Enable Intel AVX512_VNNI instructions.
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2017 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 #define XMMWORD_MNEM_SUFFIX 'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 #define ZMMWORD_MNEM_SUFFIX 'z'
87 /* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91 #define END_OF_INSN '\0'
92
93 /*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100 typedef struct
101 {
102 const insn_template *start;
103 const insn_template *end;
104 }
105 templates;
106
107 /* 386 operand encoding bytes: see 386 book for details of this. */
108 typedef struct
109 {
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113 }
114 modrm_byte;
115
116 /* x86-64 extension prefix. */
117 typedef int rex_byte;
118
119 /* 386 opcode byte to code indirect addressing. */
120 typedef struct
121 {
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125 }
126 sib_byte;
127
128 /* x86 arch names, types and features */
129 typedef struct
130 {
131 const char *name; /* arch name */
132 unsigned int len; /* arch string length */
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
135 unsigned int skip; /* show_arch should skip this. */
136 }
137 arch_entry;
138
139 /* Used to turn off indicated flags. */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 i386_cpu_flags flags; /* cpu feature flags */
145 }
146 noarch_entry;
147
148 static void update_code_flag (int, int);
149 static void set_code_flag (int);
150 static void set_16bit_gcc_code_flag (int);
151 static void set_intel_syntax (int);
152 static void set_intel_mnemonic (int);
153 static void set_allow_index_reg (int);
154 static void set_check (int);
155 static void set_cpu_arch (int);
156 #ifdef TE_PE
157 static void pe_directive_secrel (int);
158 #endif
159 static void signed_cons (int);
160 static char *output_invalid (int c);
161 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
162 const char *);
163 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
164 const char *);
165 static int i386_att_operand (char *);
166 static int i386_intel_operand (char *, int);
167 static int i386_intel_simplify (expressionS *);
168 static int i386_intel_parse_name (const char *, expressionS *);
169 static const reg_entry *parse_register (char *, char **);
170 static char *parse_insn (char *, char *);
171 static char *parse_operands (char *, const char *);
172 static void swap_operands (void);
173 static void swap_2_operands (int, int);
174 static void optimize_imm (void);
175 static void optimize_disp (void);
176 static const insn_template *match_template (char);
177 static int check_string (void);
178 static int process_suffix (void);
179 static int check_byte_reg (void);
180 static int check_long_reg (void);
181 static int check_qword_reg (void);
182 static int check_word_reg (void);
183 static int finalize_imm (void);
184 static int process_operands (void);
185 static const seg_entry *build_modrm_byte (void);
186 static void output_insn (void);
187 static void output_imm (fragS *, offsetT);
188 static void output_disp (fragS *, offsetT);
189 #ifndef I386COFF
190 static void s_bss (int);
191 #endif
192 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
193 static void handle_large_common (int small ATTRIBUTE_UNUSED);
194 #endif
195
196 static const char *default_arch = DEFAULT_ARCH;
197
198 /* This struct describes rounding control and SAE in the instruction. */
199 struct RC_Operation
200 {
201 enum rc_type
202 {
203 rne = 0,
204 rd,
205 ru,
206 rz,
207 saeonly
208 } type;
209 int operand;
210 };
211
212 static struct RC_Operation rc_op;
213
214 /* The struct describes masking, applied to OPERAND in the instruction.
215 MASK is a pointer to the corresponding mask register. ZEROING tells
216 whether merging or zeroing mask is used. */
217 struct Mask_Operation
218 {
219 const reg_entry *mask;
220 unsigned int zeroing;
221 /* The operand where this operation is associated. */
222 int operand;
223 };
224
225 static struct Mask_Operation mask_op;
226
227 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
228 broadcast factor. */
229 struct Broadcast_Operation
230 {
231 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
232 int type;
233
234 /* Index of broadcasted operand. */
235 int operand;
236 };
237
238 static struct Broadcast_Operation broadcast_op;
239
240 /* VEX prefix. */
241 typedef struct
242 {
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248 } vex_prefix;
249
250 /* 'md_assemble ()' gathers together information and puts it into a
251 i386_insn. */
252
253 union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
260 enum i386_error
261 {
262 operand_size_mismatch,
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
268 old_gcc_only,
269 unsupported_with_intel_mnemonic,
270 unsupported_syntax,
271 unsupported,
272 invalid_vsib_address,
273 invalid_vector_register_set,
274 unsupported_vector_index_register,
275 unsupported_broadcast,
276 broadcast_not_on_src_operand,
277 broadcast_needed,
278 unsupported_masking,
279 mask_not_on_destination,
280 no_default_mask,
281 unsupported_rc_sae,
282 rc_sae_operand_not_last_imm,
283 invalid_register_operand,
284 try_vector_disp8
285 };
286
287 struct _i386_insn
288 {
289 /* TM holds the template for the insn were currently assembling. */
290 insn_template tm;
291
292 /* SUFFIX holds the instruction size suffix for byte, word, dword
293 or qword, if given. */
294 char suffix;
295
296 /* OPERANDS gives the number of given operands. */
297 unsigned int operands;
298
299 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
300 of given register, displacement, memory operands and immediate
301 operands. */
302 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
303
304 /* TYPES [i] is the type (see above #defines) which tells us how to
305 use OP[i] for the corresponding operand. */
306 i386_operand_type types[MAX_OPERANDS];
307
308 /* Displacement expression, immediate expression, or register for each
309 operand. */
310 union i386_op op[MAX_OPERANDS];
311
312 /* Flags for operands. */
313 unsigned int flags[MAX_OPERANDS];
314 #define Operand_PCrel 1
315
316 /* Relocation type for operand */
317 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
318
319 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
320 the base index byte below. */
321 const reg_entry *base_reg;
322 const reg_entry *index_reg;
323 unsigned int log2_scale_factor;
324
325 /* SEG gives the seg_entries of this insn. They are zero unless
326 explicit segment overrides are given. */
327 const seg_entry *seg[2];
328
329 /* Copied first memory operand string, for re-checking. */
330 char *memop1_string;
331
332 /* PREFIX holds all the given prefix opcodes (usually null).
333 PREFIXES is the number of prefix opcodes. */
334 unsigned int prefixes;
335 unsigned char prefix[MAX_PREFIXES];
336
337 /* RM and SIB are the modrm byte and the sib byte where the
338 addressing modes of this insn are encoded. */
339 modrm_byte rm;
340 rex_byte rex;
341 rex_byte vrex;
342 sib_byte sib;
343 vex_prefix vex;
344
345 /* Masking attributes. */
346 struct Mask_Operation *mask;
347
348 /* Rounding control and SAE attributes. */
349 struct RC_Operation *rounding;
350
351 /* Broadcasting attributes. */
352 struct Broadcast_Operation *broadcast;
353
354 /* Compressed disp8*N attribute. */
355 unsigned int memshift;
356
357 /* Prefer load or store in encoding. */
358 enum
359 {
360 dir_encoding_default = 0,
361 dir_encoding_load,
362 dir_encoding_store
363 } dir_encoding;
364
365 /* Prefer 8bit or 32bit displacement in encoding. */
366 enum
367 {
368 disp_encoding_default = 0,
369 disp_encoding_8bit,
370 disp_encoding_32bit
371 } disp_encoding;
372
373 /* How to encode vector instructions. */
374 enum
375 {
376 vex_encoding_default = 0,
377 vex_encoding_vex2,
378 vex_encoding_vex3,
379 vex_encoding_evex
380 } vec_encoding;
381
382 /* REP prefix. */
383 const char *rep_prefix;
384
385 /* HLE prefix. */
386 const char *hle_prefix;
387
388 /* Have BND prefix. */
389 const char *bnd_prefix;
390
391 /* Have NOTRACK prefix. */
392 const char *notrack_prefix;
393
394 /* Error message. */
395 enum i386_error error;
396 };
397
398 typedef struct _i386_insn i386_insn;
399
400 /* Link RC type with corresponding string, that'll be looked for in
401 asm. */
402 struct RC_name
403 {
404 enum rc_type type;
405 const char *name;
406 unsigned int len;
407 };
408
409 static const struct RC_name RC_NamesTable[] =
410 {
411 { rne, STRING_COMMA_LEN ("rn-sae") },
412 { rd, STRING_COMMA_LEN ("rd-sae") },
413 { ru, STRING_COMMA_LEN ("ru-sae") },
414 { rz, STRING_COMMA_LEN ("rz-sae") },
415 { saeonly, STRING_COMMA_LEN ("sae") },
416 };
417
418 /* List of chars besides those in app.c:symbol_chars that can start an
419 operand. Used to prevent the scrubber eating vital white-space. */
420 const char extra_symbol_chars[] = "*%-([{}"
421 #ifdef LEX_AT
422 "@"
423 #endif
424 #ifdef LEX_QM
425 "?"
426 #endif
427 ;
428
429 #if (defined (TE_I386AIX) \
430 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
431 && !defined (TE_GNU) \
432 && !defined (TE_LINUX) \
433 && !defined (TE_NACL) \
434 && !defined (TE_NETWARE) \
435 && !defined (TE_FreeBSD) \
436 && !defined (TE_DragonFly) \
437 && !defined (TE_NetBSD)))
438 /* This array holds the chars that always start a comment. If the
439 pre-processor is disabled, these aren't very useful. The option
440 --divide will remove '/' from this list. */
441 const char *i386_comment_chars = "#/";
442 #define SVR4_COMMENT_CHARS 1
443 #define PREFIX_SEPARATOR '\\'
444
445 #else
446 const char *i386_comment_chars = "#";
447 #define PREFIX_SEPARATOR '/'
448 #endif
449
450 /* This array holds the chars that only start a comment at the beginning of
451 a line. If the line seems to have the form '# 123 filename'
452 .line and .file directives will appear in the pre-processed output.
453 Note that input_file.c hand checks for '#' at the beginning of the
454 first line of the input file. This is because the compiler outputs
455 #NO_APP at the beginning of its output.
456 Also note that comments started like this one will always work if
457 '/' isn't otherwise defined. */
458 const char line_comment_chars[] = "#/";
459
460 const char line_separator_chars[] = ";";
461
462 /* Chars that can be used to separate mant from exp in floating point
463 nums. */
464 const char EXP_CHARS[] = "eE";
465
466 /* Chars that mean this number is a floating point constant
467 As in 0f12.456
468 or 0d1.2345e12. */
469 const char FLT_CHARS[] = "fFdDxX";
470
471 /* Tables for lexical analysis. */
472 static char mnemonic_chars[256];
473 static char register_chars[256];
474 static char operand_chars[256];
475 static char identifier_chars[256];
476 static char digit_chars[256];
477
478 /* Lexical macros. */
479 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
480 #define is_operand_char(x) (operand_chars[(unsigned char) x])
481 #define is_register_char(x) (register_chars[(unsigned char) x])
482 #define is_space_char(x) ((x) == ' ')
483 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
484 #define is_digit_char(x) (digit_chars[(unsigned char) x])
485
486 /* All non-digit non-letter characters that may occur in an operand. */
487 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
488
489 /* md_assemble() always leaves the strings it's passed unaltered. To
490 effect this we maintain a stack of saved characters that we've smashed
491 with '\0's (indicating end of strings for various sub-fields of the
492 assembler instruction). */
493 static char save_stack[32];
494 static char *save_stack_p;
495 #define END_STRING_AND_SAVE(s) \
496 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
497 #define RESTORE_END_STRING(s) \
498 do { *(s) = *--save_stack_p; } while (0)
499
500 /* The instruction we're assembling. */
501 static i386_insn i;
502
503 /* Possible templates for current insn. */
504 static const templates *current_templates;
505
506 /* Per instruction expressionS buffers: max displacements & immediates. */
507 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
508 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
509
510 /* Current operand we are working on. */
511 static int this_operand = -1;
512
513 /* We support four different modes. FLAG_CODE variable is used to distinguish
514 these. */
515
516 enum flag_code {
517 CODE_32BIT,
518 CODE_16BIT,
519 CODE_64BIT };
520
521 static enum flag_code flag_code;
522 static unsigned int object_64bit;
523 static unsigned int disallow_64bit_reloc;
524 static int use_rela_relocations = 0;
525
526 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
527 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
528 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
529
530 /* The ELF ABI to use. */
531 enum x86_elf_abi
532 {
533 I386_ABI,
534 X86_64_ABI,
535 X86_64_X32_ABI
536 };
537
538 static enum x86_elf_abi x86_elf_abi = I386_ABI;
539 #endif
540
541 #if defined (TE_PE) || defined (TE_PEP)
542 /* Use big object file format. */
543 static int use_big_obj = 0;
544 #endif
545
546 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
547 /* 1 if generating code for a shared library. */
548 static int shared = 0;
549 #endif
550
551 /* 1 for intel syntax,
552 0 if att syntax. */
553 static int intel_syntax = 0;
554
555 /* 1 for Intel64 ISA,
556 0 if AMD64 ISA. */
557 static int intel64;
558
559 /* 1 for intel mnemonic,
560 0 if att mnemonic. */
561 static int intel_mnemonic = !SYSV386_COMPAT;
562
563 /* 1 if support old (<= 2.8.1) versions of gcc. */
564 static int old_gcc = OLDGCC_COMPAT;
565
566 /* 1 if pseudo registers are permitted. */
567 static int allow_pseudo_reg = 0;
568
569 /* 1 if register prefix % not required. */
570 static int allow_naked_reg = 0;
571
572 /* 1 if the assembler should add BND prefix for all control-transferring
573 instructions supporting it, even if this prefix wasn't specified
574 explicitly. */
575 static int add_bnd_prefix = 0;
576
577 /* 1 if pseudo index register, eiz/riz, is allowed . */
578 static int allow_index_reg = 0;
579
580 /* 1 if the assembler should ignore LOCK prefix, even if it was
581 specified explicitly. */
582 static int omit_lock_prefix = 0;
583
584 /* 1 if the assembler should encode lfence, mfence, and sfence as
585 "lock addl $0, (%{re}sp)". */
586 static int avoid_fence = 0;
587
588 /* 1 if the assembler should generate relax relocations. */
589
590 static int generate_relax_relocations
591 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
592
593 static enum check_kind
594 {
595 check_none = 0,
596 check_warning,
597 check_error
598 }
599 sse_check, operand_check = check_warning;
600
601 /* Register prefix used for error message. */
602 static const char *register_prefix = "%";
603
604 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
605 leave, push, and pop instructions so that gcc has the same stack
606 frame as in 32 bit mode. */
607 static char stackop_size = '\0';
608
609 /* Non-zero to optimize code alignment. */
610 int optimize_align_code = 1;
611
612 /* Non-zero to quieten some warnings. */
613 static int quiet_warnings = 0;
614
615 /* CPU name. */
616 static const char *cpu_arch_name = NULL;
617 static char *cpu_sub_arch_name = NULL;
618
619 /* CPU feature flags. */
620 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
621
622 /* If we have selected a cpu we are generating instructions for. */
623 static int cpu_arch_tune_set = 0;
624
625 /* Cpu we are generating instructions for. */
626 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
627
628 /* CPU feature flags of cpu we are generating instructions for. */
629 static i386_cpu_flags cpu_arch_tune_flags;
630
631 /* CPU instruction set architecture used. */
632 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
633
634 /* CPU feature flags of instruction set architecture used. */
635 i386_cpu_flags cpu_arch_isa_flags;
636
637 /* If set, conditional jumps are not automatically promoted to handle
638 larger than a byte offset. */
639 static unsigned int no_cond_jump_promotion = 0;
640
641 /* Encode SSE instructions with VEX prefix. */
642 static unsigned int sse2avx;
643
644 /* Encode scalar AVX instructions with specific vector length. */
645 static enum
646 {
647 vex128 = 0,
648 vex256
649 } avxscalar;
650
651 /* Encode scalar EVEX LIG instructions with specific vector length. */
652 static enum
653 {
654 evexl128 = 0,
655 evexl256,
656 evexl512
657 } evexlig;
658
659 /* Encode EVEX WIG instructions with specific evex.w. */
660 static enum
661 {
662 evexw0 = 0,
663 evexw1
664 } evexwig;
665
666 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
667 static enum rc_type evexrcig = rne;
668
669 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
670 static symbolS *GOT_symbol;
671
672 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
673 unsigned int x86_dwarf2_return_column;
674
675 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
676 int x86_cie_data_alignment;
677
678 /* Interface to relax_segment.
679 There are 3 major relax states for 386 jump insns because the
680 different types of jumps add different sizes to frags when we're
681 figuring out what sort of jump to choose to reach a given label. */
682
683 /* Types. */
684 #define UNCOND_JUMP 0
685 #define COND_JUMP 1
686 #define COND_JUMP86 2
687
688 /* Sizes. */
689 #define CODE16 1
690 #define SMALL 0
691 #define SMALL16 (SMALL | CODE16)
692 #define BIG 2
693 #define BIG16 (BIG | CODE16)
694
695 #ifndef INLINE
696 #ifdef __GNUC__
697 #define INLINE __inline__
698 #else
699 #define INLINE
700 #endif
701 #endif
702
703 #define ENCODE_RELAX_STATE(type, size) \
704 ((relax_substateT) (((type) << 2) | (size)))
705 #define TYPE_FROM_RELAX_STATE(s) \
706 ((s) >> 2)
707 #define DISP_SIZE_FROM_RELAX_STATE(s) \
708 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
709
710 /* This table is used by relax_frag to promote short jumps to long
711 ones where necessary. SMALL (short) jumps may be promoted to BIG
712 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
713 don't allow a short jump in a 32 bit code segment to be promoted to
714 a 16 bit offset jump because it's slower (requires data size
715 prefix), and doesn't work, unless the destination is in the bottom
716 64k of the code segment (The top 16 bits of eip are zeroed). */
717
718 const relax_typeS md_relax_table[] =
719 {
720 /* The fields are:
721 1) most positive reach of this state,
722 2) most negative reach of this state,
723 3) how many bytes this mode will have in the variable part of the frag
724 4) which index into the table to try if we can't fit into this one. */
725
726 /* UNCOND_JUMP states. */
727 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
728 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
729 /* dword jmp adds 4 bytes to frag:
730 0 extra opcode bytes, 4 displacement bytes. */
731 {0, 0, 4, 0},
732 /* word jmp adds 2 byte2 to frag:
733 0 extra opcode bytes, 2 displacement bytes. */
734 {0, 0, 2, 0},
735
736 /* COND_JUMP states. */
737 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
738 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
739 /* dword conditionals adds 5 bytes to frag:
740 1 extra opcode byte, 4 displacement bytes. */
741 {0, 0, 5, 0},
742 /* word conditionals add 3 bytes to frag:
743 1 extra opcode byte, 2 displacement bytes. */
744 {0, 0, 3, 0},
745
746 /* COND_JUMP86 states. */
747 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
748 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
749 /* dword conditionals adds 5 bytes to frag:
750 1 extra opcode byte, 4 displacement bytes. */
751 {0, 0, 5, 0},
752 /* word conditionals add 4 bytes to frag:
753 1 displacement byte and a 3 byte long branch insn. */
754 {0, 0, 4, 0}
755 };
756
757 static const arch_entry cpu_arch[] =
758 {
759 /* Do not replace the first two entries - i386_target_format()
760 relies on them being there in this order. */
761 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
762 CPU_GENERIC32_FLAGS, 0 },
763 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
764 CPU_GENERIC64_FLAGS, 0 },
765 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
766 CPU_NONE_FLAGS, 0 },
767 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
768 CPU_I186_FLAGS, 0 },
769 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
770 CPU_I286_FLAGS, 0 },
771 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
772 CPU_I386_FLAGS, 0 },
773 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
774 CPU_I486_FLAGS, 0 },
775 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
776 CPU_I586_FLAGS, 0 },
777 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
778 CPU_I686_FLAGS, 0 },
779 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
780 CPU_I586_FLAGS, 0 },
781 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
782 CPU_PENTIUMPRO_FLAGS, 0 },
783 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
784 CPU_P2_FLAGS, 0 },
785 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
786 CPU_P3_FLAGS, 0 },
787 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
788 CPU_P4_FLAGS, 0 },
789 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
790 CPU_CORE_FLAGS, 0 },
791 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
792 CPU_NOCONA_FLAGS, 0 },
793 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
794 CPU_CORE_FLAGS, 1 },
795 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
796 CPU_CORE_FLAGS, 0 },
797 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
798 CPU_CORE2_FLAGS, 1 },
799 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
800 CPU_CORE2_FLAGS, 0 },
801 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
802 CPU_COREI7_FLAGS, 0 },
803 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
804 CPU_L1OM_FLAGS, 0 },
805 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
806 CPU_K1OM_FLAGS, 0 },
807 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
808 CPU_IAMCU_FLAGS, 0 },
809 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
810 CPU_K6_FLAGS, 0 },
811 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
812 CPU_K6_2_FLAGS, 0 },
813 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
814 CPU_ATHLON_FLAGS, 0 },
815 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
816 CPU_K8_FLAGS, 1 },
817 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
818 CPU_K8_FLAGS, 0 },
819 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
820 CPU_K8_FLAGS, 0 },
821 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
822 CPU_AMDFAM10_FLAGS, 0 },
823 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
824 CPU_BDVER1_FLAGS, 0 },
825 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
826 CPU_BDVER2_FLAGS, 0 },
827 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
828 CPU_BDVER3_FLAGS, 0 },
829 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
830 CPU_BDVER4_FLAGS, 0 },
831 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
832 CPU_ZNVER1_FLAGS, 0 },
833 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
834 CPU_BTVER1_FLAGS, 0 },
835 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
836 CPU_BTVER2_FLAGS, 0 },
837 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
838 CPU_8087_FLAGS, 0 },
839 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
840 CPU_287_FLAGS, 0 },
841 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
842 CPU_387_FLAGS, 0 },
843 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
844 CPU_687_FLAGS, 0 },
845 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
846 CPU_MMX_FLAGS, 0 },
847 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
848 CPU_SSE_FLAGS, 0 },
849 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
850 CPU_SSE2_FLAGS, 0 },
851 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
852 CPU_SSE3_FLAGS, 0 },
853 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
854 CPU_SSSE3_FLAGS, 0 },
855 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
856 CPU_SSE4_1_FLAGS, 0 },
857 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
858 CPU_SSE4_2_FLAGS, 0 },
859 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
860 CPU_SSE4_2_FLAGS, 0 },
861 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
862 CPU_AVX_FLAGS, 0 },
863 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
864 CPU_AVX2_FLAGS, 0 },
865 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
866 CPU_AVX512F_FLAGS, 0 },
867 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
868 CPU_AVX512CD_FLAGS, 0 },
869 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
870 CPU_AVX512ER_FLAGS, 0 },
871 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
872 CPU_AVX512PF_FLAGS, 0 },
873 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
874 CPU_AVX512DQ_FLAGS, 0 },
875 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
876 CPU_AVX512BW_FLAGS, 0 },
877 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
878 CPU_AVX512VL_FLAGS, 0 },
879 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
880 CPU_VMX_FLAGS, 0 },
881 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
882 CPU_VMFUNC_FLAGS, 0 },
883 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
884 CPU_SMX_FLAGS, 0 },
885 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
886 CPU_XSAVE_FLAGS, 0 },
887 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
888 CPU_XSAVEOPT_FLAGS, 0 },
889 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
890 CPU_XSAVEC_FLAGS, 0 },
891 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
892 CPU_XSAVES_FLAGS, 0 },
893 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
894 CPU_AES_FLAGS, 0 },
895 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
896 CPU_PCLMUL_FLAGS, 0 },
897 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
898 CPU_PCLMUL_FLAGS, 1 },
899 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
900 CPU_FSGSBASE_FLAGS, 0 },
901 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
902 CPU_RDRND_FLAGS, 0 },
903 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
904 CPU_F16C_FLAGS, 0 },
905 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
906 CPU_BMI2_FLAGS, 0 },
907 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
908 CPU_FMA_FLAGS, 0 },
909 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
910 CPU_FMA4_FLAGS, 0 },
911 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
912 CPU_XOP_FLAGS, 0 },
913 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
914 CPU_LWP_FLAGS, 0 },
915 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
916 CPU_MOVBE_FLAGS, 0 },
917 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
918 CPU_CX16_FLAGS, 0 },
919 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
920 CPU_EPT_FLAGS, 0 },
921 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
922 CPU_LZCNT_FLAGS, 0 },
923 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
924 CPU_HLE_FLAGS, 0 },
925 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
926 CPU_RTM_FLAGS, 0 },
927 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
928 CPU_INVPCID_FLAGS, 0 },
929 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
930 CPU_CLFLUSH_FLAGS, 0 },
931 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
932 CPU_NOP_FLAGS, 0 },
933 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
934 CPU_SYSCALL_FLAGS, 0 },
935 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
936 CPU_RDTSCP_FLAGS, 0 },
937 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
938 CPU_3DNOW_FLAGS, 0 },
939 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
940 CPU_3DNOWA_FLAGS, 0 },
941 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
942 CPU_PADLOCK_FLAGS, 0 },
943 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
944 CPU_SVME_FLAGS, 1 },
945 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
946 CPU_SVME_FLAGS, 0 },
947 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
948 CPU_SSE4A_FLAGS, 0 },
949 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
950 CPU_ABM_FLAGS, 0 },
951 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
952 CPU_BMI_FLAGS, 0 },
953 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
954 CPU_TBM_FLAGS, 0 },
955 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
956 CPU_ADX_FLAGS, 0 },
957 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
958 CPU_RDSEED_FLAGS, 0 },
959 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
960 CPU_PRFCHW_FLAGS, 0 },
961 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
962 CPU_SMAP_FLAGS, 0 },
963 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
964 CPU_MPX_FLAGS, 0 },
965 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
966 CPU_SHA_FLAGS, 0 },
967 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
968 CPU_CLFLUSHOPT_FLAGS, 0 },
969 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
970 CPU_PREFETCHWT1_FLAGS, 0 },
971 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
972 CPU_SE1_FLAGS, 0 },
973 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
974 CPU_CLWB_FLAGS, 0 },
975 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
976 CPU_AVX512IFMA_FLAGS, 0 },
977 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
978 CPU_AVX512VBMI_FLAGS, 0 },
979 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
980 CPU_AVX512_4FMAPS_FLAGS, 0 },
981 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
982 CPU_AVX512_4VNNIW_FLAGS, 0 },
983 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
984 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
985 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
986 CPU_AVX512_VBMI2_FLAGS, 0 },
987 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
988 CPU_AVX512_VNNI_FLAGS, 0 },
989 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
990 CPU_CLZERO_FLAGS, 0 },
991 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
992 CPU_MWAITX_FLAGS, 0 },
993 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
994 CPU_OSPKE_FLAGS, 0 },
995 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
996 CPU_RDPID_FLAGS, 0 },
997 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
998 CPU_PTWRITE_FLAGS, 0 },
999 { STRING_COMMA_LEN (".cet"), PROCESSOR_UNKNOWN,
1000 CPU_CET_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1002 CPU_GFNI_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1004 CPU_VAES_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1006 CPU_VPCLMULQDQ_FLAGS, 0 },
1007 };
1008
1009 static const noarch_entry cpu_noarch[] =
1010 {
1011 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1012 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1013 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1014 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1015 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1016 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1017 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1018 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1019 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1020 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1021 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1022 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1023 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1024 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1025 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1026 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1027 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1028 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1029 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1030 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1031 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1032 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1033 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1034 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1035 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1036 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1037 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1038 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1039 };
1040
1041 #ifdef I386COFF
1042 /* Like s_lcomm_internal in gas/read.c but the alignment string
1043 is allowed to be optional. */
1044
1045 static symbolS *
1046 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1047 {
1048 addressT align = 0;
1049
1050 SKIP_WHITESPACE ();
1051
1052 if (needs_align
1053 && *input_line_pointer == ',')
1054 {
1055 align = parse_align (needs_align - 1);
1056
1057 if (align == (addressT) -1)
1058 return NULL;
1059 }
1060 else
1061 {
1062 if (size >= 8)
1063 align = 3;
1064 else if (size >= 4)
1065 align = 2;
1066 else if (size >= 2)
1067 align = 1;
1068 else
1069 align = 0;
1070 }
1071
1072 bss_alloc (symbolP, size, align);
1073 return symbolP;
1074 }
1075
1076 static void
1077 pe_lcomm (int needs_align)
1078 {
1079 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1080 }
1081 #endif
1082
1083 const pseudo_typeS md_pseudo_table[] =
1084 {
1085 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1086 {"align", s_align_bytes, 0},
1087 #else
1088 {"align", s_align_ptwo, 0},
1089 #endif
1090 {"arch", set_cpu_arch, 0},
1091 #ifndef I386COFF
1092 {"bss", s_bss, 0},
1093 #else
1094 {"lcomm", pe_lcomm, 1},
1095 #endif
1096 {"ffloat", float_cons, 'f'},
1097 {"dfloat", float_cons, 'd'},
1098 {"tfloat", float_cons, 'x'},
1099 {"value", cons, 2},
1100 {"slong", signed_cons, 4},
1101 {"noopt", s_ignore, 0},
1102 {"optim", s_ignore, 0},
1103 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1104 {"code16", set_code_flag, CODE_16BIT},
1105 {"code32", set_code_flag, CODE_32BIT},
1106 {"code64", set_code_flag, CODE_64BIT},
1107 {"intel_syntax", set_intel_syntax, 1},
1108 {"att_syntax", set_intel_syntax, 0},
1109 {"intel_mnemonic", set_intel_mnemonic, 1},
1110 {"att_mnemonic", set_intel_mnemonic, 0},
1111 {"allow_index_reg", set_allow_index_reg, 1},
1112 {"disallow_index_reg", set_allow_index_reg, 0},
1113 {"sse_check", set_check, 0},
1114 {"operand_check", set_check, 1},
1115 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1116 {"largecomm", handle_large_common, 0},
1117 #else
1118 {"file", (void (*) (int)) dwarf2_directive_file, 0},
1119 {"loc", dwarf2_directive_loc, 0},
1120 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1121 #endif
1122 #ifdef TE_PE
1123 {"secrel32", pe_directive_secrel, 0},
1124 #endif
1125 {0, 0, 0}
1126 };
1127
1128 /* For interface with expression (). */
1129 extern char *input_line_pointer;
1130
1131 /* Hash table for instruction mnemonic lookup. */
1132 static struct hash_control *op_hash;
1133
1134 /* Hash table for register lookup. */
1135 static struct hash_control *reg_hash;
1136 \f
1137 void
1138 i386_align_code (fragS *fragP, int count)
1139 {
1140 /* Various efficient no-op patterns for aligning code labels.
1141 Note: Don't try to assemble the instructions in the comments.
1142 0L and 0w are not legal. */
1143 static const unsigned char f32_1[] =
1144 {0x90}; /* nop */
1145 static const unsigned char f32_2[] =
1146 {0x66,0x90}; /* xchg %ax,%ax */
1147 static const unsigned char f32_3[] =
1148 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1149 static const unsigned char f32_4[] =
1150 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1151 static const unsigned char f32_5[] =
1152 {0x90, /* nop */
1153 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1154 static const unsigned char f32_6[] =
1155 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1156 static const unsigned char f32_7[] =
1157 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1158 static const unsigned char f32_8[] =
1159 {0x90, /* nop */
1160 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1161 static const unsigned char f32_9[] =
1162 {0x89,0xf6, /* movl %esi,%esi */
1163 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1164 static const unsigned char f32_10[] =
1165 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1166 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1167 static const unsigned char f32_11[] =
1168 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1169 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1170 static const unsigned char f32_12[] =
1171 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1172 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1173 static const unsigned char f32_13[] =
1174 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1175 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1176 static const unsigned char f32_14[] =
1177 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1178 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1179 static const unsigned char f16_3[] =
1180 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1181 static const unsigned char f16_4[] =
1182 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1183 static const unsigned char f16_5[] =
1184 {0x90, /* nop */
1185 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1186 static const unsigned char f16_6[] =
1187 {0x89,0xf6, /* mov %si,%si */
1188 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1189 static const unsigned char f16_7[] =
1190 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1191 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1192 static const unsigned char f16_8[] =
1193 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1194 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1195 static const unsigned char jump_31[] =
1196 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1197 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1198 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1199 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1200 static const unsigned char *const f32_patt[] = {
1201 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1202 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1203 };
1204 static const unsigned char *const f16_patt[] = {
1205 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1206 };
1207 /* nopl (%[re]ax) */
1208 static const unsigned char alt_3[] =
1209 {0x0f,0x1f,0x00};
1210 /* nopl 0(%[re]ax) */
1211 static const unsigned char alt_4[] =
1212 {0x0f,0x1f,0x40,0x00};
1213 /* nopl 0(%[re]ax,%[re]ax,1) */
1214 static const unsigned char alt_5[] =
1215 {0x0f,0x1f,0x44,0x00,0x00};
1216 /* nopw 0(%[re]ax,%[re]ax,1) */
1217 static const unsigned char alt_6[] =
1218 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1219 /* nopl 0L(%[re]ax) */
1220 static const unsigned char alt_7[] =
1221 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1222 /* nopl 0L(%[re]ax,%[re]ax,1) */
1223 static const unsigned char alt_8[] =
1224 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1225 /* nopw 0L(%[re]ax,%[re]ax,1) */
1226 static const unsigned char alt_9[] =
1227 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1228 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1229 static const unsigned char alt_10[] =
1230 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1231 static const unsigned char *const alt_patt[] = {
1232 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1233 alt_9, alt_10
1234 };
1235
1236 /* Only align for at least a positive non-zero boundary. */
1237 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1238 return;
1239
1240 /* We need to decide which NOP sequence to use for 32bit and
1241 64bit. When -mtune= is used:
1242
1243 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1244 PROCESSOR_GENERIC32, f32_patt will be used.
1245 2. For the rest, alt_patt will be used.
1246
1247 When -mtune= isn't used, alt_patt will be used if
1248 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1249 be used.
1250
1251 When -march= or .arch is used, we can't use anything beyond
1252 cpu_arch_isa_flags. */
1253
1254 if (flag_code == CODE_16BIT)
1255 {
1256 if (count > 8)
1257 {
1258 memcpy (fragP->fr_literal + fragP->fr_fix,
1259 jump_31, count);
1260 /* Adjust jump offset. */
1261 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1262 }
1263 else
1264 memcpy (fragP->fr_literal + fragP->fr_fix,
1265 f16_patt[count - 1], count);
1266 }
1267 else
1268 {
1269 const unsigned char *const *patt = NULL;
1270
1271 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1272 {
1273 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1274 switch (cpu_arch_tune)
1275 {
1276 case PROCESSOR_UNKNOWN:
1277 /* We use cpu_arch_isa_flags to check if we SHOULD
1278 optimize with nops. */
1279 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1280 patt = alt_patt;
1281 else
1282 patt = f32_patt;
1283 break;
1284 case PROCESSOR_PENTIUM4:
1285 case PROCESSOR_NOCONA:
1286 case PROCESSOR_CORE:
1287 case PROCESSOR_CORE2:
1288 case PROCESSOR_COREI7:
1289 case PROCESSOR_L1OM:
1290 case PROCESSOR_K1OM:
1291 case PROCESSOR_GENERIC64:
1292 case PROCESSOR_K6:
1293 case PROCESSOR_ATHLON:
1294 case PROCESSOR_K8:
1295 case PROCESSOR_AMDFAM10:
1296 case PROCESSOR_BD:
1297 case PROCESSOR_ZNVER:
1298 case PROCESSOR_BT:
1299 patt = alt_patt;
1300 break;
1301 case PROCESSOR_I386:
1302 case PROCESSOR_I486:
1303 case PROCESSOR_PENTIUM:
1304 case PROCESSOR_PENTIUMPRO:
1305 case PROCESSOR_IAMCU:
1306 case PROCESSOR_GENERIC32:
1307 patt = f32_patt;
1308 break;
1309 }
1310 }
1311 else
1312 {
1313 switch (fragP->tc_frag_data.tune)
1314 {
1315 case PROCESSOR_UNKNOWN:
1316 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1317 PROCESSOR_UNKNOWN. */
1318 abort ();
1319 break;
1320
1321 case PROCESSOR_I386:
1322 case PROCESSOR_I486:
1323 case PROCESSOR_PENTIUM:
1324 case PROCESSOR_IAMCU:
1325 case PROCESSOR_K6:
1326 case PROCESSOR_ATHLON:
1327 case PROCESSOR_K8:
1328 case PROCESSOR_AMDFAM10:
1329 case PROCESSOR_BD:
1330 case PROCESSOR_ZNVER:
1331 case PROCESSOR_BT:
1332 case PROCESSOR_GENERIC32:
1333 /* We use cpu_arch_isa_flags to check if we CAN optimize
1334 with nops. */
1335 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1336 patt = alt_patt;
1337 else
1338 patt = f32_patt;
1339 break;
1340 case PROCESSOR_PENTIUMPRO:
1341 case PROCESSOR_PENTIUM4:
1342 case PROCESSOR_NOCONA:
1343 case PROCESSOR_CORE:
1344 case PROCESSOR_CORE2:
1345 case PROCESSOR_COREI7:
1346 case PROCESSOR_L1OM:
1347 case PROCESSOR_K1OM:
1348 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1349 patt = alt_patt;
1350 else
1351 patt = f32_patt;
1352 break;
1353 case PROCESSOR_GENERIC64:
1354 patt = alt_patt;
1355 break;
1356 }
1357 }
1358
1359 if (patt == f32_patt)
1360 {
1361 /* If the padding is less than 15 bytes, we use the normal
1362 ones. Otherwise, we use a jump instruction and adjust
1363 its offset. */
1364 int limit;
1365
1366 /* For 64bit, the limit is 3 bytes. */
1367 if (flag_code == CODE_64BIT
1368 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1369 limit = 3;
1370 else
1371 limit = 15;
1372 if (count < limit)
1373 memcpy (fragP->fr_literal + fragP->fr_fix,
1374 patt[count - 1], count);
1375 else
1376 {
1377 memcpy (fragP->fr_literal + fragP->fr_fix,
1378 jump_31, count);
1379 /* Adjust jump offset. */
1380 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1381 }
1382 }
1383 else
1384 {
1385 /* Maximum length of an instruction is 10 byte. If the
1386 padding is greater than 10 bytes and we don't use jump,
1387 we have to break it into smaller pieces. */
1388 int padding = count;
1389 while (padding > 10)
1390 {
1391 padding -= 10;
1392 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1393 patt [9], 10);
1394 }
1395
1396 if (padding)
1397 memcpy (fragP->fr_literal + fragP->fr_fix,
1398 patt [padding - 1], padding);
1399 }
1400 }
1401 fragP->fr_var = count;
1402 }
1403
1404 static INLINE int
1405 operand_type_all_zero (const union i386_operand_type *x)
1406 {
1407 switch (ARRAY_SIZE(x->array))
1408 {
1409 case 3:
1410 if (x->array[2])
1411 return 0;
1412 /* Fall through. */
1413 case 2:
1414 if (x->array[1])
1415 return 0;
1416 /* Fall through. */
1417 case 1:
1418 return !x->array[0];
1419 default:
1420 abort ();
1421 }
1422 }
1423
1424 static INLINE void
1425 operand_type_set (union i386_operand_type *x, unsigned int v)
1426 {
1427 switch (ARRAY_SIZE(x->array))
1428 {
1429 case 3:
1430 x->array[2] = v;
1431 /* Fall through. */
1432 case 2:
1433 x->array[1] = v;
1434 /* Fall through. */
1435 case 1:
1436 x->array[0] = v;
1437 /* Fall through. */
1438 break;
1439 default:
1440 abort ();
1441 }
1442 }
1443
1444 static INLINE int
1445 operand_type_equal (const union i386_operand_type *x,
1446 const union i386_operand_type *y)
1447 {
1448 switch (ARRAY_SIZE(x->array))
1449 {
1450 case 3:
1451 if (x->array[2] != y->array[2])
1452 return 0;
1453 /* Fall through. */
1454 case 2:
1455 if (x->array[1] != y->array[1])
1456 return 0;
1457 /* Fall through. */
1458 case 1:
1459 return x->array[0] == y->array[0];
1460 break;
1461 default:
1462 abort ();
1463 }
1464 }
1465
1466 static INLINE int
1467 cpu_flags_all_zero (const union i386_cpu_flags *x)
1468 {
1469 switch (ARRAY_SIZE(x->array))
1470 {
1471 case 4:
1472 if (x->array[3])
1473 return 0;
1474 /* Fall through. */
1475 case 3:
1476 if (x->array[2])
1477 return 0;
1478 /* Fall through. */
1479 case 2:
1480 if (x->array[1])
1481 return 0;
1482 /* Fall through. */
1483 case 1:
1484 return !x->array[0];
1485 default:
1486 abort ();
1487 }
1488 }
1489
1490 static INLINE int
1491 cpu_flags_equal (const union i386_cpu_flags *x,
1492 const union i386_cpu_flags *y)
1493 {
1494 switch (ARRAY_SIZE(x->array))
1495 {
1496 case 4:
1497 if (x->array[3] != y->array[3])
1498 return 0;
1499 /* Fall through. */
1500 case 3:
1501 if (x->array[2] != y->array[2])
1502 return 0;
1503 /* Fall through. */
1504 case 2:
1505 if (x->array[1] != y->array[1])
1506 return 0;
1507 /* Fall through. */
1508 case 1:
1509 return x->array[0] == y->array[0];
1510 break;
1511 default:
1512 abort ();
1513 }
1514 }
1515
1516 static INLINE int
1517 cpu_flags_check_cpu64 (i386_cpu_flags f)
1518 {
1519 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1520 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1521 }
1522
1523 static INLINE i386_cpu_flags
1524 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1525 {
1526 switch (ARRAY_SIZE (x.array))
1527 {
1528 case 4:
1529 x.array [3] &= y.array [3];
1530 /* Fall through. */
1531 case 3:
1532 x.array [2] &= y.array [2];
1533 /* Fall through. */
1534 case 2:
1535 x.array [1] &= y.array [1];
1536 /* Fall through. */
1537 case 1:
1538 x.array [0] &= y.array [0];
1539 break;
1540 default:
1541 abort ();
1542 }
1543 return x;
1544 }
1545
1546 static INLINE i386_cpu_flags
1547 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1548 {
1549 switch (ARRAY_SIZE (x.array))
1550 {
1551 case 4:
1552 x.array [3] |= y.array [3];
1553 /* Fall through. */
1554 case 3:
1555 x.array [2] |= y.array [2];
1556 /* Fall through. */
1557 case 2:
1558 x.array [1] |= y.array [1];
1559 /* Fall through. */
1560 case 1:
1561 x.array [0] |= y.array [0];
1562 break;
1563 default:
1564 abort ();
1565 }
1566 return x;
1567 }
1568
1569 static INLINE i386_cpu_flags
1570 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1571 {
1572 switch (ARRAY_SIZE (x.array))
1573 {
1574 case 4:
1575 x.array [3] &= ~y.array [3];
1576 /* Fall through. */
1577 case 3:
1578 x.array [2] &= ~y.array [2];
1579 /* Fall through. */
1580 case 2:
1581 x.array [1] &= ~y.array [1];
1582 /* Fall through. */
1583 case 1:
1584 x.array [0] &= ~y.array [0];
1585 break;
1586 default:
1587 abort ();
1588 }
1589 return x;
1590 }
1591
1592 #define CPU_FLAGS_ARCH_MATCH 0x1
1593 #define CPU_FLAGS_64BIT_MATCH 0x2
1594 #define CPU_FLAGS_AES_MATCH 0x4
1595 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1596 #define CPU_FLAGS_AVX_MATCH 0x10
1597
1598 #define CPU_FLAGS_32BIT_MATCH \
1599 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1600 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1601 #define CPU_FLAGS_PERFECT_MATCH \
1602 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1603
1604 /* Return CPU flags match bits. */
1605
1606 static int
1607 cpu_flags_match (const insn_template *t)
1608 {
1609 i386_cpu_flags x = t->cpu_flags;
1610 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1611
1612 x.bitfield.cpu64 = 0;
1613 x.bitfield.cpuno64 = 0;
1614
1615 if (cpu_flags_all_zero (&x))
1616 {
1617 /* This instruction is available on all archs. */
1618 match |= CPU_FLAGS_32BIT_MATCH;
1619 }
1620 else
1621 {
1622 /* This instruction is available only on some archs. */
1623 i386_cpu_flags cpu = cpu_arch_flags;
1624
1625 cpu = cpu_flags_and (x, cpu);
1626 if (!cpu_flags_all_zero (&cpu))
1627 {
1628 if (x.bitfield.cpuavx)
1629 {
1630 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1631 if (cpu.bitfield.cpuavx)
1632 {
1633 /* Check SSE2AVX. */
1634 if (!t->opcode_modifier.sse2avx|| sse2avx)
1635 {
1636 match |= (CPU_FLAGS_ARCH_MATCH
1637 | CPU_FLAGS_AVX_MATCH);
1638 /* Check AES. */
1639 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1640 match |= CPU_FLAGS_AES_MATCH;
1641 /* Check PCLMUL. */
1642 if (!x.bitfield.cpupclmul
1643 || cpu.bitfield.cpupclmul)
1644 match |= CPU_FLAGS_PCLMUL_MATCH;
1645 }
1646 }
1647 else
1648 match |= CPU_FLAGS_ARCH_MATCH;
1649 }
1650 else if (x.bitfield.cpuavx512vl)
1651 {
1652 /* Match AVX512VL. */
1653 if (cpu.bitfield.cpuavx512vl)
1654 {
1655 /* Need another match. */
1656 cpu.bitfield.cpuavx512vl = 0;
1657 if (!cpu_flags_all_zero (&cpu))
1658 match |= CPU_FLAGS_32BIT_MATCH;
1659 else
1660 match |= CPU_FLAGS_ARCH_MATCH;
1661 }
1662 else
1663 match |= CPU_FLAGS_ARCH_MATCH;
1664 }
1665 else
1666 match |= CPU_FLAGS_32BIT_MATCH;
1667 }
1668 }
1669 return match;
1670 }
1671
1672 static INLINE i386_operand_type
1673 operand_type_and (i386_operand_type x, i386_operand_type y)
1674 {
1675 switch (ARRAY_SIZE (x.array))
1676 {
1677 case 3:
1678 x.array [2] &= y.array [2];
1679 /* Fall through. */
1680 case 2:
1681 x.array [1] &= y.array [1];
1682 /* Fall through. */
1683 case 1:
1684 x.array [0] &= y.array [0];
1685 break;
1686 default:
1687 abort ();
1688 }
1689 return x;
1690 }
1691
1692 static INLINE i386_operand_type
1693 operand_type_or (i386_operand_type x, i386_operand_type y)
1694 {
1695 switch (ARRAY_SIZE (x.array))
1696 {
1697 case 3:
1698 x.array [2] |= y.array [2];
1699 /* Fall through. */
1700 case 2:
1701 x.array [1] |= y.array [1];
1702 /* Fall through. */
1703 case 1:
1704 x.array [0] |= y.array [0];
1705 break;
1706 default:
1707 abort ();
1708 }
1709 return x;
1710 }
1711
1712 static INLINE i386_operand_type
1713 operand_type_xor (i386_operand_type x, i386_operand_type y)
1714 {
1715 switch (ARRAY_SIZE (x.array))
1716 {
1717 case 3:
1718 x.array [2] ^= y.array [2];
1719 /* Fall through. */
1720 case 2:
1721 x.array [1] ^= y.array [1];
1722 /* Fall through. */
1723 case 1:
1724 x.array [0] ^= y.array [0];
1725 break;
1726 default:
1727 abort ();
1728 }
1729 return x;
1730 }
1731
1732 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1733 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1734 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1735 static const i386_operand_type inoutportreg
1736 = OPERAND_TYPE_INOUTPORTREG;
1737 static const i386_operand_type reg16_inoutportreg
1738 = OPERAND_TYPE_REG16_INOUTPORTREG;
1739 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1740 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1741 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1742 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1743 static const i386_operand_type anydisp
1744 = OPERAND_TYPE_ANYDISP;
1745 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1746 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1747 static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1748 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1749 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1750 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1751 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1752 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1753 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1754 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1755 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1756 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1757 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1758 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1759
1760 enum operand_type
1761 {
1762 reg,
1763 imm,
1764 disp,
1765 anymem
1766 };
1767
1768 static INLINE int
1769 operand_type_check (i386_operand_type t, enum operand_type c)
1770 {
1771 switch (c)
1772 {
1773 case reg:
1774 return (t.bitfield.reg8
1775 || t.bitfield.reg16
1776 || t.bitfield.reg32
1777 || t.bitfield.reg64);
1778
1779 case imm:
1780 return (t.bitfield.imm8
1781 || t.bitfield.imm8s
1782 || t.bitfield.imm16
1783 || t.bitfield.imm32
1784 || t.bitfield.imm32s
1785 || t.bitfield.imm64);
1786
1787 case disp:
1788 return (t.bitfield.disp8
1789 || t.bitfield.disp16
1790 || t.bitfield.disp32
1791 || t.bitfield.disp32s
1792 || t.bitfield.disp64);
1793
1794 case anymem:
1795 return (t.bitfield.disp8
1796 || t.bitfield.disp16
1797 || t.bitfield.disp32
1798 || t.bitfield.disp32s
1799 || t.bitfield.disp64
1800 || t.bitfield.baseindex);
1801
1802 default:
1803 abort ();
1804 }
1805
1806 return 0;
1807 }
1808
1809 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1810 operand J for instruction template T. */
1811
1812 static INLINE int
1813 match_reg_size (const insn_template *t, unsigned int j)
1814 {
1815 return !((i.types[j].bitfield.byte
1816 && !t->operand_types[j].bitfield.byte)
1817 || (i.types[j].bitfield.word
1818 && !t->operand_types[j].bitfield.word)
1819 || (i.types[j].bitfield.dword
1820 && !t->operand_types[j].bitfield.dword)
1821 || (i.types[j].bitfield.qword
1822 && !t->operand_types[j].bitfield.qword));
1823 }
1824
1825 /* Return 1 if there is no conflict in any size on operand J for
1826 instruction template T. */
1827
1828 static INLINE int
1829 match_mem_size (const insn_template *t, unsigned int j)
1830 {
1831 return (match_reg_size (t, j)
1832 && !((i.types[j].bitfield.unspecified
1833 && !i.broadcast
1834 && !t->operand_types[j].bitfield.unspecified)
1835 || (i.types[j].bitfield.fword
1836 && !t->operand_types[j].bitfield.fword)
1837 || (i.types[j].bitfield.tbyte
1838 && !t->operand_types[j].bitfield.tbyte)
1839 || (i.types[j].bitfield.xmmword
1840 && !t->operand_types[j].bitfield.xmmword)
1841 || (i.types[j].bitfield.ymmword
1842 && !t->operand_types[j].bitfield.ymmword)
1843 || (i.types[j].bitfield.zmmword
1844 && !t->operand_types[j].bitfield.zmmword)));
1845 }
1846
1847 /* Return 1 if there is no size conflict on any operands for
1848 instruction template T. */
1849
1850 static INLINE int
1851 operand_size_match (const insn_template *t)
1852 {
1853 unsigned int j;
1854 int match = 1;
1855
1856 /* Don't check jump instructions. */
1857 if (t->opcode_modifier.jump
1858 || t->opcode_modifier.jumpbyte
1859 || t->opcode_modifier.jumpdword
1860 || t->opcode_modifier.jumpintersegment)
1861 return match;
1862
1863 /* Check memory and accumulator operand size. */
1864 for (j = 0; j < i.operands; j++)
1865 {
1866 if (t->operand_types[j].bitfield.anysize)
1867 continue;
1868
1869 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1870 {
1871 match = 0;
1872 break;
1873 }
1874
1875 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1876 {
1877 match = 0;
1878 break;
1879 }
1880 }
1881
1882 if (match)
1883 return match;
1884 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1885 {
1886 mismatch:
1887 i.error = operand_size_mismatch;
1888 return 0;
1889 }
1890
1891 /* Check reverse. */
1892 gas_assert (i.operands == 2);
1893
1894 match = 1;
1895 for (j = 0; j < 2; j++)
1896 {
1897 if (t->operand_types[j].bitfield.acc
1898 && !match_reg_size (t, j ? 0 : 1))
1899 goto mismatch;
1900
1901 if (i.types[j].bitfield.mem
1902 && !match_mem_size (t, j ? 0 : 1))
1903 goto mismatch;
1904 }
1905
1906 return match;
1907 }
1908
1909 static INLINE int
1910 operand_type_match (i386_operand_type overlap,
1911 i386_operand_type given)
1912 {
1913 i386_operand_type temp = overlap;
1914
1915 temp.bitfield.jumpabsolute = 0;
1916 temp.bitfield.unspecified = 0;
1917 temp.bitfield.byte = 0;
1918 temp.bitfield.word = 0;
1919 temp.bitfield.dword = 0;
1920 temp.bitfield.fword = 0;
1921 temp.bitfield.qword = 0;
1922 temp.bitfield.tbyte = 0;
1923 temp.bitfield.xmmword = 0;
1924 temp.bitfield.ymmword = 0;
1925 temp.bitfield.zmmword = 0;
1926 if (operand_type_all_zero (&temp))
1927 goto mismatch;
1928
1929 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1930 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1931 return 1;
1932
1933 mismatch:
1934 i.error = operand_type_mismatch;
1935 return 0;
1936 }
1937
1938 /* If given types g0 and g1 are registers they must be of the same type
1939 unless the expected operand type register overlap is null.
1940 Note that Acc in a template matches every size of reg. */
1941
1942 static INLINE int
1943 operand_type_register_match (i386_operand_type m0,
1944 i386_operand_type g0,
1945 i386_operand_type t0,
1946 i386_operand_type m1,
1947 i386_operand_type g1,
1948 i386_operand_type t1)
1949 {
1950 if (!operand_type_check (g0, reg))
1951 return 1;
1952
1953 if (!operand_type_check (g1, reg))
1954 return 1;
1955
1956 if (g0.bitfield.reg8 == g1.bitfield.reg8
1957 && g0.bitfield.reg16 == g1.bitfield.reg16
1958 && g0.bitfield.reg32 == g1.bitfield.reg32
1959 && g0.bitfield.reg64 == g1.bitfield.reg64)
1960 return 1;
1961
1962 if (m0.bitfield.acc)
1963 {
1964 t0.bitfield.reg8 = 1;
1965 t0.bitfield.reg16 = 1;
1966 t0.bitfield.reg32 = 1;
1967 t0.bitfield.reg64 = 1;
1968 }
1969
1970 if (m1.bitfield.acc)
1971 {
1972 t1.bitfield.reg8 = 1;
1973 t1.bitfield.reg16 = 1;
1974 t1.bitfield.reg32 = 1;
1975 t1.bitfield.reg64 = 1;
1976 }
1977
1978 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1979 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1980 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1981 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1982 return 1;
1983
1984 i.error = register_type_mismatch;
1985
1986 return 0;
1987 }
1988
1989 static INLINE unsigned int
1990 register_number (const reg_entry *r)
1991 {
1992 unsigned int nr = r->reg_num;
1993
1994 if (r->reg_flags & RegRex)
1995 nr += 8;
1996
1997 if (r->reg_flags & RegVRex)
1998 nr += 16;
1999
2000 return nr;
2001 }
2002
2003 static INLINE unsigned int
2004 mode_from_disp_size (i386_operand_type t)
2005 {
2006 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
2007 return 1;
2008 else if (t.bitfield.disp16
2009 || t.bitfield.disp32
2010 || t.bitfield.disp32s)
2011 return 2;
2012 else
2013 return 0;
2014 }
2015
2016 static INLINE int
2017 fits_in_signed_byte (addressT num)
2018 {
2019 return num + 0x80 <= 0xff;
2020 }
2021
2022 static INLINE int
2023 fits_in_unsigned_byte (addressT num)
2024 {
2025 return num <= 0xff;
2026 }
2027
2028 static INLINE int
2029 fits_in_unsigned_word (addressT num)
2030 {
2031 return num <= 0xffff;
2032 }
2033
2034 static INLINE int
2035 fits_in_signed_word (addressT num)
2036 {
2037 return num + 0x8000 <= 0xffff;
2038 }
2039
2040 static INLINE int
2041 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2042 {
2043 #ifndef BFD64
2044 return 1;
2045 #else
2046 return num + 0x80000000 <= 0xffffffff;
2047 #endif
2048 } /* fits_in_signed_long() */
2049
2050 static INLINE int
2051 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2052 {
2053 #ifndef BFD64
2054 return 1;
2055 #else
2056 return num <= 0xffffffff;
2057 #endif
2058 } /* fits_in_unsigned_long() */
2059
2060 static INLINE int
2061 fits_in_vec_disp8 (offsetT num)
2062 {
2063 int shift = i.memshift;
2064 unsigned int mask;
2065
2066 if (shift == -1)
2067 abort ();
2068
2069 mask = (1 << shift) - 1;
2070
2071 /* Return 0 if NUM isn't properly aligned. */
2072 if ((num & mask))
2073 return 0;
2074
2075 /* Check if NUM will fit in 8bit after shift. */
2076 return fits_in_signed_byte (num >> shift);
2077 }
2078
2079 static INLINE int
2080 fits_in_imm4 (offsetT num)
2081 {
2082 return (num & 0xf) == num;
2083 }
2084
2085 static i386_operand_type
2086 smallest_imm_type (offsetT num)
2087 {
2088 i386_operand_type t;
2089
2090 operand_type_set (&t, 0);
2091 t.bitfield.imm64 = 1;
2092
2093 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2094 {
2095 /* This code is disabled on the 486 because all the Imm1 forms
2096 in the opcode table are slower on the i486. They're the
2097 versions with the implicitly specified single-position
2098 displacement, which has another syntax if you really want to
2099 use that form. */
2100 t.bitfield.imm1 = 1;
2101 t.bitfield.imm8 = 1;
2102 t.bitfield.imm8s = 1;
2103 t.bitfield.imm16 = 1;
2104 t.bitfield.imm32 = 1;
2105 t.bitfield.imm32s = 1;
2106 }
2107 else if (fits_in_signed_byte (num))
2108 {
2109 t.bitfield.imm8 = 1;
2110 t.bitfield.imm8s = 1;
2111 t.bitfield.imm16 = 1;
2112 t.bitfield.imm32 = 1;
2113 t.bitfield.imm32s = 1;
2114 }
2115 else if (fits_in_unsigned_byte (num))
2116 {
2117 t.bitfield.imm8 = 1;
2118 t.bitfield.imm16 = 1;
2119 t.bitfield.imm32 = 1;
2120 t.bitfield.imm32s = 1;
2121 }
2122 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2123 {
2124 t.bitfield.imm16 = 1;
2125 t.bitfield.imm32 = 1;
2126 t.bitfield.imm32s = 1;
2127 }
2128 else if (fits_in_signed_long (num))
2129 {
2130 t.bitfield.imm32 = 1;
2131 t.bitfield.imm32s = 1;
2132 }
2133 else if (fits_in_unsigned_long (num))
2134 t.bitfield.imm32 = 1;
2135
2136 return t;
2137 }
2138
2139 static offsetT
2140 offset_in_range (offsetT val, int size)
2141 {
2142 addressT mask;
2143
2144 switch (size)
2145 {
2146 case 1: mask = ((addressT) 1 << 8) - 1; break;
2147 case 2: mask = ((addressT) 1 << 16) - 1; break;
2148 case 4: mask = ((addressT) 2 << 31) - 1; break;
2149 #ifdef BFD64
2150 case 8: mask = ((addressT) 2 << 63) - 1; break;
2151 #endif
2152 default: abort ();
2153 }
2154
2155 #ifdef BFD64
2156 /* If BFD64, sign extend val for 32bit address mode. */
2157 if (flag_code != CODE_64BIT
2158 || i.prefix[ADDR_PREFIX])
2159 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2160 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2161 #endif
2162
2163 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2164 {
2165 char buf1[40], buf2[40];
2166
2167 sprint_value (buf1, val);
2168 sprint_value (buf2, val & mask);
2169 as_warn (_("%s shortened to %s"), buf1, buf2);
2170 }
2171 return val & mask;
2172 }
2173
2174 enum PREFIX_GROUP
2175 {
2176 PREFIX_EXIST = 0,
2177 PREFIX_LOCK,
2178 PREFIX_REP,
2179 PREFIX_DS,
2180 PREFIX_OTHER
2181 };
2182
2183 /* Returns
2184 a. PREFIX_EXIST if attempting to add a prefix where one from the
2185 same class already exists.
2186 b. PREFIX_LOCK if lock prefix is added.
2187 c. PREFIX_REP if rep/repne prefix is added.
2188 d. PREFIX_DS if ds prefix is added.
2189 e. PREFIX_OTHER if other prefix is added.
2190 */
2191
2192 static enum PREFIX_GROUP
2193 add_prefix (unsigned int prefix)
2194 {
2195 enum PREFIX_GROUP ret = PREFIX_OTHER;
2196 unsigned int q;
2197
2198 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2199 && flag_code == CODE_64BIT)
2200 {
2201 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2202 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2203 && (prefix & (REX_R | REX_X | REX_B))))
2204 ret = PREFIX_EXIST;
2205 q = REX_PREFIX;
2206 }
2207 else
2208 {
2209 switch (prefix)
2210 {
2211 default:
2212 abort ();
2213
2214 case DS_PREFIX_OPCODE:
2215 ret = PREFIX_DS;
2216 /* Fall through. */
2217 case CS_PREFIX_OPCODE:
2218 case ES_PREFIX_OPCODE:
2219 case FS_PREFIX_OPCODE:
2220 case GS_PREFIX_OPCODE:
2221 case SS_PREFIX_OPCODE:
2222 q = SEG_PREFIX;
2223 break;
2224
2225 case REPNE_PREFIX_OPCODE:
2226 case REPE_PREFIX_OPCODE:
2227 q = REP_PREFIX;
2228 ret = PREFIX_REP;
2229 break;
2230
2231 case LOCK_PREFIX_OPCODE:
2232 q = LOCK_PREFIX;
2233 ret = PREFIX_LOCK;
2234 break;
2235
2236 case FWAIT_OPCODE:
2237 q = WAIT_PREFIX;
2238 break;
2239
2240 case ADDR_PREFIX_OPCODE:
2241 q = ADDR_PREFIX;
2242 break;
2243
2244 case DATA_PREFIX_OPCODE:
2245 q = DATA_PREFIX;
2246 break;
2247 }
2248 if (i.prefix[q] != 0)
2249 ret = PREFIX_EXIST;
2250 }
2251
2252 if (ret)
2253 {
2254 if (!i.prefix[q])
2255 ++i.prefixes;
2256 i.prefix[q] |= prefix;
2257 }
2258 else
2259 as_bad (_("same type of prefix used twice"));
2260
2261 return ret;
2262 }
2263
2264 static void
2265 update_code_flag (int value, int check)
2266 {
2267 PRINTF_LIKE ((*as_error));
2268
2269 flag_code = (enum flag_code) value;
2270 if (flag_code == CODE_64BIT)
2271 {
2272 cpu_arch_flags.bitfield.cpu64 = 1;
2273 cpu_arch_flags.bitfield.cpuno64 = 0;
2274 }
2275 else
2276 {
2277 cpu_arch_flags.bitfield.cpu64 = 0;
2278 cpu_arch_flags.bitfield.cpuno64 = 1;
2279 }
2280 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2281 {
2282 if (check)
2283 as_error = as_fatal;
2284 else
2285 as_error = as_bad;
2286 (*as_error) (_("64bit mode not supported on `%s'."),
2287 cpu_arch_name ? cpu_arch_name : default_arch);
2288 }
2289 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2290 {
2291 if (check)
2292 as_error = as_fatal;
2293 else
2294 as_error = as_bad;
2295 (*as_error) (_("32bit mode not supported on `%s'."),
2296 cpu_arch_name ? cpu_arch_name : default_arch);
2297 }
2298 stackop_size = '\0';
2299 }
2300
2301 static void
2302 set_code_flag (int value)
2303 {
2304 update_code_flag (value, 0);
2305 }
2306
2307 static void
2308 set_16bit_gcc_code_flag (int new_code_flag)
2309 {
2310 flag_code = (enum flag_code) new_code_flag;
2311 if (flag_code != CODE_16BIT)
2312 abort ();
2313 cpu_arch_flags.bitfield.cpu64 = 0;
2314 cpu_arch_flags.bitfield.cpuno64 = 1;
2315 stackop_size = LONG_MNEM_SUFFIX;
2316 }
2317
2318 static void
2319 set_intel_syntax (int syntax_flag)
2320 {
2321 /* Find out if register prefixing is specified. */
2322 int ask_naked_reg = 0;
2323
2324 SKIP_WHITESPACE ();
2325 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2326 {
2327 char *string;
2328 int e = get_symbol_name (&string);
2329
2330 if (strcmp (string, "prefix") == 0)
2331 ask_naked_reg = 1;
2332 else if (strcmp (string, "noprefix") == 0)
2333 ask_naked_reg = -1;
2334 else
2335 as_bad (_("bad argument to syntax directive."));
2336 (void) restore_line_pointer (e);
2337 }
2338 demand_empty_rest_of_line ();
2339
2340 intel_syntax = syntax_flag;
2341
2342 if (ask_naked_reg == 0)
2343 allow_naked_reg = (intel_syntax
2344 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2345 else
2346 allow_naked_reg = (ask_naked_reg < 0);
2347
2348 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2349
2350 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2351 identifier_chars['$'] = intel_syntax ? '$' : 0;
2352 register_prefix = allow_naked_reg ? "" : "%";
2353 }
2354
2355 static void
2356 set_intel_mnemonic (int mnemonic_flag)
2357 {
2358 intel_mnemonic = mnemonic_flag;
2359 }
2360
2361 static void
2362 set_allow_index_reg (int flag)
2363 {
2364 allow_index_reg = flag;
2365 }
2366
2367 static void
2368 set_check (int what)
2369 {
2370 enum check_kind *kind;
2371 const char *str;
2372
2373 if (what)
2374 {
2375 kind = &operand_check;
2376 str = "operand";
2377 }
2378 else
2379 {
2380 kind = &sse_check;
2381 str = "sse";
2382 }
2383
2384 SKIP_WHITESPACE ();
2385
2386 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2387 {
2388 char *string;
2389 int e = get_symbol_name (&string);
2390
2391 if (strcmp (string, "none") == 0)
2392 *kind = check_none;
2393 else if (strcmp (string, "warning") == 0)
2394 *kind = check_warning;
2395 else if (strcmp (string, "error") == 0)
2396 *kind = check_error;
2397 else
2398 as_bad (_("bad argument to %s_check directive."), str);
2399 (void) restore_line_pointer (e);
2400 }
2401 else
2402 as_bad (_("missing argument for %s_check directive"), str);
2403
2404 demand_empty_rest_of_line ();
2405 }
2406
2407 static void
2408 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2409 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2410 {
2411 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2412 static const char *arch;
2413
2414 /* Intel LIOM is only supported on ELF. */
2415 if (!IS_ELF)
2416 return;
2417
2418 if (!arch)
2419 {
2420 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2421 use default_arch. */
2422 arch = cpu_arch_name;
2423 if (!arch)
2424 arch = default_arch;
2425 }
2426
2427 /* If we are targeting Intel MCU, we must enable it. */
2428 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2429 || new_flag.bitfield.cpuiamcu)
2430 return;
2431
2432 /* If we are targeting Intel L1OM, we must enable it. */
2433 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2434 || new_flag.bitfield.cpul1om)
2435 return;
2436
2437 /* If we are targeting Intel K1OM, we must enable it. */
2438 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2439 || new_flag.bitfield.cpuk1om)
2440 return;
2441
2442 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2443 #endif
2444 }
2445
2446 static void
2447 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2448 {
2449 SKIP_WHITESPACE ();
2450
2451 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2452 {
2453 char *string;
2454 int e = get_symbol_name (&string);
2455 unsigned int j;
2456 i386_cpu_flags flags;
2457
2458 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2459 {
2460 if (strcmp (string, cpu_arch[j].name) == 0)
2461 {
2462 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2463
2464 if (*string != '.')
2465 {
2466 cpu_arch_name = cpu_arch[j].name;
2467 cpu_sub_arch_name = NULL;
2468 cpu_arch_flags = cpu_arch[j].flags;
2469 if (flag_code == CODE_64BIT)
2470 {
2471 cpu_arch_flags.bitfield.cpu64 = 1;
2472 cpu_arch_flags.bitfield.cpuno64 = 0;
2473 }
2474 else
2475 {
2476 cpu_arch_flags.bitfield.cpu64 = 0;
2477 cpu_arch_flags.bitfield.cpuno64 = 1;
2478 }
2479 cpu_arch_isa = cpu_arch[j].type;
2480 cpu_arch_isa_flags = cpu_arch[j].flags;
2481 if (!cpu_arch_tune_set)
2482 {
2483 cpu_arch_tune = cpu_arch_isa;
2484 cpu_arch_tune_flags = cpu_arch_isa_flags;
2485 }
2486 break;
2487 }
2488
2489 flags = cpu_flags_or (cpu_arch_flags,
2490 cpu_arch[j].flags);
2491
2492 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2493 {
2494 if (cpu_sub_arch_name)
2495 {
2496 char *name = cpu_sub_arch_name;
2497 cpu_sub_arch_name = concat (name,
2498 cpu_arch[j].name,
2499 (const char *) NULL);
2500 free (name);
2501 }
2502 else
2503 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2504 cpu_arch_flags = flags;
2505 cpu_arch_isa_flags = flags;
2506 }
2507 (void) restore_line_pointer (e);
2508 demand_empty_rest_of_line ();
2509 return;
2510 }
2511 }
2512
2513 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2514 {
2515 /* Disable an ISA extension. */
2516 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2517 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2518 {
2519 flags = cpu_flags_and_not (cpu_arch_flags,
2520 cpu_noarch[j].flags);
2521 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2522 {
2523 if (cpu_sub_arch_name)
2524 {
2525 char *name = cpu_sub_arch_name;
2526 cpu_sub_arch_name = concat (name, string,
2527 (const char *) NULL);
2528 free (name);
2529 }
2530 else
2531 cpu_sub_arch_name = xstrdup (string);
2532 cpu_arch_flags = flags;
2533 cpu_arch_isa_flags = flags;
2534 }
2535 (void) restore_line_pointer (e);
2536 demand_empty_rest_of_line ();
2537 return;
2538 }
2539
2540 j = ARRAY_SIZE (cpu_arch);
2541 }
2542
2543 if (j >= ARRAY_SIZE (cpu_arch))
2544 as_bad (_("no such architecture: `%s'"), string);
2545
2546 *input_line_pointer = e;
2547 }
2548 else
2549 as_bad (_("missing cpu architecture"));
2550
2551 no_cond_jump_promotion = 0;
2552 if (*input_line_pointer == ','
2553 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2554 {
2555 char *string;
2556 char e;
2557
2558 ++input_line_pointer;
2559 e = get_symbol_name (&string);
2560
2561 if (strcmp (string, "nojumps") == 0)
2562 no_cond_jump_promotion = 1;
2563 else if (strcmp (string, "jumps") == 0)
2564 ;
2565 else
2566 as_bad (_("no such architecture modifier: `%s'"), string);
2567
2568 (void) restore_line_pointer (e);
2569 }
2570
2571 demand_empty_rest_of_line ();
2572 }
2573
2574 enum bfd_architecture
2575 i386_arch (void)
2576 {
2577 if (cpu_arch_isa == PROCESSOR_L1OM)
2578 {
2579 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2580 || flag_code != CODE_64BIT)
2581 as_fatal (_("Intel L1OM is 64bit ELF only"));
2582 return bfd_arch_l1om;
2583 }
2584 else if (cpu_arch_isa == PROCESSOR_K1OM)
2585 {
2586 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2587 || flag_code != CODE_64BIT)
2588 as_fatal (_("Intel K1OM is 64bit ELF only"));
2589 return bfd_arch_k1om;
2590 }
2591 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2592 {
2593 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2594 || flag_code == CODE_64BIT)
2595 as_fatal (_("Intel MCU is 32bit ELF only"));
2596 return bfd_arch_iamcu;
2597 }
2598 else
2599 return bfd_arch_i386;
2600 }
2601
2602 unsigned long
2603 i386_mach (void)
2604 {
2605 if (!strncmp (default_arch, "x86_64", 6))
2606 {
2607 if (cpu_arch_isa == PROCESSOR_L1OM)
2608 {
2609 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2610 || default_arch[6] != '\0')
2611 as_fatal (_("Intel L1OM is 64bit ELF only"));
2612 return bfd_mach_l1om;
2613 }
2614 else if (cpu_arch_isa == PROCESSOR_K1OM)
2615 {
2616 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2617 || default_arch[6] != '\0')
2618 as_fatal (_("Intel K1OM is 64bit ELF only"));
2619 return bfd_mach_k1om;
2620 }
2621 else if (default_arch[6] == '\0')
2622 return bfd_mach_x86_64;
2623 else
2624 return bfd_mach_x64_32;
2625 }
2626 else if (!strcmp (default_arch, "i386")
2627 || !strcmp (default_arch, "iamcu"))
2628 {
2629 if (cpu_arch_isa == PROCESSOR_IAMCU)
2630 {
2631 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2632 as_fatal (_("Intel MCU is 32bit ELF only"));
2633 return bfd_mach_i386_iamcu;
2634 }
2635 else
2636 return bfd_mach_i386_i386;
2637 }
2638 else
2639 as_fatal (_("unknown architecture"));
2640 }
2641 \f
2642 void
2643 md_begin (void)
2644 {
2645 const char *hash_err;
2646
2647 /* Support pseudo prefixes like {disp32}. */
2648 lex_type ['{'] = LEX_BEGIN_NAME;
2649
2650 /* Initialize op_hash hash table. */
2651 op_hash = hash_new ();
2652
2653 {
2654 const insn_template *optab;
2655 templates *core_optab;
2656
2657 /* Setup for loop. */
2658 optab = i386_optab;
2659 core_optab = XNEW (templates);
2660 core_optab->start = optab;
2661
2662 while (1)
2663 {
2664 ++optab;
2665 if (optab->name == NULL
2666 || strcmp (optab->name, (optab - 1)->name) != 0)
2667 {
2668 /* different name --> ship out current template list;
2669 add to hash table; & begin anew. */
2670 core_optab->end = optab;
2671 hash_err = hash_insert (op_hash,
2672 (optab - 1)->name,
2673 (void *) core_optab);
2674 if (hash_err)
2675 {
2676 as_fatal (_("can't hash %s: %s"),
2677 (optab - 1)->name,
2678 hash_err);
2679 }
2680 if (optab->name == NULL)
2681 break;
2682 core_optab = XNEW (templates);
2683 core_optab->start = optab;
2684 }
2685 }
2686 }
2687
2688 /* Initialize reg_hash hash table. */
2689 reg_hash = hash_new ();
2690 {
2691 const reg_entry *regtab;
2692 unsigned int regtab_size = i386_regtab_size;
2693
2694 for (regtab = i386_regtab; regtab_size--; regtab++)
2695 {
2696 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2697 if (hash_err)
2698 as_fatal (_("can't hash %s: %s"),
2699 regtab->reg_name,
2700 hash_err);
2701 }
2702 }
2703
2704 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2705 {
2706 int c;
2707 char *p;
2708
2709 for (c = 0; c < 256; c++)
2710 {
2711 if (ISDIGIT (c))
2712 {
2713 digit_chars[c] = c;
2714 mnemonic_chars[c] = c;
2715 register_chars[c] = c;
2716 operand_chars[c] = c;
2717 }
2718 else if (ISLOWER (c))
2719 {
2720 mnemonic_chars[c] = c;
2721 register_chars[c] = c;
2722 operand_chars[c] = c;
2723 }
2724 else if (ISUPPER (c))
2725 {
2726 mnemonic_chars[c] = TOLOWER (c);
2727 register_chars[c] = mnemonic_chars[c];
2728 operand_chars[c] = c;
2729 }
2730 else if (c == '{' || c == '}')
2731 {
2732 mnemonic_chars[c] = c;
2733 operand_chars[c] = c;
2734 }
2735
2736 if (ISALPHA (c) || ISDIGIT (c))
2737 identifier_chars[c] = c;
2738 else if (c >= 128)
2739 {
2740 identifier_chars[c] = c;
2741 operand_chars[c] = c;
2742 }
2743 }
2744
2745 #ifdef LEX_AT
2746 identifier_chars['@'] = '@';
2747 #endif
2748 #ifdef LEX_QM
2749 identifier_chars['?'] = '?';
2750 operand_chars['?'] = '?';
2751 #endif
2752 digit_chars['-'] = '-';
2753 mnemonic_chars['_'] = '_';
2754 mnemonic_chars['-'] = '-';
2755 mnemonic_chars['.'] = '.';
2756 identifier_chars['_'] = '_';
2757 identifier_chars['.'] = '.';
2758
2759 for (p = operand_special_chars; *p != '\0'; p++)
2760 operand_chars[(unsigned char) *p] = *p;
2761 }
2762
2763 if (flag_code == CODE_64BIT)
2764 {
2765 #if defined (OBJ_COFF) && defined (TE_PE)
2766 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2767 ? 32 : 16);
2768 #else
2769 x86_dwarf2_return_column = 16;
2770 #endif
2771 x86_cie_data_alignment = -8;
2772 }
2773 else
2774 {
2775 x86_dwarf2_return_column = 8;
2776 x86_cie_data_alignment = -4;
2777 }
2778 }
2779
2780 void
2781 i386_print_statistics (FILE *file)
2782 {
2783 hash_print_statistics (file, "i386 opcode", op_hash);
2784 hash_print_statistics (file, "i386 register", reg_hash);
2785 }
2786 \f
2787 #ifdef DEBUG386
2788
2789 /* Debugging routines for md_assemble. */
2790 static void pte (insn_template *);
2791 static void pt (i386_operand_type);
2792 static void pe (expressionS *);
2793 static void ps (symbolS *);
2794
2795 static void
2796 pi (char *line, i386_insn *x)
2797 {
2798 unsigned int j;
2799
2800 fprintf (stdout, "%s: template ", line);
2801 pte (&x->tm);
2802 fprintf (stdout, " address: base %s index %s scale %x\n",
2803 x->base_reg ? x->base_reg->reg_name : "none",
2804 x->index_reg ? x->index_reg->reg_name : "none",
2805 x->log2_scale_factor);
2806 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2807 x->rm.mode, x->rm.reg, x->rm.regmem);
2808 fprintf (stdout, " sib: base %x index %x scale %x\n",
2809 x->sib.base, x->sib.index, x->sib.scale);
2810 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2811 (x->rex & REX_W) != 0,
2812 (x->rex & REX_R) != 0,
2813 (x->rex & REX_X) != 0,
2814 (x->rex & REX_B) != 0);
2815 for (j = 0; j < x->operands; j++)
2816 {
2817 fprintf (stdout, " #%d: ", j + 1);
2818 pt (x->types[j]);
2819 fprintf (stdout, "\n");
2820 if (x->types[j].bitfield.reg8
2821 || x->types[j].bitfield.reg16
2822 || x->types[j].bitfield.reg32
2823 || x->types[j].bitfield.reg64
2824 || x->types[j].bitfield.regmmx
2825 || x->types[j].bitfield.regxmm
2826 || x->types[j].bitfield.regymm
2827 || x->types[j].bitfield.regzmm
2828 || x->types[j].bitfield.sreg2
2829 || x->types[j].bitfield.sreg3
2830 || x->types[j].bitfield.control
2831 || x->types[j].bitfield.debug
2832 || x->types[j].bitfield.test)
2833 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2834 if (operand_type_check (x->types[j], imm))
2835 pe (x->op[j].imms);
2836 if (operand_type_check (x->types[j], disp))
2837 pe (x->op[j].disps);
2838 }
2839 }
2840
2841 static void
2842 pte (insn_template *t)
2843 {
2844 unsigned int j;
2845 fprintf (stdout, " %d operands ", t->operands);
2846 fprintf (stdout, "opcode %x ", t->base_opcode);
2847 if (t->extension_opcode != None)
2848 fprintf (stdout, "ext %x ", t->extension_opcode);
2849 if (t->opcode_modifier.d)
2850 fprintf (stdout, "D");
2851 if (t->opcode_modifier.w)
2852 fprintf (stdout, "W");
2853 fprintf (stdout, "\n");
2854 for (j = 0; j < t->operands; j++)
2855 {
2856 fprintf (stdout, " #%d type ", j + 1);
2857 pt (t->operand_types[j]);
2858 fprintf (stdout, "\n");
2859 }
2860 }
2861
2862 static void
2863 pe (expressionS *e)
2864 {
2865 fprintf (stdout, " operation %d\n", e->X_op);
2866 fprintf (stdout, " add_number %ld (%lx)\n",
2867 (long) e->X_add_number, (long) e->X_add_number);
2868 if (e->X_add_symbol)
2869 {
2870 fprintf (stdout, " add_symbol ");
2871 ps (e->X_add_symbol);
2872 fprintf (stdout, "\n");
2873 }
2874 if (e->X_op_symbol)
2875 {
2876 fprintf (stdout, " op_symbol ");
2877 ps (e->X_op_symbol);
2878 fprintf (stdout, "\n");
2879 }
2880 }
2881
2882 static void
2883 ps (symbolS *s)
2884 {
2885 fprintf (stdout, "%s type %s%s",
2886 S_GET_NAME (s),
2887 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2888 segment_name (S_GET_SEGMENT (s)));
2889 }
2890
2891 static struct type_name
2892 {
2893 i386_operand_type mask;
2894 const char *name;
2895 }
2896 const type_names[] =
2897 {
2898 { OPERAND_TYPE_REG8, "r8" },
2899 { OPERAND_TYPE_REG16, "r16" },
2900 { OPERAND_TYPE_REG32, "r32" },
2901 { OPERAND_TYPE_REG64, "r64" },
2902 { OPERAND_TYPE_IMM8, "i8" },
2903 { OPERAND_TYPE_IMM8, "i8s" },
2904 { OPERAND_TYPE_IMM16, "i16" },
2905 { OPERAND_TYPE_IMM32, "i32" },
2906 { OPERAND_TYPE_IMM32S, "i32s" },
2907 { OPERAND_TYPE_IMM64, "i64" },
2908 { OPERAND_TYPE_IMM1, "i1" },
2909 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2910 { OPERAND_TYPE_DISP8, "d8" },
2911 { OPERAND_TYPE_DISP16, "d16" },
2912 { OPERAND_TYPE_DISP32, "d32" },
2913 { OPERAND_TYPE_DISP32S, "d32s" },
2914 { OPERAND_TYPE_DISP64, "d64" },
2915 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
2916 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2917 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2918 { OPERAND_TYPE_CONTROL, "control reg" },
2919 { OPERAND_TYPE_TEST, "test reg" },
2920 { OPERAND_TYPE_DEBUG, "debug reg" },
2921 { OPERAND_TYPE_FLOATREG, "FReg" },
2922 { OPERAND_TYPE_FLOATACC, "FAcc" },
2923 { OPERAND_TYPE_SREG2, "SReg2" },
2924 { OPERAND_TYPE_SREG3, "SReg3" },
2925 { OPERAND_TYPE_ACC, "Acc" },
2926 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2927 { OPERAND_TYPE_REGMMX, "rMMX" },
2928 { OPERAND_TYPE_REGXMM, "rXMM" },
2929 { OPERAND_TYPE_REGYMM, "rYMM" },
2930 { OPERAND_TYPE_REGZMM, "rZMM" },
2931 { OPERAND_TYPE_REGMASK, "Mask reg" },
2932 { OPERAND_TYPE_ESSEG, "es" },
2933 };
2934
2935 static void
2936 pt (i386_operand_type t)
2937 {
2938 unsigned int j;
2939 i386_operand_type a;
2940
2941 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2942 {
2943 a = operand_type_and (t, type_names[j].mask);
2944 if (!operand_type_all_zero (&a))
2945 fprintf (stdout, "%s, ", type_names[j].name);
2946 }
2947 fflush (stdout);
2948 }
2949
2950 #endif /* DEBUG386 */
2951 \f
2952 static bfd_reloc_code_real_type
2953 reloc (unsigned int size,
2954 int pcrel,
2955 int sign,
2956 bfd_reloc_code_real_type other)
2957 {
2958 if (other != NO_RELOC)
2959 {
2960 reloc_howto_type *rel;
2961
2962 if (size == 8)
2963 switch (other)
2964 {
2965 case BFD_RELOC_X86_64_GOT32:
2966 return BFD_RELOC_X86_64_GOT64;
2967 break;
2968 case BFD_RELOC_X86_64_GOTPLT64:
2969 return BFD_RELOC_X86_64_GOTPLT64;
2970 break;
2971 case BFD_RELOC_X86_64_PLTOFF64:
2972 return BFD_RELOC_X86_64_PLTOFF64;
2973 break;
2974 case BFD_RELOC_X86_64_GOTPC32:
2975 other = BFD_RELOC_X86_64_GOTPC64;
2976 break;
2977 case BFD_RELOC_X86_64_GOTPCREL:
2978 other = BFD_RELOC_X86_64_GOTPCREL64;
2979 break;
2980 case BFD_RELOC_X86_64_TPOFF32:
2981 other = BFD_RELOC_X86_64_TPOFF64;
2982 break;
2983 case BFD_RELOC_X86_64_DTPOFF32:
2984 other = BFD_RELOC_X86_64_DTPOFF64;
2985 break;
2986 default:
2987 break;
2988 }
2989
2990 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2991 if (other == BFD_RELOC_SIZE32)
2992 {
2993 if (size == 8)
2994 other = BFD_RELOC_SIZE64;
2995 if (pcrel)
2996 {
2997 as_bad (_("there are no pc-relative size relocations"));
2998 return NO_RELOC;
2999 }
3000 }
3001 #endif
3002
3003 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3004 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3005 sign = -1;
3006
3007 rel = bfd_reloc_type_lookup (stdoutput, other);
3008 if (!rel)
3009 as_bad (_("unknown relocation (%u)"), other);
3010 else if (size != bfd_get_reloc_size (rel))
3011 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3012 bfd_get_reloc_size (rel),
3013 size);
3014 else if (pcrel && !rel->pc_relative)
3015 as_bad (_("non-pc-relative relocation for pc-relative field"));
3016 else if ((rel->complain_on_overflow == complain_overflow_signed
3017 && !sign)
3018 || (rel->complain_on_overflow == complain_overflow_unsigned
3019 && sign > 0))
3020 as_bad (_("relocated field and relocation type differ in signedness"));
3021 else
3022 return other;
3023 return NO_RELOC;
3024 }
3025
3026 if (pcrel)
3027 {
3028 if (!sign)
3029 as_bad (_("there are no unsigned pc-relative relocations"));
3030 switch (size)
3031 {
3032 case 1: return BFD_RELOC_8_PCREL;
3033 case 2: return BFD_RELOC_16_PCREL;
3034 case 4: return BFD_RELOC_32_PCREL;
3035 case 8: return BFD_RELOC_64_PCREL;
3036 }
3037 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3038 }
3039 else
3040 {
3041 if (sign > 0)
3042 switch (size)
3043 {
3044 case 4: return BFD_RELOC_X86_64_32S;
3045 }
3046 else
3047 switch (size)
3048 {
3049 case 1: return BFD_RELOC_8;
3050 case 2: return BFD_RELOC_16;
3051 case 4: return BFD_RELOC_32;
3052 case 8: return BFD_RELOC_64;
3053 }
3054 as_bad (_("cannot do %s %u byte relocation"),
3055 sign > 0 ? "signed" : "unsigned", size);
3056 }
3057
3058 return NO_RELOC;
3059 }
3060
3061 /* Here we decide which fixups can be adjusted to make them relative to
3062 the beginning of the section instead of the symbol. Basically we need
3063 to make sure that the dynamic relocations are done correctly, so in
3064 some cases we force the original symbol to be used. */
3065
3066 int
3067 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3068 {
3069 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3070 if (!IS_ELF)
3071 return 1;
3072
3073 /* Don't adjust pc-relative references to merge sections in 64-bit
3074 mode. */
3075 if (use_rela_relocations
3076 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3077 && fixP->fx_pcrel)
3078 return 0;
3079
3080 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3081 and changed later by validate_fix. */
3082 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3083 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3084 return 0;
3085
3086 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3087 for size relocations. */
3088 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3089 || fixP->fx_r_type == BFD_RELOC_SIZE64
3090 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3091 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3092 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3093 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3094 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3095 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3096 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3097 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3098 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3099 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3100 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3101 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3102 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3103 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3104 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3105 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3106 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3107 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3108 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3109 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3110 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3111 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3112 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3113 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3114 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3115 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3116 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3117 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3118 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3119 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3120 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3121 return 0;
3122 #endif
3123 return 1;
3124 }
3125
3126 static int
3127 intel_float_operand (const char *mnemonic)
3128 {
3129 /* Note that the value returned is meaningful only for opcodes with (memory)
3130 operands, hence the code here is free to improperly handle opcodes that
3131 have no operands (for better performance and smaller code). */
3132
3133 if (mnemonic[0] != 'f')
3134 return 0; /* non-math */
3135
3136 switch (mnemonic[1])
3137 {
3138 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3139 the fs segment override prefix not currently handled because no
3140 call path can make opcodes without operands get here */
3141 case 'i':
3142 return 2 /* integer op */;
3143 case 'l':
3144 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3145 return 3; /* fldcw/fldenv */
3146 break;
3147 case 'n':
3148 if (mnemonic[2] != 'o' /* fnop */)
3149 return 3; /* non-waiting control op */
3150 break;
3151 case 'r':
3152 if (mnemonic[2] == 's')
3153 return 3; /* frstor/frstpm */
3154 break;
3155 case 's':
3156 if (mnemonic[2] == 'a')
3157 return 3; /* fsave */
3158 if (mnemonic[2] == 't')
3159 {
3160 switch (mnemonic[3])
3161 {
3162 case 'c': /* fstcw */
3163 case 'd': /* fstdw */
3164 case 'e': /* fstenv */
3165 case 's': /* fsts[gw] */
3166 return 3;
3167 }
3168 }
3169 break;
3170 case 'x':
3171 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3172 return 0; /* fxsave/fxrstor are not really math ops */
3173 break;
3174 }
3175
3176 return 1;
3177 }
3178
3179 /* Build the VEX prefix. */
3180
3181 static void
3182 build_vex_prefix (const insn_template *t)
3183 {
3184 unsigned int register_specifier;
3185 unsigned int implied_prefix;
3186 unsigned int vector_length;
3187
3188 /* Check register specifier. */
3189 if (i.vex.register_specifier)
3190 {
3191 register_specifier =
3192 ~register_number (i.vex.register_specifier) & 0xf;
3193 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3194 }
3195 else
3196 register_specifier = 0xf;
3197
3198 /* Use 2-byte VEX prefix by swapping destination and source
3199 operand. */
3200 if (i.vec_encoding != vex_encoding_vex3
3201 && i.dir_encoding == dir_encoding_default
3202 && i.operands == i.reg_operands
3203 && i.tm.opcode_modifier.vexopcode == VEX0F
3204 && i.tm.opcode_modifier.load
3205 && i.rex == REX_B)
3206 {
3207 unsigned int xchg = i.operands - 1;
3208 union i386_op temp_op;
3209 i386_operand_type temp_type;
3210
3211 temp_type = i.types[xchg];
3212 i.types[xchg] = i.types[0];
3213 i.types[0] = temp_type;
3214 temp_op = i.op[xchg];
3215 i.op[xchg] = i.op[0];
3216 i.op[0] = temp_op;
3217
3218 gas_assert (i.rm.mode == 3);
3219
3220 i.rex = REX_R;
3221 xchg = i.rm.regmem;
3222 i.rm.regmem = i.rm.reg;
3223 i.rm.reg = xchg;
3224
3225 /* Use the next insn. */
3226 i.tm = t[1];
3227 }
3228
3229 if (i.tm.opcode_modifier.vex == VEXScalar)
3230 vector_length = avxscalar;
3231 else
3232 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
3233
3234 switch ((i.tm.base_opcode >> 8) & 0xff)
3235 {
3236 case 0:
3237 implied_prefix = 0;
3238 break;
3239 case DATA_PREFIX_OPCODE:
3240 implied_prefix = 1;
3241 break;
3242 case REPE_PREFIX_OPCODE:
3243 implied_prefix = 2;
3244 break;
3245 case REPNE_PREFIX_OPCODE:
3246 implied_prefix = 3;
3247 break;
3248 default:
3249 abort ();
3250 }
3251
3252 /* Use 2-byte VEX prefix if possible. */
3253 if (i.vec_encoding != vex_encoding_vex3
3254 && i.tm.opcode_modifier.vexopcode == VEX0F
3255 && i.tm.opcode_modifier.vexw != VEXW1
3256 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3257 {
3258 /* 2-byte VEX prefix. */
3259 unsigned int r;
3260
3261 i.vex.length = 2;
3262 i.vex.bytes[0] = 0xc5;
3263
3264 /* Check the REX.R bit. */
3265 r = (i.rex & REX_R) ? 0 : 1;
3266 i.vex.bytes[1] = (r << 7
3267 | register_specifier << 3
3268 | vector_length << 2
3269 | implied_prefix);
3270 }
3271 else
3272 {
3273 /* 3-byte VEX prefix. */
3274 unsigned int m, w;
3275
3276 i.vex.length = 3;
3277
3278 switch (i.tm.opcode_modifier.vexopcode)
3279 {
3280 case VEX0F:
3281 m = 0x1;
3282 i.vex.bytes[0] = 0xc4;
3283 break;
3284 case VEX0F38:
3285 m = 0x2;
3286 i.vex.bytes[0] = 0xc4;
3287 break;
3288 case VEX0F3A:
3289 m = 0x3;
3290 i.vex.bytes[0] = 0xc4;
3291 break;
3292 case XOP08:
3293 m = 0x8;
3294 i.vex.bytes[0] = 0x8f;
3295 break;
3296 case XOP09:
3297 m = 0x9;
3298 i.vex.bytes[0] = 0x8f;
3299 break;
3300 case XOP0A:
3301 m = 0xa;
3302 i.vex.bytes[0] = 0x8f;
3303 break;
3304 default:
3305 abort ();
3306 }
3307
3308 /* The high 3 bits of the second VEX byte are 1's compliment
3309 of RXB bits from REX. */
3310 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3311
3312 /* Check the REX.W bit. */
3313 w = (i.rex & REX_W) ? 1 : 0;
3314 if (i.tm.opcode_modifier.vexw == VEXW1)
3315 w = 1;
3316
3317 i.vex.bytes[2] = (w << 7
3318 | register_specifier << 3
3319 | vector_length << 2
3320 | implied_prefix);
3321 }
3322 }
3323
3324 /* Build the EVEX prefix. */
3325
3326 static void
3327 build_evex_prefix (void)
3328 {
3329 unsigned int register_specifier;
3330 unsigned int implied_prefix;
3331 unsigned int m, w;
3332 rex_byte vrex_used = 0;
3333
3334 /* Check register specifier. */
3335 if (i.vex.register_specifier)
3336 {
3337 gas_assert ((i.vrex & REX_X) == 0);
3338
3339 register_specifier = i.vex.register_specifier->reg_num;
3340 if ((i.vex.register_specifier->reg_flags & RegRex))
3341 register_specifier += 8;
3342 /* The upper 16 registers are encoded in the fourth byte of the
3343 EVEX prefix. */
3344 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3345 i.vex.bytes[3] = 0x8;
3346 register_specifier = ~register_specifier & 0xf;
3347 }
3348 else
3349 {
3350 register_specifier = 0xf;
3351
3352 /* Encode upper 16 vector index register in the fourth byte of
3353 the EVEX prefix. */
3354 if (!(i.vrex & REX_X))
3355 i.vex.bytes[3] = 0x8;
3356 else
3357 vrex_used |= REX_X;
3358 }
3359
3360 switch ((i.tm.base_opcode >> 8) & 0xff)
3361 {
3362 case 0:
3363 implied_prefix = 0;
3364 break;
3365 case DATA_PREFIX_OPCODE:
3366 implied_prefix = 1;
3367 break;
3368 case REPE_PREFIX_OPCODE:
3369 implied_prefix = 2;
3370 break;
3371 case REPNE_PREFIX_OPCODE:
3372 implied_prefix = 3;
3373 break;
3374 default:
3375 abort ();
3376 }
3377
3378 /* 4 byte EVEX prefix. */
3379 i.vex.length = 4;
3380 i.vex.bytes[0] = 0x62;
3381
3382 /* mmmm bits. */
3383 switch (i.tm.opcode_modifier.vexopcode)
3384 {
3385 case VEX0F:
3386 m = 1;
3387 break;
3388 case VEX0F38:
3389 m = 2;
3390 break;
3391 case VEX0F3A:
3392 m = 3;
3393 break;
3394 default:
3395 abort ();
3396 break;
3397 }
3398
3399 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3400 bits from REX. */
3401 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3402
3403 /* The fifth bit of the second EVEX byte is 1's compliment of the
3404 REX_R bit in VREX. */
3405 if (!(i.vrex & REX_R))
3406 i.vex.bytes[1] |= 0x10;
3407 else
3408 vrex_used |= REX_R;
3409
3410 if ((i.reg_operands + i.imm_operands) == i.operands)
3411 {
3412 /* When all operands are registers, the REX_X bit in REX is not
3413 used. We reuse it to encode the upper 16 registers, which is
3414 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3415 as 1's compliment. */
3416 if ((i.vrex & REX_B))
3417 {
3418 vrex_used |= REX_B;
3419 i.vex.bytes[1] &= ~0x40;
3420 }
3421 }
3422
3423 /* EVEX instructions shouldn't need the REX prefix. */
3424 i.vrex &= ~vrex_used;
3425 gas_assert (i.vrex == 0);
3426
3427 /* Check the REX.W bit. */
3428 w = (i.rex & REX_W) ? 1 : 0;
3429 if (i.tm.opcode_modifier.vexw)
3430 {
3431 if (i.tm.opcode_modifier.vexw == VEXW1)
3432 w = 1;
3433 }
3434 /* If w is not set it means we are dealing with WIG instruction. */
3435 else if (!w)
3436 {
3437 if (evexwig == evexw1)
3438 w = 1;
3439 }
3440
3441 /* Encode the U bit. */
3442 implied_prefix |= 0x4;
3443
3444 /* The third byte of the EVEX prefix. */
3445 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3446
3447 /* The fourth byte of the EVEX prefix. */
3448 /* The zeroing-masking bit. */
3449 if (i.mask && i.mask->zeroing)
3450 i.vex.bytes[3] |= 0x80;
3451
3452 /* Don't always set the broadcast bit if there is no RC. */
3453 if (!i.rounding)
3454 {
3455 /* Encode the vector length. */
3456 unsigned int vec_length;
3457
3458 switch (i.tm.opcode_modifier.evex)
3459 {
3460 case EVEXLIG: /* LL' is ignored */
3461 vec_length = evexlig << 5;
3462 break;
3463 case EVEX128:
3464 vec_length = 0 << 5;
3465 break;
3466 case EVEX256:
3467 vec_length = 1 << 5;
3468 break;
3469 case EVEX512:
3470 vec_length = 2 << 5;
3471 break;
3472 default:
3473 abort ();
3474 break;
3475 }
3476 i.vex.bytes[3] |= vec_length;
3477 /* Encode the broadcast bit. */
3478 if (i.broadcast)
3479 i.vex.bytes[3] |= 0x10;
3480 }
3481 else
3482 {
3483 if (i.rounding->type != saeonly)
3484 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3485 else
3486 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3487 }
3488
3489 if (i.mask && i.mask->mask)
3490 i.vex.bytes[3] |= i.mask->mask->reg_num;
3491 }
3492
3493 static void
3494 process_immext (void)
3495 {
3496 expressionS *exp;
3497
3498 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3499 && i.operands > 0)
3500 {
3501 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3502 with an opcode suffix which is coded in the same place as an
3503 8-bit immediate field would be.
3504 Here we check those operands and remove them afterwards. */
3505 unsigned int x;
3506
3507 for (x = 0; x < i.operands; x++)
3508 if (register_number (i.op[x].regs) != x)
3509 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3510 register_prefix, i.op[x].regs->reg_name, x + 1,
3511 i.tm.name);
3512
3513 i.operands = 0;
3514 }
3515
3516 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3517 {
3518 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3519 suffix which is coded in the same place as an 8-bit immediate
3520 field would be.
3521 Here we check those operands and remove them afterwards. */
3522 unsigned int x;
3523
3524 if (i.operands != 3)
3525 abort();
3526
3527 for (x = 0; x < 2; x++)
3528 if (register_number (i.op[x].regs) != x)
3529 goto bad_register_operand;
3530
3531 /* Check for third operand for mwaitx/monitorx insn. */
3532 if (register_number (i.op[x].regs)
3533 != (x + (i.tm.extension_opcode == 0xfb)))
3534 {
3535 bad_register_operand:
3536 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3537 register_prefix, i.op[x].regs->reg_name, x+1,
3538 i.tm.name);
3539 }
3540
3541 i.operands = 0;
3542 }
3543
3544 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3545 which is coded in the same place as an 8-bit immediate field
3546 would be. Here we fake an 8-bit immediate operand from the
3547 opcode suffix stored in tm.extension_opcode.
3548
3549 AVX instructions also use this encoding, for some of
3550 3 argument instructions. */
3551
3552 gas_assert (i.imm_operands <= 1
3553 && (i.operands <= 2
3554 || ((i.tm.opcode_modifier.vex
3555 || i.tm.opcode_modifier.evex)
3556 && i.operands <= 4)));
3557
3558 exp = &im_expressions[i.imm_operands++];
3559 i.op[i.operands].imms = exp;
3560 i.types[i.operands] = imm8;
3561 i.operands++;
3562 exp->X_op = O_constant;
3563 exp->X_add_number = i.tm.extension_opcode;
3564 i.tm.extension_opcode = None;
3565 }
3566
3567
3568 static int
3569 check_hle (void)
3570 {
3571 switch (i.tm.opcode_modifier.hleprefixok)
3572 {
3573 default:
3574 abort ();
3575 case HLEPrefixNone:
3576 as_bad (_("invalid instruction `%s' after `%s'"),
3577 i.tm.name, i.hle_prefix);
3578 return 0;
3579 case HLEPrefixLock:
3580 if (i.prefix[LOCK_PREFIX])
3581 return 1;
3582 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3583 return 0;
3584 case HLEPrefixAny:
3585 return 1;
3586 case HLEPrefixRelease:
3587 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3588 {
3589 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3590 i.tm.name);
3591 return 0;
3592 }
3593 if (i.mem_operands == 0
3594 || !operand_type_check (i.types[i.operands - 1], anymem))
3595 {
3596 as_bad (_("memory destination needed for instruction `%s'"
3597 " after `xrelease'"), i.tm.name);
3598 return 0;
3599 }
3600 return 1;
3601 }
3602 }
3603
3604 /* This is the guts of the machine-dependent assembler. LINE points to a
3605 machine dependent instruction. This function is supposed to emit
3606 the frags/bytes it assembles to. */
3607
3608 void
3609 md_assemble (char *line)
3610 {
3611 unsigned int j;
3612 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
3613 const insn_template *t;
3614
3615 /* Initialize globals. */
3616 memset (&i, '\0', sizeof (i));
3617 for (j = 0; j < MAX_OPERANDS; j++)
3618 i.reloc[j] = NO_RELOC;
3619 memset (disp_expressions, '\0', sizeof (disp_expressions));
3620 memset (im_expressions, '\0', sizeof (im_expressions));
3621 save_stack_p = save_stack;
3622
3623 /* First parse an instruction mnemonic & call i386_operand for the operands.
3624 We assume that the scrubber has arranged it so that line[0] is the valid
3625 start of a (possibly prefixed) mnemonic. */
3626
3627 line = parse_insn (line, mnemonic);
3628 if (line == NULL)
3629 return;
3630 mnem_suffix = i.suffix;
3631
3632 line = parse_operands (line, mnemonic);
3633 this_operand = -1;
3634 xfree (i.memop1_string);
3635 i.memop1_string = NULL;
3636 if (line == NULL)
3637 return;
3638
3639 /* Now we've parsed the mnemonic into a set of templates, and have the
3640 operands at hand. */
3641
3642 /* All intel opcodes have reversed operands except for "bound" and
3643 "enter". We also don't reverse intersegment "jmp" and "call"
3644 instructions with 2 immediate operands so that the immediate segment
3645 precedes the offset, as it does when in AT&T mode. */
3646 if (intel_syntax
3647 && i.operands > 1
3648 && (strcmp (mnemonic, "bound") != 0)
3649 && (strcmp (mnemonic, "invlpga") != 0)
3650 && !(operand_type_check (i.types[0], imm)
3651 && operand_type_check (i.types[1], imm)))
3652 swap_operands ();
3653
3654 /* The order of the immediates should be reversed
3655 for 2 immediates extrq and insertq instructions */
3656 if (i.imm_operands == 2
3657 && (strcmp (mnemonic, "extrq") == 0
3658 || strcmp (mnemonic, "insertq") == 0))
3659 swap_2_operands (0, 1);
3660
3661 if (i.imm_operands)
3662 optimize_imm ();
3663
3664 /* Don't optimize displacement for movabs since it only takes 64bit
3665 displacement. */
3666 if (i.disp_operands
3667 && i.disp_encoding != disp_encoding_32bit
3668 && (flag_code != CODE_64BIT
3669 || strcmp (mnemonic, "movabs") != 0))
3670 optimize_disp ();
3671
3672 /* Next, we find a template that matches the given insn,
3673 making sure the overlap of the given operands types is consistent
3674 with the template operand types. */
3675
3676 if (!(t = match_template (mnem_suffix)))
3677 return;
3678
3679 if (sse_check != check_none
3680 && !i.tm.opcode_modifier.noavx
3681 && (i.tm.cpu_flags.bitfield.cpusse
3682 || i.tm.cpu_flags.bitfield.cpusse2
3683 || i.tm.cpu_flags.bitfield.cpusse3
3684 || i.tm.cpu_flags.bitfield.cpussse3
3685 || i.tm.cpu_flags.bitfield.cpusse4_1
3686 || i.tm.cpu_flags.bitfield.cpusse4_2))
3687 {
3688 (sse_check == check_warning
3689 ? as_warn
3690 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3691 }
3692
3693 /* Zap movzx and movsx suffix. The suffix has been set from
3694 "word ptr" or "byte ptr" on the source operand in Intel syntax
3695 or extracted from mnemonic in AT&T syntax. But we'll use
3696 the destination register to choose the suffix for encoding. */
3697 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3698 {
3699 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3700 there is no suffix, the default will be byte extension. */
3701 if (i.reg_operands != 2
3702 && !i.suffix
3703 && intel_syntax)
3704 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3705
3706 i.suffix = 0;
3707 }
3708
3709 if (i.tm.opcode_modifier.fwait)
3710 if (!add_prefix (FWAIT_OPCODE))
3711 return;
3712
3713 /* Check if REP prefix is OK. */
3714 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3715 {
3716 as_bad (_("invalid instruction `%s' after `%s'"),
3717 i.tm.name, i.rep_prefix);
3718 return;
3719 }
3720
3721 /* Check for lock without a lockable instruction. Destination operand
3722 must be memory unless it is xchg (0x86). */
3723 if (i.prefix[LOCK_PREFIX]
3724 && (!i.tm.opcode_modifier.islockable
3725 || i.mem_operands == 0
3726 || (i.tm.base_opcode != 0x86
3727 && !operand_type_check (i.types[i.operands - 1], anymem))))
3728 {
3729 as_bad (_("expecting lockable instruction after `lock'"));
3730 return;
3731 }
3732
3733 /* Check if HLE prefix is OK. */
3734 if (i.hle_prefix && !check_hle ())
3735 return;
3736
3737 /* Check BND prefix. */
3738 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3739 as_bad (_("expecting valid branch instruction after `bnd'"));
3740
3741 /* Check NOTRACK prefix. */
3742 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
3743 as_bad (_("expecting indirect branch instruction after `notrack'"));
3744
3745 if (i.tm.cpu_flags.bitfield.cpumpx)
3746 {
3747 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
3748 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3749 else if (flag_code != CODE_16BIT
3750 ? i.prefix[ADDR_PREFIX]
3751 : i.mem_operands && !i.prefix[ADDR_PREFIX])
3752 as_bad (_("16-bit address isn't allowed in MPX instructions"));
3753 }
3754
3755 /* Insert BND prefix. */
3756 if (add_bnd_prefix
3757 && i.tm.opcode_modifier.bndprefixok
3758 && !i.prefix[BND_PREFIX])
3759 add_prefix (BND_PREFIX_OPCODE);
3760
3761 /* Check string instruction segment overrides. */
3762 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3763 {
3764 if (!check_string ())
3765 return;
3766 i.disp_operands = 0;
3767 }
3768
3769 if (!process_suffix ())
3770 return;
3771
3772 /* Update operand types. */
3773 for (j = 0; j < i.operands; j++)
3774 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3775
3776 /* Make still unresolved immediate matches conform to size of immediate
3777 given in i.suffix. */
3778 if (!finalize_imm ())
3779 return;
3780
3781 if (i.types[0].bitfield.imm1)
3782 i.imm_operands = 0; /* kludge for shift insns. */
3783
3784 /* We only need to check those implicit registers for instructions
3785 with 3 operands or less. */
3786 if (i.operands <= 3)
3787 for (j = 0; j < i.operands; j++)
3788 if (i.types[j].bitfield.inoutportreg
3789 || i.types[j].bitfield.shiftcount
3790 || i.types[j].bitfield.acc
3791 || i.types[j].bitfield.floatacc)
3792 i.reg_operands--;
3793
3794 /* ImmExt should be processed after SSE2AVX. */
3795 if (!i.tm.opcode_modifier.sse2avx
3796 && i.tm.opcode_modifier.immext)
3797 process_immext ();
3798
3799 /* For insns with operands there are more diddles to do to the opcode. */
3800 if (i.operands)
3801 {
3802 if (!process_operands ())
3803 return;
3804 }
3805 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3806 {
3807 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3808 as_warn (_("translating to `%sp'"), i.tm.name);
3809 }
3810
3811 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3812 {
3813 if (flag_code == CODE_16BIT)
3814 {
3815 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3816 i.tm.name);
3817 return;
3818 }
3819
3820 if (i.tm.opcode_modifier.vex)
3821 build_vex_prefix (t);
3822 else
3823 build_evex_prefix ();
3824 }
3825
3826 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3827 instructions may define INT_OPCODE as well, so avoid this corner
3828 case for those instructions that use MODRM. */
3829 if (i.tm.base_opcode == INT_OPCODE
3830 && !i.tm.opcode_modifier.modrm
3831 && i.op[0].imms->X_add_number == 3)
3832 {
3833 i.tm.base_opcode = INT3_OPCODE;
3834 i.imm_operands = 0;
3835 }
3836
3837 if ((i.tm.opcode_modifier.jump
3838 || i.tm.opcode_modifier.jumpbyte
3839 || i.tm.opcode_modifier.jumpdword)
3840 && i.op[0].disps->X_op == O_constant)
3841 {
3842 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3843 the absolute address given by the constant. Since ix86 jumps and
3844 calls are pc relative, we need to generate a reloc. */
3845 i.op[0].disps->X_add_symbol = &abs_symbol;
3846 i.op[0].disps->X_op = O_symbol;
3847 }
3848
3849 if (i.tm.opcode_modifier.rex64)
3850 i.rex |= REX_W;
3851
3852 /* For 8 bit registers we need an empty rex prefix. Also if the
3853 instruction already has a prefix, we need to convert old
3854 registers to new ones. */
3855
3856 if ((i.types[0].bitfield.reg8
3857 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3858 || (i.types[1].bitfield.reg8
3859 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3860 || ((i.types[0].bitfield.reg8
3861 || i.types[1].bitfield.reg8)
3862 && i.rex != 0))
3863 {
3864 int x;
3865
3866 i.rex |= REX_OPCODE;
3867 for (x = 0; x < 2; x++)
3868 {
3869 /* Look for 8 bit operand that uses old registers. */
3870 if (i.types[x].bitfield.reg8
3871 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3872 {
3873 /* In case it is "hi" register, give up. */
3874 if (i.op[x].regs->reg_num > 3)
3875 as_bad (_("can't encode register '%s%s' in an "
3876 "instruction requiring REX prefix."),
3877 register_prefix, i.op[x].regs->reg_name);
3878
3879 /* Otherwise it is equivalent to the extended register.
3880 Since the encoding doesn't change this is merely
3881 cosmetic cleanup for debug output. */
3882
3883 i.op[x].regs = i.op[x].regs + 8;
3884 }
3885 }
3886 }
3887
3888 if (i.rex != 0)
3889 add_prefix (REX_OPCODE | i.rex);
3890
3891 /* We are ready to output the insn. */
3892 output_insn ();
3893 }
3894
3895 static char *
3896 parse_insn (char *line, char *mnemonic)
3897 {
3898 char *l = line;
3899 char *token_start = l;
3900 char *mnem_p;
3901 int supported;
3902 const insn_template *t;
3903 char *dot_p = NULL;
3904
3905 while (1)
3906 {
3907 mnem_p = mnemonic;
3908 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3909 {
3910 if (*mnem_p == '.')
3911 dot_p = mnem_p;
3912 mnem_p++;
3913 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3914 {
3915 as_bad (_("no such instruction: `%s'"), token_start);
3916 return NULL;
3917 }
3918 l++;
3919 }
3920 if (!is_space_char (*l)
3921 && *l != END_OF_INSN
3922 && (intel_syntax
3923 || (*l != PREFIX_SEPARATOR
3924 && *l != ',')))
3925 {
3926 as_bad (_("invalid character %s in mnemonic"),
3927 output_invalid (*l));
3928 return NULL;
3929 }
3930 if (token_start == l)
3931 {
3932 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3933 as_bad (_("expecting prefix; got nothing"));
3934 else
3935 as_bad (_("expecting mnemonic; got nothing"));
3936 return NULL;
3937 }
3938
3939 /* Look up instruction (or prefix) via hash table. */
3940 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3941
3942 if (*l != END_OF_INSN
3943 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3944 && current_templates
3945 && current_templates->start->opcode_modifier.isprefix)
3946 {
3947 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3948 {
3949 as_bad ((flag_code != CODE_64BIT
3950 ? _("`%s' is only supported in 64-bit mode")
3951 : _("`%s' is not supported in 64-bit mode")),
3952 current_templates->start->name);
3953 return NULL;
3954 }
3955 /* If we are in 16-bit mode, do not allow addr16 or data16.
3956 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3957 if ((current_templates->start->opcode_modifier.size16
3958 || current_templates->start->opcode_modifier.size32)
3959 && flag_code != CODE_64BIT
3960 && (current_templates->start->opcode_modifier.size32
3961 ^ (flag_code == CODE_16BIT)))
3962 {
3963 as_bad (_("redundant %s prefix"),
3964 current_templates->start->name);
3965 return NULL;
3966 }
3967 if (current_templates->start->opcode_length == 0)
3968 {
3969 /* Handle pseudo prefixes. */
3970 switch (current_templates->start->base_opcode)
3971 {
3972 case 0x0:
3973 /* {disp8} */
3974 i.disp_encoding = disp_encoding_8bit;
3975 break;
3976 case 0x1:
3977 /* {disp32} */
3978 i.disp_encoding = disp_encoding_32bit;
3979 break;
3980 case 0x2:
3981 /* {load} */
3982 i.dir_encoding = dir_encoding_load;
3983 break;
3984 case 0x3:
3985 /* {store} */
3986 i.dir_encoding = dir_encoding_store;
3987 break;
3988 case 0x4:
3989 /* {vex2} */
3990 i.vec_encoding = vex_encoding_vex2;
3991 break;
3992 case 0x5:
3993 /* {vex3} */
3994 i.vec_encoding = vex_encoding_vex3;
3995 break;
3996 case 0x6:
3997 /* {evex} */
3998 i.vec_encoding = vex_encoding_evex;
3999 break;
4000 default:
4001 abort ();
4002 }
4003 }
4004 else
4005 {
4006 /* Add prefix, checking for repeated prefixes. */
4007 switch (add_prefix (current_templates->start->base_opcode))
4008 {
4009 case PREFIX_EXIST:
4010 return NULL;
4011 case PREFIX_DS:
4012 if (current_templates->start->cpu_flags.bitfield.cpucet)
4013 i.notrack_prefix = current_templates->start->name;
4014 break;
4015 case PREFIX_REP:
4016 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4017 i.hle_prefix = current_templates->start->name;
4018 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4019 i.bnd_prefix = current_templates->start->name;
4020 else
4021 i.rep_prefix = current_templates->start->name;
4022 break;
4023 default:
4024 break;
4025 }
4026 }
4027 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4028 token_start = ++l;
4029 }
4030 else
4031 break;
4032 }
4033
4034 if (!current_templates)
4035 {
4036 /* Check if we should swap operand or force 32bit displacement in
4037 encoding. */
4038 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4039 i.dir_encoding = dir_encoding_store;
4040 else if (mnem_p - 3 == dot_p
4041 && dot_p[1] == 'd'
4042 && dot_p[2] == '8')
4043 i.disp_encoding = disp_encoding_8bit;
4044 else if (mnem_p - 4 == dot_p
4045 && dot_p[1] == 'd'
4046 && dot_p[2] == '3'
4047 && dot_p[3] == '2')
4048 i.disp_encoding = disp_encoding_32bit;
4049 else
4050 goto check_suffix;
4051 mnem_p = dot_p;
4052 *dot_p = '\0';
4053 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4054 }
4055
4056 if (!current_templates)
4057 {
4058 check_suffix:
4059 /* See if we can get a match by trimming off a suffix. */
4060 switch (mnem_p[-1])
4061 {
4062 case WORD_MNEM_SUFFIX:
4063 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4064 i.suffix = SHORT_MNEM_SUFFIX;
4065 else
4066 /* Fall through. */
4067 case BYTE_MNEM_SUFFIX:
4068 case QWORD_MNEM_SUFFIX:
4069 i.suffix = mnem_p[-1];
4070 mnem_p[-1] = '\0';
4071 current_templates = (const templates *) hash_find (op_hash,
4072 mnemonic);
4073 break;
4074 case SHORT_MNEM_SUFFIX:
4075 case LONG_MNEM_SUFFIX:
4076 if (!intel_syntax)
4077 {
4078 i.suffix = mnem_p[-1];
4079 mnem_p[-1] = '\0';
4080 current_templates = (const templates *) hash_find (op_hash,
4081 mnemonic);
4082 }
4083 break;
4084
4085 /* Intel Syntax. */
4086 case 'd':
4087 if (intel_syntax)
4088 {
4089 if (intel_float_operand (mnemonic) == 1)
4090 i.suffix = SHORT_MNEM_SUFFIX;
4091 else
4092 i.suffix = LONG_MNEM_SUFFIX;
4093 mnem_p[-1] = '\0';
4094 current_templates = (const templates *) hash_find (op_hash,
4095 mnemonic);
4096 }
4097 break;
4098 }
4099 if (!current_templates)
4100 {
4101 as_bad (_("no such instruction: `%s'"), token_start);
4102 return NULL;
4103 }
4104 }
4105
4106 if (current_templates->start->opcode_modifier.jump
4107 || current_templates->start->opcode_modifier.jumpbyte)
4108 {
4109 /* Check for a branch hint. We allow ",pt" and ",pn" for
4110 predict taken and predict not taken respectively.
4111 I'm not sure that branch hints actually do anything on loop
4112 and jcxz insns (JumpByte) for current Pentium4 chips. They
4113 may work in the future and it doesn't hurt to accept them
4114 now. */
4115 if (l[0] == ',' && l[1] == 'p')
4116 {
4117 if (l[2] == 't')
4118 {
4119 if (!add_prefix (DS_PREFIX_OPCODE))
4120 return NULL;
4121 l += 3;
4122 }
4123 else if (l[2] == 'n')
4124 {
4125 if (!add_prefix (CS_PREFIX_OPCODE))
4126 return NULL;
4127 l += 3;
4128 }
4129 }
4130 }
4131 /* Any other comma loses. */
4132 if (*l == ',')
4133 {
4134 as_bad (_("invalid character %s in mnemonic"),
4135 output_invalid (*l));
4136 return NULL;
4137 }
4138
4139 /* Check if instruction is supported on specified architecture. */
4140 supported = 0;
4141 for (t = current_templates->start; t < current_templates->end; ++t)
4142 {
4143 supported |= cpu_flags_match (t);
4144 if (supported == CPU_FLAGS_PERFECT_MATCH)
4145 goto skip;
4146 }
4147
4148 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4149 {
4150 as_bad (flag_code == CODE_64BIT
4151 ? _("`%s' is not supported in 64-bit mode")
4152 : _("`%s' is only supported in 64-bit mode"),
4153 current_templates->start->name);
4154 return NULL;
4155 }
4156 if (supported != CPU_FLAGS_PERFECT_MATCH)
4157 {
4158 as_bad (_("`%s' is not supported on `%s%s'"),
4159 current_templates->start->name,
4160 cpu_arch_name ? cpu_arch_name : default_arch,
4161 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4162 return NULL;
4163 }
4164
4165 skip:
4166 if (!cpu_arch_flags.bitfield.cpui386
4167 && (flag_code != CODE_16BIT))
4168 {
4169 as_warn (_("use .code16 to ensure correct addressing mode"));
4170 }
4171
4172 return l;
4173 }
4174
4175 static char *
4176 parse_operands (char *l, const char *mnemonic)
4177 {
4178 char *token_start;
4179
4180 /* 1 if operand is pending after ','. */
4181 unsigned int expecting_operand = 0;
4182
4183 /* Non-zero if operand parens not balanced. */
4184 unsigned int paren_not_balanced;
4185
4186 while (*l != END_OF_INSN)
4187 {
4188 /* Skip optional white space before operand. */
4189 if (is_space_char (*l))
4190 ++l;
4191 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4192 {
4193 as_bad (_("invalid character %s before operand %d"),
4194 output_invalid (*l),
4195 i.operands + 1);
4196 return NULL;
4197 }
4198 token_start = l; /* After white space. */
4199 paren_not_balanced = 0;
4200 while (paren_not_balanced || *l != ',')
4201 {
4202 if (*l == END_OF_INSN)
4203 {
4204 if (paren_not_balanced)
4205 {
4206 if (!intel_syntax)
4207 as_bad (_("unbalanced parenthesis in operand %d."),
4208 i.operands + 1);
4209 else
4210 as_bad (_("unbalanced brackets in operand %d."),
4211 i.operands + 1);
4212 return NULL;
4213 }
4214 else
4215 break; /* we are done */
4216 }
4217 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4218 {
4219 as_bad (_("invalid character %s in operand %d"),
4220 output_invalid (*l),
4221 i.operands + 1);
4222 return NULL;
4223 }
4224 if (!intel_syntax)
4225 {
4226 if (*l == '(')
4227 ++paren_not_balanced;
4228 if (*l == ')')
4229 --paren_not_balanced;
4230 }
4231 else
4232 {
4233 if (*l == '[')
4234 ++paren_not_balanced;
4235 if (*l == ']')
4236 --paren_not_balanced;
4237 }
4238 l++;
4239 }
4240 if (l != token_start)
4241 { /* Yes, we've read in another operand. */
4242 unsigned int operand_ok;
4243 this_operand = i.operands++;
4244 if (i.operands > MAX_OPERANDS)
4245 {
4246 as_bad (_("spurious operands; (%d operands/instruction max)"),
4247 MAX_OPERANDS);
4248 return NULL;
4249 }
4250 i.types[this_operand].bitfield.unspecified = 1;
4251 /* Now parse operand adding info to 'i' as we go along. */
4252 END_STRING_AND_SAVE (l);
4253
4254 if (intel_syntax)
4255 operand_ok =
4256 i386_intel_operand (token_start,
4257 intel_float_operand (mnemonic));
4258 else
4259 operand_ok = i386_att_operand (token_start);
4260
4261 RESTORE_END_STRING (l);
4262 if (!operand_ok)
4263 return NULL;
4264 }
4265 else
4266 {
4267 if (expecting_operand)
4268 {
4269 expecting_operand_after_comma:
4270 as_bad (_("expecting operand after ','; got nothing"));
4271 return NULL;
4272 }
4273 if (*l == ',')
4274 {
4275 as_bad (_("expecting operand before ','; got nothing"));
4276 return NULL;
4277 }
4278 }
4279
4280 /* Now *l must be either ',' or END_OF_INSN. */
4281 if (*l == ',')
4282 {
4283 if (*++l == END_OF_INSN)
4284 {
4285 /* Just skip it, if it's \n complain. */
4286 goto expecting_operand_after_comma;
4287 }
4288 expecting_operand = 1;
4289 }
4290 }
4291 return l;
4292 }
4293
4294 static void
4295 swap_2_operands (int xchg1, int xchg2)
4296 {
4297 union i386_op temp_op;
4298 i386_operand_type temp_type;
4299 enum bfd_reloc_code_real temp_reloc;
4300
4301 temp_type = i.types[xchg2];
4302 i.types[xchg2] = i.types[xchg1];
4303 i.types[xchg1] = temp_type;
4304 temp_op = i.op[xchg2];
4305 i.op[xchg2] = i.op[xchg1];
4306 i.op[xchg1] = temp_op;
4307 temp_reloc = i.reloc[xchg2];
4308 i.reloc[xchg2] = i.reloc[xchg1];
4309 i.reloc[xchg1] = temp_reloc;
4310
4311 if (i.mask)
4312 {
4313 if (i.mask->operand == xchg1)
4314 i.mask->operand = xchg2;
4315 else if (i.mask->operand == xchg2)
4316 i.mask->operand = xchg1;
4317 }
4318 if (i.broadcast)
4319 {
4320 if (i.broadcast->operand == xchg1)
4321 i.broadcast->operand = xchg2;
4322 else if (i.broadcast->operand == xchg2)
4323 i.broadcast->operand = xchg1;
4324 }
4325 if (i.rounding)
4326 {
4327 if (i.rounding->operand == xchg1)
4328 i.rounding->operand = xchg2;
4329 else if (i.rounding->operand == xchg2)
4330 i.rounding->operand = xchg1;
4331 }
4332 }
4333
4334 static void
4335 swap_operands (void)
4336 {
4337 switch (i.operands)
4338 {
4339 case 5:
4340 case 4:
4341 swap_2_operands (1, i.operands - 2);
4342 /* Fall through. */
4343 case 3:
4344 case 2:
4345 swap_2_operands (0, i.operands - 1);
4346 break;
4347 default:
4348 abort ();
4349 }
4350
4351 if (i.mem_operands == 2)
4352 {
4353 const seg_entry *temp_seg;
4354 temp_seg = i.seg[0];
4355 i.seg[0] = i.seg[1];
4356 i.seg[1] = temp_seg;
4357 }
4358 }
4359
4360 /* Try to ensure constant immediates are represented in the smallest
4361 opcode possible. */
4362 static void
4363 optimize_imm (void)
4364 {
4365 char guess_suffix = 0;
4366 int op;
4367
4368 if (i.suffix)
4369 guess_suffix = i.suffix;
4370 else if (i.reg_operands)
4371 {
4372 /* Figure out a suffix from the last register operand specified.
4373 We can't do this properly yet, ie. excluding InOutPortReg,
4374 but the following works for instructions with immediates.
4375 In any case, we can't set i.suffix yet. */
4376 for (op = i.operands; --op >= 0;)
4377 if (i.types[op].bitfield.reg8)
4378 {
4379 guess_suffix = BYTE_MNEM_SUFFIX;
4380 break;
4381 }
4382 else if (i.types[op].bitfield.reg16)
4383 {
4384 guess_suffix = WORD_MNEM_SUFFIX;
4385 break;
4386 }
4387 else if (i.types[op].bitfield.reg32)
4388 {
4389 guess_suffix = LONG_MNEM_SUFFIX;
4390 break;
4391 }
4392 else if (i.types[op].bitfield.reg64)
4393 {
4394 guess_suffix = QWORD_MNEM_SUFFIX;
4395 break;
4396 }
4397 }
4398 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4399 guess_suffix = WORD_MNEM_SUFFIX;
4400
4401 for (op = i.operands; --op >= 0;)
4402 if (operand_type_check (i.types[op], imm))
4403 {
4404 switch (i.op[op].imms->X_op)
4405 {
4406 case O_constant:
4407 /* If a suffix is given, this operand may be shortened. */
4408 switch (guess_suffix)
4409 {
4410 case LONG_MNEM_SUFFIX:
4411 i.types[op].bitfield.imm32 = 1;
4412 i.types[op].bitfield.imm64 = 1;
4413 break;
4414 case WORD_MNEM_SUFFIX:
4415 i.types[op].bitfield.imm16 = 1;
4416 i.types[op].bitfield.imm32 = 1;
4417 i.types[op].bitfield.imm32s = 1;
4418 i.types[op].bitfield.imm64 = 1;
4419 break;
4420 case BYTE_MNEM_SUFFIX:
4421 i.types[op].bitfield.imm8 = 1;
4422 i.types[op].bitfield.imm8s = 1;
4423 i.types[op].bitfield.imm16 = 1;
4424 i.types[op].bitfield.imm32 = 1;
4425 i.types[op].bitfield.imm32s = 1;
4426 i.types[op].bitfield.imm64 = 1;
4427 break;
4428 }
4429
4430 /* If this operand is at most 16 bits, convert it
4431 to a signed 16 bit number before trying to see
4432 whether it will fit in an even smaller size.
4433 This allows a 16-bit operand such as $0xffe0 to
4434 be recognised as within Imm8S range. */
4435 if ((i.types[op].bitfield.imm16)
4436 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4437 {
4438 i.op[op].imms->X_add_number =
4439 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4440 }
4441 #ifdef BFD64
4442 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4443 if ((i.types[op].bitfield.imm32)
4444 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4445 == 0))
4446 {
4447 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4448 ^ ((offsetT) 1 << 31))
4449 - ((offsetT) 1 << 31));
4450 }
4451 #endif
4452 i.types[op]
4453 = operand_type_or (i.types[op],
4454 smallest_imm_type (i.op[op].imms->X_add_number));
4455
4456 /* We must avoid matching of Imm32 templates when 64bit
4457 only immediate is available. */
4458 if (guess_suffix == QWORD_MNEM_SUFFIX)
4459 i.types[op].bitfield.imm32 = 0;
4460 break;
4461
4462 case O_absent:
4463 case O_register:
4464 abort ();
4465
4466 /* Symbols and expressions. */
4467 default:
4468 /* Convert symbolic operand to proper sizes for matching, but don't
4469 prevent matching a set of insns that only supports sizes other
4470 than those matching the insn suffix. */
4471 {
4472 i386_operand_type mask, allowed;
4473 const insn_template *t;
4474
4475 operand_type_set (&mask, 0);
4476 operand_type_set (&allowed, 0);
4477
4478 for (t = current_templates->start;
4479 t < current_templates->end;
4480 ++t)
4481 allowed = operand_type_or (allowed,
4482 t->operand_types[op]);
4483 switch (guess_suffix)
4484 {
4485 case QWORD_MNEM_SUFFIX:
4486 mask.bitfield.imm64 = 1;
4487 mask.bitfield.imm32s = 1;
4488 break;
4489 case LONG_MNEM_SUFFIX:
4490 mask.bitfield.imm32 = 1;
4491 break;
4492 case WORD_MNEM_SUFFIX:
4493 mask.bitfield.imm16 = 1;
4494 break;
4495 case BYTE_MNEM_SUFFIX:
4496 mask.bitfield.imm8 = 1;
4497 break;
4498 default:
4499 break;
4500 }
4501 allowed = operand_type_and (mask, allowed);
4502 if (!operand_type_all_zero (&allowed))
4503 i.types[op] = operand_type_and (i.types[op], mask);
4504 }
4505 break;
4506 }
4507 }
4508 }
4509
4510 /* Try to use the smallest displacement type too. */
4511 static void
4512 optimize_disp (void)
4513 {
4514 int op;
4515
4516 for (op = i.operands; --op >= 0;)
4517 if (operand_type_check (i.types[op], disp))
4518 {
4519 if (i.op[op].disps->X_op == O_constant)
4520 {
4521 offsetT op_disp = i.op[op].disps->X_add_number;
4522
4523 if (i.types[op].bitfield.disp16
4524 && (op_disp & ~(offsetT) 0xffff) == 0)
4525 {
4526 /* If this operand is at most 16 bits, convert
4527 to a signed 16 bit number and don't use 64bit
4528 displacement. */
4529 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4530 i.types[op].bitfield.disp64 = 0;
4531 }
4532 #ifdef BFD64
4533 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4534 if (i.types[op].bitfield.disp32
4535 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4536 {
4537 /* If this operand is at most 32 bits, convert
4538 to a signed 32 bit number and don't use 64bit
4539 displacement. */
4540 op_disp &= (((offsetT) 2 << 31) - 1);
4541 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4542 i.types[op].bitfield.disp64 = 0;
4543 }
4544 #endif
4545 if (!op_disp && i.types[op].bitfield.baseindex)
4546 {
4547 i.types[op].bitfield.disp8 = 0;
4548 i.types[op].bitfield.disp16 = 0;
4549 i.types[op].bitfield.disp32 = 0;
4550 i.types[op].bitfield.disp32s = 0;
4551 i.types[op].bitfield.disp64 = 0;
4552 i.op[op].disps = 0;
4553 i.disp_operands--;
4554 }
4555 else if (flag_code == CODE_64BIT)
4556 {
4557 if (fits_in_signed_long (op_disp))
4558 {
4559 i.types[op].bitfield.disp64 = 0;
4560 i.types[op].bitfield.disp32s = 1;
4561 }
4562 if (i.prefix[ADDR_PREFIX]
4563 && fits_in_unsigned_long (op_disp))
4564 i.types[op].bitfield.disp32 = 1;
4565 }
4566 if ((i.types[op].bitfield.disp32
4567 || i.types[op].bitfield.disp32s
4568 || i.types[op].bitfield.disp16)
4569 && fits_in_signed_byte (op_disp))
4570 i.types[op].bitfield.disp8 = 1;
4571 }
4572 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4573 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4574 {
4575 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4576 i.op[op].disps, 0, i.reloc[op]);
4577 i.types[op].bitfield.disp8 = 0;
4578 i.types[op].bitfield.disp16 = 0;
4579 i.types[op].bitfield.disp32 = 0;
4580 i.types[op].bitfield.disp32s = 0;
4581 i.types[op].bitfield.disp64 = 0;
4582 }
4583 else
4584 /* We only support 64bit displacement on constants. */
4585 i.types[op].bitfield.disp64 = 0;
4586 }
4587 }
4588
4589 /* Check if operands are valid for the instruction. */
4590
4591 static int
4592 check_VecOperands (const insn_template *t)
4593 {
4594 unsigned int op;
4595
4596 /* Without VSIB byte, we can't have a vector register for index. */
4597 if (!t->opcode_modifier.vecsib
4598 && i.index_reg
4599 && (i.index_reg->reg_type.bitfield.regxmm
4600 || i.index_reg->reg_type.bitfield.regymm
4601 || i.index_reg->reg_type.bitfield.regzmm))
4602 {
4603 i.error = unsupported_vector_index_register;
4604 return 1;
4605 }
4606
4607 /* Check if default mask is allowed. */
4608 if (t->opcode_modifier.nodefmask
4609 && (!i.mask || i.mask->mask->reg_num == 0))
4610 {
4611 i.error = no_default_mask;
4612 return 1;
4613 }
4614
4615 /* For VSIB byte, we need a vector register for index, and all vector
4616 registers must be distinct. */
4617 if (t->opcode_modifier.vecsib)
4618 {
4619 if (!i.index_reg
4620 || !((t->opcode_modifier.vecsib == VecSIB128
4621 && i.index_reg->reg_type.bitfield.regxmm)
4622 || (t->opcode_modifier.vecsib == VecSIB256
4623 && i.index_reg->reg_type.bitfield.regymm)
4624 || (t->opcode_modifier.vecsib == VecSIB512
4625 && i.index_reg->reg_type.bitfield.regzmm)))
4626 {
4627 i.error = invalid_vsib_address;
4628 return 1;
4629 }
4630
4631 gas_assert (i.reg_operands == 2 || i.mask);
4632 if (i.reg_operands == 2 && !i.mask)
4633 {
4634 gas_assert (i.types[0].bitfield.regxmm
4635 || i.types[0].bitfield.regymm);
4636 gas_assert (i.types[2].bitfield.regxmm
4637 || i.types[2].bitfield.regymm);
4638 if (operand_check == check_none)
4639 return 0;
4640 if (register_number (i.op[0].regs)
4641 != register_number (i.index_reg)
4642 && register_number (i.op[2].regs)
4643 != register_number (i.index_reg)
4644 && register_number (i.op[0].regs)
4645 != register_number (i.op[2].regs))
4646 return 0;
4647 if (operand_check == check_error)
4648 {
4649 i.error = invalid_vector_register_set;
4650 return 1;
4651 }
4652 as_warn (_("mask, index, and destination registers should be distinct"));
4653 }
4654 else if (i.reg_operands == 1 && i.mask)
4655 {
4656 if ((i.types[1].bitfield.regymm
4657 || i.types[1].bitfield.regzmm)
4658 && (register_number (i.op[1].regs)
4659 == register_number (i.index_reg)))
4660 {
4661 if (operand_check == check_error)
4662 {
4663 i.error = invalid_vector_register_set;
4664 return 1;
4665 }
4666 if (operand_check != check_none)
4667 as_warn (_("index and destination registers should be distinct"));
4668 }
4669 }
4670 }
4671
4672 /* Check if broadcast is supported by the instruction and is applied
4673 to the memory operand. */
4674 if (i.broadcast)
4675 {
4676 int broadcasted_opnd_size;
4677
4678 /* Check if specified broadcast is supported in this instruction,
4679 and it's applied to memory operand of DWORD or QWORD type,
4680 depending on VecESize. */
4681 if (i.broadcast->type != t->opcode_modifier.broadcast
4682 || !i.types[i.broadcast->operand].bitfield.mem
4683 || (t->opcode_modifier.vecesize == 0
4684 && !i.types[i.broadcast->operand].bitfield.dword
4685 && !i.types[i.broadcast->operand].bitfield.unspecified)
4686 || (t->opcode_modifier.vecesize == 1
4687 && !i.types[i.broadcast->operand].bitfield.qword
4688 && !i.types[i.broadcast->operand].bitfield.unspecified))
4689 goto bad_broadcast;
4690
4691 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4692 if (i.broadcast->type == BROADCAST_1TO16)
4693 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4694 else if (i.broadcast->type == BROADCAST_1TO8)
4695 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4696 else if (i.broadcast->type == BROADCAST_1TO4)
4697 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4698 else if (i.broadcast->type == BROADCAST_1TO2)
4699 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
4700 else
4701 goto bad_broadcast;
4702
4703 if ((broadcasted_opnd_size == 256
4704 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4705 || (broadcasted_opnd_size == 512
4706 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4707 {
4708 bad_broadcast:
4709 i.error = unsupported_broadcast;
4710 return 1;
4711 }
4712 }
4713 /* If broadcast is supported in this instruction, we need to check if
4714 operand of one-element size isn't specified without broadcast. */
4715 else if (t->opcode_modifier.broadcast && i.mem_operands)
4716 {
4717 /* Find memory operand. */
4718 for (op = 0; op < i.operands; op++)
4719 if (operand_type_check (i.types[op], anymem))
4720 break;
4721 gas_assert (op < i.operands);
4722 /* Check size of the memory operand. */
4723 if ((t->opcode_modifier.vecesize == 0
4724 && i.types[op].bitfield.dword)
4725 || (t->opcode_modifier.vecesize == 1
4726 && i.types[op].bitfield.qword))
4727 {
4728 i.error = broadcast_needed;
4729 return 1;
4730 }
4731 }
4732
4733 /* Check if requested masking is supported. */
4734 if (i.mask
4735 && (!t->opcode_modifier.masking
4736 || (i.mask->zeroing
4737 && t->opcode_modifier.masking == MERGING_MASKING)))
4738 {
4739 i.error = unsupported_masking;
4740 return 1;
4741 }
4742
4743 /* Check if masking is applied to dest operand. */
4744 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4745 {
4746 i.error = mask_not_on_destination;
4747 return 1;
4748 }
4749
4750 /* Check RC/SAE. */
4751 if (i.rounding)
4752 {
4753 if ((i.rounding->type != saeonly
4754 && !t->opcode_modifier.staticrounding)
4755 || (i.rounding->type == saeonly
4756 && (t->opcode_modifier.staticrounding
4757 || !t->opcode_modifier.sae)))
4758 {
4759 i.error = unsupported_rc_sae;
4760 return 1;
4761 }
4762 /* If the instruction has several immediate operands and one of
4763 them is rounding, the rounding operand should be the last
4764 immediate operand. */
4765 if (i.imm_operands > 1
4766 && i.rounding->operand != (int) (i.imm_operands - 1))
4767 {
4768 i.error = rc_sae_operand_not_last_imm;
4769 return 1;
4770 }
4771 }
4772
4773 /* Check vector Disp8 operand. */
4774 if (t->opcode_modifier.disp8memshift)
4775 {
4776 if (i.broadcast)
4777 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4778 else
4779 i.memshift = t->opcode_modifier.disp8memshift;
4780
4781 for (op = 0; op < i.operands; op++)
4782 if (operand_type_check (i.types[op], disp)
4783 && i.op[op].disps->X_op == O_constant)
4784 {
4785 offsetT value = i.op[op].disps->X_add_number;
4786 int vec_disp8_ok
4787 = (i.disp_encoding != disp_encoding_32bit
4788 && fits_in_vec_disp8 (value));
4789 if (t->operand_types [op].bitfield.vec_disp8)
4790 {
4791 if (vec_disp8_ok)
4792 i.types[op].bitfield.vec_disp8 = 1;
4793 else
4794 {
4795 /* Vector insn can only have Vec_Disp8/Disp32 in
4796 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4797 mode. */
4798 i.types[op].bitfield.disp8 = 0;
4799 if (flag_code != CODE_16BIT)
4800 i.types[op].bitfield.disp16 = 0;
4801 }
4802 }
4803 else if (flag_code != CODE_16BIT)
4804 {
4805 /* One form of this instruction supports vector Disp8.
4806 Try vector Disp8 if we need to use Disp32. */
4807 if (vec_disp8_ok && !fits_in_signed_byte (value))
4808 {
4809 i.error = try_vector_disp8;
4810 return 1;
4811 }
4812 }
4813 }
4814 }
4815 else
4816 i.memshift = -1;
4817
4818 return 0;
4819 }
4820
4821 /* Check if operands are valid for the instruction. Update VEX
4822 operand types. */
4823
4824 static int
4825 VEX_check_operands (const insn_template *t)
4826 {
4827 if (i.vec_encoding == vex_encoding_evex)
4828 {
4829 /* This instruction must be encoded with EVEX prefix. */
4830 if (!t->opcode_modifier.evex)
4831 {
4832 i.error = unsupported;
4833 return 1;
4834 }
4835 return 0;
4836 }
4837
4838 if (!t->opcode_modifier.vex)
4839 {
4840 /* This instruction template doesn't have VEX prefix. */
4841 if (i.vec_encoding != vex_encoding_default)
4842 {
4843 i.error = unsupported;
4844 return 1;
4845 }
4846 return 0;
4847 }
4848
4849 /* Only check VEX_Imm4, which must be the first operand. */
4850 if (t->operand_types[0].bitfield.vec_imm4)
4851 {
4852 if (i.op[0].imms->X_op != O_constant
4853 || !fits_in_imm4 (i.op[0].imms->X_add_number))
4854 {
4855 i.error = bad_imm4;
4856 return 1;
4857 }
4858
4859 /* Turn off Imm8 so that update_imm won't complain. */
4860 i.types[0] = vec_imm4;
4861 }
4862
4863 return 0;
4864 }
4865
4866 static const insn_template *
4867 match_template (char mnem_suffix)
4868 {
4869 /* Points to template once we've found it. */
4870 const insn_template *t;
4871 i386_operand_type overlap0, overlap1, overlap2, overlap3;
4872 i386_operand_type overlap4;
4873 unsigned int found_reverse_match;
4874 i386_opcode_modifier suffix_check, mnemsuf_check;
4875 i386_operand_type operand_types [MAX_OPERANDS];
4876 int addr_prefix_disp;
4877 unsigned int j;
4878 unsigned int found_cpu_match;
4879 unsigned int check_register;
4880 enum i386_error specific_error = 0;
4881
4882 #if MAX_OPERANDS != 5
4883 # error "MAX_OPERANDS must be 5."
4884 #endif
4885
4886 found_reverse_match = 0;
4887 addr_prefix_disp = -1;
4888
4889 memset (&suffix_check, 0, sizeof (suffix_check));
4890 if (i.suffix == BYTE_MNEM_SUFFIX)
4891 suffix_check.no_bsuf = 1;
4892 else if (i.suffix == WORD_MNEM_SUFFIX)
4893 suffix_check.no_wsuf = 1;
4894 else if (i.suffix == SHORT_MNEM_SUFFIX)
4895 suffix_check.no_ssuf = 1;
4896 else if (i.suffix == LONG_MNEM_SUFFIX)
4897 suffix_check.no_lsuf = 1;
4898 else if (i.suffix == QWORD_MNEM_SUFFIX)
4899 suffix_check.no_qsuf = 1;
4900 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4901 suffix_check.no_ldsuf = 1;
4902
4903 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
4904 if (intel_syntax)
4905 {
4906 switch (mnem_suffix)
4907 {
4908 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
4909 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
4910 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
4911 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
4912 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
4913 }
4914 }
4915
4916 /* Must have right number of operands. */
4917 i.error = number_of_operands_mismatch;
4918
4919 for (t = current_templates->start; t < current_templates->end; t++)
4920 {
4921 addr_prefix_disp = -1;
4922
4923 if (i.operands != t->operands)
4924 continue;
4925
4926 /* Check processor support. */
4927 i.error = unsupported;
4928 found_cpu_match = (cpu_flags_match (t)
4929 == CPU_FLAGS_PERFECT_MATCH);
4930 if (!found_cpu_match)
4931 continue;
4932
4933 /* Check old gcc support. */
4934 i.error = old_gcc_only;
4935 if (!old_gcc && t->opcode_modifier.oldgcc)
4936 continue;
4937
4938 /* Check AT&T mnemonic. */
4939 i.error = unsupported_with_intel_mnemonic;
4940 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4941 continue;
4942
4943 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
4944 i.error = unsupported_syntax;
4945 if ((intel_syntax && t->opcode_modifier.attsyntax)
4946 || (!intel_syntax && t->opcode_modifier.intelsyntax)
4947 || (intel64 && t->opcode_modifier.amd64)
4948 || (!intel64 && t->opcode_modifier.intel64))
4949 continue;
4950
4951 /* Check the suffix, except for some instructions in intel mode. */
4952 i.error = invalid_instruction_suffix;
4953 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4954 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4955 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4956 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4957 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4958 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4959 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4960 continue;
4961 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
4962 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
4963 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
4964 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
4965 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
4966 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
4967 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
4968 continue;
4969
4970 if (!operand_size_match (t))
4971 continue;
4972
4973 for (j = 0; j < MAX_OPERANDS; j++)
4974 operand_types[j] = t->operand_types[j];
4975
4976 /* In general, don't allow 64-bit operands in 32-bit mode. */
4977 if (i.suffix == QWORD_MNEM_SUFFIX
4978 && flag_code != CODE_64BIT
4979 && (intel_syntax
4980 ? (!t->opcode_modifier.ignoresize
4981 && !intel_float_operand (t->name))
4982 : intel_float_operand (t->name) != 2)
4983 && ((!operand_types[0].bitfield.regmmx
4984 && !operand_types[0].bitfield.regxmm
4985 && !operand_types[0].bitfield.regymm
4986 && !operand_types[0].bitfield.regzmm)
4987 || (!operand_types[t->operands > 1].bitfield.regmmx
4988 && operand_types[t->operands > 1].bitfield.regxmm
4989 && operand_types[t->operands > 1].bitfield.regymm
4990 && operand_types[t->operands > 1].bitfield.regzmm))
4991 && (t->base_opcode != 0x0fc7
4992 || t->extension_opcode != 1 /* cmpxchg8b */))
4993 continue;
4994
4995 /* In general, don't allow 32-bit operands on pre-386. */
4996 else if (i.suffix == LONG_MNEM_SUFFIX
4997 && !cpu_arch_flags.bitfield.cpui386
4998 && (intel_syntax
4999 ? (!t->opcode_modifier.ignoresize
5000 && !intel_float_operand (t->name))
5001 : intel_float_operand (t->name) != 2)
5002 && ((!operand_types[0].bitfield.regmmx
5003 && !operand_types[0].bitfield.regxmm)
5004 || (!operand_types[t->operands > 1].bitfield.regmmx
5005 && operand_types[t->operands > 1].bitfield.regxmm)))
5006 continue;
5007
5008 /* Do not verify operands when there are none. */
5009 else
5010 {
5011 if (!t->operands)
5012 /* We've found a match; break out of loop. */
5013 break;
5014 }
5015
5016 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5017 into Disp32/Disp16/Disp32 operand. */
5018 if (i.prefix[ADDR_PREFIX] != 0)
5019 {
5020 /* There should be only one Disp operand. */
5021 switch (flag_code)
5022 {
5023 case CODE_16BIT:
5024 for (j = 0; j < MAX_OPERANDS; j++)
5025 {
5026 if (operand_types[j].bitfield.disp16)
5027 {
5028 addr_prefix_disp = j;
5029 operand_types[j].bitfield.disp32 = 1;
5030 operand_types[j].bitfield.disp16 = 0;
5031 break;
5032 }
5033 }
5034 break;
5035 case CODE_32BIT:
5036 for (j = 0; j < MAX_OPERANDS; j++)
5037 {
5038 if (operand_types[j].bitfield.disp32)
5039 {
5040 addr_prefix_disp = j;
5041 operand_types[j].bitfield.disp32 = 0;
5042 operand_types[j].bitfield.disp16 = 1;
5043 break;
5044 }
5045 }
5046 break;
5047 case CODE_64BIT:
5048 for (j = 0; j < MAX_OPERANDS; j++)
5049 {
5050 if (operand_types[j].bitfield.disp64)
5051 {
5052 addr_prefix_disp = j;
5053 operand_types[j].bitfield.disp64 = 0;
5054 operand_types[j].bitfield.disp32 = 1;
5055 break;
5056 }
5057 }
5058 break;
5059 }
5060 }
5061
5062 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5063 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5064 continue;
5065
5066 /* We check register size if needed. */
5067 check_register = t->opcode_modifier.checkregsize;
5068 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5069 switch (t->operands)
5070 {
5071 case 1:
5072 if (!operand_type_match (overlap0, i.types[0]))
5073 continue;
5074 break;
5075 case 2:
5076 /* xchg %eax, %eax is a special case. It is an alias for nop
5077 only in 32bit mode and we can use opcode 0x90. In 64bit
5078 mode, we can't use 0x90 for xchg %eax, %eax since it should
5079 zero-extend %eax to %rax. */
5080 if (flag_code == CODE_64BIT
5081 && t->base_opcode == 0x90
5082 && operand_type_equal (&i.types [0], &acc32)
5083 && operand_type_equal (&i.types [1], &acc32))
5084 continue;
5085 /* If we want store form, we reverse direction of operands. */
5086 if (i.dir_encoding == dir_encoding_store
5087 && t->opcode_modifier.d)
5088 goto check_reverse;
5089 /* Fall through. */
5090
5091 case 3:
5092 /* If we want store form, we skip the current load. */
5093 if (i.dir_encoding == dir_encoding_store
5094 && i.mem_operands == 0
5095 && t->opcode_modifier.load)
5096 continue;
5097 /* Fall through. */
5098 case 4:
5099 case 5:
5100 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5101 if (!operand_type_match (overlap0, i.types[0])
5102 || !operand_type_match (overlap1, i.types[1])
5103 || (check_register
5104 && !operand_type_register_match (overlap0, i.types[0],
5105 operand_types[0],
5106 overlap1, i.types[1],
5107 operand_types[1])))
5108 {
5109 /* Check if other direction is valid ... */
5110 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
5111 continue;
5112
5113 check_reverse:
5114 /* Try reversing direction of operands. */
5115 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5116 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5117 if (!operand_type_match (overlap0, i.types[0])
5118 || !operand_type_match (overlap1, i.types[1])
5119 || (check_register
5120 && !operand_type_register_match (overlap0,
5121 i.types[0],
5122 operand_types[1],
5123 overlap1,
5124 i.types[1],
5125 operand_types[0])))
5126 {
5127 /* Does not match either direction. */
5128 continue;
5129 }
5130 /* found_reverse_match holds which of D or FloatDR
5131 we've found. */
5132 if (t->opcode_modifier.d)
5133 found_reverse_match = Opcode_D;
5134 else if (t->opcode_modifier.floatd)
5135 found_reverse_match = Opcode_FloatD;
5136 else
5137 found_reverse_match = 0;
5138 if (t->opcode_modifier.floatr)
5139 found_reverse_match |= Opcode_FloatR;
5140 }
5141 else
5142 {
5143 /* Found a forward 2 operand match here. */
5144 switch (t->operands)
5145 {
5146 case 5:
5147 overlap4 = operand_type_and (i.types[4],
5148 operand_types[4]);
5149 /* Fall through. */
5150 case 4:
5151 overlap3 = operand_type_and (i.types[3],
5152 operand_types[3]);
5153 /* Fall through. */
5154 case 3:
5155 overlap2 = operand_type_and (i.types[2],
5156 operand_types[2]);
5157 break;
5158 }
5159
5160 switch (t->operands)
5161 {
5162 case 5:
5163 if (!operand_type_match (overlap4, i.types[4])
5164 || !operand_type_register_match (overlap3,
5165 i.types[3],
5166 operand_types[3],
5167 overlap4,
5168 i.types[4],
5169 operand_types[4]))
5170 continue;
5171 /* Fall through. */
5172 case 4:
5173 if (!operand_type_match (overlap3, i.types[3])
5174 || (check_register
5175 && !operand_type_register_match (overlap2,
5176 i.types[2],
5177 operand_types[2],
5178 overlap3,
5179 i.types[3],
5180 operand_types[3])))
5181 continue;
5182 /* Fall through. */
5183 case 3:
5184 /* Here we make use of the fact that there are no
5185 reverse match 3 operand instructions, and all 3
5186 operand instructions only need to be checked for
5187 register consistency between operands 2 and 3. */
5188 if (!operand_type_match (overlap2, i.types[2])
5189 || (check_register
5190 && !operand_type_register_match (overlap1,
5191 i.types[1],
5192 operand_types[1],
5193 overlap2,
5194 i.types[2],
5195 operand_types[2])))
5196 continue;
5197 break;
5198 }
5199 }
5200 /* Found either forward/reverse 2, 3 or 4 operand match here:
5201 slip through to break. */
5202 }
5203 if (!found_cpu_match)
5204 {
5205 found_reverse_match = 0;
5206 continue;
5207 }
5208
5209 /* Check if vector and VEX operands are valid. */
5210 if (check_VecOperands (t) || VEX_check_operands (t))
5211 {
5212 specific_error = i.error;
5213 continue;
5214 }
5215
5216 /* We've found a match; break out of loop. */
5217 break;
5218 }
5219
5220 if (t == current_templates->end)
5221 {
5222 /* We found no match. */
5223 const char *err_msg;
5224 switch (specific_error ? specific_error : i.error)
5225 {
5226 default:
5227 abort ();
5228 case operand_size_mismatch:
5229 err_msg = _("operand size mismatch");
5230 break;
5231 case operand_type_mismatch:
5232 err_msg = _("operand type mismatch");
5233 break;
5234 case register_type_mismatch:
5235 err_msg = _("register type mismatch");
5236 break;
5237 case number_of_operands_mismatch:
5238 err_msg = _("number of operands mismatch");
5239 break;
5240 case invalid_instruction_suffix:
5241 err_msg = _("invalid instruction suffix");
5242 break;
5243 case bad_imm4:
5244 err_msg = _("constant doesn't fit in 4 bits");
5245 break;
5246 case old_gcc_only:
5247 err_msg = _("only supported with old gcc");
5248 break;
5249 case unsupported_with_intel_mnemonic:
5250 err_msg = _("unsupported with Intel mnemonic");
5251 break;
5252 case unsupported_syntax:
5253 err_msg = _("unsupported syntax");
5254 break;
5255 case unsupported:
5256 as_bad (_("unsupported instruction `%s'"),
5257 current_templates->start->name);
5258 return NULL;
5259 case invalid_vsib_address:
5260 err_msg = _("invalid VSIB address");
5261 break;
5262 case invalid_vector_register_set:
5263 err_msg = _("mask, index, and destination registers must be distinct");
5264 break;
5265 case unsupported_vector_index_register:
5266 err_msg = _("unsupported vector index register");
5267 break;
5268 case unsupported_broadcast:
5269 err_msg = _("unsupported broadcast");
5270 break;
5271 case broadcast_not_on_src_operand:
5272 err_msg = _("broadcast not on source memory operand");
5273 break;
5274 case broadcast_needed:
5275 err_msg = _("broadcast is needed for operand of such type");
5276 break;
5277 case unsupported_masking:
5278 err_msg = _("unsupported masking");
5279 break;
5280 case mask_not_on_destination:
5281 err_msg = _("mask not on destination operand");
5282 break;
5283 case no_default_mask:
5284 err_msg = _("default mask isn't allowed");
5285 break;
5286 case unsupported_rc_sae:
5287 err_msg = _("unsupported static rounding/sae");
5288 break;
5289 case rc_sae_operand_not_last_imm:
5290 if (intel_syntax)
5291 err_msg = _("RC/SAE operand must precede immediate operands");
5292 else
5293 err_msg = _("RC/SAE operand must follow immediate operands");
5294 break;
5295 case invalid_register_operand:
5296 err_msg = _("invalid register operand");
5297 break;
5298 }
5299 as_bad (_("%s for `%s'"), err_msg,
5300 current_templates->start->name);
5301 return NULL;
5302 }
5303
5304 if (!quiet_warnings)
5305 {
5306 if (!intel_syntax
5307 && (i.types[0].bitfield.jumpabsolute
5308 != operand_types[0].bitfield.jumpabsolute))
5309 {
5310 as_warn (_("indirect %s without `*'"), t->name);
5311 }
5312
5313 if (t->opcode_modifier.isprefix
5314 && t->opcode_modifier.ignoresize)
5315 {
5316 /* Warn them that a data or address size prefix doesn't
5317 affect assembly of the next line of code. */
5318 as_warn (_("stand-alone `%s' prefix"), t->name);
5319 }
5320 }
5321
5322 /* Copy the template we found. */
5323 i.tm = *t;
5324
5325 if (addr_prefix_disp != -1)
5326 i.tm.operand_types[addr_prefix_disp]
5327 = operand_types[addr_prefix_disp];
5328
5329 if (found_reverse_match)
5330 {
5331 /* If we found a reverse match we must alter the opcode
5332 direction bit. found_reverse_match holds bits to change
5333 (different for int & float insns). */
5334
5335 i.tm.base_opcode ^= found_reverse_match;
5336
5337 i.tm.operand_types[0] = operand_types[1];
5338 i.tm.operand_types[1] = operand_types[0];
5339 }
5340
5341 return t;
5342 }
5343
5344 static int
5345 check_string (void)
5346 {
5347 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5348 if (i.tm.operand_types[mem_op].bitfield.esseg)
5349 {
5350 if (i.seg[0] != NULL && i.seg[0] != &es)
5351 {
5352 as_bad (_("`%s' operand %d must use `%ses' segment"),
5353 i.tm.name,
5354 mem_op + 1,
5355 register_prefix);
5356 return 0;
5357 }
5358 /* There's only ever one segment override allowed per instruction.
5359 This instruction possibly has a legal segment override on the
5360 second operand, so copy the segment to where non-string
5361 instructions store it, allowing common code. */
5362 i.seg[0] = i.seg[1];
5363 }
5364 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5365 {
5366 if (i.seg[1] != NULL && i.seg[1] != &es)
5367 {
5368 as_bad (_("`%s' operand %d must use `%ses' segment"),
5369 i.tm.name,
5370 mem_op + 2,
5371 register_prefix);
5372 return 0;
5373 }
5374 }
5375 return 1;
5376 }
5377
5378 static int
5379 process_suffix (void)
5380 {
5381 /* If matched instruction specifies an explicit instruction mnemonic
5382 suffix, use it. */
5383 if (i.tm.opcode_modifier.size16)
5384 i.suffix = WORD_MNEM_SUFFIX;
5385 else if (i.tm.opcode_modifier.size32)
5386 i.suffix = LONG_MNEM_SUFFIX;
5387 else if (i.tm.opcode_modifier.size64)
5388 i.suffix = QWORD_MNEM_SUFFIX;
5389 else if (i.reg_operands)
5390 {
5391 /* If there's no instruction mnemonic suffix we try to invent one
5392 based on register operands. */
5393 if (!i.suffix)
5394 {
5395 /* We take i.suffix from the last register operand specified,
5396 Destination register type is more significant than source
5397 register type. crc32 in SSE4.2 prefers source register
5398 type. */
5399 if (i.tm.base_opcode == 0xf20f38f1)
5400 {
5401 if (i.types[0].bitfield.reg16)
5402 i.suffix = WORD_MNEM_SUFFIX;
5403 else if (i.types[0].bitfield.reg32)
5404 i.suffix = LONG_MNEM_SUFFIX;
5405 else if (i.types[0].bitfield.reg64)
5406 i.suffix = QWORD_MNEM_SUFFIX;
5407 }
5408 else if (i.tm.base_opcode == 0xf20f38f0)
5409 {
5410 if (i.types[0].bitfield.reg8)
5411 i.suffix = BYTE_MNEM_SUFFIX;
5412 }
5413
5414 if (!i.suffix)
5415 {
5416 int op;
5417
5418 if (i.tm.base_opcode == 0xf20f38f1
5419 || i.tm.base_opcode == 0xf20f38f0)
5420 {
5421 /* We have to know the operand size for crc32. */
5422 as_bad (_("ambiguous memory operand size for `%s`"),
5423 i.tm.name);
5424 return 0;
5425 }
5426
5427 for (op = i.operands; --op >= 0;)
5428 if (!i.tm.operand_types[op].bitfield.inoutportreg)
5429 {
5430 if (i.types[op].bitfield.reg8)
5431 {
5432 i.suffix = BYTE_MNEM_SUFFIX;
5433 break;
5434 }
5435 else if (i.types[op].bitfield.reg16)
5436 {
5437 i.suffix = WORD_MNEM_SUFFIX;
5438 break;
5439 }
5440 else if (i.types[op].bitfield.reg32)
5441 {
5442 i.suffix = LONG_MNEM_SUFFIX;
5443 break;
5444 }
5445 else if (i.types[op].bitfield.reg64)
5446 {
5447 i.suffix = QWORD_MNEM_SUFFIX;
5448 break;
5449 }
5450 }
5451 }
5452 }
5453 else if (i.suffix == BYTE_MNEM_SUFFIX)
5454 {
5455 if (intel_syntax
5456 && i.tm.opcode_modifier.ignoresize
5457 && i.tm.opcode_modifier.no_bsuf)
5458 i.suffix = 0;
5459 else if (!check_byte_reg ())
5460 return 0;
5461 }
5462 else if (i.suffix == LONG_MNEM_SUFFIX)
5463 {
5464 if (intel_syntax
5465 && i.tm.opcode_modifier.ignoresize
5466 && i.tm.opcode_modifier.no_lsuf)
5467 i.suffix = 0;
5468 else if (!check_long_reg ())
5469 return 0;
5470 }
5471 else if (i.suffix == QWORD_MNEM_SUFFIX)
5472 {
5473 if (intel_syntax
5474 && i.tm.opcode_modifier.ignoresize
5475 && i.tm.opcode_modifier.no_qsuf)
5476 i.suffix = 0;
5477 else if (!check_qword_reg ())
5478 return 0;
5479 }
5480 else if (i.suffix == WORD_MNEM_SUFFIX)
5481 {
5482 if (intel_syntax
5483 && i.tm.opcode_modifier.ignoresize
5484 && i.tm.opcode_modifier.no_wsuf)
5485 i.suffix = 0;
5486 else if (!check_word_reg ())
5487 return 0;
5488 }
5489 else if (i.suffix == XMMWORD_MNEM_SUFFIX
5490 || i.suffix == YMMWORD_MNEM_SUFFIX
5491 || i.suffix == ZMMWORD_MNEM_SUFFIX)
5492 {
5493 /* Skip if the instruction has x/y/z suffix. match_template
5494 should check if it is a valid suffix. */
5495 }
5496 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5497 /* Do nothing if the instruction is going to ignore the prefix. */
5498 ;
5499 else
5500 abort ();
5501 }
5502 else if (i.tm.opcode_modifier.defaultsize
5503 && !i.suffix
5504 /* exclude fldenv/frstor/fsave/fstenv */
5505 && i.tm.opcode_modifier.no_ssuf)
5506 {
5507 i.suffix = stackop_size;
5508 }
5509 else if (intel_syntax
5510 && !i.suffix
5511 && (i.tm.operand_types[0].bitfield.jumpabsolute
5512 || i.tm.opcode_modifier.jumpbyte
5513 || i.tm.opcode_modifier.jumpintersegment
5514 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5515 && i.tm.extension_opcode <= 3)))
5516 {
5517 switch (flag_code)
5518 {
5519 case CODE_64BIT:
5520 if (!i.tm.opcode_modifier.no_qsuf)
5521 {
5522 i.suffix = QWORD_MNEM_SUFFIX;
5523 break;
5524 }
5525 /* Fall through. */
5526 case CODE_32BIT:
5527 if (!i.tm.opcode_modifier.no_lsuf)
5528 i.suffix = LONG_MNEM_SUFFIX;
5529 break;
5530 case CODE_16BIT:
5531 if (!i.tm.opcode_modifier.no_wsuf)
5532 i.suffix = WORD_MNEM_SUFFIX;
5533 break;
5534 }
5535 }
5536
5537 if (!i.suffix)
5538 {
5539 if (!intel_syntax)
5540 {
5541 if (i.tm.opcode_modifier.w)
5542 {
5543 as_bad (_("no instruction mnemonic suffix given and "
5544 "no register operands; can't size instruction"));
5545 return 0;
5546 }
5547 }
5548 else
5549 {
5550 unsigned int suffixes;
5551
5552 suffixes = !i.tm.opcode_modifier.no_bsuf;
5553 if (!i.tm.opcode_modifier.no_wsuf)
5554 suffixes |= 1 << 1;
5555 if (!i.tm.opcode_modifier.no_lsuf)
5556 suffixes |= 1 << 2;
5557 if (!i.tm.opcode_modifier.no_ldsuf)
5558 suffixes |= 1 << 3;
5559 if (!i.tm.opcode_modifier.no_ssuf)
5560 suffixes |= 1 << 4;
5561 if (!i.tm.opcode_modifier.no_qsuf)
5562 suffixes |= 1 << 5;
5563
5564 /* There are more than suffix matches. */
5565 if (i.tm.opcode_modifier.w
5566 || ((suffixes & (suffixes - 1))
5567 && !i.tm.opcode_modifier.defaultsize
5568 && !i.tm.opcode_modifier.ignoresize))
5569 {
5570 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5571 return 0;
5572 }
5573 }
5574 }
5575
5576 /* Change the opcode based on the operand size given by i.suffix;
5577 We don't need to change things for byte insns. */
5578
5579 if (i.suffix
5580 && i.suffix != BYTE_MNEM_SUFFIX
5581 && i.suffix != XMMWORD_MNEM_SUFFIX
5582 && i.suffix != YMMWORD_MNEM_SUFFIX
5583 && i.suffix != ZMMWORD_MNEM_SUFFIX)
5584 {
5585 /* It's not a byte, select word/dword operation. */
5586 if (i.tm.opcode_modifier.w)
5587 {
5588 if (i.tm.opcode_modifier.shortform)
5589 i.tm.base_opcode |= 8;
5590 else
5591 i.tm.base_opcode |= 1;
5592 }
5593
5594 /* Now select between word & dword operations via the operand
5595 size prefix, except for instructions that will ignore this
5596 prefix anyway. */
5597 if (i.tm.opcode_modifier.addrprefixop0)
5598 {
5599 /* The address size override prefix changes the size of the
5600 first operand. */
5601 if ((flag_code == CODE_32BIT
5602 && i.op->regs[0].reg_type.bitfield.reg16)
5603 || (flag_code != CODE_32BIT
5604 && i.op->regs[0].reg_type.bitfield.reg32))
5605 if (!add_prefix (ADDR_PREFIX_OPCODE))
5606 return 0;
5607 }
5608 else if (i.suffix != QWORD_MNEM_SUFFIX
5609 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5610 && !i.tm.opcode_modifier.ignoresize
5611 && !i.tm.opcode_modifier.floatmf
5612 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5613 || (flag_code == CODE_64BIT
5614 && i.tm.opcode_modifier.jumpbyte)))
5615 {
5616 unsigned int prefix = DATA_PREFIX_OPCODE;
5617
5618 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5619 prefix = ADDR_PREFIX_OPCODE;
5620
5621 if (!add_prefix (prefix))
5622 return 0;
5623 }
5624
5625 /* Set mode64 for an operand. */
5626 if (i.suffix == QWORD_MNEM_SUFFIX
5627 && flag_code == CODE_64BIT
5628 && !i.tm.opcode_modifier.norex64)
5629 {
5630 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5631 need rex64. cmpxchg8b is also a special case. */
5632 if (! (i.operands == 2
5633 && i.tm.base_opcode == 0x90
5634 && i.tm.extension_opcode == None
5635 && operand_type_equal (&i.types [0], &acc64)
5636 && operand_type_equal (&i.types [1], &acc64))
5637 && ! (i.operands == 1
5638 && i.tm.base_opcode == 0xfc7
5639 && i.tm.extension_opcode == 1
5640 && !operand_type_check (i.types [0], reg)
5641 && operand_type_check (i.types [0], anymem)))
5642 i.rex |= REX_W;
5643 }
5644
5645 /* Size floating point instruction. */
5646 if (i.suffix == LONG_MNEM_SUFFIX)
5647 if (i.tm.opcode_modifier.floatmf)
5648 i.tm.base_opcode ^= 4;
5649 }
5650
5651 return 1;
5652 }
5653
5654 static int
5655 check_byte_reg (void)
5656 {
5657 int op;
5658
5659 for (op = i.operands; --op >= 0;)
5660 {
5661 /* If this is an eight bit register, it's OK. If it's the 16 or
5662 32 bit version of an eight bit register, we will just use the
5663 low portion, and that's OK too. */
5664 if (i.types[op].bitfield.reg8)
5665 continue;
5666
5667 /* I/O port address operands are OK too. */
5668 if (i.tm.operand_types[op].bitfield.inoutportreg)
5669 continue;
5670
5671 /* crc32 doesn't generate this warning. */
5672 if (i.tm.base_opcode == 0xf20f38f0)
5673 continue;
5674
5675 if ((i.types[op].bitfield.reg16
5676 || i.types[op].bitfield.reg32
5677 || i.types[op].bitfield.reg64)
5678 && i.op[op].regs->reg_num < 4
5679 /* Prohibit these changes in 64bit mode, since the lowering
5680 would be more complicated. */
5681 && flag_code != CODE_64BIT)
5682 {
5683 #if REGISTER_WARNINGS
5684 if (!quiet_warnings)
5685 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5686 register_prefix,
5687 (i.op[op].regs + (i.types[op].bitfield.reg16
5688 ? REGNAM_AL - REGNAM_AX
5689 : REGNAM_AL - REGNAM_EAX))->reg_name,
5690 register_prefix,
5691 i.op[op].regs->reg_name,
5692 i.suffix);
5693 #endif
5694 continue;
5695 }
5696 /* Any other register is bad. */
5697 if (i.types[op].bitfield.reg16
5698 || i.types[op].bitfield.reg32
5699 || i.types[op].bitfield.reg64
5700 || i.types[op].bitfield.regmmx
5701 || i.types[op].bitfield.regxmm
5702 || i.types[op].bitfield.regymm
5703 || i.types[op].bitfield.regzmm
5704 || i.types[op].bitfield.sreg2
5705 || i.types[op].bitfield.sreg3
5706 || i.types[op].bitfield.control
5707 || i.types[op].bitfield.debug
5708 || i.types[op].bitfield.test
5709 || i.types[op].bitfield.floatreg
5710 || i.types[op].bitfield.floatacc)
5711 {
5712 as_bad (_("`%s%s' not allowed with `%s%c'"),
5713 register_prefix,
5714 i.op[op].regs->reg_name,
5715 i.tm.name,
5716 i.suffix);
5717 return 0;
5718 }
5719 }
5720 return 1;
5721 }
5722
5723 static int
5724 check_long_reg (void)
5725 {
5726 int op;
5727
5728 for (op = i.operands; --op >= 0;)
5729 /* Reject eight bit registers, except where the template requires
5730 them. (eg. movzb) */
5731 if (i.types[op].bitfield.reg8
5732 && (i.tm.operand_types[op].bitfield.reg16
5733 || i.tm.operand_types[op].bitfield.reg32
5734 || i.tm.operand_types[op].bitfield.acc))
5735 {
5736 as_bad (_("`%s%s' not allowed with `%s%c'"),
5737 register_prefix,
5738 i.op[op].regs->reg_name,
5739 i.tm.name,
5740 i.suffix);
5741 return 0;
5742 }
5743 /* Warn if the e prefix on a general reg is missing. */
5744 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5745 && i.types[op].bitfield.reg16
5746 && (i.tm.operand_types[op].bitfield.reg32
5747 || i.tm.operand_types[op].bitfield.acc))
5748 {
5749 /* Prohibit these changes in the 64bit mode, since the
5750 lowering is more complicated. */
5751 if (flag_code == CODE_64BIT)
5752 {
5753 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5754 register_prefix, i.op[op].regs->reg_name,
5755 i.suffix);
5756 return 0;
5757 }
5758 #if REGISTER_WARNINGS
5759 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5760 register_prefix,
5761 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5762 register_prefix, i.op[op].regs->reg_name, i.suffix);
5763 #endif
5764 }
5765 /* Warn if the r prefix on a general reg is present. */
5766 else if (i.types[op].bitfield.reg64
5767 && (i.tm.operand_types[op].bitfield.reg32
5768 || i.tm.operand_types[op].bitfield.acc))
5769 {
5770 if (intel_syntax
5771 && i.tm.opcode_modifier.toqword
5772 && !i.types[0].bitfield.regxmm)
5773 {
5774 /* Convert to QWORD. We want REX byte. */
5775 i.suffix = QWORD_MNEM_SUFFIX;
5776 }
5777 else
5778 {
5779 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5780 register_prefix, i.op[op].regs->reg_name,
5781 i.suffix);
5782 return 0;
5783 }
5784 }
5785 return 1;
5786 }
5787
5788 static int
5789 check_qword_reg (void)
5790 {
5791 int op;
5792
5793 for (op = i.operands; --op >= 0; )
5794 /* Reject eight bit registers, except where the template requires
5795 them. (eg. movzb) */
5796 if (i.types[op].bitfield.reg8
5797 && (i.tm.operand_types[op].bitfield.reg16
5798 || i.tm.operand_types[op].bitfield.reg32
5799 || i.tm.operand_types[op].bitfield.acc))
5800 {
5801 as_bad (_("`%s%s' not allowed with `%s%c'"),
5802 register_prefix,
5803 i.op[op].regs->reg_name,
5804 i.tm.name,
5805 i.suffix);
5806 return 0;
5807 }
5808 /* Warn if the r prefix on a general reg is missing. */
5809 else if ((i.types[op].bitfield.reg16
5810 || i.types[op].bitfield.reg32)
5811 && (i.tm.operand_types[op].bitfield.reg64
5812 || i.tm.operand_types[op].bitfield.acc))
5813 {
5814 /* Prohibit these changes in the 64bit mode, since the
5815 lowering is more complicated. */
5816 if (intel_syntax
5817 && i.tm.opcode_modifier.todword
5818 && !i.types[0].bitfield.regxmm)
5819 {
5820 /* Convert to DWORD. We don't want REX byte. */
5821 i.suffix = LONG_MNEM_SUFFIX;
5822 }
5823 else
5824 {
5825 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5826 register_prefix, i.op[op].regs->reg_name,
5827 i.suffix);
5828 return 0;
5829 }
5830 }
5831 return 1;
5832 }
5833
5834 static int
5835 check_word_reg (void)
5836 {
5837 int op;
5838 for (op = i.operands; --op >= 0;)
5839 /* Reject eight bit registers, except where the template requires
5840 them. (eg. movzb) */
5841 if (i.types[op].bitfield.reg8
5842 && (i.tm.operand_types[op].bitfield.reg16
5843 || i.tm.operand_types[op].bitfield.reg32
5844 || i.tm.operand_types[op].bitfield.acc))
5845 {
5846 as_bad (_("`%s%s' not allowed with `%s%c'"),
5847 register_prefix,
5848 i.op[op].regs->reg_name,
5849 i.tm.name,
5850 i.suffix);
5851 return 0;
5852 }
5853 /* Warn if the e or r prefix on a general reg is present. */
5854 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5855 && (i.types[op].bitfield.reg32
5856 || i.types[op].bitfield.reg64)
5857 && (i.tm.operand_types[op].bitfield.reg16
5858 || i.tm.operand_types[op].bitfield.acc))
5859 {
5860 /* Prohibit these changes in the 64bit mode, since the
5861 lowering is more complicated. */
5862 if (flag_code == CODE_64BIT)
5863 {
5864 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5865 register_prefix, i.op[op].regs->reg_name,
5866 i.suffix);
5867 return 0;
5868 }
5869 #if REGISTER_WARNINGS
5870 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5871 register_prefix,
5872 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5873 register_prefix, i.op[op].regs->reg_name, i.suffix);
5874 #endif
5875 }
5876 return 1;
5877 }
5878
5879 static int
5880 update_imm (unsigned int j)
5881 {
5882 i386_operand_type overlap = i.types[j];
5883 if ((overlap.bitfield.imm8
5884 || overlap.bitfield.imm8s
5885 || overlap.bitfield.imm16
5886 || overlap.bitfield.imm32
5887 || overlap.bitfield.imm32s
5888 || overlap.bitfield.imm64)
5889 && !operand_type_equal (&overlap, &imm8)
5890 && !operand_type_equal (&overlap, &imm8s)
5891 && !operand_type_equal (&overlap, &imm16)
5892 && !operand_type_equal (&overlap, &imm32)
5893 && !operand_type_equal (&overlap, &imm32s)
5894 && !operand_type_equal (&overlap, &imm64))
5895 {
5896 if (i.suffix)
5897 {
5898 i386_operand_type temp;
5899
5900 operand_type_set (&temp, 0);
5901 if (i.suffix == BYTE_MNEM_SUFFIX)
5902 {
5903 temp.bitfield.imm8 = overlap.bitfield.imm8;
5904 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5905 }
5906 else if (i.suffix == WORD_MNEM_SUFFIX)
5907 temp.bitfield.imm16 = overlap.bitfield.imm16;
5908 else if (i.suffix == QWORD_MNEM_SUFFIX)
5909 {
5910 temp.bitfield.imm64 = overlap.bitfield.imm64;
5911 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5912 }
5913 else
5914 temp.bitfield.imm32 = overlap.bitfield.imm32;
5915 overlap = temp;
5916 }
5917 else if (operand_type_equal (&overlap, &imm16_32_32s)
5918 || operand_type_equal (&overlap, &imm16_32)
5919 || operand_type_equal (&overlap, &imm16_32s))
5920 {
5921 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5922 overlap = imm16;
5923 else
5924 overlap = imm32s;
5925 }
5926 if (!operand_type_equal (&overlap, &imm8)
5927 && !operand_type_equal (&overlap, &imm8s)
5928 && !operand_type_equal (&overlap, &imm16)
5929 && !operand_type_equal (&overlap, &imm32)
5930 && !operand_type_equal (&overlap, &imm32s)
5931 && !operand_type_equal (&overlap, &imm64))
5932 {
5933 as_bad (_("no instruction mnemonic suffix given; "
5934 "can't determine immediate size"));
5935 return 0;
5936 }
5937 }
5938 i.types[j] = overlap;
5939
5940 return 1;
5941 }
5942
5943 static int
5944 finalize_imm (void)
5945 {
5946 unsigned int j, n;
5947
5948 /* Update the first 2 immediate operands. */
5949 n = i.operands > 2 ? 2 : i.operands;
5950 if (n)
5951 {
5952 for (j = 0; j < n; j++)
5953 if (update_imm (j) == 0)
5954 return 0;
5955
5956 /* The 3rd operand can't be immediate operand. */
5957 gas_assert (operand_type_check (i.types[2], imm) == 0);
5958 }
5959
5960 return 1;
5961 }
5962
5963 static int
5964 bad_implicit_operand (int xmm)
5965 {
5966 const char *ireg = xmm ? "xmm0" : "ymm0";
5967
5968 if (intel_syntax)
5969 as_bad (_("the last operand of `%s' must be `%s%s'"),
5970 i.tm.name, register_prefix, ireg);
5971 else
5972 as_bad (_("the first operand of `%s' must be `%s%s'"),
5973 i.tm.name, register_prefix, ireg);
5974 return 0;
5975 }
5976
5977 static int
5978 process_operands (void)
5979 {
5980 /* Default segment register this instruction will use for memory
5981 accesses. 0 means unknown. This is only for optimizing out
5982 unnecessary segment overrides. */
5983 const seg_entry *default_seg = 0;
5984
5985 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
5986 {
5987 unsigned int dupl = i.operands;
5988 unsigned int dest = dupl - 1;
5989 unsigned int j;
5990
5991 /* The destination must be an xmm register. */
5992 gas_assert (i.reg_operands
5993 && MAX_OPERANDS > dupl
5994 && operand_type_equal (&i.types[dest], &regxmm));
5995
5996 if (i.tm.opcode_modifier.firstxmm0)
5997 {
5998 /* The first operand is implicit and must be xmm0. */
5999 gas_assert (operand_type_equal (&i.types[0], &regxmm));
6000 if (register_number (i.op[0].regs) != 0)
6001 return bad_implicit_operand (1);
6002
6003 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6004 {
6005 /* Keep xmm0 for instructions with VEX prefix and 3
6006 sources. */
6007 goto duplicate;
6008 }
6009 else
6010 {
6011 /* We remove the first xmm0 and keep the number of
6012 operands unchanged, which in fact duplicates the
6013 destination. */
6014 for (j = 1; j < i.operands; j++)
6015 {
6016 i.op[j - 1] = i.op[j];
6017 i.types[j - 1] = i.types[j];
6018 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6019 }
6020 }
6021 }
6022 else if (i.tm.opcode_modifier.implicit1stxmm0)
6023 {
6024 gas_assert ((MAX_OPERANDS - 1) > dupl
6025 && (i.tm.opcode_modifier.vexsources
6026 == VEX3SOURCES));
6027
6028 /* Add the implicit xmm0 for instructions with VEX prefix
6029 and 3 sources. */
6030 for (j = i.operands; j > 0; j--)
6031 {
6032 i.op[j] = i.op[j - 1];
6033 i.types[j] = i.types[j - 1];
6034 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6035 }
6036 i.op[0].regs
6037 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6038 i.types[0] = regxmm;
6039 i.tm.operand_types[0] = regxmm;
6040
6041 i.operands += 2;
6042 i.reg_operands += 2;
6043 i.tm.operands += 2;
6044
6045 dupl++;
6046 dest++;
6047 i.op[dupl] = i.op[dest];
6048 i.types[dupl] = i.types[dest];
6049 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6050 }
6051 else
6052 {
6053 duplicate:
6054 i.operands++;
6055 i.reg_operands++;
6056 i.tm.operands++;
6057
6058 i.op[dupl] = i.op[dest];
6059 i.types[dupl] = i.types[dest];
6060 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6061 }
6062
6063 if (i.tm.opcode_modifier.immext)
6064 process_immext ();
6065 }
6066 else if (i.tm.opcode_modifier.firstxmm0)
6067 {
6068 unsigned int j;
6069
6070 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
6071 gas_assert (i.reg_operands
6072 && (operand_type_equal (&i.types[0], &regxmm)
6073 || operand_type_equal (&i.types[0], &regymm)
6074 || operand_type_equal (&i.types[0], &regzmm)));
6075 if (register_number (i.op[0].regs) != 0)
6076 return bad_implicit_operand (i.types[0].bitfield.regxmm);
6077
6078 for (j = 1; j < i.operands; j++)
6079 {
6080 i.op[j - 1] = i.op[j];
6081 i.types[j - 1] = i.types[j];
6082
6083 /* We need to adjust fields in i.tm since they are used by
6084 build_modrm_byte. */
6085 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6086 }
6087
6088 i.operands--;
6089 i.reg_operands--;
6090 i.tm.operands--;
6091 }
6092 else if (i.tm.opcode_modifier.implicitquadgroup)
6093 {
6094 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6095 gas_assert (i.operands >= 2
6096 && (operand_type_equal (&i.types[1], &regxmm)
6097 || operand_type_equal (&i.types[1], &regymm)
6098 || operand_type_equal (&i.types[1], &regzmm)));
6099 unsigned int regnum = register_number (i.op[1].regs);
6100 unsigned int first_reg_in_group = regnum & ~3;
6101 unsigned int last_reg_in_group = first_reg_in_group + 3;
6102 if (regnum != first_reg_in_group) {
6103 as_warn (_("the second source register `%s%s' implicitly denotes"
6104 " `%s%.3s%d' to `%s%.3s%d' source group in `%s'"),
6105 register_prefix, i.op[1].regs->reg_name,
6106 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6107 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6108 i.tm.name);
6109 }
6110 }
6111 else if (i.tm.opcode_modifier.regkludge)
6112 {
6113 /* The imul $imm, %reg instruction is converted into
6114 imul $imm, %reg, %reg, and the clr %reg instruction
6115 is converted into xor %reg, %reg. */
6116
6117 unsigned int first_reg_op;
6118
6119 if (operand_type_check (i.types[0], reg))
6120 first_reg_op = 0;
6121 else
6122 first_reg_op = 1;
6123 /* Pretend we saw the extra register operand. */
6124 gas_assert (i.reg_operands == 1
6125 && i.op[first_reg_op + 1].regs == 0);
6126 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6127 i.types[first_reg_op + 1] = i.types[first_reg_op];
6128 i.operands++;
6129 i.reg_operands++;
6130 }
6131
6132 if (i.tm.opcode_modifier.shortform)
6133 {
6134 if (i.types[0].bitfield.sreg2
6135 || i.types[0].bitfield.sreg3)
6136 {
6137 if (i.tm.base_opcode == POP_SEG_SHORT
6138 && i.op[0].regs->reg_num == 1)
6139 {
6140 as_bad (_("you can't `pop %scs'"), register_prefix);
6141 return 0;
6142 }
6143 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6144 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6145 i.rex |= REX_B;
6146 }
6147 else
6148 {
6149 /* The register or float register operand is in operand
6150 0 or 1. */
6151 unsigned int op;
6152
6153 if (i.types[0].bitfield.floatreg
6154 || operand_type_check (i.types[0], reg))
6155 op = 0;
6156 else
6157 op = 1;
6158 /* Register goes in low 3 bits of opcode. */
6159 i.tm.base_opcode |= i.op[op].regs->reg_num;
6160 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6161 i.rex |= REX_B;
6162 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6163 {
6164 /* Warn about some common errors, but press on regardless.
6165 The first case can be generated by gcc (<= 2.8.1). */
6166 if (i.operands == 2)
6167 {
6168 /* Reversed arguments on faddp, fsubp, etc. */
6169 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6170 register_prefix, i.op[!intel_syntax].regs->reg_name,
6171 register_prefix, i.op[intel_syntax].regs->reg_name);
6172 }
6173 else
6174 {
6175 /* Extraneous `l' suffix on fp insn. */
6176 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6177 register_prefix, i.op[0].regs->reg_name);
6178 }
6179 }
6180 }
6181 }
6182 else if (i.tm.opcode_modifier.modrm)
6183 {
6184 /* The opcode is completed (modulo i.tm.extension_opcode which
6185 must be put into the modrm byte). Now, we make the modrm and
6186 index base bytes based on all the info we've collected. */
6187
6188 default_seg = build_modrm_byte ();
6189 }
6190 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6191 {
6192 default_seg = &ds;
6193 }
6194 else if (i.tm.opcode_modifier.isstring)
6195 {
6196 /* For the string instructions that allow a segment override
6197 on one of their operands, the default segment is ds. */
6198 default_seg = &ds;
6199 }
6200
6201 if (i.tm.base_opcode == 0x8d /* lea */
6202 && i.seg[0]
6203 && !quiet_warnings)
6204 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6205
6206 /* If a segment was explicitly specified, and the specified segment
6207 is not the default, use an opcode prefix to select it. If we
6208 never figured out what the default segment is, then default_seg
6209 will be zero at this point, and the specified segment prefix will
6210 always be used. */
6211 if ((i.seg[0]) && (i.seg[0] != default_seg))
6212 {
6213 if (!add_prefix (i.seg[0]->seg_prefix))
6214 return 0;
6215 }
6216 return 1;
6217 }
6218
6219 static const seg_entry *
6220 build_modrm_byte (void)
6221 {
6222 const seg_entry *default_seg = 0;
6223 unsigned int source, dest;
6224 int vex_3_sources;
6225
6226 /* The first operand of instructions with VEX prefix and 3 sources
6227 must be VEX_Imm4. */
6228 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6229 if (vex_3_sources)
6230 {
6231 unsigned int nds, reg_slot;
6232 expressionS *exp;
6233
6234 if (i.tm.opcode_modifier.veximmext
6235 && i.tm.opcode_modifier.immext)
6236 {
6237 dest = i.operands - 2;
6238 gas_assert (dest == 3);
6239 }
6240 else
6241 dest = i.operands - 1;
6242 nds = dest - 1;
6243
6244 /* There are 2 kinds of instructions:
6245 1. 5 operands: 4 register operands or 3 register operands
6246 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6247 VexW0 or VexW1. The destination must be either XMM, YMM or
6248 ZMM register.
6249 2. 4 operands: 4 register operands or 3 register operands
6250 plus 1 memory operand, VexXDS, and VexImmExt */
6251 gas_assert ((i.reg_operands == 4
6252 || (i.reg_operands == 3 && i.mem_operands == 1))
6253 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6254 && (i.tm.opcode_modifier.veximmext
6255 || (i.imm_operands == 1
6256 && i.types[0].bitfield.vec_imm4
6257 && (i.tm.opcode_modifier.vexw == VEXW0
6258 || i.tm.opcode_modifier.vexw == VEXW1)
6259 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
6260 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
6261 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
6262
6263 if (i.imm_operands == 0)
6264 {
6265 /* When there is no immediate operand, generate an 8bit
6266 immediate operand to encode the first operand. */
6267 exp = &im_expressions[i.imm_operands++];
6268 i.op[i.operands].imms = exp;
6269 i.types[i.operands] = imm8;
6270 i.operands++;
6271 /* If VexW1 is set, the first operand is the source and
6272 the second operand is encoded in the immediate operand. */
6273 if (i.tm.opcode_modifier.vexw == VEXW1)
6274 {
6275 source = 0;
6276 reg_slot = 1;
6277 }
6278 else
6279 {
6280 source = 1;
6281 reg_slot = 0;
6282 }
6283
6284 /* FMA swaps REG and NDS. */
6285 if (i.tm.cpu_flags.bitfield.cpufma)
6286 {
6287 unsigned int tmp;
6288 tmp = reg_slot;
6289 reg_slot = nds;
6290 nds = tmp;
6291 }
6292
6293 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6294 &regxmm)
6295 || operand_type_equal (&i.tm.operand_types[reg_slot],
6296 &regymm)
6297 || operand_type_equal (&i.tm.operand_types[reg_slot],
6298 &regzmm));
6299 exp->X_op = O_constant;
6300 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6301 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6302 }
6303 else
6304 {
6305 unsigned int imm_slot;
6306
6307 if (i.tm.opcode_modifier.vexw == VEXW0)
6308 {
6309 /* If VexW0 is set, the third operand is the source and
6310 the second operand is encoded in the immediate
6311 operand. */
6312 source = 2;
6313 reg_slot = 1;
6314 }
6315 else
6316 {
6317 /* VexW1 is set, the second operand is the source and
6318 the third operand is encoded in the immediate
6319 operand. */
6320 source = 1;
6321 reg_slot = 2;
6322 }
6323
6324 if (i.tm.opcode_modifier.immext)
6325 {
6326 /* When ImmExt is set, the immediate byte is the last
6327 operand. */
6328 imm_slot = i.operands - 1;
6329 source--;
6330 reg_slot--;
6331 }
6332 else
6333 {
6334 imm_slot = 0;
6335
6336 /* Turn on Imm8 so that output_imm will generate it. */
6337 i.types[imm_slot].bitfield.imm8 = 1;
6338 }
6339
6340 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6341 &regxmm)
6342 || operand_type_equal (&i.tm.operand_types[reg_slot],
6343 &regymm)
6344 || operand_type_equal (&i.tm.operand_types[reg_slot],
6345 &regzmm));
6346 i.op[imm_slot].imms->X_add_number
6347 |= register_number (i.op[reg_slot].regs) << 4;
6348 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6349 }
6350
6351 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6352 || operand_type_equal (&i.tm.operand_types[nds],
6353 &regymm)
6354 || operand_type_equal (&i.tm.operand_types[nds],
6355 &regzmm));
6356 i.vex.register_specifier = i.op[nds].regs;
6357 }
6358 else
6359 source = dest = 0;
6360
6361 /* i.reg_operands MUST be the number of real register operands;
6362 implicit registers do not count. If there are 3 register
6363 operands, it must be a instruction with VexNDS. For a
6364 instruction with VexNDD, the destination register is encoded
6365 in VEX prefix. If there are 4 register operands, it must be
6366 a instruction with VEX prefix and 3 sources. */
6367 if (i.mem_operands == 0
6368 && ((i.reg_operands == 2
6369 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6370 || (i.reg_operands == 3
6371 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6372 || (i.reg_operands == 4 && vex_3_sources)))
6373 {
6374 switch (i.operands)
6375 {
6376 case 2:
6377 source = 0;
6378 break;
6379 case 3:
6380 /* When there are 3 operands, one of them may be immediate,
6381 which may be the first or the last operand. Otherwise,
6382 the first operand must be shift count register (cl) or it
6383 is an instruction with VexNDS. */
6384 gas_assert (i.imm_operands == 1
6385 || (i.imm_operands == 0
6386 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6387 || i.types[0].bitfield.shiftcount)));
6388 if (operand_type_check (i.types[0], imm)
6389 || i.types[0].bitfield.shiftcount)
6390 source = 1;
6391 else
6392 source = 0;
6393 break;
6394 case 4:
6395 /* When there are 4 operands, the first two must be 8bit
6396 immediate operands. The source operand will be the 3rd
6397 one.
6398
6399 For instructions with VexNDS, if the first operand
6400 an imm8, the source operand is the 2nd one. If the last
6401 operand is imm8, the source operand is the first one. */
6402 gas_assert ((i.imm_operands == 2
6403 && i.types[0].bitfield.imm8
6404 && i.types[1].bitfield.imm8)
6405 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6406 && i.imm_operands == 1
6407 && (i.types[0].bitfield.imm8
6408 || i.types[i.operands - 1].bitfield.imm8
6409 || i.rounding)));
6410 if (i.imm_operands == 2)
6411 source = 2;
6412 else
6413 {
6414 if (i.types[0].bitfield.imm8)
6415 source = 1;
6416 else
6417 source = 0;
6418 }
6419 break;
6420 case 5:
6421 if (i.tm.opcode_modifier.evex)
6422 {
6423 /* For EVEX instructions, when there are 5 operands, the
6424 first one must be immediate operand. If the second one
6425 is immediate operand, the source operand is the 3th
6426 one. If the last one is immediate operand, the source
6427 operand is the 2nd one. */
6428 gas_assert (i.imm_operands == 2
6429 && i.tm.opcode_modifier.sae
6430 && operand_type_check (i.types[0], imm));
6431 if (operand_type_check (i.types[1], imm))
6432 source = 2;
6433 else if (operand_type_check (i.types[4], imm))
6434 source = 1;
6435 else
6436 abort ();
6437 }
6438 break;
6439 default:
6440 abort ();
6441 }
6442
6443 if (!vex_3_sources)
6444 {
6445 dest = source + 1;
6446
6447 /* RC/SAE operand could be between DEST and SRC. That happens
6448 when one operand is GPR and the other one is XMM/YMM/ZMM
6449 register. */
6450 if (i.rounding && i.rounding->operand == (int) dest)
6451 dest++;
6452
6453 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6454 {
6455 /* For instructions with VexNDS, the register-only source
6456 operand must be 32/64bit integer, XMM, YMM or ZMM
6457 register. It is encoded in VEX prefix. We need to
6458 clear RegMem bit before calling operand_type_equal. */
6459
6460 i386_operand_type op;
6461 unsigned int vvvv;
6462
6463 /* Check register-only source operand when two source
6464 operands are swapped. */
6465 if (!i.tm.operand_types[source].bitfield.baseindex
6466 && i.tm.operand_types[dest].bitfield.baseindex)
6467 {
6468 vvvv = source;
6469 source = dest;
6470 }
6471 else
6472 vvvv = dest;
6473
6474 op = i.tm.operand_types[vvvv];
6475 op.bitfield.regmem = 0;
6476 if ((dest + 1) >= i.operands
6477 || (!op.bitfield.reg32
6478 && op.bitfield.reg64
6479 && !operand_type_equal (&op, &regxmm)
6480 && !operand_type_equal (&op, &regymm)
6481 && !operand_type_equal (&op, &regzmm)
6482 && !operand_type_equal (&op, &regmask)))
6483 abort ();
6484 i.vex.register_specifier = i.op[vvvv].regs;
6485 dest++;
6486 }
6487 }
6488
6489 i.rm.mode = 3;
6490 /* One of the register operands will be encoded in the i.tm.reg
6491 field, the other in the combined i.tm.mode and i.tm.regmem
6492 fields. If no form of this instruction supports a memory
6493 destination operand, then we assume the source operand may
6494 sometimes be a memory operand and so we need to store the
6495 destination in the i.rm.reg field. */
6496 if (!i.tm.operand_types[dest].bitfield.regmem
6497 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6498 {
6499 i.rm.reg = i.op[dest].regs->reg_num;
6500 i.rm.regmem = i.op[source].regs->reg_num;
6501 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6502 i.rex |= REX_R;
6503 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6504 i.vrex |= REX_R;
6505 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6506 i.rex |= REX_B;
6507 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6508 i.vrex |= REX_B;
6509 }
6510 else
6511 {
6512 i.rm.reg = i.op[source].regs->reg_num;
6513 i.rm.regmem = i.op[dest].regs->reg_num;
6514 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6515 i.rex |= REX_B;
6516 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6517 i.vrex |= REX_B;
6518 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6519 i.rex |= REX_R;
6520 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6521 i.vrex |= REX_R;
6522 }
6523 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6524 {
6525 if (!i.types[0].bitfield.control
6526 && !i.types[1].bitfield.control)
6527 abort ();
6528 i.rex &= ~(REX_R | REX_B);
6529 add_prefix (LOCK_PREFIX_OPCODE);
6530 }
6531 }
6532 else
6533 { /* If it's not 2 reg operands... */
6534 unsigned int mem;
6535
6536 if (i.mem_operands)
6537 {
6538 unsigned int fake_zero_displacement = 0;
6539 unsigned int op;
6540
6541 for (op = 0; op < i.operands; op++)
6542 if (operand_type_check (i.types[op], anymem))
6543 break;
6544 gas_assert (op < i.operands);
6545
6546 if (i.tm.opcode_modifier.vecsib)
6547 {
6548 if (i.index_reg->reg_num == RegEiz
6549 || i.index_reg->reg_num == RegRiz)
6550 abort ();
6551
6552 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6553 if (!i.base_reg)
6554 {
6555 i.sib.base = NO_BASE_REGISTER;
6556 i.sib.scale = i.log2_scale_factor;
6557 /* No Vec_Disp8 if there is no base. */
6558 i.types[op].bitfield.vec_disp8 = 0;
6559 i.types[op].bitfield.disp8 = 0;
6560 i.types[op].bitfield.disp16 = 0;
6561 i.types[op].bitfield.disp64 = 0;
6562 if (flag_code != CODE_64BIT)
6563 {
6564 /* Must be 32 bit */
6565 i.types[op].bitfield.disp32 = 1;
6566 i.types[op].bitfield.disp32s = 0;
6567 }
6568 else
6569 {
6570 i.types[op].bitfield.disp32 = 0;
6571 i.types[op].bitfield.disp32s = 1;
6572 }
6573 }
6574 i.sib.index = i.index_reg->reg_num;
6575 if ((i.index_reg->reg_flags & RegRex) != 0)
6576 i.rex |= REX_X;
6577 if ((i.index_reg->reg_flags & RegVRex) != 0)
6578 i.vrex |= REX_X;
6579 }
6580
6581 default_seg = &ds;
6582
6583 if (i.base_reg == 0)
6584 {
6585 i.rm.mode = 0;
6586 if (!i.disp_operands)
6587 {
6588 fake_zero_displacement = 1;
6589 /* Instructions with VSIB byte need 32bit displacement
6590 if there is no base register. */
6591 if (i.tm.opcode_modifier.vecsib)
6592 i.types[op].bitfield.disp32 = 1;
6593 }
6594 if (i.index_reg == 0)
6595 {
6596 gas_assert (!i.tm.opcode_modifier.vecsib);
6597 /* Operand is just <disp> */
6598 if (flag_code == CODE_64BIT)
6599 {
6600 /* 64bit mode overwrites the 32bit absolute
6601 addressing by RIP relative addressing and
6602 absolute addressing is encoded by one of the
6603 redundant SIB forms. */
6604 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6605 i.sib.base = NO_BASE_REGISTER;
6606 i.sib.index = NO_INDEX_REGISTER;
6607 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6608 ? disp32s : disp32);
6609 }
6610 else if ((flag_code == CODE_16BIT)
6611 ^ (i.prefix[ADDR_PREFIX] != 0))
6612 {
6613 i.rm.regmem = NO_BASE_REGISTER_16;
6614 i.types[op] = disp16;
6615 }
6616 else
6617 {
6618 i.rm.regmem = NO_BASE_REGISTER;
6619 i.types[op] = disp32;
6620 }
6621 }
6622 else if (!i.tm.opcode_modifier.vecsib)
6623 {
6624 /* !i.base_reg && i.index_reg */
6625 if (i.index_reg->reg_num == RegEiz
6626 || i.index_reg->reg_num == RegRiz)
6627 i.sib.index = NO_INDEX_REGISTER;
6628 else
6629 i.sib.index = i.index_reg->reg_num;
6630 i.sib.base = NO_BASE_REGISTER;
6631 i.sib.scale = i.log2_scale_factor;
6632 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6633 /* No Vec_Disp8 if there is no base. */
6634 i.types[op].bitfield.vec_disp8 = 0;
6635 i.types[op].bitfield.disp8 = 0;
6636 i.types[op].bitfield.disp16 = 0;
6637 i.types[op].bitfield.disp64 = 0;
6638 if (flag_code != CODE_64BIT)
6639 {
6640 /* Must be 32 bit */
6641 i.types[op].bitfield.disp32 = 1;
6642 i.types[op].bitfield.disp32s = 0;
6643 }
6644 else
6645 {
6646 i.types[op].bitfield.disp32 = 0;
6647 i.types[op].bitfield.disp32s = 1;
6648 }
6649 if ((i.index_reg->reg_flags & RegRex) != 0)
6650 i.rex |= REX_X;
6651 }
6652 }
6653 /* RIP addressing for 64bit mode. */
6654 else if (i.base_reg->reg_num == RegRip ||
6655 i.base_reg->reg_num == RegEip)
6656 {
6657 gas_assert (!i.tm.opcode_modifier.vecsib);
6658 i.rm.regmem = NO_BASE_REGISTER;
6659 i.types[op].bitfield.disp8 = 0;
6660 i.types[op].bitfield.disp16 = 0;
6661 i.types[op].bitfield.disp32 = 0;
6662 i.types[op].bitfield.disp32s = 1;
6663 i.types[op].bitfield.disp64 = 0;
6664 i.types[op].bitfield.vec_disp8 = 0;
6665 i.flags[op] |= Operand_PCrel;
6666 if (! i.disp_operands)
6667 fake_zero_displacement = 1;
6668 }
6669 else if (i.base_reg->reg_type.bitfield.reg16)
6670 {
6671 gas_assert (!i.tm.opcode_modifier.vecsib);
6672 switch (i.base_reg->reg_num)
6673 {
6674 case 3: /* (%bx) */
6675 if (i.index_reg == 0)
6676 i.rm.regmem = 7;
6677 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6678 i.rm.regmem = i.index_reg->reg_num - 6;
6679 break;
6680 case 5: /* (%bp) */
6681 default_seg = &ss;
6682 if (i.index_reg == 0)
6683 {
6684 i.rm.regmem = 6;
6685 if (operand_type_check (i.types[op], disp) == 0)
6686 {
6687 /* fake (%bp) into 0(%bp) */
6688 if (i.tm.operand_types[op].bitfield.vec_disp8)
6689 i.types[op].bitfield.vec_disp8 = 1;
6690 else
6691 i.types[op].bitfield.disp8 = 1;
6692 fake_zero_displacement = 1;
6693 }
6694 }
6695 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6696 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6697 break;
6698 default: /* (%si) -> 4 or (%di) -> 5 */
6699 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6700 }
6701 i.rm.mode = mode_from_disp_size (i.types[op]);
6702 }
6703 else /* i.base_reg and 32/64 bit mode */
6704 {
6705 if (flag_code == CODE_64BIT
6706 && operand_type_check (i.types[op], disp))
6707 {
6708 i386_operand_type temp;
6709 operand_type_set (&temp, 0);
6710 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6711 temp.bitfield.vec_disp8
6712 = i.types[op].bitfield.vec_disp8;
6713 i.types[op] = temp;
6714 if (i.prefix[ADDR_PREFIX] == 0)
6715 i.types[op].bitfield.disp32s = 1;
6716 else
6717 i.types[op].bitfield.disp32 = 1;
6718 }
6719
6720 if (!i.tm.opcode_modifier.vecsib)
6721 i.rm.regmem = i.base_reg->reg_num;
6722 if ((i.base_reg->reg_flags & RegRex) != 0)
6723 i.rex |= REX_B;
6724 i.sib.base = i.base_reg->reg_num;
6725 /* x86-64 ignores REX prefix bit here to avoid decoder
6726 complications. */
6727 if (!(i.base_reg->reg_flags & RegRex)
6728 && (i.base_reg->reg_num == EBP_REG_NUM
6729 || i.base_reg->reg_num == ESP_REG_NUM))
6730 default_seg = &ss;
6731 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6732 {
6733 fake_zero_displacement = 1;
6734 if (i.tm.operand_types [op].bitfield.vec_disp8)
6735 i.types[op].bitfield.vec_disp8 = 1;
6736 else
6737 i.types[op].bitfield.disp8 = 1;
6738 }
6739 i.sib.scale = i.log2_scale_factor;
6740 if (i.index_reg == 0)
6741 {
6742 gas_assert (!i.tm.opcode_modifier.vecsib);
6743 /* <disp>(%esp) becomes two byte modrm with no index
6744 register. We've already stored the code for esp
6745 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6746 Any base register besides %esp will not use the
6747 extra modrm byte. */
6748 i.sib.index = NO_INDEX_REGISTER;
6749 }
6750 else if (!i.tm.opcode_modifier.vecsib)
6751 {
6752 if (i.index_reg->reg_num == RegEiz
6753 || i.index_reg->reg_num == RegRiz)
6754 i.sib.index = NO_INDEX_REGISTER;
6755 else
6756 i.sib.index = i.index_reg->reg_num;
6757 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6758 if ((i.index_reg->reg_flags & RegRex) != 0)
6759 i.rex |= REX_X;
6760 }
6761
6762 if (i.disp_operands
6763 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6764 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6765 i.rm.mode = 0;
6766 else
6767 {
6768 if (!fake_zero_displacement
6769 && !i.disp_operands
6770 && i.disp_encoding)
6771 {
6772 fake_zero_displacement = 1;
6773 if (i.disp_encoding == disp_encoding_8bit)
6774 i.types[op].bitfield.disp8 = 1;
6775 else
6776 i.types[op].bitfield.disp32 = 1;
6777 }
6778 i.rm.mode = mode_from_disp_size (i.types[op]);
6779 }
6780 }
6781
6782 if (fake_zero_displacement)
6783 {
6784 /* Fakes a zero displacement assuming that i.types[op]
6785 holds the correct displacement size. */
6786 expressionS *exp;
6787
6788 gas_assert (i.op[op].disps == 0);
6789 exp = &disp_expressions[i.disp_operands++];
6790 i.op[op].disps = exp;
6791 exp->X_op = O_constant;
6792 exp->X_add_number = 0;
6793 exp->X_add_symbol = (symbolS *) 0;
6794 exp->X_op_symbol = (symbolS *) 0;
6795 }
6796
6797 mem = op;
6798 }
6799 else
6800 mem = ~0;
6801
6802 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6803 {
6804 if (operand_type_check (i.types[0], imm))
6805 i.vex.register_specifier = NULL;
6806 else
6807 {
6808 /* VEX.vvvv encodes one of the sources when the first
6809 operand is not an immediate. */
6810 if (i.tm.opcode_modifier.vexw == VEXW0)
6811 i.vex.register_specifier = i.op[0].regs;
6812 else
6813 i.vex.register_specifier = i.op[1].regs;
6814 }
6815
6816 /* Destination is a XMM register encoded in the ModRM.reg
6817 and VEX.R bit. */
6818 i.rm.reg = i.op[2].regs->reg_num;
6819 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6820 i.rex |= REX_R;
6821
6822 /* ModRM.rm and VEX.B encodes the other source. */
6823 if (!i.mem_operands)
6824 {
6825 i.rm.mode = 3;
6826
6827 if (i.tm.opcode_modifier.vexw == VEXW0)
6828 i.rm.regmem = i.op[1].regs->reg_num;
6829 else
6830 i.rm.regmem = i.op[0].regs->reg_num;
6831
6832 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6833 i.rex |= REX_B;
6834 }
6835 }
6836 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6837 {
6838 i.vex.register_specifier = i.op[2].regs;
6839 if (!i.mem_operands)
6840 {
6841 i.rm.mode = 3;
6842 i.rm.regmem = i.op[1].regs->reg_num;
6843 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6844 i.rex |= REX_B;
6845 }
6846 }
6847 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6848 (if any) based on i.tm.extension_opcode. Again, we must be
6849 careful to make sure that segment/control/debug/test/MMX
6850 registers are coded into the i.rm.reg field. */
6851 else if (i.reg_operands)
6852 {
6853 unsigned int op;
6854 unsigned int vex_reg = ~0;
6855
6856 for (op = 0; op < i.operands; op++)
6857 if (i.types[op].bitfield.reg8
6858 || i.types[op].bitfield.reg16
6859 || i.types[op].bitfield.reg32
6860 || i.types[op].bitfield.reg64
6861 || i.types[op].bitfield.regmmx
6862 || i.types[op].bitfield.regxmm
6863 || i.types[op].bitfield.regymm
6864 || i.types[op].bitfield.regbnd
6865 || i.types[op].bitfield.regzmm
6866 || i.types[op].bitfield.regmask
6867 || i.types[op].bitfield.sreg2
6868 || i.types[op].bitfield.sreg3
6869 || i.types[op].bitfield.control
6870 || i.types[op].bitfield.debug
6871 || i.types[op].bitfield.test)
6872 break;
6873
6874 if (vex_3_sources)
6875 op = dest;
6876 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6877 {
6878 /* For instructions with VexNDS, the register-only
6879 source operand is encoded in VEX prefix. */
6880 gas_assert (mem != (unsigned int) ~0);
6881
6882 if (op > mem)
6883 {
6884 vex_reg = op++;
6885 gas_assert (op < i.operands);
6886 }
6887 else
6888 {
6889 /* Check register-only source operand when two source
6890 operands are swapped. */
6891 if (!i.tm.operand_types[op].bitfield.baseindex
6892 && i.tm.operand_types[op + 1].bitfield.baseindex)
6893 {
6894 vex_reg = op;
6895 op += 2;
6896 gas_assert (mem == (vex_reg + 1)
6897 && op < i.operands);
6898 }
6899 else
6900 {
6901 vex_reg = op + 1;
6902 gas_assert (vex_reg < i.operands);
6903 }
6904 }
6905 }
6906 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6907 {
6908 /* For instructions with VexNDD, the register destination
6909 is encoded in VEX prefix. */
6910 if (i.mem_operands == 0)
6911 {
6912 /* There is no memory operand. */
6913 gas_assert ((op + 2) == i.operands);
6914 vex_reg = op + 1;
6915 }
6916 else
6917 {
6918 /* There are only 2 operands. */
6919 gas_assert (op < 2 && i.operands == 2);
6920 vex_reg = 1;
6921 }
6922 }
6923 else
6924 gas_assert (op < i.operands);
6925
6926 if (vex_reg != (unsigned int) ~0)
6927 {
6928 i386_operand_type *type = &i.tm.operand_types[vex_reg];
6929
6930 if (type->bitfield.reg32 != 1
6931 && type->bitfield.reg64 != 1
6932 && !operand_type_equal (type, &regxmm)
6933 && !operand_type_equal (type, &regymm)
6934 && !operand_type_equal (type, &regzmm)
6935 && !operand_type_equal (type, &regmask))
6936 abort ();
6937
6938 i.vex.register_specifier = i.op[vex_reg].regs;
6939 }
6940
6941 /* Don't set OP operand twice. */
6942 if (vex_reg != op)
6943 {
6944 /* If there is an extension opcode to put here, the
6945 register number must be put into the regmem field. */
6946 if (i.tm.extension_opcode != None)
6947 {
6948 i.rm.regmem = i.op[op].regs->reg_num;
6949 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6950 i.rex |= REX_B;
6951 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6952 i.vrex |= REX_B;
6953 }
6954 else
6955 {
6956 i.rm.reg = i.op[op].regs->reg_num;
6957 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6958 i.rex |= REX_R;
6959 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6960 i.vrex |= REX_R;
6961 }
6962 }
6963
6964 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6965 must set it to 3 to indicate this is a register operand
6966 in the regmem field. */
6967 if (!i.mem_operands)
6968 i.rm.mode = 3;
6969 }
6970
6971 /* Fill in i.rm.reg field with extension opcode (if any). */
6972 if (i.tm.extension_opcode != None)
6973 i.rm.reg = i.tm.extension_opcode;
6974 }
6975 return default_seg;
6976 }
6977
6978 static void
6979 output_branch (void)
6980 {
6981 char *p;
6982 int size;
6983 int code16;
6984 int prefix;
6985 relax_substateT subtype;
6986 symbolS *sym;
6987 offsetT off;
6988
6989 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6990 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6991
6992 prefix = 0;
6993 if (i.prefix[DATA_PREFIX] != 0)
6994 {
6995 prefix = 1;
6996 i.prefixes -= 1;
6997 code16 ^= CODE16;
6998 }
6999 /* Pentium4 branch hints. */
7000 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7001 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7002 {
7003 prefix++;
7004 i.prefixes--;
7005 }
7006 if (i.prefix[REX_PREFIX] != 0)
7007 {
7008 prefix++;
7009 i.prefixes--;
7010 }
7011
7012 /* BND prefixed jump. */
7013 if (i.prefix[BND_PREFIX] != 0)
7014 {
7015 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7016 i.prefixes -= 1;
7017 }
7018
7019 if (i.prefixes != 0 && !intel_syntax)
7020 as_warn (_("skipping prefixes on this instruction"));
7021
7022 /* It's always a symbol; End frag & setup for relax.
7023 Make sure there is enough room in this frag for the largest
7024 instruction we may generate in md_convert_frag. This is 2
7025 bytes for the opcode and room for the prefix and largest
7026 displacement. */
7027 frag_grow (prefix + 2 + 4);
7028 /* Prefix and 1 opcode byte go in fr_fix. */
7029 p = frag_more (prefix + 1);
7030 if (i.prefix[DATA_PREFIX] != 0)
7031 *p++ = DATA_PREFIX_OPCODE;
7032 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7033 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7034 *p++ = i.prefix[SEG_PREFIX];
7035 if (i.prefix[REX_PREFIX] != 0)
7036 *p++ = i.prefix[REX_PREFIX];
7037 *p = i.tm.base_opcode;
7038
7039 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7040 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7041 else if (cpu_arch_flags.bitfield.cpui386)
7042 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7043 else
7044 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7045 subtype |= code16;
7046
7047 sym = i.op[0].disps->X_add_symbol;
7048 off = i.op[0].disps->X_add_number;
7049
7050 if (i.op[0].disps->X_op != O_constant
7051 && i.op[0].disps->X_op != O_symbol)
7052 {
7053 /* Handle complex expressions. */
7054 sym = make_expr_symbol (i.op[0].disps);
7055 off = 0;
7056 }
7057
7058 /* 1 possible extra opcode + 4 byte displacement go in var part.
7059 Pass reloc in fr_var. */
7060 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7061 }
7062
7063 static void
7064 output_jump (void)
7065 {
7066 char *p;
7067 int size;
7068 fixS *fixP;
7069
7070 if (i.tm.opcode_modifier.jumpbyte)
7071 {
7072 /* This is a loop or jecxz type instruction. */
7073 size = 1;
7074 if (i.prefix[ADDR_PREFIX] != 0)
7075 {
7076 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7077 i.prefixes -= 1;
7078 }
7079 /* Pentium4 branch hints. */
7080 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7081 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7082 {
7083 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7084 i.prefixes--;
7085 }
7086 }
7087 else
7088 {
7089 int code16;
7090
7091 code16 = 0;
7092 if (flag_code == CODE_16BIT)
7093 code16 = CODE16;
7094
7095 if (i.prefix[DATA_PREFIX] != 0)
7096 {
7097 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7098 i.prefixes -= 1;
7099 code16 ^= CODE16;
7100 }
7101
7102 size = 4;
7103 if (code16)
7104 size = 2;
7105 }
7106
7107 if (i.prefix[REX_PREFIX] != 0)
7108 {
7109 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7110 i.prefixes -= 1;
7111 }
7112
7113 /* BND prefixed jump. */
7114 if (i.prefix[BND_PREFIX] != 0)
7115 {
7116 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7117 i.prefixes -= 1;
7118 }
7119
7120 if (i.prefixes != 0 && !intel_syntax)
7121 as_warn (_("skipping prefixes on this instruction"));
7122
7123 p = frag_more (i.tm.opcode_length + size);
7124 switch (i.tm.opcode_length)
7125 {
7126 case 2:
7127 *p++ = i.tm.base_opcode >> 8;
7128 /* Fall through. */
7129 case 1:
7130 *p++ = i.tm.base_opcode;
7131 break;
7132 default:
7133 abort ();
7134 }
7135
7136 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7137 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
7138
7139 /* All jumps handled here are signed, but don't use a signed limit
7140 check for 32 and 16 bit jumps as we want to allow wrap around at
7141 4G and 64k respectively. */
7142 if (size == 1)
7143 fixP->fx_signed = 1;
7144 }
7145
7146 static void
7147 output_interseg_jump (void)
7148 {
7149 char *p;
7150 int size;
7151 int prefix;
7152 int code16;
7153
7154 code16 = 0;
7155 if (flag_code == CODE_16BIT)
7156 code16 = CODE16;
7157
7158 prefix = 0;
7159 if (i.prefix[DATA_PREFIX] != 0)
7160 {
7161 prefix = 1;
7162 i.prefixes -= 1;
7163 code16 ^= CODE16;
7164 }
7165 if (i.prefix[REX_PREFIX] != 0)
7166 {
7167 prefix++;
7168 i.prefixes -= 1;
7169 }
7170
7171 size = 4;
7172 if (code16)
7173 size = 2;
7174
7175 if (i.prefixes != 0 && !intel_syntax)
7176 as_warn (_("skipping prefixes on this instruction"));
7177
7178 /* 1 opcode; 2 segment; offset */
7179 p = frag_more (prefix + 1 + 2 + size);
7180
7181 if (i.prefix[DATA_PREFIX] != 0)
7182 *p++ = DATA_PREFIX_OPCODE;
7183
7184 if (i.prefix[REX_PREFIX] != 0)
7185 *p++ = i.prefix[REX_PREFIX];
7186
7187 *p++ = i.tm.base_opcode;
7188 if (i.op[1].imms->X_op == O_constant)
7189 {
7190 offsetT n = i.op[1].imms->X_add_number;
7191
7192 if (size == 2
7193 && !fits_in_unsigned_word (n)
7194 && !fits_in_signed_word (n))
7195 {
7196 as_bad (_("16-bit jump out of range"));
7197 return;
7198 }
7199 md_number_to_chars (p, n, size);
7200 }
7201 else
7202 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7203 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7204 if (i.op[0].imms->X_op != O_constant)
7205 as_bad (_("can't handle non absolute segment in `%s'"),
7206 i.tm.name);
7207 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7208 }
7209
7210 static void
7211 output_insn (void)
7212 {
7213 fragS *insn_start_frag;
7214 offsetT insn_start_off;
7215
7216 /* Tie dwarf2 debug info to the address at the start of the insn.
7217 We can't do this after the insn has been output as the current
7218 frag may have been closed off. eg. by frag_var. */
7219 dwarf2_emit_insn (0);
7220
7221 insn_start_frag = frag_now;
7222 insn_start_off = frag_now_fix ();
7223
7224 /* Output jumps. */
7225 if (i.tm.opcode_modifier.jump)
7226 output_branch ();
7227 else if (i.tm.opcode_modifier.jumpbyte
7228 || i.tm.opcode_modifier.jumpdword)
7229 output_jump ();
7230 else if (i.tm.opcode_modifier.jumpintersegment)
7231 output_interseg_jump ();
7232 else
7233 {
7234 /* Output normal instructions here. */
7235 char *p;
7236 unsigned char *q;
7237 unsigned int j;
7238 unsigned int prefix;
7239
7240 if (avoid_fence
7241 && i.tm.base_opcode == 0xfae
7242 && i.operands == 1
7243 && i.imm_operands == 1
7244 && (i.op[0].imms->X_add_number == 0xe8
7245 || i.op[0].imms->X_add_number == 0xf0
7246 || i.op[0].imms->X_add_number == 0xf8))
7247 {
7248 /* Encode lfence, mfence, and sfence as
7249 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7250 offsetT val = 0x240483f0ULL;
7251 p = frag_more (5);
7252 md_number_to_chars (p, val, 5);
7253 return;
7254 }
7255
7256 /* Some processors fail on LOCK prefix. This options makes
7257 assembler ignore LOCK prefix and serves as a workaround. */
7258 if (omit_lock_prefix)
7259 {
7260 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7261 return;
7262 i.prefix[LOCK_PREFIX] = 0;
7263 }
7264
7265 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7266 don't need the explicit prefix. */
7267 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7268 {
7269 switch (i.tm.opcode_length)
7270 {
7271 case 3:
7272 if (i.tm.base_opcode & 0xff000000)
7273 {
7274 prefix = (i.tm.base_opcode >> 24) & 0xff;
7275 goto check_prefix;
7276 }
7277 break;
7278 case 2:
7279 if ((i.tm.base_opcode & 0xff0000) != 0)
7280 {
7281 prefix = (i.tm.base_opcode >> 16) & 0xff;
7282 if (i.tm.cpu_flags.bitfield.cpupadlock)
7283 {
7284 check_prefix:
7285 if (prefix != REPE_PREFIX_OPCODE
7286 || (i.prefix[REP_PREFIX]
7287 != REPE_PREFIX_OPCODE))
7288 add_prefix (prefix);
7289 }
7290 else
7291 add_prefix (prefix);
7292 }
7293 break;
7294 case 1:
7295 break;
7296 default:
7297 abort ();
7298 }
7299
7300 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7301 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7302 R_X86_64_GOTTPOFF relocation so that linker can safely
7303 perform IE->LE optimization. */
7304 if (x86_elf_abi == X86_64_X32_ABI
7305 && i.operands == 2
7306 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7307 && i.prefix[REX_PREFIX] == 0)
7308 add_prefix (REX_OPCODE);
7309 #endif
7310
7311 /* The prefix bytes. */
7312 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7313 if (*q)
7314 FRAG_APPEND_1_CHAR (*q);
7315 }
7316 else
7317 {
7318 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7319 if (*q)
7320 switch (j)
7321 {
7322 case REX_PREFIX:
7323 /* REX byte is encoded in VEX prefix. */
7324 break;
7325 case SEG_PREFIX:
7326 case ADDR_PREFIX:
7327 FRAG_APPEND_1_CHAR (*q);
7328 break;
7329 default:
7330 /* There should be no other prefixes for instructions
7331 with VEX prefix. */
7332 abort ();
7333 }
7334
7335 /* For EVEX instructions i.vrex should become 0 after
7336 build_evex_prefix. For VEX instructions upper 16 registers
7337 aren't available, so VREX should be 0. */
7338 if (i.vrex)
7339 abort ();
7340 /* Now the VEX prefix. */
7341 p = frag_more (i.vex.length);
7342 for (j = 0; j < i.vex.length; j++)
7343 p[j] = i.vex.bytes[j];
7344 }
7345
7346 /* Now the opcode; be careful about word order here! */
7347 if (i.tm.opcode_length == 1)
7348 {
7349 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7350 }
7351 else
7352 {
7353 switch (i.tm.opcode_length)
7354 {
7355 case 4:
7356 p = frag_more (4);
7357 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7358 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7359 break;
7360 case 3:
7361 p = frag_more (3);
7362 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7363 break;
7364 case 2:
7365 p = frag_more (2);
7366 break;
7367 default:
7368 abort ();
7369 break;
7370 }
7371
7372 /* Put out high byte first: can't use md_number_to_chars! */
7373 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7374 *p = i.tm.base_opcode & 0xff;
7375 }
7376
7377 /* Now the modrm byte and sib byte (if present). */
7378 if (i.tm.opcode_modifier.modrm)
7379 {
7380 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7381 | i.rm.reg << 3
7382 | i.rm.mode << 6));
7383 /* If i.rm.regmem == ESP (4)
7384 && i.rm.mode != (Register mode)
7385 && not 16 bit
7386 ==> need second modrm byte. */
7387 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7388 && i.rm.mode != 3
7389 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
7390 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7391 | i.sib.index << 3
7392 | i.sib.scale << 6));
7393 }
7394
7395 if (i.disp_operands)
7396 output_disp (insn_start_frag, insn_start_off);
7397
7398 if (i.imm_operands)
7399 output_imm (insn_start_frag, insn_start_off);
7400 }
7401
7402 #ifdef DEBUG386
7403 if (flag_debug)
7404 {
7405 pi ("" /*line*/, &i);
7406 }
7407 #endif /* DEBUG386 */
7408 }
7409
7410 /* Return the size of the displacement operand N. */
7411
7412 static int
7413 disp_size (unsigned int n)
7414 {
7415 int size = 4;
7416
7417 /* Vec_Disp8 has to be 8bit. */
7418 if (i.types[n].bitfield.vec_disp8)
7419 size = 1;
7420 else if (i.types[n].bitfield.disp64)
7421 size = 8;
7422 else if (i.types[n].bitfield.disp8)
7423 size = 1;
7424 else if (i.types[n].bitfield.disp16)
7425 size = 2;
7426 return size;
7427 }
7428
7429 /* Return the size of the immediate operand N. */
7430
7431 static int
7432 imm_size (unsigned int n)
7433 {
7434 int size = 4;
7435 if (i.types[n].bitfield.imm64)
7436 size = 8;
7437 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7438 size = 1;
7439 else if (i.types[n].bitfield.imm16)
7440 size = 2;
7441 return size;
7442 }
7443
7444 static void
7445 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7446 {
7447 char *p;
7448 unsigned int n;
7449
7450 for (n = 0; n < i.operands; n++)
7451 {
7452 if (i.types[n].bitfield.vec_disp8
7453 || operand_type_check (i.types[n], disp))
7454 {
7455 if (i.op[n].disps->X_op == O_constant)
7456 {
7457 int size = disp_size (n);
7458 offsetT val = i.op[n].disps->X_add_number;
7459
7460 if (i.types[n].bitfield.vec_disp8)
7461 val >>= i.memshift;
7462 val = offset_in_range (val, size);
7463 p = frag_more (size);
7464 md_number_to_chars (p, val, size);
7465 }
7466 else
7467 {
7468 enum bfd_reloc_code_real reloc_type;
7469 int size = disp_size (n);
7470 int sign = i.types[n].bitfield.disp32s;
7471 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7472 fixS *fixP;
7473
7474 /* We can't have 8 bit displacement here. */
7475 gas_assert (!i.types[n].bitfield.disp8);
7476
7477 /* The PC relative address is computed relative
7478 to the instruction boundary, so in case immediate
7479 fields follows, we need to adjust the value. */
7480 if (pcrel && i.imm_operands)
7481 {
7482 unsigned int n1;
7483 int sz = 0;
7484
7485 for (n1 = 0; n1 < i.operands; n1++)
7486 if (operand_type_check (i.types[n1], imm))
7487 {
7488 /* Only one immediate is allowed for PC
7489 relative address. */
7490 gas_assert (sz == 0);
7491 sz = imm_size (n1);
7492 i.op[n].disps->X_add_number -= sz;
7493 }
7494 /* We should find the immediate. */
7495 gas_assert (sz != 0);
7496 }
7497
7498 p = frag_more (size);
7499 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7500 if (GOT_symbol
7501 && GOT_symbol == i.op[n].disps->X_add_symbol
7502 && (((reloc_type == BFD_RELOC_32
7503 || reloc_type == BFD_RELOC_X86_64_32S
7504 || (reloc_type == BFD_RELOC_64
7505 && object_64bit))
7506 && (i.op[n].disps->X_op == O_symbol
7507 || (i.op[n].disps->X_op == O_add
7508 && ((symbol_get_value_expression
7509 (i.op[n].disps->X_op_symbol)->X_op)
7510 == O_subtract))))
7511 || reloc_type == BFD_RELOC_32_PCREL))
7512 {
7513 offsetT add;
7514
7515 if (insn_start_frag == frag_now)
7516 add = (p - frag_now->fr_literal) - insn_start_off;
7517 else
7518 {
7519 fragS *fr;
7520
7521 add = insn_start_frag->fr_fix - insn_start_off;
7522 for (fr = insn_start_frag->fr_next;
7523 fr && fr != frag_now; fr = fr->fr_next)
7524 add += fr->fr_fix;
7525 add += p - frag_now->fr_literal;
7526 }
7527
7528 if (!object_64bit)
7529 {
7530 reloc_type = BFD_RELOC_386_GOTPC;
7531 i.op[n].imms->X_add_number += add;
7532 }
7533 else if (reloc_type == BFD_RELOC_64)
7534 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7535 else
7536 /* Don't do the adjustment for x86-64, as there
7537 the pcrel addressing is relative to the _next_
7538 insn, and that is taken care of in other code. */
7539 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7540 }
7541 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7542 size, i.op[n].disps, pcrel,
7543 reloc_type);
7544 /* Check for "call/jmp *mem", "mov mem, %reg",
7545 "test %reg, mem" and "binop mem, %reg" where binop
7546 is one of adc, add, and, cmp, or, sbb, sub, xor
7547 instructions. Always generate R_386_GOT32X for
7548 "sym*GOT" operand in 32-bit mode. */
7549 if ((generate_relax_relocations
7550 || (!object_64bit
7551 && i.rm.mode == 0
7552 && i.rm.regmem == 5))
7553 && (i.rm.mode == 2
7554 || (i.rm.mode == 0 && i.rm.regmem == 5))
7555 && ((i.operands == 1
7556 && i.tm.base_opcode == 0xff
7557 && (i.rm.reg == 2 || i.rm.reg == 4))
7558 || (i.operands == 2
7559 && (i.tm.base_opcode == 0x8b
7560 || i.tm.base_opcode == 0x85
7561 || (i.tm.base_opcode & 0xc7) == 0x03))))
7562 {
7563 if (object_64bit)
7564 {
7565 fixP->fx_tcbit = i.rex != 0;
7566 if (i.base_reg
7567 && (i.base_reg->reg_num == RegRip
7568 || i.base_reg->reg_num == RegEip))
7569 fixP->fx_tcbit2 = 1;
7570 }
7571 else
7572 fixP->fx_tcbit2 = 1;
7573 }
7574 }
7575 }
7576 }
7577 }
7578
7579 static void
7580 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7581 {
7582 char *p;
7583 unsigned int n;
7584
7585 for (n = 0; n < i.operands; n++)
7586 {
7587 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7588 if (i.rounding && (int) n == i.rounding->operand)
7589 continue;
7590
7591 if (operand_type_check (i.types[n], imm))
7592 {
7593 if (i.op[n].imms->X_op == O_constant)
7594 {
7595 int size = imm_size (n);
7596 offsetT val;
7597
7598 val = offset_in_range (i.op[n].imms->X_add_number,
7599 size);
7600 p = frag_more (size);
7601 md_number_to_chars (p, val, size);
7602 }
7603 else
7604 {
7605 /* Not absolute_section.
7606 Need a 32-bit fixup (don't support 8bit
7607 non-absolute imms). Try to support other
7608 sizes ... */
7609 enum bfd_reloc_code_real reloc_type;
7610 int size = imm_size (n);
7611 int sign;
7612
7613 if (i.types[n].bitfield.imm32s
7614 && (i.suffix == QWORD_MNEM_SUFFIX
7615 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7616 sign = 1;
7617 else
7618 sign = 0;
7619
7620 p = frag_more (size);
7621 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7622
7623 /* This is tough to explain. We end up with this one if we
7624 * have operands that look like
7625 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7626 * obtain the absolute address of the GOT, and it is strongly
7627 * preferable from a performance point of view to avoid using
7628 * a runtime relocation for this. The actual sequence of
7629 * instructions often look something like:
7630 *
7631 * call .L66
7632 * .L66:
7633 * popl %ebx
7634 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7635 *
7636 * The call and pop essentially return the absolute address
7637 * of the label .L66 and store it in %ebx. The linker itself
7638 * will ultimately change the first operand of the addl so
7639 * that %ebx points to the GOT, but to keep things simple, the
7640 * .o file must have this operand set so that it generates not
7641 * the absolute address of .L66, but the absolute address of
7642 * itself. This allows the linker itself simply treat a GOTPC
7643 * relocation as asking for a pcrel offset to the GOT to be
7644 * added in, and the addend of the relocation is stored in the
7645 * operand field for the instruction itself.
7646 *
7647 * Our job here is to fix the operand so that it would add
7648 * the correct offset so that %ebx would point to itself. The
7649 * thing that is tricky is that .-.L66 will point to the
7650 * beginning of the instruction, so we need to further modify
7651 * the operand so that it will point to itself. There are
7652 * other cases where you have something like:
7653 *
7654 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7655 *
7656 * and here no correction would be required. Internally in
7657 * the assembler we treat operands of this form as not being
7658 * pcrel since the '.' is explicitly mentioned, and I wonder
7659 * whether it would simplify matters to do it this way. Who
7660 * knows. In earlier versions of the PIC patches, the
7661 * pcrel_adjust field was used to store the correction, but
7662 * since the expression is not pcrel, I felt it would be
7663 * confusing to do it this way. */
7664
7665 if ((reloc_type == BFD_RELOC_32
7666 || reloc_type == BFD_RELOC_X86_64_32S
7667 || reloc_type == BFD_RELOC_64)
7668 && GOT_symbol
7669 && GOT_symbol == i.op[n].imms->X_add_symbol
7670 && (i.op[n].imms->X_op == O_symbol
7671 || (i.op[n].imms->X_op == O_add
7672 && ((symbol_get_value_expression
7673 (i.op[n].imms->X_op_symbol)->X_op)
7674 == O_subtract))))
7675 {
7676 offsetT add;
7677
7678 if (insn_start_frag == frag_now)
7679 add = (p - frag_now->fr_literal) - insn_start_off;
7680 else
7681 {
7682 fragS *fr;
7683
7684 add = insn_start_frag->fr_fix - insn_start_off;
7685 for (fr = insn_start_frag->fr_next;
7686 fr && fr != frag_now; fr = fr->fr_next)
7687 add += fr->fr_fix;
7688 add += p - frag_now->fr_literal;
7689 }
7690
7691 if (!object_64bit)
7692 reloc_type = BFD_RELOC_386_GOTPC;
7693 else if (size == 4)
7694 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7695 else if (size == 8)
7696 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7697 i.op[n].imms->X_add_number += add;
7698 }
7699 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7700 i.op[n].imms, 0, reloc_type);
7701 }
7702 }
7703 }
7704 }
7705 \f
7706 /* x86_cons_fix_new is called via the expression parsing code when a
7707 reloc is needed. We use this hook to get the correct .got reloc. */
7708 static int cons_sign = -1;
7709
7710 void
7711 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7712 expressionS *exp, bfd_reloc_code_real_type r)
7713 {
7714 r = reloc (len, 0, cons_sign, r);
7715
7716 #ifdef TE_PE
7717 if (exp->X_op == O_secrel)
7718 {
7719 exp->X_op = O_symbol;
7720 r = BFD_RELOC_32_SECREL;
7721 }
7722 #endif
7723
7724 fix_new_exp (frag, off, len, exp, 0, r);
7725 }
7726
7727 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7728 purpose of the `.dc.a' internal pseudo-op. */
7729
7730 int
7731 x86_address_bytes (void)
7732 {
7733 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7734 return 4;
7735 return stdoutput->arch_info->bits_per_address / 8;
7736 }
7737
7738 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7739 || defined (LEX_AT)
7740 # define lex_got(reloc, adjust, types) NULL
7741 #else
7742 /* Parse operands of the form
7743 <symbol>@GOTOFF+<nnn>
7744 and similar .plt or .got references.
7745
7746 If we find one, set up the correct relocation in RELOC and copy the
7747 input string, minus the `@GOTOFF' into a malloc'd buffer for
7748 parsing by the calling routine. Return this buffer, and if ADJUST
7749 is non-null set it to the length of the string we removed from the
7750 input line. Otherwise return NULL. */
7751 static char *
7752 lex_got (enum bfd_reloc_code_real *rel,
7753 int *adjust,
7754 i386_operand_type *types)
7755 {
7756 /* Some of the relocations depend on the size of what field is to
7757 be relocated. But in our callers i386_immediate and i386_displacement
7758 we don't yet know the operand size (this will be set by insn
7759 matching). Hence we record the word32 relocation here,
7760 and adjust the reloc according to the real size in reloc(). */
7761 static const struct {
7762 const char *str;
7763 int len;
7764 const enum bfd_reloc_code_real rel[2];
7765 const i386_operand_type types64;
7766 } gotrel[] = {
7767 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7768 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7769 BFD_RELOC_SIZE32 },
7770 OPERAND_TYPE_IMM32_64 },
7771 #endif
7772 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7773 BFD_RELOC_X86_64_PLTOFF64 },
7774 OPERAND_TYPE_IMM64 },
7775 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7776 BFD_RELOC_X86_64_PLT32 },
7777 OPERAND_TYPE_IMM32_32S_DISP32 },
7778 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7779 BFD_RELOC_X86_64_GOTPLT64 },
7780 OPERAND_TYPE_IMM64_DISP64 },
7781 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7782 BFD_RELOC_X86_64_GOTOFF64 },
7783 OPERAND_TYPE_IMM64_DISP64 },
7784 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7785 BFD_RELOC_X86_64_GOTPCREL },
7786 OPERAND_TYPE_IMM32_32S_DISP32 },
7787 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7788 BFD_RELOC_X86_64_TLSGD },
7789 OPERAND_TYPE_IMM32_32S_DISP32 },
7790 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7791 _dummy_first_bfd_reloc_code_real },
7792 OPERAND_TYPE_NONE },
7793 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7794 BFD_RELOC_X86_64_TLSLD },
7795 OPERAND_TYPE_IMM32_32S_DISP32 },
7796 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7797 BFD_RELOC_X86_64_GOTTPOFF },
7798 OPERAND_TYPE_IMM32_32S_DISP32 },
7799 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7800 BFD_RELOC_X86_64_TPOFF32 },
7801 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7802 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7803 _dummy_first_bfd_reloc_code_real },
7804 OPERAND_TYPE_NONE },
7805 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7806 BFD_RELOC_X86_64_DTPOFF32 },
7807 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7808 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7809 _dummy_first_bfd_reloc_code_real },
7810 OPERAND_TYPE_NONE },
7811 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7812 _dummy_first_bfd_reloc_code_real },
7813 OPERAND_TYPE_NONE },
7814 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7815 BFD_RELOC_X86_64_GOT32 },
7816 OPERAND_TYPE_IMM32_32S_64_DISP32 },
7817 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7818 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7819 OPERAND_TYPE_IMM32_32S_DISP32 },
7820 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7821 BFD_RELOC_X86_64_TLSDESC_CALL },
7822 OPERAND_TYPE_IMM32_32S_DISP32 },
7823 };
7824 char *cp;
7825 unsigned int j;
7826
7827 #if defined (OBJ_MAYBE_ELF)
7828 if (!IS_ELF)
7829 return NULL;
7830 #endif
7831
7832 for (cp = input_line_pointer; *cp != '@'; cp++)
7833 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7834 return NULL;
7835
7836 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7837 {
7838 int len = gotrel[j].len;
7839 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7840 {
7841 if (gotrel[j].rel[object_64bit] != 0)
7842 {
7843 int first, second;
7844 char *tmpbuf, *past_reloc;
7845
7846 *rel = gotrel[j].rel[object_64bit];
7847
7848 if (types)
7849 {
7850 if (flag_code != CODE_64BIT)
7851 {
7852 types->bitfield.imm32 = 1;
7853 types->bitfield.disp32 = 1;
7854 }
7855 else
7856 *types = gotrel[j].types64;
7857 }
7858
7859 if (j != 0 && GOT_symbol == NULL)
7860 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7861
7862 /* The length of the first part of our input line. */
7863 first = cp - input_line_pointer;
7864
7865 /* The second part goes from after the reloc token until
7866 (and including) an end_of_line char or comma. */
7867 past_reloc = cp + 1 + len;
7868 cp = past_reloc;
7869 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7870 ++cp;
7871 second = cp + 1 - past_reloc;
7872
7873 /* Allocate and copy string. The trailing NUL shouldn't
7874 be necessary, but be safe. */
7875 tmpbuf = XNEWVEC (char, first + second + 2);
7876 memcpy (tmpbuf, input_line_pointer, first);
7877 if (second != 0 && *past_reloc != ' ')
7878 /* Replace the relocation token with ' ', so that
7879 errors like foo@GOTOFF1 will be detected. */
7880 tmpbuf[first++] = ' ';
7881 else
7882 /* Increment length by 1 if the relocation token is
7883 removed. */
7884 len++;
7885 if (adjust)
7886 *adjust = len;
7887 memcpy (tmpbuf + first, past_reloc, second);
7888 tmpbuf[first + second] = '\0';
7889 return tmpbuf;
7890 }
7891
7892 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7893 gotrel[j].str, 1 << (5 + object_64bit));
7894 return NULL;
7895 }
7896 }
7897
7898 /* Might be a symbol version string. Don't as_bad here. */
7899 return NULL;
7900 }
7901 #endif
7902
7903 #ifdef TE_PE
7904 #ifdef lex_got
7905 #undef lex_got
7906 #endif
7907 /* Parse operands of the form
7908 <symbol>@SECREL32+<nnn>
7909
7910 If we find one, set up the correct relocation in RELOC and copy the
7911 input string, minus the `@SECREL32' into a malloc'd buffer for
7912 parsing by the calling routine. Return this buffer, and if ADJUST
7913 is non-null set it to the length of the string we removed from the
7914 input line. Otherwise return NULL.
7915
7916 This function is copied from the ELF version above adjusted for PE targets. */
7917
7918 static char *
7919 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7920 int *adjust ATTRIBUTE_UNUSED,
7921 i386_operand_type *types)
7922 {
7923 static const struct
7924 {
7925 const char *str;
7926 int len;
7927 const enum bfd_reloc_code_real rel[2];
7928 const i386_operand_type types64;
7929 }
7930 gotrel[] =
7931 {
7932 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7933 BFD_RELOC_32_SECREL },
7934 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7935 };
7936
7937 char *cp;
7938 unsigned j;
7939
7940 for (cp = input_line_pointer; *cp != '@'; cp++)
7941 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7942 return NULL;
7943
7944 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7945 {
7946 int len = gotrel[j].len;
7947
7948 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7949 {
7950 if (gotrel[j].rel[object_64bit] != 0)
7951 {
7952 int first, second;
7953 char *tmpbuf, *past_reloc;
7954
7955 *rel = gotrel[j].rel[object_64bit];
7956 if (adjust)
7957 *adjust = len;
7958
7959 if (types)
7960 {
7961 if (flag_code != CODE_64BIT)
7962 {
7963 types->bitfield.imm32 = 1;
7964 types->bitfield.disp32 = 1;
7965 }
7966 else
7967 *types = gotrel[j].types64;
7968 }
7969
7970 /* The length of the first part of our input line. */
7971 first = cp - input_line_pointer;
7972
7973 /* The second part goes from after the reloc token until
7974 (and including) an end_of_line char or comma. */
7975 past_reloc = cp + 1 + len;
7976 cp = past_reloc;
7977 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7978 ++cp;
7979 second = cp + 1 - past_reloc;
7980
7981 /* Allocate and copy string. The trailing NUL shouldn't
7982 be necessary, but be safe. */
7983 tmpbuf = XNEWVEC (char, first + second + 2);
7984 memcpy (tmpbuf, input_line_pointer, first);
7985 if (second != 0 && *past_reloc != ' ')
7986 /* Replace the relocation token with ' ', so that
7987 errors like foo@SECLREL321 will be detected. */
7988 tmpbuf[first++] = ' ';
7989 memcpy (tmpbuf + first, past_reloc, second);
7990 tmpbuf[first + second] = '\0';
7991 return tmpbuf;
7992 }
7993
7994 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7995 gotrel[j].str, 1 << (5 + object_64bit));
7996 return NULL;
7997 }
7998 }
7999
8000 /* Might be a symbol version string. Don't as_bad here. */
8001 return NULL;
8002 }
8003
8004 #endif /* TE_PE */
8005
8006 bfd_reloc_code_real_type
8007 x86_cons (expressionS *exp, int size)
8008 {
8009 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8010
8011 intel_syntax = -intel_syntax;
8012
8013 exp->X_md = 0;
8014 if (size == 4 || (object_64bit && size == 8))
8015 {
8016 /* Handle @GOTOFF and the like in an expression. */
8017 char *save;
8018 char *gotfree_input_line;
8019 int adjust = 0;
8020
8021 save = input_line_pointer;
8022 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8023 if (gotfree_input_line)
8024 input_line_pointer = gotfree_input_line;
8025
8026 expression (exp);
8027
8028 if (gotfree_input_line)
8029 {
8030 /* expression () has merrily parsed up to the end of line,
8031 or a comma - in the wrong buffer. Transfer how far
8032 input_line_pointer has moved to the right buffer. */
8033 input_line_pointer = (save
8034 + (input_line_pointer - gotfree_input_line)
8035 + adjust);
8036 free (gotfree_input_line);
8037 if (exp->X_op == O_constant
8038 || exp->X_op == O_absent
8039 || exp->X_op == O_illegal
8040 || exp->X_op == O_register
8041 || exp->X_op == O_big)
8042 {
8043 char c = *input_line_pointer;
8044 *input_line_pointer = 0;
8045 as_bad (_("missing or invalid expression `%s'"), save);
8046 *input_line_pointer = c;
8047 }
8048 }
8049 }
8050 else
8051 expression (exp);
8052
8053 intel_syntax = -intel_syntax;
8054
8055 if (intel_syntax)
8056 i386_intel_simplify (exp);
8057
8058 return got_reloc;
8059 }
8060
8061 static void
8062 signed_cons (int size)
8063 {
8064 if (flag_code == CODE_64BIT)
8065 cons_sign = 1;
8066 cons (size);
8067 cons_sign = -1;
8068 }
8069
8070 #ifdef TE_PE
8071 static void
8072 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8073 {
8074 expressionS exp;
8075
8076 do
8077 {
8078 expression (&exp);
8079 if (exp.X_op == O_symbol)
8080 exp.X_op = O_secrel;
8081
8082 emit_expr (&exp, 4);
8083 }
8084 while (*input_line_pointer++ == ',');
8085
8086 input_line_pointer--;
8087 demand_empty_rest_of_line ();
8088 }
8089 #endif
8090
8091 /* Handle Vector operations. */
8092
8093 static char *
8094 check_VecOperations (char *op_string, char *op_end)
8095 {
8096 const reg_entry *mask;
8097 const char *saved;
8098 char *end_op;
8099
8100 while (*op_string
8101 && (op_end == NULL || op_string < op_end))
8102 {
8103 saved = op_string;
8104 if (*op_string == '{')
8105 {
8106 op_string++;
8107
8108 /* Check broadcasts. */
8109 if (strncmp (op_string, "1to", 3) == 0)
8110 {
8111 int bcst_type;
8112
8113 if (i.broadcast)
8114 goto duplicated_vec_op;
8115
8116 op_string += 3;
8117 if (*op_string == '8')
8118 bcst_type = BROADCAST_1TO8;
8119 else if (*op_string == '4')
8120 bcst_type = BROADCAST_1TO4;
8121 else if (*op_string == '2')
8122 bcst_type = BROADCAST_1TO2;
8123 else if (*op_string == '1'
8124 && *(op_string+1) == '6')
8125 {
8126 bcst_type = BROADCAST_1TO16;
8127 op_string++;
8128 }
8129 else
8130 {
8131 as_bad (_("Unsupported broadcast: `%s'"), saved);
8132 return NULL;
8133 }
8134 op_string++;
8135
8136 broadcast_op.type = bcst_type;
8137 broadcast_op.operand = this_operand;
8138 i.broadcast = &broadcast_op;
8139 }
8140 /* Check masking operation. */
8141 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8142 {
8143 /* k0 can't be used for write mask. */
8144 if (mask->reg_num == 0)
8145 {
8146 as_bad (_("`%s' can't be used for write mask"),
8147 op_string);
8148 return NULL;
8149 }
8150
8151 if (!i.mask)
8152 {
8153 mask_op.mask = mask;
8154 mask_op.zeroing = 0;
8155 mask_op.operand = this_operand;
8156 i.mask = &mask_op;
8157 }
8158 else
8159 {
8160 if (i.mask->mask)
8161 goto duplicated_vec_op;
8162
8163 i.mask->mask = mask;
8164
8165 /* Only "{z}" is allowed here. No need to check
8166 zeroing mask explicitly. */
8167 if (i.mask->operand != this_operand)
8168 {
8169 as_bad (_("invalid write mask `%s'"), saved);
8170 return NULL;
8171 }
8172 }
8173
8174 op_string = end_op;
8175 }
8176 /* Check zeroing-flag for masking operation. */
8177 else if (*op_string == 'z')
8178 {
8179 if (!i.mask)
8180 {
8181 mask_op.mask = NULL;
8182 mask_op.zeroing = 1;
8183 mask_op.operand = this_operand;
8184 i.mask = &mask_op;
8185 }
8186 else
8187 {
8188 if (i.mask->zeroing)
8189 {
8190 duplicated_vec_op:
8191 as_bad (_("duplicated `%s'"), saved);
8192 return NULL;
8193 }
8194
8195 i.mask->zeroing = 1;
8196
8197 /* Only "{%k}" is allowed here. No need to check mask
8198 register explicitly. */
8199 if (i.mask->operand != this_operand)
8200 {
8201 as_bad (_("invalid zeroing-masking `%s'"),
8202 saved);
8203 return NULL;
8204 }
8205 }
8206
8207 op_string++;
8208 }
8209 else
8210 goto unknown_vec_op;
8211
8212 if (*op_string != '}')
8213 {
8214 as_bad (_("missing `}' in `%s'"), saved);
8215 return NULL;
8216 }
8217 op_string++;
8218 continue;
8219 }
8220 unknown_vec_op:
8221 /* We don't know this one. */
8222 as_bad (_("unknown vector operation: `%s'"), saved);
8223 return NULL;
8224 }
8225
8226 return op_string;
8227 }
8228
8229 static int
8230 i386_immediate (char *imm_start)
8231 {
8232 char *save_input_line_pointer;
8233 char *gotfree_input_line;
8234 segT exp_seg = 0;
8235 expressionS *exp;
8236 i386_operand_type types;
8237
8238 operand_type_set (&types, ~0);
8239
8240 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8241 {
8242 as_bad (_("at most %d immediate operands are allowed"),
8243 MAX_IMMEDIATE_OPERANDS);
8244 return 0;
8245 }
8246
8247 exp = &im_expressions[i.imm_operands++];
8248 i.op[this_operand].imms = exp;
8249
8250 if (is_space_char (*imm_start))
8251 ++imm_start;
8252
8253 save_input_line_pointer = input_line_pointer;
8254 input_line_pointer = imm_start;
8255
8256 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8257 if (gotfree_input_line)
8258 input_line_pointer = gotfree_input_line;
8259
8260 exp_seg = expression (exp);
8261
8262 SKIP_WHITESPACE ();
8263
8264 /* Handle vector operations. */
8265 if (*input_line_pointer == '{')
8266 {
8267 input_line_pointer = check_VecOperations (input_line_pointer,
8268 NULL);
8269 if (input_line_pointer == NULL)
8270 return 0;
8271 }
8272
8273 if (*input_line_pointer)
8274 as_bad (_("junk `%s' after expression"), input_line_pointer);
8275
8276 input_line_pointer = save_input_line_pointer;
8277 if (gotfree_input_line)
8278 {
8279 free (gotfree_input_line);
8280
8281 if (exp->X_op == O_constant || exp->X_op == O_register)
8282 exp->X_op = O_illegal;
8283 }
8284
8285 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8286 }
8287
8288 static int
8289 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8290 i386_operand_type types, const char *imm_start)
8291 {
8292 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8293 {
8294 if (imm_start)
8295 as_bad (_("missing or invalid immediate expression `%s'"),
8296 imm_start);
8297 return 0;
8298 }
8299 else if (exp->X_op == O_constant)
8300 {
8301 /* Size it properly later. */
8302 i.types[this_operand].bitfield.imm64 = 1;
8303 /* If not 64bit, sign extend val. */
8304 if (flag_code != CODE_64BIT
8305 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8306 exp->X_add_number
8307 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8308 }
8309 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8310 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8311 && exp_seg != absolute_section
8312 && exp_seg != text_section
8313 && exp_seg != data_section
8314 && exp_seg != bss_section
8315 && exp_seg != undefined_section
8316 && !bfd_is_com_section (exp_seg))
8317 {
8318 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8319 return 0;
8320 }
8321 #endif
8322 else if (!intel_syntax && exp_seg == reg_section)
8323 {
8324 if (imm_start)
8325 as_bad (_("illegal immediate register operand %s"), imm_start);
8326 return 0;
8327 }
8328 else
8329 {
8330 /* This is an address. The size of the address will be
8331 determined later, depending on destination register,
8332 suffix, or the default for the section. */
8333 i.types[this_operand].bitfield.imm8 = 1;
8334 i.types[this_operand].bitfield.imm16 = 1;
8335 i.types[this_operand].bitfield.imm32 = 1;
8336 i.types[this_operand].bitfield.imm32s = 1;
8337 i.types[this_operand].bitfield.imm64 = 1;
8338 i.types[this_operand] = operand_type_and (i.types[this_operand],
8339 types);
8340 }
8341
8342 return 1;
8343 }
8344
8345 static char *
8346 i386_scale (char *scale)
8347 {
8348 offsetT val;
8349 char *save = input_line_pointer;
8350
8351 input_line_pointer = scale;
8352 val = get_absolute_expression ();
8353
8354 switch (val)
8355 {
8356 case 1:
8357 i.log2_scale_factor = 0;
8358 break;
8359 case 2:
8360 i.log2_scale_factor = 1;
8361 break;
8362 case 4:
8363 i.log2_scale_factor = 2;
8364 break;
8365 case 8:
8366 i.log2_scale_factor = 3;
8367 break;
8368 default:
8369 {
8370 char sep = *input_line_pointer;
8371
8372 *input_line_pointer = '\0';
8373 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8374 scale);
8375 *input_line_pointer = sep;
8376 input_line_pointer = save;
8377 return NULL;
8378 }
8379 }
8380 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8381 {
8382 as_warn (_("scale factor of %d without an index register"),
8383 1 << i.log2_scale_factor);
8384 i.log2_scale_factor = 0;
8385 }
8386 scale = input_line_pointer;
8387 input_line_pointer = save;
8388 return scale;
8389 }
8390
8391 static int
8392 i386_displacement (char *disp_start, char *disp_end)
8393 {
8394 expressionS *exp;
8395 segT exp_seg = 0;
8396 char *save_input_line_pointer;
8397 char *gotfree_input_line;
8398 int override;
8399 i386_operand_type bigdisp, types = anydisp;
8400 int ret;
8401
8402 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8403 {
8404 as_bad (_("at most %d displacement operands are allowed"),
8405 MAX_MEMORY_OPERANDS);
8406 return 0;
8407 }
8408
8409 operand_type_set (&bigdisp, 0);
8410 if ((i.types[this_operand].bitfield.jumpabsolute)
8411 || (!current_templates->start->opcode_modifier.jump
8412 && !current_templates->start->opcode_modifier.jumpdword))
8413 {
8414 bigdisp.bitfield.disp32 = 1;
8415 override = (i.prefix[ADDR_PREFIX] != 0);
8416 if (flag_code == CODE_64BIT)
8417 {
8418 if (!override)
8419 {
8420 bigdisp.bitfield.disp32s = 1;
8421 bigdisp.bitfield.disp64 = 1;
8422 }
8423 }
8424 else if ((flag_code == CODE_16BIT) ^ override)
8425 {
8426 bigdisp.bitfield.disp32 = 0;
8427 bigdisp.bitfield.disp16 = 1;
8428 }
8429 }
8430 else
8431 {
8432 /* For PC-relative branches, the width of the displacement
8433 is dependent upon data size, not address size. */
8434 override = (i.prefix[DATA_PREFIX] != 0);
8435 if (flag_code == CODE_64BIT)
8436 {
8437 if (override || i.suffix == WORD_MNEM_SUFFIX)
8438 bigdisp.bitfield.disp16 = 1;
8439 else
8440 {
8441 bigdisp.bitfield.disp32 = 1;
8442 bigdisp.bitfield.disp32s = 1;
8443 }
8444 }
8445 else
8446 {
8447 if (!override)
8448 override = (i.suffix == (flag_code != CODE_16BIT
8449 ? WORD_MNEM_SUFFIX
8450 : LONG_MNEM_SUFFIX));
8451 bigdisp.bitfield.disp32 = 1;
8452 if ((flag_code == CODE_16BIT) ^ override)
8453 {
8454 bigdisp.bitfield.disp32 = 0;
8455 bigdisp.bitfield.disp16 = 1;
8456 }
8457 }
8458 }
8459 i.types[this_operand] = operand_type_or (i.types[this_operand],
8460 bigdisp);
8461
8462 exp = &disp_expressions[i.disp_operands];
8463 i.op[this_operand].disps = exp;
8464 i.disp_operands++;
8465 save_input_line_pointer = input_line_pointer;
8466 input_line_pointer = disp_start;
8467 END_STRING_AND_SAVE (disp_end);
8468
8469 #ifndef GCC_ASM_O_HACK
8470 #define GCC_ASM_O_HACK 0
8471 #endif
8472 #if GCC_ASM_O_HACK
8473 END_STRING_AND_SAVE (disp_end + 1);
8474 if (i.types[this_operand].bitfield.baseIndex
8475 && displacement_string_end[-1] == '+')
8476 {
8477 /* This hack is to avoid a warning when using the "o"
8478 constraint within gcc asm statements.
8479 For instance:
8480
8481 #define _set_tssldt_desc(n,addr,limit,type) \
8482 __asm__ __volatile__ ( \
8483 "movw %w2,%0\n\t" \
8484 "movw %w1,2+%0\n\t" \
8485 "rorl $16,%1\n\t" \
8486 "movb %b1,4+%0\n\t" \
8487 "movb %4,5+%0\n\t" \
8488 "movb $0,6+%0\n\t" \
8489 "movb %h1,7+%0\n\t" \
8490 "rorl $16,%1" \
8491 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8492
8493 This works great except that the output assembler ends
8494 up looking a bit weird if it turns out that there is
8495 no offset. You end up producing code that looks like:
8496
8497 #APP
8498 movw $235,(%eax)
8499 movw %dx,2+(%eax)
8500 rorl $16,%edx
8501 movb %dl,4+(%eax)
8502 movb $137,5+(%eax)
8503 movb $0,6+(%eax)
8504 movb %dh,7+(%eax)
8505 rorl $16,%edx
8506 #NO_APP
8507
8508 So here we provide the missing zero. */
8509
8510 *displacement_string_end = '0';
8511 }
8512 #endif
8513 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8514 if (gotfree_input_line)
8515 input_line_pointer = gotfree_input_line;
8516
8517 exp_seg = expression (exp);
8518
8519 SKIP_WHITESPACE ();
8520 if (*input_line_pointer)
8521 as_bad (_("junk `%s' after expression"), input_line_pointer);
8522 #if GCC_ASM_O_HACK
8523 RESTORE_END_STRING (disp_end + 1);
8524 #endif
8525 input_line_pointer = save_input_line_pointer;
8526 if (gotfree_input_line)
8527 {
8528 free (gotfree_input_line);
8529
8530 if (exp->X_op == O_constant || exp->X_op == O_register)
8531 exp->X_op = O_illegal;
8532 }
8533
8534 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8535
8536 RESTORE_END_STRING (disp_end);
8537
8538 return ret;
8539 }
8540
8541 static int
8542 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8543 i386_operand_type types, const char *disp_start)
8544 {
8545 i386_operand_type bigdisp;
8546 int ret = 1;
8547
8548 /* We do this to make sure that the section symbol is in
8549 the symbol table. We will ultimately change the relocation
8550 to be relative to the beginning of the section. */
8551 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8552 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8553 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8554 {
8555 if (exp->X_op != O_symbol)
8556 goto inv_disp;
8557
8558 if (S_IS_LOCAL (exp->X_add_symbol)
8559 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8560 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8561 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8562 exp->X_op = O_subtract;
8563 exp->X_op_symbol = GOT_symbol;
8564 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8565 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8566 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8567 i.reloc[this_operand] = BFD_RELOC_64;
8568 else
8569 i.reloc[this_operand] = BFD_RELOC_32;
8570 }
8571
8572 else if (exp->X_op == O_absent
8573 || exp->X_op == O_illegal
8574 || exp->X_op == O_big)
8575 {
8576 inv_disp:
8577 as_bad (_("missing or invalid displacement expression `%s'"),
8578 disp_start);
8579 ret = 0;
8580 }
8581
8582 else if (flag_code == CODE_64BIT
8583 && !i.prefix[ADDR_PREFIX]
8584 && exp->X_op == O_constant)
8585 {
8586 /* Since displacement is signed extended to 64bit, don't allow
8587 disp32 and turn off disp32s if they are out of range. */
8588 i.types[this_operand].bitfield.disp32 = 0;
8589 if (!fits_in_signed_long (exp->X_add_number))
8590 {
8591 i.types[this_operand].bitfield.disp32s = 0;
8592 if (i.types[this_operand].bitfield.baseindex)
8593 {
8594 as_bad (_("0x%lx out range of signed 32bit displacement"),
8595 (long) exp->X_add_number);
8596 ret = 0;
8597 }
8598 }
8599 }
8600
8601 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8602 else if (exp->X_op != O_constant
8603 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8604 && exp_seg != absolute_section
8605 && exp_seg != text_section
8606 && exp_seg != data_section
8607 && exp_seg != bss_section
8608 && exp_seg != undefined_section
8609 && !bfd_is_com_section (exp_seg))
8610 {
8611 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8612 ret = 0;
8613 }
8614 #endif
8615
8616 /* Check if this is a displacement only operand. */
8617 bigdisp = i.types[this_operand];
8618 bigdisp.bitfield.disp8 = 0;
8619 bigdisp.bitfield.disp16 = 0;
8620 bigdisp.bitfield.disp32 = 0;
8621 bigdisp.bitfield.disp32s = 0;
8622 bigdisp.bitfield.disp64 = 0;
8623 if (operand_type_all_zero (&bigdisp))
8624 i.types[this_operand] = operand_type_and (i.types[this_operand],
8625 types);
8626
8627 return ret;
8628 }
8629
8630 /* Make sure the memory operand we've been dealt is valid.
8631 Return 1 on success, 0 on a failure. */
8632
8633 static int
8634 i386_index_check (const char *operand_string)
8635 {
8636 const char *kind = "base/index";
8637 enum flag_code addr_mode;
8638
8639 if (i.prefix[ADDR_PREFIX])
8640 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8641 else
8642 {
8643 addr_mode = flag_code;
8644
8645 #if INFER_ADDR_PREFIX
8646 if (i.mem_operands == 0)
8647 {
8648 /* Infer address prefix from the first memory operand. */
8649 const reg_entry *addr_reg = i.base_reg;
8650
8651 if (addr_reg == NULL)
8652 addr_reg = i.index_reg;
8653
8654 if (addr_reg)
8655 {
8656 if (addr_reg->reg_num == RegEip
8657 || addr_reg->reg_num == RegEiz
8658 || addr_reg->reg_type.bitfield.reg32)
8659 addr_mode = CODE_32BIT;
8660 else if (flag_code != CODE_64BIT
8661 && addr_reg->reg_type.bitfield.reg16)
8662 addr_mode = CODE_16BIT;
8663
8664 if (addr_mode != flag_code)
8665 {
8666 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8667 i.prefixes += 1;
8668 /* Change the size of any displacement too. At most one
8669 of Disp16 or Disp32 is set.
8670 FIXME. There doesn't seem to be any real need for
8671 separate Disp16 and Disp32 flags. The same goes for
8672 Imm16 and Imm32. Removing them would probably clean
8673 up the code quite a lot. */
8674 if (flag_code != CODE_64BIT
8675 && (i.types[this_operand].bitfield.disp16
8676 || i.types[this_operand].bitfield.disp32))
8677 i.types[this_operand]
8678 = operand_type_xor (i.types[this_operand], disp16_32);
8679 }
8680 }
8681 }
8682 #endif
8683 }
8684
8685 if (current_templates->start->opcode_modifier.isstring
8686 && !current_templates->start->opcode_modifier.immext
8687 && (current_templates->end[-1].opcode_modifier.isstring
8688 || i.mem_operands))
8689 {
8690 /* Memory operands of string insns are special in that they only allow
8691 a single register (rDI, rSI, or rBX) as their memory address. */
8692 const reg_entry *expected_reg;
8693 static const char *di_si[][2] =
8694 {
8695 { "esi", "edi" },
8696 { "si", "di" },
8697 { "rsi", "rdi" }
8698 };
8699 static const char *bx[] = { "ebx", "bx", "rbx" };
8700
8701 kind = "string address";
8702
8703 if (current_templates->start->opcode_modifier.repprefixok)
8704 {
8705 i386_operand_type type = current_templates->end[-1].operand_types[0];
8706
8707 if (!type.bitfield.baseindex
8708 || ((!i.mem_operands != !intel_syntax)
8709 && current_templates->end[-1].operand_types[1]
8710 .bitfield.baseindex))
8711 type = current_templates->end[-1].operand_types[1];
8712 expected_reg = hash_find (reg_hash,
8713 di_si[addr_mode][type.bitfield.esseg]);
8714
8715 }
8716 else
8717 expected_reg = hash_find (reg_hash, bx[addr_mode]);
8718
8719 if (i.base_reg != expected_reg
8720 || i.index_reg
8721 || operand_type_check (i.types[this_operand], disp))
8722 {
8723 /* The second memory operand must have the same size as
8724 the first one. */
8725 if (i.mem_operands
8726 && i.base_reg
8727 && !((addr_mode == CODE_64BIT
8728 && i.base_reg->reg_type.bitfield.reg64)
8729 || (addr_mode == CODE_32BIT
8730 ? i.base_reg->reg_type.bitfield.reg32
8731 : i.base_reg->reg_type.bitfield.reg16)))
8732 goto bad_address;
8733
8734 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8735 operand_string,
8736 intel_syntax ? '[' : '(',
8737 register_prefix,
8738 expected_reg->reg_name,
8739 intel_syntax ? ']' : ')');
8740 return 1;
8741 }
8742 else
8743 return 1;
8744
8745 bad_address:
8746 as_bad (_("`%s' is not a valid %s expression"),
8747 operand_string, kind);
8748 return 0;
8749 }
8750 else
8751 {
8752 if (addr_mode != CODE_16BIT)
8753 {
8754 /* 32-bit/64-bit checks. */
8755 if ((i.base_reg
8756 && (addr_mode == CODE_64BIT
8757 ? !i.base_reg->reg_type.bitfield.reg64
8758 : !i.base_reg->reg_type.bitfield.reg32)
8759 && (i.index_reg
8760 || (i.base_reg->reg_num
8761 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8762 || (i.index_reg
8763 && !i.index_reg->reg_type.bitfield.regxmm
8764 && !i.index_reg->reg_type.bitfield.regymm
8765 && !i.index_reg->reg_type.bitfield.regzmm
8766 && ((addr_mode == CODE_64BIT
8767 ? !(i.index_reg->reg_type.bitfield.reg64
8768 || i.index_reg->reg_num == RegRiz)
8769 : !(i.index_reg->reg_type.bitfield.reg32
8770 || i.index_reg->reg_num == RegEiz))
8771 || !i.index_reg->reg_type.bitfield.baseindex)))
8772 goto bad_address;
8773
8774 /* bndmk, bndldx, and bndstx have special restrictions. */
8775 if (current_templates->start->base_opcode == 0xf30f1b
8776 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
8777 {
8778 /* They cannot use RIP-relative addressing. */
8779 if (i.base_reg && i.base_reg->reg_num == RegRip)
8780 {
8781 as_bad (_("`%s' cannot be used here"), operand_string);
8782 return 0;
8783 }
8784
8785 /* bndldx and bndstx ignore their scale factor. */
8786 if (current_templates->start->base_opcode != 0xf30f1b
8787 && i.log2_scale_factor)
8788 as_warn (_("register scaling is being ignored here"));
8789 }
8790 }
8791 else
8792 {
8793 /* 16-bit checks. */
8794 if ((i.base_reg
8795 && (!i.base_reg->reg_type.bitfield.reg16
8796 || !i.base_reg->reg_type.bitfield.baseindex))
8797 || (i.index_reg
8798 && (!i.index_reg->reg_type.bitfield.reg16
8799 || !i.index_reg->reg_type.bitfield.baseindex
8800 || !(i.base_reg
8801 && i.base_reg->reg_num < 6
8802 && i.index_reg->reg_num >= 6
8803 && i.log2_scale_factor == 0))))
8804 goto bad_address;
8805 }
8806 }
8807 return 1;
8808 }
8809
8810 /* Handle vector immediates. */
8811
8812 static int
8813 RC_SAE_immediate (const char *imm_start)
8814 {
8815 unsigned int match_found, j;
8816 const char *pstr = imm_start;
8817 expressionS *exp;
8818
8819 if (*pstr != '{')
8820 return 0;
8821
8822 pstr++;
8823 match_found = 0;
8824 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8825 {
8826 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8827 {
8828 if (!i.rounding)
8829 {
8830 rc_op.type = RC_NamesTable[j].type;
8831 rc_op.operand = this_operand;
8832 i.rounding = &rc_op;
8833 }
8834 else
8835 {
8836 as_bad (_("duplicated `%s'"), imm_start);
8837 return 0;
8838 }
8839 pstr += RC_NamesTable[j].len;
8840 match_found = 1;
8841 break;
8842 }
8843 }
8844 if (!match_found)
8845 return 0;
8846
8847 if (*pstr++ != '}')
8848 {
8849 as_bad (_("Missing '}': '%s'"), imm_start);
8850 return 0;
8851 }
8852 /* RC/SAE immediate string should contain nothing more. */;
8853 if (*pstr != 0)
8854 {
8855 as_bad (_("Junk after '}': '%s'"), imm_start);
8856 return 0;
8857 }
8858
8859 exp = &im_expressions[i.imm_operands++];
8860 i.op[this_operand].imms = exp;
8861
8862 exp->X_op = O_constant;
8863 exp->X_add_number = 0;
8864 exp->X_add_symbol = (symbolS *) 0;
8865 exp->X_op_symbol = (symbolS *) 0;
8866
8867 i.types[this_operand].bitfield.imm8 = 1;
8868 return 1;
8869 }
8870
8871 /* Only string instructions can have a second memory operand, so
8872 reduce current_templates to just those if it contains any. */
8873 static int
8874 maybe_adjust_templates (void)
8875 {
8876 const insn_template *t;
8877
8878 gas_assert (i.mem_operands == 1);
8879
8880 for (t = current_templates->start; t < current_templates->end; ++t)
8881 if (t->opcode_modifier.isstring)
8882 break;
8883
8884 if (t < current_templates->end)
8885 {
8886 static templates aux_templates;
8887 bfd_boolean recheck;
8888
8889 aux_templates.start = t;
8890 for (; t < current_templates->end; ++t)
8891 if (!t->opcode_modifier.isstring)
8892 break;
8893 aux_templates.end = t;
8894
8895 /* Determine whether to re-check the first memory operand. */
8896 recheck = (aux_templates.start != current_templates->start
8897 || t != current_templates->end);
8898
8899 current_templates = &aux_templates;
8900
8901 if (recheck)
8902 {
8903 i.mem_operands = 0;
8904 if (i.memop1_string != NULL
8905 && i386_index_check (i.memop1_string) == 0)
8906 return 0;
8907 i.mem_operands = 1;
8908 }
8909 }
8910
8911 return 1;
8912 }
8913
8914 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
8915 on error. */
8916
8917 static int
8918 i386_att_operand (char *operand_string)
8919 {
8920 const reg_entry *r;
8921 char *end_op;
8922 char *op_string = operand_string;
8923
8924 if (is_space_char (*op_string))
8925 ++op_string;
8926
8927 /* We check for an absolute prefix (differentiating,
8928 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
8929 if (*op_string == ABSOLUTE_PREFIX)
8930 {
8931 ++op_string;
8932 if (is_space_char (*op_string))
8933 ++op_string;
8934 i.types[this_operand].bitfield.jumpabsolute = 1;
8935 }
8936
8937 /* Check if operand is a register. */
8938 if ((r = parse_register (op_string, &end_op)) != NULL)
8939 {
8940 i386_operand_type temp;
8941
8942 /* Check for a segment override by searching for ':' after a
8943 segment register. */
8944 op_string = end_op;
8945 if (is_space_char (*op_string))
8946 ++op_string;
8947 if (*op_string == ':'
8948 && (r->reg_type.bitfield.sreg2
8949 || r->reg_type.bitfield.sreg3))
8950 {
8951 switch (r->reg_num)
8952 {
8953 case 0:
8954 i.seg[i.mem_operands] = &es;
8955 break;
8956 case 1:
8957 i.seg[i.mem_operands] = &cs;
8958 break;
8959 case 2:
8960 i.seg[i.mem_operands] = &ss;
8961 break;
8962 case 3:
8963 i.seg[i.mem_operands] = &ds;
8964 break;
8965 case 4:
8966 i.seg[i.mem_operands] = &fs;
8967 break;
8968 case 5:
8969 i.seg[i.mem_operands] = &gs;
8970 break;
8971 }
8972
8973 /* Skip the ':' and whitespace. */
8974 ++op_string;
8975 if (is_space_char (*op_string))
8976 ++op_string;
8977
8978 if (!is_digit_char (*op_string)
8979 && !is_identifier_char (*op_string)
8980 && *op_string != '('
8981 && *op_string != ABSOLUTE_PREFIX)
8982 {
8983 as_bad (_("bad memory operand `%s'"), op_string);
8984 return 0;
8985 }
8986 /* Handle case of %es:*foo. */
8987 if (*op_string == ABSOLUTE_PREFIX)
8988 {
8989 ++op_string;
8990 if (is_space_char (*op_string))
8991 ++op_string;
8992 i.types[this_operand].bitfield.jumpabsolute = 1;
8993 }
8994 goto do_memory_reference;
8995 }
8996
8997 /* Handle vector operations. */
8998 if (*op_string == '{')
8999 {
9000 op_string = check_VecOperations (op_string, NULL);
9001 if (op_string == NULL)
9002 return 0;
9003 }
9004
9005 if (*op_string)
9006 {
9007 as_bad (_("junk `%s' after register"), op_string);
9008 return 0;
9009 }
9010 temp = r->reg_type;
9011 temp.bitfield.baseindex = 0;
9012 i.types[this_operand] = operand_type_or (i.types[this_operand],
9013 temp);
9014 i.types[this_operand].bitfield.unspecified = 0;
9015 i.op[this_operand].regs = r;
9016 i.reg_operands++;
9017 }
9018 else if (*op_string == REGISTER_PREFIX)
9019 {
9020 as_bad (_("bad register name `%s'"), op_string);
9021 return 0;
9022 }
9023 else if (*op_string == IMMEDIATE_PREFIX)
9024 {
9025 ++op_string;
9026 if (i.types[this_operand].bitfield.jumpabsolute)
9027 {
9028 as_bad (_("immediate operand illegal with absolute jump"));
9029 return 0;
9030 }
9031 if (!i386_immediate (op_string))
9032 return 0;
9033 }
9034 else if (RC_SAE_immediate (operand_string))
9035 {
9036 /* If it is a RC or SAE immediate, do nothing. */
9037 ;
9038 }
9039 else if (is_digit_char (*op_string)
9040 || is_identifier_char (*op_string)
9041 || *op_string == '"'
9042 || *op_string == '(')
9043 {
9044 /* This is a memory reference of some sort. */
9045 char *base_string;
9046
9047 /* Start and end of displacement string expression (if found). */
9048 char *displacement_string_start;
9049 char *displacement_string_end;
9050 char *vop_start;
9051
9052 do_memory_reference:
9053 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9054 return 0;
9055 if ((i.mem_operands == 1
9056 && !current_templates->start->opcode_modifier.isstring)
9057 || i.mem_operands == 2)
9058 {
9059 as_bad (_("too many memory references for `%s'"),
9060 current_templates->start->name);
9061 return 0;
9062 }
9063
9064 /* Check for base index form. We detect the base index form by
9065 looking for an ')' at the end of the operand, searching
9066 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9067 after the '('. */
9068 base_string = op_string + strlen (op_string);
9069
9070 /* Handle vector operations. */
9071 vop_start = strchr (op_string, '{');
9072 if (vop_start && vop_start < base_string)
9073 {
9074 if (check_VecOperations (vop_start, base_string) == NULL)
9075 return 0;
9076 base_string = vop_start;
9077 }
9078
9079 --base_string;
9080 if (is_space_char (*base_string))
9081 --base_string;
9082
9083 /* If we only have a displacement, set-up for it to be parsed later. */
9084 displacement_string_start = op_string;
9085 displacement_string_end = base_string + 1;
9086
9087 if (*base_string == ')')
9088 {
9089 char *temp_string;
9090 unsigned int parens_balanced = 1;
9091 /* We've already checked that the number of left & right ()'s are
9092 equal, so this loop will not be infinite. */
9093 do
9094 {
9095 base_string--;
9096 if (*base_string == ')')
9097 parens_balanced++;
9098 if (*base_string == '(')
9099 parens_balanced--;
9100 }
9101 while (parens_balanced);
9102
9103 temp_string = base_string;
9104
9105 /* Skip past '(' and whitespace. */
9106 ++base_string;
9107 if (is_space_char (*base_string))
9108 ++base_string;
9109
9110 if (*base_string == ','
9111 || ((i.base_reg = parse_register (base_string, &end_op))
9112 != NULL))
9113 {
9114 displacement_string_end = temp_string;
9115
9116 i.types[this_operand].bitfield.baseindex = 1;
9117
9118 if (i.base_reg)
9119 {
9120 base_string = end_op;
9121 if (is_space_char (*base_string))
9122 ++base_string;
9123 }
9124
9125 /* There may be an index reg or scale factor here. */
9126 if (*base_string == ',')
9127 {
9128 ++base_string;
9129 if (is_space_char (*base_string))
9130 ++base_string;
9131
9132 if ((i.index_reg = parse_register (base_string, &end_op))
9133 != NULL)
9134 {
9135 base_string = end_op;
9136 if (is_space_char (*base_string))
9137 ++base_string;
9138 if (*base_string == ',')
9139 {
9140 ++base_string;
9141 if (is_space_char (*base_string))
9142 ++base_string;
9143 }
9144 else if (*base_string != ')')
9145 {
9146 as_bad (_("expecting `,' or `)' "
9147 "after index register in `%s'"),
9148 operand_string);
9149 return 0;
9150 }
9151 }
9152 else if (*base_string == REGISTER_PREFIX)
9153 {
9154 end_op = strchr (base_string, ',');
9155 if (end_op)
9156 *end_op = '\0';
9157 as_bad (_("bad register name `%s'"), base_string);
9158 return 0;
9159 }
9160
9161 /* Check for scale factor. */
9162 if (*base_string != ')')
9163 {
9164 char *end_scale = i386_scale (base_string);
9165
9166 if (!end_scale)
9167 return 0;
9168
9169 base_string = end_scale;
9170 if (is_space_char (*base_string))
9171 ++base_string;
9172 if (*base_string != ')')
9173 {
9174 as_bad (_("expecting `)' "
9175 "after scale factor in `%s'"),
9176 operand_string);
9177 return 0;
9178 }
9179 }
9180 else if (!i.index_reg)
9181 {
9182 as_bad (_("expecting index register or scale factor "
9183 "after `,'; got '%c'"),
9184 *base_string);
9185 return 0;
9186 }
9187 }
9188 else if (*base_string != ')')
9189 {
9190 as_bad (_("expecting `,' or `)' "
9191 "after base register in `%s'"),
9192 operand_string);
9193 return 0;
9194 }
9195 }
9196 else if (*base_string == REGISTER_PREFIX)
9197 {
9198 end_op = strchr (base_string, ',');
9199 if (end_op)
9200 *end_op = '\0';
9201 as_bad (_("bad register name `%s'"), base_string);
9202 return 0;
9203 }
9204 }
9205
9206 /* If there's an expression beginning the operand, parse it,
9207 assuming displacement_string_start and
9208 displacement_string_end are meaningful. */
9209 if (displacement_string_start != displacement_string_end)
9210 {
9211 if (!i386_displacement (displacement_string_start,
9212 displacement_string_end))
9213 return 0;
9214 }
9215
9216 /* Special case for (%dx) while doing input/output op. */
9217 if (i.base_reg
9218 && operand_type_equal (&i.base_reg->reg_type,
9219 &reg16_inoutportreg)
9220 && i.index_reg == 0
9221 && i.log2_scale_factor == 0
9222 && i.seg[i.mem_operands] == 0
9223 && !operand_type_check (i.types[this_operand], disp))
9224 {
9225 i.types[this_operand] = inoutportreg;
9226 return 1;
9227 }
9228
9229 if (i386_index_check (operand_string) == 0)
9230 return 0;
9231 i.types[this_operand].bitfield.mem = 1;
9232 if (i.mem_operands == 0)
9233 i.memop1_string = xstrdup (operand_string);
9234 i.mem_operands++;
9235 }
9236 else
9237 {
9238 /* It's not a memory operand; argh! */
9239 as_bad (_("invalid char %s beginning operand %d `%s'"),
9240 output_invalid (*op_string),
9241 this_operand + 1,
9242 op_string);
9243 return 0;
9244 }
9245 return 1; /* Normal return. */
9246 }
9247 \f
9248 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9249 that an rs_machine_dependent frag may reach. */
9250
9251 unsigned int
9252 i386_frag_max_var (fragS *frag)
9253 {
9254 /* The only relaxable frags are for jumps.
9255 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9256 gas_assert (frag->fr_type == rs_machine_dependent);
9257 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9258 }
9259
9260 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9261 static int
9262 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9263 {
9264 /* STT_GNU_IFUNC symbol must go through PLT. */
9265 if ((symbol_get_bfdsym (fr_symbol)->flags
9266 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9267 return 0;
9268
9269 if (!S_IS_EXTERNAL (fr_symbol))
9270 /* Symbol may be weak or local. */
9271 return !S_IS_WEAK (fr_symbol);
9272
9273 /* Global symbols with non-default visibility can't be preempted. */
9274 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9275 return 1;
9276
9277 if (fr_var != NO_RELOC)
9278 switch ((enum bfd_reloc_code_real) fr_var)
9279 {
9280 case BFD_RELOC_386_PLT32:
9281 case BFD_RELOC_X86_64_PLT32:
9282 /* Symbol with PLT relocation may be preempted. */
9283 return 0;
9284 default:
9285 abort ();
9286 }
9287
9288 /* Global symbols with default visibility in a shared library may be
9289 preempted by another definition. */
9290 return !shared;
9291 }
9292 #endif
9293
9294 /* md_estimate_size_before_relax()
9295
9296 Called just before relax() for rs_machine_dependent frags. The x86
9297 assembler uses these frags to handle variable size jump
9298 instructions.
9299
9300 Any symbol that is now undefined will not become defined.
9301 Return the correct fr_subtype in the frag.
9302 Return the initial "guess for variable size of frag" to caller.
9303 The guess is actually the growth beyond the fixed part. Whatever
9304 we do to grow the fixed or variable part contributes to our
9305 returned value. */
9306
9307 int
9308 md_estimate_size_before_relax (fragS *fragP, segT segment)
9309 {
9310 /* We've already got fragP->fr_subtype right; all we have to do is
9311 check for un-relaxable symbols. On an ELF system, we can't relax
9312 an externally visible symbol, because it may be overridden by a
9313 shared library. */
9314 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9315 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9316 || (IS_ELF
9317 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9318 fragP->fr_var))
9319 #endif
9320 #if defined (OBJ_COFF) && defined (TE_PE)
9321 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9322 && S_IS_WEAK (fragP->fr_symbol))
9323 #endif
9324 )
9325 {
9326 /* Symbol is undefined in this segment, or we need to keep a
9327 reloc so that weak symbols can be overridden. */
9328 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9329 enum bfd_reloc_code_real reloc_type;
9330 unsigned char *opcode;
9331 int old_fr_fix;
9332
9333 if (fragP->fr_var != NO_RELOC)
9334 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9335 else if (size == 2)
9336 reloc_type = BFD_RELOC_16_PCREL;
9337 else
9338 reloc_type = BFD_RELOC_32_PCREL;
9339
9340 old_fr_fix = fragP->fr_fix;
9341 opcode = (unsigned char *) fragP->fr_opcode;
9342
9343 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9344 {
9345 case UNCOND_JUMP:
9346 /* Make jmp (0xeb) a (d)word displacement jump. */
9347 opcode[0] = 0xe9;
9348 fragP->fr_fix += size;
9349 fix_new (fragP, old_fr_fix, size,
9350 fragP->fr_symbol,
9351 fragP->fr_offset, 1,
9352 reloc_type);
9353 break;
9354
9355 case COND_JUMP86:
9356 if (size == 2
9357 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9358 {
9359 /* Negate the condition, and branch past an
9360 unconditional jump. */
9361 opcode[0] ^= 1;
9362 opcode[1] = 3;
9363 /* Insert an unconditional jump. */
9364 opcode[2] = 0xe9;
9365 /* We added two extra opcode bytes, and have a two byte
9366 offset. */
9367 fragP->fr_fix += 2 + 2;
9368 fix_new (fragP, old_fr_fix + 2, 2,
9369 fragP->fr_symbol,
9370 fragP->fr_offset, 1,
9371 reloc_type);
9372 break;
9373 }
9374 /* Fall through. */
9375
9376 case COND_JUMP:
9377 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9378 {
9379 fixS *fixP;
9380
9381 fragP->fr_fix += 1;
9382 fixP = fix_new (fragP, old_fr_fix, 1,
9383 fragP->fr_symbol,
9384 fragP->fr_offset, 1,
9385 BFD_RELOC_8_PCREL);
9386 fixP->fx_signed = 1;
9387 break;
9388 }
9389
9390 /* This changes the byte-displacement jump 0x7N
9391 to the (d)word-displacement jump 0x0f,0x8N. */
9392 opcode[1] = opcode[0] + 0x10;
9393 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9394 /* We've added an opcode byte. */
9395 fragP->fr_fix += 1 + size;
9396 fix_new (fragP, old_fr_fix + 1, size,
9397 fragP->fr_symbol,
9398 fragP->fr_offset, 1,
9399 reloc_type);
9400 break;
9401
9402 default:
9403 BAD_CASE (fragP->fr_subtype);
9404 break;
9405 }
9406 frag_wane (fragP);
9407 return fragP->fr_fix - old_fr_fix;
9408 }
9409
9410 /* Guess size depending on current relax state. Initially the relax
9411 state will correspond to a short jump and we return 1, because
9412 the variable part of the frag (the branch offset) is one byte
9413 long. However, we can relax a section more than once and in that
9414 case we must either set fr_subtype back to the unrelaxed state,
9415 or return the value for the appropriate branch. */
9416 return md_relax_table[fragP->fr_subtype].rlx_length;
9417 }
9418
9419 /* Called after relax() is finished.
9420
9421 In: Address of frag.
9422 fr_type == rs_machine_dependent.
9423 fr_subtype is what the address relaxed to.
9424
9425 Out: Any fixSs and constants are set up.
9426 Caller will turn frag into a ".space 0". */
9427
9428 void
9429 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9430 fragS *fragP)
9431 {
9432 unsigned char *opcode;
9433 unsigned char *where_to_put_displacement = NULL;
9434 offsetT target_address;
9435 offsetT opcode_address;
9436 unsigned int extension = 0;
9437 offsetT displacement_from_opcode_start;
9438
9439 opcode = (unsigned char *) fragP->fr_opcode;
9440
9441 /* Address we want to reach in file space. */
9442 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9443
9444 /* Address opcode resides at in file space. */
9445 opcode_address = fragP->fr_address + fragP->fr_fix;
9446
9447 /* Displacement from opcode start to fill into instruction. */
9448 displacement_from_opcode_start = target_address - opcode_address;
9449
9450 if ((fragP->fr_subtype & BIG) == 0)
9451 {
9452 /* Don't have to change opcode. */
9453 extension = 1; /* 1 opcode + 1 displacement */
9454 where_to_put_displacement = &opcode[1];
9455 }
9456 else
9457 {
9458 if (no_cond_jump_promotion
9459 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9460 as_warn_where (fragP->fr_file, fragP->fr_line,
9461 _("long jump required"));
9462
9463 switch (fragP->fr_subtype)
9464 {
9465 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9466 extension = 4; /* 1 opcode + 4 displacement */
9467 opcode[0] = 0xe9;
9468 where_to_put_displacement = &opcode[1];
9469 break;
9470
9471 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9472 extension = 2; /* 1 opcode + 2 displacement */
9473 opcode[0] = 0xe9;
9474 where_to_put_displacement = &opcode[1];
9475 break;
9476
9477 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9478 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9479 extension = 5; /* 2 opcode + 4 displacement */
9480 opcode[1] = opcode[0] + 0x10;
9481 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9482 where_to_put_displacement = &opcode[2];
9483 break;
9484
9485 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9486 extension = 3; /* 2 opcode + 2 displacement */
9487 opcode[1] = opcode[0] + 0x10;
9488 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9489 where_to_put_displacement = &opcode[2];
9490 break;
9491
9492 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9493 extension = 4;
9494 opcode[0] ^= 1;
9495 opcode[1] = 3;
9496 opcode[2] = 0xe9;
9497 where_to_put_displacement = &opcode[3];
9498 break;
9499
9500 default:
9501 BAD_CASE (fragP->fr_subtype);
9502 break;
9503 }
9504 }
9505
9506 /* If size if less then four we are sure that the operand fits,
9507 but if it's 4, then it could be that the displacement is larger
9508 then -/+ 2GB. */
9509 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9510 && object_64bit
9511 && ((addressT) (displacement_from_opcode_start - extension
9512 + ((addressT) 1 << 31))
9513 > (((addressT) 2 << 31) - 1)))
9514 {
9515 as_bad_where (fragP->fr_file, fragP->fr_line,
9516 _("jump target out of range"));
9517 /* Make us emit 0. */
9518 displacement_from_opcode_start = extension;
9519 }
9520 /* Now put displacement after opcode. */
9521 md_number_to_chars ((char *) where_to_put_displacement,
9522 (valueT) (displacement_from_opcode_start - extension),
9523 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9524 fragP->fr_fix += extension;
9525 }
9526 \f
9527 /* Apply a fixup (fixP) to segment data, once it has been determined
9528 by our caller that we have all the info we need to fix it up.
9529
9530 Parameter valP is the pointer to the value of the bits.
9531
9532 On the 386, immediates, displacements, and data pointers are all in
9533 the same (little-endian) format, so we don't need to care about which
9534 we are handling. */
9535
9536 void
9537 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9538 {
9539 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9540 valueT value = *valP;
9541
9542 #if !defined (TE_Mach)
9543 if (fixP->fx_pcrel)
9544 {
9545 switch (fixP->fx_r_type)
9546 {
9547 default:
9548 break;
9549
9550 case BFD_RELOC_64:
9551 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9552 break;
9553 case BFD_RELOC_32:
9554 case BFD_RELOC_X86_64_32S:
9555 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9556 break;
9557 case BFD_RELOC_16:
9558 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9559 break;
9560 case BFD_RELOC_8:
9561 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9562 break;
9563 }
9564 }
9565
9566 if (fixP->fx_addsy != NULL
9567 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9568 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9569 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9570 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9571 && !use_rela_relocations)
9572 {
9573 /* This is a hack. There should be a better way to handle this.
9574 This covers for the fact that bfd_install_relocation will
9575 subtract the current location (for partial_inplace, PC relative
9576 relocations); see more below. */
9577 #ifndef OBJ_AOUT
9578 if (IS_ELF
9579 #ifdef TE_PE
9580 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9581 #endif
9582 )
9583 value += fixP->fx_where + fixP->fx_frag->fr_address;
9584 #endif
9585 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9586 if (IS_ELF)
9587 {
9588 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9589
9590 if ((sym_seg == seg
9591 || (symbol_section_p (fixP->fx_addsy)
9592 && sym_seg != absolute_section))
9593 && !generic_force_reloc (fixP))
9594 {
9595 /* Yes, we add the values in twice. This is because
9596 bfd_install_relocation subtracts them out again. I think
9597 bfd_install_relocation is broken, but I don't dare change
9598 it. FIXME. */
9599 value += fixP->fx_where + fixP->fx_frag->fr_address;
9600 }
9601 }
9602 #endif
9603 #if defined (OBJ_COFF) && defined (TE_PE)
9604 /* For some reason, the PE format does not store a
9605 section address offset for a PC relative symbol. */
9606 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9607 || S_IS_WEAK (fixP->fx_addsy))
9608 value += md_pcrel_from (fixP);
9609 #endif
9610 }
9611 #if defined (OBJ_COFF) && defined (TE_PE)
9612 if (fixP->fx_addsy != NULL
9613 && S_IS_WEAK (fixP->fx_addsy)
9614 /* PR 16858: Do not modify weak function references. */
9615 && ! fixP->fx_pcrel)
9616 {
9617 #if !defined (TE_PEP)
9618 /* For x86 PE weak function symbols are neither PC-relative
9619 nor do they set S_IS_FUNCTION. So the only reliable way
9620 to detect them is to check the flags of their containing
9621 section. */
9622 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9623 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9624 ;
9625 else
9626 #endif
9627 value -= S_GET_VALUE (fixP->fx_addsy);
9628 }
9629 #endif
9630
9631 /* Fix a few things - the dynamic linker expects certain values here,
9632 and we must not disappoint it. */
9633 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9634 if (IS_ELF && fixP->fx_addsy)
9635 switch (fixP->fx_r_type)
9636 {
9637 case BFD_RELOC_386_PLT32:
9638 case BFD_RELOC_X86_64_PLT32:
9639 /* Make the jump instruction point to the address of the operand. At
9640 runtime we merely add the offset to the actual PLT entry. */
9641 value = -4;
9642 break;
9643
9644 case BFD_RELOC_386_TLS_GD:
9645 case BFD_RELOC_386_TLS_LDM:
9646 case BFD_RELOC_386_TLS_IE_32:
9647 case BFD_RELOC_386_TLS_IE:
9648 case BFD_RELOC_386_TLS_GOTIE:
9649 case BFD_RELOC_386_TLS_GOTDESC:
9650 case BFD_RELOC_X86_64_TLSGD:
9651 case BFD_RELOC_X86_64_TLSLD:
9652 case BFD_RELOC_X86_64_GOTTPOFF:
9653 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9654 value = 0; /* Fully resolved at runtime. No addend. */
9655 /* Fallthrough */
9656 case BFD_RELOC_386_TLS_LE:
9657 case BFD_RELOC_386_TLS_LDO_32:
9658 case BFD_RELOC_386_TLS_LE_32:
9659 case BFD_RELOC_X86_64_DTPOFF32:
9660 case BFD_RELOC_X86_64_DTPOFF64:
9661 case BFD_RELOC_X86_64_TPOFF32:
9662 case BFD_RELOC_X86_64_TPOFF64:
9663 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9664 break;
9665
9666 case BFD_RELOC_386_TLS_DESC_CALL:
9667 case BFD_RELOC_X86_64_TLSDESC_CALL:
9668 value = 0; /* Fully resolved at runtime. No addend. */
9669 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9670 fixP->fx_done = 0;
9671 return;
9672
9673 case BFD_RELOC_VTABLE_INHERIT:
9674 case BFD_RELOC_VTABLE_ENTRY:
9675 fixP->fx_done = 0;
9676 return;
9677
9678 default:
9679 break;
9680 }
9681 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9682 *valP = value;
9683 #endif /* !defined (TE_Mach) */
9684
9685 /* Are we finished with this relocation now? */
9686 if (fixP->fx_addsy == NULL)
9687 fixP->fx_done = 1;
9688 #if defined (OBJ_COFF) && defined (TE_PE)
9689 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9690 {
9691 fixP->fx_done = 0;
9692 /* Remember value for tc_gen_reloc. */
9693 fixP->fx_addnumber = value;
9694 /* Clear out the frag for now. */
9695 value = 0;
9696 }
9697 #endif
9698 else if (use_rela_relocations)
9699 {
9700 fixP->fx_no_overflow = 1;
9701 /* Remember value for tc_gen_reloc. */
9702 fixP->fx_addnumber = value;
9703 value = 0;
9704 }
9705
9706 md_number_to_chars (p, value, fixP->fx_size);
9707 }
9708 \f
9709 const char *
9710 md_atof (int type, char *litP, int *sizeP)
9711 {
9712 /* This outputs the LITTLENUMs in REVERSE order;
9713 in accord with the bigendian 386. */
9714 return ieee_md_atof (type, litP, sizeP, FALSE);
9715 }
9716 \f
9717 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9718
9719 static char *
9720 output_invalid (int c)
9721 {
9722 if (ISPRINT (c))
9723 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9724 "'%c'", c);
9725 else
9726 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9727 "(0x%x)", (unsigned char) c);
9728 return output_invalid_buf;
9729 }
9730
9731 /* REG_STRING starts *before* REGISTER_PREFIX. */
9732
9733 static const reg_entry *
9734 parse_real_register (char *reg_string, char **end_op)
9735 {
9736 char *s = reg_string;
9737 char *p;
9738 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9739 const reg_entry *r;
9740
9741 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9742 if (*s == REGISTER_PREFIX)
9743 ++s;
9744
9745 if (is_space_char (*s))
9746 ++s;
9747
9748 p = reg_name_given;
9749 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9750 {
9751 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9752 return (const reg_entry *) NULL;
9753 s++;
9754 }
9755
9756 /* For naked regs, make sure that we are not dealing with an identifier.
9757 This prevents confusing an identifier like `eax_var' with register
9758 `eax'. */
9759 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9760 return (const reg_entry *) NULL;
9761
9762 *end_op = s;
9763
9764 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9765
9766 /* Handle floating point regs, allowing spaces in the (i) part. */
9767 if (r == i386_regtab /* %st is first entry of table */)
9768 {
9769 if (is_space_char (*s))
9770 ++s;
9771 if (*s == '(')
9772 {
9773 ++s;
9774 if (is_space_char (*s))
9775 ++s;
9776 if (*s >= '0' && *s <= '7')
9777 {
9778 int fpr = *s - '0';
9779 ++s;
9780 if (is_space_char (*s))
9781 ++s;
9782 if (*s == ')')
9783 {
9784 *end_op = s + 1;
9785 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9786 know (r);
9787 return r + fpr;
9788 }
9789 }
9790 /* We have "%st(" then garbage. */
9791 return (const reg_entry *) NULL;
9792 }
9793 }
9794
9795 if (r == NULL || allow_pseudo_reg)
9796 return r;
9797
9798 if (operand_type_all_zero (&r->reg_type))
9799 return (const reg_entry *) NULL;
9800
9801 if ((r->reg_type.bitfield.reg32
9802 || r->reg_type.bitfield.sreg3
9803 || r->reg_type.bitfield.control
9804 || r->reg_type.bitfield.debug
9805 || r->reg_type.bitfield.test)
9806 && !cpu_arch_flags.bitfield.cpui386)
9807 return (const reg_entry *) NULL;
9808
9809 if (r->reg_type.bitfield.floatreg
9810 && !cpu_arch_flags.bitfield.cpu8087
9811 && !cpu_arch_flags.bitfield.cpu287
9812 && !cpu_arch_flags.bitfield.cpu387)
9813 return (const reg_entry *) NULL;
9814
9815 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
9816 return (const reg_entry *) NULL;
9817
9818 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpuregxmm)
9819 return (const reg_entry *) NULL;
9820
9821 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuregymm)
9822 return (const reg_entry *) NULL;
9823
9824 if (r->reg_type.bitfield.regzmm && !cpu_arch_flags.bitfield.cpuregzmm)
9825 return (const reg_entry *) NULL;
9826
9827 if (r->reg_type.bitfield.regmask
9828 && !cpu_arch_flags.bitfield.cpuregmask)
9829 return (const reg_entry *) NULL;
9830
9831 /* Don't allow fake index register unless allow_index_reg isn't 0. */
9832 if (!allow_index_reg
9833 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9834 return (const reg_entry *) NULL;
9835
9836 /* Upper 16 vector register is only available with VREX in 64bit
9837 mode. */
9838 if ((r->reg_flags & RegVRex))
9839 {
9840 if (i.vec_encoding == vex_encoding_default)
9841 i.vec_encoding = vex_encoding_evex;
9842
9843 if (!cpu_arch_flags.bitfield.cpuvrex
9844 || i.vec_encoding != vex_encoding_evex
9845 || flag_code != CODE_64BIT)
9846 return (const reg_entry *) NULL;
9847 }
9848
9849 if (((r->reg_flags & (RegRex64 | RegRex))
9850 || r->reg_type.bitfield.reg64)
9851 && (!cpu_arch_flags.bitfield.cpulm
9852 || !operand_type_equal (&r->reg_type, &control))
9853 && flag_code != CODE_64BIT)
9854 return (const reg_entry *) NULL;
9855
9856 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9857 return (const reg_entry *) NULL;
9858
9859 return r;
9860 }
9861
9862 /* REG_STRING starts *before* REGISTER_PREFIX. */
9863
9864 static const reg_entry *
9865 parse_register (char *reg_string, char **end_op)
9866 {
9867 const reg_entry *r;
9868
9869 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9870 r = parse_real_register (reg_string, end_op);
9871 else
9872 r = NULL;
9873 if (!r)
9874 {
9875 char *save = input_line_pointer;
9876 char c;
9877 symbolS *symbolP;
9878
9879 input_line_pointer = reg_string;
9880 c = get_symbol_name (&reg_string);
9881 symbolP = symbol_find (reg_string);
9882 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9883 {
9884 const expressionS *e = symbol_get_value_expression (symbolP);
9885
9886 know (e->X_op == O_register);
9887 know (e->X_add_number >= 0
9888 && (valueT) e->X_add_number < i386_regtab_size);
9889 r = i386_regtab + e->X_add_number;
9890 if ((r->reg_flags & RegVRex))
9891 i.vec_encoding = vex_encoding_evex;
9892 *end_op = input_line_pointer;
9893 }
9894 *input_line_pointer = c;
9895 input_line_pointer = save;
9896 }
9897 return r;
9898 }
9899
9900 int
9901 i386_parse_name (char *name, expressionS *e, char *nextcharP)
9902 {
9903 const reg_entry *r;
9904 char *end = input_line_pointer;
9905
9906 *end = *nextcharP;
9907 r = parse_register (name, &input_line_pointer);
9908 if (r && end <= input_line_pointer)
9909 {
9910 *nextcharP = *input_line_pointer;
9911 *input_line_pointer = 0;
9912 e->X_op = O_register;
9913 e->X_add_number = r - i386_regtab;
9914 return 1;
9915 }
9916 input_line_pointer = end;
9917 *end = 0;
9918 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
9919 }
9920
9921 void
9922 md_operand (expressionS *e)
9923 {
9924 char *end;
9925 const reg_entry *r;
9926
9927 switch (*input_line_pointer)
9928 {
9929 case REGISTER_PREFIX:
9930 r = parse_real_register (input_line_pointer, &end);
9931 if (r)
9932 {
9933 e->X_op = O_register;
9934 e->X_add_number = r - i386_regtab;
9935 input_line_pointer = end;
9936 }
9937 break;
9938
9939 case '[':
9940 gas_assert (intel_syntax);
9941 end = input_line_pointer++;
9942 expression (e);
9943 if (*input_line_pointer == ']')
9944 {
9945 ++input_line_pointer;
9946 e->X_op_symbol = make_expr_symbol (e);
9947 e->X_add_symbol = NULL;
9948 e->X_add_number = 0;
9949 e->X_op = O_index;
9950 }
9951 else
9952 {
9953 e->X_op = O_absent;
9954 input_line_pointer = end;
9955 }
9956 break;
9957 }
9958 }
9959
9960 \f
9961 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9962 const char *md_shortopts = "kVQ:sqn";
9963 #else
9964 const char *md_shortopts = "qn";
9965 #endif
9966
9967 #define OPTION_32 (OPTION_MD_BASE + 0)
9968 #define OPTION_64 (OPTION_MD_BASE + 1)
9969 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9970 #define OPTION_MARCH (OPTION_MD_BASE + 3)
9971 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
9972 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9973 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9974 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9975 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9976 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9977 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9978 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9979 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9980 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9981 #define OPTION_X32 (OPTION_MD_BASE + 14)
9982 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9983 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9984 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9985 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
9986 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
9987 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
9988 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
9989 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
9990 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
9991 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
9992 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 25)
9993
9994 struct option md_longopts[] =
9995 {
9996 {"32", no_argument, NULL, OPTION_32},
9997 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9998 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9999 {"64", no_argument, NULL, OPTION_64},
10000 #endif
10001 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10002 {"x32", no_argument, NULL, OPTION_X32},
10003 {"mshared", no_argument, NULL, OPTION_MSHARED},
10004 #endif
10005 {"divide", no_argument, NULL, OPTION_DIVIDE},
10006 {"march", required_argument, NULL, OPTION_MARCH},
10007 {"mtune", required_argument, NULL, OPTION_MTUNE},
10008 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10009 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10010 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10011 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10012 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
10013 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10014 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10015 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10016 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10017 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10018 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10019 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10020 # if defined (TE_PE) || defined (TE_PEP)
10021 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10022 #endif
10023 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10024 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10025 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10026 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10027 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10028 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10029 {NULL, no_argument, NULL, 0}
10030 };
10031 size_t md_longopts_size = sizeof (md_longopts);
10032
10033 int
10034 md_parse_option (int c, const char *arg)
10035 {
10036 unsigned int j;
10037 char *arch, *next, *saved;
10038
10039 switch (c)
10040 {
10041 case 'n':
10042 optimize_align_code = 0;
10043 break;
10044
10045 case 'q':
10046 quiet_warnings = 1;
10047 break;
10048
10049 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10050 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10051 should be emitted or not. FIXME: Not implemented. */
10052 case 'Q':
10053 break;
10054
10055 /* -V: SVR4 argument to print version ID. */
10056 case 'V':
10057 print_version_id ();
10058 break;
10059
10060 /* -k: Ignore for FreeBSD compatibility. */
10061 case 'k':
10062 break;
10063
10064 case 's':
10065 /* -s: On i386 Solaris, this tells the native assembler to use
10066 .stab instead of .stab.excl. We always use .stab anyhow. */
10067 break;
10068
10069 case OPTION_MSHARED:
10070 shared = 1;
10071 break;
10072 #endif
10073 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10074 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10075 case OPTION_64:
10076 {
10077 const char **list, **l;
10078
10079 list = bfd_target_list ();
10080 for (l = list; *l != NULL; l++)
10081 if (CONST_STRNEQ (*l, "elf64-x86-64")
10082 || strcmp (*l, "coff-x86-64") == 0
10083 || strcmp (*l, "pe-x86-64") == 0
10084 || strcmp (*l, "pei-x86-64") == 0
10085 || strcmp (*l, "mach-o-x86-64") == 0)
10086 {
10087 default_arch = "x86_64";
10088 break;
10089 }
10090 if (*l == NULL)
10091 as_fatal (_("no compiled in support for x86_64"));
10092 free (list);
10093 }
10094 break;
10095 #endif
10096
10097 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10098 case OPTION_X32:
10099 if (IS_ELF)
10100 {
10101 const char **list, **l;
10102
10103 list = bfd_target_list ();
10104 for (l = list; *l != NULL; l++)
10105 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10106 {
10107 default_arch = "x86_64:32";
10108 break;
10109 }
10110 if (*l == NULL)
10111 as_fatal (_("no compiled in support for 32bit x86_64"));
10112 free (list);
10113 }
10114 else
10115 as_fatal (_("32bit x86_64 is only supported for ELF"));
10116 break;
10117 #endif
10118
10119 case OPTION_32:
10120 default_arch = "i386";
10121 break;
10122
10123 case OPTION_DIVIDE:
10124 #ifdef SVR4_COMMENT_CHARS
10125 {
10126 char *n, *t;
10127 const char *s;
10128
10129 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10130 t = n;
10131 for (s = i386_comment_chars; *s != '\0'; s++)
10132 if (*s != '/')
10133 *t++ = *s;
10134 *t = '\0';
10135 i386_comment_chars = n;
10136 }
10137 #endif
10138 break;
10139
10140 case OPTION_MARCH:
10141 saved = xstrdup (arg);
10142 arch = saved;
10143 /* Allow -march=+nosse. */
10144 if (*arch == '+')
10145 arch++;
10146 do
10147 {
10148 if (*arch == '.')
10149 as_fatal (_("invalid -march= option: `%s'"), arg);
10150 next = strchr (arch, '+');
10151 if (next)
10152 *next++ = '\0';
10153 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10154 {
10155 if (strcmp (arch, cpu_arch [j].name) == 0)
10156 {
10157 /* Processor. */
10158 if (! cpu_arch[j].flags.bitfield.cpui386)
10159 continue;
10160
10161 cpu_arch_name = cpu_arch[j].name;
10162 cpu_sub_arch_name = NULL;
10163 cpu_arch_flags = cpu_arch[j].flags;
10164 cpu_arch_isa = cpu_arch[j].type;
10165 cpu_arch_isa_flags = cpu_arch[j].flags;
10166 if (!cpu_arch_tune_set)
10167 {
10168 cpu_arch_tune = cpu_arch_isa;
10169 cpu_arch_tune_flags = cpu_arch_isa_flags;
10170 }
10171 break;
10172 }
10173 else if (*cpu_arch [j].name == '.'
10174 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10175 {
10176 /* ISA extension. */
10177 i386_cpu_flags flags;
10178
10179 flags = cpu_flags_or (cpu_arch_flags,
10180 cpu_arch[j].flags);
10181
10182 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10183 {
10184 if (cpu_sub_arch_name)
10185 {
10186 char *name = cpu_sub_arch_name;
10187 cpu_sub_arch_name = concat (name,
10188 cpu_arch[j].name,
10189 (const char *) NULL);
10190 free (name);
10191 }
10192 else
10193 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10194 cpu_arch_flags = flags;
10195 cpu_arch_isa_flags = flags;
10196 }
10197 break;
10198 }
10199 }
10200
10201 if (j >= ARRAY_SIZE (cpu_arch))
10202 {
10203 /* Disable an ISA extension. */
10204 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10205 if (strcmp (arch, cpu_noarch [j].name) == 0)
10206 {
10207 i386_cpu_flags flags;
10208
10209 flags = cpu_flags_and_not (cpu_arch_flags,
10210 cpu_noarch[j].flags);
10211 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10212 {
10213 if (cpu_sub_arch_name)
10214 {
10215 char *name = cpu_sub_arch_name;
10216 cpu_sub_arch_name = concat (arch,
10217 (const char *) NULL);
10218 free (name);
10219 }
10220 else
10221 cpu_sub_arch_name = xstrdup (arch);
10222 cpu_arch_flags = flags;
10223 cpu_arch_isa_flags = flags;
10224 }
10225 break;
10226 }
10227
10228 if (j >= ARRAY_SIZE (cpu_noarch))
10229 j = ARRAY_SIZE (cpu_arch);
10230 }
10231
10232 if (j >= ARRAY_SIZE (cpu_arch))
10233 as_fatal (_("invalid -march= option: `%s'"), arg);
10234
10235 arch = next;
10236 }
10237 while (next != NULL);
10238 free (saved);
10239 break;
10240
10241 case OPTION_MTUNE:
10242 if (*arg == '.')
10243 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10244 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10245 {
10246 if (strcmp (arg, cpu_arch [j].name) == 0)
10247 {
10248 cpu_arch_tune_set = 1;
10249 cpu_arch_tune = cpu_arch [j].type;
10250 cpu_arch_tune_flags = cpu_arch[j].flags;
10251 break;
10252 }
10253 }
10254 if (j >= ARRAY_SIZE (cpu_arch))
10255 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10256 break;
10257
10258 case OPTION_MMNEMONIC:
10259 if (strcasecmp (arg, "att") == 0)
10260 intel_mnemonic = 0;
10261 else if (strcasecmp (arg, "intel") == 0)
10262 intel_mnemonic = 1;
10263 else
10264 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10265 break;
10266
10267 case OPTION_MSYNTAX:
10268 if (strcasecmp (arg, "att") == 0)
10269 intel_syntax = 0;
10270 else if (strcasecmp (arg, "intel") == 0)
10271 intel_syntax = 1;
10272 else
10273 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10274 break;
10275
10276 case OPTION_MINDEX_REG:
10277 allow_index_reg = 1;
10278 break;
10279
10280 case OPTION_MNAKED_REG:
10281 allow_naked_reg = 1;
10282 break;
10283
10284 case OPTION_MOLD_GCC:
10285 old_gcc = 1;
10286 break;
10287
10288 case OPTION_MSSE2AVX:
10289 sse2avx = 1;
10290 break;
10291
10292 case OPTION_MSSE_CHECK:
10293 if (strcasecmp (arg, "error") == 0)
10294 sse_check = check_error;
10295 else if (strcasecmp (arg, "warning") == 0)
10296 sse_check = check_warning;
10297 else if (strcasecmp (arg, "none") == 0)
10298 sse_check = check_none;
10299 else
10300 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10301 break;
10302
10303 case OPTION_MOPERAND_CHECK:
10304 if (strcasecmp (arg, "error") == 0)
10305 operand_check = check_error;
10306 else if (strcasecmp (arg, "warning") == 0)
10307 operand_check = check_warning;
10308 else if (strcasecmp (arg, "none") == 0)
10309 operand_check = check_none;
10310 else
10311 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10312 break;
10313
10314 case OPTION_MAVXSCALAR:
10315 if (strcasecmp (arg, "128") == 0)
10316 avxscalar = vex128;
10317 else if (strcasecmp (arg, "256") == 0)
10318 avxscalar = vex256;
10319 else
10320 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10321 break;
10322
10323 case OPTION_MADD_BND_PREFIX:
10324 add_bnd_prefix = 1;
10325 break;
10326
10327 case OPTION_MEVEXLIG:
10328 if (strcmp (arg, "128") == 0)
10329 evexlig = evexl128;
10330 else if (strcmp (arg, "256") == 0)
10331 evexlig = evexl256;
10332 else if (strcmp (arg, "512") == 0)
10333 evexlig = evexl512;
10334 else
10335 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10336 break;
10337
10338 case OPTION_MEVEXRCIG:
10339 if (strcmp (arg, "rne") == 0)
10340 evexrcig = rne;
10341 else if (strcmp (arg, "rd") == 0)
10342 evexrcig = rd;
10343 else if (strcmp (arg, "ru") == 0)
10344 evexrcig = ru;
10345 else if (strcmp (arg, "rz") == 0)
10346 evexrcig = rz;
10347 else
10348 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10349 break;
10350
10351 case OPTION_MEVEXWIG:
10352 if (strcmp (arg, "0") == 0)
10353 evexwig = evexw0;
10354 else if (strcmp (arg, "1") == 0)
10355 evexwig = evexw1;
10356 else
10357 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10358 break;
10359
10360 # if defined (TE_PE) || defined (TE_PEP)
10361 case OPTION_MBIG_OBJ:
10362 use_big_obj = 1;
10363 break;
10364 #endif
10365
10366 case OPTION_MOMIT_LOCK_PREFIX:
10367 if (strcasecmp (arg, "yes") == 0)
10368 omit_lock_prefix = 1;
10369 else if (strcasecmp (arg, "no") == 0)
10370 omit_lock_prefix = 0;
10371 else
10372 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10373 break;
10374
10375 case OPTION_MFENCE_AS_LOCK_ADD:
10376 if (strcasecmp (arg, "yes") == 0)
10377 avoid_fence = 1;
10378 else if (strcasecmp (arg, "no") == 0)
10379 avoid_fence = 0;
10380 else
10381 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10382 break;
10383
10384 case OPTION_MRELAX_RELOCATIONS:
10385 if (strcasecmp (arg, "yes") == 0)
10386 generate_relax_relocations = 1;
10387 else if (strcasecmp (arg, "no") == 0)
10388 generate_relax_relocations = 0;
10389 else
10390 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10391 break;
10392
10393 case OPTION_MAMD64:
10394 intel64 = 0;
10395 break;
10396
10397 case OPTION_MINTEL64:
10398 intel64 = 1;
10399 break;
10400
10401 default:
10402 return 0;
10403 }
10404 return 1;
10405 }
10406
10407 #define MESSAGE_TEMPLATE \
10408 " "
10409
10410 static char *
10411 output_message (FILE *stream, char *p, char *message, char *start,
10412 int *left_p, const char *name, int len)
10413 {
10414 int size = sizeof (MESSAGE_TEMPLATE);
10415 int left = *left_p;
10416
10417 /* Reserve 2 spaces for ", " or ",\0" */
10418 left -= len + 2;
10419
10420 /* Check if there is any room. */
10421 if (left >= 0)
10422 {
10423 if (p != start)
10424 {
10425 *p++ = ',';
10426 *p++ = ' ';
10427 }
10428 p = mempcpy (p, name, len);
10429 }
10430 else
10431 {
10432 /* Output the current message now and start a new one. */
10433 *p++ = ',';
10434 *p = '\0';
10435 fprintf (stream, "%s\n", message);
10436 p = start;
10437 left = size - (start - message) - len - 2;
10438
10439 gas_assert (left >= 0);
10440
10441 p = mempcpy (p, name, len);
10442 }
10443
10444 *left_p = left;
10445 return p;
10446 }
10447
10448 static void
10449 show_arch (FILE *stream, int ext, int check)
10450 {
10451 static char message[] = MESSAGE_TEMPLATE;
10452 char *start = message + 27;
10453 char *p;
10454 int size = sizeof (MESSAGE_TEMPLATE);
10455 int left;
10456 const char *name;
10457 int len;
10458 unsigned int j;
10459
10460 p = start;
10461 left = size - (start - message);
10462 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10463 {
10464 /* Should it be skipped? */
10465 if (cpu_arch [j].skip)
10466 continue;
10467
10468 name = cpu_arch [j].name;
10469 len = cpu_arch [j].len;
10470 if (*name == '.')
10471 {
10472 /* It is an extension. Skip if we aren't asked to show it. */
10473 if (ext)
10474 {
10475 name++;
10476 len--;
10477 }
10478 else
10479 continue;
10480 }
10481 else if (ext)
10482 {
10483 /* It is an processor. Skip if we show only extension. */
10484 continue;
10485 }
10486 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10487 {
10488 /* It is an impossible processor - skip. */
10489 continue;
10490 }
10491
10492 p = output_message (stream, p, message, start, &left, name, len);
10493 }
10494
10495 /* Display disabled extensions. */
10496 if (ext)
10497 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10498 {
10499 name = cpu_noarch [j].name;
10500 len = cpu_noarch [j].len;
10501 p = output_message (stream, p, message, start, &left, name,
10502 len);
10503 }
10504
10505 *p = '\0';
10506 fprintf (stream, "%s\n", message);
10507 }
10508
10509 void
10510 md_show_usage (FILE *stream)
10511 {
10512 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10513 fprintf (stream, _("\
10514 -Q ignored\n\
10515 -V print assembler version number\n\
10516 -k ignored\n"));
10517 #endif
10518 fprintf (stream, _("\
10519 -n Do not optimize code alignment\n\
10520 -q quieten some warnings\n"));
10521 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10522 fprintf (stream, _("\
10523 -s ignored\n"));
10524 #endif
10525 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10526 || defined (TE_PE) || defined (TE_PEP))
10527 fprintf (stream, _("\
10528 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10529 #endif
10530 #ifdef SVR4_COMMENT_CHARS
10531 fprintf (stream, _("\
10532 --divide do not treat `/' as a comment character\n"));
10533 #else
10534 fprintf (stream, _("\
10535 --divide ignored\n"));
10536 #endif
10537 fprintf (stream, _("\
10538 -march=CPU[,+EXTENSION...]\n\
10539 generate code for CPU and EXTENSION, CPU is one of:\n"));
10540 show_arch (stream, 0, 1);
10541 fprintf (stream, _("\
10542 EXTENSION is combination of:\n"));
10543 show_arch (stream, 1, 0);
10544 fprintf (stream, _("\
10545 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10546 show_arch (stream, 0, 0);
10547 fprintf (stream, _("\
10548 -msse2avx encode SSE instructions with VEX prefix\n"));
10549 fprintf (stream, _("\
10550 -msse-check=[none|error|warning]\n\
10551 check SSE instructions\n"));
10552 fprintf (stream, _("\
10553 -moperand-check=[none|error|warning]\n\
10554 check operand combinations for validity\n"));
10555 fprintf (stream, _("\
10556 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10557 length\n"));
10558 fprintf (stream, _("\
10559 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10560 length\n"));
10561 fprintf (stream, _("\
10562 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10563 for EVEX.W bit ignored instructions\n"));
10564 fprintf (stream, _("\
10565 -mevexrcig=[rne|rd|ru|rz]\n\
10566 encode EVEX instructions with specific EVEX.RC value\n\
10567 for SAE-only ignored instructions\n"));
10568 fprintf (stream, _("\
10569 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10570 fprintf (stream, _("\
10571 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10572 fprintf (stream, _("\
10573 -mindex-reg support pseudo index registers\n"));
10574 fprintf (stream, _("\
10575 -mnaked-reg don't require `%%' prefix for registers\n"));
10576 fprintf (stream, _("\
10577 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
10578 fprintf (stream, _("\
10579 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10580 fprintf (stream, _("\
10581 -mshared disable branch optimization for shared code\n"));
10582 # if defined (TE_PE) || defined (TE_PEP)
10583 fprintf (stream, _("\
10584 -mbig-obj generate big object files\n"));
10585 #endif
10586 fprintf (stream, _("\
10587 -momit-lock-prefix=[no|yes]\n\
10588 strip all lock prefixes\n"));
10589 fprintf (stream, _("\
10590 -mfence-as-lock-add=[no|yes]\n\
10591 encode lfence, mfence and sfence as\n\
10592 lock addl $0x0, (%%{re}sp)\n"));
10593 fprintf (stream, _("\
10594 -mrelax-relocations=[no|yes]\n\
10595 generate relax relocations\n"));
10596 fprintf (stream, _("\
10597 -mamd64 accept only AMD64 ISA\n"));
10598 fprintf (stream, _("\
10599 -mintel64 accept only Intel64 ISA\n"));
10600 }
10601
10602 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10603 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10604 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10605
10606 /* Pick the target format to use. */
10607
10608 const char *
10609 i386_target_format (void)
10610 {
10611 if (!strncmp (default_arch, "x86_64", 6))
10612 {
10613 update_code_flag (CODE_64BIT, 1);
10614 if (default_arch[6] == '\0')
10615 x86_elf_abi = X86_64_ABI;
10616 else
10617 x86_elf_abi = X86_64_X32_ABI;
10618 }
10619 else if (!strcmp (default_arch, "i386"))
10620 update_code_flag (CODE_32BIT, 1);
10621 else if (!strcmp (default_arch, "iamcu"))
10622 {
10623 update_code_flag (CODE_32BIT, 1);
10624 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10625 {
10626 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10627 cpu_arch_name = "iamcu";
10628 cpu_sub_arch_name = NULL;
10629 cpu_arch_flags = iamcu_flags;
10630 cpu_arch_isa = PROCESSOR_IAMCU;
10631 cpu_arch_isa_flags = iamcu_flags;
10632 if (!cpu_arch_tune_set)
10633 {
10634 cpu_arch_tune = cpu_arch_isa;
10635 cpu_arch_tune_flags = cpu_arch_isa_flags;
10636 }
10637 }
10638 else if (cpu_arch_isa != PROCESSOR_IAMCU)
10639 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10640 cpu_arch_name);
10641 }
10642 else
10643 as_fatal (_("unknown architecture"));
10644
10645 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10646 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10647 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10648 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10649
10650 switch (OUTPUT_FLAVOR)
10651 {
10652 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10653 case bfd_target_aout_flavour:
10654 return AOUT_TARGET_FORMAT;
10655 #endif
10656 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10657 # if defined (TE_PE) || defined (TE_PEP)
10658 case bfd_target_coff_flavour:
10659 if (flag_code == CODE_64BIT)
10660 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10661 else
10662 return "pe-i386";
10663 # elif defined (TE_GO32)
10664 case bfd_target_coff_flavour:
10665 return "coff-go32";
10666 # else
10667 case bfd_target_coff_flavour:
10668 return "coff-i386";
10669 # endif
10670 #endif
10671 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10672 case bfd_target_elf_flavour:
10673 {
10674 const char *format;
10675
10676 switch (x86_elf_abi)
10677 {
10678 default:
10679 format = ELF_TARGET_FORMAT;
10680 break;
10681 case X86_64_ABI:
10682 use_rela_relocations = 1;
10683 object_64bit = 1;
10684 format = ELF_TARGET_FORMAT64;
10685 break;
10686 case X86_64_X32_ABI:
10687 use_rela_relocations = 1;
10688 object_64bit = 1;
10689 disallow_64bit_reloc = 1;
10690 format = ELF_TARGET_FORMAT32;
10691 break;
10692 }
10693 if (cpu_arch_isa == PROCESSOR_L1OM)
10694 {
10695 if (x86_elf_abi != X86_64_ABI)
10696 as_fatal (_("Intel L1OM is 64bit only"));
10697 return ELF_TARGET_L1OM_FORMAT;
10698 }
10699 else if (cpu_arch_isa == PROCESSOR_K1OM)
10700 {
10701 if (x86_elf_abi != X86_64_ABI)
10702 as_fatal (_("Intel K1OM is 64bit only"));
10703 return ELF_TARGET_K1OM_FORMAT;
10704 }
10705 else if (cpu_arch_isa == PROCESSOR_IAMCU)
10706 {
10707 if (x86_elf_abi != I386_ABI)
10708 as_fatal (_("Intel MCU is 32bit only"));
10709 return ELF_TARGET_IAMCU_FORMAT;
10710 }
10711 else
10712 return format;
10713 }
10714 #endif
10715 #if defined (OBJ_MACH_O)
10716 case bfd_target_mach_o_flavour:
10717 if (flag_code == CODE_64BIT)
10718 {
10719 use_rela_relocations = 1;
10720 object_64bit = 1;
10721 return "mach-o-x86-64";
10722 }
10723 else
10724 return "mach-o-i386";
10725 #endif
10726 default:
10727 abort ();
10728 return NULL;
10729 }
10730 }
10731
10732 #endif /* OBJ_MAYBE_ more than one */
10733 \f
10734 symbolS *
10735 md_undefined_symbol (char *name)
10736 {
10737 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10738 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10739 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10740 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10741 {
10742 if (!GOT_symbol)
10743 {
10744 if (symbol_find (name))
10745 as_bad (_("GOT already in symbol table"));
10746 GOT_symbol = symbol_new (name, undefined_section,
10747 (valueT) 0, &zero_address_frag);
10748 };
10749 return GOT_symbol;
10750 }
10751 return 0;
10752 }
10753
10754 /* Round up a section size to the appropriate boundary. */
10755
10756 valueT
10757 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10758 {
10759 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10760 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10761 {
10762 /* For a.out, force the section size to be aligned. If we don't do
10763 this, BFD will align it for us, but it will not write out the
10764 final bytes of the section. This may be a bug in BFD, but it is
10765 easier to fix it here since that is how the other a.out targets
10766 work. */
10767 int align;
10768
10769 align = bfd_get_section_alignment (stdoutput, segment);
10770 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
10771 }
10772 #endif
10773
10774 return size;
10775 }
10776
10777 /* On the i386, PC-relative offsets are relative to the start of the
10778 next instruction. That is, the address of the offset, plus its
10779 size, since the offset is always the last part of the insn. */
10780
10781 long
10782 md_pcrel_from (fixS *fixP)
10783 {
10784 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10785 }
10786
10787 #ifndef I386COFF
10788
10789 static void
10790 s_bss (int ignore ATTRIBUTE_UNUSED)
10791 {
10792 int temp;
10793
10794 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10795 if (IS_ELF)
10796 obj_elf_section_change_hook ();
10797 #endif
10798 temp = get_absolute_expression ();
10799 subseg_set (bss_section, (subsegT) temp);
10800 demand_empty_rest_of_line ();
10801 }
10802
10803 #endif
10804
10805 void
10806 i386_validate_fix (fixS *fixp)
10807 {
10808 if (fixp->fx_subsy)
10809 {
10810 if (fixp->fx_subsy == GOT_symbol)
10811 {
10812 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10813 {
10814 if (!object_64bit)
10815 abort ();
10816 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10817 if (fixp->fx_tcbit2)
10818 fixp->fx_r_type = (fixp->fx_tcbit
10819 ? BFD_RELOC_X86_64_REX_GOTPCRELX
10820 : BFD_RELOC_X86_64_GOTPCRELX);
10821 else
10822 #endif
10823 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10824 }
10825 else
10826 {
10827 if (!object_64bit)
10828 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10829 else
10830 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10831 }
10832 fixp->fx_subsy = 0;
10833 }
10834 }
10835 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10836 else if (!object_64bit)
10837 {
10838 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
10839 && fixp->fx_tcbit2)
10840 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
10841 }
10842 #endif
10843 }
10844
10845 arelent *
10846 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10847 {
10848 arelent *rel;
10849 bfd_reloc_code_real_type code;
10850
10851 switch (fixp->fx_r_type)
10852 {
10853 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10854 case BFD_RELOC_SIZE32:
10855 case BFD_RELOC_SIZE64:
10856 if (S_IS_DEFINED (fixp->fx_addsy)
10857 && !S_IS_EXTERNAL (fixp->fx_addsy))
10858 {
10859 /* Resolve size relocation against local symbol to size of
10860 the symbol plus addend. */
10861 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10862 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10863 && !fits_in_unsigned_long (value))
10864 as_bad_where (fixp->fx_file, fixp->fx_line,
10865 _("symbol size computation overflow"));
10866 fixp->fx_addsy = NULL;
10867 fixp->fx_subsy = NULL;
10868 md_apply_fix (fixp, (valueT *) &value, NULL);
10869 return NULL;
10870 }
10871 #endif
10872 /* Fall through. */
10873
10874 case BFD_RELOC_X86_64_PLT32:
10875 case BFD_RELOC_X86_64_GOT32:
10876 case BFD_RELOC_X86_64_GOTPCREL:
10877 case BFD_RELOC_X86_64_GOTPCRELX:
10878 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10879 case BFD_RELOC_386_PLT32:
10880 case BFD_RELOC_386_GOT32:
10881 case BFD_RELOC_386_GOT32X:
10882 case BFD_RELOC_386_GOTOFF:
10883 case BFD_RELOC_386_GOTPC:
10884 case BFD_RELOC_386_TLS_GD:
10885 case BFD_RELOC_386_TLS_LDM:
10886 case BFD_RELOC_386_TLS_LDO_32:
10887 case BFD_RELOC_386_TLS_IE_32:
10888 case BFD_RELOC_386_TLS_IE:
10889 case BFD_RELOC_386_TLS_GOTIE:
10890 case BFD_RELOC_386_TLS_LE_32:
10891 case BFD_RELOC_386_TLS_LE:
10892 case BFD_RELOC_386_TLS_GOTDESC:
10893 case BFD_RELOC_386_TLS_DESC_CALL:
10894 case BFD_RELOC_X86_64_TLSGD:
10895 case BFD_RELOC_X86_64_TLSLD:
10896 case BFD_RELOC_X86_64_DTPOFF32:
10897 case BFD_RELOC_X86_64_DTPOFF64:
10898 case BFD_RELOC_X86_64_GOTTPOFF:
10899 case BFD_RELOC_X86_64_TPOFF32:
10900 case BFD_RELOC_X86_64_TPOFF64:
10901 case BFD_RELOC_X86_64_GOTOFF64:
10902 case BFD_RELOC_X86_64_GOTPC32:
10903 case BFD_RELOC_X86_64_GOT64:
10904 case BFD_RELOC_X86_64_GOTPCREL64:
10905 case BFD_RELOC_X86_64_GOTPC64:
10906 case BFD_RELOC_X86_64_GOTPLT64:
10907 case BFD_RELOC_X86_64_PLTOFF64:
10908 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10909 case BFD_RELOC_X86_64_TLSDESC_CALL:
10910 case BFD_RELOC_RVA:
10911 case BFD_RELOC_VTABLE_ENTRY:
10912 case BFD_RELOC_VTABLE_INHERIT:
10913 #ifdef TE_PE
10914 case BFD_RELOC_32_SECREL:
10915 #endif
10916 code = fixp->fx_r_type;
10917 break;
10918 case BFD_RELOC_X86_64_32S:
10919 if (!fixp->fx_pcrel)
10920 {
10921 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10922 code = fixp->fx_r_type;
10923 break;
10924 }
10925 /* Fall through. */
10926 default:
10927 if (fixp->fx_pcrel)
10928 {
10929 switch (fixp->fx_size)
10930 {
10931 default:
10932 as_bad_where (fixp->fx_file, fixp->fx_line,
10933 _("can not do %d byte pc-relative relocation"),
10934 fixp->fx_size);
10935 code = BFD_RELOC_32_PCREL;
10936 break;
10937 case 1: code = BFD_RELOC_8_PCREL; break;
10938 case 2: code = BFD_RELOC_16_PCREL; break;
10939 case 4: code = BFD_RELOC_32_PCREL; break;
10940 #ifdef BFD64
10941 case 8: code = BFD_RELOC_64_PCREL; break;
10942 #endif
10943 }
10944 }
10945 else
10946 {
10947 switch (fixp->fx_size)
10948 {
10949 default:
10950 as_bad_where (fixp->fx_file, fixp->fx_line,
10951 _("can not do %d byte relocation"),
10952 fixp->fx_size);
10953 code = BFD_RELOC_32;
10954 break;
10955 case 1: code = BFD_RELOC_8; break;
10956 case 2: code = BFD_RELOC_16; break;
10957 case 4: code = BFD_RELOC_32; break;
10958 #ifdef BFD64
10959 case 8: code = BFD_RELOC_64; break;
10960 #endif
10961 }
10962 }
10963 break;
10964 }
10965
10966 if ((code == BFD_RELOC_32
10967 || code == BFD_RELOC_32_PCREL
10968 || code == BFD_RELOC_X86_64_32S)
10969 && GOT_symbol
10970 && fixp->fx_addsy == GOT_symbol)
10971 {
10972 if (!object_64bit)
10973 code = BFD_RELOC_386_GOTPC;
10974 else
10975 code = BFD_RELOC_X86_64_GOTPC32;
10976 }
10977 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10978 && GOT_symbol
10979 && fixp->fx_addsy == GOT_symbol)
10980 {
10981 code = BFD_RELOC_X86_64_GOTPC64;
10982 }
10983
10984 rel = XNEW (arelent);
10985 rel->sym_ptr_ptr = XNEW (asymbol *);
10986 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10987
10988 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
10989
10990 if (!use_rela_relocations)
10991 {
10992 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10993 vtable entry to be used in the relocation's section offset. */
10994 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10995 rel->address = fixp->fx_offset;
10996 #if defined (OBJ_COFF) && defined (TE_PE)
10997 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10998 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10999 else
11000 #endif
11001 rel->addend = 0;
11002 }
11003 /* Use the rela in 64bit mode. */
11004 else
11005 {
11006 if (disallow_64bit_reloc)
11007 switch (code)
11008 {
11009 case BFD_RELOC_X86_64_DTPOFF64:
11010 case BFD_RELOC_X86_64_TPOFF64:
11011 case BFD_RELOC_64_PCREL:
11012 case BFD_RELOC_X86_64_GOTOFF64:
11013 case BFD_RELOC_X86_64_GOT64:
11014 case BFD_RELOC_X86_64_GOTPCREL64:
11015 case BFD_RELOC_X86_64_GOTPC64:
11016 case BFD_RELOC_X86_64_GOTPLT64:
11017 case BFD_RELOC_X86_64_PLTOFF64:
11018 as_bad_where (fixp->fx_file, fixp->fx_line,
11019 _("cannot represent relocation type %s in x32 mode"),
11020 bfd_get_reloc_code_name (code));
11021 break;
11022 default:
11023 break;
11024 }
11025
11026 if (!fixp->fx_pcrel)
11027 rel->addend = fixp->fx_offset;
11028 else
11029 switch (code)
11030 {
11031 case BFD_RELOC_X86_64_PLT32:
11032 case BFD_RELOC_X86_64_GOT32:
11033 case BFD_RELOC_X86_64_GOTPCREL:
11034 case BFD_RELOC_X86_64_GOTPCRELX:
11035 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11036 case BFD_RELOC_X86_64_TLSGD:
11037 case BFD_RELOC_X86_64_TLSLD:
11038 case BFD_RELOC_X86_64_GOTTPOFF:
11039 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11040 case BFD_RELOC_X86_64_TLSDESC_CALL:
11041 rel->addend = fixp->fx_offset - fixp->fx_size;
11042 break;
11043 default:
11044 rel->addend = (section->vma
11045 - fixp->fx_size
11046 + fixp->fx_addnumber
11047 + md_pcrel_from (fixp));
11048 break;
11049 }
11050 }
11051
11052 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11053 if (rel->howto == NULL)
11054 {
11055 as_bad_where (fixp->fx_file, fixp->fx_line,
11056 _("cannot represent relocation type %s"),
11057 bfd_get_reloc_code_name (code));
11058 /* Set howto to a garbage value so that we can keep going. */
11059 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
11060 gas_assert (rel->howto != NULL);
11061 }
11062
11063 return rel;
11064 }
11065
11066 #include "tc-i386-intel.c"
11067
11068 void
11069 tc_x86_parse_to_dw2regnum (expressionS *exp)
11070 {
11071 int saved_naked_reg;
11072 char saved_register_dot;
11073
11074 saved_naked_reg = allow_naked_reg;
11075 allow_naked_reg = 1;
11076 saved_register_dot = register_chars['.'];
11077 register_chars['.'] = '.';
11078 allow_pseudo_reg = 1;
11079 expression_and_evaluate (exp);
11080 allow_pseudo_reg = 0;
11081 register_chars['.'] = saved_register_dot;
11082 allow_naked_reg = saved_naked_reg;
11083
11084 if (exp->X_op == O_register && exp->X_add_number >= 0)
11085 {
11086 if ((addressT) exp->X_add_number < i386_regtab_size)
11087 {
11088 exp->X_op = O_constant;
11089 exp->X_add_number = i386_regtab[exp->X_add_number]
11090 .dw2_regnum[flag_code >> 1];
11091 }
11092 else
11093 exp->X_op = O_illegal;
11094 }
11095 }
11096
11097 void
11098 tc_x86_frame_initial_instructions (void)
11099 {
11100 static unsigned int sp_regno[2];
11101
11102 if (!sp_regno[flag_code >> 1])
11103 {
11104 char *saved_input = input_line_pointer;
11105 char sp[][4] = {"esp", "rsp"};
11106 expressionS exp;
11107
11108 input_line_pointer = sp[flag_code >> 1];
11109 tc_x86_parse_to_dw2regnum (&exp);
11110 gas_assert (exp.X_op == O_constant);
11111 sp_regno[flag_code >> 1] = exp.X_add_number;
11112 input_line_pointer = saved_input;
11113 }
11114
11115 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11116 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11117 }
11118
11119 int
11120 x86_dwarf2_addr_size (void)
11121 {
11122 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11123 if (x86_elf_abi == X86_64_X32_ABI)
11124 return 4;
11125 #endif
11126 return bfd_arch_bits_per_address (stdoutput) / 8;
11127 }
11128
11129 int
11130 i386_elf_section_type (const char *str, size_t len)
11131 {
11132 if (flag_code == CODE_64BIT
11133 && len == sizeof ("unwind") - 1
11134 && strncmp (str, "unwind", 6) == 0)
11135 return SHT_X86_64_UNWIND;
11136
11137 return -1;
11138 }
11139
11140 #ifdef TE_SOLARIS
11141 void
11142 i386_solaris_fix_up_eh_frame (segT sec)
11143 {
11144 if (flag_code == CODE_64BIT)
11145 elf_section_type (sec) = SHT_X86_64_UNWIND;
11146 }
11147 #endif
11148
11149 #ifdef TE_PE
11150 void
11151 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11152 {
11153 expressionS exp;
11154
11155 exp.X_op = O_secrel;
11156 exp.X_add_symbol = symbol;
11157 exp.X_add_number = 0;
11158 emit_expr (&exp, size);
11159 }
11160 #endif
11161
11162 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11163 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11164
11165 bfd_vma
11166 x86_64_section_letter (int letter, const char **ptr_msg)
11167 {
11168 if (flag_code == CODE_64BIT)
11169 {
11170 if (letter == 'l')
11171 return SHF_X86_64_LARGE;
11172
11173 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11174 }
11175 else
11176 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11177 return -1;
11178 }
11179
11180 bfd_vma
11181 x86_64_section_word (char *str, size_t len)
11182 {
11183 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11184 return SHF_X86_64_LARGE;
11185
11186 return -1;
11187 }
11188
11189 static void
11190 handle_large_common (int small ATTRIBUTE_UNUSED)
11191 {
11192 if (flag_code != CODE_64BIT)
11193 {
11194 s_comm_internal (0, elf_common_parse);
11195 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11196 }
11197 else
11198 {
11199 static segT lbss_section;
11200 asection *saved_com_section_ptr = elf_com_section_ptr;
11201 asection *saved_bss_section = bss_section;
11202
11203 if (lbss_section == NULL)
11204 {
11205 flagword applicable;
11206 segT seg = now_seg;
11207 subsegT subseg = now_subseg;
11208
11209 /* The .lbss section is for local .largecomm symbols. */
11210 lbss_section = subseg_new (".lbss", 0);
11211 applicable = bfd_applicable_section_flags (stdoutput);
11212 bfd_set_section_flags (stdoutput, lbss_section,
11213 applicable & SEC_ALLOC);
11214 seg_info (lbss_section)->bss = 1;
11215
11216 subseg_set (seg, subseg);
11217 }
11218
11219 elf_com_section_ptr = &_bfd_elf_large_com_section;
11220 bss_section = lbss_section;
11221
11222 s_comm_internal (0, elf_common_parse);
11223
11224 elf_com_section_ptr = saved_com_section_ptr;
11225 bss_section = saved_bss_section;
11226 }
11227 }
11228 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.269426 seconds and 5 git commands to generate.