2008-01-02 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
29
30 #include "as.h"
31 #include "safe-ctype.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "elf/x86-64.h"
36 #include "opcodes/i386-init.h"
37
38 #ifndef REGISTER_WARNINGS
39 #define REGISTER_WARNINGS 1
40 #endif
41
42 #ifndef INFER_ADDR_PREFIX
43 #define INFER_ADDR_PREFIX 1
44 #endif
45
46 #ifndef DEFAULT_ARCH
47 #define DEFAULT_ARCH "i386"
48 #endif
49
50 #ifndef INLINE
51 #if __GNUC__ >= 2
52 #define INLINE __inline__
53 #else
54 #define INLINE
55 #endif
56 #endif
57
58 static void set_code_flag (int);
59 static void set_16bit_gcc_code_flag (int);
60 static void set_intel_syntax (int);
61 static void set_intel_mnemonic (int);
62 static void set_allow_index_reg (int);
63 static void set_cpu_arch (int);
64 #ifdef TE_PE
65 static void pe_directive_secrel (int);
66 #endif
67 static void signed_cons (int);
68 static char *output_invalid (int c);
69 static int i386_operand (char *);
70 static int i386_intel_operand (char *, int);
71 static const reg_entry *parse_register (char *, char **);
72 static char *parse_insn (char *, char *);
73 static char *parse_operands (char *, const char *);
74 static void swap_operands (void);
75 static void swap_2_operands (int, int);
76 static void optimize_imm (void);
77 static void optimize_disp (void);
78 static int match_template (void);
79 static int check_string (void);
80 static int process_suffix (void);
81 static int check_byte_reg (void);
82 static int check_long_reg (void);
83 static int check_qword_reg (void);
84 static int check_word_reg (void);
85 static int finalize_imm (void);
86 static void process_drex (void);
87 static int process_operands (void);
88 static const seg_entry *build_modrm_byte (void);
89 static void output_insn (void);
90 static void output_imm (fragS *, offsetT);
91 static void output_disp (fragS *, offsetT);
92 #ifndef I386COFF
93 static void s_bss (int);
94 #endif
95 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
96 static void handle_large_common (int small ATTRIBUTE_UNUSED);
97 #endif
98
99 static const char *default_arch = DEFAULT_ARCH;
100
101 /* 'md_assemble ()' gathers together information and puts it into a
102 i386_insn. */
103
104 union i386_op
105 {
106 expressionS *disps;
107 expressionS *imms;
108 const reg_entry *regs;
109 };
110
111 struct _i386_insn
112 {
113 /* TM holds the template for the insn were currently assembling. */
114 template tm;
115
116 /* SUFFIX holds the instruction mnemonic suffix if given.
117 (e.g. 'l' for 'movl') */
118 char suffix;
119
120 /* OPERANDS gives the number of given operands. */
121 unsigned int operands;
122
123 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
124 of given register, displacement, memory operands and immediate
125 operands. */
126 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
127
128 /* TYPES [i] is the type (see above #defines) which tells us how to
129 use OP[i] for the corresponding operand. */
130 i386_operand_type types[MAX_OPERANDS];
131
132 /* Displacement expression, immediate expression, or register for each
133 operand. */
134 union i386_op op[MAX_OPERANDS];
135
136 /* Flags for operands. */
137 unsigned int flags[MAX_OPERANDS];
138 #define Operand_PCrel 1
139
140 /* Relocation type for operand */
141 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
142
143 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
144 the base index byte below. */
145 const reg_entry *base_reg;
146 const reg_entry *index_reg;
147 unsigned int log2_scale_factor;
148
149 /* SEG gives the seg_entries of this insn. They are zero unless
150 explicit segment overrides are given. */
151 const seg_entry *seg[2];
152
153 /* PREFIX holds all the given prefix opcodes (usually null).
154 PREFIXES is the number of prefix opcodes. */
155 unsigned int prefixes;
156 unsigned char prefix[MAX_PREFIXES];
157
158 /* RM and SIB are the modrm byte and the sib byte where the
159 addressing modes of this insn are encoded. DREX is the byte
160 added by the SSE5 instructions. */
161
162 modrm_byte rm;
163 rex_byte rex;
164 sib_byte sib;
165 drex_byte drex;
166 };
167
168 typedef struct _i386_insn i386_insn;
169
170 /* List of chars besides those in app.c:symbol_chars that can start an
171 operand. Used to prevent the scrubber eating vital white-space. */
172 const char extra_symbol_chars[] = "*%-(["
173 #ifdef LEX_AT
174 "@"
175 #endif
176 #ifdef LEX_QM
177 "?"
178 #endif
179 ;
180
181 #if (defined (TE_I386AIX) \
182 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
183 && !defined (TE_GNU) \
184 && !defined (TE_LINUX) \
185 && !defined (TE_NETWARE) \
186 && !defined (TE_FreeBSD) \
187 && !defined (TE_NetBSD)))
188 /* This array holds the chars that always start a comment. If the
189 pre-processor is disabled, these aren't very useful. The option
190 --divide will remove '/' from this list. */
191 const char *i386_comment_chars = "#/";
192 #define SVR4_COMMENT_CHARS 1
193 #define PREFIX_SEPARATOR '\\'
194
195 #else
196 const char *i386_comment_chars = "#";
197 #define PREFIX_SEPARATOR '/'
198 #endif
199
200 /* This array holds the chars that only start a comment at the beginning of
201 a line. If the line seems to have the form '# 123 filename'
202 .line and .file directives will appear in the pre-processed output.
203 Note that input_file.c hand checks for '#' at the beginning of the
204 first line of the input file. This is because the compiler outputs
205 #NO_APP at the beginning of its output.
206 Also note that comments started like this one will always work if
207 '/' isn't otherwise defined. */
208 const char line_comment_chars[] = "#/";
209
210 const char line_separator_chars[] = ";";
211
212 /* Chars that can be used to separate mant from exp in floating point
213 nums. */
214 const char EXP_CHARS[] = "eE";
215
216 /* Chars that mean this number is a floating point constant
217 As in 0f12.456
218 or 0d1.2345e12. */
219 const char FLT_CHARS[] = "fFdDxX";
220
221 /* Tables for lexical analysis. */
222 static char mnemonic_chars[256];
223 static char register_chars[256];
224 static char operand_chars[256];
225 static char identifier_chars[256];
226 static char digit_chars[256];
227
228 /* Lexical macros. */
229 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
230 #define is_operand_char(x) (operand_chars[(unsigned char) x])
231 #define is_register_char(x) (register_chars[(unsigned char) x])
232 #define is_space_char(x) ((x) == ' ')
233 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
234 #define is_digit_char(x) (digit_chars[(unsigned char) x])
235
236 /* All non-digit non-letter characters that may occur in an operand. */
237 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
238
239 /* md_assemble() always leaves the strings it's passed unaltered. To
240 effect this we maintain a stack of saved characters that we've smashed
241 with '\0's (indicating end of strings for various sub-fields of the
242 assembler instruction). */
243 static char save_stack[32];
244 static char *save_stack_p;
245 #define END_STRING_AND_SAVE(s) \
246 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
247 #define RESTORE_END_STRING(s) \
248 do { *(s) = *--save_stack_p; } while (0)
249
250 /* The instruction we're assembling. */
251 static i386_insn i;
252
253 /* Possible templates for current insn. */
254 static const templates *current_templates;
255
256 /* Per instruction expressionS buffers: max displacements & immediates. */
257 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
258 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
259
260 /* Current operand we are working on. */
261 static int this_operand;
262
263 /* We support four different modes. FLAG_CODE variable is used to distinguish
264 these. */
265
266 enum flag_code {
267 CODE_32BIT,
268 CODE_16BIT,
269 CODE_64BIT };
270
271 static enum flag_code flag_code;
272 static unsigned int object_64bit;
273 static int use_rela_relocations = 0;
274
275 /* The names used to print error messages. */
276 static const char *flag_code_names[] =
277 {
278 "32",
279 "16",
280 "64"
281 };
282
283 /* 1 for intel syntax,
284 0 if att syntax. */
285 static int intel_syntax = 0;
286
287 /* 1 for intel mnemonic,
288 0 if att mnemonic. */
289 static int intel_mnemonic = !SYSV386_COMPAT;
290
291 /* 1 if support old (<= 2.8.1) versions of gcc. */
292 static int old_gcc = OLDGCC_COMPAT;
293
294 /* 1 if register prefix % not required. */
295 static int allow_naked_reg = 0;
296
297 /* 1 if pseudo index register, eiz/riz, is allowed . */
298 static int allow_index_reg = 0;
299
300 /* Register prefix used for error message. */
301 static const char *register_prefix = "%";
302
303 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
304 leave, push, and pop instructions so that gcc has the same stack
305 frame as in 32 bit mode. */
306 static char stackop_size = '\0';
307
308 /* Non-zero to optimize code alignment. */
309 int optimize_align_code = 1;
310
311 /* Non-zero to quieten some warnings. */
312 static int quiet_warnings = 0;
313
314 /* CPU name. */
315 static const char *cpu_arch_name = NULL;
316 static const char *cpu_sub_arch_name = NULL;
317
318 /* CPU feature flags. */
319 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
320
321 /* Bitwise NOT of cpu_arch_flags. */
322 static i386_cpu_flags cpu_arch_flags_not;
323
324 /* If we have selected a cpu we are generating instructions for. */
325 static int cpu_arch_tune_set = 0;
326
327 /* Cpu we are generating instructions for. */
328 static enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
329
330 /* CPU feature flags of cpu we are generating instructions for. */
331 static i386_cpu_flags cpu_arch_tune_flags;
332
333 /* CPU instruction set architecture used. */
334 static enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
335
336 /* CPU feature flags of instruction set architecture used. */
337 static i386_cpu_flags cpu_arch_isa_flags;
338
339 /* If set, conditional jumps are not automatically promoted to handle
340 larger than a byte offset. */
341 static unsigned int no_cond_jump_promotion = 0;
342
343 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
344 static symbolS *GOT_symbol;
345
346 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
347 unsigned int x86_dwarf2_return_column;
348
349 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
350 int x86_cie_data_alignment;
351
352 /* Interface to relax_segment.
353 There are 3 major relax states for 386 jump insns because the
354 different types of jumps add different sizes to frags when we're
355 figuring out what sort of jump to choose to reach a given label. */
356
357 /* Types. */
358 #define UNCOND_JUMP 0
359 #define COND_JUMP 1
360 #define COND_JUMP86 2
361
362 /* Sizes. */
363 #define CODE16 1
364 #define SMALL 0
365 #define SMALL16 (SMALL | CODE16)
366 #define BIG 2
367 #define BIG16 (BIG | CODE16)
368
369 #ifndef INLINE
370 #ifdef __GNUC__
371 #define INLINE __inline__
372 #else
373 #define INLINE
374 #endif
375 #endif
376
377 #define ENCODE_RELAX_STATE(type, size) \
378 ((relax_substateT) (((type) << 2) | (size)))
379 #define TYPE_FROM_RELAX_STATE(s) \
380 ((s) >> 2)
381 #define DISP_SIZE_FROM_RELAX_STATE(s) \
382 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
383
384 /* This table is used by relax_frag to promote short jumps to long
385 ones where necessary. SMALL (short) jumps may be promoted to BIG
386 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
387 don't allow a short jump in a 32 bit code segment to be promoted to
388 a 16 bit offset jump because it's slower (requires data size
389 prefix), and doesn't work, unless the destination is in the bottom
390 64k of the code segment (The top 16 bits of eip are zeroed). */
391
392 const relax_typeS md_relax_table[] =
393 {
394 /* The fields are:
395 1) most positive reach of this state,
396 2) most negative reach of this state,
397 3) how many bytes this mode will have in the variable part of the frag
398 4) which index into the table to try if we can't fit into this one. */
399
400 /* UNCOND_JUMP states. */
401 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
402 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
403 /* dword jmp adds 4 bytes to frag:
404 0 extra opcode bytes, 4 displacement bytes. */
405 {0, 0, 4, 0},
406 /* word jmp adds 2 byte2 to frag:
407 0 extra opcode bytes, 2 displacement bytes. */
408 {0, 0, 2, 0},
409
410 /* COND_JUMP states. */
411 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
412 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
413 /* dword conditionals adds 5 bytes to frag:
414 1 extra opcode byte, 4 displacement bytes. */
415 {0, 0, 5, 0},
416 /* word conditionals add 3 bytes to frag:
417 1 extra opcode byte, 2 displacement bytes. */
418 {0, 0, 3, 0},
419
420 /* COND_JUMP86 states. */
421 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
422 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
423 /* dword conditionals adds 5 bytes to frag:
424 1 extra opcode byte, 4 displacement bytes. */
425 {0, 0, 5, 0},
426 /* word conditionals add 4 bytes to frag:
427 1 displacement byte and a 3 byte long branch insn. */
428 {0, 0, 4, 0}
429 };
430
431 static const arch_entry cpu_arch[] =
432 {
433 {"generic32", PROCESSOR_GENERIC32,
434 CPU_GENERIC32_FLAGS },
435 {"generic64", PROCESSOR_GENERIC64,
436 CPU_GENERIC64_FLAGS },
437 {"i8086", PROCESSOR_UNKNOWN,
438 CPU_NONE_FLAGS },
439 {"i186", PROCESSOR_UNKNOWN,
440 CPU_I186_FLAGS },
441 {"i286", PROCESSOR_UNKNOWN,
442 CPU_I286_FLAGS },
443 {"i386", PROCESSOR_I386,
444 CPU_I386_FLAGS },
445 {"i486", PROCESSOR_I486,
446 CPU_I486_FLAGS },
447 {"i586", PROCESSOR_PENTIUM,
448 CPU_I586_FLAGS },
449 {"i686", PROCESSOR_PENTIUMPRO,
450 CPU_I686_FLAGS },
451 {"pentium", PROCESSOR_PENTIUM,
452 CPU_I586_FLAGS },
453 {"pentiumpro",PROCESSOR_PENTIUMPRO,
454 CPU_I686_FLAGS },
455 {"pentiumii", PROCESSOR_PENTIUMPRO,
456 CPU_P2_FLAGS },
457 {"pentiumiii",PROCESSOR_PENTIUMPRO,
458 CPU_P3_FLAGS },
459 {"pentium4", PROCESSOR_PENTIUM4,
460 CPU_P4_FLAGS },
461 {"prescott", PROCESSOR_NOCONA,
462 CPU_CORE_FLAGS },
463 {"nocona", PROCESSOR_NOCONA,
464 CPU_NOCONA_FLAGS },
465 {"yonah", PROCESSOR_CORE,
466 CPU_CORE_FLAGS },
467 {"core", PROCESSOR_CORE,
468 CPU_CORE_FLAGS },
469 {"merom", PROCESSOR_CORE2,
470 CPU_CORE2_FLAGS },
471 {"core2", PROCESSOR_CORE2,
472 CPU_CORE2_FLAGS },
473 {"k6", PROCESSOR_K6,
474 CPU_K6_FLAGS },
475 {"k6_2", PROCESSOR_K6,
476 CPU_K6_2_FLAGS },
477 {"athlon", PROCESSOR_ATHLON,
478 CPU_ATHLON_FLAGS },
479 {"sledgehammer", PROCESSOR_K8,
480 CPU_K8_FLAGS },
481 {"opteron", PROCESSOR_K8,
482 CPU_K8_FLAGS },
483 {"k8", PROCESSOR_K8,
484 CPU_K8_FLAGS },
485 {"amdfam10", PROCESSOR_AMDFAM10,
486 CPU_AMDFAM10_FLAGS },
487 {".mmx", PROCESSOR_UNKNOWN,
488 CPU_MMX_FLAGS },
489 {".sse", PROCESSOR_UNKNOWN,
490 CPU_SSE_FLAGS },
491 {".sse2", PROCESSOR_UNKNOWN,
492 CPU_SSE2_FLAGS },
493 {".sse3", PROCESSOR_UNKNOWN,
494 CPU_SSE3_FLAGS },
495 {".ssse3", PROCESSOR_UNKNOWN,
496 CPU_SSSE3_FLAGS },
497 {".sse4.1", PROCESSOR_UNKNOWN,
498 CPU_SSE4_1_FLAGS },
499 {".sse4.2", PROCESSOR_UNKNOWN,
500 CPU_SSE4_2_FLAGS },
501 {".sse4", PROCESSOR_UNKNOWN,
502 CPU_SSE4_2_FLAGS },
503 {".3dnow", PROCESSOR_UNKNOWN,
504 CPU_3DNOW_FLAGS },
505 {".3dnowa", PROCESSOR_UNKNOWN,
506 CPU_3DNOWA_FLAGS },
507 {".padlock", PROCESSOR_UNKNOWN,
508 CPU_PADLOCK_FLAGS },
509 {".pacifica", PROCESSOR_UNKNOWN,
510 CPU_SVME_FLAGS },
511 {".svme", PROCESSOR_UNKNOWN,
512 CPU_SVME_FLAGS },
513 {".sse4a", PROCESSOR_UNKNOWN,
514 CPU_SSE4A_FLAGS },
515 {".abm", PROCESSOR_UNKNOWN,
516 CPU_ABM_FLAGS },
517 {".sse5", PROCESSOR_UNKNOWN,
518 CPU_SSE5_FLAGS },
519 };
520
521 const pseudo_typeS md_pseudo_table[] =
522 {
523 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
524 {"align", s_align_bytes, 0},
525 #else
526 {"align", s_align_ptwo, 0},
527 #endif
528 {"arch", set_cpu_arch, 0},
529 #ifndef I386COFF
530 {"bss", s_bss, 0},
531 #endif
532 {"ffloat", float_cons, 'f'},
533 {"dfloat", float_cons, 'd'},
534 {"tfloat", float_cons, 'x'},
535 {"value", cons, 2},
536 {"slong", signed_cons, 4},
537 {"noopt", s_ignore, 0},
538 {"optim", s_ignore, 0},
539 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
540 {"code16", set_code_flag, CODE_16BIT},
541 {"code32", set_code_flag, CODE_32BIT},
542 {"code64", set_code_flag, CODE_64BIT},
543 {"intel_syntax", set_intel_syntax, 1},
544 {"att_syntax", set_intel_syntax, 0},
545 {"intel_mnemonic", set_intel_mnemonic, 1},
546 {"att_mnemonic", set_intel_mnemonic, 0},
547 {"allow_index_reg", set_allow_index_reg, 1},
548 {"disallow_index_reg", set_allow_index_reg, 0},
549 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
550 {"largecomm", handle_large_common, 0},
551 #else
552 {"file", (void (*) (int)) dwarf2_directive_file, 0},
553 {"loc", dwarf2_directive_loc, 0},
554 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
555 #endif
556 #ifdef TE_PE
557 {"secrel32", pe_directive_secrel, 0},
558 #endif
559 {0, 0, 0}
560 };
561
562 /* For interface with expression (). */
563 extern char *input_line_pointer;
564
565 /* Hash table for instruction mnemonic lookup. */
566 static struct hash_control *op_hash;
567
568 /* Hash table for register lookup. */
569 static struct hash_control *reg_hash;
570 \f
571 void
572 i386_align_code (fragS *fragP, int count)
573 {
574 /* Various efficient no-op patterns for aligning code labels.
575 Note: Don't try to assemble the instructions in the comments.
576 0L and 0w are not legal. */
577 static const char f32_1[] =
578 {0x90}; /* nop */
579 static const char f32_2[] =
580 {0x66,0x90}; /* xchg %ax,%ax */
581 static const char f32_3[] =
582 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
583 static const char f32_4[] =
584 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
585 static const char f32_5[] =
586 {0x90, /* nop */
587 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
588 static const char f32_6[] =
589 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
590 static const char f32_7[] =
591 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
592 static const char f32_8[] =
593 {0x90, /* nop */
594 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
595 static const char f32_9[] =
596 {0x89,0xf6, /* movl %esi,%esi */
597 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
598 static const char f32_10[] =
599 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
600 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
601 static const char f32_11[] =
602 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
603 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
604 static const char f32_12[] =
605 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
606 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
607 static const char f32_13[] =
608 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
609 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
610 static const char f32_14[] =
611 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
612 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
613 static const char f16_3[] =
614 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
615 static const char f16_4[] =
616 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
617 static const char f16_5[] =
618 {0x90, /* nop */
619 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
620 static const char f16_6[] =
621 {0x89,0xf6, /* mov %si,%si */
622 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
623 static const char f16_7[] =
624 {0x8d,0x74,0x00, /* lea 0(%si),%si */
625 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
626 static const char f16_8[] =
627 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
628 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
629 static const char jump_31[] =
630 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
631 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
632 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
633 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
634 static const char *const f32_patt[] = {
635 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
636 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
637 };
638 static const char *const f16_patt[] = {
639 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
640 };
641 /* nopl (%[re]ax) */
642 static const char alt_3[] =
643 {0x0f,0x1f,0x00};
644 /* nopl 0(%[re]ax) */
645 static const char alt_4[] =
646 {0x0f,0x1f,0x40,0x00};
647 /* nopl 0(%[re]ax,%[re]ax,1) */
648 static const char alt_5[] =
649 {0x0f,0x1f,0x44,0x00,0x00};
650 /* nopw 0(%[re]ax,%[re]ax,1) */
651 static const char alt_6[] =
652 {0x66,0x0f,0x1f,0x44,0x00,0x00};
653 /* nopl 0L(%[re]ax) */
654 static const char alt_7[] =
655 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
656 /* nopl 0L(%[re]ax,%[re]ax,1) */
657 static const char alt_8[] =
658 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
659 /* nopw 0L(%[re]ax,%[re]ax,1) */
660 static const char alt_9[] =
661 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
662 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
663 static const char alt_10[] =
664 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
665 /* data16
666 nopw %cs:0L(%[re]ax,%[re]ax,1) */
667 static const char alt_long_11[] =
668 {0x66,
669 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
670 /* data16
671 data16
672 nopw %cs:0L(%[re]ax,%[re]ax,1) */
673 static const char alt_long_12[] =
674 {0x66,
675 0x66,
676 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
677 /* data16
678 data16
679 data16
680 nopw %cs:0L(%[re]ax,%[re]ax,1) */
681 static const char alt_long_13[] =
682 {0x66,
683 0x66,
684 0x66,
685 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
686 /* data16
687 data16
688 data16
689 data16
690 nopw %cs:0L(%[re]ax,%[re]ax,1) */
691 static const char alt_long_14[] =
692 {0x66,
693 0x66,
694 0x66,
695 0x66,
696 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
697 /* data16
698 data16
699 data16
700 data16
701 data16
702 nopw %cs:0L(%[re]ax,%[re]ax,1) */
703 static const char alt_long_15[] =
704 {0x66,
705 0x66,
706 0x66,
707 0x66,
708 0x66,
709 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
710 /* nopl 0(%[re]ax,%[re]ax,1)
711 nopw 0(%[re]ax,%[re]ax,1) */
712 static const char alt_short_11[] =
713 {0x0f,0x1f,0x44,0x00,0x00,
714 0x66,0x0f,0x1f,0x44,0x00,0x00};
715 /* nopw 0(%[re]ax,%[re]ax,1)
716 nopw 0(%[re]ax,%[re]ax,1) */
717 static const char alt_short_12[] =
718 {0x66,0x0f,0x1f,0x44,0x00,0x00,
719 0x66,0x0f,0x1f,0x44,0x00,0x00};
720 /* nopw 0(%[re]ax,%[re]ax,1)
721 nopl 0L(%[re]ax) */
722 static const char alt_short_13[] =
723 {0x66,0x0f,0x1f,0x44,0x00,0x00,
724 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
725 /* nopl 0L(%[re]ax)
726 nopl 0L(%[re]ax) */
727 static const char alt_short_14[] =
728 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
729 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
730 /* nopl 0L(%[re]ax)
731 nopl 0L(%[re]ax,%[re]ax,1) */
732 static const char alt_short_15[] =
733 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
734 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
735 static const char *const alt_short_patt[] = {
736 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
737 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
738 alt_short_14, alt_short_15
739 };
740 static const char *const alt_long_patt[] = {
741 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
742 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
743 alt_long_14, alt_long_15
744 };
745
746 /* Only align for at least a positive non-zero boundary. */
747 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
748 return;
749
750 /* We need to decide which NOP sequence to use for 32bit and
751 64bit. When -mtune= is used:
752
753 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
754 PROCESSOR_GENERIC32, f32_patt will be used.
755 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
756 PROCESSOR_CORE, PROCESSOR_CORE2, and PROCESSOR_GENERIC64,
757 alt_long_patt will be used.
758 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
759 PROCESSOR_AMDFAM10, alt_short_patt will be used.
760
761 When -mtune= isn't used, alt_long_patt will be used if
762 cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will
763 be used.
764
765 When -march= or .arch is used, we can't use anything beyond
766 cpu_arch_isa_flags. */
767
768 if (flag_code == CODE_16BIT)
769 {
770 if (count > 8)
771 {
772 memcpy (fragP->fr_literal + fragP->fr_fix,
773 jump_31, count);
774 /* Adjust jump offset. */
775 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
776 }
777 else
778 memcpy (fragP->fr_literal + fragP->fr_fix,
779 f16_patt[count - 1], count);
780 }
781 else
782 {
783 const char *const *patt = NULL;
784
785 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
786 {
787 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
788 switch (cpu_arch_tune)
789 {
790 case PROCESSOR_UNKNOWN:
791 /* We use cpu_arch_isa_flags to check if we SHOULD
792 optimize for Cpu686. */
793 if (cpu_arch_isa_flags.bitfield.cpui686)
794 patt = alt_long_patt;
795 else
796 patt = f32_patt;
797 break;
798 case PROCESSOR_PENTIUMPRO:
799 case PROCESSOR_PENTIUM4:
800 case PROCESSOR_NOCONA:
801 case PROCESSOR_CORE:
802 case PROCESSOR_CORE2:
803 case PROCESSOR_GENERIC64:
804 patt = alt_long_patt;
805 break;
806 case PROCESSOR_K6:
807 case PROCESSOR_ATHLON:
808 case PROCESSOR_K8:
809 case PROCESSOR_AMDFAM10:
810 patt = alt_short_patt;
811 break;
812 case PROCESSOR_I386:
813 case PROCESSOR_I486:
814 case PROCESSOR_PENTIUM:
815 case PROCESSOR_GENERIC32:
816 patt = f32_patt;
817 break;
818 }
819 }
820 else
821 {
822 switch (cpu_arch_tune)
823 {
824 case PROCESSOR_UNKNOWN:
825 /* When cpu_arch_isa is net, cpu_arch_tune shouldn't be
826 PROCESSOR_UNKNOWN. */
827 abort ();
828 break;
829
830 case PROCESSOR_I386:
831 case PROCESSOR_I486:
832 case PROCESSOR_PENTIUM:
833 case PROCESSOR_K6:
834 case PROCESSOR_ATHLON:
835 case PROCESSOR_K8:
836 case PROCESSOR_AMDFAM10:
837 case PROCESSOR_GENERIC32:
838 /* We use cpu_arch_isa_flags to check if we CAN optimize
839 for Cpu686. */
840 if (cpu_arch_isa_flags.bitfield.cpui686)
841 patt = alt_short_patt;
842 else
843 patt = f32_patt;
844 break;
845 case PROCESSOR_PENTIUMPRO:
846 case PROCESSOR_PENTIUM4:
847 case PROCESSOR_NOCONA:
848 case PROCESSOR_CORE:
849 case PROCESSOR_CORE2:
850 if (cpu_arch_isa_flags.bitfield.cpui686)
851 patt = alt_long_patt;
852 else
853 patt = f32_patt;
854 break;
855 case PROCESSOR_GENERIC64:
856 patt = alt_long_patt;
857 break;
858 }
859 }
860
861 if (patt == f32_patt)
862 {
863 /* If the padding is less than 15 bytes, we use the normal
864 ones. Otherwise, we use a jump instruction and adjust
865 its offset. */
866 if (count < 15)
867 memcpy (fragP->fr_literal + fragP->fr_fix,
868 patt[count - 1], count);
869 else
870 {
871 memcpy (fragP->fr_literal + fragP->fr_fix,
872 jump_31, count);
873 /* Adjust jump offset. */
874 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
875 }
876 }
877 else
878 {
879 /* Maximum length of an instruction is 15 byte. If the
880 padding is greater than 15 bytes and we don't use jump,
881 we have to break it into smaller pieces. */
882 int padding = count;
883 while (padding > 15)
884 {
885 padding -= 15;
886 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
887 patt [14], 15);
888 }
889
890 if (padding)
891 memcpy (fragP->fr_literal + fragP->fr_fix,
892 patt [padding - 1], padding);
893 }
894 }
895 fragP->fr_var = count;
896 }
897
898 static INLINE int
899 uints_all_zero (const unsigned int *x, unsigned int size)
900 {
901 switch (size)
902 {
903 case 3:
904 if (x[2])
905 return 0;
906 case 2:
907 if (x[1])
908 return 0;
909 case 1:
910 return !x[0];
911 default:
912 abort ();
913 }
914 }
915
916 static INLINE void
917 uints_set (unsigned int *x, unsigned int v, unsigned int size)
918 {
919 switch (size)
920 {
921 case 3:
922 x[2] = v;
923 case 2:
924 x[1] = v;
925 case 1:
926 x[0] = v;
927 break;
928 default:
929 abort ();
930 }
931 }
932
933 static INLINE int
934 uints_equal (const unsigned int *x, const unsigned int *y,
935 unsigned int size)
936 {
937 switch (size)
938 {
939 case 3:
940 if (x[2] != y [2])
941 return 0;
942 case 2:
943 if (x[1] != y [1])
944 return 0;
945 case 1:
946 return x[0] == y [0];
947 break;
948 default:
949 abort ();
950 }
951 }
952
953 #define UINTS_ALL_ZERO(x) \
954 uints_all_zero ((x).array, ARRAY_SIZE ((x).array))
955 #define UINTS_SET(x, v) \
956 uints_set ((x).array, v, ARRAY_SIZE ((x).array))
957 #define UINTS_CLEAR(x) \
958 uints_set ((x).array, 0, ARRAY_SIZE ((x).array))
959 #define UINTS_EQUAL(x, y) \
960 uints_equal ((x).array, (y).array, ARRAY_SIZE ((x).array))
961
962 static INLINE int
963 cpu_flags_check_cpu64 (i386_cpu_flags f)
964 {
965 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
966 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
967 }
968
969 static INLINE i386_cpu_flags
970 cpu_flags_not (i386_cpu_flags x)
971 {
972 switch (ARRAY_SIZE (x.array))
973 {
974 case 3:
975 x.array [2] = ~x.array [2];
976 case 2:
977 x.array [1] = ~x.array [1];
978 case 1:
979 x.array [0] = ~x.array [0];
980 break;
981 default:
982 abort ();
983 }
984
985 #ifdef CpuUnused
986 x.bitfield.unused = 0;
987 #endif
988
989 return x;
990 }
991
992 static INLINE i386_cpu_flags
993 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
994 {
995 switch (ARRAY_SIZE (x.array))
996 {
997 case 3:
998 x.array [2] &= y.array [2];
999 case 2:
1000 x.array [1] &= y.array [1];
1001 case 1:
1002 x.array [0] &= y.array [0];
1003 break;
1004 default:
1005 abort ();
1006 }
1007 return x;
1008 }
1009
1010 static INLINE i386_cpu_flags
1011 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1012 {
1013 switch (ARRAY_SIZE (x.array))
1014 {
1015 case 3:
1016 x.array [2] |= y.array [2];
1017 case 2:
1018 x.array [1] |= y.array [1];
1019 case 1:
1020 x.array [0] |= y.array [0];
1021 break;
1022 default:
1023 abort ();
1024 }
1025 return x;
1026 }
1027
1028 static int
1029 cpu_flags_match (i386_cpu_flags x)
1030 {
1031 i386_cpu_flags not = cpu_arch_flags_not;
1032
1033 not.bitfield.cpu64 = 1;
1034 not.bitfield.cpuno64 = 1;
1035
1036 x.bitfield.cpu64 = 0;
1037 x.bitfield.cpuno64 = 0;
1038
1039 not = cpu_flags_and (x, not);
1040 return UINTS_ALL_ZERO (not);
1041 }
1042
1043 static INLINE i386_operand_type
1044 operand_type_and (i386_operand_type x, i386_operand_type y)
1045 {
1046 switch (ARRAY_SIZE (x.array))
1047 {
1048 case 3:
1049 x.array [2] &= y.array [2];
1050 case 2:
1051 x.array [1] &= y.array [1];
1052 case 1:
1053 x.array [0] &= y.array [0];
1054 break;
1055 default:
1056 abort ();
1057 }
1058 return x;
1059 }
1060
1061 static INLINE i386_operand_type
1062 operand_type_or (i386_operand_type x, i386_operand_type y)
1063 {
1064 switch (ARRAY_SIZE (x.array))
1065 {
1066 case 3:
1067 x.array [2] |= y.array [2];
1068 case 2:
1069 x.array [1] |= y.array [1];
1070 case 1:
1071 x.array [0] |= y.array [0];
1072 break;
1073 default:
1074 abort ();
1075 }
1076 return x;
1077 }
1078
1079 static INLINE i386_operand_type
1080 operand_type_xor (i386_operand_type x, i386_operand_type y)
1081 {
1082 switch (ARRAY_SIZE (x.array))
1083 {
1084 case 3:
1085 x.array [2] ^= y.array [2];
1086 case 2:
1087 x.array [1] ^= y.array [1];
1088 case 1:
1089 x.array [0] ^= y.array [0];
1090 break;
1091 default:
1092 abort ();
1093 }
1094 return x;
1095 }
1096
1097 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1098 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1099 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1100 static const i386_operand_type reg16_inoutportreg
1101 = OPERAND_TYPE_REG16_INOUTPORTREG;
1102 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1103 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1104 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1105 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1106 static const i386_operand_type anydisp
1107 = OPERAND_TYPE_ANYDISP;
1108 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1109 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1110 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1111 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1112 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1113 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1114 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1115 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1116 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1117 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1118
1119 enum operand_type
1120 {
1121 reg,
1122 imm,
1123 disp,
1124 anymem
1125 };
1126
1127 static INLINE int
1128 operand_type_check (i386_operand_type t, enum operand_type c)
1129 {
1130 switch (c)
1131 {
1132 case reg:
1133 return (t.bitfield.reg8
1134 || t.bitfield.reg16
1135 || t.bitfield.reg32
1136 || t.bitfield.reg64);
1137
1138 case imm:
1139 return (t.bitfield.imm8
1140 || t.bitfield.imm8s
1141 || t.bitfield.imm16
1142 || t.bitfield.imm32
1143 || t.bitfield.imm32s
1144 || t.bitfield.imm64);
1145
1146 case disp:
1147 return (t.bitfield.disp8
1148 || t.bitfield.disp16
1149 || t.bitfield.disp32
1150 || t.bitfield.disp32s
1151 || t.bitfield.disp64);
1152
1153 case anymem:
1154 return (t.bitfield.disp8
1155 || t.bitfield.disp16
1156 || t.bitfield.disp32
1157 || t.bitfield.disp32s
1158 || t.bitfield.disp64
1159 || t.bitfield.baseindex);
1160
1161 default:
1162 abort ();
1163 }
1164 }
1165
1166 static INLINE int
1167 operand_type_match (i386_operand_type overlap,
1168 i386_operand_type given)
1169 {
1170 i386_operand_type temp = overlap;
1171
1172 temp.bitfield.jumpabsolute = 0;
1173 if (UINTS_ALL_ZERO (temp))
1174 return 0;
1175
1176 return (given.bitfield.baseindex == overlap.bitfield.baseindex
1177 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute);
1178 }
1179
1180 /* If given types r0 and r1 are registers they must be of the same type
1181 unless the expected operand type register overlap is null.
1182 Note that Acc in a template matches every size of reg. */
1183
1184 static INLINE int
1185 operand_type_register_match (i386_operand_type m0,
1186 i386_operand_type g0,
1187 i386_operand_type t0,
1188 i386_operand_type m1,
1189 i386_operand_type g1,
1190 i386_operand_type t1)
1191 {
1192 if (!operand_type_check (g0, reg))
1193 return 1;
1194
1195 if (!operand_type_check (g1, reg))
1196 return 1;
1197
1198 if (g0.bitfield.reg8 == g1.bitfield.reg8
1199 && g0.bitfield.reg16 == g1.bitfield.reg16
1200 && g0.bitfield.reg32 == g1.bitfield.reg32
1201 && g0.bitfield.reg64 == g1.bitfield.reg64)
1202 return 1;
1203
1204 if (m0.bitfield.acc)
1205 {
1206 t0.bitfield.reg8 = 1;
1207 t0.bitfield.reg16 = 1;
1208 t0.bitfield.reg32 = 1;
1209 t0.bitfield.reg64 = 1;
1210 }
1211
1212 if (m1.bitfield.acc)
1213 {
1214 t1.bitfield.reg8 = 1;
1215 t1.bitfield.reg16 = 1;
1216 t1.bitfield.reg32 = 1;
1217 t1.bitfield.reg64 = 1;
1218 }
1219
1220 return (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1221 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1222 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1223 && !(t0.bitfield.reg64 & t1.bitfield.reg64));
1224 }
1225
1226 static INLINE unsigned int
1227 mode_from_disp_size (i386_operand_type t)
1228 {
1229 if (t.bitfield.disp8)
1230 return 1;
1231 else if (t.bitfield.disp16
1232 || t.bitfield.disp32
1233 || t.bitfield.disp32s)
1234 return 2;
1235 else
1236 return 0;
1237 }
1238
1239 static INLINE int
1240 fits_in_signed_byte (offsetT num)
1241 {
1242 return (num >= -128) && (num <= 127);
1243 }
1244
1245 static INLINE int
1246 fits_in_unsigned_byte (offsetT num)
1247 {
1248 return (num & 0xff) == num;
1249 }
1250
1251 static INLINE int
1252 fits_in_unsigned_word (offsetT num)
1253 {
1254 return (num & 0xffff) == num;
1255 }
1256
1257 static INLINE int
1258 fits_in_signed_word (offsetT num)
1259 {
1260 return (-32768 <= num) && (num <= 32767);
1261 }
1262
1263 static INLINE int
1264 fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
1265 {
1266 #ifndef BFD64
1267 return 1;
1268 #else
1269 return (!(((offsetT) -1 << 31) & num)
1270 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
1271 #endif
1272 } /* fits_in_signed_long() */
1273
1274 static INLINE int
1275 fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
1276 {
1277 #ifndef BFD64
1278 return 1;
1279 #else
1280 return (num & (((offsetT) 2 << 31) - 1)) == num;
1281 #endif
1282 } /* fits_in_unsigned_long() */
1283
1284 static i386_operand_type
1285 smallest_imm_type (offsetT num)
1286 {
1287 i386_operand_type t;
1288
1289 UINTS_CLEAR (t);
1290 t.bitfield.imm64 = 1;
1291
1292 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
1293 {
1294 /* This code is disabled on the 486 because all the Imm1 forms
1295 in the opcode table are slower on the i486. They're the
1296 versions with the implicitly specified single-position
1297 displacement, which has another syntax if you really want to
1298 use that form. */
1299 t.bitfield.imm1 = 1;
1300 t.bitfield.imm8 = 1;
1301 t.bitfield.imm8s = 1;
1302 t.bitfield.imm16 = 1;
1303 t.bitfield.imm32 = 1;
1304 t.bitfield.imm32s = 1;
1305 }
1306 else if (fits_in_signed_byte (num))
1307 {
1308 t.bitfield.imm8 = 1;
1309 t.bitfield.imm8s = 1;
1310 t.bitfield.imm16 = 1;
1311 t.bitfield.imm32 = 1;
1312 t.bitfield.imm32s = 1;
1313 }
1314 else if (fits_in_unsigned_byte (num))
1315 {
1316 t.bitfield.imm8 = 1;
1317 t.bitfield.imm16 = 1;
1318 t.bitfield.imm32 = 1;
1319 t.bitfield.imm32s = 1;
1320 }
1321 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
1322 {
1323 t.bitfield.imm16 = 1;
1324 t.bitfield.imm32 = 1;
1325 t.bitfield.imm32s = 1;
1326 }
1327 else if (fits_in_signed_long (num))
1328 {
1329 t.bitfield.imm32 = 1;
1330 t.bitfield.imm32s = 1;
1331 }
1332 else if (fits_in_unsigned_long (num))
1333 t.bitfield.imm32 = 1;
1334
1335 return t;
1336 }
1337
1338 static offsetT
1339 offset_in_range (offsetT val, int size)
1340 {
1341 addressT mask;
1342
1343 switch (size)
1344 {
1345 case 1: mask = ((addressT) 1 << 8) - 1; break;
1346 case 2: mask = ((addressT) 1 << 16) - 1; break;
1347 case 4: mask = ((addressT) 2 << 31) - 1; break;
1348 #ifdef BFD64
1349 case 8: mask = ((addressT) 2 << 63) - 1; break;
1350 #endif
1351 default: abort ();
1352 }
1353
1354 /* If BFD64, sign extend val. */
1355 if (!use_rela_relocations)
1356 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
1357 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
1358
1359 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
1360 {
1361 char buf1[40], buf2[40];
1362
1363 sprint_value (buf1, val);
1364 sprint_value (buf2, val & mask);
1365 as_warn (_("%s shortened to %s"), buf1, buf2);
1366 }
1367 return val & mask;
1368 }
1369
1370 /* Returns 0 if attempting to add a prefix where one from the same
1371 class already exists, 1 if non rep/repne added, 2 if rep/repne
1372 added. */
1373 static int
1374 add_prefix (unsigned int prefix)
1375 {
1376 int ret = 1;
1377 unsigned int q;
1378
1379 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
1380 && flag_code == CODE_64BIT)
1381 {
1382 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
1383 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
1384 && (prefix & (REX_R | REX_X | REX_B))))
1385 ret = 0;
1386 q = REX_PREFIX;
1387 }
1388 else
1389 {
1390 switch (prefix)
1391 {
1392 default:
1393 abort ();
1394
1395 case CS_PREFIX_OPCODE:
1396 case DS_PREFIX_OPCODE:
1397 case ES_PREFIX_OPCODE:
1398 case FS_PREFIX_OPCODE:
1399 case GS_PREFIX_OPCODE:
1400 case SS_PREFIX_OPCODE:
1401 q = SEG_PREFIX;
1402 break;
1403
1404 case REPNE_PREFIX_OPCODE:
1405 case REPE_PREFIX_OPCODE:
1406 ret = 2;
1407 /* fall thru */
1408 case LOCK_PREFIX_OPCODE:
1409 q = LOCKREP_PREFIX;
1410 break;
1411
1412 case FWAIT_OPCODE:
1413 q = WAIT_PREFIX;
1414 break;
1415
1416 case ADDR_PREFIX_OPCODE:
1417 q = ADDR_PREFIX;
1418 break;
1419
1420 case DATA_PREFIX_OPCODE:
1421 q = DATA_PREFIX;
1422 break;
1423 }
1424 if (i.prefix[q] != 0)
1425 ret = 0;
1426 }
1427
1428 if (ret)
1429 {
1430 if (!i.prefix[q])
1431 ++i.prefixes;
1432 i.prefix[q] |= prefix;
1433 }
1434 else
1435 as_bad (_("same type of prefix used twice"));
1436
1437 return ret;
1438 }
1439
1440 static void
1441 set_code_flag (int value)
1442 {
1443 flag_code = value;
1444 if (flag_code == CODE_64BIT)
1445 {
1446 cpu_arch_flags.bitfield.cpu64 = 1;
1447 cpu_arch_flags.bitfield.cpuno64 = 0;
1448 cpu_arch_flags_not.bitfield.cpu64 = 0;
1449 cpu_arch_flags_not.bitfield.cpuno64 = 1;
1450 }
1451 else
1452 {
1453 cpu_arch_flags.bitfield.cpu64 = 0;
1454 cpu_arch_flags.bitfield.cpuno64 = 1;
1455 cpu_arch_flags_not.bitfield.cpu64 = 1;
1456 cpu_arch_flags_not.bitfield.cpuno64 = 0;
1457 }
1458 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
1459 {
1460 as_bad (_("64bit mode not supported on this CPU."));
1461 }
1462 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
1463 {
1464 as_bad (_("32bit mode not supported on this CPU."));
1465 }
1466 stackop_size = '\0';
1467 }
1468
1469 static void
1470 set_16bit_gcc_code_flag (int new_code_flag)
1471 {
1472 flag_code = new_code_flag;
1473 if (flag_code != CODE_16BIT)
1474 abort ();
1475 cpu_arch_flags.bitfield.cpu64 = 0;
1476 cpu_arch_flags.bitfield.cpuno64 = 1;
1477 cpu_arch_flags_not.bitfield.cpu64 = 1;
1478 cpu_arch_flags_not.bitfield.cpuno64 = 0;
1479 stackop_size = LONG_MNEM_SUFFIX;
1480 }
1481
1482 static void
1483 set_intel_syntax (int syntax_flag)
1484 {
1485 /* Find out if register prefixing is specified. */
1486 int ask_naked_reg = 0;
1487
1488 SKIP_WHITESPACE ();
1489 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1490 {
1491 char *string = input_line_pointer;
1492 int e = get_symbol_end ();
1493
1494 if (strcmp (string, "prefix") == 0)
1495 ask_naked_reg = 1;
1496 else if (strcmp (string, "noprefix") == 0)
1497 ask_naked_reg = -1;
1498 else
1499 as_bad (_("bad argument to syntax directive."));
1500 *input_line_pointer = e;
1501 }
1502 demand_empty_rest_of_line ();
1503
1504 intel_syntax = syntax_flag;
1505
1506 if (ask_naked_reg == 0)
1507 allow_naked_reg = (intel_syntax
1508 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
1509 else
1510 allow_naked_reg = (ask_naked_reg < 0);
1511
1512 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
1513 identifier_chars['$'] = intel_syntax ? '$' : 0;
1514 register_prefix = allow_naked_reg ? "" : "%";
1515 }
1516
1517 static void
1518 set_intel_mnemonic (int mnemonic_flag)
1519 {
1520 /* Find out if register prefixing is specified. */
1521 int ask_naked_reg = 0;
1522
1523 SKIP_WHITESPACE ();
1524 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1525 {
1526 char *string = input_line_pointer;
1527 int e = get_symbol_end ();
1528
1529 if (strcmp (string, "prefix") == 0)
1530 ask_naked_reg = 1;
1531 else if (strcmp (string, "noprefix") == 0)
1532 ask_naked_reg = -1;
1533 else
1534 as_bad (_("bad argument to syntax directive."));
1535 *input_line_pointer = e;
1536 }
1537 demand_empty_rest_of_line ();
1538
1539 /* intel_mnemonic implies intel_syntax. */
1540 intel_mnemonic = intel_syntax = mnemonic_flag;
1541
1542 if (ask_naked_reg == 0)
1543 allow_naked_reg = (intel_mnemonic
1544 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
1545 else
1546 allow_naked_reg = (ask_naked_reg < 0);
1547
1548 identifier_chars['%'] = intel_mnemonic && allow_naked_reg ? '%' : 0;
1549 identifier_chars['$'] = intel_mnemonic ? '$' : 0;
1550 register_prefix = allow_naked_reg ? "" : "%";
1551 }
1552
1553 static void
1554 set_allow_index_reg (int flag)
1555 {
1556 allow_index_reg = flag;
1557 }
1558
1559 static void
1560 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
1561 {
1562 SKIP_WHITESPACE ();
1563
1564 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1565 {
1566 char *string = input_line_pointer;
1567 int e = get_symbol_end ();
1568 unsigned int i;
1569 i386_cpu_flags flags;
1570
1571 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
1572 {
1573 if (strcmp (string, cpu_arch[i].name) == 0)
1574 {
1575 if (*string != '.')
1576 {
1577 cpu_arch_name = cpu_arch[i].name;
1578 cpu_sub_arch_name = NULL;
1579 cpu_arch_flags = cpu_arch[i].flags;
1580 if (flag_code == CODE_64BIT)
1581 {
1582 cpu_arch_flags.bitfield.cpu64 = 1;
1583 cpu_arch_flags.bitfield.cpuno64 = 0;
1584 }
1585 else
1586 {
1587 cpu_arch_flags.bitfield.cpu64 = 0;
1588 cpu_arch_flags.bitfield.cpuno64 = 1;
1589 }
1590 cpu_arch_flags_not = cpu_flags_not (cpu_arch_flags);
1591 cpu_arch_isa = cpu_arch[i].type;
1592 cpu_arch_isa_flags = cpu_arch[i].flags;
1593 if (!cpu_arch_tune_set)
1594 {
1595 cpu_arch_tune = cpu_arch_isa;
1596 cpu_arch_tune_flags = cpu_arch_isa_flags;
1597 }
1598 break;
1599 }
1600
1601 flags = cpu_flags_or (cpu_arch_flags,
1602 cpu_arch[i].flags);
1603 if (!UINTS_EQUAL (flags, cpu_arch_flags))
1604 {
1605 cpu_sub_arch_name = cpu_arch[i].name;
1606 cpu_arch_flags = flags;
1607 cpu_arch_flags_not = cpu_flags_not (cpu_arch_flags);
1608 }
1609 *input_line_pointer = e;
1610 demand_empty_rest_of_line ();
1611 return;
1612 }
1613 }
1614 if (i >= ARRAY_SIZE (cpu_arch))
1615 as_bad (_("no such architecture: `%s'"), string);
1616
1617 *input_line_pointer = e;
1618 }
1619 else
1620 as_bad (_("missing cpu architecture"));
1621
1622 no_cond_jump_promotion = 0;
1623 if (*input_line_pointer == ','
1624 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
1625 {
1626 char *string = ++input_line_pointer;
1627 int e = get_symbol_end ();
1628
1629 if (strcmp (string, "nojumps") == 0)
1630 no_cond_jump_promotion = 1;
1631 else if (strcmp (string, "jumps") == 0)
1632 ;
1633 else
1634 as_bad (_("no such architecture modifier: `%s'"), string);
1635
1636 *input_line_pointer = e;
1637 }
1638
1639 demand_empty_rest_of_line ();
1640 }
1641
1642 unsigned long
1643 i386_mach ()
1644 {
1645 if (!strcmp (default_arch, "x86_64"))
1646 return bfd_mach_x86_64;
1647 else if (!strcmp (default_arch, "i386"))
1648 return bfd_mach_i386_i386;
1649 else
1650 as_fatal (_("Unknown architecture"));
1651 }
1652 \f
1653 void
1654 md_begin ()
1655 {
1656 const char *hash_err;
1657
1658 cpu_arch_flags_not = cpu_flags_not (cpu_arch_flags);
1659
1660 /* Initialize op_hash hash table. */
1661 op_hash = hash_new ();
1662
1663 {
1664 const template *optab;
1665 templates *core_optab;
1666
1667 /* Setup for loop. */
1668 optab = i386_optab;
1669 core_optab = (templates *) xmalloc (sizeof (templates));
1670 core_optab->start = optab;
1671
1672 while (1)
1673 {
1674 ++optab;
1675 if (optab->name == NULL
1676 || strcmp (optab->name, (optab - 1)->name) != 0)
1677 {
1678 /* different name --> ship out current template list;
1679 add to hash table; & begin anew. */
1680 core_optab->end = optab;
1681 hash_err = hash_insert (op_hash,
1682 (optab - 1)->name,
1683 (PTR) core_optab);
1684 if (hash_err)
1685 {
1686 as_fatal (_("Internal Error: Can't hash %s: %s"),
1687 (optab - 1)->name,
1688 hash_err);
1689 }
1690 if (optab->name == NULL)
1691 break;
1692 core_optab = (templates *) xmalloc (sizeof (templates));
1693 core_optab->start = optab;
1694 }
1695 }
1696 }
1697
1698 /* Initialize reg_hash hash table. */
1699 reg_hash = hash_new ();
1700 {
1701 const reg_entry *regtab;
1702 unsigned int regtab_size = i386_regtab_size;
1703
1704 for (regtab = i386_regtab; regtab_size--; regtab++)
1705 {
1706 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
1707 if (hash_err)
1708 as_fatal (_("Internal Error: Can't hash %s: %s"),
1709 regtab->reg_name,
1710 hash_err);
1711 }
1712 }
1713
1714 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
1715 {
1716 int c;
1717 char *p;
1718
1719 for (c = 0; c < 256; c++)
1720 {
1721 if (ISDIGIT (c))
1722 {
1723 digit_chars[c] = c;
1724 mnemonic_chars[c] = c;
1725 register_chars[c] = c;
1726 operand_chars[c] = c;
1727 }
1728 else if (ISLOWER (c))
1729 {
1730 mnemonic_chars[c] = c;
1731 register_chars[c] = c;
1732 operand_chars[c] = c;
1733 }
1734 else if (ISUPPER (c))
1735 {
1736 mnemonic_chars[c] = TOLOWER (c);
1737 register_chars[c] = mnemonic_chars[c];
1738 operand_chars[c] = c;
1739 }
1740
1741 if (ISALPHA (c) || ISDIGIT (c))
1742 identifier_chars[c] = c;
1743 else if (c >= 128)
1744 {
1745 identifier_chars[c] = c;
1746 operand_chars[c] = c;
1747 }
1748 }
1749
1750 #ifdef LEX_AT
1751 identifier_chars['@'] = '@';
1752 #endif
1753 #ifdef LEX_QM
1754 identifier_chars['?'] = '?';
1755 operand_chars['?'] = '?';
1756 #endif
1757 digit_chars['-'] = '-';
1758 mnemonic_chars['-'] = '-';
1759 mnemonic_chars['.'] = '.';
1760 identifier_chars['_'] = '_';
1761 identifier_chars['.'] = '.';
1762
1763 for (p = operand_special_chars; *p != '\0'; p++)
1764 operand_chars[(unsigned char) *p] = *p;
1765 }
1766
1767 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1768 if (IS_ELF)
1769 {
1770 record_alignment (text_section, 2);
1771 record_alignment (data_section, 2);
1772 record_alignment (bss_section, 2);
1773 }
1774 #endif
1775
1776 if (flag_code == CODE_64BIT)
1777 {
1778 x86_dwarf2_return_column = 16;
1779 x86_cie_data_alignment = -8;
1780 }
1781 else
1782 {
1783 x86_dwarf2_return_column = 8;
1784 x86_cie_data_alignment = -4;
1785 }
1786 }
1787
1788 void
1789 i386_print_statistics (FILE *file)
1790 {
1791 hash_print_statistics (file, "i386 opcode", op_hash);
1792 hash_print_statistics (file, "i386 register", reg_hash);
1793 }
1794 \f
1795 #ifdef DEBUG386
1796
1797 /* Debugging routines for md_assemble. */
1798 static void pte (template *);
1799 static void pt (i386_operand_type);
1800 static void pe (expressionS *);
1801 static void ps (symbolS *);
1802
1803 static void
1804 pi (char *line, i386_insn *x)
1805 {
1806 unsigned int i;
1807
1808 fprintf (stdout, "%s: template ", line);
1809 pte (&x->tm);
1810 fprintf (stdout, " address: base %s index %s scale %x\n",
1811 x->base_reg ? x->base_reg->reg_name : "none",
1812 x->index_reg ? x->index_reg->reg_name : "none",
1813 x->log2_scale_factor);
1814 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1815 x->rm.mode, x->rm.reg, x->rm.regmem);
1816 fprintf (stdout, " sib: base %x index %x scale %x\n",
1817 x->sib.base, x->sib.index, x->sib.scale);
1818 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1819 (x->rex & REX_W) != 0,
1820 (x->rex & REX_R) != 0,
1821 (x->rex & REX_X) != 0,
1822 (x->rex & REX_B) != 0);
1823 fprintf (stdout, " drex: reg %d rex 0x%x\n",
1824 x->drex.reg, x->drex.rex);
1825 for (i = 0; i < x->operands; i++)
1826 {
1827 fprintf (stdout, " #%d: ", i + 1);
1828 pt (x->types[i]);
1829 fprintf (stdout, "\n");
1830 if (x->types[i].bitfield.reg8
1831 || x->types[i].bitfield.reg16
1832 || x->types[i].bitfield.reg32
1833 || x->types[i].bitfield.reg64
1834 || x->types[i].bitfield.regmmx
1835 || x->types[i].bitfield.regxmm
1836 || x->types[i].bitfield.sreg2
1837 || x->types[i].bitfield.sreg3
1838 || x->types[i].bitfield.control
1839 || x->types[i].bitfield.debug
1840 || x->types[i].bitfield.test)
1841 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1842 if (operand_type_check (x->types[i], imm))
1843 pe (x->op[i].imms);
1844 if (operand_type_check (x->types[i], disp))
1845 pe (x->op[i].disps);
1846 }
1847 }
1848
1849 static void
1850 pte (template *t)
1851 {
1852 unsigned int i;
1853 fprintf (stdout, " %d operands ", t->operands);
1854 fprintf (stdout, "opcode %x ", t->base_opcode);
1855 if (t->extension_opcode != None)
1856 fprintf (stdout, "ext %x ", t->extension_opcode);
1857 if (t->opcode_modifier.d)
1858 fprintf (stdout, "D");
1859 if (t->opcode_modifier.w)
1860 fprintf (stdout, "W");
1861 fprintf (stdout, "\n");
1862 for (i = 0; i < t->operands; i++)
1863 {
1864 fprintf (stdout, " #%d type ", i + 1);
1865 pt (t->operand_types[i]);
1866 fprintf (stdout, "\n");
1867 }
1868 }
1869
1870 static void
1871 pe (expressionS *e)
1872 {
1873 fprintf (stdout, " operation %d\n", e->X_op);
1874 fprintf (stdout, " add_number %ld (%lx)\n",
1875 (long) e->X_add_number, (long) e->X_add_number);
1876 if (e->X_add_symbol)
1877 {
1878 fprintf (stdout, " add_symbol ");
1879 ps (e->X_add_symbol);
1880 fprintf (stdout, "\n");
1881 }
1882 if (e->X_op_symbol)
1883 {
1884 fprintf (stdout, " op_symbol ");
1885 ps (e->X_op_symbol);
1886 fprintf (stdout, "\n");
1887 }
1888 }
1889
1890 static void
1891 ps (symbolS *s)
1892 {
1893 fprintf (stdout, "%s type %s%s",
1894 S_GET_NAME (s),
1895 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1896 segment_name (S_GET_SEGMENT (s)));
1897 }
1898
1899 static struct type_name
1900 {
1901 i386_operand_type mask;
1902 const char *name;
1903 }
1904 const type_names[] =
1905 {
1906 { OPERAND_TYPE_REG8, "r8" },
1907 { OPERAND_TYPE_REG16, "r16" },
1908 { OPERAND_TYPE_REG32, "r32" },
1909 { OPERAND_TYPE_REG64, "r64" },
1910 { OPERAND_TYPE_IMM8, "i8" },
1911 { OPERAND_TYPE_IMM8, "i8s" },
1912 { OPERAND_TYPE_IMM16, "i16" },
1913 { OPERAND_TYPE_IMM32, "i32" },
1914 { OPERAND_TYPE_IMM32S, "i32s" },
1915 { OPERAND_TYPE_IMM64, "i64" },
1916 { OPERAND_TYPE_IMM1, "i1" },
1917 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
1918 { OPERAND_TYPE_DISP8, "d8" },
1919 { OPERAND_TYPE_DISP16, "d16" },
1920 { OPERAND_TYPE_DISP32, "d32" },
1921 { OPERAND_TYPE_DISP32S, "d32s" },
1922 { OPERAND_TYPE_DISP64, "d64" },
1923 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
1924 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
1925 { OPERAND_TYPE_CONTROL, "control reg" },
1926 { OPERAND_TYPE_TEST, "test reg" },
1927 { OPERAND_TYPE_DEBUG, "debug reg" },
1928 { OPERAND_TYPE_FLOATREG, "FReg" },
1929 { OPERAND_TYPE_FLOATACC, "FAcc" },
1930 { OPERAND_TYPE_SREG2, "SReg2" },
1931 { OPERAND_TYPE_SREG3, "SReg3" },
1932 { OPERAND_TYPE_ACC, "Acc" },
1933 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
1934 { OPERAND_TYPE_REGMMX, "rMMX" },
1935 { OPERAND_TYPE_REGXMM, "rXMM" },
1936 { OPERAND_TYPE_ESSEG, "es" },
1937 };
1938
1939 static void
1940 pt (i386_operand_type t)
1941 {
1942 unsigned int j;
1943 i386_operand_type a;
1944
1945 for (j = 0; j < ARRAY_SIZE (type_names); j++)
1946 {
1947 a = operand_type_and (t, type_names[j].mask);
1948 if (!UINTS_ALL_ZERO (a))
1949 fprintf (stdout, "%s, ", type_names[j].name);
1950 }
1951 fflush (stdout);
1952 }
1953
1954 #endif /* DEBUG386 */
1955 \f
1956 static bfd_reloc_code_real_type
1957 reloc (unsigned int size,
1958 int pcrel,
1959 int sign,
1960 bfd_reloc_code_real_type other)
1961 {
1962 if (other != NO_RELOC)
1963 {
1964 reloc_howto_type *reloc;
1965
1966 if (size == 8)
1967 switch (other)
1968 {
1969 case BFD_RELOC_X86_64_GOT32:
1970 return BFD_RELOC_X86_64_GOT64;
1971 break;
1972 case BFD_RELOC_X86_64_PLTOFF64:
1973 return BFD_RELOC_X86_64_PLTOFF64;
1974 break;
1975 case BFD_RELOC_X86_64_GOTPC32:
1976 other = BFD_RELOC_X86_64_GOTPC64;
1977 break;
1978 case BFD_RELOC_X86_64_GOTPCREL:
1979 other = BFD_RELOC_X86_64_GOTPCREL64;
1980 break;
1981 case BFD_RELOC_X86_64_TPOFF32:
1982 other = BFD_RELOC_X86_64_TPOFF64;
1983 break;
1984 case BFD_RELOC_X86_64_DTPOFF32:
1985 other = BFD_RELOC_X86_64_DTPOFF64;
1986 break;
1987 default:
1988 break;
1989 }
1990
1991 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
1992 if (size == 4 && flag_code != CODE_64BIT)
1993 sign = -1;
1994
1995 reloc = bfd_reloc_type_lookup (stdoutput, other);
1996 if (!reloc)
1997 as_bad (_("unknown relocation (%u)"), other);
1998 else if (size != bfd_get_reloc_size (reloc))
1999 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2000 bfd_get_reloc_size (reloc),
2001 size);
2002 else if (pcrel && !reloc->pc_relative)
2003 as_bad (_("non-pc-relative relocation for pc-relative field"));
2004 else if ((reloc->complain_on_overflow == complain_overflow_signed
2005 && !sign)
2006 || (reloc->complain_on_overflow == complain_overflow_unsigned
2007 && sign > 0))
2008 as_bad (_("relocated field and relocation type differ in signedness"));
2009 else
2010 return other;
2011 return NO_RELOC;
2012 }
2013
2014 if (pcrel)
2015 {
2016 if (!sign)
2017 as_bad (_("there are no unsigned pc-relative relocations"));
2018 switch (size)
2019 {
2020 case 1: return BFD_RELOC_8_PCREL;
2021 case 2: return BFD_RELOC_16_PCREL;
2022 case 4: return BFD_RELOC_32_PCREL;
2023 case 8: return BFD_RELOC_64_PCREL;
2024 }
2025 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2026 }
2027 else
2028 {
2029 if (sign > 0)
2030 switch (size)
2031 {
2032 case 4: return BFD_RELOC_X86_64_32S;
2033 }
2034 else
2035 switch (size)
2036 {
2037 case 1: return BFD_RELOC_8;
2038 case 2: return BFD_RELOC_16;
2039 case 4: return BFD_RELOC_32;
2040 case 8: return BFD_RELOC_64;
2041 }
2042 as_bad (_("cannot do %s %u byte relocation"),
2043 sign > 0 ? "signed" : "unsigned", size);
2044 }
2045
2046 abort ();
2047 return BFD_RELOC_NONE;
2048 }
2049
2050 /* Here we decide which fixups can be adjusted to make them relative to
2051 the beginning of the section instead of the symbol. Basically we need
2052 to make sure that the dynamic relocations are done correctly, so in
2053 some cases we force the original symbol to be used. */
2054
2055 int
2056 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2057 {
2058 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2059 if (!IS_ELF)
2060 return 1;
2061
2062 /* Don't adjust pc-relative references to merge sections in 64-bit
2063 mode. */
2064 if (use_rela_relocations
2065 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2066 && fixP->fx_pcrel)
2067 return 0;
2068
2069 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2070 and changed later by validate_fix. */
2071 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2072 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2073 return 0;
2074
2075 /* adjust_reloc_syms doesn't know about the GOT. */
2076 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2077 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2078 || fixP->fx_r_type == BFD_RELOC_386_GOT32
2079 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2080 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2081 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2082 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
2083 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2084 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
2085 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2086 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
2087 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2088 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
2089 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2090 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
2091 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
2092 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2093 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2094 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
2095 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
2096 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2097 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
2098 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2099 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
2100 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2101 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
2102 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2103 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2104 return 0;
2105 #endif
2106 return 1;
2107 }
2108
2109 static int
2110 intel_float_operand (const char *mnemonic)
2111 {
2112 /* Note that the value returned is meaningful only for opcodes with (memory)
2113 operands, hence the code here is free to improperly handle opcodes that
2114 have no operands (for better performance and smaller code). */
2115
2116 if (mnemonic[0] != 'f')
2117 return 0; /* non-math */
2118
2119 switch (mnemonic[1])
2120 {
2121 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2122 the fs segment override prefix not currently handled because no
2123 call path can make opcodes without operands get here */
2124 case 'i':
2125 return 2 /* integer op */;
2126 case 'l':
2127 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
2128 return 3; /* fldcw/fldenv */
2129 break;
2130 case 'n':
2131 if (mnemonic[2] != 'o' /* fnop */)
2132 return 3; /* non-waiting control op */
2133 break;
2134 case 'r':
2135 if (mnemonic[2] == 's')
2136 return 3; /* frstor/frstpm */
2137 break;
2138 case 's':
2139 if (mnemonic[2] == 'a')
2140 return 3; /* fsave */
2141 if (mnemonic[2] == 't')
2142 {
2143 switch (mnemonic[3])
2144 {
2145 case 'c': /* fstcw */
2146 case 'd': /* fstdw */
2147 case 'e': /* fstenv */
2148 case 's': /* fsts[gw] */
2149 return 3;
2150 }
2151 }
2152 break;
2153 case 'x':
2154 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
2155 return 0; /* fxsave/fxrstor are not really math ops */
2156 break;
2157 }
2158
2159 return 1;
2160 }
2161
2162 /* This is the guts of the machine-dependent assembler. LINE points to a
2163 machine dependent instruction. This function is supposed to emit
2164 the frags/bytes it assembles to. */
2165
2166 void
2167 md_assemble (line)
2168 char *line;
2169 {
2170 unsigned int j;
2171 char mnemonic[MAX_MNEM_SIZE];
2172
2173 /* Initialize globals. */
2174 memset (&i, '\0', sizeof (i));
2175 for (j = 0; j < MAX_OPERANDS; j++)
2176 i.reloc[j] = NO_RELOC;
2177 memset (disp_expressions, '\0', sizeof (disp_expressions));
2178 memset (im_expressions, '\0', sizeof (im_expressions));
2179 save_stack_p = save_stack;
2180
2181 /* First parse an instruction mnemonic & call i386_operand for the operands.
2182 We assume that the scrubber has arranged it so that line[0] is the valid
2183 start of a (possibly prefixed) mnemonic. */
2184
2185 line = parse_insn (line, mnemonic);
2186 if (line == NULL)
2187 return;
2188
2189 line = parse_operands (line, mnemonic);
2190 if (line == NULL)
2191 return;
2192
2193 /* Now we've parsed the mnemonic into a set of templates, and have the
2194 operands at hand. */
2195
2196 /* All intel opcodes have reversed operands except for "bound" and
2197 "enter". We also don't reverse intersegment "jmp" and "call"
2198 instructions with 2 immediate operands so that the immediate segment
2199 precedes the offset, as it does when in AT&T mode. */
2200 if (intel_syntax
2201 && i.operands > 1
2202 && (strcmp (mnemonic, "bound") != 0)
2203 && (strcmp (mnemonic, "invlpga") != 0)
2204 && !(operand_type_check (i.types[0], imm)
2205 && operand_type_check (i.types[1], imm)))
2206 swap_operands ();
2207
2208 /* The order of the immediates should be reversed
2209 for 2 immediates extrq and insertq instructions */
2210 if (i.imm_operands == 2
2211 && (strcmp (mnemonic, "extrq") == 0
2212 || strcmp (mnemonic, "insertq") == 0))
2213 swap_2_operands (0, 1);
2214
2215 if (i.imm_operands)
2216 optimize_imm ();
2217
2218 /* Don't optimize displacement for movabs since it only takes 64bit
2219 displacement. */
2220 if (i.disp_operands
2221 && (flag_code != CODE_64BIT
2222 || strcmp (mnemonic, "movabs") != 0))
2223 optimize_disp ();
2224
2225 /* Next, we find a template that matches the given insn,
2226 making sure the overlap of the given operands types is consistent
2227 with the template operand types. */
2228
2229 if (!match_template ())
2230 return;
2231
2232 if (intel_syntax)
2233 {
2234 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
2235 if (SYSV386_COMPAT
2236 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
2237 i.tm.base_opcode ^= Opcode_FloatR;
2238
2239 /* Zap movzx and movsx suffix. The suffix may have been set from
2240 "word ptr" or "byte ptr" on the source operand, but we'll use
2241 the suffix later to choose the destination register. */
2242 if ((i.tm.base_opcode & ~9) == 0x0fb6)
2243 {
2244 if (i.reg_operands < 2
2245 && !i.suffix
2246 && (!i.tm.opcode_modifier.no_bsuf
2247 || !i.tm.opcode_modifier.no_wsuf
2248 || !i.tm.opcode_modifier.no_lsuf
2249 || !i.tm.opcode_modifier.no_ssuf
2250 || !i.tm.opcode_modifier.no_ldsuf
2251 || !i.tm.opcode_modifier.no_qsuf))
2252 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2253
2254 i.suffix = 0;
2255 }
2256 }
2257
2258 if (i.tm.opcode_modifier.fwait)
2259 if (!add_prefix (FWAIT_OPCODE))
2260 return;
2261
2262 /* Check string instruction segment overrides. */
2263 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
2264 {
2265 if (!check_string ())
2266 return;
2267 }
2268
2269 if (!process_suffix ())
2270 return;
2271
2272 /* Make still unresolved immediate matches conform to size of immediate
2273 given in i.suffix. */
2274 if (!finalize_imm ())
2275 return;
2276
2277 if (i.types[0].bitfield.imm1)
2278 i.imm_operands = 0; /* kludge for shift insns. */
2279
2280 for (j = 0; j < 3; j++)
2281 if (i.types[j].bitfield.inoutportreg
2282 || i.types[j].bitfield.shiftcount
2283 || i.types[j].bitfield.acc
2284 || i.types[j].bitfield.floatacc)
2285 i.reg_operands--;
2286
2287 if (i.tm.opcode_modifier.immext)
2288 {
2289 expressionS *exp;
2290
2291 if (i.tm.cpu_flags.bitfield.cpusse3 && i.operands > 0)
2292 {
2293 /* Streaming SIMD extensions 3 Instructions have the fixed
2294 operands with an opcode suffix which is coded in the same
2295 place as an 8-bit immediate field would be. Here we check
2296 those operands and remove them afterwards. */
2297 unsigned int x;
2298
2299 for (x = 0; x < i.operands; x++)
2300 if (i.op[x].regs->reg_num != x)
2301 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
2302 register_prefix,
2303 i.op[x].regs->reg_name,
2304 x + 1,
2305 i.tm.name);
2306 i.operands = 0;
2307 }
2308
2309 /* These AMD 3DNow! and Intel Katmai New Instructions have an
2310 opcode suffix which is coded in the same place as an 8-bit
2311 immediate field would be. Here we fake an 8-bit immediate
2312 operand from the opcode suffix stored in tm.extension_opcode.
2313 SSE5 also uses this encoding, for some of its 3 argument
2314 instructions. */
2315
2316 assert (i.imm_operands == 0
2317 && (i.operands <= 2
2318 || (i.tm.cpu_flags.bitfield.cpusse5
2319 && i.operands <= 3)));
2320
2321 exp = &im_expressions[i.imm_operands++];
2322 i.op[i.operands].imms = exp;
2323 UINTS_CLEAR (i.types[i.operands]);
2324 i.types[i.operands].bitfield.imm8 = 1;
2325 i.operands++;
2326 exp->X_op = O_constant;
2327 exp->X_add_number = i.tm.extension_opcode;
2328 i.tm.extension_opcode = None;
2329 }
2330
2331 /* For insns with operands there are more diddles to do to the opcode. */
2332 if (i.operands)
2333 {
2334 if (!process_operands ())
2335 return;
2336 }
2337 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
2338 {
2339 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2340 as_warn (_("translating to `%sp'"), i.tm.name);
2341 }
2342
2343 /* Handle conversion of 'int $3' --> special int3 insn. */
2344 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
2345 {
2346 i.tm.base_opcode = INT3_OPCODE;
2347 i.imm_operands = 0;
2348 }
2349
2350 if ((i.tm.opcode_modifier.jump
2351 || i.tm.opcode_modifier.jumpbyte
2352 || i.tm.opcode_modifier.jumpdword)
2353 && i.op[0].disps->X_op == O_constant)
2354 {
2355 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2356 the absolute address given by the constant. Since ix86 jumps and
2357 calls are pc relative, we need to generate a reloc. */
2358 i.op[0].disps->X_add_symbol = &abs_symbol;
2359 i.op[0].disps->X_op = O_symbol;
2360 }
2361
2362 if (i.tm.opcode_modifier.rex64)
2363 i.rex |= REX_W;
2364
2365 /* For 8 bit registers we need an empty rex prefix. Also if the
2366 instruction already has a prefix, we need to convert old
2367 registers to new ones. */
2368
2369 if ((i.types[0].bitfield.reg8
2370 && (i.op[0].regs->reg_flags & RegRex64) != 0)
2371 || (i.types[1].bitfield.reg8
2372 && (i.op[1].regs->reg_flags & RegRex64) != 0)
2373 || ((i.types[0].bitfield.reg8
2374 || i.types[1].bitfield.reg8)
2375 && i.rex != 0))
2376 {
2377 int x;
2378
2379 i.rex |= REX_OPCODE;
2380 for (x = 0; x < 2; x++)
2381 {
2382 /* Look for 8 bit operand that uses old registers. */
2383 if (i.types[x].bitfield.reg8
2384 && (i.op[x].regs->reg_flags & RegRex64) == 0)
2385 {
2386 /* In case it is "hi" register, give up. */
2387 if (i.op[x].regs->reg_num > 3)
2388 as_bad (_("can't encode register '%s%s' in an "
2389 "instruction requiring REX prefix."),
2390 register_prefix, i.op[x].regs->reg_name);
2391
2392 /* Otherwise it is equivalent to the extended register.
2393 Since the encoding doesn't change this is merely
2394 cosmetic cleanup for debug output. */
2395
2396 i.op[x].regs = i.op[x].regs + 8;
2397 }
2398 }
2399 }
2400
2401 /* If the instruction has the DREX attribute (aka SSE5), don't emit a
2402 REX prefix. */
2403 if (i.tm.opcode_modifier.drex || i.tm.opcode_modifier.drexc)
2404 {
2405 i.drex.rex = i.rex;
2406 i.rex = 0;
2407 }
2408 else if (i.rex != 0)
2409 add_prefix (REX_OPCODE | i.rex);
2410
2411 /* We are ready to output the insn. */
2412 output_insn ();
2413 }
2414
2415 static char *
2416 parse_insn (char *line, char *mnemonic)
2417 {
2418 char *l = line;
2419 char *token_start = l;
2420 char *mnem_p;
2421 int supported;
2422 const template *t;
2423
2424 /* Non-zero if we found a prefix only acceptable with string insns. */
2425 const char *expecting_string_instruction = NULL;
2426
2427 while (1)
2428 {
2429 mnem_p = mnemonic;
2430 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
2431 {
2432 mnem_p++;
2433 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
2434 {
2435 as_bad (_("no such instruction: `%s'"), token_start);
2436 return NULL;
2437 }
2438 l++;
2439 }
2440 if (!is_space_char (*l)
2441 && *l != END_OF_INSN
2442 && (intel_syntax
2443 || (*l != PREFIX_SEPARATOR
2444 && *l != ',')))
2445 {
2446 as_bad (_("invalid character %s in mnemonic"),
2447 output_invalid (*l));
2448 return NULL;
2449 }
2450 if (token_start == l)
2451 {
2452 if (!intel_syntax && *l == PREFIX_SEPARATOR)
2453 as_bad (_("expecting prefix; got nothing"));
2454 else
2455 as_bad (_("expecting mnemonic; got nothing"));
2456 return NULL;
2457 }
2458
2459 /* Look up instruction (or prefix) via hash table. */
2460 current_templates = hash_find (op_hash, mnemonic);
2461
2462 if (*l != END_OF_INSN
2463 && (!is_space_char (*l) || l[1] != END_OF_INSN)
2464 && current_templates
2465 && current_templates->start->opcode_modifier.isprefix)
2466 {
2467 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2468 {
2469 as_bad ((flag_code != CODE_64BIT
2470 ? _("`%s' is only supported in 64-bit mode")
2471 : _("`%s' is not supported in 64-bit mode")),
2472 current_templates->start->name);
2473 return NULL;
2474 }
2475 /* If we are in 16-bit mode, do not allow addr16 or data16.
2476 Similarly, in 32-bit mode, do not allow addr32 or data32. */
2477 if ((current_templates->start->opcode_modifier.size16
2478 || current_templates->start->opcode_modifier.size32)
2479 && flag_code != CODE_64BIT
2480 && (current_templates->start->opcode_modifier.size32
2481 ^ (flag_code == CODE_16BIT)))
2482 {
2483 as_bad (_("redundant %s prefix"),
2484 current_templates->start->name);
2485 return NULL;
2486 }
2487 /* Add prefix, checking for repeated prefixes. */
2488 switch (add_prefix (current_templates->start->base_opcode))
2489 {
2490 case 0:
2491 return NULL;
2492 case 2:
2493 expecting_string_instruction = current_templates->start->name;
2494 break;
2495 }
2496 /* Skip past PREFIX_SEPARATOR and reset token_start. */
2497 token_start = ++l;
2498 }
2499 else
2500 break;
2501 }
2502
2503 if (!current_templates)
2504 {
2505 /* See if we can get a match by trimming off a suffix. */
2506 switch (mnem_p[-1])
2507 {
2508 case WORD_MNEM_SUFFIX:
2509 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
2510 i.suffix = SHORT_MNEM_SUFFIX;
2511 else
2512 case BYTE_MNEM_SUFFIX:
2513 case QWORD_MNEM_SUFFIX:
2514 i.suffix = mnem_p[-1];
2515 mnem_p[-1] = '\0';
2516 current_templates = hash_find (op_hash, mnemonic);
2517 break;
2518 case SHORT_MNEM_SUFFIX:
2519 case LONG_MNEM_SUFFIX:
2520 if (!intel_syntax)
2521 {
2522 i.suffix = mnem_p[-1];
2523 mnem_p[-1] = '\0';
2524 current_templates = hash_find (op_hash, mnemonic);
2525 }
2526 break;
2527
2528 /* Intel Syntax. */
2529 case 'd':
2530 if (intel_syntax)
2531 {
2532 if (intel_float_operand (mnemonic) == 1)
2533 i.suffix = SHORT_MNEM_SUFFIX;
2534 else
2535 i.suffix = LONG_MNEM_SUFFIX;
2536 mnem_p[-1] = '\0';
2537 current_templates = hash_find (op_hash, mnemonic);
2538 }
2539 break;
2540 }
2541 if (!current_templates)
2542 {
2543 as_bad (_("no such instruction: `%s'"), token_start);
2544 return NULL;
2545 }
2546 }
2547
2548 if (current_templates->start->opcode_modifier.jump
2549 || current_templates->start->opcode_modifier.jumpbyte)
2550 {
2551 /* Check for a branch hint. We allow ",pt" and ",pn" for
2552 predict taken and predict not taken respectively.
2553 I'm not sure that branch hints actually do anything on loop
2554 and jcxz insns (JumpByte) for current Pentium4 chips. They
2555 may work in the future and it doesn't hurt to accept them
2556 now. */
2557 if (l[0] == ',' && l[1] == 'p')
2558 {
2559 if (l[2] == 't')
2560 {
2561 if (!add_prefix (DS_PREFIX_OPCODE))
2562 return NULL;
2563 l += 3;
2564 }
2565 else if (l[2] == 'n')
2566 {
2567 if (!add_prefix (CS_PREFIX_OPCODE))
2568 return NULL;
2569 l += 3;
2570 }
2571 }
2572 }
2573 /* Any other comma loses. */
2574 if (*l == ',')
2575 {
2576 as_bad (_("invalid character %s in mnemonic"),
2577 output_invalid (*l));
2578 return NULL;
2579 }
2580
2581 /* Check if instruction is supported on specified architecture. */
2582 supported = 0;
2583 for (t = current_templates->start; t < current_templates->end; ++t)
2584 {
2585 if (cpu_flags_match (t->cpu_flags))
2586 supported |= 1;
2587 if (cpu_flags_check_cpu64 (t->cpu_flags))
2588 supported |= 2;
2589 }
2590 if (!(supported & 2))
2591 {
2592 as_bad (flag_code == CODE_64BIT
2593 ? _("`%s' is not supported in 64-bit mode")
2594 : _("`%s' is only supported in 64-bit mode"),
2595 current_templates->start->name);
2596 return NULL;
2597 }
2598 if (!(supported & 1))
2599 {
2600 as_warn (_("`%s' is not supported on `%s%s'"),
2601 current_templates->start->name,
2602 cpu_arch_name,
2603 cpu_sub_arch_name ? cpu_sub_arch_name : "");
2604 }
2605 else if (!cpu_arch_flags.bitfield.cpui386
2606 && (flag_code != CODE_16BIT))
2607 {
2608 as_warn (_("use .code16 to ensure correct addressing mode"));
2609 }
2610
2611 /* Check for rep/repne without a string instruction. */
2612 if (expecting_string_instruction)
2613 {
2614 static templates override;
2615
2616 for (t = current_templates->start; t < current_templates->end; ++t)
2617 if (t->opcode_modifier.isstring)
2618 break;
2619 if (t >= current_templates->end)
2620 {
2621 as_bad (_("expecting string instruction after `%s'"),
2622 expecting_string_instruction);
2623 return NULL;
2624 }
2625 for (override.start = t; t < current_templates->end; ++t)
2626 if (!t->opcode_modifier.isstring)
2627 break;
2628 override.end = t;
2629 current_templates = &override;
2630 }
2631
2632 return l;
2633 }
2634
2635 static char *
2636 parse_operands (char *l, const char *mnemonic)
2637 {
2638 char *token_start;
2639
2640 /* 1 if operand is pending after ','. */
2641 unsigned int expecting_operand = 0;
2642
2643 /* Non-zero if operand parens not balanced. */
2644 unsigned int paren_not_balanced;
2645
2646 while (*l != END_OF_INSN)
2647 {
2648 /* Skip optional white space before operand. */
2649 if (is_space_char (*l))
2650 ++l;
2651 if (!is_operand_char (*l) && *l != END_OF_INSN)
2652 {
2653 as_bad (_("invalid character %s before operand %d"),
2654 output_invalid (*l),
2655 i.operands + 1);
2656 return NULL;
2657 }
2658 token_start = l; /* after white space */
2659 paren_not_balanced = 0;
2660 while (paren_not_balanced || *l != ',')
2661 {
2662 if (*l == END_OF_INSN)
2663 {
2664 if (paren_not_balanced)
2665 {
2666 if (!intel_syntax)
2667 as_bad (_("unbalanced parenthesis in operand %d."),
2668 i.operands + 1);
2669 else
2670 as_bad (_("unbalanced brackets in operand %d."),
2671 i.operands + 1);
2672 return NULL;
2673 }
2674 else
2675 break; /* we are done */
2676 }
2677 else if (!is_operand_char (*l) && !is_space_char (*l))
2678 {
2679 as_bad (_("invalid character %s in operand %d"),
2680 output_invalid (*l),
2681 i.operands + 1);
2682 return NULL;
2683 }
2684 if (!intel_syntax)
2685 {
2686 if (*l == '(')
2687 ++paren_not_balanced;
2688 if (*l == ')')
2689 --paren_not_balanced;
2690 }
2691 else
2692 {
2693 if (*l == '[')
2694 ++paren_not_balanced;
2695 if (*l == ']')
2696 --paren_not_balanced;
2697 }
2698 l++;
2699 }
2700 if (l != token_start)
2701 { /* Yes, we've read in another operand. */
2702 unsigned int operand_ok;
2703 this_operand = i.operands++;
2704 if (i.operands > MAX_OPERANDS)
2705 {
2706 as_bad (_("spurious operands; (%d operands/instruction max)"),
2707 MAX_OPERANDS);
2708 return NULL;
2709 }
2710 /* Now parse operand adding info to 'i' as we go along. */
2711 END_STRING_AND_SAVE (l);
2712
2713 if (intel_syntax)
2714 operand_ok =
2715 i386_intel_operand (token_start,
2716 intel_float_operand (mnemonic));
2717 else
2718 operand_ok = i386_operand (token_start);
2719
2720 RESTORE_END_STRING (l);
2721 if (!operand_ok)
2722 return NULL;
2723 }
2724 else
2725 {
2726 if (expecting_operand)
2727 {
2728 expecting_operand_after_comma:
2729 as_bad (_("expecting operand after ','; got nothing"));
2730 return NULL;
2731 }
2732 if (*l == ',')
2733 {
2734 as_bad (_("expecting operand before ','; got nothing"));
2735 return NULL;
2736 }
2737 }
2738
2739 /* Now *l must be either ',' or END_OF_INSN. */
2740 if (*l == ',')
2741 {
2742 if (*++l == END_OF_INSN)
2743 {
2744 /* Just skip it, if it's \n complain. */
2745 goto expecting_operand_after_comma;
2746 }
2747 expecting_operand = 1;
2748 }
2749 }
2750 return l;
2751 }
2752
2753 static void
2754 swap_2_operands (int xchg1, int xchg2)
2755 {
2756 union i386_op temp_op;
2757 i386_operand_type temp_type;
2758 enum bfd_reloc_code_real temp_reloc;
2759
2760 temp_type = i.types[xchg2];
2761 i.types[xchg2] = i.types[xchg1];
2762 i.types[xchg1] = temp_type;
2763 temp_op = i.op[xchg2];
2764 i.op[xchg2] = i.op[xchg1];
2765 i.op[xchg1] = temp_op;
2766 temp_reloc = i.reloc[xchg2];
2767 i.reloc[xchg2] = i.reloc[xchg1];
2768 i.reloc[xchg1] = temp_reloc;
2769 }
2770
2771 static void
2772 swap_operands (void)
2773 {
2774 switch (i.operands)
2775 {
2776 case 4:
2777 swap_2_operands (1, i.operands - 2);
2778 case 3:
2779 case 2:
2780 swap_2_operands (0, i.operands - 1);
2781 break;
2782 default:
2783 abort ();
2784 }
2785
2786 if (i.mem_operands == 2)
2787 {
2788 const seg_entry *temp_seg;
2789 temp_seg = i.seg[0];
2790 i.seg[0] = i.seg[1];
2791 i.seg[1] = temp_seg;
2792 }
2793 }
2794
2795 /* Try to ensure constant immediates are represented in the smallest
2796 opcode possible. */
2797 static void
2798 optimize_imm (void)
2799 {
2800 char guess_suffix = 0;
2801 int op;
2802
2803 if (i.suffix)
2804 guess_suffix = i.suffix;
2805 else if (i.reg_operands)
2806 {
2807 /* Figure out a suffix from the last register operand specified.
2808 We can't do this properly yet, ie. excluding InOutPortReg,
2809 but the following works for instructions with immediates.
2810 In any case, we can't set i.suffix yet. */
2811 for (op = i.operands; --op >= 0;)
2812 if (i.types[op].bitfield.reg8)
2813 {
2814 guess_suffix = BYTE_MNEM_SUFFIX;
2815 break;
2816 }
2817 else if (i.types[op].bitfield.reg16)
2818 {
2819 guess_suffix = WORD_MNEM_SUFFIX;
2820 break;
2821 }
2822 else if (i.types[op].bitfield.reg32)
2823 {
2824 guess_suffix = LONG_MNEM_SUFFIX;
2825 break;
2826 }
2827 else if (i.types[op].bitfield.reg64)
2828 {
2829 guess_suffix = QWORD_MNEM_SUFFIX;
2830 break;
2831 }
2832 }
2833 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
2834 guess_suffix = WORD_MNEM_SUFFIX;
2835
2836 for (op = i.operands; --op >= 0;)
2837 if (operand_type_check (i.types[op], imm))
2838 {
2839 switch (i.op[op].imms->X_op)
2840 {
2841 case O_constant:
2842 /* If a suffix is given, this operand may be shortened. */
2843 switch (guess_suffix)
2844 {
2845 case LONG_MNEM_SUFFIX:
2846 i.types[op].bitfield.imm32 = 1;
2847 i.types[op].bitfield.imm64 = 1;
2848 break;
2849 case WORD_MNEM_SUFFIX:
2850 i.types[op].bitfield.imm16 = 1;
2851 i.types[op].bitfield.imm32 = 1;
2852 i.types[op].bitfield.imm32s = 1;
2853 i.types[op].bitfield.imm64 = 1;
2854 break;
2855 case BYTE_MNEM_SUFFIX:
2856 i.types[op].bitfield.imm8 = 1;
2857 i.types[op].bitfield.imm8s = 1;
2858 i.types[op].bitfield.imm16 = 1;
2859 i.types[op].bitfield.imm32 = 1;
2860 i.types[op].bitfield.imm32s = 1;
2861 i.types[op].bitfield.imm64 = 1;
2862 break;
2863 }
2864
2865 /* If this operand is at most 16 bits, convert it
2866 to a signed 16 bit number before trying to see
2867 whether it will fit in an even smaller size.
2868 This allows a 16-bit operand such as $0xffe0 to
2869 be recognised as within Imm8S range. */
2870 if ((i.types[op].bitfield.imm16)
2871 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
2872 {
2873 i.op[op].imms->X_add_number =
2874 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
2875 }
2876 if ((i.types[op].bitfield.imm32)
2877 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
2878 == 0))
2879 {
2880 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
2881 ^ ((offsetT) 1 << 31))
2882 - ((offsetT) 1 << 31));
2883 }
2884 i.types[op]
2885 = operand_type_or (i.types[op],
2886 smallest_imm_type (i.op[op].imms->X_add_number));
2887
2888 /* We must avoid matching of Imm32 templates when 64bit
2889 only immediate is available. */
2890 if (guess_suffix == QWORD_MNEM_SUFFIX)
2891 i.types[op].bitfield.imm32 = 0;
2892 break;
2893
2894 case O_absent:
2895 case O_register:
2896 abort ();
2897
2898 /* Symbols and expressions. */
2899 default:
2900 /* Convert symbolic operand to proper sizes for matching, but don't
2901 prevent matching a set of insns that only supports sizes other
2902 than those matching the insn suffix. */
2903 {
2904 i386_operand_type mask, allowed;
2905 const template *t;
2906
2907 UINTS_CLEAR (mask);
2908 UINTS_CLEAR (allowed);
2909
2910 for (t = current_templates->start;
2911 t < current_templates->end;
2912 ++t)
2913 allowed = operand_type_or (allowed,
2914 t->operand_types[op]);
2915 switch (guess_suffix)
2916 {
2917 case QWORD_MNEM_SUFFIX:
2918 mask.bitfield.imm64 = 1;
2919 mask.bitfield.imm32s = 1;
2920 break;
2921 case LONG_MNEM_SUFFIX:
2922 mask.bitfield.imm32 = 1;
2923 break;
2924 case WORD_MNEM_SUFFIX:
2925 mask.bitfield.imm16 = 1;
2926 break;
2927 case BYTE_MNEM_SUFFIX:
2928 mask.bitfield.imm8 = 1;
2929 break;
2930 default:
2931 break;
2932 }
2933 allowed = operand_type_and (mask, allowed);
2934 if (!UINTS_ALL_ZERO (allowed))
2935 i.types[op] = operand_type_and (i.types[op], mask);
2936 }
2937 break;
2938 }
2939 }
2940 }
2941
2942 /* Try to use the smallest displacement type too. */
2943 static void
2944 optimize_disp (void)
2945 {
2946 int op;
2947
2948 for (op = i.operands; --op >= 0;)
2949 if (operand_type_check (i.types[op], disp))
2950 {
2951 if (i.op[op].disps->X_op == O_constant)
2952 {
2953 offsetT disp = i.op[op].disps->X_add_number;
2954
2955 if (i.types[op].bitfield.disp16
2956 && (disp & ~(offsetT) 0xffff) == 0)
2957 {
2958 /* If this operand is at most 16 bits, convert
2959 to a signed 16 bit number and don't use 64bit
2960 displacement. */
2961 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
2962 i.types[op].bitfield.disp64 = 0;
2963 }
2964 if (i.types[op].bitfield.disp32
2965 && (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
2966 {
2967 /* If this operand is at most 32 bits, convert
2968 to a signed 32 bit number and don't use 64bit
2969 displacement. */
2970 disp &= (((offsetT) 2 << 31) - 1);
2971 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
2972 i.types[op].bitfield.disp64 = 0;
2973 }
2974 if (!disp && i.types[op].bitfield.baseindex)
2975 {
2976 i.types[op].bitfield.disp8 = 0;
2977 i.types[op].bitfield.disp16 = 0;
2978 i.types[op].bitfield.disp32 = 0;
2979 i.types[op].bitfield.disp32s = 0;
2980 i.types[op].bitfield.disp64 = 0;
2981 i.op[op].disps = 0;
2982 i.disp_operands--;
2983 }
2984 else if (flag_code == CODE_64BIT)
2985 {
2986 if (fits_in_signed_long (disp))
2987 {
2988 i.types[op].bitfield.disp64 = 0;
2989 i.types[op].bitfield.disp32s = 1;
2990 }
2991 if (fits_in_unsigned_long (disp))
2992 i.types[op].bitfield.disp32 = 1;
2993 }
2994 if ((i.types[op].bitfield.disp32
2995 || i.types[op].bitfield.disp32s
2996 || i.types[op].bitfield.disp16)
2997 && fits_in_signed_byte (disp))
2998 i.types[op].bitfield.disp8 = 1;
2999 }
3000 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3001 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
3002 {
3003 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
3004 i.op[op].disps, 0, i.reloc[op]);
3005 i.types[op].bitfield.disp8 = 0;
3006 i.types[op].bitfield.disp16 = 0;
3007 i.types[op].bitfield.disp32 = 0;
3008 i.types[op].bitfield.disp32s = 0;
3009 i.types[op].bitfield.disp64 = 0;
3010 }
3011 else
3012 /* We only support 64bit displacement on constants. */
3013 i.types[op].bitfield.disp64 = 0;
3014 }
3015 }
3016
3017 static int
3018 match_template (void)
3019 {
3020 /* Points to template once we've found it. */
3021 const template *t;
3022 i386_operand_type overlap0, overlap1, overlap2, overlap3;
3023 unsigned int found_reverse_match;
3024 i386_opcode_modifier suffix_check;
3025 i386_operand_type operand_types [MAX_OPERANDS];
3026 int addr_prefix_disp;
3027 unsigned int j;
3028 i386_cpu_flags overlap;
3029
3030 #if MAX_OPERANDS != 4
3031 # error "MAX_OPERANDS must be 4."
3032 #endif
3033
3034 found_reverse_match = 0;
3035 addr_prefix_disp = -1;
3036
3037 memset (&suffix_check, 0, sizeof (suffix_check));
3038 if (i.suffix == BYTE_MNEM_SUFFIX)
3039 suffix_check.no_bsuf = 1;
3040 else if (i.suffix == WORD_MNEM_SUFFIX)
3041 suffix_check.no_wsuf = 1;
3042 else if (i.suffix == SHORT_MNEM_SUFFIX)
3043 suffix_check.no_ssuf = 1;
3044 else if (i.suffix == LONG_MNEM_SUFFIX)
3045 suffix_check.no_lsuf = 1;
3046 else if (i.suffix == QWORD_MNEM_SUFFIX)
3047 suffix_check.no_qsuf = 1;
3048 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
3049 suffix_check.no_ldsuf = 1;
3050 else if (i.suffix == XMMWORD_MNEM_SUFFIX)
3051 suffix_check.no_xsuf = 1;
3052
3053 for (t = current_templates->start; t < current_templates->end; t++)
3054 {
3055 addr_prefix_disp = -1;
3056
3057 /* Must have right number of operands. */
3058 if (i.operands != t->operands)
3059 continue;
3060
3061 /* Check AT&T mnemonic and old gcc support. */
3062 if (t->opcode_modifier.attmnemonic
3063 && (intel_mnemonic
3064 || (!old_gcc
3065 && t->opcode_modifier.oldgcc)))
3066 continue;
3067
3068 /* Check Intel mnemonic. */
3069 if (!intel_mnemonic && t->opcode_modifier.intelmnemonic)
3070 continue;
3071
3072 /* Check the suffix, except for some instructions in intel mode. */
3073 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
3074 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
3075 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
3076 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
3077 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
3078 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
3079 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
3080 continue;
3081
3082 /* Check the memory size in Intel mode when it is provided if
3083 needed. */
3084 if (intel_syntax
3085 && i.suffix
3086 && t->opcode_modifier.checksize
3087 && (!t->opcode_modifier.byte || !suffix_check.no_bsuf)
3088 && (!t->opcode_modifier.word || !suffix_check.no_wsuf)
3089 && (!t->opcode_modifier.dword || !suffix_check.no_lsuf)
3090 && (!t->opcode_modifier.qword || !suffix_check.no_qsuf)
3091 && (!t->opcode_modifier.xmmword || !suffix_check.no_xsuf))
3092 continue;
3093
3094 for (j = 0; j < MAX_OPERANDS; j++)
3095 operand_types [j] = t->operand_types [j];
3096
3097 /* In general, don't allow 64-bit operands in 32-bit mode. */
3098 if (i.suffix == QWORD_MNEM_SUFFIX
3099 && flag_code != CODE_64BIT
3100 && (intel_syntax
3101 ? (!t->opcode_modifier.ignoresize
3102 && !intel_float_operand (t->name))
3103 : intel_float_operand (t->name) != 2)
3104 && ((!operand_types[0].bitfield.regmmx
3105 && !operand_types[0].bitfield.regxmm)
3106 || (!operand_types[t->operands > 1].bitfield.regmmx
3107 && !!operand_types[t->operands > 1].bitfield.regxmm))
3108 && (t->base_opcode != 0x0fc7
3109 || t->extension_opcode != 1 /* cmpxchg8b */))
3110 continue;
3111
3112 /* Do not verify operands when there are none. */
3113 else
3114 {
3115 overlap = cpu_flags_and (t->cpu_flags, cpu_arch_flags_not);
3116 if (!t->operands)
3117 {
3118 if (!UINTS_ALL_ZERO (overlap))
3119 continue;
3120 /* We've found a match; break out of loop. */
3121 break;
3122 }
3123 }
3124
3125 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
3126 into Disp32/Disp16/Disp32 operand. */
3127 if (i.prefix[ADDR_PREFIX] != 0)
3128 {
3129 /* There should be only one Disp operand. */
3130 switch (flag_code)
3131 {
3132 case CODE_16BIT:
3133 for (j = 0; j < MAX_OPERANDS; j++)
3134 {
3135 if (operand_types[j].bitfield.disp16)
3136 {
3137 addr_prefix_disp = j;
3138 operand_types[j].bitfield.disp32 = 1;
3139 operand_types[j].bitfield.disp16 = 0;
3140 break;
3141 }
3142 }
3143 break;
3144 case CODE_32BIT:
3145 for (j = 0; j < MAX_OPERANDS; j++)
3146 {
3147 if (operand_types[j].bitfield.disp32)
3148 {
3149 addr_prefix_disp = j;
3150 operand_types[j].bitfield.disp32 = 0;
3151 operand_types[j].bitfield.disp16 = 1;
3152 break;
3153 }
3154 }
3155 break;
3156 case CODE_64BIT:
3157 for (j = 0; j < MAX_OPERANDS; j++)
3158 {
3159 if (operand_types[j].bitfield.disp64)
3160 {
3161 addr_prefix_disp = j;
3162 operand_types[j].bitfield.disp64 = 0;
3163 operand_types[j].bitfield.disp32 = 1;
3164 break;
3165 }
3166 }
3167 break;
3168 }
3169 }
3170
3171 overlap0 = operand_type_and (i.types[0], operand_types[0]);
3172 switch (t->operands)
3173 {
3174 case 1:
3175 if (!operand_type_match (overlap0, i.types[0]))
3176 continue;
3177 break;
3178 case 2:
3179 /* xchg %eax, %eax is a special case. It is an aliase for nop
3180 only in 32bit mode and we can use opcode 0x90. In 64bit
3181 mode, we can't use 0x90 for xchg %eax, %eax since it should
3182 zero-extend %eax to %rax. */
3183 if (flag_code == CODE_64BIT
3184 && t->base_opcode == 0x90
3185 && UINTS_EQUAL (i.types [0], acc32)
3186 && UINTS_EQUAL (i.types [1], acc32))
3187 continue;
3188 case 3:
3189 case 4:
3190 overlap1 = operand_type_and (i.types[1], operand_types[1]);
3191 if (!operand_type_match (overlap0, i.types[0])
3192 || !operand_type_match (overlap1, i.types[1])
3193 /* monitor in SSE3 is a very special case. The first
3194 register and the second register may have different
3195 sizes. The same applies to crc32 in SSE4.2. It is
3196 also true for invlpga, vmload, vmrun and vmsave in
3197 SVME. */
3198 || !((t->base_opcode == 0x0f01
3199 && (t->extension_opcode == 0xc8
3200 || t->extension_opcode == 0xd8
3201 || t->extension_opcode == 0xda
3202 || t->extension_opcode == 0xdb
3203 || t->extension_opcode == 0xdf))
3204 || t->base_opcode == 0xf20f38f1
3205 || operand_type_register_match (overlap0, i.types[0],
3206 operand_types[0],
3207 overlap1, i.types[1],
3208 operand_types[1])))
3209 {
3210 /* Check if other direction is valid ... */
3211 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
3212 continue;
3213
3214 /* Try reversing direction of operands. */
3215 overlap0 = operand_type_and (i.types[0], operand_types[1]);
3216 overlap1 = operand_type_and (i.types[1], operand_types[0]);
3217 if (!operand_type_match (overlap0, i.types[0])
3218 || !operand_type_match (overlap1, i.types[1])
3219 || !operand_type_register_match (overlap0, i.types[0],
3220 operand_types[1],
3221 overlap1, i.types[1],
3222 operand_types[0]))
3223 {
3224 /* Does not match either direction. */
3225 continue;
3226 }
3227 /* found_reverse_match holds which of D or FloatDR
3228 we've found. */
3229 if (t->opcode_modifier.d)
3230 found_reverse_match = Opcode_D;
3231 else if (t->opcode_modifier.floatd)
3232 found_reverse_match = Opcode_FloatD;
3233 else
3234 found_reverse_match = 0;
3235 if (t->opcode_modifier.floatr)
3236 found_reverse_match |= Opcode_FloatR;
3237 }
3238 else
3239 {
3240 /* Found a forward 2 operand match here. */
3241 switch (t->operands)
3242 {
3243 case 4:
3244 overlap3 = operand_type_and (i.types[3],
3245 operand_types[3]);
3246 case 3:
3247 overlap2 = operand_type_and (i.types[2],
3248 operand_types[2]);
3249 break;
3250 }
3251
3252 switch (t->operands)
3253 {
3254 case 4:
3255 if (!operand_type_match (overlap3, i.types[3])
3256 || !operand_type_register_match (overlap2,
3257 i.types[2],
3258 operand_types[2],
3259 overlap3,
3260 i.types[3],
3261 operand_types[3]))
3262 continue;
3263 case 3:
3264 /* Here we make use of the fact that there are no
3265 reverse match 3 operand instructions, and all 3
3266 operand instructions only need to be checked for
3267 register consistency between operands 2 and 3. */
3268 if (!operand_type_match (overlap2, i.types[2])
3269 || !operand_type_register_match (overlap1,
3270 i.types[1],
3271 operand_types[1],
3272 overlap2,
3273 i.types[2],
3274 operand_types[2]))
3275 continue;
3276 break;
3277 }
3278 }
3279 /* Found either forward/reverse 2, 3 or 4 operand match here:
3280 slip through to break. */
3281 }
3282 if (!UINTS_ALL_ZERO (overlap))
3283 {
3284 found_reverse_match = 0;
3285 continue;
3286 }
3287 /* We've found a match; break out of loop. */
3288 break;
3289 }
3290
3291 if (t == current_templates->end)
3292 {
3293 /* We found no match. */
3294 as_bad (_("suffix or operands invalid for `%s'"),
3295 current_templates->start->name);
3296 return 0;
3297 }
3298
3299 if (!quiet_warnings)
3300 {
3301 if (!intel_syntax
3302 && (i.types[0].bitfield.jumpabsolute
3303 != operand_types[0].bitfield.jumpabsolute))
3304 {
3305 as_warn (_("indirect %s without `*'"), t->name);
3306 }
3307
3308 if (t->opcode_modifier.isprefix
3309 && t->opcode_modifier.ignoresize)
3310 {
3311 /* Warn them that a data or address size prefix doesn't
3312 affect assembly of the next line of code. */
3313 as_warn (_("stand-alone `%s' prefix"), t->name);
3314 }
3315 }
3316
3317 /* Copy the template we found. */
3318 i.tm = *t;
3319
3320 if (addr_prefix_disp != -1)
3321 i.tm.operand_types[addr_prefix_disp]
3322 = operand_types[addr_prefix_disp];
3323
3324 if (found_reverse_match)
3325 {
3326 /* If we found a reverse match we must alter the opcode
3327 direction bit. found_reverse_match holds bits to change
3328 (different for int & float insns). */
3329
3330 i.tm.base_opcode ^= found_reverse_match;
3331
3332 i.tm.operand_types[0] = operand_types[1];
3333 i.tm.operand_types[1] = operand_types[0];
3334 }
3335
3336 return 1;
3337 }
3338
3339 static int
3340 check_string (void)
3341 {
3342 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
3343 if (i.tm.operand_types[mem_op].bitfield.esseg)
3344 {
3345 if (i.seg[0] != NULL && i.seg[0] != &es)
3346 {
3347 as_bad (_("`%s' operand %d must use `%%es' segment"),
3348 i.tm.name,
3349 mem_op + 1);
3350 return 0;
3351 }
3352 /* There's only ever one segment override allowed per instruction.
3353 This instruction possibly has a legal segment override on the
3354 second operand, so copy the segment to where non-string
3355 instructions store it, allowing common code. */
3356 i.seg[0] = i.seg[1];
3357 }
3358 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
3359 {
3360 if (i.seg[1] != NULL && i.seg[1] != &es)
3361 {
3362 as_bad (_("`%s' operand %d must use `%%es' segment"),
3363 i.tm.name,
3364 mem_op + 2);
3365 return 0;
3366 }
3367 }
3368 return 1;
3369 }
3370
3371 static int
3372 process_suffix (void)
3373 {
3374 /* If matched instruction specifies an explicit instruction mnemonic
3375 suffix, use it. */
3376 if (i.tm.opcode_modifier.size16)
3377 i.suffix = WORD_MNEM_SUFFIX;
3378 else if (i.tm.opcode_modifier.size32)
3379 i.suffix = LONG_MNEM_SUFFIX;
3380 else if (i.tm.opcode_modifier.size64)
3381 i.suffix = QWORD_MNEM_SUFFIX;
3382 else if (i.reg_operands)
3383 {
3384 /* If there's no instruction mnemonic suffix we try to invent one
3385 based on register operands. */
3386 if (!i.suffix)
3387 {
3388 /* We take i.suffix from the last register operand specified,
3389 Destination register type is more significant than source
3390 register type. crc32 in SSE4.2 prefers source register
3391 type. */
3392 if (i.tm.base_opcode == 0xf20f38f1)
3393 {
3394 if (i.types[0].bitfield.reg16)
3395 i.suffix = WORD_MNEM_SUFFIX;
3396 else if (i.types[0].bitfield.reg32)
3397 i.suffix = LONG_MNEM_SUFFIX;
3398 else if (i.types[0].bitfield.reg64)
3399 i.suffix = QWORD_MNEM_SUFFIX;
3400 }
3401 else if (i.tm.base_opcode == 0xf20f38f0)
3402 {
3403 if (i.types[0].bitfield.reg8)
3404 i.suffix = BYTE_MNEM_SUFFIX;
3405 }
3406
3407 if (!i.suffix)
3408 {
3409 int op;
3410
3411 if (i.tm.base_opcode == 0xf20f38f1
3412 || i.tm.base_opcode == 0xf20f38f0)
3413 {
3414 /* We have to know the operand size for crc32. */
3415 as_bad (_("ambiguous memory operand size for `%s`"),
3416 i.tm.name);
3417 return 0;
3418 }
3419
3420 for (op = i.operands; --op >= 0;)
3421 if (!i.tm.operand_types[op].bitfield.inoutportreg)
3422 {
3423 if (i.types[op].bitfield.reg8)
3424 {
3425 i.suffix = BYTE_MNEM_SUFFIX;
3426 break;
3427 }
3428 else if (i.types[op].bitfield.reg16)
3429 {
3430 i.suffix = WORD_MNEM_SUFFIX;
3431 break;
3432 }
3433 else if (i.types[op].bitfield.reg32)
3434 {
3435 i.suffix = LONG_MNEM_SUFFIX;
3436 break;
3437 }
3438 else if (i.types[op].bitfield.reg64)
3439 {
3440 i.suffix = QWORD_MNEM_SUFFIX;
3441 break;
3442 }
3443 }
3444 }
3445 }
3446 else if (i.suffix == BYTE_MNEM_SUFFIX)
3447 {
3448 if (!check_byte_reg ())
3449 return 0;
3450 }
3451 else if (i.suffix == LONG_MNEM_SUFFIX)
3452 {
3453 if (!check_long_reg ())
3454 return 0;
3455 }
3456 else if (i.suffix == QWORD_MNEM_SUFFIX)
3457 {
3458 if (intel_syntax
3459 && i.tm.opcode_modifier.ignoresize
3460 && i.tm.opcode_modifier.no_qsuf)
3461 i.suffix = 0;
3462 else if (!check_qword_reg ())
3463 return 0;
3464 }
3465 else if (i.suffix == WORD_MNEM_SUFFIX)
3466 {
3467 if (!check_word_reg ())
3468 return 0;
3469 }
3470 else if (i.suffix == XMMWORD_MNEM_SUFFIX)
3471 {
3472 /* Skip if the instruction has x suffix. match_template
3473 should check if it is a valid suffix. */
3474 }
3475 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
3476 /* Do nothing if the instruction is going to ignore the prefix. */
3477 ;
3478 else
3479 abort ();
3480 }
3481 else if (i.tm.opcode_modifier.defaultsize
3482 && !i.suffix
3483 /* exclude fldenv/frstor/fsave/fstenv */
3484 && i.tm.opcode_modifier.no_ssuf)
3485 {
3486 i.suffix = stackop_size;
3487 }
3488 else if (intel_syntax
3489 && !i.suffix
3490 && (i.tm.operand_types[0].bitfield.jumpabsolute
3491 || i.tm.opcode_modifier.jumpbyte
3492 || i.tm.opcode_modifier.jumpintersegment
3493 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
3494 && i.tm.extension_opcode <= 3)))
3495 {
3496 switch (flag_code)
3497 {
3498 case CODE_64BIT:
3499 if (!i.tm.opcode_modifier.no_qsuf)
3500 {
3501 i.suffix = QWORD_MNEM_SUFFIX;
3502 break;
3503 }
3504 case CODE_32BIT:
3505 if (!i.tm.opcode_modifier.no_lsuf)
3506 i.suffix = LONG_MNEM_SUFFIX;
3507 break;
3508 case CODE_16BIT:
3509 if (!i.tm.opcode_modifier.no_wsuf)
3510 i.suffix = WORD_MNEM_SUFFIX;
3511 break;
3512 }
3513 }
3514
3515 if (!i.suffix)
3516 {
3517 if (!intel_syntax)
3518 {
3519 if (i.tm.opcode_modifier.w)
3520 {
3521 as_bad (_("no instruction mnemonic suffix given and "
3522 "no register operands; can't size instruction"));
3523 return 0;
3524 }
3525 }
3526 else
3527 {
3528 unsigned int suffixes;
3529
3530 suffixes = !i.tm.opcode_modifier.no_bsuf;
3531 if (!i.tm.opcode_modifier.no_wsuf)
3532 suffixes |= 1 << 1;
3533 if (!i.tm.opcode_modifier.no_lsuf)
3534 suffixes |= 1 << 2;
3535 if (!i.tm.opcode_modifier.no_ldsuf)
3536 suffixes |= 1 << 3;
3537 if (!i.tm.opcode_modifier.no_ssuf)
3538 suffixes |= 1 << 4;
3539 if (!i.tm.opcode_modifier.no_qsuf)
3540 suffixes |= 1 << 5;
3541
3542 /* There are more than suffix matches. */
3543 if (i.tm.opcode_modifier.w
3544 || ((suffixes & (suffixes - 1))
3545 && !i.tm.opcode_modifier.defaultsize
3546 && !i.tm.opcode_modifier.ignoresize))
3547 {
3548 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3549 return 0;
3550 }
3551 }
3552 }
3553
3554 /* Change the opcode based on the operand size given by i.suffix;
3555 We don't need to change things for byte insns. */
3556
3557 if (i.suffix
3558 && i.suffix != BYTE_MNEM_SUFFIX
3559 && i.suffix != XMMWORD_MNEM_SUFFIX)
3560 {
3561 /* It's not a byte, select word/dword operation. */
3562 if (i.tm.opcode_modifier.w)
3563 {
3564 if (i.tm.opcode_modifier.shortform)
3565 i.tm.base_opcode |= 8;
3566 else
3567 i.tm.base_opcode |= 1;
3568 }
3569
3570 /* Now select between word & dword operations via the operand
3571 size prefix, except for instructions that will ignore this
3572 prefix anyway. */
3573 if (i.tm.opcode_modifier.addrprefixop0)
3574 {
3575 /* The address size override prefix changes the size of the
3576 first operand. */
3577 if ((flag_code == CODE_32BIT
3578 && i.op->regs[0].reg_type.bitfield.reg16)
3579 || (flag_code != CODE_32BIT
3580 && i.op->regs[0].reg_type.bitfield.reg32))
3581 if (!add_prefix (ADDR_PREFIX_OPCODE))
3582 return 0;
3583 }
3584 else if (i.suffix != QWORD_MNEM_SUFFIX
3585 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
3586 && !i.tm.opcode_modifier.ignoresize
3587 && !i.tm.opcode_modifier.floatmf
3588 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
3589 || (flag_code == CODE_64BIT
3590 && i.tm.opcode_modifier.jumpbyte)))
3591 {
3592 unsigned int prefix = DATA_PREFIX_OPCODE;
3593
3594 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
3595 prefix = ADDR_PREFIX_OPCODE;
3596
3597 if (!add_prefix (prefix))
3598 return 0;
3599 }
3600
3601 /* Set mode64 for an operand. */
3602 if (i.suffix == QWORD_MNEM_SUFFIX
3603 && flag_code == CODE_64BIT
3604 && !i.tm.opcode_modifier.norex64)
3605 {
3606 /* Special case for xchg %rax,%rax. It is NOP and doesn't
3607 need rex64. cmpxchg8b is also a special case. */
3608 if (! (i.operands == 2
3609 && i.tm.base_opcode == 0x90
3610 && i.tm.extension_opcode == None
3611 && UINTS_EQUAL (i.types [0], acc64)
3612 && UINTS_EQUAL (i.types [1], acc64))
3613 && ! (i.operands == 1
3614 && i.tm.base_opcode == 0xfc7
3615 && i.tm.extension_opcode == 1
3616 && !operand_type_check (i.types [0], reg)
3617 && operand_type_check (i.types [0], anymem)))
3618 i.rex |= REX_W;
3619 }
3620
3621 /* Size floating point instruction. */
3622 if (i.suffix == LONG_MNEM_SUFFIX)
3623 if (i.tm.opcode_modifier.floatmf)
3624 i.tm.base_opcode ^= 4;
3625 }
3626
3627 return 1;
3628 }
3629
3630 static int
3631 check_byte_reg (void)
3632 {
3633 int op;
3634
3635 for (op = i.operands; --op >= 0;)
3636 {
3637 /* If this is an eight bit register, it's OK. If it's the 16 or
3638 32 bit version of an eight bit register, we will just use the
3639 low portion, and that's OK too. */
3640 if (i.types[op].bitfield.reg8)
3641 continue;
3642
3643 /* Don't generate this warning if not needed. */
3644 if (intel_syntax && i.tm.opcode_modifier.byteokintel)
3645 continue;
3646
3647 /* crc32 doesn't generate this warning. */
3648 if (i.tm.base_opcode == 0xf20f38f0)
3649 continue;
3650
3651 if ((i.types[op].bitfield.reg16
3652 || i.types[op].bitfield.reg32
3653 || i.types[op].bitfield.reg64)
3654 && i.op[op].regs->reg_num < 4)
3655 {
3656 /* Prohibit these changes in the 64bit mode, since the
3657 lowering is more complicated. */
3658 if (flag_code == CODE_64BIT
3659 && !i.tm.operand_types[op].bitfield.inoutportreg)
3660 {
3661 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3662 register_prefix, i.op[op].regs->reg_name,
3663 i.suffix);
3664 return 0;
3665 }
3666 #if REGISTER_WARNINGS
3667 if (!quiet_warnings
3668 && !i.tm.operand_types[op].bitfield.inoutportreg)
3669 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3670 register_prefix,
3671 (i.op[op].regs + (i.types[op].bitfield.reg16
3672 ? REGNAM_AL - REGNAM_AX
3673 : REGNAM_AL - REGNAM_EAX))->reg_name,
3674 register_prefix,
3675 i.op[op].regs->reg_name,
3676 i.suffix);
3677 #endif
3678 continue;
3679 }
3680 /* Any other register is bad. */
3681 if (i.types[op].bitfield.reg16
3682 || i.types[op].bitfield.reg32
3683 || i.types[op].bitfield.reg64
3684 || i.types[op].bitfield.regmmx
3685 || i.types[op].bitfield.regxmm
3686 || i.types[op].bitfield.sreg2
3687 || i.types[op].bitfield.sreg3
3688 || i.types[op].bitfield.control
3689 || i.types[op].bitfield.debug
3690 || i.types[op].bitfield.test
3691 || i.types[op].bitfield.floatreg
3692 || i.types[op].bitfield.floatacc)
3693 {
3694 as_bad (_("`%s%s' not allowed with `%s%c'"),
3695 register_prefix,
3696 i.op[op].regs->reg_name,
3697 i.tm.name,
3698 i.suffix);
3699 return 0;
3700 }
3701 }
3702 return 1;
3703 }
3704
3705 static int
3706 check_long_reg (void)
3707 {
3708 int op;
3709
3710 for (op = i.operands; --op >= 0;)
3711 /* Reject eight bit registers, except where the template requires
3712 them. (eg. movzb) */
3713 if (i.types[op].bitfield.reg8
3714 && (i.tm.operand_types[op].bitfield.reg16
3715 || i.tm.operand_types[op].bitfield.reg32
3716 || i.tm.operand_types[op].bitfield.acc))
3717 {
3718 as_bad (_("`%s%s' not allowed with `%s%c'"),
3719 register_prefix,
3720 i.op[op].regs->reg_name,
3721 i.tm.name,
3722 i.suffix);
3723 return 0;
3724 }
3725 /* Warn if the e prefix on a general reg is missing. */
3726 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3727 && i.types[op].bitfield.reg16
3728 && (i.tm.operand_types[op].bitfield.reg32
3729 || i.tm.operand_types[op].bitfield.acc))
3730 {
3731 /* Prohibit these changes in the 64bit mode, since the
3732 lowering is more complicated. */
3733 if (flag_code == CODE_64BIT)
3734 {
3735 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3736 register_prefix, i.op[op].regs->reg_name,
3737 i.suffix);
3738 return 0;
3739 }
3740 #if REGISTER_WARNINGS
3741 else
3742 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3743 register_prefix,
3744 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
3745 register_prefix,
3746 i.op[op].regs->reg_name,
3747 i.suffix);
3748 #endif
3749 }
3750 /* Warn if the r prefix on a general reg is missing. */
3751 else if (i.types[op].bitfield.reg64
3752 && (i.tm.operand_types[op].bitfield.reg32
3753 || i.tm.operand_types[op].bitfield.acc))
3754 {
3755 if (intel_syntax
3756 && i.tm.opcode_modifier.toqword
3757 && !i.types[0].bitfield.regxmm)
3758 {
3759 /* Convert to QWORD. We want REX byte. */
3760 i.suffix = QWORD_MNEM_SUFFIX;
3761 }
3762 else
3763 {
3764 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3765 register_prefix, i.op[op].regs->reg_name,
3766 i.suffix);
3767 return 0;
3768 }
3769 }
3770 return 1;
3771 }
3772
3773 static int
3774 check_qword_reg (void)
3775 {
3776 int op;
3777
3778 for (op = i.operands; --op >= 0; )
3779 /* Reject eight bit registers, except where the template requires
3780 them. (eg. movzb) */
3781 if (i.types[op].bitfield.reg8
3782 && (i.tm.operand_types[op].bitfield.reg16
3783 || i.tm.operand_types[op].bitfield.reg32
3784 || i.tm.operand_types[op].bitfield.acc))
3785 {
3786 as_bad (_("`%s%s' not allowed with `%s%c'"),
3787 register_prefix,
3788 i.op[op].regs->reg_name,
3789 i.tm.name,
3790 i.suffix);
3791 return 0;
3792 }
3793 /* Warn if the e prefix on a general reg is missing. */
3794 else if ((i.types[op].bitfield.reg16
3795 || i.types[op].bitfield.reg32)
3796 && (i.tm.operand_types[op].bitfield.reg32
3797 || i.tm.operand_types[op].bitfield.acc))
3798 {
3799 /* Prohibit these changes in the 64bit mode, since the
3800 lowering is more complicated. */
3801 if (intel_syntax
3802 && i.tm.opcode_modifier.todword
3803 && !i.types[0].bitfield.regxmm)
3804 {
3805 /* Convert to DWORD. We don't want REX byte. */
3806 i.suffix = LONG_MNEM_SUFFIX;
3807 }
3808 else
3809 {
3810 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3811 register_prefix, i.op[op].regs->reg_name,
3812 i.suffix);
3813 return 0;
3814 }
3815 }
3816 return 1;
3817 }
3818
3819 static int
3820 check_word_reg (void)
3821 {
3822 int op;
3823 for (op = i.operands; --op >= 0;)
3824 /* Reject eight bit registers, except where the template requires
3825 them. (eg. movzb) */
3826 if (i.types[op].bitfield.reg8
3827 && (i.tm.operand_types[op].bitfield.reg16
3828 || i.tm.operand_types[op].bitfield.reg32
3829 || i.tm.operand_types[op].bitfield.acc))
3830 {
3831 as_bad (_("`%s%s' not allowed with `%s%c'"),
3832 register_prefix,
3833 i.op[op].regs->reg_name,
3834 i.tm.name,
3835 i.suffix);
3836 return 0;
3837 }
3838 /* Warn if the e prefix on a general reg is present. */
3839 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3840 && i.types[op].bitfield.reg32
3841 && (i.tm.operand_types[op].bitfield.reg16
3842 || i.tm.operand_types[op].bitfield.acc))
3843 {
3844 /* Prohibit these changes in the 64bit mode, since the
3845 lowering is more complicated. */
3846 if (flag_code == CODE_64BIT)
3847 {
3848 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3849 register_prefix, i.op[op].regs->reg_name,
3850 i.suffix);
3851 return 0;
3852 }
3853 else
3854 #if REGISTER_WARNINGS
3855 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3856 register_prefix,
3857 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
3858 register_prefix,
3859 i.op[op].regs->reg_name,
3860 i.suffix);
3861 #endif
3862 }
3863 return 1;
3864 }
3865
3866 static int
3867 update_imm (unsigned int j)
3868 {
3869 i386_operand_type overlap;
3870
3871 overlap = operand_type_and (i.types[j], i.tm.operand_types[j]);
3872 if ((overlap.bitfield.imm8
3873 || overlap.bitfield.imm8s
3874 || overlap.bitfield.imm16
3875 || overlap.bitfield.imm32
3876 || overlap.bitfield.imm32s
3877 || overlap.bitfield.imm64)
3878 && !UINTS_EQUAL (overlap, imm8)
3879 && !UINTS_EQUAL (overlap, imm8s)
3880 && !UINTS_EQUAL (overlap, imm16)
3881 && !UINTS_EQUAL (overlap, imm32)
3882 && !UINTS_EQUAL (overlap, imm32s)
3883 && !UINTS_EQUAL (overlap, imm64))
3884 {
3885 if (i.suffix)
3886 {
3887 i386_operand_type temp;
3888
3889 UINTS_CLEAR (temp);
3890 if (i.suffix == BYTE_MNEM_SUFFIX)
3891 {
3892 temp.bitfield.imm8 = overlap.bitfield.imm8;
3893 temp.bitfield.imm8s = overlap.bitfield.imm8s;
3894 }
3895 else if (i.suffix == WORD_MNEM_SUFFIX)
3896 temp.bitfield.imm16 = overlap.bitfield.imm16;
3897 else if (i.suffix == QWORD_MNEM_SUFFIX)
3898 {
3899 temp.bitfield.imm64 = overlap.bitfield.imm64;
3900 temp.bitfield.imm32s = overlap.bitfield.imm32s;
3901 }
3902 else
3903 temp.bitfield.imm32 = overlap.bitfield.imm32;
3904 overlap = temp;
3905 }
3906 else if (UINTS_EQUAL (overlap, imm16_32_32s)
3907 || UINTS_EQUAL (overlap, imm16_32)
3908 || UINTS_EQUAL (overlap, imm16_32s))
3909 {
3910 UINTS_CLEAR (overlap);
3911 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
3912 overlap.bitfield.imm16 = 1;
3913 else
3914 overlap.bitfield.imm32s = 1;
3915 }
3916 if (!UINTS_EQUAL (overlap, imm8)
3917 && !UINTS_EQUAL (overlap, imm8s)
3918 && !UINTS_EQUAL (overlap, imm16)
3919 && !UINTS_EQUAL (overlap, imm32)
3920 && !UINTS_EQUAL (overlap, imm32s)
3921 && !UINTS_EQUAL (overlap, imm64))
3922 {
3923 as_bad (_("no instruction mnemonic suffix given; "
3924 "can't determine immediate size"));
3925 return 0;
3926 }
3927 }
3928 i.types[j] = overlap;
3929
3930 return 1;
3931 }
3932
3933 static int
3934 finalize_imm (void)
3935 {
3936 unsigned int j;
3937
3938 for (j = 0; j < 2; j++)
3939 if (update_imm (j) == 0)
3940 return 0;
3941
3942 i.types[2] = operand_type_and (i.types[2], i.tm.operand_types[2]);
3943 assert (operand_type_check (i.types[2], imm) == 0);
3944
3945 return 1;
3946 }
3947
3948 static void
3949 process_drex (void)
3950 {
3951 i.drex.modrm_reg = None;
3952 i.drex.modrm_regmem = None;
3953
3954 /* SSE5 4 operand instructions must have the destination the same as
3955 one of the inputs. Figure out the destination register and cache
3956 it away in the drex field, and remember which fields to use for
3957 the modrm byte. */
3958 if (i.tm.opcode_modifier.drex
3959 && i.tm.opcode_modifier.drexv
3960 && i.operands == 4)
3961 {
3962 i.tm.extension_opcode = None;
3963
3964 /* Case 1: 4 operand insn, dest = src1, src3 = register. */
3965 if (i.types[0].bitfield.regxmm != 0
3966 && i.types[1].bitfield.regxmm != 0
3967 && i.types[2].bitfield.regxmm != 0
3968 && i.types[3].bitfield.regxmm != 0
3969 && i.op[0].regs->reg_num == i.op[3].regs->reg_num
3970 && i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
3971 {
3972 /* Clear the arguments that are stored in drex. */
3973 UINTS_CLEAR (i.types[0]);
3974 UINTS_CLEAR (i.types[3]);
3975 i.reg_operands -= 2;
3976
3977 /* There are two different ways to encode a 4 operand
3978 instruction with all registers that uses OC1 set to
3979 0 or 1. Favor setting OC1 to 0 since this mimics the
3980 actions of other SSE5 assemblers. Use modrm encoding 2
3981 for register/register. Include the high order bit that
3982 is normally stored in the REX byte in the register
3983 field. */
3984 i.tm.extension_opcode = DREX_X1_XMEM_X2_X1;
3985 i.drex.modrm_reg = 2;
3986 i.drex.modrm_regmem = 1;
3987 i.drex.reg = (i.op[3].regs->reg_num
3988 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
3989 }
3990
3991 /* Case 2: 4 operand insn, dest = src1, src3 = memory. */
3992 else if (i.types[0].bitfield.regxmm != 0
3993 && i.types[1].bitfield.regxmm != 0
3994 && (i.types[2].bitfield.regxmm
3995 || operand_type_check (i.types[2], anymem))
3996 && i.types[3].bitfield.regxmm != 0
3997 && i.op[0].regs->reg_num == i.op[3].regs->reg_num
3998 && i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
3999 {
4000 /* clear the arguments that are stored in drex */
4001 UINTS_CLEAR (i.types[0]);
4002 UINTS_CLEAR (i.types[3]);
4003 i.reg_operands -= 2;
4004
4005 /* Specify the modrm encoding for memory addressing. Include
4006 the high order bit that is normally stored in the REX byte
4007 in the register field. */
4008 i.tm.extension_opcode = DREX_X1_X2_XMEM_X1;
4009 i.drex.modrm_reg = 1;
4010 i.drex.modrm_regmem = 2;
4011 i.drex.reg = (i.op[3].regs->reg_num
4012 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
4013 }
4014
4015 /* Case 3: 4 operand insn, dest = src1, src2 = memory. */
4016 else if (i.types[0].bitfield.regxmm != 0
4017 && operand_type_check (i.types[1], anymem) != 0
4018 && i.types[2].bitfield.regxmm != 0
4019 && i.types[3].bitfield.regxmm != 0
4020 && i.op[0].regs->reg_num == i.op[3].regs->reg_num
4021 && i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
4022 {
4023 /* Clear the arguments that are stored in drex. */
4024 UINTS_CLEAR (i.types[0]);
4025 UINTS_CLEAR (i.types[3]);
4026 i.reg_operands -= 2;
4027
4028 /* Specify the modrm encoding for memory addressing. Include
4029 the high order bit that is normally stored in the REX byte
4030 in the register field. */
4031 i.tm.extension_opcode = DREX_X1_XMEM_X2_X1;
4032 i.drex.modrm_reg = 2;
4033 i.drex.modrm_regmem = 1;
4034 i.drex.reg = (i.op[3].regs->reg_num
4035 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
4036 }
4037
4038 /* Case 4: 4 operand insn, dest = src3, src2 = register. */
4039 else if (i.types[0].bitfield.regxmm != 0
4040 && i.types[1].bitfield.regxmm != 0
4041 && i.types[2].bitfield.regxmm != 0
4042 && i.types[3].bitfield.regxmm != 0
4043 && i.op[2].regs->reg_num == i.op[3].regs->reg_num
4044 && i.op[2].regs->reg_flags == i.op[3].regs->reg_flags)
4045 {
4046 /* clear the arguments that are stored in drex */
4047 UINTS_CLEAR (i.types[2]);
4048 UINTS_CLEAR (i.types[3]);
4049 i.reg_operands -= 2;
4050
4051 /* There are two different ways to encode a 4 operand
4052 instruction with all registers that uses OC1 set to
4053 0 or 1. Favor setting OC1 to 0 since this mimics the
4054 actions of other SSE5 assemblers. Use modrm encoding
4055 2 for register/register. Include the high order bit that
4056 is normally stored in the REX byte in the register
4057 field. */
4058 i.tm.extension_opcode = DREX_XMEM_X1_X2_X2;
4059 i.drex.modrm_reg = 1;
4060 i.drex.modrm_regmem = 0;
4061
4062 /* Remember the register, including the upper bits */
4063 i.drex.reg = (i.op[3].regs->reg_num
4064 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
4065 }
4066
4067 /* Case 5: 4 operand insn, dest = src3, src2 = memory. */
4068 else if (i.types[0].bitfield.regxmm != 0
4069 && (i.types[1].bitfield.regxmm
4070 || operand_type_check (i.types[1], anymem))
4071 && i.types[2].bitfield.regxmm != 0
4072 && i.types[3].bitfield.regxmm != 0
4073 && i.op[2].regs->reg_num == i.op[3].regs->reg_num
4074 && i.op[2].regs->reg_flags == i.op[3].regs->reg_flags)
4075 {
4076 /* Clear the arguments that are stored in drex. */
4077 UINTS_CLEAR (i.types[2]);
4078 UINTS_CLEAR (i.types[3]);
4079 i.reg_operands -= 2;
4080
4081 /* Specify the modrm encoding and remember the register
4082 including the bits normally stored in the REX byte. */
4083 i.tm.extension_opcode = DREX_X1_XMEM_X2_X2;
4084 i.drex.modrm_reg = 0;
4085 i.drex.modrm_regmem = 1;
4086 i.drex.reg = (i.op[3].regs->reg_num
4087 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
4088 }
4089
4090 /* Case 6: 4 operand insn, dest = src3, src1 = memory. */
4091 else if (operand_type_check (i.types[0], anymem) != 0
4092 && i.types[1].bitfield.regxmm != 0
4093 && i.types[2].bitfield.regxmm != 0
4094 && i.types[3].bitfield.regxmm != 0
4095 && i.op[2].regs->reg_num == i.op[3].regs->reg_num
4096 && i.op[2].regs->reg_flags == i.op[3].regs->reg_flags)
4097 {
4098 /* clear the arguments that are stored in drex */
4099 UINTS_CLEAR (i.types[2]);
4100 UINTS_CLEAR (i.types[3]);
4101 i.reg_operands -= 2;
4102
4103 /* Specify the modrm encoding and remember the register
4104 including the bits normally stored in the REX byte. */
4105 i.tm.extension_opcode = DREX_XMEM_X1_X2_X2;
4106 i.drex.modrm_reg = 1;
4107 i.drex.modrm_regmem = 0;
4108 i.drex.reg = (i.op[3].regs->reg_num
4109 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
4110 }
4111
4112 else
4113 as_bad (_("Incorrect operands for the '%s' instruction"),
4114 i.tm.name);
4115 }
4116
4117 /* SSE5 instructions with the DREX byte where the only memory operand
4118 is in the 2nd argument, and the first and last xmm register must
4119 match, and is encoded in the DREX byte. */
4120 else if (i.tm.opcode_modifier.drex
4121 && !i.tm.opcode_modifier.drexv
4122 && i.operands == 4)
4123 {
4124 /* Case 1: 4 operand insn, dest = src1, src3 = reg/mem. */
4125 if (i.types[0].bitfield.regxmm != 0
4126 && (i.types[1].bitfield.regxmm
4127 || operand_type_check(i.types[1], anymem))
4128 && i.types[2].bitfield.regxmm != 0
4129 && i.types[3].bitfield.regxmm != 0
4130 && i.op[0].regs->reg_num == i.op[3].regs->reg_num
4131 && i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
4132 {
4133 /* clear the arguments that are stored in drex */
4134 UINTS_CLEAR (i.types[0]);
4135 UINTS_CLEAR (i.types[3]);
4136 i.reg_operands -= 2;
4137
4138 /* Specify the modrm encoding and remember the register
4139 including the high bit normally stored in the REX
4140 byte. */
4141 i.drex.modrm_reg = 2;
4142 i.drex.modrm_regmem = 1;
4143 i.drex.reg = (i.op[3].regs->reg_num
4144 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
4145 }
4146
4147 else
4148 as_bad (_("Incorrect operands for the '%s' instruction"),
4149 i.tm.name);
4150 }
4151
4152 /* SSE5 3 operand instructions that the result is a register, being
4153 either operand can be a memory operand, using OC0 to note which
4154 one is the memory. */
4155 else if (i.tm.opcode_modifier.drex
4156 && i.tm.opcode_modifier.drexv
4157 && i.operands == 3)
4158 {
4159 i.tm.extension_opcode = None;
4160
4161 /* Case 1: 3 operand insn, src1 = register. */
4162 if (i.types[0].bitfield.regxmm != 0
4163 && i.types[1].bitfield.regxmm != 0
4164 && i.types[2].bitfield.regxmm != 0)
4165 {
4166 /* Clear the arguments that are stored in drex. */
4167 UINTS_CLEAR (i.types[2]);
4168 i.reg_operands--;
4169
4170 /* Specify the modrm encoding and remember the register
4171 including the high bit normally stored in the REX byte. */
4172 i.tm.extension_opcode = DREX_XMEM_X1_X2;
4173 i.drex.modrm_reg = 1;
4174 i.drex.modrm_regmem = 0;
4175 i.drex.reg = (i.op[2].regs->reg_num
4176 + ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
4177 }
4178
4179 /* Case 2: 3 operand insn, src1 = memory. */
4180 else if (operand_type_check (i.types[0], anymem) != 0
4181 && i.types[1].bitfield.regxmm != 0
4182 && i.types[2].bitfield.regxmm != 0)
4183 {
4184 /* Clear the arguments that are stored in drex. */
4185 UINTS_CLEAR (i.types[2]);
4186 i.reg_operands--;
4187
4188 /* Specify the modrm encoding and remember the register
4189 including the high bit normally stored in the REX
4190 byte. */
4191 i.tm.extension_opcode = DREX_XMEM_X1_X2;
4192 i.drex.modrm_reg = 1;
4193 i.drex.modrm_regmem = 0;
4194 i.drex.reg = (i.op[2].regs->reg_num
4195 + ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
4196 }
4197
4198 /* Case 3: 3 operand insn, src2 = memory. */
4199 else if (i.types[0].bitfield.regxmm != 0
4200 && operand_type_check (i.types[1], anymem) != 0
4201 && i.types[2].bitfield.regxmm != 0)
4202 {
4203 /* Clear the arguments that are stored in drex. */
4204 UINTS_CLEAR (i.types[2]);
4205 i.reg_operands--;
4206
4207 /* Specify the modrm encoding and remember the register
4208 including the high bit normally stored in the REX byte. */
4209 i.tm.extension_opcode = DREX_X1_XMEM_X2;
4210 i.drex.modrm_reg = 0;
4211 i.drex.modrm_regmem = 1;
4212 i.drex.reg = (i.op[2].regs->reg_num
4213 + ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
4214 }
4215
4216 else
4217 as_bad (_("Incorrect operands for the '%s' instruction"),
4218 i.tm.name);
4219 }
4220
4221 /* SSE5 4 operand instructions that are the comparison instructions
4222 where the first operand is the immediate value of the comparison
4223 to be done. */
4224 else if (i.tm.opcode_modifier.drexc != 0 && i.operands == 4)
4225 {
4226 /* Case 1: 4 operand insn, src1 = reg/memory. */
4227 if (operand_type_check (i.types[0], imm) != 0
4228 && (i.types[1].bitfield.regxmm
4229 || operand_type_check (i.types[1], anymem))
4230 && i.types[2].bitfield.regxmm != 0
4231 && i.types[3].bitfield.regxmm != 0)
4232 {
4233 /* clear the arguments that are stored in drex */
4234 UINTS_CLEAR (i.types[3]);
4235 i.reg_operands--;
4236
4237 /* Specify the modrm encoding and remember the register
4238 including the high bit normally stored in the REX byte. */
4239 i.drex.modrm_reg = 2;
4240 i.drex.modrm_regmem = 1;
4241 i.drex.reg = (i.op[3].regs->reg_num
4242 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
4243 }
4244
4245 /* Case 2: 3 operand insn with ImmExt that places the
4246 opcode_extension as an immediate argument. This is used for
4247 all of the varients of comparison that supplies the appropriate
4248 value as part of the instruction. */
4249 else if ((i.types[0].bitfield.regxmm
4250 || operand_type_check (i.types[0], anymem))
4251 && i.types[1].bitfield.regxmm != 0
4252 && i.types[2].bitfield.regxmm != 0
4253 && operand_type_check (i.types[3], imm) != 0)
4254 {
4255 /* clear the arguments that are stored in drex */
4256 UINTS_CLEAR (i.types[2]);
4257 i.reg_operands--;
4258
4259 /* Specify the modrm encoding and remember the register
4260 including the high bit normally stored in the REX byte. */
4261 i.drex.modrm_reg = 1;
4262 i.drex.modrm_regmem = 0;
4263 i.drex.reg = (i.op[2].regs->reg_num
4264 + ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
4265 }
4266
4267 else
4268 as_bad (_("Incorrect operands for the '%s' instruction"),
4269 i.tm.name);
4270 }
4271
4272 else if (i.tm.opcode_modifier.drex
4273 || i.tm.opcode_modifier.drexv
4274 || i.tm.opcode_modifier.drexc)
4275 as_bad (_("Internal error for the '%s' instruction"), i.tm.name);
4276 }
4277
4278 static int
4279 process_operands (void)
4280 {
4281 /* Default segment register this instruction will use for memory
4282 accesses. 0 means unknown. This is only for optimizing out
4283 unnecessary segment overrides. */
4284 const seg_entry *default_seg = 0;
4285
4286 /* Handle all of the DREX munging that SSE5 needs. */
4287 if (i.tm.opcode_modifier.drex
4288 || i.tm.opcode_modifier.drexv
4289 || i.tm.opcode_modifier.drexc)
4290 process_drex ();
4291
4292 if (i.tm.opcode_modifier.firstxmm0)
4293 {
4294 unsigned int j;
4295
4296 /* The first operand is implicit and must be xmm0. */
4297 assert (i.reg_operands && UINTS_EQUAL (i.types[0], regxmm));
4298 if (i.op[0].regs->reg_num != 0)
4299 {
4300 if (intel_syntax)
4301 as_bad (_("the last operand of `%s' must be `%sxmm0'"),
4302 i.tm.name, register_prefix);
4303 else
4304 as_bad (_("the first operand of `%s' must be `%sxmm0'"),
4305 i.tm.name, register_prefix);
4306 return 0;
4307 }
4308
4309 for (j = 1; j < i.operands; j++)
4310 {
4311 i.op[j - 1] = i.op[j];
4312 i.types[j - 1] = i.types[j];
4313
4314 /* We need to adjust fields in i.tm since they are used by
4315 build_modrm_byte. */
4316 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
4317 }
4318
4319 i.operands--;
4320 i.reg_operands--;
4321 i.tm.operands--;
4322 }
4323 else if (i.tm.opcode_modifier.regkludge)
4324 {
4325 /* The imul $imm, %reg instruction is converted into
4326 imul $imm, %reg, %reg, and the clr %reg instruction
4327 is converted into xor %reg, %reg. */
4328
4329 unsigned int first_reg_op;
4330
4331 if (operand_type_check (i.types[0], reg))
4332 first_reg_op = 0;
4333 else
4334 first_reg_op = 1;
4335 /* Pretend we saw the extra register operand. */
4336 assert (i.reg_operands == 1
4337 && i.op[first_reg_op + 1].regs == 0);
4338 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
4339 i.types[first_reg_op + 1] = i.types[first_reg_op];
4340 i.operands++;
4341 i.reg_operands++;
4342 }
4343
4344 if (i.tm.opcode_modifier.shortform)
4345 {
4346 if (i.types[0].bitfield.sreg2
4347 || i.types[0].bitfield.sreg3)
4348 {
4349 if (i.tm.base_opcode == POP_SEG_SHORT
4350 && i.op[0].regs->reg_num == 1)
4351 {
4352 as_bad (_("you can't `pop %%cs'"));
4353 return 0;
4354 }
4355 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
4356 if ((i.op[0].regs->reg_flags & RegRex) != 0)
4357 i.rex |= REX_B;
4358 }
4359 else
4360 {
4361 /* The register or float register operand is in operand
4362 0 or 1. */
4363 unsigned int op;
4364
4365 if (i.types[0].bitfield.floatreg
4366 || operand_type_check (i.types[0], reg))
4367 op = 0;
4368 else
4369 op = 1;
4370 /* Register goes in low 3 bits of opcode. */
4371 i.tm.base_opcode |= i.op[op].regs->reg_num;
4372 if ((i.op[op].regs->reg_flags & RegRex) != 0)
4373 i.rex |= REX_B;
4374 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4375 {
4376 /* Warn about some common errors, but press on regardless.
4377 The first case can be generated by gcc (<= 2.8.1). */
4378 if (i.operands == 2)
4379 {
4380 /* Reversed arguments on faddp, fsubp, etc. */
4381 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
4382 register_prefix, i.op[1].regs->reg_name,
4383 register_prefix, i.op[0].regs->reg_name);
4384 }
4385 else
4386 {
4387 /* Extraneous `l' suffix on fp insn. */
4388 as_warn (_("translating to `%s %s%s'"), i.tm.name,
4389 register_prefix, i.op[0].regs->reg_name);
4390 }
4391 }
4392 }
4393 }
4394 else if (i.tm.opcode_modifier.modrm)
4395 {
4396 /* The opcode is completed (modulo i.tm.extension_opcode which
4397 must be put into the modrm byte). Now, we make the modrm and
4398 index base bytes based on all the info we've collected. */
4399
4400 default_seg = build_modrm_byte ();
4401 }
4402 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
4403 {
4404 default_seg = &ds;
4405 }
4406 else if (i.tm.opcode_modifier.isstring)
4407 {
4408 /* For the string instructions that allow a segment override
4409 on one of their operands, the default segment is ds. */
4410 default_seg = &ds;
4411 }
4412
4413 if (i.tm.base_opcode == 0x8d /* lea */
4414 && i.seg[0]
4415 && !quiet_warnings)
4416 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
4417
4418 /* If a segment was explicitly specified, and the specified segment
4419 is not the default, use an opcode prefix to select it. If we
4420 never figured out what the default segment is, then default_seg
4421 will be zero at this point, and the specified segment prefix will
4422 always be used. */
4423 if ((i.seg[0]) && (i.seg[0] != default_seg))
4424 {
4425 if (!add_prefix (i.seg[0]->seg_prefix))
4426 return 0;
4427 }
4428 return 1;
4429 }
4430
4431 static const seg_entry *
4432 build_modrm_byte (void)
4433 {
4434 const seg_entry *default_seg = 0;
4435
4436 /* SSE5 4 operand instructions are encoded in such a way that one of
4437 the inputs must match the destination register. Process_drex hides
4438 the 3rd argument in the drex field, so that by the time we get
4439 here, it looks to GAS as if this is a 2 operand instruction. */
4440 if ((i.tm.opcode_modifier.drex
4441 || i.tm.opcode_modifier.drexv
4442 || i.tm.opcode_modifier.drexc)
4443 && i.reg_operands == 2)
4444 {
4445 const reg_entry *reg = i.op[i.drex.modrm_reg].regs;
4446 const reg_entry *regmem = i.op[i.drex.modrm_regmem].regs;
4447
4448 i.rm.reg = reg->reg_num;
4449 i.rm.regmem = regmem->reg_num;
4450 i.rm.mode = 3;
4451 if ((reg->reg_flags & RegRex) != 0)
4452 i.rex |= REX_R;
4453 if ((regmem->reg_flags & RegRex) != 0)
4454 i.rex |= REX_B;
4455 }
4456
4457 /* i.reg_operands MUST be the number of real register operands;
4458 implicit registers do not count. */
4459 else if (i.reg_operands == 2)
4460 {
4461 unsigned int source, dest;
4462
4463 switch (i.operands)
4464 {
4465 case 2:
4466 source = 0;
4467 break;
4468 case 3:
4469 /* When there are 3 operands, one of them may be immediate,
4470 which may be the first or the last operand. Otherwise,
4471 the first operand must be shift count register (cl). */
4472 assert (i.imm_operands == 1
4473 || (i.imm_operands == 0
4474 && i.types[0].bitfield.shiftcount));
4475 if (operand_type_check (i.types[0], imm)
4476 || i.types[0].bitfield.shiftcount)
4477 source = 1;
4478 else
4479 source = 0;
4480 break;
4481 case 4:
4482 /* When there are 4 operands, the first two must be 8bit
4483 immediate operands. The source operand will be the 3rd
4484 one. */
4485 assert (i.imm_operands == 2
4486 && i.types[0].bitfield.imm8
4487 && i.types[1].bitfield.imm8);
4488 source = 2;
4489 break;
4490 default:
4491 abort ();
4492 }
4493
4494 dest = source + 1;
4495
4496 i.rm.mode = 3;
4497 /* One of the register operands will be encoded in the i.tm.reg
4498 field, the other in the combined i.tm.mode and i.tm.regmem
4499 fields. If no form of this instruction supports a memory
4500 destination operand, then we assume the source operand may
4501 sometimes be a memory operand and so we need to store the
4502 destination in the i.rm.reg field. */
4503 if (!i.tm.operand_types[dest].bitfield.regmem
4504 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
4505 {
4506 i.rm.reg = i.op[dest].regs->reg_num;
4507 i.rm.regmem = i.op[source].regs->reg_num;
4508 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
4509 i.rex |= REX_R;
4510 if ((i.op[source].regs->reg_flags & RegRex) != 0)
4511 i.rex |= REX_B;
4512 }
4513 else
4514 {
4515 i.rm.reg = i.op[source].regs->reg_num;
4516 i.rm.regmem = i.op[dest].regs->reg_num;
4517 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
4518 i.rex |= REX_B;
4519 if ((i.op[source].regs->reg_flags & RegRex) != 0)
4520 i.rex |= REX_R;
4521 }
4522 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
4523 {
4524 if (!i.types[0].bitfield.control
4525 && !i.types[1].bitfield.control)
4526 abort ();
4527 i.rex &= ~(REX_R | REX_B);
4528 add_prefix (LOCK_PREFIX_OPCODE);
4529 }
4530 }
4531 else
4532 { /* If it's not 2 reg operands... */
4533 if (i.mem_operands)
4534 {
4535 unsigned int fake_zero_displacement = 0;
4536 unsigned int op;
4537
4538 /* This has been precalculated for SSE5 instructions
4539 that have a DREX field earlier in process_drex. */
4540 if (i.tm.opcode_modifier.drex
4541 || i.tm.opcode_modifier.drexv
4542 || i.tm.opcode_modifier.drexc)
4543 op = i.drex.modrm_regmem;
4544 else
4545 {
4546 for (op = 0; op < i.operands; op++)
4547 if (operand_type_check (i.types[op], anymem))
4548 break;
4549 assert (op < i.operands);
4550 }
4551
4552 default_seg = &ds;
4553
4554 if (i.base_reg == 0)
4555 {
4556 i.rm.mode = 0;
4557 if (!i.disp_operands)
4558 fake_zero_displacement = 1;
4559 if (i.index_reg == 0)
4560 {
4561 /* Operand is just <disp> */
4562 if (flag_code == CODE_64BIT)
4563 {
4564 /* 64bit mode overwrites the 32bit absolute
4565 addressing by RIP relative addressing and
4566 absolute addressing is encoded by one of the
4567 redundant SIB forms. */
4568 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
4569 i.sib.base = NO_BASE_REGISTER;
4570 i.sib.index = NO_INDEX_REGISTER;
4571 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
4572 ? disp32s : disp32);
4573 }
4574 else if ((flag_code == CODE_16BIT)
4575 ^ (i.prefix[ADDR_PREFIX] != 0))
4576 {
4577 i.rm.regmem = NO_BASE_REGISTER_16;
4578 i.types[op] = disp16;
4579 }
4580 else
4581 {
4582 i.rm.regmem = NO_BASE_REGISTER;
4583 i.types[op] = disp32;
4584 }
4585 }
4586 else /* !i.base_reg && i.index_reg */
4587 {
4588 if (i.index_reg->reg_num == RegEiz
4589 || i.index_reg->reg_num == RegRiz)
4590 i.sib.index = NO_INDEX_REGISTER;
4591 else
4592 i.sib.index = i.index_reg->reg_num;
4593 i.sib.base = NO_BASE_REGISTER;
4594 i.sib.scale = i.log2_scale_factor;
4595 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
4596 i.types[op].bitfield.disp8 = 0;
4597 i.types[op].bitfield.disp16 = 0;
4598 i.types[op].bitfield.disp64 = 0;
4599 if (flag_code != CODE_64BIT)
4600 {
4601 /* Must be 32 bit */
4602 i.types[op].bitfield.disp32 = 1;
4603 i.types[op].bitfield.disp32s = 0;
4604 }
4605 else
4606 {
4607 i.types[op].bitfield.disp32 = 0;
4608 i.types[op].bitfield.disp32s = 1;
4609 }
4610 if ((i.index_reg->reg_flags & RegRex) != 0)
4611 i.rex |= REX_X;
4612 }
4613 }
4614 /* RIP addressing for 64bit mode. */
4615 else if (i.base_reg->reg_num == RegRip ||
4616 i.base_reg->reg_num == RegEip)
4617 {
4618 i.rm.regmem = NO_BASE_REGISTER;
4619 i.types[op].bitfield.disp8 = 0;
4620 i.types[op].bitfield.disp16 = 0;
4621 i.types[op].bitfield.disp32 = 0;
4622 i.types[op].bitfield.disp32s = 1;
4623 i.types[op].bitfield.disp64 = 0;
4624 i.flags[op] |= Operand_PCrel;
4625 if (! i.disp_operands)
4626 fake_zero_displacement = 1;
4627 }
4628 else if (i.base_reg->reg_type.bitfield.reg16)
4629 {
4630 switch (i.base_reg->reg_num)
4631 {
4632 case 3: /* (%bx) */
4633 if (i.index_reg == 0)
4634 i.rm.regmem = 7;
4635 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
4636 i.rm.regmem = i.index_reg->reg_num - 6;
4637 break;
4638 case 5: /* (%bp) */
4639 default_seg = &ss;
4640 if (i.index_reg == 0)
4641 {
4642 i.rm.regmem = 6;
4643 if (operand_type_check (i.types[op], disp) == 0)
4644 {
4645 /* fake (%bp) into 0(%bp) */
4646 i.types[op].bitfield.disp8 = 1;
4647 fake_zero_displacement = 1;
4648 }
4649 }
4650 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
4651 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
4652 break;
4653 default: /* (%si) -> 4 or (%di) -> 5 */
4654 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
4655 }
4656 i.rm.mode = mode_from_disp_size (i.types[op]);
4657 }
4658 else /* i.base_reg and 32/64 bit mode */
4659 {
4660 if (flag_code == CODE_64BIT
4661 && operand_type_check (i.types[op], disp))
4662 {
4663 i386_operand_type temp;
4664 UINTS_CLEAR (temp);
4665 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
4666 i.types[op] = temp;
4667 if (i.prefix[ADDR_PREFIX] == 0)
4668 i.types[op].bitfield.disp32s = 1;
4669 else
4670 i.types[op].bitfield.disp32 = 1;
4671 }
4672
4673 i.rm.regmem = i.base_reg->reg_num;
4674 if ((i.base_reg->reg_flags & RegRex) != 0)
4675 i.rex |= REX_B;
4676 i.sib.base = i.base_reg->reg_num;
4677 /* x86-64 ignores REX prefix bit here to avoid decoder
4678 complications. */
4679 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
4680 {
4681 default_seg = &ss;
4682 if (i.disp_operands == 0)
4683 {
4684 fake_zero_displacement = 1;
4685 i.types[op].bitfield.disp8 = 1;
4686 }
4687 }
4688 else if (i.base_reg->reg_num == ESP_REG_NUM)
4689 {
4690 default_seg = &ss;
4691 }
4692 i.sib.scale = i.log2_scale_factor;
4693 if (i.index_reg == 0)
4694 {
4695 /* <disp>(%esp) becomes two byte modrm with no index
4696 register. We've already stored the code for esp
4697 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
4698 Any base register besides %esp will not use the
4699 extra modrm byte. */
4700 i.sib.index = NO_INDEX_REGISTER;
4701 }
4702 else
4703 {
4704 if (i.index_reg->reg_num == RegEiz
4705 || i.index_reg->reg_num == RegRiz)
4706 i.sib.index = NO_INDEX_REGISTER;
4707 else
4708 i.sib.index = i.index_reg->reg_num;
4709 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
4710 if ((i.index_reg->reg_flags & RegRex) != 0)
4711 i.rex |= REX_X;
4712 }
4713
4714 if (i.disp_operands
4715 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4716 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
4717 i.rm.mode = 0;
4718 else
4719 i.rm.mode = mode_from_disp_size (i.types[op]);
4720 }
4721
4722 if (fake_zero_displacement)
4723 {
4724 /* Fakes a zero displacement assuming that i.types[op]
4725 holds the correct displacement size. */
4726 expressionS *exp;
4727
4728 assert (i.op[op].disps == 0);
4729 exp = &disp_expressions[i.disp_operands++];
4730 i.op[op].disps = exp;
4731 exp->X_op = O_constant;
4732 exp->X_add_number = 0;
4733 exp->X_add_symbol = (symbolS *) 0;
4734 exp->X_op_symbol = (symbolS *) 0;
4735 }
4736 }
4737
4738 /* Fill in i.rm.reg or i.rm.regmem field with register operand
4739 (if any) based on i.tm.extension_opcode. Again, we must be
4740 careful to make sure that segment/control/debug/test/MMX
4741 registers are coded into the i.rm.reg field. */
4742 if (i.reg_operands)
4743 {
4744 unsigned int op;
4745
4746 /* This has been precalculated for SSE5 instructions
4747 that have a DREX field earlier in process_drex. */
4748 if (i.tm.opcode_modifier.drex
4749 || i.tm.opcode_modifier.drexv
4750 || i.tm.opcode_modifier.drexc)
4751 {
4752 op = i.drex.modrm_reg;
4753 i.rm.reg = i.op[op].regs->reg_num;
4754 if ((i.op[op].regs->reg_flags & RegRex) != 0)
4755 i.rex |= REX_R;
4756 }
4757 else
4758 {
4759 for (op = 0; op < i.operands; op++)
4760 if (i.types[op].bitfield.reg8
4761 || i.types[op].bitfield.reg16
4762 || i.types[op].bitfield.reg32
4763 || i.types[op].bitfield.reg64
4764 || i.types[op].bitfield.regmmx
4765 || i.types[op].bitfield.regxmm
4766 || i.types[op].bitfield.sreg2
4767 || i.types[op].bitfield.sreg3
4768 || i.types[op].bitfield.control
4769 || i.types[op].bitfield.debug
4770 || i.types[op].bitfield.test)
4771 break;
4772
4773 assert (op < i.operands);
4774
4775 /* If there is an extension opcode to put here, the
4776 register number must be put into the regmem field. */
4777 if (i.tm.extension_opcode != None)
4778 {
4779 i.rm.regmem = i.op[op].regs->reg_num;
4780 if ((i.op[op].regs->reg_flags & RegRex) != 0)
4781 i.rex |= REX_B;
4782 }
4783 else
4784 {
4785 i.rm.reg = i.op[op].regs->reg_num;
4786 if ((i.op[op].regs->reg_flags & RegRex) != 0)
4787 i.rex |= REX_R;
4788 }
4789 }
4790
4791 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
4792 must set it to 3 to indicate this is a register operand
4793 in the regmem field. */
4794 if (!i.mem_operands)
4795 i.rm.mode = 3;
4796 }
4797
4798 /* Fill in i.rm.reg field with extension opcode (if any). */
4799 if (i.tm.extension_opcode != None
4800 && !(i.tm.opcode_modifier.drex
4801 || i.tm.opcode_modifier.drexv
4802 || i.tm.opcode_modifier.drexc))
4803 i.rm.reg = i.tm.extension_opcode;
4804 }
4805 return default_seg;
4806 }
4807
4808 static void
4809 output_branch (void)
4810 {
4811 char *p;
4812 int code16;
4813 int prefix;
4814 relax_substateT subtype;
4815 symbolS *sym;
4816 offsetT off;
4817
4818 code16 = 0;
4819 if (flag_code == CODE_16BIT)
4820 code16 = CODE16;
4821
4822 prefix = 0;
4823 if (i.prefix[DATA_PREFIX] != 0)
4824 {
4825 prefix = 1;
4826 i.prefixes -= 1;
4827 code16 ^= CODE16;
4828 }
4829 /* Pentium4 branch hints. */
4830 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
4831 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
4832 {
4833 prefix++;
4834 i.prefixes--;
4835 }
4836 if (i.prefix[REX_PREFIX] != 0)
4837 {
4838 prefix++;
4839 i.prefixes--;
4840 }
4841
4842 if (i.prefixes != 0 && !intel_syntax)
4843 as_warn (_("skipping prefixes on this instruction"));
4844
4845 /* It's always a symbol; End frag & setup for relax.
4846 Make sure there is enough room in this frag for the largest
4847 instruction we may generate in md_convert_frag. This is 2
4848 bytes for the opcode and room for the prefix and largest
4849 displacement. */
4850 frag_grow (prefix + 2 + 4);
4851 /* Prefix and 1 opcode byte go in fr_fix. */
4852 p = frag_more (prefix + 1);
4853 if (i.prefix[DATA_PREFIX] != 0)
4854 *p++ = DATA_PREFIX_OPCODE;
4855 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
4856 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
4857 *p++ = i.prefix[SEG_PREFIX];
4858 if (i.prefix[REX_PREFIX] != 0)
4859 *p++ = i.prefix[REX_PREFIX];
4860 *p = i.tm.base_opcode;
4861
4862 if ((unsigned char) *p == JUMP_PC_RELATIVE)
4863 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
4864 else if (cpu_arch_flags.bitfield.cpui386)
4865 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
4866 else
4867 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
4868 subtype |= code16;
4869
4870 sym = i.op[0].disps->X_add_symbol;
4871 off = i.op[0].disps->X_add_number;
4872
4873 if (i.op[0].disps->X_op != O_constant
4874 && i.op[0].disps->X_op != O_symbol)
4875 {
4876 /* Handle complex expressions. */
4877 sym = make_expr_symbol (i.op[0].disps);
4878 off = 0;
4879 }
4880
4881 /* 1 possible extra opcode + 4 byte displacement go in var part.
4882 Pass reloc in fr_var. */
4883 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
4884 }
4885
4886 static void
4887 output_jump (void)
4888 {
4889 char *p;
4890 int size;
4891 fixS *fixP;
4892
4893 if (i.tm.opcode_modifier.jumpbyte)
4894 {
4895 /* This is a loop or jecxz type instruction. */
4896 size = 1;
4897 if (i.prefix[ADDR_PREFIX] != 0)
4898 {
4899 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
4900 i.prefixes -= 1;
4901 }
4902 /* Pentium4 branch hints. */
4903 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
4904 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
4905 {
4906 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
4907 i.prefixes--;
4908 }
4909 }
4910 else
4911 {
4912 int code16;
4913
4914 code16 = 0;
4915 if (flag_code == CODE_16BIT)
4916 code16 = CODE16;
4917
4918 if (i.prefix[DATA_PREFIX] != 0)
4919 {
4920 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
4921 i.prefixes -= 1;
4922 code16 ^= CODE16;
4923 }
4924
4925 size = 4;
4926 if (code16)
4927 size = 2;
4928 }
4929
4930 if (i.prefix[REX_PREFIX] != 0)
4931 {
4932 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
4933 i.prefixes -= 1;
4934 }
4935
4936 if (i.prefixes != 0 && !intel_syntax)
4937 as_warn (_("skipping prefixes on this instruction"));
4938
4939 p = frag_more (1 + size);
4940 *p++ = i.tm.base_opcode;
4941
4942 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
4943 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
4944
4945 /* All jumps handled here are signed, but don't use a signed limit
4946 check for 32 and 16 bit jumps as we want to allow wrap around at
4947 4G and 64k respectively. */
4948 if (size == 1)
4949 fixP->fx_signed = 1;
4950 }
4951
4952 static void
4953 output_interseg_jump (void)
4954 {
4955 char *p;
4956 int size;
4957 int prefix;
4958 int code16;
4959
4960 code16 = 0;
4961 if (flag_code == CODE_16BIT)
4962 code16 = CODE16;
4963
4964 prefix = 0;
4965 if (i.prefix[DATA_PREFIX] != 0)
4966 {
4967 prefix = 1;
4968 i.prefixes -= 1;
4969 code16 ^= CODE16;
4970 }
4971 if (i.prefix[REX_PREFIX] != 0)
4972 {
4973 prefix++;
4974 i.prefixes -= 1;
4975 }
4976
4977 size = 4;
4978 if (code16)
4979 size = 2;
4980
4981 if (i.prefixes != 0 && !intel_syntax)
4982 as_warn (_("skipping prefixes on this instruction"));
4983
4984 /* 1 opcode; 2 segment; offset */
4985 p = frag_more (prefix + 1 + 2 + size);
4986
4987 if (i.prefix[DATA_PREFIX] != 0)
4988 *p++ = DATA_PREFIX_OPCODE;
4989
4990 if (i.prefix[REX_PREFIX] != 0)
4991 *p++ = i.prefix[REX_PREFIX];
4992
4993 *p++ = i.tm.base_opcode;
4994 if (i.op[1].imms->X_op == O_constant)
4995 {
4996 offsetT n = i.op[1].imms->X_add_number;
4997
4998 if (size == 2
4999 && !fits_in_unsigned_word (n)
5000 && !fits_in_signed_word (n))
5001 {
5002 as_bad (_("16-bit jump out of range"));
5003 return;
5004 }
5005 md_number_to_chars (p, n, size);
5006 }
5007 else
5008 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5009 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
5010 if (i.op[0].imms->X_op != O_constant)
5011 as_bad (_("can't handle non absolute segment in `%s'"),
5012 i.tm.name);
5013 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
5014 }
5015
5016 static void
5017 output_insn (void)
5018 {
5019 fragS *insn_start_frag;
5020 offsetT insn_start_off;
5021
5022 /* Tie dwarf2 debug info to the address at the start of the insn.
5023 We can't do this after the insn has been output as the current
5024 frag may have been closed off. eg. by frag_var. */
5025 dwarf2_emit_insn (0);
5026
5027 insn_start_frag = frag_now;
5028 insn_start_off = frag_now_fix ();
5029
5030 /* Output jumps. */
5031 if (i.tm.opcode_modifier.jump)
5032 output_branch ();
5033 else if (i.tm.opcode_modifier.jumpbyte
5034 || i.tm.opcode_modifier.jumpdword)
5035 output_jump ();
5036 else if (i.tm.opcode_modifier.jumpintersegment)
5037 output_interseg_jump ();
5038 else
5039 {
5040 /* Output normal instructions here. */
5041 char *p;
5042 unsigned char *q;
5043 unsigned int j;
5044 unsigned int prefix;
5045
5046 switch (i.tm.opcode_length)
5047 {
5048 case 3:
5049 if (i.tm.base_opcode & 0xff000000)
5050 {
5051 prefix = (i.tm.base_opcode >> 24) & 0xff;
5052 goto check_prefix;
5053 }
5054 break;
5055 case 2:
5056 if ((i.tm.base_opcode & 0xff0000) != 0)
5057 {
5058 prefix = (i.tm.base_opcode >> 16) & 0xff;
5059 if (i.tm.cpu_flags.bitfield.cpupadlock)
5060 {
5061 check_prefix:
5062 if (prefix != REPE_PREFIX_OPCODE
5063 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
5064 add_prefix (prefix);
5065 }
5066 else
5067 add_prefix (prefix);
5068 }
5069 break;
5070 case 1:
5071 break;
5072 default:
5073 abort ();
5074 }
5075
5076 /* The prefix bytes. */
5077 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
5078 if (*q)
5079 FRAG_APPEND_1_CHAR (*q);
5080
5081 /* Now the opcode; be careful about word order here! */
5082 if (i.tm.opcode_length == 1)
5083 {
5084 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
5085 }
5086 else
5087 {
5088 switch (i.tm.opcode_length)
5089 {
5090 case 3:
5091 p = frag_more (3);
5092 *p++ = (i.tm.base_opcode >> 16) & 0xff;
5093 break;
5094 case 2:
5095 p = frag_more (2);
5096 break;
5097 default:
5098 abort ();
5099 break;
5100 }
5101
5102 /* Put out high byte first: can't use md_number_to_chars! */
5103 *p++ = (i.tm.base_opcode >> 8) & 0xff;
5104 *p = i.tm.base_opcode & 0xff;
5105
5106 /* On SSE5, encode the OC1 bit in the DREX field if this
5107 encoding has multiple formats. */
5108 if (i.tm.opcode_modifier.drex
5109 && i.tm.opcode_modifier.drexv
5110 && DREX_OC1 (i.tm.extension_opcode))
5111 *p |= DREX_OC1_MASK;
5112 }
5113
5114 /* Now the modrm byte and sib byte (if present). */
5115 if (i.tm.opcode_modifier.modrm)
5116 {
5117 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
5118 | i.rm.reg << 3
5119 | i.rm.mode << 6));
5120 /* If i.rm.regmem == ESP (4)
5121 && i.rm.mode != (Register mode)
5122 && not 16 bit
5123 ==> need second modrm byte. */
5124 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
5125 && i.rm.mode != 3
5126 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
5127 FRAG_APPEND_1_CHAR ((i.sib.base << 0
5128 | i.sib.index << 3
5129 | i.sib.scale << 6));
5130 }
5131
5132 /* Write the DREX byte if needed. */
5133 if (i.tm.opcode_modifier.drex || i.tm.opcode_modifier.drexc)
5134 {
5135 p = frag_more (1);
5136 *p = (((i.drex.reg & 0xf) << 4) | (i.drex.rex & 0x7));
5137
5138 /* Encode the OC0 bit if this encoding has multiple
5139 formats. */
5140 if ((i.tm.opcode_modifier.drex
5141 || i.tm.opcode_modifier.drexv)
5142 && DREX_OC0 (i.tm.extension_opcode))
5143 *p |= DREX_OC0_MASK;
5144 }
5145
5146 if (i.disp_operands)
5147 output_disp (insn_start_frag, insn_start_off);
5148
5149 if (i.imm_operands)
5150 output_imm (insn_start_frag, insn_start_off);
5151 }
5152
5153 #ifdef DEBUG386
5154 if (flag_debug)
5155 {
5156 pi ("" /*line*/, &i);
5157 }
5158 #endif /* DEBUG386 */
5159 }
5160
5161 /* Return the size of the displacement operand N. */
5162
5163 static int
5164 disp_size (unsigned int n)
5165 {
5166 int size = 4;
5167 if (i.types[n].bitfield.disp64)
5168 size = 8;
5169 else if (i.types[n].bitfield.disp8)
5170 size = 1;
5171 else if (i.types[n].bitfield.disp16)
5172 size = 2;
5173 return size;
5174 }
5175
5176 /* Return the size of the immediate operand N. */
5177
5178 static int
5179 imm_size (unsigned int n)
5180 {
5181 int size = 4;
5182 if (i.types[n].bitfield.imm64)
5183 size = 8;
5184 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
5185 size = 1;
5186 else if (i.types[n].bitfield.imm16)
5187 size = 2;
5188 return size;
5189 }
5190
5191 static void
5192 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
5193 {
5194 char *p;
5195 unsigned int n;
5196
5197 for (n = 0; n < i.operands; n++)
5198 {
5199 if (operand_type_check (i.types[n], disp))
5200 {
5201 if (i.op[n].disps->X_op == O_constant)
5202 {
5203 int size = disp_size (n);
5204 offsetT val;
5205
5206 val = offset_in_range (i.op[n].disps->X_add_number,
5207 size);
5208 p = frag_more (size);
5209 md_number_to_chars (p, val, size);
5210 }
5211 else
5212 {
5213 enum bfd_reloc_code_real reloc_type;
5214 int size = disp_size (n);
5215 int sign = i.types[n].bitfield.disp32s;
5216 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
5217
5218 /* We can't have 8 bit displacement here. */
5219 assert (!i.types[n].bitfield.disp8);
5220
5221 /* The PC relative address is computed relative
5222 to the instruction boundary, so in case immediate
5223 fields follows, we need to adjust the value. */
5224 if (pcrel && i.imm_operands)
5225 {
5226 unsigned int n1;
5227 int sz = 0;
5228
5229 for (n1 = 0; n1 < i.operands; n1++)
5230 if (operand_type_check (i.types[n1], imm))
5231 {
5232 /* Only one immediate is allowed for PC
5233 relative address. */
5234 assert (sz == 0);
5235 sz = imm_size (n1);
5236 i.op[n].disps->X_add_number -= sz;
5237 }
5238 /* We should find the immediate. */
5239 assert (sz != 0);
5240 }
5241
5242 p = frag_more (size);
5243 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
5244 if (GOT_symbol
5245 && GOT_symbol == i.op[n].disps->X_add_symbol
5246 && (((reloc_type == BFD_RELOC_32
5247 || reloc_type == BFD_RELOC_X86_64_32S
5248 || (reloc_type == BFD_RELOC_64
5249 && object_64bit))
5250 && (i.op[n].disps->X_op == O_symbol
5251 || (i.op[n].disps->X_op == O_add
5252 && ((symbol_get_value_expression
5253 (i.op[n].disps->X_op_symbol)->X_op)
5254 == O_subtract))))
5255 || reloc_type == BFD_RELOC_32_PCREL))
5256 {
5257 offsetT add;
5258
5259 if (insn_start_frag == frag_now)
5260 add = (p - frag_now->fr_literal) - insn_start_off;
5261 else
5262 {
5263 fragS *fr;
5264
5265 add = insn_start_frag->fr_fix - insn_start_off;
5266 for (fr = insn_start_frag->fr_next;
5267 fr && fr != frag_now; fr = fr->fr_next)
5268 add += fr->fr_fix;
5269 add += p - frag_now->fr_literal;
5270 }
5271
5272 if (!object_64bit)
5273 {
5274 reloc_type = BFD_RELOC_386_GOTPC;
5275 i.op[n].imms->X_add_number += add;
5276 }
5277 else if (reloc_type == BFD_RELOC_64)
5278 reloc_type = BFD_RELOC_X86_64_GOTPC64;
5279 else
5280 /* Don't do the adjustment for x86-64, as there
5281 the pcrel addressing is relative to the _next_
5282 insn, and that is taken care of in other code. */
5283 reloc_type = BFD_RELOC_X86_64_GOTPC32;
5284 }
5285 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5286 i.op[n].disps, pcrel, reloc_type);
5287 }
5288 }
5289 }
5290 }
5291
5292 static void
5293 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
5294 {
5295 char *p;
5296 unsigned int n;
5297
5298 for (n = 0; n < i.operands; n++)
5299 {
5300 if (operand_type_check (i.types[n], imm))
5301 {
5302 if (i.op[n].imms->X_op == O_constant)
5303 {
5304 int size = imm_size (n);
5305 offsetT val;
5306
5307 val = offset_in_range (i.op[n].imms->X_add_number,
5308 size);
5309 p = frag_more (size);
5310 md_number_to_chars (p, val, size);
5311 }
5312 else
5313 {
5314 /* Not absolute_section.
5315 Need a 32-bit fixup (don't support 8bit
5316 non-absolute imms). Try to support other
5317 sizes ... */
5318 enum bfd_reloc_code_real reloc_type;
5319 int size = imm_size (n);
5320 int sign;
5321
5322 if (i.types[n].bitfield.imm32s
5323 && (i.suffix == QWORD_MNEM_SUFFIX
5324 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
5325 sign = 1;
5326 else
5327 sign = 0;
5328
5329 p = frag_more (size);
5330 reloc_type = reloc (size, 0, sign, i.reloc[n]);
5331
5332 /* This is tough to explain. We end up with this one if we
5333 * have operands that look like
5334 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
5335 * obtain the absolute address of the GOT, and it is strongly
5336 * preferable from a performance point of view to avoid using
5337 * a runtime relocation for this. The actual sequence of
5338 * instructions often look something like:
5339 *
5340 * call .L66
5341 * .L66:
5342 * popl %ebx
5343 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
5344 *
5345 * The call and pop essentially return the absolute address
5346 * of the label .L66 and store it in %ebx. The linker itself
5347 * will ultimately change the first operand of the addl so
5348 * that %ebx points to the GOT, but to keep things simple, the
5349 * .o file must have this operand set so that it generates not
5350 * the absolute address of .L66, but the absolute address of
5351 * itself. This allows the linker itself simply treat a GOTPC
5352 * relocation as asking for a pcrel offset to the GOT to be
5353 * added in, and the addend of the relocation is stored in the
5354 * operand field for the instruction itself.
5355 *
5356 * Our job here is to fix the operand so that it would add
5357 * the correct offset so that %ebx would point to itself. The
5358 * thing that is tricky is that .-.L66 will point to the
5359 * beginning of the instruction, so we need to further modify
5360 * the operand so that it will point to itself. There are
5361 * other cases where you have something like:
5362 *
5363 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
5364 *
5365 * and here no correction would be required. Internally in
5366 * the assembler we treat operands of this form as not being
5367 * pcrel since the '.' is explicitly mentioned, and I wonder
5368 * whether it would simplify matters to do it this way. Who
5369 * knows. In earlier versions of the PIC patches, the
5370 * pcrel_adjust field was used to store the correction, but
5371 * since the expression is not pcrel, I felt it would be
5372 * confusing to do it this way. */
5373
5374 if ((reloc_type == BFD_RELOC_32
5375 || reloc_type == BFD_RELOC_X86_64_32S
5376 || reloc_type == BFD_RELOC_64)
5377 && GOT_symbol
5378 && GOT_symbol == i.op[n].imms->X_add_symbol
5379 && (i.op[n].imms->X_op == O_symbol
5380 || (i.op[n].imms->X_op == O_add
5381 && ((symbol_get_value_expression
5382 (i.op[n].imms->X_op_symbol)->X_op)
5383 == O_subtract))))
5384 {
5385 offsetT add;
5386
5387 if (insn_start_frag == frag_now)
5388 add = (p - frag_now->fr_literal) - insn_start_off;
5389 else
5390 {
5391 fragS *fr;
5392
5393 add = insn_start_frag->fr_fix - insn_start_off;
5394 for (fr = insn_start_frag->fr_next;
5395 fr && fr != frag_now; fr = fr->fr_next)
5396 add += fr->fr_fix;
5397 add += p - frag_now->fr_literal;
5398 }
5399
5400 if (!object_64bit)
5401 reloc_type = BFD_RELOC_386_GOTPC;
5402 else if (size == 4)
5403 reloc_type = BFD_RELOC_X86_64_GOTPC32;
5404 else if (size == 8)
5405 reloc_type = BFD_RELOC_X86_64_GOTPC64;
5406 i.op[n].imms->X_add_number += add;
5407 }
5408 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5409 i.op[n].imms, 0, reloc_type);
5410 }
5411 }
5412 }
5413 }
5414 \f
5415 /* x86_cons_fix_new is called via the expression parsing code when a
5416 reloc is needed. We use this hook to get the correct .got reloc. */
5417 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
5418 static int cons_sign = -1;
5419
5420 void
5421 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
5422 expressionS *exp)
5423 {
5424 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
5425
5426 got_reloc = NO_RELOC;
5427
5428 #ifdef TE_PE
5429 if (exp->X_op == O_secrel)
5430 {
5431 exp->X_op = O_symbol;
5432 r = BFD_RELOC_32_SECREL;
5433 }
5434 #endif
5435
5436 fix_new_exp (frag, off, len, exp, 0, r);
5437 }
5438
5439 #if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
5440 # define lex_got(reloc, adjust, types) NULL
5441 #else
5442 /* Parse operands of the form
5443 <symbol>@GOTOFF+<nnn>
5444 and similar .plt or .got references.
5445
5446 If we find one, set up the correct relocation in RELOC and copy the
5447 input string, minus the `@GOTOFF' into a malloc'd buffer for
5448 parsing by the calling routine. Return this buffer, and if ADJUST
5449 is non-null set it to the length of the string we removed from the
5450 input line. Otherwise return NULL. */
5451 static char *
5452 lex_got (enum bfd_reloc_code_real *reloc,
5453 int *adjust,
5454 i386_operand_type *types)
5455 {
5456 /* Some of the relocations depend on the size of what field is to
5457 be relocated. But in our callers i386_immediate and i386_displacement
5458 we don't yet know the operand size (this will be set by insn
5459 matching). Hence we record the word32 relocation here,
5460 and adjust the reloc according to the real size in reloc(). */
5461 static const struct {
5462 const char *str;
5463 const enum bfd_reloc_code_real rel[2];
5464 const i386_operand_type types64;
5465 } gotrel[] = {
5466 { "PLTOFF", { 0,
5467 BFD_RELOC_X86_64_PLTOFF64 },
5468 OPERAND_TYPE_IMM64 },
5469 { "PLT", { BFD_RELOC_386_PLT32,
5470 BFD_RELOC_X86_64_PLT32 },
5471 OPERAND_TYPE_IMM32_32S_DISP32 },
5472 { "GOTPLT", { 0,
5473 BFD_RELOC_X86_64_GOTPLT64 },
5474 OPERAND_TYPE_IMM64_DISP64 },
5475 { "GOTOFF", { BFD_RELOC_386_GOTOFF,
5476 BFD_RELOC_X86_64_GOTOFF64 },
5477 OPERAND_TYPE_IMM64_DISP64 },
5478 { "GOTPCREL", { 0,
5479 BFD_RELOC_X86_64_GOTPCREL },
5480 OPERAND_TYPE_IMM32_32S_DISP32 },
5481 { "TLSGD", { BFD_RELOC_386_TLS_GD,
5482 BFD_RELOC_X86_64_TLSGD },
5483 OPERAND_TYPE_IMM32_32S_DISP32 },
5484 { "TLSLDM", { BFD_RELOC_386_TLS_LDM,
5485 0 },
5486 OPERAND_TYPE_NONE },
5487 { "TLSLD", { 0,
5488 BFD_RELOC_X86_64_TLSLD },
5489 OPERAND_TYPE_IMM32_32S_DISP32 },
5490 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32,
5491 BFD_RELOC_X86_64_GOTTPOFF },
5492 OPERAND_TYPE_IMM32_32S_DISP32 },
5493 { "TPOFF", { BFD_RELOC_386_TLS_LE_32,
5494 BFD_RELOC_X86_64_TPOFF32 },
5495 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
5496 { "NTPOFF", { BFD_RELOC_386_TLS_LE,
5497 0 },
5498 OPERAND_TYPE_NONE },
5499 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32,
5500 BFD_RELOC_X86_64_DTPOFF32 },
5501
5502 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
5503 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE,
5504 0 },
5505 OPERAND_TYPE_NONE },
5506 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE,
5507 0 },
5508 OPERAND_TYPE_NONE },
5509 { "GOT", { BFD_RELOC_386_GOT32,
5510 BFD_RELOC_X86_64_GOT32 },
5511 OPERAND_TYPE_IMM32_32S_64_DISP32 },
5512 { "TLSDESC", { BFD_RELOC_386_TLS_GOTDESC,
5513 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
5514 OPERAND_TYPE_IMM32_32S_DISP32 },
5515 { "TLSCALL", { BFD_RELOC_386_TLS_DESC_CALL,
5516 BFD_RELOC_X86_64_TLSDESC_CALL },
5517 OPERAND_TYPE_IMM32_32S_DISP32 },
5518 };
5519 char *cp;
5520 unsigned int j;
5521
5522 if (!IS_ELF)
5523 return NULL;
5524
5525 for (cp = input_line_pointer; *cp != '@'; cp++)
5526 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
5527 return NULL;
5528
5529 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
5530 {
5531 int len;
5532
5533 len = strlen (gotrel[j].str);
5534 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
5535 {
5536 if (gotrel[j].rel[object_64bit] != 0)
5537 {
5538 int first, second;
5539 char *tmpbuf, *past_reloc;
5540
5541 *reloc = gotrel[j].rel[object_64bit];
5542 if (adjust)
5543 *adjust = len;
5544
5545 if (types)
5546 {
5547 if (flag_code != CODE_64BIT)
5548 {
5549 types->bitfield.imm32 = 1;
5550 types->bitfield.disp32 = 1;
5551 }
5552 else
5553 *types = gotrel[j].types64;
5554 }
5555
5556 if (GOT_symbol == NULL)
5557 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
5558
5559 /* The length of the first part of our input line. */
5560 first = cp - input_line_pointer;
5561
5562 /* The second part goes from after the reloc token until
5563 (and including) an end_of_line char or comma. */
5564 past_reloc = cp + 1 + len;
5565 cp = past_reloc;
5566 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
5567 ++cp;
5568 second = cp + 1 - past_reloc;
5569
5570 /* Allocate and copy string. The trailing NUL shouldn't
5571 be necessary, but be safe. */
5572 tmpbuf = xmalloc (first + second + 2);
5573 memcpy (tmpbuf, input_line_pointer, first);
5574 if (second != 0 && *past_reloc != ' ')
5575 /* Replace the relocation token with ' ', so that
5576 errors like foo@GOTOFF1 will be detected. */
5577 tmpbuf[first++] = ' ';
5578 memcpy (tmpbuf + first, past_reloc, second);
5579 tmpbuf[first + second] = '\0';
5580 return tmpbuf;
5581 }
5582
5583 as_bad (_("@%s reloc is not supported with %d-bit output format"),
5584 gotrel[j].str, 1 << (5 + object_64bit));
5585 return NULL;
5586 }
5587 }
5588
5589 /* Might be a symbol version string. Don't as_bad here. */
5590 return NULL;
5591 }
5592
5593 void
5594 x86_cons (expressionS *exp, int size)
5595 {
5596 if (size == 4 || (object_64bit && size == 8))
5597 {
5598 /* Handle @GOTOFF and the like in an expression. */
5599 char *save;
5600 char *gotfree_input_line;
5601 int adjust;
5602
5603 save = input_line_pointer;
5604 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
5605 if (gotfree_input_line)
5606 input_line_pointer = gotfree_input_line;
5607
5608 expression (exp);
5609
5610 if (gotfree_input_line)
5611 {
5612 /* expression () has merrily parsed up to the end of line,
5613 or a comma - in the wrong buffer. Transfer how far
5614 input_line_pointer has moved to the right buffer. */
5615 input_line_pointer = (save
5616 + (input_line_pointer - gotfree_input_line)
5617 + adjust);
5618 free (gotfree_input_line);
5619 if (exp->X_op == O_constant
5620 || exp->X_op == O_absent
5621 || exp->X_op == O_illegal
5622 || exp->X_op == O_register
5623 || exp->X_op == O_big)
5624 {
5625 char c = *input_line_pointer;
5626 *input_line_pointer = 0;
5627 as_bad (_("missing or invalid expression `%s'"), save);
5628 *input_line_pointer = c;
5629 }
5630 }
5631 }
5632 else
5633 expression (exp);
5634 }
5635 #endif
5636
5637 static void signed_cons (int size)
5638 {
5639 if (flag_code == CODE_64BIT)
5640 cons_sign = 1;
5641 cons (size);
5642 cons_sign = -1;
5643 }
5644
5645 #ifdef TE_PE
5646 static void
5647 pe_directive_secrel (dummy)
5648 int dummy ATTRIBUTE_UNUSED;
5649 {
5650 expressionS exp;
5651
5652 do
5653 {
5654 expression (&exp);
5655 if (exp.X_op == O_symbol)
5656 exp.X_op = O_secrel;
5657
5658 emit_expr (&exp, 4);
5659 }
5660 while (*input_line_pointer++ == ',');
5661
5662 input_line_pointer--;
5663 demand_empty_rest_of_line ();
5664 }
5665 #endif
5666
5667 static int
5668 i386_immediate (char *imm_start)
5669 {
5670 char *save_input_line_pointer;
5671 char *gotfree_input_line;
5672 segT exp_seg = 0;
5673 expressionS *exp;
5674 i386_operand_type types;
5675
5676 UINTS_SET (types, ~0);
5677
5678 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
5679 {
5680 as_bad (_("at most %d immediate operands are allowed"),
5681 MAX_IMMEDIATE_OPERANDS);
5682 return 0;
5683 }
5684
5685 exp = &im_expressions[i.imm_operands++];
5686 i.op[this_operand].imms = exp;
5687
5688 if (is_space_char (*imm_start))
5689 ++imm_start;
5690
5691 save_input_line_pointer = input_line_pointer;
5692 input_line_pointer = imm_start;
5693
5694 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
5695 if (gotfree_input_line)
5696 input_line_pointer = gotfree_input_line;
5697
5698 exp_seg = expression (exp);
5699
5700 SKIP_WHITESPACE ();
5701 if (*input_line_pointer)
5702 as_bad (_("junk `%s' after expression"), input_line_pointer);
5703
5704 input_line_pointer = save_input_line_pointer;
5705 if (gotfree_input_line)
5706 free (gotfree_input_line);
5707
5708 if (exp->X_op == O_absent
5709 || exp->X_op == O_illegal
5710 || exp->X_op == O_big
5711 || (gotfree_input_line
5712 && (exp->X_op == O_constant
5713 || exp->X_op == O_register)))
5714 {
5715 as_bad (_("missing or invalid immediate expression `%s'"),
5716 imm_start);
5717 return 0;
5718 }
5719 else if (exp->X_op == O_constant)
5720 {
5721 /* Size it properly later. */
5722 i.types[this_operand].bitfield.imm64 = 1;
5723 /* If BFD64, sign extend val. */
5724 if (!use_rela_relocations
5725 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
5726 exp->X_add_number
5727 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
5728 }
5729 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5730 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
5731 && exp_seg != absolute_section
5732 && exp_seg != text_section
5733 && exp_seg != data_section
5734 && exp_seg != bss_section
5735 && exp_seg != undefined_section
5736 && !bfd_is_com_section (exp_seg))
5737 {
5738 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
5739 return 0;
5740 }
5741 #endif
5742 else if (!intel_syntax && exp->X_op == O_register)
5743 {
5744 as_bad (_("illegal immediate register operand %s"), imm_start);
5745 return 0;
5746 }
5747 else
5748 {
5749 /* This is an address. The size of the address will be
5750 determined later, depending on destination register,
5751 suffix, or the default for the section. */
5752 i.types[this_operand].bitfield.imm8 = 1;
5753 i.types[this_operand].bitfield.imm16 = 1;
5754 i.types[this_operand].bitfield.imm32 = 1;
5755 i.types[this_operand].bitfield.imm32s = 1;
5756 i.types[this_operand].bitfield.imm64 = 1;
5757 i.types[this_operand] = operand_type_and (i.types[this_operand],
5758 types);
5759 }
5760
5761 return 1;
5762 }
5763
5764 static char *
5765 i386_scale (char *scale)
5766 {
5767 offsetT val;
5768 char *save = input_line_pointer;
5769
5770 input_line_pointer = scale;
5771 val = get_absolute_expression ();
5772
5773 switch (val)
5774 {
5775 case 1:
5776 i.log2_scale_factor = 0;
5777 break;
5778 case 2:
5779 i.log2_scale_factor = 1;
5780 break;
5781 case 4:
5782 i.log2_scale_factor = 2;
5783 break;
5784 case 8:
5785 i.log2_scale_factor = 3;
5786 break;
5787 default:
5788 {
5789 char sep = *input_line_pointer;
5790
5791 *input_line_pointer = '\0';
5792 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5793 scale);
5794 *input_line_pointer = sep;
5795 input_line_pointer = save;
5796 return NULL;
5797 }
5798 }
5799 if (i.log2_scale_factor != 0 && i.index_reg == 0)
5800 {
5801 as_warn (_("scale factor of %d without an index register"),
5802 1 << i.log2_scale_factor);
5803 i.log2_scale_factor = 0;
5804 }
5805 scale = input_line_pointer;
5806 input_line_pointer = save;
5807 return scale;
5808 }
5809
5810 static int
5811 i386_displacement (char *disp_start, char *disp_end)
5812 {
5813 expressionS *exp;
5814 segT exp_seg = 0;
5815 char *save_input_line_pointer;
5816 char *gotfree_input_line;
5817 int override;
5818 i386_operand_type bigdisp, types = anydisp;
5819 int ret;
5820
5821 if (i.disp_operands == MAX_MEMORY_OPERANDS)
5822 {
5823 as_bad (_("at most %d displacement operands are allowed"),
5824 MAX_MEMORY_OPERANDS);
5825 return 0;
5826 }
5827
5828 UINTS_CLEAR (bigdisp);
5829 if ((i.types[this_operand].bitfield.jumpabsolute)
5830 || (!current_templates->start->opcode_modifier.jump
5831 && !current_templates->start->opcode_modifier.jumpdword))
5832 {
5833 bigdisp.bitfield.disp32 = 1;
5834 override = (i.prefix[ADDR_PREFIX] != 0);
5835 if (flag_code == CODE_64BIT)
5836 {
5837 if (!override)
5838 {
5839 bigdisp.bitfield.disp32s = 1;
5840 bigdisp.bitfield.disp64 = 1;
5841 }
5842 }
5843 else if ((flag_code == CODE_16BIT) ^ override)
5844 {
5845 bigdisp.bitfield.disp32 = 0;
5846 bigdisp.bitfield.disp16 = 1;
5847 }
5848 }
5849 else
5850 {
5851 /* For PC-relative branches, the width of the displacement
5852 is dependent upon data size, not address size. */
5853 override = (i.prefix[DATA_PREFIX] != 0);
5854 if (flag_code == CODE_64BIT)
5855 {
5856 if (override || i.suffix == WORD_MNEM_SUFFIX)
5857 bigdisp.bitfield.disp16 = 1;
5858 else
5859 {
5860 bigdisp.bitfield.disp32 = 1;
5861 bigdisp.bitfield.disp32s = 1;
5862 }
5863 }
5864 else
5865 {
5866 if (!override)
5867 override = (i.suffix == (flag_code != CODE_16BIT
5868 ? WORD_MNEM_SUFFIX
5869 : LONG_MNEM_SUFFIX));
5870 bigdisp.bitfield.disp32 = 1;
5871 if ((flag_code == CODE_16BIT) ^ override)
5872 {
5873 bigdisp.bitfield.disp32 = 0;
5874 bigdisp.bitfield.disp16 = 1;
5875 }
5876 }
5877 }
5878 i.types[this_operand] = operand_type_or (i.types[this_operand],
5879 bigdisp);
5880
5881 exp = &disp_expressions[i.disp_operands];
5882 i.op[this_operand].disps = exp;
5883 i.disp_operands++;
5884 save_input_line_pointer = input_line_pointer;
5885 input_line_pointer = disp_start;
5886 END_STRING_AND_SAVE (disp_end);
5887
5888 #ifndef GCC_ASM_O_HACK
5889 #define GCC_ASM_O_HACK 0
5890 #endif
5891 #if GCC_ASM_O_HACK
5892 END_STRING_AND_SAVE (disp_end + 1);
5893 if (i.types[this_operand].bitfield.baseIndex
5894 && displacement_string_end[-1] == '+')
5895 {
5896 /* This hack is to avoid a warning when using the "o"
5897 constraint within gcc asm statements.
5898 For instance:
5899
5900 #define _set_tssldt_desc(n,addr,limit,type) \
5901 __asm__ __volatile__ ( \
5902 "movw %w2,%0\n\t" \
5903 "movw %w1,2+%0\n\t" \
5904 "rorl $16,%1\n\t" \
5905 "movb %b1,4+%0\n\t" \
5906 "movb %4,5+%0\n\t" \
5907 "movb $0,6+%0\n\t" \
5908 "movb %h1,7+%0\n\t" \
5909 "rorl $16,%1" \
5910 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
5911
5912 This works great except that the output assembler ends
5913 up looking a bit weird if it turns out that there is
5914 no offset. You end up producing code that looks like:
5915
5916 #APP
5917 movw $235,(%eax)
5918 movw %dx,2+(%eax)
5919 rorl $16,%edx
5920 movb %dl,4+(%eax)
5921 movb $137,5+(%eax)
5922 movb $0,6+(%eax)
5923 movb %dh,7+(%eax)
5924 rorl $16,%edx
5925 #NO_APP
5926
5927 So here we provide the missing zero. */
5928
5929 *displacement_string_end = '0';
5930 }
5931 #endif
5932 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
5933 if (gotfree_input_line)
5934 input_line_pointer = gotfree_input_line;
5935
5936 exp_seg = expression (exp);
5937
5938 SKIP_WHITESPACE ();
5939 if (*input_line_pointer)
5940 as_bad (_("junk `%s' after expression"), input_line_pointer);
5941 #if GCC_ASM_O_HACK
5942 RESTORE_END_STRING (disp_end + 1);
5943 #endif
5944 input_line_pointer = save_input_line_pointer;
5945 if (gotfree_input_line)
5946 free (gotfree_input_line);
5947 ret = 1;
5948
5949 /* We do this to make sure that the section symbol is in
5950 the symbol table. We will ultimately change the relocation
5951 to be relative to the beginning of the section. */
5952 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
5953 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
5954 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
5955 {
5956 if (exp->X_op != O_symbol)
5957 goto inv_disp;
5958
5959 if (S_IS_LOCAL (exp->X_add_symbol)
5960 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
5961 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
5962 exp->X_op = O_subtract;
5963 exp->X_op_symbol = GOT_symbol;
5964 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
5965 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
5966 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
5967 i.reloc[this_operand] = BFD_RELOC_64;
5968 else
5969 i.reloc[this_operand] = BFD_RELOC_32;
5970 }
5971
5972 else if (exp->X_op == O_absent
5973 || exp->X_op == O_illegal
5974 || exp->X_op == O_big
5975 || (gotfree_input_line
5976 && (exp->X_op == O_constant
5977 || exp->X_op == O_register)))
5978 {
5979 inv_disp:
5980 as_bad (_("missing or invalid displacement expression `%s'"),
5981 disp_start);
5982 ret = 0;
5983 }
5984
5985 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5986 else if (exp->X_op != O_constant
5987 && OUTPUT_FLAVOR == bfd_target_aout_flavour
5988 && exp_seg != absolute_section
5989 && exp_seg != text_section
5990 && exp_seg != data_section
5991 && exp_seg != bss_section
5992 && exp_seg != undefined_section
5993 && !bfd_is_com_section (exp_seg))
5994 {
5995 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
5996 ret = 0;
5997 }
5998 #endif
5999
6000 RESTORE_END_STRING (disp_end);
6001
6002 /* Check if this is a displacement only operand. */
6003 bigdisp = i.types[this_operand];
6004 bigdisp.bitfield.disp8 = 0;
6005 bigdisp.bitfield.disp16 = 0;
6006 bigdisp.bitfield.disp32 = 0;
6007 bigdisp.bitfield.disp32s = 0;
6008 bigdisp.bitfield.disp64 = 0;
6009 if (UINTS_ALL_ZERO (bigdisp))
6010 i.types[this_operand] = operand_type_and (i.types[this_operand],
6011 types);
6012
6013 return ret;
6014 }
6015
6016 /* Make sure the memory operand we've been dealt is valid.
6017 Return 1 on success, 0 on a failure. */
6018
6019 static int
6020 i386_index_check (const char *operand_string)
6021 {
6022 int ok;
6023 #if INFER_ADDR_PREFIX
6024 int fudged = 0;
6025
6026 tryprefix:
6027 #endif
6028 ok = 1;
6029 if (flag_code == CODE_64BIT)
6030 {
6031 if ((i.base_reg
6032 && ((i.prefix[ADDR_PREFIX] == 0
6033 && !i.base_reg->reg_type.bitfield.reg64)
6034 || (i.prefix[ADDR_PREFIX]
6035 && !i.base_reg->reg_type.bitfield.reg32))
6036 && (i.index_reg
6037 || i.base_reg->reg_num !=
6038 (i.prefix[ADDR_PREFIX] == 0 ? RegRip : RegEip)))
6039 || (i.index_reg
6040 && (!i.index_reg->reg_type.bitfield.baseindex
6041 || (i.prefix[ADDR_PREFIX] == 0
6042 && i.index_reg->reg_num != RegRiz
6043 && !i.index_reg->reg_type.bitfield.reg64
6044 )
6045 || (i.prefix[ADDR_PREFIX]
6046 && i.index_reg->reg_num != RegEiz
6047 && !i.index_reg->reg_type.bitfield.reg32))))
6048 ok = 0;
6049 }
6050 else
6051 {
6052 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
6053 {
6054 /* 16bit checks. */
6055 if ((i.base_reg
6056 && (!i.base_reg->reg_type.bitfield.reg16
6057 || !i.base_reg->reg_type.bitfield.baseindex))
6058 || (i.index_reg
6059 && (!i.index_reg->reg_type.bitfield.reg16
6060 || !i.index_reg->reg_type.bitfield.baseindex
6061 || !(i.base_reg
6062 && i.base_reg->reg_num < 6
6063 && i.index_reg->reg_num >= 6
6064 && i.log2_scale_factor == 0))))
6065 ok = 0;
6066 }
6067 else
6068 {
6069 /* 32bit checks. */
6070 if ((i.base_reg
6071 && !i.base_reg->reg_type.bitfield.reg32)
6072 || (i.index_reg
6073 && ((!i.index_reg->reg_type.bitfield.reg32
6074 && i.index_reg->reg_num != RegEiz)
6075 || !i.index_reg->reg_type.bitfield.baseindex)))
6076 ok = 0;
6077 }
6078 }
6079 if (!ok)
6080 {
6081 #if INFER_ADDR_PREFIX
6082 if (i.prefix[ADDR_PREFIX] == 0)
6083 {
6084 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
6085 i.prefixes += 1;
6086 /* Change the size of any displacement too. At most one of
6087 Disp16 or Disp32 is set.
6088 FIXME. There doesn't seem to be any real need for separate
6089 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
6090 Removing them would probably clean up the code quite a lot. */
6091 if (flag_code != CODE_64BIT
6092 && (i.types[this_operand].bitfield.disp16
6093 || i.types[this_operand].bitfield.disp32))
6094 i.types[this_operand]
6095 = operand_type_xor (i.types[this_operand], disp16_32);
6096 fudged = 1;
6097 goto tryprefix;
6098 }
6099 if (fudged)
6100 as_bad (_("`%s' is not a valid base/index expression"),
6101 operand_string);
6102 else
6103 #endif
6104 as_bad (_("`%s' is not a valid %s bit base/index expression"),
6105 operand_string,
6106 flag_code_names[flag_code]);
6107 }
6108 return ok;
6109 }
6110
6111 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
6112 on error. */
6113
6114 static int
6115 i386_operand (char *operand_string)
6116 {
6117 const reg_entry *r;
6118 char *end_op;
6119 char *op_string = operand_string;
6120
6121 if (is_space_char (*op_string))
6122 ++op_string;
6123
6124 /* We check for an absolute prefix (differentiating,
6125 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
6126 if (*op_string == ABSOLUTE_PREFIX)
6127 {
6128 ++op_string;
6129 if (is_space_char (*op_string))
6130 ++op_string;
6131 i.types[this_operand].bitfield.jumpabsolute = 1;
6132 }
6133
6134 /* Check if operand is a register. */
6135 if ((r = parse_register (op_string, &end_op)) != NULL)
6136 {
6137 i386_operand_type temp;
6138
6139 /* Check for a segment override by searching for ':' after a
6140 segment register. */
6141 op_string = end_op;
6142 if (is_space_char (*op_string))
6143 ++op_string;
6144 if (*op_string == ':'
6145 && (r->reg_type.bitfield.sreg2
6146 || r->reg_type.bitfield.sreg3))
6147 {
6148 switch (r->reg_num)
6149 {
6150 case 0:
6151 i.seg[i.mem_operands] = &es;
6152 break;
6153 case 1:
6154 i.seg[i.mem_operands] = &cs;
6155 break;
6156 case 2:
6157 i.seg[i.mem_operands] = &ss;
6158 break;
6159 case 3:
6160 i.seg[i.mem_operands] = &ds;
6161 break;
6162 case 4:
6163 i.seg[i.mem_operands] = &fs;
6164 break;
6165 case 5:
6166 i.seg[i.mem_operands] = &gs;
6167 break;
6168 }
6169
6170 /* Skip the ':' and whitespace. */
6171 ++op_string;
6172 if (is_space_char (*op_string))
6173 ++op_string;
6174
6175 if (!is_digit_char (*op_string)
6176 && !is_identifier_char (*op_string)
6177 && *op_string != '('
6178 && *op_string != ABSOLUTE_PREFIX)
6179 {
6180 as_bad (_("bad memory operand `%s'"), op_string);
6181 return 0;
6182 }
6183 /* Handle case of %es:*foo. */
6184 if (*op_string == ABSOLUTE_PREFIX)
6185 {
6186 ++op_string;
6187 if (is_space_char (*op_string))
6188 ++op_string;
6189 i.types[this_operand].bitfield.jumpabsolute = 1;
6190 }
6191 goto do_memory_reference;
6192 }
6193 if (*op_string)
6194 {
6195 as_bad (_("junk `%s' after register"), op_string);
6196 return 0;
6197 }
6198 temp = r->reg_type;
6199 temp.bitfield.baseindex = 0;
6200 i.types[this_operand] = operand_type_or (i.types[this_operand],
6201 temp);
6202 i.op[this_operand].regs = r;
6203 i.reg_operands++;
6204 }
6205 else if (*op_string == REGISTER_PREFIX)
6206 {
6207 as_bad (_("bad register name `%s'"), op_string);
6208 return 0;
6209 }
6210 else if (*op_string == IMMEDIATE_PREFIX)
6211 {
6212 ++op_string;
6213 if (i.types[this_operand].bitfield.jumpabsolute)
6214 {
6215 as_bad (_("immediate operand illegal with absolute jump"));
6216 return 0;
6217 }
6218 if (!i386_immediate (op_string))
6219 return 0;
6220 }
6221 else if (is_digit_char (*op_string)
6222 || is_identifier_char (*op_string)
6223 || *op_string == '(')
6224 {
6225 /* This is a memory reference of some sort. */
6226 char *base_string;
6227
6228 /* Start and end of displacement string expression (if found). */
6229 char *displacement_string_start;
6230 char *displacement_string_end;
6231
6232 do_memory_reference:
6233 if ((i.mem_operands == 1
6234 && !current_templates->start->opcode_modifier.isstring)
6235 || i.mem_operands == 2)
6236 {
6237 as_bad (_("too many memory references for `%s'"),
6238 current_templates->start->name);
6239 return 0;
6240 }
6241
6242 /* Check for base index form. We detect the base index form by
6243 looking for an ')' at the end of the operand, searching
6244 for the '(' matching it, and finding a REGISTER_PREFIX or ','
6245 after the '('. */
6246 base_string = op_string + strlen (op_string);
6247
6248 --base_string;
6249 if (is_space_char (*base_string))
6250 --base_string;
6251
6252 /* If we only have a displacement, set-up for it to be parsed later. */
6253 displacement_string_start = op_string;
6254 displacement_string_end = base_string + 1;
6255
6256 if (*base_string == ')')
6257 {
6258 char *temp_string;
6259 unsigned int parens_balanced = 1;
6260 /* We've already checked that the number of left & right ()'s are
6261 equal, so this loop will not be infinite. */
6262 do
6263 {
6264 base_string--;
6265 if (*base_string == ')')
6266 parens_balanced++;
6267 if (*base_string == '(')
6268 parens_balanced--;
6269 }
6270 while (parens_balanced);
6271
6272 temp_string = base_string;
6273
6274 /* Skip past '(' and whitespace. */
6275 ++base_string;
6276 if (is_space_char (*base_string))
6277 ++base_string;
6278
6279 if (*base_string == ','
6280 || ((i.base_reg = parse_register (base_string, &end_op))
6281 != NULL))
6282 {
6283 displacement_string_end = temp_string;
6284
6285 i.types[this_operand].bitfield.baseindex = 1;
6286
6287 if (i.base_reg)
6288 {
6289 base_string = end_op;
6290 if (is_space_char (*base_string))
6291 ++base_string;
6292 }
6293
6294 /* There may be an index reg or scale factor here. */
6295 if (*base_string == ',')
6296 {
6297 ++base_string;
6298 if (is_space_char (*base_string))
6299 ++base_string;
6300
6301 if ((i.index_reg = parse_register (base_string, &end_op))
6302 != NULL)
6303 {
6304 base_string = end_op;
6305 if (is_space_char (*base_string))
6306 ++base_string;
6307 if (*base_string == ',')
6308 {
6309 ++base_string;
6310 if (is_space_char (*base_string))
6311 ++base_string;
6312 }
6313 else if (*base_string != ')')
6314 {
6315 as_bad (_("expecting `,' or `)' "
6316 "after index register in `%s'"),
6317 operand_string);
6318 return 0;
6319 }
6320 }
6321 else if (*base_string == REGISTER_PREFIX)
6322 {
6323 as_bad (_("bad register name `%s'"), base_string);
6324 return 0;
6325 }
6326
6327 /* Check for scale factor. */
6328 if (*base_string != ')')
6329 {
6330 char *end_scale = i386_scale (base_string);
6331
6332 if (!end_scale)
6333 return 0;
6334
6335 base_string = end_scale;
6336 if (is_space_char (*base_string))
6337 ++base_string;
6338 if (*base_string != ')')
6339 {
6340 as_bad (_("expecting `)' "
6341 "after scale factor in `%s'"),
6342 operand_string);
6343 return 0;
6344 }
6345 }
6346 else if (!i.index_reg)
6347 {
6348 as_bad (_("expecting index register or scale factor "
6349 "after `,'; got '%c'"),
6350 *base_string);
6351 return 0;
6352 }
6353 }
6354 else if (*base_string != ')')
6355 {
6356 as_bad (_("expecting `,' or `)' "
6357 "after base register in `%s'"),
6358 operand_string);
6359 return 0;
6360 }
6361 }
6362 else if (*base_string == REGISTER_PREFIX)
6363 {
6364 as_bad (_("bad register name `%s'"), base_string);
6365 return 0;
6366 }
6367 }
6368
6369 /* If there's an expression beginning the operand, parse it,
6370 assuming displacement_string_start and
6371 displacement_string_end are meaningful. */
6372 if (displacement_string_start != displacement_string_end)
6373 {
6374 if (!i386_displacement (displacement_string_start,
6375 displacement_string_end))
6376 return 0;
6377 }
6378
6379 /* Special case for (%dx) while doing input/output op. */
6380 if (i.base_reg
6381 && UINTS_EQUAL (i.base_reg->reg_type, reg16_inoutportreg)
6382 && i.index_reg == 0
6383 && i.log2_scale_factor == 0
6384 && i.seg[i.mem_operands] == 0
6385 && !operand_type_check (i.types[this_operand], disp))
6386 {
6387 UINTS_CLEAR (i.types[this_operand]);
6388 i.types[this_operand].bitfield.inoutportreg = 1;
6389 return 1;
6390 }
6391
6392 if (i386_index_check (operand_string) == 0)
6393 return 0;
6394 i.mem_operands++;
6395 }
6396 else
6397 {
6398 /* It's not a memory operand; argh! */
6399 as_bad (_("invalid char %s beginning operand %d `%s'"),
6400 output_invalid (*op_string),
6401 this_operand + 1,
6402 op_string);
6403 return 0;
6404 }
6405 return 1; /* Normal return. */
6406 }
6407 \f
6408 /* md_estimate_size_before_relax()
6409
6410 Called just before relax() for rs_machine_dependent frags. The x86
6411 assembler uses these frags to handle variable size jump
6412 instructions.
6413
6414 Any symbol that is now undefined will not become defined.
6415 Return the correct fr_subtype in the frag.
6416 Return the initial "guess for variable size of frag" to caller.
6417 The guess is actually the growth beyond the fixed part. Whatever
6418 we do to grow the fixed or variable part contributes to our
6419 returned value. */
6420
6421 int
6422 md_estimate_size_before_relax (fragP, segment)
6423 fragS *fragP;
6424 segT segment;
6425 {
6426 /* We've already got fragP->fr_subtype right; all we have to do is
6427 check for un-relaxable symbols. On an ELF system, we can't relax
6428 an externally visible symbol, because it may be overridden by a
6429 shared library. */
6430 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6431 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6432 || (IS_ELF
6433 && (S_IS_EXTERNAL (fragP->fr_symbol)
6434 || S_IS_WEAK (fragP->fr_symbol)))
6435 #endif
6436 )
6437 {
6438 /* Symbol is undefined in this segment, or we need to keep a
6439 reloc so that weak symbols can be overridden. */
6440 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
6441 enum bfd_reloc_code_real reloc_type;
6442 unsigned char *opcode;
6443 int old_fr_fix;
6444
6445 if (fragP->fr_var != NO_RELOC)
6446 reloc_type = fragP->fr_var;
6447 else if (size == 2)
6448 reloc_type = BFD_RELOC_16_PCREL;
6449 else
6450 reloc_type = BFD_RELOC_32_PCREL;
6451
6452 old_fr_fix = fragP->fr_fix;
6453 opcode = (unsigned char *) fragP->fr_opcode;
6454
6455 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
6456 {
6457 case UNCOND_JUMP:
6458 /* Make jmp (0xeb) a (d)word displacement jump. */
6459 opcode[0] = 0xe9;
6460 fragP->fr_fix += size;
6461 fix_new (fragP, old_fr_fix, size,
6462 fragP->fr_symbol,
6463 fragP->fr_offset, 1,
6464 reloc_type);
6465 break;
6466
6467 case COND_JUMP86:
6468 if (size == 2
6469 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
6470 {
6471 /* Negate the condition, and branch past an
6472 unconditional jump. */
6473 opcode[0] ^= 1;
6474 opcode[1] = 3;
6475 /* Insert an unconditional jump. */
6476 opcode[2] = 0xe9;
6477 /* We added two extra opcode bytes, and have a two byte
6478 offset. */
6479 fragP->fr_fix += 2 + 2;
6480 fix_new (fragP, old_fr_fix + 2, 2,
6481 fragP->fr_symbol,
6482 fragP->fr_offset, 1,
6483 reloc_type);
6484 break;
6485 }
6486 /* Fall through. */
6487
6488 case COND_JUMP:
6489 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
6490 {
6491 fixS *fixP;
6492
6493 fragP->fr_fix += 1;
6494 fixP = fix_new (fragP, old_fr_fix, 1,
6495 fragP->fr_symbol,
6496 fragP->fr_offset, 1,
6497 BFD_RELOC_8_PCREL);
6498 fixP->fx_signed = 1;
6499 break;
6500 }
6501
6502 /* This changes the byte-displacement jump 0x7N
6503 to the (d)word-displacement jump 0x0f,0x8N. */
6504 opcode[1] = opcode[0] + 0x10;
6505 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
6506 /* We've added an opcode byte. */
6507 fragP->fr_fix += 1 + size;
6508 fix_new (fragP, old_fr_fix + 1, size,
6509 fragP->fr_symbol,
6510 fragP->fr_offset, 1,
6511 reloc_type);
6512 break;
6513
6514 default:
6515 BAD_CASE (fragP->fr_subtype);
6516 break;
6517 }
6518 frag_wane (fragP);
6519 return fragP->fr_fix - old_fr_fix;
6520 }
6521
6522 /* Guess size depending on current relax state. Initially the relax
6523 state will correspond to a short jump and we return 1, because
6524 the variable part of the frag (the branch offset) is one byte
6525 long. However, we can relax a section more than once and in that
6526 case we must either set fr_subtype back to the unrelaxed state,
6527 or return the value for the appropriate branch. */
6528 return md_relax_table[fragP->fr_subtype].rlx_length;
6529 }
6530
6531 /* Called after relax() is finished.
6532
6533 In: Address of frag.
6534 fr_type == rs_machine_dependent.
6535 fr_subtype is what the address relaxed to.
6536
6537 Out: Any fixSs and constants are set up.
6538 Caller will turn frag into a ".space 0". */
6539
6540 void
6541 md_convert_frag (abfd, sec, fragP)
6542 bfd *abfd ATTRIBUTE_UNUSED;
6543 segT sec ATTRIBUTE_UNUSED;
6544 fragS *fragP;
6545 {
6546 unsigned char *opcode;
6547 unsigned char *where_to_put_displacement = NULL;
6548 offsetT target_address;
6549 offsetT opcode_address;
6550 unsigned int extension = 0;
6551 offsetT displacement_from_opcode_start;
6552
6553 opcode = (unsigned char *) fragP->fr_opcode;
6554
6555 /* Address we want to reach in file space. */
6556 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
6557
6558 /* Address opcode resides at in file space. */
6559 opcode_address = fragP->fr_address + fragP->fr_fix;
6560
6561 /* Displacement from opcode start to fill into instruction. */
6562 displacement_from_opcode_start = target_address - opcode_address;
6563
6564 if ((fragP->fr_subtype & BIG) == 0)
6565 {
6566 /* Don't have to change opcode. */
6567 extension = 1; /* 1 opcode + 1 displacement */
6568 where_to_put_displacement = &opcode[1];
6569 }
6570 else
6571 {
6572 if (no_cond_jump_promotion
6573 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
6574 as_warn_where (fragP->fr_file, fragP->fr_line,
6575 _("long jump required"));
6576
6577 switch (fragP->fr_subtype)
6578 {
6579 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
6580 extension = 4; /* 1 opcode + 4 displacement */
6581 opcode[0] = 0xe9;
6582 where_to_put_displacement = &opcode[1];
6583 break;
6584
6585 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
6586 extension = 2; /* 1 opcode + 2 displacement */
6587 opcode[0] = 0xe9;
6588 where_to_put_displacement = &opcode[1];
6589 break;
6590
6591 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
6592 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
6593 extension = 5; /* 2 opcode + 4 displacement */
6594 opcode[1] = opcode[0] + 0x10;
6595 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
6596 where_to_put_displacement = &opcode[2];
6597 break;
6598
6599 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
6600 extension = 3; /* 2 opcode + 2 displacement */
6601 opcode[1] = opcode[0] + 0x10;
6602 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
6603 where_to_put_displacement = &opcode[2];
6604 break;
6605
6606 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
6607 extension = 4;
6608 opcode[0] ^= 1;
6609 opcode[1] = 3;
6610 opcode[2] = 0xe9;
6611 where_to_put_displacement = &opcode[3];
6612 break;
6613
6614 default:
6615 BAD_CASE (fragP->fr_subtype);
6616 break;
6617 }
6618 }
6619
6620 /* If size if less then four we are sure that the operand fits,
6621 but if it's 4, then it could be that the displacement is larger
6622 then -/+ 2GB. */
6623 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
6624 && object_64bit
6625 && ((addressT) (displacement_from_opcode_start - extension
6626 + ((addressT) 1 << 31))
6627 > (((addressT) 2 << 31) - 1)))
6628 {
6629 as_bad_where (fragP->fr_file, fragP->fr_line,
6630 _("jump target out of range"));
6631 /* Make us emit 0. */
6632 displacement_from_opcode_start = extension;
6633 }
6634 /* Now put displacement after opcode. */
6635 md_number_to_chars ((char *) where_to_put_displacement,
6636 (valueT) (displacement_from_opcode_start - extension),
6637 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
6638 fragP->fr_fix += extension;
6639 }
6640 \f
6641 /* Apply a fixup (fixS) to segment data, once it has been determined
6642 by our caller that we have all the info we need to fix it up.
6643
6644 On the 386, immediates, displacements, and data pointers are all in
6645 the same (little-endian) format, so we don't need to care about which
6646 we are handling. */
6647
6648 void
6649 md_apply_fix (fixP, valP, seg)
6650 /* The fix we're to put in. */
6651 fixS *fixP;
6652 /* Pointer to the value of the bits. */
6653 valueT *valP;
6654 /* Segment fix is from. */
6655 segT seg ATTRIBUTE_UNUSED;
6656 {
6657 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
6658 valueT value = *valP;
6659
6660 #if !defined (TE_Mach)
6661 if (fixP->fx_pcrel)
6662 {
6663 switch (fixP->fx_r_type)
6664 {
6665 default:
6666 break;
6667
6668 case BFD_RELOC_64:
6669 fixP->fx_r_type = BFD_RELOC_64_PCREL;
6670 break;
6671 case BFD_RELOC_32:
6672 case BFD_RELOC_X86_64_32S:
6673 fixP->fx_r_type = BFD_RELOC_32_PCREL;
6674 break;
6675 case BFD_RELOC_16:
6676 fixP->fx_r_type = BFD_RELOC_16_PCREL;
6677 break;
6678 case BFD_RELOC_8:
6679 fixP->fx_r_type = BFD_RELOC_8_PCREL;
6680 break;
6681 }
6682 }
6683
6684 if (fixP->fx_addsy != NULL
6685 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
6686 || fixP->fx_r_type == BFD_RELOC_64_PCREL
6687 || fixP->fx_r_type == BFD_RELOC_16_PCREL
6688 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
6689 && !use_rela_relocations)
6690 {
6691 /* This is a hack. There should be a better way to handle this.
6692 This covers for the fact that bfd_install_relocation will
6693 subtract the current location (for partial_inplace, PC relative
6694 relocations); see more below. */
6695 #ifndef OBJ_AOUT
6696 if (IS_ELF
6697 #ifdef TE_PE
6698 || OUTPUT_FLAVOR == bfd_target_coff_flavour
6699 #endif
6700 )
6701 value += fixP->fx_where + fixP->fx_frag->fr_address;
6702 #endif
6703 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6704 if (IS_ELF)
6705 {
6706 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
6707
6708 if ((sym_seg == seg
6709 || (symbol_section_p (fixP->fx_addsy)
6710 && sym_seg != absolute_section))
6711 && !generic_force_reloc (fixP))
6712 {
6713 /* Yes, we add the values in twice. This is because
6714 bfd_install_relocation subtracts them out again. I think
6715 bfd_install_relocation is broken, but I don't dare change
6716 it. FIXME. */
6717 value += fixP->fx_where + fixP->fx_frag->fr_address;
6718 }
6719 }
6720 #endif
6721 #if defined (OBJ_COFF) && defined (TE_PE)
6722 /* For some reason, the PE format does not store a
6723 section address offset for a PC relative symbol. */
6724 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
6725 || S_IS_WEAK (fixP->fx_addsy))
6726 value += md_pcrel_from (fixP);
6727 #endif
6728 }
6729
6730 /* Fix a few things - the dynamic linker expects certain values here,
6731 and we must not disappoint it. */
6732 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6733 if (IS_ELF && fixP->fx_addsy)
6734 switch (fixP->fx_r_type)
6735 {
6736 case BFD_RELOC_386_PLT32:
6737 case BFD_RELOC_X86_64_PLT32:
6738 /* Make the jump instruction point to the address of the operand. At
6739 runtime we merely add the offset to the actual PLT entry. */
6740 value = -4;
6741 break;
6742
6743 case BFD_RELOC_386_TLS_GD:
6744 case BFD_RELOC_386_TLS_LDM:
6745 case BFD_RELOC_386_TLS_IE_32:
6746 case BFD_RELOC_386_TLS_IE:
6747 case BFD_RELOC_386_TLS_GOTIE:
6748 case BFD_RELOC_386_TLS_GOTDESC:
6749 case BFD_RELOC_X86_64_TLSGD:
6750 case BFD_RELOC_X86_64_TLSLD:
6751 case BFD_RELOC_X86_64_GOTTPOFF:
6752 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
6753 value = 0; /* Fully resolved at runtime. No addend. */
6754 /* Fallthrough */
6755 case BFD_RELOC_386_TLS_LE:
6756 case BFD_RELOC_386_TLS_LDO_32:
6757 case BFD_RELOC_386_TLS_LE_32:
6758 case BFD_RELOC_X86_64_DTPOFF32:
6759 case BFD_RELOC_X86_64_DTPOFF64:
6760 case BFD_RELOC_X86_64_TPOFF32:
6761 case BFD_RELOC_X86_64_TPOFF64:
6762 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6763 break;
6764
6765 case BFD_RELOC_386_TLS_DESC_CALL:
6766 case BFD_RELOC_X86_64_TLSDESC_CALL:
6767 value = 0; /* Fully resolved at runtime. No addend. */
6768 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6769 fixP->fx_done = 0;
6770 return;
6771
6772 case BFD_RELOC_386_GOT32:
6773 case BFD_RELOC_X86_64_GOT32:
6774 value = 0; /* Fully resolved at runtime. No addend. */
6775 break;
6776
6777 case BFD_RELOC_VTABLE_INHERIT:
6778 case BFD_RELOC_VTABLE_ENTRY:
6779 fixP->fx_done = 0;
6780 return;
6781
6782 default:
6783 break;
6784 }
6785 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
6786 *valP = value;
6787 #endif /* !defined (TE_Mach) */
6788
6789 /* Are we finished with this relocation now? */
6790 if (fixP->fx_addsy == NULL)
6791 fixP->fx_done = 1;
6792 else if (use_rela_relocations)
6793 {
6794 fixP->fx_no_overflow = 1;
6795 /* Remember value for tc_gen_reloc. */
6796 fixP->fx_addnumber = value;
6797 value = 0;
6798 }
6799
6800 md_number_to_chars (p, value, fixP->fx_size);
6801 }
6802 \f
6803 char *
6804 md_atof (int type, char *litP, int *sizeP)
6805 {
6806 /* This outputs the LITTLENUMs in REVERSE order;
6807 in accord with the bigendian 386. */
6808 return ieee_md_atof (type, litP, sizeP, FALSE);
6809 }
6810 \f
6811 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
6812
6813 static char *
6814 output_invalid (int c)
6815 {
6816 if (ISPRINT (c))
6817 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
6818 "'%c'", c);
6819 else
6820 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
6821 "(0x%x)", (unsigned char) c);
6822 return output_invalid_buf;
6823 }
6824
6825 /* REG_STRING starts *before* REGISTER_PREFIX. */
6826
6827 static const reg_entry *
6828 parse_real_register (char *reg_string, char **end_op)
6829 {
6830 char *s = reg_string;
6831 char *p;
6832 char reg_name_given[MAX_REG_NAME_SIZE + 1];
6833 const reg_entry *r;
6834
6835 /* Skip possible REGISTER_PREFIX and possible whitespace. */
6836 if (*s == REGISTER_PREFIX)
6837 ++s;
6838
6839 if (is_space_char (*s))
6840 ++s;
6841
6842 p = reg_name_given;
6843 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
6844 {
6845 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
6846 return (const reg_entry *) NULL;
6847 s++;
6848 }
6849
6850 /* For naked regs, make sure that we are not dealing with an identifier.
6851 This prevents confusing an identifier like `eax_var' with register
6852 `eax'. */
6853 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
6854 return (const reg_entry *) NULL;
6855
6856 *end_op = s;
6857
6858 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
6859
6860 /* Handle floating point regs, allowing spaces in the (i) part. */
6861 if (r == i386_regtab /* %st is first entry of table */)
6862 {
6863 if (is_space_char (*s))
6864 ++s;
6865 if (*s == '(')
6866 {
6867 ++s;
6868 if (is_space_char (*s))
6869 ++s;
6870 if (*s >= '0' && *s <= '7')
6871 {
6872 int fpr = *s - '0';
6873 ++s;
6874 if (is_space_char (*s))
6875 ++s;
6876 if (*s == ')')
6877 {
6878 *end_op = s + 1;
6879 r = hash_find (reg_hash, "st(0)");
6880 know (r);
6881 return r + fpr;
6882 }
6883 }
6884 /* We have "%st(" then garbage. */
6885 return (const reg_entry *) NULL;
6886 }
6887 }
6888
6889 /* Don't allow fake index register unless allow_index_reg isn't 0. */
6890 if (r != NULL
6891 && !allow_index_reg
6892 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
6893 return (const reg_entry *) NULL;
6894
6895 if (r != NULL
6896 && ((r->reg_flags & (RegRex64 | RegRex))
6897 || r->reg_type.bitfield.reg64)
6898 && (!cpu_arch_flags.bitfield.cpulm
6899 || !UINTS_EQUAL (r->reg_type, control))
6900 && flag_code != CODE_64BIT)
6901 return (const reg_entry *) NULL;
6902
6903 return r;
6904 }
6905
6906 /* REG_STRING starts *before* REGISTER_PREFIX. */
6907
6908 static const reg_entry *
6909 parse_register (char *reg_string, char **end_op)
6910 {
6911 const reg_entry *r;
6912
6913 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
6914 r = parse_real_register (reg_string, end_op);
6915 else
6916 r = NULL;
6917 if (!r)
6918 {
6919 char *save = input_line_pointer;
6920 char c;
6921 symbolS *symbolP;
6922
6923 input_line_pointer = reg_string;
6924 c = get_symbol_end ();
6925 symbolP = symbol_find (reg_string);
6926 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
6927 {
6928 const expressionS *e = symbol_get_value_expression (symbolP);
6929
6930 know (e->X_op == O_register);
6931 know (e->X_add_number >= 0
6932 && (valueT) e->X_add_number < i386_regtab_size);
6933 r = i386_regtab + e->X_add_number;
6934 *end_op = input_line_pointer;
6935 }
6936 *input_line_pointer = c;
6937 input_line_pointer = save;
6938 }
6939 return r;
6940 }
6941
6942 int
6943 i386_parse_name (char *name, expressionS *e, char *nextcharP)
6944 {
6945 const reg_entry *r;
6946 char *end = input_line_pointer;
6947
6948 *end = *nextcharP;
6949 r = parse_register (name, &input_line_pointer);
6950 if (r && end <= input_line_pointer)
6951 {
6952 *nextcharP = *input_line_pointer;
6953 *input_line_pointer = 0;
6954 e->X_op = O_register;
6955 e->X_add_number = r - i386_regtab;
6956 return 1;
6957 }
6958 input_line_pointer = end;
6959 *end = 0;
6960 return 0;
6961 }
6962
6963 void
6964 md_operand (expressionS *e)
6965 {
6966 if (*input_line_pointer == REGISTER_PREFIX)
6967 {
6968 char *end;
6969 const reg_entry *r = parse_real_register (input_line_pointer, &end);
6970
6971 if (r)
6972 {
6973 e->X_op = O_register;
6974 e->X_add_number = r - i386_regtab;
6975 input_line_pointer = end;
6976 }
6977 }
6978 }
6979
6980 \f
6981 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6982 const char *md_shortopts = "kVQ:sqn";
6983 #else
6984 const char *md_shortopts = "qn";
6985 #endif
6986
6987 #define OPTION_32 (OPTION_MD_BASE + 0)
6988 #define OPTION_64 (OPTION_MD_BASE + 1)
6989 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
6990 #define OPTION_MARCH (OPTION_MD_BASE + 3)
6991 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
6992 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
6993 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
6994 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
6995 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
6996 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
6997
6998 struct option md_longopts[] =
6999 {
7000 {"32", no_argument, NULL, OPTION_32},
7001 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
7002 {"64", no_argument, NULL, OPTION_64},
7003 #endif
7004 {"divide", no_argument, NULL, OPTION_DIVIDE},
7005 {"march", required_argument, NULL, OPTION_MARCH},
7006 {"mtune", required_argument, NULL, OPTION_MTUNE},
7007 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
7008 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
7009 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
7010 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
7011 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
7012 {NULL, no_argument, NULL, 0}
7013 };
7014 size_t md_longopts_size = sizeof (md_longopts);
7015
7016 int
7017 md_parse_option (int c, char *arg)
7018 {
7019 unsigned int i;
7020
7021 switch (c)
7022 {
7023 case 'n':
7024 optimize_align_code = 0;
7025 break;
7026
7027 case 'q':
7028 quiet_warnings = 1;
7029 break;
7030
7031 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7032 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
7033 should be emitted or not. FIXME: Not implemented. */
7034 case 'Q':
7035 break;
7036
7037 /* -V: SVR4 argument to print version ID. */
7038 case 'V':
7039 print_version_id ();
7040 break;
7041
7042 /* -k: Ignore for FreeBSD compatibility. */
7043 case 'k':
7044 break;
7045
7046 case 's':
7047 /* -s: On i386 Solaris, this tells the native assembler to use
7048 .stab instead of .stab.excl. We always use .stab anyhow. */
7049 break;
7050 #endif
7051 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
7052 case OPTION_64:
7053 {
7054 const char **list, **l;
7055
7056 list = bfd_target_list ();
7057 for (l = list; *l != NULL; l++)
7058 if (CONST_STRNEQ (*l, "elf64-x86-64")
7059 || strcmp (*l, "coff-x86-64") == 0
7060 || strcmp (*l, "pe-x86-64") == 0
7061 || strcmp (*l, "pei-x86-64") == 0)
7062 {
7063 default_arch = "x86_64";
7064 break;
7065 }
7066 if (*l == NULL)
7067 as_fatal (_("No compiled in support for x86_64"));
7068 free (list);
7069 }
7070 break;
7071 #endif
7072
7073 case OPTION_32:
7074 default_arch = "i386";
7075 break;
7076
7077 case OPTION_DIVIDE:
7078 #ifdef SVR4_COMMENT_CHARS
7079 {
7080 char *n, *t;
7081 const char *s;
7082
7083 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
7084 t = n;
7085 for (s = i386_comment_chars; *s != '\0'; s++)
7086 if (*s != '/')
7087 *t++ = *s;
7088 *t = '\0';
7089 i386_comment_chars = n;
7090 }
7091 #endif
7092 break;
7093
7094 case OPTION_MARCH:
7095 if (*arg == '.')
7096 as_fatal (_("Invalid -march= option: `%s'"), arg);
7097 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
7098 {
7099 if (strcmp (arg, cpu_arch [i].name) == 0)
7100 {
7101 cpu_arch_isa = cpu_arch[i].type;
7102 cpu_arch_isa_flags = cpu_arch[i].flags;
7103 if (!cpu_arch_tune_set)
7104 {
7105 cpu_arch_tune = cpu_arch_isa;
7106 cpu_arch_tune_flags = cpu_arch_isa_flags;
7107 }
7108 break;
7109 }
7110 }
7111 if (i >= ARRAY_SIZE (cpu_arch))
7112 as_fatal (_("Invalid -march= option: `%s'"), arg);
7113 break;
7114
7115 case OPTION_MTUNE:
7116 if (*arg == '.')
7117 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
7118 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
7119 {
7120 if (strcmp (arg, cpu_arch [i].name) == 0)
7121 {
7122 cpu_arch_tune_set = 1;
7123 cpu_arch_tune = cpu_arch [i].type;
7124 cpu_arch_tune_flags = cpu_arch[i].flags;
7125 break;
7126 }
7127 }
7128 if (i >= ARRAY_SIZE (cpu_arch))
7129 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
7130 break;
7131
7132 case OPTION_MMNEMONIC:
7133 if (strcasecmp (arg, "att") == 0)
7134 intel_mnemonic = 0;
7135 else if (strcasecmp (arg, "intel") == 0)
7136 intel_mnemonic = 1;
7137 else
7138 as_fatal (_("Invalid -mmnemonic= option: `%s'"), arg);
7139 break;
7140
7141 case OPTION_MSYNTAX:
7142 if (strcasecmp (arg, "att") == 0)
7143 intel_syntax = 0;
7144 else if (strcasecmp (arg, "intel") == 0)
7145 intel_syntax = 1;
7146 else
7147 as_fatal (_("Invalid -msyntax= option: `%s'"), arg);
7148 break;
7149
7150 case OPTION_MINDEX_REG:
7151 allow_index_reg = 1;
7152 break;
7153
7154 case OPTION_MNAKED_REG:
7155 allow_naked_reg = 1;
7156 break;
7157
7158 case OPTION_MOLD_GCC:
7159 old_gcc = 1;
7160 intel_mnemonic = 0;
7161 break;
7162
7163 default:
7164 return 0;
7165 }
7166 return 1;
7167 }
7168
7169 void
7170 md_show_usage (stream)
7171 FILE *stream;
7172 {
7173 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7174 fprintf (stream, _("\
7175 -Q ignored\n\
7176 -V print assembler version number\n\
7177 -k ignored\n"));
7178 #endif
7179 fprintf (stream, _("\
7180 -n Do not optimize code alignment\n\
7181 -q quieten some warnings\n"));
7182 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7183 fprintf (stream, _("\
7184 -s ignored\n"));
7185 #endif
7186 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
7187 fprintf (stream, _("\
7188 --32/--64 generate 32bit/64bit code\n"));
7189 #endif
7190 #ifdef SVR4_COMMENT_CHARS
7191 fprintf (stream, _("\
7192 --divide do not treat `/' as a comment character\n"));
7193 #else
7194 fprintf (stream, _("\
7195 --divide ignored\n"));
7196 #endif
7197 fprintf (stream, _("\
7198 -march=CPU/-mtune=CPU generate code/optimize for CPU, where CPU is one of:\n\
7199 i386, i486, pentium, pentiumpro, pentium4, nocona,\n\
7200 core, core2, k6, athlon, k8, generic32, generic64\n"));
7201 fprintf (stream, _("\
7202 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
7203 fprintf (stream, _("\
7204 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
7205 fprintf (stream, _("\
7206 -mindex-reg support pseudo index registers\n"));
7207 fprintf (stream, _("\
7208 -mnaked-reg don't require `%%' prefix for registers\n"));
7209 fprintf (stream, _("\
7210 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
7211 }
7212
7213 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
7214 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (TE_PEP))
7215
7216 /* Pick the target format to use. */
7217
7218 const char *
7219 i386_target_format (void)
7220 {
7221 if (!strcmp (default_arch, "x86_64"))
7222 {
7223 set_code_flag (CODE_64BIT);
7224 if (UINTS_ALL_ZERO (cpu_arch_isa_flags))
7225 {
7226 cpu_arch_isa_flags.bitfield.cpui186 = 1;
7227 cpu_arch_isa_flags.bitfield.cpui286 = 1;
7228 cpu_arch_isa_flags.bitfield.cpui386 = 1;
7229 cpu_arch_isa_flags.bitfield.cpui486 = 1;
7230 cpu_arch_isa_flags.bitfield.cpui586 = 1;
7231 cpu_arch_isa_flags.bitfield.cpui686 = 1;
7232 cpu_arch_isa_flags.bitfield.cpup4 = 1;
7233 cpu_arch_isa_flags.bitfield.cpummx= 1;
7234 cpu_arch_isa_flags.bitfield.cpummx2 = 1;
7235 cpu_arch_isa_flags.bitfield.cpusse = 1;
7236 cpu_arch_isa_flags.bitfield.cpusse2 = 1;
7237 }
7238 if (UINTS_ALL_ZERO (cpu_arch_tune_flags))
7239 {
7240 cpu_arch_tune_flags.bitfield.cpui186 = 1;
7241 cpu_arch_tune_flags.bitfield.cpui286 = 1;
7242 cpu_arch_tune_flags.bitfield.cpui386 = 1;
7243 cpu_arch_tune_flags.bitfield.cpui486 = 1;
7244 cpu_arch_tune_flags.bitfield.cpui586 = 1;
7245 cpu_arch_tune_flags.bitfield.cpui686 = 1;
7246 cpu_arch_tune_flags.bitfield.cpup4 = 1;
7247 cpu_arch_tune_flags.bitfield.cpummx= 1;
7248 cpu_arch_tune_flags.bitfield.cpummx2 = 1;
7249 cpu_arch_tune_flags.bitfield.cpusse = 1;
7250 cpu_arch_tune_flags.bitfield.cpusse2 = 1;
7251 }
7252 }
7253 else if (!strcmp (default_arch, "i386"))
7254 {
7255 set_code_flag (CODE_32BIT);
7256 if (UINTS_ALL_ZERO (cpu_arch_isa_flags))
7257 {
7258 cpu_arch_isa_flags.bitfield.cpui186 = 1;
7259 cpu_arch_isa_flags.bitfield.cpui286 = 1;
7260 cpu_arch_isa_flags.bitfield.cpui386 = 1;
7261 }
7262 if (UINTS_ALL_ZERO (cpu_arch_tune_flags))
7263 {
7264 cpu_arch_tune_flags.bitfield.cpui186 = 1;
7265 cpu_arch_tune_flags.bitfield.cpui286 = 1;
7266 cpu_arch_tune_flags.bitfield.cpui386 = 1;
7267 }
7268 }
7269 else
7270 as_fatal (_("Unknown architecture"));
7271 switch (OUTPUT_FLAVOR)
7272 {
7273 #ifdef TE_PEP
7274 case bfd_target_coff_flavour:
7275 return flag_code == CODE_64BIT ? COFF_TARGET_FORMAT : "coff-i386";
7276 break;
7277 #endif
7278 #ifdef OBJ_MAYBE_AOUT
7279 case bfd_target_aout_flavour:
7280 return AOUT_TARGET_FORMAT;
7281 #endif
7282 #ifdef OBJ_MAYBE_COFF
7283 case bfd_target_coff_flavour:
7284 return "coff-i386";
7285 #endif
7286 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7287 case bfd_target_elf_flavour:
7288 {
7289 if (flag_code == CODE_64BIT)
7290 {
7291 object_64bit = 1;
7292 use_rela_relocations = 1;
7293 }
7294 return flag_code == CODE_64BIT ? ELF_TARGET_FORMAT64 : ELF_TARGET_FORMAT;
7295 }
7296 #endif
7297 default:
7298 abort ();
7299 return NULL;
7300 }
7301 }
7302
7303 #endif /* OBJ_MAYBE_ more than one */
7304
7305 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
7306 void
7307 i386_elf_emit_arch_note (void)
7308 {
7309 if (IS_ELF && cpu_arch_name != NULL)
7310 {
7311 char *p;
7312 asection *seg = now_seg;
7313 subsegT subseg = now_subseg;
7314 Elf_Internal_Note i_note;
7315 Elf_External_Note e_note;
7316 asection *note_secp;
7317 int len;
7318
7319 /* Create the .note section. */
7320 note_secp = subseg_new (".note", 0);
7321 bfd_set_section_flags (stdoutput,
7322 note_secp,
7323 SEC_HAS_CONTENTS | SEC_READONLY);
7324
7325 /* Process the arch string. */
7326 len = strlen (cpu_arch_name);
7327
7328 i_note.namesz = len + 1;
7329 i_note.descsz = 0;
7330 i_note.type = NT_ARCH;
7331 p = frag_more (sizeof (e_note.namesz));
7332 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
7333 p = frag_more (sizeof (e_note.descsz));
7334 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
7335 p = frag_more (sizeof (e_note.type));
7336 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
7337 p = frag_more (len + 1);
7338 strcpy (p, cpu_arch_name);
7339
7340 frag_align (2, 0, 0);
7341
7342 subseg_set (seg, subseg);
7343 }
7344 }
7345 #endif
7346 \f
7347 symbolS *
7348 md_undefined_symbol (name)
7349 char *name;
7350 {
7351 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
7352 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
7353 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
7354 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
7355 {
7356 if (!GOT_symbol)
7357 {
7358 if (symbol_find (name))
7359 as_bad (_("GOT already in symbol table"));
7360 GOT_symbol = symbol_new (name, undefined_section,
7361 (valueT) 0, &zero_address_frag);
7362 };
7363 return GOT_symbol;
7364 }
7365 return 0;
7366 }
7367
7368 /* Round up a section size to the appropriate boundary. */
7369
7370 valueT
7371 md_section_align (segment, size)
7372 segT segment ATTRIBUTE_UNUSED;
7373 valueT size;
7374 {
7375 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
7376 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
7377 {
7378 /* For a.out, force the section size to be aligned. If we don't do
7379 this, BFD will align it for us, but it will not write out the
7380 final bytes of the section. This may be a bug in BFD, but it is
7381 easier to fix it here since that is how the other a.out targets
7382 work. */
7383 int align;
7384
7385 align = bfd_get_section_alignment (stdoutput, segment);
7386 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
7387 }
7388 #endif
7389
7390 return size;
7391 }
7392
7393 /* On the i386, PC-relative offsets are relative to the start of the
7394 next instruction. That is, the address of the offset, plus its
7395 size, since the offset is always the last part of the insn. */
7396
7397 long
7398 md_pcrel_from (fixS *fixP)
7399 {
7400 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
7401 }
7402
7403 #ifndef I386COFF
7404
7405 static void
7406 s_bss (int ignore ATTRIBUTE_UNUSED)
7407 {
7408 int temp;
7409
7410 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7411 if (IS_ELF)
7412 obj_elf_section_change_hook ();
7413 #endif
7414 temp = get_absolute_expression ();
7415 subseg_set (bss_section, (subsegT) temp);
7416 demand_empty_rest_of_line ();
7417 }
7418
7419 #endif
7420
7421 void
7422 i386_validate_fix (fixS *fixp)
7423 {
7424 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
7425 {
7426 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
7427 {
7428 if (!object_64bit)
7429 abort ();
7430 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
7431 }
7432 else
7433 {
7434 if (!object_64bit)
7435 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
7436 else
7437 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
7438 }
7439 fixp->fx_subsy = 0;
7440 }
7441 }
7442
7443 arelent *
7444 tc_gen_reloc (section, fixp)
7445 asection *section ATTRIBUTE_UNUSED;
7446 fixS *fixp;
7447 {
7448 arelent *rel;
7449 bfd_reloc_code_real_type code;
7450
7451 switch (fixp->fx_r_type)
7452 {
7453 case BFD_RELOC_X86_64_PLT32:
7454 case BFD_RELOC_X86_64_GOT32:
7455 case BFD_RELOC_X86_64_GOTPCREL:
7456 case BFD_RELOC_386_PLT32:
7457 case BFD_RELOC_386_GOT32:
7458 case BFD_RELOC_386_GOTOFF:
7459 case BFD_RELOC_386_GOTPC:
7460 case BFD_RELOC_386_TLS_GD:
7461 case BFD_RELOC_386_TLS_LDM:
7462 case BFD_RELOC_386_TLS_LDO_32:
7463 case BFD_RELOC_386_TLS_IE_32:
7464 case BFD_RELOC_386_TLS_IE:
7465 case BFD_RELOC_386_TLS_GOTIE:
7466 case BFD_RELOC_386_TLS_LE_32:
7467 case BFD_RELOC_386_TLS_LE:
7468 case BFD_RELOC_386_TLS_GOTDESC:
7469 case BFD_RELOC_386_TLS_DESC_CALL:
7470 case BFD_RELOC_X86_64_TLSGD:
7471 case BFD_RELOC_X86_64_TLSLD:
7472 case BFD_RELOC_X86_64_DTPOFF32:
7473 case BFD_RELOC_X86_64_DTPOFF64:
7474 case BFD_RELOC_X86_64_GOTTPOFF:
7475 case BFD_RELOC_X86_64_TPOFF32:
7476 case BFD_RELOC_X86_64_TPOFF64:
7477 case BFD_RELOC_X86_64_GOTOFF64:
7478 case BFD_RELOC_X86_64_GOTPC32:
7479 case BFD_RELOC_X86_64_GOT64:
7480 case BFD_RELOC_X86_64_GOTPCREL64:
7481 case BFD_RELOC_X86_64_GOTPC64:
7482 case BFD_RELOC_X86_64_GOTPLT64:
7483 case BFD_RELOC_X86_64_PLTOFF64:
7484 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
7485 case BFD_RELOC_X86_64_TLSDESC_CALL:
7486 case BFD_RELOC_RVA:
7487 case BFD_RELOC_VTABLE_ENTRY:
7488 case BFD_RELOC_VTABLE_INHERIT:
7489 #ifdef TE_PE
7490 case BFD_RELOC_32_SECREL:
7491 #endif
7492 code = fixp->fx_r_type;
7493 break;
7494 case BFD_RELOC_X86_64_32S:
7495 if (!fixp->fx_pcrel)
7496 {
7497 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
7498 code = fixp->fx_r_type;
7499 break;
7500 }
7501 default:
7502 if (fixp->fx_pcrel)
7503 {
7504 switch (fixp->fx_size)
7505 {
7506 default:
7507 as_bad_where (fixp->fx_file, fixp->fx_line,
7508 _("can not do %d byte pc-relative relocation"),
7509 fixp->fx_size);
7510 code = BFD_RELOC_32_PCREL;
7511 break;
7512 case 1: code = BFD_RELOC_8_PCREL; break;
7513 case 2: code = BFD_RELOC_16_PCREL; break;
7514 case 4: code = BFD_RELOC_32_PCREL; break;
7515 #ifdef BFD64
7516 case 8: code = BFD_RELOC_64_PCREL; break;
7517 #endif
7518 }
7519 }
7520 else
7521 {
7522 switch (fixp->fx_size)
7523 {
7524 default:
7525 as_bad_where (fixp->fx_file, fixp->fx_line,
7526 _("can not do %d byte relocation"),
7527 fixp->fx_size);
7528 code = BFD_RELOC_32;
7529 break;
7530 case 1: code = BFD_RELOC_8; break;
7531 case 2: code = BFD_RELOC_16; break;
7532 case 4: code = BFD_RELOC_32; break;
7533 #ifdef BFD64
7534 case 8: code = BFD_RELOC_64; break;
7535 #endif
7536 }
7537 }
7538 break;
7539 }
7540
7541 if ((code == BFD_RELOC_32
7542 || code == BFD_RELOC_32_PCREL
7543 || code == BFD_RELOC_X86_64_32S)
7544 && GOT_symbol
7545 && fixp->fx_addsy == GOT_symbol)
7546 {
7547 if (!object_64bit)
7548 code = BFD_RELOC_386_GOTPC;
7549 else
7550 code = BFD_RELOC_X86_64_GOTPC32;
7551 }
7552 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
7553 && GOT_symbol
7554 && fixp->fx_addsy == GOT_symbol)
7555 {
7556 code = BFD_RELOC_X86_64_GOTPC64;
7557 }
7558
7559 rel = (arelent *) xmalloc (sizeof (arelent));
7560 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
7561 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
7562
7563 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
7564
7565 if (!use_rela_relocations)
7566 {
7567 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
7568 vtable entry to be used in the relocation's section offset. */
7569 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
7570 rel->address = fixp->fx_offset;
7571
7572 rel->addend = 0;
7573 }
7574 /* Use the rela in 64bit mode. */
7575 else
7576 {
7577 if (!fixp->fx_pcrel)
7578 rel->addend = fixp->fx_offset;
7579 else
7580 switch (code)
7581 {
7582 case BFD_RELOC_X86_64_PLT32:
7583 case BFD_RELOC_X86_64_GOT32:
7584 case BFD_RELOC_X86_64_GOTPCREL:
7585 case BFD_RELOC_X86_64_TLSGD:
7586 case BFD_RELOC_X86_64_TLSLD:
7587 case BFD_RELOC_X86_64_GOTTPOFF:
7588 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
7589 case BFD_RELOC_X86_64_TLSDESC_CALL:
7590 rel->addend = fixp->fx_offset - fixp->fx_size;
7591 break;
7592 default:
7593 rel->addend = (section->vma
7594 - fixp->fx_size
7595 + fixp->fx_addnumber
7596 + md_pcrel_from (fixp));
7597 break;
7598 }
7599 }
7600
7601 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
7602 if (rel->howto == NULL)
7603 {
7604 as_bad_where (fixp->fx_file, fixp->fx_line,
7605 _("cannot represent relocation type %s"),
7606 bfd_get_reloc_code_name (code));
7607 /* Set howto to a garbage value so that we can keep going. */
7608 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
7609 assert (rel->howto != NULL);
7610 }
7611
7612 return rel;
7613 }
7614
7615 \f
7616 /* Parse operands using Intel syntax. This implements a recursive descent
7617 parser based on the BNF grammar published in Appendix B of the MASM 6.1
7618 Programmer's Guide.
7619
7620 FIXME: We do not recognize the full operand grammar defined in the MASM
7621 documentation. In particular, all the structure/union and
7622 high-level macro operands are missing.
7623
7624 Uppercase words are terminals, lower case words are non-terminals.
7625 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
7626 bars '|' denote choices. Most grammar productions are implemented in
7627 functions called 'intel_<production>'.
7628
7629 Initial production is 'expr'.
7630
7631 addOp + | -
7632
7633 alpha [a-zA-Z]
7634
7635 binOp & | AND | \| | OR | ^ | XOR
7636
7637 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
7638
7639 constant digits [[ radixOverride ]]
7640
7641 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
7642
7643 digits decdigit
7644 | digits decdigit
7645 | digits hexdigit
7646
7647 decdigit [0-9]
7648
7649 e04 e04 addOp e05
7650 | e05
7651
7652 e05 e05 binOp e06
7653 | e06
7654
7655 e06 e06 mulOp e09
7656 | e09
7657
7658 e09 OFFSET e10
7659 | SHORT e10
7660 | + e10
7661 | - e10
7662 | ~ e10
7663 | NOT e10
7664 | e09 PTR e10
7665 | e09 : e10
7666 | e10
7667
7668 e10 e10 [ expr ]
7669 | e11
7670
7671 e11 ( expr )
7672 | [ expr ]
7673 | constant
7674 | dataType
7675 | id
7676 | $
7677 | register
7678
7679 => expr expr cmpOp e04
7680 | e04
7681
7682 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
7683 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
7684
7685 hexdigit a | b | c | d | e | f
7686 | A | B | C | D | E | F
7687
7688 id alpha
7689 | id alpha
7690 | id decdigit
7691
7692 mulOp * | / | % | MOD | << | SHL | >> | SHR
7693
7694 quote " | '
7695
7696 register specialRegister
7697 | gpRegister
7698 | byteRegister
7699
7700 segmentRegister CS | DS | ES | FS | GS | SS
7701
7702 specialRegister CR0 | CR2 | CR3 | CR4
7703 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
7704 | TR3 | TR4 | TR5 | TR6 | TR7
7705
7706 We simplify the grammar in obvious places (e.g., register parsing is
7707 done by calling parse_register) and eliminate immediate left recursion
7708 to implement a recursive-descent parser.
7709
7710 expr e04 expr'
7711
7712 expr' cmpOp e04 expr'
7713 | Empty
7714
7715 e04 e05 e04'
7716
7717 e04' addOp e05 e04'
7718 | Empty
7719
7720 e05 e06 e05'
7721
7722 e05' binOp e06 e05'
7723 | Empty
7724
7725 e06 e09 e06'
7726
7727 e06' mulOp e09 e06'
7728 | Empty
7729
7730 e09 OFFSET e10 e09'
7731 | SHORT e10'
7732 | + e10'
7733 | - e10'
7734 | ~ e10'
7735 | NOT e10'
7736 | e10 e09'
7737
7738 e09' PTR e10 e09'
7739 | : e10 e09'
7740 | Empty
7741
7742 e10 e11 e10'
7743
7744 e10' [ expr ] e10'
7745 | Empty
7746
7747 e11 ( expr )
7748 | [ expr ]
7749 | BYTE
7750 | WORD
7751 | DWORD
7752 | FWORD
7753 | QWORD
7754 | TBYTE
7755 | OWORD
7756 | XMMWORD
7757 | .
7758 | $
7759 | register
7760 | id
7761 | constant */
7762
7763 /* Parsing structure for the intel syntax parser. Used to implement the
7764 semantic actions for the operand grammar. */
7765 struct intel_parser_s
7766 {
7767 char *op_string; /* The string being parsed. */
7768 int got_a_float; /* Whether the operand is a float. */
7769 int op_modifier; /* Operand modifier. */
7770 int is_mem; /* 1 if operand is memory reference. */
7771 int in_offset; /* >=1 if parsing operand of offset. */
7772 int in_bracket; /* >=1 if parsing operand in brackets. */
7773 const reg_entry *reg; /* Last register reference found. */
7774 char *disp; /* Displacement string being built. */
7775 char *next_operand; /* Resume point when splitting operands. */
7776 };
7777
7778 static struct intel_parser_s intel_parser;
7779
7780 /* Token structure for parsing intel syntax. */
7781 struct intel_token
7782 {
7783 int code; /* Token code. */
7784 const reg_entry *reg; /* Register entry for register tokens. */
7785 char *str; /* String representation. */
7786 };
7787
7788 static struct intel_token cur_token, prev_token;
7789
7790 /* Token codes for the intel parser. Since T_SHORT is already used
7791 by COFF, undefine it first to prevent a warning. */
7792 #define T_NIL -1
7793 #define T_CONST 1
7794 #define T_REG 2
7795 #define T_BYTE 3
7796 #define T_WORD 4
7797 #define T_DWORD 5
7798 #define T_FWORD 6
7799 #define T_QWORD 7
7800 #define T_TBYTE 8
7801 #define T_XMMWORD 9
7802 #undef T_SHORT
7803 #define T_SHORT 10
7804 #define T_OFFSET 11
7805 #define T_PTR 12
7806 #define T_ID 13
7807 #define T_SHL 14
7808 #define T_SHR 15
7809
7810 /* Prototypes for intel parser functions. */
7811 static int intel_match_token (int);
7812 static void intel_putback_token (void);
7813 static void intel_get_token (void);
7814 static int intel_expr (void);
7815 static int intel_e04 (void);
7816 static int intel_e05 (void);
7817 static int intel_e06 (void);
7818 static int intel_e09 (void);
7819 static int intel_e10 (void);
7820 static int intel_e11 (void);
7821
7822 static int
7823 i386_intel_operand (char *operand_string, int got_a_float)
7824 {
7825 int ret;
7826 char *p;
7827
7828 p = intel_parser.op_string = xstrdup (operand_string);
7829 intel_parser.disp = (char *) xmalloc (strlen (operand_string) + 1);
7830
7831 for (;;)
7832 {
7833 /* Initialize token holders. */
7834 cur_token.code = prev_token.code = T_NIL;
7835 cur_token.reg = prev_token.reg = NULL;
7836 cur_token.str = prev_token.str = NULL;
7837
7838 /* Initialize parser structure. */
7839 intel_parser.got_a_float = got_a_float;
7840 intel_parser.op_modifier = 0;
7841 intel_parser.is_mem = 0;
7842 intel_parser.in_offset = 0;
7843 intel_parser.in_bracket = 0;
7844 intel_parser.reg = NULL;
7845 intel_parser.disp[0] = '\0';
7846 intel_parser.next_operand = NULL;
7847
7848 /* Read the first token and start the parser. */
7849 intel_get_token ();
7850 ret = intel_expr ();
7851
7852 if (!ret)
7853 break;
7854
7855 if (cur_token.code != T_NIL)
7856 {
7857 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
7858 current_templates->start->name, cur_token.str);
7859 ret = 0;
7860 }
7861 /* If we found a memory reference, hand it over to i386_displacement
7862 to fill in the rest of the operand fields. */
7863 else if (intel_parser.is_mem)
7864 {
7865 if ((i.mem_operands == 1
7866 && !current_templates->start->opcode_modifier.isstring)
7867 || i.mem_operands == 2)
7868 {
7869 as_bad (_("too many memory references for '%s'"),
7870 current_templates->start->name);
7871 ret = 0;
7872 }
7873 else
7874 {
7875 char *s = intel_parser.disp;
7876 i.mem_operands++;
7877
7878 if (!quiet_warnings && intel_parser.is_mem < 0)
7879 /* See the comments in intel_bracket_expr. */
7880 as_warn (_("Treating `%s' as memory reference"), operand_string);
7881
7882 /* Add the displacement expression. */
7883 if (*s != '\0')
7884 ret = i386_displacement (s, s + strlen (s));
7885 if (ret)
7886 {
7887 /* Swap base and index in 16-bit memory operands like
7888 [si+bx]. Since i386_index_check is also used in AT&T
7889 mode we have to do that here. */
7890 if (i.base_reg
7891 && i.index_reg
7892 && i.base_reg->reg_type.bitfield.reg16
7893 && i.index_reg->reg_type.bitfield.reg16
7894 && i.base_reg->reg_num >= 6
7895 && i.index_reg->reg_num < 6)
7896 {
7897 const reg_entry *base = i.index_reg;
7898
7899 i.index_reg = i.base_reg;
7900 i.base_reg = base;
7901 }
7902 ret = i386_index_check (operand_string);
7903 }
7904 }
7905 }
7906
7907 /* Constant and OFFSET expressions are handled by i386_immediate. */
7908 else if ((intel_parser.op_modifier & (1 << T_OFFSET))
7909 || intel_parser.reg == NULL)
7910 ret = i386_immediate (intel_parser.disp);
7911
7912 if (intel_parser.next_operand && this_operand >= MAX_OPERANDS - 1)
7913 ret = 0;
7914 if (!ret || !intel_parser.next_operand)
7915 break;
7916 intel_parser.op_string = intel_parser.next_operand;
7917 this_operand = i.operands++;
7918 }
7919
7920 free (p);
7921 free (intel_parser.disp);
7922
7923 return ret;
7924 }
7925
7926 #define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
7927
7928 /* expr e04 expr'
7929
7930 expr' cmpOp e04 expr'
7931 | Empty */
7932 static int
7933 intel_expr (void)
7934 {
7935 /* XXX Implement the comparison operators. */
7936 return intel_e04 ();
7937 }
7938
7939 /* e04 e05 e04'
7940
7941 e04' addOp e05 e04'
7942 | Empty */
7943 static int
7944 intel_e04 (void)
7945 {
7946 int nregs = -1;
7947
7948 for (;;)
7949 {
7950 if (!intel_e05())
7951 return 0;
7952
7953 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
7954 i.base_reg = i386_regtab + REGNAM_AL; /* al is invalid as base */
7955
7956 if (cur_token.code == '+')
7957 nregs = -1;
7958 else if (cur_token.code == '-')
7959 nregs = NUM_ADDRESS_REGS;
7960 else
7961 return 1;
7962
7963 strcat (intel_parser.disp, cur_token.str);
7964 intel_match_token (cur_token.code);
7965 }
7966 }
7967
7968 /* e05 e06 e05'
7969
7970 e05' binOp e06 e05'
7971 | Empty */
7972 static int
7973 intel_e05 (void)
7974 {
7975 int nregs = ~NUM_ADDRESS_REGS;
7976
7977 for (;;)
7978 {
7979 if (!intel_e06())
7980 return 0;
7981
7982 if (cur_token.code == '&'
7983 || cur_token.code == '|'
7984 || cur_token.code == '^')
7985 {
7986 char str[2];
7987
7988 str[0] = cur_token.code;
7989 str[1] = 0;
7990 strcat (intel_parser.disp, str);
7991 }
7992 else
7993 break;
7994
7995 intel_match_token (cur_token.code);
7996
7997 if (nregs < 0)
7998 nregs = ~nregs;
7999 }
8000 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
8001 i.base_reg = i386_regtab + REGNAM_AL + 1; /* cl is invalid as base */
8002 return 1;
8003 }
8004
8005 /* e06 e09 e06'
8006
8007 e06' mulOp e09 e06'
8008 | Empty */
8009 static int
8010 intel_e06 (void)
8011 {
8012 int nregs = ~NUM_ADDRESS_REGS;
8013
8014 for (;;)
8015 {
8016 if (!intel_e09())
8017 return 0;
8018
8019 if (cur_token.code == '*'
8020 || cur_token.code == '/'
8021 || cur_token.code == '%')
8022 {
8023 char str[2];
8024
8025 str[0] = cur_token.code;
8026 str[1] = 0;
8027 strcat (intel_parser.disp, str);
8028 }
8029 else if (cur_token.code == T_SHL)
8030 strcat (intel_parser.disp, "<<");
8031 else if (cur_token.code == T_SHR)
8032 strcat (intel_parser.disp, ">>");
8033 else
8034 break;
8035
8036 intel_match_token (cur_token.code);
8037
8038 if (nregs < 0)
8039 nregs = ~nregs;
8040 }
8041 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
8042 i.base_reg = i386_regtab + REGNAM_AL + 2; /* dl is invalid as base */
8043 return 1;
8044 }
8045
8046 /* e09 OFFSET e09
8047 | SHORT e09
8048 | + e09
8049 | - e09
8050 | ~ e09
8051 | NOT e09
8052 | e10 e09'
8053
8054 e09' PTR e10 e09'
8055 | : e10 e09'
8056 | Empty */
8057 static int
8058 intel_e09 (void)
8059 {
8060 int nregs = ~NUM_ADDRESS_REGS;
8061 int in_offset = 0;
8062
8063 for (;;)
8064 {
8065 /* Don't consume constants here. */
8066 if (cur_token.code == '+' || cur_token.code == '-')
8067 {
8068 /* Need to look one token ahead - if the next token
8069 is a constant, the current token is its sign. */
8070 int next_code;
8071
8072 intel_match_token (cur_token.code);
8073 next_code = cur_token.code;
8074 intel_putback_token ();
8075 if (next_code == T_CONST)
8076 break;
8077 }
8078
8079 /* e09 OFFSET e09 */
8080 if (cur_token.code == T_OFFSET)
8081 {
8082 if (!in_offset++)
8083 ++intel_parser.in_offset;
8084 }
8085
8086 /* e09 SHORT e09 */
8087 else if (cur_token.code == T_SHORT)
8088 intel_parser.op_modifier |= 1 << T_SHORT;
8089
8090 /* e09 + e09 */
8091 else if (cur_token.code == '+')
8092 strcat (intel_parser.disp, "+");
8093
8094 /* e09 - e09
8095 | ~ e09
8096 | NOT e09 */
8097 else if (cur_token.code == '-' || cur_token.code == '~')
8098 {
8099 char str[2];
8100
8101 if (nregs < 0)
8102 nregs = ~nregs;
8103 str[0] = cur_token.code;
8104 str[1] = 0;
8105 strcat (intel_parser.disp, str);
8106 }
8107
8108 /* e09 e10 e09' */
8109 else
8110 break;
8111
8112 intel_match_token (cur_token.code);
8113 }
8114
8115 for (;;)
8116 {
8117 if (!intel_e10 ())
8118 return 0;
8119
8120 /* e09' PTR e10 e09' */
8121 if (cur_token.code == T_PTR)
8122 {
8123 char suffix;
8124
8125 if (prev_token.code == T_BYTE)
8126 suffix = BYTE_MNEM_SUFFIX;
8127
8128 else if (prev_token.code == T_WORD)
8129 {
8130 if (current_templates->start->name[0] == 'l'
8131 && current_templates->start->name[2] == 's'
8132 && current_templates->start->name[3] == 0)
8133 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
8134 else if (intel_parser.got_a_float == 2) /* "fi..." */
8135 suffix = SHORT_MNEM_SUFFIX;
8136 else
8137 suffix = WORD_MNEM_SUFFIX;
8138 }
8139
8140 else if (prev_token.code == T_DWORD)
8141 {
8142 if (current_templates->start->name[0] == 'l'
8143 && current_templates->start->name[2] == 's'
8144 && current_templates->start->name[3] == 0)
8145 suffix = WORD_MNEM_SUFFIX;
8146 else if (flag_code == CODE_16BIT
8147 && (current_templates->start->opcode_modifier.jump
8148 || current_templates->start->opcode_modifier.jumpdword))
8149 suffix = LONG_DOUBLE_MNEM_SUFFIX;
8150 else if (intel_parser.got_a_float == 1) /* "f..." */
8151 suffix = SHORT_MNEM_SUFFIX;
8152 else
8153 suffix = LONG_MNEM_SUFFIX;
8154 }
8155
8156 else if (prev_token.code == T_FWORD)
8157 {
8158 if (current_templates->start->name[0] == 'l'
8159 && current_templates->start->name[2] == 's'
8160 && current_templates->start->name[3] == 0)
8161 suffix = LONG_MNEM_SUFFIX;
8162 else if (!intel_parser.got_a_float)
8163 {
8164 if (flag_code == CODE_16BIT)
8165 add_prefix (DATA_PREFIX_OPCODE);
8166 suffix = LONG_DOUBLE_MNEM_SUFFIX;
8167 }
8168 else
8169 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
8170 }
8171
8172 else if (prev_token.code == T_QWORD)
8173 {
8174 if (intel_parser.got_a_float == 1) /* "f..." */
8175 suffix = LONG_MNEM_SUFFIX;
8176 else
8177 suffix = QWORD_MNEM_SUFFIX;
8178 }
8179
8180 else if (prev_token.code == T_TBYTE)
8181 {
8182 if (intel_parser.got_a_float == 1)
8183 suffix = LONG_DOUBLE_MNEM_SUFFIX;
8184 else
8185 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
8186 }
8187
8188 else if (prev_token.code == T_XMMWORD)
8189 {
8190 suffix = XMMWORD_MNEM_SUFFIX;
8191 }
8192
8193 else
8194 {
8195 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
8196 return 0;
8197 }
8198
8199 /* Operands for jump/call using 'ptr' notation denote absolute
8200 addresses. */
8201 if (current_templates->start->opcode_modifier.jump
8202 || current_templates->start->opcode_modifier.jumpdword)
8203 i.types[this_operand].bitfield.jumpabsolute = 1;
8204
8205 if (current_templates->start->base_opcode == 0x8d /* lea */)
8206 ;
8207 else if (!i.suffix)
8208 i.suffix = suffix;
8209 else if (i.suffix != suffix)
8210 {
8211 as_bad (_("Conflicting operand modifiers"));
8212 return 0;
8213 }
8214
8215 }
8216
8217 /* e09' : e10 e09' */
8218 else if (cur_token.code == ':')
8219 {
8220 if (prev_token.code != T_REG)
8221 {
8222 /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
8223 segment/group identifier (which we don't have), using comma
8224 as the operand separator there is even less consistent, since
8225 there all branches only have a single operand. */
8226 if (this_operand != 0
8227 || intel_parser.in_offset
8228 || intel_parser.in_bracket
8229 || (!current_templates->start->opcode_modifier.jump
8230 && !current_templates->start->opcode_modifier.jumpdword
8231 && !current_templates->start->opcode_modifier.jumpintersegment
8232 && !current_templates->start->operand_types[0].bitfield.jumpabsolute))
8233 return intel_match_token (T_NIL);
8234 /* Remember the start of the 2nd operand and terminate 1st
8235 operand here.
8236 XXX This isn't right, yet (when SSSS:OOOO is right operand of
8237 another expression), but it gets at least the simplest case
8238 (a plain number or symbol on the left side) right. */
8239 intel_parser.next_operand = intel_parser.op_string;
8240 *--intel_parser.op_string = '\0';
8241 return intel_match_token (':');
8242 }
8243 }
8244
8245 /* e09' Empty */
8246 else
8247 break;
8248
8249 intel_match_token (cur_token.code);
8250
8251 }
8252
8253 if (in_offset)
8254 {
8255 --intel_parser.in_offset;
8256 if (nregs < 0)
8257 nregs = ~nregs;
8258 if (NUM_ADDRESS_REGS > nregs)
8259 {
8260 as_bad (_("Invalid operand to `OFFSET'"));
8261 return 0;
8262 }
8263 intel_parser.op_modifier |= 1 << T_OFFSET;
8264 }
8265
8266 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
8267 i.base_reg = i386_regtab + REGNAM_AL + 3; /* bl is invalid as base */
8268 return 1;
8269 }
8270
8271 static int
8272 intel_bracket_expr (void)
8273 {
8274 int was_offset = intel_parser.op_modifier & (1 << T_OFFSET);
8275 const char *start = intel_parser.op_string;
8276 int len;
8277
8278 if (i.op[this_operand].regs)
8279 return intel_match_token (T_NIL);
8280
8281 intel_match_token ('[');
8282
8283 /* Mark as a memory operand only if it's not already known to be an
8284 offset expression. If it's an offset expression, we need to keep
8285 the brace in. */
8286 if (!intel_parser.in_offset)
8287 {
8288 ++intel_parser.in_bracket;
8289
8290 /* Operands for jump/call inside brackets denote absolute addresses. */
8291 if (current_templates->start->opcode_modifier.jump
8292 || current_templates->start->opcode_modifier.jumpdword)
8293 i.types[this_operand].bitfield.jumpabsolute = 1;
8294
8295 /* Unfortunately gas always diverged from MASM in a respect that can't
8296 be easily fixed without risking to break code sequences likely to be
8297 encountered (the testsuite even check for this): MASM doesn't consider
8298 an expression inside brackets unconditionally as a memory reference.
8299 When that is e.g. a constant, an offset expression, or the sum of the
8300 two, this is still taken as a constant load. gas, however, always
8301 treated these as memory references. As a compromise, we'll try to make
8302 offset expressions inside brackets work the MASM way (since that's
8303 less likely to be found in real world code), but make constants alone
8304 continue to work the traditional gas way. In either case, issue a
8305 warning. */
8306 intel_parser.op_modifier &= ~was_offset;
8307 }
8308 else
8309 strcat (intel_parser.disp, "[");
8310
8311 /* Add a '+' to the displacement string if necessary. */
8312 if (*intel_parser.disp != '\0'
8313 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
8314 strcat (intel_parser.disp, "+");
8315
8316 if (intel_expr ()
8317 && (len = intel_parser.op_string - start - 1,
8318 intel_match_token (']')))
8319 {
8320 /* Preserve brackets when the operand is an offset expression. */
8321 if (intel_parser.in_offset)
8322 strcat (intel_parser.disp, "]");
8323 else
8324 {
8325 --intel_parser.in_bracket;
8326 if (i.base_reg || i.index_reg)
8327 intel_parser.is_mem = 1;
8328 if (!intel_parser.is_mem)
8329 {
8330 if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
8331 /* Defer the warning until all of the operand was parsed. */
8332 intel_parser.is_mem = -1;
8333 else if (!quiet_warnings)
8334 as_warn (_("`[%.*s]' taken to mean just `%.*s'"),
8335 len, start, len, start);
8336 }
8337 }
8338 intel_parser.op_modifier |= was_offset;
8339
8340 return 1;
8341 }
8342 return 0;
8343 }
8344
8345 /* e10 e11 e10'
8346
8347 e10' [ expr ] e10'
8348 | Empty */
8349 static int
8350 intel_e10 (void)
8351 {
8352 if (!intel_e11 ())
8353 return 0;
8354
8355 while (cur_token.code == '[')
8356 {
8357 if (!intel_bracket_expr ())
8358 return 0;
8359 }
8360
8361 return 1;
8362 }
8363
8364 /* e11 ( expr )
8365 | [ expr ]
8366 | BYTE
8367 | WORD
8368 | DWORD
8369 | FWORD
8370 | QWORD
8371 | TBYTE
8372 | OWORD
8373 | XMMWORD
8374 | $
8375 | .
8376 | register
8377 | id
8378 | constant */
8379 static int
8380 intel_e11 (void)
8381 {
8382 switch (cur_token.code)
8383 {
8384 /* e11 ( expr ) */
8385 case '(':
8386 intel_match_token ('(');
8387 strcat (intel_parser.disp, "(");
8388
8389 if (intel_expr () && intel_match_token (')'))
8390 {
8391 strcat (intel_parser.disp, ")");
8392 return 1;
8393 }
8394 return 0;
8395
8396 /* e11 [ expr ] */
8397 case '[':
8398 return intel_bracket_expr ();
8399
8400 /* e11 $
8401 | . */
8402 case '.':
8403 strcat (intel_parser.disp, cur_token.str);
8404 intel_match_token (cur_token.code);
8405
8406 /* Mark as a memory operand only if it's not already known to be an
8407 offset expression. */
8408 if (!intel_parser.in_offset)
8409 intel_parser.is_mem = 1;
8410
8411 return 1;
8412
8413 /* e11 register */
8414 case T_REG:
8415 {
8416 const reg_entry *reg = intel_parser.reg = cur_token.reg;
8417
8418 intel_match_token (T_REG);
8419
8420 /* Check for segment change. */
8421 if (cur_token.code == ':')
8422 {
8423 if (!reg->reg_type.bitfield.sreg2
8424 && !reg->reg_type.bitfield.sreg3)
8425 {
8426 as_bad (_("`%s' is not a valid segment register"),
8427 reg->reg_name);
8428 return 0;
8429 }
8430 else if (i.seg[i.mem_operands])
8431 as_warn (_("Extra segment override ignored"));
8432 else
8433 {
8434 if (!intel_parser.in_offset)
8435 intel_parser.is_mem = 1;
8436 switch (reg->reg_num)
8437 {
8438 case 0:
8439 i.seg[i.mem_operands] = &es;
8440 break;
8441 case 1:
8442 i.seg[i.mem_operands] = &cs;
8443 break;
8444 case 2:
8445 i.seg[i.mem_operands] = &ss;
8446 break;
8447 case 3:
8448 i.seg[i.mem_operands] = &ds;
8449 break;
8450 case 4:
8451 i.seg[i.mem_operands] = &fs;
8452 break;
8453 case 5:
8454 i.seg[i.mem_operands] = &gs;
8455 break;
8456 }
8457 }
8458 }
8459
8460 /* Not a segment register. Check for register scaling. */
8461 else if (cur_token.code == '*')
8462 {
8463 if (!intel_parser.in_bracket)
8464 {
8465 as_bad (_("Register scaling only allowed in memory operands"));
8466 return 0;
8467 }
8468
8469 if (reg->reg_type.bitfield.reg16) /* Disallow things like [si*1]. */
8470 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
8471 else if (i.index_reg)
8472 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
8473
8474 /* What follows must be a valid scale. */
8475 intel_match_token ('*');
8476 i.index_reg = reg;
8477 i.types[this_operand].bitfield.baseindex = 1;
8478
8479 /* Set the scale after setting the register (otherwise,
8480 i386_scale will complain) */
8481 if (cur_token.code == '+' || cur_token.code == '-')
8482 {
8483 char *str, sign = cur_token.code;
8484 intel_match_token (cur_token.code);
8485 if (cur_token.code != T_CONST)
8486 {
8487 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
8488 cur_token.str);
8489 return 0;
8490 }
8491 str = (char *) xmalloc (strlen (cur_token.str) + 2);
8492 strcpy (str + 1, cur_token.str);
8493 *str = sign;
8494 if (!i386_scale (str))
8495 return 0;
8496 free (str);
8497 }
8498 else if (!i386_scale (cur_token.str))
8499 return 0;
8500 intel_match_token (cur_token.code);
8501 }
8502
8503 /* No scaling. If this is a memory operand, the register is either a
8504 base register (first occurrence) or an index register (second
8505 occurrence). */
8506 else if (intel_parser.in_bracket)
8507 {
8508
8509 if (!i.base_reg)
8510 i.base_reg = reg;
8511 else if (!i.index_reg)
8512 i.index_reg = reg;
8513 else
8514 {
8515 as_bad (_("Too many register references in memory operand"));
8516 return 0;
8517 }
8518
8519 i.types[this_operand].bitfield.baseindex = 1;
8520 }
8521
8522 /* It's neither base nor index. */
8523 else if (!intel_parser.in_offset && !intel_parser.is_mem)
8524 {
8525 i386_operand_type temp = reg->reg_type;
8526 temp.bitfield.baseindex = 0;
8527 i.types[this_operand] = operand_type_or (i.types[this_operand],
8528 temp);
8529 i.op[this_operand].regs = reg;
8530 i.reg_operands++;
8531 }
8532 else
8533 {
8534 as_bad (_("Invalid use of register"));
8535 return 0;
8536 }
8537
8538 /* Since registers are not part of the displacement string (except
8539 when we're parsing offset operands), we may need to remove any
8540 preceding '+' from the displacement string. */
8541 if (*intel_parser.disp != '\0'
8542 && !intel_parser.in_offset)
8543 {
8544 char *s = intel_parser.disp;
8545 s += strlen (s) - 1;
8546 if (*s == '+')
8547 *s = '\0';
8548 }
8549
8550 return 1;
8551 }
8552
8553 /* e11 BYTE
8554 | WORD
8555 | DWORD
8556 | FWORD
8557 | QWORD
8558 | TBYTE
8559 | OWORD
8560 | XMMWORD */
8561 case T_BYTE:
8562 case T_WORD:
8563 case T_DWORD:
8564 case T_FWORD:
8565 case T_QWORD:
8566 case T_TBYTE:
8567 case T_XMMWORD:
8568 intel_match_token (cur_token.code);
8569
8570 if (cur_token.code == T_PTR)
8571 return 1;
8572
8573 /* It must have been an identifier. */
8574 intel_putback_token ();
8575 cur_token.code = T_ID;
8576 /* FALLTHRU */
8577
8578 /* e11 id
8579 | constant */
8580 case T_ID:
8581 if (!intel_parser.in_offset && intel_parser.is_mem <= 0)
8582 {
8583 symbolS *symbolP;
8584
8585 /* The identifier represents a memory reference only if it's not
8586 preceded by an offset modifier and if it's not an equate. */
8587 symbolP = symbol_find(cur_token.str);
8588 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
8589 intel_parser.is_mem = 1;
8590 }
8591 /* FALLTHRU */
8592
8593 case T_CONST:
8594 case '-':
8595 case '+':
8596 {
8597 char *save_str, sign = 0;
8598
8599 /* Allow constants that start with `+' or `-'. */
8600 if (cur_token.code == '-' || cur_token.code == '+')
8601 {
8602 sign = cur_token.code;
8603 intel_match_token (cur_token.code);
8604 if (cur_token.code != T_CONST)
8605 {
8606 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
8607 cur_token.str);
8608 return 0;
8609 }
8610 }
8611
8612 save_str = (char *) xmalloc (strlen (cur_token.str) + 2);
8613 strcpy (save_str + !!sign, cur_token.str);
8614 if (sign)
8615 *save_str = sign;
8616
8617 /* Get the next token to check for register scaling. */
8618 intel_match_token (cur_token.code);
8619
8620 /* Check if this constant is a scaling factor for an
8621 index register. */
8622 if (cur_token.code == '*')
8623 {
8624 if (intel_match_token ('*') && cur_token.code == T_REG)
8625 {
8626 const reg_entry *reg = cur_token.reg;
8627
8628 if (!intel_parser.in_bracket)
8629 {
8630 as_bad (_("Register scaling only allowed "
8631 "in memory operands"));
8632 return 0;
8633 }
8634
8635 /* Disallow things like [1*si].
8636 sp and esp are invalid as index. */
8637 if (reg->reg_type.bitfield.reg16)
8638 reg = i386_regtab + REGNAM_AX + 4;
8639 else if (i.index_reg)
8640 reg = i386_regtab + REGNAM_EAX + 4;
8641
8642 /* The constant is followed by `* reg', so it must be
8643 a valid scale. */
8644 i.index_reg = reg;
8645 i.types[this_operand].bitfield.baseindex = 1;
8646
8647 /* Set the scale after setting the register (otherwise,
8648 i386_scale will complain) */
8649 if (!i386_scale (save_str))
8650 return 0;
8651 intel_match_token (T_REG);
8652
8653 /* Since registers are not part of the displacement
8654 string, we may need to remove any preceding '+' from
8655 the displacement string. */
8656 if (*intel_parser.disp != '\0')
8657 {
8658 char *s = intel_parser.disp;
8659 s += strlen (s) - 1;
8660 if (*s == '+')
8661 *s = '\0';
8662 }
8663
8664 free (save_str);
8665
8666 return 1;
8667 }
8668
8669 /* The constant was not used for register scaling. Since we have
8670 already consumed the token following `*' we now need to put it
8671 back in the stream. */
8672 intel_putback_token ();
8673 }
8674
8675 /* Add the constant to the displacement string. */
8676 strcat (intel_parser.disp, save_str);
8677 free (save_str);
8678
8679 return 1;
8680 }
8681 }
8682
8683 as_bad (_("Unrecognized token '%s'"), cur_token.str);
8684 return 0;
8685 }
8686
8687 /* Match the given token against cur_token. If they match, read the next
8688 token from the operand string. */
8689 static int
8690 intel_match_token (int code)
8691 {
8692 if (cur_token.code == code)
8693 {
8694 intel_get_token ();
8695 return 1;
8696 }
8697 else
8698 {
8699 as_bad (_("Unexpected token `%s'"), cur_token.str);
8700 return 0;
8701 }
8702 }
8703
8704 /* Read a new token from intel_parser.op_string and store it in cur_token. */
8705 static void
8706 intel_get_token (void)
8707 {
8708 char *end_op;
8709 const reg_entry *reg;
8710 struct intel_token new_token;
8711
8712 new_token.code = T_NIL;
8713 new_token.reg = NULL;
8714 new_token.str = NULL;
8715
8716 /* Free the memory allocated to the previous token and move
8717 cur_token to prev_token. */
8718 if (prev_token.str)
8719 free (prev_token.str);
8720
8721 prev_token = cur_token;
8722
8723 /* Skip whitespace. */
8724 while (is_space_char (*intel_parser.op_string))
8725 intel_parser.op_string++;
8726
8727 /* Return an empty token if we find nothing else on the line. */
8728 if (*intel_parser.op_string == '\0')
8729 {
8730 cur_token = new_token;
8731 return;
8732 }
8733
8734 /* The new token cannot be larger than the remainder of the operand
8735 string. */
8736 new_token.str = (char *) xmalloc (strlen (intel_parser.op_string) + 1);
8737 new_token.str[0] = '\0';
8738
8739 if (strchr ("0123456789", *intel_parser.op_string))
8740 {
8741 char *p = new_token.str;
8742 char *q = intel_parser.op_string;
8743 new_token.code = T_CONST;
8744
8745 /* Allow any kind of identifier char to encompass floating point and
8746 hexadecimal numbers. */
8747 while (is_identifier_char (*q))
8748 *p++ = *q++;
8749 *p = '\0';
8750
8751 /* Recognize special symbol names [0-9][bf]. */
8752 if (strlen (intel_parser.op_string) == 2
8753 && (intel_parser.op_string[1] == 'b'
8754 || intel_parser.op_string[1] == 'f'))
8755 new_token.code = T_ID;
8756 }
8757
8758 else if ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL)
8759 {
8760 size_t len = end_op - intel_parser.op_string;
8761
8762 new_token.code = T_REG;
8763 new_token.reg = reg;
8764
8765 memcpy (new_token.str, intel_parser.op_string, len);
8766 new_token.str[len] = '\0';
8767 }
8768
8769 else if (is_identifier_char (*intel_parser.op_string))
8770 {
8771 char *p = new_token.str;
8772 char *q = intel_parser.op_string;
8773
8774 /* A '.' or '$' followed by an identifier char is an identifier.
8775 Otherwise, it's operator '.' followed by an expression. */
8776 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
8777 {
8778 new_token.code = '.';
8779 new_token.str[0] = '.';
8780 new_token.str[1] = '\0';
8781 }
8782 else
8783 {
8784 while (is_identifier_char (*q) || *q == '@')
8785 *p++ = *q++;
8786 *p = '\0';
8787
8788 if (strcasecmp (new_token.str, "NOT") == 0)
8789 new_token.code = '~';
8790
8791 else if (strcasecmp (new_token.str, "MOD") == 0)
8792 new_token.code = '%';
8793
8794 else if (strcasecmp (new_token.str, "AND") == 0)
8795 new_token.code = '&';
8796
8797 else if (strcasecmp (new_token.str, "OR") == 0)
8798 new_token.code = '|';
8799
8800 else if (strcasecmp (new_token.str, "XOR") == 0)
8801 new_token.code = '^';
8802
8803 else if (strcasecmp (new_token.str, "SHL") == 0)
8804 new_token.code = T_SHL;
8805
8806 else if (strcasecmp (new_token.str, "SHR") == 0)
8807 new_token.code = T_SHR;
8808
8809 else if (strcasecmp (new_token.str, "BYTE") == 0)
8810 new_token.code = T_BYTE;
8811
8812 else if (strcasecmp (new_token.str, "WORD") == 0)
8813 new_token.code = T_WORD;
8814
8815 else if (strcasecmp (new_token.str, "DWORD") == 0)
8816 new_token.code = T_DWORD;
8817
8818 else if (strcasecmp (new_token.str, "FWORD") == 0)
8819 new_token.code = T_FWORD;
8820
8821 else if (strcasecmp (new_token.str, "QWORD") == 0)
8822 new_token.code = T_QWORD;
8823
8824 else if (strcasecmp (new_token.str, "TBYTE") == 0
8825 /* XXX remove (gcc still uses it) */
8826 || strcasecmp (new_token.str, "XWORD") == 0)
8827 new_token.code = T_TBYTE;
8828
8829 else if (strcasecmp (new_token.str, "XMMWORD") == 0
8830 || strcasecmp (new_token.str, "OWORD") == 0)
8831 new_token.code = T_XMMWORD;
8832
8833 else if (strcasecmp (new_token.str, "PTR") == 0)
8834 new_token.code = T_PTR;
8835
8836 else if (strcasecmp (new_token.str, "SHORT") == 0)
8837 new_token.code = T_SHORT;
8838
8839 else if (strcasecmp (new_token.str, "OFFSET") == 0)
8840 {
8841 new_token.code = T_OFFSET;
8842
8843 /* ??? This is not mentioned in the MASM grammar but gcc
8844 makes use of it with -mintel-syntax. OFFSET may be
8845 followed by FLAT: */
8846 if (strncasecmp (q, " FLAT:", 6) == 0)
8847 strcat (new_token.str, " FLAT:");
8848 }
8849
8850 /* ??? This is not mentioned in the MASM grammar. */
8851 else if (strcasecmp (new_token.str, "FLAT") == 0)
8852 {
8853 new_token.code = T_OFFSET;
8854 if (*q == ':')
8855 strcat (new_token.str, ":");
8856 else
8857 as_bad (_("`:' expected"));
8858 }
8859
8860 else
8861 new_token.code = T_ID;
8862 }
8863 }
8864
8865 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
8866 {
8867 new_token.code = *intel_parser.op_string;
8868 new_token.str[0] = *intel_parser.op_string;
8869 new_token.str[1] = '\0';
8870 }
8871
8872 else if (strchr ("<>", *intel_parser.op_string)
8873 && *intel_parser.op_string == *(intel_parser.op_string + 1))
8874 {
8875 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
8876 new_token.str[0] = *intel_parser.op_string;
8877 new_token.str[1] = *intel_parser.op_string;
8878 new_token.str[2] = '\0';
8879 }
8880
8881 else
8882 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
8883
8884 intel_parser.op_string += strlen (new_token.str);
8885 cur_token = new_token;
8886 }
8887
8888 /* Put cur_token back into the token stream and make cur_token point to
8889 prev_token. */
8890 static void
8891 intel_putback_token (void)
8892 {
8893 if (cur_token.code != T_NIL)
8894 {
8895 intel_parser.op_string -= strlen (cur_token.str);
8896 free (cur_token.str);
8897 }
8898 cur_token = prev_token;
8899
8900 /* Forget prev_token. */
8901 prev_token.code = T_NIL;
8902 prev_token.reg = NULL;
8903 prev_token.str = NULL;
8904 }
8905
8906 int
8907 tc_x86_regname_to_dw2regnum (char *regname)
8908 {
8909 unsigned int regnum;
8910 unsigned int regnames_count;
8911 static const char *const regnames_32[] =
8912 {
8913 "eax", "ecx", "edx", "ebx",
8914 "esp", "ebp", "esi", "edi",
8915 "eip", "eflags", NULL,
8916 "st0", "st1", "st2", "st3",
8917 "st4", "st5", "st6", "st7",
8918 NULL, NULL,
8919 "xmm0", "xmm1", "xmm2", "xmm3",
8920 "xmm4", "xmm5", "xmm6", "xmm7",
8921 "mm0", "mm1", "mm2", "mm3",
8922 "mm4", "mm5", "mm6", "mm7",
8923 "fcw", "fsw", "mxcsr",
8924 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
8925 "tr", "ldtr"
8926 };
8927 static const char *const regnames_64[] =
8928 {
8929 "rax", "rdx", "rcx", "rbx",
8930 "rsi", "rdi", "rbp", "rsp",
8931 "r8", "r9", "r10", "r11",
8932 "r12", "r13", "r14", "r15",
8933 "rip",
8934 "xmm0", "xmm1", "xmm2", "xmm3",
8935 "xmm4", "xmm5", "xmm6", "xmm7",
8936 "xmm8", "xmm9", "xmm10", "xmm11",
8937 "xmm12", "xmm13", "xmm14", "xmm15",
8938 "st0", "st1", "st2", "st3",
8939 "st4", "st5", "st6", "st7",
8940 "mm0", "mm1", "mm2", "mm3",
8941 "mm4", "mm5", "mm6", "mm7",
8942 "rflags",
8943 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
8944 "fs.base", "gs.base", NULL, NULL,
8945 "tr", "ldtr",
8946 "mxcsr", "fcw", "fsw"
8947 };
8948 const char *const *regnames;
8949
8950 if (flag_code == CODE_64BIT)
8951 {
8952 regnames = regnames_64;
8953 regnames_count = ARRAY_SIZE (regnames_64);
8954 }
8955 else
8956 {
8957 regnames = regnames_32;
8958 regnames_count = ARRAY_SIZE (regnames_32);
8959 }
8960
8961 for (regnum = 0; regnum < regnames_count; regnum++)
8962 if (regnames[regnum] != NULL
8963 && strcmp (regname, regnames[regnum]) == 0)
8964 return regnum;
8965
8966 return -1;
8967 }
8968
8969 void
8970 tc_x86_frame_initial_instructions (void)
8971 {
8972 static unsigned int sp_regno;
8973
8974 if (!sp_regno)
8975 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
8976 ? "rsp" : "esp");
8977
8978 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
8979 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
8980 }
8981
8982 int
8983 i386_elf_section_type (const char *str, size_t len)
8984 {
8985 if (flag_code == CODE_64BIT
8986 && len == sizeof ("unwind") - 1
8987 && strncmp (str, "unwind", 6) == 0)
8988 return SHT_X86_64_UNWIND;
8989
8990 return -1;
8991 }
8992
8993 #ifdef TE_PE
8994 void
8995 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
8996 {
8997 expressionS expr;
8998
8999 expr.X_op = O_secrel;
9000 expr.X_add_symbol = symbol;
9001 expr.X_add_number = 0;
9002 emit_expr (&expr, size);
9003 }
9004 #endif
9005
9006 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9007 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
9008
9009 int
9010 x86_64_section_letter (int letter, char **ptr_msg)
9011 {
9012 if (flag_code == CODE_64BIT)
9013 {
9014 if (letter == 'l')
9015 return SHF_X86_64_LARGE;
9016
9017 *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
9018 }
9019 else
9020 *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
9021 return -1;
9022 }
9023
9024 int
9025 x86_64_section_word (char *str, size_t len)
9026 {
9027 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
9028 return SHF_X86_64_LARGE;
9029
9030 return -1;
9031 }
9032
9033 static void
9034 handle_large_common (int small ATTRIBUTE_UNUSED)
9035 {
9036 if (flag_code != CODE_64BIT)
9037 {
9038 s_comm_internal (0, elf_common_parse);
9039 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
9040 }
9041 else
9042 {
9043 static segT lbss_section;
9044 asection *saved_com_section_ptr = elf_com_section_ptr;
9045 asection *saved_bss_section = bss_section;
9046
9047 if (lbss_section == NULL)
9048 {
9049 flagword applicable;
9050 segT seg = now_seg;
9051 subsegT subseg = now_subseg;
9052
9053 /* The .lbss section is for local .largecomm symbols. */
9054 lbss_section = subseg_new (".lbss", 0);
9055 applicable = bfd_applicable_section_flags (stdoutput);
9056 bfd_set_section_flags (stdoutput, lbss_section,
9057 applicable & SEC_ALLOC);
9058 seg_info (lbss_section)->bss = 1;
9059
9060 subseg_set (seg, subseg);
9061 }
9062
9063 elf_com_section_ptr = &_bfd_elf_large_com_section;
9064 bss_section = lbss_section;
9065
9066 s_comm_internal (0, elf_common_parse);
9067
9068 elf_com_section_ptr = saved_com_section_ptr;
9069 bss_section = saved_bss_section;
9070 }
9071 }
9072 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.28455 seconds and 5 git commands to generate.