1 /* tc-i960.c - All the i80960-specific stuff
2 Copyright 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 Free Software Foundation, Inc.
6 This file is part of GAS.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 /* See comment on md_parse_option for 80960-specific invocation options. */
25 /* There are 4 different lengths of (potentially) symbol-based displacements
26 in the 80960 instruction set, each of which could require address fix-ups
27 and (in the case of external symbols) emission of relocation directives:
30 This is a standard length for the base assembler and requires no
34 This is a non-standard length, but the base assembler has a
35 hook for bit field address fixups: the fixS structure can
36 point to a descriptor of the field, in which case our
37 md_number_to_field() routine gets called to process it.
39 I made the hook a little cleaner by having fix_new() (in the base
40 assembler) return a pointer to the fixS in question. And I made it a
41 little simpler by storing the field size (in this case 13) instead of
42 of a pointer to another structure: 80960 displacements are ALWAYS
43 stored in the low-order bits of a 4-byte word.
45 Since the target of a COBR cannot be external, no relocation
46 directives for this size displacement have to be generated.
47 But the base assembler had to be modified to issue error
48 messages if the symbol did turn out to be external.
51 Fixups are handled as for the 13-bit case (except that 24 is stored
54 The relocation directive generated is the same as that for the 32-bit
55 displacement, except that it's PC-relative (the 32-bit displacement
56 never is). The i80960 version of the linker needs a mod to
57 distinguish and handle the 24-bit case.
60 MEMA formats are always promoted to MEMB (32-bit) if the displacement
61 is based on a symbol, because it could be relocated at link time.
62 The only time we use the 12-bit format is if an absolute value of
63 less than 4096 is specified, in which case we need neither a fixup nor
64 a relocation directive. */
70 #include "safe-ctype.h"
73 #include "opcode/i960.h"
75 #if defined (OBJ_AOUT) || defined (OBJ_BOUT)
77 #define TC_S_IS_SYSPROC(s) ((1<=S_GET_OTHER(s)) && (S_GET_OTHER(s)<=32))
78 #define TC_S_IS_BALNAME(s) (S_GET_OTHER(s) == N_BALNAME)
79 #define TC_S_IS_CALLNAME(s) (S_GET_OTHER(s) == N_CALLNAME)
80 #define TC_S_IS_BADPROC(s) ((S_GET_OTHER(s) != 0) && !TC_S_IS_CALLNAME(s) && !TC_S_IS_BALNAME(s) && !TC_S_IS_SYSPROC(s))
82 #define TC_S_SET_SYSPROC(s, p) (S_SET_OTHER((s), (p)+1))
83 #define TC_S_GET_SYSPROC(s) (S_GET_OTHER(s)-1)
85 #define TC_S_FORCE_TO_BALNAME(s) (S_SET_OTHER((s), N_BALNAME))
86 #define TC_S_FORCE_TO_CALLNAME(s) (S_SET_OTHER((s), N_CALLNAME))
87 #define TC_S_FORCE_TO_SYSPROC(s) {;}
89 #else /* ! OBJ_A/BOUT */
92 #define TC_S_IS_SYSPROC(s) (S_GET_STORAGE_CLASS(s) == C_SCALL)
93 #define TC_S_IS_BALNAME(s) (SF_GET_BALNAME(s))
94 #define TC_S_IS_CALLNAME(s) (SF_GET_CALLNAME(s))
95 #define TC_S_IS_BADPROC(s) (TC_S_IS_SYSPROC(s) && TC_S_GET_SYSPROC(s) < 0 && 31 < TC_S_GET_SYSPROC(s))
97 #define TC_S_SET_SYSPROC(s, p) ((s)->sy_symbol.ost_auxent[1].x_sc.x_stindx = (p))
98 #define TC_S_GET_SYSPROC(s) ((s)->sy_symbol.ost_auxent[1].x_sc.x_stindx)
100 #define TC_S_FORCE_TO_BALNAME(s) (SF_SET_BALNAME(s))
101 #define TC_S_FORCE_TO_CALLNAME(s) (SF_SET_CALLNAME(s))
102 #define TC_S_FORCE_TO_SYSPROC(s) (S_SET_STORAGE_CLASS((s), C_SCALL))
104 #else /* ! OBJ_COFF */
106 #define TC_S_IS_SYSPROC(s) 0
108 #define TC_S_IS_BALNAME(s) 0
109 #define TC_S_IS_CALLNAME(s) 0
110 #define TC_S_IS_BADPROC(s) 0
112 #define TC_S_SET_SYSPROC(s, p)
113 #define TC_S_GET_SYSPROC(s) 0
115 #define TC_S_FORCE_TO_BALNAME(s)
116 #define TC_S_FORCE_TO_CALLNAME(s)
117 #define TC_S_FORCE_TO_SYSPROC(s)
119 #error COFF, a.out, b.out, and ELF are the only supported formats.
120 #endif /* ! OBJ_ELF */
121 #endif /* ! OBJ_COFF */
122 #endif /* ! OBJ_A/BOUT */
124 extern char *input_line_pointer
;
126 #if !defined (BFD_ASSEMBLER) && !defined (BFD)
128 const int md_reloc_size
= sizeof (struct reloc
);
130 const int md_reloc_size
= sizeof (struct relocation_info
);
131 #endif /* OBJ_COFF */
134 /* Local i80960 routines. */
136 static void brcnt_emit (); /* Emit branch-prediction instrumentation code */
137 static char *brlab_next (); /* Return next branch local label */
138 void brtab_emit (); /* Emit br-predict instrumentation table */
139 static void cobr_fmt (); /* Generate COBR instruction */
140 static void ctrl_fmt (); /* Generate CTRL instruction */
141 static char *emit (); /* Emit (internally) binary */
142 static int get_args (); /* Break arguments out of comma-separated list */
143 static void get_cdisp (); /* Handle COBR or CTRL displacement */
144 static char *get_ispec (); /* Find index specification string */
145 static int get_regnum (); /* Translate text to register number */
146 static int i_scan (); /* Lexical scan of instruction source */
147 static void mem_fmt (); /* Generate MEMA or MEMB instruction */
148 static void mema_to_memb (); /* Convert MEMA instruction to MEMB format */
149 static void parse_expr (); /* Parse an expression */
150 static int parse_ldconst (); /* Parse and replace a 'ldconst' pseudo-op */
151 static void parse_memop (); /* Parse a memory operand */
152 static void parse_po (); /* Parse machine-dependent pseudo-op */
153 static void parse_regop (); /* Parse a register operand */
154 static void reg_fmt (); /* Generate a REG format instruction */
155 void reloc_callj (); /* Relocate a 'callj' instruction */
156 static void relax_cobr (); /* "De-optimize" cobr into compare/branch */
157 static void s_leafproc (); /* Process '.leafproc' pseudo-op */
158 static void s_sysproc (); /* Process '.sysproc' pseudo-op */
159 static int shift_ok (); /* Will a 'shlo' substiture for a 'ldconst'? */
160 static void syntax (); /* Give syntax error */
161 static int targ_has_sfr (); /* Target chip supports spec-func register? */
162 static int targ_has_iclass (); /* Target chip supports instruction set? */
164 /* See md_parse_option() for meanings of these options */
165 static char norelax
; /* True if -norelax switch seen */
166 static char instrument_branches
; /* True if -b switch seen */
168 /* Characters that always start a comment.
169 If the pre-processor is disabled, these aren't very useful.
171 const char comment_chars
[] = "#";
173 /* Characters that only start a comment at the beginning of
174 a line. If the line seems to have the form '# 123 filename'
175 .line and .file directives will appear in the pre-processed output.
177 Note that input_file.c hand checks for '#' at the beginning of the
178 first line of the input file. This is because the compiler outputs
179 #NO_APP at the beginning of its output.
182 /* Also note that comments started like this one will always work. */
184 const char line_comment_chars
[] = "";
186 const char line_separator_chars
[] = ";";
188 /* Chars that can be used to separate mant from exp in floating point nums */
189 const char EXP_CHARS
[] = "eE";
191 /* Chars that mean this number is a floating point constant,
192 as in 0f12.456 or 0d1.2345e12
194 const char FLT_CHARS
[] = "fFdDtT";
196 /* Table used by base assembler to relax addresses based on varying length
197 instructions. The fields are:
198 1) most positive reach of this state,
199 2) most negative reach of this state,
200 3) how many bytes this mode will add to the size of the current frag
201 4) which index into the table to try if we can't fit into this one.
203 For i80960, the only application is the (de-)optimization of cobr
204 instructions into separate compare and branch instructions when a 13-bit
205 displacement won't hack it.
207 const relax_typeS md_relax_table
[] =
209 {0, 0, 0, 0}, /* State 0 => no more relaxation possible */
210 {4088, -4096, 0, 2}, /* State 1: conditional branch (cobr) */
211 {0x800000 - 8, -0x800000, 4, 0}, /* State 2: compare (reg) & branch (ctrl) */
214 static void s_endian
PARAMS ((int));
216 /* These are the machine dependent pseudo-ops.
218 This table describes all the machine specific pseudo-ops the assembler
219 has to support. The fields are:
220 pseudo-op name without dot
221 function to call to execute this pseudo-op
222 integer arg to pass to the function
227 const pseudo_typeS md_pseudo_table
[] =
230 {"endian", s_endian
, 0},
231 {"extended", float_cons
, 't'},
232 {"leafproc", parse_po
, S_LEAFPROC
},
233 {"sysproc", parse_po
, S_SYSPROC
},
241 /* Macros to extract info from an 'expressionS' structure 'e' */
242 #define adds(e) e.X_add_symbol
243 #define offs(e) e.X_add_number
245 /* Branch-prediction bits for CTRL/COBR format opcodes */
246 #define BP_MASK 0x00000002 /* Mask for branch-prediction bit */
247 #define BP_TAKEN 0x00000000 /* Value to OR in to predict branch */
248 #define BP_NOT_TAKEN 0x00000002 /* Value to OR in to predict no branch */
250 /* Some instruction opcodes that we need explicitly */
251 #define BE 0x12000000
252 #define BG 0x11000000
253 #define BGE 0x13000000
254 #define BL 0x14000000
255 #define BLE 0x16000000
256 #define BNE 0x15000000
257 #define BNO 0x10000000
258 #define BO 0x17000000
259 #define CHKBIT 0x5a002700
260 #define CMPI 0x5a002080
261 #define CMPO 0x5a002000
264 #define BAL 0x0b000000
265 #define CALL 0x09000000
266 #define CALLS 0x66003800
267 #define RET 0x0a000000
269 /* These masks are used to build up a set of MEMB mode bits. */
272 #define MEMB_BIT 0x1000
275 /* Mask for the only mode bit in a MEMA instruction (if set, abase reg is
277 #define MEMA_ABASE 0x2000
279 /* Info from which a MEMA or MEMB format instruction can be generated */
282 /* (First) 32 bits of instruction */
284 /* 0-(none), 12- or, 32-bit displacement needed */
286 /* The expression in the source instruction from which the
287 displacement should be determined. */
293 /* The two pieces of info we need to generate a register operand */
296 int mode
; /* 0 =>local/global/spec reg; 1=> literal or fp reg */
297 int special
; /* 0 =>not a sfr; 1=> is a sfr (not valid w/mode=0) */
298 int n
; /* Register number or literal value */
301 /* Number and assembler mnemonic for all registers that can appear in
343 /* Numbers for special-function registers are for assembler internal
344 use only: they are scaled back to range [0-31] for binary output. */
380 /* Numbers for floating point registers are for assembler internal
381 use only: they are scaled back to [0-3] for binary output. */
389 { NULL
, 0 }, /* END OF LIST */
392 #define IS_RG_REG(n) ((0 <= (n)) && ((n) < SF0))
393 #define IS_SF_REG(n) ((SF0 <= (n)) && ((n) < FP0))
394 #define IS_FP_REG(n) ((n) >= FP0)
396 /* Number and assembler mnemonic for all registers that can appear as
397 'abase' (indirect addressing) registers. */
439 /* For assembler internal use only: this number never appears in binary
443 { NULL
, 0 }, /* END OF LIST */
447 static struct hash_control
*op_hash
; /* Opcode mnemonics */
448 static struct hash_control
*reg_hash
; /* Register name hash table */
449 static struct hash_control
*areg_hash
; /* Abase register hash table */
451 /* Architecture for which we are assembling */
452 #define ARCH_ANY 0 /* Default: no architecture checking done */
459 int architecture
= ARCH_ANY
; /* Architecture requested on invocation line */
460 int iclasses_seen
; /* OR of instruction classes (I_* constants)
461 * for which we've actually assembled
465 /* BRANCH-PREDICTION INSTRUMENTATION
467 The following supports generation of branch-prediction instrumentation
468 (turned on by -b switch). The instrumentation collects counts
469 of branches taken/not-taken for later input to a utility that will
470 set the branch prediction bits of the instructions in accordance with
471 the behavior observed. (Note that the KX series does not have
474 The instrumentation consists of:
476 (1) before and after each conditional branch, a call to an external
477 routine that increments and steps over an inline counter. The
478 counter itself, initialized to 0, immediately follows the call
479 instruction. For each branch, the counter following the branch
480 is the number of times the branch was not taken, and the difference
481 between the counters is the number of times it was taken. An
482 example of an instrumented conditional branch:
490 (2) a table of pointers to the instrumented branches, so that an
491 external postprocessing routine can locate all of the counters.
492 the table begins with a 2-word header: a pointer to the next in
493 a linked list of such tables (initialized to 0); and a count
494 of the number of entries in the table (exclusive of the header.
496 Note that input source code is expected to already contain calls
497 an external routine that will link the branch local table into a
501 /* Number of branches instrumented so far. Also used to generate
502 unique local labels for each instrumented branch. */
505 #define BR_LABEL_BASE "LBRANCH"
506 /* Basename of local labels on instrumented branches, to avoid
507 conflict with compiler- generated local labels. */
509 #define BR_CNT_FUNC "__inc_branch"
510 /* Name of the external routine that will increment (and step over) an
513 #define BR_TAB_NAME "__BRANCH_TABLE__"
514 /* Name of the table of pointers to branches. A local (i.e.,
515 non-external) symbol. */
517 /*****************************************************************************
518 md_begin: One-time initialization.
522 *************************************************************************** */
526 int i
; /* Loop counter */
527 const struct i960_opcode
*oP
; /* Pointer into opcode table */
528 const char *retval
; /* Value returned by hash functions */
530 op_hash
= hash_new ();
531 reg_hash
= hash_new ();
532 areg_hash
= hash_new ();
534 /* For some reason, the base assembler uses an empty string for "no
535 error message", instead of a NULL pointer. */
538 for (oP
= i960_opcodes
; oP
->name
&& !retval
; oP
++)
539 retval
= hash_insert (op_hash
, oP
->name
, (PTR
) oP
);
541 for (i
= 0; regnames
[i
].reg_name
&& !retval
; i
++)
542 retval
= hash_insert (reg_hash
, regnames
[i
].reg_name
,
543 (char *) ®names
[i
].reg_num
);
545 for (i
= 0; aregs
[i
].areg_name
&& !retval
; i
++)
546 retval
= hash_insert (areg_hash
, aregs
[i
].areg_name
,
547 (char *) &aregs
[i
].areg_num
);
550 as_fatal (_("Hashing returned \"%s\"."), retval
);
553 /*****************************************************************************
554 md_assemble: Assemble an instruction
556 Assumptions about the passed-in text:
557 - all comments, labels removed
558 - text is an instruction
559 - all white space compressed to single blanks
560 - all character constants have been replaced with decimal
562 *************************************************************************** */
565 char *textP
; /* Source text of instruction */
567 /* Parsed instruction text, containing NO whitespace: arg[0]->opcode
568 mnemonic arg[1-3]->operands, with char constants replaced by
572 int n_ops
; /* Number of instruction operands */
573 /* Pointer to instruction description */
574 struct i960_opcode
*oP
;
575 /* TRUE iff opcode mnemonic included branch-prediction suffix (".f"
578 /* Setting of branch-prediction bit(s) to be OR'd into instruction
579 opcode of CTRL/COBR format instructions. */
582 int n
; /* Offset of last character in opcode mnemonic */
584 const char *bp_error_msg
= _("branch prediction invalid on this opcode");
586 /* Parse instruction into opcode and operands */
587 memset (args
, '\0', sizeof (args
));
588 n_ops
= i_scan (textP
, args
);
591 return; /* Error message already issued */
594 /* Do "macro substitution" (sort of) on 'ldconst' pseudo-instruction */
595 if (!strcmp (args
[0], "ldconst"))
597 n_ops
= parse_ldconst (args
);
604 /* Check for branch-prediction suffix on opcode mnemonic, strip it off */
605 n
= strlen (args
[0]) - 1;
608 if (args
[0][n
- 1] == '.' && (args
[0][n
] == 't' || args
[0][n
] == 'f'))
610 /* We could check here to see if the target architecture
611 supports branch prediction, but why bother? The bit will
612 just be ignored by processors that don't use it. */
614 bp_bits
= (args
[0][n
] == 't') ? BP_TAKEN
: BP_NOT_TAKEN
;
615 args
[0][n
- 1] = '\0'; /* Strip suffix from opcode mnemonic */
618 /* Look up opcode mnemonic in table and check number of operands.
619 Check that opcode is legal for the target architecture. If all
620 looks good, assemble instruction. */
621 oP
= (struct i960_opcode
*) hash_find (op_hash
, args
[0]);
622 if (!oP
|| !targ_has_iclass (oP
->iclass
))
624 as_bad (_("invalid opcode, \"%s\"."), args
[0]);
627 else if (n_ops
!= oP
->num_ops
)
629 as_bad (_("improper number of operands. expecting %d, got %d"),
638 ctrl_fmt (args
[1], oP
->opcode
| bp_bits
, oP
->num_ops
);
639 if (oP
->format
== FBRA
)
641 /* Now generate a 'bno' to same arg */
642 ctrl_fmt (args
[1], BNO
| bp_bits
, 1);
647 cobr_fmt (args
, oP
->opcode
| bp_bits
, oP
);
652 as_warn (bp_error_msg
);
657 if (args
[0][0] == 'c' && args
[0][1] == 'a')
661 as_warn (bp_error_msg
);
663 mem_fmt (args
, oP
, 1);
673 as_warn (bp_error_msg
);
675 mem_fmt (args
, oP
, 0);
680 as_warn (bp_error_msg
);
682 /* Output opcode & set up "fixup" (relocation); flag
683 relocation as 'callj' type. */
684 know (oP
->num_ops
== 1);
685 get_cdisp (args
[1], "CTRL", oP
->opcode
, 24, 0, 1);
688 BAD_CASE (oP
->format
);
692 } /* md_assemble() */
694 /*****************************************************************************
695 md_number_to_chars: convert a number to target byte order
697 *************************************************************************** */
699 md_number_to_chars (buf
, value
, n
)
704 number_to_chars_littleendian (buf
, value
, n
);
707 /*****************************************************************************
708 md_chars_to_number: convert from target byte order to host byte order.
710 *************************************************************************** */
712 md_chars_to_number (val
, n
)
713 unsigned char *val
; /* Value in target byte order */
714 int n
; /* Number of bytes in the input */
718 for (retval
= 0; n
--;)
726 #define MAX_LITTLENUMS 6
727 #define LNUM_SIZE sizeof (LITTLENUM_TYPE)
729 /*****************************************************************************
730 md_atof: convert ascii to floating point
732 Turn a string at input_line_pointer into a floating point constant of type
733 'type', and store the appropriate bytes at *litP. The number of LITTLENUMS
734 emitted is returned at 'sizeP'. An error message is returned, or a pointer
735 to an empty message if OK.
737 Note we call the i386 floating point routine, rather than complicating
738 things with more files or symbolic links.
740 *************************************************************************** */
742 md_atof (type
, litP
, sizeP
)
747 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
748 LITTLENUM_TYPE
*wordP
;
768 type
= 'x'; /* That's what atof_ieee() understands */
773 return _("Bad call to md_atof()");
776 t
= atof_ieee (input_line_pointer
, type
, words
);
779 input_line_pointer
= t
;
782 *sizeP
= prec
* LNUM_SIZE
;
784 /* Output the LITTLENUMs in REVERSE order in accord with i80960
785 word-order. (Dunno why atof_ieee doesn't do it in the right
786 order in the first place -- probably because it's a hack of
789 for (wordP
= words
+ prec
- 1; prec
--;)
791 md_number_to_chars (litP
, (long) (*wordP
--), LNUM_SIZE
);
792 litP
+= sizeof (LITTLENUM_TYPE
);
798 /*****************************************************************************
801 *************************************************************************** */
803 md_number_to_imm (buf
, val
, n
)
808 md_number_to_chars (buf
, val
, n
);
811 /*****************************************************************************
814 *************************************************************************** */
816 md_number_to_disp (buf
, val
, n
)
821 md_number_to_chars (buf
, val
, n
);
824 /*****************************************************************************
827 Stick a value (an address fixup) into a bit field of
828 previously-generated instruction.
830 *************************************************************************** */
832 md_number_to_field (instrP
, val
, bfixP
)
833 char *instrP
; /* Pointer to instruction to be fixed */
834 long val
; /* Address fixup value */
835 bit_fixS
*bfixP
; /* Description of bit field to be fixed up */
837 int numbits
; /* Length of bit field to be fixed */
838 long instr
; /* 32-bit instruction to be fixed-up */
839 long sign
; /* 0 or -1, according to sign bit of 'val' */
841 /* Convert instruction back to host byte order. */
842 instr
= md_chars_to_number (instrP
, 4);
844 /* Surprise! -- we stored the number of bits to be modified rather
845 than a pointer to a structure. */
846 numbits
= (int) bfixP
;
849 /* This is a no-op, stuck here by reloc_callj() */
853 know ((numbits
== 13) || (numbits
== 24));
855 /* Propagate sign bit of 'val' for the given number of bits. Result
856 should be all 0 or all 1. */
857 sign
= val
>> ((int) numbits
- 1);
858 if (((val
< 0) && (sign
!= -1))
859 || ((val
> 0) && (sign
!= 0)))
861 as_bad (_("Fixup of %ld too large for field width of %d"),
866 /* Put bit field into instruction and write back in target
869 val
&= ~(-1 << (int) numbits
); /* Clear unused sign bits */
871 md_number_to_chars (instrP
, instr
, 4);
873 } /* md_number_to_field() */
876 /*****************************************************************************
878 Invocation line includes a switch not recognized by the base assembler.
879 See if it's a processor-specific option. For the 960, these are:
882 Conditional branch instructions that require displacements
883 greater than 13 bits (or that have external targets) should
884 generate errors. The default is to replace each such
885 instruction with the corresponding compare (or chkbit) and
886 branch instructions. Note that the Intel "j" cobr directives
887 are ALWAYS "de-optimized" in this way when necessary,
888 regardless of the setting of this option.
891 Add code to collect information about branches taken, for
892 later optimization of branch prediction bits by a separate
893 tool. COBR and CNTL format instructions have branch
894 prediction bits (in the CX architecture); if "BR" represents
895 an instruction in one of these classes, the following rep-
896 resents the code generated by the assembler:
898 call <increment routine>
899 .word 0 # pre-counter
901 call <increment routine>
902 .word 0 # post-counter
904 A table of all such "Labels" is also generated.
906 -AKA, -AKB, -AKC, -ASA, -ASB, -AMC, -ACA:
907 Select the 80960 architecture. Instructions or features not
908 supported by the selected architecture cause fatal errors.
909 The default is to generate code for any instruction or feature
910 that is supported by SOME version of the 960 (even if this
911 means mixing architectures!).
913 ****************************************************************************/
915 const char *md_shortopts
= "A:b";
916 struct option md_longopts
[] =
918 #define OPTION_LINKRELAX (OPTION_MD_BASE)
919 {"linkrelax", no_argument
, NULL
, OPTION_LINKRELAX
},
920 {"link-relax", no_argument
, NULL
, OPTION_LINKRELAX
},
921 #define OPTION_NORELAX (OPTION_MD_BASE + 1)
922 {"norelax", no_argument
, NULL
, OPTION_NORELAX
},
923 {"no-relax", no_argument
, NULL
, OPTION_NORELAX
},
924 {NULL
, no_argument
, NULL
, 0}
926 size_t md_longopts_size
= sizeof (md_longopts
);
933 static const struct tabentry arch_tab
[] =
937 {"SA", ARCH_KA
}, /* Synonym for KA */
938 {"SB", ARCH_KB
}, /* Synonym for KB */
939 {"KC", ARCH_MC
}, /* Synonym for MC */
948 md_parse_option (c
, arg
)
954 case OPTION_LINKRELAX
:
956 flag_keep_locals
= 1;
964 instrument_branches
= 1;
969 const struct tabentry
*tp
;
972 for (tp
= arch_tab
; tp
->flag
!= NULL
; tp
++)
973 if (!strcmp (p
, tp
->flag
))
976 if (tp
->flag
== NULL
)
978 as_bad (_("invalid architecture %s"), p
);
982 architecture
= tp
->arch
;
994 md_show_usage (stream
)
998 fprintf (stream
, _("I960 options:\n"));
999 for (i
= 0; arch_tab
[i
].flag
; i
++)
1000 fprintf (stream
, "%s-A%s", i
? " | " : "", arch_tab
[i
].flag
);
1001 fprintf (stream
, _("\n\
1002 specify variant of 960 architecture\n\
1003 -b add code to collect statistics about branches taken\n\
1004 -link-relax preserve individual alignment directives so linker\n\
1005 can do relaxing (b.out format only)\n\
1006 -no-relax don't alter compare-and-branch instructions for\n\
1007 long displacements\n"));
1011 /*****************************************************************************
1013 Called by base assembler after address relaxation is finished: modify
1014 variable fragments according to how much relaxation was done.
1016 If the fragment substate is still 1, a 13-bit displacement was enough
1017 to reach the symbol in question. Set up an address fixup, but otherwise
1018 leave the cobr instruction alone.
1020 If the fragment substate is 2, a 13-bit displacement was not enough.
1021 Replace the cobr with a two instructions (a compare and a branch).
1023 *************************************************************************** */
1024 #ifndef BFD_ASSEMBLER
1026 md_convert_frag (headers
, seg
, fragP
)
1027 object_headers
*headers
;
1032 md_convert_frag (abfd
, sec
, fragP
)
1038 fixS
*fixP
; /* Structure describing needed address fix */
1040 switch (fragP
->fr_subtype
)
1043 /* LEAVE SINGLE COBR INSTRUCTION */
1044 fixP
= fix_new (fragP
,
1045 fragP
->fr_opcode
- fragP
->fr_literal
,
1052 fixP
->fx_bit_fixP
= (bit_fixS
*) 13; /* size of bit field */
1055 /* REPLACE COBR WITH COMPARE/BRANCH INSTRUCTIONS */
1059 BAD_CASE (fragP
->fr_subtype
);
1064 /*****************************************************************************
1065 md_estimate_size_before_relax: How much does it look like *fragP will grow?
1067 Called by base assembler just before address relaxation.
1068 Return the amount by which the fragment will grow.
1070 Any symbol that is now undefined will not become defined; cobr's
1071 based on undefined symbols will have to be replaced with a compare
1072 instruction and a branch instruction, and the code fragment will grow
1075 *************************************************************************** */
1077 md_estimate_size_before_relax (fragP
, segment_type
)
1078 register fragS
*fragP
;
1079 register segT segment_type
;
1081 /* If symbol is undefined in this segment, go to "relaxed" state
1082 (compare and branch instructions instead of cobr) right now. */
1083 if (S_GET_SEGMENT (fragP
->fr_symbol
) != segment_type
)
1089 return md_relax_table
[fragP
->fr_subtype
].rlx_length
;
1090 } /* md_estimate_size_before_relax() */
1092 #if defined(OBJ_AOUT) | defined(OBJ_BOUT)
1094 /*****************************************************************************
1096 This routine exists in order to overcome machine byte-order problems
1097 when dealing with bit-field entries in the relocation_info struct.
1099 But relocation info will be used on the host machine only (only
1100 executable code is actually downloaded to the i80960). Therefore,
1101 we leave it in host byte order.
1103 The above comment is no longer true. This routine now really
1104 does do the reordering (Ian Taylor 28 Aug 92).
1106 *************************************************************************** */
1109 md_ri_to_chars (where
, ri
)
1111 struct relocation_info
*ri
;
1113 md_number_to_chars (where
, ri
->r_address
,
1114 sizeof (ri
->r_address
));
1115 where
[4] = ri
->r_index
& 0x0ff;
1116 where
[5] = (ri
->r_index
>> 8) & 0x0ff;
1117 where
[6] = (ri
->r_index
>> 16) & 0x0ff;
1118 where
[7] = ((ri
->r_pcrel
<< 0)
1119 | (ri
->r_length
<< 1)
1120 | (ri
->r_extern
<< 3)
1123 | (ri
->r_callj
<< 6));
1126 #endif /* defined(OBJ_AOUT) | defined(OBJ_BOUT) */
1129 /* FOLLOWING ARE THE LOCAL ROUTINES, IN ALPHABETICAL ORDER */
1131 /*****************************************************************************
1132 brcnt_emit: Emit code to increment inline branch counter.
1134 See the comments above the declaration of 'br_cnt' for details on
1135 branch-prediction instrumentation.
1136 *************************************************************************** */
1140 ctrl_fmt (BR_CNT_FUNC
, CALL
, 1); /* Emit call to "increment" routine */
1141 emit (0); /* Emit inline counter to be incremented */
1144 /*****************************************************************************
1145 brlab_next: generate the next branch local label
1147 See the comments above the declaration of 'br_cnt' for details on
1148 branch-prediction instrumentation.
1149 *************************************************************************** */
1153 static char buf
[20];
1155 sprintf (buf
, "%s%d", BR_LABEL_BASE
, br_cnt
++);
1159 /*****************************************************************************
1160 brtab_emit: generate the fetch-prediction branch table.
1162 See the comments above the declaration of 'br_cnt' for details on
1163 branch-prediction instrumentation.
1165 The code emitted here would be functionally equivalent to the following
1166 example assembler source.
1171 .word 0 # link to next table
1172 .word 3 # length of table
1173 .word LBRANCH0 # 1st entry in table proper
1176 **************************************************************************** */
1182 char *p
; /* Where the binary was output to */
1183 /* Pointer to description of deferred address fixup. */
1186 if (!instrument_branches
)
1191 subseg_set (data_section
, 0); /* .data */
1192 frag_align (2, 0, 0); /* .align 2 */
1193 record_alignment (now_seg
, 2);
1194 colon (BR_TAB_NAME
); /* BR_TAB_NAME: */
1195 emit (0); /* .word 0 #link to next table */
1196 emit (br_cnt
); /* .word n #length of table */
1198 for (i
= 0; i
< br_cnt
; i
++)
1200 sprintf (buf
, "%s%d", BR_LABEL_BASE
, i
);
1202 fixP
= fix_new (frag_now
,
1203 p
- frag_now
->fr_literal
,
1212 /*****************************************************************************
1213 cobr_fmt: generate a COBR-format instruction
1215 *************************************************************************** */
1218 cobr_fmt (arg
, opcode
, oP
)
1219 /* arg[0]->opcode mnemonic, arg[1-3]->operands (ascii) */
1221 /* Opcode, with branch-prediction bits already set if necessary. */
1223 /* Pointer to description of instruction. */
1224 struct i960_opcode
*oP
;
1226 long instr
; /* 32-bit instruction */
1227 struct regop regop
; /* Description of register operand */
1228 int n
; /* Number of operands */
1229 int var_frag
; /* 1 if varying length code fragment should
1230 * be emitted; 0 if an address fix
1231 * should be emitted.
1239 /* First operand (if any) of a COBR is always a register
1240 operand. Parse it. */
1241 parse_regop (®op
, arg
[1], oP
->operand
[0]);
1242 instr
|= (regop
.n
<< 19) | (regop
.mode
<< 13);
1246 /* Second operand (if any) of a COBR is always a register
1247 operand. Parse it. */
1248 parse_regop (®op
, arg
[2], oP
->operand
[1]);
1249 instr
|= (regop
.n
<< 14) | regop
.special
;
1259 if (instrument_branches
)
1262 colon (brlab_next ());
1265 /* A third operand to a COBR is always a displacement. Parse
1266 it; if it's relaxable (a cobr "j" directive, or any cobr
1267 other than bbs/bbc when the "-norelax" option is not in use)
1268 set up a variable code fragment; otherwise set up an address
1270 var_frag
= !norelax
|| (oP
->format
== COJ
); /* TRUE or FALSE */
1271 get_cdisp (arg
[3], "COBR", instr
, 13, var_frag
, 0);
1273 if (instrument_branches
)
1280 /*****************************************************************************
1281 ctrl_fmt: generate a CTRL-format instruction
1283 *************************************************************************** */
1286 ctrl_fmt (targP
, opcode
, num_ops
)
1287 char *targP
; /* Pointer to text of lone operand (if any) */
1288 long opcode
; /* Template of instruction */
1289 int num_ops
; /* Number of operands */
1291 int instrument
; /* TRUE iff we should add instrumentation to track
1292 * how often the branch is taken
1297 emit (opcode
); /* Output opcode */
1302 instrument
= instrument_branches
&& (opcode
!= CALL
)
1303 && (opcode
!= B
) && (opcode
!= RET
) && (opcode
!= BAL
);
1308 colon (brlab_next ());
1311 /* The operand MUST be an ip-relative displacment. Parse it
1312 * and set up address fix for the instruction we just output.
1314 get_cdisp (targP
, "CTRL", opcode
, 24, 0, 0);
1324 /*****************************************************************************
1325 emit: output instruction binary
1327 Output instruction binary, in target byte order, 4 bytes at a time.
1328 Return pointer to where it was placed.
1330 *************************************************************************** */
1334 long instr
; /* Word to be output, host byte order */
1336 char *toP
; /* Where to output it */
1338 toP
= frag_more (4); /* Allocate storage */
1339 md_number_to_chars (toP
, instr
, 4); /* Convert to target byte order */
1343 /*****************************************************************************
1344 get_args: break individual arguments out of comma-separated list
1347 - all comments and labels have been removed
1348 - all strings of whitespace have been collapsed to a single blank.
1349 - all character constants ('x') have been replaced with decimal
1352 args[0] is untouched. args[1] points to first operand, etc. All args:
1353 - are NULL-terminated
1354 - contain no whitespace
1357 Number of operands (0,1,2, or 3) or -1 on error.
1359 *************************************************************************** */
1362 /* Pointer to comma-separated operands; MUCKED BY US */
1364 /* Output arg: pointers to operands placed in args[1-3]. MUST
1365 ACCOMMODATE 4 ENTRIES (args[0-3]). */
1368 register int n
; /* Number of operands */
1371 /* Skip lead white space */
1385 /* Squeze blanks out by moving non-blanks toward start of string.
1386 * Isolate operands, whenever comma is found.
1393 && (! ISALNUM (p
[1])
1394 || ! ISALNUM (p
[-1])))
1402 /* Start of operand */
1405 as_bad (_("too many operands"));
1408 *to
++ = '\0'; /* Terminate argument */
1409 args
[++n
] = to
; /* Start next argument */
1422 /*****************************************************************************
1423 get_cdisp: handle displacement for a COBR or CTRL instruction.
1425 Parse displacement for a COBR or CTRL instruction.
1427 If successful, output the instruction opcode and set up for it,
1428 depending on the arg 'var_frag', either:
1429 o an address fixup to be done when all symbol values are known, or
1430 o a varying length code fragment, with address fixup info. This
1431 will be done for cobr instructions that may have to be relaxed
1432 in to compare/branch instructions (8 bytes) if the final
1433 address displacement is greater than 13 bits.
1435 ****************************************************************************/
1438 get_cdisp (dispP
, ifmtP
, instr
, numbits
, var_frag
, callj
)
1439 /* displacement as specified in source instruction */
1441 /* "COBR" or "CTRL" (for use in error message) */
1443 /* Instruction needing the displacement */
1445 /* # bits of displacement (13 for COBR, 24 for CTRL) */
1447 /* 1 if varying length code fragment should be emitted;
1448 * 0 if an address fix should be emitted.
1451 /* 1 if callj relocation should be done; else 0 */
1454 expressionS e
; /* Parsed expression */
1455 fixS
*fixP
; /* Structure describing needed address fix */
1456 char *outP
; /* Where instruction binary is output to */
1460 parse_expr (dispP
, &e
);
1464 as_bad (_("expression syntax error"));
1467 if (S_GET_SEGMENT (e
.X_add_symbol
) == now_seg
1468 || S_GET_SEGMENT (e
.X_add_symbol
) == undefined_section
)
1472 outP
= frag_more (8); /* Allocate worst-case storage */
1473 md_number_to_chars (outP
, instr
, 4);
1474 frag_variant (rs_machine_dependent
, 4, 4, 1,
1475 adds (e
), offs (e
), outP
);
1479 /* Set up a new fix structure, so address can be updated
1480 * when all symbol values are known.
1482 outP
= emit (instr
);
1483 fixP
= fix_new (frag_now
,
1484 outP
- frag_now
->fr_literal
,
1491 fixP
->fx_tcbit
= callj
;
1493 /* We want to modify a bit field when the address is
1494 * known. But we don't need all the garbage in the
1495 * bit_fix structure. So we're going to lie and store
1496 * the number of bits affected instead of a pointer.
1498 fixP
->fx_bit_fixP
= (bit_fixS
*) numbits
;
1502 as_bad (_("attempt to branch into different segment"));
1506 as_bad (_("target of %s instruction must be a label"), ifmtP
);
1511 /*****************************************************************************
1512 get_ispec: parse a memory operand for an index specification
1514 Here, an "index specification" is taken to be anything surrounded
1515 by square brackets and NOT followed by anything else.
1517 If it's found, detach it from the input string, remove the surrounding
1518 square brackets, and return a pointer to it. Otherwise, return NULL.
1520 *************************************************************************** */
1524 /* Pointer to memory operand from source instruction, no white space. */
1527 /* Points to start of index specification. */
1529 /* Points to end of index specification. */
1532 /* Find opening square bracket, if any. */
1533 start
= strchr (textP
, '[');
1538 /* Eliminate '[', detach from rest of operand */
1541 end
= strchr (start
, ']');
1545 as_bad (_("unmatched '['"));
1550 /* Eliminate ']' and make sure it was the last thing
1554 if (*(end
+ 1) != '\0')
1556 as_bad (_("garbage after index spec ignored"));
1563 /*****************************************************************************
1566 Look up a (suspected) register name in the register table and return the
1567 associated register number (or -1 if not found).
1569 *************************************************************************** */
1572 get_regnum (regname
)
1573 char *regname
; /* Suspected register name */
1577 rP
= (int *) hash_find (reg_hash
, regname
);
1578 return (rP
== NULL
) ? -1 : *rP
;
1581 /*****************************************************************************
1582 i_scan: perform lexical scan of ascii assembler instruction.
1585 - input string is an i80960 instruction (not a pseudo-op)
1586 - all comments and labels have been removed
1587 - all strings of whitespace have been collapsed to a single blank.
1590 args[0] points to opcode, other entries point to operands. All strings:
1591 - are NULL-terminated
1592 - contain no whitespace
1593 - have character constants ('x') replaced with a decimal number
1596 Number of operands (0,1,2, or 3) or -1 on error.
1598 *************************************************************************** */
1601 /* Pointer to ascii instruction; MUCKED BY US. */
1603 /* Output arg: pointers to opcode and operands placed here. MUST
1604 ACCOMMODATE 4 ENTRIES. */
1608 /* Isolate opcode */
1612 } /* Skip lead space, if any */
1614 for (; *iP
!= ' '; iP
++)
1618 /* There are no operands */
1621 /* We never moved: there was no opcode either! */
1622 as_bad (_("missing opcode"));
1628 *iP
++ = '\0'; /* Terminate opcode */
1629 return (get_args (iP
, args
));
1632 /*****************************************************************************
1633 mem_fmt: generate a MEMA- or MEMB-format instruction
1635 *************************************************************************** */
1637 mem_fmt (args
, oP
, callx
)
1638 char *args
[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
1639 struct i960_opcode
*oP
; /* Pointer to description of instruction */
1640 int callx
; /* Is this a callx opcode */
1642 int i
; /* Loop counter */
1643 struct regop regop
; /* Description of register operand */
1644 char opdesc
; /* Operand descriptor byte */
1645 memS instr
; /* Description of binary to be output */
1646 char *outP
; /* Where the binary was output to */
1647 expressionS expr
; /* Parsed expression */
1648 /* ->description of deferred address fixup */
1652 /* COFF support isn't in place yet for callx relaxing. */
1656 memset (&instr
, '\0', sizeof (memS
));
1657 instr
.opcode
= oP
->opcode
;
1659 /* Process operands. */
1660 for (i
= 1; i
<= oP
->num_ops
; i
++)
1662 opdesc
= oP
->operand
[i
- 1];
1666 parse_memop (&instr
, args
[i
], oP
->format
);
1670 parse_regop (®op
, args
[i
], opdesc
);
1671 instr
.opcode
|= regop
.n
<< 19;
1675 /* Parse the displacement; this must be done before emitting the
1676 opcode, in case it is an expression using `.'. */
1677 parse_expr (instr
.e
, &expr
);
1680 outP
= emit (instr
.opcode
);
1682 if (instr
.disp
== 0)
1687 /* Process the displacement */
1691 as_bad (_("expression syntax error"));
1695 if (instr
.disp
== 32)
1697 (void) emit (offs (expr
)); /* Output displacement */
1701 /* 12-bit displacement */
1702 if (offs (expr
) & ~0xfff)
1704 /* Won't fit in 12 bits: convert already-output
1705 * instruction to MEMB format, output
1708 mema_to_memb (outP
);
1709 (void) emit (offs (expr
));
1713 /* WILL fit in 12 bits: OR into opcode and
1714 * overwrite the binary we already put out
1716 instr
.opcode
|= offs (expr
);
1717 md_number_to_chars (outP
, instr
.opcode
, 4);
1723 if (instr
.disp
== 12)
1725 /* Displacement is dependent on a symbol, whose value
1726 * may change at link time. We HAVE to reserve 32 bits.
1727 * Convert already-output opcode to MEMB format.
1729 mema_to_memb (outP
);
1732 /* Output 0 displacement and set up address fixup for when
1733 * this symbol's value becomes known.
1735 outP
= emit ((long) 0);
1736 fixP
= fix_new_exp (frag_now
,
1737 outP
- frag_now
->fr_literal
,
1742 /* Steve's linker relaxing hack. Mark this 32-bit relocation as
1743 being in the instruction stream, specifically as part of a callx
1745 fixP
->fx_bsr
= callx
;
1750 /*****************************************************************************
1751 mema_to_memb: convert a MEMA-format opcode to a MEMB-format opcode.
1753 There are 2 possible MEMA formats:
1755 - displacement + abase
1757 They are distinguished by the setting of the MEMA_ABASE bit.
1759 *************************************************************************** */
1761 mema_to_memb (opcodeP
)
1762 char *opcodeP
; /* Where to find the opcode, in target byte order */
1764 long opcode
; /* Opcode in host byte order */
1765 long mode
; /* Mode bits for MEMB instruction */
1767 opcode
= md_chars_to_number (opcodeP
, 4);
1768 know (!(opcode
& MEMB_BIT
));
1770 mode
= MEMB_BIT
| D_BIT
;
1771 if (opcode
& MEMA_ABASE
)
1776 opcode
&= 0xffffc000; /* Clear MEMA offset and mode bits */
1777 opcode
|= mode
; /* Set MEMB mode bits */
1779 md_number_to_chars (opcodeP
, opcode
, 4);
1780 } /* mema_to_memb() */
1782 /*****************************************************************************
1783 parse_expr: parse an expression
1785 Use base assembler's expression parser to parse an expression.
1786 It, unfortunately, runs off a global which we have to save/restore
1787 in order to make it work for us.
1789 An empty expression string is treated as an absolute 0.
1791 Sets O_illegal regardless of expression evaluation if entire input
1792 string is not consumed in the evaluation -- tolerate no dangling junk!
1794 *************************************************************************** */
1796 parse_expr (textP
, expP
)
1797 char *textP
; /* Text of expression to be parsed */
1798 expressionS
*expP
; /* Where to put the results of parsing */
1800 char *save_in
; /* Save global here */
1807 /* Treat empty string as absolute 0 */
1808 expP
->X_add_symbol
= expP
->X_op_symbol
= NULL
;
1809 expP
->X_add_number
= 0;
1810 expP
->X_op
= O_constant
;
1814 save_in
= input_line_pointer
; /* Save global */
1815 input_line_pointer
= textP
; /* Make parser work for us */
1817 (void) expression (expP
);
1818 if ((size_t) (input_line_pointer
- textP
) != strlen (textP
))
1820 /* Did not consume all of the input */
1821 expP
->X_op
= O_illegal
;
1823 symP
= expP
->X_add_symbol
;
1824 if (symP
&& (hash_find (reg_hash
, S_GET_NAME (symP
))))
1826 /* Register name in an expression */
1827 /* FIXME: this isn't much of a check any more. */
1828 expP
->X_op
= O_illegal
;
1831 input_line_pointer
= save_in
; /* Restore global */
1835 /*****************************************************************************
1837 Parse and replace a 'ldconst' pseudo-instruction with an appropriate
1840 Assumes the input consists of:
1841 arg[0] opcode mnemonic ('ldconst')
1842 arg[1] first operand (constant)
1843 arg[2] name of register to be loaded
1845 Replaces opcode and/or operands as appropriate.
1847 Returns the new number of arguments, or -1 on failure.
1849 *************************************************************************** */
1853 char *arg
[]; /* See above */
1855 int n
; /* Constant to be loaded */
1856 int shift
; /* Shift count for "shlo" instruction */
1857 static char buf
[5]; /* Literal for first operand */
1858 static char buf2
[5]; /* Literal for second operand */
1859 expressionS e
; /* Parsed expression */
1861 arg
[3] = NULL
; /* So we can tell at the end if it got used or not */
1863 parse_expr (arg
[1], &e
);
1867 /* We're dependent on one or more symbols -- use "lda" */
1872 /* Try the following mappings:
1873 * ldconst 0,<reg> ->mov 0,<reg>
1874 * ldconst 31,<reg> ->mov 31,<reg>
1875 * ldconst 32,<reg> ->addo 1,31,<reg>
1876 * ldconst 62,<reg> ->addo 31,31,<reg>
1877 * ldconst 64,<reg> ->shlo 8,3,<reg>
1878 * ldconst -1,<reg> ->subo 1,0,<reg>
1879 * ldconst -31,<reg>->subo 31,0,<reg>
1881 * anthing else becomes:
1885 if ((0 <= n
) && (n
<= 31))
1890 else if ((-31 <= n
) && (n
<= -1))
1894 sprintf (buf
, "%d", -n
);
1899 else if ((32 <= n
) && (n
<= 62))
1904 sprintf (buf
, "%d", n
- 31);
1908 else if ((shift
= shift_ok (n
)) != 0)
1912 sprintf (buf
, "%d", shift
);
1914 sprintf (buf2
, "%d", n
>> shift
);
1925 as_bad (_("invalid constant"));
1929 return (arg
[3] == 0) ? 2 : 3;
1932 /*****************************************************************************
1933 parse_memop: parse a memory operand
1935 This routine is based on the observation that the 4 mode bits of the
1936 MEMB format, taken individually, have fairly consistent meaning:
1938 M3 (bit 13): 1 if displacement is present (D_BIT)
1939 M2 (bit 12): 1 for MEMB instructions (MEMB_BIT)
1940 M1 (bit 11): 1 if index is present (I_BIT)
1941 M0 (bit 10): 1 if abase is present (A_BIT)
1943 So we parse the memory operand and set bits in the mode as we find
1944 things. Then at the end, if we go to MEMB format, we need only set
1945 the MEMB bit (M2) and our mode is built for us.
1947 Unfortunately, I said "fairly consistent". The exceptions:
1950 0100 Would seem illegal, but means "abase-only".
1952 0101 Would seem to mean "abase-only" -- it means IP-relative.
1953 Must be converted to 0100.
1955 0110 Would seem to mean "index-only", but is reserved.
1956 We turn on the D bit and provide a 0 displacement.
1958 The other thing to observe is that we parse from the right, peeling
1959 things * off as we go: first any index spec, then any abase, then
1962 *************************************************************************** */
1965 parse_memop (memP
, argP
, optype
)
1966 memS
*memP
; /* Where to put the results */
1967 char *argP
; /* Text of the operand to be parsed */
1968 int optype
; /* MEM1, MEM2, MEM4, MEM8, MEM12, or MEM16 */
1970 char *indexP
; /* Pointer to index specification with "[]" removed */
1971 char *p
; /* Temp char pointer */
1972 char iprel_flag
; /* True if this is an IP-relative operand */
1973 int regnum
; /* Register number */
1974 /* Scale factor: 1,2,4,8, or 16. Later converted to internal format
1975 (0,1,2,3,4 respectively). */
1977 int mode
; /* MEMB mode bits */
1978 int *intP
; /* Pointer to register number */
1980 /* The following table contains the default scale factors for each
1981 type of memory instruction. It is accessed using (optype-MEM1)
1982 as an index -- thus it assumes the 'optype' constants are
1983 assigned consecutive values, in the order they appear in this
1985 static const int def_scale
[] =
1991 -1, /* MEM12 -- no valid default */
1995 iprel_flag
= mode
= 0;
1997 /* Any index present? */
1998 indexP
= get_ispec (argP
);
2001 p
= strchr (indexP
, '*');
2004 /* No explicit scale -- use default for this instruction
2005 type and assembler mode. */
2009 /* GNU960 compatibility */
2010 scale
= def_scale
[optype
- MEM1
];
2014 *p
++ = '\0'; /* Eliminate '*' */
2016 /* Now indexP->a '\0'-terminated register name,
2017 * and p->a scale factor.
2020 if (!strcmp (p
, "16"))
2024 else if (strchr ("1248", *p
) && (p
[1] == '\0'))
2034 regnum
= get_regnum (indexP
); /* Get index reg. # */
2035 if (!IS_RG_REG (regnum
))
2037 as_bad (_("invalid index register"));
2041 /* Convert scale to its binary encoding */
2060 as_bad (_("invalid scale factor"));
2064 memP
->opcode
|= scale
| regnum
; /* Set index bits in opcode */
2065 mode
|= I_BIT
; /* Found a valid index spec */
2068 /* Any abase (Register Indirect) specification present? */
2069 if ((p
= strrchr (argP
, '(')) != NULL
)
2071 /* "(" is there -- does it start a legal abase spec? If not, it
2072 could be part of a displacement expression. */
2073 intP
= (int *) hash_find (areg_hash
, p
);
2076 /* Got an abase here */
2078 *p
= '\0'; /* discard register spec */
2079 if (regnum
== IPREL
)
2081 /* We have to specialcase ip-rel mode */
2086 memP
->opcode
|= regnum
<< 14;
2092 /* Any expression present? */
2099 /* Special-case ip-relative addressing */
2108 memP
->opcode
|= 5 << 10; /* IP-relative mode */
2114 /* Handle all other modes */
2118 /* Go with MEMA instruction format for now (grow to MEMB later
2119 if 12 bits is not enough for the displacement). MEMA format
2120 has a single mode bit: set it to indicate that abase is
2122 memP
->opcode
|= MEMA_ABASE
;
2127 /* Go with MEMA instruction format for now (grow to MEMB later
2128 if 12 bits is not enough for the displacement). */
2133 /* For some reason, the bit string for this mode is not
2134 consistent: it should be 0 (exclusive of the MEMB bit), so we
2135 set it "by hand" here. */
2136 memP
->opcode
|= MEMB_BIT
;
2140 /* set MEMB bit in mode, and OR in mode bits */
2141 memP
->opcode
|= mode
| MEMB_BIT
;
2145 /* Treat missing displacement as displacement of 0. */
2147 /* Fall into next case. */
2148 case D_BIT
| A_BIT
| I_BIT
:
2150 /* set MEMB bit in mode, and OR in mode bits */
2151 memP
->opcode
|= mode
| MEMB_BIT
;
2161 /*****************************************************************************
2162 parse_po: parse machine-dependent pseudo-op
2164 This is a top-level routine for machine-dependent pseudo-ops. It slurps
2165 up the rest of the input line, breaks out the individual arguments,
2166 and dispatches them to the correct handler.
2167 *************************************************************************** */
2171 int po_num
; /* Pseudo-op number: currently S_LEAFPROC or S_SYSPROC */
2173 /* Pointers operands, with no embedded whitespace.
2174 arg[0] unused, arg[1-3]->operands */
2176 int n_ops
; /* Number of operands */
2177 char *p
; /* Pointer to beginning of unparsed argument string */
2178 char eol
; /* Character that indicated end of line */
2180 extern char is_end_of_line
[];
2182 /* Advance input pointer to end of line. */
2183 p
= input_line_pointer
;
2184 while (!is_end_of_line
[(unsigned char) *input_line_pointer
])
2186 input_line_pointer
++;
2188 eol
= *input_line_pointer
; /* Save end-of-line char */
2189 *input_line_pointer
= '\0'; /* Terminate argument list */
2191 /* Parse out operands */
2192 n_ops
= get_args (p
, args
);
2198 /* Dispatch to correct handler */
2202 s_sysproc (n_ops
, args
);
2205 s_leafproc (n_ops
, args
);
2212 /* Restore eol, so line numbers get updated correctly. Base
2213 assembler assumes we leave input pointer pointing at char
2214 following the eol. */
2215 *input_line_pointer
++ = eol
;
2218 /*****************************************************************************
2219 parse_regop: parse a register operand.
2221 In case of illegal operand, issue a message and return some valid
2222 information so instruction processing can continue.
2223 *************************************************************************** */
2226 parse_regop (regopP
, optext
, opdesc
)
2227 struct regop
*regopP
; /* Where to put description of register operand */
2228 char *optext
; /* Text of operand */
2229 char opdesc
; /* Descriptor byte: what's legal for this operand */
2231 int n
; /* Register number */
2232 expressionS e
; /* Parsed expression */
2234 /* See if operand is a register */
2235 n
= get_regnum (optext
);
2240 /* global or local register */
2241 if (!REG_ALIGN (opdesc
, n
))
2243 as_bad (_("unaligned register"));
2247 regopP
->special
= 0;
2250 else if (IS_FP_REG (n
) && FP_OK (opdesc
))
2252 /* Floating point register, and it's allowed */
2253 regopP
->n
= n
- FP0
;
2255 regopP
->special
= 0;
2258 else if (IS_SF_REG (n
) && SFR_OK (opdesc
))
2260 /* Special-function register, and it's allowed */
2261 regopP
->n
= n
- SF0
;
2263 regopP
->special
= 1;
2264 if (!targ_has_sfr (regopP
->n
))
2266 as_bad (_("no such sfr in this architecture"));
2271 else if (LIT_OK (opdesc
))
2273 /* How about a literal? */
2275 regopP
->special
= 0;
2277 { /* floating point literal acceptable */
2278 /* Skip over 0f, 0d, or 0e prefix */
2279 if ((optext
[0] == '0')
2280 && (optext
[1] >= 'd')
2281 && (optext
[1] <= 'f'))
2286 if (!strcmp (optext
, "0.0") || !strcmp (optext
, "0"))
2291 if (!strcmp (optext
, "1.0") || !strcmp (optext
, "1"))
2299 { /* fixed point literal acceptable */
2300 parse_expr (optext
, &e
);
2301 if (e
.X_op
!= O_constant
2302 || (offs (e
) < 0) || (offs (e
) > 31))
2304 as_bad (_("illegal literal"));
2307 regopP
->n
= offs (e
);
2312 /* Nothing worked */
2314 regopP
->mode
= 0; /* Register r0 is always a good one */
2316 regopP
->special
= 0;
2317 } /* parse_regop() */
2319 /*****************************************************************************
2320 reg_fmt: generate a REG-format instruction
2322 *************************************************************************** */
2325 char *args
[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
2326 struct i960_opcode
*oP
; /* Pointer to description of instruction */
2328 long instr
; /* Binary to be output */
2329 struct regop regop
; /* Description of register operand */
2330 int n_ops
; /* Number of operands */
2333 n_ops
= oP
->num_ops
;
2337 parse_regop (®op
, args
[1], oP
->operand
[0]);
2339 if ((n_ops
== 1) && !(instr
& M3
))
2341 /* 1-operand instruction in which the dst field should
2342 * be used (instead of src1).
2347 regop
.mode
= regop
.special
;
2354 /* regop.n goes in bit 0, needs no shifting */
2356 regop
.special
<<= 5;
2358 instr
|= regop
.n
| regop
.mode
| regop
.special
;
2363 parse_regop (®op
, args
[2], oP
->operand
[1]);
2365 if ((n_ops
== 2) && !(instr
& M3
))
2367 /* 2-operand instruction in which the dst field should
2368 * be used instead of src2).
2373 regop
.mode
= regop
.special
;
2382 regop
.special
<<= 6;
2384 instr
|= regop
.n
| regop
.mode
| regop
.special
;
2388 parse_regop (®op
, args
[3], oP
->operand
[2]);
2391 regop
.mode
= regop
.special
;
2393 instr
|= (regop
.n
<<= 19) | (regop
.mode
<<= 13);
2398 /*****************************************************************************
2400 Replace cobr instruction in a code fragment with equivalent branch and
2401 compare instructions, so it can reach beyond a 13-bit displacement.
2402 Set up an address fix/relocation for the new branch instruction.
2404 *************************************************************************** */
2406 /* This "conditional jump" table maps cobr instructions into
2407 equivalent compare and branch opcodes. */
2416 { /* COBR OPCODE: */
2417 { CHKBIT
, BNO
}, /* 0x30 - bbc */
2418 { CMPO
, BG
}, /* 0x31 - cmpobg */
2419 { CMPO
, BE
}, /* 0x32 - cmpobe */
2420 { CMPO
, BGE
}, /* 0x33 - cmpobge */
2421 { CMPO
, BL
}, /* 0x34 - cmpobl */
2422 { CMPO
, BNE
}, /* 0x35 - cmpobne */
2423 { CMPO
, BLE
}, /* 0x36 - cmpoble */
2424 { CHKBIT
, BO
}, /* 0x37 - bbs */
2425 { CMPI
, BNO
}, /* 0x38 - cmpibno */
2426 { CMPI
, BG
}, /* 0x39 - cmpibg */
2427 { CMPI
, BE
}, /* 0x3a - cmpibe */
2428 { CMPI
, BGE
}, /* 0x3b - cmpibge */
2429 { CMPI
, BL
}, /* 0x3c - cmpibl */
2430 { CMPI
, BNE
}, /* 0x3d - cmpibne */
2431 { CMPI
, BLE
}, /* 0x3e - cmpible */
2432 { CMPI
, BO
}, /* 0x3f - cmpibo */
2438 register fragS
*fragP
; /* fragP->fr_opcode is assumed to point to
2439 * the cobr instruction, which comes at the
2440 * end of the code fragment.
2443 int opcode
, src1
, src2
, m1
, s2
;
2444 /* Bit fields from cobr instruction */
2445 long bp_bits
; /* Branch prediction bits from cobr instruction */
2446 long instr
; /* A single i960 instruction */
2447 /* ->instruction to be replaced */
2449 fixS
*fixP
; /* Relocation that can be done at assembly time */
2451 /* PICK UP & PARSE COBR INSTRUCTION */
2452 iP
= fragP
->fr_opcode
;
2453 instr
= md_chars_to_number (iP
, 4);
2454 opcode
= ((instr
>> 24) & 0xff) - 0x30; /* "-0x30" for table index */
2455 src1
= (instr
>> 19) & 0x1f;
2456 m1
= (instr
>> 13) & 1;
2458 src2
= (instr
>> 14) & 0x1f;
2459 bp_bits
= instr
& BP_MASK
;
2461 /* GENERATE AND OUTPUT COMPARE INSTRUCTION */
2462 instr
= coj
[opcode
].compare
2463 | src1
| (m1
<< 11) | (s2
<< 6) | (src2
<< 14);
2464 md_number_to_chars (iP
, instr
, 4);
2466 /* OUTPUT BRANCH INSTRUCTION */
2467 md_number_to_chars (iP
+ 4, coj
[opcode
].branch
| bp_bits
, 4);
2469 /* SET UP ADDRESS FIXUP/RELOCATION */
2470 fixP
= fix_new (fragP
,
2471 iP
+ 4 - fragP
->fr_literal
,
2478 fixP
->fx_bit_fixP
= (bit_fixS
*) 24; /* Store size of bit field */
2484 /*****************************************************************************
2485 reloc_callj: Relocate a 'callj' instruction
2487 This is a "non-(GNU)-standard" machine-dependent hook. The base
2488 assembler calls it when it decides it can relocate an address at
2489 assembly time instead of emitting a relocation directive.
2491 Check to see if the relocation involves a 'callj' instruction to a:
2492 sysproc: Replace the default 'call' instruction with a 'calls'
2493 leafproc: Replace the default 'call' instruction with a 'bal'.
2494 other proc: Do nothing.
2496 See b.out.h for details on the 'n_other' field in a symbol structure.
2499 Assumes the caller has already figured out, in the case of a leafproc,
2500 to use the 'bal' entry point, and has substituted that symbol into the
2501 passed fixup structure.
2503 *************************************************************************** */
2506 /* Relocation that can be done at assembly time */
2509 /* Points to the binary for the instruction being relocated. */
2512 if (!fixP
->fx_tcbit
)
2514 /* This wasn't a callj instruction in the first place */
2518 where
= fixP
->fx_frag
->fr_literal
+ fixP
->fx_where
;
2520 if (TC_S_IS_SYSPROC (fixP
->fx_addsy
))
2522 /* Symbol is a .sysproc: replace 'call' with 'calls'. System
2523 procedure number is (other-1). */
2524 md_number_to_chars (where
, CALLS
| TC_S_GET_SYSPROC (fixP
->fx_addsy
), 4);
2526 /* Nothing else needs to be done for this instruction. Make
2527 sure 'md_number_to_field()' will perform a no-op. */
2528 fixP
->fx_bit_fixP
= (bit_fixS
*) 1;
2531 else if (TC_S_IS_CALLNAME (fixP
->fx_addsy
))
2533 /* Should not happen: see block comment above */
2534 as_fatal (_("Trying to 'bal' to %s"), S_GET_NAME (fixP
->fx_addsy
));
2536 else if (TC_S_IS_BALNAME (fixP
->fx_addsy
))
2538 /* Replace 'call' with 'bal'; both instructions have the same
2539 format, so calling code should complete relocation as if
2540 nothing happened here. */
2541 md_number_to_chars (where
, BAL
, 4);
2543 else if (TC_S_IS_BADPROC (fixP
->fx_addsy
))
2545 as_bad (_("Looks like a proc, but can't tell what kind.\n"));
2546 } /* switch on proc type */
2548 /* else Symbol is neither a sysproc nor a leafproc */
2551 /*****************************************************************************
2552 s_leafproc: process .leafproc pseudo-op
2554 .leafproc takes two arguments, the second one is optional:
2555 arg[1]: name of 'call' entry point to leaf procedure
2556 arg[2]: name of 'bal' entry point to leaf procedure
2558 If the two arguments are identical, or if the second one is missing,
2559 the first argument is taken to be the 'bal' entry point.
2561 If there are 2 distinct arguments, we must make sure that the 'bal'
2562 entry point immediately follows the 'call' entry point in the linked
2565 *************************************************************************** */
2567 s_leafproc (n_ops
, args
)
2568 int n_ops
; /* Number of operands */
2569 char *args
[]; /* args[1]->1st operand, args[2]->2nd operand */
2571 symbolS
*callP
; /* Pointer to leafproc 'call' entry point symbol */
2572 symbolS
*balP
; /* Pointer to leafproc 'bal' entry point symbol */
2574 if ((n_ops
!= 1) && (n_ops
!= 2))
2576 as_bad (_("should have 1 or 2 operands"));
2578 } /* Check number of arguments */
2580 /* Find or create symbol for 'call' entry point. */
2581 callP
= symbol_find_or_make (args
[1]);
2583 if (TC_S_IS_CALLNAME (callP
))
2585 as_warn (_("Redefining leafproc %s"), S_GET_NAME (callP
));
2588 /* If that was the only argument, use it as the 'bal' entry point.
2589 * Otherwise, mark it as the 'call' entry point and find or create
2590 * another symbol for the 'bal' entry point.
2592 if ((n_ops
== 1) || !strcmp (args
[1], args
[2]))
2594 TC_S_FORCE_TO_BALNAME (callP
);
2599 TC_S_FORCE_TO_CALLNAME (callP
);
2601 balP
= symbol_find_or_make (args
[2]);
2602 if (TC_S_IS_CALLNAME (balP
))
2604 as_warn (_("Redefining leafproc %s"), S_GET_NAME (balP
));
2606 TC_S_FORCE_TO_BALNAME (balP
);
2609 tc_set_bal_of_call (callP
, balP
);
2611 } /* if only one arg, or the args are the same */
2615 s_sysproc: process .sysproc pseudo-op
2617 .sysproc takes two arguments:
2618 arg[1]: name of entry point to system procedure
2619 arg[2]: 'entry_num' (index) of system procedure in the range
2622 For [ab].out, we store the 'entrynum' in the 'n_other' field of
2623 the symbol. Since that entry is normally 0, we bias 'entrynum'
2624 by adding 1 to it. It must be unbiased before it is used. */
2626 s_sysproc (n_ops
, args
)
2627 int n_ops
; /* Number of operands */
2628 char *args
[]; /* args[1]->1st operand, args[2]->2nd operand */
2635 as_bad (_("should have two operands"));
2637 } /* bad arg count */
2639 /* Parse "entry_num" argument and check it for validity. */
2640 parse_expr (args
[2], &exp
);
2641 if (exp
.X_op
!= O_constant
2643 || (offs (exp
) > 31))
2645 as_bad (_("'entry_num' must be absolute number in [0,31]"));
2649 /* Find/make symbol and stick entry number (biased by +1) into it */
2650 symP
= symbol_find_or_make (args
[1]);
2652 if (TC_S_IS_SYSPROC (symP
))
2654 as_warn (_("Redefining entrynum for sysproc %s"), S_GET_NAME (symP
));
2657 TC_S_SET_SYSPROC (symP
, offs (exp
)); /* encode entry number */
2658 TC_S_FORCE_TO_SYSPROC (symP
);
2661 /*****************************************************************************
2663 Determine if a "shlo" instruction can be used to implement a "ldconst".
2664 This means that some number X < 32 can be shifted left to produce the
2665 constant of interest.
2667 Return the shift count, or 0 if we can't do it.
2668 Caller calculates X by shifting original constant right 'shift' places.
2670 *************************************************************************** */
2674 int n
; /* The constant of interest */
2676 int shift
; /* The shift count */
2680 /* Can't do it for negative numbers */
2684 /* Shift 'n' right until a 1 is about to be lost */
2685 for (shift
= 0; (n
& 1) == 0; shift
++)
2697 /* syntax: issue syntax error */
2702 as_bad (_("syntax error"));
2707 Return TRUE iff the target architecture supports the specified
2708 special-function register (sfr). */
2713 int n
; /* Number (0-31) of sfr */
2715 switch (architecture
)
2723 return ((0 <= n
) && (n
<= 4));
2726 return ((0 <= n
) && (n
<= 2));
2732 Return TRUE iff the target architecture supports the indicated
2733 class of instructions. */
2736 targ_has_iclass (ic
)
2737 /* Instruction class; one of:
2738 I_BASE, I_CX, I_DEC, I_KX, I_FP, I_MIL, I_CASIM, I_CX2, I_HX, I_HX2
2742 iclasses_seen
|= ic
;
2743 switch (architecture
)
2746 return ic
& (I_BASE
| I_KX
);
2748 return ic
& (I_BASE
| I_KX
| I_FP
| I_DEC
);
2750 return ic
& (I_BASE
| I_KX
| I_FP
| I_DEC
| I_MIL
);
2752 return ic
& (I_BASE
| I_CX
| I_CX2
| I_CASIM
);
2754 return ic
& (I_BASE
| I_CX2
| I_JX
);
2756 return ic
& (I_BASE
| I_CX2
| I_JX
| I_HX
);
2758 if ((iclasses_seen
& (I_KX
| I_FP
| I_DEC
| I_MIL
))
2759 && (iclasses_seen
& (I_CX
| I_CX2
)))
2761 as_warn (_("architecture of opcode conflicts with that of earlier instruction(s)"));
2762 iclasses_seen
&= ~ic
;
2768 /* Handle the MRI .endian pseudo-op. */
2777 name
= input_line_pointer
;
2778 c
= get_symbol_end ();
2779 if (strcasecmp (name
, "little") == 0)
2781 else if (strcasecmp (name
, "big") == 0)
2782 as_bad (_("big endian mode is not supported"));
2784 as_warn (_("ignoring unrecognized .endian type `%s'"), name
);
2786 *input_line_pointer
= c
;
2788 demand_empty_rest_of_line ();
2791 /* We have no need to default values of symbols. */
2794 md_undefined_symbol (name
)
2800 /* Exactly what point is a PC-relative offset relative TO?
2801 On the i960, they're relative to the address of the instruction,
2802 which we have set up as the address of the fixup too. */
2804 md_pcrel_from (fixP
)
2807 return fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
2811 md_apply_fix3 (fixP
, valP
, seg
)
2814 segT seg ATTRIBUTE_UNUSED
;
2816 long val
= * (long *) valP
;
2817 char *place
= fixP
->fx_where
+ fixP
->fx_frag
->fr_literal
;
2819 if (!fixP
->fx_bit_fixP
)
2821 #ifndef BFD_ASSEMBLER
2822 /* For callx, we always want to write out zero, and emit a
2823 symbolic relocation. */
2827 fixP
->fx_addnumber
= val
;
2830 md_number_to_imm (place
, val
, fixP
->fx_size
, fixP
);
2833 md_number_to_field (place
, val
, fixP
->fx_bit_fixP
);
2835 if (fixP
->fx_addsy
== NULL
&& fixP
->fx_pcrel
== 0)
2839 #if defined(OBJ_AOUT) | defined(OBJ_BOUT)
2841 tc_bout_fix_to_chars (where
, fixP
, segment_address_in_file
)
2844 relax_addressT segment_address_in_file
;
2846 static const unsigned char nbytes_r_length
[] = {42, 0, 1, 42, 2};
2847 struct relocation_info ri
;
2850 memset ((char *) &ri
, '\0', sizeof (ri
));
2851 symbolP
= fixP
->fx_addsy
;
2852 know (symbolP
!= 0 || fixP
->fx_r_type
!= NO_RELOC
);
2853 ri
.r_bsr
= fixP
->fx_bsr
; /*SAC LD RELAX HACK */
2854 /* These two 'cuz of NS32K */
2855 ri
.r_callj
= fixP
->fx_tcbit
;
2856 if (fixP
->fx_bit_fixP
)
2859 ri
.r_length
= nbytes_r_length
[fixP
->fx_size
];
2860 ri
.r_pcrel
= fixP
->fx_pcrel
;
2861 ri
.r_address
= fixP
->fx_frag
->fr_address
+ fixP
->fx_where
- segment_address_in_file
;
2863 if (fixP
->fx_r_type
!= NO_RELOC
)
2865 switch (fixP
->fx_r_type
)
2870 ri
.r_length
= fixP
->fx_size
- 1;
2884 else if (linkrelax
|| !S_IS_DEFINED (symbolP
) || fixP
->fx_bsr
)
2887 ri
.r_index
= symbolP
->sy_number
;
2892 ri
.r_index
= S_GET_TYPE (symbolP
);
2895 /* Output the relocation information in machine-dependent form. */
2896 md_ri_to_chars (where
, &ri
);
2899 #endif /* OBJ_AOUT or OBJ_BOUT */
2901 #if defined (OBJ_COFF) && defined (BFD)
2903 tc_coff_fix2rtype (fixP
)
2909 if (fixP
->fx_pcrel
== 0 && fixP
->fx_size
== 4)
2912 if (fixP
->fx_pcrel
!= 0 && fixP
->fx_size
== 4)
2920 tc_coff_sizemachdep (frag
)
2924 return frag
->fr_next
->fr_address
- frag
->fr_address
;
2930 /* Align an address by rounding it up to the specified boundary. */
2932 md_section_align (seg
, addr
)
2934 valueT addr
; /* Address to be rounded up */
2937 #ifdef BFD_ASSEMBLER
2938 align
= bfd_get_section_alignment (stdoutput
, seg
);
2940 align
= section_alignment
[(int) seg
];
2942 return (addr
+ (1 << align
) - 1) & (-1 << align
);
2945 extern int coff_flags
;
2949 tc_headers_hook (headers
)
2950 object_headers
*headers
;
2952 switch (architecture
)
2955 coff_flags
|= F_I960KA
;
2959 coff_flags
|= F_I960KB
;
2963 coff_flags
|= F_I960MC
;
2967 coff_flags
|= F_I960CA
;
2971 coff_flags
|= F_I960JX
;
2975 coff_flags
|= F_I960HX
;
2979 if (iclasses_seen
== I_BASE
)
2980 coff_flags
|= F_I960CORE
;
2981 else if (iclasses_seen
& I_CX
)
2982 coff_flags
|= F_I960CA
;
2983 else if (iclasses_seen
& I_HX
)
2984 coff_flags
|= F_I960HX
;
2985 else if (iclasses_seen
& I_JX
)
2986 coff_flags
|= F_I960JX
;
2987 else if (iclasses_seen
& I_CX2
)
2988 coff_flags
|= F_I960CA
;
2989 else if (iclasses_seen
& I_MIL
)
2990 coff_flags
|= F_I960MC
;
2991 else if (iclasses_seen
& (I_DEC
| I_FP
))
2992 coff_flags
|= F_I960KB
;
2994 coff_flags
|= F_I960KA
;
2998 if (flag_readonly_data_in_text
)
3000 headers
->filehdr
.f_magic
= I960RWMAGIC
;
3001 headers
->aouthdr
.magic
= OMAGIC
;
3005 headers
->filehdr
.f_magic
= I960ROMAGIC
;
3006 headers
->aouthdr
.magic
= NMAGIC
;
3007 } /* set magic numbers */
3010 #endif /* OBJ_COFF */
3012 #ifndef BFD_ASSEMBLER
3014 /* Things going on here:
3016 For bout, We need to assure a couple of simplifying
3017 assumptions about leafprocs for the linker: the leafproc
3018 entry symbols will be defined in the same assembly in
3019 which they're declared with the '.leafproc' directive;
3020 and if a leafproc has both 'call' and 'bal' entry points
3021 they are both global or both local.
3023 For coff, the call symbol has a second aux entry that
3024 contains the bal entry point. The bal symbol becomes a
3027 For coff representation, the call symbol has a second aux entry that
3028 contains the bal entry point. The bal symbol becomes a label. */
3031 tc_crawl_symbol_chain (headers
)
3032 object_headers
*headers
;
3036 for (symbolP
= symbol_rootP
; symbolP
; symbolP
= symbol_next (symbolP
))
3039 if (TC_S_IS_SYSPROC (symbolP
))
3041 /* second aux entry already contains the sysproc number */
3042 S_SET_NUMBER_AUXILIARY (symbolP
, 2);
3043 S_SET_STORAGE_CLASS (symbolP
, C_SCALL
);
3044 S_SET_DATA_TYPE (symbolP
, S_GET_DATA_TYPE (symbolP
) | (DT_FCN
<< N_BTSHFT
));
3046 } /* rewrite sysproc */
3047 #endif /* OBJ_COFF */
3049 if (!TC_S_IS_BALNAME (symbolP
) && !TC_S_IS_CALLNAME (symbolP
))
3052 } /* Not a leafproc symbol */
3054 if (!S_IS_DEFINED (symbolP
))
3056 as_bad (_("leafproc symbol '%s' undefined"), S_GET_NAME (symbolP
));
3057 } /* undefined leaf */
3059 if (TC_S_IS_CALLNAME (symbolP
))
3061 symbolS
*balP
= tc_get_bal_of_call (symbolP
);
3062 if (S_IS_EXTERNAL (symbolP
) != S_IS_EXTERNAL (balP
))
3064 S_SET_EXTERNAL (symbolP
);
3065 S_SET_EXTERNAL (balP
);
3066 as_warn (_("Warning: making leafproc entries %s and %s both global\n"),
3067 S_GET_NAME (symbolP
), S_GET_NAME (balP
));
3068 } /* externality mismatch */
3070 } /* walk the symbol chain */
3073 #endif /* ! BFD_ASSEMBLER */
3075 /* For aout or bout, the bal immediately follows the call.
3077 For coff, we cheat and store a pointer to the bal symbol in the
3078 second aux entry of the call. */
3089 tc_set_bal_of_call (callP
, balP
)
3093 know (TC_S_IS_CALLNAME (callP
));
3094 know (TC_S_IS_BALNAME (balP
));
3098 callP
->sy_tc
= balP
;
3099 S_SET_NUMBER_AUXILIARY (callP
, 2);
3101 #else /* ! OBJ_COFF */
3104 /* If the 'bal' entry doesn't immediately follow the 'call'
3105 * symbol, unlink it from the symbol list and re-insert it.
3107 if (symbol_next (callP
) != balP
)
3109 symbol_remove (balP
, &symbol_rootP
, &symbol_lastP
);
3110 symbol_append (balP
, callP
, &symbol_rootP
, &symbol_lastP
);
3111 } /* if not in order */
3113 #else /* ! OBJ_ABOUT */
3114 as_fatal ("Only supported for a.out, b.out, or COFF");
3115 #endif /* ! OBJ_ABOUT */
3116 #endif /* ! OBJ_COFF */
3120 tc_get_bal_of_call (callP
)
3125 know (TC_S_IS_CALLNAME (callP
));
3128 retval
= callP
->sy_tc
;
3131 retval
= symbol_next (callP
);
3133 as_fatal ("Only supported for a.out, b.out, or COFF");
3134 #endif /* ! OBJ_ABOUT */
3135 #endif /* ! OBJ_COFF */
3137 know (TC_S_IS_BALNAME (retval
));
3139 } /* _tc_get_bal_of_call() */
3142 tc_coff_symbol_emit_hook (symbolP
)
3145 if (TC_S_IS_CALLNAME (symbolP
))
3148 symbolS
*balP
= tc_get_bal_of_call (symbolP
);
3151 /* second aux entry contains the bal entry point */
3152 S_SET_NUMBER_AUXILIARY (symbolP
, 2);
3154 symbolP
->sy_symbol
.ost_auxent
[1].x_bal
.x_balntry
= S_GET_VALUE (balP
);
3155 if (S_GET_STORAGE_CLASS (symbolP
) == C_EXT
)
3156 S_SET_STORAGE_CLASS (symbolP
, C_LEAFEXT
);
3158 S_SET_STORAGE_CLASS (symbolP
, C_LEAFSTAT
);
3159 S_SET_DATA_TYPE (symbolP
, S_GET_DATA_TYPE (symbolP
) | (DT_FCN
<< N_BTSHFT
));
3160 /* fix up the bal symbol */
3161 S_SET_STORAGE_CLASS (balP
, C_LABEL
);
3162 #endif /* OBJ_COFF */
3163 } /* only on calls */
3167 i960_handle_align (fragp
)
3175 as_bad (_("option --link-relax is only supported in b.out format"));
3181 /* The text section "ends" with another alignment reloc, to which we
3182 aren't adding padding. */
3183 if (fragp
->fr_next
== text_last_frag
3184 || fragp
->fr_next
== data_last_frag
)
3187 /* alignment directive */
3188 fix_new (fragp
, fragp
->fr_fix
, fragp
->fr_offset
, 0, 0, 0,
3189 (int) fragp
->fr_type
);
3190 #endif /* OBJ_BOUT */
3194 i960_validate_fix (fixP
, this_segment_type
, add_symbolPP
)
3196 segT this_segment_type
;
3197 symbolS
**add_symbolPP
;
3199 #define add_symbolP (*add_symbolPP)
3200 if (fixP
->fx_tcbit
&& TC_S_IS_CALLNAME (add_symbolP
))
3202 /* Relocation should be done via the associated 'bal'
3203 entry point symbol. */
3205 if (!TC_S_IS_BALNAME (tc_get_bal_of_call (add_symbolP
)))
3207 as_bad (_("No 'bal' entry point for leafproc %s"),
3208 S_GET_NAME (add_symbolP
));
3211 fixP
->fx_addsy
= add_symbolP
= tc_get_bal_of_call (add_symbolP
);
3214 /* Still have to work out other conditions for these tests. */
3218 as_bad (_("callj to difference of two symbols"));
3222 if ((int) fixP
->fx_bit_fixP
== 13)
3224 /* This is a COBR instruction. They have only a 13-bit
3225 displacement and are only to be used for local branches:
3226 flag as error, don't generate relocation. */
3227 as_bad (_("can't use COBR format with external label"));
3228 fixP
->fx_addsy
= NULL
; /* No relocations please. */
3237 #ifdef BFD_ASSEMBLER
3242 tc_bfd_fix2rtype (fixP
)
3250 if (fixP
->fx_pcrel
== 0 && fixP
->fx_size
== 4)
3251 return BFD_RELOC_32
;
3253 if (fixP
->fx_pcrel
!= 0 && fixP
->fx_size
== 4)
3254 return BFD_RELOC_24_PCREL
;
3260 /* Translate internal representation of relocation info to BFD target
3263 FIXME: To what extent can we get all relevant targets to use this? */
3266 tc_gen_reloc (section
, fixP
)
3272 reloc
= (arelent
*) xmalloc (sizeof (arelent
));
3274 /* HACK: Is this right? */
3275 fixP
->fx_r_type
= tc_bfd_fix2rtype (fixP
);
3277 reloc
->howto
= bfd_reloc_type_lookup (stdoutput
, fixP
->fx_r_type
);
3278 if (reloc
->howto
== (reloc_howto_type
*) NULL
)
3280 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
3281 "internal error: can't export reloc type %d (`%s')",
3283 bfd_get_reloc_code_name (fixP
->fx_r_type
));
3287 assert (!fixP
->fx_pcrel
== !reloc
->howto
->pc_relative
);
3289 reloc
->sym_ptr_ptr
= (asymbol
**) xmalloc (sizeof (asymbol
*));
3290 *reloc
->sym_ptr_ptr
= symbol_get_bfdsym (fixP
->fx_addsy
);
3291 reloc
->address
= fixP
->fx_frag
->fr_address
+ fixP
->fx_where
;
3292 reloc
->addend
= fixP
->fx_addnumber
;
3297 /* end from cgen.c */
3299 #endif /* BFD_ASSEMBLER */
3301 /* end of tc-i960.c */