x86: don't require operand size specification for AVX512 broadcasts
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2015 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef TE_LINUX
37 /* Default to compress debug sections for Linux. */
38 enum compressed_debug_section_type flag_compress_debug
39 = COMPRESS_DEBUG_ZLIB;
40 #endif
41
42 #ifndef REGISTER_WARNINGS
43 #define REGISTER_WARNINGS 1
44 #endif
45
46 #ifndef INFER_ADDR_PREFIX
47 #define INFER_ADDR_PREFIX 1
48 #endif
49
50 #ifndef DEFAULT_ARCH
51 #define DEFAULT_ARCH "i386"
52 #endif
53
54 #ifndef INLINE
55 #if __GNUC__ >= 2
56 #define INLINE __inline__
57 #else
58 #define INLINE
59 #endif
60 #endif
61
62 /* Prefixes will be emitted in the order defined below.
63 WAIT_PREFIX must be the first prefix since FWAIT is really is an
64 instruction, and so must come before any prefixes.
65 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
66 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
67 #define WAIT_PREFIX 0
68 #define SEG_PREFIX 1
69 #define ADDR_PREFIX 2
70 #define DATA_PREFIX 3
71 #define REP_PREFIX 4
72 #define HLE_PREFIX REP_PREFIX
73 #define BND_PREFIX REP_PREFIX
74 #define LOCK_PREFIX 5
75 #define REX_PREFIX 6 /* must come last. */
76 #define MAX_PREFIXES 7 /* max prefixes per opcode */
77
78 /* we define the syntax here (modulo base,index,scale syntax) */
79 #define REGISTER_PREFIX '%'
80 #define IMMEDIATE_PREFIX '$'
81 #define ABSOLUTE_PREFIX '*'
82
83 /* these are the instruction mnemonic suffixes in AT&T syntax or
84 memory operand size in Intel syntax. */
85 #define WORD_MNEM_SUFFIX 'w'
86 #define BYTE_MNEM_SUFFIX 'b'
87 #define SHORT_MNEM_SUFFIX 's'
88 #define LONG_MNEM_SUFFIX 'l'
89 #define QWORD_MNEM_SUFFIX 'q'
90 #define XMMWORD_MNEM_SUFFIX 'x'
91 #define YMMWORD_MNEM_SUFFIX 'y'
92 #define ZMMWORD_MNEM_SUFFIX 'z'
93 /* Intel Syntax. Use a non-ascii letter since since it never appears
94 in instructions. */
95 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
96
97 #define END_OF_INSN '\0'
98
99 /*
100 'templates' is for grouping together 'template' structures for opcodes
101 of the same name. This is only used for storing the insns in the grand
102 ole hash table of insns.
103 The templates themselves start at START and range up to (but not including)
104 END.
105 */
106 typedef struct
107 {
108 const insn_template *start;
109 const insn_template *end;
110 }
111 templates;
112
113 /* 386 operand encoding bytes: see 386 book for details of this. */
114 typedef struct
115 {
116 unsigned int regmem; /* codes register or memory operand */
117 unsigned int reg; /* codes register operand (or extended opcode) */
118 unsigned int mode; /* how to interpret regmem & reg */
119 }
120 modrm_byte;
121
122 /* x86-64 extension prefix. */
123 typedef int rex_byte;
124
125 /* 386 opcode byte to code indirect addressing. */
126 typedef struct
127 {
128 unsigned base;
129 unsigned index;
130 unsigned scale;
131 }
132 sib_byte;
133
134 /* x86 arch names, types and features */
135 typedef struct
136 {
137 const char *name; /* arch name */
138 unsigned int len; /* arch string length */
139 enum processor_type type; /* arch type */
140 i386_cpu_flags flags; /* cpu feature flags */
141 unsigned int skip; /* show_arch should skip this. */
142 unsigned int negated; /* turn off indicated flags. */
143 }
144 arch_entry;
145
146 static void update_code_flag (int, int);
147 static void set_code_flag (int);
148 static void set_16bit_gcc_code_flag (int);
149 static void set_intel_syntax (int);
150 static void set_intel_mnemonic (int);
151 static void set_allow_index_reg (int);
152 static void set_check (int);
153 static void set_cpu_arch (int);
154 #ifdef TE_PE
155 static void pe_directive_secrel (int);
156 #endif
157 static void signed_cons (int);
158 static char *output_invalid (int c);
159 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
160 const char *);
161 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
162 const char *);
163 static int i386_att_operand (char *);
164 static int i386_intel_operand (char *, int);
165 static int i386_intel_simplify (expressionS *);
166 static int i386_intel_parse_name (const char *, expressionS *);
167 static const reg_entry *parse_register (char *, char **);
168 static char *parse_insn (char *, char *);
169 static char *parse_operands (char *, const char *);
170 static void swap_operands (void);
171 static void swap_2_operands (int, int);
172 static void optimize_imm (void);
173 static void optimize_disp (void);
174 static const insn_template *match_template (void);
175 static int check_string (void);
176 static int process_suffix (void);
177 static int check_byte_reg (void);
178 static int check_long_reg (void);
179 static int check_qword_reg (void);
180 static int check_word_reg (void);
181 static int finalize_imm (void);
182 static int process_operands (void);
183 static const seg_entry *build_modrm_byte (void);
184 static void output_insn (void);
185 static void output_imm (fragS *, offsetT);
186 static void output_disp (fragS *, offsetT);
187 #ifndef I386COFF
188 static void s_bss (int);
189 #endif
190 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
191 static void handle_large_common (int small ATTRIBUTE_UNUSED);
192 #endif
193
194 static const char *default_arch = DEFAULT_ARCH;
195
196 /* This struct describes rounding control and SAE in the instruction. */
197 struct RC_Operation
198 {
199 enum rc_type
200 {
201 rne = 0,
202 rd,
203 ru,
204 rz,
205 saeonly
206 } type;
207 int operand;
208 };
209
210 static struct RC_Operation rc_op;
211
212 /* The struct describes masking, applied to OPERAND in the instruction.
213 MASK is a pointer to the corresponding mask register. ZEROING tells
214 whether merging or zeroing mask is used. */
215 struct Mask_Operation
216 {
217 const reg_entry *mask;
218 unsigned int zeroing;
219 /* The operand where this operation is associated. */
220 int operand;
221 };
222
223 static struct Mask_Operation mask_op;
224
225 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
226 broadcast factor. */
227 struct Broadcast_Operation
228 {
229 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
230 int type;
231
232 /* Index of broadcasted operand. */
233 int operand;
234 };
235
236 static struct Broadcast_Operation broadcast_op;
237
238 /* VEX prefix. */
239 typedef struct
240 {
241 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
242 unsigned char bytes[4];
243 unsigned int length;
244 /* Destination or source register specifier. */
245 const reg_entry *register_specifier;
246 } vex_prefix;
247
248 /* 'md_assemble ()' gathers together information and puts it into a
249 i386_insn. */
250
251 union i386_op
252 {
253 expressionS *disps;
254 expressionS *imms;
255 const reg_entry *regs;
256 };
257
258 enum i386_error
259 {
260 operand_size_mismatch,
261 operand_type_mismatch,
262 register_type_mismatch,
263 number_of_operands_mismatch,
264 invalid_instruction_suffix,
265 bad_imm4,
266 old_gcc_only,
267 unsupported_with_intel_mnemonic,
268 unsupported_syntax,
269 unsupported,
270 invalid_vsib_address,
271 invalid_vector_register_set,
272 unsupported_vector_index_register,
273 unsupported_broadcast,
274 broadcast_not_on_src_operand,
275 broadcast_needed,
276 unsupported_masking,
277 mask_not_on_destination,
278 no_default_mask,
279 unsupported_rc_sae,
280 rc_sae_operand_not_last_imm,
281 invalid_register_operand,
282 try_vector_disp8
283 };
284
285 struct _i386_insn
286 {
287 /* TM holds the template for the insn were currently assembling. */
288 insn_template tm;
289
290 /* SUFFIX holds the instruction size suffix for byte, word, dword
291 or qword, if given. */
292 char suffix;
293
294 /* OPERANDS gives the number of given operands. */
295 unsigned int operands;
296
297 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
298 of given register, displacement, memory operands and immediate
299 operands. */
300 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
301
302 /* TYPES [i] is the type (see above #defines) which tells us how to
303 use OP[i] for the corresponding operand. */
304 i386_operand_type types[MAX_OPERANDS];
305
306 /* Displacement expression, immediate expression, or register for each
307 operand. */
308 union i386_op op[MAX_OPERANDS];
309
310 /* Flags for operands. */
311 unsigned int flags[MAX_OPERANDS];
312 #define Operand_PCrel 1
313
314 /* Relocation type for operand */
315 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
316
317 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
318 the base index byte below. */
319 const reg_entry *base_reg;
320 const reg_entry *index_reg;
321 unsigned int log2_scale_factor;
322
323 /* SEG gives the seg_entries of this insn. They are zero unless
324 explicit segment overrides are given. */
325 const seg_entry *seg[2];
326
327 /* PREFIX holds all the given prefix opcodes (usually null).
328 PREFIXES is the number of prefix opcodes. */
329 unsigned int prefixes;
330 unsigned char prefix[MAX_PREFIXES];
331
332 /* RM and SIB are the modrm byte and the sib byte where the
333 addressing modes of this insn are encoded. */
334 modrm_byte rm;
335 rex_byte rex;
336 rex_byte vrex;
337 sib_byte sib;
338 vex_prefix vex;
339
340 /* Masking attributes. */
341 struct Mask_Operation *mask;
342
343 /* Rounding control and SAE attributes. */
344 struct RC_Operation *rounding;
345
346 /* Broadcasting attributes. */
347 struct Broadcast_Operation *broadcast;
348
349 /* Compressed disp8*N attribute. */
350 unsigned int memshift;
351
352 /* Swap operand in encoding. */
353 unsigned int swap_operand;
354
355 /* Prefer 8bit or 32bit displacement in encoding. */
356 enum
357 {
358 disp_encoding_default = 0,
359 disp_encoding_8bit,
360 disp_encoding_32bit
361 } disp_encoding;
362
363 /* REP prefix. */
364 const char *rep_prefix;
365
366 /* HLE prefix. */
367 const char *hle_prefix;
368
369 /* Have BND prefix. */
370 const char *bnd_prefix;
371
372 /* Need VREX to support upper 16 registers. */
373 int need_vrex;
374
375 /* Error message. */
376 enum i386_error error;
377 };
378
379 typedef struct _i386_insn i386_insn;
380
381 /* Link RC type with corresponding string, that'll be looked for in
382 asm. */
383 struct RC_name
384 {
385 enum rc_type type;
386 const char *name;
387 unsigned int len;
388 };
389
390 static const struct RC_name RC_NamesTable[] =
391 {
392 { rne, STRING_COMMA_LEN ("rn-sae") },
393 { rd, STRING_COMMA_LEN ("rd-sae") },
394 { ru, STRING_COMMA_LEN ("ru-sae") },
395 { rz, STRING_COMMA_LEN ("rz-sae") },
396 { saeonly, STRING_COMMA_LEN ("sae") },
397 };
398
399 /* List of chars besides those in app.c:symbol_chars that can start an
400 operand. Used to prevent the scrubber eating vital white-space. */
401 const char extra_symbol_chars[] = "*%-([{"
402 #ifdef LEX_AT
403 "@"
404 #endif
405 #ifdef LEX_QM
406 "?"
407 #endif
408 ;
409
410 #if (defined (TE_I386AIX) \
411 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
412 && !defined (TE_GNU) \
413 && !defined (TE_LINUX) \
414 && !defined (TE_NACL) \
415 && !defined (TE_NETWARE) \
416 && !defined (TE_FreeBSD) \
417 && !defined (TE_DragonFly) \
418 && !defined (TE_NetBSD)))
419 /* This array holds the chars that always start a comment. If the
420 pre-processor is disabled, these aren't very useful. The option
421 --divide will remove '/' from this list. */
422 const char *i386_comment_chars = "#/";
423 #define SVR4_COMMENT_CHARS 1
424 #define PREFIX_SEPARATOR '\\'
425
426 #else
427 const char *i386_comment_chars = "#";
428 #define PREFIX_SEPARATOR '/'
429 #endif
430
431 /* This array holds the chars that only start a comment at the beginning of
432 a line. If the line seems to have the form '# 123 filename'
433 .line and .file directives will appear in the pre-processed output.
434 Note that input_file.c hand checks for '#' at the beginning of the
435 first line of the input file. This is because the compiler outputs
436 #NO_APP at the beginning of its output.
437 Also note that comments started like this one will always work if
438 '/' isn't otherwise defined. */
439 const char line_comment_chars[] = "#/";
440
441 const char line_separator_chars[] = ";";
442
443 /* Chars that can be used to separate mant from exp in floating point
444 nums. */
445 const char EXP_CHARS[] = "eE";
446
447 /* Chars that mean this number is a floating point constant
448 As in 0f12.456
449 or 0d1.2345e12. */
450 const char FLT_CHARS[] = "fFdDxX";
451
452 /* Tables for lexical analysis. */
453 static char mnemonic_chars[256];
454 static char register_chars[256];
455 static char operand_chars[256];
456 static char identifier_chars[256];
457 static char digit_chars[256];
458
459 /* Lexical macros. */
460 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
461 #define is_operand_char(x) (operand_chars[(unsigned char) x])
462 #define is_register_char(x) (register_chars[(unsigned char) x])
463 #define is_space_char(x) ((x) == ' ')
464 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
465 #define is_digit_char(x) (digit_chars[(unsigned char) x])
466
467 /* All non-digit non-letter characters that may occur in an operand. */
468 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
469
470 /* md_assemble() always leaves the strings it's passed unaltered. To
471 effect this we maintain a stack of saved characters that we've smashed
472 with '\0's (indicating end of strings for various sub-fields of the
473 assembler instruction). */
474 static char save_stack[32];
475 static char *save_stack_p;
476 #define END_STRING_AND_SAVE(s) \
477 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
478 #define RESTORE_END_STRING(s) \
479 do { *(s) = *--save_stack_p; } while (0)
480
481 /* The instruction we're assembling. */
482 static i386_insn i;
483
484 /* Possible templates for current insn. */
485 static const templates *current_templates;
486
487 /* Per instruction expressionS buffers: max displacements & immediates. */
488 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
489 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
490
491 /* Current operand we are working on. */
492 static int this_operand = -1;
493
494 /* We support four different modes. FLAG_CODE variable is used to distinguish
495 these. */
496
497 enum flag_code {
498 CODE_32BIT,
499 CODE_16BIT,
500 CODE_64BIT };
501
502 static enum flag_code flag_code;
503 static unsigned int object_64bit;
504 static unsigned int disallow_64bit_reloc;
505 static int use_rela_relocations = 0;
506
507 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
508 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
509 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
510
511 /* The ELF ABI to use. */
512 enum x86_elf_abi
513 {
514 I386_ABI,
515 X86_64_ABI,
516 X86_64_X32_ABI
517 };
518
519 static enum x86_elf_abi x86_elf_abi = I386_ABI;
520 #endif
521
522 #if defined (TE_PE) || defined (TE_PEP)
523 /* Use big object file format. */
524 static int use_big_obj = 0;
525 #endif
526
527 /* 1 for intel syntax,
528 0 if att syntax. */
529 static int intel_syntax = 0;
530
531 /* 1 for intel mnemonic,
532 0 if att mnemonic. */
533 static int intel_mnemonic = !SYSV386_COMPAT;
534
535 /* 1 if support old (<= 2.8.1) versions of gcc. */
536 static int old_gcc = OLDGCC_COMPAT;
537
538 /* 1 if pseudo registers are permitted. */
539 static int allow_pseudo_reg = 0;
540
541 /* 1 if register prefix % not required. */
542 static int allow_naked_reg = 0;
543
544 /* 1 if the assembler should add BND prefix for all control-tranferring
545 instructions supporting it, even if this prefix wasn't specified
546 explicitly. */
547 static int add_bnd_prefix = 0;
548
549 /* 1 if pseudo index register, eiz/riz, is allowed . */
550 static int allow_index_reg = 0;
551
552 /* 1 if the assembler should ignore LOCK prefix, even if it was
553 specified explicitly. */
554 static int omit_lock_prefix = 0;
555
556 static enum check_kind
557 {
558 check_none = 0,
559 check_warning,
560 check_error
561 }
562 sse_check, operand_check = check_warning;
563
564 /* Register prefix used for error message. */
565 static const char *register_prefix = "%";
566
567 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
568 leave, push, and pop instructions so that gcc has the same stack
569 frame as in 32 bit mode. */
570 static char stackop_size = '\0';
571
572 /* Non-zero to optimize code alignment. */
573 int optimize_align_code = 1;
574
575 /* Non-zero to quieten some warnings. */
576 static int quiet_warnings = 0;
577
578 /* CPU name. */
579 static const char *cpu_arch_name = NULL;
580 static char *cpu_sub_arch_name = NULL;
581
582 /* CPU feature flags. */
583 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
584
585 /* If we have selected a cpu we are generating instructions for. */
586 static int cpu_arch_tune_set = 0;
587
588 /* Cpu we are generating instructions for. */
589 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
590
591 /* CPU feature flags of cpu we are generating instructions for. */
592 static i386_cpu_flags cpu_arch_tune_flags;
593
594 /* CPU instruction set architecture used. */
595 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
596
597 /* CPU feature flags of instruction set architecture used. */
598 i386_cpu_flags cpu_arch_isa_flags;
599
600 /* If set, conditional jumps are not automatically promoted to handle
601 larger than a byte offset. */
602 static unsigned int no_cond_jump_promotion = 0;
603
604 /* Encode SSE instructions with VEX prefix. */
605 static unsigned int sse2avx;
606
607 /* Encode scalar AVX instructions with specific vector length. */
608 static enum
609 {
610 vex128 = 0,
611 vex256
612 } avxscalar;
613
614 /* Encode scalar EVEX LIG instructions with specific vector length. */
615 static enum
616 {
617 evexl128 = 0,
618 evexl256,
619 evexl512
620 } evexlig;
621
622 /* Encode EVEX WIG instructions with specific evex.w. */
623 static enum
624 {
625 evexw0 = 0,
626 evexw1
627 } evexwig;
628
629 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
630 static enum rc_type evexrcig = rne;
631
632 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
633 static symbolS *GOT_symbol;
634
635 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
636 unsigned int x86_dwarf2_return_column;
637
638 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
639 int x86_cie_data_alignment;
640
641 /* Interface to relax_segment.
642 There are 3 major relax states for 386 jump insns because the
643 different types of jumps add different sizes to frags when we're
644 figuring out what sort of jump to choose to reach a given label. */
645
646 /* Types. */
647 #define UNCOND_JUMP 0
648 #define COND_JUMP 1
649 #define COND_JUMP86 2
650
651 /* Sizes. */
652 #define CODE16 1
653 #define SMALL 0
654 #define SMALL16 (SMALL | CODE16)
655 #define BIG 2
656 #define BIG16 (BIG | CODE16)
657
658 #ifndef INLINE
659 #ifdef __GNUC__
660 #define INLINE __inline__
661 #else
662 #define INLINE
663 #endif
664 #endif
665
666 #define ENCODE_RELAX_STATE(type, size) \
667 ((relax_substateT) (((type) << 2) | (size)))
668 #define TYPE_FROM_RELAX_STATE(s) \
669 ((s) >> 2)
670 #define DISP_SIZE_FROM_RELAX_STATE(s) \
671 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
672
673 /* This table is used by relax_frag to promote short jumps to long
674 ones where necessary. SMALL (short) jumps may be promoted to BIG
675 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
676 don't allow a short jump in a 32 bit code segment to be promoted to
677 a 16 bit offset jump because it's slower (requires data size
678 prefix), and doesn't work, unless the destination is in the bottom
679 64k of the code segment (The top 16 bits of eip are zeroed). */
680
681 const relax_typeS md_relax_table[] =
682 {
683 /* The fields are:
684 1) most positive reach of this state,
685 2) most negative reach of this state,
686 3) how many bytes this mode will have in the variable part of the frag
687 4) which index into the table to try if we can't fit into this one. */
688
689 /* UNCOND_JUMP states. */
690 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
691 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
692 /* dword jmp adds 4 bytes to frag:
693 0 extra opcode bytes, 4 displacement bytes. */
694 {0, 0, 4, 0},
695 /* word jmp adds 2 byte2 to frag:
696 0 extra opcode bytes, 2 displacement bytes. */
697 {0, 0, 2, 0},
698
699 /* COND_JUMP states. */
700 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
701 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
702 /* dword conditionals adds 5 bytes to frag:
703 1 extra opcode byte, 4 displacement bytes. */
704 {0, 0, 5, 0},
705 /* word conditionals add 3 bytes to frag:
706 1 extra opcode byte, 2 displacement bytes. */
707 {0, 0, 3, 0},
708
709 /* COND_JUMP86 states. */
710 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
711 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
712 /* dword conditionals adds 5 bytes to frag:
713 1 extra opcode byte, 4 displacement bytes. */
714 {0, 0, 5, 0},
715 /* word conditionals add 4 bytes to frag:
716 1 displacement byte and a 3 byte long branch insn. */
717 {0, 0, 4, 0}
718 };
719
720 static const arch_entry cpu_arch[] =
721 {
722 /* Do not replace the first two entries - i386_target_format()
723 relies on them being there in this order. */
724 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
725 CPU_GENERIC32_FLAGS, 0, 0 },
726 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
727 CPU_GENERIC64_FLAGS, 0, 0 },
728 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
729 CPU_NONE_FLAGS, 0, 0 },
730 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
731 CPU_I186_FLAGS, 0, 0 },
732 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
733 CPU_I286_FLAGS, 0, 0 },
734 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
735 CPU_I386_FLAGS, 0, 0 },
736 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
737 CPU_I486_FLAGS, 0, 0 },
738 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
739 CPU_I586_FLAGS, 0, 0 },
740 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
741 CPU_I686_FLAGS, 0, 0 },
742 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
743 CPU_I586_FLAGS, 0, 0 },
744 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
745 CPU_PENTIUMPRO_FLAGS, 0, 0 },
746 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
747 CPU_P2_FLAGS, 0, 0 },
748 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
749 CPU_P3_FLAGS, 0, 0 },
750 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
751 CPU_P4_FLAGS, 0, 0 },
752 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
753 CPU_CORE_FLAGS, 0, 0 },
754 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
755 CPU_NOCONA_FLAGS, 0, 0 },
756 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
757 CPU_CORE_FLAGS, 1, 0 },
758 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
759 CPU_CORE_FLAGS, 0, 0 },
760 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
761 CPU_CORE2_FLAGS, 1, 0 },
762 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
763 CPU_CORE2_FLAGS, 0, 0 },
764 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
765 CPU_COREI7_FLAGS, 0, 0 },
766 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
767 CPU_L1OM_FLAGS, 0, 0 },
768 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
769 CPU_K1OM_FLAGS, 0, 0 },
770 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
771 CPU_K6_FLAGS, 0, 0 },
772 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
773 CPU_K6_2_FLAGS, 0, 0 },
774 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
775 CPU_ATHLON_FLAGS, 0, 0 },
776 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
777 CPU_K8_FLAGS, 1, 0 },
778 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
779 CPU_K8_FLAGS, 0, 0 },
780 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
781 CPU_K8_FLAGS, 0, 0 },
782 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
783 CPU_AMDFAM10_FLAGS, 0, 0 },
784 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
785 CPU_BDVER1_FLAGS, 0, 0 },
786 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
787 CPU_BDVER2_FLAGS, 0, 0 },
788 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
789 CPU_BDVER3_FLAGS, 0, 0 },
790 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
791 CPU_BDVER4_FLAGS, 0, 0 },
792 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
793 CPU_ZNVER1_FLAGS, 0, 0 },
794 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
795 CPU_BTVER1_FLAGS, 0, 0 },
796 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
797 CPU_BTVER2_FLAGS, 0, 0 },
798 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
799 CPU_8087_FLAGS, 0, 0 },
800 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
801 CPU_287_FLAGS, 0, 0 },
802 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
803 CPU_387_FLAGS, 0, 0 },
804 { STRING_COMMA_LEN (".no87"), PROCESSOR_UNKNOWN,
805 CPU_ANY87_FLAGS, 0, 1 },
806 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
807 CPU_MMX_FLAGS, 0, 0 },
808 { STRING_COMMA_LEN (".nommx"), PROCESSOR_UNKNOWN,
809 CPU_3DNOWA_FLAGS, 0, 1 },
810 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
811 CPU_SSE_FLAGS, 0, 0 },
812 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
813 CPU_SSE2_FLAGS, 0, 0 },
814 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
815 CPU_SSE3_FLAGS, 0, 0 },
816 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
817 CPU_SSSE3_FLAGS, 0, 0 },
818 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
819 CPU_SSE4_1_FLAGS, 0, 0 },
820 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
821 CPU_SSE4_2_FLAGS, 0, 0 },
822 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
823 CPU_SSE4_2_FLAGS, 0, 0 },
824 { STRING_COMMA_LEN (".nosse"), PROCESSOR_UNKNOWN,
825 CPU_ANY_SSE_FLAGS, 0, 1 },
826 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
827 CPU_AVX_FLAGS, 0, 0 },
828 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
829 CPU_AVX2_FLAGS, 0, 0 },
830 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
831 CPU_AVX512F_FLAGS, 0, 0 },
832 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
833 CPU_AVX512CD_FLAGS, 0, 0 },
834 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
835 CPU_AVX512ER_FLAGS, 0, 0 },
836 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
837 CPU_AVX512PF_FLAGS, 0, 0 },
838 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
839 CPU_AVX512DQ_FLAGS, 0, 0 },
840 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
841 CPU_AVX512BW_FLAGS, 0, 0 },
842 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
843 CPU_AVX512VL_FLAGS, 0, 0 },
844 { STRING_COMMA_LEN (".noavx"), PROCESSOR_UNKNOWN,
845 CPU_ANY_AVX_FLAGS, 0, 1 },
846 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
847 CPU_VMX_FLAGS, 0, 0 },
848 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
849 CPU_VMFUNC_FLAGS, 0, 0 },
850 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
851 CPU_SMX_FLAGS, 0, 0 },
852 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
853 CPU_XSAVE_FLAGS, 0, 0 },
854 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
855 CPU_XSAVEOPT_FLAGS, 0, 0 },
856 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
857 CPU_XSAVEC_FLAGS, 0, 0 },
858 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
859 CPU_XSAVES_FLAGS, 0, 0 },
860 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
861 CPU_AES_FLAGS, 0, 0 },
862 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
863 CPU_PCLMUL_FLAGS, 0, 0 },
864 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
865 CPU_PCLMUL_FLAGS, 1, 0 },
866 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
867 CPU_FSGSBASE_FLAGS, 0, 0 },
868 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
869 CPU_RDRND_FLAGS, 0, 0 },
870 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
871 CPU_F16C_FLAGS, 0, 0 },
872 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
873 CPU_BMI2_FLAGS, 0, 0 },
874 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
875 CPU_FMA_FLAGS, 0, 0 },
876 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
877 CPU_FMA4_FLAGS, 0, 0 },
878 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
879 CPU_XOP_FLAGS, 0, 0 },
880 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
881 CPU_LWP_FLAGS, 0, 0 },
882 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
883 CPU_MOVBE_FLAGS, 0, 0 },
884 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
885 CPU_CX16_FLAGS, 0, 0 },
886 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
887 CPU_EPT_FLAGS, 0, 0 },
888 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
889 CPU_LZCNT_FLAGS, 0, 0 },
890 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
891 CPU_HLE_FLAGS, 0, 0 },
892 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
893 CPU_RTM_FLAGS, 0, 0 },
894 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
895 CPU_INVPCID_FLAGS, 0, 0 },
896 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
897 CPU_CLFLUSH_FLAGS, 0, 0 },
898 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
899 CPU_NOP_FLAGS, 0, 0 },
900 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
901 CPU_SYSCALL_FLAGS, 0, 0 },
902 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
903 CPU_RDTSCP_FLAGS, 0, 0 },
904 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
905 CPU_3DNOW_FLAGS, 0, 0 },
906 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
907 CPU_3DNOWA_FLAGS, 0, 0 },
908 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
909 CPU_PADLOCK_FLAGS, 0, 0 },
910 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
911 CPU_SVME_FLAGS, 1, 0 },
912 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
913 CPU_SVME_FLAGS, 0, 0 },
914 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
915 CPU_SSE4A_FLAGS, 0, 0 },
916 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
917 CPU_ABM_FLAGS, 0, 0 },
918 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
919 CPU_BMI_FLAGS, 0, 0 },
920 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
921 CPU_TBM_FLAGS, 0, 0 },
922 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
923 CPU_ADX_FLAGS, 0, 0 },
924 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
925 CPU_RDSEED_FLAGS, 0, 0 },
926 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
927 CPU_PRFCHW_FLAGS, 0, 0 },
928 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
929 CPU_SMAP_FLAGS, 0, 0 },
930 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
931 CPU_MPX_FLAGS, 0, 0 },
932 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
933 CPU_SHA_FLAGS, 0, 0 },
934 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
935 CPU_CLFLUSHOPT_FLAGS, 0, 0 },
936 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
937 CPU_PREFETCHWT1_FLAGS, 0, 0 },
938 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
939 CPU_SE1_FLAGS, 0, 0 },
940 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
941 CPU_CLWB_FLAGS, 0, 0 },
942 { STRING_COMMA_LEN (".pcommit"), PROCESSOR_UNKNOWN,
943 CPU_PCOMMIT_FLAGS, 0, 0 },
944 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
945 CPU_AVX512IFMA_FLAGS, 0, 0 },
946 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
947 CPU_AVX512VBMI_FLAGS, 0, 0 },
948 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
949 CPU_CLZERO_FLAGS, 0, 0 },
950 };
951
952 #ifdef I386COFF
953 /* Like s_lcomm_internal in gas/read.c but the alignment string
954 is allowed to be optional. */
955
956 static symbolS *
957 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
958 {
959 addressT align = 0;
960
961 SKIP_WHITESPACE ();
962
963 if (needs_align
964 && *input_line_pointer == ',')
965 {
966 align = parse_align (needs_align - 1);
967
968 if (align == (addressT) -1)
969 return NULL;
970 }
971 else
972 {
973 if (size >= 8)
974 align = 3;
975 else if (size >= 4)
976 align = 2;
977 else if (size >= 2)
978 align = 1;
979 else
980 align = 0;
981 }
982
983 bss_alloc (symbolP, size, align);
984 return symbolP;
985 }
986
987 static void
988 pe_lcomm (int needs_align)
989 {
990 s_comm_internal (needs_align * 2, pe_lcomm_internal);
991 }
992 #endif
993
994 const pseudo_typeS md_pseudo_table[] =
995 {
996 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
997 {"align", s_align_bytes, 0},
998 #else
999 {"align", s_align_ptwo, 0},
1000 #endif
1001 {"arch", set_cpu_arch, 0},
1002 #ifndef I386COFF
1003 {"bss", s_bss, 0},
1004 #else
1005 {"lcomm", pe_lcomm, 1},
1006 #endif
1007 {"ffloat", float_cons, 'f'},
1008 {"dfloat", float_cons, 'd'},
1009 {"tfloat", float_cons, 'x'},
1010 {"value", cons, 2},
1011 {"slong", signed_cons, 4},
1012 {"noopt", s_ignore, 0},
1013 {"optim", s_ignore, 0},
1014 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1015 {"code16", set_code_flag, CODE_16BIT},
1016 {"code32", set_code_flag, CODE_32BIT},
1017 {"code64", set_code_flag, CODE_64BIT},
1018 {"intel_syntax", set_intel_syntax, 1},
1019 {"att_syntax", set_intel_syntax, 0},
1020 {"intel_mnemonic", set_intel_mnemonic, 1},
1021 {"att_mnemonic", set_intel_mnemonic, 0},
1022 {"allow_index_reg", set_allow_index_reg, 1},
1023 {"disallow_index_reg", set_allow_index_reg, 0},
1024 {"sse_check", set_check, 0},
1025 {"operand_check", set_check, 1},
1026 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1027 {"largecomm", handle_large_common, 0},
1028 #else
1029 {"file", (void (*) (int)) dwarf2_directive_file, 0},
1030 {"loc", dwarf2_directive_loc, 0},
1031 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1032 #endif
1033 #ifdef TE_PE
1034 {"secrel32", pe_directive_secrel, 0},
1035 #endif
1036 {0, 0, 0}
1037 };
1038
1039 /* For interface with expression (). */
1040 extern char *input_line_pointer;
1041
1042 /* Hash table for instruction mnemonic lookup. */
1043 static struct hash_control *op_hash;
1044
1045 /* Hash table for register lookup. */
1046 static struct hash_control *reg_hash;
1047 \f
1048 void
1049 i386_align_code (fragS *fragP, int count)
1050 {
1051 /* Various efficient no-op patterns for aligning code labels.
1052 Note: Don't try to assemble the instructions in the comments.
1053 0L and 0w are not legal. */
1054 static const char f32_1[] =
1055 {0x90}; /* nop */
1056 static const char f32_2[] =
1057 {0x66,0x90}; /* xchg %ax,%ax */
1058 static const char f32_3[] =
1059 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1060 static const char f32_4[] =
1061 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1062 static const char f32_5[] =
1063 {0x90, /* nop */
1064 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1065 static const char f32_6[] =
1066 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1067 static const char f32_7[] =
1068 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1069 static const char f32_8[] =
1070 {0x90, /* nop */
1071 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1072 static const char f32_9[] =
1073 {0x89,0xf6, /* movl %esi,%esi */
1074 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1075 static const char f32_10[] =
1076 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1077 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1078 static const char f32_11[] =
1079 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1080 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1081 static const char f32_12[] =
1082 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1083 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1084 static const char f32_13[] =
1085 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1086 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1087 static const char f32_14[] =
1088 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1089 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1090 static const char f16_3[] =
1091 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1092 static const char f16_4[] =
1093 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1094 static const char f16_5[] =
1095 {0x90, /* nop */
1096 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1097 static const char f16_6[] =
1098 {0x89,0xf6, /* mov %si,%si */
1099 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1100 static const char f16_7[] =
1101 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1102 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1103 static const char f16_8[] =
1104 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1105 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1106 static const char jump_31[] =
1107 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1108 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1109 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1110 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1111 static const char *const f32_patt[] = {
1112 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1113 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1114 };
1115 static const char *const f16_patt[] = {
1116 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1117 };
1118 /* nopl (%[re]ax) */
1119 static const char alt_3[] =
1120 {0x0f,0x1f,0x00};
1121 /* nopl 0(%[re]ax) */
1122 static const char alt_4[] =
1123 {0x0f,0x1f,0x40,0x00};
1124 /* nopl 0(%[re]ax,%[re]ax,1) */
1125 static const char alt_5[] =
1126 {0x0f,0x1f,0x44,0x00,0x00};
1127 /* nopw 0(%[re]ax,%[re]ax,1) */
1128 static const char alt_6[] =
1129 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1130 /* nopl 0L(%[re]ax) */
1131 static const char alt_7[] =
1132 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1133 /* nopl 0L(%[re]ax,%[re]ax,1) */
1134 static const char alt_8[] =
1135 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1136 /* nopw 0L(%[re]ax,%[re]ax,1) */
1137 static const char alt_9[] =
1138 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1139 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1140 static const char alt_10[] =
1141 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1142 static const char *const alt_patt[] = {
1143 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1144 alt_9, alt_10
1145 };
1146
1147 /* Only align for at least a positive non-zero boundary. */
1148 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1149 return;
1150
1151 /* We need to decide which NOP sequence to use for 32bit and
1152 64bit. When -mtune= is used:
1153
1154 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1155 PROCESSOR_GENERIC32, f32_patt will be used.
1156 2. For the rest, alt_patt will be used.
1157
1158 When -mtune= isn't used, alt_patt will be used if
1159 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1160 be used.
1161
1162 When -march= or .arch is used, we can't use anything beyond
1163 cpu_arch_isa_flags. */
1164
1165 if (flag_code == CODE_16BIT)
1166 {
1167 if (count > 8)
1168 {
1169 memcpy (fragP->fr_literal + fragP->fr_fix,
1170 jump_31, count);
1171 /* Adjust jump offset. */
1172 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1173 }
1174 else
1175 memcpy (fragP->fr_literal + fragP->fr_fix,
1176 f16_patt[count - 1], count);
1177 }
1178 else
1179 {
1180 const char *const *patt = NULL;
1181
1182 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1183 {
1184 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1185 switch (cpu_arch_tune)
1186 {
1187 case PROCESSOR_UNKNOWN:
1188 /* We use cpu_arch_isa_flags to check if we SHOULD
1189 optimize with nops. */
1190 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1191 patt = alt_patt;
1192 else
1193 patt = f32_patt;
1194 break;
1195 case PROCESSOR_PENTIUM4:
1196 case PROCESSOR_NOCONA:
1197 case PROCESSOR_CORE:
1198 case PROCESSOR_CORE2:
1199 case PROCESSOR_COREI7:
1200 case PROCESSOR_L1OM:
1201 case PROCESSOR_K1OM:
1202 case PROCESSOR_GENERIC64:
1203 case PROCESSOR_K6:
1204 case PROCESSOR_ATHLON:
1205 case PROCESSOR_K8:
1206 case PROCESSOR_AMDFAM10:
1207 case PROCESSOR_BD:
1208 case PROCESSOR_ZNVER:
1209 case PROCESSOR_BT:
1210 patt = alt_patt;
1211 break;
1212 case PROCESSOR_I386:
1213 case PROCESSOR_I486:
1214 case PROCESSOR_PENTIUM:
1215 case PROCESSOR_PENTIUMPRO:
1216 case PROCESSOR_GENERIC32:
1217 patt = f32_patt;
1218 break;
1219 }
1220 }
1221 else
1222 {
1223 switch (fragP->tc_frag_data.tune)
1224 {
1225 case PROCESSOR_UNKNOWN:
1226 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1227 PROCESSOR_UNKNOWN. */
1228 abort ();
1229 break;
1230
1231 case PROCESSOR_I386:
1232 case PROCESSOR_I486:
1233 case PROCESSOR_PENTIUM:
1234 case PROCESSOR_K6:
1235 case PROCESSOR_ATHLON:
1236 case PROCESSOR_K8:
1237 case PROCESSOR_AMDFAM10:
1238 case PROCESSOR_BD:
1239 case PROCESSOR_ZNVER:
1240 case PROCESSOR_BT:
1241 case PROCESSOR_GENERIC32:
1242 /* We use cpu_arch_isa_flags to check if we CAN optimize
1243 with nops. */
1244 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1245 patt = alt_patt;
1246 else
1247 patt = f32_patt;
1248 break;
1249 case PROCESSOR_PENTIUMPRO:
1250 case PROCESSOR_PENTIUM4:
1251 case PROCESSOR_NOCONA:
1252 case PROCESSOR_CORE:
1253 case PROCESSOR_CORE2:
1254 case PROCESSOR_COREI7:
1255 case PROCESSOR_L1OM:
1256 case PROCESSOR_K1OM:
1257 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1258 patt = alt_patt;
1259 else
1260 patt = f32_patt;
1261 break;
1262 case PROCESSOR_GENERIC64:
1263 patt = alt_patt;
1264 break;
1265 }
1266 }
1267
1268 if (patt == f32_patt)
1269 {
1270 /* If the padding is less than 15 bytes, we use the normal
1271 ones. Otherwise, we use a jump instruction and adjust
1272 its offset. */
1273 int limit;
1274
1275 /* For 64bit, the limit is 3 bytes. */
1276 if (flag_code == CODE_64BIT
1277 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1278 limit = 3;
1279 else
1280 limit = 15;
1281 if (count < limit)
1282 memcpy (fragP->fr_literal + fragP->fr_fix,
1283 patt[count - 1], count);
1284 else
1285 {
1286 memcpy (fragP->fr_literal + fragP->fr_fix,
1287 jump_31, count);
1288 /* Adjust jump offset. */
1289 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1290 }
1291 }
1292 else
1293 {
1294 /* Maximum length of an instruction is 10 byte. If the
1295 padding is greater than 10 bytes and we don't use jump,
1296 we have to break it into smaller pieces. */
1297 int padding = count;
1298 while (padding > 10)
1299 {
1300 padding -= 10;
1301 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1302 patt [9], 10);
1303 }
1304
1305 if (padding)
1306 memcpy (fragP->fr_literal + fragP->fr_fix,
1307 patt [padding - 1], padding);
1308 }
1309 }
1310 fragP->fr_var = count;
1311 }
1312
1313 static INLINE int
1314 operand_type_all_zero (const union i386_operand_type *x)
1315 {
1316 switch (ARRAY_SIZE(x->array))
1317 {
1318 case 3:
1319 if (x->array[2])
1320 return 0;
1321 case 2:
1322 if (x->array[1])
1323 return 0;
1324 case 1:
1325 return !x->array[0];
1326 default:
1327 abort ();
1328 }
1329 }
1330
1331 static INLINE void
1332 operand_type_set (union i386_operand_type *x, unsigned int v)
1333 {
1334 switch (ARRAY_SIZE(x->array))
1335 {
1336 case 3:
1337 x->array[2] = v;
1338 case 2:
1339 x->array[1] = v;
1340 case 1:
1341 x->array[0] = v;
1342 break;
1343 default:
1344 abort ();
1345 }
1346 }
1347
1348 static INLINE int
1349 operand_type_equal (const union i386_operand_type *x,
1350 const union i386_operand_type *y)
1351 {
1352 switch (ARRAY_SIZE(x->array))
1353 {
1354 case 3:
1355 if (x->array[2] != y->array[2])
1356 return 0;
1357 case 2:
1358 if (x->array[1] != y->array[1])
1359 return 0;
1360 case 1:
1361 return x->array[0] == y->array[0];
1362 break;
1363 default:
1364 abort ();
1365 }
1366 }
1367
1368 static INLINE int
1369 cpu_flags_all_zero (const union i386_cpu_flags *x)
1370 {
1371 switch (ARRAY_SIZE(x->array))
1372 {
1373 case 3:
1374 if (x->array[2])
1375 return 0;
1376 case 2:
1377 if (x->array[1])
1378 return 0;
1379 case 1:
1380 return !x->array[0];
1381 default:
1382 abort ();
1383 }
1384 }
1385
1386 static INLINE int
1387 cpu_flags_equal (const union i386_cpu_flags *x,
1388 const union i386_cpu_flags *y)
1389 {
1390 switch (ARRAY_SIZE(x->array))
1391 {
1392 case 3:
1393 if (x->array[2] != y->array[2])
1394 return 0;
1395 case 2:
1396 if (x->array[1] != y->array[1])
1397 return 0;
1398 case 1:
1399 return x->array[0] == y->array[0];
1400 break;
1401 default:
1402 abort ();
1403 }
1404 }
1405
1406 static INLINE int
1407 cpu_flags_check_cpu64 (i386_cpu_flags f)
1408 {
1409 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1410 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1411 }
1412
1413 static INLINE i386_cpu_flags
1414 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1415 {
1416 switch (ARRAY_SIZE (x.array))
1417 {
1418 case 3:
1419 x.array [2] &= y.array [2];
1420 case 2:
1421 x.array [1] &= y.array [1];
1422 case 1:
1423 x.array [0] &= y.array [0];
1424 break;
1425 default:
1426 abort ();
1427 }
1428 return x;
1429 }
1430
1431 static INLINE i386_cpu_flags
1432 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1433 {
1434 switch (ARRAY_SIZE (x.array))
1435 {
1436 case 3:
1437 x.array [2] |= y.array [2];
1438 case 2:
1439 x.array [1] |= y.array [1];
1440 case 1:
1441 x.array [0] |= y.array [0];
1442 break;
1443 default:
1444 abort ();
1445 }
1446 return x;
1447 }
1448
1449 static INLINE i386_cpu_flags
1450 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1451 {
1452 switch (ARRAY_SIZE (x.array))
1453 {
1454 case 3:
1455 x.array [2] &= ~y.array [2];
1456 case 2:
1457 x.array [1] &= ~y.array [1];
1458 case 1:
1459 x.array [0] &= ~y.array [0];
1460 break;
1461 default:
1462 abort ();
1463 }
1464 return x;
1465 }
1466
1467 #define CPU_FLAGS_ARCH_MATCH 0x1
1468 #define CPU_FLAGS_64BIT_MATCH 0x2
1469 #define CPU_FLAGS_AES_MATCH 0x4
1470 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1471 #define CPU_FLAGS_AVX_MATCH 0x10
1472
1473 #define CPU_FLAGS_32BIT_MATCH \
1474 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1475 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1476 #define CPU_FLAGS_PERFECT_MATCH \
1477 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1478
1479 /* Return CPU flags match bits. */
1480
1481 static int
1482 cpu_flags_match (const insn_template *t)
1483 {
1484 i386_cpu_flags x = t->cpu_flags;
1485 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1486
1487 x.bitfield.cpu64 = 0;
1488 x.bitfield.cpuno64 = 0;
1489
1490 if (cpu_flags_all_zero (&x))
1491 {
1492 /* This instruction is available on all archs. */
1493 match |= CPU_FLAGS_32BIT_MATCH;
1494 }
1495 else
1496 {
1497 /* This instruction is available only on some archs. */
1498 i386_cpu_flags cpu = cpu_arch_flags;
1499
1500 cpu.bitfield.cpu64 = 0;
1501 cpu.bitfield.cpuno64 = 0;
1502 cpu = cpu_flags_and (x, cpu);
1503 if (!cpu_flags_all_zero (&cpu))
1504 {
1505 if (x.bitfield.cpuavx)
1506 {
1507 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1508 if (cpu.bitfield.cpuavx)
1509 {
1510 /* Check SSE2AVX. */
1511 if (!t->opcode_modifier.sse2avx|| sse2avx)
1512 {
1513 match |= (CPU_FLAGS_ARCH_MATCH
1514 | CPU_FLAGS_AVX_MATCH);
1515 /* Check AES. */
1516 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1517 match |= CPU_FLAGS_AES_MATCH;
1518 /* Check PCLMUL. */
1519 if (!x.bitfield.cpupclmul
1520 || cpu.bitfield.cpupclmul)
1521 match |= CPU_FLAGS_PCLMUL_MATCH;
1522 }
1523 }
1524 else
1525 match |= CPU_FLAGS_ARCH_MATCH;
1526 }
1527 else
1528 match |= CPU_FLAGS_32BIT_MATCH;
1529 }
1530 }
1531 return match;
1532 }
1533
1534 static INLINE i386_operand_type
1535 operand_type_and (i386_operand_type x, i386_operand_type y)
1536 {
1537 switch (ARRAY_SIZE (x.array))
1538 {
1539 case 3:
1540 x.array [2] &= y.array [2];
1541 case 2:
1542 x.array [1] &= y.array [1];
1543 case 1:
1544 x.array [0] &= y.array [0];
1545 break;
1546 default:
1547 abort ();
1548 }
1549 return x;
1550 }
1551
1552 static INLINE i386_operand_type
1553 operand_type_or (i386_operand_type x, i386_operand_type y)
1554 {
1555 switch (ARRAY_SIZE (x.array))
1556 {
1557 case 3:
1558 x.array [2] |= y.array [2];
1559 case 2:
1560 x.array [1] |= y.array [1];
1561 case 1:
1562 x.array [0] |= y.array [0];
1563 break;
1564 default:
1565 abort ();
1566 }
1567 return x;
1568 }
1569
1570 static INLINE i386_operand_type
1571 operand_type_xor (i386_operand_type x, i386_operand_type y)
1572 {
1573 switch (ARRAY_SIZE (x.array))
1574 {
1575 case 3:
1576 x.array [2] ^= y.array [2];
1577 case 2:
1578 x.array [1] ^= y.array [1];
1579 case 1:
1580 x.array [0] ^= y.array [0];
1581 break;
1582 default:
1583 abort ();
1584 }
1585 return x;
1586 }
1587
1588 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1589 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1590 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1591 static const i386_operand_type inoutportreg
1592 = OPERAND_TYPE_INOUTPORTREG;
1593 static const i386_operand_type reg16_inoutportreg
1594 = OPERAND_TYPE_REG16_INOUTPORTREG;
1595 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1596 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1597 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1598 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1599 static const i386_operand_type anydisp
1600 = OPERAND_TYPE_ANYDISP;
1601 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1602 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1603 static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1604 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1605 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1606 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1607 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1608 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1609 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1610 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1611 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1612 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1613 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1614 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1615
1616 enum operand_type
1617 {
1618 reg,
1619 imm,
1620 disp,
1621 anymem
1622 };
1623
1624 static INLINE int
1625 operand_type_check (i386_operand_type t, enum operand_type c)
1626 {
1627 switch (c)
1628 {
1629 case reg:
1630 return (t.bitfield.reg8
1631 || t.bitfield.reg16
1632 || t.bitfield.reg32
1633 || t.bitfield.reg64);
1634
1635 case imm:
1636 return (t.bitfield.imm8
1637 || t.bitfield.imm8s
1638 || t.bitfield.imm16
1639 || t.bitfield.imm32
1640 || t.bitfield.imm32s
1641 || t.bitfield.imm64);
1642
1643 case disp:
1644 return (t.bitfield.disp8
1645 || t.bitfield.disp16
1646 || t.bitfield.disp32
1647 || t.bitfield.disp32s
1648 || t.bitfield.disp64);
1649
1650 case anymem:
1651 return (t.bitfield.disp8
1652 || t.bitfield.disp16
1653 || t.bitfield.disp32
1654 || t.bitfield.disp32s
1655 || t.bitfield.disp64
1656 || t.bitfield.baseindex);
1657
1658 default:
1659 abort ();
1660 }
1661
1662 return 0;
1663 }
1664
1665 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1666 operand J for instruction template T. */
1667
1668 static INLINE int
1669 match_reg_size (const insn_template *t, unsigned int j)
1670 {
1671 return !((i.types[j].bitfield.byte
1672 && !t->operand_types[j].bitfield.byte)
1673 || (i.types[j].bitfield.word
1674 && !t->operand_types[j].bitfield.word)
1675 || (i.types[j].bitfield.dword
1676 && !t->operand_types[j].bitfield.dword)
1677 || (i.types[j].bitfield.qword
1678 && !t->operand_types[j].bitfield.qword));
1679 }
1680
1681 /* Return 1 if there is no conflict in any size on operand J for
1682 instruction template T. */
1683
1684 static INLINE int
1685 match_mem_size (const insn_template *t, unsigned int j)
1686 {
1687 return (match_reg_size (t, j)
1688 && !((i.types[j].bitfield.unspecified
1689 && !i.broadcast
1690 && !t->operand_types[j].bitfield.unspecified)
1691 || (i.types[j].bitfield.fword
1692 && !t->operand_types[j].bitfield.fword)
1693 || (i.types[j].bitfield.tbyte
1694 && !t->operand_types[j].bitfield.tbyte)
1695 || (i.types[j].bitfield.xmmword
1696 && !t->operand_types[j].bitfield.xmmword)
1697 || (i.types[j].bitfield.ymmword
1698 && !t->operand_types[j].bitfield.ymmword)
1699 || (i.types[j].bitfield.zmmword
1700 && !t->operand_types[j].bitfield.zmmword)));
1701 }
1702
1703 /* Return 1 if there is no size conflict on any operands for
1704 instruction template T. */
1705
1706 static INLINE int
1707 operand_size_match (const insn_template *t)
1708 {
1709 unsigned int j;
1710 int match = 1;
1711
1712 /* Don't check jump instructions. */
1713 if (t->opcode_modifier.jump
1714 || t->opcode_modifier.jumpbyte
1715 || t->opcode_modifier.jumpdword
1716 || t->opcode_modifier.jumpintersegment)
1717 return match;
1718
1719 /* Check memory and accumulator operand size. */
1720 for (j = 0; j < i.operands; j++)
1721 {
1722 if (t->operand_types[j].bitfield.anysize)
1723 continue;
1724
1725 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1726 {
1727 match = 0;
1728 break;
1729 }
1730
1731 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1732 {
1733 match = 0;
1734 break;
1735 }
1736 }
1737
1738 if (match)
1739 return match;
1740 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1741 {
1742 mismatch:
1743 i.error = operand_size_mismatch;
1744 return 0;
1745 }
1746
1747 /* Check reverse. */
1748 gas_assert (i.operands == 2);
1749
1750 match = 1;
1751 for (j = 0; j < 2; j++)
1752 {
1753 if (t->operand_types[j].bitfield.acc
1754 && !match_reg_size (t, j ? 0 : 1))
1755 goto mismatch;
1756
1757 if (i.types[j].bitfield.mem
1758 && !match_mem_size (t, j ? 0 : 1))
1759 goto mismatch;
1760 }
1761
1762 return match;
1763 }
1764
1765 static INLINE int
1766 operand_type_match (i386_operand_type overlap,
1767 i386_operand_type given)
1768 {
1769 i386_operand_type temp = overlap;
1770
1771 temp.bitfield.jumpabsolute = 0;
1772 temp.bitfield.unspecified = 0;
1773 temp.bitfield.byte = 0;
1774 temp.bitfield.word = 0;
1775 temp.bitfield.dword = 0;
1776 temp.bitfield.fword = 0;
1777 temp.bitfield.qword = 0;
1778 temp.bitfield.tbyte = 0;
1779 temp.bitfield.xmmword = 0;
1780 temp.bitfield.ymmword = 0;
1781 temp.bitfield.zmmword = 0;
1782 if (operand_type_all_zero (&temp))
1783 goto mismatch;
1784
1785 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1786 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1787 return 1;
1788
1789 mismatch:
1790 i.error = operand_type_mismatch;
1791 return 0;
1792 }
1793
1794 /* If given types g0 and g1 are registers they must be of the same type
1795 unless the expected operand type register overlap is null.
1796 Note that Acc in a template matches every size of reg. */
1797
1798 static INLINE int
1799 operand_type_register_match (i386_operand_type m0,
1800 i386_operand_type g0,
1801 i386_operand_type t0,
1802 i386_operand_type m1,
1803 i386_operand_type g1,
1804 i386_operand_type t1)
1805 {
1806 if (!operand_type_check (g0, reg))
1807 return 1;
1808
1809 if (!operand_type_check (g1, reg))
1810 return 1;
1811
1812 if (g0.bitfield.reg8 == g1.bitfield.reg8
1813 && g0.bitfield.reg16 == g1.bitfield.reg16
1814 && g0.bitfield.reg32 == g1.bitfield.reg32
1815 && g0.bitfield.reg64 == g1.bitfield.reg64)
1816 return 1;
1817
1818 if (m0.bitfield.acc)
1819 {
1820 t0.bitfield.reg8 = 1;
1821 t0.bitfield.reg16 = 1;
1822 t0.bitfield.reg32 = 1;
1823 t0.bitfield.reg64 = 1;
1824 }
1825
1826 if (m1.bitfield.acc)
1827 {
1828 t1.bitfield.reg8 = 1;
1829 t1.bitfield.reg16 = 1;
1830 t1.bitfield.reg32 = 1;
1831 t1.bitfield.reg64 = 1;
1832 }
1833
1834 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1835 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1836 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1837 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1838 return 1;
1839
1840 i.error = register_type_mismatch;
1841
1842 return 0;
1843 }
1844
1845 static INLINE unsigned int
1846 register_number (const reg_entry *r)
1847 {
1848 unsigned int nr = r->reg_num;
1849
1850 if (r->reg_flags & RegRex)
1851 nr += 8;
1852
1853 return nr;
1854 }
1855
1856 static INLINE unsigned int
1857 mode_from_disp_size (i386_operand_type t)
1858 {
1859 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
1860 return 1;
1861 else if (t.bitfield.disp16
1862 || t.bitfield.disp32
1863 || t.bitfield.disp32s)
1864 return 2;
1865 else
1866 return 0;
1867 }
1868
1869 static INLINE int
1870 fits_in_signed_byte (addressT num)
1871 {
1872 return num + 0x80 <= 0xff;
1873 }
1874
1875 static INLINE int
1876 fits_in_unsigned_byte (addressT num)
1877 {
1878 return num <= 0xff;
1879 }
1880
1881 static INLINE int
1882 fits_in_unsigned_word (addressT num)
1883 {
1884 return num <= 0xffff;
1885 }
1886
1887 static INLINE int
1888 fits_in_signed_word (addressT num)
1889 {
1890 return num + 0x8000 <= 0xffff;
1891 }
1892
1893 static INLINE int
1894 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
1895 {
1896 #ifndef BFD64
1897 return 1;
1898 #else
1899 return num + 0x80000000 <= 0xffffffff;
1900 #endif
1901 } /* fits_in_signed_long() */
1902
1903 static INLINE int
1904 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
1905 {
1906 #ifndef BFD64
1907 return 1;
1908 #else
1909 return num <= 0xffffffff;
1910 #endif
1911 } /* fits_in_unsigned_long() */
1912
1913 static INLINE int
1914 fits_in_vec_disp8 (offsetT num)
1915 {
1916 int shift = i.memshift;
1917 unsigned int mask;
1918
1919 if (shift == -1)
1920 abort ();
1921
1922 mask = (1 << shift) - 1;
1923
1924 /* Return 0 if NUM isn't properly aligned. */
1925 if ((num & mask))
1926 return 0;
1927
1928 /* Check if NUM will fit in 8bit after shift. */
1929 return fits_in_signed_byte (num >> shift);
1930 }
1931
1932 static INLINE int
1933 fits_in_imm4 (offsetT num)
1934 {
1935 return (num & 0xf) == num;
1936 }
1937
1938 static i386_operand_type
1939 smallest_imm_type (offsetT num)
1940 {
1941 i386_operand_type t;
1942
1943 operand_type_set (&t, 0);
1944 t.bitfield.imm64 = 1;
1945
1946 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
1947 {
1948 /* This code is disabled on the 486 because all the Imm1 forms
1949 in the opcode table are slower on the i486. They're the
1950 versions with the implicitly specified single-position
1951 displacement, which has another syntax if you really want to
1952 use that form. */
1953 t.bitfield.imm1 = 1;
1954 t.bitfield.imm8 = 1;
1955 t.bitfield.imm8s = 1;
1956 t.bitfield.imm16 = 1;
1957 t.bitfield.imm32 = 1;
1958 t.bitfield.imm32s = 1;
1959 }
1960 else if (fits_in_signed_byte (num))
1961 {
1962 t.bitfield.imm8 = 1;
1963 t.bitfield.imm8s = 1;
1964 t.bitfield.imm16 = 1;
1965 t.bitfield.imm32 = 1;
1966 t.bitfield.imm32s = 1;
1967 }
1968 else if (fits_in_unsigned_byte (num))
1969 {
1970 t.bitfield.imm8 = 1;
1971 t.bitfield.imm16 = 1;
1972 t.bitfield.imm32 = 1;
1973 t.bitfield.imm32s = 1;
1974 }
1975 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
1976 {
1977 t.bitfield.imm16 = 1;
1978 t.bitfield.imm32 = 1;
1979 t.bitfield.imm32s = 1;
1980 }
1981 else if (fits_in_signed_long (num))
1982 {
1983 t.bitfield.imm32 = 1;
1984 t.bitfield.imm32s = 1;
1985 }
1986 else if (fits_in_unsigned_long (num))
1987 t.bitfield.imm32 = 1;
1988
1989 return t;
1990 }
1991
1992 static offsetT
1993 offset_in_range (offsetT val, int size)
1994 {
1995 addressT mask;
1996
1997 switch (size)
1998 {
1999 case 1: mask = ((addressT) 1 << 8) - 1; break;
2000 case 2: mask = ((addressT) 1 << 16) - 1; break;
2001 case 4: mask = ((addressT) 2 << 31) - 1; break;
2002 #ifdef BFD64
2003 case 8: mask = ((addressT) 2 << 63) - 1; break;
2004 #endif
2005 default: abort ();
2006 }
2007
2008 #ifdef BFD64
2009 /* If BFD64, sign extend val for 32bit address mode. */
2010 if (flag_code != CODE_64BIT
2011 || i.prefix[ADDR_PREFIX])
2012 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2013 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2014 #endif
2015
2016 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2017 {
2018 char buf1[40], buf2[40];
2019
2020 sprint_value (buf1, val);
2021 sprint_value (buf2, val & mask);
2022 as_warn (_("%s shortened to %s"), buf1, buf2);
2023 }
2024 return val & mask;
2025 }
2026
2027 enum PREFIX_GROUP
2028 {
2029 PREFIX_EXIST = 0,
2030 PREFIX_LOCK,
2031 PREFIX_REP,
2032 PREFIX_OTHER
2033 };
2034
2035 /* Returns
2036 a. PREFIX_EXIST if attempting to add a prefix where one from the
2037 same class already exists.
2038 b. PREFIX_LOCK if lock prefix is added.
2039 c. PREFIX_REP if rep/repne prefix is added.
2040 d. PREFIX_OTHER if other prefix is added.
2041 */
2042
2043 static enum PREFIX_GROUP
2044 add_prefix (unsigned int prefix)
2045 {
2046 enum PREFIX_GROUP ret = PREFIX_OTHER;
2047 unsigned int q;
2048
2049 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2050 && flag_code == CODE_64BIT)
2051 {
2052 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2053 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2054 && (prefix & (REX_R | REX_X | REX_B))))
2055 ret = PREFIX_EXIST;
2056 q = REX_PREFIX;
2057 }
2058 else
2059 {
2060 switch (prefix)
2061 {
2062 default:
2063 abort ();
2064
2065 case CS_PREFIX_OPCODE:
2066 case DS_PREFIX_OPCODE:
2067 case ES_PREFIX_OPCODE:
2068 case FS_PREFIX_OPCODE:
2069 case GS_PREFIX_OPCODE:
2070 case SS_PREFIX_OPCODE:
2071 q = SEG_PREFIX;
2072 break;
2073
2074 case REPNE_PREFIX_OPCODE:
2075 case REPE_PREFIX_OPCODE:
2076 q = REP_PREFIX;
2077 ret = PREFIX_REP;
2078 break;
2079
2080 case LOCK_PREFIX_OPCODE:
2081 q = LOCK_PREFIX;
2082 ret = PREFIX_LOCK;
2083 break;
2084
2085 case FWAIT_OPCODE:
2086 q = WAIT_PREFIX;
2087 break;
2088
2089 case ADDR_PREFIX_OPCODE:
2090 q = ADDR_PREFIX;
2091 break;
2092
2093 case DATA_PREFIX_OPCODE:
2094 q = DATA_PREFIX;
2095 break;
2096 }
2097 if (i.prefix[q] != 0)
2098 ret = PREFIX_EXIST;
2099 }
2100
2101 if (ret)
2102 {
2103 if (!i.prefix[q])
2104 ++i.prefixes;
2105 i.prefix[q] |= prefix;
2106 }
2107 else
2108 as_bad (_("same type of prefix used twice"));
2109
2110 return ret;
2111 }
2112
2113 static void
2114 update_code_flag (int value, int check)
2115 {
2116 PRINTF_LIKE ((*as_error));
2117
2118 flag_code = (enum flag_code) value;
2119 if (flag_code == CODE_64BIT)
2120 {
2121 cpu_arch_flags.bitfield.cpu64 = 1;
2122 cpu_arch_flags.bitfield.cpuno64 = 0;
2123 }
2124 else
2125 {
2126 cpu_arch_flags.bitfield.cpu64 = 0;
2127 cpu_arch_flags.bitfield.cpuno64 = 1;
2128 }
2129 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2130 {
2131 if (check)
2132 as_error = as_fatal;
2133 else
2134 as_error = as_bad;
2135 (*as_error) (_("64bit mode not supported on `%s'."),
2136 cpu_arch_name ? cpu_arch_name : default_arch);
2137 }
2138 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2139 {
2140 if (check)
2141 as_error = as_fatal;
2142 else
2143 as_error = as_bad;
2144 (*as_error) (_("32bit mode not supported on `%s'."),
2145 cpu_arch_name ? cpu_arch_name : default_arch);
2146 }
2147 stackop_size = '\0';
2148 }
2149
2150 static void
2151 set_code_flag (int value)
2152 {
2153 update_code_flag (value, 0);
2154 }
2155
2156 static void
2157 set_16bit_gcc_code_flag (int new_code_flag)
2158 {
2159 flag_code = (enum flag_code) new_code_flag;
2160 if (flag_code != CODE_16BIT)
2161 abort ();
2162 cpu_arch_flags.bitfield.cpu64 = 0;
2163 cpu_arch_flags.bitfield.cpuno64 = 1;
2164 stackop_size = LONG_MNEM_SUFFIX;
2165 }
2166
2167 static void
2168 set_intel_syntax (int syntax_flag)
2169 {
2170 /* Find out if register prefixing is specified. */
2171 int ask_naked_reg = 0;
2172
2173 SKIP_WHITESPACE ();
2174 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2175 {
2176 char *string = input_line_pointer;
2177 int e = get_symbol_end ();
2178
2179 if (strcmp (string, "prefix") == 0)
2180 ask_naked_reg = 1;
2181 else if (strcmp (string, "noprefix") == 0)
2182 ask_naked_reg = -1;
2183 else
2184 as_bad (_("bad argument to syntax directive."));
2185 *input_line_pointer = e;
2186 }
2187 demand_empty_rest_of_line ();
2188
2189 intel_syntax = syntax_flag;
2190
2191 if (ask_naked_reg == 0)
2192 allow_naked_reg = (intel_syntax
2193 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2194 else
2195 allow_naked_reg = (ask_naked_reg < 0);
2196
2197 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2198
2199 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2200 identifier_chars['$'] = intel_syntax ? '$' : 0;
2201 register_prefix = allow_naked_reg ? "" : "%";
2202 }
2203
2204 static void
2205 set_intel_mnemonic (int mnemonic_flag)
2206 {
2207 intel_mnemonic = mnemonic_flag;
2208 }
2209
2210 static void
2211 set_allow_index_reg (int flag)
2212 {
2213 allow_index_reg = flag;
2214 }
2215
2216 static void
2217 set_check (int what)
2218 {
2219 enum check_kind *kind;
2220 const char *str;
2221
2222 if (what)
2223 {
2224 kind = &operand_check;
2225 str = "operand";
2226 }
2227 else
2228 {
2229 kind = &sse_check;
2230 str = "sse";
2231 }
2232
2233 SKIP_WHITESPACE ();
2234
2235 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2236 {
2237 char *string = input_line_pointer;
2238 int e = get_symbol_end ();
2239
2240 if (strcmp (string, "none") == 0)
2241 *kind = check_none;
2242 else if (strcmp (string, "warning") == 0)
2243 *kind = check_warning;
2244 else if (strcmp (string, "error") == 0)
2245 *kind = check_error;
2246 else
2247 as_bad (_("bad argument to %s_check directive."), str);
2248 *input_line_pointer = e;
2249 }
2250 else
2251 as_bad (_("missing argument for %s_check directive"), str);
2252
2253 demand_empty_rest_of_line ();
2254 }
2255
2256 static void
2257 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2258 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2259 {
2260 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2261 static const char *arch;
2262
2263 /* Intel LIOM is only supported on ELF. */
2264 if (!IS_ELF)
2265 return;
2266
2267 if (!arch)
2268 {
2269 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2270 use default_arch. */
2271 arch = cpu_arch_name;
2272 if (!arch)
2273 arch = default_arch;
2274 }
2275
2276 /* If we are targeting Intel L1OM, we must enable it. */
2277 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2278 || new_flag.bitfield.cpul1om)
2279 return;
2280
2281 /* If we are targeting Intel K1OM, we must enable it. */
2282 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2283 || new_flag.bitfield.cpuk1om)
2284 return;
2285
2286 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2287 #endif
2288 }
2289
2290 static void
2291 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2292 {
2293 SKIP_WHITESPACE ();
2294
2295 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2296 {
2297 char *string = input_line_pointer;
2298 int e = get_symbol_end ();
2299 unsigned int j;
2300 i386_cpu_flags flags;
2301
2302 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2303 {
2304 if (strcmp (string, cpu_arch[j].name) == 0)
2305 {
2306 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2307
2308 if (*string != '.')
2309 {
2310 cpu_arch_name = cpu_arch[j].name;
2311 cpu_sub_arch_name = NULL;
2312 cpu_arch_flags = cpu_arch[j].flags;
2313 if (flag_code == CODE_64BIT)
2314 {
2315 cpu_arch_flags.bitfield.cpu64 = 1;
2316 cpu_arch_flags.bitfield.cpuno64 = 0;
2317 }
2318 else
2319 {
2320 cpu_arch_flags.bitfield.cpu64 = 0;
2321 cpu_arch_flags.bitfield.cpuno64 = 1;
2322 }
2323 cpu_arch_isa = cpu_arch[j].type;
2324 cpu_arch_isa_flags = cpu_arch[j].flags;
2325 if (!cpu_arch_tune_set)
2326 {
2327 cpu_arch_tune = cpu_arch_isa;
2328 cpu_arch_tune_flags = cpu_arch_isa_flags;
2329 }
2330 break;
2331 }
2332
2333 if (!cpu_arch[j].negated)
2334 flags = cpu_flags_or (cpu_arch_flags,
2335 cpu_arch[j].flags);
2336 else
2337 flags = cpu_flags_and_not (cpu_arch_flags,
2338 cpu_arch[j].flags);
2339 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2340 {
2341 if (cpu_sub_arch_name)
2342 {
2343 char *name = cpu_sub_arch_name;
2344 cpu_sub_arch_name = concat (name,
2345 cpu_arch[j].name,
2346 (const char *) NULL);
2347 free (name);
2348 }
2349 else
2350 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2351 cpu_arch_flags = flags;
2352 cpu_arch_isa_flags = flags;
2353 }
2354 *input_line_pointer = e;
2355 demand_empty_rest_of_line ();
2356 return;
2357 }
2358 }
2359 if (j >= ARRAY_SIZE (cpu_arch))
2360 as_bad (_("no such architecture: `%s'"), string);
2361
2362 *input_line_pointer = e;
2363 }
2364 else
2365 as_bad (_("missing cpu architecture"));
2366
2367 no_cond_jump_promotion = 0;
2368 if (*input_line_pointer == ','
2369 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2370 {
2371 char *string = ++input_line_pointer;
2372 int e = get_symbol_end ();
2373
2374 if (strcmp (string, "nojumps") == 0)
2375 no_cond_jump_promotion = 1;
2376 else if (strcmp (string, "jumps") == 0)
2377 ;
2378 else
2379 as_bad (_("no such architecture modifier: `%s'"), string);
2380
2381 *input_line_pointer = e;
2382 }
2383
2384 demand_empty_rest_of_line ();
2385 }
2386
2387 enum bfd_architecture
2388 i386_arch (void)
2389 {
2390 if (cpu_arch_isa == PROCESSOR_L1OM)
2391 {
2392 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2393 || flag_code != CODE_64BIT)
2394 as_fatal (_("Intel L1OM is 64bit ELF only"));
2395 return bfd_arch_l1om;
2396 }
2397 else if (cpu_arch_isa == PROCESSOR_K1OM)
2398 {
2399 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2400 || flag_code != CODE_64BIT)
2401 as_fatal (_("Intel K1OM is 64bit ELF only"));
2402 return bfd_arch_k1om;
2403 }
2404 else
2405 return bfd_arch_i386;
2406 }
2407
2408 unsigned long
2409 i386_mach (void)
2410 {
2411 if (!strncmp (default_arch, "x86_64", 6))
2412 {
2413 if (cpu_arch_isa == PROCESSOR_L1OM)
2414 {
2415 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2416 || default_arch[6] != '\0')
2417 as_fatal (_("Intel L1OM is 64bit ELF only"));
2418 return bfd_mach_l1om;
2419 }
2420 else if (cpu_arch_isa == PROCESSOR_K1OM)
2421 {
2422 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2423 || default_arch[6] != '\0')
2424 as_fatal (_("Intel K1OM is 64bit ELF only"));
2425 return bfd_mach_k1om;
2426 }
2427 else if (default_arch[6] == '\0')
2428 return bfd_mach_x86_64;
2429 else
2430 return bfd_mach_x64_32;
2431 }
2432 else if (!strcmp (default_arch, "i386"))
2433 return bfd_mach_i386_i386;
2434 else
2435 as_fatal (_("unknown architecture"));
2436 }
2437 \f
2438 void
2439 md_begin (void)
2440 {
2441 const char *hash_err;
2442
2443 /* Initialize op_hash hash table. */
2444 op_hash = hash_new ();
2445
2446 {
2447 const insn_template *optab;
2448 templates *core_optab;
2449
2450 /* Setup for loop. */
2451 optab = i386_optab;
2452 core_optab = (templates *) xmalloc (sizeof (templates));
2453 core_optab->start = optab;
2454
2455 while (1)
2456 {
2457 ++optab;
2458 if (optab->name == NULL
2459 || strcmp (optab->name, (optab - 1)->name) != 0)
2460 {
2461 /* different name --> ship out current template list;
2462 add to hash table; & begin anew. */
2463 core_optab->end = optab;
2464 hash_err = hash_insert (op_hash,
2465 (optab - 1)->name,
2466 (void *) core_optab);
2467 if (hash_err)
2468 {
2469 as_fatal (_("can't hash %s: %s"),
2470 (optab - 1)->name,
2471 hash_err);
2472 }
2473 if (optab->name == NULL)
2474 break;
2475 core_optab = (templates *) xmalloc (sizeof (templates));
2476 core_optab->start = optab;
2477 }
2478 }
2479 }
2480
2481 /* Initialize reg_hash hash table. */
2482 reg_hash = hash_new ();
2483 {
2484 const reg_entry *regtab;
2485 unsigned int regtab_size = i386_regtab_size;
2486
2487 for (regtab = i386_regtab; regtab_size--; regtab++)
2488 {
2489 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2490 if (hash_err)
2491 as_fatal (_("can't hash %s: %s"),
2492 regtab->reg_name,
2493 hash_err);
2494 }
2495 }
2496
2497 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2498 {
2499 int c;
2500 char *p;
2501
2502 for (c = 0; c < 256; c++)
2503 {
2504 if (ISDIGIT (c))
2505 {
2506 digit_chars[c] = c;
2507 mnemonic_chars[c] = c;
2508 register_chars[c] = c;
2509 operand_chars[c] = c;
2510 }
2511 else if (ISLOWER (c))
2512 {
2513 mnemonic_chars[c] = c;
2514 register_chars[c] = c;
2515 operand_chars[c] = c;
2516 }
2517 else if (ISUPPER (c))
2518 {
2519 mnemonic_chars[c] = TOLOWER (c);
2520 register_chars[c] = mnemonic_chars[c];
2521 operand_chars[c] = c;
2522 }
2523 else if (c == '{' || c == '}')
2524 operand_chars[c] = c;
2525
2526 if (ISALPHA (c) || ISDIGIT (c))
2527 identifier_chars[c] = c;
2528 else if (c >= 128)
2529 {
2530 identifier_chars[c] = c;
2531 operand_chars[c] = c;
2532 }
2533 }
2534
2535 #ifdef LEX_AT
2536 identifier_chars['@'] = '@';
2537 #endif
2538 #ifdef LEX_QM
2539 identifier_chars['?'] = '?';
2540 operand_chars['?'] = '?';
2541 #endif
2542 digit_chars['-'] = '-';
2543 mnemonic_chars['_'] = '_';
2544 mnemonic_chars['-'] = '-';
2545 mnemonic_chars['.'] = '.';
2546 identifier_chars['_'] = '_';
2547 identifier_chars['.'] = '.';
2548
2549 for (p = operand_special_chars; *p != '\0'; p++)
2550 operand_chars[(unsigned char) *p] = *p;
2551 }
2552
2553 if (flag_code == CODE_64BIT)
2554 {
2555 #if defined (OBJ_COFF) && defined (TE_PE)
2556 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2557 ? 32 : 16);
2558 #else
2559 x86_dwarf2_return_column = 16;
2560 #endif
2561 x86_cie_data_alignment = -8;
2562 }
2563 else
2564 {
2565 x86_dwarf2_return_column = 8;
2566 x86_cie_data_alignment = -4;
2567 }
2568 }
2569
2570 void
2571 i386_print_statistics (FILE *file)
2572 {
2573 hash_print_statistics (file, "i386 opcode", op_hash);
2574 hash_print_statistics (file, "i386 register", reg_hash);
2575 }
2576 \f
2577 #ifdef DEBUG386
2578
2579 /* Debugging routines for md_assemble. */
2580 static void pte (insn_template *);
2581 static void pt (i386_operand_type);
2582 static void pe (expressionS *);
2583 static void ps (symbolS *);
2584
2585 static void
2586 pi (char *line, i386_insn *x)
2587 {
2588 unsigned int j;
2589
2590 fprintf (stdout, "%s: template ", line);
2591 pte (&x->tm);
2592 fprintf (stdout, " address: base %s index %s scale %x\n",
2593 x->base_reg ? x->base_reg->reg_name : "none",
2594 x->index_reg ? x->index_reg->reg_name : "none",
2595 x->log2_scale_factor);
2596 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2597 x->rm.mode, x->rm.reg, x->rm.regmem);
2598 fprintf (stdout, " sib: base %x index %x scale %x\n",
2599 x->sib.base, x->sib.index, x->sib.scale);
2600 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2601 (x->rex & REX_W) != 0,
2602 (x->rex & REX_R) != 0,
2603 (x->rex & REX_X) != 0,
2604 (x->rex & REX_B) != 0);
2605 for (j = 0; j < x->operands; j++)
2606 {
2607 fprintf (stdout, " #%d: ", j + 1);
2608 pt (x->types[j]);
2609 fprintf (stdout, "\n");
2610 if (x->types[j].bitfield.reg8
2611 || x->types[j].bitfield.reg16
2612 || x->types[j].bitfield.reg32
2613 || x->types[j].bitfield.reg64
2614 || x->types[j].bitfield.regmmx
2615 || x->types[j].bitfield.regxmm
2616 || x->types[j].bitfield.regymm
2617 || x->types[j].bitfield.regzmm
2618 || x->types[j].bitfield.sreg2
2619 || x->types[j].bitfield.sreg3
2620 || x->types[j].bitfield.control
2621 || x->types[j].bitfield.debug
2622 || x->types[j].bitfield.test)
2623 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2624 if (operand_type_check (x->types[j], imm))
2625 pe (x->op[j].imms);
2626 if (operand_type_check (x->types[j], disp))
2627 pe (x->op[j].disps);
2628 }
2629 }
2630
2631 static void
2632 pte (insn_template *t)
2633 {
2634 unsigned int j;
2635 fprintf (stdout, " %d operands ", t->operands);
2636 fprintf (stdout, "opcode %x ", t->base_opcode);
2637 if (t->extension_opcode != None)
2638 fprintf (stdout, "ext %x ", t->extension_opcode);
2639 if (t->opcode_modifier.d)
2640 fprintf (stdout, "D");
2641 if (t->opcode_modifier.w)
2642 fprintf (stdout, "W");
2643 fprintf (stdout, "\n");
2644 for (j = 0; j < t->operands; j++)
2645 {
2646 fprintf (stdout, " #%d type ", j + 1);
2647 pt (t->operand_types[j]);
2648 fprintf (stdout, "\n");
2649 }
2650 }
2651
2652 static void
2653 pe (expressionS *e)
2654 {
2655 fprintf (stdout, " operation %d\n", e->X_op);
2656 fprintf (stdout, " add_number %ld (%lx)\n",
2657 (long) e->X_add_number, (long) e->X_add_number);
2658 if (e->X_add_symbol)
2659 {
2660 fprintf (stdout, " add_symbol ");
2661 ps (e->X_add_symbol);
2662 fprintf (stdout, "\n");
2663 }
2664 if (e->X_op_symbol)
2665 {
2666 fprintf (stdout, " op_symbol ");
2667 ps (e->X_op_symbol);
2668 fprintf (stdout, "\n");
2669 }
2670 }
2671
2672 static void
2673 ps (symbolS *s)
2674 {
2675 fprintf (stdout, "%s type %s%s",
2676 S_GET_NAME (s),
2677 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2678 segment_name (S_GET_SEGMENT (s)));
2679 }
2680
2681 static struct type_name
2682 {
2683 i386_operand_type mask;
2684 const char *name;
2685 }
2686 const type_names[] =
2687 {
2688 { OPERAND_TYPE_REG8, "r8" },
2689 { OPERAND_TYPE_REG16, "r16" },
2690 { OPERAND_TYPE_REG32, "r32" },
2691 { OPERAND_TYPE_REG64, "r64" },
2692 { OPERAND_TYPE_IMM8, "i8" },
2693 { OPERAND_TYPE_IMM8, "i8s" },
2694 { OPERAND_TYPE_IMM16, "i16" },
2695 { OPERAND_TYPE_IMM32, "i32" },
2696 { OPERAND_TYPE_IMM32S, "i32s" },
2697 { OPERAND_TYPE_IMM64, "i64" },
2698 { OPERAND_TYPE_IMM1, "i1" },
2699 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2700 { OPERAND_TYPE_DISP8, "d8" },
2701 { OPERAND_TYPE_DISP16, "d16" },
2702 { OPERAND_TYPE_DISP32, "d32" },
2703 { OPERAND_TYPE_DISP32S, "d32s" },
2704 { OPERAND_TYPE_DISP64, "d64" },
2705 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
2706 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2707 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2708 { OPERAND_TYPE_CONTROL, "control reg" },
2709 { OPERAND_TYPE_TEST, "test reg" },
2710 { OPERAND_TYPE_DEBUG, "debug reg" },
2711 { OPERAND_TYPE_FLOATREG, "FReg" },
2712 { OPERAND_TYPE_FLOATACC, "FAcc" },
2713 { OPERAND_TYPE_SREG2, "SReg2" },
2714 { OPERAND_TYPE_SREG3, "SReg3" },
2715 { OPERAND_TYPE_ACC, "Acc" },
2716 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2717 { OPERAND_TYPE_REGMMX, "rMMX" },
2718 { OPERAND_TYPE_REGXMM, "rXMM" },
2719 { OPERAND_TYPE_REGYMM, "rYMM" },
2720 { OPERAND_TYPE_REGZMM, "rZMM" },
2721 { OPERAND_TYPE_REGMASK, "Mask reg" },
2722 { OPERAND_TYPE_ESSEG, "es" },
2723 };
2724
2725 static void
2726 pt (i386_operand_type t)
2727 {
2728 unsigned int j;
2729 i386_operand_type a;
2730
2731 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2732 {
2733 a = operand_type_and (t, type_names[j].mask);
2734 if (!operand_type_all_zero (&a))
2735 fprintf (stdout, "%s, ", type_names[j].name);
2736 }
2737 fflush (stdout);
2738 }
2739
2740 #endif /* DEBUG386 */
2741 \f
2742 static bfd_reloc_code_real_type
2743 reloc (unsigned int size,
2744 int pcrel,
2745 int sign,
2746 bfd_reloc_code_real_type other)
2747 {
2748 if (other != NO_RELOC)
2749 {
2750 reloc_howto_type *rel;
2751
2752 if (size == 8)
2753 switch (other)
2754 {
2755 case BFD_RELOC_X86_64_GOT32:
2756 return BFD_RELOC_X86_64_GOT64;
2757 break;
2758 case BFD_RELOC_X86_64_GOTPLT64:
2759 return BFD_RELOC_X86_64_GOTPLT64;
2760 break;
2761 case BFD_RELOC_X86_64_PLTOFF64:
2762 return BFD_RELOC_X86_64_PLTOFF64;
2763 break;
2764 case BFD_RELOC_X86_64_GOTPC32:
2765 other = BFD_RELOC_X86_64_GOTPC64;
2766 break;
2767 case BFD_RELOC_X86_64_GOTPCREL:
2768 other = BFD_RELOC_X86_64_GOTPCREL64;
2769 break;
2770 case BFD_RELOC_X86_64_TPOFF32:
2771 other = BFD_RELOC_X86_64_TPOFF64;
2772 break;
2773 case BFD_RELOC_X86_64_DTPOFF32:
2774 other = BFD_RELOC_X86_64_DTPOFF64;
2775 break;
2776 default:
2777 break;
2778 }
2779
2780 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2781 if (other == BFD_RELOC_SIZE32)
2782 {
2783 if (size == 8)
2784 other = BFD_RELOC_SIZE64;
2785 if (pcrel)
2786 {
2787 as_bad (_("there are no pc-relative size relocations"));
2788 return NO_RELOC;
2789 }
2790 }
2791 #endif
2792
2793 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2794 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
2795 sign = -1;
2796
2797 rel = bfd_reloc_type_lookup (stdoutput, other);
2798 if (!rel)
2799 as_bad (_("unknown relocation (%u)"), other);
2800 else if (size != bfd_get_reloc_size (rel))
2801 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2802 bfd_get_reloc_size (rel),
2803 size);
2804 else if (pcrel && !rel->pc_relative)
2805 as_bad (_("non-pc-relative relocation for pc-relative field"));
2806 else if ((rel->complain_on_overflow == complain_overflow_signed
2807 && !sign)
2808 || (rel->complain_on_overflow == complain_overflow_unsigned
2809 && sign > 0))
2810 as_bad (_("relocated field and relocation type differ in signedness"));
2811 else
2812 return other;
2813 return NO_RELOC;
2814 }
2815
2816 if (pcrel)
2817 {
2818 if (!sign)
2819 as_bad (_("there are no unsigned pc-relative relocations"));
2820 switch (size)
2821 {
2822 case 1: return BFD_RELOC_8_PCREL;
2823 case 2: return BFD_RELOC_16_PCREL;
2824 case 4: return BFD_RELOC_32_PCREL;
2825 case 8: return BFD_RELOC_64_PCREL;
2826 }
2827 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2828 }
2829 else
2830 {
2831 if (sign > 0)
2832 switch (size)
2833 {
2834 case 4: return BFD_RELOC_X86_64_32S;
2835 }
2836 else
2837 switch (size)
2838 {
2839 case 1: return BFD_RELOC_8;
2840 case 2: return BFD_RELOC_16;
2841 case 4: return BFD_RELOC_32;
2842 case 8: return BFD_RELOC_64;
2843 }
2844 as_bad (_("cannot do %s %u byte relocation"),
2845 sign > 0 ? "signed" : "unsigned", size);
2846 }
2847
2848 return NO_RELOC;
2849 }
2850
2851 /* Here we decide which fixups can be adjusted to make them relative to
2852 the beginning of the section instead of the symbol. Basically we need
2853 to make sure that the dynamic relocations are done correctly, so in
2854 some cases we force the original symbol to be used. */
2855
2856 int
2857 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2858 {
2859 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2860 if (!IS_ELF)
2861 return 1;
2862
2863 /* Don't adjust pc-relative references to merge sections in 64-bit
2864 mode. */
2865 if (use_rela_relocations
2866 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2867 && fixP->fx_pcrel)
2868 return 0;
2869
2870 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2871 and changed later by validate_fix. */
2872 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2873 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2874 return 0;
2875
2876 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
2877 for size relocations. */
2878 if (fixP->fx_r_type == BFD_RELOC_SIZE32
2879 || fixP->fx_r_type == BFD_RELOC_SIZE64
2880 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2881 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2882 || fixP->fx_r_type == BFD_RELOC_386_GOT32
2883 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2884 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2885 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2886 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
2887 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2888 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
2889 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2890 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
2891 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2892 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
2893 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2894 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
2895 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
2896 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2897 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2898 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
2899 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
2900 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2901 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
2902 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2903 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
2904 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2905 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
2906 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2907 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2908 return 0;
2909 #endif
2910 return 1;
2911 }
2912
2913 static int
2914 intel_float_operand (const char *mnemonic)
2915 {
2916 /* Note that the value returned is meaningful only for opcodes with (memory)
2917 operands, hence the code here is free to improperly handle opcodes that
2918 have no operands (for better performance and smaller code). */
2919
2920 if (mnemonic[0] != 'f')
2921 return 0; /* non-math */
2922
2923 switch (mnemonic[1])
2924 {
2925 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2926 the fs segment override prefix not currently handled because no
2927 call path can make opcodes without operands get here */
2928 case 'i':
2929 return 2 /* integer op */;
2930 case 'l':
2931 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
2932 return 3; /* fldcw/fldenv */
2933 break;
2934 case 'n':
2935 if (mnemonic[2] != 'o' /* fnop */)
2936 return 3; /* non-waiting control op */
2937 break;
2938 case 'r':
2939 if (mnemonic[2] == 's')
2940 return 3; /* frstor/frstpm */
2941 break;
2942 case 's':
2943 if (mnemonic[2] == 'a')
2944 return 3; /* fsave */
2945 if (mnemonic[2] == 't')
2946 {
2947 switch (mnemonic[3])
2948 {
2949 case 'c': /* fstcw */
2950 case 'd': /* fstdw */
2951 case 'e': /* fstenv */
2952 case 's': /* fsts[gw] */
2953 return 3;
2954 }
2955 }
2956 break;
2957 case 'x':
2958 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
2959 return 0; /* fxsave/fxrstor are not really math ops */
2960 break;
2961 }
2962
2963 return 1;
2964 }
2965
2966 /* Build the VEX prefix. */
2967
2968 static void
2969 build_vex_prefix (const insn_template *t)
2970 {
2971 unsigned int register_specifier;
2972 unsigned int implied_prefix;
2973 unsigned int vector_length;
2974
2975 /* Check register specifier. */
2976 if (i.vex.register_specifier)
2977 {
2978 register_specifier =
2979 ~register_number (i.vex.register_specifier) & 0xf;
2980 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
2981 }
2982 else
2983 register_specifier = 0xf;
2984
2985 /* Use 2-byte VEX prefix by swappping destination and source
2986 operand. */
2987 if (!i.swap_operand
2988 && i.operands == i.reg_operands
2989 && i.tm.opcode_modifier.vexopcode == VEX0F
2990 && i.tm.opcode_modifier.s
2991 && i.rex == REX_B)
2992 {
2993 unsigned int xchg = i.operands - 1;
2994 union i386_op temp_op;
2995 i386_operand_type temp_type;
2996
2997 temp_type = i.types[xchg];
2998 i.types[xchg] = i.types[0];
2999 i.types[0] = temp_type;
3000 temp_op = i.op[xchg];
3001 i.op[xchg] = i.op[0];
3002 i.op[0] = temp_op;
3003
3004 gas_assert (i.rm.mode == 3);
3005
3006 i.rex = REX_R;
3007 xchg = i.rm.regmem;
3008 i.rm.regmem = i.rm.reg;
3009 i.rm.reg = xchg;
3010
3011 /* Use the next insn. */
3012 i.tm = t[1];
3013 }
3014
3015 if (i.tm.opcode_modifier.vex == VEXScalar)
3016 vector_length = avxscalar;
3017 else
3018 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
3019
3020 switch ((i.tm.base_opcode >> 8) & 0xff)
3021 {
3022 case 0:
3023 implied_prefix = 0;
3024 break;
3025 case DATA_PREFIX_OPCODE:
3026 implied_prefix = 1;
3027 break;
3028 case REPE_PREFIX_OPCODE:
3029 implied_prefix = 2;
3030 break;
3031 case REPNE_PREFIX_OPCODE:
3032 implied_prefix = 3;
3033 break;
3034 default:
3035 abort ();
3036 }
3037
3038 /* Use 2-byte VEX prefix if possible. */
3039 if (i.tm.opcode_modifier.vexopcode == VEX0F
3040 && i.tm.opcode_modifier.vexw != VEXW1
3041 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3042 {
3043 /* 2-byte VEX prefix. */
3044 unsigned int r;
3045
3046 i.vex.length = 2;
3047 i.vex.bytes[0] = 0xc5;
3048
3049 /* Check the REX.R bit. */
3050 r = (i.rex & REX_R) ? 0 : 1;
3051 i.vex.bytes[1] = (r << 7
3052 | register_specifier << 3
3053 | vector_length << 2
3054 | implied_prefix);
3055 }
3056 else
3057 {
3058 /* 3-byte VEX prefix. */
3059 unsigned int m, w;
3060
3061 i.vex.length = 3;
3062
3063 switch (i.tm.opcode_modifier.vexopcode)
3064 {
3065 case VEX0F:
3066 m = 0x1;
3067 i.vex.bytes[0] = 0xc4;
3068 break;
3069 case VEX0F38:
3070 m = 0x2;
3071 i.vex.bytes[0] = 0xc4;
3072 break;
3073 case VEX0F3A:
3074 m = 0x3;
3075 i.vex.bytes[0] = 0xc4;
3076 break;
3077 case XOP08:
3078 m = 0x8;
3079 i.vex.bytes[0] = 0x8f;
3080 break;
3081 case XOP09:
3082 m = 0x9;
3083 i.vex.bytes[0] = 0x8f;
3084 break;
3085 case XOP0A:
3086 m = 0xa;
3087 i.vex.bytes[0] = 0x8f;
3088 break;
3089 default:
3090 abort ();
3091 }
3092
3093 /* The high 3 bits of the second VEX byte are 1's compliment
3094 of RXB bits from REX. */
3095 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3096
3097 /* Check the REX.W bit. */
3098 w = (i.rex & REX_W) ? 1 : 0;
3099 if (i.tm.opcode_modifier.vexw == VEXW1)
3100 w = 1;
3101
3102 i.vex.bytes[2] = (w << 7
3103 | register_specifier << 3
3104 | vector_length << 2
3105 | implied_prefix);
3106 }
3107 }
3108
3109 /* Build the EVEX prefix. */
3110
3111 static void
3112 build_evex_prefix (void)
3113 {
3114 unsigned int register_specifier;
3115 unsigned int implied_prefix;
3116 unsigned int m, w;
3117 rex_byte vrex_used = 0;
3118
3119 /* Check register specifier. */
3120 if (i.vex.register_specifier)
3121 {
3122 gas_assert ((i.vrex & REX_X) == 0);
3123
3124 register_specifier = i.vex.register_specifier->reg_num;
3125 if ((i.vex.register_specifier->reg_flags & RegRex))
3126 register_specifier += 8;
3127 /* The upper 16 registers are encoded in the fourth byte of the
3128 EVEX prefix. */
3129 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3130 i.vex.bytes[3] = 0x8;
3131 register_specifier = ~register_specifier & 0xf;
3132 }
3133 else
3134 {
3135 register_specifier = 0xf;
3136
3137 /* Encode upper 16 vector index register in the fourth byte of
3138 the EVEX prefix. */
3139 if (!(i.vrex & REX_X))
3140 i.vex.bytes[3] = 0x8;
3141 else
3142 vrex_used |= REX_X;
3143 }
3144
3145 switch ((i.tm.base_opcode >> 8) & 0xff)
3146 {
3147 case 0:
3148 implied_prefix = 0;
3149 break;
3150 case DATA_PREFIX_OPCODE:
3151 implied_prefix = 1;
3152 break;
3153 case REPE_PREFIX_OPCODE:
3154 implied_prefix = 2;
3155 break;
3156 case REPNE_PREFIX_OPCODE:
3157 implied_prefix = 3;
3158 break;
3159 default:
3160 abort ();
3161 }
3162
3163 /* 4 byte EVEX prefix. */
3164 i.vex.length = 4;
3165 i.vex.bytes[0] = 0x62;
3166
3167 /* mmmm bits. */
3168 switch (i.tm.opcode_modifier.vexopcode)
3169 {
3170 case VEX0F:
3171 m = 1;
3172 break;
3173 case VEX0F38:
3174 m = 2;
3175 break;
3176 case VEX0F3A:
3177 m = 3;
3178 break;
3179 default:
3180 abort ();
3181 break;
3182 }
3183
3184 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3185 bits from REX. */
3186 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3187
3188 /* The fifth bit of the second EVEX byte is 1's compliment of the
3189 REX_R bit in VREX. */
3190 if (!(i.vrex & REX_R))
3191 i.vex.bytes[1] |= 0x10;
3192 else
3193 vrex_used |= REX_R;
3194
3195 if ((i.reg_operands + i.imm_operands) == i.operands)
3196 {
3197 /* When all operands are registers, the REX_X bit in REX is not
3198 used. We reuse it to encode the upper 16 registers, which is
3199 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3200 as 1's compliment. */
3201 if ((i.vrex & REX_B))
3202 {
3203 vrex_used |= REX_B;
3204 i.vex.bytes[1] &= ~0x40;
3205 }
3206 }
3207
3208 /* EVEX instructions shouldn't need the REX prefix. */
3209 i.vrex &= ~vrex_used;
3210 gas_assert (i.vrex == 0);
3211
3212 /* Check the REX.W bit. */
3213 w = (i.rex & REX_W) ? 1 : 0;
3214 if (i.tm.opcode_modifier.vexw)
3215 {
3216 if (i.tm.opcode_modifier.vexw == VEXW1)
3217 w = 1;
3218 }
3219 /* If w is not set it means we are dealing with WIG instruction. */
3220 else if (!w)
3221 {
3222 if (evexwig == evexw1)
3223 w = 1;
3224 }
3225
3226 /* Encode the U bit. */
3227 implied_prefix |= 0x4;
3228
3229 /* The third byte of the EVEX prefix. */
3230 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3231
3232 /* The fourth byte of the EVEX prefix. */
3233 /* The zeroing-masking bit. */
3234 if (i.mask && i.mask->zeroing)
3235 i.vex.bytes[3] |= 0x80;
3236
3237 /* Don't always set the broadcast bit if there is no RC. */
3238 if (!i.rounding)
3239 {
3240 /* Encode the vector length. */
3241 unsigned int vec_length;
3242
3243 switch (i.tm.opcode_modifier.evex)
3244 {
3245 case EVEXLIG: /* LL' is ignored */
3246 vec_length = evexlig << 5;
3247 break;
3248 case EVEX128:
3249 vec_length = 0 << 5;
3250 break;
3251 case EVEX256:
3252 vec_length = 1 << 5;
3253 break;
3254 case EVEX512:
3255 vec_length = 2 << 5;
3256 break;
3257 default:
3258 abort ();
3259 break;
3260 }
3261 i.vex.bytes[3] |= vec_length;
3262 /* Encode the broadcast bit. */
3263 if (i.broadcast)
3264 i.vex.bytes[3] |= 0x10;
3265 }
3266 else
3267 {
3268 if (i.rounding->type != saeonly)
3269 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3270 else
3271 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3272 }
3273
3274 if (i.mask && i.mask->mask)
3275 i.vex.bytes[3] |= i.mask->mask->reg_num;
3276 }
3277
3278 static void
3279 process_immext (void)
3280 {
3281 expressionS *exp;
3282
3283 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3284 && i.operands > 0)
3285 {
3286 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3287 with an opcode suffix which is coded in the same place as an
3288 8-bit immediate field would be.
3289 Here we check those operands and remove them afterwards. */
3290 unsigned int x;
3291
3292 for (x = 0; x < i.operands; x++)
3293 if (register_number (i.op[x].regs) != x)
3294 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3295 register_prefix, i.op[x].regs->reg_name, x + 1,
3296 i.tm.name);
3297
3298 i.operands = 0;
3299 }
3300
3301 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3302 which is coded in the same place as an 8-bit immediate field
3303 would be. Here we fake an 8-bit immediate operand from the
3304 opcode suffix stored in tm.extension_opcode.
3305
3306 AVX instructions also use this encoding, for some of
3307 3 argument instructions. */
3308
3309 gas_assert (i.imm_operands <= 1
3310 && (i.operands <= 2
3311 || ((i.tm.opcode_modifier.vex
3312 || i.tm.opcode_modifier.evex)
3313 && i.operands <= 4)));
3314
3315 exp = &im_expressions[i.imm_operands++];
3316 i.op[i.operands].imms = exp;
3317 i.types[i.operands] = imm8;
3318 i.operands++;
3319 exp->X_op = O_constant;
3320 exp->X_add_number = i.tm.extension_opcode;
3321 i.tm.extension_opcode = None;
3322 }
3323
3324
3325 static int
3326 check_hle (void)
3327 {
3328 switch (i.tm.opcode_modifier.hleprefixok)
3329 {
3330 default:
3331 abort ();
3332 case HLEPrefixNone:
3333 as_bad (_("invalid instruction `%s' after `%s'"),
3334 i.tm.name, i.hle_prefix);
3335 return 0;
3336 case HLEPrefixLock:
3337 if (i.prefix[LOCK_PREFIX])
3338 return 1;
3339 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3340 return 0;
3341 case HLEPrefixAny:
3342 return 1;
3343 case HLEPrefixRelease:
3344 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3345 {
3346 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3347 i.tm.name);
3348 return 0;
3349 }
3350 if (i.mem_operands == 0
3351 || !operand_type_check (i.types[i.operands - 1], anymem))
3352 {
3353 as_bad (_("memory destination needed for instruction `%s'"
3354 " after `xrelease'"), i.tm.name);
3355 return 0;
3356 }
3357 return 1;
3358 }
3359 }
3360
3361 /* This is the guts of the machine-dependent assembler. LINE points to a
3362 machine dependent instruction. This function is supposed to emit
3363 the frags/bytes it assembles to. */
3364
3365 void
3366 md_assemble (char *line)
3367 {
3368 unsigned int j;
3369 char mnemonic[MAX_MNEM_SIZE];
3370 const insn_template *t;
3371
3372 /* Initialize globals. */
3373 memset (&i, '\0', sizeof (i));
3374 for (j = 0; j < MAX_OPERANDS; j++)
3375 i.reloc[j] = NO_RELOC;
3376 memset (disp_expressions, '\0', sizeof (disp_expressions));
3377 memset (im_expressions, '\0', sizeof (im_expressions));
3378 save_stack_p = save_stack;
3379
3380 /* First parse an instruction mnemonic & call i386_operand for the operands.
3381 We assume that the scrubber has arranged it so that line[0] is the valid
3382 start of a (possibly prefixed) mnemonic. */
3383
3384 line = parse_insn (line, mnemonic);
3385 if (line == NULL)
3386 return;
3387
3388 line = parse_operands (line, mnemonic);
3389 this_operand = -1;
3390 if (line == NULL)
3391 return;
3392
3393 /* Now we've parsed the mnemonic into a set of templates, and have the
3394 operands at hand. */
3395
3396 /* All intel opcodes have reversed operands except for "bound" and
3397 "enter". We also don't reverse intersegment "jmp" and "call"
3398 instructions with 2 immediate operands so that the immediate segment
3399 precedes the offset, as it does when in AT&T mode. */
3400 if (intel_syntax
3401 && i.operands > 1
3402 && (strcmp (mnemonic, "bound") != 0)
3403 && (strcmp (mnemonic, "invlpga") != 0)
3404 && !(operand_type_check (i.types[0], imm)
3405 && operand_type_check (i.types[1], imm)))
3406 swap_operands ();
3407
3408 /* The order of the immediates should be reversed
3409 for 2 immediates extrq and insertq instructions */
3410 if (i.imm_operands == 2
3411 && (strcmp (mnemonic, "extrq") == 0
3412 || strcmp (mnemonic, "insertq") == 0))
3413 swap_2_operands (0, 1);
3414
3415 if (i.imm_operands)
3416 optimize_imm ();
3417
3418 /* Don't optimize displacement for movabs since it only takes 64bit
3419 displacement. */
3420 if (i.disp_operands
3421 && i.disp_encoding != disp_encoding_32bit
3422 && (flag_code != CODE_64BIT
3423 || strcmp (mnemonic, "movabs") != 0))
3424 optimize_disp ();
3425
3426 /* Next, we find a template that matches the given insn,
3427 making sure the overlap of the given operands types is consistent
3428 with the template operand types. */
3429
3430 if (!(t = match_template ()))
3431 return;
3432
3433 if (sse_check != check_none
3434 && !i.tm.opcode_modifier.noavx
3435 && (i.tm.cpu_flags.bitfield.cpusse
3436 || i.tm.cpu_flags.bitfield.cpusse2
3437 || i.tm.cpu_flags.bitfield.cpusse3
3438 || i.tm.cpu_flags.bitfield.cpussse3
3439 || i.tm.cpu_flags.bitfield.cpusse4_1
3440 || i.tm.cpu_flags.bitfield.cpusse4_2))
3441 {
3442 (sse_check == check_warning
3443 ? as_warn
3444 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3445 }
3446
3447 /* Zap movzx and movsx suffix. The suffix has been set from
3448 "word ptr" or "byte ptr" on the source operand in Intel syntax
3449 or extracted from mnemonic in AT&T syntax. But we'll use
3450 the destination register to choose the suffix for encoding. */
3451 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3452 {
3453 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3454 there is no suffix, the default will be byte extension. */
3455 if (i.reg_operands != 2
3456 && !i.suffix
3457 && intel_syntax)
3458 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3459
3460 i.suffix = 0;
3461 }
3462
3463 if (i.tm.opcode_modifier.fwait)
3464 if (!add_prefix (FWAIT_OPCODE))
3465 return;
3466
3467 /* Check if REP prefix is OK. */
3468 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3469 {
3470 as_bad (_("invalid instruction `%s' after `%s'"),
3471 i.tm.name, i.rep_prefix);
3472 return;
3473 }
3474
3475 /* Check for lock without a lockable instruction. Destination operand
3476 must be memory unless it is xchg (0x86). */
3477 if (i.prefix[LOCK_PREFIX]
3478 && (!i.tm.opcode_modifier.islockable
3479 || i.mem_operands == 0
3480 || (i.tm.base_opcode != 0x86
3481 && !operand_type_check (i.types[i.operands - 1], anymem))))
3482 {
3483 as_bad (_("expecting lockable instruction after `lock'"));
3484 return;
3485 }
3486
3487 /* Check if HLE prefix is OK. */
3488 if (i.hle_prefix && !check_hle ())
3489 return;
3490
3491 /* Check BND prefix. */
3492 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3493 as_bad (_("expecting valid branch instruction after `bnd'"));
3494
3495 if (i.tm.cpu_flags.bitfield.cpumpx
3496 && flag_code == CODE_64BIT
3497 && i.prefix[ADDR_PREFIX])
3498 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3499
3500 /* Insert BND prefix. */
3501 if (add_bnd_prefix
3502 && i.tm.opcode_modifier.bndprefixok
3503 && !i.prefix[BND_PREFIX])
3504 add_prefix (BND_PREFIX_OPCODE);
3505
3506 /* Check string instruction segment overrides. */
3507 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3508 {
3509 if (!check_string ())
3510 return;
3511 i.disp_operands = 0;
3512 }
3513
3514 if (!process_suffix ())
3515 return;
3516
3517 /* Update operand types. */
3518 for (j = 0; j < i.operands; j++)
3519 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3520
3521 /* Make still unresolved immediate matches conform to size of immediate
3522 given in i.suffix. */
3523 if (!finalize_imm ())
3524 return;
3525
3526 if (i.types[0].bitfield.imm1)
3527 i.imm_operands = 0; /* kludge for shift insns. */
3528
3529 /* We only need to check those implicit registers for instructions
3530 with 3 operands or less. */
3531 if (i.operands <= 3)
3532 for (j = 0; j < i.operands; j++)
3533 if (i.types[j].bitfield.inoutportreg
3534 || i.types[j].bitfield.shiftcount
3535 || i.types[j].bitfield.acc
3536 || i.types[j].bitfield.floatacc)
3537 i.reg_operands--;
3538
3539 /* ImmExt should be processed after SSE2AVX. */
3540 if (!i.tm.opcode_modifier.sse2avx
3541 && i.tm.opcode_modifier.immext)
3542 process_immext ();
3543
3544 /* For insns with operands there are more diddles to do to the opcode. */
3545 if (i.operands)
3546 {
3547 if (!process_operands ())
3548 return;
3549 }
3550 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3551 {
3552 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3553 as_warn (_("translating to `%sp'"), i.tm.name);
3554 }
3555
3556 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3557 {
3558 if (flag_code == CODE_16BIT)
3559 {
3560 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3561 i.tm.name);
3562 return;
3563 }
3564
3565 if (i.tm.opcode_modifier.vex)
3566 build_vex_prefix (t);
3567 else
3568 build_evex_prefix ();
3569 }
3570
3571 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3572 instructions may define INT_OPCODE as well, so avoid this corner
3573 case for those instructions that use MODRM. */
3574 if (i.tm.base_opcode == INT_OPCODE
3575 && !i.tm.opcode_modifier.modrm
3576 && i.op[0].imms->X_add_number == 3)
3577 {
3578 i.tm.base_opcode = INT3_OPCODE;
3579 i.imm_operands = 0;
3580 }
3581
3582 if ((i.tm.opcode_modifier.jump
3583 || i.tm.opcode_modifier.jumpbyte
3584 || i.tm.opcode_modifier.jumpdword)
3585 && i.op[0].disps->X_op == O_constant)
3586 {
3587 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3588 the absolute address given by the constant. Since ix86 jumps and
3589 calls are pc relative, we need to generate a reloc. */
3590 i.op[0].disps->X_add_symbol = &abs_symbol;
3591 i.op[0].disps->X_op = O_symbol;
3592 }
3593
3594 if (i.tm.opcode_modifier.rex64)
3595 i.rex |= REX_W;
3596
3597 /* For 8 bit registers we need an empty rex prefix. Also if the
3598 instruction already has a prefix, we need to convert old
3599 registers to new ones. */
3600
3601 if ((i.types[0].bitfield.reg8
3602 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3603 || (i.types[1].bitfield.reg8
3604 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3605 || ((i.types[0].bitfield.reg8
3606 || i.types[1].bitfield.reg8)
3607 && i.rex != 0))
3608 {
3609 int x;
3610
3611 i.rex |= REX_OPCODE;
3612 for (x = 0; x < 2; x++)
3613 {
3614 /* Look for 8 bit operand that uses old registers. */
3615 if (i.types[x].bitfield.reg8
3616 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3617 {
3618 /* In case it is "hi" register, give up. */
3619 if (i.op[x].regs->reg_num > 3)
3620 as_bad (_("can't encode register '%s%s' in an "
3621 "instruction requiring REX prefix."),
3622 register_prefix, i.op[x].regs->reg_name);
3623
3624 /* Otherwise it is equivalent to the extended register.
3625 Since the encoding doesn't change this is merely
3626 cosmetic cleanup for debug output. */
3627
3628 i.op[x].regs = i.op[x].regs + 8;
3629 }
3630 }
3631 }
3632
3633 if (i.rex != 0)
3634 add_prefix (REX_OPCODE | i.rex);
3635
3636 /* We are ready to output the insn. */
3637 output_insn ();
3638 }
3639
3640 static char *
3641 parse_insn (char *line, char *mnemonic)
3642 {
3643 char *l = line;
3644 char *token_start = l;
3645 char *mnem_p;
3646 int supported;
3647 const insn_template *t;
3648 char *dot_p = NULL;
3649
3650 while (1)
3651 {
3652 mnem_p = mnemonic;
3653 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3654 {
3655 if (*mnem_p == '.')
3656 dot_p = mnem_p;
3657 mnem_p++;
3658 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3659 {
3660 as_bad (_("no such instruction: `%s'"), token_start);
3661 return NULL;
3662 }
3663 l++;
3664 }
3665 if (!is_space_char (*l)
3666 && *l != END_OF_INSN
3667 && (intel_syntax
3668 || (*l != PREFIX_SEPARATOR
3669 && *l != ',')))
3670 {
3671 as_bad (_("invalid character %s in mnemonic"),
3672 output_invalid (*l));
3673 return NULL;
3674 }
3675 if (token_start == l)
3676 {
3677 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3678 as_bad (_("expecting prefix; got nothing"));
3679 else
3680 as_bad (_("expecting mnemonic; got nothing"));
3681 return NULL;
3682 }
3683
3684 /* Look up instruction (or prefix) via hash table. */
3685 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3686
3687 if (*l != END_OF_INSN
3688 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3689 && current_templates
3690 && current_templates->start->opcode_modifier.isprefix)
3691 {
3692 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3693 {
3694 as_bad ((flag_code != CODE_64BIT
3695 ? _("`%s' is only supported in 64-bit mode")
3696 : _("`%s' is not supported in 64-bit mode")),
3697 current_templates->start->name);
3698 return NULL;
3699 }
3700 /* If we are in 16-bit mode, do not allow addr16 or data16.
3701 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3702 if ((current_templates->start->opcode_modifier.size16
3703 || current_templates->start->opcode_modifier.size32)
3704 && flag_code != CODE_64BIT
3705 && (current_templates->start->opcode_modifier.size32
3706 ^ (flag_code == CODE_16BIT)))
3707 {
3708 as_bad (_("redundant %s prefix"),
3709 current_templates->start->name);
3710 return NULL;
3711 }
3712 /* Add prefix, checking for repeated prefixes. */
3713 switch (add_prefix (current_templates->start->base_opcode))
3714 {
3715 case PREFIX_EXIST:
3716 return NULL;
3717 case PREFIX_REP:
3718 if (current_templates->start->cpu_flags.bitfield.cpuhle)
3719 i.hle_prefix = current_templates->start->name;
3720 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
3721 i.bnd_prefix = current_templates->start->name;
3722 else
3723 i.rep_prefix = current_templates->start->name;
3724 break;
3725 default:
3726 break;
3727 }
3728 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3729 token_start = ++l;
3730 }
3731 else
3732 break;
3733 }
3734
3735 if (!current_templates)
3736 {
3737 /* Check if we should swap operand or force 32bit displacement in
3738 encoding. */
3739 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3740 i.swap_operand = 1;
3741 else if (mnem_p - 3 == dot_p
3742 && dot_p[1] == 'd'
3743 && dot_p[2] == '8')
3744 i.disp_encoding = disp_encoding_8bit;
3745 else if (mnem_p - 4 == dot_p
3746 && dot_p[1] == 'd'
3747 && dot_p[2] == '3'
3748 && dot_p[3] == '2')
3749 i.disp_encoding = disp_encoding_32bit;
3750 else
3751 goto check_suffix;
3752 mnem_p = dot_p;
3753 *dot_p = '\0';
3754 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3755 }
3756
3757 if (!current_templates)
3758 {
3759 check_suffix:
3760 /* See if we can get a match by trimming off a suffix. */
3761 switch (mnem_p[-1])
3762 {
3763 case WORD_MNEM_SUFFIX:
3764 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3765 i.suffix = SHORT_MNEM_SUFFIX;
3766 else
3767 case BYTE_MNEM_SUFFIX:
3768 case QWORD_MNEM_SUFFIX:
3769 i.suffix = mnem_p[-1];
3770 mnem_p[-1] = '\0';
3771 current_templates = (const templates *) hash_find (op_hash,
3772 mnemonic);
3773 break;
3774 case SHORT_MNEM_SUFFIX:
3775 case LONG_MNEM_SUFFIX:
3776 if (!intel_syntax)
3777 {
3778 i.suffix = mnem_p[-1];
3779 mnem_p[-1] = '\0';
3780 current_templates = (const templates *) hash_find (op_hash,
3781 mnemonic);
3782 }
3783 break;
3784
3785 /* Intel Syntax. */
3786 case 'd':
3787 if (intel_syntax)
3788 {
3789 if (intel_float_operand (mnemonic) == 1)
3790 i.suffix = SHORT_MNEM_SUFFIX;
3791 else
3792 i.suffix = LONG_MNEM_SUFFIX;
3793 mnem_p[-1] = '\0';
3794 current_templates = (const templates *) hash_find (op_hash,
3795 mnemonic);
3796 }
3797 break;
3798 }
3799 if (!current_templates)
3800 {
3801 as_bad (_("no such instruction: `%s'"), token_start);
3802 return NULL;
3803 }
3804 }
3805
3806 if (current_templates->start->opcode_modifier.jump
3807 || current_templates->start->opcode_modifier.jumpbyte)
3808 {
3809 /* Check for a branch hint. We allow ",pt" and ",pn" for
3810 predict taken and predict not taken respectively.
3811 I'm not sure that branch hints actually do anything on loop
3812 and jcxz insns (JumpByte) for current Pentium4 chips. They
3813 may work in the future and it doesn't hurt to accept them
3814 now. */
3815 if (l[0] == ',' && l[1] == 'p')
3816 {
3817 if (l[2] == 't')
3818 {
3819 if (!add_prefix (DS_PREFIX_OPCODE))
3820 return NULL;
3821 l += 3;
3822 }
3823 else if (l[2] == 'n')
3824 {
3825 if (!add_prefix (CS_PREFIX_OPCODE))
3826 return NULL;
3827 l += 3;
3828 }
3829 }
3830 }
3831 /* Any other comma loses. */
3832 if (*l == ',')
3833 {
3834 as_bad (_("invalid character %s in mnemonic"),
3835 output_invalid (*l));
3836 return NULL;
3837 }
3838
3839 /* Check if instruction is supported on specified architecture. */
3840 supported = 0;
3841 for (t = current_templates->start; t < current_templates->end; ++t)
3842 {
3843 supported |= cpu_flags_match (t);
3844 if (supported == CPU_FLAGS_PERFECT_MATCH)
3845 goto skip;
3846 }
3847
3848 if (!(supported & CPU_FLAGS_64BIT_MATCH))
3849 {
3850 as_bad (flag_code == CODE_64BIT
3851 ? _("`%s' is not supported in 64-bit mode")
3852 : _("`%s' is only supported in 64-bit mode"),
3853 current_templates->start->name);
3854 return NULL;
3855 }
3856 if (supported != CPU_FLAGS_PERFECT_MATCH)
3857 {
3858 as_bad (_("`%s' is not supported on `%s%s'"),
3859 current_templates->start->name,
3860 cpu_arch_name ? cpu_arch_name : default_arch,
3861 cpu_sub_arch_name ? cpu_sub_arch_name : "");
3862 return NULL;
3863 }
3864
3865 skip:
3866 if (!cpu_arch_flags.bitfield.cpui386
3867 && (flag_code != CODE_16BIT))
3868 {
3869 as_warn (_("use .code16 to ensure correct addressing mode"));
3870 }
3871
3872 return l;
3873 }
3874
3875 static char *
3876 parse_operands (char *l, const char *mnemonic)
3877 {
3878 char *token_start;
3879
3880 /* 1 if operand is pending after ','. */
3881 unsigned int expecting_operand = 0;
3882
3883 /* Non-zero if operand parens not balanced. */
3884 unsigned int paren_not_balanced;
3885
3886 while (*l != END_OF_INSN)
3887 {
3888 /* Skip optional white space before operand. */
3889 if (is_space_char (*l))
3890 ++l;
3891 if (!is_operand_char (*l) && *l != END_OF_INSN)
3892 {
3893 as_bad (_("invalid character %s before operand %d"),
3894 output_invalid (*l),
3895 i.operands + 1);
3896 return NULL;
3897 }
3898 token_start = l; /* after white space */
3899 paren_not_balanced = 0;
3900 while (paren_not_balanced || *l != ',')
3901 {
3902 if (*l == END_OF_INSN)
3903 {
3904 if (paren_not_balanced)
3905 {
3906 if (!intel_syntax)
3907 as_bad (_("unbalanced parenthesis in operand %d."),
3908 i.operands + 1);
3909 else
3910 as_bad (_("unbalanced brackets in operand %d."),
3911 i.operands + 1);
3912 return NULL;
3913 }
3914 else
3915 break; /* we are done */
3916 }
3917 else if (!is_operand_char (*l) && !is_space_char (*l))
3918 {
3919 as_bad (_("invalid character %s in operand %d"),
3920 output_invalid (*l),
3921 i.operands + 1);
3922 return NULL;
3923 }
3924 if (!intel_syntax)
3925 {
3926 if (*l == '(')
3927 ++paren_not_balanced;
3928 if (*l == ')')
3929 --paren_not_balanced;
3930 }
3931 else
3932 {
3933 if (*l == '[')
3934 ++paren_not_balanced;
3935 if (*l == ']')
3936 --paren_not_balanced;
3937 }
3938 l++;
3939 }
3940 if (l != token_start)
3941 { /* Yes, we've read in another operand. */
3942 unsigned int operand_ok;
3943 this_operand = i.operands++;
3944 i.types[this_operand].bitfield.unspecified = 1;
3945 if (i.operands > MAX_OPERANDS)
3946 {
3947 as_bad (_("spurious operands; (%d operands/instruction max)"),
3948 MAX_OPERANDS);
3949 return NULL;
3950 }
3951 /* Now parse operand adding info to 'i' as we go along. */
3952 END_STRING_AND_SAVE (l);
3953
3954 if (intel_syntax)
3955 operand_ok =
3956 i386_intel_operand (token_start,
3957 intel_float_operand (mnemonic));
3958 else
3959 operand_ok = i386_att_operand (token_start);
3960
3961 RESTORE_END_STRING (l);
3962 if (!operand_ok)
3963 return NULL;
3964 }
3965 else
3966 {
3967 if (expecting_operand)
3968 {
3969 expecting_operand_after_comma:
3970 as_bad (_("expecting operand after ','; got nothing"));
3971 return NULL;
3972 }
3973 if (*l == ',')
3974 {
3975 as_bad (_("expecting operand before ','; got nothing"));
3976 return NULL;
3977 }
3978 }
3979
3980 /* Now *l must be either ',' or END_OF_INSN. */
3981 if (*l == ',')
3982 {
3983 if (*++l == END_OF_INSN)
3984 {
3985 /* Just skip it, if it's \n complain. */
3986 goto expecting_operand_after_comma;
3987 }
3988 expecting_operand = 1;
3989 }
3990 }
3991 return l;
3992 }
3993
3994 static void
3995 swap_2_operands (int xchg1, int xchg2)
3996 {
3997 union i386_op temp_op;
3998 i386_operand_type temp_type;
3999 enum bfd_reloc_code_real temp_reloc;
4000
4001 temp_type = i.types[xchg2];
4002 i.types[xchg2] = i.types[xchg1];
4003 i.types[xchg1] = temp_type;
4004 temp_op = i.op[xchg2];
4005 i.op[xchg2] = i.op[xchg1];
4006 i.op[xchg1] = temp_op;
4007 temp_reloc = i.reloc[xchg2];
4008 i.reloc[xchg2] = i.reloc[xchg1];
4009 i.reloc[xchg1] = temp_reloc;
4010
4011 if (i.mask)
4012 {
4013 if (i.mask->operand == xchg1)
4014 i.mask->operand = xchg2;
4015 else if (i.mask->operand == xchg2)
4016 i.mask->operand = xchg1;
4017 }
4018 if (i.broadcast)
4019 {
4020 if (i.broadcast->operand == xchg1)
4021 i.broadcast->operand = xchg2;
4022 else if (i.broadcast->operand == xchg2)
4023 i.broadcast->operand = xchg1;
4024 }
4025 if (i.rounding)
4026 {
4027 if (i.rounding->operand == xchg1)
4028 i.rounding->operand = xchg2;
4029 else if (i.rounding->operand == xchg2)
4030 i.rounding->operand = xchg1;
4031 }
4032 }
4033
4034 static void
4035 swap_operands (void)
4036 {
4037 switch (i.operands)
4038 {
4039 case 5:
4040 case 4:
4041 swap_2_operands (1, i.operands - 2);
4042 case 3:
4043 case 2:
4044 swap_2_operands (0, i.operands - 1);
4045 break;
4046 default:
4047 abort ();
4048 }
4049
4050 if (i.mem_operands == 2)
4051 {
4052 const seg_entry *temp_seg;
4053 temp_seg = i.seg[0];
4054 i.seg[0] = i.seg[1];
4055 i.seg[1] = temp_seg;
4056 }
4057 }
4058
4059 /* Try to ensure constant immediates are represented in the smallest
4060 opcode possible. */
4061 static void
4062 optimize_imm (void)
4063 {
4064 char guess_suffix = 0;
4065 int op;
4066
4067 if (i.suffix)
4068 guess_suffix = i.suffix;
4069 else if (i.reg_operands)
4070 {
4071 /* Figure out a suffix from the last register operand specified.
4072 We can't do this properly yet, ie. excluding InOutPortReg,
4073 but the following works for instructions with immediates.
4074 In any case, we can't set i.suffix yet. */
4075 for (op = i.operands; --op >= 0;)
4076 if (i.types[op].bitfield.reg8)
4077 {
4078 guess_suffix = BYTE_MNEM_SUFFIX;
4079 break;
4080 }
4081 else if (i.types[op].bitfield.reg16)
4082 {
4083 guess_suffix = WORD_MNEM_SUFFIX;
4084 break;
4085 }
4086 else if (i.types[op].bitfield.reg32)
4087 {
4088 guess_suffix = LONG_MNEM_SUFFIX;
4089 break;
4090 }
4091 else if (i.types[op].bitfield.reg64)
4092 {
4093 guess_suffix = QWORD_MNEM_SUFFIX;
4094 break;
4095 }
4096 }
4097 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4098 guess_suffix = WORD_MNEM_SUFFIX;
4099
4100 for (op = i.operands; --op >= 0;)
4101 if (operand_type_check (i.types[op], imm))
4102 {
4103 switch (i.op[op].imms->X_op)
4104 {
4105 case O_constant:
4106 /* If a suffix is given, this operand may be shortened. */
4107 switch (guess_suffix)
4108 {
4109 case LONG_MNEM_SUFFIX:
4110 i.types[op].bitfield.imm32 = 1;
4111 i.types[op].bitfield.imm64 = 1;
4112 break;
4113 case WORD_MNEM_SUFFIX:
4114 i.types[op].bitfield.imm16 = 1;
4115 i.types[op].bitfield.imm32 = 1;
4116 i.types[op].bitfield.imm32s = 1;
4117 i.types[op].bitfield.imm64 = 1;
4118 break;
4119 case BYTE_MNEM_SUFFIX:
4120 i.types[op].bitfield.imm8 = 1;
4121 i.types[op].bitfield.imm8s = 1;
4122 i.types[op].bitfield.imm16 = 1;
4123 i.types[op].bitfield.imm32 = 1;
4124 i.types[op].bitfield.imm32s = 1;
4125 i.types[op].bitfield.imm64 = 1;
4126 break;
4127 }
4128
4129 /* If this operand is at most 16 bits, convert it
4130 to a signed 16 bit number before trying to see
4131 whether it will fit in an even smaller size.
4132 This allows a 16-bit operand such as $0xffe0 to
4133 be recognised as within Imm8S range. */
4134 if ((i.types[op].bitfield.imm16)
4135 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4136 {
4137 i.op[op].imms->X_add_number =
4138 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4139 }
4140 if ((i.types[op].bitfield.imm32)
4141 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4142 == 0))
4143 {
4144 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4145 ^ ((offsetT) 1 << 31))
4146 - ((offsetT) 1 << 31));
4147 }
4148 i.types[op]
4149 = operand_type_or (i.types[op],
4150 smallest_imm_type (i.op[op].imms->X_add_number));
4151
4152 /* We must avoid matching of Imm32 templates when 64bit
4153 only immediate is available. */
4154 if (guess_suffix == QWORD_MNEM_SUFFIX)
4155 i.types[op].bitfield.imm32 = 0;
4156 break;
4157
4158 case O_absent:
4159 case O_register:
4160 abort ();
4161
4162 /* Symbols and expressions. */
4163 default:
4164 /* Convert symbolic operand to proper sizes for matching, but don't
4165 prevent matching a set of insns that only supports sizes other
4166 than those matching the insn suffix. */
4167 {
4168 i386_operand_type mask, allowed;
4169 const insn_template *t;
4170
4171 operand_type_set (&mask, 0);
4172 operand_type_set (&allowed, 0);
4173
4174 for (t = current_templates->start;
4175 t < current_templates->end;
4176 ++t)
4177 allowed = operand_type_or (allowed,
4178 t->operand_types[op]);
4179 switch (guess_suffix)
4180 {
4181 case QWORD_MNEM_SUFFIX:
4182 mask.bitfield.imm64 = 1;
4183 mask.bitfield.imm32s = 1;
4184 break;
4185 case LONG_MNEM_SUFFIX:
4186 mask.bitfield.imm32 = 1;
4187 break;
4188 case WORD_MNEM_SUFFIX:
4189 mask.bitfield.imm16 = 1;
4190 break;
4191 case BYTE_MNEM_SUFFIX:
4192 mask.bitfield.imm8 = 1;
4193 break;
4194 default:
4195 break;
4196 }
4197 allowed = operand_type_and (mask, allowed);
4198 if (!operand_type_all_zero (&allowed))
4199 i.types[op] = operand_type_and (i.types[op], mask);
4200 }
4201 break;
4202 }
4203 }
4204 }
4205
4206 /* Try to use the smallest displacement type too. */
4207 static void
4208 optimize_disp (void)
4209 {
4210 int op;
4211
4212 for (op = i.operands; --op >= 0;)
4213 if (operand_type_check (i.types[op], disp))
4214 {
4215 if (i.op[op].disps->X_op == O_constant)
4216 {
4217 offsetT op_disp = i.op[op].disps->X_add_number;
4218
4219 if (i.types[op].bitfield.disp16
4220 && (op_disp & ~(offsetT) 0xffff) == 0)
4221 {
4222 /* If this operand is at most 16 bits, convert
4223 to a signed 16 bit number and don't use 64bit
4224 displacement. */
4225 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4226 i.types[op].bitfield.disp64 = 0;
4227 }
4228 if (i.types[op].bitfield.disp32
4229 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4230 {
4231 /* If this operand is at most 32 bits, convert
4232 to a signed 32 bit number and don't use 64bit
4233 displacement. */
4234 op_disp &= (((offsetT) 2 << 31) - 1);
4235 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4236 i.types[op].bitfield.disp64 = 0;
4237 }
4238 if (!op_disp && i.types[op].bitfield.baseindex)
4239 {
4240 i.types[op].bitfield.disp8 = 0;
4241 i.types[op].bitfield.disp16 = 0;
4242 i.types[op].bitfield.disp32 = 0;
4243 i.types[op].bitfield.disp32s = 0;
4244 i.types[op].bitfield.disp64 = 0;
4245 i.op[op].disps = 0;
4246 i.disp_operands--;
4247 }
4248 else if (flag_code == CODE_64BIT)
4249 {
4250 if (fits_in_signed_long (op_disp))
4251 {
4252 i.types[op].bitfield.disp64 = 0;
4253 i.types[op].bitfield.disp32s = 1;
4254 }
4255 if (i.prefix[ADDR_PREFIX]
4256 && fits_in_unsigned_long (op_disp))
4257 i.types[op].bitfield.disp32 = 1;
4258 }
4259 if ((i.types[op].bitfield.disp32
4260 || i.types[op].bitfield.disp32s
4261 || i.types[op].bitfield.disp16)
4262 && fits_in_signed_byte (op_disp))
4263 i.types[op].bitfield.disp8 = 1;
4264 }
4265 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4266 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4267 {
4268 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4269 i.op[op].disps, 0, i.reloc[op]);
4270 i.types[op].bitfield.disp8 = 0;
4271 i.types[op].bitfield.disp16 = 0;
4272 i.types[op].bitfield.disp32 = 0;
4273 i.types[op].bitfield.disp32s = 0;
4274 i.types[op].bitfield.disp64 = 0;
4275 }
4276 else
4277 /* We only support 64bit displacement on constants. */
4278 i.types[op].bitfield.disp64 = 0;
4279 }
4280 }
4281
4282 /* Check if operands are valid for the instruction. */
4283
4284 static int
4285 check_VecOperands (const insn_template *t)
4286 {
4287 unsigned int op;
4288
4289 /* Without VSIB byte, we can't have a vector register for index. */
4290 if (!t->opcode_modifier.vecsib
4291 && i.index_reg
4292 && (i.index_reg->reg_type.bitfield.regxmm
4293 || i.index_reg->reg_type.bitfield.regymm
4294 || i.index_reg->reg_type.bitfield.regzmm))
4295 {
4296 i.error = unsupported_vector_index_register;
4297 return 1;
4298 }
4299
4300 /* Check if default mask is allowed. */
4301 if (t->opcode_modifier.nodefmask
4302 && (!i.mask || i.mask->mask->reg_num == 0))
4303 {
4304 i.error = no_default_mask;
4305 return 1;
4306 }
4307
4308 /* For VSIB byte, we need a vector register for index, and all vector
4309 registers must be distinct. */
4310 if (t->opcode_modifier.vecsib)
4311 {
4312 if (!i.index_reg
4313 || !((t->opcode_modifier.vecsib == VecSIB128
4314 && i.index_reg->reg_type.bitfield.regxmm)
4315 || (t->opcode_modifier.vecsib == VecSIB256
4316 && i.index_reg->reg_type.bitfield.regymm)
4317 || (t->opcode_modifier.vecsib == VecSIB512
4318 && i.index_reg->reg_type.bitfield.regzmm)))
4319 {
4320 i.error = invalid_vsib_address;
4321 return 1;
4322 }
4323
4324 gas_assert (i.reg_operands == 2 || i.mask);
4325 if (i.reg_operands == 2 && !i.mask)
4326 {
4327 gas_assert (i.types[0].bitfield.regxmm
4328 || i.types[0].bitfield.regymm);
4329 gas_assert (i.types[2].bitfield.regxmm
4330 || i.types[2].bitfield.regymm);
4331 if (operand_check == check_none)
4332 return 0;
4333 if (register_number (i.op[0].regs)
4334 != register_number (i.index_reg)
4335 && register_number (i.op[2].regs)
4336 != register_number (i.index_reg)
4337 && register_number (i.op[0].regs)
4338 != register_number (i.op[2].regs))
4339 return 0;
4340 if (operand_check == check_error)
4341 {
4342 i.error = invalid_vector_register_set;
4343 return 1;
4344 }
4345 as_warn (_("mask, index, and destination registers should be distinct"));
4346 }
4347 else if (i.reg_operands == 1 && i.mask)
4348 {
4349 if ((i.types[1].bitfield.regymm
4350 || i.types[1].bitfield.regzmm)
4351 && (register_number (i.op[1].regs)
4352 == register_number (i.index_reg)))
4353 {
4354 if (operand_check == check_error)
4355 {
4356 i.error = invalid_vector_register_set;
4357 return 1;
4358 }
4359 if (operand_check != check_none)
4360 as_warn (_("index and destination registers should be distinct"));
4361 }
4362 }
4363 }
4364
4365 /* Check if broadcast is supported by the instruction and is applied
4366 to the memory operand. */
4367 if (i.broadcast)
4368 {
4369 int broadcasted_opnd_size;
4370
4371 /* Check if specified broadcast is supported in this instruction,
4372 and it's applied to memory operand of DWORD or QWORD type,
4373 depending on VecESize. */
4374 if (i.broadcast->type != t->opcode_modifier.broadcast
4375 || !i.types[i.broadcast->operand].bitfield.mem
4376 || (t->opcode_modifier.vecesize == 0
4377 && !i.types[i.broadcast->operand].bitfield.dword
4378 && !i.types[i.broadcast->operand].bitfield.unspecified)
4379 || (t->opcode_modifier.vecesize == 1
4380 && !i.types[i.broadcast->operand].bitfield.qword
4381 && !i.types[i.broadcast->operand].bitfield.unspecified))
4382 goto bad_broadcast;
4383
4384 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4385 if (i.broadcast->type == BROADCAST_1TO16)
4386 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4387 else if (i.broadcast->type == BROADCAST_1TO8)
4388 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4389 else if (i.broadcast->type == BROADCAST_1TO4)
4390 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4391 else if (i.broadcast->type == BROADCAST_1TO2)
4392 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
4393 else
4394 goto bad_broadcast;
4395
4396 if ((broadcasted_opnd_size == 256
4397 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4398 || (broadcasted_opnd_size == 512
4399 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4400 {
4401 bad_broadcast:
4402 i.error = unsupported_broadcast;
4403 return 1;
4404 }
4405 }
4406 /* If broadcast is supported in this instruction, we need to check if
4407 operand of one-element size isn't specified without broadcast. */
4408 else if (t->opcode_modifier.broadcast && i.mem_operands)
4409 {
4410 /* Find memory operand. */
4411 for (op = 0; op < i.operands; op++)
4412 if (operand_type_check (i.types[op], anymem))
4413 break;
4414 gas_assert (op < i.operands);
4415 /* Check size of the memory operand. */
4416 if ((t->opcode_modifier.vecesize == 0
4417 && i.types[op].bitfield.dword)
4418 || (t->opcode_modifier.vecesize == 1
4419 && i.types[op].bitfield.qword))
4420 {
4421 i.error = broadcast_needed;
4422 return 1;
4423 }
4424 }
4425
4426 /* Check if requested masking is supported. */
4427 if (i.mask
4428 && (!t->opcode_modifier.masking
4429 || (i.mask->zeroing
4430 && t->opcode_modifier.masking == MERGING_MASKING)))
4431 {
4432 i.error = unsupported_masking;
4433 return 1;
4434 }
4435
4436 /* Check if masking is applied to dest operand. */
4437 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4438 {
4439 i.error = mask_not_on_destination;
4440 return 1;
4441 }
4442
4443 /* Check RC/SAE. */
4444 if (i.rounding)
4445 {
4446 if ((i.rounding->type != saeonly
4447 && !t->opcode_modifier.staticrounding)
4448 || (i.rounding->type == saeonly
4449 && (t->opcode_modifier.staticrounding
4450 || !t->opcode_modifier.sae)))
4451 {
4452 i.error = unsupported_rc_sae;
4453 return 1;
4454 }
4455 /* If the instruction has several immediate operands and one of
4456 them is rounding, the rounding operand should be the last
4457 immediate operand. */
4458 if (i.imm_operands > 1
4459 && i.rounding->operand != (int) (i.imm_operands - 1))
4460 {
4461 i.error = rc_sae_operand_not_last_imm;
4462 return 1;
4463 }
4464 }
4465
4466 /* Check vector Disp8 operand. */
4467 if (t->opcode_modifier.disp8memshift)
4468 {
4469 if (i.broadcast)
4470 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4471 else
4472 i.memshift = t->opcode_modifier.disp8memshift;
4473
4474 for (op = 0; op < i.operands; op++)
4475 if (operand_type_check (i.types[op], disp)
4476 && i.op[op].disps->X_op == O_constant)
4477 {
4478 offsetT value = i.op[op].disps->X_add_number;
4479 int vec_disp8_ok = fits_in_vec_disp8 (value);
4480 if (t->operand_types [op].bitfield.vec_disp8)
4481 {
4482 if (vec_disp8_ok)
4483 i.types[op].bitfield.vec_disp8 = 1;
4484 else
4485 {
4486 /* Vector insn can only have Vec_Disp8/Disp32 in
4487 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4488 mode. */
4489 i.types[op].bitfield.disp8 = 0;
4490 if (flag_code != CODE_16BIT)
4491 i.types[op].bitfield.disp16 = 0;
4492 }
4493 }
4494 else if (flag_code != CODE_16BIT)
4495 {
4496 /* One form of this instruction supports vector Disp8.
4497 Try vector Disp8 if we need to use Disp32. */
4498 if (vec_disp8_ok && !fits_in_signed_byte (value))
4499 {
4500 i.error = try_vector_disp8;
4501 return 1;
4502 }
4503 }
4504 }
4505 }
4506 else
4507 i.memshift = -1;
4508
4509 return 0;
4510 }
4511
4512 /* Check if operands are valid for the instruction. Update VEX
4513 operand types. */
4514
4515 static int
4516 VEX_check_operands (const insn_template *t)
4517 {
4518 /* VREX is only valid with EVEX prefix. */
4519 if (i.need_vrex && !t->opcode_modifier.evex)
4520 {
4521 i.error = invalid_register_operand;
4522 return 1;
4523 }
4524
4525 if (!t->opcode_modifier.vex)
4526 return 0;
4527
4528 /* Only check VEX_Imm4, which must be the first operand. */
4529 if (t->operand_types[0].bitfield.vec_imm4)
4530 {
4531 if (i.op[0].imms->X_op != O_constant
4532 || !fits_in_imm4 (i.op[0].imms->X_add_number))
4533 {
4534 i.error = bad_imm4;
4535 return 1;
4536 }
4537
4538 /* Turn off Imm8 so that update_imm won't complain. */
4539 i.types[0] = vec_imm4;
4540 }
4541
4542 return 0;
4543 }
4544
4545 static const insn_template *
4546 match_template (void)
4547 {
4548 /* Points to template once we've found it. */
4549 const insn_template *t;
4550 i386_operand_type overlap0, overlap1, overlap2, overlap3;
4551 i386_operand_type overlap4;
4552 unsigned int found_reverse_match;
4553 i386_opcode_modifier suffix_check;
4554 i386_operand_type operand_types [MAX_OPERANDS];
4555 int addr_prefix_disp;
4556 unsigned int j;
4557 unsigned int found_cpu_match;
4558 unsigned int check_register;
4559 enum i386_error specific_error = 0;
4560
4561 #if MAX_OPERANDS != 5
4562 # error "MAX_OPERANDS must be 5."
4563 #endif
4564
4565 found_reverse_match = 0;
4566 addr_prefix_disp = -1;
4567
4568 memset (&suffix_check, 0, sizeof (suffix_check));
4569 if (i.suffix == BYTE_MNEM_SUFFIX)
4570 suffix_check.no_bsuf = 1;
4571 else if (i.suffix == WORD_MNEM_SUFFIX)
4572 suffix_check.no_wsuf = 1;
4573 else if (i.suffix == SHORT_MNEM_SUFFIX)
4574 suffix_check.no_ssuf = 1;
4575 else if (i.suffix == LONG_MNEM_SUFFIX)
4576 suffix_check.no_lsuf = 1;
4577 else if (i.suffix == QWORD_MNEM_SUFFIX)
4578 suffix_check.no_qsuf = 1;
4579 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4580 suffix_check.no_ldsuf = 1;
4581
4582 /* Must have right number of operands. */
4583 i.error = number_of_operands_mismatch;
4584
4585 for (t = current_templates->start; t < current_templates->end; t++)
4586 {
4587 addr_prefix_disp = -1;
4588
4589 if (i.operands != t->operands)
4590 continue;
4591
4592 /* Check processor support. */
4593 i.error = unsupported;
4594 found_cpu_match = (cpu_flags_match (t)
4595 == CPU_FLAGS_PERFECT_MATCH);
4596 if (!found_cpu_match)
4597 continue;
4598
4599 /* Check old gcc support. */
4600 i.error = old_gcc_only;
4601 if (!old_gcc && t->opcode_modifier.oldgcc)
4602 continue;
4603
4604 /* Check AT&T mnemonic. */
4605 i.error = unsupported_with_intel_mnemonic;
4606 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4607 continue;
4608
4609 /* Check AT&T/Intel syntax. */
4610 i.error = unsupported_syntax;
4611 if ((intel_syntax && t->opcode_modifier.attsyntax)
4612 || (!intel_syntax && t->opcode_modifier.intelsyntax))
4613 continue;
4614
4615 /* Check the suffix, except for some instructions in intel mode. */
4616 i.error = invalid_instruction_suffix;
4617 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4618 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4619 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4620 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4621 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4622 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4623 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4624 continue;
4625
4626 if (!operand_size_match (t))
4627 continue;
4628
4629 for (j = 0; j < MAX_OPERANDS; j++)
4630 operand_types[j] = t->operand_types[j];
4631
4632 /* In general, don't allow 64-bit operands in 32-bit mode. */
4633 if (i.suffix == QWORD_MNEM_SUFFIX
4634 && flag_code != CODE_64BIT
4635 && (intel_syntax
4636 ? (!t->opcode_modifier.ignoresize
4637 && !intel_float_operand (t->name))
4638 : intel_float_operand (t->name) != 2)
4639 && ((!operand_types[0].bitfield.regmmx
4640 && !operand_types[0].bitfield.regxmm
4641 && !operand_types[0].bitfield.regymm
4642 && !operand_types[0].bitfield.regzmm)
4643 || (!operand_types[t->operands > 1].bitfield.regmmx
4644 && operand_types[t->operands > 1].bitfield.regxmm
4645 && operand_types[t->operands > 1].bitfield.regymm
4646 && operand_types[t->operands > 1].bitfield.regzmm))
4647 && (t->base_opcode != 0x0fc7
4648 || t->extension_opcode != 1 /* cmpxchg8b */))
4649 continue;
4650
4651 /* In general, don't allow 32-bit operands on pre-386. */
4652 else if (i.suffix == LONG_MNEM_SUFFIX
4653 && !cpu_arch_flags.bitfield.cpui386
4654 && (intel_syntax
4655 ? (!t->opcode_modifier.ignoresize
4656 && !intel_float_operand (t->name))
4657 : intel_float_operand (t->name) != 2)
4658 && ((!operand_types[0].bitfield.regmmx
4659 && !operand_types[0].bitfield.regxmm)
4660 || (!operand_types[t->operands > 1].bitfield.regmmx
4661 && operand_types[t->operands > 1].bitfield.regxmm)))
4662 continue;
4663
4664 /* Do not verify operands when there are none. */
4665 else
4666 {
4667 if (!t->operands)
4668 /* We've found a match; break out of loop. */
4669 break;
4670 }
4671
4672 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4673 into Disp32/Disp16/Disp32 operand. */
4674 if (i.prefix[ADDR_PREFIX] != 0)
4675 {
4676 /* There should be only one Disp operand. */
4677 switch (flag_code)
4678 {
4679 case CODE_16BIT:
4680 for (j = 0; j < MAX_OPERANDS; j++)
4681 {
4682 if (operand_types[j].bitfield.disp16)
4683 {
4684 addr_prefix_disp = j;
4685 operand_types[j].bitfield.disp32 = 1;
4686 operand_types[j].bitfield.disp16 = 0;
4687 break;
4688 }
4689 }
4690 break;
4691 case CODE_32BIT:
4692 for (j = 0; j < MAX_OPERANDS; j++)
4693 {
4694 if (operand_types[j].bitfield.disp32)
4695 {
4696 addr_prefix_disp = j;
4697 operand_types[j].bitfield.disp32 = 0;
4698 operand_types[j].bitfield.disp16 = 1;
4699 break;
4700 }
4701 }
4702 break;
4703 case CODE_64BIT:
4704 for (j = 0; j < MAX_OPERANDS; j++)
4705 {
4706 if (operand_types[j].bitfield.disp64)
4707 {
4708 addr_prefix_disp = j;
4709 operand_types[j].bitfield.disp64 = 0;
4710 operand_types[j].bitfield.disp32 = 1;
4711 break;
4712 }
4713 }
4714 break;
4715 }
4716 }
4717
4718 /* We check register size if needed. */
4719 check_register = t->opcode_modifier.checkregsize;
4720 overlap0 = operand_type_and (i.types[0], operand_types[0]);
4721 switch (t->operands)
4722 {
4723 case 1:
4724 if (!operand_type_match (overlap0, i.types[0]))
4725 continue;
4726 break;
4727 case 2:
4728 /* xchg %eax, %eax is a special case. It is an aliase for nop
4729 only in 32bit mode and we can use opcode 0x90. In 64bit
4730 mode, we can't use 0x90 for xchg %eax, %eax since it should
4731 zero-extend %eax to %rax. */
4732 if (flag_code == CODE_64BIT
4733 && t->base_opcode == 0x90
4734 && operand_type_equal (&i.types [0], &acc32)
4735 && operand_type_equal (&i.types [1], &acc32))
4736 continue;
4737 if (i.swap_operand)
4738 {
4739 /* If we swap operand in encoding, we either match
4740 the next one or reverse direction of operands. */
4741 if (t->opcode_modifier.s)
4742 continue;
4743 else if (t->opcode_modifier.d)
4744 goto check_reverse;
4745 }
4746
4747 case 3:
4748 /* If we swap operand in encoding, we match the next one. */
4749 if (i.swap_operand && t->opcode_modifier.s)
4750 continue;
4751 case 4:
4752 case 5:
4753 overlap1 = operand_type_and (i.types[1], operand_types[1]);
4754 if (!operand_type_match (overlap0, i.types[0])
4755 || !operand_type_match (overlap1, i.types[1])
4756 || (check_register
4757 && !operand_type_register_match (overlap0, i.types[0],
4758 operand_types[0],
4759 overlap1, i.types[1],
4760 operand_types[1])))
4761 {
4762 /* Check if other direction is valid ... */
4763 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
4764 continue;
4765
4766 check_reverse:
4767 /* Try reversing direction of operands. */
4768 overlap0 = operand_type_and (i.types[0], operand_types[1]);
4769 overlap1 = operand_type_and (i.types[1], operand_types[0]);
4770 if (!operand_type_match (overlap0, i.types[0])
4771 || !operand_type_match (overlap1, i.types[1])
4772 || (check_register
4773 && !operand_type_register_match (overlap0,
4774 i.types[0],
4775 operand_types[1],
4776 overlap1,
4777 i.types[1],
4778 operand_types[0])))
4779 {
4780 /* Does not match either direction. */
4781 continue;
4782 }
4783 /* found_reverse_match holds which of D or FloatDR
4784 we've found. */
4785 if (t->opcode_modifier.d)
4786 found_reverse_match = Opcode_D;
4787 else if (t->opcode_modifier.floatd)
4788 found_reverse_match = Opcode_FloatD;
4789 else
4790 found_reverse_match = 0;
4791 if (t->opcode_modifier.floatr)
4792 found_reverse_match |= Opcode_FloatR;
4793 }
4794 else
4795 {
4796 /* Found a forward 2 operand match here. */
4797 switch (t->operands)
4798 {
4799 case 5:
4800 overlap4 = operand_type_and (i.types[4],
4801 operand_types[4]);
4802 case 4:
4803 overlap3 = operand_type_and (i.types[3],
4804 operand_types[3]);
4805 case 3:
4806 overlap2 = operand_type_and (i.types[2],
4807 operand_types[2]);
4808 break;
4809 }
4810
4811 switch (t->operands)
4812 {
4813 case 5:
4814 if (!operand_type_match (overlap4, i.types[4])
4815 || !operand_type_register_match (overlap3,
4816 i.types[3],
4817 operand_types[3],
4818 overlap4,
4819 i.types[4],
4820 operand_types[4]))
4821 continue;
4822 case 4:
4823 if (!operand_type_match (overlap3, i.types[3])
4824 || (check_register
4825 && !operand_type_register_match (overlap2,
4826 i.types[2],
4827 operand_types[2],
4828 overlap3,
4829 i.types[3],
4830 operand_types[3])))
4831 continue;
4832 case 3:
4833 /* Here we make use of the fact that there are no
4834 reverse match 3 operand instructions, and all 3
4835 operand instructions only need to be checked for
4836 register consistency between operands 2 and 3. */
4837 if (!operand_type_match (overlap2, i.types[2])
4838 || (check_register
4839 && !operand_type_register_match (overlap1,
4840 i.types[1],
4841 operand_types[1],
4842 overlap2,
4843 i.types[2],
4844 operand_types[2])))
4845 continue;
4846 break;
4847 }
4848 }
4849 /* Found either forward/reverse 2, 3 or 4 operand match here:
4850 slip through to break. */
4851 }
4852 if (!found_cpu_match)
4853 {
4854 found_reverse_match = 0;
4855 continue;
4856 }
4857
4858 /* Check if vector and VEX operands are valid. */
4859 if (check_VecOperands (t) || VEX_check_operands (t))
4860 {
4861 specific_error = i.error;
4862 continue;
4863 }
4864
4865 /* We've found a match; break out of loop. */
4866 break;
4867 }
4868
4869 if (t == current_templates->end)
4870 {
4871 /* We found no match. */
4872 const char *err_msg;
4873 switch (specific_error ? specific_error : i.error)
4874 {
4875 default:
4876 abort ();
4877 case operand_size_mismatch:
4878 err_msg = _("operand size mismatch");
4879 break;
4880 case operand_type_mismatch:
4881 err_msg = _("operand type mismatch");
4882 break;
4883 case register_type_mismatch:
4884 err_msg = _("register type mismatch");
4885 break;
4886 case number_of_operands_mismatch:
4887 err_msg = _("number of operands mismatch");
4888 break;
4889 case invalid_instruction_suffix:
4890 err_msg = _("invalid instruction suffix");
4891 break;
4892 case bad_imm4:
4893 err_msg = _("constant doesn't fit in 4 bits");
4894 break;
4895 case old_gcc_only:
4896 err_msg = _("only supported with old gcc");
4897 break;
4898 case unsupported_with_intel_mnemonic:
4899 err_msg = _("unsupported with Intel mnemonic");
4900 break;
4901 case unsupported_syntax:
4902 err_msg = _("unsupported syntax");
4903 break;
4904 case unsupported:
4905 as_bad (_("unsupported instruction `%s'"),
4906 current_templates->start->name);
4907 return NULL;
4908 case invalid_vsib_address:
4909 err_msg = _("invalid VSIB address");
4910 break;
4911 case invalid_vector_register_set:
4912 err_msg = _("mask, index, and destination registers must be distinct");
4913 break;
4914 case unsupported_vector_index_register:
4915 err_msg = _("unsupported vector index register");
4916 break;
4917 case unsupported_broadcast:
4918 err_msg = _("unsupported broadcast");
4919 break;
4920 case broadcast_not_on_src_operand:
4921 err_msg = _("broadcast not on source memory operand");
4922 break;
4923 case broadcast_needed:
4924 err_msg = _("broadcast is needed for operand of such type");
4925 break;
4926 case unsupported_masking:
4927 err_msg = _("unsupported masking");
4928 break;
4929 case mask_not_on_destination:
4930 err_msg = _("mask not on destination operand");
4931 break;
4932 case no_default_mask:
4933 err_msg = _("default mask isn't allowed");
4934 break;
4935 case unsupported_rc_sae:
4936 err_msg = _("unsupported static rounding/sae");
4937 break;
4938 case rc_sae_operand_not_last_imm:
4939 if (intel_syntax)
4940 err_msg = _("RC/SAE operand must precede immediate operands");
4941 else
4942 err_msg = _("RC/SAE operand must follow immediate operands");
4943 break;
4944 case invalid_register_operand:
4945 err_msg = _("invalid register operand");
4946 break;
4947 }
4948 as_bad (_("%s for `%s'"), err_msg,
4949 current_templates->start->name);
4950 return NULL;
4951 }
4952
4953 if (!quiet_warnings)
4954 {
4955 if (!intel_syntax
4956 && (i.types[0].bitfield.jumpabsolute
4957 != operand_types[0].bitfield.jumpabsolute))
4958 {
4959 as_warn (_("indirect %s without `*'"), t->name);
4960 }
4961
4962 if (t->opcode_modifier.isprefix
4963 && t->opcode_modifier.ignoresize)
4964 {
4965 /* Warn them that a data or address size prefix doesn't
4966 affect assembly of the next line of code. */
4967 as_warn (_("stand-alone `%s' prefix"), t->name);
4968 }
4969 }
4970
4971 /* Copy the template we found. */
4972 i.tm = *t;
4973
4974 if (addr_prefix_disp != -1)
4975 i.tm.operand_types[addr_prefix_disp]
4976 = operand_types[addr_prefix_disp];
4977
4978 if (found_reverse_match)
4979 {
4980 /* If we found a reverse match we must alter the opcode
4981 direction bit. found_reverse_match holds bits to change
4982 (different for int & float insns). */
4983
4984 i.tm.base_opcode ^= found_reverse_match;
4985
4986 i.tm.operand_types[0] = operand_types[1];
4987 i.tm.operand_types[1] = operand_types[0];
4988 }
4989
4990 return t;
4991 }
4992
4993 static int
4994 check_string (void)
4995 {
4996 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
4997 if (i.tm.operand_types[mem_op].bitfield.esseg)
4998 {
4999 if (i.seg[0] != NULL && i.seg[0] != &es)
5000 {
5001 as_bad (_("`%s' operand %d must use `%ses' segment"),
5002 i.tm.name,
5003 mem_op + 1,
5004 register_prefix);
5005 return 0;
5006 }
5007 /* There's only ever one segment override allowed per instruction.
5008 This instruction possibly has a legal segment override on the
5009 second operand, so copy the segment to where non-string
5010 instructions store it, allowing common code. */
5011 i.seg[0] = i.seg[1];
5012 }
5013 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5014 {
5015 if (i.seg[1] != NULL && i.seg[1] != &es)
5016 {
5017 as_bad (_("`%s' operand %d must use `%ses' segment"),
5018 i.tm.name,
5019 mem_op + 2,
5020 register_prefix);
5021 return 0;
5022 }
5023 }
5024 return 1;
5025 }
5026
5027 static int
5028 process_suffix (void)
5029 {
5030 /* If matched instruction specifies an explicit instruction mnemonic
5031 suffix, use it. */
5032 if (i.tm.opcode_modifier.size16)
5033 i.suffix = WORD_MNEM_SUFFIX;
5034 else if (i.tm.opcode_modifier.size32)
5035 i.suffix = LONG_MNEM_SUFFIX;
5036 else if (i.tm.opcode_modifier.size64)
5037 i.suffix = QWORD_MNEM_SUFFIX;
5038 else if (i.reg_operands)
5039 {
5040 /* If there's no instruction mnemonic suffix we try to invent one
5041 based on register operands. */
5042 if (!i.suffix)
5043 {
5044 /* We take i.suffix from the last register operand specified,
5045 Destination register type is more significant than source
5046 register type. crc32 in SSE4.2 prefers source register
5047 type. */
5048 if (i.tm.base_opcode == 0xf20f38f1)
5049 {
5050 if (i.types[0].bitfield.reg16)
5051 i.suffix = WORD_MNEM_SUFFIX;
5052 else if (i.types[0].bitfield.reg32)
5053 i.suffix = LONG_MNEM_SUFFIX;
5054 else if (i.types[0].bitfield.reg64)
5055 i.suffix = QWORD_MNEM_SUFFIX;
5056 }
5057 else if (i.tm.base_opcode == 0xf20f38f0)
5058 {
5059 if (i.types[0].bitfield.reg8)
5060 i.suffix = BYTE_MNEM_SUFFIX;
5061 }
5062
5063 if (!i.suffix)
5064 {
5065 int op;
5066
5067 if (i.tm.base_opcode == 0xf20f38f1
5068 || i.tm.base_opcode == 0xf20f38f0)
5069 {
5070 /* We have to know the operand size for crc32. */
5071 as_bad (_("ambiguous memory operand size for `%s`"),
5072 i.tm.name);
5073 return 0;
5074 }
5075
5076 for (op = i.operands; --op >= 0;)
5077 if (!i.tm.operand_types[op].bitfield.inoutportreg)
5078 {
5079 if (i.types[op].bitfield.reg8)
5080 {
5081 i.suffix = BYTE_MNEM_SUFFIX;
5082 break;
5083 }
5084 else if (i.types[op].bitfield.reg16)
5085 {
5086 i.suffix = WORD_MNEM_SUFFIX;
5087 break;
5088 }
5089 else if (i.types[op].bitfield.reg32)
5090 {
5091 i.suffix = LONG_MNEM_SUFFIX;
5092 break;
5093 }
5094 else if (i.types[op].bitfield.reg64)
5095 {
5096 i.suffix = QWORD_MNEM_SUFFIX;
5097 break;
5098 }
5099 }
5100 }
5101 }
5102 else if (i.suffix == BYTE_MNEM_SUFFIX)
5103 {
5104 if (intel_syntax
5105 && i.tm.opcode_modifier.ignoresize
5106 && i.tm.opcode_modifier.no_bsuf)
5107 i.suffix = 0;
5108 else if (!check_byte_reg ())
5109 return 0;
5110 }
5111 else if (i.suffix == LONG_MNEM_SUFFIX)
5112 {
5113 if (intel_syntax
5114 && i.tm.opcode_modifier.ignoresize
5115 && i.tm.opcode_modifier.no_lsuf)
5116 i.suffix = 0;
5117 else if (!check_long_reg ())
5118 return 0;
5119 }
5120 else if (i.suffix == QWORD_MNEM_SUFFIX)
5121 {
5122 if (intel_syntax
5123 && i.tm.opcode_modifier.ignoresize
5124 && i.tm.opcode_modifier.no_qsuf)
5125 i.suffix = 0;
5126 else if (!check_qword_reg ())
5127 return 0;
5128 }
5129 else if (i.suffix == WORD_MNEM_SUFFIX)
5130 {
5131 if (intel_syntax
5132 && i.tm.opcode_modifier.ignoresize
5133 && i.tm.opcode_modifier.no_wsuf)
5134 i.suffix = 0;
5135 else if (!check_word_reg ())
5136 return 0;
5137 }
5138 else if (i.suffix == XMMWORD_MNEM_SUFFIX
5139 || i.suffix == YMMWORD_MNEM_SUFFIX
5140 || i.suffix == ZMMWORD_MNEM_SUFFIX)
5141 {
5142 /* Skip if the instruction has x/y/z suffix. match_template
5143 should check if it is a valid suffix. */
5144 }
5145 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5146 /* Do nothing if the instruction is going to ignore the prefix. */
5147 ;
5148 else
5149 abort ();
5150 }
5151 else if (i.tm.opcode_modifier.defaultsize
5152 && !i.suffix
5153 /* exclude fldenv/frstor/fsave/fstenv */
5154 && i.tm.opcode_modifier.no_ssuf)
5155 {
5156 i.suffix = stackop_size;
5157 }
5158 else if (intel_syntax
5159 && !i.suffix
5160 && (i.tm.operand_types[0].bitfield.jumpabsolute
5161 || i.tm.opcode_modifier.jumpbyte
5162 || i.tm.opcode_modifier.jumpintersegment
5163 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5164 && i.tm.extension_opcode <= 3)))
5165 {
5166 switch (flag_code)
5167 {
5168 case CODE_64BIT:
5169 if (!i.tm.opcode_modifier.no_qsuf)
5170 {
5171 i.suffix = QWORD_MNEM_SUFFIX;
5172 break;
5173 }
5174 case CODE_32BIT:
5175 if (!i.tm.opcode_modifier.no_lsuf)
5176 i.suffix = LONG_MNEM_SUFFIX;
5177 break;
5178 case CODE_16BIT:
5179 if (!i.tm.opcode_modifier.no_wsuf)
5180 i.suffix = WORD_MNEM_SUFFIX;
5181 break;
5182 }
5183 }
5184
5185 if (!i.suffix)
5186 {
5187 if (!intel_syntax)
5188 {
5189 if (i.tm.opcode_modifier.w)
5190 {
5191 as_bad (_("no instruction mnemonic suffix given and "
5192 "no register operands; can't size instruction"));
5193 return 0;
5194 }
5195 }
5196 else
5197 {
5198 unsigned int suffixes;
5199
5200 suffixes = !i.tm.opcode_modifier.no_bsuf;
5201 if (!i.tm.opcode_modifier.no_wsuf)
5202 suffixes |= 1 << 1;
5203 if (!i.tm.opcode_modifier.no_lsuf)
5204 suffixes |= 1 << 2;
5205 if (!i.tm.opcode_modifier.no_ldsuf)
5206 suffixes |= 1 << 3;
5207 if (!i.tm.opcode_modifier.no_ssuf)
5208 suffixes |= 1 << 4;
5209 if (!i.tm.opcode_modifier.no_qsuf)
5210 suffixes |= 1 << 5;
5211
5212 /* There are more than suffix matches. */
5213 if (i.tm.opcode_modifier.w
5214 || ((suffixes & (suffixes - 1))
5215 && !i.tm.opcode_modifier.defaultsize
5216 && !i.tm.opcode_modifier.ignoresize))
5217 {
5218 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5219 return 0;
5220 }
5221 }
5222 }
5223
5224 /* Change the opcode based on the operand size given by i.suffix;
5225 We don't need to change things for byte insns. */
5226
5227 if (i.suffix
5228 && i.suffix != BYTE_MNEM_SUFFIX
5229 && i.suffix != XMMWORD_MNEM_SUFFIX
5230 && i.suffix != YMMWORD_MNEM_SUFFIX
5231 && i.suffix != ZMMWORD_MNEM_SUFFIX)
5232 {
5233 /* It's not a byte, select word/dword operation. */
5234 if (i.tm.opcode_modifier.w)
5235 {
5236 if (i.tm.opcode_modifier.shortform)
5237 i.tm.base_opcode |= 8;
5238 else
5239 i.tm.base_opcode |= 1;
5240 }
5241
5242 /* Now select between word & dword operations via the operand
5243 size prefix, except for instructions that will ignore this
5244 prefix anyway. */
5245 if (i.tm.opcode_modifier.addrprefixop0)
5246 {
5247 /* The address size override prefix changes the size of the
5248 first operand. */
5249 if ((flag_code == CODE_32BIT
5250 && i.op->regs[0].reg_type.bitfield.reg16)
5251 || (flag_code != CODE_32BIT
5252 && i.op->regs[0].reg_type.bitfield.reg32))
5253 if (!add_prefix (ADDR_PREFIX_OPCODE))
5254 return 0;
5255 }
5256 else if (i.suffix != QWORD_MNEM_SUFFIX
5257 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5258 && !i.tm.opcode_modifier.ignoresize
5259 && !i.tm.opcode_modifier.floatmf
5260 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5261 || (flag_code == CODE_64BIT
5262 && i.tm.opcode_modifier.jumpbyte)))
5263 {
5264 unsigned int prefix = DATA_PREFIX_OPCODE;
5265
5266 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5267 prefix = ADDR_PREFIX_OPCODE;
5268
5269 if (!add_prefix (prefix))
5270 return 0;
5271 }
5272
5273 /* Set mode64 for an operand. */
5274 if (i.suffix == QWORD_MNEM_SUFFIX
5275 && flag_code == CODE_64BIT
5276 && !i.tm.opcode_modifier.norex64)
5277 {
5278 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5279 need rex64. cmpxchg8b is also a special case. */
5280 if (! (i.operands == 2
5281 && i.tm.base_opcode == 0x90
5282 && i.tm.extension_opcode == None
5283 && operand_type_equal (&i.types [0], &acc64)
5284 && operand_type_equal (&i.types [1], &acc64))
5285 && ! (i.operands == 1
5286 && i.tm.base_opcode == 0xfc7
5287 && i.tm.extension_opcode == 1
5288 && !operand_type_check (i.types [0], reg)
5289 && operand_type_check (i.types [0], anymem)))
5290 i.rex |= REX_W;
5291 }
5292
5293 /* Size floating point instruction. */
5294 if (i.suffix == LONG_MNEM_SUFFIX)
5295 if (i.tm.opcode_modifier.floatmf)
5296 i.tm.base_opcode ^= 4;
5297 }
5298
5299 return 1;
5300 }
5301
5302 static int
5303 check_byte_reg (void)
5304 {
5305 int op;
5306
5307 for (op = i.operands; --op >= 0;)
5308 {
5309 /* If this is an eight bit register, it's OK. If it's the 16 or
5310 32 bit version of an eight bit register, we will just use the
5311 low portion, and that's OK too. */
5312 if (i.types[op].bitfield.reg8)
5313 continue;
5314
5315 /* I/O port address operands are OK too. */
5316 if (i.tm.operand_types[op].bitfield.inoutportreg)
5317 continue;
5318
5319 /* crc32 doesn't generate this warning. */
5320 if (i.tm.base_opcode == 0xf20f38f0)
5321 continue;
5322
5323 if ((i.types[op].bitfield.reg16
5324 || i.types[op].bitfield.reg32
5325 || i.types[op].bitfield.reg64)
5326 && i.op[op].regs->reg_num < 4
5327 /* Prohibit these changes in 64bit mode, since the lowering
5328 would be more complicated. */
5329 && flag_code != CODE_64BIT)
5330 {
5331 #if REGISTER_WARNINGS
5332 if (!quiet_warnings)
5333 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5334 register_prefix,
5335 (i.op[op].regs + (i.types[op].bitfield.reg16
5336 ? REGNAM_AL - REGNAM_AX
5337 : REGNAM_AL - REGNAM_EAX))->reg_name,
5338 register_prefix,
5339 i.op[op].regs->reg_name,
5340 i.suffix);
5341 #endif
5342 continue;
5343 }
5344 /* Any other register is bad. */
5345 if (i.types[op].bitfield.reg16
5346 || i.types[op].bitfield.reg32
5347 || i.types[op].bitfield.reg64
5348 || i.types[op].bitfield.regmmx
5349 || i.types[op].bitfield.regxmm
5350 || i.types[op].bitfield.regymm
5351 || i.types[op].bitfield.regzmm
5352 || i.types[op].bitfield.sreg2
5353 || i.types[op].bitfield.sreg3
5354 || i.types[op].bitfield.control
5355 || i.types[op].bitfield.debug
5356 || i.types[op].bitfield.test
5357 || i.types[op].bitfield.floatreg
5358 || i.types[op].bitfield.floatacc)
5359 {
5360 as_bad (_("`%s%s' not allowed with `%s%c'"),
5361 register_prefix,
5362 i.op[op].regs->reg_name,
5363 i.tm.name,
5364 i.suffix);
5365 return 0;
5366 }
5367 }
5368 return 1;
5369 }
5370
5371 static int
5372 check_long_reg (void)
5373 {
5374 int op;
5375
5376 for (op = i.operands; --op >= 0;)
5377 /* Reject eight bit registers, except where the template requires
5378 them. (eg. movzb) */
5379 if (i.types[op].bitfield.reg8
5380 && (i.tm.operand_types[op].bitfield.reg16
5381 || i.tm.operand_types[op].bitfield.reg32
5382 || i.tm.operand_types[op].bitfield.acc))
5383 {
5384 as_bad (_("`%s%s' not allowed with `%s%c'"),
5385 register_prefix,
5386 i.op[op].regs->reg_name,
5387 i.tm.name,
5388 i.suffix);
5389 return 0;
5390 }
5391 /* Warn if the e prefix on a general reg is missing. */
5392 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5393 && i.types[op].bitfield.reg16
5394 && (i.tm.operand_types[op].bitfield.reg32
5395 || i.tm.operand_types[op].bitfield.acc))
5396 {
5397 /* Prohibit these changes in the 64bit mode, since the
5398 lowering is more complicated. */
5399 if (flag_code == CODE_64BIT)
5400 {
5401 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5402 register_prefix, i.op[op].regs->reg_name,
5403 i.suffix);
5404 return 0;
5405 }
5406 #if REGISTER_WARNINGS
5407 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5408 register_prefix,
5409 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5410 register_prefix, i.op[op].regs->reg_name, i.suffix);
5411 #endif
5412 }
5413 /* Warn if the r prefix on a general reg is present. */
5414 else if (i.types[op].bitfield.reg64
5415 && (i.tm.operand_types[op].bitfield.reg32
5416 || i.tm.operand_types[op].bitfield.acc))
5417 {
5418 if (intel_syntax
5419 && i.tm.opcode_modifier.toqword
5420 && !i.types[0].bitfield.regxmm)
5421 {
5422 /* Convert to QWORD. We want REX byte. */
5423 i.suffix = QWORD_MNEM_SUFFIX;
5424 }
5425 else
5426 {
5427 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5428 register_prefix, i.op[op].regs->reg_name,
5429 i.suffix);
5430 return 0;
5431 }
5432 }
5433 return 1;
5434 }
5435
5436 static int
5437 check_qword_reg (void)
5438 {
5439 int op;
5440
5441 for (op = i.operands; --op >= 0; )
5442 /* Reject eight bit registers, except where the template requires
5443 them. (eg. movzb) */
5444 if (i.types[op].bitfield.reg8
5445 && (i.tm.operand_types[op].bitfield.reg16
5446 || i.tm.operand_types[op].bitfield.reg32
5447 || i.tm.operand_types[op].bitfield.acc))
5448 {
5449 as_bad (_("`%s%s' not allowed with `%s%c'"),
5450 register_prefix,
5451 i.op[op].regs->reg_name,
5452 i.tm.name,
5453 i.suffix);
5454 return 0;
5455 }
5456 /* Warn if the r prefix on a general reg is missing. */
5457 else if ((i.types[op].bitfield.reg16
5458 || i.types[op].bitfield.reg32)
5459 && (i.tm.operand_types[op].bitfield.reg32
5460 || i.tm.operand_types[op].bitfield.acc))
5461 {
5462 /* Prohibit these changes in the 64bit mode, since the
5463 lowering is more complicated. */
5464 if (intel_syntax
5465 && i.tm.opcode_modifier.todword
5466 && !i.types[0].bitfield.regxmm)
5467 {
5468 /* Convert to DWORD. We don't want REX byte. */
5469 i.suffix = LONG_MNEM_SUFFIX;
5470 }
5471 else
5472 {
5473 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5474 register_prefix, i.op[op].regs->reg_name,
5475 i.suffix);
5476 return 0;
5477 }
5478 }
5479 return 1;
5480 }
5481
5482 static int
5483 check_word_reg (void)
5484 {
5485 int op;
5486 for (op = i.operands; --op >= 0;)
5487 /* Reject eight bit registers, except where the template requires
5488 them. (eg. movzb) */
5489 if (i.types[op].bitfield.reg8
5490 && (i.tm.operand_types[op].bitfield.reg16
5491 || i.tm.operand_types[op].bitfield.reg32
5492 || i.tm.operand_types[op].bitfield.acc))
5493 {
5494 as_bad (_("`%s%s' not allowed with `%s%c'"),
5495 register_prefix,
5496 i.op[op].regs->reg_name,
5497 i.tm.name,
5498 i.suffix);
5499 return 0;
5500 }
5501 /* Warn if the e or r prefix on a general reg is present. */
5502 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5503 && (i.types[op].bitfield.reg32
5504 || i.types[op].bitfield.reg64)
5505 && (i.tm.operand_types[op].bitfield.reg16
5506 || i.tm.operand_types[op].bitfield.acc))
5507 {
5508 /* Prohibit these changes in the 64bit mode, since the
5509 lowering is more complicated. */
5510 if (flag_code == CODE_64BIT)
5511 {
5512 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5513 register_prefix, i.op[op].regs->reg_name,
5514 i.suffix);
5515 return 0;
5516 }
5517 #if REGISTER_WARNINGS
5518 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5519 register_prefix,
5520 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5521 register_prefix, i.op[op].regs->reg_name, i.suffix);
5522 #endif
5523 }
5524 return 1;
5525 }
5526
5527 static int
5528 update_imm (unsigned int j)
5529 {
5530 i386_operand_type overlap = i.types[j];
5531 if ((overlap.bitfield.imm8
5532 || overlap.bitfield.imm8s
5533 || overlap.bitfield.imm16
5534 || overlap.bitfield.imm32
5535 || overlap.bitfield.imm32s
5536 || overlap.bitfield.imm64)
5537 && !operand_type_equal (&overlap, &imm8)
5538 && !operand_type_equal (&overlap, &imm8s)
5539 && !operand_type_equal (&overlap, &imm16)
5540 && !operand_type_equal (&overlap, &imm32)
5541 && !operand_type_equal (&overlap, &imm32s)
5542 && !operand_type_equal (&overlap, &imm64))
5543 {
5544 if (i.suffix)
5545 {
5546 i386_operand_type temp;
5547
5548 operand_type_set (&temp, 0);
5549 if (i.suffix == BYTE_MNEM_SUFFIX)
5550 {
5551 temp.bitfield.imm8 = overlap.bitfield.imm8;
5552 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5553 }
5554 else if (i.suffix == WORD_MNEM_SUFFIX)
5555 temp.bitfield.imm16 = overlap.bitfield.imm16;
5556 else if (i.suffix == QWORD_MNEM_SUFFIX)
5557 {
5558 temp.bitfield.imm64 = overlap.bitfield.imm64;
5559 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5560 }
5561 else
5562 temp.bitfield.imm32 = overlap.bitfield.imm32;
5563 overlap = temp;
5564 }
5565 else if (operand_type_equal (&overlap, &imm16_32_32s)
5566 || operand_type_equal (&overlap, &imm16_32)
5567 || operand_type_equal (&overlap, &imm16_32s))
5568 {
5569 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5570 overlap = imm16;
5571 else
5572 overlap = imm32s;
5573 }
5574 if (!operand_type_equal (&overlap, &imm8)
5575 && !operand_type_equal (&overlap, &imm8s)
5576 && !operand_type_equal (&overlap, &imm16)
5577 && !operand_type_equal (&overlap, &imm32)
5578 && !operand_type_equal (&overlap, &imm32s)
5579 && !operand_type_equal (&overlap, &imm64))
5580 {
5581 as_bad (_("no instruction mnemonic suffix given; "
5582 "can't determine immediate size"));
5583 return 0;
5584 }
5585 }
5586 i.types[j] = overlap;
5587
5588 return 1;
5589 }
5590
5591 static int
5592 finalize_imm (void)
5593 {
5594 unsigned int j, n;
5595
5596 /* Update the first 2 immediate operands. */
5597 n = i.operands > 2 ? 2 : i.operands;
5598 if (n)
5599 {
5600 for (j = 0; j < n; j++)
5601 if (update_imm (j) == 0)
5602 return 0;
5603
5604 /* The 3rd operand can't be immediate operand. */
5605 gas_assert (operand_type_check (i.types[2], imm) == 0);
5606 }
5607
5608 return 1;
5609 }
5610
5611 static int
5612 bad_implicit_operand (int xmm)
5613 {
5614 const char *ireg = xmm ? "xmm0" : "ymm0";
5615
5616 if (intel_syntax)
5617 as_bad (_("the last operand of `%s' must be `%s%s'"),
5618 i.tm.name, register_prefix, ireg);
5619 else
5620 as_bad (_("the first operand of `%s' must be `%s%s'"),
5621 i.tm.name, register_prefix, ireg);
5622 return 0;
5623 }
5624
5625 static int
5626 process_operands (void)
5627 {
5628 /* Default segment register this instruction will use for memory
5629 accesses. 0 means unknown. This is only for optimizing out
5630 unnecessary segment overrides. */
5631 const seg_entry *default_seg = 0;
5632
5633 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
5634 {
5635 unsigned int dupl = i.operands;
5636 unsigned int dest = dupl - 1;
5637 unsigned int j;
5638
5639 /* The destination must be an xmm register. */
5640 gas_assert (i.reg_operands
5641 && MAX_OPERANDS > dupl
5642 && operand_type_equal (&i.types[dest], &regxmm));
5643
5644 if (i.tm.opcode_modifier.firstxmm0)
5645 {
5646 /* The first operand is implicit and must be xmm0. */
5647 gas_assert (operand_type_equal (&i.types[0], &regxmm));
5648 if (register_number (i.op[0].regs) != 0)
5649 return bad_implicit_operand (1);
5650
5651 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
5652 {
5653 /* Keep xmm0 for instructions with VEX prefix and 3
5654 sources. */
5655 goto duplicate;
5656 }
5657 else
5658 {
5659 /* We remove the first xmm0 and keep the number of
5660 operands unchanged, which in fact duplicates the
5661 destination. */
5662 for (j = 1; j < i.operands; j++)
5663 {
5664 i.op[j - 1] = i.op[j];
5665 i.types[j - 1] = i.types[j];
5666 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5667 }
5668 }
5669 }
5670 else if (i.tm.opcode_modifier.implicit1stxmm0)
5671 {
5672 gas_assert ((MAX_OPERANDS - 1) > dupl
5673 && (i.tm.opcode_modifier.vexsources
5674 == VEX3SOURCES));
5675
5676 /* Add the implicit xmm0 for instructions with VEX prefix
5677 and 3 sources. */
5678 for (j = i.operands; j > 0; j--)
5679 {
5680 i.op[j] = i.op[j - 1];
5681 i.types[j] = i.types[j - 1];
5682 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
5683 }
5684 i.op[0].regs
5685 = (const reg_entry *) hash_find (reg_hash, "xmm0");
5686 i.types[0] = regxmm;
5687 i.tm.operand_types[0] = regxmm;
5688
5689 i.operands += 2;
5690 i.reg_operands += 2;
5691 i.tm.operands += 2;
5692
5693 dupl++;
5694 dest++;
5695 i.op[dupl] = i.op[dest];
5696 i.types[dupl] = i.types[dest];
5697 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5698 }
5699 else
5700 {
5701 duplicate:
5702 i.operands++;
5703 i.reg_operands++;
5704 i.tm.operands++;
5705
5706 i.op[dupl] = i.op[dest];
5707 i.types[dupl] = i.types[dest];
5708 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5709 }
5710
5711 if (i.tm.opcode_modifier.immext)
5712 process_immext ();
5713 }
5714 else if (i.tm.opcode_modifier.firstxmm0)
5715 {
5716 unsigned int j;
5717
5718 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
5719 gas_assert (i.reg_operands
5720 && (operand_type_equal (&i.types[0], &regxmm)
5721 || operand_type_equal (&i.types[0], &regymm)
5722 || operand_type_equal (&i.types[0], &regzmm)));
5723 if (register_number (i.op[0].regs) != 0)
5724 return bad_implicit_operand (i.types[0].bitfield.regxmm);
5725
5726 for (j = 1; j < i.operands; j++)
5727 {
5728 i.op[j - 1] = i.op[j];
5729 i.types[j - 1] = i.types[j];
5730
5731 /* We need to adjust fields in i.tm since they are used by
5732 build_modrm_byte. */
5733 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5734 }
5735
5736 i.operands--;
5737 i.reg_operands--;
5738 i.tm.operands--;
5739 }
5740 else if (i.tm.opcode_modifier.regkludge)
5741 {
5742 /* The imul $imm, %reg instruction is converted into
5743 imul $imm, %reg, %reg, and the clr %reg instruction
5744 is converted into xor %reg, %reg. */
5745
5746 unsigned int first_reg_op;
5747
5748 if (operand_type_check (i.types[0], reg))
5749 first_reg_op = 0;
5750 else
5751 first_reg_op = 1;
5752 /* Pretend we saw the extra register operand. */
5753 gas_assert (i.reg_operands == 1
5754 && i.op[first_reg_op + 1].regs == 0);
5755 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
5756 i.types[first_reg_op + 1] = i.types[first_reg_op];
5757 i.operands++;
5758 i.reg_operands++;
5759 }
5760
5761 if (i.tm.opcode_modifier.shortform)
5762 {
5763 if (i.types[0].bitfield.sreg2
5764 || i.types[0].bitfield.sreg3)
5765 {
5766 if (i.tm.base_opcode == POP_SEG_SHORT
5767 && i.op[0].regs->reg_num == 1)
5768 {
5769 as_bad (_("you can't `pop %scs'"), register_prefix);
5770 return 0;
5771 }
5772 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
5773 if ((i.op[0].regs->reg_flags & RegRex) != 0)
5774 i.rex |= REX_B;
5775 }
5776 else
5777 {
5778 /* The register or float register operand is in operand
5779 0 or 1. */
5780 unsigned int op;
5781
5782 if (i.types[0].bitfield.floatreg
5783 || operand_type_check (i.types[0], reg))
5784 op = 0;
5785 else
5786 op = 1;
5787 /* Register goes in low 3 bits of opcode. */
5788 i.tm.base_opcode |= i.op[op].regs->reg_num;
5789 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5790 i.rex |= REX_B;
5791 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
5792 {
5793 /* Warn about some common errors, but press on regardless.
5794 The first case can be generated by gcc (<= 2.8.1). */
5795 if (i.operands == 2)
5796 {
5797 /* Reversed arguments on faddp, fsubp, etc. */
5798 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
5799 register_prefix, i.op[!intel_syntax].regs->reg_name,
5800 register_prefix, i.op[intel_syntax].regs->reg_name);
5801 }
5802 else
5803 {
5804 /* Extraneous `l' suffix on fp insn. */
5805 as_warn (_("translating to `%s %s%s'"), i.tm.name,
5806 register_prefix, i.op[0].regs->reg_name);
5807 }
5808 }
5809 }
5810 }
5811 else if (i.tm.opcode_modifier.modrm)
5812 {
5813 /* The opcode is completed (modulo i.tm.extension_opcode which
5814 must be put into the modrm byte). Now, we make the modrm and
5815 index base bytes based on all the info we've collected. */
5816
5817 default_seg = build_modrm_byte ();
5818 }
5819 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
5820 {
5821 default_seg = &ds;
5822 }
5823 else if (i.tm.opcode_modifier.isstring)
5824 {
5825 /* For the string instructions that allow a segment override
5826 on one of their operands, the default segment is ds. */
5827 default_seg = &ds;
5828 }
5829
5830 if (i.tm.base_opcode == 0x8d /* lea */
5831 && i.seg[0]
5832 && !quiet_warnings)
5833 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
5834
5835 /* If a segment was explicitly specified, and the specified segment
5836 is not the default, use an opcode prefix to select it. If we
5837 never figured out what the default segment is, then default_seg
5838 will be zero at this point, and the specified segment prefix will
5839 always be used. */
5840 if ((i.seg[0]) && (i.seg[0] != default_seg))
5841 {
5842 if (!add_prefix (i.seg[0]->seg_prefix))
5843 return 0;
5844 }
5845 return 1;
5846 }
5847
5848 static const seg_entry *
5849 build_modrm_byte (void)
5850 {
5851 const seg_entry *default_seg = 0;
5852 unsigned int source, dest;
5853 int vex_3_sources;
5854
5855 /* The first operand of instructions with VEX prefix and 3 sources
5856 must be VEX_Imm4. */
5857 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
5858 if (vex_3_sources)
5859 {
5860 unsigned int nds, reg_slot;
5861 expressionS *exp;
5862
5863 if (i.tm.opcode_modifier.veximmext
5864 && i.tm.opcode_modifier.immext)
5865 {
5866 dest = i.operands - 2;
5867 gas_assert (dest == 3);
5868 }
5869 else
5870 dest = i.operands - 1;
5871 nds = dest - 1;
5872
5873 /* There are 2 kinds of instructions:
5874 1. 5 operands: 4 register operands or 3 register operands
5875 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
5876 VexW0 or VexW1. The destination must be either XMM, YMM or
5877 ZMM register.
5878 2. 4 operands: 4 register operands or 3 register operands
5879 plus 1 memory operand, VexXDS, and VexImmExt */
5880 gas_assert ((i.reg_operands == 4
5881 || (i.reg_operands == 3 && i.mem_operands == 1))
5882 && i.tm.opcode_modifier.vexvvvv == VEXXDS
5883 && (i.tm.opcode_modifier.veximmext
5884 || (i.imm_operands == 1
5885 && i.types[0].bitfield.vec_imm4
5886 && (i.tm.opcode_modifier.vexw == VEXW0
5887 || i.tm.opcode_modifier.vexw == VEXW1)
5888 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
5889 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
5890 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
5891
5892 if (i.imm_operands == 0)
5893 {
5894 /* When there is no immediate operand, generate an 8bit
5895 immediate operand to encode the first operand. */
5896 exp = &im_expressions[i.imm_operands++];
5897 i.op[i.operands].imms = exp;
5898 i.types[i.operands] = imm8;
5899 i.operands++;
5900 /* If VexW1 is set, the first operand is the source and
5901 the second operand is encoded in the immediate operand. */
5902 if (i.tm.opcode_modifier.vexw == VEXW1)
5903 {
5904 source = 0;
5905 reg_slot = 1;
5906 }
5907 else
5908 {
5909 source = 1;
5910 reg_slot = 0;
5911 }
5912
5913 /* FMA swaps REG and NDS. */
5914 if (i.tm.cpu_flags.bitfield.cpufma)
5915 {
5916 unsigned int tmp;
5917 tmp = reg_slot;
5918 reg_slot = nds;
5919 nds = tmp;
5920 }
5921
5922 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
5923 &regxmm)
5924 || operand_type_equal (&i.tm.operand_types[reg_slot],
5925 &regymm)
5926 || operand_type_equal (&i.tm.operand_types[reg_slot],
5927 &regzmm));
5928 exp->X_op = O_constant;
5929 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
5930 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
5931 }
5932 else
5933 {
5934 unsigned int imm_slot;
5935
5936 if (i.tm.opcode_modifier.vexw == VEXW0)
5937 {
5938 /* If VexW0 is set, the third operand is the source and
5939 the second operand is encoded in the immediate
5940 operand. */
5941 source = 2;
5942 reg_slot = 1;
5943 }
5944 else
5945 {
5946 /* VexW1 is set, the second operand is the source and
5947 the third operand is encoded in the immediate
5948 operand. */
5949 source = 1;
5950 reg_slot = 2;
5951 }
5952
5953 if (i.tm.opcode_modifier.immext)
5954 {
5955 /* When ImmExt is set, the immdiate byte is the last
5956 operand. */
5957 imm_slot = i.operands - 1;
5958 source--;
5959 reg_slot--;
5960 }
5961 else
5962 {
5963 imm_slot = 0;
5964
5965 /* Turn on Imm8 so that output_imm will generate it. */
5966 i.types[imm_slot].bitfield.imm8 = 1;
5967 }
5968
5969 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
5970 &regxmm)
5971 || operand_type_equal (&i.tm.operand_types[reg_slot],
5972 &regymm)
5973 || operand_type_equal (&i.tm.operand_types[reg_slot],
5974 &regzmm));
5975 i.op[imm_slot].imms->X_add_number
5976 |= register_number (i.op[reg_slot].regs) << 4;
5977 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
5978 }
5979
5980 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
5981 || operand_type_equal (&i.tm.operand_types[nds],
5982 &regymm)
5983 || operand_type_equal (&i.tm.operand_types[nds],
5984 &regzmm));
5985 i.vex.register_specifier = i.op[nds].regs;
5986 }
5987 else
5988 source = dest = 0;
5989
5990 /* i.reg_operands MUST be the number of real register operands;
5991 implicit registers do not count. If there are 3 register
5992 operands, it must be a instruction with VexNDS. For a
5993 instruction with VexNDD, the destination register is encoded
5994 in VEX prefix. If there are 4 register operands, it must be
5995 a instruction with VEX prefix and 3 sources. */
5996 if (i.mem_operands == 0
5997 && ((i.reg_operands == 2
5998 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
5999 || (i.reg_operands == 3
6000 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6001 || (i.reg_operands == 4 && vex_3_sources)))
6002 {
6003 switch (i.operands)
6004 {
6005 case 2:
6006 source = 0;
6007 break;
6008 case 3:
6009 /* When there are 3 operands, one of them may be immediate,
6010 which may be the first or the last operand. Otherwise,
6011 the first operand must be shift count register (cl) or it
6012 is an instruction with VexNDS. */
6013 gas_assert (i.imm_operands == 1
6014 || (i.imm_operands == 0
6015 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6016 || i.types[0].bitfield.shiftcount)));
6017 if (operand_type_check (i.types[0], imm)
6018 || i.types[0].bitfield.shiftcount)
6019 source = 1;
6020 else
6021 source = 0;
6022 break;
6023 case 4:
6024 /* When there are 4 operands, the first two must be 8bit
6025 immediate operands. The source operand will be the 3rd
6026 one.
6027
6028 For instructions with VexNDS, if the first operand
6029 an imm8, the source operand is the 2nd one. If the last
6030 operand is imm8, the source operand is the first one. */
6031 gas_assert ((i.imm_operands == 2
6032 && i.types[0].bitfield.imm8
6033 && i.types[1].bitfield.imm8)
6034 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6035 && i.imm_operands == 1
6036 && (i.types[0].bitfield.imm8
6037 || i.types[i.operands - 1].bitfield.imm8
6038 || i.rounding)));
6039 if (i.imm_operands == 2)
6040 source = 2;
6041 else
6042 {
6043 if (i.types[0].bitfield.imm8)
6044 source = 1;
6045 else
6046 source = 0;
6047 }
6048 break;
6049 case 5:
6050 if (i.tm.opcode_modifier.evex)
6051 {
6052 /* For EVEX instructions, when there are 5 operands, the
6053 first one must be immediate operand. If the second one
6054 is immediate operand, the source operand is the 3th
6055 one. If the last one is immediate operand, the source
6056 operand is the 2nd one. */
6057 gas_assert (i.imm_operands == 2
6058 && i.tm.opcode_modifier.sae
6059 && operand_type_check (i.types[0], imm));
6060 if (operand_type_check (i.types[1], imm))
6061 source = 2;
6062 else if (operand_type_check (i.types[4], imm))
6063 source = 1;
6064 else
6065 abort ();
6066 }
6067 break;
6068 default:
6069 abort ();
6070 }
6071
6072 if (!vex_3_sources)
6073 {
6074 dest = source + 1;
6075
6076 /* RC/SAE operand could be between DEST and SRC. That happens
6077 when one operand is GPR and the other one is XMM/YMM/ZMM
6078 register. */
6079 if (i.rounding && i.rounding->operand == (int) dest)
6080 dest++;
6081
6082 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6083 {
6084 /* For instructions with VexNDS, the register-only source
6085 operand must be 32/64bit integer, XMM, YMM or ZMM
6086 register. It is encoded in VEX prefix. We need to
6087 clear RegMem bit before calling operand_type_equal. */
6088
6089 i386_operand_type op;
6090 unsigned int vvvv;
6091
6092 /* Check register-only source operand when two source
6093 operands are swapped. */
6094 if (!i.tm.operand_types[source].bitfield.baseindex
6095 && i.tm.operand_types[dest].bitfield.baseindex)
6096 {
6097 vvvv = source;
6098 source = dest;
6099 }
6100 else
6101 vvvv = dest;
6102
6103 op = i.tm.operand_types[vvvv];
6104 op.bitfield.regmem = 0;
6105 if ((dest + 1) >= i.operands
6106 || (!op.bitfield.reg32
6107 && op.bitfield.reg64
6108 && !operand_type_equal (&op, &regxmm)
6109 && !operand_type_equal (&op, &regymm)
6110 && !operand_type_equal (&op, &regzmm)
6111 && !operand_type_equal (&op, &regmask)))
6112 abort ();
6113 i.vex.register_specifier = i.op[vvvv].regs;
6114 dest++;
6115 }
6116 }
6117
6118 i.rm.mode = 3;
6119 /* One of the register operands will be encoded in the i.tm.reg
6120 field, the other in the combined i.tm.mode and i.tm.regmem
6121 fields. If no form of this instruction supports a memory
6122 destination operand, then we assume the source operand may
6123 sometimes be a memory operand and so we need to store the
6124 destination in the i.rm.reg field. */
6125 if (!i.tm.operand_types[dest].bitfield.regmem
6126 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6127 {
6128 i.rm.reg = i.op[dest].regs->reg_num;
6129 i.rm.regmem = i.op[source].regs->reg_num;
6130 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6131 i.rex |= REX_R;
6132 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6133 i.vrex |= REX_R;
6134 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6135 i.rex |= REX_B;
6136 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6137 i.vrex |= REX_B;
6138 }
6139 else
6140 {
6141 i.rm.reg = i.op[source].regs->reg_num;
6142 i.rm.regmem = i.op[dest].regs->reg_num;
6143 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6144 i.rex |= REX_B;
6145 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6146 i.vrex |= REX_B;
6147 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6148 i.rex |= REX_R;
6149 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6150 i.vrex |= REX_R;
6151 }
6152 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6153 {
6154 if (!i.types[0].bitfield.control
6155 && !i.types[1].bitfield.control)
6156 abort ();
6157 i.rex &= ~(REX_R | REX_B);
6158 add_prefix (LOCK_PREFIX_OPCODE);
6159 }
6160 }
6161 else
6162 { /* If it's not 2 reg operands... */
6163 unsigned int mem;
6164
6165 if (i.mem_operands)
6166 {
6167 unsigned int fake_zero_displacement = 0;
6168 unsigned int op;
6169
6170 for (op = 0; op < i.operands; op++)
6171 if (operand_type_check (i.types[op], anymem))
6172 break;
6173 gas_assert (op < i.operands);
6174
6175 if (i.tm.opcode_modifier.vecsib)
6176 {
6177 if (i.index_reg->reg_num == RegEiz
6178 || i.index_reg->reg_num == RegRiz)
6179 abort ();
6180
6181 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6182 if (!i.base_reg)
6183 {
6184 i.sib.base = NO_BASE_REGISTER;
6185 i.sib.scale = i.log2_scale_factor;
6186 /* No Vec_Disp8 if there is no base. */
6187 i.types[op].bitfield.vec_disp8 = 0;
6188 i.types[op].bitfield.disp8 = 0;
6189 i.types[op].bitfield.disp16 = 0;
6190 i.types[op].bitfield.disp64 = 0;
6191 if (flag_code != CODE_64BIT)
6192 {
6193 /* Must be 32 bit */
6194 i.types[op].bitfield.disp32 = 1;
6195 i.types[op].bitfield.disp32s = 0;
6196 }
6197 else
6198 {
6199 i.types[op].bitfield.disp32 = 0;
6200 i.types[op].bitfield.disp32s = 1;
6201 }
6202 }
6203 i.sib.index = i.index_reg->reg_num;
6204 if ((i.index_reg->reg_flags & RegRex) != 0)
6205 i.rex |= REX_X;
6206 if ((i.index_reg->reg_flags & RegVRex) != 0)
6207 i.vrex |= REX_X;
6208 }
6209
6210 default_seg = &ds;
6211
6212 if (i.base_reg == 0)
6213 {
6214 i.rm.mode = 0;
6215 if (!i.disp_operands)
6216 {
6217 fake_zero_displacement = 1;
6218 /* Instructions with VSIB byte need 32bit displacement
6219 if there is no base register. */
6220 if (i.tm.opcode_modifier.vecsib)
6221 i.types[op].bitfield.disp32 = 1;
6222 }
6223 if (i.index_reg == 0)
6224 {
6225 gas_assert (!i.tm.opcode_modifier.vecsib);
6226 /* Operand is just <disp> */
6227 if (flag_code == CODE_64BIT)
6228 {
6229 /* 64bit mode overwrites the 32bit absolute
6230 addressing by RIP relative addressing and
6231 absolute addressing is encoded by one of the
6232 redundant SIB forms. */
6233 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6234 i.sib.base = NO_BASE_REGISTER;
6235 i.sib.index = NO_INDEX_REGISTER;
6236 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6237 ? disp32s : disp32);
6238 }
6239 else if ((flag_code == CODE_16BIT)
6240 ^ (i.prefix[ADDR_PREFIX] != 0))
6241 {
6242 i.rm.regmem = NO_BASE_REGISTER_16;
6243 i.types[op] = disp16;
6244 }
6245 else
6246 {
6247 i.rm.regmem = NO_BASE_REGISTER;
6248 i.types[op] = disp32;
6249 }
6250 }
6251 else if (!i.tm.opcode_modifier.vecsib)
6252 {
6253 /* !i.base_reg && i.index_reg */
6254 if (i.index_reg->reg_num == RegEiz
6255 || i.index_reg->reg_num == RegRiz)
6256 i.sib.index = NO_INDEX_REGISTER;
6257 else
6258 i.sib.index = i.index_reg->reg_num;
6259 i.sib.base = NO_BASE_REGISTER;
6260 i.sib.scale = i.log2_scale_factor;
6261 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6262 /* No Vec_Disp8 if there is no base. */
6263 i.types[op].bitfield.vec_disp8 = 0;
6264 i.types[op].bitfield.disp8 = 0;
6265 i.types[op].bitfield.disp16 = 0;
6266 i.types[op].bitfield.disp64 = 0;
6267 if (flag_code != CODE_64BIT)
6268 {
6269 /* Must be 32 bit */
6270 i.types[op].bitfield.disp32 = 1;
6271 i.types[op].bitfield.disp32s = 0;
6272 }
6273 else
6274 {
6275 i.types[op].bitfield.disp32 = 0;
6276 i.types[op].bitfield.disp32s = 1;
6277 }
6278 if ((i.index_reg->reg_flags & RegRex) != 0)
6279 i.rex |= REX_X;
6280 }
6281 }
6282 /* RIP addressing for 64bit mode. */
6283 else if (i.base_reg->reg_num == RegRip ||
6284 i.base_reg->reg_num == RegEip)
6285 {
6286 gas_assert (!i.tm.opcode_modifier.vecsib);
6287 i.rm.regmem = NO_BASE_REGISTER;
6288 i.types[op].bitfield.disp8 = 0;
6289 i.types[op].bitfield.disp16 = 0;
6290 i.types[op].bitfield.disp32 = 0;
6291 i.types[op].bitfield.disp32s = 1;
6292 i.types[op].bitfield.disp64 = 0;
6293 i.types[op].bitfield.vec_disp8 = 0;
6294 i.flags[op] |= Operand_PCrel;
6295 if (! i.disp_operands)
6296 fake_zero_displacement = 1;
6297 }
6298 else if (i.base_reg->reg_type.bitfield.reg16)
6299 {
6300 gas_assert (!i.tm.opcode_modifier.vecsib);
6301 switch (i.base_reg->reg_num)
6302 {
6303 case 3: /* (%bx) */
6304 if (i.index_reg == 0)
6305 i.rm.regmem = 7;
6306 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6307 i.rm.regmem = i.index_reg->reg_num - 6;
6308 break;
6309 case 5: /* (%bp) */
6310 default_seg = &ss;
6311 if (i.index_reg == 0)
6312 {
6313 i.rm.regmem = 6;
6314 if (operand_type_check (i.types[op], disp) == 0)
6315 {
6316 /* fake (%bp) into 0(%bp) */
6317 if (i.tm.operand_types[op].bitfield.vec_disp8)
6318 i.types[op].bitfield.vec_disp8 = 1;
6319 else
6320 i.types[op].bitfield.disp8 = 1;
6321 fake_zero_displacement = 1;
6322 }
6323 }
6324 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6325 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6326 break;
6327 default: /* (%si) -> 4 or (%di) -> 5 */
6328 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6329 }
6330 i.rm.mode = mode_from_disp_size (i.types[op]);
6331 }
6332 else /* i.base_reg and 32/64 bit mode */
6333 {
6334 if (flag_code == CODE_64BIT
6335 && operand_type_check (i.types[op], disp))
6336 {
6337 i386_operand_type temp;
6338 operand_type_set (&temp, 0);
6339 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6340 temp.bitfield.vec_disp8
6341 = i.types[op].bitfield.vec_disp8;
6342 i.types[op] = temp;
6343 if (i.prefix[ADDR_PREFIX] == 0)
6344 i.types[op].bitfield.disp32s = 1;
6345 else
6346 i.types[op].bitfield.disp32 = 1;
6347 }
6348
6349 if (!i.tm.opcode_modifier.vecsib)
6350 i.rm.regmem = i.base_reg->reg_num;
6351 if ((i.base_reg->reg_flags & RegRex) != 0)
6352 i.rex |= REX_B;
6353 i.sib.base = i.base_reg->reg_num;
6354 /* x86-64 ignores REX prefix bit here to avoid decoder
6355 complications. */
6356 if (!(i.base_reg->reg_flags & RegRex)
6357 && (i.base_reg->reg_num == EBP_REG_NUM
6358 || i.base_reg->reg_num == ESP_REG_NUM))
6359 default_seg = &ss;
6360 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6361 {
6362 fake_zero_displacement = 1;
6363 if (i.tm.operand_types [op].bitfield.vec_disp8)
6364 i.types[op].bitfield.vec_disp8 = 1;
6365 else
6366 i.types[op].bitfield.disp8 = 1;
6367 }
6368 i.sib.scale = i.log2_scale_factor;
6369 if (i.index_reg == 0)
6370 {
6371 gas_assert (!i.tm.opcode_modifier.vecsib);
6372 /* <disp>(%esp) becomes two byte modrm with no index
6373 register. We've already stored the code for esp
6374 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6375 Any base register besides %esp will not use the
6376 extra modrm byte. */
6377 i.sib.index = NO_INDEX_REGISTER;
6378 }
6379 else if (!i.tm.opcode_modifier.vecsib)
6380 {
6381 if (i.index_reg->reg_num == RegEiz
6382 || i.index_reg->reg_num == RegRiz)
6383 i.sib.index = NO_INDEX_REGISTER;
6384 else
6385 i.sib.index = i.index_reg->reg_num;
6386 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6387 if ((i.index_reg->reg_flags & RegRex) != 0)
6388 i.rex |= REX_X;
6389 }
6390
6391 if (i.disp_operands
6392 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6393 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6394 i.rm.mode = 0;
6395 else
6396 {
6397 if (!fake_zero_displacement
6398 && !i.disp_operands
6399 && i.disp_encoding)
6400 {
6401 fake_zero_displacement = 1;
6402 if (i.disp_encoding == disp_encoding_8bit)
6403 i.types[op].bitfield.disp8 = 1;
6404 else
6405 i.types[op].bitfield.disp32 = 1;
6406 }
6407 i.rm.mode = mode_from_disp_size (i.types[op]);
6408 }
6409 }
6410
6411 if (fake_zero_displacement)
6412 {
6413 /* Fakes a zero displacement assuming that i.types[op]
6414 holds the correct displacement size. */
6415 expressionS *exp;
6416
6417 gas_assert (i.op[op].disps == 0);
6418 exp = &disp_expressions[i.disp_operands++];
6419 i.op[op].disps = exp;
6420 exp->X_op = O_constant;
6421 exp->X_add_number = 0;
6422 exp->X_add_symbol = (symbolS *) 0;
6423 exp->X_op_symbol = (symbolS *) 0;
6424 }
6425
6426 mem = op;
6427 }
6428 else
6429 mem = ~0;
6430
6431 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6432 {
6433 if (operand_type_check (i.types[0], imm))
6434 i.vex.register_specifier = NULL;
6435 else
6436 {
6437 /* VEX.vvvv encodes one of the sources when the first
6438 operand is not an immediate. */
6439 if (i.tm.opcode_modifier.vexw == VEXW0)
6440 i.vex.register_specifier = i.op[0].regs;
6441 else
6442 i.vex.register_specifier = i.op[1].regs;
6443 }
6444
6445 /* Destination is a XMM register encoded in the ModRM.reg
6446 and VEX.R bit. */
6447 i.rm.reg = i.op[2].regs->reg_num;
6448 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6449 i.rex |= REX_R;
6450
6451 /* ModRM.rm and VEX.B encodes the other source. */
6452 if (!i.mem_operands)
6453 {
6454 i.rm.mode = 3;
6455
6456 if (i.tm.opcode_modifier.vexw == VEXW0)
6457 i.rm.regmem = i.op[1].regs->reg_num;
6458 else
6459 i.rm.regmem = i.op[0].regs->reg_num;
6460
6461 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6462 i.rex |= REX_B;
6463 }
6464 }
6465 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6466 {
6467 i.vex.register_specifier = i.op[2].regs;
6468 if (!i.mem_operands)
6469 {
6470 i.rm.mode = 3;
6471 i.rm.regmem = i.op[1].regs->reg_num;
6472 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6473 i.rex |= REX_B;
6474 }
6475 }
6476 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6477 (if any) based on i.tm.extension_opcode. Again, we must be
6478 careful to make sure that segment/control/debug/test/MMX
6479 registers are coded into the i.rm.reg field. */
6480 else if (i.reg_operands)
6481 {
6482 unsigned int op;
6483 unsigned int vex_reg = ~0;
6484
6485 for (op = 0; op < i.operands; op++)
6486 if (i.types[op].bitfield.reg8
6487 || i.types[op].bitfield.reg16
6488 || i.types[op].bitfield.reg32
6489 || i.types[op].bitfield.reg64
6490 || i.types[op].bitfield.regmmx
6491 || i.types[op].bitfield.regxmm
6492 || i.types[op].bitfield.regymm
6493 || i.types[op].bitfield.regbnd
6494 || i.types[op].bitfield.regzmm
6495 || i.types[op].bitfield.regmask
6496 || i.types[op].bitfield.sreg2
6497 || i.types[op].bitfield.sreg3
6498 || i.types[op].bitfield.control
6499 || i.types[op].bitfield.debug
6500 || i.types[op].bitfield.test)
6501 break;
6502
6503 if (vex_3_sources)
6504 op = dest;
6505 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6506 {
6507 /* For instructions with VexNDS, the register-only
6508 source operand is encoded in VEX prefix. */
6509 gas_assert (mem != (unsigned int) ~0);
6510
6511 if (op > mem)
6512 {
6513 vex_reg = op++;
6514 gas_assert (op < i.operands);
6515 }
6516 else
6517 {
6518 /* Check register-only source operand when two source
6519 operands are swapped. */
6520 if (!i.tm.operand_types[op].bitfield.baseindex
6521 && i.tm.operand_types[op + 1].bitfield.baseindex)
6522 {
6523 vex_reg = op;
6524 op += 2;
6525 gas_assert (mem == (vex_reg + 1)
6526 && op < i.operands);
6527 }
6528 else
6529 {
6530 vex_reg = op + 1;
6531 gas_assert (vex_reg < i.operands);
6532 }
6533 }
6534 }
6535 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6536 {
6537 /* For instructions with VexNDD, the register destination
6538 is encoded in VEX prefix. */
6539 if (i.mem_operands == 0)
6540 {
6541 /* There is no memory operand. */
6542 gas_assert ((op + 2) == i.operands);
6543 vex_reg = op + 1;
6544 }
6545 else
6546 {
6547 /* There are only 2 operands. */
6548 gas_assert (op < 2 && i.operands == 2);
6549 vex_reg = 1;
6550 }
6551 }
6552 else
6553 gas_assert (op < i.operands);
6554
6555 if (vex_reg != (unsigned int) ~0)
6556 {
6557 i386_operand_type *type = &i.tm.operand_types[vex_reg];
6558
6559 if (type->bitfield.reg32 != 1
6560 && type->bitfield.reg64 != 1
6561 && !operand_type_equal (type, &regxmm)
6562 && !operand_type_equal (type, &regymm)
6563 && !operand_type_equal (type, &regzmm)
6564 && !operand_type_equal (type, &regmask))
6565 abort ();
6566
6567 i.vex.register_specifier = i.op[vex_reg].regs;
6568 }
6569
6570 /* Don't set OP operand twice. */
6571 if (vex_reg != op)
6572 {
6573 /* If there is an extension opcode to put here, the
6574 register number must be put into the regmem field. */
6575 if (i.tm.extension_opcode != None)
6576 {
6577 i.rm.regmem = i.op[op].regs->reg_num;
6578 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6579 i.rex |= REX_B;
6580 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6581 i.vrex |= REX_B;
6582 }
6583 else
6584 {
6585 i.rm.reg = i.op[op].regs->reg_num;
6586 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6587 i.rex |= REX_R;
6588 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6589 i.vrex |= REX_R;
6590 }
6591 }
6592
6593 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6594 must set it to 3 to indicate this is a register operand
6595 in the regmem field. */
6596 if (!i.mem_operands)
6597 i.rm.mode = 3;
6598 }
6599
6600 /* Fill in i.rm.reg field with extension opcode (if any). */
6601 if (i.tm.extension_opcode != None)
6602 i.rm.reg = i.tm.extension_opcode;
6603 }
6604 return default_seg;
6605 }
6606
6607 static void
6608 output_branch (void)
6609 {
6610 char *p;
6611 int size;
6612 int code16;
6613 int prefix;
6614 relax_substateT subtype;
6615 symbolS *sym;
6616 offsetT off;
6617
6618 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6619 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6620
6621 prefix = 0;
6622 if (i.prefix[DATA_PREFIX] != 0)
6623 {
6624 prefix = 1;
6625 i.prefixes -= 1;
6626 code16 ^= CODE16;
6627 }
6628 /* Pentium4 branch hints. */
6629 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6630 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6631 {
6632 prefix++;
6633 i.prefixes--;
6634 }
6635 if (i.prefix[REX_PREFIX] != 0)
6636 {
6637 prefix++;
6638 i.prefixes--;
6639 }
6640
6641 /* BND prefixed jump. */
6642 if (i.prefix[BND_PREFIX] != 0)
6643 {
6644 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6645 i.prefixes -= 1;
6646 }
6647
6648 if (i.prefixes != 0 && !intel_syntax)
6649 as_warn (_("skipping prefixes on this instruction"));
6650
6651 /* It's always a symbol; End frag & setup for relax.
6652 Make sure there is enough room in this frag for the largest
6653 instruction we may generate in md_convert_frag. This is 2
6654 bytes for the opcode and room for the prefix and largest
6655 displacement. */
6656 frag_grow (prefix + 2 + 4);
6657 /* Prefix and 1 opcode byte go in fr_fix. */
6658 p = frag_more (prefix + 1);
6659 if (i.prefix[DATA_PREFIX] != 0)
6660 *p++ = DATA_PREFIX_OPCODE;
6661 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6662 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6663 *p++ = i.prefix[SEG_PREFIX];
6664 if (i.prefix[REX_PREFIX] != 0)
6665 *p++ = i.prefix[REX_PREFIX];
6666 *p = i.tm.base_opcode;
6667
6668 if ((unsigned char) *p == JUMP_PC_RELATIVE)
6669 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
6670 else if (cpu_arch_flags.bitfield.cpui386)
6671 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
6672 else
6673 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
6674 subtype |= code16;
6675
6676 sym = i.op[0].disps->X_add_symbol;
6677 off = i.op[0].disps->X_add_number;
6678
6679 if (i.op[0].disps->X_op != O_constant
6680 && i.op[0].disps->X_op != O_symbol)
6681 {
6682 /* Handle complex expressions. */
6683 sym = make_expr_symbol (i.op[0].disps);
6684 off = 0;
6685 }
6686
6687 /* 1 possible extra opcode + 4 byte displacement go in var part.
6688 Pass reloc in fr_var. */
6689 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
6690 }
6691
6692 static void
6693 output_jump (void)
6694 {
6695 char *p;
6696 int size;
6697 fixS *fixP;
6698
6699 if (i.tm.opcode_modifier.jumpbyte)
6700 {
6701 /* This is a loop or jecxz type instruction. */
6702 size = 1;
6703 if (i.prefix[ADDR_PREFIX] != 0)
6704 {
6705 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
6706 i.prefixes -= 1;
6707 }
6708 /* Pentium4 branch hints. */
6709 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6710 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6711 {
6712 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
6713 i.prefixes--;
6714 }
6715 }
6716 else
6717 {
6718 int code16;
6719
6720 code16 = 0;
6721 if (flag_code == CODE_16BIT)
6722 code16 = CODE16;
6723
6724 if (i.prefix[DATA_PREFIX] != 0)
6725 {
6726 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
6727 i.prefixes -= 1;
6728 code16 ^= CODE16;
6729 }
6730
6731 size = 4;
6732 if (code16)
6733 size = 2;
6734 }
6735
6736 if (i.prefix[REX_PREFIX] != 0)
6737 {
6738 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
6739 i.prefixes -= 1;
6740 }
6741
6742 /* BND prefixed jump. */
6743 if (i.prefix[BND_PREFIX] != 0)
6744 {
6745 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6746 i.prefixes -= 1;
6747 }
6748
6749 if (i.prefixes != 0 && !intel_syntax)
6750 as_warn (_("skipping prefixes on this instruction"));
6751
6752 p = frag_more (i.tm.opcode_length + size);
6753 switch (i.tm.opcode_length)
6754 {
6755 case 2:
6756 *p++ = i.tm.base_opcode >> 8;
6757 case 1:
6758 *p++ = i.tm.base_opcode;
6759 break;
6760 default:
6761 abort ();
6762 }
6763
6764 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6765 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
6766
6767 /* All jumps handled here are signed, but don't use a signed limit
6768 check for 32 and 16 bit jumps as we want to allow wrap around at
6769 4G and 64k respectively. */
6770 if (size == 1)
6771 fixP->fx_signed = 1;
6772 }
6773
6774 static void
6775 output_interseg_jump (void)
6776 {
6777 char *p;
6778 int size;
6779 int prefix;
6780 int code16;
6781
6782 code16 = 0;
6783 if (flag_code == CODE_16BIT)
6784 code16 = CODE16;
6785
6786 prefix = 0;
6787 if (i.prefix[DATA_PREFIX] != 0)
6788 {
6789 prefix = 1;
6790 i.prefixes -= 1;
6791 code16 ^= CODE16;
6792 }
6793 if (i.prefix[REX_PREFIX] != 0)
6794 {
6795 prefix++;
6796 i.prefixes -= 1;
6797 }
6798
6799 size = 4;
6800 if (code16)
6801 size = 2;
6802
6803 if (i.prefixes != 0 && !intel_syntax)
6804 as_warn (_("skipping prefixes on this instruction"));
6805
6806 /* 1 opcode; 2 segment; offset */
6807 p = frag_more (prefix + 1 + 2 + size);
6808
6809 if (i.prefix[DATA_PREFIX] != 0)
6810 *p++ = DATA_PREFIX_OPCODE;
6811
6812 if (i.prefix[REX_PREFIX] != 0)
6813 *p++ = i.prefix[REX_PREFIX];
6814
6815 *p++ = i.tm.base_opcode;
6816 if (i.op[1].imms->X_op == O_constant)
6817 {
6818 offsetT n = i.op[1].imms->X_add_number;
6819
6820 if (size == 2
6821 && !fits_in_unsigned_word (n)
6822 && !fits_in_signed_word (n))
6823 {
6824 as_bad (_("16-bit jump out of range"));
6825 return;
6826 }
6827 md_number_to_chars (p, n, size);
6828 }
6829 else
6830 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6831 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
6832 if (i.op[0].imms->X_op != O_constant)
6833 as_bad (_("can't handle non absolute segment in `%s'"),
6834 i.tm.name);
6835 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
6836 }
6837
6838 static void
6839 output_insn (void)
6840 {
6841 fragS *insn_start_frag;
6842 offsetT insn_start_off;
6843
6844 /* Tie dwarf2 debug info to the address at the start of the insn.
6845 We can't do this after the insn has been output as the current
6846 frag may have been closed off. eg. by frag_var. */
6847 dwarf2_emit_insn (0);
6848
6849 insn_start_frag = frag_now;
6850 insn_start_off = frag_now_fix ();
6851
6852 /* Output jumps. */
6853 if (i.tm.opcode_modifier.jump)
6854 output_branch ();
6855 else if (i.tm.opcode_modifier.jumpbyte
6856 || i.tm.opcode_modifier.jumpdword)
6857 output_jump ();
6858 else if (i.tm.opcode_modifier.jumpintersegment)
6859 output_interseg_jump ();
6860 else
6861 {
6862 /* Output normal instructions here. */
6863 char *p;
6864 unsigned char *q;
6865 unsigned int j;
6866 unsigned int prefix;
6867
6868 /* Some processors fail on LOCK prefix. This options makes
6869 assembler ignore LOCK prefix and serves as a workaround. */
6870 if (omit_lock_prefix)
6871 {
6872 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
6873 return;
6874 i.prefix[LOCK_PREFIX] = 0;
6875 }
6876
6877 /* Since the VEX/EVEX prefix contains the implicit prefix, we
6878 don't need the explicit prefix. */
6879 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
6880 {
6881 switch (i.tm.opcode_length)
6882 {
6883 case 3:
6884 if (i.tm.base_opcode & 0xff000000)
6885 {
6886 prefix = (i.tm.base_opcode >> 24) & 0xff;
6887 goto check_prefix;
6888 }
6889 break;
6890 case 2:
6891 if ((i.tm.base_opcode & 0xff0000) != 0)
6892 {
6893 prefix = (i.tm.base_opcode >> 16) & 0xff;
6894 if (i.tm.cpu_flags.bitfield.cpupadlock)
6895 {
6896 check_prefix:
6897 if (prefix != REPE_PREFIX_OPCODE
6898 || (i.prefix[REP_PREFIX]
6899 != REPE_PREFIX_OPCODE))
6900 add_prefix (prefix);
6901 }
6902 else
6903 add_prefix (prefix);
6904 }
6905 break;
6906 case 1:
6907 break;
6908 default:
6909 abort ();
6910 }
6911
6912 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
6913 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
6914 R_X86_64_GOTTPOFF relocation so that linker can safely
6915 perform IE->LE optimization. */
6916 if (x86_elf_abi == X86_64_X32_ABI
6917 && i.operands == 2
6918 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
6919 && i.prefix[REX_PREFIX] == 0)
6920 add_prefix (REX_OPCODE);
6921 #endif
6922
6923 /* The prefix bytes. */
6924 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
6925 if (*q)
6926 FRAG_APPEND_1_CHAR (*q);
6927 }
6928 else
6929 {
6930 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
6931 if (*q)
6932 switch (j)
6933 {
6934 case REX_PREFIX:
6935 /* REX byte is encoded in VEX prefix. */
6936 break;
6937 case SEG_PREFIX:
6938 case ADDR_PREFIX:
6939 FRAG_APPEND_1_CHAR (*q);
6940 break;
6941 default:
6942 /* There should be no other prefixes for instructions
6943 with VEX prefix. */
6944 abort ();
6945 }
6946
6947 /* For EVEX instructions i.vrex should become 0 after
6948 build_evex_prefix. For VEX instructions upper 16 registers
6949 aren't available, so VREX should be 0. */
6950 if (i.vrex)
6951 abort ();
6952 /* Now the VEX prefix. */
6953 p = frag_more (i.vex.length);
6954 for (j = 0; j < i.vex.length; j++)
6955 p[j] = i.vex.bytes[j];
6956 }
6957
6958 /* Now the opcode; be careful about word order here! */
6959 if (i.tm.opcode_length == 1)
6960 {
6961 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
6962 }
6963 else
6964 {
6965 switch (i.tm.opcode_length)
6966 {
6967 case 4:
6968 p = frag_more (4);
6969 *p++ = (i.tm.base_opcode >> 24) & 0xff;
6970 *p++ = (i.tm.base_opcode >> 16) & 0xff;
6971 break;
6972 case 3:
6973 p = frag_more (3);
6974 *p++ = (i.tm.base_opcode >> 16) & 0xff;
6975 break;
6976 case 2:
6977 p = frag_more (2);
6978 break;
6979 default:
6980 abort ();
6981 break;
6982 }
6983
6984 /* Put out high byte first: can't use md_number_to_chars! */
6985 *p++ = (i.tm.base_opcode >> 8) & 0xff;
6986 *p = i.tm.base_opcode & 0xff;
6987 }
6988
6989 /* Now the modrm byte and sib byte (if present). */
6990 if (i.tm.opcode_modifier.modrm)
6991 {
6992 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
6993 | i.rm.reg << 3
6994 | i.rm.mode << 6));
6995 /* If i.rm.regmem == ESP (4)
6996 && i.rm.mode != (Register mode)
6997 && not 16 bit
6998 ==> need second modrm byte. */
6999 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7000 && i.rm.mode != 3
7001 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
7002 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7003 | i.sib.index << 3
7004 | i.sib.scale << 6));
7005 }
7006
7007 if (i.disp_operands)
7008 output_disp (insn_start_frag, insn_start_off);
7009
7010 if (i.imm_operands)
7011 output_imm (insn_start_frag, insn_start_off);
7012 }
7013
7014 #ifdef DEBUG386
7015 if (flag_debug)
7016 {
7017 pi ("" /*line*/, &i);
7018 }
7019 #endif /* DEBUG386 */
7020 }
7021
7022 /* Return the size of the displacement operand N. */
7023
7024 static int
7025 disp_size (unsigned int n)
7026 {
7027 int size = 4;
7028
7029 /* Vec_Disp8 has to be 8bit. */
7030 if (i.types[n].bitfield.vec_disp8)
7031 size = 1;
7032 else if (i.types[n].bitfield.disp64)
7033 size = 8;
7034 else if (i.types[n].bitfield.disp8)
7035 size = 1;
7036 else if (i.types[n].bitfield.disp16)
7037 size = 2;
7038 return size;
7039 }
7040
7041 /* Return the size of the immediate operand N. */
7042
7043 static int
7044 imm_size (unsigned int n)
7045 {
7046 int size = 4;
7047 if (i.types[n].bitfield.imm64)
7048 size = 8;
7049 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7050 size = 1;
7051 else if (i.types[n].bitfield.imm16)
7052 size = 2;
7053 return size;
7054 }
7055
7056 static void
7057 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7058 {
7059 char *p;
7060 unsigned int n;
7061
7062 for (n = 0; n < i.operands; n++)
7063 {
7064 if (i.types[n].bitfield.vec_disp8
7065 || operand_type_check (i.types[n], disp))
7066 {
7067 if (i.op[n].disps->X_op == O_constant)
7068 {
7069 int size = disp_size (n);
7070 offsetT val = i.op[n].disps->X_add_number;
7071
7072 if (i.types[n].bitfield.vec_disp8)
7073 val >>= i.memshift;
7074 val = offset_in_range (val, size);
7075 p = frag_more (size);
7076 md_number_to_chars (p, val, size);
7077 }
7078 else
7079 {
7080 enum bfd_reloc_code_real reloc_type;
7081 int size = disp_size (n);
7082 int sign = i.types[n].bitfield.disp32s;
7083 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7084
7085 /* We can't have 8 bit displacement here. */
7086 gas_assert (!i.types[n].bitfield.disp8);
7087
7088 /* The PC relative address is computed relative
7089 to the instruction boundary, so in case immediate
7090 fields follows, we need to adjust the value. */
7091 if (pcrel && i.imm_operands)
7092 {
7093 unsigned int n1;
7094 int sz = 0;
7095
7096 for (n1 = 0; n1 < i.operands; n1++)
7097 if (operand_type_check (i.types[n1], imm))
7098 {
7099 /* Only one immediate is allowed for PC
7100 relative address. */
7101 gas_assert (sz == 0);
7102 sz = imm_size (n1);
7103 i.op[n].disps->X_add_number -= sz;
7104 }
7105 /* We should find the immediate. */
7106 gas_assert (sz != 0);
7107 }
7108
7109 p = frag_more (size);
7110 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7111 if (GOT_symbol
7112 && GOT_symbol == i.op[n].disps->X_add_symbol
7113 && (((reloc_type == BFD_RELOC_32
7114 || reloc_type == BFD_RELOC_X86_64_32S
7115 || (reloc_type == BFD_RELOC_64
7116 && object_64bit))
7117 && (i.op[n].disps->X_op == O_symbol
7118 || (i.op[n].disps->X_op == O_add
7119 && ((symbol_get_value_expression
7120 (i.op[n].disps->X_op_symbol)->X_op)
7121 == O_subtract))))
7122 || reloc_type == BFD_RELOC_32_PCREL))
7123 {
7124 offsetT add;
7125
7126 if (insn_start_frag == frag_now)
7127 add = (p - frag_now->fr_literal) - insn_start_off;
7128 else
7129 {
7130 fragS *fr;
7131
7132 add = insn_start_frag->fr_fix - insn_start_off;
7133 for (fr = insn_start_frag->fr_next;
7134 fr && fr != frag_now; fr = fr->fr_next)
7135 add += fr->fr_fix;
7136 add += p - frag_now->fr_literal;
7137 }
7138
7139 if (!object_64bit)
7140 {
7141 reloc_type = BFD_RELOC_386_GOTPC;
7142 i.op[n].imms->X_add_number += add;
7143 }
7144 else if (reloc_type == BFD_RELOC_64)
7145 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7146 else
7147 /* Don't do the adjustment for x86-64, as there
7148 the pcrel addressing is relative to the _next_
7149 insn, and that is taken care of in other code. */
7150 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7151 }
7152 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7153 i.op[n].disps, pcrel, reloc_type);
7154 }
7155 }
7156 }
7157 }
7158
7159 static void
7160 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7161 {
7162 char *p;
7163 unsigned int n;
7164
7165 for (n = 0; n < i.operands; n++)
7166 {
7167 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7168 if (i.rounding && (int) n == i.rounding->operand)
7169 continue;
7170
7171 if (operand_type_check (i.types[n], imm))
7172 {
7173 if (i.op[n].imms->X_op == O_constant)
7174 {
7175 int size = imm_size (n);
7176 offsetT val;
7177
7178 val = offset_in_range (i.op[n].imms->X_add_number,
7179 size);
7180 p = frag_more (size);
7181 md_number_to_chars (p, val, size);
7182 }
7183 else
7184 {
7185 /* Not absolute_section.
7186 Need a 32-bit fixup (don't support 8bit
7187 non-absolute imms). Try to support other
7188 sizes ... */
7189 enum bfd_reloc_code_real reloc_type;
7190 int size = imm_size (n);
7191 int sign;
7192
7193 if (i.types[n].bitfield.imm32s
7194 && (i.suffix == QWORD_MNEM_SUFFIX
7195 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7196 sign = 1;
7197 else
7198 sign = 0;
7199
7200 p = frag_more (size);
7201 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7202
7203 /* This is tough to explain. We end up with this one if we
7204 * have operands that look like
7205 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7206 * obtain the absolute address of the GOT, and it is strongly
7207 * preferable from a performance point of view to avoid using
7208 * a runtime relocation for this. The actual sequence of
7209 * instructions often look something like:
7210 *
7211 * call .L66
7212 * .L66:
7213 * popl %ebx
7214 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7215 *
7216 * The call and pop essentially return the absolute address
7217 * of the label .L66 and store it in %ebx. The linker itself
7218 * will ultimately change the first operand of the addl so
7219 * that %ebx points to the GOT, but to keep things simple, the
7220 * .o file must have this operand set so that it generates not
7221 * the absolute address of .L66, but the absolute address of
7222 * itself. This allows the linker itself simply treat a GOTPC
7223 * relocation as asking for a pcrel offset to the GOT to be
7224 * added in, and the addend of the relocation is stored in the
7225 * operand field for the instruction itself.
7226 *
7227 * Our job here is to fix the operand so that it would add
7228 * the correct offset so that %ebx would point to itself. The
7229 * thing that is tricky is that .-.L66 will point to the
7230 * beginning of the instruction, so we need to further modify
7231 * the operand so that it will point to itself. There are
7232 * other cases where you have something like:
7233 *
7234 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7235 *
7236 * and here no correction would be required. Internally in
7237 * the assembler we treat operands of this form as not being
7238 * pcrel since the '.' is explicitly mentioned, and I wonder
7239 * whether it would simplify matters to do it this way. Who
7240 * knows. In earlier versions of the PIC patches, the
7241 * pcrel_adjust field was used to store the correction, but
7242 * since the expression is not pcrel, I felt it would be
7243 * confusing to do it this way. */
7244
7245 if ((reloc_type == BFD_RELOC_32
7246 || reloc_type == BFD_RELOC_X86_64_32S
7247 || reloc_type == BFD_RELOC_64)
7248 && GOT_symbol
7249 && GOT_symbol == i.op[n].imms->X_add_symbol
7250 && (i.op[n].imms->X_op == O_symbol
7251 || (i.op[n].imms->X_op == O_add
7252 && ((symbol_get_value_expression
7253 (i.op[n].imms->X_op_symbol)->X_op)
7254 == O_subtract))))
7255 {
7256 offsetT add;
7257
7258 if (insn_start_frag == frag_now)
7259 add = (p - frag_now->fr_literal) - insn_start_off;
7260 else
7261 {
7262 fragS *fr;
7263
7264 add = insn_start_frag->fr_fix - insn_start_off;
7265 for (fr = insn_start_frag->fr_next;
7266 fr && fr != frag_now; fr = fr->fr_next)
7267 add += fr->fr_fix;
7268 add += p - frag_now->fr_literal;
7269 }
7270
7271 if (!object_64bit)
7272 reloc_type = BFD_RELOC_386_GOTPC;
7273 else if (size == 4)
7274 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7275 else if (size == 8)
7276 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7277 i.op[n].imms->X_add_number += add;
7278 }
7279 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7280 i.op[n].imms, 0, reloc_type);
7281 }
7282 }
7283 }
7284 }
7285 \f
7286 /* x86_cons_fix_new is called via the expression parsing code when a
7287 reloc is needed. We use this hook to get the correct .got reloc. */
7288 static int cons_sign = -1;
7289
7290 void
7291 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7292 expressionS *exp, bfd_reloc_code_real_type r)
7293 {
7294 r = reloc (len, 0, cons_sign, r);
7295
7296 #ifdef TE_PE
7297 if (exp->X_op == O_secrel)
7298 {
7299 exp->X_op = O_symbol;
7300 r = BFD_RELOC_32_SECREL;
7301 }
7302 #endif
7303
7304 fix_new_exp (frag, off, len, exp, 0, r);
7305 }
7306
7307 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7308 purpose of the `.dc.a' internal pseudo-op. */
7309
7310 int
7311 x86_address_bytes (void)
7312 {
7313 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7314 return 4;
7315 return stdoutput->arch_info->bits_per_address / 8;
7316 }
7317
7318 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7319 || defined (LEX_AT)
7320 # define lex_got(reloc, adjust, types) NULL
7321 #else
7322 /* Parse operands of the form
7323 <symbol>@GOTOFF+<nnn>
7324 and similar .plt or .got references.
7325
7326 If we find one, set up the correct relocation in RELOC and copy the
7327 input string, minus the `@GOTOFF' into a malloc'd buffer for
7328 parsing by the calling routine. Return this buffer, and if ADJUST
7329 is non-null set it to the length of the string we removed from the
7330 input line. Otherwise return NULL. */
7331 static char *
7332 lex_got (enum bfd_reloc_code_real *rel,
7333 int *adjust,
7334 i386_operand_type *types)
7335 {
7336 /* Some of the relocations depend on the size of what field is to
7337 be relocated. But in our callers i386_immediate and i386_displacement
7338 we don't yet know the operand size (this will be set by insn
7339 matching). Hence we record the word32 relocation here,
7340 and adjust the reloc according to the real size in reloc(). */
7341 static const struct {
7342 const char *str;
7343 int len;
7344 const enum bfd_reloc_code_real rel[2];
7345 const i386_operand_type types64;
7346 } gotrel[] = {
7347 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7348 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7349 BFD_RELOC_SIZE32 },
7350 OPERAND_TYPE_IMM32_64 },
7351 #endif
7352 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7353 BFD_RELOC_X86_64_PLTOFF64 },
7354 OPERAND_TYPE_IMM64 },
7355 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7356 BFD_RELOC_X86_64_PLT32 },
7357 OPERAND_TYPE_IMM32_32S_DISP32 },
7358 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7359 BFD_RELOC_X86_64_GOTPLT64 },
7360 OPERAND_TYPE_IMM64_DISP64 },
7361 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7362 BFD_RELOC_X86_64_GOTOFF64 },
7363 OPERAND_TYPE_IMM64_DISP64 },
7364 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7365 BFD_RELOC_X86_64_GOTPCREL },
7366 OPERAND_TYPE_IMM32_32S_DISP32 },
7367 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7368 BFD_RELOC_X86_64_TLSGD },
7369 OPERAND_TYPE_IMM32_32S_DISP32 },
7370 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7371 _dummy_first_bfd_reloc_code_real },
7372 OPERAND_TYPE_NONE },
7373 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7374 BFD_RELOC_X86_64_TLSLD },
7375 OPERAND_TYPE_IMM32_32S_DISP32 },
7376 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7377 BFD_RELOC_X86_64_GOTTPOFF },
7378 OPERAND_TYPE_IMM32_32S_DISP32 },
7379 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7380 BFD_RELOC_X86_64_TPOFF32 },
7381 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7382 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7383 _dummy_first_bfd_reloc_code_real },
7384 OPERAND_TYPE_NONE },
7385 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7386 BFD_RELOC_X86_64_DTPOFF32 },
7387 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7388 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7389 _dummy_first_bfd_reloc_code_real },
7390 OPERAND_TYPE_NONE },
7391 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7392 _dummy_first_bfd_reloc_code_real },
7393 OPERAND_TYPE_NONE },
7394 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7395 BFD_RELOC_X86_64_GOT32 },
7396 OPERAND_TYPE_IMM32_32S_64_DISP32 },
7397 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7398 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7399 OPERAND_TYPE_IMM32_32S_DISP32 },
7400 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7401 BFD_RELOC_X86_64_TLSDESC_CALL },
7402 OPERAND_TYPE_IMM32_32S_DISP32 },
7403 };
7404 char *cp;
7405 unsigned int j;
7406
7407 #if defined (OBJ_MAYBE_ELF)
7408 if (!IS_ELF)
7409 return NULL;
7410 #endif
7411
7412 for (cp = input_line_pointer; *cp != '@'; cp++)
7413 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7414 return NULL;
7415
7416 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7417 {
7418 int len = gotrel[j].len;
7419 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7420 {
7421 if (gotrel[j].rel[object_64bit] != 0)
7422 {
7423 int first, second;
7424 char *tmpbuf, *past_reloc;
7425
7426 *rel = gotrel[j].rel[object_64bit];
7427
7428 if (types)
7429 {
7430 if (flag_code != CODE_64BIT)
7431 {
7432 types->bitfield.imm32 = 1;
7433 types->bitfield.disp32 = 1;
7434 }
7435 else
7436 *types = gotrel[j].types64;
7437 }
7438
7439 if (j != 0 && GOT_symbol == NULL)
7440 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7441
7442 /* The length of the first part of our input line. */
7443 first = cp - input_line_pointer;
7444
7445 /* The second part goes from after the reloc token until
7446 (and including) an end_of_line char or comma. */
7447 past_reloc = cp + 1 + len;
7448 cp = past_reloc;
7449 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7450 ++cp;
7451 second = cp + 1 - past_reloc;
7452
7453 /* Allocate and copy string. The trailing NUL shouldn't
7454 be necessary, but be safe. */
7455 tmpbuf = (char *) xmalloc (first + second + 2);
7456 memcpy (tmpbuf, input_line_pointer, first);
7457 if (second != 0 && *past_reloc != ' ')
7458 /* Replace the relocation token with ' ', so that
7459 errors like foo@GOTOFF1 will be detected. */
7460 tmpbuf[first++] = ' ';
7461 else
7462 /* Increment length by 1 if the relocation token is
7463 removed. */
7464 len++;
7465 if (adjust)
7466 *adjust = len;
7467 memcpy (tmpbuf + first, past_reloc, second);
7468 tmpbuf[first + second] = '\0';
7469 return tmpbuf;
7470 }
7471
7472 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7473 gotrel[j].str, 1 << (5 + object_64bit));
7474 return NULL;
7475 }
7476 }
7477
7478 /* Might be a symbol version string. Don't as_bad here. */
7479 return NULL;
7480 }
7481 #endif
7482
7483 #ifdef TE_PE
7484 #ifdef lex_got
7485 #undef lex_got
7486 #endif
7487 /* Parse operands of the form
7488 <symbol>@SECREL32+<nnn>
7489
7490 If we find one, set up the correct relocation in RELOC and copy the
7491 input string, minus the `@SECREL32' into a malloc'd buffer for
7492 parsing by the calling routine. Return this buffer, and if ADJUST
7493 is non-null set it to the length of the string we removed from the
7494 input line. Otherwise return NULL.
7495
7496 This function is copied from the ELF version above adjusted for PE targets. */
7497
7498 static char *
7499 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7500 int *adjust ATTRIBUTE_UNUSED,
7501 i386_operand_type *types)
7502 {
7503 static const struct
7504 {
7505 const char *str;
7506 int len;
7507 const enum bfd_reloc_code_real rel[2];
7508 const i386_operand_type types64;
7509 }
7510 gotrel[] =
7511 {
7512 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7513 BFD_RELOC_32_SECREL },
7514 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7515 };
7516
7517 char *cp;
7518 unsigned j;
7519
7520 for (cp = input_line_pointer; *cp != '@'; cp++)
7521 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7522 return NULL;
7523
7524 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7525 {
7526 int len = gotrel[j].len;
7527
7528 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7529 {
7530 if (gotrel[j].rel[object_64bit] != 0)
7531 {
7532 int first, second;
7533 char *tmpbuf, *past_reloc;
7534
7535 *rel = gotrel[j].rel[object_64bit];
7536 if (adjust)
7537 *adjust = len;
7538
7539 if (types)
7540 {
7541 if (flag_code != CODE_64BIT)
7542 {
7543 types->bitfield.imm32 = 1;
7544 types->bitfield.disp32 = 1;
7545 }
7546 else
7547 *types = gotrel[j].types64;
7548 }
7549
7550 /* The length of the first part of our input line. */
7551 first = cp - input_line_pointer;
7552
7553 /* The second part goes from after the reloc token until
7554 (and including) an end_of_line char or comma. */
7555 past_reloc = cp + 1 + len;
7556 cp = past_reloc;
7557 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7558 ++cp;
7559 second = cp + 1 - past_reloc;
7560
7561 /* Allocate and copy string. The trailing NUL shouldn't
7562 be necessary, but be safe. */
7563 tmpbuf = (char *) xmalloc (first + second + 2);
7564 memcpy (tmpbuf, input_line_pointer, first);
7565 if (second != 0 && *past_reloc != ' ')
7566 /* Replace the relocation token with ' ', so that
7567 errors like foo@SECLREL321 will be detected. */
7568 tmpbuf[first++] = ' ';
7569 memcpy (tmpbuf + first, past_reloc, second);
7570 tmpbuf[first + second] = '\0';
7571 return tmpbuf;
7572 }
7573
7574 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7575 gotrel[j].str, 1 << (5 + object_64bit));
7576 return NULL;
7577 }
7578 }
7579
7580 /* Might be a symbol version string. Don't as_bad here. */
7581 return NULL;
7582 }
7583
7584 #endif /* TE_PE */
7585
7586 bfd_reloc_code_real_type
7587 x86_cons (expressionS *exp, int size)
7588 {
7589 bfd_reloc_code_real_type got_reloc = NO_RELOC;
7590
7591 intel_syntax = -intel_syntax;
7592
7593 exp->X_md = 0;
7594 if (size == 4 || (object_64bit && size == 8))
7595 {
7596 /* Handle @GOTOFF and the like in an expression. */
7597 char *save;
7598 char *gotfree_input_line;
7599 int adjust = 0;
7600
7601 save = input_line_pointer;
7602 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
7603 if (gotfree_input_line)
7604 input_line_pointer = gotfree_input_line;
7605
7606 expression (exp);
7607
7608 if (gotfree_input_line)
7609 {
7610 /* expression () has merrily parsed up to the end of line,
7611 or a comma - in the wrong buffer. Transfer how far
7612 input_line_pointer has moved to the right buffer. */
7613 input_line_pointer = (save
7614 + (input_line_pointer - gotfree_input_line)
7615 + adjust);
7616 free (gotfree_input_line);
7617 if (exp->X_op == O_constant
7618 || exp->X_op == O_absent
7619 || exp->X_op == O_illegal
7620 || exp->X_op == O_register
7621 || exp->X_op == O_big)
7622 {
7623 char c = *input_line_pointer;
7624 *input_line_pointer = 0;
7625 as_bad (_("missing or invalid expression `%s'"), save);
7626 *input_line_pointer = c;
7627 }
7628 }
7629 }
7630 else
7631 expression (exp);
7632
7633 intel_syntax = -intel_syntax;
7634
7635 if (intel_syntax)
7636 i386_intel_simplify (exp);
7637
7638 return got_reloc;
7639 }
7640
7641 static void
7642 signed_cons (int size)
7643 {
7644 if (flag_code == CODE_64BIT)
7645 cons_sign = 1;
7646 cons (size);
7647 cons_sign = -1;
7648 }
7649
7650 #ifdef TE_PE
7651 static void
7652 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
7653 {
7654 expressionS exp;
7655
7656 do
7657 {
7658 expression (&exp);
7659 if (exp.X_op == O_symbol)
7660 exp.X_op = O_secrel;
7661
7662 emit_expr (&exp, 4);
7663 }
7664 while (*input_line_pointer++ == ',');
7665
7666 input_line_pointer--;
7667 demand_empty_rest_of_line ();
7668 }
7669 #endif
7670
7671 /* Handle Vector operations. */
7672
7673 static char *
7674 check_VecOperations (char *op_string, char *op_end)
7675 {
7676 const reg_entry *mask;
7677 const char *saved;
7678 char *end_op;
7679
7680 while (*op_string
7681 && (op_end == NULL || op_string < op_end))
7682 {
7683 saved = op_string;
7684 if (*op_string == '{')
7685 {
7686 op_string++;
7687
7688 /* Check broadcasts. */
7689 if (strncmp (op_string, "1to", 3) == 0)
7690 {
7691 int bcst_type;
7692
7693 if (i.broadcast)
7694 goto duplicated_vec_op;
7695
7696 op_string += 3;
7697 if (*op_string == '8')
7698 bcst_type = BROADCAST_1TO8;
7699 else if (*op_string == '4')
7700 bcst_type = BROADCAST_1TO4;
7701 else if (*op_string == '2')
7702 bcst_type = BROADCAST_1TO2;
7703 else if (*op_string == '1'
7704 && *(op_string+1) == '6')
7705 {
7706 bcst_type = BROADCAST_1TO16;
7707 op_string++;
7708 }
7709 else
7710 {
7711 as_bad (_("Unsupported broadcast: `%s'"), saved);
7712 return NULL;
7713 }
7714 op_string++;
7715
7716 broadcast_op.type = bcst_type;
7717 broadcast_op.operand = this_operand;
7718 i.broadcast = &broadcast_op;
7719 }
7720 /* Check masking operation. */
7721 else if ((mask = parse_register (op_string, &end_op)) != NULL)
7722 {
7723 /* k0 can't be used for write mask. */
7724 if (mask->reg_num == 0)
7725 {
7726 as_bad (_("`%s' can't be used for write mask"),
7727 op_string);
7728 return NULL;
7729 }
7730
7731 if (!i.mask)
7732 {
7733 mask_op.mask = mask;
7734 mask_op.zeroing = 0;
7735 mask_op.operand = this_operand;
7736 i.mask = &mask_op;
7737 }
7738 else
7739 {
7740 if (i.mask->mask)
7741 goto duplicated_vec_op;
7742
7743 i.mask->mask = mask;
7744
7745 /* Only "{z}" is allowed here. No need to check
7746 zeroing mask explicitly. */
7747 if (i.mask->operand != this_operand)
7748 {
7749 as_bad (_("invalid write mask `%s'"), saved);
7750 return NULL;
7751 }
7752 }
7753
7754 op_string = end_op;
7755 }
7756 /* Check zeroing-flag for masking operation. */
7757 else if (*op_string == 'z')
7758 {
7759 if (!i.mask)
7760 {
7761 mask_op.mask = NULL;
7762 mask_op.zeroing = 1;
7763 mask_op.operand = this_operand;
7764 i.mask = &mask_op;
7765 }
7766 else
7767 {
7768 if (i.mask->zeroing)
7769 {
7770 duplicated_vec_op:
7771 as_bad (_("duplicated `%s'"), saved);
7772 return NULL;
7773 }
7774
7775 i.mask->zeroing = 1;
7776
7777 /* Only "{%k}" is allowed here. No need to check mask
7778 register explicitly. */
7779 if (i.mask->operand != this_operand)
7780 {
7781 as_bad (_("invalid zeroing-masking `%s'"),
7782 saved);
7783 return NULL;
7784 }
7785 }
7786
7787 op_string++;
7788 }
7789 else
7790 goto unknown_vec_op;
7791
7792 if (*op_string != '}')
7793 {
7794 as_bad (_("missing `}' in `%s'"), saved);
7795 return NULL;
7796 }
7797 op_string++;
7798 continue;
7799 }
7800 unknown_vec_op:
7801 /* We don't know this one. */
7802 as_bad (_("unknown vector operation: `%s'"), saved);
7803 return NULL;
7804 }
7805
7806 return op_string;
7807 }
7808
7809 static int
7810 i386_immediate (char *imm_start)
7811 {
7812 char *save_input_line_pointer;
7813 char *gotfree_input_line;
7814 segT exp_seg = 0;
7815 expressionS *exp;
7816 i386_operand_type types;
7817
7818 operand_type_set (&types, ~0);
7819
7820 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
7821 {
7822 as_bad (_("at most %d immediate operands are allowed"),
7823 MAX_IMMEDIATE_OPERANDS);
7824 return 0;
7825 }
7826
7827 exp = &im_expressions[i.imm_operands++];
7828 i.op[this_operand].imms = exp;
7829
7830 if (is_space_char (*imm_start))
7831 ++imm_start;
7832
7833 save_input_line_pointer = input_line_pointer;
7834 input_line_pointer = imm_start;
7835
7836 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
7837 if (gotfree_input_line)
7838 input_line_pointer = gotfree_input_line;
7839
7840 exp_seg = expression (exp);
7841
7842 SKIP_WHITESPACE ();
7843
7844 /* Handle vector operations. */
7845 if (*input_line_pointer == '{')
7846 {
7847 input_line_pointer = check_VecOperations (input_line_pointer,
7848 NULL);
7849 if (input_line_pointer == NULL)
7850 return 0;
7851 }
7852
7853 if (*input_line_pointer)
7854 as_bad (_("junk `%s' after expression"), input_line_pointer);
7855
7856 input_line_pointer = save_input_line_pointer;
7857 if (gotfree_input_line)
7858 {
7859 free (gotfree_input_line);
7860
7861 if (exp->X_op == O_constant || exp->X_op == O_register)
7862 exp->X_op = O_illegal;
7863 }
7864
7865 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
7866 }
7867
7868 static int
7869 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
7870 i386_operand_type types, const char *imm_start)
7871 {
7872 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
7873 {
7874 if (imm_start)
7875 as_bad (_("missing or invalid immediate expression `%s'"),
7876 imm_start);
7877 return 0;
7878 }
7879 else if (exp->X_op == O_constant)
7880 {
7881 /* Size it properly later. */
7882 i.types[this_operand].bitfield.imm64 = 1;
7883 /* If not 64bit, sign extend val. */
7884 if (flag_code != CODE_64BIT
7885 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
7886 exp->X_add_number
7887 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
7888 }
7889 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
7890 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
7891 && exp_seg != absolute_section
7892 && exp_seg != text_section
7893 && exp_seg != data_section
7894 && exp_seg != bss_section
7895 && exp_seg != undefined_section
7896 && !bfd_is_com_section (exp_seg))
7897 {
7898 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
7899 return 0;
7900 }
7901 #endif
7902 else if (!intel_syntax && exp_seg == reg_section)
7903 {
7904 if (imm_start)
7905 as_bad (_("illegal immediate register operand %s"), imm_start);
7906 return 0;
7907 }
7908 else
7909 {
7910 /* This is an address. The size of the address will be
7911 determined later, depending on destination register,
7912 suffix, or the default for the section. */
7913 i.types[this_operand].bitfield.imm8 = 1;
7914 i.types[this_operand].bitfield.imm16 = 1;
7915 i.types[this_operand].bitfield.imm32 = 1;
7916 i.types[this_operand].bitfield.imm32s = 1;
7917 i.types[this_operand].bitfield.imm64 = 1;
7918 i.types[this_operand] = operand_type_and (i.types[this_operand],
7919 types);
7920 }
7921
7922 return 1;
7923 }
7924
7925 static char *
7926 i386_scale (char *scale)
7927 {
7928 offsetT val;
7929 char *save = input_line_pointer;
7930
7931 input_line_pointer = scale;
7932 val = get_absolute_expression ();
7933
7934 switch (val)
7935 {
7936 case 1:
7937 i.log2_scale_factor = 0;
7938 break;
7939 case 2:
7940 i.log2_scale_factor = 1;
7941 break;
7942 case 4:
7943 i.log2_scale_factor = 2;
7944 break;
7945 case 8:
7946 i.log2_scale_factor = 3;
7947 break;
7948 default:
7949 {
7950 char sep = *input_line_pointer;
7951
7952 *input_line_pointer = '\0';
7953 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
7954 scale);
7955 *input_line_pointer = sep;
7956 input_line_pointer = save;
7957 return NULL;
7958 }
7959 }
7960 if (i.log2_scale_factor != 0 && i.index_reg == 0)
7961 {
7962 as_warn (_("scale factor of %d without an index register"),
7963 1 << i.log2_scale_factor);
7964 i.log2_scale_factor = 0;
7965 }
7966 scale = input_line_pointer;
7967 input_line_pointer = save;
7968 return scale;
7969 }
7970
7971 static int
7972 i386_displacement (char *disp_start, char *disp_end)
7973 {
7974 expressionS *exp;
7975 segT exp_seg = 0;
7976 char *save_input_line_pointer;
7977 char *gotfree_input_line;
7978 int override;
7979 i386_operand_type bigdisp, types = anydisp;
7980 int ret;
7981
7982 if (i.disp_operands == MAX_MEMORY_OPERANDS)
7983 {
7984 as_bad (_("at most %d displacement operands are allowed"),
7985 MAX_MEMORY_OPERANDS);
7986 return 0;
7987 }
7988
7989 operand_type_set (&bigdisp, 0);
7990 if ((i.types[this_operand].bitfield.jumpabsolute)
7991 || (!current_templates->start->opcode_modifier.jump
7992 && !current_templates->start->opcode_modifier.jumpdword))
7993 {
7994 bigdisp.bitfield.disp32 = 1;
7995 override = (i.prefix[ADDR_PREFIX] != 0);
7996 if (flag_code == CODE_64BIT)
7997 {
7998 if (!override)
7999 {
8000 bigdisp.bitfield.disp32s = 1;
8001 bigdisp.bitfield.disp64 = 1;
8002 }
8003 }
8004 else if ((flag_code == CODE_16BIT) ^ override)
8005 {
8006 bigdisp.bitfield.disp32 = 0;
8007 bigdisp.bitfield.disp16 = 1;
8008 }
8009 }
8010 else
8011 {
8012 /* For PC-relative branches, the width of the displacement
8013 is dependent upon data size, not address size. */
8014 override = (i.prefix[DATA_PREFIX] != 0);
8015 if (flag_code == CODE_64BIT)
8016 {
8017 if (override || i.suffix == WORD_MNEM_SUFFIX)
8018 bigdisp.bitfield.disp16 = 1;
8019 else
8020 {
8021 bigdisp.bitfield.disp32 = 1;
8022 bigdisp.bitfield.disp32s = 1;
8023 }
8024 }
8025 else
8026 {
8027 if (!override)
8028 override = (i.suffix == (flag_code != CODE_16BIT
8029 ? WORD_MNEM_SUFFIX
8030 : LONG_MNEM_SUFFIX));
8031 bigdisp.bitfield.disp32 = 1;
8032 if ((flag_code == CODE_16BIT) ^ override)
8033 {
8034 bigdisp.bitfield.disp32 = 0;
8035 bigdisp.bitfield.disp16 = 1;
8036 }
8037 }
8038 }
8039 i.types[this_operand] = operand_type_or (i.types[this_operand],
8040 bigdisp);
8041
8042 exp = &disp_expressions[i.disp_operands];
8043 i.op[this_operand].disps = exp;
8044 i.disp_operands++;
8045 save_input_line_pointer = input_line_pointer;
8046 input_line_pointer = disp_start;
8047 END_STRING_AND_SAVE (disp_end);
8048
8049 #ifndef GCC_ASM_O_HACK
8050 #define GCC_ASM_O_HACK 0
8051 #endif
8052 #if GCC_ASM_O_HACK
8053 END_STRING_AND_SAVE (disp_end + 1);
8054 if (i.types[this_operand].bitfield.baseIndex
8055 && displacement_string_end[-1] == '+')
8056 {
8057 /* This hack is to avoid a warning when using the "o"
8058 constraint within gcc asm statements.
8059 For instance:
8060
8061 #define _set_tssldt_desc(n,addr,limit,type) \
8062 __asm__ __volatile__ ( \
8063 "movw %w2,%0\n\t" \
8064 "movw %w1,2+%0\n\t" \
8065 "rorl $16,%1\n\t" \
8066 "movb %b1,4+%0\n\t" \
8067 "movb %4,5+%0\n\t" \
8068 "movb $0,6+%0\n\t" \
8069 "movb %h1,7+%0\n\t" \
8070 "rorl $16,%1" \
8071 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8072
8073 This works great except that the output assembler ends
8074 up looking a bit weird if it turns out that there is
8075 no offset. You end up producing code that looks like:
8076
8077 #APP
8078 movw $235,(%eax)
8079 movw %dx,2+(%eax)
8080 rorl $16,%edx
8081 movb %dl,4+(%eax)
8082 movb $137,5+(%eax)
8083 movb $0,6+(%eax)
8084 movb %dh,7+(%eax)
8085 rorl $16,%edx
8086 #NO_APP
8087
8088 So here we provide the missing zero. */
8089
8090 *displacement_string_end = '0';
8091 }
8092 #endif
8093 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8094 if (gotfree_input_line)
8095 input_line_pointer = gotfree_input_line;
8096
8097 exp_seg = expression (exp);
8098
8099 SKIP_WHITESPACE ();
8100 if (*input_line_pointer)
8101 as_bad (_("junk `%s' after expression"), input_line_pointer);
8102 #if GCC_ASM_O_HACK
8103 RESTORE_END_STRING (disp_end + 1);
8104 #endif
8105 input_line_pointer = save_input_line_pointer;
8106 if (gotfree_input_line)
8107 {
8108 free (gotfree_input_line);
8109
8110 if (exp->X_op == O_constant || exp->X_op == O_register)
8111 exp->X_op = O_illegal;
8112 }
8113
8114 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8115
8116 RESTORE_END_STRING (disp_end);
8117
8118 return ret;
8119 }
8120
8121 static int
8122 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8123 i386_operand_type types, const char *disp_start)
8124 {
8125 i386_operand_type bigdisp;
8126 int ret = 1;
8127
8128 /* We do this to make sure that the section symbol is in
8129 the symbol table. We will ultimately change the relocation
8130 to be relative to the beginning of the section. */
8131 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8132 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8133 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8134 {
8135 if (exp->X_op != O_symbol)
8136 goto inv_disp;
8137
8138 if (S_IS_LOCAL (exp->X_add_symbol)
8139 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8140 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8141 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8142 exp->X_op = O_subtract;
8143 exp->X_op_symbol = GOT_symbol;
8144 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8145 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8146 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8147 i.reloc[this_operand] = BFD_RELOC_64;
8148 else
8149 i.reloc[this_operand] = BFD_RELOC_32;
8150 }
8151
8152 else if (exp->X_op == O_absent
8153 || exp->X_op == O_illegal
8154 || exp->X_op == O_big)
8155 {
8156 inv_disp:
8157 as_bad (_("missing or invalid displacement expression `%s'"),
8158 disp_start);
8159 ret = 0;
8160 }
8161
8162 else if (flag_code == CODE_64BIT
8163 && !i.prefix[ADDR_PREFIX]
8164 && exp->X_op == O_constant)
8165 {
8166 /* Since displacement is signed extended to 64bit, don't allow
8167 disp32 and turn off disp32s if they are out of range. */
8168 i.types[this_operand].bitfield.disp32 = 0;
8169 if (!fits_in_signed_long (exp->X_add_number))
8170 {
8171 i.types[this_operand].bitfield.disp32s = 0;
8172 if (i.types[this_operand].bitfield.baseindex)
8173 {
8174 as_bad (_("0x%lx out range of signed 32bit displacement"),
8175 (long) exp->X_add_number);
8176 ret = 0;
8177 }
8178 }
8179 }
8180
8181 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8182 else if (exp->X_op != O_constant
8183 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8184 && exp_seg != absolute_section
8185 && exp_seg != text_section
8186 && exp_seg != data_section
8187 && exp_seg != bss_section
8188 && exp_seg != undefined_section
8189 && !bfd_is_com_section (exp_seg))
8190 {
8191 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8192 ret = 0;
8193 }
8194 #endif
8195
8196 /* Check if this is a displacement only operand. */
8197 bigdisp = i.types[this_operand];
8198 bigdisp.bitfield.disp8 = 0;
8199 bigdisp.bitfield.disp16 = 0;
8200 bigdisp.bitfield.disp32 = 0;
8201 bigdisp.bitfield.disp32s = 0;
8202 bigdisp.bitfield.disp64 = 0;
8203 if (operand_type_all_zero (&bigdisp))
8204 i.types[this_operand] = operand_type_and (i.types[this_operand],
8205 types);
8206
8207 return ret;
8208 }
8209
8210 /* Make sure the memory operand we've been dealt is valid.
8211 Return 1 on success, 0 on a failure. */
8212
8213 static int
8214 i386_index_check (const char *operand_string)
8215 {
8216 const char *kind = "base/index";
8217 enum flag_code addr_mode;
8218
8219 if (i.prefix[ADDR_PREFIX])
8220 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8221 else
8222 {
8223 addr_mode = flag_code;
8224
8225 #if INFER_ADDR_PREFIX
8226 if (i.mem_operands == 0)
8227 {
8228 /* Infer address prefix from the first memory operand. */
8229 const reg_entry *addr_reg = i.base_reg;
8230
8231 if (addr_reg == NULL)
8232 addr_reg = i.index_reg;
8233
8234 if (addr_reg)
8235 {
8236 if (addr_reg->reg_num == RegEip
8237 || addr_reg->reg_num == RegEiz
8238 || addr_reg->reg_type.bitfield.reg32)
8239 addr_mode = CODE_32BIT;
8240 else if (flag_code != CODE_64BIT
8241 && addr_reg->reg_type.bitfield.reg16)
8242 addr_mode = CODE_16BIT;
8243
8244 if (addr_mode != flag_code)
8245 {
8246 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8247 i.prefixes += 1;
8248 /* Change the size of any displacement too. At most one
8249 of Disp16 or Disp32 is set.
8250 FIXME. There doesn't seem to be any real need for
8251 separate Disp16 and Disp32 flags. The same goes for
8252 Imm16 and Imm32. Removing them would probably clean
8253 up the code quite a lot. */
8254 if (flag_code != CODE_64BIT
8255 && (i.types[this_operand].bitfield.disp16
8256 || i.types[this_operand].bitfield.disp32))
8257 i.types[this_operand]
8258 = operand_type_xor (i.types[this_operand], disp16_32);
8259 }
8260 }
8261 }
8262 #endif
8263 }
8264
8265 if (current_templates->start->opcode_modifier.isstring
8266 && !current_templates->start->opcode_modifier.immext
8267 && (current_templates->end[-1].opcode_modifier.isstring
8268 || i.mem_operands))
8269 {
8270 /* Memory operands of string insns are special in that they only allow
8271 a single register (rDI, rSI, or rBX) as their memory address. */
8272 const reg_entry *expected_reg;
8273 static const char *di_si[][2] =
8274 {
8275 { "esi", "edi" },
8276 { "si", "di" },
8277 { "rsi", "rdi" }
8278 };
8279 static const char *bx[] = { "ebx", "bx", "rbx" };
8280
8281 kind = "string address";
8282
8283 if (current_templates->start->opcode_modifier.w)
8284 {
8285 i386_operand_type type = current_templates->end[-1].operand_types[0];
8286
8287 if (!type.bitfield.baseindex
8288 || ((!i.mem_operands != !intel_syntax)
8289 && current_templates->end[-1].operand_types[1]
8290 .bitfield.baseindex))
8291 type = current_templates->end[-1].operand_types[1];
8292 expected_reg = hash_find (reg_hash,
8293 di_si[addr_mode][type.bitfield.esseg]);
8294
8295 }
8296 else
8297 expected_reg = hash_find (reg_hash, bx[addr_mode]);
8298
8299 if (i.base_reg != expected_reg
8300 || i.index_reg
8301 || operand_type_check (i.types[this_operand], disp))
8302 {
8303 /* The second memory operand must have the same size as
8304 the first one. */
8305 if (i.mem_operands
8306 && i.base_reg
8307 && !((addr_mode == CODE_64BIT
8308 && i.base_reg->reg_type.bitfield.reg64)
8309 || (addr_mode == CODE_32BIT
8310 ? i.base_reg->reg_type.bitfield.reg32
8311 : i.base_reg->reg_type.bitfield.reg16)))
8312 goto bad_address;
8313
8314 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8315 operand_string,
8316 intel_syntax ? '[' : '(',
8317 register_prefix,
8318 expected_reg->reg_name,
8319 intel_syntax ? ']' : ')');
8320 return 1;
8321 }
8322 else
8323 return 1;
8324
8325 bad_address:
8326 as_bad (_("`%s' is not a valid %s expression"),
8327 operand_string, kind);
8328 return 0;
8329 }
8330 else
8331 {
8332 if (addr_mode != CODE_16BIT)
8333 {
8334 /* 32-bit/64-bit checks. */
8335 if ((i.base_reg
8336 && (addr_mode == CODE_64BIT
8337 ? !i.base_reg->reg_type.bitfield.reg64
8338 : !i.base_reg->reg_type.bitfield.reg32)
8339 && (i.index_reg
8340 || (i.base_reg->reg_num
8341 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8342 || (i.index_reg
8343 && !i.index_reg->reg_type.bitfield.regxmm
8344 && !i.index_reg->reg_type.bitfield.regymm
8345 && !i.index_reg->reg_type.bitfield.regzmm
8346 && ((addr_mode == CODE_64BIT
8347 ? !(i.index_reg->reg_type.bitfield.reg64
8348 || i.index_reg->reg_num == RegRiz)
8349 : !(i.index_reg->reg_type.bitfield.reg32
8350 || i.index_reg->reg_num == RegEiz))
8351 || !i.index_reg->reg_type.bitfield.baseindex)))
8352 goto bad_address;
8353 }
8354 else
8355 {
8356 /* 16-bit checks. */
8357 if ((i.base_reg
8358 && (!i.base_reg->reg_type.bitfield.reg16
8359 || !i.base_reg->reg_type.bitfield.baseindex))
8360 || (i.index_reg
8361 && (!i.index_reg->reg_type.bitfield.reg16
8362 || !i.index_reg->reg_type.bitfield.baseindex
8363 || !(i.base_reg
8364 && i.base_reg->reg_num < 6
8365 && i.index_reg->reg_num >= 6
8366 && i.log2_scale_factor == 0))))
8367 goto bad_address;
8368 }
8369 }
8370 return 1;
8371 }
8372
8373 /* Handle vector immediates. */
8374
8375 static int
8376 RC_SAE_immediate (const char *imm_start)
8377 {
8378 unsigned int match_found, j;
8379 const char *pstr = imm_start;
8380 expressionS *exp;
8381
8382 if (*pstr != '{')
8383 return 0;
8384
8385 pstr++;
8386 match_found = 0;
8387 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8388 {
8389 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8390 {
8391 if (!i.rounding)
8392 {
8393 rc_op.type = RC_NamesTable[j].type;
8394 rc_op.operand = this_operand;
8395 i.rounding = &rc_op;
8396 }
8397 else
8398 {
8399 as_bad (_("duplicated `%s'"), imm_start);
8400 return 0;
8401 }
8402 pstr += RC_NamesTable[j].len;
8403 match_found = 1;
8404 break;
8405 }
8406 }
8407 if (!match_found)
8408 return 0;
8409
8410 if (*pstr++ != '}')
8411 {
8412 as_bad (_("Missing '}': '%s'"), imm_start);
8413 return 0;
8414 }
8415 /* RC/SAE immediate string should contain nothing more. */;
8416 if (*pstr != 0)
8417 {
8418 as_bad (_("Junk after '}': '%s'"), imm_start);
8419 return 0;
8420 }
8421
8422 exp = &im_expressions[i.imm_operands++];
8423 i.op[this_operand].imms = exp;
8424
8425 exp->X_op = O_constant;
8426 exp->X_add_number = 0;
8427 exp->X_add_symbol = (symbolS *) 0;
8428 exp->X_op_symbol = (symbolS *) 0;
8429
8430 i.types[this_operand].bitfield.imm8 = 1;
8431 return 1;
8432 }
8433
8434 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
8435 on error. */
8436
8437 static int
8438 i386_att_operand (char *operand_string)
8439 {
8440 const reg_entry *r;
8441 char *end_op;
8442 char *op_string = operand_string;
8443
8444 if (is_space_char (*op_string))
8445 ++op_string;
8446
8447 /* We check for an absolute prefix (differentiating,
8448 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
8449 if (*op_string == ABSOLUTE_PREFIX)
8450 {
8451 ++op_string;
8452 if (is_space_char (*op_string))
8453 ++op_string;
8454 i.types[this_operand].bitfield.jumpabsolute = 1;
8455 }
8456
8457 /* Check if operand is a register. */
8458 if ((r = parse_register (op_string, &end_op)) != NULL)
8459 {
8460 i386_operand_type temp;
8461
8462 /* Check for a segment override by searching for ':' after a
8463 segment register. */
8464 op_string = end_op;
8465 if (is_space_char (*op_string))
8466 ++op_string;
8467 if (*op_string == ':'
8468 && (r->reg_type.bitfield.sreg2
8469 || r->reg_type.bitfield.sreg3))
8470 {
8471 switch (r->reg_num)
8472 {
8473 case 0:
8474 i.seg[i.mem_operands] = &es;
8475 break;
8476 case 1:
8477 i.seg[i.mem_operands] = &cs;
8478 break;
8479 case 2:
8480 i.seg[i.mem_operands] = &ss;
8481 break;
8482 case 3:
8483 i.seg[i.mem_operands] = &ds;
8484 break;
8485 case 4:
8486 i.seg[i.mem_operands] = &fs;
8487 break;
8488 case 5:
8489 i.seg[i.mem_operands] = &gs;
8490 break;
8491 }
8492
8493 /* Skip the ':' and whitespace. */
8494 ++op_string;
8495 if (is_space_char (*op_string))
8496 ++op_string;
8497
8498 if (!is_digit_char (*op_string)
8499 && !is_identifier_char (*op_string)
8500 && *op_string != '('
8501 && *op_string != ABSOLUTE_PREFIX)
8502 {
8503 as_bad (_("bad memory operand `%s'"), op_string);
8504 return 0;
8505 }
8506 /* Handle case of %es:*foo. */
8507 if (*op_string == ABSOLUTE_PREFIX)
8508 {
8509 ++op_string;
8510 if (is_space_char (*op_string))
8511 ++op_string;
8512 i.types[this_operand].bitfield.jumpabsolute = 1;
8513 }
8514 goto do_memory_reference;
8515 }
8516
8517 /* Handle vector operations. */
8518 if (*op_string == '{')
8519 {
8520 op_string = check_VecOperations (op_string, NULL);
8521 if (op_string == NULL)
8522 return 0;
8523 }
8524
8525 if (*op_string)
8526 {
8527 as_bad (_("junk `%s' after register"), op_string);
8528 return 0;
8529 }
8530 temp = r->reg_type;
8531 temp.bitfield.baseindex = 0;
8532 i.types[this_operand] = operand_type_or (i.types[this_operand],
8533 temp);
8534 i.types[this_operand].bitfield.unspecified = 0;
8535 i.op[this_operand].regs = r;
8536 i.reg_operands++;
8537 }
8538 else if (*op_string == REGISTER_PREFIX)
8539 {
8540 as_bad (_("bad register name `%s'"), op_string);
8541 return 0;
8542 }
8543 else if (*op_string == IMMEDIATE_PREFIX)
8544 {
8545 ++op_string;
8546 if (i.types[this_operand].bitfield.jumpabsolute)
8547 {
8548 as_bad (_("immediate operand illegal with absolute jump"));
8549 return 0;
8550 }
8551 if (!i386_immediate (op_string))
8552 return 0;
8553 }
8554 else if (RC_SAE_immediate (operand_string))
8555 {
8556 /* If it is a RC or SAE immediate, do nothing. */
8557 ;
8558 }
8559 else if (is_digit_char (*op_string)
8560 || is_identifier_char (*op_string)
8561 || *op_string == '(')
8562 {
8563 /* This is a memory reference of some sort. */
8564 char *base_string;
8565
8566 /* Start and end of displacement string expression (if found). */
8567 char *displacement_string_start;
8568 char *displacement_string_end;
8569 char *vop_start;
8570
8571 do_memory_reference:
8572 if ((i.mem_operands == 1
8573 && !current_templates->start->opcode_modifier.isstring)
8574 || i.mem_operands == 2)
8575 {
8576 as_bad (_("too many memory references for `%s'"),
8577 current_templates->start->name);
8578 return 0;
8579 }
8580
8581 /* Check for base index form. We detect the base index form by
8582 looking for an ')' at the end of the operand, searching
8583 for the '(' matching it, and finding a REGISTER_PREFIX or ','
8584 after the '('. */
8585 base_string = op_string + strlen (op_string);
8586
8587 /* Handle vector operations. */
8588 vop_start = strchr (op_string, '{');
8589 if (vop_start && vop_start < base_string)
8590 {
8591 if (check_VecOperations (vop_start, base_string) == NULL)
8592 return 0;
8593 base_string = vop_start;
8594 }
8595
8596 --base_string;
8597 if (is_space_char (*base_string))
8598 --base_string;
8599
8600 /* If we only have a displacement, set-up for it to be parsed later. */
8601 displacement_string_start = op_string;
8602 displacement_string_end = base_string + 1;
8603
8604 if (*base_string == ')')
8605 {
8606 char *temp_string;
8607 unsigned int parens_balanced = 1;
8608 /* We've already checked that the number of left & right ()'s are
8609 equal, so this loop will not be infinite. */
8610 do
8611 {
8612 base_string--;
8613 if (*base_string == ')')
8614 parens_balanced++;
8615 if (*base_string == '(')
8616 parens_balanced--;
8617 }
8618 while (parens_balanced);
8619
8620 temp_string = base_string;
8621
8622 /* Skip past '(' and whitespace. */
8623 ++base_string;
8624 if (is_space_char (*base_string))
8625 ++base_string;
8626
8627 if (*base_string == ','
8628 || ((i.base_reg = parse_register (base_string, &end_op))
8629 != NULL))
8630 {
8631 displacement_string_end = temp_string;
8632
8633 i.types[this_operand].bitfield.baseindex = 1;
8634
8635 if (i.base_reg)
8636 {
8637 base_string = end_op;
8638 if (is_space_char (*base_string))
8639 ++base_string;
8640 }
8641
8642 /* There may be an index reg or scale factor here. */
8643 if (*base_string == ',')
8644 {
8645 ++base_string;
8646 if (is_space_char (*base_string))
8647 ++base_string;
8648
8649 if ((i.index_reg = parse_register (base_string, &end_op))
8650 != NULL)
8651 {
8652 base_string = end_op;
8653 if (is_space_char (*base_string))
8654 ++base_string;
8655 if (*base_string == ',')
8656 {
8657 ++base_string;
8658 if (is_space_char (*base_string))
8659 ++base_string;
8660 }
8661 else if (*base_string != ')')
8662 {
8663 as_bad (_("expecting `,' or `)' "
8664 "after index register in `%s'"),
8665 operand_string);
8666 return 0;
8667 }
8668 }
8669 else if (*base_string == REGISTER_PREFIX)
8670 {
8671 end_op = strchr (base_string, ',');
8672 if (end_op)
8673 *end_op = '\0';
8674 as_bad (_("bad register name `%s'"), base_string);
8675 return 0;
8676 }
8677
8678 /* Check for scale factor. */
8679 if (*base_string != ')')
8680 {
8681 char *end_scale = i386_scale (base_string);
8682
8683 if (!end_scale)
8684 return 0;
8685
8686 base_string = end_scale;
8687 if (is_space_char (*base_string))
8688 ++base_string;
8689 if (*base_string != ')')
8690 {
8691 as_bad (_("expecting `)' "
8692 "after scale factor in `%s'"),
8693 operand_string);
8694 return 0;
8695 }
8696 }
8697 else if (!i.index_reg)
8698 {
8699 as_bad (_("expecting index register or scale factor "
8700 "after `,'; got '%c'"),
8701 *base_string);
8702 return 0;
8703 }
8704 }
8705 else if (*base_string != ')')
8706 {
8707 as_bad (_("expecting `,' or `)' "
8708 "after base register in `%s'"),
8709 operand_string);
8710 return 0;
8711 }
8712 }
8713 else if (*base_string == REGISTER_PREFIX)
8714 {
8715 end_op = strchr (base_string, ',');
8716 if (end_op)
8717 *end_op = '\0';
8718 as_bad (_("bad register name `%s'"), base_string);
8719 return 0;
8720 }
8721 }
8722
8723 /* If there's an expression beginning the operand, parse it,
8724 assuming displacement_string_start and
8725 displacement_string_end are meaningful. */
8726 if (displacement_string_start != displacement_string_end)
8727 {
8728 if (!i386_displacement (displacement_string_start,
8729 displacement_string_end))
8730 return 0;
8731 }
8732
8733 /* Special case for (%dx) while doing input/output op. */
8734 if (i.base_reg
8735 && operand_type_equal (&i.base_reg->reg_type,
8736 &reg16_inoutportreg)
8737 && i.index_reg == 0
8738 && i.log2_scale_factor == 0
8739 && i.seg[i.mem_operands] == 0
8740 && !operand_type_check (i.types[this_operand], disp))
8741 {
8742 i.types[this_operand] = inoutportreg;
8743 return 1;
8744 }
8745
8746 if (i386_index_check (operand_string) == 0)
8747 return 0;
8748 i.types[this_operand].bitfield.mem = 1;
8749 i.mem_operands++;
8750 }
8751 else
8752 {
8753 /* It's not a memory operand; argh! */
8754 as_bad (_("invalid char %s beginning operand %d `%s'"),
8755 output_invalid (*op_string),
8756 this_operand + 1,
8757 op_string);
8758 return 0;
8759 }
8760 return 1; /* Normal return. */
8761 }
8762 \f
8763 /* Calculate the maximum variable size (i.e., excluding fr_fix)
8764 that an rs_machine_dependent frag may reach. */
8765
8766 unsigned int
8767 i386_frag_max_var (fragS *frag)
8768 {
8769 /* The only relaxable frags are for jumps.
8770 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
8771 gas_assert (frag->fr_type == rs_machine_dependent);
8772 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
8773 }
8774
8775 /* md_estimate_size_before_relax()
8776
8777 Called just before relax() for rs_machine_dependent frags. The x86
8778 assembler uses these frags to handle variable size jump
8779 instructions.
8780
8781 Any symbol that is now undefined will not become defined.
8782 Return the correct fr_subtype in the frag.
8783 Return the initial "guess for variable size of frag" to caller.
8784 The guess is actually the growth beyond the fixed part. Whatever
8785 we do to grow the fixed or variable part contributes to our
8786 returned value. */
8787
8788 int
8789 md_estimate_size_before_relax (fragS *fragP, segT segment)
8790 {
8791 /* We've already got fragP->fr_subtype right; all we have to do is
8792 check for un-relaxable symbols. On an ELF system, we can't relax
8793 an externally visible symbol, because it may be overridden by a
8794 shared library. */
8795 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
8796 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8797 || (IS_ELF
8798 && (S_IS_EXTERNAL (fragP->fr_symbol)
8799 || S_IS_WEAK (fragP->fr_symbol)
8800 || ((symbol_get_bfdsym (fragP->fr_symbol)->flags
8801 & BSF_GNU_INDIRECT_FUNCTION))))
8802 #endif
8803 #if defined (OBJ_COFF) && defined (TE_PE)
8804 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
8805 && S_IS_WEAK (fragP->fr_symbol))
8806 #endif
8807 )
8808 {
8809 /* Symbol is undefined in this segment, or we need to keep a
8810 reloc so that weak symbols can be overridden. */
8811 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
8812 enum bfd_reloc_code_real reloc_type;
8813 unsigned char *opcode;
8814 int old_fr_fix;
8815
8816 if (fragP->fr_var != NO_RELOC)
8817 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
8818 else if (size == 2)
8819 reloc_type = BFD_RELOC_16_PCREL;
8820 else
8821 reloc_type = BFD_RELOC_32_PCREL;
8822
8823 old_fr_fix = fragP->fr_fix;
8824 opcode = (unsigned char *) fragP->fr_opcode;
8825
8826 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
8827 {
8828 case UNCOND_JUMP:
8829 /* Make jmp (0xeb) a (d)word displacement jump. */
8830 opcode[0] = 0xe9;
8831 fragP->fr_fix += size;
8832 fix_new (fragP, old_fr_fix, size,
8833 fragP->fr_symbol,
8834 fragP->fr_offset, 1,
8835 reloc_type);
8836 break;
8837
8838 case COND_JUMP86:
8839 if (size == 2
8840 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
8841 {
8842 /* Negate the condition, and branch past an
8843 unconditional jump. */
8844 opcode[0] ^= 1;
8845 opcode[1] = 3;
8846 /* Insert an unconditional jump. */
8847 opcode[2] = 0xe9;
8848 /* We added two extra opcode bytes, and have a two byte
8849 offset. */
8850 fragP->fr_fix += 2 + 2;
8851 fix_new (fragP, old_fr_fix + 2, 2,
8852 fragP->fr_symbol,
8853 fragP->fr_offset, 1,
8854 reloc_type);
8855 break;
8856 }
8857 /* Fall through. */
8858
8859 case COND_JUMP:
8860 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
8861 {
8862 fixS *fixP;
8863
8864 fragP->fr_fix += 1;
8865 fixP = fix_new (fragP, old_fr_fix, 1,
8866 fragP->fr_symbol,
8867 fragP->fr_offset, 1,
8868 BFD_RELOC_8_PCREL);
8869 fixP->fx_signed = 1;
8870 break;
8871 }
8872
8873 /* This changes the byte-displacement jump 0x7N
8874 to the (d)word-displacement jump 0x0f,0x8N. */
8875 opcode[1] = opcode[0] + 0x10;
8876 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
8877 /* We've added an opcode byte. */
8878 fragP->fr_fix += 1 + size;
8879 fix_new (fragP, old_fr_fix + 1, size,
8880 fragP->fr_symbol,
8881 fragP->fr_offset, 1,
8882 reloc_type);
8883 break;
8884
8885 default:
8886 BAD_CASE (fragP->fr_subtype);
8887 break;
8888 }
8889 frag_wane (fragP);
8890 return fragP->fr_fix - old_fr_fix;
8891 }
8892
8893 /* Guess size depending on current relax state. Initially the relax
8894 state will correspond to a short jump and we return 1, because
8895 the variable part of the frag (the branch offset) is one byte
8896 long. However, we can relax a section more than once and in that
8897 case we must either set fr_subtype back to the unrelaxed state,
8898 or return the value for the appropriate branch. */
8899 return md_relax_table[fragP->fr_subtype].rlx_length;
8900 }
8901
8902 /* Called after relax() is finished.
8903
8904 In: Address of frag.
8905 fr_type == rs_machine_dependent.
8906 fr_subtype is what the address relaxed to.
8907
8908 Out: Any fixSs and constants are set up.
8909 Caller will turn frag into a ".space 0". */
8910
8911 void
8912 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
8913 fragS *fragP)
8914 {
8915 unsigned char *opcode;
8916 unsigned char *where_to_put_displacement = NULL;
8917 offsetT target_address;
8918 offsetT opcode_address;
8919 unsigned int extension = 0;
8920 offsetT displacement_from_opcode_start;
8921
8922 opcode = (unsigned char *) fragP->fr_opcode;
8923
8924 /* Address we want to reach in file space. */
8925 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
8926
8927 /* Address opcode resides at in file space. */
8928 opcode_address = fragP->fr_address + fragP->fr_fix;
8929
8930 /* Displacement from opcode start to fill into instruction. */
8931 displacement_from_opcode_start = target_address - opcode_address;
8932
8933 if ((fragP->fr_subtype & BIG) == 0)
8934 {
8935 /* Don't have to change opcode. */
8936 extension = 1; /* 1 opcode + 1 displacement */
8937 where_to_put_displacement = &opcode[1];
8938 }
8939 else
8940 {
8941 if (no_cond_jump_promotion
8942 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
8943 as_warn_where (fragP->fr_file, fragP->fr_line,
8944 _("long jump required"));
8945
8946 switch (fragP->fr_subtype)
8947 {
8948 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
8949 extension = 4; /* 1 opcode + 4 displacement */
8950 opcode[0] = 0xe9;
8951 where_to_put_displacement = &opcode[1];
8952 break;
8953
8954 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
8955 extension = 2; /* 1 opcode + 2 displacement */
8956 opcode[0] = 0xe9;
8957 where_to_put_displacement = &opcode[1];
8958 break;
8959
8960 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
8961 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
8962 extension = 5; /* 2 opcode + 4 displacement */
8963 opcode[1] = opcode[0] + 0x10;
8964 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
8965 where_to_put_displacement = &opcode[2];
8966 break;
8967
8968 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
8969 extension = 3; /* 2 opcode + 2 displacement */
8970 opcode[1] = opcode[0] + 0x10;
8971 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
8972 where_to_put_displacement = &opcode[2];
8973 break;
8974
8975 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
8976 extension = 4;
8977 opcode[0] ^= 1;
8978 opcode[1] = 3;
8979 opcode[2] = 0xe9;
8980 where_to_put_displacement = &opcode[3];
8981 break;
8982
8983 default:
8984 BAD_CASE (fragP->fr_subtype);
8985 break;
8986 }
8987 }
8988
8989 /* If size if less then four we are sure that the operand fits,
8990 but if it's 4, then it could be that the displacement is larger
8991 then -/+ 2GB. */
8992 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
8993 && object_64bit
8994 && ((addressT) (displacement_from_opcode_start - extension
8995 + ((addressT) 1 << 31))
8996 > (((addressT) 2 << 31) - 1)))
8997 {
8998 as_bad_where (fragP->fr_file, fragP->fr_line,
8999 _("jump target out of range"));
9000 /* Make us emit 0. */
9001 displacement_from_opcode_start = extension;
9002 }
9003 /* Now put displacement after opcode. */
9004 md_number_to_chars ((char *) where_to_put_displacement,
9005 (valueT) (displacement_from_opcode_start - extension),
9006 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9007 fragP->fr_fix += extension;
9008 }
9009 \f
9010 /* Apply a fixup (fixP) to segment data, once it has been determined
9011 by our caller that we have all the info we need to fix it up.
9012
9013 Parameter valP is the pointer to the value of the bits.
9014
9015 On the 386, immediates, displacements, and data pointers are all in
9016 the same (little-endian) format, so we don't need to care about which
9017 we are handling. */
9018
9019 void
9020 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9021 {
9022 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9023 valueT value = *valP;
9024
9025 #if !defined (TE_Mach)
9026 if (fixP->fx_pcrel)
9027 {
9028 switch (fixP->fx_r_type)
9029 {
9030 default:
9031 break;
9032
9033 case BFD_RELOC_64:
9034 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9035 break;
9036 case BFD_RELOC_32:
9037 case BFD_RELOC_X86_64_32S:
9038 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9039 break;
9040 case BFD_RELOC_16:
9041 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9042 break;
9043 case BFD_RELOC_8:
9044 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9045 break;
9046 }
9047 }
9048
9049 if (fixP->fx_addsy != NULL
9050 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9051 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9052 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9053 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9054 && !use_rela_relocations)
9055 {
9056 /* This is a hack. There should be a better way to handle this.
9057 This covers for the fact that bfd_install_relocation will
9058 subtract the current location (for partial_inplace, PC relative
9059 relocations); see more below. */
9060 #ifndef OBJ_AOUT
9061 if (IS_ELF
9062 #ifdef TE_PE
9063 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9064 #endif
9065 )
9066 value += fixP->fx_where + fixP->fx_frag->fr_address;
9067 #endif
9068 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9069 if (IS_ELF)
9070 {
9071 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9072
9073 if ((sym_seg == seg
9074 || (symbol_section_p (fixP->fx_addsy)
9075 && sym_seg != absolute_section))
9076 && !generic_force_reloc (fixP))
9077 {
9078 /* Yes, we add the values in twice. This is because
9079 bfd_install_relocation subtracts them out again. I think
9080 bfd_install_relocation is broken, but I don't dare change
9081 it. FIXME. */
9082 value += fixP->fx_where + fixP->fx_frag->fr_address;
9083 }
9084 }
9085 #endif
9086 #if defined (OBJ_COFF) && defined (TE_PE)
9087 /* For some reason, the PE format does not store a
9088 section address offset for a PC relative symbol. */
9089 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9090 || S_IS_WEAK (fixP->fx_addsy))
9091 value += md_pcrel_from (fixP);
9092 #endif
9093 }
9094 #if defined (OBJ_COFF) && defined (TE_PE)
9095 if (fixP->fx_addsy != NULL
9096 && S_IS_WEAK (fixP->fx_addsy)
9097 /* PR 16858: Do not modify weak function references. */
9098 && ! fixP->fx_pcrel)
9099 {
9100 #if !defined (TE_PEP)
9101 /* For x86 PE weak function symbols are neither PC-relative
9102 nor do they set S_IS_FUNCTION. So the only reliable way
9103 to detect them is to check the flags of their containing
9104 section. */
9105 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9106 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9107 ;
9108 else
9109 #endif
9110 value -= S_GET_VALUE (fixP->fx_addsy);
9111 }
9112 #endif
9113
9114 /* Fix a few things - the dynamic linker expects certain values here,
9115 and we must not disappoint it. */
9116 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9117 if (IS_ELF && fixP->fx_addsy)
9118 switch (fixP->fx_r_type)
9119 {
9120 case BFD_RELOC_386_PLT32:
9121 case BFD_RELOC_X86_64_PLT32:
9122 /* Make the jump instruction point to the address of the operand. At
9123 runtime we merely add the offset to the actual PLT entry. */
9124 value = -4;
9125 break;
9126
9127 case BFD_RELOC_386_TLS_GD:
9128 case BFD_RELOC_386_TLS_LDM:
9129 case BFD_RELOC_386_TLS_IE_32:
9130 case BFD_RELOC_386_TLS_IE:
9131 case BFD_RELOC_386_TLS_GOTIE:
9132 case BFD_RELOC_386_TLS_GOTDESC:
9133 case BFD_RELOC_X86_64_TLSGD:
9134 case BFD_RELOC_X86_64_TLSLD:
9135 case BFD_RELOC_X86_64_GOTTPOFF:
9136 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9137 value = 0; /* Fully resolved at runtime. No addend. */
9138 /* Fallthrough */
9139 case BFD_RELOC_386_TLS_LE:
9140 case BFD_RELOC_386_TLS_LDO_32:
9141 case BFD_RELOC_386_TLS_LE_32:
9142 case BFD_RELOC_X86_64_DTPOFF32:
9143 case BFD_RELOC_X86_64_DTPOFF64:
9144 case BFD_RELOC_X86_64_TPOFF32:
9145 case BFD_RELOC_X86_64_TPOFF64:
9146 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9147 break;
9148
9149 case BFD_RELOC_386_TLS_DESC_CALL:
9150 case BFD_RELOC_X86_64_TLSDESC_CALL:
9151 value = 0; /* Fully resolved at runtime. No addend. */
9152 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9153 fixP->fx_done = 0;
9154 return;
9155
9156 case BFD_RELOC_386_GOT32:
9157 case BFD_RELOC_X86_64_GOT32:
9158 value = 0; /* Fully resolved at runtime. No addend. */
9159 break;
9160
9161 case BFD_RELOC_VTABLE_INHERIT:
9162 case BFD_RELOC_VTABLE_ENTRY:
9163 fixP->fx_done = 0;
9164 return;
9165
9166 default:
9167 break;
9168 }
9169 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9170 *valP = value;
9171 #endif /* !defined (TE_Mach) */
9172
9173 /* Are we finished with this relocation now? */
9174 if (fixP->fx_addsy == NULL)
9175 fixP->fx_done = 1;
9176 #if defined (OBJ_COFF) && defined (TE_PE)
9177 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9178 {
9179 fixP->fx_done = 0;
9180 /* Remember value for tc_gen_reloc. */
9181 fixP->fx_addnumber = value;
9182 /* Clear out the frag for now. */
9183 value = 0;
9184 }
9185 #endif
9186 else if (use_rela_relocations)
9187 {
9188 fixP->fx_no_overflow = 1;
9189 /* Remember value for tc_gen_reloc. */
9190 fixP->fx_addnumber = value;
9191 value = 0;
9192 }
9193
9194 md_number_to_chars (p, value, fixP->fx_size);
9195 }
9196 \f
9197 char *
9198 md_atof (int type, char *litP, int *sizeP)
9199 {
9200 /* This outputs the LITTLENUMs in REVERSE order;
9201 in accord with the bigendian 386. */
9202 return ieee_md_atof (type, litP, sizeP, FALSE);
9203 }
9204 \f
9205 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9206
9207 static char *
9208 output_invalid (int c)
9209 {
9210 if (ISPRINT (c))
9211 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9212 "'%c'", c);
9213 else
9214 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9215 "(0x%x)", (unsigned char) c);
9216 return output_invalid_buf;
9217 }
9218
9219 /* REG_STRING starts *before* REGISTER_PREFIX. */
9220
9221 static const reg_entry *
9222 parse_real_register (char *reg_string, char **end_op)
9223 {
9224 char *s = reg_string;
9225 char *p;
9226 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9227 const reg_entry *r;
9228
9229 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9230 if (*s == REGISTER_PREFIX)
9231 ++s;
9232
9233 if (is_space_char (*s))
9234 ++s;
9235
9236 p = reg_name_given;
9237 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9238 {
9239 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9240 return (const reg_entry *) NULL;
9241 s++;
9242 }
9243
9244 /* For naked regs, make sure that we are not dealing with an identifier.
9245 This prevents confusing an identifier like `eax_var' with register
9246 `eax'. */
9247 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9248 return (const reg_entry *) NULL;
9249
9250 *end_op = s;
9251
9252 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9253
9254 /* Handle floating point regs, allowing spaces in the (i) part. */
9255 if (r == i386_regtab /* %st is first entry of table */)
9256 {
9257 if (is_space_char (*s))
9258 ++s;
9259 if (*s == '(')
9260 {
9261 ++s;
9262 if (is_space_char (*s))
9263 ++s;
9264 if (*s >= '0' && *s <= '7')
9265 {
9266 int fpr = *s - '0';
9267 ++s;
9268 if (is_space_char (*s))
9269 ++s;
9270 if (*s == ')')
9271 {
9272 *end_op = s + 1;
9273 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9274 know (r);
9275 return r + fpr;
9276 }
9277 }
9278 /* We have "%st(" then garbage. */
9279 return (const reg_entry *) NULL;
9280 }
9281 }
9282
9283 if (r == NULL || allow_pseudo_reg)
9284 return r;
9285
9286 if (operand_type_all_zero (&r->reg_type))
9287 return (const reg_entry *) NULL;
9288
9289 if ((r->reg_type.bitfield.reg32
9290 || r->reg_type.bitfield.sreg3
9291 || r->reg_type.bitfield.control
9292 || r->reg_type.bitfield.debug
9293 || r->reg_type.bitfield.test)
9294 && !cpu_arch_flags.bitfield.cpui386)
9295 return (const reg_entry *) NULL;
9296
9297 if (r->reg_type.bitfield.floatreg
9298 && !cpu_arch_flags.bitfield.cpu8087
9299 && !cpu_arch_flags.bitfield.cpu287
9300 && !cpu_arch_flags.bitfield.cpu387)
9301 return (const reg_entry *) NULL;
9302
9303 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
9304 return (const reg_entry *) NULL;
9305
9306 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
9307 return (const reg_entry *) NULL;
9308
9309 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
9310 return (const reg_entry *) NULL;
9311
9312 if ((r->reg_type.bitfield.regzmm || r->reg_type.bitfield.regmask)
9313 && !cpu_arch_flags.bitfield.cpuavx512f)
9314 return (const reg_entry *) NULL;
9315
9316 /* Don't allow fake index register unless allow_index_reg isn't 0. */
9317 if (!allow_index_reg
9318 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9319 return (const reg_entry *) NULL;
9320
9321 /* Upper 16 vector register is only available with VREX in 64bit
9322 mode. */
9323 if ((r->reg_flags & RegVRex))
9324 {
9325 if (!cpu_arch_flags.bitfield.cpuvrex
9326 || flag_code != CODE_64BIT)
9327 return (const reg_entry *) NULL;
9328
9329 i.need_vrex = 1;
9330 }
9331
9332 if (((r->reg_flags & (RegRex64 | RegRex))
9333 || r->reg_type.bitfield.reg64)
9334 && (!cpu_arch_flags.bitfield.cpulm
9335 || !operand_type_equal (&r->reg_type, &control))
9336 && flag_code != CODE_64BIT)
9337 return (const reg_entry *) NULL;
9338
9339 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9340 return (const reg_entry *) NULL;
9341
9342 return r;
9343 }
9344
9345 /* REG_STRING starts *before* REGISTER_PREFIX. */
9346
9347 static const reg_entry *
9348 parse_register (char *reg_string, char **end_op)
9349 {
9350 const reg_entry *r;
9351
9352 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9353 r = parse_real_register (reg_string, end_op);
9354 else
9355 r = NULL;
9356 if (!r)
9357 {
9358 char *save = input_line_pointer;
9359 char c;
9360 symbolS *symbolP;
9361
9362 input_line_pointer = reg_string;
9363 c = get_symbol_end ();
9364 symbolP = symbol_find (reg_string);
9365 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9366 {
9367 const expressionS *e = symbol_get_value_expression (symbolP);
9368
9369 know (e->X_op == O_register);
9370 know (e->X_add_number >= 0
9371 && (valueT) e->X_add_number < i386_regtab_size);
9372 r = i386_regtab + e->X_add_number;
9373 if ((r->reg_flags & RegVRex))
9374 i.need_vrex = 1;
9375 *end_op = input_line_pointer;
9376 }
9377 *input_line_pointer = c;
9378 input_line_pointer = save;
9379 }
9380 return r;
9381 }
9382
9383 int
9384 i386_parse_name (char *name, expressionS *e, char *nextcharP)
9385 {
9386 const reg_entry *r;
9387 char *end = input_line_pointer;
9388
9389 *end = *nextcharP;
9390 r = parse_register (name, &input_line_pointer);
9391 if (r && end <= input_line_pointer)
9392 {
9393 *nextcharP = *input_line_pointer;
9394 *input_line_pointer = 0;
9395 e->X_op = O_register;
9396 e->X_add_number = r - i386_regtab;
9397 return 1;
9398 }
9399 input_line_pointer = end;
9400 *end = 0;
9401 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
9402 }
9403
9404 void
9405 md_operand (expressionS *e)
9406 {
9407 char *end;
9408 const reg_entry *r;
9409
9410 switch (*input_line_pointer)
9411 {
9412 case REGISTER_PREFIX:
9413 r = parse_real_register (input_line_pointer, &end);
9414 if (r)
9415 {
9416 e->X_op = O_register;
9417 e->X_add_number = r - i386_regtab;
9418 input_line_pointer = end;
9419 }
9420 break;
9421
9422 case '[':
9423 gas_assert (intel_syntax);
9424 end = input_line_pointer++;
9425 expression (e);
9426 if (*input_line_pointer == ']')
9427 {
9428 ++input_line_pointer;
9429 e->X_op_symbol = make_expr_symbol (e);
9430 e->X_add_symbol = NULL;
9431 e->X_add_number = 0;
9432 e->X_op = O_index;
9433 }
9434 else
9435 {
9436 e->X_op = O_absent;
9437 input_line_pointer = end;
9438 }
9439 break;
9440 }
9441 }
9442
9443 \f
9444 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9445 const char *md_shortopts = "kVQ:sqn";
9446 #else
9447 const char *md_shortopts = "qn";
9448 #endif
9449
9450 #define OPTION_32 (OPTION_MD_BASE + 0)
9451 #define OPTION_64 (OPTION_MD_BASE + 1)
9452 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9453 #define OPTION_MARCH (OPTION_MD_BASE + 3)
9454 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
9455 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9456 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9457 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9458 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9459 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9460 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9461 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9462 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9463 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9464 #define OPTION_X32 (OPTION_MD_BASE + 14)
9465 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9466 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9467 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9468 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
9469 #define OPTION_OMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
9470 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
9471
9472 struct option md_longopts[] =
9473 {
9474 {"32", no_argument, NULL, OPTION_32},
9475 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9476 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9477 {"64", no_argument, NULL, OPTION_64},
9478 #endif
9479 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9480 {"x32", no_argument, NULL, OPTION_X32},
9481 #endif
9482 {"divide", no_argument, NULL, OPTION_DIVIDE},
9483 {"march", required_argument, NULL, OPTION_MARCH},
9484 {"mtune", required_argument, NULL, OPTION_MTUNE},
9485 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9486 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9487 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9488 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9489 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
9490 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
9491 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
9492 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
9493 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
9494 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
9495 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
9496 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
9497 # if defined (TE_PE) || defined (TE_PEP)
9498 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
9499 #endif
9500 {"momit-lock-prefix", required_argument, NULL, OPTION_OMIT_LOCK_PREFIX},
9501 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
9502 {NULL, no_argument, NULL, 0}
9503 };
9504 size_t md_longopts_size = sizeof (md_longopts);
9505
9506 int
9507 md_parse_option (int c, char *arg)
9508 {
9509 unsigned int j;
9510 char *arch, *next;
9511
9512 switch (c)
9513 {
9514 case 'n':
9515 optimize_align_code = 0;
9516 break;
9517
9518 case 'q':
9519 quiet_warnings = 1;
9520 break;
9521
9522 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9523 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
9524 should be emitted or not. FIXME: Not implemented. */
9525 case 'Q':
9526 break;
9527
9528 /* -V: SVR4 argument to print version ID. */
9529 case 'V':
9530 print_version_id ();
9531 break;
9532
9533 /* -k: Ignore for FreeBSD compatibility. */
9534 case 'k':
9535 break;
9536
9537 case 's':
9538 /* -s: On i386 Solaris, this tells the native assembler to use
9539 .stab instead of .stab.excl. We always use .stab anyhow. */
9540 break;
9541 #endif
9542 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9543 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9544 case OPTION_64:
9545 {
9546 const char **list, **l;
9547
9548 list = bfd_target_list ();
9549 for (l = list; *l != NULL; l++)
9550 if (CONST_STRNEQ (*l, "elf64-x86-64")
9551 || strcmp (*l, "coff-x86-64") == 0
9552 || strcmp (*l, "pe-x86-64") == 0
9553 || strcmp (*l, "pei-x86-64") == 0
9554 || strcmp (*l, "mach-o-x86-64") == 0)
9555 {
9556 default_arch = "x86_64";
9557 break;
9558 }
9559 if (*l == NULL)
9560 as_fatal (_("no compiled in support for x86_64"));
9561 free (list);
9562 }
9563 break;
9564 #endif
9565
9566 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9567 case OPTION_X32:
9568 if (IS_ELF)
9569 {
9570 const char **list, **l;
9571
9572 list = bfd_target_list ();
9573 for (l = list; *l != NULL; l++)
9574 if (CONST_STRNEQ (*l, "elf32-x86-64"))
9575 {
9576 default_arch = "x86_64:32";
9577 break;
9578 }
9579 if (*l == NULL)
9580 as_fatal (_("no compiled in support for 32bit x86_64"));
9581 free (list);
9582 }
9583 else
9584 as_fatal (_("32bit x86_64 is only supported for ELF"));
9585 break;
9586 #endif
9587
9588 case OPTION_32:
9589 default_arch = "i386";
9590 break;
9591
9592 case OPTION_DIVIDE:
9593 #ifdef SVR4_COMMENT_CHARS
9594 {
9595 char *n, *t;
9596 const char *s;
9597
9598 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
9599 t = n;
9600 for (s = i386_comment_chars; *s != '\0'; s++)
9601 if (*s != '/')
9602 *t++ = *s;
9603 *t = '\0';
9604 i386_comment_chars = n;
9605 }
9606 #endif
9607 break;
9608
9609 case OPTION_MARCH:
9610 arch = xstrdup (arg);
9611 do
9612 {
9613 if (*arch == '.')
9614 as_fatal (_("invalid -march= option: `%s'"), arg);
9615 next = strchr (arch, '+');
9616 if (next)
9617 *next++ = '\0';
9618 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9619 {
9620 if (strcmp (arch, cpu_arch [j].name) == 0)
9621 {
9622 /* Processor. */
9623 if (! cpu_arch[j].flags.bitfield.cpui386)
9624 continue;
9625
9626 cpu_arch_name = cpu_arch[j].name;
9627 cpu_sub_arch_name = NULL;
9628 cpu_arch_flags = cpu_arch[j].flags;
9629 cpu_arch_isa = cpu_arch[j].type;
9630 cpu_arch_isa_flags = cpu_arch[j].flags;
9631 if (!cpu_arch_tune_set)
9632 {
9633 cpu_arch_tune = cpu_arch_isa;
9634 cpu_arch_tune_flags = cpu_arch_isa_flags;
9635 }
9636 break;
9637 }
9638 else if (*cpu_arch [j].name == '.'
9639 && strcmp (arch, cpu_arch [j].name + 1) == 0)
9640 {
9641 /* ISA entension. */
9642 i386_cpu_flags flags;
9643
9644 if (!cpu_arch[j].negated)
9645 flags = cpu_flags_or (cpu_arch_flags,
9646 cpu_arch[j].flags);
9647 else
9648 flags = cpu_flags_and_not (cpu_arch_flags,
9649 cpu_arch[j].flags);
9650 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
9651 {
9652 if (cpu_sub_arch_name)
9653 {
9654 char *name = cpu_sub_arch_name;
9655 cpu_sub_arch_name = concat (name,
9656 cpu_arch[j].name,
9657 (const char *) NULL);
9658 free (name);
9659 }
9660 else
9661 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
9662 cpu_arch_flags = flags;
9663 cpu_arch_isa_flags = flags;
9664 }
9665 break;
9666 }
9667 }
9668
9669 if (j >= ARRAY_SIZE (cpu_arch))
9670 as_fatal (_("invalid -march= option: `%s'"), arg);
9671
9672 arch = next;
9673 }
9674 while (next != NULL );
9675 break;
9676
9677 case OPTION_MTUNE:
9678 if (*arg == '.')
9679 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9680 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9681 {
9682 if (strcmp (arg, cpu_arch [j].name) == 0)
9683 {
9684 cpu_arch_tune_set = 1;
9685 cpu_arch_tune = cpu_arch [j].type;
9686 cpu_arch_tune_flags = cpu_arch[j].flags;
9687 break;
9688 }
9689 }
9690 if (j >= ARRAY_SIZE (cpu_arch))
9691 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9692 break;
9693
9694 case OPTION_MMNEMONIC:
9695 if (strcasecmp (arg, "att") == 0)
9696 intel_mnemonic = 0;
9697 else if (strcasecmp (arg, "intel") == 0)
9698 intel_mnemonic = 1;
9699 else
9700 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
9701 break;
9702
9703 case OPTION_MSYNTAX:
9704 if (strcasecmp (arg, "att") == 0)
9705 intel_syntax = 0;
9706 else if (strcasecmp (arg, "intel") == 0)
9707 intel_syntax = 1;
9708 else
9709 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
9710 break;
9711
9712 case OPTION_MINDEX_REG:
9713 allow_index_reg = 1;
9714 break;
9715
9716 case OPTION_MNAKED_REG:
9717 allow_naked_reg = 1;
9718 break;
9719
9720 case OPTION_MOLD_GCC:
9721 old_gcc = 1;
9722 break;
9723
9724 case OPTION_MSSE2AVX:
9725 sse2avx = 1;
9726 break;
9727
9728 case OPTION_MSSE_CHECK:
9729 if (strcasecmp (arg, "error") == 0)
9730 sse_check = check_error;
9731 else if (strcasecmp (arg, "warning") == 0)
9732 sse_check = check_warning;
9733 else if (strcasecmp (arg, "none") == 0)
9734 sse_check = check_none;
9735 else
9736 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
9737 break;
9738
9739 case OPTION_MOPERAND_CHECK:
9740 if (strcasecmp (arg, "error") == 0)
9741 operand_check = check_error;
9742 else if (strcasecmp (arg, "warning") == 0)
9743 operand_check = check_warning;
9744 else if (strcasecmp (arg, "none") == 0)
9745 operand_check = check_none;
9746 else
9747 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
9748 break;
9749
9750 case OPTION_MAVXSCALAR:
9751 if (strcasecmp (arg, "128") == 0)
9752 avxscalar = vex128;
9753 else if (strcasecmp (arg, "256") == 0)
9754 avxscalar = vex256;
9755 else
9756 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
9757 break;
9758
9759 case OPTION_MADD_BND_PREFIX:
9760 add_bnd_prefix = 1;
9761 break;
9762
9763 case OPTION_MEVEXLIG:
9764 if (strcmp (arg, "128") == 0)
9765 evexlig = evexl128;
9766 else if (strcmp (arg, "256") == 0)
9767 evexlig = evexl256;
9768 else if (strcmp (arg, "512") == 0)
9769 evexlig = evexl512;
9770 else
9771 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
9772 break;
9773
9774 case OPTION_MEVEXRCIG:
9775 if (strcmp (arg, "rne") == 0)
9776 evexrcig = rne;
9777 else if (strcmp (arg, "rd") == 0)
9778 evexrcig = rd;
9779 else if (strcmp (arg, "ru") == 0)
9780 evexrcig = ru;
9781 else if (strcmp (arg, "rz") == 0)
9782 evexrcig = rz;
9783 else
9784 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
9785 break;
9786
9787 case OPTION_MEVEXWIG:
9788 if (strcmp (arg, "0") == 0)
9789 evexwig = evexw0;
9790 else if (strcmp (arg, "1") == 0)
9791 evexwig = evexw1;
9792 else
9793 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
9794 break;
9795
9796 # if defined (TE_PE) || defined (TE_PEP)
9797 case OPTION_MBIG_OBJ:
9798 use_big_obj = 1;
9799 break;
9800 #endif
9801
9802 case OPTION_OMIT_LOCK_PREFIX:
9803 if (strcasecmp (arg, "yes") == 0)
9804 omit_lock_prefix = 1;
9805 else if (strcasecmp (arg, "no") == 0)
9806 omit_lock_prefix = 0;
9807 else
9808 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
9809 break;
9810
9811 default:
9812 return 0;
9813 }
9814 return 1;
9815 }
9816
9817 #define MESSAGE_TEMPLATE \
9818 " "
9819
9820 static void
9821 show_arch (FILE *stream, int ext, int check)
9822 {
9823 static char message[] = MESSAGE_TEMPLATE;
9824 char *start = message + 27;
9825 char *p;
9826 int size = sizeof (MESSAGE_TEMPLATE);
9827 int left;
9828 const char *name;
9829 int len;
9830 unsigned int j;
9831
9832 p = start;
9833 left = size - (start - message);
9834 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9835 {
9836 /* Should it be skipped? */
9837 if (cpu_arch [j].skip)
9838 continue;
9839
9840 name = cpu_arch [j].name;
9841 len = cpu_arch [j].len;
9842 if (*name == '.')
9843 {
9844 /* It is an extension. Skip if we aren't asked to show it. */
9845 if (ext)
9846 {
9847 name++;
9848 len--;
9849 }
9850 else
9851 continue;
9852 }
9853 else if (ext)
9854 {
9855 /* It is an processor. Skip if we show only extension. */
9856 continue;
9857 }
9858 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
9859 {
9860 /* It is an impossible processor - skip. */
9861 continue;
9862 }
9863
9864 /* Reserve 2 spaces for ", " or ",\0" */
9865 left -= len + 2;
9866
9867 /* Check if there is any room. */
9868 if (left >= 0)
9869 {
9870 if (p != start)
9871 {
9872 *p++ = ',';
9873 *p++ = ' ';
9874 }
9875 p = mempcpy (p, name, len);
9876 }
9877 else
9878 {
9879 /* Output the current message now and start a new one. */
9880 *p++ = ',';
9881 *p = '\0';
9882 fprintf (stream, "%s\n", message);
9883 p = start;
9884 left = size - (start - message) - len - 2;
9885
9886 gas_assert (left >= 0);
9887
9888 p = mempcpy (p, name, len);
9889 }
9890 }
9891
9892 *p = '\0';
9893 fprintf (stream, "%s\n", message);
9894 }
9895
9896 void
9897 md_show_usage (FILE *stream)
9898 {
9899 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9900 fprintf (stream, _("\
9901 -Q ignored\n\
9902 -V print assembler version number\n\
9903 -k ignored\n"));
9904 #endif
9905 fprintf (stream, _("\
9906 -n Do not optimize code alignment\n\
9907 -q quieten some warnings\n"));
9908 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9909 fprintf (stream, _("\
9910 -s ignored\n"));
9911 #endif
9912 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9913 || defined (TE_PE) || defined (TE_PEP))
9914 fprintf (stream, _("\
9915 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
9916 #endif
9917 #ifdef SVR4_COMMENT_CHARS
9918 fprintf (stream, _("\
9919 --divide do not treat `/' as a comment character\n"));
9920 #else
9921 fprintf (stream, _("\
9922 --divide ignored\n"));
9923 #endif
9924 fprintf (stream, _("\
9925 -march=CPU[,+EXTENSION...]\n\
9926 generate code for CPU and EXTENSION, CPU is one of:\n"));
9927 show_arch (stream, 0, 1);
9928 fprintf (stream, _("\
9929 EXTENSION is combination of:\n"));
9930 show_arch (stream, 1, 0);
9931 fprintf (stream, _("\
9932 -mtune=CPU optimize for CPU, CPU is one of:\n"));
9933 show_arch (stream, 0, 0);
9934 fprintf (stream, _("\
9935 -msse2avx encode SSE instructions with VEX prefix\n"));
9936 fprintf (stream, _("\
9937 -msse-check=[none|error|warning]\n\
9938 check SSE instructions\n"));
9939 fprintf (stream, _("\
9940 -moperand-check=[none|error|warning]\n\
9941 check operand combinations for validity\n"));
9942 fprintf (stream, _("\
9943 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
9944 length\n"));
9945 fprintf (stream, _("\
9946 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
9947 length\n"));
9948 fprintf (stream, _("\
9949 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
9950 for EVEX.W bit ignored instructions\n"));
9951 fprintf (stream, _("\
9952 -mevexrcig=[rne|rd|ru|rz]\n\
9953 encode EVEX instructions with specific EVEX.RC value\n\
9954 for SAE-only ignored instructions\n"));
9955 fprintf (stream, _("\
9956 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
9957 fprintf (stream, _("\
9958 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
9959 fprintf (stream, _("\
9960 -mindex-reg support pseudo index registers\n"));
9961 fprintf (stream, _("\
9962 -mnaked-reg don't require `%%' prefix for registers\n"));
9963 fprintf (stream, _("\
9964 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
9965 fprintf (stream, _("\
9966 -madd-bnd-prefix add BND prefix for all valid branches\n"));
9967 # if defined (TE_PE) || defined (TE_PEP)
9968 fprintf (stream, _("\
9969 -mbig-obj generate big object files\n"));
9970 #endif
9971 fprintf (stream, _("\
9972 -momit-lock-prefix=[no|yes]\n\
9973 strip all lock prefixes\n"));
9974 }
9975
9976 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
9977 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9978 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9979
9980 /* Pick the target format to use. */
9981
9982 const char *
9983 i386_target_format (void)
9984 {
9985 if (!strncmp (default_arch, "x86_64", 6))
9986 {
9987 update_code_flag (CODE_64BIT, 1);
9988 if (default_arch[6] == '\0')
9989 x86_elf_abi = X86_64_ABI;
9990 else
9991 x86_elf_abi = X86_64_X32_ABI;
9992 }
9993 else if (!strcmp (default_arch, "i386"))
9994 update_code_flag (CODE_32BIT, 1);
9995 else
9996 as_fatal (_("unknown architecture"));
9997
9998 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
9999 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10000 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10001 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10002
10003 switch (OUTPUT_FLAVOR)
10004 {
10005 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10006 case bfd_target_aout_flavour:
10007 return AOUT_TARGET_FORMAT;
10008 #endif
10009 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10010 # if defined (TE_PE) || defined (TE_PEP)
10011 case bfd_target_coff_flavour:
10012 if (flag_code == CODE_64BIT)
10013 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10014 else
10015 return "pe-i386";
10016 # elif defined (TE_GO32)
10017 case bfd_target_coff_flavour:
10018 return "coff-go32";
10019 # else
10020 case bfd_target_coff_flavour:
10021 return "coff-i386";
10022 # endif
10023 #endif
10024 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10025 case bfd_target_elf_flavour:
10026 {
10027 const char *format;
10028
10029 switch (x86_elf_abi)
10030 {
10031 default:
10032 format = ELF_TARGET_FORMAT;
10033 break;
10034 case X86_64_ABI:
10035 use_rela_relocations = 1;
10036 object_64bit = 1;
10037 format = ELF_TARGET_FORMAT64;
10038 break;
10039 case X86_64_X32_ABI:
10040 use_rela_relocations = 1;
10041 object_64bit = 1;
10042 disallow_64bit_reloc = 1;
10043 format = ELF_TARGET_FORMAT32;
10044 break;
10045 }
10046 if (cpu_arch_isa == PROCESSOR_L1OM)
10047 {
10048 if (x86_elf_abi != X86_64_ABI)
10049 as_fatal (_("Intel L1OM is 64bit only"));
10050 return ELF_TARGET_L1OM_FORMAT;
10051 }
10052 if (cpu_arch_isa == PROCESSOR_K1OM)
10053 {
10054 if (x86_elf_abi != X86_64_ABI)
10055 as_fatal (_("Intel K1OM is 64bit only"));
10056 return ELF_TARGET_K1OM_FORMAT;
10057 }
10058 else
10059 return format;
10060 }
10061 #endif
10062 #if defined (OBJ_MACH_O)
10063 case bfd_target_mach_o_flavour:
10064 if (flag_code == CODE_64BIT)
10065 {
10066 use_rela_relocations = 1;
10067 object_64bit = 1;
10068 return "mach-o-x86-64";
10069 }
10070 else
10071 return "mach-o-i386";
10072 #endif
10073 default:
10074 abort ();
10075 return NULL;
10076 }
10077 }
10078
10079 #endif /* OBJ_MAYBE_ more than one */
10080
10081 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
10082 void
10083 i386_elf_emit_arch_note (void)
10084 {
10085 if (IS_ELF && cpu_arch_name != NULL)
10086 {
10087 char *p;
10088 asection *seg = now_seg;
10089 subsegT subseg = now_subseg;
10090 Elf_Internal_Note i_note;
10091 Elf_External_Note e_note;
10092 asection *note_secp;
10093 int len;
10094
10095 /* Create the .note section. */
10096 note_secp = subseg_new (".note", 0);
10097 bfd_set_section_flags (stdoutput,
10098 note_secp,
10099 SEC_HAS_CONTENTS | SEC_READONLY);
10100
10101 /* Process the arch string. */
10102 len = strlen (cpu_arch_name);
10103
10104 i_note.namesz = len + 1;
10105 i_note.descsz = 0;
10106 i_note.type = NT_ARCH;
10107 p = frag_more (sizeof (e_note.namesz));
10108 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
10109 p = frag_more (sizeof (e_note.descsz));
10110 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
10111 p = frag_more (sizeof (e_note.type));
10112 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
10113 p = frag_more (len + 1);
10114 strcpy (p, cpu_arch_name);
10115
10116 frag_align (2, 0, 0);
10117
10118 subseg_set (seg, subseg);
10119 }
10120 }
10121 #endif
10122 \f
10123 symbolS *
10124 md_undefined_symbol (char *name)
10125 {
10126 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10127 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10128 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10129 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10130 {
10131 if (!GOT_symbol)
10132 {
10133 if (symbol_find (name))
10134 as_bad (_("GOT already in symbol table"));
10135 GOT_symbol = symbol_new (name, undefined_section,
10136 (valueT) 0, &zero_address_frag);
10137 };
10138 return GOT_symbol;
10139 }
10140 return 0;
10141 }
10142
10143 /* Round up a section size to the appropriate boundary. */
10144
10145 valueT
10146 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10147 {
10148 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10149 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10150 {
10151 /* For a.out, force the section size to be aligned. If we don't do
10152 this, BFD will align it for us, but it will not write out the
10153 final bytes of the section. This may be a bug in BFD, but it is
10154 easier to fix it here since that is how the other a.out targets
10155 work. */
10156 int align;
10157
10158 align = bfd_get_section_alignment (stdoutput, segment);
10159 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
10160 }
10161 #endif
10162
10163 return size;
10164 }
10165
10166 /* On the i386, PC-relative offsets are relative to the start of the
10167 next instruction. That is, the address of the offset, plus its
10168 size, since the offset is always the last part of the insn. */
10169
10170 long
10171 md_pcrel_from (fixS *fixP)
10172 {
10173 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10174 }
10175
10176 #ifndef I386COFF
10177
10178 static void
10179 s_bss (int ignore ATTRIBUTE_UNUSED)
10180 {
10181 int temp;
10182
10183 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10184 if (IS_ELF)
10185 obj_elf_section_change_hook ();
10186 #endif
10187 temp = get_absolute_expression ();
10188 subseg_set (bss_section, (subsegT) temp);
10189 demand_empty_rest_of_line ();
10190 }
10191
10192 #endif
10193
10194 void
10195 i386_validate_fix (fixS *fixp)
10196 {
10197 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
10198 {
10199 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10200 {
10201 if (!object_64bit)
10202 abort ();
10203 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10204 }
10205 else
10206 {
10207 if (!object_64bit)
10208 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10209 else
10210 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10211 }
10212 fixp->fx_subsy = 0;
10213 }
10214 }
10215
10216 arelent *
10217 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10218 {
10219 arelent *rel;
10220 bfd_reloc_code_real_type code;
10221
10222 switch (fixp->fx_r_type)
10223 {
10224 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10225 case BFD_RELOC_SIZE32:
10226 case BFD_RELOC_SIZE64:
10227 if (S_IS_DEFINED (fixp->fx_addsy)
10228 && !S_IS_EXTERNAL (fixp->fx_addsy))
10229 {
10230 /* Resolve size relocation against local symbol to size of
10231 the symbol plus addend. */
10232 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10233 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10234 && !fits_in_unsigned_long (value))
10235 as_bad_where (fixp->fx_file, fixp->fx_line,
10236 _("symbol size computation overflow"));
10237 fixp->fx_addsy = NULL;
10238 fixp->fx_subsy = NULL;
10239 md_apply_fix (fixp, (valueT *) &value, NULL);
10240 return NULL;
10241 }
10242 #endif
10243
10244 case BFD_RELOC_X86_64_PLT32:
10245 case BFD_RELOC_X86_64_GOT32:
10246 case BFD_RELOC_X86_64_GOTPCREL:
10247 case BFD_RELOC_386_PLT32:
10248 case BFD_RELOC_386_GOT32:
10249 case BFD_RELOC_386_GOTOFF:
10250 case BFD_RELOC_386_GOTPC:
10251 case BFD_RELOC_386_TLS_GD:
10252 case BFD_RELOC_386_TLS_LDM:
10253 case BFD_RELOC_386_TLS_LDO_32:
10254 case BFD_RELOC_386_TLS_IE_32:
10255 case BFD_RELOC_386_TLS_IE:
10256 case BFD_RELOC_386_TLS_GOTIE:
10257 case BFD_RELOC_386_TLS_LE_32:
10258 case BFD_RELOC_386_TLS_LE:
10259 case BFD_RELOC_386_TLS_GOTDESC:
10260 case BFD_RELOC_386_TLS_DESC_CALL:
10261 case BFD_RELOC_X86_64_TLSGD:
10262 case BFD_RELOC_X86_64_TLSLD:
10263 case BFD_RELOC_X86_64_DTPOFF32:
10264 case BFD_RELOC_X86_64_DTPOFF64:
10265 case BFD_RELOC_X86_64_GOTTPOFF:
10266 case BFD_RELOC_X86_64_TPOFF32:
10267 case BFD_RELOC_X86_64_TPOFF64:
10268 case BFD_RELOC_X86_64_GOTOFF64:
10269 case BFD_RELOC_X86_64_GOTPC32:
10270 case BFD_RELOC_X86_64_GOT64:
10271 case BFD_RELOC_X86_64_GOTPCREL64:
10272 case BFD_RELOC_X86_64_GOTPC64:
10273 case BFD_RELOC_X86_64_GOTPLT64:
10274 case BFD_RELOC_X86_64_PLTOFF64:
10275 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10276 case BFD_RELOC_X86_64_TLSDESC_CALL:
10277 case BFD_RELOC_RVA:
10278 case BFD_RELOC_VTABLE_ENTRY:
10279 case BFD_RELOC_VTABLE_INHERIT:
10280 #ifdef TE_PE
10281 case BFD_RELOC_32_SECREL:
10282 #endif
10283 code = fixp->fx_r_type;
10284 break;
10285 case BFD_RELOC_X86_64_32S:
10286 if (!fixp->fx_pcrel)
10287 {
10288 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10289 code = fixp->fx_r_type;
10290 break;
10291 }
10292 default:
10293 if (fixp->fx_pcrel)
10294 {
10295 switch (fixp->fx_size)
10296 {
10297 default:
10298 as_bad_where (fixp->fx_file, fixp->fx_line,
10299 _("can not do %d byte pc-relative relocation"),
10300 fixp->fx_size);
10301 code = BFD_RELOC_32_PCREL;
10302 break;
10303 case 1: code = BFD_RELOC_8_PCREL; break;
10304 case 2: code = BFD_RELOC_16_PCREL; break;
10305 case 4: code = BFD_RELOC_32_PCREL; break;
10306 #ifdef BFD64
10307 case 8: code = BFD_RELOC_64_PCREL; break;
10308 #endif
10309 }
10310 }
10311 else
10312 {
10313 switch (fixp->fx_size)
10314 {
10315 default:
10316 as_bad_where (fixp->fx_file, fixp->fx_line,
10317 _("can not do %d byte relocation"),
10318 fixp->fx_size);
10319 code = BFD_RELOC_32;
10320 break;
10321 case 1: code = BFD_RELOC_8; break;
10322 case 2: code = BFD_RELOC_16; break;
10323 case 4: code = BFD_RELOC_32; break;
10324 #ifdef BFD64
10325 case 8: code = BFD_RELOC_64; break;
10326 #endif
10327 }
10328 }
10329 break;
10330 }
10331
10332 if ((code == BFD_RELOC_32
10333 || code == BFD_RELOC_32_PCREL
10334 || code == BFD_RELOC_X86_64_32S)
10335 && GOT_symbol
10336 && fixp->fx_addsy == GOT_symbol)
10337 {
10338 if (!object_64bit)
10339 code = BFD_RELOC_386_GOTPC;
10340 else
10341 code = BFD_RELOC_X86_64_GOTPC32;
10342 }
10343 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10344 && GOT_symbol
10345 && fixp->fx_addsy == GOT_symbol)
10346 {
10347 code = BFD_RELOC_X86_64_GOTPC64;
10348 }
10349
10350 rel = (arelent *) xmalloc (sizeof (arelent));
10351 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
10352 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10353
10354 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
10355
10356 if (!use_rela_relocations)
10357 {
10358 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10359 vtable entry to be used in the relocation's section offset. */
10360 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10361 rel->address = fixp->fx_offset;
10362 #if defined (OBJ_COFF) && defined (TE_PE)
10363 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10364 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10365 else
10366 #endif
10367 rel->addend = 0;
10368 }
10369 /* Use the rela in 64bit mode. */
10370 else
10371 {
10372 if (disallow_64bit_reloc)
10373 switch (code)
10374 {
10375 case BFD_RELOC_X86_64_DTPOFF64:
10376 case BFD_RELOC_X86_64_TPOFF64:
10377 case BFD_RELOC_64_PCREL:
10378 case BFD_RELOC_X86_64_GOTOFF64:
10379 case BFD_RELOC_X86_64_GOT64:
10380 case BFD_RELOC_X86_64_GOTPCREL64:
10381 case BFD_RELOC_X86_64_GOTPC64:
10382 case BFD_RELOC_X86_64_GOTPLT64:
10383 case BFD_RELOC_X86_64_PLTOFF64:
10384 as_bad_where (fixp->fx_file, fixp->fx_line,
10385 _("cannot represent relocation type %s in x32 mode"),
10386 bfd_get_reloc_code_name (code));
10387 break;
10388 default:
10389 break;
10390 }
10391
10392 if (!fixp->fx_pcrel)
10393 rel->addend = fixp->fx_offset;
10394 else
10395 switch (code)
10396 {
10397 case BFD_RELOC_X86_64_PLT32:
10398 case BFD_RELOC_X86_64_GOT32:
10399 case BFD_RELOC_X86_64_GOTPCREL:
10400 case BFD_RELOC_X86_64_TLSGD:
10401 case BFD_RELOC_X86_64_TLSLD:
10402 case BFD_RELOC_X86_64_GOTTPOFF:
10403 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10404 case BFD_RELOC_X86_64_TLSDESC_CALL:
10405 rel->addend = fixp->fx_offset - fixp->fx_size;
10406 break;
10407 default:
10408 rel->addend = (section->vma
10409 - fixp->fx_size
10410 + fixp->fx_addnumber
10411 + md_pcrel_from (fixp));
10412 break;
10413 }
10414 }
10415
10416 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
10417 if (rel->howto == NULL)
10418 {
10419 as_bad_where (fixp->fx_file, fixp->fx_line,
10420 _("cannot represent relocation type %s"),
10421 bfd_get_reloc_code_name (code));
10422 /* Set howto to a garbage value so that we can keep going. */
10423 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
10424 gas_assert (rel->howto != NULL);
10425 }
10426
10427 return rel;
10428 }
10429
10430 #include "tc-i386-intel.c"
10431
10432 void
10433 tc_x86_parse_to_dw2regnum (expressionS *exp)
10434 {
10435 int saved_naked_reg;
10436 char saved_register_dot;
10437
10438 saved_naked_reg = allow_naked_reg;
10439 allow_naked_reg = 1;
10440 saved_register_dot = register_chars['.'];
10441 register_chars['.'] = '.';
10442 allow_pseudo_reg = 1;
10443 expression_and_evaluate (exp);
10444 allow_pseudo_reg = 0;
10445 register_chars['.'] = saved_register_dot;
10446 allow_naked_reg = saved_naked_reg;
10447
10448 if (exp->X_op == O_register && exp->X_add_number >= 0)
10449 {
10450 if ((addressT) exp->X_add_number < i386_regtab_size)
10451 {
10452 exp->X_op = O_constant;
10453 exp->X_add_number = i386_regtab[exp->X_add_number]
10454 .dw2_regnum[flag_code >> 1];
10455 }
10456 else
10457 exp->X_op = O_illegal;
10458 }
10459 }
10460
10461 void
10462 tc_x86_frame_initial_instructions (void)
10463 {
10464 static unsigned int sp_regno[2];
10465
10466 if (!sp_regno[flag_code >> 1])
10467 {
10468 char *saved_input = input_line_pointer;
10469 char sp[][4] = {"esp", "rsp"};
10470 expressionS exp;
10471
10472 input_line_pointer = sp[flag_code >> 1];
10473 tc_x86_parse_to_dw2regnum (&exp);
10474 gas_assert (exp.X_op == O_constant);
10475 sp_regno[flag_code >> 1] = exp.X_add_number;
10476 input_line_pointer = saved_input;
10477 }
10478
10479 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
10480 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
10481 }
10482
10483 int
10484 x86_dwarf2_addr_size (void)
10485 {
10486 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10487 if (x86_elf_abi == X86_64_X32_ABI)
10488 return 4;
10489 #endif
10490 return bfd_arch_bits_per_address (stdoutput) / 8;
10491 }
10492
10493 int
10494 i386_elf_section_type (const char *str, size_t len)
10495 {
10496 if (flag_code == CODE_64BIT
10497 && len == sizeof ("unwind") - 1
10498 && strncmp (str, "unwind", 6) == 0)
10499 return SHT_X86_64_UNWIND;
10500
10501 return -1;
10502 }
10503
10504 #ifdef TE_SOLARIS
10505 void
10506 i386_solaris_fix_up_eh_frame (segT sec)
10507 {
10508 if (flag_code == CODE_64BIT)
10509 elf_section_type (sec) = SHT_X86_64_UNWIND;
10510 }
10511 #endif
10512
10513 #ifdef TE_PE
10514 void
10515 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10516 {
10517 expressionS exp;
10518
10519 exp.X_op = O_secrel;
10520 exp.X_add_symbol = symbol;
10521 exp.X_add_number = 0;
10522 emit_expr (&exp, size);
10523 }
10524 #endif
10525
10526 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10527 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
10528
10529 bfd_vma
10530 x86_64_section_letter (int letter, char **ptr_msg)
10531 {
10532 if (flag_code == CODE_64BIT)
10533 {
10534 if (letter == 'l')
10535 return SHF_X86_64_LARGE;
10536
10537 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
10538 }
10539 else
10540 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
10541 return -1;
10542 }
10543
10544 bfd_vma
10545 x86_64_section_word (char *str, size_t len)
10546 {
10547 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
10548 return SHF_X86_64_LARGE;
10549
10550 return -1;
10551 }
10552
10553 static void
10554 handle_large_common (int small ATTRIBUTE_UNUSED)
10555 {
10556 if (flag_code != CODE_64BIT)
10557 {
10558 s_comm_internal (0, elf_common_parse);
10559 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
10560 }
10561 else
10562 {
10563 static segT lbss_section;
10564 asection *saved_com_section_ptr = elf_com_section_ptr;
10565 asection *saved_bss_section = bss_section;
10566
10567 if (lbss_section == NULL)
10568 {
10569 flagword applicable;
10570 segT seg = now_seg;
10571 subsegT subseg = now_subseg;
10572
10573 /* The .lbss section is for local .largecomm symbols. */
10574 lbss_section = subseg_new (".lbss", 0);
10575 applicable = bfd_applicable_section_flags (stdoutput);
10576 bfd_set_section_flags (stdoutput, lbss_section,
10577 applicable & SEC_ALLOC);
10578 seg_info (lbss_section)->bss = 1;
10579
10580 subseg_set (seg, subseg);
10581 }
10582
10583 elf_com_section_ptr = &_bfd_elf_large_com_section;
10584 bss_section = lbss_section;
10585
10586 s_comm_internal (0, elf_common_parse);
10587
10588 elf_com_section_ptr = saved_com_section_ptr;
10589 bss_section = saved_bss_section;
10590 }
10591 }
10592 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.385296 seconds and 5 git commands to generate.