Fix region length calculations when regions end with .align padding.
[deliverable/binutils-gdb.git] / gas / config / tc-ia64.c
1 /* tc-ia64.c -- Assembler for the HP/Intel IA-64 architecture.
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /*
23 TODO:
24
25 - optional operands
26 - directives:
27 .eb
28 .estate
29 .lb
30 .popsection
31 .previous
32 .psr
33 .pushsection
34 - labels are wrong if automatic alignment is introduced
35 (e.g., checkout the second real10 definition in test-data.s)
36 - DV-related stuff:
37 <reg>.safe_across_calls and any other DV-related directives I don't
38 have documentation for.
39 verify mod-sched-brs reads/writes are checked/marked (and other
40 notes)
41
42 */
43
44 #include "as.h"
45 #include "safe-ctype.h"
46 #include "dwarf2dbg.h"
47 #include "subsegs.h"
48
49 #include "opcode/ia64.h"
50
51 #include "elf/ia64.h"
52
53 #define NELEMS(a) ((int) (sizeof (a)/sizeof ((a)[0])))
54 #define MIN(a,b) ((a) < (b) ? (a) : (b))
55
56 #define NUM_SLOTS 4
57 #define PREV_SLOT md.slot[(md.curr_slot + NUM_SLOTS - 1) % NUM_SLOTS]
58 #define CURR_SLOT md.slot[md.curr_slot]
59
60 #define O_pseudo_fixup (O_max + 1)
61
62 enum special_section
63 {
64 /* IA-64 ABI section pseudo-ops. */
65 SPECIAL_SECTION_BSS = 0,
66 SPECIAL_SECTION_SBSS,
67 SPECIAL_SECTION_SDATA,
68 SPECIAL_SECTION_RODATA,
69 SPECIAL_SECTION_COMMENT,
70 SPECIAL_SECTION_UNWIND,
71 SPECIAL_SECTION_UNWIND_INFO,
72 /* HPUX specific section pseudo-ops. */
73 SPECIAL_SECTION_INIT_ARRAY,
74 SPECIAL_SECTION_FINI_ARRAY,
75 };
76
77 enum reloc_func
78 {
79 FUNC_DTP_MODULE,
80 FUNC_DTP_RELATIVE,
81 FUNC_FPTR_RELATIVE,
82 FUNC_GP_RELATIVE,
83 FUNC_LT_RELATIVE,
84 FUNC_LT_RELATIVE_X,
85 FUNC_PC_RELATIVE,
86 FUNC_PLT_RELATIVE,
87 FUNC_SEC_RELATIVE,
88 FUNC_SEG_RELATIVE,
89 FUNC_TP_RELATIVE,
90 FUNC_LTV_RELATIVE,
91 FUNC_LT_FPTR_RELATIVE,
92 FUNC_LT_DTP_MODULE,
93 FUNC_LT_DTP_RELATIVE,
94 FUNC_LT_TP_RELATIVE,
95 FUNC_IPLT_RELOC,
96 };
97
98 enum reg_symbol
99 {
100 REG_GR = 0,
101 REG_FR = (REG_GR + 128),
102 REG_AR = (REG_FR + 128),
103 REG_CR = (REG_AR + 128),
104 REG_P = (REG_CR + 128),
105 REG_BR = (REG_P + 64),
106 REG_IP = (REG_BR + 8),
107 REG_CFM,
108 REG_PR,
109 REG_PR_ROT,
110 REG_PSR,
111 REG_PSR_L,
112 REG_PSR_UM,
113 /* The following are pseudo-registers for use by gas only. */
114 IND_CPUID,
115 IND_DBR,
116 IND_DTR,
117 IND_ITR,
118 IND_IBR,
119 IND_MEM,
120 IND_MSR,
121 IND_PKR,
122 IND_PMC,
123 IND_PMD,
124 IND_RR,
125 /* The following pseudo-registers are used for unwind directives only: */
126 REG_PSP,
127 REG_PRIUNAT,
128 REG_NUM
129 };
130
131 enum dynreg_type
132 {
133 DYNREG_GR = 0, /* dynamic general purpose register */
134 DYNREG_FR, /* dynamic floating point register */
135 DYNREG_PR, /* dynamic predicate register */
136 DYNREG_NUM_TYPES
137 };
138
139 enum operand_match_result
140 {
141 OPERAND_MATCH,
142 OPERAND_OUT_OF_RANGE,
143 OPERAND_MISMATCH
144 };
145
146 /* On the ia64, we can't know the address of a text label until the
147 instructions are packed into a bundle. To handle this, we keep
148 track of the list of labels that appear in front of each
149 instruction. */
150 struct label_fix
151 {
152 struct label_fix *next;
153 struct symbol *sym;
154 };
155
156 extern int target_big_endian;
157
158 void (*ia64_number_to_chars) PARAMS ((char *, valueT, int));
159
160 static void ia64_float_to_chars_bigendian
161 PARAMS ((char *, LITTLENUM_TYPE *, int));
162 static void ia64_float_to_chars_littleendian
163 PARAMS ((char *, LITTLENUM_TYPE *, int));
164 static void (*ia64_float_to_chars)
165 PARAMS ((char *, LITTLENUM_TYPE *, int));
166
167 static struct hash_control *alias_hash;
168 static struct hash_control *alias_name_hash;
169 static struct hash_control *secalias_hash;
170 static struct hash_control *secalias_name_hash;
171
172 /* Characters which always start a comment. */
173 const char comment_chars[] = "";
174
175 /* Characters which start a comment at the beginning of a line. */
176 const char line_comment_chars[] = "#";
177
178 /* Characters which may be used to separate multiple commands on a
179 single line. */
180 const char line_separator_chars[] = ";";
181
182 /* Characters which are used to indicate an exponent in a floating
183 point number. */
184 const char EXP_CHARS[] = "eE";
185
186 /* Characters which mean that a number is a floating point constant,
187 as in 0d1.0. */
188 const char FLT_CHARS[] = "rRsSfFdDxXpP";
189
190 /* ia64-specific option processing: */
191
192 const char *md_shortopts = "m:N:x::";
193
194 struct option md_longopts[] =
195 {
196 #define OPTION_MCONSTANT_GP (OPTION_MD_BASE + 1)
197 {"mconstant-gp", no_argument, NULL, OPTION_MCONSTANT_GP},
198 #define OPTION_MAUTO_PIC (OPTION_MD_BASE + 2)
199 {"mauto-pic", no_argument, NULL, OPTION_MAUTO_PIC}
200 };
201
202 size_t md_longopts_size = sizeof (md_longopts);
203
204 static struct
205 {
206 struct hash_control *pseudo_hash; /* pseudo opcode hash table */
207 struct hash_control *reg_hash; /* register name hash table */
208 struct hash_control *dynreg_hash; /* dynamic register hash table */
209 struct hash_control *const_hash; /* constant hash table */
210 struct hash_control *entry_hash; /* code entry hint hash table */
211
212 symbolS *regsym[REG_NUM];
213
214 /* If X_op is != O_absent, the registername for the instruction's
215 qualifying predicate. If NULL, p0 is assumed for instructions
216 that are predicatable. */
217 expressionS qp;
218
219 unsigned int
220 manual_bundling : 1,
221 debug_dv: 1,
222 detect_dv: 1,
223 explicit_mode : 1, /* which mode we're in */
224 default_explicit_mode : 1, /* which mode is the default */
225 mode_explicitly_set : 1, /* was the current mode explicitly set? */
226 auto_align : 1,
227 keep_pending_output : 1;
228
229 /* Each bundle consists of up to three instructions. We keep
230 track of four most recent instructions so we can correctly set
231 the end_of_insn_group for the last instruction in a bundle. */
232 int curr_slot;
233 int num_slots_in_use;
234 struct slot
235 {
236 unsigned int
237 end_of_insn_group : 1,
238 manual_bundling_on : 1,
239 manual_bundling_off : 1;
240 signed char user_template; /* user-selected template, if any */
241 unsigned char qp_regno; /* qualifying predicate */
242 /* This duplicates a good fraction of "struct fix" but we
243 can't use a "struct fix" instead since we can't call
244 fix_new_exp() until we know the address of the instruction. */
245 int num_fixups;
246 struct insn_fix
247 {
248 bfd_reloc_code_real_type code;
249 enum ia64_opnd opnd; /* type of operand in need of fix */
250 unsigned int is_pcrel : 1; /* is operand pc-relative? */
251 expressionS expr; /* the value to be inserted */
252 }
253 fixup[2]; /* at most two fixups per insn */
254 struct ia64_opcode *idesc;
255 struct label_fix *label_fixups;
256 struct label_fix *tag_fixups;
257 struct unw_rec_list *unwind_record; /* Unwind directive. */
258 expressionS opnd[6];
259 char *src_file;
260 unsigned int src_line;
261 struct dwarf2_line_info debug_line;
262 }
263 slot[NUM_SLOTS];
264
265 segT last_text_seg;
266
267 struct dynreg
268 {
269 struct dynreg *next; /* next dynamic register */
270 const char *name;
271 unsigned short base; /* the base register number */
272 unsigned short num_regs; /* # of registers in this set */
273 }
274 *dynreg[DYNREG_NUM_TYPES], in, loc, out, rot;
275
276 flagword flags; /* ELF-header flags */
277
278 struct mem_offset {
279 unsigned hint:1; /* is this hint currently valid? */
280 bfd_vma offset; /* mem.offset offset */
281 bfd_vma base; /* mem.offset base */
282 } mem_offset;
283
284 int path; /* number of alt. entry points seen */
285 const char **entry_labels; /* labels of all alternate paths in
286 the current DV-checking block. */
287 int maxpaths; /* size currently allocated for
288 entry_labels */
289 /* Support for hardware errata workarounds. */
290
291 /* Record data about the last three insn groups. */
292 struct group
293 {
294 /* B-step workaround.
295 For each predicate register, this is set if the corresponding insn
296 group conditionally sets this register with one of the affected
297 instructions. */
298 int p_reg_set[64];
299 /* B-step workaround.
300 For each general register, this is set if the corresponding insn
301 a) is conditional one one of the predicate registers for which
302 P_REG_SET is 1 in the corresponding entry of the previous group,
303 b) sets this general register with one of the affected
304 instructions. */
305 int g_reg_set_conditionally[128];
306 } last_groups[3];
307 int group_idx;
308
309 int pointer_size; /* size in bytes of a pointer */
310 int pointer_size_shift; /* shift size of a pointer for alignment */
311 }
312 md;
313
314 /* application registers: */
315
316 #define AR_K0 0
317 #define AR_K7 7
318 #define AR_RSC 16
319 #define AR_BSP 17
320 #define AR_BSPSTORE 18
321 #define AR_RNAT 19
322 #define AR_UNAT 36
323 #define AR_FPSR 40
324 #define AR_ITC 44
325 #define AR_PFS 64
326 #define AR_LC 65
327
328 static const struct
329 {
330 const char *name;
331 int regnum;
332 }
333 ar[] =
334 {
335 {"ar.k0", 0}, {"ar.k1", 1}, {"ar.k2", 2}, {"ar.k3", 3},
336 {"ar.k4", 4}, {"ar.k5", 5}, {"ar.k6", 6}, {"ar.k7", 7},
337 {"ar.rsc", 16}, {"ar.bsp", 17},
338 {"ar.bspstore", 18}, {"ar.rnat", 19},
339 {"ar.fcr", 21}, {"ar.eflag", 24},
340 {"ar.csd", 25}, {"ar.ssd", 26},
341 {"ar.cflg", 27}, {"ar.fsr", 28},
342 {"ar.fir", 29}, {"ar.fdr", 30},
343 {"ar.ccv", 32}, {"ar.unat", 36},
344 {"ar.fpsr", 40}, {"ar.itc", 44},
345 {"ar.pfs", 64}, {"ar.lc", 65},
346 {"ar.ec", 66},
347 };
348
349 #define CR_IPSR 16
350 #define CR_ISR 17
351 #define CR_IIP 19
352 #define CR_IFA 20
353 #define CR_ITIR 21
354 #define CR_IIPA 22
355 #define CR_IFS 23
356 #define CR_IIM 24
357 #define CR_IHA 25
358 #define CR_IVR 65
359 #define CR_TPR 66
360 #define CR_EOI 67
361 #define CR_IRR0 68
362 #define CR_IRR3 71
363 #define CR_LRR0 80
364 #define CR_LRR1 81
365
366 /* control registers: */
367 static const struct
368 {
369 const char *name;
370 int regnum;
371 }
372 cr[] =
373 {
374 {"cr.dcr", 0},
375 {"cr.itm", 1},
376 {"cr.iva", 2},
377 {"cr.pta", 8},
378 {"cr.gpta", 9},
379 {"cr.ipsr", 16},
380 {"cr.isr", 17},
381 {"cr.iip", 19},
382 {"cr.ifa", 20},
383 {"cr.itir", 21},
384 {"cr.iipa", 22},
385 {"cr.ifs", 23},
386 {"cr.iim", 24},
387 {"cr.iha", 25},
388 {"cr.lid", 64},
389 {"cr.ivr", 65},
390 {"cr.tpr", 66},
391 {"cr.eoi", 67},
392 {"cr.irr0", 68},
393 {"cr.irr1", 69},
394 {"cr.irr2", 70},
395 {"cr.irr3", 71},
396 {"cr.itv", 72},
397 {"cr.pmv", 73},
398 {"cr.cmcv", 74},
399 {"cr.lrr0", 80},
400 {"cr.lrr1", 81}
401 };
402
403 #define PSR_MFL 4
404 #define PSR_IC 13
405 #define PSR_DFL 18
406 #define PSR_CPL 32
407
408 static const struct const_desc
409 {
410 const char *name;
411 valueT value;
412 }
413 const_bits[] =
414 {
415 /* PSR constant masks: */
416
417 /* 0: reserved */
418 {"psr.be", ((valueT) 1) << 1},
419 {"psr.up", ((valueT) 1) << 2},
420 {"psr.ac", ((valueT) 1) << 3},
421 {"psr.mfl", ((valueT) 1) << 4},
422 {"psr.mfh", ((valueT) 1) << 5},
423 /* 6-12: reserved */
424 {"psr.ic", ((valueT) 1) << 13},
425 {"psr.i", ((valueT) 1) << 14},
426 {"psr.pk", ((valueT) 1) << 15},
427 /* 16: reserved */
428 {"psr.dt", ((valueT) 1) << 17},
429 {"psr.dfl", ((valueT) 1) << 18},
430 {"psr.dfh", ((valueT) 1) << 19},
431 {"psr.sp", ((valueT) 1) << 20},
432 {"psr.pp", ((valueT) 1) << 21},
433 {"psr.di", ((valueT) 1) << 22},
434 {"psr.si", ((valueT) 1) << 23},
435 {"psr.db", ((valueT) 1) << 24},
436 {"psr.lp", ((valueT) 1) << 25},
437 {"psr.tb", ((valueT) 1) << 26},
438 {"psr.rt", ((valueT) 1) << 27},
439 /* 28-31: reserved */
440 /* 32-33: cpl (current privilege level) */
441 {"psr.is", ((valueT) 1) << 34},
442 {"psr.mc", ((valueT) 1) << 35},
443 {"psr.it", ((valueT) 1) << 36},
444 {"psr.id", ((valueT) 1) << 37},
445 {"psr.da", ((valueT) 1) << 38},
446 {"psr.dd", ((valueT) 1) << 39},
447 {"psr.ss", ((valueT) 1) << 40},
448 /* 41-42: ri (restart instruction) */
449 {"psr.ed", ((valueT) 1) << 43},
450 {"psr.bn", ((valueT) 1) << 44},
451 };
452
453 /* indirect register-sets/memory: */
454
455 static const struct
456 {
457 const char *name;
458 int regnum;
459 }
460 indirect_reg[] =
461 {
462 { "CPUID", IND_CPUID },
463 { "cpuid", IND_CPUID },
464 { "dbr", IND_DBR },
465 { "dtr", IND_DTR },
466 { "itr", IND_ITR },
467 { "ibr", IND_IBR },
468 { "msr", IND_MSR },
469 { "pkr", IND_PKR },
470 { "pmc", IND_PMC },
471 { "pmd", IND_PMD },
472 { "rr", IND_RR },
473 };
474
475 /* Pseudo functions used to indicate relocation types (these functions
476 start with an at sign (@). */
477 static struct
478 {
479 const char *name;
480 enum pseudo_type
481 {
482 PSEUDO_FUNC_NONE,
483 PSEUDO_FUNC_RELOC,
484 PSEUDO_FUNC_CONST,
485 PSEUDO_FUNC_REG,
486 PSEUDO_FUNC_FLOAT
487 }
488 type;
489 union
490 {
491 unsigned long ival;
492 symbolS *sym;
493 }
494 u;
495 }
496 pseudo_func[] =
497 {
498 /* reloc pseudo functions (these must come first!): */
499 { "dtpmod", PSEUDO_FUNC_RELOC, { 0 } },
500 { "dtprel", PSEUDO_FUNC_RELOC, { 0 } },
501 { "fptr", PSEUDO_FUNC_RELOC, { 0 } },
502 { "gprel", PSEUDO_FUNC_RELOC, { 0 } },
503 { "ltoff", PSEUDO_FUNC_RELOC, { 0 } },
504 { "ltoffx", PSEUDO_FUNC_RELOC, { 0 } },
505 { "pcrel", PSEUDO_FUNC_RELOC, { 0 } },
506 { "pltoff", PSEUDO_FUNC_RELOC, { 0 } },
507 { "secrel", PSEUDO_FUNC_RELOC, { 0 } },
508 { "segrel", PSEUDO_FUNC_RELOC, { 0 } },
509 { "tprel", PSEUDO_FUNC_RELOC, { 0 } },
510 { "ltv", PSEUDO_FUNC_RELOC, { 0 } },
511 { "", 0, { 0 } }, /* placeholder for FUNC_LT_FPTR_RELATIVE */
512 { "", 0, { 0 } }, /* placeholder for FUNC_LT_DTP_MODULE */
513 { "", 0, { 0 } }, /* placeholder for FUNC_LT_DTP_RELATIVE */
514 { "", 0, { 0 } }, /* placeholder for FUNC_LT_TP_RELATIVE */
515 { "iplt", PSEUDO_FUNC_RELOC, { 0 } },
516
517 /* mbtype4 constants: */
518 { "alt", PSEUDO_FUNC_CONST, { 0xa } },
519 { "brcst", PSEUDO_FUNC_CONST, { 0x0 } },
520 { "mix", PSEUDO_FUNC_CONST, { 0x8 } },
521 { "rev", PSEUDO_FUNC_CONST, { 0xb } },
522 { "shuf", PSEUDO_FUNC_CONST, { 0x9 } },
523
524 /* fclass constants: */
525 { "nat", PSEUDO_FUNC_CONST, { 0x100 } },
526 { "qnan", PSEUDO_FUNC_CONST, { 0x080 } },
527 { "snan", PSEUDO_FUNC_CONST, { 0x040 } },
528 { "pos", PSEUDO_FUNC_CONST, { 0x001 } },
529 { "neg", PSEUDO_FUNC_CONST, { 0x002 } },
530 { "zero", PSEUDO_FUNC_CONST, { 0x004 } },
531 { "unorm", PSEUDO_FUNC_CONST, { 0x008 } },
532 { "norm", PSEUDO_FUNC_CONST, { 0x010 } },
533 { "inf", PSEUDO_FUNC_CONST, { 0x020 } },
534
535 { "natval", PSEUDO_FUNC_CONST, { 0x100 } }, /* old usage */
536
537 /* hint constants: */
538 { "pause", PSEUDO_FUNC_CONST, { 0x0 } },
539
540 /* unwind-related constants: */
541 { "svr4", PSEUDO_FUNC_CONST, { ELFOSABI_NONE } },
542 { "hpux", PSEUDO_FUNC_CONST, { ELFOSABI_HPUX } },
543 { "nt", PSEUDO_FUNC_CONST, { 2 } }, /* conflicts w/ELFOSABI_NETBSD */
544 { "linux", PSEUDO_FUNC_CONST, { ELFOSABI_LINUX } },
545 { "freebsd", PSEUDO_FUNC_CONST, { ELFOSABI_FREEBSD } },
546 { "openvms", PSEUDO_FUNC_CONST, { ELFOSABI_OPENVMS } },
547 { "nsk", PSEUDO_FUNC_CONST, { ELFOSABI_NSK } },
548
549 /* unwind-related registers: */
550 { "priunat",PSEUDO_FUNC_REG, { REG_PRIUNAT } }
551 };
552
553 /* 41-bit nop opcodes (one per unit): */
554 static const bfd_vma nop[IA64_NUM_UNITS] =
555 {
556 0x0000000000LL, /* NIL => break 0 */
557 0x0008000000LL, /* I-unit nop */
558 0x0008000000LL, /* M-unit nop */
559 0x4000000000LL, /* B-unit nop */
560 0x0008000000LL, /* F-unit nop */
561 0x0008000000LL, /* L-"unit" nop */
562 0x0008000000LL, /* X-unit nop */
563 };
564
565 /* Can't be `const' as it's passed to input routines (which have the
566 habit of setting temporary sentinels. */
567 static char special_section_name[][20] =
568 {
569 {".bss"}, {".sbss"}, {".sdata"}, {".rodata"}, {".comment"},
570 {".IA_64.unwind"}, {".IA_64.unwind_info"},
571 {".init_array"}, {".fini_array"}
572 };
573
574 static char *special_linkonce_name[] =
575 {
576 ".gnu.linkonce.ia64unw.", ".gnu.linkonce.ia64unwi."
577 };
578
579 /* The best template for a particular sequence of up to three
580 instructions: */
581 #define N IA64_NUM_TYPES
582 static unsigned char best_template[N][N][N];
583 #undef N
584
585 /* Resource dependencies currently in effect */
586 static struct rsrc {
587 int depind; /* dependency index */
588 const struct ia64_dependency *dependency; /* actual dependency */
589 unsigned specific:1, /* is this a specific bit/regno? */
590 link_to_qp_branch:1; /* will a branch on the same QP clear it?*/
591 int index; /* specific regno/bit within dependency */
592 int note; /* optional qualifying note (0 if none) */
593 #define STATE_NONE 0
594 #define STATE_STOP 1
595 #define STATE_SRLZ 2
596 int insn_srlz; /* current insn serialization state */
597 int data_srlz; /* current data serialization state */
598 int qp_regno; /* qualifying predicate for this usage */
599 char *file; /* what file marked this dependency */
600 unsigned int line; /* what line marked this dependency */
601 struct mem_offset mem_offset; /* optional memory offset hint */
602 enum { CMP_NONE, CMP_OR, CMP_AND } cmp_type; /* OR or AND compare? */
603 int path; /* corresponding code entry index */
604 } *regdeps = NULL;
605 static int regdepslen = 0;
606 static int regdepstotlen = 0;
607 static const char *dv_mode[] = { "RAW", "WAW", "WAR" };
608 static const char *dv_sem[] = { "none", "implied", "impliedf",
609 "data", "instr", "specific", "stop", "other" };
610 static const char *dv_cmp_type[] = { "none", "OR", "AND" };
611
612 /* Current state of PR mutexation */
613 static struct qpmutex {
614 valueT prmask;
615 int path;
616 } *qp_mutexes = NULL; /* QP mutex bitmasks */
617 static int qp_mutexeslen = 0;
618 static int qp_mutexestotlen = 0;
619 static valueT qp_safe_across_calls = 0;
620
621 /* Current state of PR implications */
622 static struct qp_imply {
623 unsigned p1:6;
624 unsigned p2:6;
625 unsigned p2_branched:1;
626 int path;
627 } *qp_implies = NULL;
628 static int qp_implieslen = 0;
629 static int qp_impliestotlen = 0;
630
631 /* Keep track of static GR values so that indirect register usage can
632 sometimes be tracked. */
633 static struct gr {
634 unsigned known:1;
635 int path;
636 valueT value;
637 } gr_values[128] = {{ 1, 0, 0 }};
638
639 /* These are the routines required to output the various types of
640 unwind records. */
641
642 /* A slot_number is a frag address plus the slot index (0-2). We use the
643 frag address here so that if there is a section switch in the middle of
644 a function, then instructions emitted to a different section are not
645 counted. Since there may be more than one frag for a function, this
646 means we also need to keep track of which frag this address belongs to
647 so we can compute inter-frag distances. This also nicely solves the
648 problem with nops emitted for align directives, which can't easily be
649 counted, but can easily be derived from frag sizes. */
650
651 typedef struct unw_rec_list {
652 unwind_record r;
653 unsigned long slot_number;
654 fragS *slot_frag;
655 unsigned long next_slot_number;
656 fragS *next_slot_frag;
657 struct unw_rec_list *next;
658 } unw_rec_list;
659
660 #define SLOT_NUM_NOT_SET (unsigned)-1
661
662 /* Linked list of saved prologue counts. A very poor
663 implementation of a map from label numbers to prologue counts. */
664 typedef struct label_prologue_count
665 {
666 struct label_prologue_count *next;
667 unsigned long label_number;
668 unsigned int prologue_count;
669 } label_prologue_count;
670
671 static struct
672 {
673 /* Maintain a list of unwind entries for the current function. */
674 unw_rec_list *list;
675 unw_rec_list *tail;
676
677 /* Any unwind entires that should be attached to the current slot
678 that an insn is being constructed for. */
679 unw_rec_list *current_entry;
680
681 /* These are used to create the unwind table entry for this function. */
682 symbolS *proc_start;
683 symbolS *proc_end;
684 symbolS *info; /* pointer to unwind info */
685 symbolS *personality_routine;
686 segT saved_text_seg;
687 subsegT saved_text_subseg;
688 unsigned int force_unwind_entry : 1; /* force generation of unwind entry? */
689
690 /* TRUE if processing unwind directives in a prologue region. */
691 int prologue;
692 int prologue_mask;
693 unsigned int prologue_count; /* number of .prologues seen so far */
694 /* Prologue counts at previous .label_state directives. */
695 struct label_prologue_count * saved_prologue_counts;
696 } unwind;
697
698 typedef void (*vbyte_func) PARAMS ((int, char *, char *));
699
700 /* Forward declarations: */
701 static int ar_is_in_integer_unit PARAMS ((int regnum));
702 static void set_section PARAMS ((char *name));
703 static unsigned int set_regstack PARAMS ((unsigned int, unsigned int,
704 unsigned int, unsigned int));
705 static void dot_radix PARAMS ((int));
706 static void dot_special_section PARAMS ((int));
707 static void dot_proc PARAMS ((int));
708 static void dot_fframe PARAMS ((int));
709 static void dot_vframe PARAMS ((int));
710 static void dot_vframesp PARAMS ((int));
711 static void dot_vframepsp PARAMS ((int));
712 static void dot_save PARAMS ((int));
713 static void dot_restore PARAMS ((int));
714 static void dot_restorereg PARAMS ((int));
715 static void dot_restorereg_p PARAMS ((int));
716 static void dot_handlerdata PARAMS ((int));
717 static void dot_unwentry PARAMS ((int));
718 static void dot_altrp PARAMS ((int));
719 static void dot_savemem PARAMS ((int));
720 static void dot_saveg PARAMS ((int));
721 static void dot_savef PARAMS ((int));
722 static void dot_saveb PARAMS ((int));
723 static void dot_savegf PARAMS ((int));
724 static void dot_spill PARAMS ((int));
725 static void dot_spillreg PARAMS ((int));
726 static void dot_spillmem PARAMS ((int));
727 static void dot_spillreg_p PARAMS ((int));
728 static void dot_spillmem_p PARAMS ((int));
729 static void dot_label_state PARAMS ((int));
730 static void dot_copy_state PARAMS ((int));
731 static void dot_unwabi PARAMS ((int));
732 static void dot_personality PARAMS ((int));
733 static void dot_body PARAMS ((int));
734 static void dot_prologue PARAMS ((int));
735 static void dot_endp PARAMS ((int));
736 static void dot_template PARAMS ((int));
737 static void dot_regstk PARAMS ((int));
738 static void dot_rot PARAMS ((int));
739 static void dot_byteorder PARAMS ((int));
740 static void dot_psr PARAMS ((int));
741 static void dot_alias PARAMS ((int));
742 static void dot_ln PARAMS ((int));
743 static char *parse_section_name PARAMS ((void));
744 static void dot_xdata PARAMS ((int));
745 static void stmt_float_cons PARAMS ((int));
746 static void stmt_cons_ua PARAMS ((int));
747 static void dot_xfloat_cons PARAMS ((int));
748 static void dot_xstringer PARAMS ((int));
749 static void dot_xdata_ua PARAMS ((int));
750 static void dot_xfloat_cons_ua PARAMS ((int));
751 static void print_prmask PARAMS ((valueT mask));
752 static void dot_pred_rel PARAMS ((int));
753 static void dot_reg_val PARAMS ((int));
754 static void dot_dv_mode PARAMS ((int));
755 static void dot_entry PARAMS ((int));
756 static void dot_mem_offset PARAMS ((int));
757 static void add_unwind_entry PARAMS((unw_rec_list *ptr));
758 static symbolS *declare_register PARAMS ((const char *name, int regnum));
759 static void declare_register_set PARAMS ((const char *, int, int));
760 static unsigned int operand_width PARAMS ((enum ia64_opnd));
761 static enum operand_match_result operand_match PARAMS ((const struct ia64_opcode *idesc,
762 int index,
763 expressionS *e));
764 static int parse_operand PARAMS ((expressionS *e));
765 static struct ia64_opcode * parse_operands PARAMS ((struct ia64_opcode *));
766 static int errata_nop_necessary_p PARAMS ((struct slot *, enum ia64_unit));
767 static void build_insn PARAMS ((struct slot *, bfd_vma *));
768 static void emit_one_bundle PARAMS ((void));
769 static void fix_insn PARAMS ((fixS *, const struct ia64_operand *, valueT));
770 static bfd_reloc_code_real_type ia64_gen_real_reloc_type PARAMS ((struct symbol *sym,
771 bfd_reloc_code_real_type r_type));
772 static void insn_group_break PARAMS ((int, int, int));
773 static void mark_resource PARAMS ((struct ia64_opcode *, const struct ia64_dependency *,
774 struct rsrc *, int depind, int path));
775 static void add_qp_mutex PARAMS((valueT mask));
776 static void add_qp_imply PARAMS((int p1, int p2));
777 static void clear_qp_branch_flag PARAMS((valueT mask));
778 static void clear_qp_mutex PARAMS((valueT mask));
779 static void clear_qp_implies PARAMS((valueT p1_mask, valueT p2_mask));
780 static int has_suffix_p PARAMS((const char *, const char *));
781 static void clear_register_values PARAMS ((void));
782 static void print_dependency PARAMS ((const char *action, int depind));
783 static void instruction_serialization PARAMS ((void));
784 static void data_serialization PARAMS ((void));
785 static void remove_marked_resource PARAMS ((struct rsrc *));
786 static int is_conditional_branch PARAMS ((struct ia64_opcode *));
787 static int is_taken_branch PARAMS ((struct ia64_opcode *));
788 static int is_interruption_or_rfi PARAMS ((struct ia64_opcode *));
789 static int depends_on PARAMS ((int, struct ia64_opcode *));
790 static int specify_resource PARAMS ((const struct ia64_dependency *,
791 struct ia64_opcode *, int, struct rsrc [], int, int));
792 static int check_dv PARAMS((struct ia64_opcode *idesc));
793 static void check_dependencies PARAMS((struct ia64_opcode *));
794 static void mark_resources PARAMS((struct ia64_opcode *));
795 static void update_dependencies PARAMS((struct ia64_opcode *));
796 static void note_register_values PARAMS((struct ia64_opcode *));
797 static int qp_mutex PARAMS ((int, int, int));
798 static int resources_match PARAMS ((struct rsrc *, struct ia64_opcode *, int, int, int));
799 static void output_vbyte_mem PARAMS ((int, char *, char *));
800 static void count_output PARAMS ((int, char *, char *));
801 static void output_R1_format PARAMS ((vbyte_func, unw_record_type, int));
802 static void output_R2_format PARAMS ((vbyte_func, int, int, unsigned long));
803 static void output_R3_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
804 static void output_P1_format PARAMS ((vbyte_func, int));
805 static void output_P2_format PARAMS ((vbyte_func, int, int));
806 static void output_P3_format PARAMS ((vbyte_func, unw_record_type, int));
807 static void output_P4_format PARAMS ((vbyte_func, unsigned char *, unsigned long));
808 static void output_P5_format PARAMS ((vbyte_func, int, unsigned long));
809 static void output_P6_format PARAMS ((vbyte_func, unw_record_type, int));
810 static void output_P7_format PARAMS ((vbyte_func, unw_record_type, unsigned long, unsigned long));
811 static void output_P8_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
812 static void output_P9_format PARAMS ((vbyte_func, int, int));
813 static void output_P10_format PARAMS ((vbyte_func, int, int));
814 static void output_B1_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
815 static void output_B2_format PARAMS ((vbyte_func, unsigned long, unsigned long));
816 static void output_B3_format PARAMS ((vbyte_func, unsigned long, unsigned long));
817 static void output_B4_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
818 static char format_ab_reg PARAMS ((int, int));
819 static void output_X1_format PARAMS ((vbyte_func, unw_record_type, int, int, unsigned long,
820 unsigned long));
821 static void output_X2_format PARAMS ((vbyte_func, int, int, int, int, int, unsigned long));
822 static void output_X3_format PARAMS ((vbyte_func, unw_record_type, int, int, int, unsigned long,
823 unsigned long));
824 static void output_X4_format PARAMS ((vbyte_func, int, int, int, int, int, int, unsigned long));
825 static unw_rec_list *output_endp PARAMS ((void));
826 static unw_rec_list *output_prologue PARAMS ((void));
827 static unw_rec_list *output_prologue_gr PARAMS ((unsigned int, unsigned int));
828 static unw_rec_list *output_body PARAMS ((void));
829 static unw_rec_list *output_mem_stack_f PARAMS ((unsigned int));
830 static unw_rec_list *output_mem_stack_v PARAMS ((void));
831 static unw_rec_list *output_psp_gr PARAMS ((unsigned int));
832 static unw_rec_list *output_psp_sprel PARAMS ((unsigned int));
833 static unw_rec_list *output_rp_when PARAMS ((void));
834 static unw_rec_list *output_rp_gr PARAMS ((unsigned int));
835 static unw_rec_list *output_rp_br PARAMS ((unsigned int));
836 static unw_rec_list *output_rp_psprel PARAMS ((unsigned int));
837 static unw_rec_list *output_rp_sprel PARAMS ((unsigned int));
838 static unw_rec_list *output_pfs_when PARAMS ((void));
839 static unw_rec_list *output_pfs_gr PARAMS ((unsigned int));
840 static unw_rec_list *output_pfs_psprel PARAMS ((unsigned int));
841 static unw_rec_list *output_pfs_sprel PARAMS ((unsigned int));
842 static unw_rec_list *output_preds_when PARAMS ((void));
843 static unw_rec_list *output_preds_gr PARAMS ((unsigned int));
844 static unw_rec_list *output_preds_psprel PARAMS ((unsigned int));
845 static unw_rec_list *output_preds_sprel PARAMS ((unsigned int));
846 static unw_rec_list *output_fr_mem PARAMS ((unsigned int));
847 static unw_rec_list *output_frgr_mem PARAMS ((unsigned int, unsigned int));
848 static unw_rec_list *output_gr_gr PARAMS ((unsigned int, unsigned int));
849 static unw_rec_list *output_gr_mem PARAMS ((unsigned int));
850 static unw_rec_list *output_br_mem PARAMS ((unsigned int));
851 static unw_rec_list *output_br_gr PARAMS ((unsigned int, unsigned int));
852 static unw_rec_list *output_spill_base PARAMS ((unsigned int));
853 static unw_rec_list *output_unat_when PARAMS ((void));
854 static unw_rec_list *output_unat_gr PARAMS ((unsigned int));
855 static unw_rec_list *output_unat_psprel PARAMS ((unsigned int));
856 static unw_rec_list *output_unat_sprel PARAMS ((unsigned int));
857 static unw_rec_list *output_lc_when PARAMS ((void));
858 static unw_rec_list *output_lc_gr PARAMS ((unsigned int));
859 static unw_rec_list *output_lc_psprel PARAMS ((unsigned int));
860 static unw_rec_list *output_lc_sprel PARAMS ((unsigned int));
861 static unw_rec_list *output_fpsr_when PARAMS ((void));
862 static unw_rec_list *output_fpsr_gr PARAMS ((unsigned int));
863 static unw_rec_list *output_fpsr_psprel PARAMS ((unsigned int));
864 static unw_rec_list *output_fpsr_sprel PARAMS ((unsigned int));
865 static unw_rec_list *output_priunat_when_gr PARAMS ((void));
866 static unw_rec_list *output_priunat_when_mem PARAMS ((void));
867 static unw_rec_list *output_priunat_gr PARAMS ((unsigned int));
868 static unw_rec_list *output_priunat_psprel PARAMS ((unsigned int));
869 static unw_rec_list *output_priunat_sprel PARAMS ((unsigned int));
870 static unw_rec_list *output_bsp_when PARAMS ((void));
871 static unw_rec_list *output_bsp_gr PARAMS ((unsigned int));
872 static unw_rec_list *output_bsp_psprel PARAMS ((unsigned int));
873 static unw_rec_list *output_bsp_sprel PARAMS ((unsigned int));
874 static unw_rec_list *output_bspstore_when PARAMS ((void));
875 static unw_rec_list *output_bspstore_gr PARAMS ((unsigned int));
876 static unw_rec_list *output_bspstore_psprel PARAMS ((unsigned int));
877 static unw_rec_list *output_bspstore_sprel PARAMS ((unsigned int));
878 static unw_rec_list *output_rnat_when PARAMS ((void));
879 static unw_rec_list *output_rnat_gr PARAMS ((unsigned int));
880 static unw_rec_list *output_rnat_psprel PARAMS ((unsigned int));
881 static unw_rec_list *output_rnat_sprel PARAMS ((unsigned int));
882 static unw_rec_list *output_unwabi PARAMS ((unsigned long, unsigned long));
883 static unw_rec_list *output_epilogue PARAMS ((unsigned long));
884 static unw_rec_list *output_label_state PARAMS ((unsigned long));
885 static unw_rec_list *output_copy_state PARAMS ((unsigned long));
886 static unw_rec_list *output_spill_psprel PARAMS ((unsigned int, unsigned int, unsigned int));
887 static unw_rec_list *output_spill_sprel PARAMS ((unsigned int, unsigned int, unsigned int));
888 static unw_rec_list *output_spill_psprel_p PARAMS ((unsigned int, unsigned int, unsigned int,
889 unsigned int));
890 static unw_rec_list *output_spill_sprel_p PARAMS ((unsigned int, unsigned int, unsigned int,
891 unsigned int));
892 static unw_rec_list *output_spill_reg PARAMS ((unsigned int, unsigned int, unsigned int,
893 unsigned int));
894 static unw_rec_list *output_spill_reg_p PARAMS ((unsigned int, unsigned int, unsigned int,
895 unsigned int, unsigned int));
896 static void process_one_record PARAMS ((unw_rec_list *, vbyte_func));
897 static void process_unw_records PARAMS ((unw_rec_list *, vbyte_func));
898 static int calc_record_size PARAMS ((unw_rec_list *));
899 static void set_imask PARAMS ((unw_rec_list *, unsigned long, unsigned long, unsigned int));
900 static unsigned long slot_index PARAMS ((unsigned long, fragS *,
901 unsigned long, fragS *));
902 static unw_rec_list *optimize_unw_records PARAMS ((unw_rec_list *));
903 static void fixup_unw_records PARAMS ((unw_rec_list *));
904 static int convert_expr_to_ab_reg PARAMS ((expressionS *, unsigned int *, unsigned int *));
905 static int convert_expr_to_xy_reg PARAMS ((expressionS *, unsigned int *, unsigned int *));
906 static void generate_unwind_image PARAMS ((const char *));
907 static unsigned int get_saved_prologue_count PARAMS ((unsigned long));
908 static void save_prologue_count PARAMS ((unsigned long, unsigned int));
909 static void free_saved_prologue_counts PARAMS ((void));
910
911 /* Build the unwind section name by appending the (possibly stripped)
912 text section NAME to the unwind PREFIX. The resulting string
913 pointer is assigned to RESULT. The string is allocated on the
914 stack, so this must be a macro... */
915 #define make_unw_section_name(special, text_name, result) \
916 { \
917 const char *_prefix = special_section_name[special]; \
918 const char *_suffix = text_name; \
919 size_t _prefix_len, _suffix_len; \
920 char *_result; \
921 if (strncmp (text_name, ".gnu.linkonce.t.", \
922 sizeof (".gnu.linkonce.t.") - 1) == 0) \
923 { \
924 _prefix = special_linkonce_name[special - SPECIAL_SECTION_UNWIND]; \
925 _suffix += sizeof (".gnu.linkonce.t.") - 1; \
926 } \
927 _prefix_len = strlen (_prefix), _suffix_len = strlen (_suffix); \
928 _result = alloca (_prefix_len + _suffix_len + 1); \
929 memcpy (_result, _prefix, _prefix_len); \
930 memcpy (_result + _prefix_len, _suffix, _suffix_len); \
931 _result[_prefix_len + _suffix_len] = '\0'; \
932 result = _result; \
933 } \
934 while (0)
935
936 /* Determine if application register REGNUM resides in the integer
937 unit (as opposed to the memory unit). */
938 static int
939 ar_is_in_integer_unit (reg)
940 int reg;
941 {
942 reg -= REG_AR;
943
944 return (reg == 64 /* pfs */
945 || reg == 65 /* lc */
946 || reg == 66 /* ec */
947 /* ??? ias accepts and puts these in the integer unit. */
948 || (reg >= 112 && reg <= 127));
949 }
950
951 /* Switch to section NAME and create section if necessary. It's
952 rather ugly that we have to manipulate input_line_pointer but I
953 don't see any other way to accomplish the same thing without
954 changing obj-elf.c (which may be the Right Thing, in the end). */
955 static void
956 set_section (name)
957 char *name;
958 {
959 char *saved_input_line_pointer;
960
961 saved_input_line_pointer = input_line_pointer;
962 input_line_pointer = name;
963 obj_elf_section (0);
964 input_line_pointer = saved_input_line_pointer;
965 }
966
967 /* Map 's' to SHF_IA_64_SHORT. */
968
969 int
970 ia64_elf_section_letter (letter, ptr_msg)
971 int letter;
972 char **ptr_msg;
973 {
974 if (letter == 's')
975 return SHF_IA_64_SHORT;
976 else if (letter == 'o')
977 return SHF_LINK_ORDER;
978
979 *ptr_msg = _("Bad .section directive: want a,o,s,w,x,M,S,G,T in string");
980 return -1;
981 }
982
983 /* Map SHF_IA_64_SHORT to SEC_SMALL_DATA. */
984
985 flagword
986 ia64_elf_section_flags (flags, attr, type)
987 flagword flags;
988 int attr, type ATTRIBUTE_UNUSED;
989 {
990 if (attr & SHF_IA_64_SHORT)
991 flags |= SEC_SMALL_DATA;
992 return flags;
993 }
994
995 int
996 ia64_elf_section_type (str, len)
997 const char *str;
998 size_t len;
999 {
1000 #define STREQ(s) ((len == sizeof (s) - 1) && (strncmp (str, s, sizeof (s) - 1) == 0))
1001
1002 if (STREQ (ELF_STRING_ia64_unwind_info))
1003 return SHT_PROGBITS;
1004
1005 if (STREQ (ELF_STRING_ia64_unwind_info_once))
1006 return SHT_PROGBITS;
1007
1008 if (STREQ (ELF_STRING_ia64_unwind))
1009 return SHT_IA_64_UNWIND;
1010
1011 if (STREQ (ELF_STRING_ia64_unwind_once))
1012 return SHT_IA_64_UNWIND;
1013
1014 if (STREQ ("unwind"))
1015 return SHT_IA_64_UNWIND;
1016
1017 if (STREQ ("init_array"))
1018 return SHT_INIT_ARRAY;
1019
1020 if (STREQ ("fini_array"))
1021 return SHT_FINI_ARRAY;
1022
1023 return -1;
1024 #undef STREQ
1025 }
1026
1027 static unsigned int
1028 set_regstack (ins, locs, outs, rots)
1029 unsigned int ins, locs, outs, rots;
1030 {
1031 /* Size of frame. */
1032 unsigned int sof;
1033
1034 sof = ins + locs + outs;
1035 if (sof > 96)
1036 {
1037 as_bad ("Size of frame exceeds maximum of 96 registers");
1038 return 0;
1039 }
1040 if (rots > sof)
1041 {
1042 as_warn ("Size of rotating registers exceeds frame size");
1043 return 0;
1044 }
1045 md.in.base = REG_GR + 32;
1046 md.loc.base = md.in.base + ins;
1047 md.out.base = md.loc.base + locs;
1048
1049 md.in.num_regs = ins;
1050 md.loc.num_regs = locs;
1051 md.out.num_regs = outs;
1052 md.rot.num_regs = rots;
1053 return sof;
1054 }
1055
1056 void
1057 ia64_flush_insns ()
1058 {
1059 struct label_fix *lfix;
1060 segT saved_seg;
1061 subsegT saved_subseg;
1062 unw_rec_list *ptr;
1063
1064 if (!md.last_text_seg)
1065 return;
1066
1067 saved_seg = now_seg;
1068 saved_subseg = now_subseg;
1069
1070 subseg_set (md.last_text_seg, 0);
1071
1072 while (md.num_slots_in_use > 0)
1073 emit_one_bundle (); /* force out queued instructions */
1074
1075 /* In case there are labels following the last instruction, resolve
1076 those now: */
1077 for (lfix = CURR_SLOT.label_fixups; lfix; lfix = lfix->next)
1078 {
1079 S_SET_VALUE (lfix->sym, frag_now_fix ());
1080 symbol_set_frag (lfix->sym, frag_now);
1081 }
1082 CURR_SLOT.label_fixups = 0;
1083 for (lfix = CURR_SLOT.tag_fixups; lfix; lfix = lfix->next)
1084 {
1085 S_SET_VALUE (lfix->sym, frag_now_fix ());
1086 symbol_set_frag (lfix->sym, frag_now);
1087 }
1088 CURR_SLOT.tag_fixups = 0;
1089
1090 /* In case there are unwind directives following the last instruction,
1091 resolve those now. We only handle prologue, body, and endp directives
1092 here. Give an error for others. */
1093 for (ptr = unwind.current_entry; ptr; ptr = ptr->next)
1094 {
1095 if (ptr->r.type == prologue || ptr->r.type == prologue_gr
1096 || ptr->r.type == body || ptr->r.type == endp)
1097 {
1098 ptr->slot_number = (unsigned long) frag_more (0);
1099 ptr->slot_frag = frag_now;
1100 }
1101 else
1102 as_bad (_("Unwind directive not followed by an instruction."));
1103 }
1104 unwind.current_entry = NULL;
1105
1106 subseg_set (saved_seg, saved_subseg);
1107
1108 if (md.qp.X_op == O_register)
1109 as_bad ("qualifying predicate not followed by instruction");
1110 }
1111
1112 void
1113 ia64_do_align (nbytes)
1114 int nbytes;
1115 {
1116 char *saved_input_line_pointer = input_line_pointer;
1117
1118 input_line_pointer = "";
1119 s_align_bytes (nbytes);
1120 input_line_pointer = saved_input_line_pointer;
1121 }
1122
1123 void
1124 ia64_cons_align (nbytes)
1125 int nbytes;
1126 {
1127 if (md.auto_align)
1128 {
1129 char *saved_input_line_pointer = input_line_pointer;
1130 input_line_pointer = "";
1131 s_align_bytes (nbytes);
1132 input_line_pointer = saved_input_line_pointer;
1133 }
1134 }
1135
1136 /* Output COUNT bytes to a memory location. */
1137 static unsigned char *vbyte_mem_ptr = NULL;
1138
1139 void
1140 output_vbyte_mem (count, ptr, comment)
1141 int count;
1142 char *ptr;
1143 char *comment ATTRIBUTE_UNUSED;
1144 {
1145 int x;
1146 if (vbyte_mem_ptr == NULL)
1147 abort ();
1148
1149 if (count == 0)
1150 return;
1151 for (x = 0; x < count; x++)
1152 *(vbyte_mem_ptr++) = ptr[x];
1153 }
1154
1155 /* Count the number of bytes required for records. */
1156 static int vbyte_count = 0;
1157 void
1158 count_output (count, ptr, comment)
1159 int count;
1160 char *ptr ATTRIBUTE_UNUSED;
1161 char *comment ATTRIBUTE_UNUSED;
1162 {
1163 vbyte_count += count;
1164 }
1165
1166 static void
1167 output_R1_format (f, rtype, rlen)
1168 vbyte_func f;
1169 unw_record_type rtype;
1170 int rlen;
1171 {
1172 int r = 0;
1173 char byte;
1174 if (rlen > 0x1f)
1175 {
1176 output_R3_format (f, rtype, rlen);
1177 return;
1178 }
1179
1180 if (rtype == body)
1181 r = 1;
1182 else if (rtype != prologue)
1183 as_bad ("record type is not valid");
1184
1185 byte = UNW_R1 | (r << 5) | (rlen & 0x1f);
1186 (*f) (1, &byte, NULL);
1187 }
1188
1189 static void
1190 output_R2_format (f, mask, grsave, rlen)
1191 vbyte_func f;
1192 int mask, grsave;
1193 unsigned long rlen;
1194 {
1195 char bytes[20];
1196 int count = 2;
1197 mask = (mask & 0x0f);
1198 grsave = (grsave & 0x7f);
1199
1200 bytes[0] = (UNW_R2 | (mask >> 1));
1201 bytes[1] = (((mask & 0x01) << 7) | grsave);
1202 count += output_leb128 (bytes + 2, rlen, 0);
1203 (*f) (count, bytes, NULL);
1204 }
1205
1206 static void
1207 output_R3_format (f, rtype, rlen)
1208 vbyte_func f;
1209 unw_record_type rtype;
1210 unsigned long rlen;
1211 {
1212 int r = 0, count;
1213 char bytes[20];
1214 if (rlen <= 0x1f)
1215 {
1216 output_R1_format (f, rtype, rlen);
1217 return;
1218 }
1219
1220 if (rtype == body)
1221 r = 1;
1222 else if (rtype != prologue)
1223 as_bad ("record type is not valid");
1224 bytes[0] = (UNW_R3 | r);
1225 count = output_leb128 (bytes + 1, rlen, 0);
1226 (*f) (count + 1, bytes, NULL);
1227 }
1228
1229 static void
1230 output_P1_format (f, brmask)
1231 vbyte_func f;
1232 int brmask;
1233 {
1234 char byte;
1235 byte = UNW_P1 | (brmask & 0x1f);
1236 (*f) (1, &byte, NULL);
1237 }
1238
1239 static void
1240 output_P2_format (f, brmask, gr)
1241 vbyte_func f;
1242 int brmask;
1243 int gr;
1244 {
1245 char bytes[2];
1246 brmask = (brmask & 0x1f);
1247 bytes[0] = UNW_P2 | (brmask >> 1);
1248 bytes[1] = (((brmask & 1) << 7) | gr);
1249 (*f) (2, bytes, NULL);
1250 }
1251
1252 static void
1253 output_P3_format (f, rtype, reg)
1254 vbyte_func f;
1255 unw_record_type rtype;
1256 int reg;
1257 {
1258 char bytes[2];
1259 int r = 0;
1260 reg = (reg & 0x7f);
1261 switch (rtype)
1262 {
1263 case psp_gr:
1264 r = 0;
1265 break;
1266 case rp_gr:
1267 r = 1;
1268 break;
1269 case pfs_gr:
1270 r = 2;
1271 break;
1272 case preds_gr:
1273 r = 3;
1274 break;
1275 case unat_gr:
1276 r = 4;
1277 break;
1278 case lc_gr:
1279 r = 5;
1280 break;
1281 case rp_br:
1282 r = 6;
1283 break;
1284 case rnat_gr:
1285 r = 7;
1286 break;
1287 case bsp_gr:
1288 r = 8;
1289 break;
1290 case bspstore_gr:
1291 r = 9;
1292 break;
1293 case fpsr_gr:
1294 r = 10;
1295 break;
1296 case priunat_gr:
1297 r = 11;
1298 break;
1299 default:
1300 as_bad ("Invalid record type for P3 format.");
1301 }
1302 bytes[0] = (UNW_P3 | (r >> 1));
1303 bytes[1] = (((r & 1) << 7) | reg);
1304 (*f) (2, bytes, NULL);
1305 }
1306
1307 static void
1308 output_P4_format (f, imask, imask_size)
1309 vbyte_func f;
1310 unsigned char *imask;
1311 unsigned long imask_size;
1312 {
1313 imask[0] = UNW_P4;
1314 (*f) (imask_size, imask, NULL);
1315 }
1316
1317 static void
1318 output_P5_format (f, grmask, frmask)
1319 vbyte_func f;
1320 int grmask;
1321 unsigned long frmask;
1322 {
1323 char bytes[4];
1324 grmask = (grmask & 0x0f);
1325
1326 bytes[0] = UNW_P5;
1327 bytes[1] = ((grmask << 4) | ((frmask & 0x000f0000) >> 16));
1328 bytes[2] = ((frmask & 0x0000ff00) >> 8);
1329 bytes[3] = (frmask & 0x000000ff);
1330 (*f) (4, bytes, NULL);
1331 }
1332
1333 static void
1334 output_P6_format (f, rtype, rmask)
1335 vbyte_func f;
1336 unw_record_type rtype;
1337 int rmask;
1338 {
1339 char byte;
1340 int r = 0;
1341
1342 if (rtype == gr_mem)
1343 r = 1;
1344 else if (rtype != fr_mem)
1345 as_bad ("Invalid record type for format P6");
1346 byte = (UNW_P6 | (r << 4) | (rmask & 0x0f));
1347 (*f) (1, &byte, NULL);
1348 }
1349
1350 static void
1351 output_P7_format (f, rtype, w1, w2)
1352 vbyte_func f;
1353 unw_record_type rtype;
1354 unsigned long w1;
1355 unsigned long w2;
1356 {
1357 char bytes[20];
1358 int count = 1;
1359 int r = 0;
1360 count += output_leb128 (bytes + 1, w1, 0);
1361 switch (rtype)
1362 {
1363 case mem_stack_f:
1364 r = 0;
1365 count += output_leb128 (bytes + count, w2 >> 4, 0);
1366 break;
1367 case mem_stack_v:
1368 r = 1;
1369 break;
1370 case spill_base:
1371 r = 2;
1372 break;
1373 case psp_sprel:
1374 r = 3;
1375 break;
1376 case rp_when:
1377 r = 4;
1378 break;
1379 case rp_psprel:
1380 r = 5;
1381 break;
1382 case pfs_when:
1383 r = 6;
1384 break;
1385 case pfs_psprel:
1386 r = 7;
1387 break;
1388 case preds_when:
1389 r = 8;
1390 break;
1391 case preds_psprel:
1392 r = 9;
1393 break;
1394 case lc_when:
1395 r = 10;
1396 break;
1397 case lc_psprel:
1398 r = 11;
1399 break;
1400 case unat_when:
1401 r = 12;
1402 break;
1403 case unat_psprel:
1404 r = 13;
1405 break;
1406 case fpsr_when:
1407 r = 14;
1408 break;
1409 case fpsr_psprel:
1410 r = 15;
1411 break;
1412 default:
1413 break;
1414 }
1415 bytes[0] = (UNW_P7 | r);
1416 (*f) (count, bytes, NULL);
1417 }
1418
1419 static void
1420 output_P8_format (f, rtype, t)
1421 vbyte_func f;
1422 unw_record_type rtype;
1423 unsigned long t;
1424 {
1425 char bytes[20];
1426 int r = 0;
1427 int count = 2;
1428 bytes[0] = UNW_P8;
1429 switch (rtype)
1430 {
1431 case rp_sprel:
1432 r = 1;
1433 break;
1434 case pfs_sprel:
1435 r = 2;
1436 break;
1437 case preds_sprel:
1438 r = 3;
1439 break;
1440 case lc_sprel:
1441 r = 4;
1442 break;
1443 case unat_sprel:
1444 r = 5;
1445 break;
1446 case fpsr_sprel:
1447 r = 6;
1448 break;
1449 case bsp_when:
1450 r = 7;
1451 break;
1452 case bsp_psprel:
1453 r = 8;
1454 break;
1455 case bsp_sprel:
1456 r = 9;
1457 break;
1458 case bspstore_when:
1459 r = 10;
1460 break;
1461 case bspstore_psprel:
1462 r = 11;
1463 break;
1464 case bspstore_sprel:
1465 r = 12;
1466 break;
1467 case rnat_when:
1468 r = 13;
1469 break;
1470 case rnat_psprel:
1471 r = 14;
1472 break;
1473 case rnat_sprel:
1474 r = 15;
1475 break;
1476 case priunat_when_gr:
1477 r = 16;
1478 break;
1479 case priunat_psprel:
1480 r = 17;
1481 break;
1482 case priunat_sprel:
1483 r = 18;
1484 break;
1485 case priunat_when_mem:
1486 r = 19;
1487 break;
1488 default:
1489 break;
1490 }
1491 bytes[1] = r;
1492 count += output_leb128 (bytes + 2, t, 0);
1493 (*f) (count, bytes, NULL);
1494 }
1495
1496 static void
1497 output_P9_format (f, grmask, gr)
1498 vbyte_func f;
1499 int grmask;
1500 int gr;
1501 {
1502 char bytes[3];
1503 bytes[0] = UNW_P9;
1504 bytes[1] = (grmask & 0x0f);
1505 bytes[2] = (gr & 0x7f);
1506 (*f) (3, bytes, NULL);
1507 }
1508
1509 static void
1510 output_P10_format (f, abi, context)
1511 vbyte_func f;
1512 int abi;
1513 int context;
1514 {
1515 char bytes[3];
1516 bytes[0] = UNW_P10;
1517 bytes[1] = (abi & 0xff);
1518 bytes[2] = (context & 0xff);
1519 (*f) (3, bytes, NULL);
1520 }
1521
1522 static void
1523 output_B1_format (f, rtype, label)
1524 vbyte_func f;
1525 unw_record_type rtype;
1526 unsigned long label;
1527 {
1528 char byte;
1529 int r = 0;
1530 if (label > 0x1f)
1531 {
1532 output_B4_format (f, rtype, label);
1533 return;
1534 }
1535 if (rtype == copy_state)
1536 r = 1;
1537 else if (rtype != label_state)
1538 as_bad ("Invalid record type for format B1");
1539
1540 byte = (UNW_B1 | (r << 5) | (label & 0x1f));
1541 (*f) (1, &byte, NULL);
1542 }
1543
1544 static void
1545 output_B2_format (f, ecount, t)
1546 vbyte_func f;
1547 unsigned long ecount;
1548 unsigned long t;
1549 {
1550 char bytes[20];
1551 int count = 1;
1552 if (ecount > 0x1f)
1553 {
1554 output_B3_format (f, ecount, t);
1555 return;
1556 }
1557 bytes[0] = (UNW_B2 | (ecount & 0x1f));
1558 count += output_leb128 (bytes + 1, t, 0);
1559 (*f) (count, bytes, NULL);
1560 }
1561
1562 static void
1563 output_B3_format (f, ecount, t)
1564 vbyte_func f;
1565 unsigned long ecount;
1566 unsigned long t;
1567 {
1568 char bytes[20];
1569 int count = 1;
1570 if (ecount <= 0x1f)
1571 {
1572 output_B2_format (f, ecount, t);
1573 return;
1574 }
1575 bytes[0] = UNW_B3;
1576 count += output_leb128 (bytes + 1, t, 0);
1577 count += output_leb128 (bytes + count, ecount, 0);
1578 (*f) (count, bytes, NULL);
1579 }
1580
1581 static void
1582 output_B4_format (f, rtype, label)
1583 vbyte_func f;
1584 unw_record_type rtype;
1585 unsigned long label;
1586 {
1587 char bytes[20];
1588 int r = 0;
1589 int count = 1;
1590 if (label <= 0x1f)
1591 {
1592 output_B1_format (f, rtype, label);
1593 return;
1594 }
1595
1596 if (rtype == copy_state)
1597 r = 1;
1598 else if (rtype != label_state)
1599 as_bad ("Invalid record type for format B1");
1600
1601 bytes[0] = (UNW_B4 | (r << 3));
1602 count += output_leb128 (bytes + 1, label, 0);
1603 (*f) (count, bytes, NULL);
1604 }
1605
1606 static char
1607 format_ab_reg (ab, reg)
1608 int ab;
1609 int reg;
1610 {
1611 int ret;
1612 ab = (ab & 3);
1613 reg = (reg & 0x1f);
1614 ret = (ab << 5) | reg;
1615 return ret;
1616 }
1617
1618 static void
1619 output_X1_format (f, rtype, ab, reg, t, w1)
1620 vbyte_func f;
1621 unw_record_type rtype;
1622 int ab, reg;
1623 unsigned long t;
1624 unsigned long w1;
1625 {
1626 char bytes[20];
1627 int r = 0;
1628 int count = 2;
1629 bytes[0] = UNW_X1;
1630
1631 if (rtype == spill_sprel)
1632 r = 1;
1633 else if (rtype != spill_psprel)
1634 as_bad ("Invalid record type for format X1");
1635 bytes[1] = ((r << 7) | format_ab_reg (ab, reg));
1636 count += output_leb128 (bytes + 2, t, 0);
1637 count += output_leb128 (bytes + count, w1, 0);
1638 (*f) (count, bytes, NULL);
1639 }
1640
1641 static void
1642 output_X2_format (f, ab, reg, x, y, treg, t)
1643 vbyte_func f;
1644 int ab, reg;
1645 int x, y, treg;
1646 unsigned long t;
1647 {
1648 char bytes[20];
1649 int count = 3;
1650 bytes[0] = UNW_X2;
1651 bytes[1] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1652 bytes[2] = (((y & 1) << 7) | (treg & 0x7f));
1653 count += output_leb128 (bytes + 3, t, 0);
1654 (*f) (count, bytes, NULL);
1655 }
1656
1657 static void
1658 output_X3_format (f, rtype, qp, ab, reg, t, w1)
1659 vbyte_func f;
1660 unw_record_type rtype;
1661 int qp;
1662 int ab, reg;
1663 unsigned long t;
1664 unsigned long w1;
1665 {
1666 char bytes[20];
1667 int r = 0;
1668 int count = 3;
1669 bytes[0] = UNW_X3;
1670
1671 if (rtype == spill_sprel_p)
1672 r = 1;
1673 else if (rtype != spill_psprel_p)
1674 as_bad ("Invalid record type for format X3");
1675 bytes[1] = ((r << 7) | (qp & 0x3f));
1676 bytes[2] = format_ab_reg (ab, reg);
1677 count += output_leb128 (bytes + 3, t, 0);
1678 count += output_leb128 (bytes + count, w1, 0);
1679 (*f) (count, bytes, NULL);
1680 }
1681
1682 static void
1683 output_X4_format (f, qp, ab, reg, x, y, treg, t)
1684 vbyte_func f;
1685 int qp;
1686 int ab, reg;
1687 int x, y, treg;
1688 unsigned long t;
1689 {
1690 char bytes[20];
1691 int count = 4;
1692 bytes[0] = UNW_X4;
1693 bytes[1] = (qp & 0x3f);
1694 bytes[2] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1695 bytes[3] = (((y & 1) << 7) | (treg & 0x7f));
1696 count += output_leb128 (bytes + 4, t, 0);
1697 (*f) (count, bytes, NULL);
1698 }
1699
1700 /* This function allocates a record list structure, and initializes fields. */
1701
1702 static unw_rec_list *
1703 alloc_record (unw_record_type t)
1704 {
1705 unw_rec_list *ptr;
1706 ptr = xmalloc (sizeof (*ptr));
1707 ptr->next = NULL;
1708 ptr->slot_number = SLOT_NUM_NOT_SET;
1709 ptr->r.type = t;
1710 ptr->next_slot_number = 0;
1711 ptr->next_slot_frag = 0;
1712 return ptr;
1713 }
1714
1715 /* Dummy unwind record used for calculating the length of the last prologue or
1716 body region. */
1717
1718 static unw_rec_list *
1719 output_endp ()
1720 {
1721 unw_rec_list *ptr = alloc_record (endp);
1722 return ptr;
1723 }
1724
1725 static unw_rec_list *
1726 output_prologue ()
1727 {
1728 unw_rec_list *ptr = alloc_record (prologue);
1729 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1730 return ptr;
1731 }
1732
1733 static unw_rec_list *
1734 output_prologue_gr (saved_mask, reg)
1735 unsigned int saved_mask;
1736 unsigned int reg;
1737 {
1738 unw_rec_list *ptr = alloc_record (prologue_gr);
1739 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1740 ptr->r.record.r.grmask = saved_mask;
1741 ptr->r.record.r.grsave = reg;
1742 return ptr;
1743 }
1744
1745 static unw_rec_list *
1746 output_body ()
1747 {
1748 unw_rec_list *ptr = alloc_record (body);
1749 return ptr;
1750 }
1751
1752 static unw_rec_list *
1753 output_mem_stack_f (size)
1754 unsigned int size;
1755 {
1756 unw_rec_list *ptr = alloc_record (mem_stack_f);
1757 ptr->r.record.p.size = size;
1758 return ptr;
1759 }
1760
1761 static unw_rec_list *
1762 output_mem_stack_v ()
1763 {
1764 unw_rec_list *ptr = alloc_record (mem_stack_v);
1765 return ptr;
1766 }
1767
1768 static unw_rec_list *
1769 output_psp_gr (gr)
1770 unsigned int gr;
1771 {
1772 unw_rec_list *ptr = alloc_record (psp_gr);
1773 ptr->r.record.p.gr = gr;
1774 return ptr;
1775 }
1776
1777 static unw_rec_list *
1778 output_psp_sprel (offset)
1779 unsigned int offset;
1780 {
1781 unw_rec_list *ptr = alloc_record (psp_sprel);
1782 ptr->r.record.p.spoff = offset / 4;
1783 return ptr;
1784 }
1785
1786 static unw_rec_list *
1787 output_rp_when ()
1788 {
1789 unw_rec_list *ptr = alloc_record (rp_when);
1790 return ptr;
1791 }
1792
1793 static unw_rec_list *
1794 output_rp_gr (gr)
1795 unsigned int gr;
1796 {
1797 unw_rec_list *ptr = alloc_record (rp_gr);
1798 ptr->r.record.p.gr = gr;
1799 return ptr;
1800 }
1801
1802 static unw_rec_list *
1803 output_rp_br (br)
1804 unsigned int br;
1805 {
1806 unw_rec_list *ptr = alloc_record (rp_br);
1807 ptr->r.record.p.br = br;
1808 return ptr;
1809 }
1810
1811 static unw_rec_list *
1812 output_rp_psprel (offset)
1813 unsigned int offset;
1814 {
1815 unw_rec_list *ptr = alloc_record (rp_psprel);
1816 ptr->r.record.p.pspoff = offset / 4;
1817 return ptr;
1818 }
1819
1820 static unw_rec_list *
1821 output_rp_sprel (offset)
1822 unsigned int offset;
1823 {
1824 unw_rec_list *ptr = alloc_record (rp_sprel);
1825 ptr->r.record.p.spoff = offset / 4;
1826 return ptr;
1827 }
1828
1829 static unw_rec_list *
1830 output_pfs_when ()
1831 {
1832 unw_rec_list *ptr = alloc_record (pfs_when);
1833 return ptr;
1834 }
1835
1836 static unw_rec_list *
1837 output_pfs_gr (gr)
1838 unsigned int gr;
1839 {
1840 unw_rec_list *ptr = alloc_record (pfs_gr);
1841 ptr->r.record.p.gr = gr;
1842 return ptr;
1843 }
1844
1845 static unw_rec_list *
1846 output_pfs_psprel (offset)
1847 unsigned int offset;
1848 {
1849 unw_rec_list *ptr = alloc_record (pfs_psprel);
1850 ptr->r.record.p.pspoff = offset / 4;
1851 return ptr;
1852 }
1853
1854 static unw_rec_list *
1855 output_pfs_sprel (offset)
1856 unsigned int offset;
1857 {
1858 unw_rec_list *ptr = alloc_record (pfs_sprel);
1859 ptr->r.record.p.spoff = offset / 4;
1860 return ptr;
1861 }
1862
1863 static unw_rec_list *
1864 output_preds_when ()
1865 {
1866 unw_rec_list *ptr = alloc_record (preds_when);
1867 return ptr;
1868 }
1869
1870 static unw_rec_list *
1871 output_preds_gr (gr)
1872 unsigned int gr;
1873 {
1874 unw_rec_list *ptr = alloc_record (preds_gr);
1875 ptr->r.record.p.gr = gr;
1876 return ptr;
1877 }
1878
1879 static unw_rec_list *
1880 output_preds_psprel (offset)
1881 unsigned int offset;
1882 {
1883 unw_rec_list *ptr = alloc_record (preds_psprel);
1884 ptr->r.record.p.pspoff = offset / 4;
1885 return ptr;
1886 }
1887
1888 static unw_rec_list *
1889 output_preds_sprel (offset)
1890 unsigned int offset;
1891 {
1892 unw_rec_list *ptr = alloc_record (preds_sprel);
1893 ptr->r.record.p.spoff = offset / 4;
1894 return ptr;
1895 }
1896
1897 static unw_rec_list *
1898 output_fr_mem (mask)
1899 unsigned int mask;
1900 {
1901 unw_rec_list *ptr = alloc_record (fr_mem);
1902 ptr->r.record.p.rmask = mask;
1903 return ptr;
1904 }
1905
1906 static unw_rec_list *
1907 output_frgr_mem (gr_mask, fr_mask)
1908 unsigned int gr_mask;
1909 unsigned int fr_mask;
1910 {
1911 unw_rec_list *ptr = alloc_record (frgr_mem);
1912 ptr->r.record.p.grmask = gr_mask;
1913 ptr->r.record.p.frmask = fr_mask;
1914 return ptr;
1915 }
1916
1917 static unw_rec_list *
1918 output_gr_gr (mask, reg)
1919 unsigned int mask;
1920 unsigned int reg;
1921 {
1922 unw_rec_list *ptr = alloc_record (gr_gr);
1923 ptr->r.record.p.grmask = mask;
1924 ptr->r.record.p.gr = reg;
1925 return ptr;
1926 }
1927
1928 static unw_rec_list *
1929 output_gr_mem (mask)
1930 unsigned int mask;
1931 {
1932 unw_rec_list *ptr = alloc_record (gr_mem);
1933 ptr->r.record.p.rmask = mask;
1934 return ptr;
1935 }
1936
1937 static unw_rec_list *
1938 output_br_mem (unsigned int mask)
1939 {
1940 unw_rec_list *ptr = alloc_record (br_mem);
1941 ptr->r.record.p.brmask = mask;
1942 return ptr;
1943 }
1944
1945 static unw_rec_list *
1946 output_br_gr (save_mask, reg)
1947 unsigned int save_mask;
1948 unsigned int reg;
1949 {
1950 unw_rec_list *ptr = alloc_record (br_gr);
1951 ptr->r.record.p.brmask = save_mask;
1952 ptr->r.record.p.gr = reg;
1953 return ptr;
1954 }
1955
1956 static unw_rec_list *
1957 output_spill_base (offset)
1958 unsigned int offset;
1959 {
1960 unw_rec_list *ptr = alloc_record (spill_base);
1961 ptr->r.record.p.pspoff = offset / 4;
1962 return ptr;
1963 }
1964
1965 static unw_rec_list *
1966 output_unat_when ()
1967 {
1968 unw_rec_list *ptr = alloc_record (unat_when);
1969 return ptr;
1970 }
1971
1972 static unw_rec_list *
1973 output_unat_gr (gr)
1974 unsigned int gr;
1975 {
1976 unw_rec_list *ptr = alloc_record (unat_gr);
1977 ptr->r.record.p.gr = gr;
1978 return ptr;
1979 }
1980
1981 static unw_rec_list *
1982 output_unat_psprel (offset)
1983 unsigned int offset;
1984 {
1985 unw_rec_list *ptr = alloc_record (unat_psprel);
1986 ptr->r.record.p.pspoff = offset / 4;
1987 return ptr;
1988 }
1989
1990 static unw_rec_list *
1991 output_unat_sprel (offset)
1992 unsigned int offset;
1993 {
1994 unw_rec_list *ptr = alloc_record (unat_sprel);
1995 ptr->r.record.p.spoff = offset / 4;
1996 return ptr;
1997 }
1998
1999 static unw_rec_list *
2000 output_lc_when ()
2001 {
2002 unw_rec_list *ptr = alloc_record (lc_when);
2003 return ptr;
2004 }
2005
2006 static unw_rec_list *
2007 output_lc_gr (gr)
2008 unsigned int gr;
2009 {
2010 unw_rec_list *ptr = alloc_record (lc_gr);
2011 ptr->r.record.p.gr = gr;
2012 return ptr;
2013 }
2014
2015 static unw_rec_list *
2016 output_lc_psprel (offset)
2017 unsigned int offset;
2018 {
2019 unw_rec_list *ptr = alloc_record (lc_psprel);
2020 ptr->r.record.p.pspoff = offset / 4;
2021 return ptr;
2022 }
2023
2024 static unw_rec_list *
2025 output_lc_sprel (offset)
2026 unsigned int offset;
2027 {
2028 unw_rec_list *ptr = alloc_record (lc_sprel);
2029 ptr->r.record.p.spoff = offset / 4;
2030 return ptr;
2031 }
2032
2033 static unw_rec_list *
2034 output_fpsr_when ()
2035 {
2036 unw_rec_list *ptr = alloc_record (fpsr_when);
2037 return ptr;
2038 }
2039
2040 static unw_rec_list *
2041 output_fpsr_gr (gr)
2042 unsigned int gr;
2043 {
2044 unw_rec_list *ptr = alloc_record (fpsr_gr);
2045 ptr->r.record.p.gr = gr;
2046 return ptr;
2047 }
2048
2049 static unw_rec_list *
2050 output_fpsr_psprel (offset)
2051 unsigned int offset;
2052 {
2053 unw_rec_list *ptr = alloc_record (fpsr_psprel);
2054 ptr->r.record.p.pspoff = offset / 4;
2055 return ptr;
2056 }
2057
2058 static unw_rec_list *
2059 output_fpsr_sprel (offset)
2060 unsigned int offset;
2061 {
2062 unw_rec_list *ptr = alloc_record (fpsr_sprel);
2063 ptr->r.record.p.spoff = offset / 4;
2064 return ptr;
2065 }
2066
2067 static unw_rec_list *
2068 output_priunat_when_gr ()
2069 {
2070 unw_rec_list *ptr = alloc_record (priunat_when_gr);
2071 return ptr;
2072 }
2073
2074 static unw_rec_list *
2075 output_priunat_when_mem ()
2076 {
2077 unw_rec_list *ptr = alloc_record (priunat_when_mem);
2078 return ptr;
2079 }
2080
2081 static unw_rec_list *
2082 output_priunat_gr (gr)
2083 unsigned int gr;
2084 {
2085 unw_rec_list *ptr = alloc_record (priunat_gr);
2086 ptr->r.record.p.gr = gr;
2087 return ptr;
2088 }
2089
2090 static unw_rec_list *
2091 output_priunat_psprel (offset)
2092 unsigned int offset;
2093 {
2094 unw_rec_list *ptr = alloc_record (priunat_psprel);
2095 ptr->r.record.p.pspoff = offset / 4;
2096 return ptr;
2097 }
2098
2099 static unw_rec_list *
2100 output_priunat_sprel (offset)
2101 unsigned int offset;
2102 {
2103 unw_rec_list *ptr = alloc_record (priunat_sprel);
2104 ptr->r.record.p.spoff = offset / 4;
2105 return ptr;
2106 }
2107
2108 static unw_rec_list *
2109 output_bsp_when ()
2110 {
2111 unw_rec_list *ptr = alloc_record (bsp_when);
2112 return ptr;
2113 }
2114
2115 static unw_rec_list *
2116 output_bsp_gr (gr)
2117 unsigned int gr;
2118 {
2119 unw_rec_list *ptr = alloc_record (bsp_gr);
2120 ptr->r.record.p.gr = gr;
2121 return ptr;
2122 }
2123
2124 static unw_rec_list *
2125 output_bsp_psprel (offset)
2126 unsigned int offset;
2127 {
2128 unw_rec_list *ptr = alloc_record (bsp_psprel);
2129 ptr->r.record.p.pspoff = offset / 4;
2130 return ptr;
2131 }
2132
2133 static unw_rec_list *
2134 output_bsp_sprel (offset)
2135 unsigned int offset;
2136 {
2137 unw_rec_list *ptr = alloc_record (bsp_sprel);
2138 ptr->r.record.p.spoff = offset / 4;
2139 return ptr;
2140 }
2141
2142 static unw_rec_list *
2143 output_bspstore_when ()
2144 {
2145 unw_rec_list *ptr = alloc_record (bspstore_when);
2146 return ptr;
2147 }
2148
2149 static unw_rec_list *
2150 output_bspstore_gr (gr)
2151 unsigned int gr;
2152 {
2153 unw_rec_list *ptr = alloc_record (bspstore_gr);
2154 ptr->r.record.p.gr = gr;
2155 return ptr;
2156 }
2157
2158 static unw_rec_list *
2159 output_bspstore_psprel (offset)
2160 unsigned int offset;
2161 {
2162 unw_rec_list *ptr = alloc_record (bspstore_psprel);
2163 ptr->r.record.p.pspoff = offset / 4;
2164 return ptr;
2165 }
2166
2167 static unw_rec_list *
2168 output_bspstore_sprel (offset)
2169 unsigned int offset;
2170 {
2171 unw_rec_list *ptr = alloc_record (bspstore_sprel);
2172 ptr->r.record.p.spoff = offset / 4;
2173 return ptr;
2174 }
2175
2176 static unw_rec_list *
2177 output_rnat_when ()
2178 {
2179 unw_rec_list *ptr = alloc_record (rnat_when);
2180 return ptr;
2181 }
2182
2183 static unw_rec_list *
2184 output_rnat_gr (gr)
2185 unsigned int gr;
2186 {
2187 unw_rec_list *ptr = alloc_record (rnat_gr);
2188 ptr->r.record.p.gr = gr;
2189 return ptr;
2190 }
2191
2192 static unw_rec_list *
2193 output_rnat_psprel (offset)
2194 unsigned int offset;
2195 {
2196 unw_rec_list *ptr = alloc_record (rnat_psprel);
2197 ptr->r.record.p.pspoff = offset / 4;
2198 return ptr;
2199 }
2200
2201 static unw_rec_list *
2202 output_rnat_sprel (offset)
2203 unsigned int offset;
2204 {
2205 unw_rec_list *ptr = alloc_record (rnat_sprel);
2206 ptr->r.record.p.spoff = offset / 4;
2207 return ptr;
2208 }
2209
2210 static unw_rec_list *
2211 output_unwabi (abi, context)
2212 unsigned long abi;
2213 unsigned long context;
2214 {
2215 unw_rec_list *ptr = alloc_record (unwabi);
2216 ptr->r.record.p.abi = abi;
2217 ptr->r.record.p.context = context;
2218 return ptr;
2219 }
2220
2221 static unw_rec_list *
2222 output_epilogue (unsigned long ecount)
2223 {
2224 unw_rec_list *ptr = alloc_record (epilogue);
2225 ptr->r.record.b.ecount = ecount;
2226 return ptr;
2227 }
2228
2229 static unw_rec_list *
2230 output_label_state (unsigned long label)
2231 {
2232 unw_rec_list *ptr = alloc_record (label_state);
2233 ptr->r.record.b.label = label;
2234 return ptr;
2235 }
2236
2237 static unw_rec_list *
2238 output_copy_state (unsigned long label)
2239 {
2240 unw_rec_list *ptr = alloc_record (copy_state);
2241 ptr->r.record.b.label = label;
2242 return ptr;
2243 }
2244
2245 static unw_rec_list *
2246 output_spill_psprel (ab, reg, offset)
2247 unsigned int ab;
2248 unsigned int reg;
2249 unsigned int offset;
2250 {
2251 unw_rec_list *ptr = alloc_record (spill_psprel);
2252 ptr->r.record.x.ab = ab;
2253 ptr->r.record.x.reg = reg;
2254 ptr->r.record.x.pspoff = offset / 4;
2255 return ptr;
2256 }
2257
2258 static unw_rec_list *
2259 output_spill_sprel (ab, reg, offset)
2260 unsigned int ab;
2261 unsigned int reg;
2262 unsigned int offset;
2263 {
2264 unw_rec_list *ptr = alloc_record (spill_sprel);
2265 ptr->r.record.x.ab = ab;
2266 ptr->r.record.x.reg = reg;
2267 ptr->r.record.x.spoff = offset / 4;
2268 return ptr;
2269 }
2270
2271 static unw_rec_list *
2272 output_spill_psprel_p (ab, reg, offset, predicate)
2273 unsigned int ab;
2274 unsigned int reg;
2275 unsigned int offset;
2276 unsigned int predicate;
2277 {
2278 unw_rec_list *ptr = alloc_record (spill_psprel_p);
2279 ptr->r.record.x.ab = ab;
2280 ptr->r.record.x.reg = reg;
2281 ptr->r.record.x.pspoff = offset / 4;
2282 ptr->r.record.x.qp = predicate;
2283 return ptr;
2284 }
2285
2286 static unw_rec_list *
2287 output_spill_sprel_p (ab, reg, offset, predicate)
2288 unsigned int ab;
2289 unsigned int reg;
2290 unsigned int offset;
2291 unsigned int predicate;
2292 {
2293 unw_rec_list *ptr = alloc_record (spill_sprel_p);
2294 ptr->r.record.x.ab = ab;
2295 ptr->r.record.x.reg = reg;
2296 ptr->r.record.x.spoff = offset / 4;
2297 ptr->r.record.x.qp = predicate;
2298 return ptr;
2299 }
2300
2301 static unw_rec_list *
2302 output_spill_reg (ab, reg, targ_reg, xy)
2303 unsigned int ab;
2304 unsigned int reg;
2305 unsigned int targ_reg;
2306 unsigned int xy;
2307 {
2308 unw_rec_list *ptr = alloc_record (spill_reg);
2309 ptr->r.record.x.ab = ab;
2310 ptr->r.record.x.reg = reg;
2311 ptr->r.record.x.treg = targ_reg;
2312 ptr->r.record.x.xy = xy;
2313 return ptr;
2314 }
2315
2316 static unw_rec_list *
2317 output_spill_reg_p (ab, reg, targ_reg, xy, predicate)
2318 unsigned int ab;
2319 unsigned int reg;
2320 unsigned int targ_reg;
2321 unsigned int xy;
2322 unsigned int predicate;
2323 {
2324 unw_rec_list *ptr = alloc_record (spill_reg_p);
2325 ptr->r.record.x.ab = ab;
2326 ptr->r.record.x.reg = reg;
2327 ptr->r.record.x.treg = targ_reg;
2328 ptr->r.record.x.xy = xy;
2329 ptr->r.record.x.qp = predicate;
2330 return ptr;
2331 }
2332
2333 /* Given a unw_rec_list process the correct format with the
2334 specified function. */
2335
2336 static void
2337 process_one_record (ptr, f)
2338 unw_rec_list *ptr;
2339 vbyte_func f;
2340 {
2341 unsigned long fr_mask, gr_mask;
2342
2343 switch (ptr->r.type)
2344 {
2345 /* This is a dummy record that takes up no space in the output. */
2346 case endp:
2347 break;
2348
2349 case gr_mem:
2350 case fr_mem:
2351 case br_mem:
2352 case frgr_mem:
2353 /* These are taken care of by prologue/prologue_gr. */
2354 break;
2355
2356 case prologue_gr:
2357 case prologue:
2358 if (ptr->r.type == prologue_gr)
2359 output_R2_format (f, ptr->r.record.r.grmask,
2360 ptr->r.record.r.grsave, ptr->r.record.r.rlen);
2361 else
2362 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2363
2364 /* Output descriptor(s) for union of register spills (if any). */
2365 gr_mask = ptr->r.record.r.mask.gr_mem;
2366 fr_mask = ptr->r.record.r.mask.fr_mem;
2367 if (fr_mask)
2368 {
2369 if ((fr_mask & ~0xfUL) == 0)
2370 output_P6_format (f, fr_mem, fr_mask);
2371 else
2372 {
2373 output_P5_format (f, gr_mask, fr_mask);
2374 gr_mask = 0;
2375 }
2376 }
2377 if (gr_mask)
2378 output_P6_format (f, gr_mem, gr_mask);
2379 if (ptr->r.record.r.mask.br_mem)
2380 output_P1_format (f, ptr->r.record.r.mask.br_mem);
2381
2382 /* output imask descriptor if necessary: */
2383 if (ptr->r.record.r.mask.i)
2384 output_P4_format (f, ptr->r.record.r.mask.i,
2385 ptr->r.record.r.imask_size);
2386 break;
2387
2388 case body:
2389 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2390 break;
2391 case mem_stack_f:
2392 case mem_stack_v:
2393 output_P7_format (f, ptr->r.type, ptr->r.record.p.t,
2394 ptr->r.record.p.size);
2395 break;
2396 case psp_gr:
2397 case rp_gr:
2398 case pfs_gr:
2399 case preds_gr:
2400 case unat_gr:
2401 case lc_gr:
2402 case fpsr_gr:
2403 case priunat_gr:
2404 case bsp_gr:
2405 case bspstore_gr:
2406 case rnat_gr:
2407 output_P3_format (f, ptr->r.type, ptr->r.record.p.gr);
2408 break;
2409 case rp_br:
2410 output_P3_format (f, rp_br, ptr->r.record.p.br);
2411 break;
2412 case psp_sprel:
2413 output_P7_format (f, psp_sprel, ptr->r.record.p.spoff, 0);
2414 break;
2415 case rp_when:
2416 case pfs_when:
2417 case preds_when:
2418 case unat_when:
2419 case lc_when:
2420 case fpsr_when:
2421 output_P7_format (f, ptr->r.type, ptr->r.record.p.t, 0);
2422 break;
2423 case rp_psprel:
2424 case pfs_psprel:
2425 case preds_psprel:
2426 case unat_psprel:
2427 case lc_psprel:
2428 case fpsr_psprel:
2429 case spill_base:
2430 output_P7_format (f, ptr->r.type, ptr->r.record.p.pspoff, 0);
2431 break;
2432 case rp_sprel:
2433 case pfs_sprel:
2434 case preds_sprel:
2435 case unat_sprel:
2436 case lc_sprel:
2437 case fpsr_sprel:
2438 case priunat_sprel:
2439 case bsp_sprel:
2440 case bspstore_sprel:
2441 case rnat_sprel:
2442 output_P8_format (f, ptr->r.type, ptr->r.record.p.spoff);
2443 break;
2444 case gr_gr:
2445 output_P9_format (f, ptr->r.record.p.grmask, ptr->r.record.p.gr);
2446 break;
2447 case br_gr:
2448 output_P2_format (f, ptr->r.record.p.brmask, ptr->r.record.p.gr);
2449 break;
2450 case spill_mask:
2451 as_bad ("spill_mask record unimplemented.");
2452 break;
2453 case priunat_when_gr:
2454 case priunat_when_mem:
2455 case bsp_when:
2456 case bspstore_when:
2457 case rnat_when:
2458 output_P8_format (f, ptr->r.type, ptr->r.record.p.t);
2459 break;
2460 case priunat_psprel:
2461 case bsp_psprel:
2462 case bspstore_psprel:
2463 case rnat_psprel:
2464 output_P8_format (f, ptr->r.type, ptr->r.record.p.pspoff);
2465 break;
2466 case unwabi:
2467 output_P10_format (f, ptr->r.record.p.abi, ptr->r.record.p.context);
2468 break;
2469 case epilogue:
2470 output_B3_format (f, ptr->r.record.b.ecount, ptr->r.record.b.t);
2471 break;
2472 case label_state:
2473 case copy_state:
2474 output_B4_format (f, ptr->r.type, ptr->r.record.b.label);
2475 break;
2476 case spill_psprel:
2477 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2478 ptr->r.record.x.reg, ptr->r.record.x.t,
2479 ptr->r.record.x.pspoff);
2480 break;
2481 case spill_sprel:
2482 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2483 ptr->r.record.x.reg, ptr->r.record.x.t,
2484 ptr->r.record.x.spoff);
2485 break;
2486 case spill_reg:
2487 output_X2_format (f, ptr->r.record.x.ab, ptr->r.record.x.reg,
2488 ptr->r.record.x.xy >> 1, ptr->r.record.x.xy,
2489 ptr->r.record.x.treg, ptr->r.record.x.t);
2490 break;
2491 case spill_psprel_p:
2492 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2493 ptr->r.record.x.ab, ptr->r.record.x.reg,
2494 ptr->r.record.x.t, ptr->r.record.x.pspoff);
2495 break;
2496 case spill_sprel_p:
2497 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2498 ptr->r.record.x.ab, ptr->r.record.x.reg,
2499 ptr->r.record.x.t, ptr->r.record.x.spoff);
2500 break;
2501 case spill_reg_p:
2502 output_X4_format (f, ptr->r.record.x.qp, ptr->r.record.x.ab,
2503 ptr->r.record.x.reg, ptr->r.record.x.xy >> 1,
2504 ptr->r.record.x.xy, ptr->r.record.x.treg,
2505 ptr->r.record.x.t);
2506 break;
2507 default:
2508 as_bad ("record_type_not_valid");
2509 break;
2510 }
2511 }
2512
2513 /* Given a unw_rec_list list, process all the records with
2514 the specified function. */
2515 static void
2516 process_unw_records (list, f)
2517 unw_rec_list *list;
2518 vbyte_func f;
2519 {
2520 unw_rec_list *ptr;
2521 for (ptr = list; ptr; ptr = ptr->next)
2522 process_one_record (ptr, f);
2523 }
2524
2525 /* Determine the size of a record list in bytes. */
2526 static int
2527 calc_record_size (list)
2528 unw_rec_list *list;
2529 {
2530 vbyte_count = 0;
2531 process_unw_records (list, count_output);
2532 return vbyte_count;
2533 }
2534
2535 /* Update IMASK bitmask to reflect the fact that one or more registers
2536 of type TYPE are saved starting at instruction with index T. If N
2537 bits are set in REGMASK, it is assumed that instructions T through
2538 T+N-1 save these registers.
2539
2540 TYPE values:
2541 0: no save
2542 1: instruction saves next fp reg
2543 2: instruction saves next general reg
2544 3: instruction saves next branch reg */
2545 static void
2546 set_imask (region, regmask, t, type)
2547 unw_rec_list *region;
2548 unsigned long regmask;
2549 unsigned long t;
2550 unsigned int type;
2551 {
2552 unsigned char *imask;
2553 unsigned long imask_size;
2554 unsigned int i;
2555 int pos;
2556
2557 imask = region->r.record.r.mask.i;
2558 imask_size = region->r.record.r.imask_size;
2559 if (!imask)
2560 {
2561 imask_size = (region->r.record.r.rlen * 2 + 7) / 8 + 1;
2562 imask = xmalloc (imask_size);
2563 memset (imask, 0, imask_size);
2564
2565 region->r.record.r.imask_size = imask_size;
2566 region->r.record.r.mask.i = imask;
2567 }
2568
2569 i = (t / 4) + 1;
2570 pos = 2 * (3 - t % 4);
2571 while (regmask)
2572 {
2573 if (i >= imask_size)
2574 {
2575 as_bad ("Ignoring attempt to spill beyond end of region");
2576 return;
2577 }
2578
2579 imask[i] |= (type & 0x3) << pos;
2580
2581 regmask &= (regmask - 1);
2582 pos -= 2;
2583 if (pos < 0)
2584 {
2585 pos = 0;
2586 ++i;
2587 }
2588 }
2589 }
2590
2591 /* Return the number of instruction slots from FIRST_ADDR to SLOT_ADDR.
2592 SLOT_FRAG is the frag containing SLOT_ADDR, and FIRST_FRAG is the frag
2593 containing FIRST_ADDR. */
2594
2595 unsigned long
2596 slot_index (slot_addr, slot_frag, first_addr, first_frag)
2597 unsigned long slot_addr;
2598 fragS *slot_frag;
2599 unsigned long first_addr;
2600 fragS *first_frag;
2601 {
2602 unsigned long index = 0;
2603
2604 /* First time we are called, the initial address and frag are invalid. */
2605 if (first_addr == 0)
2606 return 0;
2607
2608 /* If the two addresses are in different frags, then we need to add in
2609 the remaining size of this frag, and then the entire size of intermediate
2610 frags. */
2611 while (slot_frag != first_frag)
2612 {
2613 unsigned long start_addr = (unsigned long) &first_frag->fr_literal;
2614
2615 if (finalize_syms)
2616 {
2617 /* We can get the final addresses only after relaxation is
2618 done. */
2619 if (first_frag->fr_next && first_frag->fr_next->fr_address)
2620 index += 3 * ((first_frag->fr_next->fr_address
2621 - first_frag->fr_address
2622 - first_frag->fr_fix) >> 4);
2623 }
2624 else
2625 /* We don't know what the final addresses will be. We try our
2626 best to estimate. */
2627 switch (first_frag->fr_type)
2628 {
2629 default:
2630 break;
2631
2632 case rs_space:
2633 as_fatal ("only constant space allocation is supported");
2634 break;
2635
2636 case rs_align:
2637 case rs_align_code:
2638 case rs_align_test:
2639 /* Take alignment into account. Assume the worst case
2640 before relaxation. */
2641 index += 3 * ((1 << first_frag->fr_offset) >> 4);
2642 break;
2643
2644 case rs_org:
2645 if (first_frag->fr_symbol)
2646 {
2647 as_fatal ("only constant offsets are supported");
2648 break;
2649 }
2650 case rs_fill:
2651 index += 3 * (first_frag->fr_offset >> 4);
2652 break;
2653 }
2654
2655 /* Add in the full size of the frag converted to instruction slots. */
2656 index += 3 * (first_frag->fr_fix >> 4);
2657 /* Subtract away the initial part before first_addr. */
2658 index -= (3 * ((first_addr >> 4) - (start_addr >> 4))
2659 + ((first_addr & 0x3) - (start_addr & 0x3)));
2660
2661 /* Move to the beginning of the next frag. */
2662 first_frag = first_frag->fr_next;
2663 first_addr = (unsigned long) &first_frag->fr_literal;
2664 }
2665
2666 /* Add in the used part of the last frag. */
2667 index += (3 * ((slot_addr >> 4) - (first_addr >> 4))
2668 + ((slot_addr & 0x3) - (first_addr & 0x3)));
2669 return index;
2670 }
2671
2672 /* Optimize unwind record directives. */
2673
2674 static unw_rec_list *
2675 optimize_unw_records (list)
2676 unw_rec_list *list;
2677 {
2678 if (!list)
2679 return NULL;
2680
2681 /* If the only unwind record is ".prologue" or ".prologue" followed
2682 by ".body", then we can optimize the unwind directives away. */
2683 if (list->r.type == prologue
2684 && (list->next->r.type == endp
2685 || (list->next->r.type == body && list->next->next->r.type == endp)))
2686 return NULL;
2687
2688 return list;
2689 }
2690
2691 /* Given a complete record list, process any records which have
2692 unresolved fields, (ie length counts for a prologue). After
2693 this has been run, all necessary information should be available
2694 within each record to generate an image. */
2695
2696 static void
2697 fixup_unw_records (list)
2698 unw_rec_list *list;
2699 {
2700 unw_rec_list *ptr, *region = 0;
2701 unsigned long first_addr = 0, rlen = 0, t;
2702 fragS *first_frag = 0;
2703
2704 for (ptr = list; ptr; ptr = ptr->next)
2705 {
2706 if (ptr->slot_number == SLOT_NUM_NOT_SET)
2707 as_bad (" Insn slot not set in unwind record.");
2708 t = slot_index (ptr->slot_number, ptr->slot_frag,
2709 first_addr, first_frag);
2710 switch (ptr->r.type)
2711 {
2712 case prologue:
2713 case prologue_gr:
2714 case body:
2715 {
2716 unw_rec_list *last;
2717 int size;
2718 unsigned long last_addr = 0;
2719 fragS *last_frag = NULL;
2720
2721 first_addr = ptr->slot_number;
2722 first_frag = ptr->slot_frag;
2723 /* Find either the next body/prologue start, or the end of
2724 the function, and determine the size of the region. */
2725 for (last = ptr->next; last != NULL; last = last->next)
2726 if (last->r.type == prologue || last->r.type == prologue_gr
2727 || last->r.type == body || last->r.type == endp)
2728 {
2729 last_addr = last->slot_number;
2730 last_frag = last->slot_frag;
2731 break;
2732 }
2733 size = slot_index (last_addr, last_frag, first_addr, first_frag);
2734 rlen = ptr->r.record.r.rlen = size;
2735 if (ptr->r.type == body)
2736 /* End of region. */
2737 region = 0;
2738 else
2739 region = ptr;
2740 break;
2741 }
2742 case epilogue:
2743 ptr->r.record.b.t = rlen - 1 - t;
2744 break;
2745
2746 case mem_stack_f:
2747 case mem_stack_v:
2748 case rp_when:
2749 case pfs_when:
2750 case preds_when:
2751 case unat_when:
2752 case lc_when:
2753 case fpsr_when:
2754 case priunat_when_gr:
2755 case priunat_when_mem:
2756 case bsp_when:
2757 case bspstore_when:
2758 case rnat_when:
2759 ptr->r.record.p.t = t;
2760 break;
2761
2762 case spill_reg:
2763 case spill_sprel:
2764 case spill_psprel:
2765 case spill_reg_p:
2766 case spill_sprel_p:
2767 case spill_psprel_p:
2768 ptr->r.record.x.t = t;
2769 break;
2770
2771 case frgr_mem:
2772 if (!region)
2773 {
2774 as_bad ("frgr_mem record before region record!\n");
2775 return;
2776 }
2777 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
2778 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
2779 set_imask (region, ptr->r.record.p.frmask, t, 1);
2780 set_imask (region, ptr->r.record.p.grmask, t, 2);
2781 break;
2782 case fr_mem:
2783 if (!region)
2784 {
2785 as_bad ("fr_mem record before region record!\n");
2786 return;
2787 }
2788 region->r.record.r.mask.fr_mem |= ptr->r.record.p.rmask;
2789 set_imask (region, ptr->r.record.p.rmask, t, 1);
2790 break;
2791 case gr_mem:
2792 if (!region)
2793 {
2794 as_bad ("gr_mem record before region record!\n");
2795 return;
2796 }
2797 region->r.record.r.mask.gr_mem |= ptr->r.record.p.rmask;
2798 set_imask (region, ptr->r.record.p.rmask, t, 2);
2799 break;
2800 case br_mem:
2801 if (!region)
2802 {
2803 as_bad ("br_mem record before region record!\n");
2804 return;
2805 }
2806 region->r.record.r.mask.br_mem |= ptr->r.record.p.brmask;
2807 set_imask (region, ptr->r.record.p.brmask, t, 3);
2808 break;
2809
2810 case gr_gr:
2811 if (!region)
2812 {
2813 as_bad ("gr_gr record before region record!\n");
2814 return;
2815 }
2816 set_imask (region, ptr->r.record.p.grmask, t, 2);
2817 break;
2818 case br_gr:
2819 if (!region)
2820 {
2821 as_bad ("br_gr record before region record!\n");
2822 return;
2823 }
2824 set_imask (region, ptr->r.record.p.brmask, t, 3);
2825 break;
2826
2827 default:
2828 break;
2829 }
2830 }
2831 }
2832
2833 /* This function converts a rs_machine_dependent variant frag into a
2834 normal fill frag with the unwind image from the the record list. */
2835 void
2836 ia64_convert_frag (fragS *frag)
2837 {
2838 unw_rec_list *list;
2839 int len, size, pad;
2840 valueT flag_value;
2841
2842 list = (unw_rec_list *) frag->fr_opcode;
2843 fixup_unw_records (list);
2844
2845 len = calc_record_size (list);
2846 /* pad to pointer-size boundary. */
2847 pad = len % md.pointer_size;
2848 if (pad != 0)
2849 len += md.pointer_size - pad;
2850 /* Add 8 for the header + a pointer for the personality offset. */
2851 size = len + 8 + md.pointer_size;
2852
2853 /* fr_var carries the max_chars that we created the fragment with.
2854 We must, of course, have allocated enough memory earlier. */
2855 assert (frag->fr_var >= size);
2856
2857 /* Initialize the header area. fr_offset is initialized with
2858 unwind.personality_routine. */
2859 if (frag->fr_offset)
2860 {
2861 if (md.flags & EF_IA_64_ABI64)
2862 flag_value = (bfd_vma) 3 << 32;
2863 else
2864 /* 32-bit unwind info block. */
2865 flag_value = (bfd_vma) 0x1003 << 32;
2866 }
2867 else
2868 flag_value = 0;
2869
2870 md_number_to_chars (frag->fr_literal,
2871 (((bfd_vma) 1 << 48) /* Version. */
2872 | flag_value /* U & E handler flags. */
2873 | (len / md.pointer_size)), /* Length. */
2874 8);
2875
2876 /* Skip the header. */
2877 vbyte_mem_ptr = frag->fr_literal + 8;
2878 process_unw_records (list, output_vbyte_mem);
2879
2880 /* Fill the padding bytes with zeros. */
2881 if (pad != 0)
2882 md_number_to_chars (frag->fr_literal + len + 8 - md.pointer_size + pad, 0,
2883 md.pointer_size - pad);
2884
2885 frag->fr_fix += size;
2886 frag->fr_type = rs_fill;
2887 frag->fr_var = 0;
2888 frag->fr_offset = 0;
2889 }
2890
2891 static int
2892 convert_expr_to_ab_reg (e, ab, regp)
2893 expressionS *e;
2894 unsigned int *ab;
2895 unsigned int *regp;
2896 {
2897 unsigned int reg;
2898
2899 if (e->X_op != O_register)
2900 return 0;
2901
2902 reg = e->X_add_number;
2903 if (reg >= (REG_GR + 4) && reg <= (REG_GR + 7))
2904 {
2905 *ab = 0;
2906 *regp = reg - REG_GR;
2907 }
2908 else if ((reg >= (REG_FR + 2) && reg <= (REG_FR + 5))
2909 || (reg >= (REG_FR + 16) && reg <= (REG_FR + 31)))
2910 {
2911 *ab = 1;
2912 *regp = reg - REG_FR;
2913 }
2914 else if (reg >= (REG_BR + 1) && reg <= (REG_BR + 5))
2915 {
2916 *ab = 2;
2917 *regp = reg - REG_BR;
2918 }
2919 else
2920 {
2921 *ab = 3;
2922 switch (reg)
2923 {
2924 case REG_PR: *regp = 0; break;
2925 case REG_PSP: *regp = 1; break;
2926 case REG_PRIUNAT: *regp = 2; break;
2927 case REG_BR + 0: *regp = 3; break;
2928 case REG_AR + AR_BSP: *regp = 4; break;
2929 case REG_AR + AR_BSPSTORE: *regp = 5; break;
2930 case REG_AR + AR_RNAT: *regp = 6; break;
2931 case REG_AR + AR_UNAT: *regp = 7; break;
2932 case REG_AR + AR_FPSR: *regp = 8; break;
2933 case REG_AR + AR_PFS: *regp = 9; break;
2934 case REG_AR + AR_LC: *regp = 10; break;
2935
2936 default:
2937 return 0;
2938 }
2939 }
2940 return 1;
2941 }
2942
2943 static int
2944 convert_expr_to_xy_reg (e, xy, regp)
2945 expressionS *e;
2946 unsigned int *xy;
2947 unsigned int *regp;
2948 {
2949 unsigned int reg;
2950
2951 if (e->X_op != O_register)
2952 return 0;
2953
2954 reg = e->X_add_number;
2955
2956 if (/* reg >= REG_GR && */ reg <= (REG_GR + 127))
2957 {
2958 *xy = 0;
2959 *regp = reg - REG_GR;
2960 }
2961 else if (reg >= REG_FR && reg <= (REG_FR + 127))
2962 {
2963 *xy = 1;
2964 *regp = reg - REG_FR;
2965 }
2966 else if (reg >= REG_BR && reg <= (REG_BR + 7))
2967 {
2968 *xy = 2;
2969 *regp = reg - REG_BR;
2970 }
2971 else
2972 return -1;
2973 return 1;
2974 }
2975
2976 static void
2977 dot_radix (dummy)
2978 int dummy ATTRIBUTE_UNUSED;
2979 {
2980 int radix;
2981
2982 SKIP_WHITESPACE ();
2983 radix = *input_line_pointer++;
2984
2985 if (radix != 'C' && !is_end_of_line[(unsigned char) radix])
2986 {
2987 as_bad ("Radix `%c' unsupported", *input_line_pointer);
2988 ignore_rest_of_line ();
2989 return;
2990 }
2991 }
2992
2993 /* .sbss, .bss etc. are macros that expand into ".section SECNAME". */
2994 static void
2995 dot_special_section (which)
2996 int which;
2997 {
2998 set_section ((char *) special_section_name[which]);
2999 }
3000
3001 static void
3002 add_unwind_entry (ptr)
3003 unw_rec_list *ptr;
3004 {
3005 if (unwind.tail)
3006 unwind.tail->next = ptr;
3007 else
3008 unwind.list = ptr;
3009 unwind.tail = ptr;
3010
3011 /* The current entry can in fact be a chain of unwind entries. */
3012 if (unwind.current_entry == NULL)
3013 unwind.current_entry = ptr;
3014 }
3015
3016 static void
3017 dot_fframe (dummy)
3018 int dummy ATTRIBUTE_UNUSED;
3019 {
3020 expressionS e;
3021
3022 parse_operand (&e);
3023
3024 if (e.X_op != O_constant)
3025 as_bad ("Operand to .fframe must be a constant");
3026 else
3027 add_unwind_entry (output_mem_stack_f (e.X_add_number));
3028 }
3029
3030 static void
3031 dot_vframe (dummy)
3032 int dummy ATTRIBUTE_UNUSED;
3033 {
3034 expressionS e;
3035 unsigned reg;
3036
3037 parse_operand (&e);
3038 reg = e.X_add_number - REG_GR;
3039 if (e.X_op == O_register && reg < 128)
3040 {
3041 add_unwind_entry (output_mem_stack_v ());
3042 if (! (unwind.prologue_mask & 2))
3043 add_unwind_entry (output_psp_gr (reg));
3044 }
3045 else
3046 as_bad ("First operand to .vframe must be a general register");
3047 }
3048
3049 static void
3050 dot_vframesp (dummy)
3051 int dummy ATTRIBUTE_UNUSED;
3052 {
3053 expressionS e;
3054
3055 parse_operand (&e);
3056 if (e.X_op == O_constant)
3057 {
3058 add_unwind_entry (output_mem_stack_v ());
3059 add_unwind_entry (output_psp_sprel (e.X_add_number));
3060 }
3061 else
3062 as_bad ("Operand to .vframesp must be a constant (sp-relative offset)");
3063 }
3064
3065 static void
3066 dot_vframepsp (dummy)
3067 int dummy ATTRIBUTE_UNUSED;
3068 {
3069 expressionS e;
3070
3071 parse_operand (&e);
3072 if (e.X_op == O_constant)
3073 {
3074 add_unwind_entry (output_mem_stack_v ());
3075 add_unwind_entry (output_psp_sprel (e.X_add_number));
3076 }
3077 else
3078 as_bad ("Operand to .vframepsp must be a constant (psp-relative offset)");
3079 }
3080
3081 static void
3082 dot_save (dummy)
3083 int dummy ATTRIBUTE_UNUSED;
3084 {
3085 expressionS e1, e2;
3086 int sep;
3087 int reg1, reg2;
3088
3089 sep = parse_operand (&e1);
3090 if (sep != ',')
3091 as_bad ("No second operand to .save");
3092 sep = parse_operand (&e2);
3093
3094 reg1 = e1.X_add_number;
3095 reg2 = e2.X_add_number - REG_GR;
3096
3097 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3098 if (e1.X_op == O_register)
3099 {
3100 if (e2.X_op == O_register && reg2 >= 0 && reg2 < 128)
3101 {
3102 switch (reg1)
3103 {
3104 case REG_AR + AR_BSP:
3105 add_unwind_entry (output_bsp_when ());
3106 add_unwind_entry (output_bsp_gr (reg2));
3107 break;
3108 case REG_AR + AR_BSPSTORE:
3109 add_unwind_entry (output_bspstore_when ());
3110 add_unwind_entry (output_bspstore_gr (reg2));
3111 break;
3112 case REG_AR + AR_RNAT:
3113 add_unwind_entry (output_rnat_when ());
3114 add_unwind_entry (output_rnat_gr (reg2));
3115 break;
3116 case REG_AR + AR_UNAT:
3117 add_unwind_entry (output_unat_when ());
3118 add_unwind_entry (output_unat_gr (reg2));
3119 break;
3120 case REG_AR + AR_FPSR:
3121 add_unwind_entry (output_fpsr_when ());
3122 add_unwind_entry (output_fpsr_gr (reg2));
3123 break;
3124 case REG_AR + AR_PFS:
3125 add_unwind_entry (output_pfs_when ());
3126 if (! (unwind.prologue_mask & 4))
3127 add_unwind_entry (output_pfs_gr (reg2));
3128 break;
3129 case REG_AR + AR_LC:
3130 add_unwind_entry (output_lc_when ());
3131 add_unwind_entry (output_lc_gr (reg2));
3132 break;
3133 case REG_BR:
3134 add_unwind_entry (output_rp_when ());
3135 if (! (unwind.prologue_mask & 8))
3136 add_unwind_entry (output_rp_gr (reg2));
3137 break;
3138 case REG_PR:
3139 add_unwind_entry (output_preds_when ());
3140 if (! (unwind.prologue_mask & 1))
3141 add_unwind_entry (output_preds_gr (reg2));
3142 break;
3143 case REG_PRIUNAT:
3144 add_unwind_entry (output_priunat_when_gr ());
3145 add_unwind_entry (output_priunat_gr (reg2));
3146 break;
3147 default:
3148 as_bad ("First operand not a valid register");
3149 }
3150 }
3151 else
3152 as_bad (" Second operand not a valid register");
3153 }
3154 else
3155 as_bad ("First operand not a register");
3156 }
3157
3158 static void
3159 dot_restore (dummy)
3160 int dummy ATTRIBUTE_UNUSED;
3161 {
3162 expressionS e1, e2;
3163 unsigned long ecount; /* # of _additional_ regions to pop */
3164 int sep;
3165
3166 sep = parse_operand (&e1);
3167 if (e1.X_op != O_register || e1.X_add_number != REG_GR + 12)
3168 {
3169 as_bad ("First operand to .restore must be stack pointer (sp)");
3170 return;
3171 }
3172
3173 if (sep == ',')
3174 {
3175 parse_operand (&e2);
3176 if (e2.X_op != O_constant || e2.X_add_number < 0)
3177 {
3178 as_bad ("Second operand to .restore must be a constant >= 0");
3179 return;
3180 }
3181 ecount = e2.X_add_number;
3182 }
3183 else
3184 ecount = unwind.prologue_count - 1;
3185
3186 if (ecount >= unwind.prologue_count)
3187 {
3188 as_bad ("Epilogue count of %lu exceeds number of nested prologues (%u)",
3189 ecount + 1, unwind.prologue_count);
3190 return;
3191 }
3192
3193 add_unwind_entry (output_epilogue (ecount));
3194
3195 if (ecount < unwind.prologue_count)
3196 unwind.prologue_count -= ecount + 1;
3197 else
3198 unwind.prologue_count = 0;
3199 }
3200
3201 static void
3202 dot_restorereg (dummy)
3203 int dummy ATTRIBUTE_UNUSED;
3204 {
3205 unsigned int ab, reg;
3206 expressionS e;
3207
3208 parse_operand (&e);
3209
3210 if (!convert_expr_to_ab_reg (&e, &ab, &reg))
3211 {
3212 as_bad ("First operand to .restorereg must be a preserved register");
3213 return;
3214 }
3215 add_unwind_entry (output_spill_reg (ab, reg, 0, 0));
3216 }
3217
3218 static void
3219 dot_restorereg_p (dummy)
3220 int dummy ATTRIBUTE_UNUSED;
3221 {
3222 unsigned int qp, ab, reg;
3223 expressionS e1, e2;
3224 int sep;
3225
3226 sep = parse_operand (&e1);
3227 if (sep != ',')
3228 {
3229 as_bad ("No second operand to .restorereg.p");
3230 return;
3231 }
3232
3233 parse_operand (&e2);
3234
3235 qp = e1.X_add_number - REG_P;
3236 if (e1.X_op != O_register || qp > 63)
3237 {
3238 as_bad ("First operand to .restorereg.p must be a predicate");
3239 return;
3240 }
3241
3242 if (!convert_expr_to_ab_reg (&e2, &ab, &reg))
3243 {
3244 as_bad ("Second operand to .restorereg.p must be a preserved register");
3245 return;
3246 }
3247 add_unwind_entry (output_spill_reg_p (ab, reg, 0, 0, qp));
3248 }
3249
3250 static void
3251 generate_unwind_image (text_name)
3252 const char *text_name;
3253 {
3254 int size, pad;
3255 unw_rec_list *list;
3256
3257 /* Force out pending instructions, to make sure all unwind records have
3258 a valid slot_number field. */
3259 ia64_flush_insns ();
3260
3261 /* Generate the unwind record. */
3262 list = optimize_unw_records (unwind.list);
3263 fixup_unw_records (list);
3264 size = calc_record_size (list);
3265
3266 if (size > 0 || unwind.force_unwind_entry)
3267 {
3268 unwind.force_unwind_entry = 0;
3269 /* pad to pointer-size boundary. */
3270 pad = size % md.pointer_size;
3271 if (pad != 0)
3272 size += md.pointer_size - pad;
3273 /* Add 8 for the header + a pointer for the personality
3274 offset. */
3275 size += 8 + md.pointer_size;
3276 }
3277
3278 /* If there are unwind records, switch sections, and output the info. */
3279 if (size != 0)
3280 {
3281 char *sec_name;
3282 expressionS exp;
3283 bfd_reloc_code_real_type reloc;
3284
3285 make_unw_section_name (SPECIAL_SECTION_UNWIND_INFO, text_name, sec_name);
3286 set_section (sec_name);
3287 bfd_set_section_flags (stdoutput, now_seg,
3288 SEC_LOAD | SEC_ALLOC | SEC_READONLY);
3289
3290 /* Make sure the section has 4 byte alignment for ILP32 and
3291 8 byte alignment for LP64. */
3292 frag_align (md.pointer_size_shift, 0, 0);
3293 record_alignment (now_seg, md.pointer_size_shift);
3294
3295 /* Set expression which points to start of unwind descriptor area. */
3296 unwind.info = expr_build_dot ();
3297
3298 frag_var (rs_machine_dependent, size, size, 0, 0,
3299 (offsetT) unwind.personality_routine, (char *) list);
3300
3301 /* Add the personality address to the image. */
3302 if (unwind.personality_routine != 0)
3303 {
3304 exp.X_op = O_symbol;
3305 exp.X_add_symbol = unwind.personality_routine;
3306 exp.X_add_number = 0;
3307
3308 if (md.flags & EF_IA_64_BE)
3309 {
3310 if (md.flags & EF_IA_64_ABI64)
3311 reloc = BFD_RELOC_IA64_LTOFF_FPTR64MSB;
3312 else
3313 reloc = BFD_RELOC_IA64_LTOFF_FPTR32MSB;
3314 }
3315 else
3316 {
3317 if (md.flags & EF_IA_64_ABI64)
3318 reloc = BFD_RELOC_IA64_LTOFF_FPTR64LSB;
3319 else
3320 reloc = BFD_RELOC_IA64_LTOFF_FPTR32LSB;
3321 }
3322
3323 fix_new_exp (frag_now, frag_now_fix () - md.pointer_size,
3324 md.pointer_size, &exp, 0, reloc);
3325 unwind.personality_routine = 0;
3326 }
3327 }
3328
3329 free_saved_prologue_counts ();
3330 unwind.list = unwind.tail = unwind.current_entry = NULL;
3331 }
3332
3333 static void
3334 dot_handlerdata (dummy)
3335 int dummy ATTRIBUTE_UNUSED;
3336 {
3337 const char *text_name = segment_name (now_seg);
3338
3339 /* If text section name starts with ".text" (which it should),
3340 strip this prefix off. */
3341 if (strcmp (text_name, ".text") == 0)
3342 text_name = "";
3343
3344 unwind.force_unwind_entry = 1;
3345
3346 /* Remember which segment we're in so we can switch back after .endp */
3347 unwind.saved_text_seg = now_seg;
3348 unwind.saved_text_subseg = now_subseg;
3349
3350 /* Generate unwind info into unwind-info section and then leave that
3351 section as the currently active one so dataXX directives go into
3352 the language specific data area of the unwind info block. */
3353 generate_unwind_image (text_name);
3354 demand_empty_rest_of_line ();
3355 }
3356
3357 static void
3358 dot_unwentry (dummy)
3359 int dummy ATTRIBUTE_UNUSED;
3360 {
3361 unwind.force_unwind_entry = 1;
3362 demand_empty_rest_of_line ();
3363 }
3364
3365 static void
3366 dot_altrp (dummy)
3367 int dummy ATTRIBUTE_UNUSED;
3368 {
3369 expressionS e;
3370 unsigned reg;
3371
3372 parse_operand (&e);
3373 reg = e.X_add_number - REG_BR;
3374 if (e.X_op == O_register && reg < 8)
3375 add_unwind_entry (output_rp_br (reg));
3376 else
3377 as_bad ("First operand not a valid branch register");
3378 }
3379
3380 static void
3381 dot_savemem (psprel)
3382 int psprel;
3383 {
3384 expressionS e1, e2;
3385 int sep;
3386 int reg1, val;
3387
3388 sep = parse_operand (&e1);
3389 if (sep != ',')
3390 as_bad ("No second operand to .save%ssp", psprel ? "p" : "");
3391 sep = parse_operand (&e2);
3392
3393 reg1 = e1.X_add_number;
3394 val = e2.X_add_number;
3395
3396 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3397 if (e1.X_op == O_register)
3398 {
3399 if (e2.X_op == O_constant)
3400 {
3401 switch (reg1)
3402 {
3403 case REG_AR + AR_BSP:
3404 add_unwind_entry (output_bsp_when ());
3405 add_unwind_entry ((psprel
3406 ? output_bsp_psprel
3407 : output_bsp_sprel) (val));
3408 break;
3409 case REG_AR + AR_BSPSTORE:
3410 add_unwind_entry (output_bspstore_when ());
3411 add_unwind_entry ((psprel
3412 ? output_bspstore_psprel
3413 : output_bspstore_sprel) (val));
3414 break;
3415 case REG_AR + AR_RNAT:
3416 add_unwind_entry (output_rnat_when ());
3417 add_unwind_entry ((psprel
3418 ? output_rnat_psprel
3419 : output_rnat_sprel) (val));
3420 break;
3421 case REG_AR + AR_UNAT:
3422 add_unwind_entry (output_unat_when ());
3423 add_unwind_entry ((psprel
3424 ? output_unat_psprel
3425 : output_unat_sprel) (val));
3426 break;
3427 case REG_AR + AR_FPSR:
3428 add_unwind_entry (output_fpsr_when ());
3429 add_unwind_entry ((psprel
3430 ? output_fpsr_psprel
3431 : output_fpsr_sprel) (val));
3432 break;
3433 case REG_AR + AR_PFS:
3434 add_unwind_entry (output_pfs_when ());
3435 add_unwind_entry ((psprel
3436 ? output_pfs_psprel
3437 : output_pfs_sprel) (val));
3438 break;
3439 case REG_AR + AR_LC:
3440 add_unwind_entry (output_lc_when ());
3441 add_unwind_entry ((psprel
3442 ? output_lc_psprel
3443 : output_lc_sprel) (val));
3444 break;
3445 case REG_BR:
3446 add_unwind_entry (output_rp_when ());
3447 add_unwind_entry ((psprel
3448 ? output_rp_psprel
3449 : output_rp_sprel) (val));
3450 break;
3451 case REG_PR:
3452 add_unwind_entry (output_preds_when ());
3453 add_unwind_entry ((psprel
3454 ? output_preds_psprel
3455 : output_preds_sprel) (val));
3456 break;
3457 case REG_PRIUNAT:
3458 add_unwind_entry (output_priunat_when_mem ());
3459 add_unwind_entry ((psprel
3460 ? output_priunat_psprel
3461 : output_priunat_sprel) (val));
3462 break;
3463 default:
3464 as_bad ("First operand not a valid register");
3465 }
3466 }
3467 else
3468 as_bad (" Second operand not a valid constant");
3469 }
3470 else
3471 as_bad ("First operand not a register");
3472 }
3473
3474 static void
3475 dot_saveg (dummy)
3476 int dummy ATTRIBUTE_UNUSED;
3477 {
3478 expressionS e1, e2;
3479 int sep;
3480 sep = parse_operand (&e1);
3481 if (sep == ',')
3482 parse_operand (&e2);
3483
3484 if (e1.X_op != O_constant)
3485 as_bad ("First operand to .save.g must be a constant.");
3486 else
3487 {
3488 int grmask = e1.X_add_number;
3489 if (sep != ',')
3490 add_unwind_entry (output_gr_mem (grmask));
3491 else
3492 {
3493 int reg = e2.X_add_number - REG_GR;
3494 if (e2.X_op == O_register && reg >= 0 && reg < 128)
3495 add_unwind_entry (output_gr_gr (grmask, reg));
3496 else
3497 as_bad ("Second operand is an invalid register.");
3498 }
3499 }
3500 }
3501
3502 static void
3503 dot_savef (dummy)
3504 int dummy ATTRIBUTE_UNUSED;
3505 {
3506 expressionS e1;
3507 int sep;
3508 sep = parse_operand (&e1);
3509
3510 if (e1.X_op != O_constant)
3511 as_bad ("Operand to .save.f must be a constant.");
3512 else
3513 add_unwind_entry (output_fr_mem (e1.X_add_number));
3514 }
3515
3516 static void
3517 dot_saveb (dummy)
3518 int dummy ATTRIBUTE_UNUSED;
3519 {
3520 expressionS e1, e2;
3521 unsigned int reg;
3522 unsigned char sep;
3523 int brmask;
3524
3525 sep = parse_operand (&e1);
3526 if (e1.X_op != O_constant)
3527 {
3528 as_bad ("First operand to .save.b must be a constant.");
3529 return;
3530 }
3531 brmask = e1.X_add_number;
3532
3533 if (sep == ',')
3534 {
3535 sep = parse_operand (&e2);
3536 reg = e2.X_add_number - REG_GR;
3537 if (e2.X_op != O_register || reg > 127)
3538 {
3539 as_bad ("Second operand to .save.b must be a general register.");
3540 return;
3541 }
3542 add_unwind_entry (output_br_gr (brmask, e2.X_add_number));
3543 }
3544 else
3545 add_unwind_entry (output_br_mem (brmask));
3546
3547 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
3548 ignore_rest_of_line ();
3549 }
3550
3551 static void
3552 dot_savegf (dummy)
3553 int dummy ATTRIBUTE_UNUSED;
3554 {
3555 expressionS e1, e2;
3556 int sep;
3557 sep = parse_operand (&e1);
3558 if (sep == ',')
3559 parse_operand (&e2);
3560
3561 if (e1.X_op != O_constant || sep != ',' || e2.X_op != O_constant)
3562 as_bad ("Both operands of .save.gf must be constants.");
3563 else
3564 {
3565 int grmask = e1.X_add_number;
3566 int frmask = e2.X_add_number;
3567 add_unwind_entry (output_frgr_mem (grmask, frmask));
3568 }
3569 }
3570
3571 static void
3572 dot_spill (dummy)
3573 int dummy ATTRIBUTE_UNUSED;
3574 {
3575 expressionS e;
3576 unsigned char sep;
3577
3578 sep = parse_operand (&e);
3579 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
3580 ignore_rest_of_line ();
3581
3582 if (e.X_op != O_constant)
3583 as_bad ("Operand to .spill must be a constant");
3584 else
3585 add_unwind_entry (output_spill_base (e.X_add_number));
3586 }
3587
3588 static void
3589 dot_spillreg (dummy)
3590 int dummy ATTRIBUTE_UNUSED;
3591 {
3592 int sep, ab, xy, reg, treg;
3593 expressionS e1, e2;
3594
3595 sep = parse_operand (&e1);
3596 if (sep != ',')
3597 {
3598 as_bad ("No second operand to .spillreg");
3599 return;
3600 }
3601
3602 parse_operand (&e2);
3603
3604 if (!convert_expr_to_ab_reg (&e1, &ab, &reg))
3605 {
3606 as_bad ("First operand to .spillreg must be a preserved register");
3607 return;
3608 }
3609
3610 if (!convert_expr_to_xy_reg (&e2, &xy, &treg))
3611 {
3612 as_bad ("Second operand to .spillreg must be a register");
3613 return;
3614 }
3615
3616 add_unwind_entry (output_spill_reg (ab, reg, treg, xy));
3617 }
3618
3619 static void
3620 dot_spillmem (psprel)
3621 int psprel;
3622 {
3623 expressionS e1, e2;
3624 int sep, ab, reg;
3625
3626 sep = parse_operand (&e1);
3627 if (sep != ',')
3628 {
3629 as_bad ("Second operand missing");
3630 return;
3631 }
3632
3633 parse_operand (&e2);
3634
3635 if (!convert_expr_to_ab_reg (&e1, &ab, &reg))
3636 {
3637 as_bad ("First operand to .spill%s must be a preserved register",
3638 psprel ? "psp" : "sp");
3639 return;
3640 }
3641
3642 if (e2.X_op != O_constant)
3643 {
3644 as_bad ("Second operand to .spill%s must be a constant",
3645 psprel ? "psp" : "sp");
3646 return;
3647 }
3648
3649 if (psprel)
3650 add_unwind_entry (output_spill_psprel (ab, reg, e2.X_add_number));
3651 else
3652 add_unwind_entry (output_spill_sprel (ab, reg, e2.X_add_number));
3653 }
3654
3655 static void
3656 dot_spillreg_p (dummy)
3657 int dummy ATTRIBUTE_UNUSED;
3658 {
3659 int sep, ab, xy, reg, treg;
3660 expressionS e1, e2, e3;
3661 unsigned int qp;
3662
3663 sep = parse_operand (&e1);
3664 if (sep != ',')
3665 {
3666 as_bad ("No second and third operand to .spillreg.p");
3667 return;
3668 }
3669
3670 sep = parse_operand (&e2);
3671 if (sep != ',')
3672 {
3673 as_bad ("No third operand to .spillreg.p");
3674 return;
3675 }
3676
3677 parse_operand (&e3);
3678
3679 qp = e1.X_add_number - REG_P;
3680
3681 if (e1.X_op != O_register || qp > 63)
3682 {
3683 as_bad ("First operand to .spillreg.p must be a predicate");
3684 return;
3685 }
3686
3687 if (!convert_expr_to_ab_reg (&e2, &ab, &reg))
3688 {
3689 as_bad ("Second operand to .spillreg.p must be a preserved register");
3690 return;
3691 }
3692
3693 if (!convert_expr_to_xy_reg (&e3, &xy, &treg))
3694 {
3695 as_bad ("Third operand to .spillreg.p must be a register");
3696 return;
3697 }
3698
3699 add_unwind_entry (output_spill_reg_p (ab, reg, treg, xy, qp));
3700 }
3701
3702 static void
3703 dot_spillmem_p (psprel)
3704 int psprel;
3705 {
3706 expressionS e1, e2, e3;
3707 int sep, ab, reg;
3708 unsigned int qp;
3709
3710 sep = parse_operand (&e1);
3711 if (sep != ',')
3712 {
3713 as_bad ("Second operand missing");
3714 return;
3715 }
3716
3717 parse_operand (&e2);
3718 if (sep != ',')
3719 {
3720 as_bad ("Second operand missing");
3721 return;
3722 }
3723
3724 parse_operand (&e3);
3725
3726 qp = e1.X_add_number - REG_P;
3727 if (e1.X_op != O_register || qp > 63)
3728 {
3729 as_bad ("First operand to .spill%s_p must be a predicate",
3730 psprel ? "psp" : "sp");
3731 return;
3732 }
3733
3734 if (!convert_expr_to_ab_reg (&e2, &ab, &reg))
3735 {
3736 as_bad ("Second operand to .spill%s_p must be a preserved register",
3737 psprel ? "psp" : "sp");
3738 return;
3739 }
3740
3741 if (e3.X_op != O_constant)
3742 {
3743 as_bad ("Third operand to .spill%s_p must be a constant",
3744 psprel ? "psp" : "sp");
3745 return;
3746 }
3747
3748 if (psprel)
3749 add_unwind_entry (output_spill_psprel_p (ab, reg, e3.X_add_number, qp));
3750 else
3751 add_unwind_entry (output_spill_sprel_p (ab, reg, e3.X_add_number, qp));
3752 }
3753
3754 static unsigned int
3755 get_saved_prologue_count (lbl)
3756 unsigned long lbl;
3757 {
3758 label_prologue_count *lpc = unwind.saved_prologue_counts;
3759
3760 while (lpc != NULL && lpc->label_number != lbl)
3761 lpc = lpc->next;
3762
3763 if (lpc != NULL)
3764 return lpc->prologue_count;
3765
3766 as_bad ("Missing .label_state %ld", lbl);
3767 return 1;
3768 }
3769
3770 static void
3771 save_prologue_count (lbl, count)
3772 unsigned long lbl;
3773 unsigned int count;
3774 {
3775 label_prologue_count *lpc = unwind.saved_prologue_counts;
3776
3777 while (lpc != NULL && lpc->label_number != lbl)
3778 lpc = lpc->next;
3779
3780 if (lpc != NULL)
3781 lpc->prologue_count = count;
3782 else
3783 {
3784 label_prologue_count *new_lpc = xmalloc (sizeof (* new_lpc));
3785
3786 new_lpc->next = unwind.saved_prologue_counts;
3787 new_lpc->label_number = lbl;
3788 new_lpc->prologue_count = count;
3789 unwind.saved_prologue_counts = new_lpc;
3790 }
3791 }
3792
3793 static void
3794 free_saved_prologue_counts ()
3795 {
3796 label_prologue_count *lpc = unwind.saved_prologue_counts;
3797 label_prologue_count *next;
3798
3799 while (lpc != NULL)
3800 {
3801 next = lpc->next;
3802 free (lpc);
3803 lpc = next;
3804 }
3805
3806 unwind.saved_prologue_counts = NULL;
3807 }
3808
3809 static void
3810 dot_label_state (dummy)
3811 int dummy ATTRIBUTE_UNUSED;
3812 {
3813 expressionS e;
3814
3815 parse_operand (&e);
3816 if (e.X_op != O_constant)
3817 {
3818 as_bad ("Operand to .label_state must be a constant");
3819 return;
3820 }
3821 add_unwind_entry (output_label_state (e.X_add_number));
3822 save_prologue_count (e.X_add_number, unwind.prologue_count);
3823 }
3824
3825 static void
3826 dot_copy_state (dummy)
3827 int dummy ATTRIBUTE_UNUSED;
3828 {
3829 expressionS e;
3830
3831 parse_operand (&e);
3832 if (e.X_op != O_constant)
3833 {
3834 as_bad ("Operand to .copy_state must be a constant");
3835 return;
3836 }
3837 add_unwind_entry (output_copy_state (e.X_add_number));
3838 unwind.prologue_count = get_saved_prologue_count (e.X_add_number);
3839 }
3840
3841 static void
3842 dot_unwabi (dummy)
3843 int dummy ATTRIBUTE_UNUSED;
3844 {
3845 expressionS e1, e2;
3846 unsigned char sep;
3847
3848 sep = parse_operand (&e1);
3849 if (sep != ',')
3850 {
3851 as_bad ("Second operand to .unwabi missing");
3852 return;
3853 }
3854 sep = parse_operand (&e2);
3855 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
3856 ignore_rest_of_line ();
3857
3858 if (e1.X_op != O_constant)
3859 {
3860 as_bad ("First operand to .unwabi must be a constant");
3861 return;
3862 }
3863
3864 if (e2.X_op != O_constant)
3865 {
3866 as_bad ("Second operand to .unwabi must be a constant");
3867 return;
3868 }
3869
3870 add_unwind_entry (output_unwabi (e1.X_add_number, e2.X_add_number));
3871 }
3872
3873 static void
3874 dot_personality (dummy)
3875 int dummy ATTRIBUTE_UNUSED;
3876 {
3877 char *name, *p, c;
3878 SKIP_WHITESPACE ();
3879 name = input_line_pointer;
3880 c = get_symbol_end ();
3881 p = input_line_pointer;
3882 unwind.personality_routine = symbol_find_or_make (name);
3883 unwind.force_unwind_entry = 1;
3884 *p = c;
3885 SKIP_WHITESPACE ();
3886 demand_empty_rest_of_line ();
3887 }
3888
3889 static void
3890 dot_proc (dummy)
3891 int dummy ATTRIBUTE_UNUSED;
3892 {
3893 char *name, *p, c;
3894 symbolS *sym;
3895
3896 unwind.proc_start = expr_build_dot ();
3897 /* Parse names of main and alternate entry points and mark them as
3898 function symbols: */
3899 while (1)
3900 {
3901 SKIP_WHITESPACE ();
3902 name = input_line_pointer;
3903 c = get_symbol_end ();
3904 p = input_line_pointer;
3905 sym = symbol_find_or_make (name);
3906 if (unwind.proc_start == 0)
3907 {
3908 unwind.proc_start = sym;
3909 }
3910 symbol_get_bfdsym (sym)->flags |= BSF_FUNCTION;
3911 *p = c;
3912 SKIP_WHITESPACE ();
3913 if (*input_line_pointer != ',')
3914 break;
3915 ++input_line_pointer;
3916 }
3917 demand_empty_rest_of_line ();
3918 ia64_do_align (16);
3919
3920 unwind.prologue_count = 0;
3921 unwind.list = unwind.tail = unwind.current_entry = NULL;
3922 unwind.personality_routine = 0;
3923 }
3924
3925 static void
3926 dot_body (dummy)
3927 int dummy ATTRIBUTE_UNUSED;
3928 {
3929 unwind.prologue = 0;
3930 unwind.prologue_mask = 0;
3931
3932 add_unwind_entry (output_body ());
3933 demand_empty_rest_of_line ();
3934 }
3935
3936 static void
3937 dot_prologue (dummy)
3938 int dummy ATTRIBUTE_UNUSED;
3939 {
3940 unsigned char sep;
3941 int mask = 0, grsave = 0;
3942
3943 if (!is_it_end_of_statement ())
3944 {
3945 expressionS e1, e2;
3946 sep = parse_operand (&e1);
3947 if (sep != ',')
3948 as_bad ("No second operand to .prologue");
3949 sep = parse_operand (&e2);
3950 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
3951 ignore_rest_of_line ();
3952
3953 if (e1.X_op == O_constant)
3954 {
3955 mask = e1.X_add_number;
3956
3957 if (e2.X_op == O_constant)
3958 grsave = e2.X_add_number;
3959 else if (e2.X_op == O_register
3960 && (grsave = e2.X_add_number - REG_GR) < 128)
3961 ;
3962 else
3963 as_bad ("Second operand not a constant or general register");
3964
3965 add_unwind_entry (output_prologue_gr (mask, grsave));
3966 }
3967 else
3968 as_bad ("First operand not a constant");
3969 }
3970 else
3971 add_unwind_entry (output_prologue ());
3972
3973 unwind.prologue = 1;
3974 unwind.prologue_mask = mask;
3975 ++unwind.prologue_count;
3976 }
3977
3978 static void
3979 dot_endp (dummy)
3980 int dummy ATTRIBUTE_UNUSED;
3981 {
3982 expressionS e;
3983 unsigned char *ptr;
3984 int bytes_per_address;
3985 long where;
3986 segT saved_seg;
3987 subsegT saved_subseg;
3988 const char *sec_name, *text_name;
3989 char *name, *p, c;
3990 symbolS *sym;
3991
3992 if (unwind.saved_text_seg)
3993 {
3994 saved_seg = unwind.saved_text_seg;
3995 saved_subseg = unwind.saved_text_subseg;
3996 unwind.saved_text_seg = NULL;
3997 }
3998 else
3999 {
4000 saved_seg = now_seg;
4001 saved_subseg = now_subseg;
4002 }
4003
4004 /*
4005 Use a slightly ugly scheme to derive the unwind section names from
4006 the text section name:
4007
4008 text sect. unwind table sect.
4009 name: name: comments:
4010 ---------- ----------------- --------------------------------
4011 .text .IA_64.unwind
4012 .text.foo .IA_64.unwind.text.foo
4013 .foo .IA_64.unwind.foo
4014 .gnu.linkonce.t.foo
4015 .gnu.linkonce.ia64unw.foo
4016 _info .IA_64.unwind_info gas issues error message (ditto)
4017 _infoFOO .IA_64.unwind_infoFOO gas issues error message (ditto)
4018
4019 This mapping is done so that:
4020
4021 (a) An object file with unwind info only in .text will use
4022 unwind section names .IA_64.unwind and .IA_64.unwind_info.
4023 This follows the letter of the ABI and also ensures backwards
4024 compatibility with older toolchains.
4025
4026 (b) An object file with unwind info in multiple text sections
4027 will use separate unwind sections for each text section.
4028 This allows us to properly set the "sh_info" and "sh_link"
4029 fields in SHT_IA_64_UNWIND as required by the ABI and also
4030 lets GNU ld support programs with multiple segments
4031 containing unwind info (as might be the case for certain
4032 embedded applications).
4033
4034 (c) An error is issued if there would be a name clash.
4035 */
4036 text_name = segment_name (saved_seg);
4037 if (strncmp (text_name, "_info", 5) == 0)
4038 {
4039 as_bad ("Illegal section name `%s' (causes unwind section name clash)",
4040 text_name);
4041 ignore_rest_of_line ();
4042 return;
4043 }
4044 if (strcmp (text_name, ".text") == 0)
4045 text_name = "";
4046
4047 insn_group_break (1, 0, 0);
4048
4049 add_unwind_entry (output_endp ());
4050
4051 /* If there wasn't a .handlerdata, we haven't generated an image yet. */
4052 if (!unwind.info)
4053 generate_unwind_image (text_name);
4054
4055 if (unwind.info || unwind.force_unwind_entry)
4056 {
4057 subseg_set (md.last_text_seg, 0);
4058 unwind.proc_end = expr_build_dot ();
4059
4060 make_unw_section_name (SPECIAL_SECTION_UNWIND, text_name, sec_name);
4061 set_section ((char *) sec_name);
4062 bfd_set_section_flags (stdoutput, now_seg,
4063 SEC_LOAD | SEC_ALLOC | SEC_READONLY);
4064
4065 /* Make sure that section has 4 byte alignment for ILP32 and
4066 8 byte alignment for LP64. */
4067 record_alignment (now_seg, md.pointer_size_shift);
4068
4069 /* Need space for 3 pointers for procedure start, procedure end,
4070 and unwind info. */
4071 ptr = frag_more (3 * md.pointer_size);
4072 where = frag_now_fix () - (3 * md.pointer_size);
4073 bytes_per_address = bfd_arch_bits_per_address (stdoutput) / 8;
4074
4075 /* Issue the values of a) Proc Begin, b) Proc End, c) Unwind Record. */
4076 e.X_op = O_pseudo_fixup;
4077 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4078 e.X_add_number = 0;
4079 e.X_add_symbol = unwind.proc_start;
4080 ia64_cons_fix_new (frag_now, where, bytes_per_address, &e);
4081
4082 e.X_op = O_pseudo_fixup;
4083 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4084 e.X_add_number = 0;
4085 e.X_add_symbol = unwind.proc_end;
4086 ia64_cons_fix_new (frag_now, where + bytes_per_address,
4087 bytes_per_address, &e);
4088
4089 if (unwind.info)
4090 {
4091 e.X_op = O_pseudo_fixup;
4092 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4093 e.X_add_number = 0;
4094 e.X_add_symbol = unwind.info;
4095 ia64_cons_fix_new (frag_now, where + (bytes_per_address * 2),
4096 bytes_per_address, &e);
4097 }
4098 else
4099 md_number_to_chars (ptr + (bytes_per_address * 2), 0,
4100 bytes_per_address);
4101
4102 }
4103 subseg_set (saved_seg, saved_subseg);
4104
4105 /* Parse names of main and alternate entry points and set symbol sizes. */
4106 while (1)
4107 {
4108 SKIP_WHITESPACE ();
4109 name = input_line_pointer;
4110 c = get_symbol_end ();
4111 p = input_line_pointer;
4112 sym = symbol_find (name);
4113 if (sym && unwind.proc_start
4114 && (symbol_get_bfdsym (sym)->flags & BSF_FUNCTION)
4115 && S_GET_SIZE (sym) == 0 && symbol_get_obj (sym)->size == NULL)
4116 {
4117 fragS *fr = symbol_get_frag (unwind.proc_start);
4118 fragS *frag = symbol_get_frag (sym);
4119
4120 /* Check whether the function label is at or beyond last
4121 .proc directive. */
4122 while (fr && fr != frag)
4123 fr = fr->fr_next;
4124 if (fr)
4125 {
4126 if (frag == frag_now && SEG_NORMAL (now_seg))
4127 S_SET_SIZE (sym, frag_now_fix () - S_GET_VALUE (sym));
4128 else
4129 {
4130 symbol_get_obj (sym)->size =
4131 (expressionS *) xmalloc (sizeof (expressionS));
4132 symbol_get_obj (sym)->size->X_op = O_subtract;
4133 symbol_get_obj (sym)->size->X_add_symbol
4134 = symbol_new (FAKE_LABEL_NAME, now_seg,
4135 frag_now_fix (), frag_now);
4136 symbol_get_obj (sym)->size->X_op_symbol = sym;
4137 symbol_get_obj (sym)->size->X_add_number = 0;
4138 }
4139 }
4140 }
4141 *p = c;
4142 SKIP_WHITESPACE ();
4143 if (*input_line_pointer != ',')
4144 break;
4145 ++input_line_pointer;
4146 }
4147 demand_empty_rest_of_line ();
4148 unwind.proc_start = unwind.proc_end = unwind.info = 0;
4149 }
4150
4151 static void
4152 dot_template (template)
4153 int template;
4154 {
4155 CURR_SLOT.user_template = template;
4156 }
4157
4158 static void
4159 dot_regstk (dummy)
4160 int dummy ATTRIBUTE_UNUSED;
4161 {
4162 int ins, locs, outs, rots;
4163
4164 if (is_it_end_of_statement ())
4165 ins = locs = outs = rots = 0;
4166 else
4167 {
4168 ins = get_absolute_expression ();
4169 if (*input_line_pointer++ != ',')
4170 goto err;
4171 locs = get_absolute_expression ();
4172 if (*input_line_pointer++ != ',')
4173 goto err;
4174 outs = get_absolute_expression ();
4175 if (*input_line_pointer++ != ',')
4176 goto err;
4177 rots = get_absolute_expression ();
4178 }
4179 set_regstack (ins, locs, outs, rots);
4180 return;
4181
4182 err:
4183 as_bad ("Comma expected");
4184 ignore_rest_of_line ();
4185 }
4186
4187 static void
4188 dot_rot (type)
4189 int type;
4190 {
4191 unsigned num_regs, num_alloced = 0;
4192 struct dynreg **drpp, *dr;
4193 int ch, base_reg = 0;
4194 char *name, *start;
4195 size_t len;
4196
4197 switch (type)
4198 {
4199 case DYNREG_GR: base_reg = REG_GR + 32; break;
4200 case DYNREG_FR: base_reg = REG_FR + 32; break;
4201 case DYNREG_PR: base_reg = REG_P + 16; break;
4202 default: break;
4203 }
4204
4205 /* First, remove existing names from hash table. */
4206 for (dr = md.dynreg[type]; dr && dr->num_regs; dr = dr->next)
4207 {
4208 hash_delete (md.dynreg_hash, dr->name);
4209 dr->num_regs = 0;
4210 }
4211
4212 drpp = &md.dynreg[type];
4213 while (1)
4214 {
4215 start = input_line_pointer;
4216 ch = get_symbol_end ();
4217 *input_line_pointer = ch;
4218 len = (input_line_pointer - start);
4219
4220 SKIP_WHITESPACE ();
4221 if (*input_line_pointer != '[')
4222 {
4223 as_bad ("Expected '['");
4224 goto err;
4225 }
4226 ++input_line_pointer; /* skip '[' */
4227
4228 num_regs = get_absolute_expression ();
4229
4230 if (*input_line_pointer++ != ']')
4231 {
4232 as_bad ("Expected ']'");
4233 goto err;
4234 }
4235 SKIP_WHITESPACE ();
4236
4237 num_alloced += num_regs;
4238 switch (type)
4239 {
4240 case DYNREG_GR:
4241 if (num_alloced > md.rot.num_regs)
4242 {
4243 as_bad ("Used more than the declared %d rotating registers",
4244 md.rot.num_regs);
4245 goto err;
4246 }
4247 break;
4248 case DYNREG_FR:
4249 if (num_alloced > 96)
4250 {
4251 as_bad ("Used more than the available 96 rotating registers");
4252 goto err;
4253 }
4254 break;
4255 case DYNREG_PR:
4256 if (num_alloced > 48)
4257 {
4258 as_bad ("Used more than the available 48 rotating registers");
4259 goto err;
4260 }
4261 break;
4262
4263 default:
4264 break;
4265 }
4266
4267 name = obstack_alloc (&notes, len + 1);
4268 memcpy (name, start, len);
4269 name[len] = '\0';
4270
4271 if (!*drpp)
4272 {
4273 *drpp = obstack_alloc (&notes, sizeof (*dr));
4274 memset (*drpp, 0, sizeof (*dr));
4275 }
4276
4277 dr = *drpp;
4278 dr->name = name;
4279 dr->num_regs = num_regs;
4280 dr->base = base_reg;
4281 drpp = &dr->next;
4282 base_reg += num_regs;
4283
4284 if (hash_insert (md.dynreg_hash, name, dr))
4285 {
4286 as_bad ("Attempt to redefine register set `%s'", name);
4287 goto err;
4288 }
4289
4290 if (*input_line_pointer != ',')
4291 break;
4292 ++input_line_pointer; /* skip comma */
4293 SKIP_WHITESPACE ();
4294 }
4295 demand_empty_rest_of_line ();
4296 return;
4297
4298 err:
4299 ignore_rest_of_line ();
4300 }
4301
4302 static void
4303 dot_byteorder (byteorder)
4304 int byteorder;
4305 {
4306 segment_info_type *seginfo = seg_info (now_seg);
4307
4308 if (byteorder == -1)
4309 {
4310 if (seginfo->tc_segment_info_data.endian == 0)
4311 seginfo->tc_segment_info_data.endian
4312 = TARGET_BYTES_BIG_ENDIAN ? 1 : 2;
4313 byteorder = seginfo->tc_segment_info_data.endian == 1;
4314 }
4315 else
4316 seginfo->tc_segment_info_data.endian = byteorder ? 1 : 2;
4317
4318 if (target_big_endian != byteorder)
4319 {
4320 target_big_endian = byteorder;
4321 if (target_big_endian)
4322 {
4323 ia64_number_to_chars = number_to_chars_bigendian;
4324 ia64_float_to_chars = ia64_float_to_chars_bigendian;
4325 }
4326 else
4327 {
4328 ia64_number_to_chars = number_to_chars_littleendian;
4329 ia64_float_to_chars = ia64_float_to_chars_littleendian;
4330 }
4331 }
4332 }
4333
4334 static void
4335 dot_psr (dummy)
4336 int dummy ATTRIBUTE_UNUSED;
4337 {
4338 char *option;
4339 int ch;
4340
4341 while (1)
4342 {
4343 option = input_line_pointer;
4344 ch = get_symbol_end ();
4345 if (strcmp (option, "lsb") == 0)
4346 md.flags &= ~EF_IA_64_BE;
4347 else if (strcmp (option, "msb") == 0)
4348 md.flags |= EF_IA_64_BE;
4349 else if (strcmp (option, "abi32") == 0)
4350 md.flags &= ~EF_IA_64_ABI64;
4351 else if (strcmp (option, "abi64") == 0)
4352 md.flags |= EF_IA_64_ABI64;
4353 else
4354 as_bad ("Unknown psr option `%s'", option);
4355 *input_line_pointer = ch;
4356
4357 SKIP_WHITESPACE ();
4358 if (*input_line_pointer != ',')
4359 break;
4360
4361 ++input_line_pointer;
4362 SKIP_WHITESPACE ();
4363 }
4364 demand_empty_rest_of_line ();
4365 }
4366
4367 static void
4368 dot_ln (dummy)
4369 int dummy ATTRIBUTE_UNUSED;
4370 {
4371 new_logical_line (0, get_absolute_expression ());
4372 demand_empty_rest_of_line ();
4373 }
4374
4375 static char *
4376 parse_section_name ()
4377 {
4378 char *name;
4379 int len;
4380
4381 SKIP_WHITESPACE ();
4382 if (*input_line_pointer != '"')
4383 {
4384 as_bad ("Missing section name");
4385 ignore_rest_of_line ();
4386 return 0;
4387 }
4388 name = demand_copy_C_string (&len);
4389 if (!name)
4390 {
4391 ignore_rest_of_line ();
4392 return 0;
4393 }
4394 SKIP_WHITESPACE ();
4395 if (*input_line_pointer != ',')
4396 {
4397 as_bad ("Comma expected after section name");
4398 ignore_rest_of_line ();
4399 return 0;
4400 }
4401 ++input_line_pointer; /* skip comma */
4402 return name;
4403 }
4404
4405 static void
4406 dot_xdata (size)
4407 int size;
4408 {
4409 char *name = parse_section_name ();
4410 if (!name)
4411 return;
4412
4413 md.keep_pending_output = 1;
4414 set_section (name);
4415 cons (size);
4416 obj_elf_previous (0);
4417 md.keep_pending_output = 0;
4418 }
4419
4420 /* Why doesn't float_cons() call md_cons_align() the way cons() does? */
4421
4422 static void
4423 stmt_float_cons (kind)
4424 int kind;
4425 {
4426 size_t alignment;
4427
4428 switch (kind)
4429 {
4430 case 'd':
4431 alignment = 8;
4432 break;
4433
4434 case 'x':
4435 case 'X':
4436 alignment = 16;
4437 break;
4438
4439 case 'f':
4440 default:
4441 alignment = 4;
4442 break;
4443 }
4444 ia64_do_align (alignment);
4445 float_cons (kind);
4446 }
4447
4448 static void
4449 stmt_cons_ua (size)
4450 int size;
4451 {
4452 int saved_auto_align = md.auto_align;
4453
4454 md.auto_align = 0;
4455 cons (size);
4456 md.auto_align = saved_auto_align;
4457 }
4458
4459 static void
4460 dot_xfloat_cons (kind)
4461 int kind;
4462 {
4463 char *name = parse_section_name ();
4464 if (!name)
4465 return;
4466
4467 md.keep_pending_output = 1;
4468 set_section (name);
4469 stmt_float_cons (kind);
4470 obj_elf_previous (0);
4471 md.keep_pending_output = 0;
4472 }
4473
4474 static void
4475 dot_xstringer (zero)
4476 int zero;
4477 {
4478 char *name = parse_section_name ();
4479 if (!name)
4480 return;
4481
4482 md.keep_pending_output = 1;
4483 set_section (name);
4484 stringer (zero);
4485 obj_elf_previous (0);
4486 md.keep_pending_output = 0;
4487 }
4488
4489 static void
4490 dot_xdata_ua (size)
4491 int size;
4492 {
4493 int saved_auto_align = md.auto_align;
4494 char *name = parse_section_name ();
4495 if (!name)
4496 return;
4497
4498 md.keep_pending_output = 1;
4499 set_section (name);
4500 md.auto_align = 0;
4501 cons (size);
4502 md.auto_align = saved_auto_align;
4503 obj_elf_previous (0);
4504 md.keep_pending_output = 0;
4505 }
4506
4507 static void
4508 dot_xfloat_cons_ua (kind)
4509 int kind;
4510 {
4511 int saved_auto_align = md.auto_align;
4512 char *name = parse_section_name ();
4513 if (!name)
4514 return;
4515
4516 md.keep_pending_output = 1;
4517 set_section (name);
4518 md.auto_align = 0;
4519 stmt_float_cons (kind);
4520 md.auto_align = saved_auto_align;
4521 obj_elf_previous (0);
4522 md.keep_pending_output = 0;
4523 }
4524
4525 /* .reg.val <regname>,value */
4526
4527 static void
4528 dot_reg_val (dummy)
4529 int dummy ATTRIBUTE_UNUSED;
4530 {
4531 expressionS reg;
4532
4533 expression (&reg);
4534 if (reg.X_op != O_register)
4535 {
4536 as_bad (_("Register name expected"));
4537 ignore_rest_of_line ();
4538 }
4539 else if (*input_line_pointer++ != ',')
4540 {
4541 as_bad (_("Comma expected"));
4542 ignore_rest_of_line ();
4543 }
4544 else
4545 {
4546 valueT value = get_absolute_expression ();
4547 int regno = reg.X_add_number;
4548 if (regno < REG_GR || regno > REG_GR + 128)
4549 as_warn (_("Register value annotation ignored"));
4550 else
4551 {
4552 gr_values[regno - REG_GR].known = 1;
4553 gr_values[regno - REG_GR].value = value;
4554 gr_values[regno - REG_GR].path = md.path;
4555 }
4556 }
4557 demand_empty_rest_of_line ();
4558 }
4559
4560 /* select dv checking mode
4561 .auto
4562 .explicit
4563 .default
4564
4565 A stop is inserted when changing modes
4566 */
4567
4568 static void
4569 dot_dv_mode (type)
4570 int type;
4571 {
4572 if (md.manual_bundling)
4573 as_warn (_("Directive invalid within a bundle"));
4574
4575 if (type == 'E' || type == 'A')
4576 md.mode_explicitly_set = 0;
4577 else
4578 md.mode_explicitly_set = 1;
4579
4580 md.detect_dv = 1;
4581 switch (type)
4582 {
4583 case 'A':
4584 case 'a':
4585 if (md.explicit_mode)
4586 insn_group_break (1, 0, 0);
4587 md.explicit_mode = 0;
4588 break;
4589 case 'E':
4590 case 'e':
4591 if (!md.explicit_mode)
4592 insn_group_break (1, 0, 0);
4593 md.explicit_mode = 1;
4594 break;
4595 default:
4596 case 'd':
4597 if (md.explicit_mode != md.default_explicit_mode)
4598 insn_group_break (1, 0, 0);
4599 md.explicit_mode = md.default_explicit_mode;
4600 md.mode_explicitly_set = 0;
4601 break;
4602 }
4603 }
4604
4605 static void
4606 print_prmask (mask)
4607 valueT mask;
4608 {
4609 int regno;
4610 char *comma = "";
4611 for (regno = 0; regno < 64; regno++)
4612 {
4613 if (mask & ((valueT) 1 << regno))
4614 {
4615 fprintf (stderr, "%s p%d", comma, regno);
4616 comma = ",";
4617 }
4618 }
4619 }
4620
4621 /*
4622 .pred.rel.clear [p1 [,p2 [,...]]] (also .pred.rel "clear")
4623 .pred.rel.imply p1, p2 (also .pred.rel "imply")
4624 .pred.rel.mutex p1, p2 [,...] (also .pred.rel "mutex")
4625 .pred.safe_across_calls p1 [, p2 [,...]]
4626 */
4627
4628 static void
4629 dot_pred_rel (type)
4630 int type;
4631 {
4632 valueT mask = 0;
4633 int count = 0;
4634 int p1 = -1, p2 = -1;
4635
4636 if (type == 0)
4637 {
4638 if (*input_line_pointer != '"')
4639 {
4640 as_bad (_("Missing predicate relation type"));
4641 ignore_rest_of_line ();
4642 return;
4643 }
4644 else
4645 {
4646 int len;
4647 char *form = demand_copy_C_string (&len);
4648 if (strcmp (form, "mutex") == 0)
4649 type = 'm';
4650 else if (strcmp (form, "clear") == 0)
4651 type = 'c';
4652 else if (strcmp (form, "imply") == 0)
4653 type = 'i';
4654 else
4655 {
4656 as_bad (_("Unrecognized predicate relation type"));
4657 ignore_rest_of_line ();
4658 return;
4659 }
4660 }
4661 if (*input_line_pointer == ',')
4662 ++input_line_pointer;
4663 SKIP_WHITESPACE ();
4664 }
4665
4666 SKIP_WHITESPACE ();
4667 while (1)
4668 {
4669 valueT bit = 1;
4670 int regno;
4671
4672 if (TOUPPER (*input_line_pointer) != 'P'
4673 || (regno = atoi (++input_line_pointer)) < 0
4674 || regno > 63)
4675 {
4676 as_bad (_("Predicate register expected"));
4677 ignore_rest_of_line ();
4678 return;
4679 }
4680 while (ISDIGIT (*input_line_pointer))
4681 ++input_line_pointer;
4682 if (p1 == -1)
4683 p1 = regno;
4684 else if (p2 == -1)
4685 p2 = regno;
4686 bit <<= regno;
4687 if (mask & bit)
4688 as_warn (_("Duplicate predicate register ignored"));
4689 mask |= bit;
4690 count++;
4691 /* See if it's a range. */
4692 if (*input_line_pointer == '-')
4693 {
4694 valueT stop = 1;
4695 ++input_line_pointer;
4696
4697 if (TOUPPER (*input_line_pointer) != 'P'
4698 || (regno = atoi (++input_line_pointer)) < 0
4699 || regno > 63)
4700 {
4701 as_bad (_("Predicate register expected"));
4702 ignore_rest_of_line ();
4703 return;
4704 }
4705 while (ISDIGIT (*input_line_pointer))
4706 ++input_line_pointer;
4707 stop <<= regno;
4708 if (bit >= stop)
4709 {
4710 as_bad (_("Bad register range"));
4711 ignore_rest_of_line ();
4712 return;
4713 }
4714 while (bit < stop)
4715 {
4716 bit <<= 1;
4717 mask |= bit;
4718 count++;
4719 }
4720 SKIP_WHITESPACE ();
4721 }
4722 if (*input_line_pointer != ',')
4723 break;
4724 ++input_line_pointer;
4725 SKIP_WHITESPACE ();
4726 }
4727
4728 switch (type)
4729 {
4730 case 'c':
4731 if (count == 0)
4732 mask = ~(valueT) 0;
4733 clear_qp_mutex (mask);
4734 clear_qp_implies (mask, (valueT) 0);
4735 break;
4736 case 'i':
4737 if (count != 2 || p1 == -1 || p2 == -1)
4738 as_bad (_("Predicate source and target required"));
4739 else if (p1 == 0 || p2 == 0)
4740 as_bad (_("Use of p0 is not valid in this context"));
4741 else
4742 add_qp_imply (p1, p2);
4743 break;
4744 case 'm':
4745 if (count < 2)
4746 {
4747 as_bad (_("At least two PR arguments expected"));
4748 break;
4749 }
4750 else if (mask & 1)
4751 {
4752 as_bad (_("Use of p0 is not valid in this context"));
4753 break;
4754 }
4755 add_qp_mutex (mask);
4756 break;
4757 case 's':
4758 /* note that we don't override any existing relations */
4759 if (count == 0)
4760 {
4761 as_bad (_("At least one PR argument expected"));
4762 break;
4763 }
4764 if (md.debug_dv)
4765 {
4766 fprintf (stderr, "Safe across calls: ");
4767 print_prmask (mask);
4768 fprintf (stderr, "\n");
4769 }
4770 qp_safe_across_calls = mask;
4771 break;
4772 }
4773 demand_empty_rest_of_line ();
4774 }
4775
4776 /* .entry label [, label [, ...]]
4777 Hint to DV code that the given labels are to be considered entry points.
4778 Otherwise, only global labels are considered entry points. */
4779
4780 static void
4781 dot_entry (dummy)
4782 int dummy ATTRIBUTE_UNUSED;
4783 {
4784 const char *err;
4785 char *name;
4786 int c;
4787 symbolS *symbolP;
4788
4789 do
4790 {
4791 name = input_line_pointer;
4792 c = get_symbol_end ();
4793 symbolP = symbol_find_or_make (name);
4794
4795 err = hash_insert (md.entry_hash, S_GET_NAME (symbolP), (PTR) symbolP);
4796 if (err)
4797 as_fatal (_("Inserting \"%s\" into entry hint table failed: %s"),
4798 name, err);
4799
4800 *input_line_pointer = c;
4801 SKIP_WHITESPACE ();
4802 c = *input_line_pointer;
4803 if (c == ',')
4804 {
4805 input_line_pointer++;
4806 SKIP_WHITESPACE ();
4807 if (*input_line_pointer == '\n')
4808 c = '\n';
4809 }
4810 }
4811 while (c == ',');
4812
4813 demand_empty_rest_of_line ();
4814 }
4815
4816 /* .mem.offset offset, base
4817 "base" is used to distinguish between offsets from a different base. */
4818
4819 static void
4820 dot_mem_offset (dummy)
4821 int dummy ATTRIBUTE_UNUSED;
4822 {
4823 md.mem_offset.hint = 1;
4824 md.mem_offset.offset = get_absolute_expression ();
4825 if (*input_line_pointer != ',')
4826 {
4827 as_bad (_("Comma expected"));
4828 ignore_rest_of_line ();
4829 return;
4830 }
4831 ++input_line_pointer;
4832 md.mem_offset.base = get_absolute_expression ();
4833 demand_empty_rest_of_line ();
4834 }
4835
4836 /* ia64-specific pseudo-ops: */
4837 const pseudo_typeS md_pseudo_table[] =
4838 {
4839 { "radix", dot_radix, 0 },
4840 { "lcomm", s_lcomm_bytes, 1 },
4841 { "bss", dot_special_section, SPECIAL_SECTION_BSS },
4842 { "sbss", dot_special_section, SPECIAL_SECTION_SBSS },
4843 { "sdata", dot_special_section, SPECIAL_SECTION_SDATA },
4844 { "rodata", dot_special_section, SPECIAL_SECTION_RODATA },
4845 { "comment", dot_special_section, SPECIAL_SECTION_COMMENT },
4846 { "ia_64.unwind", dot_special_section, SPECIAL_SECTION_UNWIND },
4847 { "ia_64.unwind_info", dot_special_section, SPECIAL_SECTION_UNWIND_INFO },
4848 { "init_array", dot_special_section, SPECIAL_SECTION_INIT_ARRAY },
4849 { "fini_array", dot_special_section, SPECIAL_SECTION_FINI_ARRAY },
4850 { "proc", dot_proc, 0 },
4851 { "body", dot_body, 0 },
4852 { "prologue", dot_prologue, 0 },
4853 { "endp", dot_endp, 0 },
4854
4855 { "fframe", dot_fframe, 0 },
4856 { "vframe", dot_vframe, 0 },
4857 { "vframesp", dot_vframesp, 0 },
4858 { "vframepsp", dot_vframepsp, 0 },
4859 { "save", dot_save, 0 },
4860 { "restore", dot_restore, 0 },
4861 { "restorereg", dot_restorereg, 0 },
4862 { "restorereg.p", dot_restorereg_p, 0 },
4863 { "handlerdata", dot_handlerdata, 0 },
4864 { "unwentry", dot_unwentry, 0 },
4865 { "altrp", dot_altrp, 0 },
4866 { "savesp", dot_savemem, 0 },
4867 { "savepsp", dot_savemem, 1 },
4868 { "save.g", dot_saveg, 0 },
4869 { "save.f", dot_savef, 0 },
4870 { "save.b", dot_saveb, 0 },
4871 { "save.gf", dot_savegf, 0 },
4872 { "spill", dot_spill, 0 },
4873 { "spillreg", dot_spillreg, 0 },
4874 { "spillsp", dot_spillmem, 0 },
4875 { "spillpsp", dot_spillmem, 1 },
4876 { "spillreg.p", dot_spillreg_p, 0 },
4877 { "spillsp.p", dot_spillmem_p, 0 },
4878 { "spillpsp.p", dot_spillmem_p, 1 },
4879 { "label_state", dot_label_state, 0 },
4880 { "copy_state", dot_copy_state, 0 },
4881 { "unwabi", dot_unwabi, 0 },
4882 { "personality", dot_personality, 0 },
4883 #if 0
4884 { "estate", dot_estate, 0 },
4885 #endif
4886 { "mii", dot_template, 0x0 },
4887 { "mli", dot_template, 0x2 }, /* old format, for compatibility */
4888 { "mlx", dot_template, 0x2 },
4889 { "mmi", dot_template, 0x4 },
4890 { "mfi", dot_template, 0x6 },
4891 { "mmf", dot_template, 0x7 },
4892 { "mib", dot_template, 0x8 },
4893 { "mbb", dot_template, 0x9 },
4894 { "bbb", dot_template, 0xb },
4895 { "mmb", dot_template, 0xc },
4896 { "mfb", dot_template, 0xe },
4897 #if 0
4898 { "lb", dot_scope, 0 },
4899 { "le", dot_scope, 1 },
4900 #endif
4901 { "align", s_align_bytes, 0 },
4902 { "regstk", dot_regstk, 0 },
4903 { "rotr", dot_rot, DYNREG_GR },
4904 { "rotf", dot_rot, DYNREG_FR },
4905 { "rotp", dot_rot, DYNREG_PR },
4906 { "lsb", dot_byteorder, 0 },
4907 { "msb", dot_byteorder, 1 },
4908 { "psr", dot_psr, 0 },
4909 { "alias", dot_alias, 0 },
4910 { "secalias", dot_alias, 1 },
4911 { "ln", dot_ln, 0 }, /* source line info (for debugging) */
4912
4913 { "xdata1", dot_xdata, 1 },
4914 { "xdata2", dot_xdata, 2 },
4915 { "xdata4", dot_xdata, 4 },
4916 { "xdata8", dot_xdata, 8 },
4917 { "xreal4", dot_xfloat_cons, 'f' },
4918 { "xreal8", dot_xfloat_cons, 'd' },
4919 { "xreal10", dot_xfloat_cons, 'x' },
4920 { "xreal16", dot_xfloat_cons, 'X' },
4921 { "xstring", dot_xstringer, 0 },
4922 { "xstringz", dot_xstringer, 1 },
4923
4924 /* unaligned versions: */
4925 { "xdata2.ua", dot_xdata_ua, 2 },
4926 { "xdata4.ua", dot_xdata_ua, 4 },
4927 { "xdata8.ua", dot_xdata_ua, 8 },
4928 { "xreal4.ua", dot_xfloat_cons_ua, 'f' },
4929 { "xreal8.ua", dot_xfloat_cons_ua, 'd' },
4930 { "xreal10.ua", dot_xfloat_cons_ua, 'x' },
4931 { "xreal16.ua", dot_xfloat_cons_ua, 'X' },
4932
4933 /* annotations/DV checking support */
4934 { "entry", dot_entry, 0 },
4935 { "mem.offset", dot_mem_offset, 0 },
4936 { "pred.rel", dot_pred_rel, 0 },
4937 { "pred.rel.clear", dot_pred_rel, 'c' },
4938 { "pred.rel.imply", dot_pred_rel, 'i' },
4939 { "pred.rel.mutex", dot_pred_rel, 'm' },
4940 { "pred.safe_across_calls", dot_pred_rel, 's' },
4941 { "reg.val", dot_reg_val, 0 },
4942 { "auto", dot_dv_mode, 'a' },
4943 { "explicit", dot_dv_mode, 'e' },
4944 { "default", dot_dv_mode, 'd' },
4945
4946 /* ??? These are needed to make gas/testsuite/gas/elf/ehopt.s work.
4947 IA-64 aligns data allocation pseudo-ops by default, so we have to
4948 tell it that these ones are supposed to be unaligned. Long term,
4949 should rewrite so that only IA-64 specific data allocation pseudo-ops
4950 are aligned by default. */
4951 {"2byte", stmt_cons_ua, 2},
4952 {"4byte", stmt_cons_ua, 4},
4953 {"8byte", stmt_cons_ua, 8},
4954
4955 { NULL, 0, 0 }
4956 };
4957
4958 static const struct pseudo_opcode
4959 {
4960 const char *name;
4961 void (*handler) (int);
4962 int arg;
4963 }
4964 pseudo_opcode[] =
4965 {
4966 /* these are more like pseudo-ops, but don't start with a dot */
4967 { "data1", cons, 1 },
4968 { "data2", cons, 2 },
4969 { "data4", cons, 4 },
4970 { "data8", cons, 8 },
4971 { "data16", cons, 16 },
4972 { "real4", stmt_float_cons, 'f' },
4973 { "real8", stmt_float_cons, 'd' },
4974 { "real10", stmt_float_cons, 'x' },
4975 { "real16", stmt_float_cons, 'X' },
4976 { "string", stringer, 0 },
4977 { "stringz", stringer, 1 },
4978
4979 /* unaligned versions: */
4980 { "data2.ua", stmt_cons_ua, 2 },
4981 { "data4.ua", stmt_cons_ua, 4 },
4982 { "data8.ua", stmt_cons_ua, 8 },
4983 { "data16.ua", stmt_cons_ua, 16 },
4984 { "real4.ua", float_cons, 'f' },
4985 { "real8.ua", float_cons, 'd' },
4986 { "real10.ua", float_cons, 'x' },
4987 { "real16.ua", float_cons, 'X' },
4988 };
4989
4990 /* Declare a register by creating a symbol for it and entering it in
4991 the symbol table. */
4992
4993 static symbolS *
4994 declare_register (name, regnum)
4995 const char *name;
4996 int regnum;
4997 {
4998 const char *err;
4999 symbolS *sym;
5000
5001 sym = symbol_new (name, reg_section, regnum, &zero_address_frag);
5002
5003 err = hash_insert (md.reg_hash, S_GET_NAME (sym), (PTR) sym);
5004 if (err)
5005 as_fatal ("Inserting \"%s\" into register table failed: %s",
5006 name, err);
5007
5008 return sym;
5009 }
5010
5011 static void
5012 declare_register_set (prefix, num_regs, base_regnum)
5013 const char *prefix;
5014 int num_regs;
5015 int base_regnum;
5016 {
5017 char name[8];
5018 int i;
5019
5020 for (i = 0; i < num_regs; ++i)
5021 {
5022 sprintf (name, "%s%u", prefix, i);
5023 declare_register (name, base_regnum + i);
5024 }
5025 }
5026
5027 static unsigned int
5028 operand_width (opnd)
5029 enum ia64_opnd opnd;
5030 {
5031 const struct ia64_operand *odesc = &elf64_ia64_operands[opnd];
5032 unsigned int bits = 0;
5033 int i;
5034
5035 bits = 0;
5036 for (i = 0; i < NELEMS (odesc->field) && odesc->field[i].bits; ++i)
5037 bits += odesc->field[i].bits;
5038
5039 return bits;
5040 }
5041
5042 static enum operand_match_result
5043 operand_match (idesc, index, e)
5044 const struct ia64_opcode *idesc;
5045 int index;
5046 expressionS *e;
5047 {
5048 enum ia64_opnd opnd = idesc->operands[index];
5049 int bits, relocatable = 0;
5050 struct insn_fix *fix;
5051 bfd_signed_vma val;
5052
5053 switch (opnd)
5054 {
5055 /* constants: */
5056
5057 case IA64_OPND_AR_CCV:
5058 if (e->X_op == O_register && e->X_add_number == REG_AR + 32)
5059 return OPERAND_MATCH;
5060 break;
5061
5062 case IA64_OPND_AR_CSD:
5063 if (e->X_op == O_register && e->X_add_number == REG_AR + 25)
5064 return OPERAND_MATCH;
5065 break;
5066
5067 case IA64_OPND_AR_PFS:
5068 if (e->X_op == O_register && e->X_add_number == REG_AR + 64)
5069 return OPERAND_MATCH;
5070 break;
5071
5072 case IA64_OPND_GR0:
5073 if (e->X_op == O_register && e->X_add_number == REG_GR + 0)
5074 return OPERAND_MATCH;
5075 break;
5076
5077 case IA64_OPND_IP:
5078 if (e->X_op == O_register && e->X_add_number == REG_IP)
5079 return OPERAND_MATCH;
5080 break;
5081
5082 case IA64_OPND_PR:
5083 if (e->X_op == O_register && e->X_add_number == REG_PR)
5084 return OPERAND_MATCH;
5085 break;
5086
5087 case IA64_OPND_PR_ROT:
5088 if (e->X_op == O_register && e->X_add_number == REG_PR_ROT)
5089 return OPERAND_MATCH;
5090 break;
5091
5092 case IA64_OPND_PSR:
5093 if (e->X_op == O_register && e->X_add_number == REG_PSR)
5094 return OPERAND_MATCH;
5095 break;
5096
5097 case IA64_OPND_PSR_L:
5098 if (e->X_op == O_register && e->X_add_number == REG_PSR_L)
5099 return OPERAND_MATCH;
5100 break;
5101
5102 case IA64_OPND_PSR_UM:
5103 if (e->X_op == O_register && e->X_add_number == REG_PSR_UM)
5104 return OPERAND_MATCH;
5105 break;
5106
5107 case IA64_OPND_C1:
5108 if (e->X_op == O_constant)
5109 {
5110 if (e->X_add_number == 1)
5111 return OPERAND_MATCH;
5112 else
5113 return OPERAND_OUT_OF_RANGE;
5114 }
5115 break;
5116
5117 case IA64_OPND_C8:
5118 if (e->X_op == O_constant)
5119 {
5120 if (e->X_add_number == 8)
5121 return OPERAND_MATCH;
5122 else
5123 return OPERAND_OUT_OF_RANGE;
5124 }
5125 break;
5126
5127 case IA64_OPND_C16:
5128 if (e->X_op == O_constant)
5129 {
5130 if (e->X_add_number == 16)
5131 return OPERAND_MATCH;
5132 else
5133 return OPERAND_OUT_OF_RANGE;
5134 }
5135 break;
5136
5137 /* register operands: */
5138
5139 case IA64_OPND_AR3:
5140 if (e->X_op == O_register && e->X_add_number >= REG_AR
5141 && e->X_add_number < REG_AR + 128)
5142 return OPERAND_MATCH;
5143 break;
5144
5145 case IA64_OPND_B1:
5146 case IA64_OPND_B2:
5147 if (e->X_op == O_register && e->X_add_number >= REG_BR
5148 && e->X_add_number < REG_BR + 8)
5149 return OPERAND_MATCH;
5150 break;
5151
5152 case IA64_OPND_CR3:
5153 if (e->X_op == O_register && e->X_add_number >= REG_CR
5154 && e->X_add_number < REG_CR + 128)
5155 return OPERAND_MATCH;
5156 break;
5157
5158 case IA64_OPND_F1:
5159 case IA64_OPND_F2:
5160 case IA64_OPND_F3:
5161 case IA64_OPND_F4:
5162 if (e->X_op == O_register && e->X_add_number >= REG_FR
5163 && e->X_add_number < REG_FR + 128)
5164 return OPERAND_MATCH;
5165 break;
5166
5167 case IA64_OPND_P1:
5168 case IA64_OPND_P2:
5169 if (e->X_op == O_register && e->X_add_number >= REG_P
5170 && e->X_add_number < REG_P + 64)
5171 return OPERAND_MATCH;
5172 break;
5173
5174 case IA64_OPND_R1:
5175 case IA64_OPND_R2:
5176 case IA64_OPND_R3:
5177 if (e->X_op == O_register && e->X_add_number >= REG_GR
5178 && e->X_add_number < REG_GR + 128)
5179 return OPERAND_MATCH;
5180 break;
5181
5182 case IA64_OPND_R3_2:
5183 if (e->X_op == O_register && e->X_add_number >= REG_GR)
5184 {
5185 if (e->X_add_number < REG_GR + 4)
5186 return OPERAND_MATCH;
5187 else if (e->X_add_number < REG_GR + 128)
5188 return OPERAND_OUT_OF_RANGE;
5189 }
5190 break;
5191
5192 /* indirect operands: */
5193 case IA64_OPND_CPUID_R3:
5194 case IA64_OPND_DBR_R3:
5195 case IA64_OPND_DTR_R3:
5196 case IA64_OPND_ITR_R3:
5197 case IA64_OPND_IBR_R3:
5198 case IA64_OPND_MSR_R3:
5199 case IA64_OPND_PKR_R3:
5200 case IA64_OPND_PMC_R3:
5201 case IA64_OPND_PMD_R3:
5202 case IA64_OPND_RR_R3:
5203 if (e->X_op == O_index && e->X_op_symbol
5204 && (S_GET_VALUE (e->X_op_symbol) - IND_CPUID
5205 == opnd - IA64_OPND_CPUID_R3))
5206 return OPERAND_MATCH;
5207 break;
5208
5209 case IA64_OPND_MR3:
5210 if (e->X_op == O_index && !e->X_op_symbol)
5211 return OPERAND_MATCH;
5212 break;
5213
5214 /* immediate operands: */
5215 case IA64_OPND_CNT2a:
5216 case IA64_OPND_LEN4:
5217 case IA64_OPND_LEN6:
5218 bits = operand_width (idesc->operands[index]);
5219 if (e->X_op == O_constant)
5220 {
5221 if ((bfd_vma) (e->X_add_number - 1) < ((bfd_vma) 1 << bits))
5222 return OPERAND_MATCH;
5223 else
5224 return OPERAND_OUT_OF_RANGE;
5225 }
5226 break;
5227
5228 case IA64_OPND_CNT2b:
5229 if (e->X_op == O_constant)
5230 {
5231 if ((bfd_vma) (e->X_add_number - 1) < 3)
5232 return OPERAND_MATCH;
5233 else
5234 return OPERAND_OUT_OF_RANGE;
5235 }
5236 break;
5237
5238 case IA64_OPND_CNT2c:
5239 val = e->X_add_number;
5240 if (e->X_op == O_constant)
5241 {
5242 if ((val == 0 || val == 7 || val == 15 || val == 16))
5243 return OPERAND_MATCH;
5244 else
5245 return OPERAND_OUT_OF_RANGE;
5246 }
5247 break;
5248
5249 case IA64_OPND_SOR:
5250 /* SOR must be an integer multiple of 8 */
5251 if (e->X_op == O_constant && e->X_add_number & 0x7)
5252 return OPERAND_OUT_OF_RANGE;
5253 case IA64_OPND_SOF:
5254 case IA64_OPND_SOL:
5255 if (e->X_op == O_constant)
5256 {
5257 if ((bfd_vma) e->X_add_number <= 96)
5258 return OPERAND_MATCH;
5259 else
5260 return OPERAND_OUT_OF_RANGE;
5261 }
5262 break;
5263
5264 case IA64_OPND_IMMU62:
5265 if (e->X_op == O_constant)
5266 {
5267 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << 62))
5268 return OPERAND_MATCH;
5269 else
5270 return OPERAND_OUT_OF_RANGE;
5271 }
5272 else
5273 {
5274 /* FIXME -- need 62-bit relocation type */
5275 as_bad (_("62-bit relocation not yet implemented"));
5276 }
5277 break;
5278
5279 case IA64_OPND_IMMU64:
5280 if (e->X_op == O_symbol || e->X_op == O_pseudo_fixup
5281 || e->X_op == O_subtract)
5282 {
5283 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5284 fix->code = BFD_RELOC_IA64_IMM64;
5285 if (e->X_op != O_subtract)
5286 {
5287 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5288 if (e->X_op == O_pseudo_fixup)
5289 e->X_op = O_symbol;
5290 }
5291
5292 fix->opnd = idesc->operands[index];
5293 fix->expr = *e;
5294 fix->is_pcrel = 0;
5295 ++CURR_SLOT.num_fixups;
5296 return OPERAND_MATCH;
5297 }
5298 else if (e->X_op == O_constant)
5299 return OPERAND_MATCH;
5300 break;
5301
5302 case IA64_OPND_CCNT5:
5303 case IA64_OPND_CNT5:
5304 case IA64_OPND_CNT6:
5305 case IA64_OPND_CPOS6a:
5306 case IA64_OPND_CPOS6b:
5307 case IA64_OPND_CPOS6c:
5308 case IA64_OPND_IMMU2:
5309 case IA64_OPND_IMMU7a:
5310 case IA64_OPND_IMMU7b:
5311 case IA64_OPND_IMMU21:
5312 case IA64_OPND_IMMU24:
5313 case IA64_OPND_MBTYPE4:
5314 case IA64_OPND_MHTYPE8:
5315 case IA64_OPND_POS6:
5316 bits = operand_width (idesc->operands[index]);
5317 if (e->X_op == O_constant)
5318 {
5319 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5320 return OPERAND_MATCH;
5321 else
5322 return OPERAND_OUT_OF_RANGE;
5323 }
5324 break;
5325
5326 case IA64_OPND_IMMU9:
5327 bits = operand_width (idesc->operands[index]);
5328 if (e->X_op == O_constant)
5329 {
5330 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5331 {
5332 int lobits = e->X_add_number & 0x3;
5333 if (((bfd_vma) e->X_add_number & 0x3C) != 0 && lobits == 0)
5334 e->X_add_number |= (bfd_vma) 0x3;
5335 return OPERAND_MATCH;
5336 }
5337 else
5338 return OPERAND_OUT_OF_RANGE;
5339 }
5340 break;
5341
5342 case IA64_OPND_IMM44:
5343 /* least 16 bits must be zero */
5344 if ((e->X_add_number & 0xffff) != 0)
5345 /* XXX technically, this is wrong: we should not be issuing warning
5346 messages until we're sure this instruction pattern is going to
5347 be used! */
5348 as_warn (_("lower 16 bits of mask ignored"));
5349
5350 if (e->X_op == O_constant)
5351 {
5352 if (((e->X_add_number >= 0
5353 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 44))
5354 || (e->X_add_number < 0
5355 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 44))))
5356 {
5357 /* sign-extend */
5358 if (e->X_add_number >= 0
5359 && (e->X_add_number & ((bfd_vma) 1 << 43)) != 0)
5360 {
5361 e->X_add_number |= ~(((bfd_vma) 1 << 44) - 1);
5362 }
5363 return OPERAND_MATCH;
5364 }
5365 else
5366 return OPERAND_OUT_OF_RANGE;
5367 }
5368 break;
5369
5370 case IA64_OPND_IMM17:
5371 /* bit 0 is a don't care (pr0 is hardwired to 1) */
5372 if (e->X_op == O_constant)
5373 {
5374 if (((e->X_add_number >= 0
5375 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 17))
5376 || (e->X_add_number < 0
5377 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 17))))
5378 {
5379 /* sign-extend */
5380 if (e->X_add_number >= 0
5381 && (e->X_add_number & ((bfd_vma) 1 << 16)) != 0)
5382 {
5383 e->X_add_number |= ~(((bfd_vma) 1 << 17) - 1);
5384 }
5385 return OPERAND_MATCH;
5386 }
5387 else
5388 return OPERAND_OUT_OF_RANGE;
5389 }
5390 break;
5391
5392 case IA64_OPND_IMM14:
5393 case IA64_OPND_IMM22:
5394 relocatable = 1;
5395 case IA64_OPND_IMM1:
5396 case IA64_OPND_IMM8:
5397 case IA64_OPND_IMM8U4:
5398 case IA64_OPND_IMM8M1:
5399 case IA64_OPND_IMM8M1U4:
5400 case IA64_OPND_IMM8M1U8:
5401 case IA64_OPND_IMM9a:
5402 case IA64_OPND_IMM9b:
5403 bits = operand_width (idesc->operands[index]);
5404 if (relocatable && (e->X_op == O_symbol
5405 || e->X_op == O_subtract
5406 || e->X_op == O_pseudo_fixup))
5407 {
5408 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5409
5410 if (idesc->operands[index] == IA64_OPND_IMM14)
5411 fix->code = BFD_RELOC_IA64_IMM14;
5412 else
5413 fix->code = BFD_RELOC_IA64_IMM22;
5414
5415 if (e->X_op != O_subtract)
5416 {
5417 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5418 if (e->X_op == O_pseudo_fixup)
5419 e->X_op = O_symbol;
5420 }
5421
5422 fix->opnd = idesc->operands[index];
5423 fix->expr = *e;
5424 fix->is_pcrel = 0;
5425 ++CURR_SLOT.num_fixups;
5426 return OPERAND_MATCH;
5427 }
5428 else if (e->X_op != O_constant
5429 && ! (e->X_op == O_big && opnd == IA64_OPND_IMM8M1U8))
5430 return OPERAND_MISMATCH;
5431
5432 if (opnd == IA64_OPND_IMM8M1U4)
5433 {
5434 /* Zero is not valid for unsigned compares that take an adjusted
5435 constant immediate range. */
5436 if (e->X_add_number == 0)
5437 return OPERAND_OUT_OF_RANGE;
5438
5439 /* Sign-extend 32-bit unsigned numbers, so that the following range
5440 checks will work. */
5441 val = e->X_add_number;
5442 if (((val & (~(bfd_vma) 0 << 32)) == 0)
5443 && ((val & ((bfd_vma) 1 << 31)) != 0))
5444 val = ((val << 32) >> 32);
5445
5446 /* Check for 0x100000000. This is valid because
5447 0x100000000-1 is the same as ((uint32_t) -1). */
5448 if (val == ((bfd_signed_vma) 1 << 32))
5449 return OPERAND_MATCH;
5450
5451 val = val - 1;
5452 }
5453 else if (opnd == IA64_OPND_IMM8M1U8)
5454 {
5455 /* Zero is not valid for unsigned compares that take an adjusted
5456 constant immediate range. */
5457 if (e->X_add_number == 0)
5458 return OPERAND_OUT_OF_RANGE;
5459
5460 /* Check for 0x10000000000000000. */
5461 if (e->X_op == O_big)
5462 {
5463 if (generic_bignum[0] == 0
5464 && generic_bignum[1] == 0
5465 && generic_bignum[2] == 0
5466 && generic_bignum[3] == 0
5467 && generic_bignum[4] == 1)
5468 return OPERAND_MATCH;
5469 else
5470 return OPERAND_OUT_OF_RANGE;
5471 }
5472 else
5473 val = e->X_add_number - 1;
5474 }
5475 else if (opnd == IA64_OPND_IMM8M1)
5476 val = e->X_add_number - 1;
5477 else if (opnd == IA64_OPND_IMM8U4)
5478 {
5479 /* Sign-extend 32-bit unsigned numbers, so that the following range
5480 checks will work. */
5481 val = e->X_add_number;
5482 if (((val & (~(bfd_vma) 0 << 32)) == 0)
5483 && ((val & ((bfd_vma) 1 << 31)) != 0))
5484 val = ((val << 32) >> 32);
5485 }
5486 else
5487 val = e->X_add_number;
5488
5489 if ((val >= 0 && (bfd_vma) val < ((bfd_vma) 1 << (bits - 1)))
5490 || (val < 0 && (bfd_vma) -val <= ((bfd_vma) 1 << (bits - 1))))
5491 return OPERAND_MATCH;
5492 else
5493 return OPERAND_OUT_OF_RANGE;
5494
5495 case IA64_OPND_INC3:
5496 /* +/- 1, 4, 8, 16 */
5497 val = e->X_add_number;
5498 if (val < 0)
5499 val = -val;
5500 if (e->X_op == O_constant)
5501 {
5502 if ((val == 1 || val == 4 || val == 8 || val == 16))
5503 return OPERAND_MATCH;
5504 else
5505 return OPERAND_OUT_OF_RANGE;
5506 }
5507 break;
5508
5509 case IA64_OPND_TGT25:
5510 case IA64_OPND_TGT25b:
5511 case IA64_OPND_TGT25c:
5512 case IA64_OPND_TGT64:
5513 if (e->X_op == O_symbol)
5514 {
5515 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5516 if (opnd == IA64_OPND_TGT25)
5517 fix->code = BFD_RELOC_IA64_PCREL21F;
5518 else if (opnd == IA64_OPND_TGT25b)
5519 fix->code = BFD_RELOC_IA64_PCREL21M;
5520 else if (opnd == IA64_OPND_TGT25c)
5521 fix->code = BFD_RELOC_IA64_PCREL21B;
5522 else if (opnd == IA64_OPND_TGT64)
5523 fix->code = BFD_RELOC_IA64_PCREL60B;
5524 else
5525 abort ();
5526
5527 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5528 fix->opnd = idesc->operands[index];
5529 fix->expr = *e;
5530 fix->is_pcrel = 1;
5531 ++CURR_SLOT.num_fixups;
5532 return OPERAND_MATCH;
5533 }
5534 case IA64_OPND_TAG13:
5535 case IA64_OPND_TAG13b:
5536 switch (e->X_op)
5537 {
5538 case O_constant:
5539 return OPERAND_MATCH;
5540
5541 case O_symbol:
5542 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5543 /* There are no external relocs for TAG13/TAG13b fields, so we
5544 create a dummy reloc. This will not live past md_apply_fix3. */
5545 fix->code = BFD_RELOC_UNUSED;
5546 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5547 fix->opnd = idesc->operands[index];
5548 fix->expr = *e;
5549 fix->is_pcrel = 1;
5550 ++CURR_SLOT.num_fixups;
5551 return OPERAND_MATCH;
5552
5553 default:
5554 break;
5555 }
5556 break;
5557
5558 case IA64_OPND_LDXMOV:
5559 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5560 fix->code = BFD_RELOC_IA64_LDXMOV;
5561 fix->opnd = idesc->operands[index];
5562 fix->expr = *e;
5563 fix->is_pcrel = 0;
5564 ++CURR_SLOT.num_fixups;
5565 return OPERAND_MATCH;
5566
5567 default:
5568 break;
5569 }
5570 return OPERAND_MISMATCH;
5571 }
5572
5573 static int
5574 parse_operand (e)
5575 expressionS *e;
5576 {
5577 int sep = '\0';
5578
5579 memset (e, 0, sizeof (*e));
5580 e->X_op = O_absent;
5581 SKIP_WHITESPACE ();
5582 if (*input_line_pointer != '}')
5583 expression (e);
5584 sep = *input_line_pointer++;
5585
5586 if (sep == '}')
5587 {
5588 if (!md.manual_bundling)
5589 as_warn ("Found '}' when manual bundling is off");
5590 else
5591 CURR_SLOT.manual_bundling_off = 1;
5592 md.manual_bundling = 0;
5593 sep = '\0';
5594 }
5595 return sep;
5596 }
5597
5598 /* Returns the next entry in the opcode table that matches the one in
5599 IDESC, and frees the entry in IDESC. If no matching entry is
5600 found, NULL is returned instead. */
5601
5602 static struct ia64_opcode *
5603 get_next_opcode (struct ia64_opcode *idesc)
5604 {
5605 struct ia64_opcode *next = ia64_find_next_opcode (idesc);
5606 ia64_free_opcode (idesc);
5607 return next;
5608 }
5609
5610 /* Parse the operands for the opcode and find the opcode variant that
5611 matches the specified operands, or NULL if no match is possible. */
5612
5613 static struct ia64_opcode *
5614 parse_operands (idesc)
5615 struct ia64_opcode *idesc;
5616 {
5617 int i = 0, highest_unmatched_operand, num_operands = 0, num_outputs = 0;
5618 int error_pos, out_of_range_pos, curr_out_of_range_pos, sep = 0;
5619 enum ia64_opnd expected_operand = IA64_OPND_NIL;
5620 enum operand_match_result result;
5621 char mnemonic[129];
5622 char *first_arg = 0, *end, *saved_input_pointer;
5623 unsigned int sof;
5624
5625 assert (strlen (idesc->name) <= 128);
5626
5627 strcpy (mnemonic, idesc->name);
5628 if (idesc->operands[2] == IA64_OPND_SOF)
5629 {
5630 /* To make the common idiom "alloc loc?=ar.pfs,0,1,0,0" work, we
5631 can't parse the first operand until we have parsed the
5632 remaining operands of the "alloc" instruction. */
5633 SKIP_WHITESPACE ();
5634 first_arg = input_line_pointer;
5635 end = strchr (input_line_pointer, '=');
5636 if (!end)
5637 {
5638 as_bad ("Expected separator `='");
5639 return 0;
5640 }
5641 input_line_pointer = end + 1;
5642 ++i;
5643 ++num_outputs;
5644 }
5645
5646 for (; i < NELEMS (CURR_SLOT.opnd); ++i)
5647 {
5648 sep = parse_operand (CURR_SLOT.opnd + i);
5649 if (CURR_SLOT.opnd[i].X_op == O_absent)
5650 break;
5651
5652 ++num_operands;
5653
5654 if (sep != '=' && sep != ',')
5655 break;
5656
5657 if (sep == '=')
5658 {
5659 if (num_outputs > 0)
5660 as_bad ("Duplicate equal sign (=) in instruction");
5661 else
5662 num_outputs = i + 1;
5663 }
5664 }
5665 if (sep != '\0')
5666 {
5667 as_bad ("Illegal operand separator `%c'", sep);
5668 return 0;
5669 }
5670
5671 if (idesc->operands[2] == IA64_OPND_SOF)
5672 {
5673 /* map alloc r1=ar.pfs,i,l,o,r to alloc r1=ar.pfs,(i+l+o),(i+l),r */
5674 know (strcmp (idesc->name, "alloc") == 0);
5675 if (num_operands == 5 /* first_arg not included in this count! */
5676 && CURR_SLOT.opnd[2].X_op == O_constant
5677 && CURR_SLOT.opnd[3].X_op == O_constant
5678 && CURR_SLOT.opnd[4].X_op == O_constant
5679 && CURR_SLOT.opnd[5].X_op == O_constant)
5680 {
5681 sof = set_regstack (CURR_SLOT.opnd[2].X_add_number,
5682 CURR_SLOT.opnd[3].X_add_number,
5683 CURR_SLOT.opnd[4].X_add_number,
5684 CURR_SLOT.opnd[5].X_add_number);
5685
5686 /* now we can parse the first arg: */
5687 saved_input_pointer = input_line_pointer;
5688 input_line_pointer = first_arg;
5689 sep = parse_operand (CURR_SLOT.opnd + 0);
5690 if (sep != '=')
5691 --num_outputs; /* force error */
5692 input_line_pointer = saved_input_pointer;
5693
5694 CURR_SLOT.opnd[2].X_add_number = sof;
5695 CURR_SLOT.opnd[3].X_add_number
5696 = sof - CURR_SLOT.opnd[4].X_add_number;
5697 CURR_SLOT.opnd[4] = CURR_SLOT.opnd[5];
5698 }
5699 }
5700
5701 highest_unmatched_operand = 0;
5702 curr_out_of_range_pos = -1;
5703 error_pos = 0;
5704 expected_operand = idesc->operands[0];
5705 for (; idesc; idesc = get_next_opcode (idesc))
5706 {
5707 if (num_outputs != idesc->num_outputs)
5708 continue; /* mismatch in # of outputs */
5709
5710 CURR_SLOT.num_fixups = 0;
5711
5712 /* Try to match all operands. If we see an out-of-range operand,
5713 then continue trying to match the rest of the operands, since if
5714 the rest match, then this idesc will give the best error message. */
5715
5716 out_of_range_pos = -1;
5717 for (i = 0; i < num_operands && idesc->operands[i]; ++i)
5718 {
5719 result = operand_match (idesc, i, CURR_SLOT.opnd + i);
5720 if (result != OPERAND_MATCH)
5721 {
5722 if (result != OPERAND_OUT_OF_RANGE)
5723 break;
5724 if (out_of_range_pos < 0)
5725 /* remember position of the first out-of-range operand: */
5726 out_of_range_pos = i;
5727 }
5728 }
5729
5730 /* If we did not match all operands, or if at least one operand was
5731 out-of-range, then this idesc does not match. Keep track of which
5732 idesc matched the most operands before failing. If we have two
5733 idescs that failed at the same position, and one had an out-of-range
5734 operand, then prefer the out-of-range operand. Thus if we have
5735 "add r0=0x1000000,r1" we get an error saying the constant is out
5736 of range instead of an error saying that the constant should have been
5737 a register. */
5738
5739 if (i != num_operands || out_of_range_pos >= 0)
5740 {
5741 if (i > highest_unmatched_operand
5742 || (i == highest_unmatched_operand
5743 && out_of_range_pos > curr_out_of_range_pos))
5744 {
5745 highest_unmatched_operand = i;
5746 if (out_of_range_pos >= 0)
5747 {
5748 expected_operand = idesc->operands[out_of_range_pos];
5749 error_pos = out_of_range_pos;
5750 }
5751 else
5752 {
5753 expected_operand = idesc->operands[i];
5754 error_pos = i;
5755 }
5756 curr_out_of_range_pos = out_of_range_pos;
5757 }
5758 continue;
5759 }
5760
5761 if (num_operands < NELEMS (idesc->operands)
5762 && idesc->operands[num_operands])
5763 continue; /* mismatch in number of arguments */
5764
5765 break;
5766 }
5767 if (!idesc)
5768 {
5769 if (expected_operand)
5770 as_bad ("Operand %u of `%s' should be %s",
5771 error_pos + 1, mnemonic,
5772 elf64_ia64_operands[expected_operand].desc);
5773 else
5774 as_bad ("Operand mismatch");
5775 return 0;
5776 }
5777 return idesc;
5778 }
5779
5780 /* Keep track of state necessary to determine whether a NOP is necessary
5781 to avoid an erratum in A and B step Itanium chips, and return 1 if we
5782 detect a case where additional NOPs may be necessary. */
5783 static int
5784 errata_nop_necessary_p (slot, insn_unit)
5785 struct slot *slot;
5786 enum ia64_unit insn_unit;
5787 {
5788 int i;
5789 struct group *this_group = md.last_groups + md.group_idx;
5790 struct group *prev_group = md.last_groups + (md.group_idx + 2) % 3;
5791 struct ia64_opcode *idesc = slot->idesc;
5792
5793 /* Test whether this could be the first insn in a problematic sequence. */
5794 if (insn_unit == IA64_UNIT_F)
5795 {
5796 for (i = 0; i < idesc->num_outputs; i++)
5797 if (idesc->operands[i] == IA64_OPND_P1
5798 || idesc->operands[i] == IA64_OPND_P2)
5799 {
5800 int regno = slot->opnd[i].X_add_number - REG_P;
5801 /* Ignore invalid operands; they generate errors elsewhere. */
5802 if (regno >= 64)
5803 return 0;
5804 this_group->p_reg_set[regno] = 1;
5805 }
5806 }
5807
5808 /* Test whether this could be the second insn in a problematic sequence. */
5809 if (insn_unit == IA64_UNIT_M && slot->qp_regno > 0
5810 && prev_group->p_reg_set[slot->qp_regno])
5811 {
5812 for (i = 0; i < idesc->num_outputs; i++)
5813 if (idesc->operands[i] == IA64_OPND_R1
5814 || idesc->operands[i] == IA64_OPND_R2
5815 || idesc->operands[i] == IA64_OPND_R3)
5816 {
5817 int regno = slot->opnd[i].X_add_number - REG_GR;
5818 /* Ignore invalid operands; they generate errors elsewhere. */
5819 if (regno >= 128)
5820 return 0;
5821 if (strncmp (idesc->name, "add", 3) != 0
5822 && strncmp (idesc->name, "sub", 3) != 0
5823 && strncmp (idesc->name, "shladd", 6) != 0
5824 && (idesc->flags & IA64_OPCODE_POSTINC) == 0)
5825 this_group->g_reg_set_conditionally[regno] = 1;
5826 }
5827 }
5828
5829 /* Test whether this could be the third insn in a problematic sequence. */
5830 for (i = 0; i < NELEMS (idesc->operands) && idesc->operands[i]; i++)
5831 {
5832 if (/* For fc, ptc, ptr, tak, thash, tpa, ttag, probe, ptr, ptc. */
5833 idesc->operands[i] == IA64_OPND_R3
5834 /* For mov indirect. */
5835 || idesc->operands[i] == IA64_OPND_RR_R3
5836 || idesc->operands[i] == IA64_OPND_DBR_R3
5837 || idesc->operands[i] == IA64_OPND_IBR_R3
5838 || idesc->operands[i] == IA64_OPND_PKR_R3
5839 || idesc->operands[i] == IA64_OPND_PMC_R3
5840 || idesc->operands[i] == IA64_OPND_PMD_R3
5841 || idesc->operands[i] == IA64_OPND_MSR_R3
5842 || idesc->operands[i] == IA64_OPND_CPUID_R3
5843 /* For itr. */
5844 || idesc->operands[i] == IA64_OPND_ITR_R3
5845 || idesc->operands[i] == IA64_OPND_DTR_R3
5846 /* Normal memory addresses (load, store, xchg, cmpxchg, etc.). */
5847 || idesc->operands[i] == IA64_OPND_MR3)
5848 {
5849 int regno = slot->opnd[i].X_add_number - REG_GR;
5850 /* Ignore invalid operands; they generate errors elsewhere. */
5851 if (regno >= 128)
5852 return 0;
5853 if (idesc->operands[i] == IA64_OPND_R3)
5854 {
5855 if (strcmp (idesc->name, "fc") != 0
5856 && strcmp (idesc->name, "tak") != 0
5857 && strcmp (idesc->name, "thash") != 0
5858 && strcmp (idesc->name, "tpa") != 0
5859 && strcmp (idesc->name, "ttag") != 0
5860 && strncmp (idesc->name, "ptr", 3) != 0
5861 && strncmp (idesc->name, "ptc", 3) != 0
5862 && strncmp (idesc->name, "probe", 5) != 0)
5863 return 0;
5864 }
5865 if (prev_group->g_reg_set_conditionally[regno])
5866 return 1;
5867 }
5868 }
5869 return 0;
5870 }
5871
5872 static void
5873 build_insn (slot, insnp)
5874 struct slot *slot;
5875 bfd_vma *insnp;
5876 {
5877 const struct ia64_operand *odesc, *o2desc;
5878 struct ia64_opcode *idesc = slot->idesc;
5879 bfd_signed_vma insn, val;
5880 const char *err;
5881 int i;
5882
5883 insn = idesc->opcode | slot->qp_regno;
5884
5885 for (i = 0; i < NELEMS (idesc->operands) && idesc->operands[i]; ++i)
5886 {
5887 if (slot->opnd[i].X_op == O_register
5888 || slot->opnd[i].X_op == O_constant
5889 || slot->opnd[i].X_op == O_index)
5890 val = slot->opnd[i].X_add_number;
5891 else if (slot->opnd[i].X_op == O_big)
5892 {
5893 /* This must be the value 0x10000000000000000. */
5894 assert (idesc->operands[i] == IA64_OPND_IMM8M1U8);
5895 val = 0;
5896 }
5897 else
5898 val = 0;
5899
5900 switch (idesc->operands[i])
5901 {
5902 case IA64_OPND_IMMU64:
5903 *insnp++ = (val >> 22) & 0x1ffffffffffLL;
5904 insn |= (((val & 0x7f) << 13) | (((val >> 7) & 0x1ff) << 27)
5905 | (((val >> 16) & 0x1f) << 22) | (((val >> 21) & 0x1) << 21)
5906 | (((val >> 63) & 0x1) << 36));
5907 continue;
5908
5909 case IA64_OPND_IMMU62:
5910 val &= 0x3fffffffffffffffULL;
5911 if (val != slot->opnd[i].X_add_number)
5912 as_warn (_("Value truncated to 62 bits"));
5913 *insnp++ = (val >> 21) & 0x1ffffffffffLL;
5914 insn |= (((val & 0xfffff) << 6) | (((val >> 20) & 0x1) << 36));
5915 continue;
5916
5917 case IA64_OPND_TGT64:
5918 val >>= 4;
5919 *insnp++ = ((val >> 20) & 0x7fffffffffLL) << 2;
5920 insn |= ((((val >> 59) & 0x1) << 36)
5921 | (((val >> 0) & 0xfffff) << 13));
5922 continue;
5923
5924 case IA64_OPND_AR3:
5925 val -= REG_AR;
5926 break;
5927
5928 case IA64_OPND_B1:
5929 case IA64_OPND_B2:
5930 val -= REG_BR;
5931 break;
5932
5933 case IA64_OPND_CR3:
5934 val -= REG_CR;
5935 break;
5936
5937 case IA64_OPND_F1:
5938 case IA64_OPND_F2:
5939 case IA64_OPND_F3:
5940 case IA64_OPND_F4:
5941 val -= REG_FR;
5942 break;
5943
5944 case IA64_OPND_P1:
5945 case IA64_OPND_P2:
5946 val -= REG_P;
5947 break;
5948
5949 case IA64_OPND_R1:
5950 case IA64_OPND_R2:
5951 case IA64_OPND_R3:
5952 case IA64_OPND_R3_2:
5953 case IA64_OPND_CPUID_R3:
5954 case IA64_OPND_DBR_R3:
5955 case IA64_OPND_DTR_R3:
5956 case IA64_OPND_ITR_R3:
5957 case IA64_OPND_IBR_R3:
5958 case IA64_OPND_MR3:
5959 case IA64_OPND_MSR_R3:
5960 case IA64_OPND_PKR_R3:
5961 case IA64_OPND_PMC_R3:
5962 case IA64_OPND_PMD_R3:
5963 case IA64_OPND_RR_R3:
5964 val -= REG_GR;
5965 break;
5966
5967 default:
5968 break;
5969 }
5970
5971 odesc = elf64_ia64_operands + idesc->operands[i];
5972 err = (*odesc->insert) (odesc, val, &insn);
5973 if (err)
5974 as_bad_where (slot->src_file, slot->src_line,
5975 "Bad operand value: %s", err);
5976 if (idesc->flags & IA64_OPCODE_PSEUDO)
5977 {
5978 if ((idesc->flags & IA64_OPCODE_F2_EQ_F3)
5979 && odesc == elf64_ia64_operands + IA64_OPND_F3)
5980 {
5981 o2desc = elf64_ia64_operands + IA64_OPND_F2;
5982 (*o2desc->insert) (o2desc, val, &insn);
5983 }
5984 if ((idesc->flags & IA64_OPCODE_LEN_EQ_64MCNT)
5985 && (odesc == elf64_ia64_operands + IA64_OPND_CPOS6a
5986 || odesc == elf64_ia64_operands + IA64_OPND_POS6))
5987 {
5988 o2desc = elf64_ia64_operands + IA64_OPND_LEN6;
5989 (*o2desc->insert) (o2desc, 64 - val, &insn);
5990 }
5991 }
5992 }
5993 *insnp = insn;
5994 }
5995
5996 static void
5997 emit_one_bundle ()
5998 {
5999 unsigned int manual_bundling_on = 0, manual_bundling_off = 0;
6000 unsigned int manual_bundling = 0;
6001 enum ia64_unit required_unit, insn_unit = 0;
6002 enum ia64_insn_type type[3], insn_type;
6003 unsigned int template, orig_template;
6004 bfd_vma insn[3] = { -1, -1, -1 };
6005 struct ia64_opcode *idesc;
6006 int end_of_insn_group = 0, user_template = -1;
6007 int n, i, j, first, curr;
6008 unw_rec_list *ptr, *last_ptr, *end_ptr;
6009 bfd_vma t0 = 0, t1 = 0;
6010 struct label_fix *lfix;
6011 struct insn_fix *ifix;
6012 char mnemonic[16];
6013 fixS *fix;
6014 char *f;
6015
6016 first = (md.curr_slot + NUM_SLOTS - md.num_slots_in_use) % NUM_SLOTS;
6017 know (first >= 0 & first < NUM_SLOTS);
6018 n = MIN (3, md.num_slots_in_use);
6019
6020 /* Determine template: user user_template if specified, best match
6021 otherwise: */
6022
6023 if (md.slot[first].user_template >= 0)
6024 user_template = template = md.slot[first].user_template;
6025 else
6026 {
6027 /* Auto select appropriate template. */
6028 memset (type, 0, sizeof (type));
6029 curr = first;
6030 for (i = 0; i < n; ++i)
6031 {
6032 if (md.slot[curr].label_fixups && i != 0)
6033 break;
6034 type[i] = md.slot[curr].idesc->type;
6035 curr = (curr + 1) % NUM_SLOTS;
6036 }
6037 template = best_template[type[0]][type[1]][type[2]];
6038 }
6039
6040 /* initialize instructions with appropriate nops: */
6041 for (i = 0; i < 3; ++i)
6042 insn[i] = nop[ia64_templ_desc[template].exec_unit[i]];
6043
6044 f = frag_more (16);
6045
6046 /* now fill in slots with as many insns as possible: */
6047 curr = first;
6048 idesc = md.slot[curr].idesc;
6049 end_of_insn_group = 0;
6050 for (i = 0; i < 3 && md.num_slots_in_use > 0; ++i)
6051 {
6052 /* If we have unwind records, we may need to update some now. */
6053 ptr = md.slot[curr].unwind_record;
6054 if (ptr)
6055 {
6056 /* Find the last prologue/body record in the list for the current
6057 insn, and set the slot number for all records up to that point.
6058 This needs to be done now, because prologue/body records refer to
6059 the current point, not the point after the instruction has been
6060 issued. This matters because there may have been nops emitted
6061 meanwhile. Any non-prologue non-body record followed by a
6062 prologue/body record must also refer to the current point. */
6063 last_ptr = NULL;
6064 end_ptr = md.slot[(curr + 1) % NUM_SLOTS].unwind_record;
6065 for (; ptr != end_ptr; ptr = ptr->next)
6066 if (ptr->r.type == prologue || ptr->r.type == prologue_gr
6067 || ptr->r.type == body)
6068 last_ptr = ptr;
6069 if (last_ptr)
6070 {
6071 /* Make last_ptr point one after the last prologue/body
6072 record. */
6073 last_ptr = last_ptr->next;
6074 for (ptr = md.slot[curr].unwind_record; ptr != last_ptr;
6075 ptr = ptr->next)
6076 {
6077 ptr->slot_number = (unsigned long) f + i;
6078 ptr->slot_frag = frag_now;
6079 }
6080 /* Remove the initialized records, so that we won't accidentally
6081 update them again if we insert a nop and continue. */
6082 md.slot[curr].unwind_record = last_ptr;
6083 }
6084 }
6085
6086 if (idesc->flags & IA64_OPCODE_SLOT2)
6087 {
6088 if (manual_bundling && i != 2)
6089 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6090 "`%s' must be last in bundle", idesc->name);
6091 else
6092 i = 2;
6093 }
6094 if (idesc->flags & IA64_OPCODE_LAST)
6095 {
6096 int required_slot;
6097 unsigned int required_template;
6098
6099 /* If we need a stop bit after an M slot, our only choice is
6100 template 5 (M;;MI). If we need a stop bit after a B
6101 slot, our only choice is to place it at the end of the
6102 bundle, because the only available templates are MIB,
6103 MBB, BBB, MMB, and MFB. We don't handle anything other
6104 than M and B slots because these are the only kind of
6105 instructions that can have the IA64_OPCODE_LAST bit set. */
6106 required_template = template;
6107 switch (idesc->type)
6108 {
6109 case IA64_TYPE_M:
6110 required_slot = 0;
6111 required_template = 5;
6112 break;
6113
6114 case IA64_TYPE_B:
6115 required_slot = 2;
6116 break;
6117
6118 default:
6119 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6120 "Internal error: don't know how to force %s to end"
6121 "of instruction group", idesc->name);
6122 required_slot = i;
6123 break;
6124 }
6125 if (manual_bundling && i != required_slot)
6126 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6127 "`%s' must be last in instruction group",
6128 idesc->name);
6129 if (required_slot < i)
6130 /* Can't fit this instruction. */
6131 break;
6132
6133 i = required_slot;
6134 if (required_template != template)
6135 {
6136 /* If we switch the template, we need to reset the NOPs
6137 after slot i. The slot-types of the instructions ahead
6138 of i never change, so we don't need to worry about
6139 changing NOPs in front of this slot. */
6140 for (j = i; j < 3; ++j)
6141 insn[j] = nop[ia64_templ_desc[required_template].exec_unit[j]];
6142 }
6143 template = required_template;
6144 }
6145 if (curr != first && md.slot[curr].label_fixups)
6146 {
6147 if (manual_bundling_on)
6148 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6149 "Label must be first in a bundle");
6150 /* This insn must go into the first slot of a bundle. */
6151 break;
6152 }
6153
6154 manual_bundling_on = md.slot[curr].manual_bundling_on;
6155 manual_bundling_off = md.slot[curr].manual_bundling_off;
6156
6157 if (manual_bundling_on)
6158 {
6159 if (curr == first)
6160 manual_bundling = 1;
6161 else
6162 break; /* need to start a new bundle */
6163 }
6164
6165 if (end_of_insn_group && md.num_slots_in_use >= 1)
6166 {
6167 /* We need an instruction group boundary in the middle of a
6168 bundle. See if we can switch to an other template with
6169 an appropriate boundary. */
6170
6171 orig_template = template;
6172 if (i == 1 && (user_template == 4
6173 || (user_template < 0
6174 && (ia64_templ_desc[template].exec_unit[0]
6175 == IA64_UNIT_M))))
6176 {
6177 template = 5;
6178 end_of_insn_group = 0;
6179 }
6180 else if (i == 2 && (user_template == 0
6181 || (user_template < 0
6182 && (ia64_templ_desc[template].exec_unit[1]
6183 == IA64_UNIT_I)))
6184 /* This test makes sure we don't switch the template if
6185 the next instruction is one that needs to be first in
6186 an instruction group. Since all those instructions are
6187 in the M group, there is no way such an instruction can
6188 fit in this bundle even if we switch the template. The
6189 reason we have to check for this is that otherwise we
6190 may end up generating "MI;;I M.." which has the deadly
6191 effect that the second M instruction is no longer the
6192 first in the bundle! --davidm 99/12/16 */
6193 && (idesc->flags & IA64_OPCODE_FIRST) == 0)
6194 {
6195 template = 1;
6196 end_of_insn_group = 0;
6197 }
6198 else if (curr != first)
6199 /* can't fit this insn */
6200 break;
6201
6202 if (template != orig_template)
6203 /* if we switch the template, we need to reset the NOPs
6204 after slot i. The slot-types of the instructions ahead
6205 of i never change, so we don't need to worry about
6206 changing NOPs in front of this slot. */
6207 for (j = i; j < 3; ++j)
6208 insn[j] = nop[ia64_templ_desc[template].exec_unit[j]];
6209 }
6210 required_unit = ia64_templ_desc[template].exec_unit[i];
6211
6212 /* resolve dynamic opcodes such as "break", "hint", and "nop": */
6213 if (idesc->type == IA64_TYPE_DYN)
6214 {
6215 if ((strcmp (idesc->name, "nop") == 0)
6216 || (strcmp (idesc->name, "hint") == 0)
6217 || (strcmp (idesc->name, "break") == 0))
6218 insn_unit = required_unit;
6219 else if (strcmp (idesc->name, "chk.s") == 0)
6220 {
6221 insn_unit = IA64_UNIT_M;
6222 if (required_unit == IA64_UNIT_I)
6223 insn_unit = IA64_UNIT_I;
6224 }
6225 else
6226 as_fatal ("emit_one_bundle: unexpected dynamic op");
6227
6228 sprintf (mnemonic, "%s.%c", idesc->name, "?imbf??"[insn_unit]);
6229 ia64_free_opcode (idesc);
6230 md.slot[curr].idesc = idesc = ia64_find_opcode (mnemonic);
6231 #if 0
6232 know (!idesc->next); /* no resolved dynamic ops have collisions */
6233 #endif
6234 }
6235 else
6236 {
6237 insn_type = idesc->type;
6238 insn_unit = IA64_UNIT_NIL;
6239 switch (insn_type)
6240 {
6241 case IA64_TYPE_A:
6242 if (required_unit == IA64_UNIT_I || required_unit == IA64_UNIT_M)
6243 insn_unit = required_unit;
6244 break;
6245 case IA64_TYPE_X: insn_unit = IA64_UNIT_L; break;
6246 case IA64_TYPE_I: insn_unit = IA64_UNIT_I; break;
6247 case IA64_TYPE_M: insn_unit = IA64_UNIT_M; break;
6248 case IA64_TYPE_B: insn_unit = IA64_UNIT_B; break;
6249 case IA64_TYPE_F: insn_unit = IA64_UNIT_F; break;
6250 default: break;
6251 }
6252 }
6253
6254 if (insn_unit != required_unit)
6255 {
6256 if (required_unit == IA64_UNIT_L
6257 && insn_unit == IA64_UNIT_I
6258 && !(idesc->flags & IA64_OPCODE_X_IN_MLX))
6259 {
6260 /* we got ourselves an MLX template but the current
6261 instruction isn't an X-unit, or an I-unit instruction
6262 that can go into the X slot of an MLX template. Duh. */
6263 if (md.num_slots_in_use >= NUM_SLOTS)
6264 {
6265 as_bad_where (md.slot[curr].src_file,
6266 md.slot[curr].src_line,
6267 "`%s' can't go in X slot of "
6268 "MLX template", idesc->name);
6269 /* drop this insn so we don't livelock: */
6270 --md.num_slots_in_use;
6271 }
6272 break;
6273 }
6274 continue; /* try next slot */
6275 }
6276
6277 {
6278 bfd_vma addr;
6279
6280 addr = frag_now->fr_address + frag_now_fix () - 16 + i;
6281 dwarf2_gen_line_info (addr, &md.slot[curr].debug_line);
6282 }
6283
6284 if (errata_nop_necessary_p (md.slot + curr, insn_unit))
6285 as_warn (_("Additional NOP may be necessary to workaround Itanium processor A/B step errata"));
6286
6287 build_insn (md.slot + curr, insn + i);
6288
6289 ptr = md.slot[curr].unwind_record;
6290 if (ptr)
6291 {
6292 /* Set slot numbers for all remaining unwind records belonging to the
6293 current insn. There can not be any prologue/body unwind records
6294 here. */
6295 end_ptr = md.slot[(curr + 1) % NUM_SLOTS].unwind_record;
6296 for (; ptr != end_ptr; ptr = ptr->next)
6297 {
6298 ptr->slot_number = (unsigned long) f + i;
6299 ptr->slot_frag = frag_now;
6300 }
6301 md.slot[curr].unwind_record = NULL;
6302 }
6303
6304 if (required_unit == IA64_UNIT_L)
6305 {
6306 know (i == 1);
6307 /* skip one slot for long/X-unit instructions */
6308 ++i;
6309 }
6310 --md.num_slots_in_use;
6311
6312 /* now is a good time to fix up the labels for this insn: */
6313 for (lfix = md.slot[curr].label_fixups; lfix; lfix = lfix->next)
6314 {
6315 S_SET_VALUE (lfix->sym, frag_now_fix () - 16);
6316 symbol_set_frag (lfix->sym, frag_now);
6317 }
6318 /* and fix up the tags also. */
6319 for (lfix = md.slot[curr].tag_fixups; lfix; lfix = lfix->next)
6320 {
6321 S_SET_VALUE (lfix->sym, frag_now_fix () - 16 + i);
6322 symbol_set_frag (lfix->sym, frag_now);
6323 }
6324
6325 for (j = 0; j < md.slot[curr].num_fixups; ++j)
6326 {
6327 ifix = md.slot[curr].fixup + j;
6328 fix = fix_new_exp (frag_now, frag_now_fix () - 16 + i, 8,
6329 &ifix->expr, ifix->is_pcrel, ifix->code);
6330 fix->tc_fix_data.opnd = ifix->opnd;
6331 fix->fx_plt = (fix->fx_r_type == BFD_RELOC_IA64_PLTOFF22);
6332 fix->fx_file = md.slot[curr].src_file;
6333 fix->fx_line = md.slot[curr].src_line;
6334 }
6335
6336 end_of_insn_group = md.slot[curr].end_of_insn_group;
6337
6338 if (end_of_insn_group)
6339 {
6340 md.group_idx = (md.group_idx + 1) % 3;
6341 memset (md.last_groups + md.group_idx, 0, sizeof md.last_groups[0]);
6342 }
6343
6344 /* clear slot: */
6345 ia64_free_opcode (md.slot[curr].idesc);
6346 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
6347 md.slot[curr].user_template = -1;
6348
6349 if (manual_bundling_off)
6350 {
6351 manual_bundling = 0;
6352 break;
6353 }
6354 curr = (curr + 1) % NUM_SLOTS;
6355 idesc = md.slot[curr].idesc;
6356 }
6357 if (manual_bundling)
6358 {
6359 if (md.num_slots_in_use > 0)
6360 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6361 "`%s' does not fit into %s template",
6362 idesc->name, ia64_templ_desc[template].name);
6363 else
6364 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6365 "Missing '}' at end of file");
6366 }
6367 know (md.num_slots_in_use < NUM_SLOTS);
6368
6369 t0 = end_of_insn_group | (template << 1) | (insn[0] << 5) | (insn[1] << 46);
6370 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
6371
6372 number_to_chars_littleendian (f + 0, t0, 8);
6373 number_to_chars_littleendian (f + 8, t1, 8);
6374
6375 if (unwind.list)
6376 {
6377 unwind.list->next_slot_number = (unsigned long) f + 16;
6378 unwind.list->next_slot_frag = frag_now;
6379 }
6380 }
6381
6382 int
6383 md_parse_option (c, arg)
6384 int c;
6385 char *arg;
6386 {
6387
6388 switch (c)
6389 {
6390 /* Switches from the Intel assembler. */
6391 case 'm':
6392 if (strcmp (arg, "ilp64") == 0
6393 || strcmp (arg, "lp64") == 0
6394 || strcmp (arg, "p64") == 0)
6395 {
6396 md.flags |= EF_IA_64_ABI64;
6397 }
6398 else if (strcmp (arg, "ilp32") == 0)
6399 {
6400 md.flags &= ~EF_IA_64_ABI64;
6401 }
6402 else if (strcmp (arg, "le") == 0)
6403 {
6404 md.flags &= ~EF_IA_64_BE;
6405 }
6406 else if (strcmp (arg, "be") == 0)
6407 {
6408 md.flags |= EF_IA_64_BE;
6409 }
6410 else
6411 return 0;
6412 break;
6413
6414 case 'N':
6415 if (strcmp (arg, "so") == 0)
6416 {
6417 /* Suppress signon message. */
6418 }
6419 else if (strcmp (arg, "pi") == 0)
6420 {
6421 /* Reject privileged instructions. FIXME */
6422 }
6423 else if (strcmp (arg, "us") == 0)
6424 {
6425 /* Allow union of signed and unsigned range. FIXME */
6426 }
6427 else if (strcmp (arg, "close_fcalls") == 0)
6428 {
6429 /* Do not resolve global function calls. */
6430 }
6431 else
6432 return 0;
6433 break;
6434
6435 case 'C':
6436 /* temp[="prefix"] Insert temporary labels into the object file
6437 symbol table prefixed by "prefix".
6438 Default prefix is ":temp:".
6439 */
6440 break;
6441
6442 case 'a':
6443 /* indirect=<tgt> Assume unannotated indirect branches behavior
6444 according to <tgt> --
6445 exit: branch out from the current context (default)
6446 labels: all labels in context may be branch targets
6447 */
6448 if (strncmp (arg, "indirect=", 9) != 0)
6449 return 0;
6450 break;
6451
6452 case 'x':
6453 /* -X conflicts with an ignored option, use -x instead */
6454 md.detect_dv = 1;
6455 if (!arg || strcmp (arg, "explicit") == 0)
6456 {
6457 /* set default mode to explicit */
6458 md.default_explicit_mode = 1;
6459 break;
6460 }
6461 else if (strcmp (arg, "auto") == 0)
6462 {
6463 md.default_explicit_mode = 0;
6464 }
6465 else if (strcmp (arg, "debug") == 0)
6466 {
6467 md.debug_dv = 1;
6468 }
6469 else if (strcmp (arg, "debugx") == 0)
6470 {
6471 md.default_explicit_mode = 1;
6472 md.debug_dv = 1;
6473 }
6474 else
6475 {
6476 as_bad (_("Unrecognized option '-x%s'"), arg);
6477 }
6478 break;
6479
6480 case 'S':
6481 /* nops Print nops statistics. */
6482 break;
6483
6484 /* GNU specific switches for gcc. */
6485 case OPTION_MCONSTANT_GP:
6486 md.flags |= EF_IA_64_CONS_GP;
6487 break;
6488
6489 case OPTION_MAUTO_PIC:
6490 md.flags |= EF_IA_64_NOFUNCDESC_CONS_GP;
6491 break;
6492
6493 default:
6494 return 0;
6495 }
6496
6497 return 1;
6498 }
6499
6500 void
6501 md_show_usage (stream)
6502 FILE *stream;
6503 {
6504 fputs (_("\
6505 IA-64 options:\n\
6506 --mconstant-gp mark output file as using the constant-GP model\n\
6507 (sets ELF header flag EF_IA_64_CONS_GP)\n\
6508 --mauto-pic mark output file as using the constant-GP model\n\
6509 without function descriptors (sets ELF header flag\n\
6510 EF_IA_64_NOFUNCDESC_CONS_GP)\n\
6511 -milp32|-milp64|-mlp64|-mp64 select data model (default -mlp64)\n\
6512 -mle | -mbe select little- or big-endian byte order (default -mle)\n\
6513 -x | -xexplicit turn on dependency violation checking (default)\n\
6514 -xauto automagically remove dependency violations\n\
6515 -xdebug debug dependency violation checker\n"),
6516 stream);
6517 }
6518
6519 void
6520 ia64_after_parse_args ()
6521 {
6522 if (debug_type == DEBUG_STABS)
6523 as_fatal (_("--gstabs is not supported for ia64"));
6524 }
6525
6526 /* Return true if TYPE fits in TEMPL at SLOT. */
6527
6528 static int
6529 match (int templ, int type, int slot)
6530 {
6531 enum ia64_unit unit;
6532 int result;
6533
6534 unit = ia64_templ_desc[templ].exec_unit[slot];
6535 switch (type)
6536 {
6537 case IA64_TYPE_DYN: result = 1; break; /* for nop and break */
6538 case IA64_TYPE_A:
6539 result = (unit == IA64_UNIT_I || unit == IA64_UNIT_M);
6540 break;
6541 case IA64_TYPE_X: result = (unit == IA64_UNIT_L); break;
6542 case IA64_TYPE_I: result = (unit == IA64_UNIT_I); break;
6543 case IA64_TYPE_M: result = (unit == IA64_UNIT_M); break;
6544 case IA64_TYPE_B: result = (unit == IA64_UNIT_B); break;
6545 case IA64_TYPE_F: result = (unit == IA64_UNIT_F); break;
6546 default: result = 0; break;
6547 }
6548 return result;
6549 }
6550
6551 /* Add a bit of extra goodness if a nop of type F or B would fit
6552 in TEMPL at SLOT. */
6553
6554 static inline int
6555 extra_goodness (int templ, int slot)
6556 {
6557 if (slot == 1 && match (templ, IA64_TYPE_F, slot))
6558 return 2;
6559 if (slot == 2 && match (templ, IA64_TYPE_B, slot))
6560 return 1;
6561 return 0;
6562 }
6563
6564 /* This function is called once, at assembler startup time. It sets
6565 up all the tables, etc. that the MD part of the assembler will need
6566 that can be determined before arguments are parsed. */
6567 void
6568 md_begin ()
6569 {
6570 int i, j, k, t, total, ar_base, cr_base, goodness, best, regnum, ok;
6571 const char *err;
6572 char name[8];
6573
6574 md.auto_align = 1;
6575 md.explicit_mode = md.default_explicit_mode;
6576
6577 bfd_set_section_alignment (stdoutput, text_section, 4);
6578
6579 /* Make sure function pointers get initialized. */
6580 target_big_endian = -1;
6581 dot_byteorder (TARGET_BYTES_BIG_ENDIAN);
6582
6583 alias_hash = hash_new ();
6584 alias_name_hash = hash_new ();
6585 secalias_hash = hash_new ();
6586 secalias_name_hash = hash_new ();
6587
6588 pseudo_func[FUNC_DTP_MODULE].u.sym =
6589 symbol_new (".<dtpmod>", undefined_section, FUNC_DTP_MODULE,
6590 &zero_address_frag);
6591
6592 pseudo_func[FUNC_DTP_RELATIVE].u.sym =
6593 symbol_new (".<dtprel>", undefined_section, FUNC_DTP_RELATIVE,
6594 &zero_address_frag);
6595
6596 pseudo_func[FUNC_FPTR_RELATIVE].u.sym =
6597 symbol_new (".<fptr>", undefined_section, FUNC_FPTR_RELATIVE,
6598 &zero_address_frag);
6599
6600 pseudo_func[FUNC_GP_RELATIVE].u.sym =
6601 symbol_new (".<gprel>", undefined_section, FUNC_GP_RELATIVE,
6602 &zero_address_frag);
6603
6604 pseudo_func[FUNC_LT_RELATIVE].u.sym =
6605 symbol_new (".<ltoff>", undefined_section, FUNC_LT_RELATIVE,
6606 &zero_address_frag);
6607
6608 pseudo_func[FUNC_LT_RELATIVE_X].u.sym =
6609 symbol_new (".<ltoffx>", undefined_section, FUNC_LT_RELATIVE_X,
6610 &zero_address_frag);
6611
6612 pseudo_func[FUNC_PC_RELATIVE].u.sym =
6613 symbol_new (".<pcrel>", undefined_section, FUNC_PC_RELATIVE,
6614 &zero_address_frag);
6615
6616 pseudo_func[FUNC_PLT_RELATIVE].u.sym =
6617 symbol_new (".<pltoff>", undefined_section, FUNC_PLT_RELATIVE,
6618 &zero_address_frag);
6619
6620 pseudo_func[FUNC_SEC_RELATIVE].u.sym =
6621 symbol_new (".<secrel>", undefined_section, FUNC_SEC_RELATIVE,
6622 &zero_address_frag);
6623
6624 pseudo_func[FUNC_SEG_RELATIVE].u.sym =
6625 symbol_new (".<segrel>", undefined_section, FUNC_SEG_RELATIVE,
6626 &zero_address_frag);
6627
6628 pseudo_func[FUNC_TP_RELATIVE].u.sym =
6629 symbol_new (".<tprel>", undefined_section, FUNC_TP_RELATIVE,
6630 &zero_address_frag);
6631
6632 pseudo_func[FUNC_LTV_RELATIVE].u.sym =
6633 symbol_new (".<ltv>", undefined_section, FUNC_LTV_RELATIVE,
6634 &zero_address_frag);
6635
6636 pseudo_func[FUNC_LT_FPTR_RELATIVE].u.sym =
6637 symbol_new (".<ltoff.fptr>", undefined_section, FUNC_LT_FPTR_RELATIVE,
6638 &zero_address_frag);
6639
6640 pseudo_func[FUNC_LT_DTP_MODULE].u.sym =
6641 symbol_new (".<ltoff.dtpmod>", undefined_section, FUNC_LT_DTP_MODULE,
6642 &zero_address_frag);
6643
6644 pseudo_func[FUNC_LT_DTP_RELATIVE].u.sym =
6645 symbol_new (".<ltoff.dptrel>", undefined_section, FUNC_LT_DTP_RELATIVE,
6646 &zero_address_frag);
6647
6648 pseudo_func[FUNC_LT_TP_RELATIVE].u.sym =
6649 symbol_new (".<ltoff.tprel>", undefined_section, FUNC_LT_TP_RELATIVE,
6650 &zero_address_frag);
6651
6652 pseudo_func[FUNC_IPLT_RELOC].u.sym =
6653 symbol_new (".<iplt>", undefined_section, FUNC_IPLT_RELOC,
6654 &zero_address_frag);
6655
6656 /* Compute the table of best templates. We compute goodness as a
6657 base 4 value, in which each match counts for 3, each F counts
6658 for 2, each B counts for 1. This should maximize the number of
6659 F and B nops in the chosen bundles, which is good because these
6660 pipelines are least likely to be overcommitted. */
6661 for (i = 0; i < IA64_NUM_TYPES; ++i)
6662 for (j = 0; j < IA64_NUM_TYPES; ++j)
6663 for (k = 0; k < IA64_NUM_TYPES; ++k)
6664 {
6665 best = 0;
6666 for (t = 0; t < NELEMS (ia64_templ_desc); ++t)
6667 {
6668 goodness = 0;
6669 if (match (t, i, 0))
6670 {
6671 if (match (t, j, 1))
6672 {
6673 if (match (t, k, 2))
6674 goodness = 3 + 3 + 3;
6675 else
6676 goodness = 3 + 3 + extra_goodness (t, 2);
6677 }
6678 else if (match (t, j, 2))
6679 goodness = 3 + 3 + extra_goodness (t, 1);
6680 else
6681 {
6682 goodness = 3;
6683 goodness += extra_goodness (t, 1);
6684 goodness += extra_goodness (t, 2);
6685 }
6686 }
6687 else if (match (t, i, 1))
6688 {
6689 if (match (t, j, 2))
6690 goodness = 3 + 3;
6691 else
6692 goodness = 3 + extra_goodness (t, 2);
6693 }
6694 else if (match (t, i, 2))
6695 goodness = 3 + extra_goodness (t, 1);
6696
6697 if (goodness > best)
6698 {
6699 best = goodness;
6700 best_template[i][j][k] = t;
6701 }
6702 }
6703 }
6704
6705 for (i = 0; i < NUM_SLOTS; ++i)
6706 md.slot[i].user_template = -1;
6707
6708 md.pseudo_hash = hash_new ();
6709 for (i = 0; i < NELEMS (pseudo_opcode); ++i)
6710 {
6711 err = hash_insert (md.pseudo_hash, pseudo_opcode[i].name,
6712 (void *) (pseudo_opcode + i));
6713 if (err)
6714 as_fatal ("ia64.md_begin: can't hash `%s': %s",
6715 pseudo_opcode[i].name, err);
6716 }
6717
6718 md.reg_hash = hash_new ();
6719 md.dynreg_hash = hash_new ();
6720 md.const_hash = hash_new ();
6721 md.entry_hash = hash_new ();
6722
6723 /* general registers: */
6724
6725 total = 128;
6726 for (i = 0; i < total; ++i)
6727 {
6728 sprintf (name, "r%d", i - REG_GR);
6729 md.regsym[i] = declare_register (name, i);
6730 }
6731
6732 /* floating point registers: */
6733 total += 128;
6734 for (; i < total; ++i)
6735 {
6736 sprintf (name, "f%d", i - REG_FR);
6737 md.regsym[i] = declare_register (name, i);
6738 }
6739
6740 /* application registers: */
6741 total += 128;
6742 ar_base = i;
6743 for (; i < total; ++i)
6744 {
6745 sprintf (name, "ar%d", i - REG_AR);
6746 md.regsym[i] = declare_register (name, i);
6747 }
6748
6749 /* control registers: */
6750 total += 128;
6751 cr_base = i;
6752 for (; i < total; ++i)
6753 {
6754 sprintf (name, "cr%d", i - REG_CR);
6755 md.regsym[i] = declare_register (name, i);
6756 }
6757
6758 /* predicate registers: */
6759 total += 64;
6760 for (; i < total; ++i)
6761 {
6762 sprintf (name, "p%d", i - REG_P);
6763 md.regsym[i] = declare_register (name, i);
6764 }
6765
6766 /* branch registers: */
6767 total += 8;
6768 for (; i < total; ++i)
6769 {
6770 sprintf (name, "b%d", i - REG_BR);
6771 md.regsym[i] = declare_register (name, i);
6772 }
6773
6774 md.regsym[REG_IP] = declare_register ("ip", REG_IP);
6775 md.regsym[REG_CFM] = declare_register ("cfm", REG_CFM);
6776 md.regsym[REG_PR] = declare_register ("pr", REG_PR);
6777 md.regsym[REG_PR_ROT] = declare_register ("pr.rot", REG_PR_ROT);
6778 md.regsym[REG_PSR] = declare_register ("psr", REG_PSR);
6779 md.regsym[REG_PSR_L] = declare_register ("psr.l", REG_PSR_L);
6780 md.regsym[REG_PSR_UM] = declare_register ("psr.um", REG_PSR_UM);
6781
6782 for (i = 0; i < NELEMS (indirect_reg); ++i)
6783 {
6784 regnum = indirect_reg[i].regnum;
6785 md.regsym[regnum] = declare_register (indirect_reg[i].name, regnum);
6786 }
6787
6788 /* define synonyms for application registers: */
6789 for (i = REG_AR; i < REG_AR + NELEMS (ar); ++i)
6790 md.regsym[i] = declare_register (ar[i - REG_AR].name,
6791 REG_AR + ar[i - REG_AR].regnum);
6792
6793 /* define synonyms for control registers: */
6794 for (i = REG_CR; i < REG_CR + NELEMS (cr); ++i)
6795 md.regsym[i] = declare_register (cr[i - REG_CR].name,
6796 REG_CR + cr[i - REG_CR].regnum);
6797
6798 declare_register ("gp", REG_GR + 1);
6799 declare_register ("sp", REG_GR + 12);
6800 declare_register ("rp", REG_BR + 0);
6801
6802 /* pseudo-registers used to specify unwind info: */
6803 declare_register ("psp", REG_PSP);
6804
6805 declare_register_set ("ret", 4, REG_GR + 8);
6806 declare_register_set ("farg", 8, REG_FR + 8);
6807 declare_register_set ("fret", 8, REG_FR + 8);
6808
6809 for (i = 0; i < NELEMS (const_bits); ++i)
6810 {
6811 err = hash_insert (md.const_hash, const_bits[i].name,
6812 (PTR) (const_bits + i));
6813 if (err)
6814 as_fatal ("Inserting \"%s\" into constant hash table failed: %s",
6815 name, err);
6816 }
6817
6818 /* Set the architecture and machine depending on defaults and command line
6819 options. */
6820 if (md.flags & EF_IA_64_ABI64)
6821 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf64);
6822 else
6823 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf32);
6824
6825 if (! ok)
6826 as_warn (_("Could not set architecture and machine"));
6827
6828 /* Set the pointer size and pointer shift size depending on md.flags */
6829
6830 if (md.flags & EF_IA_64_ABI64)
6831 {
6832 md.pointer_size = 8; /* pointers are 8 bytes */
6833 md.pointer_size_shift = 3; /* alignment is 8 bytes = 2^2 */
6834 }
6835 else
6836 {
6837 md.pointer_size = 4; /* pointers are 4 bytes */
6838 md.pointer_size_shift = 2; /* alignment is 4 bytes = 2^2 */
6839 }
6840
6841 md.mem_offset.hint = 0;
6842 md.path = 0;
6843 md.maxpaths = 0;
6844 md.entry_labels = NULL;
6845 }
6846
6847 /* Set the elf type to 64 bit ABI by default. Cannot do this in md_begin
6848 because that is called after md_parse_option which is where we do the
6849 dynamic changing of md.flags based on -mlp64 or -milp32. Also, set the
6850 default endianness. */
6851
6852 void
6853 ia64_init (argc, argv)
6854 int argc ATTRIBUTE_UNUSED;
6855 char **argv ATTRIBUTE_UNUSED;
6856 {
6857 md.flags = MD_FLAGS_DEFAULT;
6858 }
6859
6860 /* Return a string for the target object file format. */
6861
6862 const char *
6863 ia64_target_format ()
6864 {
6865 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
6866 {
6867 if (md.flags & EF_IA_64_BE)
6868 {
6869 if (md.flags & EF_IA_64_ABI64)
6870 #if defined(TE_AIX50)
6871 return "elf64-ia64-aix-big";
6872 #elif defined(TE_HPUX)
6873 return "elf64-ia64-hpux-big";
6874 #else
6875 return "elf64-ia64-big";
6876 #endif
6877 else
6878 #if defined(TE_AIX50)
6879 return "elf32-ia64-aix-big";
6880 #elif defined(TE_HPUX)
6881 return "elf32-ia64-hpux-big";
6882 #else
6883 return "elf32-ia64-big";
6884 #endif
6885 }
6886 else
6887 {
6888 if (md.flags & EF_IA_64_ABI64)
6889 #ifdef TE_AIX50
6890 return "elf64-ia64-aix-little";
6891 #else
6892 return "elf64-ia64-little";
6893 #endif
6894 else
6895 #ifdef TE_AIX50
6896 return "elf32-ia64-aix-little";
6897 #else
6898 return "elf32-ia64-little";
6899 #endif
6900 }
6901 }
6902 else
6903 return "unknown-format";
6904 }
6905
6906 void
6907 ia64_end_of_source ()
6908 {
6909 /* terminate insn group upon reaching end of file: */
6910 insn_group_break (1, 0, 0);
6911
6912 /* emits slots we haven't written yet: */
6913 ia64_flush_insns ();
6914
6915 bfd_set_private_flags (stdoutput, md.flags);
6916
6917 md.mem_offset.hint = 0;
6918 }
6919
6920 void
6921 ia64_start_line ()
6922 {
6923 if (md.qp.X_op == O_register)
6924 as_bad ("qualifying predicate not followed by instruction");
6925 md.qp.X_op = O_absent;
6926
6927 if (ignore_input ())
6928 return;
6929
6930 if (input_line_pointer[0] == ';' && input_line_pointer[-1] == ';')
6931 {
6932 if (md.detect_dv && !md.explicit_mode)
6933 as_warn (_("Explicit stops are ignored in auto mode"));
6934 else
6935 insn_group_break (1, 0, 0);
6936 }
6937 }
6938
6939 /* This is a hook for ia64_frob_label, so that it can distinguish tags from
6940 labels. */
6941 static int defining_tag = 0;
6942
6943 int
6944 ia64_unrecognized_line (ch)
6945 int ch;
6946 {
6947 switch (ch)
6948 {
6949 case '(':
6950 expression (&md.qp);
6951 if (*input_line_pointer++ != ')')
6952 {
6953 as_bad ("Expected ')'");
6954 return 0;
6955 }
6956 if (md.qp.X_op != O_register)
6957 {
6958 as_bad ("Qualifying predicate expected");
6959 return 0;
6960 }
6961 if (md.qp.X_add_number < REG_P || md.qp.X_add_number >= REG_P + 64)
6962 {
6963 as_bad ("Predicate register expected");
6964 return 0;
6965 }
6966 return 1;
6967
6968 case '{':
6969 if (md.manual_bundling)
6970 as_warn ("Found '{' when manual bundling is already turned on");
6971 else
6972 CURR_SLOT.manual_bundling_on = 1;
6973 md.manual_bundling = 1;
6974
6975 /* Bundling is only acceptable in explicit mode
6976 or when in default automatic mode. */
6977 if (md.detect_dv && !md.explicit_mode)
6978 {
6979 if (!md.mode_explicitly_set
6980 && !md.default_explicit_mode)
6981 dot_dv_mode ('E');
6982 else
6983 as_warn (_("Found '{' after explicit switch to automatic mode"));
6984 }
6985 return 1;
6986
6987 case '}':
6988 if (!md.manual_bundling)
6989 as_warn ("Found '}' when manual bundling is off");
6990 else
6991 PREV_SLOT.manual_bundling_off = 1;
6992 md.manual_bundling = 0;
6993
6994 /* switch back to automatic mode, if applicable */
6995 if (md.detect_dv
6996 && md.explicit_mode
6997 && !md.mode_explicitly_set
6998 && !md.default_explicit_mode)
6999 dot_dv_mode ('A');
7000
7001 /* Allow '{' to follow on the same line. We also allow ";;", but that
7002 happens automatically because ';' is an end of line marker. */
7003 SKIP_WHITESPACE ();
7004 if (input_line_pointer[0] == '{')
7005 {
7006 input_line_pointer++;
7007 return ia64_unrecognized_line ('{');
7008 }
7009
7010 demand_empty_rest_of_line ();
7011 return 1;
7012
7013 case '[':
7014 {
7015 char *s;
7016 char c;
7017 symbolS *tag;
7018 int temp;
7019
7020 if (md.qp.X_op == O_register)
7021 {
7022 as_bad ("Tag must come before qualifying predicate.");
7023 return 0;
7024 }
7025
7026 /* This implements just enough of read_a_source_file in read.c to
7027 recognize labels. */
7028 if (is_name_beginner (*input_line_pointer))
7029 {
7030 s = input_line_pointer;
7031 c = get_symbol_end ();
7032 }
7033 else if (LOCAL_LABELS_FB
7034 && ISDIGIT (*input_line_pointer))
7035 {
7036 temp = 0;
7037 while (ISDIGIT (*input_line_pointer))
7038 temp = (temp * 10) + *input_line_pointer++ - '0';
7039 fb_label_instance_inc (temp);
7040 s = fb_label_name (temp, 0);
7041 c = *input_line_pointer;
7042 }
7043 else
7044 {
7045 s = NULL;
7046 c = '\0';
7047 }
7048 if (c != ':')
7049 {
7050 /* Put ':' back for error messages' sake. */
7051 *input_line_pointer++ = ':';
7052 as_bad ("Expected ':'");
7053 return 0;
7054 }
7055
7056 defining_tag = 1;
7057 tag = colon (s);
7058 defining_tag = 0;
7059 /* Put ':' back for error messages' sake. */
7060 *input_line_pointer++ = ':';
7061 if (*input_line_pointer++ != ']')
7062 {
7063 as_bad ("Expected ']'");
7064 return 0;
7065 }
7066 if (! tag)
7067 {
7068 as_bad ("Tag name expected");
7069 return 0;
7070 }
7071 return 1;
7072 }
7073
7074 default:
7075 break;
7076 }
7077
7078 /* Not a valid line. */
7079 return 0;
7080 }
7081
7082 void
7083 ia64_frob_label (sym)
7084 struct symbol *sym;
7085 {
7086 struct label_fix *fix;
7087
7088 /* Tags need special handling since they are not bundle breaks like
7089 labels. */
7090 if (defining_tag)
7091 {
7092 fix = obstack_alloc (&notes, sizeof (*fix));
7093 fix->sym = sym;
7094 fix->next = CURR_SLOT.tag_fixups;
7095 CURR_SLOT.tag_fixups = fix;
7096
7097 return;
7098 }
7099
7100 if (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7101 {
7102 md.last_text_seg = now_seg;
7103 fix = obstack_alloc (&notes, sizeof (*fix));
7104 fix->sym = sym;
7105 fix->next = CURR_SLOT.label_fixups;
7106 CURR_SLOT.label_fixups = fix;
7107
7108 /* Keep track of how many code entry points we've seen. */
7109 if (md.path == md.maxpaths)
7110 {
7111 md.maxpaths += 20;
7112 md.entry_labels = (const char **)
7113 xrealloc ((void *) md.entry_labels,
7114 md.maxpaths * sizeof (char *));
7115 }
7116 md.entry_labels[md.path++] = S_GET_NAME (sym);
7117 }
7118 }
7119
7120 void
7121 ia64_flush_pending_output ()
7122 {
7123 if (!md.keep_pending_output
7124 && bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7125 {
7126 /* ??? This causes many unnecessary stop bits to be emitted.
7127 Unfortunately, it isn't clear if it is safe to remove this. */
7128 insn_group_break (1, 0, 0);
7129 ia64_flush_insns ();
7130 }
7131 }
7132
7133 /* Do ia64-specific expression optimization. All that's done here is
7134 to transform index expressions that are either due to the indexing
7135 of rotating registers or due to the indexing of indirect register
7136 sets. */
7137 int
7138 ia64_optimize_expr (l, op, r)
7139 expressionS *l;
7140 operatorT op;
7141 expressionS *r;
7142 {
7143 unsigned num_regs;
7144
7145 if (op == O_index)
7146 {
7147 if (l->X_op == O_register && r->X_op == O_constant)
7148 {
7149 num_regs = (l->X_add_number >> 16);
7150 if ((unsigned) r->X_add_number >= num_regs)
7151 {
7152 if (!num_regs)
7153 as_bad ("No current frame");
7154 else
7155 as_bad ("Index out of range 0..%u", num_regs - 1);
7156 r->X_add_number = 0;
7157 }
7158 l->X_add_number = (l->X_add_number & 0xffff) + r->X_add_number;
7159 return 1;
7160 }
7161 else if (l->X_op == O_register && r->X_op == O_register)
7162 {
7163 if (l->X_add_number < IND_CPUID || l->X_add_number > IND_RR
7164 || l->X_add_number == IND_MEM)
7165 {
7166 as_bad ("Indirect register set name expected");
7167 l->X_add_number = IND_CPUID;
7168 }
7169 l->X_op = O_index;
7170 l->X_op_symbol = md.regsym[l->X_add_number];
7171 l->X_add_number = r->X_add_number;
7172 return 1;
7173 }
7174 }
7175 return 0;
7176 }
7177
7178 int
7179 ia64_parse_name (name, e)
7180 char *name;
7181 expressionS *e;
7182 {
7183 struct const_desc *cdesc;
7184 struct dynreg *dr = 0;
7185 unsigned int regnum;
7186 struct symbol *sym;
7187 char *end;
7188
7189 /* first see if NAME is a known register name: */
7190 sym = hash_find (md.reg_hash, name);
7191 if (sym)
7192 {
7193 e->X_op = O_register;
7194 e->X_add_number = S_GET_VALUE (sym);
7195 return 1;
7196 }
7197
7198 cdesc = hash_find (md.const_hash, name);
7199 if (cdesc)
7200 {
7201 e->X_op = O_constant;
7202 e->X_add_number = cdesc->value;
7203 return 1;
7204 }
7205
7206 /* check for inN, locN, or outN: */
7207 switch (name[0])
7208 {
7209 case 'i':
7210 if (name[1] == 'n' && ISDIGIT (name[2]))
7211 {
7212 dr = &md.in;
7213 name += 2;
7214 }
7215 break;
7216
7217 case 'l':
7218 if (name[1] == 'o' && name[2] == 'c' && ISDIGIT (name[3]))
7219 {
7220 dr = &md.loc;
7221 name += 3;
7222 }
7223 break;
7224
7225 case 'o':
7226 if (name[1] == 'u' && name[2] == 't' && ISDIGIT (name[3]))
7227 {
7228 dr = &md.out;
7229 name += 3;
7230 }
7231 break;
7232
7233 default:
7234 break;
7235 }
7236
7237 if (dr)
7238 {
7239 /* The name is inN, locN, or outN; parse the register number. */
7240 regnum = strtoul (name, &end, 10);
7241 if (end > name && *end == '\0')
7242 {
7243 if ((unsigned) regnum >= dr->num_regs)
7244 {
7245 if (!dr->num_regs)
7246 as_bad ("No current frame");
7247 else
7248 as_bad ("Register number out of range 0..%u",
7249 dr->num_regs - 1);
7250 regnum = 0;
7251 }
7252 e->X_op = O_register;
7253 e->X_add_number = dr->base + regnum;
7254 return 1;
7255 }
7256 }
7257
7258 if ((dr = hash_find (md.dynreg_hash, name)))
7259 {
7260 /* We've got ourselves the name of a rotating register set.
7261 Store the base register number in the low 16 bits of
7262 X_add_number and the size of the register set in the top 16
7263 bits. */
7264 e->X_op = O_register;
7265 e->X_add_number = dr->base | (dr->num_regs << 16);
7266 return 1;
7267 }
7268 return 0;
7269 }
7270
7271 /* Remove the '#' suffix that indicates a symbol as opposed to a register. */
7272
7273 char *
7274 ia64_canonicalize_symbol_name (name)
7275 char *name;
7276 {
7277 size_t len = strlen (name);
7278 if (len > 1 && name[len - 1] == '#')
7279 name[len - 1] = '\0';
7280 return name;
7281 }
7282
7283 /* Return true if idesc is a conditional branch instruction. This excludes
7284 the modulo scheduled branches, and br.ia. Mod-sched branches are excluded
7285 because they always read/write resources regardless of the value of the
7286 qualifying predicate. br.ia must always use p0, and hence is always
7287 taken. Thus this function returns true for branches which can fall
7288 through, and which use no resources if they do fall through. */
7289
7290 static int
7291 is_conditional_branch (idesc)
7292 struct ia64_opcode *idesc;
7293 {
7294 /* br is a conditional branch. Everything that starts with br. except
7295 br.ia, br.c{loop,top,exit}, and br.w{top,exit} is a conditional branch.
7296 Everything that starts with brl is a conditional branch. */
7297 return (idesc->name[0] == 'b' && idesc->name[1] == 'r'
7298 && (idesc->name[2] == '\0'
7299 || (idesc->name[2] == '.' && idesc->name[3] != 'i'
7300 && idesc->name[3] != 'c' && idesc->name[3] != 'w')
7301 || idesc->name[2] == 'l'
7302 /* br.cond, br.call, br.clr */
7303 || (idesc->name[2] == '.' && idesc->name[3] == 'c'
7304 && (idesc->name[4] == 'a' || idesc->name[4] == 'o'
7305 || (idesc->name[4] == 'l' && idesc->name[5] == 'r')))));
7306 }
7307
7308 /* Return whether the given opcode is a taken branch. If there's any doubt,
7309 returns zero. */
7310
7311 static int
7312 is_taken_branch (idesc)
7313 struct ia64_opcode *idesc;
7314 {
7315 return ((is_conditional_branch (idesc) && CURR_SLOT.qp_regno == 0)
7316 || strncmp (idesc->name, "br.ia", 5) == 0);
7317 }
7318
7319 /* Return whether the given opcode is an interruption or rfi. If there's any
7320 doubt, returns zero. */
7321
7322 static int
7323 is_interruption_or_rfi (idesc)
7324 struct ia64_opcode *idesc;
7325 {
7326 if (strcmp (idesc->name, "rfi") == 0)
7327 return 1;
7328 return 0;
7329 }
7330
7331 /* Returns the index of the given dependency in the opcode's list of chks, or
7332 -1 if there is no dependency. */
7333
7334 static int
7335 depends_on (depind, idesc)
7336 int depind;
7337 struct ia64_opcode *idesc;
7338 {
7339 int i;
7340 const struct ia64_opcode_dependency *dep = idesc->dependencies;
7341 for (i = 0; i < dep->nchks; i++)
7342 {
7343 if (depind == DEP (dep->chks[i]))
7344 return i;
7345 }
7346 return -1;
7347 }
7348
7349 /* Determine a set of specific resources used for a particular resource
7350 class. Returns the number of specific resources identified For those
7351 cases which are not determinable statically, the resource returned is
7352 marked nonspecific.
7353
7354 Meanings of value in 'NOTE':
7355 1) only read/write when the register number is explicitly encoded in the
7356 insn.
7357 2) only read CFM when accessing a rotating GR, FR, or PR. mov pr only
7358 accesses CFM when qualifying predicate is in the rotating region.
7359 3) general register value is used to specify an indirect register; not
7360 determinable statically.
7361 4) only read the given resource when bits 7:0 of the indirect index
7362 register value does not match the register number of the resource; not
7363 determinable statically.
7364 5) all rules are implementation specific.
7365 6) only when both the index specified by the reader and the index specified
7366 by the writer have the same value in bits 63:61; not determinable
7367 statically.
7368 7) only access the specified resource when the corresponding mask bit is
7369 set
7370 8) PSR.dfh is only read when these insns reference FR32-127. PSR.dfl is
7371 only read when these insns reference FR2-31
7372 9) PSR.mfl is only written when these insns write FR2-31. PSR.mfh is only
7373 written when these insns write FR32-127
7374 10) The PSR.bn bit is only accessed when one of GR16-31 is specified in the
7375 instruction
7376 11) The target predicates are written independently of PR[qp], but source
7377 registers are only read if PR[qp] is true. Since the state of PR[qp]
7378 cannot statically be determined, all source registers are marked used.
7379 12) This insn only reads the specified predicate register when that
7380 register is the PR[qp].
7381 13) This reference to ld-c only applies to teh GR whose value is loaded
7382 with data returned from memory, not the post-incremented address register.
7383 14) The RSE resource includes the implementation-specific RSE internal
7384 state resources. At least one (and possibly more) of these resources are
7385 read by each instruction listed in IC:rse-readers. At least one (and
7386 possibly more) of these resources are written by each insn listed in
7387 IC:rse-writers.
7388 15+16) Represents reserved instructions, which the assembler does not
7389 generate.
7390
7391 Memory resources (i.e. locations in memory) are *not* marked or tracked by
7392 this code; there are no dependency violations based on memory access.
7393 */
7394
7395 #define MAX_SPECS 256
7396 #define DV_CHK 1
7397 #define DV_REG 0
7398
7399 static int
7400 specify_resource (dep, idesc, type, specs, note, path)
7401 const struct ia64_dependency *dep;
7402 struct ia64_opcode *idesc;
7403 int type; /* is this a DV chk or a DV reg? */
7404 struct rsrc specs[MAX_SPECS]; /* returned specific resources */
7405 int note; /* resource note for this insn's usage */
7406 int path; /* which execution path to examine */
7407 {
7408 int count = 0;
7409 int i;
7410 int rsrc_write = 0;
7411 struct rsrc tmpl;
7412
7413 if (dep->mode == IA64_DV_WAW
7414 || (dep->mode == IA64_DV_RAW && type == DV_REG)
7415 || (dep->mode == IA64_DV_WAR && type == DV_CHK))
7416 rsrc_write = 1;
7417
7418 /* template for any resources we identify */
7419 tmpl.dependency = dep;
7420 tmpl.note = note;
7421 tmpl.insn_srlz = tmpl.data_srlz = 0;
7422 tmpl.qp_regno = CURR_SLOT.qp_regno;
7423 tmpl.link_to_qp_branch = 1;
7424 tmpl.mem_offset.hint = 0;
7425 tmpl.specific = 1;
7426 tmpl.index = 0;
7427 tmpl.cmp_type = CMP_NONE;
7428
7429 #define UNHANDLED \
7430 as_warn (_("Unhandled dependency %s for %s (%s), note %d"), \
7431 dep->name, idesc->name, (rsrc_write?"write":"read"), note)
7432 #define KNOWN(REG) (gr_values[REG].known && gr_values[REG].path >= path)
7433
7434 /* we don't need to track these */
7435 if (dep->semantics == IA64_DVS_NONE)
7436 return 0;
7437
7438 switch (dep->specifier)
7439 {
7440 case IA64_RS_AR_K:
7441 if (note == 1)
7442 {
7443 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
7444 {
7445 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
7446 if (regno >= 0 && regno <= 7)
7447 {
7448 specs[count] = tmpl;
7449 specs[count++].index = regno;
7450 }
7451 }
7452 }
7453 else if (note == 0)
7454 {
7455 for (i = 0; i < 8; i++)
7456 {
7457 specs[count] = tmpl;
7458 specs[count++].index = i;
7459 }
7460 }
7461 else
7462 {
7463 UNHANDLED;
7464 }
7465 break;
7466
7467 case IA64_RS_AR_UNAT:
7468 /* This is a mov =AR or mov AR= instruction. */
7469 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
7470 {
7471 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
7472 if (regno == AR_UNAT)
7473 {
7474 specs[count++] = tmpl;
7475 }
7476 }
7477 else
7478 {
7479 /* This is a spill/fill, or other instruction that modifies the
7480 unat register. */
7481
7482 /* Unless we can determine the specific bits used, mark the whole
7483 thing; bits 8:3 of the memory address indicate the bit used in
7484 UNAT. The .mem.offset hint may be used to eliminate a small
7485 subset of conflicts. */
7486 specs[count] = tmpl;
7487 if (md.mem_offset.hint)
7488 {
7489 if (md.debug_dv)
7490 fprintf (stderr, " Using hint for spill/fill\n");
7491 /* The index isn't actually used, just set it to something
7492 approximating the bit index. */
7493 specs[count].index = (md.mem_offset.offset >> 3) & 0x3F;
7494 specs[count].mem_offset.hint = 1;
7495 specs[count].mem_offset.offset = md.mem_offset.offset;
7496 specs[count++].mem_offset.base = md.mem_offset.base;
7497 }
7498 else
7499 {
7500 specs[count++].specific = 0;
7501 }
7502 }
7503 break;
7504
7505 case IA64_RS_AR:
7506 if (note == 1)
7507 {
7508 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
7509 {
7510 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
7511 if ((regno >= 8 && regno <= 15)
7512 || (regno >= 20 && regno <= 23)
7513 || (regno >= 31 && regno <= 39)
7514 || (regno >= 41 && regno <= 47)
7515 || (regno >= 67 && regno <= 111))
7516 {
7517 specs[count] = tmpl;
7518 specs[count++].index = regno;
7519 }
7520 }
7521 }
7522 else
7523 {
7524 UNHANDLED;
7525 }
7526 break;
7527
7528 case IA64_RS_ARb:
7529 if (note == 1)
7530 {
7531 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
7532 {
7533 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
7534 if ((regno >= 48 && regno <= 63)
7535 || (regno >= 112 && regno <= 127))
7536 {
7537 specs[count] = tmpl;
7538 specs[count++].index = regno;
7539 }
7540 }
7541 }
7542 else if (note == 0)
7543 {
7544 for (i = 48; i < 64; i++)
7545 {
7546 specs[count] = tmpl;
7547 specs[count++].index = i;
7548 }
7549 for (i = 112; i < 128; i++)
7550 {
7551 specs[count] = tmpl;
7552 specs[count++].index = i;
7553 }
7554 }
7555 else
7556 {
7557 UNHANDLED;
7558 }
7559 break;
7560
7561 case IA64_RS_BR:
7562 if (note != 1)
7563 {
7564 UNHANDLED;
7565 }
7566 else
7567 {
7568 if (rsrc_write)
7569 {
7570 for (i = 0; i < idesc->num_outputs; i++)
7571 if (idesc->operands[i] == IA64_OPND_B1
7572 || idesc->operands[i] == IA64_OPND_B2)
7573 {
7574 specs[count] = tmpl;
7575 specs[count++].index =
7576 CURR_SLOT.opnd[i].X_add_number - REG_BR;
7577 }
7578 }
7579 else
7580 {
7581 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
7582 if (idesc->operands[i] == IA64_OPND_B1
7583 || idesc->operands[i] == IA64_OPND_B2)
7584 {
7585 specs[count] = tmpl;
7586 specs[count++].index =
7587 CURR_SLOT.opnd[i].X_add_number - REG_BR;
7588 }
7589 }
7590 }
7591 break;
7592
7593 case IA64_RS_CPUID: /* four or more registers */
7594 if (note == 3)
7595 {
7596 if (idesc->operands[!rsrc_write] == IA64_OPND_CPUID_R3)
7597 {
7598 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
7599 if (regno >= 0 && regno < NELEMS (gr_values)
7600 && KNOWN (regno))
7601 {
7602 specs[count] = tmpl;
7603 specs[count++].index = gr_values[regno].value & 0xFF;
7604 }
7605 else
7606 {
7607 specs[count] = tmpl;
7608 specs[count++].specific = 0;
7609 }
7610 }
7611 }
7612 else
7613 {
7614 UNHANDLED;
7615 }
7616 break;
7617
7618 case IA64_RS_DBR: /* four or more registers */
7619 if (note == 3)
7620 {
7621 if (idesc->operands[!rsrc_write] == IA64_OPND_DBR_R3)
7622 {
7623 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
7624 if (regno >= 0 && regno < NELEMS (gr_values)
7625 && KNOWN (regno))
7626 {
7627 specs[count] = tmpl;
7628 specs[count++].index = gr_values[regno].value & 0xFF;
7629 }
7630 else
7631 {
7632 specs[count] = tmpl;
7633 specs[count++].specific = 0;
7634 }
7635 }
7636 }
7637 else if (note == 0 && !rsrc_write)
7638 {
7639 specs[count] = tmpl;
7640 specs[count++].specific = 0;
7641 }
7642 else
7643 {
7644 UNHANDLED;
7645 }
7646 break;
7647
7648 case IA64_RS_IBR: /* four or more registers */
7649 if (note == 3)
7650 {
7651 if (idesc->operands[!rsrc_write] == IA64_OPND_IBR_R3)
7652 {
7653 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
7654 if (regno >= 0 && regno < NELEMS (gr_values)
7655 && KNOWN (regno))
7656 {
7657 specs[count] = tmpl;
7658 specs[count++].index = gr_values[regno].value & 0xFF;
7659 }
7660 else
7661 {
7662 specs[count] = tmpl;
7663 specs[count++].specific = 0;
7664 }
7665 }
7666 }
7667 else
7668 {
7669 UNHANDLED;
7670 }
7671 break;
7672
7673 case IA64_RS_MSR:
7674 if (note == 5)
7675 {
7676 /* These are implementation specific. Force all references to
7677 conflict with all other references. */
7678 specs[count] = tmpl;
7679 specs[count++].specific = 0;
7680 }
7681 else
7682 {
7683 UNHANDLED;
7684 }
7685 break;
7686
7687 case IA64_RS_PKR: /* 16 or more registers */
7688 if (note == 3 || note == 4)
7689 {
7690 if (idesc->operands[!rsrc_write] == IA64_OPND_PKR_R3)
7691 {
7692 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
7693 if (regno >= 0 && regno < NELEMS (gr_values)
7694 && KNOWN (regno))
7695 {
7696 if (note == 3)
7697 {
7698 specs[count] = tmpl;
7699 specs[count++].index = gr_values[regno].value & 0xFF;
7700 }
7701 else
7702 for (i = 0; i < NELEMS (gr_values); i++)
7703 {
7704 /* Uses all registers *except* the one in R3. */
7705 if ((unsigned)i != (gr_values[regno].value & 0xFF))
7706 {
7707 specs[count] = tmpl;
7708 specs[count++].index = i;
7709 }
7710 }
7711 }
7712 else
7713 {
7714 specs[count] = tmpl;
7715 specs[count++].specific = 0;
7716 }
7717 }
7718 }
7719 else if (note == 0)
7720 {
7721 /* probe et al. */
7722 specs[count] = tmpl;
7723 specs[count++].specific = 0;
7724 }
7725 break;
7726
7727 case IA64_RS_PMC: /* four or more registers */
7728 if (note == 3)
7729 {
7730 if (idesc->operands[!rsrc_write] == IA64_OPND_PMC_R3
7731 || (!rsrc_write && idesc->operands[1] == IA64_OPND_PMD_R3))
7732
7733 {
7734 int index = ((idesc->operands[1] == IA64_OPND_R3 && !rsrc_write)
7735 ? 1 : !rsrc_write);
7736 int regno = CURR_SLOT.opnd[index].X_add_number - REG_GR;
7737 if (regno >= 0 && regno < NELEMS (gr_values)
7738 && KNOWN (regno))
7739 {
7740 specs[count] = tmpl;
7741 specs[count++].index = gr_values[regno].value & 0xFF;
7742 }
7743 else
7744 {
7745 specs[count] = tmpl;
7746 specs[count++].specific = 0;
7747 }
7748 }
7749 }
7750 else
7751 {
7752 UNHANDLED;
7753 }
7754 break;
7755
7756 case IA64_RS_PMD: /* four or more registers */
7757 if (note == 3)
7758 {
7759 if (idesc->operands[!rsrc_write] == IA64_OPND_PMD_R3)
7760 {
7761 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
7762 if (regno >= 0 && regno < NELEMS (gr_values)
7763 && KNOWN (regno))
7764 {
7765 specs[count] = tmpl;
7766 specs[count++].index = gr_values[regno].value & 0xFF;
7767 }
7768 else
7769 {
7770 specs[count] = tmpl;
7771 specs[count++].specific = 0;
7772 }
7773 }
7774 }
7775 else
7776 {
7777 UNHANDLED;
7778 }
7779 break;
7780
7781 case IA64_RS_RR: /* eight registers */
7782 if (note == 6)
7783 {
7784 if (idesc->operands[!rsrc_write] == IA64_OPND_RR_R3)
7785 {
7786 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
7787 if (regno >= 0 && regno < NELEMS (gr_values)
7788 && KNOWN (regno))
7789 {
7790 specs[count] = tmpl;
7791 specs[count++].index = (gr_values[regno].value >> 61) & 0x7;
7792 }
7793 else
7794 {
7795 specs[count] = tmpl;
7796 specs[count++].specific = 0;
7797 }
7798 }
7799 }
7800 else if (note == 0 && !rsrc_write)
7801 {
7802 specs[count] = tmpl;
7803 specs[count++].specific = 0;
7804 }
7805 else
7806 {
7807 UNHANDLED;
7808 }
7809 break;
7810
7811 case IA64_RS_CR_IRR:
7812 if (note == 0)
7813 {
7814 /* handle mov-from-CR-IVR; it's a read that writes CR[IRR] */
7815 int regno = CURR_SLOT.opnd[1].X_add_number - REG_CR;
7816 if (rsrc_write
7817 && idesc->operands[1] == IA64_OPND_CR3
7818 && regno == CR_IVR)
7819 {
7820 for (i = 0; i < 4; i++)
7821 {
7822 specs[count] = tmpl;
7823 specs[count++].index = CR_IRR0 + i;
7824 }
7825 }
7826 }
7827 else if (note == 1)
7828 {
7829 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
7830 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
7831 && regno >= CR_IRR0
7832 && regno <= CR_IRR3)
7833 {
7834 specs[count] = tmpl;
7835 specs[count++].index = regno;
7836 }
7837 }
7838 else
7839 {
7840 UNHANDLED;
7841 }
7842 break;
7843
7844 case IA64_RS_CR_LRR:
7845 if (note != 1)
7846 {
7847 UNHANDLED;
7848 }
7849 else
7850 {
7851 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
7852 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
7853 && (regno == CR_LRR0 || regno == CR_LRR1))
7854 {
7855 specs[count] = tmpl;
7856 specs[count++].index = regno;
7857 }
7858 }
7859 break;
7860
7861 case IA64_RS_CR:
7862 if (note == 1)
7863 {
7864 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
7865 {
7866 specs[count] = tmpl;
7867 specs[count++].index =
7868 CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
7869 }
7870 }
7871 else
7872 {
7873 UNHANDLED;
7874 }
7875 break;
7876
7877 case IA64_RS_FR:
7878 case IA64_RS_FRb:
7879 if (note != 1)
7880 {
7881 UNHANDLED;
7882 }
7883 else if (rsrc_write)
7884 {
7885 if (dep->specifier == IA64_RS_FRb
7886 && idesc->operands[0] == IA64_OPND_F1)
7887 {
7888 specs[count] = tmpl;
7889 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_FR;
7890 }
7891 }
7892 else
7893 {
7894 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
7895 {
7896 if (idesc->operands[i] == IA64_OPND_F2
7897 || idesc->operands[i] == IA64_OPND_F3
7898 || idesc->operands[i] == IA64_OPND_F4)
7899 {
7900 specs[count] = tmpl;
7901 specs[count++].index =
7902 CURR_SLOT.opnd[i].X_add_number - REG_FR;
7903 }
7904 }
7905 }
7906 break;
7907
7908 case IA64_RS_GR:
7909 if (note == 13)
7910 {
7911 /* This reference applies only to the GR whose value is loaded with
7912 data returned from memory. */
7913 specs[count] = tmpl;
7914 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_GR;
7915 }
7916 else if (note == 1)
7917 {
7918 if (rsrc_write)
7919 {
7920 for (i = 0; i < idesc->num_outputs; i++)
7921 if (idesc->operands[i] == IA64_OPND_R1
7922 || idesc->operands[i] == IA64_OPND_R2
7923 || idesc->operands[i] == IA64_OPND_R3)
7924 {
7925 specs[count] = tmpl;
7926 specs[count++].index =
7927 CURR_SLOT.opnd[i].X_add_number - REG_GR;
7928 }
7929 if (idesc->flags & IA64_OPCODE_POSTINC)
7930 for (i = 0; i < NELEMS (idesc->operands); i++)
7931 if (idesc->operands[i] == IA64_OPND_MR3)
7932 {
7933 specs[count] = tmpl;
7934 specs[count++].index =
7935 CURR_SLOT.opnd[i].X_add_number - REG_GR;
7936 }
7937 }
7938 else
7939 {
7940 /* Look for anything that reads a GR. */
7941 for (i = 0; i < NELEMS (idesc->operands); i++)
7942 {
7943 if (idesc->operands[i] == IA64_OPND_MR3
7944 || idesc->operands[i] == IA64_OPND_CPUID_R3
7945 || idesc->operands[i] == IA64_OPND_DBR_R3
7946 || idesc->operands[i] == IA64_OPND_IBR_R3
7947 || idesc->operands[i] == IA64_OPND_MSR_R3
7948 || idesc->operands[i] == IA64_OPND_PKR_R3
7949 || idesc->operands[i] == IA64_OPND_PMC_R3
7950 || idesc->operands[i] == IA64_OPND_PMD_R3
7951 || idesc->operands[i] == IA64_OPND_RR_R3
7952 || ((i >= idesc->num_outputs)
7953 && (idesc->operands[i] == IA64_OPND_R1
7954 || idesc->operands[i] == IA64_OPND_R2
7955 || idesc->operands[i] == IA64_OPND_R3
7956 /* addl source register. */
7957 || idesc->operands[i] == IA64_OPND_R3_2)))
7958 {
7959 specs[count] = tmpl;
7960 specs[count++].index =
7961 CURR_SLOT.opnd[i].X_add_number - REG_GR;
7962 }
7963 }
7964 }
7965 }
7966 else
7967 {
7968 UNHANDLED;
7969 }
7970 break;
7971
7972 /* This is the same as IA64_RS_PRr, except that the register range is
7973 from 1 - 15, and there are no rotating register reads/writes here. */
7974 case IA64_RS_PR:
7975 if (note == 0)
7976 {
7977 for (i = 1; i < 16; i++)
7978 {
7979 specs[count] = tmpl;
7980 specs[count++].index = i;
7981 }
7982 }
7983 else if (note == 7)
7984 {
7985 valueT mask = 0;
7986 /* Mark only those registers indicated by the mask. */
7987 if (rsrc_write)
7988 {
7989 mask = CURR_SLOT.opnd[2].X_add_number;
7990 for (i = 1; i < 16; i++)
7991 if (mask & ((valueT) 1 << i))
7992 {
7993 specs[count] = tmpl;
7994 specs[count++].index = i;
7995 }
7996 }
7997 else
7998 {
7999 UNHANDLED;
8000 }
8001 }
8002 else if (note == 11) /* note 11 implies note 1 as well */
8003 {
8004 if (rsrc_write)
8005 {
8006 for (i = 0; i < idesc->num_outputs; i++)
8007 {
8008 if (idesc->operands[i] == IA64_OPND_P1
8009 || idesc->operands[i] == IA64_OPND_P2)
8010 {
8011 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8012 if (regno >= 1 && regno < 16)
8013 {
8014 specs[count] = tmpl;
8015 specs[count++].index = regno;
8016 }
8017 }
8018 }
8019 }
8020 else
8021 {
8022 UNHANDLED;
8023 }
8024 }
8025 else if (note == 12)
8026 {
8027 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8028 {
8029 specs[count] = tmpl;
8030 specs[count++].index = CURR_SLOT.qp_regno;
8031 }
8032 }
8033 else if (note == 1)
8034 {
8035 if (rsrc_write)
8036 {
8037 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8038 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8039 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8040 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8041
8042 if ((idesc->operands[0] == IA64_OPND_P1
8043 || idesc->operands[0] == IA64_OPND_P2)
8044 && p1 >= 1 && p1 < 16)
8045 {
8046 specs[count] = tmpl;
8047 specs[count].cmp_type =
8048 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
8049 specs[count++].index = p1;
8050 }
8051 if ((idesc->operands[1] == IA64_OPND_P1
8052 || idesc->operands[1] == IA64_OPND_P2)
8053 && p2 >= 1 && p2 < 16)
8054 {
8055 specs[count] = tmpl;
8056 specs[count].cmp_type =
8057 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
8058 specs[count++].index = p2;
8059 }
8060 }
8061 else
8062 {
8063 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8064 {
8065 specs[count] = tmpl;
8066 specs[count++].index = CURR_SLOT.qp_regno;
8067 }
8068 if (idesc->operands[1] == IA64_OPND_PR)
8069 {
8070 for (i = 1; i < 16; i++)
8071 {
8072 specs[count] = tmpl;
8073 specs[count++].index = i;
8074 }
8075 }
8076 }
8077 }
8078 else
8079 {
8080 UNHANDLED;
8081 }
8082 break;
8083
8084 /* This is the general case for PRs. IA64_RS_PR and IA64_RS_PR63 are
8085 simplified cases of this. */
8086 case IA64_RS_PRr:
8087 if (note == 0)
8088 {
8089 for (i = 16; i < 63; i++)
8090 {
8091 specs[count] = tmpl;
8092 specs[count++].index = i;
8093 }
8094 }
8095 else if (note == 7)
8096 {
8097 valueT mask = 0;
8098 /* Mark only those registers indicated by the mask. */
8099 if (rsrc_write
8100 && idesc->operands[0] == IA64_OPND_PR)
8101 {
8102 mask = CURR_SLOT.opnd[2].X_add_number;
8103 if (mask & ((valueT) 1 << 16))
8104 for (i = 16; i < 63; i++)
8105 {
8106 specs[count] = tmpl;
8107 specs[count++].index = i;
8108 }
8109 }
8110 else if (rsrc_write
8111 && idesc->operands[0] == IA64_OPND_PR_ROT)
8112 {
8113 for (i = 16; i < 63; i++)
8114 {
8115 specs[count] = tmpl;
8116 specs[count++].index = i;
8117 }
8118 }
8119 else
8120 {
8121 UNHANDLED;
8122 }
8123 }
8124 else if (note == 11) /* note 11 implies note 1 as well */
8125 {
8126 if (rsrc_write)
8127 {
8128 for (i = 0; i < idesc->num_outputs; i++)
8129 {
8130 if (idesc->operands[i] == IA64_OPND_P1
8131 || idesc->operands[i] == IA64_OPND_P2)
8132 {
8133 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8134 if (regno >= 16 && regno < 63)
8135 {
8136 specs[count] = tmpl;
8137 specs[count++].index = regno;
8138 }
8139 }
8140 }
8141 }
8142 else
8143 {
8144 UNHANDLED;
8145 }
8146 }
8147 else if (note == 12)
8148 {
8149 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
8150 {
8151 specs[count] = tmpl;
8152 specs[count++].index = CURR_SLOT.qp_regno;
8153 }
8154 }
8155 else if (note == 1)
8156 {
8157 if (rsrc_write)
8158 {
8159 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8160 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8161 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8162 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8163
8164 if ((idesc->operands[0] == IA64_OPND_P1
8165 || idesc->operands[0] == IA64_OPND_P2)
8166 && p1 >= 16 && p1 < 63)
8167 {
8168 specs[count] = tmpl;
8169 specs[count].cmp_type =
8170 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
8171 specs[count++].index = p1;
8172 }
8173 if ((idesc->operands[1] == IA64_OPND_P1
8174 || idesc->operands[1] == IA64_OPND_P2)
8175 && p2 >= 16 && p2 < 63)
8176 {
8177 specs[count] = tmpl;
8178 specs[count].cmp_type =
8179 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
8180 specs[count++].index = p2;
8181 }
8182 }
8183 else
8184 {
8185 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
8186 {
8187 specs[count] = tmpl;
8188 specs[count++].index = CURR_SLOT.qp_regno;
8189 }
8190 if (idesc->operands[1] == IA64_OPND_PR)
8191 {
8192 for (i = 16; i < 63; i++)
8193 {
8194 specs[count] = tmpl;
8195 specs[count++].index = i;
8196 }
8197 }
8198 }
8199 }
8200 else
8201 {
8202 UNHANDLED;
8203 }
8204 break;
8205
8206 case IA64_RS_PSR:
8207 /* Verify that the instruction is using the PSR bit indicated in
8208 dep->regindex. */
8209 if (note == 0)
8210 {
8211 if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_UM)
8212 {
8213 if (dep->regindex < 6)
8214 {
8215 specs[count++] = tmpl;
8216 }
8217 }
8218 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR)
8219 {
8220 if (dep->regindex < 32
8221 || dep->regindex == 35
8222 || dep->regindex == 36
8223 || (!rsrc_write && dep->regindex == PSR_CPL))
8224 {
8225 specs[count++] = tmpl;
8226 }
8227 }
8228 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_L)
8229 {
8230 if (dep->regindex < 32
8231 || dep->regindex == 35
8232 || dep->regindex == 36
8233 || (rsrc_write && dep->regindex == PSR_CPL))
8234 {
8235 specs[count++] = tmpl;
8236 }
8237 }
8238 else
8239 {
8240 /* Several PSR bits have very specific dependencies. */
8241 switch (dep->regindex)
8242 {
8243 default:
8244 specs[count++] = tmpl;
8245 break;
8246 case PSR_IC:
8247 if (rsrc_write)
8248 {
8249 specs[count++] = tmpl;
8250 }
8251 else
8252 {
8253 /* Only certain CR accesses use PSR.ic */
8254 if (idesc->operands[0] == IA64_OPND_CR3
8255 || idesc->operands[1] == IA64_OPND_CR3)
8256 {
8257 int index =
8258 ((idesc->operands[0] == IA64_OPND_CR3)
8259 ? 0 : 1);
8260 int regno =
8261 CURR_SLOT.opnd[index].X_add_number - REG_CR;
8262
8263 switch (regno)
8264 {
8265 default:
8266 break;
8267 case CR_ITIR:
8268 case CR_IFS:
8269 case CR_IIM:
8270 case CR_IIP:
8271 case CR_IPSR:
8272 case CR_ISR:
8273 case CR_IFA:
8274 case CR_IHA:
8275 case CR_IIPA:
8276 specs[count++] = tmpl;
8277 break;
8278 }
8279 }
8280 }
8281 break;
8282 case PSR_CPL:
8283 if (rsrc_write)
8284 {
8285 specs[count++] = tmpl;
8286 }
8287 else
8288 {
8289 /* Only some AR accesses use cpl */
8290 if (idesc->operands[0] == IA64_OPND_AR3
8291 || idesc->operands[1] == IA64_OPND_AR3)
8292 {
8293 int index =
8294 ((idesc->operands[0] == IA64_OPND_AR3)
8295 ? 0 : 1);
8296 int regno =
8297 CURR_SLOT.opnd[index].X_add_number - REG_AR;
8298
8299 if (regno == AR_ITC
8300 || (index == 0
8301 && (regno == AR_ITC
8302 || regno == AR_RSC
8303 || (regno >= AR_K0
8304 && regno <= AR_K7))))
8305 {
8306 specs[count++] = tmpl;
8307 }
8308 }
8309 else
8310 {
8311 specs[count++] = tmpl;
8312 }
8313 break;
8314 }
8315 }
8316 }
8317 }
8318 else if (note == 7)
8319 {
8320 valueT mask = 0;
8321 if (idesc->operands[0] == IA64_OPND_IMMU24)
8322 {
8323 mask = CURR_SLOT.opnd[0].X_add_number;
8324 }
8325 else
8326 {
8327 UNHANDLED;
8328 }
8329 if (mask & ((valueT) 1 << dep->regindex))
8330 {
8331 specs[count++] = tmpl;
8332 }
8333 }
8334 else if (note == 8)
8335 {
8336 int min = dep->regindex == PSR_DFL ? 2 : 32;
8337 int max = dep->regindex == PSR_DFL ? 31 : 127;
8338 /* dfh is read on FR32-127; dfl is read on FR2-31 */
8339 for (i = 0; i < NELEMS (idesc->operands); i++)
8340 {
8341 if (idesc->operands[i] == IA64_OPND_F1
8342 || idesc->operands[i] == IA64_OPND_F2
8343 || idesc->operands[i] == IA64_OPND_F3
8344 || idesc->operands[i] == IA64_OPND_F4)
8345 {
8346 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
8347 if (reg >= min && reg <= max)
8348 {
8349 specs[count++] = tmpl;
8350 }
8351 }
8352 }
8353 }
8354 else if (note == 9)
8355 {
8356 int min = dep->regindex == PSR_MFL ? 2 : 32;
8357 int max = dep->regindex == PSR_MFL ? 31 : 127;
8358 /* mfh is read on writes to FR32-127; mfl is read on writes to
8359 FR2-31 */
8360 for (i = 0; i < idesc->num_outputs; i++)
8361 {
8362 if (idesc->operands[i] == IA64_OPND_F1)
8363 {
8364 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
8365 if (reg >= min && reg <= max)
8366 {
8367 specs[count++] = tmpl;
8368 }
8369 }
8370 }
8371 }
8372 else if (note == 10)
8373 {
8374 for (i = 0; i < NELEMS (idesc->operands); i++)
8375 {
8376 if (idesc->operands[i] == IA64_OPND_R1
8377 || idesc->operands[i] == IA64_OPND_R2
8378 || idesc->operands[i] == IA64_OPND_R3)
8379 {
8380 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
8381 if (regno >= 16 && regno <= 31)
8382 {
8383 specs[count++] = tmpl;
8384 }
8385 }
8386 }
8387 }
8388 else
8389 {
8390 UNHANDLED;
8391 }
8392 break;
8393
8394 case IA64_RS_AR_FPSR:
8395 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8396 {
8397 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8398 if (regno == AR_FPSR)
8399 {
8400 specs[count++] = tmpl;
8401 }
8402 }
8403 else
8404 {
8405 specs[count++] = tmpl;
8406 }
8407 break;
8408
8409 case IA64_RS_ARX:
8410 /* Handle all AR[REG] resources */
8411 if (note == 0 || note == 1)
8412 {
8413 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8414 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3
8415 && regno == dep->regindex)
8416 {
8417 specs[count++] = tmpl;
8418 }
8419 /* other AR[REG] resources may be affected by AR accesses */
8420 else if (idesc->operands[0] == IA64_OPND_AR3)
8421 {
8422 /* AR[] writes */
8423 regno = CURR_SLOT.opnd[0].X_add_number - REG_AR;
8424 switch (dep->regindex)
8425 {
8426 default:
8427 break;
8428 case AR_BSP:
8429 case AR_RNAT:
8430 if (regno == AR_BSPSTORE)
8431 {
8432 specs[count++] = tmpl;
8433 }
8434 case AR_RSC:
8435 if (!rsrc_write &&
8436 (regno == AR_BSPSTORE
8437 || regno == AR_RNAT))
8438 {
8439 specs[count++] = tmpl;
8440 }
8441 break;
8442 }
8443 }
8444 else if (idesc->operands[1] == IA64_OPND_AR3)
8445 {
8446 /* AR[] reads */
8447 regno = CURR_SLOT.opnd[1].X_add_number - REG_AR;
8448 switch (dep->regindex)
8449 {
8450 default:
8451 break;
8452 case AR_RSC:
8453 if (regno == AR_BSPSTORE || regno == AR_RNAT)
8454 {
8455 specs[count++] = tmpl;
8456 }
8457 break;
8458 }
8459 }
8460 else
8461 {
8462 specs[count++] = tmpl;
8463 }
8464 }
8465 else
8466 {
8467 UNHANDLED;
8468 }
8469 break;
8470
8471 case IA64_RS_CRX:
8472 /* Handle all CR[REG] resources */
8473 if (note == 0 || note == 1)
8474 {
8475 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
8476 {
8477 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8478 if (regno == dep->regindex)
8479 {
8480 specs[count++] = tmpl;
8481 }
8482 else if (!rsrc_write)
8483 {
8484 /* Reads from CR[IVR] affect other resources. */
8485 if (regno == CR_IVR)
8486 {
8487 if ((dep->regindex >= CR_IRR0
8488 && dep->regindex <= CR_IRR3)
8489 || dep->regindex == CR_TPR)
8490 {
8491 specs[count++] = tmpl;
8492 }
8493 }
8494 }
8495 }
8496 else
8497 {
8498 specs[count++] = tmpl;
8499 }
8500 }
8501 else
8502 {
8503 UNHANDLED;
8504 }
8505 break;
8506
8507 case IA64_RS_INSERVICE:
8508 /* look for write of EOI (67) or read of IVR (65) */
8509 if ((idesc->operands[0] == IA64_OPND_CR3
8510 && CURR_SLOT.opnd[0].X_add_number - REG_CR == CR_EOI)
8511 || (idesc->operands[1] == IA64_OPND_CR3
8512 && CURR_SLOT.opnd[1].X_add_number - REG_CR == CR_IVR))
8513 {
8514 specs[count++] = tmpl;
8515 }
8516 break;
8517
8518 case IA64_RS_GR0:
8519 if (note == 1)
8520 {
8521 specs[count++] = tmpl;
8522 }
8523 else
8524 {
8525 UNHANDLED;
8526 }
8527 break;
8528
8529 case IA64_RS_CFM:
8530 if (note != 2)
8531 {
8532 specs[count++] = tmpl;
8533 }
8534 else
8535 {
8536 /* Check if any of the registers accessed are in the rotating region.
8537 mov to/from pr accesses CFM only when qp_regno is in the rotating
8538 region */
8539 for (i = 0; i < NELEMS (idesc->operands); i++)
8540 {
8541 if (idesc->operands[i] == IA64_OPND_R1
8542 || idesc->operands[i] == IA64_OPND_R2
8543 || idesc->operands[i] == IA64_OPND_R3)
8544 {
8545 int num = CURR_SLOT.opnd[i].X_add_number - REG_GR;
8546 /* Assumes that md.rot.num_regs is always valid */
8547 if (md.rot.num_regs > 0
8548 && num > 31
8549 && num < 31 + md.rot.num_regs)
8550 {
8551 specs[count] = tmpl;
8552 specs[count++].specific = 0;
8553 }
8554 }
8555 else if (idesc->operands[i] == IA64_OPND_F1
8556 || idesc->operands[i] == IA64_OPND_F2
8557 || idesc->operands[i] == IA64_OPND_F3
8558 || idesc->operands[i] == IA64_OPND_F4)
8559 {
8560 int num = CURR_SLOT.opnd[i].X_add_number - REG_FR;
8561 if (num > 31)
8562 {
8563 specs[count] = tmpl;
8564 specs[count++].specific = 0;
8565 }
8566 }
8567 else if (idesc->operands[i] == IA64_OPND_P1
8568 || idesc->operands[i] == IA64_OPND_P2)
8569 {
8570 int num = CURR_SLOT.opnd[i].X_add_number - REG_P;
8571 if (num > 15)
8572 {
8573 specs[count] = tmpl;
8574 specs[count++].specific = 0;
8575 }
8576 }
8577 }
8578 if (CURR_SLOT.qp_regno > 15)
8579 {
8580 specs[count] = tmpl;
8581 specs[count++].specific = 0;
8582 }
8583 }
8584 break;
8585
8586 /* This is the same as IA64_RS_PRr, except simplified to account for
8587 the fact that there is only one register. */
8588 case IA64_RS_PR63:
8589 if (note == 0)
8590 {
8591 specs[count++] = tmpl;
8592 }
8593 else if (note == 7)
8594 {
8595 valueT mask = 0;
8596 if (idesc->operands[2] == IA64_OPND_IMM17)
8597 mask = CURR_SLOT.opnd[2].X_add_number;
8598 if (mask & ((valueT) 1 << 63))
8599 specs[count++] = tmpl;
8600 }
8601 else if (note == 11)
8602 {
8603 if ((idesc->operands[0] == IA64_OPND_P1
8604 && CURR_SLOT.opnd[0].X_add_number - REG_P == 63)
8605 || (idesc->operands[1] == IA64_OPND_P2
8606 && CURR_SLOT.opnd[1].X_add_number - REG_P == 63))
8607 {
8608 specs[count++] = tmpl;
8609 }
8610 }
8611 else if (note == 12)
8612 {
8613 if (CURR_SLOT.qp_regno == 63)
8614 {
8615 specs[count++] = tmpl;
8616 }
8617 }
8618 else if (note == 1)
8619 {
8620 if (rsrc_write)
8621 {
8622 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8623 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8624 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8625 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8626
8627 if (p1 == 63
8628 && (idesc->operands[0] == IA64_OPND_P1
8629 || idesc->operands[0] == IA64_OPND_P2))
8630 {
8631 specs[count] = tmpl;
8632 specs[count++].cmp_type =
8633 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
8634 }
8635 if (p2 == 63
8636 && (idesc->operands[1] == IA64_OPND_P1
8637 || idesc->operands[1] == IA64_OPND_P2))
8638 {
8639 specs[count] = tmpl;
8640 specs[count++].cmp_type =
8641 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
8642 }
8643 }
8644 else
8645 {
8646 if (CURR_SLOT.qp_regno == 63)
8647 {
8648 specs[count++] = tmpl;
8649 }
8650 }
8651 }
8652 else
8653 {
8654 UNHANDLED;
8655 }
8656 break;
8657
8658 case IA64_RS_RSE:
8659 /* FIXME we can identify some individual RSE written resources, but RSE
8660 read resources have not yet been completely identified, so for now
8661 treat RSE as a single resource */
8662 if (strncmp (idesc->name, "mov", 3) == 0)
8663 {
8664 if (rsrc_write)
8665 {
8666 if (idesc->operands[0] == IA64_OPND_AR3
8667 && CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE)
8668 {
8669 specs[count] = tmpl;
8670 specs[count++].index = 0; /* IA64_RSE_BSPLOAD/RNATBITINDEX */
8671 }
8672 }
8673 else
8674 {
8675 if (idesc->operands[0] == IA64_OPND_AR3)
8676 {
8677 if (CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE
8678 || CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_RNAT)
8679 {
8680 specs[count++] = tmpl;
8681 }
8682 }
8683 else if (idesc->operands[1] == IA64_OPND_AR3)
8684 {
8685 if (CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSP
8686 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSPSTORE
8687 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_RNAT)
8688 {
8689 specs[count++] = tmpl;
8690 }
8691 }
8692 }
8693 }
8694 else
8695 {
8696 specs[count++] = tmpl;
8697 }
8698 break;
8699
8700 case IA64_RS_ANY:
8701 /* FIXME -- do any of these need to be non-specific? */
8702 specs[count++] = tmpl;
8703 break;
8704
8705 default:
8706 as_bad (_("Unrecognized dependency specifier %d\n"), dep->specifier);
8707 break;
8708 }
8709
8710 return count;
8711 }
8712
8713 /* Clear branch flags on marked resources. This breaks the link between the
8714 QP of the marking instruction and a subsequent branch on the same QP. */
8715
8716 static void
8717 clear_qp_branch_flag (mask)
8718 valueT mask;
8719 {
8720 int i;
8721 for (i = 0; i < regdepslen; i++)
8722 {
8723 valueT bit = ((valueT) 1 << regdeps[i].qp_regno);
8724 if ((bit & mask) != 0)
8725 {
8726 regdeps[i].link_to_qp_branch = 0;
8727 }
8728 }
8729 }
8730
8731 /* MASK contains 2 and only 2 PRs which are mutually exclusive. Remove
8732 any mutexes which contain one of the PRs and create new ones when
8733 needed. */
8734
8735 static int
8736 update_qp_mutex (valueT mask)
8737 {
8738 int i;
8739 int add = 0;
8740
8741 i = 0;
8742 while (i < qp_mutexeslen)
8743 {
8744 if ((qp_mutexes[i].prmask & mask) != 0)
8745 {
8746 /* If it destroys and creates the same mutex, do nothing. */
8747 if (qp_mutexes[i].prmask == mask
8748 && qp_mutexes[i].path == md.path)
8749 {
8750 i++;
8751 add = -1;
8752 }
8753 else
8754 {
8755 int keep = 0;
8756
8757 if (md.debug_dv)
8758 {
8759 fprintf (stderr, " Clearing mutex relation");
8760 print_prmask (qp_mutexes[i].prmask);
8761 fprintf (stderr, "\n");
8762 }
8763
8764 /* Deal with the old mutex with more than 3+ PRs only if
8765 the new mutex on the same execution path with it.
8766
8767 FIXME: The 3+ mutex support is incomplete.
8768 dot_pred_rel () may be a better place to fix it. */
8769 if (qp_mutexes[i].path == md.path)
8770 {
8771 /* If it is a proper subset of the mutex, create a
8772 new mutex. */
8773 if (add == 0
8774 && (qp_mutexes[i].prmask & mask) == mask)
8775 add = 1;
8776
8777 qp_mutexes[i].prmask &= ~mask;
8778 if (qp_mutexes[i].prmask & (qp_mutexes[i].prmask - 1))
8779 {
8780 /* Modify the mutex if there are more than one
8781 PR left. */
8782 keep = 1;
8783 i++;
8784 }
8785 }
8786
8787 if (keep == 0)
8788 /* Remove the mutex. */
8789 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
8790 }
8791 }
8792 else
8793 ++i;
8794 }
8795
8796 if (add == 1)
8797 add_qp_mutex (mask);
8798
8799 return add;
8800 }
8801
8802 /* Remove any mutexes which contain any of the PRs indicated in the mask.
8803
8804 Any changes to a PR clears the mutex relations which include that PR. */
8805
8806 static void
8807 clear_qp_mutex (mask)
8808 valueT mask;
8809 {
8810 int i;
8811
8812 i = 0;
8813 while (i < qp_mutexeslen)
8814 {
8815 if ((qp_mutexes[i].prmask & mask) != 0)
8816 {
8817 if (md.debug_dv)
8818 {
8819 fprintf (stderr, " Clearing mutex relation");
8820 print_prmask (qp_mutexes[i].prmask);
8821 fprintf (stderr, "\n");
8822 }
8823 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
8824 }
8825 else
8826 ++i;
8827 }
8828 }
8829
8830 /* Clear implies relations which contain PRs in the given masks.
8831 P1_MASK indicates the source of the implies relation, while P2_MASK
8832 indicates the implied PR. */
8833
8834 static void
8835 clear_qp_implies (p1_mask, p2_mask)
8836 valueT p1_mask;
8837 valueT p2_mask;
8838 {
8839 int i;
8840
8841 i = 0;
8842 while (i < qp_implieslen)
8843 {
8844 if ((((valueT) 1 << qp_implies[i].p1) & p1_mask) != 0
8845 || (((valueT) 1 << qp_implies[i].p2) & p2_mask) != 0)
8846 {
8847 if (md.debug_dv)
8848 fprintf (stderr, "Clearing implied relation PR%d->PR%d\n",
8849 qp_implies[i].p1, qp_implies[i].p2);
8850 qp_implies[i] = qp_implies[--qp_implieslen];
8851 }
8852 else
8853 ++i;
8854 }
8855 }
8856
8857 /* Add the PRs specified to the list of implied relations. */
8858
8859 static void
8860 add_qp_imply (p1, p2)
8861 int p1, p2;
8862 {
8863 valueT mask;
8864 valueT bit;
8865 int i;
8866
8867 /* p0 is not meaningful here. */
8868 if (p1 == 0 || p2 == 0)
8869 abort ();
8870
8871 if (p1 == p2)
8872 return;
8873
8874 /* If it exists already, ignore it. */
8875 for (i = 0; i < qp_implieslen; i++)
8876 {
8877 if (qp_implies[i].p1 == p1
8878 && qp_implies[i].p2 == p2
8879 && qp_implies[i].path == md.path
8880 && !qp_implies[i].p2_branched)
8881 return;
8882 }
8883
8884 if (qp_implieslen == qp_impliestotlen)
8885 {
8886 qp_impliestotlen += 20;
8887 qp_implies = (struct qp_imply *)
8888 xrealloc ((void *) qp_implies,
8889 qp_impliestotlen * sizeof (struct qp_imply));
8890 }
8891 if (md.debug_dv)
8892 fprintf (stderr, " Registering PR%d implies PR%d\n", p1, p2);
8893 qp_implies[qp_implieslen].p1 = p1;
8894 qp_implies[qp_implieslen].p2 = p2;
8895 qp_implies[qp_implieslen].path = md.path;
8896 qp_implies[qp_implieslen++].p2_branched = 0;
8897
8898 /* Add in the implied transitive relations; for everything that p2 implies,
8899 make p1 imply that, too; for everything that implies p1, make it imply p2
8900 as well. */
8901 for (i = 0; i < qp_implieslen; i++)
8902 {
8903 if (qp_implies[i].p1 == p2)
8904 add_qp_imply (p1, qp_implies[i].p2);
8905 if (qp_implies[i].p2 == p1)
8906 add_qp_imply (qp_implies[i].p1, p2);
8907 }
8908 /* Add in mutex relations implied by this implies relation; for each mutex
8909 relation containing p2, duplicate it and replace p2 with p1. */
8910 bit = (valueT) 1 << p1;
8911 mask = (valueT) 1 << p2;
8912 for (i = 0; i < qp_mutexeslen; i++)
8913 {
8914 if (qp_mutexes[i].prmask & mask)
8915 add_qp_mutex ((qp_mutexes[i].prmask & ~mask) | bit);
8916 }
8917 }
8918
8919 /* Add the PRs specified in the mask to the mutex list; this means that only
8920 one of the PRs can be true at any time. PR0 should never be included in
8921 the mask. */
8922
8923 static void
8924 add_qp_mutex (mask)
8925 valueT mask;
8926 {
8927 if (mask & 0x1)
8928 abort ();
8929
8930 if (qp_mutexeslen == qp_mutexestotlen)
8931 {
8932 qp_mutexestotlen += 20;
8933 qp_mutexes = (struct qpmutex *)
8934 xrealloc ((void *) qp_mutexes,
8935 qp_mutexestotlen * sizeof (struct qpmutex));
8936 }
8937 if (md.debug_dv)
8938 {
8939 fprintf (stderr, " Registering mutex on");
8940 print_prmask (mask);
8941 fprintf (stderr, "\n");
8942 }
8943 qp_mutexes[qp_mutexeslen].path = md.path;
8944 qp_mutexes[qp_mutexeslen++].prmask = mask;
8945 }
8946
8947 static int
8948 has_suffix_p (name, suffix)
8949 const char *name;
8950 const char *suffix;
8951 {
8952 size_t namelen = strlen (name);
8953 size_t sufflen = strlen (suffix);
8954
8955 if (namelen <= sufflen)
8956 return 0;
8957 return strcmp (name + namelen - sufflen, suffix) == 0;
8958 }
8959
8960 static void
8961 clear_register_values ()
8962 {
8963 int i;
8964 if (md.debug_dv)
8965 fprintf (stderr, " Clearing register values\n");
8966 for (i = 1; i < NELEMS (gr_values); i++)
8967 gr_values[i].known = 0;
8968 }
8969
8970 /* Keep track of register values/changes which affect DV tracking.
8971
8972 optimization note: should add a flag to classes of insns where otherwise we
8973 have to examine a group of strings to identify them. */
8974
8975 static void
8976 note_register_values (idesc)
8977 struct ia64_opcode *idesc;
8978 {
8979 valueT qp_changemask = 0;
8980 int i;
8981
8982 /* Invalidate values for registers being written to. */
8983 for (i = 0; i < idesc->num_outputs; i++)
8984 {
8985 if (idesc->operands[i] == IA64_OPND_R1
8986 || idesc->operands[i] == IA64_OPND_R2
8987 || idesc->operands[i] == IA64_OPND_R3)
8988 {
8989 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
8990 if (regno > 0 && regno < NELEMS (gr_values))
8991 gr_values[regno].known = 0;
8992 }
8993 else if (idesc->operands[i] == IA64_OPND_R3_2)
8994 {
8995 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
8996 if (regno > 0 && regno < 4)
8997 gr_values[regno].known = 0;
8998 }
8999 else if (idesc->operands[i] == IA64_OPND_P1
9000 || idesc->operands[i] == IA64_OPND_P2)
9001 {
9002 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9003 qp_changemask |= (valueT) 1 << regno;
9004 }
9005 else if (idesc->operands[i] == IA64_OPND_PR)
9006 {
9007 if (idesc->operands[2] & (valueT) 0x10000)
9008 qp_changemask = ~(valueT) 0x1FFFF | idesc->operands[2];
9009 else
9010 qp_changemask = idesc->operands[2];
9011 break;
9012 }
9013 else if (idesc->operands[i] == IA64_OPND_PR_ROT)
9014 {
9015 if (idesc->operands[1] & ((valueT) 1 << 43))
9016 qp_changemask = -((valueT) 1 << 44) | idesc->operands[1];
9017 else
9018 qp_changemask = idesc->operands[1];
9019 qp_changemask &= ~(valueT) 0xFFFF;
9020 break;
9021 }
9022 }
9023
9024 /* Always clear qp branch flags on any PR change. */
9025 /* FIXME there may be exceptions for certain compares. */
9026 clear_qp_branch_flag (qp_changemask);
9027
9028 /* Invalidate rotating registers on insns which affect RRBs in CFM. */
9029 if (idesc->flags & IA64_OPCODE_MOD_RRBS)
9030 {
9031 qp_changemask |= ~(valueT) 0xFFFF;
9032 if (strcmp (idesc->name, "clrrrb.pr") != 0)
9033 {
9034 for (i = 32; i < 32 + md.rot.num_regs; i++)
9035 gr_values[i].known = 0;
9036 }
9037 clear_qp_mutex (qp_changemask);
9038 clear_qp_implies (qp_changemask, qp_changemask);
9039 }
9040 /* After a call, all register values are undefined, except those marked
9041 as "safe". */
9042 else if (strncmp (idesc->name, "br.call", 6) == 0
9043 || strncmp (idesc->name, "brl.call", 7) == 0)
9044 {
9045 /* FIXME keep GR values which are marked as "safe_across_calls" */
9046 clear_register_values ();
9047 clear_qp_mutex (~qp_safe_across_calls);
9048 clear_qp_implies (~qp_safe_across_calls, ~qp_safe_across_calls);
9049 clear_qp_branch_flag (~qp_safe_across_calls);
9050 }
9051 else if (is_interruption_or_rfi (idesc)
9052 || is_taken_branch (idesc))
9053 {
9054 clear_register_values ();
9055 clear_qp_mutex (~(valueT) 0);
9056 clear_qp_implies (~(valueT) 0, ~(valueT) 0);
9057 }
9058 /* Look for mutex and implies relations. */
9059 else if ((idesc->operands[0] == IA64_OPND_P1
9060 || idesc->operands[0] == IA64_OPND_P2)
9061 && (idesc->operands[1] == IA64_OPND_P1
9062 || idesc->operands[1] == IA64_OPND_P2))
9063 {
9064 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9065 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9066 valueT p1mask = (p1 != 0) ? (valueT) 1 << p1 : 0;
9067 valueT p2mask = (p2 != 0) ? (valueT) 1 << p2 : 0;
9068
9069 /* If both PRs are PR0, we can't really do anything. */
9070 if (p1 == 0 && p2 == 0)
9071 {
9072 if (md.debug_dv)
9073 fprintf (stderr, " Ignoring PRs due to inclusion of p0\n");
9074 }
9075 /* In general, clear mutexes and implies which include P1 or P2,
9076 with the following exceptions. */
9077 else if (has_suffix_p (idesc->name, ".or.andcm")
9078 || has_suffix_p (idesc->name, ".and.orcm"))
9079 {
9080 clear_qp_implies (p2mask, p1mask);
9081 }
9082 else if (has_suffix_p (idesc->name, ".andcm")
9083 || has_suffix_p (idesc->name, ".and"))
9084 {
9085 clear_qp_implies (0, p1mask | p2mask);
9086 }
9087 else if (has_suffix_p (idesc->name, ".orcm")
9088 || has_suffix_p (idesc->name, ".or"))
9089 {
9090 clear_qp_mutex (p1mask | p2mask);
9091 clear_qp_implies (p1mask | p2mask, 0);
9092 }
9093 else
9094 {
9095 int added = 0;
9096
9097 clear_qp_implies (p1mask | p2mask, p1mask | p2mask);
9098
9099 /* If one of the PRs is PR0, we call clear_qp_mutex. */
9100 if (p1 == 0 || p2 == 0)
9101 clear_qp_mutex (p1mask | p2mask);
9102 else
9103 added = update_qp_mutex (p1mask | p2mask);
9104
9105 if (CURR_SLOT.qp_regno == 0
9106 || has_suffix_p (idesc->name, ".unc"))
9107 {
9108 if (added == 0 && p1 && p2)
9109 add_qp_mutex (p1mask | p2mask);
9110 if (CURR_SLOT.qp_regno != 0)
9111 {
9112 if (p1)
9113 add_qp_imply (p1, CURR_SLOT.qp_regno);
9114 if (p2)
9115 add_qp_imply (p2, CURR_SLOT.qp_regno);
9116 }
9117 }
9118 }
9119 }
9120 /* Look for mov imm insns into GRs. */
9121 else if (idesc->operands[0] == IA64_OPND_R1
9122 && (idesc->operands[1] == IA64_OPND_IMM22
9123 || idesc->operands[1] == IA64_OPND_IMMU64)
9124 && (strcmp (idesc->name, "mov") == 0
9125 || strcmp (idesc->name, "movl") == 0))
9126 {
9127 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
9128 if (regno > 0 && regno < NELEMS (gr_values))
9129 {
9130 gr_values[regno].known = 1;
9131 gr_values[regno].value = CURR_SLOT.opnd[1].X_add_number;
9132 gr_values[regno].path = md.path;
9133 if (md.debug_dv)
9134 {
9135 fprintf (stderr, " Know gr%d = ", regno);
9136 fprintf_vma (stderr, gr_values[regno].value);
9137 fputs ("\n", stderr);
9138 }
9139 }
9140 }
9141 else
9142 {
9143 clear_qp_mutex (qp_changemask);
9144 clear_qp_implies (qp_changemask, qp_changemask);
9145 }
9146 }
9147
9148 /* Return whether the given predicate registers are currently mutex. */
9149
9150 static int
9151 qp_mutex (p1, p2, path)
9152 int p1;
9153 int p2;
9154 int path;
9155 {
9156 int i;
9157 valueT mask;
9158
9159 if (p1 != p2)
9160 {
9161 mask = ((valueT) 1 << p1) | (valueT) 1 << p2;
9162 for (i = 0; i < qp_mutexeslen; i++)
9163 {
9164 if (qp_mutexes[i].path >= path
9165 && (qp_mutexes[i].prmask & mask) == mask)
9166 return 1;
9167 }
9168 }
9169 return 0;
9170 }
9171
9172 /* Return whether the given resource is in the given insn's list of chks
9173 Return 1 if the conflict is absolutely determined, 2 if it's a potential
9174 conflict. */
9175
9176 static int
9177 resources_match (rs, idesc, note, qp_regno, path)
9178 struct rsrc *rs;
9179 struct ia64_opcode *idesc;
9180 int note;
9181 int qp_regno;
9182 int path;
9183 {
9184 struct rsrc specs[MAX_SPECS];
9185 int count;
9186
9187 /* If the marked resource's qp_regno and the given qp_regno are mutex,
9188 we don't need to check. One exception is note 11, which indicates that
9189 target predicates are written regardless of PR[qp]. */
9190 if (qp_mutex (rs->qp_regno, qp_regno, path)
9191 && note != 11)
9192 return 0;
9193
9194 count = specify_resource (rs->dependency, idesc, DV_CHK, specs, note, path);
9195 while (count-- > 0)
9196 {
9197 /* UNAT checking is a bit more specific than other resources */
9198 if (rs->dependency->specifier == IA64_RS_AR_UNAT
9199 && specs[count].mem_offset.hint
9200 && rs->mem_offset.hint)
9201 {
9202 if (rs->mem_offset.base == specs[count].mem_offset.base)
9203 {
9204 if (((rs->mem_offset.offset >> 3) & 0x3F) ==
9205 ((specs[count].mem_offset.offset >> 3) & 0x3F))
9206 return 1;
9207 else
9208 continue;
9209 }
9210 }
9211
9212 /* Skip apparent PR write conflicts where both writes are an AND or both
9213 writes are an OR. */
9214 if (rs->dependency->specifier == IA64_RS_PR
9215 || rs->dependency->specifier == IA64_RS_PRr
9216 || rs->dependency->specifier == IA64_RS_PR63)
9217 {
9218 if (specs[count].cmp_type != CMP_NONE
9219 && specs[count].cmp_type == rs->cmp_type)
9220 {
9221 if (md.debug_dv)
9222 fprintf (stderr, " %s on parallel compare allowed (PR%d)\n",
9223 dv_mode[rs->dependency->mode],
9224 rs->dependency->specifier != IA64_RS_PR63 ?
9225 specs[count].index : 63);
9226 continue;
9227 }
9228 if (md.debug_dv)
9229 fprintf (stderr,
9230 " %s on parallel compare conflict %s vs %s on PR%d\n",
9231 dv_mode[rs->dependency->mode],
9232 dv_cmp_type[rs->cmp_type],
9233 dv_cmp_type[specs[count].cmp_type],
9234 rs->dependency->specifier != IA64_RS_PR63 ?
9235 specs[count].index : 63);
9236
9237 }
9238
9239 /* If either resource is not specific, conservatively assume a conflict
9240 */
9241 if (!specs[count].specific || !rs->specific)
9242 return 2;
9243 else if (specs[count].index == rs->index)
9244 return 1;
9245 }
9246 #if 0
9247 if (md.debug_dv)
9248 fprintf (stderr, " No %s conflicts\n", rs->dependency->name);
9249 #endif
9250
9251 return 0;
9252 }
9253
9254 /* Indicate an instruction group break; if INSERT_STOP is non-zero, then
9255 insert a stop to create the break. Update all resource dependencies
9256 appropriately. If QP_REGNO is non-zero, only apply the break to resources
9257 which use the same QP_REGNO and have the link_to_qp_branch flag set.
9258 If SAVE_CURRENT is non-zero, don't affect resources marked by the current
9259 instruction. */
9260
9261 static void
9262 insn_group_break (insert_stop, qp_regno, save_current)
9263 int insert_stop;
9264 int qp_regno;
9265 int save_current;
9266 {
9267 int i;
9268
9269 if (insert_stop && md.num_slots_in_use > 0)
9270 PREV_SLOT.end_of_insn_group = 1;
9271
9272 if (md.debug_dv)
9273 {
9274 fprintf (stderr, " Insn group break%s",
9275 (insert_stop ? " (w/stop)" : ""));
9276 if (qp_regno != 0)
9277 fprintf (stderr, " effective for QP=%d", qp_regno);
9278 fprintf (stderr, "\n");
9279 }
9280
9281 i = 0;
9282 while (i < regdepslen)
9283 {
9284 const struct ia64_dependency *dep = regdeps[i].dependency;
9285
9286 if (qp_regno != 0
9287 && regdeps[i].qp_regno != qp_regno)
9288 {
9289 ++i;
9290 continue;
9291 }
9292
9293 if (save_current
9294 && CURR_SLOT.src_file == regdeps[i].file
9295 && CURR_SLOT.src_line == regdeps[i].line)
9296 {
9297 ++i;
9298 continue;
9299 }
9300
9301 /* clear dependencies which are automatically cleared by a stop, or
9302 those that have reached the appropriate state of insn serialization */
9303 if (dep->semantics == IA64_DVS_IMPLIED
9304 || dep->semantics == IA64_DVS_IMPLIEDF
9305 || regdeps[i].insn_srlz == STATE_SRLZ)
9306 {
9307 print_dependency ("Removing", i);
9308 regdeps[i] = regdeps[--regdepslen];
9309 }
9310 else
9311 {
9312 if (dep->semantics == IA64_DVS_DATA
9313 || dep->semantics == IA64_DVS_INSTR
9314 || dep->semantics == IA64_DVS_SPECIFIC)
9315 {
9316 if (regdeps[i].insn_srlz == STATE_NONE)
9317 regdeps[i].insn_srlz = STATE_STOP;
9318 if (regdeps[i].data_srlz == STATE_NONE)
9319 regdeps[i].data_srlz = STATE_STOP;
9320 }
9321 ++i;
9322 }
9323 }
9324 }
9325
9326 /* Add the given resource usage spec to the list of active dependencies. */
9327
9328 static void
9329 mark_resource (idesc, dep, spec, depind, path)
9330 struct ia64_opcode *idesc ATTRIBUTE_UNUSED;
9331 const struct ia64_dependency *dep ATTRIBUTE_UNUSED;
9332 struct rsrc *spec;
9333 int depind;
9334 int path;
9335 {
9336 if (regdepslen == regdepstotlen)
9337 {
9338 regdepstotlen += 20;
9339 regdeps = (struct rsrc *)
9340 xrealloc ((void *) regdeps,
9341 regdepstotlen * sizeof (struct rsrc));
9342 }
9343
9344 regdeps[regdepslen] = *spec;
9345 regdeps[regdepslen].depind = depind;
9346 regdeps[regdepslen].path = path;
9347 regdeps[regdepslen].file = CURR_SLOT.src_file;
9348 regdeps[regdepslen].line = CURR_SLOT.src_line;
9349
9350 print_dependency ("Adding", regdepslen);
9351
9352 ++regdepslen;
9353 }
9354
9355 static void
9356 print_dependency (action, depind)
9357 const char *action;
9358 int depind;
9359 {
9360 if (md.debug_dv)
9361 {
9362 fprintf (stderr, " %s %s '%s'",
9363 action, dv_mode[(regdeps[depind].dependency)->mode],
9364 (regdeps[depind].dependency)->name);
9365 if (regdeps[depind].specific && regdeps[depind].index != 0)
9366 fprintf (stderr, " (%d)", regdeps[depind].index);
9367 if (regdeps[depind].mem_offset.hint)
9368 {
9369 fputs (" ", stderr);
9370 fprintf_vma (stderr, regdeps[depind].mem_offset.base);
9371 fputs ("+", stderr);
9372 fprintf_vma (stderr, regdeps[depind].mem_offset.offset);
9373 }
9374 fprintf (stderr, "\n");
9375 }
9376 }
9377
9378 static void
9379 instruction_serialization ()
9380 {
9381 int i;
9382 if (md.debug_dv)
9383 fprintf (stderr, " Instruction serialization\n");
9384 for (i = 0; i < regdepslen; i++)
9385 if (regdeps[i].insn_srlz == STATE_STOP)
9386 regdeps[i].insn_srlz = STATE_SRLZ;
9387 }
9388
9389 static void
9390 data_serialization ()
9391 {
9392 int i = 0;
9393 if (md.debug_dv)
9394 fprintf (stderr, " Data serialization\n");
9395 while (i < regdepslen)
9396 {
9397 if (regdeps[i].data_srlz == STATE_STOP
9398 /* Note: as of 991210, all "other" dependencies are cleared by a
9399 data serialization. This might change with new tables */
9400 || (regdeps[i].dependency)->semantics == IA64_DVS_OTHER)
9401 {
9402 print_dependency ("Removing", i);
9403 regdeps[i] = regdeps[--regdepslen];
9404 }
9405 else
9406 ++i;
9407 }
9408 }
9409
9410 /* Insert stops and serializations as needed to avoid DVs. */
9411
9412 static void
9413 remove_marked_resource (rs)
9414 struct rsrc *rs;
9415 {
9416 switch (rs->dependency->semantics)
9417 {
9418 case IA64_DVS_SPECIFIC:
9419 if (md.debug_dv)
9420 fprintf (stderr, "Implementation-specific, assume worst case...\n");
9421 /* ...fall through... */
9422 case IA64_DVS_INSTR:
9423 if (md.debug_dv)
9424 fprintf (stderr, "Inserting instr serialization\n");
9425 if (rs->insn_srlz < STATE_STOP)
9426 insn_group_break (1, 0, 0);
9427 if (rs->insn_srlz < STATE_SRLZ)
9428 {
9429 int oldqp = CURR_SLOT.qp_regno;
9430 struct ia64_opcode *oldidesc = CURR_SLOT.idesc;
9431 /* Manually jam a srlz.i insn into the stream */
9432 CURR_SLOT.qp_regno = 0;
9433 CURR_SLOT.idesc = ia64_find_opcode ("srlz.i");
9434 instruction_serialization ();
9435 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
9436 if (++md.num_slots_in_use >= NUM_SLOTS)
9437 emit_one_bundle ();
9438 CURR_SLOT.qp_regno = oldqp;
9439 CURR_SLOT.idesc = oldidesc;
9440 }
9441 insn_group_break (1, 0, 0);
9442 break;
9443 case IA64_DVS_OTHER: /* as of rev2 (991220) of the DV tables, all
9444 "other" types of DV are eliminated
9445 by a data serialization */
9446 case IA64_DVS_DATA:
9447 if (md.debug_dv)
9448 fprintf (stderr, "Inserting data serialization\n");
9449 if (rs->data_srlz < STATE_STOP)
9450 insn_group_break (1, 0, 0);
9451 {
9452 int oldqp = CURR_SLOT.qp_regno;
9453 struct ia64_opcode *oldidesc = CURR_SLOT.idesc;
9454 /* Manually jam a srlz.d insn into the stream */
9455 CURR_SLOT.qp_regno = 0;
9456 CURR_SLOT.idesc = ia64_find_opcode ("srlz.d");
9457 data_serialization ();
9458 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
9459 if (++md.num_slots_in_use >= NUM_SLOTS)
9460 emit_one_bundle ();
9461 CURR_SLOT.qp_regno = oldqp;
9462 CURR_SLOT.idesc = oldidesc;
9463 }
9464 break;
9465 case IA64_DVS_IMPLIED:
9466 case IA64_DVS_IMPLIEDF:
9467 if (md.debug_dv)
9468 fprintf (stderr, "Inserting stop\n");
9469 insn_group_break (1, 0, 0);
9470 break;
9471 default:
9472 break;
9473 }
9474 }
9475
9476 /* Check the resources used by the given opcode against the current dependency
9477 list.
9478
9479 The check is run once for each execution path encountered. In this case,
9480 a unique execution path is the sequence of instructions following a code
9481 entry point, e.g. the following has three execution paths, one starting
9482 at L0, one at L1, and one at L2.
9483
9484 L0: nop
9485 L1: add
9486 L2: add
9487 br.ret
9488 */
9489
9490 static void
9491 check_dependencies (idesc)
9492 struct ia64_opcode *idesc;
9493 {
9494 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
9495 int path;
9496 int i;
9497
9498 /* Note that the number of marked resources may change within the
9499 loop if in auto mode. */
9500 i = 0;
9501 while (i < regdepslen)
9502 {
9503 struct rsrc *rs = &regdeps[i];
9504 const struct ia64_dependency *dep = rs->dependency;
9505 int chkind;
9506 int note;
9507 int start_over = 0;
9508
9509 if (dep->semantics == IA64_DVS_NONE
9510 || (chkind = depends_on (rs->depind, idesc)) == -1)
9511 {
9512 ++i;
9513 continue;
9514 }
9515
9516 note = NOTE (opdeps->chks[chkind]);
9517
9518 /* Check this resource against each execution path seen thus far. */
9519 for (path = 0; path <= md.path; path++)
9520 {
9521 int matchtype;
9522
9523 /* If the dependency wasn't on the path being checked, ignore it. */
9524 if (rs->path < path)
9525 continue;
9526
9527 /* If the QP for this insn implies a QP which has branched, don't
9528 bother checking. Ed. NOTE: I don't think this check is terribly
9529 useful; what's the point of generating code which will only be
9530 reached if its QP is zero?
9531 This code was specifically inserted to handle the following code,
9532 based on notes from Intel's DV checking code, where p1 implies p2.
9533
9534 mov r4 = 2
9535 (p2) br.cond L
9536 (p1) mov r4 = 7
9537 */
9538 if (CURR_SLOT.qp_regno != 0)
9539 {
9540 int skip = 0;
9541 int implies;
9542 for (implies = 0; implies < qp_implieslen; implies++)
9543 {
9544 if (qp_implies[implies].path >= path
9545 && qp_implies[implies].p1 == CURR_SLOT.qp_regno
9546 && qp_implies[implies].p2_branched)
9547 {
9548 skip = 1;
9549 break;
9550 }
9551 }
9552 if (skip)
9553 continue;
9554 }
9555
9556 if ((matchtype = resources_match (rs, idesc, note,
9557 CURR_SLOT.qp_regno, path)) != 0)
9558 {
9559 char msg[1024];
9560 char pathmsg[256] = "";
9561 char indexmsg[256] = "";
9562 int certain = (matchtype == 1 && CURR_SLOT.qp_regno == 0);
9563
9564 if (path != 0)
9565 sprintf (pathmsg, " when entry is at label '%s'",
9566 md.entry_labels[path - 1]);
9567 if (rs->specific && rs->index != 0)
9568 sprintf (indexmsg, ", specific resource number is %d",
9569 rs->index);
9570 sprintf (msg, "Use of '%s' %s %s dependency '%s' (%s)%s%s",
9571 idesc->name,
9572 (certain ? "violates" : "may violate"),
9573 dv_mode[dep->mode], dep->name,
9574 dv_sem[dep->semantics],
9575 pathmsg, indexmsg);
9576
9577 if (md.explicit_mode)
9578 {
9579 as_warn ("%s", msg);
9580 if (path < md.path)
9581 as_warn (_("Only the first path encountering the conflict "
9582 "is reported"));
9583 as_warn_where (rs->file, rs->line,
9584 _("This is the location of the "
9585 "conflicting usage"));
9586 /* Don't bother checking other paths, to avoid duplicating
9587 the same warning */
9588 break;
9589 }
9590 else
9591 {
9592 if (md.debug_dv)
9593 fprintf (stderr, "%s @ %s:%d\n", msg, rs->file, rs->line);
9594
9595 remove_marked_resource (rs);
9596
9597 /* since the set of dependencies has changed, start over */
9598 /* FIXME -- since we're removing dvs as we go, we
9599 probably don't really need to start over... */
9600 start_over = 1;
9601 break;
9602 }
9603 }
9604 }
9605 if (start_over)
9606 i = 0;
9607 else
9608 ++i;
9609 }
9610 }
9611
9612 /* Register new dependencies based on the given opcode. */
9613
9614 static void
9615 mark_resources (idesc)
9616 struct ia64_opcode *idesc;
9617 {
9618 int i;
9619 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
9620 int add_only_qp_reads = 0;
9621
9622 /* A conditional branch only uses its resources if it is taken; if it is
9623 taken, we stop following that path. The other branch types effectively
9624 *always* write their resources. If it's not taken, register only QP
9625 reads. */
9626 if (is_conditional_branch (idesc) || is_interruption_or_rfi (idesc))
9627 {
9628 add_only_qp_reads = 1;
9629 }
9630
9631 if (md.debug_dv)
9632 fprintf (stderr, "Registering '%s' resource usage\n", idesc->name);
9633
9634 for (i = 0; i < opdeps->nregs; i++)
9635 {
9636 const struct ia64_dependency *dep;
9637 struct rsrc specs[MAX_SPECS];
9638 int note;
9639 int path;
9640 int count;
9641
9642 dep = ia64_find_dependency (opdeps->regs[i]);
9643 note = NOTE (opdeps->regs[i]);
9644
9645 if (add_only_qp_reads
9646 && !(dep->mode == IA64_DV_WAR
9647 && (dep->specifier == IA64_RS_PR
9648 || dep->specifier == IA64_RS_PRr
9649 || dep->specifier == IA64_RS_PR63)))
9650 continue;
9651
9652 count = specify_resource (dep, idesc, DV_REG, specs, note, md.path);
9653
9654 #if 0
9655 if (md.debug_dv && !count)
9656 fprintf (stderr, " No %s %s usage found (path %d)\n",
9657 dv_mode[dep->mode], dep->name, md.path);
9658 #endif
9659
9660 while (count-- > 0)
9661 {
9662 mark_resource (idesc, dep, &specs[count],
9663 DEP (opdeps->regs[i]), md.path);
9664 }
9665
9666 /* The execution path may affect register values, which may in turn
9667 affect which indirect-access resources are accessed. */
9668 switch (dep->specifier)
9669 {
9670 default:
9671 break;
9672 case IA64_RS_CPUID:
9673 case IA64_RS_DBR:
9674 case IA64_RS_IBR:
9675 case IA64_RS_MSR:
9676 case IA64_RS_PKR:
9677 case IA64_RS_PMC:
9678 case IA64_RS_PMD:
9679 case IA64_RS_RR:
9680 for (path = 0; path < md.path; path++)
9681 {
9682 count = specify_resource (dep, idesc, DV_REG, specs, note, path);
9683 while (count-- > 0)
9684 mark_resource (idesc, dep, &specs[count],
9685 DEP (opdeps->regs[i]), path);
9686 }
9687 break;
9688 }
9689 }
9690 }
9691
9692 /* Remove dependencies when they no longer apply. */
9693
9694 static void
9695 update_dependencies (idesc)
9696 struct ia64_opcode *idesc;
9697 {
9698 int i;
9699
9700 if (strcmp (idesc->name, "srlz.i") == 0)
9701 {
9702 instruction_serialization ();
9703 }
9704 else if (strcmp (idesc->name, "srlz.d") == 0)
9705 {
9706 data_serialization ();
9707 }
9708 else if (is_interruption_or_rfi (idesc)
9709 || is_taken_branch (idesc))
9710 {
9711 /* Although technically the taken branch doesn't clear dependencies
9712 which require a srlz.[id], we don't follow the branch; the next
9713 instruction is assumed to start with a clean slate. */
9714 regdepslen = 0;
9715 md.path = 0;
9716 }
9717 else if (is_conditional_branch (idesc)
9718 && CURR_SLOT.qp_regno != 0)
9719 {
9720 int is_call = strstr (idesc->name, ".call") != NULL;
9721
9722 for (i = 0; i < qp_implieslen; i++)
9723 {
9724 /* If the conditional branch's predicate is implied by the predicate
9725 in an existing dependency, remove that dependency. */
9726 if (qp_implies[i].p2 == CURR_SLOT.qp_regno)
9727 {
9728 int depind = 0;
9729 /* Note that this implied predicate takes a branch so that if
9730 a later insn generates a DV but its predicate implies this
9731 one, we can avoid the false DV warning. */
9732 qp_implies[i].p2_branched = 1;
9733 while (depind < regdepslen)
9734 {
9735 if (regdeps[depind].qp_regno == qp_implies[i].p1)
9736 {
9737 print_dependency ("Removing", depind);
9738 regdeps[depind] = regdeps[--regdepslen];
9739 }
9740 else
9741 ++depind;
9742 }
9743 }
9744 }
9745 /* Any marked resources which have this same predicate should be
9746 cleared, provided that the QP hasn't been modified between the
9747 marking instruction and the branch. */
9748 if (is_call)
9749 {
9750 insn_group_break (0, CURR_SLOT.qp_regno, 1);
9751 }
9752 else
9753 {
9754 i = 0;
9755 while (i < regdepslen)
9756 {
9757 if (regdeps[i].qp_regno == CURR_SLOT.qp_regno
9758 && regdeps[i].link_to_qp_branch
9759 && (regdeps[i].file != CURR_SLOT.src_file
9760 || regdeps[i].line != CURR_SLOT.src_line))
9761 {
9762 /* Treat like a taken branch */
9763 print_dependency ("Removing", i);
9764 regdeps[i] = regdeps[--regdepslen];
9765 }
9766 else
9767 ++i;
9768 }
9769 }
9770 }
9771 }
9772
9773 /* Examine the current instruction for dependency violations. */
9774
9775 static int
9776 check_dv (idesc)
9777 struct ia64_opcode *idesc;
9778 {
9779 if (md.debug_dv)
9780 {
9781 fprintf (stderr, "Checking %s for violations (line %d, %d/%d)\n",
9782 idesc->name, CURR_SLOT.src_line,
9783 idesc->dependencies->nchks,
9784 idesc->dependencies->nregs);
9785 }
9786
9787 /* Look through the list of currently marked resources; if the current
9788 instruction has the dependency in its chks list which uses that resource,
9789 check against the specific resources used. */
9790 check_dependencies (idesc);
9791
9792 /* Look up the instruction's regdeps (RAW writes, WAW writes, and WAR reads),
9793 then add them to the list of marked resources. */
9794 mark_resources (idesc);
9795
9796 /* There are several types of dependency semantics, and each has its own
9797 requirements for being cleared
9798
9799 Instruction serialization (insns separated by interruption, rfi, or
9800 writer + srlz.i + reader, all in separate groups) clears DVS_INSTR.
9801
9802 Data serialization (instruction serialization, or writer + srlz.d +
9803 reader, where writer and srlz.d are in separate groups) clears
9804 DVS_DATA. (This also clears DVS_OTHER, but that is not guaranteed to
9805 always be the case).
9806
9807 Instruction group break (groups separated by stop, taken branch,
9808 interruption or rfi) clears DVS_IMPLIED and DVS_IMPLIEDF.
9809 */
9810 update_dependencies (idesc);
9811
9812 /* Sometimes, knowing a register value allows us to avoid giving a false DV
9813 warning. Keep track of as many as possible that are useful. */
9814 note_register_values (idesc);
9815
9816 /* We don't need or want this anymore. */
9817 md.mem_offset.hint = 0;
9818
9819 return 0;
9820 }
9821
9822 /* Translate one line of assembly. Pseudo ops and labels do not show
9823 here. */
9824 void
9825 md_assemble (str)
9826 char *str;
9827 {
9828 char *saved_input_line_pointer, *mnemonic;
9829 const struct pseudo_opcode *pdesc;
9830 struct ia64_opcode *idesc;
9831 unsigned char qp_regno;
9832 unsigned int flags;
9833 int ch;
9834
9835 saved_input_line_pointer = input_line_pointer;
9836 input_line_pointer = str;
9837
9838 /* extract the opcode (mnemonic): */
9839
9840 mnemonic = input_line_pointer;
9841 ch = get_symbol_end ();
9842 pdesc = (struct pseudo_opcode *) hash_find (md.pseudo_hash, mnemonic);
9843 if (pdesc)
9844 {
9845 *input_line_pointer = ch;
9846 (*pdesc->handler) (pdesc->arg);
9847 goto done;
9848 }
9849
9850 /* Find the instruction descriptor matching the arguments. */
9851
9852 idesc = ia64_find_opcode (mnemonic);
9853 *input_line_pointer = ch;
9854 if (!idesc)
9855 {
9856 as_bad ("Unknown opcode `%s'", mnemonic);
9857 goto done;
9858 }
9859
9860 idesc = parse_operands (idesc);
9861 if (!idesc)
9862 goto done;
9863
9864 /* Handle the dynamic ops we can handle now: */
9865 if (idesc->type == IA64_TYPE_DYN)
9866 {
9867 if (strcmp (idesc->name, "add") == 0)
9868 {
9869 if (CURR_SLOT.opnd[2].X_op == O_register
9870 && CURR_SLOT.opnd[2].X_add_number < 4)
9871 mnemonic = "addl";
9872 else
9873 mnemonic = "adds";
9874 ia64_free_opcode (idesc);
9875 idesc = ia64_find_opcode (mnemonic);
9876 #if 0
9877 know (!idesc->next);
9878 #endif
9879 }
9880 else if (strcmp (idesc->name, "mov") == 0)
9881 {
9882 enum ia64_opnd opnd1, opnd2;
9883 int rop;
9884
9885 opnd1 = idesc->operands[0];
9886 opnd2 = idesc->operands[1];
9887 if (opnd1 == IA64_OPND_AR3)
9888 rop = 0;
9889 else if (opnd2 == IA64_OPND_AR3)
9890 rop = 1;
9891 else
9892 abort ();
9893 if (CURR_SLOT.opnd[rop].X_op == O_register
9894 && ar_is_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
9895 mnemonic = "mov.i";
9896 else
9897 mnemonic = "mov.m";
9898 ia64_free_opcode (idesc);
9899 idesc = ia64_find_opcode (mnemonic);
9900 while (idesc != NULL
9901 && (idesc->operands[0] != opnd1
9902 || idesc->operands[1] != opnd2))
9903 idesc = get_next_opcode (idesc);
9904 }
9905 }
9906
9907 qp_regno = 0;
9908 if (md.qp.X_op == O_register)
9909 {
9910 qp_regno = md.qp.X_add_number - REG_P;
9911 md.qp.X_op = O_absent;
9912 }
9913
9914 flags = idesc->flags;
9915
9916 if ((flags & IA64_OPCODE_FIRST) != 0)
9917 insn_group_break (1, 0, 0);
9918
9919 if ((flags & IA64_OPCODE_NO_PRED) != 0 && qp_regno != 0)
9920 {
9921 as_bad ("`%s' cannot be predicated", idesc->name);
9922 goto done;
9923 }
9924
9925 /* Build the instruction. */
9926 CURR_SLOT.qp_regno = qp_regno;
9927 CURR_SLOT.idesc = idesc;
9928 as_where (&CURR_SLOT.src_file, &CURR_SLOT.src_line);
9929 dwarf2_where (&CURR_SLOT.debug_line);
9930
9931 /* Add unwind entry, if there is one. */
9932 if (unwind.current_entry)
9933 {
9934 CURR_SLOT.unwind_record = unwind.current_entry;
9935 unwind.current_entry = NULL;
9936 }
9937
9938 /* Check for dependency violations. */
9939 if (md.detect_dv)
9940 check_dv (idesc);
9941
9942 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
9943 if (++md.num_slots_in_use >= NUM_SLOTS)
9944 emit_one_bundle ();
9945
9946 if ((flags & IA64_OPCODE_LAST) != 0)
9947 insn_group_break (1, 0, 0);
9948
9949 md.last_text_seg = now_seg;
9950
9951 done:
9952 input_line_pointer = saved_input_line_pointer;
9953 }
9954
9955 /* Called when symbol NAME cannot be found in the symbol table.
9956 Should be used for dynamic valued symbols only. */
9957
9958 symbolS *
9959 md_undefined_symbol (name)
9960 char *name ATTRIBUTE_UNUSED;
9961 {
9962 return 0;
9963 }
9964
9965 /* Called for any expression that can not be recognized. When the
9966 function is called, `input_line_pointer' will point to the start of
9967 the expression. */
9968
9969 void
9970 md_operand (e)
9971 expressionS *e;
9972 {
9973 enum pseudo_type pseudo_type;
9974 const char *name;
9975 size_t len;
9976 int ch, i;
9977
9978 switch (*input_line_pointer)
9979 {
9980 case '@':
9981 /* Find what relocation pseudo-function we're dealing with. */
9982 pseudo_type = 0;
9983 ch = *++input_line_pointer;
9984 for (i = 0; i < NELEMS (pseudo_func); ++i)
9985 if (pseudo_func[i].name && pseudo_func[i].name[0] == ch)
9986 {
9987 len = strlen (pseudo_func[i].name);
9988 if (strncmp (pseudo_func[i].name + 1,
9989 input_line_pointer + 1, len - 1) == 0
9990 && !is_part_of_name (input_line_pointer[len]))
9991 {
9992 input_line_pointer += len;
9993 pseudo_type = pseudo_func[i].type;
9994 break;
9995 }
9996 }
9997 switch (pseudo_type)
9998 {
9999 case PSEUDO_FUNC_RELOC:
10000 SKIP_WHITESPACE ();
10001 if (*input_line_pointer != '(')
10002 {
10003 as_bad ("Expected '('");
10004 goto err;
10005 }
10006 /* Skip '('. */
10007 ++input_line_pointer;
10008 expression (e);
10009 if (*input_line_pointer++ != ')')
10010 {
10011 as_bad ("Missing ')'");
10012 goto err;
10013 }
10014 if (e->X_op != O_symbol)
10015 {
10016 if (e->X_op != O_pseudo_fixup)
10017 {
10018 as_bad ("Not a symbolic expression");
10019 goto err;
10020 }
10021 if (i != FUNC_LT_RELATIVE)
10022 {
10023 as_bad ("Illegal combination of relocation functions");
10024 goto err;
10025 }
10026 switch (S_GET_VALUE (e->X_op_symbol))
10027 {
10028 case FUNC_FPTR_RELATIVE:
10029 i = FUNC_LT_FPTR_RELATIVE; break;
10030 case FUNC_DTP_MODULE:
10031 i = FUNC_LT_DTP_MODULE; break;
10032 case FUNC_DTP_RELATIVE:
10033 i = FUNC_LT_DTP_RELATIVE; break;
10034 case FUNC_TP_RELATIVE:
10035 i = FUNC_LT_TP_RELATIVE; break;
10036 default:
10037 as_bad ("Illegal combination of relocation functions");
10038 goto err;
10039 }
10040 }
10041 /* Make sure gas doesn't get rid of local symbols that are used
10042 in relocs. */
10043 e->X_op = O_pseudo_fixup;
10044 e->X_op_symbol = pseudo_func[i].u.sym;
10045 break;
10046
10047 case PSEUDO_FUNC_CONST:
10048 e->X_op = O_constant;
10049 e->X_add_number = pseudo_func[i].u.ival;
10050 break;
10051
10052 case PSEUDO_FUNC_REG:
10053 e->X_op = O_register;
10054 e->X_add_number = pseudo_func[i].u.ival;
10055 break;
10056
10057 default:
10058 name = input_line_pointer - 1;
10059 get_symbol_end ();
10060 as_bad ("Unknown pseudo function `%s'", name);
10061 goto err;
10062 }
10063 break;
10064
10065 case '[':
10066 ++input_line_pointer;
10067 expression (e);
10068 if (*input_line_pointer != ']')
10069 {
10070 as_bad ("Closing bracket misssing");
10071 goto err;
10072 }
10073 else
10074 {
10075 if (e->X_op != O_register)
10076 as_bad ("Register expected as index");
10077
10078 ++input_line_pointer;
10079 e->X_op = O_index;
10080 }
10081 break;
10082
10083 default:
10084 break;
10085 }
10086 return;
10087
10088 err:
10089 ignore_rest_of_line ();
10090 }
10091
10092 /* Return 1 if it's OK to adjust a reloc by replacing the symbol with
10093 a section symbol plus some offset. For relocs involving @fptr(),
10094 directives we don't want such adjustments since we need to have the
10095 original symbol's name in the reloc. */
10096 int
10097 ia64_fix_adjustable (fix)
10098 fixS *fix;
10099 {
10100 /* Prevent all adjustments to global symbols */
10101 if (S_IS_EXTERN (fix->fx_addsy) || S_IS_WEAK (fix->fx_addsy))
10102 return 0;
10103
10104 switch (fix->fx_r_type)
10105 {
10106 case BFD_RELOC_IA64_FPTR64I:
10107 case BFD_RELOC_IA64_FPTR32MSB:
10108 case BFD_RELOC_IA64_FPTR32LSB:
10109 case BFD_RELOC_IA64_FPTR64MSB:
10110 case BFD_RELOC_IA64_FPTR64LSB:
10111 case BFD_RELOC_IA64_LTOFF_FPTR22:
10112 case BFD_RELOC_IA64_LTOFF_FPTR64I:
10113 return 0;
10114 default:
10115 break;
10116 }
10117
10118 return 1;
10119 }
10120
10121 int
10122 ia64_force_relocation (fix)
10123 fixS *fix;
10124 {
10125 switch (fix->fx_r_type)
10126 {
10127 case BFD_RELOC_IA64_FPTR64I:
10128 case BFD_RELOC_IA64_FPTR32MSB:
10129 case BFD_RELOC_IA64_FPTR32LSB:
10130 case BFD_RELOC_IA64_FPTR64MSB:
10131 case BFD_RELOC_IA64_FPTR64LSB:
10132
10133 case BFD_RELOC_IA64_LTOFF22:
10134 case BFD_RELOC_IA64_LTOFF64I:
10135 case BFD_RELOC_IA64_LTOFF_FPTR22:
10136 case BFD_RELOC_IA64_LTOFF_FPTR64I:
10137 case BFD_RELOC_IA64_PLTOFF22:
10138 case BFD_RELOC_IA64_PLTOFF64I:
10139 case BFD_RELOC_IA64_PLTOFF64MSB:
10140 case BFD_RELOC_IA64_PLTOFF64LSB:
10141
10142 case BFD_RELOC_IA64_LTOFF22X:
10143 case BFD_RELOC_IA64_LDXMOV:
10144 return 1;
10145
10146 default:
10147 break;
10148 }
10149
10150 return generic_force_reloc (fix);
10151 }
10152
10153 /* Decide from what point a pc-relative relocation is relative to,
10154 relative to the pc-relative fixup. Er, relatively speaking. */
10155 long
10156 ia64_pcrel_from_section (fix, sec)
10157 fixS *fix;
10158 segT sec;
10159 {
10160 unsigned long off = fix->fx_frag->fr_address + fix->fx_where;
10161
10162 if (bfd_get_section_flags (stdoutput, sec) & SEC_CODE)
10163 off &= ~0xfUL;
10164
10165 return off;
10166 }
10167
10168
10169 /* Used to emit section-relative relocs for the dwarf2 debug data. */
10170 void
10171 ia64_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10172 {
10173 expressionS expr;
10174
10175 expr.X_op = O_pseudo_fixup;
10176 expr.X_op_symbol = pseudo_func[FUNC_SEC_RELATIVE].u.sym;
10177 expr.X_add_number = 0;
10178 expr.X_add_symbol = symbol;
10179 emit_expr (&expr, size);
10180 }
10181
10182 /* This is called whenever some data item (not an instruction) needs a
10183 fixup. We pick the right reloc code depending on the byteorder
10184 currently in effect. */
10185 void
10186 ia64_cons_fix_new (f, where, nbytes, exp)
10187 fragS *f;
10188 int where;
10189 int nbytes;
10190 expressionS *exp;
10191 {
10192 bfd_reloc_code_real_type code;
10193 fixS *fix;
10194
10195 switch (nbytes)
10196 {
10197 /* There are no reloc for 8 and 16 bit quantities, but we allow
10198 them here since they will work fine as long as the expression
10199 is fully defined at the end of the pass over the source file. */
10200 case 1: code = BFD_RELOC_8; break;
10201 case 2: code = BFD_RELOC_16; break;
10202 case 4:
10203 if (target_big_endian)
10204 code = BFD_RELOC_IA64_DIR32MSB;
10205 else
10206 code = BFD_RELOC_IA64_DIR32LSB;
10207 break;
10208
10209 case 8:
10210 /* In 32-bit mode, data8 could mean function descriptors too. */
10211 if (exp->X_op == O_pseudo_fixup
10212 && exp->X_op_symbol
10213 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC
10214 && !(md.flags & EF_IA_64_ABI64))
10215 {
10216 if (target_big_endian)
10217 code = BFD_RELOC_IA64_IPLTMSB;
10218 else
10219 code = BFD_RELOC_IA64_IPLTLSB;
10220 exp->X_op = O_symbol;
10221 break;
10222 }
10223 else
10224 {
10225 if (target_big_endian)
10226 code = BFD_RELOC_IA64_DIR64MSB;
10227 else
10228 code = BFD_RELOC_IA64_DIR64LSB;
10229 break;
10230 }
10231
10232 case 16:
10233 if (exp->X_op == O_pseudo_fixup
10234 && exp->X_op_symbol
10235 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC)
10236 {
10237 if (target_big_endian)
10238 code = BFD_RELOC_IA64_IPLTMSB;
10239 else
10240 code = BFD_RELOC_IA64_IPLTLSB;
10241 exp->X_op = O_symbol;
10242 break;
10243 }
10244 /* FALLTHRU */
10245
10246 default:
10247 as_bad ("Unsupported fixup size %d", nbytes);
10248 ignore_rest_of_line ();
10249 return;
10250 }
10251
10252 if (exp->X_op == O_pseudo_fixup)
10253 {
10254 exp->X_op = O_symbol;
10255 code = ia64_gen_real_reloc_type (exp->X_op_symbol, code);
10256 /* ??? If code unchanged, unsupported. */
10257 }
10258
10259 fix = fix_new_exp (f, where, nbytes, exp, 0, code);
10260 /* We need to store the byte order in effect in case we're going
10261 to fix an 8 or 16 bit relocation (for which there no real
10262 relocs available). See md_apply_fix3(). */
10263 fix->tc_fix_data.bigendian = target_big_endian;
10264 }
10265
10266 /* Return the actual relocation we wish to associate with the pseudo
10267 reloc described by SYM and R_TYPE. SYM should be one of the
10268 symbols in the pseudo_func array, or NULL. */
10269
10270 static bfd_reloc_code_real_type
10271 ia64_gen_real_reloc_type (sym, r_type)
10272 struct symbol *sym;
10273 bfd_reloc_code_real_type r_type;
10274 {
10275 bfd_reloc_code_real_type new = 0;
10276
10277 if (sym == NULL)
10278 {
10279 return r_type;
10280 }
10281
10282 switch (S_GET_VALUE (sym))
10283 {
10284 case FUNC_FPTR_RELATIVE:
10285 switch (r_type)
10286 {
10287 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_FPTR64I; break;
10288 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_FPTR32MSB; break;
10289 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_FPTR32LSB; break;
10290 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_FPTR64MSB; break;
10291 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_FPTR64LSB; break;
10292 default: break;
10293 }
10294 break;
10295
10296 case FUNC_GP_RELATIVE:
10297 switch (r_type)
10298 {
10299 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_GPREL22; break;
10300 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_GPREL64I; break;
10301 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_GPREL32MSB; break;
10302 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_GPREL32LSB; break;
10303 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_GPREL64MSB; break;
10304 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_GPREL64LSB; break;
10305 default: break;
10306 }
10307 break;
10308
10309 case FUNC_LT_RELATIVE:
10310 switch (r_type)
10311 {
10312 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22; break;
10313 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_LTOFF64I; break;
10314 default: break;
10315 }
10316 break;
10317
10318 case FUNC_LT_RELATIVE_X:
10319 switch (r_type)
10320 {
10321 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22X; break;
10322 default: break;
10323 }
10324 break;
10325
10326 case FUNC_PC_RELATIVE:
10327 switch (r_type)
10328 {
10329 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PCREL22; break;
10330 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PCREL64I; break;
10331 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_PCREL32MSB; break;
10332 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_PCREL32LSB; break;
10333 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PCREL64MSB; break;
10334 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PCREL64LSB; break;
10335 default: break;
10336 }
10337 break;
10338
10339 case FUNC_PLT_RELATIVE:
10340 switch (r_type)
10341 {
10342 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PLTOFF22; break;
10343 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PLTOFF64I; break;
10344 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PLTOFF64MSB;break;
10345 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PLTOFF64LSB;break;
10346 default: break;
10347 }
10348 break;
10349
10350 case FUNC_SEC_RELATIVE:
10351 switch (r_type)
10352 {
10353 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SECREL32MSB;break;
10354 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SECREL32LSB;break;
10355 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SECREL64MSB;break;
10356 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SECREL64LSB;break;
10357 default: break;
10358 }
10359 break;
10360
10361 case FUNC_SEG_RELATIVE:
10362 switch (r_type)
10363 {
10364 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SEGREL32MSB;break;
10365 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SEGREL32LSB;break;
10366 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SEGREL64MSB;break;
10367 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SEGREL64LSB;break;
10368 default: break;
10369 }
10370 break;
10371
10372 case FUNC_LTV_RELATIVE:
10373 switch (r_type)
10374 {
10375 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_LTV32MSB; break;
10376 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_LTV32LSB; break;
10377 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_LTV64MSB; break;
10378 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_LTV64LSB; break;
10379 default: break;
10380 }
10381 break;
10382
10383 case FUNC_LT_FPTR_RELATIVE:
10384 switch (r_type)
10385 {
10386 case BFD_RELOC_IA64_IMM22:
10387 new = BFD_RELOC_IA64_LTOFF_FPTR22; break;
10388 case BFD_RELOC_IA64_IMM64:
10389 new = BFD_RELOC_IA64_LTOFF_FPTR64I; break;
10390 default:
10391 break;
10392 }
10393 break;
10394
10395 case FUNC_TP_RELATIVE:
10396 switch (r_type)
10397 {
10398 case BFD_RELOC_IA64_IMM14:
10399 new = BFD_RELOC_IA64_TPREL14; break;
10400 case BFD_RELOC_IA64_IMM22:
10401 new = BFD_RELOC_IA64_TPREL22; break;
10402 case BFD_RELOC_IA64_IMM64:
10403 new = BFD_RELOC_IA64_TPREL64I; break;
10404 default:
10405 break;
10406 }
10407 break;
10408
10409 case FUNC_LT_TP_RELATIVE:
10410 switch (r_type)
10411 {
10412 case BFD_RELOC_IA64_IMM22:
10413 new = BFD_RELOC_IA64_LTOFF_TPREL22; break;
10414 default:
10415 break;
10416 }
10417 break;
10418
10419 case FUNC_LT_DTP_MODULE:
10420 switch (r_type)
10421 {
10422 case BFD_RELOC_IA64_IMM22:
10423 new = BFD_RELOC_IA64_LTOFF_DTPMOD22; break;
10424 default:
10425 break;
10426 }
10427 break;
10428
10429 case FUNC_DTP_RELATIVE:
10430 switch (r_type)
10431 {
10432 case BFD_RELOC_IA64_DIR64MSB:
10433 new = BFD_RELOC_IA64_DTPREL64MSB; break;
10434 case BFD_RELOC_IA64_DIR64LSB:
10435 new = BFD_RELOC_IA64_DTPREL64LSB; break;
10436 case BFD_RELOC_IA64_IMM14:
10437 new = BFD_RELOC_IA64_DTPREL14; break;
10438 case BFD_RELOC_IA64_IMM22:
10439 new = BFD_RELOC_IA64_DTPREL22; break;
10440 case BFD_RELOC_IA64_IMM64:
10441 new = BFD_RELOC_IA64_DTPREL64I; break;
10442 default:
10443 break;
10444 }
10445 break;
10446
10447 case FUNC_LT_DTP_RELATIVE:
10448 switch (r_type)
10449 {
10450 case BFD_RELOC_IA64_IMM22:
10451 new = BFD_RELOC_IA64_LTOFF_DTPREL22; break;
10452 default:
10453 break;
10454 }
10455 break;
10456
10457 case FUNC_IPLT_RELOC:
10458 break;
10459
10460 default:
10461 abort ();
10462 }
10463
10464 /* Hmmmm. Should this ever occur? */
10465 if (new)
10466 return new;
10467 else
10468 return r_type;
10469 }
10470
10471 /* Here is where generate the appropriate reloc for pseudo relocation
10472 functions. */
10473 void
10474 ia64_validate_fix (fix)
10475 fixS *fix;
10476 {
10477 switch (fix->fx_r_type)
10478 {
10479 case BFD_RELOC_IA64_FPTR64I:
10480 case BFD_RELOC_IA64_FPTR32MSB:
10481 case BFD_RELOC_IA64_FPTR64LSB:
10482 case BFD_RELOC_IA64_LTOFF_FPTR22:
10483 case BFD_RELOC_IA64_LTOFF_FPTR64I:
10484 if (fix->fx_offset != 0)
10485 as_bad_where (fix->fx_file, fix->fx_line,
10486 "No addend allowed in @fptr() relocation");
10487 break;
10488 default:
10489 break;
10490 }
10491 }
10492
10493 static void
10494 fix_insn (fix, odesc, value)
10495 fixS *fix;
10496 const struct ia64_operand *odesc;
10497 valueT value;
10498 {
10499 bfd_vma insn[3], t0, t1, control_bits;
10500 const char *err;
10501 char *fixpos;
10502 long slot;
10503
10504 slot = fix->fx_where & 0x3;
10505 fixpos = fix->fx_frag->fr_literal + (fix->fx_where - slot);
10506
10507 /* Bundles are always in little-endian byte order */
10508 t0 = bfd_getl64 (fixpos);
10509 t1 = bfd_getl64 (fixpos + 8);
10510 control_bits = t0 & 0x1f;
10511 insn[0] = (t0 >> 5) & 0x1ffffffffffLL;
10512 insn[1] = ((t0 >> 46) & 0x3ffff) | ((t1 & 0x7fffff) << 18);
10513 insn[2] = (t1 >> 23) & 0x1ffffffffffLL;
10514
10515 err = NULL;
10516 if (odesc - elf64_ia64_operands == IA64_OPND_IMMU64)
10517 {
10518 insn[1] = (value >> 22) & 0x1ffffffffffLL;
10519 insn[2] |= (((value & 0x7f) << 13)
10520 | (((value >> 7) & 0x1ff) << 27)
10521 | (((value >> 16) & 0x1f) << 22)
10522 | (((value >> 21) & 0x1) << 21)
10523 | (((value >> 63) & 0x1) << 36));
10524 }
10525 else if (odesc - elf64_ia64_operands == IA64_OPND_IMMU62)
10526 {
10527 if (value & ~0x3fffffffffffffffULL)
10528 err = "integer operand out of range";
10529 insn[1] = (value >> 21) & 0x1ffffffffffLL;
10530 insn[2] |= (((value & 0xfffff) << 6) | (((value >> 20) & 0x1) << 36));
10531 }
10532 else if (odesc - elf64_ia64_operands == IA64_OPND_TGT64)
10533 {
10534 value >>= 4;
10535 insn[1] = ((value >> 20) & 0x7fffffffffLL) << 2;
10536 insn[2] |= ((((value >> 59) & 0x1) << 36)
10537 | (((value >> 0) & 0xfffff) << 13));
10538 }
10539 else
10540 err = (*odesc->insert) (odesc, value, insn + slot);
10541
10542 if (err)
10543 as_bad_where (fix->fx_file, fix->fx_line, err);
10544
10545 t0 = control_bits | (insn[0] << 5) | (insn[1] << 46);
10546 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
10547 number_to_chars_littleendian (fixpos + 0, t0, 8);
10548 number_to_chars_littleendian (fixpos + 8, t1, 8);
10549 }
10550
10551 /* Attempt to simplify or even eliminate a fixup. The return value is
10552 ignored; perhaps it was once meaningful, but now it is historical.
10553 To indicate that a fixup has been eliminated, set FIXP->FX_DONE.
10554
10555 If fixp->fx_addsy is non-NULL, we'll have to generate a reloc entry
10556 (if possible). */
10557
10558 void
10559 md_apply_fix3 (fix, valP, seg)
10560 fixS *fix;
10561 valueT *valP;
10562 segT seg ATTRIBUTE_UNUSED;
10563 {
10564 char *fixpos;
10565 valueT value = *valP;
10566
10567 fixpos = fix->fx_frag->fr_literal + fix->fx_where;
10568
10569 if (fix->fx_pcrel)
10570 {
10571 switch (fix->fx_r_type)
10572 {
10573 case BFD_RELOC_IA64_DIR32MSB:
10574 fix->fx_r_type = BFD_RELOC_IA64_PCREL32MSB;
10575 break;
10576
10577 case BFD_RELOC_IA64_DIR32LSB:
10578 fix->fx_r_type = BFD_RELOC_IA64_PCREL32LSB;
10579 break;
10580
10581 case BFD_RELOC_IA64_DIR64MSB:
10582 fix->fx_r_type = BFD_RELOC_IA64_PCREL64MSB;
10583 break;
10584
10585 case BFD_RELOC_IA64_DIR64LSB:
10586 fix->fx_r_type = BFD_RELOC_IA64_PCREL64LSB;
10587 break;
10588
10589 default:
10590 break;
10591 }
10592 }
10593 if (fix->fx_addsy)
10594 {
10595 switch (fix->fx_r_type)
10596 {
10597 case BFD_RELOC_UNUSED:
10598 /* This must be a TAG13 or TAG13b operand. There are no external
10599 relocs defined for them, so we must give an error. */
10600 as_bad_where (fix->fx_file, fix->fx_line,
10601 "%s must have a constant value",
10602 elf64_ia64_operands[fix->tc_fix_data.opnd].desc);
10603 fix->fx_done = 1;
10604 return;
10605
10606 case BFD_RELOC_IA64_TPREL14:
10607 case BFD_RELOC_IA64_TPREL22:
10608 case BFD_RELOC_IA64_TPREL64I:
10609 case BFD_RELOC_IA64_LTOFF_TPREL22:
10610 case BFD_RELOC_IA64_LTOFF_DTPMOD22:
10611 case BFD_RELOC_IA64_DTPREL14:
10612 case BFD_RELOC_IA64_DTPREL22:
10613 case BFD_RELOC_IA64_DTPREL64I:
10614 case BFD_RELOC_IA64_LTOFF_DTPREL22:
10615 S_SET_THREAD_LOCAL (fix->fx_addsy);
10616 break;
10617
10618 default:
10619 break;
10620 }
10621 }
10622 else if (fix->tc_fix_data.opnd == IA64_OPND_NIL)
10623 {
10624 if (fix->tc_fix_data.bigendian)
10625 number_to_chars_bigendian (fixpos, value, fix->fx_size);
10626 else
10627 number_to_chars_littleendian (fixpos, value, fix->fx_size);
10628 fix->fx_done = 1;
10629 }
10630 else
10631 {
10632 fix_insn (fix, elf64_ia64_operands + fix->tc_fix_data.opnd, value);
10633 fix->fx_done = 1;
10634 }
10635 }
10636
10637 /* Generate the BFD reloc to be stuck in the object file from the
10638 fixup used internally in the assembler. */
10639
10640 arelent *
10641 tc_gen_reloc (sec, fixp)
10642 asection *sec ATTRIBUTE_UNUSED;
10643 fixS *fixp;
10644 {
10645 arelent *reloc;
10646
10647 reloc = xmalloc (sizeof (*reloc));
10648 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
10649 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10650 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
10651 reloc->addend = fixp->fx_offset;
10652 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
10653
10654 if (!reloc->howto)
10655 {
10656 as_bad_where (fixp->fx_file, fixp->fx_line,
10657 "Cannot represent %s relocation in object file",
10658 bfd_get_reloc_code_name (fixp->fx_r_type));
10659 }
10660 return reloc;
10661 }
10662
10663 /* Turn a string in input_line_pointer into a floating point constant
10664 of type TYPE, and store the appropriate bytes in *LIT. The number
10665 of LITTLENUMS emitted is stored in *SIZE. An error message is
10666 returned, or NULL on OK. */
10667
10668 #define MAX_LITTLENUMS 5
10669
10670 char *
10671 md_atof (type, lit, size)
10672 int type;
10673 char *lit;
10674 int *size;
10675 {
10676 LITTLENUM_TYPE words[MAX_LITTLENUMS];
10677 char *t;
10678 int prec;
10679
10680 switch (type)
10681 {
10682 /* IEEE floats */
10683 case 'f':
10684 case 'F':
10685 case 's':
10686 case 'S':
10687 prec = 2;
10688 break;
10689
10690 case 'd':
10691 case 'D':
10692 case 'r':
10693 case 'R':
10694 prec = 4;
10695 break;
10696
10697 case 'x':
10698 case 'X':
10699 case 'p':
10700 case 'P':
10701 prec = 5;
10702 break;
10703
10704 default:
10705 *size = 0;
10706 return "Bad call to MD_ATOF()";
10707 }
10708 t = atof_ieee (input_line_pointer, type, words);
10709 if (t)
10710 input_line_pointer = t;
10711
10712 (*ia64_float_to_chars) (lit, words, prec);
10713
10714 if (type == 'X')
10715 {
10716 /* It is 10 byte floating point with 6 byte padding. */
10717 memset (&lit [10], 0, 6);
10718 *size = 8 * sizeof (LITTLENUM_TYPE);
10719 }
10720 else
10721 *size = prec * sizeof (LITTLENUM_TYPE);
10722
10723 return 0;
10724 }
10725
10726 /* Handle ia64 specific semantics of the align directive. */
10727
10728 void
10729 ia64_md_do_align (n, fill, len, max)
10730 int n ATTRIBUTE_UNUSED;
10731 const char *fill ATTRIBUTE_UNUSED;
10732 int len ATTRIBUTE_UNUSED;
10733 int max ATTRIBUTE_UNUSED;
10734 {
10735 if (subseg_text_p (now_seg))
10736 ia64_flush_insns ();
10737 }
10738
10739 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
10740 of an rs_align_code fragment. */
10741
10742 void
10743 ia64_handle_align (fragp)
10744 fragS *fragp;
10745 {
10746 /* Use mfi bundle of nops with no stop bits. */
10747 static const unsigned char le_nop[]
10748 = { 0x0c, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
10749 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00};
10750
10751 int bytes;
10752 char *p;
10753
10754 if (fragp->fr_type != rs_align_code)
10755 return;
10756
10757 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
10758 p = fragp->fr_literal + fragp->fr_fix;
10759
10760 /* Make sure we are on a 16-byte boundary, in case someone has been
10761 putting data into a text section. */
10762 if (bytes & 15)
10763 {
10764 int fix = bytes & 15;
10765 memset (p, 0, fix);
10766 p += fix;
10767 bytes -= fix;
10768 fragp->fr_fix += fix;
10769 }
10770
10771 /* Instruction bundles are always little-endian. */
10772 memcpy (p, le_nop, 16);
10773 fragp->fr_var = 16;
10774 }
10775
10776 static void
10777 ia64_float_to_chars_bigendian (char *lit, LITTLENUM_TYPE *words,
10778 int prec)
10779 {
10780 while (prec--)
10781 {
10782 number_to_chars_bigendian (lit, (long) (*words++),
10783 sizeof (LITTLENUM_TYPE));
10784 lit += sizeof (LITTLENUM_TYPE);
10785 }
10786 }
10787
10788 static void
10789 ia64_float_to_chars_littleendian (char *lit, LITTLENUM_TYPE *words,
10790 int prec)
10791 {
10792 while (prec--)
10793 {
10794 number_to_chars_littleendian (lit, (long) (words[prec]),
10795 sizeof (LITTLENUM_TYPE));
10796 lit += sizeof (LITTLENUM_TYPE);
10797 }
10798 }
10799
10800 void
10801 ia64_elf_section_change_hook (void)
10802 {
10803 dot_byteorder (-1);
10804 }
10805
10806 /* Check if a label should be made global. */
10807 void
10808 ia64_check_label (symbolS *label)
10809 {
10810 if (*input_line_pointer == ':')
10811 {
10812 S_SET_EXTERNAL (label);
10813 input_line_pointer++;
10814 }
10815 }
10816
10817 /* Used to remember where .alias and .secalias directives are seen. We
10818 will rename symbol and section names when we are about to output
10819 the relocatable file. */
10820 struct alias
10821 {
10822 char *file; /* The file where the directive is seen. */
10823 unsigned int line; /* The line number the directive is at. */
10824 const char *name; /* The orignale name of the symbol. */
10825 };
10826
10827 /* Called for .alias and .secalias directives. If SECTION is 1, it is
10828 .secalias. Otherwise, it is .alias. */
10829 static void
10830 dot_alias (int section)
10831 {
10832 char *name, *alias;
10833 char delim;
10834 char *end_name;
10835 int len;
10836 const char *error_string;
10837 struct alias *h;
10838 const char *a;
10839 struct hash_control *ahash, *nhash;
10840 const char *kind;
10841
10842 name = input_line_pointer;
10843 delim = get_symbol_end ();
10844 end_name = input_line_pointer;
10845 *end_name = delim;
10846
10847 if (name == end_name)
10848 {
10849 as_bad (_("expected symbol name"));
10850 discard_rest_of_line ();
10851 return;
10852 }
10853
10854 SKIP_WHITESPACE ();
10855
10856 if (*input_line_pointer != ',')
10857 {
10858 *end_name = 0;
10859 as_bad (_("expected comma after \"%s\""), name);
10860 *end_name = delim;
10861 ignore_rest_of_line ();
10862 return;
10863 }
10864
10865 input_line_pointer++;
10866 *end_name = 0;
10867
10868 /* We call demand_copy_C_string to check if alias string is valid.
10869 There should be a closing `"' and no `\0' in the string. */
10870 alias = demand_copy_C_string (&len);
10871 if (alias == NULL)
10872 {
10873 ignore_rest_of_line ();
10874 return;
10875 }
10876
10877 /* Make a copy of name string. */
10878 len = strlen (name) + 1;
10879 obstack_grow (&notes, name, len);
10880 name = obstack_finish (&notes);
10881
10882 if (section)
10883 {
10884 kind = "section";
10885 ahash = secalias_hash;
10886 nhash = secalias_name_hash;
10887 }
10888 else
10889 {
10890 kind = "symbol";
10891 ahash = alias_hash;
10892 nhash = alias_name_hash;
10893 }
10894
10895 /* Check if alias has been used before. */
10896 h = (struct alias *) hash_find (ahash, alias);
10897 if (h)
10898 {
10899 if (strcmp (h->name, name))
10900 as_bad (_("`%s' is already the alias of %s `%s'"),
10901 alias, kind, h->name);
10902 goto out;
10903 }
10904
10905 /* Check if name already has an alias. */
10906 a = (const char *) hash_find (nhash, name);
10907 if (a)
10908 {
10909 if (strcmp (a, alias))
10910 as_bad (_("%s `%s' already has an alias `%s'"), kind, name, a);
10911 goto out;
10912 }
10913
10914 h = (struct alias *) xmalloc (sizeof (struct alias));
10915 as_where (&h->file, &h->line);
10916 h->name = name;
10917
10918 error_string = hash_jam (ahash, alias, (PTR) h);
10919 if (error_string)
10920 {
10921 as_fatal (_("inserting \"%s\" into %s alias hash table failed: %s"),
10922 alias, kind, error_string);
10923 goto out;
10924 }
10925
10926 error_string = hash_jam (nhash, name, (PTR) alias);
10927 if (error_string)
10928 {
10929 as_fatal (_("inserting \"%s\" into %s name hash table failed: %s"),
10930 alias, kind, error_string);
10931 out:
10932 obstack_free (&notes, name);
10933 obstack_free (&notes, alias);
10934 }
10935
10936 demand_empty_rest_of_line ();
10937 }
10938
10939 /* It renames the original symbol name to its alias. */
10940 static void
10941 do_alias (const char *alias, PTR value)
10942 {
10943 struct alias *h = (struct alias *) value;
10944 symbolS *sym = symbol_find (h->name);
10945
10946 if (sym == NULL)
10947 as_warn_where (h->file, h->line,
10948 _("symbol `%s' aliased to `%s' is not used"),
10949 h->name, alias);
10950 else
10951 S_SET_NAME (sym, (char *) alias);
10952 }
10953
10954 /* Called from write_object_file. */
10955 void
10956 ia64_adjust_symtab (void)
10957 {
10958 hash_traverse (alias_hash, do_alias);
10959 }
10960
10961 /* It renames the original section name to its alias. */
10962 static void
10963 do_secalias (const char *alias, PTR value)
10964 {
10965 struct alias *h = (struct alias *) value;
10966 segT sec = bfd_get_section_by_name (stdoutput, h->name);
10967
10968 if (sec == NULL)
10969 as_warn_where (h->file, h->line,
10970 _("section `%s' aliased to `%s' is not used"),
10971 h->name, alias);
10972 else
10973 sec->name = alias;
10974 }
10975
10976 /* Called from write_object_file. */
10977 void
10978 ia64_frob_file (void)
10979 {
10980 hash_traverse (secalias_hash, do_secalias);
10981 }
This page took 0.271189 seconds and 4 git commands to generate.