Properly handle EVEX register aliases
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2014 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 #define XMMWORD_MNEM_SUFFIX 'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 #define ZMMWORD_MNEM_SUFFIX 'z'
87 /* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91 #define END_OF_INSN '\0'
92
93 /*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100 typedef struct
101 {
102 const insn_template *start;
103 const insn_template *end;
104 }
105 templates;
106
107 /* 386 operand encoding bytes: see 386 book for details of this. */
108 typedef struct
109 {
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113 }
114 modrm_byte;
115
116 /* x86-64 extension prefix. */
117 typedef int rex_byte;
118
119 /* 386 opcode byte to code indirect addressing. */
120 typedef struct
121 {
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125 }
126 sib_byte;
127
128 /* x86 arch names, types and features */
129 typedef struct
130 {
131 const char *name; /* arch name */
132 unsigned int len; /* arch string length */
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
135 unsigned int skip; /* show_arch should skip this. */
136 unsigned int negated; /* turn off indicated flags. */
137 }
138 arch_entry;
139
140 static void update_code_flag (int, int);
141 static void set_code_flag (int);
142 static void set_16bit_gcc_code_flag (int);
143 static void set_intel_syntax (int);
144 static void set_intel_mnemonic (int);
145 static void set_allow_index_reg (int);
146 static void set_check (int);
147 static void set_cpu_arch (int);
148 #ifdef TE_PE
149 static void pe_directive_secrel (int);
150 #endif
151 static void signed_cons (int);
152 static char *output_invalid (int c);
153 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
154 const char *);
155 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
156 const char *);
157 static int i386_att_operand (char *);
158 static int i386_intel_operand (char *, int);
159 static int i386_intel_simplify (expressionS *);
160 static int i386_intel_parse_name (const char *, expressionS *);
161 static const reg_entry *parse_register (char *, char **);
162 static char *parse_insn (char *, char *);
163 static char *parse_operands (char *, const char *);
164 static void swap_operands (void);
165 static void swap_2_operands (int, int);
166 static void optimize_imm (void);
167 static void optimize_disp (void);
168 static const insn_template *match_template (void);
169 static int check_string (void);
170 static int process_suffix (void);
171 static int check_byte_reg (void);
172 static int check_long_reg (void);
173 static int check_qword_reg (void);
174 static int check_word_reg (void);
175 static int finalize_imm (void);
176 static int process_operands (void);
177 static const seg_entry *build_modrm_byte (void);
178 static void output_insn (void);
179 static void output_imm (fragS *, offsetT);
180 static void output_disp (fragS *, offsetT);
181 #ifndef I386COFF
182 static void s_bss (int);
183 #endif
184 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
185 static void handle_large_common (int small ATTRIBUTE_UNUSED);
186 #endif
187
188 static const char *default_arch = DEFAULT_ARCH;
189
190 /* This struct describes rounding control and SAE in the instruction. */
191 struct RC_Operation
192 {
193 enum rc_type
194 {
195 rne = 0,
196 rd,
197 ru,
198 rz,
199 saeonly
200 } type;
201 int operand;
202 };
203
204 static struct RC_Operation rc_op;
205
206 /* The struct describes masking, applied to OPERAND in the instruction.
207 MASK is a pointer to the corresponding mask register. ZEROING tells
208 whether merging or zeroing mask is used. */
209 struct Mask_Operation
210 {
211 const reg_entry *mask;
212 unsigned int zeroing;
213 /* The operand where this operation is associated. */
214 int operand;
215 };
216
217 static struct Mask_Operation mask_op;
218
219 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
220 broadcast factor. */
221 struct Broadcast_Operation
222 {
223 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
224 int type;
225
226 /* Index of broadcasted operand. */
227 int operand;
228 };
229
230 static struct Broadcast_Operation broadcast_op;
231
232 /* VEX prefix. */
233 typedef struct
234 {
235 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
236 unsigned char bytes[4];
237 unsigned int length;
238 /* Destination or source register specifier. */
239 const reg_entry *register_specifier;
240 } vex_prefix;
241
242 /* 'md_assemble ()' gathers together information and puts it into a
243 i386_insn. */
244
245 union i386_op
246 {
247 expressionS *disps;
248 expressionS *imms;
249 const reg_entry *regs;
250 };
251
252 enum i386_error
253 {
254 operand_size_mismatch,
255 operand_type_mismatch,
256 register_type_mismatch,
257 number_of_operands_mismatch,
258 invalid_instruction_suffix,
259 bad_imm4,
260 old_gcc_only,
261 unsupported_with_intel_mnemonic,
262 unsupported_syntax,
263 unsupported,
264 invalid_vsib_address,
265 invalid_vector_register_set,
266 unsupported_vector_index_register,
267 unsupported_broadcast,
268 broadcast_not_on_src_operand,
269 broadcast_needed,
270 unsupported_masking,
271 mask_not_on_destination,
272 no_default_mask,
273 unsupported_rc_sae,
274 rc_sae_operand_not_last_imm,
275 invalid_register_operand,
276 try_vector_disp8
277 };
278
279 struct _i386_insn
280 {
281 /* TM holds the template for the insn were currently assembling. */
282 insn_template tm;
283
284 /* SUFFIX holds the instruction size suffix for byte, word, dword
285 or qword, if given. */
286 char suffix;
287
288 /* OPERANDS gives the number of given operands. */
289 unsigned int operands;
290
291 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
292 of given register, displacement, memory operands and immediate
293 operands. */
294 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
295
296 /* TYPES [i] is the type (see above #defines) which tells us how to
297 use OP[i] for the corresponding operand. */
298 i386_operand_type types[MAX_OPERANDS];
299
300 /* Displacement expression, immediate expression, or register for each
301 operand. */
302 union i386_op op[MAX_OPERANDS];
303
304 /* Flags for operands. */
305 unsigned int flags[MAX_OPERANDS];
306 #define Operand_PCrel 1
307
308 /* Relocation type for operand */
309 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
310
311 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
312 the base index byte below. */
313 const reg_entry *base_reg;
314 const reg_entry *index_reg;
315 unsigned int log2_scale_factor;
316
317 /* SEG gives the seg_entries of this insn. They are zero unless
318 explicit segment overrides are given. */
319 const seg_entry *seg[2];
320
321 /* PREFIX holds all the given prefix opcodes (usually null).
322 PREFIXES is the number of prefix opcodes. */
323 unsigned int prefixes;
324 unsigned char prefix[MAX_PREFIXES];
325
326 /* RM and SIB are the modrm byte and the sib byte where the
327 addressing modes of this insn are encoded. */
328 modrm_byte rm;
329 rex_byte rex;
330 rex_byte vrex;
331 sib_byte sib;
332 vex_prefix vex;
333
334 /* Masking attributes. */
335 struct Mask_Operation *mask;
336
337 /* Rounding control and SAE attributes. */
338 struct RC_Operation *rounding;
339
340 /* Broadcasting attributes. */
341 struct Broadcast_Operation *broadcast;
342
343 /* Compressed disp8*N attribute. */
344 unsigned int memshift;
345
346 /* Swap operand in encoding. */
347 unsigned int swap_operand;
348
349 /* Prefer 8bit or 32bit displacement in encoding. */
350 enum
351 {
352 disp_encoding_default = 0,
353 disp_encoding_8bit,
354 disp_encoding_32bit
355 } disp_encoding;
356
357 /* REP prefix. */
358 const char *rep_prefix;
359
360 /* HLE prefix. */
361 const char *hle_prefix;
362
363 /* Have BND prefix. */
364 const char *bnd_prefix;
365
366 /* Need VREX to support upper 16 registers. */
367 int need_vrex;
368
369 /* Error message. */
370 enum i386_error error;
371 };
372
373 typedef struct _i386_insn i386_insn;
374
375 /* Link RC type with corresponding string, that'll be looked for in
376 asm. */
377 struct RC_name
378 {
379 enum rc_type type;
380 const char *name;
381 unsigned int len;
382 };
383
384 static const struct RC_name RC_NamesTable[] =
385 {
386 { rne, STRING_COMMA_LEN ("rn-sae") },
387 { rd, STRING_COMMA_LEN ("rd-sae") },
388 { ru, STRING_COMMA_LEN ("ru-sae") },
389 { rz, STRING_COMMA_LEN ("rz-sae") },
390 { saeonly, STRING_COMMA_LEN ("sae") },
391 };
392
393 /* List of chars besides those in app.c:symbol_chars that can start an
394 operand. Used to prevent the scrubber eating vital white-space. */
395 const char extra_symbol_chars[] = "*%-([{"
396 #ifdef LEX_AT
397 "@"
398 #endif
399 #ifdef LEX_QM
400 "?"
401 #endif
402 ;
403
404 #if (defined (TE_I386AIX) \
405 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
406 && !defined (TE_GNU) \
407 && !defined (TE_LINUX) \
408 && !defined (TE_NACL) \
409 && !defined (TE_NETWARE) \
410 && !defined (TE_FreeBSD) \
411 && !defined (TE_DragonFly) \
412 && !defined (TE_NetBSD)))
413 /* This array holds the chars that always start a comment. If the
414 pre-processor is disabled, these aren't very useful. The option
415 --divide will remove '/' from this list. */
416 const char *i386_comment_chars = "#/";
417 #define SVR4_COMMENT_CHARS 1
418 #define PREFIX_SEPARATOR '\\'
419
420 #else
421 const char *i386_comment_chars = "#";
422 #define PREFIX_SEPARATOR '/'
423 #endif
424
425 /* This array holds the chars that only start a comment at the beginning of
426 a line. If the line seems to have the form '# 123 filename'
427 .line and .file directives will appear in the pre-processed output.
428 Note that input_file.c hand checks for '#' at the beginning of the
429 first line of the input file. This is because the compiler outputs
430 #NO_APP at the beginning of its output.
431 Also note that comments started like this one will always work if
432 '/' isn't otherwise defined. */
433 const char line_comment_chars[] = "#/";
434
435 const char line_separator_chars[] = ";";
436
437 /* Chars that can be used to separate mant from exp in floating point
438 nums. */
439 const char EXP_CHARS[] = "eE";
440
441 /* Chars that mean this number is a floating point constant
442 As in 0f12.456
443 or 0d1.2345e12. */
444 const char FLT_CHARS[] = "fFdDxX";
445
446 /* Tables for lexical analysis. */
447 static char mnemonic_chars[256];
448 static char register_chars[256];
449 static char operand_chars[256];
450 static char identifier_chars[256];
451 static char digit_chars[256];
452
453 /* Lexical macros. */
454 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
455 #define is_operand_char(x) (operand_chars[(unsigned char) x])
456 #define is_register_char(x) (register_chars[(unsigned char) x])
457 #define is_space_char(x) ((x) == ' ')
458 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
459 #define is_digit_char(x) (digit_chars[(unsigned char) x])
460
461 /* All non-digit non-letter characters that may occur in an operand. */
462 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
463
464 /* md_assemble() always leaves the strings it's passed unaltered. To
465 effect this we maintain a stack of saved characters that we've smashed
466 with '\0's (indicating end of strings for various sub-fields of the
467 assembler instruction). */
468 static char save_stack[32];
469 static char *save_stack_p;
470 #define END_STRING_AND_SAVE(s) \
471 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
472 #define RESTORE_END_STRING(s) \
473 do { *(s) = *--save_stack_p; } while (0)
474
475 /* The instruction we're assembling. */
476 static i386_insn i;
477
478 /* Possible templates for current insn. */
479 static const templates *current_templates;
480
481 /* Per instruction expressionS buffers: max displacements & immediates. */
482 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
483 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
484
485 /* Current operand we are working on. */
486 static int this_operand = -1;
487
488 /* We support four different modes. FLAG_CODE variable is used to distinguish
489 these. */
490
491 enum flag_code {
492 CODE_32BIT,
493 CODE_16BIT,
494 CODE_64BIT };
495
496 static enum flag_code flag_code;
497 static unsigned int object_64bit;
498 static unsigned int disallow_64bit_reloc;
499 static int use_rela_relocations = 0;
500
501 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
502 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
503 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
504
505 /* The ELF ABI to use. */
506 enum x86_elf_abi
507 {
508 I386_ABI,
509 X86_64_ABI,
510 X86_64_X32_ABI
511 };
512
513 static enum x86_elf_abi x86_elf_abi = I386_ABI;
514 #endif
515
516 #if defined (TE_PE) || defined (TE_PEP)
517 /* Use big object file format. */
518 static int use_big_obj = 0;
519 #endif
520
521 /* 1 for intel syntax,
522 0 if att syntax. */
523 static int intel_syntax = 0;
524
525 /* 1 for intel mnemonic,
526 0 if att mnemonic. */
527 static int intel_mnemonic = !SYSV386_COMPAT;
528
529 /* 1 if support old (<= 2.8.1) versions of gcc. */
530 static int old_gcc = OLDGCC_COMPAT;
531
532 /* 1 if pseudo registers are permitted. */
533 static int allow_pseudo_reg = 0;
534
535 /* 1 if register prefix % not required. */
536 static int allow_naked_reg = 0;
537
538 /* 1 if the assembler should add BND prefix for all control-tranferring
539 instructions supporting it, even if this prefix wasn't specified
540 explicitly. */
541 static int add_bnd_prefix = 0;
542
543 /* 1 if pseudo index register, eiz/riz, is allowed . */
544 static int allow_index_reg = 0;
545
546 static enum check_kind
547 {
548 check_none = 0,
549 check_warning,
550 check_error
551 }
552 sse_check, operand_check = check_warning;
553
554 /* Register prefix used for error message. */
555 static const char *register_prefix = "%";
556
557 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
558 leave, push, and pop instructions so that gcc has the same stack
559 frame as in 32 bit mode. */
560 static char stackop_size = '\0';
561
562 /* Non-zero to optimize code alignment. */
563 int optimize_align_code = 1;
564
565 /* Non-zero to quieten some warnings. */
566 static int quiet_warnings = 0;
567
568 /* CPU name. */
569 static const char *cpu_arch_name = NULL;
570 static char *cpu_sub_arch_name = NULL;
571
572 /* CPU feature flags. */
573 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
574
575 /* If we have selected a cpu we are generating instructions for. */
576 static int cpu_arch_tune_set = 0;
577
578 /* Cpu we are generating instructions for. */
579 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
580
581 /* CPU feature flags of cpu we are generating instructions for. */
582 static i386_cpu_flags cpu_arch_tune_flags;
583
584 /* CPU instruction set architecture used. */
585 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
586
587 /* CPU feature flags of instruction set architecture used. */
588 i386_cpu_flags cpu_arch_isa_flags;
589
590 /* If set, conditional jumps are not automatically promoted to handle
591 larger than a byte offset. */
592 static unsigned int no_cond_jump_promotion = 0;
593
594 /* Encode SSE instructions with VEX prefix. */
595 static unsigned int sse2avx;
596
597 /* Encode scalar AVX instructions with specific vector length. */
598 static enum
599 {
600 vex128 = 0,
601 vex256
602 } avxscalar;
603
604 /* Encode scalar EVEX LIG instructions with specific vector length. */
605 static enum
606 {
607 evexl128 = 0,
608 evexl256,
609 evexl512
610 } evexlig;
611
612 /* Encode EVEX WIG instructions with specific evex.w. */
613 static enum
614 {
615 evexw0 = 0,
616 evexw1
617 } evexwig;
618
619 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
620 static symbolS *GOT_symbol;
621
622 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
623 unsigned int x86_dwarf2_return_column;
624
625 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
626 int x86_cie_data_alignment;
627
628 /* Interface to relax_segment.
629 There are 3 major relax states for 386 jump insns because the
630 different types of jumps add different sizes to frags when we're
631 figuring out what sort of jump to choose to reach a given label. */
632
633 /* Types. */
634 #define UNCOND_JUMP 0
635 #define COND_JUMP 1
636 #define COND_JUMP86 2
637
638 /* Sizes. */
639 #define CODE16 1
640 #define SMALL 0
641 #define SMALL16 (SMALL | CODE16)
642 #define BIG 2
643 #define BIG16 (BIG | CODE16)
644
645 #ifndef INLINE
646 #ifdef __GNUC__
647 #define INLINE __inline__
648 #else
649 #define INLINE
650 #endif
651 #endif
652
653 #define ENCODE_RELAX_STATE(type, size) \
654 ((relax_substateT) (((type) << 2) | (size)))
655 #define TYPE_FROM_RELAX_STATE(s) \
656 ((s) >> 2)
657 #define DISP_SIZE_FROM_RELAX_STATE(s) \
658 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
659
660 /* This table is used by relax_frag to promote short jumps to long
661 ones where necessary. SMALL (short) jumps may be promoted to BIG
662 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
663 don't allow a short jump in a 32 bit code segment to be promoted to
664 a 16 bit offset jump because it's slower (requires data size
665 prefix), and doesn't work, unless the destination is in the bottom
666 64k of the code segment (The top 16 bits of eip are zeroed). */
667
668 const relax_typeS md_relax_table[] =
669 {
670 /* The fields are:
671 1) most positive reach of this state,
672 2) most negative reach of this state,
673 3) how many bytes this mode will have in the variable part of the frag
674 4) which index into the table to try if we can't fit into this one. */
675
676 /* UNCOND_JUMP states. */
677 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
678 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
679 /* dword jmp adds 4 bytes to frag:
680 0 extra opcode bytes, 4 displacement bytes. */
681 {0, 0, 4, 0},
682 /* word jmp adds 2 byte2 to frag:
683 0 extra opcode bytes, 2 displacement bytes. */
684 {0, 0, 2, 0},
685
686 /* COND_JUMP states. */
687 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
688 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
689 /* dword conditionals adds 5 bytes to frag:
690 1 extra opcode byte, 4 displacement bytes. */
691 {0, 0, 5, 0},
692 /* word conditionals add 3 bytes to frag:
693 1 extra opcode byte, 2 displacement bytes. */
694 {0, 0, 3, 0},
695
696 /* COND_JUMP86 states. */
697 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
698 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
699 /* dword conditionals adds 5 bytes to frag:
700 1 extra opcode byte, 4 displacement bytes. */
701 {0, 0, 5, 0},
702 /* word conditionals add 4 bytes to frag:
703 1 displacement byte and a 3 byte long branch insn. */
704 {0, 0, 4, 0}
705 };
706
707 static const arch_entry cpu_arch[] =
708 {
709 /* Do not replace the first two entries - i386_target_format()
710 relies on them being there in this order. */
711 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
712 CPU_GENERIC32_FLAGS, 0, 0 },
713 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
714 CPU_GENERIC64_FLAGS, 0, 0 },
715 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
716 CPU_NONE_FLAGS, 0, 0 },
717 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
718 CPU_I186_FLAGS, 0, 0 },
719 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
720 CPU_I286_FLAGS, 0, 0 },
721 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
722 CPU_I386_FLAGS, 0, 0 },
723 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
724 CPU_I486_FLAGS, 0, 0 },
725 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
726 CPU_I586_FLAGS, 0, 0 },
727 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
728 CPU_I686_FLAGS, 0, 0 },
729 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
730 CPU_I586_FLAGS, 0, 0 },
731 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
732 CPU_PENTIUMPRO_FLAGS, 0, 0 },
733 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
734 CPU_P2_FLAGS, 0, 0 },
735 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
736 CPU_P3_FLAGS, 0, 0 },
737 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
738 CPU_P4_FLAGS, 0, 0 },
739 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
740 CPU_CORE_FLAGS, 0, 0 },
741 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
742 CPU_NOCONA_FLAGS, 0, 0 },
743 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
744 CPU_CORE_FLAGS, 1, 0 },
745 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
746 CPU_CORE_FLAGS, 0, 0 },
747 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
748 CPU_CORE2_FLAGS, 1, 0 },
749 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
750 CPU_CORE2_FLAGS, 0, 0 },
751 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
752 CPU_COREI7_FLAGS, 0, 0 },
753 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
754 CPU_L1OM_FLAGS, 0, 0 },
755 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
756 CPU_K1OM_FLAGS, 0, 0 },
757 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
758 CPU_K6_FLAGS, 0, 0 },
759 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
760 CPU_K6_2_FLAGS, 0, 0 },
761 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
762 CPU_ATHLON_FLAGS, 0, 0 },
763 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
764 CPU_K8_FLAGS, 1, 0 },
765 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
766 CPU_K8_FLAGS, 0, 0 },
767 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
768 CPU_K8_FLAGS, 0, 0 },
769 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
770 CPU_AMDFAM10_FLAGS, 0, 0 },
771 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
772 CPU_BDVER1_FLAGS, 0, 0 },
773 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
774 CPU_BDVER2_FLAGS, 0, 0 },
775 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
776 CPU_BDVER3_FLAGS, 0, 0 },
777 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
778 CPU_BDVER4_FLAGS, 0, 0 },
779 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
780 CPU_BTVER1_FLAGS, 0, 0 },
781 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
782 CPU_BTVER2_FLAGS, 0, 0 },
783 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
784 CPU_8087_FLAGS, 0, 0 },
785 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
786 CPU_287_FLAGS, 0, 0 },
787 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
788 CPU_387_FLAGS, 0, 0 },
789 { STRING_COMMA_LEN (".no87"), PROCESSOR_UNKNOWN,
790 CPU_ANY87_FLAGS, 0, 1 },
791 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
792 CPU_MMX_FLAGS, 0, 0 },
793 { STRING_COMMA_LEN (".nommx"), PROCESSOR_UNKNOWN,
794 CPU_3DNOWA_FLAGS, 0, 1 },
795 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
796 CPU_SSE_FLAGS, 0, 0 },
797 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
798 CPU_SSE2_FLAGS, 0, 0 },
799 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
800 CPU_SSE3_FLAGS, 0, 0 },
801 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
802 CPU_SSSE3_FLAGS, 0, 0 },
803 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
804 CPU_SSE4_1_FLAGS, 0, 0 },
805 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
806 CPU_SSE4_2_FLAGS, 0, 0 },
807 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
808 CPU_SSE4_2_FLAGS, 0, 0 },
809 { STRING_COMMA_LEN (".nosse"), PROCESSOR_UNKNOWN,
810 CPU_ANY_SSE_FLAGS, 0, 1 },
811 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
812 CPU_AVX_FLAGS, 0, 0 },
813 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
814 CPU_AVX2_FLAGS, 0, 0 },
815 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
816 CPU_AVX512F_FLAGS, 0, 0 },
817 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
818 CPU_AVX512CD_FLAGS, 0, 0 },
819 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
820 CPU_AVX512ER_FLAGS, 0, 0 },
821 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
822 CPU_AVX512PF_FLAGS, 0, 0 },
823 { STRING_COMMA_LEN (".noavx"), PROCESSOR_UNKNOWN,
824 CPU_ANY_AVX_FLAGS, 0, 1 },
825 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
826 CPU_VMX_FLAGS, 0, 0 },
827 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
828 CPU_VMFUNC_FLAGS, 0, 0 },
829 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
830 CPU_SMX_FLAGS, 0, 0 },
831 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
832 CPU_XSAVE_FLAGS, 0, 0 },
833 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
834 CPU_XSAVEOPT_FLAGS, 0, 0 },
835 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
836 CPU_AES_FLAGS, 0, 0 },
837 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
838 CPU_PCLMUL_FLAGS, 0, 0 },
839 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
840 CPU_PCLMUL_FLAGS, 1, 0 },
841 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
842 CPU_FSGSBASE_FLAGS, 0, 0 },
843 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
844 CPU_RDRND_FLAGS, 0, 0 },
845 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
846 CPU_F16C_FLAGS, 0, 0 },
847 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
848 CPU_BMI2_FLAGS, 0, 0 },
849 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
850 CPU_FMA_FLAGS, 0, 0 },
851 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
852 CPU_FMA4_FLAGS, 0, 0 },
853 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
854 CPU_XOP_FLAGS, 0, 0 },
855 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
856 CPU_LWP_FLAGS, 0, 0 },
857 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
858 CPU_MOVBE_FLAGS, 0, 0 },
859 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
860 CPU_CX16_FLAGS, 0, 0 },
861 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
862 CPU_EPT_FLAGS, 0, 0 },
863 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
864 CPU_LZCNT_FLAGS, 0, 0 },
865 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
866 CPU_HLE_FLAGS, 0, 0 },
867 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
868 CPU_RTM_FLAGS, 0, 0 },
869 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
870 CPU_INVPCID_FLAGS, 0, 0 },
871 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
872 CPU_CLFLUSH_FLAGS, 0, 0 },
873 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
874 CPU_NOP_FLAGS, 0, 0 },
875 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
876 CPU_SYSCALL_FLAGS, 0, 0 },
877 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
878 CPU_RDTSCP_FLAGS, 0, 0 },
879 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
880 CPU_3DNOW_FLAGS, 0, 0 },
881 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
882 CPU_3DNOWA_FLAGS, 0, 0 },
883 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
884 CPU_PADLOCK_FLAGS, 0, 0 },
885 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
886 CPU_SVME_FLAGS, 1, 0 },
887 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
888 CPU_SVME_FLAGS, 0, 0 },
889 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
890 CPU_SSE4A_FLAGS, 0, 0 },
891 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
892 CPU_ABM_FLAGS, 0, 0 },
893 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
894 CPU_BMI_FLAGS, 0, 0 },
895 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
896 CPU_TBM_FLAGS, 0, 0 },
897 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
898 CPU_ADX_FLAGS, 0, 0 },
899 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
900 CPU_RDSEED_FLAGS, 0, 0 },
901 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
902 CPU_PRFCHW_FLAGS, 0, 0 },
903 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
904 CPU_SMAP_FLAGS, 0, 0 },
905 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
906 CPU_MPX_FLAGS, 0, 0 },
907 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
908 CPU_SHA_FLAGS, 0, 0 },
909 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
910 CPU_CLFLUSHOPT_FLAGS, 0, 0 },
911 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
912 CPU_XSAVEC_FLAGS, 0, 0 },
913 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
914 CPU_XSAVES_FLAGS, 0, 0 },
915 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
916 CPU_PREFETCHWT1_FLAGS, 0, 0 },
917 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
918 CPU_SE1_FLAGS, 0, 0 },
919 };
920
921 #ifdef I386COFF
922 /* Like s_lcomm_internal in gas/read.c but the alignment string
923 is allowed to be optional. */
924
925 static symbolS *
926 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
927 {
928 addressT align = 0;
929
930 SKIP_WHITESPACE ();
931
932 if (needs_align
933 && *input_line_pointer == ',')
934 {
935 align = parse_align (needs_align - 1);
936
937 if (align == (addressT) -1)
938 return NULL;
939 }
940 else
941 {
942 if (size >= 8)
943 align = 3;
944 else if (size >= 4)
945 align = 2;
946 else if (size >= 2)
947 align = 1;
948 else
949 align = 0;
950 }
951
952 bss_alloc (symbolP, size, align);
953 return symbolP;
954 }
955
956 static void
957 pe_lcomm (int needs_align)
958 {
959 s_comm_internal (needs_align * 2, pe_lcomm_internal);
960 }
961 #endif
962
963 const pseudo_typeS md_pseudo_table[] =
964 {
965 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
966 {"align", s_align_bytes, 0},
967 #else
968 {"align", s_align_ptwo, 0},
969 #endif
970 {"arch", set_cpu_arch, 0},
971 #ifndef I386COFF
972 {"bss", s_bss, 0},
973 #else
974 {"lcomm", pe_lcomm, 1},
975 #endif
976 {"ffloat", float_cons, 'f'},
977 {"dfloat", float_cons, 'd'},
978 {"tfloat", float_cons, 'x'},
979 {"value", cons, 2},
980 {"slong", signed_cons, 4},
981 {"noopt", s_ignore, 0},
982 {"optim", s_ignore, 0},
983 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
984 {"code16", set_code_flag, CODE_16BIT},
985 {"code32", set_code_flag, CODE_32BIT},
986 {"code64", set_code_flag, CODE_64BIT},
987 {"intel_syntax", set_intel_syntax, 1},
988 {"att_syntax", set_intel_syntax, 0},
989 {"intel_mnemonic", set_intel_mnemonic, 1},
990 {"att_mnemonic", set_intel_mnemonic, 0},
991 {"allow_index_reg", set_allow_index_reg, 1},
992 {"disallow_index_reg", set_allow_index_reg, 0},
993 {"sse_check", set_check, 0},
994 {"operand_check", set_check, 1},
995 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
996 {"largecomm", handle_large_common, 0},
997 #else
998 {"file", (void (*) (int)) dwarf2_directive_file, 0},
999 {"loc", dwarf2_directive_loc, 0},
1000 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1001 #endif
1002 #ifdef TE_PE
1003 {"secrel32", pe_directive_secrel, 0},
1004 #endif
1005 {0, 0, 0}
1006 };
1007
1008 /* For interface with expression (). */
1009 extern char *input_line_pointer;
1010
1011 /* Hash table for instruction mnemonic lookup. */
1012 static struct hash_control *op_hash;
1013
1014 /* Hash table for register lookup. */
1015 static struct hash_control *reg_hash;
1016 \f
1017 void
1018 i386_align_code (fragS *fragP, int count)
1019 {
1020 /* Various efficient no-op patterns for aligning code labels.
1021 Note: Don't try to assemble the instructions in the comments.
1022 0L and 0w are not legal. */
1023 static const char f32_1[] =
1024 {0x90}; /* nop */
1025 static const char f32_2[] =
1026 {0x66,0x90}; /* xchg %ax,%ax */
1027 static const char f32_3[] =
1028 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1029 static const char f32_4[] =
1030 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1031 static const char f32_5[] =
1032 {0x90, /* nop */
1033 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1034 static const char f32_6[] =
1035 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1036 static const char f32_7[] =
1037 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1038 static const char f32_8[] =
1039 {0x90, /* nop */
1040 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1041 static const char f32_9[] =
1042 {0x89,0xf6, /* movl %esi,%esi */
1043 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1044 static const char f32_10[] =
1045 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1046 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1047 static const char f32_11[] =
1048 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1049 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1050 static const char f32_12[] =
1051 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1052 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1053 static const char f32_13[] =
1054 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1055 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1056 static const char f32_14[] =
1057 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1058 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1059 static const char f16_3[] =
1060 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1061 static const char f16_4[] =
1062 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1063 static const char f16_5[] =
1064 {0x90, /* nop */
1065 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1066 static const char f16_6[] =
1067 {0x89,0xf6, /* mov %si,%si */
1068 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1069 static const char f16_7[] =
1070 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1071 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1072 static const char f16_8[] =
1073 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1074 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1075 static const char jump_31[] =
1076 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1077 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1078 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1079 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1080 static const char *const f32_patt[] = {
1081 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1082 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1083 };
1084 static const char *const f16_patt[] = {
1085 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1086 };
1087 /* nopl (%[re]ax) */
1088 static const char alt_3[] =
1089 {0x0f,0x1f,0x00};
1090 /* nopl 0(%[re]ax) */
1091 static const char alt_4[] =
1092 {0x0f,0x1f,0x40,0x00};
1093 /* nopl 0(%[re]ax,%[re]ax,1) */
1094 static const char alt_5[] =
1095 {0x0f,0x1f,0x44,0x00,0x00};
1096 /* nopw 0(%[re]ax,%[re]ax,1) */
1097 static const char alt_6[] =
1098 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1099 /* nopl 0L(%[re]ax) */
1100 static const char alt_7[] =
1101 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1102 /* nopl 0L(%[re]ax,%[re]ax,1) */
1103 static const char alt_8[] =
1104 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1105 /* nopw 0L(%[re]ax,%[re]ax,1) */
1106 static const char alt_9[] =
1107 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1108 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1109 static const char alt_10[] =
1110 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1111 /* data16
1112 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1113 static const char alt_long_11[] =
1114 {0x66,
1115 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1116 /* data16
1117 data16
1118 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1119 static const char alt_long_12[] =
1120 {0x66,
1121 0x66,
1122 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1123 /* data16
1124 data16
1125 data16
1126 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1127 static const char alt_long_13[] =
1128 {0x66,
1129 0x66,
1130 0x66,
1131 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1132 /* data16
1133 data16
1134 data16
1135 data16
1136 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1137 static const char alt_long_14[] =
1138 {0x66,
1139 0x66,
1140 0x66,
1141 0x66,
1142 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1143 /* data16
1144 data16
1145 data16
1146 data16
1147 data16
1148 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1149 static const char alt_long_15[] =
1150 {0x66,
1151 0x66,
1152 0x66,
1153 0x66,
1154 0x66,
1155 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1156 /* nopl 0(%[re]ax,%[re]ax,1)
1157 nopw 0(%[re]ax,%[re]ax,1) */
1158 static const char alt_short_11[] =
1159 {0x0f,0x1f,0x44,0x00,0x00,
1160 0x66,0x0f,0x1f,0x44,0x00,0x00};
1161 /* nopw 0(%[re]ax,%[re]ax,1)
1162 nopw 0(%[re]ax,%[re]ax,1) */
1163 static const char alt_short_12[] =
1164 {0x66,0x0f,0x1f,0x44,0x00,0x00,
1165 0x66,0x0f,0x1f,0x44,0x00,0x00};
1166 /* nopw 0(%[re]ax,%[re]ax,1)
1167 nopl 0L(%[re]ax) */
1168 static const char alt_short_13[] =
1169 {0x66,0x0f,0x1f,0x44,0x00,0x00,
1170 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1171 /* nopl 0L(%[re]ax)
1172 nopl 0L(%[re]ax) */
1173 static const char alt_short_14[] =
1174 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
1175 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1176 /* nopl 0L(%[re]ax)
1177 nopl 0L(%[re]ax,%[re]ax,1) */
1178 static const char alt_short_15[] =
1179 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
1180 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1181 static const char *const alt_short_patt[] = {
1182 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1183 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
1184 alt_short_14, alt_short_15
1185 };
1186 static const char *const alt_long_patt[] = {
1187 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1188 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
1189 alt_long_14, alt_long_15
1190 };
1191
1192 /* Only align for at least a positive non-zero boundary. */
1193 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1194 return;
1195
1196 /* We need to decide which NOP sequence to use for 32bit and
1197 64bit. When -mtune= is used:
1198
1199 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1200 PROCESSOR_GENERIC32, f32_patt will be used.
1201 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
1202 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_COREI7, and
1203 PROCESSOR_GENERIC64, alt_long_patt will be used.
1204 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
1205 PROCESSOR_AMDFAM10, PROCESSOR_BD and PROCESSOR_BT, alt_short_patt
1206 will be used.
1207
1208 When -mtune= isn't used, alt_long_patt will be used if
1209 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1210 be used.
1211
1212 When -march= or .arch is used, we can't use anything beyond
1213 cpu_arch_isa_flags. */
1214
1215 if (flag_code == CODE_16BIT)
1216 {
1217 if (count > 8)
1218 {
1219 memcpy (fragP->fr_literal + fragP->fr_fix,
1220 jump_31, count);
1221 /* Adjust jump offset. */
1222 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1223 }
1224 else
1225 memcpy (fragP->fr_literal + fragP->fr_fix,
1226 f16_patt[count - 1], count);
1227 }
1228 else
1229 {
1230 const char *const *patt = NULL;
1231
1232 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1233 {
1234 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1235 switch (cpu_arch_tune)
1236 {
1237 case PROCESSOR_UNKNOWN:
1238 /* We use cpu_arch_isa_flags to check if we SHOULD
1239 optimize with nops. */
1240 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1241 patt = alt_long_patt;
1242 else
1243 patt = f32_patt;
1244 break;
1245 case PROCESSOR_PENTIUM4:
1246 case PROCESSOR_NOCONA:
1247 case PROCESSOR_CORE:
1248 case PROCESSOR_CORE2:
1249 case PROCESSOR_COREI7:
1250 case PROCESSOR_L1OM:
1251 case PROCESSOR_K1OM:
1252 case PROCESSOR_GENERIC64:
1253 patt = alt_long_patt;
1254 break;
1255 case PROCESSOR_K6:
1256 case PROCESSOR_ATHLON:
1257 case PROCESSOR_K8:
1258 case PROCESSOR_AMDFAM10:
1259 case PROCESSOR_BD:
1260 case PROCESSOR_BT:
1261 patt = alt_short_patt;
1262 break;
1263 case PROCESSOR_I386:
1264 case PROCESSOR_I486:
1265 case PROCESSOR_PENTIUM:
1266 case PROCESSOR_PENTIUMPRO:
1267 case PROCESSOR_GENERIC32:
1268 patt = f32_patt;
1269 break;
1270 }
1271 }
1272 else
1273 {
1274 switch (fragP->tc_frag_data.tune)
1275 {
1276 case PROCESSOR_UNKNOWN:
1277 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1278 PROCESSOR_UNKNOWN. */
1279 abort ();
1280 break;
1281
1282 case PROCESSOR_I386:
1283 case PROCESSOR_I486:
1284 case PROCESSOR_PENTIUM:
1285 case PROCESSOR_K6:
1286 case PROCESSOR_ATHLON:
1287 case PROCESSOR_K8:
1288 case PROCESSOR_AMDFAM10:
1289 case PROCESSOR_BD:
1290 case PROCESSOR_BT:
1291 case PROCESSOR_GENERIC32:
1292 /* We use cpu_arch_isa_flags to check if we CAN optimize
1293 with nops. */
1294 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1295 patt = alt_short_patt;
1296 else
1297 patt = f32_patt;
1298 break;
1299 case PROCESSOR_PENTIUMPRO:
1300 case PROCESSOR_PENTIUM4:
1301 case PROCESSOR_NOCONA:
1302 case PROCESSOR_CORE:
1303 case PROCESSOR_CORE2:
1304 case PROCESSOR_COREI7:
1305 case PROCESSOR_L1OM:
1306 case PROCESSOR_K1OM:
1307 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1308 patt = alt_long_patt;
1309 else
1310 patt = f32_patt;
1311 break;
1312 case PROCESSOR_GENERIC64:
1313 patt = alt_long_patt;
1314 break;
1315 }
1316 }
1317
1318 if (patt == f32_patt)
1319 {
1320 /* If the padding is less than 15 bytes, we use the normal
1321 ones. Otherwise, we use a jump instruction and adjust
1322 its offset. */
1323 int limit;
1324
1325 /* For 64bit, the limit is 3 bytes. */
1326 if (flag_code == CODE_64BIT
1327 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1328 limit = 3;
1329 else
1330 limit = 15;
1331 if (count < limit)
1332 memcpy (fragP->fr_literal + fragP->fr_fix,
1333 patt[count - 1], count);
1334 else
1335 {
1336 memcpy (fragP->fr_literal + fragP->fr_fix,
1337 jump_31, count);
1338 /* Adjust jump offset. */
1339 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1340 }
1341 }
1342 else
1343 {
1344 /* Maximum length of an instruction is 15 byte. If the
1345 padding is greater than 15 bytes and we don't use jump,
1346 we have to break it into smaller pieces. */
1347 int padding = count;
1348 while (padding > 15)
1349 {
1350 padding -= 15;
1351 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1352 patt [14], 15);
1353 }
1354
1355 if (padding)
1356 memcpy (fragP->fr_literal + fragP->fr_fix,
1357 patt [padding - 1], padding);
1358 }
1359 }
1360 fragP->fr_var = count;
1361 }
1362
1363 static INLINE int
1364 operand_type_all_zero (const union i386_operand_type *x)
1365 {
1366 switch (ARRAY_SIZE(x->array))
1367 {
1368 case 3:
1369 if (x->array[2])
1370 return 0;
1371 case 2:
1372 if (x->array[1])
1373 return 0;
1374 case 1:
1375 return !x->array[0];
1376 default:
1377 abort ();
1378 }
1379 }
1380
1381 static INLINE void
1382 operand_type_set (union i386_operand_type *x, unsigned int v)
1383 {
1384 switch (ARRAY_SIZE(x->array))
1385 {
1386 case 3:
1387 x->array[2] = v;
1388 case 2:
1389 x->array[1] = v;
1390 case 1:
1391 x->array[0] = v;
1392 break;
1393 default:
1394 abort ();
1395 }
1396 }
1397
1398 static INLINE int
1399 operand_type_equal (const union i386_operand_type *x,
1400 const union i386_operand_type *y)
1401 {
1402 switch (ARRAY_SIZE(x->array))
1403 {
1404 case 3:
1405 if (x->array[2] != y->array[2])
1406 return 0;
1407 case 2:
1408 if (x->array[1] != y->array[1])
1409 return 0;
1410 case 1:
1411 return x->array[0] == y->array[0];
1412 break;
1413 default:
1414 abort ();
1415 }
1416 }
1417
1418 static INLINE int
1419 cpu_flags_all_zero (const union i386_cpu_flags *x)
1420 {
1421 switch (ARRAY_SIZE(x->array))
1422 {
1423 case 3:
1424 if (x->array[2])
1425 return 0;
1426 case 2:
1427 if (x->array[1])
1428 return 0;
1429 case 1:
1430 return !x->array[0];
1431 default:
1432 abort ();
1433 }
1434 }
1435
1436 static INLINE void
1437 cpu_flags_set (union i386_cpu_flags *x, unsigned int v)
1438 {
1439 switch (ARRAY_SIZE(x->array))
1440 {
1441 case 3:
1442 x->array[2] = v;
1443 case 2:
1444 x->array[1] = v;
1445 case 1:
1446 x->array[0] = v;
1447 break;
1448 default:
1449 abort ();
1450 }
1451 }
1452
1453 static INLINE int
1454 cpu_flags_equal (const union i386_cpu_flags *x,
1455 const union i386_cpu_flags *y)
1456 {
1457 switch (ARRAY_SIZE(x->array))
1458 {
1459 case 3:
1460 if (x->array[2] != y->array[2])
1461 return 0;
1462 case 2:
1463 if (x->array[1] != y->array[1])
1464 return 0;
1465 case 1:
1466 return x->array[0] == y->array[0];
1467 break;
1468 default:
1469 abort ();
1470 }
1471 }
1472
1473 static INLINE int
1474 cpu_flags_check_cpu64 (i386_cpu_flags f)
1475 {
1476 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1477 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1478 }
1479
1480 static INLINE i386_cpu_flags
1481 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1482 {
1483 switch (ARRAY_SIZE (x.array))
1484 {
1485 case 3:
1486 x.array [2] &= y.array [2];
1487 case 2:
1488 x.array [1] &= y.array [1];
1489 case 1:
1490 x.array [0] &= y.array [0];
1491 break;
1492 default:
1493 abort ();
1494 }
1495 return x;
1496 }
1497
1498 static INLINE i386_cpu_flags
1499 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1500 {
1501 switch (ARRAY_SIZE (x.array))
1502 {
1503 case 3:
1504 x.array [2] |= y.array [2];
1505 case 2:
1506 x.array [1] |= y.array [1];
1507 case 1:
1508 x.array [0] |= y.array [0];
1509 break;
1510 default:
1511 abort ();
1512 }
1513 return x;
1514 }
1515
1516 static INLINE i386_cpu_flags
1517 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1518 {
1519 switch (ARRAY_SIZE (x.array))
1520 {
1521 case 3:
1522 x.array [2] &= ~y.array [2];
1523 case 2:
1524 x.array [1] &= ~y.array [1];
1525 case 1:
1526 x.array [0] &= ~y.array [0];
1527 break;
1528 default:
1529 abort ();
1530 }
1531 return x;
1532 }
1533
1534 #define CPU_FLAGS_ARCH_MATCH 0x1
1535 #define CPU_FLAGS_64BIT_MATCH 0x2
1536 #define CPU_FLAGS_AES_MATCH 0x4
1537 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1538 #define CPU_FLAGS_AVX_MATCH 0x10
1539
1540 #define CPU_FLAGS_32BIT_MATCH \
1541 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1542 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1543 #define CPU_FLAGS_PERFECT_MATCH \
1544 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1545
1546 /* Return CPU flags match bits. */
1547
1548 static int
1549 cpu_flags_match (const insn_template *t)
1550 {
1551 i386_cpu_flags x = t->cpu_flags;
1552 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1553
1554 x.bitfield.cpu64 = 0;
1555 x.bitfield.cpuno64 = 0;
1556
1557 if (cpu_flags_all_zero (&x))
1558 {
1559 /* This instruction is available on all archs. */
1560 match |= CPU_FLAGS_32BIT_MATCH;
1561 }
1562 else
1563 {
1564 /* This instruction is available only on some archs. */
1565 i386_cpu_flags cpu = cpu_arch_flags;
1566
1567 cpu.bitfield.cpu64 = 0;
1568 cpu.bitfield.cpuno64 = 0;
1569 cpu = cpu_flags_and (x, cpu);
1570 if (!cpu_flags_all_zero (&cpu))
1571 {
1572 if (x.bitfield.cpuavx)
1573 {
1574 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1575 if (cpu.bitfield.cpuavx)
1576 {
1577 /* Check SSE2AVX. */
1578 if (!t->opcode_modifier.sse2avx|| sse2avx)
1579 {
1580 match |= (CPU_FLAGS_ARCH_MATCH
1581 | CPU_FLAGS_AVX_MATCH);
1582 /* Check AES. */
1583 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1584 match |= CPU_FLAGS_AES_MATCH;
1585 /* Check PCLMUL. */
1586 if (!x.bitfield.cpupclmul
1587 || cpu.bitfield.cpupclmul)
1588 match |= CPU_FLAGS_PCLMUL_MATCH;
1589 }
1590 }
1591 else
1592 match |= CPU_FLAGS_ARCH_MATCH;
1593 }
1594 else
1595 match |= CPU_FLAGS_32BIT_MATCH;
1596 }
1597 }
1598 return match;
1599 }
1600
1601 static INLINE i386_operand_type
1602 operand_type_and (i386_operand_type x, i386_operand_type y)
1603 {
1604 switch (ARRAY_SIZE (x.array))
1605 {
1606 case 3:
1607 x.array [2] &= y.array [2];
1608 case 2:
1609 x.array [1] &= y.array [1];
1610 case 1:
1611 x.array [0] &= y.array [0];
1612 break;
1613 default:
1614 abort ();
1615 }
1616 return x;
1617 }
1618
1619 static INLINE i386_operand_type
1620 operand_type_or (i386_operand_type x, i386_operand_type y)
1621 {
1622 switch (ARRAY_SIZE (x.array))
1623 {
1624 case 3:
1625 x.array [2] |= y.array [2];
1626 case 2:
1627 x.array [1] |= y.array [1];
1628 case 1:
1629 x.array [0] |= y.array [0];
1630 break;
1631 default:
1632 abort ();
1633 }
1634 return x;
1635 }
1636
1637 static INLINE i386_operand_type
1638 operand_type_xor (i386_operand_type x, i386_operand_type y)
1639 {
1640 switch (ARRAY_SIZE (x.array))
1641 {
1642 case 3:
1643 x.array [2] ^= y.array [2];
1644 case 2:
1645 x.array [1] ^= y.array [1];
1646 case 1:
1647 x.array [0] ^= y.array [0];
1648 break;
1649 default:
1650 abort ();
1651 }
1652 return x;
1653 }
1654
1655 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1656 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1657 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1658 static const i386_operand_type inoutportreg
1659 = OPERAND_TYPE_INOUTPORTREG;
1660 static const i386_operand_type reg16_inoutportreg
1661 = OPERAND_TYPE_REG16_INOUTPORTREG;
1662 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1663 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1664 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1665 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1666 static const i386_operand_type anydisp
1667 = OPERAND_TYPE_ANYDISP;
1668 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1669 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1670 static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1671 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1672 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1673 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1674 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1675 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1676 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1677 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1678 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1679 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1680 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1681 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1682
1683 enum operand_type
1684 {
1685 reg,
1686 imm,
1687 disp,
1688 anymem
1689 };
1690
1691 static INLINE int
1692 operand_type_check (i386_operand_type t, enum operand_type c)
1693 {
1694 switch (c)
1695 {
1696 case reg:
1697 return (t.bitfield.reg8
1698 || t.bitfield.reg16
1699 || t.bitfield.reg32
1700 || t.bitfield.reg64);
1701
1702 case imm:
1703 return (t.bitfield.imm8
1704 || t.bitfield.imm8s
1705 || t.bitfield.imm16
1706 || t.bitfield.imm32
1707 || t.bitfield.imm32s
1708 || t.bitfield.imm64);
1709
1710 case disp:
1711 return (t.bitfield.disp8
1712 || t.bitfield.disp16
1713 || t.bitfield.disp32
1714 || t.bitfield.disp32s
1715 || t.bitfield.disp64);
1716
1717 case anymem:
1718 return (t.bitfield.disp8
1719 || t.bitfield.disp16
1720 || t.bitfield.disp32
1721 || t.bitfield.disp32s
1722 || t.bitfield.disp64
1723 || t.bitfield.baseindex);
1724
1725 default:
1726 abort ();
1727 }
1728
1729 return 0;
1730 }
1731
1732 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1733 operand J for instruction template T. */
1734
1735 static INLINE int
1736 match_reg_size (const insn_template *t, unsigned int j)
1737 {
1738 return !((i.types[j].bitfield.byte
1739 && !t->operand_types[j].bitfield.byte)
1740 || (i.types[j].bitfield.word
1741 && !t->operand_types[j].bitfield.word)
1742 || (i.types[j].bitfield.dword
1743 && !t->operand_types[j].bitfield.dword)
1744 || (i.types[j].bitfield.qword
1745 && !t->operand_types[j].bitfield.qword));
1746 }
1747
1748 /* Return 1 if there is no conflict in any size on operand J for
1749 instruction template T. */
1750
1751 static INLINE int
1752 match_mem_size (const insn_template *t, unsigned int j)
1753 {
1754 return (match_reg_size (t, j)
1755 && !((i.types[j].bitfield.unspecified
1756 && !t->operand_types[j].bitfield.unspecified)
1757 || (i.types[j].bitfield.fword
1758 && !t->operand_types[j].bitfield.fword)
1759 || (i.types[j].bitfield.tbyte
1760 && !t->operand_types[j].bitfield.tbyte)
1761 || (i.types[j].bitfield.xmmword
1762 && !t->operand_types[j].bitfield.xmmword)
1763 || (i.types[j].bitfield.ymmword
1764 && !t->operand_types[j].bitfield.ymmword)
1765 || (i.types[j].bitfield.zmmword
1766 && !t->operand_types[j].bitfield.zmmword)));
1767 }
1768
1769 /* Return 1 if there is no size conflict on any operands for
1770 instruction template T. */
1771
1772 static INLINE int
1773 operand_size_match (const insn_template *t)
1774 {
1775 unsigned int j;
1776 int match = 1;
1777
1778 /* Don't check jump instructions. */
1779 if (t->opcode_modifier.jump
1780 || t->opcode_modifier.jumpbyte
1781 || t->opcode_modifier.jumpdword
1782 || t->opcode_modifier.jumpintersegment)
1783 return match;
1784
1785 /* Check memory and accumulator operand size. */
1786 for (j = 0; j < i.operands; j++)
1787 {
1788 if (t->operand_types[j].bitfield.anysize)
1789 continue;
1790
1791 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1792 {
1793 match = 0;
1794 break;
1795 }
1796
1797 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1798 {
1799 match = 0;
1800 break;
1801 }
1802 }
1803
1804 if (match)
1805 return match;
1806 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1807 {
1808 mismatch:
1809 i.error = operand_size_mismatch;
1810 return 0;
1811 }
1812
1813 /* Check reverse. */
1814 gas_assert (i.operands == 2);
1815
1816 match = 1;
1817 for (j = 0; j < 2; j++)
1818 {
1819 if (t->operand_types[j].bitfield.acc
1820 && !match_reg_size (t, j ? 0 : 1))
1821 goto mismatch;
1822
1823 if (i.types[j].bitfield.mem
1824 && !match_mem_size (t, j ? 0 : 1))
1825 goto mismatch;
1826 }
1827
1828 return match;
1829 }
1830
1831 static INLINE int
1832 operand_type_match (i386_operand_type overlap,
1833 i386_operand_type given)
1834 {
1835 i386_operand_type temp = overlap;
1836
1837 temp.bitfield.jumpabsolute = 0;
1838 temp.bitfield.unspecified = 0;
1839 temp.bitfield.byte = 0;
1840 temp.bitfield.word = 0;
1841 temp.bitfield.dword = 0;
1842 temp.bitfield.fword = 0;
1843 temp.bitfield.qword = 0;
1844 temp.bitfield.tbyte = 0;
1845 temp.bitfield.xmmword = 0;
1846 temp.bitfield.ymmword = 0;
1847 temp.bitfield.zmmword = 0;
1848 if (operand_type_all_zero (&temp))
1849 goto mismatch;
1850
1851 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1852 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1853 return 1;
1854
1855 mismatch:
1856 i.error = operand_type_mismatch;
1857 return 0;
1858 }
1859
1860 /* If given types g0 and g1 are registers they must be of the same type
1861 unless the expected operand type register overlap is null.
1862 Note that Acc in a template matches every size of reg. */
1863
1864 static INLINE int
1865 operand_type_register_match (i386_operand_type m0,
1866 i386_operand_type g0,
1867 i386_operand_type t0,
1868 i386_operand_type m1,
1869 i386_operand_type g1,
1870 i386_operand_type t1)
1871 {
1872 if (!operand_type_check (g0, reg))
1873 return 1;
1874
1875 if (!operand_type_check (g1, reg))
1876 return 1;
1877
1878 if (g0.bitfield.reg8 == g1.bitfield.reg8
1879 && g0.bitfield.reg16 == g1.bitfield.reg16
1880 && g0.bitfield.reg32 == g1.bitfield.reg32
1881 && g0.bitfield.reg64 == g1.bitfield.reg64)
1882 return 1;
1883
1884 if (m0.bitfield.acc)
1885 {
1886 t0.bitfield.reg8 = 1;
1887 t0.bitfield.reg16 = 1;
1888 t0.bitfield.reg32 = 1;
1889 t0.bitfield.reg64 = 1;
1890 }
1891
1892 if (m1.bitfield.acc)
1893 {
1894 t1.bitfield.reg8 = 1;
1895 t1.bitfield.reg16 = 1;
1896 t1.bitfield.reg32 = 1;
1897 t1.bitfield.reg64 = 1;
1898 }
1899
1900 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1901 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1902 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1903 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1904 return 1;
1905
1906 i.error = register_type_mismatch;
1907
1908 return 0;
1909 }
1910
1911 static INLINE unsigned int
1912 register_number (const reg_entry *r)
1913 {
1914 unsigned int nr = r->reg_num;
1915
1916 if (r->reg_flags & RegRex)
1917 nr += 8;
1918
1919 return nr;
1920 }
1921
1922 static INLINE unsigned int
1923 mode_from_disp_size (i386_operand_type t)
1924 {
1925 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
1926 return 1;
1927 else if (t.bitfield.disp16
1928 || t.bitfield.disp32
1929 || t.bitfield.disp32s)
1930 return 2;
1931 else
1932 return 0;
1933 }
1934
1935 static INLINE int
1936 fits_in_signed_byte (offsetT num)
1937 {
1938 return (num >= -128) && (num <= 127);
1939 }
1940
1941 static INLINE int
1942 fits_in_unsigned_byte (offsetT num)
1943 {
1944 return (num & 0xff) == num;
1945 }
1946
1947 static INLINE int
1948 fits_in_unsigned_word (offsetT num)
1949 {
1950 return (num & 0xffff) == num;
1951 }
1952
1953 static INLINE int
1954 fits_in_signed_word (offsetT num)
1955 {
1956 return (-32768 <= num) && (num <= 32767);
1957 }
1958
1959 static INLINE int
1960 fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
1961 {
1962 #ifndef BFD64
1963 return 1;
1964 #else
1965 return (!(((offsetT) -1 << 31) & num)
1966 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
1967 #endif
1968 } /* fits_in_signed_long() */
1969
1970 static INLINE int
1971 fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
1972 {
1973 #ifndef BFD64
1974 return 1;
1975 #else
1976 return (num & (((offsetT) 2 << 31) - 1)) == num;
1977 #endif
1978 } /* fits_in_unsigned_long() */
1979
1980 static INLINE int
1981 fits_in_vec_disp8 (offsetT num)
1982 {
1983 int shift = i.memshift;
1984 unsigned int mask;
1985
1986 if (shift == -1)
1987 abort ();
1988
1989 mask = (1 << shift) - 1;
1990
1991 /* Return 0 if NUM isn't properly aligned. */
1992 if ((num & mask))
1993 return 0;
1994
1995 /* Check if NUM will fit in 8bit after shift. */
1996 return fits_in_signed_byte (num >> shift);
1997 }
1998
1999 static INLINE int
2000 fits_in_imm4 (offsetT num)
2001 {
2002 return (num & 0xf) == num;
2003 }
2004
2005 static i386_operand_type
2006 smallest_imm_type (offsetT num)
2007 {
2008 i386_operand_type t;
2009
2010 operand_type_set (&t, 0);
2011 t.bitfield.imm64 = 1;
2012
2013 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2014 {
2015 /* This code is disabled on the 486 because all the Imm1 forms
2016 in the opcode table are slower on the i486. They're the
2017 versions with the implicitly specified single-position
2018 displacement, which has another syntax if you really want to
2019 use that form. */
2020 t.bitfield.imm1 = 1;
2021 t.bitfield.imm8 = 1;
2022 t.bitfield.imm8s = 1;
2023 t.bitfield.imm16 = 1;
2024 t.bitfield.imm32 = 1;
2025 t.bitfield.imm32s = 1;
2026 }
2027 else if (fits_in_signed_byte (num))
2028 {
2029 t.bitfield.imm8 = 1;
2030 t.bitfield.imm8s = 1;
2031 t.bitfield.imm16 = 1;
2032 t.bitfield.imm32 = 1;
2033 t.bitfield.imm32s = 1;
2034 }
2035 else if (fits_in_unsigned_byte (num))
2036 {
2037 t.bitfield.imm8 = 1;
2038 t.bitfield.imm16 = 1;
2039 t.bitfield.imm32 = 1;
2040 t.bitfield.imm32s = 1;
2041 }
2042 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2043 {
2044 t.bitfield.imm16 = 1;
2045 t.bitfield.imm32 = 1;
2046 t.bitfield.imm32s = 1;
2047 }
2048 else if (fits_in_signed_long (num))
2049 {
2050 t.bitfield.imm32 = 1;
2051 t.bitfield.imm32s = 1;
2052 }
2053 else if (fits_in_unsigned_long (num))
2054 t.bitfield.imm32 = 1;
2055
2056 return t;
2057 }
2058
2059 static offsetT
2060 offset_in_range (offsetT val, int size)
2061 {
2062 addressT mask;
2063
2064 switch (size)
2065 {
2066 case 1: mask = ((addressT) 1 << 8) - 1; break;
2067 case 2: mask = ((addressT) 1 << 16) - 1; break;
2068 case 4: mask = ((addressT) 2 << 31) - 1; break;
2069 #ifdef BFD64
2070 case 8: mask = ((addressT) 2 << 63) - 1; break;
2071 #endif
2072 default: abort ();
2073 }
2074
2075 #ifdef BFD64
2076 /* If BFD64, sign extend val for 32bit address mode. */
2077 if (flag_code != CODE_64BIT
2078 || i.prefix[ADDR_PREFIX])
2079 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2080 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2081 #endif
2082
2083 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2084 {
2085 char buf1[40], buf2[40];
2086
2087 sprint_value (buf1, val);
2088 sprint_value (buf2, val & mask);
2089 as_warn (_("%s shortened to %s"), buf1, buf2);
2090 }
2091 return val & mask;
2092 }
2093
2094 enum PREFIX_GROUP
2095 {
2096 PREFIX_EXIST = 0,
2097 PREFIX_LOCK,
2098 PREFIX_REP,
2099 PREFIX_OTHER
2100 };
2101
2102 /* Returns
2103 a. PREFIX_EXIST if attempting to add a prefix where one from the
2104 same class already exists.
2105 b. PREFIX_LOCK if lock prefix is added.
2106 c. PREFIX_REP if rep/repne prefix is added.
2107 d. PREFIX_OTHER if other prefix is added.
2108 */
2109
2110 static enum PREFIX_GROUP
2111 add_prefix (unsigned int prefix)
2112 {
2113 enum PREFIX_GROUP ret = PREFIX_OTHER;
2114 unsigned int q;
2115
2116 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2117 && flag_code == CODE_64BIT)
2118 {
2119 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2120 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2121 && (prefix & (REX_R | REX_X | REX_B))))
2122 ret = PREFIX_EXIST;
2123 q = REX_PREFIX;
2124 }
2125 else
2126 {
2127 switch (prefix)
2128 {
2129 default:
2130 abort ();
2131
2132 case CS_PREFIX_OPCODE:
2133 case DS_PREFIX_OPCODE:
2134 case ES_PREFIX_OPCODE:
2135 case FS_PREFIX_OPCODE:
2136 case GS_PREFIX_OPCODE:
2137 case SS_PREFIX_OPCODE:
2138 q = SEG_PREFIX;
2139 break;
2140
2141 case REPNE_PREFIX_OPCODE:
2142 case REPE_PREFIX_OPCODE:
2143 q = REP_PREFIX;
2144 ret = PREFIX_REP;
2145 break;
2146
2147 case LOCK_PREFIX_OPCODE:
2148 q = LOCK_PREFIX;
2149 ret = PREFIX_LOCK;
2150 break;
2151
2152 case FWAIT_OPCODE:
2153 q = WAIT_PREFIX;
2154 break;
2155
2156 case ADDR_PREFIX_OPCODE:
2157 q = ADDR_PREFIX;
2158 break;
2159
2160 case DATA_PREFIX_OPCODE:
2161 q = DATA_PREFIX;
2162 break;
2163 }
2164 if (i.prefix[q] != 0)
2165 ret = PREFIX_EXIST;
2166 }
2167
2168 if (ret)
2169 {
2170 if (!i.prefix[q])
2171 ++i.prefixes;
2172 i.prefix[q] |= prefix;
2173 }
2174 else
2175 as_bad (_("same type of prefix used twice"));
2176
2177 return ret;
2178 }
2179
2180 static void
2181 update_code_flag (int value, int check)
2182 {
2183 PRINTF_LIKE ((*as_error));
2184
2185 flag_code = (enum flag_code) value;
2186 if (flag_code == CODE_64BIT)
2187 {
2188 cpu_arch_flags.bitfield.cpu64 = 1;
2189 cpu_arch_flags.bitfield.cpuno64 = 0;
2190 }
2191 else
2192 {
2193 cpu_arch_flags.bitfield.cpu64 = 0;
2194 cpu_arch_flags.bitfield.cpuno64 = 1;
2195 }
2196 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2197 {
2198 if (check)
2199 as_error = as_fatal;
2200 else
2201 as_error = as_bad;
2202 (*as_error) (_("64bit mode not supported on `%s'."),
2203 cpu_arch_name ? cpu_arch_name : default_arch);
2204 }
2205 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2206 {
2207 if (check)
2208 as_error = as_fatal;
2209 else
2210 as_error = as_bad;
2211 (*as_error) (_("32bit mode not supported on `%s'."),
2212 cpu_arch_name ? cpu_arch_name : default_arch);
2213 }
2214 stackop_size = '\0';
2215 }
2216
2217 static void
2218 set_code_flag (int value)
2219 {
2220 update_code_flag (value, 0);
2221 }
2222
2223 static void
2224 set_16bit_gcc_code_flag (int new_code_flag)
2225 {
2226 flag_code = (enum flag_code) new_code_flag;
2227 if (flag_code != CODE_16BIT)
2228 abort ();
2229 cpu_arch_flags.bitfield.cpu64 = 0;
2230 cpu_arch_flags.bitfield.cpuno64 = 1;
2231 stackop_size = LONG_MNEM_SUFFIX;
2232 }
2233
2234 static void
2235 set_intel_syntax (int syntax_flag)
2236 {
2237 /* Find out if register prefixing is specified. */
2238 int ask_naked_reg = 0;
2239
2240 SKIP_WHITESPACE ();
2241 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2242 {
2243 char *string = input_line_pointer;
2244 int e = get_symbol_end ();
2245
2246 if (strcmp (string, "prefix") == 0)
2247 ask_naked_reg = 1;
2248 else if (strcmp (string, "noprefix") == 0)
2249 ask_naked_reg = -1;
2250 else
2251 as_bad (_("bad argument to syntax directive."));
2252 *input_line_pointer = e;
2253 }
2254 demand_empty_rest_of_line ();
2255
2256 intel_syntax = syntax_flag;
2257
2258 if (ask_naked_reg == 0)
2259 allow_naked_reg = (intel_syntax
2260 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2261 else
2262 allow_naked_reg = (ask_naked_reg < 0);
2263
2264 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2265
2266 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2267 identifier_chars['$'] = intel_syntax ? '$' : 0;
2268 register_prefix = allow_naked_reg ? "" : "%";
2269 }
2270
2271 static void
2272 set_intel_mnemonic (int mnemonic_flag)
2273 {
2274 intel_mnemonic = mnemonic_flag;
2275 }
2276
2277 static void
2278 set_allow_index_reg (int flag)
2279 {
2280 allow_index_reg = flag;
2281 }
2282
2283 static void
2284 set_check (int what)
2285 {
2286 enum check_kind *kind;
2287 const char *str;
2288
2289 if (what)
2290 {
2291 kind = &operand_check;
2292 str = "operand";
2293 }
2294 else
2295 {
2296 kind = &sse_check;
2297 str = "sse";
2298 }
2299
2300 SKIP_WHITESPACE ();
2301
2302 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2303 {
2304 char *string = input_line_pointer;
2305 int e = get_symbol_end ();
2306
2307 if (strcmp (string, "none") == 0)
2308 *kind = check_none;
2309 else if (strcmp (string, "warning") == 0)
2310 *kind = check_warning;
2311 else if (strcmp (string, "error") == 0)
2312 *kind = check_error;
2313 else
2314 as_bad (_("bad argument to %s_check directive."), str);
2315 *input_line_pointer = e;
2316 }
2317 else
2318 as_bad (_("missing argument for %s_check directive"), str);
2319
2320 demand_empty_rest_of_line ();
2321 }
2322
2323 static void
2324 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2325 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2326 {
2327 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2328 static const char *arch;
2329
2330 /* Intel LIOM is only supported on ELF. */
2331 if (!IS_ELF)
2332 return;
2333
2334 if (!arch)
2335 {
2336 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2337 use default_arch. */
2338 arch = cpu_arch_name;
2339 if (!arch)
2340 arch = default_arch;
2341 }
2342
2343 /* If we are targeting Intel L1OM, we must enable it. */
2344 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2345 || new_flag.bitfield.cpul1om)
2346 return;
2347
2348 /* If we are targeting Intel K1OM, we must enable it. */
2349 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2350 || new_flag.bitfield.cpuk1om)
2351 return;
2352
2353 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2354 #endif
2355 }
2356
2357 static void
2358 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2359 {
2360 SKIP_WHITESPACE ();
2361
2362 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2363 {
2364 char *string = input_line_pointer;
2365 int e = get_symbol_end ();
2366 unsigned int j;
2367 i386_cpu_flags flags;
2368
2369 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2370 {
2371 if (strcmp (string, cpu_arch[j].name) == 0)
2372 {
2373 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2374
2375 if (*string != '.')
2376 {
2377 cpu_arch_name = cpu_arch[j].name;
2378 cpu_sub_arch_name = NULL;
2379 cpu_arch_flags = cpu_arch[j].flags;
2380 if (flag_code == CODE_64BIT)
2381 {
2382 cpu_arch_flags.bitfield.cpu64 = 1;
2383 cpu_arch_flags.bitfield.cpuno64 = 0;
2384 }
2385 else
2386 {
2387 cpu_arch_flags.bitfield.cpu64 = 0;
2388 cpu_arch_flags.bitfield.cpuno64 = 1;
2389 }
2390 cpu_arch_isa = cpu_arch[j].type;
2391 cpu_arch_isa_flags = cpu_arch[j].flags;
2392 if (!cpu_arch_tune_set)
2393 {
2394 cpu_arch_tune = cpu_arch_isa;
2395 cpu_arch_tune_flags = cpu_arch_isa_flags;
2396 }
2397 break;
2398 }
2399
2400 if (!cpu_arch[j].negated)
2401 flags = cpu_flags_or (cpu_arch_flags,
2402 cpu_arch[j].flags);
2403 else
2404 flags = cpu_flags_and_not (cpu_arch_flags,
2405 cpu_arch[j].flags);
2406 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2407 {
2408 if (cpu_sub_arch_name)
2409 {
2410 char *name = cpu_sub_arch_name;
2411 cpu_sub_arch_name = concat (name,
2412 cpu_arch[j].name,
2413 (const char *) NULL);
2414 free (name);
2415 }
2416 else
2417 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2418 cpu_arch_flags = flags;
2419 cpu_arch_isa_flags = flags;
2420 }
2421 *input_line_pointer = e;
2422 demand_empty_rest_of_line ();
2423 return;
2424 }
2425 }
2426 if (j >= ARRAY_SIZE (cpu_arch))
2427 as_bad (_("no such architecture: `%s'"), string);
2428
2429 *input_line_pointer = e;
2430 }
2431 else
2432 as_bad (_("missing cpu architecture"));
2433
2434 no_cond_jump_promotion = 0;
2435 if (*input_line_pointer == ','
2436 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2437 {
2438 char *string = ++input_line_pointer;
2439 int e = get_symbol_end ();
2440
2441 if (strcmp (string, "nojumps") == 0)
2442 no_cond_jump_promotion = 1;
2443 else if (strcmp (string, "jumps") == 0)
2444 ;
2445 else
2446 as_bad (_("no such architecture modifier: `%s'"), string);
2447
2448 *input_line_pointer = e;
2449 }
2450
2451 demand_empty_rest_of_line ();
2452 }
2453
2454 enum bfd_architecture
2455 i386_arch (void)
2456 {
2457 if (cpu_arch_isa == PROCESSOR_L1OM)
2458 {
2459 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2460 || flag_code != CODE_64BIT)
2461 as_fatal (_("Intel L1OM is 64bit ELF only"));
2462 return bfd_arch_l1om;
2463 }
2464 else if (cpu_arch_isa == PROCESSOR_K1OM)
2465 {
2466 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2467 || flag_code != CODE_64BIT)
2468 as_fatal (_("Intel K1OM is 64bit ELF only"));
2469 return bfd_arch_k1om;
2470 }
2471 else
2472 return bfd_arch_i386;
2473 }
2474
2475 unsigned long
2476 i386_mach (void)
2477 {
2478 if (!strncmp (default_arch, "x86_64", 6))
2479 {
2480 if (cpu_arch_isa == PROCESSOR_L1OM)
2481 {
2482 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2483 || default_arch[6] != '\0')
2484 as_fatal (_("Intel L1OM is 64bit ELF only"));
2485 return bfd_mach_l1om;
2486 }
2487 else if (cpu_arch_isa == PROCESSOR_K1OM)
2488 {
2489 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2490 || default_arch[6] != '\0')
2491 as_fatal (_("Intel K1OM is 64bit ELF only"));
2492 return bfd_mach_k1om;
2493 }
2494 else if (default_arch[6] == '\0')
2495 return bfd_mach_x86_64;
2496 else
2497 return bfd_mach_x64_32;
2498 }
2499 else if (!strcmp (default_arch, "i386"))
2500 return bfd_mach_i386_i386;
2501 else
2502 as_fatal (_("unknown architecture"));
2503 }
2504 \f
2505 void
2506 md_begin (void)
2507 {
2508 const char *hash_err;
2509
2510 /* Initialize op_hash hash table. */
2511 op_hash = hash_new ();
2512
2513 {
2514 const insn_template *optab;
2515 templates *core_optab;
2516
2517 /* Setup for loop. */
2518 optab = i386_optab;
2519 core_optab = (templates *) xmalloc (sizeof (templates));
2520 core_optab->start = optab;
2521
2522 while (1)
2523 {
2524 ++optab;
2525 if (optab->name == NULL
2526 || strcmp (optab->name, (optab - 1)->name) != 0)
2527 {
2528 /* different name --> ship out current template list;
2529 add to hash table; & begin anew. */
2530 core_optab->end = optab;
2531 hash_err = hash_insert (op_hash,
2532 (optab - 1)->name,
2533 (void *) core_optab);
2534 if (hash_err)
2535 {
2536 as_fatal (_("can't hash %s: %s"),
2537 (optab - 1)->name,
2538 hash_err);
2539 }
2540 if (optab->name == NULL)
2541 break;
2542 core_optab = (templates *) xmalloc (sizeof (templates));
2543 core_optab->start = optab;
2544 }
2545 }
2546 }
2547
2548 /* Initialize reg_hash hash table. */
2549 reg_hash = hash_new ();
2550 {
2551 const reg_entry *regtab;
2552 unsigned int regtab_size = i386_regtab_size;
2553
2554 for (regtab = i386_regtab; regtab_size--; regtab++)
2555 {
2556 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2557 if (hash_err)
2558 as_fatal (_("can't hash %s: %s"),
2559 regtab->reg_name,
2560 hash_err);
2561 }
2562 }
2563
2564 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2565 {
2566 int c;
2567 char *p;
2568
2569 for (c = 0; c < 256; c++)
2570 {
2571 if (ISDIGIT (c))
2572 {
2573 digit_chars[c] = c;
2574 mnemonic_chars[c] = c;
2575 register_chars[c] = c;
2576 operand_chars[c] = c;
2577 }
2578 else if (ISLOWER (c))
2579 {
2580 mnemonic_chars[c] = c;
2581 register_chars[c] = c;
2582 operand_chars[c] = c;
2583 }
2584 else if (ISUPPER (c))
2585 {
2586 mnemonic_chars[c] = TOLOWER (c);
2587 register_chars[c] = mnemonic_chars[c];
2588 operand_chars[c] = c;
2589 }
2590 else if (c == '{' || c == '}')
2591 operand_chars[c] = c;
2592
2593 if (ISALPHA (c) || ISDIGIT (c))
2594 identifier_chars[c] = c;
2595 else if (c >= 128)
2596 {
2597 identifier_chars[c] = c;
2598 operand_chars[c] = c;
2599 }
2600 }
2601
2602 #ifdef LEX_AT
2603 identifier_chars['@'] = '@';
2604 #endif
2605 #ifdef LEX_QM
2606 identifier_chars['?'] = '?';
2607 operand_chars['?'] = '?';
2608 #endif
2609 digit_chars['-'] = '-';
2610 mnemonic_chars['_'] = '_';
2611 mnemonic_chars['-'] = '-';
2612 mnemonic_chars['.'] = '.';
2613 identifier_chars['_'] = '_';
2614 identifier_chars['.'] = '.';
2615
2616 for (p = operand_special_chars; *p != '\0'; p++)
2617 operand_chars[(unsigned char) *p] = *p;
2618 }
2619
2620 if (flag_code == CODE_64BIT)
2621 {
2622 #if defined (OBJ_COFF) && defined (TE_PE)
2623 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2624 ? 32 : 16);
2625 #else
2626 x86_dwarf2_return_column = 16;
2627 #endif
2628 x86_cie_data_alignment = -8;
2629 }
2630 else
2631 {
2632 x86_dwarf2_return_column = 8;
2633 x86_cie_data_alignment = -4;
2634 }
2635 }
2636
2637 void
2638 i386_print_statistics (FILE *file)
2639 {
2640 hash_print_statistics (file, "i386 opcode", op_hash);
2641 hash_print_statistics (file, "i386 register", reg_hash);
2642 }
2643 \f
2644 #ifdef DEBUG386
2645
2646 /* Debugging routines for md_assemble. */
2647 static void pte (insn_template *);
2648 static void pt (i386_operand_type);
2649 static void pe (expressionS *);
2650 static void ps (symbolS *);
2651
2652 static void
2653 pi (char *line, i386_insn *x)
2654 {
2655 unsigned int j;
2656
2657 fprintf (stdout, "%s: template ", line);
2658 pte (&x->tm);
2659 fprintf (stdout, " address: base %s index %s scale %x\n",
2660 x->base_reg ? x->base_reg->reg_name : "none",
2661 x->index_reg ? x->index_reg->reg_name : "none",
2662 x->log2_scale_factor);
2663 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2664 x->rm.mode, x->rm.reg, x->rm.regmem);
2665 fprintf (stdout, " sib: base %x index %x scale %x\n",
2666 x->sib.base, x->sib.index, x->sib.scale);
2667 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2668 (x->rex & REX_W) != 0,
2669 (x->rex & REX_R) != 0,
2670 (x->rex & REX_X) != 0,
2671 (x->rex & REX_B) != 0);
2672 for (j = 0; j < x->operands; j++)
2673 {
2674 fprintf (stdout, " #%d: ", j + 1);
2675 pt (x->types[j]);
2676 fprintf (stdout, "\n");
2677 if (x->types[j].bitfield.reg8
2678 || x->types[j].bitfield.reg16
2679 || x->types[j].bitfield.reg32
2680 || x->types[j].bitfield.reg64
2681 || x->types[j].bitfield.regmmx
2682 || x->types[j].bitfield.regxmm
2683 || x->types[j].bitfield.regymm
2684 || x->types[j].bitfield.regzmm
2685 || x->types[j].bitfield.sreg2
2686 || x->types[j].bitfield.sreg3
2687 || x->types[j].bitfield.control
2688 || x->types[j].bitfield.debug
2689 || x->types[j].bitfield.test)
2690 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2691 if (operand_type_check (x->types[j], imm))
2692 pe (x->op[j].imms);
2693 if (operand_type_check (x->types[j], disp))
2694 pe (x->op[j].disps);
2695 }
2696 }
2697
2698 static void
2699 pte (insn_template *t)
2700 {
2701 unsigned int j;
2702 fprintf (stdout, " %d operands ", t->operands);
2703 fprintf (stdout, "opcode %x ", t->base_opcode);
2704 if (t->extension_opcode != None)
2705 fprintf (stdout, "ext %x ", t->extension_opcode);
2706 if (t->opcode_modifier.d)
2707 fprintf (stdout, "D");
2708 if (t->opcode_modifier.w)
2709 fprintf (stdout, "W");
2710 fprintf (stdout, "\n");
2711 for (j = 0; j < t->operands; j++)
2712 {
2713 fprintf (stdout, " #%d type ", j + 1);
2714 pt (t->operand_types[j]);
2715 fprintf (stdout, "\n");
2716 }
2717 }
2718
2719 static void
2720 pe (expressionS *e)
2721 {
2722 fprintf (stdout, " operation %d\n", e->X_op);
2723 fprintf (stdout, " add_number %ld (%lx)\n",
2724 (long) e->X_add_number, (long) e->X_add_number);
2725 if (e->X_add_symbol)
2726 {
2727 fprintf (stdout, " add_symbol ");
2728 ps (e->X_add_symbol);
2729 fprintf (stdout, "\n");
2730 }
2731 if (e->X_op_symbol)
2732 {
2733 fprintf (stdout, " op_symbol ");
2734 ps (e->X_op_symbol);
2735 fprintf (stdout, "\n");
2736 }
2737 }
2738
2739 static void
2740 ps (symbolS *s)
2741 {
2742 fprintf (stdout, "%s type %s%s",
2743 S_GET_NAME (s),
2744 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2745 segment_name (S_GET_SEGMENT (s)));
2746 }
2747
2748 static struct type_name
2749 {
2750 i386_operand_type mask;
2751 const char *name;
2752 }
2753 const type_names[] =
2754 {
2755 { OPERAND_TYPE_REG8, "r8" },
2756 { OPERAND_TYPE_REG16, "r16" },
2757 { OPERAND_TYPE_REG32, "r32" },
2758 { OPERAND_TYPE_REG64, "r64" },
2759 { OPERAND_TYPE_IMM8, "i8" },
2760 { OPERAND_TYPE_IMM8, "i8s" },
2761 { OPERAND_TYPE_IMM16, "i16" },
2762 { OPERAND_TYPE_IMM32, "i32" },
2763 { OPERAND_TYPE_IMM32S, "i32s" },
2764 { OPERAND_TYPE_IMM64, "i64" },
2765 { OPERAND_TYPE_IMM1, "i1" },
2766 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2767 { OPERAND_TYPE_DISP8, "d8" },
2768 { OPERAND_TYPE_DISP16, "d16" },
2769 { OPERAND_TYPE_DISP32, "d32" },
2770 { OPERAND_TYPE_DISP32S, "d32s" },
2771 { OPERAND_TYPE_DISP64, "d64" },
2772 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
2773 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2774 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2775 { OPERAND_TYPE_CONTROL, "control reg" },
2776 { OPERAND_TYPE_TEST, "test reg" },
2777 { OPERAND_TYPE_DEBUG, "debug reg" },
2778 { OPERAND_TYPE_FLOATREG, "FReg" },
2779 { OPERAND_TYPE_FLOATACC, "FAcc" },
2780 { OPERAND_TYPE_SREG2, "SReg2" },
2781 { OPERAND_TYPE_SREG3, "SReg3" },
2782 { OPERAND_TYPE_ACC, "Acc" },
2783 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2784 { OPERAND_TYPE_REGMMX, "rMMX" },
2785 { OPERAND_TYPE_REGXMM, "rXMM" },
2786 { OPERAND_TYPE_REGYMM, "rYMM" },
2787 { OPERAND_TYPE_REGZMM, "rZMM" },
2788 { OPERAND_TYPE_REGMASK, "Mask reg" },
2789 { OPERAND_TYPE_ESSEG, "es" },
2790 };
2791
2792 static void
2793 pt (i386_operand_type t)
2794 {
2795 unsigned int j;
2796 i386_operand_type a;
2797
2798 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2799 {
2800 a = operand_type_and (t, type_names[j].mask);
2801 if (!operand_type_all_zero (&a))
2802 fprintf (stdout, "%s, ", type_names[j].name);
2803 }
2804 fflush (stdout);
2805 }
2806
2807 #endif /* DEBUG386 */
2808 \f
2809 static bfd_reloc_code_real_type
2810 reloc (unsigned int size,
2811 int pcrel,
2812 int sign,
2813 int bnd_prefix,
2814 bfd_reloc_code_real_type other)
2815 {
2816 if (other != NO_RELOC)
2817 {
2818 reloc_howto_type *rel;
2819
2820 if (size == 8)
2821 switch (other)
2822 {
2823 case BFD_RELOC_X86_64_GOT32:
2824 return BFD_RELOC_X86_64_GOT64;
2825 break;
2826 case BFD_RELOC_X86_64_PLTOFF64:
2827 return BFD_RELOC_X86_64_PLTOFF64;
2828 break;
2829 case BFD_RELOC_X86_64_GOTPC32:
2830 other = BFD_RELOC_X86_64_GOTPC64;
2831 break;
2832 case BFD_RELOC_X86_64_GOTPCREL:
2833 other = BFD_RELOC_X86_64_GOTPCREL64;
2834 break;
2835 case BFD_RELOC_X86_64_TPOFF32:
2836 other = BFD_RELOC_X86_64_TPOFF64;
2837 break;
2838 case BFD_RELOC_X86_64_DTPOFF32:
2839 other = BFD_RELOC_X86_64_DTPOFF64;
2840 break;
2841 default:
2842 break;
2843 }
2844
2845 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2846 if (other == BFD_RELOC_SIZE32)
2847 {
2848 if (size == 8)
2849 other = BFD_RELOC_SIZE64;
2850 if (pcrel)
2851 {
2852 as_bad (_("there are no pc-relative size relocations"));
2853 return NO_RELOC;
2854 }
2855 }
2856 #endif
2857
2858 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2859 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
2860 sign = -1;
2861
2862 rel = bfd_reloc_type_lookup (stdoutput, other);
2863 if (!rel)
2864 as_bad (_("unknown relocation (%u)"), other);
2865 else if (size != bfd_get_reloc_size (rel))
2866 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2867 bfd_get_reloc_size (rel),
2868 size);
2869 else if (pcrel && !rel->pc_relative)
2870 as_bad (_("non-pc-relative relocation for pc-relative field"));
2871 else if ((rel->complain_on_overflow == complain_overflow_signed
2872 && !sign)
2873 || (rel->complain_on_overflow == complain_overflow_unsigned
2874 && sign > 0))
2875 as_bad (_("relocated field and relocation type differ in signedness"));
2876 else
2877 return other;
2878 return NO_RELOC;
2879 }
2880
2881 if (pcrel)
2882 {
2883 if (!sign)
2884 as_bad (_("there are no unsigned pc-relative relocations"));
2885 switch (size)
2886 {
2887 case 1: return BFD_RELOC_8_PCREL;
2888 case 2: return BFD_RELOC_16_PCREL;
2889 case 4: return (bnd_prefix && object_64bit
2890 ? BFD_RELOC_X86_64_PC32_BND
2891 : BFD_RELOC_32_PCREL);
2892 case 8: return BFD_RELOC_64_PCREL;
2893 }
2894 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2895 }
2896 else
2897 {
2898 if (sign > 0)
2899 switch (size)
2900 {
2901 case 4: return BFD_RELOC_X86_64_32S;
2902 }
2903 else
2904 switch (size)
2905 {
2906 case 1: return BFD_RELOC_8;
2907 case 2: return BFD_RELOC_16;
2908 case 4: return BFD_RELOC_32;
2909 case 8: return BFD_RELOC_64;
2910 }
2911 as_bad (_("cannot do %s %u byte relocation"),
2912 sign > 0 ? "signed" : "unsigned", size);
2913 }
2914
2915 return NO_RELOC;
2916 }
2917
2918 /* Here we decide which fixups can be adjusted to make them relative to
2919 the beginning of the section instead of the symbol. Basically we need
2920 to make sure that the dynamic relocations are done correctly, so in
2921 some cases we force the original symbol to be used. */
2922
2923 int
2924 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2925 {
2926 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2927 if (!IS_ELF)
2928 return 1;
2929
2930 /* Don't adjust pc-relative references to merge sections in 64-bit
2931 mode. */
2932 if (use_rela_relocations
2933 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2934 && fixP->fx_pcrel)
2935 return 0;
2936
2937 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2938 and changed later by validate_fix. */
2939 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2940 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2941 return 0;
2942
2943 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
2944 for size relocations. */
2945 if (fixP->fx_r_type == BFD_RELOC_SIZE32
2946 || fixP->fx_r_type == BFD_RELOC_SIZE64
2947 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2948 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2949 || fixP->fx_r_type == BFD_RELOC_386_GOT32
2950 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2951 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2952 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2953 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
2954 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2955 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
2956 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2957 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
2958 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2959 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
2960 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2961 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
2962 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
2963 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2964 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2965 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
2966 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
2967 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2968 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
2969 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2970 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
2971 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2972 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
2973 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2974 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2975 return 0;
2976 #endif
2977 return 1;
2978 }
2979
2980 static int
2981 intel_float_operand (const char *mnemonic)
2982 {
2983 /* Note that the value returned is meaningful only for opcodes with (memory)
2984 operands, hence the code here is free to improperly handle opcodes that
2985 have no operands (for better performance and smaller code). */
2986
2987 if (mnemonic[0] != 'f')
2988 return 0; /* non-math */
2989
2990 switch (mnemonic[1])
2991 {
2992 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2993 the fs segment override prefix not currently handled because no
2994 call path can make opcodes without operands get here */
2995 case 'i':
2996 return 2 /* integer op */;
2997 case 'l':
2998 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
2999 return 3; /* fldcw/fldenv */
3000 break;
3001 case 'n':
3002 if (mnemonic[2] != 'o' /* fnop */)
3003 return 3; /* non-waiting control op */
3004 break;
3005 case 'r':
3006 if (mnemonic[2] == 's')
3007 return 3; /* frstor/frstpm */
3008 break;
3009 case 's':
3010 if (mnemonic[2] == 'a')
3011 return 3; /* fsave */
3012 if (mnemonic[2] == 't')
3013 {
3014 switch (mnemonic[3])
3015 {
3016 case 'c': /* fstcw */
3017 case 'd': /* fstdw */
3018 case 'e': /* fstenv */
3019 case 's': /* fsts[gw] */
3020 return 3;
3021 }
3022 }
3023 break;
3024 case 'x':
3025 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3026 return 0; /* fxsave/fxrstor are not really math ops */
3027 break;
3028 }
3029
3030 return 1;
3031 }
3032
3033 /* Build the VEX prefix. */
3034
3035 static void
3036 build_vex_prefix (const insn_template *t)
3037 {
3038 unsigned int register_specifier;
3039 unsigned int implied_prefix;
3040 unsigned int vector_length;
3041
3042 /* Check register specifier. */
3043 if (i.vex.register_specifier)
3044 {
3045 register_specifier =
3046 ~register_number (i.vex.register_specifier) & 0xf;
3047 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3048 }
3049 else
3050 register_specifier = 0xf;
3051
3052 /* Use 2-byte VEX prefix by swappping destination and source
3053 operand. */
3054 if (!i.swap_operand
3055 && i.operands == i.reg_operands
3056 && i.tm.opcode_modifier.vexopcode == VEX0F
3057 && i.tm.opcode_modifier.s
3058 && i.rex == REX_B)
3059 {
3060 unsigned int xchg = i.operands - 1;
3061 union i386_op temp_op;
3062 i386_operand_type temp_type;
3063
3064 temp_type = i.types[xchg];
3065 i.types[xchg] = i.types[0];
3066 i.types[0] = temp_type;
3067 temp_op = i.op[xchg];
3068 i.op[xchg] = i.op[0];
3069 i.op[0] = temp_op;
3070
3071 gas_assert (i.rm.mode == 3);
3072
3073 i.rex = REX_R;
3074 xchg = i.rm.regmem;
3075 i.rm.regmem = i.rm.reg;
3076 i.rm.reg = xchg;
3077
3078 /* Use the next insn. */
3079 i.tm = t[1];
3080 }
3081
3082 if (i.tm.opcode_modifier.vex == VEXScalar)
3083 vector_length = avxscalar;
3084 else
3085 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
3086
3087 switch ((i.tm.base_opcode >> 8) & 0xff)
3088 {
3089 case 0:
3090 implied_prefix = 0;
3091 break;
3092 case DATA_PREFIX_OPCODE:
3093 implied_prefix = 1;
3094 break;
3095 case REPE_PREFIX_OPCODE:
3096 implied_prefix = 2;
3097 break;
3098 case REPNE_PREFIX_OPCODE:
3099 implied_prefix = 3;
3100 break;
3101 default:
3102 abort ();
3103 }
3104
3105 /* Use 2-byte VEX prefix if possible. */
3106 if (i.tm.opcode_modifier.vexopcode == VEX0F
3107 && i.tm.opcode_modifier.vexw != VEXW1
3108 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3109 {
3110 /* 2-byte VEX prefix. */
3111 unsigned int r;
3112
3113 i.vex.length = 2;
3114 i.vex.bytes[0] = 0xc5;
3115
3116 /* Check the REX.R bit. */
3117 r = (i.rex & REX_R) ? 0 : 1;
3118 i.vex.bytes[1] = (r << 7
3119 | register_specifier << 3
3120 | vector_length << 2
3121 | implied_prefix);
3122 }
3123 else
3124 {
3125 /* 3-byte VEX prefix. */
3126 unsigned int m, w;
3127
3128 i.vex.length = 3;
3129
3130 switch (i.tm.opcode_modifier.vexopcode)
3131 {
3132 case VEX0F:
3133 m = 0x1;
3134 i.vex.bytes[0] = 0xc4;
3135 break;
3136 case VEX0F38:
3137 m = 0x2;
3138 i.vex.bytes[0] = 0xc4;
3139 break;
3140 case VEX0F3A:
3141 m = 0x3;
3142 i.vex.bytes[0] = 0xc4;
3143 break;
3144 case XOP08:
3145 m = 0x8;
3146 i.vex.bytes[0] = 0x8f;
3147 break;
3148 case XOP09:
3149 m = 0x9;
3150 i.vex.bytes[0] = 0x8f;
3151 break;
3152 case XOP0A:
3153 m = 0xa;
3154 i.vex.bytes[0] = 0x8f;
3155 break;
3156 default:
3157 abort ();
3158 }
3159
3160 /* The high 3 bits of the second VEX byte are 1's compliment
3161 of RXB bits from REX. */
3162 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3163
3164 /* Check the REX.W bit. */
3165 w = (i.rex & REX_W) ? 1 : 0;
3166 if (i.tm.opcode_modifier.vexw)
3167 {
3168 if (w)
3169 abort ();
3170
3171 if (i.tm.opcode_modifier.vexw == VEXW1)
3172 w = 1;
3173 }
3174
3175 i.vex.bytes[2] = (w << 7
3176 | register_specifier << 3
3177 | vector_length << 2
3178 | implied_prefix);
3179 }
3180 }
3181
3182 /* Build the EVEX prefix. */
3183
3184 static void
3185 build_evex_prefix (void)
3186 {
3187 unsigned int register_specifier;
3188 unsigned int implied_prefix;
3189 unsigned int m, w;
3190 rex_byte vrex_used = 0;
3191
3192 /* Check register specifier. */
3193 if (i.vex.register_specifier)
3194 {
3195 gas_assert ((i.vrex & REX_X) == 0);
3196
3197 register_specifier = i.vex.register_specifier->reg_num;
3198 if ((i.vex.register_specifier->reg_flags & RegRex))
3199 register_specifier += 8;
3200 /* The upper 16 registers are encoded in the fourth byte of the
3201 EVEX prefix. */
3202 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3203 i.vex.bytes[3] = 0x8;
3204 register_specifier = ~register_specifier & 0xf;
3205 }
3206 else
3207 {
3208 register_specifier = 0xf;
3209
3210 /* Encode upper 16 vector index register in the fourth byte of
3211 the EVEX prefix. */
3212 if (!(i.vrex & REX_X))
3213 i.vex.bytes[3] = 0x8;
3214 else
3215 vrex_used |= REX_X;
3216 }
3217
3218 switch ((i.tm.base_opcode >> 8) & 0xff)
3219 {
3220 case 0:
3221 implied_prefix = 0;
3222 break;
3223 case DATA_PREFIX_OPCODE:
3224 implied_prefix = 1;
3225 break;
3226 case REPE_PREFIX_OPCODE:
3227 implied_prefix = 2;
3228 break;
3229 case REPNE_PREFIX_OPCODE:
3230 implied_prefix = 3;
3231 break;
3232 default:
3233 abort ();
3234 }
3235
3236 /* 4 byte EVEX prefix. */
3237 i.vex.length = 4;
3238 i.vex.bytes[0] = 0x62;
3239
3240 /* mmmm bits. */
3241 switch (i.tm.opcode_modifier.vexopcode)
3242 {
3243 case VEX0F:
3244 m = 1;
3245 break;
3246 case VEX0F38:
3247 m = 2;
3248 break;
3249 case VEX0F3A:
3250 m = 3;
3251 break;
3252 default:
3253 abort ();
3254 break;
3255 }
3256
3257 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3258 bits from REX. */
3259 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3260
3261 /* The fifth bit of the second EVEX byte is 1's compliment of the
3262 REX_R bit in VREX. */
3263 if (!(i.vrex & REX_R))
3264 i.vex.bytes[1] |= 0x10;
3265 else
3266 vrex_used |= REX_R;
3267
3268 if ((i.reg_operands + i.imm_operands) == i.operands)
3269 {
3270 /* When all operands are registers, the REX_X bit in REX is not
3271 used. We reuse it to encode the upper 16 registers, which is
3272 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3273 as 1's compliment. */
3274 if ((i.vrex & REX_B))
3275 {
3276 vrex_used |= REX_B;
3277 i.vex.bytes[1] &= ~0x40;
3278 }
3279 }
3280
3281 /* EVEX instructions shouldn't need the REX prefix. */
3282 i.vrex &= ~vrex_used;
3283 gas_assert (i.vrex == 0);
3284
3285 /* Check the REX.W bit. */
3286 w = (i.rex & REX_W) ? 1 : 0;
3287 if (i.tm.opcode_modifier.vexw)
3288 {
3289 if (i.tm.opcode_modifier.vexw == VEXW1)
3290 w = 1;
3291 }
3292 /* If w is not set it means we are dealing with WIG instruction. */
3293 else if (!w)
3294 {
3295 if (evexwig == evexw1)
3296 w = 1;
3297 }
3298
3299 /* Encode the U bit. */
3300 implied_prefix |= 0x4;
3301
3302 /* The third byte of the EVEX prefix. */
3303 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3304
3305 /* The fourth byte of the EVEX prefix. */
3306 /* The zeroing-masking bit. */
3307 if (i.mask && i.mask->zeroing)
3308 i.vex.bytes[3] |= 0x80;
3309
3310 /* Don't always set the broadcast bit if there is no RC. */
3311 if (!i.rounding)
3312 {
3313 /* Encode the vector length. */
3314 unsigned int vec_length;
3315
3316 switch (i.tm.opcode_modifier.evex)
3317 {
3318 case EVEXLIG: /* LL' is ignored */
3319 vec_length = evexlig << 5;
3320 break;
3321 case EVEX128:
3322 vec_length = 0 << 5;
3323 break;
3324 case EVEX256:
3325 vec_length = 1 << 5;
3326 break;
3327 case EVEX512:
3328 vec_length = 2 << 5;
3329 break;
3330 default:
3331 abort ();
3332 break;
3333 }
3334 i.vex.bytes[3] |= vec_length;
3335 /* Encode the broadcast bit. */
3336 if (i.broadcast)
3337 i.vex.bytes[3] |= 0x10;
3338 }
3339 else
3340 {
3341 if (i.rounding->type != saeonly)
3342 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3343 else
3344 i.vex.bytes[3] |= 0x10;
3345 }
3346
3347 if (i.mask && i.mask->mask)
3348 i.vex.bytes[3] |= i.mask->mask->reg_num;
3349 }
3350
3351 static void
3352 process_immext (void)
3353 {
3354 expressionS *exp;
3355
3356 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3357 && i.operands > 0)
3358 {
3359 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3360 with an opcode suffix which is coded in the same place as an
3361 8-bit immediate field would be.
3362 Here we check those operands and remove them afterwards. */
3363 unsigned int x;
3364
3365 for (x = 0; x < i.operands; x++)
3366 if (register_number (i.op[x].regs) != x)
3367 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3368 register_prefix, i.op[x].regs->reg_name, x + 1,
3369 i.tm.name);
3370
3371 i.operands = 0;
3372 }
3373
3374 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3375 which is coded in the same place as an 8-bit immediate field
3376 would be. Here we fake an 8-bit immediate operand from the
3377 opcode suffix stored in tm.extension_opcode.
3378
3379 AVX instructions also use this encoding, for some of
3380 3 argument instructions. */
3381
3382 gas_assert (i.imm_operands <= 1
3383 && (i.operands <= 2
3384 || ((i.tm.opcode_modifier.vex
3385 || i.tm.opcode_modifier.evex)
3386 && i.operands <= 4)));
3387
3388 exp = &im_expressions[i.imm_operands++];
3389 i.op[i.operands].imms = exp;
3390 i.types[i.operands] = imm8;
3391 i.operands++;
3392 exp->X_op = O_constant;
3393 exp->X_add_number = i.tm.extension_opcode;
3394 i.tm.extension_opcode = None;
3395 }
3396
3397
3398 static int
3399 check_hle (void)
3400 {
3401 switch (i.tm.opcode_modifier.hleprefixok)
3402 {
3403 default:
3404 abort ();
3405 case HLEPrefixNone:
3406 as_bad (_("invalid instruction `%s' after `%s'"),
3407 i.tm.name, i.hle_prefix);
3408 return 0;
3409 case HLEPrefixLock:
3410 if (i.prefix[LOCK_PREFIX])
3411 return 1;
3412 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3413 return 0;
3414 case HLEPrefixAny:
3415 return 1;
3416 case HLEPrefixRelease:
3417 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3418 {
3419 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3420 i.tm.name);
3421 return 0;
3422 }
3423 if (i.mem_operands == 0
3424 || !operand_type_check (i.types[i.operands - 1], anymem))
3425 {
3426 as_bad (_("memory destination needed for instruction `%s'"
3427 " after `xrelease'"), i.tm.name);
3428 return 0;
3429 }
3430 return 1;
3431 }
3432 }
3433
3434 /* This is the guts of the machine-dependent assembler. LINE points to a
3435 machine dependent instruction. This function is supposed to emit
3436 the frags/bytes it assembles to. */
3437
3438 void
3439 md_assemble (char *line)
3440 {
3441 unsigned int j;
3442 char mnemonic[MAX_MNEM_SIZE];
3443 const insn_template *t;
3444
3445 /* Initialize globals. */
3446 memset (&i, '\0', sizeof (i));
3447 for (j = 0; j < MAX_OPERANDS; j++)
3448 i.reloc[j] = NO_RELOC;
3449 memset (disp_expressions, '\0', sizeof (disp_expressions));
3450 memset (im_expressions, '\0', sizeof (im_expressions));
3451 save_stack_p = save_stack;
3452
3453 /* First parse an instruction mnemonic & call i386_operand for the operands.
3454 We assume that the scrubber has arranged it so that line[0] is the valid
3455 start of a (possibly prefixed) mnemonic. */
3456
3457 line = parse_insn (line, mnemonic);
3458 if (line == NULL)
3459 return;
3460
3461 line = parse_operands (line, mnemonic);
3462 this_operand = -1;
3463 if (line == NULL)
3464 return;
3465
3466 /* Now we've parsed the mnemonic into a set of templates, and have the
3467 operands at hand. */
3468
3469 /* All intel opcodes have reversed operands except for "bound" and
3470 "enter". We also don't reverse intersegment "jmp" and "call"
3471 instructions with 2 immediate operands so that the immediate segment
3472 precedes the offset, as it does when in AT&T mode. */
3473 if (intel_syntax
3474 && i.operands > 1
3475 && (strcmp (mnemonic, "bound") != 0)
3476 && (strcmp (mnemonic, "invlpga") != 0)
3477 && !(operand_type_check (i.types[0], imm)
3478 && operand_type_check (i.types[1], imm)))
3479 swap_operands ();
3480
3481 /* The order of the immediates should be reversed
3482 for 2 immediates extrq and insertq instructions */
3483 if (i.imm_operands == 2
3484 && (strcmp (mnemonic, "extrq") == 0
3485 || strcmp (mnemonic, "insertq") == 0))
3486 swap_2_operands (0, 1);
3487
3488 if (i.imm_operands)
3489 optimize_imm ();
3490
3491 /* Don't optimize displacement for movabs since it only takes 64bit
3492 displacement. */
3493 if (i.disp_operands
3494 && i.disp_encoding != disp_encoding_32bit
3495 && (flag_code != CODE_64BIT
3496 || strcmp (mnemonic, "movabs") != 0))
3497 optimize_disp ();
3498
3499 /* Next, we find a template that matches the given insn,
3500 making sure the overlap of the given operands types is consistent
3501 with the template operand types. */
3502
3503 if (!(t = match_template ()))
3504 return;
3505
3506 if (sse_check != check_none
3507 && !i.tm.opcode_modifier.noavx
3508 && (i.tm.cpu_flags.bitfield.cpusse
3509 || i.tm.cpu_flags.bitfield.cpusse2
3510 || i.tm.cpu_flags.bitfield.cpusse3
3511 || i.tm.cpu_flags.bitfield.cpussse3
3512 || i.tm.cpu_flags.bitfield.cpusse4_1
3513 || i.tm.cpu_flags.bitfield.cpusse4_2))
3514 {
3515 (sse_check == check_warning
3516 ? as_warn
3517 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3518 }
3519
3520 /* Zap movzx and movsx suffix. The suffix has been set from
3521 "word ptr" or "byte ptr" on the source operand in Intel syntax
3522 or extracted from mnemonic in AT&T syntax. But we'll use
3523 the destination register to choose the suffix for encoding. */
3524 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3525 {
3526 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3527 there is no suffix, the default will be byte extension. */
3528 if (i.reg_operands != 2
3529 && !i.suffix
3530 && intel_syntax)
3531 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3532
3533 i.suffix = 0;
3534 }
3535
3536 if (i.tm.opcode_modifier.fwait)
3537 if (!add_prefix (FWAIT_OPCODE))
3538 return;
3539
3540 /* Check if REP prefix is OK. */
3541 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3542 {
3543 as_bad (_("invalid instruction `%s' after `%s'"),
3544 i.tm.name, i.rep_prefix);
3545 return;
3546 }
3547
3548 /* Check for lock without a lockable instruction. Destination operand
3549 must be memory unless it is xchg (0x86). */
3550 if (i.prefix[LOCK_PREFIX]
3551 && (!i.tm.opcode_modifier.islockable
3552 || i.mem_operands == 0
3553 || (i.tm.base_opcode != 0x86
3554 && !operand_type_check (i.types[i.operands - 1], anymem))))
3555 {
3556 as_bad (_("expecting lockable instruction after `lock'"));
3557 return;
3558 }
3559
3560 /* Check if HLE prefix is OK. */
3561 if (i.hle_prefix && !check_hle ())
3562 return;
3563
3564 /* Check BND prefix. */
3565 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3566 as_bad (_("expecting valid branch instruction after `bnd'"));
3567
3568 if (i.tm.cpu_flags.bitfield.cpumpx
3569 && flag_code == CODE_64BIT
3570 && i.prefix[ADDR_PREFIX])
3571 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3572
3573 /* Insert BND prefix. */
3574 if (add_bnd_prefix
3575 && i.tm.opcode_modifier.bndprefixok
3576 && !i.prefix[BND_PREFIX])
3577 add_prefix (BND_PREFIX_OPCODE);
3578
3579 /* Check string instruction segment overrides. */
3580 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3581 {
3582 if (!check_string ())
3583 return;
3584 i.disp_operands = 0;
3585 }
3586
3587 if (!process_suffix ())
3588 return;
3589
3590 /* Update operand types. */
3591 for (j = 0; j < i.operands; j++)
3592 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3593
3594 /* Make still unresolved immediate matches conform to size of immediate
3595 given in i.suffix. */
3596 if (!finalize_imm ())
3597 return;
3598
3599 if (i.types[0].bitfield.imm1)
3600 i.imm_operands = 0; /* kludge for shift insns. */
3601
3602 /* We only need to check those implicit registers for instructions
3603 with 3 operands or less. */
3604 if (i.operands <= 3)
3605 for (j = 0; j < i.operands; j++)
3606 if (i.types[j].bitfield.inoutportreg
3607 || i.types[j].bitfield.shiftcount
3608 || i.types[j].bitfield.acc
3609 || i.types[j].bitfield.floatacc)
3610 i.reg_operands--;
3611
3612 /* ImmExt should be processed after SSE2AVX. */
3613 if (!i.tm.opcode_modifier.sse2avx
3614 && i.tm.opcode_modifier.immext)
3615 process_immext ();
3616
3617 /* For insns with operands there are more diddles to do to the opcode. */
3618 if (i.operands)
3619 {
3620 if (!process_operands ())
3621 return;
3622 }
3623 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3624 {
3625 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3626 as_warn (_("translating to `%sp'"), i.tm.name);
3627 }
3628
3629 if (i.tm.opcode_modifier.vex)
3630 build_vex_prefix (t);
3631
3632 if (i.tm.opcode_modifier.evex)
3633 build_evex_prefix ();
3634
3635 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3636 instructions may define INT_OPCODE as well, so avoid this corner
3637 case for those instructions that use MODRM. */
3638 if (i.tm.base_opcode == INT_OPCODE
3639 && !i.tm.opcode_modifier.modrm
3640 && i.op[0].imms->X_add_number == 3)
3641 {
3642 i.tm.base_opcode = INT3_OPCODE;
3643 i.imm_operands = 0;
3644 }
3645
3646 if ((i.tm.opcode_modifier.jump
3647 || i.tm.opcode_modifier.jumpbyte
3648 || i.tm.opcode_modifier.jumpdword)
3649 && i.op[0].disps->X_op == O_constant)
3650 {
3651 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3652 the absolute address given by the constant. Since ix86 jumps and
3653 calls are pc relative, we need to generate a reloc. */
3654 i.op[0].disps->X_add_symbol = &abs_symbol;
3655 i.op[0].disps->X_op = O_symbol;
3656 }
3657
3658 if (i.tm.opcode_modifier.rex64)
3659 i.rex |= REX_W;
3660
3661 /* For 8 bit registers we need an empty rex prefix. Also if the
3662 instruction already has a prefix, we need to convert old
3663 registers to new ones. */
3664
3665 if ((i.types[0].bitfield.reg8
3666 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3667 || (i.types[1].bitfield.reg8
3668 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3669 || ((i.types[0].bitfield.reg8
3670 || i.types[1].bitfield.reg8)
3671 && i.rex != 0))
3672 {
3673 int x;
3674
3675 i.rex |= REX_OPCODE;
3676 for (x = 0; x < 2; x++)
3677 {
3678 /* Look for 8 bit operand that uses old registers. */
3679 if (i.types[x].bitfield.reg8
3680 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3681 {
3682 /* In case it is "hi" register, give up. */
3683 if (i.op[x].regs->reg_num > 3)
3684 as_bad (_("can't encode register '%s%s' in an "
3685 "instruction requiring REX prefix."),
3686 register_prefix, i.op[x].regs->reg_name);
3687
3688 /* Otherwise it is equivalent to the extended register.
3689 Since the encoding doesn't change this is merely
3690 cosmetic cleanup for debug output. */
3691
3692 i.op[x].regs = i.op[x].regs + 8;
3693 }
3694 }
3695 }
3696
3697 if (i.rex != 0)
3698 add_prefix (REX_OPCODE | i.rex);
3699
3700 /* We are ready to output the insn. */
3701 output_insn ();
3702 }
3703
3704 static char *
3705 parse_insn (char *line, char *mnemonic)
3706 {
3707 char *l = line;
3708 char *token_start = l;
3709 char *mnem_p;
3710 int supported;
3711 const insn_template *t;
3712 char *dot_p = NULL;
3713
3714 while (1)
3715 {
3716 mnem_p = mnemonic;
3717 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3718 {
3719 if (*mnem_p == '.')
3720 dot_p = mnem_p;
3721 mnem_p++;
3722 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3723 {
3724 as_bad (_("no such instruction: `%s'"), token_start);
3725 return NULL;
3726 }
3727 l++;
3728 }
3729 if (!is_space_char (*l)
3730 && *l != END_OF_INSN
3731 && (intel_syntax
3732 || (*l != PREFIX_SEPARATOR
3733 && *l != ',')))
3734 {
3735 as_bad (_("invalid character %s in mnemonic"),
3736 output_invalid (*l));
3737 return NULL;
3738 }
3739 if (token_start == l)
3740 {
3741 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3742 as_bad (_("expecting prefix; got nothing"));
3743 else
3744 as_bad (_("expecting mnemonic; got nothing"));
3745 return NULL;
3746 }
3747
3748 /* Look up instruction (or prefix) via hash table. */
3749 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3750
3751 if (*l != END_OF_INSN
3752 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3753 && current_templates
3754 && current_templates->start->opcode_modifier.isprefix)
3755 {
3756 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3757 {
3758 as_bad ((flag_code != CODE_64BIT
3759 ? _("`%s' is only supported in 64-bit mode")
3760 : _("`%s' is not supported in 64-bit mode")),
3761 current_templates->start->name);
3762 return NULL;
3763 }
3764 /* If we are in 16-bit mode, do not allow addr16 or data16.
3765 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3766 if ((current_templates->start->opcode_modifier.size16
3767 || current_templates->start->opcode_modifier.size32)
3768 && flag_code != CODE_64BIT
3769 && (current_templates->start->opcode_modifier.size32
3770 ^ (flag_code == CODE_16BIT)))
3771 {
3772 as_bad (_("redundant %s prefix"),
3773 current_templates->start->name);
3774 return NULL;
3775 }
3776 /* Add prefix, checking for repeated prefixes. */
3777 switch (add_prefix (current_templates->start->base_opcode))
3778 {
3779 case PREFIX_EXIST:
3780 return NULL;
3781 case PREFIX_REP:
3782 if (current_templates->start->cpu_flags.bitfield.cpuhle)
3783 i.hle_prefix = current_templates->start->name;
3784 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
3785 i.bnd_prefix = current_templates->start->name;
3786 else
3787 i.rep_prefix = current_templates->start->name;
3788 break;
3789 default:
3790 break;
3791 }
3792 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3793 token_start = ++l;
3794 }
3795 else
3796 break;
3797 }
3798
3799 if (!current_templates)
3800 {
3801 /* Check if we should swap operand or force 32bit displacement in
3802 encoding. */
3803 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3804 i.swap_operand = 1;
3805 else if (mnem_p - 3 == dot_p
3806 && dot_p[1] == 'd'
3807 && dot_p[2] == '8')
3808 i.disp_encoding = disp_encoding_8bit;
3809 else if (mnem_p - 4 == dot_p
3810 && dot_p[1] == 'd'
3811 && dot_p[2] == '3'
3812 && dot_p[3] == '2')
3813 i.disp_encoding = disp_encoding_32bit;
3814 else
3815 goto check_suffix;
3816 mnem_p = dot_p;
3817 *dot_p = '\0';
3818 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3819 }
3820
3821 if (!current_templates)
3822 {
3823 check_suffix:
3824 /* See if we can get a match by trimming off a suffix. */
3825 switch (mnem_p[-1])
3826 {
3827 case WORD_MNEM_SUFFIX:
3828 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3829 i.suffix = SHORT_MNEM_SUFFIX;
3830 else
3831 case BYTE_MNEM_SUFFIX:
3832 case QWORD_MNEM_SUFFIX:
3833 i.suffix = mnem_p[-1];
3834 mnem_p[-1] = '\0';
3835 current_templates = (const templates *) hash_find (op_hash,
3836 mnemonic);
3837 break;
3838 case SHORT_MNEM_SUFFIX:
3839 case LONG_MNEM_SUFFIX:
3840 if (!intel_syntax)
3841 {
3842 i.suffix = mnem_p[-1];
3843 mnem_p[-1] = '\0';
3844 current_templates = (const templates *) hash_find (op_hash,
3845 mnemonic);
3846 }
3847 break;
3848
3849 /* Intel Syntax. */
3850 case 'd':
3851 if (intel_syntax)
3852 {
3853 if (intel_float_operand (mnemonic) == 1)
3854 i.suffix = SHORT_MNEM_SUFFIX;
3855 else
3856 i.suffix = LONG_MNEM_SUFFIX;
3857 mnem_p[-1] = '\0';
3858 current_templates = (const templates *) hash_find (op_hash,
3859 mnemonic);
3860 }
3861 break;
3862 }
3863 if (!current_templates)
3864 {
3865 as_bad (_("no such instruction: `%s'"), token_start);
3866 return NULL;
3867 }
3868 }
3869
3870 if (current_templates->start->opcode_modifier.jump
3871 || current_templates->start->opcode_modifier.jumpbyte)
3872 {
3873 /* Check for a branch hint. We allow ",pt" and ",pn" for
3874 predict taken and predict not taken respectively.
3875 I'm not sure that branch hints actually do anything on loop
3876 and jcxz insns (JumpByte) for current Pentium4 chips. They
3877 may work in the future and it doesn't hurt to accept them
3878 now. */
3879 if (l[0] == ',' && l[1] == 'p')
3880 {
3881 if (l[2] == 't')
3882 {
3883 if (!add_prefix (DS_PREFIX_OPCODE))
3884 return NULL;
3885 l += 3;
3886 }
3887 else if (l[2] == 'n')
3888 {
3889 if (!add_prefix (CS_PREFIX_OPCODE))
3890 return NULL;
3891 l += 3;
3892 }
3893 }
3894 }
3895 /* Any other comma loses. */
3896 if (*l == ',')
3897 {
3898 as_bad (_("invalid character %s in mnemonic"),
3899 output_invalid (*l));
3900 return NULL;
3901 }
3902
3903 /* Check if instruction is supported on specified architecture. */
3904 supported = 0;
3905 for (t = current_templates->start; t < current_templates->end; ++t)
3906 {
3907 supported |= cpu_flags_match (t);
3908 if (supported == CPU_FLAGS_PERFECT_MATCH)
3909 goto skip;
3910 }
3911
3912 if (!(supported & CPU_FLAGS_64BIT_MATCH))
3913 {
3914 as_bad (flag_code == CODE_64BIT
3915 ? _("`%s' is not supported in 64-bit mode")
3916 : _("`%s' is only supported in 64-bit mode"),
3917 current_templates->start->name);
3918 return NULL;
3919 }
3920 if (supported != CPU_FLAGS_PERFECT_MATCH)
3921 {
3922 as_bad (_("`%s' is not supported on `%s%s'"),
3923 current_templates->start->name,
3924 cpu_arch_name ? cpu_arch_name : default_arch,
3925 cpu_sub_arch_name ? cpu_sub_arch_name : "");
3926 return NULL;
3927 }
3928
3929 skip:
3930 if (!cpu_arch_flags.bitfield.cpui386
3931 && (flag_code != CODE_16BIT))
3932 {
3933 as_warn (_("use .code16 to ensure correct addressing mode"));
3934 }
3935
3936 return l;
3937 }
3938
3939 static char *
3940 parse_operands (char *l, const char *mnemonic)
3941 {
3942 char *token_start;
3943
3944 /* 1 if operand is pending after ','. */
3945 unsigned int expecting_operand = 0;
3946
3947 /* Non-zero if operand parens not balanced. */
3948 unsigned int paren_not_balanced;
3949
3950 while (*l != END_OF_INSN)
3951 {
3952 /* Skip optional white space before operand. */
3953 if (is_space_char (*l))
3954 ++l;
3955 if (!is_operand_char (*l) && *l != END_OF_INSN)
3956 {
3957 as_bad (_("invalid character %s before operand %d"),
3958 output_invalid (*l),
3959 i.operands + 1);
3960 return NULL;
3961 }
3962 token_start = l; /* after white space */
3963 paren_not_balanced = 0;
3964 while (paren_not_balanced || *l != ',')
3965 {
3966 if (*l == END_OF_INSN)
3967 {
3968 if (paren_not_balanced)
3969 {
3970 if (!intel_syntax)
3971 as_bad (_("unbalanced parenthesis in operand %d."),
3972 i.operands + 1);
3973 else
3974 as_bad (_("unbalanced brackets in operand %d."),
3975 i.operands + 1);
3976 return NULL;
3977 }
3978 else
3979 break; /* we are done */
3980 }
3981 else if (!is_operand_char (*l) && !is_space_char (*l))
3982 {
3983 as_bad (_("invalid character %s in operand %d"),
3984 output_invalid (*l),
3985 i.operands + 1);
3986 return NULL;
3987 }
3988 if (!intel_syntax)
3989 {
3990 if (*l == '(')
3991 ++paren_not_balanced;
3992 if (*l == ')')
3993 --paren_not_balanced;
3994 }
3995 else
3996 {
3997 if (*l == '[')
3998 ++paren_not_balanced;
3999 if (*l == ']')
4000 --paren_not_balanced;
4001 }
4002 l++;
4003 }
4004 if (l != token_start)
4005 { /* Yes, we've read in another operand. */
4006 unsigned int operand_ok;
4007 this_operand = i.operands++;
4008 i.types[this_operand].bitfield.unspecified = 1;
4009 if (i.operands > MAX_OPERANDS)
4010 {
4011 as_bad (_("spurious operands; (%d operands/instruction max)"),
4012 MAX_OPERANDS);
4013 return NULL;
4014 }
4015 /* Now parse operand adding info to 'i' as we go along. */
4016 END_STRING_AND_SAVE (l);
4017
4018 if (intel_syntax)
4019 operand_ok =
4020 i386_intel_operand (token_start,
4021 intel_float_operand (mnemonic));
4022 else
4023 operand_ok = i386_att_operand (token_start);
4024
4025 RESTORE_END_STRING (l);
4026 if (!operand_ok)
4027 return NULL;
4028 }
4029 else
4030 {
4031 if (expecting_operand)
4032 {
4033 expecting_operand_after_comma:
4034 as_bad (_("expecting operand after ','; got nothing"));
4035 return NULL;
4036 }
4037 if (*l == ',')
4038 {
4039 as_bad (_("expecting operand before ','; got nothing"));
4040 return NULL;
4041 }
4042 }
4043
4044 /* Now *l must be either ',' or END_OF_INSN. */
4045 if (*l == ',')
4046 {
4047 if (*++l == END_OF_INSN)
4048 {
4049 /* Just skip it, if it's \n complain. */
4050 goto expecting_operand_after_comma;
4051 }
4052 expecting_operand = 1;
4053 }
4054 }
4055 return l;
4056 }
4057
4058 static void
4059 swap_2_operands (int xchg1, int xchg2)
4060 {
4061 union i386_op temp_op;
4062 i386_operand_type temp_type;
4063 enum bfd_reloc_code_real temp_reloc;
4064
4065 temp_type = i.types[xchg2];
4066 i.types[xchg2] = i.types[xchg1];
4067 i.types[xchg1] = temp_type;
4068 temp_op = i.op[xchg2];
4069 i.op[xchg2] = i.op[xchg1];
4070 i.op[xchg1] = temp_op;
4071 temp_reloc = i.reloc[xchg2];
4072 i.reloc[xchg2] = i.reloc[xchg1];
4073 i.reloc[xchg1] = temp_reloc;
4074
4075 if (i.mask)
4076 {
4077 if (i.mask->operand == xchg1)
4078 i.mask->operand = xchg2;
4079 else if (i.mask->operand == xchg2)
4080 i.mask->operand = xchg1;
4081 }
4082 if (i.broadcast)
4083 {
4084 if (i.broadcast->operand == xchg1)
4085 i.broadcast->operand = xchg2;
4086 else if (i.broadcast->operand == xchg2)
4087 i.broadcast->operand = xchg1;
4088 }
4089 if (i.rounding)
4090 {
4091 if (i.rounding->operand == xchg1)
4092 i.rounding->operand = xchg2;
4093 else if (i.rounding->operand == xchg2)
4094 i.rounding->operand = xchg1;
4095 }
4096 }
4097
4098 static void
4099 swap_operands (void)
4100 {
4101 switch (i.operands)
4102 {
4103 case 5:
4104 case 4:
4105 swap_2_operands (1, i.operands - 2);
4106 case 3:
4107 case 2:
4108 swap_2_operands (0, i.operands - 1);
4109 break;
4110 default:
4111 abort ();
4112 }
4113
4114 if (i.mem_operands == 2)
4115 {
4116 const seg_entry *temp_seg;
4117 temp_seg = i.seg[0];
4118 i.seg[0] = i.seg[1];
4119 i.seg[1] = temp_seg;
4120 }
4121 }
4122
4123 /* Try to ensure constant immediates are represented in the smallest
4124 opcode possible. */
4125 static void
4126 optimize_imm (void)
4127 {
4128 char guess_suffix = 0;
4129 int op;
4130
4131 if (i.suffix)
4132 guess_suffix = i.suffix;
4133 else if (i.reg_operands)
4134 {
4135 /* Figure out a suffix from the last register operand specified.
4136 We can't do this properly yet, ie. excluding InOutPortReg,
4137 but the following works for instructions with immediates.
4138 In any case, we can't set i.suffix yet. */
4139 for (op = i.operands; --op >= 0;)
4140 if (i.types[op].bitfield.reg8)
4141 {
4142 guess_suffix = BYTE_MNEM_SUFFIX;
4143 break;
4144 }
4145 else if (i.types[op].bitfield.reg16)
4146 {
4147 guess_suffix = WORD_MNEM_SUFFIX;
4148 break;
4149 }
4150 else if (i.types[op].bitfield.reg32)
4151 {
4152 guess_suffix = LONG_MNEM_SUFFIX;
4153 break;
4154 }
4155 else if (i.types[op].bitfield.reg64)
4156 {
4157 guess_suffix = QWORD_MNEM_SUFFIX;
4158 break;
4159 }
4160 }
4161 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4162 guess_suffix = WORD_MNEM_SUFFIX;
4163
4164 for (op = i.operands; --op >= 0;)
4165 if (operand_type_check (i.types[op], imm))
4166 {
4167 switch (i.op[op].imms->X_op)
4168 {
4169 case O_constant:
4170 /* If a suffix is given, this operand may be shortened. */
4171 switch (guess_suffix)
4172 {
4173 case LONG_MNEM_SUFFIX:
4174 i.types[op].bitfield.imm32 = 1;
4175 i.types[op].bitfield.imm64 = 1;
4176 break;
4177 case WORD_MNEM_SUFFIX:
4178 i.types[op].bitfield.imm16 = 1;
4179 i.types[op].bitfield.imm32 = 1;
4180 i.types[op].bitfield.imm32s = 1;
4181 i.types[op].bitfield.imm64 = 1;
4182 break;
4183 case BYTE_MNEM_SUFFIX:
4184 i.types[op].bitfield.imm8 = 1;
4185 i.types[op].bitfield.imm8s = 1;
4186 i.types[op].bitfield.imm16 = 1;
4187 i.types[op].bitfield.imm32 = 1;
4188 i.types[op].bitfield.imm32s = 1;
4189 i.types[op].bitfield.imm64 = 1;
4190 break;
4191 }
4192
4193 /* If this operand is at most 16 bits, convert it
4194 to a signed 16 bit number before trying to see
4195 whether it will fit in an even smaller size.
4196 This allows a 16-bit operand such as $0xffe0 to
4197 be recognised as within Imm8S range. */
4198 if ((i.types[op].bitfield.imm16)
4199 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4200 {
4201 i.op[op].imms->X_add_number =
4202 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4203 }
4204 if ((i.types[op].bitfield.imm32)
4205 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4206 == 0))
4207 {
4208 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4209 ^ ((offsetT) 1 << 31))
4210 - ((offsetT) 1 << 31));
4211 }
4212 i.types[op]
4213 = operand_type_or (i.types[op],
4214 smallest_imm_type (i.op[op].imms->X_add_number));
4215
4216 /* We must avoid matching of Imm32 templates when 64bit
4217 only immediate is available. */
4218 if (guess_suffix == QWORD_MNEM_SUFFIX)
4219 i.types[op].bitfield.imm32 = 0;
4220 break;
4221
4222 case O_absent:
4223 case O_register:
4224 abort ();
4225
4226 /* Symbols and expressions. */
4227 default:
4228 /* Convert symbolic operand to proper sizes for matching, but don't
4229 prevent matching a set of insns that only supports sizes other
4230 than those matching the insn suffix. */
4231 {
4232 i386_operand_type mask, allowed;
4233 const insn_template *t;
4234
4235 operand_type_set (&mask, 0);
4236 operand_type_set (&allowed, 0);
4237
4238 for (t = current_templates->start;
4239 t < current_templates->end;
4240 ++t)
4241 allowed = operand_type_or (allowed,
4242 t->operand_types[op]);
4243 switch (guess_suffix)
4244 {
4245 case QWORD_MNEM_SUFFIX:
4246 mask.bitfield.imm64 = 1;
4247 mask.bitfield.imm32s = 1;
4248 break;
4249 case LONG_MNEM_SUFFIX:
4250 mask.bitfield.imm32 = 1;
4251 break;
4252 case WORD_MNEM_SUFFIX:
4253 mask.bitfield.imm16 = 1;
4254 break;
4255 case BYTE_MNEM_SUFFIX:
4256 mask.bitfield.imm8 = 1;
4257 break;
4258 default:
4259 break;
4260 }
4261 allowed = operand_type_and (mask, allowed);
4262 if (!operand_type_all_zero (&allowed))
4263 i.types[op] = operand_type_and (i.types[op], mask);
4264 }
4265 break;
4266 }
4267 }
4268 }
4269
4270 /* Try to use the smallest displacement type too. */
4271 static void
4272 optimize_disp (void)
4273 {
4274 int op;
4275
4276 for (op = i.operands; --op >= 0;)
4277 if (operand_type_check (i.types[op], disp))
4278 {
4279 if (i.op[op].disps->X_op == O_constant)
4280 {
4281 offsetT op_disp = i.op[op].disps->X_add_number;
4282
4283 if (i.types[op].bitfield.disp16
4284 && (op_disp & ~(offsetT) 0xffff) == 0)
4285 {
4286 /* If this operand is at most 16 bits, convert
4287 to a signed 16 bit number and don't use 64bit
4288 displacement. */
4289 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4290 i.types[op].bitfield.disp64 = 0;
4291 }
4292 if (i.types[op].bitfield.disp32
4293 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4294 {
4295 /* If this operand is at most 32 bits, convert
4296 to a signed 32 bit number and don't use 64bit
4297 displacement. */
4298 op_disp &= (((offsetT) 2 << 31) - 1);
4299 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4300 i.types[op].bitfield.disp64 = 0;
4301 }
4302 if (!op_disp && i.types[op].bitfield.baseindex)
4303 {
4304 i.types[op].bitfield.disp8 = 0;
4305 i.types[op].bitfield.disp16 = 0;
4306 i.types[op].bitfield.disp32 = 0;
4307 i.types[op].bitfield.disp32s = 0;
4308 i.types[op].bitfield.disp64 = 0;
4309 i.op[op].disps = 0;
4310 i.disp_operands--;
4311 }
4312 else if (flag_code == CODE_64BIT)
4313 {
4314 if (fits_in_signed_long (op_disp))
4315 {
4316 i.types[op].bitfield.disp64 = 0;
4317 i.types[op].bitfield.disp32s = 1;
4318 }
4319 if (i.prefix[ADDR_PREFIX]
4320 && fits_in_unsigned_long (op_disp))
4321 i.types[op].bitfield.disp32 = 1;
4322 }
4323 if ((i.types[op].bitfield.disp32
4324 || i.types[op].bitfield.disp32s
4325 || i.types[op].bitfield.disp16)
4326 && fits_in_signed_byte (op_disp))
4327 i.types[op].bitfield.disp8 = 1;
4328 }
4329 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4330 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4331 {
4332 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4333 i.op[op].disps, 0, i.reloc[op]);
4334 i.types[op].bitfield.disp8 = 0;
4335 i.types[op].bitfield.disp16 = 0;
4336 i.types[op].bitfield.disp32 = 0;
4337 i.types[op].bitfield.disp32s = 0;
4338 i.types[op].bitfield.disp64 = 0;
4339 }
4340 else
4341 /* We only support 64bit displacement on constants. */
4342 i.types[op].bitfield.disp64 = 0;
4343 }
4344 }
4345
4346 /* Check if operands are valid for the instruction. */
4347
4348 static int
4349 check_VecOperands (const insn_template *t)
4350 {
4351 unsigned int op;
4352
4353 /* Without VSIB byte, we can't have a vector register for index. */
4354 if (!t->opcode_modifier.vecsib
4355 && i.index_reg
4356 && (i.index_reg->reg_type.bitfield.regxmm
4357 || i.index_reg->reg_type.bitfield.regymm
4358 || i.index_reg->reg_type.bitfield.regzmm))
4359 {
4360 i.error = unsupported_vector_index_register;
4361 return 1;
4362 }
4363
4364 /* Check if default mask is allowed. */
4365 if (t->opcode_modifier.nodefmask
4366 && (!i.mask || i.mask->mask->reg_num == 0))
4367 {
4368 i.error = no_default_mask;
4369 return 1;
4370 }
4371
4372 /* For VSIB byte, we need a vector register for index, and all vector
4373 registers must be distinct. */
4374 if (t->opcode_modifier.vecsib)
4375 {
4376 if (!i.index_reg
4377 || !((t->opcode_modifier.vecsib == VecSIB128
4378 && i.index_reg->reg_type.bitfield.regxmm)
4379 || (t->opcode_modifier.vecsib == VecSIB256
4380 && i.index_reg->reg_type.bitfield.regymm)
4381 || (t->opcode_modifier.vecsib == VecSIB512
4382 && i.index_reg->reg_type.bitfield.regzmm)))
4383 {
4384 i.error = invalid_vsib_address;
4385 return 1;
4386 }
4387
4388 gas_assert (i.reg_operands == 2 || i.mask);
4389 if (i.reg_operands == 2 && !i.mask)
4390 {
4391 gas_assert (i.types[0].bitfield.regxmm
4392 || i.types[0].bitfield.regymm);
4393 gas_assert (i.types[2].bitfield.regxmm
4394 || i.types[2].bitfield.regymm);
4395 if (operand_check == check_none)
4396 return 0;
4397 if (register_number (i.op[0].regs)
4398 != register_number (i.index_reg)
4399 && register_number (i.op[2].regs)
4400 != register_number (i.index_reg)
4401 && register_number (i.op[0].regs)
4402 != register_number (i.op[2].regs))
4403 return 0;
4404 if (operand_check == check_error)
4405 {
4406 i.error = invalid_vector_register_set;
4407 return 1;
4408 }
4409 as_warn (_("mask, index, and destination registers should be distinct"));
4410 }
4411 else if (i.reg_operands == 1 && i.mask)
4412 {
4413 if ((i.types[1].bitfield.regymm
4414 || i.types[1].bitfield.regzmm)
4415 && (register_number (i.op[1].regs)
4416 == register_number (i.index_reg)))
4417 {
4418 if (operand_check == check_error)
4419 {
4420 i.error = invalid_vector_register_set;
4421 return 1;
4422 }
4423 if (operand_check != check_none)
4424 as_warn (_("index and destination registers should be distinct"));
4425 }
4426 }
4427 }
4428
4429 /* Check if broadcast is supported by the instruction and is applied
4430 to the memory operand. */
4431 if (i.broadcast)
4432 {
4433 int broadcasted_opnd_size;
4434
4435 /* Check if specified broadcast is supported in this instruction,
4436 and it's applied to memory operand of DWORD or QWORD type,
4437 depending on VecESize. */
4438 if (i.broadcast->type != t->opcode_modifier.broadcast
4439 || !i.types[i.broadcast->operand].bitfield.mem
4440 || (t->opcode_modifier.vecesize == 0
4441 && !i.types[i.broadcast->operand].bitfield.dword
4442 && !i.types[i.broadcast->operand].bitfield.unspecified)
4443 || (t->opcode_modifier.vecesize == 1
4444 && !i.types[i.broadcast->operand].bitfield.qword
4445 && !i.types[i.broadcast->operand].bitfield.unspecified))
4446 goto bad_broadcast;
4447
4448 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4449 if (i.broadcast->type == BROADCAST_1TO16)
4450 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4451 else if (i.broadcast->type == BROADCAST_1TO8)
4452 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4453 else
4454 goto bad_broadcast;
4455
4456 if ((broadcasted_opnd_size == 256
4457 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4458 || (broadcasted_opnd_size == 512
4459 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4460 {
4461 bad_broadcast:
4462 i.error = unsupported_broadcast;
4463 return 1;
4464 }
4465 }
4466 /* If broadcast is supported in this instruction, we need to check if
4467 operand of one-element size isn't specified without broadcast. */
4468 else if (t->opcode_modifier.broadcast && i.mem_operands)
4469 {
4470 /* Find memory operand. */
4471 for (op = 0; op < i.operands; op++)
4472 if (operand_type_check (i.types[op], anymem))
4473 break;
4474 gas_assert (op < i.operands);
4475 /* Check size of the memory operand. */
4476 if ((t->opcode_modifier.vecesize == 0
4477 && i.types[op].bitfield.dword)
4478 || (t->opcode_modifier.vecesize == 1
4479 && i.types[op].bitfield.qword))
4480 {
4481 i.error = broadcast_needed;
4482 return 1;
4483 }
4484 }
4485
4486 /* Check if requested masking is supported. */
4487 if (i.mask
4488 && (!t->opcode_modifier.masking
4489 || (i.mask->zeroing
4490 && t->opcode_modifier.masking == MERGING_MASKING)))
4491 {
4492 i.error = unsupported_masking;
4493 return 1;
4494 }
4495
4496 /* Check if masking is applied to dest operand. */
4497 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4498 {
4499 i.error = mask_not_on_destination;
4500 return 1;
4501 }
4502
4503 /* Check RC/SAE. */
4504 if (i.rounding)
4505 {
4506 if ((i.rounding->type != saeonly
4507 && !t->opcode_modifier.staticrounding)
4508 || (i.rounding->type == saeonly
4509 && (t->opcode_modifier.staticrounding
4510 || !t->opcode_modifier.sae)))
4511 {
4512 i.error = unsupported_rc_sae;
4513 return 1;
4514 }
4515 /* If the instruction has several immediate operands and one of
4516 them is rounding, the rounding operand should be the last
4517 immediate operand. */
4518 if (i.imm_operands > 1
4519 && i.rounding->operand != (int) (i.imm_operands - 1))
4520 {
4521 i.error = rc_sae_operand_not_last_imm;
4522 return 1;
4523 }
4524 }
4525
4526 /* Check vector Disp8 operand. */
4527 if (t->opcode_modifier.disp8memshift)
4528 {
4529 if (i.broadcast)
4530 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4531 else
4532 i.memshift = t->opcode_modifier.disp8memshift;
4533
4534 for (op = 0; op < i.operands; op++)
4535 if (operand_type_check (i.types[op], disp)
4536 && i.op[op].disps->X_op == O_constant)
4537 {
4538 offsetT value = i.op[op].disps->X_add_number;
4539 int vec_disp8_ok = fits_in_vec_disp8 (value);
4540 if (t->operand_types [op].bitfield.vec_disp8)
4541 {
4542 if (vec_disp8_ok)
4543 i.types[op].bitfield.vec_disp8 = 1;
4544 else
4545 {
4546 /* Vector insn can only have Vec_Disp8/Disp32 in
4547 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4548 mode. */
4549 i.types[op].bitfield.disp8 = 0;
4550 if (flag_code != CODE_16BIT)
4551 i.types[op].bitfield.disp16 = 0;
4552 }
4553 }
4554 else if (flag_code != CODE_16BIT)
4555 {
4556 /* One form of this instruction supports vector Disp8.
4557 Try vector Disp8 if we need to use Disp32. */
4558 if (vec_disp8_ok && !fits_in_signed_byte (value))
4559 {
4560 i.error = try_vector_disp8;
4561 return 1;
4562 }
4563 }
4564 }
4565 }
4566 else
4567 i.memshift = -1;
4568
4569 return 0;
4570 }
4571
4572 /* Check if operands are valid for the instruction. Update VEX
4573 operand types. */
4574
4575 static int
4576 VEX_check_operands (const insn_template *t)
4577 {
4578 /* VREX is only valid with EVEX prefix. */
4579 if (i.need_vrex && !t->opcode_modifier.evex)
4580 {
4581 i.error = invalid_register_operand;
4582 return 1;
4583 }
4584
4585 if (!t->opcode_modifier.vex)
4586 return 0;
4587
4588 /* Only check VEX_Imm4, which must be the first operand. */
4589 if (t->operand_types[0].bitfield.vec_imm4)
4590 {
4591 if (i.op[0].imms->X_op != O_constant
4592 || !fits_in_imm4 (i.op[0].imms->X_add_number))
4593 {
4594 i.error = bad_imm4;
4595 return 1;
4596 }
4597
4598 /* Turn off Imm8 so that update_imm won't complain. */
4599 i.types[0] = vec_imm4;
4600 }
4601
4602 return 0;
4603 }
4604
4605 static const insn_template *
4606 match_template (void)
4607 {
4608 /* Points to template once we've found it. */
4609 const insn_template *t;
4610 i386_operand_type overlap0, overlap1, overlap2, overlap3;
4611 i386_operand_type overlap4;
4612 unsigned int found_reverse_match;
4613 i386_opcode_modifier suffix_check;
4614 i386_operand_type operand_types [MAX_OPERANDS];
4615 int addr_prefix_disp;
4616 unsigned int j;
4617 unsigned int found_cpu_match;
4618 unsigned int check_register;
4619 enum i386_error specific_error = 0;
4620
4621 #if MAX_OPERANDS != 5
4622 # error "MAX_OPERANDS must be 5."
4623 #endif
4624
4625 found_reverse_match = 0;
4626 addr_prefix_disp = -1;
4627
4628 memset (&suffix_check, 0, sizeof (suffix_check));
4629 if (i.suffix == BYTE_MNEM_SUFFIX)
4630 suffix_check.no_bsuf = 1;
4631 else if (i.suffix == WORD_MNEM_SUFFIX)
4632 suffix_check.no_wsuf = 1;
4633 else if (i.suffix == SHORT_MNEM_SUFFIX)
4634 suffix_check.no_ssuf = 1;
4635 else if (i.suffix == LONG_MNEM_SUFFIX)
4636 suffix_check.no_lsuf = 1;
4637 else if (i.suffix == QWORD_MNEM_SUFFIX)
4638 suffix_check.no_qsuf = 1;
4639 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4640 suffix_check.no_ldsuf = 1;
4641
4642 /* Must have right number of operands. */
4643 i.error = number_of_operands_mismatch;
4644
4645 for (t = current_templates->start; t < current_templates->end; t++)
4646 {
4647 addr_prefix_disp = -1;
4648
4649 if (i.operands != t->operands)
4650 continue;
4651
4652 /* Check processor support. */
4653 i.error = unsupported;
4654 found_cpu_match = (cpu_flags_match (t)
4655 == CPU_FLAGS_PERFECT_MATCH);
4656 if (!found_cpu_match)
4657 continue;
4658
4659 /* Check old gcc support. */
4660 i.error = old_gcc_only;
4661 if (!old_gcc && t->opcode_modifier.oldgcc)
4662 continue;
4663
4664 /* Check AT&T mnemonic. */
4665 i.error = unsupported_with_intel_mnemonic;
4666 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4667 continue;
4668
4669 /* Check AT&T/Intel syntax. */
4670 i.error = unsupported_syntax;
4671 if ((intel_syntax && t->opcode_modifier.attsyntax)
4672 || (!intel_syntax && t->opcode_modifier.intelsyntax))
4673 continue;
4674
4675 /* Check the suffix, except for some instructions in intel mode. */
4676 i.error = invalid_instruction_suffix;
4677 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4678 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4679 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4680 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4681 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4682 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4683 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4684 continue;
4685
4686 if (!operand_size_match (t))
4687 continue;
4688
4689 for (j = 0; j < MAX_OPERANDS; j++)
4690 operand_types[j] = t->operand_types[j];
4691
4692 /* In general, don't allow 64-bit operands in 32-bit mode. */
4693 if (i.suffix == QWORD_MNEM_SUFFIX
4694 && flag_code != CODE_64BIT
4695 && (intel_syntax
4696 ? (!t->opcode_modifier.ignoresize
4697 && !intel_float_operand (t->name))
4698 : intel_float_operand (t->name) != 2)
4699 && ((!operand_types[0].bitfield.regmmx
4700 && !operand_types[0].bitfield.regxmm
4701 && !operand_types[0].bitfield.regymm
4702 && !operand_types[0].bitfield.regzmm)
4703 || (!operand_types[t->operands > 1].bitfield.regmmx
4704 && !!operand_types[t->operands > 1].bitfield.regxmm
4705 && !!operand_types[t->operands > 1].bitfield.regymm
4706 && !!operand_types[t->operands > 1].bitfield.regzmm))
4707 && (t->base_opcode != 0x0fc7
4708 || t->extension_opcode != 1 /* cmpxchg8b */))
4709 continue;
4710
4711 /* In general, don't allow 32-bit operands on pre-386. */
4712 else if (i.suffix == LONG_MNEM_SUFFIX
4713 && !cpu_arch_flags.bitfield.cpui386
4714 && (intel_syntax
4715 ? (!t->opcode_modifier.ignoresize
4716 && !intel_float_operand (t->name))
4717 : intel_float_operand (t->name) != 2)
4718 && ((!operand_types[0].bitfield.regmmx
4719 && !operand_types[0].bitfield.regxmm)
4720 || (!operand_types[t->operands > 1].bitfield.regmmx
4721 && !!operand_types[t->operands > 1].bitfield.regxmm)))
4722 continue;
4723
4724 /* Do not verify operands when there are none. */
4725 else
4726 {
4727 if (!t->operands)
4728 /* We've found a match; break out of loop. */
4729 break;
4730 }
4731
4732 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4733 into Disp32/Disp16/Disp32 operand. */
4734 if (i.prefix[ADDR_PREFIX] != 0)
4735 {
4736 /* There should be only one Disp operand. */
4737 switch (flag_code)
4738 {
4739 case CODE_16BIT:
4740 for (j = 0; j < MAX_OPERANDS; j++)
4741 {
4742 if (operand_types[j].bitfield.disp16)
4743 {
4744 addr_prefix_disp = j;
4745 operand_types[j].bitfield.disp32 = 1;
4746 operand_types[j].bitfield.disp16 = 0;
4747 break;
4748 }
4749 }
4750 break;
4751 case CODE_32BIT:
4752 for (j = 0; j < MAX_OPERANDS; j++)
4753 {
4754 if (operand_types[j].bitfield.disp32)
4755 {
4756 addr_prefix_disp = j;
4757 operand_types[j].bitfield.disp32 = 0;
4758 operand_types[j].bitfield.disp16 = 1;
4759 break;
4760 }
4761 }
4762 break;
4763 case CODE_64BIT:
4764 for (j = 0; j < MAX_OPERANDS; j++)
4765 {
4766 if (operand_types[j].bitfield.disp64)
4767 {
4768 addr_prefix_disp = j;
4769 operand_types[j].bitfield.disp64 = 0;
4770 operand_types[j].bitfield.disp32 = 1;
4771 break;
4772 }
4773 }
4774 break;
4775 }
4776 }
4777
4778 /* We check register size if needed. */
4779 check_register = t->opcode_modifier.checkregsize;
4780 overlap0 = operand_type_and (i.types[0], operand_types[0]);
4781 switch (t->operands)
4782 {
4783 case 1:
4784 if (!operand_type_match (overlap0, i.types[0]))
4785 continue;
4786 break;
4787 case 2:
4788 /* xchg %eax, %eax is a special case. It is an aliase for nop
4789 only in 32bit mode and we can use opcode 0x90. In 64bit
4790 mode, we can't use 0x90 for xchg %eax, %eax since it should
4791 zero-extend %eax to %rax. */
4792 if (flag_code == CODE_64BIT
4793 && t->base_opcode == 0x90
4794 && operand_type_equal (&i.types [0], &acc32)
4795 && operand_type_equal (&i.types [1], &acc32))
4796 continue;
4797 if (i.swap_operand)
4798 {
4799 /* If we swap operand in encoding, we either match
4800 the next one or reverse direction of operands. */
4801 if (t->opcode_modifier.s)
4802 continue;
4803 else if (t->opcode_modifier.d)
4804 goto check_reverse;
4805 }
4806
4807 case 3:
4808 /* If we swap operand in encoding, we match the next one. */
4809 if (i.swap_operand && t->opcode_modifier.s)
4810 continue;
4811 case 4:
4812 case 5:
4813 overlap1 = operand_type_and (i.types[1], operand_types[1]);
4814 if (!operand_type_match (overlap0, i.types[0])
4815 || !operand_type_match (overlap1, i.types[1])
4816 || (check_register
4817 && !operand_type_register_match (overlap0, i.types[0],
4818 operand_types[0],
4819 overlap1, i.types[1],
4820 operand_types[1])))
4821 {
4822 /* Check if other direction is valid ... */
4823 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
4824 continue;
4825
4826 check_reverse:
4827 /* Try reversing direction of operands. */
4828 overlap0 = operand_type_and (i.types[0], operand_types[1]);
4829 overlap1 = operand_type_and (i.types[1], operand_types[0]);
4830 if (!operand_type_match (overlap0, i.types[0])
4831 || !operand_type_match (overlap1, i.types[1])
4832 || (check_register
4833 && !operand_type_register_match (overlap0,
4834 i.types[0],
4835 operand_types[1],
4836 overlap1,
4837 i.types[1],
4838 operand_types[0])))
4839 {
4840 /* Does not match either direction. */
4841 continue;
4842 }
4843 /* found_reverse_match holds which of D or FloatDR
4844 we've found. */
4845 if (t->opcode_modifier.d)
4846 found_reverse_match = Opcode_D;
4847 else if (t->opcode_modifier.floatd)
4848 found_reverse_match = Opcode_FloatD;
4849 else
4850 found_reverse_match = 0;
4851 if (t->opcode_modifier.floatr)
4852 found_reverse_match |= Opcode_FloatR;
4853 }
4854 else
4855 {
4856 /* Found a forward 2 operand match here. */
4857 switch (t->operands)
4858 {
4859 case 5:
4860 overlap4 = operand_type_and (i.types[4],
4861 operand_types[4]);
4862 case 4:
4863 overlap3 = operand_type_and (i.types[3],
4864 operand_types[3]);
4865 case 3:
4866 overlap2 = operand_type_and (i.types[2],
4867 operand_types[2]);
4868 break;
4869 }
4870
4871 switch (t->operands)
4872 {
4873 case 5:
4874 if (!operand_type_match (overlap4, i.types[4])
4875 || !operand_type_register_match (overlap3,
4876 i.types[3],
4877 operand_types[3],
4878 overlap4,
4879 i.types[4],
4880 operand_types[4]))
4881 continue;
4882 case 4:
4883 if (!operand_type_match (overlap3, i.types[3])
4884 || (check_register
4885 && !operand_type_register_match (overlap2,
4886 i.types[2],
4887 operand_types[2],
4888 overlap3,
4889 i.types[3],
4890 operand_types[3])))
4891 continue;
4892 case 3:
4893 /* Here we make use of the fact that there are no
4894 reverse match 3 operand instructions, and all 3
4895 operand instructions only need to be checked for
4896 register consistency between operands 2 and 3. */
4897 if (!operand_type_match (overlap2, i.types[2])
4898 || (check_register
4899 && !operand_type_register_match (overlap1,
4900 i.types[1],
4901 operand_types[1],
4902 overlap2,
4903 i.types[2],
4904 operand_types[2])))
4905 continue;
4906 break;
4907 }
4908 }
4909 /* Found either forward/reverse 2, 3 or 4 operand match here:
4910 slip through to break. */
4911 }
4912 if (!found_cpu_match)
4913 {
4914 found_reverse_match = 0;
4915 continue;
4916 }
4917
4918 /* Check if vector and VEX operands are valid. */
4919 if (check_VecOperands (t) || VEX_check_operands (t))
4920 {
4921 specific_error = i.error;
4922 continue;
4923 }
4924
4925 /* We've found a match; break out of loop. */
4926 break;
4927 }
4928
4929 if (t == current_templates->end)
4930 {
4931 /* We found no match. */
4932 const char *err_msg;
4933 switch (specific_error ? specific_error : i.error)
4934 {
4935 default:
4936 abort ();
4937 case operand_size_mismatch:
4938 err_msg = _("operand size mismatch");
4939 break;
4940 case operand_type_mismatch:
4941 err_msg = _("operand type mismatch");
4942 break;
4943 case register_type_mismatch:
4944 err_msg = _("register type mismatch");
4945 break;
4946 case number_of_operands_mismatch:
4947 err_msg = _("number of operands mismatch");
4948 break;
4949 case invalid_instruction_suffix:
4950 err_msg = _("invalid instruction suffix");
4951 break;
4952 case bad_imm4:
4953 err_msg = _("constant doesn't fit in 4 bits");
4954 break;
4955 case old_gcc_only:
4956 err_msg = _("only supported with old gcc");
4957 break;
4958 case unsupported_with_intel_mnemonic:
4959 err_msg = _("unsupported with Intel mnemonic");
4960 break;
4961 case unsupported_syntax:
4962 err_msg = _("unsupported syntax");
4963 break;
4964 case unsupported:
4965 as_bad (_("unsupported instruction `%s'"),
4966 current_templates->start->name);
4967 return NULL;
4968 case invalid_vsib_address:
4969 err_msg = _("invalid VSIB address");
4970 break;
4971 case invalid_vector_register_set:
4972 err_msg = _("mask, index, and destination registers must be distinct");
4973 break;
4974 case unsupported_vector_index_register:
4975 err_msg = _("unsupported vector index register");
4976 break;
4977 case unsupported_broadcast:
4978 err_msg = _("unsupported broadcast");
4979 break;
4980 case broadcast_not_on_src_operand:
4981 err_msg = _("broadcast not on source memory operand");
4982 break;
4983 case broadcast_needed:
4984 err_msg = _("broadcast is needed for operand of such type");
4985 break;
4986 case unsupported_masking:
4987 err_msg = _("unsupported masking");
4988 break;
4989 case mask_not_on_destination:
4990 err_msg = _("mask not on destination operand");
4991 break;
4992 case no_default_mask:
4993 err_msg = _("default mask isn't allowed");
4994 break;
4995 case unsupported_rc_sae:
4996 err_msg = _("unsupported static rounding/sae");
4997 break;
4998 case rc_sae_operand_not_last_imm:
4999 if (intel_syntax)
5000 err_msg = _("RC/SAE operand must precede immediate operands");
5001 else
5002 err_msg = _("RC/SAE operand must follow immediate operands");
5003 break;
5004 case invalid_register_operand:
5005 err_msg = _("invalid register operand");
5006 break;
5007 }
5008 as_bad (_("%s for `%s'"), err_msg,
5009 current_templates->start->name);
5010 return NULL;
5011 }
5012
5013 if (!quiet_warnings)
5014 {
5015 if (!intel_syntax
5016 && (i.types[0].bitfield.jumpabsolute
5017 != operand_types[0].bitfield.jumpabsolute))
5018 {
5019 as_warn (_("indirect %s without `*'"), t->name);
5020 }
5021
5022 if (t->opcode_modifier.isprefix
5023 && t->opcode_modifier.ignoresize)
5024 {
5025 /* Warn them that a data or address size prefix doesn't
5026 affect assembly of the next line of code. */
5027 as_warn (_("stand-alone `%s' prefix"), t->name);
5028 }
5029 }
5030
5031 /* Copy the template we found. */
5032 i.tm = *t;
5033
5034 if (addr_prefix_disp != -1)
5035 i.tm.operand_types[addr_prefix_disp]
5036 = operand_types[addr_prefix_disp];
5037
5038 if (found_reverse_match)
5039 {
5040 /* If we found a reverse match we must alter the opcode
5041 direction bit. found_reverse_match holds bits to change
5042 (different for int & float insns). */
5043
5044 i.tm.base_opcode ^= found_reverse_match;
5045
5046 i.tm.operand_types[0] = operand_types[1];
5047 i.tm.operand_types[1] = operand_types[0];
5048 }
5049
5050 return t;
5051 }
5052
5053 static int
5054 check_string (void)
5055 {
5056 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5057 if (i.tm.operand_types[mem_op].bitfield.esseg)
5058 {
5059 if (i.seg[0] != NULL && i.seg[0] != &es)
5060 {
5061 as_bad (_("`%s' operand %d must use `%ses' segment"),
5062 i.tm.name,
5063 mem_op + 1,
5064 register_prefix);
5065 return 0;
5066 }
5067 /* There's only ever one segment override allowed per instruction.
5068 This instruction possibly has a legal segment override on the
5069 second operand, so copy the segment to where non-string
5070 instructions store it, allowing common code. */
5071 i.seg[0] = i.seg[1];
5072 }
5073 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5074 {
5075 if (i.seg[1] != NULL && i.seg[1] != &es)
5076 {
5077 as_bad (_("`%s' operand %d must use `%ses' segment"),
5078 i.tm.name,
5079 mem_op + 2,
5080 register_prefix);
5081 return 0;
5082 }
5083 }
5084 return 1;
5085 }
5086
5087 static int
5088 process_suffix (void)
5089 {
5090 /* If matched instruction specifies an explicit instruction mnemonic
5091 suffix, use it. */
5092 if (i.tm.opcode_modifier.size16)
5093 i.suffix = WORD_MNEM_SUFFIX;
5094 else if (i.tm.opcode_modifier.size32)
5095 i.suffix = LONG_MNEM_SUFFIX;
5096 else if (i.tm.opcode_modifier.size64)
5097 i.suffix = QWORD_MNEM_SUFFIX;
5098 else if (i.reg_operands)
5099 {
5100 /* If there's no instruction mnemonic suffix we try to invent one
5101 based on register operands. */
5102 if (!i.suffix)
5103 {
5104 /* We take i.suffix from the last register operand specified,
5105 Destination register type is more significant than source
5106 register type. crc32 in SSE4.2 prefers source register
5107 type. */
5108 if (i.tm.base_opcode == 0xf20f38f1)
5109 {
5110 if (i.types[0].bitfield.reg16)
5111 i.suffix = WORD_MNEM_SUFFIX;
5112 else if (i.types[0].bitfield.reg32)
5113 i.suffix = LONG_MNEM_SUFFIX;
5114 else if (i.types[0].bitfield.reg64)
5115 i.suffix = QWORD_MNEM_SUFFIX;
5116 }
5117 else if (i.tm.base_opcode == 0xf20f38f0)
5118 {
5119 if (i.types[0].bitfield.reg8)
5120 i.suffix = BYTE_MNEM_SUFFIX;
5121 }
5122
5123 if (!i.suffix)
5124 {
5125 int op;
5126
5127 if (i.tm.base_opcode == 0xf20f38f1
5128 || i.tm.base_opcode == 0xf20f38f0)
5129 {
5130 /* We have to know the operand size for crc32. */
5131 as_bad (_("ambiguous memory operand size for `%s`"),
5132 i.tm.name);
5133 return 0;
5134 }
5135
5136 for (op = i.operands; --op >= 0;)
5137 if (!i.tm.operand_types[op].bitfield.inoutportreg)
5138 {
5139 if (i.types[op].bitfield.reg8)
5140 {
5141 i.suffix = BYTE_MNEM_SUFFIX;
5142 break;
5143 }
5144 else if (i.types[op].bitfield.reg16)
5145 {
5146 i.suffix = WORD_MNEM_SUFFIX;
5147 break;
5148 }
5149 else if (i.types[op].bitfield.reg32)
5150 {
5151 i.suffix = LONG_MNEM_SUFFIX;
5152 break;
5153 }
5154 else if (i.types[op].bitfield.reg64)
5155 {
5156 i.suffix = QWORD_MNEM_SUFFIX;
5157 break;
5158 }
5159 }
5160 }
5161 }
5162 else if (i.suffix == BYTE_MNEM_SUFFIX)
5163 {
5164 if (intel_syntax
5165 && i.tm.opcode_modifier.ignoresize
5166 && i.tm.opcode_modifier.no_bsuf)
5167 i.suffix = 0;
5168 else if (!check_byte_reg ())
5169 return 0;
5170 }
5171 else if (i.suffix == LONG_MNEM_SUFFIX)
5172 {
5173 if (intel_syntax
5174 && i.tm.opcode_modifier.ignoresize
5175 && i.tm.opcode_modifier.no_lsuf)
5176 i.suffix = 0;
5177 else if (!check_long_reg ())
5178 return 0;
5179 }
5180 else if (i.suffix == QWORD_MNEM_SUFFIX)
5181 {
5182 if (intel_syntax
5183 && i.tm.opcode_modifier.ignoresize
5184 && i.tm.opcode_modifier.no_qsuf)
5185 i.suffix = 0;
5186 else if (!check_qword_reg ())
5187 return 0;
5188 }
5189 else if (i.suffix == WORD_MNEM_SUFFIX)
5190 {
5191 if (intel_syntax
5192 && i.tm.opcode_modifier.ignoresize
5193 && i.tm.opcode_modifier.no_wsuf)
5194 i.suffix = 0;
5195 else if (!check_word_reg ())
5196 return 0;
5197 }
5198 else if (i.suffix == XMMWORD_MNEM_SUFFIX
5199 || i.suffix == YMMWORD_MNEM_SUFFIX
5200 || i.suffix == ZMMWORD_MNEM_SUFFIX)
5201 {
5202 /* Skip if the instruction has x/y/z suffix. match_template
5203 should check if it is a valid suffix. */
5204 }
5205 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5206 /* Do nothing if the instruction is going to ignore the prefix. */
5207 ;
5208 else
5209 abort ();
5210 }
5211 else if (i.tm.opcode_modifier.defaultsize
5212 && !i.suffix
5213 /* exclude fldenv/frstor/fsave/fstenv */
5214 && i.tm.opcode_modifier.no_ssuf)
5215 {
5216 i.suffix = stackop_size;
5217 }
5218 else if (intel_syntax
5219 && !i.suffix
5220 && (i.tm.operand_types[0].bitfield.jumpabsolute
5221 || i.tm.opcode_modifier.jumpbyte
5222 || i.tm.opcode_modifier.jumpintersegment
5223 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5224 && i.tm.extension_opcode <= 3)))
5225 {
5226 switch (flag_code)
5227 {
5228 case CODE_64BIT:
5229 if (!i.tm.opcode_modifier.no_qsuf)
5230 {
5231 i.suffix = QWORD_MNEM_SUFFIX;
5232 break;
5233 }
5234 case CODE_32BIT:
5235 if (!i.tm.opcode_modifier.no_lsuf)
5236 i.suffix = LONG_MNEM_SUFFIX;
5237 break;
5238 case CODE_16BIT:
5239 if (!i.tm.opcode_modifier.no_wsuf)
5240 i.suffix = WORD_MNEM_SUFFIX;
5241 break;
5242 }
5243 }
5244
5245 if (!i.suffix)
5246 {
5247 if (!intel_syntax)
5248 {
5249 if (i.tm.opcode_modifier.w)
5250 {
5251 as_bad (_("no instruction mnemonic suffix given and "
5252 "no register operands; can't size instruction"));
5253 return 0;
5254 }
5255 }
5256 else
5257 {
5258 unsigned int suffixes;
5259
5260 suffixes = !i.tm.opcode_modifier.no_bsuf;
5261 if (!i.tm.opcode_modifier.no_wsuf)
5262 suffixes |= 1 << 1;
5263 if (!i.tm.opcode_modifier.no_lsuf)
5264 suffixes |= 1 << 2;
5265 if (!i.tm.opcode_modifier.no_ldsuf)
5266 suffixes |= 1 << 3;
5267 if (!i.tm.opcode_modifier.no_ssuf)
5268 suffixes |= 1 << 4;
5269 if (!i.tm.opcode_modifier.no_qsuf)
5270 suffixes |= 1 << 5;
5271
5272 /* There are more than suffix matches. */
5273 if (i.tm.opcode_modifier.w
5274 || ((suffixes & (suffixes - 1))
5275 && !i.tm.opcode_modifier.defaultsize
5276 && !i.tm.opcode_modifier.ignoresize))
5277 {
5278 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5279 return 0;
5280 }
5281 }
5282 }
5283
5284 /* Change the opcode based on the operand size given by i.suffix;
5285 We don't need to change things for byte insns. */
5286
5287 if (i.suffix
5288 && i.suffix != BYTE_MNEM_SUFFIX
5289 && i.suffix != XMMWORD_MNEM_SUFFIX
5290 && i.suffix != YMMWORD_MNEM_SUFFIX
5291 && i.suffix != ZMMWORD_MNEM_SUFFIX)
5292 {
5293 /* It's not a byte, select word/dword operation. */
5294 if (i.tm.opcode_modifier.w)
5295 {
5296 if (i.tm.opcode_modifier.shortform)
5297 i.tm.base_opcode |= 8;
5298 else
5299 i.tm.base_opcode |= 1;
5300 }
5301
5302 /* Now select between word & dword operations via the operand
5303 size prefix, except for instructions that will ignore this
5304 prefix anyway. */
5305 if (i.tm.opcode_modifier.addrprefixop0)
5306 {
5307 /* The address size override prefix changes the size of the
5308 first operand. */
5309 if ((flag_code == CODE_32BIT
5310 && i.op->regs[0].reg_type.bitfield.reg16)
5311 || (flag_code != CODE_32BIT
5312 && i.op->regs[0].reg_type.bitfield.reg32))
5313 if (!add_prefix (ADDR_PREFIX_OPCODE))
5314 return 0;
5315 }
5316 else if (i.suffix != QWORD_MNEM_SUFFIX
5317 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5318 && !i.tm.opcode_modifier.ignoresize
5319 && !i.tm.opcode_modifier.floatmf
5320 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5321 || (flag_code == CODE_64BIT
5322 && i.tm.opcode_modifier.jumpbyte)))
5323 {
5324 unsigned int prefix = DATA_PREFIX_OPCODE;
5325
5326 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5327 prefix = ADDR_PREFIX_OPCODE;
5328
5329 if (!add_prefix (prefix))
5330 return 0;
5331 }
5332
5333 /* Set mode64 for an operand. */
5334 if (i.suffix == QWORD_MNEM_SUFFIX
5335 && flag_code == CODE_64BIT
5336 && !i.tm.opcode_modifier.norex64)
5337 {
5338 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5339 need rex64. cmpxchg8b is also a special case. */
5340 if (! (i.operands == 2
5341 && i.tm.base_opcode == 0x90
5342 && i.tm.extension_opcode == None
5343 && operand_type_equal (&i.types [0], &acc64)
5344 && operand_type_equal (&i.types [1], &acc64))
5345 && ! (i.operands == 1
5346 && i.tm.base_opcode == 0xfc7
5347 && i.tm.extension_opcode == 1
5348 && !operand_type_check (i.types [0], reg)
5349 && operand_type_check (i.types [0], anymem)))
5350 i.rex |= REX_W;
5351 }
5352
5353 /* Size floating point instruction. */
5354 if (i.suffix == LONG_MNEM_SUFFIX)
5355 if (i.tm.opcode_modifier.floatmf)
5356 i.tm.base_opcode ^= 4;
5357 }
5358
5359 return 1;
5360 }
5361
5362 static int
5363 check_byte_reg (void)
5364 {
5365 int op;
5366
5367 for (op = i.operands; --op >= 0;)
5368 {
5369 /* If this is an eight bit register, it's OK. If it's the 16 or
5370 32 bit version of an eight bit register, we will just use the
5371 low portion, and that's OK too. */
5372 if (i.types[op].bitfield.reg8)
5373 continue;
5374
5375 /* I/O port address operands are OK too. */
5376 if (i.tm.operand_types[op].bitfield.inoutportreg)
5377 continue;
5378
5379 /* crc32 doesn't generate this warning. */
5380 if (i.tm.base_opcode == 0xf20f38f0)
5381 continue;
5382
5383 if ((i.types[op].bitfield.reg16
5384 || i.types[op].bitfield.reg32
5385 || i.types[op].bitfield.reg64)
5386 && i.op[op].regs->reg_num < 4
5387 /* Prohibit these changes in 64bit mode, since the lowering
5388 would be more complicated. */
5389 && flag_code != CODE_64BIT)
5390 {
5391 #if REGISTER_WARNINGS
5392 if (!quiet_warnings)
5393 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5394 register_prefix,
5395 (i.op[op].regs + (i.types[op].bitfield.reg16
5396 ? REGNAM_AL - REGNAM_AX
5397 : REGNAM_AL - REGNAM_EAX))->reg_name,
5398 register_prefix,
5399 i.op[op].regs->reg_name,
5400 i.suffix);
5401 #endif
5402 continue;
5403 }
5404 /* Any other register is bad. */
5405 if (i.types[op].bitfield.reg16
5406 || i.types[op].bitfield.reg32
5407 || i.types[op].bitfield.reg64
5408 || i.types[op].bitfield.regmmx
5409 || i.types[op].bitfield.regxmm
5410 || i.types[op].bitfield.regymm
5411 || i.types[op].bitfield.regzmm
5412 || i.types[op].bitfield.sreg2
5413 || i.types[op].bitfield.sreg3
5414 || i.types[op].bitfield.control
5415 || i.types[op].bitfield.debug
5416 || i.types[op].bitfield.test
5417 || i.types[op].bitfield.floatreg
5418 || i.types[op].bitfield.floatacc)
5419 {
5420 as_bad (_("`%s%s' not allowed with `%s%c'"),
5421 register_prefix,
5422 i.op[op].regs->reg_name,
5423 i.tm.name,
5424 i.suffix);
5425 return 0;
5426 }
5427 }
5428 return 1;
5429 }
5430
5431 static int
5432 check_long_reg (void)
5433 {
5434 int op;
5435
5436 for (op = i.operands; --op >= 0;)
5437 /* Reject eight bit registers, except where the template requires
5438 them. (eg. movzb) */
5439 if (i.types[op].bitfield.reg8
5440 && (i.tm.operand_types[op].bitfield.reg16
5441 || i.tm.operand_types[op].bitfield.reg32
5442 || i.tm.operand_types[op].bitfield.acc))
5443 {
5444 as_bad (_("`%s%s' not allowed with `%s%c'"),
5445 register_prefix,
5446 i.op[op].regs->reg_name,
5447 i.tm.name,
5448 i.suffix);
5449 return 0;
5450 }
5451 /* Warn if the e prefix on a general reg is missing. */
5452 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5453 && i.types[op].bitfield.reg16
5454 && (i.tm.operand_types[op].bitfield.reg32
5455 || i.tm.operand_types[op].bitfield.acc))
5456 {
5457 /* Prohibit these changes in the 64bit mode, since the
5458 lowering is more complicated. */
5459 if (flag_code == CODE_64BIT)
5460 {
5461 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5462 register_prefix, i.op[op].regs->reg_name,
5463 i.suffix);
5464 return 0;
5465 }
5466 #if REGISTER_WARNINGS
5467 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5468 register_prefix,
5469 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5470 register_prefix, i.op[op].regs->reg_name, i.suffix);
5471 #endif
5472 }
5473 /* Warn if the r prefix on a general reg is present. */
5474 else if (i.types[op].bitfield.reg64
5475 && (i.tm.operand_types[op].bitfield.reg32
5476 || i.tm.operand_types[op].bitfield.acc))
5477 {
5478 if (intel_syntax
5479 && i.tm.opcode_modifier.toqword
5480 && !i.types[0].bitfield.regxmm)
5481 {
5482 /* Convert to QWORD. We want REX byte. */
5483 i.suffix = QWORD_MNEM_SUFFIX;
5484 }
5485 else
5486 {
5487 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5488 register_prefix, i.op[op].regs->reg_name,
5489 i.suffix);
5490 return 0;
5491 }
5492 }
5493 return 1;
5494 }
5495
5496 static int
5497 check_qword_reg (void)
5498 {
5499 int op;
5500
5501 for (op = i.operands; --op >= 0; )
5502 /* Reject eight bit registers, except where the template requires
5503 them. (eg. movzb) */
5504 if (i.types[op].bitfield.reg8
5505 && (i.tm.operand_types[op].bitfield.reg16
5506 || i.tm.operand_types[op].bitfield.reg32
5507 || i.tm.operand_types[op].bitfield.acc))
5508 {
5509 as_bad (_("`%s%s' not allowed with `%s%c'"),
5510 register_prefix,
5511 i.op[op].regs->reg_name,
5512 i.tm.name,
5513 i.suffix);
5514 return 0;
5515 }
5516 /* Warn if the r prefix on a general reg is missing. */
5517 else if ((i.types[op].bitfield.reg16
5518 || i.types[op].bitfield.reg32)
5519 && (i.tm.operand_types[op].bitfield.reg32
5520 || i.tm.operand_types[op].bitfield.acc))
5521 {
5522 /* Prohibit these changes in the 64bit mode, since the
5523 lowering is more complicated. */
5524 if (intel_syntax
5525 && i.tm.opcode_modifier.todword
5526 && !i.types[0].bitfield.regxmm)
5527 {
5528 /* Convert to DWORD. We don't want REX byte. */
5529 i.suffix = LONG_MNEM_SUFFIX;
5530 }
5531 else
5532 {
5533 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5534 register_prefix, i.op[op].regs->reg_name,
5535 i.suffix);
5536 return 0;
5537 }
5538 }
5539 return 1;
5540 }
5541
5542 static int
5543 check_word_reg (void)
5544 {
5545 int op;
5546 for (op = i.operands; --op >= 0;)
5547 /* Reject eight bit registers, except where the template requires
5548 them. (eg. movzb) */
5549 if (i.types[op].bitfield.reg8
5550 && (i.tm.operand_types[op].bitfield.reg16
5551 || i.tm.operand_types[op].bitfield.reg32
5552 || i.tm.operand_types[op].bitfield.acc))
5553 {
5554 as_bad (_("`%s%s' not allowed with `%s%c'"),
5555 register_prefix,
5556 i.op[op].regs->reg_name,
5557 i.tm.name,
5558 i.suffix);
5559 return 0;
5560 }
5561 /* Warn if the e or r prefix on a general reg is present. */
5562 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5563 && (i.types[op].bitfield.reg32
5564 || i.types[op].bitfield.reg64)
5565 && (i.tm.operand_types[op].bitfield.reg16
5566 || i.tm.operand_types[op].bitfield.acc))
5567 {
5568 /* Prohibit these changes in the 64bit mode, since the
5569 lowering is more complicated. */
5570 if (flag_code == CODE_64BIT)
5571 {
5572 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5573 register_prefix, i.op[op].regs->reg_name,
5574 i.suffix);
5575 return 0;
5576 }
5577 #if REGISTER_WARNINGS
5578 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5579 register_prefix,
5580 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5581 register_prefix, i.op[op].regs->reg_name, i.suffix);
5582 #endif
5583 }
5584 return 1;
5585 }
5586
5587 static int
5588 update_imm (unsigned int j)
5589 {
5590 i386_operand_type overlap = i.types[j];
5591 if ((overlap.bitfield.imm8
5592 || overlap.bitfield.imm8s
5593 || overlap.bitfield.imm16
5594 || overlap.bitfield.imm32
5595 || overlap.bitfield.imm32s
5596 || overlap.bitfield.imm64)
5597 && !operand_type_equal (&overlap, &imm8)
5598 && !operand_type_equal (&overlap, &imm8s)
5599 && !operand_type_equal (&overlap, &imm16)
5600 && !operand_type_equal (&overlap, &imm32)
5601 && !operand_type_equal (&overlap, &imm32s)
5602 && !operand_type_equal (&overlap, &imm64))
5603 {
5604 if (i.suffix)
5605 {
5606 i386_operand_type temp;
5607
5608 operand_type_set (&temp, 0);
5609 if (i.suffix == BYTE_MNEM_SUFFIX)
5610 {
5611 temp.bitfield.imm8 = overlap.bitfield.imm8;
5612 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5613 }
5614 else if (i.suffix == WORD_MNEM_SUFFIX)
5615 temp.bitfield.imm16 = overlap.bitfield.imm16;
5616 else if (i.suffix == QWORD_MNEM_SUFFIX)
5617 {
5618 temp.bitfield.imm64 = overlap.bitfield.imm64;
5619 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5620 }
5621 else
5622 temp.bitfield.imm32 = overlap.bitfield.imm32;
5623 overlap = temp;
5624 }
5625 else if (operand_type_equal (&overlap, &imm16_32_32s)
5626 || operand_type_equal (&overlap, &imm16_32)
5627 || operand_type_equal (&overlap, &imm16_32s))
5628 {
5629 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5630 overlap = imm16;
5631 else
5632 overlap = imm32s;
5633 }
5634 if (!operand_type_equal (&overlap, &imm8)
5635 && !operand_type_equal (&overlap, &imm8s)
5636 && !operand_type_equal (&overlap, &imm16)
5637 && !operand_type_equal (&overlap, &imm32)
5638 && !operand_type_equal (&overlap, &imm32s)
5639 && !operand_type_equal (&overlap, &imm64))
5640 {
5641 as_bad (_("no instruction mnemonic suffix given; "
5642 "can't determine immediate size"));
5643 return 0;
5644 }
5645 }
5646 i.types[j] = overlap;
5647
5648 return 1;
5649 }
5650
5651 static int
5652 finalize_imm (void)
5653 {
5654 unsigned int j, n;
5655
5656 /* Update the first 2 immediate operands. */
5657 n = i.operands > 2 ? 2 : i.operands;
5658 if (n)
5659 {
5660 for (j = 0; j < n; j++)
5661 if (update_imm (j) == 0)
5662 return 0;
5663
5664 /* The 3rd operand can't be immediate operand. */
5665 gas_assert (operand_type_check (i.types[2], imm) == 0);
5666 }
5667
5668 return 1;
5669 }
5670
5671 static int
5672 bad_implicit_operand (int xmm)
5673 {
5674 const char *ireg = xmm ? "xmm0" : "ymm0";
5675
5676 if (intel_syntax)
5677 as_bad (_("the last operand of `%s' must be `%s%s'"),
5678 i.tm.name, register_prefix, ireg);
5679 else
5680 as_bad (_("the first operand of `%s' must be `%s%s'"),
5681 i.tm.name, register_prefix, ireg);
5682 return 0;
5683 }
5684
5685 static int
5686 process_operands (void)
5687 {
5688 /* Default segment register this instruction will use for memory
5689 accesses. 0 means unknown. This is only for optimizing out
5690 unnecessary segment overrides. */
5691 const seg_entry *default_seg = 0;
5692
5693 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
5694 {
5695 unsigned int dupl = i.operands;
5696 unsigned int dest = dupl - 1;
5697 unsigned int j;
5698
5699 /* The destination must be an xmm register. */
5700 gas_assert (i.reg_operands
5701 && MAX_OPERANDS > dupl
5702 && operand_type_equal (&i.types[dest], &regxmm));
5703
5704 if (i.tm.opcode_modifier.firstxmm0)
5705 {
5706 /* The first operand is implicit and must be xmm0. */
5707 gas_assert (operand_type_equal (&i.types[0], &regxmm));
5708 if (register_number (i.op[0].regs) != 0)
5709 return bad_implicit_operand (1);
5710
5711 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
5712 {
5713 /* Keep xmm0 for instructions with VEX prefix and 3
5714 sources. */
5715 goto duplicate;
5716 }
5717 else
5718 {
5719 /* We remove the first xmm0 and keep the number of
5720 operands unchanged, which in fact duplicates the
5721 destination. */
5722 for (j = 1; j < i.operands; j++)
5723 {
5724 i.op[j - 1] = i.op[j];
5725 i.types[j - 1] = i.types[j];
5726 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5727 }
5728 }
5729 }
5730 else if (i.tm.opcode_modifier.implicit1stxmm0)
5731 {
5732 gas_assert ((MAX_OPERANDS - 1) > dupl
5733 && (i.tm.opcode_modifier.vexsources
5734 == VEX3SOURCES));
5735
5736 /* Add the implicit xmm0 for instructions with VEX prefix
5737 and 3 sources. */
5738 for (j = i.operands; j > 0; j--)
5739 {
5740 i.op[j] = i.op[j - 1];
5741 i.types[j] = i.types[j - 1];
5742 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
5743 }
5744 i.op[0].regs
5745 = (const reg_entry *) hash_find (reg_hash, "xmm0");
5746 i.types[0] = regxmm;
5747 i.tm.operand_types[0] = regxmm;
5748
5749 i.operands += 2;
5750 i.reg_operands += 2;
5751 i.tm.operands += 2;
5752
5753 dupl++;
5754 dest++;
5755 i.op[dupl] = i.op[dest];
5756 i.types[dupl] = i.types[dest];
5757 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5758 }
5759 else
5760 {
5761 duplicate:
5762 i.operands++;
5763 i.reg_operands++;
5764 i.tm.operands++;
5765
5766 i.op[dupl] = i.op[dest];
5767 i.types[dupl] = i.types[dest];
5768 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5769 }
5770
5771 if (i.tm.opcode_modifier.immext)
5772 process_immext ();
5773 }
5774 else if (i.tm.opcode_modifier.firstxmm0)
5775 {
5776 unsigned int j;
5777
5778 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
5779 gas_assert (i.reg_operands
5780 && (operand_type_equal (&i.types[0], &regxmm)
5781 || operand_type_equal (&i.types[0], &regymm)
5782 || operand_type_equal (&i.types[0], &regzmm)));
5783 if (register_number (i.op[0].regs) != 0)
5784 return bad_implicit_operand (i.types[0].bitfield.regxmm);
5785
5786 for (j = 1; j < i.operands; j++)
5787 {
5788 i.op[j - 1] = i.op[j];
5789 i.types[j - 1] = i.types[j];
5790
5791 /* We need to adjust fields in i.tm since they are used by
5792 build_modrm_byte. */
5793 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5794 }
5795
5796 i.operands--;
5797 i.reg_operands--;
5798 i.tm.operands--;
5799 }
5800 else if (i.tm.opcode_modifier.regkludge)
5801 {
5802 /* The imul $imm, %reg instruction is converted into
5803 imul $imm, %reg, %reg, and the clr %reg instruction
5804 is converted into xor %reg, %reg. */
5805
5806 unsigned int first_reg_op;
5807
5808 if (operand_type_check (i.types[0], reg))
5809 first_reg_op = 0;
5810 else
5811 first_reg_op = 1;
5812 /* Pretend we saw the extra register operand. */
5813 gas_assert (i.reg_operands == 1
5814 && i.op[first_reg_op + 1].regs == 0);
5815 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
5816 i.types[first_reg_op + 1] = i.types[first_reg_op];
5817 i.operands++;
5818 i.reg_operands++;
5819 }
5820
5821 if (i.tm.opcode_modifier.shortform)
5822 {
5823 if (i.types[0].bitfield.sreg2
5824 || i.types[0].bitfield.sreg3)
5825 {
5826 if (i.tm.base_opcode == POP_SEG_SHORT
5827 && i.op[0].regs->reg_num == 1)
5828 {
5829 as_bad (_("you can't `pop %scs'"), register_prefix);
5830 return 0;
5831 }
5832 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
5833 if ((i.op[0].regs->reg_flags & RegRex) != 0)
5834 i.rex |= REX_B;
5835 }
5836 else
5837 {
5838 /* The register or float register operand is in operand
5839 0 or 1. */
5840 unsigned int op;
5841
5842 if (i.types[0].bitfield.floatreg
5843 || operand_type_check (i.types[0], reg))
5844 op = 0;
5845 else
5846 op = 1;
5847 /* Register goes in low 3 bits of opcode. */
5848 i.tm.base_opcode |= i.op[op].regs->reg_num;
5849 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5850 i.rex |= REX_B;
5851 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
5852 {
5853 /* Warn about some common errors, but press on regardless.
5854 The first case can be generated by gcc (<= 2.8.1). */
5855 if (i.operands == 2)
5856 {
5857 /* Reversed arguments on faddp, fsubp, etc. */
5858 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
5859 register_prefix, i.op[!intel_syntax].regs->reg_name,
5860 register_prefix, i.op[intel_syntax].regs->reg_name);
5861 }
5862 else
5863 {
5864 /* Extraneous `l' suffix on fp insn. */
5865 as_warn (_("translating to `%s %s%s'"), i.tm.name,
5866 register_prefix, i.op[0].regs->reg_name);
5867 }
5868 }
5869 }
5870 }
5871 else if (i.tm.opcode_modifier.modrm)
5872 {
5873 /* The opcode is completed (modulo i.tm.extension_opcode which
5874 must be put into the modrm byte). Now, we make the modrm and
5875 index base bytes based on all the info we've collected. */
5876
5877 default_seg = build_modrm_byte ();
5878 }
5879 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
5880 {
5881 default_seg = &ds;
5882 }
5883 else if (i.tm.opcode_modifier.isstring)
5884 {
5885 /* For the string instructions that allow a segment override
5886 on one of their operands, the default segment is ds. */
5887 default_seg = &ds;
5888 }
5889
5890 if (i.tm.base_opcode == 0x8d /* lea */
5891 && i.seg[0]
5892 && !quiet_warnings)
5893 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
5894
5895 /* If a segment was explicitly specified, and the specified segment
5896 is not the default, use an opcode prefix to select it. If we
5897 never figured out what the default segment is, then default_seg
5898 will be zero at this point, and the specified segment prefix will
5899 always be used. */
5900 if ((i.seg[0]) && (i.seg[0] != default_seg))
5901 {
5902 if (!add_prefix (i.seg[0]->seg_prefix))
5903 return 0;
5904 }
5905 return 1;
5906 }
5907
5908 static const seg_entry *
5909 build_modrm_byte (void)
5910 {
5911 const seg_entry *default_seg = 0;
5912 unsigned int source, dest;
5913 int vex_3_sources;
5914
5915 /* The first operand of instructions with VEX prefix and 3 sources
5916 must be VEX_Imm4. */
5917 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
5918 if (vex_3_sources)
5919 {
5920 unsigned int nds, reg_slot;
5921 expressionS *exp;
5922
5923 if (i.tm.opcode_modifier.veximmext
5924 && i.tm.opcode_modifier.immext)
5925 {
5926 dest = i.operands - 2;
5927 gas_assert (dest == 3);
5928 }
5929 else
5930 dest = i.operands - 1;
5931 nds = dest - 1;
5932
5933 /* There are 2 kinds of instructions:
5934 1. 5 operands: 4 register operands or 3 register operands
5935 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
5936 VexW0 or VexW1. The destination must be either XMM, YMM or
5937 ZMM register.
5938 2. 4 operands: 4 register operands or 3 register operands
5939 plus 1 memory operand, VexXDS, and VexImmExt */
5940 gas_assert ((i.reg_operands == 4
5941 || (i.reg_operands == 3 && i.mem_operands == 1))
5942 && i.tm.opcode_modifier.vexvvvv == VEXXDS
5943 && (i.tm.opcode_modifier.veximmext
5944 || (i.imm_operands == 1
5945 && i.types[0].bitfield.vec_imm4
5946 && (i.tm.opcode_modifier.vexw == VEXW0
5947 || i.tm.opcode_modifier.vexw == VEXW1)
5948 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
5949 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
5950 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
5951
5952 if (i.imm_operands == 0)
5953 {
5954 /* When there is no immediate operand, generate an 8bit
5955 immediate operand to encode the first operand. */
5956 exp = &im_expressions[i.imm_operands++];
5957 i.op[i.operands].imms = exp;
5958 i.types[i.operands] = imm8;
5959 i.operands++;
5960 /* If VexW1 is set, the first operand is the source and
5961 the second operand is encoded in the immediate operand. */
5962 if (i.tm.opcode_modifier.vexw == VEXW1)
5963 {
5964 source = 0;
5965 reg_slot = 1;
5966 }
5967 else
5968 {
5969 source = 1;
5970 reg_slot = 0;
5971 }
5972
5973 /* FMA swaps REG and NDS. */
5974 if (i.tm.cpu_flags.bitfield.cpufma)
5975 {
5976 unsigned int tmp;
5977 tmp = reg_slot;
5978 reg_slot = nds;
5979 nds = tmp;
5980 }
5981
5982 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
5983 &regxmm)
5984 || operand_type_equal (&i.tm.operand_types[reg_slot],
5985 &regymm)
5986 || operand_type_equal (&i.tm.operand_types[reg_slot],
5987 &regzmm));
5988 exp->X_op = O_constant;
5989 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
5990 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
5991 }
5992 else
5993 {
5994 unsigned int imm_slot;
5995
5996 if (i.tm.opcode_modifier.vexw == VEXW0)
5997 {
5998 /* If VexW0 is set, the third operand is the source and
5999 the second operand is encoded in the immediate
6000 operand. */
6001 source = 2;
6002 reg_slot = 1;
6003 }
6004 else
6005 {
6006 /* VexW1 is set, the second operand is the source and
6007 the third operand is encoded in the immediate
6008 operand. */
6009 source = 1;
6010 reg_slot = 2;
6011 }
6012
6013 if (i.tm.opcode_modifier.immext)
6014 {
6015 /* When ImmExt is set, the immdiate byte is the last
6016 operand. */
6017 imm_slot = i.operands - 1;
6018 source--;
6019 reg_slot--;
6020 }
6021 else
6022 {
6023 imm_slot = 0;
6024
6025 /* Turn on Imm8 so that output_imm will generate it. */
6026 i.types[imm_slot].bitfield.imm8 = 1;
6027 }
6028
6029 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6030 &regxmm)
6031 || operand_type_equal (&i.tm.operand_types[reg_slot],
6032 &regymm)
6033 || operand_type_equal (&i.tm.operand_types[reg_slot],
6034 &regzmm));
6035 i.op[imm_slot].imms->X_add_number
6036 |= register_number (i.op[reg_slot].regs) << 4;
6037 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6038 }
6039
6040 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6041 || operand_type_equal (&i.tm.operand_types[nds],
6042 &regymm)
6043 || operand_type_equal (&i.tm.operand_types[nds],
6044 &regzmm));
6045 i.vex.register_specifier = i.op[nds].regs;
6046 }
6047 else
6048 source = dest = 0;
6049
6050 /* i.reg_operands MUST be the number of real register operands;
6051 implicit registers do not count. If there are 3 register
6052 operands, it must be a instruction with VexNDS. For a
6053 instruction with VexNDD, the destination register is encoded
6054 in VEX prefix. If there are 4 register operands, it must be
6055 a instruction with VEX prefix and 3 sources. */
6056 if (i.mem_operands == 0
6057 && ((i.reg_operands == 2
6058 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6059 || (i.reg_operands == 3
6060 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6061 || (i.reg_operands == 4 && vex_3_sources)))
6062 {
6063 switch (i.operands)
6064 {
6065 case 2:
6066 source = 0;
6067 break;
6068 case 3:
6069 /* When there are 3 operands, one of them may be immediate,
6070 which may be the first or the last operand. Otherwise,
6071 the first operand must be shift count register (cl) or it
6072 is an instruction with VexNDS. */
6073 gas_assert (i.imm_operands == 1
6074 || (i.imm_operands == 0
6075 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6076 || i.types[0].bitfield.shiftcount)));
6077 if (operand_type_check (i.types[0], imm)
6078 || i.types[0].bitfield.shiftcount)
6079 source = 1;
6080 else
6081 source = 0;
6082 break;
6083 case 4:
6084 /* When there are 4 operands, the first two must be 8bit
6085 immediate operands. The source operand will be the 3rd
6086 one.
6087
6088 For instructions with VexNDS, if the first operand
6089 an imm8, the source operand is the 2nd one. If the last
6090 operand is imm8, the source operand is the first one. */
6091 gas_assert ((i.imm_operands == 2
6092 && i.types[0].bitfield.imm8
6093 && i.types[1].bitfield.imm8)
6094 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6095 && i.imm_operands == 1
6096 && (i.types[0].bitfield.imm8
6097 || i.types[i.operands - 1].bitfield.imm8
6098 || i.rounding)));
6099 if (i.imm_operands == 2)
6100 source = 2;
6101 else
6102 {
6103 if (i.types[0].bitfield.imm8)
6104 source = 1;
6105 else
6106 source = 0;
6107 }
6108 break;
6109 case 5:
6110 if (i.tm.opcode_modifier.evex)
6111 {
6112 /* For EVEX instructions, when there are 5 operands, the
6113 first one must be immediate operand. If the second one
6114 is immediate operand, the source operand is the 3th
6115 one. If the last one is immediate operand, the source
6116 operand is the 2nd one. */
6117 gas_assert (i.imm_operands == 2
6118 && i.tm.opcode_modifier.sae
6119 && operand_type_check (i.types[0], imm));
6120 if (operand_type_check (i.types[1], imm))
6121 source = 2;
6122 else if (operand_type_check (i.types[4], imm))
6123 source = 1;
6124 else
6125 abort ();
6126 }
6127 break;
6128 default:
6129 abort ();
6130 }
6131
6132 if (!vex_3_sources)
6133 {
6134 dest = source + 1;
6135
6136 /* RC/SAE operand could be between DEST and SRC. That happens
6137 when one operand is GPR and the other one is XMM/YMM/ZMM
6138 register. */
6139 if (i.rounding && i.rounding->operand == (int) dest)
6140 dest++;
6141
6142 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6143 {
6144 /* For instructions with VexNDS, the register-only source
6145 operand must be 32/64bit integer, XMM, YMM or ZMM
6146 register. It is encoded in VEX prefix. We need to
6147 clear RegMem bit before calling operand_type_equal. */
6148
6149 i386_operand_type op;
6150 unsigned int vvvv;
6151
6152 /* Check register-only source operand when two source
6153 operands are swapped. */
6154 if (!i.tm.operand_types[source].bitfield.baseindex
6155 && i.tm.operand_types[dest].bitfield.baseindex)
6156 {
6157 vvvv = source;
6158 source = dest;
6159 }
6160 else
6161 vvvv = dest;
6162
6163 op = i.tm.operand_types[vvvv];
6164 op.bitfield.regmem = 0;
6165 if ((dest + 1) >= i.operands
6166 || (op.bitfield.reg32 != 1
6167 && !op.bitfield.reg64 != 1
6168 && !operand_type_equal (&op, &regxmm)
6169 && !operand_type_equal (&op, &regymm)
6170 && !operand_type_equal (&op, &regzmm)
6171 && !operand_type_equal (&op, &regmask)))
6172 abort ();
6173 i.vex.register_specifier = i.op[vvvv].regs;
6174 dest++;
6175 }
6176 }
6177
6178 i.rm.mode = 3;
6179 /* One of the register operands will be encoded in the i.tm.reg
6180 field, the other in the combined i.tm.mode and i.tm.regmem
6181 fields. If no form of this instruction supports a memory
6182 destination operand, then we assume the source operand may
6183 sometimes be a memory operand and so we need to store the
6184 destination in the i.rm.reg field. */
6185 if (!i.tm.operand_types[dest].bitfield.regmem
6186 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6187 {
6188 i.rm.reg = i.op[dest].regs->reg_num;
6189 i.rm.regmem = i.op[source].regs->reg_num;
6190 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6191 i.rex |= REX_R;
6192 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6193 i.vrex |= REX_R;
6194 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6195 i.rex |= REX_B;
6196 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6197 i.vrex |= REX_B;
6198 }
6199 else
6200 {
6201 i.rm.reg = i.op[source].regs->reg_num;
6202 i.rm.regmem = i.op[dest].regs->reg_num;
6203 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6204 i.rex |= REX_B;
6205 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6206 i.vrex |= REX_B;
6207 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6208 i.rex |= REX_R;
6209 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6210 i.vrex |= REX_R;
6211 }
6212 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6213 {
6214 if (!i.types[0].bitfield.control
6215 && !i.types[1].bitfield.control)
6216 abort ();
6217 i.rex &= ~(REX_R | REX_B);
6218 add_prefix (LOCK_PREFIX_OPCODE);
6219 }
6220 }
6221 else
6222 { /* If it's not 2 reg operands... */
6223 unsigned int mem;
6224
6225 if (i.mem_operands)
6226 {
6227 unsigned int fake_zero_displacement = 0;
6228 unsigned int op;
6229
6230 for (op = 0; op < i.operands; op++)
6231 if (operand_type_check (i.types[op], anymem))
6232 break;
6233 gas_assert (op < i.operands);
6234
6235 if (i.tm.opcode_modifier.vecsib)
6236 {
6237 if (i.index_reg->reg_num == RegEiz
6238 || i.index_reg->reg_num == RegRiz)
6239 abort ();
6240
6241 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6242 if (!i.base_reg)
6243 {
6244 i.sib.base = NO_BASE_REGISTER;
6245 i.sib.scale = i.log2_scale_factor;
6246 /* No Vec_Disp8 if there is no base. */
6247 i.types[op].bitfield.vec_disp8 = 0;
6248 i.types[op].bitfield.disp8 = 0;
6249 i.types[op].bitfield.disp16 = 0;
6250 i.types[op].bitfield.disp64 = 0;
6251 if (flag_code != CODE_64BIT)
6252 {
6253 /* Must be 32 bit */
6254 i.types[op].bitfield.disp32 = 1;
6255 i.types[op].bitfield.disp32s = 0;
6256 }
6257 else
6258 {
6259 i.types[op].bitfield.disp32 = 0;
6260 i.types[op].bitfield.disp32s = 1;
6261 }
6262 }
6263 i.sib.index = i.index_reg->reg_num;
6264 if ((i.index_reg->reg_flags & RegRex) != 0)
6265 i.rex |= REX_X;
6266 if ((i.index_reg->reg_flags & RegVRex) != 0)
6267 i.vrex |= REX_X;
6268 }
6269
6270 default_seg = &ds;
6271
6272 if (i.base_reg == 0)
6273 {
6274 i.rm.mode = 0;
6275 if (!i.disp_operands)
6276 {
6277 fake_zero_displacement = 1;
6278 /* Instructions with VSIB byte need 32bit displacement
6279 if there is no base register. */
6280 if (i.tm.opcode_modifier.vecsib)
6281 i.types[op].bitfield.disp32 = 1;
6282 }
6283 if (i.index_reg == 0)
6284 {
6285 gas_assert (!i.tm.opcode_modifier.vecsib);
6286 /* Operand is just <disp> */
6287 if (flag_code == CODE_64BIT)
6288 {
6289 /* 64bit mode overwrites the 32bit absolute
6290 addressing by RIP relative addressing and
6291 absolute addressing is encoded by one of the
6292 redundant SIB forms. */
6293 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6294 i.sib.base = NO_BASE_REGISTER;
6295 i.sib.index = NO_INDEX_REGISTER;
6296 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6297 ? disp32s : disp32);
6298 }
6299 else if ((flag_code == CODE_16BIT)
6300 ^ (i.prefix[ADDR_PREFIX] != 0))
6301 {
6302 i.rm.regmem = NO_BASE_REGISTER_16;
6303 i.types[op] = disp16;
6304 }
6305 else
6306 {
6307 i.rm.regmem = NO_BASE_REGISTER;
6308 i.types[op] = disp32;
6309 }
6310 }
6311 else if (!i.tm.opcode_modifier.vecsib)
6312 {
6313 /* !i.base_reg && i.index_reg */
6314 if (i.index_reg->reg_num == RegEiz
6315 || i.index_reg->reg_num == RegRiz)
6316 i.sib.index = NO_INDEX_REGISTER;
6317 else
6318 i.sib.index = i.index_reg->reg_num;
6319 i.sib.base = NO_BASE_REGISTER;
6320 i.sib.scale = i.log2_scale_factor;
6321 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6322 /* No Vec_Disp8 if there is no base. */
6323 i.types[op].bitfield.vec_disp8 = 0;
6324 i.types[op].bitfield.disp8 = 0;
6325 i.types[op].bitfield.disp16 = 0;
6326 i.types[op].bitfield.disp64 = 0;
6327 if (flag_code != CODE_64BIT)
6328 {
6329 /* Must be 32 bit */
6330 i.types[op].bitfield.disp32 = 1;
6331 i.types[op].bitfield.disp32s = 0;
6332 }
6333 else
6334 {
6335 i.types[op].bitfield.disp32 = 0;
6336 i.types[op].bitfield.disp32s = 1;
6337 }
6338 if ((i.index_reg->reg_flags & RegRex) != 0)
6339 i.rex |= REX_X;
6340 }
6341 }
6342 /* RIP addressing for 64bit mode. */
6343 else if (i.base_reg->reg_num == RegRip ||
6344 i.base_reg->reg_num == RegEip)
6345 {
6346 gas_assert (!i.tm.opcode_modifier.vecsib);
6347 i.rm.regmem = NO_BASE_REGISTER;
6348 i.types[op].bitfield.disp8 = 0;
6349 i.types[op].bitfield.disp16 = 0;
6350 i.types[op].bitfield.disp32 = 0;
6351 i.types[op].bitfield.disp32s = 1;
6352 i.types[op].bitfield.disp64 = 0;
6353 i.types[op].bitfield.vec_disp8 = 0;
6354 i.flags[op] |= Operand_PCrel;
6355 if (! i.disp_operands)
6356 fake_zero_displacement = 1;
6357 }
6358 else if (i.base_reg->reg_type.bitfield.reg16)
6359 {
6360 gas_assert (!i.tm.opcode_modifier.vecsib);
6361 switch (i.base_reg->reg_num)
6362 {
6363 case 3: /* (%bx) */
6364 if (i.index_reg == 0)
6365 i.rm.regmem = 7;
6366 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6367 i.rm.regmem = i.index_reg->reg_num - 6;
6368 break;
6369 case 5: /* (%bp) */
6370 default_seg = &ss;
6371 if (i.index_reg == 0)
6372 {
6373 i.rm.regmem = 6;
6374 if (operand_type_check (i.types[op], disp) == 0)
6375 {
6376 /* fake (%bp) into 0(%bp) */
6377 if (i.tm.operand_types[op].bitfield.vec_disp8)
6378 i.types[op].bitfield.vec_disp8 = 1;
6379 else
6380 i.types[op].bitfield.disp8 = 1;
6381 fake_zero_displacement = 1;
6382 }
6383 }
6384 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6385 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6386 break;
6387 default: /* (%si) -> 4 or (%di) -> 5 */
6388 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6389 }
6390 i.rm.mode = mode_from_disp_size (i.types[op]);
6391 }
6392 else /* i.base_reg and 32/64 bit mode */
6393 {
6394 if (flag_code == CODE_64BIT
6395 && operand_type_check (i.types[op], disp))
6396 {
6397 i386_operand_type temp;
6398 operand_type_set (&temp, 0);
6399 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6400 temp.bitfield.vec_disp8
6401 = i.types[op].bitfield.vec_disp8;
6402 i.types[op] = temp;
6403 if (i.prefix[ADDR_PREFIX] == 0)
6404 i.types[op].bitfield.disp32s = 1;
6405 else
6406 i.types[op].bitfield.disp32 = 1;
6407 }
6408
6409 if (!i.tm.opcode_modifier.vecsib)
6410 i.rm.regmem = i.base_reg->reg_num;
6411 if ((i.base_reg->reg_flags & RegRex) != 0)
6412 i.rex |= REX_B;
6413 i.sib.base = i.base_reg->reg_num;
6414 /* x86-64 ignores REX prefix bit here to avoid decoder
6415 complications. */
6416 if (!(i.base_reg->reg_flags & RegRex)
6417 && (i.base_reg->reg_num == EBP_REG_NUM
6418 || i.base_reg->reg_num == ESP_REG_NUM))
6419 default_seg = &ss;
6420 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6421 {
6422 fake_zero_displacement = 1;
6423 if (i.tm.operand_types [op].bitfield.vec_disp8)
6424 i.types[op].bitfield.vec_disp8 = 1;
6425 else
6426 i.types[op].bitfield.disp8 = 1;
6427 }
6428 i.sib.scale = i.log2_scale_factor;
6429 if (i.index_reg == 0)
6430 {
6431 gas_assert (!i.tm.opcode_modifier.vecsib);
6432 /* <disp>(%esp) becomes two byte modrm with no index
6433 register. We've already stored the code for esp
6434 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6435 Any base register besides %esp will not use the
6436 extra modrm byte. */
6437 i.sib.index = NO_INDEX_REGISTER;
6438 }
6439 else if (!i.tm.opcode_modifier.vecsib)
6440 {
6441 if (i.index_reg->reg_num == RegEiz
6442 || i.index_reg->reg_num == RegRiz)
6443 i.sib.index = NO_INDEX_REGISTER;
6444 else
6445 i.sib.index = i.index_reg->reg_num;
6446 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6447 if ((i.index_reg->reg_flags & RegRex) != 0)
6448 i.rex |= REX_X;
6449 }
6450
6451 if (i.disp_operands
6452 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6453 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6454 i.rm.mode = 0;
6455 else
6456 {
6457 if (!fake_zero_displacement
6458 && !i.disp_operands
6459 && i.disp_encoding)
6460 {
6461 fake_zero_displacement = 1;
6462 if (i.disp_encoding == disp_encoding_8bit)
6463 i.types[op].bitfield.disp8 = 1;
6464 else
6465 i.types[op].bitfield.disp32 = 1;
6466 }
6467 i.rm.mode = mode_from_disp_size (i.types[op]);
6468 }
6469 }
6470
6471 if (fake_zero_displacement)
6472 {
6473 /* Fakes a zero displacement assuming that i.types[op]
6474 holds the correct displacement size. */
6475 expressionS *exp;
6476
6477 gas_assert (i.op[op].disps == 0);
6478 exp = &disp_expressions[i.disp_operands++];
6479 i.op[op].disps = exp;
6480 exp->X_op = O_constant;
6481 exp->X_add_number = 0;
6482 exp->X_add_symbol = (symbolS *) 0;
6483 exp->X_op_symbol = (symbolS *) 0;
6484 }
6485
6486 mem = op;
6487 }
6488 else
6489 mem = ~0;
6490
6491 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6492 {
6493 if (operand_type_check (i.types[0], imm))
6494 i.vex.register_specifier = NULL;
6495 else
6496 {
6497 /* VEX.vvvv encodes one of the sources when the first
6498 operand is not an immediate. */
6499 if (i.tm.opcode_modifier.vexw == VEXW0)
6500 i.vex.register_specifier = i.op[0].regs;
6501 else
6502 i.vex.register_specifier = i.op[1].regs;
6503 }
6504
6505 /* Destination is a XMM register encoded in the ModRM.reg
6506 and VEX.R bit. */
6507 i.rm.reg = i.op[2].regs->reg_num;
6508 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6509 i.rex |= REX_R;
6510
6511 /* ModRM.rm and VEX.B encodes the other source. */
6512 if (!i.mem_operands)
6513 {
6514 i.rm.mode = 3;
6515
6516 if (i.tm.opcode_modifier.vexw == VEXW0)
6517 i.rm.regmem = i.op[1].regs->reg_num;
6518 else
6519 i.rm.regmem = i.op[0].regs->reg_num;
6520
6521 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6522 i.rex |= REX_B;
6523 }
6524 }
6525 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6526 {
6527 i.vex.register_specifier = i.op[2].regs;
6528 if (!i.mem_operands)
6529 {
6530 i.rm.mode = 3;
6531 i.rm.regmem = i.op[1].regs->reg_num;
6532 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6533 i.rex |= REX_B;
6534 }
6535 }
6536 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6537 (if any) based on i.tm.extension_opcode. Again, we must be
6538 careful to make sure that segment/control/debug/test/MMX
6539 registers are coded into the i.rm.reg field. */
6540 else if (i.reg_operands)
6541 {
6542 unsigned int op;
6543 unsigned int vex_reg = ~0;
6544
6545 for (op = 0; op < i.operands; op++)
6546 if (i.types[op].bitfield.reg8
6547 || i.types[op].bitfield.reg16
6548 || i.types[op].bitfield.reg32
6549 || i.types[op].bitfield.reg64
6550 || i.types[op].bitfield.regmmx
6551 || i.types[op].bitfield.regxmm
6552 || i.types[op].bitfield.regymm
6553 || i.types[op].bitfield.regbnd
6554 || i.types[op].bitfield.regzmm
6555 || i.types[op].bitfield.regmask
6556 || i.types[op].bitfield.sreg2
6557 || i.types[op].bitfield.sreg3
6558 || i.types[op].bitfield.control
6559 || i.types[op].bitfield.debug
6560 || i.types[op].bitfield.test)
6561 break;
6562
6563 if (vex_3_sources)
6564 op = dest;
6565 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6566 {
6567 /* For instructions with VexNDS, the register-only
6568 source operand is encoded in VEX prefix. */
6569 gas_assert (mem != (unsigned int) ~0);
6570
6571 if (op > mem)
6572 {
6573 vex_reg = op++;
6574 gas_assert (op < i.operands);
6575 }
6576 else
6577 {
6578 /* Check register-only source operand when two source
6579 operands are swapped. */
6580 if (!i.tm.operand_types[op].bitfield.baseindex
6581 && i.tm.operand_types[op + 1].bitfield.baseindex)
6582 {
6583 vex_reg = op;
6584 op += 2;
6585 gas_assert (mem == (vex_reg + 1)
6586 && op < i.operands);
6587 }
6588 else
6589 {
6590 vex_reg = op + 1;
6591 gas_assert (vex_reg < i.operands);
6592 }
6593 }
6594 }
6595 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6596 {
6597 /* For instructions with VexNDD, the register destination
6598 is encoded in VEX prefix. */
6599 if (i.mem_operands == 0)
6600 {
6601 /* There is no memory operand. */
6602 gas_assert ((op + 2) == i.operands);
6603 vex_reg = op + 1;
6604 }
6605 else
6606 {
6607 /* There are only 2 operands. */
6608 gas_assert (op < 2 && i.operands == 2);
6609 vex_reg = 1;
6610 }
6611 }
6612 else
6613 gas_assert (op < i.operands);
6614
6615 if (vex_reg != (unsigned int) ~0)
6616 {
6617 i386_operand_type *type = &i.tm.operand_types[vex_reg];
6618
6619 if (type->bitfield.reg32 != 1
6620 && type->bitfield.reg64 != 1
6621 && !operand_type_equal (type, &regxmm)
6622 && !operand_type_equal (type, &regymm)
6623 && !operand_type_equal (type, &regzmm)
6624 && !operand_type_equal (type, &regmask))
6625 abort ();
6626
6627 i.vex.register_specifier = i.op[vex_reg].regs;
6628 }
6629
6630 /* Don't set OP operand twice. */
6631 if (vex_reg != op)
6632 {
6633 /* If there is an extension opcode to put here, the
6634 register number must be put into the regmem field. */
6635 if (i.tm.extension_opcode != None)
6636 {
6637 i.rm.regmem = i.op[op].regs->reg_num;
6638 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6639 i.rex |= REX_B;
6640 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6641 i.vrex |= REX_B;
6642 }
6643 else
6644 {
6645 i.rm.reg = i.op[op].regs->reg_num;
6646 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6647 i.rex |= REX_R;
6648 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6649 i.vrex |= REX_R;
6650 }
6651 }
6652
6653 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6654 must set it to 3 to indicate this is a register operand
6655 in the regmem field. */
6656 if (!i.mem_operands)
6657 i.rm.mode = 3;
6658 }
6659
6660 /* Fill in i.rm.reg field with extension opcode (if any). */
6661 if (i.tm.extension_opcode != None)
6662 i.rm.reg = i.tm.extension_opcode;
6663 }
6664 return default_seg;
6665 }
6666
6667 static void
6668 output_branch (void)
6669 {
6670 char *p;
6671 int size;
6672 int code16;
6673 int prefix;
6674 relax_substateT subtype;
6675 symbolS *sym;
6676 offsetT off;
6677
6678 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6679 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6680
6681 prefix = 0;
6682 if (i.prefix[DATA_PREFIX] != 0)
6683 {
6684 prefix = 1;
6685 i.prefixes -= 1;
6686 code16 ^= CODE16;
6687 }
6688 /* Pentium4 branch hints. */
6689 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6690 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6691 {
6692 prefix++;
6693 i.prefixes--;
6694 }
6695 if (i.prefix[REX_PREFIX] != 0)
6696 {
6697 prefix++;
6698 i.prefixes--;
6699 }
6700
6701 /* BND prefixed jump. */
6702 if (i.prefix[BND_PREFIX] != 0)
6703 {
6704 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6705 i.prefixes -= 1;
6706 }
6707
6708 if (i.prefixes != 0 && !intel_syntax)
6709 as_warn (_("skipping prefixes on this instruction"));
6710
6711 /* It's always a symbol; End frag & setup for relax.
6712 Make sure there is enough room in this frag for the largest
6713 instruction we may generate in md_convert_frag. This is 2
6714 bytes for the opcode and room for the prefix and largest
6715 displacement. */
6716 frag_grow (prefix + 2 + 4);
6717 /* Prefix and 1 opcode byte go in fr_fix. */
6718 p = frag_more (prefix + 1);
6719 if (i.prefix[DATA_PREFIX] != 0)
6720 *p++ = DATA_PREFIX_OPCODE;
6721 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6722 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6723 *p++ = i.prefix[SEG_PREFIX];
6724 if (i.prefix[REX_PREFIX] != 0)
6725 *p++ = i.prefix[REX_PREFIX];
6726 *p = i.tm.base_opcode;
6727
6728 if ((unsigned char) *p == JUMP_PC_RELATIVE)
6729 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
6730 else if (cpu_arch_flags.bitfield.cpui386)
6731 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
6732 else
6733 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
6734 subtype |= code16;
6735
6736 sym = i.op[0].disps->X_add_symbol;
6737 off = i.op[0].disps->X_add_number;
6738
6739 if (i.op[0].disps->X_op != O_constant
6740 && i.op[0].disps->X_op != O_symbol)
6741 {
6742 /* Handle complex expressions. */
6743 sym = make_expr_symbol (i.op[0].disps);
6744 off = 0;
6745 }
6746
6747 /* 1 possible extra opcode + 4 byte displacement go in var part.
6748 Pass reloc in fr_var. */
6749 frag_var (rs_machine_dependent, 5,
6750 ((!object_64bit
6751 || i.reloc[0] != NO_RELOC
6752 || (i.bnd_prefix == NULL && !add_bnd_prefix))
6753 ? i.reloc[0]
6754 : BFD_RELOC_X86_64_PC32_BND),
6755 subtype, sym, off, p);
6756 }
6757
6758 static void
6759 output_jump (void)
6760 {
6761 char *p;
6762 int size;
6763 fixS *fixP;
6764
6765 if (i.tm.opcode_modifier.jumpbyte)
6766 {
6767 /* This is a loop or jecxz type instruction. */
6768 size = 1;
6769 if (i.prefix[ADDR_PREFIX] != 0)
6770 {
6771 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
6772 i.prefixes -= 1;
6773 }
6774 /* Pentium4 branch hints. */
6775 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6776 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6777 {
6778 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
6779 i.prefixes--;
6780 }
6781 }
6782 else
6783 {
6784 int code16;
6785
6786 code16 = 0;
6787 if (flag_code == CODE_16BIT)
6788 code16 = CODE16;
6789
6790 if (i.prefix[DATA_PREFIX] != 0)
6791 {
6792 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
6793 i.prefixes -= 1;
6794 code16 ^= CODE16;
6795 }
6796
6797 size = 4;
6798 if (code16)
6799 size = 2;
6800 }
6801
6802 if (i.prefix[REX_PREFIX] != 0)
6803 {
6804 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
6805 i.prefixes -= 1;
6806 }
6807
6808 /* BND prefixed jump. */
6809 if (i.prefix[BND_PREFIX] != 0)
6810 {
6811 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6812 i.prefixes -= 1;
6813 }
6814
6815 if (i.prefixes != 0 && !intel_syntax)
6816 as_warn (_("skipping prefixes on this instruction"));
6817
6818 p = frag_more (i.tm.opcode_length + size);
6819 switch (i.tm.opcode_length)
6820 {
6821 case 2:
6822 *p++ = i.tm.base_opcode >> 8;
6823 case 1:
6824 *p++ = i.tm.base_opcode;
6825 break;
6826 default:
6827 abort ();
6828 }
6829
6830 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6831 i.op[0].disps, 1, reloc (size, 1, 1,
6832 (i.bnd_prefix != NULL
6833 || add_bnd_prefix),
6834 i.reloc[0]));
6835
6836 /* All jumps handled here are signed, but don't use a signed limit
6837 check for 32 and 16 bit jumps as we want to allow wrap around at
6838 4G and 64k respectively. */
6839 if (size == 1)
6840 fixP->fx_signed = 1;
6841 }
6842
6843 static void
6844 output_interseg_jump (void)
6845 {
6846 char *p;
6847 int size;
6848 int prefix;
6849 int code16;
6850
6851 code16 = 0;
6852 if (flag_code == CODE_16BIT)
6853 code16 = CODE16;
6854
6855 prefix = 0;
6856 if (i.prefix[DATA_PREFIX] != 0)
6857 {
6858 prefix = 1;
6859 i.prefixes -= 1;
6860 code16 ^= CODE16;
6861 }
6862 if (i.prefix[REX_PREFIX] != 0)
6863 {
6864 prefix++;
6865 i.prefixes -= 1;
6866 }
6867
6868 size = 4;
6869 if (code16)
6870 size = 2;
6871
6872 if (i.prefixes != 0 && !intel_syntax)
6873 as_warn (_("skipping prefixes on this instruction"));
6874
6875 /* 1 opcode; 2 segment; offset */
6876 p = frag_more (prefix + 1 + 2 + size);
6877
6878 if (i.prefix[DATA_PREFIX] != 0)
6879 *p++ = DATA_PREFIX_OPCODE;
6880
6881 if (i.prefix[REX_PREFIX] != 0)
6882 *p++ = i.prefix[REX_PREFIX];
6883
6884 *p++ = i.tm.base_opcode;
6885 if (i.op[1].imms->X_op == O_constant)
6886 {
6887 offsetT n = i.op[1].imms->X_add_number;
6888
6889 if (size == 2
6890 && !fits_in_unsigned_word (n)
6891 && !fits_in_signed_word (n))
6892 {
6893 as_bad (_("16-bit jump out of range"));
6894 return;
6895 }
6896 md_number_to_chars (p, n, size);
6897 }
6898 else
6899 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6900 i.op[1].imms, 0, reloc (size, 0, 0, 0, i.reloc[1]));
6901 if (i.op[0].imms->X_op != O_constant)
6902 as_bad (_("can't handle non absolute segment in `%s'"),
6903 i.tm.name);
6904 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
6905 }
6906
6907 static void
6908 output_insn (void)
6909 {
6910 fragS *insn_start_frag;
6911 offsetT insn_start_off;
6912
6913 /* Tie dwarf2 debug info to the address at the start of the insn.
6914 We can't do this after the insn has been output as the current
6915 frag may have been closed off. eg. by frag_var. */
6916 dwarf2_emit_insn (0);
6917
6918 insn_start_frag = frag_now;
6919 insn_start_off = frag_now_fix ();
6920
6921 /* Output jumps. */
6922 if (i.tm.opcode_modifier.jump)
6923 output_branch ();
6924 else if (i.tm.opcode_modifier.jumpbyte
6925 || i.tm.opcode_modifier.jumpdword)
6926 output_jump ();
6927 else if (i.tm.opcode_modifier.jumpintersegment)
6928 output_interseg_jump ();
6929 else
6930 {
6931 /* Output normal instructions here. */
6932 char *p;
6933 unsigned char *q;
6934 unsigned int j;
6935 unsigned int prefix;
6936
6937 /* Since the VEX/EVEX prefix contains the implicit prefix, we
6938 don't need the explicit prefix. */
6939 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
6940 {
6941 switch (i.tm.opcode_length)
6942 {
6943 case 3:
6944 if (i.tm.base_opcode & 0xff000000)
6945 {
6946 prefix = (i.tm.base_opcode >> 24) & 0xff;
6947 goto check_prefix;
6948 }
6949 break;
6950 case 2:
6951 if ((i.tm.base_opcode & 0xff0000) != 0)
6952 {
6953 prefix = (i.tm.base_opcode >> 16) & 0xff;
6954 if (i.tm.cpu_flags.bitfield.cpupadlock)
6955 {
6956 check_prefix:
6957 if (prefix != REPE_PREFIX_OPCODE
6958 || (i.prefix[REP_PREFIX]
6959 != REPE_PREFIX_OPCODE))
6960 add_prefix (prefix);
6961 }
6962 else
6963 add_prefix (prefix);
6964 }
6965 break;
6966 case 1:
6967 break;
6968 default:
6969 abort ();
6970 }
6971
6972 /* The prefix bytes. */
6973 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
6974 if (*q)
6975 FRAG_APPEND_1_CHAR (*q);
6976 }
6977 else
6978 {
6979 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
6980 if (*q)
6981 switch (j)
6982 {
6983 case REX_PREFIX:
6984 /* REX byte is encoded in VEX prefix. */
6985 break;
6986 case SEG_PREFIX:
6987 case ADDR_PREFIX:
6988 FRAG_APPEND_1_CHAR (*q);
6989 break;
6990 default:
6991 /* There should be no other prefixes for instructions
6992 with VEX prefix. */
6993 abort ();
6994 }
6995
6996 /* For EVEX instructions i.vrex should become 0 after
6997 build_evex_prefix. For VEX instructions upper 16 registers
6998 aren't available, so VREX should be 0. */
6999 if (i.vrex)
7000 abort ();
7001 /* Now the VEX prefix. */
7002 p = frag_more (i.vex.length);
7003 for (j = 0; j < i.vex.length; j++)
7004 p[j] = i.vex.bytes[j];
7005 }
7006
7007 /* Now the opcode; be careful about word order here! */
7008 if (i.tm.opcode_length == 1)
7009 {
7010 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7011 }
7012 else
7013 {
7014 switch (i.tm.opcode_length)
7015 {
7016 case 4:
7017 p = frag_more (4);
7018 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7019 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7020 break;
7021 case 3:
7022 p = frag_more (3);
7023 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7024 break;
7025 case 2:
7026 p = frag_more (2);
7027 break;
7028 default:
7029 abort ();
7030 break;
7031 }
7032
7033 /* Put out high byte first: can't use md_number_to_chars! */
7034 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7035 *p = i.tm.base_opcode & 0xff;
7036 }
7037
7038 /* Now the modrm byte and sib byte (if present). */
7039 if (i.tm.opcode_modifier.modrm)
7040 {
7041 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7042 | i.rm.reg << 3
7043 | i.rm.mode << 6));
7044 /* If i.rm.regmem == ESP (4)
7045 && i.rm.mode != (Register mode)
7046 && not 16 bit
7047 ==> need second modrm byte. */
7048 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7049 && i.rm.mode != 3
7050 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
7051 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7052 | i.sib.index << 3
7053 | i.sib.scale << 6));
7054 }
7055
7056 if (i.disp_operands)
7057 output_disp (insn_start_frag, insn_start_off);
7058
7059 if (i.imm_operands)
7060 output_imm (insn_start_frag, insn_start_off);
7061 }
7062
7063 #ifdef DEBUG386
7064 if (flag_debug)
7065 {
7066 pi ("" /*line*/, &i);
7067 }
7068 #endif /* DEBUG386 */
7069 }
7070
7071 /* Return the size of the displacement operand N. */
7072
7073 static int
7074 disp_size (unsigned int n)
7075 {
7076 int size = 4;
7077
7078 /* Vec_Disp8 has to be 8bit. */
7079 if (i.types[n].bitfield.vec_disp8)
7080 size = 1;
7081 else if (i.types[n].bitfield.disp64)
7082 size = 8;
7083 else if (i.types[n].bitfield.disp8)
7084 size = 1;
7085 else if (i.types[n].bitfield.disp16)
7086 size = 2;
7087 return size;
7088 }
7089
7090 /* Return the size of the immediate operand N. */
7091
7092 static int
7093 imm_size (unsigned int n)
7094 {
7095 int size = 4;
7096 if (i.types[n].bitfield.imm64)
7097 size = 8;
7098 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7099 size = 1;
7100 else if (i.types[n].bitfield.imm16)
7101 size = 2;
7102 return size;
7103 }
7104
7105 static void
7106 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7107 {
7108 char *p;
7109 unsigned int n;
7110
7111 for (n = 0; n < i.operands; n++)
7112 {
7113 if (i.types[n].bitfield.vec_disp8
7114 || operand_type_check (i.types[n], disp))
7115 {
7116 if (i.op[n].disps->X_op == O_constant)
7117 {
7118 int size = disp_size (n);
7119 offsetT val = i.op[n].disps->X_add_number;
7120
7121 if (i.types[n].bitfield.vec_disp8)
7122 val >>= i.memshift;
7123 val = offset_in_range (val, size);
7124 p = frag_more (size);
7125 md_number_to_chars (p, val, size);
7126 }
7127 else
7128 {
7129 enum bfd_reloc_code_real reloc_type;
7130 int size = disp_size (n);
7131 int sign = i.types[n].bitfield.disp32s;
7132 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7133
7134 /* We can't have 8 bit displacement here. */
7135 gas_assert (!i.types[n].bitfield.disp8);
7136
7137 /* The PC relative address is computed relative
7138 to the instruction boundary, so in case immediate
7139 fields follows, we need to adjust the value. */
7140 if (pcrel && i.imm_operands)
7141 {
7142 unsigned int n1;
7143 int sz = 0;
7144
7145 for (n1 = 0; n1 < i.operands; n1++)
7146 if (operand_type_check (i.types[n1], imm))
7147 {
7148 /* Only one immediate is allowed for PC
7149 relative address. */
7150 gas_assert (sz == 0);
7151 sz = imm_size (n1);
7152 i.op[n].disps->X_add_number -= sz;
7153 }
7154 /* We should find the immediate. */
7155 gas_assert (sz != 0);
7156 }
7157
7158 p = frag_more (size);
7159 reloc_type = reloc (size, pcrel, sign,
7160 (i.bnd_prefix != NULL
7161 || add_bnd_prefix),
7162 i.reloc[n]);
7163 if (GOT_symbol
7164 && GOT_symbol == i.op[n].disps->X_add_symbol
7165 && (((reloc_type == BFD_RELOC_32
7166 || reloc_type == BFD_RELOC_X86_64_32S
7167 || (reloc_type == BFD_RELOC_64
7168 && object_64bit))
7169 && (i.op[n].disps->X_op == O_symbol
7170 || (i.op[n].disps->X_op == O_add
7171 && ((symbol_get_value_expression
7172 (i.op[n].disps->X_op_symbol)->X_op)
7173 == O_subtract))))
7174 || reloc_type == BFD_RELOC_32_PCREL))
7175 {
7176 offsetT add;
7177
7178 if (insn_start_frag == frag_now)
7179 add = (p - frag_now->fr_literal) - insn_start_off;
7180 else
7181 {
7182 fragS *fr;
7183
7184 add = insn_start_frag->fr_fix - insn_start_off;
7185 for (fr = insn_start_frag->fr_next;
7186 fr && fr != frag_now; fr = fr->fr_next)
7187 add += fr->fr_fix;
7188 add += p - frag_now->fr_literal;
7189 }
7190
7191 if (!object_64bit)
7192 {
7193 reloc_type = BFD_RELOC_386_GOTPC;
7194 i.op[n].imms->X_add_number += add;
7195 }
7196 else if (reloc_type == BFD_RELOC_64)
7197 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7198 else
7199 /* Don't do the adjustment for x86-64, as there
7200 the pcrel addressing is relative to the _next_
7201 insn, and that is taken care of in other code. */
7202 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7203 }
7204 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7205 i.op[n].disps, pcrel, reloc_type);
7206 }
7207 }
7208 }
7209 }
7210
7211 static void
7212 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7213 {
7214 char *p;
7215 unsigned int n;
7216
7217 for (n = 0; n < i.operands; n++)
7218 {
7219 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7220 if (i.rounding && (int) n == i.rounding->operand)
7221 continue;
7222
7223 if (operand_type_check (i.types[n], imm))
7224 {
7225 if (i.op[n].imms->X_op == O_constant)
7226 {
7227 int size = imm_size (n);
7228 offsetT val;
7229
7230 val = offset_in_range (i.op[n].imms->X_add_number,
7231 size);
7232 p = frag_more (size);
7233 md_number_to_chars (p, val, size);
7234 }
7235 else
7236 {
7237 /* Not absolute_section.
7238 Need a 32-bit fixup (don't support 8bit
7239 non-absolute imms). Try to support other
7240 sizes ... */
7241 enum bfd_reloc_code_real reloc_type;
7242 int size = imm_size (n);
7243 int sign;
7244
7245 if (i.types[n].bitfield.imm32s
7246 && (i.suffix == QWORD_MNEM_SUFFIX
7247 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7248 sign = 1;
7249 else
7250 sign = 0;
7251
7252 p = frag_more (size);
7253 reloc_type = reloc (size, 0, sign, 0, i.reloc[n]);
7254
7255 /* This is tough to explain. We end up with this one if we
7256 * have operands that look like
7257 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7258 * obtain the absolute address of the GOT, and it is strongly
7259 * preferable from a performance point of view to avoid using
7260 * a runtime relocation for this. The actual sequence of
7261 * instructions often look something like:
7262 *
7263 * call .L66
7264 * .L66:
7265 * popl %ebx
7266 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7267 *
7268 * The call and pop essentially return the absolute address
7269 * of the label .L66 and store it in %ebx. The linker itself
7270 * will ultimately change the first operand of the addl so
7271 * that %ebx points to the GOT, but to keep things simple, the
7272 * .o file must have this operand set so that it generates not
7273 * the absolute address of .L66, but the absolute address of
7274 * itself. This allows the linker itself simply treat a GOTPC
7275 * relocation as asking for a pcrel offset to the GOT to be
7276 * added in, and the addend of the relocation is stored in the
7277 * operand field for the instruction itself.
7278 *
7279 * Our job here is to fix the operand so that it would add
7280 * the correct offset so that %ebx would point to itself. The
7281 * thing that is tricky is that .-.L66 will point to the
7282 * beginning of the instruction, so we need to further modify
7283 * the operand so that it will point to itself. There are
7284 * other cases where you have something like:
7285 *
7286 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7287 *
7288 * and here no correction would be required. Internally in
7289 * the assembler we treat operands of this form as not being
7290 * pcrel since the '.' is explicitly mentioned, and I wonder
7291 * whether it would simplify matters to do it this way. Who
7292 * knows. In earlier versions of the PIC patches, the
7293 * pcrel_adjust field was used to store the correction, but
7294 * since the expression is not pcrel, I felt it would be
7295 * confusing to do it this way. */
7296
7297 if ((reloc_type == BFD_RELOC_32
7298 || reloc_type == BFD_RELOC_X86_64_32S
7299 || reloc_type == BFD_RELOC_64)
7300 && GOT_symbol
7301 && GOT_symbol == i.op[n].imms->X_add_symbol
7302 && (i.op[n].imms->X_op == O_symbol
7303 || (i.op[n].imms->X_op == O_add
7304 && ((symbol_get_value_expression
7305 (i.op[n].imms->X_op_symbol)->X_op)
7306 == O_subtract))))
7307 {
7308 offsetT add;
7309
7310 if (insn_start_frag == frag_now)
7311 add = (p - frag_now->fr_literal) - insn_start_off;
7312 else
7313 {
7314 fragS *fr;
7315
7316 add = insn_start_frag->fr_fix - insn_start_off;
7317 for (fr = insn_start_frag->fr_next;
7318 fr && fr != frag_now; fr = fr->fr_next)
7319 add += fr->fr_fix;
7320 add += p - frag_now->fr_literal;
7321 }
7322
7323 if (!object_64bit)
7324 reloc_type = BFD_RELOC_386_GOTPC;
7325 else if (size == 4)
7326 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7327 else if (size == 8)
7328 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7329 i.op[n].imms->X_add_number += add;
7330 }
7331 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7332 i.op[n].imms, 0, reloc_type);
7333 }
7334 }
7335 }
7336 }
7337 \f
7338 /* x86_cons_fix_new is called via the expression parsing code when a
7339 reloc is needed. We use this hook to get the correct .got reloc. */
7340 static int cons_sign = -1;
7341
7342 void
7343 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7344 expressionS *exp, bfd_reloc_code_real_type r)
7345 {
7346 r = reloc (len, 0, cons_sign, 0, r);
7347
7348 #ifdef TE_PE
7349 if (exp->X_op == O_secrel)
7350 {
7351 exp->X_op = O_symbol;
7352 r = BFD_RELOC_32_SECREL;
7353 }
7354 #endif
7355
7356 fix_new_exp (frag, off, len, exp, 0, r);
7357 }
7358
7359 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7360 purpose of the `.dc.a' internal pseudo-op. */
7361
7362 int
7363 x86_address_bytes (void)
7364 {
7365 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7366 return 4;
7367 return stdoutput->arch_info->bits_per_address / 8;
7368 }
7369
7370 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7371 || defined (LEX_AT)
7372 # define lex_got(reloc, adjust, types, bnd_prefix) NULL
7373 #else
7374 /* Parse operands of the form
7375 <symbol>@GOTOFF+<nnn>
7376 and similar .plt or .got references.
7377
7378 If we find one, set up the correct relocation in RELOC and copy the
7379 input string, minus the `@GOTOFF' into a malloc'd buffer for
7380 parsing by the calling routine. Return this buffer, and if ADJUST
7381 is non-null set it to the length of the string we removed from the
7382 input line. Otherwise return NULL. */
7383 static char *
7384 lex_got (enum bfd_reloc_code_real *rel,
7385 int *adjust,
7386 i386_operand_type *types,
7387 int bnd_prefix)
7388 {
7389 /* Some of the relocations depend on the size of what field is to
7390 be relocated. But in our callers i386_immediate and i386_displacement
7391 we don't yet know the operand size (this will be set by insn
7392 matching). Hence we record the word32 relocation here,
7393 and adjust the reloc according to the real size in reloc(). */
7394 static const struct {
7395 const char *str;
7396 int len;
7397 const enum bfd_reloc_code_real rel[2];
7398 const i386_operand_type types64;
7399 } gotrel[] = {
7400 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7401 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7402 BFD_RELOC_SIZE32 },
7403 OPERAND_TYPE_IMM32_64 },
7404 #endif
7405 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7406 BFD_RELOC_X86_64_PLTOFF64 },
7407 OPERAND_TYPE_IMM64 },
7408 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7409 BFD_RELOC_X86_64_PLT32 },
7410 OPERAND_TYPE_IMM32_32S_DISP32 },
7411 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7412 BFD_RELOC_X86_64_GOTPLT64 },
7413 OPERAND_TYPE_IMM64_DISP64 },
7414 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7415 BFD_RELOC_X86_64_GOTOFF64 },
7416 OPERAND_TYPE_IMM64_DISP64 },
7417 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7418 BFD_RELOC_X86_64_GOTPCREL },
7419 OPERAND_TYPE_IMM32_32S_DISP32 },
7420 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7421 BFD_RELOC_X86_64_TLSGD },
7422 OPERAND_TYPE_IMM32_32S_DISP32 },
7423 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7424 _dummy_first_bfd_reloc_code_real },
7425 OPERAND_TYPE_NONE },
7426 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7427 BFD_RELOC_X86_64_TLSLD },
7428 OPERAND_TYPE_IMM32_32S_DISP32 },
7429 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7430 BFD_RELOC_X86_64_GOTTPOFF },
7431 OPERAND_TYPE_IMM32_32S_DISP32 },
7432 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7433 BFD_RELOC_X86_64_TPOFF32 },
7434 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7435 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7436 _dummy_first_bfd_reloc_code_real },
7437 OPERAND_TYPE_NONE },
7438 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7439 BFD_RELOC_X86_64_DTPOFF32 },
7440 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7441 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7442 _dummy_first_bfd_reloc_code_real },
7443 OPERAND_TYPE_NONE },
7444 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7445 _dummy_first_bfd_reloc_code_real },
7446 OPERAND_TYPE_NONE },
7447 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7448 BFD_RELOC_X86_64_GOT32 },
7449 OPERAND_TYPE_IMM32_32S_64_DISP32 },
7450 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7451 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7452 OPERAND_TYPE_IMM32_32S_DISP32 },
7453 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7454 BFD_RELOC_X86_64_TLSDESC_CALL },
7455 OPERAND_TYPE_IMM32_32S_DISP32 },
7456 };
7457 char *cp;
7458 unsigned int j;
7459
7460 #if defined (OBJ_MAYBE_ELF)
7461 if (!IS_ELF)
7462 return NULL;
7463 #endif
7464
7465 for (cp = input_line_pointer; *cp != '@'; cp++)
7466 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7467 return NULL;
7468
7469 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7470 {
7471 int len = gotrel[j].len;
7472 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7473 {
7474 if (gotrel[j].rel[object_64bit] != 0)
7475 {
7476 int first, second;
7477 char *tmpbuf, *past_reloc;
7478
7479 *rel = gotrel[j].rel[object_64bit];
7480
7481 if (types)
7482 {
7483 if (flag_code != CODE_64BIT)
7484 {
7485 types->bitfield.imm32 = 1;
7486 types->bitfield.disp32 = 1;
7487 }
7488 else
7489 *types = gotrel[j].types64;
7490 }
7491
7492 if (j != 0 && GOT_symbol == NULL)
7493 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7494
7495 /* The length of the first part of our input line. */
7496 first = cp - input_line_pointer;
7497
7498 /* The second part goes from after the reloc token until
7499 (and including) an end_of_line char or comma. */
7500 past_reloc = cp + 1 + len;
7501 cp = past_reloc;
7502 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7503 ++cp;
7504 second = cp + 1 - past_reloc;
7505
7506 /* Allocate and copy string. The trailing NUL shouldn't
7507 be necessary, but be safe. */
7508 tmpbuf = (char *) xmalloc (first + second + 2);
7509 memcpy (tmpbuf, input_line_pointer, first);
7510 if (second != 0 && *past_reloc != ' ')
7511 /* Replace the relocation token with ' ', so that
7512 errors like foo@GOTOFF1 will be detected. */
7513 tmpbuf[first++] = ' ';
7514 else
7515 /* Increment length by 1 if the relocation token is
7516 removed. */
7517 len++;
7518 if (adjust)
7519 *adjust = len;
7520 memcpy (tmpbuf + first, past_reloc, second);
7521 tmpbuf[first + second] = '\0';
7522 if (bnd_prefix && *rel == BFD_RELOC_X86_64_PLT32)
7523 *rel = BFD_RELOC_X86_64_PLT32_BND;
7524 return tmpbuf;
7525 }
7526
7527 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7528 gotrel[j].str, 1 << (5 + object_64bit));
7529 return NULL;
7530 }
7531 }
7532
7533 /* Might be a symbol version string. Don't as_bad here. */
7534 return NULL;
7535 }
7536 #endif
7537
7538 #ifdef TE_PE
7539 #ifdef lex_got
7540 #undef lex_got
7541 #endif
7542 /* Parse operands of the form
7543 <symbol>@SECREL32+<nnn>
7544
7545 If we find one, set up the correct relocation in RELOC and copy the
7546 input string, minus the `@SECREL32' into a malloc'd buffer for
7547 parsing by the calling routine. Return this buffer, and if ADJUST
7548 is non-null set it to the length of the string we removed from the
7549 input line. Otherwise return NULL.
7550
7551 This function is copied from the ELF version above adjusted for PE targets. */
7552
7553 static char *
7554 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7555 int *adjust ATTRIBUTE_UNUSED,
7556 i386_operand_type *types,
7557 int bnd_prefix ATTRIBUTE_UNUSED)
7558 {
7559 static const struct
7560 {
7561 const char *str;
7562 int len;
7563 const enum bfd_reloc_code_real rel[2];
7564 const i386_operand_type types64;
7565 }
7566 gotrel[] =
7567 {
7568 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7569 BFD_RELOC_32_SECREL },
7570 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7571 };
7572
7573 char *cp;
7574 unsigned j;
7575
7576 for (cp = input_line_pointer; *cp != '@'; cp++)
7577 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7578 return NULL;
7579
7580 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7581 {
7582 int len = gotrel[j].len;
7583
7584 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7585 {
7586 if (gotrel[j].rel[object_64bit] != 0)
7587 {
7588 int first, second;
7589 char *tmpbuf, *past_reloc;
7590
7591 *rel = gotrel[j].rel[object_64bit];
7592 if (adjust)
7593 *adjust = len;
7594
7595 if (types)
7596 {
7597 if (flag_code != CODE_64BIT)
7598 {
7599 types->bitfield.imm32 = 1;
7600 types->bitfield.disp32 = 1;
7601 }
7602 else
7603 *types = gotrel[j].types64;
7604 }
7605
7606 /* The length of the first part of our input line. */
7607 first = cp - input_line_pointer;
7608
7609 /* The second part goes from after the reloc token until
7610 (and including) an end_of_line char or comma. */
7611 past_reloc = cp + 1 + len;
7612 cp = past_reloc;
7613 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7614 ++cp;
7615 second = cp + 1 - past_reloc;
7616
7617 /* Allocate and copy string. The trailing NUL shouldn't
7618 be necessary, but be safe. */
7619 tmpbuf = (char *) xmalloc (first + second + 2);
7620 memcpy (tmpbuf, input_line_pointer, first);
7621 if (second != 0 && *past_reloc != ' ')
7622 /* Replace the relocation token with ' ', so that
7623 errors like foo@SECLREL321 will be detected. */
7624 tmpbuf[first++] = ' ';
7625 memcpy (tmpbuf + first, past_reloc, second);
7626 tmpbuf[first + second] = '\0';
7627 return tmpbuf;
7628 }
7629
7630 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7631 gotrel[j].str, 1 << (5 + object_64bit));
7632 return NULL;
7633 }
7634 }
7635
7636 /* Might be a symbol version string. Don't as_bad here. */
7637 return NULL;
7638 }
7639
7640 #endif /* TE_PE */
7641
7642 bfd_reloc_code_real_type
7643 x86_cons (expressionS *exp, int size)
7644 {
7645 bfd_reloc_code_real_type got_reloc = NO_RELOC;
7646
7647 intel_syntax = -intel_syntax;
7648
7649 exp->X_md = 0;
7650 if (size == 4 || (object_64bit && size == 8))
7651 {
7652 /* Handle @GOTOFF and the like in an expression. */
7653 char *save;
7654 char *gotfree_input_line;
7655 int adjust = 0;
7656
7657 save = input_line_pointer;
7658 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL, 0);
7659 if (gotfree_input_line)
7660 input_line_pointer = gotfree_input_line;
7661
7662 expression (exp);
7663
7664 if (gotfree_input_line)
7665 {
7666 /* expression () has merrily parsed up to the end of line,
7667 or a comma - in the wrong buffer. Transfer how far
7668 input_line_pointer has moved to the right buffer. */
7669 input_line_pointer = (save
7670 + (input_line_pointer - gotfree_input_line)
7671 + adjust);
7672 free (gotfree_input_line);
7673 if (exp->X_op == O_constant
7674 || exp->X_op == O_absent
7675 || exp->X_op == O_illegal
7676 || exp->X_op == O_register
7677 || exp->X_op == O_big)
7678 {
7679 char c = *input_line_pointer;
7680 *input_line_pointer = 0;
7681 as_bad (_("missing or invalid expression `%s'"), save);
7682 *input_line_pointer = c;
7683 }
7684 }
7685 }
7686 else
7687 expression (exp);
7688
7689 intel_syntax = -intel_syntax;
7690
7691 if (intel_syntax)
7692 i386_intel_simplify (exp);
7693
7694 return got_reloc;
7695 }
7696
7697 static void
7698 signed_cons (int size)
7699 {
7700 if (flag_code == CODE_64BIT)
7701 cons_sign = 1;
7702 cons (size);
7703 cons_sign = -1;
7704 }
7705
7706 #ifdef TE_PE
7707 static void
7708 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
7709 {
7710 expressionS exp;
7711
7712 do
7713 {
7714 expression (&exp);
7715 if (exp.X_op == O_symbol)
7716 exp.X_op = O_secrel;
7717
7718 emit_expr (&exp, 4);
7719 }
7720 while (*input_line_pointer++ == ',');
7721
7722 input_line_pointer--;
7723 demand_empty_rest_of_line ();
7724 }
7725 #endif
7726
7727 /* Handle Vector operations. */
7728
7729 static char *
7730 check_VecOperations (char *op_string, char *op_end)
7731 {
7732 const reg_entry *mask;
7733 const char *saved;
7734 char *end_op;
7735
7736 while (*op_string
7737 && (op_end == NULL || op_string < op_end))
7738 {
7739 saved = op_string;
7740 if (*op_string == '{')
7741 {
7742 op_string++;
7743
7744 /* Check broadcasts. */
7745 if (strncmp (op_string, "1to", 3) == 0)
7746 {
7747 int bcst_type;
7748
7749 if (i.broadcast)
7750 goto duplicated_vec_op;
7751
7752 op_string += 3;
7753 if (*op_string == '8')
7754 bcst_type = BROADCAST_1TO8;
7755 else if (*op_string == '1'
7756 && *(op_string+1) == '6')
7757 {
7758 bcst_type = BROADCAST_1TO16;
7759 op_string++;
7760 }
7761 else
7762 {
7763 as_bad (_("Unsupported broadcast: `%s'"), saved);
7764 return NULL;
7765 }
7766 op_string++;
7767
7768 broadcast_op.type = bcst_type;
7769 broadcast_op.operand = this_operand;
7770 i.broadcast = &broadcast_op;
7771 }
7772 /* Check masking operation. */
7773 else if ((mask = parse_register (op_string, &end_op)) != NULL)
7774 {
7775 /* k0 can't be used for write mask. */
7776 if (mask->reg_num == 0)
7777 {
7778 as_bad (_("`%s' can't be used for write mask"),
7779 op_string);
7780 return NULL;
7781 }
7782
7783 if (!i.mask)
7784 {
7785 mask_op.mask = mask;
7786 mask_op.zeroing = 0;
7787 mask_op.operand = this_operand;
7788 i.mask = &mask_op;
7789 }
7790 else
7791 {
7792 if (i.mask->mask)
7793 goto duplicated_vec_op;
7794
7795 i.mask->mask = mask;
7796
7797 /* Only "{z}" is allowed here. No need to check
7798 zeroing mask explicitly. */
7799 if (i.mask->operand != this_operand)
7800 {
7801 as_bad (_("invalid write mask `%s'"), saved);
7802 return NULL;
7803 }
7804 }
7805
7806 op_string = end_op;
7807 }
7808 /* Check zeroing-flag for masking operation. */
7809 else if (*op_string == 'z')
7810 {
7811 if (!i.mask)
7812 {
7813 mask_op.mask = NULL;
7814 mask_op.zeroing = 1;
7815 mask_op.operand = this_operand;
7816 i.mask = &mask_op;
7817 }
7818 else
7819 {
7820 if (i.mask->zeroing)
7821 {
7822 duplicated_vec_op:
7823 as_bad (_("duplicated `%s'"), saved);
7824 return NULL;
7825 }
7826
7827 i.mask->zeroing = 1;
7828
7829 /* Only "{%k}" is allowed here. No need to check mask
7830 register explicitly. */
7831 if (i.mask->operand != this_operand)
7832 {
7833 as_bad (_("invalid zeroing-masking `%s'"),
7834 saved);
7835 return NULL;
7836 }
7837 }
7838
7839 op_string++;
7840 }
7841 else
7842 goto unknown_vec_op;
7843
7844 if (*op_string != '}')
7845 {
7846 as_bad (_("missing `}' in `%s'"), saved);
7847 return NULL;
7848 }
7849 op_string++;
7850 continue;
7851 }
7852 unknown_vec_op:
7853 /* We don't know this one. */
7854 as_bad (_("unknown vector operation: `%s'"), saved);
7855 return NULL;
7856 }
7857
7858 return op_string;
7859 }
7860
7861 static int
7862 i386_immediate (char *imm_start)
7863 {
7864 char *save_input_line_pointer;
7865 char *gotfree_input_line;
7866 segT exp_seg = 0;
7867 expressionS *exp;
7868 i386_operand_type types;
7869
7870 operand_type_set (&types, ~0);
7871
7872 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
7873 {
7874 as_bad (_("at most %d immediate operands are allowed"),
7875 MAX_IMMEDIATE_OPERANDS);
7876 return 0;
7877 }
7878
7879 exp = &im_expressions[i.imm_operands++];
7880 i.op[this_operand].imms = exp;
7881
7882 if (is_space_char (*imm_start))
7883 ++imm_start;
7884
7885 save_input_line_pointer = input_line_pointer;
7886 input_line_pointer = imm_start;
7887
7888 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types,
7889 (i.bnd_prefix != NULL
7890 || add_bnd_prefix));
7891 if (gotfree_input_line)
7892 input_line_pointer = gotfree_input_line;
7893
7894 exp_seg = expression (exp);
7895
7896 SKIP_WHITESPACE ();
7897
7898 /* Handle vector operations. */
7899 if (*input_line_pointer == '{')
7900 {
7901 input_line_pointer = check_VecOperations (input_line_pointer,
7902 NULL);
7903 if (input_line_pointer == NULL)
7904 return 0;
7905 }
7906
7907 if (*input_line_pointer)
7908 as_bad (_("junk `%s' after expression"), input_line_pointer);
7909
7910 input_line_pointer = save_input_line_pointer;
7911 if (gotfree_input_line)
7912 {
7913 free (gotfree_input_line);
7914
7915 if (exp->X_op == O_constant || exp->X_op == O_register)
7916 exp->X_op = O_illegal;
7917 }
7918
7919 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
7920 }
7921
7922 static int
7923 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
7924 i386_operand_type types, const char *imm_start)
7925 {
7926 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
7927 {
7928 if (imm_start)
7929 as_bad (_("missing or invalid immediate expression `%s'"),
7930 imm_start);
7931 return 0;
7932 }
7933 else if (exp->X_op == O_constant)
7934 {
7935 /* Size it properly later. */
7936 i.types[this_operand].bitfield.imm64 = 1;
7937 /* If not 64bit, sign extend val. */
7938 if (flag_code != CODE_64BIT
7939 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
7940 exp->X_add_number
7941 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
7942 }
7943 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
7944 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
7945 && exp_seg != absolute_section
7946 && exp_seg != text_section
7947 && exp_seg != data_section
7948 && exp_seg != bss_section
7949 && exp_seg != undefined_section
7950 && !bfd_is_com_section (exp_seg))
7951 {
7952 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
7953 return 0;
7954 }
7955 #endif
7956 else if (!intel_syntax && exp->X_op == O_register)
7957 {
7958 if (imm_start)
7959 as_bad (_("illegal immediate register operand %s"), imm_start);
7960 return 0;
7961 }
7962 else
7963 {
7964 /* This is an address. The size of the address will be
7965 determined later, depending on destination register,
7966 suffix, or the default for the section. */
7967 i.types[this_operand].bitfield.imm8 = 1;
7968 i.types[this_operand].bitfield.imm16 = 1;
7969 i.types[this_operand].bitfield.imm32 = 1;
7970 i.types[this_operand].bitfield.imm32s = 1;
7971 i.types[this_operand].bitfield.imm64 = 1;
7972 i.types[this_operand] = operand_type_and (i.types[this_operand],
7973 types);
7974 }
7975
7976 return 1;
7977 }
7978
7979 static char *
7980 i386_scale (char *scale)
7981 {
7982 offsetT val;
7983 char *save = input_line_pointer;
7984
7985 input_line_pointer = scale;
7986 val = get_absolute_expression ();
7987
7988 switch (val)
7989 {
7990 case 1:
7991 i.log2_scale_factor = 0;
7992 break;
7993 case 2:
7994 i.log2_scale_factor = 1;
7995 break;
7996 case 4:
7997 i.log2_scale_factor = 2;
7998 break;
7999 case 8:
8000 i.log2_scale_factor = 3;
8001 break;
8002 default:
8003 {
8004 char sep = *input_line_pointer;
8005
8006 *input_line_pointer = '\0';
8007 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8008 scale);
8009 *input_line_pointer = sep;
8010 input_line_pointer = save;
8011 return NULL;
8012 }
8013 }
8014 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8015 {
8016 as_warn (_("scale factor of %d without an index register"),
8017 1 << i.log2_scale_factor);
8018 i.log2_scale_factor = 0;
8019 }
8020 scale = input_line_pointer;
8021 input_line_pointer = save;
8022 return scale;
8023 }
8024
8025 static int
8026 i386_displacement (char *disp_start, char *disp_end)
8027 {
8028 expressionS *exp;
8029 segT exp_seg = 0;
8030 char *save_input_line_pointer;
8031 char *gotfree_input_line;
8032 int override;
8033 i386_operand_type bigdisp, types = anydisp;
8034 int ret;
8035
8036 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8037 {
8038 as_bad (_("at most %d displacement operands are allowed"),
8039 MAX_MEMORY_OPERANDS);
8040 return 0;
8041 }
8042
8043 operand_type_set (&bigdisp, 0);
8044 if ((i.types[this_operand].bitfield.jumpabsolute)
8045 || (!current_templates->start->opcode_modifier.jump
8046 && !current_templates->start->opcode_modifier.jumpdword))
8047 {
8048 bigdisp.bitfield.disp32 = 1;
8049 override = (i.prefix[ADDR_PREFIX] != 0);
8050 if (flag_code == CODE_64BIT)
8051 {
8052 if (!override)
8053 {
8054 bigdisp.bitfield.disp32s = 1;
8055 bigdisp.bitfield.disp64 = 1;
8056 }
8057 }
8058 else if ((flag_code == CODE_16BIT) ^ override)
8059 {
8060 bigdisp.bitfield.disp32 = 0;
8061 bigdisp.bitfield.disp16 = 1;
8062 }
8063 }
8064 else
8065 {
8066 /* For PC-relative branches, the width of the displacement
8067 is dependent upon data size, not address size. */
8068 override = (i.prefix[DATA_PREFIX] != 0);
8069 if (flag_code == CODE_64BIT)
8070 {
8071 if (override || i.suffix == WORD_MNEM_SUFFIX)
8072 bigdisp.bitfield.disp16 = 1;
8073 else
8074 {
8075 bigdisp.bitfield.disp32 = 1;
8076 bigdisp.bitfield.disp32s = 1;
8077 }
8078 }
8079 else
8080 {
8081 if (!override)
8082 override = (i.suffix == (flag_code != CODE_16BIT
8083 ? WORD_MNEM_SUFFIX
8084 : LONG_MNEM_SUFFIX));
8085 bigdisp.bitfield.disp32 = 1;
8086 if ((flag_code == CODE_16BIT) ^ override)
8087 {
8088 bigdisp.bitfield.disp32 = 0;
8089 bigdisp.bitfield.disp16 = 1;
8090 }
8091 }
8092 }
8093 i.types[this_operand] = operand_type_or (i.types[this_operand],
8094 bigdisp);
8095
8096 exp = &disp_expressions[i.disp_operands];
8097 i.op[this_operand].disps = exp;
8098 i.disp_operands++;
8099 save_input_line_pointer = input_line_pointer;
8100 input_line_pointer = disp_start;
8101 END_STRING_AND_SAVE (disp_end);
8102
8103 #ifndef GCC_ASM_O_HACK
8104 #define GCC_ASM_O_HACK 0
8105 #endif
8106 #if GCC_ASM_O_HACK
8107 END_STRING_AND_SAVE (disp_end + 1);
8108 if (i.types[this_operand].bitfield.baseIndex
8109 && displacement_string_end[-1] == '+')
8110 {
8111 /* This hack is to avoid a warning when using the "o"
8112 constraint within gcc asm statements.
8113 For instance:
8114
8115 #define _set_tssldt_desc(n,addr,limit,type) \
8116 __asm__ __volatile__ ( \
8117 "movw %w2,%0\n\t" \
8118 "movw %w1,2+%0\n\t" \
8119 "rorl $16,%1\n\t" \
8120 "movb %b1,4+%0\n\t" \
8121 "movb %4,5+%0\n\t" \
8122 "movb $0,6+%0\n\t" \
8123 "movb %h1,7+%0\n\t" \
8124 "rorl $16,%1" \
8125 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8126
8127 This works great except that the output assembler ends
8128 up looking a bit weird if it turns out that there is
8129 no offset. You end up producing code that looks like:
8130
8131 #APP
8132 movw $235,(%eax)
8133 movw %dx,2+(%eax)
8134 rorl $16,%edx
8135 movb %dl,4+(%eax)
8136 movb $137,5+(%eax)
8137 movb $0,6+(%eax)
8138 movb %dh,7+(%eax)
8139 rorl $16,%edx
8140 #NO_APP
8141
8142 So here we provide the missing zero. */
8143
8144 *displacement_string_end = '0';
8145 }
8146 #endif
8147 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types,
8148 (i.bnd_prefix != NULL
8149 || add_bnd_prefix));
8150 if (gotfree_input_line)
8151 input_line_pointer = gotfree_input_line;
8152
8153 exp_seg = expression (exp);
8154
8155 SKIP_WHITESPACE ();
8156 if (*input_line_pointer)
8157 as_bad (_("junk `%s' after expression"), input_line_pointer);
8158 #if GCC_ASM_O_HACK
8159 RESTORE_END_STRING (disp_end + 1);
8160 #endif
8161 input_line_pointer = save_input_line_pointer;
8162 if (gotfree_input_line)
8163 {
8164 free (gotfree_input_line);
8165
8166 if (exp->X_op == O_constant || exp->X_op == O_register)
8167 exp->X_op = O_illegal;
8168 }
8169
8170 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8171
8172 RESTORE_END_STRING (disp_end);
8173
8174 return ret;
8175 }
8176
8177 static int
8178 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8179 i386_operand_type types, const char *disp_start)
8180 {
8181 i386_operand_type bigdisp;
8182 int ret = 1;
8183
8184 /* We do this to make sure that the section symbol is in
8185 the symbol table. We will ultimately change the relocation
8186 to be relative to the beginning of the section. */
8187 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8188 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8189 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8190 {
8191 if (exp->X_op != O_symbol)
8192 goto inv_disp;
8193
8194 if (S_IS_LOCAL (exp->X_add_symbol)
8195 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8196 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8197 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8198 exp->X_op = O_subtract;
8199 exp->X_op_symbol = GOT_symbol;
8200 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8201 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8202 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8203 i.reloc[this_operand] = BFD_RELOC_64;
8204 else
8205 i.reloc[this_operand] = BFD_RELOC_32;
8206 }
8207
8208 else if (exp->X_op == O_absent
8209 || exp->X_op == O_illegal
8210 || exp->X_op == O_big)
8211 {
8212 inv_disp:
8213 as_bad (_("missing or invalid displacement expression `%s'"),
8214 disp_start);
8215 ret = 0;
8216 }
8217
8218 else if (flag_code == CODE_64BIT
8219 && !i.prefix[ADDR_PREFIX]
8220 && exp->X_op == O_constant)
8221 {
8222 /* Since displacement is signed extended to 64bit, don't allow
8223 disp32 and turn off disp32s if they are out of range. */
8224 i.types[this_operand].bitfield.disp32 = 0;
8225 if (!fits_in_signed_long (exp->X_add_number))
8226 {
8227 i.types[this_operand].bitfield.disp32s = 0;
8228 if (i.types[this_operand].bitfield.baseindex)
8229 {
8230 as_bad (_("0x%lx out range of signed 32bit displacement"),
8231 (long) exp->X_add_number);
8232 ret = 0;
8233 }
8234 }
8235 }
8236
8237 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8238 else if (exp->X_op != O_constant
8239 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8240 && exp_seg != absolute_section
8241 && exp_seg != text_section
8242 && exp_seg != data_section
8243 && exp_seg != bss_section
8244 && exp_seg != undefined_section
8245 && !bfd_is_com_section (exp_seg))
8246 {
8247 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8248 ret = 0;
8249 }
8250 #endif
8251
8252 /* Check if this is a displacement only operand. */
8253 bigdisp = i.types[this_operand];
8254 bigdisp.bitfield.disp8 = 0;
8255 bigdisp.bitfield.disp16 = 0;
8256 bigdisp.bitfield.disp32 = 0;
8257 bigdisp.bitfield.disp32s = 0;
8258 bigdisp.bitfield.disp64 = 0;
8259 if (operand_type_all_zero (&bigdisp))
8260 i.types[this_operand] = operand_type_and (i.types[this_operand],
8261 types);
8262
8263 return ret;
8264 }
8265
8266 /* Make sure the memory operand we've been dealt is valid.
8267 Return 1 on success, 0 on a failure. */
8268
8269 static int
8270 i386_index_check (const char *operand_string)
8271 {
8272 const char *kind = "base/index";
8273 enum flag_code addr_mode;
8274
8275 if (i.prefix[ADDR_PREFIX])
8276 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8277 else
8278 {
8279 addr_mode = flag_code;
8280
8281 #if INFER_ADDR_PREFIX
8282 if (i.mem_operands == 0)
8283 {
8284 /* Infer address prefix from the first memory operand. */
8285 const reg_entry *addr_reg = i.base_reg;
8286
8287 if (addr_reg == NULL)
8288 addr_reg = i.index_reg;
8289
8290 if (addr_reg)
8291 {
8292 if (addr_reg->reg_num == RegEip
8293 || addr_reg->reg_num == RegEiz
8294 || addr_reg->reg_type.bitfield.reg32)
8295 addr_mode = CODE_32BIT;
8296 else if (flag_code != CODE_64BIT
8297 && addr_reg->reg_type.bitfield.reg16)
8298 addr_mode = CODE_16BIT;
8299
8300 if (addr_mode != flag_code)
8301 {
8302 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8303 i.prefixes += 1;
8304 /* Change the size of any displacement too. At most one
8305 of Disp16 or Disp32 is set.
8306 FIXME. There doesn't seem to be any real need for
8307 separate Disp16 and Disp32 flags. The same goes for
8308 Imm16 and Imm32. Removing them would probably clean
8309 up the code quite a lot. */
8310 if (flag_code != CODE_64BIT
8311 && (i.types[this_operand].bitfield.disp16
8312 || i.types[this_operand].bitfield.disp32))
8313 i.types[this_operand]
8314 = operand_type_xor (i.types[this_operand], disp16_32);
8315 }
8316 }
8317 }
8318 #endif
8319 }
8320
8321 if (current_templates->start->opcode_modifier.isstring
8322 && !current_templates->start->opcode_modifier.immext
8323 && (current_templates->end[-1].opcode_modifier.isstring
8324 || i.mem_operands))
8325 {
8326 /* Memory operands of string insns are special in that they only allow
8327 a single register (rDI, rSI, or rBX) as their memory address. */
8328 const reg_entry *expected_reg;
8329 static const char *di_si[][2] =
8330 {
8331 { "esi", "edi" },
8332 { "si", "di" },
8333 { "rsi", "rdi" }
8334 };
8335 static const char *bx[] = { "ebx", "bx", "rbx" };
8336
8337 kind = "string address";
8338
8339 if (current_templates->start->opcode_modifier.w)
8340 {
8341 i386_operand_type type = current_templates->end[-1].operand_types[0];
8342
8343 if (!type.bitfield.baseindex
8344 || ((!i.mem_operands != !intel_syntax)
8345 && current_templates->end[-1].operand_types[1]
8346 .bitfield.baseindex))
8347 type = current_templates->end[-1].operand_types[1];
8348 expected_reg = hash_find (reg_hash,
8349 di_si[addr_mode][type.bitfield.esseg]);
8350
8351 }
8352 else
8353 expected_reg = hash_find (reg_hash, bx[addr_mode]);
8354
8355 if (i.base_reg != expected_reg
8356 || i.index_reg
8357 || operand_type_check (i.types[this_operand], disp))
8358 {
8359 /* The second memory operand must have the same size as
8360 the first one. */
8361 if (i.mem_operands
8362 && i.base_reg
8363 && !((addr_mode == CODE_64BIT
8364 && i.base_reg->reg_type.bitfield.reg64)
8365 || (addr_mode == CODE_32BIT
8366 ? i.base_reg->reg_type.bitfield.reg32
8367 : i.base_reg->reg_type.bitfield.reg16)))
8368 goto bad_address;
8369
8370 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8371 operand_string,
8372 intel_syntax ? '[' : '(',
8373 register_prefix,
8374 expected_reg->reg_name,
8375 intel_syntax ? ']' : ')');
8376 return 1;
8377 }
8378 else
8379 return 1;
8380
8381 bad_address:
8382 as_bad (_("`%s' is not a valid %s expression"),
8383 operand_string, kind);
8384 return 0;
8385 }
8386 else
8387 {
8388 if (addr_mode != CODE_16BIT)
8389 {
8390 /* 32-bit/64-bit checks. */
8391 if ((i.base_reg
8392 && (addr_mode == CODE_64BIT
8393 ? !i.base_reg->reg_type.bitfield.reg64
8394 : !i.base_reg->reg_type.bitfield.reg32)
8395 && (i.index_reg
8396 || (i.base_reg->reg_num
8397 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8398 || (i.index_reg
8399 && !i.index_reg->reg_type.bitfield.regxmm
8400 && !i.index_reg->reg_type.bitfield.regymm
8401 && !i.index_reg->reg_type.bitfield.regzmm
8402 && ((addr_mode == CODE_64BIT
8403 ? !(i.index_reg->reg_type.bitfield.reg64
8404 || i.index_reg->reg_num == RegRiz)
8405 : !(i.index_reg->reg_type.bitfield.reg32
8406 || i.index_reg->reg_num == RegEiz))
8407 || !i.index_reg->reg_type.bitfield.baseindex)))
8408 goto bad_address;
8409 }
8410 else
8411 {
8412 /* 16-bit checks. */
8413 if ((i.base_reg
8414 && (!i.base_reg->reg_type.bitfield.reg16
8415 || !i.base_reg->reg_type.bitfield.baseindex))
8416 || (i.index_reg
8417 && (!i.index_reg->reg_type.bitfield.reg16
8418 || !i.index_reg->reg_type.bitfield.baseindex
8419 || !(i.base_reg
8420 && i.base_reg->reg_num < 6
8421 && i.index_reg->reg_num >= 6
8422 && i.log2_scale_factor == 0))))
8423 goto bad_address;
8424 }
8425 }
8426 return 1;
8427 }
8428
8429 /* Handle vector immediates. */
8430
8431 static int
8432 RC_SAE_immediate (const char *imm_start)
8433 {
8434 unsigned int match_found, j;
8435 const char *pstr = imm_start;
8436 expressionS *exp;
8437
8438 if (*pstr != '{')
8439 return 0;
8440
8441 pstr++;
8442 match_found = 0;
8443 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8444 {
8445 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8446 {
8447 if (!i.rounding)
8448 {
8449 rc_op.type = RC_NamesTable[j].type;
8450 rc_op.operand = this_operand;
8451 i.rounding = &rc_op;
8452 }
8453 else
8454 {
8455 as_bad (_("duplicated `%s'"), imm_start);
8456 return 0;
8457 }
8458 pstr += RC_NamesTable[j].len;
8459 match_found = 1;
8460 break;
8461 }
8462 }
8463 if (!match_found)
8464 return 0;
8465
8466 if (*pstr++ != '}')
8467 {
8468 as_bad (_("Missing '}': '%s'"), imm_start);
8469 return 0;
8470 }
8471 /* RC/SAE immediate string should contain nothing more. */;
8472 if (*pstr != 0)
8473 {
8474 as_bad (_("Junk after '}': '%s'"), imm_start);
8475 return 0;
8476 }
8477
8478 exp = &im_expressions[i.imm_operands++];
8479 i.op[this_operand].imms = exp;
8480
8481 exp->X_op = O_constant;
8482 exp->X_add_number = 0;
8483 exp->X_add_symbol = (symbolS *) 0;
8484 exp->X_op_symbol = (symbolS *) 0;
8485
8486 i.types[this_operand].bitfield.imm8 = 1;
8487 return 1;
8488 }
8489
8490 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
8491 on error. */
8492
8493 static int
8494 i386_att_operand (char *operand_string)
8495 {
8496 const reg_entry *r;
8497 char *end_op;
8498 char *op_string = operand_string;
8499
8500 if (is_space_char (*op_string))
8501 ++op_string;
8502
8503 /* We check for an absolute prefix (differentiating,
8504 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
8505 if (*op_string == ABSOLUTE_PREFIX)
8506 {
8507 ++op_string;
8508 if (is_space_char (*op_string))
8509 ++op_string;
8510 i.types[this_operand].bitfield.jumpabsolute = 1;
8511 }
8512
8513 /* Check if operand is a register. */
8514 if ((r = parse_register (op_string, &end_op)) != NULL)
8515 {
8516 i386_operand_type temp;
8517
8518 /* Check for a segment override by searching for ':' after a
8519 segment register. */
8520 op_string = end_op;
8521 if (is_space_char (*op_string))
8522 ++op_string;
8523 if (*op_string == ':'
8524 && (r->reg_type.bitfield.sreg2
8525 || r->reg_type.bitfield.sreg3))
8526 {
8527 switch (r->reg_num)
8528 {
8529 case 0:
8530 i.seg[i.mem_operands] = &es;
8531 break;
8532 case 1:
8533 i.seg[i.mem_operands] = &cs;
8534 break;
8535 case 2:
8536 i.seg[i.mem_operands] = &ss;
8537 break;
8538 case 3:
8539 i.seg[i.mem_operands] = &ds;
8540 break;
8541 case 4:
8542 i.seg[i.mem_operands] = &fs;
8543 break;
8544 case 5:
8545 i.seg[i.mem_operands] = &gs;
8546 break;
8547 }
8548
8549 /* Skip the ':' and whitespace. */
8550 ++op_string;
8551 if (is_space_char (*op_string))
8552 ++op_string;
8553
8554 if (!is_digit_char (*op_string)
8555 && !is_identifier_char (*op_string)
8556 && *op_string != '('
8557 && *op_string != ABSOLUTE_PREFIX)
8558 {
8559 as_bad (_("bad memory operand `%s'"), op_string);
8560 return 0;
8561 }
8562 /* Handle case of %es:*foo. */
8563 if (*op_string == ABSOLUTE_PREFIX)
8564 {
8565 ++op_string;
8566 if (is_space_char (*op_string))
8567 ++op_string;
8568 i.types[this_operand].bitfield.jumpabsolute = 1;
8569 }
8570 goto do_memory_reference;
8571 }
8572
8573 /* Handle vector operations. */
8574 if (*op_string == '{')
8575 {
8576 op_string = check_VecOperations (op_string, NULL);
8577 if (op_string == NULL)
8578 return 0;
8579 }
8580
8581 if (*op_string)
8582 {
8583 as_bad (_("junk `%s' after register"), op_string);
8584 return 0;
8585 }
8586 temp = r->reg_type;
8587 temp.bitfield.baseindex = 0;
8588 i.types[this_operand] = operand_type_or (i.types[this_operand],
8589 temp);
8590 i.types[this_operand].bitfield.unspecified = 0;
8591 i.op[this_operand].regs = r;
8592 i.reg_operands++;
8593 }
8594 else if (*op_string == REGISTER_PREFIX)
8595 {
8596 as_bad (_("bad register name `%s'"), op_string);
8597 return 0;
8598 }
8599 else if (*op_string == IMMEDIATE_PREFIX)
8600 {
8601 ++op_string;
8602 if (i.types[this_operand].bitfield.jumpabsolute)
8603 {
8604 as_bad (_("immediate operand illegal with absolute jump"));
8605 return 0;
8606 }
8607 if (!i386_immediate (op_string))
8608 return 0;
8609 }
8610 else if (RC_SAE_immediate (operand_string))
8611 {
8612 /* If it is a RC or SAE immediate, do nothing. */
8613 ;
8614 }
8615 else if (is_digit_char (*op_string)
8616 || is_identifier_char (*op_string)
8617 || *op_string == '(')
8618 {
8619 /* This is a memory reference of some sort. */
8620 char *base_string;
8621
8622 /* Start and end of displacement string expression (if found). */
8623 char *displacement_string_start;
8624 char *displacement_string_end;
8625 char *vop_start;
8626
8627 do_memory_reference:
8628 if ((i.mem_operands == 1
8629 && !current_templates->start->opcode_modifier.isstring)
8630 || i.mem_operands == 2)
8631 {
8632 as_bad (_("too many memory references for `%s'"),
8633 current_templates->start->name);
8634 return 0;
8635 }
8636
8637 /* Check for base index form. We detect the base index form by
8638 looking for an ')' at the end of the operand, searching
8639 for the '(' matching it, and finding a REGISTER_PREFIX or ','
8640 after the '('. */
8641 base_string = op_string + strlen (op_string);
8642
8643 /* Handle vector operations. */
8644 vop_start = strchr (op_string, '{');
8645 if (vop_start && vop_start < base_string)
8646 {
8647 if (check_VecOperations (vop_start, base_string) == NULL)
8648 return 0;
8649 base_string = vop_start;
8650 }
8651
8652 --base_string;
8653 if (is_space_char (*base_string))
8654 --base_string;
8655
8656 /* If we only have a displacement, set-up for it to be parsed later. */
8657 displacement_string_start = op_string;
8658 displacement_string_end = base_string + 1;
8659
8660 if (*base_string == ')')
8661 {
8662 char *temp_string;
8663 unsigned int parens_balanced = 1;
8664 /* We've already checked that the number of left & right ()'s are
8665 equal, so this loop will not be infinite. */
8666 do
8667 {
8668 base_string--;
8669 if (*base_string == ')')
8670 parens_balanced++;
8671 if (*base_string == '(')
8672 parens_balanced--;
8673 }
8674 while (parens_balanced);
8675
8676 temp_string = base_string;
8677
8678 /* Skip past '(' and whitespace. */
8679 ++base_string;
8680 if (is_space_char (*base_string))
8681 ++base_string;
8682
8683 if (*base_string == ','
8684 || ((i.base_reg = parse_register (base_string, &end_op))
8685 != NULL))
8686 {
8687 displacement_string_end = temp_string;
8688
8689 i.types[this_operand].bitfield.baseindex = 1;
8690
8691 if (i.base_reg)
8692 {
8693 base_string = end_op;
8694 if (is_space_char (*base_string))
8695 ++base_string;
8696 }
8697
8698 /* There may be an index reg or scale factor here. */
8699 if (*base_string == ',')
8700 {
8701 ++base_string;
8702 if (is_space_char (*base_string))
8703 ++base_string;
8704
8705 if ((i.index_reg = parse_register (base_string, &end_op))
8706 != NULL)
8707 {
8708 base_string = end_op;
8709 if (is_space_char (*base_string))
8710 ++base_string;
8711 if (*base_string == ',')
8712 {
8713 ++base_string;
8714 if (is_space_char (*base_string))
8715 ++base_string;
8716 }
8717 else if (*base_string != ')')
8718 {
8719 as_bad (_("expecting `,' or `)' "
8720 "after index register in `%s'"),
8721 operand_string);
8722 return 0;
8723 }
8724 }
8725 else if (*base_string == REGISTER_PREFIX)
8726 {
8727 end_op = strchr (base_string, ',');
8728 if (end_op)
8729 *end_op = '\0';
8730 as_bad (_("bad register name `%s'"), base_string);
8731 return 0;
8732 }
8733
8734 /* Check for scale factor. */
8735 if (*base_string != ')')
8736 {
8737 char *end_scale = i386_scale (base_string);
8738
8739 if (!end_scale)
8740 return 0;
8741
8742 base_string = end_scale;
8743 if (is_space_char (*base_string))
8744 ++base_string;
8745 if (*base_string != ')')
8746 {
8747 as_bad (_("expecting `)' "
8748 "after scale factor in `%s'"),
8749 operand_string);
8750 return 0;
8751 }
8752 }
8753 else if (!i.index_reg)
8754 {
8755 as_bad (_("expecting index register or scale factor "
8756 "after `,'; got '%c'"),
8757 *base_string);
8758 return 0;
8759 }
8760 }
8761 else if (*base_string != ')')
8762 {
8763 as_bad (_("expecting `,' or `)' "
8764 "after base register in `%s'"),
8765 operand_string);
8766 return 0;
8767 }
8768 }
8769 else if (*base_string == REGISTER_PREFIX)
8770 {
8771 end_op = strchr (base_string, ',');
8772 if (end_op)
8773 *end_op = '\0';
8774 as_bad (_("bad register name `%s'"), base_string);
8775 return 0;
8776 }
8777 }
8778
8779 /* If there's an expression beginning the operand, parse it,
8780 assuming displacement_string_start and
8781 displacement_string_end are meaningful. */
8782 if (displacement_string_start != displacement_string_end)
8783 {
8784 if (!i386_displacement (displacement_string_start,
8785 displacement_string_end))
8786 return 0;
8787 }
8788
8789 /* Special case for (%dx) while doing input/output op. */
8790 if (i.base_reg
8791 && operand_type_equal (&i.base_reg->reg_type,
8792 &reg16_inoutportreg)
8793 && i.index_reg == 0
8794 && i.log2_scale_factor == 0
8795 && i.seg[i.mem_operands] == 0
8796 && !operand_type_check (i.types[this_operand], disp))
8797 {
8798 i.types[this_operand] = inoutportreg;
8799 return 1;
8800 }
8801
8802 if (i386_index_check (operand_string) == 0)
8803 return 0;
8804 i.types[this_operand].bitfield.mem = 1;
8805 i.mem_operands++;
8806 }
8807 else
8808 {
8809 /* It's not a memory operand; argh! */
8810 as_bad (_("invalid char %s beginning operand %d `%s'"),
8811 output_invalid (*op_string),
8812 this_operand + 1,
8813 op_string);
8814 return 0;
8815 }
8816 return 1; /* Normal return. */
8817 }
8818 \f
8819 /* Calculate the maximum variable size (i.e., excluding fr_fix)
8820 that an rs_machine_dependent frag may reach. */
8821
8822 unsigned int
8823 i386_frag_max_var (fragS *frag)
8824 {
8825 /* The only relaxable frags are for jumps.
8826 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
8827 gas_assert (frag->fr_type == rs_machine_dependent);
8828 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
8829 }
8830
8831 /* md_estimate_size_before_relax()
8832
8833 Called just before relax() for rs_machine_dependent frags. The x86
8834 assembler uses these frags to handle variable size jump
8835 instructions.
8836
8837 Any symbol that is now undefined will not become defined.
8838 Return the correct fr_subtype in the frag.
8839 Return the initial "guess for variable size of frag" to caller.
8840 The guess is actually the growth beyond the fixed part. Whatever
8841 we do to grow the fixed or variable part contributes to our
8842 returned value. */
8843
8844 int
8845 md_estimate_size_before_relax (fragS *fragP, segT segment)
8846 {
8847 /* We've already got fragP->fr_subtype right; all we have to do is
8848 check for un-relaxable symbols. On an ELF system, we can't relax
8849 an externally visible symbol, because it may be overridden by a
8850 shared library. */
8851 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
8852 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8853 || (IS_ELF
8854 && (S_IS_EXTERNAL (fragP->fr_symbol)
8855 || S_IS_WEAK (fragP->fr_symbol)
8856 || ((symbol_get_bfdsym (fragP->fr_symbol)->flags
8857 & BSF_GNU_INDIRECT_FUNCTION))))
8858 #endif
8859 #if defined (OBJ_COFF) && defined (TE_PE)
8860 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
8861 && S_IS_WEAK (fragP->fr_symbol))
8862 #endif
8863 )
8864 {
8865 /* Symbol is undefined in this segment, or we need to keep a
8866 reloc so that weak symbols can be overridden. */
8867 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
8868 enum bfd_reloc_code_real reloc_type;
8869 unsigned char *opcode;
8870 int old_fr_fix;
8871
8872 if (fragP->fr_var != NO_RELOC)
8873 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
8874 else if (size == 2)
8875 reloc_type = BFD_RELOC_16_PCREL;
8876 else
8877 reloc_type = BFD_RELOC_32_PCREL;
8878
8879 old_fr_fix = fragP->fr_fix;
8880 opcode = (unsigned char *) fragP->fr_opcode;
8881
8882 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
8883 {
8884 case UNCOND_JUMP:
8885 /* Make jmp (0xeb) a (d)word displacement jump. */
8886 opcode[0] = 0xe9;
8887 fragP->fr_fix += size;
8888 fix_new (fragP, old_fr_fix, size,
8889 fragP->fr_symbol,
8890 fragP->fr_offset, 1,
8891 reloc_type);
8892 break;
8893
8894 case COND_JUMP86:
8895 if (size == 2
8896 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
8897 {
8898 /* Negate the condition, and branch past an
8899 unconditional jump. */
8900 opcode[0] ^= 1;
8901 opcode[1] = 3;
8902 /* Insert an unconditional jump. */
8903 opcode[2] = 0xe9;
8904 /* We added two extra opcode bytes, and have a two byte
8905 offset. */
8906 fragP->fr_fix += 2 + 2;
8907 fix_new (fragP, old_fr_fix + 2, 2,
8908 fragP->fr_symbol,
8909 fragP->fr_offset, 1,
8910 reloc_type);
8911 break;
8912 }
8913 /* Fall through. */
8914
8915 case COND_JUMP:
8916 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
8917 {
8918 fixS *fixP;
8919
8920 fragP->fr_fix += 1;
8921 fixP = fix_new (fragP, old_fr_fix, 1,
8922 fragP->fr_symbol,
8923 fragP->fr_offset, 1,
8924 BFD_RELOC_8_PCREL);
8925 fixP->fx_signed = 1;
8926 break;
8927 }
8928
8929 /* This changes the byte-displacement jump 0x7N
8930 to the (d)word-displacement jump 0x0f,0x8N. */
8931 opcode[1] = opcode[0] + 0x10;
8932 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
8933 /* We've added an opcode byte. */
8934 fragP->fr_fix += 1 + size;
8935 fix_new (fragP, old_fr_fix + 1, size,
8936 fragP->fr_symbol,
8937 fragP->fr_offset, 1,
8938 reloc_type);
8939 break;
8940
8941 default:
8942 BAD_CASE (fragP->fr_subtype);
8943 break;
8944 }
8945 frag_wane (fragP);
8946 return fragP->fr_fix - old_fr_fix;
8947 }
8948
8949 /* Guess size depending on current relax state. Initially the relax
8950 state will correspond to a short jump and we return 1, because
8951 the variable part of the frag (the branch offset) is one byte
8952 long. However, we can relax a section more than once and in that
8953 case we must either set fr_subtype back to the unrelaxed state,
8954 or return the value for the appropriate branch. */
8955 return md_relax_table[fragP->fr_subtype].rlx_length;
8956 }
8957
8958 /* Called after relax() is finished.
8959
8960 In: Address of frag.
8961 fr_type == rs_machine_dependent.
8962 fr_subtype is what the address relaxed to.
8963
8964 Out: Any fixSs and constants are set up.
8965 Caller will turn frag into a ".space 0". */
8966
8967 void
8968 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
8969 fragS *fragP)
8970 {
8971 unsigned char *opcode;
8972 unsigned char *where_to_put_displacement = NULL;
8973 offsetT target_address;
8974 offsetT opcode_address;
8975 unsigned int extension = 0;
8976 offsetT displacement_from_opcode_start;
8977
8978 opcode = (unsigned char *) fragP->fr_opcode;
8979
8980 /* Address we want to reach in file space. */
8981 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
8982
8983 /* Address opcode resides at in file space. */
8984 opcode_address = fragP->fr_address + fragP->fr_fix;
8985
8986 /* Displacement from opcode start to fill into instruction. */
8987 displacement_from_opcode_start = target_address - opcode_address;
8988
8989 if ((fragP->fr_subtype & BIG) == 0)
8990 {
8991 /* Don't have to change opcode. */
8992 extension = 1; /* 1 opcode + 1 displacement */
8993 where_to_put_displacement = &opcode[1];
8994 }
8995 else
8996 {
8997 if (no_cond_jump_promotion
8998 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
8999 as_warn_where (fragP->fr_file, fragP->fr_line,
9000 _("long jump required"));
9001
9002 switch (fragP->fr_subtype)
9003 {
9004 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9005 extension = 4; /* 1 opcode + 4 displacement */
9006 opcode[0] = 0xe9;
9007 where_to_put_displacement = &opcode[1];
9008 break;
9009
9010 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9011 extension = 2; /* 1 opcode + 2 displacement */
9012 opcode[0] = 0xe9;
9013 where_to_put_displacement = &opcode[1];
9014 break;
9015
9016 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9017 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9018 extension = 5; /* 2 opcode + 4 displacement */
9019 opcode[1] = opcode[0] + 0x10;
9020 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9021 where_to_put_displacement = &opcode[2];
9022 break;
9023
9024 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9025 extension = 3; /* 2 opcode + 2 displacement */
9026 opcode[1] = opcode[0] + 0x10;
9027 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9028 where_to_put_displacement = &opcode[2];
9029 break;
9030
9031 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9032 extension = 4;
9033 opcode[0] ^= 1;
9034 opcode[1] = 3;
9035 opcode[2] = 0xe9;
9036 where_to_put_displacement = &opcode[3];
9037 break;
9038
9039 default:
9040 BAD_CASE (fragP->fr_subtype);
9041 break;
9042 }
9043 }
9044
9045 /* If size if less then four we are sure that the operand fits,
9046 but if it's 4, then it could be that the displacement is larger
9047 then -/+ 2GB. */
9048 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9049 && object_64bit
9050 && ((addressT) (displacement_from_opcode_start - extension
9051 + ((addressT) 1 << 31))
9052 > (((addressT) 2 << 31) - 1)))
9053 {
9054 as_bad_where (fragP->fr_file, fragP->fr_line,
9055 _("jump target out of range"));
9056 /* Make us emit 0. */
9057 displacement_from_opcode_start = extension;
9058 }
9059 /* Now put displacement after opcode. */
9060 md_number_to_chars ((char *) where_to_put_displacement,
9061 (valueT) (displacement_from_opcode_start - extension),
9062 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9063 fragP->fr_fix += extension;
9064 }
9065 \f
9066 /* Apply a fixup (fixP) to segment data, once it has been determined
9067 by our caller that we have all the info we need to fix it up.
9068
9069 Parameter valP is the pointer to the value of the bits.
9070
9071 On the 386, immediates, displacements, and data pointers are all in
9072 the same (little-endian) format, so we don't need to care about which
9073 we are handling. */
9074
9075 void
9076 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9077 {
9078 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9079 valueT value = *valP;
9080
9081 #if !defined (TE_Mach)
9082 if (fixP->fx_pcrel)
9083 {
9084 switch (fixP->fx_r_type)
9085 {
9086 default:
9087 break;
9088
9089 case BFD_RELOC_64:
9090 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9091 break;
9092 case BFD_RELOC_32:
9093 case BFD_RELOC_X86_64_32S:
9094 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9095 break;
9096 case BFD_RELOC_16:
9097 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9098 break;
9099 case BFD_RELOC_8:
9100 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9101 break;
9102 }
9103 }
9104
9105 if (fixP->fx_addsy != NULL
9106 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9107 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9108 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9109 || fixP->fx_r_type == BFD_RELOC_8_PCREL
9110 || fixP->fx_r_type == BFD_RELOC_X86_64_PC32_BND)
9111 && !use_rela_relocations)
9112 {
9113 /* This is a hack. There should be a better way to handle this.
9114 This covers for the fact that bfd_install_relocation will
9115 subtract the current location (for partial_inplace, PC relative
9116 relocations); see more below. */
9117 #ifndef OBJ_AOUT
9118 if (IS_ELF
9119 #ifdef TE_PE
9120 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9121 #endif
9122 )
9123 value += fixP->fx_where + fixP->fx_frag->fr_address;
9124 #endif
9125 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9126 if (IS_ELF)
9127 {
9128 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9129
9130 if ((sym_seg == seg
9131 || (symbol_section_p (fixP->fx_addsy)
9132 && sym_seg != absolute_section))
9133 && !generic_force_reloc (fixP))
9134 {
9135 /* Yes, we add the values in twice. This is because
9136 bfd_install_relocation subtracts them out again. I think
9137 bfd_install_relocation is broken, but I don't dare change
9138 it. FIXME. */
9139 value += fixP->fx_where + fixP->fx_frag->fr_address;
9140 }
9141 }
9142 #endif
9143 #if defined (OBJ_COFF) && defined (TE_PE)
9144 /* For some reason, the PE format does not store a
9145 section address offset for a PC relative symbol. */
9146 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9147 || S_IS_WEAK (fixP->fx_addsy))
9148 value += md_pcrel_from (fixP);
9149 #endif
9150 }
9151 #if defined (OBJ_COFF) && defined (TE_PE)
9152 if (fixP->fx_addsy != NULL
9153 && S_IS_WEAK (fixP->fx_addsy)
9154 /* PR 16858: Do not modify weak function references. */
9155 && ! fixP->fx_pcrel)
9156 {
9157 #if !defined (TE_PEP)
9158 /* For x86 PE weak function symbols are neither PC-relative
9159 nor do they set S_IS_FUNCTION. So the only reliable way
9160 to detect them is to check the flags of their containing
9161 section. */
9162 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9163 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9164 ;
9165 else
9166 #endif
9167 value -= S_GET_VALUE (fixP->fx_addsy);
9168 }
9169 #endif
9170
9171 /* Fix a few things - the dynamic linker expects certain values here,
9172 and we must not disappoint it. */
9173 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9174 if (IS_ELF && fixP->fx_addsy)
9175 switch (fixP->fx_r_type)
9176 {
9177 case BFD_RELOC_386_PLT32:
9178 case BFD_RELOC_X86_64_PLT32:
9179 case BFD_RELOC_X86_64_PLT32_BND:
9180 /* Make the jump instruction point to the address of the operand. At
9181 runtime we merely add the offset to the actual PLT entry. */
9182 value = -4;
9183 break;
9184
9185 case BFD_RELOC_386_TLS_GD:
9186 case BFD_RELOC_386_TLS_LDM:
9187 case BFD_RELOC_386_TLS_IE_32:
9188 case BFD_RELOC_386_TLS_IE:
9189 case BFD_RELOC_386_TLS_GOTIE:
9190 case BFD_RELOC_386_TLS_GOTDESC:
9191 case BFD_RELOC_X86_64_TLSGD:
9192 case BFD_RELOC_X86_64_TLSLD:
9193 case BFD_RELOC_X86_64_GOTTPOFF:
9194 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9195 value = 0; /* Fully resolved at runtime. No addend. */
9196 /* Fallthrough */
9197 case BFD_RELOC_386_TLS_LE:
9198 case BFD_RELOC_386_TLS_LDO_32:
9199 case BFD_RELOC_386_TLS_LE_32:
9200 case BFD_RELOC_X86_64_DTPOFF32:
9201 case BFD_RELOC_X86_64_DTPOFF64:
9202 case BFD_RELOC_X86_64_TPOFF32:
9203 case BFD_RELOC_X86_64_TPOFF64:
9204 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9205 break;
9206
9207 case BFD_RELOC_386_TLS_DESC_CALL:
9208 case BFD_RELOC_X86_64_TLSDESC_CALL:
9209 value = 0; /* Fully resolved at runtime. No addend. */
9210 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9211 fixP->fx_done = 0;
9212 return;
9213
9214 case BFD_RELOC_386_GOT32:
9215 case BFD_RELOC_X86_64_GOT32:
9216 value = 0; /* Fully resolved at runtime. No addend. */
9217 break;
9218
9219 case BFD_RELOC_VTABLE_INHERIT:
9220 case BFD_RELOC_VTABLE_ENTRY:
9221 fixP->fx_done = 0;
9222 return;
9223
9224 default:
9225 break;
9226 }
9227 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9228 *valP = value;
9229 #endif /* !defined (TE_Mach) */
9230
9231 /* Are we finished with this relocation now? */
9232 if (fixP->fx_addsy == NULL)
9233 fixP->fx_done = 1;
9234 #if defined (OBJ_COFF) && defined (TE_PE)
9235 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9236 {
9237 fixP->fx_done = 0;
9238 /* Remember value for tc_gen_reloc. */
9239 fixP->fx_addnumber = value;
9240 /* Clear out the frag for now. */
9241 value = 0;
9242 }
9243 #endif
9244 else if (use_rela_relocations)
9245 {
9246 fixP->fx_no_overflow = 1;
9247 /* Remember value for tc_gen_reloc. */
9248 fixP->fx_addnumber = value;
9249 value = 0;
9250 }
9251
9252 md_number_to_chars (p, value, fixP->fx_size);
9253 }
9254 \f
9255 char *
9256 md_atof (int type, char *litP, int *sizeP)
9257 {
9258 /* This outputs the LITTLENUMs in REVERSE order;
9259 in accord with the bigendian 386. */
9260 return ieee_md_atof (type, litP, sizeP, FALSE);
9261 }
9262 \f
9263 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9264
9265 static char *
9266 output_invalid (int c)
9267 {
9268 if (ISPRINT (c))
9269 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9270 "'%c'", c);
9271 else
9272 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9273 "(0x%x)", (unsigned char) c);
9274 return output_invalid_buf;
9275 }
9276
9277 /* REG_STRING starts *before* REGISTER_PREFIX. */
9278
9279 static const reg_entry *
9280 parse_real_register (char *reg_string, char **end_op)
9281 {
9282 char *s = reg_string;
9283 char *p;
9284 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9285 const reg_entry *r;
9286
9287 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9288 if (*s == REGISTER_PREFIX)
9289 ++s;
9290
9291 if (is_space_char (*s))
9292 ++s;
9293
9294 p = reg_name_given;
9295 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9296 {
9297 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9298 return (const reg_entry *) NULL;
9299 s++;
9300 }
9301
9302 /* For naked regs, make sure that we are not dealing with an identifier.
9303 This prevents confusing an identifier like `eax_var' with register
9304 `eax'. */
9305 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9306 return (const reg_entry *) NULL;
9307
9308 *end_op = s;
9309
9310 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9311
9312 /* Handle floating point regs, allowing spaces in the (i) part. */
9313 if (r == i386_regtab /* %st is first entry of table */)
9314 {
9315 if (is_space_char (*s))
9316 ++s;
9317 if (*s == '(')
9318 {
9319 ++s;
9320 if (is_space_char (*s))
9321 ++s;
9322 if (*s >= '0' && *s <= '7')
9323 {
9324 int fpr = *s - '0';
9325 ++s;
9326 if (is_space_char (*s))
9327 ++s;
9328 if (*s == ')')
9329 {
9330 *end_op = s + 1;
9331 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9332 know (r);
9333 return r + fpr;
9334 }
9335 }
9336 /* We have "%st(" then garbage. */
9337 return (const reg_entry *) NULL;
9338 }
9339 }
9340
9341 if (r == NULL || allow_pseudo_reg)
9342 return r;
9343
9344 if (operand_type_all_zero (&r->reg_type))
9345 return (const reg_entry *) NULL;
9346
9347 if ((r->reg_type.bitfield.reg32
9348 || r->reg_type.bitfield.sreg3
9349 || r->reg_type.bitfield.control
9350 || r->reg_type.bitfield.debug
9351 || r->reg_type.bitfield.test)
9352 && !cpu_arch_flags.bitfield.cpui386)
9353 return (const reg_entry *) NULL;
9354
9355 if (r->reg_type.bitfield.floatreg
9356 && !cpu_arch_flags.bitfield.cpu8087
9357 && !cpu_arch_flags.bitfield.cpu287
9358 && !cpu_arch_flags.bitfield.cpu387)
9359 return (const reg_entry *) NULL;
9360
9361 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
9362 return (const reg_entry *) NULL;
9363
9364 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
9365 return (const reg_entry *) NULL;
9366
9367 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
9368 return (const reg_entry *) NULL;
9369
9370 if ((r->reg_type.bitfield.regzmm || r->reg_type.bitfield.regmask)
9371 && !cpu_arch_flags.bitfield.cpuavx512f)
9372 return (const reg_entry *) NULL;
9373
9374 /* Don't allow fake index register unless allow_index_reg isn't 0. */
9375 if (!allow_index_reg
9376 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9377 return (const reg_entry *) NULL;
9378
9379 /* Upper 16 vector register is only available with VREX in 64bit
9380 mode. */
9381 if ((r->reg_flags & RegVRex))
9382 {
9383 if (!cpu_arch_flags.bitfield.cpuvrex
9384 || flag_code != CODE_64BIT)
9385 return (const reg_entry *) NULL;
9386
9387 i.need_vrex = 1;
9388 }
9389
9390 if (((r->reg_flags & (RegRex64 | RegRex))
9391 || r->reg_type.bitfield.reg64)
9392 && (!cpu_arch_flags.bitfield.cpulm
9393 || !operand_type_equal (&r->reg_type, &control))
9394 && flag_code != CODE_64BIT)
9395 return (const reg_entry *) NULL;
9396
9397 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9398 return (const reg_entry *) NULL;
9399
9400 return r;
9401 }
9402
9403 /* REG_STRING starts *before* REGISTER_PREFIX. */
9404
9405 static const reg_entry *
9406 parse_register (char *reg_string, char **end_op)
9407 {
9408 const reg_entry *r;
9409
9410 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9411 r = parse_real_register (reg_string, end_op);
9412 else
9413 r = NULL;
9414 if (!r)
9415 {
9416 char *save = input_line_pointer;
9417 char c;
9418 symbolS *symbolP;
9419
9420 input_line_pointer = reg_string;
9421 c = get_symbol_end ();
9422 symbolP = symbol_find (reg_string);
9423 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9424 {
9425 const expressionS *e = symbol_get_value_expression (symbolP);
9426
9427 know (e->X_op == O_register);
9428 know (e->X_add_number >= 0
9429 && (valueT) e->X_add_number < i386_regtab_size);
9430 r = i386_regtab + e->X_add_number;
9431 if ((r->reg_flags & RegVRex))
9432 i.need_vrex = 1;
9433 *end_op = input_line_pointer;
9434 }
9435 *input_line_pointer = c;
9436 input_line_pointer = save;
9437 }
9438 return r;
9439 }
9440
9441 int
9442 i386_parse_name (char *name, expressionS *e, char *nextcharP)
9443 {
9444 const reg_entry *r;
9445 char *end = input_line_pointer;
9446
9447 *end = *nextcharP;
9448 r = parse_register (name, &input_line_pointer);
9449 if (r && end <= input_line_pointer)
9450 {
9451 *nextcharP = *input_line_pointer;
9452 *input_line_pointer = 0;
9453 e->X_op = O_register;
9454 e->X_add_number = r - i386_regtab;
9455 return 1;
9456 }
9457 input_line_pointer = end;
9458 *end = 0;
9459 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
9460 }
9461
9462 void
9463 md_operand (expressionS *e)
9464 {
9465 char *end;
9466 const reg_entry *r;
9467
9468 switch (*input_line_pointer)
9469 {
9470 case REGISTER_PREFIX:
9471 r = parse_real_register (input_line_pointer, &end);
9472 if (r)
9473 {
9474 e->X_op = O_register;
9475 e->X_add_number = r - i386_regtab;
9476 input_line_pointer = end;
9477 }
9478 break;
9479
9480 case '[':
9481 gas_assert (intel_syntax);
9482 end = input_line_pointer++;
9483 expression (e);
9484 if (*input_line_pointer == ']')
9485 {
9486 ++input_line_pointer;
9487 e->X_op_symbol = make_expr_symbol (e);
9488 e->X_add_symbol = NULL;
9489 e->X_add_number = 0;
9490 e->X_op = O_index;
9491 }
9492 else
9493 {
9494 e->X_op = O_absent;
9495 input_line_pointer = end;
9496 }
9497 break;
9498 }
9499 }
9500
9501 \f
9502 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9503 const char *md_shortopts = "kVQ:sqn";
9504 #else
9505 const char *md_shortopts = "qn";
9506 #endif
9507
9508 #define OPTION_32 (OPTION_MD_BASE + 0)
9509 #define OPTION_64 (OPTION_MD_BASE + 1)
9510 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9511 #define OPTION_MARCH (OPTION_MD_BASE + 3)
9512 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
9513 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9514 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9515 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9516 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9517 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9518 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9519 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9520 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9521 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9522 #define OPTION_X32 (OPTION_MD_BASE + 14)
9523 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9524 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9525 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9526 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
9527
9528 struct option md_longopts[] =
9529 {
9530 {"32", no_argument, NULL, OPTION_32},
9531 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9532 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9533 {"64", no_argument, NULL, OPTION_64},
9534 #endif
9535 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9536 {"x32", no_argument, NULL, OPTION_X32},
9537 #endif
9538 {"divide", no_argument, NULL, OPTION_DIVIDE},
9539 {"march", required_argument, NULL, OPTION_MARCH},
9540 {"mtune", required_argument, NULL, OPTION_MTUNE},
9541 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9542 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9543 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9544 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9545 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
9546 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
9547 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
9548 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
9549 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
9550 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
9551 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
9552 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
9553 # if defined (TE_PE) || defined (TE_PEP)
9554 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
9555 #endif
9556 {NULL, no_argument, NULL, 0}
9557 };
9558 size_t md_longopts_size = sizeof (md_longopts);
9559
9560 int
9561 md_parse_option (int c, char *arg)
9562 {
9563 unsigned int j;
9564 char *arch, *next;
9565
9566 switch (c)
9567 {
9568 case 'n':
9569 optimize_align_code = 0;
9570 break;
9571
9572 case 'q':
9573 quiet_warnings = 1;
9574 break;
9575
9576 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9577 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
9578 should be emitted or not. FIXME: Not implemented. */
9579 case 'Q':
9580 break;
9581
9582 /* -V: SVR4 argument to print version ID. */
9583 case 'V':
9584 print_version_id ();
9585 break;
9586
9587 /* -k: Ignore for FreeBSD compatibility. */
9588 case 'k':
9589 break;
9590
9591 case 's':
9592 /* -s: On i386 Solaris, this tells the native assembler to use
9593 .stab instead of .stab.excl. We always use .stab anyhow. */
9594 break;
9595 #endif
9596 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9597 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9598 case OPTION_64:
9599 {
9600 const char **list, **l;
9601
9602 list = bfd_target_list ();
9603 for (l = list; *l != NULL; l++)
9604 if (CONST_STRNEQ (*l, "elf64-x86-64")
9605 || strcmp (*l, "coff-x86-64") == 0
9606 || strcmp (*l, "pe-x86-64") == 0
9607 || strcmp (*l, "pei-x86-64") == 0
9608 || strcmp (*l, "mach-o-x86-64") == 0)
9609 {
9610 default_arch = "x86_64";
9611 break;
9612 }
9613 if (*l == NULL)
9614 as_fatal (_("no compiled in support for x86_64"));
9615 free (list);
9616 }
9617 break;
9618 #endif
9619
9620 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9621 case OPTION_X32:
9622 if (IS_ELF)
9623 {
9624 const char **list, **l;
9625
9626 list = bfd_target_list ();
9627 for (l = list; *l != NULL; l++)
9628 if (CONST_STRNEQ (*l, "elf32-x86-64"))
9629 {
9630 default_arch = "x86_64:32";
9631 break;
9632 }
9633 if (*l == NULL)
9634 as_fatal (_("no compiled in support for 32bit x86_64"));
9635 free (list);
9636 }
9637 else
9638 as_fatal (_("32bit x86_64 is only supported for ELF"));
9639 break;
9640 #endif
9641
9642 case OPTION_32:
9643 default_arch = "i386";
9644 break;
9645
9646 case OPTION_DIVIDE:
9647 #ifdef SVR4_COMMENT_CHARS
9648 {
9649 char *n, *t;
9650 const char *s;
9651
9652 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
9653 t = n;
9654 for (s = i386_comment_chars; *s != '\0'; s++)
9655 if (*s != '/')
9656 *t++ = *s;
9657 *t = '\0';
9658 i386_comment_chars = n;
9659 }
9660 #endif
9661 break;
9662
9663 case OPTION_MARCH:
9664 arch = xstrdup (arg);
9665 do
9666 {
9667 if (*arch == '.')
9668 as_fatal (_("invalid -march= option: `%s'"), arg);
9669 next = strchr (arch, '+');
9670 if (next)
9671 *next++ = '\0';
9672 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9673 {
9674 if (strcmp (arch, cpu_arch [j].name) == 0)
9675 {
9676 /* Processor. */
9677 if (! cpu_arch[j].flags.bitfield.cpui386)
9678 continue;
9679
9680 cpu_arch_name = cpu_arch[j].name;
9681 cpu_sub_arch_name = NULL;
9682 cpu_arch_flags = cpu_arch[j].flags;
9683 cpu_arch_isa = cpu_arch[j].type;
9684 cpu_arch_isa_flags = cpu_arch[j].flags;
9685 if (!cpu_arch_tune_set)
9686 {
9687 cpu_arch_tune = cpu_arch_isa;
9688 cpu_arch_tune_flags = cpu_arch_isa_flags;
9689 }
9690 break;
9691 }
9692 else if (*cpu_arch [j].name == '.'
9693 && strcmp (arch, cpu_arch [j].name + 1) == 0)
9694 {
9695 /* ISA entension. */
9696 i386_cpu_flags flags;
9697
9698 if (!cpu_arch[j].negated)
9699 flags = cpu_flags_or (cpu_arch_flags,
9700 cpu_arch[j].flags);
9701 else
9702 flags = cpu_flags_and_not (cpu_arch_flags,
9703 cpu_arch[j].flags);
9704 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
9705 {
9706 if (cpu_sub_arch_name)
9707 {
9708 char *name = cpu_sub_arch_name;
9709 cpu_sub_arch_name = concat (name,
9710 cpu_arch[j].name,
9711 (const char *) NULL);
9712 free (name);
9713 }
9714 else
9715 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
9716 cpu_arch_flags = flags;
9717 cpu_arch_isa_flags = flags;
9718 }
9719 break;
9720 }
9721 }
9722
9723 if (j >= ARRAY_SIZE (cpu_arch))
9724 as_fatal (_("invalid -march= option: `%s'"), arg);
9725
9726 arch = next;
9727 }
9728 while (next != NULL );
9729 break;
9730
9731 case OPTION_MTUNE:
9732 if (*arg == '.')
9733 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9734 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9735 {
9736 if (strcmp (arg, cpu_arch [j].name) == 0)
9737 {
9738 cpu_arch_tune_set = 1;
9739 cpu_arch_tune = cpu_arch [j].type;
9740 cpu_arch_tune_flags = cpu_arch[j].flags;
9741 break;
9742 }
9743 }
9744 if (j >= ARRAY_SIZE (cpu_arch))
9745 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9746 break;
9747
9748 case OPTION_MMNEMONIC:
9749 if (strcasecmp (arg, "att") == 0)
9750 intel_mnemonic = 0;
9751 else if (strcasecmp (arg, "intel") == 0)
9752 intel_mnemonic = 1;
9753 else
9754 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
9755 break;
9756
9757 case OPTION_MSYNTAX:
9758 if (strcasecmp (arg, "att") == 0)
9759 intel_syntax = 0;
9760 else if (strcasecmp (arg, "intel") == 0)
9761 intel_syntax = 1;
9762 else
9763 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
9764 break;
9765
9766 case OPTION_MINDEX_REG:
9767 allow_index_reg = 1;
9768 break;
9769
9770 case OPTION_MNAKED_REG:
9771 allow_naked_reg = 1;
9772 break;
9773
9774 case OPTION_MOLD_GCC:
9775 old_gcc = 1;
9776 break;
9777
9778 case OPTION_MSSE2AVX:
9779 sse2avx = 1;
9780 break;
9781
9782 case OPTION_MSSE_CHECK:
9783 if (strcasecmp (arg, "error") == 0)
9784 sse_check = check_error;
9785 else if (strcasecmp (arg, "warning") == 0)
9786 sse_check = check_warning;
9787 else if (strcasecmp (arg, "none") == 0)
9788 sse_check = check_none;
9789 else
9790 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
9791 break;
9792
9793 case OPTION_MOPERAND_CHECK:
9794 if (strcasecmp (arg, "error") == 0)
9795 operand_check = check_error;
9796 else if (strcasecmp (arg, "warning") == 0)
9797 operand_check = check_warning;
9798 else if (strcasecmp (arg, "none") == 0)
9799 operand_check = check_none;
9800 else
9801 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
9802 break;
9803
9804 case OPTION_MAVXSCALAR:
9805 if (strcasecmp (arg, "128") == 0)
9806 avxscalar = vex128;
9807 else if (strcasecmp (arg, "256") == 0)
9808 avxscalar = vex256;
9809 else
9810 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
9811 break;
9812
9813 case OPTION_MADD_BND_PREFIX:
9814 add_bnd_prefix = 1;
9815 break;
9816
9817 case OPTION_MEVEXLIG:
9818 if (strcmp (arg, "128") == 0)
9819 evexlig = evexl128;
9820 else if (strcmp (arg, "256") == 0)
9821 evexlig = evexl256;
9822 else if (strcmp (arg, "512") == 0)
9823 evexlig = evexl512;
9824 else
9825 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
9826 break;
9827
9828 case OPTION_MEVEXWIG:
9829 if (strcmp (arg, "0") == 0)
9830 evexwig = evexw0;
9831 else if (strcmp (arg, "1") == 0)
9832 evexwig = evexw1;
9833 else
9834 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
9835 break;
9836
9837 # if defined (TE_PE) || defined (TE_PEP)
9838 case OPTION_MBIG_OBJ:
9839 use_big_obj = 1;
9840 break;
9841 #endif
9842
9843 default:
9844 return 0;
9845 }
9846 return 1;
9847 }
9848
9849 #define MESSAGE_TEMPLATE \
9850 " "
9851
9852 static void
9853 show_arch (FILE *stream, int ext, int check)
9854 {
9855 static char message[] = MESSAGE_TEMPLATE;
9856 char *start = message + 27;
9857 char *p;
9858 int size = sizeof (MESSAGE_TEMPLATE);
9859 int left;
9860 const char *name;
9861 int len;
9862 unsigned int j;
9863
9864 p = start;
9865 left = size - (start - message);
9866 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9867 {
9868 /* Should it be skipped? */
9869 if (cpu_arch [j].skip)
9870 continue;
9871
9872 name = cpu_arch [j].name;
9873 len = cpu_arch [j].len;
9874 if (*name == '.')
9875 {
9876 /* It is an extension. Skip if we aren't asked to show it. */
9877 if (ext)
9878 {
9879 name++;
9880 len--;
9881 }
9882 else
9883 continue;
9884 }
9885 else if (ext)
9886 {
9887 /* It is an processor. Skip if we show only extension. */
9888 continue;
9889 }
9890 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
9891 {
9892 /* It is an impossible processor - skip. */
9893 continue;
9894 }
9895
9896 /* Reserve 2 spaces for ", " or ",\0" */
9897 left -= len + 2;
9898
9899 /* Check if there is any room. */
9900 if (left >= 0)
9901 {
9902 if (p != start)
9903 {
9904 *p++ = ',';
9905 *p++ = ' ';
9906 }
9907 p = mempcpy (p, name, len);
9908 }
9909 else
9910 {
9911 /* Output the current message now and start a new one. */
9912 *p++ = ',';
9913 *p = '\0';
9914 fprintf (stream, "%s\n", message);
9915 p = start;
9916 left = size - (start - message) - len - 2;
9917
9918 gas_assert (left >= 0);
9919
9920 p = mempcpy (p, name, len);
9921 }
9922 }
9923
9924 *p = '\0';
9925 fprintf (stream, "%s\n", message);
9926 }
9927
9928 void
9929 md_show_usage (FILE *stream)
9930 {
9931 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9932 fprintf (stream, _("\
9933 -Q ignored\n\
9934 -V print assembler version number\n\
9935 -k ignored\n"));
9936 #endif
9937 fprintf (stream, _("\
9938 -n Do not optimize code alignment\n\
9939 -q quieten some warnings\n"));
9940 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9941 fprintf (stream, _("\
9942 -s ignored\n"));
9943 #endif
9944 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9945 || defined (TE_PE) || defined (TE_PEP))
9946 fprintf (stream, _("\
9947 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
9948 #endif
9949 #ifdef SVR4_COMMENT_CHARS
9950 fprintf (stream, _("\
9951 --divide do not treat `/' as a comment character\n"));
9952 #else
9953 fprintf (stream, _("\
9954 --divide ignored\n"));
9955 #endif
9956 fprintf (stream, _("\
9957 -march=CPU[,+EXTENSION...]\n\
9958 generate code for CPU and EXTENSION, CPU is one of:\n"));
9959 show_arch (stream, 0, 1);
9960 fprintf (stream, _("\
9961 EXTENSION is combination of:\n"));
9962 show_arch (stream, 1, 0);
9963 fprintf (stream, _("\
9964 -mtune=CPU optimize for CPU, CPU is one of:\n"));
9965 show_arch (stream, 0, 0);
9966 fprintf (stream, _("\
9967 -msse2avx encode SSE instructions with VEX prefix\n"));
9968 fprintf (stream, _("\
9969 -msse-check=[none|error|warning]\n\
9970 check SSE instructions\n"));
9971 fprintf (stream, _("\
9972 -moperand-check=[none|error|warning]\n\
9973 check operand combinations for validity\n"));
9974 fprintf (stream, _("\
9975 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
9976 length\n"));
9977 fprintf (stream, _("\
9978 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
9979 length\n"));
9980 fprintf (stream, _("\
9981 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
9982 for EVEX.W bit ignored instructions\n"));
9983 fprintf (stream, _("\
9984 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
9985 fprintf (stream, _("\
9986 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
9987 fprintf (stream, _("\
9988 -mindex-reg support pseudo index registers\n"));
9989 fprintf (stream, _("\
9990 -mnaked-reg don't require `%%' prefix for registers\n"));
9991 fprintf (stream, _("\
9992 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
9993 fprintf (stream, _("\
9994 -madd-bnd-prefix add BND prefix for all valid branches\n"));
9995 # if defined (TE_PE) || defined (TE_PEP)
9996 fprintf (stream, _("\
9997 -mbig-obj generate big object files\n"));
9998 #endif
9999 }
10000
10001 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10002 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10003 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10004
10005 /* Pick the target format to use. */
10006
10007 const char *
10008 i386_target_format (void)
10009 {
10010 if (!strncmp (default_arch, "x86_64", 6))
10011 {
10012 update_code_flag (CODE_64BIT, 1);
10013 if (default_arch[6] == '\0')
10014 x86_elf_abi = X86_64_ABI;
10015 else
10016 x86_elf_abi = X86_64_X32_ABI;
10017 }
10018 else if (!strcmp (default_arch, "i386"))
10019 update_code_flag (CODE_32BIT, 1);
10020 else
10021 as_fatal (_("unknown architecture"));
10022
10023 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10024 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10025 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10026 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10027
10028 switch (OUTPUT_FLAVOR)
10029 {
10030 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10031 case bfd_target_aout_flavour:
10032 return AOUT_TARGET_FORMAT;
10033 #endif
10034 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10035 # if defined (TE_PE) || defined (TE_PEP)
10036 case bfd_target_coff_flavour:
10037 if (flag_code == CODE_64BIT)
10038 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10039 else
10040 return "pe-i386";
10041 # elif defined (TE_GO32)
10042 case bfd_target_coff_flavour:
10043 return "coff-go32";
10044 # else
10045 case bfd_target_coff_flavour:
10046 return "coff-i386";
10047 # endif
10048 #endif
10049 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10050 case bfd_target_elf_flavour:
10051 {
10052 const char *format;
10053
10054 switch (x86_elf_abi)
10055 {
10056 default:
10057 format = ELF_TARGET_FORMAT;
10058 break;
10059 case X86_64_ABI:
10060 use_rela_relocations = 1;
10061 object_64bit = 1;
10062 format = ELF_TARGET_FORMAT64;
10063 break;
10064 case X86_64_X32_ABI:
10065 use_rela_relocations = 1;
10066 object_64bit = 1;
10067 disallow_64bit_reloc = 1;
10068 format = ELF_TARGET_FORMAT32;
10069 break;
10070 }
10071 if (cpu_arch_isa == PROCESSOR_L1OM)
10072 {
10073 if (x86_elf_abi != X86_64_ABI)
10074 as_fatal (_("Intel L1OM is 64bit only"));
10075 return ELF_TARGET_L1OM_FORMAT;
10076 }
10077 if (cpu_arch_isa == PROCESSOR_K1OM)
10078 {
10079 if (x86_elf_abi != X86_64_ABI)
10080 as_fatal (_("Intel K1OM is 64bit only"));
10081 return ELF_TARGET_K1OM_FORMAT;
10082 }
10083 else
10084 return format;
10085 }
10086 #endif
10087 #if defined (OBJ_MACH_O)
10088 case bfd_target_mach_o_flavour:
10089 if (flag_code == CODE_64BIT)
10090 {
10091 use_rela_relocations = 1;
10092 object_64bit = 1;
10093 return "mach-o-x86-64";
10094 }
10095 else
10096 return "mach-o-i386";
10097 #endif
10098 default:
10099 abort ();
10100 return NULL;
10101 }
10102 }
10103
10104 #endif /* OBJ_MAYBE_ more than one */
10105
10106 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
10107 void
10108 i386_elf_emit_arch_note (void)
10109 {
10110 if (IS_ELF && cpu_arch_name != NULL)
10111 {
10112 char *p;
10113 asection *seg = now_seg;
10114 subsegT subseg = now_subseg;
10115 Elf_Internal_Note i_note;
10116 Elf_External_Note e_note;
10117 asection *note_secp;
10118 int len;
10119
10120 /* Create the .note section. */
10121 note_secp = subseg_new (".note", 0);
10122 bfd_set_section_flags (stdoutput,
10123 note_secp,
10124 SEC_HAS_CONTENTS | SEC_READONLY);
10125
10126 /* Process the arch string. */
10127 len = strlen (cpu_arch_name);
10128
10129 i_note.namesz = len + 1;
10130 i_note.descsz = 0;
10131 i_note.type = NT_ARCH;
10132 p = frag_more (sizeof (e_note.namesz));
10133 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
10134 p = frag_more (sizeof (e_note.descsz));
10135 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
10136 p = frag_more (sizeof (e_note.type));
10137 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
10138 p = frag_more (len + 1);
10139 strcpy (p, cpu_arch_name);
10140
10141 frag_align (2, 0, 0);
10142
10143 subseg_set (seg, subseg);
10144 }
10145 }
10146 #endif
10147 \f
10148 symbolS *
10149 md_undefined_symbol (char *name)
10150 {
10151 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10152 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10153 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10154 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10155 {
10156 if (!GOT_symbol)
10157 {
10158 if (symbol_find (name))
10159 as_bad (_("GOT already in symbol table"));
10160 GOT_symbol = symbol_new (name, undefined_section,
10161 (valueT) 0, &zero_address_frag);
10162 };
10163 return GOT_symbol;
10164 }
10165 return 0;
10166 }
10167
10168 /* Round up a section size to the appropriate boundary. */
10169
10170 valueT
10171 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10172 {
10173 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10174 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10175 {
10176 /* For a.out, force the section size to be aligned. If we don't do
10177 this, BFD will align it for us, but it will not write out the
10178 final bytes of the section. This may be a bug in BFD, but it is
10179 easier to fix it here since that is how the other a.out targets
10180 work. */
10181 int align;
10182
10183 align = bfd_get_section_alignment (stdoutput, segment);
10184 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
10185 }
10186 #endif
10187
10188 return size;
10189 }
10190
10191 /* On the i386, PC-relative offsets are relative to the start of the
10192 next instruction. That is, the address of the offset, plus its
10193 size, since the offset is always the last part of the insn. */
10194
10195 long
10196 md_pcrel_from (fixS *fixP)
10197 {
10198 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10199 }
10200
10201 #ifndef I386COFF
10202
10203 static void
10204 s_bss (int ignore ATTRIBUTE_UNUSED)
10205 {
10206 int temp;
10207
10208 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10209 if (IS_ELF)
10210 obj_elf_section_change_hook ();
10211 #endif
10212 temp = get_absolute_expression ();
10213 subseg_set (bss_section, (subsegT) temp);
10214 demand_empty_rest_of_line ();
10215 }
10216
10217 #endif
10218
10219 void
10220 i386_validate_fix (fixS *fixp)
10221 {
10222 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
10223 {
10224 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10225 {
10226 if (!object_64bit)
10227 abort ();
10228 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10229 }
10230 else
10231 {
10232 if (!object_64bit)
10233 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10234 else
10235 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10236 }
10237 fixp->fx_subsy = 0;
10238 }
10239 }
10240
10241 arelent *
10242 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10243 {
10244 arelent *rel;
10245 bfd_reloc_code_real_type code;
10246
10247 switch (fixp->fx_r_type)
10248 {
10249 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10250 case BFD_RELOC_SIZE32:
10251 case BFD_RELOC_SIZE64:
10252 if (S_IS_DEFINED (fixp->fx_addsy)
10253 && !S_IS_EXTERNAL (fixp->fx_addsy))
10254 {
10255 /* Resolve size relocation against local symbol to size of
10256 the symbol plus addend. */
10257 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10258 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10259 && !fits_in_unsigned_long (value))
10260 as_bad_where (fixp->fx_file, fixp->fx_line,
10261 _("symbol size computation overflow"));
10262 fixp->fx_addsy = NULL;
10263 fixp->fx_subsy = NULL;
10264 md_apply_fix (fixp, (valueT *) &value, NULL);
10265 return NULL;
10266 }
10267 #endif
10268
10269 case BFD_RELOC_X86_64_PLT32:
10270 case BFD_RELOC_X86_64_PLT32_BND:
10271 case BFD_RELOC_X86_64_GOT32:
10272 case BFD_RELOC_X86_64_GOTPCREL:
10273 case BFD_RELOC_386_PLT32:
10274 case BFD_RELOC_386_GOT32:
10275 case BFD_RELOC_386_GOTOFF:
10276 case BFD_RELOC_386_GOTPC:
10277 case BFD_RELOC_386_TLS_GD:
10278 case BFD_RELOC_386_TLS_LDM:
10279 case BFD_RELOC_386_TLS_LDO_32:
10280 case BFD_RELOC_386_TLS_IE_32:
10281 case BFD_RELOC_386_TLS_IE:
10282 case BFD_RELOC_386_TLS_GOTIE:
10283 case BFD_RELOC_386_TLS_LE_32:
10284 case BFD_RELOC_386_TLS_LE:
10285 case BFD_RELOC_386_TLS_GOTDESC:
10286 case BFD_RELOC_386_TLS_DESC_CALL:
10287 case BFD_RELOC_X86_64_TLSGD:
10288 case BFD_RELOC_X86_64_TLSLD:
10289 case BFD_RELOC_X86_64_DTPOFF32:
10290 case BFD_RELOC_X86_64_DTPOFF64:
10291 case BFD_RELOC_X86_64_GOTTPOFF:
10292 case BFD_RELOC_X86_64_TPOFF32:
10293 case BFD_RELOC_X86_64_TPOFF64:
10294 case BFD_RELOC_X86_64_GOTOFF64:
10295 case BFD_RELOC_X86_64_GOTPC32:
10296 case BFD_RELOC_X86_64_GOT64:
10297 case BFD_RELOC_X86_64_GOTPCREL64:
10298 case BFD_RELOC_X86_64_GOTPC64:
10299 case BFD_RELOC_X86_64_GOTPLT64:
10300 case BFD_RELOC_X86_64_PLTOFF64:
10301 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10302 case BFD_RELOC_X86_64_TLSDESC_CALL:
10303 case BFD_RELOC_RVA:
10304 case BFD_RELOC_VTABLE_ENTRY:
10305 case BFD_RELOC_VTABLE_INHERIT:
10306 #ifdef TE_PE
10307 case BFD_RELOC_32_SECREL:
10308 #endif
10309 code = fixp->fx_r_type;
10310 break;
10311 case BFD_RELOC_X86_64_32S:
10312 if (!fixp->fx_pcrel)
10313 {
10314 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10315 code = fixp->fx_r_type;
10316 break;
10317 }
10318 default:
10319 if (fixp->fx_pcrel)
10320 {
10321 switch (fixp->fx_size)
10322 {
10323 default:
10324 as_bad_where (fixp->fx_file, fixp->fx_line,
10325 _("can not do %d byte pc-relative relocation"),
10326 fixp->fx_size);
10327 code = BFD_RELOC_32_PCREL;
10328 break;
10329 case 1: code = BFD_RELOC_8_PCREL; break;
10330 case 2: code = BFD_RELOC_16_PCREL; break;
10331 case 4:
10332 code = (fixp->fx_r_type == BFD_RELOC_X86_64_PC32_BND
10333 ? fixp-> fx_r_type : BFD_RELOC_32_PCREL);
10334 break;
10335 #ifdef BFD64
10336 case 8: code = BFD_RELOC_64_PCREL; break;
10337 #endif
10338 }
10339 }
10340 else
10341 {
10342 switch (fixp->fx_size)
10343 {
10344 default:
10345 as_bad_where (fixp->fx_file, fixp->fx_line,
10346 _("can not do %d byte relocation"),
10347 fixp->fx_size);
10348 code = BFD_RELOC_32;
10349 break;
10350 case 1: code = BFD_RELOC_8; break;
10351 case 2: code = BFD_RELOC_16; break;
10352 case 4: code = BFD_RELOC_32; break;
10353 #ifdef BFD64
10354 case 8: code = BFD_RELOC_64; break;
10355 #endif
10356 }
10357 }
10358 break;
10359 }
10360
10361 if ((code == BFD_RELOC_32
10362 || code == BFD_RELOC_32_PCREL
10363 || code == BFD_RELOC_X86_64_32S)
10364 && GOT_symbol
10365 && fixp->fx_addsy == GOT_symbol)
10366 {
10367 if (!object_64bit)
10368 code = BFD_RELOC_386_GOTPC;
10369 else
10370 code = BFD_RELOC_X86_64_GOTPC32;
10371 }
10372 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10373 && GOT_symbol
10374 && fixp->fx_addsy == GOT_symbol)
10375 {
10376 code = BFD_RELOC_X86_64_GOTPC64;
10377 }
10378
10379 rel = (arelent *) xmalloc (sizeof (arelent));
10380 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
10381 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10382
10383 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
10384
10385 if (!use_rela_relocations)
10386 {
10387 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10388 vtable entry to be used in the relocation's section offset. */
10389 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10390 rel->address = fixp->fx_offset;
10391 #if defined (OBJ_COFF) && defined (TE_PE)
10392 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10393 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10394 else
10395 #endif
10396 rel->addend = 0;
10397 }
10398 /* Use the rela in 64bit mode. */
10399 else
10400 {
10401 if (disallow_64bit_reloc)
10402 switch (code)
10403 {
10404 case BFD_RELOC_X86_64_DTPOFF64:
10405 case BFD_RELOC_X86_64_TPOFF64:
10406 case BFD_RELOC_64_PCREL:
10407 case BFD_RELOC_X86_64_GOTOFF64:
10408 case BFD_RELOC_X86_64_GOT64:
10409 case BFD_RELOC_X86_64_GOTPCREL64:
10410 case BFD_RELOC_X86_64_GOTPC64:
10411 case BFD_RELOC_X86_64_GOTPLT64:
10412 case BFD_RELOC_X86_64_PLTOFF64:
10413 as_bad_where (fixp->fx_file, fixp->fx_line,
10414 _("cannot represent relocation type %s in x32 mode"),
10415 bfd_get_reloc_code_name (code));
10416 break;
10417 default:
10418 break;
10419 }
10420
10421 if (!fixp->fx_pcrel)
10422 rel->addend = fixp->fx_offset;
10423 else
10424 switch (code)
10425 {
10426 case BFD_RELOC_X86_64_PLT32:
10427 case BFD_RELOC_X86_64_PLT32_BND:
10428 case BFD_RELOC_X86_64_GOT32:
10429 case BFD_RELOC_X86_64_GOTPCREL:
10430 case BFD_RELOC_X86_64_TLSGD:
10431 case BFD_RELOC_X86_64_TLSLD:
10432 case BFD_RELOC_X86_64_GOTTPOFF:
10433 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10434 case BFD_RELOC_X86_64_TLSDESC_CALL:
10435 rel->addend = fixp->fx_offset - fixp->fx_size;
10436 break;
10437 default:
10438 rel->addend = (section->vma
10439 - fixp->fx_size
10440 + fixp->fx_addnumber
10441 + md_pcrel_from (fixp));
10442 break;
10443 }
10444 }
10445
10446 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
10447 if (rel->howto == NULL)
10448 {
10449 as_bad_where (fixp->fx_file, fixp->fx_line,
10450 _("cannot represent relocation type %s"),
10451 bfd_get_reloc_code_name (code));
10452 /* Set howto to a garbage value so that we can keep going. */
10453 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
10454 gas_assert (rel->howto != NULL);
10455 }
10456
10457 return rel;
10458 }
10459
10460 #include "tc-i386-intel.c"
10461
10462 void
10463 tc_x86_parse_to_dw2regnum (expressionS *exp)
10464 {
10465 int saved_naked_reg;
10466 char saved_register_dot;
10467
10468 saved_naked_reg = allow_naked_reg;
10469 allow_naked_reg = 1;
10470 saved_register_dot = register_chars['.'];
10471 register_chars['.'] = '.';
10472 allow_pseudo_reg = 1;
10473 expression_and_evaluate (exp);
10474 allow_pseudo_reg = 0;
10475 register_chars['.'] = saved_register_dot;
10476 allow_naked_reg = saved_naked_reg;
10477
10478 if (exp->X_op == O_register && exp->X_add_number >= 0)
10479 {
10480 if ((addressT) exp->X_add_number < i386_regtab_size)
10481 {
10482 exp->X_op = O_constant;
10483 exp->X_add_number = i386_regtab[exp->X_add_number]
10484 .dw2_regnum[flag_code >> 1];
10485 }
10486 else
10487 exp->X_op = O_illegal;
10488 }
10489 }
10490
10491 void
10492 tc_x86_frame_initial_instructions (void)
10493 {
10494 static unsigned int sp_regno[2];
10495
10496 if (!sp_regno[flag_code >> 1])
10497 {
10498 char *saved_input = input_line_pointer;
10499 char sp[][4] = {"esp", "rsp"};
10500 expressionS exp;
10501
10502 input_line_pointer = sp[flag_code >> 1];
10503 tc_x86_parse_to_dw2regnum (&exp);
10504 gas_assert (exp.X_op == O_constant);
10505 sp_regno[flag_code >> 1] = exp.X_add_number;
10506 input_line_pointer = saved_input;
10507 }
10508
10509 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
10510 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
10511 }
10512
10513 int
10514 x86_dwarf2_addr_size (void)
10515 {
10516 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10517 if (x86_elf_abi == X86_64_X32_ABI)
10518 return 4;
10519 #endif
10520 return bfd_arch_bits_per_address (stdoutput) / 8;
10521 }
10522
10523 int
10524 i386_elf_section_type (const char *str, size_t len)
10525 {
10526 if (flag_code == CODE_64BIT
10527 && len == sizeof ("unwind") - 1
10528 && strncmp (str, "unwind", 6) == 0)
10529 return SHT_X86_64_UNWIND;
10530
10531 return -1;
10532 }
10533
10534 #ifdef TE_SOLARIS
10535 void
10536 i386_solaris_fix_up_eh_frame (segT sec)
10537 {
10538 if (flag_code == CODE_64BIT)
10539 elf_section_type (sec) = SHT_X86_64_UNWIND;
10540 }
10541 #endif
10542
10543 #ifdef TE_PE
10544 void
10545 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10546 {
10547 expressionS exp;
10548
10549 exp.X_op = O_secrel;
10550 exp.X_add_symbol = symbol;
10551 exp.X_add_number = 0;
10552 emit_expr (&exp, size);
10553 }
10554 #endif
10555
10556 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10557 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
10558
10559 bfd_vma
10560 x86_64_section_letter (int letter, char **ptr_msg)
10561 {
10562 if (flag_code == CODE_64BIT)
10563 {
10564 if (letter == 'l')
10565 return SHF_X86_64_LARGE;
10566
10567 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
10568 }
10569 else
10570 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
10571 return -1;
10572 }
10573
10574 bfd_vma
10575 x86_64_section_word (char *str, size_t len)
10576 {
10577 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
10578 return SHF_X86_64_LARGE;
10579
10580 return -1;
10581 }
10582
10583 static void
10584 handle_large_common (int small ATTRIBUTE_UNUSED)
10585 {
10586 if (flag_code != CODE_64BIT)
10587 {
10588 s_comm_internal (0, elf_common_parse);
10589 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
10590 }
10591 else
10592 {
10593 static segT lbss_section;
10594 asection *saved_com_section_ptr = elf_com_section_ptr;
10595 asection *saved_bss_section = bss_section;
10596
10597 if (lbss_section == NULL)
10598 {
10599 flagword applicable;
10600 segT seg = now_seg;
10601 subsegT subseg = now_subseg;
10602
10603 /* The .lbss section is for local .largecomm symbols. */
10604 lbss_section = subseg_new (".lbss", 0);
10605 applicable = bfd_applicable_section_flags (stdoutput);
10606 bfd_set_section_flags (stdoutput, lbss_section,
10607 applicable & SEC_ALLOC);
10608 seg_info (lbss_section)->bss = 1;
10609
10610 subseg_set (seg, subseg);
10611 }
10612
10613 elf_com_section_ptr = &_bfd_elf_large_com_section;
10614 bss_section = lbss_section;
10615
10616 s_comm_internal (0, elf_common_parse);
10617
10618 elf_com_section_ptr = saved_com_section_ptr;
10619 bss_section = saved_bss_section;
10620 }
10621 }
10622 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.240247 seconds and 5 git commands to generate.