Enable Intel WAITPKG instructions.
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 /* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88 #define END_OF_INSN '\0'
89
90 /*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97 typedef struct
98 {
99 const insn_template *start;
100 const insn_template *end;
101 }
102 templates;
103
104 /* 386 operand encoding bytes: see 386 book for details of this. */
105 typedef struct
106 {
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110 }
111 modrm_byte;
112
113 /* x86-64 extension prefix. */
114 typedef int rex_byte;
115
116 /* 386 opcode byte to code indirect addressing. */
117 typedef struct
118 {
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122 }
123 sib_byte;
124
125 /* x86 arch names, types and features */
126 typedef struct
127 {
128 const char *name; /* arch name */
129 unsigned int len; /* arch string length */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
132 unsigned int skip; /* show_arch should skip this. */
133 }
134 arch_entry;
135
136 /* Used to turn off indicated flags. */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142 }
143 noarch_entry;
144
145 static void update_code_flag (int, int);
146 static void set_code_flag (int);
147 static void set_16bit_gcc_code_flag (int);
148 static void set_intel_syntax (int);
149 static void set_intel_mnemonic (int);
150 static void set_allow_index_reg (int);
151 static void set_check (int);
152 static void set_cpu_arch (int);
153 #ifdef TE_PE
154 static void pe_directive_secrel (int);
155 #endif
156 static void signed_cons (int);
157 static char *output_invalid (int c);
158 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
162 static int i386_att_operand (char *);
163 static int i386_intel_operand (char *, int);
164 static int i386_intel_simplify (expressionS *);
165 static int i386_intel_parse_name (const char *, expressionS *);
166 static const reg_entry *parse_register (char *, char **);
167 static char *parse_insn (char *, char *);
168 static char *parse_operands (char *, const char *);
169 static void swap_operands (void);
170 static void swap_2_operands (int, int);
171 static void optimize_imm (void);
172 static void optimize_disp (void);
173 static const insn_template *match_template (char);
174 static int check_string (void);
175 static int process_suffix (void);
176 static int check_byte_reg (void);
177 static int check_long_reg (void);
178 static int check_qword_reg (void);
179 static int check_word_reg (void);
180 static int finalize_imm (void);
181 static int process_operands (void);
182 static const seg_entry *build_modrm_byte (void);
183 static void output_insn (void);
184 static void output_imm (fragS *, offsetT);
185 static void output_disp (fragS *, offsetT);
186 #ifndef I386COFF
187 static void s_bss (int);
188 #endif
189 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190 static void handle_large_common (int small ATTRIBUTE_UNUSED);
191 #endif
192
193 static const char *default_arch = DEFAULT_ARCH;
194
195 /* This struct describes rounding control and SAE in the instruction. */
196 struct RC_Operation
197 {
198 enum rc_type
199 {
200 rne = 0,
201 rd,
202 ru,
203 rz,
204 saeonly
205 } type;
206 int operand;
207 };
208
209 static struct RC_Operation rc_op;
210
211 /* The struct describes masking, applied to OPERAND in the instruction.
212 MASK is a pointer to the corresponding mask register. ZEROING tells
213 whether merging or zeroing mask is used. */
214 struct Mask_Operation
215 {
216 const reg_entry *mask;
217 unsigned int zeroing;
218 /* The operand where this operation is associated. */
219 int operand;
220 };
221
222 static struct Mask_Operation mask_op;
223
224 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
225 broadcast factor. */
226 struct Broadcast_Operation
227 {
228 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
229 int type;
230
231 /* Index of broadcasted operand. */
232 int operand;
233 };
234
235 static struct Broadcast_Operation broadcast_op;
236
237 /* VEX prefix. */
238 typedef struct
239 {
240 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
241 unsigned char bytes[4];
242 unsigned int length;
243 /* Destination or source register specifier. */
244 const reg_entry *register_specifier;
245 } vex_prefix;
246
247 /* 'md_assemble ()' gathers together information and puts it into a
248 i386_insn. */
249
250 union i386_op
251 {
252 expressionS *disps;
253 expressionS *imms;
254 const reg_entry *regs;
255 };
256
257 enum i386_error
258 {
259 operand_size_mismatch,
260 operand_type_mismatch,
261 register_type_mismatch,
262 number_of_operands_mismatch,
263 invalid_instruction_suffix,
264 bad_imm4,
265 unsupported_with_intel_mnemonic,
266 unsupported_syntax,
267 unsupported,
268 invalid_vsib_address,
269 invalid_vector_register_set,
270 unsupported_vector_index_register,
271 unsupported_broadcast,
272 broadcast_not_on_src_operand,
273 broadcast_needed,
274 unsupported_masking,
275 mask_not_on_destination,
276 no_default_mask,
277 unsupported_rc_sae,
278 rc_sae_operand_not_last_imm,
279 invalid_register_operand,
280 };
281
282 struct _i386_insn
283 {
284 /* TM holds the template for the insn were currently assembling. */
285 insn_template tm;
286
287 /* SUFFIX holds the instruction size suffix for byte, word, dword
288 or qword, if given. */
289 char suffix;
290
291 /* OPERANDS gives the number of given operands. */
292 unsigned int operands;
293
294 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
295 of given register, displacement, memory operands and immediate
296 operands. */
297 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
298
299 /* TYPES [i] is the type (see above #defines) which tells us how to
300 use OP[i] for the corresponding operand. */
301 i386_operand_type types[MAX_OPERANDS];
302
303 /* Displacement expression, immediate expression, or register for each
304 operand. */
305 union i386_op op[MAX_OPERANDS];
306
307 /* Flags for operands. */
308 unsigned int flags[MAX_OPERANDS];
309 #define Operand_PCrel 1
310
311 /* Relocation type for operand */
312 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
313
314 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
315 the base index byte below. */
316 const reg_entry *base_reg;
317 const reg_entry *index_reg;
318 unsigned int log2_scale_factor;
319
320 /* SEG gives the seg_entries of this insn. They are zero unless
321 explicit segment overrides are given. */
322 const seg_entry *seg[2];
323
324 /* Copied first memory operand string, for re-checking. */
325 char *memop1_string;
326
327 /* PREFIX holds all the given prefix opcodes (usually null).
328 PREFIXES is the number of prefix opcodes. */
329 unsigned int prefixes;
330 unsigned char prefix[MAX_PREFIXES];
331
332 /* RM and SIB are the modrm byte and the sib byte where the
333 addressing modes of this insn are encoded. */
334 modrm_byte rm;
335 rex_byte rex;
336 rex_byte vrex;
337 sib_byte sib;
338 vex_prefix vex;
339
340 /* Masking attributes. */
341 struct Mask_Operation *mask;
342
343 /* Rounding control and SAE attributes. */
344 struct RC_Operation *rounding;
345
346 /* Broadcasting attributes. */
347 struct Broadcast_Operation *broadcast;
348
349 /* Compressed disp8*N attribute. */
350 unsigned int memshift;
351
352 /* Prefer load or store in encoding. */
353 enum
354 {
355 dir_encoding_default = 0,
356 dir_encoding_load,
357 dir_encoding_store
358 } dir_encoding;
359
360 /* Prefer 8bit or 32bit displacement in encoding. */
361 enum
362 {
363 disp_encoding_default = 0,
364 disp_encoding_8bit,
365 disp_encoding_32bit
366 } disp_encoding;
367
368 /* Prefer the REX byte in encoding. */
369 bfd_boolean rex_encoding;
370
371 /* Disable instruction size optimization. */
372 bfd_boolean no_optimize;
373
374 /* How to encode vector instructions. */
375 enum
376 {
377 vex_encoding_default = 0,
378 vex_encoding_vex2,
379 vex_encoding_vex3,
380 vex_encoding_evex
381 } vec_encoding;
382
383 /* REP prefix. */
384 const char *rep_prefix;
385
386 /* HLE prefix. */
387 const char *hle_prefix;
388
389 /* Have BND prefix. */
390 const char *bnd_prefix;
391
392 /* Have NOTRACK prefix. */
393 const char *notrack_prefix;
394
395 /* Error message. */
396 enum i386_error error;
397 };
398
399 typedef struct _i386_insn i386_insn;
400
401 /* Link RC type with corresponding string, that'll be looked for in
402 asm. */
403 struct RC_name
404 {
405 enum rc_type type;
406 const char *name;
407 unsigned int len;
408 };
409
410 static const struct RC_name RC_NamesTable[] =
411 {
412 { rne, STRING_COMMA_LEN ("rn-sae") },
413 { rd, STRING_COMMA_LEN ("rd-sae") },
414 { ru, STRING_COMMA_LEN ("ru-sae") },
415 { rz, STRING_COMMA_LEN ("rz-sae") },
416 { saeonly, STRING_COMMA_LEN ("sae") },
417 };
418
419 /* List of chars besides those in app.c:symbol_chars that can start an
420 operand. Used to prevent the scrubber eating vital white-space. */
421 const char extra_symbol_chars[] = "*%-([{}"
422 #ifdef LEX_AT
423 "@"
424 #endif
425 #ifdef LEX_QM
426 "?"
427 #endif
428 ;
429
430 #if (defined (TE_I386AIX) \
431 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
432 && !defined (TE_GNU) \
433 && !defined (TE_LINUX) \
434 && !defined (TE_NACL) \
435 && !defined (TE_NETWARE) \
436 && !defined (TE_FreeBSD) \
437 && !defined (TE_DragonFly) \
438 && !defined (TE_NetBSD)))
439 /* This array holds the chars that always start a comment. If the
440 pre-processor is disabled, these aren't very useful. The option
441 --divide will remove '/' from this list. */
442 const char *i386_comment_chars = "#/";
443 #define SVR4_COMMENT_CHARS 1
444 #define PREFIX_SEPARATOR '\\'
445
446 #else
447 const char *i386_comment_chars = "#";
448 #define PREFIX_SEPARATOR '/'
449 #endif
450
451 /* This array holds the chars that only start a comment at the beginning of
452 a line. If the line seems to have the form '# 123 filename'
453 .line and .file directives will appear in the pre-processed output.
454 Note that input_file.c hand checks for '#' at the beginning of the
455 first line of the input file. This is because the compiler outputs
456 #NO_APP at the beginning of its output.
457 Also note that comments started like this one will always work if
458 '/' isn't otherwise defined. */
459 const char line_comment_chars[] = "#/";
460
461 const char line_separator_chars[] = ";";
462
463 /* Chars that can be used to separate mant from exp in floating point
464 nums. */
465 const char EXP_CHARS[] = "eE";
466
467 /* Chars that mean this number is a floating point constant
468 As in 0f12.456
469 or 0d1.2345e12. */
470 const char FLT_CHARS[] = "fFdDxX";
471
472 /* Tables for lexical analysis. */
473 static char mnemonic_chars[256];
474 static char register_chars[256];
475 static char operand_chars[256];
476 static char identifier_chars[256];
477 static char digit_chars[256];
478
479 /* Lexical macros. */
480 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
481 #define is_operand_char(x) (operand_chars[(unsigned char) x])
482 #define is_register_char(x) (register_chars[(unsigned char) x])
483 #define is_space_char(x) ((x) == ' ')
484 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
485 #define is_digit_char(x) (digit_chars[(unsigned char) x])
486
487 /* All non-digit non-letter characters that may occur in an operand. */
488 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
489
490 /* md_assemble() always leaves the strings it's passed unaltered. To
491 effect this we maintain a stack of saved characters that we've smashed
492 with '\0's (indicating end of strings for various sub-fields of the
493 assembler instruction). */
494 static char save_stack[32];
495 static char *save_stack_p;
496 #define END_STRING_AND_SAVE(s) \
497 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
498 #define RESTORE_END_STRING(s) \
499 do { *(s) = *--save_stack_p; } while (0)
500
501 /* The instruction we're assembling. */
502 static i386_insn i;
503
504 /* Possible templates for current insn. */
505 static const templates *current_templates;
506
507 /* Per instruction expressionS buffers: max displacements & immediates. */
508 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
509 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
510
511 /* Current operand we are working on. */
512 static int this_operand = -1;
513
514 /* We support four different modes. FLAG_CODE variable is used to distinguish
515 these. */
516
517 enum flag_code {
518 CODE_32BIT,
519 CODE_16BIT,
520 CODE_64BIT };
521
522 static enum flag_code flag_code;
523 static unsigned int object_64bit;
524 static unsigned int disallow_64bit_reloc;
525 static int use_rela_relocations = 0;
526
527 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
528 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
529 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
530
531 /* The ELF ABI to use. */
532 enum x86_elf_abi
533 {
534 I386_ABI,
535 X86_64_ABI,
536 X86_64_X32_ABI
537 };
538
539 static enum x86_elf_abi x86_elf_abi = I386_ABI;
540 #endif
541
542 #if defined (TE_PE) || defined (TE_PEP)
543 /* Use big object file format. */
544 static int use_big_obj = 0;
545 #endif
546
547 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
548 /* 1 if generating code for a shared library. */
549 static int shared = 0;
550 #endif
551
552 /* 1 for intel syntax,
553 0 if att syntax. */
554 static int intel_syntax = 0;
555
556 /* 1 for Intel64 ISA,
557 0 if AMD64 ISA. */
558 static int intel64;
559
560 /* 1 for intel mnemonic,
561 0 if att mnemonic. */
562 static int intel_mnemonic = !SYSV386_COMPAT;
563
564 /* 1 if pseudo registers are permitted. */
565 static int allow_pseudo_reg = 0;
566
567 /* 1 if register prefix % not required. */
568 static int allow_naked_reg = 0;
569
570 /* 1 if the assembler should add BND prefix for all control-transferring
571 instructions supporting it, even if this prefix wasn't specified
572 explicitly. */
573 static int add_bnd_prefix = 0;
574
575 /* 1 if pseudo index register, eiz/riz, is allowed . */
576 static int allow_index_reg = 0;
577
578 /* 1 if the assembler should ignore LOCK prefix, even if it was
579 specified explicitly. */
580 static int omit_lock_prefix = 0;
581
582 /* 1 if the assembler should encode lfence, mfence, and sfence as
583 "lock addl $0, (%{re}sp)". */
584 static int avoid_fence = 0;
585
586 /* 1 if the assembler should generate relax relocations. */
587
588 static int generate_relax_relocations
589 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
590
591 static enum check_kind
592 {
593 check_none = 0,
594 check_warning,
595 check_error
596 }
597 sse_check, operand_check = check_warning;
598
599 /* Optimization:
600 1. Clear the REX_W bit with register operand if possible.
601 2. Above plus use 128bit vector instruction to clear the full vector
602 register.
603 */
604 static int optimize = 0;
605
606 /* Optimization:
607 1. Clear the REX_W bit with register operand if possible.
608 2. Above plus use 128bit vector instruction to clear the full vector
609 register.
610 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
611 "testb $imm7,%r8".
612 */
613 static int optimize_for_space = 0;
614
615 /* Register prefix used for error message. */
616 static const char *register_prefix = "%";
617
618 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
619 leave, push, and pop instructions so that gcc has the same stack
620 frame as in 32 bit mode. */
621 static char stackop_size = '\0';
622
623 /* Non-zero to optimize code alignment. */
624 int optimize_align_code = 1;
625
626 /* Non-zero to quieten some warnings. */
627 static int quiet_warnings = 0;
628
629 /* CPU name. */
630 static const char *cpu_arch_name = NULL;
631 static char *cpu_sub_arch_name = NULL;
632
633 /* CPU feature flags. */
634 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
635
636 /* If we have selected a cpu we are generating instructions for. */
637 static int cpu_arch_tune_set = 0;
638
639 /* Cpu we are generating instructions for. */
640 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
641
642 /* CPU feature flags of cpu we are generating instructions for. */
643 static i386_cpu_flags cpu_arch_tune_flags;
644
645 /* CPU instruction set architecture used. */
646 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
647
648 /* CPU feature flags of instruction set architecture used. */
649 i386_cpu_flags cpu_arch_isa_flags;
650
651 /* If set, conditional jumps are not automatically promoted to handle
652 larger than a byte offset. */
653 static unsigned int no_cond_jump_promotion = 0;
654
655 /* Encode SSE instructions with VEX prefix. */
656 static unsigned int sse2avx;
657
658 /* Encode scalar AVX instructions with specific vector length. */
659 static enum
660 {
661 vex128 = 0,
662 vex256
663 } avxscalar;
664
665 /* Encode scalar EVEX LIG instructions with specific vector length. */
666 static enum
667 {
668 evexl128 = 0,
669 evexl256,
670 evexl512
671 } evexlig;
672
673 /* Encode EVEX WIG instructions with specific evex.w. */
674 static enum
675 {
676 evexw0 = 0,
677 evexw1
678 } evexwig;
679
680 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
681 static enum rc_type evexrcig = rne;
682
683 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
684 static symbolS *GOT_symbol;
685
686 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
687 unsigned int x86_dwarf2_return_column;
688
689 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
690 int x86_cie_data_alignment;
691
692 /* Interface to relax_segment.
693 There are 3 major relax states for 386 jump insns because the
694 different types of jumps add different sizes to frags when we're
695 figuring out what sort of jump to choose to reach a given label. */
696
697 /* Types. */
698 #define UNCOND_JUMP 0
699 #define COND_JUMP 1
700 #define COND_JUMP86 2
701
702 /* Sizes. */
703 #define CODE16 1
704 #define SMALL 0
705 #define SMALL16 (SMALL | CODE16)
706 #define BIG 2
707 #define BIG16 (BIG | CODE16)
708
709 #ifndef INLINE
710 #ifdef __GNUC__
711 #define INLINE __inline__
712 #else
713 #define INLINE
714 #endif
715 #endif
716
717 #define ENCODE_RELAX_STATE(type, size) \
718 ((relax_substateT) (((type) << 2) | (size)))
719 #define TYPE_FROM_RELAX_STATE(s) \
720 ((s) >> 2)
721 #define DISP_SIZE_FROM_RELAX_STATE(s) \
722 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
723
724 /* This table is used by relax_frag to promote short jumps to long
725 ones where necessary. SMALL (short) jumps may be promoted to BIG
726 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
727 don't allow a short jump in a 32 bit code segment to be promoted to
728 a 16 bit offset jump because it's slower (requires data size
729 prefix), and doesn't work, unless the destination is in the bottom
730 64k of the code segment (The top 16 bits of eip are zeroed). */
731
732 const relax_typeS md_relax_table[] =
733 {
734 /* The fields are:
735 1) most positive reach of this state,
736 2) most negative reach of this state,
737 3) how many bytes this mode will have in the variable part of the frag
738 4) which index into the table to try if we can't fit into this one. */
739
740 /* UNCOND_JUMP states. */
741 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
742 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
743 /* dword jmp adds 4 bytes to frag:
744 0 extra opcode bytes, 4 displacement bytes. */
745 {0, 0, 4, 0},
746 /* word jmp adds 2 byte2 to frag:
747 0 extra opcode bytes, 2 displacement bytes. */
748 {0, 0, 2, 0},
749
750 /* COND_JUMP states. */
751 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
752 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
753 /* dword conditionals adds 5 bytes to frag:
754 1 extra opcode byte, 4 displacement bytes. */
755 {0, 0, 5, 0},
756 /* word conditionals add 3 bytes to frag:
757 1 extra opcode byte, 2 displacement bytes. */
758 {0, 0, 3, 0},
759
760 /* COND_JUMP86 states. */
761 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
762 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
763 /* dword conditionals adds 5 bytes to frag:
764 1 extra opcode byte, 4 displacement bytes. */
765 {0, 0, 5, 0},
766 /* word conditionals add 4 bytes to frag:
767 1 displacement byte and a 3 byte long branch insn. */
768 {0, 0, 4, 0}
769 };
770
771 static const arch_entry cpu_arch[] =
772 {
773 /* Do not replace the first two entries - i386_target_format()
774 relies on them being there in this order. */
775 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
776 CPU_GENERIC32_FLAGS, 0 },
777 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
778 CPU_GENERIC64_FLAGS, 0 },
779 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
780 CPU_NONE_FLAGS, 0 },
781 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
782 CPU_I186_FLAGS, 0 },
783 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
784 CPU_I286_FLAGS, 0 },
785 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
786 CPU_I386_FLAGS, 0 },
787 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
788 CPU_I486_FLAGS, 0 },
789 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
790 CPU_I586_FLAGS, 0 },
791 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
792 CPU_I686_FLAGS, 0 },
793 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
794 CPU_I586_FLAGS, 0 },
795 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
796 CPU_PENTIUMPRO_FLAGS, 0 },
797 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
798 CPU_P2_FLAGS, 0 },
799 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
800 CPU_P3_FLAGS, 0 },
801 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
802 CPU_P4_FLAGS, 0 },
803 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
804 CPU_CORE_FLAGS, 0 },
805 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
806 CPU_NOCONA_FLAGS, 0 },
807 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
808 CPU_CORE_FLAGS, 1 },
809 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
810 CPU_CORE_FLAGS, 0 },
811 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
812 CPU_CORE2_FLAGS, 1 },
813 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
814 CPU_CORE2_FLAGS, 0 },
815 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
816 CPU_COREI7_FLAGS, 0 },
817 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
818 CPU_L1OM_FLAGS, 0 },
819 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
820 CPU_K1OM_FLAGS, 0 },
821 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
822 CPU_IAMCU_FLAGS, 0 },
823 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
824 CPU_K6_FLAGS, 0 },
825 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
826 CPU_K6_2_FLAGS, 0 },
827 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
828 CPU_ATHLON_FLAGS, 0 },
829 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
830 CPU_K8_FLAGS, 1 },
831 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
832 CPU_K8_FLAGS, 0 },
833 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
834 CPU_K8_FLAGS, 0 },
835 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
836 CPU_AMDFAM10_FLAGS, 0 },
837 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
838 CPU_BDVER1_FLAGS, 0 },
839 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
840 CPU_BDVER2_FLAGS, 0 },
841 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
842 CPU_BDVER3_FLAGS, 0 },
843 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
844 CPU_BDVER4_FLAGS, 0 },
845 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
846 CPU_ZNVER1_FLAGS, 0 },
847 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
848 CPU_BTVER1_FLAGS, 0 },
849 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
850 CPU_BTVER2_FLAGS, 0 },
851 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
852 CPU_8087_FLAGS, 0 },
853 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
854 CPU_287_FLAGS, 0 },
855 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
856 CPU_387_FLAGS, 0 },
857 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
858 CPU_687_FLAGS, 0 },
859 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
860 CPU_MMX_FLAGS, 0 },
861 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
862 CPU_SSE_FLAGS, 0 },
863 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
864 CPU_SSE2_FLAGS, 0 },
865 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
866 CPU_SSE3_FLAGS, 0 },
867 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
868 CPU_SSSE3_FLAGS, 0 },
869 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
870 CPU_SSE4_1_FLAGS, 0 },
871 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
872 CPU_SSE4_2_FLAGS, 0 },
873 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
874 CPU_SSE4_2_FLAGS, 0 },
875 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
876 CPU_AVX_FLAGS, 0 },
877 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
878 CPU_AVX2_FLAGS, 0 },
879 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
880 CPU_AVX512F_FLAGS, 0 },
881 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
882 CPU_AVX512CD_FLAGS, 0 },
883 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
884 CPU_AVX512ER_FLAGS, 0 },
885 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
886 CPU_AVX512PF_FLAGS, 0 },
887 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
888 CPU_AVX512DQ_FLAGS, 0 },
889 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
890 CPU_AVX512BW_FLAGS, 0 },
891 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
892 CPU_AVX512VL_FLAGS, 0 },
893 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
894 CPU_VMX_FLAGS, 0 },
895 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
896 CPU_VMFUNC_FLAGS, 0 },
897 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
898 CPU_SMX_FLAGS, 0 },
899 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
900 CPU_XSAVE_FLAGS, 0 },
901 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
902 CPU_XSAVEOPT_FLAGS, 0 },
903 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
904 CPU_XSAVEC_FLAGS, 0 },
905 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
906 CPU_XSAVES_FLAGS, 0 },
907 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
908 CPU_AES_FLAGS, 0 },
909 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
910 CPU_PCLMUL_FLAGS, 0 },
911 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
912 CPU_PCLMUL_FLAGS, 1 },
913 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
914 CPU_FSGSBASE_FLAGS, 0 },
915 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
916 CPU_RDRND_FLAGS, 0 },
917 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
918 CPU_F16C_FLAGS, 0 },
919 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
920 CPU_BMI2_FLAGS, 0 },
921 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
922 CPU_FMA_FLAGS, 0 },
923 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
924 CPU_FMA4_FLAGS, 0 },
925 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
926 CPU_XOP_FLAGS, 0 },
927 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
928 CPU_LWP_FLAGS, 0 },
929 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
930 CPU_MOVBE_FLAGS, 0 },
931 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
932 CPU_CX16_FLAGS, 0 },
933 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
934 CPU_EPT_FLAGS, 0 },
935 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
936 CPU_LZCNT_FLAGS, 0 },
937 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
938 CPU_HLE_FLAGS, 0 },
939 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
940 CPU_RTM_FLAGS, 0 },
941 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
942 CPU_INVPCID_FLAGS, 0 },
943 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
944 CPU_CLFLUSH_FLAGS, 0 },
945 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
946 CPU_NOP_FLAGS, 0 },
947 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
948 CPU_SYSCALL_FLAGS, 0 },
949 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
950 CPU_RDTSCP_FLAGS, 0 },
951 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
952 CPU_3DNOW_FLAGS, 0 },
953 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
954 CPU_3DNOWA_FLAGS, 0 },
955 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
956 CPU_PADLOCK_FLAGS, 0 },
957 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
958 CPU_SVME_FLAGS, 1 },
959 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
960 CPU_SVME_FLAGS, 0 },
961 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
962 CPU_SSE4A_FLAGS, 0 },
963 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
964 CPU_ABM_FLAGS, 0 },
965 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
966 CPU_BMI_FLAGS, 0 },
967 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
968 CPU_TBM_FLAGS, 0 },
969 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
970 CPU_ADX_FLAGS, 0 },
971 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
972 CPU_RDSEED_FLAGS, 0 },
973 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
974 CPU_PRFCHW_FLAGS, 0 },
975 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
976 CPU_SMAP_FLAGS, 0 },
977 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
978 CPU_MPX_FLAGS, 0 },
979 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
980 CPU_SHA_FLAGS, 0 },
981 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
982 CPU_CLFLUSHOPT_FLAGS, 0 },
983 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
984 CPU_PREFETCHWT1_FLAGS, 0 },
985 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
986 CPU_SE1_FLAGS, 0 },
987 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
988 CPU_CLWB_FLAGS, 0 },
989 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
990 CPU_AVX512IFMA_FLAGS, 0 },
991 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
992 CPU_AVX512VBMI_FLAGS, 0 },
993 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
994 CPU_AVX512_4FMAPS_FLAGS, 0 },
995 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
996 CPU_AVX512_4VNNIW_FLAGS, 0 },
997 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
998 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
999 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1000 CPU_AVX512_VBMI2_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1002 CPU_AVX512_VNNI_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1004 CPU_AVX512_BITALG_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1006 CPU_CLZERO_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1008 CPU_MWAITX_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1010 CPU_OSPKE_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1012 CPU_RDPID_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1014 CPU_PTWRITE_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1016 CPU_IBT_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1018 CPU_SHSTK_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1020 CPU_GFNI_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1022 CPU_VAES_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1024 CPU_VPCLMULQDQ_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1026 CPU_WBNOINVD_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1028 CPU_PCONFIG_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1030 CPU_WAITPKG_FLAGS, 0 },
1031 };
1032
1033 static const noarch_entry cpu_noarch[] =
1034 {
1035 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1036 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1037 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1038 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1039 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1040 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1041 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1042 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1043 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1044 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1045 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1046 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1047 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1048 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1049 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1050 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1051 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1052 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1053 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1054 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1055 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1056 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1057 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1058 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1059 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1060 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1061 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1062 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1063 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1064 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1065 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1066 };
1067
1068 #ifdef I386COFF
1069 /* Like s_lcomm_internal in gas/read.c but the alignment string
1070 is allowed to be optional. */
1071
1072 static symbolS *
1073 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1074 {
1075 addressT align = 0;
1076
1077 SKIP_WHITESPACE ();
1078
1079 if (needs_align
1080 && *input_line_pointer == ',')
1081 {
1082 align = parse_align (needs_align - 1);
1083
1084 if (align == (addressT) -1)
1085 return NULL;
1086 }
1087 else
1088 {
1089 if (size >= 8)
1090 align = 3;
1091 else if (size >= 4)
1092 align = 2;
1093 else if (size >= 2)
1094 align = 1;
1095 else
1096 align = 0;
1097 }
1098
1099 bss_alloc (symbolP, size, align);
1100 return symbolP;
1101 }
1102
1103 static void
1104 pe_lcomm (int needs_align)
1105 {
1106 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1107 }
1108 #endif
1109
1110 const pseudo_typeS md_pseudo_table[] =
1111 {
1112 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1113 {"align", s_align_bytes, 0},
1114 #else
1115 {"align", s_align_ptwo, 0},
1116 #endif
1117 {"arch", set_cpu_arch, 0},
1118 #ifndef I386COFF
1119 {"bss", s_bss, 0},
1120 #else
1121 {"lcomm", pe_lcomm, 1},
1122 #endif
1123 {"ffloat", float_cons, 'f'},
1124 {"dfloat", float_cons, 'd'},
1125 {"tfloat", float_cons, 'x'},
1126 {"value", cons, 2},
1127 {"slong", signed_cons, 4},
1128 {"noopt", s_ignore, 0},
1129 {"optim", s_ignore, 0},
1130 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1131 {"code16", set_code_flag, CODE_16BIT},
1132 {"code32", set_code_flag, CODE_32BIT},
1133 #ifdef BFD64
1134 {"code64", set_code_flag, CODE_64BIT},
1135 #endif
1136 {"intel_syntax", set_intel_syntax, 1},
1137 {"att_syntax", set_intel_syntax, 0},
1138 {"intel_mnemonic", set_intel_mnemonic, 1},
1139 {"att_mnemonic", set_intel_mnemonic, 0},
1140 {"allow_index_reg", set_allow_index_reg, 1},
1141 {"disallow_index_reg", set_allow_index_reg, 0},
1142 {"sse_check", set_check, 0},
1143 {"operand_check", set_check, 1},
1144 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1145 {"largecomm", handle_large_common, 0},
1146 #else
1147 {"file", dwarf2_directive_file, 0},
1148 {"loc", dwarf2_directive_loc, 0},
1149 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1150 #endif
1151 #ifdef TE_PE
1152 {"secrel32", pe_directive_secrel, 0},
1153 #endif
1154 {0, 0, 0}
1155 };
1156
1157 /* For interface with expression (). */
1158 extern char *input_line_pointer;
1159
1160 /* Hash table for instruction mnemonic lookup. */
1161 static struct hash_control *op_hash;
1162
1163 /* Hash table for register lookup. */
1164 static struct hash_control *reg_hash;
1165 \f
1166 /* Various efficient no-op patterns for aligning code labels.
1167 Note: Don't try to assemble the instructions in the comments.
1168 0L and 0w are not legal. */
1169 static const unsigned char f32_1[] =
1170 {0x90}; /* nop */
1171 static const unsigned char f32_2[] =
1172 {0x66,0x90}; /* xchg %ax,%ax */
1173 static const unsigned char f32_3[] =
1174 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1175 static const unsigned char f32_4[] =
1176 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1177 static const unsigned char f32_6[] =
1178 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1179 static const unsigned char f32_7[] =
1180 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1181 static const unsigned char f16_3[] =
1182 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1183 static const unsigned char f16_4[] =
1184 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1185 static const unsigned char jump_disp8[] =
1186 {0xeb}; /* jmp disp8 */
1187 static const unsigned char jump32_disp32[] =
1188 {0xe9}; /* jmp disp32 */
1189 static const unsigned char jump16_disp32[] =
1190 {0x66,0xe9}; /* jmp disp32 */
1191 /* 32-bit NOPs patterns. */
1192 static const unsigned char *const f32_patt[] = {
1193 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1194 };
1195 /* 16-bit NOPs patterns. */
1196 static const unsigned char *const f16_patt[] = {
1197 f32_1, f32_2, f16_3, f16_4
1198 };
1199 /* nopl (%[re]ax) */
1200 static const unsigned char alt_3[] =
1201 {0x0f,0x1f,0x00};
1202 /* nopl 0(%[re]ax) */
1203 static const unsigned char alt_4[] =
1204 {0x0f,0x1f,0x40,0x00};
1205 /* nopl 0(%[re]ax,%[re]ax,1) */
1206 static const unsigned char alt_5[] =
1207 {0x0f,0x1f,0x44,0x00,0x00};
1208 /* nopw 0(%[re]ax,%[re]ax,1) */
1209 static const unsigned char alt_6[] =
1210 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1211 /* nopl 0L(%[re]ax) */
1212 static const unsigned char alt_7[] =
1213 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1214 /* nopl 0L(%[re]ax,%[re]ax,1) */
1215 static const unsigned char alt_8[] =
1216 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1217 /* nopw 0L(%[re]ax,%[re]ax,1) */
1218 static const unsigned char alt_9[] =
1219 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1220 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1221 static const unsigned char alt_10[] =
1222 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1223 /* data16 nopw %cs:0L(%eax,%eax,1) */
1224 static const unsigned char alt_11[] =
1225 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1226 /* 32-bit and 64-bit NOPs patterns. */
1227 static const unsigned char *const alt_patt[] = {
1228 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1229 alt_9, alt_10, alt_11
1230 };
1231
1232 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1233 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1234
1235 static void
1236 i386_output_nops (char *where, const unsigned char *const *patt,
1237 int count, int max_single_nop_size)
1238
1239 {
1240 /* Place the longer NOP first. */
1241 int last;
1242 int offset;
1243 const unsigned char *nops = patt[max_single_nop_size - 1];
1244
1245 /* Use the smaller one if the requsted one isn't available. */
1246 if (nops == NULL)
1247 {
1248 max_single_nop_size--;
1249 nops = patt[max_single_nop_size - 1];
1250 }
1251
1252 last = count % max_single_nop_size;
1253
1254 count -= last;
1255 for (offset = 0; offset < count; offset += max_single_nop_size)
1256 memcpy (where + offset, nops, max_single_nop_size);
1257
1258 if (last)
1259 {
1260 nops = patt[last - 1];
1261 if (nops == NULL)
1262 {
1263 /* Use the smaller one plus one-byte NOP if the needed one
1264 isn't available. */
1265 last--;
1266 nops = patt[last - 1];
1267 memcpy (where + offset, nops, last);
1268 where[offset + last] = *patt[0];
1269 }
1270 else
1271 memcpy (where + offset, nops, last);
1272 }
1273 }
1274
1275 static INLINE int
1276 fits_in_imm7 (offsetT num)
1277 {
1278 return (num & 0x7f) == num;
1279 }
1280
1281 static INLINE int
1282 fits_in_imm31 (offsetT num)
1283 {
1284 return (num & 0x7fffffff) == num;
1285 }
1286
1287 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1288 single NOP instruction LIMIT. */
1289
1290 void
1291 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1292 {
1293 const unsigned char *const *patt = NULL;
1294 int max_single_nop_size;
1295 /* Maximum number of NOPs before switching to jump over NOPs. */
1296 int max_number_of_nops;
1297
1298 switch (fragP->fr_type)
1299 {
1300 case rs_fill_nop:
1301 case rs_align_code:
1302 break;
1303 default:
1304 return;
1305 }
1306
1307 /* We need to decide which NOP sequence to use for 32bit and
1308 64bit. When -mtune= is used:
1309
1310 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1311 PROCESSOR_GENERIC32, f32_patt will be used.
1312 2. For the rest, alt_patt will be used.
1313
1314 When -mtune= isn't used, alt_patt will be used if
1315 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1316 be used.
1317
1318 When -march= or .arch is used, we can't use anything beyond
1319 cpu_arch_isa_flags. */
1320
1321 if (flag_code == CODE_16BIT)
1322 {
1323 patt = f16_patt;
1324 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1325 /* Limit number of NOPs to 2 in 16-bit mode. */
1326 max_number_of_nops = 2;
1327 }
1328 else
1329 {
1330 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1331 {
1332 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1333 switch (cpu_arch_tune)
1334 {
1335 case PROCESSOR_UNKNOWN:
1336 /* We use cpu_arch_isa_flags to check if we SHOULD
1337 optimize with nops. */
1338 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1339 patt = alt_patt;
1340 else
1341 patt = f32_patt;
1342 break;
1343 case PROCESSOR_PENTIUM4:
1344 case PROCESSOR_NOCONA:
1345 case PROCESSOR_CORE:
1346 case PROCESSOR_CORE2:
1347 case PROCESSOR_COREI7:
1348 case PROCESSOR_L1OM:
1349 case PROCESSOR_K1OM:
1350 case PROCESSOR_GENERIC64:
1351 case PROCESSOR_K6:
1352 case PROCESSOR_ATHLON:
1353 case PROCESSOR_K8:
1354 case PROCESSOR_AMDFAM10:
1355 case PROCESSOR_BD:
1356 case PROCESSOR_ZNVER:
1357 case PROCESSOR_BT:
1358 patt = alt_patt;
1359 break;
1360 case PROCESSOR_I386:
1361 case PROCESSOR_I486:
1362 case PROCESSOR_PENTIUM:
1363 case PROCESSOR_PENTIUMPRO:
1364 case PROCESSOR_IAMCU:
1365 case PROCESSOR_GENERIC32:
1366 patt = f32_patt;
1367 break;
1368 }
1369 }
1370 else
1371 {
1372 switch (fragP->tc_frag_data.tune)
1373 {
1374 case PROCESSOR_UNKNOWN:
1375 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1376 PROCESSOR_UNKNOWN. */
1377 abort ();
1378 break;
1379
1380 case PROCESSOR_I386:
1381 case PROCESSOR_I486:
1382 case PROCESSOR_PENTIUM:
1383 case PROCESSOR_IAMCU:
1384 case PROCESSOR_K6:
1385 case PROCESSOR_ATHLON:
1386 case PROCESSOR_K8:
1387 case PROCESSOR_AMDFAM10:
1388 case PROCESSOR_BD:
1389 case PROCESSOR_ZNVER:
1390 case PROCESSOR_BT:
1391 case PROCESSOR_GENERIC32:
1392 /* We use cpu_arch_isa_flags to check if we CAN optimize
1393 with nops. */
1394 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1395 patt = alt_patt;
1396 else
1397 patt = f32_patt;
1398 break;
1399 case PROCESSOR_PENTIUMPRO:
1400 case PROCESSOR_PENTIUM4:
1401 case PROCESSOR_NOCONA:
1402 case PROCESSOR_CORE:
1403 case PROCESSOR_CORE2:
1404 case PROCESSOR_COREI7:
1405 case PROCESSOR_L1OM:
1406 case PROCESSOR_K1OM:
1407 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1408 patt = alt_patt;
1409 else
1410 patt = f32_patt;
1411 break;
1412 case PROCESSOR_GENERIC64:
1413 patt = alt_patt;
1414 break;
1415 }
1416 }
1417
1418 if (patt == f32_patt)
1419 {
1420 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1421 /* Limit number of NOPs to 2 for older processors. */
1422 max_number_of_nops = 2;
1423 }
1424 else
1425 {
1426 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1427 /* Limit number of NOPs to 7 for newer processors. */
1428 max_number_of_nops = 7;
1429 }
1430 }
1431
1432 if (limit == 0)
1433 limit = max_single_nop_size;
1434
1435 if (fragP->fr_type == rs_fill_nop)
1436 {
1437 /* Output NOPs for .nop directive. */
1438 if (limit > max_single_nop_size)
1439 {
1440 as_bad_where (fragP->fr_file, fragP->fr_line,
1441 _("invalid single nop size: %d "
1442 "(expect within [0, %d])"),
1443 limit, max_single_nop_size);
1444 return;
1445 }
1446 }
1447 else
1448 fragP->fr_var = count;
1449
1450 if ((count / max_single_nop_size) > max_number_of_nops)
1451 {
1452 /* Generate jump over NOPs. */
1453 offsetT disp = count - 2;
1454 if (fits_in_imm7 (disp))
1455 {
1456 /* Use "jmp disp8" if possible. */
1457 count = disp;
1458 where[0] = jump_disp8[0];
1459 where[1] = count;
1460 where += 2;
1461 }
1462 else
1463 {
1464 unsigned int size_of_jump;
1465
1466 if (flag_code == CODE_16BIT)
1467 {
1468 where[0] = jump16_disp32[0];
1469 where[1] = jump16_disp32[1];
1470 size_of_jump = 2;
1471 }
1472 else
1473 {
1474 where[0] = jump32_disp32[0];
1475 size_of_jump = 1;
1476 }
1477
1478 count -= size_of_jump + 4;
1479 if (!fits_in_imm31 (count))
1480 {
1481 as_bad_where (fragP->fr_file, fragP->fr_line,
1482 _("jump over nop padding out of range"));
1483 return;
1484 }
1485
1486 md_number_to_chars (where + size_of_jump, count, 4);
1487 where += size_of_jump + 4;
1488 }
1489 }
1490
1491 /* Generate multiple NOPs. */
1492 i386_output_nops (where, patt, count, limit);
1493 }
1494
1495 static INLINE int
1496 operand_type_all_zero (const union i386_operand_type *x)
1497 {
1498 switch (ARRAY_SIZE(x->array))
1499 {
1500 case 3:
1501 if (x->array[2])
1502 return 0;
1503 /* Fall through. */
1504 case 2:
1505 if (x->array[1])
1506 return 0;
1507 /* Fall through. */
1508 case 1:
1509 return !x->array[0];
1510 default:
1511 abort ();
1512 }
1513 }
1514
1515 static INLINE void
1516 operand_type_set (union i386_operand_type *x, unsigned int v)
1517 {
1518 switch (ARRAY_SIZE(x->array))
1519 {
1520 case 3:
1521 x->array[2] = v;
1522 /* Fall through. */
1523 case 2:
1524 x->array[1] = v;
1525 /* Fall through. */
1526 case 1:
1527 x->array[0] = v;
1528 /* Fall through. */
1529 break;
1530 default:
1531 abort ();
1532 }
1533 }
1534
1535 static INLINE int
1536 operand_type_equal (const union i386_operand_type *x,
1537 const union i386_operand_type *y)
1538 {
1539 switch (ARRAY_SIZE(x->array))
1540 {
1541 case 3:
1542 if (x->array[2] != y->array[2])
1543 return 0;
1544 /* Fall through. */
1545 case 2:
1546 if (x->array[1] != y->array[1])
1547 return 0;
1548 /* Fall through. */
1549 case 1:
1550 return x->array[0] == y->array[0];
1551 break;
1552 default:
1553 abort ();
1554 }
1555 }
1556
1557 static INLINE int
1558 cpu_flags_all_zero (const union i386_cpu_flags *x)
1559 {
1560 switch (ARRAY_SIZE(x->array))
1561 {
1562 case 4:
1563 if (x->array[3])
1564 return 0;
1565 /* Fall through. */
1566 case 3:
1567 if (x->array[2])
1568 return 0;
1569 /* Fall through. */
1570 case 2:
1571 if (x->array[1])
1572 return 0;
1573 /* Fall through. */
1574 case 1:
1575 return !x->array[0];
1576 default:
1577 abort ();
1578 }
1579 }
1580
1581 static INLINE int
1582 cpu_flags_equal (const union i386_cpu_flags *x,
1583 const union i386_cpu_flags *y)
1584 {
1585 switch (ARRAY_SIZE(x->array))
1586 {
1587 case 4:
1588 if (x->array[3] != y->array[3])
1589 return 0;
1590 /* Fall through. */
1591 case 3:
1592 if (x->array[2] != y->array[2])
1593 return 0;
1594 /* Fall through. */
1595 case 2:
1596 if (x->array[1] != y->array[1])
1597 return 0;
1598 /* Fall through. */
1599 case 1:
1600 return x->array[0] == y->array[0];
1601 break;
1602 default:
1603 abort ();
1604 }
1605 }
1606
1607 static INLINE int
1608 cpu_flags_check_cpu64 (i386_cpu_flags f)
1609 {
1610 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1611 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1612 }
1613
1614 static INLINE i386_cpu_flags
1615 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1616 {
1617 switch (ARRAY_SIZE (x.array))
1618 {
1619 case 4:
1620 x.array [3] &= y.array [3];
1621 /* Fall through. */
1622 case 3:
1623 x.array [2] &= y.array [2];
1624 /* Fall through. */
1625 case 2:
1626 x.array [1] &= y.array [1];
1627 /* Fall through. */
1628 case 1:
1629 x.array [0] &= y.array [0];
1630 break;
1631 default:
1632 abort ();
1633 }
1634 return x;
1635 }
1636
1637 static INLINE i386_cpu_flags
1638 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1639 {
1640 switch (ARRAY_SIZE (x.array))
1641 {
1642 case 4:
1643 x.array [3] |= y.array [3];
1644 /* Fall through. */
1645 case 3:
1646 x.array [2] |= y.array [2];
1647 /* Fall through. */
1648 case 2:
1649 x.array [1] |= y.array [1];
1650 /* Fall through. */
1651 case 1:
1652 x.array [0] |= y.array [0];
1653 break;
1654 default:
1655 abort ();
1656 }
1657 return x;
1658 }
1659
1660 static INLINE i386_cpu_flags
1661 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1662 {
1663 switch (ARRAY_SIZE (x.array))
1664 {
1665 case 4:
1666 x.array [3] &= ~y.array [3];
1667 /* Fall through. */
1668 case 3:
1669 x.array [2] &= ~y.array [2];
1670 /* Fall through. */
1671 case 2:
1672 x.array [1] &= ~y.array [1];
1673 /* Fall through. */
1674 case 1:
1675 x.array [0] &= ~y.array [0];
1676 break;
1677 default:
1678 abort ();
1679 }
1680 return x;
1681 }
1682
1683 #define CPU_FLAGS_ARCH_MATCH 0x1
1684 #define CPU_FLAGS_64BIT_MATCH 0x2
1685
1686 #define CPU_FLAGS_PERFECT_MATCH \
1687 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1688
1689 /* Return CPU flags match bits. */
1690
1691 static int
1692 cpu_flags_match (const insn_template *t)
1693 {
1694 i386_cpu_flags x = t->cpu_flags;
1695 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1696
1697 x.bitfield.cpu64 = 0;
1698 x.bitfield.cpuno64 = 0;
1699
1700 if (cpu_flags_all_zero (&x))
1701 {
1702 /* This instruction is available on all archs. */
1703 match |= CPU_FLAGS_ARCH_MATCH;
1704 }
1705 else
1706 {
1707 /* This instruction is available only on some archs. */
1708 i386_cpu_flags cpu = cpu_arch_flags;
1709
1710 /* AVX512VL is no standalone feature - match it and then strip it. */
1711 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1712 return match;
1713 x.bitfield.cpuavx512vl = 0;
1714
1715 cpu = cpu_flags_and (x, cpu);
1716 if (!cpu_flags_all_zero (&cpu))
1717 {
1718 if (x.bitfield.cpuavx)
1719 {
1720 /* We need to check a few extra flags with AVX. */
1721 if (cpu.bitfield.cpuavx
1722 && (!t->opcode_modifier.sse2avx || sse2avx)
1723 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1724 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1725 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1726 match |= CPU_FLAGS_ARCH_MATCH;
1727 }
1728 else if (x.bitfield.cpuavx512f)
1729 {
1730 /* We need to check a few extra flags with AVX512F. */
1731 if (cpu.bitfield.cpuavx512f
1732 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1733 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1734 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1735 match |= CPU_FLAGS_ARCH_MATCH;
1736 }
1737 else
1738 match |= CPU_FLAGS_ARCH_MATCH;
1739 }
1740 }
1741 return match;
1742 }
1743
1744 static INLINE i386_operand_type
1745 operand_type_and (i386_operand_type x, i386_operand_type y)
1746 {
1747 switch (ARRAY_SIZE (x.array))
1748 {
1749 case 3:
1750 x.array [2] &= y.array [2];
1751 /* Fall through. */
1752 case 2:
1753 x.array [1] &= y.array [1];
1754 /* Fall through. */
1755 case 1:
1756 x.array [0] &= y.array [0];
1757 break;
1758 default:
1759 abort ();
1760 }
1761 return x;
1762 }
1763
1764 static INLINE i386_operand_type
1765 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1766 {
1767 switch (ARRAY_SIZE (x.array))
1768 {
1769 case 3:
1770 x.array [2] &= ~y.array [2];
1771 /* Fall through. */
1772 case 2:
1773 x.array [1] &= ~y.array [1];
1774 /* Fall through. */
1775 case 1:
1776 x.array [0] &= ~y.array [0];
1777 break;
1778 default:
1779 abort ();
1780 }
1781 return x;
1782 }
1783
1784 static INLINE i386_operand_type
1785 operand_type_or (i386_operand_type x, i386_operand_type y)
1786 {
1787 switch (ARRAY_SIZE (x.array))
1788 {
1789 case 3:
1790 x.array [2] |= y.array [2];
1791 /* Fall through. */
1792 case 2:
1793 x.array [1] |= y.array [1];
1794 /* Fall through. */
1795 case 1:
1796 x.array [0] |= y.array [0];
1797 break;
1798 default:
1799 abort ();
1800 }
1801 return x;
1802 }
1803
1804 static INLINE i386_operand_type
1805 operand_type_xor (i386_operand_type x, i386_operand_type y)
1806 {
1807 switch (ARRAY_SIZE (x.array))
1808 {
1809 case 3:
1810 x.array [2] ^= y.array [2];
1811 /* Fall through. */
1812 case 2:
1813 x.array [1] ^= y.array [1];
1814 /* Fall through. */
1815 case 1:
1816 x.array [0] ^= y.array [0];
1817 break;
1818 default:
1819 abort ();
1820 }
1821 return x;
1822 }
1823
1824 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1825 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1826 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1827 static const i386_operand_type inoutportreg
1828 = OPERAND_TYPE_INOUTPORTREG;
1829 static const i386_operand_type reg16_inoutportreg
1830 = OPERAND_TYPE_REG16_INOUTPORTREG;
1831 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1832 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1833 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1834 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1835 static const i386_operand_type anydisp
1836 = OPERAND_TYPE_ANYDISP;
1837 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1838 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1839 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1840 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1841 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1842 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1843 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1844 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1845 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1846 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1847 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1848 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1849
1850 enum operand_type
1851 {
1852 reg,
1853 imm,
1854 disp,
1855 anymem
1856 };
1857
1858 static INLINE int
1859 operand_type_check (i386_operand_type t, enum operand_type c)
1860 {
1861 switch (c)
1862 {
1863 case reg:
1864 return t.bitfield.reg;
1865
1866 case imm:
1867 return (t.bitfield.imm8
1868 || t.bitfield.imm8s
1869 || t.bitfield.imm16
1870 || t.bitfield.imm32
1871 || t.bitfield.imm32s
1872 || t.bitfield.imm64);
1873
1874 case disp:
1875 return (t.bitfield.disp8
1876 || t.bitfield.disp16
1877 || t.bitfield.disp32
1878 || t.bitfield.disp32s
1879 || t.bitfield.disp64);
1880
1881 case anymem:
1882 return (t.bitfield.disp8
1883 || t.bitfield.disp16
1884 || t.bitfield.disp32
1885 || t.bitfield.disp32s
1886 || t.bitfield.disp64
1887 || t.bitfield.baseindex);
1888
1889 default:
1890 abort ();
1891 }
1892
1893 return 0;
1894 }
1895
1896 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit on
1897 operand J for instruction template T. */
1898
1899 static INLINE int
1900 match_reg_size (const insn_template *t, unsigned int j)
1901 {
1902 return !((i.types[j].bitfield.byte
1903 && !t->operand_types[j].bitfield.byte)
1904 || (i.types[j].bitfield.word
1905 && !t->operand_types[j].bitfield.word)
1906 || (i.types[j].bitfield.dword
1907 && !t->operand_types[j].bitfield.dword)
1908 || (i.types[j].bitfield.qword
1909 && !t->operand_types[j].bitfield.qword)
1910 || (i.types[j].bitfield.tbyte
1911 && !t->operand_types[j].bitfield.tbyte));
1912 }
1913
1914 /* Return 1 if there is no conflict in SIMD register on
1915 operand J for instruction template T. */
1916
1917 static INLINE int
1918 match_simd_size (const insn_template *t, unsigned int j)
1919 {
1920 return !((i.types[j].bitfield.xmmword
1921 && !t->operand_types[j].bitfield.xmmword)
1922 || (i.types[j].bitfield.ymmword
1923 && !t->operand_types[j].bitfield.ymmword)
1924 || (i.types[j].bitfield.zmmword
1925 && !t->operand_types[j].bitfield.zmmword));
1926 }
1927
1928 /* Return 1 if there is no conflict in any size on operand J for
1929 instruction template T. */
1930
1931 static INLINE int
1932 match_mem_size (const insn_template *t, unsigned int j)
1933 {
1934 return (match_reg_size (t, j)
1935 && !((i.types[j].bitfield.unspecified
1936 && !i.broadcast
1937 && !t->operand_types[j].bitfield.unspecified)
1938 || (i.types[j].bitfield.fword
1939 && !t->operand_types[j].bitfield.fword)
1940 /* For scalar opcode templates to allow register and memory
1941 operands at the same time, some special casing is needed
1942 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1943 down-conversion vpmov*. */
1944 || ((t->operand_types[j].bitfield.regsimd
1945 && !t->opcode_modifier.broadcast
1946 && (t->operand_types[j].bitfield.byte
1947 || t->operand_types[j].bitfield.word
1948 || t->operand_types[j].bitfield.dword
1949 || t->operand_types[j].bitfield.qword))
1950 ? (i.types[j].bitfield.xmmword
1951 || i.types[j].bitfield.ymmword
1952 || i.types[j].bitfield.zmmword)
1953 : !match_simd_size(t, j))));
1954 }
1955
1956 /* Return 1 if there is no size conflict on any operands for
1957 instruction template T. */
1958
1959 static INLINE int
1960 operand_size_match (const insn_template *t)
1961 {
1962 unsigned int j;
1963 int match = 1;
1964
1965 /* Don't check jump instructions. */
1966 if (t->opcode_modifier.jump
1967 || t->opcode_modifier.jumpbyte
1968 || t->opcode_modifier.jumpdword
1969 || t->opcode_modifier.jumpintersegment)
1970 return match;
1971
1972 /* Check memory and accumulator operand size. */
1973 for (j = 0; j < i.operands; j++)
1974 {
1975 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1976 && t->operand_types[j].bitfield.anysize)
1977 continue;
1978
1979 if (t->operand_types[j].bitfield.reg
1980 && !match_reg_size (t, j))
1981 {
1982 match = 0;
1983 break;
1984 }
1985
1986 if (t->operand_types[j].bitfield.regsimd
1987 && !match_simd_size (t, j))
1988 {
1989 match = 0;
1990 break;
1991 }
1992
1993 if (t->operand_types[j].bitfield.acc
1994 && (!match_reg_size (t, j) || !match_simd_size (t, j)))
1995 {
1996 match = 0;
1997 break;
1998 }
1999
2000 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
2001 {
2002 match = 0;
2003 break;
2004 }
2005 }
2006
2007 if (match)
2008 return match;
2009 else if (!t->opcode_modifier.d)
2010 {
2011 mismatch:
2012 i.error = operand_size_mismatch;
2013 return 0;
2014 }
2015
2016 /* Check reverse. */
2017 gas_assert (i.operands == 2);
2018
2019 match = 1;
2020 for (j = 0; j < 2; j++)
2021 {
2022 if ((t->operand_types[j].bitfield.reg
2023 || t->operand_types[j].bitfield.acc)
2024 && !match_reg_size (t, j ? 0 : 1))
2025 goto mismatch;
2026
2027 if (i.types[j].bitfield.mem
2028 && !match_mem_size (t, j ? 0 : 1))
2029 goto mismatch;
2030 }
2031
2032 return match;
2033 }
2034
2035 static INLINE int
2036 operand_type_match (i386_operand_type overlap,
2037 i386_operand_type given)
2038 {
2039 i386_operand_type temp = overlap;
2040
2041 temp.bitfield.jumpabsolute = 0;
2042 temp.bitfield.unspecified = 0;
2043 temp.bitfield.byte = 0;
2044 temp.bitfield.word = 0;
2045 temp.bitfield.dword = 0;
2046 temp.bitfield.fword = 0;
2047 temp.bitfield.qword = 0;
2048 temp.bitfield.tbyte = 0;
2049 temp.bitfield.xmmword = 0;
2050 temp.bitfield.ymmword = 0;
2051 temp.bitfield.zmmword = 0;
2052 if (operand_type_all_zero (&temp))
2053 goto mismatch;
2054
2055 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2056 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2057 return 1;
2058
2059 mismatch:
2060 i.error = operand_type_mismatch;
2061 return 0;
2062 }
2063
2064 /* If given types g0 and g1 are registers they must be of the same type
2065 unless the expected operand type register overlap is null.
2066 Memory operand size of certain SIMD instructions is also being checked
2067 here. */
2068
2069 static INLINE int
2070 operand_type_register_match (i386_operand_type g0,
2071 i386_operand_type t0,
2072 i386_operand_type g1,
2073 i386_operand_type t1)
2074 {
2075 if (!g0.bitfield.reg
2076 && !g0.bitfield.regsimd
2077 && (!operand_type_check (g0, anymem)
2078 || g0.bitfield.unspecified
2079 || !t0.bitfield.regsimd))
2080 return 1;
2081
2082 if (!g1.bitfield.reg
2083 && !g1.bitfield.regsimd
2084 && (!operand_type_check (g1, anymem)
2085 || g1.bitfield.unspecified
2086 || !t1.bitfield.regsimd))
2087 return 1;
2088
2089 if (g0.bitfield.byte == g1.bitfield.byte
2090 && g0.bitfield.word == g1.bitfield.word
2091 && g0.bitfield.dword == g1.bitfield.dword
2092 && g0.bitfield.qword == g1.bitfield.qword
2093 && g0.bitfield.xmmword == g1.bitfield.xmmword
2094 && g0.bitfield.ymmword == g1.bitfield.ymmword
2095 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2096 return 1;
2097
2098 if (!(t0.bitfield.byte & t1.bitfield.byte)
2099 && !(t0.bitfield.word & t1.bitfield.word)
2100 && !(t0.bitfield.dword & t1.bitfield.dword)
2101 && !(t0.bitfield.qword & t1.bitfield.qword)
2102 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2103 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2104 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2105 return 1;
2106
2107 i.error = register_type_mismatch;
2108
2109 return 0;
2110 }
2111
2112 static INLINE unsigned int
2113 register_number (const reg_entry *r)
2114 {
2115 unsigned int nr = r->reg_num;
2116
2117 if (r->reg_flags & RegRex)
2118 nr += 8;
2119
2120 if (r->reg_flags & RegVRex)
2121 nr += 16;
2122
2123 return nr;
2124 }
2125
2126 static INLINE unsigned int
2127 mode_from_disp_size (i386_operand_type t)
2128 {
2129 if (t.bitfield.disp8)
2130 return 1;
2131 else if (t.bitfield.disp16
2132 || t.bitfield.disp32
2133 || t.bitfield.disp32s)
2134 return 2;
2135 else
2136 return 0;
2137 }
2138
2139 static INLINE int
2140 fits_in_signed_byte (addressT num)
2141 {
2142 return num + 0x80 <= 0xff;
2143 }
2144
2145 static INLINE int
2146 fits_in_unsigned_byte (addressT num)
2147 {
2148 return num <= 0xff;
2149 }
2150
2151 static INLINE int
2152 fits_in_unsigned_word (addressT num)
2153 {
2154 return num <= 0xffff;
2155 }
2156
2157 static INLINE int
2158 fits_in_signed_word (addressT num)
2159 {
2160 return num + 0x8000 <= 0xffff;
2161 }
2162
2163 static INLINE int
2164 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2165 {
2166 #ifndef BFD64
2167 return 1;
2168 #else
2169 return num + 0x80000000 <= 0xffffffff;
2170 #endif
2171 } /* fits_in_signed_long() */
2172
2173 static INLINE int
2174 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2175 {
2176 #ifndef BFD64
2177 return 1;
2178 #else
2179 return num <= 0xffffffff;
2180 #endif
2181 } /* fits_in_unsigned_long() */
2182
2183 static INLINE int
2184 fits_in_disp8 (offsetT num)
2185 {
2186 int shift = i.memshift;
2187 unsigned int mask;
2188
2189 if (shift == -1)
2190 abort ();
2191
2192 mask = (1 << shift) - 1;
2193
2194 /* Return 0 if NUM isn't properly aligned. */
2195 if ((num & mask))
2196 return 0;
2197
2198 /* Check if NUM will fit in 8bit after shift. */
2199 return fits_in_signed_byte (num >> shift);
2200 }
2201
2202 static INLINE int
2203 fits_in_imm4 (offsetT num)
2204 {
2205 return (num & 0xf) == num;
2206 }
2207
2208 static i386_operand_type
2209 smallest_imm_type (offsetT num)
2210 {
2211 i386_operand_type t;
2212
2213 operand_type_set (&t, 0);
2214 t.bitfield.imm64 = 1;
2215
2216 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2217 {
2218 /* This code is disabled on the 486 because all the Imm1 forms
2219 in the opcode table are slower on the i486. They're the
2220 versions with the implicitly specified single-position
2221 displacement, which has another syntax if you really want to
2222 use that form. */
2223 t.bitfield.imm1 = 1;
2224 t.bitfield.imm8 = 1;
2225 t.bitfield.imm8s = 1;
2226 t.bitfield.imm16 = 1;
2227 t.bitfield.imm32 = 1;
2228 t.bitfield.imm32s = 1;
2229 }
2230 else if (fits_in_signed_byte (num))
2231 {
2232 t.bitfield.imm8 = 1;
2233 t.bitfield.imm8s = 1;
2234 t.bitfield.imm16 = 1;
2235 t.bitfield.imm32 = 1;
2236 t.bitfield.imm32s = 1;
2237 }
2238 else if (fits_in_unsigned_byte (num))
2239 {
2240 t.bitfield.imm8 = 1;
2241 t.bitfield.imm16 = 1;
2242 t.bitfield.imm32 = 1;
2243 t.bitfield.imm32s = 1;
2244 }
2245 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2246 {
2247 t.bitfield.imm16 = 1;
2248 t.bitfield.imm32 = 1;
2249 t.bitfield.imm32s = 1;
2250 }
2251 else if (fits_in_signed_long (num))
2252 {
2253 t.bitfield.imm32 = 1;
2254 t.bitfield.imm32s = 1;
2255 }
2256 else if (fits_in_unsigned_long (num))
2257 t.bitfield.imm32 = 1;
2258
2259 return t;
2260 }
2261
2262 static offsetT
2263 offset_in_range (offsetT val, int size)
2264 {
2265 addressT mask;
2266
2267 switch (size)
2268 {
2269 case 1: mask = ((addressT) 1 << 8) - 1; break;
2270 case 2: mask = ((addressT) 1 << 16) - 1; break;
2271 case 4: mask = ((addressT) 2 << 31) - 1; break;
2272 #ifdef BFD64
2273 case 8: mask = ((addressT) 2 << 63) - 1; break;
2274 #endif
2275 default: abort ();
2276 }
2277
2278 #ifdef BFD64
2279 /* If BFD64, sign extend val for 32bit address mode. */
2280 if (flag_code != CODE_64BIT
2281 || i.prefix[ADDR_PREFIX])
2282 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2283 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2284 #endif
2285
2286 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2287 {
2288 char buf1[40], buf2[40];
2289
2290 sprint_value (buf1, val);
2291 sprint_value (buf2, val & mask);
2292 as_warn (_("%s shortened to %s"), buf1, buf2);
2293 }
2294 return val & mask;
2295 }
2296
2297 enum PREFIX_GROUP
2298 {
2299 PREFIX_EXIST = 0,
2300 PREFIX_LOCK,
2301 PREFIX_REP,
2302 PREFIX_DS,
2303 PREFIX_OTHER
2304 };
2305
2306 /* Returns
2307 a. PREFIX_EXIST if attempting to add a prefix where one from the
2308 same class already exists.
2309 b. PREFIX_LOCK if lock prefix is added.
2310 c. PREFIX_REP if rep/repne prefix is added.
2311 d. PREFIX_DS if ds prefix is added.
2312 e. PREFIX_OTHER if other prefix is added.
2313 */
2314
2315 static enum PREFIX_GROUP
2316 add_prefix (unsigned int prefix)
2317 {
2318 enum PREFIX_GROUP ret = PREFIX_OTHER;
2319 unsigned int q;
2320
2321 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2322 && flag_code == CODE_64BIT)
2323 {
2324 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2325 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2326 && (prefix & (REX_R | REX_X | REX_B))))
2327 ret = PREFIX_EXIST;
2328 q = REX_PREFIX;
2329 }
2330 else
2331 {
2332 switch (prefix)
2333 {
2334 default:
2335 abort ();
2336
2337 case DS_PREFIX_OPCODE:
2338 ret = PREFIX_DS;
2339 /* Fall through. */
2340 case CS_PREFIX_OPCODE:
2341 case ES_PREFIX_OPCODE:
2342 case FS_PREFIX_OPCODE:
2343 case GS_PREFIX_OPCODE:
2344 case SS_PREFIX_OPCODE:
2345 q = SEG_PREFIX;
2346 break;
2347
2348 case REPNE_PREFIX_OPCODE:
2349 case REPE_PREFIX_OPCODE:
2350 q = REP_PREFIX;
2351 ret = PREFIX_REP;
2352 break;
2353
2354 case LOCK_PREFIX_OPCODE:
2355 q = LOCK_PREFIX;
2356 ret = PREFIX_LOCK;
2357 break;
2358
2359 case FWAIT_OPCODE:
2360 q = WAIT_PREFIX;
2361 break;
2362
2363 case ADDR_PREFIX_OPCODE:
2364 q = ADDR_PREFIX;
2365 break;
2366
2367 case DATA_PREFIX_OPCODE:
2368 q = DATA_PREFIX;
2369 break;
2370 }
2371 if (i.prefix[q] != 0)
2372 ret = PREFIX_EXIST;
2373 }
2374
2375 if (ret)
2376 {
2377 if (!i.prefix[q])
2378 ++i.prefixes;
2379 i.prefix[q] |= prefix;
2380 }
2381 else
2382 as_bad (_("same type of prefix used twice"));
2383
2384 return ret;
2385 }
2386
2387 static void
2388 update_code_flag (int value, int check)
2389 {
2390 PRINTF_LIKE ((*as_error));
2391
2392 flag_code = (enum flag_code) value;
2393 if (flag_code == CODE_64BIT)
2394 {
2395 cpu_arch_flags.bitfield.cpu64 = 1;
2396 cpu_arch_flags.bitfield.cpuno64 = 0;
2397 }
2398 else
2399 {
2400 cpu_arch_flags.bitfield.cpu64 = 0;
2401 cpu_arch_flags.bitfield.cpuno64 = 1;
2402 }
2403 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2404 {
2405 if (check)
2406 as_error = as_fatal;
2407 else
2408 as_error = as_bad;
2409 (*as_error) (_("64bit mode not supported on `%s'."),
2410 cpu_arch_name ? cpu_arch_name : default_arch);
2411 }
2412 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2413 {
2414 if (check)
2415 as_error = as_fatal;
2416 else
2417 as_error = as_bad;
2418 (*as_error) (_("32bit mode not supported on `%s'."),
2419 cpu_arch_name ? cpu_arch_name : default_arch);
2420 }
2421 stackop_size = '\0';
2422 }
2423
2424 static void
2425 set_code_flag (int value)
2426 {
2427 update_code_flag (value, 0);
2428 }
2429
2430 static void
2431 set_16bit_gcc_code_flag (int new_code_flag)
2432 {
2433 flag_code = (enum flag_code) new_code_flag;
2434 if (flag_code != CODE_16BIT)
2435 abort ();
2436 cpu_arch_flags.bitfield.cpu64 = 0;
2437 cpu_arch_flags.bitfield.cpuno64 = 1;
2438 stackop_size = LONG_MNEM_SUFFIX;
2439 }
2440
2441 static void
2442 set_intel_syntax (int syntax_flag)
2443 {
2444 /* Find out if register prefixing is specified. */
2445 int ask_naked_reg = 0;
2446
2447 SKIP_WHITESPACE ();
2448 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2449 {
2450 char *string;
2451 int e = get_symbol_name (&string);
2452
2453 if (strcmp (string, "prefix") == 0)
2454 ask_naked_reg = 1;
2455 else if (strcmp (string, "noprefix") == 0)
2456 ask_naked_reg = -1;
2457 else
2458 as_bad (_("bad argument to syntax directive."));
2459 (void) restore_line_pointer (e);
2460 }
2461 demand_empty_rest_of_line ();
2462
2463 intel_syntax = syntax_flag;
2464
2465 if (ask_naked_reg == 0)
2466 allow_naked_reg = (intel_syntax
2467 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2468 else
2469 allow_naked_reg = (ask_naked_reg < 0);
2470
2471 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2472
2473 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2474 identifier_chars['$'] = intel_syntax ? '$' : 0;
2475 register_prefix = allow_naked_reg ? "" : "%";
2476 }
2477
2478 static void
2479 set_intel_mnemonic (int mnemonic_flag)
2480 {
2481 intel_mnemonic = mnemonic_flag;
2482 }
2483
2484 static void
2485 set_allow_index_reg (int flag)
2486 {
2487 allow_index_reg = flag;
2488 }
2489
2490 static void
2491 set_check (int what)
2492 {
2493 enum check_kind *kind;
2494 const char *str;
2495
2496 if (what)
2497 {
2498 kind = &operand_check;
2499 str = "operand";
2500 }
2501 else
2502 {
2503 kind = &sse_check;
2504 str = "sse";
2505 }
2506
2507 SKIP_WHITESPACE ();
2508
2509 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2510 {
2511 char *string;
2512 int e = get_symbol_name (&string);
2513
2514 if (strcmp (string, "none") == 0)
2515 *kind = check_none;
2516 else if (strcmp (string, "warning") == 0)
2517 *kind = check_warning;
2518 else if (strcmp (string, "error") == 0)
2519 *kind = check_error;
2520 else
2521 as_bad (_("bad argument to %s_check directive."), str);
2522 (void) restore_line_pointer (e);
2523 }
2524 else
2525 as_bad (_("missing argument for %s_check directive"), str);
2526
2527 demand_empty_rest_of_line ();
2528 }
2529
2530 static void
2531 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2532 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2533 {
2534 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2535 static const char *arch;
2536
2537 /* Intel LIOM is only supported on ELF. */
2538 if (!IS_ELF)
2539 return;
2540
2541 if (!arch)
2542 {
2543 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2544 use default_arch. */
2545 arch = cpu_arch_name;
2546 if (!arch)
2547 arch = default_arch;
2548 }
2549
2550 /* If we are targeting Intel MCU, we must enable it. */
2551 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2552 || new_flag.bitfield.cpuiamcu)
2553 return;
2554
2555 /* If we are targeting Intel L1OM, we must enable it. */
2556 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2557 || new_flag.bitfield.cpul1om)
2558 return;
2559
2560 /* If we are targeting Intel K1OM, we must enable it. */
2561 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2562 || new_flag.bitfield.cpuk1om)
2563 return;
2564
2565 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2566 #endif
2567 }
2568
2569 static void
2570 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2571 {
2572 SKIP_WHITESPACE ();
2573
2574 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2575 {
2576 char *string;
2577 int e = get_symbol_name (&string);
2578 unsigned int j;
2579 i386_cpu_flags flags;
2580
2581 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2582 {
2583 if (strcmp (string, cpu_arch[j].name) == 0)
2584 {
2585 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2586
2587 if (*string != '.')
2588 {
2589 cpu_arch_name = cpu_arch[j].name;
2590 cpu_sub_arch_name = NULL;
2591 cpu_arch_flags = cpu_arch[j].flags;
2592 if (flag_code == CODE_64BIT)
2593 {
2594 cpu_arch_flags.bitfield.cpu64 = 1;
2595 cpu_arch_flags.bitfield.cpuno64 = 0;
2596 }
2597 else
2598 {
2599 cpu_arch_flags.bitfield.cpu64 = 0;
2600 cpu_arch_flags.bitfield.cpuno64 = 1;
2601 }
2602 cpu_arch_isa = cpu_arch[j].type;
2603 cpu_arch_isa_flags = cpu_arch[j].flags;
2604 if (!cpu_arch_tune_set)
2605 {
2606 cpu_arch_tune = cpu_arch_isa;
2607 cpu_arch_tune_flags = cpu_arch_isa_flags;
2608 }
2609 break;
2610 }
2611
2612 flags = cpu_flags_or (cpu_arch_flags,
2613 cpu_arch[j].flags);
2614
2615 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2616 {
2617 if (cpu_sub_arch_name)
2618 {
2619 char *name = cpu_sub_arch_name;
2620 cpu_sub_arch_name = concat (name,
2621 cpu_arch[j].name,
2622 (const char *) NULL);
2623 free (name);
2624 }
2625 else
2626 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2627 cpu_arch_flags = flags;
2628 cpu_arch_isa_flags = flags;
2629 }
2630 else
2631 cpu_arch_isa_flags
2632 = cpu_flags_or (cpu_arch_isa_flags,
2633 cpu_arch[j].flags);
2634 (void) restore_line_pointer (e);
2635 demand_empty_rest_of_line ();
2636 return;
2637 }
2638 }
2639
2640 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2641 {
2642 /* Disable an ISA extension. */
2643 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2644 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2645 {
2646 flags = cpu_flags_and_not (cpu_arch_flags,
2647 cpu_noarch[j].flags);
2648 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2649 {
2650 if (cpu_sub_arch_name)
2651 {
2652 char *name = cpu_sub_arch_name;
2653 cpu_sub_arch_name = concat (name, string,
2654 (const char *) NULL);
2655 free (name);
2656 }
2657 else
2658 cpu_sub_arch_name = xstrdup (string);
2659 cpu_arch_flags = flags;
2660 cpu_arch_isa_flags = flags;
2661 }
2662 (void) restore_line_pointer (e);
2663 demand_empty_rest_of_line ();
2664 return;
2665 }
2666
2667 j = ARRAY_SIZE (cpu_arch);
2668 }
2669
2670 if (j >= ARRAY_SIZE (cpu_arch))
2671 as_bad (_("no such architecture: `%s'"), string);
2672
2673 *input_line_pointer = e;
2674 }
2675 else
2676 as_bad (_("missing cpu architecture"));
2677
2678 no_cond_jump_promotion = 0;
2679 if (*input_line_pointer == ','
2680 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2681 {
2682 char *string;
2683 char e;
2684
2685 ++input_line_pointer;
2686 e = get_symbol_name (&string);
2687
2688 if (strcmp (string, "nojumps") == 0)
2689 no_cond_jump_promotion = 1;
2690 else if (strcmp (string, "jumps") == 0)
2691 ;
2692 else
2693 as_bad (_("no such architecture modifier: `%s'"), string);
2694
2695 (void) restore_line_pointer (e);
2696 }
2697
2698 demand_empty_rest_of_line ();
2699 }
2700
2701 enum bfd_architecture
2702 i386_arch (void)
2703 {
2704 if (cpu_arch_isa == PROCESSOR_L1OM)
2705 {
2706 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2707 || flag_code != CODE_64BIT)
2708 as_fatal (_("Intel L1OM is 64bit ELF only"));
2709 return bfd_arch_l1om;
2710 }
2711 else if (cpu_arch_isa == PROCESSOR_K1OM)
2712 {
2713 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2714 || flag_code != CODE_64BIT)
2715 as_fatal (_("Intel K1OM is 64bit ELF only"));
2716 return bfd_arch_k1om;
2717 }
2718 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2719 {
2720 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2721 || flag_code == CODE_64BIT)
2722 as_fatal (_("Intel MCU is 32bit ELF only"));
2723 return bfd_arch_iamcu;
2724 }
2725 else
2726 return bfd_arch_i386;
2727 }
2728
2729 unsigned long
2730 i386_mach (void)
2731 {
2732 if (!strncmp (default_arch, "x86_64", 6))
2733 {
2734 if (cpu_arch_isa == PROCESSOR_L1OM)
2735 {
2736 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2737 || default_arch[6] != '\0')
2738 as_fatal (_("Intel L1OM is 64bit ELF only"));
2739 return bfd_mach_l1om;
2740 }
2741 else if (cpu_arch_isa == PROCESSOR_K1OM)
2742 {
2743 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2744 || default_arch[6] != '\0')
2745 as_fatal (_("Intel K1OM is 64bit ELF only"));
2746 return bfd_mach_k1om;
2747 }
2748 else if (default_arch[6] == '\0')
2749 return bfd_mach_x86_64;
2750 else
2751 return bfd_mach_x64_32;
2752 }
2753 else if (!strcmp (default_arch, "i386")
2754 || !strcmp (default_arch, "iamcu"))
2755 {
2756 if (cpu_arch_isa == PROCESSOR_IAMCU)
2757 {
2758 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2759 as_fatal (_("Intel MCU is 32bit ELF only"));
2760 return bfd_mach_i386_iamcu;
2761 }
2762 else
2763 return bfd_mach_i386_i386;
2764 }
2765 else
2766 as_fatal (_("unknown architecture"));
2767 }
2768 \f
2769 void
2770 md_begin (void)
2771 {
2772 const char *hash_err;
2773
2774 /* Support pseudo prefixes like {disp32}. */
2775 lex_type ['{'] = LEX_BEGIN_NAME;
2776
2777 /* Initialize op_hash hash table. */
2778 op_hash = hash_new ();
2779
2780 {
2781 const insn_template *optab;
2782 templates *core_optab;
2783
2784 /* Setup for loop. */
2785 optab = i386_optab;
2786 core_optab = XNEW (templates);
2787 core_optab->start = optab;
2788
2789 while (1)
2790 {
2791 ++optab;
2792 if (optab->name == NULL
2793 || strcmp (optab->name, (optab - 1)->name) != 0)
2794 {
2795 /* different name --> ship out current template list;
2796 add to hash table; & begin anew. */
2797 core_optab->end = optab;
2798 hash_err = hash_insert (op_hash,
2799 (optab - 1)->name,
2800 (void *) core_optab);
2801 if (hash_err)
2802 {
2803 as_fatal (_("can't hash %s: %s"),
2804 (optab - 1)->name,
2805 hash_err);
2806 }
2807 if (optab->name == NULL)
2808 break;
2809 core_optab = XNEW (templates);
2810 core_optab->start = optab;
2811 }
2812 }
2813 }
2814
2815 /* Initialize reg_hash hash table. */
2816 reg_hash = hash_new ();
2817 {
2818 const reg_entry *regtab;
2819 unsigned int regtab_size = i386_regtab_size;
2820
2821 for (regtab = i386_regtab; regtab_size--; regtab++)
2822 {
2823 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2824 if (hash_err)
2825 as_fatal (_("can't hash %s: %s"),
2826 regtab->reg_name,
2827 hash_err);
2828 }
2829 }
2830
2831 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2832 {
2833 int c;
2834 char *p;
2835
2836 for (c = 0; c < 256; c++)
2837 {
2838 if (ISDIGIT (c))
2839 {
2840 digit_chars[c] = c;
2841 mnemonic_chars[c] = c;
2842 register_chars[c] = c;
2843 operand_chars[c] = c;
2844 }
2845 else if (ISLOWER (c))
2846 {
2847 mnemonic_chars[c] = c;
2848 register_chars[c] = c;
2849 operand_chars[c] = c;
2850 }
2851 else if (ISUPPER (c))
2852 {
2853 mnemonic_chars[c] = TOLOWER (c);
2854 register_chars[c] = mnemonic_chars[c];
2855 operand_chars[c] = c;
2856 }
2857 else if (c == '{' || c == '}')
2858 {
2859 mnemonic_chars[c] = c;
2860 operand_chars[c] = c;
2861 }
2862
2863 if (ISALPHA (c) || ISDIGIT (c))
2864 identifier_chars[c] = c;
2865 else if (c >= 128)
2866 {
2867 identifier_chars[c] = c;
2868 operand_chars[c] = c;
2869 }
2870 }
2871
2872 #ifdef LEX_AT
2873 identifier_chars['@'] = '@';
2874 #endif
2875 #ifdef LEX_QM
2876 identifier_chars['?'] = '?';
2877 operand_chars['?'] = '?';
2878 #endif
2879 digit_chars['-'] = '-';
2880 mnemonic_chars['_'] = '_';
2881 mnemonic_chars['-'] = '-';
2882 mnemonic_chars['.'] = '.';
2883 identifier_chars['_'] = '_';
2884 identifier_chars['.'] = '.';
2885
2886 for (p = operand_special_chars; *p != '\0'; p++)
2887 operand_chars[(unsigned char) *p] = *p;
2888 }
2889
2890 if (flag_code == CODE_64BIT)
2891 {
2892 #if defined (OBJ_COFF) && defined (TE_PE)
2893 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2894 ? 32 : 16);
2895 #else
2896 x86_dwarf2_return_column = 16;
2897 #endif
2898 x86_cie_data_alignment = -8;
2899 }
2900 else
2901 {
2902 x86_dwarf2_return_column = 8;
2903 x86_cie_data_alignment = -4;
2904 }
2905 }
2906
2907 void
2908 i386_print_statistics (FILE *file)
2909 {
2910 hash_print_statistics (file, "i386 opcode", op_hash);
2911 hash_print_statistics (file, "i386 register", reg_hash);
2912 }
2913 \f
2914 #ifdef DEBUG386
2915
2916 /* Debugging routines for md_assemble. */
2917 static void pte (insn_template *);
2918 static void pt (i386_operand_type);
2919 static void pe (expressionS *);
2920 static void ps (symbolS *);
2921
2922 static void
2923 pi (char *line, i386_insn *x)
2924 {
2925 unsigned int j;
2926
2927 fprintf (stdout, "%s: template ", line);
2928 pte (&x->tm);
2929 fprintf (stdout, " address: base %s index %s scale %x\n",
2930 x->base_reg ? x->base_reg->reg_name : "none",
2931 x->index_reg ? x->index_reg->reg_name : "none",
2932 x->log2_scale_factor);
2933 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2934 x->rm.mode, x->rm.reg, x->rm.regmem);
2935 fprintf (stdout, " sib: base %x index %x scale %x\n",
2936 x->sib.base, x->sib.index, x->sib.scale);
2937 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2938 (x->rex & REX_W) != 0,
2939 (x->rex & REX_R) != 0,
2940 (x->rex & REX_X) != 0,
2941 (x->rex & REX_B) != 0);
2942 for (j = 0; j < x->operands; j++)
2943 {
2944 fprintf (stdout, " #%d: ", j + 1);
2945 pt (x->types[j]);
2946 fprintf (stdout, "\n");
2947 if (x->types[j].bitfield.reg
2948 || x->types[j].bitfield.regmmx
2949 || x->types[j].bitfield.regsimd
2950 || x->types[j].bitfield.sreg2
2951 || x->types[j].bitfield.sreg3
2952 || x->types[j].bitfield.control
2953 || x->types[j].bitfield.debug
2954 || x->types[j].bitfield.test)
2955 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2956 if (operand_type_check (x->types[j], imm))
2957 pe (x->op[j].imms);
2958 if (operand_type_check (x->types[j], disp))
2959 pe (x->op[j].disps);
2960 }
2961 }
2962
2963 static void
2964 pte (insn_template *t)
2965 {
2966 unsigned int j;
2967 fprintf (stdout, " %d operands ", t->operands);
2968 fprintf (stdout, "opcode %x ", t->base_opcode);
2969 if (t->extension_opcode != None)
2970 fprintf (stdout, "ext %x ", t->extension_opcode);
2971 if (t->opcode_modifier.d)
2972 fprintf (stdout, "D");
2973 if (t->opcode_modifier.w)
2974 fprintf (stdout, "W");
2975 fprintf (stdout, "\n");
2976 for (j = 0; j < t->operands; j++)
2977 {
2978 fprintf (stdout, " #%d type ", j + 1);
2979 pt (t->operand_types[j]);
2980 fprintf (stdout, "\n");
2981 }
2982 }
2983
2984 static void
2985 pe (expressionS *e)
2986 {
2987 fprintf (stdout, " operation %d\n", e->X_op);
2988 fprintf (stdout, " add_number %ld (%lx)\n",
2989 (long) e->X_add_number, (long) e->X_add_number);
2990 if (e->X_add_symbol)
2991 {
2992 fprintf (stdout, " add_symbol ");
2993 ps (e->X_add_symbol);
2994 fprintf (stdout, "\n");
2995 }
2996 if (e->X_op_symbol)
2997 {
2998 fprintf (stdout, " op_symbol ");
2999 ps (e->X_op_symbol);
3000 fprintf (stdout, "\n");
3001 }
3002 }
3003
3004 static void
3005 ps (symbolS *s)
3006 {
3007 fprintf (stdout, "%s type %s%s",
3008 S_GET_NAME (s),
3009 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3010 segment_name (S_GET_SEGMENT (s)));
3011 }
3012
3013 static struct type_name
3014 {
3015 i386_operand_type mask;
3016 const char *name;
3017 }
3018 const type_names[] =
3019 {
3020 { OPERAND_TYPE_REG8, "r8" },
3021 { OPERAND_TYPE_REG16, "r16" },
3022 { OPERAND_TYPE_REG32, "r32" },
3023 { OPERAND_TYPE_REG64, "r64" },
3024 { OPERAND_TYPE_IMM8, "i8" },
3025 { OPERAND_TYPE_IMM8, "i8s" },
3026 { OPERAND_TYPE_IMM16, "i16" },
3027 { OPERAND_TYPE_IMM32, "i32" },
3028 { OPERAND_TYPE_IMM32S, "i32s" },
3029 { OPERAND_TYPE_IMM64, "i64" },
3030 { OPERAND_TYPE_IMM1, "i1" },
3031 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3032 { OPERAND_TYPE_DISP8, "d8" },
3033 { OPERAND_TYPE_DISP16, "d16" },
3034 { OPERAND_TYPE_DISP32, "d32" },
3035 { OPERAND_TYPE_DISP32S, "d32s" },
3036 { OPERAND_TYPE_DISP64, "d64" },
3037 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3038 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3039 { OPERAND_TYPE_CONTROL, "control reg" },
3040 { OPERAND_TYPE_TEST, "test reg" },
3041 { OPERAND_TYPE_DEBUG, "debug reg" },
3042 { OPERAND_TYPE_FLOATREG, "FReg" },
3043 { OPERAND_TYPE_FLOATACC, "FAcc" },
3044 { OPERAND_TYPE_SREG2, "SReg2" },
3045 { OPERAND_TYPE_SREG3, "SReg3" },
3046 { OPERAND_TYPE_ACC, "Acc" },
3047 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3048 { OPERAND_TYPE_REGMMX, "rMMX" },
3049 { OPERAND_TYPE_REGXMM, "rXMM" },
3050 { OPERAND_TYPE_REGYMM, "rYMM" },
3051 { OPERAND_TYPE_REGZMM, "rZMM" },
3052 { OPERAND_TYPE_REGMASK, "Mask reg" },
3053 { OPERAND_TYPE_ESSEG, "es" },
3054 };
3055
3056 static void
3057 pt (i386_operand_type t)
3058 {
3059 unsigned int j;
3060 i386_operand_type a;
3061
3062 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3063 {
3064 a = operand_type_and (t, type_names[j].mask);
3065 if (!operand_type_all_zero (&a))
3066 fprintf (stdout, "%s, ", type_names[j].name);
3067 }
3068 fflush (stdout);
3069 }
3070
3071 #endif /* DEBUG386 */
3072 \f
3073 static bfd_reloc_code_real_type
3074 reloc (unsigned int size,
3075 int pcrel,
3076 int sign,
3077 bfd_reloc_code_real_type other)
3078 {
3079 if (other != NO_RELOC)
3080 {
3081 reloc_howto_type *rel;
3082
3083 if (size == 8)
3084 switch (other)
3085 {
3086 case BFD_RELOC_X86_64_GOT32:
3087 return BFD_RELOC_X86_64_GOT64;
3088 break;
3089 case BFD_RELOC_X86_64_GOTPLT64:
3090 return BFD_RELOC_X86_64_GOTPLT64;
3091 break;
3092 case BFD_RELOC_X86_64_PLTOFF64:
3093 return BFD_RELOC_X86_64_PLTOFF64;
3094 break;
3095 case BFD_RELOC_X86_64_GOTPC32:
3096 other = BFD_RELOC_X86_64_GOTPC64;
3097 break;
3098 case BFD_RELOC_X86_64_GOTPCREL:
3099 other = BFD_RELOC_X86_64_GOTPCREL64;
3100 break;
3101 case BFD_RELOC_X86_64_TPOFF32:
3102 other = BFD_RELOC_X86_64_TPOFF64;
3103 break;
3104 case BFD_RELOC_X86_64_DTPOFF32:
3105 other = BFD_RELOC_X86_64_DTPOFF64;
3106 break;
3107 default:
3108 break;
3109 }
3110
3111 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3112 if (other == BFD_RELOC_SIZE32)
3113 {
3114 if (size == 8)
3115 other = BFD_RELOC_SIZE64;
3116 if (pcrel)
3117 {
3118 as_bad (_("there are no pc-relative size relocations"));
3119 return NO_RELOC;
3120 }
3121 }
3122 #endif
3123
3124 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3125 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3126 sign = -1;
3127
3128 rel = bfd_reloc_type_lookup (stdoutput, other);
3129 if (!rel)
3130 as_bad (_("unknown relocation (%u)"), other);
3131 else if (size != bfd_get_reloc_size (rel))
3132 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3133 bfd_get_reloc_size (rel),
3134 size);
3135 else if (pcrel && !rel->pc_relative)
3136 as_bad (_("non-pc-relative relocation for pc-relative field"));
3137 else if ((rel->complain_on_overflow == complain_overflow_signed
3138 && !sign)
3139 || (rel->complain_on_overflow == complain_overflow_unsigned
3140 && sign > 0))
3141 as_bad (_("relocated field and relocation type differ in signedness"));
3142 else
3143 return other;
3144 return NO_RELOC;
3145 }
3146
3147 if (pcrel)
3148 {
3149 if (!sign)
3150 as_bad (_("there are no unsigned pc-relative relocations"));
3151 switch (size)
3152 {
3153 case 1: return BFD_RELOC_8_PCREL;
3154 case 2: return BFD_RELOC_16_PCREL;
3155 case 4: return BFD_RELOC_32_PCREL;
3156 case 8: return BFD_RELOC_64_PCREL;
3157 }
3158 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3159 }
3160 else
3161 {
3162 if (sign > 0)
3163 switch (size)
3164 {
3165 case 4: return BFD_RELOC_X86_64_32S;
3166 }
3167 else
3168 switch (size)
3169 {
3170 case 1: return BFD_RELOC_8;
3171 case 2: return BFD_RELOC_16;
3172 case 4: return BFD_RELOC_32;
3173 case 8: return BFD_RELOC_64;
3174 }
3175 as_bad (_("cannot do %s %u byte relocation"),
3176 sign > 0 ? "signed" : "unsigned", size);
3177 }
3178
3179 return NO_RELOC;
3180 }
3181
3182 /* Here we decide which fixups can be adjusted to make them relative to
3183 the beginning of the section instead of the symbol. Basically we need
3184 to make sure that the dynamic relocations are done correctly, so in
3185 some cases we force the original symbol to be used. */
3186
3187 int
3188 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3189 {
3190 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3191 if (!IS_ELF)
3192 return 1;
3193
3194 /* Don't adjust pc-relative references to merge sections in 64-bit
3195 mode. */
3196 if (use_rela_relocations
3197 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3198 && fixP->fx_pcrel)
3199 return 0;
3200
3201 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3202 and changed later by validate_fix. */
3203 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3204 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3205 return 0;
3206
3207 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3208 for size relocations. */
3209 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3210 || fixP->fx_r_type == BFD_RELOC_SIZE64
3211 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3212 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3213 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3214 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3215 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3216 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3217 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3218 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3219 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3220 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3221 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3222 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3223 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3224 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3225 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3226 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3227 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3228 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3229 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3230 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3231 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3232 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3233 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3234 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3235 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3236 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3237 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3238 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3239 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3240 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3241 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3242 return 0;
3243 #endif
3244 return 1;
3245 }
3246
3247 static int
3248 intel_float_operand (const char *mnemonic)
3249 {
3250 /* Note that the value returned is meaningful only for opcodes with (memory)
3251 operands, hence the code here is free to improperly handle opcodes that
3252 have no operands (for better performance and smaller code). */
3253
3254 if (mnemonic[0] != 'f')
3255 return 0; /* non-math */
3256
3257 switch (mnemonic[1])
3258 {
3259 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3260 the fs segment override prefix not currently handled because no
3261 call path can make opcodes without operands get here */
3262 case 'i':
3263 return 2 /* integer op */;
3264 case 'l':
3265 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3266 return 3; /* fldcw/fldenv */
3267 break;
3268 case 'n':
3269 if (mnemonic[2] != 'o' /* fnop */)
3270 return 3; /* non-waiting control op */
3271 break;
3272 case 'r':
3273 if (mnemonic[2] == 's')
3274 return 3; /* frstor/frstpm */
3275 break;
3276 case 's':
3277 if (mnemonic[2] == 'a')
3278 return 3; /* fsave */
3279 if (mnemonic[2] == 't')
3280 {
3281 switch (mnemonic[3])
3282 {
3283 case 'c': /* fstcw */
3284 case 'd': /* fstdw */
3285 case 'e': /* fstenv */
3286 case 's': /* fsts[gw] */
3287 return 3;
3288 }
3289 }
3290 break;
3291 case 'x':
3292 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3293 return 0; /* fxsave/fxrstor are not really math ops */
3294 break;
3295 }
3296
3297 return 1;
3298 }
3299
3300 /* Build the VEX prefix. */
3301
3302 static void
3303 build_vex_prefix (const insn_template *t)
3304 {
3305 unsigned int register_specifier;
3306 unsigned int implied_prefix;
3307 unsigned int vector_length;
3308
3309 /* Check register specifier. */
3310 if (i.vex.register_specifier)
3311 {
3312 register_specifier =
3313 ~register_number (i.vex.register_specifier) & 0xf;
3314 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3315 }
3316 else
3317 register_specifier = 0xf;
3318
3319 /* Use 2-byte VEX prefix by swapping destination and source
3320 operand. */
3321 if (i.vec_encoding != vex_encoding_vex3
3322 && i.dir_encoding == dir_encoding_default
3323 && i.operands == i.reg_operands
3324 && i.tm.opcode_modifier.vexopcode == VEX0F
3325 && i.tm.opcode_modifier.load
3326 && i.rex == REX_B)
3327 {
3328 unsigned int xchg = i.operands - 1;
3329 union i386_op temp_op;
3330 i386_operand_type temp_type;
3331
3332 temp_type = i.types[xchg];
3333 i.types[xchg] = i.types[0];
3334 i.types[0] = temp_type;
3335 temp_op = i.op[xchg];
3336 i.op[xchg] = i.op[0];
3337 i.op[0] = temp_op;
3338
3339 gas_assert (i.rm.mode == 3);
3340
3341 i.rex = REX_R;
3342 xchg = i.rm.regmem;
3343 i.rm.regmem = i.rm.reg;
3344 i.rm.reg = xchg;
3345
3346 /* Use the next insn. */
3347 i.tm = t[1];
3348 }
3349
3350 if (i.tm.opcode_modifier.vex == VEXScalar)
3351 vector_length = avxscalar;
3352 else if (i.tm.opcode_modifier.vex == VEX256)
3353 vector_length = 1;
3354 else
3355 {
3356 unsigned int op;
3357
3358 vector_length = 0;
3359 for (op = 0; op < t->operands; ++op)
3360 if (t->operand_types[op].bitfield.xmmword
3361 && t->operand_types[op].bitfield.ymmword
3362 && i.types[op].bitfield.ymmword)
3363 {
3364 vector_length = 1;
3365 break;
3366 }
3367 }
3368
3369 switch ((i.tm.base_opcode >> 8) & 0xff)
3370 {
3371 case 0:
3372 implied_prefix = 0;
3373 break;
3374 case DATA_PREFIX_OPCODE:
3375 implied_prefix = 1;
3376 break;
3377 case REPE_PREFIX_OPCODE:
3378 implied_prefix = 2;
3379 break;
3380 case REPNE_PREFIX_OPCODE:
3381 implied_prefix = 3;
3382 break;
3383 default:
3384 abort ();
3385 }
3386
3387 /* Use 2-byte VEX prefix if possible. */
3388 if (i.vec_encoding != vex_encoding_vex3
3389 && i.tm.opcode_modifier.vexopcode == VEX0F
3390 && i.tm.opcode_modifier.vexw != VEXW1
3391 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3392 {
3393 /* 2-byte VEX prefix. */
3394 unsigned int r;
3395
3396 i.vex.length = 2;
3397 i.vex.bytes[0] = 0xc5;
3398
3399 /* Check the REX.R bit. */
3400 r = (i.rex & REX_R) ? 0 : 1;
3401 i.vex.bytes[1] = (r << 7
3402 | register_specifier << 3
3403 | vector_length << 2
3404 | implied_prefix);
3405 }
3406 else
3407 {
3408 /* 3-byte VEX prefix. */
3409 unsigned int m, w;
3410
3411 i.vex.length = 3;
3412
3413 switch (i.tm.opcode_modifier.vexopcode)
3414 {
3415 case VEX0F:
3416 m = 0x1;
3417 i.vex.bytes[0] = 0xc4;
3418 break;
3419 case VEX0F38:
3420 m = 0x2;
3421 i.vex.bytes[0] = 0xc4;
3422 break;
3423 case VEX0F3A:
3424 m = 0x3;
3425 i.vex.bytes[0] = 0xc4;
3426 break;
3427 case XOP08:
3428 m = 0x8;
3429 i.vex.bytes[0] = 0x8f;
3430 break;
3431 case XOP09:
3432 m = 0x9;
3433 i.vex.bytes[0] = 0x8f;
3434 break;
3435 case XOP0A:
3436 m = 0xa;
3437 i.vex.bytes[0] = 0x8f;
3438 break;
3439 default:
3440 abort ();
3441 }
3442
3443 /* The high 3 bits of the second VEX byte are 1's compliment
3444 of RXB bits from REX. */
3445 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3446
3447 /* Check the REX.W bit. */
3448 w = (i.rex & REX_W) ? 1 : 0;
3449 if (i.tm.opcode_modifier.vexw == VEXW1)
3450 w = 1;
3451
3452 i.vex.bytes[2] = (w << 7
3453 | register_specifier << 3
3454 | vector_length << 2
3455 | implied_prefix);
3456 }
3457 }
3458
3459 static INLINE bfd_boolean
3460 is_evex_encoding (const insn_template *t)
3461 {
3462 return t->opcode_modifier.evex
3463 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3464 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3465 }
3466
3467 /* Build the EVEX prefix. */
3468
3469 static void
3470 build_evex_prefix (void)
3471 {
3472 unsigned int register_specifier;
3473 unsigned int implied_prefix;
3474 unsigned int m, w;
3475 rex_byte vrex_used = 0;
3476
3477 /* Check register specifier. */
3478 if (i.vex.register_specifier)
3479 {
3480 gas_assert ((i.vrex & REX_X) == 0);
3481
3482 register_specifier = i.vex.register_specifier->reg_num;
3483 if ((i.vex.register_specifier->reg_flags & RegRex))
3484 register_specifier += 8;
3485 /* The upper 16 registers are encoded in the fourth byte of the
3486 EVEX prefix. */
3487 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3488 i.vex.bytes[3] = 0x8;
3489 register_specifier = ~register_specifier & 0xf;
3490 }
3491 else
3492 {
3493 register_specifier = 0xf;
3494
3495 /* Encode upper 16 vector index register in the fourth byte of
3496 the EVEX prefix. */
3497 if (!(i.vrex & REX_X))
3498 i.vex.bytes[3] = 0x8;
3499 else
3500 vrex_used |= REX_X;
3501 }
3502
3503 switch ((i.tm.base_opcode >> 8) & 0xff)
3504 {
3505 case 0:
3506 implied_prefix = 0;
3507 break;
3508 case DATA_PREFIX_OPCODE:
3509 implied_prefix = 1;
3510 break;
3511 case REPE_PREFIX_OPCODE:
3512 implied_prefix = 2;
3513 break;
3514 case REPNE_PREFIX_OPCODE:
3515 implied_prefix = 3;
3516 break;
3517 default:
3518 abort ();
3519 }
3520
3521 /* 4 byte EVEX prefix. */
3522 i.vex.length = 4;
3523 i.vex.bytes[0] = 0x62;
3524
3525 /* mmmm bits. */
3526 switch (i.tm.opcode_modifier.vexopcode)
3527 {
3528 case VEX0F:
3529 m = 1;
3530 break;
3531 case VEX0F38:
3532 m = 2;
3533 break;
3534 case VEX0F3A:
3535 m = 3;
3536 break;
3537 default:
3538 abort ();
3539 break;
3540 }
3541
3542 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3543 bits from REX. */
3544 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3545
3546 /* The fifth bit of the second EVEX byte is 1's compliment of the
3547 REX_R bit in VREX. */
3548 if (!(i.vrex & REX_R))
3549 i.vex.bytes[1] |= 0x10;
3550 else
3551 vrex_used |= REX_R;
3552
3553 if ((i.reg_operands + i.imm_operands) == i.operands)
3554 {
3555 /* When all operands are registers, the REX_X bit in REX is not
3556 used. We reuse it to encode the upper 16 registers, which is
3557 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3558 as 1's compliment. */
3559 if ((i.vrex & REX_B))
3560 {
3561 vrex_used |= REX_B;
3562 i.vex.bytes[1] &= ~0x40;
3563 }
3564 }
3565
3566 /* EVEX instructions shouldn't need the REX prefix. */
3567 i.vrex &= ~vrex_used;
3568 gas_assert (i.vrex == 0);
3569
3570 /* Check the REX.W bit. */
3571 w = (i.rex & REX_W) ? 1 : 0;
3572 if (i.tm.opcode_modifier.vexw)
3573 {
3574 if (i.tm.opcode_modifier.vexw == VEXW1)
3575 w = 1;
3576 }
3577 /* If w is not set it means we are dealing with WIG instruction. */
3578 else if (!w)
3579 {
3580 if (evexwig == evexw1)
3581 w = 1;
3582 }
3583
3584 /* Encode the U bit. */
3585 implied_prefix |= 0x4;
3586
3587 /* The third byte of the EVEX prefix. */
3588 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3589
3590 /* The fourth byte of the EVEX prefix. */
3591 /* The zeroing-masking bit. */
3592 if (i.mask && i.mask->zeroing)
3593 i.vex.bytes[3] |= 0x80;
3594
3595 /* Don't always set the broadcast bit if there is no RC. */
3596 if (!i.rounding)
3597 {
3598 /* Encode the vector length. */
3599 unsigned int vec_length;
3600
3601 if (!i.tm.opcode_modifier.evex
3602 || i.tm.opcode_modifier.evex == EVEXDYN)
3603 {
3604 unsigned int op;
3605
3606 vec_length = 0;
3607 for (op = 0; op < i.tm.operands; ++op)
3608 if (i.tm.operand_types[op].bitfield.xmmword
3609 + i.tm.operand_types[op].bitfield.ymmword
3610 + i.tm.operand_types[op].bitfield.zmmword > 1)
3611 {
3612 if (i.types[op].bitfield.zmmword)
3613 i.tm.opcode_modifier.evex = EVEX512;
3614 else if (i.types[op].bitfield.ymmword)
3615 i.tm.opcode_modifier.evex = EVEX256;
3616 else if (i.types[op].bitfield.xmmword)
3617 i.tm.opcode_modifier.evex = EVEX128;
3618 else
3619 continue;
3620 break;
3621 }
3622 }
3623
3624 switch (i.tm.opcode_modifier.evex)
3625 {
3626 case EVEXLIG: /* LL' is ignored */
3627 vec_length = evexlig << 5;
3628 break;
3629 case EVEX128:
3630 vec_length = 0 << 5;
3631 break;
3632 case EVEX256:
3633 vec_length = 1 << 5;
3634 break;
3635 case EVEX512:
3636 vec_length = 2 << 5;
3637 break;
3638 default:
3639 abort ();
3640 break;
3641 }
3642 i.vex.bytes[3] |= vec_length;
3643 /* Encode the broadcast bit. */
3644 if (i.broadcast)
3645 i.vex.bytes[3] |= 0x10;
3646 }
3647 else
3648 {
3649 if (i.rounding->type != saeonly)
3650 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3651 else
3652 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3653 }
3654
3655 if (i.mask && i.mask->mask)
3656 i.vex.bytes[3] |= i.mask->mask->reg_num;
3657 }
3658
3659 static void
3660 process_immext (void)
3661 {
3662 expressionS *exp;
3663
3664 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3665 && i.operands > 0)
3666 {
3667 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3668 with an opcode suffix which is coded in the same place as an
3669 8-bit immediate field would be.
3670 Here we check those operands and remove them afterwards. */
3671 unsigned int x;
3672
3673 for (x = 0; x < i.operands; x++)
3674 if (register_number (i.op[x].regs) != x)
3675 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3676 register_prefix, i.op[x].regs->reg_name, x + 1,
3677 i.tm.name);
3678
3679 i.operands = 0;
3680 }
3681
3682 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3683 {
3684 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3685 suffix which is coded in the same place as an 8-bit immediate
3686 field would be.
3687 Here we check those operands and remove them afterwards. */
3688 unsigned int x;
3689
3690 if (i.operands != 3)
3691 abort();
3692
3693 for (x = 0; x < 2; x++)
3694 if (register_number (i.op[x].regs) != x)
3695 goto bad_register_operand;
3696
3697 /* Check for third operand for mwaitx/monitorx insn. */
3698 if (register_number (i.op[x].regs)
3699 != (x + (i.tm.extension_opcode == 0xfb)))
3700 {
3701 bad_register_operand:
3702 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3703 register_prefix, i.op[x].regs->reg_name, x+1,
3704 i.tm.name);
3705 }
3706
3707 i.operands = 0;
3708 }
3709
3710 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3711 which is coded in the same place as an 8-bit immediate field
3712 would be. Here we fake an 8-bit immediate operand from the
3713 opcode suffix stored in tm.extension_opcode.
3714
3715 AVX instructions also use this encoding, for some of
3716 3 argument instructions. */
3717
3718 gas_assert (i.imm_operands <= 1
3719 && (i.operands <= 2
3720 || ((i.tm.opcode_modifier.vex
3721 || i.tm.opcode_modifier.vexopcode
3722 || is_evex_encoding (&i.tm))
3723 && i.operands <= 4)));
3724
3725 exp = &im_expressions[i.imm_operands++];
3726 i.op[i.operands].imms = exp;
3727 i.types[i.operands] = imm8;
3728 i.operands++;
3729 exp->X_op = O_constant;
3730 exp->X_add_number = i.tm.extension_opcode;
3731 i.tm.extension_opcode = None;
3732 }
3733
3734
3735 static int
3736 check_hle (void)
3737 {
3738 switch (i.tm.opcode_modifier.hleprefixok)
3739 {
3740 default:
3741 abort ();
3742 case HLEPrefixNone:
3743 as_bad (_("invalid instruction `%s' after `%s'"),
3744 i.tm.name, i.hle_prefix);
3745 return 0;
3746 case HLEPrefixLock:
3747 if (i.prefix[LOCK_PREFIX])
3748 return 1;
3749 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3750 return 0;
3751 case HLEPrefixAny:
3752 return 1;
3753 case HLEPrefixRelease:
3754 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3755 {
3756 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3757 i.tm.name);
3758 return 0;
3759 }
3760 if (i.mem_operands == 0
3761 || !operand_type_check (i.types[i.operands - 1], anymem))
3762 {
3763 as_bad (_("memory destination needed for instruction `%s'"
3764 " after `xrelease'"), i.tm.name);
3765 return 0;
3766 }
3767 return 1;
3768 }
3769 }
3770
3771 /* Try the shortest encoding by shortening operand size. */
3772
3773 static void
3774 optimize_encoding (void)
3775 {
3776 int j;
3777
3778 if (optimize_for_space
3779 && i.reg_operands == 1
3780 && i.imm_operands == 1
3781 && !i.types[1].bitfield.byte
3782 && i.op[0].imms->X_op == O_constant
3783 && fits_in_imm7 (i.op[0].imms->X_add_number)
3784 && ((i.tm.base_opcode == 0xa8
3785 && i.tm.extension_opcode == None)
3786 || (i.tm.base_opcode == 0xf6
3787 && i.tm.extension_opcode == 0x0)))
3788 {
3789 /* Optimize: -Os:
3790 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3791 */
3792 unsigned int base_regnum = i.op[1].regs->reg_num;
3793 if (flag_code == CODE_64BIT || base_regnum < 4)
3794 {
3795 i.types[1].bitfield.byte = 1;
3796 /* Ignore the suffix. */
3797 i.suffix = 0;
3798 if (base_regnum >= 4
3799 && !(i.op[1].regs->reg_flags & RegRex))
3800 {
3801 /* Handle SP, BP, SI and DI registers. */
3802 if (i.types[1].bitfield.word)
3803 j = 16;
3804 else if (i.types[1].bitfield.dword)
3805 j = 32;
3806 else
3807 j = 48;
3808 i.op[1].regs -= j;
3809 }
3810 }
3811 }
3812 else if (flag_code == CODE_64BIT
3813 && ((i.types[1].bitfield.qword
3814 && i.reg_operands == 1
3815 && i.imm_operands == 1
3816 && i.op[0].imms->X_op == O_constant
3817 && ((i.tm.base_opcode == 0xb0
3818 && i.tm.extension_opcode == None
3819 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3820 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3821 && (((i.tm.base_opcode == 0x24
3822 || i.tm.base_opcode == 0xa8)
3823 && i.tm.extension_opcode == None)
3824 || (i.tm.base_opcode == 0x80
3825 && i.tm.extension_opcode == 0x4)
3826 || ((i.tm.base_opcode == 0xf6
3827 || i.tm.base_opcode == 0xc6)
3828 && i.tm.extension_opcode == 0x0)))))
3829 || (i.types[0].bitfield.qword
3830 && ((i.reg_operands == 2
3831 && i.op[0].regs == i.op[1].regs
3832 && ((i.tm.base_opcode == 0x30
3833 || i.tm.base_opcode == 0x28)
3834 && i.tm.extension_opcode == None))
3835 || (i.reg_operands == 1
3836 && i.operands == 1
3837 && i.tm.base_opcode == 0x30
3838 && i.tm.extension_opcode == None)))))
3839 {
3840 /* Optimize: -O:
3841 andq $imm31, %r64 -> andl $imm31, %r32
3842 testq $imm31, %r64 -> testl $imm31, %r32
3843 xorq %r64, %r64 -> xorl %r32, %r32
3844 subq %r64, %r64 -> subl %r32, %r32
3845 movq $imm31, %r64 -> movl $imm31, %r32
3846 movq $imm32, %r64 -> movl $imm32, %r32
3847 */
3848 i.tm.opcode_modifier.norex64 = 1;
3849 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3850 {
3851 /* Handle
3852 movq $imm31, %r64 -> movl $imm31, %r32
3853 movq $imm32, %r64 -> movl $imm32, %r32
3854 */
3855 i.tm.operand_types[0].bitfield.imm32 = 1;
3856 i.tm.operand_types[0].bitfield.imm32s = 0;
3857 i.tm.operand_types[0].bitfield.imm64 = 0;
3858 i.types[0].bitfield.imm32 = 1;
3859 i.types[0].bitfield.imm32s = 0;
3860 i.types[0].bitfield.imm64 = 0;
3861 i.types[1].bitfield.dword = 1;
3862 i.types[1].bitfield.qword = 0;
3863 if (i.tm.base_opcode == 0xc6)
3864 {
3865 /* Handle
3866 movq $imm31, %r64 -> movl $imm31, %r32
3867 */
3868 i.tm.base_opcode = 0xb0;
3869 i.tm.extension_opcode = None;
3870 i.tm.opcode_modifier.shortform = 1;
3871 i.tm.opcode_modifier.modrm = 0;
3872 }
3873 }
3874 }
3875 else if (optimize > 1
3876 && i.reg_operands == 3
3877 && i.op[0].regs == i.op[1].regs
3878 && !i.types[2].bitfield.xmmword
3879 && (i.tm.opcode_modifier.vex
3880 || (!i.mask
3881 && !i.rounding
3882 && is_evex_encoding (&i.tm)
3883 && (i.vec_encoding != vex_encoding_evex
3884 || i.tm.cpu_flags.bitfield.cpuavx512vl
3885 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
3886 && ((i.tm.base_opcode == 0x55
3887 || i.tm.base_opcode == 0x6655
3888 || i.tm.base_opcode == 0x66df
3889 || i.tm.base_opcode == 0x57
3890 || i.tm.base_opcode == 0x6657
3891 || i.tm.base_opcode == 0x66ef
3892 || i.tm.base_opcode == 0x66f8
3893 || i.tm.base_opcode == 0x66f9
3894 || i.tm.base_opcode == 0x66fa
3895 || i.tm.base_opcode == 0x66fb)
3896 && i.tm.extension_opcode == None))
3897 {
3898 /* Optimize: -O2:
3899 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3900 vpsubq and vpsubw:
3901 EVEX VOP %zmmM, %zmmM, %zmmN
3902 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3903 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3904 EVEX VOP %ymmM, %ymmM, %ymmN
3905 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3906 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3907 VEX VOP %ymmM, %ymmM, %ymmN
3908 -> VEX VOP %xmmM, %xmmM, %xmmN
3909 VOP, one of vpandn and vpxor:
3910 VEX VOP %ymmM, %ymmM, %ymmN
3911 -> VEX VOP %xmmM, %xmmM, %xmmN
3912 VOP, one of vpandnd and vpandnq:
3913 EVEX VOP %zmmM, %zmmM, %zmmN
3914 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3915 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3916 EVEX VOP %ymmM, %ymmM, %ymmN
3917 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3918 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3919 VOP, one of vpxord and vpxorq:
3920 EVEX VOP %zmmM, %zmmM, %zmmN
3921 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3922 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3923 EVEX VOP %ymmM, %ymmM, %ymmN
3924 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3925 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3926 */
3927 if (is_evex_encoding (&i.tm))
3928 {
3929 if (i.vec_encoding == vex_encoding_evex)
3930 i.tm.opcode_modifier.evex = EVEX128;
3931 else
3932 {
3933 i.tm.opcode_modifier.vex = VEX128;
3934 i.tm.opcode_modifier.vexw = VEXW0;
3935 i.tm.opcode_modifier.evex = 0;
3936 }
3937 }
3938 else
3939 i.tm.opcode_modifier.vex = VEX128;
3940
3941 if (i.tm.opcode_modifier.vex)
3942 for (j = 0; j < 3; j++)
3943 {
3944 i.types[j].bitfield.xmmword = 1;
3945 i.types[j].bitfield.ymmword = 0;
3946 }
3947 }
3948 }
3949
3950 /* This is the guts of the machine-dependent assembler. LINE points to a
3951 machine dependent instruction. This function is supposed to emit
3952 the frags/bytes it assembles to. */
3953
3954 void
3955 md_assemble (char *line)
3956 {
3957 unsigned int j;
3958 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
3959 const insn_template *t;
3960
3961 /* Initialize globals. */
3962 memset (&i, '\0', sizeof (i));
3963 for (j = 0; j < MAX_OPERANDS; j++)
3964 i.reloc[j] = NO_RELOC;
3965 memset (disp_expressions, '\0', sizeof (disp_expressions));
3966 memset (im_expressions, '\0', sizeof (im_expressions));
3967 save_stack_p = save_stack;
3968
3969 /* First parse an instruction mnemonic & call i386_operand for the operands.
3970 We assume that the scrubber has arranged it so that line[0] is the valid
3971 start of a (possibly prefixed) mnemonic. */
3972
3973 line = parse_insn (line, mnemonic);
3974 if (line == NULL)
3975 return;
3976 mnem_suffix = i.suffix;
3977
3978 line = parse_operands (line, mnemonic);
3979 this_operand = -1;
3980 xfree (i.memop1_string);
3981 i.memop1_string = NULL;
3982 if (line == NULL)
3983 return;
3984
3985 /* Now we've parsed the mnemonic into a set of templates, and have the
3986 operands at hand. */
3987
3988 /* All intel opcodes have reversed operands except for "bound" and
3989 "enter". We also don't reverse intersegment "jmp" and "call"
3990 instructions with 2 immediate operands so that the immediate segment
3991 precedes the offset, as it does when in AT&T mode. */
3992 if (intel_syntax
3993 && i.operands > 1
3994 && (strcmp (mnemonic, "bound") != 0)
3995 && (strcmp (mnemonic, "invlpga") != 0)
3996 && !(operand_type_check (i.types[0], imm)
3997 && operand_type_check (i.types[1], imm)))
3998 swap_operands ();
3999
4000 /* The order of the immediates should be reversed
4001 for 2 immediates extrq and insertq instructions */
4002 if (i.imm_operands == 2
4003 && (strcmp (mnemonic, "extrq") == 0
4004 || strcmp (mnemonic, "insertq") == 0))
4005 swap_2_operands (0, 1);
4006
4007 if (i.imm_operands)
4008 optimize_imm ();
4009
4010 /* Don't optimize displacement for movabs since it only takes 64bit
4011 displacement. */
4012 if (i.disp_operands
4013 && i.disp_encoding != disp_encoding_32bit
4014 && (flag_code != CODE_64BIT
4015 || strcmp (mnemonic, "movabs") != 0))
4016 optimize_disp ();
4017
4018 /* Next, we find a template that matches the given insn,
4019 making sure the overlap of the given operands types is consistent
4020 with the template operand types. */
4021
4022 if (!(t = match_template (mnem_suffix)))
4023 return;
4024
4025 if (sse_check != check_none
4026 && !i.tm.opcode_modifier.noavx
4027 && !i.tm.cpu_flags.bitfield.cpuavx
4028 && (i.tm.cpu_flags.bitfield.cpusse
4029 || i.tm.cpu_flags.bitfield.cpusse2
4030 || i.tm.cpu_flags.bitfield.cpusse3
4031 || i.tm.cpu_flags.bitfield.cpussse3
4032 || i.tm.cpu_flags.bitfield.cpusse4_1
4033 || i.tm.cpu_flags.bitfield.cpusse4_2
4034 || i.tm.cpu_flags.bitfield.cpupclmul
4035 || i.tm.cpu_flags.bitfield.cpuaes
4036 || i.tm.cpu_flags.bitfield.cpugfni))
4037 {
4038 (sse_check == check_warning
4039 ? as_warn
4040 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4041 }
4042
4043 /* Zap movzx and movsx suffix. The suffix has been set from
4044 "word ptr" or "byte ptr" on the source operand in Intel syntax
4045 or extracted from mnemonic in AT&T syntax. But we'll use
4046 the destination register to choose the suffix for encoding. */
4047 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4048 {
4049 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4050 there is no suffix, the default will be byte extension. */
4051 if (i.reg_operands != 2
4052 && !i.suffix
4053 && intel_syntax)
4054 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4055
4056 i.suffix = 0;
4057 }
4058
4059 if (i.tm.opcode_modifier.fwait)
4060 if (!add_prefix (FWAIT_OPCODE))
4061 return;
4062
4063 /* Check if REP prefix is OK. */
4064 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4065 {
4066 as_bad (_("invalid instruction `%s' after `%s'"),
4067 i.tm.name, i.rep_prefix);
4068 return;
4069 }
4070
4071 /* Check for lock without a lockable instruction. Destination operand
4072 must be memory unless it is xchg (0x86). */
4073 if (i.prefix[LOCK_PREFIX]
4074 && (!i.tm.opcode_modifier.islockable
4075 || i.mem_operands == 0
4076 || (i.tm.base_opcode != 0x86
4077 && !operand_type_check (i.types[i.operands - 1], anymem))))
4078 {
4079 as_bad (_("expecting lockable instruction after `lock'"));
4080 return;
4081 }
4082
4083 /* Check if HLE prefix is OK. */
4084 if (i.hle_prefix && !check_hle ())
4085 return;
4086
4087 /* Check BND prefix. */
4088 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4089 as_bad (_("expecting valid branch instruction after `bnd'"));
4090
4091 /* Check NOTRACK prefix. */
4092 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4093 as_bad (_("expecting indirect branch instruction after `notrack'"));
4094
4095 if (i.tm.cpu_flags.bitfield.cpumpx)
4096 {
4097 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4098 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4099 else if (flag_code != CODE_16BIT
4100 ? i.prefix[ADDR_PREFIX]
4101 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4102 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4103 }
4104
4105 /* Insert BND prefix. */
4106 if (add_bnd_prefix
4107 && i.tm.opcode_modifier.bndprefixok
4108 && !i.prefix[BND_PREFIX])
4109 add_prefix (BND_PREFIX_OPCODE);
4110
4111 /* Check string instruction segment overrides. */
4112 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4113 {
4114 if (!check_string ())
4115 return;
4116 i.disp_operands = 0;
4117 }
4118
4119 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4120 optimize_encoding ();
4121
4122 if (!process_suffix ())
4123 return;
4124
4125 /* Update operand types. */
4126 for (j = 0; j < i.operands; j++)
4127 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4128
4129 /* Make still unresolved immediate matches conform to size of immediate
4130 given in i.suffix. */
4131 if (!finalize_imm ())
4132 return;
4133
4134 if (i.types[0].bitfield.imm1)
4135 i.imm_operands = 0; /* kludge for shift insns. */
4136
4137 /* We only need to check those implicit registers for instructions
4138 with 3 operands or less. */
4139 if (i.operands <= 3)
4140 for (j = 0; j < i.operands; j++)
4141 if (i.types[j].bitfield.inoutportreg
4142 || i.types[j].bitfield.shiftcount
4143 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4144 i.reg_operands--;
4145
4146 /* ImmExt should be processed after SSE2AVX. */
4147 if (!i.tm.opcode_modifier.sse2avx
4148 && i.tm.opcode_modifier.immext)
4149 process_immext ();
4150
4151 /* For insns with operands there are more diddles to do to the opcode. */
4152 if (i.operands)
4153 {
4154 if (!process_operands ())
4155 return;
4156 }
4157 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4158 {
4159 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4160 as_warn (_("translating to `%sp'"), i.tm.name);
4161 }
4162
4163 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.vexopcode
4164 || is_evex_encoding (&i.tm))
4165 {
4166 if (flag_code == CODE_16BIT)
4167 {
4168 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4169 i.tm.name);
4170 return;
4171 }
4172
4173 if (i.tm.opcode_modifier.vex)
4174 build_vex_prefix (t);
4175 else
4176 build_evex_prefix ();
4177 }
4178
4179 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4180 instructions may define INT_OPCODE as well, so avoid this corner
4181 case for those instructions that use MODRM. */
4182 if (i.tm.base_opcode == INT_OPCODE
4183 && !i.tm.opcode_modifier.modrm
4184 && i.op[0].imms->X_add_number == 3)
4185 {
4186 i.tm.base_opcode = INT3_OPCODE;
4187 i.imm_operands = 0;
4188 }
4189
4190 if ((i.tm.opcode_modifier.jump
4191 || i.tm.opcode_modifier.jumpbyte
4192 || i.tm.opcode_modifier.jumpdword)
4193 && i.op[0].disps->X_op == O_constant)
4194 {
4195 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4196 the absolute address given by the constant. Since ix86 jumps and
4197 calls are pc relative, we need to generate a reloc. */
4198 i.op[0].disps->X_add_symbol = &abs_symbol;
4199 i.op[0].disps->X_op = O_symbol;
4200 }
4201
4202 if (i.tm.opcode_modifier.rex64)
4203 i.rex |= REX_W;
4204
4205 /* For 8 bit registers we need an empty rex prefix. Also if the
4206 instruction already has a prefix, we need to convert old
4207 registers to new ones. */
4208
4209 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4210 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4211 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4212 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4213 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4214 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4215 && i.rex != 0))
4216 {
4217 int x;
4218
4219 i.rex |= REX_OPCODE;
4220 for (x = 0; x < 2; x++)
4221 {
4222 /* Look for 8 bit operand that uses old registers. */
4223 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4224 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4225 {
4226 /* In case it is "hi" register, give up. */
4227 if (i.op[x].regs->reg_num > 3)
4228 as_bad (_("can't encode register '%s%s' in an "
4229 "instruction requiring REX prefix."),
4230 register_prefix, i.op[x].regs->reg_name);
4231
4232 /* Otherwise it is equivalent to the extended register.
4233 Since the encoding doesn't change this is merely
4234 cosmetic cleanup for debug output. */
4235
4236 i.op[x].regs = i.op[x].regs + 8;
4237 }
4238 }
4239 }
4240
4241 if (i.rex == 0 && i.rex_encoding)
4242 {
4243 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4244 that uses legacy register. If it is "hi" register, don't add
4245 the REX_OPCODE byte. */
4246 int x;
4247 for (x = 0; x < 2; x++)
4248 if (i.types[x].bitfield.reg
4249 && i.types[x].bitfield.byte
4250 && (i.op[x].regs->reg_flags & RegRex64) == 0
4251 && i.op[x].regs->reg_num > 3)
4252 {
4253 i.rex_encoding = FALSE;
4254 break;
4255 }
4256
4257 if (i.rex_encoding)
4258 i.rex = REX_OPCODE;
4259 }
4260
4261 if (i.rex != 0)
4262 add_prefix (REX_OPCODE | i.rex);
4263
4264 /* We are ready to output the insn. */
4265 output_insn ();
4266 }
4267
4268 static char *
4269 parse_insn (char *line, char *mnemonic)
4270 {
4271 char *l = line;
4272 char *token_start = l;
4273 char *mnem_p;
4274 int supported;
4275 const insn_template *t;
4276 char *dot_p = NULL;
4277
4278 while (1)
4279 {
4280 mnem_p = mnemonic;
4281 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4282 {
4283 if (*mnem_p == '.')
4284 dot_p = mnem_p;
4285 mnem_p++;
4286 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4287 {
4288 as_bad (_("no such instruction: `%s'"), token_start);
4289 return NULL;
4290 }
4291 l++;
4292 }
4293 if (!is_space_char (*l)
4294 && *l != END_OF_INSN
4295 && (intel_syntax
4296 || (*l != PREFIX_SEPARATOR
4297 && *l != ',')))
4298 {
4299 as_bad (_("invalid character %s in mnemonic"),
4300 output_invalid (*l));
4301 return NULL;
4302 }
4303 if (token_start == l)
4304 {
4305 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4306 as_bad (_("expecting prefix; got nothing"));
4307 else
4308 as_bad (_("expecting mnemonic; got nothing"));
4309 return NULL;
4310 }
4311
4312 /* Look up instruction (or prefix) via hash table. */
4313 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4314
4315 if (*l != END_OF_INSN
4316 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4317 && current_templates
4318 && current_templates->start->opcode_modifier.isprefix)
4319 {
4320 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4321 {
4322 as_bad ((flag_code != CODE_64BIT
4323 ? _("`%s' is only supported in 64-bit mode")
4324 : _("`%s' is not supported in 64-bit mode")),
4325 current_templates->start->name);
4326 return NULL;
4327 }
4328 /* If we are in 16-bit mode, do not allow addr16 or data16.
4329 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4330 if ((current_templates->start->opcode_modifier.size16
4331 || current_templates->start->opcode_modifier.size32)
4332 && flag_code != CODE_64BIT
4333 && (current_templates->start->opcode_modifier.size32
4334 ^ (flag_code == CODE_16BIT)))
4335 {
4336 as_bad (_("redundant %s prefix"),
4337 current_templates->start->name);
4338 return NULL;
4339 }
4340 if (current_templates->start->opcode_length == 0)
4341 {
4342 /* Handle pseudo prefixes. */
4343 switch (current_templates->start->base_opcode)
4344 {
4345 case 0x0:
4346 /* {disp8} */
4347 i.disp_encoding = disp_encoding_8bit;
4348 break;
4349 case 0x1:
4350 /* {disp32} */
4351 i.disp_encoding = disp_encoding_32bit;
4352 break;
4353 case 0x2:
4354 /* {load} */
4355 i.dir_encoding = dir_encoding_load;
4356 break;
4357 case 0x3:
4358 /* {store} */
4359 i.dir_encoding = dir_encoding_store;
4360 break;
4361 case 0x4:
4362 /* {vex2} */
4363 i.vec_encoding = vex_encoding_vex2;
4364 break;
4365 case 0x5:
4366 /* {vex3} */
4367 i.vec_encoding = vex_encoding_vex3;
4368 break;
4369 case 0x6:
4370 /* {evex} */
4371 i.vec_encoding = vex_encoding_evex;
4372 break;
4373 case 0x7:
4374 /* {rex} */
4375 i.rex_encoding = TRUE;
4376 break;
4377 case 0x8:
4378 /* {nooptimize} */
4379 i.no_optimize = TRUE;
4380 break;
4381 default:
4382 abort ();
4383 }
4384 }
4385 else
4386 {
4387 /* Add prefix, checking for repeated prefixes. */
4388 switch (add_prefix (current_templates->start->base_opcode))
4389 {
4390 case PREFIX_EXIST:
4391 return NULL;
4392 case PREFIX_DS:
4393 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4394 i.notrack_prefix = current_templates->start->name;
4395 break;
4396 case PREFIX_REP:
4397 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4398 i.hle_prefix = current_templates->start->name;
4399 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4400 i.bnd_prefix = current_templates->start->name;
4401 else
4402 i.rep_prefix = current_templates->start->name;
4403 break;
4404 default:
4405 break;
4406 }
4407 }
4408 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4409 token_start = ++l;
4410 }
4411 else
4412 break;
4413 }
4414
4415 if (!current_templates)
4416 {
4417 /* Check if we should swap operand or force 32bit displacement in
4418 encoding. */
4419 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4420 i.dir_encoding = dir_encoding_store;
4421 else if (mnem_p - 3 == dot_p
4422 && dot_p[1] == 'd'
4423 && dot_p[2] == '8')
4424 i.disp_encoding = disp_encoding_8bit;
4425 else if (mnem_p - 4 == dot_p
4426 && dot_p[1] == 'd'
4427 && dot_p[2] == '3'
4428 && dot_p[3] == '2')
4429 i.disp_encoding = disp_encoding_32bit;
4430 else
4431 goto check_suffix;
4432 mnem_p = dot_p;
4433 *dot_p = '\0';
4434 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4435 }
4436
4437 if (!current_templates)
4438 {
4439 check_suffix:
4440 /* See if we can get a match by trimming off a suffix. */
4441 switch (mnem_p[-1])
4442 {
4443 case WORD_MNEM_SUFFIX:
4444 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4445 i.suffix = SHORT_MNEM_SUFFIX;
4446 else
4447 /* Fall through. */
4448 case BYTE_MNEM_SUFFIX:
4449 case QWORD_MNEM_SUFFIX:
4450 i.suffix = mnem_p[-1];
4451 mnem_p[-1] = '\0';
4452 current_templates = (const templates *) hash_find (op_hash,
4453 mnemonic);
4454 break;
4455 case SHORT_MNEM_SUFFIX:
4456 case LONG_MNEM_SUFFIX:
4457 if (!intel_syntax)
4458 {
4459 i.suffix = mnem_p[-1];
4460 mnem_p[-1] = '\0';
4461 current_templates = (const templates *) hash_find (op_hash,
4462 mnemonic);
4463 }
4464 break;
4465
4466 /* Intel Syntax. */
4467 case 'd':
4468 if (intel_syntax)
4469 {
4470 if (intel_float_operand (mnemonic) == 1)
4471 i.suffix = SHORT_MNEM_SUFFIX;
4472 else
4473 i.suffix = LONG_MNEM_SUFFIX;
4474 mnem_p[-1] = '\0';
4475 current_templates = (const templates *) hash_find (op_hash,
4476 mnemonic);
4477 }
4478 break;
4479 }
4480 if (!current_templates)
4481 {
4482 as_bad (_("no such instruction: `%s'"), token_start);
4483 return NULL;
4484 }
4485 }
4486
4487 if (current_templates->start->opcode_modifier.jump
4488 || current_templates->start->opcode_modifier.jumpbyte)
4489 {
4490 /* Check for a branch hint. We allow ",pt" and ",pn" for
4491 predict taken and predict not taken respectively.
4492 I'm not sure that branch hints actually do anything on loop
4493 and jcxz insns (JumpByte) for current Pentium4 chips. They
4494 may work in the future and it doesn't hurt to accept them
4495 now. */
4496 if (l[0] == ',' && l[1] == 'p')
4497 {
4498 if (l[2] == 't')
4499 {
4500 if (!add_prefix (DS_PREFIX_OPCODE))
4501 return NULL;
4502 l += 3;
4503 }
4504 else if (l[2] == 'n')
4505 {
4506 if (!add_prefix (CS_PREFIX_OPCODE))
4507 return NULL;
4508 l += 3;
4509 }
4510 }
4511 }
4512 /* Any other comma loses. */
4513 if (*l == ',')
4514 {
4515 as_bad (_("invalid character %s in mnemonic"),
4516 output_invalid (*l));
4517 return NULL;
4518 }
4519
4520 /* Check if instruction is supported on specified architecture. */
4521 supported = 0;
4522 for (t = current_templates->start; t < current_templates->end; ++t)
4523 {
4524 supported |= cpu_flags_match (t);
4525 if (supported == CPU_FLAGS_PERFECT_MATCH)
4526 {
4527 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4528 as_warn (_("use .code16 to ensure correct addressing mode"));
4529
4530 return l;
4531 }
4532 }
4533
4534 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4535 as_bad (flag_code == CODE_64BIT
4536 ? _("`%s' is not supported in 64-bit mode")
4537 : _("`%s' is only supported in 64-bit mode"),
4538 current_templates->start->name);
4539 else
4540 as_bad (_("`%s' is not supported on `%s%s'"),
4541 current_templates->start->name,
4542 cpu_arch_name ? cpu_arch_name : default_arch,
4543 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4544
4545 return NULL;
4546 }
4547
4548 static char *
4549 parse_operands (char *l, const char *mnemonic)
4550 {
4551 char *token_start;
4552
4553 /* 1 if operand is pending after ','. */
4554 unsigned int expecting_operand = 0;
4555
4556 /* Non-zero if operand parens not balanced. */
4557 unsigned int paren_not_balanced;
4558
4559 while (*l != END_OF_INSN)
4560 {
4561 /* Skip optional white space before operand. */
4562 if (is_space_char (*l))
4563 ++l;
4564 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4565 {
4566 as_bad (_("invalid character %s before operand %d"),
4567 output_invalid (*l),
4568 i.operands + 1);
4569 return NULL;
4570 }
4571 token_start = l; /* After white space. */
4572 paren_not_balanced = 0;
4573 while (paren_not_balanced || *l != ',')
4574 {
4575 if (*l == END_OF_INSN)
4576 {
4577 if (paren_not_balanced)
4578 {
4579 if (!intel_syntax)
4580 as_bad (_("unbalanced parenthesis in operand %d."),
4581 i.operands + 1);
4582 else
4583 as_bad (_("unbalanced brackets in operand %d."),
4584 i.operands + 1);
4585 return NULL;
4586 }
4587 else
4588 break; /* we are done */
4589 }
4590 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4591 {
4592 as_bad (_("invalid character %s in operand %d"),
4593 output_invalid (*l),
4594 i.operands + 1);
4595 return NULL;
4596 }
4597 if (!intel_syntax)
4598 {
4599 if (*l == '(')
4600 ++paren_not_balanced;
4601 if (*l == ')')
4602 --paren_not_balanced;
4603 }
4604 else
4605 {
4606 if (*l == '[')
4607 ++paren_not_balanced;
4608 if (*l == ']')
4609 --paren_not_balanced;
4610 }
4611 l++;
4612 }
4613 if (l != token_start)
4614 { /* Yes, we've read in another operand. */
4615 unsigned int operand_ok;
4616 this_operand = i.operands++;
4617 if (i.operands > MAX_OPERANDS)
4618 {
4619 as_bad (_("spurious operands; (%d operands/instruction max)"),
4620 MAX_OPERANDS);
4621 return NULL;
4622 }
4623 i.types[this_operand].bitfield.unspecified = 1;
4624 /* Now parse operand adding info to 'i' as we go along. */
4625 END_STRING_AND_SAVE (l);
4626
4627 if (intel_syntax)
4628 operand_ok =
4629 i386_intel_operand (token_start,
4630 intel_float_operand (mnemonic));
4631 else
4632 operand_ok = i386_att_operand (token_start);
4633
4634 RESTORE_END_STRING (l);
4635 if (!operand_ok)
4636 return NULL;
4637 }
4638 else
4639 {
4640 if (expecting_operand)
4641 {
4642 expecting_operand_after_comma:
4643 as_bad (_("expecting operand after ','; got nothing"));
4644 return NULL;
4645 }
4646 if (*l == ',')
4647 {
4648 as_bad (_("expecting operand before ','; got nothing"));
4649 return NULL;
4650 }
4651 }
4652
4653 /* Now *l must be either ',' or END_OF_INSN. */
4654 if (*l == ',')
4655 {
4656 if (*++l == END_OF_INSN)
4657 {
4658 /* Just skip it, if it's \n complain. */
4659 goto expecting_operand_after_comma;
4660 }
4661 expecting_operand = 1;
4662 }
4663 }
4664 return l;
4665 }
4666
4667 static void
4668 swap_2_operands (int xchg1, int xchg2)
4669 {
4670 union i386_op temp_op;
4671 i386_operand_type temp_type;
4672 enum bfd_reloc_code_real temp_reloc;
4673
4674 temp_type = i.types[xchg2];
4675 i.types[xchg2] = i.types[xchg1];
4676 i.types[xchg1] = temp_type;
4677 temp_op = i.op[xchg2];
4678 i.op[xchg2] = i.op[xchg1];
4679 i.op[xchg1] = temp_op;
4680 temp_reloc = i.reloc[xchg2];
4681 i.reloc[xchg2] = i.reloc[xchg1];
4682 i.reloc[xchg1] = temp_reloc;
4683
4684 if (i.mask)
4685 {
4686 if (i.mask->operand == xchg1)
4687 i.mask->operand = xchg2;
4688 else if (i.mask->operand == xchg2)
4689 i.mask->operand = xchg1;
4690 }
4691 if (i.broadcast)
4692 {
4693 if (i.broadcast->operand == xchg1)
4694 i.broadcast->operand = xchg2;
4695 else if (i.broadcast->operand == xchg2)
4696 i.broadcast->operand = xchg1;
4697 }
4698 if (i.rounding)
4699 {
4700 if (i.rounding->operand == xchg1)
4701 i.rounding->operand = xchg2;
4702 else if (i.rounding->operand == xchg2)
4703 i.rounding->operand = xchg1;
4704 }
4705 }
4706
4707 static void
4708 swap_operands (void)
4709 {
4710 switch (i.operands)
4711 {
4712 case 5:
4713 case 4:
4714 swap_2_operands (1, i.operands - 2);
4715 /* Fall through. */
4716 case 3:
4717 case 2:
4718 swap_2_operands (0, i.operands - 1);
4719 break;
4720 default:
4721 abort ();
4722 }
4723
4724 if (i.mem_operands == 2)
4725 {
4726 const seg_entry *temp_seg;
4727 temp_seg = i.seg[0];
4728 i.seg[0] = i.seg[1];
4729 i.seg[1] = temp_seg;
4730 }
4731 }
4732
4733 /* Try to ensure constant immediates are represented in the smallest
4734 opcode possible. */
4735 static void
4736 optimize_imm (void)
4737 {
4738 char guess_suffix = 0;
4739 int op;
4740
4741 if (i.suffix)
4742 guess_suffix = i.suffix;
4743 else if (i.reg_operands)
4744 {
4745 /* Figure out a suffix from the last register operand specified.
4746 We can't do this properly yet, ie. excluding InOutPortReg,
4747 but the following works for instructions with immediates.
4748 In any case, we can't set i.suffix yet. */
4749 for (op = i.operands; --op >= 0;)
4750 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4751 {
4752 guess_suffix = BYTE_MNEM_SUFFIX;
4753 break;
4754 }
4755 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4756 {
4757 guess_suffix = WORD_MNEM_SUFFIX;
4758 break;
4759 }
4760 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4761 {
4762 guess_suffix = LONG_MNEM_SUFFIX;
4763 break;
4764 }
4765 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4766 {
4767 guess_suffix = QWORD_MNEM_SUFFIX;
4768 break;
4769 }
4770 }
4771 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4772 guess_suffix = WORD_MNEM_SUFFIX;
4773
4774 for (op = i.operands; --op >= 0;)
4775 if (operand_type_check (i.types[op], imm))
4776 {
4777 switch (i.op[op].imms->X_op)
4778 {
4779 case O_constant:
4780 /* If a suffix is given, this operand may be shortened. */
4781 switch (guess_suffix)
4782 {
4783 case LONG_MNEM_SUFFIX:
4784 i.types[op].bitfield.imm32 = 1;
4785 i.types[op].bitfield.imm64 = 1;
4786 break;
4787 case WORD_MNEM_SUFFIX:
4788 i.types[op].bitfield.imm16 = 1;
4789 i.types[op].bitfield.imm32 = 1;
4790 i.types[op].bitfield.imm32s = 1;
4791 i.types[op].bitfield.imm64 = 1;
4792 break;
4793 case BYTE_MNEM_SUFFIX:
4794 i.types[op].bitfield.imm8 = 1;
4795 i.types[op].bitfield.imm8s = 1;
4796 i.types[op].bitfield.imm16 = 1;
4797 i.types[op].bitfield.imm32 = 1;
4798 i.types[op].bitfield.imm32s = 1;
4799 i.types[op].bitfield.imm64 = 1;
4800 break;
4801 }
4802
4803 /* If this operand is at most 16 bits, convert it
4804 to a signed 16 bit number before trying to see
4805 whether it will fit in an even smaller size.
4806 This allows a 16-bit operand such as $0xffe0 to
4807 be recognised as within Imm8S range. */
4808 if ((i.types[op].bitfield.imm16)
4809 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4810 {
4811 i.op[op].imms->X_add_number =
4812 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4813 }
4814 #ifdef BFD64
4815 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4816 if ((i.types[op].bitfield.imm32)
4817 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4818 == 0))
4819 {
4820 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4821 ^ ((offsetT) 1 << 31))
4822 - ((offsetT) 1 << 31));
4823 }
4824 #endif
4825 i.types[op]
4826 = operand_type_or (i.types[op],
4827 smallest_imm_type (i.op[op].imms->X_add_number));
4828
4829 /* We must avoid matching of Imm32 templates when 64bit
4830 only immediate is available. */
4831 if (guess_suffix == QWORD_MNEM_SUFFIX)
4832 i.types[op].bitfield.imm32 = 0;
4833 break;
4834
4835 case O_absent:
4836 case O_register:
4837 abort ();
4838
4839 /* Symbols and expressions. */
4840 default:
4841 /* Convert symbolic operand to proper sizes for matching, but don't
4842 prevent matching a set of insns that only supports sizes other
4843 than those matching the insn suffix. */
4844 {
4845 i386_operand_type mask, allowed;
4846 const insn_template *t;
4847
4848 operand_type_set (&mask, 0);
4849 operand_type_set (&allowed, 0);
4850
4851 for (t = current_templates->start;
4852 t < current_templates->end;
4853 ++t)
4854 allowed = operand_type_or (allowed,
4855 t->operand_types[op]);
4856 switch (guess_suffix)
4857 {
4858 case QWORD_MNEM_SUFFIX:
4859 mask.bitfield.imm64 = 1;
4860 mask.bitfield.imm32s = 1;
4861 break;
4862 case LONG_MNEM_SUFFIX:
4863 mask.bitfield.imm32 = 1;
4864 break;
4865 case WORD_MNEM_SUFFIX:
4866 mask.bitfield.imm16 = 1;
4867 break;
4868 case BYTE_MNEM_SUFFIX:
4869 mask.bitfield.imm8 = 1;
4870 break;
4871 default:
4872 break;
4873 }
4874 allowed = operand_type_and (mask, allowed);
4875 if (!operand_type_all_zero (&allowed))
4876 i.types[op] = operand_type_and (i.types[op], mask);
4877 }
4878 break;
4879 }
4880 }
4881 }
4882
4883 /* Try to use the smallest displacement type too. */
4884 static void
4885 optimize_disp (void)
4886 {
4887 int op;
4888
4889 for (op = i.operands; --op >= 0;)
4890 if (operand_type_check (i.types[op], disp))
4891 {
4892 if (i.op[op].disps->X_op == O_constant)
4893 {
4894 offsetT op_disp = i.op[op].disps->X_add_number;
4895
4896 if (i.types[op].bitfield.disp16
4897 && (op_disp & ~(offsetT) 0xffff) == 0)
4898 {
4899 /* If this operand is at most 16 bits, convert
4900 to a signed 16 bit number and don't use 64bit
4901 displacement. */
4902 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4903 i.types[op].bitfield.disp64 = 0;
4904 }
4905 #ifdef BFD64
4906 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4907 if (i.types[op].bitfield.disp32
4908 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4909 {
4910 /* If this operand is at most 32 bits, convert
4911 to a signed 32 bit number and don't use 64bit
4912 displacement. */
4913 op_disp &= (((offsetT) 2 << 31) - 1);
4914 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4915 i.types[op].bitfield.disp64 = 0;
4916 }
4917 #endif
4918 if (!op_disp && i.types[op].bitfield.baseindex)
4919 {
4920 i.types[op].bitfield.disp8 = 0;
4921 i.types[op].bitfield.disp16 = 0;
4922 i.types[op].bitfield.disp32 = 0;
4923 i.types[op].bitfield.disp32s = 0;
4924 i.types[op].bitfield.disp64 = 0;
4925 i.op[op].disps = 0;
4926 i.disp_operands--;
4927 }
4928 else if (flag_code == CODE_64BIT)
4929 {
4930 if (fits_in_signed_long (op_disp))
4931 {
4932 i.types[op].bitfield.disp64 = 0;
4933 i.types[op].bitfield.disp32s = 1;
4934 }
4935 if (i.prefix[ADDR_PREFIX]
4936 && fits_in_unsigned_long (op_disp))
4937 i.types[op].bitfield.disp32 = 1;
4938 }
4939 if ((i.types[op].bitfield.disp32
4940 || i.types[op].bitfield.disp32s
4941 || i.types[op].bitfield.disp16)
4942 && fits_in_disp8 (op_disp))
4943 i.types[op].bitfield.disp8 = 1;
4944 }
4945 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4946 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4947 {
4948 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4949 i.op[op].disps, 0, i.reloc[op]);
4950 i.types[op].bitfield.disp8 = 0;
4951 i.types[op].bitfield.disp16 = 0;
4952 i.types[op].bitfield.disp32 = 0;
4953 i.types[op].bitfield.disp32s = 0;
4954 i.types[op].bitfield.disp64 = 0;
4955 }
4956 else
4957 /* We only support 64bit displacement on constants. */
4958 i.types[op].bitfield.disp64 = 0;
4959 }
4960 }
4961
4962 /* Check if operands are valid for the instruction. */
4963
4964 static int
4965 check_VecOperands (const insn_template *t)
4966 {
4967 unsigned int op;
4968
4969 /* Without VSIB byte, we can't have a vector register for index. */
4970 if (!t->opcode_modifier.vecsib
4971 && i.index_reg
4972 && (i.index_reg->reg_type.bitfield.xmmword
4973 || i.index_reg->reg_type.bitfield.ymmword
4974 || i.index_reg->reg_type.bitfield.zmmword))
4975 {
4976 i.error = unsupported_vector_index_register;
4977 return 1;
4978 }
4979
4980 /* Check if default mask is allowed. */
4981 if (t->opcode_modifier.nodefmask
4982 && (!i.mask || i.mask->mask->reg_num == 0))
4983 {
4984 i.error = no_default_mask;
4985 return 1;
4986 }
4987
4988 /* For VSIB byte, we need a vector register for index, and all vector
4989 registers must be distinct. */
4990 if (t->opcode_modifier.vecsib)
4991 {
4992 if (!i.index_reg
4993 || !((t->opcode_modifier.vecsib == VecSIB128
4994 && i.index_reg->reg_type.bitfield.xmmword)
4995 || (t->opcode_modifier.vecsib == VecSIB256
4996 && i.index_reg->reg_type.bitfield.ymmword)
4997 || (t->opcode_modifier.vecsib == VecSIB512
4998 && i.index_reg->reg_type.bitfield.zmmword)))
4999 {
5000 i.error = invalid_vsib_address;
5001 return 1;
5002 }
5003
5004 gas_assert (i.reg_operands == 2 || i.mask);
5005 if (i.reg_operands == 2 && !i.mask)
5006 {
5007 gas_assert (i.types[0].bitfield.regsimd);
5008 gas_assert (i.types[0].bitfield.xmmword
5009 || i.types[0].bitfield.ymmword);
5010 gas_assert (i.types[2].bitfield.regsimd);
5011 gas_assert (i.types[2].bitfield.xmmword
5012 || i.types[2].bitfield.ymmword);
5013 if (operand_check == check_none)
5014 return 0;
5015 if (register_number (i.op[0].regs)
5016 != register_number (i.index_reg)
5017 && register_number (i.op[2].regs)
5018 != register_number (i.index_reg)
5019 && register_number (i.op[0].regs)
5020 != register_number (i.op[2].regs))
5021 return 0;
5022 if (operand_check == check_error)
5023 {
5024 i.error = invalid_vector_register_set;
5025 return 1;
5026 }
5027 as_warn (_("mask, index, and destination registers should be distinct"));
5028 }
5029 else if (i.reg_operands == 1 && i.mask)
5030 {
5031 if (i.types[1].bitfield.regsimd
5032 && (i.types[1].bitfield.xmmword
5033 || i.types[1].bitfield.ymmword
5034 || i.types[1].bitfield.zmmword)
5035 && (register_number (i.op[1].regs)
5036 == register_number (i.index_reg)))
5037 {
5038 if (operand_check == check_error)
5039 {
5040 i.error = invalid_vector_register_set;
5041 return 1;
5042 }
5043 if (operand_check != check_none)
5044 as_warn (_("index and destination registers should be distinct"));
5045 }
5046 }
5047 }
5048
5049 /* Check if broadcast is supported by the instruction and is applied
5050 to the memory operand. */
5051 if (i.broadcast)
5052 {
5053 i386_operand_type type, overlap;
5054
5055 /* Check if specified broadcast is supported in this instruction,
5056 and it's applied to memory operand of DWORD or QWORD type. */
5057 op = i.broadcast->operand;
5058 if (!t->opcode_modifier.broadcast
5059 || !i.types[op].bitfield.mem
5060 || (!i.types[op].bitfield.unspecified
5061 && (t->operand_types[op].bitfield.dword
5062 ? !i.types[op].bitfield.dword
5063 : !i.types[op].bitfield.qword)))
5064 {
5065 bad_broadcast:
5066 i.error = unsupported_broadcast;
5067 return 1;
5068 }
5069
5070 operand_type_set (&type, 0);
5071 switch ((t->operand_types[op].bitfield.dword ? 4 : 8) * i.broadcast->type)
5072 {
5073 case 8:
5074 type.bitfield.qword = 1;
5075 break;
5076 case 16:
5077 type.bitfield.xmmword = 1;
5078 break;
5079 case 32:
5080 type.bitfield.ymmword = 1;
5081 break;
5082 case 64:
5083 type.bitfield.zmmword = 1;
5084 break;
5085 default:
5086 goto bad_broadcast;
5087 }
5088
5089 overlap = operand_type_and (type, t->operand_types[op]);
5090 if (operand_type_all_zero (&overlap))
5091 goto bad_broadcast;
5092
5093 if (t->opcode_modifier.checkregsize)
5094 {
5095 unsigned int j;
5096
5097 for (j = 0; j < i.operands; ++j)
5098 {
5099 if (j != op
5100 && !operand_type_register_match(i.types[j],
5101 t->operand_types[j],
5102 type,
5103 t->operand_types[op]))
5104 goto bad_broadcast;
5105 }
5106 }
5107 }
5108 /* If broadcast is supported in this instruction, we need to check if
5109 operand of one-element size isn't specified without broadcast. */
5110 else if (t->opcode_modifier.broadcast && i.mem_operands)
5111 {
5112 /* Find memory operand. */
5113 for (op = 0; op < i.operands; op++)
5114 if (operand_type_check (i.types[op], anymem))
5115 break;
5116 gas_assert (op < i.operands);
5117 /* Check size of the memory operand. */
5118 if (t->operand_types[op].bitfield.dword
5119 ? i.types[op].bitfield.dword
5120 : i.types[op].bitfield.qword)
5121 {
5122 i.error = broadcast_needed;
5123 return 1;
5124 }
5125 }
5126 else
5127 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5128
5129 /* Check if requested masking is supported. */
5130 if (i.mask
5131 && (!t->opcode_modifier.masking
5132 || (i.mask->zeroing
5133 && t->opcode_modifier.masking == MERGING_MASKING)))
5134 {
5135 i.error = unsupported_masking;
5136 return 1;
5137 }
5138
5139 /* Check if masking is applied to dest operand. */
5140 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5141 {
5142 i.error = mask_not_on_destination;
5143 return 1;
5144 }
5145
5146 /* Check RC/SAE. */
5147 if (i.rounding)
5148 {
5149 if ((i.rounding->type != saeonly
5150 && !t->opcode_modifier.staticrounding)
5151 || (i.rounding->type == saeonly
5152 && (t->opcode_modifier.staticrounding
5153 || !t->opcode_modifier.sae)))
5154 {
5155 i.error = unsupported_rc_sae;
5156 return 1;
5157 }
5158 /* If the instruction has several immediate operands and one of
5159 them is rounding, the rounding operand should be the last
5160 immediate operand. */
5161 if (i.imm_operands > 1
5162 && i.rounding->operand != (int) (i.imm_operands - 1))
5163 {
5164 i.error = rc_sae_operand_not_last_imm;
5165 return 1;
5166 }
5167 }
5168
5169 /* Check vector Disp8 operand. */
5170 if (t->opcode_modifier.disp8memshift
5171 && i.disp_encoding != disp_encoding_32bit)
5172 {
5173 if (i.broadcast)
5174 i.memshift = t->operand_types[op].bitfield.dword ? 2 : 3;
5175 else
5176 i.memshift = t->opcode_modifier.disp8memshift;
5177
5178 for (op = 0; op < i.operands; op++)
5179 if (operand_type_check (i.types[op], disp)
5180 && i.op[op].disps->X_op == O_constant)
5181 {
5182 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5183 {
5184 i.types[op].bitfield.disp8 = 1;
5185 return 0;
5186 }
5187 i.types[op].bitfield.disp8 = 0;
5188 }
5189 }
5190
5191 i.memshift = 0;
5192
5193 return 0;
5194 }
5195
5196 /* Check if operands are valid for the instruction. Update VEX
5197 operand types. */
5198
5199 static int
5200 VEX_check_operands (const insn_template *t)
5201 {
5202 if (i.vec_encoding == vex_encoding_evex)
5203 {
5204 /* This instruction must be encoded with EVEX prefix. */
5205 if (!is_evex_encoding (t))
5206 {
5207 i.error = unsupported;
5208 return 1;
5209 }
5210 return 0;
5211 }
5212
5213 if (!t->opcode_modifier.vex)
5214 {
5215 /* This instruction template doesn't have VEX prefix. */
5216 if (i.vec_encoding != vex_encoding_default)
5217 {
5218 i.error = unsupported;
5219 return 1;
5220 }
5221 return 0;
5222 }
5223
5224 /* Only check VEX_Imm4, which must be the first operand. */
5225 if (t->operand_types[0].bitfield.vec_imm4)
5226 {
5227 if (i.op[0].imms->X_op != O_constant
5228 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5229 {
5230 i.error = bad_imm4;
5231 return 1;
5232 }
5233
5234 /* Turn off Imm8 so that update_imm won't complain. */
5235 i.types[0] = vec_imm4;
5236 }
5237
5238 return 0;
5239 }
5240
5241 static const insn_template *
5242 match_template (char mnem_suffix)
5243 {
5244 /* Points to template once we've found it. */
5245 const insn_template *t;
5246 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5247 i386_operand_type overlap4;
5248 unsigned int found_reverse_match;
5249 i386_opcode_modifier suffix_check, mnemsuf_check;
5250 i386_operand_type operand_types [MAX_OPERANDS];
5251 int addr_prefix_disp;
5252 unsigned int j;
5253 unsigned int found_cpu_match;
5254 unsigned int check_register;
5255 enum i386_error specific_error = 0;
5256
5257 #if MAX_OPERANDS != 5
5258 # error "MAX_OPERANDS must be 5."
5259 #endif
5260
5261 found_reverse_match = 0;
5262 addr_prefix_disp = -1;
5263
5264 memset (&suffix_check, 0, sizeof (suffix_check));
5265 if (i.suffix == BYTE_MNEM_SUFFIX)
5266 suffix_check.no_bsuf = 1;
5267 else if (i.suffix == WORD_MNEM_SUFFIX)
5268 suffix_check.no_wsuf = 1;
5269 else if (i.suffix == SHORT_MNEM_SUFFIX)
5270 suffix_check.no_ssuf = 1;
5271 else if (i.suffix == LONG_MNEM_SUFFIX)
5272 suffix_check.no_lsuf = 1;
5273 else if (i.suffix == QWORD_MNEM_SUFFIX)
5274 suffix_check.no_qsuf = 1;
5275 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5276 suffix_check.no_ldsuf = 1;
5277
5278 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5279 if (intel_syntax)
5280 {
5281 switch (mnem_suffix)
5282 {
5283 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5284 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5285 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5286 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5287 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5288 }
5289 }
5290
5291 /* Must have right number of operands. */
5292 i.error = number_of_operands_mismatch;
5293
5294 for (t = current_templates->start; t < current_templates->end; t++)
5295 {
5296 addr_prefix_disp = -1;
5297
5298 if (i.operands != t->operands)
5299 continue;
5300
5301 /* Check processor support. */
5302 i.error = unsupported;
5303 found_cpu_match = (cpu_flags_match (t)
5304 == CPU_FLAGS_PERFECT_MATCH);
5305 if (!found_cpu_match)
5306 continue;
5307
5308 /* Check AT&T mnemonic. */
5309 i.error = unsupported_with_intel_mnemonic;
5310 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5311 continue;
5312
5313 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5314 i.error = unsupported_syntax;
5315 if ((intel_syntax && t->opcode_modifier.attsyntax)
5316 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5317 || (intel64 && t->opcode_modifier.amd64)
5318 || (!intel64 && t->opcode_modifier.intel64))
5319 continue;
5320
5321 /* Check the suffix, except for some instructions in intel mode. */
5322 i.error = invalid_instruction_suffix;
5323 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5324 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5325 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5326 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5327 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5328 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5329 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5330 continue;
5331 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5332 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5333 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5334 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5335 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5336 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5337 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5338 continue;
5339
5340 if (!operand_size_match (t))
5341 continue;
5342
5343 for (j = 0; j < MAX_OPERANDS; j++)
5344 operand_types[j] = t->operand_types[j];
5345
5346 /* In general, don't allow 64-bit operands in 32-bit mode. */
5347 if (i.suffix == QWORD_MNEM_SUFFIX
5348 && flag_code != CODE_64BIT
5349 && (intel_syntax
5350 ? (!t->opcode_modifier.ignoresize
5351 && !intel_float_operand (t->name))
5352 : intel_float_operand (t->name) != 2)
5353 && ((!operand_types[0].bitfield.regmmx
5354 && !operand_types[0].bitfield.regsimd)
5355 || (!operand_types[t->operands > 1].bitfield.regmmx
5356 && !operand_types[t->operands > 1].bitfield.regsimd))
5357 && (t->base_opcode != 0x0fc7
5358 || t->extension_opcode != 1 /* cmpxchg8b */))
5359 continue;
5360
5361 /* In general, don't allow 32-bit operands on pre-386. */
5362 else if (i.suffix == LONG_MNEM_SUFFIX
5363 && !cpu_arch_flags.bitfield.cpui386
5364 && (intel_syntax
5365 ? (!t->opcode_modifier.ignoresize
5366 && !intel_float_operand (t->name))
5367 : intel_float_operand (t->name) != 2)
5368 && ((!operand_types[0].bitfield.regmmx
5369 && !operand_types[0].bitfield.regsimd)
5370 || (!operand_types[t->operands > 1].bitfield.regmmx
5371 && !operand_types[t->operands > 1].bitfield.regsimd)))
5372 continue;
5373
5374 /* Do not verify operands when there are none. */
5375 else
5376 {
5377 if (!t->operands)
5378 /* We've found a match; break out of loop. */
5379 break;
5380 }
5381
5382 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5383 into Disp32/Disp16/Disp32 operand. */
5384 if (i.prefix[ADDR_PREFIX] != 0)
5385 {
5386 /* There should be only one Disp operand. */
5387 switch (flag_code)
5388 {
5389 case CODE_16BIT:
5390 for (j = 0; j < MAX_OPERANDS; j++)
5391 {
5392 if (operand_types[j].bitfield.disp16)
5393 {
5394 addr_prefix_disp = j;
5395 operand_types[j].bitfield.disp32 = 1;
5396 operand_types[j].bitfield.disp16 = 0;
5397 break;
5398 }
5399 }
5400 break;
5401 case CODE_32BIT:
5402 for (j = 0; j < MAX_OPERANDS; j++)
5403 {
5404 if (operand_types[j].bitfield.disp32)
5405 {
5406 addr_prefix_disp = j;
5407 operand_types[j].bitfield.disp32 = 0;
5408 operand_types[j].bitfield.disp16 = 1;
5409 break;
5410 }
5411 }
5412 break;
5413 case CODE_64BIT:
5414 for (j = 0; j < MAX_OPERANDS; j++)
5415 {
5416 if (operand_types[j].bitfield.disp64)
5417 {
5418 addr_prefix_disp = j;
5419 operand_types[j].bitfield.disp64 = 0;
5420 operand_types[j].bitfield.disp32 = 1;
5421 break;
5422 }
5423 }
5424 break;
5425 }
5426 }
5427
5428 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5429 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5430 continue;
5431
5432 /* We check register size if needed. */
5433 check_register = t->opcode_modifier.checkregsize;
5434 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5435 switch (t->operands)
5436 {
5437 case 1:
5438 if (!operand_type_match (overlap0, i.types[0]))
5439 continue;
5440 break;
5441 case 2:
5442 /* xchg %eax, %eax is a special case. It is an alias for nop
5443 only in 32bit mode and we can use opcode 0x90. In 64bit
5444 mode, we can't use 0x90 for xchg %eax, %eax since it should
5445 zero-extend %eax to %rax. */
5446 if (flag_code == CODE_64BIT
5447 && t->base_opcode == 0x90
5448 && operand_type_equal (&i.types [0], &acc32)
5449 && operand_type_equal (&i.types [1], &acc32))
5450 continue;
5451 /* xrelease mov %eax, <disp> is another special case. It must not
5452 match the accumulator-only encoding of mov. */
5453 if (flag_code != CODE_64BIT
5454 && i.hle_prefix
5455 && t->base_opcode == 0xa0
5456 && i.types[0].bitfield.acc
5457 && operand_type_check (i.types[1], anymem))
5458 continue;
5459 /* If we want store form, we reverse direction of operands. */
5460 if (i.dir_encoding == dir_encoding_store
5461 && t->opcode_modifier.d)
5462 goto check_reverse;
5463 /* Fall through. */
5464
5465 case 3:
5466 /* If we want store form, we skip the current load. */
5467 if (i.dir_encoding == dir_encoding_store
5468 && i.mem_operands == 0
5469 && t->opcode_modifier.load)
5470 continue;
5471 /* Fall through. */
5472 case 4:
5473 case 5:
5474 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5475 if (!operand_type_match (overlap0, i.types[0])
5476 || !operand_type_match (overlap1, i.types[1])
5477 || (check_register
5478 && !operand_type_register_match (i.types[0],
5479 operand_types[0],
5480 i.types[1],
5481 operand_types[1])))
5482 {
5483 /* Check if other direction is valid ... */
5484 if (!t->opcode_modifier.d)
5485 continue;
5486
5487 check_reverse:
5488 /* Try reversing direction of operands. */
5489 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5490 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5491 if (!operand_type_match (overlap0, i.types[0])
5492 || !operand_type_match (overlap1, i.types[1])
5493 || (check_register
5494 && !operand_type_register_match (i.types[0],
5495 operand_types[1],
5496 i.types[1],
5497 operand_types[0])))
5498 {
5499 /* Does not match either direction. */
5500 continue;
5501 }
5502 /* found_reverse_match holds which of D or FloatR
5503 we've found. */
5504 if (!t->opcode_modifier.d)
5505 found_reverse_match = 0;
5506 else if (operand_types[0].bitfield.tbyte)
5507 found_reverse_match = Opcode_FloatD;
5508 else
5509 found_reverse_match = Opcode_D;
5510 if (t->opcode_modifier.floatr)
5511 found_reverse_match |= Opcode_FloatR;
5512 }
5513 else
5514 {
5515 /* Found a forward 2 operand match here. */
5516 switch (t->operands)
5517 {
5518 case 5:
5519 overlap4 = operand_type_and (i.types[4],
5520 operand_types[4]);
5521 /* Fall through. */
5522 case 4:
5523 overlap3 = operand_type_and (i.types[3],
5524 operand_types[3]);
5525 /* Fall through. */
5526 case 3:
5527 overlap2 = operand_type_and (i.types[2],
5528 operand_types[2]);
5529 break;
5530 }
5531
5532 switch (t->operands)
5533 {
5534 case 5:
5535 if (!operand_type_match (overlap4, i.types[4])
5536 || !operand_type_register_match (i.types[3],
5537 operand_types[3],
5538 i.types[4],
5539 operand_types[4]))
5540 continue;
5541 /* Fall through. */
5542 case 4:
5543 if (!operand_type_match (overlap3, i.types[3])
5544 || (check_register
5545 && (!operand_type_register_match (i.types[1],
5546 operand_types[1],
5547 i.types[3],
5548 operand_types[3])
5549 || !operand_type_register_match (i.types[2],
5550 operand_types[2],
5551 i.types[3],
5552 operand_types[3]))))
5553 continue;
5554 /* Fall through. */
5555 case 3:
5556 /* Here we make use of the fact that there are no
5557 reverse match 3 operand instructions. */
5558 if (!operand_type_match (overlap2, i.types[2])
5559 || (check_register
5560 && (!operand_type_register_match (i.types[0],
5561 operand_types[0],
5562 i.types[2],
5563 operand_types[2])
5564 || !operand_type_register_match (i.types[1],
5565 operand_types[1],
5566 i.types[2],
5567 operand_types[2]))))
5568 continue;
5569 break;
5570 }
5571 }
5572 /* Found either forward/reverse 2, 3 or 4 operand match here:
5573 slip through to break. */
5574 }
5575 if (!found_cpu_match)
5576 {
5577 found_reverse_match = 0;
5578 continue;
5579 }
5580
5581 /* Check if vector and VEX operands are valid. */
5582 if (check_VecOperands (t) || VEX_check_operands (t))
5583 {
5584 specific_error = i.error;
5585 continue;
5586 }
5587
5588 /* We've found a match; break out of loop. */
5589 break;
5590 }
5591
5592 if (t == current_templates->end)
5593 {
5594 /* We found no match. */
5595 const char *err_msg;
5596 switch (specific_error ? specific_error : i.error)
5597 {
5598 default:
5599 abort ();
5600 case operand_size_mismatch:
5601 err_msg = _("operand size mismatch");
5602 break;
5603 case operand_type_mismatch:
5604 err_msg = _("operand type mismatch");
5605 break;
5606 case register_type_mismatch:
5607 err_msg = _("register type mismatch");
5608 break;
5609 case number_of_operands_mismatch:
5610 err_msg = _("number of operands mismatch");
5611 break;
5612 case invalid_instruction_suffix:
5613 err_msg = _("invalid instruction suffix");
5614 break;
5615 case bad_imm4:
5616 err_msg = _("constant doesn't fit in 4 bits");
5617 break;
5618 case unsupported_with_intel_mnemonic:
5619 err_msg = _("unsupported with Intel mnemonic");
5620 break;
5621 case unsupported_syntax:
5622 err_msg = _("unsupported syntax");
5623 break;
5624 case unsupported:
5625 as_bad (_("unsupported instruction `%s'"),
5626 current_templates->start->name);
5627 return NULL;
5628 case invalid_vsib_address:
5629 err_msg = _("invalid VSIB address");
5630 break;
5631 case invalid_vector_register_set:
5632 err_msg = _("mask, index, and destination registers must be distinct");
5633 break;
5634 case unsupported_vector_index_register:
5635 err_msg = _("unsupported vector index register");
5636 break;
5637 case unsupported_broadcast:
5638 err_msg = _("unsupported broadcast");
5639 break;
5640 case broadcast_not_on_src_operand:
5641 err_msg = _("broadcast not on source memory operand");
5642 break;
5643 case broadcast_needed:
5644 err_msg = _("broadcast is needed for operand of such type");
5645 break;
5646 case unsupported_masking:
5647 err_msg = _("unsupported masking");
5648 break;
5649 case mask_not_on_destination:
5650 err_msg = _("mask not on destination operand");
5651 break;
5652 case no_default_mask:
5653 err_msg = _("default mask isn't allowed");
5654 break;
5655 case unsupported_rc_sae:
5656 err_msg = _("unsupported static rounding/sae");
5657 break;
5658 case rc_sae_operand_not_last_imm:
5659 if (intel_syntax)
5660 err_msg = _("RC/SAE operand must precede immediate operands");
5661 else
5662 err_msg = _("RC/SAE operand must follow immediate operands");
5663 break;
5664 case invalid_register_operand:
5665 err_msg = _("invalid register operand");
5666 break;
5667 }
5668 as_bad (_("%s for `%s'"), err_msg,
5669 current_templates->start->name);
5670 return NULL;
5671 }
5672
5673 if (!quiet_warnings)
5674 {
5675 if (!intel_syntax
5676 && (i.types[0].bitfield.jumpabsolute
5677 != operand_types[0].bitfield.jumpabsolute))
5678 {
5679 as_warn (_("indirect %s without `*'"), t->name);
5680 }
5681
5682 if (t->opcode_modifier.isprefix
5683 && t->opcode_modifier.ignoresize)
5684 {
5685 /* Warn them that a data or address size prefix doesn't
5686 affect assembly of the next line of code. */
5687 as_warn (_("stand-alone `%s' prefix"), t->name);
5688 }
5689 }
5690
5691 /* Copy the template we found. */
5692 i.tm = *t;
5693
5694 if (addr_prefix_disp != -1)
5695 i.tm.operand_types[addr_prefix_disp]
5696 = operand_types[addr_prefix_disp];
5697
5698 if (found_reverse_match)
5699 {
5700 /* If we found a reverse match we must alter the opcode
5701 direction bit. found_reverse_match holds bits to change
5702 (different for int & float insns). */
5703
5704 i.tm.base_opcode ^= found_reverse_match;
5705
5706 i.tm.operand_types[0] = operand_types[1];
5707 i.tm.operand_types[1] = operand_types[0];
5708 }
5709
5710 return t;
5711 }
5712
5713 static int
5714 check_string (void)
5715 {
5716 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5717 if (i.tm.operand_types[mem_op].bitfield.esseg)
5718 {
5719 if (i.seg[0] != NULL && i.seg[0] != &es)
5720 {
5721 as_bad (_("`%s' operand %d must use `%ses' segment"),
5722 i.tm.name,
5723 mem_op + 1,
5724 register_prefix);
5725 return 0;
5726 }
5727 /* There's only ever one segment override allowed per instruction.
5728 This instruction possibly has a legal segment override on the
5729 second operand, so copy the segment to where non-string
5730 instructions store it, allowing common code. */
5731 i.seg[0] = i.seg[1];
5732 }
5733 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5734 {
5735 if (i.seg[1] != NULL && i.seg[1] != &es)
5736 {
5737 as_bad (_("`%s' operand %d must use `%ses' segment"),
5738 i.tm.name,
5739 mem_op + 2,
5740 register_prefix);
5741 return 0;
5742 }
5743 }
5744 return 1;
5745 }
5746
5747 static int
5748 process_suffix (void)
5749 {
5750 /* If matched instruction specifies an explicit instruction mnemonic
5751 suffix, use it. */
5752 if (i.tm.opcode_modifier.size16)
5753 i.suffix = WORD_MNEM_SUFFIX;
5754 else if (i.tm.opcode_modifier.size32)
5755 i.suffix = LONG_MNEM_SUFFIX;
5756 else if (i.tm.opcode_modifier.size64)
5757 i.suffix = QWORD_MNEM_SUFFIX;
5758 else if (i.reg_operands)
5759 {
5760 /* If there's no instruction mnemonic suffix we try to invent one
5761 based on register operands. */
5762 if (!i.suffix)
5763 {
5764 /* We take i.suffix from the last register operand specified,
5765 Destination register type is more significant than source
5766 register type. crc32 in SSE4.2 prefers source register
5767 type. */
5768 if (i.tm.base_opcode == 0xf20f38f1)
5769 {
5770 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
5771 i.suffix = WORD_MNEM_SUFFIX;
5772 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
5773 i.suffix = LONG_MNEM_SUFFIX;
5774 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
5775 i.suffix = QWORD_MNEM_SUFFIX;
5776 }
5777 else if (i.tm.base_opcode == 0xf20f38f0)
5778 {
5779 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
5780 i.suffix = BYTE_MNEM_SUFFIX;
5781 }
5782
5783 if (!i.suffix)
5784 {
5785 int op;
5786
5787 if (i.tm.base_opcode == 0xf20f38f1
5788 || i.tm.base_opcode == 0xf20f38f0)
5789 {
5790 /* We have to know the operand size for crc32. */
5791 as_bad (_("ambiguous memory operand size for `%s`"),
5792 i.tm.name);
5793 return 0;
5794 }
5795
5796 for (op = i.operands; --op >= 0;)
5797 if (!i.tm.operand_types[op].bitfield.inoutportreg
5798 && !i.tm.operand_types[op].bitfield.shiftcount)
5799 {
5800 if (!i.types[op].bitfield.reg)
5801 continue;
5802 if (i.types[op].bitfield.byte)
5803 i.suffix = BYTE_MNEM_SUFFIX;
5804 else if (i.types[op].bitfield.word)
5805 i.suffix = WORD_MNEM_SUFFIX;
5806 else if (i.types[op].bitfield.dword)
5807 i.suffix = LONG_MNEM_SUFFIX;
5808 else if (i.types[op].bitfield.qword)
5809 i.suffix = QWORD_MNEM_SUFFIX;
5810 else
5811 continue;
5812 break;
5813 }
5814 }
5815 }
5816 else if (i.suffix == BYTE_MNEM_SUFFIX)
5817 {
5818 if (intel_syntax
5819 && i.tm.opcode_modifier.ignoresize
5820 && i.tm.opcode_modifier.no_bsuf)
5821 i.suffix = 0;
5822 else if (!check_byte_reg ())
5823 return 0;
5824 }
5825 else if (i.suffix == LONG_MNEM_SUFFIX)
5826 {
5827 if (intel_syntax
5828 && i.tm.opcode_modifier.ignoresize
5829 && i.tm.opcode_modifier.no_lsuf
5830 && !i.tm.opcode_modifier.todword
5831 && !i.tm.opcode_modifier.toqword)
5832 i.suffix = 0;
5833 else if (!check_long_reg ())
5834 return 0;
5835 }
5836 else if (i.suffix == QWORD_MNEM_SUFFIX)
5837 {
5838 if (intel_syntax
5839 && i.tm.opcode_modifier.ignoresize
5840 && i.tm.opcode_modifier.no_qsuf
5841 && !i.tm.opcode_modifier.todword
5842 && !i.tm.opcode_modifier.toqword)
5843 i.suffix = 0;
5844 else if (!check_qword_reg ())
5845 return 0;
5846 }
5847 else if (i.suffix == WORD_MNEM_SUFFIX)
5848 {
5849 if (intel_syntax
5850 && i.tm.opcode_modifier.ignoresize
5851 && i.tm.opcode_modifier.no_wsuf)
5852 i.suffix = 0;
5853 else if (!check_word_reg ())
5854 return 0;
5855 }
5856 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5857 /* Do nothing if the instruction is going to ignore the prefix. */
5858 ;
5859 else
5860 abort ();
5861 }
5862 else if (i.tm.opcode_modifier.defaultsize
5863 && !i.suffix
5864 /* exclude fldenv/frstor/fsave/fstenv */
5865 && i.tm.opcode_modifier.no_ssuf)
5866 {
5867 i.suffix = stackop_size;
5868 }
5869 else if (intel_syntax
5870 && !i.suffix
5871 && (i.tm.operand_types[0].bitfield.jumpabsolute
5872 || i.tm.opcode_modifier.jumpbyte
5873 || i.tm.opcode_modifier.jumpintersegment
5874 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5875 && i.tm.extension_opcode <= 3)))
5876 {
5877 switch (flag_code)
5878 {
5879 case CODE_64BIT:
5880 if (!i.tm.opcode_modifier.no_qsuf)
5881 {
5882 i.suffix = QWORD_MNEM_SUFFIX;
5883 break;
5884 }
5885 /* Fall through. */
5886 case CODE_32BIT:
5887 if (!i.tm.opcode_modifier.no_lsuf)
5888 i.suffix = LONG_MNEM_SUFFIX;
5889 break;
5890 case CODE_16BIT:
5891 if (!i.tm.opcode_modifier.no_wsuf)
5892 i.suffix = WORD_MNEM_SUFFIX;
5893 break;
5894 }
5895 }
5896
5897 if (!i.suffix)
5898 {
5899 if (!intel_syntax)
5900 {
5901 if (i.tm.opcode_modifier.w)
5902 {
5903 as_bad (_("no instruction mnemonic suffix given and "
5904 "no register operands; can't size instruction"));
5905 return 0;
5906 }
5907 }
5908 else
5909 {
5910 unsigned int suffixes;
5911
5912 suffixes = !i.tm.opcode_modifier.no_bsuf;
5913 if (!i.tm.opcode_modifier.no_wsuf)
5914 suffixes |= 1 << 1;
5915 if (!i.tm.opcode_modifier.no_lsuf)
5916 suffixes |= 1 << 2;
5917 if (!i.tm.opcode_modifier.no_ldsuf)
5918 suffixes |= 1 << 3;
5919 if (!i.tm.opcode_modifier.no_ssuf)
5920 suffixes |= 1 << 4;
5921 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
5922 suffixes |= 1 << 5;
5923
5924 /* There are more than suffix matches. */
5925 if (i.tm.opcode_modifier.w
5926 || ((suffixes & (suffixes - 1))
5927 && !i.tm.opcode_modifier.defaultsize
5928 && !i.tm.opcode_modifier.ignoresize))
5929 {
5930 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5931 return 0;
5932 }
5933 }
5934 }
5935
5936 /* Change the opcode based on the operand size given by i.suffix. */
5937 switch (i.suffix)
5938 {
5939 /* Size floating point instruction. */
5940 case LONG_MNEM_SUFFIX:
5941 if (i.tm.opcode_modifier.floatmf)
5942 {
5943 i.tm.base_opcode ^= 4;
5944 break;
5945 }
5946 /* fall through */
5947 case WORD_MNEM_SUFFIX:
5948 case QWORD_MNEM_SUFFIX:
5949 /* It's not a byte, select word/dword operation. */
5950 if (i.tm.opcode_modifier.w)
5951 {
5952 if (i.tm.opcode_modifier.shortform)
5953 i.tm.base_opcode |= 8;
5954 else
5955 i.tm.base_opcode |= 1;
5956 }
5957 /* fall through */
5958 case SHORT_MNEM_SUFFIX:
5959 /* Now select between word & dword operations via the operand
5960 size prefix, except for instructions that will ignore this
5961 prefix anyway. */
5962 if (i.tm.opcode_modifier.addrprefixop0)
5963 {
5964 /* The address size override prefix changes the size of the
5965 first operand. */
5966 if ((flag_code == CODE_32BIT
5967 && i.op->regs[0].reg_type.bitfield.word)
5968 || (flag_code != CODE_32BIT
5969 && i.op->regs[0].reg_type.bitfield.dword))
5970 if (!add_prefix (ADDR_PREFIX_OPCODE))
5971 return 0;
5972 }
5973 else if (i.suffix != QWORD_MNEM_SUFFIX
5974 && !i.tm.opcode_modifier.ignoresize
5975 && !i.tm.opcode_modifier.floatmf
5976 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5977 || (flag_code == CODE_64BIT
5978 && i.tm.opcode_modifier.jumpbyte)))
5979 {
5980 unsigned int prefix = DATA_PREFIX_OPCODE;
5981
5982 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5983 prefix = ADDR_PREFIX_OPCODE;
5984
5985 if (!add_prefix (prefix))
5986 return 0;
5987 }
5988
5989 /* Set mode64 for an operand. */
5990 if (i.suffix == QWORD_MNEM_SUFFIX
5991 && flag_code == CODE_64BIT
5992 && !i.tm.opcode_modifier.norex64
5993 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5994 need rex64. */
5995 && ! (i.operands == 2
5996 && i.tm.base_opcode == 0x90
5997 && i.tm.extension_opcode == None
5998 && operand_type_equal (&i.types [0], &acc64)
5999 && operand_type_equal (&i.types [1], &acc64)))
6000 i.rex |= REX_W;
6001
6002 break;
6003 }
6004
6005 return 1;
6006 }
6007
6008 static int
6009 check_byte_reg (void)
6010 {
6011 int op;
6012
6013 for (op = i.operands; --op >= 0;)
6014 {
6015 /* Skip non-register operands. */
6016 if (!i.types[op].bitfield.reg)
6017 continue;
6018
6019 /* If this is an eight bit register, it's OK. If it's the 16 or
6020 32 bit version of an eight bit register, we will just use the
6021 low portion, and that's OK too. */
6022 if (i.types[op].bitfield.byte)
6023 continue;
6024
6025 /* I/O port address operands are OK too. */
6026 if (i.tm.operand_types[op].bitfield.inoutportreg)
6027 continue;
6028
6029 /* crc32 doesn't generate this warning. */
6030 if (i.tm.base_opcode == 0xf20f38f0)
6031 continue;
6032
6033 if ((i.types[op].bitfield.word
6034 || i.types[op].bitfield.dword
6035 || i.types[op].bitfield.qword)
6036 && i.op[op].regs->reg_num < 4
6037 /* Prohibit these changes in 64bit mode, since the lowering
6038 would be more complicated. */
6039 && flag_code != CODE_64BIT)
6040 {
6041 #if REGISTER_WARNINGS
6042 if (!quiet_warnings)
6043 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6044 register_prefix,
6045 (i.op[op].regs + (i.types[op].bitfield.word
6046 ? REGNAM_AL - REGNAM_AX
6047 : REGNAM_AL - REGNAM_EAX))->reg_name,
6048 register_prefix,
6049 i.op[op].regs->reg_name,
6050 i.suffix);
6051 #endif
6052 continue;
6053 }
6054 /* Any other register is bad. */
6055 if (i.types[op].bitfield.reg
6056 || i.types[op].bitfield.regmmx
6057 || i.types[op].bitfield.regsimd
6058 || i.types[op].bitfield.sreg2
6059 || i.types[op].bitfield.sreg3
6060 || i.types[op].bitfield.control
6061 || i.types[op].bitfield.debug
6062 || i.types[op].bitfield.test)
6063 {
6064 as_bad (_("`%s%s' not allowed with `%s%c'"),
6065 register_prefix,
6066 i.op[op].regs->reg_name,
6067 i.tm.name,
6068 i.suffix);
6069 return 0;
6070 }
6071 }
6072 return 1;
6073 }
6074
6075 static int
6076 check_long_reg (void)
6077 {
6078 int op;
6079
6080 for (op = i.operands; --op >= 0;)
6081 /* Skip non-register operands. */
6082 if (!i.types[op].bitfield.reg)
6083 continue;
6084 /* Reject eight bit registers, except where the template requires
6085 them. (eg. movzb) */
6086 else if (i.types[op].bitfield.byte
6087 && (i.tm.operand_types[op].bitfield.reg
6088 || i.tm.operand_types[op].bitfield.acc)
6089 && (i.tm.operand_types[op].bitfield.word
6090 || i.tm.operand_types[op].bitfield.dword))
6091 {
6092 as_bad (_("`%s%s' not allowed with `%s%c'"),
6093 register_prefix,
6094 i.op[op].regs->reg_name,
6095 i.tm.name,
6096 i.suffix);
6097 return 0;
6098 }
6099 /* Warn if the e prefix on a general reg is missing. */
6100 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6101 && i.types[op].bitfield.word
6102 && (i.tm.operand_types[op].bitfield.reg
6103 || i.tm.operand_types[op].bitfield.acc)
6104 && i.tm.operand_types[op].bitfield.dword)
6105 {
6106 /* Prohibit these changes in the 64bit mode, since the
6107 lowering is more complicated. */
6108 if (flag_code == CODE_64BIT)
6109 {
6110 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6111 register_prefix, i.op[op].regs->reg_name,
6112 i.suffix);
6113 return 0;
6114 }
6115 #if REGISTER_WARNINGS
6116 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6117 register_prefix,
6118 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6119 register_prefix, i.op[op].regs->reg_name, i.suffix);
6120 #endif
6121 }
6122 /* Warn if the r prefix on a general reg is present. */
6123 else if (i.types[op].bitfield.qword
6124 && (i.tm.operand_types[op].bitfield.reg
6125 || i.tm.operand_types[op].bitfield.acc)
6126 && i.tm.operand_types[op].bitfield.dword)
6127 {
6128 if (intel_syntax
6129 && i.tm.opcode_modifier.toqword
6130 && !i.types[0].bitfield.regsimd)
6131 {
6132 /* Convert to QWORD. We want REX byte. */
6133 i.suffix = QWORD_MNEM_SUFFIX;
6134 }
6135 else
6136 {
6137 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6138 register_prefix, i.op[op].regs->reg_name,
6139 i.suffix);
6140 return 0;
6141 }
6142 }
6143 return 1;
6144 }
6145
6146 static int
6147 check_qword_reg (void)
6148 {
6149 int op;
6150
6151 for (op = i.operands; --op >= 0; )
6152 /* Skip non-register operands. */
6153 if (!i.types[op].bitfield.reg)
6154 continue;
6155 /* Reject eight bit registers, except where the template requires
6156 them. (eg. movzb) */
6157 else if (i.types[op].bitfield.byte
6158 && (i.tm.operand_types[op].bitfield.reg
6159 || i.tm.operand_types[op].bitfield.acc)
6160 && (i.tm.operand_types[op].bitfield.word
6161 || i.tm.operand_types[op].bitfield.dword))
6162 {
6163 as_bad (_("`%s%s' not allowed with `%s%c'"),
6164 register_prefix,
6165 i.op[op].regs->reg_name,
6166 i.tm.name,
6167 i.suffix);
6168 return 0;
6169 }
6170 /* Warn if the r prefix on a general reg is missing. */
6171 else if ((i.types[op].bitfield.word
6172 || i.types[op].bitfield.dword)
6173 && (i.tm.operand_types[op].bitfield.reg
6174 || i.tm.operand_types[op].bitfield.acc)
6175 && i.tm.operand_types[op].bitfield.qword)
6176 {
6177 /* Prohibit these changes in the 64bit mode, since the
6178 lowering is more complicated. */
6179 if (intel_syntax
6180 && i.tm.opcode_modifier.todword
6181 && !i.types[0].bitfield.regsimd)
6182 {
6183 /* Convert to DWORD. We don't want REX byte. */
6184 i.suffix = LONG_MNEM_SUFFIX;
6185 }
6186 else
6187 {
6188 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6189 register_prefix, i.op[op].regs->reg_name,
6190 i.suffix);
6191 return 0;
6192 }
6193 }
6194 return 1;
6195 }
6196
6197 static int
6198 check_word_reg (void)
6199 {
6200 int op;
6201 for (op = i.operands; --op >= 0;)
6202 /* Skip non-register operands. */
6203 if (!i.types[op].bitfield.reg)
6204 continue;
6205 /* Reject eight bit registers, except where the template requires
6206 them. (eg. movzb) */
6207 else if (i.types[op].bitfield.byte
6208 && (i.tm.operand_types[op].bitfield.reg
6209 || i.tm.operand_types[op].bitfield.acc)
6210 && (i.tm.operand_types[op].bitfield.word
6211 || i.tm.operand_types[op].bitfield.dword))
6212 {
6213 as_bad (_("`%s%s' not allowed with `%s%c'"),
6214 register_prefix,
6215 i.op[op].regs->reg_name,
6216 i.tm.name,
6217 i.suffix);
6218 return 0;
6219 }
6220 /* Warn if the e or r prefix on a general reg is present. */
6221 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6222 && (i.types[op].bitfield.dword
6223 || i.types[op].bitfield.qword)
6224 && (i.tm.operand_types[op].bitfield.reg
6225 || i.tm.operand_types[op].bitfield.acc)
6226 && i.tm.operand_types[op].bitfield.word)
6227 {
6228 /* Prohibit these changes in the 64bit mode, since the
6229 lowering is more complicated. */
6230 if (flag_code == CODE_64BIT)
6231 {
6232 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6233 register_prefix, i.op[op].regs->reg_name,
6234 i.suffix);
6235 return 0;
6236 }
6237 #if REGISTER_WARNINGS
6238 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6239 register_prefix,
6240 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6241 register_prefix, i.op[op].regs->reg_name, i.suffix);
6242 #endif
6243 }
6244 return 1;
6245 }
6246
6247 static int
6248 update_imm (unsigned int j)
6249 {
6250 i386_operand_type overlap = i.types[j];
6251 if ((overlap.bitfield.imm8
6252 || overlap.bitfield.imm8s
6253 || overlap.bitfield.imm16
6254 || overlap.bitfield.imm32
6255 || overlap.bitfield.imm32s
6256 || overlap.bitfield.imm64)
6257 && !operand_type_equal (&overlap, &imm8)
6258 && !operand_type_equal (&overlap, &imm8s)
6259 && !operand_type_equal (&overlap, &imm16)
6260 && !operand_type_equal (&overlap, &imm32)
6261 && !operand_type_equal (&overlap, &imm32s)
6262 && !operand_type_equal (&overlap, &imm64))
6263 {
6264 if (i.suffix)
6265 {
6266 i386_operand_type temp;
6267
6268 operand_type_set (&temp, 0);
6269 if (i.suffix == BYTE_MNEM_SUFFIX)
6270 {
6271 temp.bitfield.imm8 = overlap.bitfield.imm8;
6272 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6273 }
6274 else if (i.suffix == WORD_MNEM_SUFFIX)
6275 temp.bitfield.imm16 = overlap.bitfield.imm16;
6276 else if (i.suffix == QWORD_MNEM_SUFFIX)
6277 {
6278 temp.bitfield.imm64 = overlap.bitfield.imm64;
6279 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6280 }
6281 else
6282 temp.bitfield.imm32 = overlap.bitfield.imm32;
6283 overlap = temp;
6284 }
6285 else if (operand_type_equal (&overlap, &imm16_32_32s)
6286 || operand_type_equal (&overlap, &imm16_32)
6287 || operand_type_equal (&overlap, &imm16_32s))
6288 {
6289 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6290 overlap = imm16;
6291 else
6292 overlap = imm32s;
6293 }
6294 if (!operand_type_equal (&overlap, &imm8)
6295 && !operand_type_equal (&overlap, &imm8s)
6296 && !operand_type_equal (&overlap, &imm16)
6297 && !operand_type_equal (&overlap, &imm32)
6298 && !operand_type_equal (&overlap, &imm32s)
6299 && !operand_type_equal (&overlap, &imm64))
6300 {
6301 as_bad (_("no instruction mnemonic suffix given; "
6302 "can't determine immediate size"));
6303 return 0;
6304 }
6305 }
6306 i.types[j] = overlap;
6307
6308 return 1;
6309 }
6310
6311 static int
6312 finalize_imm (void)
6313 {
6314 unsigned int j, n;
6315
6316 /* Update the first 2 immediate operands. */
6317 n = i.operands > 2 ? 2 : i.operands;
6318 if (n)
6319 {
6320 for (j = 0; j < n; j++)
6321 if (update_imm (j) == 0)
6322 return 0;
6323
6324 /* The 3rd operand can't be immediate operand. */
6325 gas_assert (operand_type_check (i.types[2], imm) == 0);
6326 }
6327
6328 return 1;
6329 }
6330
6331 static int
6332 process_operands (void)
6333 {
6334 /* Default segment register this instruction will use for memory
6335 accesses. 0 means unknown. This is only for optimizing out
6336 unnecessary segment overrides. */
6337 const seg_entry *default_seg = 0;
6338
6339 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6340 {
6341 unsigned int dupl = i.operands;
6342 unsigned int dest = dupl - 1;
6343 unsigned int j;
6344
6345 /* The destination must be an xmm register. */
6346 gas_assert (i.reg_operands
6347 && MAX_OPERANDS > dupl
6348 && operand_type_equal (&i.types[dest], &regxmm));
6349
6350 if (i.tm.operand_types[0].bitfield.acc
6351 && i.tm.operand_types[0].bitfield.xmmword)
6352 {
6353 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6354 {
6355 /* Keep xmm0 for instructions with VEX prefix and 3
6356 sources. */
6357 i.tm.operand_types[0].bitfield.acc = 0;
6358 i.tm.operand_types[0].bitfield.regsimd = 1;
6359 goto duplicate;
6360 }
6361 else
6362 {
6363 /* We remove the first xmm0 and keep the number of
6364 operands unchanged, which in fact duplicates the
6365 destination. */
6366 for (j = 1; j < i.operands; j++)
6367 {
6368 i.op[j - 1] = i.op[j];
6369 i.types[j - 1] = i.types[j];
6370 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6371 }
6372 }
6373 }
6374 else if (i.tm.opcode_modifier.implicit1stxmm0)
6375 {
6376 gas_assert ((MAX_OPERANDS - 1) > dupl
6377 && (i.tm.opcode_modifier.vexsources
6378 == VEX3SOURCES));
6379
6380 /* Add the implicit xmm0 for instructions with VEX prefix
6381 and 3 sources. */
6382 for (j = i.operands; j > 0; j--)
6383 {
6384 i.op[j] = i.op[j - 1];
6385 i.types[j] = i.types[j - 1];
6386 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6387 }
6388 i.op[0].regs
6389 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6390 i.types[0] = regxmm;
6391 i.tm.operand_types[0] = regxmm;
6392
6393 i.operands += 2;
6394 i.reg_operands += 2;
6395 i.tm.operands += 2;
6396
6397 dupl++;
6398 dest++;
6399 i.op[dupl] = i.op[dest];
6400 i.types[dupl] = i.types[dest];
6401 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6402 }
6403 else
6404 {
6405 duplicate:
6406 i.operands++;
6407 i.reg_operands++;
6408 i.tm.operands++;
6409
6410 i.op[dupl] = i.op[dest];
6411 i.types[dupl] = i.types[dest];
6412 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6413 }
6414
6415 if (i.tm.opcode_modifier.immext)
6416 process_immext ();
6417 }
6418 else if (i.tm.operand_types[0].bitfield.acc
6419 && i.tm.operand_types[0].bitfield.xmmword)
6420 {
6421 unsigned int j;
6422
6423 for (j = 1; j < i.operands; j++)
6424 {
6425 i.op[j - 1] = i.op[j];
6426 i.types[j - 1] = i.types[j];
6427
6428 /* We need to adjust fields in i.tm since they are used by
6429 build_modrm_byte. */
6430 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6431 }
6432
6433 i.operands--;
6434 i.reg_operands--;
6435 i.tm.operands--;
6436 }
6437 else if (i.tm.opcode_modifier.implicitquadgroup)
6438 {
6439 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6440
6441 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6442 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6443 regnum = register_number (i.op[1].regs);
6444 first_reg_in_group = regnum & ~3;
6445 last_reg_in_group = first_reg_in_group + 3;
6446 if (regnum != first_reg_in_group)
6447 as_warn (_("source register `%s%s' implicitly denotes"
6448 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6449 register_prefix, i.op[1].regs->reg_name,
6450 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6451 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6452 i.tm.name);
6453 }
6454 else if (i.tm.opcode_modifier.regkludge)
6455 {
6456 /* The imul $imm, %reg instruction is converted into
6457 imul $imm, %reg, %reg, and the clr %reg instruction
6458 is converted into xor %reg, %reg. */
6459
6460 unsigned int first_reg_op;
6461
6462 if (operand_type_check (i.types[0], reg))
6463 first_reg_op = 0;
6464 else
6465 first_reg_op = 1;
6466 /* Pretend we saw the extra register operand. */
6467 gas_assert (i.reg_operands == 1
6468 && i.op[first_reg_op + 1].regs == 0);
6469 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6470 i.types[first_reg_op + 1] = i.types[first_reg_op];
6471 i.operands++;
6472 i.reg_operands++;
6473 }
6474
6475 if (i.tm.opcode_modifier.shortform)
6476 {
6477 if (i.types[0].bitfield.sreg2
6478 || i.types[0].bitfield.sreg3)
6479 {
6480 if (i.tm.base_opcode == POP_SEG_SHORT
6481 && i.op[0].regs->reg_num == 1)
6482 {
6483 as_bad (_("you can't `pop %scs'"), register_prefix);
6484 return 0;
6485 }
6486 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6487 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6488 i.rex |= REX_B;
6489 }
6490 else
6491 {
6492 /* The register or float register operand is in operand
6493 0 or 1. */
6494 unsigned int op;
6495
6496 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6497 || operand_type_check (i.types[0], reg))
6498 op = 0;
6499 else
6500 op = 1;
6501 /* Register goes in low 3 bits of opcode. */
6502 i.tm.base_opcode |= i.op[op].regs->reg_num;
6503 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6504 i.rex |= REX_B;
6505 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6506 {
6507 /* Warn about some common errors, but press on regardless.
6508 The first case can be generated by gcc (<= 2.8.1). */
6509 if (i.operands == 2)
6510 {
6511 /* Reversed arguments on faddp, fsubp, etc. */
6512 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6513 register_prefix, i.op[!intel_syntax].regs->reg_name,
6514 register_prefix, i.op[intel_syntax].regs->reg_name);
6515 }
6516 else
6517 {
6518 /* Extraneous `l' suffix on fp insn. */
6519 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6520 register_prefix, i.op[0].regs->reg_name);
6521 }
6522 }
6523 }
6524 }
6525 else if (i.tm.opcode_modifier.modrm)
6526 {
6527 /* The opcode is completed (modulo i.tm.extension_opcode which
6528 must be put into the modrm byte). Now, we make the modrm and
6529 index base bytes based on all the info we've collected. */
6530
6531 default_seg = build_modrm_byte ();
6532 }
6533 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6534 {
6535 default_seg = &ds;
6536 }
6537 else if (i.tm.opcode_modifier.isstring)
6538 {
6539 /* For the string instructions that allow a segment override
6540 on one of their operands, the default segment is ds. */
6541 default_seg = &ds;
6542 }
6543
6544 if (i.tm.base_opcode == 0x8d /* lea */
6545 && i.seg[0]
6546 && !quiet_warnings)
6547 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6548
6549 /* If a segment was explicitly specified, and the specified segment
6550 is not the default, use an opcode prefix to select it. If we
6551 never figured out what the default segment is, then default_seg
6552 will be zero at this point, and the specified segment prefix will
6553 always be used. */
6554 if ((i.seg[0]) && (i.seg[0] != default_seg))
6555 {
6556 if (!add_prefix (i.seg[0]->seg_prefix))
6557 return 0;
6558 }
6559 return 1;
6560 }
6561
6562 static const seg_entry *
6563 build_modrm_byte (void)
6564 {
6565 const seg_entry *default_seg = 0;
6566 unsigned int source, dest;
6567 int vex_3_sources;
6568
6569 /* The first operand of instructions with VEX prefix and 3 sources
6570 must be VEX_Imm4. */
6571 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6572 if (vex_3_sources)
6573 {
6574 unsigned int nds, reg_slot;
6575 expressionS *exp;
6576
6577 if (i.tm.opcode_modifier.veximmext
6578 && i.tm.opcode_modifier.immext)
6579 {
6580 dest = i.operands - 2;
6581 gas_assert (dest == 3);
6582 }
6583 else
6584 dest = i.operands - 1;
6585 nds = dest - 1;
6586
6587 /* There are 2 kinds of instructions:
6588 1. 5 operands: 4 register operands or 3 register operands
6589 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6590 VexW0 or VexW1. The destination must be either XMM, YMM or
6591 ZMM register.
6592 2. 4 operands: 4 register operands or 3 register operands
6593 plus 1 memory operand, VexXDS, and VexImmExt */
6594 gas_assert ((i.reg_operands == 4
6595 || (i.reg_operands == 3 && i.mem_operands == 1))
6596 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6597 && (i.tm.opcode_modifier.veximmext
6598 || (i.imm_operands == 1
6599 && i.types[0].bitfield.vec_imm4
6600 && (i.tm.opcode_modifier.vexw == VEXW0
6601 || i.tm.opcode_modifier.vexw == VEXW1)
6602 && i.tm.operand_types[dest].bitfield.regsimd)));
6603
6604 if (i.imm_operands == 0)
6605 {
6606 /* When there is no immediate operand, generate an 8bit
6607 immediate operand to encode the first operand. */
6608 exp = &im_expressions[i.imm_operands++];
6609 i.op[i.operands].imms = exp;
6610 i.types[i.operands] = imm8;
6611 i.operands++;
6612 /* If VexW1 is set, the first operand is the source and
6613 the second operand is encoded in the immediate operand. */
6614 if (i.tm.opcode_modifier.vexw == VEXW1)
6615 {
6616 source = 0;
6617 reg_slot = 1;
6618 }
6619 else
6620 {
6621 source = 1;
6622 reg_slot = 0;
6623 }
6624
6625 /* FMA swaps REG and NDS. */
6626 if (i.tm.cpu_flags.bitfield.cpufma)
6627 {
6628 unsigned int tmp;
6629 tmp = reg_slot;
6630 reg_slot = nds;
6631 nds = tmp;
6632 }
6633
6634 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6635 exp->X_op = O_constant;
6636 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6637 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6638 }
6639 else
6640 {
6641 unsigned int imm_slot;
6642
6643 if (i.tm.opcode_modifier.vexw == VEXW0)
6644 {
6645 /* If VexW0 is set, the third operand is the source and
6646 the second operand is encoded in the immediate
6647 operand. */
6648 source = 2;
6649 reg_slot = 1;
6650 }
6651 else
6652 {
6653 /* VexW1 is set, the second operand is the source and
6654 the third operand is encoded in the immediate
6655 operand. */
6656 source = 1;
6657 reg_slot = 2;
6658 }
6659
6660 if (i.tm.opcode_modifier.immext)
6661 {
6662 /* When ImmExt is set, the immediate byte is the last
6663 operand. */
6664 imm_slot = i.operands - 1;
6665 source--;
6666 reg_slot--;
6667 }
6668 else
6669 {
6670 imm_slot = 0;
6671
6672 /* Turn on Imm8 so that output_imm will generate it. */
6673 i.types[imm_slot].bitfield.imm8 = 1;
6674 }
6675
6676 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6677 i.op[imm_slot].imms->X_add_number
6678 |= register_number (i.op[reg_slot].regs) << 4;
6679 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6680 }
6681
6682 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
6683 i.vex.register_specifier = i.op[nds].regs;
6684 }
6685 else
6686 source = dest = 0;
6687
6688 /* i.reg_operands MUST be the number of real register operands;
6689 implicit registers do not count. If there are 3 register
6690 operands, it must be a instruction with VexNDS. For a
6691 instruction with VexNDD, the destination register is encoded
6692 in VEX prefix. If there are 4 register operands, it must be
6693 a instruction with VEX prefix and 3 sources. */
6694 if (i.mem_operands == 0
6695 && ((i.reg_operands == 2
6696 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6697 || (i.reg_operands == 3
6698 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6699 || (i.reg_operands == 4 && vex_3_sources)))
6700 {
6701 switch (i.operands)
6702 {
6703 case 2:
6704 source = 0;
6705 break;
6706 case 3:
6707 /* When there are 3 operands, one of them may be immediate,
6708 which may be the first or the last operand. Otherwise,
6709 the first operand must be shift count register (cl) or it
6710 is an instruction with VexNDS. */
6711 gas_assert (i.imm_operands == 1
6712 || (i.imm_operands == 0
6713 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6714 || i.types[0].bitfield.shiftcount)));
6715 if (operand_type_check (i.types[0], imm)
6716 || i.types[0].bitfield.shiftcount)
6717 source = 1;
6718 else
6719 source = 0;
6720 break;
6721 case 4:
6722 /* When there are 4 operands, the first two must be 8bit
6723 immediate operands. The source operand will be the 3rd
6724 one.
6725
6726 For instructions with VexNDS, if the first operand
6727 an imm8, the source operand is the 2nd one. If the last
6728 operand is imm8, the source operand is the first one. */
6729 gas_assert ((i.imm_operands == 2
6730 && i.types[0].bitfield.imm8
6731 && i.types[1].bitfield.imm8)
6732 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6733 && i.imm_operands == 1
6734 && (i.types[0].bitfield.imm8
6735 || i.types[i.operands - 1].bitfield.imm8
6736 || i.rounding)));
6737 if (i.imm_operands == 2)
6738 source = 2;
6739 else
6740 {
6741 if (i.types[0].bitfield.imm8)
6742 source = 1;
6743 else
6744 source = 0;
6745 }
6746 break;
6747 case 5:
6748 if (is_evex_encoding (&i.tm))
6749 {
6750 /* For EVEX instructions, when there are 5 operands, the
6751 first one must be immediate operand. If the second one
6752 is immediate operand, the source operand is the 3th
6753 one. If the last one is immediate operand, the source
6754 operand is the 2nd one. */
6755 gas_assert (i.imm_operands == 2
6756 && i.tm.opcode_modifier.sae
6757 && operand_type_check (i.types[0], imm));
6758 if (operand_type_check (i.types[1], imm))
6759 source = 2;
6760 else if (operand_type_check (i.types[4], imm))
6761 source = 1;
6762 else
6763 abort ();
6764 }
6765 break;
6766 default:
6767 abort ();
6768 }
6769
6770 if (!vex_3_sources)
6771 {
6772 dest = source + 1;
6773
6774 /* RC/SAE operand could be between DEST and SRC. That happens
6775 when one operand is GPR and the other one is XMM/YMM/ZMM
6776 register. */
6777 if (i.rounding && i.rounding->operand == (int) dest)
6778 dest++;
6779
6780 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6781 {
6782 /* For instructions with VexNDS, the register-only source
6783 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
6784 register. It is encoded in VEX prefix. We need to
6785 clear RegMem bit before calling operand_type_equal. */
6786
6787 i386_operand_type op;
6788 unsigned int vvvv;
6789
6790 /* Check register-only source operand when two source
6791 operands are swapped. */
6792 if (!i.tm.operand_types[source].bitfield.baseindex
6793 && i.tm.operand_types[dest].bitfield.baseindex)
6794 {
6795 vvvv = source;
6796 source = dest;
6797 }
6798 else
6799 vvvv = dest;
6800
6801 op = i.tm.operand_types[vvvv];
6802 op.bitfield.regmem = 0;
6803 if ((dest + 1) >= i.operands
6804 || ((!op.bitfield.reg
6805 || (!op.bitfield.dword && !op.bitfield.qword))
6806 && !op.bitfield.regsimd
6807 && !operand_type_equal (&op, &regmask)))
6808 abort ();
6809 i.vex.register_specifier = i.op[vvvv].regs;
6810 dest++;
6811 }
6812 }
6813
6814 i.rm.mode = 3;
6815 /* One of the register operands will be encoded in the i.tm.reg
6816 field, the other in the combined i.tm.mode and i.tm.regmem
6817 fields. If no form of this instruction supports a memory
6818 destination operand, then we assume the source operand may
6819 sometimes be a memory operand and so we need to store the
6820 destination in the i.rm.reg field. */
6821 if (!i.tm.operand_types[dest].bitfield.regmem
6822 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6823 {
6824 i.rm.reg = i.op[dest].regs->reg_num;
6825 i.rm.regmem = i.op[source].regs->reg_num;
6826 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6827 i.rex |= REX_R;
6828 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6829 i.vrex |= REX_R;
6830 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6831 i.rex |= REX_B;
6832 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6833 i.vrex |= REX_B;
6834 }
6835 else
6836 {
6837 i.rm.reg = i.op[source].regs->reg_num;
6838 i.rm.regmem = i.op[dest].regs->reg_num;
6839 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6840 i.rex |= REX_B;
6841 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6842 i.vrex |= REX_B;
6843 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6844 i.rex |= REX_R;
6845 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6846 i.vrex |= REX_R;
6847 }
6848 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6849 {
6850 if (!i.types[0].bitfield.control
6851 && !i.types[1].bitfield.control)
6852 abort ();
6853 i.rex &= ~(REX_R | REX_B);
6854 add_prefix (LOCK_PREFIX_OPCODE);
6855 }
6856 }
6857 else
6858 { /* If it's not 2 reg operands... */
6859 unsigned int mem;
6860
6861 if (i.mem_operands)
6862 {
6863 unsigned int fake_zero_displacement = 0;
6864 unsigned int op;
6865
6866 for (op = 0; op < i.operands; op++)
6867 if (operand_type_check (i.types[op], anymem))
6868 break;
6869 gas_assert (op < i.operands);
6870
6871 if (i.tm.opcode_modifier.vecsib)
6872 {
6873 if (i.index_reg->reg_num == RegEiz
6874 || i.index_reg->reg_num == RegRiz)
6875 abort ();
6876
6877 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6878 if (!i.base_reg)
6879 {
6880 i.sib.base = NO_BASE_REGISTER;
6881 i.sib.scale = i.log2_scale_factor;
6882 i.types[op].bitfield.disp8 = 0;
6883 i.types[op].bitfield.disp16 = 0;
6884 i.types[op].bitfield.disp64 = 0;
6885 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6886 {
6887 /* Must be 32 bit */
6888 i.types[op].bitfield.disp32 = 1;
6889 i.types[op].bitfield.disp32s = 0;
6890 }
6891 else
6892 {
6893 i.types[op].bitfield.disp32 = 0;
6894 i.types[op].bitfield.disp32s = 1;
6895 }
6896 }
6897 i.sib.index = i.index_reg->reg_num;
6898 if ((i.index_reg->reg_flags & RegRex) != 0)
6899 i.rex |= REX_X;
6900 if ((i.index_reg->reg_flags & RegVRex) != 0)
6901 i.vrex |= REX_X;
6902 }
6903
6904 default_seg = &ds;
6905
6906 if (i.base_reg == 0)
6907 {
6908 i.rm.mode = 0;
6909 if (!i.disp_operands)
6910 fake_zero_displacement = 1;
6911 if (i.index_reg == 0)
6912 {
6913 i386_operand_type newdisp;
6914
6915 gas_assert (!i.tm.opcode_modifier.vecsib);
6916 /* Operand is just <disp> */
6917 if (flag_code == CODE_64BIT)
6918 {
6919 /* 64bit mode overwrites the 32bit absolute
6920 addressing by RIP relative addressing and
6921 absolute addressing is encoded by one of the
6922 redundant SIB forms. */
6923 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6924 i.sib.base = NO_BASE_REGISTER;
6925 i.sib.index = NO_INDEX_REGISTER;
6926 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
6927 }
6928 else if ((flag_code == CODE_16BIT)
6929 ^ (i.prefix[ADDR_PREFIX] != 0))
6930 {
6931 i.rm.regmem = NO_BASE_REGISTER_16;
6932 newdisp = disp16;
6933 }
6934 else
6935 {
6936 i.rm.regmem = NO_BASE_REGISTER;
6937 newdisp = disp32;
6938 }
6939 i.types[op] = operand_type_and_not (i.types[op], anydisp);
6940 i.types[op] = operand_type_or (i.types[op], newdisp);
6941 }
6942 else if (!i.tm.opcode_modifier.vecsib)
6943 {
6944 /* !i.base_reg && i.index_reg */
6945 if (i.index_reg->reg_num == RegEiz
6946 || i.index_reg->reg_num == RegRiz)
6947 i.sib.index = NO_INDEX_REGISTER;
6948 else
6949 i.sib.index = i.index_reg->reg_num;
6950 i.sib.base = NO_BASE_REGISTER;
6951 i.sib.scale = i.log2_scale_factor;
6952 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6953 i.types[op].bitfield.disp8 = 0;
6954 i.types[op].bitfield.disp16 = 0;
6955 i.types[op].bitfield.disp64 = 0;
6956 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6957 {
6958 /* Must be 32 bit */
6959 i.types[op].bitfield.disp32 = 1;
6960 i.types[op].bitfield.disp32s = 0;
6961 }
6962 else
6963 {
6964 i.types[op].bitfield.disp32 = 0;
6965 i.types[op].bitfield.disp32s = 1;
6966 }
6967 if ((i.index_reg->reg_flags & RegRex) != 0)
6968 i.rex |= REX_X;
6969 }
6970 }
6971 /* RIP addressing for 64bit mode. */
6972 else if (i.base_reg->reg_num == RegRip ||
6973 i.base_reg->reg_num == RegEip)
6974 {
6975 gas_assert (!i.tm.opcode_modifier.vecsib);
6976 i.rm.regmem = NO_BASE_REGISTER;
6977 i.types[op].bitfield.disp8 = 0;
6978 i.types[op].bitfield.disp16 = 0;
6979 i.types[op].bitfield.disp32 = 0;
6980 i.types[op].bitfield.disp32s = 1;
6981 i.types[op].bitfield.disp64 = 0;
6982 i.flags[op] |= Operand_PCrel;
6983 if (! i.disp_operands)
6984 fake_zero_displacement = 1;
6985 }
6986 else if (i.base_reg->reg_type.bitfield.word)
6987 {
6988 gas_assert (!i.tm.opcode_modifier.vecsib);
6989 switch (i.base_reg->reg_num)
6990 {
6991 case 3: /* (%bx) */
6992 if (i.index_reg == 0)
6993 i.rm.regmem = 7;
6994 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6995 i.rm.regmem = i.index_reg->reg_num - 6;
6996 break;
6997 case 5: /* (%bp) */
6998 default_seg = &ss;
6999 if (i.index_reg == 0)
7000 {
7001 i.rm.regmem = 6;
7002 if (operand_type_check (i.types[op], disp) == 0)
7003 {
7004 /* fake (%bp) into 0(%bp) */
7005 i.types[op].bitfield.disp8 = 1;
7006 fake_zero_displacement = 1;
7007 }
7008 }
7009 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7010 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7011 break;
7012 default: /* (%si) -> 4 or (%di) -> 5 */
7013 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7014 }
7015 i.rm.mode = mode_from_disp_size (i.types[op]);
7016 }
7017 else /* i.base_reg and 32/64 bit mode */
7018 {
7019 if (flag_code == CODE_64BIT
7020 && operand_type_check (i.types[op], disp))
7021 {
7022 i.types[op].bitfield.disp16 = 0;
7023 i.types[op].bitfield.disp64 = 0;
7024 if (i.prefix[ADDR_PREFIX] == 0)
7025 {
7026 i.types[op].bitfield.disp32 = 0;
7027 i.types[op].bitfield.disp32s = 1;
7028 }
7029 else
7030 {
7031 i.types[op].bitfield.disp32 = 1;
7032 i.types[op].bitfield.disp32s = 0;
7033 }
7034 }
7035
7036 if (!i.tm.opcode_modifier.vecsib)
7037 i.rm.regmem = i.base_reg->reg_num;
7038 if ((i.base_reg->reg_flags & RegRex) != 0)
7039 i.rex |= REX_B;
7040 i.sib.base = i.base_reg->reg_num;
7041 /* x86-64 ignores REX prefix bit here to avoid decoder
7042 complications. */
7043 if (!(i.base_reg->reg_flags & RegRex)
7044 && (i.base_reg->reg_num == EBP_REG_NUM
7045 || i.base_reg->reg_num == ESP_REG_NUM))
7046 default_seg = &ss;
7047 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7048 {
7049 fake_zero_displacement = 1;
7050 i.types[op].bitfield.disp8 = 1;
7051 }
7052 i.sib.scale = i.log2_scale_factor;
7053 if (i.index_reg == 0)
7054 {
7055 gas_assert (!i.tm.opcode_modifier.vecsib);
7056 /* <disp>(%esp) becomes two byte modrm with no index
7057 register. We've already stored the code for esp
7058 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7059 Any base register besides %esp will not use the
7060 extra modrm byte. */
7061 i.sib.index = NO_INDEX_REGISTER;
7062 }
7063 else if (!i.tm.opcode_modifier.vecsib)
7064 {
7065 if (i.index_reg->reg_num == RegEiz
7066 || i.index_reg->reg_num == RegRiz)
7067 i.sib.index = NO_INDEX_REGISTER;
7068 else
7069 i.sib.index = i.index_reg->reg_num;
7070 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7071 if ((i.index_reg->reg_flags & RegRex) != 0)
7072 i.rex |= REX_X;
7073 }
7074
7075 if (i.disp_operands
7076 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7077 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7078 i.rm.mode = 0;
7079 else
7080 {
7081 if (!fake_zero_displacement
7082 && !i.disp_operands
7083 && i.disp_encoding)
7084 {
7085 fake_zero_displacement = 1;
7086 if (i.disp_encoding == disp_encoding_8bit)
7087 i.types[op].bitfield.disp8 = 1;
7088 else
7089 i.types[op].bitfield.disp32 = 1;
7090 }
7091 i.rm.mode = mode_from_disp_size (i.types[op]);
7092 }
7093 }
7094
7095 if (fake_zero_displacement)
7096 {
7097 /* Fakes a zero displacement assuming that i.types[op]
7098 holds the correct displacement size. */
7099 expressionS *exp;
7100
7101 gas_assert (i.op[op].disps == 0);
7102 exp = &disp_expressions[i.disp_operands++];
7103 i.op[op].disps = exp;
7104 exp->X_op = O_constant;
7105 exp->X_add_number = 0;
7106 exp->X_add_symbol = (symbolS *) 0;
7107 exp->X_op_symbol = (symbolS *) 0;
7108 }
7109
7110 mem = op;
7111 }
7112 else
7113 mem = ~0;
7114
7115 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7116 {
7117 if (operand_type_check (i.types[0], imm))
7118 i.vex.register_specifier = NULL;
7119 else
7120 {
7121 /* VEX.vvvv encodes one of the sources when the first
7122 operand is not an immediate. */
7123 if (i.tm.opcode_modifier.vexw == VEXW0)
7124 i.vex.register_specifier = i.op[0].regs;
7125 else
7126 i.vex.register_specifier = i.op[1].regs;
7127 }
7128
7129 /* Destination is a XMM register encoded in the ModRM.reg
7130 and VEX.R bit. */
7131 i.rm.reg = i.op[2].regs->reg_num;
7132 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7133 i.rex |= REX_R;
7134
7135 /* ModRM.rm and VEX.B encodes the other source. */
7136 if (!i.mem_operands)
7137 {
7138 i.rm.mode = 3;
7139
7140 if (i.tm.opcode_modifier.vexw == VEXW0)
7141 i.rm.regmem = i.op[1].regs->reg_num;
7142 else
7143 i.rm.regmem = i.op[0].regs->reg_num;
7144
7145 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7146 i.rex |= REX_B;
7147 }
7148 }
7149 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7150 {
7151 i.vex.register_specifier = i.op[2].regs;
7152 if (!i.mem_operands)
7153 {
7154 i.rm.mode = 3;
7155 i.rm.regmem = i.op[1].regs->reg_num;
7156 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7157 i.rex |= REX_B;
7158 }
7159 }
7160 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7161 (if any) based on i.tm.extension_opcode. Again, we must be
7162 careful to make sure that segment/control/debug/test/MMX
7163 registers are coded into the i.rm.reg field. */
7164 else if (i.reg_operands)
7165 {
7166 unsigned int op;
7167 unsigned int vex_reg = ~0;
7168
7169 for (op = 0; op < i.operands; op++)
7170 if (i.types[op].bitfield.reg
7171 || i.types[op].bitfield.regmmx
7172 || i.types[op].bitfield.regsimd
7173 || i.types[op].bitfield.regbnd
7174 || i.types[op].bitfield.regmask
7175 || i.types[op].bitfield.sreg2
7176 || i.types[op].bitfield.sreg3
7177 || i.types[op].bitfield.control
7178 || i.types[op].bitfield.debug
7179 || i.types[op].bitfield.test)
7180 break;
7181
7182 if (vex_3_sources)
7183 op = dest;
7184 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7185 {
7186 /* For instructions with VexNDS, the register-only
7187 source operand is encoded in VEX prefix. */
7188 gas_assert (mem != (unsigned int) ~0);
7189
7190 if (op > mem)
7191 {
7192 vex_reg = op++;
7193 gas_assert (op < i.operands);
7194 }
7195 else
7196 {
7197 /* Check register-only source operand when two source
7198 operands are swapped. */
7199 if (!i.tm.operand_types[op].bitfield.baseindex
7200 && i.tm.operand_types[op + 1].bitfield.baseindex)
7201 {
7202 vex_reg = op;
7203 op += 2;
7204 gas_assert (mem == (vex_reg + 1)
7205 && op < i.operands);
7206 }
7207 else
7208 {
7209 vex_reg = op + 1;
7210 gas_assert (vex_reg < i.operands);
7211 }
7212 }
7213 }
7214 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7215 {
7216 /* For instructions with VexNDD, the register destination
7217 is encoded in VEX prefix. */
7218 if (i.mem_operands == 0)
7219 {
7220 /* There is no memory operand. */
7221 gas_assert ((op + 2) == i.operands);
7222 vex_reg = op + 1;
7223 }
7224 else
7225 {
7226 /* There are only 2 non-immediate operands. */
7227 gas_assert (op < i.imm_operands + 2
7228 && i.operands == i.imm_operands + 2);
7229 vex_reg = i.imm_operands + 1;
7230 }
7231 }
7232 else
7233 gas_assert (op < i.operands);
7234
7235 if (vex_reg != (unsigned int) ~0)
7236 {
7237 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7238
7239 if ((!type->bitfield.reg
7240 || (!type->bitfield.dword && !type->bitfield.qword))
7241 && !type->bitfield.regsimd
7242 && !operand_type_equal (type, &regmask))
7243 abort ();
7244
7245 i.vex.register_specifier = i.op[vex_reg].regs;
7246 }
7247
7248 /* Don't set OP operand twice. */
7249 if (vex_reg != op)
7250 {
7251 /* If there is an extension opcode to put here, the
7252 register number must be put into the regmem field. */
7253 if (i.tm.extension_opcode != None)
7254 {
7255 i.rm.regmem = i.op[op].regs->reg_num;
7256 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7257 i.rex |= REX_B;
7258 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7259 i.vrex |= REX_B;
7260 }
7261 else
7262 {
7263 i.rm.reg = i.op[op].regs->reg_num;
7264 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7265 i.rex |= REX_R;
7266 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7267 i.vrex |= REX_R;
7268 }
7269 }
7270
7271 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7272 must set it to 3 to indicate this is a register operand
7273 in the regmem field. */
7274 if (!i.mem_operands)
7275 i.rm.mode = 3;
7276 }
7277
7278 /* Fill in i.rm.reg field with extension opcode (if any). */
7279 if (i.tm.extension_opcode != None)
7280 i.rm.reg = i.tm.extension_opcode;
7281 }
7282 return default_seg;
7283 }
7284
7285 static void
7286 output_branch (void)
7287 {
7288 char *p;
7289 int size;
7290 int code16;
7291 int prefix;
7292 relax_substateT subtype;
7293 symbolS *sym;
7294 offsetT off;
7295
7296 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7297 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7298
7299 prefix = 0;
7300 if (i.prefix[DATA_PREFIX] != 0)
7301 {
7302 prefix = 1;
7303 i.prefixes -= 1;
7304 code16 ^= CODE16;
7305 }
7306 /* Pentium4 branch hints. */
7307 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7308 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7309 {
7310 prefix++;
7311 i.prefixes--;
7312 }
7313 if (i.prefix[REX_PREFIX] != 0)
7314 {
7315 prefix++;
7316 i.prefixes--;
7317 }
7318
7319 /* BND prefixed jump. */
7320 if (i.prefix[BND_PREFIX] != 0)
7321 {
7322 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7323 i.prefixes -= 1;
7324 }
7325
7326 if (i.prefixes != 0 && !intel_syntax)
7327 as_warn (_("skipping prefixes on this instruction"));
7328
7329 /* It's always a symbol; End frag & setup for relax.
7330 Make sure there is enough room in this frag for the largest
7331 instruction we may generate in md_convert_frag. This is 2
7332 bytes for the opcode and room for the prefix and largest
7333 displacement. */
7334 frag_grow (prefix + 2 + 4);
7335 /* Prefix and 1 opcode byte go in fr_fix. */
7336 p = frag_more (prefix + 1);
7337 if (i.prefix[DATA_PREFIX] != 0)
7338 *p++ = DATA_PREFIX_OPCODE;
7339 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7340 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7341 *p++ = i.prefix[SEG_PREFIX];
7342 if (i.prefix[REX_PREFIX] != 0)
7343 *p++ = i.prefix[REX_PREFIX];
7344 *p = i.tm.base_opcode;
7345
7346 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7347 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7348 else if (cpu_arch_flags.bitfield.cpui386)
7349 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7350 else
7351 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7352 subtype |= code16;
7353
7354 sym = i.op[0].disps->X_add_symbol;
7355 off = i.op[0].disps->X_add_number;
7356
7357 if (i.op[0].disps->X_op != O_constant
7358 && i.op[0].disps->X_op != O_symbol)
7359 {
7360 /* Handle complex expressions. */
7361 sym = make_expr_symbol (i.op[0].disps);
7362 off = 0;
7363 }
7364
7365 /* 1 possible extra opcode + 4 byte displacement go in var part.
7366 Pass reloc in fr_var. */
7367 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7368 }
7369
7370 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7371 /* Return TRUE iff PLT32 relocation should be used for branching to
7372 symbol S. */
7373
7374 static bfd_boolean
7375 need_plt32_p (symbolS *s)
7376 {
7377 /* PLT32 relocation is ELF only. */
7378 if (!IS_ELF)
7379 return FALSE;
7380
7381 /* Since there is no need to prepare for PLT branch on x86-64, we
7382 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7383 be used as a marker for 32-bit PC-relative branches. */
7384 if (!object_64bit)
7385 return FALSE;
7386
7387 /* Weak or undefined symbol need PLT32 relocation. */
7388 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7389 return TRUE;
7390
7391 /* Non-global symbol doesn't need PLT32 relocation. */
7392 if (! S_IS_EXTERNAL (s))
7393 return FALSE;
7394
7395 /* Other global symbols need PLT32 relocation. NB: Symbol with
7396 non-default visibilities are treated as normal global symbol
7397 so that PLT32 relocation can be used as a marker for 32-bit
7398 PC-relative branches. It is useful for linker relaxation. */
7399 return TRUE;
7400 }
7401 #endif
7402
7403 static void
7404 output_jump (void)
7405 {
7406 char *p;
7407 int size;
7408 fixS *fixP;
7409 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7410
7411 if (i.tm.opcode_modifier.jumpbyte)
7412 {
7413 /* This is a loop or jecxz type instruction. */
7414 size = 1;
7415 if (i.prefix[ADDR_PREFIX] != 0)
7416 {
7417 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7418 i.prefixes -= 1;
7419 }
7420 /* Pentium4 branch hints. */
7421 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7422 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7423 {
7424 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7425 i.prefixes--;
7426 }
7427 }
7428 else
7429 {
7430 int code16;
7431
7432 code16 = 0;
7433 if (flag_code == CODE_16BIT)
7434 code16 = CODE16;
7435
7436 if (i.prefix[DATA_PREFIX] != 0)
7437 {
7438 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7439 i.prefixes -= 1;
7440 code16 ^= CODE16;
7441 }
7442
7443 size = 4;
7444 if (code16)
7445 size = 2;
7446 }
7447
7448 if (i.prefix[REX_PREFIX] != 0)
7449 {
7450 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7451 i.prefixes -= 1;
7452 }
7453
7454 /* BND prefixed jump. */
7455 if (i.prefix[BND_PREFIX] != 0)
7456 {
7457 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7458 i.prefixes -= 1;
7459 }
7460
7461 if (i.prefixes != 0 && !intel_syntax)
7462 as_warn (_("skipping prefixes on this instruction"));
7463
7464 p = frag_more (i.tm.opcode_length + size);
7465 switch (i.tm.opcode_length)
7466 {
7467 case 2:
7468 *p++ = i.tm.base_opcode >> 8;
7469 /* Fall through. */
7470 case 1:
7471 *p++ = i.tm.base_opcode;
7472 break;
7473 default:
7474 abort ();
7475 }
7476
7477 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7478 if (size == 4
7479 && jump_reloc == NO_RELOC
7480 && need_plt32_p (i.op[0].disps->X_add_symbol))
7481 jump_reloc = BFD_RELOC_X86_64_PLT32;
7482 #endif
7483
7484 jump_reloc = reloc (size, 1, 1, jump_reloc);
7485
7486 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7487 i.op[0].disps, 1, jump_reloc);
7488
7489 /* All jumps handled here are signed, but don't use a signed limit
7490 check for 32 and 16 bit jumps as we want to allow wrap around at
7491 4G and 64k respectively. */
7492 if (size == 1)
7493 fixP->fx_signed = 1;
7494 }
7495
7496 static void
7497 output_interseg_jump (void)
7498 {
7499 char *p;
7500 int size;
7501 int prefix;
7502 int code16;
7503
7504 code16 = 0;
7505 if (flag_code == CODE_16BIT)
7506 code16 = CODE16;
7507
7508 prefix = 0;
7509 if (i.prefix[DATA_PREFIX] != 0)
7510 {
7511 prefix = 1;
7512 i.prefixes -= 1;
7513 code16 ^= CODE16;
7514 }
7515 if (i.prefix[REX_PREFIX] != 0)
7516 {
7517 prefix++;
7518 i.prefixes -= 1;
7519 }
7520
7521 size = 4;
7522 if (code16)
7523 size = 2;
7524
7525 if (i.prefixes != 0 && !intel_syntax)
7526 as_warn (_("skipping prefixes on this instruction"));
7527
7528 /* 1 opcode; 2 segment; offset */
7529 p = frag_more (prefix + 1 + 2 + size);
7530
7531 if (i.prefix[DATA_PREFIX] != 0)
7532 *p++ = DATA_PREFIX_OPCODE;
7533
7534 if (i.prefix[REX_PREFIX] != 0)
7535 *p++ = i.prefix[REX_PREFIX];
7536
7537 *p++ = i.tm.base_opcode;
7538 if (i.op[1].imms->X_op == O_constant)
7539 {
7540 offsetT n = i.op[1].imms->X_add_number;
7541
7542 if (size == 2
7543 && !fits_in_unsigned_word (n)
7544 && !fits_in_signed_word (n))
7545 {
7546 as_bad (_("16-bit jump out of range"));
7547 return;
7548 }
7549 md_number_to_chars (p, n, size);
7550 }
7551 else
7552 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7553 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7554 if (i.op[0].imms->X_op != O_constant)
7555 as_bad (_("can't handle non absolute segment in `%s'"),
7556 i.tm.name);
7557 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7558 }
7559
7560 static void
7561 output_insn (void)
7562 {
7563 fragS *insn_start_frag;
7564 offsetT insn_start_off;
7565
7566 /* Tie dwarf2 debug info to the address at the start of the insn.
7567 We can't do this after the insn has been output as the current
7568 frag may have been closed off. eg. by frag_var. */
7569 dwarf2_emit_insn (0);
7570
7571 insn_start_frag = frag_now;
7572 insn_start_off = frag_now_fix ();
7573
7574 /* Output jumps. */
7575 if (i.tm.opcode_modifier.jump)
7576 output_branch ();
7577 else if (i.tm.opcode_modifier.jumpbyte
7578 || i.tm.opcode_modifier.jumpdword)
7579 output_jump ();
7580 else if (i.tm.opcode_modifier.jumpintersegment)
7581 output_interseg_jump ();
7582 else
7583 {
7584 /* Output normal instructions here. */
7585 char *p;
7586 unsigned char *q;
7587 unsigned int j;
7588 unsigned int prefix;
7589
7590 if (avoid_fence
7591 && i.tm.base_opcode == 0xfae
7592 && i.operands == 1
7593 && i.imm_operands == 1
7594 && (i.op[0].imms->X_add_number == 0xe8
7595 || i.op[0].imms->X_add_number == 0xf0
7596 || i.op[0].imms->X_add_number == 0xf8))
7597 {
7598 /* Encode lfence, mfence, and sfence as
7599 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7600 offsetT val = 0x240483f0ULL;
7601 p = frag_more (5);
7602 md_number_to_chars (p, val, 5);
7603 return;
7604 }
7605
7606 /* Some processors fail on LOCK prefix. This options makes
7607 assembler ignore LOCK prefix and serves as a workaround. */
7608 if (omit_lock_prefix)
7609 {
7610 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7611 return;
7612 i.prefix[LOCK_PREFIX] = 0;
7613 }
7614
7615 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7616 don't need the explicit prefix. */
7617 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7618 {
7619 switch (i.tm.opcode_length)
7620 {
7621 case 3:
7622 if (i.tm.base_opcode & 0xff000000)
7623 {
7624 prefix = (i.tm.base_opcode >> 24) & 0xff;
7625 goto check_prefix;
7626 }
7627 break;
7628 case 2:
7629 if ((i.tm.base_opcode & 0xff0000) != 0)
7630 {
7631 prefix = (i.tm.base_opcode >> 16) & 0xff;
7632 if (i.tm.cpu_flags.bitfield.cpupadlock)
7633 {
7634 check_prefix:
7635 if (prefix != REPE_PREFIX_OPCODE
7636 || (i.prefix[REP_PREFIX]
7637 != REPE_PREFIX_OPCODE))
7638 add_prefix (prefix);
7639 }
7640 else
7641 add_prefix (prefix);
7642 }
7643 break;
7644 case 1:
7645 break;
7646 case 0:
7647 /* Check for pseudo prefixes. */
7648 as_bad_where (insn_start_frag->fr_file,
7649 insn_start_frag->fr_line,
7650 _("pseudo prefix without instruction"));
7651 return;
7652 default:
7653 abort ();
7654 }
7655
7656 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7657 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7658 R_X86_64_GOTTPOFF relocation so that linker can safely
7659 perform IE->LE optimization. */
7660 if (x86_elf_abi == X86_64_X32_ABI
7661 && i.operands == 2
7662 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7663 && i.prefix[REX_PREFIX] == 0)
7664 add_prefix (REX_OPCODE);
7665 #endif
7666
7667 /* The prefix bytes. */
7668 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7669 if (*q)
7670 FRAG_APPEND_1_CHAR (*q);
7671 }
7672 else
7673 {
7674 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7675 if (*q)
7676 switch (j)
7677 {
7678 case REX_PREFIX:
7679 /* REX byte is encoded in VEX prefix. */
7680 break;
7681 case SEG_PREFIX:
7682 case ADDR_PREFIX:
7683 FRAG_APPEND_1_CHAR (*q);
7684 break;
7685 default:
7686 /* There should be no other prefixes for instructions
7687 with VEX prefix. */
7688 abort ();
7689 }
7690
7691 /* For EVEX instructions i.vrex should become 0 after
7692 build_evex_prefix. For VEX instructions upper 16 registers
7693 aren't available, so VREX should be 0. */
7694 if (i.vrex)
7695 abort ();
7696 /* Now the VEX prefix. */
7697 p = frag_more (i.vex.length);
7698 for (j = 0; j < i.vex.length; j++)
7699 p[j] = i.vex.bytes[j];
7700 }
7701
7702 /* Now the opcode; be careful about word order here! */
7703 if (i.tm.opcode_length == 1)
7704 {
7705 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7706 }
7707 else
7708 {
7709 switch (i.tm.opcode_length)
7710 {
7711 case 4:
7712 p = frag_more (4);
7713 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7714 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7715 break;
7716 case 3:
7717 p = frag_more (3);
7718 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7719 break;
7720 case 2:
7721 p = frag_more (2);
7722 break;
7723 default:
7724 abort ();
7725 break;
7726 }
7727
7728 /* Put out high byte first: can't use md_number_to_chars! */
7729 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7730 *p = i.tm.base_opcode & 0xff;
7731 }
7732
7733 /* Now the modrm byte and sib byte (if present). */
7734 if (i.tm.opcode_modifier.modrm)
7735 {
7736 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7737 | i.rm.reg << 3
7738 | i.rm.mode << 6));
7739 /* If i.rm.regmem == ESP (4)
7740 && i.rm.mode != (Register mode)
7741 && not 16 bit
7742 ==> need second modrm byte. */
7743 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7744 && i.rm.mode != 3
7745 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
7746 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7747 | i.sib.index << 3
7748 | i.sib.scale << 6));
7749 }
7750
7751 if (i.disp_operands)
7752 output_disp (insn_start_frag, insn_start_off);
7753
7754 if (i.imm_operands)
7755 output_imm (insn_start_frag, insn_start_off);
7756 }
7757
7758 #ifdef DEBUG386
7759 if (flag_debug)
7760 {
7761 pi ("" /*line*/, &i);
7762 }
7763 #endif /* DEBUG386 */
7764 }
7765
7766 /* Return the size of the displacement operand N. */
7767
7768 static int
7769 disp_size (unsigned int n)
7770 {
7771 int size = 4;
7772
7773 if (i.types[n].bitfield.disp64)
7774 size = 8;
7775 else if (i.types[n].bitfield.disp8)
7776 size = 1;
7777 else if (i.types[n].bitfield.disp16)
7778 size = 2;
7779 return size;
7780 }
7781
7782 /* Return the size of the immediate operand N. */
7783
7784 static int
7785 imm_size (unsigned int n)
7786 {
7787 int size = 4;
7788 if (i.types[n].bitfield.imm64)
7789 size = 8;
7790 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7791 size = 1;
7792 else if (i.types[n].bitfield.imm16)
7793 size = 2;
7794 return size;
7795 }
7796
7797 static void
7798 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7799 {
7800 char *p;
7801 unsigned int n;
7802
7803 for (n = 0; n < i.operands; n++)
7804 {
7805 if (operand_type_check (i.types[n], disp))
7806 {
7807 if (i.op[n].disps->X_op == O_constant)
7808 {
7809 int size = disp_size (n);
7810 offsetT val = i.op[n].disps->X_add_number;
7811
7812 val = offset_in_range (val >> i.memshift, size);
7813 p = frag_more (size);
7814 md_number_to_chars (p, val, size);
7815 }
7816 else
7817 {
7818 enum bfd_reloc_code_real reloc_type;
7819 int size = disp_size (n);
7820 int sign = i.types[n].bitfield.disp32s;
7821 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7822 fixS *fixP;
7823
7824 /* We can't have 8 bit displacement here. */
7825 gas_assert (!i.types[n].bitfield.disp8);
7826
7827 /* The PC relative address is computed relative
7828 to the instruction boundary, so in case immediate
7829 fields follows, we need to adjust the value. */
7830 if (pcrel && i.imm_operands)
7831 {
7832 unsigned int n1;
7833 int sz = 0;
7834
7835 for (n1 = 0; n1 < i.operands; n1++)
7836 if (operand_type_check (i.types[n1], imm))
7837 {
7838 /* Only one immediate is allowed for PC
7839 relative address. */
7840 gas_assert (sz == 0);
7841 sz = imm_size (n1);
7842 i.op[n].disps->X_add_number -= sz;
7843 }
7844 /* We should find the immediate. */
7845 gas_assert (sz != 0);
7846 }
7847
7848 p = frag_more (size);
7849 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7850 if (GOT_symbol
7851 && GOT_symbol == i.op[n].disps->X_add_symbol
7852 && (((reloc_type == BFD_RELOC_32
7853 || reloc_type == BFD_RELOC_X86_64_32S
7854 || (reloc_type == BFD_RELOC_64
7855 && object_64bit))
7856 && (i.op[n].disps->X_op == O_symbol
7857 || (i.op[n].disps->X_op == O_add
7858 && ((symbol_get_value_expression
7859 (i.op[n].disps->X_op_symbol)->X_op)
7860 == O_subtract))))
7861 || reloc_type == BFD_RELOC_32_PCREL))
7862 {
7863 offsetT add;
7864
7865 if (insn_start_frag == frag_now)
7866 add = (p - frag_now->fr_literal) - insn_start_off;
7867 else
7868 {
7869 fragS *fr;
7870
7871 add = insn_start_frag->fr_fix - insn_start_off;
7872 for (fr = insn_start_frag->fr_next;
7873 fr && fr != frag_now; fr = fr->fr_next)
7874 add += fr->fr_fix;
7875 add += p - frag_now->fr_literal;
7876 }
7877
7878 if (!object_64bit)
7879 {
7880 reloc_type = BFD_RELOC_386_GOTPC;
7881 i.op[n].imms->X_add_number += add;
7882 }
7883 else if (reloc_type == BFD_RELOC_64)
7884 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7885 else
7886 /* Don't do the adjustment for x86-64, as there
7887 the pcrel addressing is relative to the _next_
7888 insn, and that is taken care of in other code. */
7889 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7890 }
7891 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7892 size, i.op[n].disps, pcrel,
7893 reloc_type);
7894 /* Check for "call/jmp *mem", "mov mem, %reg",
7895 "test %reg, mem" and "binop mem, %reg" where binop
7896 is one of adc, add, and, cmp, or, sbb, sub, xor
7897 instructions. Always generate R_386_GOT32X for
7898 "sym*GOT" operand in 32-bit mode. */
7899 if ((generate_relax_relocations
7900 || (!object_64bit
7901 && i.rm.mode == 0
7902 && i.rm.regmem == 5))
7903 && (i.rm.mode == 2
7904 || (i.rm.mode == 0 && i.rm.regmem == 5))
7905 && ((i.operands == 1
7906 && i.tm.base_opcode == 0xff
7907 && (i.rm.reg == 2 || i.rm.reg == 4))
7908 || (i.operands == 2
7909 && (i.tm.base_opcode == 0x8b
7910 || i.tm.base_opcode == 0x85
7911 || (i.tm.base_opcode & 0xc7) == 0x03))))
7912 {
7913 if (object_64bit)
7914 {
7915 fixP->fx_tcbit = i.rex != 0;
7916 if (i.base_reg
7917 && (i.base_reg->reg_num == RegRip
7918 || i.base_reg->reg_num == RegEip))
7919 fixP->fx_tcbit2 = 1;
7920 }
7921 else
7922 fixP->fx_tcbit2 = 1;
7923 }
7924 }
7925 }
7926 }
7927 }
7928
7929 static void
7930 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7931 {
7932 char *p;
7933 unsigned int n;
7934
7935 for (n = 0; n < i.operands; n++)
7936 {
7937 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7938 if (i.rounding && (int) n == i.rounding->operand)
7939 continue;
7940
7941 if (operand_type_check (i.types[n], imm))
7942 {
7943 if (i.op[n].imms->X_op == O_constant)
7944 {
7945 int size = imm_size (n);
7946 offsetT val;
7947
7948 val = offset_in_range (i.op[n].imms->X_add_number,
7949 size);
7950 p = frag_more (size);
7951 md_number_to_chars (p, val, size);
7952 }
7953 else
7954 {
7955 /* Not absolute_section.
7956 Need a 32-bit fixup (don't support 8bit
7957 non-absolute imms). Try to support other
7958 sizes ... */
7959 enum bfd_reloc_code_real reloc_type;
7960 int size = imm_size (n);
7961 int sign;
7962
7963 if (i.types[n].bitfield.imm32s
7964 && (i.suffix == QWORD_MNEM_SUFFIX
7965 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7966 sign = 1;
7967 else
7968 sign = 0;
7969
7970 p = frag_more (size);
7971 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7972
7973 /* This is tough to explain. We end up with this one if we
7974 * have operands that look like
7975 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7976 * obtain the absolute address of the GOT, and it is strongly
7977 * preferable from a performance point of view to avoid using
7978 * a runtime relocation for this. The actual sequence of
7979 * instructions often look something like:
7980 *
7981 * call .L66
7982 * .L66:
7983 * popl %ebx
7984 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7985 *
7986 * The call and pop essentially return the absolute address
7987 * of the label .L66 and store it in %ebx. The linker itself
7988 * will ultimately change the first operand of the addl so
7989 * that %ebx points to the GOT, but to keep things simple, the
7990 * .o file must have this operand set so that it generates not
7991 * the absolute address of .L66, but the absolute address of
7992 * itself. This allows the linker itself simply treat a GOTPC
7993 * relocation as asking for a pcrel offset to the GOT to be
7994 * added in, and the addend of the relocation is stored in the
7995 * operand field for the instruction itself.
7996 *
7997 * Our job here is to fix the operand so that it would add
7998 * the correct offset so that %ebx would point to itself. The
7999 * thing that is tricky is that .-.L66 will point to the
8000 * beginning of the instruction, so we need to further modify
8001 * the operand so that it will point to itself. There are
8002 * other cases where you have something like:
8003 *
8004 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8005 *
8006 * and here no correction would be required. Internally in
8007 * the assembler we treat operands of this form as not being
8008 * pcrel since the '.' is explicitly mentioned, and I wonder
8009 * whether it would simplify matters to do it this way. Who
8010 * knows. In earlier versions of the PIC patches, the
8011 * pcrel_adjust field was used to store the correction, but
8012 * since the expression is not pcrel, I felt it would be
8013 * confusing to do it this way. */
8014
8015 if ((reloc_type == BFD_RELOC_32
8016 || reloc_type == BFD_RELOC_X86_64_32S
8017 || reloc_type == BFD_RELOC_64)
8018 && GOT_symbol
8019 && GOT_symbol == i.op[n].imms->X_add_symbol
8020 && (i.op[n].imms->X_op == O_symbol
8021 || (i.op[n].imms->X_op == O_add
8022 && ((symbol_get_value_expression
8023 (i.op[n].imms->X_op_symbol)->X_op)
8024 == O_subtract))))
8025 {
8026 offsetT add;
8027
8028 if (insn_start_frag == frag_now)
8029 add = (p - frag_now->fr_literal) - insn_start_off;
8030 else
8031 {
8032 fragS *fr;
8033
8034 add = insn_start_frag->fr_fix - insn_start_off;
8035 for (fr = insn_start_frag->fr_next;
8036 fr && fr != frag_now; fr = fr->fr_next)
8037 add += fr->fr_fix;
8038 add += p - frag_now->fr_literal;
8039 }
8040
8041 if (!object_64bit)
8042 reloc_type = BFD_RELOC_386_GOTPC;
8043 else if (size == 4)
8044 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8045 else if (size == 8)
8046 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8047 i.op[n].imms->X_add_number += add;
8048 }
8049 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8050 i.op[n].imms, 0, reloc_type);
8051 }
8052 }
8053 }
8054 }
8055 \f
8056 /* x86_cons_fix_new is called via the expression parsing code when a
8057 reloc is needed. We use this hook to get the correct .got reloc. */
8058 static int cons_sign = -1;
8059
8060 void
8061 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8062 expressionS *exp, bfd_reloc_code_real_type r)
8063 {
8064 r = reloc (len, 0, cons_sign, r);
8065
8066 #ifdef TE_PE
8067 if (exp->X_op == O_secrel)
8068 {
8069 exp->X_op = O_symbol;
8070 r = BFD_RELOC_32_SECREL;
8071 }
8072 #endif
8073
8074 fix_new_exp (frag, off, len, exp, 0, r);
8075 }
8076
8077 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8078 purpose of the `.dc.a' internal pseudo-op. */
8079
8080 int
8081 x86_address_bytes (void)
8082 {
8083 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8084 return 4;
8085 return stdoutput->arch_info->bits_per_address / 8;
8086 }
8087
8088 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8089 || defined (LEX_AT)
8090 # define lex_got(reloc, adjust, types) NULL
8091 #else
8092 /* Parse operands of the form
8093 <symbol>@GOTOFF+<nnn>
8094 and similar .plt or .got references.
8095
8096 If we find one, set up the correct relocation in RELOC and copy the
8097 input string, minus the `@GOTOFF' into a malloc'd buffer for
8098 parsing by the calling routine. Return this buffer, and if ADJUST
8099 is non-null set it to the length of the string we removed from the
8100 input line. Otherwise return NULL. */
8101 static char *
8102 lex_got (enum bfd_reloc_code_real *rel,
8103 int *adjust,
8104 i386_operand_type *types)
8105 {
8106 /* Some of the relocations depend on the size of what field is to
8107 be relocated. But in our callers i386_immediate and i386_displacement
8108 we don't yet know the operand size (this will be set by insn
8109 matching). Hence we record the word32 relocation here,
8110 and adjust the reloc according to the real size in reloc(). */
8111 static const struct {
8112 const char *str;
8113 int len;
8114 const enum bfd_reloc_code_real rel[2];
8115 const i386_operand_type types64;
8116 } gotrel[] = {
8117 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8118 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8119 BFD_RELOC_SIZE32 },
8120 OPERAND_TYPE_IMM32_64 },
8121 #endif
8122 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8123 BFD_RELOC_X86_64_PLTOFF64 },
8124 OPERAND_TYPE_IMM64 },
8125 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8126 BFD_RELOC_X86_64_PLT32 },
8127 OPERAND_TYPE_IMM32_32S_DISP32 },
8128 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8129 BFD_RELOC_X86_64_GOTPLT64 },
8130 OPERAND_TYPE_IMM64_DISP64 },
8131 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8132 BFD_RELOC_X86_64_GOTOFF64 },
8133 OPERAND_TYPE_IMM64_DISP64 },
8134 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8135 BFD_RELOC_X86_64_GOTPCREL },
8136 OPERAND_TYPE_IMM32_32S_DISP32 },
8137 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8138 BFD_RELOC_X86_64_TLSGD },
8139 OPERAND_TYPE_IMM32_32S_DISP32 },
8140 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8141 _dummy_first_bfd_reloc_code_real },
8142 OPERAND_TYPE_NONE },
8143 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8144 BFD_RELOC_X86_64_TLSLD },
8145 OPERAND_TYPE_IMM32_32S_DISP32 },
8146 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8147 BFD_RELOC_X86_64_GOTTPOFF },
8148 OPERAND_TYPE_IMM32_32S_DISP32 },
8149 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8150 BFD_RELOC_X86_64_TPOFF32 },
8151 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8152 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8153 _dummy_first_bfd_reloc_code_real },
8154 OPERAND_TYPE_NONE },
8155 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8156 BFD_RELOC_X86_64_DTPOFF32 },
8157 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8158 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8159 _dummy_first_bfd_reloc_code_real },
8160 OPERAND_TYPE_NONE },
8161 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8162 _dummy_first_bfd_reloc_code_real },
8163 OPERAND_TYPE_NONE },
8164 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8165 BFD_RELOC_X86_64_GOT32 },
8166 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8167 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8168 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8169 OPERAND_TYPE_IMM32_32S_DISP32 },
8170 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8171 BFD_RELOC_X86_64_TLSDESC_CALL },
8172 OPERAND_TYPE_IMM32_32S_DISP32 },
8173 };
8174 char *cp;
8175 unsigned int j;
8176
8177 #if defined (OBJ_MAYBE_ELF)
8178 if (!IS_ELF)
8179 return NULL;
8180 #endif
8181
8182 for (cp = input_line_pointer; *cp != '@'; cp++)
8183 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8184 return NULL;
8185
8186 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8187 {
8188 int len = gotrel[j].len;
8189 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8190 {
8191 if (gotrel[j].rel[object_64bit] != 0)
8192 {
8193 int first, second;
8194 char *tmpbuf, *past_reloc;
8195
8196 *rel = gotrel[j].rel[object_64bit];
8197
8198 if (types)
8199 {
8200 if (flag_code != CODE_64BIT)
8201 {
8202 types->bitfield.imm32 = 1;
8203 types->bitfield.disp32 = 1;
8204 }
8205 else
8206 *types = gotrel[j].types64;
8207 }
8208
8209 if (j != 0 && GOT_symbol == NULL)
8210 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8211
8212 /* The length of the first part of our input line. */
8213 first = cp - input_line_pointer;
8214
8215 /* The second part goes from after the reloc token until
8216 (and including) an end_of_line char or comma. */
8217 past_reloc = cp + 1 + len;
8218 cp = past_reloc;
8219 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8220 ++cp;
8221 second = cp + 1 - past_reloc;
8222
8223 /* Allocate and copy string. The trailing NUL shouldn't
8224 be necessary, but be safe. */
8225 tmpbuf = XNEWVEC (char, first + second + 2);
8226 memcpy (tmpbuf, input_line_pointer, first);
8227 if (second != 0 && *past_reloc != ' ')
8228 /* Replace the relocation token with ' ', so that
8229 errors like foo@GOTOFF1 will be detected. */
8230 tmpbuf[first++] = ' ';
8231 else
8232 /* Increment length by 1 if the relocation token is
8233 removed. */
8234 len++;
8235 if (adjust)
8236 *adjust = len;
8237 memcpy (tmpbuf + first, past_reloc, second);
8238 tmpbuf[first + second] = '\0';
8239 return tmpbuf;
8240 }
8241
8242 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8243 gotrel[j].str, 1 << (5 + object_64bit));
8244 return NULL;
8245 }
8246 }
8247
8248 /* Might be a symbol version string. Don't as_bad here. */
8249 return NULL;
8250 }
8251 #endif
8252
8253 #ifdef TE_PE
8254 #ifdef lex_got
8255 #undef lex_got
8256 #endif
8257 /* Parse operands of the form
8258 <symbol>@SECREL32+<nnn>
8259
8260 If we find one, set up the correct relocation in RELOC and copy the
8261 input string, minus the `@SECREL32' into a malloc'd buffer for
8262 parsing by the calling routine. Return this buffer, and if ADJUST
8263 is non-null set it to the length of the string we removed from the
8264 input line. Otherwise return NULL.
8265
8266 This function is copied from the ELF version above adjusted for PE targets. */
8267
8268 static char *
8269 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8270 int *adjust ATTRIBUTE_UNUSED,
8271 i386_operand_type *types)
8272 {
8273 static const struct
8274 {
8275 const char *str;
8276 int len;
8277 const enum bfd_reloc_code_real rel[2];
8278 const i386_operand_type types64;
8279 }
8280 gotrel[] =
8281 {
8282 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8283 BFD_RELOC_32_SECREL },
8284 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8285 };
8286
8287 char *cp;
8288 unsigned j;
8289
8290 for (cp = input_line_pointer; *cp != '@'; cp++)
8291 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8292 return NULL;
8293
8294 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8295 {
8296 int len = gotrel[j].len;
8297
8298 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8299 {
8300 if (gotrel[j].rel[object_64bit] != 0)
8301 {
8302 int first, second;
8303 char *tmpbuf, *past_reloc;
8304
8305 *rel = gotrel[j].rel[object_64bit];
8306 if (adjust)
8307 *adjust = len;
8308
8309 if (types)
8310 {
8311 if (flag_code != CODE_64BIT)
8312 {
8313 types->bitfield.imm32 = 1;
8314 types->bitfield.disp32 = 1;
8315 }
8316 else
8317 *types = gotrel[j].types64;
8318 }
8319
8320 /* The length of the first part of our input line. */
8321 first = cp - input_line_pointer;
8322
8323 /* The second part goes from after the reloc token until
8324 (and including) an end_of_line char or comma. */
8325 past_reloc = cp + 1 + len;
8326 cp = past_reloc;
8327 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8328 ++cp;
8329 second = cp + 1 - past_reloc;
8330
8331 /* Allocate and copy string. The trailing NUL shouldn't
8332 be necessary, but be safe. */
8333 tmpbuf = XNEWVEC (char, first + second + 2);
8334 memcpy (tmpbuf, input_line_pointer, first);
8335 if (second != 0 && *past_reloc != ' ')
8336 /* Replace the relocation token with ' ', so that
8337 errors like foo@SECLREL321 will be detected. */
8338 tmpbuf[first++] = ' ';
8339 memcpy (tmpbuf + first, past_reloc, second);
8340 tmpbuf[first + second] = '\0';
8341 return tmpbuf;
8342 }
8343
8344 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8345 gotrel[j].str, 1 << (5 + object_64bit));
8346 return NULL;
8347 }
8348 }
8349
8350 /* Might be a symbol version string. Don't as_bad here. */
8351 return NULL;
8352 }
8353
8354 #endif /* TE_PE */
8355
8356 bfd_reloc_code_real_type
8357 x86_cons (expressionS *exp, int size)
8358 {
8359 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8360
8361 intel_syntax = -intel_syntax;
8362
8363 exp->X_md = 0;
8364 if (size == 4 || (object_64bit && size == 8))
8365 {
8366 /* Handle @GOTOFF and the like in an expression. */
8367 char *save;
8368 char *gotfree_input_line;
8369 int adjust = 0;
8370
8371 save = input_line_pointer;
8372 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8373 if (gotfree_input_line)
8374 input_line_pointer = gotfree_input_line;
8375
8376 expression (exp);
8377
8378 if (gotfree_input_line)
8379 {
8380 /* expression () has merrily parsed up to the end of line,
8381 or a comma - in the wrong buffer. Transfer how far
8382 input_line_pointer has moved to the right buffer. */
8383 input_line_pointer = (save
8384 + (input_line_pointer - gotfree_input_line)
8385 + adjust);
8386 free (gotfree_input_line);
8387 if (exp->X_op == O_constant
8388 || exp->X_op == O_absent
8389 || exp->X_op == O_illegal
8390 || exp->X_op == O_register
8391 || exp->X_op == O_big)
8392 {
8393 char c = *input_line_pointer;
8394 *input_line_pointer = 0;
8395 as_bad (_("missing or invalid expression `%s'"), save);
8396 *input_line_pointer = c;
8397 }
8398 }
8399 }
8400 else
8401 expression (exp);
8402
8403 intel_syntax = -intel_syntax;
8404
8405 if (intel_syntax)
8406 i386_intel_simplify (exp);
8407
8408 return got_reloc;
8409 }
8410
8411 static void
8412 signed_cons (int size)
8413 {
8414 if (flag_code == CODE_64BIT)
8415 cons_sign = 1;
8416 cons (size);
8417 cons_sign = -1;
8418 }
8419
8420 #ifdef TE_PE
8421 static void
8422 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8423 {
8424 expressionS exp;
8425
8426 do
8427 {
8428 expression (&exp);
8429 if (exp.X_op == O_symbol)
8430 exp.X_op = O_secrel;
8431
8432 emit_expr (&exp, 4);
8433 }
8434 while (*input_line_pointer++ == ',');
8435
8436 input_line_pointer--;
8437 demand_empty_rest_of_line ();
8438 }
8439 #endif
8440
8441 /* Handle Vector operations. */
8442
8443 static char *
8444 check_VecOperations (char *op_string, char *op_end)
8445 {
8446 const reg_entry *mask;
8447 const char *saved;
8448 char *end_op;
8449
8450 while (*op_string
8451 && (op_end == NULL || op_string < op_end))
8452 {
8453 saved = op_string;
8454 if (*op_string == '{')
8455 {
8456 op_string++;
8457
8458 /* Check broadcasts. */
8459 if (strncmp (op_string, "1to", 3) == 0)
8460 {
8461 int bcst_type;
8462
8463 if (i.broadcast)
8464 goto duplicated_vec_op;
8465
8466 op_string += 3;
8467 if (*op_string == '8')
8468 bcst_type = 8;
8469 else if (*op_string == '4')
8470 bcst_type = 4;
8471 else if (*op_string == '2')
8472 bcst_type = 2;
8473 else if (*op_string == '1'
8474 && *(op_string+1) == '6')
8475 {
8476 bcst_type = 16;
8477 op_string++;
8478 }
8479 else
8480 {
8481 as_bad (_("Unsupported broadcast: `%s'"), saved);
8482 return NULL;
8483 }
8484 op_string++;
8485
8486 broadcast_op.type = bcst_type;
8487 broadcast_op.operand = this_operand;
8488 i.broadcast = &broadcast_op;
8489 }
8490 /* Check masking operation. */
8491 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8492 {
8493 /* k0 can't be used for write mask. */
8494 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
8495 {
8496 as_bad (_("`%s%s' can't be used for write mask"),
8497 register_prefix, mask->reg_name);
8498 return NULL;
8499 }
8500
8501 if (!i.mask)
8502 {
8503 mask_op.mask = mask;
8504 mask_op.zeroing = 0;
8505 mask_op.operand = this_operand;
8506 i.mask = &mask_op;
8507 }
8508 else
8509 {
8510 if (i.mask->mask)
8511 goto duplicated_vec_op;
8512
8513 i.mask->mask = mask;
8514
8515 /* Only "{z}" is allowed here. No need to check
8516 zeroing mask explicitly. */
8517 if (i.mask->operand != this_operand)
8518 {
8519 as_bad (_("invalid write mask `%s'"), saved);
8520 return NULL;
8521 }
8522 }
8523
8524 op_string = end_op;
8525 }
8526 /* Check zeroing-flag for masking operation. */
8527 else if (*op_string == 'z')
8528 {
8529 if (!i.mask)
8530 {
8531 mask_op.mask = NULL;
8532 mask_op.zeroing = 1;
8533 mask_op.operand = this_operand;
8534 i.mask = &mask_op;
8535 }
8536 else
8537 {
8538 if (i.mask->zeroing)
8539 {
8540 duplicated_vec_op:
8541 as_bad (_("duplicated `%s'"), saved);
8542 return NULL;
8543 }
8544
8545 i.mask->zeroing = 1;
8546
8547 /* Only "{%k}" is allowed here. No need to check mask
8548 register explicitly. */
8549 if (i.mask->operand != this_operand)
8550 {
8551 as_bad (_("invalid zeroing-masking `%s'"),
8552 saved);
8553 return NULL;
8554 }
8555 }
8556
8557 op_string++;
8558 }
8559 else
8560 goto unknown_vec_op;
8561
8562 if (*op_string != '}')
8563 {
8564 as_bad (_("missing `}' in `%s'"), saved);
8565 return NULL;
8566 }
8567 op_string++;
8568
8569 /* Strip whitespace since the addition of pseudo prefixes
8570 changed how the scrubber treats '{'. */
8571 if (is_space_char (*op_string))
8572 ++op_string;
8573
8574 continue;
8575 }
8576 unknown_vec_op:
8577 /* We don't know this one. */
8578 as_bad (_("unknown vector operation: `%s'"), saved);
8579 return NULL;
8580 }
8581
8582 if (i.mask && i.mask->zeroing && !i.mask->mask)
8583 {
8584 as_bad (_("zeroing-masking only allowed with write mask"));
8585 return NULL;
8586 }
8587
8588 return op_string;
8589 }
8590
8591 static int
8592 i386_immediate (char *imm_start)
8593 {
8594 char *save_input_line_pointer;
8595 char *gotfree_input_line;
8596 segT exp_seg = 0;
8597 expressionS *exp;
8598 i386_operand_type types;
8599
8600 operand_type_set (&types, ~0);
8601
8602 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8603 {
8604 as_bad (_("at most %d immediate operands are allowed"),
8605 MAX_IMMEDIATE_OPERANDS);
8606 return 0;
8607 }
8608
8609 exp = &im_expressions[i.imm_operands++];
8610 i.op[this_operand].imms = exp;
8611
8612 if (is_space_char (*imm_start))
8613 ++imm_start;
8614
8615 save_input_line_pointer = input_line_pointer;
8616 input_line_pointer = imm_start;
8617
8618 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8619 if (gotfree_input_line)
8620 input_line_pointer = gotfree_input_line;
8621
8622 exp_seg = expression (exp);
8623
8624 SKIP_WHITESPACE ();
8625
8626 /* Handle vector operations. */
8627 if (*input_line_pointer == '{')
8628 {
8629 input_line_pointer = check_VecOperations (input_line_pointer,
8630 NULL);
8631 if (input_line_pointer == NULL)
8632 return 0;
8633 }
8634
8635 if (*input_line_pointer)
8636 as_bad (_("junk `%s' after expression"), input_line_pointer);
8637
8638 input_line_pointer = save_input_line_pointer;
8639 if (gotfree_input_line)
8640 {
8641 free (gotfree_input_line);
8642
8643 if (exp->X_op == O_constant || exp->X_op == O_register)
8644 exp->X_op = O_illegal;
8645 }
8646
8647 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8648 }
8649
8650 static int
8651 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8652 i386_operand_type types, const char *imm_start)
8653 {
8654 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8655 {
8656 if (imm_start)
8657 as_bad (_("missing or invalid immediate expression `%s'"),
8658 imm_start);
8659 return 0;
8660 }
8661 else if (exp->X_op == O_constant)
8662 {
8663 /* Size it properly later. */
8664 i.types[this_operand].bitfield.imm64 = 1;
8665 /* If not 64bit, sign extend val. */
8666 if (flag_code != CODE_64BIT
8667 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8668 exp->X_add_number
8669 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8670 }
8671 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8672 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8673 && exp_seg != absolute_section
8674 && exp_seg != text_section
8675 && exp_seg != data_section
8676 && exp_seg != bss_section
8677 && exp_seg != undefined_section
8678 && !bfd_is_com_section (exp_seg))
8679 {
8680 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8681 return 0;
8682 }
8683 #endif
8684 else if (!intel_syntax && exp_seg == reg_section)
8685 {
8686 if (imm_start)
8687 as_bad (_("illegal immediate register operand %s"), imm_start);
8688 return 0;
8689 }
8690 else
8691 {
8692 /* This is an address. The size of the address will be
8693 determined later, depending on destination register,
8694 suffix, or the default for the section. */
8695 i.types[this_operand].bitfield.imm8 = 1;
8696 i.types[this_operand].bitfield.imm16 = 1;
8697 i.types[this_operand].bitfield.imm32 = 1;
8698 i.types[this_operand].bitfield.imm32s = 1;
8699 i.types[this_operand].bitfield.imm64 = 1;
8700 i.types[this_operand] = operand_type_and (i.types[this_operand],
8701 types);
8702 }
8703
8704 return 1;
8705 }
8706
8707 static char *
8708 i386_scale (char *scale)
8709 {
8710 offsetT val;
8711 char *save = input_line_pointer;
8712
8713 input_line_pointer = scale;
8714 val = get_absolute_expression ();
8715
8716 switch (val)
8717 {
8718 case 1:
8719 i.log2_scale_factor = 0;
8720 break;
8721 case 2:
8722 i.log2_scale_factor = 1;
8723 break;
8724 case 4:
8725 i.log2_scale_factor = 2;
8726 break;
8727 case 8:
8728 i.log2_scale_factor = 3;
8729 break;
8730 default:
8731 {
8732 char sep = *input_line_pointer;
8733
8734 *input_line_pointer = '\0';
8735 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8736 scale);
8737 *input_line_pointer = sep;
8738 input_line_pointer = save;
8739 return NULL;
8740 }
8741 }
8742 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8743 {
8744 as_warn (_("scale factor of %d without an index register"),
8745 1 << i.log2_scale_factor);
8746 i.log2_scale_factor = 0;
8747 }
8748 scale = input_line_pointer;
8749 input_line_pointer = save;
8750 return scale;
8751 }
8752
8753 static int
8754 i386_displacement (char *disp_start, char *disp_end)
8755 {
8756 expressionS *exp;
8757 segT exp_seg = 0;
8758 char *save_input_line_pointer;
8759 char *gotfree_input_line;
8760 int override;
8761 i386_operand_type bigdisp, types = anydisp;
8762 int ret;
8763
8764 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8765 {
8766 as_bad (_("at most %d displacement operands are allowed"),
8767 MAX_MEMORY_OPERANDS);
8768 return 0;
8769 }
8770
8771 operand_type_set (&bigdisp, 0);
8772 if ((i.types[this_operand].bitfield.jumpabsolute)
8773 || (!current_templates->start->opcode_modifier.jump
8774 && !current_templates->start->opcode_modifier.jumpdword))
8775 {
8776 bigdisp.bitfield.disp32 = 1;
8777 override = (i.prefix[ADDR_PREFIX] != 0);
8778 if (flag_code == CODE_64BIT)
8779 {
8780 if (!override)
8781 {
8782 bigdisp.bitfield.disp32s = 1;
8783 bigdisp.bitfield.disp64 = 1;
8784 }
8785 }
8786 else if ((flag_code == CODE_16BIT) ^ override)
8787 {
8788 bigdisp.bitfield.disp32 = 0;
8789 bigdisp.bitfield.disp16 = 1;
8790 }
8791 }
8792 else
8793 {
8794 /* For PC-relative branches, the width of the displacement
8795 is dependent upon data size, not address size. */
8796 override = (i.prefix[DATA_PREFIX] != 0);
8797 if (flag_code == CODE_64BIT)
8798 {
8799 if (override || i.suffix == WORD_MNEM_SUFFIX)
8800 bigdisp.bitfield.disp16 = 1;
8801 else
8802 {
8803 bigdisp.bitfield.disp32 = 1;
8804 bigdisp.bitfield.disp32s = 1;
8805 }
8806 }
8807 else
8808 {
8809 if (!override)
8810 override = (i.suffix == (flag_code != CODE_16BIT
8811 ? WORD_MNEM_SUFFIX
8812 : LONG_MNEM_SUFFIX));
8813 bigdisp.bitfield.disp32 = 1;
8814 if ((flag_code == CODE_16BIT) ^ override)
8815 {
8816 bigdisp.bitfield.disp32 = 0;
8817 bigdisp.bitfield.disp16 = 1;
8818 }
8819 }
8820 }
8821 i.types[this_operand] = operand_type_or (i.types[this_operand],
8822 bigdisp);
8823
8824 exp = &disp_expressions[i.disp_operands];
8825 i.op[this_operand].disps = exp;
8826 i.disp_operands++;
8827 save_input_line_pointer = input_line_pointer;
8828 input_line_pointer = disp_start;
8829 END_STRING_AND_SAVE (disp_end);
8830
8831 #ifndef GCC_ASM_O_HACK
8832 #define GCC_ASM_O_HACK 0
8833 #endif
8834 #if GCC_ASM_O_HACK
8835 END_STRING_AND_SAVE (disp_end + 1);
8836 if (i.types[this_operand].bitfield.baseIndex
8837 && displacement_string_end[-1] == '+')
8838 {
8839 /* This hack is to avoid a warning when using the "o"
8840 constraint within gcc asm statements.
8841 For instance:
8842
8843 #define _set_tssldt_desc(n,addr,limit,type) \
8844 __asm__ __volatile__ ( \
8845 "movw %w2,%0\n\t" \
8846 "movw %w1,2+%0\n\t" \
8847 "rorl $16,%1\n\t" \
8848 "movb %b1,4+%0\n\t" \
8849 "movb %4,5+%0\n\t" \
8850 "movb $0,6+%0\n\t" \
8851 "movb %h1,7+%0\n\t" \
8852 "rorl $16,%1" \
8853 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8854
8855 This works great except that the output assembler ends
8856 up looking a bit weird if it turns out that there is
8857 no offset. You end up producing code that looks like:
8858
8859 #APP
8860 movw $235,(%eax)
8861 movw %dx,2+(%eax)
8862 rorl $16,%edx
8863 movb %dl,4+(%eax)
8864 movb $137,5+(%eax)
8865 movb $0,6+(%eax)
8866 movb %dh,7+(%eax)
8867 rorl $16,%edx
8868 #NO_APP
8869
8870 So here we provide the missing zero. */
8871
8872 *displacement_string_end = '0';
8873 }
8874 #endif
8875 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8876 if (gotfree_input_line)
8877 input_line_pointer = gotfree_input_line;
8878
8879 exp_seg = expression (exp);
8880
8881 SKIP_WHITESPACE ();
8882 if (*input_line_pointer)
8883 as_bad (_("junk `%s' after expression"), input_line_pointer);
8884 #if GCC_ASM_O_HACK
8885 RESTORE_END_STRING (disp_end + 1);
8886 #endif
8887 input_line_pointer = save_input_line_pointer;
8888 if (gotfree_input_line)
8889 {
8890 free (gotfree_input_line);
8891
8892 if (exp->X_op == O_constant || exp->X_op == O_register)
8893 exp->X_op = O_illegal;
8894 }
8895
8896 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8897
8898 RESTORE_END_STRING (disp_end);
8899
8900 return ret;
8901 }
8902
8903 static int
8904 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8905 i386_operand_type types, const char *disp_start)
8906 {
8907 i386_operand_type bigdisp;
8908 int ret = 1;
8909
8910 /* We do this to make sure that the section symbol is in
8911 the symbol table. We will ultimately change the relocation
8912 to be relative to the beginning of the section. */
8913 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8914 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8915 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8916 {
8917 if (exp->X_op != O_symbol)
8918 goto inv_disp;
8919
8920 if (S_IS_LOCAL (exp->X_add_symbol)
8921 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8922 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8923 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8924 exp->X_op = O_subtract;
8925 exp->X_op_symbol = GOT_symbol;
8926 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8927 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8928 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8929 i.reloc[this_operand] = BFD_RELOC_64;
8930 else
8931 i.reloc[this_operand] = BFD_RELOC_32;
8932 }
8933
8934 else if (exp->X_op == O_absent
8935 || exp->X_op == O_illegal
8936 || exp->X_op == O_big)
8937 {
8938 inv_disp:
8939 as_bad (_("missing or invalid displacement expression `%s'"),
8940 disp_start);
8941 ret = 0;
8942 }
8943
8944 else if (flag_code == CODE_64BIT
8945 && !i.prefix[ADDR_PREFIX]
8946 && exp->X_op == O_constant)
8947 {
8948 /* Since displacement is signed extended to 64bit, don't allow
8949 disp32 and turn off disp32s if they are out of range. */
8950 i.types[this_operand].bitfield.disp32 = 0;
8951 if (!fits_in_signed_long (exp->X_add_number))
8952 {
8953 i.types[this_operand].bitfield.disp32s = 0;
8954 if (i.types[this_operand].bitfield.baseindex)
8955 {
8956 as_bad (_("0x%lx out range of signed 32bit displacement"),
8957 (long) exp->X_add_number);
8958 ret = 0;
8959 }
8960 }
8961 }
8962
8963 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8964 else if (exp->X_op != O_constant
8965 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8966 && exp_seg != absolute_section
8967 && exp_seg != text_section
8968 && exp_seg != data_section
8969 && exp_seg != bss_section
8970 && exp_seg != undefined_section
8971 && !bfd_is_com_section (exp_seg))
8972 {
8973 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8974 ret = 0;
8975 }
8976 #endif
8977
8978 /* Check if this is a displacement only operand. */
8979 bigdisp = i.types[this_operand];
8980 bigdisp.bitfield.disp8 = 0;
8981 bigdisp.bitfield.disp16 = 0;
8982 bigdisp.bitfield.disp32 = 0;
8983 bigdisp.bitfield.disp32s = 0;
8984 bigdisp.bitfield.disp64 = 0;
8985 if (operand_type_all_zero (&bigdisp))
8986 i.types[this_operand] = operand_type_and (i.types[this_operand],
8987 types);
8988
8989 return ret;
8990 }
8991
8992 /* Return the active addressing mode, taking address override and
8993 registers forming the address into consideration. Update the
8994 address override prefix if necessary. */
8995
8996 static enum flag_code
8997 i386_addressing_mode (void)
8998 {
8999 enum flag_code addr_mode;
9000
9001 if (i.prefix[ADDR_PREFIX])
9002 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9003 else
9004 {
9005 addr_mode = flag_code;
9006
9007 #if INFER_ADDR_PREFIX
9008 if (i.mem_operands == 0)
9009 {
9010 /* Infer address prefix from the first memory operand. */
9011 const reg_entry *addr_reg = i.base_reg;
9012
9013 if (addr_reg == NULL)
9014 addr_reg = i.index_reg;
9015
9016 if (addr_reg)
9017 {
9018 if (addr_reg->reg_num == RegEip
9019 || addr_reg->reg_num == RegEiz
9020 || addr_reg->reg_type.bitfield.dword)
9021 addr_mode = CODE_32BIT;
9022 else if (flag_code != CODE_64BIT
9023 && addr_reg->reg_type.bitfield.word)
9024 addr_mode = CODE_16BIT;
9025
9026 if (addr_mode != flag_code)
9027 {
9028 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9029 i.prefixes += 1;
9030 /* Change the size of any displacement too. At most one
9031 of Disp16 or Disp32 is set.
9032 FIXME. There doesn't seem to be any real need for
9033 separate Disp16 and Disp32 flags. The same goes for
9034 Imm16 and Imm32. Removing them would probably clean
9035 up the code quite a lot. */
9036 if (flag_code != CODE_64BIT
9037 && (i.types[this_operand].bitfield.disp16
9038 || i.types[this_operand].bitfield.disp32))
9039 i.types[this_operand]
9040 = operand_type_xor (i.types[this_operand], disp16_32);
9041 }
9042 }
9043 }
9044 #endif
9045 }
9046
9047 return addr_mode;
9048 }
9049
9050 /* Make sure the memory operand we've been dealt is valid.
9051 Return 1 on success, 0 on a failure. */
9052
9053 static int
9054 i386_index_check (const char *operand_string)
9055 {
9056 const char *kind = "base/index";
9057 enum flag_code addr_mode = i386_addressing_mode ();
9058
9059 if (current_templates->start->opcode_modifier.isstring
9060 && !current_templates->start->opcode_modifier.immext
9061 && (current_templates->end[-1].opcode_modifier.isstring
9062 || i.mem_operands))
9063 {
9064 /* Memory operands of string insns are special in that they only allow
9065 a single register (rDI, rSI, or rBX) as their memory address. */
9066 const reg_entry *expected_reg;
9067 static const char *di_si[][2] =
9068 {
9069 { "esi", "edi" },
9070 { "si", "di" },
9071 { "rsi", "rdi" }
9072 };
9073 static const char *bx[] = { "ebx", "bx", "rbx" };
9074
9075 kind = "string address";
9076
9077 if (current_templates->start->opcode_modifier.repprefixok)
9078 {
9079 i386_operand_type type = current_templates->end[-1].operand_types[0];
9080
9081 if (!type.bitfield.baseindex
9082 || ((!i.mem_operands != !intel_syntax)
9083 && current_templates->end[-1].operand_types[1]
9084 .bitfield.baseindex))
9085 type = current_templates->end[-1].operand_types[1];
9086 expected_reg = hash_find (reg_hash,
9087 di_si[addr_mode][type.bitfield.esseg]);
9088
9089 }
9090 else
9091 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9092
9093 if (i.base_reg != expected_reg
9094 || i.index_reg
9095 || operand_type_check (i.types[this_operand], disp))
9096 {
9097 /* The second memory operand must have the same size as
9098 the first one. */
9099 if (i.mem_operands
9100 && i.base_reg
9101 && !((addr_mode == CODE_64BIT
9102 && i.base_reg->reg_type.bitfield.qword)
9103 || (addr_mode == CODE_32BIT
9104 ? i.base_reg->reg_type.bitfield.dword
9105 : i.base_reg->reg_type.bitfield.word)))
9106 goto bad_address;
9107
9108 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9109 operand_string,
9110 intel_syntax ? '[' : '(',
9111 register_prefix,
9112 expected_reg->reg_name,
9113 intel_syntax ? ']' : ')');
9114 return 1;
9115 }
9116 else
9117 return 1;
9118
9119 bad_address:
9120 as_bad (_("`%s' is not a valid %s expression"),
9121 operand_string, kind);
9122 return 0;
9123 }
9124 else
9125 {
9126 if (addr_mode != CODE_16BIT)
9127 {
9128 /* 32-bit/64-bit checks. */
9129 if ((i.base_reg
9130 && (addr_mode == CODE_64BIT
9131 ? !i.base_reg->reg_type.bitfield.qword
9132 : !i.base_reg->reg_type.bitfield.dword)
9133 && (i.index_reg
9134 || (i.base_reg->reg_num
9135 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9136 || (i.index_reg
9137 && !i.index_reg->reg_type.bitfield.xmmword
9138 && !i.index_reg->reg_type.bitfield.ymmword
9139 && !i.index_reg->reg_type.bitfield.zmmword
9140 && ((addr_mode == CODE_64BIT
9141 ? !(i.index_reg->reg_type.bitfield.qword
9142 || i.index_reg->reg_num == RegRiz)
9143 : !(i.index_reg->reg_type.bitfield.dword
9144 || i.index_reg->reg_num == RegEiz))
9145 || !i.index_reg->reg_type.bitfield.baseindex)))
9146 goto bad_address;
9147
9148 /* bndmk, bndldx, and bndstx have special restrictions. */
9149 if (current_templates->start->base_opcode == 0xf30f1b
9150 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9151 {
9152 /* They cannot use RIP-relative addressing. */
9153 if (i.base_reg && i.base_reg->reg_num == RegRip)
9154 {
9155 as_bad (_("`%s' cannot be used here"), operand_string);
9156 return 0;
9157 }
9158
9159 /* bndldx and bndstx ignore their scale factor. */
9160 if (current_templates->start->base_opcode != 0xf30f1b
9161 && i.log2_scale_factor)
9162 as_warn (_("register scaling is being ignored here"));
9163 }
9164 }
9165 else
9166 {
9167 /* 16-bit checks. */
9168 if ((i.base_reg
9169 && (!i.base_reg->reg_type.bitfield.word
9170 || !i.base_reg->reg_type.bitfield.baseindex))
9171 || (i.index_reg
9172 && (!i.index_reg->reg_type.bitfield.word
9173 || !i.index_reg->reg_type.bitfield.baseindex
9174 || !(i.base_reg
9175 && i.base_reg->reg_num < 6
9176 && i.index_reg->reg_num >= 6
9177 && i.log2_scale_factor == 0))))
9178 goto bad_address;
9179 }
9180 }
9181 return 1;
9182 }
9183
9184 /* Handle vector immediates. */
9185
9186 static int
9187 RC_SAE_immediate (const char *imm_start)
9188 {
9189 unsigned int match_found, j;
9190 const char *pstr = imm_start;
9191 expressionS *exp;
9192
9193 if (*pstr != '{')
9194 return 0;
9195
9196 pstr++;
9197 match_found = 0;
9198 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9199 {
9200 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9201 {
9202 if (!i.rounding)
9203 {
9204 rc_op.type = RC_NamesTable[j].type;
9205 rc_op.operand = this_operand;
9206 i.rounding = &rc_op;
9207 }
9208 else
9209 {
9210 as_bad (_("duplicated `%s'"), imm_start);
9211 return 0;
9212 }
9213 pstr += RC_NamesTable[j].len;
9214 match_found = 1;
9215 break;
9216 }
9217 }
9218 if (!match_found)
9219 return 0;
9220
9221 if (*pstr++ != '}')
9222 {
9223 as_bad (_("Missing '}': '%s'"), imm_start);
9224 return 0;
9225 }
9226 /* RC/SAE immediate string should contain nothing more. */;
9227 if (*pstr != 0)
9228 {
9229 as_bad (_("Junk after '}': '%s'"), imm_start);
9230 return 0;
9231 }
9232
9233 exp = &im_expressions[i.imm_operands++];
9234 i.op[this_operand].imms = exp;
9235
9236 exp->X_op = O_constant;
9237 exp->X_add_number = 0;
9238 exp->X_add_symbol = (symbolS *) 0;
9239 exp->X_op_symbol = (symbolS *) 0;
9240
9241 i.types[this_operand].bitfield.imm8 = 1;
9242 return 1;
9243 }
9244
9245 /* Only string instructions can have a second memory operand, so
9246 reduce current_templates to just those if it contains any. */
9247 static int
9248 maybe_adjust_templates (void)
9249 {
9250 const insn_template *t;
9251
9252 gas_assert (i.mem_operands == 1);
9253
9254 for (t = current_templates->start; t < current_templates->end; ++t)
9255 if (t->opcode_modifier.isstring)
9256 break;
9257
9258 if (t < current_templates->end)
9259 {
9260 static templates aux_templates;
9261 bfd_boolean recheck;
9262
9263 aux_templates.start = t;
9264 for (; t < current_templates->end; ++t)
9265 if (!t->opcode_modifier.isstring)
9266 break;
9267 aux_templates.end = t;
9268
9269 /* Determine whether to re-check the first memory operand. */
9270 recheck = (aux_templates.start != current_templates->start
9271 || t != current_templates->end);
9272
9273 current_templates = &aux_templates;
9274
9275 if (recheck)
9276 {
9277 i.mem_operands = 0;
9278 if (i.memop1_string != NULL
9279 && i386_index_check (i.memop1_string) == 0)
9280 return 0;
9281 i.mem_operands = 1;
9282 }
9283 }
9284
9285 return 1;
9286 }
9287
9288 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9289 on error. */
9290
9291 static int
9292 i386_att_operand (char *operand_string)
9293 {
9294 const reg_entry *r;
9295 char *end_op;
9296 char *op_string = operand_string;
9297
9298 if (is_space_char (*op_string))
9299 ++op_string;
9300
9301 /* We check for an absolute prefix (differentiating,
9302 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9303 if (*op_string == ABSOLUTE_PREFIX)
9304 {
9305 ++op_string;
9306 if (is_space_char (*op_string))
9307 ++op_string;
9308 i.types[this_operand].bitfield.jumpabsolute = 1;
9309 }
9310
9311 /* Check if operand is a register. */
9312 if ((r = parse_register (op_string, &end_op)) != NULL)
9313 {
9314 i386_operand_type temp;
9315
9316 /* Check for a segment override by searching for ':' after a
9317 segment register. */
9318 op_string = end_op;
9319 if (is_space_char (*op_string))
9320 ++op_string;
9321 if (*op_string == ':'
9322 && (r->reg_type.bitfield.sreg2
9323 || r->reg_type.bitfield.sreg3))
9324 {
9325 switch (r->reg_num)
9326 {
9327 case 0:
9328 i.seg[i.mem_operands] = &es;
9329 break;
9330 case 1:
9331 i.seg[i.mem_operands] = &cs;
9332 break;
9333 case 2:
9334 i.seg[i.mem_operands] = &ss;
9335 break;
9336 case 3:
9337 i.seg[i.mem_operands] = &ds;
9338 break;
9339 case 4:
9340 i.seg[i.mem_operands] = &fs;
9341 break;
9342 case 5:
9343 i.seg[i.mem_operands] = &gs;
9344 break;
9345 }
9346
9347 /* Skip the ':' and whitespace. */
9348 ++op_string;
9349 if (is_space_char (*op_string))
9350 ++op_string;
9351
9352 if (!is_digit_char (*op_string)
9353 && !is_identifier_char (*op_string)
9354 && *op_string != '('
9355 && *op_string != ABSOLUTE_PREFIX)
9356 {
9357 as_bad (_("bad memory operand `%s'"), op_string);
9358 return 0;
9359 }
9360 /* Handle case of %es:*foo. */
9361 if (*op_string == ABSOLUTE_PREFIX)
9362 {
9363 ++op_string;
9364 if (is_space_char (*op_string))
9365 ++op_string;
9366 i.types[this_operand].bitfield.jumpabsolute = 1;
9367 }
9368 goto do_memory_reference;
9369 }
9370
9371 /* Handle vector operations. */
9372 if (*op_string == '{')
9373 {
9374 op_string = check_VecOperations (op_string, NULL);
9375 if (op_string == NULL)
9376 return 0;
9377 }
9378
9379 if (*op_string)
9380 {
9381 as_bad (_("junk `%s' after register"), op_string);
9382 return 0;
9383 }
9384 temp = r->reg_type;
9385 temp.bitfield.baseindex = 0;
9386 i.types[this_operand] = operand_type_or (i.types[this_operand],
9387 temp);
9388 i.types[this_operand].bitfield.unspecified = 0;
9389 i.op[this_operand].regs = r;
9390 i.reg_operands++;
9391 }
9392 else if (*op_string == REGISTER_PREFIX)
9393 {
9394 as_bad (_("bad register name `%s'"), op_string);
9395 return 0;
9396 }
9397 else if (*op_string == IMMEDIATE_PREFIX)
9398 {
9399 ++op_string;
9400 if (i.types[this_operand].bitfield.jumpabsolute)
9401 {
9402 as_bad (_("immediate operand illegal with absolute jump"));
9403 return 0;
9404 }
9405 if (!i386_immediate (op_string))
9406 return 0;
9407 }
9408 else if (RC_SAE_immediate (operand_string))
9409 {
9410 /* If it is a RC or SAE immediate, do nothing. */
9411 ;
9412 }
9413 else if (is_digit_char (*op_string)
9414 || is_identifier_char (*op_string)
9415 || *op_string == '"'
9416 || *op_string == '(')
9417 {
9418 /* This is a memory reference of some sort. */
9419 char *base_string;
9420
9421 /* Start and end of displacement string expression (if found). */
9422 char *displacement_string_start;
9423 char *displacement_string_end;
9424 char *vop_start;
9425
9426 do_memory_reference:
9427 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9428 return 0;
9429 if ((i.mem_operands == 1
9430 && !current_templates->start->opcode_modifier.isstring)
9431 || i.mem_operands == 2)
9432 {
9433 as_bad (_("too many memory references for `%s'"),
9434 current_templates->start->name);
9435 return 0;
9436 }
9437
9438 /* Check for base index form. We detect the base index form by
9439 looking for an ')' at the end of the operand, searching
9440 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9441 after the '('. */
9442 base_string = op_string + strlen (op_string);
9443
9444 /* Handle vector operations. */
9445 vop_start = strchr (op_string, '{');
9446 if (vop_start && vop_start < base_string)
9447 {
9448 if (check_VecOperations (vop_start, base_string) == NULL)
9449 return 0;
9450 base_string = vop_start;
9451 }
9452
9453 --base_string;
9454 if (is_space_char (*base_string))
9455 --base_string;
9456
9457 /* If we only have a displacement, set-up for it to be parsed later. */
9458 displacement_string_start = op_string;
9459 displacement_string_end = base_string + 1;
9460
9461 if (*base_string == ')')
9462 {
9463 char *temp_string;
9464 unsigned int parens_balanced = 1;
9465 /* We've already checked that the number of left & right ()'s are
9466 equal, so this loop will not be infinite. */
9467 do
9468 {
9469 base_string--;
9470 if (*base_string == ')')
9471 parens_balanced++;
9472 if (*base_string == '(')
9473 parens_balanced--;
9474 }
9475 while (parens_balanced);
9476
9477 temp_string = base_string;
9478
9479 /* Skip past '(' and whitespace. */
9480 ++base_string;
9481 if (is_space_char (*base_string))
9482 ++base_string;
9483
9484 if (*base_string == ','
9485 || ((i.base_reg = parse_register (base_string, &end_op))
9486 != NULL))
9487 {
9488 displacement_string_end = temp_string;
9489
9490 i.types[this_operand].bitfield.baseindex = 1;
9491
9492 if (i.base_reg)
9493 {
9494 base_string = end_op;
9495 if (is_space_char (*base_string))
9496 ++base_string;
9497 }
9498
9499 /* There may be an index reg or scale factor here. */
9500 if (*base_string == ',')
9501 {
9502 ++base_string;
9503 if (is_space_char (*base_string))
9504 ++base_string;
9505
9506 if ((i.index_reg = parse_register (base_string, &end_op))
9507 != NULL)
9508 {
9509 base_string = end_op;
9510 if (is_space_char (*base_string))
9511 ++base_string;
9512 if (*base_string == ',')
9513 {
9514 ++base_string;
9515 if (is_space_char (*base_string))
9516 ++base_string;
9517 }
9518 else if (*base_string != ')')
9519 {
9520 as_bad (_("expecting `,' or `)' "
9521 "after index register in `%s'"),
9522 operand_string);
9523 return 0;
9524 }
9525 }
9526 else if (*base_string == REGISTER_PREFIX)
9527 {
9528 end_op = strchr (base_string, ',');
9529 if (end_op)
9530 *end_op = '\0';
9531 as_bad (_("bad register name `%s'"), base_string);
9532 return 0;
9533 }
9534
9535 /* Check for scale factor. */
9536 if (*base_string != ')')
9537 {
9538 char *end_scale = i386_scale (base_string);
9539
9540 if (!end_scale)
9541 return 0;
9542
9543 base_string = end_scale;
9544 if (is_space_char (*base_string))
9545 ++base_string;
9546 if (*base_string != ')')
9547 {
9548 as_bad (_("expecting `)' "
9549 "after scale factor in `%s'"),
9550 operand_string);
9551 return 0;
9552 }
9553 }
9554 else if (!i.index_reg)
9555 {
9556 as_bad (_("expecting index register or scale factor "
9557 "after `,'; got '%c'"),
9558 *base_string);
9559 return 0;
9560 }
9561 }
9562 else if (*base_string != ')')
9563 {
9564 as_bad (_("expecting `,' or `)' "
9565 "after base register in `%s'"),
9566 operand_string);
9567 return 0;
9568 }
9569 }
9570 else if (*base_string == REGISTER_PREFIX)
9571 {
9572 end_op = strchr (base_string, ',');
9573 if (end_op)
9574 *end_op = '\0';
9575 as_bad (_("bad register name `%s'"), base_string);
9576 return 0;
9577 }
9578 }
9579
9580 /* If there's an expression beginning the operand, parse it,
9581 assuming displacement_string_start and
9582 displacement_string_end are meaningful. */
9583 if (displacement_string_start != displacement_string_end)
9584 {
9585 if (!i386_displacement (displacement_string_start,
9586 displacement_string_end))
9587 return 0;
9588 }
9589
9590 /* Special case for (%dx) while doing input/output op. */
9591 if (i.base_reg
9592 && operand_type_equal (&i.base_reg->reg_type,
9593 &reg16_inoutportreg)
9594 && i.index_reg == 0
9595 && i.log2_scale_factor == 0
9596 && i.seg[i.mem_operands] == 0
9597 && !operand_type_check (i.types[this_operand], disp))
9598 {
9599 i.types[this_operand] = inoutportreg;
9600 return 1;
9601 }
9602
9603 if (i386_index_check (operand_string) == 0)
9604 return 0;
9605 i.types[this_operand].bitfield.mem = 1;
9606 if (i.mem_operands == 0)
9607 i.memop1_string = xstrdup (operand_string);
9608 i.mem_operands++;
9609 }
9610 else
9611 {
9612 /* It's not a memory operand; argh! */
9613 as_bad (_("invalid char %s beginning operand %d `%s'"),
9614 output_invalid (*op_string),
9615 this_operand + 1,
9616 op_string);
9617 return 0;
9618 }
9619 return 1; /* Normal return. */
9620 }
9621 \f
9622 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9623 that an rs_machine_dependent frag may reach. */
9624
9625 unsigned int
9626 i386_frag_max_var (fragS *frag)
9627 {
9628 /* The only relaxable frags are for jumps.
9629 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9630 gas_assert (frag->fr_type == rs_machine_dependent);
9631 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9632 }
9633
9634 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9635 static int
9636 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9637 {
9638 /* STT_GNU_IFUNC symbol must go through PLT. */
9639 if ((symbol_get_bfdsym (fr_symbol)->flags
9640 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9641 return 0;
9642
9643 if (!S_IS_EXTERNAL (fr_symbol))
9644 /* Symbol may be weak or local. */
9645 return !S_IS_WEAK (fr_symbol);
9646
9647 /* Global symbols with non-default visibility can't be preempted. */
9648 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9649 return 1;
9650
9651 if (fr_var != NO_RELOC)
9652 switch ((enum bfd_reloc_code_real) fr_var)
9653 {
9654 case BFD_RELOC_386_PLT32:
9655 case BFD_RELOC_X86_64_PLT32:
9656 /* Symbol with PLT relocation may be preempted. */
9657 return 0;
9658 default:
9659 abort ();
9660 }
9661
9662 /* Global symbols with default visibility in a shared library may be
9663 preempted by another definition. */
9664 return !shared;
9665 }
9666 #endif
9667
9668 /* md_estimate_size_before_relax()
9669
9670 Called just before relax() for rs_machine_dependent frags. The x86
9671 assembler uses these frags to handle variable size jump
9672 instructions.
9673
9674 Any symbol that is now undefined will not become defined.
9675 Return the correct fr_subtype in the frag.
9676 Return the initial "guess for variable size of frag" to caller.
9677 The guess is actually the growth beyond the fixed part. Whatever
9678 we do to grow the fixed or variable part contributes to our
9679 returned value. */
9680
9681 int
9682 md_estimate_size_before_relax (fragS *fragP, segT segment)
9683 {
9684 /* We've already got fragP->fr_subtype right; all we have to do is
9685 check for un-relaxable symbols. On an ELF system, we can't relax
9686 an externally visible symbol, because it may be overridden by a
9687 shared library. */
9688 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9689 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9690 || (IS_ELF
9691 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9692 fragP->fr_var))
9693 #endif
9694 #if defined (OBJ_COFF) && defined (TE_PE)
9695 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9696 && S_IS_WEAK (fragP->fr_symbol))
9697 #endif
9698 )
9699 {
9700 /* Symbol is undefined in this segment, or we need to keep a
9701 reloc so that weak symbols can be overridden. */
9702 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9703 enum bfd_reloc_code_real reloc_type;
9704 unsigned char *opcode;
9705 int old_fr_fix;
9706
9707 if (fragP->fr_var != NO_RELOC)
9708 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9709 else if (size == 2)
9710 reloc_type = BFD_RELOC_16_PCREL;
9711 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9712 else if (need_plt32_p (fragP->fr_symbol))
9713 reloc_type = BFD_RELOC_X86_64_PLT32;
9714 #endif
9715 else
9716 reloc_type = BFD_RELOC_32_PCREL;
9717
9718 old_fr_fix = fragP->fr_fix;
9719 opcode = (unsigned char *) fragP->fr_opcode;
9720
9721 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9722 {
9723 case UNCOND_JUMP:
9724 /* Make jmp (0xeb) a (d)word displacement jump. */
9725 opcode[0] = 0xe9;
9726 fragP->fr_fix += size;
9727 fix_new (fragP, old_fr_fix, size,
9728 fragP->fr_symbol,
9729 fragP->fr_offset, 1,
9730 reloc_type);
9731 break;
9732
9733 case COND_JUMP86:
9734 if (size == 2
9735 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9736 {
9737 /* Negate the condition, and branch past an
9738 unconditional jump. */
9739 opcode[0] ^= 1;
9740 opcode[1] = 3;
9741 /* Insert an unconditional jump. */
9742 opcode[2] = 0xe9;
9743 /* We added two extra opcode bytes, and have a two byte
9744 offset. */
9745 fragP->fr_fix += 2 + 2;
9746 fix_new (fragP, old_fr_fix + 2, 2,
9747 fragP->fr_symbol,
9748 fragP->fr_offset, 1,
9749 reloc_type);
9750 break;
9751 }
9752 /* Fall through. */
9753
9754 case COND_JUMP:
9755 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9756 {
9757 fixS *fixP;
9758
9759 fragP->fr_fix += 1;
9760 fixP = fix_new (fragP, old_fr_fix, 1,
9761 fragP->fr_symbol,
9762 fragP->fr_offset, 1,
9763 BFD_RELOC_8_PCREL);
9764 fixP->fx_signed = 1;
9765 break;
9766 }
9767
9768 /* This changes the byte-displacement jump 0x7N
9769 to the (d)word-displacement jump 0x0f,0x8N. */
9770 opcode[1] = opcode[0] + 0x10;
9771 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9772 /* We've added an opcode byte. */
9773 fragP->fr_fix += 1 + size;
9774 fix_new (fragP, old_fr_fix + 1, size,
9775 fragP->fr_symbol,
9776 fragP->fr_offset, 1,
9777 reloc_type);
9778 break;
9779
9780 default:
9781 BAD_CASE (fragP->fr_subtype);
9782 break;
9783 }
9784 frag_wane (fragP);
9785 return fragP->fr_fix - old_fr_fix;
9786 }
9787
9788 /* Guess size depending on current relax state. Initially the relax
9789 state will correspond to a short jump and we return 1, because
9790 the variable part of the frag (the branch offset) is one byte
9791 long. However, we can relax a section more than once and in that
9792 case we must either set fr_subtype back to the unrelaxed state,
9793 or return the value for the appropriate branch. */
9794 return md_relax_table[fragP->fr_subtype].rlx_length;
9795 }
9796
9797 /* Called after relax() is finished.
9798
9799 In: Address of frag.
9800 fr_type == rs_machine_dependent.
9801 fr_subtype is what the address relaxed to.
9802
9803 Out: Any fixSs and constants are set up.
9804 Caller will turn frag into a ".space 0". */
9805
9806 void
9807 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9808 fragS *fragP)
9809 {
9810 unsigned char *opcode;
9811 unsigned char *where_to_put_displacement = NULL;
9812 offsetT target_address;
9813 offsetT opcode_address;
9814 unsigned int extension = 0;
9815 offsetT displacement_from_opcode_start;
9816
9817 opcode = (unsigned char *) fragP->fr_opcode;
9818
9819 /* Address we want to reach in file space. */
9820 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9821
9822 /* Address opcode resides at in file space. */
9823 opcode_address = fragP->fr_address + fragP->fr_fix;
9824
9825 /* Displacement from opcode start to fill into instruction. */
9826 displacement_from_opcode_start = target_address - opcode_address;
9827
9828 if ((fragP->fr_subtype & BIG) == 0)
9829 {
9830 /* Don't have to change opcode. */
9831 extension = 1; /* 1 opcode + 1 displacement */
9832 where_to_put_displacement = &opcode[1];
9833 }
9834 else
9835 {
9836 if (no_cond_jump_promotion
9837 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9838 as_warn_where (fragP->fr_file, fragP->fr_line,
9839 _("long jump required"));
9840
9841 switch (fragP->fr_subtype)
9842 {
9843 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9844 extension = 4; /* 1 opcode + 4 displacement */
9845 opcode[0] = 0xe9;
9846 where_to_put_displacement = &opcode[1];
9847 break;
9848
9849 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9850 extension = 2; /* 1 opcode + 2 displacement */
9851 opcode[0] = 0xe9;
9852 where_to_put_displacement = &opcode[1];
9853 break;
9854
9855 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9856 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9857 extension = 5; /* 2 opcode + 4 displacement */
9858 opcode[1] = opcode[0] + 0x10;
9859 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9860 where_to_put_displacement = &opcode[2];
9861 break;
9862
9863 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9864 extension = 3; /* 2 opcode + 2 displacement */
9865 opcode[1] = opcode[0] + 0x10;
9866 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9867 where_to_put_displacement = &opcode[2];
9868 break;
9869
9870 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9871 extension = 4;
9872 opcode[0] ^= 1;
9873 opcode[1] = 3;
9874 opcode[2] = 0xe9;
9875 where_to_put_displacement = &opcode[3];
9876 break;
9877
9878 default:
9879 BAD_CASE (fragP->fr_subtype);
9880 break;
9881 }
9882 }
9883
9884 /* If size if less then four we are sure that the operand fits,
9885 but if it's 4, then it could be that the displacement is larger
9886 then -/+ 2GB. */
9887 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9888 && object_64bit
9889 && ((addressT) (displacement_from_opcode_start - extension
9890 + ((addressT) 1 << 31))
9891 > (((addressT) 2 << 31) - 1)))
9892 {
9893 as_bad_where (fragP->fr_file, fragP->fr_line,
9894 _("jump target out of range"));
9895 /* Make us emit 0. */
9896 displacement_from_opcode_start = extension;
9897 }
9898 /* Now put displacement after opcode. */
9899 md_number_to_chars ((char *) where_to_put_displacement,
9900 (valueT) (displacement_from_opcode_start - extension),
9901 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9902 fragP->fr_fix += extension;
9903 }
9904 \f
9905 /* Apply a fixup (fixP) to segment data, once it has been determined
9906 by our caller that we have all the info we need to fix it up.
9907
9908 Parameter valP is the pointer to the value of the bits.
9909
9910 On the 386, immediates, displacements, and data pointers are all in
9911 the same (little-endian) format, so we don't need to care about which
9912 we are handling. */
9913
9914 void
9915 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9916 {
9917 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9918 valueT value = *valP;
9919
9920 #if !defined (TE_Mach)
9921 if (fixP->fx_pcrel)
9922 {
9923 switch (fixP->fx_r_type)
9924 {
9925 default:
9926 break;
9927
9928 case BFD_RELOC_64:
9929 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9930 break;
9931 case BFD_RELOC_32:
9932 case BFD_RELOC_X86_64_32S:
9933 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9934 break;
9935 case BFD_RELOC_16:
9936 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9937 break;
9938 case BFD_RELOC_8:
9939 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9940 break;
9941 }
9942 }
9943
9944 if (fixP->fx_addsy != NULL
9945 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9946 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9947 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9948 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9949 && !use_rela_relocations)
9950 {
9951 /* This is a hack. There should be a better way to handle this.
9952 This covers for the fact that bfd_install_relocation will
9953 subtract the current location (for partial_inplace, PC relative
9954 relocations); see more below. */
9955 #ifndef OBJ_AOUT
9956 if (IS_ELF
9957 #ifdef TE_PE
9958 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9959 #endif
9960 )
9961 value += fixP->fx_where + fixP->fx_frag->fr_address;
9962 #endif
9963 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9964 if (IS_ELF)
9965 {
9966 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9967
9968 if ((sym_seg == seg
9969 || (symbol_section_p (fixP->fx_addsy)
9970 && sym_seg != absolute_section))
9971 && !generic_force_reloc (fixP))
9972 {
9973 /* Yes, we add the values in twice. This is because
9974 bfd_install_relocation subtracts them out again. I think
9975 bfd_install_relocation is broken, but I don't dare change
9976 it. FIXME. */
9977 value += fixP->fx_where + fixP->fx_frag->fr_address;
9978 }
9979 }
9980 #endif
9981 #if defined (OBJ_COFF) && defined (TE_PE)
9982 /* For some reason, the PE format does not store a
9983 section address offset for a PC relative symbol. */
9984 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9985 || S_IS_WEAK (fixP->fx_addsy))
9986 value += md_pcrel_from (fixP);
9987 #endif
9988 }
9989 #if defined (OBJ_COFF) && defined (TE_PE)
9990 if (fixP->fx_addsy != NULL
9991 && S_IS_WEAK (fixP->fx_addsy)
9992 /* PR 16858: Do not modify weak function references. */
9993 && ! fixP->fx_pcrel)
9994 {
9995 #if !defined (TE_PEP)
9996 /* For x86 PE weak function symbols are neither PC-relative
9997 nor do they set S_IS_FUNCTION. So the only reliable way
9998 to detect them is to check the flags of their containing
9999 section. */
10000 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10001 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10002 ;
10003 else
10004 #endif
10005 value -= S_GET_VALUE (fixP->fx_addsy);
10006 }
10007 #endif
10008
10009 /* Fix a few things - the dynamic linker expects certain values here,
10010 and we must not disappoint it. */
10011 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10012 if (IS_ELF && fixP->fx_addsy)
10013 switch (fixP->fx_r_type)
10014 {
10015 case BFD_RELOC_386_PLT32:
10016 case BFD_RELOC_X86_64_PLT32:
10017 /* Make the jump instruction point to the address of the operand. At
10018 runtime we merely add the offset to the actual PLT entry. */
10019 value = -4;
10020 break;
10021
10022 case BFD_RELOC_386_TLS_GD:
10023 case BFD_RELOC_386_TLS_LDM:
10024 case BFD_RELOC_386_TLS_IE_32:
10025 case BFD_RELOC_386_TLS_IE:
10026 case BFD_RELOC_386_TLS_GOTIE:
10027 case BFD_RELOC_386_TLS_GOTDESC:
10028 case BFD_RELOC_X86_64_TLSGD:
10029 case BFD_RELOC_X86_64_TLSLD:
10030 case BFD_RELOC_X86_64_GOTTPOFF:
10031 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10032 value = 0; /* Fully resolved at runtime. No addend. */
10033 /* Fallthrough */
10034 case BFD_RELOC_386_TLS_LE:
10035 case BFD_RELOC_386_TLS_LDO_32:
10036 case BFD_RELOC_386_TLS_LE_32:
10037 case BFD_RELOC_X86_64_DTPOFF32:
10038 case BFD_RELOC_X86_64_DTPOFF64:
10039 case BFD_RELOC_X86_64_TPOFF32:
10040 case BFD_RELOC_X86_64_TPOFF64:
10041 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10042 break;
10043
10044 case BFD_RELOC_386_TLS_DESC_CALL:
10045 case BFD_RELOC_X86_64_TLSDESC_CALL:
10046 value = 0; /* Fully resolved at runtime. No addend. */
10047 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10048 fixP->fx_done = 0;
10049 return;
10050
10051 case BFD_RELOC_VTABLE_INHERIT:
10052 case BFD_RELOC_VTABLE_ENTRY:
10053 fixP->fx_done = 0;
10054 return;
10055
10056 default:
10057 break;
10058 }
10059 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10060 *valP = value;
10061 #endif /* !defined (TE_Mach) */
10062
10063 /* Are we finished with this relocation now? */
10064 if (fixP->fx_addsy == NULL)
10065 fixP->fx_done = 1;
10066 #if defined (OBJ_COFF) && defined (TE_PE)
10067 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10068 {
10069 fixP->fx_done = 0;
10070 /* Remember value for tc_gen_reloc. */
10071 fixP->fx_addnumber = value;
10072 /* Clear out the frag for now. */
10073 value = 0;
10074 }
10075 #endif
10076 else if (use_rela_relocations)
10077 {
10078 fixP->fx_no_overflow = 1;
10079 /* Remember value for tc_gen_reloc. */
10080 fixP->fx_addnumber = value;
10081 value = 0;
10082 }
10083
10084 md_number_to_chars (p, value, fixP->fx_size);
10085 }
10086 \f
10087 const char *
10088 md_atof (int type, char *litP, int *sizeP)
10089 {
10090 /* This outputs the LITTLENUMs in REVERSE order;
10091 in accord with the bigendian 386. */
10092 return ieee_md_atof (type, litP, sizeP, FALSE);
10093 }
10094 \f
10095 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10096
10097 static char *
10098 output_invalid (int c)
10099 {
10100 if (ISPRINT (c))
10101 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10102 "'%c'", c);
10103 else
10104 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10105 "(0x%x)", (unsigned char) c);
10106 return output_invalid_buf;
10107 }
10108
10109 /* REG_STRING starts *before* REGISTER_PREFIX. */
10110
10111 static const reg_entry *
10112 parse_real_register (char *reg_string, char **end_op)
10113 {
10114 char *s = reg_string;
10115 char *p;
10116 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10117 const reg_entry *r;
10118
10119 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10120 if (*s == REGISTER_PREFIX)
10121 ++s;
10122
10123 if (is_space_char (*s))
10124 ++s;
10125
10126 p = reg_name_given;
10127 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10128 {
10129 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10130 return (const reg_entry *) NULL;
10131 s++;
10132 }
10133
10134 /* For naked regs, make sure that we are not dealing with an identifier.
10135 This prevents confusing an identifier like `eax_var' with register
10136 `eax'. */
10137 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10138 return (const reg_entry *) NULL;
10139
10140 *end_op = s;
10141
10142 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10143
10144 /* Handle floating point regs, allowing spaces in the (i) part. */
10145 if (r == i386_regtab /* %st is first entry of table */)
10146 {
10147 if (is_space_char (*s))
10148 ++s;
10149 if (*s == '(')
10150 {
10151 ++s;
10152 if (is_space_char (*s))
10153 ++s;
10154 if (*s >= '0' && *s <= '7')
10155 {
10156 int fpr = *s - '0';
10157 ++s;
10158 if (is_space_char (*s))
10159 ++s;
10160 if (*s == ')')
10161 {
10162 *end_op = s + 1;
10163 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10164 know (r);
10165 return r + fpr;
10166 }
10167 }
10168 /* We have "%st(" then garbage. */
10169 return (const reg_entry *) NULL;
10170 }
10171 }
10172
10173 if (r == NULL || allow_pseudo_reg)
10174 return r;
10175
10176 if (operand_type_all_zero (&r->reg_type))
10177 return (const reg_entry *) NULL;
10178
10179 if ((r->reg_type.bitfield.dword
10180 || r->reg_type.bitfield.sreg3
10181 || r->reg_type.bitfield.control
10182 || r->reg_type.bitfield.debug
10183 || r->reg_type.bitfield.test)
10184 && !cpu_arch_flags.bitfield.cpui386)
10185 return (const reg_entry *) NULL;
10186
10187 if (r->reg_type.bitfield.tbyte
10188 && !cpu_arch_flags.bitfield.cpu8087
10189 && !cpu_arch_flags.bitfield.cpu287
10190 && !cpu_arch_flags.bitfield.cpu387)
10191 return (const reg_entry *) NULL;
10192
10193 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
10194 return (const reg_entry *) NULL;
10195
10196 if (r->reg_type.bitfield.xmmword && !cpu_arch_flags.bitfield.cpuregxmm)
10197 return (const reg_entry *) NULL;
10198
10199 if (r->reg_type.bitfield.ymmword && !cpu_arch_flags.bitfield.cpuregymm)
10200 return (const reg_entry *) NULL;
10201
10202 if (r->reg_type.bitfield.zmmword && !cpu_arch_flags.bitfield.cpuregzmm)
10203 return (const reg_entry *) NULL;
10204
10205 if (r->reg_type.bitfield.regmask
10206 && !cpu_arch_flags.bitfield.cpuregmask)
10207 return (const reg_entry *) NULL;
10208
10209 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10210 if (!allow_index_reg
10211 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10212 return (const reg_entry *) NULL;
10213
10214 /* Upper 16 vector register is only available with VREX in 64bit
10215 mode. */
10216 if ((r->reg_flags & RegVRex))
10217 {
10218 if (i.vec_encoding == vex_encoding_default)
10219 i.vec_encoding = vex_encoding_evex;
10220
10221 if (!cpu_arch_flags.bitfield.cpuvrex
10222 || i.vec_encoding != vex_encoding_evex
10223 || flag_code != CODE_64BIT)
10224 return (const reg_entry *) NULL;
10225 }
10226
10227 if (((r->reg_flags & (RegRex64 | RegRex))
10228 || r->reg_type.bitfield.qword)
10229 && (!cpu_arch_flags.bitfield.cpulm
10230 || !operand_type_equal (&r->reg_type, &control))
10231 && flag_code != CODE_64BIT)
10232 return (const reg_entry *) NULL;
10233
10234 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10235 return (const reg_entry *) NULL;
10236
10237 return r;
10238 }
10239
10240 /* REG_STRING starts *before* REGISTER_PREFIX. */
10241
10242 static const reg_entry *
10243 parse_register (char *reg_string, char **end_op)
10244 {
10245 const reg_entry *r;
10246
10247 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10248 r = parse_real_register (reg_string, end_op);
10249 else
10250 r = NULL;
10251 if (!r)
10252 {
10253 char *save = input_line_pointer;
10254 char c;
10255 symbolS *symbolP;
10256
10257 input_line_pointer = reg_string;
10258 c = get_symbol_name (&reg_string);
10259 symbolP = symbol_find (reg_string);
10260 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10261 {
10262 const expressionS *e = symbol_get_value_expression (symbolP);
10263
10264 know (e->X_op == O_register);
10265 know (e->X_add_number >= 0
10266 && (valueT) e->X_add_number < i386_regtab_size);
10267 r = i386_regtab + e->X_add_number;
10268 if ((r->reg_flags & RegVRex))
10269 i.vec_encoding = vex_encoding_evex;
10270 *end_op = input_line_pointer;
10271 }
10272 *input_line_pointer = c;
10273 input_line_pointer = save;
10274 }
10275 return r;
10276 }
10277
10278 int
10279 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10280 {
10281 const reg_entry *r;
10282 char *end = input_line_pointer;
10283
10284 *end = *nextcharP;
10285 r = parse_register (name, &input_line_pointer);
10286 if (r && end <= input_line_pointer)
10287 {
10288 *nextcharP = *input_line_pointer;
10289 *input_line_pointer = 0;
10290 e->X_op = O_register;
10291 e->X_add_number = r - i386_regtab;
10292 return 1;
10293 }
10294 input_line_pointer = end;
10295 *end = 0;
10296 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10297 }
10298
10299 void
10300 md_operand (expressionS *e)
10301 {
10302 char *end;
10303 const reg_entry *r;
10304
10305 switch (*input_line_pointer)
10306 {
10307 case REGISTER_PREFIX:
10308 r = parse_real_register (input_line_pointer, &end);
10309 if (r)
10310 {
10311 e->X_op = O_register;
10312 e->X_add_number = r - i386_regtab;
10313 input_line_pointer = end;
10314 }
10315 break;
10316
10317 case '[':
10318 gas_assert (intel_syntax);
10319 end = input_line_pointer++;
10320 expression (e);
10321 if (*input_line_pointer == ']')
10322 {
10323 ++input_line_pointer;
10324 e->X_op_symbol = make_expr_symbol (e);
10325 e->X_add_symbol = NULL;
10326 e->X_add_number = 0;
10327 e->X_op = O_index;
10328 }
10329 else
10330 {
10331 e->X_op = O_absent;
10332 input_line_pointer = end;
10333 }
10334 break;
10335 }
10336 }
10337
10338 \f
10339 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10340 const char *md_shortopts = "kVQ:sqnO::";
10341 #else
10342 const char *md_shortopts = "qnO::";
10343 #endif
10344
10345 #define OPTION_32 (OPTION_MD_BASE + 0)
10346 #define OPTION_64 (OPTION_MD_BASE + 1)
10347 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10348 #define OPTION_MARCH (OPTION_MD_BASE + 3)
10349 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
10350 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10351 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10352 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10353 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10354 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
10355 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
10356 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
10357 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10358 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10359 #define OPTION_X32 (OPTION_MD_BASE + 14)
10360 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
10361 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10362 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
10363 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
10364 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
10365 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
10366 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
10367 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10368 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
10369 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
10370
10371 struct option md_longopts[] =
10372 {
10373 {"32", no_argument, NULL, OPTION_32},
10374 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10375 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10376 {"64", no_argument, NULL, OPTION_64},
10377 #endif
10378 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10379 {"x32", no_argument, NULL, OPTION_X32},
10380 {"mshared", no_argument, NULL, OPTION_MSHARED},
10381 #endif
10382 {"divide", no_argument, NULL, OPTION_DIVIDE},
10383 {"march", required_argument, NULL, OPTION_MARCH},
10384 {"mtune", required_argument, NULL, OPTION_MTUNE},
10385 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10386 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10387 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10388 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10389 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10390 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10391 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10392 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10393 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10394 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10395 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10396 # if defined (TE_PE) || defined (TE_PEP)
10397 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10398 #endif
10399 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10400 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10401 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10402 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10403 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10404 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10405 {NULL, no_argument, NULL, 0}
10406 };
10407 size_t md_longopts_size = sizeof (md_longopts);
10408
10409 int
10410 md_parse_option (int c, const char *arg)
10411 {
10412 unsigned int j;
10413 char *arch, *next, *saved;
10414
10415 switch (c)
10416 {
10417 case 'n':
10418 optimize_align_code = 0;
10419 break;
10420
10421 case 'q':
10422 quiet_warnings = 1;
10423 break;
10424
10425 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10426 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10427 should be emitted or not. FIXME: Not implemented. */
10428 case 'Q':
10429 break;
10430
10431 /* -V: SVR4 argument to print version ID. */
10432 case 'V':
10433 print_version_id ();
10434 break;
10435
10436 /* -k: Ignore for FreeBSD compatibility. */
10437 case 'k':
10438 break;
10439
10440 case 's':
10441 /* -s: On i386 Solaris, this tells the native assembler to use
10442 .stab instead of .stab.excl. We always use .stab anyhow. */
10443 break;
10444
10445 case OPTION_MSHARED:
10446 shared = 1;
10447 break;
10448 #endif
10449 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10450 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10451 case OPTION_64:
10452 {
10453 const char **list, **l;
10454
10455 list = bfd_target_list ();
10456 for (l = list; *l != NULL; l++)
10457 if (CONST_STRNEQ (*l, "elf64-x86-64")
10458 || strcmp (*l, "coff-x86-64") == 0
10459 || strcmp (*l, "pe-x86-64") == 0
10460 || strcmp (*l, "pei-x86-64") == 0
10461 || strcmp (*l, "mach-o-x86-64") == 0)
10462 {
10463 default_arch = "x86_64";
10464 break;
10465 }
10466 if (*l == NULL)
10467 as_fatal (_("no compiled in support for x86_64"));
10468 free (list);
10469 }
10470 break;
10471 #endif
10472
10473 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10474 case OPTION_X32:
10475 if (IS_ELF)
10476 {
10477 const char **list, **l;
10478
10479 list = bfd_target_list ();
10480 for (l = list; *l != NULL; l++)
10481 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10482 {
10483 default_arch = "x86_64:32";
10484 break;
10485 }
10486 if (*l == NULL)
10487 as_fatal (_("no compiled in support for 32bit x86_64"));
10488 free (list);
10489 }
10490 else
10491 as_fatal (_("32bit x86_64 is only supported for ELF"));
10492 break;
10493 #endif
10494
10495 case OPTION_32:
10496 default_arch = "i386";
10497 break;
10498
10499 case OPTION_DIVIDE:
10500 #ifdef SVR4_COMMENT_CHARS
10501 {
10502 char *n, *t;
10503 const char *s;
10504
10505 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10506 t = n;
10507 for (s = i386_comment_chars; *s != '\0'; s++)
10508 if (*s != '/')
10509 *t++ = *s;
10510 *t = '\0';
10511 i386_comment_chars = n;
10512 }
10513 #endif
10514 break;
10515
10516 case OPTION_MARCH:
10517 saved = xstrdup (arg);
10518 arch = saved;
10519 /* Allow -march=+nosse. */
10520 if (*arch == '+')
10521 arch++;
10522 do
10523 {
10524 if (*arch == '.')
10525 as_fatal (_("invalid -march= option: `%s'"), arg);
10526 next = strchr (arch, '+');
10527 if (next)
10528 *next++ = '\0';
10529 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10530 {
10531 if (strcmp (arch, cpu_arch [j].name) == 0)
10532 {
10533 /* Processor. */
10534 if (! cpu_arch[j].flags.bitfield.cpui386)
10535 continue;
10536
10537 cpu_arch_name = cpu_arch[j].name;
10538 cpu_sub_arch_name = NULL;
10539 cpu_arch_flags = cpu_arch[j].flags;
10540 cpu_arch_isa = cpu_arch[j].type;
10541 cpu_arch_isa_flags = cpu_arch[j].flags;
10542 if (!cpu_arch_tune_set)
10543 {
10544 cpu_arch_tune = cpu_arch_isa;
10545 cpu_arch_tune_flags = cpu_arch_isa_flags;
10546 }
10547 break;
10548 }
10549 else if (*cpu_arch [j].name == '.'
10550 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10551 {
10552 /* ISA extension. */
10553 i386_cpu_flags flags;
10554
10555 flags = cpu_flags_or (cpu_arch_flags,
10556 cpu_arch[j].flags);
10557
10558 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10559 {
10560 if (cpu_sub_arch_name)
10561 {
10562 char *name = cpu_sub_arch_name;
10563 cpu_sub_arch_name = concat (name,
10564 cpu_arch[j].name,
10565 (const char *) NULL);
10566 free (name);
10567 }
10568 else
10569 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10570 cpu_arch_flags = flags;
10571 cpu_arch_isa_flags = flags;
10572 }
10573 else
10574 cpu_arch_isa_flags
10575 = cpu_flags_or (cpu_arch_isa_flags,
10576 cpu_arch[j].flags);
10577 break;
10578 }
10579 }
10580
10581 if (j >= ARRAY_SIZE (cpu_arch))
10582 {
10583 /* Disable an ISA extension. */
10584 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10585 if (strcmp (arch, cpu_noarch [j].name) == 0)
10586 {
10587 i386_cpu_flags flags;
10588
10589 flags = cpu_flags_and_not (cpu_arch_flags,
10590 cpu_noarch[j].flags);
10591 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10592 {
10593 if (cpu_sub_arch_name)
10594 {
10595 char *name = cpu_sub_arch_name;
10596 cpu_sub_arch_name = concat (arch,
10597 (const char *) NULL);
10598 free (name);
10599 }
10600 else
10601 cpu_sub_arch_name = xstrdup (arch);
10602 cpu_arch_flags = flags;
10603 cpu_arch_isa_flags = flags;
10604 }
10605 break;
10606 }
10607
10608 if (j >= ARRAY_SIZE (cpu_noarch))
10609 j = ARRAY_SIZE (cpu_arch);
10610 }
10611
10612 if (j >= ARRAY_SIZE (cpu_arch))
10613 as_fatal (_("invalid -march= option: `%s'"), arg);
10614
10615 arch = next;
10616 }
10617 while (next != NULL);
10618 free (saved);
10619 break;
10620
10621 case OPTION_MTUNE:
10622 if (*arg == '.')
10623 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10624 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10625 {
10626 if (strcmp (arg, cpu_arch [j].name) == 0)
10627 {
10628 cpu_arch_tune_set = 1;
10629 cpu_arch_tune = cpu_arch [j].type;
10630 cpu_arch_tune_flags = cpu_arch[j].flags;
10631 break;
10632 }
10633 }
10634 if (j >= ARRAY_SIZE (cpu_arch))
10635 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10636 break;
10637
10638 case OPTION_MMNEMONIC:
10639 if (strcasecmp (arg, "att") == 0)
10640 intel_mnemonic = 0;
10641 else if (strcasecmp (arg, "intel") == 0)
10642 intel_mnemonic = 1;
10643 else
10644 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10645 break;
10646
10647 case OPTION_MSYNTAX:
10648 if (strcasecmp (arg, "att") == 0)
10649 intel_syntax = 0;
10650 else if (strcasecmp (arg, "intel") == 0)
10651 intel_syntax = 1;
10652 else
10653 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10654 break;
10655
10656 case OPTION_MINDEX_REG:
10657 allow_index_reg = 1;
10658 break;
10659
10660 case OPTION_MNAKED_REG:
10661 allow_naked_reg = 1;
10662 break;
10663
10664 case OPTION_MSSE2AVX:
10665 sse2avx = 1;
10666 break;
10667
10668 case OPTION_MSSE_CHECK:
10669 if (strcasecmp (arg, "error") == 0)
10670 sse_check = check_error;
10671 else if (strcasecmp (arg, "warning") == 0)
10672 sse_check = check_warning;
10673 else if (strcasecmp (arg, "none") == 0)
10674 sse_check = check_none;
10675 else
10676 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10677 break;
10678
10679 case OPTION_MOPERAND_CHECK:
10680 if (strcasecmp (arg, "error") == 0)
10681 operand_check = check_error;
10682 else if (strcasecmp (arg, "warning") == 0)
10683 operand_check = check_warning;
10684 else if (strcasecmp (arg, "none") == 0)
10685 operand_check = check_none;
10686 else
10687 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10688 break;
10689
10690 case OPTION_MAVXSCALAR:
10691 if (strcasecmp (arg, "128") == 0)
10692 avxscalar = vex128;
10693 else if (strcasecmp (arg, "256") == 0)
10694 avxscalar = vex256;
10695 else
10696 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10697 break;
10698
10699 case OPTION_MADD_BND_PREFIX:
10700 add_bnd_prefix = 1;
10701 break;
10702
10703 case OPTION_MEVEXLIG:
10704 if (strcmp (arg, "128") == 0)
10705 evexlig = evexl128;
10706 else if (strcmp (arg, "256") == 0)
10707 evexlig = evexl256;
10708 else if (strcmp (arg, "512") == 0)
10709 evexlig = evexl512;
10710 else
10711 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10712 break;
10713
10714 case OPTION_MEVEXRCIG:
10715 if (strcmp (arg, "rne") == 0)
10716 evexrcig = rne;
10717 else if (strcmp (arg, "rd") == 0)
10718 evexrcig = rd;
10719 else if (strcmp (arg, "ru") == 0)
10720 evexrcig = ru;
10721 else if (strcmp (arg, "rz") == 0)
10722 evexrcig = rz;
10723 else
10724 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10725 break;
10726
10727 case OPTION_MEVEXWIG:
10728 if (strcmp (arg, "0") == 0)
10729 evexwig = evexw0;
10730 else if (strcmp (arg, "1") == 0)
10731 evexwig = evexw1;
10732 else
10733 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10734 break;
10735
10736 # if defined (TE_PE) || defined (TE_PEP)
10737 case OPTION_MBIG_OBJ:
10738 use_big_obj = 1;
10739 break;
10740 #endif
10741
10742 case OPTION_MOMIT_LOCK_PREFIX:
10743 if (strcasecmp (arg, "yes") == 0)
10744 omit_lock_prefix = 1;
10745 else if (strcasecmp (arg, "no") == 0)
10746 omit_lock_prefix = 0;
10747 else
10748 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10749 break;
10750
10751 case OPTION_MFENCE_AS_LOCK_ADD:
10752 if (strcasecmp (arg, "yes") == 0)
10753 avoid_fence = 1;
10754 else if (strcasecmp (arg, "no") == 0)
10755 avoid_fence = 0;
10756 else
10757 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10758 break;
10759
10760 case OPTION_MRELAX_RELOCATIONS:
10761 if (strcasecmp (arg, "yes") == 0)
10762 generate_relax_relocations = 1;
10763 else if (strcasecmp (arg, "no") == 0)
10764 generate_relax_relocations = 0;
10765 else
10766 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10767 break;
10768
10769 case OPTION_MAMD64:
10770 intel64 = 0;
10771 break;
10772
10773 case OPTION_MINTEL64:
10774 intel64 = 1;
10775 break;
10776
10777 case 'O':
10778 if (arg == NULL)
10779 {
10780 optimize = 1;
10781 /* Turn off -Os. */
10782 optimize_for_space = 0;
10783 }
10784 else if (*arg == 's')
10785 {
10786 optimize_for_space = 1;
10787 /* Turn on all encoding optimizations. */
10788 optimize = -1;
10789 }
10790 else
10791 {
10792 optimize = atoi (arg);
10793 /* Turn off -Os. */
10794 optimize_for_space = 0;
10795 }
10796 break;
10797
10798 default:
10799 return 0;
10800 }
10801 return 1;
10802 }
10803
10804 #define MESSAGE_TEMPLATE \
10805 " "
10806
10807 static char *
10808 output_message (FILE *stream, char *p, char *message, char *start,
10809 int *left_p, const char *name, int len)
10810 {
10811 int size = sizeof (MESSAGE_TEMPLATE);
10812 int left = *left_p;
10813
10814 /* Reserve 2 spaces for ", " or ",\0" */
10815 left -= len + 2;
10816
10817 /* Check if there is any room. */
10818 if (left >= 0)
10819 {
10820 if (p != start)
10821 {
10822 *p++ = ',';
10823 *p++ = ' ';
10824 }
10825 p = mempcpy (p, name, len);
10826 }
10827 else
10828 {
10829 /* Output the current message now and start a new one. */
10830 *p++ = ',';
10831 *p = '\0';
10832 fprintf (stream, "%s\n", message);
10833 p = start;
10834 left = size - (start - message) - len - 2;
10835
10836 gas_assert (left >= 0);
10837
10838 p = mempcpy (p, name, len);
10839 }
10840
10841 *left_p = left;
10842 return p;
10843 }
10844
10845 static void
10846 show_arch (FILE *stream, int ext, int check)
10847 {
10848 static char message[] = MESSAGE_TEMPLATE;
10849 char *start = message + 27;
10850 char *p;
10851 int size = sizeof (MESSAGE_TEMPLATE);
10852 int left;
10853 const char *name;
10854 int len;
10855 unsigned int j;
10856
10857 p = start;
10858 left = size - (start - message);
10859 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10860 {
10861 /* Should it be skipped? */
10862 if (cpu_arch [j].skip)
10863 continue;
10864
10865 name = cpu_arch [j].name;
10866 len = cpu_arch [j].len;
10867 if (*name == '.')
10868 {
10869 /* It is an extension. Skip if we aren't asked to show it. */
10870 if (ext)
10871 {
10872 name++;
10873 len--;
10874 }
10875 else
10876 continue;
10877 }
10878 else if (ext)
10879 {
10880 /* It is an processor. Skip if we show only extension. */
10881 continue;
10882 }
10883 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10884 {
10885 /* It is an impossible processor - skip. */
10886 continue;
10887 }
10888
10889 p = output_message (stream, p, message, start, &left, name, len);
10890 }
10891
10892 /* Display disabled extensions. */
10893 if (ext)
10894 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10895 {
10896 name = cpu_noarch [j].name;
10897 len = cpu_noarch [j].len;
10898 p = output_message (stream, p, message, start, &left, name,
10899 len);
10900 }
10901
10902 *p = '\0';
10903 fprintf (stream, "%s\n", message);
10904 }
10905
10906 void
10907 md_show_usage (FILE *stream)
10908 {
10909 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10910 fprintf (stream, _("\
10911 -Q ignored\n\
10912 -V print assembler version number\n\
10913 -k ignored\n"));
10914 #endif
10915 fprintf (stream, _("\
10916 -n Do not optimize code alignment\n\
10917 -q quieten some warnings\n"));
10918 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10919 fprintf (stream, _("\
10920 -s ignored\n"));
10921 #endif
10922 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10923 || defined (TE_PE) || defined (TE_PEP))
10924 fprintf (stream, _("\
10925 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10926 #endif
10927 #ifdef SVR4_COMMENT_CHARS
10928 fprintf (stream, _("\
10929 --divide do not treat `/' as a comment character\n"));
10930 #else
10931 fprintf (stream, _("\
10932 --divide ignored\n"));
10933 #endif
10934 fprintf (stream, _("\
10935 -march=CPU[,+EXTENSION...]\n\
10936 generate code for CPU and EXTENSION, CPU is one of:\n"));
10937 show_arch (stream, 0, 1);
10938 fprintf (stream, _("\
10939 EXTENSION is combination of:\n"));
10940 show_arch (stream, 1, 0);
10941 fprintf (stream, _("\
10942 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10943 show_arch (stream, 0, 0);
10944 fprintf (stream, _("\
10945 -msse2avx encode SSE instructions with VEX prefix\n"));
10946 fprintf (stream, _("\
10947 -msse-check=[none|error|warning]\n\
10948 check SSE instructions\n"));
10949 fprintf (stream, _("\
10950 -moperand-check=[none|error|warning]\n\
10951 check operand combinations for validity\n"));
10952 fprintf (stream, _("\
10953 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10954 length\n"));
10955 fprintf (stream, _("\
10956 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10957 length\n"));
10958 fprintf (stream, _("\
10959 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10960 for EVEX.W bit ignored instructions\n"));
10961 fprintf (stream, _("\
10962 -mevexrcig=[rne|rd|ru|rz]\n\
10963 encode EVEX instructions with specific EVEX.RC value\n\
10964 for SAE-only ignored instructions\n"));
10965 fprintf (stream, _("\
10966 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10967 fprintf (stream, _("\
10968 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10969 fprintf (stream, _("\
10970 -mindex-reg support pseudo index registers\n"));
10971 fprintf (stream, _("\
10972 -mnaked-reg don't require `%%' prefix for registers\n"));
10973 fprintf (stream, _("\
10974 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10975 fprintf (stream, _("\
10976 -mshared disable branch optimization for shared code\n"));
10977 # if defined (TE_PE) || defined (TE_PEP)
10978 fprintf (stream, _("\
10979 -mbig-obj generate big object files\n"));
10980 #endif
10981 fprintf (stream, _("\
10982 -momit-lock-prefix=[no|yes]\n\
10983 strip all lock prefixes\n"));
10984 fprintf (stream, _("\
10985 -mfence-as-lock-add=[no|yes]\n\
10986 encode lfence, mfence and sfence as\n\
10987 lock addl $0x0, (%%{re}sp)\n"));
10988 fprintf (stream, _("\
10989 -mrelax-relocations=[no|yes]\n\
10990 generate relax relocations\n"));
10991 fprintf (stream, _("\
10992 -mamd64 accept only AMD64 ISA\n"));
10993 fprintf (stream, _("\
10994 -mintel64 accept only Intel64 ISA\n"));
10995 }
10996
10997 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10998 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10999 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11000
11001 /* Pick the target format to use. */
11002
11003 const char *
11004 i386_target_format (void)
11005 {
11006 if (!strncmp (default_arch, "x86_64", 6))
11007 {
11008 update_code_flag (CODE_64BIT, 1);
11009 if (default_arch[6] == '\0')
11010 x86_elf_abi = X86_64_ABI;
11011 else
11012 x86_elf_abi = X86_64_X32_ABI;
11013 }
11014 else if (!strcmp (default_arch, "i386"))
11015 update_code_flag (CODE_32BIT, 1);
11016 else if (!strcmp (default_arch, "iamcu"))
11017 {
11018 update_code_flag (CODE_32BIT, 1);
11019 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11020 {
11021 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11022 cpu_arch_name = "iamcu";
11023 cpu_sub_arch_name = NULL;
11024 cpu_arch_flags = iamcu_flags;
11025 cpu_arch_isa = PROCESSOR_IAMCU;
11026 cpu_arch_isa_flags = iamcu_flags;
11027 if (!cpu_arch_tune_set)
11028 {
11029 cpu_arch_tune = cpu_arch_isa;
11030 cpu_arch_tune_flags = cpu_arch_isa_flags;
11031 }
11032 }
11033 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11034 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11035 cpu_arch_name);
11036 }
11037 else
11038 as_fatal (_("unknown architecture"));
11039
11040 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11041 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11042 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11043 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11044
11045 switch (OUTPUT_FLAVOR)
11046 {
11047 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11048 case bfd_target_aout_flavour:
11049 return AOUT_TARGET_FORMAT;
11050 #endif
11051 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11052 # if defined (TE_PE) || defined (TE_PEP)
11053 case bfd_target_coff_flavour:
11054 if (flag_code == CODE_64BIT)
11055 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11056 else
11057 return "pe-i386";
11058 # elif defined (TE_GO32)
11059 case bfd_target_coff_flavour:
11060 return "coff-go32";
11061 # else
11062 case bfd_target_coff_flavour:
11063 return "coff-i386";
11064 # endif
11065 #endif
11066 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11067 case bfd_target_elf_flavour:
11068 {
11069 const char *format;
11070
11071 switch (x86_elf_abi)
11072 {
11073 default:
11074 format = ELF_TARGET_FORMAT;
11075 break;
11076 case X86_64_ABI:
11077 use_rela_relocations = 1;
11078 object_64bit = 1;
11079 format = ELF_TARGET_FORMAT64;
11080 break;
11081 case X86_64_X32_ABI:
11082 use_rela_relocations = 1;
11083 object_64bit = 1;
11084 disallow_64bit_reloc = 1;
11085 format = ELF_TARGET_FORMAT32;
11086 break;
11087 }
11088 if (cpu_arch_isa == PROCESSOR_L1OM)
11089 {
11090 if (x86_elf_abi != X86_64_ABI)
11091 as_fatal (_("Intel L1OM is 64bit only"));
11092 return ELF_TARGET_L1OM_FORMAT;
11093 }
11094 else if (cpu_arch_isa == PROCESSOR_K1OM)
11095 {
11096 if (x86_elf_abi != X86_64_ABI)
11097 as_fatal (_("Intel K1OM is 64bit only"));
11098 return ELF_TARGET_K1OM_FORMAT;
11099 }
11100 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11101 {
11102 if (x86_elf_abi != I386_ABI)
11103 as_fatal (_("Intel MCU is 32bit only"));
11104 return ELF_TARGET_IAMCU_FORMAT;
11105 }
11106 else
11107 return format;
11108 }
11109 #endif
11110 #if defined (OBJ_MACH_O)
11111 case bfd_target_mach_o_flavour:
11112 if (flag_code == CODE_64BIT)
11113 {
11114 use_rela_relocations = 1;
11115 object_64bit = 1;
11116 return "mach-o-x86-64";
11117 }
11118 else
11119 return "mach-o-i386";
11120 #endif
11121 default:
11122 abort ();
11123 return NULL;
11124 }
11125 }
11126
11127 #endif /* OBJ_MAYBE_ more than one */
11128 \f
11129 symbolS *
11130 md_undefined_symbol (char *name)
11131 {
11132 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11133 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11134 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11135 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11136 {
11137 if (!GOT_symbol)
11138 {
11139 if (symbol_find (name))
11140 as_bad (_("GOT already in symbol table"));
11141 GOT_symbol = symbol_new (name, undefined_section,
11142 (valueT) 0, &zero_address_frag);
11143 };
11144 return GOT_symbol;
11145 }
11146 return 0;
11147 }
11148
11149 /* Round up a section size to the appropriate boundary. */
11150
11151 valueT
11152 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11153 {
11154 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11155 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11156 {
11157 /* For a.out, force the section size to be aligned. If we don't do
11158 this, BFD will align it for us, but it will not write out the
11159 final bytes of the section. This may be a bug in BFD, but it is
11160 easier to fix it here since that is how the other a.out targets
11161 work. */
11162 int align;
11163
11164 align = bfd_get_section_alignment (stdoutput, segment);
11165 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11166 }
11167 #endif
11168
11169 return size;
11170 }
11171
11172 /* On the i386, PC-relative offsets are relative to the start of the
11173 next instruction. That is, the address of the offset, plus its
11174 size, since the offset is always the last part of the insn. */
11175
11176 long
11177 md_pcrel_from (fixS *fixP)
11178 {
11179 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11180 }
11181
11182 #ifndef I386COFF
11183
11184 static void
11185 s_bss (int ignore ATTRIBUTE_UNUSED)
11186 {
11187 int temp;
11188
11189 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11190 if (IS_ELF)
11191 obj_elf_section_change_hook ();
11192 #endif
11193 temp = get_absolute_expression ();
11194 subseg_set (bss_section, (subsegT) temp);
11195 demand_empty_rest_of_line ();
11196 }
11197
11198 #endif
11199
11200 void
11201 i386_validate_fix (fixS *fixp)
11202 {
11203 if (fixp->fx_subsy)
11204 {
11205 if (fixp->fx_subsy == GOT_symbol)
11206 {
11207 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11208 {
11209 if (!object_64bit)
11210 abort ();
11211 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11212 if (fixp->fx_tcbit2)
11213 fixp->fx_r_type = (fixp->fx_tcbit
11214 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11215 : BFD_RELOC_X86_64_GOTPCRELX);
11216 else
11217 #endif
11218 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11219 }
11220 else
11221 {
11222 if (!object_64bit)
11223 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11224 else
11225 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11226 }
11227 fixp->fx_subsy = 0;
11228 }
11229 }
11230 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11231 else if (!object_64bit)
11232 {
11233 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11234 && fixp->fx_tcbit2)
11235 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11236 }
11237 #endif
11238 }
11239
11240 arelent *
11241 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11242 {
11243 arelent *rel;
11244 bfd_reloc_code_real_type code;
11245
11246 switch (fixp->fx_r_type)
11247 {
11248 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11249 case BFD_RELOC_SIZE32:
11250 case BFD_RELOC_SIZE64:
11251 if (S_IS_DEFINED (fixp->fx_addsy)
11252 && !S_IS_EXTERNAL (fixp->fx_addsy))
11253 {
11254 /* Resolve size relocation against local symbol to size of
11255 the symbol plus addend. */
11256 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11257 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11258 && !fits_in_unsigned_long (value))
11259 as_bad_where (fixp->fx_file, fixp->fx_line,
11260 _("symbol size computation overflow"));
11261 fixp->fx_addsy = NULL;
11262 fixp->fx_subsy = NULL;
11263 md_apply_fix (fixp, (valueT *) &value, NULL);
11264 return NULL;
11265 }
11266 #endif
11267 /* Fall through. */
11268
11269 case BFD_RELOC_X86_64_PLT32:
11270 case BFD_RELOC_X86_64_GOT32:
11271 case BFD_RELOC_X86_64_GOTPCREL:
11272 case BFD_RELOC_X86_64_GOTPCRELX:
11273 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11274 case BFD_RELOC_386_PLT32:
11275 case BFD_RELOC_386_GOT32:
11276 case BFD_RELOC_386_GOT32X:
11277 case BFD_RELOC_386_GOTOFF:
11278 case BFD_RELOC_386_GOTPC:
11279 case BFD_RELOC_386_TLS_GD:
11280 case BFD_RELOC_386_TLS_LDM:
11281 case BFD_RELOC_386_TLS_LDO_32:
11282 case BFD_RELOC_386_TLS_IE_32:
11283 case BFD_RELOC_386_TLS_IE:
11284 case BFD_RELOC_386_TLS_GOTIE:
11285 case BFD_RELOC_386_TLS_LE_32:
11286 case BFD_RELOC_386_TLS_LE:
11287 case BFD_RELOC_386_TLS_GOTDESC:
11288 case BFD_RELOC_386_TLS_DESC_CALL:
11289 case BFD_RELOC_X86_64_TLSGD:
11290 case BFD_RELOC_X86_64_TLSLD:
11291 case BFD_RELOC_X86_64_DTPOFF32:
11292 case BFD_RELOC_X86_64_DTPOFF64:
11293 case BFD_RELOC_X86_64_GOTTPOFF:
11294 case BFD_RELOC_X86_64_TPOFF32:
11295 case BFD_RELOC_X86_64_TPOFF64:
11296 case BFD_RELOC_X86_64_GOTOFF64:
11297 case BFD_RELOC_X86_64_GOTPC32:
11298 case BFD_RELOC_X86_64_GOT64:
11299 case BFD_RELOC_X86_64_GOTPCREL64:
11300 case BFD_RELOC_X86_64_GOTPC64:
11301 case BFD_RELOC_X86_64_GOTPLT64:
11302 case BFD_RELOC_X86_64_PLTOFF64:
11303 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11304 case BFD_RELOC_X86_64_TLSDESC_CALL:
11305 case BFD_RELOC_RVA:
11306 case BFD_RELOC_VTABLE_ENTRY:
11307 case BFD_RELOC_VTABLE_INHERIT:
11308 #ifdef TE_PE
11309 case BFD_RELOC_32_SECREL:
11310 #endif
11311 code = fixp->fx_r_type;
11312 break;
11313 case BFD_RELOC_X86_64_32S:
11314 if (!fixp->fx_pcrel)
11315 {
11316 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11317 code = fixp->fx_r_type;
11318 break;
11319 }
11320 /* Fall through. */
11321 default:
11322 if (fixp->fx_pcrel)
11323 {
11324 switch (fixp->fx_size)
11325 {
11326 default:
11327 as_bad_where (fixp->fx_file, fixp->fx_line,
11328 _("can not do %d byte pc-relative relocation"),
11329 fixp->fx_size);
11330 code = BFD_RELOC_32_PCREL;
11331 break;
11332 case 1: code = BFD_RELOC_8_PCREL; break;
11333 case 2: code = BFD_RELOC_16_PCREL; break;
11334 case 4: code = BFD_RELOC_32_PCREL; break;
11335 #ifdef BFD64
11336 case 8: code = BFD_RELOC_64_PCREL; break;
11337 #endif
11338 }
11339 }
11340 else
11341 {
11342 switch (fixp->fx_size)
11343 {
11344 default:
11345 as_bad_where (fixp->fx_file, fixp->fx_line,
11346 _("can not do %d byte relocation"),
11347 fixp->fx_size);
11348 code = BFD_RELOC_32;
11349 break;
11350 case 1: code = BFD_RELOC_8; break;
11351 case 2: code = BFD_RELOC_16; break;
11352 case 4: code = BFD_RELOC_32; break;
11353 #ifdef BFD64
11354 case 8: code = BFD_RELOC_64; break;
11355 #endif
11356 }
11357 }
11358 break;
11359 }
11360
11361 if ((code == BFD_RELOC_32
11362 || code == BFD_RELOC_32_PCREL
11363 || code == BFD_RELOC_X86_64_32S)
11364 && GOT_symbol
11365 && fixp->fx_addsy == GOT_symbol)
11366 {
11367 if (!object_64bit)
11368 code = BFD_RELOC_386_GOTPC;
11369 else
11370 code = BFD_RELOC_X86_64_GOTPC32;
11371 }
11372 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11373 && GOT_symbol
11374 && fixp->fx_addsy == GOT_symbol)
11375 {
11376 code = BFD_RELOC_X86_64_GOTPC64;
11377 }
11378
11379 rel = XNEW (arelent);
11380 rel->sym_ptr_ptr = XNEW (asymbol *);
11381 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11382
11383 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
11384
11385 if (!use_rela_relocations)
11386 {
11387 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11388 vtable entry to be used in the relocation's section offset. */
11389 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11390 rel->address = fixp->fx_offset;
11391 #if defined (OBJ_COFF) && defined (TE_PE)
11392 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11393 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11394 else
11395 #endif
11396 rel->addend = 0;
11397 }
11398 /* Use the rela in 64bit mode. */
11399 else
11400 {
11401 if (disallow_64bit_reloc)
11402 switch (code)
11403 {
11404 case BFD_RELOC_X86_64_DTPOFF64:
11405 case BFD_RELOC_X86_64_TPOFF64:
11406 case BFD_RELOC_64_PCREL:
11407 case BFD_RELOC_X86_64_GOTOFF64:
11408 case BFD_RELOC_X86_64_GOT64:
11409 case BFD_RELOC_X86_64_GOTPCREL64:
11410 case BFD_RELOC_X86_64_GOTPC64:
11411 case BFD_RELOC_X86_64_GOTPLT64:
11412 case BFD_RELOC_X86_64_PLTOFF64:
11413 as_bad_where (fixp->fx_file, fixp->fx_line,
11414 _("cannot represent relocation type %s in x32 mode"),
11415 bfd_get_reloc_code_name (code));
11416 break;
11417 default:
11418 break;
11419 }
11420
11421 if (!fixp->fx_pcrel)
11422 rel->addend = fixp->fx_offset;
11423 else
11424 switch (code)
11425 {
11426 case BFD_RELOC_X86_64_PLT32:
11427 case BFD_RELOC_X86_64_GOT32:
11428 case BFD_RELOC_X86_64_GOTPCREL:
11429 case BFD_RELOC_X86_64_GOTPCRELX:
11430 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11431 case BFD_RELOC_X86_64_TLSGD:
11432 case BFD_RELOC_X86_64_TLSLD:
11433 case BFD_RELOC_X86_64_GOTTPOFF:
11434 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11435 case BFD_RELOC_X86_64_TLSDESC_CALL:
11436 rel->addend = fixp->fx_offset - fixp->fx_size;
11437 break;
11438 default:
11439 rel->addend = (section->vma
11440 - fixp->fx_size
11441 + fixp->fx_addnumber
11442 + md_pcrel_from (fixp));
11443 break;
11444 }
11445 }
11446
11447 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11448 if (rel->howto == NULL)
11449 {
11450 as_bad_where (fixp->fx_file, fixp->fx_line,
11451 _("cannot represent relocation type %s"),
11452 bfd_get_reloc_code_name (code));
11453 /* Set howto to a garbage value so that we can keep going. */
11454 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
11455 gas_assert (rel->howto != NULL);
11456 }
11457
11458 return rel;
11459 }
11460
11461 #include "tc-i386-intel.c"
11462
11463 void
11464 tc_x86_parse_to_dw2regnum (expressionS *exp)
11465 {
11466 int saved_naked_reg;
11467 char saved_register_dot;
11468
11469 saved_naked_reg = allow_naked_reg;
11470 allow_naked_reg = 1;
11471 saved_register_dot = register_chars['.'];
11472 register_chars['.'] = '.';
11473 allow_pseudo_reg = 1;
11474 expression_and_evaluate (exp);
11475 allow_pseudo_reg = 0;
11476 register_chars['.'] = saved_register_dot;
11477 allow_naked_reg = saved_naked_reg;
11478
11479 if (exp->X_op == O_register && exp->X_add_number >= 0)
11480 {
11481 if ((addressT) exp->X_add_number < i386_regtab_size)
11482 {
11483 exp->X_op = O_constant;
11484 exp->X_add_number = i386_regtab[exp->X_add_number]
11485 .dw2_regnum[flag_code >> 1];
11486 }
11487 else
11488 exp->X_op = O_illegal;
11489 }
11490 }
11491
11492 void
11493 tc_x86_frame_initial_instructions (void)
11494 {
11495 static unsigned int sp_regno[2];
11496
11497 if (!sp_regno[flag_code >> 1])
11498 {
11499 char *saved_input = input_line_pointer;
11500 char sp[][4] = {"esp", "rsp"};
11501 expressionS exp;
11502
11503 input_line_pointer = sp[flag_code >> 1];
11504 tc_x86_parse_to_dw2regnum (&exp);
11505 gas_assert (exp.X_op == O_constant);
11506 sp_regno[flag_code >> 1] = exp.X_add_number;
11507 input_line_pointer = saved_input;
11508 }
11509
11510 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11511 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11512 }
11513
11514 int
11515 x86_dwarf2_addr_size (void)
11516 {
11517 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11518 if (x86_elf_abi == X86_64_X32_ABI)
11519 return 4;
11520 #endif
11521 return bfd_arch_bits_per_address (stdoutput) / 8;
11522 }
11523
11524 int
11525 i386_elf_section_type (const char *str, size_t len)
11526 {
11527 if (flag_code == CODE_64BIT
11528 && len == sizeof ("unwind") - 1
11529 && strncmp (str, "unwind", 6) == 0)
11530 return SHT_X86_64_UNWIND;
11531
11532 return -1;
11533 }
11534
11535 #ifdef TE_SOLARIS
11536 void
11537 i386_solaris_fix_up_eh_frame (segT sec)
11538 {
11539 if (flag_code == CODE_64BIT)
11540 elf_section_type (sec) = SHT_X86_64_UNWIND;
11541 }
11542 #endif
11543
11544 #ifdef TE_PE
11545 void
11546 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11547 {
11548 expressionS exp;
11549
11550 exp.X_op = O_secrel;
11551 exp.X_add_symbol = symbol;
11552 exp.X_add_number = 0;
11553 emit_expr (&exp, size);
11554 }
11555 #endif
11556
11557 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11558 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11559
11560 bfd_vma
11561 x86_64_section_letter (int letter, const char **ptr_msg)
11562 {
11563 if (flag_code == CODE_64BIT)
11564 {
11565 if (letter == 'l')
11566 return SHF_X86_64_LARGE;
11567
11568 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11569 }
11570 else
11571 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11572 return -1;
11573 }
11574
11575 bfd_vma
11576 x86_64_section_word (char *str, size_t len)
11577 {
11578 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11579 return SHF_X86_64_LARGE;
11580
11581 return -1;
11582 }
11583
11584 static void
11585 handle_large_common (int small ATTRIBUTE_UNUSED)
11586 {
11587 if (flag_code != CODE_64BIT)
11588 {
11589 s_comm_internal (0, elf_common_parse);
11590 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11591 }
11592 else
11593 {
11594 static segT lbss_section;
11595 asection *saved_com_section_ptr = elf_com_section_ptr;
11596 asection *saved_bss_section = bss_section;
11597
11598 if (lbss_section == NULL)
11599 {
11600 flagword applicable;
11601 segT seg = now_seg;
11602 subsegT subseg = now_subseg;
11603
11604 /* The .lbss section is for local .largecomm symbols. */
11605 lbss_section = subseg_new (".lbss", 0);
11606 applicable = bfd_applicable_section_flags (stdoutput);
11607 bfd_set_section_flags (stdoutput, lbss_section,
11608 applicable & SEC_ALLOC);
11609 seg_info (lbss_section)->bss = 1;
11610
11611 subseg_set (seg, subseg);
11612 }
11613
11614 elf_com_section_ptr = &_bfd_elf_large_com_section;
11615 bss_section = lbss_section;
11616
11617 s_comm_internal (0, elf_common_parse);
11618
11619 elf_com_section_ptr = saved_com_section_ptr;
11620 bss_section = saved_bss_section;
11621 }
11622 }
11623 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.45642 seconds and 5 git commands to generate.