = O_subtract;
8378 exp->X_op_symbol = GOT_symbol;
8379 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8380 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8381 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8382 i.reloc[this_operand] = BFD_RELOC_64;
8383 else
8384 i.reloc[this_operand] = BFD_RELOC_32;
8385 }
8386
8387 else if (exp->X_op == O_absent
8388 || exp->X_op == O_illegal
8389 || exp->X_op == O_big)
8390 {
8391 inv_disp:
8392 as_bad (_("missing or invalid displacement expression `%s'"),
8393 disp_start);
8394 ret = 0;
8395 }
8396
8397 else if (flag_code == CODE_64BIT
8398 && !i.prefix[ADDR_PREFIX]
8399 && exp->X_op == O_constant)
8400 {
8401 /* Since displacement is signed extended to 64bit, don't allow
8402 disp32 and turn off disp32s if they are out of range. */
8403 i.types[this_operand].bitfield.disp32 = 0;
8404 if (!fits_in_signed_long (exp->X_add_number))
8405 {
8406 i.types[this_operand].bitfield.disp32s = 0;
8407 if (i.types[this_operand].bitfield.baseindex)
8408 {
8409 as_bad (_("0x%lx out range of signed 32bit displacement"),
8410 (long) exp->X_add_number);
8411 ret = 0;
8412 }
8413 }
8414 }
8415
8416 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8417 else if (exp->X_op != O_constant
8418 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8419 && exp_seg != absolute_section
8420 && exp_seg != text_section
8421 && exp_seg != data_section
8422 && exp_seg != bss_section
8423 && exp_seg != undefined_section
8424 && !bfd_is_com_section (exp_seg))
8425 {
8426 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8427 ret = 0;
8428 }
8429 #endif
8430
8431 /* Check if this is a displacement only operand. */
8432 bigdisp = i.types[this_operand];
8433 bigdisp.bitfield.disp8 = 0;
8434 bigdisp.bitfield.disp16 = 0;
8435 bigdisp.bitfield.disp32 = 0;
8436 bigdisp.bitfield.disp32s = 0;
8437 bigdisp.bitfield.disp64 = 0;
8438 if (operand_type_all_zero (&bigdisp))
8439 i.types[this_operand] = operand_type_and (i.types[this_operand],
8440 types);
8441
8442 return ret;
8443 }
8444
8445 /* Make sure the memory operand we've been dealt is valid.
8446 Return 1 on success, 0 on a failure. */
8447
8448 static int
8449 i386_index_check (const char *operand_string)
8450 {
8451 const char *kind = "base/index";
8452 enum flag_code addr_mode;
8453
8454 if (i.prefix[ADDR_PREFIX])
8455 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8456 else
8457 {
8458 addr_mode = flag_code;
8459
8460 #if INFER_ADDR_PREFIX
8461 if (i.mem_operands == 0)
8462 {
8463 /* Infer address prefix from the first memory operand. */
8464 const reg_entry *addr_reg = i.base_reg;
8465
8466 if (addr_reg == NULL)
8467 addr_reg = i.index_reg;
8468
8469 if (addr_reg)
8470 {
8471 if (addr_reg->reg_num == RegEip
8472 || addr_reg->reg_num == RegEiz
8473 || addr_reg->reg_type.bitfield.reg32)
8474 addr_mode = CODE_32BIT;
8475 else if (flag_code != CODE_64BIT
8476 && addr_reg->reg_type.bitfield.reg16)
8477 addr_mode = CODE_16BIT;
8478
8479 if (addr_mode != flag_code)
8480 {
8481 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8482 i.prefixes += 1;
8483 /* Change the size of any displacement too. At most one
8484 of Disp16 or Disp32 is set.
8485 FIXME. There doesn't seem to be any real need for
8486 separate Disp16 and Disp32 flags. The same goes for
8487 Imm16 and Imm32. Removing them would probably clean
8488 up the code quite a lot. */
8489 if (flag_code != CODE_64BIT
8490 && (i.types[this_operand].bitfield.disp16
8491 || i.types[this_operand].bitfield.disp32))
8492 i.types[this_operand]
8493 = operand_type_xor (i.types[this_operand], disp16_32);
8494 }
8495 }
8496 }
8497 #endif
8498 }
8499
8500 if (current_templates->start->opcode_modifier.isstring
8501 && !current_templates->start->opcode_modifier.immext
8502 && (current_templates->end[-1].opcode_modifier.isstring
8503 || i.mem_operands))
8504 {
8505 /* Memory operands of string insns are special in that they only allow
8506 a single register (rDI, rSI, or rBX) as their memory address. */
8507 const reg_entry *expected_reg;
8508 static const char *di_si[][2] =
8509 {
8510 { "esi", "edi" },
8511 { "si", "di" },
8512 { "rsi", "rdi" }
8513 };
8514 static const char *bx[] = { "ebx", "bx", "rbx" };
8515
8516 kind = "string address";
8517
8518 if (current_templates->start->opcode_modifier.repprefixok)
8519 {
8520 i386_operand_type type = current_templates->end[-1].operand_types[0];
8521
8522 if (!type.bitfield.baseindex
8523 || ((!i.mem_operands != !intel_syntax)
8524 && current_templates->end[-1].operand_types[1]
8525 .bitfield.baseindex))
8526 type = current_templates->end[-1].operand_types[1];
8527 expected_reg = hash_find (reg_hash,
8528 di_si[addr_mode][type.bitfield.esseg]);
8529
8530 }
8531 else
8532 expected_reg = hash_find (reg_hash, bx[addr_mode]);
8533
8534 if (i.base_reg != expected_reg
8535 || i.index_reg
8536 || operand_type_check (i.types[this_operand], disp))
8537 {
8538 /* The second memory operand must have the same size as
8539 the first one. */
8540 if (i.mem_operands
8541 && i.base_reg
8542 && !((addr_mode == CODE_64BIT
8543 && i.base_reg->reg_type.bitfield.reg64)
8544 || (addr_mode == CODE_32BIT
8545 ? i.base_reg->reg_type.bitfield.reg32
8546 : i.base_reg->reg_type.bitfield.reg16)))
8547 goto bad_address;
8548
8549 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8550 operand_string,
8551 intel_syntax ? '[' : '(',
8552 register_prefix,
8553 expected_reg->reg_name,
8554 intel_syntax ? ']' : ')');
8555 return 1;
8556 }
8557 else
8558 return 1;
8559
8560 bad_address:
8561 as_bad (_("`%s' is not a valid %s expression"),
8562 operand_string, kind);
8563 return 0;
8564 }
8565 else
8566 {
8567 if (addr_mode != CODE_16BIT)
8568 {
8569 /* 32-bit/64-bit checks. */
8570 if ((i.base_reg
8571 && (addr_mode == CODE_64BIT
8572 ? !i.base_reg->reg_type.bitfield.reg64
8573 : !i.base_reg->reg_type.bitfield.reg32)
8574 && (i.index_reg
8575 || (i.base_reg->reg_num
8576 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8577 || (i.index_reg
8578 && !i.index_reg->reg_type.bitfield.regxmm
8579 && !i.index_reg->reg_type.bitfield.regymm
8580 && !i.index_reg->reg_type.bitfield.regzmm
8581 && ((addr_mode == CODE_64BIT
8582 ? !(i.index_reg->reg_type.bitfield.reg64
8583 || i.index_reg->reg_num == RegRiz)
8584 : !(i.index_reg->reg_type.bitfield.reg32
8585 || i.index_reg->reg_num == RegEiz))
8586 || !i.index_reg->reg_type.bitfield.baseindex)))
8587 goto bad_address;
8588 }
8589 else
8590 {
8591 /* 16-bit checks. */
8592 if ((i.base_reg
8593 && (!i.base_reg->reg_type.bitfield.reg16
8594 || !i.base_reg->reg_type.bitfield.baseindex))
8595 || (i.index_reg
8596 && (!i.index_reg->reg_type.bitfield.reg16
8597 || !i.index_reg->reg_type.bitfield.baseindex
8598 || !(i.base_reg
8599 && i.base_reg->reg_num < 6
8600 && i.index_reg->reg_num >= 6
8601 && i.log2_scale_factor == 0))))
8602 goto bad_address;
8603 }
8604 }
8605 return 1;
8606 }
8607
8608 /* Handle vector immediates. */
8609
8610 static int
8611 RC_SAE_immediate (const char *imm_start)
8612 {
8613 unsigned int match_found, j;
8614 const char *pstr = imm_start;
8615 expressionS *exp;
8616
8617 if (*pstr != '{')
8618 return 0;
8619
8620 pstr++;
8621 match_found = 0;
8622 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8623 {
8624 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8625 {
8626 if (!i.rounding)
8627 {
8628 rc_op.type = RC_NamesTable[j].type;
8629 rc_op.operand = this_operand;
8630 i.rounding = &rc_op;
8631 }
8632 else
8633 {
8634 as_bad (_("duplicated `%s'"), imm_start);
8635 return 0;
8636 }
8637 pstr += RC_NamesTable[j].len;
8638 match_found = 1;
8639 break;
8640 }
8641 }
8642 if (!match_found)
8643 return 0;
8644
8645 if (*pstr++ != '}')
8646 {
8647 as_bad (_("Missing '}': '%s'"), imm_start);
8648 return 0;
8649 }
8650 /* RC/SAE immediate string should contain nothing more. */;
8651 if (*pstr != 0)
8652 {
8653 as_bad (_("Junk after '}': '%s'"), imm_start);
8654 return 0;
8655 }
8656
8657 exp = &im_expressions[i.imm_operands++];
8658 i.op[this_operand].imms = exp;
8659
8660 exp->X_op = O_constant;
8661 exp->X_add_number = 0;
8662 exp->X_add_symbol = (symbolS *) 0;
8663 exp->X_op_symbol = (symbolS *) 0;
8664
8665 i.types[this_operand].bitfield.imm8 = 1;
8666 return 1;
8667 }
8668
8669 /* Only string instructions can have a second memory operand, so
8670 reduce current_templates to just those if it contains any. */
8671 static int
8672 maybe_adjust_templates (void)
8673 {
8674 const insn_template *t;
8675
8676 gas_assert (i.mem_operands == 1);
8677
8678 for (t = current_templates->start; t < current_templates->end; ++t)
8679 if (t->opcode_modifier.isstring)
8680 break;
8681
8682 if (t < current_templates->end)
8683 {
8684 static templates aux_templates;
8685 bfd_boolean recheck;
8686
8687 aux_templates.start = t;
8688 for (; t < current_templates->end; ++t)
8689 if (!t->opcode_modifier.isstring)
8690 break;
8691 aux_templates.end = t;
8692
8693 /* Determine whether to re-check the first memory operand. */
8694 recheck = (aux_templates.start != current_templates->start
8695 || t != current_templates->end);
8696
8697 current_templates = &aux_templates;
8698
8699 if (recheck)
8700 {
8701 i.mem_operands = 0;
8702 if (i.memop1_string != NULL
8703 && i386_index_check (i.memop1_string) == 0)
8704 return 0;
8705 i.mem_operands = 1;
8706 }
8707 }
8708
8709 return 1;
8710 }
8711
8712 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
8713 on error. */
8714
8715 static int
8716 i386_att_operand (char *operand_string)
8717 {
8718 const reg_entry *r;
8719 char *end_op;
8720 char *op_string = operand_string;
8721
8722 if (is_space_char (*op_string))
8723 ++op_string;
8724
8725 /* We check for an absolute prefix (differentiating,
8726 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
8727 if (*op_string == ABSOLUTE_PREFIX)
8728 {
8729 ++op_string;
8730 if (is_space_char (*op_string))
8731 ++op_string;
8732 i.types[this_operand].bitfield.jumpabsolute = 1;
8733 }
8734
8735 /* Check if operand is a register. */
8736 if ((r = parse_register (op_string, &end_op)) != NULL)
8737 {
8738 i386_operand_type temp;
8739
8740 /* Check for a segment override by searching for ':' after a
8741 segment register. */
8742 op_string = end_op;
8743 if (is_space_char (*op_string))
8744 ++op_string;
8745 if (*op_string == ':'
8746 && (r->reg_type.bitfield.sreg2
8747 || r->reg_type.bitfield.sreg3))
8748 {
8749 switch (r->reg_num)
8750 {
8751 case 0:
8752 i.seg[i.mem_operands] = &es;
8753 break;
8754 case 1:
8755 i.seg[i.mem_operands] = &cs;
8756 break;
8757 case 2:
8758 i.seg[i.mem_operands] = &ss;
8759 break;
8760 case 3:
8761 i.seg[i.mem_operands] = &ds;
8762 break;
8763 case 4:
8764 i.seg[i.mem_operands] = &fs;
8765 break;
8766 case 5:
8767 i.seg[i.mem_operands] = &gs;
8768 break;
8769 }
8770
8771 /* Skip the ':' and whitespace. */
8772 ++op_string;
8773 if (is_space_char (*op_string))
8774 ++op_string;
8775
8776 if (!is_digit_char (*op_string)
8777 && !is_identifier_char (*op_string)
8778 && *op_string != '('
8779 && *op_string != ABSOLUTE_PREFIX)
8780 {
8781 as_bad (_("bad memory operand `%s'"), op_string);
8782 return 0;
8783 }
8784 /* Handle case of %es:*foo. */
8785 if (*op_string == ABSOLUTE_PREFIX)
8786 {
8787 ++op_string;
8788 if (is_space_char (*op_string))
8789 ++op_string;
8790 i.types[this_operand].bitfield.jumpabsolute = 1;
8791 }
8792 goto do_memory_reference;
8793 }
8794
8795 /* Handle vector operations. */
8796 if (*op_string == '{')
8797 {
8798 op_string = check_VecOperations (op_string, NULL);
8799 if (op_string == NULL)
8800 return 0;
8801 }
8802
8803 if (*op_string)
8804 {
8805 as_bad (_("junk `%s' after register"), op_string);
8806 return 0;
8807 }
8808 temp = r->reg_type;
8809 temp.bitfield.baseindex = 0;
8810 i.types[this_operand] = operand_type_or (i.types[this_operand],
8811 temp);
8812 i.types[this_operand].bitfield.unspecified = 0;
8813 i.op[this_operand].regs = r;
8814 i.reg_operands++;
8815 }
8816 else if (*op_string == REGISTER_PREFIX)
8817 {
8818 as_bad (_("bad register name `%s'"), op_string);
8819 return 0;
8820 }
8821 else if (*op_string == IMMEDIATE_PREFIX)
8822 {
8823 ++op_string;
8824 if (i.types[this_operand].bitfield.jumpabsolute)
8825 {
8826 as_bad (_("immediate operand illegal with absolute jump"));
8827 return 0;
8828 }
8829 if (!i386_immediate (op_string))
8830 return 0;
8831 }
8832 else if (RC_SAE_immediate (operand_string))
8833 {
8834 /* If it is a RC or SAE immediate, do nothing. */
8835 ;
8836 }
8837 else if (is_digit_char (*op_string)
8838 || is_identifier_char (*op_string)
8839 || *op_string == '"'
8840 || *op_string == '(')
8841 {
8842 /* This is a memory reference of some sort. */
8843 char *base_string;
8844
8845 /* Start and end of displacement string expression (if found). */
8846 char *displacement_string_start;
8847 char *displacement_string_end;
8848 char *vop_start;
8849
8850 do_memory_reference:
8851 if (i.mem_operands == 1 && !maybe_adjust_templates ())
8852 return 0;
8853 if ((i.mem_operands == 1
8854 && !current_templates->start->opcode_modifier.isstring)
8855 || i.mem_operands == 2)
8856 {
8857 as_bad (_("too many memory references for `%s'"),
8858 current_templates->start->name);
8859 return 0;
8860 }
8861
8862 /* Check for base index form. We detect the base index form by
8863 looking for an ')' at the end of the operand, searching
8864 for the '(' matching it, and finding a REGISTER_PREFIX or ','
8865 after the '('. */
8866 base_string = op_string + strlen (op_string);
8867
8868 /* Handle vector operations. */
8869 vop_start = strchr (op_string, '{');
8870 if (vop_start && vop_start < base_string)
8871 {
8872 if (check_VecOperations (vop_start, base_string) == NULL)
8873 return 0;
8874 base_string = vop_start;
8875 }
8876
8877 --base_string;
8878 if (is_space_char (*base_string))
8879 --base_string;
8880
8881 /* If we only have a displacement, set-up for it to be parsed later. */
8882 displacement_string_start = op_string;
8883 displacement_string_end = base_string + 1;
8884
8885 if (*base_string == ')')
8886 {
8887 char *temp_string;
8888 unsigned int parens_balanced = 1;
8889 /* We've already checked that the number of left & right ()'s are
8890 equal, so this loop will not be infinite. */
8891 do
8892 {
8893 base_string--;
8894 if (*base_string == ')')
8895 parens_balanced++;
8896 if (*base_string == '(')
8897 parens_balanced--;
8898 }
8899 while (parens_balanced);
8900
8901 temp_string = base_string;
8902
8903 /* Skip past '(' and whitespace. */
8904 ++base_string;
8905 if (is_space_char (*base_string))
8906 ++base_string;
8907
8908 if (*base_string == ','
8909 || ((i.base_reg = parse_register (base_string, &end_op))
8910 != NULL))
8911 {
8912 displacement_string_end = temp_string;
8913
8914 i.types[this_operand].bitfield.baseindex = 1;
8915
8916 if (i.base_reg)
8917 {
8918 base_string = end_op;
8919 if (is_space_char (*base_string))
8920 ++base_string;
8921 }
8922
8923 /* There may be an index reg or scale factor here. */
8924 if (*base_string == ',')
8925 {
8926 ++base_string;
8927 if (is_space_char (*base_string))
8928 ++base_string;
8929
8930 if ((i.index_reg = parse_register (base_string, &end_op))
8931 != NULL)
8932 {
8933 base_string = end_op;
8934 if (is_space_char (*base_string))
8935 ++base_string;
8936 if (*base_string == ',')
8937 {
8938 ++base_string;
8939 if (is_space_char (*base_string))
8940 ++base_string;
8941 }
8942 else if (*base_string != ')')
8943 {
8944 as_bad (_("expecting `,' or `)' "
8945 "after index register in `%s'"),
8946 operand_string);
8947 return 0;
8948 }
8949 }
8950 else if (*base_string == REGISTER_PREFIX)
8951 {
8952 end_op = strchr (base_string, ',');
8953 if (end_op)
8954 *end_op = '\0';
8955 as_bad (_("bad register name `%s'"), base_string);
8956 return 0;
8957 }
8958
8959 /* Check for scale factor. */
8960 if (*base_string != ')')
8961 {
8962 char *end_scale = i386_scale (base_string);
8963
8964 if (!end_scale)
8965 return 0;
8966
8967 base_string = end_scale;
8968 if (is_space_char (*base_string))
8969 ++base_string;
8970 if (*base_string != ')')
8971 {
8972 as_bad (_("expecting `)' "
8973 "after scale factor in `%s'"),
8974 operand_string);
8975 return 0;
8976 }
8977 }
8978 else if (!i.index_reg)
8979 {
8980 as_bad (_("expecting index register or scale factor "
8981 "after `,'; got '%c'"),
8982 *base_string);
8983 return 0;
8984 }
8985 }
8986 else if (*base_string != ')')
8987 {
8988 as_bad (_("expecting `,' or `)' "
8989 "after base register in `%s'"),
8990 operand_string);
8991 return 0;
8992 }
8993 }
8994 else if (*base_string == REGISTER_PREFIX)
8995 {
8996 end_op = strchr (base_string, ',');
8997 if (end_op)
8998 *end_op = '\0';
8999 as_bad (_("bad register name `%s'"), base_string);
9000 return 0;
9001 }
9002 }
9003
9004 /* If there's an expression beginning the operand, parse it,
9005 assuming displacement_string_start and
9006 displacement_string_end are meaningful. */
9007 if (displacement_string_start != displacement_string_end)
9008 {
9009 if (!i386_displacement (displacement_string_start,
9010 displacement_string_end))
9011 return 0;
9012 }
9013
9014 /* Special case for (%dx) while doing input/output op. */
9015 if (i.base_reg
9016 && operand_type_equal (&i.base_reg->reg_type,
9017 &reg16_inoutportreg)
9018 && i.index_reg == 0
9019 && i.log2_scale_factor == 0
9020 && i.seg[i.mem_operands] == 0
9021 && !operand_type_check (i.types[this_operand], disp))
9022 {
9023 i.types[this_operand] = inoutportreg;
9024 return 1;
9025 }
9026
9027 if (i386_index_check (operand_string) == 0)
9028 return 0;
9029 i.types[this_operand].bitfield.mem = 1;
9030 if (i.mem_operands == 0)
9031 i.memop1_string = xstrdup (operand_string);
9032 i.mem_operands++;
9033 }
9034 else
9035 {
9036 /* It's not a memory operand; argh! */
9037 as_bad (_("invalid char %s beginning operand %d `%s'"),
9038 output_invalid (*op_string),
9039 this_operand + 1,
9040 op_string);
9041 return 0;
9042 }
9043 return 1; /* Normal return. */
9044 }
9045 \f
9046 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9047 that an rs_machine_dependent frag may reach. */
9048
9049 unsigned int
9050 i386_frag_max_var (fragS *frag)
9051 {
9052 /* The only relaxable frags are for jumps.
9053 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9054 gas_assert (frag->fr_type == rs_machine_dependent);
9055 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9056 }
9057
9058 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9059 static int
9060 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9061 {
9062 /* STT_GNU_IFUNC symbol must go through PLT. */
9063 if ((symbol_get_bfdsym (fr_symbol)->flags
9064 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9065 return 0;
9066
9067 if (!S_IS_EXTERNAL (fr_symbol))
9068 /* Symbol may be weak or local. */
9069 return !S_IS_WEAK (fr_symbol);
9070
9071 /* Global symbols with non-default visibility can't be preempted. */
9072 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9073 return 1;
9074
9075 if (fr_var != NO_RELOC)
9076 switch ((enum bfd_reloc_code_real) fr_var)
9077 {
9078 case BFD_RELOC_386_PLT32:
9079 case BFD_RELOC_X86_64_PLT32:
9080 /* Symbol with PLT relocatin may be preempted. */
9081 return 0;
9082 default:
9083 abort ();
9084 }
9085
9086 /* Global symbols with default visibility in a shared library may be
9087 preempted by another definition. */
9088 return !shared;
9089 }
9090 #endif
9091
9092 /* md_estimate_size_before_relax()
9093
9094 Called just before relax() for rs_machine_dependent frags. The x86
9095 assembler uses these frags to handle variable size jump
9096 instructions.
9097
9098 Any symbol that is now undefined will not become defined.
9099 Return the correct fr_subtype in the frag.
9100 Return the initial "guess for variable size of frag" to caller.
9101 The guess is actually the growth beyond the fixed part. Whatever
9102 we do to grow the fixed or variable part contributes to our
9103 returned value. */
9104
9105 int
9106 md_estimate_size_before_relax (fragS *fragP, segT segment)
9107 {
9108 /* We've already got fragP->fr_subtype right; all we have to do is
9109 check for un-relaxable symbols. On an ELF system, we can't relax
9110 an externally visible symbol, because it may be overridden by a
9111 shared library. */
9112 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9113 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9114 || (IS_ELF
9115 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9116 fragP->fr_var))
9117 #endif
9118 #if defined (OBJ_COFF) && defined (TE_PE)
9119 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9120 && S_IS_WEAK (fragP->fr_symbol))
9121 #endif
9122 )
9123 {
9124 /* Symbol is undefined in this segment, or we need to keep a
9125 reloc so that weak symbols can be overridden. */
9126 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9127 enum bfd_reloc_code_real reloc_type;
9128 unsigned char *opcode;
9129 int old_fr_fix;
9130
9131 if (fragP->fr_var != NO_RELOC)
9132 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9133 else if (size == 2)
9134 reloc_type = BFD_RELOC_16_PCREL;
9135 else
9136 reloc_type = BFD_RELOC_32_PCREL;
9137
9138 old_fr_fix = fragP->fr_fix;
9139 opcode = (unsigned char *) fragP->fr_opcode;
9140
9141 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9142 {
9143 case UNCOND_JUMP:
9144 /* Make jmp (0xeb) a (d)word displacement jump. */
9145 opcode[0] = 0xe9;
9146 fragP->fr_fix += size;
9147 fix_new (fragP, old_fr_fix, size,
9148 fragP->fr_symbol,
9149 fragP->fr_offset, 1,
9150 reloc_type);
9151 break;
9152
9153 case COND_JUMP86:
9154 if (size == 2
9155 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9156 {
9157 /* Negate the condition, and branch past an
9158 unconditional jump. */
9159 opcode[0] ^= 1;
9160 opcode[1] = 3;
9161 /* Insert an unconditional jump. */
9162 opcode[2] = 0xe9;
9163 /* We added two extra opcode bytes, and have a two byte
9164 offset. */
9165 fragP->fr_fix += 2 + 2;
9166 fix_new (fragP, old_fr_fix + 2, 2,
9167 fragP->fr_symbol,
9168 fragP->fr_offset, 1,
9169 reloc_type);
9170 break;
9171 }
9172 /* Fall through. */
9173
9174 case COND_JUMP:
9175 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9176 {
9177 fixS *fixP;
9178
9179 fragP->fr_fix += 1;
9180 fixP = fix_new (fragP, old_fr_fix, 1,
9181 fragP->fr_symbol,
9182 fragP->fr_offset, 1,
9183 BFD_RELOC_8_PCREL);
9184 fixP->fx_signed = 1;
9185 break;
9186 }
9187
9188 /* This changes the byte-displacement jump 0x7N
9189 to the (d)word-displacement jump 0x0f,0x8N. */
9190 opcode[1] = opcode[0] + 0x10;
9191 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9192 /* We've added an opcode byte. */
9193 fragP->fr_fix += 1 + size;
9194 fix_new (fragP, old_fr_fix + 1, size,
9195 fragP->fr_symbol,
9196 fragP->fr_offset, 1,
9197 reloc_type);
9198 break;
9199
9200 default:
9201 BAD_CASE (fragP->fr_subtype);
9202 break;
9203 }
9204 frag_wane (fragP);
9205 return fragP->fr_fix - old_fr_fix;
9206 }
9207
9208 /* Guess size depending on current relax state. Initially the relax
9209 state will correspond to a short jump and we return 1, because
9210 the variable part of the frag (the branch offset) is one byte
9211 long. However, we can relax a section more than once and in that
9212 case we must either set fr_subtype back to the unrelaxed state,
9213 or return the value for the appropriate branch. */
9214 return md_relax_table[fragP->fr_subtype].rlx_length;
9215 }
9216
9217 /* Called after relax() is finished.
9218
9219 In: Address of frag.
9220 fr_type == rs_machine_dependent.
9221 fr_subtype is what the address relaxed to.
9222
9223 Out: Any fixSs and constants are set up.
9224 Caller will turn frag into a ".space 0". */
9225
9226 void
9227 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9228 fragS *fragP)
9229 {
9230 unsigned char *opcode;
9231 unsigned char *where_to_put_displacement = NULL;
9232 offsetT target_address;
9233 offsetT opcode_address;
9234 unsigned int extension = 0;
9235 offsetT displacement_from_opcode_start;
9236
9237 opcode = (unsigned char *) fragP->fr_opcode;
9238
9239 /* Address we want to reach in file space. */
9240 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9241
9242 /* Address opcode resides at in file space. */
9243 opcode_address = fragP->fr_address + fragP->fr_fix;
9244
9245 /* Displacement from opcode start to fill into instruction. */
9246 displacement_from_opcode_start = target_address - opcode_address;
9247
9248 if ((fragP->fr_subtype & BIG) == 0)
9249 {
9250 /* Don't have to change opcode. */
9251 extension = 1; /* 1 opcode + 1 displacement */
9252 where_to_put_displacement = &opcode[1];
9253 }
9254 else
9255 {
9256 if (no_cond_jump_promotion
9257 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9258 as_warn_where (fragP->fr_file, fragP->fr_line,
9259 _("long jump required"));
9260
9261 switch (fragP->fr_subtype)
9262 {
9263 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9264 extension = 4; /* 1 opcode + 4 displacement */
9265 opcode[0] = 0xe9;
9266 where_to_put_displacement = &opcode[1];
9267 break;
9268
9269 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9270 extension = 2; /* 1 opcode + 2 displacement */
9271 opcode[0] = 0xe9;
9272 where_to_put_displacement = &opcode[1];
9273 break;
9274
9275 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9276 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9277 extension = 5; /* 2 opcode + 4 displacement */
9278 opcode[1] = opcode[0] + 0x10;
9279 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9280 where_to_put_displacement = &opcode[2];
9281 break;
9282
9283 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9284 extension = 3; /* 2 opcode + 2 displacement */
9285 opcode[1] = opcode[0] + 0x10;
9286 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9287 where_to_put_displacement = &opcode[2];
9288 break;
9289
9290 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9291 extension = 4;
9292 opcode[0] ^= 1;
9293 opcode[1] = 3;
9294 opcode[2] = 0xe9;
9295 where_to_put_displacement = &opcode[3];
9296 break;
9297
9298 default:
9299 BAD_CASE (fragP->fr_subtype);
9300 break;
9301 }
9302 }
9303
9304 /* If size if less then four we are sure that the operand fits,
9305 but if it's 4, then it could be that the displacement is larger
9306 then -/+ 2GB. */
9307 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9308 && object_64bit
9309 && ((addressT) (displacement_from_opcode_start - extension
9310 + ((addressT) 1 << 31))
9311 > (((addressT) 2 << 31) - 1)))
9312 {
9313 as_bad_where (fragP->fr_file, fragP->fr_line,
9314 _("jump target out of range"));
9315 /* Make us emit 0. */
9316 displacement_from_opcode_start = extension;
9317 }
9318 /* Now put displacement after opcode. */
9319 md_number_to_chars ((char *) where_to_put_displacement,
9320 (valueT) (displacement_from_opcode_start - extension),
9321 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9322 fragP->fr_fix += extension;
9323 }
9324 \f
9325 /* Apply a fixup (fixP) to segment data, once it has been determined
9326 by our caller that we have all the info we need to fix it up.
9327
9328 Parameter valP is the pointer to the value of the bits.
9329
9330 On the 386, immediates, displacements, and data pointers are all in
9331 the same (little-endian) format, so we don't need to care about which
9332 we are handling. */
9333
9334 void
9335 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9336 {
9337 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9338 valueT value = *valP;
9339
9340 #if !defined (TE_Mach)
9341 if (fixP->fx_pcrel)
9342 {
9343 switch (fixP->fx_r_type)
9344 {
9345 default:
9346 break;
9347
9348 case BFD_RELOC_64:
9349 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9350 break;
9351 case BFD_RELOC_32:
9352 case BFD_RELOC_X86_64_32S:
9353 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9354 break;
9355 case BFD_RELOC_16:
9356 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9357 break;
9358 case BFD_RELOC_8:
9359 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9360 break;
9361 }
9362 }
9363
9364 if (fixP->fx_addsy != NULL
9365 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9366 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9367 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9368 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9369 && !use_rela_relocations)
9370 {
9371 /* This is a hack. There should be a better way to handle this.
9372 This covers for the fact that bfd_install_relocation will
9373 subtract the current location (for partial_inplace, PC relative
9374 relocations); see more below. */
9375 #ifndef OBJ_AOUT
9376 if (IS_ELF
9377 #ifdef TE_PE
9378 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9379 #endif
9380 )
9381 value += fixP->fx_where + fixP->fx_frag->fr_address;
9382 #endif
9383 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9384 if (IS_ELF)
9385 {
9386 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9387
9388 if ((sym_seg == seg
9389 || (symbol_section_p (fixP->fx_addsy)
9390 && sym_seg != absolute_section))
9391 && !generic_force_reloc (fixP))
9392 {
9393 /* Yes, we add the values in twice. This is because
9394 bfd_install_relocation subtracts them out again. I think
9395 bfd_install_relocation is broken, but I don't dare change
9396 it. FIXME. */
9397 value += fixP->fx_where + fixP->fx_frag->fr_address;
9398 }
9399 }
9400 #endif
9401 #if defined (OBJ_COFF) && defined (TE_PE)
9402 /* For some reason, the PE format does not store a
9403 section address offset for a PC relative symbol. */
9404 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9405 || S_IS_WEAK (fixP->fx_addsy))
9406 value += md_pcrel_from (fixP);
9407 #endif
9408 }
9409 #if defined (OBJ_COFF) && defined (TE_PE)
9410 if (fixP->fx_addsy != NULL
9411 && S_IS_WEAK (fixP->fx_addsy)
9412 /* PR 16858: Do not modify weak function references. */
9413 && ! fixP->fx_pcrel)
9414 {
9415 #if !defined (TE_PEP)
9416 /* For x86 PE weak function symbols are neither PC-relative
9417 nor do they set S_IS_FUNCTION. So the only reliable way
9418 to detect them is to check the flags of their containing
9419 section. */
9420 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9421 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9422 ;
9423 else
9424 #endif
9425 value -= S_GET_VALUE (fixP->fx_addsy);
9426 }
9427 #endif
9428
9429 /* Fix a few things - the dynamic linker expects certain values here,
9430 and we must not disappoint it. */
9431 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9432 if (IS_ELF && fixP->fx_addsy)
9433 switch (fixP->fx_r_type)
9434 {
9435 case BFD_RELOC_386_PLT32:
9436 case BFD_RELOC_X86_64_PLT32:
9437 /* Make the jump instruction point to the address of the operand. At
9438 runtime we merely add the offset to the actual PLT entry. */
9439 value = -4;
9440 break;
9441
9442 case BFD_RELOC_386_TLS_GD:
9443 case BFD_RELOC_386_TLS_LDM:
9444 case BFD_RELOC_386_TLS_IE_32:
9445 case BFD_RELOC_386_TLS_IE:
9446 case BFD_RELOC_386_TLS_GOTIE:
9447 case BFD_RELOC_386_TLS_GOTDESC:
9448 case BFD_RELOC_X86_64_TLSGD:
9449 case BFD_RELOC_X86_64_TLSLD:
9450 case BFD_RELOC_X86_64_GOTTPOFF:
9451 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9452 value = 0; /* Fully resolved at runtime. No addend. */
9453 /* Fallthrough */
9454 case BFD_RELOC_386_TLS_LE:
9455 case BFD_RELOC_386_TLS_LDO_32:
9456 case BFD_RELOC_386_TLS_LE_32:
9457 case BFD_RELOC_X86_64_DTPOFF32:
9458 case BFD_RELOC_X86_64_DTPOFF64:
9459 case BFD_RELOC_X86_64_TPOFF32:
9460 case BFD_RELOC_X86_64_TPOFF64:
9461 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9462 break;
9463
9464 case BFD_RELOC_386_TLS_DESC_CALL:
9465 case BFD_RELOC_X86_64_TLSDESC_CALL:
9466 value = 0; /* Fully resolved at runtime. No addend. */
9467 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9468 fixP->fx_done = 0;
9469 return;
9470
9471 case BFD_RELOC_VTABLE_INHERIT:
9472 case BFD_RELOC_VTABLE_ENTRY:
9473 fixP->fx_done = 0;
9474 return;
9475
9476 default:
9477 break;
9478 }
9479 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9480 *valP = value;
9481 #endif /* !defined (TE_Mach) */
9482
9483 /* Are we finished with this relocation now? */
9484 if (fixP->fx_addsy == NULL)
9485 fixP->fx_done = 1;
9486 #if defined (OBJ_COFF) && defined (TE_PE)
9487 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9488 {
9489 fixP->fx_done = 0;
9490 /* Remember value for tc_gen_reloc. */
9491 fixP->fx_addnumber = value;
9492 /* Clear out the frag for now. */
9493 value = 0;
9494 }
9495 #endif
9496 else if (use_rela_relocations)
9497 {
9498 fixP->fx_no_overflow = 1;
9499 /* Remember value for tc_gen_reloc. */
9500 fixP->fx_addnumber = value;
9501 value = 0;
9502 }
9503
9504 md_number_to_chars (p, value, fixP->fx_size);
9505 }
9506 \f
9507 const char *
9508 md_atof (int type, char *litP, int *sizeP)
9509 {
9510 /* This outputs the LITTLENUMs in REVERSE order;
9511 in accord with the bigendian 386. */
9512 return ieee_md_atof (type, litP, sizeP, FALSE);
9513 }
9514 \f
9515 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9516
9517 static char *
9518 output_invalid (int c)
9519 {
9520 if (ISPRINT (c))
9521 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9522 "'%c'", c);
9523 else
9524 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9525 "(0x%x)", (unsigned char) c);
9526 return output_invalid_buf;
9527 }
9528
9529 /* REG_STRING starts *before* REGISTER_PREFIX. */
9530
9531 static const reg_entry *
9532 parse_real_register (char *reg_string, char **end_op)
9533 {
9534 char *s = reg_string;
9535 char *p;
9536 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9537 const reg_entry *r;
9538
9539 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9540 if (*s == REGISTER_PREFIX)
9541 ++s;
9542
9543 if (is_space_char (*s))
9544 ++s;
9545
9546 p = reg_name_given;
9547 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9548 {
9549 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9550 return (const reg_entry *) NULL;
9551 s++;
9552 }
9553
9554 /* For naked regs, make sure that we are not dealing with an identifier.
9555 This prevents confusing an identifier like `eax_var' with register
9556 `eax'. */
9557 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9558 return (const reg_entry *) NULL;
9559
9560 *end_op = s;
9561
9562 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9563
9564 /* Handle floating point regs, allowing spaces in the (i) part. */
9565 if (r == i386_regtab /* %st is first entry of table */)
9566 {
9567 if (is_space_char (*s))
9568 ++s;
9569 if (*s == '(')
9570 {
9571 ++s;
9572 if (is_space_char (*s))
9573 ++s;
9574 if (*s >= '0' && *s <= '7')
9575 {
9576 int fpr = *s - '0';
9577 ++s;
9578 if (is_space_char (*s))
9579 ++s;
9580 if (*s == ')')
9581 {
9582 *end_op = s + 1;
9583 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9584 know (r);
9585 return r + fpr;
9586 }
9587 }
9588 /* We have "%st(" then garbage. */
9589 return (const reg_entry *) NULL;
9590 }
9591 }
9592
9593 if (r == NULL || allow_pseudo_reg)
9594 return r;
9595
9596 if (operand_type_all_zero (&r->reg_type))
9597 return (const reg_entry *) NULL;
9598
9599 if ((r->reg_type.bitfield.reg32
9600 || r->reg_type.bitfield.sreg3
9601 || r->reg_type.bitfield.control
9602 || r->reg_type.bitfield.debug
9603 || r->reg_type.bitfield.test)
9604 && !cpu_arch_flags.bitfield.cpui386)
9605 return (const reg_entry *) NULL;
9606
9607 if (r->reg_type.bitfield.floatreg
9608 && !cpu_arch_flags.bitfield.cpu8087
9609 && !cpu_arch_flags.bitfield.cpu287
9610 && !cpu_arch_flags.bitfield.cpu387)
9611 return (const reg_entry *) NULL;
9612
9613 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
9614 return (const reg_entry *) NULL;
9615
9616 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpuregxmm)
9617 return (const reg_entry *) NULL;
9618
9619 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuregymm)
9620 return (const reg_entry *) NULL;
9621
9622 if (r->reg_type.bitfield.regzmm && !cpu_arch_flags.bitfield.cpuregzmm)
9623 return (const reg_entry *) NULL;
9624
9625 if (r->reg_type.bitfield.regmask
9626 && !cpu_arch_flags.bitfield.cpuregmask)
9627 return (const reg_entry *) NULL;
9628
9629 /* Don't allow fake index register unless allow_index_reg isn't 0. */
9630 if (!allow_index_reg
9631 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9632 return (const reg_entry *) NULL;
9633
9634 /* Upper 16 vector register is only available with VREX in 64bit
9635 mode. */
9636 if ((r->reg_flags & RegVRex))
9637 {
9638 if (!cpu_arch_flags.bitfield.cpuvrex
9639 || flag_code != CODE_64BIT)
9640 return (const reg_entry *) NULL;
9641
9642 i.need_vrex = 1;
9643 }
9644
9645 if (((r->reg_flags & (RegRex64 | RegRex))
9646 || r->reg_type.bitfield.reg64)
9647 && (!cpu_arch_flags.bitfield.cpulm
9648 || !operand_type_equal (&r->reg_type, &control))
9649 && flag_code != CODE_64BIT)
9650 return (const reg_entry *) NULL;
9651
9652 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9653 return (const reg_entry *) NULL;
9654
9655 return r;
9656 }
9657
9658 /* REG_STRING starts *before* REGISTER_PREFIX. */
9659
9660 static const reg_entry *
9661 parse_register (char *reg_string, char **end_op)
9662 {
9663 const reg_entry *r;
9664
9665 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9666 r = parse_real_register (reg_string, end_op);
9667 else
9668 r = NULL;
9669 if (!r)
9670 {
9671 char *save = input_line_pointer;
9672 char c;
9673 symbolS *symbolP;
9674
9675 input_line_pointer = reg_string;
9676 c = get_symbol_name (&reg_string);
9677 symbolP = symbol_find (reg_string);
9678 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9679 {
9680 const expressionS *e = symbol_get_value_expression (symbolP);
9681
9682 know (e->X_op == O_register);
9683 know (e->X_add_number >= 0
9684 && (valueT) e->X_add_number < i386_regtab_size);
9685 r = i386_regtab + e->X_add_number;
9686 if ((r->reg_flags & RegVRex))
9687 i.need_vrex = 1;
9688 *end_op = input_line_pointer;
9689 }
9690 *input_line_pointer = c;
9691 input_line_pointer = save;
9692 }
9693 return r;
9694 }
9695
9696 int
9697 i386_parse_name (char *name, expressionS *e, char *nextcharP)
9698 {
9699 const reg_entry *r;
9700 char *end = input_line_pointer;
9701
9702 *end = *nextcharP;
9703 r = parse_register (name, &input_line_pointer);
9704 if (r && end <= input_line_pointer)
9705 {
9706 *nextcharP = *input_line_pointer;
9707 *input_line_pointer = 0;
9708 e->X_op = O_register;
9709 e->X_add_number = r - i386_regtab;
9710 return 1;
9711 }
9712 input_line_pointer = end;
9713 *end = 0;
9714 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
9715 }
9716
9717 void
9718 md_operand (expressionS *e)
9719 {
9720 char *end;
9721 const reg_entry *r;
9722
9723 switch (*input_line_pointer)
9724 {
9725 case REGISTER_PREFIX:
9726 r = parse_real_register (input_line_pointer, &end);
9727 if (r)
9728 {
9729 e->X_op = O_register;
9730 e->X_add_number = r - i386_regtab;
9731 input_line_pointer = end;
9732 }
9733 break;
9734
9735 case '[':
9736 gas_assert (intel_syntax);
9737 end = input_line_pointer++;
9738 expression (e);
9739 if (*input_line_pointer == ']')
9740 {
9741 ++input_line_pointer;
9742 e->X_op_symbol = make_expr_symbol (e);
9743 e->X_add_symbol = NULL;
9744 e->X_add_number = 0;
9745 e->X_op = O_index;
9746 }
9747 else
9748 {
9749 e->X_op = O_absent;
9750 input_line_pointer = end;
9751 }
9752 break;
9753 }
9754 }
9755
9756 \f
9757 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9758 const char *md_shortopts = "kVQ:sqn";
9759 #else
9760 const char *md_shortopts = "qn";
9761 #endif
9762
9763 #define OPTION_32 (OPTION_MD_BASE + 0)
9764 #define OPTION_64 (OPTION_MD_BASE + 1)
9765 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9766 #define OPTION_MARCH (OPTION_MD_BASE + 3)
9767 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
9768 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9769 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9770 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9771 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9772 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9773 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9774 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9775 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9776 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9777 #define OPTION_X32 (OPTION_MD_BASE + 14)
9778 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9779 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9780 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9781 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
9782 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
9783 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
9784 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
9785 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
9786 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
9787 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
9788 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 25)
9789
9790 struct option md_longopts[] =
9791 {
9792 {"32", no_argument, NULL, OPTION_32},
9793 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9794 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9795 {"64", no_argument, NULL, OPTION_64},
9796 #endif
9797 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9798 {"x32", no_argument, NULL, OPTION_X32},
9799 {"mshared", no_argument, NULL, OPTION_MSHARED},
9800 #endif
9801 {"divide", no_argument, NULL, OPTION_DIVIDE},
9802 {"march", required_argument, NULL, OPTION_MARCH},
9803 {"mtune", required_argument, NULL, OPTION_MTUNE},
9804 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9805 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9806 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9807 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9808 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
9809 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
9810 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
9811 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
9812 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
9813 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
9814 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
9815 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
9816 # if defined (TE_PE) || defined (TE_PEP)
9817 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
9818 #endif
9819 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
9820 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
9821 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
9822 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
9823 {"mamd64", no_argument, NULL, OPTION_MAMD64},
9824 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
9825 {NULL, no_argument, NULL, 0}
9826 };
9827 size_t md_longopts_size = sizeof (md_longopts);
9828
9829 int
9830 md_parse_option (int c, const char *arg)
9831 {
9832 unsigned int j;
9833 char *arch, *next, *saved;
9834
9835 switch (c)
9836 {
9837 case 'n':
9838 optimize_align_code = 0;
9839 break;
9840
9841 case 'q':
9842 quiet_warnings = 1;
9843 break;
9844
9845 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9846 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
9847 should be emitted or not. FIXME: Not implemented. */
9848 case 'Q':
9849 break;
9850
9851 /* -V: SVR4 argument to print version ID. */
9852 case 'V':
9853 print_version_id ();
9854 break;
9855
9856 /* -k: Ignore for FreeBSD compatibility. */
9857 case 'k':
9858 break;
9859
9860 case 's':
9861 /* -s: On i386 Solaris, this tells the native assembler to use
9862 .stab instead of .stab.excl. We always use .stab anyhow. */
9863 break;
9864
9865 case OPTION_MSHARED:
9866 shared = 1;
9867 break;
9868 #endif
9869 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9870 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9871 case OPTION_64:
9872 {
9873 const char **list, **l;
9874
9875 list = bfd_target_list ();
9876 for (l = list; *l != NULL; l++)
9877 if (CONST_STRNEQ (*l, "elf64-x86-64")
9878 || strcmp (*l, "coff-x86-64") == 0
9879 || strcmp (*l, "pe-x86-64") == 0
9880 || strcmp (*l, "pei-x86-64") == 0
9881 || strcmp (*l, "mach-o-x86-64") == 0)
9882 {
9883 default_arch = "x86_64";
9884 break;
9885 }
9886 if (*l == NULL)
9887 as_fatal (_("no compiled in support for x86_64"));
9888 free (list);
9889 }
9890 break;
9891 #endif
9892
9893 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9894 case OPTION_X32:
9895 if (IS_ELF)
9896 {
9897 const char **list, **l;
9898
9899 list = bfd_target_list ();
9900 for (l = list; *l != NULL; l++)
9901 if (CONST_STRNEQ (*l, "elf32-x86-64"))
9902 {
9903 default_arch = "x86_64:32";
9904 break;
9905 }
9906 if (*l == NULL)
9907 as_fatal (_("no compiled in support for 32bit x86_64"));
9908 free (list);
9909 }
9910 else
9911 as_fatal (_("32bit x86_64 is only supported for ELF"));
9912 break;
9913 #endif
9914
9915 case OPTION_32:
9916 default_arch = "i386";
9917 break;
9918
9919 case OPTION_DIVIDE:
9920 #ifdef SVR4_COMMENT_CHARS
9921 {
9922 char *n, *t;
9923 const char *s;
9924
9925 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
9926 t = n;
9927 for (s = i386_comment_chars; *s != '\0'; s++)
9928 if (*s != '/')
9929 *t++ = *s;
9930 *t = '\0';
9931 i386_comment_chars = n;
9932 }
9933 #endif
9934 break;
9935
9936 case OPTION_MARCH:
9937 saved = xstrdup (arg);
9938 arch = saved;
9939 /* Allow -march=+nosse. */
9940 if (*arch == '+')
9941 arch++;
9942 do
9943 {
9944 if (*arch == '.')
9945 as_fatal (_("invalid -march= option: `%s'"), arg);
9946 next = strchr (arch, '+');
9947 if (next)
9948 *next++ = '\0';
9949 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9950 {
9951 if (strcmp (arch, cpu_arch [j].name) == 0)
9952 {
9953 /* Processor. */
9954 if (! cpu_arch[j].flags.bitfield.cpui386)
9955 continue;
9956
9957 cpu_arch_name = cpu_arch[j].name;
9958 cpu_sub_arch_name = NULL;
9959 cpu_arch_flags = cpu_arch[j].flags;
9960 cpu_arch_isa = cpu_arch[j].type;
9961 cpu_arch_isa_flags = cpu_arch[j].flags;
9962 if (!cpu_arch_tune_set)
9963 {
9964 cpu_arch_tune = cpu_arch_isa;
9965 cpu_arch_tune_flags = cpu_arch_isa_flags;
9966 }
9967 break;
9968 }
9969 else if (*cpu_arch [j].name == '.'
9970 && strcmp (arch, cpu_arch [j].name + 1) == 0)
9971 {
9972 /* ISA entension. */
9973 i386_cpu_flags flags;
9974
9975 flags = cpu_flags_or (cpu_arch_flags,
9976 cpu_arch[j].flags);
9977
9978 if (!valid_iamcu_cpu_flags (&flags))
9979 as_fatal (_("`%s' isn't valid for Intel MCU"), arch);
9980 else if (!cpu_flags_equal (&flags, &cpu_arch_flags))
9981 {
9982 if (cpu_sub_arch_name)
9983 {
9984 char *name = cpu_sub_arch_name;
9985 cpu_sub_arch_name = concat (name,
9986 cpu_arch[j].name,
9987 (const char *) NULL);
9988 free (name);
9989 }
9990 else
9991 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
9992 cpu_arch_flags = flags;
9993 cpu_arch_isa_flags = flags;
9994 }
9995 break;
9996 }
9997 }
9998
9999 if (j >= ARRAY_SIZE (cpu_arch))
10000 {
10001 /* Disable an ISA entension. */
10002 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10003 if (strcmp (arch, cpu_noarch [j].name) == 0)
10004 {
10005 i386_cpu_flags flags;
10006
10007 flags = cpu_flags_and_not (cpu_arch_flags,
10008 cpu_noarch[j].flags);
10009 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10010 {
10011 if (cpu_sub_arch_name)
10012 {
10013 char *name = cpu_sub_arch_name;
10014 cpu_sub_arch_name = concat (arch,
10015 (const char *) NULL);
10016 free (name);
10017 }
10018 else
10019 cpu_sub_arch_name = xstrdup (arch);
10020 cpu_arch_flags = flags;
10021 cpu_arch_isa_flags = flags;
10022 }
10023 break;
10024 }
10025
10026 if (j >= ARRAY_SIZE (cpu_noarch))
10027 j = ARRAY_SIZE (cpu_arch);
10028 }
10029
10030 if (j >= ARRAY_SIZE (cpu_arch))
10031 as_fatal (_("invalid -march= option: `%s'"), arg);
10032
10033 arch = next;
10034 }
10035 while (next != NULL);
10036 free (saved);
10037 break;
10038
10039 case OPTION_MTUNE:
10040 if (*arg == '.')
10041 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10042 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10043 {
10044 if (strcmp (arg, cpu_arch [j].name) == 0)
10045 {
10046 cpu_arch_tune_set = 1;
10047 cpu_arch_tune = cpu_arch [j].type;
10048 cpu_arch_tune_flags = cpu_arch[j].flags;
10049 break;
10050 }
10051 }
10052 if (j >= ARRAY_SIZE (cpu_arch))
10053 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10054 break;
10055
10056 case OPTION_MMNEMONIC:
10057 if (strcasecmp (arg, "att") == 0)
10058 intel_mnemonic = 0;
10059 else if (strcasecmp (arg, "intel") == 0)
10060 intel_mnemonic = 1;
10061 else
10062 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10063 break;
10064
10065 case OPTION_MSYNTAX:
10066 if (strcasecmp (arg, "att") == 0)
10067 intel_syntax = 0;
10068 else if (strcasecmp (arg, "intel") == 0)
10069 intel_syntax = 1;
10070 else
10071 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10072 break;
10073
10074 case OPTION_MINDEX_REG:
10075 allow_index_reg = 1;
10076 break;
10077
10078 case OPTION_MNAKED_REG:
10079 allow_naked_reg = 1;
10080 break;
10081
10082 case OPTION_MOLD_GCC:
10083 old_gcc = 1;
10084 break;
10085
10086 case OPTION_MSSE2AVX:
10087 sse2avx = 1;
10088 break;
10089
10090 case OPTION_MSSE_CHECK:
10091 if (strcasecmp (arg, "error") == 0)
10092 sse_check = check_error;
10093 else if (strcasecmp (arg, "warning") == 0)
10094 sse_check = check_warning;
10095 else if (strcasecmp (arg, "none") == 0)
10096 sse_check = check_none;
10097 else
10098 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10099 break;
10100
10101 case OPTION_MOPERAND_CHECK:
10102 if (strcasecmp (arg, "error") == 0)
10103 operand_check = check_error;
10104 else if (strcasecmp (arg, "warning") == 0)
10105 operand_check = check_warning;
10106 else if (strcasecmp (arg, "none") == 0)
10107 operand_check = check_none;
10108 else
10109 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10110 break;
10111
10112 case OPTION_MAVXSCALAR:
10113 if (strcasecmp (arg, "128") == 0)
10114 avxscalar = vex128;
10115 else if (strcasecmp (arg, "256") == 0)
10116 avxscalar = vex256;
10117 else
10118 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10119 break;
10120
10121 case OPTION_MADD_BND_PREFIX:
10122 add_bnd_prefix = 1;
10123 break;
10124
10125 case OPTION_MEVEXLIG:
10126 if (strcmp (arg, "128") == 0)
10127 evexlig = evexl128;
10128 else if (strcmp (arg, "256") == 0)
10129 evexlig = evexl256;
10130 else if (strcmp (arg, "512") == 0)
10131 evexlig = evexl512;
10132 else
10133 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10134 break;
10135
10136 case OPTION_MEVEXRCIG:
10137 if (strcmp (arg, "rne") == 0)
10138 evexrcig = rne;
10139 else if (strcmp (arg, "rd") == 0)
10140 evexrcig = rd;
10141 else if (strcmp (arg, "ru") == 0)
10142 evexrcig = ru;
10143 else if (strcmp (arg, "rz") == 0)
10144 evexrcig = rz;
10145 else
10146 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10147 break;
10148
10149 case OPTION_MEVEXWIG:
10150 if (strcmp (arg, "0") == 0)
10151 evexwig = evexw0;
10152 else if (strcmp (arg, "1") == 0)
10153 evexwig = evexw1;
10154 else
10155 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10156 break;
10157
10158 # if defined (TE_PE) || defined (TE_PEP)
10159 case OPTION_MBIG_OBJ:
10160 use_big_obj = 1;
10161 break;
10162 #endif
10163
10164 case OPTION_MOMIT_LOCK_PREFIX:
10165 if (strcasecmp (arg, "yes") == 0)
10166 omit_lock_prefix = 1;
10167 else if (strcasecmp (arg, "no") == 0)
10168 omit_lock_prefix = 0;
10169 else
10170 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10171 break;
10172
10173 case OPTION_MFENCE_AS_LOCK_ADD:
10174 if (strcasecmp (arg, "yes") == 0)
10175 avoid_fence = 1;
10176 else if (strcasecmp (arg, "no") == 0)
10177 avoid_fence = 0;
10178 else
10179 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10180 break;
10181
10182 case OPTION_MRELAX_RELOCATIONS:
10183 if (strcasecmp (arg, "yes") == 0)
10184 generate_relax_relocations = 1;
10185 else if (strcasecmp (arg, "no") == 0)
10186 generate_relax_relocations = 0;
10187 else
10188 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10189 break;
10190
10191 case OPTION_MAMD64:
10192 intel64 = 0;
10193 break;
10194
10195 case OPTION_MINTEL64:
10196 intel64 = 1;
10197 break;
10198
10199 default:
10200 return 0;
10201 }
10202 return 1;
10203 }
10204
10205 #define MESSAGE_TEMPLATE \
10206 " "
10207
10208 static char *
10209 output_message (FILE *stream, char *p, char *message, char *start,
10210 int *left_p, const char *name, int len)
10211 {
10212 int size = sizeof (MESSAGE_TEMPLATE);
10213 int left = *left_p;
10214
10215 /* Reserve 2 spaces for ", " or ",\0" */
10216 left -= len + 2;
10217
10218 /* Check if there is any room. */
10219 if (left >= 0)
10220 {
10221 if (p != start)
10222 {
10223 *p++ = ',';
10224 *p++ = ' ';
10225 }
10226 p = mempcpy (p, name, len);
10227 }
10228 else
10229 {
10230 /* Output the current message now and start a new one. */
10231 *p++ = ',';
10232 *p = '\0';
10233 fprintf (stream, "%s\n", message);
10234 p = start;
10235 left = size - (start - message) - len - 2;
10236
10237 gas_assert (left >= 0);
10238
10239 p = mempcpy (p, name, len);
10240 }
10241
10242 *left_p = left;
10243 return p;
10244 }
10245
10246 static void
10247 show_arch (FILE *stream, int ext, int check)
10248 {
10249 static char message[] = MESSAGE_TEMPLATE;
10250 char *start = message + 27;
10251 char *p;
10252 int size = sizeof (MESSAGE_TEMPLATE);
10253 int left;
10254 const char *name;
10255 int len;
10256 unsigned int j;
10257
10258 p = start;
10259 left = size - (start - message);
10260 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10261 {
10262 /* Should it be skipped? */
10263 if (cpu_arch [j].skip)
10264 continue;
10265
10266 name = cpu_arch [j].name;
10267 len = cpu_arch [j].len;
10268 if (*name == '.')
10269 {
10270 /* It is an extension. Skip if we aren't asked to show it. */
10271 if (ext)
10272 {
10273 name++;
10274 len--;
10275 }
10276 else
10277 continue;
10278 }
10279 else if (ext)
10280 {
10281 /* It is an processor. Skip if we show only extension. */
10282 continue;
10283 }
10284 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10285 {
10286 /* It is an impossible processor - skip. */
10287 continue;
10288 }
10289
10290 p = output_message (stream, p, message, start, &left, name, len);
10291 }
10292
10293 /* Display disabled extensions. */
10294 if (ext)
10295 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10296 {
10297 name = cpu_noarch [j].name;
10298 len = cpu_noarch [j].len;
10299 p = output_message (stream, p, message, start, &left, name,
10300 len);
10301 }
10302
10303 *p = '\0';
10304 fprintf (stream, "%s\n", message);
10305 }
10306
10307 void
10308 md_show_usage (FILE *stream)
10309 {
10310 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10311 fprintf (stream, _("\
10312 -Q ignored\n\
10313 -V print assembler version number\n\
10314 -k ignored\n"));
10315 #endif
10316 fprintf (stream, _("\
10317 -n Do not optimize code alignment\n\
10318 -q quieten some warnings\n"));
10319 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10320 fprintf (stream, _("\
10321 -s ignored\n"));
10322 #endif
10323 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10324 || defined (TE_PE) || defined (TE_PEP))
10325 fprintf (stream, _("\
10326 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10327 #endif
10328 #ifdef SVR4_COMMENT_CHARS
10329 fprintf (stream, _("\
10330 --divide do not treat `/' as a comment character\n"));
10331 #else
10332 fprintf (stream, _("\
10333 --divide ignored\n"));
10334 #endif
10335 fprintf (stream, _("\
10336 -march=CPU[,+EXTENSION...]\n\
10337 generate code for CPU and EXTENSION, CPU is one of:\n"));
10338 show_arch (stream, 0, 1);
10339 fprintf (stream, _("\
10340 EXTENSION is combination of:\n"));
10341 show_arch (stream, 1, 0);
10342 fprintf (stream, _("\
10343 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10344 show_arch (stream, 0, 0);
10345 fprintf (stream, _("\
10346 -msse2avx encode SSE instructions with VEX prefix\n"));
10347 fprintf (stream, _("\
10348 -msse-check=[none|error|warning]\n\
10349 check SSE instructions\n"));
10350 fprintf (stream, _("\
10351 -moperand-check=[none|error|warning]\n\
10352 check operand combinations for validity\n"));
10353 fprintf (stream, _("\
10354 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10355 length\n"));
10356 fprintf (stream, _("\
10357 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10358 length\n"));
10359 fprintf (stream, _("\
10360 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10361 for EVEX.W bit ignored instructions\n"));
10362 fprintf (stream, _("\
10363 -mevexrcig=[rne|rd|ru|rz]\n\
10364 encode EVEX instructions with specific EVEX.RC value\n\
10365 for SAE-only ignored instructions\n"));
10366 fprintf (stream, _("\
10367 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10368 fprintf (stream, _("\
10369 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10370 fprintf (stream, _("\
10371 -mindex-reg support pseudo index registers\n"));
10372 fprintf (stream, _("\
10373 -mnaked-reg don't require `%%' prefix for registers\n"));
10374 fprintf (stream, _("\
10375 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
10376 fprintf (stream, _("\
10377 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10378 fprintf (stream, _("\
10379 -mshared disable branch optimization for shared code\n"));
10380 # if defined (TE_PE) || defined (TE_PEP)
10381 fprintf (stream, _("\
10382 -mbig-obj generate big object files\n"));
10383 #endif
10384 fprintf (stream, _("\
10385 -momit-lock-prefix=[no|yes]\n\
10386 strip all lock prefixes\n"));
10387 fprintf (stream, _("\
10388 -mfence-as-lock-add=[no|yes]\n\
10389 encode lfence, mfence and sfence as\n\
10390 lock addl $0x0, (%%{re}sp)\n"));
10391 fprintf (stream, _("\
10392 -mrelax-relocations=[no|yes]\n\
10393 generate relax relocations\n"));
10394 fprintf (stream, _("\
10395 -mamd64 accept only AMD64 ISA\n"));
10396 fprintf (stream, _("\
10397 -mintel64 accept only Intel64 ISA\n"));
10398 }
10399
10400 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10401 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10402 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10403
10404 /* Pick the target format to use. */
10405
10406 const char *
10407 i386_target_format (void)
10408 {
10409 if (!strncmp (default_arch, "x86_64", 6))
10410 {
10411 update_code_flag (CODE_64BIT, 1);
10412 if (default_arch[6] == '\0')
10413 x86_elf_abi = X86_64_ABI;
10414 else
10415 x86_elf_abi = X86_64_X32_ABI;
10416 }
10417 else if (!strcmp (default_arch, "i386"))
10418 update_code_flag (CODE_32BIT, 1);
10419 else if (!strcmp (default_arch, "iamcu"))
10420 {
10421 update_code_flag (CODE_32BIT, 1);
10422 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10423 {
10424 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10425 cpu_arch_name = "iamcu";
10426 cpu_sub_arch_name = NULL;
10427 cpu_arch_flags = iamcu_flags;
10428 cpu_arch_isa = PROCESSOR_IAMCU;
10429 cpu_arch_isa_flags = iamcu_flags;
10430 if (!cpu_arch_tune_set)
10431 {
10432 cpu_arch_tune = cpu_arch_isa;
10433 cpu_arch_tune_flags = cpu_arch_isa_flags;
10434 }
10435 }
10436 else
10437 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10438 cpu_arch_name);
10439 }
10440 else
10441 as_fatal (_("unknown architecture"));
10442
10443 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10444 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10445 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10446 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10447
10448 switch (OUTPUT_FLAVOR)
10449 {
10450 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10451 case bfd_target_aout_flavour:
10452 return AOUT_TARGET_FORMAT;
10453 #endif
10454 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10455 # if defined (TE_PE) || defined (TE_PEP)
10456 case bfd_target_coff_flavour:
10457 if (flag_code == CODE_64BIT)
10458 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10459 else
10460 return "pe-i386";
10461 # elif defined (TE_GO32)
10462 case bfd_target_coff_flavour:
10463 return "coff-go32";
10464 # else
10465 case bfd_target_coff_flavour:
10466 return "coff-i386";
10467 # endif
10468 #endif
10469 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10470 case bfd_target_elf_flavour:
10471 {
10472 const char *format;
10473
10474 switch (x86_elf_abi)
10475 {
10476 default:
10477 format = ELF_TARGET_FORMAT;
10478 break;
10479 case X86_64_ABI:
10480 use_rela_relocations = 1;
10481 object_64bit = 1;
10482 format = ELF_TARGET_FORMAT64;
10483 break;
10484 case X86_64_X32_ABI:
10485 use_rela_relocations = 1;
10486 object_64bit = 1;
10487 disallow_64bit_reloc = 1;
10488 format = ELF_TARGET_FORMAT32;
10489 break;
10490 }
10491 if (cpu_arch_isa == PROCESSOR_L1OM)
10492 {
10493 if (x86_elf_abi != X86_64_ABI)
10494 as_fatal (_("Intel L1OM is 64bit only"));
10495 return ELF_TARGET_L1OM_FORMAT;
10496 }
10497 else if (cpu_arch_isa == PROCESSOR_K1OM)
10498 {
10499 if (x86_elf_abi != X86_64_ABI)
10500 as_fatal (_("Intel K1OM is 64bit only"));
10501 return ELF_TARGET_K1OM_FORMAT;
10502 }
10503 else if (cpu_arch_isa == PROCESSOR_IAMCU)
10504 {
10505 if (x86_elf_abi != I386_ABI)
10506 as_fatal (_("Intel MCU is 32bit only"));
10507 return ELF_TARGET_IAMCU_FORMAT;
10508 }
10509 else
10510 return format;
10511 }
10512 #endif
10513 #if defined (OBJ_MACH_O)
10514 case bfd_target_mach_o_flavour:
10515 if (flag_code == CODE_64BIT)
10516 {
10517 use_rela_relocations = 1;
10518 object_64bit = 1;
10519 return "mach-o-x86-64";
10520 }
10521 else
10522 return "mach-o-i386";
10523 #endif
10524 default:
10525 abort ();
10526 return NULL;
10527 }
10528 }
10529
10530 #endif /* OBJ_MAYBE_ more than one */
10531 \f
10532 symbolS *
10533 md_undefined_symbol (char *name)
10534 {
10535 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10536 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10537 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10538 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10539 {
10540 if (!GOT_symbol)
10541 {
10542 if (symbol_find (name))
10543 as_bad (_("GOT already in symbol table"));
10544 GOT_symbol = symbol_new (name, undefined_section,
10545 (valueT) 0, &zero_address_frag);
10546 };
10547 return GOT_symbol;
10548 }
10549 return 0;
10550 }
10551
10552 /* Round up a section size to the appropriate boundary. */
10553
10554 valueT
10555 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10556 {
10557 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10558 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10559 {
10560 /* For a.out, force the section size to be aligned. If we don't do
10561 this, BFD will align it for us, but it will not write out the
10562 final bytes of the section. This may be a bug in BFD, but it is
10563 easier to fix it here since that is how the other a.out targets
10564 work. */
10565 int align;
10566
10567 align = bfd_get_section_alignment (stdoutput, segment);
10568 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
10569 }
10570 #endif
10571
10572 return size;
10573 }
10574
10575 /* On the i386, PC-relative offsets are relative to the start of the
10576 next instruction. That is, the address of the offset, plus its
10577 size, since the offset is always the last part of the insn. */
10578
10579 long
10580 md_pcrel_from (fixS *fixP)
10581 {
10582 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10583 }
10584
10585 #ifndef I386COFF
10586
10587 static void
10588 s_bss (int ignore ATTRIBUTE_UNUSED)
10589 {
10590 int temp;
10591
10592 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10593 if (IS_ELF)
10594 obj_elf_section_change_hook ();
10595 #endif
10596 temp = get_absolute_expression ();
10597 subseg_set (bss_section, (subsegT) temp);
10598 demand_empty_rest_of_line ();
10599 }
10600
10601 #endif
10602
10603 void
10604 i386_validate_fix (fixS *fixp)
10605 {
10606 if (fixp->fx_subsy)
10607 {
10608 if (fixp->fx_subsy == GOT_symbol)
10609 {
10610 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10611 {
10612 if (!object_64bit)
10613 abort ();
10614 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10615 if (fixp->fx_tcbit2)
10616 fixp->fx_r_type = (fixp->fx_tcbit
10617 ? BFD_RELOC_X86_64_REX_GOTPCRELX
10618 : BFD_RELOC_X86_64_GOTPCRELX);
10619 else
10620 #endif
10621 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10622 }
10623 else
10624 {
10625 if (!object_64bit)
10626 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10627 else
10628 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10629 }
10630 fixp->fx_subsy = 0;
10631 }
10632 }
10633 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10634 else if (!object_64bit)
10635 {
10636 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
10637 && fixp->fx_tcbit2)
10638 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
10639 }
10640 #endif
10641 }
10642
10643 arelent *
10644 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10645 {
10646 arelent *rel;
10647 bfd_reloc_code_real_type code;
10648
10649 switch (fixp->fx_r_type)
10650 {
10651 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10652 case BFD_RELOC_SIZE32:
10653 case BFD_RELOC_SIZE64:
10654 if (S_IS_DEFINED (fixp->fx_addsy)
10655 && !S_IS_EXTERNAL (fixp->fx_addsy))
10656 {
10657 /* Resolve size relocation against local symbol to size of
10658 the symbol plus addend. */
10659 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10660 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10661 && !fits_in_unsigned_long (value))
10662 as_bad_where (fixp->fx_file, fixp->fx_line,
10663 _("symbol size computation overflow"));
10664 fixp->fx_addsy = NULL;
10665 fixp->fx_subsy = NULL;
10666 md_apply_fix (fixp, (valueT *) &value, NULL);
10667 return NULL;
10668 }
10669 #endif
10670
10671 case BFD_RELOC_X86_64_PLT32:
10672 case BFD_RELOC_X86_64_GOT32:
10673 case BFD_RELOC_X86_64_GOTPCREL:
10674 case BFD_RELOC_X86_64_GOTPCRELX:
10675 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10676 case BFD_RELOC_386_PLT32:
10677 case BFD_RELOC_386_GOT32:
10678 case BFD_RELOC_386_GOT32X:
10679 case BFD_RELOC_386_GOTOFF:
10680 case BFD_RELOC_386_GOTPC:
10681 case BFD_RELOC_386_TLS_GD:
10682 case BFD_RELOC_386_TLS_LDM:
10683 case BFD_RELOC_386_TLS_LDO_32:
10684 case BFD_RELOC_386_TLS_IE_32:
10685 case BFD_RELOC_386_TLS_IE:
10686 case BFD_RELOC_386_TLS_GOTIE:
10687 case BFD_RELOC_386_TLS_LE_32:
10688 case BFD_RELOC_386_TLS_LE:
10689 case BFD_RELOC_386_TLS_GOTDESC:
10690 case BFD_RELOC_386_TLS_DESC_CALL:
10691 case BFD_RELOC_X86_64_TLSGD:
10692 case BFD_RELOC_X86_64_TLSLD:
10693 case BFD_RELOC_X86_64_DTPOFF32:
10694 case BFD_RELOC_X86_64_DTPOFF64:
10695 case BFD_RELOC_X86_64_GOTTPOFF:
10696 case BFD_RELOC_X86_64_TPOFF32:
10697 case BFD_RELOC_X86_64_TPOFF64:
10698 case BFD_RELOC_X86_64_GOTOFF64:
10699 case BFD_RELOC_X86_64_GOTPC32:
10700 case BFD_RELOC_X86_64_GOT64:
10701 case BFD_RELOC_X86_64_GOTPCREL64:
10702 case BFD_RELOC_X86_64_GOTPC64:
10703 case BFD_RELOC_X86_64_GOTPLT64:
10704 case BFD_RELOC_X86_64_PLTOFF64:
10705 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10706 case BFD_RELOC_X86_64_TLSDESC_CALL:
10707 case BFD_RELOC_RVA:
10708 case BFD_RELOC_VTABLE_ENTRY:
10709 case BFD_RELOC_VTABLE_INHERIT:
10710 #ifdef TE_PE
10711 case BFD_RELOC_32_SECREL:
10712 #endif
10713 code = fixp->fx_r_type;
10714 break;
10715 case BFD_RELOC_X86_64_32S:
10716 if (!fixp->fx_pcrel)
10717 {
10718 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10719 code = fixp->fx_r_type;
10720 break;
10721 }
10722 default:
10723 if (fixp->fx_pcrel)
10724 {
10725 switch (fixp->fx_size)
10726 {
10727 default:
10728 as_bad_where (fixp->fx_file, fixp->fx_line,
10729 _("can not do %d byte pc-relative relocation"),
10730 fixp->fx_size);
10731 code = BFD_RELOC_32_PCREL;
10732 break;
10733 case 1: code = BFD_RELOC_8_PCREL; break;
10734 case 2: code = BFD_RELOC_16_PCREL; break;
10735 case 4: code = BFD_RELOC_32_PCREL; break;
10736 #ifdef BFD64
10737 case 8: code = BFD_RELOC_64_PCREL; break;
10738 #endif
10739 }
10740 }
10741 else
10742 {
10743 switch (fixp->fx_size)
10744 {
10745 default:
10746 as_bad_where (fixp->fx_file, fixp->fx_line,
10747 _("can not do %d byte relocation"),
10748 fixp->fx_size);
10749 code = BFD_RELOC_32;
10750 break;
10751 case 1: code = BFD_RELOC_8; break;
10752 case 2: code = BFD_RELOC_16; break;
10753 case 4: code = BFD_RELOC_32; break;
10754 #ifdef BFD64
10755 case 8: code = BFD_RELOC_64; break;
10756 #endif
10757 }
10758 }
10759 break;
10760 }
10761
10762 if ((code == BFD_RELOC_32
10763 || code == BFD_RELOC_32_PCREL
10764 || code == BFD_RELOC_X86_64_32S)
10765 && GOT_symbol
10766 && fixp->fx_addsy == GOT_symbol)
10767 {
10768 if (!object_64bit)
10769 code = BFD_RELOC_386_GOTPC;
10770 else
10771 code = BFD_RELOC_X86_64_GOTPC32;
10772 }
10773 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10774 && GOT_symbol
10775 && fixp->fx_addsy == GOT_symbol)
10776 {
10777 code = BFD_RELOC_X86_64_GOTPC64;
10778 }
10779
10780 rel = XNEW (arelent);
10781 rel->sym_ptr_ptr = XNEW (asymbol *);
10782 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10783
10784 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
10785
10786 if (!use_rela_relocations)
10787 {
10788 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10789 vtable entry to be used in the relocation's section offset. */
10790 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10791 rel->address = fixp->fx_offset;
10792 #if defined (OBJ_COFF) && defined (TE_PE)
10793 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10794 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10795 else
10796 #endif
10797 rel->addend = 0;
10798 }
10799 /* Use the rela in 64bit mode. */
10800 else
10801 {
10802 if (disallow_64bit_reloc)
10803 switch (code)
10804 {
10805 case BFD_RELOC_X86_64_DTPOFF64:
10806 case BFD_RELOC_X86_64_TPOFF64:
10807 case BFD_RELOC_64_PCREL:
10808 case BFD_RELOC_X86_64_GOTOFF64:
10809 case BFD_RELOC_X86_64_GOT64:
10810 case BFD_RELOC_X86_64_GOTPCREL64:
10811 case BFD_RELOC_X86_64_GOTPC64:
10812 case BFD_RELOC_X86_64_GOTPLT64:
10813 case BFD_RELOC_X86_64_PLTOFF64:
10814 as_bad_where (fixp->fx_file, fixp->fx_line,
10815 _("cannot represent relocation type %s in x32 mode"),
10816 bfd_get_reloc_code_name (code));
10817 break;
10818 default:
10819 break;
10820 }
10821
10822 if (!fixp->fx_pcrel)
10823 rel->addend = fixp->fx_offset;
10824 else
10825 switch (code)
10826 {
10827 case BFD_RELOC_X86_64_PLT32:
10828 case BFD_RELOC_X86_64_GOT32:
10829 case BFD_RELOC_X86_64_GOTPCREL:
10830 case BFD_RELOC_X86_64_GOTPCRELX:
10831 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10832 case BFD_RELOC_X86_64_TLSGD:
10833 case BFD_RELOC_X86_64_TLSLD:
10834 case BFD_RELOC_X86_64_GOTTPOFF:
10835 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10836 case BFD_RELOC_X86_64_TLSDESC_CALL:
10837 rel->addend = fixp->fx_offset - fixp->fx_size;
10838 break;
10839 default:
10840 rel->addend = (section->vma
10841 - fixp->fx_size
10842 + fixp->fx_addnumber
10843 + md_pcrel_from (fixp));
10844 break;
10845 }
10846 }
10847
10848 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
10849 if (rel->howto == NULL)
10850 {
10851 as_bad_where (fixp->fx_file, fixp->fx_line,
10852 _("cannot represent relocation type %s"),
10853 bfd_get_reloc_code_name (code));
10854 /* Set howto to a garbage value so that we can keep going. */
10855 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
10856 gas_assert (rel->howto != NULL);
10857 }
10858
10859 return rel;
10860 }
10861
10862 #include "tc-i386-intel.c"
10863
10864 void
10865 tc_x86_parse_to_dw2regnum (expressionS *exp)
10866 {
10867 int saved_naked_reg;
10868 char saved_register_dot;
10869
10870 saved_naked_reg = allow_naked_reg;
10871 allow_naked_reg = 1;
10872 saved_register_dot = register_chars['.'];
10873 register_chars['.'] = '.';
10874 allow_pseudo_reg = 1;
10875 expression_and_evaluate (exp);
10876 allow_pseudo_reg = 0;
10877 register_chars['.'] = saved_register_dot;
10878 allow_naked_reg = saved_naked_reg;
10879
10880 if (exp->X_op == O_register && exp->X_add_number >= 0)
10881 {
10882 if ((addressT) exp->X_add_number < i386_regtab_size)
10883 {
10884 exp->X_op = O_constant;
10885 exp->X_add_number = i386_regtab[exp->X_add_number]
10886 .dw2_regnum[flag_code >> 1];
10887 }
10888 else
10889 exp->X_op = O_illegal;
10890 }
10891 }
10892
10893 void
10894 tc_x86_frame_initial_instructions (void)
10895 {
10896 static unsigned int sp_regno[2];
10897
10898 if (!sp_regno[flag_code >> 1])
10899 {
10900 char *saved_input = input_line_pointer;
10901 char sp[][4] = {"esp", "rsp"};
10902 expressionS exp;
10903
10904 input_line_pointer = sp[flag_code >> 1];
10905 tc_x86_parse_to_dw2regnum (&exp);
10906 gas_assert (exp.X_op == O_constant);
10907 sp_regno[flag_code >> 1] = exp.X_add_number;
10908 input_line_pointer = saved_input;
10909 }
10910
10911 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
10912 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
10913 }
10914
10915 int
10916 x86_dwarf2_addr_size (void)
10917 {
10918 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10919 if (x86_elf_abi == X86_64_X32_ABI)
10920 return 4;
10921 #endif
10922 return bfd_arch_bits_per_address (stdoutput) / 8;
10923 }
10924
10925 int
10926 i386_elf_section_type (const char *str, size_t len)
10927 {
10928 if (flag_code == CODE_64BIT
10929 && len == sizeof ("unwind") - 1
10930 && strncmp (str, "unwind", 6) == 0)
10931 return SHT_X86_64_UNWIND;
10932
10933 return -1;
10934 }
10935
10936 #ifdef TE_SOLARIS
10937 void
10938 i386_solaris_fix_up_eh_frame (segT sec)
10939 {
10940 if (flag_code == CODE_64BIT)
10941 elf_section_type (sec) = SHT_X86_64_UNWIND;
10942 }
10943 #endif
10944
10945 #ifdef TE_PE
10946 void
10947 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10948 {
10949 expressionS exp;
10950
10951 exp.X_op = O_secrel;
10952 exp.X_add_symbol = symbol;
10953 exp.X_add_number = 0;
10954 emit_expr (&exp, size);
10955 }
10956 #endif
10957
10958 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10959 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
10960
10961 bfd_vma
10962 x86_64_section_letter (int letter, const char **ptr_msg)
10963 {
10964 if (flag_code == CODE_64BIT)
10965 {
10966 if (letter == 'l')
10967 return SHF_X86_64_LARGE;
10968
10969 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
10970 }
10971 else
10972 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
10973 return -1;
10974 }
10975
10976 bfd_vma
10977 x86_64_section_word (char *str, size_t len)
10978 {
10979 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
10980 return SHF_X86_64_LARGE;
10981
10982 return -1;
10983 }
10984
10985 static void
10986 handle_large_common (int small ATTRIBUTE_UNUSED)
10987 {
10988 if (flag_code != CODE_64BIT)
10989 {
10990 s_comm_internal (0, elf_common_parse);
10991 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
10992 }
10993 else
10994 {
10995 static segT lbss_section;
10996 asection *saved_com_section_ptr = elf_com_section_ptr;
10997 asection *saved_bss_section = bss_section;
10998
10999 if (lbss_section == NULL)
11000 {
11001 flagword applicable;
11002 segT seg = now_seg;
11003 subsegT subseg = now_subseg;
11004
11005 /* The .lbss section is for local .largecomm symbols. */
11006 lbss_section = subseg_new (".lbss", 0);
11007 applicable = bfd_applicable_section_flags (stdoutput);
11008 bfd_set_section_flags (stdoutput, lbss_section,
11009 applicable & SEC_ALLOC);
11010 seg_info (lbss_section)->bss = 1;
11011
11012 subseg_set (seg, subseg);
11013 }
11014
11015 elf_com_section_ptr = &_bfd_elf_large_com_section;
11016 bss_section = lbss_section;
11017
11018 s_comm_internal (0, elf_common_parse);
11019
11020 elf_com_section_ptr = saved_com_section_ptr;
11021 bss_section = saved_bss_section;
11022 }
11023 }
11024 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.289534 seconds and 5 git commands to generate.