Add pcommit instruction
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2014 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 #define XMMWORD_MNEM_SUFFIX 'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 #define ZMMWORD_MNEM_SUFFIX 'z'
87 /* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91 #define END_OF_INSN '\0'
92
93 /*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100 typedef struct
101 {
102 const insn_template *start;
103 const insn_template *end;
104 }
105 templates;
106
107 /* 386 operand encoding bytes: see 386 book for details of this. */
108 typedef struct
109 {
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113 }
114 modrm_byte;
115
116 /* x86-64 extension prefix. */
117 typedef int rex_byte;
118
119 /* 386 opcode byte to code indirect addressing. */
120 typedef struct
121 {
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125 }
126 sib_byte;
127
128 /* x86 arch names, types and features */
129 typedef struct
130 {
131 const char *name; /* arch name */
132 unsigned int len; /* arch string length */
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
135 unsigned int skip; /* show_arch should skip this. */
136 unsigned int negated; /* turn off indicated flags. */
137 }
138 arch_entry;
139
140 static void update_code_flag (int, int);
141 static void set_code_flag (int);
142 static void set_16bit_gcc_code_flag (int);
143 static void set_intel_syntax (int);
144 static void set_intel_mnemonic (int);
145 static void set_allow_index_reg (int);
146 static void set_check (int);
147 static void set_cpu_arch (int);
148 #ifdef TE_PE
149 static void pe_directive_secrel (int);
150 #endif
151 static void signed_cons (int);
152 static char *output_invalid (int c);
153 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
154 const char *);
155 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
156 const char *);
157 static int i386_att_operand (char *);
158 static int i386_intel_operand (char *, int);
159 static int i386_intel_simplify (expressionS *);
160 static int i386_intel_parse_name (const char *, expressionS *);
161 static const reg_entry *parse_register (char *, char **);
162 static char *parse_insn (char *, char *);
163 static char *parse_operands (char *, const char *);
164 static void swap_operands (void);
165 static void swap_2_operands (int, int);
166 static void optimize_imm (void);
167 static void optimize_disp (void);
168 static const insn_template *match_template (void);
169 static int check_string (void);
170 static int process_suffix (void);
171 static int check_byte_reg (void);
172 static int check_long_reg (void);
173 static int check_qword_reg (void);
174 static int check_word_reg (void);
175 static int finalize_imm (void);
176 static int process_operands (void);
177 static const seg_entry *build_modrm_byte (void);
178 static void output_insn (void);
179 static void output_imm (fragS *, offsetT);
180 static void output_disp (fragS *, offsetT);
181 #ifndef I386COFF
182 static void s_bss (int);
183 #endif
184 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
185 static void handle_large_common (int small ATTRIBUTE_UNUSED);
186 #endif
187
188 static const char *default_arch = DEFAULT_ARCH;
189
190 /* This struct describes rounding control and SAE in the instruction. */
191 struct RC_Operation
192 {
193 enum rc_type
194 {
195 rne = 0,
196 rd,
197 ru,
198 rz,
199 saeonly
200 } type;
201 int operand;
202 };
203
204 static struct RC_Operation rc_op;
205
206 /* The struct describes masking, applied to OPERAND in the instruction.
207 MASK is a pointer to the corresponding mask register. ZEROING tells
208 whether merging or zeroing mask is used. */
209 struct Mask_Operation
210 {
211 const reg_entry *mask;
212 unsigned int zeroing;
213 /* The operand where this operation is associated. */
214 int operand;
215 };
216
217 static struct Mask_Operation mask_op;
218
219 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
220 broadcast factor. */
221 struct Broadcast_Operation
222 {
223 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
224 int type;
225
226 /* Index of broadcasted operand. */
227 int operand;
228 };
229
230 static struct Broadcast_Operation broadcast_op;
231
232 /* VEX prefix. */
233 typedef struct
234 {
235 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
236 unsigned char bytes[4];
237 unsigned int length;
238 /* Destination or source register specifier. */
239 const reg_entry *register_specifier;
240 } vex_prefix;
241
242 /* 'md_assemble ()' gathers together information and puts it into a
243 i386_insn. */
244
245 union i386_op
246 {
247 expressionS *disps;
248 expressionS *imms;
249 const reg_entry *regs;
250 };
251
252 enum i386_error
253 {
254 operand_size_mismatch,
255 operand_type_mismatch,
256 register_type_mismatch,
257 number_of_operands_mismatch,
258 invalid_instruction_suffix,
259 bad_imm4,
260 old_gcc_only,
261 unsupported_with_intel_mnemonic,
262 unsupported_syntax,
263 unsupported,
264 invalid_vsib_address,
265 invalid_vector_register_set,
266 unsupported_vector_index_register,
267 unsupported_broadcast,
268 broadcast_not_on_src_operand,
269 broadcast_needed,
270 unsupported_masking,
271 mask_not_on_destination,
272 no_default_mask,
273 unsupported_rc_sae,
274 rc_sae_operand_not_last_imm,
275 invalid_register_operand,
276 try_vector_disp8
277 };
278
279 struct _i386_insn
280 {
281 /* TM holds the template for the insn were currently assembling. */
282 insn_template tm;
283
284 /* SUFFIX holds the instruction size suffix for byte, word, dword
285 or qword, if given. */
286 char suffix;
287
288 /* OPERANDS gives the number of given operands. */
289 unsigned int operands;
290
291 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
292 of given register, displacement, memory operands and immediate
293 operands. */
294 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
295
296 /* TYPES [i] is the type (see above #defines) which tells us how to
297 use OP[i] for the corresponding operand. */
298 i386_operand_type types[MAX_OPERANDS];
299
300 /* Displacement expression, immediate expression, or register for each
301 operand. */
302 union i386_op op[MAX_OPERANDS];
303
304 /* Flags for operands. */
305 unsigned int flags[MAX_OPERANDS];
306 #define Operand_PCrel 1
307
308 /* Relocation type for operand */
309 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
310
311 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
312 the base index byte below. */
313 const reg_entry *base_reg;
314 const reg_entry *index_reg;
315 unsigned int log2_scale_factor;
316
317 /* SEG gives the seg_entries of this insn. They are zero unless
318 explicit segment overrides are given. */
319 const seg_entry *seg[2];
320
321 /* PREFIX holds all the given prefix opcodes (usually null).
322 PREFIXES is the number of prefix opcodes. */
323 unsigned int prefixes;
324 unsigned char prefix[MAX_PREFIXES];
325
326 /* RM and SIB are the modrm byte and the sib byte where the
327 addressing modes of this insn are encoded. */
328 modrm_byte rm;
329 rex_byte rex;
330 rex_byte vrex;
331 sib_byte sib;
332 vex_prefix vex;
333
334 /* Masking attributes. */
335 struct Mask_Operation *mask;
336
337 /* Rounding control and SAE attributes. */
338 struct RC_Operation *rounding;
339
340 /* Broadcasting attributes. */
341 struct Broadcast_Operation *broadcast;
342
343 /* Compressed disp8*N attribute. */
344 unsigned int memshift;
345
346 /* Swap operand in encoding. */
347 unsigned int swap_operand;
348
349 /* Prefer 8bit or 32bit displacement in encoding. */
350 enum
351 {
352 disp_encoding_default = 0,
353 disp_encoding_8bit,
354 disp_encoding_32bit
355 } disp_encoding;
356
357 /* REP prefix. */
358 const char *rep_prefix;
359
360 /* HLE prefix. */
361 const char *hle_prefix;
362
363 /* Have BND prefix. */
364 const char *bnd_prefix;
365
366 /* Need VREX to support upper 16 registers. */
367 int need_vrex;
368
369 /* Error message. */
370 enum i386_error error;
371 };
372
373 typedef struct _i386_insn i386_insn;
374
375 /* Link RC type with corresponding string, that'll be looked for in
376 asm. */
377 struct RC_name
378 {
379 enum rc_type type;
380 const char *name;
381 unsigned int len;
382 };
383
384 static const struct RC_name RC_NamesTable[] =
385 {
386 { rne, STRING_COMMA_LEN ("rn-sae") },
387 { rd, STRING_COMMA_LEN ("rd-sae") },
388 { ru, STRING_COMMA_LEN ("ru-sae") },
389 { rz, STRING_COMMA_LEN ("rz-sae") },
390 { saeonly, STRING_COMMA_LEN ("sae") },
391 };
392
393 /* List of chars besides those in app.c:symbol_chars that can start an
394 operand. Used to prevent the scrubber eating vital white-space. */
395 const char extra_symbol_chars[] = "*%-([{"
396 #ifdef LEX_AT
397 "@"
398 #endif
399 #ifdef LEX_QM
400 "?"
401 #endif
402 ;
403
404 #if (defined (TE_I386AIX) \
405 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
406 && !defined (TE_GNU) \
407 && !defined (TE_LINUX) \
408 && !defined (TE_NACL) \
409 && !defined (TE_NETWARE) \
410 && !defined (TE_FreeBSD) \
411 && !defined (TE_DragonFly) \
412 && !defined (TE_NetBSD)))
413 /* This array holds the chars that always start a comment. If the
414 pre-processor is disabled, these aren't very useful. The option
415 --divide will remove '/' from this list. */
416 const char *i386_comment_chars = "#/";
417 #define SVR4_COMMENT_CHARS 1
418 #define PREFIX_SEPARATOR '\\'
419
420 #else
421 const char *i386_comment_chars = "#";
422 #define PREFIX_SEPARATOR '/'
423 #endif
424
425 /* This array holds the chars that only start a comment at the beginning of
426 a line. If the line seems to have the form '# 123 filename'
427 .line and .file directives will appear in the pre-processed output.
428 Note that input_file.c hand checks for '#' at the beginning of the
429 first line of the input file. This is because the compiler outputs
430 #NO_APP at the beginning of its output.
431 Also note that comments started like this one will always work if
432 '/' isn't otherwise defined. */
433 const char line_comment_chars[] = "#/";
434
435 const char line_separator_chars[] = ";";
436
437 /* Chars that can be used to separate mant from exp in floating point
438 nums. */
439 const char EXP_CHARS[] = "eE";
440
441 /* Chars that mean this number is a floating point constant
442 As in 0f12.456
443 or 0d1.2345e12. */
444 const char FLT_CHARS[] = "fFdDxX";
445
446 /* Tables for lexical analysis. */
447 static char mnemonic_chars[256];
448 static char register_chars[256];
449 static char operand_chars[256];
450 static char identifier_chars[256];
451 static char digit_chars[256];
452
453 /* Lexical macros. */
454 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
455 #define is_operand_char(x) (operand_chars[(unsigned char) x])
456 #define is_register_char(x) (register_chars[(unsigned char) x])
457 #define is_space_char(x) ((x) == ' ')
458 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
459 #define is_digit_char(x) (digit_chars[(unsigned char) x])
460
461 /* All non-digit non-letter characters that may occur in an operand. */
462 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
463
464 /* md_assemble() always leaves the strings it's passed unaltered. To
465 effect this we maintain a stack of saved characters that we've smashed
466 with '\0's (indicating end of strings for various sub-fields of the
467 assembler instruction). */
468 static char save_stack[32];
469 static char *save_stack_p;
470 #define END_STRING_AND_SAVE(s) \
471 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
472 #define RESTORE_END_STRING(s) \
473 do { *(s) = *--save_stack_p; } while (0)
474
475 /* The instruction we're assembling. */
476 static i386_insn i;
477
478 /* Possible templates for current insn. */
479 static const templates *current_templates;
480
481 /* Per instruction expressionS buffers: max displacements & immediates. */
482 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
483 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
484
485 /* Current operand we are working on. */
486 static int this_operand = -1;
487
488 /* We support four different modes. FLAG_CODE variable is used to distinguish
489 these. */
490
491 enum flag_code {
492 CODE_32BIT,
493 CODE_16BIT,
494 CODE_64BIT };
495
496 static enum flag_code flag_code;
497 static unsigned int object_64bit;
498 static unsigned int disallow_64bit_reloc;
499 static int use_rela_relocations = 0;
500
501 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
502 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
503 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
504
505 /* The ELF ABI to use. */
506 enum x86_elf_abi
507 {
508 I386_ABI,
509 X86_64_ABI,
510 X86_64_X32_ABI
511 };
512
513 static enum x86_elf_abi x86_elf_abi = I386_ABI;
514 #endif
515
516 #if defined (TE_PE) || defined (TE_PEP)
517 /* Use big object file format. */
518 static int use_big_obj = 0;
519 #endif
520
521 /* 1 for intel syntax,
522 0 if att syntax. */
523 static int intel_syntax = 0;
524
525 /* 1 for intel mnemonic,
526 0 if att mnemonic. */
527 static int intel_mnemonic = !SYSV386_COMPAT;
528
529 /* 1 if support old (<= 2.8.1) versions of gcc. */
530 static int old_gcc = OLDGCC_COMPAT;
531
532 /* 1 if pseudo registers are permitted. */
533 static int allow_pseudo_reg = 0;
534
535 /* 1 if register prefix % not required. */
536 static int allow_naked_reg = 0;
537
538 /* 1 if the assembler should add BND prefix for all control-tranferring
539 instructions supporting it, even if this prefix wasn't specified
540 explicitly. */
541 static int add_bnd_prefix = 0;
542
543 /* 1 if pseudo index register, eiz/riz, is allowed . */
544 static int allow_index_reg = 0;
545
546 /* 1 if the assembler should ignore LOCK prefix, even if it was
547 specified explicitly. */
548 static int omit_lock_prefix = 0;
549
550 static enum check_kind
551 {
552 check_none = 0,
553 check_warning,
554 check_error
555 }
556 sse_check, operand_check = check_warning;
557
558 /* Register prefix used for error message. */
559 static const char *register_prefix = "%";
560
561 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
562 leave, push, and pop instructions so that gcc has the same stack
563 frame as in 32 bit mode. */
564 static char stackop_size = '\0';
565
566 /* Non-zero to optimize code alignment. */
567 int optimize_align_code = 1;
568
569 /* Non-zero to quieten some warnings. */
570 static int quiet_warnings = 0;
571
572 /* CPU name. */
573 static const char *cpu_arch_name = NULL;
574 static char *cpu_sub_arch_name = NULL;
575
576 /* CPU feature flags. */
577 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
578
579 /* If we have selected a cpu we are generating instructions for. */
580 static int cpu_arch_tune_set = 0;
581
582 /* Cpu we are generating instructions for. */
583 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
584
585 /* CPU feature flags of cpu we are generating instructions for. */
586 static i386_cpu_flags cpu_arch_tune_flags;
587
588 /* CPU instruction set architecture used. */
589 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
590
591 /* CPU feature flags of instruction set architecture used. */
592 i386_cpu_flags cpu_arch_isa_flags;
593
594 /* If set, conditional jumps are not automatically promoted to handle
595 larger than a byte offset. */
596 static unsigned int no_cond_jump_promotion = 0;
597
598 /* Encode SSE instructions with VEX prefix. */
599 static unsigned int sse2avx;
600
601 /* Encode scalar AVX instructions with specific vector length. */
602 static enum
603 {
604 vex128 = 0,
605 vex256
606 } avxscalar;
607
608 /* Encode scalar EVEX LIG instructions with specific vector length. */
609 static enum
610 {
611 evexl128 = 0,
612 evexl256,
613 evexl512
614 } evexlig;
615
616 /* Encode EVEX WIG instructions with specific evex.w. */
617 static enum
618 {
619 evexw0 = 0,
620 evexw1
621 } evexwig;
622
623 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
624 static enum rc_type evexrcig = rne;
625
626 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
627 static symbolS *GOT_symbol;
628
629 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
630 unsigned int x86_dwarf2_return_column;
631
632 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
633 int x86_cie_data_alignment;
634
635 /* Interface to relax_segment.
636 There are 3 major relax states for 386 jump insns because the
637 different types of jumps add different sizes to frags when we're
638 figuring out what sort of jump to choose to reach a given label. */
639
640 /* Types. */
641 #define UNCOND_JUMP 0
642 #define COND_JUMP 1
643 #define COND_JUMP86 2
644
645 /* Sizes. */
646 #define CODE16 1
647 #define SMALL 0
648 #define SMALL16 (SMALL | CODE16)
649 #define BIG 2
650 #define BIG16 (BIG | CODE16)
651
652 #ifndef INLINE
653 #ifdef __GNUC__
654 #define INLINE __inline__
655 #else
656 #define INLINE
657 #endif
658 #endif
659
660 #define ENCODE_RELAX_STATE(type, size) \
661 ((relax_substateT) (((type) << 2) | (size)))
662 #define TYPE_FROM_RELAX_STATE(s) \
663 ((s) >> 2)
664 #define DISP_SIZE_FROM_RELAX_STATE(s) \
665 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
666
667 /* This table is used by relax_frag to promote short jumps to long
668 ones where necessary. SMALL (short) jumps may be promoted to BIG
669 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
670 don't allow a short jump in a 32 bit code segment to be promoted to
671 a 16 bit offset jump because it's slower (requires data size
672 prefix), and doesn't work, unless the destination is in the bottom
673 64k of the code segment (The top 16 bits of eip are zeroed). */
674
675 const relax_typeS md_relax_table[] =
676 {
677 /* The fields are:
678 1) most positive reach of this state,
679 2) most negative reach of this state,
680 3) how many bytes this mode will have in the variable part of the frag
681 4) which index into the table to try if we can't fit into this one. */
682
683 /* UNCOND_JUMP states. */
684 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
685 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
686 /* dword jmp adds 4 bytes to frag:
687 0 extra opcode bytes, 4 displacement bytes. */
688 {0, 0, 4, 0},
689 /* word jmp adds 2 byte2 to frag:
690 0 extra opcode bytes, 2 displacement bytes. */
691 {0, 0, 2, 0},
692
693 /* COND_JUMP states. */
694 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
695 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
696 /* dword conditionals adds 5 bytes to frag:
697 1 extra opcode byte, 4 displacement bytes. */
698 {0, 0, 5, 0},
699 /* word conditionals add 3 bytes to frag:
700 1 extra opcode byte, 2 displacement bytes. */
701 {0, 0, 3, 0},
702
703 /* COND_JUMP86 states. */
704 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
705 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
706 /* dword conditionals adds 5 bytes to frag:
707 1 extra opcode byte, 4 displacement bytes. */
708 {0, 0, 5, 0},
709 /* word conditionals add 4 bytes to frag:
710 1 displacement byte and a 3 byte long branch insn. */
711 {0, 0, 4, 0}
712 };
713
714 static const arch_entry cpu_arch[] =
715 {
716 /* Do not replace the first two entries - i386_target_format()
717 relies on them being there in this order. */
718 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
719 CPU_GENERIC32_FLAGS, 0, 0 },
720 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
721 CPU_GENERIC64_FLAGS, 0, 0 },
722 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
723 CPU_NONE_FLAGS, 0, 0 },
724 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
725 CPU_I186_FLAGS, 0, 0 },
726 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
727 CPU_I286_FLAGS, 0, 0 },
728 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
729 CPU_I386_FLAGS, 0, 0 },
730 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
731 CPU_I486_FLAGS, 0, 0 },
732 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
733 CPU_I586_FLAGS, 0, 0 },
734 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
735 CPU_I686_FLAGS, 0, 0 },
736 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
737 CPU_I586_FLAGS, 0, 0 },
738 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
739 CPU_PENTIUMPRO_FLAGS, 0, 0 },
740 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
741 CPU_P2_FLAGS, 0, 0 },
742 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
743 CPU_P3_FLAGS, 0, 0 },
744 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
745 CPU_P4_FLAGS, 0, 0 },
746 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
747 CPU_CORE_FLAGS, 0, 0 },
748 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
749 CPU_NOCONA_FLAGS, 0, 0 },
750 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
751 CPU_CORE_FLAGS, 1, 0 },
752 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
753 CPU_CORE_FLAGS, 0, 0 },
754 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
755 CPU_CORE2_FLAGS, 1, 0 },
756 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
757 CPU_CORE2_FLAGS, 0, 0 },
758 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
759 CPU_COREI7_FLAGS, 0, 0 },
760 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
761 CPU_L1OM_FLAGS, 0, 0 },
762 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
763 CPU_K1OM_FLAGS, 0, 0 },
764 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
765 CPU_K6_FLAGS, 0, 0 },
766 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
767 CPU_K6_2_FLAGS, 0, 0 },
768 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
769 CPU_ATHLON_FLAGS, 0, 0 },
770 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
771 CPU_K8_FLAGS, 1, 0 },
772 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
773 CPU_K8_FLAGS, 0, 0 },
774 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
775 CPU_K8_FLAGS, 0, 0 },
776 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
777 CPU_AMDFAM10_FLAGS, 0, 0 },
778 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
779 CPU_BDVER1_FLAGS, 0, 0 },
780 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
781 CPU_BDVER2_FLAGS, 0, 0 },
782 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
783 CPU_BDVER3_FLAGS, 0, 0 },
784 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
785 CPU_BDVER4_FLAGS, 0, 0 },
786 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
787 CPU_BTVER1_FLAGS, 0, 0 },
788 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
789 CPU_BTVER2_FLAGS, 0, 0 },
790 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
791 CPU_8087_FLAGS, 0, 0 },
792 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
793 CPU_287_FLAGS, 0, 0 },
794 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
795 CPU_387_FLAGS, 0, 0 },
796 { STRING_COMMA_LEN (".no87"), PROCESSOR_UNKNOWN,
797 CPU_ANY87_FLAGS, 0, 1 },
798 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
799 CPU_MMX_FLAGS, 0, 0 },
800 { STRING_COMMA_LEN (".nommx"), PROCESSOR_UNKNOWN,
801 CPU_3DNOWA_FLAGS, 0, 1 },
802 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
803 CPU_SSE_FLAGS, 0, 0 },
804 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
805 CPU_SSE2_FLAGS, 0, 0 },
806 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
807 CPU_SSE3_FLAGS, 0, 0 },
808 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
809 CPU_SSSE3_FLAGS, 0, 0 },
810 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
811 CPU_SSE4_1_FLAGS, 0, 0 },
812 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
813 CPU_SSE4_2_FLAGS, 0, 0 },
814 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
815 CPU_SSE4_2_FLAGS, 0, 0 },
816 { STRING_COMMA_LEN (".nosse"), PROCESSOR_UNKNOWN,
817 CPU_ANY_SSE_FLAGS, 0, 1 },
818 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
819 CPU_AVX_FLAGS, 0, 0 },
820 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
821 CPU_AVX2_FLAGS, 0, 0 },
822 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
823 CPU_AVX512F_FLAGS, 0, 0 },
824 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
825 CPU_AVX512CD_FLAGS, 0, 0 },
826 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
827 CPU_AVX512ER_FLAGS, 0, 0 },
828 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
829 CPU_AVX512PF_FLAGS, 0, 0 },
830 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
831 CPU_AVX512DQ_FLAGS, 0, 0 },
832 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
833 CPU_AVX512BW_FLAGS, 0, 0 },
834 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
835 CPU_AVX512VL_FLAGS, 0, 0 },
836 { STRING_COMMA_LEN (".noavx"), PROCESSOR_UNKNOWN,
837 CPU_ANY_AVX_FLAGS, 0, 1 },
838 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
839 CPU_VMX_FLAGS, 0, 0 },
840 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
841 CPU_VMFUNC_FLAGS, 0, 0 },
842 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
843 CPU_SMX_FLAGS, 0, 0 },
844 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
845 CPU_XSAVE_FLAGS, 0, 0 },
846 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
847 CPU_XSAVEOPT_FLAGS, 0, 0 },
848 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
849 CPU_XSAVEC_FLAGS, 0, 0 },
850 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
851 CPU_XSAVES_FLAGS, 0, 0 },
852 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
853 CPU_AES_FLAGS, 0, 0 },
854 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
855 CPU_PCLMUL_FLAGS, 0, 0 },
856 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
857 CPU_PCLMUL_FLAGS, 1, 0 },
858 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
859 CPU_FSGSBASE_FLAGS, 0, 0 },
860 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
861 CPU_RDRND_FLAGS, 0, 0 },
862 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
863 CPU_F16C_FLAGS, 0, 0 },
864 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
865 CPU_BMI2_FLAGS, 0, 0 },
866 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
867 CPU_FMA_FLAGS, 0, 0 },
868 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
869 CPU_FMA4_FLAGS, 0, 0 },
870 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
871 CPU_XOP_FLAGS, 0, 0 },
872 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
873 CPU_LWP_FLAGS, 0, 0 },
874 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
875 CPU_MOVBE_FLAGS, 0, 0 },
876 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
877 CPU_CX16_FLAGS, 0, 0 },
878 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
879 CPU_EPT_FLAGS, 0, 0 },
880 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
881 CPU_LZCNT_FLAGS, 0, 0 },
882 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
883 CPU_HLE_FLAGS, 0, 0 },
884 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
885 CPU_RTM_FLAGS, 0, 0 },
886 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
887 CPU_INVPCID_FLAGS, 0, 0 },
888 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
889 CPU_CLFLUSH_FLAGS, 0, 0 },
890 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
891 CPU_NOP_FLAGS, 0, 0 },
892 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
893 CPU_SYSCALL_FLAGS, 0, 0 },
894 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
895 CPU_RDTSCP_FLAGS, 0, 0 },
896 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
897 CPU_3DNOW_FLAGS, 0, 0 },
898 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
899 CPU_3DNOWA_FLAGS, 0, 0 },
900 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
901 CPU_PADLOCK_FLAGS, 0, 0 },
902 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
903 CPU_SVME_FLAGS, 1, 0 },
904 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
905 CPU_SVME_FLAGS, 0, 0 },
906 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
907 CPU_SSE4A_FLAGS, 0, 0 },
908 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
909 CPU_ABM_FLAGS, 0, 0 },
910 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
911 CPU_BMI_FLAGS, 0, 0 },
912 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
913 CPU_TBM_FLAGS, 0, 0 },
914 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
915 CPU_ADX_FLAGS, 0, 0 },
916 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
917 CPU_RDSEED_FLAGS, 0, 0 },
918 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
919 CPU_PRFCHW_FLAGS, 0, 0 },
920 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
921 CPU_SMAP_FLAGS, 0, 0 },
922 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
923 CPU_MPX_FLAGS, 0, 0 },
924 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
925 CPU_SHA_FLAGS, 0, 0 },
926 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
927 CPU_CLFLUSHOPT_FLAGS, 0, 0 },
928 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
929 CPU_PREFETCHWT1_FLAGS, 0, 0 },
930 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
931 CPU_SE1_FLAGS, 0, 0 },
932 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
933 CPU_CLWB_FLAGS, 0, 0 },
934 { STRING_COMMA_LEN (".pcommit"), PROCESSOR_UNKNOWN,
935 CPU_PCOMMIT_FLAGS, 0, 0 },
936 };
937
938 #ifdef I386COFF
939 /* Like s_lcomm_internal in gas/read.c but the alignment string
940 is allowed to be optional. */
941
942 static symbolS *
943 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
944 {
945 addressT align = 0;
946
947 SKIP_WHITESPACE ();
948
949 if (needs_align
950 && *input_line_pointer == ',')
951 {
952 align = parse_align (needs_align - 1);
953
954 if (align == (addressT) -1)
955 return NULL;
956 }
957 else
958 {
959 if (size >= 8)
960 align = 3;
961 else if (size >= 4)
962 align = 2;
963 else if (size >= 2)
964 align = 1;
965 else
966 align = 0;
967 }
968
969 bss_alloc (symbolP, size, align);
970 return symbolP;
971 }
972
973 static void
974 pe_lcomm (int needs_align)
975 {
976 s_comm_internal (needs_align * 2, pe_lcomm_internal);
977 }
978 #endif
979
980 const pseudo_typeS md_pseudo_table[] =
981 {
982 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
983 {"align", s_align_bytes, 0},
984 #else
985 {"align", s_align_ptwo, 0},
986 #endif
987 {"arch", set_cpu_arch, 0},
988 #ifndef I386COFF
989 {"bss", s_bss, 0},
990 #else
991 {"lcomm", pe_lcomm, 1},
992 #endif
993 {"ffloat", float_cons, 'f'},
994 {"dfloat", float_cons, 'd'},
995 {"tfloat", float_cons, 'x'},
996 {"value", cons, 2},
997 {"slong", signed_cons, 4},
998 {"noopt", s_ignore, 0},
999 {"optim", s_ignore, 0},
1000 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1001 {"code16", set_code_flag, CODE_16BIT},
1002 {"code32", set_code_flag, CODE_32BIT},
1003 {"code64", set_code_flag, CODE_64BIT},
1004 {"intel_syntax", set_intel_syntax, 1},
1005 {"att_syntax", set_intel_syntax, 0},
1006 {"intel_mnemonic", set_intel_mnemonic, 1},
1007 {"att_mnemonic", set_intel_mnemonic, 0},
1008 {"allow_index_reg", set_allow_index_reg, 1},
1009 {"disallow_index_reg", set_allow_index_reg, 0},
1010 {"sse_check", set_check, 0},
1011 {"operand_check", set_check, 1},
1012 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1013 {"largecomm", handle_large_common, 0},
1014 #else
1015 {"file", (void (*) (int)) dwarf2_directive_file, 0},
1016 {"loc", dwarf2_directive_loc, 0},
1017 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1018 #endif
1019 #ifdef TE_PE
1020 {"secrel32", pe_directive_secrel, 0},
1021 #endif
1022 {0, 0, 0}
1023 };
1024
1025 /* For interface with expression (). */
1026 extern char *input_line_pointer;
1027
1028 /* Hash table for instruction mnemonic lookup. */
1029 static struct hash_control *op_hash;
1030
1031 /* Hash table for register lookup. */
1032 static struct hash_control *reg_hash;
1033 \f
1034 void
1035 i386_align_code (fragS *fragP, int count)
1036 {
1037 /* Various efficient no-op patterns for aligning code labels.
1038 Note: Don't try to assemble the instructions in the comments.
1039 0L and 0w are not legal. */
1040 static const char f32_1[] =
1041 {0x90}; /* nop */
1042 static const char f32_2[] =
1043 {0x66,0x90}; /* xchg %ax,%ax */
1044 static const char f32_3[] =
1045 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1046 static const char f32_4[] =
1047 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1048 static const char f32_5[] =
1049 {0x90, /* nop */
1050 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1051 static const char f32_6[] =
1052 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1053 static const char f32_7[] =
1054 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1055 static const char f32_8[] =
1056 {0x90, /* nop */
1057 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1058 static const char f32_9[] =
1059 {0x89,0xf6, /* movl %esi,%esi */
1060 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1061 static const char f32_10[] =
1062 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1063 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1064 static const char f32_11[] =
1065 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1066 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1067 static const char f32_12[] =
1068 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1069 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1070 static const char f32_13[] =
1071 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1072 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1073 static const char f32_14[] =
1074 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1075 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1076 static const char f16_3[] =
1077 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1078 static const char f16_4[] =
1079 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1080 static const char f16_5[] =
1081 {0x90, /* nop */
1082 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1083 static const char f16_6[] =
1084 {0x89,0xf6, /* mov %si,%si */
1085 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1086 static const char f16_7[] =
1087 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1088 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1089 static const char f16_8[] =
1090 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1091 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1092 static const char jump_31[] =
1093 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1094 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1095 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1096 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1097 static const char *const f32_patt[] = {
1098 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1099 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1100 };
1101 static const char *const f16_patt[] = {
1102 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1103 };
1104 /* nopl (%[re]ax) */
1105 static const char alt_3[] =
1106 {0x0f,0x1f,0x00};
1107 /* nopl 0(%[re]ax) */
1108 static const char alt_4[] =
1109 {0x0f,0x1f,0x40,0x00};
1110 /* nopl 0(%[re]ax,%[re]ax,1) */
1111 static const char alt_5[] =
1112 {0x0f,0x1f,0x44,0x00,0x00};
1113 /* nopw 0(%[re]ax,%[re]ax,1) */
1114 static const char alt_6[] =
1115 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1116 /* nopl 0L(%[re]ax) */
1117 static const char alt_7[] =
1118 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1119 /* nopl 0L(%[re]ax,%[re]ax,1) */
1120 static const char alt_8[] =
1121 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1122 /* nopw 0L(%[re]ax,%[re]ax,1) */
1123 static const char alt_9[] =
1124 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1125 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1126 static const char alt_10[] =
1127 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1128 /* data16
1129 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1130 static const char alt_long_11[] =
1131 {0x66,
1132 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1133 /* data16
1134 data16
1135 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1136 static const char alt_long_12[] =
1137 {0x66,
1138 0x66,
1139 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1140 /* data16
1141 data16
1142 data16
1143 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1144 static const char alt_long_13[] =
1145 {0x66,
1146 0x66,
1147 0x66,
1148 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1149 /* data16
1150 data16
1151 data16
1152 data16
1153 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1154 static const char alt_long_14[] =
1155 {0x66,
1156 0x66,
1157 0x66,
1158 0x66,
1159 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1160 /* data16
1161 data16
1162 data16
1163 data16
1164 data16
1165 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1166 static const char alt_long_15[] =
1167 {0x66,
1168 0x66,
1169 0x66,
1170 0x66,
1171 0x66,
1172 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1173 /* nopl 0(%[re]ax,%[re]ax,1)
1174 nopw 0(%[re]ax,%[re]ax,1) */
1175 static const char alt_short_11[] =
1176 {0x0f,0x1f,0x44,0x00,0x00,
1177 0x66,0x0f,0x1f,0x44,0x00,0x00};
1178 /* nopw 0(%[re]ax,%[re]ax,1)
1179 nopw 0(%[re]ax,%[re]ax,1) */
1180 static const char alt_short_12[] =
1181 {0x66,0x0f,0x1f,0x44,0x00,0x00,
1182 0x66,0x0f,0x1f,0x44,0x00,0x00};
1183 /* nopw 0(%[re]ax,%[re]ax,1)
1184 nopl 0L(%[re]ax) */
1185 static const char alt_short_13[] =
1186 {0x66,0x0f,0x1f,0x44,0x00,0x00,
1187 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1188 /* nopl 0L(%[re]ax)
1189 nopl 0L(%[re]ax) */
1190 static const char alt_short_14[] =
1191 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
1192 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1193 /* nopl 0L(%[re]ax)
1194 nopl 0L(%[re]ax,%[re]ax,1) */
1195 static const char alt_short_15[] =
1196 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
1197 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1198 static const char *const alt_short_patt[] = {
1199 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1200 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
1201 alt_short_14, alt_short_15
1202 };
1203 static const char *const alt_long_patt[] = {
1204 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1205 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
1206 alt_long_14, alt_long_15
1207 };
1208
1209 /* Only align for at least a positive non-zero boundary. */
1210 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1211 return;
1212
1213 /* We need to decide which NOP sequence to use for 32bit and
1214 64bit. When -mtune= is used:
1215
1216 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1217 PROCESSOR_GENERIC32, f32_patt will be used.
1218 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
1219 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_COREI7, and
1220 PROCESSOR_GENERIC64, alt_long_patt will be used.
1221 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
1222 PROCESSOR_AMDFAM10, PROCESSOR_BD and PROCESSOR_BT, alt_short_patt
1223 will be used.
1224
1225 When -mtune= isn't used, alt_long_patt will be used if
1226 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1227 be used.
1228
1229 When -march= or .arch is used, we can't use anything beyond
1230 cpu_arch_isa_flags. */
1231
1232 if (flag_code == CODE_16BIT)
1233 {
1234 if (count > 8)
1235 {
1236 memcpy (fragP->fr_literal + fragP->fr_fix,
1237 jump_31, count);
1238 /* Adjust jump offset. */
1239 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1240 }
1241 else
1242 memcpy (fragP->fr_literal + fragP->fr_fix,
1243 f16_patt[count - 1], count);
1244 }
1245 else
1246 {
1247 const char *const *patt = NULL;
1248
1249 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1250 {
1251 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1252 switch (cpu_arch_tune)
1253 {
1254 case PROCESSOR_UNKNOWN:
1255 /* We use cpu_arch_isa_flags to check if we SHOULD
1256 optimize with nops. */
1257 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1258 patt = alt_long_patt;
1259 else
1260 patt = f32_patt;
1261 break;
1262 case PROCESSOR_PENTIUM4:
1263 case PROCESSOR_NOCONA:
1264 case PROCESSOR_CORE:
1265 case PROCESSOR_CORE2:
1266 case PROCESSOR_COREI7:
1267 case PROCESSOR_L1OM:
1268 case PROCESSOR_K1OM:
1269 case PROCESSOR_GENERIC64:
1270 patt = alt_long_patt;
1271 break;
1272 case PROCESSOR_K6:
1273 case PROCESSOR_ATHLON:
1274 case PROCESSOR_K8:
1275 case PROCESSOR_AMDFAM10:
1276 case PROCESSOR_BD:
1277 case PROCESSOR_BT:
1278 patt = alt_short_patt;
1279 break;
1280 case PROCESSOR_I386:
1281 case PROCESSOR_I486:
1282 case PROCESSOR_PENTIUM:
1283 case PROCESSOR_PENTIUMPRO:
1284 case PROCESSOR_GENERIC32:
1285 patt = f32_patt;
1286 break;
1287 }
1288 }
1289 else
1290 {
1291 switch (fragP->tc_frag_data.tune)
1292 {
1293 case PROCESSOR_UNKNOWN:
1294 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1295 PROCESSOR_UNKNOWN. */
1296 abort ();
1297 break;
1298
1299 case PROCESSOR_I386:
1300 case PROCESSOR_I486:
1301 case PROCESSOR_PENTIUM:
1302 case PROCESSOR_K6:
1303 case PROCESSOR_ATHLON:
1304 case PROCESSOR_K8:
1305 case PROCESSOR_AMDFAM10:
1306 case PROCESSOR_BD:
1307 case PROCESSOR_BT:
1308 case PROCESSOR_GENERIC32:
1309 /* We use cpu_arch_isa_flags to check if we CAN optimize
1310 with nops. */
1311 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1312 patt = alt_short_patt;
1313 else
1314 patt = f32_patt;
1315 break;
1316 case PROCESSOR_PENTIUMPRO:
1317 case PROCESSOR_PENTIUM4:
1318 case PROCESSOR_NOCONA:
1319 case PROCESSOR_CORE:
1320 case PROCESSOR_CORE2:
1321 case PROCESSOR_COREI7:
1322 case PROCESSOR_L1OM:
1323 case PROCESSOR_K1OM:
1324 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1325 patt = alt_long_patt;
1326 else
1327 patt = f32_patt;
1328 break;
1329 case PROCESSOR_GENERIC64:
1330 patt = alt_long_patt;
1331 break;
1332 }
1333 }
1334
1335 if (patt == f32_patt)
1336 {
1337 /* If the padding is less than 15 bytes, we use the normal
1338 ones. Otherwise, we use a jump instruction and adjust
1339 its offset. */
1340 int limit;
1341
1342 /* For 64bit, the limit is 3 bytes. */
1343 if (flag_code == CODE_64BIT
1344 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1345 limit = 3;
1346 else
1347 limit = 15;
1348 if (count < limit)
1349 memcpy (fragP->fr_literal + fragP->fr_fix,
1350 patt[count - 1], count);
1351 else
1352 {
1353 memcpy (fragP->fr_literal + fragP->fr_fix,
1354 jump_31, count);
1355 /* Adjust jump offset. */
1356 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1357 }
1358 }
1359 else
1360 {
1361 /* Maximum length of an instruction is 15 byte. If the
1362 padding is greater than 15 bytes and we don't use jump,
1363 we have to break it into smaller pieces. */
1364 int padding = count;
1365 while (padding > 15)
1366 {
1367 padding -= 15;
1368 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1369 patt [14], 15);
1370 }
1371
1372 if (padding)
1373 memcpy (fragP->fr_literal + fragP->fr_fix,
1374 patt [padding - 1], padding);
1375 }
1376 }
1377 fragP->fr_var = count;
1378 }
1379
1380 static INLINE int
1381 operand_type_all_zero (const union i386_operand_type *x)
1382 {
1383 switch (ARRAY_SIZE(x->array))
1384 {
1385 case 3:
1386 if (x->array[2])
1387 return 0;
1388 case 2:
1389 if (x->array[1])
1390 return 0;
1391 case 1:
1392 return !x->array[0];
1393 default:
1394 abort ();
1395 }
1396 }
1397
1398 static INLINE void
1399 operand_type_set (union i386_operand_type *x, unsigned int v)
1400 {
1401 switch (ARRAY_SIZE(x->array))
1402 {
1403 case 3:
1404 x->array[2] = v;
1405 case 2:
1406 x->array[1] = v;
1407 case 1:
1408 x->array[0] = v;
1409 break;
1410 default:
1411 abort ();
1412 }
1413 }
1414
1415 static INLINE int
1416 operand_type_equal (const union i386_operand_type *x,
1417 const union i386_operand_type *y)
1418 {
1419 switch (ARRAY_SIZE(x->array))
1420 {
1421 case 3:
1422 if (x->array[2] != y->array[2])
1423 return 0;
1424 case 2:
1425 if (x->array[1] != y->array[1])
1426 return 0;
1427 case 1:
1428 return x->array[0] == y->array[0];
1429 break;
1430 default:
1431 abort ();
1432 }
1433 }
1434
1435 static INLINE int
1436 cpu_flags_all_zero (const union i386_cpu_flags *x)
1437 {
1438 switch (ARRAY_SIZE(x->array))
1439 {
1440 case 3:
1441 if (x->array[2])
1442 return 0;
1443 case 2:
1444 if (x->array[1])
1445 return 0;
1446 case 1:
1447 return !x->array[0];
1448 default:
1449 abort ();
1450 }
1451 }
1452
1453 static INLINE void
1454 cpu_flags_set (union i386_cpu_flags *x, unsigned int v)
1455 {
1456 switch (ARRAY_SIZE(x->array))
1457 {
1458 case 3:
1459 x->array[2] = v;
1460 case 2:
1461 x->array[1] = v;
1462 case 1:
1463 x->array[0] = v;
1464 break;
1465 default:
1466 abort ();
1467 }
1468 }
1469
1470 static INLINE int
1471 cpu_flags_equal (const union i386_cpu_flags *x,
1472 const union i386_cpu_flags *y)
1473 {
1474 switch (ARRAY_SIZE(x->array))
1475 {
1476 case 3:
1477 if (x->array[2] != y->array[2])
1478 return 0;
1479 case 2:
1480 if (x->array[1] != y->array[1])
1481 return 0;
1482 case 1:
1483 return x->array[0] == y->array[0];
1484 break;
1485 default:
1486 abort ();
1487 }
1488 }
1489
1490 static INLINE int
1491 cpu_flags_check_cpu64 (i386_cpu_flags f)
1492 {
1493 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1494 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1495 }
1496
1497 static INLINE i386_cpu_flags
1498 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1499 {
1500 switch (ARRAY_SIZE (x.array))
1501 {
1502 case 3:
1503 x.array [2] &= y.array [2];
1504 case 2:
1505 x.array [1] &= y.array [1];
1506 case 1:
1507 x.array [0] &= y.array [0];
1508 break;
1509 default:
1510 abort ();
1511 }
1512 return x;
1513 }
1514
1515 static INLINE i386_cpu_flags
1516 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1517 {
1518 switch (ARRAY_SIZE (x.array))
1519 {
1520 case 3:
1521 x.array [2] |= y.array [2];
1522 case 2:
1523 x.array [1] |= y.array [1];
1524 case 1:
1525 x.array [0] |= y.array [0];
1526 break;
1527 default:
1528 abort ();
1529 }
1530 return x;
1531 }
1532
1533 static INLINE i386_cpu_flags
1534 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1535 {
1536 switch (ARRAY_SIZE (x.array))
1537 {
1538 case 3:
1539 x.array [2] &= ~y.array [2];
1540 case 2:
1541 x.array [1] &= ~y.array [1];
1542 case 1:
1543 x.array [0] &= ~y.array [0];
1544 break;
1545 default:
1546 abort ();
1547 }
1548 return x;
1549 }
1550
1551 #define CPU_FLAGS_ARCH_MATCH 0x1
1552 #define CPU_FLAGS_64BIT_MATCH 0x2
1553 #define CPU_FLAGS_AES_MATCH 0x4
1554 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1555 #define CPU_FLAGS_AVX_MATCH 0x10
1556
1557 #define CPU_FLAGS_32BIT_MATCH \
1558 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1559 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1560 #define CPU_FLAGS_PERFECT_MATCH \
1561 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1562
1563 /* Return CPU flags match bits. */
1564
1565 static int
1566 cpu_flags_match (const insn_template *t)
1567 {
1568 i386_cpu_flags x = t->cpu_flags;
1569 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1570
1571 x.bitfield.cpu64 = 0;
1572 x.bitfield.cpuno64 = 0;
1573
1574 if (cpu_flags_all_zero (&x))
1575 {
1576 /* This instruction is available on all archs. */
1577 match |= CPU_FLAGS_32BIT_MATCH;
1578 }
1579 else
1580 {
1581 /* This instruction is available only on some archs. */
1582 i386_cpu_flags cpu = cpu_arch_flags;
1583
1584 cpu.bitfield.cpu64 = 0;
1585 cpu.bitfield.cpuno64 = 0;
1586 cpu = cpu_flags_and (x, cpu);
1587 if (!cpu_flags_all_zero (&cpu))
1588 {
1589 if (x.bitfield.cpuavx)
1590 {
1591 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1592 if (cpu.bitfield.cpuavx)
1593 {
1594 /* Check SSE2AVX. */
1595 if (!t->opcode_modifier.sse2avx|| sse2avx)
1596 {
1597 match |= (CPU_FLAGS_ARCH_MATCH
1598 | CPU_FLAGS_AVX_MATCH);
1599 /* Check AES. */
1600 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1601 match |= CPU_FLAGS_AES_MATCH;
1602 /* Check PCLMUL. */
1603 if (!x.bitfield.cpupclmul
1604 || cpu.bitfield.cpupclmul)
1605 match |= CPU_FLAGS_PCLMUL_MATCH;
1606 }
1607 }
1608 else
1609 match |= CPU_FLAGS_ARCH_MATCH;
1610 }
1611 else
1612 match |= CPU_FLAGS_32BIT_MATCH;
1613 }
1614 }
1615 return match;
1616 }
1617
1618 static INLINE i386_operand_type
1619 operand_type_and (i386_operand_type x, i386_operand_type y)
1620 {
1621 switch (ARRAY_SIZE (x.array))
1622 {
1623 case 3:
1624 x.array [2] &= y.array [2];
1625 case 2:
1626 x.array [1] &= y.array [1];
1627 case 1:
1628 x.array [0] &= y.array [0];
1629 break;
1630 default:
1631 abort ();
1632 }
1633 return x;
1634 }
1635
1636 static INLINE i386_operand_type
1637 operand_type_or (i386_operand_type x, i386_operand_type y)
1638 {
1639 switch (ARRAY_SIZE (x.array))
1640 {
1641 case 3:
1642 x.array [2] |= y.array [2];
1643 case 2:
1644 x.array [1] |= y.array [1];
1645 case 1:
1646 x.array [0] |= y.array [0];
1647 break;
1648 default:
1649 abort ();
1650 }
1651 return x;
1652 }
1653
1654 static INLINE i386_operand_type
1655 operand_type_xor (i386_operand_type x, i386_operand_type y)
1656 {
1657 switch (ARRAY_SIZE (x.array))
1658 {
1659 case 3:
1660 x.array [2] ^= y.array [2];
1661 case 2:
1662 x.array [1] ^= y.array [1];
1663 case 1:
1664 x.array [0] ^= y.array [0];
1665 break;
1666 default:
1667 abort ();
1668 }
1669 return x;
1670 }
1671
1672 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1673 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1674 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1675 static const i386_operand_type inoutportreg
1676 = OPERAND_TYPE_INOUTPORTREG;
1677 static const i386_operand_type reg16_inoutportreg
1678 = OPERAND_TYPE_REG16_INOUTPORTREG;
1679 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1680 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1681 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1682 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1683 static const i386_operand_type anydisp
1684 = OPERAND_TYPE_ANYDISP;
1685 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1686 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1687 static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1688 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1689 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1690 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1691 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1692 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1693 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1694 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1695 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1696 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1697 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1698 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1699
1700 enum operand_type
1701 {
1702 reg,
1703 imm,
1704 disp,
1705 anymem
1706 };
1707
1708 static INLINE int
1709 operand_type_check (i386_operand_type t, enum operand_type c)
1710 {
1711 switch (c)
1712 {
1713 case reg:
1714 return (t.bitfield.reg8
1715 || t.bitfield.reg16
1716 || t.bitfield.reg32
1717 || t.bitfield.reg64);
1718
1719 case imm:
1720 return (t.bitfield.imm8
1721 || t.bitfield.imm8s
1722 || t.bitfield.imm16
1723 || t.bitfield.imm32
1724 || t.bitfield.imm32s
1725 || t.bitfield.imm64);
1726
1727 case disp:
1728 return (t.bitfield.disp8
1729 || t.bitfield.disp16
1730 || t.bitfield.disp32
1731 || t.bitfield.disp32s
1732 || t.bitfield.disp64);
1733
1734 case anymem:
1735 return (t.bitfield.disp8
1736 || t.bitfield.disp16
1737 || t.bitfield.disp32
1738 || t.bitfield.disp32s
1739 || t.bitfield.disp64
1740 || t.bitfield.baseindex);
1741
1742 default:
1743 abort ();
1744 }
1745
1746 return 0;
1747 }
1748
1749 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1750 operand J for instruction template T. */
1751
1752 static INLINE int
1753 match_reg_size (const insn_template *t, unsigned int j)
1754 {
1755 return !((i.types[j].bitfield.byte
1756 && !t->operand_types[j].bitfield.byte)
1757 || (i.types[j].bitfield.word
1758 && !t->operand_types[j].bitfield.word)
1759 || (i.types[j].bitfield.dword
1760 && !t->operand_types[j].bitfield.dword)
1761 || (i.types[j].bitfield.qword
1762 && !t->operand_types[j].bitfield.qword));
1763 }
1764
1765 /* Return 1 if there is no conflict in any size on operand J for
1766 instruction template T. */
1767
1768 static INLINE int
1769 match_mem_size (const insn_template *t, unsigned int j)
1770 {
1771 return (match_reg_size (t, j)
1772 && !((i.types[j].bitfield.unspecified
1773 && !t->operand_types[j].bitfield.unspecified)
1774 || (i.types[j].bitfield.fword
1775 && !t->operand_types[j].bitfield.fword)
1776 || (i.types[j].bitfield.tbyte
1777 && !t->operand_types[j].bitfield.tbyte)
1778 || (i.types[j].bitfield.xmmword
1779 && !t->operand_types[j].bitfield.xmmword)
1780 || (i.types[j].bitfield.ymmword
1781 && !t->operand_types[j].bitfield.ymmword)
1782 || (i.types[j].bitfield.zmmword
1783 && !t->operand_types[j].bitfield.zmmword)));
1784 }
1785
1786 /* Return 1 if there is no size conflict on any operands for
1787 instruction template T. */
1788
1789 static INLINE int
1790 operand_size_match (const insn_template *t)
1791 {
1792 unsigned int j;
1793 int match = 1;
1794
1795 /* Don't check jump instructions. */
1796 if (t->opcode_modifier.jump
1797 || t->opcode_modifier.jumpbyte
1798 || t->opcode_modifier.jumpdword
1799 || t->opcode_modifier.jumpintersegment)
1800 return match;
1801
1802 /* Check memory and accumulator operand size. */
1803 for (j = 0; j < i.operands; j++)
1804 {
1805 if (t->operand_types[j].bitfield.anysize)
1806 continue;
1807
1808 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1809 {
1810 match = 0;
1811 break;
1812 }
1813
1814 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1815 {
1816 match = 0;
1817 break;
1818 }
1819 }
1820
1821 if (match)
1822 return match;
1823 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1824 {
1825 mismatch:
1826 i.error = operand_size_mismatch;
1827 return 0;
1828 }
1829
1830 /* Check reverse. */
1831 gas_assert (i.operands == 2);
1832
1833 match = 1;
1834 for (j = 0; j < 2; j++)
1835 {
1836 if (t->operand_types[j].bitfield.acc
1837 && !match_reg_size (t, j ? 0 : 1))
1838 goto mismatch;
1839
1840 if (i.types[j].bitfield.mem
1841 && !match_mem_size (t, j ? 0 : 1))
1842 goto mismatch;
1843 }
1844
1845 return match;
1846 }
1847
1848 static INLINE int
1849 operand_type_match (i386_operand_type overlap,
1850 i386_operand_type given)
1851 {
1852 i386_operand_type temp = overlap;
1853
1854 temp.bitfield.jumpabsolute = 0;
1855 temp.bitfield.unspecified = 0;
1856 temp.bitfield.byte = 0;
1857 temp.bitfield.word = 0;
1858 temp.bitfield.dword = 0;
1859 temp.bitfield.fword = 0;
1860 temp.bitfield.qword = 0;
1861 temp.bitfield.tbyte = 0;
1862 temp.bitfield.xmmword = 0;
1863 temp.bitfield.ymmword = 0;
1864 temp.bitfield.zmmword = 0;
1865 if (operand_type_all_zero (&temp))
1866 goto mismatch;
1867
1868 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1869 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1870 return 1;
1871
1872 mismatch:
1873 i.error = operand_type_mismatch;
1874 return 0;
1875 }
1876
1877 /* If given types g0 and g1 are registers they must be of the same type
1878 unless the expected operand type register overlap is null.
1879 Note that Acc in a template matches every size of reg. */
1880
1881 static INLINE int
1882 operand_type_register_match (i386_operand_type m0,
1883 i386_operand_type g0,
1884 i386_operand_type t0,
1885 i386_operand_type m1,
1886 i386_operand_type g1,
1887 i386_operand_type t1)
1888 {
1889 if (!operand_type_check (g0, reg))
1890 return 1;
1891
1892 if (!operand_type_check (g1, reg))
1893 return 1;
1894
1895 if (g0.bitfield.reg8 == g1.bitfield.reg8
1896 && g0.bitfield.reg16 == g1.bitfield.reg16
1897 && g0.bitfield.reg32 == g1.bitfield.reg32
1898 && g0.bitfield.reg64 == g1.bitfield.reg64)
1899 return 1;
1900
1901 if (m0.bitfield.acc)
1902 {
1903 t0.bitfield.reg8 = 1;
1904 t0.bitfield.reg16 = 1;
1905 t0.bitfield.reg32 = 1;
1906 t0.bitfield.reg64 = 1;
1907 }
1908
1909 if (m1.bitfield.acc)
1910 {
1911 t1.bitfield.reg8 = 1;
1912 t1.bitfield.reg16 = 1;
1913 t1.bitfield.reg32 = 1;
1914 t1.bitfield.reg64 = 1;
1915 }
1916
1917 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1918 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1919 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1920 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1921 return 1;
1922
1923 i.error = register_type_mismatch;
1924
1925 return 0;
1926 }
1927
1928 static INLINE unsigned int
1929 register_number (const reg_entry *r)
1930 {
1931 unsigned int nr = r->reg_num;
1932
1933 if (r->reg_flags & RegRex)
1934 nr += 8;
1935
1936 return nr;
1937 }
1938
1939 static INLINE unsigned int
1940 mode_from_disp_size (i386_operand_type t)
1941 {
1942 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
1943 return 1;
1944 else if (t.bitfield.disp16
1945 || t.bitfield.disp32
1946 || t.bitfield.disp32s)
1947 return 2;
1948 else
1949 return 0;
1950 }
1951
1952 static INLINE int
1953 fits_in_signed_byte (addressT num)
1954 {
1955 return num + 0x80 <= 0xff;
1956 }
1957
1958 static INLINE int
1959 fits_in_unsigned_byte (addressT num)
1960 {
1961 return num <= 0xff;
1962 }
1963
1964 static INLINE int
1965 fits_in_unsigned_word (addressT num)
1966 {
1967 return num <= 0xffff;
1968 }
1969
1970 static INLINE int
1971 fits_in_signed_word (addressT num)
1972 {
1973 return num + 0x8000 <= 0xffff;
1974 }
1975
1976 static INLINE int
1977 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
1978 {
1979 #ifndef BFD64
1980 return 1;
1981 #else
1982 return num + 0x80000000 <= 0xffffffff;
1983 #endif
1984 } /* fits_in_signed_long() */
1985
1986 static INLINE int
1987 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
1988 {
1989 #ifndef BFD64
1990 return 1;
1991 #else
1992 return num <= 0xffffffff;
1993 #endif
1994 } /* fits_in_unsigned_long() */
1995
1996 static INLINE int
1997 fits_in_vec_disp8 (offsetT num)
1998 {
1999 int shift = i.memshift;
2000 unsigned int mask;
2001
2002 if (shift == -1)
2003 abort ();
2004
2005 mask = (1 << shift) - 1;
2006
2007 /* Return 0 if NUM isn't properly aligned. */
2008 if ((num & mask))
2009 return 0;
2010
2011 /* Check if NUM will fit in 8bit after shift. */
2012 return fits_in_signed_byte (num >> shift);
2013 }
2014
2015 static INLINE int
2016 fits_in_imm4 (offsetT num)
2017 {
2018 return (num & 0xf) == num;
2019 }
2020
2021 static i386_operand_type
2022 smallest_imm_type (offsetT num)
2023 {
2024 i386_operand_type t;
2025
2026 operand_type_set (&t, 0);
2027 t.bitfield.imm64 = 1;
2028
2029 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2030 {
2031 /* This code is disabled on the 486 because all the Imm1 forms
2032 in the opcode table are slower on the i486. They're the
2033 versions with the implicitly specified single-position
2034 displacement, which has another syntax if you really want to
2035 use that form. */
2036 t.bitfield.imm1 = 1;
2037 t.bitfield.imm8 = 1;
2038 t.bitfield.imm8s = 1;
2039 t.bitfield.imm16 = 1;
2040 t.bitfield.imm32 = 1;
2041 t.bitfield.imm32s = 1;
2042 }
2043 else if (fits_in_signed_byte (num))
2044 {
2045 t.bitfield.imm8 = 1;
2046 t.bitfield.imm8s = 1;
2047 t.bitfield.imm16 = 1;
2048 t.bitfield.imm32 = 1;
2049 t.bitfield.imm32s = 1;
2050 }
2051 else if (fits_in_unsigned_byte (num))
2052 {
2053 t.bitfield.imm8 = 1;
2054 t.bitfield.imm16 = 1;
2055 t.bitfield.imm32 = 1;
2056 t.bitfield.imm32s = 1;
2057 }
2058 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2059 {
2060 t.bitfield.imm16 = 1;
2061 t.bitfield.imm32 = 1;
2062 t.bitfield.imm32s = 1;
2063 }
2064 else if (fits_in_signed_long (num))
2065 {
2066 t.bitfield.imm32 = 1;
2067 t.bitfield.imm32s = 1;
2068 }
2069 else if (fits_in_unsigned_long (num))
2070 t.bitfield.imm32 = 1;
2071
2072 return t;
2073 }
2074
2075 static offsetT
2076 offset_in_range (offsetT val, int size)
2077 {
2078 addressT mask;
2079
2080 switch (size)
2081 {
2082 case 1: mask = ((addressT) 1 << 8) - 1; break;
2083 case 2: mask = ((addressT) 1 << 16) - 1; break;
2084 case 4: mask = ((addressT) 2 << 31) - 1; break;
2085 #ifdef BFD64
2086 case 8: mask = ((addressT) 2 << 63) - 1; break;
2087 #endif
2088 default: abort ();
2089 }
2090
2091 #ifdef BFD64
2092 /* If BFD64, sign extend val for 32bit address mode. */
2093 if (flag_code != CODE_64BIT
2094 || i.prefix[ADDR_PREFIX])
2095 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2096 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2097 #endif
2098
2099 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2100 {
2101 char buf1[40], buf2[40];
2102
2103 sprint_value (buf1, val);
2104 sprint_value (buf2, val & mask);
2105 as_warn (_("%s shortened to %s"), buf1, buf2);
2106 }
2107 return val & mask;
2108 }
2109
2110 enum PREFIX_GROUP
2111 {
2112 PREFIX_EXIST = 0,
2113 PREFIX_LOCK,
2114 PREFIX_REP,
2115 PREFIX_OTHER
2116 };
2117
2118 /* Returns
2119 a. PREFIX_EXIST if attempting to add a prefix where one from the
2120 same class already exists.
2121 b. PREFIX_LOCK if lock prefix is added.
2122 c. PREFIX_REP if rep/repne prefix is added.
2123 d. PREFIX_OTHER if other prefix is added.
2124 */
2125
2126 static enum PREFIX_GROUP
2127 add_prefix (unsigned int prefix)
2128 {
2129 enum PREFIX_GROUP ret = PREFIX_OTHER;
2130 unsigned int q;
2131
2132 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2133 && flag_code == CODE_64BIT)
2134 {
2135 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2136 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2137 && (prefix & (REX_R | REX_X | REX_B))))
2138 ret = PREFIX_EXIST;
2139 q = REX_PREFIX;
2140 }
2141 else
2142 {
2143 switch (prefix)
2144 {
2145 default:
2146 abort ();
2147
2148 case CS_PREFIX_OPCODE:
2149 case DS_PREFIX_OPCODE:
2150 case ES_PREFIX_OPCODE:
2151 case FS_PREFIX_OPCODE:
2152 case GS_PREFIX_OPCODE:
2153 case SS_PREFIX_OPCODE:
2154 q = SEG_PREFIX;
2155 break;
2156
2157 case REPNE_PREFIX_OPCODE:
2158 case REPE_PREFIX_OPCODE:
2159 q = REP_PREFIX;
2160 ret = PREFIX_REP;
2161 break;
2162
2163 case LOCK_PREFIX_OPCODE:
2164 q = LOCK_PREFIX;
2165 ret = PREFIX_LOCK;
2166 break;
2167
2168 case FWAIT_OPCODE:
2169 q = WAIT_PREFIX;
2170 break;
2171
2172 case ADDR_PREFIX_OPCODE:
2173 q = ADDR_PREFIX;
2174 break;
2175
2176 case DATA_PREFIX_OPCODE:
2177 q = DATA_PREFIX;
2178 break;
2179 }
2180 if (i.prefix[q] != 0)
2181 ret = PREFIX_EXIST;
2182 }
2183
2184 if (ret)
2185 {
2186 if (!i.prefix[q])
2187 ++i.prefixes;
2188 i.prefix[q] |= prefix;
2189 }
2190 else
2191 as_bad (_("same type of prefix used twice"));
2192
2193 return ret;
2194 }
2195
2196 static void
2197 update_code_flag (int value, int check)
2198 {
2199 PRINTF_LIKE ((*as_error));
2200
2201 flag_code = (enum flag_code) value;
2202 if (flag_code == CODE_64BIT)
2203 {
2204 cpu_arch_flags.bitfield.cpu64 = 1;
2205 cpu_arch_flags.bitfield.cpuno64 = 0;
2206 }
2207 else
2208 {
2209 cpu_arch_flags.bitfield.cpu64 = 0;
2210 cpu_arch_flags.bitfield.cpuno64 = 1;
2211 }
2212 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2213 {
2214 if (check)
2215 as_error = as_fatal;
2216 else
2217 as_error = as_bad;
2218 (*as_error) (_("64bit mode not supported on `%s'."),
2219 cpu_arch_name ? cpu_arch_name : default_arch);
2220 }
2221 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2222 {
2223 if (check)
2224 as_error = as_fatal;
2225 else
2226 as_error = as_bad;
2227 (*as_error) (_("32bit mode not supported on `%s'."),
2228 cpu_arch_name ? cpu_arch_name : default_arch);
2229 }
2230 stackop_size = '\0';
2231 }
2232
2233 static void
2234 set_code_flag (int value)
2235 {
2236 update_code_flag (value, 0);
2237 }
2238
2239 static void
2240 set_16bit_gcc_code_flag (int new_code_flag)
2241 {
2242 flag_code = (enum flag_code) new_code_flag;
2243 if (flag_code != CODE_16BIT)
2244 abort ();
2245 cpu_arch_flags.bitfield.cpu64 = 0;
2246 cpu_arch_flags.bitfield.cpuno64 = 1;
2247 stackop_size = LONG_MNEM_SUFFIX;
2248 }
2249
2250 static void
2251 set_intel_syntax (int syntax_flag)
2252 {
2253 /* Find out if register prefixing is specified. */
2254 int ask_naked_reg = 0;
2255
2256 SKIP_WHITESPACE ();
2257 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2258 {
2259 char *string = input_line_pointer;
2260 int e = get_symbol_end ();
2261
2262 if (strcmp (string, "prefix") == 0)
2263 ask_naked_reg = 1;
2264 else if (strcmp (string, "noprefix") == 0)
2265 ask_naked_reg = -1;
2266 else
2267 as_bad (_("bad argument to syntax directive."));
2268 *input_line_pointer = e;
2269 }
2270 demand_empty_rest_of_line ();
2271
2272 intel_syntax = syntax_flag;
2273
2274 if (ask_naked_reg == 0)
2275 allow_naked_reg = (intel_syntax
2276 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2277 else
2278 allow_naked_reg = (ask_naked_reg < 0);
2279
2280 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2281
2282 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2283 identifier_chars['$'] = intel_syntax ? '$' : 0;
2284 register_prefix = allow_naked_reg ? "" : "%";
2285 }
2286
2287 static void
2288 set_intel_mnemonic (int mnemonic_flag)
2289 {
2290 intel_mnemonic = mnemonic_flag;
2291 }
2292
2293 static void
2294 set_allow_index_reg (int flag)
2295 {
2296 allow_index_reg = flag;
2297 }
2298
2299 static void
2300 set_check (int what)
2301 {
2302 enum check_kind *kind;
2303 const char *str;
2304
2305 if (what)
2306 {
2307 kind = &operand_check;
2308 str = "operand";
2309 }
2310 else
2311 {
2312 kind = &sse_check;
2313 str = "sse";
2314 }
2315
2316 SKIP_WHITESPACE ();
2317
2318 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2319 {
2320 char *string = input_line_pointer;
2321 int e = get_symbol_end ();
2322
2323 if (strcmp (string, "none") == 0)
2324 *kind = check_none;
2325 else if (strcmp (string, "warning") == 0)
2326 *kind = check_warning;
2327 else if (strcmp (string, "error") == 0)
2328 *kind = check_error;
2329 else
2330 as_bad (_("bad argument to %s_check directive."), str);
2331 *input_line_pointer = e;
2332 }
2333 else
2334 as_bad (_("missing argument for %s_check directive"), str);
2335
2336 demand_empty_rest_of_line ();
2337 }
2338
2339 static void
2340 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2341 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2342 {
2343 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2344 static const char *arch;
2345
2346 /* Intel LIOM is only supported on ELF. */
2347 if (!IS_ELF)
2348 return;
2349
2350 if (!arch)
2351 {
2352 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2353 use default_arch. */
2354 arch = cpu_arch_name;
2355 if (!arch)
2356 arch = default_arch;
2357 }
2358
2359 /* If we are targeting Intel L1OM, we must enable it. */
2360 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2361 || new_flag.bitfield.cpul1om)
2362 return;
2363
2364 /* If we are targeting Intel K1OM, we must enable it. */
2365 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2366 || new_flag.bitfield.cpuk1om)
2367 return;
2368
2369 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2370 #endif
2371 }
2372
2373 static void
2374 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2375 {
2376 SKIP_WHITESPACE ();
2377
2378 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2379 {
2380 char *string = input_line_pointer;
2381 int e = get_symbol_end ();
2382 unsigned int j;
2383 i386_cpu_flags flags;
2384
2385 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2386 {
2387 if (strcmp (string, cpu_arch[j].name) == 0)
2388 {
2389 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2390
2391 if (*string != '.')
2392 {
2393 cpu_arch_name = cpu_arch[j].name;
2394 cpu_sub_arch_name = NULL;
2395 cpu_arch_flags = cpu_arch[j].flags;
2396 if (flag_code == CODE_64BIT)
2397 {
2398 cpu_arch_flags.bitfield.cpu64 = 1;
2399 cpu_arch_flags.bitfield.cpuno64 = 0;
2400 }
2401 else
2402 {
2403 cpu_arch_flags.bitfield.cpu64 = 0;
2404 cpu_arch_flags.bitfield.cpuno64 = 1;
2405 }
2406 cpu_arch_isa = cpu_arch[j].type;
2407 cpu_arch_isa_flags = cpu_arch[j].flags;
2408 if (!cpu_arch_tune_set)
2409 {
2410 cpu_arch_tune = cpu_arch_isa;
2411 cpu_arch_tune_flags = cpu_arch_isa_flags;
2412 }
2413 break;
2414 }
2415
2416 if (!cpu_arch[j].negated)
2417 flags = cpu_flags_or (cpu_arch_flags,
2418 cpu_arch[j].flags);
2419 else
2420 flags = cpu_flags_and_not (cpu_arch_flags,
2421 cpu_arch[j].flags);
2422 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2423 {
2424 if (cpu_sub_arch_name)
2425 {
2426 char *name = cpu_sub_arch_name;
2427 cpu_sub_arch_name = concat (name,
2428 cpu_arch[j].name,
2429 (const char *) NULL);
2430 free (name);
2431 }
2432 else
2433 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2434 cpu_arch_flags = flags;
2435 cpu_arch_isa_flags = flags;
2436 }
2437 *input_line_pointer = e;
2438 demand_empty_rest_of_line ();
2439 return;
2440 }
2441 }
2442 if (j >= ARRAY_SIZE (cpu_arch))
2443 as_bad (_("no such architecture: `%s'"), string);
2444
2445 *input_line_pointer = e;
2446 }
2447 else
2448 as_bad (_("missing cpu architecture"));
2449
2450 no_cond_jump_promotion = 0;
2451 if (*input_line_pointer == ','
2452 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2453 {
2454 char *string = ++input_line_pointer;
2455 int e = get_symbol_end ();
2456
2457 if (strcmp (string, "nojumps") == 0)
2458 no_cond_jump_promotion = 1;
2459 else if (strcmp (string, "jumps") == 0)
2460 ;
2461 else
2462 as_bad (_("no such architecture modifier: `%s'"), string);
2463
2464 *input_line_pointer = e;
2465 }
2466
2467 demand_empty_rest_of_line ();
2468 }
2469
2470 enum bfd_architecture
2471 i386_arch (void)
2472 {
2473 if (cpu_arch_isa == PROCESSOR_L1OM)
2474 {
2475 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2476 || flag_code != CODE_64BIT)
2477 as_fatal (_("Intel L1OM is 64bit ELF only"));
2478 return bfd_arch_l1om;
2479 }
2480 else if (cpu_arch_isa == PROCESSOR_K1OM)
2481 {
2482 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2483 || flag_code != CODE_64BIT)
2484 as_fatal (_("Intel K1OM is 64bit ELF only"));
2485 return bfd_arch_k1om;
2486 }
2487 else
2488 return bfd_arch_i386;
2489 }
2490
2491 unsigned long
2492 i386_mach (void)
2493 {
2494 if (!strncmp (default_arch, "x86_64", 6))
2495 {
2496 if (cpu_arch_isa == PROCESSOR_L1OM)
2497 {
2498 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2499 || default_arch[6] != '\0')
2500 as_fatal (_("Intel L1OM is 64bit ELF only"));
2501 return bfd_mach_l1om;
2502 }
2503 else if (cpu_arch_isa == PROCESSOR_K1OM)
2504 {
2505 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2506 || default_arch[6] != '\0')
2507 as_fatal (_("Intel K1OM is 64bit ELF only"));
2508 return bfd_mach_k1om;
2509 }
2510 else if (default_arch[6] == '\0')
2511 return bfd_mach_x86_64;
2512 else
2513 return bfd_mach_x64_32;
2514 }
2515 else if (!strcmp (default_arch, "i386"))
2516 return bfd_mach_i386_i386;
2517 else
2518 as_fatal (_("unknown architecture"));
2519 }
2520 \f
2521 void
2522 md_begin (void)
2523 {
2524 const char *hash_err;
2525
2526 /* Initialize op_hash hash table. */
2527 op_hash = hash_new ();
2528
2529 {
2530 const insn_template *optab;
2531 templates *core_optab;
2532
2533 /* Setup for loop. */
2534 optab = i386_optab;
2535 core_optab = (templates *) xmalloc (sizeof (templates));
2536 core_optab->start = optab;
2537
2538 while (1)
2539 {
2540 ++optab;
2541 if (optab->name == NULL
2542 || strcmp (optab->name, (optab - 1)->name) != 0)
2543 {
2544 /* different name --> ship out current template list;
2545 add to hash table; & begin anew. */
2546 core_optab->end = optab;
2547 hash_err = hash_insert (op_hash,
2548 (optab - 1)->name,
2549 (void *) core_optab);
2550 if (hash_err)
2551 {
2552 as_fatal (_("can't hash %s: %s"),
2553 (optab - 1)->name,
2554 hash_err);
2555 }
2556 if (optab->name == NULL)
2557 break;
2558 core_optab = (templates *) xmalloc (sizeof (templates));
2559 core_optab->start = optab;
2560 }
2561 }
2562 }
2563
2564 /* Initialize reg_hash hash table. */
2565 reg_hash = hash_new ();
2566 {
2567 const reg_entry *regtab;
2568 unsigned int regtab_size = i386_regtab_size;
2569
2570 for (regtab = i386_regtab; regtab_size--; regtab++)
2571 {
2572 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2573 if (hash_err)
2574 as_fatal (_("can't hash %s: %s"),
2575 regtab->reg_name,
2576 hash_err);
2577 }
2578 }
2579
2580 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2581 {
2582 int c;
2583 char *p;
2584
2585 for (c = 0; c < 256; c++)
2586 {
2587 if (ISDIGIT (c))
2588 {
2589 digit_chars[c] = c;
2590 mnemonic_chars[c] = c;
2591 register_chars[c] = c;
2592 operand_chars[c] = c;
2593 }
2594 else if (ISLOWER (c))
2595 {
2596 mnemonic_chars[c] = c;
2597 register_chars[c] = c;
2598 operand_chars[c] = c;
2599 }
2600 else if (ISUPPER (c))
2601 {
2602 mnemonic_chars[c] = TOLOWER (c);
2603 register_chars[c] = mnemonic_chars[c];
2604 operand_chars[c] = c;
2605 }
2606 else if (c == '{' || c == '}')
2607 operand_chars[c] = c;
2608
2609 if (ISALPHA (c) || ISDIGIT (c))
2610 identifier_chars[c] = c;
2611 else if (c >= 128)
2612 {
2613 identifier_chars[c] = c;
2614 operand_chars[c] = c;
2615 }
2616 }
2617
2618 #ifdef LEX_AT
2619 identifier_chars['@'] = '@';
2620 #endif
2621 #ifdef LEX_QM
2622 identifier_chars['?'] = '?';
2623 operand_chars['?'] = '?';
2624 #endif
2625 digit_chars['-'] = '-';
2626 mnemonic_chars['_'] = '_';
2627 mnemonic_chars['-'] = '-';
2628 mnemonic_chars['.'] = '.';
2629 identifier_chars['_'] = '_';
2630 identifier_chars['.'] = '.';
2631
2632 for (p = operand_special_chars; *p != '\0'; p++)
2633 operand_chars[(unsigned char) *p] = *p;
2634 }
2635
2636 if (flag_code == CODE_64BIT)
2637 {
2638 #if defined (OBJ_COFF) && defined (TE_PE)
2639 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2640 ? 32 : 16);
2641 #else
2642 x86_dwarf2_return_column = 16;
2643 #endif
2644 x86_cie_data_alignment = -8;
2645 }
2646 else
2647 {
2648 x86_dwarf2_return_column = 8;
2649 x86_cie_data_alignment = -4;
2650 }
2651 }
2652
2653 void
2654 i386_print_statistics (FILE *file)
2655 {
2656 hash_print_statistics (file, "i386 opcode", op_hash);
2657 hash_print_statistics (file, "i386 register", reg_hash);
2658 }
2659 \f
2660 #ifdef DEBUG386
2661
2662 /* Debugging routines for md_assemble. */
2663 static void pte (insn_template *);
2664 static void pt (i386_operand_type);
2665 static void pe (expressionS *);
2666 static void ps (symbolS *);
2667
2668 static void
2669 pi (char *line, i386_insn *x)
2670 {
2671 unsigned int j;
2672
2673 fprintf (stdout, "%s: template ", line);
2674 pte (&x->tm);
2675 fprintf (stdout, " address: base %s index %s scale %x\n",
2676 x->base_reg ? x->base_reg->reg_name : "none",
2677 x->index_reg ? x->index_reg->reg_name : "none",
2678 x->log2_scale_factor);
2679 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2680 x->rm.mode, x->rm.reg, x->rm.regmem);
2681 fprintf (stdout, " sib: base %x index %x scale %x\n",
2682 x->sib.base, x->sib.index, x->sib.scale);
2683 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2684 (x->rex & REX_W) != 0,
2685 (x->rex & REX_R) != 0,
2686 (x->rex & REX_X) != 0,
2687 (x->rex & REX_B) != 0);
2688 for (j = 0; j < x->operands; j++)
2689 {
2690 fprintf (stdout, " #%d: ", j + 1);
2691 pt (x->types[j]);
2692 fprintf (stdout, "\n");
2693 if (x->types[j].bitfield.reg8
2694 || x->types[j].bitfield.reg16
2695 || x->types[j].bitfield.reg32
2696 || x->types[j].bitfield.reg64
2697 || x->types[j].bitfield.regmmx
2698 || x->types[j].bitfield.regxmm
2699 || x->types[j].bitfield.regymm
2700 || x->types[j].bitfield.regzmm
2701 || x->types[j].bitfield.sreg2
2702 || x->types[j].bitfield.sreg3
2703 || x->types[j].bitfield.control
2704 || x->types[j].bitfield.debug
2705 || x->types[j].bitfield.test)
2706 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2707 if (operand_type_check (x->types[j], imm))
2708 pe (x->op[j].imms);
2709 if (operand_type_check (x->types[j], disp))
2710 pe (x->op[j].disps);
2711 }
2712 }
2713
2714 static void
2715 pte (insn_template *t)
2716 {
2717 unsigned int j;
2718 fprintf (stdout, " %d operands ", t->operands);
2719 fprintf (stdout, "opcode %x ", t->base_opcode);
2720 if (t->extension_opcode != None)
2721 fprintf (stdout, "ext %x ", t->extension_opcode);
2722 if (t->opcode_modifier.d)
2723 fprintf (stdout, "D");
2724 if (t->opcode_modifier.w)
2725 fprintf (stdout, "W");
2726 fprintf (stdout, "\n");
2727 for (j = 0; j < t->operands; j++)
2728 {
2729 fprintf (stdout, " #%d type ", j + 1);
2730 pt (t->operand_types[j]);
2731 fprintf (stdout, "\n");
2732 }
2733 }
2734
2735 static void
2736 pe (expressionS *e)
2737 {
2738 fprintf (stdout, " operation %d\n", e->X_op);
2739 fprintf (stdout, " add_number %ld (%lx)\n",
2740 (long) e->X_add_number, (long) e->X_add_number);
2741 if (e->X_add_symbol)
2742 {
2743 fprintf (stdout, " add_symbol ");
2744 ps (e->X_add_symbol);
2745 fprintf (stdout, "\n");
2746 }
2747 if (e->X_op_symbol)
2748 {
2749 fprintf (stdout, " op_symbol ");
2750 ps (e->X_op_symbol);
2751 fprintf (stdout, "\n");
2752 }
2753 }
2754
2755 static void
2756 ps (symbolS *s)
2757 {
2758 fprintf (stdout, "%s type %s%s",
2759 S_GET_NAME (s),
2760 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2761 segment_name (S_GET_SEGMENT (s)));
2762 }
2763
2764 static struct type_name
2765 {
2766 i386_operand_type mask;
2767 const char *name;
2768 }
2769 const type_names[] =
2770 {
2771 { OPERAND_TYPE_REG8, "r8" },
2772 { OPERAND_TYPE_REG16, "r16" },
2773 { OPERAND_TYPE_REG32, "r32" },
2774 { OPERAND_TYPE_REG64, "r64" },
2775 { OPERAND_TYPE_IMM8, "i8" },
2776 { OPERAND_TYPE_IMM8, "i8s" },
2777 { OPERAND_TYPE_IMM16, "i16" },
2778 { OPERAND_TYPE_IMM32, "i32" },
2779 { OPERAND_TYPE_IMM32S, "i32s" },
2780 { OPERAND_TYPE_IMM64, "i64" },
2781 { OPERAND_TYPE_IMM1, "i1" },
2782 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2783 { OPERAND_TYPE_DISP8, "d8" },
2784 { OPERAND_TYPE_DISP16, "d16" },
2785 { OPERAND_TYPE_DISP32, "d32" },
2786 { OPERAND_TYPE_DISP32S, "d32s" },
2787 { OPERAND_TYPE_DISP64, "d64" },
2788 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
2789 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2790 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2791 { OPERAND_TYPE_CONTROL, "control reg" },
2792 { OPERAND_TYPE_TEST, "test reg" },
2793 { OPERAND_TYPE_DEBUG, "debug reg" },
2794 { OPERAND_TYPE_FLOATREG, "FReg" },
2795 { OPERAND_TYPE_FLOATACC, "FAcc" },
2796 { OPERAND_TYPE_SREG2, "SReg2" },
2797 { OPERAND_TYPE_SREG3, "SReg3" },
2798 { OPERAND_TYPE_ACC, "Acc" },
2799 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2800 { OPERAND_TYPE_REGMMX, "rMMX" },
2801 { OPERAND_TYPE_REGXMM, "rXMM" },
2802 { OPERAND_TYPE_REGYMM, "rYMM" },
2803 { OPERAND_TYPE_REGZMM, "rZMM" },
2804 { OPERAND_TYPE_REGMASK, "Mask reg" },
2805 { OPERAND_TYPE_ESSEG, "es" },
2806 };
2807
2808 static void
2809 pt (i386_operand_type t)
2810 {
2811 unsigned int j;
2812 i386_operand_type a;
2813
2814 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2815 {
2816 a = operand_type_and (t, type_names[j].mask);
2817 if (!operand_type_all_zero (&a))
2818 fprintf (stdout, "%s, ", type_names[j].name);
2819 }
2820 fflush (stdout);
2821 }
2822
2823 #endif /* DEBUG386 */
2824 \f
2825 static bfd_reloc_code_real_type
2826 reloc (unsigned int size,
2827 int pcrel,
2828 int sign,
2829 int bnd_prefix,
2830 bfd_reloc_code_real_type other)
2831 {
2832 if (other != NO_RELOC)
2833 {
2834 reloc_howto_type *rel;
2835
2836 if (size == 8)
2837 switch (other)
2838 {
2839 case BFD_RELOC_X86_64_GOT32:
2840 return BFD_RELOC_X86_64_GOT64;
2841 break;
2842 case BFD_RELOC_X86_64_GOTPLT64:
2843 return BFD_RELOC_X86_64_GOTPLT64;
2844 break;
2845 case BFD_RELOC_X86_64_PLTOFF64:
2846 return BFD_RELOC_X86_64_PLTOFF64;
2847 break;
2848 case BFD_RELOC_X86_64_GOTPC32:
2849 other = BFD_RELOC_X86_64_GOTPC64;
2850 break;
2851 case BFD_RELOC_X86_64_GOTPCREL:
2852 other = BFD_RELOC_X86_64_GOTPCREL64;
2853 break;
2854 case BFD_RELOC_X86_64_TPOFF32:
2855 other = BFD_RELOC_X86_64_TPOFF64;
2856 break;
2857 case BFD_RELOC_X86_64_DTPOFF32:
2858 other = BFD_RELOC_X86_64_DTPOFF64;
2859 break;
2860 default:
2861 break;
2862 }
2863
2864 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2865 if (other == BFD_RELOC_SIZE32)
2866 {
2867 if (size == 8)
2868 other = BFD_RELOC_SIZE64;
2869 if (pcrel)
2870 {
2871 as_bad (_("there are no pc-relative size relocations"));
2872 return NO_RELOC;
2873 }
2874 }
2875 #endif
2876
2877 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2878 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
2879 sign = -1;
2880
2881 rel = bfd_reloc_type_lookup (stdoutput, other);
2882 if (!rel)
2883 as_bad (_("unknown relocation (%u)"), other);
2884 else if (size != bfd_get_reloc_size (rel))
2885 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2886 bfd_get_reloc_size (rel),
2887 size);
2888 else if (pcrel && !rel->pc_relative)
2889 as_bad (_("non-pc-relative relocation for pc-relative field"));
2890 else if ((rel->complain_on_overflow == complain_overflow_signed
2891 && !sign)
2892 || (rel->complain_on_overflow == complain_overflow_unsigned
2893 && sign > 0))
2894 as_bad (_("relocated field and relocation type differ in signedness"));
2895 else
2896 return other;
2897 return NO_RELOC;
2898 }
2899
2900 if (pcrel)
2901 {
2902 if (!sign)
2903 as_bad (_("there are no unsigned pc-relative relocations"));
2904 switch (size)
2905 {
2906 case 1: return BFD_RELOC_8_PCREL;
2907 case 2: return BFD_RELOC_16_PCREL;
2908 case 4: return (bnd_prefix && object_64bit
2909 ? BFD_RELOC_X86_64_PC32_BND
2910 : BFD_RELOC_32_PCREL);
2911 case 8: return BFD_RELOC_64_PCREL;
2912 }
2913 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2914 }
2915 else
2916 {
2917 if (sign > 0)
2918 switch (size)
2919 {
2920 case 4: return BFD_RELOC_X86_64_32S;
2921 }
2922 else
2923 switch (size)
2924 {
2925 case 1: return BFD_RELOC_8;
2926 case 2: return BFD_RELOC_16;
2927 case 4: return BFD_RELOC_32;
2928 case 8: return BFD_RELOC_64;
2929 }
2930 as_bad (_("cannot do %s %u byte relocation"),
2931 sign > 0 ? "signed" : "unsigned", size);
2932 }
2933
2934 return NO_RELOC;
2935 }
2936
2937 /* Here we decide which fixups can be adjusted to make them relative to
2938 the beginning of the section instead of the symbol. Basically we need
2939 to make sure that the dynamic relocations are done correctly, so in
2940 some cases we force the original symbol to be used. */
2941
2942 int
2943 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2944 {
2945 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2946 if (!IS_ELF)
2947 return 1;
2948
2949 /* Don't adjust pc-relative references to merge sections in 64-bit
2950 mode. */
2951 if (use_rela_relocations
2952 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2953 && fixP->fx_pcrel)
2954 return 0;
2955
2956 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2957 and changed later by validate_fix. */
2958 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2959 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2960 return 0;
2961
2962 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
2963 for size relocations. */
2964 if (fixP->fx_r_type == BFD_RELOC_SIZE32
2965 || fixP->fx_r_type == BFD_RELOC_SIZE64
2966 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2967 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2968 || fixP->fx_r_type == BFD_RELOC_386_GOT32
2969 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2970 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2971 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2972 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
2973 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2974 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
2975 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2976 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
2977 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2978 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
2979 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2980 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
2981 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
2982 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2983 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2984 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
2985 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
2986 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2987 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
2988 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2989 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
2990 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2991 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
2992 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2993 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2994 return 0;
2995 #endif
2996 return 1;
2997 }
2998
2999 static int
3000 intel_float_operand (const char *mnemonic)
3001 {
3002 /* Note that the value returned is meaningful only for opcodes with (memory)
3003 operands, hence the code here is free to improperly handle opcodes that
3004 have no operands (for better performance and smaller code). */
3005
3006 if (mnemonic[0] != 'f')
3007 return 0; /* non-math */
3008
3009 switch (mnemonic[1])
3010 {
3011 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3012 the fs segment override prefix not currently handled because no
3013 call path can make opcodes without operands get here */
3014 case 'i':
3015 return 2 /* integer op */;
3016 case 'l':
3017 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3018 return 3; /* fldcw/fldenv */
3019 break;
3020 case 'n':
3021 if (mnemonic[2] != 'o' /* fnop */)
3022 return 3; /* non-waiting control op */
3023 break;
3024 case 'r':
3025 if (mnemonic[2] == 's')
3026 return 3; /* frstor/frstpm */
3027 break;
3028 case 's':
3029 if (mnemonic[2] == 'a')
3030 return 3; /* fsave */
3031 if (mnemonic[2] == 't')
3032 {
3033 switch (mnemonic[3])
3034 {
3035 case 'c': /* fstcw */
3036 case 'd': /* fstdw */
3037 case 'e': /* fstenv */
3038 case 's': /* fsts[gw] */
3039 return 3;
3040 }
3041 }
3042 break;
3043 case 'x':
3044 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3045 return 0; /* fxsave/fxrstor are not really math ops */
3046 break;
3047 }
3048
3049 return 1;
3050 }
3051
3052 /* Build the VEX prefix. */
3053
3054 static void
3055 build_vex_prefix (const insn_template *t)
3056 {
3057 unsigned int register_specifier;
3058 unsigned int implied_prefix;
3059 unsigned int vector_length;
3060
3061 /* Check register specifier. */
3062 if (i.vex.register_specifier)
3063 {
3064 register_specifier =
3065 ~register_number (i.vex.register_specifier) & 0xf;
3066 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3067 }
3068 else
3069 register_specifier = 0xf;
3070
3071 /* Use 2-byte VEX prefix by swappping destination and source
3072 operand. */
3073 if (!i.swap_operand
3074 && i.operands == i.reg_operands
3075 && i.tm.opcode_modifier.vexopcode == VEX0F
3076 && i.tm.opcode_modifier.s
3077 && i.rex == REX_B)
3078 {
3079 unsigned int xchg = i.operands - 1;
3080 union i386_op temp_op;
3081 i386_operand_type temp_type;
3082
3083 temp_type = i.types[xchg];
3084 i.types[xchg] = i.types[0];
3085 i.types[0] = temp_type;
3086 temp_op = i.op[xchg];
3087 i.op[xchg] = i.op[0];
3088 i.op[0] = temp_op;
3089
3090 gas_assert (i.rm.mode == 3);
3091
3092 i.rex = REX_R;
3093 xchg = i.rm.regmem;
3094 i.rm.regmem = i.rm.reg;
3095 i.rm.reg = xchg;
3096
3097 /* Use the next insn. */
3098 i.tm = t[1];
3099 }
3100
3101 if (i.tm.opcode_modifier.vex == VEXScalar)
3102 vector_length = avxscalar;
3103 else
3104 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
3105
3106 switch ((i.tm.base_opcode >> 8) & 0xff)
3107 {
3108 case 0:
3109 implied_prefix = 0;
3110 break;
3111 case DATA_PREFIX_OPCODE:
3112 implied_prefix = 1;
3113 break;
3114 case REPE_PREFIX_OPCODE:
3115 implied_prefix = 2;
3116 break;
3117 case REPNE_PREFIX_OPCODE:
3118 implied_prefix = 3;
3119 break;
3120 default:
3121 abort ();
3122 }
3123
3124 /* Use 2-byte VEX prefix if possible. */
3125 if (i.tm.opcode_modifier.vexopcode == VEX0F
3126 && i.tm.opcode_modifier.vexw != VEXW1
3127 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3128 {
3129 /* 2-byte VEX prefix. */
3130 unsigned int r;
3131
3132 i.vex.length = 2;
3133 i.vex.bytes[0] = 0xc5;
3134
3135 /* Check the REX.R bit. */
3136 r = (i.rex & REX_R) ? 0 : 1;
3137 i.vex.bytes[1] = (r << 7
3138 | register_specifier << 3
3139 | vector_length << 2
3140 | implied_prefix);
3141 }
3142 else
3143 {
3144 /* 3-byte VEX prefix. */
3145 unsigned int m, w;
3146
3147 i.vex.length = 3;
3148
3149 switch (i.tm.opcode_modifier.vexopcode)
3150 {
3151 case VEX0F:
3152 m = 0x1;
3153 i.vex.bytes[0] = 0xc4;
3154 break;
3155 case VEX0F38:
3156 m = 0x2;
3157 i.vex.bytes[0] = 0xc4;
3158 break;
3159 case VEX0F3A:
3160 m = 0x3;
3161 i.vex.bytes[0] = 0xc4;
3162 break;
3163 case XOP08:
3164 m = 0x8;
3165 i.vex.bytes[0] = 0x8f;
3166 break;
3167 case XOP09:
3168 m = 0x9;
3169 i.vex.bytes[0] = 0x8f;
3170 break;
3171 case XOP0A:
3172 m = 0xa;
3173 i.vex.bytes[0] = 0x8f;
3174 break;
3175 default:
3176 abort ();
3177 }
3178
3179 /* The high 3 bits of the second VEX byte are 1's compliment
3180 of RXB bits from REX. */
3181 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3182
3183 /* Check the REX.W bit. */
3184 w = (i.rex & REX_W) ? 1 : 0;
3185 if (i.tm.opcode_modifier.vexw == VEXW1)
3186 w = 1;
3187
3188 i.vex.bytes[2] = (w << 7
3189 | register_specifier << 3
3190 | vector_length << 2
3191 | implied_prefix);
3192 }
3193 }
3194
3195 /* Build the EVEX prefix. */
3196
3197 static void
3198 build_evex_prefix (void)
3199 {
3200 unsigned int register_specifier;
3201 unsigned int implied_prefix;
3202 unsigned int m, w;
3203 rex_byte vrex_used = 0;
3204
3205 /* Check register specifier. */
3206 if (i.vex.register_specifier)
3207 {
3208 gas_assert ((i.vrex & REX_X) == 0);
3209
3210 register_specifier = i.vex.register_specifier->reg_num;
3211 if ((i.vex.register_specifier->reg_flags & RegRex))
3212 register_specifier += 8;
3213 /* The upper 16 registers are encoded in the fourth byte of the
3214 EVEX prefix. */
3215 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3216 i.vex.bytes[3] = 0x8;
3217 register_specifier = ~register_specifier & 0xf;
3218 }
3219 else
3220 {
3221 register_specifier = 0xf;
3222
3223 /* Encode upper 16 vector index register in the fourth byte of
3224 the EVEX prefix. */
3225 if (!(i.vrex & REX_X))
3226 i.vex.bytes[3] = 0x8;
3227 else
3228 vrex_used |= REX_X;
3229 }
3230
3231 switch ((i.tm.base_opcode >> 8) & 0xff)
3232 {
3233 case 0:
3234 implied_prefix = 0;
3235 break;
3236 case DATA_PREFIX_OPCODE:
3237 implied_prefix = 1;
3238 break;
3239 case REPE_PREFIX_OPCODE:
3240 implied_prefix = 2;
3241 break;
3242 case REPNE_PREFIX_OPCODE:
3243 implied_prefix = 3;
3244 break;
3245 default:
3246 abort ();
3247 }
3248
3249 /* 4 byte EVEX prefix. */
3250 i.vex.length = 4;
3251 i.vex.bytes[0] = 0x62;
3252
3253 /* mmmm bits. */
3254 switch (i.tm.opcode_modifier.vexopcode)
3255 {
3256 case VEX0F:
3257 m = 1;
3258 break;
3259 case VEX0F38:
3260 m = 2;
3261 break;
3262 case VEX0F3A:
3263 m = 3;
3264 break;
3265 default:
3266 abort ();
3267 break;
3268 }
3269
3270 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3271 bits from REX. */
3272 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3273
3274 /* The fifth bit of the second EVEX byte is 1's compliment of the
3275 REX_R bit in VREX. */
3276 if (!(i.vrex & REX_R))
3277 i.vex.bytes[1] |= 0x10;
3278 else
3279 vrex_used |= REX_R;
3280
3281 if ((i.reg_operands + i.imm_operands) == i.operands)
3282 {
3283 /* When all operands are registers, the REX_X bit in REX is not
3284 used. We reuse it to encode the upper 16 registers, which is
3285 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3286 as 1's compliment. */
3287 if ((i.vrex & REX_B))
3288 {
3289 vrex_used |= REX_B;
3290 i.vex.bytes[1] &= ~0x40;
3291 }
3292 }
3293
3294 /* EVEX instructions shouldn't need the REX prefix. */
3295 i.vrex &= ~vrex_used;
3296 gas_assert (i.vrex == 0);
3297
3298 /* Check the REX.W bit. */
3299 w = (i.rex & REX_W) ? 1 : 0;
3300 if (i.tm.opcode_modifier.vexw)
3301 {
3302 if (i.tm.opcode_modifier.vexw == VEXW1)
3303 w = 1;
3304 }
3305 /* If w is not set it means we are dealing with WIG instruction. */
3306 else if (!w)
3307 {
3308 if (evexwig == evexw1)
3309 w = 1;
3310 }
3311
3312 /* Encode the U bit. */
3313 implied_prefix |= 0x4;
3314
3315 /* The third byte of the EVEX prefix. */
3316 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3317
3318 /* The fourth byte of the EVEX prefix. */
3319 /* The zeroing-masking bit. */
3320 if (i.mask && i.mask->zeroing)
3321 i.vex.bytes[3] |= 0x80;
3322
3323 /* Don't always set the broadcast bit if there is no RC. */
3324 if (!i.rounding)
3325 {
3326 /* Encode the vector length. */
3327 unsigned int vec_length;
3328
3329 switch (i.tm.opcode_modifier.evex)
3330 {
3331 case EVEXLIG: /* LL' is ignored */
3332 vec_length = evexlig << 5;
3333 break;
3334 case EVEX128:
3335 vec_length = 0 << 5;
3336 break;
3337 case EVEX256:
3338 vec_length = 1 << 5;
3339 break;
3340 case EVEX512:
3341 vec_length = 2 << 5;
3342 break;
3343 default:
3344 abort ();
3345 break;
3346 }
3347 i.vex.bytes[3] |= vec_length;
3348 /* Encode the broadcast bit. */
3349 if (i.broadcast)
3350 i.vex.bytes[3] |= 0x10;
3351 }
3352 else
3353 {
3354 if (i.rounding->type != saeonly)
3355 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3356 else
3357 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3358 }
3359
3360 if (i.mask && i.mask->mask)
3361 i.vex.bytes[3] |= i.mask->mask->reg_num;
3362 }
3363
3364 static void
3365 process_immext (void)
3366 {
3367 expressionS *exp;
3368
3369 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3370 && i.operands > 0)
3371 {
3372 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3373 with an opcode suffix which is coded in the same place as an
3374 8-bit immediate field would be.
3375 Here we check those operands and remove them afterwards. */
3376 unsigned int x;
3377
3378 for (x = 0; x < i.operands; x++)
3379 if (register_number (i.op[x].regs) != x)
3380 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3381 register_prefix, i.op[x].regs->reg_name, x + 1,
3382 i.tm.name);
3383
3384 i.operands = 0;
3385 }
3386
3387 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3388 which is coded in the same place as an 8-bit immediate field
3389 would be. Here we fake an 8-bit immediate operand from the
3390 opcode suffix stored in tm.extension_opcode.
3391
3392 AVX instructions also use this encoding, for some of
3393 3 argument instructions. */
3394
3395 gas_assert (i.imm_operands <= 1
3396 && (i.operands <= 2
3397 || ((i.tm.opcode_modifier.vex
3398 || i.tm.opcode_modifier.evex)
3399 && i.operands <= 4)));
3400
3401 exp = &im_expressions[i.imm_operands++];
3402 i.op[i.operands].imms = exp;
3403 i.types[i.operands] = imm8;
3404 i.operands++;
3405 exp->X_op = O_constant;
3406 exp->X_add_number = i.tm.extension_opcode;
3407 i.tm.extension_opcode = None;
3408 }
3409
3410
3411 static int
3412 check_hle (void)
3413 {
3414 switch (i.tm.opcode_modifier.hleprefixok)
3415 {
3416 default:
3417 abort ();
3418 case HLEPrefixNone:
3419 as_bad (_("invalid instruction `%s' after `%s'"),
3420 i.tm.name, i.hle_prefix);
3421 return 0;
3422 case HLEPrefixLock:
3423 if (i.prefix[LOCK_PREFIX])
3424 return 1;
3425 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3426 return 0;
3427 case HLEPrefixAny:
3428 return 1;
3429 case HLEPrefixRelease:
3430 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3431 {
3432 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3433 i.tm.name);
3434 return 0;
3435 }
3436 if (i.mem_operands == 0
3437 || !operand_type_check (i.types[i.operands - 1], anymem))
3438 {
3439 as_bad (_("memory destination needed for instruction `%s'"
3440 " after `xrelease'"), i.tm.name);
3441 return 0;
3442 }
3443 return 1;
3444 }
3445 }
3446
3447 /* This is the guts of the machine-dependent assembler. LINE points to a
3448 machine dependent instruction. This function is supposed to emit
3449 the frags/bytes it assembles to. */
3450
3451 void
3452 md_assemble (char *line)
3453 {
3454 unsigned int j;
3455 char mnemonic[MAX_MNEM_SIZE];
3456 const insn_template *t;
3457
3458 /* Initialize globals. */
3459 memset (&i, '\0', sizeof (i));
3460 for (j = 0; j < MAX_OPERANDS; j++)
3461 i.reloc[j] = NO_RELOC;
3462 memset (disp_expressions, '\0', sizeof (disp_expressions));
3463 memset (im_expressions, '\0', sizeof (im_expressions));
3464 save_stack_p = save_stack;
3465
3466 /* First parse an instruction mnemonic & call i386_operand for the operands.
3467 We assume that the scrubber has arranged it so that line[0] is the valid
3468 start of a (possibly prefixed) mnemonic. */
3469
3470 line = parse_insn (line, mnemonic);
3471 if (line == NULL)
3472 return;
3473
3474 line = parse_operands (line, mnemonic);
3475 this_operand = -1;
3476 if (line == NULL)
3477 return;
3478
3479 /* Now we've parsed the mnemonic into a set of templates, and have the
3480 operands at hand. */
3481
3482 /* All intel opcodes have reversed operands except for "bound" and
3483 "enter". We also don't reverse intersegment "jmp" and "call"
3484 instructions with 2 immediate operands so that the immediate segment
3485 precedes the offset, as it does when in AT&T mode. */
3486 if (intel_syntax
3487 && i.operands > 1
3488 && (strcmp (mnemonic, "bound") != 0)
3489 && (strcmp (mnemonic, "invlpga") != 0)
3490 && !(operand_type_check (i.types[0], imm)
3491 && operand_type_check (i.types[1], imm)))
3492 swap_operands ();
3493
3494 /* The order of the immediates should be reversed
3495 for 2 immediates extrq and insertq instructions */
3496 if (i.imm_operands == 2
3497 && (strcmp (mnemonic, "extrq") == 0
3498 || strcmp (mnemonic, "insertq") == 0))
3499 swap_2_operands (0, 1);
3500
3501 if (i.imm_operands)
3502 optimize_imm ();
3503
3504 /* Don't optimize displacement for movabs since it only takes 64bit
3505 displacement. */
3506 if (i.disp_operands
3507 && i.disp_encoding != disp_encoding_32bit
3508 && (flag_code != CODE_64BIT
3509 || strcmp (mnemonic, "movabs") != 0))
3510 optimize_disp ();
3511
3512 /* Next, we find a template that matches the given insn,
3513 making sure the overlap of the given operands types is consistent
3514 with the template operand types. */
3515
3516 if (!(t = match_template ()))
3517 return;
3518
3519 if (sse_check != check_none
3520 && !i.tm.opcode_modifier.noavx
3521 && (i.tm.cpu_flags.bitfield.cpusse
3522 || i.tm.cpu_flags.bitfield.cpusse2
3523 || i.tm.cpu_flags.bitfield.cpusse3
3524 || i.tm.cpu_flags.bitfield.cpussse3
3525 || i.tm.cpu_flags.bitfield.cpusse4_1
3526 || i.tm.cpu_flags.bitfield.cpusse4_2))
3527 {
3528 (sse_check == check_warning
3529 ? as_warn
3530 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3531 }
3532
3533 /* Zap movzx and movsx suffix. The suffix has been set from
3534 "word ptr" or "byte ptr" on the source operand in Intel syntax
3535 or extracted from mnemonic in AT&T syntax. But we'll use
3536 the destination register to choose the suffix for encoding. */
3537 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3538 {
3539 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3540 there is no suffix, the default will be byte extension. */
3541 if (i.reg_operands != 2
3542 && !i.suffix
3543 && intel_syntax)
3544 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3545
3546 i.suffix = 0;
3547 }
3548
3549 if (i.tm.opcode_modifier.fwait)
3550 if (!add_prefix (FWAIT_OPCODE))
3551 return;
3552
3553 /* Check if REP prefix is OK. */
3554 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3555 {
3556 as_bad (_("invalid instruction `%s' after `%s'"),
3557 i.tm.name, i.rep_prefix);
3558 return;
3559 }
3560
3561 /* Check for lock without a lockable instruction. Destination operand
3562 must be memory unless it is xchg (0x86). */
3563 if (i.prefix[LOCK_PREFIX]
3564 && (!i.tm.opcode_modifier.islockable
3565 || i.mem_operands == 0
3566 || (i.tm.base_opcode != 0x86
3567 && !operand_type_check (i.types[i.operands - 1], anymem))))
3568 {
3569 as_bad (_("expecting lockable instruction after `lock'"));
3570 return;
3571 }
3572
3573 /* Check if HLE prefix is OK. */
3574 if (i.hle_prefix && !check_hle ())
3575 return;
3576
3577 /* Check BND prefix. */
3578 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3579 as_bad (_("expecting valid branch instruction after `bnd'"));
3580
3581 if (i.tm.cpu_flags.bitfield.cpumpx
3582 && flag_code == CODE_64BIT
3583 && i.prefix[ADDR_PREFIX])
3584 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3585
3586 /* Insert BND prefix. */
3587 if (add_bnd_prefix
3588 && i.tm.opcode_modifier.bndprefixok
3589 && !i.prefix[BND_PREFIX])
3590 add_prefix (BND_PREFIX_OPCODE);
3591
3592 /* Check string instruction segment overrides. */
3593 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3594 {
3595 if (!check_string ())
3596 return;
3597 i.disp_operands = 0;
3598 }
3599
3600 if (!process_suffix ())
3601 return;
3602
3603 /* Update operand types. */
3604 for (j = 0; j < i.operands; j++)
3605 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3606
3607 /* Make still unresolved immediate matches conform to size of immediate
3608 given in i.suffix. */
3609 if (!finalize_imm ())
3610 return;
3611
3612 if (i.types[0].bitfield.imm1)
3613 i.imm_operands = 0; /* kludge for shift insns. */
3614
3615 /* We only need to check those implicit registers for instructions
3616 with 3 operands or less. */
3617 if (i.operands <= 3)
3618 for (j = 0; j < i.operands; j++)
3619 if (i.types[j].bitfield.inoutportreg
3620 || i.types[j].bitfield.shiftcount
3621 || i.types[j].bitfield.acc
3622 || i.types[j].bitfield.floatacc)
3623 i.reg_operands--;
3624
3625 /* ImmExt should be processed after SSE2AVX. */
3626 if (!i.tm.opcode_modifier.sse2avx
3627 && i.tm.opcode_modifier.immext)
3628 process_immext ();
3629
3630 /* For insns with operands there are more diddles to do to the opcode. */
3631 if (i.operands)
3632 {
3633 if (!process_operands ())
3634 return;
3635 }
3636 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3637 {
3638 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3639 as_warn (_("translating to `%sp'"), i.tm.name);
3640 }
3641
3642 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3643 {
3644 if (flag_code == CODE_16BIT)
3645 {
3646 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3647 i.tm.name);
3648 return;
3649 }
3650
3651 if (i.tm.opcode_modifier.vex)
3652 build_vex_prefix (t);
3653 else
3654 build_evex_prefix ();
3655 }
3656
3657 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3658 instructions may define INT_OPCODE as well, so avoid this corner
3659 case for those instructions that use MODRM. */
3660 if (i.tm.base_opcode == INT_OPCODE
3661 && !i.tm.opcode_modifier.modrm
3662 && i.op[0].imms->X_add_number == 3)
3663 {
3664 i.tm.base_opcode = INT3_OPCODE;
3665 i.imm_operands = 0;
3666 }
3667
3668 if ((i.tm.opcode_modifier.jump
3669 || i.tm.opcode_modifier.jumpbyte
3670 || i.tm.opcode_modifier.jumpdword)
3671 && i.op[0].disps->X_op == O_constant)
3672 {
3673 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3674 the absolute address given by the constant. Since ix86 jumps and
3675 calls are pc relative, we need to generate a reloc. */
3676 i.op[0].disps->X_add_symbol = &abs_symbol;
3677 i.op[0].disps->X_op = O_symbol;
3678 }
3679
3680 if (i.tm.opcode_modifier.rex64)
3681 i.rex |= REX_W;
3682
3683 /* For 8 bit registers we need an empty rex prefix. Also if the
3684 instruction already has a prefix, we need to convert old
3685 registers to new ones. */
3686
3687 if ((i.types[0].bitfield.reg8
3688 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3689 || (i.types[1].bitfield.reg8
3690 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3691 || ((i.types[0].bitfield.reg8
3692 || i.types[1].bitfield.reg8)
3693 && i.rex != 0))
3694 {
3695 int x;
3696
3697 i.rex |= REX_OPCODE;
3698 for (x = 0; x < 2; x++)
3699 {
3700 /* Look for 8 bit operand that uses old registers. */
3701 if (i.types[x].bitfield.reg8
3702 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3703 {
3704 /* In case it is "hi" register, give up. */
3705 if (i.op[x].regs->reg_num > 3)
3706 as_bad (_("can't encode register '%s%s' in an "
3707 "instruction requiring REX prefix."),
3708 register_prefix, i.op[x].regs->reg_name);
3709
3710 /* Otherwise it is equivalent to the extended register.
3711 Since the encoding doesn't change this is merely
3712 cosmetic cleanup for debug output. */
3713
3714 i.op[x].regs = i.op[x].regs + 8;
3715 }
3716 }
3717 }
3718
3719 if (i.rex != 0)
3720 add_prefix (REX_OPCODE | i.rex);
3721
3722 /* We are ready to output the insn. */
3723 output_insn ();
3724 }
3725
3726 static char *
3727 parse_insn (char *line, char *mnemonic)
3728 {
3729 char *l = line;
3730 char *token_start = l;
3731 char *mnem_p;
3732 int supported;
3733 const insn_template *t;
3734 char *dot_p = NULL;
3735
3736 while (1)
3737 {
3738 mnem_p = mnemonic;
3739 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3740 {
3741 if (*mnem_p == '.')
3742 dot_p = mnem_p;
3743 mnem_p++;
3744 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3745 {
3746 as_bad (_("no such instruction: `%s'"), token_start);
3747 return NULL;
3748 }
3749 l++;
3750 }
3751 if (!is_space_char (*l)
3752 && *l != END_OF_INSN
3753 && (intel_syntax
3754 || (*l != PREFIX_SEPARATOR
3755 && *l != ',')))
3756 {
3757 as_bad (_("invalid character %s in mnemonic"),
3758 output_invalid (*l));
3759 return NULL;
3760 }
3761 if (token_start == l)
3762 {
3763 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3764 as_bad (_("expecting prefix; got nothing"));
3765 else
3766 as_bad (_("expecting mnemonic; got nothing"));
3767 return NULL;
3768 }
3769
3770 /* Look up instruction (or prefix) via hash table. */
3771 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3772
3773 if (*l != END_OF_INSN
3774 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3775 && current_templates
3776 && current_templates->start->opcode_modifier.isprefix)
3777 {
3778 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3779 {
3780 as_bad ((flag_code != CODE_64BIT
3781 ? _("`%s' is only supported in 64-bit mode")
3782 : _("`%s' is not supported in 64-bit mode")),
3783 current_templates->start->name);
3784 return NULL;
3785 }
3786 /* If we are in 16-bit mode, do not allow addr16 or data16.
3787 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3788 if ((current_templates->start->opcode_modifier.size16
3789 || current_templates->start->opcode_modifier.size32)
3790 && flag_code != CODE_64BIT
3791 && (current_templates->start->opcode_modifier.size32
3792 ^ (flag_code == CODE_16BIT)))
3793 {
3794 as_bad (_("redundant %s prefix"),
3795 current_templates->start->name);
3796 return NULL;
3797 }
3798 /* Add prefix, checking for repeated prefixes. */
3799 switch (add_prefix (current_templates->start->base_opcode))
3800 {
3801 case PREFIX_EXIST:
3802 return NULL;
3803 case PREFIX_REP:
3804 if (current_templates->start->cpu_flags.bitfield.cpuhle)
3805 i.hle_prefix = current_templates->start->name;
3806 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
3807 i.bnd_prefix = current_templates->start->name;
3808 else
3809 i.rep_prefix = current_templates->start->name;
3810 break;
3811 default:
3812 break;
3813 }
3814 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3815 token_start = ++l;
3816 }
3817 else
3818 break;
3819 }
3820
3821 if (!current_templates)
3822 {
3823 /* Check if we should swap operand or force 32bit displacement in
3824 encoding. */
3825 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3826 i.swap_operand = 1;
3827 else if (mnem_p - 3 == dot_p
3828 && dot_p[1] == 'd'
3829 && dot_p[2] == '8')
3830 i.disp_encoding = disp_encoding_8bit;
3831 else if (mnem_p - 4 == dot_p
3832 && dot_p[1] == 'd'
3833 && dot_p[2] == '3'
3834 && dot_p[3] == '2')
3835 i.disp_encoding = disp_encoding_32bit;
3836 else
3837 goto check_suffix;
3838 mnem_p = dot_p;
3839 *dot_p = '\0';
3840 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3841 }
3842
3843 if (!current_templates)
3844 {
3845 check_suffix:
3846 /* See if we can get a match by trimming off a suffix. */
3847 switch (mnem_p[-1])
3848 {
3849 case WORD_MNEM_SUFFIX:
3850 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3851 i.suffix = SHORT_MNEM_SUFFIX;
3852 else
3853 case BYTE_MNEM_SUFFIX:
3854 case QWORD_MNEM_SUFFIX:
3855 i.suffix = mnem_p[-1];
3856 mnem_p[-1] = '\0';
3857 current_templates = (const templates *) hash_find (op_hash,
3858 mnemonic);
3859 break;
3860 case SHORT_MNEM_SUFFIX:
3861 case LONG_MNEM_SUFFIX:
3862 if (!intel_syntax)
3863 {
3864 i.suffix = mnem_p[-1];
3865 mnem_p[-1] = '\0';
3866 current_templates = (const templates *) hash_find (op_hash,
3867 mnemonic);
3868 }
3869 break;
3870
3871 /* Intel Syntax. */
3872 case 'd':
3873 if (intel_syntax)
3874 {
3875 if (intel_float_operand (mnemonic) == 1)
3876 i.suffix = SHORT_MNEM_SUFFIX;
3877 else
3878 i.suffix = LONG_MNEM_SUFFIX;
3879 mnem_p[-1] = '\0';
3880 current_templates = (const templates *) hash_find (op_hash,
3881 mnemonic);
3882 }
3883 break;
3884 }
3885 if (!current_templates)
3886 {
3887 as_bad (_("no such instruction: `%s'"), token_start);
3888 return NULL;
3889 }
3890 }
3891
3892 if (current_templates->start->opcode_modifier.jump
3893 || current_templates->start->opcode_modifier.jumpbyte)
3894 {
3895 /* Check for a branch hint. We allow ",pt" and ",pn" for
3896 predict taken and predict not taken respectively.
3897 I'm not sure that branch hints actually do anything on loop
3898 and jcxz insns (JumpByte) for current Pentium4 chips. They
3899 may work in the future and it doesn't hurt to accept them
3900 now. */
3901 if (l[0] == ',' && l[1] == 'p')
3902 {
3903 if (l[2] == 't')
3904 {
3905 if (!add_prefix (DS_PREFIX_OPCODE))
3906 return NULL;
3907 l += 3;
3908 }
3909 else if (l[2] == 'n')
3910 {
3911 if (!add_prefix (CS_PREFIX_OPCODE))
3912 return NULL;
3913 l += 3;
3914 }
3915 }
3916 }
3917 /* Any other comma loses. */
3918 if (*l == ',')
3919 {
3920 as_bad (_("invalid character %s in mnemonic"),
3921 output_invalid (*l));
3922 return NULL;
3923 }
3924
3925 /* Check if instruction is supported on specified architecture. */
3926 supported = 0;
3927 for (t = current_templates->start; t < current_templates->end; ++t)
3928 {
3929 supported |= cpu_flags_match (t);
3930 if (supported == CPU_FLAGS_PERFECT_MATCH)
3931 goto skip;
3932 }
3933
3934 if (!(supported & CPU_FLAGS_64BIT_MATCH))
3935 {
3936 as_bad (flag_code == CODE_64BIT
3937 ? _("`%s' is not supported in 64-bit mode")
3938 : _("`%s' is only supported in 64-bit mode"),
3939 current_templates->start->name);
3940 return NULL;
3941 }
3942 if (supported != CPU_FLAGS_PERFECT_MATCH)
3943 {
3944 as_bad (_("`%s' is not supported on `%s%s'"),
3945 current_templates->start->name,
3946 cpu_arch_name ? cpu_arch_name : default_arch,
3947 cpu_sub_arch_name ? cpu_sub_arch_name : "");
3948 return NULL;
3949 }
3950
3951 skip:
3952 if (!cpu_arch_flags.bitfield.cpui386
3953 && (flag_code != CODE_16BIT))
3954 {
3955 as_warn (_("use .code16 to ensure correct addressing mode"));
3956 }
3957
3958 return l;
3959 }
3960
3961 static char *
3962 parse_operands (char *l, const char *mnemonic)
3963 {
3964 char *token_start;
3965
3966 /* 1 if operand is pending after ','. */
3967 unsigned int expecting_operand = 0;
3968
3969 /* Non-zero if operand parens not balanced. */
3970 unsigned int paren_not_balanced;
3971
3972 while (*l != END_OF_INSN)
3973 {
3974 /* Skip optional white space before operand. */
3975 if (is_space_char (*l))
3976 ++l;
3977 if (!is_operand_char (*l) && *l != END_OF_INSN)
3978 {
3979 as_bad (_("invalid character %s before operand %d"),
3980 output_invalid (*l),
3981 i.operands + 1);
3982 return NULL;
3983 }
3984 token_start = l; /* after white space */
3985 paren_not_balanced = 0;
3986 while (paren_not_balanced || *l != ',')
3987 {
3988 if (*l == END_OF_INSN)
3989 {
3990 if (paren_not_balanced)
3991 {
3992 if (!intel_syntax)
3993 as_bad (_("unbalanced parenthesis in operand %d."),
3994 i.operands + 1);
3995 else
3996 as_bad (_("unbalanced brackets in operand %d."),
3997 i.operands + 1);
3998 return NULL;
3999 }
4000 else
4001 break; /* we are done */
4002 }
4003 else if (!is_operand_char (*l) && !is_space_char (*l))
4004 {
4005 as_bad (_("invalid character %s in operand %d"),
4006 output_invalid (*l),
4007 i.operands + 1);
4008 return NULL;
4009 }
4010 if (!intel_syntax)
4011 {
4012 if (*l == '(')
4013 ++paren_not_balanced;
4014 if (*l == ')')
4015 --paren_not_balanced;
4016 }
4017 else
4018 {
4019 if (*l == '[')
4020 ++paren_not_balanced;
4021 if (*l == ']')
4022 --paren_not_balanced;
4023 }
4024 l++;
4025 }
4026 if (l != token_start)
4027 { /* Yes, we've read in another operand. */
4028 unsigned int operand_ok;
4029 this_operand = i.operands++;
4030 i.types[this_operand].bitfield.unspecified = 1;
4031 if (i.operands > MAX_OPERANDS)
4032 {
4033 as_bad (_("spurious operands; (%d operands/instruction max)"),
4034 MAX_OPERANDS);
4035 return NULL;
4036 }
4037 /* Now parse operand adding info to 'i' as we go along. */
4038 END_STRING_AND_SAVE (l);
4039
4040 if (intel_syntax)
4041 operand_ok =
4042 i386_intel_operand (token_start,
4043 intel_float_operand (mnemonic));
4044 else
4045 operand_ok = i386_att_operand (token_start);
4046
4047 RESTORE_END_STRING (l);
4048 if (!operand_ok)
4049 return NULL;
4050 }
4051 else
4052 {
4053 if (expecting_operand)
4054 {
4055 expecting_operand_after_comma:
4056 as_bad (_("expecting operand after ','; got nothing"));
4057 return NULL;
4058 }
4059 if (*l == ',')
4060 {
4061 as_bad (_("expecting operand before ','; got nothing"));
4062 return NULL;
4063 }
4064 }
4065
4066 /* Now *l must be either ',' or END_OF_INSN. */
4067 if (*l == ',')
4068 {
4069 if (*++l == END_OF_INSN)
4070 {
4071 /* Just skip it, if it's \n complain. */
4072 goto expecting_operand_after_comma;
4073 }
4074 expecting_operand = 1;
4075 }
4076 }
4077 return l;
4078 }
4079
4080 static void
4081 swap_2_operands (int xchg1, int xchg2)
4082 {
4083 union i386_op temp_op;
4084 i386_operand_type temp_type;
4085 enum bfd_reloc_code_real temp_reloc;
4086
4087 temp_type = i.types[xchg2];
4088 i.types[xchg2] = i.types[xchg1];
4089 i.types[xchg1] = temp_type;
4090 temp_op = i.op[xchg2];
4091 i.op[xchg2] = i.op[xchg1];
4092 i.op[xchg1] = temp_op;
4093 temp_reloc = i.reloc[xchg2];
4094 i.reloc[xchg2] = i.reloc[xchg1];
4095 i.reloc[xchg1] = temp_reloc;
4096
4097 if (i.mask)
4098 {
4099 if (i.mask->operand == xchg1)
4100 i.mask->operand = xchg2;
4101 else if (i.mask->operand == xchg2)
4102 i.mask->operand = xchg1;
4103 }
4104 if (i.broadcast)
4105 {
4106 if (i.broadcast->operand == xchg1)
4107 i.broadcast->operand = xchg2;
4108 else if (i.broadcast->operand == xchg2)
4109 i.broadcast->operand = xchg1;
4110 }
4111 if (i.rounding)
4112 {
4113 if (i.rounding->operand == xchg1)
4114 i.rounding->operand = xchg2;
4115 else if (i.rounding->operand == xchg2)
4116 i.rounding->operand = xchg1;
4117 }
4118 }
4119
4120 static void
4121 swap_operands (void)
4122 {
4123 switch (i.operands)
4124 {
4125 case 5:
4126 case 4:
4127 swap_2_operands (1, i.operands - 2);
4128 case 3:
4129 case 2:
4130 swap_2_operands (0, i.operands - 1);
4131 break;
4132 default:
4133 abort ();
4134 }
4135
4136 if (i.mem_operands == 2)
4137 {
4138 const seg_entry *temp_seg;
4139 temp_seg = i.seg[0];
4140 i.seg[0] = i.seg[1];
4141 i.seg[1] = temp_seg;
4142 }
4143 }
4144
4145 /* Try to ensure constant immediates are represented in the smallest
4146 opcode possible. */
4147 static void
4148 optimize_imm (void)
4149 {
4150 char guess_suffix = 0;
4151 int op;
4152
4153 if (i.suffix)
4154 guess_suffix = i.suffix;
4155 else if (i.reg_operands)
4156 {
4157 /* Figure out a suffix from the last register operand specified.
4158 We can't do this properly yet, ie. excluding InOutPortReg,
4159 but the following works for instructions with immediates.
4160 In any case, we can't set i.suffix yet. */
4161 for (op = i.operands; --op >= 0;)
4162 if (i.types[op].bitfield.reg8)
4163 {
4164 guess_suffix = BYTE_MNEM_SUFFIX;
4165 break;
4166 }
4167 else if (i.types[op].bitfield.reg16)
4168 {
4169 guess_suffix = WORD_MNEM_SUFFIX;
4170 break;
4171 }
4172 else if (i.types[op].bitfield.reg32)
4173 {
4174 guess_suffix = LONG_MNEM_SUFFIX;
4175 break;
4176 }
4177 else if (i.types[op].bitfield.reg64)
4178 {
4179 guess_suffix = QWORD_MNEM_SUFFIX;
4180 break;
4181 }
4182 }
4183 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4184 guess_suffix = WORD_MNEM_SUFFIX;
4185
4186 for (op = i.operands; --op >= 0;)
4187 if (operand_type_check (i.types[op], imm))
4188 {
4189 switch (i.op[op].imms->X_op)
4190 {
4191 case O_constant:
4192 /* If a suffix is given, this operand may be shortened. */
4193 switch (guess_suffix)
4194 {
4195 case LONG_MNEM_SUFFIX:
4196 i.types[op].bitfield.imm32 = 1;
4197 i.types[op].bitfield.imm64 = 1;
4198 break;
4199 case WORD_MNEM_SUFFIX:
4200 i.types[op].bitfield.imm16 = 1;
4201 i.types[op].bitfield.imm32 = 1;
4202 i.types[op].bitfield.imm32s = 1;
4203 i.types[op].bitfield.imm64 = 1;
4204 break;
4205 case BYTE_MNEM_SUFFIX:
4206 i.types[op].bitfield.imm8 = 1;
4207 i.types[op].bitfield.imm8s = 1;
4208 i.types[op].bitfield.imm16 = 1;
4209 i.types[op].bitfield.imm32 = 1;
4210 i.types[op].bitfield.imm32s = 1;
4211 i.types[op].bitfield.imm64 = 1;
4212 break;
4213 }
4214
4215 /* If this operand is at most 16 bits, convert it
4216 to a signed 16 bit number before trying to see
4217 whether it will fit in an even smaller size.
4218 This allows a 16-bit operand such as $0xffe0 to
4219 be recognised as within Imm8S range. */
4220 if ((i.types[op].bitfield.imm16)
4221 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4222 {
4223 i.op[op].imms->X_add_number =
4224 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4225 }
4226 if ((i.types[op].bitfield.imm32)
4227 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4228 == 0))
4229 {
4230 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4231 ^ ((offsetT) 1 << 31))
4232 - ((offsetT) 1 << 31));
4233 }
4234 i.types[op]
4235 = operand_type_or (i.types[op],
4236 smallest_imm_type (i.op[op].imms->X_add_number));
4237
4238 /* We must avoid matching of Imm32 templates when 64bit
4239 only immediate is available. */
4240 if (guess_suffix == QWORD_MNEM_SUFFIX)
4241 i.types[op].bitfield.imm32 = 0;
4242 break;
4243
4244 case O_absent:
4245 case O_register:
4246 abort ();
4247
4248 /* Symbols and expressions. */
4249 default:
4250 /* Convert symbolic operand to proper sizes for matching, but don't
4251 prevent matching a set of insns that only supports sizes other
4252 than those matching the insn suffix. */
4253 {
4254 i386_operand_type mask, allowed;
4255 const insn_template *t;
4256
4257 operand_type_set (&mask, 0);
4258 operand_type_set (&allowed, 0);
4259
4260 for (t = current_templates->start;
4261 t < current_templates->end;
4262 ++t)
4263 allowed = operand_type_or (allowed,
4264 t->operand_types[op]);
4265 switch (guess_suffix)
4266 {
4267 case QWORD_MNEM_SUFFIX:
4268 mask.bitfield.imm64 = 1;
4269 mask.bitfield.imm32s = 1;
4270 break;
4271 case LONG_MNEM_SUFFIX:
4272 mask.bitfield.imm32 = 1;
4273 break;
4274 case WORD_MNEM_SUFFIX:
4275 mask.bitfield.imm16 = 1;
4276 break;
4277 case BYTE_MNEM_SUFFIX:
4278 mask.bitfield.imm8 = 1;
4279 break;
4280 default:
4281 break;
4282 }
4283 allowed = operand_type_and (mask, allowed);
4284 if (!operand_type_all_zero (&allowed))
4285 i.types[op] = operand_type_and (i.types[op], mask);
4286 }
4287 break;
4288 }
4289 }
4290 }
4291
4292 /* Try to use the smallest displacement type too. */
4293 static void
4294 optimize_disp (void)
4295 {
4296 int op;
4297
4298 for (op = i.operands; --op >= 0;)
4299 if (operand_type_check (i.types[op], disp))
4300 {
4301 if (i.op[op].disps->X_op == O_constant)
4302 {
4303 offsetT op_disp = i.op[op].disps->X_add_number;
4304
4305 if (i.types[op].bitfield.disp16
4306 && (op_disp & ~(offsetT) 0xffff) == 0)
4307 {
4308 /* If this operand is at most 16 bits, convert
4309 to a signed 16 bit number and don't use 64bit
4310 displacement. */
4311 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4312 i.types[op].bitfield.disp64 = 0;
4313 }
4314 if (i.types[op].bitfield.disp32
4315 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4316 {
4317 /* If this operand is at most 32 bits, convert
4318 to a signed 32 bit number and don't use 64bit
4319 displacement. */
4320 op_disp &= (((offsetT) 2 << 31) - 1);
4321 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4322 i.types[op].bitfield.disp64 = 0;
4323 }
4324 if (!op_disp && i.types[op].bitfield.baseindex)
4325 {
4326 i.types[op].bitfield.disp8 = 0;
4327 i.types[op].bitfield.disp16 = 0;
4328 i.types[op].bitfield.disp32 = 0;
4329 i.types[op].bitfield.disp32s = 0;
4330 i.types[op].bitfield.disp64 = 0;
4331 i.op[op].disps = 0;
4332 i.disp_operands--;
4333 }
4334 else if (flag_code == CODE_64BIT)
4335 {
4336 if (fits_in_signed_long (op_disp))
4337 {
4338 i.types[op].bitfield.disp64 = 0;
4339 i.types[op].bitfield.disp32s = 1;
4340 }
4341 if (i.prefix[ADDR_PREFIX]
4342 && fits_in_unsigned_long (op_disp))
4343 i.types[op].bitfield.disp32 = 1;
4344 }
4345 if ((i.types[op].bitfield.disp32
4346 || i.types[op].bitfield.disp32s
4347 || i.types[op].bitfield.disp16)
4348 && fits_in_signed_byte (op_disp))
4349 i.types[op].bitfield.disp8 = 1;
4350 }
4351 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4352 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4353 {
4354 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4355 i.op[op].disps, 0, i.reloc[op]);
4356 i.types[op].bitfield.disp8 = 0;
4357 i.types[op].bitfield.disp16 = 0;
4358 i.types[op].bitfield.disp32 = 0;
4359 i.types[op].bitfield.disp32s = 0;
4360 i.types[op].bitfield.disp64 = 0;
4361 }
4362 else
4363 /* We only support 64bit displacement on constants. */
4364 i.types[op].bitfield.disp64 = 0;
4365 }
4366 }
4367
4368 /* Check if operands are valid for the instruction. */
4369
4370 static int
4371 check_VecOperands (const insn_template *t)
4372 {
4373 unsigned int op;
4374
4375 /* Without VSIB byte, we can't have a vector register for index. */
4376 if (!t->opcode_modifier.vecsib
4377 && i.index_reg
4378 && (i.index_reg->reg_type.bitfield.regxmm
4379 || i.index_reg->reg_type.bitfield.regymm
4380 || i.index_reg->reg_type.bitfield.regzmm))
4381 {
4382 i.error = unsupported_vector_index_register;
4383 return 1;
4384 }
4385
4386 /* Check if default mask is allowed. */
4387 if (t->opcode_modifier.nodefmask
4388 && (!i.mask || i.mask->mask->reg_num == 0))
4389 {
4390 i.error = no_default_mask;
4391 return 1;
4392 }
4393
4394 /* For VSIB byte, we need a vector register for index, and all vector
4395 registers must be distinct. */
4396 if (t->opcode_modifier.vecsib)
4397 {
4398 if (!i.index_reg
4399 || !((t->opcode_modifier.vecsib == VecSIB128
4400 && i.index_reg->reg_type.bitfield.regxmm)
4401 || (t->opcode_modifier.vecsib == VecSIB256
4402 && i.index_reg->reg_type.bitfield.regymm)
4403 || (t->opcode_modifier.vecsib == VecSIB512
4404 && i.index_reg->reg_type.bitfield.regzmm)))
4405 {
4406 i.error = invalid_vsib_address;
4407 return 1;
4408 }
4409
4410 gas_assert (i.reg_operands == 2 || i.mask);
4411 if (i.reg_operands == 2 && !i.mask)
4412 {
4413 gas_assert (i.types[0].bitfield.regxmm
4414 || i.types[0].bitfield.regymm);
4415 gas_assert (i.types[2].bitfield.regxmm
4416 || i.types[2].bitfield.regymm);
4417 if (operand_check == check_none)
4418 return 0;
4419 if (register_number (i.op[0].regs)
4420 != register_number (i.index_reg)
4421 && register_number (i.op[2].regs)
4422 != register_number (i.index_reg)
4423 && register_number (i.op[0].regs)
4424 != register_number (i.op[2].regs))
4425 return 0;
4426 if (operand_check == check_error)
4427 {
4428 i.error = invalid_vector_register_set;
4429 return 1;
4430 }
4431 as_warn (_("mask, index, and destination registers should be distinct"));
4432 }
4433 else if (i.reg_operands == 1 && i.mask)
4434 {
4435 if ((i.types[1].bitfield.regymm
4436 || i.types[1].bitfield.regzmm)
4437 && (register_number (i.op[1].regs)
4438 == register_number (i.index_reg)))
4439 {
4440 if (operand_check == check_error)
4441 {
4442 i.error = invalid_vector_register_set;
4443 return 1;
4444 }
4445 if (operand_check != check_none)
4446 as_warn (_("index and destination registers should be distinct"));
4447 }
4448 }
4449 }
4450
4451 /* Check if broadcast is supported by the instruction and is applied
4452 to the memory operand. */
4453 if (i.broadcast)
4454 {
4455 int broadcasted_opnd_size;
4456
4457 /* Check if specified broadcast is supported in this instruction,
4458 and it's applied to memory operand of DWORD or QWORD type,
4459 depending on VecESize. */
4460 if (i.broadcast->type != t->opcode_modifier.broadcast
4461 || !i.types[i.broadcast->operand].bitfield.mem
4462 || (t->opcode_modifier.vecesize == 0
4463 && !i.types[i.broadcast->operand].bitfield.dword
4464 && !i.types[i.broadcast->operand].bitfield.unspecified)
4465 || (t->opcode_modifier.vecesize == 1
4466 && !i.types[i.broadcast->operand].bitfield.qword
4467 && !i.types[i.broadcast->operand].bitfield.unspecified))
4468 goto bad_broadcast;
4469
4470 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4471 if (i.broadcast->type == BROADCAST_1TO16)
4472 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4473 else if (i.broadcast->type == BROADCAST_1TO8)
4474 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4475 else if (i.broadcast->type == BROADCAST_1TO4)
4476 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4477 else if (i.broadcast->type == BROADCAST_1TO2)
4478 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
4479 else
4480 goto bad_broadcast;
4481
4482 if ((broadcasted_opnd_size == 256
4483 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4484 || (broadcasted_opnd_size == 512
4485 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4486 {
4487 bad_broadcast:
4488 i.error = unsupported_broadcast;
4489 return 1;
4490 }
4491 }
4492 /* If broadcast is supported in this instruction, we need to check if
4493 operand of one-element size isn't specified without broadcast. */
4494 else if (t->opcode_modifier.broadcast && i.mem_operands)
4495 {
4496 /* Find memory operand. */
4497 for (op = 0; op < i.operands; op++)
4498 if (operand_type_check (i.types[op], anymem))
4499 break;
4500 gas_assert (op < i.operands);
4501 /* Check size of the memory operand. */
4502 if ((t->opcode_modifier.vecesize == 0
4503 && i.types[op].bitfield.dword)
4504 || (t->opcode_modifier.vecesize == 1
4505 && i.types[op].bitfield.qword))
4506 {
4507 i.error = broadcast_needed;
4508 return 1;
4509 }
4510 }
4511
4512 /* Check if requested masking is supported. */
4513 if (i.mask
4514 && (!t->opcode_modifier.masking
4515 || (i.mask->zeroing
4516 && t->opcode_modifier.masking == MERGING_MASKING)))
4517 {
4518 i.error = unsupported_masking;
4519 return 1;
4520 }
4521
4522 /* Check if masking is applied to dest operand. */
4523 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4524 {
4525 i.error = mask_not_on_destination;
4526 return 1;
4527 }
4528
4529 /* Check RC/SAE. */
4530 if (i.rounding)
4531 {
4532 if ((i.rounding->type != saeonly
4533 && !t->opcode_modifier.staticrounding)
4534 || (i.rounding->type == saeonly
4535 && (t->opcode_modifier.staticrounding
4536 || !t->opcode_modifier.sae)))
4537 {
4538 i.error = unsupported_rc_sae;
4539 return 1;
4540 }
4541 /* If the instruction has several immediate operands and one of
4542 them is rounding, the rounding operand should be the last
4543 immediate operand. */
4544 if (i.imm_operands > 1
4545 && i.rounding->operand != (int) (i.imm_operands - 1))
4546 {
4547 i.error = rc_sae_operand_not_last_imm;
4548 return 1;
4549 }
4550 }
4551
4552 /* Check vector Disp8 operand. */
4553 if (t->opcode_modifier.disp8memshift)
4554 {
4555 if (i.broadcast)
4556 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4557 else
4558 i.memshift = t->opcode_modifier.disp8memshift;
4559
4560 for (op = 0; op < i.operands; op++)
4561 if (operand_type_check (i.types[op], disp)
4562 && i.op[op].disps->X_op == O_constant)
4563 {
4564 offsetT value = i.op[op].disps->X_add_number;
4565 int vec_disp8_ok = fits_in_vec_disp8 (value);
4566 if (t->operand_types [op].bitfield.vec_disp8)
4567 {
4568 if (vec_disp8_ok)
4569 i.types[op].bitfield.vec_disp8 = 1;
4570 else
4571 {
4572 /* Vector insn can only have Vec_Disp8/Disp32 in
4573 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4574 mode. */
4575 i.types[op].bitfield.disp8 = 0;
4576 if (flag_code != CODE_16BIT)
4577 i.types[op].bitfield.disp16 = 0;
4578 }
4579 }
4580 else if (flag_code != CODE_16BIT)
4581 {
4582 /* One form of this instruction supports vector Disp8.
4583 Try vector Disp8 if we need to use Disp32. */
4584 if (vec_disp8_ok && !fits_in_signed_byte (value))
4585 {
4586 i.error = try_vector_disp8;
4587 return 1;
4588 }
4589 }
4590 }
4591 }
4592 else
4593 i.memshift = -1;
4594
4595 return 0;
4596 }
4597
4598 /* Check if operands are valid for the instruction. Update VEX
4599 operand types. */
4600
4601 static int
4602 VEX_check_operands (const insn_template *t)
4603 {
4604 /* VREX is only valid with EVEX prefix. */
4605 if (i.need_vrex && !t->opcode_modifier.evex)
4606 {
4607 i.error = invalid_register_operand;
4608 return 1;
4609 }
4610
4611 if (!t->opcode_modifier.vex)
4612 return 0;
4613
4614 /* Only check VEX_Imm4, which must be the first operand. */
4615 if (t->operand_types[0].bitfield.vec_imm4)
4616 {
4617 if (i.op[0].imms->X_op != O_constant
4618 || !fits_in_imm4 (i.op[0].imms->X_add_number))
4619 {
4620 i.error = bad_imm4;
4621 return 1;
4622 }
4623
4624 /* Turn off Imm8 so that update_imm won't complain. */
4625 i.types[0] = vec_imm4;
4626 }
4627
4628 return 0;
4629 }
4630
4631 static const insn_template *
4632 match_template (void)
4633 {
4634 /* Points to template once we've found it. */
4635 const insn_template *t;
4636 i386_operand_type overlap0, overlap1, overlap2, overlap3;
4637 i386_operand_type overlap4;
4638 unsigned int found_reverse_match;
4639 i386_opcode_modifier suffix_check;
4640 i386_operand_type operand_types [MAX_OPERANDS];
4641 int addr_prefix_disp;
4642 unsigned int j;
4643 unsigned int found_cpu_match;
4644 unsigned int check_register;
4645 enum i386_error specific_error = 0;
4646
4647 #if MAX_OPERANDS != 5
4648 # error "MAX_OPERANDS must be 5."
4649 #endif
4650
4651 found_reverse_match = 0;
4652 addr_prefix_disp = -1;
4653
4654 memset (&suffix_check, 0, sizeof (suffix_check));
4655 if (i.suffix == BYTE_MNEM_SUFFIX)
4656 suffix_check.no_bsuf = 1;
4657 else if (i.suffix == WORD_MNEM_SUFFIX)
4658 suffix_check.no_wsuf = 1;
4659 else if (i.suffix == SHORT_MNEM_SUFFIX)
4660 suffix_check.no_ssuf = 1;
4661 else if (i.suffix == LONG_MNEM_SUFFIX)
4662 suffix_check.no_lsuf = 1;
4663 else if (i.suffix == QWORD_MNEM_SUFFIX)
4664 suffix_check.no_qsuf = 1;
4665 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4666 suffix_check.no_ldsuf = 1;
4667
4668 /* Must have right number of operands. */
4669 i.error = number_of_operands_mismatch;
4670
4671 for (t = current_templates->start; t < current_templates->end; t++)
4672 {
4673 addr_prefix_disp = -1;
4674
4675 if (i.operands != t->operands)
4676 continue;
4677
4678 /* Check processor support. */
4679 i.error = unsupported;
4680 found_cpu_match = (cpu_flags_match (t)
4681 == CPU_FLAGS_PERFECT_MATCH);
4682 if (!found_cpu_match)
4683 continue;
4684
4685 /* Check old gcc support. */
4686 i.error = old_gcc_only;
4687 if (!old_gcc && t->opcode_modifier.oldgcc)
4688 continue;
4689
4690 /* Check AT&T mnemonic. */
4691 i.error = unsupported_with_intel_mnemonic;
4692 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4693 continue;
4694
4695 /* Check AT&T/Intel syntax. */
4696 i.error = unsupported_syntax;
4697 if ((intel_syntax && t->opcode_modifier.attsyntax)
4698 || (!intel_syntax && t->opcode_modifier.intelsyntax))
4699 continue;
4700
4701 /* Check the suffix, except for some instructions in intel mode. */
4702 i.error = invalid_instruction_suffix;
4703 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4704 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4705 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4706 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4707 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4708 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4709 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4710 continue;
4711
4712 if (!operand_size_match (t))
4713 continue;
4714
4715 for (j = 0; j < MAX_OPERANDS; j++)
4716 operand_types[j] = t->operand_types[j];
4717
4718 /* In general, don't allow 64-bit operands in 32-bit mode. */
4719 if (i.suffix == QWORD_MNEM_SUFFIX
4720 && flag_code != CODE_64BIT
4721 && (intel_syntax
4722 ? (!t->opcode_modifier.ignoresize
4723 && !intel_float_operand (t->name))
4724 : intel_float_operand (t->name) != 2)
4725 && ((!operand_types[0].bitfield.regmmx
4726 && !operand_types[0].bitfield.regxmm
4727 && !operand_types[0].bitfield.regymm
4728 && !operand_types[0].bitfield.regzmm)
4729 || (!operand_types[t->operands > 1].bitfield.regmmx
4730 && operand_types[t->operands > 1].bitfield.regxmm
4731 && operand_types[t->operands > 1].bitfield.regymm
4732 && operand_types[t->operands > 1].bitfield.regzmm))
4733 && (t->base_opcode != 0x0fc7
4734 || t->extension_opcode != 1 /* cmpxchg8b */))
4735 continue;
4736
4737 /* In general, don't allow 32-bit operands on pre-386. */
4738 else if (i.suffix == LONG_MNEM_SUFFIX
4739 && !cpu_arch_flags.bitfield.cpui386
4740 && (intel_syntax
4741 ? (!t->opcode_modifier.ignoresize
4742 && !intel_float_operand (t->name))
4743 : intel_float_operand (t->name) != 2)
4744 && ((!operand_types[0].bitfield.regmmx
4745 && !operand_types[0].bitfield.regxmm)
4746 || (!operand_types[t->operands > 1].bitfield.regmmx
4747 && operand_types[t->operands > 1].bitfield.regxmm)))
4748 continue;
4749
4750 /* Do not verify operands when there are none. */
4751 else
4752 {
4753 if (!t->operands)
4754 /* We've found a match; break out of loop. */
4755 break;
4756 }
4757
4758 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4759 into Disp32/Disp16/Disp32 operand. */
4760 if (i.prefix[ADDR_PREFIX] != 0)
4761 {
4762 /* There should be only one Disp operand. */
4763 switch (flag_code)
4764 {
4765 case CODE_16BIT:
4766 for (j = 0; j < MAX_OPERANDS; j++)
4767 {
4768 if (operand_types[j].bitfield.disp16)
4769 {
4770 addr_prefix_disp = j;
4771 operand_types[j].bitfield.disp32 = 1;
4772 operand_types[j].bitfield.disp16 = 0;
4773 break;
4774 }
4775 }
4776 break;
4777 case CODE_32BIT:
4778 for (j = 0; j < MAX_OPERANDS; j++)
4779 {
4780 if (operand_types[j].bitfield.disp32)
4781 {
4782 addr_prefix_disp = j;
4783 operand_types[j].bitfield.disp32 = 0;
4784 operand_types[j].bitfield.disp16 = 1;
4785 break;
4786 }
4787 }
4788 break;
4789 case CODE_64BIT:
4790 for (j = 0; j < MAX_OPERANDS; j++)
4791 {
4792 if (operand_types[j].bitfield.disp64)
4793 {
4794 addr_prefix_disp = j;
4795 operand_types[j].bitfield.disp64 = 0;
4796 operand_types[j].bitfield.disp32 = 1;
4797 break;
4798 }
4799 }
4800 break;
4801 }
4802 }
4803
4804 /* We check register size if needed. */
4805 check_register = t->opcode_modifier.checkregsize;
4806 overlap0 = operand_type_and (i.types[0], operand_types[0]);
4807 switch (t->operands)
4808 {
4809 case 1:
4810 if (!operand_type_match (overlap0, i.types[0]))
4811 continue;
4812 break;
4813 case 2:
4814 /* xchg %eax, %eax is a special case. It is an aliase for nop
4815 only in 32bit mode and we can use opcode 0x90. In 64bit
4816 mode, we can't use 0x90 for xchg %eax, %eax since it should
4817 zero-extend %eax to %rax. */
4818 if (flag_code == CODE_64BIT
4819 && t->base_opcode == 0x90
4820 && operand_type_equal (&i.types [0], &acc32)
4821 && operand_type_equal (&i.types [1], &acc32))
4822 continue;
4823 if (i.swap_operand)
4824 {
4825 /* If we swap operand in encoding, we either match
4826 the next one or reverse direction of operands. */
4827 if (t->opcode_modifier.s)
4828 continue;
4829 else if (t->opcode_modifier.d)
4830 goto check_reverse;
4831 }
4832
4833 case 3:
4834 /* If we swap operand in encoding, we match the next one. */
4835 if (i.swap_operand && t->opcode_modifier.s)
4836 continue;
4837 case 4:
4838 case 5:
4839 overlap1 = operand_type_and (i.types[1], operand_types[1]);
4840 if (!operand_type_match (overlap0, i.types[0])
4841 || !operand_type_match (overlap1, i.types[1])
4842 || (check_register
4843 && !operand_type_register_match (overlap0, i.types[0],
4844 operand_types[0],
4845 overlap1, i.types[1],
4846 operand_types[1])))
4847 {
4848 /* Check if other direction is valid ... */
4849 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
4850 continue;
4851
4852 check_reverse:
4853 /* Try reversing direction of operands. */
4854 overlap0 = operand_type_and (i.types[0], operand_types[1]);
4855 overlap1 = operand_type_and (i.types[1], operand_types[0]);
4856 if (!operand_type_match (overlap0, i.types[0])
4857 || !operand_type_match (overlap1, i.types[1])
4858 || (check_register
4859 && !operand_type_register_match (overlap0,
4860 i.types[0],
4861 operand_types[1],
4862 overlap1,
4863 i.types[1],
4864 operand_types[0])))
4865 {
4866 /* Does not match either direction. */
4867 continue;
4868 }
4869 /* found_reverse_match holds which of D or FloatDR
4870 we've found. */
4871 if (t->opcode_modifier.d)
4872 found_reverse_match = Opcode_D;
4873 else if (t->opcode_modifier.floatd)
4874 found_reverse_match = Opcode_FloatD;
4875 else
4876 found_reverse_match = 0;
4877 if (t->opcode_modifier.floatr)
4878 found_reverse_match |= Opcode_FloatR;
4879 }
4880 else
4881 {
4882 /* Found a forward 2 operand match here. */
4883 switch (t->operands)
4884 {
4885 case 5:
4886 overlap4 = operand_type_and (i.types[4],
4887 operand_types[4]);
4888 case 4:
4889 overlap3 = operand_type_and (i.types[3],
4890 operand_types[3]);
4891 case 3:
4892 overlap2 = operand_type_and (i.types[2],
4893 operand_types[2]);
4894 break;
4895 }
4896
4897 switch (t->operands)
4898 {
4899 case 5:
4900 if (!operand_type_match (overlap4, i.types[4])
4901 || !operand_type_register_match (overlap3,
4902 i.types[3],
4903 operand_types[3],
4904 overlap4,
4905 i.types[4],
4906 operand_types[4]))
4907 continue;
4908 case 4:
4909 if (!operand_type_match (overlap3, i.types[3])
4910 || (check_register
4911 && !operand_type_register_match (overlap2,
4912 i.types[2],
4913 operand_types[2],
4914 overlap3,
4915 i.types[3],
4916 operand_types[3])))
4917 continue;
4918 case 3:
4919 /* Here we make use of the fact that there are no
4920 reverse match 3 operand instructions, and all 3
4921 operand instructions only need to be checked for
4922 register consistency between operands 2 and 3. */
4923 if (!operand_type_match (overlap2, i.types[2])
4924 || (check_register
4925 && !operand_type_register_match (overlap1,
4926 i.types[1],
4927 operand_types[1],
4928 overlap2,
4929 i.types[2],
4930 operand_types[2])))
4931 continue;
4932 break;
4933 }
4934 }
4935 /* Found either forward/reverse 2, 3 or 4 operand match here:
4936 slip through to break. */
4937 }
4938 if (!found_cpu_match)
4939 {
4940 found_reverse_match = 0;
4941 continue;
4942 }
4943
4944 /* Check if vector and VEX operands are valid. */
4945 if (check_VecOperands (t) || VEX_check_operands (t))
4946 {
4947 specific_error = i.error;
4948 continue;
4949 }
4950
4951 /* We've found a match; break out of loop. */
4952 break;
4953 }
4954
4955 if (t == current_templates->end)
4956 {
4957 /* We found no match. */
4958 const char *err_msg;
4959 switch (specific_error ? specific_error : i.error)
4960 {
4961 default:
4962 abort ();
4963 case operand_size_mismatch:
4964 err_msg = _("operand size mismatch");
4965 break;
4966 case operand_type_mismatch:
4967 err_msg = _("operand type mismatch");
4968 break;
4969 case register_type_mismatch:
4970 err_msg = _("register type mismatch");
4971 break;
4972 case number_of_operands_mismatch:
4973 err_msg = _("number of operands mismatch");
4974 break;
4975 case invalid_instruction_suffix:
4976 err_msg = _("invalid instruction suffix");
4977 break;
4978 case bad_imm4:
4979 err_msg = _("constant doesn't fit in 4 bits");
4980 break;
4981 case old_gcc_only:
4982 err_msg = _("only supported with old gcc");
4983 break;
4984 case unsupported_with_intel_mnemonic:
4985 err_msg = _("unsupported with Intel mnemonic");
4986 break;
4987 case unsupported_syntax:
4988 err_msg = _("unsupported syntax");
4989 break;
4990 case unsupported:
4991 as_bad (_("unsupported instruction `%s'"),
4992 current_templates->start->name);
4993 return NULL;
4994 case invalid_vsib_address:
4995 err_msg = _("invalid VSIB address");
4996 break;
4997 case invalid_vector_register_set:
4998 err_msg = _("mask, index, and destination registers must be distinct");
4999 break;
5000 case unsupported_vector_index_register:
5001 err_msg = _("unsupported vector index register");
5002 break;
5003 case unsupported_broadcast:
5004 err_msg = _("unsupported broadcast");
5005 break;
5006 case broadcast_not_on_src_operand:
5007 err_msg = _("broadcast not on source memory operand");
5008 break;
5009 case broadcast_needed:
5010 err_msg = _("broadcast is needed for operand of such type");
5011 break;
5012 case unsupported_masking:
5013 err_msg = _("unsupported masking");
5014 break;
5015 case mask_not_on_destination:
5016 err_msg = _("mask not on destination operand");
5017 break;
5018 case no_default_mask:
5019 err_msg = _("default mask isn't allowed");
5020 break;
5021 case unsupported_rc_sae:
5022 err_msg = _("unsupported static rounding/sae");
5023 break;
5024 case rc_sae_operand_not_last_imm:
5025 if (intel_syntax)
5026 err_msg = _("RC/SAE operand must precede immediate operands");
5027 else
5028 err_msg = _("RC/SAE operand must follow immediate operands");
5029 break;
5030 case invalid_register_operand:
5031 err_msg = _("invalid register operand");
5032 break;
5033 }
5034 as_bad (_("%s for `%s'"), err_msg,
5035 current_templates->start->name);
5036 return NULL;
5037 }
5038
5039 if (!quiet_warnings)
5040 {
5041 if (!intel_syntax
5042 && (i.types[0].bitfield.jumpabsolute
5043 != operand_types[0].bitfield.jumpabsolute))
5044 {
5045 as_warn (_("indirect %s without `*'"), t->name);
5046 }
5047
5048 if (t->opcode_modifier.isprefix
5049 && t->opcode_modifier.ignoresize)
5050 {
5051 /* Warn them that a data or address size prefix doesn't
5052 affect assembly of the next line of code. */
5053 as_warn (_("stand-alone `%s' prefix"), t->name);
5054 }
5055 }
5056
5057 /* Copy the template we found. */
5058 i.tm = *t;
5059
5060 if (addr_prefix_disp != -1)
5061 i.tm.operand_types[addr_prefix_disp]
5062 = operand_types[addr_prefix_disp];
5063
5064 if (found_reverse_match)
5065 {
5066 /* If we found a reverse match we must alter the opcode
5067 direction bit. found_reverse_match holds bits to change
5068 (different for int & float insns). */
5069
5070 i.tm.base_opcode ^= found_reverse_match;
5071
5072 i.tm.operand_types[0] = operand_types[1];
5073 i.tm.operand_types[1] = operand_types[0];
5074 }
5075
5076 return t;
5077 }
5078
5079 static int
5080 check_string (void)
5081 {
5082 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5083 if (i.tm.operand_types[mem_op].bitfield.esseg)
5084 {
5085 if (i.seg[0] != NULL && i.seg[0] != &es)
5086 {
5087 as_bad (_("`%s' operand %d must use `%ses' segment"),
5088 i.tm.name,
5089 mem_op + 1,
5090 register_prefix);
5091 return 0;
5092 }
5093 /* There's only ever one segment override allowed per instruction.
5094 This instruction possibly has a legal segment override on the
5095 second operand, so copy the segment to where non-string
5096 instructions store it, allowing common code. */
5097 i.seg[0] = i.seg[1];
5098 }
5099 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5100 {
5101 if (i.seg[1] != NULL && i.seg[1] != &es)
5102 {
5103 as_bad (_("`%s' operand %d must use `%ses' segment"),
5104 i.tm.name,
5105 mem_op + 2,
5106 register_prefix);
5107 return 0;
5108 }
5109 }
5110 return 1;
5111 }
5112
5113 static int
5114 process_suffix (void)
5115 {
5116 /* If matched instruction specifies an explicit instruction mnemonic
5117 suffix, use it. */
5118 if (i.tm.opcode_modifier.size16)
5119 i.suffix = WORD_MNEM_SUFFIX;
5120 else if (i.tm.opcode_modifier.size32)
5121 i.suffix = LONG_MNEM_SUFFIX;
5122 else if (i.tm.opcode_modifier.size64)
5123 i.suffix = QWORD_MNEM_SUFFIX;
5124 else if (i.reg_operands)
5125 {
5126 /* If there's no instruction mnemonic suffix we try to invent one
5127 based on register operands. */
5128 if (!i.suffix)
5129 {
5130 /* We take i.suffix from the last register operand specified,
5131 Destination register type is more significant than source
5132 register type. crc32 in SSE4.2 prefers source register
5133 type. */
5134 if (i.tm.base_opcode == 0xf20f38f1)
5135 {
5136 if (i.types[0].bitfield.reg16)
5137 i.suffix = WORD_MNEM_SUFFIX;
5138 else if (i.types[0].bitfield.reg32)
5139 i.suffix = LONG_MNEM_SUFFIX;
5140 else if (i.types[0].bitfield.reg64)
5141 i.suffix = QWORD_MNEM_SUFFIX;
5142 }
5143 else if (i.tm.base_opcode == 0xf20f38f0)
5144 {
5145 if (i.types[0].bitfield.reg8)
5146 i.suffix = BYTE_MNEM_SUFFIX;
5147 }
5148
5149 if (!i.suffix)
5150 {
5151 int op;
5152
5153 if (i.tm.base_opcode == 0xf20f38f1
5154 || i.tm.base_opcode == 0xf20f38f0)
5155 {
5156 /* We have to know the operand size for crc32. */
5157 as_bad (_("ambiguous memory operand size for `%s`"),
5158 i.tm.name);
5159 return 0;
5160 }
5161
5162 for (op = i.operands; --op >= 0;)
5163 if (!i.tm.operand_types[op].bitfield.inoutportreg)
5164 {
5165 if (i.types[op].bitfield.reg8)
5166 {
5167 i.suffix = BYTE_MNEM_SUFFIX;
5168 break;
5169 }
5170 else if (i.types[op].bitfield.reg16)
5171 {
5172 i.suffix = WORD_MNEM_SUFFIX;
5173 break;
5174 }
5175 else if (i.types[op].bitfield.reg32)
5176 {
5177 i.suffix = LONG_MNEM_SUFFIX;
5178 break;
5179 }
5180 else if (i.types[op].bitfield.reg64)
5181 {
5182 i.suffix = QWORD_MNEM_SUFFIX;
5183 break;
5184 }
5185 }
5186 }
5187 }
5188 else if (i.suffix == BYTE_MNEM_SUFFIX)
5189 {
5190 if (intel_syntax
5191 && i.tm.opcode_modifier.ignoresize
5192 && i.tm.opcode_modifier.no_bsuf)
5193 i.suffix = 0;
5194 else if (!check_byte_reg ())
5195 return 0;
5196 }
5197 else if (i.suffix == LONG_MNEM_SUFFIX)
5198 {
5199 if (intel_syntax
5200 && i.tm.opcode_modifier.ignoresize
5201 && i.tm.opcode_modifier.no_lsuf)
5202 i.suffix = 0;
5203 else if (!check_long_reg ())
5204 return 0;
5205 }
5206 else if (i.suffix == QWORD_MNEM_SUFFIX)
5207 {
5208 if (intel_syntax
5209 && i.tm.opcode_modifier.ignoresize
5210 && i.tm.opcode_modifier.no_qsuf)
5211 i.suffix = 0;
5212 else if (!check_qword_reg ())
5213 return 0;
5214 }
5215 else if (i.suffix == WORD_MNEM_SUFFIX)
5216 {
5217 if (intel_syntax
5218 && i.tm.opcode_modifier.ignoresize
5219 && i.tm.opcode_modifier.no_wsuf)
5220 i.suffix = 0;
5221 else if (!check_word_reg ())
5222 return 0;
5223 }
5224 else if (i.suffix == XMMWORD_MNEM_SUFFIX
5225 || i.suffix == YMMWORD_MNEM_SUFFIX
5226 || i.suffix == ZMMWORD_MNEM_SUFFIX)
5227 {
5228 /* Skip if the instruction has x/y/z suffix. match_template
5229 should check if it is a valid suffix. */
5230 }
5231 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5232 /* Do nothing if the instruction is going to ignore the prefix. */
5233 ;
5234 else
5235 abort ();
5236 }
5237 else if (i.tm.opcode_modifier.defaultsize
5238 && !i.suffix
5239 /* exclude fldenv/frstor/fsave/fstenv */
5240 && i.tm.opcode_modifier.no_ssuf)
5241 {
5242 i.suffix = stackop_size;
5243 }
5244 else if (intel_syntax
5245 && !i.suffix
5246 && (i.tm.operand_types[0].bitfield.jumpabsolute
5247 || i.tm.opcode_modifier.jumpbyte
5248 || i.tm.opcode_modifier.jumpintersegment
5249 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5250 && i.tm.extension_opcode <= 3)))
5251 {
5252 switch (flag_code)
5253 {
5254 case CODE_64BIT:
5255 if (!i.tm.opcode_modifier.no_qsuf)
5256 {
5257 i.suffix = QWORD_MNEM_SUFFIX;
5258 break;
5259 }
5260 case CODE_32BIT:
5261 if (!i.tm.opcode_modifier.no_lsuf)
5262 i.suffix = LONG_MNEM_SUFFIX;
5263 break;
5264 case CODE_16BIT:
5265 if (!i.tm.opcode_modifier.no_wsuf)
5266 i.suffix = WORD_MNEM_SUFFIX;
5267 break;
5268 }
5269 }
5270
5271 if (!i.suffix)
5272 {
5273 if (!intel_syntax)
5274 {
5275 if (i.tm.opcode_modifier.w)
5276 {
5277 as_bad (_("no instruction mnemonic suffix given and "
5278 "no register operands; can't size instruction"));
5279 return 0;
5280 }
5281 }
5282 else
5283 {
5284 unsigned int suffixes;
5285
5286 suffixes = !i.tm.opcode_modifier.no_bsuf;
5287 if (!i.tm.opcode_modifier.no_wsuf)
5288 suffixes |= 1 << 1;
5289 if (!i.tm.opcode_modifier.no_lsuf)
5290 suffixes |= 1 << 2;
5291 if (!i.tm.opcode_modifier.no_ldsuf)
5292 suffixes |= 1 << 3;
5293 if (!i.tm.opcode_modifier.no_ssuf)
5294 suffixes |= 1 << 4;
5295 if (!i.tm.opcode_modifier.no_qsuf)
5296 suffixes |= 1 << 5;
5297
5298 /* There are more than suffix matches. */
5299 if (i.tm.opcode_modifier.w
5300 || ((suffixes & (suffixes - 1))
5301 && !i.tm.opcode_modifier.defaultsize
5302 && !i.tm.opcode_modifier.ignoresize))
5303 {
5304 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5305 return 0;
5306 }
5307 }
5308 }
5309
5310 /* Change the opcode based on the operand size given by i.suffix;
5311 We don't need to change things for byte insns. */
5312
5313 if (i.suffix
5314 && i.suffix != BYTE_MNEM_SUFFIX
5315 && i.suffix != XMMWORD_MNEM_SUFFIX
5316 && i.suffix != YMMWORD_MNEM_SUFFIX
5317 && i.suffix != ZMMWORD_MNEM_SUFFIX)
5318 {
5319 /* It's not a byte, select word/dword operation. */
5320 if (i.tm.opcode_modifier.w)
5321 {
5322 if (i.tm.opcode_modifier.shortform)
5323 i.tm.base_opcode |= 8;
5324 else
5325 i.tm.base_opcode |= 1;
5326 }
5327
5328 /* Now select between word & dword operations via the operand
5329 size prefix, except for instructions that will ignore this
5330 prefix anyway. */
5331 if (i.tm.opcode_modifier.addrprefixop0)
5332 {
5333 /* The address size override prefix changes the size of the
5334 first operand. */
5335 if ((flag_code == CODE_32BIT
5336 && i.op->regs[0].reg_type.bitfield.reg16)
5337 || (flag_code != CODE_32BIT
5338 && i.op->regs[0].reg_type.bitfield.reg32))
5339 if (!add_prefix (ADDR_PREFIX_OPCODE))
5340 return 0;
5341 }
5342 else if (i.suffix != QWORD_MNEM_SUFFIX
5343 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5344 && !i.tm.opcode_modifier.ignoresize
5345 && !i.tm.opcode_modifier.floatmf
5346 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5347 || (flag_code == CODE_64BIT
5348 && i.tm.opcode_modifier.jumpbyte)))
5349 {
5350 unsigned int prefix = DATA_PREFIX_OPCODE;
5351
5352 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5353 prefix = ADDR_PREFIX_OPCODE;
5354
5355 if (!add_prefix (prefix))
5356 return 0;
5357 }
5358
5359 /* Set mode64 for an operand. */
5360 if (i.suffix == QWORD_MNEM_SUFFIX
5361 && flag_code == CODE_64BIT
5362 && !i.tm.opcode_modifier.norex64)
5363 {
5364 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5365 need rex64. cmpxchg8b is also a special case. */
5366 if (! (i.operands == 2
5367 && i.tm.base_opcode == 0x90
5368 && i.tm.extension_opcode == None
5369 && operand_type_equal (&i.types [0], &acc64)
5370 && operand_type_equal (&i.types [1], &acc64))
5371 && ! (i.operands == 1
5372 && i.tm.base_opcode == 0xfc7
5373 && i.tm.extension_opcode == 1
5374 && !operand_type_check (i.types [0], reg)
5375 && operand_type_check (i.types [0], anymem)))
5376 i.rex |= REX_W;
5377 }
5378
5379 /* Size floating point instruction. */
5380 if (i.suffix == LONG_MNEM_SUFFIX)
5381 if (i.tm.opcode_modifier.floatmf)
5382 i.tm.base_opcode ^= 4;
5383 }
5384
5385 return 1;
5386 }
5387
5388 static int
5389 check_byte_reg (void)
5390 {
5391 int op;
5392
5393 for (op = i.operands; --op >= 0;)
5394 {
5395 /* If this is an eight bit register, it's OK. If it's the 16 or
5396 32 bit version of an eight bit register, we will just use the
5397 low portion, and that's OK too. */
5398 if (i.types[op].bitfield.reg8)
5399 continue;
5400
5401 /* I/O port address operands are OK too. */
5402 if (i.tm.operand_types[op].bitfield.inoutportreg)
5403 continue;
5404
5405 /* crc32 doesn't generate this warning. */
5406 if (i.tm.base_opcode == 0xf20f38f0)
5407 continue;
5408
5409 if ((i.types[op].bitfield.reg16
5410 || i.types[op].bitfield.reg32
5411 || i.types[op].bitfield.reg64)
5412 && i.op[op].regs->reg_num < 4
5413 /* Prohibit these changes in 64bit mode, since the lowering
5414 would be more complicated. */
5415 && flag_code != CODE_64BIT)
5416 {
5417 #if REGISTER_WARNINGS
5418 if (!quiet_warnings)
5419 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5420 register_prefix,
5421 (i.op[op].regs + (i.types[op].bitfield.reg16
5422 ? REGNAM_AL - REGNAM_AX
5423 : REGNAM_AL - REGNAM_EAX))->reg_name,
5424 register_prefix,
5425 i.op[op].regs->reg_name,
5426 i.suffix);
5427 #endif
5428 continue;
5429 }
5430 /* Any other register is bad. */
5431 if (i.types[op].bitfield.reg16
5432 || i.types[op].bitfield.reg32
5433 || i.types[op].bitfield.reg64
5434 || i.types[op].bitfield.regmmx
5435 || i.types[op].bitfield.regxmm
5436 || i.types[op].bitfield.regymm
5437 || i.types[op].bitfield.regzmm
5438 || i.types[op].bitfield.sreg2
5439 || i.types[op].bitfield.sreg3
5440 || i.types[op].bitfield.control
5441 || i.types[op].bitfield.debug
5442 || i.types[op].bitfield.test
5443 || i.types[op].bitfield.floatreg
5444 || i.types[op].bitfield.floatacc)
5445 {
5446 as_bad (_("`%s%s' not allowed with `%s%c'"),
5447 register_prefix,
5448 i.op[op].regs->reg_name,
5449 i.tm.name,
5450 i.suffix);
5451 return 0;
5452 }
5453 }
5454 return 1;
5455 }
5456
5457 static int
5458 check_long_reg (void)
5459 {
5460 int op;
5461
5462 for (op = i.operands; --op >= 0;)
5463 /* Reject eight bit registers, except where the template requires
5464 them. (eg. movzb) */
5465 if (i.types[op].bitfield.reg8
5466 && (i.tm.operand_types[op].bitfield.reg16
5467 || i.tm.operand_types[op].bitfield.reg32
5468 || i.tm.operand_types[op].bitfield.acc))
5469 {
5470 as_bad (_("`%s%s' not allowed with `%s%c'"),
5471 register_prefix,
5472 i.op[op].regs->reg_name,
5473 i.tm.name,
5474 i.suffix);
5475 return 0;
5476 }
5477 /* Warn if the e prefix on a general reg is missing. */
5478 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5479 && i.types[op].bitfield.reg16
5480 && (i.tm.operand_types[op].bitfield.reg32
5481 || i.tm.operand_types[op].bitfield.acc))
5482 {
5483 /* Prohibit these changes in the 64bit mode, since the
5484 lowering is more complicated. */
5485 if (flag_code == CODE_64BIT)
5486 {
5487 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5488 register_prefix, i.op[op].regs->reg_name,
5489 i.suffix);
5490 return 0;
5491 }
5492 #if REGISTER_WARNINGS
5493 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5494 register_prefix,
5495 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5496 register_prefix, i.op[op].regs->reg_name, i.suffix);
5497 #endif
5498 }
5499 /* Warn if the r prefix on a general reg is present. */
5500 else if (i.types[op].bitfield.reg64
5501 && (i.tm.operand_types[op].bitfield.reg32
5502 || i.tm.operand_types[op].bitfield.acc))
5503 {
5504 if (intel_syntax
5505 && i.tm.opcode_modifier.toqword
5506 && !i.types[0].bitfield.regxmm)
5507 {
5508 /* Convert to QWORD. We want REX byte. */
5509 i.suffix = QWORD_MNEM_SUFFIX;
5510 }
5511 else
5512 {
5513 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5514 register_prefix, i.op[op].regs->reg_name,
5515 i.suffix);
5516 return 0;
5517 }
5518 }
5519 return 1;
5520 }
5521
5522 static int
5523 check_qword_reg (void)
5524 {
5525 int op;
5526
5527 for (op = i.operands; --op >= 0; )
5528 /* Reject eight bit registers, except where the template requires
5529 them. (eg. movzb) */
5530 if (i.types[op].bitfield.reg8
5531 && (i.tm.operand_types[op].bitfield.reg16
5532 || i.tm.operand_types[op].bitfield.reg32
5533 || i.tm.operand_types[op].bitfield.acc))
5534 {
5535 as_bad (_("`%s%s' not allowed with `%s%c'"),
5536 register_prefix,
5537 i.op[op].regs->reg_name,
5538 i.tm.name,
5539 i.suffix);
5540 return 0;
5541 }
5542 /* Warn if the r prefix on a general reg is missing. */
5543 else if ((i.types[op].bitfield.reg16
5544 || i.types[op].bitfield.reg32)
5545 && (i.tm.operand_types[op].bitfield.reg32
5546 || i.tm.operand_types[op].bitfield.acc))
5547 {
5548 /* Prohibit these changes in the 64bit mode, since the
5549 lowering is more complicated. */
5550 if (intel_syntax
5551 && i.tm.opcode_modifier.todword
5552 && !i.types[0].bitfield.regxmm)
5553 {
5554 /* Convert to DWORD. We don't want REX byte. */
5555 i.suffix = LONG_MNEM_SUFFIX;
5556 }
5557 else
5558 {
5559 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5560 register_prefix, i.op[op].regs->reg_name,
5561 i.suffix);
5562 return 0;
5563 }
5564 }
5565 return 1;
5566 }
5567
5568 static int
5569 check_word_reg (void)
5570 {
5571 int op;
5572 for (op = i.operands; --op >= 0;)
5573 /* Reject eight bit registers, except where the template requires
5574 them. (eg. movzb) */
5575 if (i.types[op].bitfield.reg8
5576 && (i.tm.operand_types[op].bitfield.reg16
5577 || i.tm.operand_types[op].bitfield.reg32
5578 || i.tm.operand_types[op].bitfield.acc))
5579 {
5580 as_bad (_("`%s%s' not allowed with `%s%c'"),
5581 register_prefix,
5582 i.op[op].regs->reg_name,
5583 i.tm.name,
5584 i.suffix);
5585 return 0;
5586 }
5587 /* Warn if the e or r prefix on a general reg is present. */
5588 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5589 && (i.types[op].bitfield.reg32
5590 || i.types[op].bitfield.reg64)
5591 && (i.tm.operand_types[op].bitfield.reg16
5592 || i.tm.operand_types[op].bitfield.acc))
5593 {
5594 /* Prohibit these changes in the 64bit mode, since the
5595 lowering is more complicated. */
5596 if (flag_code == CODE_64BIT)
5597 {
5598 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5599 register_prefix, i.op[op].regs->reg_name,
5600 i.suffix);
5601 return 0;
5602 }
5603 #if REGISTER_WARNINGS
5604 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5605 register_prefix,
5606 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5607 register_prefix, i.op[op].regs->reg_name, i.suffix);
5608 #endif
5609 }
5610 return 1;
5611 }
5612
5613 static int
5614 update_imm (unsigned int j)
5615 {
5616 i386_operand_type overlap = i.types[j];
5617 if ((overlap.bitfield.imm8
5618 || overlap.bitfield.imm8s
5619 || overlap.bitfield.imm16
5620 || overlap.bitfield.imm32
5621 || overlap.bitfield.imm32s
5622 || overlap.bitfield.imm64)
5623 && !operand_type_equal (&overlap, &imm8)
5624 && !operand_type_equal (&overlap, &imm8s)
5625 && !operand_type_equal (&overlap, &imm16)
5626 && !operand_type_equal (&overlap, &imm32)
5627 && !operand_type_equal (&overlap, &imm32s)
5628 && !operand_type_equal (&overlap, &imm64))
5629 {
5630 if (i.suffix)
5631 {
5632 i386_operand_type temp;
5633
5634 operand_type_set (&temp, 0);
5635 if (i.suffix == BYTE_MNEM_SUFFIX)
5636 {
5637 temp.bitfield.imm8 = overlap.bitfield.imm8;
5638 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5639 }
5640 else if (i.suffix == WORD_MNEM_SUFFIX)
5641 temp.bitfield.imm16 = overlap.bitfield.imm16;
5642 else if (i.suffix == QWORD_MNEM_SUFFIX)
5643 {
5644 temp.bitfield.imm64 = overlap.bitfield.imm64;
5645 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5646 }
5647 else
5648 temp.bitfield.imm32 = overlap.bitfield.imm32;
5649 overlap = temp;
5650 }
5651 else if (operand_type_equal (&overlap, &imm16_32_32s)
5652 || operand_type_equal (&overlap, &imm16_32)
5653 || operand_type_equal (&overlap, &imm16_32s))
5654 {
5655 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5656 overlap = imm16;
5657 else
5658 overlap = imm32s;
5659 }
5660 if (!operand_type_equal (&overlap, &imm8)
5661 && !operand_type_equal (&overlap, &imm8s)
5662 && !operand_type_equal (&overlap, &imm16)
5663 && !operand_type_equal (&overlap, &imm32)
5664 && !operand_type_equal (&overlap, &imm32s)
5665 && !operand_type_equal (&overlap, &imm64))
5666 {
5667 as_bad (_("no instruction mnemonic suffix given; "
5668 "can't determine immediate size"));
5669 return 0;
5670 }
5671 }
5672 i.types[j] = overlap;
5673
5674 return 1;
5675 }
5676
5677 static int
5678 finalize_imm (void)
5679 {
5680 unsigned int j, n;
5681
5682 /* Update the first 2 immediate operands. */
5683 n = i.operands > 2 ? 2 : i.operands;
5684 if (n)
5685 {
5686 for (j = 0; j < n; j++)
5687 if (update_imm (j) == 0)
5688 return 0;
5689
5690 /* The 3rd operand can't be immediate operand. */
5691 gas_assert (operand_type_check (i.types[2], imm) == 0);
5692 }
5693
5694 return 1;
5695 }
5696
5697 static int
5698 bad_implicit_operand (int xmm)
5699 {
5700 const char *ireg = xmm ? "xmm0" : "ymm0";
5701
5702 if (intel_syntax)
5703 as_bad (_("the last operand of `%s' must be `%s%s'"),
5704 i.tm.name, register_prefix, ireg);
5705 else
5706 as_bad (_("the first operand of `%s' must be `%s%s'"),
5707 i.tm.name, register_prefix, ireg);
5708 return 0;
5709 }
5710
5711 static int
5712 process_operands (void)
5713 {
5714 /* Default segment register this instruction will use for memory
5715 accesses. 0 means unknown. This is only for optimizing out
5716 unnecessary segment overrides. */
5717 const seg_entry *default_seg = 0;
5718
5719 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
5720 {
5721 unsigned int dupl = i.operands;
5722 unsigned int dest = dupl - 1;
5723 unsigned int j;
5724
5725 /* The destination must be an xmm register. */
5726 gas_assert (i.reg_operands
5727 && MAX_OPERANDS > dupl
5728 && operand_type_equal (&i.types[dest], &regxmm));
5729
5730 if (i.tm.opcode_modifier.firstxmm0)
5731 {
5732 /* The first operand is implicit and must be xmm0. */
5733 gas_assert (operand_type_equal (&i.types[0], &regxmm));
5734 if (register_number (i.op[0].regs) != 0)
5735 return bad_implicit_operand (1);
5736
5737 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
5738 {
5739 /* Keep xmm0 for instructions with VEX prefix and 3
5740 sources. */
5741 goto duplicate;
5742 }
5743 else
5744 {
5745 /* We remove the first xmm0 and keep the number of
5746 operands unchanged, which in fact duplicates the
5747 destination. */
5748 for (j = 1; j < i.operands; j++)
5749 {
5750 i.op[j - 1] = i.op[j];
5751 i.types[j - 1] = i.types[j];
5752 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5753 }
5754 }
5755 }
5756 else if (i.tm.opcode_modifier.implicit1stxmm0)
5757 {
5758 gas_assert ((MAX_OPERANDS - 1) > dupl
5759 && (i.tm.opcode_modifier.vexsources
5760 == VEX3SOURCES));
5761
5762 /* Add the implicit xmm0 for instructions with VEX prefix
5763 and 3 sources. */
5764 for (j = i.operands; j > 0; j--)
5765 {
5766 i.op[j] = i.op[j - 1];
5767 i.types[j] = i.types[j - 1];
5768 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
5769 }
5770 i.op[0].regs
5771 = (const reg_entry *) hash_find (reg_hash, "xmm0");
5772 i.types[0] = regxmm;
5773 i.tm.operand_types[0] = regxmm;
5774
5775 i.operands += 2;
5776 i.reg_operands += 2;
5777 i.tm.operands += 2;
5778
5779 dupl++;
5780 dest++;
5781 i.op[dupl] = i.op[dest];
5782 i.types[dupl] = i.types[dest];
5783 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5784 }
5785 else
5786 {
5787 duplicate:
5788 i.operands++;
5789 i.reg_operands++;
5790 i.tm.operands++;
5791
5792 i.op[dupl] = i.op[dest];
5793 i.types[dupl] = i.types[dest];
5794 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5795 }
5796
5797 if (i.tm.opcode_modifier.immext)
5798 process_immext ();
5799 }
5800 else if (i.tm.opcode_modifier.firstxmm0)
5801 {
5802 unsigned int j;
5803
5804 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
5805 gas_assert (i.reg_operands
5806 && (operand_type_equal (&i.types[0], &regxmm)
5807 || operand_type_equal (&i.types[0], &regymm)
5808 || operand_type_equal (&i.types[0], &regzmm)));
5809 if (register_number (i.op[0].regs) != 0)
5810 return bad_implicit_operand (i.types[0].bitfield.regxmm);
5811
5812 for (j = 1; j < i.operands; j++)
5813 {
5814 i.op[j - 1] = i.op[j];
5815 i.types[j - 1] = i.types[j];
5816
5817 /* We need to adjust fields in i.tm since they are used by
5818 build_modrm_byte. */
5819 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5820 }
5821
5822 i.operands--;
5823 i.reg_operands--;
5824 i.tm.operands--;
5825 }
5826 else if (i.tm.opcode_modifier.regkludge)
5827 {
5828 /* The imul $imm, %reg instruction is converted into
5829 imul $imm, %reg, %reg, and the clr %reg instruction
5830 is converted into xor %reg, %reg. */
5831
5832 unsigned int first_reg_op;
5833
5834 if (operand_type_check (i.types[0], reg))
5835 first_reg_op = 0;
5836 else
5837 first_reg_op = 1;
5838 /* Pretend we saw the extra register operand. */
5839 gas_assert (i.reg_operands == 1
5840 && i.op[first_reg_op + 1].regs == 0);
5841 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
5842 i.types[first_reg_op + 1] = i.types[first_reg_op];
5843 i.operands++;
5844 i.reg_operands++;
5845 }
5846
5847 if (i.tm.opcode_modifier.shortform)
5848 {
5849 if (i.types[0].bitfield.sreg2
5850 || i.types[0].bitfield.sreg3)
5851 {
5852 if (i.tm.base_opcode == POP_SEG_SHORT
5853 && i.op[0].regs->reg_num == 1)
5854 {
5855 as_bad (_("you can't `pop %scs'"), register_prefix);
5856 return 0;
5857 }
5858 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
5859 if ((i.op[0].regs->reg_flags & RegRex) != 0)
5860 i.rex |= REX_B;
5861 }
5862 else
5863 {
5864 /* The register or float register operand is in operand
5865 0 or 1. */
5866 unsigned int op;
5867
5868 if (i.types[0].bitfield.floatreg
5869 || operand_type_check (i.types[0], reg))
5870 op = 0;
5871 else
5872 op = 1;
5873 /* Register goes in low 3 bits of opcode. */
5874 i.tm.base_opcode |= i.op[op].regs->reg_num;
5875 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5876 i.rex |= REX_B;
5877 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
5878 {
5879 /* Warn about some common errors, but press on regardless.
5880 The first case can be generated by gcc (<= 2.8.1). */
5881 if (i.operands == 2)
5882 {
5883 /* Reversed arguments on faddp, fsubp, etc. */
5884 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
5885 register_prefix, i.op[!intel_syntax].regs->reg_name,
5886 register_prefix, i.op[intel_syntax].regs->reg_name);
5887 }
5888 else
5889 {
5890 /* Extraneous `l' suffix on fp insn. */
5891 as_warn (_("translating to `%s %s%s'"), i.tm.name,
5892 register_prefix, i.op[0].regs->reg_name);
5893 }
5894 }
5895 }
5896 }
5897 else if (i.tm.opcode_modifier.modrm)
5898 {
5899 /* The opcode is completed (modulo i.tm.extension_opcode which
5900 must be put into the modrm byte). Now, we make the modrm and
5901 index base bytes based on all the info we've collected. */
5902
5903 default_seg = build_modrm_byte ();
5904 }
5905 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
5906 {
5907 default_seg = &ds;
5908 }
5909 else if (i.tm.opcode_modifier.isstring)
5910 {
5911 /* For the string instructions that allow a segment override
5912 on one of their operands, the default segment is ds. */
5913 default_seg = &ds;
5914 }
5915
5916 if (i.tm.base_opcode == 0x8d /* lea */
5917 && i.seg[0]
5918 && !quiet_warnings)
5919 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
5920
5921 /* If a segment was explicitly specified, and the specified segment
5922 is not the default, use an opcode prefix to select it. If we
5923 never figured out what the default segment is, then default_seg
5924 will be zero at this point, and the specified segment prefix will
5925 always be used. */
5926 if ((i.seg[0]) && (i.seg[0] != default_seg))
5927 {
5928 if (!add_prefix (i.seg[0]->seg_prefix))
5929 return 0;
5930 }
5931 return 1;
5932 }
5933
5934 static const seg_entry *
5935 build_modrm_byte (void)
5936 {
5937 const seg_entry *default_seg = 0;
5938 unsigned int source, dest;
5939 int vex_3_sources;
5940
5941 /* The first operand of instructions with VEX prefix and 3 sources
5942 must be VEX_Imm4. */
5943 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
5944 if (vex_3_sources)
5945 {
5946 unsigned int nds, reg_slot;
5947 expressionS *exp;
5948
5949 if (i.tm.opcode_modifier.veximmext
5950 && i.tm.opcode_modifier.immext)
5951 {
5952 dest = i.operands - 2;
5953 gas_assert (dest == 3);
5954 }
5955 else
5956 dest = i.operands - 1;
5957 nds = dest - 1;
5958
5959 /* There are 2 kinds of instructions:
5960 1. 5 operands: 4 register operands or 3 register operands
5961 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
5962 VexW0 or VexW1. The destination must be either XMM, YMM or
5963 ZMM register.
5964 2. 4 operands: 4 register operands or 3 register operands
5965 plus 1 memory operand, VexXDS, and VexImmExt */
5966 gas_assert ((i.reg_operands == 4
5967 || (i.reg_operands == 3 && i.mem_operands == 1))
5968 && i.tm.opcode_modifier.vexvvvv == VEXXDS
5969 && (i.tm.opcode_modifier.veximmext
5970 || (i.imm_operands == 1
5971 && i.types[0].bitfield.vec_imm4
5972 && (i.tm.opcode_modifier.vexw == VEXW0
5973 || i.tm.opcode_modifier.vexw == VEXW1)
5974 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
5975 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
5976 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
5977
5978 if (i.imm_operands == 0)
5979 {
5980 /* When there is no immediate operand, generate an 8bit
5981 immediate operand to encode the first operand. */
5982 exp = &im_expressions[i.imm_operands++];
5983 i.op[i.operands].imms = exp;
5984 i.types[i.operands] = imm8;
5985 i.operands++;
5986 /* If VexW1 is set, the first operand is the source and
5987 the second operand is encoded in the immediate operand. */
5988 if (i.tm.opcode_modifier.vexw == VEXW1)
5989 {
5990 source = 0;
5991 reg_slot = 1;
5992 }
5993 else
5994 {
5995 source = 1;
5996 reg_slot = 0;
5997 }
5998
5999 /* FMA swaps REG and NDS. */
6000 if (i.tm.cpu_flags.bitfield.cpufma)
6001 {
6002 unsigned int tmp;
6003 tmp = reg_slot;
6004 reg_slot = nds;
6005 nds = tmp;
6006 }
6007
6008 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6009 &regxmm)
6010 || operand_type_equal (&i.tm.operand_types[reg_slot],
6011 &regymm)
6012 || operand_type_equal (&i.tm.operand_types[reg_slot],
6013 &regzmm));
6014 exp->X_op = O_constant;
6015 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6016 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6017 }
6018 else
6019 {
6020 unsigned int imm_slot;
6021
6022 if (i.tm.opcode_modifier.vexw == VEXW0)
6023 {
6024 /* If VexW0 is set, the third operand is the source and
6025 the second operand is encoded in the immediate
6026 operand. */
6027 source = 2;
6028 reg_slot = 1;
6029 }
6030 else
6031 {
6032 /* VexW1 is set, the second operand is the source and
6033 the third operand is encoded in the immediate
6034 operand. */
6035 source = 1;
6036 reg_slot = 2;
6037 }
6038
6039 if (i.tm.opcode_modifier.immext)
6040 {
6041 /* When ImmExt is set, the immdiate byte is the last
6042 operand. */
6043 imm_slot = i.operands - 1;
6044 source--;
6045 reg_slot--;
6046 }
6047 else
6048 {
6049 imm_slot = 0;
6050
6051 /* Turn on Imm8 so that output_imm will generate it. */
6052 i.types[imm_slot].bitfield.imm8 = 1;
6053 }
6054
6055 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6056 &regxmm)
6057 || operand_type_equal (&i.tm.operand_types[reg_slot],
6058 &regymm)
6059 || operand_type_equal (&i.tm.operand_types[reg_slot],
6060 &regzmm));
6061 i.op[imm_slot].imms->X_add_number
6062 |= register_number (i.op[reg_slot].regs) << 4;
6063 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6064 }
6065
6066 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6067 || operand_type_equal (&i.tm.operand_types[nds],
6068 &regymm)
6069 || operand_type_equal (&i.tm.operand_types[nds],
6070 &regzmm));
6071 i.vex.register_specifier = i.op[nds].regs;
6072 }
6073 else
6074 source = dest = 0;
6075
6076 /* i.reg_operands MUST be the number of real register operands;
6077 implicit registers do not count. If there are 3 register
6078 operands, it must be a instruction with VexNDS. For a
6079 instruction with VexNDD, the destination register is encoded
6080 in VEX prefix. If there are 4 register operands, it must be
6081 a instruction with VEX prefix and 3 sources. */
6082 if (i.mem_operands == 0
6083 && ((i.reg_operands == 2
6084 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6085 || (i.reg_operands == 3
6086 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6087 || (i.reg_operands == 4 && vex_3_sources)))
6088 {
6089 switch (i.operands)
6090 {
6091 case 2:
6092 source = 0;
6093 break;
6094 case 3:
6095 /* When there are 3 operands, one of them may be immediate,
6096 which may be the first or the last operand. Otherwise,
6097 the first operand must be shift count register (cl) or it
6098 is an instruction with VexNDS. */
6099 gas_assert (i.imm_operands == 1
6100 || (i.imm_operands == 0
6101 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6102 || i.types[0].bitfield.shiftcount)));
6103 if (operand_type_check (i.types[0], imm)
6104 || i.types[0].bitfield.shiftcount)
6105 source = 1;
6106 else
6107 source = 0;
6108 break;
6109 case 4:
6110 /* When there are 4 operands, the first two must be 8bit
6111 immediate operands. The source operand will be the 3rd
6112 one.
6113
6114 For instructions with VexNDS, if the first operand
6115 an imm8, the source operand is the 2nd one. If the last
6116 operand is imm8, the source operand is the first one. */
6117 gas_assert ((i.imm_operands == 2
6118 && i.types[0].bitfield.imm8
6119 && i.types[1].bitfield.imm8)
6120 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6121 && i.imm_operands == 1
6122 && (i.types[0].bitfield.imm8
6123 || i.types[i.operands - 1].bitfield.imm8
6124 || i.rounding)));
6125 if (i.imm_operands == 2)
6126 source = 2;
6127 else
6128 {
6129 if (i.types[0].bitfield.imm8)
6130 source = 1;
6131 else
6132 source = 0;
6133 }
6134 break;
6135 case 5:
6136 if (i.tm.opcode_modifier.evex)
6137 {
6138 /* For EVEX instructions, when there are 5 operands, the
6139 first one must be immediate operand. If the second one
6140 is immediate operand, the source operand is the 3th
6141 one. If the last one is immediate operand, the source
6142 operand is the 2nd one. */
6143 gas_assert (i.imm_operands == 2
6144 && i.tm.opcode_modifier.sae
6145 && operand_type_check (i.types[0], imm));
6146 if (operand_type_check (i.types[1], imm))
6147 source = 2;
6148 else if (operand_type_check (i.types[4], imm))
6149 source = 1;
6150 else
6151 abort ();
6152 }
6153 break;
6154 default:
6155 abort ();
6156 }
6157
6158 if (!vex_3_sources)
6159 {
6160 dest = source + 1;
6161
6162 /* RC/SAE operand could be between DEST and SRC. That happens
6163 when one operand is GPR and the other one is XMM/YMM/ZMM
6164 register. */
6165 if (i.rounding && i.rounding->operand == (int) dest)
6166 dest++;
6167
6168 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6169 {
6170 /* For instructions with VexNDS, the register-only source
6171 operand must be 32/64bit integer, XMM, YMM or ZMM
6172 register. It is encoded in VEX prefix. We need to
6173 clear RegMem bit before calling operand_type_equal. */
6174
6175 i386_operand_type op;
6176 unsigned int vvvv;
6177
6178 /* Check register-only source operand when two source
6179 operands are swapped. */
6180 if (!i.tm.operand_types[source].bitfield.baseindex
6181 && i.tm.operand_types[dest].bitfield.baseindex)
6182 {
6183 vvvv = source;
6184 source = dest;
6185 }
6186 else
6187 vvvv = dest;
6188
6189 op = i.tm.operand_types[vvvv];
6190 op.bitfield.regmem = 0;
6191 if ((dest + 1) >= i.operands
6192 || (!op.bitfield.reg32
6193 && op.bitfield.reg64
6194 && !operand_type_equal (&op, &regxmm)
6195 && !operand_type_equal (&op, &regymm)
6196 && !operand_type_equal (&op, &regzmm)
6197 && !operand_type_equal (&op, &regmask)))
6198 abort ();
6199 i.vex.register_specifier = i.op[vvvv].regs;
6200 dest++;
6201 }
6202 }
6203
6204 i.rm.mode = 3;
6205 /* One of the register operands will be encoded in the i.tm.reg
6206 field, the other in the combined i.tm.mode and i.tm.regmem
6207 fields. If no form of this instruction supports a memory
6208 destination operand, then we assume the source operand may
6209 sometimes be a memory operand and so we need to store the
6210 destination in the i.rm.reg field. */
6211 if (!i.tm.operand_types[dest].bitfield.regmem
6212 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6213 {
6214 i.rm.reg = i.op[dest].regs->reg_num;
6215 i.rm.regmem = i.op[source].regs->reg_num;
6216 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6217 i.rex |= REX_R;
6218 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6219 i.vrex |= REX_R;
6220 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6221 i.rex |= REX_B;
6222 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6223 i.vrex |= REX_B;
6224 }
6225 else
6226 {
6227 i.rm.reg = i.op[source].regs->reg_num;
6228 i.rm.regmem = i.op[dest].regs->reg_num;
6229 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6230 i.rex |= REX_B;
6231 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6232 i.vrex |= REX_B;
6233 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6234 i.rex |= REX_R;
6235 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6236 i.vrex |= REX_R;
6237 }
6238 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6239 {
6240 if (!i.types[0].bitfield.control
6241 && !i.types[1].bitfield.control)
6242 abort ();
6243 i.rex &= ~(REX_R | REX_B);
6244 add_prefix (LOCK_PREFIX_OPCODE);
6245 }
6246 }
6247 else
6248 { /* If it's not 2 reg operands... */
6249 unsigned int mem;
6250
6251 if (i.mem_operands)
6252 {
6253 unsigned int fake_zero_displacement = 0;
6254 unsigned int op;
6255
6256 for (op = 0; op < i.operands; op++)
6257 if (operand_type_check (i.types[op], anymem))
6258 break;
6259 gas_assert (op < i.operands);
6260
6261 if (i.tm.opcode_modifier.vecsib)
6262 {
6263 if (i.index_reg->reg_num == RegEiz
6264 || i.index_reg->reg_num == RegRiz)
6265 abort ();
6266
6267 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6268 if (!i.base_reg)
6269 {
6270 i.sib.base = NO_BASE_REGISTER;
6271 i.sib.scale = i.log2_scale_factor;
6272 /* No Vec_Disp8 if there is no base. */
6273 i.types[op].bitfield.vec_disp8 = 0;
6274 i.types[op].bitfield.disp8 = 0;
6275 i.types[op].bitfield.disp16 = 0;
6276 i.types[op].bitfield.disp64 = 0;
6277 if (flag_code != CODE_64BIT)
6278 {
6279 /* Must be 32 bit */
6280 i.types[op].bitfield.disp32 = 1;
6281 i.types[op].bitfield.disp32s = 0;
6282 }
6283 else
6284 {
6285 i.types[op].bitfield.disp32 = 0;
6286 i.types[op].bitfield.disp32s = 1;
6287 }
6288 }
6289 i.sib.index = i.index_reg->reg_num;
6290 if ((i.index_reg->reg_flags & RegRex) != 0)
6291 i.rex |= REX_X;
6292 if ((i.index_reg->reg_flags & RegVRex) != 0)
6293 i.vrex |= REX_X;
6294 }
6295
6296 default_seg = &ds;
6297
6298 if (i.base_reg == 0)
6299 {
6300 i.rm.mode = 0;
6301 if (!i.disp_operands)
6302 {
6303 fake_zero_displacement = 1;
6304 /* Instructions with VSIB byte need 32bit displacement
6305 if there is no base register. */
6306 if (i.tm.opcode_modifier.vecsib)
6307 i.types[op].bitfield.disp32 = 1;
6308 }
6309 if (i.index_reg == 0)
6310 {
6311 gas_assert (!i.tm.opcode_modifier.vecsib);
6312 /* Operand is just <disp> */
6313 if (flag_code == CODE_64BIT)
6314 {
6315 /* 64bit mode overwrites the 32bit absolute
6316 addressing by RIP relative addressing and
6317 absolute addressing is encoded by one of the
6318 redundant SIB forms. */
6319 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6320 i.sib.base = NO_BASE_REGISTER;
6321 i.sib.index = NO_INDEX_REGISTER;
6322 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6323 ? disp32s : disp32);
6324 }
6325 else if ((flag_code == CODE_16BIT)
6326 ^ (i.prefix[ADDR_PREFIX] != 0))
6327 {
6328 i.rm.regmem = NO_BASE_REGISTER_16;
6329 i.types[op] = disp16;
6330 }
6331 else
6332 {
6333 i.rm.regmem = NO_BASE_REGISTER;
6334 i.types[op] = disp32;
6335 }
6336 }
6337 else if (!i.tm.opcode_modifier.vecsib)
6338 {
6339 /* !i.base_reg && i.index_reg */
6340 if (i.index_reg->reg_num == RegEiz
6341 || i.index_reg->reg_num == RegRiz)
6342 i.sib.index = NO_INDEX_REGISTER;
6343 else
6344 i.sib.index = i.index_reg->reg_num;
6345 i.sib.base = NO_BASE_REGISTER;
6346 i.sib.scale = i.log2_scale_factor;
6347 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6348 /* No Vec_Disp8 if there is no base. */
6349 i.types[op].bitfield.vec_disp8 = 0;
6350 i.types[op].bitfield.disp8 = 0;
6351 i.types[op].bitfield.disp16 = 0;
6352 i.types[op].bitfield.disp64 = 0;
6353 if (flag_code != CODE_64BIT)
6354 {
6355 /* Must be 32 bit */
6356 i.types[op].bitfield.disp32 = 1;
6357 i.types[op].bitfield.disp32s = 0;
6358 }
6359 else
6360 {
6361 i.types[op].bitfield.disp32 = 0;
6362 i.types[op].bitfield.disp32s = 1;
6363 }
6364 if ((i.index_reg->reg_flags & RegRex) != 0)
6365 i.rex |= REX_X;
6366 }
6367 }
6368 /* RIP addressing for 64bit mode. */
6369 else if (i.base_reg->reg_num == RegRip ||
6370 i.base_reg->reg_num == RegEip)
6371 {
6372 gas_assert (!i.tm.opcode_modifier.vecsib);
6373 i.rm.regmem = NO_BASE_REGISTER;
6374 i.types[op].bitfield.disp8 = 0;
6375 i.types[op].bitfield.disp16 = 0;
6376 i.types[op].bitfield.disp32 = 0;
6377 i.types[op].bitfield.disp32s = 1;
6378 i.types[op].bitfield.disp64 = 0;
6379 i.types[op].bitfield.vec_disp8 = 0;
6380 i.flags[op] |= Operand_PCrel;
6381 if (! i.disp_operands)
6382 fake_zero_displacement = 1;
6383 }
6384 else if (i.base_reg->reg_type.bitfield.reg16)
6385 {
6386 gas_assert (!i.tm.opcode_modifier.vecsib);
6387 switch (i.base_reg->reg_num)
6388 {
6389 case 3: /* (%bx) */
6390 if (i.index_reg == 0)
6391 i.rm.regmem = 7;
6392 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6393 i.rm.regmem = i.index_reg->reg_num - 6;
6394 break;
6395 case 5: /* (%bp) */
6396 default_seg = &ss;
6397 if (i.index_reg == 0)
6398 {
6399 i.rm.regmem = 6;
6400 if (operand_type_check (i.types[op], disp) == 0)
6401 {
6402 /* fake (%bp) into 0(%bp) */
6403 if (i.tm.operand_types[op].bitfield.vec_disp8)
6404 i.types[op].bitfield.vec_disp8 = 1;
6405 else
6406 i.types[op].bitfield.disp8 = 1;
6407 fake_zero_displacement = 1;
6408 }
6409 }
6410 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6411 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6412 break;
6413 default: /* (%si) -> 4 or (%di) -> 5 */
6414 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6415 }
6416 i.rm.mode = mode_from_disp_size (i.types[op]);
6417 }
6418 else /* i.base_reg and 32/64 bit mode */
6419 {
6420 if (flag_code == CODE_64BIT
6421 && operand_type_check (i.types[op], disp))
6422 {
6423 i386_operand_type temp;
6424 operand_type_set (&temp, 0);
6425 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6426 temp.bitfield.vec_disp8
6427 = i.types[op].bitfield.vec_disp8;
6428 i.types[op] = temp;
6429 if (i.prefix[ADDR_PREFIX] == 0)
6430 i.types[op].bitfield.disp32s = 1;
6431 else
6432 i.types[op].bitfield.disp32 = 1;
6433 }
6434
6435 if (!i.tm.opcode_modifier.vecsib)
6436 i.rm.regmem = i.base_reg->reg_num;
6437 if ((i.base_reg->reg_flags & RegRex) != 0)
6438 i.rex |= REX_B;
6439 i.sib.base = i.base_reg->reg_num;
6440 /* x86-64 ignores REX prefix bit here to avoid decoder
6441 complications. */
6442 if (!(i.base_reg->reg_flags & RegRex)
6443 && (i.base_reg->reg_num == EBP_REG_NUM
6444 || i.base_reg->reg_num == ESP_REG_NUM))
6445 default_seg = &ss;
6446 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6447 {
6448 fake_zero_displacement = 1;
6449 if (i.tm.operand_types [op].bitfield.vec_disp8)
6450 i.types[op].bitfield.vec_disp8 = 1;
6451 else
6452 i.types[op].bitfield.disp8 = 1;
6453 }
6454 i.sib.scale = i.log2_scale_factor;
6455 if (i.index_reg == 0)
6456 {
6457 gas_assert (!i.tm.opcode_modifier.vecsib);
6458 /* <disp>(%esp) becomes two byte modrm with no index
6459 register. We've already stored the code for esp
6460 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6461 Any base register besides %esp will not use the
6462 extra modrm byte. */
6463 i.sib.index = NO_INDEX_REGISTER;
6464 }
6465 else if (!i.tm.opcode_modifier.vecsib)
6466 {
6467 if (i.index_reg->reg_num == RegEiz
6468 || i.index_reg->reg_num == RegRiz)
6469 i.sib.index = NO_INDEX_REGISTER;
6470 else
6471 i.sib.index = i.index_reg->reg_num;
6472 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6473 if ((i.index_reg->reg_flags & RegRex) != 0)
6474 i.rex |= REX_X;
6475 }
6476
6477 if (i.disp_operands
6478 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6479 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6480 i.rm.mode = 0;
6481 else
6482 {
6483 if (!fake_zero_displacement
6484 && !i.disp_operands
6485 && i.disp_encoding)
6486 {
6487 fake_zero_displacement = 1;
6488 if (i.disp_encoding == disp_encoding_8bit)
6489 i.types[op].bitfield.disp8 = 1;
6490 else
6491 i.types[op].bitfield.disp32 = 1;
6492 }
6493 i.rm.mode = mode_from_disp_size (i.types[op]);
6494 }
6495 }
6496
6497 if (fake_zero_displacement)
6498 {
6499 /* Fakes a zero displacement assuming that i.types[op]
6500 holds the correct displacement size. */
6501 expressionS *exp;
6502
6503 gas_assert (i.op[op].disps == 0);
6504 exp = &disp_expressions[i.disp_operands++];
6505 i.op[op].disps = exp;
6506 exp->X_op = O_constant;
6507 exp->X_add_number = 0;
6508 exp->X_add_symbol = (symbolS *) 0;
6509 exp->X_op_symbol = (symbolS *) 0;
6510 }
6511
6512 mem = op;
6513 }
6514 else
6515 mem = ~0;
6516
6517 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6518 {
6519 if (operand_type_check (i.types[0], imm))
6520 i.vex.register_specifier = NULL;
6521 else
6522 {
6523 /* VEX.vvvv encodes one of the sources when the first
6524 operand is not an immediate. */
6525 if (i.tm.opcode_modifier.vexw == VEXW0)
6526 i.vex.register_specifier = i.op[0].regs;
6527 else
6528 i.vex.register_specifier = i.op[1].regs;
6529 }
6530
6531 /* Destination is a XMM register encoded in the ModRM.reg
6532 and VEX.R bit. */
6533 i.rm.reg = i.op[2].regs->reg_num;
6534 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6535 i.rex |= REX_R;
6536
6537 /* ModRM.rm and VEX.B encodes the other source. */
6538 if (!i.mem_operands)
6539 {
6540 i.rm.mode = 3;
6541
6542 if (i.tm.opcode_modifier.vexw == VEXW0)
6543 i.rm.regmem = i.op[1].regs->reg_num;
6544 else
6545 i.rm.regmem = i.op[0].regs->reg_num;
6546
6547 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6548 i.rex |= REX_B;
6549 }
6550 }
6551 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6552 {
6553 i.vex.register_specifier = i.op[2].regs;
6554 if (!i.mem_operands)
6555 {
6556 i.rm.mode = 3;
6557 i.rm.regmem = i.op[1].regs->reg_num;
6558 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6559 i.rex |= REX_B;
6560 }
6561 }
6562 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6563 (if any) based on i.tm.extension_opcode. Again, we must be
6564 careful to make sure that segment/control/debug/test/MMX
6565 registers are coded into the i.rm.reg field. */
6566 else if (i.reg_operands)
6567 {
6568 unsigned int op;
6569 unsigned int vex_reg = ~0;
6570
6571 for (op = 0; op < i.operands; op++)
6572 if (i.types[op].bitfield.reg8
6573 || i.types[op].bitfield.reg16
6574 || i.types[op].bitfield.reg32
6575 || i.types[op].bitfield.reg64
6576 || i.types[op].bitfield.regmmx
6577 || i.types[op].bitfield.regxmm
6578 || i.types[op].bitfield.regymm
6579 || i.types[op].bitfield.regbnd
6580 || i.types[op].bitfield.regzmm
6581 || i.types[op].bitfield.regmask
6582 || i.types[op].bitfield.sreg2
6583 || i.types[op].bitfield.sreg3
6584 || i.types[op].bitfield.control
6585 || i.types[op].bitfield.debug
6586 || i.types[op].bitfield.test)
6587 break;
6588
6589 if (vex_3_sources)
6590 op = dest;
6591 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6592 {
6593 /* For instructions with VexNDS, the register-only
6594 source operand is encoded in VEX prefix. */
6595 gas_assert (mem != (unsigned int) ~0);
6596
6597 if (op > mem)
6598 {
6599 vex_reg = op++;
6600 gas_assert (op < i.operands);
6601 }
6602 else
6603 {
6604 /* Check register-only source operand when two source
6605 operands are swapped. */
6606 if (!i.tm.operand_types[op].bitfield.baseindex
6607 && i.tm.operand_types[op + 1].bitfield.baseindex)
6608 {
6609 vex_reg = op;
6610 op += 2;
6611 gas_assert (mem == (vex_reg + 1)
6612 && op < i.operands);
6613 }
6614 else
6615 {
6616 vex_reg = op + 1;
6617 gas_assert (vex_reg < i.operands);
6618 }
6619 }
6620 }
6621 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6622 {
6623 /* For instructions with VexNDD, the register destination
6624 is encoded in VEX prefix. */
6625 if (i.mem_operands == 0)
6626 {
6627 /* There is no memory operand. */
6628 gas_assert ((op + 2) == i.operands);
6629 vex_reg = op + 1;
6630 }
6631 else
6632 {
6633 /* There are only 2 operands. */
6634 gas_assert (op < 2 && i.operands == 2);
6635 vex_reg = 1;
6636 }
6637 }
6638 else
6639 gas_assert (op < i.operands);
6640
6641 if (vex_reg != (unsigned int) ~0)
6642 {
6643 i386_operand_type *type = &i.tm.operand_types[vex_reg];
6644
6645 if (type->bitfield.reg32 != 1
6646 && type->bitfield.reg64 != 1
6647 && !operand_type_equal (type, &regxmm)
6648 && !operand_type_equal (type, &regymm)
6649 && !operand_type_equal (type, &regzmm)
6650 && !operand_type_equal (type, &regmask))
6651 abort ();
6652
6653 i.vex.register_specifier = i.op[vex_reg].regs;
6654 }
6655
6656 /* Don't set OP operand twice. */
6657 if (vex_reg != op)
6658 {
6659 /* If there is an extension opcode to put here, the
6660 register number must be put into the regmem field. */
6661 if (i.tm.extension_opcode != None)
6662 {
6663 i.rm.regmem = i.op[op].regs->reg_num;
6664 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6665 i.rex |= REX_B;
6666 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6667 i.vrex |= REX_B;
6668 }
6669 else
6670 {
6671 i.rm.reg = i.op[op].regs->reg_num;
6672 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6673 i.rex |= REX_R;
6674 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6675 i.vrex |= REX_R;
6676 }
6677 }
6678
6679 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6680 must set it to 3 to indicate this is a register operand
6681 in the regmem field. */
6682 if (!i.mem_operands)
6683 i.rm.mode = 3;
6684 }
6685
6686 /* Fill in i.rm.reg field with extension opcode (if any). */
6687 if (i.tm.extension_opcode != None)
6688 i.rm.reg = i.tm.extension_opcode;
6689 }
6690 return default_seg;
6691 }
6692
6693 static void
6694 output_branch (void)
6695 {
6696 char *p;
6697 int size;
6698 int code16;
6699 int prefix;
6700 relax_substateT subtype;
6701 symbolS *sym;
6702 offsetT off;
6703
6704 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6705 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6706
6707 prefix = 0;
6708 if (i.prefix[DATA_PREFIX] != 0)
6709 {
6710 prefix = 1;
6711 i.prefixes -= 1;
6712 code16 ^= CODE16;
6713 }
6714 /* Pentium4 branch hints. */
6715 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6716 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6717 {
6718 prefix++;
6719 i.prefixes--;
6720 }
6721 if (i.prefix[REX_PREFIX] != 0)
6722 {
6723 prefix++;
6724 i.prefixes--;
6725 }
6726
6727 /* BND prefixed jump. */
6728 if (i.prefix[BND_PREFIX] != 0)
6729 {
6730 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6731 i.prefixes -= 1;
6732 }
6733
6734 if (i.prefixes != 0 && !intel_syntax)
6735 as_warn (_("skipping prefixes on this instruction"));
6736
6737 /* It's always a symbol; End frag & setup for relax.
6738 Make sure there is enough room in this frag for the largest
6739 instruction we may generate in md_convert_frag. This is 2
6740 bytes for the opcode and room for the prefix and largest
6741 displacement. */
6742 frag_grow (prefix + 2 + 4);
6743 /* Prefix and 1 opcode byte go in fr_fix. */
6744 p = frag_more (prefix + 1);
6745 if (i.prefix[DATA_PREFIX] != 0)
6746 *p++ = DATA_PREFIX_OPCODE;
6747 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6748 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6749 *p++ = i.prefix[SEG_PREFIX];
6750 if (i.prefix[REX_PREFIX] != 0)
6751 *p++ = i.prefix[REX_PREFIX];
6752 *p = i.tm.base_opcode;
6753
6754 if ((unsigned char) *p == JUMP_PC_RELATIVE)
6755 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
6756 else if (cpu_arch_flags.bitfield.cpui386)
6757 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
6758 else
6759 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
6760 subtype |= code16;
6761
6762 sym = i.op[0].disps->X_add_symbol;
6763 off = i.op[0].disps->X_add_number;
6764
6765 if (i.op[0].disps->X_op != O_constant
6766 && i.op[0].disps->X_op != O_symbol)
6767 {
6768 /* Handle complex expressions. */
6769 sym = make_expr_symbol (i.op[0].disps);
6770 off = 0;
6771 }
6772
6773 /* 1 possible extra opcode + 4 byte displacement go in var part.
6774 Pass reloc in fr_var. */
6775 frag_var (rs_machine_dependent, 5,
6776 ((!object_64bit
6777 || i.reloc[0] != NO_RELOC
6778 || (i.bnd_prefix == NULL && !add_bnd_prefix))
6779 ? i.reloc[0]
6780 : BFD_RELOC_X86_64_PC32_BND),
6781 subtype, sym, off, p);
6782 }
6783
6784 static void
6785 output_jump (void)
6786 {
6787 char *p;
6788 int size;
6789 fixS *fixP;
6790
6791 if (i.tm.opcode_modifier.jumpbyte)
6792 {
6793 /* This is a loop or jecxz type instruction. */
6794 size = 1;
6795 if (i.prefix[ADDR_PREFIX] != 0)
6796 {
6797 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
6798 i.prefixes -= 1;
6799 }
6800 /* Pentium4 branch hints. */
6801 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6802 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6803 {
6804 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
6805 i.prefixes--;
6806 }
6807 }
6808 else
6809 {
6810 int code16;
6811
6812 code16 = 0;
6813 if (flag_code == CODE_16BIT)
6814 code16 = CODE16;
6815
6816 if (i.prefix[DATA_PREFIX] != 0)
6817 {
6818 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
6819 i.prefixes -= 1;
6820 code16 ^= CODE16;
6821 }
6822
6823 size = 4;
6824 if (code16)
6825 size = 2;
6826 }
6827
6828 if (i.prefix[REX_PREFIX] != 0)
6829 {
6830 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
6831 i.prefixes -= 1;
6832 }
6833
6834 /* BND prefixed jump. */
6835 if (i.prefix[BND_PREFIX] != 0)
6836 {
6837 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6838 i.prefixes -= 1;
6839 }
6840
6841 if (i.prefixes != 0 && !intel_syntax)
6842 as_warn (_("skipping prefixes on this instruction"));
6843
6844 p = frag_more (i.tm.opcode_length + size);
6845 switch (i.tm.opcode_length)
6846 {
6847 case 2:
6848 *p++ = i.tm.base_opcode >> 8;
6849 case 1:
6850 *p++ = i.tm.base_opcode;
6851 break;
6852 default:
6853 abort ();
6854 }
6855
6856 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6857 i.op[0].disps, 1, reloc (size, 1, 1,
6858 (i.bnd_prefix != NULL
6859 || add_bnd_prefix),
6860 i.reloc[0]));
6861
6862 /* All jumps handled here are signed, but don't use a signed limit
6863 check for 32 and 16 bit jumps as we want to allow wrap around at
6864 4G and 64k respectively. */
6865 if (size == 1)
6866 fixP->fx_signed = 1;
6867 }
6868
6869 static void
6870 output_interseg_jump (void)
6871 {
6872 char *p;
6873 int size;
6874 int prefix;
6875 int code16;
6876
6877 code16 = 0;
6878 if (flag_code == CODE_16BIT)
6879 code16 = CODE16;
6880
6881 prefix = 0;
6882 if (i.prefix[DATA_PREFIX] != 0)
6883 {
6884 prefix = 1;
6885 i.prefixes -= 1;
6886 code16 ^= CODE16;
6887 }
6888 if (i.prefix[REX_PREFIX] != 0)
6889 {
6890 prefix++;
6891 i.prefixes -= 1;
6892 }
6893
6894 size = 4;
6895 if (code16)
6896 size = 2;
6897
6898 if (i.prefixes != 0 && !intel_syntax)
6899 as_warn (_("skipping prefixes on this instruction"));
6900
6901 /* 1 opcode; 2 segment; offset */
6902 p = frag_more (prefix + 1 + 2 + size);
6903
6904 if (i.prefix[DATA_PREFIX] != 0)
6905 *p++ = DATA_PREFIX_OPCODE;
6906
6907 if (i.prefix[REX_PREFIX] != 0)
6908 *p++ = i.prefix[REX_PREFIX];
6909
6910 *p++ = i.tm.base_opcode;
6911 if (i.op[1].imms->X_op == O_constant)
6912 {
6913 offsetT n = i.op[1].imms->X_add_number;
6914
6915 if (size == 2
6916 && !fits_in_unsigned_word (n)
6917 && !fits_in_signed_word (n))
6918 {
6919 as_bad (_("16-bit jump out of range"));
6920 return;
6921 }
6922 md_number_to_chars (p, n, size);
6923 }
6924 else
6925 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6926 i.op[1].imms, 0, reloc (size, 0, 0, 0, i.reloc[1]));
6927 if (i.op[0].imms->X_op != O_constant)
6928 as_bad (_("can't handle non absolute segment in `%s'"),
6929 i.tm.name);
6930 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
6931 }
6932
6933 static void
6934 output_insn (void)
6935 {
6936 fragS *insn_start_frag;
6937 offsetT insn_start_off;
6938
6939 /* Tie dwarf2 debug info to the address at the start of the insn.
6940 We can't do this after the insn has been output as the current
6941 frag may have been closed off. eg. by frag_var. */
6942 dwarf2_emit_insn (0);
6943
6944 insn_start_frag = frag_now;
6945 insn_start_off = frag_now_fix ();
6946
6947 /* Output jumps. */
6948 if (i.tm.opcode_modifier.jump)
6949 output_branch ();
6950 else if (i.tm.opcode_modifier.jumpbyte
6951 || i.tm.opcode_modifier.jumpdword)
6952 output_jump ();
6953 else if (i.tm.opcode_modifier.jumpintersegment)
6954 output_interseg_jump ();
6955 else
6956 {
6957 /* Output normal instructions here. */
6958 char *p;
6959 unsigned char *q;
6960 unsigned int j;
6961 unsigned int prefix;
6962
6963 /* Some processors fail on LOCK prefix. This options makes
6964 assembler ignore LOCK prefix and serves as a workaround. */
6965 if (omit_lock_prefix)
6966 {
6967 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
6968 return;
6969 i.prefix[LOCK_PREFIX] = 0;
6970 }
6971
6972 /* Since the VEX/EVEX prefix contains the implicit prefix, we
6973 don't need the explicit prefix. */
6974 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
6975 {
6976 switch (i.tm.opcode_length)
6977 {
6978 case 3:
6979 if (i.tm.base_opcode & 0xff000000)
6980 {
6981 prefix = (i.tm.base_opcode >> 24) & 0xff;
6982 goto check_prefix;
6983 }
6984 break;
6985 case 2:
6986 if ((i.tm.base_opcode & 0xff0000) != 0)
6987 {
6988 prefix = (i.tm.base_opcode >> 16) & 0xff;
6989 if (i.tm.cpu_flags.bitfield.cpupadlock)
6990 {
6991 check_prefix:
6992 if (prefix != REPE_PREFIX_OPCODE
6993 || (i.prefix[REP_PREFIX]
6994 != REPE_PREFIX_OPCODE))
6995 add_prefix (prefix);
6996 }
6997 else
6998 add_prefix (prefix);
6999 }
7000 break;
7001 case 1:
7002 break;
7003 default:
7004 abort ();
7005 }
7006
7007 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7008 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7009 R_X86_64_GOTTPOFF relocation so that linker can safely
7010 perform IE->LE optimization. */
7011 if (x86_elf_abi == X86_64_X32_ABI
7012 && i.operands == 2
7013 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7014 && i.prefix[REX_PREFIX] == 0)
7015 add_prefix (REX_OPCODE);
7016 #endif
7017
7018 /* The prefix bytes. */
7019 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7020 if (*q)
7021 FRAG_APPEND_1_CHAR (*q);
7022 }
7023 else
7024 {
7025 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7026 if (*q)
7027 switch (j)
7028 {
7029 case REX_PREFIX:
7030 /* REX byte is encoded in VEX prefix. */
7031 break;
7032 case SEG_PREFIX:
7033 case ADDR_PREFIX:
7034 FRAG_APPEND_1_CHAR (*q);
7035 break;
7036 default:
7037 /* There should be no other prefixes for instructions
7038 with VEX prefix. */
7039 abort ();
7040 }
7041
7042 /* For EVEX instructions i.vrex should become 0 after
7043 build_evex_prefix. For VEX instructions upper 16 registers
7044 aren't available, so VREX should be 0. */
7045 if (i.vrex)
7046 abort ();
7047 /* Now the VEX prefix. */
7048 p = frag_more (i.vex.length);
7049 for (j = 0; j < i.vex.length; j++)
7050 p[j] = i.vex.bytes[j];
7051 }
7052
7053 /* Now the opcode; be careful about word order here! */
7054 if (i.tm.opcode_length == 1)
7055 {
7056 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7057 }
7058 else
7059 {
7060 switch (i.tm.opcode_length)
7061 {
7062 case 4:
7063 p = frag_more (4);
7064 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7065 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7066 break;
7067 case 3:
7068 p = frag_more (3);
7069 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7070 break;
7071 case 2:
7072 p = frag_more (2);
7073 break;
7074 default:
7075 abort ();
7076 break;
7077 }
7078
7079 /* Put out high byte first: can't use md_number_to_chars! */
7080 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7081 *p = i.tm.base_opcode & 0xff;
7082 }
7083
7084 /* Now the modrm byte and sib byte (if present). */
7085 if (i.tm.opcode_modifier.modrm)
7086 {
7087 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7088 | i.rm.reg << 3
7089 | i.rm.mode << 6));
7090 /* If i.rm.regmem == ESP (4)
7091 && i.rm.mode != (Register mode)
7092 && not 16 bit
7093 ==> need second modrm byte. */
7094 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7095 && i.rm.mode != 3
7096 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
7097 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7098 | i.sib.index << 3
7099 | i.sib.scale << 6));
7100 }
7101
7102 if (i.disp_operands)
7103 output_disp (insn_start_frag, insn_start_off);
7104
7105 if (i.imm_operands)
7106 output_imm (insn_start_frag, insn_start_off);
7107 }
7108
7109 #ifdef DEBUG386
7110 if (flag_debug)
7111 {
7112 pi ("" /*line*/, &i);
7113 }
7114 #endif /* DEBUG386 */
7115 }
7116
7117 /* Return the size of the displacement operand N. */
7118
7119 static int
7120 disp_size (unsigned int n)
7121 {
7122 int size = 4;
7123
7124 /* Vec_Disp8 has to be 8bit. */
7125 if (i.types[n].bitfield.vec_disp8)
7126 size = 1;
7127 else if (i.types[n].bitfield.disp64)
7128 size = 8;
7129 else if (i.types[n].bitfield.disp8)
7130 size = 1;
7131 else if (i.types[n].bitfield.disp16)
7132 size = 2;
7133 return size;
7134 }
7135
7136 /* Return the size of the immediate operand N. */
7137
7138 static int
7139 imm_size (unsigned int n)
7140 {
7141 int size = 4;
7142 if (i.types[n].bitfield.imm64)
7143 size = 8;
7144 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7145 size = 1;
7146 else if (i.types[n].bitfield.imm16)
7147 size = 2;
7148 return size;
7149 }
7150
7151 static void
7152 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7153 {
7154 char *p;
7155 unsigned int n;
7156
7157 for (n = 0; n < i.operands; n++)
7158 {
7159 if (i.types[n].bitfield.vec_disp8
7160 || operand_type_check (i.types[n], disp))
7161 {
7162 if (i.op[n].disps->X_op == O_constant)
7163 {
7164 int size = disp_size (n);
7165 offsetT val = i.op[n].disps->X_add_number;
7166
7167 if (i.types[n].bitfield.vec_disp8)
7168 val >>= i.memshift;
7169 val = offset_in_range (val, size);
7170 p = frag_more (size);
7171 md_number_to_chars (p, val, size);
7172 }
7173 else
7174 {
7175 enum bfd_reloc_code_real reloc_type;
7176 int size = disp_size (n);
7177 int sign = i.types[n].bitfield.disp32s;
7178 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7179
7180 /* We can't have 8 bit displacement here. */
7181 gas_assert (!i.types[n].bitfield.disp8);
7182
7183 /* The PC relative address is computed relative
7184 to the instruction boundary, so in case immediate
7185 fields follows, we need to adjust the value. */
7186 if (pcrel && i.imm_operands)
7187 {
7188 unsigned int n1;
7189 int sz = 0;
7190
7191 for (n1 = 0; n1 < i.operands; n1++)
7192 if (operand_type_check (i.types[n1], imm))
7193 {
7194 /* Only one immediate is allowed for PC
7195 relative address. */
7196 gas_assert (sz == 0);
7197 sz = imm_size (n1);
7198 i.op[n].disps->X_add_number -= sz;
7199 }
7200 /* We should find the immediate. */
7201 gas_assert (sz != 0);
7202 }
7203
7204 p = frag_more (size);
7205 reloc_type = reloc (size, pcrel, sign,
7206 (i.bnd_prefix != NULL
7207 || add_bnd_prefix),
7208 i.reloc[n]);
7209 if (GOT_symbol
7210 && GOT_symbol == i.op[n].disps->X_add_symbol
7211 && (((reloc_type == BFD_RELOC_32
7212 || reloc_type == BFD_RELOC_X86_64_32S
7213 || (reloc_type == BFD_RELOC_64
7214 && object_64bit))
7215 && (i.op[n].disps->X_op == O_symbol
7216 || (i.op[n].disps->X_op == O_add
7217 && ((symbol_get_value_expression
7218 (i.op[n].disps->X_op_symbol)->X_op)
7219 == O_subtract))))
7220 || reloc_type == BFD_RELOC_32_PCREL))
7221 {
7222 offsetT add;
7223
7224 if (insn_start_frag == frag_now)
7225 add = (p - frag_now->fr_literal) - insn_start_off;
7226 else
7227 {
7228 fragS *fr;
7229
7230 add = insn_start_frag->fr_fix - insn_start_off;
7231 for (fr = insn_start_frag->fr_next;
7232 fr && fr != frag_now; fr = fr->fr_next)
7233 add += fr->fr_fix;
7234 add += p - frag_now->fr_literal;
7235 }
7236
7237 if (!object_64bit)
7238 {
7239 reloc_type = BFD_RELOC_386_GOTPC;
7240 i.op[n].imms->X_add_number += add;
7241 }
7242 else if (reloc_type == BFD_RELOC_64)
7243 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7244 else
7245 /* Don't do the adjustment for x86-64, as there
7246 the pcrel addressing is relative to the _next_
7247 insn, and that is taken care of in other code. */
7248 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7249 }
7250 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7251 i.op[n].disps, pcrel, reloc_type);
7252 }
7253 }
7254 }
7255 }
7256
7257 static void
7258 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7259 {
7260 char *p;
7261 unsigned int n;
7262
7263 for (n = 0; n < i.operands; n++)
7264 {
7265 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7266 if (i.rounding && (int) n == i.rounding->operand)
7267 continue;
7268
7269 if (operand_type_check (i.types[n], imm))
7270 {
7271 if (i.op[n].imms->X_op == O_constant)
7272 {
7273 int size = imm_size (n);
7274 offsetT val;
7275
7276 val = offset_in_range (i.op[n].imms->X_add_number,
7277 size);
7278 p = frag_more (size);
7279 md_number_to_chars (p, val, size);
7280 }
7281 else
7282 {
7283 /* Not absolute_section.
7284 Need a 32-bit fixup (don't support 8bit
7285 non-absolute imms). Try to support other
7286 sizes ... */
7287 enum bfd_reloc_code_real reloc_type;
7288 int size = imm_size (n);
7289 int sign;
7290
7291 if (i.types[n].bitfield.imm32s
7292 && (i.suffix == QWORD_MNEM_SUFFIX
7293 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7294 sign = 1;
7295 else
7296 sign = 0;
7297
7298 p = frag_more (size);
7299 reloc_type = reloc (size, 0, sign, 0, i.reloc[n]);
7300
7301 /* This is tough to explain. We end up with this one if we
7302 * have operands that look like
7303 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7304 * obtain the absolute address of the GOT, and it is strongly
7305 * preferable from a performance point of view to avoid using
7306 * a runtime relocation for this. The actual sequence of
7307 * instructions often look something like:
7308 *
7309 * call .L66
7310 * .L66:
7311 * popl %ebx
7312 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7313 *
7314 * The call and pop essentially return the absolute address
7315 * of the label .L66 and store it in %ebx. The linker itself
7316 * will ultimately change the first operand of the addl so
7317 * that %ebx points to the GOT, but to keep things simple, the
7318 * .o file must have this operand set so that it generates not
7319 * the absolute address of .L66, but the absolute address of
7320 * itself. This allows the linker itself simply treat a GOTPC
7321 * relocation as asking for a pcrel offset to the GOT to be
7322 * added in, and the addend of the relocation is stored in the
7323 * operand field for the instruction itself.
7324 *
7325 * Our job here is to fix the operand so that it would add
7326 * the correct offset so that %ebx would point to itself. The
7327 * thing that is tricky is that .-.L66 will point to the
7328 * beginning of the instruction, so we need to further modify
7329 * the operand so that it will point to itself. There are
7330 * other cases where you have something like:
7331 *
7332 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7333 *
7334 * and here no correction would be required. Internally in
7335 * the assembler we treat operands of this form as not being
7336 * pcrel since the '.' is explicitly mentioned, and I wonder
7337 * whether it would simplify matters to do it this way. Who
7338 * knows. In earlier versions of the PIC patches, the
7339 * pcrel_adjust field was used to store the correction, but
7340 * since the expression is not pcrel, I felt it would be
7341 * confusing to do it this way. */
7342
7343 if ((reloc_type == BFD_RELOC_32
7344 || reloc_type == BFD_RELOC_X86_64_32S
7345 || reloc_type == BFD_RELOC_64)
7346 && GOT_symbol
7347 && GOT_symbol == i.op[n].imms->X_add_symbol
7348 && (i.op[n].imms->X_op == O_symbol
7349 || (i.op[n].imms->X_op == O_add
7350 && ((symbol_get_value_expression
7351 (i.op[n].imms->X_op_symbol)->X_op)
7352 == O_subtract))))
7353 {
7354 offsetT add;
7355
7356 if (insn_start_frag == frag_now)
7357 add = (p - frag_now->fr_literal) - insn_start_off;
7358 else
7359 {
7360 fragS *fr;
7361
7362 add = insn_start_frag->fr_fix - insn_start_off;
7363 for (fr = insn_start_frag->fr_next;
7364 fr && fr != frag_now; fr = fr->fr_next)
7365 add += fr->fr_fix;
7366 add += p - frag_now->fr_literal;
7367 }
7368
7369 if (!object_64bit)
7370 reloc_type = BFD_RELOC_386_GOTPC;
7371 else if (size == 4)
7372 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7373 else if (size == 8)
7374 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7375 i.op[n].imms->X_add_number += add;
7376 }
7377 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7378 i.op[n].imms, 0, reloc_type);
7379 }
7380 }
7381 }
7382 }
7383 \f
7384 /* x86_cons_fix_new is called via the expression parsing code when a
7385 reloc is needed. We use this hook to get the correct .got reloc. */
7386 static int cons_sign = -1;
7387
7388 void
7389 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7390 expressionS *exp, bfd_reloc_code_real_type r)
7391 {
7392 r = reloc (len, 0, cons_sign, 0, r);
7393
7394 #ifdef TE_PE
7395 if (exp->X_op == O_secrel)
7396 {
7397 exp->X_op = O_symbol;
7398 r = BFD_RELOC_32_SECREL;
7399 }
7400 #endif
7401
7402 fix_new_exp (frag, off, len, exp, 0, r);
7403 }
7404
7405 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7406 purpose of the `.dc.a' internal pseudo-op. */
7407
7408 int
7409 x86_address_bytes (void)
7410 {
7411 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7412 return 4;
7413 return stdoutput->arch_info->bits_per_address / 8;
7414 }
7415
7416 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7417 || defined (LEX_AT)
7418 # define lex_got(reloc, adjust, types, bnd_prefix) NULL
7419 #else
7420 /* Parse operands of the form
7421 <symbol>@GOTOFF+<nnn>
7422 and similar .plt or .got references.
7423
7424 If we find one, set up the correct relocation in RELOC and copy the
7425 input string, minus the `@GOTOFF' into a malloc'd buffer for
7426 parsing by the calling routine. Return this buffer, and if ADJUST
7427 is non-null set it to the length of the string we removed from the
7428 input line. Otherwise return NULL. */
7429 static char *
7430 lex_got (enum bfd_reloc_code_real *rel,
7431 int *adjust,
7432 i386_operand_type *types,
7433 int bnd_prefix)
7434 {
7435 /* Some of the relocations depend on the size of what field is to
7436 be relocated. But in our callers i386_immediate and i386_displacement
7437 we don't yet know the operand size (this will be set by insn
7438 matching). Hence we record the word32 relocation here,
7439 and adjust the reloc according to the real size in reloc(). */
7440 static const struct {
7441 const char *str;
7442 int len;
7443 const enum bfd_reloc_code_real rel[2];
7444 const i386_operand_type types64;
7445 } gotrel[] = {
7446 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7447 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7448 BFD_RELOC_SIZE32 },
7449 OPERAND_TYPE_IMM32_64 },
7450 #endif
7451 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7452 BFD_RELOC_X86_64_PLTOFF64 },
7453 OPERAND_TYPE_IMM64 },
7454 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7455 BFD_RELOC_X86_64_PLT32 },
7456 OPERAND_TYPE_IMM32_32S_DISP32 },
7457 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7458 BFD_RELOC_X86_64_GOTPLT64 },
7459 OPERAND_TYPE_IMM64_DISP64 },
7460 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7461 BFD_RELOC_X86_64_GOTOFF64 },
7462 OPERAND_TYPE_IMM64_DISP64 },
7463 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7464 BFD_RELOC_X86_64_GOTPCREL },
7465 OPERAND_TYPE_IMM32_32S_DISP32 },
7466 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7467 BFD_RELOC_X86_64_TLSGD },
7468 OPERAND_TYPE_IMM32_32S_DISP32 },
7469 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7470 _dummy_first_bfd_reloc_code_real },
7471 OPERAND_TYPE_NONE },
7472 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7473 BFD_RELOC_X86_64_TLSLD },
7474 OPERAND_TYPE_IMM32_32S_DISP32 },
7475 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7476 BFD_RELOC_X86_64_GOTTPOFF },
7477 OPERAND_TYPE_IMM32_32S_DISP32 },
7478 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7479 BFD_RELOC_X86_64_TPOFF32 },
7480 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7481 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7482 _dummy_first_bfd_reloc_code_real },
7483 OPERAND_TYPE_NONE },
7484 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7485 BFD_RELOC_X86_64_DTPOFF32 },
7486 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7487 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7488 _dummy_first_bfd_reloc_code_real },
7489 OPERAND_TYPE_NONE },
7490 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7491 _dummy_first_bfd_reloc_code_real },
7492 OPERAND_TYPE_NONE },
7493 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7494 BFD_RELOC_X86_64_GOT32 },
7495 OPERAND_TYPE_IMM32_32S_64_DISP32 },
7496 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7497 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7498 OPERAND_TYPE_IMM32_32S_DISP32 },
7499 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7500 BFD_RELOC_X86_64_TLSDESC_CALL },
7501 OPERAND_TYPE_IMM32_32S_DISP32 },
7502 };
7503 char *cp;
7504 unsigned int j;
7505
7506 #if defined (OBJ_MAYBE_ELF)
7507 if (!IS_ELF)
7508 return NULL;
7509 #endif
7510
7511 for (cp = input_line_pointer; *cp != '@'; cp++)
7512 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7513 return NULL;
7514
7515 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7516 {
7517 int len = gotrel[j].len;
7518 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7519 {
7520 if (gotrel[j].rel[object_64bit] != 0)
7521 {
7522 int first, second;
7523 char *tmpbuf, *past_reloc;
7524
7525 *rel = gotrel[j].rel[object_64bit];
7526
7527 if (types)
7528 {
7529 if (flag_code != CODE_64BIT)
7530 {
7531 types->bitfield.imm32 = 1;
7532 types->bitfield.disp32 = 1;
7533 }
7534 else
7535 *types = gotrel[j].types64;
7536 }
7537
7538 if (j != 0 && GOT_symbol == NULL)
7539 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7540
7541 /* The length of the first part of our input line. */
7542 first = cp - input_line_pointer;
7543
7544 /* The second part goes from after the reloc token until
7545 (and including) an end_of_line char or comma. */
7546 past_reloc = cp + 1 + len;
7547 cp = past_reloc;
7548 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7549 ++cp;
7550 second = cp + 1 - past_reloc;
7551
7552 /* Allocate and copy string. The trailing NUL shouldn't
7553 be necessary, but be safe. */
7554 tmpbuf = (char *) xmalloc (first + second + 2);
7555 memcpy (tmpbuf, input_line_pointer, first);
7556 if (second != 0 && *past_reloc != ' ')
7557 /* Replace the relocation token with ' ', so that
7558 errors like foo@GOTOFF1 will be detected. */
7559 tmpbuf[first++] = ' ';
7560 else
7561 /* Increment length by 1 if the relocation token is
7562 removed. */
7563 len++;
7564 if (adjust)
7565 *adjust = len;
7566 memcpy (tmpbuf + first, past_reloc, second);
7567 tmpbuf[first + second] = '\0';
7568 if (bnd_prefix && *rel == BFD_RELOC_X86_64_PLT32)
7569 *rel = BFD_RELOC_X86_64_PLT32_BND;
7570 return tmpbuf;
7571 }
7572
7573 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7574 gotrel[j].str, 1 << (5 + object_64bit));
7575 return NULL;
7576 }
7577 }
7578
7579 /* Might be a symbol version string. Don't as_bad here. */
7580 return NULL;
7581 }
7582 #endif
7583
7584 #ifdef TE_PE
7585 #ifdef lex_got
7586 #undef lex_got
7587 #endif
7588 /* Parse operands of the form
7589 <symbol>@SECREL32+<nnn>
7590
7591 If we find one, set up the correct relocation in RELOC and copy the
7592 input string, minus the `@SECREL32' into a malloc'd buffer for
7593 parsing by the calling routine. Return this buffer, and if ADJUST
7594 is non-null set it to the length of the string we removed from the
7595 input line. Otherwise return NULL.
7596
7597 This function is copied from the ELF version above adjusted for PE targets. */
7598
7599 static char *
7600 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7601 int *adjust ATTRIBUTE_UNUSED,
7602 i386_operand_type *types,
7603 int bnd_prefix ATTRIBUTE_UNUSED)
7604 {
7605 static const struct
7606 {
7607 const char *str;
7608 int len;
7609 const enum bfd_reloc_code_real rel[2];
7610 const i386_operand_type types64;
7611 }
7612 gotrel[] =
7613 {
7614 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7615 BFD_RELOC_32_SECREL },
7616 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7617 };
7618
7619 char *cp;
7620 unsigned j;
7621
7622 for (cp = input_line_pointer; *cp != '@'; cp++)
7623 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7624 return NULL;
7625
7626 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7627 {
7628 int len = gotrel[j].len;
7629
7630 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7631 {
7632 if (gotrel[j].rel[object_64bit] != 0)
7633 {
7634 int first, second;
7635 char *tmpbuf, *past_reloc;
7636
7637 *rel = gotrel[j].rel[object_64bit];
7638 if (adjust)
7639 *adjust = len;
7640
7641 if (types)
7642 {
7643 if (flag_code != CODE_64BIT)
7644 {
7645 types->bitfield.imm32 = 1;
7646 types->bitfield.disp32 = 1;
7647 }
7648 else
7649 *types = gotrel[j].types64;
7650 }
7651
7652 /* The length of the first part of our input line. */
7653 first = cp - input_line_pointer;
7654
7655 /* The second part goes from after the reloc token until
7656 (and including) an end_of_line char or comma. */
7657 past_reloc = cp + 1 + len;
7658 cp = past_reloc;
7659 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7660 ++cp;
7661 second = cp + 1 - past_reloc;
7662
7663 /* Allocate and copy string. The trailing NUL shouldn't
7664 be necessary, but be safe. */
7665 tmpbuf = (char *) xmalloc (first + second + 2);
7666 memcpy (tmpbuf, input_line_pointer, first);
7667 if (second != 0 && *past_reloc != ' ')
7668 /* Replace the relocation token with ' ', so that
7669 errors like foo@SECLREL321 will be detected. */
7670 tmpbuf[first++] = ' ';
7671 memcpy (tmpbuf + first, past_reloc, second);
7672 tmpbuf[first + second] = '\0';
7673 return tmpbuf;
7674 }
7675
7676 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7677 gotrel[j].str, 1 << (5 + object_64bit));
7678 return NULL;
7679 }
7680 }
7681
7682 /* Might be a symbol version string. Don't as_bad here. */
7683 return NULL;
7684 }
7685
7686 #endif /* TE_PE */
7687
7688 bfd_reloc_code_real_type
7689 x86_cons (expressionS *exp, int size)
7690 {
7691 bfd_reloc_code_real_type got_reloc = NO_RELOC;
7692
7693 intel_syntax = -intel_syntax;
7694
7695 exp->X_md = 0;
7696 if (size == 4 || (object_64bit && size == 8))
7697 {
7698 /* Handle @GOTOFF and the like in an expression. */
7699 char *save;
7700 char *gotfree_input_line;
7701 int adjust = 0;
7702
7703 save = input_line_pointer;
7704 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL, 0);
7705 if (gotfree_input_line)
7706 input_line_pointer = gotfree_input_line;
7707
7708 expression (exp);
7709
7710 if (gotfree_input_line)
7711 {
7712 /* expression () has merrily parsed up to the end of line,
7713 or a comma - in the wrong buffer. Transfer how far
7714 input_line_pointer has moved to the right buffer. */
7715 input_line_pointer = (save
7716 + (input_line_pointer - gotfree_input_line)
7717 + adjust);
7718 free (gotfree_input_line);
7719 if (exp->X_op == O_constant
7720 || exp->X_op == O_absent
7721 || exp->X_op == O_illegal
7722 || exp->X_op == O_register
7723 || exp->X_op == O_big)
7724 {
7725 char c = *input_line_pointer;
7726 *input_line_pointer = 0;
7727 as_bad (_("missing or invalid expression `%s'"), save);
7728 *input_line_pointer = c;
7729 }
7730 }
7731 }
7732 else
7733 expression (exp);
7734
7735 intel_syntax = -intel_syntax;
7736
7737 if (intel_syntax)
7738 i386_intel_simplify (exp);
7739
7740 return got_reloc;
7741 }
7742
7743 static void
7744 signed_cons (int size)
7745 {
7746 if (flag_code == CODE_64BIT)
7747 cons_sign = 1;
7748 cons (size);
7749 cons_sign = -1;
7750 }
7751
7752 #ifdef TE_PE
7753 static void
7754 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
7755 {
7756 expressionS exp;
7757
7758 do
7759 {
7760 expression (&exp);
7761 if (exp.X_op == O_symbol)
7762 exp.X_op = O_secrel;
7763
7764 emit_expr (&exp, 4);
7765 }
7766 while (*input_line_pointer++ == ',');
7767
7768 input_line_pointer--;
7769 demand_empty_rest_of_line ();
7770 }
7771 #endif
7772
7773 /* Handle Vector operations. */
7774
7775 static char *
7776 check_VecOperations (char *op_string, char *op_end)
7777 {
7778 const reg_entry *mask;
7779 const char *saved;
7780 char *end_op;
7781
7782 while (*op_string
7783 && (op_end == NULL || op_string < op_end))
7784 {
7785 saved = op_string;
7786 if (*op_string == '{')
7787 {
7788 op_string++;
7789
7790 /* Check broadcasts. */
7791 if (strncmp (op_string, "1to", 3) == 0)
7792 {
7793 int bcst_type;
7794
7795 if (i.broadcast)
7796 goto duplicated_vec_op;
7797
7798 op_string += 3;
7799 if (*op_string == '8')
7800 bcst_type = BROADCAST_1TO8;
7801 else if (*op_string == '4')
7802 bcst_type = BROADCAST_1TO4;
7803 else if (*op_string == '2')
7804 bcst_type = BROADCAST_1TO2;
7805 else if (*op_string == '1'
7806 && *(op_string+1) == '6')
7807 {
7808 bcst_type = BROADCAST_1TO16;
7809 op_string++;
7810 }
7811 else
7812 {
7813 as_bad (_("Unsupported broadcast: `%s'"), saved);
7814 return NULL;
7815 }
7816 op_string++;
7817
7818 broadcast_op.type = bcst_type;
7819 broadcast_op.operand = this_operand;
7820 i.broadcast = &broadcast_op;
7821 }
7822 /* Check masking operation. */
7823 else if ((mask = parse_register (op_string, &end_op)) != NULL)
7824 {
7825 /* k0 can't be used for write mask. */
7826 if (mask->reg_num == 0)
7827 {
7828 as_bad (_("`%s' can't be used for write mask"),
7829 op_string);
7830 return NULL;
7831 }
7832
7833 if (!i.mask)
7834 {
7835 mask_op.mask = mask;
7836 mask_op.zeroing = 0;
7837 mask_op.operand = this_operand;
7838 i.mask = &mask_op;
7839 }
7840 else
7841 {
7842 if (i.mask->mask)
7843 goto duplicated_vec_op;
7844
7845 i.mask->mask = mask;
7846
7847 /* Only "{z}" is allowed here. No need to check
7848 zeroing mask explicitly. */
7849 if (i.mask->operand != this_operand)
7850 {
7851 as_bad (_("invalid write mask `%s'"), saved);
7852 return NULL;
7853 }
7854 }
7855
7856 op_string = end_op;
7857 }
7858 /* Check zeroing-flag for masking operation. */
7859 else if (*op_string == 'z')
7860 {
7861 if (!i.mask)
7862 {
7863 mask_op.mask = NULL;
7864 mask_op.zeroing = 1;
7865 mask_op.operand = this_operand;
7866 i.mask = &mask_op;
7867 }
7868 else
7869 {
7870 if (i.mask->zeroing)
7871 {
7872 duplicated_vec_op:
7873 as_bad (_("duplicated `%s'"), saved);
7874 return NULL;
7875 }
7876
7877 i.mask->zeroing = 1;
7878
7879 /* Only "{%k}" is allowed here. No need to check mask
7880 register explicitly. */
7881 if (i.mask->operand != this_operand)
7882 {
7883 as_bad (_("invalid zeroing-masking `%s'"),
7884 saved);
7885 return NULL;
7886 }
7887 }
7888
7889 op_string++;
7890 }
7891 else
7892 goto unknown_vec_op;
7893
7894 if (*op_string != '}')
7895 {
7896 as_bad (_("missing `}' in `%s'"), saved);
7897 return NULL;
7898 }
7899 op_string++;
7900 continue;
7901 }
7902 unknown_vec_op:
7903 /* We don't know this one. */
7904 as_bad (_("unknown vector operation: `%s'"), saved);
7905 return NULL;
7906 }
7907
7908 return op_string;
7909 }
7910
7911 static int
7912 i386_immediate (char *imm_start)
7913 {
7914 char *save_input_line_pointer;
7915 char *gotfree_input_line;
7916 segT exp_seg = 0;
7917 expressionS *exp;
7918 i386_operand_type types;
7919
7920 operand_type_set (&types, ~0);
7921
7922 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
7923 {
7924 as_bad (_("at most %d immediate operands are allowed"),
7925 MAX_IMMEDIATE_OPERANDS);
7926 return 0;
7927 }
7928
7929 exp = &im_expressions[i.imm_operands++];
7930 i.op[this_operand].imms = exp;
7931
7932 if (is_space_char (*imm_start))
7933 ++imm_start;
7934
7935 save_input_line_pointer = input_line_pointer;
7936 input_line_pointer = imm_start;
7937
7938 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types,
7939 (i.bnd_prefix != NULL
7940 || add_bnd_prefix));
7941 if (gotfree_input_line)
7942 input_line_pointer = gotfree_input_line;
7943
7944 exp_seg = expression (exp);
7945
7946 SKIP_WHITESPACE ();
7947
7948 /* Handle vector operations. */
7949 if (*input_line_pointer == '{')
7950 {
7951 input_line_pointer = check_VecOperations (input_line_pointer,
7952 NULL);
7953 if (input_line_pointer == NULL)
7954 return 0;
7955 }
7956
7957 if (*input_line_pointer)
7958 as_bad (_("junk `%s' after expression"), input_line_pointer);
7959
7960 input_line_pointer = save_input_line_pointer;
7961 if (gotfree_input_line)
7962 {
7963 free (gotfree_input_line);
7964
7965 if (exp->X_op == O_constant || exp->X_op == O_register)
7966 exp->X_op = O_illegal;
7967 }
7968
7969 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
7970 }
7971
7972 static int
7973 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
7974 i386_operand_type types, const char *imm_start)
7975 {
7976 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
7977 {
7978 if (imm_start)
7979 as_bad (_("missing or invalid immediate expression `%s'"),
7980 imm_start);
7981 return 0;
7982 }
7983 else if (exp->X_op == O_constant)
7984 {
7985 /* Size it properly later. */
7986 i.types[this_operand].bitfield.imm64 = 1;
7987 /* If not 64bit, sign extend val. */
7988 if (flag_code != CODE_64BIT
7989 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
7990 exp->X_add_number
7991 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
7992 }
7993 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
7994 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
7995 && exp_seg != absolute_section
7996 && exp_seg != text_section
7997 && exp_seg != data_section
7998 && exp_seg != bss_section
7999 && exp_seg != undefined_section
8000 && !bfd_is_com_section (exp_seg))
8001 {
8002 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8003 return 0;
8004 }
8005 #endif
8006 else if (!intel_syntax && exp_seg == reg_section)
8007 {
8008 if (imm_start)
8009 as_bad (_("illegal immediate register operand %s"), imm_start);
8010 return 0;
8011 }
8012 else
8013 {
8014 /* This is an address. The size of the address will be
8015 determined later, depending on destination register,
8016 suffix, or the default for the section. */
8017 i.types[this_operand].bitfield.imm8 = 1;
8018 i.types[this_operand].bitfield.imm16 = 1;
8019 i.types[this_operand].bitfield.imm32 = 1;
8020 i.types[this_operand].bitfield.imm32s = 1;
8021 i.types[this_operand].bitfield.imm64 = 1;
8022 i.types[this_operand] = operand_type_and (i.types[this_operand],
8023 types);
8024 }
8025
8026 return 1;
8027 }
8028
8029 static char *
8030 i386_scale (char *scale)
8031 {
8032 offsetT val;
8033 char *save = input_line_pointer;
8034
8035 input_line_pointer = scale;
8036 val = get_absolute_expression ();
8037
8038 switch (val)
8039 {
8040 case 1:
8041 i.log2_scale_factor = 0;
8042 break;
8043 case 2:
8044 i.log2_scale_factor = 1;
8045 break;
8046 case 4:
8047 i.log2_scale_factor = 2;
8048 break;
8049 case 8:
8050 i.log2_scale_factor = 3;
8051 break;
8052 default:
8053 {
8054 char sep = *input_line_pointer;
8055
8056 *input_line_pointer = '\0';
8057 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8058 scale);
8059 *input_line_pointer = sep;
8060 input_line_pointer = save;
8061 return NULL;
8062 }
8063 }
8064 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8065 {
8066 as_warn (_("scale factor of %d without an index register"),
8067 1 << i.log2_scale_factor);
8068 i.log2_scale_factor = 0;
8069 }
8070 scale = input_line_pointer;
8071 input_line_pointer = save;
8072 return scale;
8073 }
8074
8075 static int
8076 i386_displacement (char *disp_start, char *disp_end)
8077 {
8078 expressionS *exp;
8079 segT exp_seg = 0;
8080 char *save_input_line_pointer;
8081 char *gotfree_input_line;
8082 int override;
8083 i386_operand_type bigdisp, types = anydisp;
8084 int ret;
8085
8086 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8087 {
8088 as_bad (_("at most %d displacement operands are allowed"),
8089 MAX_MEMORY_OPERANDS);
8090 return 0;
8091 }
8092
8093 operand_type_set (&bigdisp, 0);
8094 if ((i.types[this_operand].bitfield.jumpabsolute)
8095 || (!current_templates->start->opcode_modifier.jump
8096 && !current_templates->start->opcode_modifier.jumpdword))
8097 {
8098 bigdisp.bitfield.disp32 = 1;
8099 override = (i.prefix[ADDR_PREFIX] != 0);
8100 if (flag_code == CODE_64BIT)
8101 {
8102 if (!override)
8103 {
8104 bigdisp.bitfield.disp32s = 1;
8105 bigdisp.bitfield.disp64 = 1;
8106 }
8107 }
8108 else if ((flag_code == CODE_16BIT) ^ override)
8109 {
8110 bigdisp.bitfield.disp32 = 0;
8111 bigdisp.bitfield.disp16 = 1;
8112 }
8113 }
8114 else
8115 {
8116 /* For PC-relative branches, the width of the displacement
8117 is dependent upon data size, not address size. */
8118 override = (i.prefix[DATA_PREFIX] != 0);
8119 if (flag_code == CODE_64BIT)
8120 {
8121 if (override || i.suffix == WORD_MNEM_SUFFIX)
8122 bigdisp.bitfield.disp16 = 1;
8123 else
8124 {
8125 bigdisp.bitfield.disp32 = 1;
8126 bigdisp.bitfield.disp32s = 1;
8127 }
8128 }
8129 else
8130 {
8131 if (!override)
8132 override = (i.suffix == (flag_code != CODE_16BIT
8133 ? WORD_MNEM_SUFFIX
8134 : LONG_MNEM_SUFFIX));
8135 bigdisp.bitfield.disp32 = 1;
8136 if ((flag_code == CODE_16BIT) ^ override)
8137 {
8138 bigdisp.bitfield.disp32 = 0;
8139 bigdisp.bitfield.disp16 = 1;
8140 }
8141 }
8142 }
8143 i.types[this_operand] = operand_type_or (i.types[this_operand],
8144 bigdisp);
8145
8146 exp = &disp_expressions[i.disp_operands];
8147 i.op[this_operand].disps = exp;
8148 i.disp_operands++;
8149 save_input_line_pointer = input_line_pointer;
8150 input_line_pointer = disp_start;
8151 END_STRING_AND_SAVE (disp_end);
8152
8153 #ifndef GCC_ASM_O_HACK
8154 #define GCC_ASM_O_HACK 0
8155 #endif
8156 #if GCC_ASM_O_HACK
8157 END_STRING_AND_SAVE (disp_end + 1);
8158 if (i.types[this_operand].bitfield.baseIndex
8159 && displacement_string_end[-1] == '+')
8160 {
8161 /* This hack is to avoid a warning when using the "o"
8162 constraint within gcc asm statements.
8163 For instance:
8164
8165 #define _set_tssldt_desc(n,addr,limit,type) \
8166 __asm__ __volatile__ ( \
8167 "movw %w2,%0\n\t" \
8168 "movw %w1,2+%0\n\t" \
8169 "rorl $16,%1\n\t" \
8170 "movb %b1,4+%0\n\t" \
8171 "movb %4,5+%0\n\t" \
8172 "movb $0,6+%0\n\t" \
8173 "movb %h1,7+%0\n\t" \
8174 "rorl $16,%1" \
8175 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8176
8177 This works great except that the output assembler ends
8178 up looking a bit weird if it turns out that there is
8179 no offset. You end up producing code that looks like:
8180
8181 #APP
8182 movw $235,(%eax)
8183 movw %dx,2+(%eax)
8184 rorl $16,%edx
8185 movb %dl,4+(%eax)
8186 movb $137,5+(%eax)
8187 movb $0,6+(%eax)
8188 movb %dh,7+(%eax)
8189 rorl $16,%edx
8190 #NO_APP
8191
8192 So here we provide the missing zero. */
8193
8194 *displacement_string_end = '0';
8195 }
8196 #endif
8197 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types,
8198 (i.bnd_prefix != NULL
8199 || add_bnd_prefix));
8200 if (gotfree_input_line)
8201 input_line_pointer = gotfree_input_line;
8202
8203 exp_seg = expression (exp);
8204
8205 SKIP_WHITESPACE ();
8206 if (*input_line_pointer)
8207 as_bad (_("junk `%s' after expression"), input_line_pointer);
8208 #if GCC_ASM_O_HACK
8209 RESTORE_END_STRING (disp_end + 1);
8210 #endif
8211 input_line_pointer = save_input_line_pointer;
8212 if (gotfree_input_line)
8213 {
8214 free (gotfree_input_line);
8215
8216 if (exp->X_op == O_constant || exp->X_op == O_register)
8217 exp->X_op = O_illegal;
8218 }
8219
8220 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8221
8222 RESTORE_END_STRING (disp_end);
8223
8224 return ret;
8225 }
8226
8227 static int
8228 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8229 i386_operand_type types, const char *disp_start)
8230 {
8231 i386_operand_type bigdisp;
8232 int ret = 1;
8233
8234 /* We do this to make sure that the section symbol is in
8235 the symbol table. We will ultimately change the relocation
8236 to be relative to the beginning of the section. */
8237 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8238 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8239 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8240 {
8241 if (exp->X_op != O_symbol)
8242 goto inv_disp;
8243
8244 if (S_IS_LOCAL (exp->X_add_symbol)
8245 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8246 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8247 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8248 exp->X_op = O_subtract;
8249 exp->X_op_symbol = GOT_symbol;
8250 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8251 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8252 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8253 i.reloc[this_operand] = BFD_RELOC_64;
8254 else
8255 i.reloc[this_operand] = BFD_RELOC_32;
8256 }
8257
8258 else if (exp->X_op == O_absent
8259 || exp->X_op == O_illegal
8260 || exp->X_op == O_big)
8261 {
8262 inv_disp:
8263 as_bad (_("missing or invalid displacement expression `%s'"),
8264 disp_start);
8265 ret = 0;
8266 }
8267
8268 else if (flag_code == CODE_64BIT
8269 && !i.prefix[ADDR_PREFIX]
8270 && exp->X_op == O_constant)
8271 {
8272 /* Since displacement is signed extended to 64bit, don't allow
8273 disp32 and turn off disp32s if they are out of range. */
8274 i.types[this_operand].bitfield.disp32 = 0;
8275 if (!fits_in_signed_long (exp->X_add_number))
8276 {
8277 i.types[this_operand].bitfield.disp32s = 0;
8278 if (i.types[this_operand].bitfield.baseindex)
8279 {
8280 as_bad (_("0x%lx out range of signed 32bit displacement"),
8281 (long) exp->X_add_number);
8282 ret = 0;
8283 }
8284 }
8285 }
8286
8287 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8288 else if (exp->X_op != O_constant
8289 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8290 && exp_seg != absolute_section
8291 && exp_seg != text_section
8292 && exp_seg != data_section
8293 && exp_seg != bss_section
8294 && exp_seg != undefined_section
8295 && !bfd_is_com_section (exp_seg))
8296 {
8297 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8298 ret = 0;
8299 }
8300 #endif
8301
8302 /* Check if this is a displacement only operand. */
8303 bigdisp = i.types[this_operand];
8304 bigdisp.bitfield.disp8 = 0;
8305 bigdisp.bitfield.disp16 = 0;
8306 bigdisp.bitfield.disp32 = 0;
8307 bigdisp.bitfield.disp32s = 0;
8308 bigdisp.bitfield.disp64 = 0;
8309 if (operand_type_all_zero (&bigdisp))
8310 i.types[this_operand] = operand_type_and (i.types[this_operand],
8311 types);
8312
8313 return ret;
8314 }
8315
8316 /* Make sure the memory operand we've been dealt is valid.
8317 Return 1 on success, 0 on a failure. */
8318
8319 static int
8320 i386_index_check (const char *operand_string)
8321 {
8322 const char *kind = "base/index";
8323 enum flag_code addr_mode;
8324
8325 if (i.prefix[ADDR_PREFIX])
8326 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8327 else
8328 {
8329 addr_mode = flag_code;
8330
8331 #if INFER_ADDR_PREFIX
8332 if (i.mem_operands == 0)
8333 {
8334 /* Infer address prefix from the first memory operand. */
8335 const reg_entry *addr_reg = i.base_reg;
8336
8337 if (addr_reg == NULL)
8338 addr_reg = i.index_reg;
8339
8340 if (addr_reg)
8341 {
8342 if (addr_reg->reg_num == RegEip
8343 || addr_reg->reg_num == RegEiz
8344 || addr_reg->reg_type.bitfield.reg32)
8345 addr_mode = CODE_32BIT;
8346 else if (flag_code != CODE_64BIT
8347 && addr_reg->reg_type.bitfield.reg16)
8348 addr_mode = CODE_16BIT;
8349
8350 if (addr_mode != flag_code)
8351 {
8352 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8353 i.prefixes += 1;
8354 /* Change the size of any displacement too. At most one
8355 of Disp16 or Disp32 is set.
8356 FIXME. There doesn't seem to be any real need for
8357 separate Disp16 and Disp32 flags. The same goes for
8358 Imm16 and Imm32. Removing them would probably clean
8359 up the code quite a lot. */
8360 if (flag_code != CODE_64BIT
8361 && (i.types[this_operand].bitfield.disp16
8362 || i.types[this_operand].bitfield.disp32))
8363 i.types[this_operand]
8364 = operand_type_xor (i.types[this_operand], disp16_32);
8365 }
8366 }
8367 }
8368 #endif
8369 }
8370
8371 if (current_templates->start->opcode_modifier.isstring
8372 && !current_templates->start->opcode_modifier.immext
8373 && (current_templates->end[-1].opcode_modifier.isstring
8374 || i.mem_operands))
8375 {
8376 /* Memory operands of string insns are special in that they only allow
8377 a single register (rDI, rSI, or rBX) as their memory address. */
8378 const reg_entry *expected_reg;
8379 static const char *di_si[][2] =
8380 {
8381 { "esi", "edi" },
8382 { "si", "di" },
8383 { "rsi", "rdi" }
8384 };
8385 static const char *bx[] = { "ebx", "bx", "rbx" };
8386
8387 kind = "string address";
8388
8389 if (current_templates->start->opcode_modifier.w)
8390 {
8391 i386_operand_type type = current_templates->end[-1].operand_types[0];
8392
8393 if (!type.bitfield.baseindex
8394 || ((!i.mem_operands != !intel_syntax)
8395 && current_templates->end[-1].operand_types[1]
8396 .bitfield.baseindex))
8397 type = current_templates->end[-1].operand_types[1];
8398 expected_reg = hash_find (reg_hash,
8399 di_si[addr_mode][type.bitfield.esseg]);
8400
8401 }
8402 else
8403 expected_reg = hash_find (reg_hash, bx[addr_mode]);
8404
8405 if (i.base_reg != expected_reg
8406 || i.index_reg
8407 || operand_type_check (i.types[this_operand], disp))
8408 {
8409 /* The second memory operand must have the same size as
8410 the first one. */
8411 if (i.mem_operands
8412 && i.base_reg
8413 && !((addr_mode == CODE_64BIT
8414 && i.base_reg->reg_type.bitfield.reg64)
8415 || (addr_mode == CODE_32BIT
8416 ? i.base_reg->reg_type.bitfield.reg32
8417 : i.base_reg->reg_type.bitfield.reg16)))
8418 goto bad_address;
8419
8420 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8421 operand_string,
8422 intel_syntax ? '[' : '(',
8423 register_prefix,
8424 expected_reg->reg_name,
8425 intel_syntax ? ']' : ')');
8426 return 1;
8427 }
8428 else
8429 return 1;
8430
8431 bad_address:
8432 as_bad (_("`%s' is not a valid %s expression"),
8433 operand_string, kind);
8434 return 0;
8435 }
8436 else
8437 {
8438 if (addr_mode != CODE_16BIT)
8439 {
8440 /* 32-bit/64-bit checks. */
8441 if ((i.base_reg
8442 && (addr_mode == CODE_64BIT
8443 ? !i.base_reg->reg_type.bitfield.reg64
8444 : !i.base_reg->reg_type.bitfield.reg32)
8445 && (i.index_reg
8446 || (i.base_reg->reg_num
8447 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8448 || (i.index_reg
8449 && !i.index_reg->reg_type.bitfield.regxmm
8450 && !i.index_reg->reg_type.bitfield.regymm
8451 && !i.index_reg->reg_type.bitfield.regzmm
8452 && ((addr_mode == CODE_64BIT
8453 ? !(i.index_reg->reg_type.bitfield.reg64
8454 || i.index_reg->reg_num == RegRiz)
8455 : !(i.index_reg->reg_type.bitfield.reg32
8456 || i.index_reg->reg_num == RegEiz))
8457 || !i.index_reg->reg_type.bitfield.baseindex)))
8458 goto bad_address;
8459 }
8460 else
8461 {
8462 /* 16-bit checks. */
8463 if ((i.base_reg
8464 && (!i.base_reg->reg_type.bitfield.reg16
8465 || !i.base_reg->reg_type.bitfield.baseindex))
8466 || (i.index_reg
8467 && (!i.index_reg->reg_type.bitfield.reg16
8468 || !i.index_reg->reg_type.bitfield.baseindex
8469 || !(i.base_reg
8470 && i.base_reg->reg_num < 6
8471 && i.index_reg->reg_num >= 6
8472 && i.log2_scale_factor == 0))))
8473 goto bad_address;
8474 }
8475 }
8476 return 1;
8477 }
8478
8479 /* Handle vector immediates. */
8480
8481 static int
8482 RC_SAE_immediate (const char *imm_start)
8483 {
8484 unsigned int match_found, j;
8485 const char *pstr = imm_start;
8486 expressionS *exp;
8487
8488 if (*pstr != '{')
8489 return 0;
8490
8491 pstr++;
8492 match_found = 0;
8493 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8494 {
8495 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8496 {
8497 if (!i.rounding)
8498 {
8499 rc_op.type = RC_NamesTable[j].type;
8500 rc_op.operand = this_operand;
8501 i.rounding = &rc_op;
8502 }
8503 else
8504 {
8505 as_bad (_("duplicated `%s'"), imm_start);
8506 return 0;
8507 }
8508 pstr += RC_NamesTable[j].len;
8509 match_found = 1;
8510 break;
8511 }
8512 }
8513 if (!match_found)
8514 return 0;
8515
8516 if (*pstr++ != '}')
8517 {
8518 as_bad (_("Missing '}': '%s'"), imm_start);
8519 return 0;
8520 }
8521 /* RC/SAE immediate string should contain nothing more. */;
8522 if (*pstr != 0)
8523 {
8524 as_bad (_("Junk after '}': '%s'"), imm_start);
8525 return 0;
8526 }
8527
8528 exp = &im_expressions[i.imm_operands++];
8529 i.op[this_operand].imms = exp;
8530
8531 exp->X_op = O_constant;
8532 exp->X_add_number = 0;
8533 exp->X_add_symbol = (symbolS *) 0;
8534 exp->X_op_symbol = (symbolS *) 0;
8535
8536 i.types[this_operand].bitfield.imm8 = 1;
8537 return 1;
8538 }
8539
8540 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
8541 on error. */
8542
8543 static int
8544 i386_att_operand (char *operand_string)
8545 {
8546 const reg_entry *r;
8547 char *end_op;
8548 char *op_string = operand_string;
8549
8550 if (is_space_char (*op_string))
8551 ++op_string;
8552
8553 /* We check for an absolute prefix (differentiating,
8554 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
8555 if (*op_string == ABSOLUTE_PREFIX)
8556 {
8557 ++op_string;
8558 if (is_space_char (*op_string))
8559 ++op_string;
8560 i.types[this_operand].bitfield.jumpabsolute = 1;
8561 }
8562
8563 /* Check if operand is a register. */
8564 if ((r = parse_register (op_string, &end_op)) != NULL)
8565 {
8566 i386_operand_type temp;
8567
8568 /* Check for a segment override by searching for ':' after a
8569 segment register. */
8570 op_string = end_op;
8571 if (is_space_char (*op_string))
8572 ++op_string;
8573 if (*op_string == ':'
8574 && (r->reg_type.bitfield.sreg2
8575 || r->reg_type.bitfield.sreg3))
8576 {
8577 switch (r->reg_num)
8578 {
8579 case 0:
8580 i.seg[i.mem_operands] = &es;
8581 break;
8582 case 1:
8583 i.seg[i.mem_operands] = &cs;
8584 break;
8585 case 2:
8586 i.seg[i.mem_operands] = &ss;
8587 break;
8588 case 3:
8589 i.seg[i.mem_operands] = &ds;
8590 break;
8591 case 4:
8592 i.seg[i.mem_operands] = &fs;
8593 break;
8594 case 5:
8595 i.seg[i.mem_operands] = &gs;
8596 break;
8597 }
8598
8599 /* Skip the ':' and whitespace. */
8600 ++op_string;
8601 if (is_space_char (*op_string))
8602 ++op_string;
8603
8604 if (!is_digit_char (*op_string)
8605 && !is_identifier_char (*op_string)
8606 && *op_string != '('
8607 && *op_string != ABSOLUTE_PREFIX)
8608 {
8609 as_bad (_("bad memory operand `%s'"), op_string);
8610 return 0;
8611 }
8612 /* Handle case of %es:*foo. */
8613 if (*op_string == ABSOLUTE_PREFIX)
8614 {
8615 ++op_string;
8616 if (is_space_char (*op_string))
8617 ++op_string;
8618 i.types[this_operand].bitfield.jumpabsolute = 1;
8619 }
8620 goto do_memory_reference;
8621 }
8622
8623 /* Handle vector operations. */
8624 if (*op_string == '{')
8625 {
8626 op_string = check_VecOperations (op_string, NULL);
8627 if (op_string == NULL)
8628 return 0;
8629 }
8630
8631 if (*op_string)
8632 {
8633 as_bad (_("junk `%s' after register"), op_string);
8634 return 0;
8635 }
8636 temp = r->reg_type;
8637 temp.bitfield.baseindex = 0;
8638 i.types[this_operand] = operand_type_or (i.types[this_operand],
8639 temp);
8640 i.types[this_operand].bitfield.unspecified = 0;
8641 i.op[this_operand].regs = r;
8642 i.reg_operands++;
8643 }
8644 else if (*op_string == REGISTER_PREFIX)
8645 {
8646 as_bad (_("bad register name `%s'"), op_string);
8647 return 0;
8648 }
8649 else if (*op_string == IMMEDIATE_PREFIX)
8650 {
8651 ++op_string;
8652 if (i.types[this_operand].bitfield.jumpabsolute)
8653 {
8654 as_bad (_("immediate operand illegal with absolute jump"));
8655 return 0;
8656 }
8657 if (!i386_immediate (op_string))
8658 return 0;
8659 }
8660 else if (RC_SAE_immediate (operand_string))
8661 {
8662 /* If it is a RC or SAE immediate, do nothing. */
8663 ;
8664 }
8665 else if (is_digit_char (*op_string)
8666 || is_identifier_char (*op_string)
8667 || *op_string == '(')
8668 {
8669 /* This is a memory reference of some sort. */
8670 char *base_string;
8671
8672 /* Start and end of displacement string expression (if found). */
8673 char *displacement_string_start;
8674 char *displacement_string_end;
8675 char *vop_start;
8676
8677 do_memory_reference:
8678 if ((i.mem_operands == 1
8679 && !current_templates->start->opcode_modifier.isstring)
8680 || i.mem_operands == 2)
8681 {
8682 as_bad (_("too many memory references for `%s'"),
8683 current_templates->start->name);
8684 return 0;
8685 }
8686
8687 /* Check for base index form. We detect the base index form by
8688 looking for an ')' at the end of the operand, searching
8689 for the '(' matching it, and finding a REGISTER_PREFIX or ','
8690 after the '('. */
8691 base_string = op_string + strlen (op_string);
8692
8693 /* Handle vector operations. */
8694 vop_start = strchr (op_string, '{');
8695 if (vop_start && vop_start < base_string)
8696 {
8697 if (check_VecOperations (vop_start, base_string) == NULL)
8698 return 0;
8699 base_string = vop_start;
8700 }
8701
8702 --base_string;
8703 if (is_space_char (*base_string))
8704 --base_string;
8705
8706 /* If we only have a displacement, set-up for it to be parsed later. */
8707 displacement_string_start = op_string;
8708 displacement_string_end = base_string + 1;
8709
8710 if (*base_string == ')')
8711 {
8712 char *temp_string;
8713 unsigned int parens_balanced = 1;
8714 /* We've already checked that the number of left & right ()'s are
8715 equal, so this loop will not be infinite. */
8716 do
8717 {
8718 base_string--;
8719 if (*base_string == ')')
8720 parens_balanced++;
8721 if (*base_string == '(')
8722 parens_balanced--;
8723 }
8724 while (parens_balanced);
8725
8726 temp_string = base_string;
8727
8728 /* Skip past '(' and whitespace. */
8729 ++base_string;
8730 if (is_space_char (*base_string))
8731 ++base_string;
8732
8733 if (*base_string == ','
8734 || ((i.base_reg = parse_register (base_string, &end_op))
8735 != NULL))
8736 {
8737 displacement_string_end = temp_string;
8738
8739 i.types[this_operand].bitfield.baseindex = 1;
8740
8741 if (i.base_reg)
8742 {
8743 base_string = end_op;
8744 if (is_space_char (*base_string))
8745 ++base_string;
8746 }
8747
8748 /* There may be an index reg or scale factor here. */
8749 if (*base_string == ',')
8750 {
8751 ++base_string;
8752 if (is_space_char (*base_string))
8753 ++base_string;
8754
8755 if ((i.index_reg = parse_register (base_string, &end_op))
8756 != NULL)
8757 {
8758 base_string = end_op;
8759 if (is_space_char (*base_string))
8760 ++base_string;
8761 if (*base_string == ',')
8762 {
8763 ++base_string;
8764 if (is_space_char (*base_string))
8765 ++base_string;
8766 }
8767 else if (*base_string != ')')
8768 {
8769 as_bad (_("expecting `,' or `)' "
8770 "after index register in `%s'"),
8771 operand_string);
8772 return 0;
8773 }
8774 }
8775 else if (*base_string == REGISTER_PREFIX)
8776 {
8777 end_op = strchr (base_string, ',');
8778 if (end_op)
8779 *end_op = '\0';
8780 as_bad (_("bad register name `%s'"), base_string);
8781 return 0;
8782 }
8783
8784 /* Check for scale factor. */
8785 if (*base_string != ')')
8786 {
8787 char *end_scale = i386_scale (base_string);
8788
8789 if (!end_scale)
8790 return 0;
8791
8792 base_string = end_scale;
8793 if (is_space_char (*base_string))
8794 ++base_string;
8795 if (*base_string != ')')
8796 {
8797 as_bad (_("expecting `)' "
8798 "after scale factor in `%s'"),
8799 operand_string);
8800 return 0;
8801 }
8802 }
8803 else if (!i.index_reg)
8804 {
8805 as_bad (_("expecting index register or scale factor "
8806 "after `,'; got '%c'"),
8807 *base_string);
8808 return 0;
8809 }
8810 }
8811 else if (*base_string != ')')
8812 {
8813 as_bad (_("expecting `,' or `)' "
8814 "after base register in `%s'"),
8815 operand_string);
8816 return 0;
8817 }
8818 }
8819 else if (*base_string == REGISTER_PREFIX)
8820 {
8821 end_op = strchr (base_string, ',');
8822 if (end_op)
8823 *end_op = '\0';
8824 as_bad (_("bad register name `%s'"), base_string);
8825 return 0;
8826 }
8827 }
8828
8829 /* If there's an expression beginning the operand, parse it,
8830 assuming displacement_string_start and
8831 displacement_string_end are meaningful. */
8832 if (displacement_string_start != displacement_string_end)
8833 {
8834 if (!i386_displacement (displacement_string_start,
8835 displacement_string_end))
8836 return 0;
8837 }
8838
8839 /* Special case for (%dx) while doing input/output op. */
8840 if (i.base_reg
8841 && operand_type_equal (&i.base_reg->reg_type,
8842 &reg16_inoutportreg)
8843 && i.index_reg == 0
8844 && i.log2_scale_factor == 0
8845 && i.seg[i.mem_operands] == 0
8846 && !operand_type_check (i.types[this_operand], disp))
8847 {
8848 i.types[this_operand] = inoutportreg;
8849 return 1;
8850 }
8851
8852 if (i386_index_check (operand_string) == 0)
8853 return 0;
8854 i.types[this_operand].bitfield.mem = 1;
8855 i.mem_operands++;
8856 }
8857 else
8858 {
8859 /* It's not a memory operand; argh! */
8860 as_bad (_("invalid char %s beginning operand %d `%s'"),
8861 output_invalid (*op_string),
8862 this_operand + 1,
8863 op_string);
8864 return 0;
8865 }
8866 return 1; /* Normal return. */
8867 }
8868 \f
8869 /* Calculate the maximum variable size (i.e., excluding fr_fix)
8870 that an rs_machine_dependent frag may reach. */
8871
8872 unsigned int
8873 i386_frag_max_var (fragS *frag)
8874 {
8875 /* The only relaxable frags are for jumps.
8876 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
8877 gas_assert (frag->fr_type == rs_machine_dependent);
8878 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
8879 }
8880
8881 /* md_estimate_size_before_relax()
8882
8883 Called just before relax() for rs_machine_dependent frags. The x86
8884 assembler uses these frags to handle variable size jump
8885 instructions.
8886
8887 Any symbol that is now undefined will not become defined.
8888 Return the correct fr_subtype in the frag.
8889 Return the initial "guess for variable size of frag" to caller.
8890 The guess is actually the growth beyond the fixed part. Whatever
8891 we do to grow the fixed or variable part contributes to our
8892 returned value. */
8893
8894 int
8895 md_estimate_size_before_relax (fragS *fragP, segT segment)
8896 {
8897 /* We've already got fragP->fr_subtype right; all we have to do is
8898 check for un-relaxable symbols. On an ELF system, we can't relax
8899 an externally visible symbol, because it may be overridden by a
8900 shared library. */
8901 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
8902 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8903 || (IS_ELF
8904 && (S_IS_EXTERNAL (fragP->fr_symbol)
8905 || S_IS_WEAK (fragP->fr_symbol)
8906 || ((symbol_get_bfdsym (fragP->fr_symbol)->flags
8907 & BSF_GNU_INDIRECT_FUNCTION))))
8908 #endif
8909 #if defined (OBJ_COFF) && defined (TE_PE)
8910 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
8911 && S_IS_WEAK (fragP->fr_symbol))
8912 #endif
8913 )
8914 {
8915 /* Symbol is undefined in this segment, or we need to keep a
8916 reloc so that weak symbols can be overridden. */
8917 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
8918 enum bfd_reloc_code_real reloc_type;
8919 unsigned char *opcode;
8920 int old_fr_fix;
8921
8922 if (fragP->fr_var != NO_RELOC)
8923 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
8924 else if (size == 2)
8925 reloc_type = BFD_RELOC_16_PCREL;
8926 else
8927 reloc_type = BFD_RELOC_32_PCREL;
8928
8929 old_fr_fix = fragP->fr_fix;
8930 opcode = (unsigned char *) fragP->fr_opcode;
8931
8932 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
8933 {
8934 case UNCOND_JUMP:
8935 /* Make jmp (0xeb) a (d)word displacement jump. */
8936 opcode[0] = 0xe9;
8937 fragP->fr_fix += size;
8938 fix_new (fragP, old_fr_fix, size,
8939 fragP->fr_symbol,
8940 fragP->fr_offset, 1,
8941 reloc_type);
8942 break;
8943
8944 case COND_JUMP86:
8945 if (size == 2
8946 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
8947 {
8948 /* Negate the condition, and branch past an
8949 unconditional jump. */
8950 opcode[0] ^= 1;
8951 opcode[1] = 3;
8952 /* Insert an unconditional jump. */
8953 opcode[2] = 0xe9;
8954 /* We added two extra opcode bytes, and have a two byte
8955 offset. */
8956 fragP->fr_fix += 2 + 2;
8957 fix_new (fragP, old_fr_fix + 2, 2,
8958 fragP->fr_symbol,
8959 fragP->fr_offset, 1,
8960 reloc_type);
8961 break;
8962 }
8963 /* Fall through. */
8964
8965 case COND_JUMP:
8966 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
8967 {
8968 fixS *fixP;
8969
8970 fragP->fr_fix += 1;
8971 fixP = fix_new (fragP, old_fr_fix, 1,
8972 fragP->fr_symbol,
8973 fragP->fr_offset, 1,
8974 BFD_RELOC_8_PCREL);
8975 fixP->fx_signed = 1;
8976 break;
8977 }
8978
8979 /* This changes the byte-displacement jump 0x7N
8980 to the (d)word-displacement jump 0x0f,0x8N. */
8981 opcode[1] = opcode[0] + 0x10;
8982 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
8983 /* We've added an opcode byte. */
8984 fragP->fr_fix += 1 + size;
8985 fix_new (fragP, old_fr_fix + 1, size,
8986 fragP->fr_symbol,
8987 fragP->fr_offset, 1,
8988 reloc_type);
8989 break;
8990
8991 default:
8992 BAD_CASE (fragP->fr_subtype);
8993 break;
8994 }
8995 frag_wane (fragP);
8996 return fragP->fr_fix - old_fr_fix;
8997 }
8998
8999 /* Guess size depending on current relax state. Initially the relax
9000 state will correspond to a short jump and we return 1, because
9001 the variable part of the frag (the branch offset) is one byte
9002 long. However, we can relax a section more than once and in that
9003 case we must either set fr_subtype back to the unrelaxed state,
9004 or return the value for the appropriate branch. */
9005 return md_relax_table[fragP->fr_subtype].rlx_length;
9006 }
9007
9008 /* Called after relax() is finished.
9009
9010 In: Address of frag.
9011 fr_type == rs_machine_dependent.
9012 fr_subtype is what the address relaxed to.
9013
9014 Out: Any fixSs and constants are set up.
9015 Caller will turn frag into a ".space 0". */
9016
9017 void
9018 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9019 fragS *fragP)
9020 {
9021 unsigned char *opcode;
9022 unsigned char *where_to_put_displacement = NULL;
9023 offsetT target_address;
9024 offsetT opcode_address;
9025 unsigned int extension = 0;
9026 offsetT displacement_from_opcode_start;
9027
9028 opcode = (unsigned char *) fragP->fr_opcode;
9029
9030 /* Address we want to reach in file space. */
9031 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9032
9033 /* Address opcode resides at in file space. */
9034 opcode_address = fragP->fr_address + fragP->fr_fix;
9035
9036 /* Displacement from opcode start to fill into instruction. */
9037 displacement_from_opcode_start = target_address - opcode_address;
9038
9039 if ((fragP->fr_subtype & BIG) == 0)
9040 {
9041 /* Don't have to change opcode. */
9042 extension = 1; /* 1 opcode + 1 displacement */
9043 where_to_put_displacement = &opcode[1];
9044 }
9045 else
9046 {
9047 if (no_cond_jump_promotion
9048 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9049 as_warn_where (fragP->fr_file, fragP->fr_line,
9050 _("long jump required"));
9051
9052 switch (fragP->fr_subtype)
9053 {
9054 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9055 extension = 4; /* 1 opcode + 4 displacement */
9056 opcode[0] = 0xe9;
9057 where_to_put_displacement = &opcode[1];
9058 break;
9059
9060 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9061 extension = 2; /* 1 opcode + 2 displacement */
9062 opcode[0] = 0xe9;
9063 where_to_put_displacement = &opcode[1];
9064 break;
9065
9066 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9067 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9068 extension = 5; /* 2 opcode + 4 displacement */
9069 opcode[1] = opcode[0] + 0x10;
9070 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9071 where_to_put_displacement = &opcode[2];
9072 break;
9073
9074 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9075 extension = 3; /* 2 opcode + 2 displacement */
9076 opcode[1] = opcode[0] + 0x10;
9077 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9078 where_to_put_displacement = &opcode[2];
9079 break;
9080
9081 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9082 extension = 4;
9083 opcode[0] ^= 1;
9084 opcode[1] = 3;
9085 opcode[2] = 0xe9;
9086 where_to_put_displacement = &opcode[3];
9087 break;
9088
9089 default:
9090 BAD_CASE (fragP->fr_subtype);
9091 break;
9092 }
9093 }
9094
9095 /* If size if less then four we are sure that the operand fits,
9096 but if it's 4, then it could be that the displacement is larger
9097 then -/+ 2GB. */
9098 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9099 && object_64bit
9100 && ((addressT) (displacement_from_opcode_start - extension
9101 + ((addressT) 1 << 31))
9102 > (((addressT) 2 << 31) - 1)))
9103 {
9104 as_bad_where (fragP->fr_file, fragP->fr_line,
9105 _("jump target out of range"));
9106 /* Make us emit 0. */
9107 displacement_from_opcode_start = extension;
9108 }
9109 /* Now put displacement after opcode. */
9110 md_number_to_chars ((char *) where_to_put_displacement,
9111 (valueT) (displacement_from_opcode_start - extension),
9112 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9113 fragP->fr_fix += extension;
9114 }
9115 \f
9116 /* Apply a fixup (fixP) to segment data, once it has been determined
9117 by our caller that we have all the info we need to fix it up.
9118
9119 Parameter valP is the pointer to the value of the bits.
9120
9121 On the 386, immediates, displacements, and data pointers are all in
9122 the same (little-endian) format, so we don't need to care about which
9123 we are handling. */
9124
9125 void
9126 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9127 {
9128 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9129 valueT value = *valP;
9130
9131 #if !defined (TE_Mach)
9132 if (fixP->fx_pcrel)
9133 {
9134 switch (fixP->fx_r_type)
9135 {
9136 default:
9137 break;
9138
9139 case BFD_RELOC_64:
9140 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9141 break;
9142 case BFD_RELOC_32:
9143 case BFD_RELOC_X86_64_32S:
9144 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9145 break;
9146 case BFD_RELOC_16:
9147 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9148 break;
9149 case BFD_RELOC_8:
9150 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9151 break;
9152 }
9153 }
9154
9155 if (fixP->fx_addsy != NULL
9156 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9157 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9158 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9159 || fixP->fx_r_type == BFD_RELOC_8_PCREL
9160 || fixP->fx_r_type == BFD_RELOC_X86_64_PC32_BND)
9161 && !use_rela_relocations)
9162 {
9163 /* This is a hack. There should be a better way to handle this.
9164 This covers for the fact that bfd_install_relocation will
9165 subtract the current location (for partial_inplace, PC relative
9166 relocations); see more below. */
9167 #ifndef OBJ_AOUT
9168 if (IS_ELF
9169 #ifdef TE_PE
9170 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9171 #endif
9172 )
9173 value += fixP->fx_where + fixP->fx_frag->fr_address;
9174 #endif
9175 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9176 if (IS_ELF)
9177 {
9178 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9179
9180 if ((sym_seg == seg
9181 || (symbol_section_p (fixP->fx_addsy)
9182 && sym_seg != absolute_section))
9183 && !generic_force_reloc (fixP))
9184 {
9185 /* Yes, we add the values in twice. This is because
9186 bfd_install_relocation subtracts them out again. I think
9187 bfd_install_relocation is broken, but I don't dare change
9188 it. FIXME. */
9189 value += fixP->fx_where + fixP->fx_frag->fr_address;
9190 }
9191 }
9192 #endif
9193 #if defined (OBJ_COFF) && defined (TE_PE)
9194 /* For some reason, the PE format does not store a
9195 section address offset for a PC relative symbol. */
9196 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9197 || S_IS_WEAK (fixP->fx_addsy))
9198 value += md_pcrel_from (fixP);
9199 #endif
9200 }
9201 #if defined (OBJ_COFF) && defined (TE_PE)
9202 if (fixP->fx_addsy != NULL
9203 && S_IS_WEAK (fixP->fx_addsy)
9204 /* PR 16858: Do not modify weak function references. */
9205 && ! fixP->fx_pcrel)
9206 {
9207 #if !defined (TE_PEP)
9208 /* For x86 PE weak function symbols are neither PC-relative
9209 nor do they set S_IS_FUNCTION. So the only reliable way
9210 to detect them is to check the flags of their containing
9211 section. */
9212 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9213 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9214 ;
9215 else
9216 #endif
9217 value -= S_GET_VALUE (fixP->fx_addsy);
9218 }
9219 #endif
9220
9221 /* Fix a few things - the dynamic linker expects certain values here,
9222 and we must not disappoint it. */
9223 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9224 if (IS_ELF && fixP->fx_addsy)
9225 switch (fixP->fx_r_type)
9226 {
9227 case BFD_RELOC_386_PLT32:
9228 case BFD_RELOC_X86_64_PLT32:
9229 case BFD_RELOC_X86_64_PLT32_BND:
9230 /* Make the jump instruction point to the address of the operand. At
9231 runtime we merely add the offset to the actual PLT entry. */
9232 value = -4;
9233 break;
9234
9235 case BFD_RELOC_386_TLS_GD:
9236 case BFD_RELOC_386_TLS_LDM:
9237 case BFD_RELOC_386_TLS_IE_32:
9238 case BFD_RELOC_386_TLS_IE:
9239 case BFD_RELOC_386_TLS_GOTIE:
9240 case BFD_RELOC_386_TLS_GOTDESC:
9241 case BFD_RELOC_X86_64_TLSGD:
9242 case BFD_RELOC_X86_64_TLSLD:
9243 case BFD_RELOC_X86_64_GOTTPOFF:
9244 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9245 value = 0; /* Fully resolved at runtime. No addend. */
9246 /* Fallthrough */
9247 case BFD_RELOC_386_TLS_LE:
9248 case BFD_RELOC_386_TLS_LDO_32:
9249 case BFD_RELOC_386_TLS_LE_32:
9250 case BFD_RELOC_X86_64_DTPOFF32:
9251 case BFD_RELOC_X86_64_DTPOFF64:
9252 case BFD_RELOC_X86_64_TPOFF32:
9253 case BFD_RELOC_X86_64_TPOFF64:
9254 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9255 break;
9256
9257 case BFD_RELOC_386_TLS_DESC_CALL:
9258 case BFD_RELOC_X86_64_TLSDESC_CALL:
9259 value = 0; /* Fully resolved at runtime. No addend. */
9260 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9261 fixP->fx_done = 0;
9262 return;
9263
9264 case BFD_RELOC_386_GOT32:
9265 case BFD_RELOC_X86_64_GOT32:
9266 value = 0; /* Fully resolved at runtime. No addend. */
9267 break;
9268
9269 case BFD_RELOC_VTABLE_INHERIT:
9270 case BFD_RELOC_VTABLE_ENTRY:
9271 fixP->fx_done = 0;
9272 return;
9273
9274 default:
9275 break;
9276 }
9277 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9278 *valP = value;
9279 #endif /* !defined (TE_Mach) */
9280
9281 /* Are we finished with this relocation now? */
9282 if (fixP->fx_addsy == NULL)
9283 fixP->fx_done = 1;
9284 #if defined (OBJ_COFF) && defined (TE_PE)
9285 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9286 {
9287 fixP->fx_done = 0;
9288 /* Remember value for tc_gen_reloc. */
9289 fixP->fx_addnumber = value;
9290 /* Clear out the frag for now. */
9291 value = 0;
9292 }
9293 #endif
9294 else if (use_rela_relocations)
9295 {
9296 fixP->fx_no_overflow = 1;
9297 /* Remember value for tc_gen_reloc. */
9298 fixP->fx_addnumber = value;
9299 value = 0;
9300 }
9301
9302 md_number_to_chars (p, value, fixP->fx_size);
9303 }
9304 \f
9305 char *
9306 md_atof (int type, char *litP, int *sizeP)
9307 {
9308 /* This outputs the LITTLENUMs in REVERSE order;
9309 in accord with the bigendian 386. */
9310 return ieee_md_atof (type, litP, sizeP, FALSE);
9311 }
9312 \f
9313 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9314
9315 static char *
9316 output_invalid (int c)
9317 {
9318 if (ISPRINT (c))
9319 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9320 "'%c'", c);
9321 else
9322 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9323 "(0x%x)", (unsigned char) c);
9324 return output_invalid_buf;
9325 }
9326
9327 /* REG_STRING starts *before* REGISTER_PREFIX. */
9328
9329 static const reg_entry *
9330 parse_real_register (char *reg_string, char **end_op)
9331 {
9332 char *s = reg_string;
9333 char *p;
9334 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9335 const reg_entry *r;
9336
9337 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9338 if (*s == REGISTER_PREFIX)
9339 ++s;
9340
9341 if (is_space_char (*s))
9342 ++s;
9343
9344 p = reg_name_given;
9345 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9346 {
9347 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9348 return (const reg_entry *) NULL;
9349 s++;
9350 }
9351
9352 /* For naked regs, make sure that we are not dealing with an identifier.
9353 This prevents confusing an identifier like `eax_var' with register
9354 `eax'. */
9355 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9356 return (const reg_entry *) NULL;
9357
9358 *end_op = s;
9359
9360 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9361
9362 /* Handle floating point regs, allowing spaces in the (i) part. */
9363 if (r == i386_regtab /* %st is first entry of table */)
9364 {
9365 if (is_space_char (*s))
9366 ++s;
9367 if (*s == '(')
9368 {
9369 ++s;
9370 if (is_space_char (*s))
9371 ++s;
9372 if (*s >= '0' && *s <= '7')
9373 {
9374 int fpr = *s - '0';
9375 ++s;
9376 if (is_space_char (*s))
9377 ++s;
9378 if (*s == ')')
9379 {
9380 *end_op = s + 1;
9381 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9382 know (r);
9383 return r + fpr;
9384 }
9385 }
9386 /* We have "%st(" then garbage. */
9387 return (const reg_entry *) NULL;
9388 }
9389 }
9390
9391 if (r == NULL || allow_pseudo_reg)
9392 return r;
9393
9394 if (operand_type_all_zero (&r->reg_type))
9395 return (const reg_entry *) NULL;
9396
9397 if ((r->reg_type.bitfield.reg32
9398 || r->reg_type.bitfield.sreg3
9399 || r->reg_type.bitfield.control
9400 || r->reg_type.bitfield.debug
9401 || r->reg_type.bitfield.test)
9402 && !cpu_arch_flags.bitfield.cpui386)
9403 return (const reg_entry *) NULL;
9404
9405 if (r->reg_type.bitfield.floatreg
9406 && !cpu_arch_flags.bitfield.cpu8087
9407 && !cpu_arch_flags.bitfield.cpu287
9408 && !cpu_arch_flags.bitfield.cpu387)
9409 return (const reg_entry *) NULL;
9410
9411 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
9412 return (const reg_entry *) NULL;
9413
9414 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
9415 return (const reg_entry *) NULL;
9416
9417 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
9418 return (const reg_entry *) NULL;
9419
9420 if ((r->reg_type.bitfield.regzmm || r->reg_type.bitfield.regmask)
9421 && !cpu_arch_flags.bitfield.cpuavx512f)
9422 return (const reg_entry *) NULL;
9423
9424 /* Don't allow fake index register unless allow_index_reg isn't 0. */
9425 if (!allow_index_reg
9426 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9427 return (const reg_entry *) NULL;
9428
9429 /* Upper 16 vector register is only available with VREX in 64bit
9430 mode. */
9431 if ((r->reg_flags & RegVRex))
9432 {
9433 if (!cpu_arch_flags.bitfield.cpuvrex
9434 || flag_code != CODE_64BIT)
9435 return (const reg_entry *) NULL;
9436
9437 i.need_vrex = 1;
9438 }
9439
9440 if (((r->reg_flags & (RegRex64 | RegRex))
9441 || r->reg_type.bitfield.reg64)
9442 && (!cpu_arch_flags.bitfield.cpulm
9443 || !operand_type_equal (&r->reg_type, &control))
9444 && flag_code != CODE_64BIT)
9445 return (const reg_entry *) NULL;
9446
9447 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9448 return (const reg_entry *) NULL;
9449
9450 return r;
9451 }
9452
9453 /* REG_STRING starts *before* REGISTER_PREFIX. */
9454
9455 static const reg_entry *
9456 parse_register (char *reg_string, char **end_op)
9457 {
9458 const reg_entry *r;
9459
9460 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9461 r = parse_real_register (reg_string, end_op);
9462 else
9463 r = NULL;
9464 if (!r)
9465 {
9466 char *save = input_line_pointer;
9467 char c;
9468 symbolS *symbolP;
9469
9470 input_line_pointer = reg_string;
9471 c = get_symbol_end ();
9472 symbolP = symbol_find (reg_string);
9473 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9474 {
9475 const expressionS *e = symbol_get_value_expression (symbolP);
9476
9477 know (e->X_op == O_register);
9478 know (e->X_add_number >= 0
9479 && (valueT) e->X_add_number < i386_regtab_size);
9480 r = i386_regtab + e->X_add_number;
9481 if ((r->reg_flags & RegVRex))
9482 i.need_vrex = 1;
9483 *end_op = input_line_pointer;
9484 }
9485 *input_line_pointer = c;
9486 input_line_pointer = save;
9487 }
9488 return r;
9489 }
9490
9491 int
9492 i386_parse_name (char *name, expressionS *e, char *nextcharP)
9493 {
9494 const reg_entry *r;
9495 char *end = input_line_pointer;
9496
9497 *end = *nextcharP;
9498 r = parse_register (name, &input_line_pointer);
9499 if (r && end <= input_line_pointer)
9500 {
9501 *nextcharP = *input_line_pointer;
9502 *input_line_pointer = 0;
9503 e->X_op = O_register;
9504 e->X_add_number = r - i386_regtab;
9505 return 1;
9506 }
9507 input_line_pointer = end;
9508 *end = 0;
9509 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
9510 }
9511
9512 void
9513 md_operand (expressionS *e)
9514 {
9515 char *end;
9516 const reg_entry *r;
9517
9518 switch (*input_line_pointer)
9519 {
9520 case REGISTER_PREFIX:
9521 r = parse_real_register (input_line_pointer, &end);
9522 if (r)
9523 {
9524 e->X_op = O_register;
9525 e->X_add_number = r - i386_regtab;
9526 input_line_pointer = end;
9527 }
9528 break;
9529
9530 case '[':
9531 gas_assert (intel_syntax);
9532 end = input_line_pointer++;
9533 expression (e);
9534 if (*input_line_pointer == ']')
9535 {
9536 ++input_line_pointer;
9537 e->X_op_symbol = make_expr_symbol (e);
9538 e->X_add_symbol = NULL;
9539 e->X_add_number = 0;
9540 e->X_op = O_index;
9541 }
9542 else
9543 {
9544 e->X_op = O_absent;
9545 input_line_pointer = end;
9546 }
9547 break;
9548 }
9549 }
9550
9551 \f
9552 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9553 const char *md_shortopts = "kVQ:sqn";
9554 #else
9555 const char *md_shortopts = "qn";
9556 #endif
9557
9558 #define OPTION_32 (OPTION_MD_BASE + 0)
9559 #define OPTION_64 (OPTION_MD_BASE + 1)
9560 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9561 #define OPTION_MARCH (OPTION_MD_BASE + 3)
9562 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
9563 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9564 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9565 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9566 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9567 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9568 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9569 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9570 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9571 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9572 #define OPTION_X32 (OPTION_MD_BASE + 14)
9573 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9574 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9575 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9576 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
9577 #define OPTION_OMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
9578 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
9579
9580 struct option md_longopts[] =
9581 {
9582 {"32", no_argument, NULL, OPTION_32},
9583 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9584 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9585 {"64", no_argument, NULL, OPTION_64},
9586 #endif
9587 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9588 {"x32", no_argument, NULL, OPTION_X32},
9589 #endif
9590 {"divide", no_argument, NULL, OPTION_DIVIDE},
9591 {"march", required_argument, NULL, OPTION_MARCH},
9592 {"mtune", required_argument, NULL, OPTION_MTUNE},
9593 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9594 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9595 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9596 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9597 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
9598 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
9599 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
9600 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
9601 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
9602 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
9603 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
9604 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
9605 # if defined (TE_PE) || defined (TE_PEP)
9606 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
9607 #endif
9608 {"momit-lock-prefix", required_argument, NULL, OPTION_OMIT_LOCK_PREFIX},
9609 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
9610 {NULL, no_argument, NULL, 0}
9611 };
9612 size_t md_longopts_size = sizeof (md_longopts);
9613
9614 int
9615 md_parse_option (int c, char *arg)
9616 {
9617 unsigned int j;
9618 char *arch, *next;
9619
9620 switch (c)
9621 {
9622 case 'n':
9623 optimize_align_code = 0;
9624 break;
9625
9626 case 'q':
9627 quiet_warnings = 1;
9628 break;
9629
9630 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9631 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
9632 should be emitted or not. FIXME: Not implemented. */
9633 case 'Q':
9634 break;
9635
9636 /* -V: SVR4 argument to print version ID. */
9637 case 'V':
9638 print_version_id ();
9639 break;
9640
9641 /* -k: Ignore for FreeBSD compatibility. */
9642 case 'k':
9643 break;
9644
9645 case 's':
9646 /* -s: On i386 Solaris, this tells the native assembler to use
9647 .stab instead of .stab.excl. We always use .stab anyhow. */
9648 break;
9649 #endif
9650 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9651 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9652 case OPTION_64:
9653 {
9654 const char **list, **l;
9655
9656 list = bfd_target_list ();
9657 for (l = list; *l != NULL; l++)
9658 if (CONST_STRNEQ (*l, "elf64-x86-64")
9659 || strcmp (*l, "coff-x86-64") == 0
9660 || strcmp (*l, "pe-x86-64") == 0
9661 || strcmp (*l, "pei-x86-64") == 0
9662 || strcmp (*l, "mach-o-x86-64") == 0)
9663 {
9664 default_arch = "x86_64";
9665 break;
9666 }
9667 if (*l == NULL)
9668 as_fatal (_("no compiled in support for x86_64"));
9669 free (list);
9670 }
9671 break;
9672 #endif
9673
9674 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9675 case OPTION_X32:
9676 if (IS_ELF)
9677 {
9678 const char **list, **l;
9679
9680 list = bfd_target_list ();
9681 for (l = list; *l != NULL; l++)
9682 if (CONST_STRNEQ (*l, "elf32-x86-64"))
9683 {
9684 default_arch = "x86_64:32";
9685 break;
9686 }
9687 if (*l == NULL)
9688 as_fatal (_("no compiled in support for 32bit x86_64"));
9689 free (list);
9690 }
9691 else
9692 as_fatal (_("32bit x86_64 is only supported for ELF"));
9693 break;
9694 #endif
9695
9696 case OPTION_32:
9697 default_arch = "i386";
9698 break;
9699
9700 case OPTION_DIVIDE:
9701 #ifdef SVR4_COMMENT_CHARS
9702 {
9703 char *n, *t;
9704 const char *s;
9705
9706 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
9707 t = n;
9708 for (s = i386_comment_chars; *s != '\0'; s++)
9709 if (*s != '/')
9710 *t++ = *s;
9711 *t = '\0';
9712 i386_comment_chars = n;
9713 }
9714 #endif
9715 break;
9716
9717 case OPTION_MARCH:
9718 arch = xstrdup (arg);
9719 do
9720 {
9721 if (*arch == '.')
9722 as_fatal (_("invalid -march= option: `%s'"), arg);
9723 next = strchr (arch, '+');
9724 if (next)
9725 *next++ = '\0';
9726 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9727 {
9728 if (strcmp (arch, cpu_arch [j].name) == 0)
9729 {
9730 /* Processor. */
9731 if (! cpu_arch[j].flags.bitfield.cpui386)
9732 continue;
9733
9734 cpu_arch_name = cpu_arch[j].name;
9735 cpu_sub_arch_name = NULL;
9736 cpu_arch_flags = cpu_arch[j].flags;
9737 cpu_arch_isa = cpu_arch[j].type;
9738 cpu_arch_isa_flags = cpu_arch[j].flags;
9739 if (!cpu_arch_tune_set)
9740 {
9741 cpu_arch_tune = cpu_arch_isa;
9742 cpu_arch_tune_flags = cpu_arch_isa_flags;
9743 }
9744 break;
9745 }
9746 else if (*cpu_arch [j].name == '.'
9747 && strcmp (arch, cpu_arch [j].name + 1) == 0)
9748 {
9749 /* ISA entension. */
9750 i386_cpu_flags flags;
9751
9752 if (!cpu_arch[j].negated)
9753 flags = cpu_flags_or (cpu_arch_flags,
9754 cpu_arch[j].flags);
9755 else
9756 flags = cpu_flags_and_not (cpu_arch_flags,
9757 cpu_arch[j].flags);
9758 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
9759 {
9760 if (cpu_sub_arch_name)
9761 {
9762 char *name = cpu_sub_arch_name;
9763 cpu_sub_arch_name = concat (name,
9764 cpu_arch[j].name,
9765 (const char *) NULL);
9766 free (name);
9767 }
9768 else
9769 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
9770 cpu_arch_flags = flags;
9771 cpu_arch_isa_flags = flags;
9772 }
9773 break;
9774 }
9775 }
9776
9777 if (j >= ARRAY_SIZE (cpu_arch))
9778 as_fatal (_("invalid -march= option: `%s'"), arg);
9779
9780 arch = next;
9781 }
9782 while (next != NULL );
9783 break;
9784
9785 case OPTION_MTUNE:
9786 if (*arg == '.')
9787 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9788 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9789 {
9790 if (strcmp (arg, cpu_arch [j].name) == 0)
9791 {
9792 cpu_arch_tune_set = 1;
9793 cpu_arch_tune = cpu_arch [j].type;
9794 cpu_arch_tune_flags = cpu_arch[j].flags;
9795 break;
9796 }
9797 }
9798 if (j >= ARRAY_SIZE (cpu_arch))
9799 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9800 break;
9801
9802 case OPTION_MMNEMONIC:
9803 if (strcasecmp (arg, "att") == 0)
9804 intel_mnemonic = 0;
9805 else if (strcasecmp (arg, "intel") == 0)
9806 intel_mnemonic = 1;
9807 else
9808 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
9809 break;
9810
9811 case OPTION_MSYNTAX:
9812 if (strcasecmp (arg, "att") == 0)
9813 intel_syntax = 0;
9814 else if (strcasecmp (arg, "intel") == 0)
9815 intel_syntax = 1;
9816 else
9817 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
9818 break;
9819
9820 case OPTION_MINDEX_REG:
9821 allow_index_reg = 1;
9822 break;
9823
9824 case OPTION_MNAKED_REG:
9825 allow_naked_reg = 1;
9826 break;
9827
9828 case OPTION_MOLD_GCC:
9829 old_gcc = 1;
9830 break;
9831
9832 case OPTION_MSSE2AVX:
9833 sse2avx = 1;
9834 break;
9835
9836 case OPTION_MSSE_CHECK:
9837 if (strcasecmp (arg, "error") == 0)
9838 sse_check = check_error;
9839 else if (strcasecmp (arg, "warning") == 0)
9840 sse_check = check_warning;
9841 else if (strcasecmp (arg, "none") == 0)
9842 sse_check = check_none;
9843 else
9844 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
9845 break;
9846
9847 case OPTION_MOPERAND_CHECK:
9848 if (strcasecmp (arg, "error") == 0)
9849 operand_check = check_error;
9850 else if (strcasecmp (arg, "warning") == 0)
9851 operand_check = check_warning;
9852 else if (strcasecmp (arg, "none") == 0)
9853 operand_check = check_none;
9854 else
9855 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
9856 break;
9857
9858 case OPTION_MAVXSCALAR:
9859 if (strcasecmp (arg, "128") == 0)
9860 avxscalar = vex128;
9861 else if (strcasecmp (arg, "256") == 0)
9862 avxscalar = vex256;
9863 else
9864 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
9865 break;
9866
9867 case OPTION_MADD_BND_PREFIX:
9868 add_bnd_prefix = 1;
9869 break;
9870
9871 case OPTION_MEVEXLIG:
9872 if (strcmp (arg, "128") == 0)
9873 evexlig = evexl128;
9874 else if (strcmp (arg, "256") == 0)
9875 evexlig = evexl256;
9876 else if (strcmp (arg, "512") == 0)
9877 evexlig = evexl512;
9878 else
9879 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
9880 break;
9881
9882 case OPTION_MEVEXRCIG:
9883 if (strcmp (arg, "rne") == 0)
9884 evexrcig = rne;
9885 else if (strcmp (arg, "rd") == 0)
9886 evexrcig = rd;
9887 else if (strcmp (arg, "ru") == 0)
9888 evexrcig = ru;
9889 else if (strcmp (arg, "rz") == 0)
9890 evexrcig = rz;
9891 else
9892 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
9893 break;
9894
9895 case OPTION_MEVEXWIG:
9896 if (strcmp (arg, "0") == 0)
9897 evexwig = evexw0;
9898 else if (strcmp (arg, "1") == 0)
9899 evexwig = evexw1;
9900 else
9901 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
9902 break;
9903
9904 # if defined (TE_PE) || defined (TE_PEP)
9905 case OPTION_MBIG_OBJ:
9906 use_big_obj = 1;
9907 break;
9908 #endif
9909
9910 case OPTION_OMIT_LOCK_PREFIX:
9911 if (strcasecmp (arg, "yes") == 0)
9912 omit_lock_prefix = 1;
9913 else if (strcasecmp (arg, "no") == 0)
9914 omit_lock_prefix = 0;
9915 else
9916 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
9917 break;
9918
9919 default:
9920 return 0;
9921 }
9922 return 1;
9923 }
9924
9925 #define MESSAGE_TEMPLATE \
9926 " "
9927
9928 static void
9929 show_arch (FILE *stream, int ext, int check)
9930 {
9931 static char message[] = MESSAGE_TEMPLATE;
9932 char *start = message + 27;
9933 char *p;
9934 int size = sizeof (MESSAGE_TEMPLATE);
9935 int left;
9936 const char *name;
9937 int len;
9938 unsigned int j;
9939
9940 p = start;
9941 left = size - (start - message);
9942 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9943 {
9944 /* Should it be skipped? */
9945 if (cpu_arch [j].skip)
9946 continue;
9947
9948 name = cpu_arch [j].name;
9949 len = cpu_arch [j].len;
9950 if (*name == '.')
9951 {
9952 /* It is an extension. Skip if we aren't asked to show it. */
9953 if (ext)
9954 {
9955 name++;
9956 len--;
9957 }
9958 else
9959 continue;
9960 }
9961 else if (ext)
9962 {
9963 /* It is an processor. Skip if we show only extension. */
9964 continue;
9965 }
9966 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
9967 {
9968 /* It is an impossible processor - skip. */
9969 continue;
9970 }
9971
9972 /* Reserve 2 spaces for ", " or ",\0" */
9973 left -= len + 2;
9974
9975 /* Check if there is any room. */
9976 if (left >= 0)
9977 {
9978 if (p != start)
9979 {
9980 *p++ = ',';
9981 *p++ = ' ';
9982 }
9983 p = mempcpy (p, name, len);
9984 }
9985 else
9986 {
9987 /* Output the current message now and start a new one. */
9988 *p++ = ',';
9989 *p = '\0';
9990 fprintf (stream, "%s\n", message);
9991 p = start;
9992 left = size - (start - message) - len - 2;
9993
9994 gas_assert (left >= 0);
9995
9996 p = mempcpy (p, name, len);
9997 }
9998 }
9999
10000 *p = '\0';
10001 fprintf (stream, "%s\n", message);
10002 }
10003
10004 void
10005 md_show_usage (FILE *stream)
10006 {
10007 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10008 fprintf (stream, _("\
10009 -Q ignored\n\
10010 -V print assembler version number\n\
10011 -k ignored\n"));
10012 #endif
10013 fprintf (stream, _("\
10014 -n Do not optimize code alignment\n\
10015 -q quieten some warnings\n"));
10016 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10017 fprintf (stream, _("\
10018 -s ignored\n"));
10019 #endif
10020 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10021 || defined (TE_PE) || defined (TE_PEP))
10022 fprintf (stream, _("\
10023 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10024 #endif
10025 #ifdef SVR4_COMMENT_CHARS
10026 fprintf (stream, _("\
10027 --divide do not treat `/' as a comment character\n"));
10028 #else
10029 fprintf (stream, _("\
10030 --divide ignored\n"));
10031 #endif
10032 fprintf (stream, _("\
10033 -march=CPU[,+EXTENSION...]\n\
10034 generate code for CPU and EXTENSION, CPU is one of:\n"));
10035 show_arch (stream, 0, 1);
10036 fprintf (stream, _("\
10037 EXTENSION is combination of:\n"));
10038 show_arch (stream, 1, 0);
10039 fprintf (stream, _("\
10040 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10041 show_arch (stream, 0, 0);
10042 fprintf (stream, _("\
10043 -msse2avx encode SSE instructions with VEX prefix\n"));
10044 fprintf (stream, _("\
10045 -msse-check=[none|error|warning]\n\
10046 check SSE instructions\n"));
10047 fprintf (stream, _("\
10048 -moperand-check=[none|error|warning]\n\
10049 check operand combinations for validity\n"));
10050 fprintf (stream, _("\
10051 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10052 length\n"));
10053 fprintf (stream, _("\
10054 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10055 length\n"));
10056 fprintf (stream, _("\
10057 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10058 for EVEX.W bit ignored instructions\n"));
10059 fprintf (stream, _("\
10060 -mevexrcig=[rne|rd|ru|rz]\n\
10061 encode EVEX instructions with specific EVEX.RC value\n\
10062 for SAE-only ignored instructions\n"));
10063 fprintf (stream, _("\
10064 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10065 fprintf (stream, _("\
10066 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10067 fprintf (stream, _("\
10068 -mindex-reg support pseudo index registers\n"));
10069 fprintf (stream, _("\
10070 -mnaked-reg don't require `%%' prefix for registers\n"));
10071 fprintf (stream, _("\
10072 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
10073 fprintf (stream, _("\
10074 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10075 # if defined (TE_PE) || defined (TE_PEP)
10076 fprintf (stream, _("\
10077 -mbig-obj generate big object files\n"));
10078 #endif
10079 fprintf (stream, _("\
10080 -momit-lock-prefix=[no|yes]\n\
10081 strip all lock prefixes\n"));
10082 }
10083
10084 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10085 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10086 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10087
10088 /* Pick the target format to use. */
10089
10090 const char *
10091 i386_target_format (void)
10092 {
10093 if (!strncmp (default_arch, "x86_64", 6))
10094 {
10095 update_code_flag (CODE_64BIT, 1);
10096 if (default_arch[6] == '\0')
10097 x86_elf_abi = X86_64_ABI;
10098 else
10099 x86_elf_abi = X86_64_X32_ABI;
10100 }
10101 else if (!strcmp (default_arch, "i386"))
10102 update_code_flag (CODE_32BIT, 1);
10103 else
10104 as_fatal (_("unknown architecture"));
10105
10106 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10107 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10108 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10109 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10110
10111 switch (OUTPUT_FLAVOR)
10112 {
10113 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10114 case bfd_target_aout_flavour:
10115 return AOUT_TARGET_FORMAT;
10116 #endif
10117 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10118 # if defined (TE_PE) || defined (TE_PEP)
10119 case bfd_target_coff_flavour:
10120 if (flag_code == CODE_64BIT)
10121 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10122 else
10123 return "pe-i386";
10124 # elif defined (TE_GO32)
10125 case bfd_target_coff_flavour:
10126 return "coff-go32";
10127 # else
10128 case bfd_target_coff_flavour:
10129 return "coff-i386";
10130 # endif
10131 #endif
10132 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10133 case bfd_target_elf_flavour:
10134 {
10135 const char *format;
10136
10137 switch (x86_elf_abi)
10138 {
10139 default:
10140 format = ELF_TARGET_FORMAT;
10141 break;
10142 case X86_64_ABI:
10143 use_rela_relocations = 1;
10144 object_64bit = 1;
10145 format = ELF_TARGET_FORMAT64;
10146 break;
10147 case X86_64_X32_ABI:
10148 use_rela_relocations = 1;
10149 object_64bit = 1;
10150 disallow_64bit_reloc = 1;
10151 format = ELF_TARGET_FORMAT32;
10152 break;
10153 }
10154 if (cpu_arch_isa == PROCESSOR_L1OM)
10155 {
10156 if (x86_elf_abi != X86_64_ABI)
10157 as_fatal (_("Intel L1OM is 64bit only"));
10158 return ELF_TARGET_L1OM_FORMAT;
10159 }
10160 if (cpu_arch_isa == PROCESSOR_K1OM)
10161 {
10162 if (x86_elf_abi != X86_64_ABI)
10163 as_fatal (_("Intel K1OM is 64bit only"));
10164 return ELF_TARGET_K1OM_FORMAT;
10165 }
10166 else
10167 return format;
10168 }
10169 #endif
10170 #if defined (OBJ_MACH_O)
10171 case bfd_target_mach_o_flavour:
10172 if (flag_code == CODE_64BIT)
10173 {
10174 use_rela_relocations = 1;
10175 object_64bit = 1;
10176 return "mach-o-x86-64";
10177 }
10178 else
10179 return "mach-o-i386";
10180 #endif
10181 default:
10182 abort ();
10183 return NULL;
10184 }
10185 }
10186
10187 #endif /* OBJ_MAYBE_ more than one */
10188
10189 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
10190 void
10191 i386_elf_emit_arch_note (void)
10192 {
10193 if (IS_ELF && cpu_arch_name != NULL)
10194 {
10195 char *p;
10196 asection *seg = now_seg;
10197 subsegT subseg = now_subseg;
10198 Elf_Internal_Note i_note;
10199 Elf_External_Note e_note;
10200 asection *note_secp;
10201 int len;
10202
10203 /* Create the .note section. */
10204 note_secp = subseg_new (".note", 0);
10205 bfd_set_section_flags (stdoutput,
10206 note_secp,
10207 SEC_HAS_CONTENTS | SEC_READONLY);
10208
10209 /* Process the arch string. */
10210 len = strlen (cpu_arch_name);
10211
10212 i_note.namesz = len + 1;
10213 i_note.descsz = 0;
10214 i_note.type = NT_ARCH;
10215 p = frag_more (sizeof (e_note.namesz));
10216 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
10217 p = frag_more (sizeof (e_note.descsz));
10218 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
10219 p = frag_more (sizeof (e_note.type));
10220 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
10221 p = frag_more (len + 1);
10222 strcpy (p, cpu_arch_name);
10223
10224 frag_align (2, 0, 0);
10225
10226 subseg_set (seg, subseg);
10227 }
10228 }
10229 #endif
10230 \f
10231 symbolS *
10232 md_undefined_symbol (char *name)
10233 {
10234 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10235 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10236 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10237 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10238 {
10239 if (!GOT_symbol)
10240 {
10241 if (symbol_find (name))
10242 as_bad (_("GOT already in symbol table"));
10243 GOT_symbol = symbol_new (name, undefined_section,
10244 (valueT) 0, &zero_address_frag);
10245 };
10246 return GOT_symbol;
10247 }
10248 return 0;
10249 }
10250
10251 /* Round up a section size to the appropriate boundary. */
10252
10253 valueT
10254 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10255 {
10256 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10257 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10258 {
10259 /* For a.out, force the section size to be aligned. If we don't do
10260 this, BFD will align it for us, but it will not write out the
10261 final bytes of the section. This may be a bug in BFD, but it is
10262 easier to fix it here since that is how the other a.out targets
10263 work. */
10264 int align;
10265
10266 align = bfd_get_section_alignment (stdoutput, segment);
10267 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
10268 }
10269 #endif
10270
10271 return size;
10272 }
10273
10274 /* On the i386, PC-relative offsets are relative to the start of the
10275 next instruction. That is, the address of the offset, plus its
10276 size, since the offset is always the last part of the insn. */
10277
10278 long
10279 md_pcrel_from (fixS *fixP)
10280 {
10281 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10282 }
10283
10284 #ifndef I386COFF
10285
10286 static void
10287 s_bss (int ignore ATTRIBUTE_UNUSED)
10288 {
10289 int temp;
10290
10291 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10292 if (IS_ELF)
10293 obj_elf_section_change_hook ();
10294 #endif
10295 temp = get_absolute_expression ();
10296 subseg_set (bss_section, (subsegT) temp);
10297 demand_empty_rest_of_line ();
10298 }
10299
10300 #endif
10301
10302 void
10303 i386_validate_fix (fixS *fixp)
10304 {
10305 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
10306 {
10307 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10308 {
10309 if (!object_64bit)
10310 abort ();
10311 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10312 }
10313 else
10314 {
10315 if (!object_64bit)
10316 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10317 else
10318 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10319 }
10320 fixp->fx_subsy = 0;
10321 }
10322 }
10323
10324 arelent *
10325 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10326 {
10327 arelent *rel;
10328 bfd_reloc_code_real_type code;
10329
10330 switch (fixp->fx_r_type)
10331 {
10332 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10333 case BFD_RELOC_SIZE32:
10334 case BFD_RELOC_SIZE64:
10335 if (S_IS_DEFINED (fixp->fx_addsy)
10336 && !S_IS_EXTERNAL (fixp->fx_addsy))
10337 {
10338 /* Resolve size relocation against local symbol to size of
10339 the symbol plus addend. */
10340 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10341 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10342 && !fits_in_unsigned_long (value))
10343 as_bad_where (fixp->fx_file, fixp->fx_line,
10344 _("symbol size computation overflow"));
10345 fixp->fx_addsy = NULL;
10346 fixp->fx_subsy = NULL;
10347 md_apply_fix (fixp, (valueT *) &value, NULL);
10348 return NULL;
10349 }
10350 #endif
10351
10352 case BFD_RELOC_X86_64_PLT32:
10353 case BFD_RELOC_X86_64_PLT32_BND:
10354 case BFD_RELOC_X86_64_GOT32:
10355 case BFD_RELOC_X86_64_GOTPCREL:
10356 case BFD_RELOC_386_PLT32:
10357 case BFD_RELOC_386_GOT32:
10358 case BFD_RELOC_386_GOTOFF:
10359 case BFD_RELOC_386_GOTPC:
10360 case BFD_RELOC_386_TLS_GD:
10361 case BFD_RELOC_386_TLS_LDM:
10362 case BFD_RELOC_386_TLS_LDO_32:
10363 case BFD_RELOC_386_TLS_IE_32:
10364 case BFD_RELOC_386_TLS_IE:
10365 case BFD_RELOC_386_TLS_GOTIE:
10366 case BFD_RELOC_386_TLS_LE_32:
10367 case BFD_RELOC_386_TLS_LE:
10368 case BFD_RELOC_386_TLS_GOTDESC:
10369 case BFD_RELOC_386_TLS_DESC_CALL:
10370 case BFD_RELOC_X86_64_TLSGD:
10371 case BFD_RELOC_X86_64_TLSLD:
10372 case BFD_RELOC_X86_64_DTPOFF32:
10373 case BFD_RELOC_X86_64_DTPOFF64:
10374 case BFD_RELOC_X86_64_GOTTPOFF:
10375 case BFD_RELOC_X86_64_TPOFF32:
10376 case BFD_RELOC_X86_64_TPOFF64:
10377 case BFD_RELOC_X86_64_GOTOFF64:
10378 case BFD_RELOC_X86_64_GOTPC32:
10379 case BFD_RELOC_X86_64_GOT64:
10380 case BFD_RELOC_X86_64_GOTPCREL64:
10381 case BFD_RELOC_X86_64_GOTPC64:
10382 case BFD_RELOC_X86_64_GOTPLT64:
10383 case BFD_RELOC_X86_64_PLTOFF64:
10384 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10385 case BFD_RELOC_X86_64_TLSDESC_CALL:
10386 case BFD_RELOC_RVA:
10387 case BFD_RELOC_VTABLE_ENTRY:
10388 case BFD_RELOC_VTABLE_INHERIT:
10389 #ifdef TE_PE
10390 case BFD_RELOC_32_SECREL:
10391 #endif
10392 code = fixp->fx_r_type;
10393 break;
10394 case BFD_RELOC_X86_64_32S:
10395 if (!fixp->fx_pcrel)
10396 {
10397 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10398 code = fixp->fx_r_type;
10399 break;
10400 }
10401 default:
10402 if (fixp->fx_pcrel)
10403 {
10404 switch (fixp->fx_size)
10405 {
10406 default:
10407 as_bad_where (fixp->fx_file, fixp->fx_line,
10408 _("can not do %d byte pc-relative relocation"),
10409 fixp->fx_size);
10410 code = BFD_RELOC_32_PCREL;
10411 break;
10412 case 1: code = BFD_RELOC_8_PCREL; break;
10413 case 2: code = BFD_RELOC_16_PCREL; break;
10414 case 4:
10415 code = (fixp->fx_r_type == BFD_RELOC_X86_64_PC32_BND
10416 ? fixp-> fx_r_type : BFD_RELOC_32_PCREL);
10417 break;
10418 #ifdef BFD64
10419 case 8: code = BFD_RELOC_64_PCREL; break;
10420 #endif
10421 }
10422 }
10423 else
10424 {
10425 switch (fixp->fx_size)
10426 {
10427 default:
10428 as_bad_where (fixp->fx_file, fixp->fx_line,
10429 _("can not do %d byte relocation"),
10430 fixp->fx_size);
10431 code = BFD_RELOC_32;
10432 break;
10433 case 1: code = BFD_RELOC_8; break;
10434 case 2: code = BFD_RELOC_16; break;
10435 case 4: code = BFD_RELOC_32; break;
10436 #ifdef BFD64
10437 case 8: code = BFD_RELOC_64; break;
10438 #endif
10439 }
10440 }
10441 break;
10442 }
10443
10444 if ((code == BFD_RELOC_32
10445 || code == BFD_RELOC_32_PCREL
10446 || code == BFD_RELOC_X86_64_32S)
10447 && GOT_symbol
10448 && fixp->fx_addsy == GOT_symbol)
10449 {
10450 if (!object_64bit)
10451 code = BFD_RELOC_386_GOTPC;
10452 else
10453 code = BFD_RELOC_X86_64_GOTPC32;
10454 }
10455 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10456 && GOT_symbol
10457 && fixp->fx_addsy == GOT_symbol)
10458 {
10459 code = BFD_RELOC_X86_64_GOTPC64;
10460 }
10461
10462 rel = (arelent *) xmalloc (sizeof (arelent));
10463 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
10464 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10465
10466 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
10467
10468 if (!use_rela_relocations)
10469 {
10470 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10471 vtable entry to be used in the relocation's section offset. */
10472 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10473 rel->address = fixp->fx_offset;
10474 #if defined (OBJ_COFF) && defined (TE_PE)
10475 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10476 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10477 else
10478 #endif
10479 rel->addend = 0;
10480 }
10481 /* Use the rela in 64bit mode. */
10482 else
10483 {
10484 if (disallow_64bit_reloc)
10485 switch (code)
10486 {
10487 case BFD_RELOC_X86_64_DTPOFF64:
10488 case BFD_RELOC_X86_64_TPOFF64:
10489 case BFD_RELOC_64_PCREL:
10490 case BFD_RELOC_X86_64_GOTOFF64:
10491 case BFD_RELOC_X86_64_GOT64:
10492 case BFD_RELOC_X86_64_GOTPCREL64:
10493 case BFD_RELOC_X86_64_GOTPC64:
10494 case BFD_RELOC_X86_64_GOTPLT64:
10495 case BFD_RELOC_X86_64_PLTOFF64:
10496 as_bad_where (fixp->fx_file, fixp->fx_line,
10497 _("cannot represent relocation type %s in x32 mode"),
10498 bfd_get_reloc_code_name (code));
10499 break;
10500 default:
10501 break;
10502 }
10503
10504 if (!fixp->fx_pcrel)
10505 rel->addend = fixp->fx_offset;
10506 else
10507 switch (code)
10508 {
10509 case BFD_RELOC_X86_64_PLT32:
10510 case BFD_RELOC_X86_64_PLT32_BND:
10511 case BFD_RELOC_X86_64_GOT32:
10512 case BFD_RELOC_X86_64_GOTPCREL:
10513 case BFD_RELOC_X86_64_TLSGD:
10514 case BFD_RELOC_X86_64_TLSLD:
10515 case BFD_RELOC_X86_64_GOTTPOFF:
10516 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10517 case BFD_RELOC_X86_64_TLSDESC_CALL:
10518 rel->addend = fixp->fx_offset - fixp->fx_size;
10519 break;
10520 default:
10521 rel->addend = (section->vma
10522 - fixp->fx_size
10523 + fixp->fx_addnumber
10524 + md_pcrel_from (fixp));
10525 break;
10526 }
10527 }
10528
10529 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
10530 if (rel->howto == NULL)
10531 {
10532 as_bad_where (fixp->fx_file, fixp->fx_line,
10533 _("cannot represent relocation type %s"),
10534 bfd_get_reloc_code_name (code));
10535 /* Set howto to a garbage value so that we can keep going. */
10536 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
10537 gas_assert (rel->howto != NULL);
10538 }
10539
10540 return rel;
10541 }
10542
10543 #include "tc-i386-intel.c"
10544
10545 void
10546 tc_x86_parse_to_dw2regnum (expressionS *exp)
10547 {
10548 int saved_naked_reg;
10549 char saved_register_dot;
10550
10551 saved_naked_reg = allow_naked_reg;
10552 allow_naked_reg = 1;
10553 saved_register_dot = register_chars['.'];
10554 register_chars['.'] = '.';
10555 allow_pseudo_reg = 1;
10556 expression_and_evaluate (exp);
10557 allow_pseudo_reg = 0;
10558 register_chars['.'] = saved_register_dot;
10559 allow_naked_reg = saved_naked_reg;
10560
10561 if (exp->X_op == O_register && exp->X_add_number >= 0)
10562 {
10563 if ((addressT) exp->X_add_number < i386_regtab_size)
10564 {
10565 exp->X_op = O_constant;
10566 exp->X_add_number = i386_regtab[exp->X_add_number]
10567 .dw2_regnum[flag_code >> 1];
10568 }
10569 else
10570 exp->X_op = O_illegal;
10571 }
10572 }
10573
10574 void
10575 tc_x86_frame_initial_instructions (void)
10576 {
10577 static unsigned int sp_regno[2];
10578
10579 if (!sp_regno[flag_code >> 1])
10580 {
10581 char *saved_input = input_line_pointer;
10582 char sp[][4] = {"esp", "rsp"};
10583 expressionS exp;
10584
10585 input_line_pointer = sp[flag_code >> 1];
10586 tc_x86_parse_to_dw2regnum (&exp);
10587 gas_assert (exp.X_op == O_constant);
10588 sp_regno[flag_code >> 1] = exp.X_add_number;
10589 input_line_pointer = saved_input;
10590 }
10591
10592 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
10593 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
10594 }
10595
10596 int
10597 x86_dwarf2_addr_size (void)
10598 {
10599 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10600 if (x86_elf_abi == X86_64_X32_ABI)
10601 return 4;
10602 #endif
10603 return bfd_arch_bits_per_address (stdoutput) / 8;
10604 }
10605
10606 int
10607 i386_elf_section_type (const char *str, size_t len)
10608 {
10609 if (flag_code == CODE_64BIT
10610 && len == sizeof ("unwind") - 1
10611 && strncmp (str, "unwind", 6) == 0)
10612 return SHT_X86_64_UNWIND;
10613
10614 return -1;
10615 }
10616
10617 #ifdef TE_SOLARIS
10618 void
10619 i386_solaris_fix_up_eh_frame (segT sec)
10620 {
10621 if (flag_code == CODE_64BIT)
10622 elf_section_type (sec) = SHT_X86_64_UNWIND;
10623 }
10624 #endif
10625
10626 #ifdef TE_PE
10627 void
10628 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10629 {
10630 expressionS exp;
10631
10632 exp.X_op = O_secrel;
10633 exp.X_add_symbol = symbol;
10634 exp.X_add_number = 0;
10635 emit_expr (&exp, size);
10636 }
10637 #endif
10638
10639 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10640 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
10641
10642 bfd_vma
10643 x86_64_section_letter (int letter, char **ptr_msg)
10644 {
10645 if (flag_code == CODE_64BIT)
10646 {
10647 if (letter == 'l')
10648 return SHF_X86_64_LARGE;
10649
10650 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
10651 }
10652 else
10653 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
10654 return -1;
10655 }
10656
10657 bfd_vma
10658 x86_64_section_word (char *str, size_t len)
10659 {
10660 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
10661 return SHF_X86_64_LARGE;
10662
10663 return -1;
10664 }
10665
10666 static void
10667 handle_large_common (int small ATTRIBUTE_UNUSED)
10668 {
10669 if (flag_code != CODE_64BIT)
10670 {
10671 s_comm_internal (0, elf_common_parse);
10672 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
10673 }
10674 else
10675 {
10676 static segT lbss_section;
10677 asection *saved_com_section_ptr = elf_com_section_ptr;
10678 asection *saved_bss_section = bss_section;
10679
10680 if (lbss_section == NULL)
10681 {
10682 flagword applicable;
10683 segT seg = now_seg;
10684 subsegT subseg = now_subseg;
10685
10686 /* The .lbss section is for local .largecomm symbols. */
10687 lbss_section = subseg_new (".lbss", 0);
10688 applicable = bfd_applicable_section_flags (stdoutput);
10689 bfd_set_section_flags (stdoutput, lbss_section,
10690 applicable & SEC_ALLOC);
10691 seg_info (lbss_section)->bss = 1;
10692
10693 subseg_set (seg, subseg);
10694 }
10695
10696 elf_com_section_ptr = &_bfd_elf_large_com_section;
10697 bss_section = lbss_section;
10698
10699 s_comm_internal (0, elf_common_parse);
10700
10701 elf_com_section_ptr = saved_com_section_ptr;
10702 bss_section = saved_bss_section;
10703 }
10704 }
10705 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.278601 seconds and 5 git commands to generate.