i386: Support .code64 directive only with 64-bit bfd
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2017 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 #define XMMWORD_MNEM_SUFFIX 'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 #define ZMMWORD_MNEM_SUFFIX 'z'
87 /* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91 #define END_OF_INSN '\0'
92
93 /*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100 typedef struct
101 {
102 const insn_template *start;
103 const insn_template *end;
104 }
105 templates;
106
107 /* 386 operand encoding bytes: see 386 book for details of this. */
108 typedef struct
109 {
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113 }
114 modrm_byte;
115
116 /* x86-64 extension prefix. */
117 typedef int rex_byte;
118
119 /* 386 opcode byte to code indirect addressing. */
120 typedef struct
121 {
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125 }
126 sib_byte;
127
128 /* x86 arch names, types and features */
129 typedef struct
130 {
131 const char *name; /* arch name */
132 unsigned int len; /* arch string length */
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
135 unsigned int skip; /* show_arch should skip this. */
136 }
137 arch_entry;
138
139 /* Used to turn off indicated flags. */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 i386_cpu_flags flags; /* cpu feature flags */
145 }
146 noarch_entry;
147
148 static void update_code_flag (int, int);
149 static void set_code_flag (int);
150 static void set_16bit_gcc_code_flag (int);
151 static void set_intel_syntax (int);
152 static void set_intel_mnemonic (int);
153 static void set_allow_index_reg (int);
154 static void set_check (int);
155 static void set_cpu_arch (int);
156 #ifdef TE_PE
157 static void pe_directive_secrel (int);
158 #endif
159 static void signed_cons (int);
160 static char *output_invalid (int c);
161 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
162 const char *);
163 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
164 const char *);
165 static int i386_att_operand (char *);
166 static int i386_intel_operand (char *, int);
167 static int i386_intel_simplify (expressionS *);
168 static int i386_intel_parse_name (const char *, expressionS *);
169 static const reg_entry *parse_register (char *, char **);
170 static char *parse_insn (char *, char *);
171 static char *parse_operands (char *, const char *);
172 static void swap_operands (void);
173 static void swap_2_operands (int, int);
174 static void optimize_imm (void);
175 static void optimize_disp (void);
176 static const insn_template *match_template (char);
177 static int check_string (void);
178 static int process_suffix (void);
179 static int check_byte_reg (void);
180 static int check_long_reg (void);
181 static int check_qword_reg (void);
182 static int check_word_reg (void);
183 static int finalize_imm (void);
184 static int process_operands (void);
185 static const seg_entry *build_modrm_byte (void);
186 static void output_insn (void);
187 static void output_imm (fragS *, offsetT);
188 static void output_disp (fragS *, offsetT);
189 #ifndef I386COFF
190 static void s_bss (int);
191 #endif
192 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
193 static void handle_large_common (int small ATTRIBUTE_UNUSED);
194 #endif
195
196 static const char *default_arch = DEFAULT_ARCH;
197
198 /* This struct describes rounding control and SAE in the instruction. */
199 struct RC_Operation
200 {
201 enum rc_type
202 {
203 rne = 0,
204 rd,
205 ru,
206 rz,
207 saeonly
208 } type;
209 int operand;
210 };
211
212 static struct RC_Operation rc_op;
213
214 /* The struct describes masking, applied to OPERAND in the instruction.
215 MASK is a pointer to the corresponding mask register. ZEROING tells
216 whether merging or zeroing mask is used. */
217 struct Mask_Operation
218 {
219 const reg_entry *mask;
220 unsigned int zeroing;
221 /* The operand where this operation is associated. */
222 int operand;
223 };
224
225 static struct Mask_Operation mask_op;
226
227 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
228 broadcast factor. */
229 struct Broadcast_Operation
230 {
231 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
232 int type;
233
234 /* Index of broadcasted operand. */
235 int operand;
236 };
237
238 static struct Broadcast_Operation broadcast_op;
239
240 /* VEX prefix. */
241 typedef struct
242 {
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248 } vex_prefix;
249
250 /* 'md_assemble ()' gathers together information and puts it into a
251 i386_insn. */
252
253 union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
260 enum i386_error
261 {
262 operand_size_mismatch,
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
268 old_gcc_only,
269 unsupported_with_intel_mnemonic,
270 unsupported_syntax,
271 unsupported,
272 invalid_vsib_address,
273 invalid_vector_register_set,
274 unsupported_vector_index_register,
275 unsupported_broadcast,
276 broadcast_not_on_src_operand,
277 broadcast_needed,
278 unsupported_masking,
279 mask_not_on_destination,
280 no_default_mask,
281 unsupported_rc_sae,
282 rc_sae_operand_not_last_imm,
283 invalid_register_operand,
284 try_vector_disp8
285 };
286
287 struct _i386_insn
288 {
289 /* TM holds the template for the insn were currently assembling. */
290 insn_template tm;
291
292 /* SUFFIX holds the instruction size suffix for byte, word, dword
293 or qword, if given. */
294 char suffix;
295
296 /* OPERANDS gives the number of given operands. */
297 unsigned int operands;
298
299 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
300 of given register, displacement, memory operands and immediate
301 operands. */
302 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
303
304 /* TYPES [i] is the type (see above #defines) which tells us how to
305 use OP[i] for the corresponding operand. */
306 i386_operand_type types[MAX_OPERANDS];
307
308 /* Displacement expression, immediate expression, or register for each
309 operand. */
310 union i386_op op[MAX_OPERANDS];
311
312 /* Flags for operands. */
313 unsigned int flags[MAX_OPERANDS];
314 #define Operand_PCrel 1
315
316 /* Relocation type for operand */
317 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
318
319 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
320 the base index byte below. */
321 const reg_entry *base_reg;
322 const reg_entry *index_reg;
323 unsigned int log2_scale_factor;
324
325 /* SEG gives the seg_entries of this insn. They are zero unless
326 explicit segment overrides are given. */
327 const seg_entry *seg[2];
328
329 /* Copied first memory operand string, for re-checking. */
330 char *memop1_string;
331
332 /* PREFIX holds all the given prefix opcodes (usually null).
333 PREFIXES is the number of prefix opcodes. */
334 unsigned int prefixes;
335 unsigned char prefix[MAX_PREFIXES];
336
337 /* RM and SIB are the modrm byte and the sib byte where the
338 addressing modes of this insn are encoded. */
339 modrm_byte rm;
340 rex_byte rex;
341 rex_byte vrex;
342 sib_byte sib;
343 vex_prefix vex;
344
345 /* Masking attributes. */
346 struct Mask_Operation *mask;
347
348 /* Rounding control and SAE attributes. */
349 struct RC_Operation *rounding;
350
351 /* Broadcasting attributes. */
352 struct Broadcast_Operation *broadcast;
353
354 /* Compressed disp8*N attribute. */
355 unsigned int memshift;
356
357 /* Prefer load or store in encoding. */
358 enum
359 {
360 dir_encoding_default = 0,
361 dir_encoding_load,
362 dir_encoding_store
363 } dir_encoding;
364
365 /* Prefer 8bit or 32bit displacement in encoding. */
366 enum
367 {
368 disp_encoding_default = 0,
369 disp_encoding_8bit,
370 disp_encoding_32bit
371 } disp_encoding;
372
373 /* How to encode vector instructions. */
374 enum
375 {
376 vex_encoding_default = 0,
377 vex_encoding_vex2,
378 vex_encoding_vex3,
379 vex_encoding_evex
380 } vec_encoding;
381
382 /* REP prefix. */
383 const char *rep_prefix;
384
385 /* HLE prefix. */
386 const char *hle_prefix;
387
388 /* Have BND prefix. */
389 const char *bnd_prefix;
390
391 /* Have NOTRACK prefix. */
392 const char *notrack_prefix;
393
394 /* Error message. */
395 enum i386_error error;
396 };
397
398 typedef struct _i386_insn i386_insn;
399
400 /* Link RC type with corresponding string, that'll be looked for in
401 asm. */
402 struct RC_name
403 {
404 enum rc_type type;
405 const char *name;
406 unsigned int len;
407 };
408
409 static const struct RC_name RC_NamesTable[] =
410 {
411 { rne, STRING_COMMA_LEN ("rn-sae") },
412 { rd, STRING_COMMA_LEN ("rd-sae") },
413 { ru, STRING_COMMA_LEN ("ru-sae") },
414 { rz, STRING_COMMA_LEN ("rz-sae") },
415 { saeonly, STRING_COMMA_LEN ("sae") },
416 };
417
418 /* List of chars besides those in app.c:symbol_chars that can start an
419 operand. Used to prevent the scrubber eating vital white-space. */
420 const char extra_symbol_chars[] = "*%-([{}"
421 #ifdef LEX_AT
422 "@"
423 #endif
424 #ifdef LEX_QM
425 "?"
426 #endif
427 ;
428
429 #if (defined (TE_I386AIX) \
430 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
431 && !defined (TE_GNU) \
432 && !defined (TE_LINUX) \
433 && !defined (TE_NACL) \
434 && !defined (TE_NETWARE) \
435 && !defined (TE_FreeBSD) \
436 && !defined (TE_DragonFly) \
437 && !defined (TE_NetBSD)))
438 /* This array holds the chars that always start a comment. If the
439 pre-processor is disabled, these aren't very useful. The option
440 --divide will remove '/' from this list. */
441 const char *i386_comment_chars = "#/";
442 #define SVR4_COMMENT_CHARS 1
443 #define PREFIX_SEPARATOR '\\'
444
445 #else
446 const char *i386_comment_chars = "#";
447 #define PREFIX_SEPARATOR '/'
448 #endif
449
450 /* This array holds the chars that only start a comment at the beginning of
451 a line. If the line seems to have the form '# 123 filename'
452 .line and .file directives will appear in the pre-processed output.
453 Note that input_file.c hand checks for '#' at the beginning of the
454 first line of the input file. This is because the compiler outputs
455 #NO_APP at the beginning of its output.
456 Also note that comments started like this one will always work if
457 '/' isn't otherwise defined. */
458 const char line_comment_chars[] = "#/";
459
460 const char line_separator_chars[] = ";";
461
462 /* Chars that can be used to separate mant from exp in floating point
463 nums. */
464 const char EXP_CHARS[] = "eE";
465
466 /* Chars that mean this number is a floating point constant
467 As in 0f12.456
468 or 0d1.2345e12. */
469 const char FLT_CHARS[] = "fFdDxX";
470
471 /* Tables for lexical analysis. */
472 static char mnemonic_chars[256];
473 static char register_chars[256];
474 static char operand_chars[256];
475 static char identifier_chars[256];
476 static char digit_chars[256];
477
478 /* Lexical macros. */
479 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
480 #define is_operand_char(x) (operand_chars[(unsigned char) x])
481 #define is_register_char(x) (register_chars[(unsigned char) x])
482 #define is_space_char(x) ((x) == ' ')
483 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
484 #define is_digit_char(x) (digit_chars[(unsigned char) x])
485
486 /* All non-digit non-letter characters that may occur in an operand. */
487 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
488
489 /* md_assemble() always leaves the strings it's passed unaltered. To
490 effect this we maintain a stack of saved characters that we've smashed
491 with '\0's (indicating end of strings for various sub-fields of the
492 assembler instruction). */
493 static char save_stack[32];
494 static char *save_stack_p;
495 #define END_STRING_AND_SAVE(s) \
496 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
497 #define RESTORE_END_STRING(s) \
498 do { *(s) = *--save_stack_p; } while (0)
499
500 /* The instruction we're assembling. */
501 static i386_insn i;
502
503 /* Possible templates for current insn. */
504 static const templates *current_templates;
505
506 /* Per instruction expressionS buffers: max displacements & immediates. */
507 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
508 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
509
510 /* Current operand we are working on. */
511 static int this_operand = -1;
512
513 /* We support four different modes. FLAG_CODE variable is used to distinguish
514 these. */
515
516 enum flag_code {
517 CODE_32BIT,
518 CODE_16BIT,
519 CODE_64BIT };
520
521 static enum flag_code flag_code;
522 static unsigned int object_64bit;
523 static unsigned int disallow_64bit_reloc;
524 static int use_rela_relocations = 0;
525
526 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
527 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
528 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
529
530 /* The ELF ABI to use. */
531 enum x86_elf_abi
532 {
533 I386_ABI,
534 X86_64_ABI,
535 X86_64_X32_ABI
536 };
537
538 static enum x86_elf_abi x86_elf_abi = I386_ABI;
539 #endif
540
541 #if defined (TE_PE) || defined (TE_PEP)
542 /* Use big object file format. */
543 static int use_big_obj = 0;
544 #endif
545
546 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
547 /* 1 if generating code for a shared library. */
548 static int shared = 0;
549 #endif
550
551 /* 1 for intel syntax,
552 0 if att syntax. */
553 static int intel_syntax = 0;
554
555 /* 1 for Intel64 ISA,
556 0 if AMD64 ISA. */
557 static int intel64;
558
559 /* 1 for intel mnemonic,
560 0 if att mnemonic. */
561 static int intel_mnemonic = !SYSV386_COMPAT;
562
563 /* 1 if support old (<= 2.8.1) versions of gcc. */
564 static int old_gcc = OLDGCC_COMPAT;
565
566 /* 1 if pseudo registers are permitted. */
567 static int allow_pseudo_reg = 0;
568
569 /* 1 if register prefix % not required. */
570 static int allow_naked_reg = 0;
571
572 /* 1 if the assembler should add BND prefix for all control-transferring
573 instructions supporting it, even if this prefix wasn't specified
574 explicitly. */
575 static int add_bnd_prefix = 0;
576
577 /* 1 if pseudo index register, eiz/riz, is allowed . */
578 static int allow_index_reg = 0;
579
580 /* 1 if the assembler should ignore LOCK prefix, even if it was
581 specified explicitly. */
582 static int omit_lock_prefix = 0;
583
584 /* 1 if the assembler should encode lfence, mfence, and sfence as
585 "lock addl $0, (%{re}sp)". */
586 static int avoid_fence = 0;
587
588 /* 1 if the assembler should generate relax relocations. */
589
590 static int generate_relax_relocations
591 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
592
593 static enum check_kind
594 {
595 check_none = 0,
596 check_warning,
597 check_error
598 }
599 sse_check, operand_check = check_warning;
600
601 /* Register prefix used for error message. */
602 static const char *register_prefix = "%";
603
604 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
605 leave, push, and pop instructions so that gcc has the same stack
606 frame as in 32 bit mode. */
607 static char stackop_size = '\0';
608
609 /* Non-zero to optimize code alignment. */
610 int optimize_align_code = 1;
611
612 /* Non-zero to quieten some warnings. */
613 static int quiet_warnings = 0;
614
615 /* CPU name. */
616 static const char *cpu_arch_name = NULL;
617 static char *cpu_sub_arch_name = NULL;
618
619 /* CPU feature flags. */
620 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
621
622 /* If we have selected a cpu we are generating instructions for. */
623 static int cpu_arch_tune_set = 0;
624
625 /* Cpu we are generating instructions for. */
626 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
627
628 /* CPU feature flags of cpu we are generating instructions for. */
629 static i386_cpu_flags cpu_arch_tune_flags;
630
631 /* CPU instruction set architecture used. */
632 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
633
634 /* CPU feature flags of instruction set architecture used. */
635 i386_cpu_flags cpu_arch_isa_flags;
636
637 /* If set, conditional jumps are not automatically promoted to handle
638 larger than a byte offset. */
639 static unsigned int no_cond_jump_promotion = 0;
640
641 /* Encode SSE instructions with VEX prefix. */
642 static unsigned int sse2avx;
643
644 /* Encode scalar AVX instructions with specific vector length. */
645 static enum
646 {
647 vex128 = 0,
648 vex256
649 } avxscalar;
650
651 /* Encode scalar EVEX LIG instructions with specific vector length. */
652 static enum
653 {
654 evexl128 = 0,
655 evexl256,
656 evexl512
657 } evexlig;
658
659 /* Encode EVEX WIG instructions with specific evex.w. */
660 static enum
661 {
662 evexw0 = 0,
663 evexw1
664 } evexwig;
665
666 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
667 static enum rc_type evexrcig = rne;
668
669 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
670 static symbolS *GOT_symbol;
671
672 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
673 unsigned int x86_dwarf2_return_column;
674
675 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
676 int x86_cie_data_alignment;
677
678 /* Interface to relax_segment.
679 There are 3 major relax states for 386 jump insns because the
680 different types of jumps add different sizes to frags when we're
681 figuring out what sort of jump to choose to reach a given label. */
682
683 /* Types. */
684 #define UNCOND_JUMP 0
685 #define COND_JUMP 1
686 #define COND_JUMP86 2
687
688 /* Sizes. */
689 #define CODE16 1
690 #define SMALL 0
691 #define SMALL16 (SMALL | CODE16)
692 #define BIG 2
693 #define BIG16 (BIG | CODE16)
694
695 #ifndef INLINE
696 #ifdef __GNUC__
697 #define INLINE __inline__
698 #else
699 #define INLINE
700 #endif
701 #endif
702
703 #define ENCODE_RELAX_STATE(type, size) \
704 ((relax_substateT) (((type) << 2) | (size)))
705 #define TYPE_FROM_RELAX_STATE(s) \
706 ((s) >> 2)
707 #define DISP_SIZE_FROM_RELAX_STATE(s) \
708 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
709
710 /* This table is used by relax_frag to promote short jumps to long
711 ones where necessary. SMALL (short) jumps may be promoted to BIG
712 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
713 don't allow a short jump in a 32 bit code segment to be promoted to
714 a 16 bit offset jump because it's slower (requires data size
715 prefix), and doesn't work, unless the destination is in the bottom
716 64k of the code segment (The top 16 bits of eip are zeroed). */
717
718 const relax_typeS md_relax_table[] =
719 {
720 /* The fields are:
721 1) most positive reach of this state,
722 2) most negative reach of this state,
723 3) how many bytes this mode will have in the variable part of the frag
724 4) which index into the table to try if we can't fit into this one. */
725
726 /* UNCOND_JUMP states. */
727 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
728 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
729 /* dword jmp adds 4 bytes to frag:
730 0 extra opcode bytes, 4 displacement bytes. */
731 {0, 0, 4, 0},
732 /* word jmp adds 2 byte2 to frag:
733 0 extra opcode bytes, 2 displacement bytes. */
734 {0, 0, 2, 0},
735
736 /* COND_JUMP states. */
737 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
738 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
739 /* dword conditionals adds 5 bytes to frag:
740 1 extra opcode byte, 4 displacement bytes. */
741 {0, 0, 5, 0},
742 /* word conditionals add 3 bytes to frag:
743 1 extra opcode byte, 2 displacement bytes. */
744 {0, 0, 3, 0},
745
746 /* COND_JUMP86 states. */
747 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
748 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
749 /* dword conditionals adds 5 bytes to frag:
750 1 extra opcode byte, 4 displacement bytes. */
751 {0, 0, 5, 0},
752 /* word conditionals add 4 bytes to frag:
753 1 displacement byte and a 3 byte long branch insn. */
754 {0, 0, 4, 0}
755 };
756
757 static const arch_entry cpu_arch[] =
758 {
759 /* Do not replace the first two entries - i386_target_format()
760 relies on them being there in this order. */
761 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
762 CPU_GENERIC32_FLAGS, 0 },
763 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
764 CPU_GENERIC64_FLAGS, 0 },
765 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
766 CPU_NONE_FLAGS, 0 },
767 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
768 CPU_I186_FLAGS, 0 },
769 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
770 CPU_I286_FLAGS, 0 },
771 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
772 CPU_I386_FLAGS, 0 },
773 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
774 CPU_I486_FLAGS, 0 },
775 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
776 CPU_I586_FLAGS, 0 },
777 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
778 CPU_I686_FLAGS, 0 },
779 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
780 CPU_I586_FLAGS, 0 },
781 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
782 CPU_PENTIUMPRO_FLAGS, 0 },
783 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
784 CPU_P2_FLAGS, 0 },
785 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
786 CPU_P3_FLAGS, 0 },
787 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
788 CPU_P4_FLAGS, 0 },
789 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
790 CPU_CORE_FLAGS, 0 },
791 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
792 CPU_NOCONA_FLAGS, 0 },
793 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
794 CPU_CORE_FLAGS, 1 },
795 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
796 CPU_CORE_FLAGS, 0 },
797 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
798 CPU_CORE2_FLAGS, 1 },
799 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
800 CPU_CORE2_FLAGS, 0 },
801 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
802 CPU_COREI7_FLAGS, 0 },
803 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
804 CPU_L1OM_FLAGS, 0 },
805 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
806 CPU_K1OM_FLAGS, 0 },
807 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
808 CPU_IAMCU_FLAGS, 0 },
809 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
810 CPU_K6_FLAGS, 0 },
811 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
812 CPU_K6_2_FLAGS, 0 },
813 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
814 CPU_ATHLON_FLAGS, 0 },
815 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
816 CPU_K8_FLAGS, 1 },
817 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
818 CPU_K8_FLAGS, 0 },
819 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
820 CPU_K8_FLAGS, 0 },
821 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
822 CPU_AMDFAM10_FLAGS, 0 },
823 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
824 CPU_BDVER1_FLAGS, 0 },
825 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
826 CPU_BDVER2_FLAGS, 0 },
827 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
828 CPU_BDVER3_FLAGS, 0 },
829 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
830 CPU_BDVER4_FLAGS, 0 },
831 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
832 CPU_ZNVER1_FLAGS, 0 },
833 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
834 CPU_BTVER1_FLAGS, 0 },
835 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
836 CPU_BTVER2_FLAGS, 0 },
837 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
838 CPU_8087_FLAGS, 0 },
839 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
840 CPU_287_FLAGS, 0 },
841 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
842 CPU_387_FLAGS, 0 },
843 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
844 CPU_687_FLAGS, 0 },
845 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
846 CPU_MMX_FLAGS, 0 },
847 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
848 CPU_SSE_FLAGS, 0 },
849 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
850 CPU_SSE2_FLAGS, 0 },
851 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
852 CPU_SSE3_FLAGS, 0 },
853 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
854 CPU_SSSE3_FLAGS, 0 },
855 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
856 CPU_SSE4_1_FLAGS, 0 },
857 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
858 CPU_SSE4_2_FLAGS, 0 },
859 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
860 CPU_SSE4_2_FLAGS, 0 },
861 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
862 CPU_AVX_FLAGS, 0 },
863 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
864 CPU_AVX2_FLAGS, 0 },
865 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
866 CPU_AVX512F_FLAGS, 0 },
867 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
868 CPU_AVX512CD_FLAGS, 0 },
869 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
870 CPU_AVX512ER_FLAGS, 0 },
871 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
872 CPU_AVX512PF_FLAGS, 0 },
873 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
874 CPU_AVX512DQ_FLAGS, 0 },
875 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
876 CPU_AVX512BW_FLAGS, 0 },
877 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
878 CPU_AVX512VL_FLAGS, 0 },
879 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
880 CPU_VMX_FLAGS, 0 },
881 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
882 CPU_VMFUNC_FLAGS, 0 },
883 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
884 CPU_SMX_FLAGS, 0 },
885 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
886 CPU_XSAVE_FLAGS, 0 },
887 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
888 CPU_XSAVEOPT_FLAGS, 0 },
889 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
890 CPU_XSAVEC_FLAGS, 0 },
891 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
892 CPU_XSAVES_FLAGS, 0 },
893 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
894 CPU_AES_FLAGS, 0 },
895 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
896 CPU_PCLMUL_FLAGS, 0 },
897 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
898 CPU_PCLMUL_FLAGS, 1 },
899 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
900 CPU_FSGSBASE_FLAGS, 0 },
901 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
902 CPU_RDRND_FLAGS, 0 },
903 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
904 CPU_F16C_FLAGS, 0 },
905 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
906 CPU_BMI2_FLAGS, 0 },
907 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
908 CPU_FMA_FLAGS, 0 },
909 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
910 CPU_FMA4_FLAGS, 0 },
911 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
912 CPU_XOP_FLAGS, 0 },
913 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
914 CPU_LWP_FLAGS, 0 },
915 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
916 CPU_MOVBE_FLAGS, 0 },
917 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
918 CPU_CX16_FLAGS, 0 },
919 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
920 CPU_EPT_FLAGS, 0 },
921 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
922 CPU_LZCNT_FLAGS, 0 },
923 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
924 CPU_HLE_FLAGS, 0 },
925 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
926 CPU_RTM_FLAGS, 0 },
927 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
928 CPU_INVPCID_FLAGS, 0 },
929 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
930 CPU_CLFLUSH_FLAGS, 0 },
931 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
932 CPU_NOP_FLAGS, 0 },
933 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
934 CPU_SYSCALL_FLAGS, 0 },
935 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
936 CPU_RDTSCP_FLAGS, 0 },
937 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
938 CPU_3DNOW_FLAGS, 0 },
939 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
940 CPU_3DNOWA_FLAGS, 0 },
941 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
942 CPU_PADLOCK_FLAGS, 0 },
943 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
944 CPU_SVME_FLAGS, 1 },
945 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
946 CPU_SVME_FLAGS, 0 },
947 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
948 CPU_SSE4A_FLAGS, 0 },
949 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
950 CPU_ABM_FLAGS, 0 },
951 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
952 CPU_BMI_FLAGS, 0 },
953 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
954 CPU_TBM_FLAGS, 0 },
955 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
956 CPU_ADX_FLAGS, 0 },
957 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
958 CPU_RDSEED_FLAGS, 0 },
959 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
960 CPU_PRFCHW_FLAGS, 0 },
961 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
962 CPU_SMAP_FLAGS, 0 },
963 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
964 CPU_MPX_FLAGS, 0 },
965 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
966 CPU_SHA_FLAGS, 0 },
967 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
968 CPU_CLFLUSHOPT_FLAGS, 0 },
969 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
970 CPU_PREFETCHWT1_FLAGS, 0 },
971 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
972 CPU_SE1_FLAGS, 0 },
973 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
974 CPU_CLWB_FLAGS, 0 },
975 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
976 CPU_AVX512IFMA_FLAGS, 0 },
977 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
978 CPU_AVX512VBMI_FLAGS, 0 },
979 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
980 CPU_AVX512_4FMAPS_FLAGS, 0 },
981 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
982 CPU_AVX512_4VNNIW_FLAGS, 0 },
983 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
984 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
985 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
986 CPU_AVX512_VBMI2_FLAGS, 0 },
987 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
988 CPU_AVX512_VNNI_FLAGS, 0 },
989 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
990 CPU_AVX512_BITALG_FLAGS, 0 },
991 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
992 CPU_CLZERO_FLAGS, 0 },
993 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
994 CPU_MWAITX_FLAGS, 0 },
995 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
996 CPU_OSPKE_FLAGS, 0 },
997 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
998 CPU_RDPID_FLAGS, 0 },
999 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1000 CPU_PTWRITE_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".cet"), PROCESSOR_UNKNOWN,
1002 CPU_CET_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1004 CPU_GFNI_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1006 CPU_VAES_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1008 CPU_VPCLMULQDQ_FLAGS, 0 },
1009 };
1010
1011 static const noarch_entry cpu_noarch[] =
1012 {
1013 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1014 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1015 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1016 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1017 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1018 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1019 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1020 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1021 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1022 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1023 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1024 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1025 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1026 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1027 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1028 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1029 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1030 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1031 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1032 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1033 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1034 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1035 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1036 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1037 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1038 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1039 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1040 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1041 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1042 };
1043
1044 #ifdef I386COFF
1045 /* Like s_lcomm_internal in gas/read.c but the alignment string
1046 is allowed to be optional. */
1047
1048 static symbolS *
1049 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1050 {
1051 addressT align = 0;
1052
1053 SKIP_WHITESPACE ();
1054
1055 if (needs_align
1056 && *input_line_pointer == ',')
1057 {
1058 align = parse_align (needs_align - 1);
1059
1060 if (align == (addressT) -1)
1061 return NULL;
1062 }
1063 else
1064 {
1065 if (size >= 8)
1066 align = 3;
1067 else if (size >= 4)
1068 align = 2;
1069 else if (size >= 2)
1070 align = 1;
1071 else
1072 align = 0;
1073 }
1074
1075 bss_alloc (symbolP, size, align);
1076 return symbolP;
1077 }
1078
1079 static void
1080 pe_lcomm (int needs_align)
1081 {
1082 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1083 }
1084 #endif
1085
1086 const pseudo_typeS md_pseudo_table[] =
1087 {
1088 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1089 {"align", s_align_bytes, 0},
1090 #else
1091 {"align", s_align_ptwo, 0},
1092 #endif
1093 {"arch", set_cpu_arch, 0},
1094 #ifndef I386COFF
1095 {"bss", s_bss, 0},
1096 #else
1097 {"lcomm", pe_lcomm, 1},
1098 #endif
1099 {"ffloat", float_cons, 'f'},
1100 {"dfloat", float_cons, 'd'},
1101 {"tfloat", float_cons, 'x'},
1102 {"value", cons, 2},
1103 {"slong", signed_cons, 4},
1104 {"noopt", s_ignore, 0},
1105 {"optim", s_ignore, 0},
1106 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1107 {"code16", set_code_flag, CODE_16BIT},
1108 {"code32", set_code_flag, CODE_32BIT},
1109 #ifdef BFD64
1110 {"code64", set_code_flag, CODE_64BIT},
1111 #endif
1112 {"intel_syntax", set_intel_syntax, 1},
1113 {"att_syntax", set_intel_syntax, 0},
1114 {"intel_mnemonic", set_intel_mnemonic, 1},
1115 {"att_mnemonic", set_intel_mnemonic, 0},
1116 {"allow_index_reg", set_allow_index_reg, 1},
1117 {"disallow_index_reg", set_allow_index_reg, 0},
1118 {"sse_check", set_check, 0},
1119 {"operand_check", set_check, 1},
1120 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1121 {"largecomm", handle_large_common, 0},
1122 #else
1123 {"file", (void (*) (int)) dwarf2_directive_file, 0},
1124 {"loc", dwarf2_directive_loc, 0},
1125 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1126 #endif
1127 #ifdef TE_PE
1128 {"secrel32", pe_directive_secrel, 0},
1129 #endif
1130 {0, 0, 0}
1131 };
1132
1133 /* For interface with expression (). */
1134 extern char *input_line_pointer;
1135
1136 /* Hash table for instruction mnemonic lookup. */
1137 static struct hash_control *op_hash;
1138
1139 /* Hash table for register lookup. */
1140 static struct hash_control *reg_hash;
1141 \f
1142 void
1143 i386_align_code (fragS *fragP, int count)
1144 {
1145 /* Various efficient no-op patterns for aligning code labels.
1146 Note: Don't try to assemble the instructions in the comments.
1147 0L and 0w are not legal. */
1148 static const unsigned char f32_1[] =
1149 {0x90}; /* nop */
1150 static const unsigned char f32_2[] =
1151 {0x66,0x90}; /* xchg %ax,%ax */
1152 static const unsigned char f32_3[] =
1153 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1154 static const unsigned char f32_4[] =
1155 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1156 static const unsigned char f32_5[] =
1157 {0x90, /* nop */
1158 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1159 static const unsigned char f32_6[] =
1160 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1161 static const unsigned char f32_7[] =
1162 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1163 static const unsigned char f32_8[] =
1164 {0x90, /* nop */
1165 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1166 static const unsigned char f32_9[] =
1167 {0x89,0xf6, /* movl %esi,%esi */
1168 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1169 static const unsigned char f32_10[] =
1170 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1171 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1172 static const unsigned char f32_11[] =
1173 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1174 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1175 static const unsigned char f32_12[] =
1176 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1177 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1178 static const unsigned char f32_13[] =
1179 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1180 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1181 static const unsigned char f32_14[] =
1182 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1183 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1184 static const unsigned char f16_3[] =
1185 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1186 static const unsigned char f16_4[] =
1187 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1188 static const unsigned char f16_5[] =
1189 {0x90, /* nop */
1190 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1191 static const unsigned char f16_6[] =
1192 {0x89,0xf6, /* mov %si,%si */
1193 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1194 static const unsigned char f16_7[] =
1195 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1196 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1197 static const unsigned char f16_8[] =
1198 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1199 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1200 static const unsigned char jump_31[] =
1201 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1202 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1203 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1204 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1205 static const unsigned char *const f32_patt[] = {
1206 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1207 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1208 };
1209 static const unsigned char *const f16_patt[] = {
1210 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1211 };
1212 /* nopl (%[re]ax) */
1213 static const unsigned char alt_3[] =
1214 {0x0f,0x1f,0x00};
1215 /* nopl 0(%[re]ax) */
1216 static const unsigned char alt_4[] =
1217 {0x0f,0x1f,0x40,0x00};
1218 /* nopl 0(%[re]ax,%[re]ax,1) */
1219 static const unsigned char alt_5[] =
1220 {0x0f,0x1f,0x44,0x00,0x00};
1221 /* nopw 0(%[re]ax,%[re]ax,1) */
1222 static const unsigned char alt_6[] =
1223 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1224 /* nopl 0L(%[re]ax) */
1225 static const unsigned char alt_7[] =
1226 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1227 /* nopl 0L(%[re]ax,%[re]ax,1) */
1228 static const unsigned char alt_8[] =
1229 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1230 /* nopw 0L(%[re]ax,%[re]ax,1) */
1231 static const unsigned char alt_9[] =
1232 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1233 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1234 static const unsigned char alt_10[] =
1235 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1236 static const unsigned char *const alt_patt[] = {
1237 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1238 alt_9, alt_10
1239 };
1240
1241 /* Only align for at least a positive non-zero boundary. */
1242 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1243 return;
1244
1245 /* We need to decide which NOP sequence to use for 32bit and
1246 64bit. When -mtune= is used:
1247
1248 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1249 PROCESSOR_GENERIC32, f32_patt will be used.
1250 2. For the rest, alt_patt will be used.
1251
1252 When -mtune= isn't used, alt_patt will be used if
1253 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1254 be used.
1255
1256 When -march= or .arch is used, we can't use anything beyond
1257 cpu_arch_isa_flags. */
1258
1259 if (flag_code == CODE_16BIT)
1260 {
1261 if (count > 8)
1262 {
1263 memcpy (fragP->fr_literal + fragP->fr_fix,
1264 jump_31, count);
1265 /* Adjust jump offset. */
1266 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1267 }
1268 else
1269 memcpy (fragP->fr_literal + fragP->fr_fix,
1270 f16_patt[count - 1], count);
1271 }
1272 else
1273 {
1274 const unsigned char *const *patt = NULL;
1275
1276 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1277 {
1278 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1279 switch (cpu_arch_tune)
1280 {
1281 case PROCESSOR_UNKNOWN:
1282 /* We use cpu_arch_isa_flags to check if we SHOULD
1283 optimize with nops. */
1284 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1285 patt = alt_patt;
1286 else
1287 patt = f32_patt;
1288 break;
1289 case PROCESSOR_PENTIUM4:
1290 case PROCESSOR_NOCONA:
1291 case PROCESSOR_CORE:
1292 case PROCESSOR_CORE2:
1293 case PROCESSOR_COREI7:
1294 case PROCESSOR_L1OM:
1295 case PROCESSOR_K1OM:
1296 case PROCESSOR_GENERIC64:
1297 case PROCESSOR_K6:
1298 case PROCESSOR_ATHLON:
1299 case PROCESSOR_K8:
1300 case PROCESSOR_AMDFAM10:
1301 case PROCESSOR_BD:
1302 case PROCESSOR_ZNVER:
1303 case PROCESSOR_BT:
1304 patt = alt_patt;
1305 break;
1306 case PROCESSOR_I386:
1307 case PROCESSOR_I486:
1308 case PROCESSOR_PENTIUM:
1309 case PROCESSOR_PENTIUMPRO:
1310 case PROCESSOR_IAMCU:
1311 case PROCESSOR_GENERIC32:
1312 patt = f32_patt;
1313 break;
1314 }
1315 }
1316 else
1317 {
1318 switch (fragP->tc_frag_data.tune)
1319 {
1320 case PROCESSOR_UNKNOWN:
1321 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1322 PROCESSOR_UNKNOWN. */
1323 abort ();
1324 break;
1325
1326 case PROCESSOR_I386:
1327 case PROCESSOR_I486:
1328 case PROCESSOR_PENTIUM:
1329 case PROCESSOR_IAMCU:
1330 case PROCESSOR_K6:
1331 case PROCESSOR_ATHLON:
1332 case PROCESSOR_K8:
1333 case PROCESSOR_AMDFAM10:
1334 case PROCESSOR_BD:
1335 case PROCESSOR_ZNVER:
1336 case PROCESSOR_BT:
1337 case PROCESSOR_GENERIC32:
1338 /* We use cpu_arch_isa_flags to check if we CAN optimize
1339 with nops. */
1340 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1341 patt = alt_patt;
1342 else
1343 patt = f32_patt;
1344 break;
1345 case PROCESSOR_PENTIUMPRO:
1346 case PROCESSOR_PENTIUM4:
1347 case PROCESSOR_NOCONA:
1348 case PROCESSOR_CORE:
1349 case PROCESSOR_CORE2:
1350 case PROCESSOR_COREI7:
1351 case PROCESSOR_L1OM:
1352 case PROCESSOR_K1OM:
1353 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1354 patt = alt_patt;
1355 else
1356 patt = f32_patt;
1357 break;
1358 case PROCESSOR_GENERIC64:
1359 patt = alt_patt;
1360 break;
1361 }
1362 }
1363
1364 if (patt == f32_patt)
1365 {
1366 /* If the padding is less than 15 bytes, we use the normal
1367 ones. Otherwise, we use a jump instruction and adjust
1368 its offset. */
1369 int limit;
1370
1371 /* For 64bit, the limit is 3 bytes. */
1372 if (flag_code == CODE_64BIT
1373 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1374 limit = 3;
1375 else
1376 limit = 15;
1377 if (count < limit)
1378 memcpy (fragP->fr_literal + fragP->fr_fix,
1379 patt[count - 1], count);
1380 else
1381 {
1382 memcpy (fragP->fr_literal + fragP->fr_fix,
1383 jump_31, count);
1384 /* Adjust jump offset. */
1385 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1386 }
1387 }
1388 else
1389 {
1390 /* Maximum length of an instruction is 10 byte. If the
1391 padding is greater than 10 bytes and we don't use jump,
1392 we have to break it into smaller pieces. */
1393 int padding = count;
1394 while (padding > 10)
1395 {
1396 padding -= 10;
1397 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1398 patt [9], 10);
1399 }
1400
1401 if (padding)
1402 memcpy (fragP->fr_literal + fragP->fr_fix,
1403 patt [padding - 1], padding);
1404 }
1405 }
1406 fragP->fr_var = count;
1407 }
1408
1409 static INLINE int
1410 operand_type_all_zero (const union i386_operand_type *x)
1411 {
1412 switch (ARRAY_SIZE(x->array))
1413 {
1414 case 3:
1415 if (x->array[2])
1416 return 0;
1417 /* Fall through. */
1418 case 2:
1419 if (x->array[1])
1420 return 0;
1421 /* Fall through. */
1422 case 1:
1423 return !x->array[0];
1424 default:
1425 abort ();
1426 }
1427 }
1428
1429 static INLINE void
1430 operand_type_set (union i386_operand_type *x, unsigned int v)
1431 {
1432 switch (ARRAY_SIZE(x->array))
1433 {
1434 case 3:
1435 x->array[2] = v;
1436 /* Fall through. */
1437 case 2:
1438 x->array[1] = v;
1439 /* Fall through. */
1440 case 1:
1441 x->array[0] = v;
1442 /* Fall through. */
1443 break;
1444 default:
1445 abort ();
1446 }
1447 }
1448
1449 static INLINE int
1450 operand_type_equal (const union i386_operand_type *x,
1451 const union i386_operand_type *y)
1452 {
1453 switch (ARRAY_SIZE(x->array))
1454 {
1455 case 3:
1456 if (x->array[2] != y->array[2])
1457 return 0;
1458 /* Fall through. */
1459 case 2:
1460 if (x->array[1] != y->array[1])
1461 return 0;
1462 /* Fall through. */
1463 case 1:
1464 return x->array[0] == y->array[0];
1465 break;
1466 default:
1467 abort ();
1468 }
1469 }
1470
1471 static INLINE int
1472 cpu_flags_all_zero (const union i386_cpu_flags *x)
1473 {
1474 switch (ARRAY_SIZE(x->array))
1475 {
1476 case 4:
1477 if (x->array[3])
1478 return 0;
1479 /* Fall through. */
1480 case 3:
1481 if (x->array[2])
1482 return 0;
1483 /* Fall through. */
1484 case 2:
1485 if (x->array[1])
1486 return 0;
1487 /* Fall through. */
1488 case 1:
1489 return !x->array[0];
1490 default:
1491 abort ();
1492 }
1493 }
1494
1495 static INLINE int
1496 cpu_flags_equal (const union i386_cpu_flags *x,
1497 const union i386_cpu_flags *y)
1498 {
1499 switch (ARRAY_SIZE(x->array))
1500 {
1501 case 4:
1502 if (x->array[3] != y->array[3])
1503 return 0;
1504 /* Fall through. */
1505 case 3:
1506 if (x->array[2] != y->array[2])
1507 return 0;
1508 /* Fall through. */
1509 case 2:
1510 if (x->array[1] != y->array[1])
1511 return 0;
1512 /* Fall through. */
1513 case 1:
1514 return x->array[0] == y->array[0];
1515 break;
1516 default:
1517 abort ();
1518 }
1519 }
1520
1521 static INLINE int
1522 cpu_flags_check_cpu64 (i386_cpu_flags f)
1523 {
1524 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1525 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1526 }
1527
1528 static INLINE i386_cpu_flags
1529 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1530 {
1531 switch (ARRAY_SIZE (x.array))
1532 {
1533 case 4:
1534 x.array [3] &= y.array [3];
1535 /* Fall through. */
1536 case 3:
1537 x.array [2] &= y.array [2];
1538 /* Fall through. */
1539 case 2:
1540 x.array [1] &= y.array [1];
1541 /* Fall through. */
1542 case 1:
1543 x.array [0] &= y.array [0];
1544 break;
1545 default:
1546 abort ();
1547 }
1548 return x;
1549 }
1550
1551 static INLINE i386_cpu_flags
1552 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1553 {
1554 switch (ARRAY_SIZE (x.array))
1555 {
1556 case 4:
1557 x.array [3] |= y.array [3];
1558 /* Fall through. */
1559 case 3:
1560 x.array [2] |= y.array [2];
1561 /* Fall through. */
1562 case 2:
1563 x.array [1] |= y.array [1];
1564 /* Fall through. */
1565 case 1:
1566 x.array [0] |= y.array [0];
1567 break;
1568 default:
1569 abort ();
1570 }
1571 return x;
1572 }
1573
1574 static INLINE i386_cpu_flags
1575 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1576 {
1577 switch (ARRAY_SIZE (x.array))
1578 {
1579 case 4:
1580 x.array [3] &= ~y.array [3];
1581 /* Fall through. */
1582 case 3:
1583 x.array [2] &= ~y.array [2];
1584 /* Fall through. */
1585 case 2:
1586 x.array [1] &= ~y.array [1];
1587 /* Fall through. */
1588 case 1:
1589 x.array [0] &= ~y.array [0];
1590 break;
1591 default:
1592 abort ();
1593 }
1594 return x;
1595 }
1596
1597 #define CPU_FLAGS_ARCH_MATCH 0x1
1598 #define CPU_FLAGS_64BIT_MATCH 0x2
1599 #define CPU_FLAGS_AES_MATCH 0x4
1600 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1601 #define CPU_FLAGS_AVX_MATCH 0x10
1602
1603 #define CPU_FLAGS_32BIT_MATCH \
1604 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1605 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1606 #define CPU_FLAGS_PERFECT_MATCH \
1607 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1608
1609 /* Return CPU flags match bits. */
1610
1611 static int
1612 cpu_flags_match (const insn_template *t)
1613 {
1614 i386_cpu_flags x = t->cpu_flags;
1615 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1616
1617 x.bitfield.cpu64 = 0;
1618 x.bitfield.cpuno64 = 0;
1619
1620 if (cpu_flags_all_zero (&x))
1621 {
1622 /* This instruction is available on all archs. */
1623 match |= CPU_FLAGS_32BIT_MATCH;
1624 }
1625 else
1626 {
1627 /* This instruction is available only on some archs. */
1628 i386_cpu_flags cpu = cpu_arch_flags;
1629
1630 cpu = cpu_flags_and (x, cpu);
1631 if (!cpu_flags_all_zero (&cpu))
1632 {
1633 if (x.bitfield.cpuavx)
1634 {
1635 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1636 if (cpu.bitfield.cpuavx)
1637 {
1638 /* Check SSE2AVX. */
1639 if (!t->opcode_modifier.sse2avx|| sse2avx)
1640 {
1641 match |= (CPU_FLAGS_ARCH_MATCH
1642 | CPU_FLAGS_AVX_MATCH);
1643 /* Check AES. */
1644 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1645 match |= CPU_FLAGS_AES_MATCH;
1646 /* Check PCLMUL. */
1647 if (!x.bitfield.cpupclmul
1648 || cpu.bitfield.cpupclmul)
1649 match |= CPU_FLAGS_PCLMUL_MATCH;
1650 }
1651 }
1652 else
1653 match |= CPU_FLAGS_ARCH_MATCH;
1654 }
1655 else if (x.bitfield.cpuavx512vl)
1656 {
1657 /* Match AVX512VL. */
1658 if (cpu.bitfield.cpuavx512vl)
1659 {
1660 /* Need another match. */
1661 cpu.bitfield.cpuavx512vl = 0;
1662 if (!cpu_flags_all_zero (&cpu))
1663 match |= CPU_FLAGS_32BIT_MATCH;
1664 else
1665 match |= CPU_FLAGS_ARCH_MATCH;
1666 }
1667 else
1668 match |= CPU_FLAGS_ARCH_MATCH;
1669 }
1670 else
1671 match |= CPU_FLAGS_32BIT_MATCH;
1672 }
1673 }
1674 return match;
1675 }
1676
1677 static INLINE i386_operand_type
1678 operand_type_and (i386_operand_type x, i386_operand_type y)
1679 {
1680 switch (ARRAY_SIZE (x.array))
1681 {
1682 case 3:
1683 x.array [2] &= y.array [2];
1684 /* Fall through. */
1685 case 2:
1686 x.array [1] &= y.array [1];
1687 /* Fall through. */
1688 case 1:
1689 x.array [0] &= y.array [0];
1690 break;
1691 default:
1692 abort ();
1693 }
1694 return x;
1695 }
1696
1697 static INLINE i386_operand_type
1698 operand_type_or (i386_operand_type x, i386_operand_type y)
1699 {
1700 switch (ARRAY_SIZE (x.array))
1701 {
1702 case 3:
1703 x.array [2] |= y.array [2];
1704 /* Fall through. */
1705 case 2:
1706 x.array [1] |= y.array [1];
1707 /* Fall through. */
1708 case 1:
1709 x.array [0] |= y.array [0];
1710 break;
1711 default:
1712 abort ();
1713 }
1714 return x;
1715 }
1716
1717 static INLINE i386_operand_type
1718 operand_type_xor (i386_operand_type x, i386_operand_type y)
1719 {
1720 switch (ARRAY_SIZE (x.array))
1721 {
1722 case 3:
1723 x.array [2] ^= y.array [2];
1724 /* Fall through. */
1725 case 2:
1726 x.array [1] ^= y.array [1];
1727 /* Fall through. */
1728 case 1:
1729 x.array [0] ^= y.array [0];
1730 break;
1731 default:
1732 abort ();
1733 }
1734 return x;
1735 }
1736
1737 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1738 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1739 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1740 static const i386_operand_type inoutportreg
1741 = OPERAND_TYPE_INOUTPORTREG;
1742 static const i386_operand_type reg16_inoutportreg
1743 = OPERAND_TYPE_REG16_INOUTPORTREG;
1744 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1745 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1746 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1747 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1748 static const i386_operand_type anydisp
1749 = OPERAND_TYPE_ANYDISP;
1750 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1751 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1752 static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1753 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1754 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1755 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1756 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1757 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1758 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1759 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1760 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1761 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1762 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1763 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1764
1765 enum operand_type
1766 {
1767 reg,
1768 imm,
1769 disp,
1770 anymem
1771 };
1772
1773 static INLINE int
1774 operand_type_check (i386_operand_type t, enum operand_type c)
1775 {
1776 switch (c)
1777 {
1778 case reg:
1779 return (t.bitfield.reg8
1780 || t.bitfield.reg16
1781 || t.bitfield.reg32
1782 || t.bitfield.reg64);
1783
1784 case imm:
1785 return (t.bitfield.imm8
1786 || t.bitfield.imm8s
1787 || t.bitfield.imm16
1788 || t.bitfield.imm32
1789 || t.bitfield.imm32s
1790 || t.bitfield.imm64);
1791
1792 case disp:
1793 return (t.bitfield.disp8
1794 || t.bitfield.disp16
1795 || t.bitfield.disp32
1796 || t.bitfield.disp32s
1797 || t.bitfield.disp64);
1798
1799 case anymem:
1800 return (t.bitfield.disp8
1801 || t.bitfield.disp16
1802 || t.bitfield.disp32
1803 || t.bitfield.disp32s
1804 || t.bitfield.disp64
1805 || t.bitfield.baseindex);
1806
1807 default:
1808 abort ();
1809 }
1810
1811 return 0;
1812 }
1813
1814 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1815 operand J for instruction template T. */
1816
1817 static INLINE int
1818 match_reg_size (const insn_template *t, unsigned int j)
1819 {
1820 return !((i.types[j].bitfield.byte
1821 && !t->operand_types[j].bitfield.byte)
1822 || (i.types[j].bitfield.word
1823 && !t->operand_types[j].bitfield.word)
1824 || (i.types[j].bitfield.dword
1825 && !t->operand_types[j].bitfield.dword)
1826 || (i.types[j].bitfield.qword
1827 && !t->operand_types[j].bitfield.qword));
1828 }
1829
1830 /* Return 1 if there is no conflict in any size on operand J for
1831 instruction template T. */
1832
1833 static INLINE int
1834 match_mem_size (const insn_template *t, unsigned int j)
1835 {
1836 return (match_reg_size (t, j)
1837 && !((i.types[j].bitfield.unspecified
1838 && !i.broadcast
1839 && !t->operand_types[j].bitfield.unspecified)
1840 || (i.types[j].bitfield.fword
1841 && !t->operand_types[j].bitfield.fword)
1842 || (i.types[j].bitfield.tbyte
1843 && !t->operand_types[j].bitfield.tbyte)
1844 || (i.types[j].bitfield.xmmword
1845 && !t->operand_types[j].bitfield.xmmword)
1846 || (i.types[j].bitfield.ymmword
1847 && !t->operand_types[j].bitfield.ymmword)
1848 || (i.types[j].bitfield.zmmword
1849 && !t->operand_types[j].bitfield.zmmword)));
1850 }
1851
1852 /* Return 1 if there is no size conflict on any operands for
1853 instruction template T. */
1854
1855 static INLINE int
1856 operand_size_match (const insn_template *t)
1857 {
1858 unsigned int j;
1859 int match = 1;
1860
1861 /* Don't check jump instructions. */
1862 if (t->opcode_modifier.jump
1863 || t->opcode_modifier.jumpbyte
1864 || t->opcode_modifier.jumpdword
1865 || t->opcode_modifier.jumpintersegment)
1866 return match;
1867
1868 /* Check memory and accumulator operand size. */
1869 for (j = 0; j < i.operands; j++)
1870 {
1871 if (t->operand_types[j].bitfield.anysize)
1872 continue;
1873
1874 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1875 {
1876 match = 0;
1877 break;
1878 }
1879
1880 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1881 {
1882 match = 0;
1883 break;
1884 }
1885 }
1886
1887 if (match)
1888 return match;
1889 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1890 {
1891 mismatch:
1892 i.error = operand_size_mismatch;
1893 return 0;
1894 }
1895
1896 /* Check reverse. */
1897 gas_assert (i.operands == 2);
1898
1899 match = 1;
1900 for (j = 0; j < 2; j++)
1901 {
1902 if (t->operand_types[j].bitfield.acc
1903 && !match_reg_size (t, j ? 0 : 1))
1904 goto mismatch;
1905
1906 if (i.types[j].bitfield.mem
1907 && !match_mem_size (t, j ? 0 : 1))
1908 goto mismatch;
1909 }
1910
1911 return match;
1912 }
1913
1914 static INLINE int
1915 operand_type_match (i386_operand_type overlap,
1916 i386_operand_type given)
1917 {
1918 i386_operand_type temp = overlap;
1919
1920 temp.bitfield.jumpabsolute = 0;
1921 temp.bitfield.unspecified = 0;
1922 temp.bitfield.byte = 0;
1923 temp.bitfield.word = 0;
1924 temp.bitfield.dword = 0;
1925 temp.bitfield.fword = 0;
1926 temp.bitfield.qword = 0;
1927 temp.bitfield.tbyte = 0;
1928 temp.bitfield.xmmword = 0;
1929 temp.bitfield.ymmword = 0;
1930 temp.bitfield.zmmword = 0;
1931 if (operand_type_all_zero (&temp))
1932 goto mismatch;
1933
1934 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1935 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1936 return 1;
1937
1938 mismatch:
1939 i.error = operand_type_mismatch;
1940 return 0;
1941 }
1942
1943 /* If given types g0 and g1 are registers they must be of the same type
1944 unless the expected operand type register overlap is null.
1945 Note that Acc in a template matches every size of reg. */
1946
1947 static INLINE int
1948 operand_type_register_match (i386_operand_type m0,
1949 i386_operand_type g0,
1950 i386_operand_type t0,
1951 i386_operand_type m1,
1952 i386_operand_type g1,
1953 i386_operand_type t1)
1954 {
1955 if (!operand_type_check (g0, reg))
1956 return 1;
1957
1958 if (!operand_type_check (g1, reg))
1959 return 1;
1960
1961 if (g0.bitfield.reg8 == g1.bitfield.reg8
1962 && g0.bitfield.reg16 == g1.bitfield.reg16
1963 && g0.bitfield.reg32 == g1.bitfield.reg32
1964 && g0.bitfield.reg64 == g1.bitfield.reg64)
1965 return 1;
1966
1967 if (m0.bitfield.acc)
1968 {
1969 t0.bitfield.reg8 = 1;
1970 t0.bitfield.reg16 = 1;
1971 t0.bitfield.reg32 = 1;
1972 t0.bitfield.reg64 = 1;
1973 }
1974
1975 if (m1.bitfield.acc)
1976 {
1977 t1.bitfield.reg8 = 1;
1978 t1.bitfield.reg16 = 1;
1979 t1.bitfield.reg32 = 1;
1980 t1.bitfield.reg64 = 1;
1981 }
1982
1983 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1984 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1985 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1986 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1987 return 1;
1988
1989 i.error = register_type_mismatch;
1990
1991 return 0;
1992 }
1993
1994 static INLINE unsigned int
1995 register_number (const reg_entry *r)
1996 {
1997 unsigned int nr = r->reg_num;
1998
1999 if (r->reg_flags & RegRex)
2000 nr += 8;
2001
2002 if (r->reg_flags & RegVRex)
2003 nr += 16;
2004
2005 return nr;
2006 }
2007
2008 static INLINE unsigned int
2009 mode_from_disp_size (i386_operand_type t)
2010 {
2011 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
2012 return 1;
2013 else if (t.bitfield.disp16
2014 || t.bitfield.disp32
2015 || t.bitfield.disp32s)
2016 return 2;
2017 else
2018 return 0;
2019 }
2020
2021 static INLINE int
2022 fits_in_signed_byte (addressT num)
2023 {
2024 return num + 0x80 <= 0xff;
2025 }
2026
2027 static INLINE int
2028 fits_in_unsigned_byte (addressT num)
2029 {
2030 return num <= 0xff;
2031 }
2032
2033 static INLINE int
2034 fits_in_unsigned_word (addressT num)
2035 {
2036 return num <= 0xffff;
2037 }
2038
2039 static INLINE int
2040 fits_in_signed_word (addressT num)
2041 {
2042 return num + 0x8000 <= 0xffff;
2043 }
2044
2045 static INLINE int
2046 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2047 {
2048 #ifndef BFD64
2049 return 1;
2050 #else
2051 return num + 0x80000000 <= 0xffffffff;
2052 #endif
2053 } /* fits_in_signed_long() */
2054
2055 static INLINE int
2056 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2057 {
2058 #ifndef BFD64
2059 return 1;
2060 #else
2061 return num <= 0xffffffff;
2062 #endif
2063 } /* fits_in_unsigned_long() */
2064
2065 static INLINE int
2066 fits_in_vec_disp8 (offsetT num)
2067 {
2068 int shift = i.memshift;
2069 unsigned int mask;
2070
2071 if (shift == -1)
2072 abort ();
2073
2074 mask = (1 << shift) - 1;
2075
2076 /* Return 0 if NUM isn't properly aligned. */
2077 if ((num & mask))
2078 return 0;
2079
2080 /* Check if NUM will fit in 8bit after shift. */
2081 return fits_in_signed_byte (num >> shift);
2082 }
2083
2084 static INLINE int
2085 fits_in_imm4 (offsetT num)
2086 {
2087 return (num & 0xf) == num;
2088 }
2089
2090 static i386_operand_type
2091 smallest_imm_type (offsetT num)
2092 {
2093 i386_operand_type t;
2094
2095 operand_type_set (&t, 0);
2096 t.bitfield.imm64 = 1;
2097
2098 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2099 {
2100 /* This code is disabled on the 486 because all the Imm1 forms
2101 in the opcode table are slower on the i486. They're the
2102 versions with the implicitly specified single-position
2103 displacement, which has another syntax if you really want to
2104 use that form. */
2105 t.bitfield.imm1 = 1;
2106 t.bitfield.imm8 = 1;
2107 t.bitfield.imm8s = 1;
2108 t.bitfield.imm16 = 1;
2109 t.bitfield.imm32 = 1;
2110 t.bitfield.imm32s = 1;
2111 }
2112 else if (fits_in_signed_byte (num))
2113 {
2114 t.bitfield.imm8 = 1;
2115 t.bitfield.imm8s = 1;
2116 t.bitfield.imm16 = 1;
2117 t.bitfield.imm32 = 1;
2118 t.bitfield.imm32s = 1;
2119 }
2120 else if (fits_in_unsigned_byte (num))
2121 {
2122 t.bitfield.imm8 = 1;
2123 t.bitfield.imm16 = 1;
2124 t.bitfield.imm32 = 1;
2125 t.bitfield.imm32s = 1;
2126 }
2127 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2128 {
2129 t.bitfield.imm16 = 1;
2130 t.bitfield.imm32 = 1;
2131 t.bitfield.imm32s = 1;
2132 }
2133 else if (fits_in_signed_long (num))
2134 {
2135 t.bitfield.imm32 = 1;
2136 t.bitfield.imm32s = 1;
2137 }
2138 else if (fits_in_unsigned_long (num))
2139 t.bitfield.imm32 = 1;
2140
2141 return t;
2142 }
2143
2144 static offsetT
2145 offset_in_range (offsetT val, int size)
2146 {
2147 addressT mask;
2148
2149 switch (size)
2150 {
2151 case 1: mask = ((addressT) 1 << 8) - 1; break;
2152 case 2: mask = ((addressT) 1 << 16) - 1; break;
2153 case 4: mask = ((addressT) 2 << 31) - 1; break;
2154 #ifdef BFD64
2155 case 8: mask = ((addressT) 2 << 63) - 1; break;
2156 #endif
2157 default: abort ();
2158 }
2159
2160 #ifdef BFD64
2161 /* If BFD64, sign extend val for 32bit address mode. */
2162 if (flag_code != CODE_64BIT
2163 || i.prefix[ADDR_PREFIX])
2164 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2165 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2166 #endif
2167
2168 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2169 {
2170 char buf1[40], buf2[40];
2171
2172 sprint_value (buf1, val);
2173 sprint_value (buf2, val & mask);
2174 as_warn (_("%s shortened to %s"), buf1, buf2);
2175 }
2176 return val & mask;
2177 }
2178
2179 enum PREFIX_GROUP
2180 {
2181 PREFIX_EXIST = 0,
2182 PREFIX_LOCK,
2183 PREFIX_REP,
2184 PREFIX_DS,
2185 PREFIX_OTHER
2186 };
2187
2188 /* Returns
2189 a. PREFIX_EXIST if attempting to add a prefix where one from the
2190 same class already exists.
2191 b. PREFIX_LOCK if lock prefix is added.
2192 c. PREFIX_REP if rep/repne prefix is added.
2193 d. PREFIX_DS if ds prefix is added.
2194 e. PREFIX_OTHER if other prefix is added.
2195 */
2196
2197 static enum PREFIX_GROUP
2198 add_prefix (unsigned int prefix)
2199 {
2200 enum PREFIX_GROUP ret = PREFIX_OTHER;
2201 unsigned int q;
2202
2203 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2204 && flag_code == CODE_64BIT)
2205 {
2206 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2207 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2208 && (prefix & (REX_R | REX_X | REX_B))))
2209 ret = PREFIX_EXIST;
2210 q = REX_PREFIX;
2211 }
2212 else
2213 {
2214 switch (prefix)
2215 {
2216 default:
2217 abort ();
2218
2219 case DS_PREFIX_OPCODE:
2220 ret = PREFIX_DS;
2221 /* Fall through. */
2222 case CS_PREFIX_OPCODE:
2223 case ES_PREFIX_OPCODE:
2224 case FS_PREFIX_OPCODE:
2225 case GS_PREFIX_OPCODE:
2226 case SS_PREFIX_OPCODE:
2227 q = SEG_PREFIX;
2228 break;
2229
2230 case REPNE_PREFIX_OPCODE:
2231 case REPE_PREFIX_OPCODE:
2232 q = REP_PREFIX;
2233 ret = PREFIX_REP;
2234 break;
2235
2236 case LOCK_PREFIX_OPCODE:
2237 q = LOCK_PREFIX;
2238 ret = PREFIX_LOCK;
2239 break;
2240
2241 case FWAIT_OPCODE:
2242 q = WAIT_PREFIX;
2243 break;
2244
2245 case ADDR_PREFIX_OPCODE:
2246 q = ADDR_PREFIX;
2247 break;
2248
2249 case DATA_PREFIX_OPCODE:
2250 q = DATA_PREFIX;
2251 break;
2252 }
2253 if (i.prefix[q] != 0)
2254 ret = PREFIX_EXIST;
2255 }
2256
2257 if (ret)
2258 {
2259 if (!i.prefix[q])
2260 ++i.prefixes;
2261 i.prefix[q] |= prefix;
2262 }
2263 else
2264 as_bad (_("same type of prefix used twice"));
2265
2266 return ret;
2267 }
2268
2269 static void
2270 update_code_flag (int value, int check)
2271 {
2272 PRINTF_LIKE ((*as_error));
2273
2274 flag_code = (enum flag_code) value;
2275 if (flag_code == CODE_64BIT)
2276 {
2277 cpu_arch_flags.bitfield.cpu64 = 1;
2278 cpu_arch_flags.bitfield.cpuno64 = 0;
2279 }
2280 else
2281 {
2282 cpu_arch_flags.bitfield.cpu64 = 0;
2283 cpu_arch_flags.bitfield.cpuno64 = 1;
2284 }
2285 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2286 {
2287 if (check)
2288 as_error = as_fatal;
2289 else
2290 as_error = as_bad;
2291 (*as_error) (_("64bit mode not supported on `%s'."),
2292 cpu_arch_name ? cpu_arch_name : default_arch);
2293 }
2294 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2295 {
2296 if (check)
2297 as_error = as_fatal;
2298 else
2299 as_error = as_bad;
2300 (*as_error) (_("32bit mode not supported on `%s'."),
2301 cpu_arch_name ? cpu_arch_name : default_arch);
2302 }
2303 stackop_size = '\0';
2304 }
2305
2306 static void
2307 set_code_flag (int value)
2308 {
2309 update_code_flag (value, 0);
2310 }
2311
2312 static void
2313 set_16bit_gcc_code_flag (int new_code_flag)
2314 {
2315 flag_code = (enum flag_code) new_code_flag;
2316 if (flag_code != CODE_16BIT)
2317 abort ();
2318 cpu_arch_flags.bitfield.cpu64 = 0;
2319 cpu_arch_flags.bitfield.cpuno64 = 1;
2320 stackop_size = LONG_MNEM_SUFFIX;
2321 }
2322
2323 static void
2324 set_intel_syntax (int syntax_flag)
2325 {
2326 /* Find out if register prefixing is specified. */
2327 int ask_naked_reg = 0;
2328
2329 SKIP_WHITESPACE ();
2330 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2331 {
2332 char *string;
2333 int e = get_symbol_name (&string);
2334
2335 if (strcmp (string, "prefix") == 0)
2336 ask_naked_reg = 1;
2337 else if (strcmp (string, "noprefix") == 0)
2338 ask_naked_reg = -1;
2339 else
2340 as_bad (_("bad argument to syntax directive."));
2341 (void) restore_line_pointer (e);
2342 }
2343 demand_empty_rest_of_line ();
2344
2345 intel_syntax = syntax_flag;
2346
2347 if (ask_naked_reg == 0)
2348 allow_naked_reg = (intel_syntax
2349 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2350 else
2351 allow_naked_reg = (ask_naked_reg < 0);
2352
2353 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2354
2355 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2356 identifier_chars['$'] = intel_syntax ? '$' : 0;
2357 register_prefix = allow_naked_reg ? "" : "%";
2358 }
2359
2360 static void
2361 set_intel_mnemonic (int mnemonic_flag)
2362 {
2363 intel_mnemonic = mnemonic_flag;
2364 }
2365
2366 static void
2367 set_allow_index_reg (int flag)
2368 {
2369 allow_index_reg = flag;
2370 }
2371
2372 static void
2373 set_check (int what)
2374 {
2375 enum check_kind *kind;
2376 const char *str;
2377
2378 if (what)
2379 {
2380 kind = &operand_check;
2381 str = "operand";
2382 }
2383 else
2384 {
2385 kind = &sse_check;
2386 str = "sse";
2387 }
2388
2389 SKIP_WHITESPACE ();
2390
2391 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2392 {
2393 char *string;
2394 int e = get_symbol_name (&string);
2395
2396 if (strcmp (string, "none") == 0)
2397 *kind = check_none;
2398 else if (strcmp (string, "warning") == 0)
2399 *kind = check_warning;
2400 else if (strcmp (string, "error") == 0)
2401 *kind = check_error;
2402 else
2403 as_bad (_("bad argument to %s_check directive."), str);
2404 (void) restore_line_pointer (e);
2405 }
2406 else
2407 as_bad (_("missing argument for %s_check directive"), str);
2408
2409 demand_empty_rest_of_line ();
2410 }
2411
2412 static void
2413 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2414 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2415 {
2416 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2417 static const char *arch;
2418
2419 /* Intel LIOM is only supported on ELF. */
2420 if (!IS_ELF)
2421 return;
2422
2423 if (!arch)
2424 {
2425 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2426 use default_arch. */
2427 arch = cpu_arch_name;
2428 if (!arch)
2429 arch = default_arch;
2430 }
2431
2432 /* If we are targeting Intel MCU, we must enable it. */
2433 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2434 || new_flag.bitfield.cpuiamcu)
2435 return;
2436
2437 /* If we are targeting Intel L1OM, we must enable it. */
2438 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2439 || new_flag.bitfield.cpul1om)
2440 return;
2441
2442 /* If we are targeting Intel K1OM, we must enable it. */
2443 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2444 || new_flag.bitfield.cpuk1om)
2445 return;
2446
2447 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2448 #endif
2449 }
2450
2451 static void
2452 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2453 {
2454 SKIP_WHITESPACE ();
2455
2456 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2457 {
2458 char *string;
2459 int e = get_symbol_name (&string);
2460 unsigned int j;
2461 i386_cpu_flags flags;
2462
2463 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2464 {
2465 if (strcmp (string, cpu_arch[j].name) == 0)
2466 {
2467 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2468
2469 if (*string != '.')
2470 {
2471 cpu_arch_name = cpu_arch[j].name;
2472 cpu_sub_arch_name = NULL;
2473 cpu_arch_flags = cpu_arch[j].flags;
2474 if (flag_code == CODE_64BIT)
2475 {
2476 cpu_arch_flags.bitfield.cpu64 = 1;
2477 cpu_arch_flags.bitfield.cpuno64 = 0;
2478 }
2479 else
2480 {
2481 cpu_arch_flags.bitfield.cpu64 = 0;
2482 cpu_arch_flags.bitfield.cpuno64 = 1;
2483 }
2484 cpu_arch_isa = cpu_arch[j].type;
2485 cpu_arch_isa_flags = cpu_arch[j].flags;
2486 if (!cpu_arch_tune_set)
2487 {
2488 cpu_arch_tune = cpu_arch_isa;
2489 cpu_arch_tune_flags = cpu_arch_isa_flags;
2490 }
2491 break;
2492 }
2493
2494 flags = cpu_flags_or (cpu_arch_flags,
2495 cpu_arch[j].flags);
2496
2497 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2498 {
2499 if (cpu_sub_arch_name)
2500 {
2501 char *name = cpu_sub_arch_name;
2502 cpu_sub_arch_name = concat (name,
2503 cpu_arch[j].name,
2504 (const char *) NULL);
2505 free (name);
2506 }
2507 else
2508 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2509 cpu_arch_flags = flags;
2510 cpu_arch_isa_flags = flags;
2511 }
2512 (void) restore_line_pointer (e);
2513 demand_empty_rest_of_line ();
2514 return;
2515 }
2516 }
2517
2518 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2519 {
2520 /* Disable an ISA extension. */
2521 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2522 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2523 {
2524 flags = cpu_flags_and_not (cpu_arch_flags,
2525 cpu_noarch[j].flags);
2526 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2527 {
2528 if (cpu_sub_arch_name)
2529 {
2530 char *name = cpu_sub_arch_name;
2531 cpu_sub_arch_name = concat (name, string,
2532 (const char *) NULL);
2533 free (name);
2534 }
2535 else
2536 cpu_sub_arch_name = xstrdup (string);
2537 cpu_arch_flags = flags;
2538 cpu_arch_isa_flags = flags;
2539 }
2540 (void) restore_line_pointer (e);
2541 demand_empty_rest_of_line ();
2542 return;
2543 }
2544
2545 j = ARRAY_SIZE (cpu_arch);
2546 }
2547
2548 if (j >= ARRAY_SIZE (cpu_arch))
2549 as_bad (_("no such architecture: `%s'"), string);
2550
2551 *input_line_pointer = e;
2552 }
2553 else
2554 as_bad (_("missing cpu architecture"));
2555
2556 no_cond_jump_promotion = 0;
2557 if (*input_line_pointer == ','
2558 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2559 {
2560 char *string;
2561 char e;
2562
2563 ++input_line_pointer;
2564 e = get_symbol_name (&string);
2565
2566 if (strcmp (string, "nojumps") == 0)
2567 no_cond_jump_promotion = 1;
2568 else if (strcmp (string, "jumps") == 0)
2569 ;
2570 else
2571 as_bad (_("no such architecture modifier: `%s'"), string);
2572
2573 (void) restore_line_pointer (e);
2574 }
2575
2576 demand_empty_rest_of_line ();
2577 }
2578
2579 enum bfd_architecture
2580 i386_arch (void)
2581 {
2582 if (cpu_arch_isa == PROCESSOR_L1OM)
2583 {
2584 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2585 || flag_code != CODE_64BIT)
2586 as_fatal (_("Intel L1OM is 64bit ELF only"));
2587 return bfd_arch_l1om;
2588 }
2589 else if (cpu_arch_isa == PROCESSOR_K1OM)
2590 {
2591 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2592 || flag_code != CODE_64BIT)
2593 as_fatal (_("Intel K1OM is 64bit ELF only"));
2594 return bfd_arch_k1om;
2595 }
2596 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2597 {
2598 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2599 || flag_code == CODE_64BIT)
2600 as_fatal (_("Intel MCU is 32bit ELF only"));
2601 return bfd_arch_iamcu;
2602 }
2603 else
2604 return bfd_arch_i386;
2605 }
2606
2607 unsigned long
2608 i386_mach (void)
2609 {
2610 if (!strncmp (default_arch, "x86_64", 6))
2611 {
2612 if (cpu_arch_isa == PROCESSOR_L1OM)
2613 {
2614 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2615 || default_arch[6] != '\0')
2616 as_fatal (_("Intel L1OM is 64bit ELF only"));
2617 return bfd_mach_l1om;
2618 }
2619 else if (cpu_arch_isa == PROCESSOR_K1OM)
2620 {
2621 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2622 || default_arch[6] != '\0')
2623 as_fatal (_("Intel K1OM is 64bit ELF only"));
2624 return bfd_mach_k1om;
2625 }
2626 else if (default_arch[6] == '\0')
2627 return bfd_mach_x86_64;
2628 else
2629 return bfd_mach_x64_32;
2630 }
2631 else if (!strcmp (default_arch, "i386")
2632 || !strcmp (default_arch, "iamcu"))
2633 {
2634 if (cpu_arch_isa == PROCESSOR_IAMCU)
2635 {
2636 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2637 as_fatal (_("Intel MCU is 32bit ELF only"));
2638 return bfd_mach_i386_iamcu;
2639 }
2640 else
2641 return bfd_mach_i386_i386;
2642 }
2643 else
2644 as_fatal (_("unknown architecture"));
2645 }
2646 \f
2647 void
2648 md_begin (void)
2649 {
2650 const char *hash_err;
2651
2652 /* Support pseudo prefixes like {disp32}. */
2653 lex_type ['{'] = LEX_BEGIN_NAME;
2654
2655 /* Initialize op_hash hash table. */
2656 op_hash = hash_new ();
2657
2658 {
2659 const insn_template *optab;
2660 templates *core_optab;
2661
2662 /* Setup for loop. */
2663 optab = i386_optab;
2664 core_optab = XNEW (templates);
2665 core_optab->start = optab;
2666
2667 while (1)
2668 {
2669 ++optab;
2670 if (optab->name == NULL
2671 || strcmp (optab->name, (optab - 1)->name) != 0)
2672 {
2673 /* different name --> ship out current template list;
2674 add to hash table; & begin anew. */
2675 core_optab->end = optab;
2676 hash_err = hash_insert (op_hash,
2677 (optab - 1)->name,
2678 (void *) core_optab);
2679 if (hash_err)
2680 {
2681 as_fatal (_("can't hash %s: %s"),
2682 (optab - 1)->name,
2683 hash_err);
2684 }
2685 if (optab->name == NULL)
2686 break;
2687 core_optab = XNEW (templates);
2688 core_optab->start = optab;
2689 }
2690 }
2691 }
2692
2693 /* Initialize reg_hash hash table. */
2694 reg_hash = hash_new ();
2695 {
2696 const reg_entry *regtab;
2697 unsigned int regtab_size = i386_regtab_size;
2698
2699 for (regtab = i386_regtab; regtab_size--; regtab++)
2700 {
2701 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2702 if (hash_err)
2703 as_fatal (_("can't hash %s: %s"),
2704 regtab->reg_name,
2705 hash_err);
2706 }
2707 }
2708
2709 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2710 {
2711 int c;
2712 char *p;
2713
2714 for (c = 0; c < 256; c++)
2715 {
2716 if (ISDIGIT (c))
2717 {
2718 digit_chars[c] = c;
2719 mnemonic_chars[c] = c;
2720 register_chars[c] = c;
2721 operand_chars[c] = c;
2722 }
2723 else if (ISLOWER (c))
2724 {
2725 mnemonic_chars[c] = c;
2726 register_chars[c] = c;
2727 operand_chars[c] = c;
2728 }
2729 else if (ISUPPER (c))
2730 {
2731 mnemonic_chars[c] = TOLOWER (c);
2732 register_chars[c] = mnemonic_chars[c];
2733 operand_chars[c] = c;
2734 }
2735 else if (c == '{' || c == '}')
2736 {
2737 mnemonic_chars[c] = c;
2738 operand_chars[c] = c;
2739 }
2740
2741 if (ISALPHA (c) || ISDIGIT (c))
2742 identifier_chars[c] = c;
2743 else if (c >= 128)
2744 {
2745 identifier_chars[c] = c;
2746 operand_chars[c] = c;
2747 }
2748 }
2749
2750 #ifdef LEX_AT
2751 identifier_chars['@'] = '@';
2752 #endif
2753 #ifdef LEX_QM
2754 identifier_chars['?'] = '?';
2755 operand_chars['?'] = '?';
2756 #endif
2757 digit_chars['-'] = '-';
2758 mnemonic_chars['_'] = '_';
2759 mnemonic_chars['-'] = '-';
2760 mnemonic_chars['.'] = '.';
2761 identifier_chars['_'] = '_';
2762 identifier_chars['.'] = '.';
2763
2764 for (p = operand_special_chars; *p != '\0'; p++)
2765 operand_chars[(unsigned char) *p] = *p;
2766 }
2767
2768 if (flag_code == CODE_64BIT)
2769 {
2770 #if defined (OBJ_COFF) && defined (TE_PE)
2771 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2772 ? 32 : 16);
2773 #else
2774 x86_dwarf2_return_column = 16;
2775 #endif
2776 x86_cie_data_alignment = -8;
2777 }
2778 else
2779 {
2780 x86_dwarf2_return_column = 8;
2781 x86_cie_data_alignment = -4;
2782 }
2783 }
2784
2785 void
2786 i386_print_statistics (FILE *file)
2787 {
2788 hash_print_statistics (file, "i386 opcode", op_hash);
2789 hash_print_statistics (file, "i386 register", reg_hash);
2790 }
2791 \f
2792 #ifdef DEBUG386
2793
2794 /* Debugging routines for md_assemble. */
2795 static void pte (insn_template *);
2796 static void pt (i386_operand_type);
2797 static void pe (expressionS *);
2798 static void ps (symbolS *);
2799
2800 static void
2801 pi (char *line, i386_insn *x)
2802 {
2803 unsigned int j;
2804
2805 fprintf (stdout, "%s: template ", line);
2806 pte (&x->tm);
2807 fprintf (stdout, " address: base %s index %s scale %x\n",
2808 x->base_reg ? x->base_reg->reg_name : "none",
2809 x->index_reg ? x->index_reg->reg_name : "none",
2810 x->log2_scale_factor);
2811 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2812 x->rm.mode, x->rm.reg, x->rm.regmem);
2813 fprintf (stdout, " sib: base %x index %x scale %x\n",
2814 x->sib.base, x->sib.index, x->sib.scale);
2815 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2816 (x->rex & REX_W) != 0,
2817 (x->rex & REX_R) != 0,
2818 (x->rex & REX_X) != 0,
2819 (x->rex & REX_B) != 0);
2820 for (j = 0; j < x->operands; j++)
2821 {
2822 fprintf (stdout, " #%d: ", j + 1);
2823 pt (x->types[j]);
2824 fprintf (stdout, "\n");
2825 if (x->types[j].bitfield.reg8
2826 || x->types[j].bitfield.reg16
2827 || x->types[j].bitfield.reg32
2828 || x->types[j].bitfield.reg64
2829 || x->types[j].bitfield.regmmx
2830 || x->types[j].bitfield.regxmm
2831 || x->types[j].bitfield.regymm
2832 || x->types[j].bitfield.regzmm
2833 || x->types[j].bitfield.sreg2
2834 || x->types[j].bitfield.sreg3
2835 || x->types[j].bitfield.control
2836 || x->types[j].bitfield.debug
2837 || x->types[j].bitfield.test)
2838 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2839 if (operand_type_check (x->types[j], imm))
2840 pe (x->op[j].imms);
2841 if (operand_type_check (x->types[j], disp))
2842 pe (x->op[j].disps);
2843 }
2844 }
2845
2846 static void
2847 pte (insn_template *t)
2848 {
2849 unsigned int j;
2850 fprintf (stdout, " %d operands ", t->operands);
2851 fprintf (stdout, "opcode %x ", t->base_opcode);
2852 if (t->extension_opcode != None)
2853 fprintf (stdout, "ext %x ", t->extension_opcode);
2854 if (t->opcode_modifier.d)
2855 fprintf (stdout, "D");
2856 if (t->opcode_modifier.w)
2857 fprintf (stdout, "W");
2858 fprintf (stdout, "\n");
2859 for (j = 0; j < t->operands; j++)
2860 {
2861 fprintf (stdout, " #%d type ", j + 1);
2862 pt (t->operand_types[j]);
2863 fprintf (stdout, "\n");
2864 }
2865 }
2866
2867 static void
2868 pe (expressionS *e)
2869 {
2870 fprintf (stdout, " operation %d\n", e->X_op);
2871 fprintf (stdout, " add_number %ld (%lx)\n",
2872 (long) e->X_add_number, (long) e->X_add_number);
2873 if (e->X_add_symbol)
2874 {
2875 fprintf (stdout, " add_symbol ");
2876 ps (e->X_add_symbol);
2877 fprintf (stdout, "\n");
2878 }
2879 if (e->X_op_symbol)
2880 {
2881 fprintf (stdout, " op_symbol ");
2882 ps (e->X_op_symbol);
2883 fprintf (stdout, "\n");
2884 }
2885 }
2886
2887 static void
2888 ps (symbolS *s)
2889 {
2890 fprintf (stdout, "%s type %s%s",
2891 S_GET_NAME (s),
2892 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2893 segment_name (S_GET_SEGMENT (s)));
2894 }
2895
2896 static struct type_name
2897 {
2898 i386_operand_type mask;
2899 const char *name;
2900 }
2901 const type_names[] =
2902 {
2903 { OPERAND_TYPE_REG8, "r8" },
2904 { OPERAND_TYPE_REG16, "r16" },
2905 { OPERAND_TYPE_REG32, "r32" },
2906 { OPERAND_TYPE_REG64, "r64" },
2907 { OPERAND_TYPE_IMM8, "i8" },
2908 { OPERAND_TYPE_IMM8, "i8s" },
2909 { OPERAND_TYPE_IMM16, "i16" },
2910 { OPERAND_TYPE_IMM32, "i32" },
2911 { OPERAND_TYPE_IMM32S, "i32s" },
2912 { OPERAND_TYPE_IMM64, "i64" },
2913 { OPERAND_TYPE_IMM1, "i1" },
2914 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2915 { OPERAND_TYPE_DISP8, "d8" },
2916 { OPERAND_TYPE_DISP16, "d16" },
2917 { OPERAND_TYPE_DISP32, "d32" },
2918 { OPERAND_TYPE_DISP32S, "d32s" },
2919 { OPERAND_TYPE_DISP64, "d64" },
2920 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
2921 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2922 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2923 { OPERAND_TYPE_CONTROL, "control reg" },
2924 { OPERAND_TYPE_TEST, "test reg" },
2925 { OPERAND_TYPE_DEBUG, "debug reg" },
2926 { OPERAND_TYPE_FLOATREG, "FReg" },
2927 { OPERAND_TYPE_FLOATACC, "FAcc" },
2928 { OPERAND_TYPE_SREG2, "SReg2" },
2929 { OPERAND_TYPE_SREG3, "SReg3" },
2930 { OPERAND_TYPE_ACC, "Acc" },
2931 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2932 { OPERAND_TYPE_REGMMX, "rMMX" },
2933 { OPERAND_TYPE_REGXMM, "rXMM" },
2934 { OPERAND_TYPE_REGYMM, "rYMM" },
2935 { OPERAND_TYPE_REGZMM, "rZMM" },
2936 { OPERAND_TYPE_REGMASK, "Mask reg" },
2937 { OPERAND_TYPE_ESSEG, "es" },
2938 };
2939
2940 static void
2941 pt (i386_operand_type t)
2942 {
2943 unsigned int j;
2944 i386_operand_type a;
2945
2946 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2947 {
2948 a = operand_type_and (t, type_names[j].mask);
2949 if (!operand_type_all_zero (&a))
2950 fprintf (stdout, "%s, ", type_names[j].name);
2951 }
2952 fflush (stdout);
2953 }
2954
2955 #endif /* DEBUG386 */
2956 \f
2957 static bfd_reloc_code_real_type
2958 reloc (unsigned int size,
2959 int pcrel,
2960 int sign,
2961 bfd_reloc_code_real_type other)
2962 {
2963 if (other != NO_RELOC)
2964 {
2965 reloc_howto_type *rel;
2966
2967 if (size == 8)
2968 switch (other)
2969 {
2970 case BFD_RELOC_X86_64_GOT32:
2971 return BFD_RELOC_X86_64_GOT64;
2972 break;
2973 case BFD_RELOC_X86_64_GOTPLT64:
2974 return BFD_RELOC_X86_64_GOTPLT64;
2975 break;
2976 case BFD_RELOC_X86_64_PLTOFF64:
2977 return BFD_RELOC_X86_64_PLTOFF64;
2978 break;
2979 case BFD_RELOC_X86_64_GOTPC32:
2980 other = BFD_RELOC_X86_64_GOTPC64;
2981 break;
2982 case BFD_RELOC_X86_64_GOTPCREL:
2983 other = BFD_RELOC_X86_64_GOTPCREL64;
2984 break;
2985 case BFD_RELOC_X86_64_TPOFF32:
2986 other = BFD_RELOC_X86_64_TPOFF64;
2987 break;
2988 case BFD_RELOC_X86_64_DTPOFF32:
2989 other = BFD_RELOC_X86_64_DTPOFF64;
2990 break;
2991 default:
2992 break;
2993 }
2994
2995 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2996 if (other == BFD_RELOC_SIZE32)
2997 {
2998 if (size == 8)
2999 other = BFD_RELOC_SIZE64;
3000 if (pcrel)
3001 {
3002 as_bad (_("there are no pc-relative size relocations"));
3003 return NO_RELOC;
3004 }
3005 }
3006 #endif
3007
3008 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3009 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3010 sign = -1;
3011
3012 rel = bfd_reloc_type_lookup (stdoutput, other);
3013 if (!rel)
3014 as_bad (_("unknown relocation (%u)"), other);
3015 else if (size != bfd_get_reloc_size (rel))
3016 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3017 bfd_get_reloc_size (rel),
3018 size);
3019 else if (pcrel && !rel->pc_relative)
3020 as_bad (_("non-pc-relative relocation for pc-relative field"));
3021 else if ((rel->complain_on_overflow == complain_overflow_signed
3022 && !sign)
3023 || (rel->complain_on_overflow == complain_overflow_unsigned
3024 && sign > 0))
3025 as_bad (_("relocated field and relocation type differ in signedness"));
3026 else
3027 return other;
3028 return NO_RELOC;
3029 }
3030
3031 if (pcrel)
3032 {
3033 if (!sign)
3034 as_bad (_("there are no unsigned pc-relative relocations"));
3035 switch (size)
3036 {
3037 case 1: return BFD_RELOC_8_PCREL;
3038 case 2: return BFD_RELOC_16_PCREL;
3039 case 4: return BFD_RELOC_32_PCREL;
3040 case 8: return BFD_RELOC_64_PCREL;
3041 }
3042 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3043 }
3044 else
3045 {
3046 if (sign > 0)
3047 switch (size)
3048 {
3049 case 4: return BFD_RELOC_X86_64_32S;
3050 }
3051 else
3052 switch (size)
3053 {
3054 case 1: return BFD_RELOC_8;
3055 case 2: return BFD_RELOC_16;
3056 case 4: return BFD_RELOC_32;
3057 case 8: return BFD_RELOC_64;
3058 }
3059 as_bad (_("cannot do %s %u byte relocation"),
3060 sign > 0 ? "signed" : "unsigned", size);
3061 }
3062
3063 return NO_RELOC;
3064 }
3065
3066 /* Here we decide which fixups can be adjusted to make them relative to
3067 the beginning of the section instead of the symbol. Basically we need
3068 to make sure that the dynamic relocations are done correctly, so in
3069 some cases we force the original symbol to be used. */
3070
3071 int
3072 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3073 {
3074 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3075 if (!IS_ELF)
3076 return 1;
3077
3078 /* Don't adjust pc-relative references to merge sections in 64-bit
3079 mode. */
3080 if (use_rela_relocations
3081 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3082 && fixP->fx_pcrel)
3083 return 0;
3084
3085 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3086 and changed later by validate_fix. */
3087 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3088 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3089 return 0;
3090
3091 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3092 for size relocations. */
3093 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3094 || fixP->fx_r_type == BFD_RELOC_SIZE64
3095 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3096 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3097 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3098 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3099 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3100 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3101 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3102 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3103 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3104 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3105 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3106 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3107 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3108 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3109 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3110 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3111 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3112 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3113 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3114 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3115 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3116 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3117 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3118 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3119 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3120 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3121 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3122 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3123 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3124 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3125 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3126 return 0;
3127 #endif
3128 return 1;
3129 }
3130
3131 static int
3132 intel_float_operand (const char *mnemonic)
3133 {
3134 /* Note that the value returned is meaningful only for opcodes with (memory)
3135 operands, hence the code here is free to improperly handle opcodes that
3136 have no operands (for better performance and smaller code). */
3137
3138 if (mnemonic[0] != 'f')
3139 return 0; /* non-math */
3140
3141 switch (mnemonic[1])
3142 {
3143 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3144 the fs segment override prefix not currently handled because no
3145 call path can make opcodes without operands get here */
3146 case 'i':
3147 return 2 /* integer op */;
3148 case 'l':
3149 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3150 return 3; /* fldcw/fldenv */
3151 break;
3152 case 'n':
3153 if (mnemonic[2] != 'o' /* fnop */)
3154 return 3; /* non-waiting control op */
3155 break;
3156 case 'r':
3157 if (mnemonic[2] == 's')
3158 return 3; /* frstor/frstpm */
3159 break;
3160 case 's':
3161 if (mnemonic[2] == 'a')
3162 return 3; /* fsave */
3163 if (mnemonic[2] == 't')
3164 {
3165 switch (mnemonic[3])
3166 {
3167 case 'c': /* fstcw */
3168 case 'd': /* fstdw */
3169 case 'e': /* fstenv */
3170 case 's': /* fsts[gw] */
3171 return 3;
3172 }
3173 }
3174 break;
3175 case 'x':
3176 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3177 return 0; /* fxsave/fxrstor are not really math ops */
3178 break;
3179 }
3180
3181 return 1;
3182 }
3183
3184 /* Build the VEX prefix. */
3185
3186 static void
3187 build_vex_prefix (const insn_template *t)
3188 {
3189 unsigned int register_specifier;
3190 unsigned int implied_prefix;
3191 unsigned int vector_length;
3192
3193 /* Check register specifier. */
3194 if (i.vex.register_specifier)
3195 {
3196 register_specifier =
3197 ~register_number (i.vex.register_specifier) & 0xf;
3198 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3199 }
3200 else
3201 register_specifier = 0xf;
3202
3203 /* Use 2-byte VEX prefix by swapping destination and source
3204 operand. */
3205 if (i.vec_encoding != vex_encoding_vex3
3206 && i.dir_encoding == dir_encoding_default
3207 && i.operands == i.reg_operands
3208 && i.tm.opcode_modifier.vexopcode == VEX0F
3209 && i.tm.opcode_modifier.load
3210 && i.rex == REX_B)
3211 {
3212 unsigned int xchg = i.operands - 1;
3213 union i386_op temp_op;
3214 i386_operand_type temp_type;
3215
3216 temp_type = i.types[xchg];
3217 i.types[xchg] = i.types[0];
3218 i.types[0] = temp_type;
3219 temp_op = i.op[xchg];
3220 i.op[xchg] = i.op[0];
3221 i.op[0] = temp_op;
3222
3223 gas_assert (i.rm.mode == 3);
3224
3225 i.rex = REX_R;
3226 xchg = i.rm.regmem;
3227 i.rm.regmem = i.rm.reg;
3228 i.rm.reg = xchg;
3229
3230 /* Use the next insn. */
3231 i.tm = t[1];
3232 }
3233
3234 if (i.tm.opcode_modifier.vex == VEXScalar)
3235 vector_length = avxscalar;
3236 else
3237 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
3238
3239 switch ((i.tm.base_opcode >> 8) & 0xff)
3240 {
3241 case 0:
3242 implied_prefix = 0;
3243 break;
3244 case DATA_PREFIX_OPCODE:
3245 implied_prefix = 1;
3246 break;
3247 case REPE_PREFIX_OPCODE:
3248 implied_prefix = 2;
3249 break;
3250 case REPNE_PREFIX_OPCODE:
3251 implied_prefix = 3;
3252 break;
3253 default:
3254 abort ();
3255 }
3256
3257 /* Use 2-byte VEX prefix if possible. */
3258 if (i.vec_encoding != vex_encoding_vex3
3259 && i.tm.opcode_modifier.vexopcode == VEX0F
3260 && i.tm.opcode_modifier.vexw != VEXW1
3261 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3262 {
3263 /* 2-byte VEX prefix. */
3264 unsigned int r;
3265
3266 i.vex.length = 2;
3267 i.vex.bytes[0] = 0xc5;
3268
3269 /* Check the REX.R bit. */
3270 r = (i.rex & REX_R) ? 0 : 1;
3271 i.vex.bytes[1] = (r << 7
3272 | register_specifier << 3
3273 | vector_length << 2
3274 | implied_prefix);
3275 }
3276 else
3277 {
3278 /* 3-byte VEX prefix. */
3279 unsigned int m, w;
3280
3281 i.vex.length = 3;
3282
3283 switch (i.tm.opcode_modifier.vexopcode)
3284 {
3285 case VEX0F:
3286 m = 0x1;
3287 i.vex.bytes[0] = 0xc4;
3288 break;
3289 case VEX0F38:
3290 m = 0x2;
3291 i.vex.bytes[0] = 0xc4;
3292 break;
3293 case VEX0F3A:
3294 m = 0x3;
3295 i.vex.bytes[0] = 0xc4;
3296 break;
3297 case XOP08:
3298 m = 0x8;
3299 i.vex.bytes[0] = 0x8f;
3300 break;
3301 case XOP09:
3302 m = 0x9;
3303 i.vex.bytes[0] = 0x8f;
3304 break;
3305 case XOP0A:
3306 m = 0xa;
3307 i.vex.bytes[0] = 0x8f;
3308 break;
3309 default:
3310 abort ();
3311 }
3312
3313 /* The high 3 bits of the second VEX byte are 1's compliment
3314 of RXB bits from REX. */
3315 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3316
3317 /* Check the REX.W bit. */
3318 w = (i.rex & REX_W) ? 1 : 0;
3319 if (i.tm.opcode_modifier.vexw == VEXW1)
3320 w = 1;
3321
3322 i.vex.bytes[2] = (w << 7
3323 | register_specifier << 3
3324 | vector_length << 2
3325 | implied_prefix);
3326 }
3327 }
3328
3329 /* Build the EVEX prefix. */
3330
3331 static void
3332 build_evex_prefix (void)
3333 {
3334 unsigned int register_specifier;
3335 unsigned int implied_prefix;
3336 unsigned int m, w;
3337 rex_byte vrex_used = 0;
3338
3339 /* Check register specifier. */
3340 if (i.vex.register_specifier)
3341 {
3342 gas_assert ((i.vrex & REX_X) == 0);
3343
3344 register_specifier = i.vex.register_specifier->reg_num;
3345 if ((i.vex.register_specifier->reg_flags & RegRex))
3346 register_specifier += 8;
3347 /* The upper 16 registers are encoded in the fourth byte of the
3348 EVEX prefix. */
3349 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3350 i.vex.bytes[3] = 0x8;
3351 register_specifier = ~register_specifier & 0xf;
3352 }
3353 else
3354 {
3355 register_specifier = 0xf;
3356
3357 /* Encode upper 16 vector index register in the fourth byte of
3358 the EVEX prefix. */
3359 if (!(i.vrex & REX_X))
3360 i.vex.bytes[3] = 0x8;
3361 else
3362 vrex_used |= REX_X;
3363 }
3364
3365 switch ((i.tm.base_opcode >> 8) & 0xff)
3366 {
3367 case 0:
3368 implied_prefix = 0;
3369 break;
3370 case DATA_PREFIX_OPCODE:
3371 implied_prefix = 1;
3372 break;
3373 case REPE_PREFIX_OPCODE:
3374 implied_prefix = 2;
3375 break;
3376 case REPNE_PREFIX_OPCODE:
3377 implied_prefix = 3;
3378 break;
3379 default:
3380 abort ();
3381 }
3382
3383 /* 4 byte EVEX prefix. */
3384 i.vex.length = 4;
3385 i.vex.bytes[0] = 0x62;
3386
3387 /* mmmm bits. */
3388 switch (i.tm.opcode_modifier.vexopcode)
3389 {
3390 case VEX0F:
3391 m = 1;
3392 break;
3393 case VEX0F38:
3394 m = 2;
3395 break;
3396 case VEX0F3A:
3397 m = 3;
3398 break;
3399 default:
3400 abort ();
3401 break;
3402 }
3403
3404 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3405 bits from REX. */
3406 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3407
3408 /* The fifth bit of the second EVEX byte is 1's compliment of the
3409 REX_R bit in VREX. */
3410 if (!(i.vrex & REX_R))
3411 i.vex.bytes[1] |= 0x10;
3412 else
3413 vrex_used |= REX_R;
3414
3415 if ((i.reg_operands + i.imm_operands) == i.operands)
3416 {
3417 /* When all operands are registers, the REX_X bit in REX is not
3418 used. We reuse it to encode the upper 16 registers, which is
3419 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3420 as 1's compliment. */
3421 if ((i.vrex & REX_B))
3422 {
3423 vrex_used |= REX_B;
3424 i.vex.bytes[1] &= ~0x40;
3425 }
3426 }
3427
3428 /* EVEX instructions shouldn't need the REX prefix. */
3429 i.vrex &= ~vrex_used;
3430 gas_assert (i.vrex == 0);
3431
3432 /* Check the REX.W bit. */
3433 w = (i.rex & REX_W) ? 1 : 0;
3434 if (i.tm.opcode_modifier.vexw)
3435 {
3436 if (i.tm.opcode_modifier.vexw == VEXW1)
3437 w = 1;
3438 }
3439 /* If w is not set it means we are dealing with WIG instruction. */
3440 else if (!w)
3441 {
3442 if (evexwig == evexw1)
3443 w = 1;
3444 }
3445
3446 /* Encode the U bit. */
3447 implied_prefix |= 0x4;
3448
3449 /* The third byte of the EVEX prefix. */
3450 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3451
3452 /* The fourth byte of the EVEX prefix. */
3453 /* The zeroing-masking bit. */
3454 if (i.mask && i.mask->zeroing)
3455 i.vex.bytes[3] |= 0x80;
3456
3457 /* Don't always set the broadcast bit if there is no RC. */
3458 if (!i.rounding)
3459 {
3460 /* Encode the vector length. */
3461 unsigned int vec_length;
3462
3463 switch (i.tm.opcode_modifier.evex)
3464 {
3465 case EVEXLIG: /* LL' is ignored */
3466 vec_length = evexlig << 5;
3467 break;
3468 case EVEX128:
3469 vec_length = 0 << 5;
3470 break;
3471 case EVEX256:
3472 vec_length = 1 << 5;
3473 break;
3474 case EVEX512:
3475 vec_length = 2 << 5;
3476 break;
3477 default:
3478 abort ();
3479 break;
3480 }
3481 i.vex.bytes[3] |= vec_length;
3482 /* Encode the broadcast bit. */
3483 if (i.broadcast)
3484 i.vex.bytes[3] |= 0x10;
3485 }
3486 else
3487 {
3488 if (i.rounding->type != saeonly)
3489 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3490 else
3491 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3492 }
3493
3494 if (i.mask && i.mask->mask)
3495 i.vex.bytes[3] |= i.mask->mask->reg_num;
3496 }
3497
3498 static void
3499 process_immext (void)
3500 {
3501 expressionS *exp;
3502
3503 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3504 && i.operands > 0)
3505 {
3506 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3507 with an opcode suffix which is coded in the same place as an
3508 8-bit immediate field would be.
3509 Here we check those operands and remove them afterwards. */
3510 unsigned int x;
3511
3512 for (x = 0; x < i.operands; x++)
3513 if (register_number (i.op[x].regs) != x)
3514 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3515 register_prefix, i.op[x].regs->reg_name, x + 1,
3516 i.tm.name);
3517
3518 i.operands = 0;
3519 }
3520
3521 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3522 {
3523 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3524 suffix which is coded in the same place as an 8-bit immediate
3525 field would be.
3526 Here we check those operands and remove them afterwards. */
3527 unsigned int x;
3528
3529 if (i.operands != 3)
3530 abort();
3531
3532 for (x = 0; x < 2; x++)
3533 if (register_number (i.op[x].regs) != x)
3534 goto bad_register_operand;
3535
3536 /* Check for third operand for mwaitx/monitorx insn. */
3537 if (register_number (i.op[x].regs)
3538 != (x + (i.tm.extension_opcode == 0xfb)))
3539 {
3540 bad_register_operand:
3541 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3542 register_prefix, i.op[x].regs->reg_name, x+1,
3543 i.tm.name);
3544 }
3545
3546 i.operands = 0;
3547 }
3548
3549 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3550 which is coded in the same place as an 8-bit immediate field
3551 would be. Here we fake an 8-bit immediate operand from the
3552 opcode suffix stored in tm.extension_opcode.
3553
3554 AVX instructions also use this encoding, for some of
3555 3 argument instructions. */
3556
3557 gas_assert (i.imm_operands <= 1
3558 && (i.operands <= 2
3559 || ((i.tm.opcode_modifier.vex
3560 || i.tm.opcode_modifier.evex)
3561 && i.operands <= 4)));
3562
3563 exp = &im_expressions[i.imm_operands++];
3564 i.op[i.operands].imms = exp;
3565 i.types[i.operands] = imm8;
3566 i.operands++;
3567 exp->X_op = O_constant;
3568 exp->X_add_number = i.tm.extension_opcode;
3569 i.tm.extension_opcode = None;
3570 }
3571
3572
3573 static int
3574 check_hle (void)
3575 {
3576 switch (i.tm.opcode_modifier.hleprefixok)
3577 {
3578 default:
3579 abort ();
3580 case HLEPrefixNone:
3581 as_bad (_("invalid instruction `%s' after `%s'"),
3582 i.tm.name, i.hle_prefix);
3583 return 0;
3584 case HLEPrefixLock:
3585 if (i.prefix[LOCK_PREFIX])
3586 return 1;
3587 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3588 return 0;
3589 case HLEPrefixAny:
3590 return 1;
3591 case HLEPrefixRelease:
3592 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3593 {
3594 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3595 i.tm.name);
3596 return 0;
3597 }
3598 if (i.mem_operands == 0
3599 || !operand_type_check (i.types[i.operands - 1], anymem))
3600 {
3601 as_bad (_("memory destination needed for instruction `%s'"
3602 " after `xrelease'"), i.tm.name);
3603 return 0;
3604 }
3605 return 1;
3606 }
3607 }
3608
3609 /* This is the guts of the machine-dependent assembler. LINE points to a
3610 machine dependent instruction. This function is supposed to emit
3611 the frags/bytes it assembles to. */
3612
3613 void
3614 md_assemble (char *line)
3615 {
3616 unsigned int j;
3617 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
3618 const insn_template *t;
3619
3620 /* Initialize globals. */
3621 memset (&i, '\0', sizeof (i));
3622 for (j = 0; j < MAX_OPERANDS; j++)
3623 i.reloc[j] = NO_RELOC;
3624 memset (disp_expressions, '\0', sizeof (disp_expressions));
3625 memset (im_expressions, '\0', sizeof (im_expressions));
3626 save_stack_p = save_stack;
3627
3628 /* First parse an instruction mnemonic & call i386_operand for the operands.
3629 We assume that the scrubber has arranged it so that line[0] is the valid
3630 start of a (possibly prefixed) mnemonic. */
3631
3632 line = parse_insn (line, mnemonic);
3633 if (line == NULL)
3634 return;
3635 mnem_suffix = i.suffix;
3636
3637 line = parse_operands (line, mnemonic);
3638 this_operand = -1;
3639 xfree (i.memop1_string);
3640 i.memop1_string = NULL;
3641 if (line == NULL)
3642 return;
3643
3644 /* Now we've parsed the mnemonic into a set of templates, and have the
3645 operands at hand. */
3646
3647 /* All intel opcodes have reversed operands except for "bound" and
3648 "enter". We also don't reverse intersegment "jmp" and "call"
3649 instructions with 2 immediate operands so that the immediate segment
3650 precedes the offset, as it does when in AT&T mode. */
3651 if (intel_syntax
3652 && i.operands > 1
3653 && (strcmp (mnemonic, "bound") != 0)
3654 && (strcmp (mnemonic, "invlpga") != 0)
3655 && !(operand_type_check (i.types[0], imm)
3656 && operand_type_check (i.types[1], imm)))
3657 swap_operands ();
3658
3659 /* The order of the immediates should be reversed
3660 for 2 immediates extrq and insertq instructions */
3661 if (i.imm_operands == 2
3662 && (strcmp (mnemonic, "extrq") == 0
3663 || strcmp (mnemonic, "insertq") == 0))
3664 swap_2_operands (0, 1);
3665
3666 if (i.imm_operands)
3667 optimize_imm ();
3668
3669 /* Don't optimize displacement for movabs since it only takes 64bit
3670 displacement. */
3671 if (i.disp_operands
3672 && i.disp_encoding != disp_encoding_32bit
3673 && (flag_code != CODE_64BIT
3674 || strcmp (mnemonic, "movabs") != 0))
3675 optimize_disp ();
3676
3677 /* Next, we find a template that matches the given insn,
3678 making sure the overlap of the given operands types is consistent
3679 with the template operand types. */
3680
3681 if (!(t = match_template (mnem_suffix)))
3682 return;
3683
3684 if (sse_check != check_none
3685 && !i.tm.opcode_modifier.noavx
3686 && (i.tm.cpu_flags.bitfield.cpusse
3687 || i.tm.cpu_flags.bitfield.cpusse2
3688 || i.tm.cpu_flags.bitfield.cpusse3
3689 || i.tm.cpu_flags.bitfield.cpussse3
3690 || i.tm.cpu_flags.bitfield.cpusse4_1
3691 || i.tm.cpu_flags.bitfield.cpusse4_2))
3692 {
3693 (sse_check == check_warning
3694 ? as_warn
3695 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3696 }
3697
3698 /* Zap movzx and movsx suffix. The suffix has been set from
3699 "word ptr" or "byte ptr" on the source operand in Intel syntax
3700 or extracted from mnemonic in AT&T syntax. But we'll use
3701 the destination register to choose the suffix for encoding. */
3702 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3703 {
3704 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3705 there is no suffix, the default will be byte extension. */
3706 if (i.reg_operands != 2
3707 && !i.suffix
3708 && intel_syntax)
3709 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3710
3711 i.suffix = 0;
3712 }
3713
3714 if (i.tm.opcode_modifier.fwait)
3715 if (!add_prefix (FWAIT_OPCODE))
3716 return;
3717
3718 /* Check if REP prefix is OK. */
3719 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3720 {
3721 as_bad (_("invalid instruction `%s' after `%s'"),
3722 i.tm.name, i.rep_prefix);
3723 return;
3724 }
3725
3726 /* Check for lock without a lockable instruction. Destination operand
3727 must be memory unless it is xchg (0x86). */
3728 if (i.prefix[LOCK_PREFIX]
3729 && (!i.tm.opcode_modifier.islockable
3730 || i.mem_operands == 0
3731 || (i.tm.base_opcode != 0x86
3732 && !operand_type_check (i.types[i.operands - 1], anymem))))
3733 {
3734 as_bad (_("expecting lockable instruction after `lock'"));
3735 return;
3736 }
3737
3738 /* Check if HLE prefix is OK. */
3739 if (i.hle_prefix && !check_hle ())
3740 return;
3741
3742 /* Check BND prefix. */
3743 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3744 as_bad (_("expecting valid branch instruction after `bnd'"));
3745
3746 /* Check NOTRACK prefix. */
3747 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
3748 as_bad (_("expecting indirect branch instruction after `notrack'"));
3749
3750 if (i.tm.cpu_flags.bitfield.cpumpx)
3751 {
3752 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
3753 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3754 else if (flag_code != CODE_16BIT
3755 ? i.prefix[ADDR_PREFIX]
3756 : i.mem_operands && !i.prefix[ADDR_PREFIX])
3757 as_bad (_("16-bit address isn't allowed in MPX instructions"));
3758 }
3759
3760 /* Insert BND prefix. */
3761 if (add_bnd_prefix
3762 && i.tm.opcode_modifier.bndprefixok
3763 && !i.prefix[BND_PREFIX])
3764 add_prefix (BND_PREFIX_OPCODE);
3765
3766 /* Check string instruction segment overrides. */
3767 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3768 {
3769 if (!check_string ())
3770 return;
3771 i.disp_operands = 0;
3772 }
3773
3774 if (!process_suffix ())
3775 return;
3776
3777 /* Update operand types. */
3778 for (j = 0; j < i.operands; j++)
3779 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3780
3781 /* Make still unresolved immediate matches conform to size of immediate
3782 given in i.suffix. */
3783 if (!finalize_imm ())
3784 return;
3785
3786 if (i.types[0].bitfield.imm1)
3787 i.imm_operands = 0; /* kludge for shift insns. */
3788
3789 /* We only need to check those implicit registers for instructions
3790 with 3 operands or less. */
3791 if (i.operands <= 3)
3792 for (j = 0; j < i.operands; j++)
3793 if (i.types[j].bitfield.inoutportreg
3794 || i.types[j].bitfield.shiftcount
3795 || i.types[j].bitfield.acc
3796 || i.types[j].bitfield.floatacc)
3797 i.reg_operands--;
3798
3799 /* ImmExt should be processed after SSE2AVX. */
3800 if (!i.tm.opcode_modifier.sse2avx
3801 && i.tm.opcode_modifier.immext)
3802 process_immext ();
3803
3804 /* For insns with operands there are more diddles to do to the opcode. */
3805 if (i.operands)
3806 {
3807 if (!process_operands ())
3808 return;
3809 }
3810 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3811 {
3812 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3813 as_warn (_("translating to `%sp'"), i.tm.name);
3814 }
3815
3816 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3817 {
3818 if (flag_code == CODE_16BIT)
3819 {
3820 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3821 i.tm.name);
3822 return;
3823 }
3824
3825 if (i.tm.opcode_modifier.vex)
3826 build_vex_prefix (t);
3827 else
3828 build_evex_prefix ();
3829 }
3830
3831 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3832 instructions may define INT_OPCODE as well, so avoid this corner
3833 case for those instructions that use MODRM. */
3834 if (i.tm.base_opcode == INT_OPCODE
3835 && !i.tm.opcode_modifier.modrm
3836 && i.op[0].imms->X_add_number == 3)
3837 {
3838 i.tm.base_opcode = INT3_OPCODE;
3839 i.imm_operands = 0;
3840 }
3841
3842 if ((i.tm.opcode_modifier.jump
3843 || i.tm.opcode_modifier.jumpbyte
3844 || i.tm.opcode_modifier.jumpdword)
3845 && i.op[0].disps->X_op == O_constant)
3846 {
3847 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3848 the absolute address given by the constant. Since ix86 jumps and
3849 calls are pc relative, we need to generate a reloc. */
3850 i.op[0].disps->X_add_symbol = &abs_symbol;
3851 i.op[0].disps->X_op = O_symbol;
3852 }
3853
3854 if (i.tm.opcode_modifier.rex64)
3855 i.rex |= REX_W;
3856
3857 /* For 8 bit registers we need an empty rex prefix. Also if the
3858 instruction already has a prefix, we need to convert old
3859 registers to new ones. */
3860
3861 if ((i.types[0].bitfield.reg8
3862 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3863 || (i.types[1].bitfield.reg8
3864 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3865 || ((i.types[0].bitfield.reg8
3866 || i.types[1].bitfield.reg8)
3867 && i.rex != 0))
3868 {
3869 int x;
3870
3871 i.rex |= REX_OPCODE;
3872 for (x = 0; x < 2; x++)
3873 {
3874 /* Look for 8 bit operand that uses old registers. */
3875 if (i.types[x].bitfield.reg8
3876 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3877 {
3878 /* In case it is "hi" register, give up. */
3879 if (i.op[x].regs->reg_num > 3)
3880 as_bad (_("can't encode register '%s%s' in an "
3881 "instruction requiring REX prefix."),
3882 register_prefix, i.op[x].regs->reg_name);
3883
3884 /* Otherwise it is equivalent to the extended register.
3885 Since the encoding doesn't change this is merely
3886 cosmetic cleanup for debug output. */
3887
3888 i.op[x].regs = i.op[x].regs + 8;
3889 }
3890 }
3891 }
3892
3893 if (i.rex != 0)
3894 add_prefix (REX_OPCODE | i.rex);
3895
3896 /* We are ready to output the insn. */
3897 output_insn ();
3898 }
3899
3900 static char *
3901 parse_insn (char *line, char *mnemonic)
3902 {
3903 char *l = line;
3904 char *token_start = l;
3905 char *mnem_p;
3906 int supported;
3907 const insn_template *t;
3908 char *dot_p = NULL;
3909
3910 while (1)
3911 {
3912 mnem_p = mnemonic;
3913 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3914 {
3915 if (*mnem_p == '.')
3916 dot_p = mnem_p;
3917 mnem_p++;
3918 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3919 {
3920 as_bad (_("no such instruction: `%s'"), token_start);
3921 return NULL;
3922 }
3923 l++;
3924 }
3925 if (!is_space_char (*l)
3926 && *l != END_OF_INSN
3927 && (intel_syntax
3928 || (*l != PREFIX_SEPARATOR
3929 && *l != ',')))
3930 {
3931 as_bad (_("invalid character %s in mnemonic"),
3932 output_invalid (*l));
3933 return NULL;
3934 }
3935 if (token_start == l)
3936 {
3937 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3938 as_bad (_("expecting prefix; got nothing"));
3939 else
3940 as_bad (_("expecting mnemonic; got nothing"));
3941 return NULL;
3942 }
3943
3944 /* Look up instruction (or prefix) via hash table. */
3945 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3946
3947 if (*l != END_OF_INSN
3948 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3949 && current_templates
3950 && current_templates->start->opcode_modifier.isprefix)
3951 {
3952 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3953 {
3954 as_bad ((flag_code != CODE_64BIT
3955 ? _("`%s' is only supported in 64-bit mode")
3956 : _("`%s' is not supported in 64-bit mode")),
3957 current_templates->start->name);
3958 return NULL;
3959 }
3960 /* If we are in 16-bit mode, do not allow addr16 or data16.
3961 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3962 if ((current_templates->start->opcode_modifier.size16
3963 || current_templates->start->opcode_modifier.size32)
3964 && flag_code != CODE_64BIT
3965 && (current_templates->start->opcode_modifier.size32
3966 ^ (flag_code == CODE_16BIT)))
3967 {
3968 as_bad (_("redundant %s prefix"),
3969 current_templates->start->name);
3970 return NULL;
3971 }
3972 if (current_templates->start->opcode_length == 0)
3973 {
3974 /* Handle pseudo prefixes. */
3975 switch (current_templates->start->base_opcode)
3976 {
3977 case 0x0:
3978 /* {disp8} */
3979 i.disp_encoding = disp_encoding_8bit;
3980 break;
3981 case 0x1:
3982 /* {disp32} */
3983 i.disp_encoding = disp_encoding_32bit;
3984 break;
3985 case 0x2:
3986 /* {load} */
3987 i.dir_encoding = dir_encoding_load;
3988 break;
3989 case 0x3:
3990 /* {store} */
3991 i.dir_encoding = dir_encoding_store;
3992 break;
3993 case 0x4:
3994 /* {vex2} */
3995 i.vec_encoding = vex_encoding_vex2;
3996 break;
3997 case 0x5:
3998 /* {vex3} */
3999 i.vec_encoding = vex_encoding_vex3;
4000 break;
4001 case 0x6:
4002 /* {evex} */
4003 i.vec_encoding = vex_encoding_evex;
4004 break;
4005 default:
4006 abort ();
4007 }
4008 }
4009 else
4010 {
4011 /* Add prefix, checking for repeated prefixes. */
4012 switch (add_prefix (current_templates->start->base_opcode))
4013 {
4014 case PREFIX_EXIST:
4015 return NULL;
4016 case PREFIX_DS:
4017 if (current_templates->start->cpu_flags.bitfield.cpucet)
4018 i.notrack_prefix = current_templates->start->name;
4019 break;
4020 case PREFIX_REP:
4021 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4022 i.hle_prefix = current_templates->start->name;
4023 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4024 i.bnd_prefix = current_templates->start->name;
4025 else
4026 i.rep_prefix = current_templates->start->name;
4027 break;
4028 default:
4029 break;
4030 }
4031 }
4032 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4033 token_start = ++l;
4034 }
4035 else
4036 break;
4037 }
4038
4039 if (!current_templates)
4040 {
4041 /* Check if we should swap operand or force 32bit displacement in
4042 encoding. */
4043 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4044 i.dir_encoding = dir_encoding_store;
4045 else if (mnem_p - 3 == dot_p
4046 && dot_p[1] == 'd'
4047 && dot_p[2] == '8')
4048 i.disp_encoding = disp_encoding_8bit;
4049 else if (mnem_p - 4 == dot_p
4050 && dot_p[1] == 'd'
4051 && dot_p[2] == '3'
4052 && dot_p[3] == '2')
4053 i.disp_encoding = disp_encoding_32bit;
4054 else
4055 goto check_suffix;
4056 mnem_p = dot_p;
4057 *dot_p = '\0';
4058 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4059 }
4060
4061 if (!current_templates)
4062 {
4063 check_suffix:
4064 /* See if we can get a match by trimming off a suffix. */
4065 switch (mnem_p[-1])
4066 {
4067 case WORD_MNEM_SUFFIX:
4068 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4069 i.suffix = SHORT_MNEM_SUFFIX;
4070 else
4071 /* Fall through. */
4072 case BYTE_MNEM_SUFFIX:
4073 case QWORD_MNEM_SUFFIX:
4074 i.suffix = mnem_p[-1];
4075 mnem_p[-1] = '\0';
4076 current_templates = (const templates *) hash_find (op_hash,
4077 mnemonic);
4078 break;
4079 case SHORT_MNEM_SUFFIX:
4080 case LONG_MNEM_SUFFIX:
4081 if (!intel_syntax)
4082 {
4083 i.suffix = mnem_p[-1];
4084 mnem_p[-1] = '\0';
4085 current_templates = (const templates *) hash_find (op_hash,
4086 mnemonic);
4087 }
4088 break;
4089
4090 /* Intel Syntax. */
4091 case 'd':
4092 if (intel_syntax)
4093 {
4094 if (intel_float_operand (mnemonic) == 1)
4095 i.suffix = SHORT_MNEM_SUFFIX;
4096 else
4097 i.suffix = LONG_MNEM_SUFFIX;
4098 mnem_p[-1] = '\0';
4099 current_templates = (const templates *) hash_find (op_hash,
4100 mnemonic);
4101 }
4102 break;
4103 }
4104 if (!current_templates)
4105 {
4106 as_bad (_("no such instruction: `%s'"), token_start);
4107 return NULL;
4108 }
4109 }
4110
4111 if (current_templates->start->opcode_modifier.jump
4112 || current_templates->start->opcode_modifier.jumpbyte)
4113 {
4114 /* Check for a branch hint. We allow ",pt" and ",pn" for
4115 predict taken and predict not taken respectively.
4116 I'm not sure that branch hints actually do anything on loop
4117 and jcxz insns (JumpByte) for current Pentium4 chips. They
4118 may work in the future and it doesn't hurt to accept them
4119 now. */
4120 if (l[0] == ',' && l[1] == 'p')
4121 {
4122 if (l[2] == 't')
4123 {
4124 if (!add_prefix (DS_PREFIX_OPCODE))
4125 return NULL;
4126 l += 3;
4127 }
4128 else if (l[2] == 'n')
4129 {
4130 if (!add_prefix (CS_PREFIX_OPCODE))
4131 return NULL;
4132 l += 3;
4133 }
4134 }
4135 }
4136 /* Any other comma loses. */
4137 if (*l == ',')
4138 {
4139 as_bad (_("invalid character %s in mnemonic"),
4140 output_invalid (*l));
4141 return NULL;
4142 }
4143
4144 /* Check if instruction is supported on specified architecture. */
4145 supported = 0;
4146 for (t = current_templates->start; t < current_templates->end; ++t)
4147 {
4148 supported |= cpu_flags_match (t);
4149 if (supported == CPU_FLAGS_PERFECT_MATCH)
4150 goto skip;
4151 }
4152
4153 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4154 {
4155 as_bad (flag_code == CODE_64BIT
4156 ? _("`%s' is not supported in 64-bit mode")
4157 : _("`%s' is only supported in 64-bit mode"),
4158 current_templates->start->name);
4159 return NULL;
4160 }
4161 if (supported != CPU_FLAGS_PERFECT_MATCH)
4162 {
4163 as_bad (_("`%s' is not supported on `%s%s'"),
4164 current_templates->start->name,
4165 cpu_arch_name ? cpu_arch_name : default_arch,
4166 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4167 return NULL;
4168 }
4169
4170 skip:
4171 if (!cpu_arch_flags.bitfield.cpui386
4172 && (flag_code != CODE_16BIT))
4173 {
4174 as_warn (_("use .code16 to ensure correct addressing mode"));
4175 }
4176
4177 return l;
4178 }
4179
4180 static char *
4181 parse_operands (char *l, const char *mnemonic)
4182 {
4183 char *token_start;
4184
4185 /* 1 if operand is pending after ','. */
4186 unsigned int expecting_operand = 0;
4187
4188 /* Non-zero if operand parens not balanced. */
4189 unsigned int paren_not_balanced;
4190
4191 while (*l != END_OF_INSN)
4192 {
4193 /* Skip optional white space before operand. */
4194 if (is_space_char (*l))
4195 ++l;
4196 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4197 {
4198 as_bad (_("invalid character %s before operand %d"),
4199 output_invalid (*l),
4200 i.operands + 1);
4201 return NULL;
4202 }
4203 token_start = l; /* After white space. */
4204 paren_not_balanced = 0;
4205 while (paren_not_balanced || *l != ',')
4206 {
4207 if (*l == END_OF_INSN)
4208 {
4209 if (paren_not_balanced)
4210 {
4211 if (!intel_syntax)
4212 as_bad (_("unbalanced parenthesis in operand %d."),
4213 i.operands + 1);
4214 else
4215 as_bad (_("unbalanced brackets in operand %d."),
4216 i.operands + 1);
4217 return NULL;
4218 }
4219 else
4220 break; /* we are done */
4221 }
4222 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4223 {
4224 as_bad (_("invalid character %s in operand %d"),
4225 output_invalid (*l),
4226 i.operands + 1);
4227 return NULL;
4228 }
4229 if (!intel_syntax)
4230 {
4231 if (*l == '(')
4232 ++paren_not_balanced;
4233 if (*l == ')')
4234 --paren_not_balanced;
4235 }
4236 else
4237 {
4238 if (*l == '[')
4239 ++paren_not_balanced;
4240 if (*l == ']')
4241 --paren_not_balanced;
4242 }
4243 l++;
4244 }
4245 if (l != token_start)
4246 { /* Yes, we've read in another operand. */
4247 unsigned int operand_ok;
4248 this_operand = i.operands++;
4249 if (i.operands > MAX_OPERANDS)
4250 {
4251 as_bad (_("spurious operands; (%d operands/instruction max)"),
4252 MAX_OPERANDS);
4253 return NULL;
4254 }
4255 i.types[this_operand].bitfield.unspecified = 1;
4256 /* Now parse operand adding info to 'i' as we go along. */
4257 END_STRING_AND_SAVE (l);
4258
4259 if (intel_syntax)
4260 operand_ok =
4261 i386_intel_operand (token_start,
4262 intel_float_operand (mnemonic));
4263 else
4264 operand_ok = i386_att_operand (token_start);
4265
4266 RESTORE_END_STRING (l);
4267 if (!operand_ok)
4268 return NULL;
4269 }
4270 else
4271 {
4272 if (expecting_operand)
4273 {
4274 expecting_operand_after_comma:
4275 as_bad (_("expecting operand after ','; got nothing"));
4276 return NULL;
4277 }
4278 if (*l == ',')
4279 {
4280 as_bad (_("expecting operand before ','; got nothing"));
4281 return NULL;
4282 }
4283 }
4284
4285 /* Now *l must be either ',' or END_OF_INSN. */
4286 if (*l == ',')
4287 {
4288 if (*++l == END_OF_INSN)
4289 {
4290 /* Just skip it, if it's \n complain. */
4291 goto expecting_operand_after_comma;
4292 }
4293 expecting_operand = 1;
4294 }
4295 }
4296 return l;
4297 }
4298
4299 static void
4300 swap_2_operands (int xchg1, int xchg2)
4301 {
4302 union i386_op temp_op;
4303 i386_operand_type temp_type;
4304 enum bfd_reloc_code_real temp_reloc;
4305
4306 temp_type = i.types[xchg2];
4307 i.types[xchg2] = i.types[xchg1];
4308 i.types[xchg1] = temp_type;
4309 temp_op = i.op[xchg2];
4310 i.op[xchg2] = i.op[xchg1];
4311 i.op[xchg1] = temp_op;
4312 temp_reloc = i.reloc[xchg2];
4313 i.reloc[xchg2] = i.reloc[xchg1];
4314 i.reloc[xchg1] = temp_reloc;
4315
4316 if (i.mask)
4317 {
4318 if (i.mask->operand == xchg1)
4319 i.mask->operand = xchg2;
4320 else if (i.mask->operand == xchg2)
4321 i.mask->operand = xchg1;
4322 }
4323 if (i.broadcast)
4324 {
4325 if (i.broadcast->operand == xchg1)
4326 i.broadcast->operand = xchg2;
4327 else if (i.broadcast->operand == xchg2)
4328 i.broadcast->operand = xchg1;
4329 }
4330 if (i.rounding)
4331 {
4332 if (i.rounding->operand == xchg1)
4333 i.rounding->operand = xchg2;
4334 else if (i.rounding->operand == xchg2)
4335 i.rounding->operand = xchg1;
4336 }
4337 }
4338
4339 static void
4340 swap_operands (void)
4341 {
4342 switch (i.operands)
4343 {
4344 case 5:
4345 case 4:
4346 swap_2_operands (1, i.operands - 2);
4347 /* Fall through. */
4348 case 3:
4349 case 2:
4350 swap_2_operands (0, i.operands - 1);
4351 break;
4352 default:
4353 abort ();
4354 }
4355
4356 if (i.mem_operands == 2)
4357 {
4358 const seg_entry *temp_seg;
4359 temp_seg = i.seg[0];
4360 i.seg[0] = i.seg[1];
4361 i.seg[1] = temp_seg;
4362 }
4363 }
4364
4365 /* Try to ensure constant immediates are represented in the smallest
4366 opcode possible. */
4367 static void
4368 optimize_imm (void)
4369 {
4370 char guess_suffix = 0;
4371 int op;
4372
4373 if (i.suffix)
4374 guess_suffix = i.suffix;
4375 else if (i.reg_operands)
4376 {
4377 /* Figure out a suffix from the last register operand specified.
4378 We can't do this properly yet, ie. excluding InOutPortReg,
4379 but the following works for instructions with immediates.
4380 In any case, we can't set i.suffix yet. */
4381 for (op = i.operands; --op >= 0;)
4382 if (i.types[op].bitfield.reg8)
4383 {
4384 guess_suffix = BYTE_MNEM_SUFFIX;
4385 break;
4386 }
4387 else if (i.types[op].bitfield.reg16)
4388 {
4389 guess_suffix = WORD_MNEM_SUFFIX;
4390 break;
4391 }
4392 else if (i.types[op].bitfield.reg32)
4393 {
4394 guess_suffix = LONG_MNEM_SUFFIX;
4395 break;
4396 }
4397 else if (i.types[op].bitfield.reg64)
4398 {
4399 guess_suffix = QWORD_MNEM_SUFFIX;
4400 break;
4401 }
4402 }
4403 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4404 guess_suffix = WORD_MNEM_SUFFIX;
4405
4406 for (op = i.operands; --op >= 0;)
4407 if (operand_type_check (i.types[op], imm))
4408 {
4409 switch (i.op[op].imms->X_op)
4410 {
4411 case O_constant:
4412 /* If a suffix is given, this operand may be shortened. */
4413 switch (guess_suffix)
4414 {
4415 case LONG_MNEM_SUFFIX:
4416 i.types[op].bitfield.imm32 = 1;
4417 i.types[op].bitfield.imm64 = 1;
4418 break;
4419 case WORD_MNEM_SUFFIX:
4420 i.types[op].bitfield.imm16 = 1;
4421 i.types[op].bitfield.imm32 = 1;
4422 i.types[op].bitfield.imm32s = 1;
4423 i.types[op].bitfield.imm64 = 1;
4424 break;
4425 case BYTE_MNEM_SUFFIX:
4426 i.types[op].bitfield.imm8 = 1;
4427 i.types[op].bitfield.imm8s = 1;
4428 i.types[op].bitfield.imm16 = 1;
4429 i.types[op].bitfield.imm32 = 1;
4430 i.types[op].bitfield.imm32s = 1;
4431 i.types[op].bitfield.imm64 = 1;
4432 break;
4433 }
4434
4435 /* If this operand is at most 16 bits, convert it
4436 to a signed 16 bit number before trying to see
4437 whether it will fit in an even smaller size.
4438 This allows a 16-bit operand such as $0xffe0 to
4439 be recognised as within Imm8S range. */
4440 if ((i.types[op].bitfield.imm16)
4441 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4442 {
4443 i.op[op].imms->X_add_number =
4444 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4445 }
4446 #ifdef BFD64
4447 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4448 if ((i.types[op].bitfield.imm32)
4449 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4450 == 0))
4451 {
4452 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4453 ^ ((offsetT) 1 << 31))
4454 - ((offsetT) 1 << 31));
4455 }
4456 #endif
4457 i.types[op]
4458 = operand_type_or (i.types[op],
4459 smallest_imm_type (i.op[op].imms->X_add_number));
4460
4461 /* We must avoid matching of Imm32 templates when 64bit
4462 only immediate is available. */
4463 if (guess_suffix == QWORD_MNEM_SUFFIX)
4464 i.types[op].bitfield.imm32 = 0;
4465 break;
4466
4467 case O_absent:
4468 case O_register:
4469 abort ();
4470
4471 /* Symbols and expressions. */
4472 default:
4473 /* Convert symbolic operand to proper sizes for matching, but don't
4474 prevent matching a set of insns that only supports sizes other
4475 than those matching the insn suffix. */
4476 {
4477 i386_operand_type mask, allowed;
4478 const insn_template *t;
4479
4480 operand_type_set (&mask, 0);
4481 operand_type_set (&allowed, 0);
4482
4483 for (t = current_templates->start;
4484 t < current_templates->end;
4485 ++t)
4486 allowed = operand_type_or (allowed,
4487 t->operand_types[op]);
4488 switch (guess_suffix)
4489 {
4490 case QWORD_MNEM_SUFFIX:
4491 mask.bitfield.imm64 = 1;
4492 mask.bitfield.imm32s = 1;
4493 break;
4494 case LONG_MNEM_SUFFIX:
4495 mask.bitfield.imm32 = 1;
4496 break;
4497 case WORD_MNEM_SUFFIX:
4498 mask.bitfield.imm16 = 1;
4499 break;
4500 case BYTE_MNEM_SUFFIX:
4501 mask.bitfield.imm8 = 1;
4502 break;
4503 default:
4504 break;
4505 }
4506 allowed = operand_type_and (mask, allowed);
4507 if (!operand_type_all_zero (&allowed))
4508 i.types[op] = operand_type_and (i.types[op], mask);
4509 }
4510 break;
4511 }
4512 }
4513 }
4514
4515 /* Try to use the smallest displacement type too. */
4516 static void
4517 optimize_disp (void)
4518 {
4519 int op;
4520
4521 for (op = i.operands; --op >= 0;)
4522 if (operand_type_check (i.types[op], disp))
4523 {
4524 if (i.op[op].disps->X_op == O_constant)
4525 {
4526 offsetT op_disp = i.op[op].disps->X_add_number;
4527
4528 if (i.types[op].bitfield.disp16
4529 && (op_disp & ~(offsetT) 0xffff) == 0)
4530 {
4531 /* If this operand is at most 16 bits, convert
4532 to a signed 16 bit number and don't use 64bit
4533 displacement. */
4534 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4535 i.types[op].bitfield.disp64 = 0;
4536 }
4537 #ifdef BFD64
4538 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4539 if (i.types[op].bitfield.disp32
4540 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4541 {
4542 /* If this operand is at most 32 bits, convert
4543 to a signed 32 bit number and don't use 64bit
4544 displacement. */
4545 op_disp &= (((offsetT) 2 << 31) - 1);
4546 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4547 i.types[op].bitfield.disp64 = 0;
4548 }
4549 #endif
4550 if (!op_disp && i.types[op].bitfield.baseindex)
4551 {
4552 i.types[op].bitfield.disp8 = 0;
4553 i.types[op].bitfield.disp16 = 0;
4554 i.types[op].bitfield.disp32 = 0;
4555 i.types[op].bitfield.disp32s = 0;
4556 i.types[op].bitfield.disp64 = 0;
4557 i.op[op].disps = 0;
4558 i.disp_operands--;
4559 }
4560 else if (flag_code == CODE_64BIT)
4561 {
4562 if (fits_in_signed_long (op_disp))
4563 {
4564 i.types[op].bitfield.disp64 = 0;
4565 i.types[op].bitfield.disp32s = 1;
4566 }
4567 if (i.prefix[ADDR_PREFIX]
4568 && fits_in_unsigned_long (op_disp))
4569 i.types[op].bitfield.disp32 = 1;
4570 }
4571 if ((i.types[op].bitfield.disp32
4572 || i.types[op].bitfield.disp32s
4573 || i.types[op].bitfield.disp16)
4574 && fits_in_signed_byte (op_disp))
4575 i.types[op].bitfield.disp8 = 1;
4576 }
4577 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4578 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4579 {
4580 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4581 i.op[op].disps, 0, i.reloc[op]);
4582 i.types[op].bitfield.disp8 = 0;
4583 i.types[op].bitfield.disp16 = 0;
4584 i.types[op].bitfield.disp32 = 0;
4585 i.types[op].bitfield.disp32s = 0;
4586 i.types[op].bitfield.disp64 = 0;
4587 }
4588 else
4589 /* We only support 64bit displacement on constants. */
4590 i.types[op].bitfield.disp64 = 0;
4591 }
4592 }
4593
4594 /* Check if operands are valid for the instruction. */
4595
4596 static int
4597 check_VecOperands (const insn_template *t)
4598 {
4599 unsigned int op;
4600
4601 /* Without VSIB byte, we can't have a vector register for index. */
4602 if (!t->opcode_modifier.vecsib
4603 && i.index_reg
4604 && (i.index_reg->reg_type.bitfield.regxmm
4605 || i.index_reg->reg_type.bitfield.regymm
4606 || i.index_reg->reg_type.bitfield.regzmm))
4607 {
4608 i.error = unsupported_vector_index_register;
4609 return 1;
4610 }
4611
4612 /* Check if default mask is allowed. */
4613 if (t->opcode_modifier.nodefmask
4614 && (!i.mask || i.mask->mask->reg_num == 0))
4615 {
4616 i.error = no_default_mask;
4617 return 1;
4618 }
4619
4620 /* For VSIB byte, we need a vector register for index, and all vector
4621 registers must be distinct. */
4622 if (t->opcode_modifier.vecsib)
4623 {
4624 if (!i.index_reg
4625 || !((t->opcode_modifier.vecsib == VecSIB128
4626 && i.index_reg->reg_type.bitfield.regxmm)
4627 || (t->opcode_modifier.vecsib == VecSIB256
4628 && i.index_reg->reg_type.bitfield.regymm)
4629 || (t->opcode_modifier.vecsib == VecSIB512
4630 && i.index_reg->reg_type.bitfield.regzmm)))
4631 {
4632 i.error = invalid_vsib_address;
4633 return 1;
4634 }
4635
4636 gas_assert (i.reg_operands == 2 || i.mask);
4637 if (i.reg_operands == 2 && !i.mask)
4638 {
4639 gas_assert (i.types[0].bitfield.regxmm
4640 || i.types[0].bitfield.regymm);
4641 gas_assert (i.types[2].bitfield.regxmm
4642 || i.types[2].bitfield.regymm);
4643 if (operand_check == check_none)
4644 return 0;
4645 if (register_number (i.op[0].regs)
4646 != register_number (i.index_reg)
4647 && register_number (i.op[2].regs)
4648 != register_number (i.index_reg)
4649 && register_number (i.op[0].regs)
4650 != register_number (i.op[2].regs))
4651 return 0;
4652 if (operand_check == check_error)
4653 {
4654 i.error = invalid_vector_register_set;
4655 return 1;
4656 }
4657 as_warn (_("mask, index, and destination registers should be distinct"));
4658 }
4659 else if (i.reg_operands == 1 && i.mask)
4660 {
4661 if ((i.types[1].bitfield.regymm
4662 || i.types[1].bitfield.regzmm)
4663 && (register_number (i.op[1].regs)
4664 == register_number (i.index_reg)))
4665 {
4666 if (operand_check == check_error)
4667 {
4668 i.error = invalid_vector_register_set;
4669 return 1;
4670 }
4671 if (operand_check != check_none)
4672 as_warn (_("index and destination registers should be distinct"));
4673 }
4674 }
4675 }
4676
4677 /* Check if broadcast is supported by the instruction and is applied
4678 to the memory operand. */
4679 if (i.broadcast)
4680 {
4681 int broadcasted_opnd_size;
4682
4683 /* Check if specified broadcast is supported in this instruction,
4684 and it's applied to memory operand of DWORD or QWORD type,
4685 depending on VecESize. */
4686 if (i.broadcast->type != t->opcode_modifier.broadcast
4687 || !i.types[i.broadcast->operand].bitfield.mem
4688 || (t->opcode_modifier.vecesize == 0
4689 && !i.types[i.broadcast->operand].bitfield.dword
4690 && !i.types[i.broadcast->operand].bitfield.unspecified)
4691 || (t->opcode_modifier.vecesize == 1
4692 && !i.types[i.broadcast->operand].bitfield.qword
4693 && !i.types[i.broadcast->operand].bitfield.unspecified))
4694 goto bad_broadcast;
4695
4696 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4697 if (i.broadcast->type == BROADCAST_1TO16)
4698 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4699 else if (i.broadcast->type == BROADCAST_1TO8)
4700 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4701 else if (i.broadcast->type == BROADCAST_1TO4)
4702 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4703 else if (i.broadcast->type == BROADCAST_1TO2)
4704 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
4705 else
4706 goto bad_broadcast;
4707
4708 if ((broadcasted_opnd_size == 256
4709 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4710 || (broadcasted_opnd_size == 512
4711 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4712 {
4713 bad_broadcast:
4714 i.error = unsupported_broadcast;
4715 return 1;
4716 }
4717 }
4718 /* If broadcast is supported in this instruction, we need to check if
4719 operand of one-element size isn't specified without broadcast. */
4720 else if (t->opcode_modifier.broadcast && i.mem_operands)
4721 {
4722 /* Find memory operand. */
4723 for (op = 0; op < i.operands; op++)
4724 if (operand_type_check (i.types[op], anymem))
4725 break;
4726 gas_assert (op < i.operands);
4727 /* Check size of the memory operand. */
4728 if ((t->opcode_modifier.vecesize == 0
4729 && i.types[op].bitfield.dword)
4730 || (t->opcode_modifier.vecesize == 1
4731 && i.types[op].bitfield.qword))
4732 {
4733 i.error = broadcast_needed;
4734 return 1;
4735 }
4736 }
4737
4738 /* Check if requested masking is supported. */
4739 if (i.mask
4740 && (!t->opcode_modifier.masking
4741 || (i.mask->zeroing
4742 && t->opcode_modifier.masking == MERGING_MASKING)))
4743 {
4744 i.error = unsupported_masking;
4745 return 1;
4746 }
4747
4748 /* Check if masking is applied to dest operand. */
4749 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4750 {
4751 i.error = mask_not_on_destination;
4752 return 1;
4753 }
4754
4755 /* Check RC/SAE. */
4756 if (i.rounding)
4757 {
4758 if ((i.rounding->type != saeonly
4759 && !t->opcode_modifier.staticrounding)
4760 || (i.rounding->type == saeonly
4761 && (t->opcode_modifier.staticrounding
4762 || !t->opcode_modifier.sae)))
4763 {
4764 i.error = unsupported_rc_sae;
4765 return 1;
4766 }
4767 /* If the instruction has several immediate operands and one of
4768 them is rounding, the rounding operand should be the last
4769 immediate operand. */
4770 if (i.imm_operands > 1
4771 && i.rounding->operand != (int) (i.imm_operands - 1))
4772 {
4773 i.error = rc_sae_operand_not_last_imm;
4774 return 1;
4775 }
4776 }
4777
4778 /* Check vector Disp8 operand. */
4779 if (t->opcode_modifier.disp8memshift)
4780 {
4781 if (i.broadcast)
4782 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4783 else
4784 i.memshift = t->opcode_modifier.disp8memshift;
4785
4786 for (op = 0; op < i.operands; op++)
4787 if (operand_type_check (i.types[op], disp)
4788 && i.op[op].disps->X_op == O_constant)
4789 {
4790 offsetT value = i.op[op].disps->X_add_number;
4791 int vec_disp8_ok
4792 = (i.disp_encoding != disp_encoding_32bit
4793 && fits_in_vec_disp8 (value));
4794 if (t->operand_types [op].bitfield.vec_disp8)
4795 {
4796 if (vec_disp8_ok)
4797 i.types[op].bitfield.vec_disp8 = 1;
4798 else
4799 {
4800 /* Vector insn can only have Vec_Disp8/Disp32 in
4801 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4802 mode. */
4803 i.types[op].bitfield.disp8 = 0;
4804 if (flag_code != CODE_16BIT)
4805 i.types[op].bitfield.disp16 = 0;
4806 }
4807 }
4808 else if (flag_code != CODE_16BIT)
4809 {
4810 /* One form of this instruction supports vector Disp8.
4811 Try vector Disp8 if we need to use Disp32. */
4812 if (vec_disp8_ok && !fits_in_signed_byte (value))
4813 {
4814 i.error = try_vector_disp8;
4815 return 1;
4816 }
4817 }
4818 }
4819 }
4820 else
4821 i.memshift = -1;
4822
4823 return 0;
4824 }
4825
4826 /* Check if operands are valid for the instruction. Update VEX
4827 operand types. */
4828
4829 static int
4830 VEX_check_operands (const insn_template *t)
4831 {
4832 if (i.vec_encoding == vex_encoding_evex)
4833 {
4834 /* This instruction must be encoded with EVEX prefix. */
4835 if (!t->opcode_modifier.evex)
4836 {
4837 i.error = unsupported;
4838 return 1;
4839 }
4840 return 0;
4841 }
4842
4843 if (!t->opcode_modifier.vex)
4844 {
4845 /* This instruction template doesn't have VEX prefix. */
4846 if (i.vec_encoding != vex_encoding_default)
4847 {
4848 i.error = unsupported;
4849 return 1;
4850 }
4851 return 0;
4852 }
4853
4854 /* Only check VEX_Imm4, which must be the first operand. */
4855 if (t->operand_types[0].bitfield.vec_imm4)
4856 {
4857 if (i.op[0].imms->X_op != O_constant
4858 || !fits_in_imm4 (i.op[0].imms->X_add_number))
4859 {
4860 i.error = bad_imm4;
4861 return 1;
4862 }
4863
4864 /* Turn off Imm8 so that update_imm won't complain. */
4865 i.types[0] = vec_imm4;
4866 }
4867
4868 return 0;
4869 }
4870
4871 static const insn_template *
4872 match_template (char mnem_suffix)
4873 {
4874 /* Points to template once we've found it. */
4875 const insn_template *t;
4876 i386_operand_type overlap0, overlap1, overlap2, overlap3;
4877 i386_operand_type overlap4;
4878 unsigned int found_reverse_match;
4879 i386_opcode_modifier suffix_check, mnemsuf_check;
4880 i386_operand_type operand_types [MAX_OPERANDS];
4881 int addr_prefix_disp;
4882 unsigned int j;
4883 unsigned int found_cpu_match;
4884 unsigned int check_register;
4885 enum i386_error specific_error = 0;
4886
4887 #if MAX_OPERANDS != 5
4888 # error "MAX_OPERANDS must be 5."
4889 #endif
4890
4891 found_reverse_match = 0;
4892 addr_prefix_disp = -1;
4893
4894 memset (&suffix_check, 0, sizeof (suffix_check));
4895 if (i.suffix == BYTE_MNEM_SUFFIX)
4896 suffix_check.no_bsuf = 1;
4897 else if (i.suffix == WORD_MNEM_SUFFIX)
4898 suffix_check.no_wsuf = 1;
4899 else if (i.suffix == SHORT_MNEM_SUFFIX)
4900 suffix_check.no_ssuf = 1;
4901 else if (i.suffix == LONG_MNEM_SUFFIX)
4902 suffix_check.no_lsuf = 1;
4903 else if (i.suffix == QWORD_MNEM_SUFFIX)
4904 suffix_check.no_qsuf = 1;
4905 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4906 suffix_check.no_ldsuf = 1;
4907
4908 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
4909 if (intel_syntax)
4910 {
4911 switch (mnem_suffix)
4912 {
4913 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
4914 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
4915 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
4916 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
4917 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
4918 }
4919 }
4920
4921 /* Must have right number of operands. */
4922 i.error = number_of_operands_mismatch;
4923
4924 for (t = current_templates->start; t < current_templates->end; t++)
4925 {
4926 addr_prefix_disp = -1;
4927
4928 if (i.operands != t->operands)
4929 continue;
4930
4931 /* Check processor support. */
4932 i.error = unsupported;
4933 found_cpu_match = (cpu_flags_match (t)
4934 == CPU_FLAGS_PERFECT_MATCH);
4935 if (!found_cpu_match)
4936 continue;
4937
4938 /* Check old gcc support. */
4939 i.error = old_gcc_only;
4940 if (!old_gcc && t->opcode_modifier.oldgcc)
4941 continue;
4942
4943 /* Check AT&T mnemonic. */
4944 i.error = unsupported_with_intel_mnemonic;
4945 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4946 continue;
4947
4948 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
4949 i.error = unsupported_syntax;
4950 if ((intel_syntax && t->opcode_modifier.attsyntax)
4951 || (!intel_syntax && t->opcode_modifier.intelsyntax)
4952 || (intel64 && t->opcode_modifier.amd64)
4953 || (!intel64 && t->opcode_modifier.intel64))
4954 continue;
4955
4956 /* Check the suffix, except for some instructions in intel mode. */
4957 i.error = invalid_instruction_suffix;
4958 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4959 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4960 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4961 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4962 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4963 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4964 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4965 continue;
4966 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
4967 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
4968 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
4969 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
4970 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
4971 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
4972 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
4973 continue;
4974
4975 if (!operand_size_match (t))
4976 continue;
4977
4978 for (j = 0; j < MAX_OPERANDS; j++)
4979 operand_types[j] = t->operand_types[j];
4980
4981 /* In general, don't allow 64-bit operands in 32-bit mode. */
4982 if (i.suffix == QWORD_MNEM_SUFFIX
4983 && flag_code != CODE_64BIT
4984 && (intel_syntax
4985 ? (!t->opcode_modifier.ignoresize
4986 && !intel_float_operand (t->name))
4987 : intel_float_operand (t->name) != 2)
4988 && ((!operand_types[0].bitfield.regmmx
4989 && !operand_types[0].bitfield.regxmm
4990 && !operand_types[0].bitfield.regymm
4991 && !operand_types[0].bitfield.regzmm)
4992 || (!operand_types[t->operands > 1].bitfield.regmmx
4993 && operand_types[t->operands > 1].bitfield.regxmm
4994 && operand_types[t->operands > 1].bitfield.regymm
4995 && operand_types[t->operands > 1].bitfield.regzmm))
4996 && (t->base_opcode != 0x0fc7
4997 || t->extension_opcode != 1 /* cmpxchg8b */))
4998 continue;
4999
5000 /* In general, don't allow 32-bit operands on pre-386. */
5001 else if (i.suffix == LONG_MNEM_SUFFIX
5002 && !cpu_arch_flags.bitfield.cpui386
5003 && (intel_syntax
5004 ? (!t->opcode_modifier.ignoresize
5005 && !intel_float_operand (t->name))
5006 : intel_float_operand (t->name) != 2)
5007 && ((!operand_types[0].bitfield.regmmx
5008 && !operand_types[0].bitfield.regxmm)
5009 || (!operand_types[t->operands > 1].bitfield.regmmx
5010 && operand_types[t->operands > 1].bitfield.regxmm)))
5011 continue;
5012
5013 /* Do not verify operands when there are none. */
5014 else
5015 {
5016 if (!t->operands)
5017 /* We've found a match; break out of loop. */
5018 break;
5019 }
5020
5021 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5022 into Disp32/Disp16/Disp32 operand. */
5023 if (i.prefix[ADDR_PREFIX] != 0)
5024 {
5025 /* There should be only one Disp operand. */
5026 switch (flag_code)
5027 {
5028 case CODE_16BIT:
5029 for (j = 0; j < MAX_OPERANDS; j++)
5030 {
5031 if (operand_types[j].bitfield.disp16)
5032 {
5033 addr_prefix_disp = j;
5034 operand_types[j].bitfield.disp32 = 1;
5035 operand_types[j].bitfield.disp16 = 0;
5036 break;
5037 }
5038 }
5039 break;
5040 case CODE_32BIT:
5041 for (j = 0; j < MAX_OPERANDS; j++)
5042 {
5043 if (operand_types[j].bitfield.disp32)
5044 {
5045 addr_prefix_disp = j;
5046 operand_types[j].bitfield.disp32 = 0;
5047 operand_types[j].bitfield.disp16 = 1;
5048 break;
5049 }
5050 }
5051 break;
5052 case CODE_64BIT:
5053 for (j = 0; j < MAX_OPERANDS; j++)
5054 {
5055 if (operand_types[j].bitfield.disp64)
5056 {
5057 addr_prefix_disp = j;
5058 operand_types[j].bitfield.disp64 = 0;
5059 operand_types[j].bitfield.disp32 = 1;
5060 break;
5061 }
5062 }
5063 break;
5064 }
5065 }
5066
5067 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5068 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5069 continue;
5070
5071 /* We check register size if needed. */
5072 check_register = t->opcode_modifier.checkregsize;
5073 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5074 switch (t->operands)
5075 {
5076 case 1:
5077 if (!operand_type_match (overlap0, i.types[0]))
5078 continue;
5079 break;
5080 case 2:
5081 /* xchg %eax, %eax is a special case. It is an alias for nop
5082 only in 32bit mode and we can use opcode 0x90. In 64bit
5083 mode, we can't use 0x90 for xchg %eax, %eax since it should
5084 zero-extend %eax to %rax. */
5085 if (flag_code == CODE_64BIT
5086 && t->base_opcode == 0x90
5087 && operand_type_equal (&i.types [0], &acc32)
5088 && operand_type_equal (&i.types [1], &acc32))
5089 continue;
5090 /* If we want store form, we reverse direction of operands. */
5091 if (i.dir_encoding == dir_encoding_store
5092 && t->opcode_modifier.d)
5093 goto check_reverse;
5094 /* Fall through. */
5095
5096 case 3:
5097 /* If we want store form, we skip the current load. */
5098 if (i.dir_encoding == dir_encoding_store
5099 && i.mem_operands == 0
5100 && t->opcode_modifier.load)
5101 continue;
5102 /* Fall through. */
5103 case 4:
5104 case 5:
5105 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5106 if (!operand_type_match (overlap0, i.types[0])
5107 || !operand_type_match (overlap1, i.types[1])
5108 || (check_register
5109 && !operand_type_register_match (overlap0, i.types[0],
5110 operand_types[0],
5111 overlap1, i.types[1],
5112 operand_types[1])))
5113 {
5114 /* Check if other direction is valid ... */
5115 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
5116 continue;
5117
5118 check_reverse:
5119 /* Try reversing direction of operands. */
5120 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5121 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5122 if (!operand_type_match (overlap0, i.types[0])
5123 || !operand_type_match (overlap1, i.types[1])
5124 || (check_register
5125 && !operand_type_register_match (overlap0,
5126 i.types[0],
5127 operand_types[1],
5128 overlap1,
5129 i.types[1],
5130 operand_types[0])))
5131 {
5132 /* Does not match either direction. */
5133 continue;
5134 }
5135 /* found_reverse_match holds which of D or FloatDR
5136 we've found. */
5137 if (t->opcode_modifier.d)
5138 found_reverse_match = Opcode_D;
5139 else if (t->opcode_modifier.floatd)
5140 found_reverse_match = Opcode_FloatD;
5141 else
5142 found_reverse_match = 0;
5143 if (t->opcode_modifier.floatr)
5144 found_reverse_match |= Opcode_FloatR;
5145 }
5146 else
5147 {
5148 /* Found a forward 2 operand match here. */
5149 switch (t->operands)
5150 {
5151 case 5:
5152 overlap4 = operand_type_and (i.types[4],
5153 operand_types[4]);
5154 /* Fall through. */
5155 case 4:
5156 overlap3 = operand_type_and (i.types[3],
5157 operand_types[3]);
5158 /* Fall through. */
5159 case 3:
5160 overlap2 = operand_type_and (i.types[2],
5161 operand_types[2]);
5162 break;
5163 }
5164
5165 switch (t->operands)
5166 {
5167 case 5:
5168 if (!operand_type_match (overlap4, i.types[4])
5169 || !operand_type_register_match (overlap3,
5170 i.types[3],
5171 operand_types[3],
5172 overlap4,
5173 i.types[4],
5174 operand_types[4]))
5175 continue;
5176 /* Fall through. */
5177 case 4:
5178 if (!operand_type_match (overlap3, i.types[3])
5179 || (check_register
5180 && !operand_type_register_match (overlap2,
5181 i.types[2],
5182 operand_types[2],
5183 overlap3,
5184 i.types[3],
5185 operand_types[3])))
5186 continue;
5187 /* Fall through. */
5188 case 3:
5189 /* Here we make use of the fact that there are no
5190 reverse match 3 operand instructions, and all 3
5191 operand instructions only need to be checked for
5192 register consistency between operands 2 and 3. */
5193 if (!operand_type_match (overlap2, i.types[2])
5194 || (check_register
5195 && !operand_type_register_match (overlap1,
5196 i.types[1],
5197 operand_types[1],
5198 overlap2,
5199 i.types[2],
5200 operand_types[2])))
5201 continue;
5202 break;
5203 }
5204 }
5205 /* Found either forward/reverse 2, 3 or 4 operand match here:
5206 slip through to break. */
5207 }
5208 if (!found_cpu_match)
5209 {
5210 found_reverse_match = 0;
5211 continue;
5212 }
5213
5214 /* Check if vector and VEX operands are valid. */
5215 if (check_VecOperands (t) || VEX_check_operands (t))
5216 {
5217 specific_error = i.error;
5218 continue;
5219 }
5220
5221 /* We've found a match; break out of loop. */
5222 break;
5223 }
5224
5225 if (t == current_templates->end)
5226 {
5227 /* We found no match. */
5228 const char *err_msg;
5229 switch (specific_error ? specific_error : i.error)
5230 {
5231 default:
5232 abort ();
5233 case operand_size_mismatch:
5234 err_msg = _("operand size mismatch");
5235 break;
5236 case operand_type_mismatch:
5237 err_msg = _("operand type mismatch");
5238 break;
5239 case register_type_mismatch:
5240 err_msg = _("register type mismatch");
5241 break;
5242 case number_of_operands_mismatch:
5243 err_msg = _("number of operands mismatch");
5244 break;
5245 case invalid_instruction_suffix:
5246 err_msg = _("invalid instruction suffix");
5247 break;
5248 case bad_imm4:
5249 err_msg = _("constant doesn't fit in 4 bits");
5250 break;
5251 case old_gcc_only:
5252 err_msg = _("only supported with old gcc");
5253 break;
5254 case unsupported_with_intel_mnemonic:
5255 err_msg = _("unsupported with Intel mnemonic");
5256 break;
5257 case unsupported_syntax:
5258 err_msg = _("unsupported syntax");
5259 break;
5260 case unsupported:
5261 as_bad (_("unsupported instruction `%s'"),
5262 current_templates->start->name);
5263 return NULL;
5264 case invalid_vsib_address:
5265 err_msg = _("invalid VSIB address");
5266 break;
5267 case invalid_vector_register_set:
5268 err_msg = _("mask, index, and destination registers must be distinct");
5269 break;
5270 case unsupported_vector_index_register:
5271 err_msg = _("unsupported vector index register");
5272 break;
5273 case unsupported_broadcast:
5274 err_msg = _("unsupported broadcast");
5275 break;
5276 case broadcast_not_on_src_operand:
5277 err_msg = _("broadcast not on source memory operand");
5278 break;
5279 case broadcast_needed:
5280 err_msg = _("broadcast is needed for operand of such type");
5281 break;
5282 case unsupported_masking:
5283 err_msg = _("unsupported masking");
5284 break;
5285 case mask_not_on_destination:
5286 err_msg = _("mask not on destination operand");
5287 break;
5288 case no_default_mask:
5289 err_msg = _("default mask isn't allowed");
5290 break;
5291 case unsupported_rc_sae:
5292 err_msg = _("unsupported static rounding/sae");
5293 break;
5294 case rc_sae_operand_not_last_imm:
5295 if (intel_syntax)
5296 err_msg = _("RC/SAE operand must precede immediate operands");
5297 else
5298 err_msg = _("RC/SAE operand must follow immediate operands");
5299 break;
5300 case invalid_register_operand:
5301 err_msg = _("invalid register operand");
5302 break;
5303 }
5304 as_bad (_("%s for `%s'"), err_msg,
5305 current_templates->start->name);
5306 return NULL;
5307 }
5308
5309 if (!quiet_warnings)
5310 {
5311 if (!intel_syntax
5312 && (i.types[0].bitfield.jumpabsolute
5313 != operand_types[0].bitfield.jumpabsolute))
5314 {
5315 as_warn (_("indirect %s without `*'"), t->name);
5316 }
5317
5318 if (t->opcode_modifier.isprefix
5319 && t->opcode_modifier.ignoresize)
5320 {
5321 /* Warn them that a data or address size prefix doesn't
5322 affect assembly of the next line of code. */
5323 as_warn (_("stand-alone `%s' prefix"), t->name);
5324 }
5325 }
5326
5327 /* Copy the template we found. */
5328 i.tm = *t;
5329
5330 if (addr_prefix_disp != -1)
5331 i.tm.operand_types[addr_prefix_disp]
5332 = operand_types[addr_prefix_disp];
5333
5334 if (found_reverse_match)
5335 {
5336 /* If we found a reverse match we must alter the opcode
5337 direction bit. found_reverse_match holds bits to change
5338 (different for int & float insns). */
5339
5340 i.tm.base_opcode ^= found_reverse_match;
5341
5342 i.tm.operand_types[0] = operand_types[1];
5343 i.tm.operand_types[1] = operand_types[0];
5344 }
5345
5346 return t;
5347 }
5348
5349 static int
5350 check_string (void)
5351 {
5352 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5353 if (i.tm.operand_types[mem_op].bitfield.esseg)
5354 {
5355 if (i.seg[0] != NULL && i.seg[0] != &es)
5356 {
5357 as_bad (_("`%s' operand %d must use `%ses' segment"),
5358 i.tm.name,
5359 mem_op + 1,
5360 register_prefix);
5361 return 0;
5362 }
5363 /* There's only ever one segment override allowed per instruction.
5364 This instruction possibly has a legal segment override on the
5365 second operand, so copy the segment to where non-string
5366 instructions store it, allowing common code. */
5367 i.seg[0] = i.seg[1];
5368 }
5369 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5370 {
5371 if (i.seg[1] != NULL && i.seg[1] != &es)
5372 {
5373 as_bad (_("`%s' operand %d must use `%ses' segment"),
5374 i.tm.name,
5375 mem_op + 2,
5376 register_prefix);
5377 return 0;
5378 }
5379 }
5380 return 1;
5381 }
5382
5383 static int
5384 process_suffix (void)
5385 {
5386 /* If matched instruction specifies an explicit instruction mnemonic
5387 suffix, use it. */
5388 if (i.tm.opcode_modifier.size16)
5389 i.suffix = WORD_MNEM_SUFFIX;
5390 else if (i.tm.opcode_modifier.size32)
5391 i.suffix = LONG_MNEM_SUFFIX;
5392 else if (i.tm.opcode_modifier.size64)
5393 i.suffix = QWORD_MNEM_SUFFIX;
5394 else if (i.reg_operands)
5395 {
5396 /* If there's no instruction mnemonic suffix we try to invent one
5397 based on register operands. */
5398 if (!i.suffix)
5399 {
5400 /* We take i.suffix from the last register operand specified,
5401 Destination register type is more significant than source
5402 register type. crc32 in SSE4.2 prefers source register
5403 type. */
5404 if (i.tm.base_opcode == 0xf20f38f1)
5405 {
5406 if (i.types[0].bitfield.reg16)
5407 i.suffix = WORD_MNEM_SUFFIX;
5408 else if (i.types[0].bitfield.reg32)
5409 i.suffix = LONG_MNEM_SUFFIX;
5410 else if (i.types[0].bitfield.reg64)
5411 i.suffix = QWORD_MNEM_SUFFIX;
5412 }
5413 else if (i.tm.base_opcode == 0xf20f38f0)
5414 {
5415 if (i.types[0].bitfield.reg8)
5416 i.suffix = BYTE_MNEM_SUFFIX;
5417 }
5418
5419 if (!i.suffix)
5420 {
5421 int op;
5422
5423 if (i.tm.base_opcode == 0xf20f38f1
5424 || i.tm.base_opcode == 0xf20f38f0)
5425 {
5426 /* We have to know the operand size for crc32. */
5427 as_bad (_("ambiguous memory operand size for `%s`"),
5428 i.tm.name);
5429 return 0;
5430 }
5431
5432 for (op = i.operands; --op >= 0;)
5433 if (!i.tm.operand_types[op].bitfield.inoutportreg)
5434 {
5435 if (i.types[op].bitfield.reg8)
5436 {
5437 i.suffix = BYTE_MNEM_SUFFIX;
5438 break;
5439 }
5440 else if (i.types[op].bitfield.reg16)
5441 {
5442 i.suffix = WORD_MNEM_SUFFIX;
5443 break;
5444 }
5445 else if (i.types[op].bitfield.reg32)
5446 {
5447 i.suffix = LONG_MNEM_SUFFIX;
5448 break;
5449 }
5450 else if (i.types[op].bitfield.reg64)
5451 {
5452 i.suffix = QWORD_MNEM_SUFFIX;
5453 break;
5454 }
5455 }
5456 }
5457 }
5458 else if (i.suffix == BYTE_MNEM_SUFFIX)
5459 {
5460 if (intel_syntax
5461 && i.tm.opcode_modifier.ignoresize
5462 && i.tm.opcode_modifier.no_bsuf)
5463 i.suffix = 0;
5464 else if (!check_byte_reg ())
5465 return 0;
5466 }
5467 else if (i.suffix == LONG_MNEM_SUFFIX)
5468 {
5469 if (intel_syntax
5470 && i.tm.opcode_modifier.ignoresize
5471 && i.tm.opcode_modifier.no_lsuf)
5472 i.suffix = 0;
5473 else if (!check_long_reg ())
5474 return 0;
5475 }
5476 else if (i.suffix == QWORD_MNEM_SUFFIX)
5477 {
5478 if (intel_syntax
5479 && i.tm.opcode_modifier.ignoresize
5480 && i.tm.opcode_modifier.no_qsuf)
5481 i.suffix = 0;
5482 else if (!check_qword_reg ())
5483 return 0;
5484 }
5485 else if (i.suffix == WORD_MNEM_SUFFIX)
5486 {
5487 if (intel_syntax
5488 && i.tm.opcode_modifier.ignoresize
5489 && i.tm.opcode_modifier.no_wsuf)
5490 i.suffix = 0;
5491 else if (!check_word_reg ())
5492 return 0;
5493 }
5494 else if (i.suffix == XMMWORD_MNEM_SUFFIX
5495 || i.suffix == YMMWORD_MNEM_SUFFIX
5496 || i.suffix == ZMMWORD_MNEM_SUFFIX)
5497 {
5498 /* Skip if the instruction has x/y/z suffix. match_template
5499 should check if it is a valid suffix. */
5500 }
5501 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5502 /* Do nothing if the instruction is going to ignore the prefix. */
5503 ;
5504 else
5505 abort ();
5506 }
5507 else if (i.tm.opcode_modifier.defaultsize
5508 && !i.suffix
5509 /* exclude fldenv/frstor/fsave/fstenv */
5510 && i.tm.opcode_modifier.no_ssuf)
5511 {
5512 i.suffix = stackop_size;
5513 }
5514 else if (intel_syntax
5515 && !i.suffix
5516 && (i.tm.operand_types[0].bitfield.jumpabsolute
5517 || i.tm.opcode_modifier.jumpbyte
5518 || i.tm.opcode_modifier.jumpintersegment
5519 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5520 && i.tm.extension_opcode <= 3)))
5521 {
5522 switch (flag_code)
5523 {
5524 case CODE_64BIT:
5525 if (!i.tm.opcode_modifier.no_qsuf)
5526 {
5527 i.suffix = QWORD_MNEM_SUFFIX;
5528 break;
5529 }
5530 /* Fall through. */
5531 case CODE_32BIT:
5532 if (!i.tm.opcode_modifier.no_lsuf)
5533 i.suffix = LONG_MNEM_SUFFIX;
5534 break;
5535 case CODE_16BIT:
5536 if (!i.tm.opcode_modifier.no_wsuf)
5537 i.suffix = WORD_MNEM_SUFFIX;
5538 break;
5539 }
5540 }
5541
5542 if (!i.suffix)
5543 {
5544 if (!intel_syntax)
5545 {
5546 if (i.tm.opcode_modifier.w)
5547 {
5548 as_bad (_("no instruction mnemonic suffix given and "
5549 "no register operands; can't size instruction"));
5550 return 0;
5551 }
5552 }
5553 else
5554 {
5555 unsigned int suffixes;
5556
5557 suffixes = !i.tm.opcode_modifier.no_bsuf;
5558 if (!i.tm.opcode_modifier.no_wsuf)
5559 suffixes |= 1 << 1;
5560 if (!i.tm.opcode_modifier.no_lsuf)
5561 suffixes |= 1 << 2;
5562 if (!i.tm.opcode_modifier.no_ldsuf)
5563 suffixes |= 1 << 3;
5564 if (!i.tm.opcode_modifier.no_ssuf)
5565 suffixes |= 1 << 4;
5566 if (!i.tm.opcode_modifier.no_qsuf)
5567 suffixes |= 1 << 5;
5568
5569 /* There are more than suffix matches. */
5570 if (i.tm.opcode_modifier.w
5571 || ((suffixes & (suffixes - 1))
5572 && !i.tm.opcode_modifier.defaultsize
5573 && !i.tm.opcode_modifier.ignoresize))
5574 {
5575 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5576 return 0;
5577 }
5578 }
5579 }
5580
5581 /* Change the opcode based on the operand size given by i.suffix;
5582 We don't need to change things for byte insns. */
5583
5584 if (i.suffix
5585 && i.suffix != BYTE_MNEM_SUFFIX
5586 && i.suffix != XMMWORD_MNEM_SUFFIX
5587 && i.suffix != YMMWORD_MNEM_SUFFIX
5588 && i.suffix != ZMMWORD_MNEM_SUFFIX)
5589 {
5590 /* It's not a byte, select word/dword operation. */
5591 if (i.tm.opcode_modifier.w)
5592 {
5593 if (i.tm.opcode_modifier.shortform)
5594 i.tm.base_opcode |= 8;
5595 else
5596 i.tm.base_opcode |= 1;
5597 }
5598
5599 /* Now select between word & dword operations via the operand
5600 size prefix, except for instructions that will ignore this
5601 prefix anyway. */
5602 if (i.tm.opcode_modifier.addrprefixop0)
5603 {
5604 /* The address size override prefix changes the size of the
5605 first operand. */
5606 if ((flag_code == CODE_32BIT
5607 && i.op->regs[0].reg_type.bitfield.reg16)
5608 || (flag_code != CODE_32BIT
5609 && i.op->regs[0].reg_type.bitfield.reg32))
5610 if (!add_prefix (ADDR_PREFIX_OPCODE))
5611 return 0;
5612 }
5613 else if (i.suffix != QWORD_MNEM_SUFFIX
5614 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5615 && !i.tm.opcode_modifier.ignoresize
5616 && !i.tm.opcode_modifier.floatmf
5617 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5618 || (flag_code == CODE_64BIT
5619 && i.tm.opcode_modifier.jumpbyte)))
5620 {
5621 unsigned int prefix = DATA_PREFIX_OPCODE;
5622
5623 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5624 prefix = ADDR_PREFIX_OPCODE;
5625
5626 if (!add_prefix (prefix))
5627 return 0;
5628 }
5629
5630 /* Set mode64 for an operand. */
5631 if (i.suffix == QWORD_MNEM_SUFFIX
5632 && flag_code == CODE_64BIT
5633 && !i.tm.opcode_modifier.norex64)
5634 {
5635 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5636 need rex64. cmpxchg8b is also a special case. */
5637 if (! (i.operands == 2
5638 && i.tm.base_opcode == 0x90
5639 && i.tm.extension_opcode == None
5640 && operand_type_equal (&i.types [0], &acc64)
5641 && operand_type_equal (&i.types [1], &acc64))
5642 && ! (i.operands == 1
5643 && i.tm.base_opcode == 0xfc7
5644 && i.tm.extension_opcode == 1
5645 && !operand_type_check (i.types [0], reg)
5646 && operand_type_check (i.types [0], anymem)))
5647 i.rex |= REX_W;
5648 }
5649
5650 /* Size floating point instruction. */
5651 if (i.suffix == LONG_MNEM_SUFFIX)
5652 if (i.tm.opcode_modifier.floatmf)
5653 i.tm.base_opcode ^= 4;
5654 }
5655
5656 return 1;
5657 }
5658
5659 static int
5660 check_byte_reg (void)
5661 {
5662 int op;
5663
5664 for (op = i.operands; --op >= 0;)
5665 {
5666 /* If this is an eight bit register, it's OK. If it's the 16 or
5667 32 bit version of an eight bit register, we will just use the
5668 low portion, and that's OK too. */
5669 if (i.types[op].bitfield.reg8)
5670 continue;
5671
5672 /* I/O port address operands are OK too. */
5673 if (i.tm.operand_types[op].bitfield.inoutportreg)
5674 continue;
5675
5676 /* crc32 doesn't generate this warning. */
5677 if (i.tm.base_opcode == 0xf20f38f0)
5678 continue;
5679
5680 if ((i.types[op].bitfield.reg16
5681 || i.types[op].bitfield.reg32
5682 || i.types[op].bitfield.reg64)
5683 && i.op[op].regs->reg_num < 4
5684 /* Prohibit these changes in 64bit mode, since the lowering
5685 would be more complicated. */
5686 && flag_code != CODE_64BIT)
5687 {
5688 #if REGISTER_WARNINGS
5689 if (!quiet_warnings)
5690 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5691 register_prefix,
5692 (i.op[op].regs + (i.types[op].bitfield.reg16
5693 ? REGNAM_AL - REGNAM_AX
5694 : REGNAM_AL - REGNAM_EAX))->reg_name,
5695 register_prefix,
5696 i.op[op].regs->reg_name,
5697 i.suffix);
5698 #endif
5699 continue;
5700 }
5701 /* Any other register is bad. */
5702 if (i.types[op].bitfield.reg16
5703 || i.types[op].bitfield.reg32
5704 || i.types[op].bitfield.reg64
5705 || i.types[op].bitfield.regmmx
5706 || i.types[op].bitfield.regxmm
5707 || i.types[op].bitfield.regymm
5708 || i.types[op].bitfield.regzmm
5709 || i.types[op].bitfield.sreg2
5710 || i.types[op].bitfield.sreg3
5711 || i.types[op].bitfield.control
5712 || i.types[op].bitfield.debug
5713 || i.types[op].bitfield.test
5714 || i.types[op].bitfield.floatreg
5715 || i.types[op].bitfield.floatacc)
5716 {
5717 as_bad (_("`%s%s' not allowed with `%s%c'"),
5718 register_prefix,
5719 i.op[op].regs->reg_name,
5720 i.tm.name,
5721 i.suffix);
5722 return 0;
5723 }
5724 }
5725 return 1;
5726 }
5727
5728 static int
5729 check_long_reg (void)
5730 {
5731 int op;
5732
5733 for (op = i.operands; --op >= 0;)
5734 /* Reject eight bit registers, except where the template requires
5735 them. (eg. movzb) */
5736 if (i.types[op].bitfield.reg8
5737 && (i.tm.operand_types[op].bitfield.reg16
5738 || i.tm.operand_types[op].bitfield.reg32
5739 || i.tm.operand_types[op].bitfield.acc))
5740 {
5741 as_bad (_("`%s%s' not allowed with `%s%c'"),
5742 register_prefix,
5743 i.op[op].regs->reg_name,
5744 i.tm.name,
5745 i.suffix);
5746 return 0;
5747 }
5748 /* Warn if the e prefix on a general reg is missing. */
5749 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5750 && i.types[op].bitfield.reg16
5751 && (i.tm.operand_types[op].bitfield.reg32
5752 || i.tm.operand_types[op].bitfield.acc))
5753 {
5754 /* Prohibit these changes in the 64bit mode, since the
5755 lowering is more complicated. */
5756 if (flag_code == CODE_64BIT)
5757 {
5758 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5759 register_prefix, i.op[op].regs->reg_name,
5760 i.suffix);
5761 return 0;
5762 }
5763 #if REGISTER_WARNINGS
5764 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5765 register_prefix,
5766 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5767 register_prefix, i.op[op].regs->reg_name, i.suffix);
5768 #endif
5769 }
5770 /* Warn if the r prefix on a general reg is present. */
5771 else if (i.types[op].bitfield.reg64
5772 && (i.tm.operand_types[op].bitfield.reg32
5773 || i.tm.operand_types[op].bitfield.acc))
5774 {
5775 if (intel_syntax
5776 && i.tm.opcode_modifier.toqword
5777 && !i.types[0].bitfield.regxmm)
5778 {
5779 /* Convert to QWORD. We want REX byte. */
5780 i.suffix = QWORD_MNEM_SUFFIX;
5781 }
5782 else
5783 {
5784 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5785 register_prefix, i.op[op].regs->reg_name,
5786 i.suffix);
5787 return 0;
5788 }
5789 }
5790 return 1;
5791 }
5792
5793 static int
5794 check_qword_reg (void)
5795 {
5796 int op;
5797
5798 for (op = i.operands; --op >= 0; )
5799 /* Reject eight bit registers, except where the template requires
5800 them. (eg. movzb) */
5801 if (i.types[op].bitfield.reg8
5802 && (i.tm.operand_types[op].bitfield.reg16
5803 || i.tm.operand_types[op].bitfield.reg32
5804 || i.tm.operand_types[op].bitfield.acc))
5805 {
5806 as_bad (_("`%s%s' not allowed with `%s%c'"),
5807 register_prefix,
5808 i.op[op].regs->reg_name,
5809 i.tm.name,
5810 i.suffix);
5811 return 0;
5812 }
5813 /* Warn if the r prefix on a general reg is missing. */
5814 else if ((i.types[op].bitfield.reg16
5815 || i.types[op].bitfield.reg32)
5816 && (i.tm.operand_types[op].bitfield.reg64
5817 || i.tm.operand_types[op].bitfield.acc))
5818 {
5819 /* Prohibit these changes in the 64bit mode, since the
5820 lowering is more complicated. */
5821 if (intel_syntax
5822 && i.tm.opcode_modifier.todword
5823 && !i.types[0].bitfield.regxmm)
5824 {
5825 /* Convert to DWORD. We don't want REX byte. */
5826 i.suffix = LONG_MNEM_SUFFIX;
5827 }
5828 else
5829 {
5830 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5831 register_prefix, i.op[op].regs->reg_name,
5832 i.suffix);
5833 return 0;
5834 }
5835 }
5836 return 1;
5837 }
5838
5839 static int
5840 check_word_reg (void)
5841 {
5842 int op;
5843 for (op = i.operands; --op >= 0;)
5844 /* Reject eight bit registers, except where the template requires
5845 them. (eg. movzb) */
5846 if (i.types[op].bitfield.reg8
5847 && (i.tm.operand_types[op].bitfield.reg16
5848 || i.tm.operand_types[op].bitfield.reg32
5849 || i.tm.operand_types[op].bitfield.acc))
5850 {
5851 as_bad (_("`%s%s' not allowed with `%s%c'"),
5852 register_prefix,
5853 i.op[op].regs->reg_name,
5854 i.tm.name,
5855 i.suffix);
5856 return 0;
5857 }
5858 /* Warn if the e or r prefix on a general reg is present. */
5859 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5860 && (i.types[op].bitfield.reg32
5861 || i.types[op].bitfield.reg64)
5862 && (i.tm.operand_types[op].bitfield.reg16
5863 || i.tm.operand_types[op].bitfield.acc))
5864 {
5865 /* Prohibit these changes in the 64bit mode, since the
5866 lowering is more complicated. */
5867 if (flag_code == CODE_64BIT)
5868 {
5869 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5870 register_prefix, i.op[op].regs->reg_name,
5871 i.suffix);
5872 return 0;
5873 }
5874 #if REGISTER_WARNINGS
5875 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5876 register_prefix,
5877 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5878 register_prefix, i.op[op].regs->reg_name, i.suffix);
5879 #endif
5880 }
5881 return 1;
5882 }
5883
5884 static int
5885 update_imm (unsigned int j)
5886 {
5887 i386_operand_type overlap = i.types[j];
5888 if ((overlap.bitfield.imm8
5889 || overlap.bitfield.imm8s
5890 || overlap.bitfield.imm16
5891 || overlap.bitfield.imm32
5892 || overlap.bitfield.imm32s
5893 || overlap.bitfield.imm64)
5894 && !operand_type_equal (&overlap, &imm8)
5895 && !operand_type_equal (&overlap, &imm8s)
5896 && !operand_type_equal (&overlap, &imm16)
5897 && !operand_type_equal (&overlap, &imm32)
5898 && !operand_type_equal (&overlap, &imm32s)
5899 && !operand_type_equal (&overlap, &imm64))
5900 {
5901 if (i.suffix)
5902 {
5903 i386_operand_type temp;
5904
5905 operand_type_set (&temp, 0);
5906 if (i.suffix == BYTE_MNEM_SUFFIX)
5907 {
5908 temp.bitfield.imm8 = overlap.bitfield.imm8;
5909 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5910 }
5911 else if (i.suffix == WORD_MNEM_SUFFIX)
5912 temp.bitfield.imm16 = overlap.bitfield.imm16;
5913 else if (i.suffix == QWORD_MNEM_SUFFIX)
5914 {
5915 temp.bitfield.imm64 = overlap.bitfield.imm64;
5916 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5917 }
5918 else
5919 temp.bitfield.imm32 = overlap.bitfield.imm32;
5920 overlap = temp;
5921 }
5922 else if (operand_type_equal (&overlap, &imm16_32_32s)
5923 || operand_type_equal (&overlap, &imm16_32)
5924 || operand_type_equal (&overlap, &imm16_32s))
5925 {
5926 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5927 overlap = imm16;
5928 else
5929 overlap = imm32s;
5930 }
5931 if (!operand_type_equal (&overlap, &imm8)
5932 && !operand_type_equal (&overlap, &imm8s)
5933 && !operand_type_equal (&overlap, &imm16)
5934 && !operand_type_equal (&overlap, &imm32)
5935 && !operand_type_equal (&overlap, &imm32s)
5936 && !operand_type_equal (&overlap, &imm64))
5937 {
5938 as_bad (_("no instruction mnemonic suffix given; "
5939 "can't determine immediate size"));
5940 return 0;
5941 }
5942 }
5943 i.types[j] = overlap;
5944
5945 return 1;
5946 }
5947
5948 static int
5949 finalize_imm (void)
5950 {
5951 unsigned int j, n;
5952
5953 /* Update the first 2 immediate operands. */
5954 n = i.operands > 2 ? 2 : i.operands;
5955 if (n)
5956 {
5957 for (j = 0; j < n; j++)
5958 if (update_imm (j) == 0)
5959 return 0;
5960
5961 /* The 3rd operand can't be immediate operand. */
5962 gas_assert (operand_type_check (i.types[2], imm) == 0);
5963 }
5964
5965 return 1;
5966 }
5967
5968 static int
5969 bad_implicit_operand (int xmm)
5970 {
5971 const char *ireg = xmm ? "xmm0" : "ymm0";
5972
5973 if (intel_syntax)
5974 as_bad (_("the last operand of `%s' must be `%s%s'"),
5975 i.tm.name, register_prefix, ireg);
5976 else
5977 as_bad (_("the first operand of `%s' must be `%s%s'"),
5978 i.tm.name, register_prefix, ireg);
5979 return 0;
5980 }
5981
5982 static int
5983 process_operands (void)
5984 {
5985 /* Default segment register this instruction will use for memory
5986 accesses. 0 means unknown. This is only for optimizing out
5987 unnecessary segment overrides. */
5988 const seg_entry *default_seg = 0;
5989
5990 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
5991 {
5992 unsigned int dupl = i.operands;
5993 unsigned int dest = dupl - 1;
5994 unsigned int j;
5995
5996 /* The destination must be an xmm register. */
5997 gas_assert (i.reg_operands
5998 && MAX_OPERANDS > dupl
5999 && operand_type_equal (&i.types[dest], &regxmm));
6000
6001 if (i.tm.opcode_modifier.firstxmm0)
6002 {
6003 /* The first operand is implicit and must be xmm0. */
6004 gas_assert (operand_type_equal (&i.types[0], &regxmm));
6005 if (register_number (i.op[0].regs) != 0)
6006 return bad_implicit_operand (1);
6007
6008 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6009 {
6010 /* Keep xmm0 for instructions with VEX prefix and 3
6011 sources. */
6012 goto duplicate;
6013 }
6014 else
6015 {
6016 /* We remove the first xmm0 and keep the number of
6017 operands unchanged, which in fact duplicates the
6018 destination. */
6019 for (j = 1; j < i.operands; j++)
6020 {
6021 i.op[j - 1] = i.op[j];
6022 i.types[j - 1] = i.types[j];
6023 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6024 }
6025 }
6026 }
6027 else if (i.tm.opcode_modifier.implicit1stxmm0)
6028 {
6029 gas_assert ((MAX_OPERANDS - 1) > dupl
6030 && (i.tm.opcode_modifier.vexsources
6031 == VEX3SOURCES));
6032
6033 /* Add the implicit xmm0 for instructions with VEX prefix
6034 and 3 sources. */
6035 for (j = i.operands; j > 0; j--)
6036 {
6037 i.op[j] = i.op[j - 1];
6038 i.types[j] = i.types[j - 1];
6039 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6040 }
6041 i.op[0].regs
6042 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6043 i.types[0] = regxmm;
6044 i.tm.operand_types[0] = regxmm;
6045
6046 i.operands += 2;
6047 i.reg_operands += 2;
6048 i.tm.operands += 2;
6049
6050 dupl++;
6051 dest++;
6052 i.op[dupl] = i.op[dest];
6053 i.types[dupl] = i.types[dest];
6054 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6055 }
6056 else
6057 {
6058 duplicate:
6059 i.operands++;
6060 i.reg_operands++;
6061 i.tm.operands++;
6062
6063 i.op[dupl] = i.op[dest];
6064 i.types[dupl] = i.types[dest];
6065 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6066 }
6067
6068 if (i.tm.opcode_modifier.immext)
6069 process_immext ();
6070 }
6071 else if (i.tm.opcode_modifier.firstxmm0)
6072 {
6073 unsigned int j;
6074
6075 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
6076 gas_assert (i.reg_operands
6077 && (operand_type_equal (&i.types[0], &regxmm)
6078 || operand_type_equal (&i.types[0], &regymm)
6079 || operand_type_equal (&i.types[0], &regzmm)));
6080 if (register_number (i.op[0].regs) != 0)
6081 return bad_implicit_operand (i.types[0].bitfield.regxmm);
6082
6083 for (j = 1; j < i.operands; j++)
6084 {
6085 i.op[j - 1] = i.op[j];
6086 i.types[j - 1] = i.types[j];
6087
6088 /* We need to adjust fields in i.tm since they are used by
6089 build_modrm_byte. */
6090 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6091 }
6092
6093 i.operands--;
6094 i.reg_operands--;
6095 i.tm.operands--;
6096 }
6097 else if (i.tm.opcode_modifier.implicitquadgroup)
6098 {
6099 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6100 gas_assert (i.operands >= 2
6101 && (operand_type_equal (&i.types[1], &regxmm)
6102 || operand_type_equal (&i.types[1], &regymm)
6103 || operand_type_equal (&i.types[1], &regzmm)));
6104 unsigned int regnum = register_number (i.op[1].regs);
6105 unsigned int first_reg_in_group = regnum & ~3;
6106 unsigned int last_reg_in_group = first_reg_in_group + 3;
6107 if (regnum != first_reg_in_group) {
6108 as_warn (_("the second source register `%s%s' implicitly denotes"
6109 " `%s%.3s%d' to `%s%.3s%d' source group in `%s'"),
6110 register_prefix, i.op[1].regs->reg_name,
6111 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6112 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6113 i.tm.name);
6114 }
6115 }
6116 else if (i.tm.opcode_modifier.regkludge)
6117 {
6118 /* The imul $imm, %reg instruction is converted into
6119 imul $imm, %reg, %reg, and the clr %reg instruction
6120 is converted into xor %reg, %reg. */
6121
6122 unsigned int first_reg_op;
6123
6124 if (operand_type_check (i.types[0], reg))
6125 first_reg_op = 0;
6126 else
6127 first_reg_op = 1;
6128 /* Pretend we saw the extra register operand. */
6129 gas_assert (i.reg_operands == 1
6130 && i.op[first_reg_op + 1].regs == 0);
6131 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6132 i.types[first_reg_op + 1] = i.types[first_reg_op];
6133 i.operands++;
6134 i.reg_operands++;
6135 }
6136
6137 if (i.tm.opcode_modifier.shortform)
6138 {
6139 if (i.types[0].bitfield.sreg2
6140 || i.types[0].bitfield.sreg3)
6141 {
6142 if (i.tm.base_opcode == POP_SEG_SHORT
6143 && i.op[0].regs->reg_num == 1)
6144 {
6145 as_bad (_("you can't `pop %scs'"), register_prefix);
6146 return 0;
6147 }
6148 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6149 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6150 i.rex |= REX_B;
6151 }
6152 else
6153 {
6154 /* The register or float register operand is in operand
6155 0 or 1. */
6156 unsigned int op;
6157
6158 if (i.types[0].bitfield.floatreg
6159 || operand_type_check (i.types[0], reg))
6160 op = 0;
6161 else
6162 op = 1;
6163 /* Register goes in low 3 bits of opcode. */
6164 i.tm.base_opcode |= i.op[op].regs->reg_num;
6165 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6166 i.rex |= REX_B;
6167 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6168 {
6169 /* Warn about some common errors, but press on regardless.
6170 The first case can be generated by gcc (<= 2.8.1). */
6171 if (i.operands == 2)
6172 {
6173 /* Reversed arguments on faddp, fsubp, etc. */
6174 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6175 register_prefix, i.op[!intel_syntax].regs->reg_name,
6176 register_prefix, i.op[intel_syntax].regs->reg_name);
6177 }
6178 else
6179 {
6180 /* Extraneous `l' suffix on fp insn. */
6181 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6182 register_prefix, i.op[0].regs->reg_name);
6183 }
6184 }
6185 }
6186 }
6187 else if (i.tm.opcode_modifier.modrm)
6188 {
6189 /* The opcode is completed (modulo i.tm.extension_opcode which
6190 must be put into the modrm byte). Now, we make the modrm and
6191 index base bytes based on all the info we've collected. */
6192
6193 default_seg = build_modrm_byte ();
6194 }
6195 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6196 {
6197 default_seg = &ds;
6198 }
6199 else if (i.tm.opcode_modifier.isstring)
6200 {
6201 /* For the string instructions that allow a segment override
6202 on one of their operands, the default segment is ds. */
6203 default_seg = &ds;
6204 }
6205
6206 if (i.tm.base_opcode == 0x8d /* lea */
6207 && i.seg[0]
6208 && !quiet_warnings)
6209 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6210
6211 /* If a segment was explicitly specified, and the specified segment
6212 is not the default, use an opcode prefix to select it. If we
6213 never figured out what the default segment is, then default_seg
6214 will be zero at this point, and the specified segment prefix will
6215 always be used. */
6216 if ((i.seg[0]) && (i.seg[0] != default_seg))
6217 {
6218 if (!add_prefix (i.seg[0]->seg_prefix))
6219 return 0;
6220 }
6221 return 1;
6222 }
6223
6224 static const seg_entry *
6225 build_modrm_byte (void)
6226 {
6227 const seg_entry *default_seg = 0;
6228 unsigned int source, dest;
6229 int vex_3_sources;
6230
6231 /* The first operand of instructions with VEX prefix and 3 sources
6232 must be VEX_Imm4. */
6233 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6234 if (vex_3_sources)
6235 {
6236 unsigned int nds, reg_slot;
6237 expressionS *exp;
6238
6239 if (i.tm.opcode_modifier.veximmext
6240 && i.tm.opcode_modifier.immext)
6241 {
6242 dest = i.operands - 2;
6243 gas_assert (dest == 3);
6244 }
6245 else
6246 dest = i.operands - 1;
6247 nds = dest - 1;
6248
6249 /* There are 2 kinds of instructions:
6250 1. 5 operands: 4 register operands or 3 register operands
6251 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6252 VexW0 or VexW1. The destination must be either XMM, YMM or
6253 ZMM register.
6254 2. 4 operands: 4 register operands or 3 register operands
6255 plus 1 memory operand, VexXDS, and VexImmExt */
6256 gas_assert ((i.reg_operands == 4
6257 || (i.reg_operands == 3 && i.mem_operands == 1))
6258 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6259 && (i.tm.opcode_modifier.veximmext
6260 || (i.imm_operands == 1
6261 && i.types[0].bitfield.vec_imm4
6262 && (i.tm.opcode_modifier.vexw == VEXW0
6263 || i.tm.opcode_modifier.vexw == VEXW1)
6264 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
6265 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
6266 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
6267
6268 if (i.imm_operands == 0)
6269 {
6270 /* When there is no immediate operand, generate an 8bit
6271 immediate operand to encode the first operand. */
6272 exp = &im_expressions[i.imm_operands++];
6273 i.op[i.operands].imms = exp;
6274 i.types[i.operands] = imm8;
6275 i.operands++;
6276 /* If VexW1 is set, the first operand is the source and
6277 the second operand is encoded in the immediate operand. */
6278 if (i.tm.opcode_modifier.vexw == VEXW1)
6279 {
6280 source = 0;
6281 reg_slot = 1;
6282 }
6283 else
6284 {
6285 source = 1;
6286 reg_slot = 0;
6287 }
6288
6289 /* FMA swaps REG and NDS. */
6290 if (i.tm.cpu_flags.bitfield.cpufma)
6291 {
6292 unsigned int tmp;
6293 tmp = reg_slot;
6294 reg_slot = nds;
6295 nds = tmp;
6296 }
6297
6298 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6299 &regxmm)
6300 || operand_type_equal (&i.tm.operand_types[reg_slot],
6301 &regymm)
6302 || operand_type_equal (&i.tm.operand_types[reg_slot],
6303 &regzmm));
6304 exp->X_op = O_constant;
6305 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6306 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6307 }
6308 else
6309 {
6310 unsigned int imm_slot;
6311
6312 if (i.tm.opcode_modifier.vexw == VEXW0)
6313 {
6314 /* If VexW0 is set, the third operand is the source and
6315 the second operand is encoded in the immediate
6316 operand. */
6317 source = 2;
6318 reg_slot = 1;
6319 }
6320 else
6321 {
6322 /* VexW1 is set, the second operand is the source and
6323 the third operand is encoded in the immediate
6324 operand. */
6325 source = 1;
6326 reg_slot = 2;
6327 }
6328
6329 if (i.tm.opcode_modifier.immext)
6330 {
6331 /* When ImmExt is set, the immediate byte is the last
6332 operand. */
6333 imm_slot = i.operands - 1;
6334 source--;
6335 reg_slot--;
6336 }
6337 else
6338 {
6339 imm_slot = 0;
6340
6341 /* Turn on Imm8 so that output_imm will generate it. */
6342 i.types[imm_slot].bitfield.imm8 = 1;
6343 }
6344
6345 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6346 &regxmm)
6347 || operand_type_equal (&i.tm.operand_types[reg_slot],
6348 &regymm)
6349 || operand_type_equal (&i.tm.operand_types[reg_slot],
6350 &regzmm));
6351 i.op[imm_slot].imms->X_add_number
6352 |= register_number (i.op[reg_slot].regs) << 4;
6353 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6354 }
6355
6356 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6357 || operand_type_equal (&i.tm.operand_types[nds],
6358 &regymm)
6359 || operand_type_equal (&i.tm.operand_types[nds],
6360 &regzmm));
6361 i.vex.register_specifier = i.op[nds].regs;
6362 }
6363 else
6364 source = dest = 0;
6365
6366 /* i.reg_operands MUST be the number of real register operands;
6367 implicit registers do not count. If there are 3 register
6368 operands, it must be a instruction with VexNDS. For a
6369 instruction with VexNDD, the destination register is encoded
6370 in VEX prefix. If there are 4 register operands, it must be
6371 a instruction with VEX prefix and 3 sources. */
6372 if (i.mem_operands == 0
6373 && ((i.reg_operands == 2
6374 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6375 || (i.reg_operands == 3
6376 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6377 || (i.reg_operands == 4 && vex_3_sources)))
6378 {
6379 switch (i.operands)
6380 {
6381 case 2:
6382 source = 0;
6383 break;
6384 case 3:
6385 /* When there are 3 operands, one of them may be immediate,
6386 which may be the first or the last operand. Otherwise,
6387 the first operand must be shift count register (cl) or it
6388 is an instruction with VexNDS. */
6389 gas_assert (i.imm_operands == 1
6390 || (i.imm_operands == 0
6391 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6392 || i.types[0].bitfield.shiftcount)));
6393 if (operand_type_check (i.types[0], imm)
6394 || i.types[0].bitfield.shiftcount)
6395 source = 1;
6396 else
6397 source = 0;
6398 break;
6399 case 4:
6400 /* When there are 4 operands, the first two must be 8bit
6401 immediate operands. The source operand will be the 3rd
6402 one.
6403
6404 For instructions with VexNDS, if the first operand
6405 an imm8, the source operand is the 2nd one. If the last
6406 operand is imm8, the source operand is the first one. */
6407 gas_assert ((i.imm_operands == 2
6408 && i.types[0].bitfield.imm8
6409 && i.types[1].bitfield.imm8)
6410 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6411 && i.imm_operands == 1
6412 && (i.types[0].bitfield.imm8
6413 || i.types[i.operands - 1].bitfield.imm8
6414 || i.rounding)));
6415 if (i.imm_operands == 2)
6416 source = 2;
6417 else
6418 {
6419 if (i.types[0].bitfield.imm8)
6420 source = 1;
6421 else
6422 source = 0;
6423 }
6424 break;
6425 case 5:
6426 if (i.tm.opcode_modifier.evex)
6427 {
6428 /* For EVEX instructions, when there are 5 operands, the
6429 first one must be immediate operand. If the second one
6430 is immediate operand, the source operand is the 3th
6431 one. If the last one is immediate operand, the source
6432 operand is the 2nd one. */
6433 gas_assert (i.imm_operands == 2
6434 && i.tm.opcode_modifier.sae
6435 && operand_type_check (i.types[0], imm));
6436 if (operand_type_check (i.types[1], imm))
6437 source = 2;
6438 else if (operand_type_check (i.types[4], imm))
6439 source = 1;
6440 else
6441 abort ();
6442 }
6443 break;
6444 default:
6445 abort ();
6446 }
6447
6448 if (!vex_3_sources)
6449 {
6450 dest = source + 1;
6451
6452 /* RC/SAE operand could be between DEST and SRC. That happens
6453 when one operand is GPR and the other one is XMM/YMM/ZMM
6454 register. */
6455 if (i.rounding && i.rounding->operand == (int) dest)
6456 dest++;
6457
6458 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6459 {
6460 /* For instructions with VexNDS, the register-only source
6461 operand must be 32/64bit integer, XMM, YMM or ZMM
6462 register. It is encoded in VEX prefix. We need to
6463 clear RegMem bit before calling operand_type_equal. */
6464
6465 i386_operand_type op;
6466 unsigned int vvvv;
6467
6468 /* Check register-only source operand when two source
6469 operands are swapped. */
6470 if (!i.tm.operand_types[source].bitfield.baseindex
6471 && i.tm.operand_types[dest].bitfield.baseindex)
6472 {
6473 vvvv = source;
6474 source = dest;
6475 }
6476 else
6477 vvvv = dest;
6478
6479 op = i.tm.operand_types[vvvv];
6480 op.bitfield.regmem = 0;
6481 if ((dest + 1) >= i.operands
6482 || (!op.bitfield.reg32
6483 && op.bitfield.reg64
6484 && !operand_type_equal (&op, &regxmm)
6485 && !operand_type_equal (&op, &regymm)
6486 && !operand_type_equal (&op, &regzmm)
6487 && !operand_type_equal (&op, &regmask)))
6488 abort ();
6489 i.vex.register_specifier = i.op[vvvv].regs;
6490 dest++;
6491 }
6492 }
6493
6494 i.rm.mode = 3;
6495 /* One of the register operands will be encoded in the i.tm.reg
6496 field, the other in the combined i.tm.mode and i.tm.regmem
6497 fields. If no form of this instruction supports a memory
6498 destination operand, then we assume the source operand may
6499 sometimes be a memory operand and so we need to store the
6500 destination in the i.rm.reg field. */
6501 if (!i.tm.operand_types[dest].bitfield.regmem
6502 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6503 {
6504 i.rm.reg = i.op[dest].regs->reg_num;
6505 i.rm.regmem = i.op[source].regs->reg_num;
6506 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6507 i.rex |= REX_R;
6508 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6509 i.vrex |= REX_R;
6510 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6511 i.rex |= REX_B;
6512 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6513 i.vrex |= REX_B;
6514 }
6515 else
6516 {
6517 i.rm.reg = i.op[source].regs->reg_num;
6518 i.rm.regmem = i.op[dest].regs->reg_num;
6519 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6520 i.rex |= REX_B;
6521 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6522 i.vrex |= REX_B;
6523 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6524 i.rex |= REX_R;
6525 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6526 i.vrex |= REX_R;
6527 }
6528 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6529 {
6530 if (!i.types[0].bitfield.control
6531 && !i.types[1].bitfield.control)
6532 abort ();
6533 i.rex &= ~(REX_R | REX_B);
6534 add_prefix (LOCK_PREFIX_OPCODE);
6535 }
6536 }
6537 else
6538 { /* If it's not 2 reg operands... */
6539 unsigned int mem;
6540
6541 if (i.mem_operands)
6542 {
6543 unsigned int fake_zero_displacement = 0;
6544 unsigned int op;
6545
6546 for (op = 0; op < i.operands; op++)
6547 if (operand_type_check (i.types[op], anymem))
6548 break;
6549 gas_assert (op < i.operands);
6550
6551 if (i.tm.opcode_modifier.vecsib)
6552 {
6553 if (i.index_reg->reg_num == RegEiz
6554 || i.index_reg->reg_num == RegRiz)
6555 abort ();
6556
6557 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6558 if (!i.base_reg)
6559 {
6560 i.sib.base = NO_BASE_REGISTER;
6561 i.sib.scale = i.log2_scale_factor;
6562 /* No Vec_Disp8 if there is no base. */
6563 i.types[op].bitfield.vec_disp8 = 0;
6564 i.types[op].bitfield.disp8 = 0;
6565 i.types[op].bitfield.disp16 = 0;
6566 i.types[op].bitfield.disp64 = 0;
6567 if (flag_code != CODE_64BIT)
6568 {
6569 /* Must be 32 bit */
6570 i.types[op].bitfield.disp32 = 1;
6571 i.types[op].bitfield.disp32s = 0;
6572 }
6573 else
6574 {
6575 i.types[op].bitfield.disp32 = 0;
6576 i.types[op].bitfield.disp32s = 1;
6577 }
6578 }
6579 i.sib.index = i.index_reg->reg_num;
6580 if ((i.index_reg->reg_flags & RegRex) != 0)
6581 i.rex |= REX_X;
6582 if ((i.index_reg->reg_flags & RegVRex) != 0)
6583 i.vrex |= REX_X;
6584 }
6585
6586 default_seg = &ds;
6587
6588 if (i.base_reg == 0)
6589 {
6590 i.rm.mode = 0;
6591 if (!i.disp_operands)
6592 {
6593 fake_zero_displacement = 1;
6594 /* Instructions with VSIB byte need 32bit displacement
6595 if there is no base register. */
6596 if (i.tm.opcode_modifier.vecsib)
6597 i.types[op].bitfield.disp32 = 1;
6598 }
6599 if (i.index_reg == 0)
6600 {
6601 gas_assert (!i.tm.opcode_modifier.vecsib);
6602 /* Operand is just <disp> */
6603 if (flag_code == CODE_64BIT)
6604 {
6605 /* 64bit mode overwrites the 32bit absolute
6606 addressing by RIP relative addressing and
6607 absolute addressing is encoded by one of the
6608 redundant SIB forms. */
6609 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6610 i.sib.base = NO_BASE_REGISTER;
6611 i.sib.index = NO_INDEX_REGISTER;
6612 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6613 ? disp32s : disp32);
6614 }
6615 else if ((flag_code == CODE_16BIT)
6616 ^ (i.prefix[ADDR_PREFIX] != 0))
6617 {
6618 i.rm.regmem = NO_BASE_REGISTER_16;
6619 i.types[op] = disp16;
6620 }
6621 else
6622 {
6623 i.rm.regmem = NO_BASE_REGISTER;
6624 i.types[op] = disp32;
6625 }
6626 }
6627 else if (!i.tm.opcode_modifier.vecsib)
6628 {
6629 /* !i.base_reg && i.index_reg */
6630 if (i.index_reg->reg_num == RegEiz
6631 || i.index_reg->reg_num == RegRiz)
6632 i.sib.index = NO_INDEX_REGISTER;
6633 else
6634 i.sib.index = i.index_reg->reg_num;
6635 i.sib.base = NO_BASE_REGISTER;
6636 i.sib.scale = i.log2_scale_factor;
6637 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6638 /* No Vec_Disp8 if there is no base. */
6639 i.types[op].bitfield.vec_disp8 = 0;
6640 i.types[op].bitfield.disp8 = 0;
6641 i.types[op].bitfield.disp16 = 0;
6642 i.types[op].bitfield.disp64 = 0;
6643 if (flag_code != CODE_64BIT)
6644 {
6645 /* Must be 32 bit */
6646 i.types[op].bitfield.disp32 = 1;
6647 i.types[op].bitfield.disp32s = 0;
6648 }
6649 else
6650 {
6651 i.types[op].bitfield.disp32 = 0;
6652 i.types[op].bitfield.disp32s = 1;
6653 }
6654 if ((i.index_reg->reg_flags & RegRex) != 0)
6655 i.rex |= REX_X;
6656 }
6657 }
6658 /* RIP addressing for 64bit mode. */
6659 else if (i.base_reg->reg_num == RegRip ||
6660 i.base_reg->reg_num == RegEip)
6661 {
6662 gas_assert (!i.tm.opcode_modifier.vecsib);
6663 i.rm.regmem = NO_BASE_REGISTER;
6664 i.types[op].bitfield.disp8 = 0;
6665 i.types[op].bitfield.disp16 = 0;
6666 i.types[op].bitfield.disp32 = 0;
6667 i.types[op].bitfield.disp32s = 1;
6668 i.types[op].bitfield.disp64 = 0;
6669 i.types[op].bitfield.vec_disp8 = 0;
6670 i.flags[op] |= Operand_PCrel;
6671 if (! i.disp_operands)
6672 fake_zero_displacement = 1;
6673 }
6674 else if (i.base_reg->reg_type.bitfield.reg16)
6675 {
6676 gas_assert (!i.tm.opcode_modifier.vecsib);
6677 switch (i.base_reg->reg_num)
6678 {
6679 case 3: /* (%bx) */
6680 if (i.index_reg == 0)
6681 i.rm.regmem = 7;
6682 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6683 i.rm.regmem = i.index_reg->reg_num - 6;
6684 break;
6685 case 5: /* (%bp) */
6686 default_seg = &ss;
6687 if (i.index_reg == 0)
6688 {
6689 i.rm.regmem = 6;
6690 if (operand_type_check (i.types[op], disp) == 0)
6691 {
6692 /* fake (%bp) into 0(%bp) */
6693 if (i.tm.operand_types[op].bitfield.vec_disp8)
6694 i.types[op].bitfield.vec_disp8 = 1;
6695 else
6696 i.types[op].bitfield.disp8 = 1;
6697 fake_zero_displacement = 1;
6698 }
6699 }
6700 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6701 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6702 break;
6703 default: /* (%si) -> 4 or (%di) -> 5 */
6704 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6705 }
6706 i.rm.mode = mode_from_disp_size (i.types[op]);
6707 }
6708 else /* i.base_reg and 32/64 bit mode */
6709 {
6710 if (flag_code == CODE_64BIT
6711 && operand_type_check (i.types[op], disp))
6712 {
6713 i386_operand_type temp;
6714 operand_type_set (&temp, 0);
6715 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6716 temp.bitfield.vec_disp8
6717 = i.types[op].bitfield.vec_disp8;
6718 i.types[op] = temp;
6719 if (i.prefix[ADDR_PREFIX] == 0)
6720 i.types[op].bitfield.disp32s = 1;
6721 else
6722 i.types[op].bitfield.disp32 = 1;
6723 }
6724
6725 if (!i.tm.opcode_modifier.vecsib)
6726 i.rm.regmem = i.base_reg->reg_num;
6727 if ((i.base_reg->reg_flags & RegRex) != 0)
6728 i.rex |= REX_B;
6729 i.sib.base = i.base_reg->reg_num;
6730 /* x86-64 ignores REX prefix bit here to avoid decoder
6731 complications. */
6732 if (!(i.base_reg->reg_flags & RegRex)
6733 && (i.base_reg->reg_num == EBP_REG_NUM
6734 || i.base_reg->reg_num == ESP_REG_NUM))
6735 default_seg = &ss;
6736 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6737 {
6738 fake_zero_displacement = 1;
6739 if (i.tm.operand_types [op].bitfield.vec_disp8)
6740 i.types[op].bitfield.vec_disp8 = 1;
6741 else
6742 i.types[op].bitfield.disp8 = 1;
6743 }
6744 i.sib.scale = i.log2_scale_factor;
6745 if (i.index_reg == 0)
6746 {
6747 gas_assert (!i.tm.opcode_modifier.vecsib);
6748 /* <disp>(%esp) becomes two byte modrm with no index
6749 register. We've already stored the code for esp
6750 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6751 Any base register besides %esp will not use the
6752 extra modrm byte. */
6753 i.sib.index = NO_INDEX_REGISTER;
6754 }
6755 else if (!i.tm.opcode_modifier.vecsib)
6756 {
6757 if (i.index_reg->reg_num == RegEiz
6758 || i.index_reg->reg_num == RegRiz)
6759 i.sib.index = NO_INDEX_REGISTER;
6760 else
6761 i.sib.index = i.index_reg->reg_num;
6762 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6763 if ((i.index_reg->reg_flags & RegRex) != 0)
6764 i.rex |= REX_X;
6765 }
6766
6767 if (i.disp_operands
6768 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6769 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6770 i.rm.mode = 0;
6771 else
6772 {
6773 if (!fake_zero_displacement
6774 && !i.disp_operands
6775 && i.disp_encoding)
6776 {
6777 fake_zero_displacement = 1;
6778 if (i.disp_encoding == disp_encoding_8bit)
6779 i.types[op].bitfield.disp8 = 1;
6780 else
6781 i.types[op].bitfield.disp32 = 1;
6782 }
6783 i.rm.mode = mode_from_disp_size (i.types[op]);
6784 }
6785 }
6786
6787 if (fake_zero_displacement)
6788 {
6789 /* Fakes a zero displacement assuming that i.types[op]
6790 holds the correct displacement size. */
6791 expressionS *exp;
6792
6793 gas_assert (i.op[op].disps == 0);
6794 exp = &disp_expressions[i.disp_operands++];
6795 i.op[op].disps = exp;
6796 exp->X_op = O_constant;
6797 exp->X_add_number = 0;
6798 exp->X_add_symbol = (symbolS *) 0;
6799 exp->X_op_symbol = (symbolS *) 0;
6800 }
6801
6802 mem = op;
6803 }
6804 else
6805 mem = ~0;
6806
6807 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6808 {
6809 if (operand_type_check (i.types[0], imm))
6810 i.vex.register_specifier = NULL;
6811 else
6812 {
6813 /* VEX.vvvv encodes one of the sources when the first
6814 operand is not an immediate. */
6815 if (i.tm.opcode_modifier.vexw == VEXW0)
6816 i.vex.register_specifier = i.op[0].regs;
6817 else
6818 i.vex.register_specifier = i.op[1].regs;
6819 }
6820
6821 /* Destination is a XMM register encoded in the ModRM.reg
6822 and VEX.R bit. */
6823 i.rm.reg = i.op[2].regs->reg_num;
6824 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6825 i.rex |= REX_R;
6826
6827 /* ModRM.rm and VEX.B encodes the other source. */
6828 if (!i.mem_operands)
6829 {
6830 i.rm.mode = 3;
6831
6832 if (i.tm.opcode_modifier.vexw == VEXW0)
6833 i.rm.regmem = i.op[1].regs->reg_num;
6834 else
6835 i.rm.regmem = i.op[0].regs->reg_num;
6836
6837 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6838 i.rex |= REX_B;
6839 }
6840 }
6841 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6842 {
6843 i.vex.register_specifier = i.op[2].regs;
6844 if (!i.mem_operands)
6845 {
6846 i.rm.mode = 3;
6847 i.rm.regmem = i.op[1].regs->reg_num;
6848 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6849 i.rex |= REX_B;
6850 }
6851 }
6852 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6853 (if any) based on i.tm.extension_opcode. Again, we must be
6854 careful to make sure that segment/control/debug/test/MMX
6855 registers are coded into the i.rm.reg field. */
6856 else if (i.reg_operands)
6857 {
6858 unsigned int op;
6859 unsigned int vex_reg = ~0;
6860
6861 for (op = 0; op < i.operands; op++)
6862 if (i.types[op].bitfield.reg8
6863 || i.types[op].bitfield.reg16
6864 || i.types[op].bitfield.reg32
6865 || i.types[op].bitfield.reg64
6866 || i.types[op].bitfield.regmmx
6867 || i.types[op].bitfield.regxmm
6868 || i.types[op].bitfield.regymm
6869 || i.types[op].bitfield.regbnd
6870 || i.types[op].bitfield.regzmm
6871 || i.types[op].bitfield.regmask
6872 || i.types[op].bitfield.sreg2
6873 || i.types[op].bitfield.sreg3
6874 || i.types[op].bitfield.control
6875 || i.types[op].bitfield.debug
6876 || i.types[op].bitfield.test)
6877 break;
6878
6879 if (vex_3_sources)
6880 op = dest;
6881 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6882 {
6883 /* For instructions with VexNDS, the register-only
6884 source operand is encoded in VEX prefix. */
6885 gas_assert (mem != (unsigned int) ~0);
6886
6887 if (op > mem)
6888 {
6889 vex_reg = op++;
6890 gas_assert (op < i.operands);
6891 }
6892 else
6893 {
6894 /* Check register-only source operand when two source
6895 operands are swapped. */
6896 if (!i.tm.operand_types[op].bitfield.baseindex
6897 && i.tm.operand_types[op + 1].bitfield.baseindex)
6898 {
6899 vex_reg = op;
6900 op += 2;
6901 gas_assert (mem == (vex_reg + 1)
6902 && op < i.operands);
6903 }
6904 else
6905 {
6906 vex_reg = op + 1;
6907 gas_assert (vex_reg < i.operands);
6908 }
6909 }
6910 }
6911 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6912 {
6913 /* For instructions with VexNDD, the register destination
6914 is encoded in VEX prefix. */
6915 if (i.mem_operands == 0)
6916 {
6917 /* There is no memory operand. */
6918 gas_assert ((op + 2) == i.operands);
6919 vex_reg = op + 1;
6920 }
6921 else
6922 {
6923 /* There are only 2 operands. */
6924 gas_assert (op < 2 && i.operands == 2);
6925 vex_reg = 1;
6926 }
6927 }
6928 else
6929 gas_assert (op < i.operands);
6930
6931 if (vex_reg != (unsigned int) ~0)
6932 {
6933 i386_operand_type *type = &i.tm.operand_types[vex_reg];
6934
6935 if (type->bitfield.reg32 != 1
6936 && type->bitfield.reg64 != 1
6937 && !operand_type_equal (type, &regxmm)
6938 && !operand_type_equal (type, &regymm)
6939 && !operand_type_equal (type, &regzmm)
6940 && !operand_type_equal (type, &regmask))
6941 abort ();
6942
6943 i.vex.register_specifier = i.op[vex_reg].regs;
6944 }
6945
6946 /* Don't set OP operand twice. */
6947 if (vex_reg != op)
6948 {
6949 /* If there is an extension opcode to put here, the
6950 register number must be put into the regmem field. */
6951 if (i.tm.extension_opcode != None)
6952 {
6953 i.rm.regmem = i.op[op].regs->reg_num;
6954 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6955 i.rex |= REX_B;
6956 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6957 i.vrex |= REX_B;
6958 }
6959 else
6960 {
6961 i.rm.reg = i.op[op].regs->reg_num;
6962 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6963 i.rex |= REX_R;
6964 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6965 i.vrex |= REX_R;
6966 }
6967 }
6968
6969 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6970 must set it to 3 to indicate this is a register operand
6971 in the regmem field. */
6972 if (!i.mem_operands)
6973 i.rm.mode = 3;
6974 }
6975
6976 /* Fill in i.rm.reg field with extension opcode (if any). */
6977 if (i.tm.extension_opcode != None)
6978 i.rm.reg = i.tm.extension_opcode;
6979 }
6980 return default_seg;
6981 }
6982
6983 static void
6984 output_branch (void)
6985 {
6986 char *p;
6987 int size;
6988 int code16;
6989 int prefix;
6990 relax_substateT subtype;
6991 symbolS *sym;
6992 offsetT off;
6993
6994 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6995 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6996
6997 prefix = 0;
6998 if (i.prefix[DATA_PREFIX] != 0)
6999 {
7000 prefix = 1;
7001 i.prefixes -= 1;
7002 code16 ^= CODE16;
7003 }
7004 /* Pentium4 branch hints. */
7005 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7006 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7007 {
7008 prefix++;
7009 i.prefixes--;
7010 }
7011 if (i.prefix[REX_PREFIX] != 0)
7012 {
7013 prefix++;
7014 i.prefixes--;
7015 }
7016
7017 /* BND prefixed jump. */
7018 if (i.prefix[BND_PREFIX] != 0)
7019 {
7020 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7021 i.prefixes -= 1;
7022 }
7023
7024 if (i.prefixes != 0 && !intel_syntax)
7025 as_warn (_("skipping prefixes on this instruction"));
7026
7027 /* It's always a symbol; End frag & setup for relax.
7028 Make sure there is enough room in this frag for the largest
7029 instruction we may generate in md_convert_frag. This is 2
7030 bytes for the opcode and room for the prefix and largest
7031 displacement. */
7032 frag_grow (prefix + 2 + 4);
7033 /* Prefix and 1 opcode byte go in fr_fix. */
7034 p = frag_more (prefix + 1);
7035 if (i.prefix[DATA_PREFIX] != 0)
7036 *p++ = DATA_PREFIX_OPCODE;
7037 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7038 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7039 *p++ = i.prefix[SEG_PREFIX];
7040 if (i.prefix[REX_PREFIX] != 0)
7041 *p++ = i.prefix[REX_PREFIX];
7042 *p = i.tm.base_opcode;
7043
7044 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7045 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7046 else if (cpu_arch_flags.bitfield.cpui386)
7047 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7048 else
7049 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7050 subtype |= code16;
7051
7052 sym = i.op[0].disps->X_add_symbol;
7053 off = i.op[0].disps->X_add_number;
7054
7055 if (i.op[0].disps->X_op != O_constant
7056 && i.op[0].disps->X_op != O_symbol)
7057 {
7058 /* Handle complex expressions. */
7059 sym = make_expr_symbol (i.op[0].disps);
7060 off = 0;
7061 }
7062
7063 /* 1 possible extra opcode + 4 byte displacement go in var part.
7064 Pass reloc in fr_var. */
7065 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7066 }
7067
7068 static void
7069 output_jump (void)
7070 {
7071 char *p;
7072 int size;
7073 fixS *fixP;
7074
7075 if (i.tm.opcode_modifier.jumpbyte)
7076 {
7077 /* This is a loop or jecxz type instruction. */
7078 size = 1;
7079 if (i.prefix[ADDR_PREFIX] != 0)
7080 {
7081 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7082 i.prefixes -= 1;
7083 }
7084 /* Pentium4 branch hints. */
7085 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7086 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7087 {
7088 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7089 i.prefixes--;
7090 }
7091 }
7092 else
7093 {
7094 int code16;
7095
7096 code16 = 0;
7097 if (flag_code == CODE_16BIT)
7098 code16 = CODE16;
7099
7100 if (i.prefix[DATA_PREFIX] != 0)
7101 {
7102 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7103 i.prefixes -= 1;
7104 code16 ^= CODE16;
7105 }
7106
7107 size = 4;
7108 if (code16)
7109 size = 2;
7110 }
7111
7112 if (i.prefix[REX_PREFIX] != 0)
7113 {
7114 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7115 i.prefixes -= 1;
7116 }
7117
7118 /* BND prefixed jump. */
7119 if (i.prefix[BND_PREFIX] != 0)
7120 {
7121 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7122 i.prefixes -= 1;
7123 }
7124
7125 if (i.prefixes != 0 && !intel_syntax)
7126 as_warn (_("skipping prefixes on this instruction"));
7127
7128 p = frag_more (i.tm.opcode_length + size);
7129 switch (i.tm.opcode_length)
7130 {
7131 case 2:
7132 *p++ = i.tm.base_opcode >> 8;
7133 /* Fall through. */
7134 case 1:
7135 *p++ = i.tm.base_opcode;
7136 break;
7137 default:
7138 abort ();
7139 }
7140
7141 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7142 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
7143
7144 /* All jumps handled here are signed, but don't use a signed limit
7145 check for 32 and 16 bit jumps as we want to allow wrap around at
7146 4G and 64k respectively. */
7147 if (size == 1)
7148 fixP->fx_signed = 1;
7149 }
7150
7151 static void
7152 output_interseg_jump (void)
7153 {
7154 char *p;
7155 int size;
7156 int prefix;
7157 int code16;
7158
7159 code16 = 0;
7160 if (flag_code == CODE_16BIT)
7161 code16 = CODE16;
7162
7163 prefix = 0;
7164 if (i.prefix[DATA_PREFIX] != 0)
7165 {
7166 prefix = 1;
7167 i.prefixes -= 1;
7168 code16 ^= CODE16;
7169 }
7170 if (i.prefix[REX_PREFIX] != 0)
7171 {
7172 prefix++;
7173 i.prefixes -= 1;
7174 }
7175
7176 size = 4;
7177 if (code16)
7178 size = 2;
7179
7180 if (i.prefixes != 0 && !intel_syntax)
7181 as_warn (_("skipping prefixes on this instruction"));
7182
7183 /* 1 opcode; 2 segment; offset */
7184 p = frag_more (prefix + 1 + 2 + size);
7185
7186 if (i.prefix[DATA_PREFIX] != 0)
7187 *p++ = DATA_PREFIX_OPCODE;
7188
7189 if (i.prefix[REX_PREFIX] != 0)
7190 *p++ = i.prefix[REX_PREFIX];
7191
7192 *p++ = i.tm.base_opcode;
7193 if (i.op[1].imms->X_op == O_constant)
7194 {
7195 offsetT n = i.op[1].imms->X_add_number;
7196
7197 if (size == 2
7198 && !fits_in_unsigned_word (n)
7199 && !fits_in_signed_word (n))
7200 {
7201 as_bad (_("16-bit jump out of range"));
7202 return;
7203 }
7204 md_number_to_chars (p, n, size);
7205 }
7206 else
7207 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7208 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7209 if (i.op[0].imms->X_op != O_constant)
7210 as_bad (_("can't handle non absolute segment in `%s'"),
7211 i.tm.name);
7212 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7213 }
7214
7215 static void
7216 output_insn (void)
7217 {
7218 fragS *insn_start_frag;
7219 offsetT insn_start_off;
7220
7221 /* Tie dwarf2 debug info to the address at the start of the insn.
7222 We can't do this after the insn has been output as the current
7223 frag may have been closed off. eg. by frag_var. */
7224 dwarf2_emit_insn (0);
7225
7226 insn_start_frag = frag_now;
7227 insn_start_off = frag_now_fix ();
7228
7229 /* Output jumps. */
7230 if (i.tm.opcode_modifier.jump)
7231 output_branch ();
7232 else if (i.tm.opcode_modifier.jumpbyte
7233 || i.tm.opcode_modifier.jumpdword)
7234 output_jump ();
7235 else if (i.tm.opcode_modifier.jumpintersegment)
7236 output_interseg_jump ();
7237 else
7238 {
7239 /* Output normal instructions here. */
7240 char *p;
7241 unsigned char *q;
7242 unsigned int j;
7243 unsigned int prefix;
7244
7245 if (avoid_fence
7246 && i.tm.base_opcode == 0xfae
7247 && i.operands == 1
7248 && i.imm_operands == 1
7249 && (i.op[0].imms->X_add_number == 0xe8
7250 || i.op[0].imms->X_add_number == 0xf0
7251 || i.op[0].imms->X_add_number == 0xf8))
7252 {
7253 /* Encode lfence, mfence, and sfence as
7254 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7255 offsetT val = 0x240483f0ULL;
7256 p = frag_more (5);
7257 md_number_to_chars (p, val, 5);
7258 return;
7259 }
7260
7261 /* Some processors fail on LOCK prefix. This options makes
7262 assembler ignore LOCK prefix and serves as a workaround. */
7263 if (omit_lock_prefix)
7264 {
7265 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7266 return;
7267 i.prefix[LOCK_PREFIX] = 0;
7268 }
7269
7270 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7271 don't need the explicit prefix. */
7272 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7273 {
7274 switch (i.tm.opcode_length)
7275 {
7276 case 3:
7277 if (i.tm.base_opcode & 0xff000000)
7278 {
7279 prefix = (i.tm.base_opcode >> 24) & 0xff;
7280 goto check_prefix;
7281 }
7282 break;
7283 case 2:
7284 if ((i.tm.base_opcode & 0xff0000) != 0)
7285 {
7286 prefix = (i.tm.base_opcode >> 16) & 0xff;
7287 if (i.tm.cpu_flags.bitfield.cpupadlock)
7288 {
7289 check_prefix:
7290 if (prefix != REPE_PREFIX_OPCODE
7291 || (i.prefix[REP_PREFIX]
7292 != REPE_PREFIX_OPCODE))
7293 add_prefix (prefix);
7294 }
7295 else
7296 add_prefix (prefix);
7297 }
7298 break;
7299 case 1:
7300 break;
7301 default:
7302 abort ();
7303 }
7304
7305 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7306 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7307 R_X86_64_GOTTPOFF relocation so that linker can safely
7308 perform IE->LE optimization. */
7309 if (x86_elf_abi == X86_64_X32_ABI
7310 && i.operands == 2
7311 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7312 && i.prefix[REX_PREFIX] == 0)
7313 add_prefix (REX_OPCODE);
7314 #endif
7315
7316 /* The prefix bytes. */
7317 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7318 if (*q)
7319 FRAG_APPEND_1_CHAR (*q);
7320 }
7321 else
7322 {
7323 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7324 if (*q)
7325 switch (j)
7326 {
7327 case REX_PREFIX:
7328 /* REX byte is encoded in VEX prefix. */
7329 break;
7330 case SEG_PREFIX:
7331 case ADDR_PREFIX:
7332 FRAG_APPEND_1_CHAR (*q);
7333 break;
7334 default:
7335 /* There should be no other prefixes for instructions
7336 with VEX prefix. */
7337 abort ();
7338 }
7339
7340 /* For EVEX instructions i.vrex should become 0 after
7341 build_evex_prefix. For VEX instructions upper 16 registers
7342 aren't available, so VREX should be 0. */
7343 if (i.vrex)
7344 abort ();
7345 /* Now the VEX prefix. */
7346 p = frag_more (i.vex.length);
7347 for (j = 0; j < i.vex.length; j++)
7348 p[j] = i.vex.bytes[j];
7349 }
7350
7351 /* Now the opcode; be careful about word order here! */
7352 if (i.tm.opcode_length == 1)
7353 {
7354 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7355 }
7356 else
7357 {
7358 switch (i.tm.opcode_length)
7359 {
7360 case 4:
7361 p = frag_more (4);
7362 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7363 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7364 break;
7365 case 3:
7366 p = frag_more (3);
7367 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7368 break;
7369 case 2:
7370 p = frag_more (2);
7371 break;
7372 default:
7373 abort ();
7374 break;
7375 }
7376
7377 /* Put out high byte first: can't use md_number_to_chars! */
7378 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7379 *p = i.tm.base_opcode & 0xff;
7380 }
7381
7382 /* Now the modrm byte and sib byte (if present). */
7383 if (i.tm.opcode_modifier.modrm)
7384 {
7385 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7386 | i.rm.reg << 3
7387 | i.rm.mode << 6));
7388 /* If i.rm.regmem == ESP (4)
7389 && i.rm.mode != (Register mode)
7390 && not 16 bit
7391 ==> need second modrm byte. */
7392 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7393 && i.rm.mode != 3
7394 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
7395 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7396 | i.sib.index << 3
7397 | i.sib.scale << 6));
7398 }
7399
7400 if (i.disp_operands)
7401 output_disp (insn_start_frag, insn_start_off);
7402
7403 if (i.imm_operands)
7404 output_imm (insn_start_frag, insn_start_off);
7405 }
7406
7407 #ifdef DEBUG386
7408 if (flag_debug)
7409 {
7410 pi ("" /*line*/, &i);
7411 }
7412 #endif /* DEBUG386 */
7413 }
7414
7415 /* Return the size of the displacement operand N. */
7416
7417 static int
7418 disp_size (unsigned int n)
7419 {
7420 int size = 4;
7421
7422 /* Vec_Disp8 has to be 8bit. */
7423 if (i.types[n].bitfield.vec_disp8)
7424 size = 1;
7425 else if (i.types[n].bitfield.disp64)
7426 size = 8;
7427 else if (i.types[n].bitfield.disp8)
7428 size = 1;
7429 else if (i.types[n].bitfield.disp16)
7430 size = 2;
7431 return size;
7432 }
7433
7434 /* Return the size of the immediate operand N. */
7435
7436 static int
7437 imm_size (unsigned int n)
7438 {
7439 int size = 4;
7440 if (i.types[n].bitfield.imm64)
7441 size = 8;
7442 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7443 size = 1;
7444 else if (i.types[n].bitfield.imm16)
7445 size = 2;
7446 return size;
7447 }
7448
7449 static void
7450 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7451 {
7452 char *p;
7453 unsigned int n;
7454
7455 for (n = 0; n < i.operands; n++)
7456 {
7457 if (i.types[n].bitfield.vec_disp8
7458 || operand_type_check (i.types[n], disp))
7459 {
7460 if (i.op[n].disps->X_op == O_constant)
7461 {
7462 int size = disp_size (n);
7463 offsetT val = i.op[n].disps->X_add_number;
7464
7465 if (i.types[n].bitfield.vec_disp8)
7466 val >>= i.memshift;
7467 val = offset_in_range (val, size);
7468 p = frag_more (size);
7469 md_number_to_chars (p, val, size);
7470 }
7471 else
7472 {
7473 enum bfd_reloc_code_real reloc_type;
7474 int size = disp_size (n);
7475 int sign = i.types[n].bitfield.disp32s;
7476 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7477 fixS *fixP;
7478
7479 /* We can't have 8 bit displacement here. */
7480 gas_assert (!i.types[n].bitfield.disp8);
7481
7482 /* The PC relative address is computed relative
7483 to the instruction boundary, so in case immediate
7484 fields follows, we need to adjust the value. */
7485 if (pcrel && i.imm_operands)
7486 {
7487 unsigned int n1;
7488 int sz = 0;
7489
7490 for (n1 = 0; n1 < i.operands; n1++)
7491 if (operand_type_check (i.types[n1], imm))
7492 {
7493 /* Only one immediate is allowed for PC
7494 relative address. */
7495 gas_assert (sz == 0);
7496 sz = imm_size (n1);
7497 i.op[n].disps->X_add_number -= sz;
7498 }
7499 /* We should find the immediate. */
7500 gas_assert (sz != 0);
7501 }
7502
7503 p = frag_more (size);
7504 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7505 if (GOT_symbol
7506 && GOT_symbol == i.op[n].disps->X_add_symbol
7507 && (((reloc_type == BFD_RELOC_32
7508 || reloc_type == BFD_RELOC_X86_64_32S
7509 || (reloc_type == BFD_RELOC_64
7510 && object_64bit))
7511 && (i.op[n].disps->X_op == O_symbol
7512 || (i.op[n].disps->X_op == O_add
7513 && ((symbol_get_value_expression
7514 (i.op[n].disps->X_op_symbol)->X_op)
7515 == O_subtract))))
7516 || reloc_type == BFD_RELOC_32_PCREL))
7517 {
7518 offsetT add;
7519
7520 if (insn_start_frag == frag_now)
7521 add = (p - frag_now->fr_literal) - insn_start_off;
7522 else
7523 {
7524 fragS *fr;
7525
7526 add = insn_start_frag->fr_fix - insn_start_off;
7527 for (fr = insn_start_frag->fr_next;
7528 fr && fr != frag_now; fr = fr->fr_next)
7529 add += fr->fr_fix;
7530 add += p - frag_now->fr_literal;
7531 }
7532
7533 if (!object_64bit)
7534 {
7535 reloc_type = BFD_RELOC_386_GOTPC;
7536 i.op[n].imms->X_add_number += add;
7537 }
7538 else if (reloc_type == BFD_RELOC_64)
7539 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7540 else
7541 /* Don't do the adjustment for x86-64, as there
7542 the pcrel addressing is relative to the _next_
7543 insn, and that is taken care of in other code. */
7544 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7545 }
7546 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7547 size, i.op[n].disps, pcrel,
7548 reloc_type);
7549 /* Check for "call/jmp *mem", "mov mem, %reg",
7550 "test %reg, mem" and "binop mem, %reg" where binop
7551 is one of adc, add, and, cmp, or, sbb, sub, xor
7552 instructions. Always generate R_386_GOT32X for
7553 "sym*GOT" operand in 32-bit mode. */
7554 if ((generate_relax_relocations
7555 || (!object_64bit
7556 && i.rm.mode == 0
7557 && i.rm.regmem == 5))
7558 && (i.rm.mode == 2
7559 || (i.rm.mode == 0 && i.rm.regmem == 5))
7560 && ((i.operands == 1
7561 && i.tm.base_opcode == 0xff
7562 && (i.rm.reg == 2 || i.rm.reg == 4))
7563 || (i.operands == 2
7564 && (i.tm.base_opcode == 0x8b
7565 || i.tm.base_opcode == 0x85
7566 || (i.tm.base_opcode & 0xc7) == 0x03))))
7567 {
7568 if (object_64bit)
7569 {
7570 fixP->fx_tcbit = i.rex != 0;
7571 if (i.base_reg
7572 && (i.base_reg->reg_num == RegRip
7573 || i.base_reg->reg_num == RegEip))
7574 fixP->fx_tcbit2 = 1;
7575 }
7576 else
7577 fixP->fx_tcbit2 = 1;
7578 }
7579 }
7580 }
7581 }
7582 }
7583
7584 static void
7585 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7586 {
7587 char *p;
7588 unsigned int n;
7589
7590 for (n = 0; n < i.operands; n++)
7591 {
7592 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7593 if (i.rounding && (int) n == i.rounding->operand)
7594 continue;
7595
7596 if (operand_type_check (i.types[n], imm))
7597 {
7598 if (i.op[n].imms->X_op == O_constant)
7599 {
7600 int size = imm_size (n);
7601 offsetT val;
7602
7603 val = offset_in_range (i.op[n].imms->X_add_number,
7604 size);
7605 p = frag_more (size);
7606 md_number_to_chars (p, val, size);
7607 }
7608 else
7609 {
7610 /* Not absolute_section.
7611 Need a 32-bit fixup (don't support 8bit
7612 non-absolute imms). Try to support other
7613 sizes ... */
7614 enum bfd_reloc_code_real reloc_type;
7615 int size = imm_size (n);
7616 int sign;
7617
7618 if (i.types[n].bitfield.imm32s
7619 && (i.suffix == QWORD_MNEM_SUFFIX
7620 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7621 sign = 1;
7622 else
7623 sign = 0;
7624
7625 p = frag_more (size);
7626 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7627
7628 /* This is tough to explain. We end up with this one if we
7629 * have operands that look like
7630 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7631 * obtain the absolute address of the GOT, and it is strongly
7632 * preferable from a performance point of view to avoid using
7633 * a runtime relocation for this. The actual sequence of
7634 * instructions often look something like:
7635 *
7636 * call .L66
7637 * .L66:
7638 * popl %ebx
7639 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7640 *
7641 * The call and pop essentially return the absolute address
7642 * of the label .L66 and store it in %ebx. The linker itself
7643 * will ultimately change the first operand of the addl so
7644 * that %ebx points to the GOT, but to keep things simple, the
7645 * .o file must have this operand set so that it generates not
7646 * the absolute address of .L66, but the absolute address of
7647 * itself. This allows the linker itself simply treat a GOTPC
7648 * relocation as asking for a pcrel offset to the GOT to be
7649 * added in, and the addend of the relocation is stored in the
7650 * operand field for the instruction itself.
7651 *
7652 * Our job here is to fix the operand so that it would add
7653 * the correct offset so that %ebx would point to itself. The
7654 * thing that is tricky is that .-.L66 will point to the
7655 * beginning of the instruction, so we need to further modify
7656 * the operand so that it will point to itself. There are
7657 * other cases where you have something like:
7658 *
7659 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7660 *
7661 * and here no correction would be required. Internally in
7662 * the assembler we treat operands of this form as not being
7663 * pcrel since the '.' is explicitly mentioned, and I wonder
7664 * whether it would simplify matters to do it this way. Who
7665 * knows. In earlier versions of the PIC patches, the
7666 * pcrel_adjust field was used to store the correction, but
7667 * since the expression is not pcrel, I felt it would be
7668 * confusing to do it this way. */
7669
7670 if ((reloc_type == BFD_RELOC_32
7671 || reloc_type == BFD_RELOC_X86_64_32S
7672 || reloc_type == BFD_RELOC_64)
7673 && GOT_symbol
7674 && GOT_symbol == i.op[n].imms->X_add_symbol
7675 && (i.op[n].imms->X_op == O_symbol
7676 || (i.op[n].imms->X_op == O_add
7677 && ((symbol_get_value_expression
7678 (i.op[n].imms->X_op_symbol)->X_op)
7679 == O_subtract))))
7680 {
7681 offsetT add;
7682
7683 if (insn_start_frag == frag_now)
7684 add = (p - frag_now->fr_literal) - insn_start_off;
7685 else
7686 {
7687 fragS *fr;
7688
7689 add = insn_start_frag->fr_fix - insn_start_off;
7690 for (fr = insn_start_frag->fr_next;
7691 fr && fr != frag_now; fr = fr->fr_next)
7692 add += fr->fr_fix;
7693 add += p - frag_now->fr_literal;
7694 }
7695
7696 if (!object_64bit)
7697 reloc_type = BFD_RELOC_386_GOTPC;
7698 else if (size == 4)
7699 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7700 else if (size == 8)
7701 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7702 i.op[n].imms->X_add_number += add;
7703 }
7704 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7705 i.op[n].imms, 0, reloc_type);
7706 }
7707 }
7708 }
7709 }
7710 \f
7711 /* x86_cons_fix_new is called via the expression parsing code when a
7712 reloc is needed. We use this hook to get the correct .got reloc. */
7713 static int cons_sign = -1;
7714
7715 void
7716 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7717 expressionS *exp, bfd_reloc_code_real_type r)
7718 {
7719 r = reloc (len, 0, cons_sign, r);
7720
7721 #ifdef TE_PE
7722 if (exp->X_op == O_secrel)
7723 {
7724 exp->X_op = O_symbol;
7725 r = BFD_RELOC_32_SECREL;
7726 }
7727 #endif
7728
7729 fix_new_exp (frag, off, len, exp, 0, r);
7730 }
7731
7732 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7733 purpose of the `.dc.a' internal pseudo-op. */
7734
7735 int
7736 x86_address_bytes (void)
7737 {
7738 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7739 return 4;
7740 return stdoutput->arch_info->bits_per_address / 8;
7741 }
7742
7743 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7744 || defined (LEX_AT)
7745 # define lex_got(reloc, adjust, types) NULL
7746 #else
7747 /* Parse operands of the form
7748 <symbol>@GOTOFF+<nnn>
7749 and similar .plt or .got references.
7750
7751 If we find one, set up the correct relocation in RELOC and copy the
7752 input string, minus the `@GOTOFF' into a malloc'd buffer for
7753 parsing by the calling routine. Return this buffer, and if ADJUST
7754 is non-null set it to the length of the string we removed from the
7755 input line. Otherwise return NULL. */
7756 static char *
7757 lex_got (enum bfd_reloc_code_real *rel,
7758 int *adjust,
7759 i386_operand_type *types)
7760 {
7761 /* Some of the relocations depend on the size of what field is to
7762 be relocated. But in our callers i386_immediate and i386_displacement
7763 we don't yet know the operand size (this will be set by insn
7764 matching). Hence we record the word32 relocation here,
7765 and adjust the reloc according to the real size in reloc(). */
7766 static const struct {
7767 const char *str;
7768 int len;
7769 const enum bfd_reloc_code_real rel[2];
7770 const i386_operand_type types64;
7771 } gotrel[] = {
7772 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7773 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7774 BFD_RELOC_SIZE32 },
7775 OPERAND_TYPE_IMM32_64 },
7776 #endif
7777 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7778 BFD_RELOC_X86_64_PLTOFF64 },
7779 OPERAND_TYPE_IMM64 },
7780 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7781 BFD_RELOC_X86_64_PLT32 },
7782 OPERAND_TYPE_IMM32_32S_DISP32 },
7783 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7784 BFD_RELOC_X86_64_GOTPLT64 },
7785 OPERAND_TYPE_IMM64_DISP64 },
7786 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7787 BFD_RELOC_X86_64_GOTOFF64 },
7788 OPERAND_TYPE_IMM64_DISP64 },
7789 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7790 BFD_RELOC_X86_64_GOTPCREL },
7791 OPERAND_TYPE_IMM32_32S_DISP32 },
7792 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7793 BFD_RELOC_X86_64_TLSGD },
7794 OPERAND_TYPE_IMM32_32S_DISP32 },
7795 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7796 _dummy_first_bfd_reloc_code_real },
7797 OPERAND_TYPE_NONE },
7798 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7799 BFD_RELOC_X86_64_TLSLD },
7800 OPERAND_TYPE_IMM32_32S_DISP32 },
7801 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7802 BFD_RELOC_X86_64_GOTTPOFF },
7803 OPERAND_TYPE_IMM32_32S_DISP32 },
7804 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7805 BFD_RELOC_X86_64_TPOFF32 },
7806 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7807 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7808 _dummy_first_bfd_reloc_code_real },
7809 OPERAND_TYPE_NONE },
7810 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7811 BFD_RELOC_X86_64_DTPOFF32 },
7812 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7813 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7814 _dummy_first_bfd_reloc_code_real },
7815 OPERAND_TYPE_NONE },
7816 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7817 _dummy_first_bfd_reloc_code_real },
7818 OPERAND_TYPE_NONE },
7819 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7820 BFD_RELOC_X86_64_GOT32 },
7821 OPERAND_TYPE_IMM32_32S_64_DISP32 },
7822 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7823 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7824 OPERAND_TYPE_IMM32_32S_DISP32 },
7825 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7826 BFD_RELOC_X86_64_TLSDESC_CALL },
7827 OPERAND_TYPE_IMM32_32S_DISP32 },
7828 };
7829 char *cp;
7830 unsigned int j;
7831
7832 #if defined (OBJ_MAYBE_ELF)
7833 if (!IS_ELF)
7834 return NULL;
7835 #endif
7836
7837 for (cp = input_line_pointer; *cp != '@'; cp++)
7838 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7839 return NULL;
7840
7841 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7842 {
7843 int len = gotrel[j].len;
7844 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7845 {
7846 if (gotrel[j].rel[object_64bit] != 0)
7847 {
7848 int first, second;
7849 char *tmpbuf, *past_reloc;
7850
7851 *rel = gotrel[j].rel[object_64bit];
7852
7853 if (types)
7854 {
7855 if (flag_code != CODE_64BIT)
7856 {
7857 types->bitfield.imm32 = 1;
7858 types->bitfield.disp32 = 1;
7859 }
7860 else
7861 *types = gotrel[j].types64;
7862 }
7863
7864 if (j != 0 && GOT_symbol == NULL)
7865 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7866
7867 /* The length of the first part of our input line. */
7868 first = cp - input_line_pointer;
7869
7870 /* The second part goes from after the reloc token until
7871 (and including) an end_of_line char or comma. */
7872 past_reloc = cp + 1 + len;
7873 cp = past_reloc;
7874 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7875 ++cp;
7876 second = cp + 1 - past_reloc;
7877
7878 /* Allocate and copy string. The trailing NUL shouldn't
7879 be necessary, but be safe. */
7880 tmpbuf = XNEWVEC (char, first + second + 2);
7881 memcpy (tmpbuf, input_line_pointer, first);
7882 if (second != 0 && *past_reloc != ' ')
7883 /* Replace the relocation token with ' ', so that
7884 errors like foo@GOTOFF1 will be detected. */
7885 tmpbuf[first++] = ' ';
7886 else
7887 /* Increment length by 1 if the relocation token is
7888 removed. */
7889 len++;
7890 if (adjust)
7891 *adjust = len;
7892 memcpy (tmpbuf + first, past_reloc, second);
7893 tmpbuf[first + second] = '\0';
7894 return tmpbuf;
7895 }
7896
7897 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7898 gotrel[j].str, 1 << (5 + object_64bit));
7899 return NULL;
7900 }
7901 }
7902
7903 /* Might be a symbol version string. Don't as_bad here. */
7904 return NULL;
7905 }
7906 #endif
7907
7908 #ifdef TE_PE
7909 #ifdef lex_got
7910 #undef lex_got
7911 #endif
7912 /* Parse operands of the form
7913 <symbol>@SECREL32+<nnn>
7914
7915 If we find one, set up the correct relocation in RELOC and copy the
7916 input string, minus the `@SECREL32' into a malloc'd buffer for
7917 parsing by the calling routine. Return this buffer, and if ADJUST
7918 is non-null set it to the length of the string we removed from the
7919 input line. Otherwise return NULL.
7920
7921 This function is copied from the ELF version above adjusted for PE targets. */
7922
7923 static char *
7924 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7925 int *adjust ATTRIBUTE_UNUSED,
7926 i386_operand_type *types)
7927 {
7928 static const struct
7929 {
7930 const char *str;
7931 int len;
7932 const enum bfd_reloc_code_real rel[2];
7933 const i386_operand_type types64;
7934 }
7935 gotrel[] =
7936 {
7937 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7938 BFD_RELOC_32_SECREL },
7939 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7940 };
7941
7942 char *cp;
7943 unsigned j;
7944
7945 for (cp = input_line_pointer; *cp != '@'; cp++)
7946 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7947 return NULL;
7948
7949 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7950 {
7951 int len = gotrel[j].len;
7952
7953 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7954 {
7955 if (gotrel[j].rel[object_64bit] != 0)
7956 {
7957 int first, second;
7958 char *tmpbuf, *past_reloc;
7959
7960 *rel = gotrel[j].rel[object_64bit];
7961 if (adjust)
7962 *adjust = len;
7963
7964 if (types)
7965 {
7966 if (flag_code != CODE_64BIT)
7967 {
7968 types->bitfield.imm32 = 1;
7969 types->bitfield.disp32 = 1;
7970 }
7971 else
7972 *types = gotrel[j].types64;
7973 }
7974
7975 /* The length of the first part of our input line. */
7976 first = cp - input_line_pointer;
7977
7978 /* The second part goes from after the reloc token until
7979 (and including) an end_of_line char or comma. */
7980 past_reloc = cp + 1 + len;
7981 cp = past_reloc;
7982 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7983 ++cp;
7984 second = cp + 1 - past_reloc;
7985
7986 /* Allocate and copy string. The trailing NUL shouldn't
7987 be necessary, but be safe. */
7988 tmpbuf = XNEWVEC (char, first + second + 2);
7989 memcpy (tmpbuf, input_line_pointer, first);
7990 if (second != 0 && *past_reloc != ' ')
7991 /* Replace the relocation token with ' ', so that
7992 errors like foo@SECLREL321 will be detected. */
7993 tmpbuf[first++] = ' ';
7994 memcpy (tmpbuf + first, past_reloc, second);
7995 tmpbuf[first + second] = '\0';
7996 return tmpbuf;
7997 }
7998
7999 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8000 gotrel[j].str, 1 << (5 + object_64bit));
8001 return NULL;
8002 }
8003 }
8004
8005 /* Might be a symbol version string. Don't as_bad here. */
8006 return NULL;
8007 }
8008
8009 #endif /* TE_PE */
8010
8011 bfd_reloc_code_real_type
8012 x86_cons (expressionS *exp, int size)
8013 {
8014 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8015
8016 intel_syntax = -intel_syntax;
8017
8018 exp->X_md = 0;
8019 if (size == 4 || (object_64bit && size == 8))
8020 {
8021 /* Handle @GOTOFF and the like in an expression. */
8022 char *save;
8023 char *gotfree_input_line;
8024 int adjust = 0;
8025
8026 save = input_line_pointer;
8027 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8028 if (gotfree_input_line)
8029 input_line_pointer = gotfree_input_line;
8030
8031 expression (exp);
8032
8033 if (gotfree_input_line)
8034 {
8035 /* expression () has merrily parsed up to the end of line,
8036 or a comma - in the wrong buffer. Transfer how far
8037 input_line_pointer has moved to the right buffer. */
8038 input_line_pointer = (save
8039 + (input_line_pointer - gotfree_input_line)
8040 + adjust);
8041 free (gotfree_input_line);
8042 if (exp->X_op == O_constant
8043 || exp->X_op == O_absent
8044 || exp->X_op == O_illegal
8045 || exp->X_op == O_register
8046 || exp->X_op == O_big)
8047 {
8048 char c = *input_line_pointer;
8049 *input_line_pointer = 0;
8050 as_bad (_("missing or invalid expression `%s'"), save);
8051 *input_line_pointer = c;
8052 }
8053 }
8054 }
8055 else
8056 expression (exp);
8057
8058 intel_syntax = -intel_syntax;
8059
8060 if (intel_syntax)
8061 i386_intel_simplify (exp);
8062
8063 return got_reloc;
8064 }
8065
8066 static void
8067 signed_cons (int size)
8068 {
8069 if (flag_code == CODE_64BIT)
8070 cons_sign = 1;
8071 cons (size);
8072 cons_sign = -1;
8073 }
8074
8075 #ifdef TE_PE
8076 static void
8077 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8078 {
8079 expressionS exp;
8080
8081 do
8082 {
8083 expression (&exp);
8084 if (exp.X_op == O_symbol)
8085 exp.X_op = O_secrel;
8086
8087 emit_expr (&exp, 4);
8088 }
8089 while (*input_line_pointer++ == ',');
8090
8091 input_line_pointer--;
8092 demand_empty_rest_of_line ();
8093 }
8094 #endif
8095
8096 /* Handle Vector operations. */
8097
8098 static char *
8099 check_VecOperations (char *op_string, char *op_end)
8100 {
8101 const reg_entry *mask;
8102 const char *saved;
8103 char *end_op;
8104
8105 while (*op_string
8106 && (op_end == NULL || op_string < op_end))
8107 {
8108 saved = op_string;
8109 if (*op_string == '{')
8110 {
8111 op_string++;
8112
8113 /* Check broadcasts. */
8114 if (strncmp (op_string, "1to", 3) == 0)
8115 {
8116 int bcst_type;
8117
8118 if (i.broadcast)
8119 goto duplicated_vec_op;
8120
8121 op_string += 3;
8122 if (*op_string == '8')
8123 bcst_type = BROADCAST_1TO8;
8124 else if (*op_string == '4')
8125 bcst_type = BROADCAST_1TO4;
8126 else if (*op_string == '2')
8127 bcst_type = BROADCAST_1TO2;
8128 else if (*op_string == '1'
8129 && *(op_string+1) == '6')
8130 {
8131 bcst_type = BROADCAST_1TO16;
8132 op_string++;
8133 }
8134 else
8135 {
8136 as_bad (_("Unsupported broadcast: `%s'"), saved);
8137 return NULL;
8138 }
8139 op_string++;
8140
8141 broadcast_op.type = bcst_type;
8142 broadcast_op.operand = this_operand;
8143 i.broadcast = &broadcast_op;
8144 }
8145 /* Check masking operation. */
8146 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8147 {
8148 /* k0 can't be used for write mask. */
8149 if (mask->reg_num == 0)
8150 {
8151 as_bad (_("`%s' can't be used for write mask"),
8152 op_string);
8153 return NULL;
8154 }
8155
8156 if (!i.mask)
8157 {
8158 mask_op.mask = mask;
8159 mask_op.zeroing = 0;
8160 mask_op.operand = this_operand;
8161 i.mask = &mask_op;
8162 }
8163 else
8164 {
8165 if (i.mask->mask)
8166 goto duplicated_vec_op;
8167
8168 i.mask->mask = mask;
8169
8170 /* Only "{z}" is allowed here. No need to check
8171 zeroing mask explicitly. */
8172 if (i.mask->operand != this_operand)
8173 {
8174 as_bad (_("invalid write mask `%s'"), saved);
8175 return NULL;
8176 }
8177 }
8178
8179 op_string = end_op;
8180 }
8181 /* Check zeroing-flag for masking operation. */
8182 else if (*op_string == 'z')
8183 {
8184 if (!i.mask)
8185 {
8186 mask_op.mask = NULL;
8187 mask_op.zeroing = 1;
8188 mask_op.operand = this_operand;
8189 i.mask = &mask_op;
8190 }
8191 else
8192 {
8193 if (i.mask->zeroing)
8194 {
8195 duplicated_vec_op:
8196 as_bad (_("duplicated `%s'"), saved);
8197 return NULL;
8198 }
8199
8200 i.mask->zeroing = 1;
8201
8202 /* Only "{%k}" is allowed here. No need to check mask
8203 register explicitly. */
8204 if (i.mask->operand != this_operand)
8205 {
8206 as_bad (_("invalid zeroing-masking `%s'"),
8207 saved);
8208 return NULL;
8209 }
8210 }
8211
8212 op_string++;
8213 }
8214 else
8215 goto unknown_vec_op;
8216
8217 if (*op_string != '}')
8218 {
8219 as_bad (_("missing `}' in `%s'"), saved);
8220 return NULL;
8221 }
8222 op_string++;
8223 continue;
8224 }
8225 unknown_vec_op:
8226 /* We don't know this one. */
8227 as_bad (_("unknown vector operation: `%s'"), saved);
8228 return NULL;
8229 }
8230
8231 return op_string;
8232 }
8233
8234 static int
8235 i386_immediate (char *imm_start)
8236 {
8237 char *save_input_line_pointer;
8238 char *gotfree_input_line;
8239 segT exp_seg = 0;
8240 expressionS *exp;
8241 i386_operand_type types;
8242
8243 operand_type_set (&types, ~0);
8244
8245 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8246 {
8247 as_bad (_("at most %d immediate operands are allowed"),
8248 MAX_IMMEDIATE_OPERANDS);
8249 return 0;
8250 }
8251
8252 exp = &im_expressions[i.imm_operands++];
8253 i.op[this_operand].imms = exp;
8254
8255 if (is_space_char (*imm_start))
8256 ++imm_start;
8257
8258 save_input_line_pointer = input_line_pointer;
8259 input_line_pointer = imm_start;
8260
8261 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8262 if (gotfree_input_line)
8263 input_line_pointer = gotfree_input_line;
8264
8265 exp_seg = expression (exp);
8266
8267 SKIP_WHITESPACE ();
8268
8269 /* Handle vector operations. */
8270 if (*input_line_pointer == '{')
8271 {
8272 input_line_pointer = check_VecOperations (input_line_pointer,
8273 NULL);
8274 if (input_line_pointer == NULL)
8275 return 0;
8276 }
8277
8278 if (*input_line_pointer)
8279 as_bad (_("junk `%s' after expression"), input_line_pointer);
8280
8281 input_line_pointer = save_input_line_pointer;
8282 if (gotfree_input_line)
8283 {
8284 free (gotfree_input_line);
8285
8286 if (exp->X_op == O_constant || exp->X_op == O_register)
8287 exp->X_op = O_illegal;
8288 }
8289
8290 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8291 }
8292
8293 static int
8294 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8295 i386_operand_type types, const char *imm_start)
8296 {
8297 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8298 {
8299 if (imm_start)
8300 as_bad (_("missing or invalid immediate expression `%s'"),
8301 imm_start);
8302 return 0;
8303 }
8304 else if (exp->X_op == O_constant)
8305 {
8306 /* Size it properly later. */
8307 i.types[this_operand].bitfield.imm64 = 1;
8308 /* If not 64bit, sign extend val. */
8309 if (flag_code != CODE_64BIT
8310 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8311 exp->X_add_number
8312 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8313 }
8314 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8315 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8316 && exp_seg != absolute_section
8317 && exp_seg != text_section
8318 && exp_seg != data_section
8319 && exp_seg != bss_section
8320 && exp_seg != undefined_section
8321 && !bfd_is_com_section (exp_seg))
8322 {
8323 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8324 return 0;
8325 }
8326 #endif
8327 else if (!intel_syntax && exp_seg == reg_section)
8328 {
8329 if (imm_start)
8330 as_bad (_("illegal immediate register operand %s"), imm_start);
8331 return 0;
8332 }
8333 else
8334 {
8335 /* This is an address. The size of the address will be
8336 determined later, depending on destination register,
8337 suffix, or the default for the section. */
8338 i.types[this_operand].bitfield.imm8 = 1;
8339 i.types[this_operand].bitfield.imm16 = 1;
8340 i.types[this_operand].bitfield.imm32 = 1;
8341 i.types[this_operand].bitfield.imm32s = 1;
8342 i.types[this_operand].bitfield.imm64 = 1;
8343 i.types[this_operand] = operand_type_and (i.types[this_operand],
8344 types);
8345 }
8346
8347 return 1;
8348 }
8349
8350 static char *
8351 i386_scale (char *scale)
8352 {
8353 offsetT val;
8354 char *save = input_line_pointer;
8355
8356 input_line_pointer = scale;
8357 val = get_absolute_expression ();
8358
8359 switch (val)
8360 {
8361 case 1:
8362 i.log2_scale_factor = 0;
8363 break;
8364 case 2:
8365 i.log2_scale_factor = 1;
8366 break;
8367 case 4:
8368 i.log2_scale_factor = 2;
8369 break;
8370 case 8:
8371 i.log2_scale_factor = 3;
8372 break;
8373 default:
8374 {
8375 char sep = *input_line_pointer;
8376
8377 *input_line_pointer = '\0';
8378 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8379 scale);
8380 *input_line_pointer = sep;
8381 input_line_pointer = save;
8382 return NULL;
8383 }
8384 }
8385 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8386 {
8387 as_warn (_("scale factor of %d without an index register"),
8388 1 << i.log2_scale_factor);
8389 i.log2_scale_factor = 0;
8390 }
8391 scale = input_line_pointer;
8392 input_line_pointer = save;
8393 return scale;
8394 }
8395
8396 static int
8397 i386_displacement (char *disp_start, char *disp_end)
8398 {
8399 expressionS *exp;
8400 segT exp_seg = 0;
8401 char *save_input_line_pointer;
8402 char *gotfree_input_line;
8403 int override;
8404 i386_operand_type bigdisp, types = anydisp;
8405 int ret;
8406
8407 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8408 {
8409 as_bad (_("at most %d displacement operands are allowed"),
8410 MAX_MEMORY_OPERANDS);
8411 return 0;
8412 }
8413
8414 operand_type_set (&bigdisp, 0);
8415 if ((i.types[this_operand].bitfield.jumpabsolute)
8416 || (!current_templates->start->opcode_modifier.jump
8417 && !current_templates->start->opcode_modifier.jumpdword))
8418 {
8419 bigdisp.bitfield.disp32 = 1;
8420 override = (i.prefix[ADDR_PREFIX] != 0);
8421 if (flag_code == CODE_64BIT)
8422 {
8423 if (!override)
8424 {
8425 bigdisp.bitfield.disp32s = 1;
8426 bigdisp.bitfield.disp64 = 1;
8427 }
8428 }
8429 else if ((flag_code == CODE_16BIT) ^ override)
8430 {
8431 bigdisp.bitfield.disp32 = 0;
8432 bigdisp.bitfield.disp16 = 1;
8433 }
8434 }
8435 else
8436 {
8437 /* For PC-relative branches, the width of the displacement
8438 is dependent upon data size, not address size. */
8439 override = (i.prefix[DATA_PREFIX] != 0);
8440 if (flag_code == CODE_64BIT)
8441 {
8442 if (override || i.suffix == WORD_MNEM_SUFFIX)
8443 bigdisp.bitfield.disp16 = 1;
8444 else
8445 {
8446 bigdisp.bitfield.disp32 = 1;
8447 bigdisp.bitfield.disp32s = 1;
8448 }
8449 }
8450 else
8451 {
8452 if (!override)
8453 override = (i.suffix == (flag_code != CODE_16BIT
8454 ? WORD_MNEM_SUFFIX
8455 : LONG_MNEM_SUFFIX));
8456 bigdisp.bitfield.disp32 = 1;
8457 if ((flag_code == CODE_16BIT) ^ override)
8458 {
8459 bigdisp.bitfield.disp32 = 0;
8460 bigdisp.bitfield.disp16 = 1;
8461 }
8462 }
8463 }
8464 i.types[this_operand] = operand_type_or (i.types[this_operand],
8465 bigdisp);
8466
8467 exp = &disp_expressions[i.disp_operands];
8468 i.op[this_operand].disps = exp;
8469 i.disp_operands++;
8470 save_input_line_pointer = input_line_pointer;
8471 input_line_pointer = disp_start;
8472 END_STRING_AND_SAVE (disp_end);
8473
8474 #ifndef GCC_ASM_O_HACK
8475 #define GCC_ASM_O_HACK 0
8476 #endif
8477 #if GCC_ASM_O_HACK
8478 END_STRING_AND_SAVE (disp_end + 1);
8479 if (i.types[this_operand].bitfield.baseIndex
8480 && displacement_string_end[-1] == '+')
8481 {
8482 /* This hack is to avoid a warning when using the "o"
8483 constraint within gcc asm statements.
8484 For instance:
8485
8486 #define _set_tssldt_desc(n,addr,limit,type) \
8487 __asm__ __volatile__ ( \
8488 "movw %w2,%0\n\t" \
8489 "movw %w1,2+%0\n\t" \
8490 "rorl $16,%1\n\t" \
8491 "movb %b1,4+%0\n\t" \
8492 "movb %4,5+%0\n\t" \
8493 "movb $0,6+%0\n\t" \
8494 "movb %h1,7+%0\n\t" \
8495 "rorl $16,%1" \
8496 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8497
8498 This works great except that the output assembler ends
8499 up looking a bit weird if it turns out that there is
8500 no offset. You end up producing code that looks like:
8501
8502 #APP
8503 movw $235,(%eax)
8504 movw %dx,2+(%eax)
8505 rorl $16,%edx
8506 movb %dl,4+(%eax)
8507 movb $137,5+(%eax)
8508 movb $0,6+(%eax)
8509 movb %dh,7+(%eax)
8510 rorl $16,%edx
8511 #NO_APP
8512
8513 So here we provide the missing zero. */
8514
8515 *displacement_string_end = '0';
8516 }
8517 #endif
8518 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8519 if (gotfree_input_line)
8520 input_line_pointer = gotfree_input_line;
8521
8522 exp_seg = expression (exp);
8523
8524 SKIP_WHITESPACE ();
8525 if (*input_line_pointer)
8526 as_bad (_("junk `%s' after expression"), input_line_pointer);
8527 #if GCC_ASM_O_HACK
8528 RESTORE_END_STRING (disp_end + 1);
8529 #endif
8530 input_line_pointer = save_input_line_pointer;
8531 if (gotfree_input_line)
8532 {
8533 free (gotfree_input_line);
8534
8535 if (exp->X_op == O_constant || exp->X_op == O_register)
8536 exp->X_op = O_illegal;
8537 }
8538
8539 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8540
8541 RESTORE_END_STRING (disp_end);
8542
8543 return ret;
8544 }
8545
8546 static int
8547 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8548 i386_operand_type types, const char *disp_start)
8549 {
8550 i386_operand_type bigdisp;
8551 int ret = 1;
8552
8553 /* We do this to make sure that the section symbol is in
8554 the symbol table. We will ultimately change the relocation
8555 to be relative to the beginning of the section. */
8556 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8557 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8558 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8559 {
8560 if (exp->X_op != O_symbol)
8561 goto inv_disp;
8562
8563 if (S_IS_LOCAL (exp->X_add_symbol)
8564 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8565 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8566 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8567 exp->X_op = O_subtract;
8568 exp->X_op_symbol = GOT_symbol;
8569 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8570 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8571 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8572 i.reloc[this_operand] = BFD_RELOC_64;
8573 else
8574 i.reloc[this_operand] = BFD_RELOC_32;
8575 }
8576
8577 else if (exp->X_op == O_absent
8578 || exp->X_op == O_illegal
8579 || exp->X_op == O_big)
8580 {
8581 inv_disp:
8582 as_bad (_("missing or invalid displacement expression `%s'"),
8583 disp_start);
8584 ret = 0;
8585 }
8586
8587 else if (flag_code == CODE_64BIT
8588 && !i.prefix[ADDR_PREFIX]
8589 && exp->X_op == O_constant)
8590 {
8591 /* Since displacement is signed extended to 64bit, don't allow
8592 disp32 and turn off disp32s if they are out of range. */
8593 i.types[this_operand].bitfield.disp32 = 0;
8594 if (!fits_in_signed_long (exp->X_add_number))
8595 {
8596 i.types[this_operand].bitfield.disp32s = 0;
8597 if (i.types[this_operand].bitfield.baseindex)
8598 {
8599 as_bad (_("0x%lx out range of signed 32bit displacement"),
8600 (long) exp->X_add_number);
8601 ret = 0;
8602 }
8603 }
8604 }
8605
8606 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8607 else if (exp->X_op != O_constant
8608 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8609 && exp_seg != absolute_section
8610 && exp_seg != text_section
8611 && exp_seg != data_section
8612 && exp_seg != bss_section
8613 && exp_seg != undefined_section
8614 && !bfd_is_com_section (exp_seg))
8615 {
8616 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8617 ret = 0;
8618 }
8619 #endif
8620
8621 /* Check if this is a displacement only operand. */
8622 bigdisp = i.types[this_operand];
8623 bigdisp.bitfield.disp8 = 0;
8624 bigdisp.bitfield.disp16 = 0;
8625 bigdisp.bitfield.disp32 = 0;
8626 bigdisp.bitfield.disp32s = 0;
8627 bigdisp.bitfield.disp64 = 0;
8628 if (operand_type_all_zero (&bigdisp))
8629 i.types[this_operand] = operand_type_and (i.types[this_operand],
8630 types);
8631
8632 return ret;
8633 }
8634
8635 /* Make sure the memory operand we've been dealt is valid.
8636 Return 1 on success, 0 on a failure. */
8637
8638 static int
8639 i386_index_check (const char *operand_string)
8640 {
8641 const char *kind = "base/index";
8642 enum flag_code addr_mode;
8643
8644 if (i.prefix[ADDR_PREFIX])
8645 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8646 else
8647 {
8648 addr_mode = flag_code;
8649
8650 #if INFER_ADDR_PREFIX
8651 if (i.mem_operands == 0)
8652 {
8653 /* Infer address prefix from the first memory operand. */
8654 const reg_entry *addr_reg = i.base_reg;
8655
8656 if (addr_reg == NULL)
8657 addr_reg = i.index_reg;
8658
8659 if (addr_reg)
8660 {
8661 if (addr_reg->reg_num == RegEip
8662 || addr_reg->reg_num == RegEiz
8663 || addr_reg->reg_type.bitfield.reg32)
8664 addr_mode = CODE_32BIT;
8665 else if (flag_code != CODE_64BIT
8666 && addr_reg->reg_type.bitfield.reg16)
8667 addr_mode = CODE_16BIT;
8668
8669 if (addr_mode != flag_code)
8670 {
8671 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8672 i.prefixes += 1;
8673 /* Change the size of any displacement too. At most one
8674 of Disp16 or Disp32 is set.
8675 FIXME. There doesn't seem to be any real need for
8676 separate Disp16 and Disp32 flags. The same goes for
8677 Imm16 and Imm32. Removing them would probably clean
8678 up the code quite a lot. */
8679 if (flag_code != CODE_64BIT
8680 && (i.types[this_operand].bitfield.disp16
8681 || i.types[this_operand].bitfield.disp32))
8682 i.types[this_operand]
8683 = operand_type_xor (i.types[this_operand], disp16_32);
8684 }
8685 }
8686 }
8687 #endif
8688 }
8689
8690 if (current_templates->start->opcode_modifier.isstring
8691 && !current_templates->start->opcode_modifier.immext
8692 && (current_templates->end[-1].opcode_modifier.isstring
8693 || i.mem_operands))
8694 {
8695 /* Memory operands of string insns are special in that they only allow
8696 a single register (rDI, rSI, or rBX) as their memory address. */
8697 const reg_entry *expected_reg;
8698 static const char *di_si[][2] =
8699 {
8700 { "esi", "edi" },
8701 { "si", "di" },
8702 { "rsi", "rdi" }
8703 };
8704 static const char *bx[] = { "ebx", "bx", "rbx" };
8705
8706 kind = "string address";
8707
8708 if (current_templates->start->opcode_modifier.repprefixok)
8709 {
8710 i386_operand_type type = current_templates->end[-1].operand_types[0];
8711
8712 if (!type.bitfield.baseindex
8713 || ((!i.mem_operands != !intel_syntax)
8714 && current_templates->end[-1].operand_types[1]
8715 .bitfield.baseindex))
8716 type = current_templates->end[-1].operand_types[1];
8717 expected_reg = hash_find (reg_hash,
8718 di_si[addr_mode][type.bitfield.esseg]);
8719
8720 }
8721 else
8722 expected_reg = hash_find (reg_hash, bx[addr_mode]);
8723
8724 if (i.base_reg != expected_reg
8725 || i.index_reg
8726 || operand_type_check (i.types[this_operand], disp))
8727 {
8728 /* The second memory operand must have the same size as
8729 the first one. */
8730 if (i.mem_operands
8731 && i.base_reg
8732 && !((addr_mode == CODE_64BIT
8733 && i.base_reg->reg_type.bitfield.reg64)
8734 || (addr_mode == CODE_32BIT
8735 ? i.base_reg->reg_type.bitfield.reg32
8736 : i.base_reg->reg_type.bitfield.reg16)))
8737 goto bad_address;
8738
8739 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8740 operand_string,
8741 intel_syntax ? '[' : '(',
8742 register_prefix,
8743 expected_reg->reg_name,
8744 intel_syntax ? ']' : ')');
8745 return 1;
8746 }
8747 else
8748 return 1;
8749
8750 bad_address:
8751 as_bad (_("`%s' is not a valid %s expression"),
8752 operand_string, kind);
8753 return 0;
8754 }
8755 else
8756 {
8757 if (addr_mode != CODE_16BIT)
8758 {
8759 /* 32-bit/64-bit checks. */
8760 if ((i.base_reg
8761 && (addr_mode == CODE_64BIT
8762 ? !i.base_reg->reg_type.bitfield.reg64
8763 : !i.base_reg->reg_type.bitfield.reg32)
8764 && (i.index_reg
8765 || (i.base_reg->reg_num
8766 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8767 || (i.index_reg
8768 && !i.index_reg->reg_type.bitfield.regxmm
8769 && !i.index_reg->reg_type.bitfield.regymm
8770 && !i.index_reg->reg_type.bitfield.regzmm
8771 && ((addr_mode == CODE_64BIT
8772 ? !(i.index_reg->reg_type.bitfield.reg64
8773 || i.index_reg->reg_num == RegRiz)
8774 : !(i.index_reg->reg_type.bitfield.reg32
8775 || i.index_reg->reg_num == RegEiz))
8776 || !i.index_reg->reg_type.bitfield.baseindex)))
8777 goto bad_address;
8778
8779 /* bndmk, bndldx, and bndstx have special restrictions. */
8780 if (current_templates->start->base_opcode == 0xf30f1b
8781 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
8782 {
8783 /* They cannot use RIP-relative addressing. */
8784 if (i.base_reg && i.base_reg->reg_num == RegRip)
8785 {
8786 as_bad (_("`%s' cannot be used here"), operand_string);
8787 return 0;
8788 }
8789
8790 /* bndldx and bndstx ignore their scale factor. */
8791 if (current_templates->start->base_opcode != 0xf30f1b
8792 && i.log2_scale_factor)
8793 as_warn (_("register scaling is being ignored here"));
8794 }
8795 }
8796 else
8797 {
8798 /* 16-bit checks. */
8799 if ((i.base_reg
8800 && (!i.base_reg->reg_type.bitfield.reg16
8801 || !i.base_reg->reg_type.bitfield.baseindex))
8802 || (i.index_reg
8803 && (!i.index_reg->reg_type.bitfield.reg16
8804 || !i.index_reg->reg_type.bitfield.baseindex
8805 || !(i.base_reg
8806 && i.base_reg->reg_num < 6
8807 && i.index_reg->reg_num >= 6
8808 && i.log2_scale_factor == 0))))
8809 goto bad_address;
8810 }
8811 }
8812 return 1;
8813 }
8814
8815 /* Handle vector immediates. */
8816
8817 static int
8818 RC_SAE_immediate (const char *imm_start)
8819 {
8820 unsigned int match_found, j;
8821 const char *pstr = imm_start;
8822 expressionS *exp;
8823
8824 if (*pstr != '{')
8825 return 0;
8826
8827 pstr++;
8828 match_found = 0;
8829 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8830 {
8831 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8832 {
8833 if (!i.rounding)
8834 {
8835 rc_op.type = RC_NamesTable[j].type;
8836 rc_op.operand = this_operand;
8837 i.rounding = &rc_op;
8838 }
8839 else
8840 {
8841 as_bad (_("duplicated `%s'"), imm_start);
8842 return 0;
8843 }
8844 pstr += RC_NamesTable[j].len;
8845 match_found = 1;
8846 break;
8847 }
8848 }
8849 if (!match_found)
8850 return 0;
8851
8852 if (*pstr++ != '}')
8853 {
8854 as_bad (_("Missing '}': '%s'"), imm_start);
8855 return 0;
8856 }
8857 /* RC/SAE immediate string should contain nothing more. */;
8858 if (*pstr != 0)
8859 {
8860 as_bad (_("Junk after '}': '%s'"), imm_start);
8861 return 0;
8862 }
8863
8864 exp = &im_expressions[i.imm_operands++];
8865 i.op[this_operand].imms = exp;
8866
8867 exp->X_op = O_constant;
8868 exp->X_add_number = 0;
8869 exp->X_add_symbol = (symbolS *) 0;
8870 exp->X_op_symbol = (symbolS *) 0;
8871
8872 i.types[this_operand].bitfield.imm8 = 1;
8873 return 1;
8874 }
8875
8876 /* Only string instructions can have a second memory operand, so
8877 reduce current_templates to just those if it contains any. */
8878 static int
8879 maybe_adjust_templates (void)
8880 {
8881 const insn_template *t;
8882
8883 gas_assert (i.mem_operands == 1);
8884
8885 for (t = current_templates->start; t < current_templates->end; ++t)
8886 if (t->opcode_modifier.isstring)
8887 break;
8888
8889 if (t < current_templates->end)
8890 {
8891 static templates aux_templates;
8892 bfd_boolean recheck;
8893
8894 aux_templates.start = t;
8895 for (; t < current_templates->end; ++t)
8896 if (!t->opcode_modifier.isstring)
8897 break;
8898 aux_templates.end = t;
8899
8900 /* Determine whether to re-check the first memory operand. */
8901 recheck = (aux_templates.start != current_templates->start
8902 || t != current_templates->end);
8903
8904 current_templates = &aux_templates;
8905
8906 if (recheck)
8907 {
8908 i.mem_operands = 0;
8909 if (i.memop1_string != NULL
8910 && i386_index_check (i.memop1_string) == 0)
8911 return 0;
8912 i.mem_operands = 1;
8913 }
8914 }
8915
8916 return 1;
8917 }
8918
8919 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
8920 on error. */
8921
8922 static int
8923 i386_att_operand (char *operand_string)
8924 {
8925 const reg_entry *r;
8926 char *end_op;
8927 char *op_string = operand_string;
8928
8929 if (is_space_char (*op_string))
8930 ++op_string;
8931
8932 /* We check for an absolute prefix (differentiating,
8933 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
8934 if (*op_string == ABSOLUTE_PREFIX)
8935 {
8936 ++op_string;
8937 if (is_space_char (*op_string))
8938 ++op_string;
8939 i.types[this_operand].bitfield.jumpabsolute = 1;
8940 }
8941
8942 /* Check if operand is a register. */
8943 if ((r = parse_register (op_string, &end_op)) != NULL)
8944 {
8945 i386_operand_type temp;
8946
8947 /* Check for a segment override by searching for ':' after a
8948 segment register. */
8949 op_string = end_op;
8950 if (is_space_char (*op_string))
8951 ++op_string;
8952 if (*op_string == ':'
8953 && (r->reg_type.bitfield.sreg2
8954 || r->reg_type.bitfield.sreg3))
8955 {
8956 switch (r->reg_num)
8957 {
8958 case 0:
8959 i.seg[i.mem_operands] = &es;
8960 break;
8961 case 1:
8962 i.seg[i.mem_operands] = &cs;
8963 break;
8964 case 2:
8965 i.seg[i.mem_operands] = &ss;
8966 break;
8967 case 3:
8968 i.seg[i.mem_operands] = &ds;
8969 break;
8970 case 4:
8971 i.seg[i.mem_operands] = &fs;
8972 break;
8973 case 5:
8974 i.seg[i.mem_operands] = &gs;
8975 break;
8976 }
8977
8978 /* Skip the ':' and whitespace. */
8979 ++op_string;
8980 if (is_space_char (*op_string))
8981 ++op_string;
8982
8983 if (!is_digit_char (*op_string)
8984 && !is_identifier_char (*op_string)
8985 && *op_string != '('
8986 && *op_string != ABSOLUTE_PREFIX)
8987 {
8988 as_bad (_("bad memory operand `%s'"), op_string);
8989 return 0;
8990 }
8991 /* Handle case of %es:*foo. */
8992 if (*op_string == ABSOLUTE_PREFIX)
8993 {
8994 ++op_string;
8995 if (is_space_char (*op_string))
8996 ++op_string;
8997 i.types[this_operand].bitfield.jumpabsolute = 1;
8998 }
8999 goto do_memory_reference;
9000 }
9001
9002 /* Handle vector operations. */
9003 if (*op_string == '{')
9004 {
9005 op_string = check_VecOperations (op_string, NULL);
9006 if (op_string == NULL)
9007 return 0;
9008 }
9009
9010 if (*op_string)
9011 {
9012 as_bad (_("junk `%s' after register"), op_string);
9013 return 0;
9014 }
9015 temp = r->reg_type;
9016 temp.bitfield.baseindex = 0;
9017 i.types[this_operand] = operand_type_or (i.types[this_operand],
9018 temp);
9019 i.types[this_operand].bitfield.unspecified = 0;
9020 i.op[this_operand].regs = r;
9021 i.reg_operands++;
9022 }
9023 else if (*op_string == REGISTER_PREFIX)
9024 {
9025 as_bad (_("bad register name `%s'"), op_string);
9026 return 0;
9027 }
9028 else if (*op_string == IMMEDIATE_PREFIX)
9029 {
9030 ++op_string;
9031 if (i.types[this_operand].bitfield.jumpabsolute)
9032 {
9033 as_bad (_("immediate operand illegal with absolute jump"));
9034 return 0;
9035 }
9036 if (!i386_immediate (op_string))
9037 return 0;
9038 }
9039 else if (RC_SAE_immediate (operand_string))
9040 {
9041 /* If it is a RC or SAE immediate, do nothing. */
9042 ;
9043 }
9044 else if (is_digit_char (*op_string)
9045 || is_identifier_char (*op_string)
9046 || *op_string == '"'
9047 || *op_string == '(')
9048 {
9049 /* This is a memory reference of some sort. */
9050 char *base_string;
9051
9052 /* Start and end of displacement string expression (if found). */
9053 char *displacement_string_start;
9054 char *displacement_string_end;
9055 char *vop_start;
9056
9057 do_memory_reference:
9058 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9059 return 0;
9060 if ((i.mem_operands == 1
9061 && !current_templates->start->opcode_modifier.isstring)
9062 || i.mem_operands == 2)
9063 {
9064 as_bad (_("too many memory references for `%s'"),
9065 current_templates->start->name);
9066 return 0;
9067 }
9068
9069 /* Check for base index form. We detect the base index form by
9070 looking for an ')' at the end of the operand, searching
9071 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9072 after the '('. */
9073 base_string = op_string + strlen (op_string);
9074
9075 /* Handle vector operations. */
9076 vop_start = strchr (op_string, '{');
9077 if (vop_start && vop_start < base_string)
9078 {
9079 if (check_VecOperations (vop_start, base_string) == NULL)
9080 return 0;
9081 base_string = vop_start;
9082 }
9083
9084 --base_string;
9085 if (is_space_char (*base_string))
9086 --base_string;
9087
9088 /* If we only have a displacement, set-up for it to be parsed later. */
9089 displacement_string_start = op_string;
9090 displacement_string_end = base_string + 1;
9091
9092 if (*base_string == ')')
9093 {
9094 char *temp_string;
9095 unsigned int parens_balanced = 1;
9096 /* We've already checked that the number of left & right ()'s are
9097 equal, so this loop will not be infinite. */
9098 do
9099 {
9100 base_string--;
9101 if (*base_string == ')')
9102 parens_balanced++;
9103 if (*base_string == '(')
9104 parens_balanced--;
9105 }
9106 while (parens_balanced);
9107
9108 temp_string = base_string;
9109
9110 /* Skip past '(' and whitespace. */
9111 ++base_string;
9112 if (is_space_char (*base_string))
9113 ++base_string;
9114
9115 if (*base_string == ','
9116 || ((i.base_reg = parse_register (base_string, &end_op))
9117 != NULL))
9118 {
9119 displacement_string_end = temp_string;
9120
9121 i.types[this_operand].bitfield.baseindex = 1;
9122
9123 if (i.base_reg)
9124 {
9125 base_string = end_op;
9126 if (is_space_char (*base_string))
9127 ++base_string;
9128 }
9129
9130 /* There may be an index reg or scale factor here. */
9131 if (*base_string == ',')
9132 {
9133 ++base_string;
9134 if (is_space_char (*base_string))
9135 ++base_string;
9136
9137 if ((i.index_reg = parse_register (base_string, &end_op))
9138 != NULL)
9139 {
9140 base_string = end_op;
9141 if (is_space_char (*base_string))
9142 ++base_string;
9143 if (*base_string == ',')
9144 {
9145 ++base_string;
9146 if (is_space_char (*base_string))
9147 ++base_string;
9148 }
9149 else if (*base_string != ')')
9150 {
9151 as_bad (_("expecting `,' or `)' "
9152 "after index register in `%s'"),
9153 operand_string);
9154 return 0;
9155 }
9156 }
9157 else if (*base_string == REGISTER_PREFIX)
9158 {
9159 end_op = strchr (base_string, ',');
9160 if (end_op)
9161 *end_op = '\0';
9162 as_bad (_("bad register name `%s'"), base_string);
9163 return 0;
9164 }
9165
9166 /* Check for scale factor. */
9167 if (*base_string != ')')
9168 {
9169 char *end_scale = i386_scale (base_string);
9170
9171 if (!end_scale)
9172 return 0;
9173
9174 base_string = end_scale;
9175 if (is_space_char (*base_string))
9176 ++base_string;
9177 if (*base_string != ')')
9178 {
9179 as_bad (_("expecting `)' "
9180 "after scale factor in `%s'"),
9181 operand_string);
9182 return 0;
9183 }
9184 }
9185 else if (!i.index_reg)
9186 {
9187 as_bad (_("expecting index register or scale factor "
9188 "after `,'; got '%c'"),
9189 *base_string);
9190 return 0;
9191 }
9192 }
9193 else if (*base_string != ')')
9194 {
9195 as_bad (_("expecting `,' or `)' "
9196 "after base register in `%s'"),
9197 operand_string);
9198 return 0;
9199 }
9200 }
9201 else if (*base_string == REGISTER_PREFIX)
9202 {
9203 end_op = strchr (base_string, ',');
9204 if (end_op)
9205 *end_op = '\0';
9206 as_bad (_("bad register name `%s'"), base_string);
9207 return 0;
9208 }
9209 }
9210
9211 /* If there's an expression beginning the operand, parse it,
9212 assuming displacement_string_start and
9213 displacement_string_end are meaningful. */
9214 if (displacement_string_start != displacement_string_end)
9215 {
9216 if (!i386_displacement (displacement_string_start,
9217 displacement_string_end))
9218 return 0;
9219 }
9220
9221 /* Special case for (%dx) while doing input/output op. */
9222 if (i.base_reg
9223 && operand_type_equal (&i.base_reg->reg_type,
9224 &reg16_inoutportreg)
9225 && i.index_reg == 0
9226 && i.log2_scale_factor == 0
9227 && i.seg[i.mem_operands] == 0
9228 && !operand_type_check (i.types[this_operand], disp))
9229 {
9230 i.types[this_operand] = inoutportreg;
9231 return 1;
9232 }
9233
9234 if (i386_index_check (operand_string) == 0)
9235 return 0;
9236 i.types[this_operand].bitfield.mem = 1;
9237 if (i.mem_operands == 0)
9238 i.memop1_string = xstrdup (operand_string);
9239 i.mem_operands++;
9240 }
9241 else
9242 {
9243 /* It's not a memory operand; argh! */
9244 as_bad (_("invalid char %s beginning operand %d `%s'"),
9245 output_invalid (*op_string),
9246 this_operand + 1,
9247 op_string);
9248 return 0;
9249 }
9250 return 1; /* Normal return. */
9251 }
9252 \f
9253 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9254 that an rs_machine_dependent frag may reach. */
9255
9256 unsigned int
9257 i386_frag_max_var (fragS *frag)
9258 {
9259 /* The only relaxable frags are for jumps.
9260 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9261 gas_assert (frag->fr_type == rs_machine_dependent);
9262 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9263 }
9264
9265 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9266 static int
9267 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9268 {
9269 /* STT_GNU_IFUNC symbol must go through PLT. */
9270 if ((symbol_get_bfdsym (fr_symbol)->flags
9271 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9272 return 0;
9273
9274 if (!S_IS_EXTERNAL (fr_symbol))
9275 /* Symbol may be weak or local. */
9276 return !S_IS_WEAK (fr_symbol);
9277
9278 /* Global symbols with non-default visibility can't be preempted. */
9279 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9280 return 1;
9281
9282 if (fr_var != NO_RELOC)
9283 switch ((enum bfd_reloc_code_real) fr_var)
9284 {
9285 case BFD_RELOC_386_PLT32:
9286 case BFD_RELOC_X86_64_PLT32:
9287 /* Symbol with PLT relocation may be preempted. */
9288 return 0;
9289 default:
9290 abort ();
9291 }
9292
9293 /* Global symbols with default visibility in a shared library may be
9294 preempted by another definition. */
9295 return !shared;
9296 }
9297 #endif
9298
9299 /* md_estimate_size_before_relax()
9300
9301 Called just before relax() for rs_machine_dependent frags. The x86
9302 assembler uses these frags to handle variable size jump
9303 instructions.
9304
9305 Any symbol that is now undefined will not become defined.
9306 Return the correct fr_subtype in the frag.
9307 Return the initial "guess for variable size of frag" to caller.
9308 The guess is actually the growth beyond the fixed part. Whatever
9309 we do to grow the fixed or variable part contributes to our
9310 returned value. */
9311
9312 int
9313 md_estimate_size_before_relax (fragS *fragP, segT segment)
9314 {
9315 /* We've already got fragP->fr_subtype right; all we have to do is
9316 check for un-relaxable symbols. On an ELF system, we can't relax
9317 an externally visible symbol, because it may be overridden by a
9318 shared library. */
9319 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9320 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9321 || (IS_ELF
9322 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9323 fragP->fr_var))
9324 #endif
9325 #if defined (OBJ_COFF) && defined (TE_PE)
9326 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9327 && S_IS_WEAK (fragP->fr_symbol))
9328 #endif
9329 )
9330 {
9331 /* Symbol is undefined in this segment, or we need to keep a
9332 reloc so that weak symbols can be overridden. */
9333 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9334 enum bfd_reloc_code_real reloc_type;
9335 unsigned char *opcode;
9336 int old_fr_fix;
9337
9338 if (fragP->fr_var != NO_RELOC)
9339 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9340 else if (size == 2)
9341 reloc_type = BFD_RELOC_16_PCREL;
9342 else
9343 reloc_type = BFD_RELOC_32_PCREL;
9344
9345 old_fr_fix = fragP->fr_fix;
9346 opcode = (unsigned char *) fragP->fr_opcode;
9347
9348 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9349 {
9350 case UNCOND_JUMP:
9351 /* Make jmp (0xeb) a (d)word displacement jump. */
9352 opcode[0] = 0xe9;
9353 fragP->fr_fix += size;
9354 fix_new (fragP, old_fr_fix, size,
9355 fragP->fr_symbol,
9356 fragP->fr_offset, 1,
9357 reloc_type);
9358 break;
9359
9360 case COND_JUMP86:
9361 if (size == 2
9362 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9363 {
9364 /* Negate the condition, and branch past an
9365 unconditional jump. */
9366 opcode[0] ^= 1;
9367 opcode[1] = 3;
9368 /* Insert an unconditional jump. */
9369 opcode[2] = 0xe9;
9370 /* We added two extra opcode bytes, and have a two byte
9371 offset. */
9372 fragP->fr_fix += 2 + 2;
9373 fix_new (fragP, old_fr_fix + 2, 2,
9374 fragP->fr_symbol,
9375 fragP->fr_offset, 1,
9376 reloc_type);
9377 break;
9378 }
9379 /* Fall through. */
9380
9381 case COND_JUMP:
9382 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9383 {
9384 fixS *fixP;
9385
9386 fragP->fr_fix += 1;
9387 fixP = fix_new (fragP, old_fr_fix, 1,
9388 fragP->fr_symbol,
9389 fragP->fr_offset, 1,
9390 BFD_RELOC_8_PCREL);
9391 fixP->fx_signed = 1;
9392 break;
9393 }
9394
9395 /* This changes the byte-displacement jump 0x7N
9396 to the (d)word-displacement jump 0x0f,0x8N. */
9397 opcode[1] = opcode[0] + 0x10;
9398 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9399 /* We've added an opcode byte. */
9400 fragP->fr_fix += 1 + size;
9401 fix_new (fragP, old_fr_fix + 1, size,
9402 fragP->fr_symbol,
9403 fragP->fr_offset, 1,
9404 reloc_type);
9405 break;
9406
9407 default:
9408 BAD_CASE (fragP->fr_subtype);
9409 break;
9410 }
9411 frag_wane (fragP);
9412 return fragP->fr_fix - old_fr_fix;
9413 }
9414
9415 /* Guess size depending on current relax state. Initially the relax
9416 state will correspond to a short jump and we return 1, because
9417 the variable part of the frag (the branch offset) is one byte
9418 long. However, we can relax a section more than once and in that
9419 case we must either set fr_subtype back to the unrelaxed state,
9420 or return the value for the appropriate branch. */
9421 return md_relax_table[fragP->fr_subtype].rlx_length;
9422 }
9423
9424 /* Called after relax() is finished.
9425
9426 In: Address of frag.
9427 fr_type == rs_machine_dependent.
9428 fr_subtype is what the address relaxed to.
9429
9430 Out: Any fixSs and constants are set up.
9431 Caller will turn frag into a ".space 0". */
9432
9433 void
9434 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9435 fragS *fragP)
9436 {
9437 unsigned char *opcode;
9438 unsigned char *where_to_put_displacement = NULL;
9439 offsetT target_address;
9440 offsetT opcode_address;
9441 unsigned int extension = 0;
9442 offsetT displacement_from_opcode_start;
9443
9444 opcode = (unsigned char *) fragP->fr_opcode;
9445
9446 /* Address we want to reach in file space. */
9447 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9448
9449 /* Address opcode resides at in file space. */
9450 opcode_address = fragP->fr_address + fragP->fr_fix;
9451
9452 /* Displacement from opcode start to fill into instruction. */
9453 displacement_from_opcode_start = target_address - opcode_address;
9454
9455 if ((fragP->fr_subtype & BIG) == 0)
9456 {
9457 /* Don't have to change opcode. */
9458 extension = 1; /* 1 opcode + 1 displacement */
9459 where_to_put_displacement = &opcode[1];
9460 }
9461 else
9462 {
9463 if (no_cond_jump_promotion
9464 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9465 as_warn_where (fragP->fr_file, fragP->fr_line,
9466 _("long jump required"));
9467
9468 switch (fragP->fr_subtype)
9469 {
9470 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9471 extension = 4; /* 1 opcode + 4 displacement */
9472 opcode[0] = 0xe9;
9473 where_to_put_displacement = &opcode[1];
9474 break;
9475
9476 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9477 extension = 2; /* 1 opcode + 2 displacement */
9478 opcode[0] = 0xe9;
9479 where_to_put_displacement = &opcode[1];
9480 break;
9481
9482 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9483 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9484 extension = 5; /* 2 opcode + 4 displacement */
9485 opcode[1] = opcode[0] + 0x10;
9486 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9487 where_to_put_displacement = &opcode[2];
9488 break;
9489
9490 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9491 extension = 3; /* 2 opcode + 2 displacement */
9492 opcode[1] = opcode[0] + 0x10;
9493 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9494 where_to_put_displacement = &opcode[2];
9495 break;
9496
9497 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9498 extension = 4;
9499 opcode[0] ^= 1;
9500 opcode[1] = 3;
9501 opcode[2] = 0xe9;
9502 where_to_put_displacement = &opcode[3];
9503 break;
9504
9505 default:
9506 BAD_CASE (fragP->fr_subtype);
9507 break;
9508 }
9509 }
9510
9511 /* If size if less then four we are sure that the operand fits,
9512 but if it's 4, then it could be that the displacement is larger
9513 then -/+ 2GB. */
9514 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9515 && object_64bit
9516 && ((addressT) (displacement_from_opcode_start - extension
9517 + ((addressT) 1 << 31))
9518 > (((addressT) 2 << 31) - 1)))
9519 {
9520 as_bad_where (fragP->fr_file, fragP->fr_line,
9521 _("jump target out of range"));
9522 /* Make us emit 0. */
9523 displacement_from_opcode_start = extension;
9524 }
9525 /* Now put displacement after opcode. */
9526 md_number_to_chars ((char *) where_to_put_displacement,
9527 (valueT) (displacement_from_opcode_start - extension),
9528 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9529 fragP->fr_fix += extension;
9530 }
9531 \f
9532 /* Apply a fixup (fixP) to segment data, once it has been determined
9533 by our caller that we have all the info we need to fix it up.
9534
9535 Parameter valP is the pointer to the value of the bits.
9536
9537 On the 386, immediates, displacements, and data pointers are all in
9538 the same (little-endian) format, so we don't need to care about which
9539 we are handling. */
9540
9541 void
9542 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9543 {
9544 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9545 valueT value = *valP;
9546
9547 #if !defined (TE_Mach)
9548 if (fixP->fx_pcrel)
9549 {
9550 switch (fixP->fx_r_type)
9551 {
9552 default:
9553 break;
9554
9555 case BFD_RELOC_64:
9556 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9557 break;
9558 case BFD_RELOC_32:
9559 case BFD_RELOC_X86_64_32S:
9560 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9561 break;
9562 case BFD_RELOC_16:
9563 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9564 break;
9565 case BFD_RELOC_8:
9566 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9567 break;
9568 }
9569 }
9570
9571 if (fixP->fx_addsy != NULL
9572 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9573 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9574 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9575 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9576 && !use_rela_relocations)
9577 {
9578 /* This is a hack. There should be a better way to handle this.
9579 This covers for the fact that bfd_install_relocation will
9580 subtract the current location (for partial_inplace, PC relative
9581 relocations); see more below. */
9582 #ifndef OBJ_AOUT
9583 if (IS_ELF
9584 #ifdef TE_PE
9585 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9586 #endif
9587 )
9588 value += fixP->fx_where + fixP->fx_frag->fr_address;
9589 #endif
9590 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9591 if (IS_ELF)
9592 {
9593 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9594
9595 if ((sym_seg == seg
9596 || (symbol_section_p (fixP->fx_addsy)
9597 && sym_seg != absolute_section))
9598 && !generic_force_reloc (fixP))
9599 {
9600 /* Yes, we add the values in twice. This is because
9601 bfd_install_relocation subtracts them out again. I think
9602 bfd_install_relocation is broken, but I don't dare change
9603 it. FIXME. */
9604 value += fixP->fx_where + fixP->fx_frag->fr_address;
9605 }
9606 }
9607 #endif
9608 #if defined (OBJ_COFF) && defined (TE_PE)
9609 /* For some reason, the PE format does not store a
9610 section address offset for a PC relative symbol. */
9611 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9612 || S_IS_WEAK (fixP->fx_addsy))
9613 value += md_pcrel_from (fixP);
9614 #endif
9615 }
9616 #if defined (OBJ_COFF) && defined (TE_PE)
9617 if (fixP->fx_addsy != NULL
9618 && S_IS_WEAK (fixP->fx_addsy)
9619 /* PR 16858: Do not modify weak function references. */
9620 && ! fixP->fx_pcrel)
9621 {
9622 #if !defined (TE_PEP)
9623 /* For x86 PE weak function symbols are neither PC-relative
9624 nor do they set S_IS_FUNCTION. So the only reliable way
9625 to detect them is to check the flags of their containing
9626 section. */
9627 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9628 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9629 ;
9630 else
9631 #endif
9632 value -= S_GET_VALUE (fixP->fx_addsy);
9633 }
9634 #endif
9635
9636 /* Fix a few things - the dynamic linker expects certain values here,
9637 and we must not disappoint it. */
9638 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9639 if (IS_ELF && fixP->fx_addsy)
9640 switch (fixP->fx_r_type)
9641 {
9642 case BFD_RELOC_386_PLT32:
9643 case BFD_RELOC_X86_64_PLT32:
9644 /* Make the jump instruction point to the address of the operand. At
9645 runtime we merely add the offset to the actual PLT entry. */
9646 value = -4;
9647 break;
9648
9649 case BFD_RELOC_386_TLS_GD:
9650 case BFD_RELOC_386_TLS_LDM:
9651 case BFD_RELOC_386_TLS_IE_32:
9652 case BFD_RELOC_386_TLS_IE:
9653 case BFD_RELOC_386_TLS_GOTIE:
9654 case BFD_RELOC_386_TLS_GOTDESC:
9655 case BFD_RELOC_X86_64_TLSGD:
9656 case BFD_RELOC_X86_64_TLSLD:
9657 case BFD_RELOC_X86_64_GOTTPOFF:
9658 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9659 value = 0; /* Fully resolved at runtime. No addend. */
9660 /* Fallthrough */
9661 case BFD_RELOC_386_TLS_LE:
9662 case BFD_RELOC_386_TLS_LDO_32:
9663 case BFD_RELOC_386_TLS_LE_32:
9664 case BFD_RELOC_X86_64_DTPOFF32:
9665 case BFD_RELOC_X86_64_DTPOFF64:
9666 case BFD_RELOC_X86_64_TPOFF32:
9667 case BFD_RELOC_X86_64_TPOFF64:
9668 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9669 break;
9670
9671 case BFD_RELOC_386_TLS_DESC_CALL:
9672 case BFD_RELOC_X86_64_TLSDESC_CALL:
9673 value = 0; /* Fully resolved at runtime. No addend. */
9674 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9675 fixP->fx_done = 0;
9676 return;
9677
9678 case BFD_RELOC_VTABLE_INHERIT:
9679 case BFD_RELOC_VTABLE_ENTRY:
9680 fixP->fx_done = 0;
9681 return;
9682
9683 default:
9684 break;
9685 }
9686 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9687 *valP = value;
9688 #endif /* !defined (TE_Mach) */
9689
9690 /* Are we finished with this relocation now? */
9691 if (fixP->fx_addsy == NULL)
9692 fixP->fx_done = 1;
9693 #if defined (OBJ_COFF) && defined (TE_PE)
9694 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9695 {
9696 fixP->fx_done = 0;
9697 /* Remember value for tc_gen_reloc. */
9698 fixP->fx_addnumber = value;
9699 /* Clear out the frag for now. */
9700 value = 0;
9701 }
9702 #endif
9703 else if (use_rela_relocations)
9704 {
9705 fixP->fx_no_overflow = 1;
9706 /* Remember value for tc_gen_reloc. */
9707 fixP->fx_addnumber = value;
9708 value = 0;
9709 }
9710
9711 md_number_to_chars (p, value, fixP->fx_size);
9712 }
9713 \f
9714 const char *
9715 md_atof (int type, char *litP, int *sizeP)
9716 {
9717 /* This outputs the LITTLENUMs in REVERSE order;
9718 in accord with the bigendian 386. */
9719 return ieee_md_atof (type, litP, sizeP, FALSE);
9720 }
9721 \f
9722 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9723
9724 static char *
9725 output_invalid (int c)
9726 {
9727 if (ISPRINT (c))
9728 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9729 "'%c'", c);
9730 else
9731 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9732 "(0x%x)", (unsigned char) c);
9733 return output_invalid_buf;
9734 }
9735
9736 /* REG_STRING starts *before* REGISTER_PREFIX. */
9737
9738 static const reg_entry *
9739 parse_real_register (char *reg_string, char **end_op)
9740 {
9741 char *s = reg_string;
9742 char *p;
9743 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9744 const reg_entry *r;
9745
9746 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9747 if (*s == REGISTER_PREFIX)
9748 ++s;
9749
9750 if (is_space_char (*s))
9751 ++s;
9752
9753 p = reg_name_given;
9754 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9755 {
9756 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9757 return (const reg_entry *) NULL;
9758 s++;
9759 }
9760
9761 /* For naked regs, make sure that we are not dealing with an identifier.
9762 This prevents confusing an identifier like `eax_var' with register
9763 `eax'. */
9764 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9765 return (const reg_entry *) NULL;
9766
9767 *end_op = s;
9768
9769 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9770
9771 /* Handle floating point regs, allowing spaces in the (i) part. */
9772 if (r == i386_regtab /* %st is first entry of table */)
9773 {
9774 if (is_space_char (*s))
9775 ++s;
9776 if (*s == '(')
9777 {
9778 ++s;
9779 if (is_space_char (*s))
9780 ++s;
9781 if (*s >= '0' && *s <= '7')
9782 {
9783 int fpr = *s - '0';
9784 ++s;
9785 if (is_space_char (*s))
9786 ++s;
9787 if (*s == ')')
9788 {
9789 *end_op = s + 1;
9790 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9791 know (r);
9792 return r + fpr;
9793 }
9794 }
9795 /* We have "%st(" then garbage. */
9796 return (const reg_entry *) NULL;
9797 }
9798 }
9799
9800 if (r == NULL || allow_pseudo_reg)
9801 return r;
9802
9803 if (operand_type_all_zero (&r->reg_type))
9804 return (const reg_entry *) NULL;
9805
9806 if ((r->reg_type.bitfield.reg32
9807 || r->reg_type.bitfield.sreg3
9808 || r->reg_type.bitfield.control
9809 || r->reg_type.bitfield.debug
9810 || r->reg_type.bitfield.test)
9811 && !cpu_arch_flags.bitfield.cpui386)
9812 return (const reg_entry *) NULL;
9813
9814 if (r->reg_type.bitfield.floatreg
9815 && !cpu_arch_flags.bitfield.cpu8087
9816 && !cpu_arch_flags.bitfield.cpu287
9817 && !cpu_arch_flags.bitfield.cpu387)
9818 return (const reg_entry *) NULL;
9819
9820 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
9821 return (const reg_entry *) NULL;
9822
9823 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpuregxmm)
9824 return (const reg_entry *) NULL;
9825
9826 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuregymm)
9827 return (const reg_entry *) NULL;
9828
9829 if (r->reg_type.bitfield.regzmm && !cpu_arch_flags.bitfield.cpuregzmm)
9830 return (const reg_entry *) NULL;
9831
9832 if (r->reg_type.bitfield.regmask
9833 && !cpu_arch_flags.bitfield.cpuregmask)
9834 return (const reg_entry *) NULL;
9835
9836 /* Don't allow fake index register unless allow_index_reg isn't 0. */
9837 if (!allow_index_reg
9838 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9839 return (const reg_entry *) NULL;
9840
9841 /* Upper 16 vector register is only available with VREX in 64bit
9842 mode. */
9843 if ((r->reg_flags & RegVRex))
9844 {
9845 if (i.vec_encoding == vex_encoding_default)
9846 i.vec_encoding = vex_encoding_evex;
9847
9848 if (!cpu_arch_flags.bitfield.cpuvrex
9849 || i.vec_encoding != vex_encoding_evex
9850 || flag_code != CODE_64BIT)
9851 return (const reg_entry *) NULL;
9852 }
9853
9854 if (((r->reg_flags & (RegRex64 | RegRex))
9855 || r->reg_type.bitfield.reg64)
9856 && (!cpu_arch_flags.bitfield.cpulm
9857 || !operand_type_equal (&r->reg_type, &control))
9858 && flag_code != CODE_64BIT)
9859 return (const reg_entry *) NULL;
9860
9861 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9862 return (const reg_entry *) NULL;
9863
9864 return r;
9865 }
9866
9867 /* REG_STRING starts *before* REGISTER_PREFIX. */
9868
9869 static const reg_entry *
9870 parse_register (char *reg_string, char **end_op)
9871 {
9872 const reg_entry *r;
9873
9874 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9875 r = parse_real_register (reg_string, end_op);
9876 else
9877 r = NULL;
9878 if (!r)
9879 {
9880 char *save = input_line_pointer;
9881 char c;
9882 symbolS *symbolP;
9883
9884 input_line_pointer = reg_string;
9885 c = get_symbol_name (&reg_string);
9886 symbolP = symbol_find (reg_string);
9887 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9888 {
9889 const expressionS *e = symbol_get_value_expression (symbolP);
9890
9891 know (e->X_op == O_register);
9892 know (e->X_add_number >= 0
9893 && (valueT) e->X_add_number < i386_regtab_size);
9894 r = i386_regtab + e->X_add_number;
9895 if ((r->reg_flags & RegVRex))
9896 i.vec_encoding = vex_encoding_evex;
9897 *end_op = input_line_pointer;
9898 }
9899 *input_line_pointer = c;
9900 input_line_pointer = save;
9901 }
9902 return r;
9903 }
9904
9905 int
9906 i386_parse_name (char *name, expressionS *e, char *nextcharP)
9907 {
9908 const reg_entry *r;
9909 char *end = input_line_pointer;
9910
9911 *end = *nextcharP;
9912 r = parse_register (name, &input_line_pointer);
9913 if (r && end <= input_line_pointer)
9914 {
9915 *nextcharP = *input_line_pointer;
9916 *input_line_pointer = 0;
9917 e->X_op = O_register;
9918 e->X_add_number = r - i386_regtab;
9919 return 1;
9920 }
9921 input_line_pointer = end;
9922 *end = 0;
9923 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
9924 }
9925
9926 void
9927 md_operand (expressionS *e)
9928 {
9929 char *end;
9930 const reg_entry *r;
9931
9932 switch (*input_line_pointer)
9933 {
9934 case REGISTER_PREFIX:
9935 r = parse_real_register (input_line_pointer, &end);
9936 if (r)
9937 {
9938 e->X_op = O_register;
9939 e->X_add_number = r - i386_regtab;
9940 input_line_pointer = end;
9941 }
9942 break;
9943
9944 case '[':
9945 gas_assert (intel_syntax);
9946 end = input_line_pointer++;
9947 expression (e);
9948 if (*input_line_pointer == ']')
9949 {
9950 ++input_line_pointer;
9951 e->X_op_symbol = make_expr_symbol (e);
9952 e->X_add_symbol = NULL;
9953 e->X_add_number = 0;
9954 e->X_op = O_index;
9955 }
9956 else
9957 {
9958 e->X_op = O_absent;
9959 input_line_pointer = end;
9960 }
9961 break;
9962 }
9963 }
9964
9965 \f
9966 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9967 const char *md_shortopts = "kVQ:sqn";
9968 #else
9969 const char *md_shortopts = "qn";
9970 #endif
9971
9972 #define OPTION_32 (OPTION_MD_BASE + 0)
9973 #define OPTION_64 (OPTION_MD_BASE + 1)
9974 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9975 #define OPTION_MARCH (OPTION_MD_BASE + 3)
9976 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
9977 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9978 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9979 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9980 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9981 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9982 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9983 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9984 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9985 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9986 #define OPTION_X32 (OPTION_MD_BASE + 14)
9987 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9988 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9989 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9990 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
9991 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
9992 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
9993 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
9994 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
9995 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
9996 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
9997 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 25)
9998
9999 struct option md_longopts[] =
10000 {
10001 {"32", no_argument, NULL, OPTION_32},
10002 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10003 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10004 {"64", no_argument, NULL, OPTION_64},
10005 #endif
10006 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10007 {"x32", no_argument, NULL, OPTION_X32},
10008 {"mshared", no_argument, NULL, OPTION_MSHARED},
10009 #endif
10010 {"divide", no_argument, NULL, OPTION_DIVIDE},
10011 {"march", required_argument, NULL, OPTION_MARCH},
10012 {"mtune", required_argument, NULL, OPTION_MTUNE},
10013 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10014 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10015 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10016 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10017 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
10018 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10019 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10020 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10021 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10022 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10023 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10024 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10025 # if defined (TE_PE) || defined (TE_PEP)
10026 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10027 #endif
10028 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10029 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10030 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10031 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10032 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10033 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10034 {NULL, no_argument, NULL, 0}
10035 };
10036 size_t md_longopts_size = sizeof (md_longopts);
10037
10038 int
10039 md_parse_option (int c, const char *arg)
10040 {
10041 unsigned int j;
10042 char *arch, *next, *saved;
10043
10044 switch (c)
10045 {
10046 case 'n':
10047 optimize_align_code = 0;
10048 break;
10049
10050 case 'q':
10051 quiet_warnings = 1;
10052 break;
10053
10054 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10055 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10056 should be emitted or not. FIXME: Not implemented. */
10057 case 'Q':
10058 break;
10059
10060 /* -V: SVR4 argument to print version ID. */
10061 case 'V':
10062 print_version_id ();
10063 break;
10064
10065 /* -k: Ignore for FreeBSD compatibility. */
10066 case 'k':
10067 break;
10068
10069 case 's':
10070 /* -s: On i386 Solaris, this tells the native assembler to use
10071 .stab instead of .stab.excl. We always use .stab anyhow. */
10072 break;
10073
10074 case OPTION_MSHARED:
10075 shared = 1;
10076 break;
10077 #endif
10078 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10079 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10080 case OPTION_64:
10081 {
10082 const char **list, **l;
10083
10084 list = bfd_target_list ();
10085 for (l = list; *l != NULL; l++)
10086 if (CONST_STRNEQ (*l, "elf64-x86-64")
10087 || strcmp (*l, "coff-x86-64") == 0
10088 || strcmp (*l, "pe-x86-64") == 0
10089 || strcmp (*l, "pei-x86-64") == 0
10090 || strcmp (*l, "mach-o-x86-64") == 0)
10091 {
10092 default_arch = "x86_64";
10093 break;
10094 }
10095 if (*l == NULL)
10096 as_fatal (_("no compiled in support for x86_64"));
10097 free (list);
10098 }
10099 break;
10100 #endif
10101
10102 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10103 case OPTION_X32:
10104 if (IS_ELF)
10105 {
10106 const char **list, **l;
10107
10108 list = bfd_target_list ();
10109 for (l = list; *l != NULL; l++)
10110 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10111 {
10112 default_arch = "x86_64:32";
10113 break;
10114 }
10115 if (*l == NULL)
10116 as_fatal (_("no compiled in support for 32bit x86_64"));
10117 free (list);
10118 }
10119 else
10120 as_fatal (_("32bit x86_64 is only supported for ELF"));
10121 break;
10122 #endif
10123
10124 case OPTION_32:
10125 default_arch = "i386";
10126 break;
10127
10128 case OPTION_DIVIDE:
10129 #ifdef SVR4_COMMENT_CHARS
10130 {
10131 char *n, *t;
10132 const char *s;
10133
10134 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10135 t = n;
10136 for (s = i386_comment_chars; *s != '\0'; s++)
10137 if (*s != '/')
10138 *t++ = *s;
10139 *t = '\0';
10140 i386_comment_chars = n;
10141 }
10142 #endif
10143 break;
10144
10145 case OPTION_MARCH:
10146 saved = xstrdup (arg);
10147 arch = saved;
10148 /* Allow -march=+nosse. */
10149 if (*arch == '+')
10150 arch++;
10151 do
10152 {
10153 if (*arch == '.')
10154 as_fatal (_("invalid -march= option: `%s'"), arg);
10155 next = strchr (arch, '+');
10156 if (next)
10157 *next++ = '\0';
10158 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10159 {
10160 if (strcmp (arch, cpu_arch [j].name) == 0)
10161 {
10162 /* Processor. */
10163 if (! cpu_arch[j].flags.bitfield.cpui386)
10164 continue;
10165
10166 cpu_arch_name = cpu_arch[j].name;
10167 cpu_sub_arch_name = NULL;
10168 cpu_arch_flags = cpu_arch[j].flags;
10169 cpu_arch_isa = cpu_arch[j].type;
10170 cpu_arch_isa_flags = cpu_arch[j].flags;
10171 if (!cpu_arch_tune_set)
10172 {
10173 cpu_arch_tune = cpu_arch_isa;
10174 cpu_arch_tune_flags = cpu_arch_isa_flags;
10175 }
10176 break;
10177 }
10178 else if (*cpu_arch [j].name == '.'
10179 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10180 {
10181 /* ISA extension. */
10182 i386_cpu_flags flags;
10183
10184 flags = cpu_flags_or (cpu_arch_flags,
10185 cpu_arch[j].flags);
10186
10187 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10188 {
10189 if (cpu_sub_arch_name)
10190 {
10191 char *name = cpu_sub_arch_name;
10192 cpu_sub_arch_name = concat (name,
10193 cpu_arch[j].name,
10194 (const char *) NULL);
10195 free (name);
10196 }
10197 else
10198 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10199 cpu_arch_flags = flags;
10200 cpu_arch_isa_flags = flags;
10201 }
10202 break;
10203 }
10204 }
10205
10206 if (j >= ARRAY_SIZE (cpu_arch))
10207 {
10208 /* Disable an ISA extension. */
10209 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10210 if (strcmp (arch, cpu_noarch [j].name) == 0)
10211 {
10212 i386_cpu_flags flags;
10213
10214 flags = cpu_flags_and_not (cpu_arch_flags,
10215 cpu_noarch[j].flags);
10216 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10217 {
10218 if (cpu_sub_arch_name)
10219 {
10220 char *name = cpu_sub_arch_name;
10221 cpu_sub_arch_name = concat (arch,
10222 (const char *) NULL);
10223 free (name);
10224 }
10225 else
10226 cpu_sub_arch_name = xstrdup (arch);
10227 cpu_arch_flags = flags;
10228 cpu_arch_isa_flags = flags;
10229 }
10230 break;
10231 }
10232
10233 if (j >= ARRAY_SIZE (cpu_noarch))
10234 j = ARRAY_SIZE (cpu_arch);
10235 }
10236
10237 if (j >= ARRAY_SIZE (cpu_arch))
10238 as_fatal (_("invalid -march= option: `%s'"), arg);
10239
10240 arch = next;
10241 }
10242 while (next != NULL);
10243 free (saved);
10244 break;
10245
10246 case OPTION_MTUNE:
10247 if (*arg == '.')
10248 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10249 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10250 {
10251 if (strcmp (arg, cpu_arch [j].name) == 0)
10252 {
10253 cpu_arch_tune_set = 1;
10254 cpu_arch_tune = cpu_arch [j].type;
10255 cpu_arch_tune_flags = cpu_arch[j].flags;
10256 break;
10257 }
10258 }
10259 if (j >= ARRAY_SIZE (cpu_arch))
10260 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10261 break;
10262
10263 case OPTION_MMNEMONIC:
10264 if (strcasecmp (arg, "att") == 0)
10265 intel_mnemonic = 0;
10266 else if (strcasecmp (arg, "intel") == 0)
10267 intel_mnemonic = 1;
10268 else
10269 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10270 break;
10271
10272 case OPTION_MSYNTAX:
10273 if (strcasecmp (arg, "att") == 0)
10274 intel_syntax = 0;
10275 else if (strcasecmp (arg, "intel") == 0)
10276 intel_syntax = 1;
10277 else
10278 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10279 break;
10280
10281 case OPTION_MINDEX_REG:
10282 allow_index_reg = 1;
10283 break;
10284
10285 case OPTION_MNAKED_REG:
10286 allow_naked_reg = 1;
10287 break;
10288
10289 case OPTION_MOLD_GCC:
10290 old_gcc = 1;
10291 break;
10292
10293 case OPTION_MSSE2AVX:
10294 sse2avx = 1;
10295 break;
10296
10297 case OPTION_MSSE_CHECK:
10298 if (strcasecmp (arg, "error") == 0)
10299 sse_check = check_error;
10300 else if (strcasecmp (arg, "warning") == 0)
10301 sse_check = check_warning;
10302 else if (strcasecmp (arg, "none") == 0)
10303 sse_check = check_none;
10304 else
10305 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10306 break;
10307
10308 case OPTION_MOPERAND_CHECK:
10309 if (strcasecmp (arg, "error") == 0)
10310 operand_check = check_error;
10311 else if (strcasecmp (arg, "warning") == 0)
10312 operand_check = check_warning;
10313 else if (strcasecmp (arg, "none") == 0)
10314 operand_check = check_none;
10315 else
10316 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10317 break;
10318
10319 case OPTION_MAVXSCALAR:
10320 if (strcasecmp (arg, "128") == 0)
10321 avxscalar = vex128;
10322 else if (strcasecmp (arg, "256") == 0)
10323 avxscalar = vex256;
10324 else
10325 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10326 break;
10327
10328 case OPTION_MADD_BND_PREFIX:
10329 add_bnd_prefix = 1;
10330 break;
10331
10332 case OPTION_MEVEXLIG:
10333 if (strcmp (arg, "128") == 0)
10334 evexlig = evexl128;
10335 else if (strcmp (arg, "256") == 0)
10336 evexlig = evexl256;
10337 else if (strcmp (arg, "512") == 0)
10338 evexlig = evexl512;
10339 else
10340 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10341 break;
10342
10343 case OPTION_MEVEXRCIG:
10344 if (strcmp (arg, "rne") == 0)
10345 evexrcig = rne;
10346 else if (strcmp (arg, "rd") == 0)
10347 evexrcig = rd;
10348 else if (strcmp (arg, "ru") == 0)
10349 evexrcig = ru;
10350 else if (strcmp (arg, "rz") == 0)
10351 evexrcig = rz;
10352 else
10353 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10354 break;
10355
10356 case OPTION_MEVEXWIG:
10357 if (strcmp (arg, "0") == 0)
10358 evexwig = evexw0;
10359 else if (strcmp (arg, "1") == 0)
10360 evexwig = evexw1;
10361 else
10362 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10363 break;
10364
10365 # if defined (TE_PE) || defined (TE_PEP)
10366 case OPTION_MBIG_OBJ:
10367 use_big_obj = 1;
10368 break;
10369 #endif
10370
10371 case OPTION_MOMIT_LOCK_PREFIX:
10372 if (strcasecmp (arg, "yes") == 0)
10373 omit_lock_prefix = 1;
10374 else if (strcasecmp (arg, "no") == 0)
10375 omit_lock_prefix = 0;
10376 else
10377 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10378 break;
10379
10380 case OPTION_MFENCE_AS_LOCK_ADD:
10381 if (strcasecmp (arg, "yes") == 0)
10382 avoid_fence = 1;
10383 else if (strcasecmp (arg, "no") == 0)
10384 avoid_fence = 0;
10385 else
10386 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10387 break;
10388
10389 case OPTION_MRELAX_RELOCATIONS:
10390 if (strcasecmp (arg, "yes") == 0)
10391 generate_relax_relocations = 1;
10392 else if (strcasecmp (arg, "no") == 0)
10393 generate_relax_relocations = 0;
10394 else
10395 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10396 break;
10397
10398 case OPTION_MAMD64:
10399 intel64 = 0;
10400 break;
10401
10402 case OPTION_MINTEL64:
10403 intel64 = 1;
10404 break;
10405
10406 default:
10407 return 0;
10408 }
10409 return 1;
10410 }
10411
10412 #define MESSAGE_TEMPLATE \
10413 " "
10414
10415 static char *
10416 output_message (FILE *stream, char *p, char *message, char *start,
10417 int *left_p, const char *name, int len)
10418 {
10419 int size = sizeof (MESSAGE_TEMPLATE);
10420 int left = *left_p;
10421
10422 /* Reserve 2 spaces for ", " or ",\0" */
10423 left -= len + 2;
10424
10425 /* Check if there is any room. */
10426 if (left >= 0)
10427 {
10428 if (p != start)
10429 {
10430 *p++ = ',';
10431 *p++ = ' ';
10432 }
10433 p = mempcpy (p, name, len);
10434 }
10435 else
10436 {
10437 /* Output the current message now and start a new one. */
10438 *p++ = ',';
10439 *p = '\0';
10440 fprintf (stream, "%s\n", message);
10441 p = start;
10442 left = size - (start - message) - len - 2;
10443
10444 gas_assert (left >= 0);
10445
10446 p = mempcpy (p, name, len);
10447 }
10448
10449 *left_p = left;
10450 return p;
10451 }
10452
10453 static void
10454 show_arch (FILE *stream, int ext, int check)
10455 {
10456 static char message[] = MESSAGE_TEMPLATE;
10457 char *start = message + 27;
10458 char *p;
10459 int size = sizeof (MESSAGE_TEMPLATE);
10460 int left;
10461 const char *name;
10462 int len;
10463 unsigned int j;
10464
10465 p = start;
10466 left = size - (start - message);
10467 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10468 {
10469 /* Should it be skipped? */
10470 if (cpu_arch [j].skip)
10471 continue;
10472
10473 name = cpu_arch [j].name;
10474 len = cpu_arch [j].len;
10475 if (*name == '.')
10476 {
10477 /* It is an extension. Skip if we aren't asked to show it. */
10478 if (ext)
10479 {
10480 name++;
10481 len--;
10482 }
10483 else
10484 continue;
10485 }
10486 else if (ext)
10487 {
10488 /* It is an processor. Skip if we show only extension. */
10489 continue;
10490 }
10491 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10492 {
10493 /* It is an impossible processor - skip. */
10494 continue;
10495 }
10496
10497 p = output_message (stream, p, message, start, &left, name, len);
10498 }
10499
10500 /* Display disabled extensions. */
10501 if (ext)
10502 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10503 {
10504 name = cpu_noarch [j].name;
10505 len = cpu_noarch [j].len;
10506 p = output_message (stream, p, message, start, &left, name,
10507 len);
10508 }
10509
10510 *p = '\0';
10511 fprintf (stream, "%s\n", message);
10512 }
10513
10514 void
10515 md_show_usage (FILE *stream)
10516 {
10517 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10518 fprintf (stream, _("\
10519 -Q ignored\n\
10520 -V print assembler version number\n\
10521 -k ignored\n"));
10522 #endif
10523 fprintf (stream, _("\
10524 -n Do not optimize code alignment\n\
10525 -q quieten some warnings\n"));
10526 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10527 fprintf (stream, _("\
10528 -s ignored\n"));
10529 #endif
10530 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10531 || defined (TE_PE) || defined (TE_PEP))
10532 fprintf (stream, _("\
10533 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10534 #endif
10535 #ifdef SVR4_COMMENT_CHARS
10536 fprintf (stream, _("\
10537 --divide do not treat `/' as a comment character\n"));
10538 #else
10539 fprintf (stream, _("\
10540 --divide ignored\n"));
10541 #endif
10542 fprintf (stream, _("\
10543 -march=CPU[,+EXTENSION...]\n\
10544 generate code for CPU and EXTENSION, CPU is one of:\n"));
10545 show_arch (stream, 0, 1);
10546 fprintf (stream, _("\
10547 EXTENSION is combination of:\n"));
10548 show_arch (stream, 1, 0);
10549 fprintf (stream, _("\
10550 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10551 show_arch (stream, 0, 0);
10552 fprintf (stream, _("\
10553 -msse2avx encode SSE instructions with VEX prefix\n"));
10554 fprintf (stream, _("\
10555 -msse-check=[none|error|warning]\n\
10556 check SSE instructions\n"));
10557 fprintf (stream, _("\
10558 -moperand-check=[none|error|warning]\n\
10559 check operand combinations for validity\n"));
10560 fprintf (stream, _("\
10561 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10562 length\n"));
10563 fprintf (stream, _("\
10564 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10565 length\n"));
10566 fprintf (stream, _("\
10567 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10568 for EVEX.W bit ignored instructions\n"));
10569 fprintf (stream, _("\
10570 -mevexrcig=[rne|rd|ru|rz]\n\
10571 encode EVEX instructions with specific EVEX.RC value\n\
10572 for SAE-only ignored instructions\n"));
10573 fprintf (stream, _("\
10574 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10575 fprintf (stream, _("\
10576 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10577 fprintf (stream, _("\
10578 -mindex-reg support pseudo index registers\n"));
10579 fprintf (stream, _("\
10580 -mnaked-reg don't require `%%' prefix for registers\n"));
10581 fprintf (stream, _("\
10582 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
10583 fprintf (stream, _("\
10584 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10585 fprintf (stream, _("\
10586 -mshared disable branch optimization for shared code\n"));
10587 # if defined (TE_PE) || defined (TE_PEP)
10588 fprintf (stream, _("\
10589 -mbig-obj generate big object files\n"));
10590 #endif
10591 fprintf (stream, _("\
10592 -momit-lock-prefix=[no|yes]\n\
10593 strip all lock prefixes\n"));
10594 fprintf (stream, _("\
10595 -mfence-as-lock-add=[no|yes]\n\
10596 encode lfence, mfence and sfence as\n\
10597 lock addl $0x0, (%%{re}sp)\n"));
10598 fprintf (stream, _("\
10599 -mrelax-relocations=[no|yes]\n\
10600 generate relax relocations\n"));
10601 fprintf (stream, _("\
10602 -mamd64 accept only AMD64 ISA\n"));
10603 fprintf (stream, _("\
10604 -mintel64 accept only Intel64 ISA\n"));
10605 }
10606
10607 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10608 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10609 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10610
10611 /* Pick the target format to use. */
10612
10613 const char *
10614 i386_target_format (void)
10615 {
10616 if (!strncmp (default_arch, "x86_64", 6))
10617 {
10618 update_code_flag (CODE_64BIT, 1);
10619 if (default_arch[6] == '\0')
10620 x86_elf_abi = X86_64_ABI;
10621 else
10622 x86_elf_abi = X86_64_X32_ABI;
10623 }
10624 else if (!strcmp (default_arch, "i386"))
10625 update_code_flag (CODE_32BIT, 1);
10626 else if (!strcmp (default_arch, "iamcu"))
10627 {
10628 update_code_flag (CODE_32BIT, 1);
10629 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10630 {
10631 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10632 cpu_arch_name = "iamcu";
10633 cpu_sub_arch_name = NULL;
10634 cpu_arch_flags = iamcu_flags;
10635 cpu_arch_isa = PROCESSOR_IAMCU;
10636 cpu_arch_isa_flags = iamcu_flags;
10637 if (!cpu_arch_tune_set)
10638 {
10639 cpu_arch_tune = cpu_arch_isa;
10640 cpu_arch_tune_flags = cpu_arch_isa_flags;
10641 }
10642 }
10643 else if (cpu_arch_isa != PROCESSOR_IAMCU)
10644 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10645 cpu_arch_name);
10646 }
10647 else
10648 as_fatal (_("unknown architecture"));
10649
10650 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10651 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10652 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10653 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10654
10655 switch (OUTPUT_FLAVOR)
10656 {
10657 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10658 case bfd_target_aout_flavour:
10659 return AOUT_TARGET_FORMAT;
10660 #endif
10661 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10662 # if defined (TE_PE) || defined (TE_PEP)
10663 case bfd_target_coff_flavour:
10664 if (flag_code == CODE_64BIT)
10665 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10666 else
10667 return "pe-i386";
10668 # elif defined (TE_GO32)
10669 case bfd_target_coff_flavour:
10670 return "coff-go32";
10671 # else
10672 case bfd_target_coff_flavour:
10673 return "coff-i386";
10674 # endif
10675 #endif
10676 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10677 case bfd_target_elf_flavour:
10678 {
10679 const char *format;
10680
10681 switch (x86_elf_abi)
10682 {
10683 default:
10684 format = ELF_TARGET_FORMAT;
10685 break;
10686 case X86_64_ABI:
10687 use_rela_relocations = 1;
10688 object_64bit = 1;
10689 format = ELF_TARGET_FORMAT64;
10690 break;
10691 case X86_64_X32_ABI:
10692 use_rela_relocations = 1;
10693 object_64bit = 1;
10694 disallow_64bit_reloc = 1;
10695 format = ELF_TARGET_FORMAT32;
10696 break;
10697 }
10698 if (cpu_arch_isa == PROCESSOR_L1OM)
10699 {
10700 if (x86_elf_abi != X86_64_ABI)
10701 as_fatal (_("Intel L1OM is 64bit only"));
10702 return ELF_TARGET_L1OM_FORMAT;
10703 }
10704 else if (cpu_arch_isa == PROCESSOR_K1OM)
10705 {
10706 if (x86_elf_abi != X86_64_ABI)
10707 as_fatal (_("Intel K1OM is 64bit only"));
10708 return ELF_TARGET_K1OM_FORMAT;
10709 }
10710 else if (cpu_arch_isa == PROCESSOR_IAMCU)
10711 {
10712 if (x86_elf_abi != I386_ABI)
10713 as_fatal (_("Intel MCU is 32bit only"));
10714 return ELF_TARGET_IAMCU_FORMAT;
10715 }
10716 else
10717 return format;
10718 }
10719 #endif
10720 #if defined (OBJ_MACH_O)
10721 case bfd_target_mach_o_flavour:
10722 if (flag_code == CODE_64BIT)
10723 {
10724 use_rela_relocations = 1;
10725 object_64bit = 1;
10726 return "mach-o-x86-64";
10727 }
10728 else
10729 return "mach-o-i386";
10730 #endif
10731 default:
10732 abort ();
10733 return NULL;
10734 }
10735 }
10736
10737 #endif /* OBJ_MAYBE_ more than one */
10738 \f
10739 symbolS *
10740 md_undefined_symbol (char *name)
10741 {
10742 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10743 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10744 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10745 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10746 {
10747 if (!GOT_symbol)
10748 {
10749 if (symbol_find (name))
10750 as_bad (_("GOT already in symbol table"));
10751 GOT_symbol = symbol_new (name, undefined_section,
10752 (valueT) 0, &zero_address_frag);
10753 };
10754 return GOT_symbol;
10755 }
10756 return 0;
10757 }
10758
10759 /* Round up a section size to the appropriate boundary. */
10760
10761 valueT
10762 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10763 {
10764 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10765 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10766 {
10767 /* For a.out, force the section size to be aligned. If we don't do
10768 this, BFD will align it for us, but it will not write out the
10769 final bytes of the section. This may be a bug in BFD, but it is
10770 easier to fix it here since that is how the other a.out targets
10771 work. */
10772 int align;
10773
10774 align = bfd_get_section_alignment (stdoutput, segment);
10775 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
10776 }
10777 #endif
10778
10779 return size;
10780 }
10781
10782 /* On the i386, PC-relative offsets are relative to the start of the
10783 next instruction. That is, the address of the offset, plus its
10784 size, since the offset is always the last part of the insn. */
10785
10786 long
10787 md_pcrel_from (fixS *fixP)
10788 {
10789 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10790 }
10791
10792 #ifndef I386COFF
10793
10794 static void
10795 s_bss (int ignore ATTRIBUTE_UNUSED)
10796 {
10797 int temp;
10798
10799 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10800 if (IS_ELF)
10801 obj_elf_section_change_hook ();
10802 #endif
10803 temp = get_absolute_expression ();
10804 subseg_set (bss_section, (subsegT) temp);
10805 demand_empty_rest_of_line ();
10806 }
10807
10808 #endif
10809
10810 void
10811 i386_validate_fix (fixS *fixp)
10812 {
10813 if (fixp->fx_subsy)
10814 {
10815 if (fixp->fx_subsy == GOT_symbol)
10816 {
10817 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10818 {
10819 if (!object_64bit)
10820 abort ();
10821 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10822 if (fixp->fx_tcbit2)
10823 fixp->fx_r_type = (fixp->fx_tcbit
10824 ? BFD_RELOC_X86_64_REX_GOTPCRELX
10825 : BFD_RELOC_X86_64_GOTPCRELX);
10826 else
10827 #endif
10828 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10829 }
10830 else
10831 {
10832 if (!object_64bit)
10833 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10834 else
10835 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10836 }
10837 fixp->fx_subsy = 0;
10838 }
10839 }
10840 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10841 else if (!object_64bit)
10842 {
10843 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
10844 && fixp->fx_tcbit2)
10845 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
10846 }
10847 #endif
10848 }
10849
10850 arelent *
10851 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10852 {
10853 arelent *rel;
10854 bfd_reloc_code_real_type code;
10855
10856 switch (fixp->fx_r_type)
10857 {
10858 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10859 case BFD_RELOC_SIZE32:
10860 case BFD_RELOC_SIZE64:
10861 if (S_IS_DEFINED (fixp->fx_addsy)
10862 && !S_IS_EXTERNAL (fixp->fx_addsy))
10863 {
10864 /* Resolve size relocation against local symbol to size of
10865 the symbol plus addend. */
10866 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10867 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10868 && !fits_in_unsigned_long (value))
10869 as_bad_where (fixp->fx_file, fixp->fx_line,
10870 _("symbol size computation overflow"));
10871 fixp->fx_addsy = NULL;
10872 fixp->fx_subsy = NULL;
10873 md_apply_fix (fixp, (valueT *) &value, NULL);
10874 return NULL;
10875 }
10876 #endif
10877 /* Fall through. */
10878
10879 case BFD_RELOC_X86_64_PLT32:
10880 case BFD_RELOC_X86_64_GOT32:
10881 case BFD_RELOC_X86_64_GOTPCREL:
10882 case BFD_RELOC_X86_64_GOTPCRELX:
10883 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10884 case BFD_RELOC_386_PLT32:
10885 case BFD_RELOC_386_GOT32:
10886 case BFD_RELOC_386_GOT32X:
10887 case BFD_RELOC_386_GOTOFF:
10888 case BFD_RELOC_386_GOTPC:
10889 case BFD_RELOC_386_TLS_GD:
10890 case BFD_RELOC_386_TLS_LDM:
10891 case BFD_RELOC_386_TLS_LDO_32:
10892 case BFD_RELOC_386_TLS_IE_32:
10893 case BFD_RELOC_386_TLS_IE:
10894 case BFD_RELOC_386_TLS_GOTIE:
10895 case BFD_RELOC_386_TLS_LE_32:
10896 case BFD_RELOC_386_TLS_LE:
10897 case BFD_RELOC_386_TLS_GOTDESC:
10898 case BFD_RELOC_386_TLS_DESC_CALL:
10899 case BFD_RELOC_X86_64_TLSGD:
10900 case BFD_RELOC_X86_64_TLSLD:
10901 case BFD_RELOC_X86_64_DTPOFF32:
10902 case BFD_RELOC_X86_64_DTPOFF64:
10903 case BFD_RELOC_X86_64_GOTTPOFF:
10904 case BFD_RELOC_X86_64_TPOFF32:
10905 case BFD_RELOC_X86_64_TPOFF64:
10906 case BFD_RELOC_X86_64_GOTOFF64:
10907 case BFD_RELOC_X86_64_GOTPC32:
10908 case BFD_RELOC_X86_64_GOT64:
10909 case BFD_RELOC_X86_64_GOTPCREL64:
10910 case BFD_RELOC_X86_64_GOTPC64:
10911 case BFD_RELOC_X86_64_GOTPLT64:
10912 case BFD_RELOC_X86_64_PLTOFF64:
10913 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10914 case BFD_RELOC_X86_64_TLSDESC_CALL:
10915 case BFD_RELOC_RVA:
10916 case BFD_RELOC_VTABLE_ENTRY:
10917 case BFD_RELOC_VTABLE_INHERIT:
10918 #ifdef TE_PE
10919 case BFD_RELOC_32_SECREL:
10920 #endif
10921 code = fixp->fx_r_type;
10922 break;
10923 case BFD_RELOC_X86_64_32S:
10924 if (!fixp->fx_pcrel)
10925 {
10926 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10927 code = fixp->fx_r_type;
10928 break;
10929 }
10930 /* Fall through. */
10931 default:
10932 if (fixp->fx_pcrel)
10933 {
10934 switch (fixp->fx_size)
10935 {
10936 default:
10937 as_bad_where (fixp->fx_file, fixp->fx_line,
10938 _("can not do %d byte pc-relative relocation"),
10939 fixp->fx_size);
10940 code = BFD_RELOC_32_PCREL;
10941 break;
10942 case 1: code = BFD_RELOC_8_PCREL; break;
10943 case 2: code = BFD_RELOC_16_PCREL; break;
10944 case 4: code = BFD_RELOC_32_PCREL; break;
10945 #ifdef BFD64
10946 case 8: code = BFD_RELOC_64_PCREL; break;
10947 #endif
10948 }
10949 }
10950 else
10951 {
10952 switch (fixp->fx_size)
10953 {
10954 default:
10955 as_bad_where (fixp->fx_file, fixp->fx_line,
10956 _("can not do %d byte relocation"),
10957 fixp->fx_size);
10958 code = BFD_RELOC_32;
10959 break;
10960 case 1: code = BFD_RELOC_8; break;
10961 case 2: code = BFD_RELOC_16; break;
10962 case 4: code = BFD_RELOC_32; break;
10963 #ifdef BFD64
10964 case 8: code = BFD_RELOC_64; break;
10965 #endif
10966 }
10967 }
10968 break;
10969 }
10970
10971 if ((code == BFD_RELOC_32
10972 || code == BFD_RELOC_32_PCREL
10973 || code == BFD_RELOC_X86_64_32S)
10974 && GOT_symbol
10975 && fixp->fx_addsy == GOT_symbol)
10976 {
10977 if (!object_64bit)
10978 code = BFD_RELOC_386_GOTPC;
10979 else
10980 code = BFD_RELOC_X86_64_GOTPC32;
10981 }
10982 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10983 && GOT_symbol
10984 && fixp->fx_addsy == GOT_symbol)
10985 {
10986 code = BFD_RELOC_X86_64_GOTPC64;
10987 }
10988
10989 rel = XNEW (arelent);
10990 rel->sym_ptr_ptr = XNEW (asymbol *);
10991 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10992
10993 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
10994
10995 if (!use_rela_relocations)
10996 {
10997 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10998 vtable entry to be used in the relocation's section offset. */
10999 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11000 rel->address = fixp->fx_offset;
11001 #if defined (OBJ_COFF) && defined (TE_PE)
11002 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11003 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11004 else
11005 #endif
11006 rel->addend = 0;
11007 }
11008 /* Use the rela in 64bit mode. */
11009 else
11010 {
11011 if (disallow_64bit_reloc)
11012 switch (code)
11013 {
11014 case BFD_RELOC_X86_64_DTPOFF64:
11015 case BFD_RELOC_X86_64_TPOFF64:
11016 case BFD_RELOC_64_PCREL:
11017 case BFD_RELOC_X86_64_GOTOFF64:
11018 case BFD_RELOC_X86_64_GOT64:
11019 case BFD_RELOC_X86_64_GOTPCREL64:
11020 case BFD_RELOC_X86_64_GOTPC64:
11021 case BFD_RELOC_X86_64_GOTPLT64:
11022 case BFD_RELOC_X86_64_PLTOFF64:
11023 as_bad_where (fixp->fx_file, fixp->fx_line,
11024 _("cannot represent relocation type %s in x32 mode"),
11025 bfd_get_reloc_code_name (code));
11026 break;
11027 default:
11028 break;
11029 }
11030
11031 if (!fixp->fx_pcrel)
11032 rel->addend = fixp->fx_offset;
11033 else
11034 switch (code)
11035 {
11036 case BFD_RELOC_X86_64_PLT32:
11037 case BFD_RELOC_X86_64_GOT32:
11038 case BFD_RELOC_X86_64_GOTPCREL:
11039 case BFD_RELOC_X86_64_GOTPCRELX:
11040 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11041 case BFD_RELOC_X86_64_TLSGD:
11042 case BFD_RELOC_X86_64_TLSLD:
11043 case BFD_RELOC_X86_64_GOTTPOFF:
11044 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11045 case BFD_RELOC_X86_64_TLSDESC_CALL:
11046 rel->addend = fixp->fx_offset - fixp->fx_size;
11047 break;
11048 default:
11049 rel->addend = (section->vma
11050 - fixp->fx_size
11051 + fixp->fx_addnumber
11052 + md_pcrel_from (fixp));
11053 break;
11054 }
11055 }
11056
11057 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11058 if (rel->howto == NULL)
11059 {
11060 as_bad_where (fixp->fx_file, fixp->fx_line,
11061 _("cannot represent relocation type %s"),
11062 bfd_get_reloc_code_name (code));
11063 /* Set howto to a garbage value so that we can keep going. */
11064 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
11065 gas_assert (rel->howto != NULL);
11066 }
11067
11068 return rel;
11069 }
11070
11071 #include "tc-i386-intel.c"
11072
11073 void
11074 tc_x86_parse_to_dw2regnum (expressionS *exp)
11075 {
11076 int saved_naked_reg;
11077 char saved_register_dot;
11078
11079 saved_naked_reg = allow_naked_reg;
11080 allow_naked_reg = 1;
11081 saved_register_dot = register_chars['.'];
11082 register_chars['.'] = '.';
11083 allow_pseudo_reg = 1;
11084 expression_and_evaluate (exp);
11085 allow_pseudo_reg = 0;
11086 register_chars['.'] = saved_register_dot;
11087 allow_naked_reg = saved_naked_reg;
11088
11089 if (exp->X_op == O_register && exp->X_add_number >= 0)
11090 {
11091 if ((addressT) exp->X_add_number < i386_regtab_size)
11092 {
11093 exp->X_op = O_constant;
11094 exp->X_add_number = i386_regtab[exp->X_add_number]
11095 .dw2_regnum[flag_code >> 1];
11096 }
11097 else
11098 exp->X_op = O_illegal;
11099 }
11100 }
11101
11102 void
11103 tc_x86_frame_initial_instructions (void)
11104 {
11105 static unsigned int sp_regno[2];
11106
11107 if (!sp_regno[flag_code >> 1])
11108 {
11109 char *saved_input = input_line_pointer;
11110 char sp[][4] = {"esp", "rsp"};
11111 expressionS exp;
11112
11113 input_line_pointer = sp[flag_code >> 1];
11114 tc_x86_parse_to_dw2regnum (&exp);
11115 gas_assert (exp.X_op == O_constant);
11116 sp_regno[flag_code >> 1] = exp.X_add_number;
11117 input_line_pointer = saved_input;
11118 }
11119
11120 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11121 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11122 }
11123
11124 int
11125 x86_dwarf2_addr_size (void)
11126 {
11127 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11128 if (x86_elf_abi == X86_64_X32_ABI)
11129 return 4;
11130 #endif
11131 return bfd_arch_bits_per_address (stdoutput) / 8;
11132 }
11133
11134 int
11135 i386_elf_section_type (const char *str, size_t len)
11136 {
11137 if (flag_code == CODE_64BIT
11138 && len == sizeof ("unwind") - 1
11139 && strncmp (str, "unwind", 6) == 0)
11140 return SHT_X86_64_UNWIND;
11141
11142 return -1;
11143 }
11144
11145 #ifdef TE_SOLARIS
11146 void
11147 i386_solaris_fix_up_eh_frame (segT sec)
11148 {
11149 if (flag_code == CODE_64BIT)
11150 elf_section_type (sec) = SHT_X86_64_UNWIND;
11151 }
11152 #endif
11153
11154 #ifdef TE_PE
11155 void
11156 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11157 {
11158 expressionS exp;
11159
11160 exp.X_op = O_secrel;
11161 exp.X_add_symbol = symbol;
11162 exp.X_add_number = 0;
11163 emit_expr (&exp, size);
11164 }
11165 #endif
11166
11167 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11168 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11169
11170 bfd_vma
11171 x86_64_section_letter (int letter, const char **ptr_msg)
11172 {
11173 if (flag_code == CODE_64BIT)
11174 {
11175 if (letter == 'l')
11176 return SHF_X86_64_LARGE;
11177
11178 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11179 }
11180 else
11181 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11182 return -1;
11183 }
11184
11185 bfd_vma
11186 x86_64_section_word (char *str, size_t len)
11187 {
11188 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11189 return SHF_X86_64_LARGE;
11190
11191 return -1;
11192 }
11193
11194 static void
11195 handle_large_common (int small ATTRIBUTE_UNUSED)
11196 {
11197 if (flag_code != CODE_64BIT)
11198 {
11199 s_comm_internal (0, elf_common_parse);
11200 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11201 }
11202 else
11203 {
11204 static segT lbss_section;
11205 asection *saved_com_section_ptr = elf_com_section_ptr;
11206 asection *saved_bss_section = bss_section;
11207
11208 if (lbss_section == NULL)
11209 {
11210 flagword applicable;
11211 segT seg = now_seg;
11212 subsegT subseg = now_subseg;
11213
11214 /* The .lbss section is for local .largecomm symbols. */
11215 lbss_section = subseg_new (".lbss", 0);
11216 applicable = bfd_applicable_section_flags (stdoutput);
11217 bfd_set_section_flags (stdoutput, lbss_section,
11218 applicable & SEC_ALLOC);
11219 seg_info (lbss_section)->bss = 1;
11220
11221 subseg_set (seg, subseg);
11222 }
11223
11224 elf_com_section_ptr = &_bfd_elf_large_com_section;
11225 bss_section = lbss_section;
11226
11227 s_comm_internal (0, elf_common_parse);
11228
11229 elf_com_section_ptr = saved_com_section_ptr;
11230 bss_section = saved_bss_section;
11231 }
11232 }
11233 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.26828 seconds and 5 git commands to generate.