x86: fold to-scalar-int conversion insns
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 /* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88 #define END_OF_INSN '\0'
89
90 /*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97 typedef struct
98 {
99 const insn_template *start;
100 const insn_template *end;
101 }
102 templates;
103
104 /* 386 operand encoding bytes: see 386 book for details of this. */
105 typedef struct
106 {
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110 }
111 modrm_byte;
112
113 /* x86-64 extension prefix. */
114 typedef int rex_byte;
115
116 /* 386 opcode byte to code indirect addressing. */
117 typedef struct
118 {
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122 }
123 sib_byte;
124
125 /* x86 arch names, types and features */
126 typedef struct
127 {
128 const char *name; /* arch name */
129 unsigned int len; /* arch string length */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
132 unsigned int skip; /* show_arch should skip this. */
133 }
134 arch_entry;
135
136 /* Used to turn off indicated flags. */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142 }
143 noarch_entry;
144
145 static void update_code_flag (int, int);
146 static void set_code_flag (int);
147 static void set_16bit_gcc_code_flag (int);
148 static void set_intel_syntax (int);
149 static void set_intel_mnemonic (int);
150 static void set_allow_index_reg (int);
151 static void set_check (int);
152 static void set_cpu_arch (int);
153 #ifdef TE_PE
154 static void pe_directive_secrel (int);
155 #endif
156 static void signed_cons (int);
157 static char *output_invalid (int c);
158 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
162 static int i386_att_operand (char *);
163 static int i386_intel_operand (char *, int);
164 static int i386_intel_simplify (expressionS *);
165 static int i386_intel_parse_name (const char *, expressionS *);
166 static const reg_entry *parse_register (char *, char **);
167 static char *parse_insn (char *, char *);
168 static char *parse_operands (char *, const char *);
169 static void swap_operands (void);
170 static void swap_2_operands (int, int);
171 static void optimize_imm (void);
172 static void optimize_disp (void);
173 static const insn_template *match_template (char);
174 static int check_string (void);
175 static int process_suffix (void);
176 static int check_byte_reg (void);
177 static int check_long_reg (void);
178 static int check_qword_reg (void);
179 static int check_word_reg (void);
180 static int finalize_imm (void);
181 static int process_operands (void);
182 static const seg_entry *build_modrm_byte (void);
183 static void output_insn (void);
184 static void output_imm (fragS *, offsetT);
185 static void output_disp (fragS *, offsetT);
186 #ifndef I386COFF
187 static void s_bss (int);
188 #endif
189 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190 static void handle_large_common (int small ATTRIBUTE_UNUSED);
191 #endif
192
193 static const char *default_arch = DEFAULT_ARCH;
194
195 /* This struct describes rounding control and SAE in the instruction. */
196 struct RC_Operation
197 {
198 enum rc_type
199 {
200 rne = 0,
201 rd,
202 ru,
203 rz,
204 saeonly
205 } type;
206 int operand;
207 };
208
209 static struct RC_Operation rc_op;
210
211 /* The struct describes masking, applied to OPERAND in the instruction.
212 MASK is a pointer to the corresponding mask register. ZEROING tells
213 whether merging or zeroing mask is used. */
214 struct Mask_Operation
215 {
216 const reg_entry *mask;
217 unsigned int zeroing;
218 /* The operand where this operation is associated. */
219 int operand;
220 };
221
222 static struct Mask_Operation mask_op;
223
224 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
225 broadcast factor. */
226 struct Broadcast_Operation
227 {
228 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
229 int type;
230
231 /* Index of broadcasted operand. */
232 int operand;
233 };
234
235 static struct Broadcast_Operation broadcast_op;
236
237 /* VEX prefix. */
238 typedef struct
239 {
240 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
241 unsigned char bytes[4];
242 unsigned int length;
243 /* Destination or source register specifier. */
244 const reg_entry *register_specifier;
245 } vex_prefix;
246
247 /* 'md_assemble ()' gathers together information and puts it into a
248 i386_insn. */
249
250 union i386_op
251 {
252 expressionS *disps;
253 expressionS *imms;
254 const reg_entry *regs;
255 };
256
257 enum i386_error
258 {
259 operand_size_mismatch,
260 operand_type_mismatch,
261 register_type_mismatch,
262 number_of_operands_mismatch,
263 invalid_instruction_suffix,
264 bad_imm4,
265 unsupported_with_intel_mnemonic,
266 unsupported_syntax,
267 unsupported,
268 invalid_vsib_address,
269 invalid_vector_register_set,
270 unsupported_vector_index_register,
271 unsupported_broadcast,
272 broadcast_not_on_src_operand,
273 broadcast_needed,
274 unsupported_masking,
275 mask_not_on_destination,
276 no_default_mask,
277 unsupported_rc_sae,
278 rc_sae_operand_not_last_imm,
279 invalid_register_operand,
280 };
281
282 struct _i386_insn
283 {
284 /* TM holds the template for the insn were currently assembling. */
285 insn_template tm;
286
287 /* SUFFIX holds the instruction size suffix for byte, word, dword
288 or qword, if given. */
289 char suffix;
290
291 /* OPERANDS gives the number of given operands. */
292 unsigned int operands;
293
294 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
295 of given register, displacement, memory operands and immediate
296 operands. */
297 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
298
299 /* TYPES [i] is the type (see above #defines) which tells us how to
300 use OP[i] for the corresponding operand. */
301 i386_operand_type types[MAX_OPERANDS];
302
303 /* Displacement expression, immediate expression, or register for each
304 operand. */
305 union i386_op op[MAX_OPERANDS];
306
307 /* Flags for operands. */
308 unsigned int flags[MAX_OPERANDS];
309 #define Operand_PCrel 1
310
311 /* Relocation type for operand */
312 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
313
314 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
315 the base index byte below. */
316 const reg_entry *base_reg;
317 const reg_entry *index_reg;
318 unsigned int log2_scale_factor;
319
320 /* SEG gives the seg_entries of this insn. They are zero unless
321 explicit segment overrides are given. */
322 const seg_entry *seg[2];
323
324 /* Copied first memory operand string, for re-checking. */
325 char *memop1_string;
326
327 /* PREFIX holds all the given prefix opcodes (usually null).
328 PREFIXES is the number of prefix opcodes. */
329 unsigned int prefixes;
330 unsigned char prefix[MAX_PREFIXES];
331
332 /* RM and SIB are the modrm byte and the sib byte where the
333 addressing modes of this insn are encoded. */
334 modrm_byte rm;
335 rex_byte rex;
336 rex_byte vrex;
337 sib_byte sib;
338 vex_prefix vex;
339
340 /* Masking attributes. */
341 struct Mask_Operation *mask;
342
343 /* Rounding control and SAE attributes. */
344 struct RC_Operation *rounding;
345
346 /* Broadcasting attributes. */
347 struct Broadcast_Operation *broadcast;
348
349 /* Compressed disp8*N attribute. */
350 unsigned int memshift;
351
352 /* Prefer load or store in encoding. */
353 enum
354 {
355 dir_encoding_default = 0,
356 dir_encoding_load,
357 dir_encoding_store
358 } dir_encoding;
359
360 /* Prefer 8bit or 32bit displacement in encoding. */
361 enum
362 {
363 disp_encoding_default = 0,
364 disp_encoding_8bit,
365 disp_encoding_32bit
366 } disp_encoding;
367
368 /* Prefer the REX byte in encoding. */
369 bfd_boolean rex_encoding;
370
371 /* Disable instruction size optimization. */
372 bfd_boolean no_optimize;
373
374 /* How to encode vector instructions. */
375 enum
376 {
377 vex_encoding_default = 0,
378 vex_encoding_vex2,
379 vex_encoding_vex3,
380 vex_encoding_evex
381 } vec_encoding;
382
383 /* REP prefix. */
384 const char *rep_prefix;
385
386 /* HLE prefix. */
387 const char *hle_prefix;
388
389 /* Have BND prefix. */
390 const char *bnd_prefix;
391
392 /* Have NOTRACK prefix. */
393 const char *notrack_prefix;
394
395 /* Error message. */
396 enum i386_error error;
397 };
398
399 typedef struct _i386_insn i386_insn;
400
401 /* Link RC type with corresponding string, that'll be looked for in
402 asm. */
403 struct RC_name
404 {
405 enum rc_type type;
406 const char *name;
407 unsigned int len;
408 };
409
410 static const struct RC_name RC_NamesTable[] =
411 {
412 { rne, STRING_COMMA_LEN ("rn-sae") },
413 { rd, STRING_COMMA_LEN ("rd-sae") },
414 { ru, STRING_COMMA_LEN ("ru-sae") },
415 { rz, STRING_COMMA_LEN ("rz-sae") },
416 { saeonly, STRING_COMMA_LEN ("sae") },
417 };
418
419 /* List of chars besides those in app.c:symbol_chars that can start an
420 operand. Used to prevent the scrubber eating vital white-space. */
421 const char extra_symbol_chars[] = "*%-([{}"
422 #ifdef LEX_AT
423 "@"
424 #endif
425 #ifdef LEX_QM
426 "?"
427 #endif
428 ;
429
430 #if (defined (TE_I386AIX) \
431 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
432 && !defined (TE_GNU) \
433 && !defined (TE_LINUX) \
434 && !defined (TE_NACL) \
435 && !defined (TE_NETWARE) \
436 && !defined (TE_FreeBSD) \
437 && !defined (TE_DragonFly) \
438 && !defined (TE_NetBSD)))
439 /* This array holds the chars that always start a comment. If the
440 pre-processor is disabled, these aren't very useful. The option
441 --divide will remove '/' from this list. */
442 const char *i386_comment_chars = "#/";
443 #define SVR4_COMMENT_CHARS 1
444 #define PREFIX_SEPARATOR '\\'
445
446 #else
447 const char *i386_comment_chars = "#";
448 #define PREFIX_SEPARATOR '/'
449 #endif
450
451 /* This array holds the chars that only start a comment at the beginning of
452 a line. If the line seems to have the form '# 123 filename'
453 .line and .file directives will appear in the pre-processed output.
454 Note that input_file.c hand checks for '#' at the beginning of the
455 first line of the input file. This is because the compiler outputs
456 #NO_APP at the beginning of its output.
457 Also note that comments started like this one will always work if
458 '/' isn't otherwise defined. */
459 const char line_comment_chars[] = "#/";
460
461 const char line_separator_chars[] = ";";
462
463 /* Chars that can be used to separate mant from exp in floating point
464 nums. */
465 const char EXP_CHARS[] = "eE";
466
467 /* Chars that mean this number is a floating point constant
468 As in 0f12.456
469 or 0d1.2345e12. */
470 const char FLT_CHARS[] = "fFdDxX";
471
472 /* Tables for lexical analysis. */
473 static char mnemonic_chars[256];
474 static char register_chars[256];
475 static char operand_chars[256];
476 static char identifier_chars[256];
477 static char digit_chars[256];
478
479 /* Lexical macros. */
480 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
481 #define is_operand_char(x) (operand_chars[(unsigned char) x])
482 #define is_register_char(x) (register_chars[(unsigned char) x])
483 #define is_space_char(x) ((x) == ' ')
484 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
485 #define is_digit_char(x) (digit_chars[(unsigned char) x])
486
487 /* All non-digit non-letter characters that may occur in an operand. */
488 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
489
490 /* md_assemble() always leaves the strings it's passed unaltered. To
491 effect this we maintain a stack of saved characters that we've smashed
492 with '\0's (indicating end of strings for various sub-fields of the
493 assembler instruction). */
494 static char save_stack[32];
495 static char *save_stack_p;
496 #define END_STRING_AND_SAVE(s) \
497 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
498 #define RESTORE_END_STRING(s) \
499 do { *(s) = *--save_stack_p; } while (0)
500
501 /* The instruction we're assembling. */
502 static i386_insn i;
503
504 /* Possible templates for current insn. */
505 static const templates *current_templates;
506
507 /* Per instruction expressionS buffers: max displacements & immediates. */
508 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
509 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
510
511 /* Current operand we are working on. */
512 static int this_operand = -1;
513
514 /* We support four different modes. FLAG_CODE variable is used to distinguish
515 these. */
516
517 enum flag_code {
518 CODE_32BIT,
519 CODE_16BIT,
520 CODE_64BIT };
521
522 static enum flag_code flag_code;
523 static unsigned int object_64bit;
524 static unsigned int disallow_64bit_reloc;
525 static int use_rela_relocations = 0;
526
527 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
528 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
529 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
530
531 /* The ELF ABI to use. */
532 enum x86_elf_abi
533 {
534 I386_ABI,
535 X86_64_ABI,
536 X86_64_X32_ABI
537 };
538
539 static enum x86_elf_abi x86_elf_abi = I386_ABI;
540 #endif
541
542 #if defined (TE_PE) || defined (TE_PEP)
543 /* Use big object file format. */
544 static int use_big_obj = 0;
545 #endif
546
547 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
548 /* 1 if generating code for a shared library. */
549 static int shared = 0;
550 #endif
551
552 /* 1 for intel syntax,
553 0 if att syntax. */
554 static int intel_syntax = 0;
555
556 /* 1 for Intel64 ISA,
557 0 if AMD64 ISA. */
558 static int intel64;
559
560 /* 1 for intel mnemonic,
561 0 if att mnemonic. */
562 static int intel_mnemonic = !SYSV386_COMPAT;
563
564 /* 1 if pseudo registers are permitted. */
565 static int allow_pseudo_reg = 0;
566
567 /* 1 if register prefix % not required. */
568 static int allow_naked_reg = 0;
569
570 /* 1 if the assembler should add BND prefix for all control-transferring
571 instructions supporting it, even if this prefix wasn't specified
572 explicitly. */
573 static int add_bnd_prefix = 0;
574
575 /* 1 if pseudo index register, eiz/riz, is allowed . */
576 static int allow_index_reg = 0;
577
578 /* 1 if the assembler should ignore LOCK prefix, even if it was
579 specified explicitly. */
580 static int omit_lock_prefix = 0;
581
582 /* 1 if the assembler should encode lfence, mfence, and sfence as
583 "lock addl $0, (%{re}sp)". */
584 static int avoid_fence = 0;
585
586 /* 1 if the assembler should generate relax relocations. */
587
588 static int generate_relax_relocations
589 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
590
591 static enum check_kind
592 {
593 check_none = 0,
594 check_warning,
595 check_error
596 }
597 sse_check, operand_check = check_warning;
598
599 /* Optimization:
600 1. Clear the REX_W bit with register operand if possible.
601 2. Above plus use 128bit vector instruction to clear the full vector
602 register.
603 */
604 static int optimize = 0;
605
606 /* Optimization:
607 1. Clear the REX_W bit with register operand if possible.
608 2. Above plus use 128bit vector instruction to clear the full vector
609 register.
610 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
611 "testb $imm7,%r8".
612 */
613 static int optimize_for_space = 0;
614
615 /* Register prefix used for error message. */
616 static const char *register_prefix = "%";
617
618 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
619 leave, push, and pop instructions so that gcc has the same stack
620 frame as in 32 bit mode. */
621 static char stackop_size = '\0';
622
623 /* Non-zero to optimize code alignment. */
624 int optimize_align_code = 1;
625
626 /* Non-zero to quieten some warnings. */
627 static int quiet_warnings = 0;
628
629 /* CPU name. */
630 static const char *cpu_arch_name = NULL;
631 static char *cpu_sub_arch_name = NULL;
632
633 /* CPU feature flags. */
634 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
635
636 /* If we have selected a cpu we are generating instructions for. */
637 static int cpu_arch_tune_set = 0;
638
639 /* Cpu we are generating instructions for. */
640 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
641
642 /* CPU feature flags of cpu we are generating instructions for. */
643 static i386_cpu_flags cpu_arch_tune_flags;
644
645 /* CPU instruction set architecture used. */
646 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
647
648 /* CPU feature flags of instruction set architecture used. */
649 i386_cpu_flags cpu_arch_isa_flags;
650
651 /* If set, conditional jumps are not automatically promoted to handle
652 larger than a byte offset. */
653 static unsigned int no_cond_jump_promotion = 0;
654
655 /* Encode SSE instructions with VEX prefix. */
656 static unsigned int sse2avx;
657
658 /* Encode scalar AVX instructions with specific vector length. */
659 static enum
660 {
661 vex128 = 0,
662 vex256
663 } avxscalar;
664
665 /* Encode scalar EVEX LIG instructions with specific vector length. */
666 static enum
667 {
668 evexl128 = 0,
669 evexl256,
670 evexl512
671 } evexlig;
672
673 /* Encode EVEX WIG instructions with specific evex.w. */
674 static enum
675 {
676 evexw0 = 0,
677 evexw1
678 } evexwig;
679
680 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
681 static enum rc_type evexrcig = rne;
682
683 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
684 static symbolS *GOT_symbol;
685
686 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
687 unsigned int x86_dwarf2_return_column;
688
689 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
690 int x86_cie_data_alignment;
691
692 /* Interface to relax_segment.
693 There are 3 major relax states for 386 jump insns because the
694 different types of jumps add different sizes to frags when we're
695 figuring out what sort of jump to choose to reach a given label. */
696
697 /* Types. */
698 #define UNCOND_JUMP 0
699 #define COND_JUMP 1
700 #define COND_JUMP86 2
701
702 /* Sizes. */
703 #define CODE16 1
704 #define SMALL 0
705 #define SMALL16 (SMALL | CODE16)
706 #define BIG 2
707 #define BIG16 (BIG | CODE16)
708
709 #ifndef INLINE
710 #ifdef __GNUC__
711 #define INLINE __inline__
712 #else
713 #define INLINE
714 #endif
715 #endif
716
717 #define ENCODE_RELAX_STATE(type, size) \
718 ((relax_substateT) (((type) << 2) | (size)))
719 #define TYPE_FROM_RELAX_STATE(s) \
720 ((s) >> 2)
721 #define DISP_SIZE_FROM_RELAX_STATE(s) \
722 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
723
724 /* This table is used by relax_frag to promote short jumps to long
725 ones where necessary. SMALL (short) jumps may be promoted to BIG
726 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
727 don't allow a short jump in a 32 bit code segment to be promoted to
728 a 16 bit offset jump because it's slower (requires data size
729 prefix), and doesn't work, unless the destination is in the bottom
730 64k of the code segment (The top 16 bits of eip are zeroed). */
731
732 const relax_typeS md_relax_table[] =
733 {
734 /* The fields are:
735 1) most positive reach of this state,
736 2) most negative reach of this state,
737 3) how many bytes this mode will have in the variable part of the frag
738 4) which index into the table to try if we can't fit into this one. */
739
740 /* UNCOND_JUMP states. */
741 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
742 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
743 /* dword jmp adds 4 bytes to frag:
744 0 extra opcode bytes, 4 displacement bytes. */
745 {0, 0, 4, 0},
746 /* word jmp adds 2 byte2 to frag:
747 0 extra opcode bytes, 2 displacement bytes. */
748 {0, 0, 2, 0},
749
750 /* COND_JUMP states. */
751 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
752 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
753 /* dword conditionals adds 5 bytes to frag:
754 1 extra opcode byte, 4 displacement bytes. */
755 {0, 0, 5, 0},
756 /* word conditionals add 3 bytes to frag:
757 1 extra opcode byte, 2 displacement bytes. */
758 {0, 0, 3, 0},
759
760 /* COND_JUMP86 states. */
761 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
762 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
763 /* dword conditionals adds 5 bytes to frag:
764 1 extra opcode byte, 4 displacement bytes. */
765 {0, 0, 5, 0},
766 /* word conditionals add 4 bytes to frag:
767 1 displacement byte and a 3 byte long branch insn. */
768 {0, 0, 4, 0}
769 };
770
771 static const arch_entry cpu_arch[] =
772 {
773 /* Do not replace the first two entries - i386_target_format()
774 relies on them being there in this order. */
775 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
776 CPU_GENERIC32_FLAGS, 0 },
777 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
778 CPU_GENERIC64_FLAGS, 0 },
779 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
780 CPU_NONE_FLAGS, 0 },
781 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
782 CPU_I186_FLAGS, 0 },
783 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
784 CPU_I286_FLAGS, 0 },
785 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
786 CPU_I386_FLAGS, 0 },
787 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
788 CPU_I486_FLAGS, 0 },
789 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
790 CPU_I586_FLAGS, 0 },
791 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
792 CPU_I686_FLAGS, 0 },
793 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
794 CPU_I586_FLAGS, 0 },
795 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
796 CPU_PENTIUMPRO_FLAGS, 0 },
797 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
798 CPU_P2_FLAGS, 0 },
799 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
800 CPU_P3_FLAGS, 0 },
801 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
802 CPU_P4_FLAGS, 0 },
803 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
804 CPU_CORE_FLAGS, 0 },
805 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
806 CPU_NOCONA_FLAGS, 0 },
807 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
808 CPU_CORE_FLAGS, 1 },
809 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
810 CPU_CORE_FLAGS, 0 },
811 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
812 CPU_CORE2_FLAGS, 1 },
813 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
814 CPU_CORE2_FLAGS, 0 },
815 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
816 CPU_COREI7_FLAGS, 0 },
817 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
818 CPU_L1OM_FLAGS, 0 },
819 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
820 CPU_K1OM_FLAGS, 0 },
821 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
822 CPU_IAMCU_FLAGS, 0 },
823 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
824 CPU_K6_FLAGS, 0 },
825 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
826 CPU_K6_2_FLAGS, 0 },
827 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
828 CPU_ATHLON_FLAGS, 0 },
829 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
830 CPU_K8_FLAGS, 1 },
831 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
832 CPU_K8_FLAGS, 0 },
833 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
834 CPU_K8_FLAGS, 0 },
835 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
836 CPU_AMDFAM10_FLAGS, 0 },
837 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
838 CPU_BDVER1_FLAGS, 0 },
839 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
840 CPU_BDVER2_FLAGS, 0 },
841 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
842 CPU_BDVER3_FLAGS, 0 },
843 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
844 CPU_BDVER4_FLAGS, 0 },
845 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
846 CPU_ZNVER1_FLAGS, 0 },
847 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
848 CPU_BTVER1_FLAGS, 0 },
849 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
850 CPU_BTVER2_FLAGS, 0 },
851 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
852 CPU_8087_FLAGS, 0 },
853 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
854 CPU_287_FLAGS, 0 },
855 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
856 CPU_387_FLAGS, 0 },
857 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
858 CPU_687_FLAGS, 0 },
859 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
860 CPU_MMX_FLAGS, 0 },
861 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
862 CPU_SSE_FLAGS, 0 },
863 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
864 CPU_SSE2_FLAGS, 0 },
865 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
866 CPU_SSE3_FLAGS, 0 },
867 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
868 CPU_SSSE3_FLAGS, 0 },
869 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
870 CPU_SSE4_1_FLAGS, 0 },
871 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
872 CPU_SSE4_2_FLAGS, 0 },
873 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
874 CPU_SSE4_2_FLAGS, 0 },
875 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
876 CPU_AVX_FLAGS, 0 },
877 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
878 CPU_AVX2_FLAGS, 0 },
879 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
880 CPU_AVX512F_FLAGS, 0 },
881 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
882 CPU_AVX512CD_FLAGS, 0 },
883 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
884 CPU_AVX512ER_FLAGS, 0 },
885 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
886 CPU_AVX512PF_FLAGS, 0 },
887 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
888 CPU_AVX512DQ_FLAGS, 0 },
889 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
890 CPU_AVX512BW_FLAGS, 0 },
891 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
892 CPU_AVX512VL_FLAGS, 0 },
893 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
894 CPU_VMX_FLAGS, 0 },
895 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
896 CPU_VMFUNC_FLAGS, 0 },
897 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
898 CPU_SMX_FLAGS, 0 },
899 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
900 CPU_XSAVE_FLAGS, 0 },
901 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
902 CPU_XSAVEOPT_FLAGS, 0 },
903 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
904 CPU_XSAVEC_FLAGS, 0 },
905 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
906 CPU_XSAVES_FLAGS, 0 },
907 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
908 CPU_AES_FLAGS, 0 },
909 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
910 CPU_PCLMUL_FLAGS, 0 },
911 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
912 CPU_PCLMUL_FLAGS, 1 },
913 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
914 CPU_FSGSBASE_FLAGS, 0 },
915 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
916 CPU_RDRND_FLAGS, 0 },
917 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
918 CPU_F16C_FLAGS, 0 },
919 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
920 CPU_BMI2_FLAGS, 0 },
921 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
922 CPU_FMA_FLAGS, 0 },
923 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
924 CPU_FMA4_FLAGS, 0 },
925 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
926 CPU_XOP_FLAGS, 0 },
927 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
928 CPU_LWP_FLAGS, 0 },
929 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
930 CPU_MOVBE_FLAGS, 0 },
931 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
932 CPU_CX16_FLAGS, 0 },
933 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
934 CPU_EPT_FLAGS, 0 },
935 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
936 CPU_LZCNT_FLAGS, 0 },
937 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
938 CPU_HLE_FLAGS, 0 },
939 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
940 CPU_RTM_FLAGS, 0 },
941 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
942 CPU_INVPCID_FLAGS, 0 },
943 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
944 CPU_CLFLUSH_FLAGS, 0 },
945 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
946 CPU_NOP_FLAGS, 0 },
947 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
948 CPU_SYSCALL_FLAGS, 0 },
949 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
950 CPU_RDTSCP_FLAGS, 0 },
951 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
952 CPU_3DNOW_FLAGS, 0 },
953 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
954 CPU_3DNOWA_FLAGS, 0 },
955 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
956 CPU_PADLOCK_FLAGS, 0 },
957 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
958 CPU_SVME_FLAGS, 1 },
959 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
960 CPU_SVME_FLAGS, 0 },
961 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
962 CPU_SSE4A_FLAGS, 0 },
963 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
964 CPU_ABM_FLAGS, 0 },
965 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
966 CPU_BMI_FLAGS, 0 },
967 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
968 CPU_TBM_FLAGS, 0 },
969 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
970 CPU_ADX_FLAGS, 0 },
971 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
972 CPU_RDSEED_FLAGS, 0 },
973 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
974 CPU_PRFCHW_FLAGS, 0 },
975 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
976 CPU_SMAP_FLAGS, 0 },
977 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
978 CPU_MPX_FLAGS, 0 },
979 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
980 CPU_SHA_FLAGS, 0 },
981 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
982 CPU_CLFLUSHOPT_FLAGS, 0 },
983 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
984 CPU_PREFETCHWT1_FLAGS, 0 },
985 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
986 CPU_SE1_FLAGS, 0 },
987 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
988 CPU_CLWB_FLAGS, 0 },
989 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
990 CPU_AVX512IFMA_FLAGS, 0 },
991 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
992 CPU_AVX512VBMI_FLAGS, 0 },
993 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
994 CPU_AVX512_4FMAPS_FLAGS, 0 },
995 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
996 CPU_AVX512_4VNNIW_FLAGS, 0 },
997 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
998 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
999 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1000 CPU_AVX512_VBMI2_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1002 CPU_AVX512_VNNI_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1004 CPU_AVX512_BITALG_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1006 CPU_CLZERO_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1008 CPU_MWAITX_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1010 CPU_OSPKE_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1012 CPU_RDPID_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1014 CPU_PTWRITE_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1016 CPU_IBT_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1018 CPU_SHSTK_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1020 CPU_GFNI_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1022 CPU_VAES_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1024 CPU_VPCLMULQDQ_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1026 CPU_WBNOINVD_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1028 CPU_PCONFIG_FLAGS, 0 },
1029 };
1030
1031 static const noarch_entry cpu_noarch[] =
1032 {
1033 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1034 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1035 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1036 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1037 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1038 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1039 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1040 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1041 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1042 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1043 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1044 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1045 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1046 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1047 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1048 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1049 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1050 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1051 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1052 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1053 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1054 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1055 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1056 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1057 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1058 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1059 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1060 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1061 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1062 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1063 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1064 };
1065
1066 #ifdef I386COFF
1067 /* Like s_lcomm_internal in gas/read.c but the alignment string
1068 is allowed to be optional. */
1069
1070 static symbolS *
1071 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1072 {
1073 addressT align = 0;
1074
1075 SKIP_WHITESPACE ();
1076
1077 if (needs_align
1078 && *input_line_pointer == ',')
1079 {
1080 align = parse_align (needs_align - 1);
1081
1082 if (align == (addressT) -1)
1083 return NULL;
1084 }
1085 else
1086 {
1087 if (size >= 8)
1088 align = 3;
1089 else if (size >= 4)
1090 align = 2;
1091 else if (size >= 2)
1092 align = 1;
1093 else
1094 align = 0;
1095 }
1096
1097 bss_alloc (symbolP, size, align);
1098 return symbolP;
1099 }
1100
1101 static void
1102 pe_lcomm (int needs_align)
1103 {
1104 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1105 }
1106 #endif
1107
1108 const pseudo_typeS md_pseudo_table[] =
1109 {
1110 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1111 {"align", s_align_bytes, 0},
1112 #else
1113 {"align", s_align_ptwo, 0},
1114 #endif
1115 {"arch", set_cpu_arch, 0},
1116 #ifndef I386COFF
1117 {"bss", s_bss, 0},
1118 #else
1119 {"lcomm", pe_lcomm, 1},
1120 #endif
1121 {"ffloat", float_cons, 'f'},
1122 {"dfloat", float_cons, 'd'},
1123 {"tfloat", float_cons, 'x'},
1124 {"value", cons, 2},
1125 {"slong", signed_cons, 4},
1126 {"noopt", s_ignore, 0},
1127 {"optim", s_ignore, 0},
1128 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1129 {"code16", set_code_flag, CODE_16BIT},
1130 {"code32", set_code_flag, CODE_32BIT},
1131 #ifdef BFD64
1132 {"code64", set_code_flag, CODE_64BIT},
1133 #endif
1134 {"intel_syntax", set_intel_syntax, 1},
1135 {"att_syntax", set_intel_syntax, 0},
1136 {"intel_mnemonic", set_intel_mnemonic, 1},
1137 {"att_mnemonic", set_intel_mnemonic, 0},
1138 {"allow_index_reg", set_allow_index_reg, 1},
1139 {"disallow_index_reg", set_allow_index_reg, 0},
1140 {"sse_check", set_check, 0},
1141 {"operand_check", set_check, 1},
1142 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1143 {"largecomm", handle_large_common, 0},
1144 #else
1145 {"file", dwarf2_directive_file, 0},
1146 {"loc", dwarf2_directive_loc, 0},
1147 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1148 #endif
1149 #ifdef TE_PE
1150 {"secrel32", pe_directive_secrel, 0},
1151 #endif
1152 {0, 0, 0}
1153 };
1154
1155 /* For interface with expression (). */
1156 extern char *input_line_pointer;
1157
1158 /* Hash table for instruction mnemonic lookup. */
1159 static struct hash_control *op_hash;
1160
1161 /* Hash table for register lookup. */
1162 static struct hash_control *reg_hash;
1163 \f
1164 /* Various efficient no-op patterns for aligning code labels.
1165 Note: Don't try to assemble the instructions in the comments.
1166 0L and 0w are not legal. */
1167 static const unsigned char f32_1[] =
1168 {0x90}; /* nop */
1169 static const unsigned char f32_2[] =
1170 {0x66,0x90}; /* xchg %ax,%ax */
1171 static const unsigned char f32_3[] =
1172 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1173 static const unsigned char f32_4[] =
1174 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1175 static const unsigned char f32_6[] =
1176 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1177 static const unsigned char f32_7[] =
1178 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1179 static const unsigned char f16_3[] =
1180 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1181 static const unsigned char f16_4[] =
1182 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1183 static const unsigned char jump_disp8[] =
1184 {0xeb}; /* jmp disp8 */
1185 static const unsigned char jump32_disp32[] =
1186 {0xe9}; /* jmp disp32 */
1187 static const unsigned char jump16_disp32[] =
1188 {0x66,0xe9}; /* jmp disp32 */
1189 /* 32-bit NOPs patterns. */
1190 static const unsigned char *const f32_patt[] = {
1191 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1192 };
1193 /* 16-bit NOPs patterns. */
1194 static const unsigned char *const f16_patt[] = {
1195 f32_1, f32_2, f16_3, f16_4
1196 };
1197 /* nopl (%[re]ax) */
1198 static const unsigned char alt_3[] =
1199 {0x0f,0x1f,0x00};
1200 /* nopl 0(%[re]ax) */
1201 static const unsigned char alt_4[] =
1202 {0x0f,0x1f,0x40,0x00};
1203 /* nopl 0(%[re]ax,%[re]ax,1) */
1204 static const unsigned char alt_5[] =
1205 {0x0f,0x1f,0x44,0x00,0x00};
1206 /* nopw 0(%[re]ax,%[re]ax,1) */
1207 static const unsigned char alt_6[] =
1208 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1209 /* nopl 0L(%[re]ax) */
1210 static const unsigned char alt_7[] =
1211 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1212 /* nopl 0L(%[re]ax,%[re]ax,1) */
1213 static const unsigned char alt_8[] =
1214 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1215 /* nopw 0L(%[re]ax,%[re]ax,1) */
1216 static const unsigned char alt_9[] =
1217 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1218 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1219 static const unsigned char alt_10[] =
1220 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1221 /* data16 nopw %cs:0L(%eax,%eax,1) */
1222 static const unsigned char alt_11[] =
1223 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1224 /* 32-bit and 64-bit NOPs patterns. */
1225 static const unsigned char *const alt_patt[] = {
1226 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1227 alt_9, alt_10, alt_11
1228 };
1229
1230 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1231 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1232
1233 static void
1234 i386_output_nops (char *where, const unsigned char *const *patt,
1235 int count, int max_single_nop_size)
1236
1237 {
1238 /* Place the longer NOP first. */
1239 int last;
1240 int offset;
1241 const unsigned char *nops = patt[max_single_nop_size - 1];
1242
1243 /* Use the smaller one if the requsted one isn't available. */
1244 if (nops == NULL)
1245 {
1246 max_single_nop_size--;
1247 nops = patt[max_single_nop_size - 1];
1248 }
1249
1250 last = count % max_single_nop_size;
1251
1252 count -= last;
1253 for (offset = 0; offset < count; offset += max_single_nop_size)
1254 memcpy (where + offset, nops, max_single_nop_size);
1255
1256 if (last)
1257 {
1258 nops = patt[last - 1];
1259 if (nops == NULL)
1260 {
1261 /* Use the smaller one plus one-byte NOP if the needed one
1262 isn't available. */
1263 last--;
1264 nops = patt[last - 1];
1265 memcpy (where + offset, nops, last);
1266 where[offset + last] = *patt[0];
1267 }
1268 else
1269 memcpy (where + offset, nops, last);
1270 }
1271 }
1272
1273 static INLINE int
1274 fits_in_imm7 (offsetT num)
1275 {
1276 return (num & 0x7f) == num;
1277 }
1278
1279 static INLINE int
1280 fits_in_imm31 (offsetT num)
1281 {
1282 return (num & 0x7fffffff) == num;
1283 }
1284
1285 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1286 single NOP instruction LIMIT. */
1287
1288 void
1289 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1290 {
1291 const unsigned char *const *patt = NULL;
1292 int max_single_nop_size;
1293 /* Maximum number of NOPs before switching to jump over NOPs. */
1294 int max_number_of_nops;
1295
1296 switch (fragP->fr_type)
1297 {
1298 case rs_fill_nop:
1299 case rs_align_code:
1300 break;
1301 default:
1302 return;
1303 }
1304
1305 /* We need to decide which NOP sequence to use for 32bit and
1306 64bit. When -mtune= is used:
1307
1308 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1309 PROCESSOR_GENERIC32, f32_patt will be used.
1310 2. For the rest, alt_patt will be used.
1311
1312 When -mtune= isn't used, alt_patt will be used if
1313 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1314 be used.
1315
1316 When -march= or .arch is used, we can't use anything beyond
1317 cpu_arch_isa_flags. */
1318
1319 if (flag_code == CODE_16BIT)
1320 {
1321 patt = f16_patt;
1322 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1323 /* Limit number of NOPs to 2 in 16-bit mode. */
1324 max_number_of_nops = 2;
1325 }
1326 else
1327 {
1328 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1329 {
1330 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1331 switch (cpu_arch_tune)
1332 {
1333 case PROCESSOR_UNKNOWN:
1334 /* We use cpu_arch_isa_flags to check if we SHOULD
1335 optimize with nops. */
1336 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1337 patt = alt_patt;
1338 else
1339 patt = f32_patt;
1340 break;
1341 case PROCESSOR_PENTIUM4:
1342 case PROCESSOR_NOCONA:
1343 case PROCESSOR_CORE:
1344 case PROCESSOR_CORE2:
1345 case PROCESSOR_COREI7:
1346 case PROCESSOR_L1OM:
1347 case PROCESSOR_K1OM:
1348 case PROCESSOR_GENERIC64:
1349 case PROCESSOR_K6:
1350 case PROCESSOR_ATHLON:
1351 case PROCESSOR_K8:
1352 case PROCESSOR_AMDFAM10:
1353 case PROCESSOR_BD:
1354 case PROCESSOR_ZNVER:
1355 case PROCESSOR_BT:
1356 patt = alt_patt;
1357 break;
1358 case PROCESSOR_I386:
1359 case PROCESSOR_I486:
1360 case PROCESSOR_PENTIUM:
1361 case PROCESSOR_PENTIUMPRO:
1362 case PROCESSOR_IAMCU:
1363 case PROCESSOR_GENERIC32:
1364 patt = f32_patt;
1365 break;
1366 }
1367 }
1368 else
1369 {
1370 switch (fragP->tc_frag_data.tune)
1371 {
1372 case PROCESSOR_UNKNOWN:
1373 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1374 PROCESSOR_UNKNOWN. */
1375 abort ();
1376 break;
1377
1378 case PROCESSOR_I386:
1379 case PROCESSOR_I486:
1380 case PROCESSOR_PENTIUM:
1381 case PROCESSOR_IAMCU:
1382 case PROCESSOR_K6:
1383 case PROCESSOR_ATHLON:
1384 case PROCESSOR_K8:
1385 case PROCESSOR_AMDFAM10:
1386 case PROCESSOR_BD:
1387 case PROCESSOR_ZNVER:
1388 case PROCESSOR_BT:
1389 case PROCESSOR_GENERIC32:
1390 /* We use cpu_arch_isa_flags to check if we CAN optimize
1391 with nops. */
1392 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1393 patt = alt_patt;
1394 else
1395 patt = f32_patt;
1396 break;
1397 case PROCESSOR_PENTIUMPRO:
1398 case PROCESSOR_PENTIUM4:
1399 case PROCESSOR_NOCONA:
1400 case PROCESSOR_CORE:
1401 case PROCESSOR_CORE2:
1402 case PROCESSOR_COREI7:
1403 case PROCESSOR_L1OM:
1404 case PROCESSOR_K1OM:
1405 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1406 patt = alt_patt;
1407 else
1408 patt = f32_patt;
1409 break;
1410 case PROCESSOR_GENERIC64:
1411 patt = alt_patt;
1412 break;
1413 }
1414 }
1415
1416 if (patt == f32_patt)
1417 {
1418 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1419 /* Limit number of NOPs to 2 for older processors. */
1420 max_number_of_nops = 2;
1421 }
1422 else
1423 {
1424 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1425 /* Limit number of NOPs to 7 for newer processors. */
1426 max_number_of_nops = 7;
1427 }
1428 }
1429
1430 if (limit == 0)
1431 limit = max_single_nop_size;
1432
1433 if (fragP->fr_type == rs_fill_nop)
1434 {
1435 /* Output NOPs for .nop directive. */
1436 if (limit > max_single_nop_size)
1437 {
1438 as_bad_where (fragP->fr_file, fragP->fr_line,
1439 _("invalid single nop size: %d "
1440 "(expect within [0, %d])"),
1441 limit, max_single_nop_size);
1442 return;
1443 }
1444 }
1445 else
1446 fragP->fr_var = count;
1447
1448 if ((count / max_single_nop_size) > max_number_of_nops)
1449 {
1450 /* Generate jump over NOPs. */
1451 offsetT disp = count - 2;
1452 if (fits_in_imm7 (disp))
1453 {
1454 /* Use "jmp disp8" if possible. */
1455 count = disp;
1456 where[0] = jump_disp8[0];
1457 where[1] = count;
1458 where += 2;
1459 }
1460 else
1461 {
1462 unsigned int size_of_jump;
1463
1464 if (flag_code == CODE_16BIT)
1465 {
1466 where[0] = jump16_disp32[0];
1467 where[1] = jump16_disp32[1];
1468 size_of_jump = 2;
1469 }
1470 else
1471 {
1472 where[0] = jump32_disp32[0];
1473 size_of_jump = 1;
1474 }
1475
1476 count -= size_of_jump + 4;
1477 if (!fits_in_imm31 (count))
1478 {
1479 as_bad_where (fragP->fr_file, fragP->fr_line,
1480 _("jump over nop padding out of range"));
1481 return;
1482 }
1483
1484 md_number_to_chars (where + size_of_jump, count, 4);
1485 where += size_of_jump + 4;
1486 }
1487 }
1488
1489 /* Generate multiple NOPs. */
1490 i386_output_nops (where, patt, count, limit);
1491 }
1492
1493 static INLINE int
1494 operand_type_all_zero (const union i386_operand_type *x)
1495 {
1496 switch (ARRAY_SIZE(x->array))
1497 {
1498 case 3:
1499 if (x->array[2])
1500 return 0;
1501 /* Fall through. */
1502 case 2:
1503 if (x->array[1])
1504 return 0;
1505 /* Fall through. */
1506 case 1:
1507 return !x->array[0];
1508 default:
1509 abort ();
1510 }
1511 }
1512
1513 static INLINE void
1514 operand_type_set (union i386_operand_type *x, unsigned int v)
1515 {
1516 switch (ARRAY_SIZE(x->array))
1517 {
1518 case 3:
1519 x->array[2] = v;
1520 /* Fall through. */
1521 case 2:
1522 x->array[1] = v;
1523 /* Fall through. */
1524 case 1:
1525 x->array[0] = v;
1526 /* Fall through. */
1527 break;
1528 default:
1529 abort ();
1530 }
1531 }
1532
1533 static INLINE int
1534 operand_type_equal (const union i386_operand_type *x,
1535 const union i386_operand_type *y)
1536 {
1537 switch (ARRAY_SIZE(x->array))
1538 {
1539 case 3:
1540 if (x->array[2] != y->array[2])
1541 return 0;
1542 /* Fall through. */
1543 case 2:
1544 if (x->array[1] != y->array[1])
1545 return 0;
1546 /* Fall through. */
1547 case 1:
1548 return x->array[0] == y->array[0];
1549 break;
1550 default:
1551 abort ();
1552 }
1553 }
1554
1555 static INLINE int
1556 cpu_flags_all_zero (const union i386_cpu_flags *x)
1557 {
1558 switch (ARRAY_SIZE(x->array))
1559 {
1560 case 4:
1561 if (x->array[3])
1562 return 0;
1563 /* Fall through. */
1564 case 3:
1565 if (x->array[2])
1566 return 0;
1567 /* Fall through. */
1568 case 2:
1569 if (x->array[1])
1570 return 0;
1571 /* Fall through. */
1572 case 1:
1573 return !x->array[0];
1574 default:
1575 abort ();
1576 }
1577 }
1578
1579 static INLINE int
1580 cpu_flags_equal (const union i386_cpu_flags *x,
1581 const union i386_cpu_flags *y)
1582 {
1583 switch (ARRAY_SIZE(x->array))
1584 {
1585 case 4:
1586 if (x->array[3] != y->array[3])
1587 return 0;
1588 /* Fall through. */
1589 case 3:
1590 if (x->array[2] != y->array[2])
1591 return 0;
1592 /* Fall through. */
1593 case 2:
1594 if (x->array[1] != y->array[1])
1595 return 0;
1596 /* Fall through. */
1597 case 1:
1598 return x->array[0] == y->array[0];
1599 break;
1600 default:
1601 abort ();
1602 }
1603 }
1604
1605 static INLINE int
1606 cpu_flags_check_cpu64 (i386_cpu_flags f)
1607 {
1608 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1609 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1610 }
1611
1612 static INLINE i386_cpu_flags
1613 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1614 {
1615 switch (ARRAY_SIZE (x.array))
1616 {
1617 case 4:
1618 x.array [3] &= y.array [3];
1619 /* Fall through. */
1620 case 3:
1621 x.array [2] &= y.array [2];
1622 /* Fall through. */
1623 case 2:
1624 x.array [1] &= y.array [1];
1625 /* Fall through. */
1626 case 1:
1627 x.array [0] &= y.array [0];
1628 break;
1629 default:
1630 abort ();
1631 }
1632 return x;
1633 }
1634
1635 static INLINE i386_cpu_flags
1636 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1637 {
1638 switch (ARRAY_SIZE (x.array))
1639 {
1640 case 4:
1641 x.array [3] |= y.array [3];
1642 /* Fall through. */
1643 case 3:
1644 x.array [2] |= y.array [2];
1645 /* Fall through. */
1646 case 2:
1647 x.array [1] |= y.array [1];
1648 /* Fall through. */
1649 case 1:
1650 x.array [0] |= y.array [0];
1651 break;
1652 default:
1653 abort ();
1654 }
1655 return x;
1656 }
1657
1658 static INLINE i386_cpu_flags
1659 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1660 {
1661 switch (ARRAY_SIZE (x.array))
1662 {
1663 case 4:
1664 x.array [3] &= ~y.array [3];
1665 /* Fall through. */
1666 case 3:
1667 x.array [2] &= ~y.array [2];
1668 /* Fall through. */
1669 case 2:
1670 x.array [1] &= ~y.array [1];
1671 /* Fall through. */
1672 case 1:
1673 x.array [0] &= ~y.array [0];
1674 break;
1675 default:
1676 abort ();
1677 }
1678 return x;
1679 }
1680
1681 #define CPU_FLAGS_ARCH_MATCH 0x1
1682 #define CPU_FLAGS_64BIT_MATCH 0x2
1683
1684 #define CPU_FLAGS_PERFECT_MATCH \
1685 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1686
1687 /* Return CPU flags match bits. */
1688
1689 static int
1690 cpu_flags_match (const insn_template *t)
1691 {
1692 i386_cpu_flags x = t->cpu_flags;
1693 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1694
1695 x.bitfield.cpu64 = 0;
1696 x.bitfield.cpuno64 = 0;
1697
1698 if (cpu_flags_all_zero (&x))
1699 {
1700 /* This instruction is available on all archs. */
1701 match |= CPU_FLAGS_ARCH_MATCH;
1702 }
1703 else
1704 {
1705 /* This instruction is available only on some archs. */
1706 i386_cpu_flags cpu = cpu_arch_flags;
1707
1708 /* AVX512VL is no standalone feature - match it and then strip it. */
1709 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1710 return match;
1711 x.bitfield.cpuavx512vl = 0;
1712
1713 cpu = cpu_flags_and (x, cpu);
1714 if (!cpu_flags_all_zero (&cpu))
1715 {
1716 if (x.bitfield.cpuavx)
1717 {
1718 /* We need to check a few extra flags with AVX. */
1719 if (cpu.bitfield.cpuavx
1720 && (!t->opcode_modifier.sse2avx || sse2avx)
1721 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1722 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1723 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1724 match |= CPU_FLAGS_ARCH_MATCH;
1725 }
1726 else if (x.bitfield.cpuavx512f)
1727 {
1728 /* We need to check a few extra flags with AVX512F. */
1729 if (cpu.bitfield.cpuavx512f
1730 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1731 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1732 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1733 match |= CPU_FLAGS_ARCH_MATCH;
1734 }
1735 else
1736 match |= CPU_FLAGS_ARCH_MATCH;
1737 }
1738 }
1739 return match;
1740 }
1741
1742 static INLINE i386_operand_type
1743 operand_type_and (i386_operand_type x, i386_operand_type y)
1744 {
1745 switch (ARRAY_SIZE (x.array))
1746 {
1747 case 3:
1748 x.array [2] &= y.array [2];
1749 /* Fall through. */
1750 case 2:
1751 x.array [1] &= y.array [1];
1752 /* Fall through. */
1753 case 1:
1754 x.array [0] &= y.array [0];
1755 break;
1756 default:
1757 abort ();
1758 }
1759 return x;
1760 }
1761
1762 static INLINE i386_operand_type
1763 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1764 {
1765 switch (ARRAY_SIZE (x.array))
1766 {
1767 case 3:
1768 x.array [2] &= ~y.array [2];
1769 /* Fall through. */
1770 case 2:
1771 x.array [1] &= ~y.array [1];
1772 /* Fall through. */
1773 case 1:
1774 x.array [0] &= ~y.array [0];
1775 break;
1776 default:
1777 abort ();
1778 }
1779 return x;
1780 }
1781
1782 static INLINE i386_operand_type
1783 operand_type_or (i386_operand_type x, i386_operand_type y)
1784 {
1785 switch (ARRAY_SIZE (x.array))
1786 {
1787 case 3:
1788 x.array [2] |= y.array [2];
1789 /* Fall through. */
1790 case 2:
1791 x.array [1] |= y.array [1];
1792 /* Fall through. */
1793 case 1:
1794 x.array [0] |= y.array [0];
1795 break;
1796 default:
1797 abort ();
1798 }
1799 return x;
1800 }
1801
1802 static INLINE i386_operand_type
1803 operand_type_xor (i386_operand_type x, i386_operand_type y)
1804 {
1805 switch (ARRAY_SIZE (x.array))
1806 {
1807 case 3:
1808 x.array [2] ^= y.array [2];
1809 /* Fall through. */
1810 case 2:
1811 x.array [1] ^= y.array [1];
1812 /* Fall through. */
1813 case 1:
1814 x.array [0] ^= y.array [0];
1815 break;
1816 default:
1817 abort ();
1818 }
1819 return x;
1820 }
1821
1822 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1823 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1824 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1825 static const i386_operand_type inoutportreg
1826 = OPERAND_TYPE_INOUTPORTREG;
1827 static const i386_operand_type reg16_inoutportreg
1828 = OPERAND_TYPE_REG16_INOUTPORTREG;
1829 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1830 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1831 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1832 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1833 static const i386_operand_type anydisp
1834 = OPERAND_TYPE_ANYDISP;
1835 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1836 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1837 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1838 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1839 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1840 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1841 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1842 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1843 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1844 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1845 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1846 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1847
1848 enum operand_type
1849 {
1850 reg,
1851 imm,
1852 disp,
1853 anymem
1854 };
1855
1856 static INLINE int
1857 operand_type_check (i386_operand_type t, enum operand_type c)
1858 {
1859 switch (c)
1860 {
1861 case reg:
1862 return t.bitfield.reg;
1863
1864 case imm:
1865 return (t.bitfield.imm8
1866 || t.bitfield.imm8s
1867 || t.bitfield.imm16
1868 || t.bitfield.imm32
1869 || t.bitfield.imm32s
1870 || t.bitfield.imm64);
1871
1872 case disp:
1873 return (t.bitfield.disp8
1874 || t.bitfield.disp16
1875 || t.bitfield.disp32
1876 || t.bitfield.disp32s
1877 || t.bitfield.disp64);
1878
1879 case anymem:
1880 return (t.bitfield.disp8
1881 || t.bitfield.disp16
1882 || t.bitfield.disp32
1883 || t.bitfield.disp32s
1884 || t.bitfield.disp64
1885 || t.bitfield.baseindex);
1886
1887 default:
1888 abort ();
1889 }
1890
1891 return 0;
1892 }
1893
1894 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit on
1895 operand J for instruction template T. */
1896
1897 static INLINE int
1898 match_reg_size (const insn_template *t, unsigned int j)
1899 {
1900 return !((i.types[j].bitfield.byte
1901 && !t->operand_types[j].bitfield.byte)
1902 || (i.types[j].bitfield.word
1903 && !t->operand_types[j].bitfield.word)
1904 || (i.types[j].bitfield.dword
1905 && !t->operand_types[j].bitfield.dword)
1906 || (i.types[j].bitfield.qword
1907 && !t->operand_types[j].bitfield.qword)
1908 || (i.types[j].bitfield.tbyte
1909 && !t->operand_types[j].bitfield.tbyte));
1910 }
1911
1912 /* Return 1 if there is no conflict in SIMD register on
1913 operand J for instruction template T. */
1914
1915 static INLINE int
1916 match_simd_size (const insn_template *t, unsigned int j)
1917 {
1918 return !((i.types[j].bitfield.xmmword
1919 && !t->operand_types[j].bitfield.xmmword)
1920 || (i.types[j].bitfield.ymmword
1921 && !t->operand_types[j].bitfield.ymmword)
1922 || (i.types[j].bitfield.zmmword
1923 && !t->operand_types[j].bitfield.zmmword));
1924 }
1925
1926 /* Return 1 if there is no conflict in any size on operand J for
1927 instruction template T. */
1928
1929 static INLINE int
1930 match_mem_size (const insn_template *t, unsigned int j)
1931 {
1932 return (match_reg_size (t, j)
1933 && !((i.types[j].bitfield.unspecified
1934 && !i.broadcast
1935 && !t->operand_types[j].bitfield.unspecified)
1936 || (i.types[j].bitfield.fword
1937 && !t->operand_types[j].bitfield.fword)
1938 /* For scalar opcode templates to allow register and memory
1939 operands at the same time, some special casing is needed
1940 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1941 down-conversion vpmov*. */
1942 || ((t->operand_types[j].bitfield.regsimd
1943 && !t->opcode_modifier.broadcast
1944 && (t->operand_types[j].bitfield.byte
1945 || t->operand_types[j].bitfield.word
1946 || t->operand_types[j].bitfield.dword
1947 || t->operand_types[j].bitfield.qword))
1948 ? (i.types[j].bitfield.xmmword
1949 || i.types[j].bitfield.ymmword
1950 || i.types[j].bitfield.zmmword)
1951 : !match_simd_size(t, j))));
1952 }
1953
1954 /* Return 1 if there is no size conflict on any operands for
1955 instruction template T. */
1956
1957 static INLINE int
1958 operand_size_match (const insn_template *t)
1959 {
1960 unsigned int j;
1961 int match = 1;
1962
1963 /* Don't check jump instructions. */
1964 if (t->opcode_modifier.jump
1965 || t->opcode_modifier.jumpbyte
1966 || t->opcode_modifier.jumpdword
1967 || t->opcode_modifier.jumpintersegment)
1968 return match;
1969
1970 /* Check memory and accumulator operand size. */
1971 for (j = 0; j < i.operands; j++)
1972 {
1973 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1974 && t->operand_types[j].bitfield.anysize)
1975 continue;
1976
1977 if (t->operand_types[j].bitfield.reg
1978 && !match_reg_size (t, j))
1979 {
1980 match = 0;
1981 break;
1982 }
1983
1984 if (t->operand_types[j].bitfield.regsimd
1985 && !match_simd_size (t, j))
1986 {
1987 match = 0;
1988 break;
1989 }
1990
1991 if (t->operand_types[j].bitfield.acc
1992 && (!match_reg_size (t, j) || !match_simd_size (t, j)))
1993 {
1994 match = 0;
1995 break;
1996 }
1997
1998 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1999 {
2000 match = 0;
2001 break;
2002 }
2003 }
2004
2005 if (match)
2006 return match;
2007 else if (!t->opcode_modifier.d)
2008 {
2009 mismatch:
2010 i.error = operand_size_mismatch;
2011 return 0;
2012 }
2013
2014 /* Check reverse. */
2015 gas_assert (i.operands == 2);
2016
2017 match = 1;
2018 for (j = 0; j < 2; j++)
2019 {
2020 if ((t->operand_types[j].bitfield.reg
2021 || t->operand_types[j].bitfield.acc)
2022 && !match_reg_size (t, j ? 0 : 1))
2023 goto mismatch;
2024
2025 if (i.types[j].bitfield.mem
2026 && !match_mem_size (t, j ? 0 : 1))
2027 goto mismatch;
2028 }
2029
2030 return match;
2031 }
2032
2033 static INLINE int
2034 operand_type_match (i386_operand_type overlap,
2035 i386_operand_type given)
2036 {
2037 i386_operand_type temp = overlap;
2038
2039 temp.bitfield.jumpabsolute = 0;
2040 temp.bitfield.unspecified = 0;
2041 temp.bitfield.byte = 0;
2042 temp.bitfield.word = 0;
2043 temp.bitfield.dword = 0;
2044 temp.bitfield.fword = 0;
2045 temp.bitfield.qword = 0;
2046 temp.bitfield.tbyte = 0;
2047 temp.bitfield.xmmword = 0;
2048 temp.bitfield.ymmword = 0;
2049 temp.bitfield.zmmword = 0;
2050 if (operand_type_all_zero (&temp))
2051 goto mismatch;
2052
2053 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2054 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2055 return 1;
2056
2057 mismatch:
2058 i.error = operand_type_mismatch;
2059 return 0;
2060 }
2061
2062 /* If given types g0 and g1 are registers they must be of the same type
2063 unless the expected operand type register overlap is null.
2064 Memory operand size of certain SIMD instructions is also being checked
2065 here. */
2066
2067 static INLINE int
2068 operand_type_register_match (i386_operand_type g0,
2069 i386_operand_type t0,
2070 i386_operand_type g1,
2071 i386_operand_type t1)
2072 {
2073 if (!g0.bitfield.reg
2074 && !g0.bitfield.regsimd
2075 && (!operand_type_check (g0, anymem)
2076 || g0.bitfield.unspecified
2077 || !t0.bitfield.regsimd))
2078 return 1;
2079
2080 if (!g1.bitfield.reg
2081 && !g1.bitfield.regsimd
2082 && (!operand_type_check (g1, anymem)
2083 || g1.bitfield.unspecified
2084 || !t1.bitfield.regsimd))
2085 return 1;
2086
2087 if (g0.bitfield.byte == g1.bitfield.byte
2088 && g0.bitfield.word == g1.bitfield.word
2089 && g0.bitfield.dword == g1.bitfield.dword
2090 && g0.bitfield.qword == g1.bitfield.qword
2091 && g0.bitfield.xmmword == g1.bitfield.xmmword
2092 && g0.bitfield.ymmword == g1.bitfield.ymmword
2093 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2094 return 1;
2095
2096 if (!(t0.bitfield.byte & t1.bitfield.byte)
2097 && !(t0.bitfield.word & t1.bitfield.word)
2098 && !(t0.bitfield.dword & t1.bitfield.dword)
2099 && !(t0.bitfield.qword & t1.bitfield.qword)
2100 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2101 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2102 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2103 return 1;
2104
2105 i.error = register_type_mismatch;
2106
2107 return 0;
2108 }
2109
2110 static INLINE unsigned int
2111 register_number (const reg_entry *r)
2112 {
2113 unsigned int nr = r->reg_num;
2114
2115 if (r->reg_flags & RegRex)
2116 nr += 8;
2117
2118 if (r->reg_flags & RegVRex)
2119 nr += 16;
2120
2121 return nr;
2122 }
2123
2124 static INLINE unsigned int
2125 mode_from_disp_size (i386_operand_type t)
2126 {
2127 if (t.bitfield.disp8)
2128 return 1;
2129 else if (t.bitfield.disp16
2130 || t.bitfield.disp32
2131 || t.bitfield.disp32s)
2132 return 2;
2133 else
2134 return 0;
2135 }
2136
2137 static INLINE int
2138 fits_in_signed_byte (addressT num)
2139 {
2140 return num + 0x80 <= 0xff;
2141 }
2142
2143 static INLINE int
2144 fits_in_unsigned_byte (addressT num)
2145 {
2146 return num <= 0xff;
2147 }
2148
2149 static INLINE int
2150 fits_in_unsigned_word (addressT num)
2151 {
2152 return num <= 0xffff;
2153 }
2154
2155 static INLINE int
2156 fits_in_signed_word (addressT num)
2157 {
2158 return num + 0x8000 <= 0xffff;
2159 }
2160
2161 static INLINE int
2162 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2163 {
2164 #ifndef BFD64
2165 return 1;
2166 #else
2167 return num + 0x80000000 <= 0xffffffff;
2168 #endif
2169 } /* fits_in_signed_long() */
2170
2171 static INLINE int
2172 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2173 {
2174 #ifndef BFD64
2175 return 1;
2176 #else
2177 return num <= 0xffffffff;
2178 #endif
2179 } /* fits_in_unsigned_long() */
2180
2181 static INLINE int
2182 fits_in_disp8 (offsetT num)
2183 {
2184 int shift = i.memshift;
2185 unsigned int mask;
2186
2187 if (shift == -1)
2188 abort ();
2189
2190 mask = (1 << shift) - 1;
2191
2192 /* Return 0 if NUM isn't properly aligned. */
2193 if ((num & mask))
2194 return 0;
2195
2196 /* Check if NUM will fit in 8bit after shift. */
2197 return fits_in_signed_byte (num >> shift);
2198 }
2199
2200 static INLINE int
2201 fits_in_imm4 (offsetT num)
2202 {
2203 return (num & 0xf) == num;
2204 }
2205
2206 static i386_operand_type
2207 smallest_imm_type (offsetT num)
2208 {
2209 i386_operand_type t;
2210
2211 operand_type_set (&t, 0);
2212 t.bitfield.imm64 = 1;
2213
2214 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2215 {
2216 /* This code is disabled on the 486 because all the Imm1 forms
2217 in the opcode table are slower on the i486. They're the
2218 versions with the implicitly specified single-position
2219 displacement, which has another syntax if you really want to
2220 use that form. */
2221 t.bitfield.imm1 = 1;
2222 t.bitfield.imm8 = 1;
2223 t.bitfield.imm8s = 1;
2224 t.bitfield.imm16 = 1;
2225 t.bitfield.imm32 = 1;
2226 t.bitfield.imm32s = 1;
2227 }
2228 else if (fits_in_signed_byte (num))
2229 {
2230 t.bitfield.imm8 = 1;
2231 t.bitfield.imm8s = 1;
2232 t.bitfield.imm16 = 1;
2233 t.bitfield.imm32 = 1;
2234 t.bitfield.imm32s = 1;
2235 }
2236 else if (fits_in_unsigned_byte (num))
2237 {
2238 t.bitfield.imm8 = 1;
2239 t.bitfield.imm16 = 1;
2240 t.bitfield.imm32 = 1;
2241 t.bitfield.imm32s = 1;
2242 }
2243 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2244 {
2245 t.bitfield.imm16 = 1;
2246 t.bitfield.imm32 = 1;
2247 t.bitfield.imm32s = 1;
2248 }
2249 else if (fits_in_signed_long (num))
2250 {
2251 t.bitfield.imm32 = 1;
2252 t.bitfield.imm32s = 1;
2253 }
2254 else if (fits_in_unsigned_long (num))
2255 t.bitfield.imm32 = 1;
2256
2257 return t;
2258 }
2259
2260 static offsetT
2261 offset_in_range (offsetT val, int size)
2262 {
2263 addressT mask;
2264
2265 switch (size)
2266 {
2267 case 1: mask = ((addressT) 1 << 8) - 1; break;
2268 case 2: mask = ((addressT) 1 << 16) - 1; break;
2269 case 4: mask = ((addressT) 2 << 31) - 1; break;
2270 #ifdef BFD64
2271 case 8: mask = ((addressT) 2 << 63) - 1; break;
2272 #endif
2273 default: abort ();
2274 }
2275
2276 #ifdef BFD64
2277 /* If BFD64, sign extend val for 32bit address mode. */
2278 if (flag_code != CODE_64BIT
2279 || i.prefix[ADDR_PREFIX])
2280 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2281 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2282 #endif
2283
2284 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2285 {
2286 char buf1[40], buf2[40];
2287
2288 sprint_value (buf1, val);
2289 sprint_value (buf2, val & mask);
2290 as_warn (_("%s shortened to %s"), buf1, buf2);
2291 }
2292 return val & mask;
2293 }
2294
2295 enum PREFIX_GROUP
2296 {
2297 PREFIX_EXIST = 0,
2298 PREFIX_LOCK,
2299 PREFIX_REP,
2300 PREFIX_DS,
2301 PREFIX_OTHER
2302 };
2303
2304 /* Returns
2305 a. PREFIX_EXIST if attempting to add a prefix where one from the
2306 same class already exists.
2307 b. PREFIX_LOCK if lock prefix is added.
2308 c. PREFIX_REP if rep/repne prefix is added.
2309 d. PREFIX_DS if ds prefix is added.
2310 e. PREFIX_OTHER if other prefix is added.
2311 */
2312
2313 static enum PREFIX_GROUP
2314 add_prefix (unsigned int prefix)
2315 {
2316 enum PREFIX_GROUP ret = PREFIX_OTHER;
2317 unsigned int q;
2318
2319 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2320 && flag_code == CODE_64BIT)
2321 {
2322 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2323 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2324 && (prefix & (REX_R | REX_X | REX_B))))
2325 ret = PREFIX_EXIST;
2326 q = REX_PREFIX;
2327 }
2328 else
2329 {
2330 switch (prefix)
2331 {
2332 default:
2333 abort ();
2334
2335 case DS_PREFIX_OPCODE:
2336 ret = PREFIX_DS;
2337 /* Fall through. */
2338 case CS_PREFIX_OPCODE:
2339 case ES_PREFIX_OPCODE:
2340 case FS_PREFIX_OPCODE:
2341 case GS_PREFIX_OPCODE:
2342 case SS_PREFIX_OPCODE:
2343 q = SEG_PREFIX;
2344 break;
2345
2346 case REPNE_PREFIX_OPCODE:
2347 case REPE_PREFIX_OPCODE:
2348 q = REP_PREFIX;
2349 ret = PREFIX_REP;
2350 break;
2351
2352 case LOCK_PREFIX_OPCODE:
2353 q = LOCK_PREFIX;
2354 ret = PREFIX_LOCK;
2355 break;
2356
2357 case FWAIT_OPCODE:
2358 q = WAIT_PREFIX;
2359 break;
2360
2361 case ADDR_PREFIX_OPCODE:
2362 q = ADDR_PREFIX;
2363 break;
2364
2365 case DATA_PREFIX_OPCODE:
2366 q = DATA_PREFIX;
2367 break;
2368 }
2369 if (i.prefix[q] != 0)
2370 ret = PREFIX_EXIST;
2371 }
2372
2373 if (ret)
2374 {
2375 if (!i.prefix[q])
2376 ++i.prefixes;
2377 i.prefix[q] |= prefix;
2378 }
2379 else
2380 as_bad (_("same type of prefix used twice"));
2381
2382 return ret;
2383 }
2384
2385 static void
2386 update_code_flag (int value, int check)
2387 {
2388 PRINTF_LIKE ((*as_error));
2389
2390 flag_code = (enum flag_code) value;
2391 if (flag_code == CODE_64BIT)
2392 {
2393 cpu_arch_flags.bitfield.cpu64 = 1;
2394 cpu_arch_flags.bitfield.cpuno64 = 0;
2395 }
2396 else
2397 {
2398 cpu_arch_flags.bitfield.cpu64 = 0;
2399 cpu_arch_flags.bitfield.cpuno64 = 1;
2400 }
2401 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2402 {
2403 if (check)
2404 as_error = as_fatal;
2405 else
2406 as_error = as_bad;
2407 (*as_error) (_("64bit mode not supported on `%s'."),
2408 cpu_arch_name ? cpu_arch_name : default_arch);
2409 }
2410 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2411 {
2412 if (check)
2413 as_error = as_fatal;
2414 else
2415 as_error = as_bad;
2416 (*as_error) (_("32bit mode not supported on `%s'."),
2417 cpu_arch_name ? cpu_arch_name : default_arch);
2418 }
2419 stackop_size = '\0';
2420 }
2421
2422 static void
2423 set_code_flag (int value)
2424 {
2425 update_code_flag (value, 0);
2426 }
2427
2428 static void
2429 set_16bit_gcc_code_flag (int new_code_flag)
2430 {
2431 flag_code = (enum flag_code) new_code_flag;
2432 if (flag_code != CODE_16BIT)
2433 abort ();
2434 cpu_arch_flags.bitfield.cpu64 = 0;
2435 cpu_arch_flags.bitfield.cpuno64 = 1;
2436 stackop_size = LONG_MNEM_SUFFIX;
2437 }
2438
2439 static void
2440 set_intel_syntax (int syntax_flag)
2441 {
2442 /* Find out if register prefixing is specified. */
2443 int ask_naked_reg = 0;
2444
2445 SKIP_WHITESPACE ();
2446 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2447 {
2448 char *string;
2449 int e = get_symbol_name (&string);
2450
2451 if (strcmp (string, "prefix") == 0)
2452 ask_naked_reg = 1;
2453 else if (strcmp (string, "noprefix") == 0)
2454 ask_naked_reg = -1;
2455 else
2456 as_bad (_("bad argument to syntax directive."));
2457 (void) restore_line_pointer (e);
2458 }
2459 demand_empty_rest_of_line ();
2460
2461 intel_syntax = syntax_flag;
2462
2463 if (ask_naked_reg == 0)
2464 allow_naked_reg = (intel_syntax
2465 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2466 else
2467 allow_naked_reg = (ask_naked_reg < 0);
2468
2469 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2470
2471 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2472 identifier_chars['$'] = intel_syntax ? '$' : 0;
2473 register_prefix = allow_naked_reg ? "" : "%";
2474 }
2475
2476 static void
2477 set_intel_mnemonic (int mnemonic_flag)
2478 {
2479 intel_mnemonic = mnemonic_flag;
2480 }
2481
2482 static void
2483 set_allow_index_reg (int flag)
2484 {
2485 allow_index_reg = flag;
2486 }
2487
2488 static void
2489 set_check (int what)
2490 {
2491 enum check_kind *kind;
2492 const char *str;
2493
2494 if (what)
2495 {
2496 kind = &operand_check;
2497 str = "operand";
2498 }
2499 else
2500 {
2501 kind = &sse_check;
2502 str = "sse";
2503 }
2504
2505 SKIP_WHITESPACE ();
2506
2507 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2508 {
2509 char *string;
2510 int e = get_symbol_name (&string);
2511
2512 if (strcmp (string, "none") == 0)
2513 *kind = check_none;
2514 else if (strcmp (string, "warning") == 0)
2515 *kind = check_warning;
2516 else if (strcmp (string, "error") == 0)
2517 *kind = check_error;
2518 else
2519 as_bad (_("bad argument to %s_check directive."), str);
2520 (void) restore_line_pointer (e);
2521 }
2522 else
2523 as_bad (_("missing argument for %s_check directive"), str);
2524
2525 demand_empty_rest_of_line ();
2526 }
2527
2528 static void
2529 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2530 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2531 {
2532 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2533 static const char *arch;
2534
2535 /* Intel LIOM is only supported on ELF. */
2536 if (!IS_ELF)
2537 return;
2538
2539 if (!arch)
2540 {
2541 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2542 use default_arch. */
2543 arch = cpu_arch_name;
2544 if (!arch)
2545 arch = default_arch;
2546 }
2547
2548 /* If we are targeting Intel MCU, we must enable it. */
2549 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2550 || new_flag.bitfield.cpuiamcu)
2551 return;
2552
2553 /* If we are targeting Intel L1OM, we must enable it. */
2554 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2555 || new_flag.bitfield.cpul1om)
2556 return;
2557
2558 /* If we are targeting Intel K1OM, we must enable it. */
2559 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2560 || new_flag.bitfield.cpuk1om)
2561 return;
2562
2563 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2564 #endif
2565 }
2566
2567 static void
2568 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2569 {
2570 SKIP_WHITESPACE ();
2571
2572 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2573 {
2574 char *string;
2575 int e = get_symbol_name (&string);
2576 unsigned int j;
2577 i386_cpu_flags flags;
2578
2579 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2580 {
2581 if (strcmp (string, cpu_arch[j].name) == 0)
2582 {
2583 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2584
2585 if (*string != '.')
2586 {
2587 cpu_arch_name = cpu_arch[j].name;
2588 cpu_sub_arch_name = NULL;
2589 cpu_arch_flags = cpu_arch[j].flags;
2590 if (flag_code == CODE_64BIT)
2591 {
2592 cpu_arch_flags.bitfield.cpu64 = 1;
2593 cpu_arch_flags.bitfield.cpuno64 = 0;
2594 }
2595 else
2596 {
2597 cpu_arch_flags.bitfield.cpu64 = 0;
2598 cpu_arch_flags.bitfield.cpuno64 = 1;
2599 }
2600 cpu_arch_isa = cpu_arch[j].type;
2601 cpu_arch_isa_flags = cpu_arch[j].flags;
2602 if (!cpu_arch_tune_set)
2603 {
2604 cpu_arch_tune = cpu_arch_isa;
2605 cpu_arch_tune_flags = cpu_arch_isa_flags;
2606 }
2607 break;
2608 }
2609
2610 flags = cpu_flags_or (cpu_arch_flags,
2611 cpu_arch[j].flags);
2612
2613 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2614 {
2615 if (cpu_sub_arch_name)
2616 {
2617 char *name = cpu_sub_arch_name;
2618 cpu_sub_arch_name = concat (name,
2619 cpu_arch[j].name,
2620 (const char *) NULL);
2621 free (name);
2622 }
2623 else
2624 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2625 cpu_arch_flags = flags;
2626 cpu_arch_isa_flags = flags;
2627 }
2628 else
2629 cpu_arch_isa_flags
2630 = cpu_flags_or (cpu_arch_isa_flags,
2631 cpu_arch[j].flags);
2632 (void) restore_line_pointer (e);
2633 demand_empty_rest_of_line ();
2634 return;
2635 }
2636 }
2637
2638 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2639 {
2640 /* Disable an ISA extension. */
2641 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2642 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2643 {
2644 flags = cpu_flags_and_not (cpu_arch_flags,
2645 cpu_noarch[j].flags);
2646 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2647 {
2648 if (cpu_sub_arch_name)
2649 {
2650 char *name = cpu_sub_arch_name;
2651 cpu_sub_arch_name = concat (name, string,
2652 (const char *) NULL);
2653 free (name);
2654 }
2655 else
2656 cpu_sub_arch_name = xstrdup (string);
2657 cpu_arch_flags = flags;
2658 cpu_arch_isa_flags = flags;
2659 }
2660 (void) restore_line_pointer (e);
2661 demand_empty_rest_of_line ();
2662 return;
2663 }
2664
2665 j = ARRAY_SIZE (cpu_arch);
2666 }
2667
2668 if (j >= ARRAY_SIZE (cpu_arch))
2669 as_bad (_("no such architecture: `%s'"), string);
2670
2671 *input_line_pointer = e;
2672 }
2673 else
2674 as_bad (_("missing cpu architecture"));
2675
2676 no_cond_jump_promotion = 0;
2677 if (*input_line_pointer == ','
2678 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2679 {
2680 char *string;
2681 char e;
2682
2683 ++input_line_pointer;
2684 e = get_symbol_name (&string);
2685
2686 if (strcmp (string, "nojumps") == 0)
2687 no_cond_jump_promotion = 1;
2688 else if (strcmp (string, "jumps") == 0)
2689 ;
2690 else
2691 as_bad (_("no such architecture modifier: `%s'"), string);
2692
2693 (void) restore_line_pointer (e);
2694 }
2695
2696 demand_empty_rest_of_line ();
2697 }
2698
2699 enum bfd_architecture
2700 i386_arch (void)
2701 {
2702 if (cpu_arch_isa == PROCESSOR_L1OM)
2703 {
2704 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2705 || flag_code != CODE_64BIT)
2706 as_fatal (_("Intel L1OM is 64bit ELF only"));
2707 return bfd_arch_l1om;
2708 }
2709 else if (cpu_arch_isa == PROCESSOR_K1OM)
2710 {
2711 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2712 || flag_code != CODE_64BIT)
2713 as_fatal (_("Intel K1OM is 64bit ELF only"));
2714 return bfd_arch_k1om;
2715 }
2716 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2717 {
2718 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2719 || flag_code == CODE_64BIT)
2720 as_fatal (_("Intel MCU is 32bit ELF only"));
2721 return bfd_arch_iamcu;
2722 }
2723 else
2724 return bfd_arch_i386;
2725 }
2726
2727 unsigned long
2728 i386_mach (void)
2729 {
2730 if (!strncmp (default_arch, "x86_64", 6))
2731 {
2732 if (cpu_arch_isa == PROCESSOR_L1OM)
2733 {
2734 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2735 || default_arch[6] != '\0')
2736 as_fatal (_("Intel L1OM is 64bit ELF only"));
2737 return bfd_mach_l1om;
2738 }
2739 else if (cpu_arch_isa == PROCESSOR_K1OM)
2740 {
2741 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2742 || default_arch[6] != '\0')
2743 as_fatal (_("Intel K1OM is 64bit ELF only"));
2744 return bfd_mach_k1om;
2745 }
2746 else if (default_arch[6] == '\0')
2747 return bfd_mach_x86_64;
2748 else
2749 return bfd_mach_x64_32;
2750 }
2751 else if (!strcmp (default_arch, "i386")
2752 || !strcmp (default_arch, "iamcu"))
2753 {
2754 if (cpu_arch_isa == PROCESSOR_IAMCU)
2755 {
2756 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2757 as_fatal (_("Intel MCU is 32bit ELF only"));
2758 return bfd_mach_i386_iamcu;
2759 }
2760 else
2761 return bfd_mach_i386_i386;
2762 }
2763 else
2764 as_fatal (_("unknown architecture"));
2765 }
2766 \f
2767 void
2768 md_begin (void)
2769 {
2770 const char *hash_err;
2771
2772 /* Support pseudo prefixes like {disp32}. */
2773 lex_type ['{'] = LEX_BEGIN_NAME;
2774
2775 /* Initialize op_hash hash table. */
2776 op_hash = hash_new ();
2777
2778 {
2779 const insn_template *optab;
2780 templates *core_optab;
2781
2782 /* Setup for loop. */
2783 optab = i386_optab;
2784 core_optab = XNEW (templates);
2785 core_optab->start = optab;
2786
2787 while (1)
2788 {
2789 ++optab;
2790 if (optab->name == NULL
2791 || strcmp (optab->name, (optab - 1)->name) != 0)
2792 {
2793 /* different name --> ship out current template list;
2794 add to hash table; & begin anew. */
2795 core_optab->end = optab;
2796 hash_err = hash_insert (op_hash,
2797 (optab - 1)->name,
2798 (void *) core_optab);
2799 if (hash_err)
2800 {
2801 as_fatal (_("can't hash %s: %s"),
2802 (optab - 1)->name,
2803 hash_err);
2804 }
2805 if (optab->name == NULL)
2806 break;
2807 core_optab = XNEW (templates);
2808 core_optab->start = optab;
2809 }
2810 }
2811 }
2812
2813 /* Initialize reg_hash hash table. */
2814 reg_hash = hash_new ();
2815 {
2816 const reg_entry *regtab;
2817 unsigned int regtab_size = i386_regtab_size;
2818
2819 for (regtab = i386_regtab; regtab_size--; regtab++)
2820 {
2821 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2822 if (hash_err)
2823 as_fatal (_("can't hash %s: %s"),
2824 regtab->reg_name,
2825 hash_err);
2826 }
2827 }
2828
2829 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2830 {
2831 int c;
2832 char *p;
2833
2834 for (c = 0; c < 256; c++)
2835 {
2836 if (ISDIGIT (c))
2837 {
2838 digit_chars[c] = c;
2839 mnemonic_chars[c] = c;
2840 register_chars[c] = c;
2841 operand_chars[c] = c;
2842 }
2843 else if (ISLOWER (c))
2844 {
2845 mnemonic_chars[c] = c;
2846 register_chars[c] = c;
2847 operand_chars[c] = c;
2848 }
2849 else if (ISUPPER (c))
2850 {
2851 mnemonic_chars[c] = TOLOWER (c);
2852 register_chars[c] = mnemonic_chars[c];
2853 operand_chars[c] = c;
2854 }
2855 else if (c == '{' || c == '}')
2856 {
2857 mnemonic_chars[c] = c;
2858 operand_chars[c] = c;
2859 }
2860
2861 if (ISALPHA (c) || ISDIGIT (c))
2862 identifier_chars[c] = c;
2863 else if (c >= 128)
2864 {
2865 identifier_chars[c] = c;
2866 operand_chars[c] = c;
2867 }
2868 }
2869
2870 #ifdef LEX_AT
2871 identifier_chars['@'] = '@';
2872 #endif
2873 #ifdef LEX_QM
2874 identifier_chars['?'] = '?';
2875 operand_chars['?'] = '?';
2876 #endif
2877 digit_chars['-'] = '-';
2878 mnemonic_chars['_'] = '_';
2879 mnemonic_chars['-'] = '-';
2880 mnemonic_chars['.'] = '.';
2881 identifier_chars['_'] = '_';
2882 identifier_chars['.'] = '.';
2883
2884 for (p = operand_special_chars; *p != '\0'; p++)
2885 operand_chars[(unsigned char) *p] = *p;
2886 }
2887
2888 if (flag_code == CODE_64BIT)
2889 {
2890 #if defined (OBJ_COFF) && defined (TE_PE)
2891 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2892 ? 32 : 16);
2893 #else
2894 x86_dwarf2_return_column = 16;
2895 #endif
2896 x86_cie_data_alignment = -8;
2897 }
2898 else
2899 {
2900 x86_dwarf2_return_column = 8;
2901 x86_cie_data_alignment = -4;
2902 }
2903 }
2904
2905 void
2906 i386_print_statistics (FILE *file)
2907 {
2908 hash_print_statistics (file, "i386 opcode", op_hash);
2909 hash_print_statistics (file, "i386 register", reg_hash);
2910 }
2911 \f
2912 #ifdef DEBUG386
2913
2914 /* Debugging routines for md_assemble. */
2915 static void pte (insn_template *);
2916 static void pt (i386_operand_type);
2917 static void pe (expressionS *);
2918 static void ps (symbolS *);
2919
2920 static void
2921 pi (char *line, i386_insn *x)
2922 {
2923 unsigned int j;
2924
2925 fprintf (stdout, "%s: template ", line);
2926 pte (&x->tm);
2927 fprintf (stdout, " address: base %s index %s scale %x\n",
2928 x->base_reg ? x->base_reg->reg_name : "none",
2929 x->index_reg ? x->index_reg->reg_name : "none",
2930 x->log2_scale_factor);
2931 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2932 x->rm.mode, x->rm.reg, x->rm.regmem);
2933 fprintf (stdout, " sib: base %x index %x scale %x\n",
2934 x->sib.base, x->sib.index, x->sib.scale);
2935 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2936 (x->rex & REX_W) != 0,
2937 (x->rex & REX_R) != 0,
2938 (x->rex & REX_X) != 0,
2939 (x->rex & REX_B) != 0);
2940 for (j = 0; j < x->operands; j++)
2941 {
2942 fprintf (stdout, " #%d: ", j + 1);
2943 pt (x->types[j]);
2944 fprintf (stdout, "\n");
2945 if (x->types[j].bitfield.reg
2946 || x->types[j].bitfield.regmmx
2947 || x->types[j].bitfield.regsimd
2948 || x->types[j].bitfield.sreg2
2949 || x->types[j].bitfield.sreg3
2950 || x->types[j].bitfield.control
2951 || x->types[j].bitfield.debug
2952 || x->types[j].bitfield.test)
2953 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2954 if (operand_type_check (x->types[j], imm))
2955 pe (x->op[j].imms);
2956 if (operand_type_check (x->types[j], disp))
2957 pe (x->op[j].disps);
2958 }
2959 }
2960
2961 static void
2962 pte (insn_template *t)
2963 {
2964 unsigned int j;
2965 fprintf (stdout, " %d operands ", t->operands);
2966 fprintf (stdout, "opcode %x ", t->base_opcode);
2967 if (t->extension_opcode != None)
2968 fprintf (stdout, "ext %x ", t->extension_opcode);
2969 if (t->opcode_modifier.d)
2970 fprintf (stdout, "D");
2971 if (t->opcode_modifier.w)
2972 fprintf (stdout, "W");
2973 fprintf (stdout, "\n");
2974 for (j = 0; j < t->operands; j++)
2975 {
2976 fprintf (stdout, " #%d type ", j + 1);
2977 pt (t->operand_types[j]);
2978 fprintf (stdout, "\n");
2979 }
2980 }
2981
2982 static void
2983 pe (expressionS *e)
2984 {
2985 fprintf (stdout, " operation %d\n", e->X_op);
2986 fprintf (stdout, " add_number %ld (%lx)\n",
2987 (long) e->X_add_number, (long) e->X_add_number);
2988 if (e->X_add_symbol)
2989 {
2990 fprintf (stdout, " add_symbol ");
2991 ps (e->X_add_symbol);
2992 fprintf (stdout, "\n");
2993 }
2994 if (e->X_op_symbol)
2995 {
2996 fprintf (stdout, " op_symbol ");
2997 ps (e->X_op_symbol);
2998 fprintf (stdout, "\n");
2999 }
3000 }
3001
3002 static void
3003 ps (symbolS *s)
3004 {
3005 fprintf (stdout, "%s type %s%s",
3006 S_GET_NAME (s),
3007 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3008 segment_name (S_GET_SEGMENT (s)));
3009 }
3010
3011 static struct type_name
3012 {
3013 i386_operand_type mask;
3014 const char *name;
3015 }
3016 const type_names[] =
3017 {
3018 { OPERAND_TYPE_REG8, "r8" },
3019 { OPERAND_TYPE_REG16, "r16" },
3020 { OPERAND_TYPE_REG32, "r32" },
3021 { OPERAND_TYPE_REG64, "r64" },
3022 { OPERAND_TYPE_IMM8, "i8" },
3023 { OPERAND_TYPE_IMM8, "i8s" },
3024 { OPERAND_TYPE_IMM16, "i16" },
3025 { OPERAND_TYPE_IMM32, "i32" },
3026 { OPERAND_TYPE_IMM32S, "i32s" },
3027 { OPERAND_TYPE_IMM64, "i64" },
3028 { OPERAND_TYPE_IMM1, "i1" },
3029 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3030 { OPERAND_TYPE_DISP8, "d8" },
3031 { OPERAND_TYPE_DISP16, "d16" },
3032 { OPERAND_TYPE_DISP32, "d32" },
3033 { OPERAND_TYPE_DISP32S, "d32s" },
3034 { OPERAND_TYPE_DISP64, "d64" },
3035 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3036 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3037 { OPERAND_TYPE_CONTROL, "control reg" },
3038 { OPERAND_TYPE_TEST, "test reg" },
3039 { OPERAND_TYPE_DEBUG, "debug reg" },
3040 { OPERAND_TYPE_FLOATREG, "FReg" },
3041 { OPERAND_TYPE_FLOATACC, "FAcc" },
3042 { OPERAND_TYPE_SREG2, "SReg2" },
3043 { OPERAND_TYPE_SREG3, "SReg3" },
3044 { OPERAND_TYPE_ACC, "Acc" },
3045 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3046 { OPERAND_TYPE_REGMMX, "rMMX" },
3047 { OPERAND_TYPE_REGXMM, "rXMM" },
3048 { OPERAND_TYPE_REGYMM, "rYMM" },
3049 { OPERAND_TYPE_REGZMM, "rZMM" },
3050 { OPERAND_TYPE_REGMASK, "Mask reg" },
3051 { OPERAND_TYPE_ESSEG, "es" },
3052 };
3053
3054 static void
3055 pt (i386_operand_type t)
3056 {
3057 unsigned int j;
3058 i386_operand_type a;
3059
3060 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3061 {
3062 a = operand_type_and (t, type_names[j].mask);
3063 if (!operand_type_all_zero (&a))
3064 fprintf (stdout, "%s, ", type_names[j].name);
3065 }
3066 fflush (stdout);
3067 }
3068
3069 #endif /* DEBUG386 */
3070 \f
3071 static bfd_reloc_code_real_type
3072 reloc (unsigned int size,
3073 int pcrel,
3074 int sign,
3075 bfd_reloc_code_real_type other)
3076 {
3077 if (other != NO_RELOC)
3078 {
3079 reloc_howto_type *rel;
3080
3081 if (size == 8)
3082 switch (other)
3083 {
3084 case BFD_RELOC_X86_64_GOT32:
3085 return BFD_RELOC_X86_64_GOT64;
3086 break;
3087 case BFD_RELOC_X86_64_GOTPLT64:
3088 return BFD_RELOC_X86_64_GOTPLT64;
3089 break;
3090 case BFD_RELOC_X86_64_PLTOFF64:
3091 return BFD_RELOC_X86_64_PLTOFF64;
3092 break;
3093 case BFD_RELOC_X86_64_GOTPC32:
3094 other = BFD_RELOC_X86_64_GOTPC64;
3095 break;
3096 case BFD_RELOC_X86_64_GOTPCREL:
3097 other = BFD_RELOC_X86_64_GOTPCREL64;
3098 break;
3099 case BFD_RELOC_X86_64_TPOFF32:
3100 other = BFD_RELOC_X86_64_TPOFF64;
3101 break;
3102 case BFD_RELOC_X86_64_DTPOFF32:
3103 other = BFD_RELOC_X86_64_DTPOFF64;
3104 break;
3105 default:
3106 break;
3107 }
3108
3109 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3110 if (other == BFD_RELOC_SIZE32)
3111 {
3112 if (size == 8)
3113 other = BFD_RELOC_SIZE64;
3114 if (pcrel)
3115 {
3116 as_bad (_("there are no pc-relative size relocations"));
3117 return NO_RELOC;
3118 }
3119 }
3120 #endif
3121
3122 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3123 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3124 sign = -1;
3125
3126 rel = bfd_reloc_type_lookup (stdoutput, other);
3127 if (!rel)
3128 as_bad (_("unknown relocation (%u)"), other);
3129 else if (size != bfd_get_reloc_size (rel))
3130 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3131 bfd_get_reloc_size (rel),
3132 size);
3133 else if (pcrel && !rel->pc_relative)
3134 as_bad (_("non-pc-relative relocation for pc-relative field"));
3135 else if ((rel->complain_on_overflow == complain_overflow_signed
3136 && !sign)
3137 || (rel->complain_on_overflow == complain_overflow_unsigned
3138 && sign > 0))
3139 as_bad (_("relocated field and relocation type differ in signedness"));
3140 else
3141 return other;
3142 return NO_RELOC;
3143 }
3144
3145 if (pcrel)
3146 {
3147 if (!sign)
3148 as_bad (_("there are no unsigned pc-relative relocations"));
3149 switch (size)
3150 {
3151 case 1: return BFD_RELOC_8_PCREL;
3152 case 2: return BFD_RELOC_16_PCREL;
3153 case 4: return BFD_RELOC_32_PCREL;
3154 case 8: return BFD_RELOC_64_PCREL;
3155 }
3156 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3157 }
3158 else
3159 {
3160 if (sign > 0)
3161 switch (size)
3162 {
3163 case 4: return BFD_RELOC_X86_64_32S;
3164 }
3165 else
3166 switch (size)
3167 {
3168 case 1: return BFD_RELOC_8;
3169 case 2: return BFD_RELOC_16;
3170 case 4: return BFD_RELOC_32;
3171 case 8: return BFD_RELOC_64;
3172 }
3173 as_bad (_("cannot do %s %u byte relocation"),
3174 sign > 0 ? "signed" : "unsigned", size);
3175 }
3176
3177 return NO_RELOC;
3178 }
3179
3180 /* Here we decide which fixups can be adjusted to make them relative to
3181 the beginning of the section instead of the symbol. Basically we need
3182 to make sure that the dynamic relocations are done correctly, so in
3183 some cases we force the original symbol to be used. */
3184
3185 int
3186 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3187 {
3188 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3189 if (!IS_ELF)
3190 return 1;
3191
3192 /* Don't adjust pc-relative references to merge sections in 64-bit
3193 mode. */
3194 if (use_rela_relocations
3195 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3196 && fixP->fx_pcrel)
3197 return 0;
3198
3199 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3200 and changed later by validate_fix. */
3201 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3202 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3203 return 0;
3204
3205 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3206 for size relocations. */
3207 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3208 || fixP->fx_r_type == BFD_RELOC_SIZE64
3209 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3210 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3211 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3212 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3213 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3214 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3215 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3216 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3217 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3218 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3219 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3220 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3221 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3222 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3223 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3224 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3225 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3226 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3227 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3228 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3229 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3230 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3231 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3232 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3233 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3234 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3235 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3236 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3237 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3238 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3239 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3240 return 0;
3241 #endif
3242 return 1;
3243 }
3244
3245 static int
3246 intel_float_operand (const char *mnemonic)
3247 {
3248 /* Note that the value returned is meaningful only for opcodes with (memory)
3249 operands, hence the code here is free to improperly handle opcodes that
3250 have no operands (for better performance and smaller code). */
3251
3252 if (mnemonic[0] != 'f')
3253 return 0; /* non-math */
3254
3255 switch (mnemonic[1])
3256 {
3257 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3258 the fs segment override prefix not currently handled because no
3259 call path can make opcodes without operands get here */
3260 case 'i':
3261 return 2 /* integer op */;
3262 case 'l':
3263 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3264 return 3; /* fldcw/fldenv */
3265 break;
3266 case 'n':
3267 if (mnemonic[2] != 'o' /* fnop */)
3268 return 3; /* non-waiting control op */
3269 break;
3270 case 'r':
3271 if (mnemonic[2] == 's')
3272 return 3; /* frstor/frstpm */
3273 break;
3274 case 's':
3275 if (mnemonic[2] == 'a')
3276 return 3; /* fsave */
3277 if (mnemonic[2] == 't')
3278 {
3279 switch (mnemonic[3])
3280 {
3281 case 'c': /* fstcw */
3282 case 'd': /* fstdw */
3283 case 'e': /* fstenv */
3284 case 's': /* fsts[gw] */
3285 return 3;
3286 }
3287 }
3288 break;
3289 case 'x':
3290 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3291 return 0; /* fxsave/fxrstor are not really math ops */
3292 break;
3293 }
3294
3295 return 1;
3296 }
3297
3298 /* Build the VEX prefix. */
3299
3300 static void
3301 build_vex_prefix (const insn_template *t)
3302 {
3303 unsigned int register_specifier;
3304 unsigned int implied_prefix;
3305 unsigned int vector_length;
3306
3307 /* Check register specifier. */
3308 if (i.vex.register_specifier)
3309 {
3310 register_specifier =
3311 ~register_number (i.vex.register_specifier) & 0xf;
3312 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3313 }
3314 else
3315 register_specifier = 0xf;
3316
3317 /* Use 2-byte VEX prefix by swapping destination and source
3318 operand. */
3319 if (i.vec_encoding != vex_encoding_vex3
3320 && i.dir_encoding == dir_encoding_default
3321 && i.operands == i.reg_operands
3322 && i.tm.opcode_modifier.vexopcode == VEX0F
3323 && i.tm.opcode_modifier.load
3324 && i.rex == REX_B)
3325 {
3326 unsigned int xchg = i.operands - 1;
3327 union i386_op temp_op;
3328 i386_operand_type temp_type;
3329
3330 temp_type = i.types[xchg];
3331 i.types[xchg] = i.types[0];
3332 i.types[0] = temp_type;
3333 temp_op = i.op[xchg];
3334 i.op[xchg] = i.op[0];
3335 i.op[0] = temp_op;
3336
3337 gas_assert (i.rm.mode == 3);
3338
3339 i.rex = REX_R;
3340 xchg = i.rm.regmem;
3341 i.rm.regmem = i.rm.reg;
3342 i.rm.reg = xchg;
3343
3344 /* Use the next insn. */
3345 i.tm = t[1];
3346 }
3347
3348 if (i.tm.opcode_modifier.vex == VEXScalar)
3349 vector_length = avxscalar;
3350 else if (i.tm.opcode_modifier.vex == VEX256)
3351 vector_length = 1;
3352 else
3353 {
3354 unsigned int op;
3355
3356 vector_length = 0;
3357 for (op = 0; op < t->operands; ++op)
3358 if (t->operand_types[op].bitfield.xmmword
3359 && t->operand_types[op].bitfield.ymmword
3360 && i.types[op].bitfield.ymmword)
3361 {
3362 vector_length = 1;
3363 break;
3364 }
3365 }
3366
3367 switch ((i.tm.base_opcode >> 8) & 0xff)
3368 {
3369 case 0:
3370 implied_prefix = 0;
3371 break;
3372 case DATA_PREFIX_OPCODE:
3373 implied_prefix = 1;
3374 break;
3375 case REPE_PREFIX_OPCODE:
3376 implied_prefix = 2;
3377 break;
3378 case REPNE_PREFIX_OPCODE:
3379 implied_prefix = 3;
3380 break;
3381 default:
3382 abort ();
3383 }
3384
3385 /* Use 2-byte VEX prefix if possible. */
3386 if (i.vec_encoding != vex_encoding_vex3
3387 && i.tm.opcode_modifier.vexopcode == VEX0F
3388 && i.tm.opcode_modifier.vexw != VEXW1
3389 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3390 {
3391 /* 2-byte VEX prefix. */
3392 unsigned int r;
3393
3394 i.vex.length = 2;
3395 i.vex.bytes[0] = 0xc5;
3396
3397 /* Check the REX.R bit. */
3398 r = (i.rex & REX_R) ? 0 : 1;
3399 i.vex.bytes[1] = (r << 7
3400 | register_specifier << 3
3401 | vector_length << 2
3402 | implied_prefix);
3403 }
3404 else
3405 {
3406 /* 3-byte VEX prefix. */
3407 unsigned int m, w;
3408
3409 i.vex.length = 3;
3410
3411 switch (i.tm.opcode_modifier.vexopcode)
3412 {
3413 case VEX0F:
3414 m = 0x1;
3415 i.vex.bytes[0] = 0xc4;
3416 break;
3417 case VEX0F38:
3418 m = 0x2;
3419 i.vex.bytes[0] = 0xc4;
3420 break;
3421 case VEX0F3A:
3422 m = 0x3;
3423 i.vex.bytes[0] = 0xc4;
3424 break;
3425 case XOP08:
3426 m = 0x8;
3427 i.vex.bytes[0] = 0x8f;
3428 break;
3429 case XOP09:
3430 m = 0x9;
3431 i.vex.bytes[0] = 0x8f;
3432 break;
3433 case XOP0A:
3434 m = 0xa;
3435 i.vex.bytes[0] = 0x8f;
3436 break;
3437 default:
3438 abort ();
3439 }
3440
3441 /* The high 3 bits of the second VEX byte are 1's compliment
3442 of RXB bits from REX. */
3443 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3444
3445 /* Check the REX.W bit. */
3446 w = (i.rex & REX_W) ? 1 : 0;
3447 if (i.tm.opcode_modifier.vexw == VEXW1)
3448 w = 1;
3449
3450 i.vex.bytes[2] = (w << 7
3451 | register_specifier << 3
3452 | vector_length << 2
3453 | implied_prefix);
3454 }
3455 }
3456
3457 static INLINE bfd_boolean
3458 is_evex_encoding (const insn_template *t)
3459 {
3460 return t->opcode_modifier.evex
3461 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3462 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3463 }
3464
3465 /* Build the EVEX prefix. */
3466
3467 static void
3468 build_evex_prefix (void)
3469 {
3470 unsigned int register_specifier;
3471 unsigned int implied_prefix;
3472 unsigned int m, w;
3473 rex_byte vrex_used = 0;
3474
3475 /* Check register specifier. */
3476 if (i.vex.register_specifier)
3477 {
3478 gas_assert ((i.vrex & REX_X) == 0);
3479
3480 register_specifier = i.vex.register_specifier->reg_num;
3481 if ((i.vex.register_specifier->reg_flags & RegRex))
3482 register_specifier += 8;
3483 /* The upper 16 registers are encoded in the fourth byte of the
3484 EVEX prefix. */
3485 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3486 i.vex.bytes[3] = 0x8;
3487 register_specifier = ~register_specifier & 0xf;
3488 }
3489 else
3490 {
3491 register_specifier = 0xf;
3492
3493 /* Encode upper 16 vector index register in the fourth byte of
3494 the EVEX prefix. */
3495 if (!(i.vrex & REX_X))
3496 i.vex.bytes[3] = 0x8;
3497 else
3498 vrex_used |= REX_X;
3499 }
3500
3501 switch ((i.tm.base_opcode >> 8) & 0xff)
3502 {
3503 case 0:
3504 implied_prefix = 0;
3505 break;
3506 case DATA_PREFIX_OPCODE:
3507 implied_prefix = 1;
3508 break;
3509 case REPE_PREFIX_OPCODE:
3510 implied_prefix = 2;
3511 break;
3512 case REPNE_PREFIX_OPCODE:
3513 implied_prefix = 3;
3514 break;
3515 default:
3516 abort ();
3517 }
3518
3519 /* 4 byte EVEX prefix. */
3520 i.vex.length = 4;
3521 i.vex.bytes[0] = 0x62;
3522
3523 /* mmmm bits. */
3524 switch (i.tm.opcode_modifier.vexopcode)
3525 {
3526 case VEX0F:
3527 m = 1;
3528 break;
3529 case VEX0F38:
3530 m = 2;
3531 break;
3532 case VEX0F3A:
3533 m = 3;
3534 break;
3535 default:
3536 abort ();
3537 break;
3538 }
3539
3540 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3541 bits from REX. */
3542 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3543
3544 /* The fifth bit of the second EVEX byte is 1's compliment of the
3545 REX_R bit in VREX. */
3546 if (!(i.vrex & REX_R))
3547 i.vex.bytes[1] |= 0x10;
3548 else
3549 vrex_used |= REX_R;
3550
3551 if ((i.reg_operands + i.imm_operands) == i.operands)
3552 {
3553 /* When all operands are registers, the REX_X bit in REX is not
3554 used. We reuse it to encode the upper 16 registers, which is
3555 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3556 as 1's compliment. */
3557 if ((i.vrex & REX_B))
3558 {
3559 vrex_used |= REX_B;
3560 i.vex.bytes[1] &= ~0x40;
3561 }
3562 }
3563
3564 /* EVEX instructions shouldn't need the REX prefix. */
3565 i.vrex &= ~vrex_used;
3566 gas_assert (i.vrex == 0);
3567
3568 /* Check the REX.W bit. */
3569 w = (i.rex & REX_W) ? 1 : 0;
3570 if (i.tm.opcode_modifier.vexw)
3571 {
3572 if (i.tm.opcode_modifier.vexw == VEXW1)
3573 w = 1;
3574 }
3575 /* If w is not set it means we are dealing with WIG instruction. */
3576 else if (!w)
3577 {
3578 if (evexwig == evexw1)
3579 w = 1;
3580 }
3581
3582 /* Encode the U bit. */
3583 implied_prefix |= 0x4;
3584
3585 /* The third byte of the EVEX prefix. */
3586 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3587
3588 /* The fourth byte of the EVEX prefix. */
3589 /* The zeroing-masking bit. */
3590 if (i.mask && i.mask->zeroing)
3591 i.vex.bytes[3] |= 0x80;
3592
3593 /* Don't always set the broadcast bit if there is no RC. */
3594 if (!i.rounding)
3595 {
3596 /* Encode the vector length. */
3597 unsigned int vec_length;
3598
3599 if (!i.tm.opcode_modifier.evex
3600 || i.tm.opcode_modifier.evex == EVEXDYN)
3601 {
3602 unsigned int op;
3603
3604 vec_length = 0;
3605 for (op = 0; op < i.tm.operands; ++op)
3606 if (i.tm.operand_types[op].bitfield.xmmword
3607 + i.tm.operand_types[op].bitfield.ymmword
3608 + i.tm.operand_types[op].bitfield.zmmword > 1)
3609 {
3610 if (i.types[op].bitfield.zmmword)
3611 i.tm.opcode_modifier.evex = EVEX512;
3612 else if (i.types[op].bitfield.ymmword)
3613 i.tm.opcode_modifier.evex = EVEX256;
3614 else if (i.types[op].bitfield.xmmword)
3615 i.tm.opcode_modifier.evex = EVEX128;
3616 else
3617 continue;
3618 break;
3619 }
3620 }
3621
3622 switch (i.tm.opcode_modifier.evex)
3623 {
3624 case EVEXLIG: /* LL' is ignored */
3625 vec_length = evexlig << 5;
3626 break;
3627 case EVEX128:
3628 vec_length = 0 << 5;
3629 break;
3630 case EVEX256:
3631 vec_length = 1 << 5;
3632 break;
3633 case EVEX512:
3634 vec_length = 2 << 5;
3635 break;
3636 default:
3637 abort ();
3638 break;
3639 }
3640 i.vex.bytes[3] |= vec_length;
3641 /* Encode the broadcast bit. */
3642 if (i.broadcast)
3643 i.vex.bytes[3] |= 0x10;
3644 }
3645 else
3646 {
3647 if (i.rounding->type != saeonly)
3648 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3649 else
3650 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3651 }
3652
3653 if (i.mask && i.mask->mask)
3654 i.vex.bytes[3] |= i.mask->mask->reg_num;
3655 }
3656
3657 static void
3658 process_immext (void)
3659 {
3660 expressionS *exp;
3661
3662 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3663 && i.operands > 0)
3664 {
3665 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3666 with an opcode suffix which is coded in the same place as an
3667 8-bit immediate field would be.
3668 Here we check those operands and remove them afterwards. */
3669 unsigned int x;
3670
3671 for (x = 0; x < i.operands; x++)
3672 if (register_number (i.op[x].regs) != x)
3673 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3674 register_prefix, i.op[x].regs->reg_name, x + 1,
3675 i.tm.name);
3676
3677 i.operands = 0;
3678 }
3679
3680 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3681 {
3682 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3683 suffix which is coded in the same place as an 8-bit immediate
3684 field would be.
3685 Here we check those operands and remove them afterwards. */
3686 unsigned int x;
3687
3688 if (i.operands != 3)
3689 abort();
3690
3691 for (x = 0; x < 2; x++)
3692 if (register_number (i.op[x].regs) != x)
3693 goto bad_register_operand;
3694
3695 /* Check for third operand for mwaitx/monitorx insn. */
3696 if (register_number (i.op[x].regs)
3697 != (x + (i.tm.extension_opcode == 0xfb)))
3698 {
3699 bad_register_operand:
3700 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3701 register_prefix, i.op[x].regs->reg_name, x+1,
3702 i.tm.name);
3703 }
3704
3705 i.operands = 0;
3706 }
3707
3708 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3709 which is coded in the same place as an 8-bit immediate field
3710 would be. Here we fake an 8-bit immediate operand from the
3711 opcode suffix stored in tm.extension_opcode.
3712
3713 AVX instructions also use this encoding, for some of
3714 3 argument instructions. */
3715
3716 gas_assert (i.imm_operands <= 1
3717 && (i.operands <= 2
3718 || ((i.tm.opcode_modifier.vex
3719 || i.tm.opcode_modifier.vexopcode
3720 || is_evex_encoding (&i.tm))
3721 && i.operands <= 4)));
3722
3723 exp = &im_expressions[i.imm_operands++];
3724 i.op[i.operands].imms = exp;
3725 i.types[i.operands] = imm8;
3726 i.operands++;
3727 exp->X_op = O_constant;
3728 exp->X_add_number = i.tm.extension_opcode;
3729 i.tm.extension_opcode = None;
3730 }
3731
3732
3733 static int
3734 check_hle (void)
3735 {
3736 switch (i.tm.opcode_modifier.hleprefixok)
3737 {
3738 default:
3739 abort ();
3740 case HLEPrefixNone:
3741 as_bad (_("invalid instruction `%s' after `%s'"),
3742 i.tm.name, i.hle_prefix);
3743 return 0;
3744 case HLEPrefixLock:
3745 if (i.prefix[LOCK_PREFIX])
3746 return 1;
3747 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3748 return 0;
3749 case HLEPrefixAny:
3750 return 1;
3751 case HLEPrefixRelease:
3752 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3753 {
3754 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3755 i.tm.name);
3756 return 0;
3757 }
3758 if (i.mem_operands == 0
3759 || !operand_type_check (i.types[i.operands - 1], anymem))
3760 {
3761 as_bad (_("memory destination needed for instruction `%s'"
3762 " after `xrelease'"), i.tm.name);
3763 return 0;
3764 }
3765 return 1;
3766 }
3767 }
3768
3769 /* Try the shortest encoding by shortening operand size. */
3770
3771 static void
3772 optimize_encoding (void)
3773 {
3774 int j;
3775
3776 if (optimize_for_space
3777 && i.reg_operands == 1
3778 && i.imm_operands == 1
3779 && !i.types[1].bitfield.byte
3780 && i.op[0].imms->X_op == O_constant
3781 && fits_in_imm7 (i.op[0].imms->X_add_number)
3782 && ((i.tm.base_opcode == 0xa8
3783 && i.tm.extension_opcode == None)
3784 || (i.tm.base_opcode == 0xf6
3785 && i.tm.extension_opcode == 0x0)))
3786 {
3787 /* Optimize: -Os:
3788 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3789 */
3790 unsigned int base_regnum = i.op[1].regs->reg_num;
3791 if (flag_code == CODE_64BIT || base_regnum < 4)
3792 {
3793 i.types[1].bitfield.byte = 1;
3794 /* Ignore the suffix. */
3795 i.suffix = 0;
3796 if (base_regnum >= 4
3797 && !(i.op[1].regs->reg_flags & RegRex))
3798 {
3799 /* Handle SP, BP, SI and DI registers. */
3800 if (i.types[1].bitfield.word)
3801 j = 16;
3802 else if (i.types[1].bitfield.dword)
3803 j = 32;
3804 else
3805 j = 48;
3806 i.op[1].regs -= j;
3807 }
3808 }
3809 }
3810 else if (flag_code == CODE_64BIT
3811 && ((i.types[1].bitfield.qword
3812 && i.reg_operands == 1
3813 && i.imm_operands == 1
3814 && i.op[0].imms->X_op == O_constant
3815 && ((i.tm.base_opcode == 0xb0
3816 && i.tm.extension_opcode == None
3817 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3818 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3819 && (((i.tm.base_opcode == 0x24
3820 || i.tm.base_opcode == 0xa8)
3821 && i.tm.extension_opcode == None)
3822 || (i.tm.base_opcode == 0x80
3823 && i.tm.extension_opcode == 0x4)
3824 || ((i.tm.base_opcode == 0xf6
3825 || i.tm.base_opcode == 0xc6)
3826 && i.tm.extension_opcode == 0x0)))))
3827 || (i.types[0].bitfield.qword
3828 && ((i.reg_operands == 2
3829 && i.op[0].regs == i.op[1].regs
3830 && ((i.tm.base_opcode == 0x30
3831 || i.tm.base_opcode == 0x28)
3832 && i.tm.extension_opcode == None))
3833 || (i.reg_operands == 1
3834 && i.operands == 1
3835 && i.tm.base_opcode == 0x30
3836 && i.tm.extension_opcode == None)))))
3837 {
3838 /* Optimize: -O:
3839 andq $imm31, %r64 -> andl $imm31, %r32
3840 testq $imm31, %r64 -> testl $imm31, %r32
3841 xorq %r64, %r64 -> xorl %r32, %r32
3842 subq %r64, %r64 -> subl %r32, %r32
3843 movq $imm31, %r64 -> movl $imm31, %r32
3844 movq $imm32, %r64 -> movl $imm32, %r32
3845 */
3846 i.tm.opcode_modifier.norex64 = 1;
3847 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3848 {
3849 /* Handle
3850 movq $imm31, %r64 -> movl $imm31, %r32
3851 movq $imm32, %r64 -> movl $imm32, %r32
3852 */
3853 i.tm.operand_types[0].bitfield.imm32 = 1;
3854 i.tm.operand_types[0].bitfield.imm32s = 0;
3855 i.tm.operand_types[0].bitfield.imm64 = 0;
3856 i.types[0].bitfield.imm32 = 1;
3857 i.types[0].bitfield.imm32s = 0;
3858 i.types[0].bitfield.imm64 = 0;
3859 i.types[1].bitfield.dword = 1;
3860 i.types[1].bitfield.qword = 0;
3861 if (i.tm.base_opcode == 0xc6)
3862 {
3863 /* Handle
3864 movq $imm31, %r64 -> movl $imm31, %r32
3865 */
3866 i.tm.base_opcode = 0xb0;
3867 i.tm.extension_opcode = None;
3868 i.tm.opcode_modifier.shortform = 1;
3869 i.tm.opcode_modifier.modrm = 0;
3870 }
3871 }
3872 }
3873 else if (optimize > 1
3874 && i.reg_operands == 3
3875 && i.op[0].regs == i.op[1].regs
3876 && !i.types[2].bitfield.xmmword
3877 && (i.tm.opcode_modifier.vex
3878 || (!i.mask
3879 && !i.rounding
3880 && is_evex_encoding (&i.tm)
3881 && (i.vec_encoding != vex_encoding_evex
3882 || i.tm.cpu_flags.bitfield.cpuavx512vl
3883 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
3884 && ((i.tm.base_opcode == 0x55
3885 || i.tm.base_opcode == 0x6655
3886 || i.tm.base_opcode == 0x66df
3887 || i.tm.base_opcode == 0x57
3888 || i.tm.base_opcode == 0x6657
3889 || i.tm.base_opcode == 0x66ef
3890 || i.tm.base_opcode == 0x66f8
3891 || i.tm.base_opcode == 0x66f9
3892 || i.tm.base_opcode == 0x66fa
3893 || i.tm.base_opcode == 0x66fb)
3894 && i.tm.extension_opcode == None))
3895 {
3896 /* Optimize: -O2:
3897 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3898 vpsubq and vpsubw:
3899 EVEX VOP %zmmM, %zmmM, %zmmN
3900 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3901 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3902 EVEX VOP %ymmM, %ymmM, %ymmN
3903 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3904 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3905 VEX VOP %ymmM, %ymmM, %ymmN
3906 -> VEX VOP %xmmM, %xmmM, %xmmN
3907 VOP, one of vpandn and vpxor:
3908 VEX VOP %ymmM, %ymmM, %ymmN
3909 -> VEX VOP %xmmM, %xmmM, %xmmN
3910 VOP, one of vpandnd and vpandnq:
3911 EVEX VOP %zmmM, %zmmM, %zmmN
3912 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3913 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3914 EVEX VOP %ymmM, %ymmM, %ymmN
3915 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3916 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3917 VOP, one of vpxord and vpxorq:
3918 EVEX VOP %zmmM, %zmmM, %zmmN
3919 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3920 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3921 EVEX VOP %ymmM, %ymmM, %ymmN
3922 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3923 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3924 */
3925 if (is_evex_encoding (&i.tm))
3926 {
3927 if (i.vec_encoding == vex_encoding_evex)
3928 i.tm.opcode_modifier.evex = EVEX128;
3929 else
3930 {
3931 i.tm.opcode_modifier.vex = VEX128;
3932 i.tm.opcode_modifier.vexw = VEXW0;
3933 i.tm.opcode_modifier.evex = 0;
3934 }
3935 }
3936 else
3937 i.tm.opcode_modifier.vex = VEX128;
3938
3939 if (i.tm.opcode_modifier.vex)
3940 for (j = 0; j < 3; j++)
3941 {
3942 i.types[j].bitfield.xmmword = 1;
3943 i.types[j].bitfield.ymmword = 0;
3944 }
3945 }
3946 }
3947
3948 /* This is the guts of the machine-dependent assembler. LINE points to a
3949 machine dependent instruction. This function is supposed to emit
3950 the frags/bytes it assembles to. */
3951
3952 void
3953 md_assemble (char *line)
3954 {
3955 unsigned int j;
3956 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
3957 const insn_template *t;
3958
3959 /* Initialize globals. */
3960 memset (&i, '\0', sizeof (i));
3961 for (j = 0; j < MAX_OPERANDS; j++)
3962 i.reloc[j] = NO_RELOC;
3963 memset (disp_expressions, '\0', sizeof (disp_expressions));
3964 memset (im_expressions, '\0', sizeof (im_expressions));
3965 save_stack_p = save_stack;
3966
3967 /* First parse an instruction mnemonic & call i386_operand for the operands.
3968 We assume that the scrubber has arranged it so that line[0] is the valid
3969 start of a (possibly prefixed) mnemonic. */
3970
3971 line = parse_insn (line, mnemonic);
3972 if (line == NULL)
3973 return;
3974 mnem_suffix = i.suffix;
3975
3976 line = parse_operands (line, mnemonic);
3977 this_operand = -1;
3978 xfree (i.memop1_string);
3979 i.memop1_string = NULL;
3980 if (line == NULL)
3981 return;
3982
3983 /* Now we've parsed the mnemonic into a set of templates, and have the
3984 operands at hand. */
3985
3986 /* All intel opcodes have reversed operands except for "bound" and
3987 "enter". We also don't reverse intersegment "jmp" and "call"
3988 instructions with 2 immediate operands so that the immediate segment
3989 precedes the offset, as it does when in AT&T mode. */
3990 if (intel_syntax
3991 && i.operands > 1
3992 && (strcmp (mnemonic, "bound") != 0)
3993 && (strcmp (mnemonic, "invlpga") != 0)
3994 && !(operand_type_check (i.types[0], imm)
3995 && operand_type_check (i.types[1], imm)))
3996 swap_operands ();
3997
3998 /* The order of the immediates should be reversed
3999 for 2 immediates extrq and insertq instructions */
4000 if (i.imm_operands == 2
4001 && (strcmp (mnemonic, "extrq") == 0
4002 || strcmp (mnemonic, "insertq") == 0))
4003 swap_2_operands (0, 1);
4004
4005 if (i.imm_operands)
4006 optimize_imm ();
4007
4008 /* Don't optimize displacement for movabs since it only takes 64bit
4009 displacement. */
4010 if (i.disp_operands
4011 && i.disp_encoding != disp_encoding_32bit
4012 && (flag_code != CODE_64BIT
4013 || strcmp (mnemonic, "movabs") != 0))
4014 optimize_disp ();
4015
4016 /* Next, we find a template that matches the given insn,
4017 making sure the overlap of the given operands types is consistent
4018 with the template operand types. */
4019
4020 if (!(t = match_template (mnem_suffix)))
4021 return;
4022
4023 if (sse_check != check_none
4024 && !i.tm.opcode_modifier.noavx
4025 && !i.tm.cpu_flags.bitfield.cpuavx
4026 && (i.tm.cpu_flags.bitfield.cpusse
4027 || i.tm.cpu_flags.bitfield.cpusse2
4028 || i.tm.cpu_flags.bitfield.cpusse3
4029 || i.tm.cpu_flags.bitfield.cpussse3
4030 || i.tm.cpu_flags.bitfield.cpusse4_1
4031 || i.tm.cpu_flags.bitfield.cpusse4_2
4032 || i.tm.cpu_flags.bitfield.cpupclmul
4033 || i.tm.cpu_flags.bitfield.cpuaes
4034 || i.tm.cpu_flags.bitfield.cpugfni))
4035 {
4036 (sse_check == check_warning
4037 ? as_warn
4038 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4039 }
4040
4041 /* Zap movzx and movsx suffix. The suffix has been set from
4042 "word ptr" or "byte ptr" on the source operand in Intel syntax
4043 or extracted from mnemonic in AT&T syntax. But we'll use
4044 the destination register to choose the suffix for encoding. */
4045 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4046 {
4047 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4048 there is no suffix, the default will be byte extension. */
4049 if (i.reg_operands != 2
4050 && !i.suffix
4051 && intel_syntax)
4052 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4053
4054 i.suffix = 0;
4055 }
4056
4057 if (i.tm.opcode_modifier.fwait)
4058 if (!add_prefix (FWAIT_OPCODE))
4059 return;
4060
4061 /* Check if REP prefix is OK. */
4062 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4063 {
4064 as_bad (_("invalid instruction `%s' after `%s'"),
4065 i.tm.name, i.rep_prefix);
4066 return;
4067 }
4068
4069 /* Check for lock without a lockable instruction. Destination operand
4070 must be memory unless it is xchg (0x86). */
4071 if (i.prefix[LOCK_PREFIX]
4072 && (!i.tm.opcode_modifier.islockable
4073 || i.mem_operands == 0
4074 || (i.tm.base_opcode != 0x86
4075 && !operand_type_check (i.types[i.operands - 1], anymem))))
4076 {
4077 as_bad (_("expecting lockable instruction after `lock'"));
4078 return;
4079 }
4080
4081 /* Check if HLE prefix is OK. */
4082 if (i.hle_prefix && !check_hle ())
4083 return;
4084
4085 /* Check BND prefix. */
4086 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4087 as_bad (_("expecting valid branch instruction after `bnd'"));
4088
4089 /* Check NOTRACK prefix. */
4090 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4091 as_bad (_("expecting indirect branch instruction after `notrack'"));
4092
4093 if (i.tm.cpu_flags.bitfield.cpumpx)
4094 {
4095 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4096 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4097 else if (flag_code != CODE_16BIT
4098 ? i.prefix[ADDR_PREFIX]
4099 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4100 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4101 }
4102
4103 /* Insert BND prefix. */
4104 if (add_bnd_prefix
4105 && i.tm.opcode_modifier.bndprefixok
4106 && !i.prefix[BND_PREFIX])
4107 add_prefix (BND_PREFIX_OPCODE);
4108
4109 /* Check string instruction segment overrides. */
4110 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4111 {
4112 if (!check_string ())
4113 return;
4114 i.disp_operands = 0;
4115 }
4116
4117 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4118 optimize_encoding ();
4119
4120 if (!process_suffix ())
4121 return;
4122
4123 /* Update operand types. */
4124 for (j = 0; j < i.operands; j++)
4125 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4126
4127 /* Make still unresolved immediate matches conform to size of immediate
4128 given in i.suffix. */
4129 if (!finalize_imm ())
4130 return;
4131
4132 if (i.types[0].bitfield.imm1)
4133 i.imm_operands = 0; /* kludge for shift insns. */
4134
4135 /* We only need to check those implicit registers for instructions
4136 with 3 operands or less. */
4137 if (i.operands <= 3)
4138 for (j = 0; j < i.operands; j++)
4139 if (i.types[j].bitfield.inoutportreg
4140 || i.types[j].bitfield.shiftcount
4141 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4142 i.reg_operands--;
4143
4144 /* ImmExt should be processed after SSE2AVX. */
4145 if (!i.tm.opcode_modifier.sse2avx
4146 && i.tm.opcode_modifier.immext)
4147 process_immext ();
4148
4149 /* For insns with operands there are more diddles to do to the opcode. */
4150 if (i.operands)
4151 {
4152 if (!process_operands ())
4153 return;
4154 }
4155 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4156 {
4157 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4158 as_warn (_("translating to `%sp'"), i.tm.name);
4159 }
4160
4161 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.vexopcode
4162 || is_evex_encoding (&i.tm))
4163 {
4164 if (flag_code == CODE_16BIT)
4165 {
4166 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4167 i.tm.name);
4168 return;
4169 }
4170
4171 if (i.tm.opcode_modifier.vex)
4172 build_vex_prefix (t);
4173 else
4174 build_evex_prefix ();
4175 }
4176
4177 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4178 instructions may define INT_OPCODE as well, so avoid this corner
4179 case for those instructions that use MODRM. */
4180 if (i.tm.base_opcode == INT_OPCODE
4181 && !i.tm.opcode_modifier.modrm
4182 && i.op[0].imms->X_add_number == 3)
4183 {
4184 i.tm.base_opcode = INT3_OPCODE;
4185 i.imm_operands = 0;
4186 }
4187
4188 if ((i.tm.opcode_modifier.jump
4189 || i.tm.opcode_modifier.jumpbyte
4190 || i.tm.opcode_modifier.jumpdword)
4191 && i.op[0].disps->X_op == O_constant)
4192 {
4193 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4194 the absolute address given by the constant. Since ix86 jumps and
4195 calls are pc relative, we need to generate a reloc. */
4196 i.op[0].disps->X_add_symbol = &abs_symbol;
4197 i.op[0].disps->X_op = O_symbol;
4198 }
4199
4200 if (i.tm.opcode_modifier.rex64)
4201 i.rex |= REX_W;
4202
4203 /* For 8 bit registers we need an empty rex prefix. Also if the
4204 instruction already has a prefix, we need to convert old
4205 registers to new ones. */
4206
4207 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4208 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4209 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4210 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4211 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4212 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4213 && i.rex != 0))
4214 {
4215 int x;
4216
4217 i.rex |= REX_OPCODE;
4218 for (x = 0; x < 2; x++)
4219 {
4220 /* Look for 8 bit operand that uses old registers. */
4221 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4222 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4223 {
4224 /* In case it is "hi" register, give up. */
4225 if (i.op[x].regs->reg_num > 3)
4226 as_bad (_("can't encode register '%s%s' in an "
4227 "instruction requiring REX prefix."),
4228 register_prefix, i.op[x].regs->reg_name);
4229
4230 /* Otherwise it is equivalent to the extended register.
4231 Since the encoding doesn't change this is merely
4232 cosmetic cleanup for debug output. */
4233
4234 i.op[x].regs = i.op[x].regs + 8;
4235 }
4236 }
4237 }
4238
4239 if (i.rex == 0 && i.rex_encoding)
4240 {
4241 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4242 that uses legacy register. If it is "hi" register, don't add
4243 the REX_OPCODE byte. */
4244 int x;
4245 for (x = 0; x < 2; x++)
4246 if (i.types[x].bitfield.reg
4247 && i.types[x].bitfield.byte
4248 && (i.op[x].regs->reg_flags & RegRex64) == 0
4249 && i.op[x].regs->reg_num > 3)
4250 {
4251 i.rex_encoding = FALSE;
4252 break;
4253 }
4254
4255 if (i.rex_encoding)
4256 i.rex = REX_OPCODE;
4257 }
4258
4259 if (i.rex != 0)
4260 add_prefix (REX_OPCODE | i.rex);
4261
4262 /* We are ready to output the insn. */
4263 output_insn ();
4264 }
4265
4266 static char *
4267 parse_insn (char *line, char *mnemonic)
4268 {
4269 char *l = line;
4270 char *token_start = l;
4271 char *mnem_p;
4272 int supported;
4273 const insn_template *t;
4274 char *dot_p = NULL;
4275
4276 while (1)
4277 {
4278 mnem_p = mnemonic;
4279 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4280 {
4281 if (*mnem_p == '.')
4282 dot_p = mnem_p;
4283 mnem_p++;
4284 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4285 {
4286 as_bad (_("no such instruction: `%s'"), token_start);
4287 return NULL;
4288 }
4289 l++;
4290 }
4291 if (!is_space_char (*l)
4292 && *l != END_OF_INSN
4293 && (intel_syntax
4294 || (*l != PREFIX_SEPARATOR
4295 && *l != ',')))
4296 {
4297 as_bad (_("invalid character %s in mnemonic"),
4298 output_invalid (*l));
4299 return NULL;
4300 }
4301 if (token_start == l)
4302 {
4303 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4304 as_bad (_("expecting prefix; got nothing"));
4305 else
4306 as_bad (_("expecting mnemonic; got nothing"));
4307 return NULL;
4308 }
4309
4310 /* Look up instruction (or prefix) via hash table. */
4311 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4312
4313 if (*l != END_OF_INSN
4314 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4315 && current_templates
4316 && current_templates->start->opcode_modifier.isprefix)
4317 {
4318 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4319 {
4320 as_bad ((flag_code != CODE_64BIT
4321 ? _("`%s' is only supported in 64-bit mode")
4322 : _("`%s' is not supported in 64-bit mode")),
4323 current_templates->start->name);
4324 return NULL;
4325 }
4326 /* If we are in 16-bit mode, do not allow addr16 or data16.
4327 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4328 if ((current_templates->start->opcode_modifier.size16
4329 || current_templates->start->opcode_modifier.size32)
4330 && flag_code != CODE_64BIT
4331 && (current_templates->start->opcode_modifier.size32
4332 ^ (flag_code == CODE_16BIT)))
4333 {
4334 as_bad (_("redundant %s prefix"),
4335 current_templates->start->name);
4336 return NULL;
4337 }
4338 if (current_templates->start->opcode_length == 0)
4339 {
4340 /* Handle pseudo prefixes. */
4341 switch (current_templates->start->base_opcode)
4342 {
4343 case 0x0:
4344 /* {disp8} */
4345 i.disp_encoding = disp_encoding_8bit;
4346 break;
4347 case 0x1:
4348 /* {disp32} */
4349 i.disp_encoding = disp_encoding_32bit;
4350 break;
4351 case 0x2:
4352 /* {load} */
4353 i.dir_encoding = dir_encoding_load;
4354 break;
4355 case 0x3:
4356 /* {store} */
4357 i.dir_encoding = dir_encoding_store;
4358 break;
4359 case 0x4:
4360 /* {vex2} */
4361 i.vec_encoding = vex_encoding_vex2;
4362 break;
4363 case 0x5:
4364 /* {vex3} */
4365 i.vec_encoding = vex_encoding_vex3;
4366 break;
4367 case 0x6:
4368 /* {evex} */
4369 i.vec_encoding = vex_encoding_evex;
4370 break;
4371 case 0x7:
4372 /* {rex} */
4373 i.rex_encoding = TRUE;
4374 break;
4375 case 0x8:
4376 /* {nooptimize} */
4377 i.no_optimize = TRUE;
4378 break;
4379 default:
4380 abort ();
4381 }
4382 }
4383 else
4384 {
4385 /* Add prefix, checking for repeated prefixes. */
4386 switch (add_prefix (current_templates->start->base_opcode))
4387 {
4388 case PREFIX_EXIST:
4389 return NULL;
4390 case PREFIX_DS:
4391 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4392 i.notrack_prefix = current_templates->start->name;
4393 break;
4394 case PREFIX_REP:
4395 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4396 i.hle_prefix = current_templates->start->name;
4397 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4398 i.bnd_prefix = current_templates->start->name;
4399 else
4400 i.rep_prefix = current_templates->start->name;
4401 break;
4402 default:
4403 break;
4404 }
4405 }
4406 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4407 token_start = ++l;
4408 }
4409 else
4410 break;
4411 }
4412
4413 if (!current_templates)
4414 {
4415 /* Check if we should swap operand or force 32bit displacement in
4416 encoding. */
4417 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4418 i.dir_encoding = dir_encoding_store;
4419 else if (mnem_p - 3 == dot_p
4420 && dot_p[1] == 'd'
4421 && dot_p[2] == '8')
4422 i.disp_encoding = disp_encoding_8bit;
4423 else if (mnem_p - 4 == dot_p
4424 && dot_p[1] == 'd'
4425 && dot_p[2] == '3'
4426 && dot_p[3] == '2')
4427 i.disp_encoding = disp_encoding_32bit;
4428 else
4429 goto check_suffix;
4430 mnem_p = dot_p;
4431 *dot_p = '\0';
4432 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4433 }
4434
4435 if (!current_templates)
4436 {
4437 check_suffix:
4438 /* See if we can get a match by trimming off a suffix. */
4439 switch (mnem_p[-1])
4440 {
4441 case WORD_MNEM_SUFFIX:
4442 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4443 i.suffix = SHORT_MNEM_SUFFIX;
4444 else
4445 /* Fall through. */
4446 case BYTE_MNEM_SUFFIX:
4447 case QWORD_MNEM_SUFFIX:
4448 i.suffix = mnem_p[-1];
4449 mnem_p[-1] = '\0';
4450 current_templates = (const templates *) hash_find (op_hash,
4451 mnemonic);
4452 break;
4453 case SHORT_MNEM_SUFFIX:
4454 case LONG_MNEM_SUFFIX:
4455 if (!intel_syntax)
4456 {
4457 i.suffix = mnem_p[-1];
4458 mnem_p[-1] = '\0';
4459 current_templates = (const templates *) hash_find (op_hash,
4460 mnemonic);
4461 }
4462 break;
4463
4464 /* Intel Syntax. */
4465 case 'd':
4466 if (intel_syntax)
4467 {
4468 if (intel_float_operand (mnemonic) == 1)
4469 i.suffix = SHORT_MNEM_SUFFIX;
4470 else
4471 i.suffix = LONG_MNEM_SUFFIX;
4472 mnem_p[-1] = '\0';
4473 current_templates = (const templates *) hash_find (op_hash,
4474 mnemonic);
4475 }
4476 break;
4477 }
4478 if (!current_templates)
4479 {
4480 as_bad (_("no such instruction: `%s'"), token_start);
4481 return NULL;
4482 }
4483 }
4484
4485 if (current_templates->start->opcode_modifier.jump
4486 || current_templates->start->opcode_modifier.jumpbyte)
4487 {
4488 /* Check for a branch hint. We allow ",pt" and ",pn" for
4489 predict taken and predict not taken respectively.
4490 I'm not sure that branch hints actually do anything on loop
4491 and jcxz insns (JumpByte) for current Pentium4 chips. They
4492 may work in the future and it doesn't hurt to accept them
4493 now. */
4494 if (l[0] == ',' && l[1] == 'p')
4495 {
4496 if (l[2] == 't')
4497 {
4498 if (!add_prefix (DS_PREFIX_OPCODE))
4499 return NULL;
4500 l += 3;
4501 }
4502 else if (l[2] == 'n')
4503 {
4504 if (!add_prefix (CS_PREFIX_OPCODE))
4505 return NULL;
4506 l += 3;
4507 }
4508 }
4509 }
4510 /* Any other comma loses. */
4511 if (*l == ',')
4512 {
4513 as_bad (_("invalid character %s in mnemonic"),
4514 output_invalid (*l));
4515 return NULL;
4516 }
4517
4518 /* Check if instruction is supported on specified architecture. */
4519 supported = 0;
4520 for (t = current_templates->start; t < current_templates->end; ++t)
4521 {
4522 supported |= cpu_flags_match (t);
4523 if (supported == CPU_FLAGS_PERFECT_MATCH)
4524 {
4525 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4526 as_warn (_("use .code16 to ensure correct addressing mode"));
4527
4528 return l;
4529 }
4530 }
4531
4532 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4533 as_bad (flag_code == CODE_64BIT
4534 ? _("`%s' is not supported in 64-bit mode")
4535 : _("`%s' is only supported in 64-bit mode"),
4536 current_templates->start->name);
4537 else
4538 as_bad (_("`%s' is not supported on `%s%s'"),
4539 current_templates->start->name,
4540 cpu_arch_name ? cpu_arch_name : default_arch,
4541 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4542
4543 return NULL;
4544 }
4545
4546 static char *
4547 parse_operands (char *l, const char *mnemonic)
4548 {
4549 char *token_start;
4550
4551 /* 1 if operand is pending after ','. */
4552 unsigned int expecting_operand = 0;
4553
4554 /* Non-zero if operand parens not balanced. */
4555 unsigned int paren_not_balanced;
4556
4557 while (*l != END_OF_INSN)
4558 {
4559 /* Skip optional white space before operand. */
4560 if (is_space_char (*l))
4561 ++l;
4562 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4563 {
4564 as_bad (_("invalid character %s before operand %d"),
4565 output_invalid (*l),
4566 i.operands + 1);
4567 return NULL;
4568 }
4569 token_start = l; /* After white space. */
4570 paren_not_balanced = 0;
4571 while (paren_not_balanced || *l != ',')
4572 {
4573 if (*l == END_OF_INSN)
4574 {
4575 if (paren_not_balanced)
4576 {
4577 if (!intel_syntax)
4578 as_bad (_("unbalanced parenthesis in operand %d."),
4579 i.operands + 1);
4580 else
4581 as_bad (_("unbalanced brackets in operand %d."),
4582 i.operands + 1);
4583 return NULL;
4584 }
4585 else
4586 break; /* we are done */
4587 }
4588 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4589 {
4590 as_bad (_("invalid character %s in operand %d"),
4591 output_invalid (*l),
4592 i.operands + 1);
4593 return NULL;
4594 }
4595 if (!intel_syntax)
4596 {
4597 if (*l == '(')
4598 ++paren_not_balanced;
4599 if (*l == ')')
4600 --paren_not_balanced;
4601 }
4602 else
4603 {
4604 if (*l == '[')
4605 ++paren_not_balanced;
4606 if (*l == ']')
4607 --paren_not_balanced;
4608 }
4609 l++;
4610 }
4611 if (l != token_start)
4612 { /* Yes, we've read in another operand. */
4613 unsigned int operand_ok;
4614 this_operand = i.operands++;
4615 if (i.operands > MAX_OPERANDS)
4616 {
4617 as_bad (_("spurious operands; (%d operands/instruction max)"),
4618 MAX_OPERANDS);
4619 return NULL;
4620 }
4621 i.types[this_operand].bitfield.unspecified = 1;
4622 /* Now parse operand adding info to 'i' as we go along. */
4623 END_STRING_AND_SAVE (l);
4624
4625 if (intel_syntax)
4626 operand_ok =
4627 i386_intel_operand (token_start,
4628 intel_float_operand (mnemonic));
4629 else
4630 operand_ok = i386_att_operand (token_start);
4631
4632 RESTORE_END_STRING (l);
4633 if (!operand_ok)
4634 return NULL;
4635 }
4636 else
4637 {
4638 if (expecting_operand)
4639 {
4640 expecting_operand_after_comma:
4641 as_bad (_("expecting operand after ','; got nothing"));
4642 return NULL;
4643 }
4644 if (*l == ',')
4645 {
4646 as_bad (_("expecting operand before ','; got nothing"));
4647 return NULL;
4648 }
4649 }
4650
4651 /* Now *l must be either ',' or END_OF_INSN. */
4652 if (*l == ',')
4653 {
4654 if (*++l == END_OF_INSN)
4655 {
4656 /* Just skip it, if it's \n complain. */
4657 goto expecting_operand_after_comma;
4658 }
4659 expecting_operand = 1;
4660 }
4661 }
4662 return l;
4663 }
4664
4665 static void
4666 swap_2_operands (int xchg1, int xchg2)
4667 {
4668 union i386_op temp_op;
4669 i386_operand_type temp_type;
4670 enum bfd_reloc_code_real temp_reloc;
4671
4672 temp_type = i.types[xchg2];
4673 i.types[xchg2] = i.types[xchg1];
4674 i.types[xchg1] = temp_type;
4675 temp_op = i.op[xchg2];
4676 i.op[xchg2] = i.op[xchg1];
4677 i.op[xchg1] = temp_op;
4678 temp_reloc = i.reloc[xchg2];
4679 i.reloc[xchg2] = i.reloc[xchg1];
4680 i.reloc[xchg1] = temp_reloc;
4681
4682 if (i.mask)
4683 {
4684 if (i.mask->operand == xchg1)
4685 i.mask->operand = xchg2;
4686 else if (i.mask->operand == xchg2)
4687 i.mask->operand = xchg1;
4688 }
4689 if (i.broadcast)
4690 {
4691 if (i.broadcast->operand == xchg1)
4692 i.broadcast->operand = xchg2;
4693 else if (i.broadcast->operand == xchg2)
4694 i.broadcast->operand = xchg1;
4695 }
4696 if (i.rounding)
4697 {
4698 if (i.rounding->operand == xchg1)
4699 i.rounding->operand = xchg2;
4700 else if (i.rounding->operand == xchg2)
4701 i.rounding->operand = xchg1;
4702 }
4703 }
4704
4705 static void
4706 swap_operands (void)
4707 {
4708 switch (i.operands)
4709 {
4710 case 5:
4711 case 4:
4712 swap_2_operands (1, i.operands - 2);
4713 /* Fall through. */
4714 case 3:
4715 case 2:
4716 swap_2_operands (0, i.operands - 1);
4717 break;
4718 default:
4719 abort ();
4720 }
4721
4722 if (i.mem_operands == 2)
4723 {
4724 const seg_entry *temp_seg;
4725 temp_seg = i.seg[0];
4726 i.seg[0] = i.seg[1];
4727 i.seg[1] = temp_seg;
4728 }
4729 }
4730
4731 /* Try to ensure constant immediates are represented in the smallest
4732 opcode possible. */
4733 static void
4734 optimize_imm (void)
4735 {
4736 char guess_suffix = 0;
4737 int op;
4738
4739 if (i.suffix)
4740 guess_suffix = i.suffix;
4741 else if (i.reg_operands)
4742 {
4743 /* Figure out a suffix from the last register operand specified.
4744 We can't do this properly yet, ie. excluding InOutPortReg,
4745 but the following works for instructions with immediates.
4746 In any case, we can't set i.suffix yet. */
4747 for (op = i.operands; --op >= 0;)
4748 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4749 {
4750 guess_suffix = BYTE_MNEM_SUFFIX;
4751 break;
4752 }
4753 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4754 {
4755 guess_suffix = WORD_MNEM_SUFFIX;
4756 break;
4757 }
4758 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4759 {
4760 guess_suffix = LONG_MNEM_SUFFIX;
4761 break;
4762 }
4763 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4764 {
4765 guess_suffix = QWORD_MNEM_SUFFIX;
4766 break;
4767 }
4768 }
4769 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4770 guess_suffix = WORD_MNEM_SUFFIX;
4771
4772 for (op = i.operands; --op >= 0;)
4773 if (operand_type_check (i.types[op], imm))
4774 {
4775 switch (i.op[op].imms->X_op)
4776 {
4777 case O_constant:
4778 /* If a suffix is given, this operand may be shortened. */
4779 switch (guess_suffix)
4780 {
4781 case LONG_MNEM_SUFFIX:
4782 i.types[op].bitfield.imm32 = 1;
4783 i.types[op].bitfield.imm64 = 1;
4784 break;
4785 case WORD_MNEM_SUFFIX:
4786 i.types[op].bitfield.imm16 = 1;
4787 i.types[op].bitfield.imm32 = 1;
4788 i.types[op].bitfield.imm32s = 1;
4789 i.types[op].bitfield.imm64 = 1;
4790 break;
4791 case BYTE_MNEM_SUFFIX:
4792 i.types[op].bitfield.imm8 = 1;
4793 i.types[op].bitfield.imm8s = 1;
4794 i.types[op].bitfield.imm16 = 1;
4795 i.types[op].bitfield.imm32 = 1;
4796 i.types[op].bitfield.imm32s = 1;
4797 i.types[op].bitfield.imm64 = 1;
4798 break;
4799 }
4800
4801 /* If this operand is at most 16 bits, convert it
4802 to a signed 16 bit number before trying to see
4803 whether it will fit in an even smaller size.
4804 This allows a 16-bit operand such as $0xffe0 to
4805 be recognised as within Imm8S range. */
4806 if ((i.types[op].bitfield.imm16)
4807 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4808 {
4809 i.op[op].imms->X_add_number =
4810 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4811 }
4812 #ifdef BFD64
4813 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4814 if ((i.types[op].bitfield.imm32)
4815 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4816 == 0))
4817 {
4818 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4819 ^ ((offsetT) 1 << 31))
4820 - ((offsetT) 1 << 31));
4821 }
4822 #endif
4823 i.types[op]
4824 = operand_type_or (i.types[op],
4825 smallest_imm_type (i.op[op].imms->X_add_number));
4826
4827 /* We must avoid matching of Imm32 templates when 64bit
4828 only immediate is available. */
4829 if (guess_suffix == QWORD_MNEM_SUFFIX)
4830 i.types[op].bitfield.imm32 = 0;
4831 break;
4832
4833 case O_absent:
4834 case O_register:
4835 abort ();
4836
4837 /* Symbols and expressions. */
4838 default:
4839 /* Convert symbolic operand to proper sizes for matching, but don't
4840 prevent matching a set of insns that only supports sizes other
4841 than those matching the insn suffix. */
4842 {
4843 i386_operand_type mask, allowed;
4844 const insn_template *t;
4845
4846 operand_type_set (&mask, 0);
4847 operand_type_set (&allowed, 0);
4848
4849 for (t = current_templates->start;
4850 t < current_templates->end;
4851 ++t)
4852 allowed = operand_type_or (allowed,
4853 t->operand_types[op]);
4854 switch (guess_suffix)
4855 {
4856 case QWORD_MNEM_SUFFIX:
4857 mask.bitfield.imm64 = 1;
4858 mask.bitfield.imm32s = 1;
4859 break;
4860 case LONG_MNEM_SUFFIX:
4861 mask.bitfield.imm32 = 1;
4862 break;
4863 case WORD_MNEM_SUFFIX:
4864 mask.bitfield.imm16 = 1;
4865 break;
4866 case BYTE_MNEM_SUFFIX:
4867 mask.bitfield.imm8 = 1;
4868 break;
4869 default:
4870 break;
4871 }
4872 allowed = operand_type_and (mask, allowed);
4873 if (!operand_type_all_zero (&allowed))
4874 i.types[op] = operand_type_and (i.types[op], mask);
4875 }
4876 break;
4877 }
4878 }
4879 }
4880
4881 /* Try to use the smallest displacement type too. */
4882 static void
4883 optimize_disp (void)
4884 {
4885 int op;
4886
4887 for (op = i.operands; --op >= 0;)
4888 if (operand_type_check (i.types[op], disp))
4889 {
4890 if (i.op[op].disps->X_op == O_constant)
4891 {
4892 offsetT op_disp = i.op[op].disps->X_add_number;
4893
4894 if (i.types[op].bitfield.disp16
4895 && (op_disp & ~(offsetT) 0xffff) == 0)
4896 {
4897 /* If this operand is at most 16 bits, convert
4898 to a signed 16 bit number and don't use 64bit
4899 displacement. */
4900 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4901 i.types[op].bitfield.disp64 = 0;
4902 }
4903 #ifdef BFD64
4904 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4905 if (i.types[op].bitfield.disp32
4906 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4907 {
4908 /* If this operand is at most 32 bits, convert
4909 to a signed 32 bit number and don't use 64bit
4910 displacement. */
4911 op_disp &= (((offsetT) 2 << 31) - 1);
4912 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4913 i.types[op].bitfield.disp64 = 0;
4914 }
4915 #endif
4916 if (!op_disp && i.types[op].bitfield.baseindex)
4917 {
4918 i.types[op].bitfield.disp8 = 0;
4919 i.types[op].bitfield.disp16 = 0;
4920 i.types[op].bitfield.disp32 = 0;
4921 i.types[op].bitfield.disp32s = 0;
4922 i.types[op].bitfield.disp64 = 0;
4923 i.op[op].disps = 0;
4924 i.disp_operands--;
4925 }
4926 else if (flag_code == CODE_64BIT)
4927 {
4928 if (fits_in_signed_long (op_disp))
4929 {
4930 i.types[op].bitfield.disp64 = 0;
4931 i.types[op].bitfield.disp32s = 1;
4932 }
4933 if (i.prefix[ADDR_PREFIX]
4934 && fits_in_unsigned_long (op_disp))
4935 i.types[op].bitfield.disp32 = 1;
4936 }
4937 if ((i.types[op].bitfield.disp32
4938 || i.types[op].bitfield.disp32s
4939 || i.types[op].bitfield.disp16)
4940 && fits_in_disp8 (op_disp))
4941 i.types[op].bitfield.disp8 = 1;
4942 }
4943 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4944 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4945 {
4946 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4947 i.op[op].disps, 0, i.reloc[op]);
4948 i.types[op].bitfield.disp8 = 0;
4949 i.types[op].bitfield.disp16 = 0;
4950 i.types[op].bitfield.disp32 = 0;
4951 i.types[op].bitfield.disp32s = 0;
4952 i.types[op].bitfield.disp64 = 0;
4953 }
4954 else
4955 /* We only support 64bit displacement on constants. */
4956 i.types[op].bitfield.disp64 = 0;
4957 }
4958 }
4959
4960 /* Check if operands are valid for the instruction. */
4961
4962 static int
4963 check_VecOperands (const insn_template *t)
4964 {
4965 unsigned int op;
4966
4967 /* Without VSIB byte, we can't have a vector register for index. */
4968 if (!t->opcode_modifier.vecsib
4969 && i.index_reg
4970 && (i.index_reg->reg_type.bitfield.xmmword
4971 || i.index_reg->reg_type.bitfield.ymmword
4972 || i.index_reg->reg_type.bitfield.zmmword))
4973 {
4974 i.error = unsupported_vector_index_register;
4975 return 1;
4976 }
4977
4978 /* Check if default mask is allowed. */
4979 if (t->opcode_modifier.nodefmask
4980 && (!i.mask || i.mask->mask->reg_num == 0))
4981 {
4982 i.error = no_default_mask;
4983 return 1;
4984 }
4985
4986 /* For VSIB byte, we need a vector register for index, and all vector
4987 registers must be distinct. */
4988 if (t->opcode_modifier.vecsib)
4989 {
4990 if (!i.index_reg
4991 || !((t->opcode_modifier.vecsib == VecSIB128
4992 && i.index_reg->reg_type.bitfield.xmmword)
4993 || (t->opcode_modifier.vecsib == VecSIB256
4994 && i.index_reg->reg_type.bitfield.ymmword)
4995 || (t->opcode_modifier.vecsib == VecSIB512
4996 && i.index_reg->reg_type.bitfield.zmmword)))
4997 {
4998 i.error = invalid_vsib_address;
4999 return 1;
5000 }
5001
5002 gas_assert (i.reg_operands == 2 || i.mask);
5003 if (i.reg_operands == 2 && !i.mask)
5004 {
5005 gas_assert (i.types[0].bitfield.regsimd);
5006 gas_assert (i.types[0].bitfield.xmmword
5007 || i.types[0].bitfield.ymmword);
5008 gas_assert (i.types[2].bitfield.regsimd);
5009 gas_assert (i.types[2].bitfield.xmmword
5010 || i.types[2].bitfield.ymmword);
5011 if (operand_check == check_none)
5012 return 0;
5013 if (register_number (i.op[0].regs)
5014 != register_number (i.index_reg)
5015 && register_number (i.op[2].regs)
5016 != register_number (i.index_reg)
5017 && register_number (i.op[0].regs)
5018 != register_number (i.op[2].regs))
5019 return 0;
5020 if (operand_check == check_error)
5021 {
5022 i.error = invalid_vector_register_set;
5023 return 1;
5024 }
5025 as_warn (_("mask, index, and destination registers should be distinct"));
5026 }
5027 else if (i.reg_operands == 1 && i.mask)
5028 {
5029 if (i.types[1].bitfield.regsimd
5030 && (i.types[1].bitfield.xmmword
5031 || i.types[1].bitfield.ymmword
5032 || i.types[1].bitfield.zmmword)
5033 && (register_number (i.op[1].regs)
5034 == register_number (i.index_reg)))
5035 {
5036 if (operand_check == check_error)
5037 {
5038 i.error = invalid_vector_register_set;
5039 return 1;
5040 }
5041 if (operand_check != check_none)
5042 as_warn (_("index and destination registers should be distinct"));
5043 }
5044 }
5045 }
5046
5047 /* Check if broadcast is supported by the instruction and is applied
5048 to the memory operand. */
5049 if (i.broadcast)
5050 {
5051 int broadcasted_opnd_size;
5052
5053 /* Check if specified broadcast is supported in this instruction,
5054 and it's applied to memory operand of DWORD or QWORD type,
5055 depending on VecESize. */
5056 op = i.broadcast->operand;
5057 if (i.broadcast->type != t->opcode_modifier.broadcast
5058 || !i.types[op].bitfield.mem
5059 || (t->opcode_modifier.vecesize == 0
5060 && !i.types[op].bitfield.dword
5061 && !i.types[op].bitfield.unspecified)
5062 || (t->opcode_modifier.vecesize == 1
5063 && !i.types[op].bitfield.qword
5064 && !i.types[op].bitfield.unspecified))
5065 goto bad_broadcast;
5066
5067 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
5068 if (i.broadcast->type == BROADCAST_1TO16)
5069 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
5070 else if (i.broadcast->type == BROADCAST_1TO8)
5071 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
5072 else if (i.broadcast->type == BROADCAST_1TO4)
5073 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
5074 else if (i.broadcast->type == BROADCAST_1TO2)
5075 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
5076 else
5077 goto bad_broadcast;
5078
5079 if ((broadcasted_opnd_size == 256
5080 && !t->operand_types[op].bitfield.ymmword)
5081 || (broadcasted_opnd_size == 512
5082 && !t->operand_types[op].bitfield.zmmword))
5083 {
5084 bad_broadcast:
5085 i.error = unsupported_broadcast;
5086 return 1;
5087 }
5088 }
5089 /* If broadcast is supported in this instruction, we need to check if
5090 operand of one-element size isn't specified without broadcast. */
5091 else if (t->opcode_modifier.broadcast && i.mem_operands)
5092 {
5093 /* Find memory operand. */
5094 for (op = 0; op < i.operands; op++)
5095 if (operand_type_check (i.types[op], anymem))
5096 break;
5097 gas_assert (op < i.operands);
5098 /* Check size of the memory operand. */
5099 if ((t->opcode_modifier.vecesize == 0
5100 && i.types[op].bitfield.dword)
5101 || (t->opcode_modifier.vecesize == 1
5102 && i.types[op].bitfield.qword))
5103 {
5104 i.error = broadcast_needed;
5105 return 1;
5106 }
5107 }
5108
5109 /* Check if requested masking is supported. */
5110 if (i.mask
5111 && (!t->opcode_modifier.masking
5112 || (i.mask->zeroing
5113 && t->opcode_modifier.masking == MERGING_MASKING)))
5114 {
5115 i.error = unsupported_masking;
5116 return 1;
5117 }
5118
5119 /* Check if masking is applied to dest operand. */
5120 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5121 {
5122 i.error = mask_not_on_destination;
5123 return 1;
5124 }
5125
5126 /* Check RC/SAE. */
5127 if (i.rounding)
5128 {
5129 if ((i.rounding->type != saeonly
5130 && !t->opcode_modifier.staticrounding)
5131 || (i.rounding->type == saeonly
5132 && (t->opcode_modifier.staticrounding
5133 || !t->opcode_modifier.sae)))
5134 {
5135 i.error = unsupported_rc_sae;
5136 return 1;
5137 }
5138 /* If the instruction has several immediate operands and one of
5139 them is rounding, the rounding operand should be the last
5140 immediate operand. */
5141 if (i.imm_operands > 1
5142 && i.rounding->operand != (int) (i.imm_operands - 1))
5143 {
5144 i.error = rc_sae_operand_not_last_imm;
5145 return 1;
5146 }
5147 }
5148
5149 /* Check vector Disp8 operand. */
5150 if (t->opcode_modifier.disp8memshift
5151 && i.disp_encoding != disp_encoding_32bit)
5152 {
5153 if (i.broadcast)
5154 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
5155 else
5156 i.memshift = t->opcode_modifier.disp8memshift;
5157
5158 for (op = 0; op < i.operands; op++)
5159 if (operand_type_check (i.types[op], disp)
5160 && i.op[op].disps->X_op == O_constant)
5161 {
5162 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5163 {
5164 i.types[op].bitfield.disp8 = 1;
5165 return 0;
5166 }
5167 i.types[op].bitfield.disp8 = 0;
5168 }
5169 }
5170
5171 i.memshift = 0;
5172
5173 return 0;
5174 }
5175
5176 /* Check if operands are valid for the instruction. Update VEX
5177 operand types. */
5178
5179 static int
5180 VEX_check_operands (const insn_template *t)
5181 {
5182 if (i.vec_encoding == vex_encoding_evex)
5183 {
5184 /* This instruction must be encoded with EVEX prefix. */
5185 if (!is_evex_encoding (t))
5186 {
5187 i.error = unsupported;
5188 return 1;
5189 }
5190 return 0;
5191 }
5192
5193 if (!t->opcode_modifier.vex)
5194 {
5195 /* This instruction template doesn't have VEX prefix. */
5196 if (i.vec_encoding != vex_encoding_default)
5197 {
5198 i.error = unsupported;
5199 return 1;
5200 }
5201 return 0;
5202 }
5203
5204 /* Only check VEX_Imm4, which must be the first operand. */
5205 if (t->operand_types[0].bitfield.vec_imm4)
5206 {
5207 if (i.op[0].imms->X_op != O_constant
5208 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5209 {
5210 i.error = bad_imm4;
5211 return 1;
5212 }
5213
5214 /* Turn off Imm8 so that update_imm won't complain. */
5215 i.types[0] = vec_imm4;
5216 }
5217
5218 return 0;
5219 }
5220
5221 static const insn_template *
5222 match_template (char mnem_suffix)
5223 {
5224 /* Points to template once we've found it. */
5225 const insn_template *t;
5226 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5227 i386_operand_type overlap4;
5228 unsigned int found_reverse_match;
5229 i386_opcode_modifier suffix_check, mnemsuf_check;
5230 i386_operand_type operand_types [MAX_OPERANDS];
5231 int addr_prefix_disp;
5232 unsigned int j;
5233 unsigned int found_cpu_match;
5234 unsigned int check_register;
5235 enum i386_error specific_error = 0;
5236
5237 #if MAX_OPERANDS != 5
5238 # error "MAX_OPERANDS must be 5."
5239 #endif
5240
5241 found_reverse_match = 0;
5242 addr_prefix_disp = -1;
5243
5244 memset (&suffix_check, 0, sizeof (suffix_check));
5245 if (i.suffix == BYTE_MNEM_SUFFIX)
5246 suffix_check.no_bsuf = 1;
5247 else if (i.suffix == WORD_MNEM_SUFFIX)
5248 suffix_check.no_wsuf = 1;
5249 else if (i.suffix == SHORT_MNEM_SUFFIX)
5250 suffix_check.no_ssuf = 1;
5251 else if (i.suffix == LONG_MNEM_SUFFIX)
5252 suffix_check.no_lsuf = 1;
5253 else if (i.suffix == QWORD_MNEM_SUFFIX)
5254 suffix_check.no_qsuf = 1;
5255 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5256 suffix_check.no_ldsuf = 1;
5257
5258 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5259 if (intel_syntax)
5260 {
5261 switch (mnem_suffix)
5262 {
5263 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5264 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5265 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5266 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5267 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5268 }
5269 }
5270
5271 /* Must have right number of operands. */
5272 i.error = number_of_operands_mismatch;
5273
5274 for (t = current_templates->start; t < current_templates->end; t++)
5275 {
5276 addr_prefix_disp = -1;
5277
5278 if (i.operands != t->operands)
5279 continue;
5280
5281 /* Check processor support. */
5282 i.error = unsupported;
5283 found_cpu_match = (cpu_flags_match (t)
5284 == CPU_FLAGS_PERFECT_MATCH);
5285 if (!found_cpu_match)
5286 continue;
5287
5288 /* Check AT&T mnemonic. */
5289 i.error = unsupported_with_intel_mnemonic;
5290 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5291 continue;
5292
5293 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5294 i.error = unsupported_syntax;
5295 if ((intel_syntax && t->opcode_modifier.attsyntax)
5296 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5297 || (intel64 && t->opcode_modifier.amd64)
5298 || (!intel64 && t->opcode_modifier.intel64))
5299 continue;
5300
5301 /* Check the suffix, except for some instructions in intel mode. */
5302 i.error = invalid_instruction_suffix;
5303 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5304 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5305 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5306 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5307 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5308 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5309 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5310 continue;
5311 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5312 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5313 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5314 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5315 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5316 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5317 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5318 continue;
5319
5320 if (!operand_size_match (t))
5321 continue;
5322
5323 for (j = 0; j < MAX_OPERANDS; j++)
5324 operand_types[j] = t->operand_types[j];
5325
5326 /* In general, don't allow 64-bit operands in 32-bit mode. */
5327 if (i.suffix == QWORD_MNEM_SUFFIX
5328 && flag_code != CODE_64BIT
5329 && (intel_syntax
5330 ? (!t->opcode_modifier.ignoresize
5331 && !intel_float_operand (t->name))
5332 : intel_float_operand (t->name) != 2)
5333 && ((!operand_types[0].bitfield.regmmx
5334 && !operand_types[0].bitfield.regsimd)
5335 || (!operand_types[t->operands > 1].bitfield.regmmx
5336 && !operand_types[t->operands > 1].bitfield.regsimd))
5337 && (t->base_opcode != 0x0fc7
5338 || t->extension_opcode != 1 /* cmpxchg8b */))
5339 continue;
5340
5341 /* In general, don't allow 32-bit operands on pre-386. */
5342 else if (i.suffix == LONG_MNEM_SUFFIX
5343 && !cpu_arch_flags.bitfield.cpui386
5344 && (intel_syntax
5345 ? (!t->opcode_modifier.ignoresize
5346 && !intel_float_operand (t->name))
5347 : intel_float_operand (t->name) != 2)
5348 && ((!operand_types[0].bitfield.regmmx
5349 && !operand_types[0].bitfield.regsimd)
5350 || (!operand_types[t->operands > 1].bitfield.regmmx
5351 && !operand_types[t->operands > 1].bitfield.regsimd)))
5352 continue;
5353
5354 /* Do not verify operands when there are none. */
5355 else
5356 {
5357 if (!t->operands)
5358 /* We've found a match; break out of loop. */
5359 break;
5360 }
5361
5362 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5363 into Disp32/Disp16/Disp32 operand. */
5364 if (i.prefix[ADDR_PREFIX] != 0)
5365 {
5366 /* There should be only one Disp operand. */
5367 switch (flag_code)
5368 {
5369 case CODE_16BIT:
5370 for (j = 0; j < MAX_OPERANDS; j++)
5371 {
5372 if (operand_types[j].bitfield.disp16)
5373 {
5374 addr_prefix_disp = j;
5375 operand_types[j].bitfield.disp32 = 1;
5376 operand_types[j].bitfield.disp16 = 0;
5377 break;
5378 }
5379 }
5380 break;
5381 case CODE_32BIT:
5382 for (j = 0; j < MAX_OPERANDS; j++)
5383 {
5384 if (operand_types[j].bitfield.disp32)
5385 {
5386 addr_prefix_disp = j;
5387 operand_types[j].bitfield.disp32 = 0;
5388 operand_types[j].bitfield.disp16 = 1;
5389 break;
5390 }
5391 }
5392 break;
5393 case CODE_64BIT:
5394 for (j = 0; j < MAX_OPERANDS; j++)
5395 {
5396 if (operand_types[j].bitfield.disp64)
5397 {
5398 addr_prefix_disp = j;
5399 operand_types[j].bitfield.disp64 = 0;
5400 operand_types[j].bitfield.disp32 = 1;
5401 break;
5402 }
5403 }
5404 break;
5405 }
5406 }
5407
5408 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5409 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5410 continue;
5411
5412 /* We check register size if needed. */
5413 check_register = t->opcode_modifier.checkregsize;
5414 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5415 switch (t->operands)
5416 {
5417 case 1:
5418 if (!operand_type_match (overlap0, i.types[0]))
5419 continue;
5420 break;
5421 case 2:
5422 /* xchg %eax, %eax is a special case. It is an alias for nop
5423 only in 32bit mode and we can use opcode 0x90. In 64bit
5424 mode, we can't use 0x90 for xchg %eax, %eax since it should
5425 zero-extend %eax to %rax. */
5426 if (flag_code == CODE_64BIT
5427 && t->base_opcode == 0x90
5428 && operand_type_equal (&i.types [0], &acc32)
5429 && operand_type_equal (&i.types [1], &acc32))
5430 continue;
5431 /* xrelease mov %eax, <disp> is another special case. It must not
5432 match the accumulator-only encoding of mov. */
5433 if (flag_code != CODE_64BIT
5434 && i.hle_prefix
5435 && t->base_opcode == 0xa0
5436 && i.types[0].bitfield.acc
5437 && operand_type_check (i.types[1], anymem))
5438 continue;
5439 /* If we want store form, we reverse direction of operands. */
5440 if (i.dir_encoding == dir_encoding_store
5441 && t->opcode_modifier.d)
5442 goto check_reverse;
5443 /* Fall through. */
5444
5445 case 3:
5446 /* If we want store form, we skip the current load. */
5447 if (i.dir_encoding == dir_encoding_store
5448 && i.mem_operands == 0
5449 && t->opcode_modifier.load)
5450 continue;
5451 /* Fall through. */
5452 case 4:
5453 case 5:
5454 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5455 if (!operand_type_match (overlap0, i.types[0])
5456 || !operand_type_match (overlap1, i.types[1])
5457 || (check_register
5458 && !operand_type_register_match (i.types[0],
5459 operand_types[0],
5460 i.types[1],
5461 operand_types[1])))
5462 {
5463 /* Check if other direction is valid ... */
5464 if (!t->opcode_modifier.d)
5465 continue;
5466
5467 check_reverse:
5468 /* Try reversing direction of operands. */
5469 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5470 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5471 if (!operand_type_match (overlap0, i.types[0])
5472 || !operand_type_match (overlap1, i.types[1])
5473 || (check_register
5474 && !operand_type_register_match (i.types[0],
5475 operand_types[1],
5476 i.types[1],
5477 operand_types[0])))
5478 {
5479 /* Does not match either direction. */
5480 continue;
5481 }
5482 /* found_reverse_match holds which of D or FloatR
5483 we've found. */
5484 if (!t->opcode_modifier.d)
5485 found_reverse_match = 0;
5486 else if (operand_types[0].bitfield.tbyte)
5487 found_reverse_match = Opcode_FloatD;
5488 else
5489 found_reverse_match = Opcode_D;
5490 if (t->opcode_modifier.floatr)
5491 found_reverse_match |= Opcode_FloatR;
5492 }
5493 else
5494 {
5495 /* Found a forward 2 operand match here. */
5496 switch (t->operands)
5497 {
5498 case 5:
5499 overlap4 = operand_type_and (i.types[4],
5500 operand_types[4]);
5501 /* Fall through. */
5502 case 4:
5503 overlap3 = operand_type_and (i.types[3],
5504 operand_types[3]);
5505 /* Fall through. */
5506 case 3:
5507 overlap2 = operand_type_and (i.types[2],
5508 operand_types[2]);
5509 break;
5510 }
5511
5512 switch (t->operands)
5513 {
5514 case 5:
5515 if (!operand_type_match (overlap4, i.types[4])
5516 || !operand_type_register_match (i.types[3],
5517 operand_types[3],
5518 i.types[4],
5519 operand_types[4]))
5520 continue;
5521 /* Fall through. */
5522 case 4:
5523 if (!operand_type_match (overlap3, i.types[3])
5524 || (check_register
5525 && (!operand_type_register_match (i.types[1],
5526 operand_types[1],
5527 i.types[3],
5528 operand_types[3])
5529 || !operand_type_register_match (i.types[2],
5530 operand_types[2],
5531 i.types[3],
5532 operand_types[3]))))
5533 continue;
5534 /* Fall through. */
5535 case 3:
5536 /* Here we make use of the fact that there are no
5537 reverse match 3 operand instructions. */
5538 if (!operand_type_match (overlap2, i.types[2])
5539 || (check_register
5540 && (!operand_type_register_match (i.types[0],
5541 operand_types[0],
5542 i.types[2],
5543 operand_types[2])
5544 || !operand_type_register_match (i.types[1],
5545 operand_types[1],
5546 i.types[2],
5547 operand_types[2]))))
5548 continue;
5549 break;
5550 }
5551 }
5552 /* Found either forward/reverse 2, 3 or 4 operand match here:
5553 slip through to break. */
5554 }
5555 if (!found_cpu_match)
5556 {
5557 found_reverse_match = 0;
5558 continue;
5559 }
5560
5561 /* Check if vector and VEX operands are valid. */
5562 if (check_VecOperands (t) || VEX_check_operands (t))
5563 {
5564 specific_error = i.error;
5565 continue;
5566 }
5567
5568 /* We've found a match; break out of loop. */
5569 break;
5570 }
5571
5572 if (t == current_templates->end)
5573 {
5574 /* We found no match. */
5575 const char *err_msg;
5576 switch (specific_error ? specific_error : i.error)
5577 {
5578 default:
5579 abort ();
5580 case operand_size_mismatch:
5581 err_msg = _("operand size mismatch");
5582 break;
5583 case operand_type_mismatch:
5584 err_msg = _("operand type mismatch");
5585 break;
5586 case register_type_mismatch:
5587 err_msg = _("register type mismatch");
5588 break;
5589 case number_of_operands_mismatch:
5590 err_msg = _("number of operands mismatch");
5591 break;
5592 case invalid_instruction_suffix:
5593 err_msg = _("invalid instruction suffix");
5594 break;
5595 case bad_imm4:
5596 err_msg = _("constant doesn't fit in 4 bits");
5597 break;
5598 case unsupported_with_intel_mnemonic:
5599 err_msg = _("unsupported with Intel mnemonic");
5600 break;
5601 case unsupported_syntax:
5602 err_msg = _("unsupported syntax");
5603 break;
5604 case unsupported:
5605 as_bad (_("unsupported instruction `%s'"),
5606 current_templates->start->name);
5607 return NULL;
5608 case invalid_vsib_address:
5609 err_msg = _("invalid VSIB address");
5610 break;
5611 case invalid_vector_register_set:
5612 err_msg = _("mask, index, and destination registers must be distinct");
5613 break;
5614 case unsupported_vector_index_register:
5615 err_msg = _("unsupported vector index register");
5616 break;
5617 case unsupported_broadcast:
5618 err_msg = _("unsupported broadcast");
5619 break;
5620 case broadcast_not_on_src_operand:
5621 err_msg = _("broadcast not on source memory operand");
5622 break;
5623 case broadcast_needed:
5624 err_msg = _("broadcast is needed for operand of such type");
5625 break;
5626 case unsupported_masking:
5627 err_msg = _("unsupported masking");
5628 break;
5629 case mask_not_on_destination:
5630 err_msg = _("mask not on destination operand");
5631 break;
5632 case no_default_mask:
5633 err_msg = _("default mask isn't allowed");
5634 break;
5635 case unsupported_rc_sae:
5636 err_msg = _("unsupported static rounding/sae");
5637 break;
5638 case rc_sae_operand_not_last_imm:
5639 if (intel_syntax)
5640 err_msg = _("RC/SAE operand must precede immediate operands");
5641 else
5642 err_msg = _("RC/SAE operand must follow immediate operands");
5643 break;
5644 case invalid_register_operand:
5645 err_msg = _("invalid register operand");
5646 break;
5647 }
5648 as_bad (_("%s for `%s'"), err_msg,
5649 current_templates->start->name);
5650 return NULL;
5651 }
5652
5653 if (!quiet_warnings)
5654 {
5655 if (!intel_syntax
5656 && (i.types[0].bitfield.jumpabsolute
5657 != operand_types[0].bitfield.jumpabsolute))
5658 {
5659 as_warn (_("indirect %s without `*'"), t->name);
5660 }
5661
5662 if (t->opcode_modifier.isprefix
5663 && t->opcode_modifier.ignoresize)
5664 {
5665 /* Warn them that a data or address size prefix doesn't
5666 affect assembly of the next line of code. */
5667 as_warn (_("stand-alone `%s' prefix"), t->name);
5668 }
5669 }
5670
5671 /* Copy the template we found. */
5672 i.tm = *t;
5673
5674 if (addr_prefix_disp != -1)
5675 i.tm.operand_types[addr_prefix_disp]
5676 = operand_types[addr_prefix_disp];
5677
5678 if (found_reverse_match)
5679 {
5680 /* If we found a reverse match we must alter the opcode
5681 direction bit. found_reverse_match holds bits to change
5682 (different for int & float insns). */
5683
5684 i.tm.base_opcode ^= found_reverse_match;
5685
5686 i.tm.operand_types[0] = operand_types[1];
5687 i.tm.operand_types[1] = operand_types[0];
5688 }
5689
5690 return t;
5691 }
5692
5693 static int
5694 check_string (void)
5695 {
5696 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5697 if (i.tm.operand_types[mem_op].bitfield.esseg)
5698 {
5699 if (i.seg[0] != NULL && i.seg[0] != &es)
5700 {
5701 as_bad (_("`%s' operand %d must use `%ses' segment"),
5702 i.tm.name,
5703 mem_op + 1,
5704 register_prefix);
5705 return 0;
5706 }
5707 /* There's only ever one segment override allowed per instruction.
5708 This instruction possibly has a legal segment override on the
5709 second operand, so copy the segment to where non-string
5710 instructions store it, allowing common code. */
5711 i.seg[0] = i.seg[1];
5712 }
5713 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5714 {
5715 if (i.seg[1] != NULL && i.seg[1] != &es)
5716 {
5717 as_bad (_("`%s' operand %d must use `%ses' segment"),
5718 i.tm.name,
5719 mem_op + 2,
5720 register_prefix);
5721 return 0;
5722 }
5723 }
5724 return 1;
5725 }
5726
5727 static int
5728 process_suffix (void)
5729 {
5730 /* If matched instruction specifies an explicit instruction mnemonic
5731 suffix, use it. */
5732 if (i.tm.opcode_modifier.size16)
5733 i.suffix = WORD_MNEM_SUFFIX;
5734 else if (i.tm.opcode_modifier.size32)
5735 i.suffix = LONG_MNEM_SUFFIX;
5736 else if (i.tm.opcode_modifier.size64)
5737 i.suffix = QWORD_MNEM_SUFFIX;
5738 else if (i.reg_operands)
5739 {
5740 /* If there's no instruction mnemonic suffix we try to invent one
5741 based on register operands. */
5742 if (!i.suffix)
5743 {
5744 /* We take i.suffix from the last register operand specified,
5745 Destination register type is more significant than source
5746 register type. crc32 in SSE4.2 prefers source register
5747 type. */
5748 if (i.tm.base_opcode == 0xf20f38f1)
5749 {
5750 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
5751 i.suffix = WORD_MNEM_SUFFIX;
5752 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
5753 i.suffix = LONG_MNEM_SUFFIX;
5754 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
5755 i.suffix = QWORD_MNEM_SUFFIX;
5756 }
5757 else if (i.tm.base_opcode == 0xf20f38f0)
5758 {
5759 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
5760 i.suffix = BYTE_MNEM_SUFFIX;
5761 }
5762
5763 if (!i.suffix)
5764 {
5765 int op;
5766
5767 if (i.tm.base_opcode == 0xf20f38f1
5768 || i.tm.base_opcode == 0xf20f38f0)
5769 {
5770 /* We have to know the operand size for crc32. */
5771 as_bad (_("ambiguous memory operand size for `%s`"),
5772 i.tm.name);
5773 return 0;
5774 }
5775
5776 for (op = i.operands; --op >= 0;)
5777 if (!i.tm.operand_types[op].bitfield.inoutportreg
5778 && !i.tm.operand_types[op].bitfield.shiftcount)
5779 {
5780 if (!i.types[op].bitfield.reg)
5781 continue;
5782 if (i.types[op].bitfield.byte)
5783 i.suffix = BYTE_MNEM_SUFFIX;
5784 else if (i.types[op].bitfield.word)
5785 i.suffix = WORD_MNEM_SUFFIX;
5786 else if (i.types[op].bitfield.dword)
5787 i.suffix = LONG_MNEM_SUFFIX;
5788 else if (i.types[op].bitfield.qword)
5789 i.suffix = QWORD_MNEM_SUFFIX;
5790 else
5791 continue;
5792 break;
5793 }
5794 }
5795 }
5796 else if (i.suffix == BYTE_MNEM_SUFFIX)
5797 {
5798 if (intel_syntax
5799 && i.tm.opcode_modifier.ignoresize
5800 && i.tm.opcode_modifier.no_bsuf)
5801 i.suffix = 0;
5802 else if (!check_byte_reg ())
5803 return 0;
5804 }
5805 else if (i.suffix == LONG_MNEM_SUFFIX)
5806 {
5807 if (intel_syntax
5808 && i.tm.opcode_modifier.ignoresize
5809 && i.tm.opcode_modifier.no_lsuf
5810 && !i.tm.opcode_modifier.todword
5811 && !i.tm.opcode_modifier.toqword)
5812 i.suffix = 0;
5813 else if (!check_long_reg ())
5814 return 0;
5815 }
5816 else if (i.suffix == QWORD_MNEM_SUFFIX)
5817 {
5818 if (intel_syntax
5819 && i.tm.opcode_modifier.ignoresize
5820 && i.tm.opcode_modifier.no_qsuf
5821 && !i.tm.opcode_modifier.todword
5822 && !i.tm.opcode_modifier.toqword)
5823 i.suffix = 0;
5824 else if (!check_qword_reg ())
5825 return 0;
5826 }
5827 else if (i.suffix == WORD_MNEM_SUFFIX)
5828 {
5829 if (intel_syntax
5830 && i.tm.opcode_modifier.ignoresize
5831 && i.tm.opcode_modifier.no_wsuf)
5832 i.suffix = 0;
5833 else if (!check_word_reg ())
5834 return 0;
5835 }
5836 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5837 /* Do nothing if the instruction is going to ignore the prefix. */
5838 ;
5839 else
5840 abort ();
5841 }
5842 else if (i.tm.opcode_modifier.defaultsize
5843 && !i.suffix
5844 /* exclude fldenv/frstor/fsave/fstenv */
5845 && i.tm.opcode_modifier.no_ssuf)
5846 {
5847 i.suffix = stackop_size;
5848 }
5849 else if (intel_syntax
5850 && !i.suffix
5851 && (i.tm.operand_types[0].bitfield.jumpabsolute
5852 || i.tm.opcode_modifier.jumpbyte
5853 || i.tm.opcode_modifier.jumpintersegment
5854 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5855 && i.tm.extension_opcode <= 3)))
5856 {
5857 switch (flag_code)
5858 {
5859 case CODE_64BIT:
5860 if (!i.tm.opcode_modifier.no_qsuf)
5861 {
5862 i.suffix = QWORD_MNEM_SUFFIX;
5863 break;
5864 }
5865 /* Fall through. */
5866 case CODE_32BIT:
5867 if (!i.tm.opcode_modifier.no_lsuf)
5868 i.suffix = LONG_MNEM_SUFFIX;
5869 break;
5870 case CODE_16BIT:
5871 if (!i.tm.opcode_modifier.no_wsuf)
5872 i.suffix = WORD_MNEM_SUFFIX;
5873 break;
5874 }
5875 }
5876
5877 if (!i.suffix)
5878 {
5879 if (!intel_syntax)
5880 {
5881 if (i.tm.opcode_modifier.w)
5882 {
5883 as_bad (_("no instruction mnemonic suffix given and "
5884 "no register operands; can't size instruction"));
5885 return 0;
5886 }
5887 }
5888 else
5889 {
5890 unsigned int suffixes;
5891
5892 suffixes = !i.tm.opcode_modifier.no_bsuf;
5893 if (!i.tm.opcode_modifier.no_wsuf)
5894 suffixes |= 1 << 1;
5895 if (!i.tm.opcode_modifier.no_lsuf)
5896 suffixes |= 1 << 2;
5897 if (!i.tm.opcode_modifier.no_ldsuf)
5898 suffixes |= 1 << 3;
5899 if (!i.tm.opcode_modifier.no_ssuf)
5900 suffixes |= 1 << 4;
5901 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
5902 suffixes |= 1 << 5;
5903
5904 /* There are more than suffix matches. */
5905 if (i.tm.opcode_modifier.w
5906 || ((suffixes & (suffixes - 1))
5907 && !i.tm.opcode_modifier.defaultsize
5908 && !i.tm.opcode_modifier.ignoresize))
5909 {
5910 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5911 return 0;
5912 }
5913 }
5914 }
5915
5916 /* Change the opcode based on the operand size given by i.suffix. */
5917 switch (i.suffix)
5918 {
5919 /* Size floating point instruction. */
5920 case LONG_MNEM_SUFFIX:
5921 if (i.tm.opcode_modifier.floatmf)
5922 {
5923 i.tm.base_opcode ^= 4;
5924 break;
5925 }
5926 /* fall through */
5927 case WORD_MNEM_SUFFIX:
5928 case QWORD_MNEM_SUFFIX:
5929 /* It's not a byte, select word/dword operation. */
5930 if (i.tm.opcode_modifier.w)
5931 {
5932 if (i.tm.opcode_modifier.shortform)
5933 i.tm.base_opcode |= 8;
5934 else
5935 i.tm.base_opcode |= 1;
5936 }
5937 /* fall through */
5938 case SHORT_MNEM_SUFFIX:
5939 /* Now select between word & dword operations via the operand
5940 size prefix, except for instructions that will ignore this
5941 prefix anyway. */
5942 if (i.tm.opcode_modifier.addrprefixop0)
5943 {
5944 /* The address size override prefix changes the size of the
5945 first operand. */
5946 if ((flag_code == CODE_32BIT
5947 && i.op->regs[0].reg_type.bitfield.word)
5948 || (flag_code != CODE_32BIT
5949 && i.op->regs[0].reg_type.bitfield.dword))
5950 if (!add_prefix (ADDR_PREFIX_OPCODE))
5951 return 0;
5952 }
5953 else if (i.suffix != QWORD_MNEM_SUFFIX
5954 && !i.tm.opcode_modifier.ignoresize
5955 && !i.tm.opcode_modifier.floatmf
5956 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5957 || (flag_code == CODE_64BIT
5958 && i.tm.opcode_modifier.jumpbyte)))
5959 {
5960 unsigned int prefix = DATA_PREFIX_OPCODE;
5961
5962 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5963 prefix = ADDR_PREFIX_OPCODE;
5964
5965 if (!add_prefix (prefix))
5966 return 0;
5967 }
5968
5969 /* Set mode64 for an operand. */
5970 if (i.suffix == QWORD_MNEM_SUFFIX
5971 && flag_code == CODE_64BIT
5972 && !i.tm.opcode_modifier.norex64
5973 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5974 need rex64. */
5975 && ! (i.operands == 2
5976 && i.tm.base_opcode == 0x90
5977 && i.tm.extension_opcode == None
5978 && operand_type_equal (&i.types [0], &acc64)
5979 && operand_type_equal (&i.types [1], &acc64)))
5980 i.rex |= REX_W;
5981
5982 break;
5983 }
5984
5985 return 1;
5986 }
5987
5988 static int
5989 check_byte_reg (void)
5990 {
5991 int op;
5992
5993 for (op = i.operands; --op >= 0;)
5994 {
5995 /* Skip non-register operands. */
5996 if (!i.types[op].bitfield.reg)
5997 continue;
5998
5999 /* If this is an eight bit register, it's OK. If it's the 16 or
6000 32 bit version of an eight bit register, we will just use the
6001 low portion, and that's OK too. */
6002 if (i.types[op].bitfield.byte)
6003 continue;
6004
6005 /* I/O port address operands are OK too. */
6006 if (i.tm.operand_types[op].bitfield.inoutportreg)
6007 continue;
6008
6009 /* crc32 doesn't generate this warning. */
6010 if (i.tm.base_opcode == 0xf20f38f0)
6011 continue;
6012
6013 if ((i.types[op].bitfield.word
6014 || i.types[op].bitfield.dword
6015 || i.types[op].bitfield.qword)
6016 && i.op[op].regs->reg_num < 4
6017 /* Prohibit these changes in 64bit mode, since the lowering
6018 would be more complicated. */
6019 && flag_code != CODE_64BIT)
6020 {
6021 #if REGISTER_WARNINGS
6022 if (!quiet_warnings)
6023 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6024 register_prefix,
6025 (i.op[op].regs + (i.types[op].bitfield.word
6026 ? REGNAM_AL - REGNAM_AX
6027 : REGNAM_AL - REGNAM_EAX))->reg_name,
6028 register_prefix,
6029 i.op[op].regs->reg_name,
6030 i.suffix);
6031 #endif
6032 continue;
6033 }
6034 /* Any other register is bad. */
6035 if (i.types[op].bitfield.reg
6036 || i.types[op].bitfield.regmmx
6037 || i.types[op].bitfield.regsimd
6038 || i.types[op].bitfield.sreg2
6039 || i.types[op].bitfield.sreg3
6040 || i.types[op].bitfield.control
6041 || i.types[op].bitfield.debug
6042 || i.types[op].bitfield.test)
6043 {
6044 as_bad (_("`%s%s' not allowed with `%s%c'"),
6045 register_prefix,
6046 i.op[op].regs->reg_name,
6047 i.tm.name,
6048 i.suffix);
6049 return 0;
6050 }
6051 }
6052 return 1;
6053 }
6054
6055 static int
6056 check_long_reg (void)
6057 {
6058 int op;
6059
6060 for (op = i.operands; --op >= 0;)
6061 /* Skip non-register operands. */
6062 if (!i.types[op].bitfield.reg)
6063 continue;
6064 /* Reject eight bit registers, except where the template requires
6065 them. (eg. movzb) */
6066 else if (i.types[op].bitfield.byte
6067 && (i.tm.operand_types[op].bitfield.reg
6068 || i.tm.operand_types[op].bitfield.acc)
6069 && (i.tm.operand_types[op].bitfield.word
6070 || i.tm.operand_types[op].bitfield.dword))
6071 {
6072 as_bad (_("`%s%s' not allowed with `%s%c'"),
6073 register_prefix,
6074 i.op[op].regs->reg_name,
6075 i.tm.name,
6076 i.suffix);
6077 return 0;
6078 }
6079 /* Warn if the e prefix on a general reg is missing. */
6080 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6081 && i.types[op].bitfield.word
6082 && (i.tm.operand_types[op].bitfield.reg
6083 || i.tm.operand_types[op].bitfield.acc)
6084 && i.tm.operand_types[op].bitfield.dword)
6085 {
6086 /* Prohibit these changes in the 64bit mode, since the
6087 lowering is more complicated. */
6088 if (flag_code == CODE_64BIT)
6089 {
6090 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6091 register_prefix, i.op[op].regs->reg_name,
6092 i.suffix);
6093 return 0;
6094 }
6095 #if REGISTER_WARNINGS
6096 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6097 register_prefix,
6098 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6099 register_prefix, i.op[op].regs->reg_name, i.suffix);
6100 #endif
6101 }
6102 /* Warn if the r prefix on a general reg is present. */
6103 else if (i.types[op].bitfield.qword
6104 && (i.tm.operand_types[op].bitfield.reg
6105 || i.tm.operand_types[op].bitfield.acc)
6106 && i.tm.operand_types[op].bitfield.dword)
6107 {
6108 if (intel_syntax
6109 && i.tm.opcode_modifier.toqword
6110 && !i.types[0].bitfield.regsimd)
6111 {
6112 /* Convert to QWORD. We want REX byte. */
6113 i.suffix = QWORD_MNEM_SUFFIX;
6114 }
6115 else
6116 {
6117 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6118 register_prefix, i.op[op].regs->reg_name,
6119 i.suffix);
6120 return 0;
6121 }
6122 }
6123 return 1;
6124 }
6125
6126 static int
6127 check_qword_reg (void)
6128 {
6129 int op;
6130
6131 for (op = i.operands; --op >= 0; )
6132 /* Skip non-register operands. */
6133 if (!i.types[op].bitfield.reg)
6134 continue;
6135 /* Reject eight bit registers, except where the template requires
6136 them. (eg. movzb) */
6137 else if (i.types[op].bitfield.byte
6138 && (i.tm.operand_types[op].bitfield.reg
6139 || i.tm.operand_types[op].bitfield.acc)
6140 && (i.tm.operand_types[op].bitfield.word
6141 || i.tm.operand_types[op].bitfield.dword))
6142 {
6143 as_bad (_("`%s%s' not allowed with `%s%c'"),
6144 register_prefix,
6145 i.op[op].regs->reg_name,
6146 i.tm.name,
6147 i.suffix);
6148 return 0;
6149 }
6150 /* Warn if the r prefix on a general reg is missing. */
6151 else if ((i.types[op].bitfield.word
6152 || i.types[op].bitfield.dword)
6153 && (i.tm.operand_types[op].bitfield.reg
6154 || i.tm.operand_types[op].bitfield.acc)
6155 && i.tm.operand_types[op].bitfield.qword)
6156 {
6157 /* Prohibit these changes in the 64bit mode, since the
6158 lowering is more complicated. */
6159 if (intel_syntax
6160 && i.tm.opcode_modifier.todword
6161 && !i.types[0].bitfield.regsimd)
6162 {
6163 /* Convert to DWORD. We don't want REX byte. */
6164 i.suffix = LONG_MNEM_SUFFIX;
6165 }
6166 else
6167 {
6168 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6169 register_prefix, i.op[op].regs->reg_name,
6170 i.suffix);
6171 return 0;
6172 }
6173 }
6174 return 1;
6175 }
6176
6177 static int
6178 check_word_reg (void)
6179 {
6180 int op;
6181 for (op = i.operands; --op >= 0;)
6182 /* Skip non-register operands. */
6183 if (!i.types[op].bitfield.reg)
6184 continue;
6185 /* Reject eight bit registers, except where the template requires
6186 them. (eg. movzb) */
6187 else if (i.types[op].bitfield.byte
6188 && (i.tm.operand_types[op].bitfield.reg
6189 || i.tm.operand_types[op].bitfield.acc)
6190 && (i.tm.operand_types[op].bitfield.word
6191 || i.tm.operand_types[op].bitfield.dword))
6192 {
6193 as_bad (_("`%s%s' not allowed with `%s%c'"),
6194 register_prefix,
6195 i.op[op].regs->reg_name,
6196 i.tm.name,
6197 i.suffix);
6198 return 0;
6199 }
6200 /* Warn if the e or r prefix on a general reg is present. */
6201 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6202 && (i.types[op].bitfield.dword
6203 || i.types[op].bitfield.qword)
6204 && (i.tm.operand_types[op].bitfield.reg
6205 || i.tm.operand_types[op].bitfield.acc)
6206 && i.tm.operand_types[op].bitfield.word)
6207 {
6208 /* Prohibit these changes in the 64bit mode, since the
6209 lowering is more complicated. */
6210 if (flag_code == CODE_64BIT)
6211 {
6212 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6213 register_prefix, i.op[op].regs->reg_name,
6214 i.suffix);
6215 return 0;
6216 }
6217 #if REGISTER_WARNINGS
6218 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6219 register_prefix,
6220 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6221 register_prefix, i.op[op].regs->reg_name, i.suffix);
6222 #endif
6223 }
6224 return 1;
6225 }
6226
6227 static int
6228 update_imm (unsigned int j)
6229 {
6230 i386_operand_type overlap = i.types[j];
6231 if ((overlap.bitfield.imm8
6232 || overlap.bitfield.imm8s
6233 || overlap.bitfield.imm16
6234 || overlap.bitfield.imm32
6235 || overlap.bitfield.imm32s
6236 || overlap.bitfield.imm64)
6237 && !operand_type_equal (&overlap, &imm8)
6238 && !operand_type_equal (&overlap, &imm8s)
6239 && !operand_type_equal (&overlap, &imm16)
6240 && !operand_type_equal (&overlap, &imm32)
6241 && !operand_type_equal (&overlap, &imm32s)
6242 && !operand_type_equal (&overlap, &imm64))
6243 {
6244 if (i.suffix)
6245 {
6246 i386_operand_type temp;
6247
6248 operand_type_set (&temp, 0);
6249 if (i.suffix == BYTE_MNEM_SUFFIX)
6250 {
6251 temp.bitfield.imm8 = overlap.bitfield.imm8;
6252 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6253 }
6254 else if (i.suffix == WORD_MNEM_SUFFIX)
6255 temp.bitfield.imm16 = overlap.bitfield.imm16;
6256 else if (i.suffix == QWORD_MNEM_SUFFIX)
6257 {
6258 temp.bitfield.imm64 = overlap.bitfield.imm64;
6259 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6260 }
6261 else
6262 temp.bitfield.imm32 = overlap.bitfield.imm32;
6263 overlap = temp;
6264 }
6265 else if (operand_type_equal (&overlap, &imm16_32_32s)
6266 || operand_type_equal (&overlap, &imm16_32)
6267 || operand_type_equal (&overlap, &imm16_32s))
6268 {
6269 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6270 overlap = imm16;
6271 else
6272 overlap = imm32s;
6273 }
6274 if (!operand_type_equal (&overlap, &imm8)
6275 && !operand_type_equal (&overlap, &imm8s)
6276 && !operand_type_equal (&overlap, &imm16)
6277 && !operand_type_equal (&overlap, &imm32)
6278 && !operand_type_equal (&overlap, &imm32s)
6279 && !operand_type_equal (&overlap, &imm64))
6280 {
6281 as_bad (_("no instruction mnemonic suffix given; "
6282 "can't determine immediate size"));
6283 return 0;
6284 }
6285 }
6286 i.types[j] = overlap;
6287
6288 return 1;
6289 }
6290
6291 static int
6292 finalize_imm (void)
6293 {
6294 unsigned int j, n;
6295
6296 /* Update the first 2 immediate operands. */
6297 n = i.operands > 2 ? 2 : i.operands;
6298 if (n)
6299 {
6300 for (j = 0; j < n; j++)
6301 if (update_imm (j) == 0)
6302 return 0;
6303
6304 /* The 3rd operand can't be immediate operand. */
6305 gas_assert (operand_type_check (i.types[2], imm) == 0);
6306 }
6307
6308 return 1;
6309 }
6310
6311 static int
6312 process_operands (void)
6313 {
6314 /* Default segment register this instruction will use for memory
6315 accesses. 0 means unknown. This is only for optimizing out
6316 unnecessary segment overrides. */
6317 const seg_entry *default_seg = 0;
6318
6319 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6320 {
6321 unsigned int dupl = i.operands;
6322 unsigned int dest = dupl - 1;
6323 unsigned int j;
6324
6325 /* The destination must be an xmm register. */
6326 gas_assert (i.reg_operands
6327 && MAX_OPERANDS > dupl
6328 && operand_type_equal (&i.types[dest], &regxmm));
6329
6330 if (i.tm.operand_types[0].bitfield.acc
6331 && i.tm.operand_types[0].bitfield.xmmword)
6332 {
6333 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6334 {
6335 /* Keep xmm0 for instructions with VEX prefix and 3
6336 sources. */
6337 i.tm.operand_types[0].bitfield.acc = 0;
6338 i.tm.operand_types[0].bitfield.regsimd = 1;
6339 goto duplicate;
6340 }
6341 else
6342 {
6343 /* We remove the first xmm0 and keep the number of
6344 operands unchanged, which in fact duplicates the
6345 destination. */
6346 for (j = 1; j < i.operands; j++)
6347 {
6348 i.op[j - 1] = i.op[j];
6349 i.types[j - 1] = i.types[j];
6350 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6351 }
6352 }
6353 }
6354 else if (i.tm.opcode_modifier.implicit1stxmm0)
6355 {
6356 gas_assert ((MAX_OPERANDS - 1) > dupl
6357 && (i.tm.opcode_modifier.vexsources
6358 == VEX3SOURCES));
6359
6360 /* Add the implicit xmm0 for instructions with VEX prefix
6361 and 3 sources. */
6362 for (j = i.operands; j > 0; j--)
6363 {
6364 i.op[j] = i.op[j - 1];
6365 i.types[j] = i.types[j - 1];
6366 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6367 }
6368 i.op[0].regs
6369 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6370 i.types[0] = regxmm;
6371 i.tm.operand_types[0] = regxmm;
6372
6373 i.operands += 2;
6374 i.reg_operands += 2;
6375 i.tm.operands += 2;
6376
6377 dupl++;
6378 dest++;
6379 i.op[dupl] = i.op[dest];
6380 i.types[dupl] = i.types[dest];
6381 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6382 }
6383 else
6384 {
6385 duplicate:
6386 i.operands++;
6387 i.reg_operands++;
6388 i.tm.operands++;
6389
6390 i.op[dupl] = i.op[dest];
6391 i.types[dupl] = i.types[dest];
6392 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6393 }
6394
6395 if (i.tm.opcode_modifier.immext)
6396 process_immext ();
6397 }
6398 else if (i.tm.operand_types[0].bitfield.acc
6399 && i.tm.operand_types[0].bitfield.xmmword)
6400 {
6401 unsigned int j;
6402
6403 for (j = 1; j < i.operands; j++)
6404 {
6405 i.op[j - 1] = i.op[j];
6406 i.types[j - 1] = i.types[j];
6407
6408 /* We need to adjust fields in i.tm since they are used by
6409 build_modrm_byte. */
6410 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6411 }
6412
6413 i.operands--;
6414 i.reg_operands--;
6415 i.tm.operands--;
6416 }
6417 else if (i.tm.opcode_modifier.implicitquadgroup)
6418 {
6419 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6420
6421 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6422 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6423 regnum = register_number (i.op[1].regs);
6424 first_reg_in_group = regnum & ~3;
6425 last_reg_in_group = first_reg_in_group + 3;
6426 if (regnum != first_reg_in_group)
6427 as_warn (_("source register `%s%s' implicitly denotes"
6428 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6429 register_prefix, i.op[1].regs->reg_name,
6430 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6431 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6432 i.tm.name);
6433 }
6434 else if (i.tm.opcode_modifier.regkludge)
6435 {
6436 /* The imul $imm, %reg instruction is converted into
6437 imul $imm, %reg, %reg, and the clr %reg instruction
6438 is converted into xor %reg, %reg. */
6439
6440 unsigned int first_reg_op;
6441
6442 if (operand_type_check (i.types[0], reg))
6443 first_reg_op = 0;
6444 else
6445 first_reg_op = 1;
6446 /* Pretend we saw the extra register operand. */
6447 gas_assert (i.reg_operands == 1
6448 && i.op[first_reg_op + 1].regs == 0);
6449 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6450 i.types[first_reg_op + 1] = i.types[first_reg_op];
6451 i.operands++;
6452 i.reg_operands++;
6453 }
6454
6455 if (i.tm.opcode_modifier.shortform)
6456 {
6457 if (i.types[0].bitfield.sreg2
6458 || i.types[0].bitfield.sreg3)
6459 {
6460 if (i.tm.base_opcode == POP_SEG_SHORT
6461 && i.op[0].regs->reg_num == 1)
6462 {
6463 as_bad (_("you can't `pop %scs'"), register_prefix);
6464 return 0;
6465 }
6466 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6467 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6468 i.rex |= REX_B;
6469 }
6470 else
6471 {
6472 /* The register or float register operand is in operand
6473 0 or 1. */
6474 unsigned int op;
6475
6476 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6477 || operand_type_check (i.types[0], reg))
6478 op = 0;
6479 else
6480 op = 1;
6481 /* Register goes in low 3 bits of opcode. */
6482 i.tm.base_opcode |= i.op[op].regs->reg_num;
6483 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6484 i.rex |= REX_B;
6485 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6486 {
6487 /* Warn about some common errors, but press on regardless.
6488 The first case can be generated by gcc (<= 2.8.1). */
6489 if (i.operands == 2)
6490 {
6491 /* Reversed arguments on faddp, fsubp, etc. */
6492 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6493 register_prefix, i.op[!intel_syntax].regs->reg_name,
6494 register_prefix, i.op[intel_syntax].regs->reg_name);
6495 }
6496 else
6497 {
6498 /* Extraneous `l' suffix on fp insn. */
6499 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6500 register_prefix, i.op[0].regs->reg_name);
6501 }
6502 }
6503 }
6504 }
6505 else if (i.tm.opcode_modifier.modrm)
6506 {
6507 /* The opcode is completed (modulo i.tm.extension_opcode which
6508 must be put into the modrm byte). Now, we make the modrm and
6509 index base bytes based on all the info we've collected. */
6510
6511 default_seg = build_modrm_byte ();
6512 }
6513 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6514 {
6515 default_seg = &ds;
6516 }
6517 else if (i.tm.opcode_modifier.isstring)
6518 {
6519 /* For the string instructions that allow a segment override
6520 on one of their operands, the default segment is ds. */
6521 default_seg = &ds;
6522 }
6523
6524 if (i.tm.base_opcode == 0x8d /* lea */
6525 && i.seg[0]
6526 && !quiet_warnings)
6527 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6528
6529 /* If a segment was explicitly specified, and the specified segment
6530 is not the default, use an opcode prefix to select it. If we
6531 never figured out what the default segment is, then default_seg
6532 will be zero at this point, and the specified segment prefix will
6533 always be used. */
6534 if ((i.seg[0]) && (i.seg[0] != default_seg))
6535 {
6536 if (!add_prefix (i.seg[0]->seg_prefix))
6537 return 0;
6538 }
6539 return 1;
6540 }
6541
6542 static const seg_entry *
6543 build_modrm_byte (void)
6544 {
6545 const seg_entry *default_seg = 0;
6546 unsigned int source, dest;
6547 int vex_3_sources;
6548
6549 /* The first operand of instructions with VEX prefix and 3 sources
6550 must be VEX_Imm4. */
6551 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6552 if (vex_3_sources)
6553 {
6554 unsigned int nds, reg_slot;
6555 expressionS *exp;
6556
6557 if (i.tm.opcode_modifier.veximmext
6558 && i.tm.opcode_modifier.immext)
6559 {
6560 dest = i.operands - 2;
6561 gas_assert (dest == 3);
6562 }
6563 else
6564 dest = i.operands - 1;
6565 nds = dest - 1;
6566
6567 /* There are 2 kinds of instructions:
6568 1. 5 operands: 4 register operands or 3 register operands
6569 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6570 VexW0 or VexW1. The destination must be either XMM, YMM or
6571 ZMM register.
6572 2. 4 operands: 4 register operands or 3 register operands
6573 plus 1 memory operand, VexXDS, and VexImmExt */
6574 gas_assert ((i.reg_operands == 4
6575 || (i.reg_operands == 3 && i.mem_operands == 1))
6576 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6577 && (i.tm.opcode_modifier.veximmext
6578 || (i.imm_operands == 1
6579 && i.types[0].bitfield.vec_imm4
6580 && (i.tm.opcode_modifier.vexw == VEXW0
6581 || i.tm.opcode_modifier.vexw == VEXW1)
6582 && i.tm.operand_types[dest].bitfield.regsimd)));
6583
6584 if (i.imm_operands == 0)
6585 {
6586 /* When there is no immediate operand, generate an 8bit
6587 immediate operand to encode the first operand. */
6588 exp = &im_expressions[i.imm_operands++];
6589 i.op[i.operands].imms = exp;
6590 i.types[i.operands] = imm8;
6591 i.operands++;
6592 /* If VexW1 is set, the first operand is the source and
6593 the second operand is encoded in the immediate operand. */
6594 if (i.tm.opcode_modifier.vexw == VEXW1)
6595 {
6596 source = 0;
6597 reg_slot = 1;
6598 }
6599 else
6600 {
6601 source = 1;
6602 reg_slot = 0;
6603 }
6604
6605 /* FMA swaps REG and NDS. */
6606 if (i.tm.cpu_flags.bitfield.cpufma)
6607 {
6608 unsigned int tmp;
6609 tmp = reg_slot;
6610 reg_slot = nds;
6611 nds = tmp;
6612 }
6613
6614 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6615 exp->X_op = O_constant;
6616 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6617 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6618 }
6619 else
6620 {
6621 unsigned int imm_slot;
6622
6623 if (i.tm.opcode_modifier.vexw == VEXW0)
6624 {
6625 /* If VexW0 is set, the third operand is the source and
6626 the second operand is encoded in the immediate
6627 operand. */
6628 source = 2;
6629 reg_slot = 1;
6630 }
6631 else
6632 {
6633 /* VexW1 is set, the second operand is the source and
6634 the third operand is encoded in the immediate
6635 operand. */
6636 source = 1;
6637 reg_slot = 2;
6638 }
6639
6640 if (i.tm.opcode_modifier.immext)
6641 {
6642 /* When ImmExt is set, the immediate byte is the last
6643 operand. */
6644 imm_slot = i.operands - 1;
6645 source--;
6646 reg_slot--;
6647 }
6648 else
6649 {
6650 imm_slot = 0;
6651
6652 /* Turn on Imm8 so that output_imm will generate it. */
6653 i.types[imm_slot].bitfield.imm8 = 1;
6654 }
6655
6656 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6657 i.op[imm_slot].imms->X_add_number
6658 |= register_number (i.op[reg_slot].regs) << 4;
6659 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6660 }
6661
6662 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
6663 i.vex.register_specifier = i.op[nds].regs;
6664 }
6665 else
6666 source = dest = 0;
6667
6668 /* i.reg_operands MUST be the number of real register operands;
6669 implicit registers do not count. If there are 3 register
6670 operands, it must be a instruction with VexNDS. For a
6671 instruction with VexNDD, the destination register is encoded
6672 in VEX prefix. If there are 4 register operands, it must be
6673 a instruction with VEX prefix and 3 sources. */
6674 if (i.mem_operands == 0
6675 && ((i.reg_operands == 2
6676 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6677 || (i.reg_operands == 3
6678 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6679 || (i.reg_operands == 4 && vex_3_sources)))
6680 {
6681 switch (i.operands)
6682 {
6683 case 2:
6684 source = 0;
6685 break;
6686 case 3:
6687 /* When there are 3 operands, one of them may be immediate,
6688 which may be the first or the last operand. Otherwise,
6689 the first operand must be shift count register (cl) or it
6690 is an instruction with VexNDS. */
6691 gas_assert (i.imm_operands == 1
6692 || (i.imm_operands == 0
6693 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6694 || i.types[0].bitfield.shiftcount)));
6695 if (operand_type_check (i.types[0], imm)
6696 || i.types[0].bitfield.shiftcount)
6697 source = 1;
6698 else
6699 source = 0;
6700 break;
6701 case 4:
6702 /* When there are 4 operands, the first two must be 8bit
6703 immediate operands. The source operand will be the 3rd
6704 one.
6705
6706 For instructions with VexNDS, if the first operand
6707 an imm8, the source operand is the 2nd one. If the last
6708 operand is imm8, the source operand is the first one. */
6709 gas_assert ((i.imm_operands == 2
6710 && i.types[0].bitfield.imm8
6711 && i.types[1].bitfield.imm8)
6712 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6713 && i.imm_operands == 1
6714 && (i.types[0].bitfield.imm8
6715 || i.types[i.operands - 1].bitfield.imm8
6716 || i.rounding)));
6717 if (i.imm_operands == 2)
6718 source = 2;
6719 else
6720 {
6721 if (i.types[0].bitfield.imm8)
6722 source = 1;
6723 else
6724 source = 0;
6725 }
6726 break;
6727 case 5:
6728 if (is_evex_encoding (&i.tm))
6729 {
6730 /* For EVEX instructions, when there are 5 operands, the
6731 first one must be immediate operand. If the second one
6732 is immediate operand, the source operand is the 3th
6733 one. If the last one is immediate operand, the source
6734 operand is the 2nd one. */
6735 gas_assert (i.imm_operands == 2
6736 && i.tm.opcode_modifier.sae
6737 && operand_type_check (i.types[0], imm));
6738 if (operand_type_check (i.types[1], imm))
6739 source = 2;
6740 else if (operand_type_check (i.types[4], imm))
6741 source = 1;
6742 else
6743 abort ();
6744 }
6745 break;
6746 default:
6747 abort ();
6748 }
6749
6750 if (!vex_3_sources)
6751 {
6752 dest = source + 1;
6753
6754 /* RC/SAE operand could be between DEST and SRC. That happens
6755 when one operand is GPR and the other one is XMM/YMM/ZMM
6756 register. */
6757 if (i.rounding && i.rounding->operand == (int) dest)
6758 dest++;
6759
6760 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6761 {
6762 /* For instructions with VexNDS, the register-only source
6763 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
6764 register. It is encoded in VEX prefix. We need to
6765 clear RegMem bit before calling operand_type_equal. */
6766
6767 i386_operand_type op;
6768 unsigned int vvvv;
6769
6770 /* Check register-only source operand when two source
6771 operands are swapped. */
6772 if (!i.tm.operand_types[source].bitfield.baseindex
6773 && i.tm.operand_types[dest].bitfield.baseindex)
6774 {
6775 vvvv = source;
6776 source = dest;
6777 }
6778 else
6779 vvvv = dest;
6780
6781 op = i.tm.operand_types[vvvv];
6782 op.bitfield.regmem = 0;
6783 if ((dest + 1) >= i.operands
6784 || ((!op.bitfield.reg
6785 || (!op.bitfield.dword && !op.bitfield.qword))
6786 && !op.bitfield.regsimd
6787 && !operand_type_equal (&op, &regmask)))
6788 abort ();
6789 i.vex.register_specifier = i.op[vvvv].regs;
6790 dest++;
6791 }
6792 }
6793
6794 i.rm.mode = 3;
6795 /* One of the register operands will be encoded in the i.tm.reg
6796 field, the other in the combined i.tm.mode and i.tm.regmem
6797 fields. If no form of this instruction supports a memory
6798 destination operand, then we assume the source operand may
6799 sometimes be a memory operand and so we need to store the
6800 destination in the i.rm.reg field. */
6801 if (!i.tm.operand_types[dest].bitfield.regmem
6802 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6803 {
6804 i.rm.reg = i.op[dest].regs->reg_num;
6805 i.rm.regmem = i.op[source].regs->reg_num;
6806 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6807 i.rex |= REX_R;
6808 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6809 i.vrex |= REX_R;
6810 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6811 i.rex |= REX_B;
6812 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6813 i.vrex |= REX_B;
6814 }
6815 else
6816 {
6817 i.rm.reg = i.op[source].regs->reg_num;
6818 i.rm.regmem = i.op[dest].regs->reg_num;
6819 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6820 i.rex |= REX_B;
6821 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6822 i.vrex |= REX_B;
6823 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6824 i.rex |= REX_R;
6825 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6826 i.vrex |= REX_R;
6827 }
6828 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6829 {
6830 if (!i.types[0].bitfield.control
6831 && !i.types[1].bitfield.control)
6832 abort ();
6833 i.rex &= ~(REX_R | REX_B);
6834 add_prefix (LOCK_PREFIX_OPCODE);
6835 }
6836 }
6837 else
6838 { /* If it's not 2 reg operands... */
6839 unsigned int mem;
6840
6841 if (i.mem_operands)
6842 {
6843 unsigned int fake_zero_displacement = 0;
6844 unsigned int op;
6845
6846 for (op = 0; op < i.operands; op++)
6847 if (operand_type_check (i.types[op], anymem))
6848 break;
6849 gas_assert (op < i.operands);
6850
6851 if (i.tm.opcode_modifier.vecsib)
6852 {
6853 if (i.index_reg->reg_num == RegEiz
6854 || i.index_reg->reg_num == RegRiz)
6855 abort ();
6856
6857 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6858 if (!i.base_reg)
6859 {
6860 i.sib.base = NO_BASE_REGISTER;
6861 i.sib.scale = i.log2_scale_factor;
6862 i.types[op].bitfield.disp8 = 0;
6863 i.types[op].bitfield.disp16 = 0;
6864 i.types[op].bitfield.disp64 = 0;
6865 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6866 {
6867 /* Must be 32 bit */
6868 i.types[op].bitfield.disp32 = 1;
6869 i.types[op].bitfield.disp32s = 0;
6870 }
6871 else
6872 {
6873 i.types[op].bitfield.disp32 = 0;
6874 i.types[op].bitfield.disp32s = 1;
6875 }
6876 }
6877 i.sib.index = i.index_reg->reg_num;
6878 if ((i.index_reg->reg_flags & RegRex) != 0)
6879 i.rex |= REX_X;
6880 if ((i.index_reg->reg_flags & RegVRex) != 0)
6881 i.vrex |= REX_X;
6882 }
6883
6884 default_seg = &ds;
6885
6886 if (i.base_reg == 0)
6887 {
6888 i.rm.mode = 0;
6889 if (!i.disp_operands)
6890 fake_zero_displacement = 1;
6891 if (i.index_reg == 0)
6892 {
6893 i386_operand_type newdisp;
6894
6895 gas_assert (!i.tm.opcode_modifier.vecsib);
6896 /* Operand is just <disp> */
6897 if (flag_code == CODE_64BIT)
6898 {
6899 /* 64bit mode overwrites the 32bit absolute
6900 addressing by RIP relative addressing and
6901 absolute addressing is encoded by one of the
6902 redundant SIB forms. */
6903 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6904 i.sib.base = NO_BASE_REGISTER;
6905 i.sib.index = NO_INDEX_REGISTER;
6906 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
6907 }
6908 else if ((flag_code == CODE_16BIT)
6909 ^ (i.prefix[ADDR_PREFIX] != 0))
6910 {
6911 i.rm.regmem = NO_BASE_REGISTER_16;
6912 newdisp = disp16;
6913 }
6914 else
6915 {
6916 i.rm.regmem = NO_BASE_REGISTER;
6917 newdisp = disp32;
6918 }
6919 i.types[op] = operand_type_and_not (i.types[op], anydisp);
6920 i.types[op] = operand_type_or (i.types[op], newdisp);
6921 }
6922 else if (!i.tm.opcode_modifier.vecsib)
6923 {
6924 /* !i.base_reg && i.index_reg */
6925 if (i.index_reg->reg_num == RegEiz
6926 || i.index_reg->reg_num == RegRiz)
6927 i.sib.index = NO_INDEX_REGISTER;
6928 else
6929 i.sib.index = i.index_reg->reg_num;
6930 i.sib.base = NO_BASE_REGISTER;
6931 i.sib.scale = i.log2_scale_factor;
6932 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6933 i.types[op].bitfield.disp8 = 0;
6934 i.types[op].bitfield.disp16 = 0;
6935 i.types[op].bitfield.disp64 = 0;
6936 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6937 {
6938 /* Must be 32 bit */
6939 i.types[op].bitfield.disp32 = 1;
6940 i.types[op].bitfield.disp32s = 0;
6941 }
6942 else
6943 {
6944 i.types[op].bitfield.disp32 = 0;
6945 i.types[op].bitfield.disp32s = 1;
6946 }
6947 if ((i.index_reg->reg_flags & RegRex) != 0)
6948 i.rex |= REX_X;
6949 }
6950 }
6951 /* RIP addressing for 64bit mode. */
6952 else if (i.base_reg->reg_num == RegRip ||
6953 i.base_reg->reg_num == RegEip)
6954 {
6955 gas_assert (!i.tm.opcode_modifier.vecsib);
6956 i.rm.regmem = NO_BASE_REGISTER;
6957 i.types[op].bitfield.disp8 = 0;
6958 i.types[op].bitfield.disp16 = 0;
6959 i.types[op].bitfield.disp32 = 0;
6960 i.types[op].bitfield.disp32s = 1;
6961 i.types[op].bitfield.disp64 = 0;
6962 i.flags[op] |= Operand_PCrel;
6963 if (! i.disp_operands)
6964 fake_zero_displacement = 1;
6965 }
6966 else if (i.base_reg->reg_type.bitfield.word)
6967 {
6968 gas_assert (!i.tm.opcode_modifier.vecsib);
6969 switch (i.base_reg->reg_num)
6970 {
6971 case 3: /* (%bx) */
6972 if (i.index_reg == 0)
6973 i.rm.regmem = 7;
6974 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6975 i.rm.regmem = i.index_reg->reg_num - 6;
6976 break;
6977 case 5: /* (%bp) */
6978 default_seg = &ss;
6979 if (i.index_reg == 0)
6980 {
6981 i.rm.regmem = 6;
6982 if (operand_type_check (i.types[op], disp) == 0)
6983 {
6984 /* fake (%bp) into 0(%bp) */
6985 i.types[op].bitfield.disp8 = 1;
6986 fake_zero_displacement = 1;
6987 }
6988 }
6989 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6990 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6991 break;
6992 default: /* (%si) -> 4 or (%di) -> 5 */
6993 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6994 }
6995 i.rm.mode = mode_from_disp_size (i.types[op]);
6996 }
6997 else /* i.base_reg and 32/64 bit mode */
6998 {
6999 if (flag_code == CODE_64BIT
7000 && operand_type_check (i.types[op], disp))
7001 {
7002 i.types[op].bitfield.disp16 = 0;
7003 i.types[op].bitfield.disp64 = 0;
7004 if (i.prefix[ADDR_PREFIX] == 0)
7005 {
7006 i.types[op].bitfield.disp32 = 0;
7007 i.types[op].bitfield.disp32s = 1;
7008 }
7009 else
7010 {
7011 i.types[op].bitfield.disp32 = 1;
7012 i.types[op].bitfield.disp32s = 0;
7013 }
7014 }
7015
7016 if (!i.tm.opcode_modifier.vecsib)
7017 i.rm.regmem = i.base_reg->reg_num;
7018 if ((i.base_reg->reg_flags & RegRex) != 0)
7019 i.rex |= REX_B;
7020 i.sib.base = i.base_reg->reg_num;
7021 /* x86-64 ignores REX prefix bit here to avoid decoder
7022 complications. */
7023 if (!(i.base_reg->reg_flags & RegRex)
7024 && (i.base_reg->reg_num == EBP_REG_NUM
7025 || i.base_reg->reg_num == ESP_REG_NUM))
7026 default_seg = &ss;
7027 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7028 {
7029 fake_zero_displacement = 1;
7030 i.types[op].bitfield.disp8 = 1;
7031 }
7032 i.sib.scale = i.log2_scale_factor;
7033 if (i.index_reg == 0)
7034 {
7035 gas_assert (!i.tm.opcode_modifier.vecsib);
7036 /* <disp>(%esp) becomes two byte modrm with no index
7037 register. We've already stored the code for esp
7038 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7039 Any base register besides %esp will not use the
7040 extra modrm byte. */
7041 i.sib.index = NO_INDEX_REGISTER;
7042 }
7043 else if (!i.tm.opcode_modifier.vecsib)
7044 {
7045 if (i.index_reg->reg_num == RegEiz
7046 || i.index_reg->reg_num == RegRiz)
7047 i.sib.index = NO_INDEX_REGISTER;
7048 else
7049 i.sib.index = i.index_reg->reg_num;
7050 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7051 if ((i.index_reg->reg_flags & RegRex) != 0)
7052 i.rex |= REX_X;
7053 }
7054
7055 if (i.disp_operands
7056 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7057 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7058 i.rm.mode = 0;
7059 else
7060 {
7061 if (!fake_zero_displacement
7062 && !i.disp_operands
7063 && i.disp_encoding)
7064 {
7065 fake_zero_displacement = 1;
7066 if (i.disp_encoding == disp_encoding_8bit)
7067 i.types[op].bitfield.disp8 = 1;
7068 else
7069 i.types[op].bitfield.disp32 = 1;
7070 }
7071 i.rm.mode = mode_from_disp_size (i.types[op]);
7072 }
7073 }
7074
7075 if (fake_zero_displacement)
7076 {
7077 /* Fakes a zero displacement assuming that i.types[op]
7078 holds the correct displacement size. */
7079 expressionS *exp;
7080
7081 gas_assert (i.op[op].disps == 0);
7082 exp = &disp_expressions[i.disp_operands++];
7083 i.op[op].disps = exp;
7084 exp->X_op = O_constant;
7085 exp->X_add_number = 0;
7086 exp->X_add_symbol = (symbolS *) 0;
7087 exp->X_op_symbol = (symbolS *) 0;
7088 }
7089
7090 mem = op;
7091 }
7092 else
7093 mem = ~0;
7094
7095 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7096 {
7097 if (operand_type_check (i.types[0], imm))
7098 i.vex.register_specifier = NULL;
7099 else
7100 {
7101 /* VEX.vvvv encodes one of the sources when the first
7102 operand is not an immediate. */
7103 if (i.tm.opcode_modifier.vexw == VEXW0)
7104 i.vex.register_specifier = i.op[0].regs;
7105 else
7106 i.vex.register_specifier = i.op[1].regs;
7107 }
7108
7109 /* Destination is a XMM register encoded in the ModRM.reg
7110 and VEX.R bit. */
7111 i.rm.reg = i.op[2].regs->reg_num;
7112 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7113 i.rex |= REX_R;
7114
7115 /* ModRM.rm and VEX.B encodes the other source. */
7116 if (!i.mem_operands)
7117 {
7118 i.rm.mode = 3;
7119
7120 if (i.tm.opcode_modifier.vexw == VEXW0)
7121 i.rm.regmem = i.op[1].regs->reg_num;
7122 else
7123 i.rm.regmem = i.op[0].regs->reg_num;
7124
7125 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7126 i.rex |= REX_B;
7127 }
7128 }
7129 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7130 {
7131 i.vex.register_specifier = i.op[2].regs;
7132 if (!i.mem_operands)
7133 {
7134 i.rm.mode = 3;
7135 i.rm.regmem = i.op[1].regs->reg_num;
7136 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7137 i.rex |= REX_B;
7138 }
7139 }
7140 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7141 (if any) based on i.tm.extension_opcode. Again, we must be
7142 careful to make sure that segment/control/debug/test/MMX
7143 registers are coded into the i.rm.reg field. */
7144 else if (i.reg_operands)
7145 {
7146 unsigned int op;
7147 unsigned int vex_reg = ~0;
7148
7149 for (op = 0; op < i.operands; op++)
7150 if (i.types[op].bitfield.reg
7151 || i.types[op].bitfield.regmmx
7152 || i.types[op].bitfield.regsimd
7153 || i.types[op].bitfield.regbnd
7154 || i.types[op].bitfield.regmask
7155 || i.types[op].bitfield.sreg2
7156 || i.types[op].bitfield.sreg3
7157 || i.types[op].bitfield.control
7158 || i.types[op].bitfield.debug
7159 || i.types[op].bitfield.test)
7160 break;
7161
7162 if (vex_3_sources)
7163 op = dest;
7164 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7165 {
7166 /* For instructions with VexNDS, the register-only
7167 source operand is encoded in VEX prefix. */
7168 gas_assert (mem != (unsigned int) ~0);
7169
7170 if (op > mem)
7171 {
7172 vex_reg = op++;
7173 gas_assert (op < i.operands);
7174 }
7175 else
7176 {
7177 /* Check register-only source operand when two source
7178 operands are swapped. */
7179 if (!i.tm.operand_types[op].bitfield.baseindex
7180 && i.tm.operand_types[op + 1].bitfield.baseindex)
7181 {
7182 vex_reg = op;
7183 op += 2;
7184 gas_assert (mem == (vex_reg + 1)
7185 && op < i.operands);
7186 }
7187 else
7188 {
7189 vex_reg = op + 1;
7190 gas_assert (vex_reg < i.operands);
7191 }
7192 }
7193 }
7194 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7195 {
7196 /* For instructions with VexNDD, the register destination
7197 is encoded in VEX prefix. */
7198 if (i.mem_operands == 0)
7199 {
7200 /* There is no memory operand. */
7201 gas_assert ((op + 2) == i.operands);
7202 vex_reg = op + 1;
7203 }
7204 else
7205 {
7206 /* There are only 2 non-immediate operands. */
7207 gas_assert (op < i.imm_operands + 2
7208 && i.operands == i.imm_operands + 2);
7209 vex_reg = i.imm_operands + 1;
7210 }
7211 }
7212 else
7213 gas_assert (op < i.operands);
7214
7215 if (vex_reg != (unsigned int) ~0)
7216 {
7217 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7218
7219 if ((!type->bitfield.reg
7220 || (!type->bitfield.dword && !type->bitfield.qword))
7221 && !type->bitfield.regsimd
7222 && !operand_type_equal (type, &regmask))
7223 abort ();
7224
7225 i.vex.register_specifier = i.op[vex_reg].regs;
7226 }
7227
7228 /* Don't set OP operand twice. */
7229 if (vex_reg != op)
7230 {
7231 /* If there is an extension opcode to put here, the
7232 register number must be put into the regmem field. */
7233 if (i.tm.extension_opcode != None)
7234 {
7235 i.rm.regmem = i.op[op].regs->reg_num;
7236 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7237 i.rex |= REX_B;
7238 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7239 i.vrex |= REX_B;
7240 }
7241 else
7242 {
7243 i.rm.reg = i.op[op].regs->reg_num;
7244 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7245 i.rex |= REX_R;
7246 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7247 i.vrex |= REX_R;
7248 }
7249 }
7250
7251 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7252 must set it to 3 to indicate this is a register operand
7253 in the regmem field. */
7254 if (!i.mem_operands)
7255 i.rm.mode = 3;
7256 }
7257
7258 /* Fill in i.rm.reg field with extension opcode (if any). */
7259 if (i.tm.extension_opcode != None)
7260 i.rm.reg = i.tm.extension_opcode;
7261 }
7262 return default_seg;
7263 }
7264
7265 static void
7266 output_branch (void)
7267 {
7268 char *p;
7269 int size;
7270 int code16;
7271 int prefix;
7272 relax_substateT subtype;
7273 symbolS *sym;
7274 offsetT off;
7275
7276 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7277 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7278
7279 prefix = 0;
7280 if (i.prefix[DATA_PREFIX] != 0)
7281 {
7282 prefix = 1;
7283 i.prefixes -= 1;
7284 code16 ^= CODE16;
7285 }
7286 /* Pentium4 branch hints. */
7287 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7288 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7289 {
7290 prefix++;
7291 i.prefixes--;
7292 }
7293 if (i.prefix[REX_PREFIX] != 0)
7294 {
7295 prefix++;
7296 i.prefixes--;
7297 }
7298
7299 /* BND prefixed jump. */
7300 if (i.prefix[BND_PREFIX] != 0)
7301 {
7302 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7303 i.prefixes -= 1;
7304 }
7305
7306 if (i.prefixes != 0 && !intel_syntax)
7307 as_warn (_("skipping prefixes on this instruction"));
7308
7309 /* It's always a symbol; End frag & setup for relax.
7310 Make sure there is enough room in this frag for the largest
7311 instruction we may generate in md_convert_frag. This is 2
7312 bytes for the opcode and room for the prefix and largest
7313 displacement. */
7314 frag_grow (prefix + 2 + 4);
7315 /* Prefix and 1 opcode byte go in fr_fix. */
7316 p = frag_more (prefix + 1);
7317 if (i.prefix[DATA_PREFIX] != 0)
7318 *p++ = DATA_PREFIX_OPCODE;
7319 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7320 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7321 *p++ = i.prefix[SEG_PREFIX];
7322 if (i.prefix[REX_PREFIX] != 0)
7323 *p++ = i.prefix[REX_PREFIX];
7324 *p = i.tm.base_opcode;
7325
7326 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7327 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7328 else if (cpu_arch_flags.bitfield.cpui386)
7329 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7330 else
7331 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7332 subtype |= code16;
7333
7334 sym = i.op[0].disps->X_add_symbol;
7335 off = i.op[0].disps->X_add_number;
7336
7337 if (i.op[0].disps->X_op != O_constant
7338 && i.op[0].disps->X_op != O_symbol)
7339 {
7340 /* Handle complex expressions. */
7341 sym = make_expr_symbol (i.op[0].disps);
7342 off = 0;
7343 }
7344
7345 /* 1 possible extra opcode + 4 byte displacement go in var part.
7346 Pass reloc in fr_var. */
7347 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7348 }
7349
7350 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7351 /* Return TRUE iff PLT32 relocation should be used for branching to
7352 symbol S. */
7353
7354 static bfd_boolean
7355 need_plt32_p (symbolS *s)
7356 {
7357 /* PLT32 relocation is ELF only. */
7358 if (!IS_ELF)
7359 return FALSE;
7360
7361 /* Since there is no need to prepare for PLT branch on x86-64, we
7362 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7363 be used as a marker for 32-bit PC-relative branches. */
7364 if (!object_64bit)
7365 return FALSE;
7366
7367 /* Weak or undefined symbol need PLT32 relocation. */
7368 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7369 return TRUE;
7370
7371 /* Non-global symbol doesn't need PLT32 relocation. */
7372 if (! S_IS_EXTERNAL (s))
7373 return FALSE;
7374
7375 /* Other global symbols need PLT32 relocation. NB: Symbol with
7376 non-default visibilities are treated as normal global symbol
7377 so that PLT32 relocation can be used as a marker for 32-bit
7378 PC-relative branches. It is useful for linker relaxation. */
7379 return TRUE;
7380 }
7381 #endif
7382
7383 static void
7384 output_jump (void)
7385 {
7386 char *p;
7387 int size;
7388 fixS *fixP;
7389 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7390
7391 if (i.tm.opcode_modifier.jumpbyte)
7392 {
7393 /* This is a loop or jecxz type instruction. */
7394 size = 1;
7395 if (i.prefix[ADDR_PREFIX] != 0)
7396 {
7397 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7398 i.prefixes -= 1;
7399 }
7400 /* Pentium4 branch hints. */
7401 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7402 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7403 {
7404 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7405 i.prefixes--;
7406 }
7407 }
7408 else
7409 {
7410 int code16;
7411
7412 code16 = 0;
7413 if (flag_code == CODE_16BIT)
7414 code16 = CODE16;
7415
7416 if (i.prefix[DATA_PREFIX] != 0)
7417 {
7418 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7419 i.prefixes -= 1;
7420 code16 ^= CODE16;
7421 }
7422
7423 size = 4;
7424 if (code16)
7425 size = 2;
7426 }
7427
7428 if (i.prefix[REX_PREFIX] != 0)
7429 {
7430 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7431 i.prefixes -= 1;
7432 }
7433
7434 /* BND prefixed jump. */
7435 if (i.prefix[BND_PREFIX] != 0)
7436 {
7437 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7438 i.prefixes -= 1;
7439 }
7440
7441 if (i.prefixes != 0 && !intel_syntax)
7442 as_warn (_("skipping prefixes on this instruction"));
7443
7444 p = frag_more (i.tm.opcode_length + size);
7445 switch (i.tm.opcode_length)
7446 {
7447 case 2:
7448 *p++ = i.tm.base_opcode >> 8;
7449 /* Fall through. */
7450 case 1:
7451 *p++ = i.tm.base_opcode;
7452 break;
7453 default:
7454 abort ();
7455 }
7456
7457 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7458 if (size == 4
7459 && jump_reloc == NO_RELOC
7460 && need_plt32_p (i.op[0].disps->X_add_symbol))
7461 jump_reloc = BFD_RELOC_X86_64_PLT32;
7462 #endif
7463
7464 jump_reloc = reloc (size, 1, 1, jump_reloc);
7465
7466 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7467 i.op[0].disps, 1, jump_reloc);
7468
7469 /* All jumps handled here are signed, but don't use a signed limit
7470 check for 32 and 16 bit jumps as we want to allow wrap around at
7471 4G and 64k respectively. */
7472 if (size == 1)
7473 fixP->fx_signed = 1;
7474 }
7475
7476 static void
7477 output_interseg_jump (void)
7478 {
7479 char *p;
7480 int size;
7481 int prefix;
7482 int code16;
7483
7484 code16 = 0;
7485 if (flag_code == CODE_16BIT)
7486 code16 = CODE16;
7487
7488 prefix = 0;
7489 if (i.prefix[DATA_PREFIX] != 0)
7490 {
7491 prefix = 1;
7492 i.prefixes -= 1;
7493 code16 ^= CODE16;
7494 }
7495 if (i.prefix[REX_PREFIX] != 0)
7496 {
7497 prefix++;
7498 i.prefixes -= 1;
7499 }
7500
7501 size = 4;
7502 if (code16)
7503 size = 2;
7504
7505 if (i.prefixes != 0 && !intel_syntax)
7506 as_warn (_("skipping prefixes on this instruction"));
7507
7508 /* 1 opcode; 2 segment; offset */
7509 p = frag_more (prefix + 1 + 2 + size);
7510
7511 if (i.prefix[DATA_PREFIX] != 0)
7512 *p++ = DATA_PREFIX_OPCODE;
7513
7514 if (i.prefix[REX_PREFIX] != 0)
7515 *p++ = i.prefix[REX_PREFIX];
7516
7517 *p++ = i.tm.base_opcode;
7518 if (i.op[1].imms->X_op == O_constant)
7519 {
7520 offsetT n = i.op[1].imms->X_add_number;
7521
7522 if (size == 2
7523 && !fits_in_unsigned_word (n)
7524 && !fits_in_signed_word (n))
7525 {
7526 as_bad (_("16-bit jump out of range"));
7527 return;
7528 }
7529 md_number_to_chars (p, n, size);
7530 }
7531 else
7532 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7533 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7534 if (i.op[0].imms->X_op != O_constant)
7535 as_bad (_("can't handle non absolute segment in `%s'"),
7536 i.tm.name);
7537 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7538 }
7539
7540 static void
7541 output_insn (void)
7542 {
7543 fragS *insn_start_frag;
7544 offsetT insn_start_off;
7545
7546 /* Tie dwarf2 debug info to the address at the start of the insn.
7547 We can't do this after the insn has been output as the current
7548 frag may have been closed off. eg. by frag_var. */
7549 dwarf2_emit_insn (0);
7550
7551 insn_start_frag = frag_now;
7552 insn_start_off = frag_now_fix ();
7553
7554 /* Output jumps. */
7555 if (i.tm.opcode_modifier.jump)
7556 output_branch ();
7557 else if (i.tm.opcode_modifier.jumpbyte
7558 || i.tm.opcode_modifier.jumpdword)
7559 output_jump ();
7560 else if (i.tm.opcode_modifier.jumpintersegment)
7561 output_interseg_jump ();
7562 else
7563 {
7564 /* Output normal instructions here. */
7565 char *p;
7566 unsigned char *q;
7567 unsigned int j;
7568 unsigned int prefix;
7569
7570 if (avoid_fence
7571 && i.tm.base_opcode == 0xfae
7572 && i.operands == 1
7573 && i.imm_operands == 1
7574 && (i.op[0].imms->X_add_number == 0xe8
7575 || i.op[0].imms->X_add_number == 0xf0
7576 || i.op[0].imms->X_add_number == 0xf8))
7577 {
7578 /* Encode lfence, mfence, and sfence as
7579 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7580 offsetT val = 0x240483f0ULL;
7581 p = frag_more (5);
7582 md_number_to_chars (p, val, 5);
7583 return;
7584 }
7585
7586 /* Some processors fail on LOCK prefix. This options makes
7587 assembler ignore LOCK prefix and serves as a workaround. */
7588 if (omit_lock_prefix)
7589 {
7590 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7591 return;
7592 i.prefix[LOCK_PREFIX] = 0;
7593 }
7594
7595 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7596 don't need the explicit prefix. */
7597 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7598 {
7599 switch (i.tm.opcode_length)
7600 {
7601 case 3:
7602 if (i.tm.base_opcode & 0xff000000)
7603 {
7604 prefix = (i.tm.base_opcode >> 24) & 0xff;
7605 goto check_prefix;
7606 }
7607 break;
7608 case 2:
7609 if ((i.tm.base_opcode & 0xff0000) != 0)
7610 {
7611 prefix = (i.tm.base_opcode >> 16) & 0xff;
7612 if (i.tm.cpu_flags.bitfield.cpupadlock)
7613 {
7614 check_prefix:
7615 if (prefix != REPE_PREFIX_OPCODE
7616 || (i.prefix[REP_PREFIX]
7617 != REPE_PREFIX_OPCODE))
7618 add_prefix (prefix);
7619 }
7620 else
7621 add_prefix (prefix);
7622 }
7623 break;
7624 case 1:
7625 break;
7626 case 0:
7627 /* Check for pseudo prefixes. */
7628 as_bad_where (insn_start_frag->fr_file,
7629 insn_start_frag->fr_line,
7630 _("pseudo prefix without instruction"));
7631 return;
7632 default:
7633 abort ();
7634 }
7635
7636 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7637 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7638 R_X86_64_GOTTPOFF relocation so that linker can safely
7639 perform IE->LE optimization. */
7640 if (x86_elf_abi == X86_64_X32_ABI
7641 && i.operands == 2
7642 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7643 && i.prefix[REX_PREFIX] == 0)
7644 add_prefix (REX_OPCODE);
7645 #endif
7646
7647 /* The prefix bytes. */
7648 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7649 if (*q)
7650 FRAG_APPEND_1_CHAR (*q);
7651 }
7652 else
7653 {
7654 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7655 if (*q)
7656 switch (j)
7657 {
7658 case REX_PREFIX:
7659 /* REX byte is encoded in VEX prefix. */
7660 break;
7661 case SEG_PREFIX:
7662 case ADDR_PREFIX:
7663 FRAG_APPEND_1_CHAR (*q);
7664 break;
7665 default:
7666 /* There should be no other prefixes for instructions
7667 with VEX prefix. */
7668 abort ();
7669 }
7670
7671 /* For EVEX instructions i.vrex should become 0 after
7672 build_evex_prefix. For VEX instructions upper 16 registers
7673 aren't available, so VREX should be 0. */
7674 if (i.vrex)
7675 abort ();
7676 /* Now the VEX prefix. */
7677 p = frag_more (i.vex.length);
7678 for (j = 0; j < i.vex.length; j++)
7679 p[j] = i.vex.bytes[j];
7680 }
7681
7682 /* Now the opcode; be careful about word order here! */
7683 if (i.tm.opcode_length == 1)
7684 {
7685 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7686 }
7687 else
7688 {
7689 switch (i.tm.opcode_length)
7690 {
7691 case 4:
7692 p = frag_more (4);
7693 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7694 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7695 break;
7696 case 3:
7697 p = frag_more (3);
7698 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7699 break;
7700 case 2:
7701 p = frag_more (2);
7702 break;
7703 default:
7704 abort ();
7705 break;
7706 }
7707
7708 /* Put out high byte first: can't use md_number_to_chars! */
7709 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7710 *p = i.tm.base_opcode & 0xff;
7711 }
7712
7713 /* Now the modrm byte and sib byte (if present). */
7714 if (i.tm.opcode_modifier.modrm)
7715 {
7716 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7717 | i.rm.reg << 3
7718 | i.rm.mode << 6));
7719 /* If i.rm.regmem == ESP (4)
7720 && i.rm.mode != (Register mode)
7721 && not 16 bit
7722 ==> need second modrm byte. */
7723 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7724 && i.rm.mode != 3
7725 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
7726 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7727 | i.sib.index << 3
7728 | i.sib.scale << 6));
7729 }
7730
7731 if (i.disp_operands)
7732 output_disp (insn_start_frag, insn_start_off);
7733
7734 if (i.imm_operands)
7735 output_imm (insn_start_frag, insn_start_off);
7736 }
7737
7738 #ifdef DEBUG386
7739 if (flag_debug)
7740 {
7741 pi ("" /*line*/, &i);
7742 }
7743 #endif /* DEBUG386 */
7744 }
7745
7746 /* Return the size of the displacement operand N. */
7747
7748 static int
7749 disp_size (unsigned int n)
7750 {
7751 int size = 4;
7752
7753 if (i.types[n].bitfield.disp64)
7754 size = 8;
7755 else if (i.types[n].bitfield.disp8)
7756 size = 1;
7757 else if (i.types[n].bitfield.disp16)
7758 size = 2;
7759 return size;
7760 }
7761
7762 /* Return the size of the immediate operand N. */
7763
7764 static int
7765 imm_size (unsigned int n)
7766 {
7767 int size = 4;
7768 if (i.types[n].bitfield.imm64)
7769 size = 8;
7770 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7771 size = 1;
7772 else if (i.types[n].bitfield.imm16)
7773 size = 2;
7774 return size;
7775 }
7776
7777 static void
7778 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7779 {
7780 char *p;
7781 unsigned int n;
7782
7783 for (n = 0; n < i.operands; n++)
7784 {
7785 if (operand_type_check (i.types[n], disp))
7786 {
7787 if (i.op[n].disps->X_op == O_constant)
7788 {
7789 int size = disp_size (n);
7790 offsetT val = i.op[n].disps->X_add_number;
7791
7792 val = offset_in_range (val >> i.memshift, size);
7793 p = frag_more (size);
7794 md_number_to_chars (p, val, size);
7795 }
7796 else
7797 {
7798 enum bfd_reloc_code_real reloc_type;
7799 int size = disp_size (n);
7800 int sign = i.types[n].bitfield.disp32s;
7801 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7802 fixS *fixP;
7803
7804 /* We can't have 8 bit displacement here. */
7805 gas_assert (!i.types[n].bitfield.disp8);
7806
7807 /* The PC relative address is computed relative
7808 to the instruction boundary, so in case immediate
7809 fields follows, we need to adjust the value. */
7810 if (pcrel && i.imm_operands)
7811 {
7812 unsigned int n1;
7813 int sz = 0;
7814
7815 for (n1 = 0; n1 < i.operands; n1++)
7816 if (operand_type_check (i.types[n1], imm))
7817 {
7818 /* Only one immediate is allowed for PC
7819 relative address. */
7820 gas_assert (sz == 0);
7821 sz = imm_size (n1);
7822 i.op[n].disps->X_add_number -= sz;
7823 }
7824 /* We should find the immediate. */
7825 gas_assert (sz != 0);
7826 }
7827
7828 p = frag_more (size);
7829 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7830 if (GOT_symbol
7831 && GOT_symbol == i.op[n].disps->X_add_symbol
7832 && (((reloc_type == BFD_RELOC_32
7833 || reloc_type == BFD_RELOC_X86_64_32S
7834 || (reloc_type == BFD_RELOC_64
7835 && object_64bit))
7836 && (i.op[n].disps->X_op == O_symbol
7837 || (i.op[n].disps->X_op == O_add
7838 && ((symbol_get_value_expression
7839 (i.op[n].disps->X_op_symbol)->X_op)
7840 == O_subtract))))
7841 || reloc_type == BFD_RELOC_32_PCREL))
7842 {
7843 offsetT add;
7844
7845 if (insn_start_frag == frag_now)
7846 add = (p - frag_now->fr_literal) - insn_start_off;
7847 else
7848 {
7849 fragS *fr;
7850
7851 add = insn_start_frag->fr_fix - insn_start_off;
7852 for (fr = insn_start_frag->fr_next;
7853 fr && fr != frag_now; fr = fr->fr_next)
7854 add += fr->fr_fix;
7855 add += p - frag_now->fr_literal;
7856 }
7857
7858 if (!object_64bit)
7859 {
7860 reloc_type = BFD_RELOC_386_GOTPC;
7861 i.op[n].imms->X_add_number += add;
7862 }
7863 else if (reloc_type == BFD_RELOC_64)
7864 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7865 else
7866 /* Don't do the adjustment for x86-64, as there
7867 the pcrel addressing is relative to the _next_
7868 insn, and that is taken care of in other code. */
7869 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7870 }
7871 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7872 size, i.op[n].disps, pcrel,
7873 reloc_type);
7874 /* Check for "call/jmp *mem", "mov mem, %reg",
7875 "test %reg, mem" and "binop mem, %reg" where binop
7876 is one of adc, add, and, cmp, or, sbb, sub, xor
7877 instructions. Always generate R_386_GOT32X for
7878 "sym*GOT" operand in 32-bit mode. */
7879 if ((generate_relax_relocations
7880 || (!object_64bit
7881 && i.rm.mode == 0
7882 && i.rm.regmem == 5))
7883 && (i.rm.mode == 2
7884 || (i.rm.mode == 0 && i.rm.regmem == 5))
7885 && ((i.operands == 1
7886 && i.tm.base_opcode == 0xff
7887 && (i.rm.reg == 2 || i.rm.reg == 4))
7888 || (i.operands == 2
7889 && (i.tm.base_opcode == 0x8b
7890 || i.tm.base_opcode == 0x85
7891 || (i.tm.base_opcode & 0xc7) == 0x03))))
7892 {
7893 if (object_64bit)
7894 {
7895 fixP->fx_tcbit = i.rex != 0;
7896 if (i.base_reg
7897 && (i.base_reg->reg_num == RegRip
7898 || i.base_reg->reg_num == RegEip))
7899 fixP->fx_tcbit2 = 1;
7900 }
7901 else
7902 fixP->fx_tcbit2 = 1;
7903 }
7904 }
7905 }
7906 }
7907 }
7908
7909 static void
7910 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7911 {
7912 char *p;
7913 unsigned int n;
7914
7915 for (n = 0; n < i.operands; n++)
7916 {
7917 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7918 if (i.rounding && (int) n == i.rounding->operand)
7919 continue;
7920
7921 if (operand_type_check (i.types[n], imm))
7922 {
7923 if (i.op[n].imms->X_op == O_constant)
7924 {
7925 int size = imm_size (n);
7926 offsetT val;
7927
7928 val = offset_in_range (i.op[n].imms->X_add_number,
7929 size);
7930 p = frag_more (size);
7931 md_number_to_chars (p, val, size);
7932 }
7933 else
7934 {
7935 /* Not absolute_section.
7936 Need a 32-bit fixup (don't support 8bit
7937 non-absolute imms). Try to support other
7938 sizes ... */
7939 enum bfd_reloc_code_real reloc_type;
7940 int size = imm_size (n);
7941 int sign;
7942
7943 if (i.types[n].bitfield.imm32s
7944 && (i.suffix == QWORD_MNEM_SUFFIX
7945 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7946 sign = 1;
7947 else
7948 sign = 0;
7949
7950 p = frag_more (size);
7951 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7952
7953 /* This is tough to explain. We end up with this one if we
7954 * have operands that look like
7955 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7956 * obtain the absolute address of the GOT, and it is strongly
7957 * preferable from a performance point of view to avoid using
7958 * a runtime relocation for this. The actual sequence of
7959 * instructions often look something like:
7960 *
7961 * call .L66
7962 * .L66:
7963 * popl %ebx
7964 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7965 *
7966 * The call and pop essentially return the absolute address
7967 * of the label .L66 and store it in %ebx. The linker itself
7968 * will ultimately change the first operand of the addl so
7969 * that %ebx points to the GOT, but to keep things simple, the
7970 * .o file must have this operand set so that it generates not
7971 * the absolute address of .L66, but the absolute address of
7972 * itself. This allows the linker itself simply treat a GOTPC
7973 * relocation as asking for a pcrel offset to the GOT to be
7974 * added in, and the addend of the relocation is stored in the
7975 * operand field for the instruction itself.
7976 *
7977 * Our job here is to fix the operand so that it would add
7978 * the correct offset so that %ebx would point to itself. The
7979 * thing that is tricky is that .-.L66 will point to the
7980 * beginning of the instruction, so we need to further modify
7981 * the operand so that it will point to itself. There are
7982 * other cases where you have something like:
7983 *
7984 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7985 *
7986 * and here no correction would be required. Internally in
7987 * the assembler we treat operands of this form as not being
7988 * pcrel since the '.' is explicitly mentioned, and I wonder
7989 * whether it would simplify matters to do it this way. Who
7990 * knows. In earlier versions of the PIC patches, the
7991 * pcrel_adjust field was used to store the correction, but
7992 * since the expression is not pcrel, I felt it would be
7993 * confusing to do it this way. */
7994
7995 if ((reloc_type == BFD_RELOC_32
7996 || reloc_type == BFD_RELOC_X86_64_32S
7997 || reloc_type == BFD_RELOC_64)
7998 && GOT_symbol
7999 && GOT_symbol == i.op[n].imms->X_add_symbol
8000 && (i.op[n].imms->X_op == O_symbol
8001 || (i.op[n].imms->X_op == O_add
8002 && ((symbol_get_value_expression
8003 (i.op[n].imms->X_op_symbol)->X_op)
8004 == O_subtract))))
8005 {
8006 offsetT add;
8007
8008 if (insn_start_frag == frag_now)
8009 add = (p - frag_now->fr_literal) - insn_start_off;
8010 else
8011 {
8012 fragS *fr;
8013
8014 add = insn_start_frag->fr_fix - insn_start_off;
8015 for (fr = insn_start_frag->fr_next;
8016 fr && fr != frag_now; fr = fr->fr_next)
8017 add += fr->fr_fix;
8018 add += p - frag_now->fr_literal;
8019 }
8020
8021 if (!object_64bit)
8022 reloc_type = BFD_RELOC_386_GOTPC;
8023 else if (size == 4)
8024 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8025 else if (size == 8)
8026 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8027 i.op[n].imms->X_add_number += add;
8028 }
8029 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8030 i.op[n].imms, 0, reloc_type);
8031 }
8032 }
8033 }
8034 }
8035 \f
8036 /* x86_cons_fix_new is called via the expression parsing code when a
8037 reloc is needed. We use this hook to get the correct .got reloc. */
8038 static int cons_sign = -1;
8039
8040 void
8041 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8042 expressionS *exp, bfd_reloc_code_real_type r)
8043 {
8044 r = reloc (len, 0, cons_sign, r);
8045
8046 #ifdef TE_PE
8047 if (exp->X_op == O_secrel)
8048 {
8049 exp->X_op = O_symbol;
8050 r = BFD_RELOC_32_SECREL;
8051 }
8052 #endif
8053
8054 fix_new_exp (frag, off, len, exp, 0, r);
8055 }
8056
8057 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8058 purpose of the `.dc.a' internal pseudo-op. */
8059
8060 int
8061 x86_address_bytes (void)
8062 {
8063 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8064 return 4;
8065 return stdoutput->arch_info->bits_per_address / 8;
8066 }
8067
8068 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8069 || defined (LEX_AT)
8070 # define lex_got(reloc, adjust, types) NULL
8071 #else
8072 /* Parse operands of the form
8073 <symbol>@GOTOFF+<nnn>
8074 and similar .plt or .got references.
8075
8076 If we find one, set up the correct relocation in RELOC and copy the
8077 input string, minus the `@GOTOFF' into a malloc'd buffer for
8078 parsing by the calling routine. Return this buffer, and if ADJUST
8079 is non-null set it to the length of the string we removed from the
8080 input line. Otherwise return NULL. */
8081 static char *
8082 lex_got (enum bfd_reloc_code_real *rel,
8083 int *adjust,
8084 i386_operand_type *types)
8085 {
8086 /* Some of the relocations depend on the size of what field is to
8087 be relocated. But in our callers i386_immediate and i386_displacement
8088 we don't yet know the operand size (this will be set by insn
8089 matching). Hence we record the word32 relocation here,
8090 and adjust the reloc according to the real size in reloc(). */
8091 static const struct {
8092 const char *str;
8093 int len;
8094 const enum bfd_reloc_code_real rel[2];
8095 const i386_operand_type types64;
8096 } gotrel[] = {
8097 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8098 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8099 BFD_RELOC_SIZE32 },
8100 OPERAND_TYPE_IMM32_64 },
8101 #endif
8102 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8103 BFD_RELOC_X86_64_PLTOFF64 },
8104 OPERAND_TYPE_IMM64 },
8105 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8106 BFD_RELOC_X86_64_PLT32 },
8107 OPERAND_TYPE_IMM32_32S_DISP32 },
8108 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8109 BFD_RELOC_X86_64_GOTPLT64 },
8110 OPERAND_TYPE_IMM64_DISP64 },
8111 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8112 BFD_RELOC_X86_64_GOTOFF64 },
8113 OPERAND_TYPE_IMM64_DISP64 },
8114 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8115 BFD_RELOC_X86_64_GOTPCREL },
8116 OPERAND_TYPE_IMM32_32S_DISP32 },
8117 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8118 BFD_RELOC_X86_64_TLSGD },
8119 OPERAND_TYPE_IMM32_32S_DISP32 },
8120 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8121 _dummy_first_bfd_reloc_code_real },
8122 OPERAND_TYPE_NONE },
8123 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8124 BFD_RELOC_X86_64_TLSLD },
8125 OPERAND_TYPE_IMM32_32S_DISP32 },
8126 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8127 BFD_RELOC_X86_64_GOTTPOFF },
8128 OPERAND_TYPE_IMM32_32S_DISP32 },
8129 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8130 BFD_RELOC_X86_64_TPOFF32 },
8131 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8132 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8133 _dummy_first_bfd_reloc_code_real },
8134 OPERAND_TYPE_NONE },
8135 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8136 BFD_RELOC_X86_64_DTPOFF32 },
8137 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8138 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8139 _dummy_first_bfd_reloc_code_real },
8140 OPERAND_TYPE_NONE },
8141 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8142 _dummy_first_bfd_reloc_code_real },
8143 OPERAND_TYPE_NONE },
8144 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8145 BFD_RELOC_X86_64_GOT32 },
8146 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8147 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8148 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8149 OPERAND_TYPE_IMM32_32S_DISP32 },
8150 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8151 BFD_RELOC_X86_64_TLSDESC_CALL },
8152 OPERAND_TYPE_IMM32_32S_DISP32 },
8153 };
8154 char *cp;
8155 unsigned int j;
8156
8157 #if defined (OBJ_MAYBE_ELF)
8158 if (!IS_ELF)
8159 return NULL;
8160 #endif
8161
8162 for (cp = input_line_pointer; *cp != '@'; cp++)
8163 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8164 return NULL;
8165
8166 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8167 {
8168 int len = gotrel[j].len;
8169 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8170 {
8171 if (gotrel[j].rel[object_64bit] != 0)
8172 {
8173 int first, second;
8174 char *tmpbuf, *past_reloc;
8175
8176 *rel = gotrel[j].rel[object_64bit];
8177
8178 if (types)
8179 {
8180 if (flag_code != CODE_64BIT)
8181 {
8182 types->bitfield.imm32 = 1;
8183 types->bitfield.disp32 = 1;
8184 }
8185 else
8186 *types = gotrel[j].types64;
8187 }
8188
8189 if (j != 0 && GOT_symbol == NULL)
8190 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8191
8192 /* The length of the first part of our input line. */
8193 first = cp - input_line_pointer;
8194
8195 /* The second part goes from after the reloc token until
8196 (and including) an end_of_line char or comma. */
8197 past_reloc = cp + 1 + len;
8198 cp = past_reloc;
8199 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8200 ++cp;
8201 second = cp + 1 - past_reloc;
8202
8203 /* Allocate and copy string. The trailing NUL shouldn't
8204 be necessary, but be safe. */
8205 tmpbuf = XNEWVEC (char, first + second + 2);
8206 memcpy (tmpbuf, input_line_pointer, first);
8207 if (second != 0 && *past_reloc != ' ')
8208 /* Replace the relocation token with ' ', so that
8209 errors like foo@GOTOFF1 will be detected. */
8210 tmpbuf[first++] = ' ';
8211 else
8212 /* Increment length by 1 if the relocation token is
8213 removed. */
8214 len++;
8215 if (adjust)
8216 *adjust = len;
8217 memcpy (tmpbuf + first, past_reloc, second);
8218 tmpbuf[first + second] = '\0';
8219 return tmpbuf;
8220 }
8221
8222 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8223 gotrel[j].str, 1 << (5 + object_64bit));
8224 return NULL;
8225 }
8226 }
8227
8228 /* Might be a symbol version string. Don't as_bad here. */
8229 return NULL;
8230 }
8231 #endif
8232
8233 #ifdef TE_PE
8234 #ifdef lex_got
8235 #undef lex_got
8236 #endif
8237 /* Parse operands of the form
8238 <symbol>@SECREL32+<nnn>
8239
8240 If we find one, set up the correct relocation in RELOC and copy the
8241 input string, minus the `@SECREL32' into a malloc'd buffer for
8242 parsing by the calling routine. Return this buffer, and if ADJUST
8243 is non-null set it to the length of the string we removed from the
8244 input line. Otherwise return NULL.
8245
8246 This function is copied from the ELF version above adjusted for PE targets. */
8247
8248 static char *
8249 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8250 int *adjust ATTRIBUTE_UNUSED,
8251 i386_operand_type *types)
8252 {
8253 static const struct
8254 {
8255 const char *str;
8256 int len;
8257 const enum bfd_reloc_code_real rel[2];
8258 const i386_operand_type types64;
8259 }
8260 gotrel[] =
8261 {
8262 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8263 BFD_RELOC_32_SECREL },
8264 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8265 };
8266
8267 char *cp;
8268 unsigned j;
8269
8270 for (cp = input_line_pointer; *cp != '@'; cp++)
8271 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8272 return NULL;
8273
8274 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8275 {
8276 int len = gotrel[j].len;
8277
8278 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8279 {
8280 if (gotrel[j].rel[object_64bit] != 0)
8281 {
8282 int first, second;
8283 char *tmpbuf, *past_reloc;
8284
8285 *rel = gotrel[j].rel[object_64bit];
8286 if (adjust)
8287 *adjust = len;
8288
8289 if (types)
8290 {
8291 if (flag_code != CODE_64BIT)
8292 {
8293 types->bitfield.imm32 = 1;
8294 types->bitfield.disp32 = 1;
8295 }
8296 else
8297 *types = gotrel[j].types64;
8298 }
8299
8300 /* The length of the first part of our input line. */
8301 first = cp - input_line_pointer;
8302
8303 /* The second part goes from after the reloc token until
8304 (and including) an end_of_line char or comma. */
8305 past_reloc = cp + 1 + len;
8306 cp = past_reloc;
8307 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8308 ++cp;
8309 second = cp + 1 - past_reloc;
8310
8311 /* Allocate and copy string. The trailing NUL shouldn't
8312 be necessary, but be safe. */
8313 tmpbuf = XNEWVEC (char, first + second + 2);
8314 memcpy (tmpbuf, input_line_pointer, first);
8315 if (second != 0 && *past_reloc != ' ')
8316 /* Replace the relocation token with ' ', so that
8317 errors like foo@SECLREL321 will be detected. */
8318 tmpbuf[first++] = ' ';
8319 memcpy (tmpbuf + first, past_reloc, second);
8320 tmpbuf[first + second] = '\0';
8321 return tmpbuf;
8322 }
8323
8324 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8325 gotrel[j].str, 1 << (5 + object_64bit));
8326 return NULL;
8327 }
8328 }
8329
8330 /* Might be a symbol version string. Don't as_bad here. */
8331 return NULL;
8332 }
8333
8334 #endif /* TE_PE */
8335
8336 bfd_reloc_code_real_type
8337 x86_cons (expressionS *exp, int size)
8338 {
8339 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8340
8341 intel_syntax = -intel_syntax;
8342
8343 exp->X_md = 0;
8344 if (size == 4 || (object_64bit && size == 8))
8345 {
8346 /* Handle @GOTOFF and the like in an expression. */
8347 char *save;
8348 char *gotfree_input_line;
8349 int adjust = 0;
8350
8351 save = input_line_pointer;
8352 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8353 if (gotfree_input_line)
8354 input_line_pointer = gotfree_input_line;
8355
8356 expression (exp);
8357
8358 if (gotfree_input_line)
8359 {
8360 /* expression () has merrily parsed up to the end of line,
8361 or a comma - in the wrong buffer. Transfer how far
8362 input_line_pointer has moved to the right buffer. */
8363 input_line_pointer = (save
8364 + (input_line_pointer - gotfree_input_line)
8365 + adjust);
8366 free (gotfree_input_line);
8367 if (exp->X_op == O_constant
8368 || exp->X_op == O_absent
8369 || exp->X_op == O_illegal
8370 || exp->X_op == O_register
8371 || exp->X_op == O_big)
8372 {
8373 char c = *input_line_pointer;
8374 *input_line_pointer = 0;
8375 as_bad (_("missing or invalid expression `%s'"), save);
8376 *input_line_pointer = c;
8377 }
8378 }
8379 }
8380 else
8381 expression (exp);
8382
8383 intel_syntax = -intel_syntax;
8384
8385 if (intel_syntax)
8386 i386_intel_simplify (exp);
8387
8388 return got_reloc;
8389 }
8390
8391 static void
8392 signed_cons (int size)
8393 {
8394 if (flag_code == CODE_64BIT)
8395 cons_sign = 1;
8396 cons (size);
8397 cons_sign = -1;
8398 }
8399
8400 #ifdef TE_PE
8401 static void
8402 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8403 {
8404 expressionS exp;
8405
8406 do
8407 {
8408 expression (&exp);
8409 if (exp.X_op == O_symbol)
8410 exp.X_op = O_secrel;
8411
8412 emit_expr (&exp, 4);
8413 }
8414 while (*input_line_pointer++ == ',');
8415
8416 input_line_pointer--;
8417 demand_empty_rest_of_line ();
8418 }
8419 #endif
8420
8421 /* Handle Vector operations. */
8422
8423 static char *
8424 check_VecOperations (char *op_string, char *op_end)
8425 {
8426 const reg_entry *mask;
8427 const char *saved;
8428 char *end_op;
8429
8430 while (*op_string
8431 && (op_end == NULL || op_string < op_end))
8432 {
8433 saved = op_string;
8434 if (*op_string == '{')
8435 {
8436 op_string++;
8437
8438 /* Check broadcasts. */
8439 if (strncmp (op_string, "1to", 3) == 0)
8440 {
8441 int bcst_type;
8442
8443 if (i.broadcast)
8444 goto duplicated_vec_op;
8445
8446 op_string += 3;
8447 if (*op_string == '8')
8448 bcst_type = BROADCAST_1TO8;
8449 else if (*op_string == '4')
8450 bcst_type = BROADCAST_1TO4;
8451 else if (*op_string == '2')
8452 bcst_type = BROADCAST_1TO2;
8453 else if (*op_string == '1'
8454 && *(op_string+1) == '6')
8455 {
8456 bcst_type = BROADCAST_1TO16;
8457 op_string++;
8458 }
8459 else
8460 {
8461 as_bad (_("Unsupported broadcast: `%s'"), saved);
8462 return NULL;
8463 }
8464 op_string++;
8465
8466 broadcast_op.type = bcst_type;
8467 broadcast_op.operand = this_operand;
8468 i.broadcast = &broadcast_op;
8469 }
8470 /* Check masking operation. */
8471 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8472 {
8473 /* k0 can't be used for write mask. */
8474 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
8475 {
8476 as_bad (_("`%s%s' can't be used for write mask"),
8477 register_prefix, mask->reg_name);
8478 return NULL;
8479 }
8480
8481 if (!i.mask)
8482 {
8483 mask_op.mask = mask;
8484 mask_op.zeroing = 0;
8485 mask_op.operand = this_operand;
8486 i.mask = &mask_op;
8487 }
8488 else
8489 {
8490 if (i.mask->mask)
8491 goto duplicated_vec_op;
8492
8493 i.mask->mask = mask;
8494
8495 /* Only "{z}" is allowed here. No need to check
8496 zeroing mask explicitly. */
8497 if (i.mask->operand != this_operand)
8498 {
8499 as_bad (_("invalid write mask `%s'"), saved);
8500 return NULL;
8501 }
8502 }
8503
8504 op_string = end_op;
8505 }
8506 /* Check zeroing-flag for masking operation. */
8507 else if (*op_string == 'z')
8508 {
8509 if (!i.mask)
8510 {
8511 mask_op.mask = NULL;
8512 mask_op.zeroing = 1;
8513 mask_op.operand = this_operand;
8514 i.mask = &mask_op;
8515 }
8516 else
8517 {
8518 if (i.mask->zeroing)
8519 {
8520 duplicated_vec_op:
8521 as_bad (_("duplicated `%s'"), saved);
8522 return NULL;
8523 }
8524
8525 i.mask->zeroing = 1;
8526
8527 /* Only "{%k}" is allowed here. No need to check mask
8528 register explicitly. */
8529 if (i.mask->operand != this_operand)
8530 {
8531 as_bad (_("invalid zeroing-masking `%s'"),
8532 saved);
8533 return NULL;
8534 }
8535 }
8536
8537 op_string++;
8538 }
8539 else
8540 goto unknown_vec_op;
8541
8542 if (*op_string != '}')
8543 {
8544 as_bad (_("missing `}' in `%s'"), saved);
8545 return NULL;
8546 }
8547 op_string++;
8548
8549 /* Strip whitespace since the addition of pseudo prefixes
8550 changed how the scrubber treats '{'. */
8551 if (is_space_char (*op_string))
8552 ++op_string;
8553
8554 continue;
8555 }
8556 unknown_vec_op:
8557 /* We don't know this one. */
8558 as_bad (_("unknown vector operation: `%s'"), saved);
8559 return NULL;
8560 }
8561
8562 if (i.mask && i.mask->zeroing && !i.mask->mask)
8563 {
8564 as_bad (_("zeroing-masking only allowed with write mask"));
8565 return NULL;
8566 }
8567
8568 return op_string;
8569 }
8570
8571 static int
8572 i386_immediate (char *imm_start)
8573 {
8574 char *save_input_line_pointer;
8575 char *gotfree_input_line;
8576 segT exp_seg = 0;
8577 expressionS *exp;
8578 i386_operand_type types;
8579
8580 operand_type_set (&types, ~0);
8581
8582 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8583 {
8584 as_bad (_("at most %d immediate operands are allowed"),
8585 MAX_IMMEDIATE_OPERANDS);
8586 return 0;
8587 }
8588
8589 exp = &im_expressions[i.imm_operands++];
8590 i.op[this_operand].imms = exp;
8591
8592 if (is_space_char (*imm_start))
8593 ++imm_start;
8594
8595 save_input_line_pointer = input_line_pointer;
8596 input_line_pointer = imm_start;
8597
8598 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8599 if (gotfree_input_line)
8600 input_line_pointer = gotfree_input_line;
8601
8602 exp_seg = expression (exp);
8603
8604 SKIP_WHITESPACE ();
8605
8606 /* Handle vector operations. */
8607 if (*input_line_pointer == '{')
8608 {
8609 input_line_pointer = check_VecOperations (input_line_pointer,
8610 NULL);
8611 if (input_line_pointer == NULL)
8612 return 0;
8613 }
8614
8615 if (*input_line_pointer)
8616 as_bad (_("junk `%s' after expression"), input_line_pointer);
8617
8618 input_line_pointer = save_input_line_pointer;
8619 if (gotfree_input_line)
8620 {
8621 free (gotfree_input_line);
8622
8623 if (exp->X_op == O_constant || exp->X_op == O_register)
8624 exp->X_op = O_illegal;
8625 }
8626
8627 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8628 }
8629
8630 static int
8631 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8632 i386_operand_type types, const char *imm_start)
8633 {
8634 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8635 {
8636 if (imm_start)
8637 as_bad (_("missing or invalid immediate expression `%s'"),
8638 imm_start);
8639 return 0;
8640 }
8641 else if (exp->X_op == O_constant)
8642 {
8643 /* Size it properly later. */
8644 i.types[this_operand].bitfield.imm64 = 1;
8645 /* If not 64bit, sign extend val. */
8646 if (flag_code != CODE_64BIT
8647 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8648 exp->X_add_number
8649 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8650 }
8651 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8652 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8653 && exp_seg != absolute_section
8654 && exp_seg != text_section
8655 && exp_seg != data_section
8656 && exp_seg != bss_section
8657 && exp_seg != undefined_section
8658 && !bfd_is_com_section (exp_seg))
8659 {
8660 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8661 return 0;
8662 }
8663 #endif
8664 else if (!intel_syntax && exp_seg == reg_section)
8665 {
8666 if (imm_start)
8667 as_bad (_("illegal immediate register operand %s"), imm_start);
8668 return 0;
8669 }
8670 else
8671 {
8672 /* This is an address. The size of the address will be
8673 determined later, depending on destination register,
8674 suffix, or the default for the section. */
8675 i.types[this_operand].bitfield.imm8 = 1;
8676 i.types[this_operand].bitfield.imm16 = 1;
8677 i.types[this_operand].bitfield.imm32 = 1;
8678 i.types[this_operand].bitfield.imm32s = 1;
8679 i.types[this_operand].bitfield.imm64 = 1;
8680 i.types[this_operand] = operand_type_and (i.types[this_operand],
8681 types);
8682 }
8683
8684 return 1;
8685 }
8686
8687 static char *
8688 i386_scale (char *scale)
8689 {
8690 offsetT val;
8691 char *save = input_line_pointer;
8692
8693 input_line_pointer = scale;
8694 val = get_absolute_expression ();
8695
8696 switch (val)
8697 {
8698 case 1:
8699 i.log2_scale_factor = 0;
8700 break;
8701 case 2:
8702 i.log2_scale_factor = 1;
8703 break;
8704 case 4:
8705 i.log2_scale_factor = 2;
8706 break;
8707 case 8:
8708 i.log2_scale_factor = 3;
8709 break;
8710 default:
8711 {
8712 char sep = *input_line_pointer;
8713
8714 *input_line_pointer = '\0';
8715 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8716 scale);
8717 *input_line_pointer = sep;
8718 input_line_pointer = save;
8719 return NULL;
8720 }
8721 }
8722 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8723 {
8724 as_warn (_("scale factor of %d without an index register"),
8725 1 << i.log2_scale_factor);
8726 i.log2_scale_factor = 0;
8727 }
8728 scale = input_line_pointer;
8729 input_line_pointer = save;
8730 return scale;
8731 }
8732
8733 static int
8734 i386_displacement (char *disp_start, char *disp_end)
8735 {
8736 expressionS *exp;
8737 segT exp_seg = 0;
8738 char *save_input_line_pointer;
8739 char *gotfree_input_line;
8740 int override;
8741 i386_operand_type bigdisp, types = anydisp;
8742 int ret;
8743
8744 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8745 {
8746 as_bad (_("at most %d displacement operands are allowed"),
8747 MAX_MEMORY_OPERANDS);
8748 return 0;
8749 }
8750
8751 operand_type_set (&bigdisp, 0);
8752 if ((i.types[this_operand].bitfield.jumpabsolute)
8753 || (!current_templates->start->opcode_modifier.jump
8754 && !current_templates->start->opcode_modifier.jumpdword))
8755 {
8756 bigdisp.bitfield.disp32 = 1;
8757 override = (i.prefix[ADDR_PREFIX] != 0);
8758 if (flag_code == CODE_64BIT)
8759 {
8760 if (!override)
8761 {
8762 bigdisp.bitfield.disp32s = 1;
8763 bigdisp.bitfield.disp64 = 1;
8764 }
8765 }
8766 else if ((flag_code == CODE_16BIT) ^ override)
8767 {
8768 bigdisp.bitfield.disp32 = 0;
8769 bigdisp.bitfield.disp16 = 1;
8770 }
8771 }
8772 else
8773 {
8774 /* For PC-relative branches, the width of the displacement
8775 is dependent upon data size, not address size. */
8776 override = (i.prefix[DATA_PREFIX] != 0);
8777 if (flag_code == CODE_64BIT)
8778 {
8779 if (override || i.suffix == WORD_MNEM_SUFFIX)
8780 bigdisp.bitfield.disp16 = 1;
8781 else
8782 {
8783 bigdisp.bitfield.disp32 = 1;
8784 bigdisp.bitfield.disp32s = 1;
8785 }
8786 }
8787 else
8788 {
8789 if (!override)
8790 override = (i.suffix == (flag_code != CODE_16BIT
8791 ? WORD_MNEM_SUFFIX
8792 : LONG_MNEM_SUFFIX));
8793 bigdisp.bitfield.disp32 = 1;
8794 if ((flag_code == CODE_16BIT) ^ override)
8795 {
8796 bigdisp.bitfield.disp32 = 0;
8797 bigdisp.bitfield.disp16 = 1;
8798 }
8799 }
8800 }
8801 i.types[this_operand] = operand_type_or (i.types[this_operand],
8802 bigdisp);
8803
8804 exp = &disp_expressions[i.disp_operands];
8805 i.op[this_operand].disps = exp;
8806 i.disp_operands++;
8807 save_input_line_pointer = input_line_pointer;
8808 input_line_pointer = disp_start;
8809 END_STRING_AND_SAVE (disp_end);
8810
8811 #ifndef GCC_ASM_O_HACK
8812 #define GCC_ASM_O_HACK 0
8813 #endif
8814 #if GCC_ASM_O_HACK
8815 END_STRING_AND_SAVE (disp_end + 1);
8816 if (i.types[this_operand].bitfield.baseIndex
8817 && displacement_string_end[-1] == '+')
8818 {
8819 /* This hack is to avoid a warning when using the "o"
8820 constraint within gcc asm statements.
8821 For instance:
8822
8823 #define _set_tssldt_desc(n,addr,limit,type) \
8824 __asm__ __volatile__ ( \
8825 "movw %w2,%0\n\t" \
8826 "movw %w1,2+%0\n\t" \
8827 "rorl $16,%1\n\t" \
8828 "movb %b1,4+%0\n\t" \
8829 "movb %4,5+%0\n\t" \
8830 "movb $0,6+%0\n\t" \
8831 "movb %h1,7+%0\n\t" \
8832 "rorl $16,%1" \
8833 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8834
8835 This works great except that the output assembler ends
8836 up looking a bit weird if it turns out that there is
8837 no offset. You end up producing code that looks like:
8838
8839 #APP
8840 movw $235,(%eax)
8841 movw %dx,2+(%eax)
8842 rorl $16,%edx
8843 movb %dl,4+(%eax)
8844 movb $137,5+(%eax)
8845 movb $0,6+(%eax)
8846 movb %dh,7+(%eax)
8847 rorl $16,%edx
8848 #NO_APP
8849
8850 So here we provide the missing zero. */
8851
8852 *displacement_string_end = '0';
8853 }
8854 #endif
8855 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8856 if (gotfree_input_line)
8857 input_line_pointer = gotfree_input_line;
8858
8859 exp_seg = expression (exp);
8860
8861 SKIP_WHITESPACE ();
8862 if (*input_line_pointer)
8863 as_bad (_("junk `%s' after expression"), input_line_pointer);
8864 #if GCC_ASM_O_HACK
8865 RESTORE_END_STRING (disp_end + 1);
8866 #endif
8867 input_line_pointer = save_input_line_pointer;
8868 if (gotfree_input_line)
8869 {
8870 free (gotfree_input_line);
8871
8872 if (exp->X_op == O_constant || exp->X_op == O_register)
8873 exp->X_op = O_illegal;
8874 }
8875
8876 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8877
8878 RESTORE_END_STRING (disp_end);
8879
8880 return ret;
8881 }
8882
8883 static int
8884 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8885 i386_operand_type types, const char *disp_start)
8886 {
8887 i386_operand_type bigdisp;
8888 int ret = 1;
8889
8890 /* We do this to make sure that the section symbol is in
8891 the symbol table. We will ultimately change the relocation
8892 to be relative to the beginning of the section. */
8893 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8894 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8895 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8896 {
8897 if (exp->X_op != O_symbol)
8898 goto inv_disp;
8899
8900 if (S_IS_LOCAL (exp->X_add_symbol)
8901 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8902 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8903 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8904 exp->X_op = O_subtract;
8905 exp->X_op_symbol = GOT_symbol;
8906 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8907 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8908 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8909 i.reloc[this_operand] = BFD_RELOC_64;
8910 else
8911 i.reloc[this_operand] = BFD_RELOC_32;
8912 }
8913
8914 else if (exp->X_op == O_absent
8915 || exp->X_op == O_illegal
8916 || exp->X_op == O_big)
8917 {
8918 inv_disp:
8919 as_bad (_("missing or invalid displacement expression `%s'"),
8920 disp_start);
8921 ret = 0;
8922 }
8923
8924 else if (flag_code == CODE_64BIT
8925 && !i.prefix[ADDR_PREFIX]
8926 && exp->X_op == O_constant)
8927 {
8928 /* Since displacement is signed extended to 64bit, don't allow
8929 disp32 and turn off disp32s if they are out of range. */
8930 i.types[this_operand].bitfield.disp32 = 0;
8931 if (!fits_in_signed_long (exp->X_add_number))
8932 {
8933 i.types[this_operand].bitfield.disp32s = 0;
8934 if (i.types[this_operand].bitfield.baseindex)
8935 {
8936 as_bad (_("0x%lx out range of signed 32bit displacement"),
8937 (long) exp->X_add_number);
8938 ret = 0;
8939 }
8940 }
8941 }
8942
8943 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8944 else if (exp->X_op != O_constant
8945 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8946 && exp_seg != absolute_section
8947 && exp_seg != text_section
8948 && exp_seg != data_section
8949 && exp_seg != bss_section
8950 && exp_seg != undefined_section
8951 && !bfd_is_com_section (exp_seg))
8952 {
8953 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8954 ret = 0;
8955 }
8956 #endif
8957
8958 /* Check if this is a displacement only operand. */
8959 bigdisp = i.types[this_operand];
8960 bigdisp.bitfield.disp8 = 0;
8961 bigdisp.bitfield.disp16 = 0;
8962 bigdisp.bitfield.disp32 = 0;
8963 bigdisp.bitfield.disp32s = 0;
8964 bigdisp.bitfield.disp64 = 0;
8965 if (operand_type_all_zero (&bigdisp))
8966 i.types[this_operand] = operand_type_and (i.types[this_operand],
8967 types);
8968
8969 return ret;
8970 }
8971
8972 /* Return the active addressing mode, taking address override and
8973 registers forming the address into consideration. Update the
8974 address override prefix if necessary. */
8975
8976 static enum flag_code
8977 i386_addressing_mode (void)
8978 {
8979 enum flag_code addr_mode;
8980
8981 if (i.prefix[ADDR_PREFIX])
8982 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8983 else
8984 {
8985 addr_mode = flag_code;
8986
8987 #if INFER_ADDR_PREFIX
8988 if (i.mem_operands == 0)
8989 {
8990 /* Infer address prefix from the first memory operand. */
8991 const reg_entry *addr_reg = i.base_reg;
8992
8993 if (addr_reg == NULL)
8994 addr_reg = i.index_reg;
8995
8996 if (addr_reg)
8997 {
8998 if (addr_reg->reg_num == RegEip
8999 || addr_reg->reg_num == RegEiz
9000 || addr_reg->reg_type.bitfield.dword)
9001 addr_mode = CODE_32BIT;
9002 else if (flag_code != CODE_64BIT
9003 && addr_reg->reg_type.bitfield.word)
9004 addr_mode = CODE_16BIT;
9005
9006 if (addr_mode != flag_code)
9007 {
9008 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9009 i.prefixes += 1;
9010 /* Change the size of any displacement too. At most one
9011 of Disp16 or Disp32 is set.
9012 FIXME. There doesn't seem to be any real need for
9013 separate Disp16 and Disp32 flags. The same goes for
9014 Imm16 and Imm32. Removing them would probably clean
9015 up the code quite a lot. */
9016 if (flag_code != CODE_64BIT
9017 && (i.types[this_operand].bitfield.disp16
9018 || i.types[this_operand].bitfield.disp32))
9019 i.types[this_operand]
9020 = operand_type_xor (i.types[this_operand], disp16_32);
9021 }
9022 }
9023 }
9024 #endif
9025 }
9026
9027 return addr_mode;
9028 }
9029
9030 /* Make sure the memory operand we've been dealt is valid.
9031 Return 1 on success, 0 on a failure. */
9032
9033 static int
9034 i386_index_check (const char *operand_string)
9035 {
9036 const char *kind = "base/index";
9037 enum flag_code addr_mode = i386_addressing_mode ();
9038
9039 if (current_templates->start->opcode_modifier.isstring
9040 && !current_templates->start->opcode_modifier.immext
9041 && (current_templates->end[-1].opcode_modifier.isstring
9042 || i.mem_operands))
9043 {
9044 /* Memory operands of string insns are special in that they only allow
9045 a single register (rDI, rSI, or rBX) as their memory address. */
9046 const reg_entry *expected_reg;
9047 static const char *di_si[][2] =
9048 {
9049 { "esi", "edi" },
9050 { "si", "di" },
9051 { "rsi", "rdi" }
9052 };
9053 static const char *bx[] = { "ebx", "bx", "rbx" };
9054
9055 kind = "string address";
9056
9057 if (current_templates->start->opcode_modifier.repprefixok)
9058 {
9059 i386_operand_type type = current_templates->end[-1].operand_types[0];
9060
9061 if (!type.bitfield.baseindex
9062 || ((!i.mem_operands != !intel_syntax)
9063 && current_templates->end[-1].operand_types[1]
9064 .bitfield.baseindex))
9065 type = current_templates->end[-1].operand_types[1];
9066 expected_reg = hash_find (reg_hash,
9067 di_si[addr_mode][type.bitfield.esseg]);
9068
9069 }
9070 else
9071 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9072
9073 if (i.base_reg != expected_reg
9074 || i.index_reg
9075 || operand_type_check (i.types[this_operand], disp))
9076 {
9077 /* The second memory operand must have the same size as
9078 the first one. */
9079 if (i.mem_operands
9080 && i.base_reg
9081 && !((addr_mode == CODE_64BIT
9082 && i.base_reg->reg_type.bitfield.qword)
9083 || (addr_mode == CODE_32BIT
9084 ? i.base_reg->reg_type.bitfield.dword
9085 : i.base_reg->reg_type.bitfield.word)))
9086 goto bad_address;
9087
9088 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9089 operand_string,
9090 intel_syntax ? '[' : '(',
9091 register_prefix,
9092 expected_reg->reg_name,
9093 intel_syntax ? ']' : ')');
9094 return 1;
9095 }
9096 else
9097 return 1;
9098
9099 bad_address:
9100 as_bad (_("`%s' is not a valid %s expression"),
9101 operand_string, kind);
9102 return 0;
9103 }
9104 else
9105 {
9106 if (addr_mode != CODE_16BIT)
9107 {
9108 /* 32-bit/64-bit checks. */
9109 if ((i.base_reg
9110 && (addr_mode == CODE_64BIT
9111 ? !i.base_reg->reg_type.bitfield.qword
9112 : !i.base_reg->reg_type.bitfield.dword)
9113 && (i.index_reg
9114 || (i.base_reg->reg_num
9115 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9116 || (i.index_reg
9117 && !i.index_reg->reg_type.bitfield.xmmword
9118 && !i.index_reg->reg_type.bitfield.ymmword
9119 && !i.index_reg->reg_type.bitfield.zmmword
9120 && ((addr_mode == CODE_64BIT
9121 ? !(i.index_reg->reg_type.bitfield.qword
9122 || i.index_reg->reg_num == RegRiz)
9123 : !(i.index_reg->reg_type.bitfield.dword
9124 || i.index_reg->reg_num == RegEiz))
9125 || !i.index_reg->reg_type.bitfield.baseindex)))
9126 goto bad_address;
9127
9128 /* bndmk, bndldx, and bndstx have special restrictions. */
9129 if (current_templates->start->base_opcode == 0xf30f1b
9130 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9131 {
9132 /* They cannot use RIP-relative addressing. */
9133 if (i.base_reg && i.base_reg->reg_num == RegRip)
9134 {
9135 as_bad (_("`%s' cannot be used here"), operand_string);
9136 return 0;
9137 }
9138
9139 /* bndldx and bndstx ignore their scale factor. */
9140 if (current_templates->start->base_opcode != 0xf30f1b
9141 && i.log2_scale_factor)
9142 as_warn (_("register scaling is being ignored here"));
9143 }
9144 }
9145 else
9146 {
9147 /* 16-bit checks. */
9148 if ((i.base_reg
9149 && (!i.base_reg->reg_type.bitfield.word
9150 || !i.base_reg->reg_type.bitfield.baseindex))
9151 || (i.index_reg
9152 && (!i.index_reg->reg_type.bitfield.word
9153 || !i.index_reg->reg_type.bitfield.baseindex
9154 || !(i.base_reg
9155 && i.base_reg->reg_num < 6
9156 && i.index_reg->reg_num >= 6
9157 && i.log2_scale_factor == 0))))
9158 goto bad_address;
9159 }
9160 }
9161 return 1;
9162 }
9163
9164 /* Handle vector immediates. */
9165
9166 static int
9167 RC_SAE_immediate (const char *imm_start)
9168 {
9169 unsigned int match_found, j;
9170 const char *pstr = imm_start;
9171 expressionS *exp;
9172
9173 if (*pstr != '{')
9174 return 0;
9175
9176 pstr++;
9177 match_found = 0;
9178 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9179 {
9180 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9181 {
9182 if (!i.rounding)
9183 {
9184 rc_op.type = RC_NamesTable[j].type;
9185 rc_op.operand = this_operand;
9186 i.rounding = &rc_op;
9187 }
9188 else
9189 {
9190 as_bad (_("duplicated `%s'"), imm_start);
9191 return 0;
9192 }
9193 pstr += RC_NamesTable[j].len;
9194 match_found = 1;
9195 break;
9196 }
9197 }
9198 if (!match_found)
9199 return 0;
9200
9201 if (*pstr++ != '}')
9202 {
9203 as_bad (_("Missing '}': '%s'"), imm_start);
9204 return 0;
9205 }
9206 /* RC/SAE immediate string should contain nothing more. */;
9207 if (*pstr != 0)
9208 {
9209 as_bad (_("Junk after '}': '%s'"), imm_start);
9210 return 0;
9211 }
9212
9213 exp = &im_expressions[i.imm_operands++];
9214 i.op[this_operand].imms = exp;
9215
9216 exp->X_op = O_constant;
9217 exp->X_add_number = 0;
9218 exp->X_add_symbol = (symbolS *) 0;
9219 exp->X_op_symbol = (symbolS *) 0;
9220
9221 i.types[this_operand].bitfield.imm8 = 1;
9222 return 1;
9223 }
9224
9225 /* Only string instructions can have a second memory operand, so
9226 reduce current_templates to just those if it contains any. */
9227 static int
9228 maybe_adjust_templates (void)
9229 {
9230 const insn_template *t;
9231
9232 gas_assert (i.mem_operands == 1);
9233
9234 for (t = current_templates->start; t < current_templates->end; ++t)
9235 if (t->opcode_modifier.isstring)
9236 break;
9237
9238 if (t < current_templates->end)
9239 {
9240 static templates aux_templates;
9241 bfd_boolean recheck;
9242
9243 aux_templates.start = t;
9244 for (; t < current_templates->end; ++t)
9245 if (!t->opcode_modifier.isstring)
9246 break;
9247 aux_templates.end = t;
9248
9249 /* Determine whether to re-check the first memory operand. */
9250 recheck = (aux_templates.start != current_templates->start
9251 || t != current_templates->end);
9252
9253 current_templates = &aux_templates;
9254
9255 if (recheck)
9256 {
9257 i.mem_operands = 0;
9258 if (i.memop1_string != NULL
9259 && i386_index_check (i.memop1_string) == 0)
9260 return 0;
9261 i.mem_operands = 1;
9262 }
9263 }
9264
9265 return 1;
9266 }
9267
9268 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9269 on error. */
9270
9271 static int
9272 i386_att_operand (char *operand_string)
9273 {
9274 const reg_entry *r;
9275 char *end_op;
9276 char *op_string = operand_string;
9277
9278 if (is_space_char (*op_string))
9279 ++op_string;
9280
9281 /* We check for an absolute prefix (differentiating,
9282 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9283 if (*op_string == ABSOLUTE_PREFIX)
9284 {
9285 ++op_string;
9286 if (is_space_char (*op_string))
9287 ++op_string;
9288 i.types[this_operand].bitfield.jumpabsolute = 1;
9289 }
9290
9291 /* Check if operand is a register. */
9292 if ((r = parse_register (op_string, &end_op)) != NULL)
9293 {
9294 i386_operand_type temp;
9295
9296 /* Check for a segment override by searching for ':' after a
9297 segment register. */
9298 op_string = end_op;
9299 if (is_space_char (*op_string))
9300 ++op_string;
9301 if (*op_string == ':'
9302 && (r->reg_type.bitfield.sreg2
9303 || r->reg_type.bitfield.sreg3))
9304 {
9305 switch (r->reg_num)
9306 {
9307 case 0:
9308 i.seg[i.mem_operands] = &es;
9309 break;
9310 case 1:
9311 i.seg[i.mem_operands] = &cs;
9312 break;
9313 case 2:
9314 i.seg[i.mem_operands] = &ss;
9315 break;
9316 case 3:
9317 i.seg[i.mem_operands] = &ds;
9318 break;
9319 case 4:
9320 i.seg[i.mem_operands] = &fs;
9321 break;
9322 case 5:
9323 i.seg[i.mem_operands] = &gs;
9324 break;
9325 }
9326
9327 /* Skip the ':' and whitespace. */
9328 ++op_string;
9329 if (is_space_char (*op_string))
9330 ++op_string;
9331
9332 if (!is_digit_char (*op_string)
9333 && !is_identifier_char (*op_string)
9334 && *op_string != '('
9335 && *op_string != ABSOLUTE_PREFIX)
9336 {
9337 as_bad (_("bad memory operand `%s'"), op_string);
9338 return 0;
9339 }
9340 /* Handle case of %es:*foo. */
9341 if (*op_string == ABSOLUTE_PREFIX)
9342 {
9343 ++op_string;
9344 if (is_space_char (*op_string))
9345 ++op_string;
9346 i.types[this_operand].bitfield.jumpabsolute = 1;
9347 }
9348 goto do_memory_reference;
9349 }
9350
9351 /* Handle vector operations. */
9352 if (*op_string == '{')
9353 {
9354 op_string = check_VecOperations (op_string, NULL);
9355 if (op_string == NULL)
9356 return 0;
9357 }
9358
9359 if (*op_string)
9360 {
9361 as_bad (_("junk `%s' after register"), op_string);
9362 return 0;
9363 }
9364 temp = r->reg_type;
9365 temp.bitfield.baseindex = 0;
9366 i.types[this_operand] = operand_type_or (i.types[this_operand],
9367 temp);
9368 i.types[this_operand].bitfield.unspecified = 0;
9369 i.op[this_operand].regs = r;
9370 i.reg_operands++;
9371 }
9372 else if (*op_string == REGISTER_PREFIX)
9373 {
9374 as_bad (_("bad register name `%s'"), op_string);
9375 return 0;
9376 }
9377 else if (*op_string == IMMEDIATE_PREFIX)
9378 {
9379 ++op_string;
9380 if (i.types[this_operand].bitfield.jumpabsolute)
9381 {
9382 as_bad (_("immediate operand illegal with absolute jump"));
9383 return 0;
9384 }
9385 if (!i386_immediate (op_string))
9386 return 0;
9387 }
9388 else if (RC_SAE_immediate (operand_string))
9389 {
9390 /* If it is a RC or SAE immediate, do nothing. */
9391 ;
9392 }
9393 else if (is_digit_char (*op_string)
9394 || is_identifier_char (*op_string)
9395 || *op_string == '"'
9396 || *op_string == '(')
9397 {
9398 /* This is a memory reference of some sort. */
9399 char *base_string;
9400
9401 /* Start and end of displacement string expression (if found). */
9402 char *displacement_string_start;
9403 char *displacement_string_end;
9404 char *vop_start;
9405
9406 do_memory_reference:
9407 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9408 return 0;
9409 if ((i.mem_operands == 1
9410 && !current_templates->start->opcode_modifier.isstring)
9411 || i.mem_operands == 2)
9412 {
9413 as_bad (_("too many memory references for `%s'"),
9414 current_templates->start->name);
9415 return 0;
9416 }
9417
9418 /* Check for base index form. We detect the base index form by
9419 looking for an ')' at the end of the operand, searching
9420 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9421 after the '('. */
9422 base_string = op_string + strlen (op_string);
9423
9424 /* Handle vector operations. */
9425 vop_start = strchr (op_string, '{');
9426 if (vop_start && vop_start < base_string)
9427 {
9428 if (check_VecOperations (vop_start, base_string) == NULL)
9429 return 0;
9430 base_string = vop_start;
9431 }
9432
9433 --base_string;
9434 if (is_space_char (*base_string))
9435 --base_string;
9436
9437 /* If we only have a displacement, set-up for it to be parsed later. */
9438 displacement_string_start = op_string;
9439 displacement_string_end = base_string + 1;
9440
9441 if (*base_string == ')')
9442 {
9443 char *temp_string;
9444 unsigned int parens_balanced = 1;
9445 /* We've already checked that the number of left & right ()'s are
9446 equal, so this loop will not be infinite. */
9447 do
9448 {
9449 base_string--;
9450 if (*base_string == ')')
9451 parens_balanced++;
9452 if (*base_string == '(')
9453 parens_balanced--;
9454 }
9455 while (parens_balanced);
9456
9457 temp_string = base_string;
9458
9459 /* Skip past '(' and whitespace. */
9460 ++base_string;
9461 if (is_space_char (*base_string))
9462 ++base_string;
9463
9464 if (*base_string == ','
9465 || ((i.base_reg = parse_register (base_string, &end_op))
9466 != NULL))
9467 {
9468 displacement_string_end = temp_string;
9469
9470 i.types[this_operand].bitfield.baseindex = 1;
9471
9472 if (i.base_reg)
9473 {
9474 base_string = end_op;
9475 if (is_space_char (*base_string))
9476 ++base_string;
9477 }
9478
9479 /* There may be an index reg or scale factor here. */
9480 if (*base_string == ',')
9481 {
9482 ++base_string;
9483 if (is_space_char (*base_string))
9484 ++base_string;
9485
9486 if ((i.index_reg = parse_register (base_string, &end_op))
9487 != NULL)
9488 {
9489 base_string = end_op;
9490 if (is_space_char (*base_string))
9491 ++base_string;
9492 if (*base_string == ',')
9493 {
9494 ++base_string;
9495 if (is_space_char (*base_string))
9496 ++base_string;
9497 }
9498 else if (*base_string != ')')
9499 {
9500 as_bad (_("expecting `,' or `)' "
9501 "after index register in `%s'"),
9502 operand_string);
9503 return 0;
9504 }
9505 }
9506 else if (*base_string == REGISTER_PREFIX)
9507 {
9508 end_op = strchr (base_string, ',');
9509 if (end_op)
9510 *end_op = '\0';
9511 as_bad (_("bad register name `%s'"), base_string);
9512 return 0;
9513 }
9514
9515 /* Check for scale factor. */
9516 if (*base_string != ')')
9517 {
9518 char *end_scale = i386_scale (base_string);
9519
9520 if (!end_scale)
9521 return 0;
9522
9523 base_string = end_scale;
9524 if (is_space_char (*base_string))
9525 ++base_string;
9526 if (*base_string != ')')
9527 {
9528 as_bad (_("expecting `)' "
9529 "after scale factor in `%s'"),
9530 operand_string);
9531 return 0;
9532 }
9533 }
9534 else if (!i.index_reg)
9535 {
9536 as_bad (_("expecting index register or scale factor "
9537 "after `,'; got '%c'"),
9538 *base_string);
9539 return 0;
9540 }
9541 }
9542 else if (*base_string != ')')
9543 {
9544 as_bad (_("expecting `,' or `)' "
9545 "after base register in `%s'"),
9546 operand_string);
9547 return 0;
9548 }
9549 }
9550 else if (*base_string == REGISTER_PREFIX)
9551 {
9552 end_op = strchr (base_string, ',');
9553 if (end_op)
9554 *end_op = '\0';
9555 as_bad (_("bad register name `%s'"), base_string);
9556 return 0;
9557 }
9558 }
9559
9560 /* If there's an expression beginning the operand, parse it,
9561 assuming displacement_string_start and
9562 displacement_string_end are meaningful. */
9563 if (displacement_string_start != displacement_string_end)
9564 {
9565 if (!i386_displacement (displacement_string_start,
9566 displacement_string_end))
9567 return 0;
9568 }
9569
9570 /* Special case for (%dx) while doing input/output op. */
9571 if (i.base_reg
9572 && operand_type_equal (&i.base_reg->reg_type,
9573 &reg16_inoutportreg)
9574 && i.index_reg == 0
9575 && i.log2_scale_factor == 0
9576 && i.seg[i.mem_operands] == 0
9577 && !operand_type_check (i.types[this_operand], disp))
9578 {
9579 i.types[this_operand] = inoutportreg;
9580 return 1;
9581 }
9582
9583 if (i386_index_check (operand_string) == 0)
9584 return 0;
9585 i.types[this_operand].bitfield.mem = 1;
9586 if (i.mem_operands == 0)
9587 i.memop1_string = xstrdup (operand_string);
9588 i.mem_operands++;
9589 }
9590 else
9591 {
9592 /* It's not a memory operand; argh! */
9593 as_bad (_("invalid char %s beginning operand %d `%s'"),
9594 output_invalid (*op_string),
9595 this_operand + 1,
9596 op_string);
9597 return 0;
9598 }
9599 return 1; /* Normal return. */
9600 }
9601 \f
9602 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9603 that an rs_machine_dependent frag may reach. */
9604
9605 unsigned int
9606 i386_frag_max_var (fragS *frag)
9607 {
9608 /* The only relaxable frags are for jumps.
9609 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9610 gas_assert (frag->fr_type == rs_machine_dependent);
9611 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9612 }
9613
9614 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9615 static int
9616 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9617 {
9618 /* STT_GNU_IFUNC symbol must go through PLT. */
9619 if ((symbol_get_bfdsym (fr_symbol)->flags
9620 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9621 return 0;
9622
9623 if (!S_IS_EXTERNAL (fr_symbol))
9624 /* Symbol may be weak or local. */
9625 return !S_IS_WEAK (fr_symbol);
9626
9627 /* Global symbols with non-default visibility can't be preempted. */
9628 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9629 return 1;
9630
9631 if (fr_var != NO_RELOC)
9632 switch ((enum bfd_reloc_code_real) fr_var)
9633 {
9634 case BFD_RELOC_386_PLT32:
9635 case BFD_RELOC_X86_64_PLT32:
9636 /* Symbol with PLT relocation may be preempted. */
9637 return 0;
9638 default:
9639 abort ();
9640 }
9641
9642 /* Global symbols with default visibility in a shared library may be
9643 preempted by another definition. */
9644 return !shared;
9645 }
9646 #endif
9647
9648 /* md_estimate_size_before_relax()
9649
9650 Called just before relax() for rs_machine_dependent frags. The x86
9651 assembler uses these frags to handle variable size jump
9652 instructions.
9653
9654 Any symbol that is now undefined will not become defined.
9655 Return the correct fr_subtype in the frag.
9656 Return the initial "guess for variable size of frag" to caller.
9657 The guess is actually the growth beyond the fixed part. Whatever
9658 we do to grow the fixed or variable part contributes to our
9659 returned value. */
9660
9661 int
9662 md_estimate_size_before_relax (fragS *fragP, segT segment)
9663 {
9664 /* We've already got fragP->fr_subtype right; all we have to do is
9665 check for un-relaxable symbols. On an ELF system, we can't relax
9666 an externally visible symbol, because it may be overridden by a
9667 shared library. */
9668 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9669 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9670 || (IS_ELF
9671 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9672 fragP->fr_var))
9673 #endif
9674 #if defined (OBJ_COFF) && defined (TE_PE)
9675 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9676 && S_IS_WEAK (fragP->fr_symbol))
9677 #endif
9678 )
9679 {
9680 /* Symbol is undefined in this segment, or we need to keep a
9681 reloc so that weak symbols can be overridden. */
9682 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9683 enum bfd_reloc_code_real reloc_type;
9684 unsigned char *opcode;
9685 int old_fr_fix;
9686
9687 if (fragP->fr_var != NO_RELOC)
9688 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9689 else if (size == 2)
9690 reloc_type = BFD_RELOC_16_PCREL;
9691 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9692 else if (need_plt32_p (fragP->fr_symbol))
9693 reloc_type = BFD_RELOC_X86_64_PLT32;
9694 #endif
9695 else
9696 reloc_type = BFD_RELOC_32_PCREL;
9697
9698 old_fr_fix = fragP->fr_fix;
9699 opcode = (unsigned char *) fragP->fr_opcode;
9700
9701 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9702 {
9703 case UNCOND_JUMP:
9704 /* Make jmp (0xeb) a (d)word displacement jump. */
9705 opcode[0] = 0xe9;
9706 fragP->fr_fix += size;
9707 fix_new (fragP, old_fr_fix, size,
9708 fragP->fr_symbol,
9709 fragP->fr_offset, 1,
9710 reloc_type);
9711 break;
9712
9713 case COND_JUMP86:
9714 if (size == 2
9715 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9716 {
9717 /* Negate the condition, and branch past an
9718 unconditional jump. */
9719 opcode[0] ^= 1;
9720 opcode[1] = 3;
9721 /* Insert an unconditional jump. */
9722 opcode[2] = 0xe9;
9723 /* We added two extra opcode bytes, and have a two byte
9724 offset. */
9725 fragP->fr_fix += 2 + 2;
9726 fix_new (fragP, old_fr_fix + 2, 2,
9727 fragP->fr_symbol,
9728 fragP->fr_offset, 1,
9729 reloc_type);
9730 break;
9731 }
9732 /* Fall through. */
9733
9734 case COND_JUMP:
9735 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9736 {
9737 fixS *fixP;
9738
9739 fragP->fr_fix += 1;
9740 fixP = fix_new (fragP, old_fr_fix, 1,
9741 fragP->fr_symbol,
9742 fragP->fr_offset, 1,
9743 BFD_RELOC_8_PCREL);
9744 fixP->fx_signed = 1;
9745 break;
9746 }
9747
9748 /* This changes the byte-displacement jump 0x7N
9749 to the (d)word-displacement jump 0x0f,0x8N. */
9750 opcode[1] = opcode[0] + 0x10;
9751 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9752 /* We've added an opcode byte. */
9753 fragP->fr_fix += 1 + size;
9754 fix_new (fragP, old_fr_fix + 1, size,
9755 fragP->fr_symbol,
9756 fragP->fr_offset, 1,
9757 reloc_type);
9758 break;
9759
9760 default:
9761 BAD_CASE (fragP->fr_subtype);
9762 break;
9763 }
9764 frag_wane (fragP);
9765 return fragP->fr_fix - old_fr_fix;
9766 }
9767
9768 /* Guess size depending on current relax state. Initially the relax
9769 state will correspond to a short jump and we return 1, because
9770 the variable part of the frag (the branch offset) is one byte
9771 long. However, we can relax a section more than once and in that
9772 case we must either set fr_subtype back to the unrelaxed state,
9773 or return the value for the appropriate branch. */
9774 return md_relax_table[fragP->fr_subtype].rlx_length;
9775 }
9776
9777 /* Called after relax() is finished.
9778
9779 In: Address of frag.
9780 fr_type == rs_machine_dependent.
9781 fr_subtype is what the address relaxed to.
9782
9783 Out: Any fixSs and constants are set up.
9784 Caller will turn frag into a ".space 0". */
9785
9786 void
9787 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9788 fragS *fragP)
9789 {
9790 unsigned char *opcode;
9791 unsigned char *where_to_put_displacement = NULL;
9792 offsetT target_address;
9793 offsetT opcode_address;
9794 unsigned int extension = 0;
9795 offsetT displacement_from_opcode_start;
9796
9797 opcode = (unsigned char *) fragP->fr_opcode;
9798
9799 /* Address we want to reach in file space. */
9800 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9801
9802 /* Address opcode resides at in file space. */
9803 opcode_address = fragP->fr_address + fragP->fr_fix;
9804
9805 /* Displacement from opcode start to fill into instruction. */
9806 displacement_from_opcode_start = target_address - opcode_address;
9807
9808 if ((fragP->fr_subtype & BIG) == 0)
9809 {
9810 /* Don't have to change opcode. */
9811 extension = 1; /* 1 opcode + 1 displacement */
9812 where_to_put_displacement = &opcode[1];
9813 }
9814 else
9815 {
9816 if (no_cond_jump_promotion
9817 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9818 as_warn_where (fragP->fr_file, fragP->fr_line,
9819 _("long jump required"));
9820
9821 switch (fragP->fr_subtype)
9822 {
9823 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9824 extension = 4; /* 1 opcode + 4 displacement */
9825 opcode[0] = 0xe9;
9826 where_to_put_displacement = &opcode[1];
9827 break;
9828
9829 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9830 extension = 2; /* 1 opcode + 2 displacement */
9831 opcode[0] = 0xe9;
9832 where_to_put_displacement = &opcode[1];
9833 break;
9834
9835 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9836 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9837 extension = 5; /* 2 opcode + 4 displacement */
9838 opcode[1] = opcode[0] + 0x10;
9839 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9840 where_to_put_displacement = &opcode[2];
9841 break;
9842
9843 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9844 extension = 3; /* 2 opcode + 2 displacement */
9845 opcode[1] = opcode[0] + 0x10;
9846 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9847 where_to_put_displacement = &opcode[2];
9848 break;
9849
9850 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9851 extension = 4;
9852 opcode[0] ^= 1;
9853 opcode[1] = 3;
9854 opcode[2] = 0xe9;
9855 where_to_put_displacement = &opcode[3];
9856 break;
9857
9858 default:
9859 BAD_CASE (fragP->fr_subtype);
9860 break;
9861 }
9862 }
9863
9864 /* If size if less then four we are sure that the operand fits,
9865 but if it's 4, then it could be that the displacement is larger
9866 then -/+ 2GB. */
9867 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9868 && object_64bit
9869 && ((addressT) (displacement_from_opcode_start - extension
9870 + ((addressT) 1 << 31))
9871 > (((addressT) 2 << 31) - 1)))
9872 {
9873 as_bad_where (fragP->fr_file, fragP->fr_line,
9874 _("jump target out of range"));
9875 /* Make us emit 0. */
9876 displacement_from_opcode_start = extension;
9877 }
9878 /* Now put displacement after opcode. */
9879 md_number_to_chars ((char *) where_to_put_displacement,
9880 (valueT) (displacement_from_opcode_start - extension),
9881 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9882 fragP->fr_fix += extension;
9883 }
9884 \f
9885 /* Apply a fixup (fixP) to segment data, once it has been determined
9886 by our caller that we have all the info we need to fix it up.
9887
9888 Parameter valP is the pointer to the value of the bits.
9889
9890 On the 386, immediates, displacements, and data pointers are all in
9891 the same (little-endian) format, so we don't need to care about which
9892 we are handling. */
9893
9894 void
9895 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9896 {
9897 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9898 valueT value = *valP;
9899
9900 #if !defined (TE_Mach)
9901 if (fixP->fx_pcrel)
9902 {
9903 switch (fixP->fx_r_type)
9904 {
9905 default:
9906 break;
9907
9908 case BFD_RELOC_64:
9909 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9910 break;
9911 case BFD_RELOC_32:
9912 case BFD_RELOC_X86_64_32S:
9913 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9914 break;
9915 case BFD_RELOC_16:
9916 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9917 break;
9918 case BFD_RELOC_8:
9919 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9920 break;
9921 }
9922 }
9923
9924 if (fixP->fx_addsy != NULL
9925 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9926 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9927 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9928 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9929 && !use_rela_relocations)
9930 {
9931 /* This is a hack. There should be a better way to handle this.
9932 This covers for the fact that bfd_install_relocation will
9933 subtract the current location (for partial_inplace, PC relative
9934 relocations); see more below. */
9935 #ifndef OBJ_AOUT
9936 if (IS_ELF
9937 #ifdef TE_PE
9938 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9939 #endif
9940 )
9941 value += fixP->fx_where + fixP->fx_frag->fr_address;
9942 #endif
9943 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9944 if (IS_ELF)
9945 {
9946 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9947
9948 if ((sym_seg == seg
9949 || (symbol_section_p (fixP->fx_addsy)
9950 && sym_seg != absolute_section))
9951 && !generic_force_reloc (fixP))
9952 {
9953 /* Yes, we add the values in twice. This is because
9954 bfd_install_relocation subtracts them out again. I think
9955 bfd_install_relocation is broken, but I don't dare change
9956 it. FIXME. */
9957 value += fixP->fx_where + fixP->fx_frag->fr_address;
9958 }
9959 }
9960 #endif
9961 #if defined (OBJ_COFF) && defined (TE_PE)
9962 /* For some reason, the PE format does not store a
9963 section address offset for a PC relative symbol. */
9964 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9965 || S_IS_WEAK (fixP->fx_addsy))
9966 value += md_pcrel_from (fixP);
9967 #endif
9968 }
9969 #if defined (OBJ_COFF) && defined (TE_PE)
9970 if (fixP->fx_addsy != NULL
9971 && S_IS_WEAK (fixP->fx_addsy)
9972 /* PR 16858: Do not modify weak function references. */
9973 && ! fixP->fx_pcrel)
9974 {
9975 #if !defined (TE_PEP)
9976 /* For x86 PE weak function symbols are neither PC-relative
9977 nor do they set S_IS_FUNCTION. So the only reliable way
9978 to detect them is to check the flags of their containing
9979 section. */
9980 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9981 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9982 ;
9983 else
9984 #endif
9985 value -= S_GET_VALUE (fixP->fx_addsy);
9986 }
9987 #endif
9988
9989 /* Fix a few things - the dynamic linker expects certain values here,
9990 and we must not disappoint it. */
9991 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9992 if (IS_ELF && fixP->fx_addsy)
9993 switch (fixP->fx_r_type)
9994 {
9995 case BFD_RELOC_386_PLT32:
9996 case BFD_RELOC_X86_64_PLT32:
9997 /* Make the jump instruction point to the address of the operand. At
9998 runtime we merely add the offset to the actual PLT entry. */
9999 value = -4;
10000 break;
10001
10002 case BFD_RELOC_386_TLS_GD:
10003 case BFD_RELOC_386_TLS_LDM:
10004 case BFD_RELOC_386_TLS_IE_32:
10005 case BFD_RELOC_386_TLS_IE:
10006 case BFD_RELOC_386_TLS_GOTIE:
10007 case BFD_RELOC_386_TLS_GOTDESC:
10008 case BFD_RELOC_X86_64_TLSGD:
10009 case BFD_RELOC_X86_64_TLSLD:
10010 case BFD_RELOC_X86_64_GOTTPOFF:
10011 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10012 value = 0; /* Fully resolved at runtime. No addend. */
10013 /* Fallthrough */
10014 case BFD_RELOC_386_TLS_LE:
10015 case BFD_RELOC_386_TLS_LDO_32:
10016 case BFD_RELOC_386_TLS_LE_32:
10017 case BFD_RELOC_X86_64_DTPOFF32:
10018 case BFD_RELOC_X86_64_DTPOFF64:
10019 case BFD_RELOC_X86_64_TPOFF32:
10020 case BFD_RELOC_X86_64_TPOFF64:
10021 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10022 break;
10023
10024 case BFD_RELOC_386_TLS_DESC_CALL:
10025 case BFD_RELOC_X86_64_TLSDESC_CALL:
10026 value = 0; /* Fully resolved at runtime. No addend. */
10027 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10028 fixP->fx_done = 0;
10029 return;
10030
10031 case BFD_RELOC_VTABLE_INHERIT:
10032 case BFD_RELOC_VTABLE_ENTRY:
10033 fixP->fx_done = 0;
10034 return;
10035
10036 default:
10037 break;
10038 }
10039 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10040 *valP = value;
10041 #endif /* !defined (TE_Mach) */
10042
10043 /* Are we finished with this relocation now? */
10044 if (fixP->fx_addsy == NULL)
10045 fixP->fx_done = 1;
10046 #if defined (OBJ_COFF) && defined (TE_PE)
10047 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10048 {
10049 fixP->fx_done = 0;
10050 /* Remember value for tc_gen_reloc. */
10051 fixP->fx_addnumber = value;
10052 /* Clear out the frag for now. */
10053 value = 0;
10054 }
10055 #endif
10056 else if (use_rela_relocations)
10057 {
10058 fixP->fx_no_overflow = 1;
10059 /* Remember value for tc_gen_reloc. */
10060 fixP->fx_addnumber = value;
10061 value = 0;
10062 }
10063
10064 md_number_to_chars (p, value, fixP->fx_size);
10065 }
10066 \f
10067 const char *
10068 md_atof (int type, char *litP, int *sizeP)
10069 {
10070 /* This outputs the LITTLENUMs in REVERSE order;
10071 in accord with the bigendian 386. */
10072 return ieee_md_atof (type, litP, sizeP, FALSE);
10073 }
10074 \f
10075 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10076
10077 static char *
10078 output_invalid (int c)
10079 {
10080 if (ISPRINT (c))
10081 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10082 "'%c'", c);
10083 else
10084 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10085 "(0x%x)", (unsigned char) c);
10086 return output_invalid_buf;
10087 }
10088
10089 /* REG_STRING starts *before* REGISTER_PREFIX. */
10090
10091 static const reg_entry *
10092 parse_real_register (char *reg_string, char **end_op)
10093 {
10094 char *s = reg_string;
10095 char *p;
10096 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10097 const reg_entry *r;
10098
10099 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10100 if (*s == REGISTER_PREFIX)
10101 ++s;
10102
10103 if (is_space_char (*s))
10104 ++s;
10105
10106 p = reg_name_given;
10107 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10108 {
10109 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10110 return (const reg_entry *) NULL;
10111 s++;
10112 }
10113
10114 /* For naked regs, make sure that we are not dealing with an identifier.
10115 This prevents confusing an identifier like `eax_var' with register
10116 `eax'. */
10117 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10118 return (const reg_entry *) NULL;
10119
10120 *end_op = s;
10121
10122 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10123
10124 /* Handle floating point regs, allowing spaces in the (i) part. */
10125 if (r == i386_regtab /* %st is first entry of table */)
10126 {
10127 if (is_space_char (*s))
10128 ++s;
10129 if (*s == '(')
10130 {
10131 ++s;
10132 if (is_space_char (*s))
10133 ++s;
10134 if (*s >= '0' && *s <= '7')
10135 {
10136 int fpr = *s - '0';
10137 ++s;
10138 if (is_space_char (*s))
10139 ++s;
10140 if (*s == ')')
10141 {
10142 *end_op = s + 1;
10143 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10144 know (r);
10145 return r + fpr;
10146 }
10147 }
10148 /* We have "%st(" then garbage. */
10149 return (const reg_entry *) NULL;
10150 }
10151 }
10152
10153 if (r == NULL || allow_pseudo_reg)
10154 return r;
10155
10156 if (operand_type_all_zero (&r->reg_type))
10157 return (const reg_entry *) NULL;
10158
10159 if ((r->reg_type.bitfield.dword
10160 || r->reg_type.bitfield.sreg3
10161 || r->reg_type.bitfield.control
10162 || r->reg_type.bitfield.debug
10163 || r->reg_type.bitfield.test)
10164 && !cpu_arch_flags.bitfield.cpui386)
10165 return (const reg_entry *) NULL;
10166
10167 if (r->reg_type.bitfield.tbyte
10168 && !cpu_arch_flags.bitfield.cpu8087
10169 && !cpu_arch_flags.bitfield.cpu287
10170 && !cpu_arch_flags.bitfield.cpu387)
10171 return (const reg_entry *) NULL;
10172
10173 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
10174 return (const reg_entry *) NULL;
10175
10176 if (r->reg_type.bitfield.xmmword && !cpu_arch_flags.bitfield.cpuregxmm)
10177 return (const reg_entry *) NULL;
10178
10179 if (r->reg_type.bitfield.ymmword && !cpu_arch_flags.bitfield.cpuregymm)
10180 return (const reg_entry *) NULL;
10181
10182 if (r->reg_type.bitfield.zmmword && !cpu_arch_flags.bitfield.cpuregzmm)
10183 return (const reg_entry *) NULL;
10184
10185 if (r->reg_type.bitfield.regmask
10186 && !cpu_arch_flags.bitfield.cpuregmask)
10187 return (const reg_entry *) NULL;
10188
10189 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10190 if (!allow_index_reg
10191 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10192 return (const reg_entry *) NULL;
10193
10194 /* Upper 16 vector register is only available with VREX in 64bit
10195 mode. */
10196 if ((r->reg_flags & RegVRex))
10197 {
10198 if (i.vec_encoding == vex_encoding_default)
10199 i.vec_encoding = vex_encoding_evex;
10200
10201 if (!cpu_arch_flags.bitfield.cpuvrex
10202 || i.vec_encoding != vex_encoding_evex
10203 || flag_code != CODE_64BIT)
10204 return (const reg_entry *) NULL;
10205 }
10206
10207 if (((r->reg_flags & (RegRex64 | RegRex))
10208 || r->reg_type.bitfield.qword)
10209 && (!cpu_arch_flags.bitfield.cpulm
10210 || !operand_type_equal (&r->reg_type, &control))
10211 && flag_code != CODE_64BIT)
10212 return (const reg_entry *) NULL;
10213
10214 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10215 return (const reg_entry *) NULL;
10216
10217 return r;
10218 }
10219
10220 /* REG_STRING starts *before* REGISTER_PREFIX. */
10221
10222 static const reg_entry *
10223 parse_register (char *reg_string, char **end_op)
10224 {
10225 const reg_entry *r;
10226
10227 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10228 r = parse_real_register (reg_string, end_op);
10229 else
10230 r = NULL;
10231 if (!r)
10232 {
10233 char *save = input_line_pointer;
10234 char c;
10235 symbolS *symbolP;
10236
10237 input_line_pointer = reg_string;
10238 c = get_symbol_name (&reg_string);
10239 symbolP = symbol_find (reg_string);
10240 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10241 {
10242 const expressionS *e = symbol_get_value_expression (symbolP);
10243
10244 know (e->X_op == O_register);
10245 know (e->X_add_number >= 0
10246 && (valueT) e->X_add_number < i386_regtab_size);
10247 r = i386_regtab + e->X_add_number;
10248 if ((r->reg_flags & RegVRex))
10249 i.vec_encoding = vex_encoding_evex;
10250 *end_op = input_line_pointer;
10251 }
10252 *input_line_pointer = c;
10253 input_line_pointer = save;
10254 }
10255 return r;
10256 }
10257
10258 int
10259 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10260 {
10261 const reg_entry *r;
10262 char *end = input_line_pointer;
10263
10264 *end = *nextcharP;
10265 r = parse_register (name, &input_line_pointer);
10266 if (r && end <= input_line_pointer)
10267 {
10268 *nextcharP = *input_line_pointer;
10269 *input_line_pointer = 0;
10270 e->X_op = O_register;
10271 e->X_add_number = r - i386_regtab;
10272 return 1;
10273 }
10274 input_line_pointer = end;
10275 *end = 0;
10276 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10277 }
10278
10279 void
10280 md_operand (expressionS *e)
10281 {
10282 char *end;
10283 const reg_entry *r;
10284
10285 switch (*input_line_pointer)
10286 {
10287 case REGISTER_PREFIX:
10288 r = parse_real_register (input_line_pointer, &end);
10289 if (r)
10290 {
10291 e->X_op = O_register;
10292 e->X_add_number = r - i386_regtab;
10293 input_line_pointer = end;
10294 }
10295 break;
10296
10297 case '[':
10298 gas_assert (intel_syntax);
10299 end = input_line_pointer++;
10300 expression (e);
10301 if (*input_line_pointer == ']')
10302 {
10303 ++input_line_pointer;
10304 e->X_op_symbol = make_expr_symbol (e);
10305 e->X_add_symbol = NULL;
10306 e->X_add_number = 0;
10307 e->X_op = O_index;
10308 }
10309 else
10310 {
10311 e->X_op = O_absent;
10312 input_line_pointer = end;
10313 }
10314 break;
10315 }
10316 }
10317
10318 \f
10319 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10320 const char *md_shortopts = "kVQ:sqnO::";
10321 #else
10322 const char *md_shortopts = "qnO::";
10323 #endif
10324
10325 #define OPTION_32 (OPTION_MD_BASE + 0)
10326 #define OPTION_64 (OPTION_MD_BASE + 1)
10327 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10328 #define OPTION_MARCH (OPTION_MD_BASE + 3)
10329 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
10330 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10331 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10332 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10333 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10334 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
10335 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
10336 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
10337 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10338 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10339 #define OPTION_X32 (OPTION_MD_BASE + 14)
10340 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
10341 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10342 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
10343 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
10344 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
10345 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
10346 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
10347 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10348 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
10349 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
10350
10351 struct option md_longopts[] =
10352 {
10353 {"32", no_argument, NULL, OPTION_32},
10354 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10355 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10356 {"64", no_argument, NULL, OPTION_64},
10357 #endif
10358 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10359 {"x32", no_argument, NULL, OPTION_X32},
10360 {"mshared", no_argument, NULL, OPTION_MSHARED},
10361 #endif
10362 {"divide", no_argument, NULL, OPTION_DIVIDE},
10363 {"march", required_argument, NULL, OPTION_MARCH},
10364 {"mtune", required_argument, NULL, OPTION_MTUNE},
10365 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10366 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10367 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10368 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10369 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10370 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10371 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10372 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10373 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10374 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10375 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10376 # if defined (TE_PE) || defined (TE_PEP)
10377 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10378 #endif
10379 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10380 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10381 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10382 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10383 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10384 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10385 {NULL, no_argument, NULL, 0}
10386 };
10387 size_t md_longopts_size = sizeof (md_longopts);
10388
10389 int
10390 md_parse_option (int c, const char *arg)
10391 {
10392 unsigned int j;
10393 char *arch, *next, *saved;
10394
10395 switch (c)
10396 {
10397 case 'n':
10398 optimize_align_code = 0;
10399 break;
10400
10401 case 'q':
10402 quiet_warnings = 1;
10403 break;
10404
10405 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10406 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10407 should be emitted or not. FIXME: Not implemented. */
10408 case 'Q':
10409 break;
10410
10411 /* -V: SVR4 argument to print version ID. */
10412 case 'V':
10413 print_version_id ();
10414 break;
10415
10416 /* -k: Ignore for FreeBSD compatibility. */
10417 case 'k':
10418 break;
10419
10420 case 's':
10421 /* -s: On i386 Solaris, this tells the native assembler to use
10422 .stab instead of .stab.excl. We always use .stab anyhow. */
10423 break;
10424
10425 case OPTION_MSHARED:
10426 shared = 1;
10427 break;
10428 #endif
10429 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10430 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10431 case OPTION_64:
10432 {
10433 const char **list, **l;
10434
10435 list = bfd_target_list ();
10436 for (l = list; *l != NULL; l++)
10437 if (CONST_STRNEQ (*l, "elf64-x86-64")
10438 || strcmp (*l, "coff-x86-64") == 0
10439 || strcmp (*l, "pe-x86-64") == 0
10440 || strcmp (*l, "pei-x86-64") == 0
10441 || strcmp (*l, "mach-o-x86-64") == 0)
10442 {
10443 default_arch = "x86_64";
10444 break;
10445 }
10446 if (*l == NULL)
10447 as_fatal (_("no compiled in support for x86_64"));
10448 free (list);
10449 }
10450 break;
10451 #endif
10452
10453 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10454 case OPTION_X32:
10455 if (IS_ELF)
10456 {
10457 const char **list, **l;
10458
10459 list = bfd_target_list ();
10460 for (l = list; *l != NULL; l++)
10461 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10462 {
10463 default_arch = "x86_64:32";
10464 break;
10465 }
10466 if (*l == NULL)
10467 as_fatal (_("no compiled in support for 32bit x86_64"));
10468 free (list);
10469 }
10470 else
10471 as_fatal (_("32bit x86_64 is only supported for ELF"));
10472 break;
10473 #endif
10474
10475 case OPTION_32:
10476 default_arch = "i386";
10477 break;
10478
10479 case OPTION_DIVIDE:
10480 #ifdef SVR4_COMMENT_CHARS
10481 {
10482 char *n, *t;
10483 const char *s;
10484
10485 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10486 t = n;
10487 for (s = i386_comment_chars; *s != '\0'; s++)
10488 if (*s != '/')
10489 *t++ = *s;
10490 *t = '\0';
10491 i386_comment_chars = n;
10492 }
10493 #endif
10494 break;
10495
10496 case OPTION_MARCH:
10497 saved = xstrdup (arg);
10498 arch = saved;
10499 /* Allow -march=+nosse. */
10500 if (*arch == '+')
10501 arch++;
10502 do
10503 {
10504 if (*arch == '.')
10505 as_fatal (_("invalid -march= option: `%s'"), arg);
10506 next = strchr (arch, '+');
10507 if (next)
10508 *next++ = '\0';
10509 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10510 {
10511 if (strcmp (arch, cpu_arch [j].name) == 0)
10512 {
10513 /* Processor. */
10514 if (! cpu_arch[j].flags.bitfield.cpui386)
10515 continue;
10516
10517 cpu_arch_name = cpu_arch[j].name;
10518 cpu_sub_arch_name = NULL;
10519 cpu_arch_flags = cpu_arch[j].flags;
10520 cpu_arch_isa = cpu_arch[j].type;
10521 cpu_arch_isa_flags = cpu_arch[j].flags;
10522 if (!cpu_arch_tune_set)
10523 {
10524 cpu_arch_tune = cpu_arch_isa;
10525 cpu_arch_tune_flags = cpu_arch_isa_flags;
10526 }
10527 break;
10528 }
10529 else if (*cpu_arch [j].name == '.'
10530 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10531 {
10532 /* ISA extension. */
10533 i386_cpu_flags flags;
10534
10535 flags = cpu_flags_or (cpu_arch_flags,
10536 cpu_arch[j].flags);
10537
10538 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10539 {
10540 if (cpu_sub_arch_name)
10541 {
10542 char *name = cpu_sub_arch_name;
10543 cpu_sub_arch_name = concat (name,
10544 cpu_arch[j].name,
10545 (const char *) NULL);
10546 free (name);
10547 }
10548 else
10549 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10550 cpu_arch_flags = flags;
10551 cpu_arch_isa_flags = flags;
10552 }
10553 else
10554 cpu_arch_isa_flags
10555 = cpu_flags_or (cpu_arch_isa_flags,
10556 cpu_arch[j].flags);
10557 break;
10558 }
10559 }
10560
10561 if (j >= ARRAY_SIZE (cpu_arch))
10562 {
10563 /* Disable an ISA extension. */
10564 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10565 if (strcmp (arch, cpu_noarch [j].name) == 0)
10566 {
10567 i386_cpu_flags flags;
10568
10569 flags = cpu_flags_and_not (cpu_arch_flags,
10570 cpu_noarch[j].flags);
10571 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10572 {
10573 if (cpu_sub_arch_name)
10574 {
10575 char *name = cpu_sub_arch_name;
10576 cpu_sub_arch_name = concat (arch,
10577 (const char *) NULL);
10578 free (name);
10579 }
10580 else
10581 cpu_sub_arch_name = xstrdup (arch);
10582 cpu_arch_flags = flags;
10583 cpu_arch_isa_flags = flags;
10584 }
10585 break;
10586 }
10587
10588 if (j >= ARRAY_SIZE (cpu_noarch))
10589 j = ARRAY_SIZE (cpu_arch);
10590 }
10591
10592 if (j >= ARRAY_SIZE (cpu_arch))
10593 as_fatal (_("invalid -march= option: `%s'"), arg);
10594
10595 arch = next;
10596 }
10597 while (next != NULL);
10598 free (saved);
10599 break;
10600
10601 case OPTION_MTUNE:
10602 if (*arg == '.')
10603 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10604 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10605 {
10606 if (strcmp (arg, cpu_arch [j].name) == 0)
10607 {
10608 cpu_arch_tune_set = 1;
10609 cpu_arch_tune = cpu_arch [j].type;
10610 cpu_arch_tune_flags = cpu_arch[j].flags;
10611 break;
10612 }
10613 }
10614 if (j >= ARRAY_SIZE (cpu_arch))
10615 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10616 break;
10617
10618 case OPTION_MMNEMONIC:
10619 if (strcasecmp (arg, "att") == 0)
10620 intel_mnemonic = 0;
10621 else if (strcasecmp (arg, "intel") == 0)
10622 intel_mnemonic = 1;
10623 else
10624 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10625 break;
10626
10627 case OPTION_MSYNTAX:
10628 if (strcasecmp (arg, "att") == 0)
10629 intel_syntax = 0;
10630 else if (strcasecmp (arg, "intel") == 0)
10631 intel_syntax = 1;
10632 else
10633 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10634 break;
10635
10636 case OPTION_MINDEX_REG:
10637 allow_index_reg = 1;
10638 break;
10639
10640 case OPTION_MNAKED_REG:
10641 allow_naked_reg = 1;
10642 break;
10643
10644 case OPTION_MSSE2AVX:
10645 sse2avx = 1;
10646 break;
10647
10648 case OPTION_MSSE_CHECK:
10649 if (strcasecmp (arg, "error") == 0)
10650 sse_check = check_error;
10651 else if (strcasecmp (arg, "warning") == 0)
10652 sse_check = check_warning;
10653 else if (strcasecmp (arg, "none") == 0)
10654 sse_check = check_none;
10655 else
10656 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10657 break;
10658
10659 case OPTION_MOPERAND_CHECK:
10660 if (strcasecmp (arg, "error") == 0)
10661 operand_check = check_error;
10662 else if (strcasecmp (arg, "warning") == 0)
10663 operand_check = check_warning;
10664 else if (strcasecmp (arg, "none") == 0)
10665 operand_check = check_none;
10666 else
10667 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10668 break;
10669
10670 case OPTION_MAVXSCALAR:
10671 if (strcasecmp (arg, "128") == 0)
10672 avxscalar = vex128;
10673 else if (strcasecmp (arg, "256") == 0)
10674 avxscalar = vex256;
10675 else
10676 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10677 break;
10678
10679 case OPTION_MADD_BND_PREFIX:
10680 add_bnd_prefix = 1;
10681 break;
10682
10683 case OPTION_MEVEXLIG:
10684 if (strcmp (arg, "128") == 0)
10685 evexlig = evexl128;
10686 else if (strcmp (arg, "256") == 0)
10687 evexlig = evexl256;
10688 else if (strcmp (arg, "512") == 0)
10689 evexlig = evexl512;
10690 else
10691 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10692 break;
10693
10694 case OPTION_MEVEXRCIG:
10695 if (strcmp (arg, "rne") == 0)
10696 evexrcig = rne;
10697 else if (strcmp (arg, "rd") == 0)
10698 evexrcig = rd;
10699 else if (strcmp (arg, "ru") == 0)
10700 evexrcig = ru;
10701 else if (strcmp (arg, "rz") == 0)
10702 evexrcig = rz;
10703 else
10704 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10705 break;
10706
10707 case OPTION_MEVEXWIG:
10708 if (strcmp (arg, "0") == 0)
10709 evexwig = evexw0;
10710 else if (strcmp (arg, "1") == 0)
10711 evexwig = evexw1;
10712 else
10713 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10714 break;
10715
10716 # if defined (TE_PE) || defined (TE_PEP)
10717 case OPTION_MBIG_OBJ:
10718 use_big_obj = 1;
10719 break;
10720 #endif
10721
10722 case OPTION_MOMIT_LOCK_PREFIX:
10723 if (strcasecmp (arg, "yes") == 0)
10724 omit_lock_prefix = 1;
10725 else if (strcasecmp (arg, "no") == 0)
10726 omit_lock_prefix = 0;
10727 else
10728 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10729 break;
10730
10731 case OPTION_MFENCE_AS_LOCK_ADD:
10732 if (strcasecmp (arg, "yes") == 0)
10733 avoid_fence = 1;
10734 else if (strcasecmp (arg, "no") == 0)
10735 avoid_fence = 0;
10736 else
10737 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10738 break;
10739
10740 case OPTION_MRELAX_RELOCATIONS:
10741 if (strcasecmp (arg, "yes") == 0)
10742 generate_relax_relocations = 1;
10743 else if (strcasecmp (arg, "no") == 0)
10744 generate_relax_relocations = 0;
10745 else
10746 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10747 break;
10748
10749 case OPTION_MAMD64:
10750 intel64 = 0;
10751 break;
10752
10753 case OPTION_MINTEL64:
10754 intel64 = 1;
10755 break;
10756
10757 case 'O':
10758 if (arg == NULL)
10759 {
10760 optimize = 1;
10761 /* Turn off -Os. */
10762 optimize_for_space = 0;
10763 }
10764 else if (*arg == 's')
10765 {
10766 optimize_for_space = 1;
10767 /* Turn on all encoding optimizations. */
10768 optimize = -1;
10769 }
10770 else
10771 {
10772 optimize = atoi (arg);
10773 /* Turn off -Os. */
10774 optimize_for_space = 0;
10775 }
10776 break;
10777
10778 default:
10779 return 0;
10780 }
10781 return 1;
10782 }
10783
10784 #define MESSAGE_TEMPLATE \
10785 " "
10786
10787 static char *
10788 output_message (FILE *stream, char *p, char *message, char *start,
10789 int *left_p, const char *name, int len)
10790 {
10791 int size = sizeof (MESSAGE_TEMPLATE);
10792 int left = *left_p;
10793
10794 /* Reserve 2 spaces for ", " or ",\0" */
10795 left -= len + 2;
10796
10797 /* Check if there is any room. */
10798 if (left >= 0)
10799 {
10800 if (p != start)
10801 {
10802 *p++ = ',';
10803 *p++ = ' ';
10804 }
10805 p = mempcpy (p, name, len);
10806 }
10807 else
10808 {
10809 /* Output the current message now and start a new one. */
10810 *p++ = ',';
10811 *p = '\0';
10812 fprintf (stream, "%s\n", message);
10813 p = start;
10814 left = size - (start - message) - len - 2;
10815
10816 gas_assert (left >= 0);
10817
10818 p = mempcpy (p, name, len);
10819 }
10820
10821 *left_p = left;
10822 return p;
10823 }
10824
10825 static void
10826 show_arch (FILE *stream, int ext, int check)
10827 {
10828 static char message[] = MESSAGE_TEMPLATE;
10829 char *start = message + 27;
10830 char *p;
10831 int size = sizeof (MESSAGE_TEMPLATE);
10832 int left;
10833 const char *name;
10834 int len;
10835 unsigned int j;
10836
10837 p = start;
10838 left = size - (start - message);
10839 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10840 {
10841 /* Should it be skipped? */
10842 if (cpu_arch [j].skip)
10843 continue;
10844
10845 name = cpu_arch [j].name;
10846 len = cpu_arch [j].len;
10847 if (*name == '.')
10848 {
10849 /* It is an extension. Skip if we aren't asked to show it. */
10850 if (ext)
10851 {
10852 name++;
10853 len--;
10854 }
10855 else
10856 continue;
10857 }
10858 else if (ext)
10859 {
10860 /* It is an processor. Skip if we show only extension. */
10861 continue;
10862 }
10863 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10864 {
10865 /* It is an impossible processor - skip. */
10866 continue;
10867 }
10868
10869 p = output_message (stream, p, message, start, &left, name, len);
10870 }
10871
10872 /* Display disabled extensions. */
10873 if (ext)
10874 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10875 {
10876 name = cpu_noarch [j].name;
10877 len = cpu_noarch [j].len;
10878 p = output_message (stream, p, message, start, &left, name,
10879 len);
10880 }
10881
10882 *p = '\0';
10883 fprintf (stream, "%s\n", message);
10884 }
10885
10886 void
10887 md_show_usage (FILE *stream)
10888 {
10889 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10890 fprintf (stream, _("\
10891 -Q ignored\n\
10892 -V print assembler version number\n\
10893 -k ignored\n"));
10894 #endif
10895 fprintf (stream, _("\
10896 -n Do not optimize code alignment\n\
10897 -q quieten some warnings\n"));
10898 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10899 fprintf (stream, _("\
10900 -s ignored\n"));
10901 #endif
10902 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10903 || defined (TE_PE) || defined (TE_PEP))
10904 fprintf (stream, _("\
10905 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10906 #endif
10907 #ifdef SVR4_COMMENT_CHARS
10908 fprintf (stream, _("\
10909 --divide do not treat `/' as a comment character\n"));
10910 #else
10911 fprintf (stream, _("\
10912 --divide ignored\n"));
10913 #endif
10914 fprintf (stream, _("\
10915 -march=CPU[,+EXTENSION...]\n\
10916 generate code for CPU and EXTENSION, CPU is one of:\n"));
10917 show_arch (stream, 0, 1);
10918 fprintf (stream, _("\
10919 EXTENSION is combination of:\n"));
10920 show_arch (stream, 1, 0);
10921 fprintf (stream, _("\
10922 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10923 show_arch (stream, 0, 0);
10924 fprintf (stream, _("\
10925 -msse2avx encode SSE instructions with VEX prefix\n"));
10926 fprintf (stream, _("\
10927 -msse-check=[none|error|warning]\n\
10928 check SSE instructions\n"));
10929 fprintf (stream, _("\
10930 -moperand-check=[none|error|warning]\n\
10931 check operand combinations for validity\n"));
10932 fprintf (stream, _("\
10933 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10934 length\n"));
10935 fprintf (stream, _("\
10936 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10937 length\n"));
10938 fprintf (stream, _("\
10939 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10940 for EVEX.W bit ignored instructions\n"));
10941 fprintf (stream, _("\
10942 -mevexrcig=[rne|rd|ru|rz]\n\
10943 encode EVEX instructions with specific EVEX.RC value\n\
10944 for SAE-only ignored instructions\n"));
10945 fprintf (stream, _("\
10946 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10947 fprintf (stream, _("\
10948 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10949 fprintf (stream, _("\
10950 -mindex-reg support pseudo index registers\n"));
10951 fprintf (stream, _("\
10952 -mnaked-reg don't require `%%' prefix for registers\n"));
10953 fprintf (stream, _("\
10954 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10955 fprintf (stream, _("\
10956 -mshared disable branch optimization for shared code\n"));
10957 # if defined (TE_PE) || defined (TE_PEP)
10958 fprintf (stream, _("\
10959 -mbig-obj generate big object files\n"));
10960 #endif
10961 fprintf (stream, _("\
10962 -momit-lock-prefix=[no|yes]\n\
10963 strip all lock prefixes\n"));
10964 fprintf (stream, _("\
10965 -mfence-as-lock-add=[no|yes]\n\
10966 encode lfence, mfence and sfence as\n\
10967 lock addl $0x0, (%%{re}sp)\n"));
10968 fprintf (stream, _("\
10969 -mrelax-relocations=[no|yes]\n\
10970 generate relax relocations\n"));
10971 fprintf (stream, _("\
10972 -mamd64 accept only AMD64 ISA\n"));
10973 fprintf (stream, _("\
10974 -mintel64 accept only Intel64 ISA\n"));
10975 }
10976
10977 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10978 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10979 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10980
10981 /* Pick the target format to use. */
10982
10983 const char *
10984 i386_target_format (void)
10985 {
10986 if (!strncmp (default_arch, "x86_64", 6))
10987 {
10988 update_code_flag (CODE_64BIT, 1);
10989 if (default_arch[6] == '\0')
10990 x86_elf_abi = X86_64_ABI;
10991 else
10992 x86_elf_abi = X86_64_X32_ABI;
10993 }
10994 else if (!strcmp (default_arch, "i386"))
10995 update_code_flag (CODE_32BIT, 1);
10996 else if (!strcmp (default_arch, "iamcu"))
10997 {
10998 update_code_flag (CODE_32BIT, 1);
10999 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11000 {
11001 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11002 cpu_arch_name = "iamcu";
11003 cpu_sub_arch_name = NULL;
11004 cpu_arch_flags = iamcu_flags;
11005 cpu_arch_isa = PROCESSOR_IAMCU;
11006 cpu_arch_isa_flags = iamcu_flags;
11007 if (!cpu_arch_tune_set)
11008 {
11009 cpu_arch_tune = cpu_arch_isa;
11010 cpu_arch_tune_flags = cpu_arch_isa_flags;
11011 }
11012 }
11013 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11014 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11015 cpu_arch_name);
11016 }
11017 else
11018 as_fatal (_("unknown architecture"));
11019
11020 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11021 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11022 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11023 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11024
11025 switch (OUTPUT_FLAVOR)
11026 {
11027 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11028 case bfd_target_aout_flavour:
11029 return AOUT_TARGET_FORMAT;
11030 #endif
11031 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11032 # if defined (TE_PE) || defined (TE_PEP)
11033 case bfd_target_coff_flavour:
11034 if (flag_code == CODE_64BIT)
11035 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11036 else
11037 return "pe-i386";
11038 # elif defined (TE_GO32)
11039 case bfd_target_coff_flavour:
11040 return "coff-go32";
11041 # else
11042 case bfd_target_coff_flavour:
11043 return "coff-i386";
11044 # endif
11045 #endif
11046 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11047 case bfd_target_elf_flavour:
11048 {
11049 const char *format;
11050
11051 switch (x86_elf_abi)
11052 {
11053 default:
11054 format = ELF_TARGET_FORMAT;
11055 break;
11056 case X86_64_ABI:
11057 use_rela_relocations = 1;
11058 object_64bit = 1;
11059 format = ELF_TARGET_FORMAT64;
11060 break;
11061 case X86_64_X32_ABI:
11062 use_rela_relocations = 1;
11063 object_64bit = 1;
11064 disallow_64bit_reloc = 1;
11065 format = ELF_TARGET_FORMAT32;
11066 break;
11067 }
11068 if (cpu_arch_isa == PROCESSOR_L1OM)
11069 {
11070 if (x86_elf_abi != X86_64_ABI)
11071 as_fatal (_("Intel L1OM is 64bit only"));
11072 return ELF_TARGET_L1OM_FORMAT;
11073 }
11074 else if (cpu_arch_isa == PROCESSOR_K1OM)
11075 {
11076 if (x86_elf_abi != X86_64_ABI)
11077 as_fatal (_("Intel K1OM is 64bit only"));
11078 return ELF_TARGET_K1OM_FORMAT;
11079 }
11080 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11081 {
11082 if (x86_elf_abi != I386_ABI)
11083 as_fatal (_("Intel MCU is 32bit only"));
11084 return ELF_TARGET_IAMCU_FORMAT;
11085 }
11086 else
11087 return format;
11088 }
11089 #endif
11090 #if defined (OBJ_MACH_O)
11091 case bfd_target_mach_o_flavour:
11092 if (flag_code == CODE_64BIT)
11093 {
11094 use_rela_relocations = 1;
11095 object_64bit = 1;
11096 return "mach-o-x86-64";
11097 }
11098 else
11099 return "mach-o-i386";
11100 #endif
11101 default:
11102 abort ();
11103 return NULL;
11104 }
11105 }
11106
11107 #endif /* OBJ_MAYBE_ more than one */
11108 \f
11109 symbolS *
11110 md_undefined_symbol (char *name)
11111 {
11112 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11113 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11114 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11115 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11116 {
11117 if (!GOT_symbol)
11118 {
11119 if (symbol_find (name))
11120 as_bad (_("GOT already in symbol table"));
11121 GOT_symbol = symbol_new (name, undefined_section,
11122 (valueT) 0, &zero_address_frag);
11123 };
11124 return GOT_symbol;
11125 }
11126 return 0;
11127 }
11128
11129 /* Round up a section size to the appropriate boundary. */
11130
11131 valueT
11132 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11133 {
11134 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11135 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11136 {
11137 /* For a.out, force the section size to be aligned. If we don't do
11138 this, BFD will align it for us, but it will not write out the
11139 final bytes of the section. This may be a bug in BFD, but it is
11140 easier to fix it here since that is how the other a.out targets
11141 work. */
11142 int align;
11143
11144 align = bfd_get_section_alignment (stdoutput, segment);
11145 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11146 }
11147 #endif
11148
11149 return size;
11150 }
11151
11152 /* On the i386, PC-relative offsets are relative to the start of the
11153 next instruction. That is, the address of the offset, plus its
11154 size, since the offset is always the last part of the insn. */
11155
11156 long
11157 md_pcrel_from (fixS *fixP)
11158 {
11159 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11160 }
11161
11162 #ifndef I386COFF
11163
11164 static void
11165 s_bss (int ignore ATTRIBUTE_UNUSED)
11166 {
11167 int temp;
11168
11169 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11170 if (IS_ELF)
11171 obj_elf_section_change_hook ();
11172 #endif
11173 temp = get_absolute_expression ();
11174 subseg_set (bss_section, (subsegT) temp);
11175 demand_empty_rest_of_line ();
11176 }
11177
11178 #endif
11179
11180 void
11181 i386_validate_fix (fixS *fixp)
11182 {
11183 if (fixp->fx_subsy)
11184 {
11185 if (fixp->fx_subsy == GOT_symbol)
11186 {
11187 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11188 {
11189 if (!object_64bit)
11190 abort ();
11191 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11192 if (fixp->fx_tcbit2)
11193 fixp->fx_r_type = (fixp->fx_tcbit
11194 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11195 : BFD_RELOC_X86_64_GOTPCRELX);
11196 else
11197 #endif
11198 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11199 }
11200 else
11201 {
11202 if (!object_64bit)
11203 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11204 else
11205 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11206 }
11207 fixp->fx_subsy = 0;
11208 }
11209 }
11210 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11211 else if (!object_64bit)
11212 {
11213 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11214 && fixp->fx_tcbit2)
11215 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11216 }
11217 #endif
11218 }
11219
11220 arelent *
11221 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11222 {
11223 arelent *rel;
11224 bfd_reloc_code_real_type code;
11225
11226 switch (fixp->fx_r_type)
11227 {
11228 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11229 case BFD_RELOC_SIZE32:
11230 case BFD_RELOC_SIZE64:
11231 if (S_IS_DEFINED (fixp->fx_addsy)
11232 && !S_IS_EXTERNAL (fixp->fx_addsy))
11233 {
11234 /* Resolve size relocation against local symbol to size of
11235 the symbol plus addend. */
11236 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11237 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11238 && !fits_in_unsigned_long (value))
11239 as_bad_where (fixp->fx_file, fixp->fx_line,
11240 _("symbol size computation overflow"));
11241 fixp->fx_addsy = NULL;
11242 fixp->fx_subsy = NULL;
11243 md_apply_fix (fixp, (valueT *) &value, NULL);
11244 return NULL;
11245 }
11246 #endif
11247 /* Fall through. */
11248
11249 case BFD_RELOC_X86_64_PLT32:
11250 case BFD_RELOC_X86_64_GOT32:
11251 case BFD_RELOC_X86_64_GOTPCREL:
11252 case BFD_RELOC_X86_64_GOTPCRELX:
11253 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11254 case BFD_RELOC_386_PLT32:
11255 case BFD_RELOC_386_GOT32:
11256 case BFD_RELOC_386_GOT32X:
11257 case BFD_RELOC_386_GOTOFF:
11258 case BFD_RELOC_386_GOTPC:
11259 case BFD_RELOC_386_TLS_GD:
11260 case BFD_RELOC_386_TLS_LDM:
11261 case BFD_RELOC_386_TLS_LDO_32:
11262 case BFD_RELOC_386_TLS_IE_32:
11263 case BFD_RELOC_386_TLS_IE:
11264 case BFD_RELOC_386_TLS_GOTIE:
11265 case BFD_RELOC_386_TLS_LE_32:
11266 case BFD_RELOC_386_TLS_LE:
11267 case BFD_RELOC_386_TLS_GOTDESC:
11268 case BFD_RELOC_386_TLS_DESC_CALL:
11269 case BFD_RELOC_X86_64_TLSGD:
11270 case BFD_RELOC_X86_64_TLSLD:
11271 case BFD_RELOC_X86_64_DTPOFF32:
11272 case BFD_RELOC_X86_64_DTPOFF64:
11273 case BFD_RELOC_X86_64_GOTTPOFF:
11274 case BFD_RELOC_X86_64_TPOFF32:
11275 case BFD_RELOC_X86_64_TPOFF64:
11276 case BFD_RELOC_X86_64_GOTOFF64:
11277 case BFD_RELOC_X86_64_GOTPC32:
11278 case BFD_RELOC_X86_64_GOT64:
11279 case BFD_RELOC_X86_64_GOTPCREL64:
11280 case BFD_RELOC_X86_64_GOTPC64:
11281 case BFD_RELOC_X86_64_GOTPLT64:
11282 case BFD_RELOC_X86_64_PLTOFF64:
11283 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11284 case BFD_RELOC_X86_64_TLSDESC_CALL:
11285 case BFD_RELOC_RVA:
11286 case BFD_RELOC_VTABLE_ENTRY:
11287 case BFD_RELOC_VTABLE_INHERIT:
11288 #ifdef TE_PE
11289 case BFD_RELOC_32_SECREL:
11290 #endif
11291 code = fixp->fx_r_type;
11292 break;
11293 case BFD_RELOC_X86_64_32S:
11294 if (!fixp->fx_pcrel)
11295 {
11296 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11297 code = fixp->fx_r_type;
11298 break;
11299 }
11300 /* Fall through. */
11301 default:
11302 if (fixp->fx_pcrel)
11303 {
11304 switch (fixp->fx_size)
11305 {
11306 default:
11307 as_bad_where (fixp->fx_file, fixp->fx_line,
11308 _("can not do %d byte pc-relative relocation"),
11309 fixp->fx_size);
11310 code = BFD_RELOC_32_PCREL;
11311 break;
11312 case 1: code = BFD_RELOC_8_PCREL; break;
11313 case 2: code = BFD_RELOC_16_PCREL; break;
11314 case 4: code = BFD_RELOC_32_PCREL; break;
11315 #ifdef BFD64
11316 case 8: code = BFD_RELOC_64_PCREL; break;
11317 #endif
11318 }
11319 }
11320 else
11321 {
11322 switch (fixp->fx_size)
11323 {
11324 default:
11325 as_bad_where (fixp->fx_file, fixp->fx_line,
11326 _("can not do %d byte relocation"),
11327 fixp->fx_size);
11328 code = BFD_RELOC_32;
11329 break;
11330 case 1: code = BFD_RELOC_8; break;
11331 case 2: code = BFD_RELOC_16; break;
11332 case 4: code = BFD_RELOC_32; break;
11333 #ifdef BFD64
11334 case 8: code = BFD_RELOC_64; break;
11335 #endif
11336 }
11337 }
11338 break;
11339 }
11340
11341 if ((code == BFD_RELOC_32
11342 || code == BFD_RELOC_32_PCREL
11343 || code == BFD_RELOC_X86_64_32S)
11344 && GOT_symbol
11345 && fixp->fx_addsy == GOT_symbol)
11346 {
11347 if (!object_64bit)
11348 code = BFD_RELOC_386_GOTPC;
11349 else
11350 code = BFD_RELOC_X86_64_GOTPC32;
11351 }
11352 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11353 && GOT_symbol
11354 && fixp->fx_addsy == GOT_symbol)
11355 {
11356 code = BFD_RELOC_X86_64_GOTPC64;
11357 }
11358
11359 rel = XNEW (arelent);
11360 rel->sym_ptr_ptr = XNEW (asymbol *);
11361 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11362
11363 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
11364
11365 if (!use_rela_relocations)
11366 {
11367 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11368 vtable entry to be used in the relocation's section offset. */
11369 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11370 rel->address = fixp->fx_offset;
11371 #if defined (OBJ_COFF) && defined (TE_PE)
11372 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11373 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11374 else
11375 #endif
11376 rel->addend = 0;
11377 }
11378 /* Use the rela in 64bit mode. */
11379 else
11380 {
11381 if (disallow_64bit_reloc)
11382 switch (code)
11383 {
11384 case BFD_RELOC_X86_64_DTPOFF64:
11385 case BFD_RELOC_X86_64_TPOFF64:
11386 case BFD_RELOC_64_PCREL:
11387 case BFD_RELOC_X86_64_GOTOFF64:
11388 case BFD_RELOC_X86_64_GOT64:
11389 case BFD_RELOC_X86_64_GOTPCREL64:
11390 case BFD_RELOC_X86_64_GOTPC64:
11391 case BFD_RELOC_X86_64_GOTPLT64:
11392 case BFD_RELOC_X86_64_PLTOFF64:
11393 as_bad_where (fixp->fx_file, fixp->fx_line,
11394 _("cannot represent relocation type %s in x32 mode"),
11395 bfd_get_reloc_code_name (code));
11396 break;
11397 default:
11398 break;
11399 }
11400
11401 if (!fixp->fx_pcrel)
11402 rel->addend = fixp->fx_offset;
11403 else
11404 switch (code)
11405 {
11406 case BFD_RELOC_X86_64_PLT32:
11407 case BFD_RELOC_X86_64_GOT32:
11408 case BFD_RELOC_X86_64_GOTPCREL:
11409 case BFD_RELOC_X86_64_GOTPCRELX:
11410 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11411 case BFD_RELOC_X86_64_TLSGD:
11412 case BFD_RELOC_X86_64_TLSLD:
11413 case BFD_RELOC_X86_64_GOTTPOFF:
11414 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11415 case BFD_RELOC_X86_64_TLSDESC_CALL:
11416 rel->addend = fixp->fx_offset - fixp->fx_size;
11417 break;
11418 default:
11419 rel->addend = (section->vma
11420 - fixp->fx_size
11421 + fixp->fx_addnumber
11422 + md_pcrel_from (fixp));
11423 break;
11424 }
11425 }
11426
11427 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11428 if (rel->howto == NULL)
11429 {
11430 as_bad_where (fixp->fx_file, fixp->fx_line,
11431 _("cannot represent relocation type %s"),
11432 bfd_get_reloc_code_name (code));
11433 /* Set howto to a garbage value so that we can keep going. */
11434 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
11435 gas_assert (rel->howto != NULL);
11436 }
11437
11438 return rel;
11439 }
11440
11441 #include "tc-i386-intel.c"
11442
11443 void
11444 tc_x86_parse_to_dw2regnum (expressionS *exp)
11445 {
11446 int saved_naked_reg;
11447 char saved_register_dot;
11448
11449 saved_naked_reg = allow_naked_reg;
11450 allow_naked_reg = 1;
11451 saved_register_dot = register_chars['.'];
11452 register_chars['.'] = '.';
11453 allow_pseudo_reg = 1;
11454 expression_and_evaluate (exp);
11455 allow_pseudo_reg = 0;
11456 register_chars['.'] = saved_register_dot;
11457 allow_naked_reg = saved_naked_reg;
11458
11459 if (exp->X_op == O_register && exp->X_add_number >= 0)
11460 {
11461 if ((addressT) exp->X_add_number < i386_regtab_size)
11462 {
11463 exp->X_op = O_constant;
11464 exp->X_add_number = i386_regtab[exp->X_add_number]
11465 .dw2_regnum[flag_code >> 1];
11466 }
11467 else
11468 exp->X_op = O_illegal;
11469 }
11470 }
11471
11472 void
11473 tc_x86_frame_initial_instructions (void)
11474 {
11475 static unsigned int sp_regno[2];
11476
11477 if (!sp_regno[flag_code >> 1])
11478 {
11479 char *saved_input = input_line_pointer;
11480 char sp[][4] = {"esp", "rsp"};
11481 expressionS exp;
11482
11483 input_line_pointer = sp[flag_code >> 1];
11484 tc_x86_parse_to_dw2regnum (&exp);
11485 gas_assert (exp.X_op == O_constant);
11486 sp_regno[flag_code >> 1] = exp.X_add_number;
11487 input_line_pointer = saved_input;
11488 }
11489
11490 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11491 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11492 }
11493
11494 int
11495 x86_dwarf2_addr_size (void)
11496 {
11497 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11498 if (x86_elf_abi == X86_64_X32_ABI)
11499 return 4;
11500 #endif
11501 return bfd_arch_bits_per_address (stdoutput) / 8;
11502 }
11503
11504 int
11505 i386_elf_section_type (const char *str, size_t len)
11506 {
11507 if (flag_code == CODE_64BIT
11508 && len == sizeof ("unwind") - 1
11509 && strncmp (str, "unwind", 6) == 0)
11510 return SHT_X86_64_UNWIND;
11511
11512 return -1;
11513 }
11514
11515 #ifdef TE_SOLARIS
11516 void
11517 i386_solaris_fix_up_eh_frame (segT sec)
11518 {
11519 if (flag_code == CODE_64BIT)
11520 elf_section_type (sec) = SHT_X86_64_UNWIND;
11521 }
11522 #endif
11523
11524 #ifdef TE_PE
11525 void
11526 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11527 {
11528 expressionS exp;
11529
11530 exp.X_op = O_secrel;
11531 exp.X_add_symbol = symbol;
11532 exp.X_add_number = 0;
11533 emit_expr (&exp, size);
11534 }
11535 #endif
11536
11537 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11538 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11539
11540 bfd_vma
11541 x86_64_section_letter (int letter, const char **ptr_msg)
11542 {
11543 if (flag_code == CODE_64BIT)
11544 {
11545 if (letter == 'l')
11546 return SHF_X86_64_LARGE;
11547
11548 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11549 }
11550 else
11551 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11552 return -1;
11553 }
11554
11555 bfd_vma
11556 x86_64_section_word (char *str, size_t len)
11557 {
11558 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11559 return SHF_X86_64_LARGE;
11560
11561 return -1;
11562 }
11563
11564 static void
11565 handle_large_common (int small ATTRIBUTE_UNUSED)
11566 {
11567 if (flag_code != CODE_64BIT)
11568 {
11569 s_comm_internal (0, elf_common_parse);
11570 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11571 }
11572 else
11573 {
11574 static segT lbss_section;
11575 asection *saved_com_section_ptr = elf_com_section_ptr;
11576 asection *saved_bss_section = bss_section;
11577
11578 if (lbss_section == NULL)
11579 {
11580 flagword applicable;
11581 segT seg = now_seg;
11582 subsegT subseg = now_subseg;
11583
11584 /* The .lbss section is for local .largecomm symbols. */
11585 lbss_section = subseg_new (".lbss", 0);
11586 applicable = bfd_applicable_section_flags (stdoutput);
11587 bfd_set_section_flags (stdoutput, lbss_section,
11588 applicable & SEC_ALLOC);
11589 seg_info (lbss_section)->bss = 1;
11590
11591 subseg_set (seg, subseg);
11592 }
11593
11594 elf_com_section_ptr = &_bfd_elf_large_com_section;
11595 bss_section = lbss_section;
11596
11597 s_comm_internal (0, elf_common_parse);
11598
11599 elf_com_section_ptr = saved_com_section_ptr;
11600 bss_section = saved_bss_section;
11601 }
11602 }
11603 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.364798 seconds and 5 git commands to generate.