bfd/
[deliverable/binutils-gdb.git] / gas / config / tc-ia64.c
1 /* tc-ia64.c -- Assembler for the HP/Intel IA-64 architecture.
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /*
24 TODO:
25
26 - optional operands
27 - directives:
28 .eb
29 .estate
30 .lb
31 .popsection
32 .previous
33 .psr
34 .pushsection
35 - labels are wrong if automatic alignment is introduced
36 (e.g., checkout the second real10 definition in test-data.s)
37 - DV-related stuff:
38 <reg>.safe_across_calls and any other DV-related directives I don't
39 have documentation for.
40 verify mod-sched-brs reads/writes are checked/marked (and other
41 notes)
42
43 */
44
45 #include "as.h"
46 #include "safe-ctype.h"
47 #include "dwarf2dbg.h"
48 #include "subsegs.h"
49
50 #include "opcode/ia64.h"
51
52 #include "elf/ia64.h"
53
54 #define NELEMS(a) ((int) (sizeof (a)/sizeof ((a)[0])))
55 #define MIN(a,b) ((a) < (b) ? (a) : (b))
56
57 #define NUM_SLOTS 4
58 #define PREV_SLOT md.slot[(md.curr_slot + NUM_SLOTS - 1) % NUM_SLOTS]
59 #define CURR_SLOT md.slot[md.curr_slot]
60
61 #define O_pseudo_fixup (O_max + 1)
62
63 enum special_section
64 {
65 /* IA-64 ABI section pseudo-ops. */
66 SPECIAL_SECTION_BSS = 0,
67 SPECIAL_SECTION_SBSS,
68 SPECIAL_SECTION_SDATA,
69 SPECIAL_SECTION_RODATA,
70 SPECIAL_SECTION_COMMENT,
71 SPECIAL_SECTION_UNWIND,
72 SPECIAL_SECTION_UNWIND_INFO,
73 /* HPUX specific section pseudo-ops. */
74 SPECIAL_SECTION_INIT_ARRAY,
75 SPECIAL_SECTION_FINI_ARRAY,
76 };
77
78 enum reloc_func
79 {
80 FUNC_DTP_MODULE,
81 FUNC_DTP_RELATIVE,
82 FUNC_FPTR_RELATIVE,
83 FUNC_GP_RELATIVE,
84 FUNC_LT_RELATIVE,
85 FUNC_LT_RELATIVE_X,
86 FUNC_PC_RELATIVE,
87 FUNC_PLT_RELATIVE,
88 FUNC_SEC_RELATIVE,
89 FUNC_SEG_RELATIVE,
90 FUNC_TP_RELATIVE,
91 FUNC_LTV_RELATIVE,
92 FUNC_LT_FPTR_RELATIVE,
93 FUNC_LT_DTP_MODULE,
94 FUNC_LT_DTP_RELATIVE,
95 FUNC_LT_TP_RELATIVE,
96 FUNC_IPLT_RELOC,
97 };
98
99 enum reg_symbol
100 {
101 REG_GR = 0,
102 REG_FR = (REG_GR + 128),
103 REG_AR = (REG_FR + 128),
104 REG_CR = (REG_AR + 128),
105 REG_P = (REG_CR + 128),
106 REG_BR = (REG_P + 64),
107 REG_IP = (REG_BR + 8),
108 REG_CFM,
109 REG_PR,
110 REG_PR_ROT,
111 REG_PSR,
112 REG_PSR_L,
113 REG_PSR_UM,
114 /* The following are pseudo-registers for use by gas only. */
115 IND_CPUID,
116 IND_DBR,
117 IND_DTR,
118 IND_ITR,
119 IND_IBR,
120 IND_MEM,
121 IND_MSR,
122 IND_PKR,
123 IND_PMC,
124 IND_PMD,
125 IND_RR,
126 /* The following pseudo-registers are used for unwind directives only: */
127 REG_PSP,
128 REG_PRIUNAT,
129 REG_NUM
130 };
131
132 enum dynreg_type
133 {
134 DYNREG_GR = 0, /* dynamic general purpose register */
135 DYNREG_FR, /* dynamic floating point register */
136 DYNREG_PR, /* dynamic predicate register */
137 DYNREG_NUM_TYPES
138 };
139
140 enum operand_match_result
141 {
142 OPERAND_MATCH,
143 OPERAND_OUT_OF_RANGE,
144 OPERAND_MISMATCH
145 };
146
147 /* On the ia64, we can't know the address of a text label until the
148 instructions are packed into a bundle. To handle this, we keep
149 track of the list of labels that appear in front of each
150 instruction. */
151 struct label_fix
152 {
153 struct label_fix *next;
154 struct symbol *sym;
155 };
156
157 /* This is the endianness of the current section. */
158 extern int target_big_endian;
159
160 /* This is the default endianness. */
161 static int default_big_endian = TARGET_BYTES_BIG_ENDIAN;
162
163 void (*ia64_number_to_chars) PARAMS ((char *, valueT, int));
164
165 static void ia64_float_to_chars_bigendian
166 PARAMS ((char *, LITTLENUM_TYPE *, int));
167 static void ia64_float_to_chars_littleendian
168 PARAMS ((char *, LITTLENUM_TYPE *, int));
169 static void (*ia64_float_to_chars)
170 PARAMS ((char *, LITTLENUM_TYPE *, int));
171
172 static struct hash_control *alias_hash;
173 static struct hash_control *alias_name_hash;
174 static struct hash_control *secalias_hash;
175 static struct hash_control *secalias_name_hash;
176
177 /* List of chars besides those in app.c:symbol_chars that can start an
178 operand. Used to prevent the scrubber eating vital white-space. */
179 const char ia64_symbol_chars[] = "@?";
180
181 /* Characters which always start a comment. */
182 const char comment_chars[] = "";
183
184 /* Characters which start a comment at the beginning of a line. */
185 const char line_comment_chars[] = "#";
186
187 /* Characters which may be used to separate multiple commands on a
188 single line. */
189 const char line_separator_chars[] = ";";
190
191 /* Characters which are used to indicate an exponent in a floating
192 point number. */
193 const char EXP_CHARS[] = "eE";
194
195 /* Characters which mean that a number is a floating point constant,
196 as in 0d1.0. */
197 const char FLT_CHARS[] = "rRsSfFdDxXpP";
198
199 /* ia64-specific option processing: */
200
201 const char *md_shortopts = "m:N:x::";
202
203 struct option md_longopts[] =
204 {
205 #define OPTION_MCONSTANT_GP (OPTION_MD_BASE + 1)
206 {"mconstant-gp", no_argument, NULL, OPTION_MCONSTANT_GP},
207 #define OPTION_MAUTO_PIC (OPTION_MD_BASE + 2)
208 {"mauto-pic", no_argument, NULL, OPTION_MAUTO_PIC}
209 };
210
211 size_t md_longopts_size = sizeof (md_longopts);
212
213 static struct
214 {
215 struct hash_control *pseudo_hash; /* pseudo opcode hash table */
216 struct hash_control *reg_hash; /* register name hash table */
217 struct hash_control *dynreg_hash; /* dynamic register hash table */
218 struct hash_control *const_hash; /* constant hash table */
219 struct hash_control *entry_hash; /* code entry hint hash table */
220
221 symbolS *regsym[REG_NUM];
222
223 /* If X_op is != O_absent, the registername for the instruction's
224 qualifying predicate. If NULL, p0 is assumed for instructions
225 that are predicatable. */
226 expressionS qp;
227
228 unsigned int
229 manual_bundling : 1,
230 debug_dv: 1,
231 detect_dv: 1,
232 explicit_mode : 1, /* which mode we're in */
233 default_explicit_mode : 1, /* which mode is the default */
234 mode_explicitly_set : 1, /* was the current mode explicitly set? */
235 auto_align : 1,
236 keep_pending_output : 1;
237
238 /* What to do when something is wrong with unwind directives. */
239 enum
240 {
241 unwind_check_warning,
242 unwind_check_error
243 } unwind_check;
244
245 /* Each bundle consists of up to three instructions. We keep
246 track of four most recent instructions so we can correctly set
247 the end_of_insn_group for the last instruction in a bundle. */
248 int curr_slot;
249 int num_slots_in_use;
250 struct slot
251 {
252 unsigned int
253 end_of_insn_group : 1,
254 manual_bundling_on : 1,
255 manual_bundling_off : 1,
256 loc_directive_seen : 1;
257 signed char user_template; /* user-selected template, if any */
258 unsigned char qp_regno; /* qualifying predicate */
259 /* This duplicates a good fraction of "struct fix" but we
260 can't use a "struct fix" instead since we can't call
261 fix_new_exp() until we know the address of the instruction. */
262 int num_fixups;
263 struct insn_fix
264 {
265 bfd_reloc_code_real_type code;
266 enum ia64_opnd opnd; /* type of operand in need of fix */
267 unsigned int is_pcrel : 1; /* is operand pc-relative? */
268 expressionS expr; /* the value to be inserted */
269 }
270 fixup[2]; /* at most two fixups per insn */
271 struct ia64_opcode *idesc;
272 struct label_fix *label_fixups;
273 struct label_fix *tag_fixups;
274 struct unw_rec_list *unwind_record; /* Unwind directive. */
275 expressionS opnd[6];
276 char *src_file;
277 unsigned int src_line;
278 struct dwarf2_line_info debug_line;
279 }
280 slot[NUM_SLOTS];
281
282 segT last_text_seg;
283
284 struct dynreg
285 {
286 struct dynreg *next; /* next dynamic register */
287 const char *name;
288 unsigned short base; /* the base register number */
289 unsigned short num_regs; /* # of registers in this set */
290 }
291 *dynreg[DYNREG_NUM_TYPES], in, loc, out, rot;
292
293 flagword flags; /* ELF-header flags */
294
295 struct mem_offset {
296 unsigned hint:1; /* is this hint currently valid? */
297 bfd_vma offset; /* mem.offset offset */
298 bfd_vma base; /* mem.offset base */
299 } mem_offset;
300
301 int path; /* number of alt. entry points seen */
302 const char **entry_labels; /* labels of all alternate paths in
303 the current DV-checking block. */
304 int maxpaths; /* size currently allocated for
305 entry_labels */
306
307 int pointer_size; /* size in bytes of a pointer */
308 int pointer_size_shift; /* shift size of a pointer for alignment */
309 }
310 md;
311
312 /* application registers: */
313
314 #define AR_K0 0
315 #define AR_K7 7
316 #define AR_RSC 16
317 #define AR_BSP 17
318 #define AR_BSPSTORE 18
319 #define AR_RNAT 19
320 #define AR_UNAT 36
321 #define AR_FPSR 40
322 #define AR_ITC 44
323 #define AR_PFS 64
324 #define AR_LC 65
325
326 static const struct
327 {
328 const char *name;
329 int regnum;
330 }
331 ar[] =
332 {
333 {"ar.k0", 0}, {"ar.k1", 1}, {"ar.k2", 2}, {"ar.k3", 3},
334 {"ar.k4", 4}, {"ar.k5", 5}, {"ar.k6", 6}, {"ar.k7", 7},
335 {"ar.rsc", 16}, {"ar.bsp", 17},
336 {"ar.bspstore", 18}, {"ar.rnat", 19},
337 {"ar.fcr", 21}, {"ar.eflag", 24},
338 {"ar.csd", 25}, {"ar.ssd", 26},
339 {"ar.cflg", 27}, {"ar.fsr", 28},
340 {"ar.fir", 29}, {"ar.fdr", 30},
341 {"ar.ccv", 32}, {"ar.unat", 36},
342 {"ar.fpsr", 40}, {"ar.itc", 44},
343 {"ar.pfs", 64}, {"ar.lc", 65},
344 {"ar.ec", 66},
345 };
346
347 #define CR_IPSR 16
348 #define CR_ISR 17
349 #define CR_IIP 19
350 #define CR_IFA 20
351 #define CR_ITIR 21
352 #define CR_IIPA 22
353 #define CR_IFS 23
354 #define CR_IIM 24
355 #define CR_IHA 25
356 #define CR_IVR 65
357 #define CR_TPR 66
358 #define CR_EOI 67
359 #define CR_IRR0 68
360 #define CR_IRR3 71
361 #define CR_LRR0 80
362 #define CR_LRR1 81
363
364 /* control registers: */
365 static const struct
366 {
367 const char *name;
368 int regnum;
369 }
370 cr[] =
371 {
372 {"cr.dcr", 0},
373 {"cr.itm", 1},
374 {"cr.iva", 2},
375 {"cr.pta", 8},
376 {"cr.gpta", 9},
377 {"cr.ipsr", 16},
378 {"cr.isr", 17},
379 {"cr.iip", 19},
380 {"cr.ifa", 20},
381 {"cr.itir", 21},
382 {"cr.iipa", 22},
383 {"cr.ifs", 23},
384 {"cr.iim", 24},
385 {"cr.iha", 25},
386 {"cr.lid", 64},
387 {"cr.ivr", 65},
388 {"cr.tpr", 66},
389 {"cr.eoi", 67},
390 {"cr.irr0", 68},
391 {"cr.irr1", 69},
392 {"cr.irr2", 70},
393 {"cr.irr3", 71},
394 {"cr.itv", 72},
395 {"cr.pmv", 73},
396 {"cr.cmcv", 74},
397 {"cr.lrr0", 80},
398 {"cr.lrr1", 81}
399 };
400
401 #define PSR_MFL 4
402 #define PSR_IC 13
403 #define PSR_DFL 18
404 #define PSR_CPL 32
405
406 static const struct const_desc
407 {
408 const char *name;
409 valueT value;
410 }
411 const_bits[] =
412 {
413 /* PSR constant masks: */
414
415 /* 0: reserved */
416 {"psr.be", ((valueT) 1) << 1},
417 {"psr.up", ((valueT) 1) << 2},
418 {"psr.ac", ((valueT) 1) << 3},
419 {"psr.mfl", ((valueT) 1) << 4},
420 {"psr.mfh", ((valueT) 1) << 5},
421 /* 6-12: reserved */
422 {"psr.ic", ((valueT) 1) << 13},
423 {"psr.i", ((valueT) 1) << 14},
424 {"psr.pk", ((valueT) 1) << 15},
425 /* 16: reserved */
426 {"psr.dt", ((valueT) 1) << 17},
427 {"psr.dfl", ((valueT) 1) << 18},
428 {"psr.dfh", ((valueT) 1) << 19},
429 {"psr.sp", ((valueT) 1) << 20},
430 {"psr.pp", ((valueT) 1) << 21},
431 {"psr.di", ((valueT) 1) << 22},
432 {"psr.si", ((valueT) 1) << 23},
433 {"psr.db", ((valueT) 1) << 24},
434 {"psr.lp", ((valueT) 1) << 25},
435 {"psr.tb", ((valueT) 1) << 26},
436 {"psr.rt", ((valueT) 1) << 27},
437 /* 28-31: reserved */
438 /* 32-33: cpl (current privilege level) */
439 {"psr.is", ((valueT) 1) << 34},
440 {"psr.mc", ((valueT) 1) << 35},
441 {"psr.it", ((valueT) 1) << 36},
442 {"psr.id", ((valueT) 1) << 37},
443 {"psr.da", ((valueT) 1) << 38},
444 {"psr.dd", ((valueT) 1) << 39},
445 {"psr.ss", ((valueT) 1) << 40},
446 /* 41-42: ri (restart instruction) */
447 {"psr.ed", ((valueT) 1) << 43},
448 {"psr.bn", ((valueT) 1) << 44},
449 };
450
451 /* indirect register-sets/memory: */
452
453 static const struct
454 {
455 const char *name;
456 int regnum;
457 }
458 indirect_reg[] =
459 {
460 { "CPUID", IND_CPUID },
461 { "cpuid", IND_CPUID },
462 { "dbr", IND_DBR },
463 { "dtr", IND_DTR },
464 { "itr", IND_ITR },
465 { "ibr", IND_IBR },
466 { "msr", IND_MSR },
467 { "pkr", IND_PKR },
468 { "pmc", IND_PMC },
469 { "pmd", IND_PMD },
470 { "rr", IND_RR },
471 };
472
473 /* Pseudo functions used to indicate relocation types (these functions
474 start with an at sign (@). */
475 static struct
476 {
477 const char *name;
478 enum pseudo_type
479 {
480 PSEUDO_FUNC_NONE,
481 PSEUDO_FUNC_RELOC,
482 PSEUDO_FUNC_CONST,
483 PSEUDO_FUNC_REG,
484 PSEUDO_FUNC_FLOAT
485 }
486 type;
487 union
488 {
489 unsigned long ival;
490 symbolS *sym;
491 }
492 u;
493 }
494 pseudo_func[] =
495 {
496 /* reloc pseudo functions (these must come first!): */
497 { "dtpmod", PSEUDO_FUNC_RELOC, { 0 } },
498 { "dtprel", PSEUDO_FUNC_RELOC, { 0 } },
499 { "fptr", PSEUDO_FUNC_RELOC, { 0 } },
500 { "gprel", PSEUDO_FUNC_RELOC, { 0 } },
501 { "ltoff", PSEUDO_FUNC_RELOC, { 0 } },
502 { "ltoffx", PSEUDO_FUNC_RELOC, { 0 } },
503 { "pcrel", PSEUDO_FUNC_RELOC, { 0 } },
504 { "pltoff", PSEUDO_FUNC_RELOC, { 0 } },
505 { "secrel", PSEUDO_FUNC_RELOC, { 0 } },
506 { "segrel", PSEUDO_FUNC_RELOC, { 0 } },
507 { "tprel", PSEUDO_FUNC_RELOC, { 0 } },
508 { "ltv", PSEUDO_FUNC_RELOC, { 0 } },
509 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_FPTR_RELATIVE */
510 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_MODULE */
511 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_RELATIVE */
512 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_TP_RELATIVE */
513 { "iplt", PSEUDO_FUNC_RELOC, { 0 } },
514
515 /* mbtype4 constants: */
516 { "alt", PSEUDO_FUNC_CONST, { 0xa } },
517 { "brcst", PSEUDO_FUNC_CONST, { 0x0 } },
518 { "mix", PSEUDO_FUNC_CONST, { 0x8 } },
519 { "rev", PSEUDO_FUNC_CONST, { 0xb } },
520 { "shuf", PSEUDO_FUNC_CONST, { 0x9 } },
521
522 /* fclass constants: */
523 { "nat", PSEUDO_FUNC_CONST, { 0x100 } },
524 { "qnan", PSEUDO_FUNC_CONST, { 0x080 } },
525 { "snan", PSEUDO_FUNC_CONST, { 0x040 } },
526 { "pos", PSEUDO_FUNC_CONST, { 0x001 } },
527 { "neg", PSEUDO_FUNC_CONST, { 0x002 } },
528 { "zero", PSEUDO_FUNC_CONST, { 0x004 } },
529 { "unorm", PSEUDO_FUNC_CONST, { 0x008 } },
530 { "norm", PSEUDO_FUNC_CONST, { 0x010 } },
531 { "inf", PSEUDO_FUNC_CONST, { 0x020 } },
532
533 { "natval", PSEUDO_FUNC_CONST, { 0x100 } }, /* old usage */
534
535 /* hint constants: */
536 { "pause", PSEUDO_FUNC_CONST, { 0x0 } },
537
538 /* unwind-related constants: */
539 { "svr4", PSEUDO_FUNC_CONST, { ELFOSABI_NONE } },
540 { "hpux", PSEUDO_FUNC_CONST, { ELFOSABI_HPUX } },
541 { "nt", PSEUDO_FUNC_CONST, { 2 } }, /* conflicts w/ELFOSABI_NETBSD */
542 { "linux", PSEUDO_FUNC_CONST, { ELFOSABI_LINUX } },
543 { "freebsd", PSEUDO_FUNC_CONST, { ELFOSABI_FREEBSD } },
544 { "openvms", PSEUDO_FUNC_CONST, { ELFOSABI_OPENVMS } },
545 { "nsk", PSEUDO_FUNC_CONST, { ELFOSABI_NSK } },
546
547 /* unwind-related registers: */
548 { "priunat",PSEUDO_FUNC_REG, { REG_PRIUNAT } }
549 };
550
551 /* 41-bit nop opcodes (one per unit): */
552 static const bfd_vma nop[IA64_NUM_UNITS] =
553 {
554 0x0000000000LL, /* NIL => break 0 */
555 0x0008000000LL, /* I-unit nop */
556 0x0008000000LL, /* M-unit nop */
557 0x4000000000LL, /* B-unit nop */
558 0x0008000000LL, /* F-unit nop */
559 0x0008000000LL, /* L-"unit" nop */
560 0x0008000000LL, /* X-unit nop */
561 };
562
563 /* Can't be `const' as it's passed to input routines (which have the
564 habit of setting temporary sentinels. */
565 static char special_section_name[][20] =
566 {
567 {".bss"}, {".sbss"}, {".sdata"}, {".rodata"}, {".comment"},
568 {".IA_64.unwind"}, {".IA_64.unwind_info"},
569 {".init_array"}, {".fini_array"}
570 };
571
572 /* The best template for a particular sequence of up to three
573 instructions: */
574 #define N IA64_NUM_TYPES
575 static unsigned char best_template[N][N][N];
576 #undef N
577
578 /* Resource dependencies currently in effect */
579 static struct rsrc {
580 int depind; /* dependency index */
581 const struct ia64_dependency *dependency; /* actual dependency */
582 unsigned specific:1, /* is this a specific bit/regno? */
583 link_to_qp_branch:1; /* will a branch on the same QP clear it?*/
584 int index; /* specific regno/bit within dependency */
585 int note; /* optional qualifying note (0 if none) */
586 #define STATE_NONE 0
587 #define STATE_STOP 1
588 #define STATE_SRLZ 2
589 int insn_srlz; /* current insn serialization state */
590 int data_srlz; /* current data serialization state */
591 int qp_regno; /* qualifying predicate for this usage */
592 char *file; /* what file marked this dependency */
593 unsigned int line; /* what line marked this dependency */
594 struct mem_offset mem_offset; /* optional memory offset hint */
595 enum { CMP_NONE, CMP_OR, CMP_AND } cmp_type; /* OR or AND compare? */
596 int path; /* corresponding code entry index */
597 } *regdeps = NULL;
598 static int regdepslen = 0;
599 static int regdepstotlen = 0;
600 static const char *dv_mode[] = { "RAW", "WAW", "WAR" };
601 static const char *dv_sem[] = { "none", "implied", "impliedf",
602 "data", "instr", "specific", "stop", "other" };
603 static const char *dv_cmp_type[] = { "none", "OR", "AND" };
604
605 /* Current state of PR mutexation */
606 static struct qpmutex {
607 valueT prmask;
608 int path;
609 } *qp_mutexes = NULL; /* QP mutex bitmasks */
610 static int qp_mutexeslen = 0;
611 static int qp_mutexestotlen = 0;
612 static valueT qp_safe_across_calls = 0;
613
614 /* Current state of PR implications */
615 static struct qp_imply {
616 unsigned p1:6;
617 unsigned p2:6;
618 unsigned p2_branched:1;
619 int path;
620 } *qp_implies = NULL;
621 static int qp_implieslen = 0;
622 static int qp_impliestotlen = 0;
623
624 /* Keep track of static GR values so that indirect register usage can
625 sometimes be tracked. */
626 static struct gr {
627 unsigned known:1;
628 int path;
629 valueT value;
630 } gr_values[128] = {{ 1, 0, 0 }};
631
632 /* Remember the alignment frag. */
633 static fragS *align_frag;
634
635 /* These are the routines required to output the various types of
636 unwind records. */
637
638 /* A slot_number is a frag address plus the slot index (0-2). We use the
639 frag address here so that if there is a section switch in the middle of
640 a function, then instructions emitted to a different section are not
641 counted. Since there may be more than one frag for a function, this
642 means we also need to keep track of which frag this address belongs to
643 so we can compute inter-frag distances. This also nicely solves the
644 problem with nops emitted for align directives, which can't easily be
645 counted, but can easily be derived from frag sizes. */
646
647 typedef struct unw_rec_list {
648 unwind_record r;
649 unsigned long slot_number;
650 fragS *slot_frag;
651 unsigned long next_slot_number;
652 fragS *next_slot_frag;
653 struct unw_rec_list *next;
654 } unw_rec_list;
655
656 #define SLOT_NUM_NOT_SET (unsigned)-1
657
658 /* Linked list of saved prologue counts. A very poor
659 implementation of a map from label numbers to prologue counts. */
660 typedef struct label_prologue_count
661 {
662 struct label_prologue_count *next;
663 unsigned long label_number;
664 unsigned int prologue_count;
665 } label_prologue_count;
666
667 static struct
668 {
669 /* Maintain a list of unwind entries for the current function. */
670 unw_rec_list *list;
671 unw_rec_list *tail;
672
673 /* Any unwind entires that should be attached to the current slot
674 that an insn is being constructed for. */
675 unw_rec_list *current_entry;
676
677 /* These are used to create the unwind table entry for this function. */
678 symbolS *proc_start;
679 symbolS *info; /* pointer to unwind info */
680 symbolS *personality_routine;
681 segT saved_text_seg;
682 subsegT saved_text_subseg;
683 unsigned int force_unwind_entry : 1; /* force generation of unwind entry? */
684
685 /* TRUE if processing unwind directives in a prologue region. */
686 unsigned int prologue : 1;
687 unsigned int prologue_mask : 4;
688 unsigned int body : 1;
689 unsigned int insn : 1;
690 unsigned int prologue_count; /* number of .prologues seen so far */
691 /* Prologue counts at previous .label_state directives. */
692 struct label_prologue_count * saved_prologue_counts;
693 } unwind;
694
695 /* The input value is a negated offset from psp, and specifies an address
696 psp - offset. The encoded value is psp + 16 - (4 * offset). Thus we
697 must add 16 and divide by 4 to get the encoded value. */
698
699 #define ENCODED_PSP_OFFSET(OFFSET) (((OFFSET) + 16) / 4)
700
701 typedef void (*vbyte_func) PARAMS ((int, char *, char *));
702
703 /* Forward declarations: */
704 static void set_section PARAMS ((char *name));
705 static unsigned int set_regstack PARAMS ((unsigned int, unsigned int,
706 unsigned int, unsigned int));
707 static void dot_align (int);
708 static void dot_radix PARAMS ((int));
709 static void dot_special_section PARAMS ((int));
710 static void dot_proc PARAMS ((int));
711 static void dot_fframe PARAMS ((int));
712 static void dot_vframe PARAMS ((int));
713 static void dot_vframesp PARAMS ((int));
714 static void dot_vframepsp PARAMS ((int));
715 static void dot_save PARAMS ((int));
716 static void dot_restore PARAMS ((int));
717 static void dot_restorereg PARAMS ((int));
718 static void dot_restorereg_p PARAMS ((int));
719 static void dot_handlerdata PARAMS ((int));
720 static void dot_unwentry PARAMS ((int));
721 static void dot_altrp PARAMS ((int));
722 static void dot_savemem PARAMS ((int));
723 static void dot_saveg PARAMS ((int));
724 static void dot_savef PARAMS ((int));
725 static void dot_saveb PARAMS ((int));
726 static void dot_savegf PARAMS ((int));
727 static void dot_spill PARAMS ((int));
728 static void dot_spillreg PARAMS ((int));
729 static void dot_spillmem PARAMS ((int));
730 static void dot_spillreg_p PARAMS ((int));
731 static void dot_spillmem_p PARAMS ((int));
732 static void dot_label_state PARAMS ((int));
733 static void dot_copy_state PARAMS ((int));
734 static void dot_unwabi PARAMS ((int));
735 static void dot_personality PARAMS ((int));
736 static void dot_body PARAMS ((int));
737 static void dot_prologue PARAMS ((int));
738 static void dot_endp PARAMS ((int));
739 static void dot_template PARAMS ((int));
740 static void dot_regstk PARAMS ((int));
741 static void dot_rot PARAMS ((int));
742 static void dot_byteorder PARAMS ((int));
743 static void dot_psr PARAMS ((int));
744 static void dot_alias PARAMS ((int));
745 static void dot_ln PARAMS ((int));
746 static char *parse_section_name PARAMS ((void));
747 static void dot_xdata PARAMS ((int));
748 static void stmt_float_cons PARAMS ((int));
749 static void stmt_cons_ua PARAMS ((int));
750 static void dot_xfloat_cons PARAMS ((int));
751 static void dot_xstringer PARAMS ((int));
752 static void dot_xdata_ua PARAMS ((int));
753 static void dot_xfloat_cons_ua PARAMS ((int));
754 static void print_prmask PARAMS ((valueT mask));
755 static void dot_pred_rel PARAMS ((int));
756 static void dot_reg_val PARAMS ((int));
757 static void dot_serialize PARAMS ((int));
758 static void dot_dv_mode PARAMS ((int));
759 static void dot_entry PARAMS ((int));
760 static void dot_mem_offset PARAMS ((int));
761 static void add_unwind_entry PARAMS((unw_rec_list *ptr));
762 static symbolS *declare_register PARAMS ((const char *name, int regnum));
763 static void declare_register_set PARAMS ((const char *, int, int));
764 static unsigned int operand_width PARAMS ((enum ia64_opnd));
765 static enum operand_match_result operand_match PARAMS ((const struct ia64_opcode *idesc,
766 int index,
767 expressionS *e));
768 static int parse_operand PARAMS ((expressionS *e));
769 static struct ia64_opcode * parse_operands PARAMS ((struct ia64_opcode *));
770 static void build_insn PARAMS ((struct slot *, bfd_vma *));
771 static void emit_one_bundle PARAMS ((void));
772 static void fix_insn PARAMS ((fixS *, const struct ia64_operand *, valueT));
773 static bfd_reloc_code_real_type ia64_gen_real_reloc_type PARAMS ((struct symbol *sym,
774 bfd_reloc_code_real_type r_type));
775 static void insn_group_break PARAMS ((int, int, int));
776 static void mark_resource PARAMS ((struct ia64_opcode *, const struct ia64_dependency *,
777 struct rsrc *, int depind, int path));
778 static void add_qp_mutex PARAMS((valueT mask));
779 static void add_qp_imply PARAMS((int p1, int p2));
780 static void clear_qp_branch_flag PARAMS((valueT mask));
781 static void clear_qp_mutex PARAMS((valueT mask));
782 static void clear_qp_implies PARAMS((valueT p1_mask, valueT p2_mask));
783 static int has_suffix_p PARAMS((const char *, const char *));
784 static void clear_register_values PARAMS ((void));
785 static void print_dependency PARAMS ((const char *action, int depind));
786 static void instruction_serialization PARAMS ((void));
787 static void data_serialization PARAMS ((void));
788 static void remove_marked_resource PARAMS ((struct rsrc *));
789 static int is_conditional_branch PARAMS ((struct ia64_opcode *));
790 static int is_taken_branch PARAMS ((struct ia64_opcode *));
791 static int is_interruption_or_rfi PARAMS ((struct ia64_opcode *));
792 static int depends_on PARAMS ((int, struct ia64_opcode *));
793 static int specify_resource PARAMS ((const struct ia64_dependency *,
794 struct ia64_opcode *, int, struct rsrc [], int, int));
795 static int check_dv PARAMS((struct ia64_opcode *idesc));
796 static void check_dependencies PARAMS((struct ia64_opcode *));
797 static void mark_resources PARAMS((struct ia64_opcode *));
798 static void update_dependencies PARAMS((struct ia64_opcode *));
799 static void note_register_values PARAMS((struct ia64_opcode *));
800 static int qp_mutex PARAMS ((int, int, int));
801 static int resources_match PARAMS ((struct rsrc *, struct ia64_opcode *, int, int, int));
802 static void output_vbyte_mem PARAMS ((int, char *, char *));
803 static void count_output PARAMS ((int, char *, char *));
804 static void output_R1_format PARAMS ((vbyte_func, unw_record_type, int));
805 static void output_R2_format PARAMS ((vbyte_func, int, int, unsigned long));
806 static void output_R3_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
807 static void output_P1_format PARAMS ((vbyte_func, int));
808 static void output_P2_format PARAMS ((vbyte_func, int, int));
809 static void output_P3_format PARAMS ((vbyte_func, unw_record_type, int));
810 static void output_P4_format PARAMS ((vbyte_func, unsigned char *, unsigned long));
811 static void output_P5_format PARAMS ((vbyte_func, int, unsigned long));
812 static void output_P6_format PARAMS ((vbyte_func, unw_record_type, int));
813 static void output_P7_format PARAMS ((vbyte_func, unw_record_type, unsigned long, unsigned long));
814 static void output_P8_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
815 static void output_P9_format PARAMS ((vbyte_func, int, int));
816 static void output_P10_format PARAMS ((vbyte_func, int, int));
817 static void output_B1_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
818 static void output_B2_format PARAMS ((vbyte_func, unsigned long, unsigned long));
819 static void output_B3_format PARAMS ((vbyte_func, unsigned long, unsigned long));
820 static void output_B4_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
821 static char format_ab_reg PARAMS ((int, int));
822 static void output_X1_format PARAMS ((vbyte_func, unw_record_type, int, int, unsigned long,
823 unsigned long));
824 static void output_X2_format PARAMS ((vbyte_func, int, int, int, int, int, unsigned long));
825 static void output_X3_format PARAMS ((vbyte_func, unw_record_type, int, int, int, unsigned long,
826 unsigned long));
827 static void output_X4_format PARAMS ((vbyte_func, int, int, int, int, int, int, unsigned long));
828 static unw_rec_list *output_endp PARAMS ((void));
829 static unw_rec_list *output_prologue PARAMS ((void));
830 static unw_rec_list *output_prologue_gr PARAMS ((unsigned int, unsigned int));
831 static unw_rec_list *output_body PARAMS ((void));
832 static unw_rec_list *output_mem_stack_f PARAMS ((unsigned int));
833 static unw_rec_list *output_mem_stack_v PARAMS ((void));
834 static unw_rec_list *output_psp_gr PARAMS ((unsigned int));
835 static unw_rec_list *output_psp_sprel PARAMS ((unsigned int));
836 static unw_rec_list *output_rp_when PARAMS ((void));
837 static unw_rec_list *output_rp_gr PARAMS ((unsigned int));
838 static unw_rec_list *output_rp_br PARAMS ((unsigned int));
839 static unw_rec_list *output_rp_psprel PARAMS ((unsigned int));
840 static unw_rec_list *output_rp_sprel PARAMS ((unsigned int));
841 static unw_rec_list *output_pfs_when PARAMS ((void));
842 static unw_rec_list *output_pfs_gr PARAMS ((unsigned int));
843 static unw_rec_list *output_pfs_psprel PARAMS ((unsigned int));
844 static unw_rec_list *output_pfs_sprel PARAMS ((unsigned int));
845 static unw_rec_list *output_preds_when PARAMS ((void));
846 static unw_rec_list *output_preds_gr PARAMS ((unsigned int));
847 static unw_rec_list *output_preds_psprel PARAMS ((unsigned int));
848 static unw_rec_list *output_preds_sprel PARAMS ((unsigned int));
849 static unw_rec_list *output_fr_mem PARAMS ((unsigned int));
850 static unw_rec_list *output_frgr_mem PARAMS ((unsigned int, unsigned int));
851 static unw_rec_list *output_gr_gr PARAMS ((unsigned int, unsigned int));
852 static unw_rec_list *output_gr_mem PARAMS ((unsigned int));
853 static unw_rec_list *output_br_mem PARAMS ((unsigned int));
854 static unw_rec_list *output_br_gr PARAMS ((unsigned int, unsigned int));
855 static unw_rec_list *output_spill_base PARAMS ((unsigned int));
856 static unw_rec_list *output_unat_when PARAMS ((void));
857 static unw_rec_list *output_unat_gr PARAMS ((unsigned int));
858 static unw_rec_list *output_unat_psprel PARAMS ((unsigned int));
859 static unw_rec_list *output_unat_sprel PARAMS ((unsigned int));
860 static unw_rec_list *output_lc_when PARAMS ((void));
861 static unw_rec_list *output_lc_gr PARAMS ((unsigned int));
862 static unw_rec_list *output_lc_psprel PARAMS ((unsigned int));
863 static unw_rec_list *output_lc_sprel PARAMS ((unsigned int));
864 static unw_rec_list *output_fpsr_when PARAMS ((void));
865 static unw_rec_list *output_fpsr_gr PARAMS ((unsigned int));
866 static unw_rec_list *output_fpsr_psprel PARAMS ((unsigned int));
867 static unw_rec_list *output_fpsr_sprel PARAMS ((unsigned int));
868 static unw_rec_list *output_priunat_when_gr PARAMS ((void));
869 static unw_rec_list *output_priunat_when_mem PARAMS ((void));
870 static unw_rec_list *output_priunat_gr PARAMS ((unsigned int));
871 static unw_rec_list *output_priunat_psprel PARAMS ((unsigned int));
872 static unw_rec_list *output_priunat_sprel PARAMS ((unsigned int));
873 static unw_rec_list *output_bsp_when PARAMS ((void));
874 static unw_rec_list *output_bsp_gr PARAMS ((unsigned int));
875 static unw_rec_list *output_bsp_psprel PARAMS ((unsigned int));
876 static unw_rec_list *output_bsp_sprel PARAMS ((unsigned int));
877 static unw_rec_list *output_bspstore_when PARAMS ((void));
878 static unw_rec_list *output_bspstore_gr PARAMS ((unsigned int));
879 static unw_rec_list *output_bspstore_psprel PARAMS ((unsigned int));
880 static unw_rec_list *output_bspstore_sprel PARAMS ((unsigned int));
881 static unw_rec_list *output_rnat_when PARAMS ((void));
882 static unw_rec_list *output_rnat_gr PARAMS ((unsigned int));
883 static unw_rec_list *output_rnat_psprel PARAMS ((unsigned int));
884 static unw_rec_list *output_rnat_sprel PARAMS ((unsigned int));
885 static unw_rec_list *output_unwabi PARAMS ((unsigned long, unsigned long));
886 static unw_rec_list *output_epilogue PARAMS ((unsigned long));
887 static unw_rec_list *output_label_state PARAMS ((unsigned long));
888 static unw_rec_list *output_copy_state PARAMS ((unsigned long));
889 static unw_rec_list *output_spill_psprel PARAMS ((unsigned int, unsigned int, unsigned int));
890 static unw_rec_list *output_spill_sprel PARAMS ((unsigned int, unsigned int, unsigned int));
891 static unw_rec_list *output_spill_psprel_p PARAMS ((unsigned int, unsigned int, unsigned int,
892 unsigned int));
893 static unw_rec_list *output_spill_sprel_p PARAMS ((unsigned int, unsigned int, unsigned int,
894 unsigned int));
895 static unw_rec_list *output_spill_reg PARAMS ((unsigned int, unsigned int, unsigned int,
896 unsigned int));
897 static unw_rec_list *output_spill_reg_p PARAMS ((unsigned int, unsigned int, unsigned int,
898 unsigned int, unsigned int));
899 static void process_one_record PARAMS ((unw_rec_list *, vbyte_func));
900 static void process_unw_records PARAMS ((unw_rec_list *, vbyte_func));
901 static int calc_record_size PARAMS ((unw_rec_list *));
902 static void set_imask PARAMS ((unw_rec_list *, unsigned long, unsigned long, unsigned int));
903 static unsigned long slot_index PARAMS ((unsigned long, fragS *,
904 unsigned long, fragS *,
905 int));
906 static unw_rec_list *optimize_unw_records PARAMS ((unw_rec_list *));
907 static void fixup_unw_records PARAMS ((unw_rec_list *, int));
908 static int convert_expr_to_ab_reg PARAMS ((expressionS *, unsigned int *, unsigned int *));
909 static int convert_expr_to_xy_reg PARAMS ((expressionS *, unsigned int *, unsigned int *));
910 static unsigned int get_saved_prologue_count PARAMS ((unsigned long));
911 static void save_prologue_count PARAMS ((unsigned long, unsigned int));
912 static void free_saved_prologue_counts PARAMS ((void));
913
914 /* Determine if application register REGNUM resides only in the integer
915 unit (as opposed to the memory unit). */
916 static int
917 ar_is_only_in_integer_unit (int reg)
918 {
919 reg -= REG_AR;
920 return reg >= 64 && reg <= 111;
921 }
922
923 /* Determine if application register REGNUM resides only in the memory
924 unit (as opposed to the integer unit). */
925 static int
926 ar_is_only_in_memory_unit (int reg)
927 {
928 reg -= REG_AR;
929 return reg >= 0 && reg <= 47;
930 }
931
932 /* Switch to section NAME and create section if necessary. It's
933 rather ugly that we have to manipulate input_line_pointer but I
934 don't see any other way to accomplish the same thing without
935 changing obj-elf.c (which may be the Right Thing, in the end). */
936 static void
937 set_section (name)
938 char *name;
939 {
940 char *saved_input_line_pointer;
941
942 saved_input_line_pointer = input_line_pointer;
943 input_line_pointer = name;
944 obj_elf_section (0);
945 input_line_pointer = saved_input_line_pointer;
946 }
947
948 /* Map 's' to SHF_IA_64_SHORT. */
949
950 int
951 ia64_elf_section_letter (letter, ptr_msg)
952 int letter;
953 char **ptr_msg;
954 {
955 if (letter == 's')
956 return SHF_IA_64_SHORT;
957 else if (letter == 'o')
958 return SHF_LINK_ORDER;
959
960 *ptr_msg = _("Bad .section directive: want a,o,s,w,x,M,S,G,T in string");
961 return -1;
962 }
963
964 /* Map SHF_IA_64_SHORT to SEC_SMALL_DATA. */
965
966 flagword
967 ia64_elf_section_flags (flags, attr, type)
968 flagword flags;
969 int attr, type ATTRIBUTE_UNUSED;
970 {
971 if (attr & SHF_IA_64_SHORT)
972 flags |= SEC_SMALL_DATA;
973 return flags;
974 }
975
976 int
977 ia64_elf_section_type (str, len)
978 const char *str;
979 size_t len;
980 {
981 #define STREQ(s) ((len == sizeof (s) - 1) && (strncmp (str, s, sizeof (s) - 1) == 0))
982
983 if (STREQ (ELF_STRING_ia64_unwind_info))
984 return SHT_PROGBITS;
985
986 if (STREQ (ELF_STRING_ia64_unwind_info_once))
987 return SHT_PROGBITS;
988
989 if (STREQ (ELF_STRING_ia64_unwind))
990 return SHT_IA_64_UNWIND;
991
992 if (STREQ (ELF_STRING_ia64_unwind_once))
993 return SHT_IA_64_UNWIND;
994
995 if (STREQ ("unwind"))
996 return SHT_IA_64_UNWIND;
997
998 return -1;
999 #undef STREQ
1000 }
1001
1002 static unsigned int
1003 set_regstack (ins, locs, outs, rots)
1004 unsigned int ins, locs, outs, rots;
1005 {
1006 /* Size of frame. */
1007 unsigned int sof;
1008
1009 sof = ins + locs + outs;
1010 if (sof > 96)
1011 {
1012 as_bad ("Size of frame exceeds maximum of 96 registers");
1013 return 0;
1014 }
1015 if (rots > sof)
1016 {
1017 as_warn ("Size of rotating registers exceeds frame size");
1018 return 0;
1019 }
1020 md.in.base = REG_GR + 32;
1021 md.loc.base = md.in.base + ins;
1022 md.out.base = md.loc.base + locs;
1023
1024 md.in.num_regs = ins;
1025 md.loc.num_regs = locs;
1026 md.out.num_regs = outs;
1027 md.rot.num_regs = rots;
1028 return sof;
1029 }
1030
1031 void
1032 ia64_flush_insns ()
1033 {
1034 struct label_fix *lfix;
1035 segT saved_seg;
1036 subsegT saved_subseg;
1037 unw_rec_list *ptr;
1038
1039 if (!md.last_text_seg)
1040 return;
1041
1042 saved_seg = now_seg;
1043 saved_subseg = now_subseg;
1044
1045 subseg_set (md.last_text_seg, 0);
1046
1047 while (md.num_slots_in_use > 0)
1048 emit_one_bundle (); /* force out queued instructions */
1049
1050 /* In case there are labels following the last instruction, resolve
1051 those now: */
1052 for (lfix = CURR_SLOT.label_fixups; lfix; lfix = lfix->next)
1053 {
1054 S_SET_VALUE (lfix->sym, frag_now_fix ());
1055 symbol_set_frag (lfix->sym, frag_now);
1056 }
1057 CURR_SLOT.label_fixups = 0;
1058 for (lfix = CURR_SLOT.tag_fixups; lfix; lfix = lfix->next)
1059 {
1060 S_SET_VALUE (lfix->sym, frag_now_fix ());
1061 symbol_set_frag (lfix->sym, frag_now);
1062 }
1063 CURR_SLOT.tag_fixups = 0;
1064
1065 /* In case there are unwind directives following the last instruction,
1066 resolve those now. We only handle prologue, body, and endp directives
1067 here. Give an error for others. */
1068 for (ptr = unwind.current_entry; ptr; ptr = ptr->next)
1069 {
1070 switch (ptr->r.type)
1071 {
1072 case prologue:
1073 case prologue_gr:
1074 case body:
1075 case endp:
1076 ptr->slot_number = (unsigned long) frag_more (0);
1077 ptr->slot_frag = frag_now;
1078 break;
1079
1080 /* Allow any record which doesn't have a "t" field (i.e.,
1081 doesn't relate to a particular instruction). */
1082 case unwabi:
1083 case br_gr:
1084 case copy_state:
1085 case fr_mem:
1086 case frgr_mem:
1087 case gr_gr:
1088 case gr_mem:
1089 case label_state:
1090 case rp_br:
1091 case spill_base:
1092 case spill_mask:
1093 /* nothing */
1094 break;
1095
1096 default:
1097 as_bad (_("Unwind directive not followed by an instruction."));
1098 break;
1099 }
1100 }
1101 unwind.current_entry = NULL;
1102
1103 subseg_set (saved_seg, saved_subseg);
1104
1105 if (md.qp.X_op == O_register)
1106 as_bad ("qualifying predicate not followed by instruction");
1107 }
1108
1109 static void
1110 ia64_do_align (int nbytes)
1111 {
1112 char *saved_input_line_pointer = input_line_pointer;
1113
1114 input_line_pointer = "";
1115 s_align_bytes (nbytes);
1116 input_line_pointer = saved_input_line_pointer;
1117 }
1118
1119 void
1120 ia64_cons_align (nbytes)
1121 int nbytes;
1122 {
1123 if (md.auto_align)
1124 {
1125 char *saved_input_line_pointer = input_line_pointer;
1126 input_line_pointer = "";
1127 s_align_bytes (nbytes);
1128 input_line_pointer = saved_input_line_pointer;
1129 }
1130 }
1131
1132 /* Output COUNT bytes to a memory location. */
1133 static unsigned char *vbyte_mem_ptr = NULL;
1134
1135 void
1136 output_vbyte_mem (count, ptr, comment)
1137 int count;
1138 char *ptr;
1139 char *comment ATTRIBUTE_UNUSED;
1140 {
1141 int x;
1142 if (vbyte_mem_ptr == NULL)
1143 abort ();
1144
1145 if (count == 0)
1146 return;
1147 for (x = 0; x < count; x++)
1148 *(vbyte_mem_ptr++) = ptr[x];
1149 }
1150
1151 /* Count the number of bytes required for records. */
1152 static int vbyte_count = 0;
1153 void
1154 count_output (count, ptr, comment)
1155 int count;
1156 char *ptr ATTRIBUTE_UNUSED;
1157 char *comment ATTRIBUTE_UNUSED;
1158 {
1159 vbyte_count += count;
1160 }
1161
1162 static void
1163 output_R1_format (f, rtype, rlen)
1164 vbyte_func f;
1165 unw_record_type rtype;
1166 int rlen;
1167 {
1168 int r = 0;
1169 char byte;
1170 if (rlen > 0x1f)
1171 {
1172 output_R3_format (f, rtype, rlen);
1173 return;
1174 }
1175
1176 if (rtype == body)
1177 r = 1;
1178 else if (rtype != prologue)
1179 as_bad ("record type is not valid");
1180
1181 byte = UNW_R1 | (r << 5) | (rlen & 0x1f);
1182 (*f) (1, &byte, NULL);
1183 }
1184
1185 static void
1186 output_R2_format (f, mask, grsave, rlen)
1187 vbyte_func f;
1188 int mask, grsave;
1189 unsigned long rlen;
1190 {
1191 char bytes[20];
1192 int count = 2;
1193 mask = (mask & 0x0f);
1194 grsave = (grsave & 0x7f);
1195
1196 bytes[0] = (UNW_R2 | (mask >> 1));
1197 bytes[1] = (((mask & 0x01) << 7) | grsave);
1198 count += output_leb128 (bytes + 2, rlen, 0);
1199 (*f) (count, bytes, NULL);
1200 }
1201
1202 static void
1203 output_R3_format (f, rtype, rlen)
1204 vbyte_func f;
1205 unw_record_type rtype;
1206 unsigned long rlen;
1207 {
1208 int r = 0, count;
1209 char bytes[20];
1210 if (rlen <= 0x1f)
1211 {
1212 output_R1_format (f, rtype, rlen);
1213 return;
1214 }
1215
1216 if (rtype == body)
1217 r = 1;
1218 else if (rtype != prologue)
1219 as_bad ("record type is not valid");
1220 bytes[0] = (UNW_R3 | r);
1221 count = output_leb128 (bytes + 1, rlen, 0);
1222 (*f) (count + 1, bytes, NULL);
1223 }
1224
1225 static void
1226 output_P1_format (f, brmask)
1227 vbyte_func f;
1228 int brmask;
1229 {
1230 char byte;
1231 byte = UNW_P1 | (brmask & 0x1f);
1232 (*f) (1, &byte, NULL);
1233 }
1234
1235 static void
1236 output_P2_format (f, brmask, gr)
1237 vbyte_func f;
1238 int brmask;
1239 int gr;
1240 {
1241 char bytes[2];
1242 brmask = (brmask & 0x1f);
1243 bytes[0] = UNW_P2 | (brmask >> 1);
1244 bytes[1] = (((brmask & 1) << 7) | gr);
1245 (*f) (2, bytes, NULL);
1246 }
1247
1248 static void
1249 output_P3_format (f, rtype, reg)
1250 vbyte_func f;
1251 unw_record_type rtype;
1252 int reg;
1253 {
1254 char bytes[2];
1255 int r = 0;
1256 reg = (reg & 0x7f);
1257 switch (rtype)
1258 {
1259 case psp_gr:
1260 r = 0;
1261 break;
1262 case rp_gr:
1263 r = 1;
1264 break;
1265 case pfs_gr:
1266 r = 2;
1267 break;
1268 case preds_gr:
1269 r = 3;
1270 break;
1271 case unat_gr:
1272 r = 4;
1273 break;
1274 case lc_gr:
1275 r = 5;
1276 break;
1277 case rp_br:
1278 r = 6;
1279 break;
1280 case rnat_gr:
1281 r = 7;
1282 break;
1283 case bsp_gr:
1284 r = 8;
1285 break;
1286 case bspstore_gr:
1287 r = 9;
1288 break;
1289 case fpsr_gr:
1290 r = 10;
1291 break;
1292 case priunat_gr:
1293 r = 11;
1294 break;
1295 default:
1296 as_bad ("Invalid record type for P3 format.");
1297 }
1298 bytes[0] = (UNW_P3 | (r >> 1));
1299 bytes[1] = (((r & 1) << 7) | reg);
1300 (*f) (2, bytes, NULL);
1301 }
1302
1303 static void
1304 output_P4_format (f, imask, imask_size)
1305 vbyte_func f;
1306 unsigned char *imask;
1307 unsigned long imask_size;
1308 {
1309 imask[0] = UNW_P4;
1310 (*f) (imask_size, imask, NULL);
1311 }
1312
1313 static void
1314 output_P5_format (f, grmask, frmask)
1315 vbyte_func f;
1316 int grmask;
1317 unsigned long frmask;
1318 {
1319 char bytes[4];
1320 grmask = (grmask & 0x0f);
1321
1322 bytes[0] = UNW_P5;
1323 bytes[1] = ((grmask << 4) | ((frmask & 0x000f0000) >> 16));
1324 bytes[2] = ((frmask & 0x0000ff00) >> 8);
1325 bytes[3] = (frmask & 0x000000ff);
1326 (*f) (4, bytes, NULL);
1327 }
1328
1329 static void
1330 output_P6_format (f, rtype, rmask)
1331 vbyte_func f;
1332 unw_record_type rtype;
1333 int rmask;
1334 {
1335 char byte;
1336 int r = 0;
1337
1338 if (rtype == gr_mem)
1339 r = 1;
1340 else if (rtype != fr_mem)
1341 as_bad ("Invalid record type for format P6");
1342 byte = (UNW_P6 | (r << 4) | (rmask & 0x0f));
1343 (*f) (1, &byte, NULL);
1344 }
1345
1346 static void
1347 output_P7_format (f, rtype, w1, w2)
1348 vbyte_func f;
1349 unw_record_type rtype;
1350 unsigned long w1;
1351 unsigned long w2;
1352 {
1353 char bytes[20];
1354 int count = 1;
1355 int r = 0;
1356 count += output_leb128 (bytes + 1, w1, 0);
1357 switch (rtype)
1358 {
1359 case mem_stack_f:
1360 r = 0;
1361 count += output_leb128 (bytes + count, w2 >> 4, 0);
1362 break;
1363 case mem_stack_v:
1364 r = 1;
1365 break;
1366 case spill_base:
1367 r = 2;
1368 break;
1369 case psp_sprel:
1370 r = 3;
1371 break;
1372 case rp_when:
1373 r = 4;
1374 break;
1375 case rp_psprel:
1376 r = 5;
1377 break;
1378 case pfs_when:
1379 r = 6;
1380 break;
1381 case pfs_psprel:
1382 r = 7;
1383 break;
1384 case preds_when:
1385 r = 8;
1386 break;
1387 case preds_psprel:
1388 r = 9;
1389 break;
1390 case lc_when:
1391 r = 10;
1392 break;
1393 case lc_psprel:
1394 r = 11;
1395 break;
1396 case unat_when:
1397 r = 12;
1398 break;
1399 case unat_psprel:
1400 r = 13;
1401 break;
1402 case fpsr_when:
1403 r = 14;
1404 break;
1405 case fpsr_psprel:
1406 r = 15;
1407 break;
1408 default:
1409 break;
1410 }
1411 bytes[0] = (UNW_P7 | r);
1412 (*f) (count, bytes, NULL);
1413 }
1414
1415 static void
1416 output_P8_format (f, rtype, t)
1417 vbyte_func f;
1418 unw_record_type rtype;
1419 unsigned long t;
1420 {
1421 char bytes[20];
1422 int r = 0;
1423 int count = 2;
1424 bytes[0] = UNW_P8;
1425 switch (rtype)
1426 {
1427 case rp_sprel:
1428 r = 1;
1429 break;
1430 case pfs_sprel:
1431 r = 2;
1432 break;
1433 case preds_sprel:
1434 r = 3;
1435 break;
1436 case lc_sprel:
1437 r = 4;
1438 break;
1439 case unat_sprel:
1440 r = 5;
1441 break;
1442 case fpsr_sprel:
1443 r = 6;
1444 break;
1445 case bsp_when:
1446 r = 7;
1447 break;
1448 case bsp_psprel:
1449 r = 8;
1450 break;
1451 case bsp_sprel:
1452 r = 9;
1453 break;
1454 case bspstore_when:
1455 r = 10;
1456 break;
1457 case bspstore_psprel:
1458 r = 11;
1459 break;
1460 case bspstore_sprel:
1461 r = 12;
1462 break;
1463 case rnat_when:
1464 r = 13;
1465 break;
1466 case rnat_psprel:
1467 r = 14;
1468 break;
1469 case rnat_sprel:
1470 r = 15;
1471 break;
1472 case priunat_when_gr:
1473 r = 16;
1474 break;
1475 case priunat_psprel:
1476 r = 17;
1477 break;
1478 case priunat_sprel:
1479 r = 18;
1480 break;
1481 case priunat_when_mem:
1482 r = 19;
1483 break;
1484 default:
1485 break;
1486 }
1487 bytes[1] = r;
1488 count += output_leb128 (bytes + 2, t, 0);
1489 (*f) (count, bytes, NULL);
1490 }
1491
1492 static void
1493 output_P9_format (f, grmask, gr)
1494 vbyte_func f;
1495 int grmask;
1496 int gr;
1497 {
1498 char bytes[3];
1499 bytes[0] = UNW_P9;
1500 bytes[1] = (grmask & 0x0f);
1501 bytes[2] = (gr & 0x7f);
1502 (*f) (3, bytes, NULL);
1503 }
1504
1505 static void
1506 output_P10_format (f, abi, context)
1507 vbyte_func f;
1508 int abi;
1509 int context;
1510 {
1511 char bytes[3];
1512 bytes[0] = UNW_P10;
1513 bytes[1] = (abi & 0xff);
1514 bytes[2] = (context & 0xff);
1515 (*f) (3, bytes, NULL);
1516 }
1517
1518 static void
1519 output_B1_format (f, rtype, label)
1520 vbyte_func f;
1521 unw_record_type rtype;
1522 unsigned long label;
1523 {
1524 char byte;
1525 int r = 0;
1526 if (label > 0x1f)
1527 {
1528 output_B4_format (f, rtype, label);
1529 return;
1530 }
1531 if (rtype == copy_state)
1532 r = 1;
1533 else if (rtype != label_state)
1534 as_bad ("Invalid record type for format B1");
1535
1536 byte = (UNW_B1 | (r << 5) | (label & 0x1f));
1537 (*f) (1, &byte, NULL);
1538 }
1539
1540 static void
1541 output_B2_format (f, ecount, t)
1542 vbyte_func f;
1543 unsigned long ecount;
1544 unsigned long t;
1545 {
1546 char bytes[20];
1547 int count = 1;
1548 if (ecount > 0x1f)
1549 {
1550 output_B3_format (f, ecount, t);
1551 return;
1552 }
1553 bytes[0] = (UNW_B2 | (ecount & 0x1f));
1554 count += output_leb128 (bytes + 1, t, 0);
1555 (*f) (count, bytes, NULL);
1556 }
1557
1558 static void
1559 output_B3_format (f, ecount, t)
1560 vbyte_func f;
1561 unsigned long ecount;
1562 unsigned long t;
1563 {
1564 char bytes[20];
1565 int count = 1;
1566 if (ecount <= 0x1f)
1567 {
1568 output_B2_format (f, ecount, t);
1569 return;
1570 }
1571 bytes[0] = UNW_B3;
1572 count += output_leb128 (bytes + 1, t, 0);
1573 count += output_leb128 (bytes + count, ecount, 0);
1574 (*f) (count, bytes, NULL);
1575 }
1576
1577 static void
1578 output_B4_format (f, rtype, label)
1579 vbyte_func f;
1580 unw_record_type rtype;
1581 unsigned long label;
1582 {
1583 char bytes[20];
1584 int r = 0;
1585 int count = 1;
1586 if (label <= 0x1f)
1587 {
1588 output_B1_format (f, rtype, label);
1589 return;
1590 }
1591
1592 if (rtype == copy_state)
1593 r = 1;
1594 else if (rtype != label_state)
1595 as_bad ("Invalid record type for format B1");
1596
1597 bytes[0] = (UNW_B4 | (r << 3));
1598 count += output_leb128 (bytes + 1, label, 0);
1599 (*f) (count, bytes, NULL);
1600 }
1601
1602 static char
1603 format_ab_reg (ab, reg)
1604 int ab;
1605 int reg;
1606 {
1607 int ret;
1608 ab = (ab & 3);
1609 reg = (reg & 0x1f);
1610 ret = (ab << 5) | reg;
1611 return ret;
1612 }
1613
1614 static void
1615 output_X1_format (f, rtype, ab, reg, t, w1)
1616 vbyte_func f;
1617 unw_record_type rtype;
1618 int ab, reg;
1619 unsigned long t;
1620 unsigned long w1;
1621 {
1622 char bytes[20];
1623 int r = 0;
1624 int count = 2;
1625 bytes[0] = UNW_X1;
1626
1627 if (rtype == spill_sprel)
1628 r = 1;
1629 else if (rtype != spill_psprel)
1630 as_bad ("Invalid record type for format X1");
1631 bytes[1] = ((r << 7) | format_ab_reg (ab, reg));
1632 count += output_leb128 (bytes + 2, t, 0);
1633 count += output_leb128 (bytes + count, w1, 0);
1634 (*f) (count, bytes, NULL);
1635 }
1636
1637 static void
1638 output_X2_format (f, ab, reg, x, y, treg, t)
1639 vbyte_func f;
1640 int ab, reg;
1641 int x, y, treg;
1642 unsigned long t;
1643 {
1644 char bytes[20];
1645 int count = 3;
1646 bytes[0] = UNW_X2;
1647 bytes[1] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1648 bytes[2] = (((y & 1) << 7) | (treg & 0x7f));
1649 count += output_leb128 (bytes + 3, t, 0);
1650 (*f) (count, bytes, NULL);
1651 }
1652
1653 static void
1654 output_X3_format (f, rtype, qp, ab, reg, t, w1)
1655 vbyte_func f;
1656 unw_record_type rtype;
1657 int qp;
1658 int ab, reg;
1659 unsigned long t;
1660 unsigned long w1;
1661 {
1662 char bytes[20];
1663 int r = 0;
1664 int count = 3;
1665 bytes[0] = UNW_X3;
1666
1667 if (rtype == spill_sprel_p)
1668 r = 1;
1669 else if (rtype != spill_psprel_p)
1670 as_bad ("Invalid record type for format X3");
1671 bytes[1] = ((r << 7) | (qp & 0x3f));
1672 bytes[2] = format_ab_reg (ab, reg);
1673 count += output_leb128 (bytes + 3, t, 0);
1674 count += output_leb128 (bytes + count, w1, 0);
1675 (*f) (count, bytes, NULL);
1676 }
1677
1678 static void
1679 output_X4_format (f, qp, ab, reg, x, y, treg, t)
1680 vbyte_func f;
1681 int qp;
1682 int ab, reg;
1683 int x, y, treg;
1684 unsigned long t;
1685 {
1686 char bytes[20];
1687 int count = 4;
1688 bytes[0] = UNW_X4;
1689 bytes[1] = (qp & 0x3f);
1690 bytes[2] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1691 bytes[3] = (((y & 1) << 7) | (treg & 0x7f));
1692 count += output_leb128 (bytes + 4, t, 0);
1693 (*f) (count, bytes, NULL);
1694 }
1695
1696 /* This function allocates a record list structure, and initializes fields. */
1697
1698 static unw_rec_list *
1699 alloc_record (unw_record_type t)
1700 {
1701 unw_rec_list *ptr;
1702 ptr = xmalloc (sizeof (*ptr));
1703 ptr->next = NULL;
1704 ptr->slot_number = SLOT_NUM_NOT_SET;
1705 ptr->r.type = t;
1706 ptr->next_slot_number = 0;
1707 ptr->next_slot_frag = 0;
1708 return ptr;
1709 }
1710
1711 /* Dummy unwind record used for calculating the length of the last prologue or
1712 body region. */
1713
1714 static unw_rec_list *
1715 output_endp ()
1716 {
1717 unw_rec_list *ptr = alloc_record (endp);
1718 return ptr;
1719 }
1720
1721 static unw_rec_list *
1722 output_prologue ()
1723 {
1724 unw_rec_list *ptr = alloc_record (prologue);
1725 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1726 return ptr;
1727 }
1728
1729 static unw_rec_list *
1730 output_prologue_gr (saved_mask, reg)
1731 unsigned int saved_mask;
1732 unsigned int reg;
1733 {
1734 unw_rec_list *ptr = alloc_record (prologue_gr);
1735 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1736 ptr->r.record.r.grmask = saved_mask;
1737 ptr->r.record.r.grsave = reg;
1738 return ptr;
1739 }
1740
1741 static unw_rec_list *
1742 output_body ()
1743 {
1744 unw_rec_list *ptr = alloc_record (body);
1745 return ptr;
1746 }
1747
1748 static unw_rec_list *
1749 output_mem_stack_f (size)
1750 unsigned int size;
1751 {
1752 unw_rec_list *ptr = alloc_record (mem_stack_f);
1753 ptr->r.record.p.size = size;
1754 return ptr;
1755 }
1756
1757 static unw_rec_list *
1758 output_mem_stack_v ()
1759 {
1760 unw_rec_list *ptr = alloc_record (mem_stack_v);
1761 return ptr;
1762 }
1763
1764 static unw_rec_list *
1765 output_psp_gr (gr)
1766 unsigned int gr;
1767 {
1768 unw_rec_list *ptr = alloc_record (psp_gr);
1769 ptr->r.record.p.gr = gr;
1770 return ptr;
1771 }
1772
1773 static unw_rec_list *
1774 output_psp_sprel (offset)
1775 unsigned int offset;
1776 {
1777 unw_rec_list *ptr = alloc_record (psp_sprel);
1778 ptr->r.record.p.spoff = offset / 4;
1779 return ptr;
1780 }
1781
1782 static unw_rec_list *
1783 output_rp_when ()
1784 {
1785 unw_rec_list *ptr = alloc_record (rp_when);
1786 return ptr;
1787 }
1788
1789 static unw_rec_list *
1790 output_rp_gr (gr)
1791 unsigned int gr;
1792 {
1793 unw_rec_list *ptr = alloc_record (rp_gr);
1794 ptr->r.record.p.gr = gr;
1795 return ptr;
1796 }
1797
1798 static unw_rec_list *
1799 output_rp_br (br)
1800 unsigned int br;
1801 {
1802 unw_rec_list *ptr = alloc_record (rp_br);
1803 ptr->r.record.p.br = br;
1804 return ptr;
1805 }
1806
1807 static unw_rec_list *
1808 output_rp_psprel (offset)
1809 unsigned int offset;
1810 {
1811 unw_rec_list *ptr = alloc_record (rp_psprel);
1812 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
1813 return ptr;
1814 }
1815
1816 static unw_rec_list *
1817 output_rp_sprel (offset)
1818 unsigned int offset;
1819 {
1820 unw_rec_list *ptr = alloc_record (rp_sprel);
1821 ptr->r.record.p.spoff = offset / 4;
1822 return ptr;
1823 }
1824
1825 static unw_rec_list *
1826 output_pfs_when ()
1827 {
1828 unw_rec_list *ptr = alloc_record (pfs_when);
1829 return ptr;
1830 }
1831
1832 static unw_rec_list *
1833 output_pfs_gr (gr)
1834 unsigned int gr;
1835 {
1836 unw_rec_list *ptr = alloc_record (pfs_gr);
1837 ptr->r.record.p.gr = gr;
1838 return ptr;
1839 }
1840
1841 static unw_rec_list *
1842 output_pfs_psprel (offset)
1843 unsigned int offset;
1844 {
1845 unw_rec_list *ptr = alloc_record (pfs_psprel);
1846 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
1847 return ptr;
1848 }
1849
1850 static unw_rec_list *
1851 output_pfs_sprel (offset)
1852 unsigned int offset;
1853 {
1854 unw_rec_list *ptr = alloc_record (pfs_sprel);
1855 ptr->r.record.p.spoff = offset / 4;
1856 return ptr;
1857 }
1858
1859 static unw_rec_list *
1860 output_preds_when ()
1861 {
1862 unw_rec_list *ptr = alloc_record (preds_when);
1863 return ptr;
1864 }
1865
1866 static unw_rec_list *
1867 output_preds_gr (gr)
1868 unsigned int gr;
1869 {
1870 unw_rec_list *ptr = alloc_record (preds_gr);
1871 ptr->r.record.p.gr = gr;
1872 return ptr;
1873 }
1874
1875 static unw_rec_list *
1876 output_preds_psprel (offset)
1877 unsigned int offset;
1878 {
1879 unw_rec_list *ptr = alloc_record (preds_psprel);
1880 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
1881 return ptr;
1882 }
1883
1884 static unw_rec_list *
1885 output_preds_sprel (offset)
1886 unsigned int offset;
1887 {
1888 unw_rec_list *ptr = alloc_record (preds_sprel);
1889 ptr->r.record.p.spoff = offset / 4;
1890 return ptr;
1891 }
1892
1893 static unw_rec_list *
1894 output_fr_mem (mask)
1895 unsigned int mask;
1896 {
1897 unw_rec_list *ptr = alloc_record (fr_mem);
1898 ptr->r.record.p.rmask = mask;
1899 return ptr;
1900 }
1901
1902 static unw_rec_list *
1903 output_frgr_mem (gr_mask, fr_mask)
1904 unsigned int gr_mask;
1905 unsigned int fr_mask;
1906 {
1907 unw_rec_list *ptr = alloc_record (frgr_mem);
1908 ptr->r.record.p.grmask = gr_mask;
1909 ptr->r.record.p.frmask = fr_mask;
1910 return ptr;
1911 }
1912
1913 static unw_rec_list *
1914 output_gr_gr (mask, reg)
1915 unsigned int mask;
1916 unsigned int reg;
1917 {
1918 unw_rec_list *ptr = alloc_record (gr_gr);
1919 ptr->r.record.p.grmask = mask;
1920 ptr->r.record.p.gr = reg;
1921 return ptr;
1922 }
1923
1924 static unw_rec_list *
1925 output_gr_mem (mask)
1926 unsigned int mask;
1927 {
1928 unw_rec_list *ptr = alloc_record (gr_mem);
1929 ptr->r.record.p.rmask = mask;
1930 return ptr;
1931 }
1932
1933 static unw_rec_list *
1934 output_br_mem (unsigned int mask)
1935 {
1936 unw_rec_list *ptr = alloc_record (br_mem);
1937 ptr->r.record.p.brmask = mask;
1938 return ptr;
1939 }
1940
1941 static unw_rec_list *
1942 output_br_gr (save_mask, reg)
1943 unsigned int save_mask;
1944 unsigned int reg;
1945 {
1946 unw_rec_list *ptr = alloc_record (br_gr);
1947 ptr->r.record.p.brmask = save_mask;
1948 ptr->r.record.p.gr = reg;
1949 return ptr;
1950 }
1951
1952 static unw_rec_list *
1953 output_spill_base (offset)
1954 unsigned int offset;
1955 {
1956 unw_rec_list *ptr = alloc_record (spill_base);
1957 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
1958 return ptr;
1959 }
1960
1961 static unw_rec_list *
1962 output_unat_when ()
1963 {
1964 unw_rec_list *ptr = alloc_record (unat_when);
1965 return ptr;
1966 }
1967
1968 static unw_rec_list *
1969 output_unat_gr (gr)
1970 unsigned int gr;
1971 {
1972 unw_rec_list *ptr = alloc_record (unat_gr);
1973 ptr->r.record.p.gr = gr;
1974 return ptr;
1975 }
1976
1977 static unw_rec_list *
1978 output_unat_psprel (offset)
1979 unsigned int offset;
1980 {
1981 unw_rec_list *ptr = alloc_record (unat_psprel);
1982 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
1983 return ptr;
1984 }
1985
1986 static unw_rec_list *
1987 output_unat_sprel (offset)
1988 unsigned int offset;
1989 {
1990 unw_rec_list *ptr = alloc_record (unat_sprel);
1991 ptr->r.record.p.spoff = offset / 4;
1992 return ptr;
1993 }
1994
1995 static unw_rec_list *
1996 output_lc_when ()
1997 {
1998 unw_rec_list *ptr = alloc_record (lc_when);
1999 return ptr;
2000 }
2001
2002 static unw_rec_list *
2003 output_lc_gr (gr)
2004 unsigned int gr;
2005 {
2006 unw_rec_list *ptr = alloc_record (lc_gr);
2007 ptr->r.record.p.gr = gr;
2008 return ptr;
2009 }
2010
2011 static unw_rec_list *
2012 output_lc_psprel (offset)
2013 unsigned int offset;
2014 {
2015 unw_rec_list *ptr = alloc_record (lc_psprel);
2016 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2017 return ptr;
2018 }
2019
2020 static unw_rec_list *
2021 output_lc_sprel (offset)
2022 unsigned int offset;
2023 {
2024 unw_rec_list *ptr = alloc_record (lc_sprel);
2025 ptr->r.record.p.spoff = offset / 4;
2026 return ptr;
2027 }
2028
2029 static unw_rec_list *
2030 output_fpsr_when ()
2031 {
2032 unw_rec_list *ptr = alloc_record (fpsr_when);
2033 return ptr;
2034 }
2035
2036 static unw_rec_list *
2037 output_fpsr_gr (gr)
2038 unsigned int gr;
2039 {
2040 unw_rec_list *ptr = alloc_record (fpsr_gr);
2041 ptr->r.record.p.gr = gr;
2042 return ptr;
2043 }
2044
2045 static unw_rec_list *
2046 output_fpsr_psprel (offset)
2047 unsigned int offset;
2048 {
2049 unw_rec_list *ptr = alloc_record (fpsr_psprel);
2050 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2051 return ptr;
2052 }
2053
2054 static unw_rec_list *
2055 output_fpsr_sprel (offset)
2056 unsigned int offset;
2057 {
2058 unw_rec_list *ptr = alloc_record (fpsr_sprel);
2059 ptr->r.record.p.spoff = offset / 4;
2060 return ptr;
2061 }
2062
2063 static unw_rec_list *
2064 output_priunat_when_gr ()
2065 {
2066 unw_rec_list *ptr = alloc_record (priunat_when_gr);
2067 return ptr;
2068 }
2069
2070 static unw_rec_list *
2071 output_priunat_when_mem ()
2072 {
2073 unw_rec_list *ptr = alloc_record (priunat_when_mem);
2074 return ptr;
2075 }
2076
2077 static unw_rec_list *
2078 output_priunat_gr (gr)
2079 unsigned int gr;
2080 {
2081 unw_rec_list *ptr = alloc_record (priunat_gr);
2082 ptr->r.record.p.gr = gr;
2083 return ptr;
2084 }
2085
2086 static unw_rec_list *
2087 output_priunat_psprel (offset)
2088 unsigned int offset;
2089 {
2090 unw_rec_list *ptr = alloc_record (priunat_psprel);
2091 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2092 return ptr;
2093 }
2094
2095 static unw_rec_list *
2096 output_priunat_sprel (offset)
2097 unsigned int offset;
2098 {
2099 unw_rec_list *ptr = alloc_record (priunat_sprel);
2100 ptr->r.record.p.spoff = offset / 4;
2101 return ptr;
2102 }
2103
2104 static unw_rec_list *
2105 output_bsp_when ()
2106 {
2107 unw_rec_list *ptr = alloc_record (bsp_when);
2108 return ptr;
2109 }
2110
2111 static unw_rec_list *
2112 output_bsp_gr (gr)
2113 unsigned int gr;
2114 {
2115 unw_rec_list *ptr = alloc_record (bsp_gr);
2116 ptr->r.record.p.gr = gr;
2117 return ptr;
2118 }
2119
2120 static unw_rec_list *
2121 output_bsp_psprel (offset)
2122 unsigned int offset;
2123 {
2124 unw_rec_list *ptr = alloc_record (bsp_psprel);
2125 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2126 return ptr;
2127 }
2128
2129 static unw_rec_list *
2130 output_bsp_sprel (offset)
2131 unsigned int offset;
2132 {
2133 unw_rec_list *ptr = alloc_record (bsp_sprel);
2134 ptr->r.record.p.spoff = offset / 4;
2135 return ptr;
2136 }
2137
2138 static unw_rec_list *
2139 output_bspstore_when ()
2140 {
2141 unw_rec_list *ptr = alloc_record (bspstore_when);
2142 return ptr;
2143 }
2144
2145 static unw_rec_list *
2146 output_bspstore_gr (gr)
2147 unsigned int gr;
2148 {
2149 unw_rec_list *ptr = alloc_record (bspstore_gr);
2150 ptr->r.record.p.gr = gr;
2151 return ptr;
2152 }
2153
2154 static unw_rec_list *
2155 output_bspstore_psprel (offset)
2156 unsigned int offset;
2157 {
2158 unw_rec_list *ptr = alloc_record (bspstore_psprel);
2159 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2160 return ptr;
2161 }
2162
2163 static unw_rec_list *
2164 output_bspstore_sprel (offset)
2165 unsigned int offset;
2166 {
2167 unw_rec_list *ptr = alloc_record (bspstore_sprel);
2168 ptr->r.record.p.spoff = offset / 4;
2169 return ptr;
2170 }
2171
2172 static unw_rec_list *
2173 output_rnat_when ()
2174 {
2175 unw_rec_list *ptr = alloc_record (rnat_when);
2176 return ptr;
2177 }
2178
2179 static unw_rec_list *
2180 output_rnat_gr (gr)
2181 unsigned int gr;
2182 {
2183 unw_rec_list *ptr = alloc_record (rnat_gr);
2184 ptr->r.record.p.gr = gr;
2185 return ptr;
2186 }
2187
2188 static unw_rec_list *
2189 output_rnat_psprel (offset)
2190 unsigned int offset;
2191 {
2192 unw_rec_list *ptr = alloc_record (rnat_psprel);
2193 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2194 return ptr;
2195 }
2196
2197 static unw_rec_list *
2198 output_rnat_sprel (offset)
2199 unsigned int offset;
2200 {
2201 unw_rec_list *ptr = alloc_record (rnat_sprel);
2202 ptr->r.record.p.spoff = offset / 4;
2203 return ptr;
2204 }
2205
2206 static unw_rec_list *
2207 output_unwabi (abi, context)
2208 unsigned long abi;
2209 unsigned long context;
2210 {
2211 unw_rec_list *ptr = alloc_record (unwabi);
2212 ptr->r.record.p.abi = abi;
2213 ptr->r.record.p.context = context;
2214 return ptr;
2215 }
2216
2217 static unw_rec_list *
2218 output_epilogue (unsigned long ecount)
2219 {
2220 unw_rec_list *ptr = alloc_record (epilogue);
2221 ptr->r.record.b.ecount = ecount;
2222 return ptr;
2223 }
2224
2225 static unw_rec_list *
2226 output_label_state (unsigned long label)
2227 {
2228 unw_rec_list *ptr = alloc_record (label_state);
2229 ptr->r.record.b.label = label;
2230 return ptr;
2231 }
2232
2233 static unw_rec_list *
2234 output_copy_state (unsigned long label)
2235 {
2236 unw_rec_list *ptr = alloc_record (copy_state);
2237 ptr->r.record.b.label = label;
2238 return ptr;
2239 }
2240
2241 static unw_rec_list *
2242 output_spill_psprel (ab, reg, offset)
2243 unsigned int ab;
2244 unsigned int reg;
2245 unsigned int offset;
2246 {
2247 unw_rec_list *ptr = alloc_record (spill_psprel);
2248 ptr->r.record.x.ab = ab;
2249 ptr->r.record.x.reg = reg;
2250 ptr->r.record.x.pspoff = ENCODED_PSP_OFFSET (offset);
2251 return ptr;
2252 }
2253
2254 static unw_rec_list *
2255 output_spill_sprel (ab, reg, offset)
2256 unsigned int ab;
2257 unsigned int reg;
2258 unsigned int offset;
2259 {
2260 unw_rec_list *ptr = alloc_record (spill_sprel);
2261 ptr->r.record.x.ab = ab;
2262 ptr->r.record.x.reg = reg;
2263 ptr->r.record.x.spoff = offset / 4;
2264 return ptr;
2265 }
2266
2267 static unw_rec_list *
2268 output_spill_psprel_p (ab, reg, offset, predicate)
2269 unsigned int ab;
2270 unsigned int reg;
2271 unsigned int offset;
2272 unsigned int predicate;
2273 {
2274 unw_rec_list *ptr = alloc_record (spill_psprel_p);
2275 ptr->r.record.x.ab = ab;
2276 ptr->r.record.x.reg = reg;
2277 ptr->r.record.x.pspoff = ENCODED_PSP_OFFSET (offset);
2278 ptr->r.record.x.qp = predicate;
2279 return ptr;
2280 }
2281
2282 static unw_rec_list *
2283 output_spill_sprel_p (ab, reg, offset, predicate)
2284 unsigned int ab;
2285 unsigned int reg;
2286 unsigned int offset;
2287 unsigned int predicate;
2288 {
2289 unw_rec_list *ptr = alloc_record (spill_sprel_p);
2290 ptr->r.record.x.ab = ab;
2291 ptr->r.record.x.reg = reg;
2292 ptr->r.record.x.spoff = offset / 4;
2293 ptr->r.record.x.qp = predicate;
2294 return ptr;
2295 }
2296
2297 static unw_rec_list *
2298 output_spill_reg (ab, reg, targ_reg, xy)
2299 unsigned int ab;
2300 unsigned int reg;
2301 unsigned int targ_reg;
2302 unsigned int xy;
2303 {
2304 unw_rec_list *ptr = alloc_record (spill_reg);
2305 ptr->r.record.x.ab = ab;
2306 ptr->r.record.x.reg = reg;
2307 ptr->r.record.x.treg = targ_reg;
2308 ptr->r.record.x.xy = xy;
2309 return ptr;
2310 }
2311
2312 static unw_rec_list *
2313 output_spill_reg_p (ab, reg, targ_reg, xy, predicate)
2314 unsigned int ab;
2315 unsigned int reg;
2316 unsigned int targ_reg;
2317 unsigned int xy;
2318 unsigned int predicate;
2319 {
2320 unw_rec_list *ptr = alloc_record (spill_reg_p);
2321 ptr->r.record.x.ab = ab;
2322 ptr->r.record.x.reg = reg;
2323 ptr->r.record.x.treg = targ_reg;
2324 ptr->r.record.x.xy = xy;
2325 ptr->r.record.x.qp = predicate;
2326 return ptr;
2327 }
2328
2329 /* Given a unw_rec_list process the correct format with the
2330 specified function. */
2331
2332 static void
2333 process_one_record (ptr, f)
2334 unw_rec_list *ptr;
2335 vbyte_func f;
2336 {
2337 unsigned long fr_mask, gr_mask;
2338
2339 switch (ptr->r.type)
2340 {
2341 /* This is a dummy record that takes up no space in the output. */
2342 case endp:
2343 break;
2344
2345 case gr_mem:
2346 case fr_mem:
2347 case br_mem:
2348 case frgr_mem:
2349 /* These are taken care of by prologue/prologue_gr. */
2350 break;
2351
2352 case prologue_gr:
2353 case prologue:
2354 if (ptr->r.type == prologue_gr)
2355 output_R2_format (f, ptr->r.record.r.grmask,
2356 ptr->r.record.r.grsave, ptr->r.record.r.rlen);
2357 else
2358 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2359
2360 /* Output descriptor(s) for union of register spills (if any). */
2361 gr_mask = ptr->r.record.r.mask.gr_mem;
2362 fr_mask = ptr->r.record.r.mask.fr_mem;
2363 if (fr_mask)
2364 {
2365 if ((fr_mask & ~0xfUL) == 0)
2366 output_P6_format (f, fr_mem, fr_mask);
2367 else
2368 {
2369 output_P5_format (f, gr_mask, fr_mask);
2370 gr_mask = 0;
2371 }
2372 }
2373 if (gr_mask)
2374 output_P6_format (f, gr_mem, gr_mask);
2375 if (ptr->r.record.r.mask.br_mem)
2376 output_P1_format (f, ptr->r.record.r.mask.br_mem);
2377
2378 /* output imask descriptor if necessary: */
2379 if (ptr->r.record.r.mask.i)
2380 output_P4_format (f, ptr->r.record.r.mask.i,
2381 ptr->r.record.r.imask_size);
2382 break;
2383
2384 case body:
2385 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2386 break;
2387 case mem_stack_f:
2388 case mem_stack_v:
2389 output_P7_format (f, ptr->r.type, ptr->r.record.p.t,
2390 ptr->r.record.p.size);
2391 break;
2392 case psp_gr:
2393 case rp_gr:
2394 case pfs_gr:
2395 case preds_gr:
2396 case unat_gr:
2397 case lc_gr:
2398 case fpsr_gr:
2399 case priunat_gr:
2400 case bsp_gr:
2401 case bspstore_gr:
2402 case rnat_gr:
2403 output_P3_format (f, ptr->r.type, ptr->r.record.p.gr);
2404 break;
2405 case rp_br:
2406 output_P3_format (f, rp_br, ptr->r.record.p.br);
2407 break;
2408 case psp_sprel:
2409 output_P7_format (f, psp_sprel, ptr->r.record.p.spoff, 0);
2410 break;
2411 case rp_when:
2412 case pfs_when:
2413 case preds_when:
2414 case unat_when:
2415 case lc_when:
2416 case fpsr_when:
2417 output_P7_format (f, ptr->r.type, ptr->r.record.p.t, 0);
2418 break;
2419 case rp_psprel:
2420 case pfs_psprel:
2421 case preds_psprel:
2422 case unat_psprel:
2423 case lc_psprel:
2424 case fpsr_psprel:
2425 case spill_base:
2426 output_P7_format (f, ptr->r.type, ptr->r.record.p.pspoff, 0);
2427 break;
2428 case rp_sprel:
2429 case pfs_sprel:
2430 case preds_sprel:
2431 case unat_sprel:
2432 case lc_sprel:
2433 case fpsr_sprel:
2434 case priunat_sprel:
2435 case bsp_sprel:
2436 case bspstore_sprel:
2437 case rnat_sprel:
2438 output_P8_format (f, ptr->r.type, ptr->r.record.p.spoff);
2439 break;
2440 case gr_gr:
2441 output_P9_format (f, ptr->r.record.p.grmask, ptr->r.record.p.gr);
2442 break;
2443 case br_gr:
2444 output_P2_format (f, ptr->r.record.p.brmask, ptr->r.record.p.gr);
2445 break;
2446 case spill_mask:
2447 as_bad ("spill_mask record unimplemented.");
2448 break;
2449 case priunat_when_gr:
2450 case priunat_when_mem:
2451 case bsp_when:
2452 case bspstore_when:
2453 case rnat_when:
2454 output_P8_format (f, ptr->r.type, ptr->r.record.p.t);
2455 break;
2456 case priunat_psprel:
2457 case bsp_psprel:
2458 case bspstore_psprel:
2459 case rnat_psprel:
2460 output_P8_format (f, ptr->r.type, ptr->r.record.p.pspoff);
2461 break;
2462 case unwabi:
2463 output_P10_format (f, ptr->r.record.p.abi, ptr->r.record.p.context);
2464 break;
2465 case epilogue:
2466 output_B3_format (f, ptr->r.record.b.ecount, ptr->r.record.b.t);
2467 break;
2468 case label_state:
2469 case copy_state:
2470 output_B4_format (f, ptr->r.type, ptr->r.record.b.label);
2471 break;
2472 case spill_psprel:
2473 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2474 ptr->r.record.x.reg, ptr->r.record.x.t,
2475 ptr->r.record.x.pspoff);
2476 break;
2477 case spill_sprel:
2478 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2479 ptr->r.record.x.reg, ptr->r.record.x.t,
2480 ptr->r.record.x.spoff);
2481 break;
2482 case spill_reg:
2483 output_X2_format (f, ptr->r.record.x.ab, ptr->r.record.x.reg,
2484 ptr->r.record.x.xy >> 1, ptr->r.record.x.xy,
2485 ptr->r.record.x.treg, ptr->r.record.x.t);
2486 break;
2487 case spill_psprel_p:
2488 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2489 ptr->r.record.x.ab, ptr->r.record.x.reg,
2490 ptr->r.record.x.t, ptr->r.record.x.pspoff);
2491 break;
2492 case spill_sprel_p:
2493 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2494 ptr->r.record.x.ab, ptr->r.record.x.reg,
2495 ptr->r.record.x.t, ptr->r.record.x.spoff);
2496 break;
2497 case spill_reg_p:
2498 output_X4_format (f, ptr->r.record.x.qp, ptr->r.record.x.ab,
2499 ptr->r.record.x.reg, ptr->r.record.x.xy >> 1,
2500 ptr->r.record.x.xy, ptr->r.record.x.treg,
2501 ptr->r.record.x.t);
2502 break;
2503 default:
2504 as_bad ("record_type_not_valid");
2505 break;
2506 }
2507 }
2508
2509 /* Given a unw_rec_list list, process all the records with
2510 the specified function. */
2511 static void
2512 process_unw_records (list, f)
2513 unw_rec_list *list;
2514 vbyte_func f;
2515 {
2516 unw_rec_list *ptr;
2517 for (ptr = list; ptr; ptr = ptr->next)
2518 process_one_record (ptr, f);
2519 }
2520
2521 /* Determine the size of a record list in bytes. */
2522 static int
2523 calc_record_size (list)
2524 unw_rec_list *list;
2525 {
2526 vbyte_count = 0;
2527 process_unw_records (list, count_output);
2528 return vbyte_count;
2529 }
2530
2531 /* Update IMASK bitmask to reflect the fact that one or more registers
2532 of type TYPE are saved starting at instruction with index T. If N
2533 bits are set in REGMASK, it is assumed that instructions T through
2534 T+N-1 save these registers.
2535
2536 TYPE values:
2537 0: no save
2538 1: instruction saves next fp reg
2539 2: instruction saves next general reg
2540 3: instruction saves next branch reg */
2541 static void
2542 set_imask (region, regmask, t, type)
2543 unw_rec_list *region;
2544 unsigned long regmask;
2545 unsigned long t;
2546 unsigned int type;
2547 {
2548 unsigned char *imask;
2549 unsigned long imask_size;
2550 unsigned int i;
2551 int pos;
2552
2553 imask = region->r.record.r.mask.i;
2554 imask_size = region->r.record.r.imask_size;
2555 if (!imask)
2556 {
2557 imask_size = (region->r.record.r.rlen * 2 + 7) / 8 + 1;
2558 imask = xmalloc (imask_size);
2559 memset (imask, 0, imask_size);
2560
2561 region->r.record.r.imask_size = imask_size;
2562 region->r.record.r.mask.i = imask;
2563 }
2564
2565 i = (t / 4) + 1;
2566 pos = 2 * (3 - t % 4);
2567 while (regmask)
2568 {
2569 if (i >= imask_size)
2570 {
2571 as_bad ("Ignoring attempt to spill beyond end of region");
2572 return;
2573 }
2574
2575 imask[i] |= (type & 0x3) << pos;
2576
2577 regmask &= (regmask - 1);
2578 pos -= 2;
2579 if (pos < 0)
2580 {
2581 pos = 0;
2582 ++i;
2583 }
2584 }
2585 }
2586
2587 /* Return the number of instruction slots from FIRST_ADDR to SLOT_ADDR.
2588 SLOT_FRAG is the frag containing SLOT_ADDR, and FIRST_FRAG is the frag
2589 containing FIRST_ADDR. If BEFORE_RELAX, then we use worst-case estimates
2590 for frag sizes. */
2591
2592 unsigned long
2593 slot_index (slot_addr, slot_frag, first_addr, first_frag, before_relax)
2594 unsigned long slot_addr;
2595 fragS *slot_frag;
2596 unsigned long first_addr;
2597 fragS *first_frag;
2598 int before_relax;
2599 {
2600 unsigned long index = 0;
2601
2602 /* First time we are called, the initial address and frag are invalid. */
2603 if (first_addr == 0)
2604 return 0;
2605
2606 /* If the two addresses are in different frags, then we need to add in
2607 the remaining size of this frag, and then the entire size of intermediate
2608 frags. */
2609 while (slot_frag != first_frag)
2610 {
2611 unsigned long start_addr = (unsigned long) &first_frag->fr_literal;
2612
2613 if (! before_relax)
2614 {
2615 /* We can get the final addresses only during and after
2616 relaxation. */
2617 if (first_frag->fr_next && first_frag->fr_next->fr_address)
2618 index += 3 * ((first_frag->fr_next->fr_address
2619 - first_frag->fr_address
2620 - first_frag->fr_fix) >> 4);
2621 }
2622 else
2623 /* We don't know what the final addresses will be. We try our
2624 best to estimate. */
2625 switch (first_frag->fr_type)
2626 {
2627 default:
2628 break;
2629
2630 case rs_space:
2631 as_fatal ("only constant space allocation is supported");
2632 break;
2633
2634 case rs_align:
2635 case rs_align_code:
2636 case rs_align_test:
2637 /* Take alignment into account. Assume the worst case
2638 before relaxation. */
2639 index += 3 * ((1 << first_frag->fr_offset) >> 4);
2640 break;
2641
2642 case rs_org:
2643 if (first_frag->fr_symbol)
2644 {
2645 as_fatal ("only constant offsets are supported");
2646 break;
2647 }
2648 case rs_fill:
2649 index += 3 * (first_frag->fr_offset >> 4);
2650 break;
2651 }
2652
2653 /* Add in the full size of the frag converted to instruction slots. */
2654 index += 3 * (first_frag->fr_fix >> 4);
2655 /* Subtract away the initial part before first_addr. */
2656 index -= (3 * ((first_addr >> 4) - (start_addr >> 4))
2657 + ((first_addr & 0x3) - (start_addr & 0x3)));
2658
2659 /* Move to the beginning of the next frag. */
2660 first_frag = first_frag->fr_next;
2661 first_addr = (unsigned long) &first_frag->fr_literal;
2662 }
2663
2664 /* Add in the used part of the last frag. */
2665 index += (3 * ((slot_addr >> 4) - (first_addr >> 4))
2666 + ((slot_addr & 0x3) - (first_addr & 0x3)));
2667 return index;
2668 }
2669
2670 /* Optimize unwind record directives. */
2671
2672 static unw_rec_list *
2673 optimize_unw_records (list)
2674 unw_rec_list *list;
2675 {
2676 if (!list)
2677 return NULL;
2678
2679 /* If the only unwind record is ".prologue" or ".prologue" followed
2680 by ".body", then we can optimize the unwind directives away. */
2681 if (list->r.type == prologue
2682 && (list->next->r.type == endp
2683 || (list->next->r.type == body && list->next->next->r.type == endp)))
2684 return NULL;
2685
2686 return list;
2687 }
2688
2689 /* Given a complete record list, process any records which have
2690 unresolved fields, (ie length counts for a prologue). After
2691 this has been run, all necessary information should be available
2692 within each record to generate an image. */
2693
2694 static void
2695 fixup_unw_records (list, before_relax)
2696 unw_rec_list *list;
2697 int before_relax;
2698 {
2699 unw_rec_list *ptr, *region = 0;
2700 unsigned long first_addr = 0, rlen = 0, t;
2701 fragS *first_frag = 0;
2702
2703 for (ptr = list; ptr; ptr = ptr->next)
2704 {
2705 if (ptr->slot_number == SLOT_NUM_NOT_SET)
2706 as_bad (" Insn slot not set in unwind record.");
2707 t = slot_index (ptr->slot_number, ptr->slot_frag,
2708 first_addr, first_frag, before_relax);
2709 switch (ptr->r.type)
2710 {
2711 case prologue:
2712 case prologue_gr:
2713 case body:
2714 {
2715 unw_rec_list *last;
2716 int size;
2717 unsigned long last_addr = 0;
2718 fragS *last_frag = NULL;
2719
2720 first_addr = ptr->slot_number;
2721 first_frag = ptr->slot_frag;
2722 /* Find either the next body/prologue start, or the end of
2723 the function, and determine the size of the region. */
2724 for (last = ptr->next; last != NULL; last = last->next)
2725 if (last->r.type == prologue || last->r.type == prologue_gr
2726 || last->r.type == body || last->r.type == endp)
2727 {
2728 last_addr = last->slot_number;
2729 last_frag = last->slot_frag;
2730 break;
2731 }
2732 size = slot_index (last_addr, last_frag, first_addr, first_frag,
2733 before_relax);
2734 rlen = ptr->r.record.r.rlen = size;
2735 if (ptr->r.type == body)
2736 /* End of region. */
2737 region = 0;
2738 else
2739 region = ptr;
2740 break;
2741 }
2742 case epilogue:
2743 if (t < rlen)
2744 ptr->r.record.b.t = rlen - 1 - t;
2745 else
2746 /* This happens when a memory-stack-less procedure uses a
2747 ".restore sp" directive at the end of a region to pop
2748 the frame state. */
2749 ptr->r.record.b.t = 0;
2750 break;
2751
2752 case mem_stack_f:
2753 case mem_stack_v:
2754 case rp_when:
2755 case pfs_when:
2756 case preds_when:
2757 case unat_when:
2758 case lc_when:
2759 case fpsr_when:
2760 case priunat_when_gr:
2761 case priunat_when_mem:
2762 case bsp_when:
2763 case bspstore_when:
2764 case rnat_when:
2765 ptr->r.record.p.t = t;
2766 break;
2767
2768 case spill_reg:
2769 case spill_sprel:
2770 case spill_psprel:
2771 case spill_reg_p:
2772 case spill_sprel_p:
2773 case spill_psprel_p:
2774 ptr->r.record.x.t = t;
2775 break;
2776
2777 case frgr_mem:
2778 if (!region)
2779 {
2780 as_bad ("frgr_mem record before region record!");
2781 return;
2782 }
2783 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
2784 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
2785 set_imask (region, ptr->r.record.p.frmask, t, 1);
2786 set_imask (region, ptr->r.record.p.grmask, t, 2);
2787 break;
2788 case fr_mem:
2789 if (!region)
2790 {
2791 as_bad ("fr_mem record before region record!");
2792 return;
2793 }
2794 region->r.record.r.mask.fr_mem |= ptr->r.record.p.rmask;
2795 set_imask (region, ptr->r.record.p.rmask, t, 1);
2796 break;
2797 case gr_mem:
2798 if (!region)
2799 {
2800 as_bad ("gr_mem record before region record!");
2801 return;
2802 }
2803 region->r.record.r.mask.gr_mem |= ptr->r.record.p.rmask;
2804 set_imask (region, ptr->r.record.p.rmask, t, 2);
2805 break;
2806 case br_mem:
2807 if (!region)
2808 {
2809 as_bad ("br_mem record before region record!");
2810 return;
2811 }
2812 region->r.record.r.mask.br_mem |= ptr->r.record.p.brmask;
2813 set_imask (region, ptr->r.record.p.brmask, t, 3);
2814 break;
2815
2816 case gr_gr:
2817 if (!region)
2818 {
2819 as_bad ("gr_gr record before region record!");
2820 return;
2821 }
2822 set_imask (region, ptr->r.record.p.grmask, t, 2);
2823 break;
2824 case br_gr:
2825 if (!region)
2826 {
2827 as_bad ("br_gr record before region record!");
2828 return;
2829 }
2830 set_imask (region, ptr->r.record.p.brmask, t, 3);
2831 break;
2832
2833 default:
2834 break;
2835 }
2836 }
2837 }
2838
2839 /* Estimate the size of a frag before relaxing. We only have one type of frag
2840 to handle here, which is the unwind info frag. */
2841
2842 int
2843 ia64_estimate_size_before_relax (fragS *frag,
2844 asection *segtype ATTRIBUTE_UNUSED)
2845 {
2846 unw_rec_list *list;
2847 int len, size, pad;
2848
2849 /* ??? This code is identical to the first part of ia64_convert_frag. */
2850 list = (unw_rec_list *) frag->fr_opcode;
2851 fixup_unw_records (list, 0);
2852
2853 len = calc_record_size (list);
2854 /* pad to pointer-size boundary. */
2855 pad = len % md.pointer_size;
2856 if (pad != 0)
2857 len += md.pointer_size - pad;
2858 /* Add 8 for the header. */
2859 size = len + 8;
2860 /* Add a pointer for the personality offset. */
2861 if (frag->fr_offset)
2862 size += md.pointer_size;
2863
2864 /* fr_var carries the max_chars that we created the fragment with.
2865 We must, of course, have allocated enough memory earlier. */
2866 assert (frag->fr_var >= size);
2867
2868 return frag->fr_fix + size;
2869 }
2870
2871 /* This function converts a rs_machine_dependent variant frag into a
2872 normal fill frag with the unwind image from the the record list. */
2873 void
2874 ia64_convert_frag (fragS *frag)
2875 {
2876 unw_rec_list *list;
2877 int len, size, pad;
2878 valueT flag_value;
2879
2880 /* ??? This code is identical to ia64_estimate_size_before_relax. */
2881 list = (unw_rec_list *) frag->fr_opcode;
2882 fixup_unw_records (list, 0);
2883
2884 len = calc_record_size (list);
2885 /* pad to pointer-size boundary. */
2886 pad = len % md.pointer_size;
2887 if (pad != 0)
2888 len += md.pointer_size - pad;
2889 /* Add 8 for the header. */
2890 size = len + 8;
2891 /* Add a pointer for the personality offset. */
2892 if (frag->fr_offset)
2893 size += md.pointer_size;
2894
2895 /* fr_var carries the max_chars that we created the fragment with.
2896 We must, of course, have allocated enough memory earlier. */
2897 assert (frag->fr_var >= size);
2898
2899 /* Initialize the header area. fr_offset is initialized with
2900 unwind.personality_routine. */
2901 if (frag->fr_offset)
2902 {
2903 if (md.flags & EF_IA_64_ABI64)
2904 flag_value = (bfd_vma) 3 << 32;
2905 else
2906 /* 32-bit unwind info block. */
2907 flag_value = (bfd_vma) 0x1003 << 32;
2908 }
2909 else
2910 flag_value = 0;
2911
2912 md_number_to_chars (frag->fr_literal,
2913 (((bfd_vma) 1 << 48) /* Version. */
2914 | flag_value /* U & E handler flags. */
2915 | (len / md.pointer_size)), /* Length. */
2916 8);
2917
2918 /* Skip the header. */
2919 vbyte_mem_ptr = frag->fr_literal + 8;
2920 process_unw_records (list, output_vbyte_mem);
2921
2922 /* Fill the padding bytes with zeros. */
2923 if (pad != 0)
2924 md_number_to_chars (frag->fr_literal + len + 8 - md.pointer_size + pad, 0,
2925 md.pointer_size - pad);
2926
2927 frag->fr_fix += size;
2928 frag->fr_type = rs_fill;
2929 frag->fr_var = 0;
2930 frag->fr_offset = 0;
2931 }
2932
2933 static int
2934 convert_expr_to_ab_reg (e, ab, regp)
2935 expressionS *e;
2936 unsigned int *ab;
2937 unsigned int *regp;
2938 {
2939 unsigned int reg;
2940
2941 if (e->X_op != O_register)
2942 return 0;
2943
2944 reg = e->X_add_number;
2945 if (reg >= (REG_GR + 4) && reg <= (REG_GR + 7))
2946 {
2947 *ab = 0;
2948 *regp = reg - REG_GR;
2949 }
2950 else if ((reg >= (REG_FR + 2) && reg <= (REG_FR + 5))
2951 || (reg >= (REG_FR + 16) && reg <= (REG_FR + 31)))
2952 {
2953 *ab = 1;
2954 *regp = reg - REG_FR;
2955 }
2956 else if (reg >= (REG_BR + 1) && reg <= (REG_BR + 5))
2957 {
2958 *ab = 2;
2959 *regp = reg - REG_BR;
2960 }
2961 else
2962 {
2963 *ab = 3;
2964 switch (reg)
2965 {
2966 case REG_PR: *regp = 0; break;
2967 case REG_PSP: *regp = 1; break;
2968 case REG_PRIUNAT: *regp = 2; break;
2969 case REG_BR + 0: *regp = 3; break;
2970 case REG_AR + AR_BSP: *regp = 4; break;
2971 case REG_AR + AR_BSPSTORE: *regp = 5; break;
2972 case REG_AR + AR_RNAT: *regp = 6; break;
2973 case REG_AR + AR_UNAT: *regp = 7; break;
2974 case REG_AR + AR_FPSR: *regp = 8; break;
2975 case REG_AR + AR_PFS: *regp = 9; break;
2976 case REG_AR + AR_LC: *regp = 10; break;
2977
2978 default:
2979 return 0;
2980 }
2981 }
2982 return 1;
2983 }
2984
2985 static int
2986 convert_expr_to_xy_reg (e, xy, regp)
2987 expressionS *e;
2988 unsigned int *xy;
2989 unsigned int *regp;
2990 {
2991 unsigned int reg;
2992
2993 if (e->X_op != O_register)
2994 return 0;
2995
2996 reg = e->X_add_number;
2997
2998 if (/* reg >= REG_GR && */ reg <= (REG_GR + 127))
2999 {
3000 *xy = 0;
3001 *regp = reg - REG_GR;
3002 }
3003 else if (reg >= REG_FR && reg <= (REG_FR + 127))
3004 {
3005 *xy = 1;
3006 *regp = reg - REG_FR;
3007 }
3008 else if (reg >= REG_BR && reg <= (REG_BR + 7))
3009 {
3010 *xy = 2;
3011 *regp = reg - REG_BR;
3012 }
3013 else
3014 return -1;
3015 return 1;
3016 }
3017
3018 static void
3019 dot_align (int arg)
3020 {
3021 /* The current frag is an alignment frag. */
3022 align_frag = frag_now;
3023 s_align_bytes (arg);
3024 }
3025
3026 static void
3027 dot_radix (dummy)
3028 int dummy ATTRIBUTE_UNUSED;
3029 {
3030 int radix;
3031
3032 SKIP_WHITESPACE ();
3033 radix = *input_line_pointer++;
3034
3035 if (radix != 'C' && !is_end_of_line[(unsigned char) radix])
3036 {
3037 as_bad ("Radix `%c' unsupported", *input_line_pointer);
3038 ignore_rest_of_line ();
3039 return;
3040 }
3041 }
3042
3043 /* Helper function for .loc directives. If the assembler is not generating
3044 line number info, then we need to remember which instructions have a .loc
3045 directive, and only call dwarf2_gen_line_info for those instructions. */
3046
3047 static void
3048 dot_loc (int x)
3049 {
3050 CURR_SLOT.loc_directive_seen = 1;
3051 dwarf2_directive_loc (x);
3052 }
3053
3054 /* .sbss, .bss etc. are macros that expand into ".section SECNAME". */
3055 static void
3056 dot_special_section (which)
3057 int which;
3058 {
3059 set_section ((char *) special_section_name[which]);
3060 }
3061
3062 /* Return -1 for warning and 0 for error. */
3063
3064 static int
3065 unwind_diagnostic (const char * region, const char *directive)
3066 {
3067 if (md.unwind_check == unwind_check_warning)
3068 {
3069 as_warn (".%s outside of %s", directive, region);
3070 return -1;
3071 }
3072 else
3073 {
3074 as_bad (".%s outside of %s", directive, region);
3075 ignore_rest_of_line ();
3076 return 0;
3077 }
3078 }
3079
3080 /* Return 1 if a directive is in a procedure, -1 if a directive isn't in
3081 a procedure but the unwind directive check is set to warning, 0 if
3082 a directive isn't in a procedure and the unwind directive check is set
3083 to error. */
3084
3085 static int
3086 in_procedure (const char *directive)
3087 {
3088 if (unwind.proc_start
3089 && (!unwind.saved_text_seg || strcmp (directive, "endp") == 0))
3090 return 1;
3091 return unwind_diagnostic ("procedure", directive);
3092 }
3093
3094 /* Return 1 if a directive is in a prologue, -1 if a directive isn't in
3095 a prologue but the unwind directive check is set to warning, 0 if
3096 a directive isn't in a prologue and the unwind directive check is set
3097 to error. */
3098
3099 static int
3100 in_prologue (const char *directive)
3101 {
3102 int in = in_procedure (directive);
3103 if (in)
3104 {
3105 /* We are in a procedure. Check if we are in a prologue. */
3106 if (unwind.prologue)
3107 return 1;
3108 /* We only want to issue one message. */
3109 if (in == 1)
3110 return unwind_diagnostic ("prologue", directive);
3111 else
3112 return -1;
3113 }
3114 return 0;
3115 }
3116
3117 /* Return 1 if a directive is in a body, -1 if a directive isn't in
3118 a body but the unwind directive check is set to warning, 0 if
3119 a directive isn't in a body and the unwind directive check is set
3120 to error. */
3121
3122 static int
3123 in_body (const char *directive)
3124 {
3125 int in = in_procedure (directive);
3126 if (in)
3127 {
3128 /* We are in a procedure. Check if we are in a body. */
3129 if (unwind.body)
3130 return 1;
3131 /* We only want to issue one message. */
3132 if (in == 1)
3133 return unwind_diagnostic ("body region", directive);
3134 else
3135 return -1;
3136 }
3137 return 0;
3138 }
3139
3140 static void
3141 add_unwind_entry (ptr)
3142 unw_rec_list *ptr;
3143 {
3144 if (unwind.tail)
3145 unwind.tail->next = ptr;
3146 else
3147 unwind.list = ptr;
3148 unwind.tail = ptr;
3149
3150 /* The current entry can in fact be a chain of unwind entries. */
3151 if (unwind.current_entry == NULL)
3152 unwind.current_entry = ptr;
3153 }
3154
3155 static void
3156 dot_fframe (dummy)
3157 int dummy ATTRIBUTE_UNUSED;
3158 {
3159 expressionS e;
3160
3161 if (!in_prologue ("fframe"))
3162 return;
3163
3164 parse_operand (&e);
3165
3166 if (e.X_op != O_constant)
3167 as_bad ("Operand to .fframe must be a constant");
3168 else
3169 add_unwind_entry (output_mem_stack_f (e.X_add_number));
3170 }
3171
3172 static void
3173 dot_vframe (dummy)
3174 int dummy ATTRIBUTE_UNUSED;
3175 {
3176 expressionS e;
3177 unsigned reg;
3178
3179 if (!in_prologue ("vframe"))
3180 return;
3181
3182 parse_operand (&e);
3183 reg = e.X_add_number - REG_GR;
3184 if (e.X_op == O_register && reg < 128)
3185 {
3186 add_unwind_entry (output_mem_stack_v ());
3187 if (! (unwind.prologue_mask & 2))
3188 add_unwind_entry (output_psp_gr (reg));
3189 }
3190 else
3191 as_bad ("First operand to .vframe must be a general register");
3192 }
3193
3194 static void
3195 dot_vframesp (dummy)
3196 int dummy ATTRIBUTE_UNUSED;
3197 {
3198 expressionS e;
3199
3200 if (!in_prologue ("vframesp"))
3201 return;
3202
3203 parse_operand (&e);
3204 if (e.X_op == O_constant)
3205 {
3206 add_unwind_entry (output_mem_stack_v ());
3207 add_unwind_entry (output_psp_sprel (e.X_add_number));
3208 }
3209 else
3210 as_bad ("Operand to .vframesp must be a constant (sp-relative offset)");
3211 }
3212
3213 static void
3214 dot_vframepsp (dummy)
3215 int dummy ATTRIBUTE_UNUSED;
3216 {
3217 expressionS e;
3218
3219 if (!in_prologue ("vframepsp"))
3220 return;
3221
3222 parse_operand (&e);
3223 if (e.X_op == O_constant)
3224 {
3225 add_unwind_entry (output_mem_stack_v ());
3226 add_unwind_entry (output_psp_sprel (e.X_add_number));
3227 }
3228 else
3229 as_bad ("Operand to .vframepsp must be a constant (psp-relative offset)");
3230 }
3231
3232 static void
3233 dot_save (dummy)
3234 int dummy ATTRIBUTE_UNUSED;
3235 {
3236 expressionS e1, e2;
3237 int sep;
3238 int reg1, reg2;
3239
3240 if (!in_prologue ("save"))
3241 return;
3242
3243 sep = parse_operand (&e1);
3244 if (sep != ',')
3245 as_bad ("No second operand to .save");
3246 sep = parse_operand (&e2);
3247
3248 reg1 = e1.X_add_number;
3249 reg2 = e2.X_add_number - REG_GR;
3250
3251 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3252 if (e1.X_op == O_register)
3253 {
3254 if (e2.X_op == O_register && reg2 >= 0 && reg2 < 128)
3255 {
3256 switch (reg1)
3257 {
3258 case REG_AR + AR_BSP:
3259 add_unwind_entry (output_bsp_when ());
3260 add_unwind_entry (output_bsp_gr (reg2));
3261 break;
3262 case REG_AR + AR_BSPSTORE:
3263 add_unwind_entry (output_bspstore_when ());
3264 add_unwind_entry (output_bspstore_gr (reg2));
3265 break;
3266 case REG_AR + AR_RNAT:
3267 add_unwind_entry (output_rnat_when ());
3268 add_unwind_entry (output_rnat_gr (reg2));
3269 break;
3270 case REG_AR + AR_UNAT:
3271 add_unwind_entry (output_unat_when ());
3272 add_unwind_entry (output_unat_gr (reg2));
3273 break;
3274 case REG_AR + AR_FPSR:
3275 add_unwind_entry (output_fpsr_when ());
3276 add_unwind_entry (output_fpsr_gr (reg2));
3277 break;
3278 case REG_AR + AR_PFS:
3279 add_unwind_entry (output_pfs_when ());
3280 if (! (unwind.prologue_mask & 4))
3281 add_unwind_entry (output_pfs_gr (reg2));
3282 break;
3283 case REG_AR + AR_LC:
3284 add_unwind_entry (output_lc_when ());
3285 add_unwind_entry (output_lc_gr (reg2));
3286 break;
3287 case REG_BR:
3288 add_unwind_entry (output_rp_when ());
3289 if (! (unwind.prologue_mask & 8))
3290 add_unwind_entry (output_rp_gr (reg2));
3291 break;
3292 case REG_PR:
3293 add_unwind_entry (output_preds_when ());
3294 if (! (unwind.prologue_mask & 1))
3295 add_unwind_entry (output_preds_gr (reg2));
3296 break;
3297 case REG_PRIUNAT:
3298 add_unwind_entry (output_priunat_when_gr ());
3299 add_unwind_entry (output_priunat_gr (reg2));
3300 break;
3301 default:
3302 as_bad ("First operand not a valid register");
3303 }
3304 }
3305 else
3306 as_bad (" Second operand not a valid register");
3307 }
3308 else
3309 as_bad ("First operand not a register");
3310 }
3311
3312 static void
3313 dot_restore (dummy)
3314 int dummy ATTRIBUTE_UNUSED;
3315 {
3316 expressionS e1, e2;
3317 unsigned long ecount; /* # of _additional_ regions to pop */
3318 int sep;
3319
3320 if (!in_body ("restore"))
3321 return;
3322
3323 sep = parse_operand (&e1);
3324 if (e1.X_op != O_register || e1.X_add_number != REG_GR + 12)
3325 {
3326 as_bad ("First operand to .restore must be stack pointer (sp)");
3327 return;
3328 }
3329
3330 if (sep == ',')
3331 {
3332 parse_operand (&e2);
3333 if (e2.X_op != O_constant || e2.X_add_number < 0)
3334 {
3335 as_bad ("Second operand to .restore must be a constant >= 0");
3336 return;
3337 }
3338 ecount = e2.X_add_number;
3339 }
3340 else
3341 ecount = unwind.prologue_count - 1;
3342
3343 if (ecount >= unwind.prologue_count)
3344 {
3345 as_bad ("Epilogue count of %lu exceeds number of nested prologues (%u)",
3346 ecount + 1, unwind.prologue_count);
3347 return;
3348 }
3349
3350 add_unwind_entry (output_epilogue (ecount));
3351
3352 if (ecount < unwind.prologue_count)
3353 unwind.prologue_count -= ecount + 1;
3354 else
3355 unwind.prologue_count = 0;
3356 }
3357
3358 static void
3359 dot_restorereg (dummy)
3360 int dummy ATTRIBUTE_UNUSED;
3361 {
3362 unsigned int ab, reg;
3363 expressionS e;
3364
3365 if (!in_procedure ("restorereg"))
3366 return;
3367
3368 parse_operand (&e);
3369
3370 if (!convert_expr_to_ab_reg (&e, &ab, &reg))
3371 {
3372 as_bad ("First operand to .restorereg must be a preserved register");
3373 return;
3374 }
3375 add_unwind_entry (output_spill_reg (ab, reg, 0, 0));
3376 }
3377
3378 static void
3379 dot_restorereg_p (dummy)
3380 int dummy ATTRIBUTE_UNUSED;
3381 {
3382 unsigned int qp, ab, reg;
3383 expressionS e1, e2;
3384 int sep;
3385
3386 if (!in_procedure ("restorereg.p"))
3387 return;
3388
3389 sep = parse_operand (&e1);
3390 if (sep != ',')
3391 {
3392 as_bad ("No second operand to .restorereg.p");
3393 return;
3394 }
3395
3396 parse_operand (&e2);
3397
3398 qp = e1.X_add_number - REG_P;
3399 if (e1.X_op != O_register || qp > 63)
3400 {
3401 as_bad ("First operand to .restorereg.p must be a predicate");
3402 return;
3403 }
3404
3405 if (!convert_expr_to_ab_reg (&e2, &ab, &reg))
3406 {
3407 as_bad ("Second operand to .restorereg.p must be a preserved register");
3408 return;
3409 }
3410 add_unwind_entry (output_spill_reg_p (ab, reg, 0, 0, qp));
3411 }
3412
3413 static char *special_linkonce_name[] =
3414 {
3415 ".gnu.linkonce.ia64unw.", ".gnu.linkonce.ia64unwi."
3416 };
3417
3418 static void
3419 start_unwind_section (const segT text_seg, int sec_index, int linkonce_empty)
3420 {
3421 /*
3422 Use a slightly ugly scheme to derive the unwind section names from
3423 the text section name:
3424
3425 text sect. unwind table sect.
3426 name: name: comments:
3427 ---------- ----------------- --------------------------------
3428 .text .IA_64.unwind
3429 .text.foo .IA_64.unwind.text.foo
3430 .foo .IA_64.unwind.foo
3431 .gnu.linkonce.t.foo
3432 .gnu.linkonce.ia64unw.foo
3433 _info .IA_64.unwind_info gas issues error message (ditto)
3434 _infoFOO .IA_64.unwind_infoFOO gas issues error message (ditto)
3435
3436 This mapping is done so that:
3437
3438 (a) An object file with unwind info only in .text will use
3439 unwind section names .IA_64.unwind and .IA_64.unwind_info.
3440 This follows the letter of the ABI and also ensures backwards
3441 compatibility with older toolchains.
3442
3443 (b) An object file with unwind info in multiple text sections
3444 will use separate unwind sections for each text section.
3445 This allows us to properly set the "sh_info" and "sh_link"
3446 fields in SHT_IA_64_UNWIND as required by the ABI and also
3447 lets GNU ld support programs with multiple segments
3448 containing unwind info (as might be the case for certain
3449 embedded applications).
3450
3451 (c) An error is issued if there would be a name clash.
3452 */
3453
3454 const char *text_name, *sec_text_name;
3455 char *sec_name;
3456 const char *prefix = special_section_name [sec_index];
3457 const char *suffix;
3458 size_t prefix_len, suffix_len, sec_name_len;
3459
3460 sec_text_name = segment_name (text_seg);
3461 text_name = sec_text_name;
3462 if (strncmp (text_name, "_info", 5) == 0)
3463 {
3464 as_bad ("Illegal section name `%s' (causes unwind section name clash)",
3465 text_name);
3466 ignore_rest_of_line ();
3467 return;
3468 }
3469 if (strcmp (text_name, ".text") == 0)
3470 text_name = "";
3471
3472 /* Build the unwind section name by appending the (possibly stripped)
3473 text section name to the unwind prefix. */
3474 suffix = text_name;
3475 if (strncmp (text_name, ".gnu.linkonce.t.",
3476 sizeof (".gnu.linkonce.t.") - 1) == 0)
3477 {
3478 prefix = special_linkonce_name [sec_index - SPECIAL_SECTION_UNWIND];
3479 suffix += sizeof (".gnu.linkonce.t.") - 1;
3480 }
3481 else if (linkonce_empty)
3482 return;
3483
3484 prefix_len = strlen (prefix);
3485 suffix_len = strlen (suffix);
3486 sec_name_len = prefix_len + suffix_len;
3487 sec_name = alloca (sec_name_len + 1);
3488 memcpy (sec_name, prefix, prefix_len);
3489 memcpy (sec_name + prefix_len, suffix, suffix_len);
3490 sec_name [sec_name_len] = '\0';
3491
3492 /* Handle COMDAT group. */
3493 if (suffix == text_name && (text_seg->flags & SEC_LINK_ONCE) != 0)
3494 {
3495 char *section;
3496 size_t len, group_name_len;
3497 const char *group_name = elf_group_name (text_seg);
3498
3499 if (group_name == NULL)
3500 {
3501 as_bad ("Group section `%s' has no group signature",
3502 sec_text_name);
3503 ignore_rest_of_line ();
3504 return;
3505 }
3506 /* We have to construct a fake section directive. */
3507 group_name_len = strlen (group_name);
3508 len = (sec_name_len
3509 + 16 /* ,"aG",@progbits, */
3510 + group_name_len /* ,group_name */
3511 + 7); /* ,comdat */
3512
3513 section = alloca (len + 1);
3514 memcpy (section, sec_name, sec_name_len);
3515 memcpy (section + sec_name_len, ",\"aG\",@progbits,", 16);
3516 memcpy (section + sec_name_len + 16, group_name, group_name_len);
3517 memcpy (section + len - 7, ",comdat", 7);
3518 section [len] = '\0';
3519 set_section (section);
3520 }
3521 else
3522 {
3523 set_section (sec_name);
3524 bfd_set_section_flags (stdoutput, now_seg,
3525 SEC_LOAD | SEC_ALLOC | SEC_READONLY);
3526 }
3527
3528 elf_linked_to_section (now_seg) = text_seg;
3529 }
3530
3531 static void
3532 generate_unwind_image (const segT text_seg)
3533 {
3534 int size, pad;
3535 unw_rec_list *list;
3536
3537 /* Mark the end of the unwind info, so that we can compute the size of the
3538 last unwind region. */
3539 add_unwind_entry (output_endp ());
3540
3541 /* Force out pending instructions, to make sure all unwind records have
3542 a valid slot_number field. */
3543 ia64_flush_insns ();
3544
3545 /* Generate the unwind record. */
3546 list = optimize_unw_records (unwind.list);
3547 fixup_unw_records (list, 1);
3548 size = calc_record_size (list);
3549
3550 if (size > 0 || unwind.force_unwind_entry)
3551 {
3552 unwind.force_unwind_entry = 0;
3553 /* pad to pointer-size boundary. */
3554 pad = size % md.pointer_size;
3555 if (pad != 0)
3556 size += md.pointer_size - pad;
3557 /* Add 8 for the header. */
3558 size += 8;
3559 /* Add a pointer for the personality offset. */
3560 if (unwind.personality_routine)
3561 size += md.pointer_size;
3562 }
3563
3564 /* If there are unwind records, switch sections, and output the info. */
3565 if (size != 0)
3566 {
3567 expressionS exp;
3568 bfd_reloc_code_real_type reloc;
3569
3570 start_unwind_section (text_seg, SPECIAL_SECTION_UNWIND_INFO, 0);
3571
3572 /* Make sure the section has 4 byte alignment for ILP32 and
3573 8 byte alignment for LP64. */
3574 frag_align (md.pointer_size_shift, 0, 0);
3575 record_alignment (now_seg, md.pointer_size_shift);
3576
3577 /* Set expression which points to start of unwind descriptor area. */
3578 unwind.info = expr_build_dot ();
3579
3580 frag_var (rs_machine_dependent, size, size, 0, 0,
3581 (offsetT) (long) unwind.personality_routine,
3582 (char *) list);
3583
3584 /* Add the personality address to the image. */
3585 if (unwind.personality_routine != 0)
3586 {
3587 exp.X_op = O_symbol;
3588 exp.X_add_symbol = unwind.personality_routine;
3589 exp.X_add_number = 0;
3590
3591 if (md.flags & EF_IA_64_BE)
3592 {
3593 if (md.flags & EF_IA_64_ABI64)
3594 reloc = BFD_RELOC_IA64_LTOFF_FPTR64MSB;
3595 else
3596 reloc = BFD_RELOC_IA64_LTOFF_FPTR32MSB;
3597 }
3598 else
3599 {
3600 if (md.flags & EF_IA_64_ABI64)
3601 reloc = BFD_RELOC_IA64_LTOFF_FPTR64LSB;
3602 else
3603 reloc = BFD_RELOC_IA64_LTOFF_FPTR32LSB;
3604 }
3605
3606 fix_new_exp (frag_now, frag_now_fix () - md.pointer_size,
3607 md.pointer_size, &exp, 0, reloc);
3608 unwind.personality_routine = 0;
3609 }
3610 }
3611 else
3612 start_unwind_section (text_seg, SPECIAL_SECTION_UNWIND_INFO, 1);
3613
3614 free_saved_prologue_counts ();
3615 unwind.list = unwind.tail = unwind.current_entry = NULL;
3616 }
3617
3618 static void
3619 dot_handlerdata (dummy)
3620 int dummy ATTRIBUTE_UNUSED;
3621 {
3622 if (!in_procedure ("handlerdata"))
3623 return;
3624 unwind.force_unwind_entry = 1;
3625
3626 /* Remember which segment we're in so we can switch back after .endp */
3627 unwind.saved_text_seg = now_seg;
3628 unwind.saved_text_subseg = now_subseg;
3629
3630 /* Generate unwind info into unwind-info section and then leave that
3631 section as the currently active one so dataXX directives go into
3632 the language specific data area of the unwind info block. */
3633 generate_unwind_image (now_seg);
3634 demand_empty_rest_of_line ();
3635 }
3636
3637 static void
3638 dot_unwentry (dummy)
3639 int dummy ATTRIBUTE_UNUSED;
3640 {
3641 if (!in_procedure ("unwentry"))
3642 return;
3643 unwind.force_unwind_entry = 1;
3644 demand_empty_rest_of_line ();
3645 }
3646
3647 static void
3648 dot_altrp (dummy)
3649 int dummy ATTRIBUTE_UNUSED;
3650 {
3651 expressionS e;
3652 unsigned reg;
3653
3654 if (!in_prologue ("altrp"))
3655 return;
3656
3657 parse_operand (&e);
3658 reg = e.X_add_number - REG_BR;
3659 if (e.X_op == O_register && reg < 8)
3660 add_unwind_entry (output_rp_br (reg));
3661 else
3662 as_bad ("First operand not a valid branch register");
3663 }
3664
3665 static void
3666 dot_savemem (psprel)
3667 int psprel;
3668 {
3669 expressionS e1, e2;
3670 int sep;
3671 int reg1, val;
3672
3673 if (!in_prologue (psprel ? "savepsp" : "savesp"))
3674 return;
3675
3676 sep = parse_operand (&e1);
3677 if (sep != ',')
3678 as_bad ("No second operand to .save%ssp", psprel ? "p" : "");
3679 sep = parse_operand (&e2);
3680
3681 reg1 = e1.X_add_number;
3682 val = e2.X_add_number;
3683
3684 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3685 if (e1.X_op == O_register)
3686 {
3687 if (e2.X_op == O_constant)
3688 {
3689 switch (reg1)
3690 {
3691 case REG_AR + AR_BSP:
3692 add_unwind_entry (output_bsp_when ());
3693 add_unwind_entry ((psprel
3694 ? output_bsp_psprel
3695 : output_bsp_sprel) (val));
3696 break;
3697 case REG_AR + AR_BSPSTORE:
3698 add_unwind_entry (output_bspstore_when ());
3699 add_unwind_entry ((psprel
3700 ? output_bspstore_psprel
3701 : output_bspstore_sprel) (val));
3702 break;
3703 case REG_AR + AR_RNAT:
3704 add_unwind_entry (output_rnat_when ());
3705 add_unwind_entry ((psprel
3706 ? output_rnat_psprel
3707 : output_rnat_sprel) (val));
3708 break;
3709 case REG_AR + AR_UNAT:
3710 add_unwind_entry (output_unat_when ());
3711 add_unwind_entry ((psprel
3712 ? output_unat_psprel
3713 : output_unat_sprel) (val));
3714 break;
3715 case REG_AR + AR_FPSR:
3716 add_unwind_entry (output_fpsr_when ());
3717 add_unwind_entry ((psprel
3718 ? output_fpsr_psprel
3719 : output_fpsr_sprel) (val));
3720 break;
3721 case REG_AR + AR_PFS:
3722 add_unwind_entry (output_pfs_when ());
3723 add_unwind_entry ((psprel
3724 ? output_pfs_psprel
3725 : output_pfs_sprel) (val));
3726 break;
3727 case REG_AR + AR_LC:
3728 add_unwind_entry (output_lc_when ());
3729 add_unwind_entry ((psprel
3730 ? output_lc_psprel
3731 : output_lc_sprel) (val));
3732 break;
3733 case REG_BR:
3734 add_unwind_entry (output_rp_when ());
3735 add_unwind_entry ((psprel
3736 ? output_rp_psprel
3737 : output_rp_sprel) (val));
3738 break;
3739 case REG_PR:
3740 add_unwind_entry (output_preds_when ());
3741 add_unwind_entry ((psprel
3742 ? output_preds_psprel
3743 : output_preds_sprel) (val));
3744 break;
3745 case REG_PRIUNAT:
3746 add_unwind_entry (output_priunat_when_mem ());
3747 add_unwind_entry ((psprel
3748 ? output_priunat_psprel
3749 : output_priunat_sprel) (val));
3750 break;
3751 default:
3752 as_bad ("First operand not a valid register");
3753 }
3754 }
3755 else
3756 as_bad (" Second operand not a valid constant");
3757 }
3758 else
3759 as_bad ("First operand not a register");
3760 }
3761
3762 static void
3763 dot_saveg (dummy)
3764 int dummy ATTRIBUTE_UNUSED;
3765 {
3766 expressionS e1, e2;
3767 int sep;
3768
3769 if (!in_prologue ("save.g"))
3770 return;
3771
3772 sep = parse_operand (&e1);
3773 if (sep == ',')
3774 parse_operand (&e2);
3775
3776 if (e1.X_op != O_constant)
3777 as_bad ("First operand to .save.g must be a constant.");
3778 else
3779 {
3780 int grmask = e1.X_add_number;
3781 if (sep != ',')
3782 add_unwind_entry (output_gr_mem (grmask));
3783 else
3784 {
3785 int reg = e2.X_add_number - REG_GR;
3786 if (e2.X_op == O_register && reg >= 0 && reg < 128)
3787 add_unwind_entry (output_gr_gr (grmask, reg));
3788 else
3789 as_bad ("Second operand is an invalid register.");
3790 }
3791 }
3792 }
3793
3794 static void
3795 dot_savef (dummy)
3796 int dummy ATTRIBUTE_UNUSED;
3797 {
3798 expressionS e1;
3799 int sep;
3800
3801 if (!in_prologue ("save.f"))
3802 return;
3803
3804 sep = parse_operand (&e1);
3805
3806 if (e1.X_op != O_constant)
3807 as_bad ("Operand to .save.f must be a constant.");
3808 else
3809 add_unwind_entry (output_fr_mem (e1.X_add_number));
3810 }
3811
3812 static void
3813 dot_saveb (dummy)
3814 int dummy ATTRIBUTE_UNUSED;
3815 {
3816 expressionS e1, e2;
3817 unsigned int reg;
3818 unsigned char sep;
3819 int brmask;
3820
3821 if (!in_prologue ("save.b"))
3822 return;
3823
3824 sep = parse_operand (&e1);
3825 if (e1.X_op != O_constant)
3826 {
3827 as_bad ("First operand to .save.b must be a constant.");
3828 return;
3829 }
3830 brmask = e1.X_add_number;
3831
3832 if (sep == ',')
3833 {
3834 sep = parse_operand (&e2);
3835 reg = e2.X_add_number - REG_GR;
3836 if (e2.X_op != O_register || reg > 127)
3837 {
3838 as_bad ("Second operand to .save.b must be a general register.");
3839 return;
3840 }
3841 add_unwind_entry (output_br_gr (brmask, e2.X_add_number));
3842 }
3843 else
3844 add_unwind_entry (output_br_mem (brmask));
3845
3846 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
3847 demand_empty_rest_of_line ();
3848 }
3849
3850 static void
3851 dot_savegf (dummy)
3852 int dummy ATTRIBUTE_UNUSED;
3853 {
3854 expressionS e1, e2;
3855 int sep;
3856
3857 if (!in_prologue ("save.gf"))
3858 return;
3859
3860 sep = parse_operand (&e1);
3861 if (sep == ',')
3862 parse_operand (&e2);
3863
3864 if (e1.X_op != O_constant || sep != ',' || e2.X_op != O_constant)
3865 as_bad ("Both operands of .save.gf must be constants.");
3866 else
3867 {
3868 int grmask = e1.X_add_number;
3869 int frmask = e2.X_add_number;
3870 add_unwind_entry (output_frgr_mem (grmask, frmask));
3871 }
3872 }
3873
3874 static void
3875 dot_spill (dummy)
3876 int dummy ATTRIBUTE_UNUSED;
3877 {
3878 expressionS e;
3879 unsigned char sep;
3880
3881 if (!in_prologue ("spill"))
3882 return;
3883
3884 sep = parse_operand (&e);
3885 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
3886 demand_empty_rest_of_line ();
3887
3888 if (e.X_op != O_constant)
3889 as_bad ("Operand to .spill must be a constant");
3890 else
3891 add_unwind_entry (output_spill_base (e.X_add_number));
3892 }
3893
3894 static void
3895 dot_spillreg (dummy)
3896 int dummy ATTRIBUTE_UNUSED;
3897 {
3898 int sep, ab, xy, reg, treg;
3899 expressionS e1, e2;
3900
3901 if (!in_procedure ("spillreg"))
3902 return;
3903
3904 sep = parse_operand (&e1);
3905 if (sep != ',')
3906 {
3907 as_bad ("No second operand to .spillreg");
3908 return;
3909 }
3910
3911 parse_operand (&e2);
3912
3913 if (!convert_expr_to_ab_reg (&e1, &ab, &reg))
3914 {
3915 as_bad ("First operand to .spillreg must be a preserved register");
3916 return;
3917 }
3918
3919 if (!convert_expr_to_xy_reg (&e2, &xy, &treg))
3920 {
3921 as_bad ("Second operand to .spillreg must be a register");
3922 return;
3923 }
3924
3925 add_unwind_entry (output_spill_reg (ab, reg, treg, xy));
3926 }
3927
3928 static void
3929 dot_spillmem (psprel)
3930 int psprel;
3931 {
3932 expressionS e1, e2;
3933 int sep, ab, reg;
3934
3935 if (!in_procedure ("spillmem"))
3936 return;
3937
3938 sep = parse_operand (&e1);
3939 if (sep != ',')
3940 {
3941 as_bad ("Second operand missing");
3942 return;
3943 }
3944
3945 parse_operand (&e2);
3946
3947 if (!convert_expr_to_ab_reg (&e1, &ab, &reg))
3948 {
3949 as_bad ("First operand to .spill%s must be a preserved register",
3950 psprel ? "psp" : "sp");
3951 return;
3952 }
3953
3954 if (e2.X_op != O_constant)
3955 {
3956 as_bad ("Second operand to .spill%s must be a constant",
3957 psprel ? "psp" : "sp");
3958 return;
3959 }
3960
3961 if (psprel)
3962 add_unwind_entry (output_spill_psprel (ab, reg, e2.X_add_number));
3963 else
3964 add_unwind_entry (output_spill_sprel (ab, reg, e2.X_add_number));
3965 }
3966
3967 static void
3968 dot_spillreg_p (dummy)
3969 int dummy ATTRIBUTE_UNUSED;
3970 {
3971 int sep, ab, xy, reg, treg;
3972 expressionS e1, e2, e3;
3973 unsigned int qp;
3974
3975 if (!in_procedure ("spillreg.p"))
3976 return;
3977
3978 sep = parse_operand (&e1);
3979 if (sep != ',')
3980 {
3981 as_bad ("No second and third operand to .spillreg.p");
3982 return;
3983 }
3984
3985 sep = parse_operand (&e2);
3986 if (sep != ',')
3987 {
3988 as_bad ("No third operand to .spillreg.p");
3989 return;
3990 }
3991
3992 parse_operand (&e3);
3993
3994 qp = e1.X_add_number - REG_P;
3995
3996 if (e1.X_op != O_register || qp > 63)
3997 {
3998 as_bad ("First operand to .spillreg.p must be a predicate");
3999 return;
4000 }
4001
4002 if (!convert_expr_to_ab_reg (&e2, &ab, &reg))
4003 {
4004 as_bad ("Second operand to .spillreg.p must be a preserved register");
4005 return;
4006 }
4007
4008 if (!convert_expr_to_xy_reg (&e3, &xy, &treg))
4009 {
4010 as_bad ("Third operand to .spillreg.p must be a register");
4011 return;
4012 }
4013
4014 add_unwind_entry (output_spill_reg_p (ab, reg, treg, xy, qp));
4015 }
4016
4017 static void
4018 dot_spillmem_p (psprel)
4019 int psprel;
4020 {
4021 expressionS e1, e2, e3;
4022 int sep, ab, reg;
4023 unsigned int qp;
4024
4025 if (!in_procedure ("spillmem.p"))
4026 return;
4027
4028 sep = parse_operand (&e1);
4029 if (sep != ',')
4030 {
4031 as_bad ("Second operand missing");
4032 return;
4033 }
4034
4035 parse_operand (&e2);
4036 if (sep != ',')
4037 {
4038 as_bad ("Second operand missing");
4039 return;
4040 }
4041
4042 parse_operand (&e3);
4043
4044 qp = e1.X_add_number - REG_P;
4045 if (e1.X_op != O_register || qp > 63)
4046 {
4047 as_bad ("First operand to .spill%s_p must be a predicate",
4048 psprel ? "psp" : "sp");
4049 return;
4050 }
4051
4052 if (!convert_expr_to_ab_reg (&e2, &ab, &reg))
4053 {
4054 as_bad ("Second operand to .spill%s_p must be a preserved register",
4055 psprel ? "psp" : "sp");
4056 return;
4057 }
4058
4059 if (e3.X_op != O_constant)
4060 {
4061 as_bad ("Third operand to .spill%s_p must be a constant",
4062 psprel ? "psp" : "sp");
4063 return;
4064 }
4065
4066 if (psprel)
4067 add_unwind_entry (output_spill_psprel_p (ab, reg, e3.X_add_number, qp));
4068 else
4069 add_unwind_entry (output_spill_sprel_p (ab, reg, e3.X_add_number, qp));
4070 }
4071
4072 static unsigned int
4073 get_saved_prologue_count (lbl)
4074 unsigned long lbl;
4075 {
4076 label_prologue_count *lpc = unwind.saved_prologue_counts;
4077
4078 while (lpc != NULL && lpc->label_number != lbl)
4079 lpc = lpc->next;
4080
4081 if (lpc != NULL)
4082 return lpc->prologue_count;
4083
4084 as_bad ("Missing .label_state %ld", lbl);
4085 return 1;
4086 }
4087
4088 static void
4089 save_prologue_count (lbl, count)
4090 unsigned long lbl;
4091 unsigned int count;
4092 {
4093 label_prologue_count *lpc = unwind.saved_prologue_counts;
4094
4095 while (lpc != NULL && lpc->label_number != lbl)
4096 lpc = lpc->next;
4097
4098 if (lpc != NULL)
4099 lpc->prologue_count = count;
4100 else
4101 {
4102 label_prologue_count *new_lpc = xmalloc (sizeof (* new_lpc));
4103
4104 new_lpc->next = unwind.saved_prologue_counts;
4105 new_lpc->label_number = lbl;
4106 new_lpc->prologue_count = count;
4107 unwind.saved_prologue_counts = new_lpc;
4108 }
4109 }
4110
4111 static void
4112 free_saved_prologue_counts ()
4113 {
4114 label_prologue_count *lpc = unwind.saved_prologue_counts;
4115 label_prologue_count *next;
4116
4117 while (lpc != NULL)
4118 {
4119 next = lpc->next;
4120 free (lpc);
4121 lpc = next;
4122 }
4123
4124 unwind.saved_prologue_counts = NULL;
4125 }
4126
4127 static void
4128 dot_label_state (dummy)
4129 int dummy ATTRIBUTE_UNUSED;
4130 {
4131 expressionS e;
4132
4133 if (!in_body ("label_state"))
4134 return;
4135
4136 parse_operand (&e);
4137 if (e.X_op != O_constant)
4138 {
4139 as_bad ("Operand to .label_state must be a constant");
4140 return;
4141 }
4142 add_unwind_entry (output_label_state (e.X_add_number));
4143 save_prologue_count (e.X_add_number, unwind.prologue_count);
4144 }
4145
4146 static void
4147 dot_copy_state (dummy)
4148 int dummy ATTRIBUTE_UNUSED;
4149 {
4150 expressionS e;
4151
4152 if (!in_body ("copy_state"))
4153 return;
4154
4155 parse_operand (&e);
4156 if (e.X_op != O_constant)
4157 {
4158 as_bad ("Operand to .copy_state must be a constant");
4159 return;
4160 }
4161 add_unwind_entry (output_copy_state (e.X_add_number));
4162 unwind.prologue_count = get_saved_prologue_count (e.X_add_number);
4163 }
4164
4165 static void
4166 dot_unwabi (dummy)
4167 int dummy ATTRIBUTE_UNUSED;
4168 {
4169 expressionS e1, e2;
4170 unsigned char sep;
4171
4172 if (!in_procedure ("unwabi"))
4173 return;
4174
4175 sep = parse_operand (&e1);
4176 if (sep != ',')
4177 {
4178 as_bad ("Second operand to .unwabi missing");
4179 return;
4180 }
4181 sep = parse_operand (&e2);
4182 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
4183 demand_empty_rest_of_line ();
4184
4185 if (e1.X_op != O_constant)
4186 {
4187 as_bad ("First operand to .unwabi must be a constant");
4188 return;
4189 }
4190
4191 if (e2.X_op != O_constant)
4192 {
4193 as_bad ("Second operand to .unwabi must be a constant");
4194 return;
4195 }
4196
4197 add_unwind_entry (output_unwabi (e1.X_add_number, e2.X_add_number));
4198 }
4199
4200 static void
4201 dot_personality (dummy)
4202 int dummy ATTRIBUTE_UNUSED;
4203 {
4204 char *name, *p, c;
4205 if (!in_procedure ("personality"))
4206 return;
4207 SKIP_WHITESPACE ();
4208 name = input_line_pointer;
4209 c = get_symbol_end ();
4210 p = input_line_pointer;
4211 unwind.personality_routine = symbol_find_or_make (name);
4212 unwind.force_unwind_entry = 1;
4213 *p = c;
4214 SKIP_WHITESPACE ();
4215 demand_empty_rest_of_line ();
4216 }
4217
4218 static void
4219 dot_proc (dummy)
4220 int dummy ATTRIBUTE_UNUSED;
4221 {
4222 char *name, *p, c;
4223 symbolS *sym;
4224
4225 unwind.proc_start = 0;
4226 /* Parse names of main and alternate entry points and mark them as
4227 function symbols: */
4228 while (1)
4229 {
4230 SKIP_WHITESPACE ();
4231 name = input_line_pointer;
4232 c = get_symbol_end ();
4233 p = input_line_pointer;
4234 if (!*name)
4235 as_bad ("Empty argument of .proc");
4236 else
4237 {
4238 sym = symbol_find_or_make (name);
4239 if (S_IS_DEFINED (sym))
4240 as_bad ("`%s' was already defined", name);
4241 else if (unwind.proc_start == 0)
4242 {
4243 unwind.proc_start = sym;
4244 }
4245 symbol_get_bfdsym (sym)->flags |= BSF_FUNCTION;
4246 }
4247 *p = c;
4248 SKIP_WHITESPACE ();
4249 if (*input_line_pointer != ',')
4250 break;
4251 ++input_line_pointer;
4252 }
4253 if (unwind.proc_start == 0)
4254 unwind.proc_start = expr_build_dot ();
4255 demand_empty_rest_of_line ();
4256 ia64_do_align (16);
4257
4258 unwind.prologue = 0;
4259 unwind.prologue_count = 0;
4260 unwind.body = 0;
4261 unwind.insn = 0;
4262 unwind.list = unwind.tail = unwind.current_entry = NULL;
4263 unwind.personality_routine = 0;
4264 }
4265
4266 static void
4267 dot_body (dummy)
4268 int dummy ATTRIBUTE_UNUSED;
4269 {
4270 if (!in_procedure ("body"))
4271 return;
4272 if (!unwind.prologue && !unwind.body && unwind.insn)
4273 as_warn ("Initial .body should precede any instructions");
4274
4275 unwind.prologue = 0;
4276 unwind.prologue_mask = 0;
4277 unwind.body = 1;
4278
4279 add_unwind_entry (output_body ());
4280 demand_empty_rest_of_line ();
4281 }
4282
4283 static void
4284 dot_prologue (dummy)
4285 int dummy ATTRIBUTE_UNUSED;
4286 {
4287 unsigned char sep;
4288 int mask = 0, grsave = 0;
4289
4290 if (!in_procedure ("prologue"))
4291 return;
4292 if (unwind.prologue)
4293 {
4294 as_bad (".prologue within prologue");
4295 ignore_rest_of_line ();
4296 return;
4297 }
4298 if (!unwind.body && unwind.insn)
4299 as_warn ("Initial .prologue should precede any instructions");
4300
4301 if (!is_it_end_of_statement ())
4302 {
4303 expressionS e1, e2;
4304 sep = parse_operand (&e1);
4305 if (sep != ',')
4306 as_bad ("No second operand to .prologue");
4307 sep = parse_operand (&e2);
4308 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
4309 demand_empty_rest_of_line ();
4310
4311 if (e1.X_op == O_constant)
4312 {
4313 mask = e1.X_add_number;
4314
4315 if (e2.X_op == O_constant)
4316 grsave = e2.X_add_number;
4317 else if (e2.X_op == O_register
4318 && (grsave = e2.X_add_number - REG_GR) < 128)
4319 ;
4320 else
4321 as_bad ("Second operand not a constant or general register");
4322
4323 add_unwind_entry (output_prologue_gr (mask, grsave));
4324 }
4325 else
4326 as_bad ("First operand not a constant");
4327 }
4328 else
4329 add_unwind_entry (output_prologue ());
4330
4331 unwind.prologue = 1;
4332 unwind.prologue_mask = mask;
4333 unwind.body = 0;
4334 ++unwind.prologue_count;
4335 }
4336
4337 static void
4338 dot_endp (dummy)
4339 int dummy ATTRIBUTE_UNUSED;
4340 {
4341 expressionS e;
4342 unsigned char *ptr;
4343 int bytes_per_address;
4344 long where;
4345 segT saved_seg;
4346 subsegT saved_subseg;
4347 char *name, *default_name, *p, c;
4348 symbolS *sym;
4349 int unwind_check = md.unwind_check;
4350
4351 md.unwind_check = unwind_check_error;
4352 if (!in_procedure ("endp"))
4353 return;
4354 md.unwind_check = unwind_check;
4355
4356 if (unwind.saved_text_seg)
4357 {
4358 saved_seg = unwind.saved_text_seg;
4359 saved_subseg = unwind.saved_text_subseg;
4360 unwind.saved_text_seg = NULL;
4361 }
4362 else
4363 {
4364 saved_seg = now_seg;
4365 saved_subseg = now_subseg;
4366 }
4367
4368 insn_group_break (1, 0, 0);
4369
4370 /* If there wasn't a .handlerdata, we haven't generated an image yet. */
4371 if (!unwind.info)
4372 generate_unwind_image (saved_seg);
4373
4374 if (unwind.info || unwind.force_unwind_entry)
4375 {
4376 symbolS *proc_end;
4377
4378 subseg_set (md.last_text_seg, 0);
4379 proc_end = expr_build_dot ();
4380
4381 start_unwind_section (saved_seg, SPECIAL_SECTION_UNWIND, 0);
4382
4383 /* Make sure that section has 4 byte alignment for ILP32 and
4384 8 byte alignment for LP64. */
4385 record_alignment (now_seg, md.pointer_size_shift);
4386
4387 /* Need space for 3 pointers for procedure start, procedure end,
4388 and unwind info. */
4389 ptr = frag_more (3 * md.pointer_size);
4390 where = frag_now_fix () - (3 * md.pointer_size);
4391 bytes_per_address = bfd_arch_bits_per_address (stdoutput) / 8;
4392
4393 /* Issue the values of a) Proc Begin, b) Proc End, c) Unwind Record. */
4394 e.X_op = O_pseudo_fixup;
4395 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4396 e.X_add_number = 0;
4397 e.X_add_symbol = unwind.proc_start;
4398 ia64_cons_fix_new (frag_now, where, bytes_per_address, &e);
4399
4400 e.X_op = O_pseudo_fixup;
4401 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4402 e.X_add_number = 0;
4403 e.X_add_symbol = proc_end;
4404 ia64_cons_fix_new (frag_now, where + bytes_per_address,
4405 bytes_per_address, &e);
4406
4407 if (unwind.info)
4408 {
4409 e.X_op = O_pseudo_fixup;
4410 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4411 e.X_add_number = 0;
4412 e.X_add_symbol = unwind.info;
4413 ia64_cons_fix_new (frag_now, where + (bytes_per_address * 2),
4414 bytes_per_address, &e);
4415 }
4416 else
4417 md_number_to_chars (ptr + (bytes_per_address * 2), 0,
4418 bytes_per_address);
4419
4420 }
4421 else
4422 start_unwind_section (saved_seg, SPECIAL_SECTION_UNWIND, 1);
4423
4424 subseg_set (saved_seg, saved_subseg);
4425
4426 if (unwind.proc_start)
4427 default_name = (char *) S_GET_NAME (unwind.proc_start);
4428 else
4429 default_name = NULL;
4430
4431 /* Parse names of main and alternate entry points and set symbol sizes. */
4432 while (1)
4433 {
4434 SKIP_WHITESPACE ();
4435 name = input_line_pointer;
4436 c = get_symbol_end ();
4437 p = input_line_pointer;
4438 if (!*name)
4439 {
4440 if (md.unwind_check == unwind_check_warning)
4441 {
4442 if (default_name)
4443 {
4444 as_warn ("Empty argument of .endp. Use the default name `%s'",
4445 default_name);
4446 name = default_name;
4447 }
4448 else
4449 as_warn ("Empty argument of .endp");
4450 }
4451 else
4452 as_bad ("Empty argument of .endp");
4453 }
4454 if (*name)
4455 {
4456 sym = symbol_find (name);
4457 if (!sym
4458 && md.unwind_check == unwind_check_warning
4459 && default_name
4460 && default_name != name)
4461 {
4462 /* We have a bad name. Try the default one if needed. */
4463 as_warn ("`%s' was not defined within procedure. Use the default name `%s'",
4464 name, default_name);
4465 name = default_name;
4466 sym = symbol_find (name);
4467 }
4468 if (!sym || !S_IS_DEFINED (sym))
4469 as_bad ("`%s' was not defined within procedure", name);
4470 else if (unwind.proc_start
4471 && (symbol_get_bfdsym (sym)->flags & BSF_FUNCTION)
4472 && S_GET_SIZE (sym) == 0 && symbol_get_obj (sym)->size == NULL)
4473 {
4474 fragS *fr = symbol_get_frag (unwind.proc_start);
4475 fragS *frag = symbol_get_frag (sym);
4476
4477 /* Check whether the function label is at or beyond last
4478 .proc directive. */
4479 while (fr && fr != frag)
4480 fr = fr->fr_next;
4481 if (fr)
4482 {
4483 if (frag == frag_now && SEG_NORMAL (now_seg))
4484 S_SET_SIZE (sym, frag_now_fix () - S_GET_VALUE (sym));
4485 else
4486 {
4487 symbol_get_obj (sym)->size =
4488 (expressionS *) xmalloc (sizeof (expressionS));
4489 symbol_get_obj (sym)->size->X_op = O_subtract;
4490 symbol_get_obj (sym)->size->X_add_symbol
4491 = symbol_new (FAKE_LABEL_NAME, now_seg,
4492 frag_now_fix (), frag_now);
4493 symbol_get_obj (sym)->size->X_op_symbol = sym;
4494 symbol_get_obj (sym)->size->X_add_number = 0;
4495 }
4496 }
4497 }
4498 }
4499 *p = c;
4500 SKIP_WHITESPACE ();
4501 if (*input_line_pointer != ',')
4502 break;
4503 ++input_line_pointer;
4504 }
4505 demand_empty_rest_of_line ();
4506 unwind.proc_start = unwind.info = 0;
4507 }
4508
4509 static void
4510 dot_template (template)
4511 int template;
4512 {
4513 CURR_SLOT.user_template = template;
4514 }
4515
4516 static void
4517 dot_regstk (dummy)
4518 int dummy ATTRIBUTE_UNUSED;
4519 {
4520 int ins, locs, outs, rots;
4521
4522 if (is_it_end_of_statement ())
4523 ins = locs = outs = rots = 0;
4524 else
4525 {
4526 ins = get_absolute_expression ();
4527 if (*input_line_pointer++ != ',')
4528 goto err;
4529 locs = get_absolute_expression ();
4530 if (*input_line_pointer++ != ',')
4531 goto err;
4532 outs = get_absolute_expression ();
4533 if (*input_line_pointer++ != ',')
4534 goto err;
4535 rots = get_absolute_expression ();
4536 }
4537 set_regstack (ins, locs, outs, rots);
4538 return;
4539
4540 err:
4541 as_bad ("Comma expected");
4542 ignore_rest_of_line ();
4543 }
4544
4545 static void
4546 dot_rot (type)
4547 int type;
4548 {
4549 unsigned num_regs, num_alloced = 0;
4550 struct dynreg **drpp, *dr;
4551 int ch, base_reg = 0;
4552 char *name, *start;
4553 size_t len;
4554
4555 switch (type)
4556 {
4557 case DYNREG_GR: base_reg = REG_GR + 32; break;
4558 case DYNREG_FR: base_reg = REG_FR + 32; break;
4559 case DYNREG_PR: base_reg = REG_P + 16; break;
4560 default: break;
4561 }
4562
4563 /* First, remove existing names from hash table. */
4564 for (dr = md.dynreg[type]; dr && dr->num_regs; dr = dr->next)
4565 {
4566 hash_delete (md.dynreg_hash, dr->name);
4567 /* FIXME: Free dr->name. */
4568 dr->num_regs = 0;
4569 }
4570
4571 drpp = &md.dynreg[type];
4572 while (1)
4573 {
4574 start = input_line_pointer;
4575 ch = get_symbol_end ();
4576 len = strlen (ia64_canonicalize_symbol_name (start));
4577 *input_line_pointer = ch;
4578
4579 SKIP_WHITESPACE ();
4580 if (*input_line_pointer != '[')
4581 {
4582 as_bad ("Expected '['");
4583 goto err;
4584 }
4585 ++input_line_pointer; /* skip '[' */
4586
4587 num_regs = get_absolute_expression ();
4588
4589 if (*input_line_pointer++ != ']')
4590 {
4591 as_bad ("Expected ']'");
4592 goto err;
4593 }
4594 SKIP_WHITESPACE ();
4595
4596 num_alloced += num_regs;
4597 switch (type)
4598 {
4599 case DYNREG_GR:
4600 if (num_alloced > md.rot.num_regs)
4601 {
4602 as_bad ("Used more than the declared %d rotating registers",
4603 md.rot.num_regs);
4604 goto err;
4605 }
4606 break;
4607 case DYNREG_FR:
4608 if (num_alloced > 96)
4609 {
4610 as_bad ("Used more than the available 96 rotating registers");
4611 goto err;
4612 }
4613 break;
4614 case DYNREG_PR:
4615 if (num_alloced > 48)
4616 {
4617 as_bad ("Used more than the available 48 rotating registers");
4618 goto err;
4619 }
4620 break;
4621
4622 default:
4623 break;
4624 }
4625
4626 if (!*drpp)
4627 {
4628 *drpp = obstack_alloc (&notes, sizeof (*dr));
4629 memset (*drpp, 0, sizeof (*dr));
4630 }
4631
4632 name = obstack_alloc (&notes, len + 1);
4633 memcpy (name, start, len);
4634 name[len] = '\0';
4635
4636 dr = *drpp;
4637 dr->name = name;
4638 dr->num_regs = num_regs;
4639 dr->base = base_reg;
4640 drpp = &dr->next;
4641 base_reg += num_regs;
4642
4643 if (hash_insert (md.dynreg_hash, name, dr))
4644 {
4645 as_bad ("Attempt to redefine register set `%s'", name);
4646 obstack_free (&notes, name);
4647 goto err;
4648 }
4649
4650 if (*input_line_pointer != ',')
4651 break;
4652 ++input_line_pointer; /* skip comma */
4653 SKIP_WHITESPACE ();
4654 }
4655 demand_empty_rest_of_line ();
4656 return;
4657
4658 err:
4659 ignore_rest_of_line ();
4660 }
4661
4662 static void
4663 dot_byteorder (byteorder)
4664 int byteorder;
4665 {
4666 segment_info_type *seginfo = seg_info (now_seg);
4667
4668 if (byteorder == -1)
4669 {
4670 if (seginfo->tc_segment_info_data.endian == 0)
4671 seginfo->tc_segment_info_data.endian = default_big_endian ? 1 : 2;
4672 byteorder = seginfo->tc_segment_info_data.endian == 1;
4673 }
4674 else
4675 seginfo->tc_segment_info_data.endian = byteorder ? 1 : 2;
4676
4677 if (target_big_endian != byteorder)
4678 {
4679 target_big_endian = byteorder;
4680 if (target_big_endian)
4681 {
4682 ia64_number_to_chars = number_to_chars_bigendian;
4683 ia64_float_to_chars = ia64_float_to_chars_bigendian;
4684 }
4685 else
4686 {
4687 ia64_number_to_chars = number_to_chars_littleendian;
4688 ia64_float_to_chars = ia64_float_to_chars_littleendian;
4689 }
4690 }
4691 }
4692
4693 static void
4694 dot_psr (dummy)
4695 int dummy ATTRIBUTE_UNUSED;
4696 {
4697 char *option;
4698 int ch;
4699
4700 while (1)
4701 {
4702 option = input_line_pointer;
4703 ch = get_symbol_end ();
4704 if (strcmp (option, "lsb") == 0)
4705 md.flags &= ~EF_IA_64_BE;
4706 else if (strcmp (option, "msb") == 0)
4707 md.flags |= EF_IA_64_BE;
4708 else if (strcmp (option, "abi32") == 0)
4709 md.flags &= ~EF_IA_64_ABI64;
4710 else if (strcmp (option, "abi64") == 0)
4711 md.flags |= EF_IA_64_ABI64;
4712 else
4713 as_bad ("Unknown psr option `%s'", option);
4714 *input_line_pointer = ch;
4715
4716 SKIP_WHITESPACE ();
4717 if (*input_line_pointer != ',')
4718 break;
4719
4720 ++input_line_pointer;
4721 SKIP_WHITESPACE ();
4722 }
4723 demand_empty_rest_of_line ();
4724 }
4725
4726 static void
4727 dot_ln (dummy)
4728 int dummy ATTRIBUTE_UNUSED;
4729 {
4730 new_logical_line (0, get_absolute_expression ());
4731 demand_empty_rest_of_line ();
4732 }
4733
4734 static char *
4735 parse_section_name ()
4736 {
4737 char *name;
4738 int len;
4739
4740 SKIP_WHITESPACE ();
4741 if (*input_line_pointer == '"')
4742 name = demand_copy_C_string (&len);
4743 else
4744 {
4745 char *start = input_line_pointer;
4746 char c = get_symbol_end ();
4747
4748 if (input_line_pointer == start)
4749 {
4750 as_bad ("Missing section name");
4751 ignore_rest_of_line ();
4752 return 0;
4753 }
4754 name = obstack_copy (&notes, start, input_line_pointer - start + 1);
4755 *input_line_pointer = c;
4756 }
4757 if (!name)
4758 {
4759 ignore_rest_of_line ();
4760 return 0;
4761 }
4762 SKIP_WHITESPACE ();
4763 if (*input_line_pointer != ',')
4764 {
4765 as_bad ("Comma expected after section name");
4766 ignore_rest_of_line ();
4767 return 0;
4768 }
4769 ++input_line_pointer; /* skip comma */
4770 return name;
4771 }
4772
4773 static void
4774 dot_xdata (size)
4775 int size;
4776 {
4777 char *name = parse_section_name ();
4778 if (!name)
4779 return;
4780
4781 md.keep_pending_output = 1;
4782 set_section (name);
4783 cons (size);
4784 obj_elf_previous (0);
4785 md.keep_pending_output = 0;
4786 }
4787
4788 /* Why doesn't float_cons() call md_cons_align() the way cons() does? */
4789
4790 static void
4791 stmt_float_cons (kind)
4792 int kind;
4793 {
4794 size_t alignment;
4795
4796 switch (kind)
4797 {
4798 case 'd':
4799 alignment = 8;
4800 break;
4801
4802 case 'x':
4803 case 'X':
4804 alignment = 16;
4805 break;
4806
4807 case 'f':
4808 default:
4809 alignment = 4;
4810 break;
4811 }
4812 ia64_do_align (alignment);
4813 float_cons (kind);
4814 }
4815
4816 static void
4817 stmt_cons_ua (size)
4818 int size;
4819 {
4820 int saved_auto_align = md.auto_align;
4821
4822 md.auto_align = 0;
4823 cons (size);
4824 md.auto_align = saved_auto_align;
4825 }
4826
4827 static void
4828 dot_xfloat_cons (kind)
4829 int kind;
4830 {
4831 char *name = parse_section_name ();
4832 if (!name)
4833 return;
4834
4835 md.keep_pending_output = 1;
4836 set_section (name);
4837 stmt_float_cons (kind);
4838 obj_elf_previous (0);
4839 md.keep_pending_output = 0;
4840 }
4841
4842 static void
4843 dot_xstringer (zero)
4844 int zero;
4845 {
4846 char *name = parse_section_name ();
4847 if (!name)
4848 return;
4849
4850 md.keep_pending_output = 1;
4851 set_section (name);
4852 stringer (zero);
4853 obj_elf_previous (0);
4854 md.keep_pending_output = 0;
4855 }
4856
4857 static void
4858 dot_xdata_ua (size)
4859 int size;
4860 {
4861 int saved_auto_align = md.auto_align;
4862 char *name = parse_section_name ();
4863 if (!name)
4864 return;
4865
4866 md.keep_pending_output = 1;
4867 set_section (name);
4868 md.auto_align = 0;
4869 cons (size);
4870 md.auto_align = saved_auto_align;
4871 obj_elf_previous (0);
4872 md.keep_pending_output = 0;
4873 }
4874
4875 static void
4876 dot_xfloat_cons_ua (kind)
4877 int kind;
4878 {
4879 int saved_auto_align = md.auto_align;
4880 char *name = parse_section_name ();
4881 if (!name)
4882 return;
4883
4884 md.keep_pending_output = 1;
4885 set_section (name);
4886 md.auto_align = 0;
4887 stmt_float_cons (kind);
4888 md.auto_align = saved_auto_align;
4889 obj_elf_previous (0);
4890 md.keep_pending_output = 0;
4891 }
4892
4893 /* .reg.val <regname>,value */
4894
4895 static void
4896 dot_reg_val (dummy)
4897 int dummy ATTRIBUTE_UNUSED;
4898 {
4899 expressionS reg;
4900
4901 expression (&reg);
4902 if (reg.X_op != O_register)
4903 {
4904 as_bad (_("Register name expected"));
4905 ignore_rest_of_line ();
4906 }
4907 else if (*input_line_pointer++ != ',')
4908 {
4909 as_bad (_("Comma expected"));
4910 ignore_rest_of_line ();
4911 }
4912 else
4913 {
4914 valueT value = get_absolute_expression ();
4915 int regno = reg.X_add_number;
4916 if (regno < REG_GR || regno > REG_GR + 128)
4917 as_warn (_("Register value annotation ignored"));
4918 else
4919 {
4920 gr_values[regno - REG_GR].known = 1;
4921 gr_values[regno - REG_GR].value = value;
4922 gr_values[regno - REG_GR].path = md.path;
4923 }
4924 }
4925 demand_empty_rest_of_line ();
4926 }
4927
4928 /*
4929 .serialize.data
4930 .serialize.instruction
4931 */
4932 static void
4933 dot_serialize (type)
4934 int type;
4935 {
4936 insn_group_break (0, 0, 0);
4937 if (type)
4938 instruction_serialization ();
4939 else
4940 data_serialization ();
4941 insn_group_break (0, 0, 0);
4942 demand_empty_rest_of_line ();
4943 }
4944
4945 /* select dv checking mode
4946 .auto
4947 .explicit
4948 .default
4949
4950 A stop is inserted when changing modes
4951 */
4952
4953 static void
4954 dot_dv_mode (type)
4955 int type;
4956 {
4957 if (md.manual_bundling)
4958 as_warn (_("Directive invalid within a bundle"));
4959
4960 if (type == 'E' || type == 'A')
4961 md.mode_explicitly_set = 0;
4962 else
4963 md.mode_explicitly_set = 1;
4964
4965 md.detect_dv = 1;
4966 switch (type)
4967 {
4968 case 'A':
4969 case 'a':
4970 if (md.explicit_mode)
4971 insn_group_break (1, 0, 0);
4972 md.explicit_mode = 0;
4973 break;
4974 case 'E':
4975 case 'e':
4976 if (!md.explicit_mode)
4977 insn_group_break (1, 0, 0);
4978 md.explicit_mode = 1;
4979 break;
4980 default:
4981 case 'd':
4982 if (md.explicit_mode != md.default_explicit_mode)
4983 insn_group_break (1, 0, 0);
4984 md.explicit_mode = md.default_explicit_mode;
4985 md.mode_explicitly_set = 0;
4986 break;
4987 }
4988 }
4989
4990 static void
4991 print_prmask (mask)
4992 valueT mask;
4993 {
4994 int regno;
4995 char *comma = "";
4996 for (regno = 0; regno < 64; regno++)
4997 {
4998 if (mask & ((valueT) 1 << regno))
4999 {
5000 fprintf (stderr, "%s p%d", comma, regno);
5001 comma = ",";
5002 }
5003 }
5004 }
5005
5006 /*
5007 .pred.rel.clear [p1 [,p2 [,...]]] (also .pred.rel "clear" or @clear)
5008 .pred.rel.imply p1, p2 (also .pred.rel "imply" or @imply)
5009 .pred.rel.mutex p1, p2 [,...] (also .pred.rel "mutex" or @mutex)
5010 .pred.safe_across_calls p1 [, p2 [,...]]
5011 */
5012
5013 static void
5014 dot_pred_rel (type)
5015 int type;
5016 {
5017 valueT mask = 0;
5018 int count = 0;
5019 int p1 = -1, p2 = -1;
5020
5021 if (type == 0)
5022 {
5023 if (*input_line_pointer == '"')
5024 {
5025 int len;
5026 char *form = demand_copy_C_string (&len);
5027
5028 if (strcmp (form, "mutex") == 0)
5029 type = 'm';
5030 else if (strcmp (form, "clear") == 0)
5031 type = 'c';
5032 else if (strcmp (form, "imply") == 0)
5033 type = 'i';
5034 obstack_free (&notes, form);
5035 }
5036 else if (*input_line_pointer == '@')
5037 {
5038 char *form = ++input_line_pointer;
5039 char c = get_symbol_end();
5040
5041 if (strcmp (form, "mutex") == 0)
5042 type = 'm';
5043 else if (strcmp (form, "clear") == 0)
5044 type = 'c';
5045 else if (strcmp (form, "imply") == 0)
5046 type = 'i';
5047 *input_line_pointer = c;
5048 }
5049 else
5050 {
5051 as_bad (_("Missing predicate relation type"));
5052 ignore_rest_of_line ();
5053 return;
5054 }
5055 if (type == 0)
5056 {
5057 as_bad (_("Unrecognized predicate relation type"));
5058 ignore_rest_of_line ();
5059 return;
5060 }
5061 if (*input_line_pointer == ',')
5062 ++input_line_pointer;
5063 SKIP_WHITESPACE ();
5064 }
5065
5066 SKIP_WHITESPACE ();
5067 while (1)
5068 {
5069 valueT bits = 1;
5070 int regno;
5071 expressionS pr, *pr1, *pr2;
5072
5073 expression (&pr);
5074 if (pr.X_op == O_register
5075 && pr.X_add_number >= REG_P
5076 && pr.X_add_number <= REG_P + 63)
5077 {
5078 regno = pr.X_add_number - REG_P;
5079 bits <<= regno;
5080 count++;
5081 if (p1 == -1)
5082 p1 = regno;
5083 else if (p2 == -1)
5084 p2 = regno;
5085 }
5086 else if (type != 'i'
5087 && pr.X_op == O_subtract
5088 && (pr1 = symbol_get_value_expression (pr.X_add_symbol))
5089 && pr1->X_op == O_register
5090 && pr1->X_add_number >= REG_P
5091 && pr1->X_add_number <= REG_P + 63
5092 && (pr2 = symbol_get_value_expression (pr.X_op_symbol))
5093 && pr2->X_op == O_register
5094 && pr2->X_add_number >= REG_P
5095 && pr2->X_add_number <= REG_P + 63)
5096 {
5097 /* It's a range. */
5098 int stop;
5099
5100 regno = pr1->X_add_number - REG_P;
5101 stop = pr2->X_add_number - REG_P;
5102 if (regno >= stop)
5103 {
5104 as_bad (_("Bad register range"));
5105 ignore_rest_of_line ();
5106 return;
5107 }
5108 bits = ((bits << stop) << 1) - (bits << regno);
5109 count += stop - regno + 1;
5110 }
5111 else
5112 {
5113 as_bad (_("Predicate register expected"));
5114 ignore_rest_of_line ();
5115 return;
5116 }
5117 if (mask & bits)
5118 as_warn (_("Duplicate predicate register ignored"));
5119 mask |= bits;
5120 if (*input_line_pointer != ',')
5121 break;
5122 ++input_line_pointer;
5123 SKIP_WHITESPACE ();
5124 }
5125
5126 switch (type)
5127 {
5128 case 'c':
5129 if (count == 0)
5130 mask = ~(valueT) 0;
5131 clear_qp_mutex (mask);
5132 clear_qp_implies (mask, (valueT) 0);
5133 break;
5134 case 'i':
5135 if (count != 2 || p1 == -1 || p2 == -1)
5136 as_bad (_("Predicate source and target required"));
5137 else if (p1 == 0 || p2 == 0)
5138 as_bad (_("Use of p0 is not valid in this context"));
5139 else
5140 add_qp_imply (p1, p2);
5141 break;
5142 case 'm':
5143 if (count < 2)
5144 {
5145 as_bad (_("At least two PR arguments expected"));
5146 break;
5147 }
5148 else if (mask & 1)
5149 {
5150 as_bad (_("Use of p0 is not valid in this context"));
5151 break;
5152 }
5153 add_qp_mutex (mask);
5154 break;
5155 case 's':
5156 /* note that we don't override any existing relations */
5157 if (count == 0)
5158 {
5159 as_bad (_("At least one PR argument expected"));
5160 break;
5161 }
5162 if (md.debug_dv)
5163 {
5164 fprintf (stderr, "Safe across calls: ");
5165 print_prmask (mask);
5166 fprintf (stderr, "\n");
5167 }
5168 qp_safe_across_calls = mask;
5169 break;
5170 }
5171 demand_empty_rest_of_line ();
5172 }
5173
5174 /* .entry label [, label [, ...]]
5175 Hint to DV code that the given labels are to be considered entry points.
5176 Otherwise, only global labels are considered entry points. */
5177
5178 static void
5179 dot_entry (dummy)
5180 int dummy ATTRIBUTE_UNUSED;
5181 {
5182 const char *err;
5183 char *name;
5184 int c;
5185 symbolS *symbolP;
5186
5187 do
5188 {
5189 name = input_line_pointer;
5190 c = get_symbol_end ();
5191 symbolP = symbol_find_or_make (name);
5192
5193 err = hash_insert (md.entry_hash, S_GET_NAME (symbolP), (PTR) symbolP);
5194 if (err)
5195 as_fatal (_("Inserting \"%s\" into entry hint table failed: %s"),
5196 name, err);
5197
5198 *input_line_pointer = c;
5199 SKIP_WHITESPACE ();
5200 c = *input_line_pointer;
5201 if (c == ',')
5202 {
5203 input_line_pointer++;
5204 SKIP_WHITESPACE ();
5205 if (*input_line_pointer == '\n')
5206 c = '\n';
5207 }
5208 }
5209 while (c == ',');
5210
5211 demand_empty_rest_of_line ();
5212 }
5213
5214 /* .mem.offset offset, base
5215 "base" is used to distinguish between offsets from a different base. */
5216
5217 static void
5218 dot_mem_offset (dummy)
5219 int dummy ATTRIBUTE_UNUSED;
5220 {
5221 md.mem_offset.hint = 1;
5222 md.mem_offset.offset = get_absolute_expression ();
5223 if (*input_line_pointer != ',')
5224 {
5225 as_bad (_("Comma expected"));
5226 ignore_rest_of_line ();
5227 return;
5228 }
5229 ++input_line_pointer;
5230 md.mem_offset.base = get_absolute_expression ();
5231 demand_empty_rest_of_line ();
5232 }
5233
5234 /* ia64-specific pseudo-ops: */
5235 const pseudo_typeS md_pseudo_table[] =
5236 {
5237 { "radix", dot_radix, 0 },
5238 { "lcomm", s_lcomm_bytes, 1 },
5239 { "loc", dot_loc, 0 },
5240 { "bss", dot_special_section, SPECIAL_SECTION_BSS },
5241 { "sbss", dot_special_section, SPECIAL_SECTION_SBSS },
5242 { "sdata", dot_special_section, SPECIAL_SECTION_SDATA },
5243 { "rodata", dot_special_section, SPECIAL_SECTION_RODATA },
5244 { "comment", dot_special_section, SPECIAL_SECTION_COMMENT },
5245 { "ia_64.unwind", dot_special_section, SPECIAL_SECTION_UNWIND },
5246 { "ia_64.unwind_info", dot_special_section, SPECIAL_SECTION_UNWIND_INFO },
5247 { "init_array", dot_special_section, SPECIAL_SECTION_INIT_ARRAY },
5248 { "fini_array", dot_special_section, SPECIAL_SECTION_FINI_ARRAY },
5249 { "proc", dot_proc, 0 },
5250 { "body", dot_body, 0 },
5251 { "prologue", dot_prologue, 0 },
5252 { "endp", dot_endp, 0 },
5253
5254 { "fframe", dot_fframe, 0 },
5255 { "vframe", dot_vframe, 0 },
5256 { "vframesp", dot_vframesp, 0 },
5257 { "vframepsp", dot_vframepsp, 0 },
5258 { "save", dot_save, 0 },
5259 { "restore", dot_restore, 0 },
5260 { "restorereg", dot_restorereg, 0 },
5261 { "restorereg.p", dot_restorereg_p, 0 },
5262 { "handlerdata", dot_handlerdata, 0 },
5263 { "unwentry", dot_unwentry, 0 },
5264 { "altrp", dot_altrp, 0 },
5265 { "savesp", dot_savemem, 0 },
5266 { "savepsp", dot_savemem, 1 },
5267 { "save.g", dot_saveg, 0 },
5268 { "save.f", dot_savef, 0 },
5269 { "save.b", dot_saveb, 0 },
5270 { "save.gf", dot_savegf, 0 },
5271 { "spill", dot_spill, 0 },
5272 { "spillreg", dot_spillreg, 0 },
5273 { "spillsp", dot_spillmem, 0 },
5274 { "spillpsp", dot_spillmem, 1 },
5275 { "spillreg.p", dot_spillreg_p, 0 },
5276 { "spillsp.p", dot_spillmem_p, 0 },
5277 { "spillpsp.p", dot_spillmem_p, 1 },
5278 { "label_state", dot_label_state, 0 },
5279 { "copy_state", dot_copy_state, 0 },
5280 { "unwabi", dot_unwabi, 0 },
5281 { "personality", dot_personality, 0 },
5282 { "mii", dot_template, 0x0 },
5283 { "mli", dot_template, 0x2 }, /* old format, for compatibility */
5284 { "mlx", dot_template, 0x2 },
5285 { "mmi", dot_template, 0x4 },
5286 { "mfi", dot_template, 0x6 },
5287 { "mmf", dot_template, 0x7 },
5288 { "mib", dot_template, 0x8 },
5289 { "mbb", dot_template, 0x9 },
5290 { "bbb", dot_template, 0xb },
5291 { "mmb", dot_template, 0xc },
5292 { "mfb", dot_template, 0xe },
5293 { "align", dot_align, 0 },
5294 { "regstk", dot_regstk, 0 },
5295 { "rotr", dot_rot, DYNREG_GR },
5296 { "rotf", dot_rot, DYNREG_FR },
5297 { "rotp", dot_rot, DYNREG_PR },
5298 { "lsb", dot_byteorder, 0 },
5299 { "msb", dot_byteorder, 1 },
5300 { "psr", dot_psr, 0 },
5301 { "alias", dot_alias, 0 },
5302 { "secalias", dot_alias, 1 },
5303 { "ln", dot_ln, 0 }, /* source line info (for debugging) */
5304
5305 { "xdata1", dot_xdata, 1 },
5306 { "xdata2", dot_xdata, 2 },
5307 { "xdata4", dot_xdata, 4 },
5308 { "xdata8", dot_xdata, 8 },
5309 { "xdata16", dot_xdata, 16 },
5310 { "xreal4", dot_xfloat_cons, 'f' },
5311 { "xreal8", dot_xfloat_cons, 'd' },
5312 { "xreal10", dot_xfloat_cons, 'x' },
5313 { "xreal16", dot_xfloat_cons, 'X' },
5314 { "xstring", dot_xstringer, 0 },
5315 { "xstringz", dot_xstringer, 1 },
5316
5317 /* unaligned versions: */
5318 { "xdata2.ua", dot_xdata_ua, 2 },
5319 { "xdata4.ua", dot_xdata_ua, 4 },
5320 { "xdata8.ua", dot_xdata_ua, 8 },
5321 { "xdata16.ua", dot_xdata_ua, 16 },
5322 { "xreal4.ua", dot_xfloat_cons_ua, 'f' },
5323 { "xreal8.ua", dot_xfloat_cons_ua, 'd' },
5324 { "xreal10.ua", dot_xfloat_cons_ua, 'x' },
5325 { "xreal16.ua", dot_xfloat_cons_ua, 'X' },
5326
5327 /* annotations/DV checking support */
5328 { "entry", dot_entry, 0 },
5329 { "mem.offset", dot_mem_offset, 0 },
5330 { "pred.rel", dot_pred_rel, 0 },
5331 { "pred.rel.clear", dot_pred_rel, 'c' },
5332 { "pred.rel.imply", dot_pred_rel, 'i' },
5333 { "pred.rel.mutex", dot_pred_rel, 'm' },
5334 { "pred.safe_across_calls", dot_pred_rel, 's' },
5335 { "reg.val", dot_reg_val, 0 },
5336 { "serialize.data", dot_serialize, 0 },
5337 { "serialize.instruction", dot_serialize, 1 },
5338 { "auto", dot_dv_mode, 'a' },
5339 { "explicit", dot_dv_mode, 'e' },
5340 { "default", dot_dv_mode, 'd' },
5341
5342 /* ??? These are needed to make gas/testsuite/gas/elf/ehopt.s work.
5343 IA-64 aligns data allocation pseudo-ops by default, so we have to
5344 tell it that these ones are supposed to be unaligned. Long term,
5345 should rewrite so that only IA-64 specific data allocation pseudo-ops
5346 are aligned by default. */
5347 {"2byte", stmt_cons_ua, 2},
5348 {"4byte", stmt_cons_ua, 4},
5349 {"8byte", stmt_cons_ua, 8},
5350
5351 { NULL, 0, 0 }
5352 };
5353
5354 static const struct pseudo_opcode
5355 {
5356 const char *name;
5357 void (*handler) (int);
5358 int arg;
5359 }
5360 pseudo_opcode[] =
5361 {
5362 /* these are more like pseudo-ops, but don't start with a dot */
5363 { "data1", cons, 1 },
5364 { "data2", cons, 2 },
5365 { "data4", cons, 4 },
5366 { "data8", cons, 8 },
5367 { "data16", cons, 16 },
5368 { "real4", stmt_float_cons, 'f' },
5369 { "real8", stmt_float_cons, 'd' },
5370 { "real10", stmt_float_cons, 'x' },
5371 { "real16", stmt_float_cons, 'X' },
5372 { "string", stringer, 0 },
5373 { "stringz", stringer, 1 },
5374
5375 /* unaligned versions: */
5376 { "data2.ua", stmt_cons_ua, 2 },
5377 { "data4.ua", stmt_cons_ua, 4 },
5378 { "data8.ua", stmt_cons_ua, 8 },
5379 { "data16.ua", stmt_cons_ua, 16 },
5380 { "real4.ua", float_cons, 'f' },
5381 { "real8.ua", float_cons, 'd' },
5382 { "real10.ua", float_cons, 'x' },
5383 { "real16.ua", float_cons, 'X' },
5384 };
5385
5386 /* Declare a register by creating a symbol for it and entering it in
5387 the symbol table. */
5388
5389 static symbolS *
5390 declare_register (name, regnum)
5391 const char *name;
5392 int regnum;
5393 {
5394 const char *err;
5395 symbolS *sym;
5396
5397 sym = symbol_new (name, reg_section, regnum, &zero_address_frag);
5398
5399 err = hash_insert (md.reg_hash, S_GET_NAME (sym), (PTR) sym);
5400 if (err)
5401 as_fatal ("Inserting \"%s\" into register table failed: %s",
5402 name, err);
5403
5404 return sym;
5405 }
5406
5407 static void
5408 declare_register_set (prefix, num_regs, base_regnum)
5409 const char *prefix;
5410 int num_regs;
5411 int base_regnum;
5412 {
5413 char name[8];
5414 int i;
5415
5416 for (i = 0; i < num_regs; ++i)
5417 {
5418 sprintf (name, "%s%u", prefix, i);
5419 declare_register (name, base_regnum + i);
5420 }
5421 }
5422
5423 static unsigned int
5424 operand_width (opnd)
5425 enum ia64_opnd opnd;
5426 {
5427 const struct ia64_operand *odesc = &elf64_ia64_operands[opnd];
5428 unsigned int bits = 0;
5429 int i;
5430
5431 bits = 0;
5432 for (i = 0; i < NELEMS (odesc->field) && odesc->field[i].bits; ++i)
5433 bits += odesc->field[i].bits;
5434
5435 return bits;
5436 }
5437
5438 static enum operand_match_result
5439 operand_match (idesc, index, e)
5440 const struct ia64_opcode *idesc;
5441 int index;
5442 expressionS *e;
5443 {
5444 enum ia64_opnd opnd = idesc->operands[index];
5445 int bits, relocatable = 0;
5446 struct insn_fix *fix;
5447 bfd_signed_vma val;
5448
5449 switch (opnd)
5450 {
5451 /* constants: */
5452
5453 case IA64_OPND_AR_CCV:
5454 if (e->X_op == O_register && e->X_add_number == REG_AR + 32)
5455 return OPERAND_MATCH;
5456 break;
5457
5458 case IA64_OPND_AR_CSD:
5459 if (e->X_op == O_register && e->X_add_number == REG_AR + 25)
5460 return OPERAND_MATCH;
5461 break;
5462
5463 case IA64_OPND_AR_PFS:
5464 if (e->X_op == O_register && e->X_add_number == REG_AR + 64)
5465 return OPERAND_MATCH;
5466 break;
5467
5468 case IA64_OPND_GR0:
5469 if (e->X_op == O_register && e->X_add_number == REG_GR + 0)
5470 return OPERAND_MATCH;
5471 break;
5472
5473 case IA64_OPND_IP:
5474 if (e->X_op == O_register && e->X_add_number == REG_IP)
5475 return OPERAND_MATCH;
5476 break;
5477
5478 case IA64_OPND_PR:
5479 if (e->X_op == O_register && e->X_add_number == REG_PR)
5480 return OPERAND_MATCH;
5481 break;
5482
5483 case IA64_OPND_PR_ROT:
5484 if (e->X_op == O_register && e->X_add_number == REG_PR_ROT)
5485 return OPERAND_MATCH;
5486 break;
5487
5488 case IA64_OPND_PSR:
5489 if (e->X_op == O_register && e->X_add_number == REG_PSR)
5490 return OPERAND_MATCH;
5491 break;
5492
5493 case IA64_OPND_PSR_L:
5494 if (e->X_op == O_register && e->X_add_number == REG_PSR_L)
5495 return OPERAND_MATCH;
5496 break;
5497
5498 case IA64_OPND_PSR_UM:
5499 if (e->X_op == O_register && e->X_add_number == REG_PSR_UM)
5500 return OPERAND_MATCH;
5501 break;
5502
5503 case IA64_OPND_C1:
5504 if (e->X_op == O_constant)
5505 {
5506 if (e->X_add_number == 1)
5507 return OPERAND_MATCH;
5508 else
5509 return OPERAND_OUT_OF_RANGE;
5510 }
5511 break;
5512
5513 case IA64_OPND_C8:
5514 if (e->X_op == O_constant)
5515 {
5516 if (e->X_add_number == 8)
5517 return OPERAND_MATCH;
5518 else
5519 return OPERAND_OUT_OF_RANGE;
5520 }
5521 break;
5522
5523 case IA64_OPND_C16:
5524 if (e->X_op == O_constant)
5525 {
5526 if (e->X_add_number == 16)
5527 return OPERAND_MATCH;
5528 else
5529 return OPERAND_OUT_OF_RANGE;
5530 }
5531 break;
5532
5533 /* register operands: */
5534
5535 case IA64_OPND_AR3:
5536 if (e->X_op == O_register && e->X_add_number >= REG_AR
5537 && e->X_add_number < REG_AR + 128)
5538 return OPERAND_MATCH;
5539 break;
5540
5541 case IA64_OPND_B1:
5542 case IA64_OPND_B2:
5543 if (e->X_op == O_register && e->X_add_number >= REG_BR
5544 && e->X_add_number < REG_BR + 8)
5545 return OPERAND_MATCH;
5546 break;
5547
5548 case IA64_OPND_CR3:
5549 if (e->X_op == O_register && e->X_add_number >= REG_CR
5550 && e->X_add_number < REG_CR + 128)
5551 return OPERAND_MATCH;
5552 break;
5553
5554 case IA64_OPND_F1:
5555 case IA64_OPND_F2:
5556 case IA64_OPND_F3:
5557 case IA64_OPND_F4:
5558 if (e->X_op == O_register && e->X_add_number >= REG_FR
5559 && e->X_add_number < REG_FR + 128)
5560 return OPERAND_MATCH;
5561 break;
5562
5563 case IA64_OPND_P1:
5564 case IA64_OPND_P2:
5565 if (e->X_op == O_register && e->X_add_number >= REG_P
5566 && e->X_add_number < REG_P + 64)
5567 return OPERAND_MATCH;
5568 break;
5569
5570 case IA64_OPND_R1:
5571 case IA64_OPND_R2:
5572 case IA64_OPND_R3:
5573 if (e->X_op == O_register && e->X_add_number >= REG_GR
5574 && e->X_add_number < REG_GR + 128)
5575 return OPERAND_MATCH;
5576 break;
5577
5578 case IA64_OPND_R3_2:
5579 if (e->X_op == O_register && e->X_add_number >= REG_GR)
5580 {
5581 if (e->X_add_number < REG_GR + 4)
5582 return OPERAND_MATCH;
5583 else if (e->X_add_number < REG_GR + 128)
5584 return OPERAND_OUT_OF_RANGE;
5585 }
5586 break;
5587
5588 /* indirect operands: */
5589 case IA64_OPND_CPUID_R3:
5590 case IA64_OPND_DBR_R3:
5591 case IA64_OPND_DTR_R3:
5592 case IA64_OPND_ITR_R3:
5593 case IA64_OPND_IBR_R3:
5594 case IA64_OPND_MSR_R3:
5595 case IA64_OPND_PKR_R3:
5596 case IA64_OPND_PMC_R3:
5597 case IA64_OPND_PMD_R3:
5598 case IA64_OPND_RR_R3:
5599 if (e->X_op == O_index && e->X_op_symbol
5600 && (S_GET_VALUE (e->X_op_symbol) - IND_CPUID
5601 == opnd - IA64_OPND_CPUID_R3))
5602 return OPERAND_MATCH;
5603 break;
5604
5605 case IA64_OPND_MR3:
5606 if (e->X_op == O_index && !e->X_op_symbol)
5607 return OPERAND_MATCH;
5608 break;
5609
5610 /* immediate operands: */
5611 case IA64_OPND_CNT2a:
5612 case IA64_OPND_LEN4:
5613 case IA64_OPND_LEN6:
5614 bits = operand_width (idesc->operands[index]);
5615 if (e->X_op == O_constant)
5616 {
5617 if ((bfd_vma) (e->X_add_number - 1) < ((bfd_vma) 1 << bits))
5618 return OPERAND_MATCH;
5619 else
5620 return OPERAND_OUT_OF_RANGE;
5621 }
5622 break;
5623
5624 case IA64_OPND_CNT2b:
5625 if (e->X_op == O_constant)
5626 {
5627 if ((bfd_vma) (e->X_add_number - 1) < 3)
5628 return OPERAND_MATCH;
5629 else
5630 return OPERAND_OUT_OF_RANGE;
5631 }
5632 break;
5633
5634 case IA64_OPND_CNT2c:
5635 val = e->X_add_number;
5636 if (e->X_op == O_constant)
5637 {
5638 if ((val == 0 || val == 7 || val == 15 || val == 16))
5639 return OPERAND_MATCH;
5640 else
5641 return OPERAND_OUT_OF_RANGE;
5642 }
5643 break;
5644
5645 case IA64_OPND_SOR:
5646 /* SOR must be an integer multiple of 8 */
5647 if (e->X_op == O_constant && e->X_add_number & 0x7)
5648 return OPERAND_OUT_OF_RANGE;
5649 case IA64_OPND_SOF:
5650 case IA64_OPND_SOL:
5651 if (e->X_op == O_constant)
5652 {
5653 if ((bfd_vma) e->X_add_number <= 96)
5654 return OPERAND_MATCH;
5655 else
5656 return OPERAND_OUT_OF_RANGE;
5657 }
5658 break;
5659
5660 case IA64_OPND_IMMU62:
5661 if (e->X_op == O_constant)
5662 {
5663 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << 62))
5664 return OPERAND_MATCH;
5665 else
5666 return OPERAND_OUT_OF_RANGE;
5667 }
5668 else
5669 {
5670 /* FIXME -- need 62-bit relocation type */
5671 as_bad (_("62-bit relocation not yet implemented"));
5672 }
5673 break;
5674
5675 case IA64_OPND_IMMU64:
5676 if (e->X_op == O_symbol || e->X_op == O_pseudo_fixup
5677 || e->X_op == O_subtract)
5678 {
5679 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5680 fix->code = BFD_RELOC_IA64_IMM64;
5681 if (e->X_op != O_subtract)
5682 {
5683 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5684 if (e->X_op == O_pseudo_fixup)
5685 e->X_op = O_symbol;
5686 }
5687
5688 fix->opnd = idesc->operands[index];
5689 fix->expr = *e;
5690 fix->is_pcrel = 0;
5691 ++CURR_SLOT.num_fixups;
5692 return OPERAND_MATCH;
5693 }
5694 else if (e->X_op == O_constant)
5695 return OPERAND_MATCH;
5696 break;
5697
5698 case IA64_OPND_CCNT5:
5699 case IA64_OPND_CNT5:
5700 case IA64_OPND_CNT6:
5701 case IA64_OPND_CPOS6a:
5702 case IA64_OPND_CPOS6b:
5703 case IA64_OPND_CPOS6c:
5704 case IA64_OPND_IMMU2:
5705 case IA64_OPND_IMMU7a:
5706 case IA64_OPND_IMMU7b:
5707 case IA64_OPND_IMMU21:
5708 case IA64_OPND_IMMU24:
5709 case IA64_OPND_MBTYPE4:
5710 case IA64_OPND_MHTYPE8:
5711 case IA64_OPND_POS6:
5712 bits = operand_width (idesc->operands[index]);
5713 if (e->X_op == O_constant)
5714 {
5715 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5716 return OPERAND_MATCH;
5717 else
5718 return OPERAND_OUT_OF_RANGE;
5719 }
5720 break;
5721
5722 case IA64_OPND_IMMU9:
5723 bits = operand_width (idesc->operands[index]);
5724 if (e->X_op == O_constant)
5725 {
5726 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5727 {
5728 int lobits = e->X_add_number & 0x3;
5729 if (((bfd_vma) e->X_add_number & 0x3C) != 0 && lobits == 0)
5730 e->X_add_number |= (bfd_vma) 0x3;
5731 return OPERAND_MATCH;
5732 }
5733 else
5734 return OPERAND_OUT_OF_RANGE;
5735 }
5736 break;
5737
5738 case IA64_OPND_IMM44:
5739 /* least 16 bits must be zero */
5740 if ((e->X_add_number & 0xffff) != 0)
5741 /* XXX technically, this is wrong: we should not be issuing warning
5742 messages until we're sure this instruction pattern is going to
5743 be used! */
5744 as_warn (_("lower 16 bits of mask ignored"));
5745
5746 if (e->X_op == O_constant)
5747 {
5748 if (((e->X_add_number >= 0
5749 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 44))
5750 || (e->X_add_number < 0
5751 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 44))))
5752 {
5753 /* sign-extend */
5754 if (e->X_add_number >= 0
5755 && (e->X_add_number & ((bfd_vma) 1 << 43)) != 0)
5756 {
5757 e->X_add_number |= ~(((bfd_vma) 1 << 44) - 1);
5758 }
5759 return OPERAND_MATCH;
5760 }
5761 else
5762 return OPERAND_OUT_OF_RANGE;
5763 }
5764 break;
5765
5766 case IA64_OPND_IMM17:
5767 /* bit 0 is a don't care (pr0 is hardwired to 1) */
5768 if (e->X_op == O_constant)
5769 {
5770 if (((e->X_add_number >= 0
5771 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 17))
5772 || (e->X_add_number < 0
5773 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 17))))
5774 {
5775 /* sign-extend */
5776 if (e->X_add_number >= 0
5777 && (e->X_add_number & ((bfd_vma) 1 << 16)) != 0)
5778 {
5779 e->X_add_number |= ~(((bfd_vma) 1 << 17) - 1);
5780 }
5781 return OPERAND_MATCH;
5782 }
5783 else
5784 return OPERAND_OUT_OF_RANGE;
5785 }
5786 break;
5787
5788 case IA64_OPND_IMM14:
5789 case IA64_OPND_IMM22:
5790 relocatable = 1;
5791 case IA64_OPND_IMM1:
5792 case IA64_OPND_IMM8:
5793 case IA64_OPND_IMM8U4:
5794 case IA64_OPND_IMM8M1:
5795 case IA64_OPND_IMM8M1U4:
5796 case IA64_OPND_IMM8M1U8:
5797 case IA64_OPND_IMM9a:
5798 case IA64_OPND_IMM9b:
5799 bits = operand_width (idesc->operands[index]);
5800 if (relocatable && (e->X_op == O_symbol
5801 || e->X_op == O_subtract
5802 || e->X_op == O_pseudo_fixup))
5803 {
5804 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5805
5806 if (idesc->operands[index] == IA64_OPND_IMM14)
5807 fix->code = BFD_RELOC_IA64_IMM14;
5808 else
5809 fix->code = BFD_RELOC_IA64_IMM22;
5810
5811 if (e->X_op != O_subtract)
5812 {
5813 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5814 if (e->X_op == O_pseudo_fixup)
5815 e->X_op = O_symbol;
5816 }
5817
5818 fix->opnd = idesc->operands[index];
5819 fix->expr = *e;
5820 fix->is_pcrel = 0;
5821 ++CURR_SLOT.num_fixups;
5822 return OPERAND_MATCH;
5823 }
5824 else if (e->X_op != O_constant
5825 && ! (e->X_op == O_big && opnd == IA64_OPND_IMM8M1U8))
5826 return OPERAND_MISMATCH;
5827
5828 if (opnd == IA64_OPND_IMM8M1U4)
5829 {
5830 /* Zero is not valid for unsigned compares that take an adjusted
5831 constant immediate range. */
5832 if (e->X_add_number == 0)
5833 return OPERAND_OUT_OF_RANGE;
5834
5835 /* Sign-extend 32-bit unsigned numbers, so that the following range
5836 checks will work. */
5837 val = e->X_add_number;
5838 if (((val & (~(bfd_vma) 0 << 32)) == 0)
5839 && ((val & ((bfd_vma) 1 << 31)) != 0))
5840 val = ((val << 32) >> 32);
5841
5842 /* Check for 0x100000000. This is valid because
5843 0x100000000-1 is the same as ((uint32_t) -1). */
5844 if (val == ((bfd_signed_vma) 1 << 32))
5845 return OPERAND_MATCH;
5846
5847 val = val - 1;
5848 }
5849 else if (opnd == IA64_OPND_IMM8M1U8)
5850 {
5851 /* Zero is not valid for unsigned compares that take an adjusted
5852 constant immediate range. */
5853 if (e->X_add_number == 0)
5854 return OPERAND_OUT_OF_RANGE;
5855
5856 /* Check for 0x10000000000000000. */
5857 if (e->X_op == O_big)
5858 {
5859 if (generic_bignum[0] == 0
5860 && generic_bignum[1] == 0
5861 && generic_bignum[2] == 0
5862 && generic_bignum[3] == 0
5863 && generic_bignum[4] == 1)
5864 return OPERAND_MATCH;
5865 else
5866 return OPERAND_OUT_OF_RANGE;
5867 }
5868 else
5869 val = e->X_add_number - 1;
5870 }
5871 else if (opnd == IA64_OPND_IMM8M1)
5872 val = e->X_add_number - 1;
5873 else if (opnd == IA64_OPND_IMM8U4)
5874 {
5875 /* Sign-extend 32-bit unsigned numbers, so that the following range
5876 checks will work. */
5877 val = e->X_add_number;
5878 if (((val & (~(bfd_vma) 0 << 32)) == 0)
5879 && ((val & ((bfd_vma) 1 << 31)) != 0))
5880 val = ((val << 32) >> 32);
5881 }
5882 else
5883 val = e->X_add_number;
5884
5885 if ((val >= 0 && (bfd_vma) val < ((bfd_vma) 1 << (bits - 1)))
5886 || (val < 0 && (bfd_vma) -val <= ((bfd_vma) 1 << (bits - 1))))
5887 return OPERAND_MATCH;
5888 else
5889 return OPERAND_OUT_OF_RANGE;
5890
5891 case IA64_OPND_INC3:
5892 /* +/- 1, 4, 8, 16 */
5893 val = e->X_add_number;
5894 if (val < 0)
5895 val = -val;
5896 if (e->X_op == O_constant)
5897 {
5898 if ((val == 1 || val == 4 || val == 8 || val == 16))
5899 return OPERAND_MATCH;
5900 else
5901 return OPERAND_OUT_OF_RANGE;
5902 }
5903 break;
5904
5905 case IA64_OPND_TGT25:
5906 case IA64_OPND_TGT25b:
5907 case IA64_OPND_TGT25c:
5908 case IA64_OPND_TGT64:
5909 if (e->X_op == O_symbol)
5910 {
5911 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5912 if (opnd == IA64_OPND_TGT25)
5913 fix->code = BFD_RELOC_IA64_PCREL21F;
5914 else if (opnd == IA64_OPND_TGT25b)
5915 fix->code = BFD_RELOC_IA64_PCREL21M;
5916 else if (opnd == IA64_OPND_TGT25c)
5917 fix->code = BFD_RELOC_IA64_PCREL21B;
5918 else if (opnd == IA64_OPND_TGT64)
5919 fix->code = BFD_RELOC_IA64_PCREL60B;
5920 else
5921 abort ();
5922
5923 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5924 fix->opnd = idesc->operands[index];
5925 fix->expr = *e;
5926 fix->is_pcrel = 1;
5927 ++CURR_SLOT.num_fixups;
5928 return OPERAND_MATCH;
5929 }
5930 case IA64_OPND_TAG13:
5931 case IA64_OPND_TAG13b:
5932 switch (e->X_op)
5933 {
5934 case O_constant:
5935 return OPERAND_MATCH;
5936
5937 case O_symbol:
5938 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5939 /* There are no external relocs for TAG13/TAG13b fields, so we
5940 create a dummy reloc. This will not live past md_apply_fix3. */
5941 fix->code = BFD_RELOC_UNUSED;
5942 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5943 fix->opnd = idesc->operands[index];
5944 fix->expr = *e;
5945 fix->is_pcrel = 1;
5946 ++CURR_SLOT.num_fixups;
5947 return OPERAND_MATCH;
5948
5949 default:
5950 break;
5951 }
5952 break;
5953
5954 case IA64_OPND_LDXMOV:
5955 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5956 fix->code = BFD_RELOC_IA64_LDXMOV;
5957 fix->opnd = idesc->operands[index];
5958 fix->expr = *e;
5959 fix->is_pcrel = 0;
5960 ++CURR_SLOT.num_fixups;
5961 return OPERAND_MATCH;
5962
5963 default:
5964 break;
5965 }
5966 return OPERAND_MISMATCH;
5967 }
5968
5969 static int
5970 parse_operand (e)
5971 expressionS *e;
5972 {
5973 int sep = '\0';
5974
5975 memset (e, 0, sizeof (*e));
5976 e->X_op = O_absent;
5977 SKIP_WHITESPACE ();
5978 if (*input_line_pointer != '}')
5979 expression (e);
5980 sep = *input_line_pointer++;
5981
5982 if (sep == '}')
5983 {
5984 if (!md.manual_bundling)
5985 as_warn ("Found '}' when manual bundling is off");
5986 else
5987 CURR_SLOT.manual_bundling_off = 1;
5988 md.manual_bundling = 0;
5989 sep = '\0';
5990 }
5991 return sep;
5992 }
5993
5994 /* Returns the next entry in the opcode table that matches the one in
5995 IDESC, and frees the entry in IDESC. If no matching entry is
5996 found, NULL is returned instead. */
5997
5998 static struct ia64_opcode *
5999 get_next_opcode (struct ia64_opcode *idesc)
6000 {
6001 struct ia64_opcode *next = ia64_find_next_opcode (idesc);
6002 ia64_free_opcode (idesc);
6003 return next;
6004 }
6005
6006 /* Parse the operands for the opcode and find the opcode variant that
6007 matches the specified operands, or NULL if no match is possible. */
6008
6009 static struct ia64_opcode *
6010 parse_operands (idesc)
6011 struct ia64_opcode *idesc;
6012 {
6013 int i = 0, highest_unmatched_operand, num_operands = 0, num_outputs = 0;
6014 int error_pos, out_of_range_pos, curr_out_of_range_pos, sep = 0;
6015 enum ia64_opnd expected_operand = IA64_OPND_NIL;
6016 enum operand_match_result result;
6017 char mnemonic[129];
6018 char *first_arg = 0, *end, *saved_input_pointer;
6019 unsigned int sof;
6020
6021 assert (strlen (idesc->name) <= 128);
6022
6023 strcpy (mnemonic, idesc->name);
6024 if (idesc->operands[2] == IA64_OPND_SOF
6025 || idesc->operands[1] == IA64_OPND_SOF)
6026 {
6027 /* To make the common idiom "alloc loc?=ar.pfs,0,1,0,0" work, we
6028 can't parse the first operand until we have parsed the
6029 remaining operands of the "alloc" instruction. */
6030 SKIP_WHITESPACE ();
6031 first_arg = input_line_pointer;
6032 end = strchr (input_line_pointer, '=');
6033 if (!end)
6034 {
6035 as_bad ("Expected separator `='");
6036 return 0;
6037 }
6038 input_line_pointer = end + 1;
6039 ++i;
6040 ++num_outputs;
6041 }
6042
6043 for (; ; ++i)
6044 {
6045 if (i < NELEMS (CURR_SLOT.opnd))
6046 {
6047 sep = parse_operand (CURR_SLOT.opnd + i);
6048 if (CURR_SLOT.opnd[i].X_op == O_absent)
6049 break;
6050 }
6051 else
6052 {
6053 expressionS dummy;
6054
6055 sep = parse_operand (&dummy);
6056 if (dummy.X_op == O_absent)
6057 break;
6058 }
6059
6060 ++num_operands;
6061
6062 if (sep != '=' && sep != ',')
6063 break;
6064
6065 if (sep == '=')
6066 {
6067 if (num_outputs > 0)
6068 as_bad ("Duplicate equal sign (=) in instruction");
6069 else
6070 num_outputs = i + 1;
6071 }
6072 }
6073 if (sep != '\0')
6074 {
6075 as_bad ("Illegal operand separator `%c'", sep);
6076 return 0;
6077 }
6078
6079 if (idesc->operands[2] == IA64_OPND_SOF
6080 || idesc->operands[1] == IA64_OPND_SOF)
6081 {
6082 /* map alloc r1=ar.pfs,i,l,o,r to alloc r1=ar.pfs,(i+l+o),(i+l),r */
6083 know (strcmp (idesc->name, "alloc") == 0);
6084 i = (CURR_SLOT.opnd[1].X_op == O_register
6085 && CURR_SLOT.opnd[1].X_add_number == REG_AR + AR_PFS) ? 2 : 1;
6086 if (num_operands == i + 3 /* first_arg not included in this count! */
6087 && CURR_SLOT.opnd[i].X_op == O_constant
6088 && CURR_SLOT.opnd[i + 1].X_op == O_constant
6089 && CURR_SLOT.opnd[i + 2].X_op == O_constant
6090 && CURR_SLOT.opnd[i + 3].X_op == O_constant)
6091 {
6092 sof = set_regstack (CURR_SLOT.opnd[i].X_add_number,
6093 CURR_SLOT.opnd[i + 1].X_add_number,
6094 CURR_SLOT.opnd[i + 2].X_add_number,
6095 CURR_SLOT.opnd[i + 3].X_add_number);
6096
6097 /* now we can parse the first arg: */
6098 saved_input_pointer = input_line_pointer;
6099 input_line_pointer = first_arg;
6100 sep = parse_operand (CURR_SLOT.opnd + 0);
6101 if (sep != '=')
6102 --num_outputs; /* force error */
6103 input_line_pointer = saved_input_pointer;
6104
6105 CURR_SLOT.opnd[i].X_add_number = sof;
6106 CURR_SLOT.opnd[i + 1].X_add_number
6107 = sof - CURR_SLOT.opnd[i + 2].X_add_number;
6108 CURR_SLOT.opnd[i + 2] = CURR_SLOT.opnd[i + 3];
6109 }
6110 }
6111
6112 highest_unmatched_operand = -4;
6113 curr_out_of_range_pos = -1;
6114 error_pos = 0;
6115 for (; idesc; idesc = get_next_opcode (idesc))
6116 {
6117 if (num_outputs != idesc->num_outputs)
6118 continue; /* mismatch in # of outputs */
6119 if (highest_unmatched_operand < 0)
6120 highest_unmatched_operand |= 1;
6121 if (num_operands > NELEMS (idesc->operands)
6122 || (num_operands < NELEMS (idesc->operands)
6123 && idesc->operands[num_operands])
6124 || (num_operands > 0 && !idesc->operands[num_operands - 1]))
6125 continue; /* mismatch in number of arguments */
6126 if (highest_unmatched_operand < 0)
6127 highest_unmatched_operand |= 2;
6128
6129 CURR_SLOT.num_fixups = 0;
6130
6131 /* Try to match all operands. If we see an out-of-range operand,
6132 then continue trying to match the rest of the operands, since if
6133 the rest match, then this idesc will give the best error message. */
6134
6135 out_of_range_pos = -1;
6136 for (i = 0; i < num_operands && idesc->operands[i]; ++i)
6137 {
6138 result = operand_match (idesc, i, CURR_SLOT.opnd + i);
6139 if (result != OPERAND_MATCH)
6140 {
6141 if (result != OPERAND_OUT_OF_RANGE)
6142 break;
6143 if (out_of_range_pos < 0)
6144 /* remember position of the first out-of-range operand: */
6145 out_of_range_pos = i;
6146 }
6147 }
6148
6149 /* If we did not match all operands, or if at least one operand was
6150 out-of-range, then this idesc does not match. Keep track of which
6151 idesc matched the most operands before failing. If we have two
6152 idescs that failed at the same position, and one had an out-of-range
6153 operand, then prefer the out-of-range operand. Thus if we have
6154 "add r0=0x1000000,r1" we get an error saying the constant is out
6155 of range instead of an error saying that the constant should have been
6156 a register. */
6157
6158 if (i != num_operands || out_of_range_pos >= 0)
6159 {
6160 if (i > highest_unmatched_operand
6161 || (i == highest_unmatched_operand
6162 && out_of_range_pos > curr_out_of_range_pos))
6163 {
6164 highest_unmatched_operand = i;
6165 if (out_of_range_pos >= 0)
6166 {
6167 expected_operand = idesc->operands[out_of_range_pos];
6168 error_pos = out_of_range_pos;
6169 }
6170 else
6171 {
6172 expected_operand = idesc->operands[i];
6173 error_pos = i;
6174 }
6175 curr_out_of_range_pos = out_of_range_pos;
6176 }
6177 continue;
6178 }
6179
6180 break;
6181 }
6182 if (!idesc)
6183 {
6184 if (expected_operand)
6185 as_bad ("Operand %u of `%s' should be %s",
6186 error_pos + 1, mnemonic,
6187 elf64_ia64_operands[expected_operand].desc);
6188 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 1))
6189 as_bad ("Wrong number of output operands");
6190 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 2))
6191 as_bad ("Wrong number of input operands");
6192 else
6193 as_bad ("Operand mismatch");
6194 return 0;
6195 }
6196 return idesc;
6197 }
6198
6199 static void
6200 build_insn (slot, insnp)
6201 struct slot *slot;
6202 bfd_vma *insnp;
6203 {
6204 const struct ia64_operand *odesc, *o2desc;
6205 struct ia64_opcode *idesc = slot->idesc;
6206 bfd_signed_vma insn, val;
6207 const char *err;
6208 int i;
6209
6210 insn = idesc->opcode | slot->qp_regno;
6211
6212 for (i = 0; i < NELEMS (idesc->operands) && idesc->operands[i]; ++i)
6213 {
6214 if (slot->opnd[i].X_op == O_register
6215 || slot->opnd[i].X_op == O_constant
6216 || slot->opnd[i].X_op == O_index)
6217 val = slot->opnd[i].X_add_number;
6218 else if (slot->opnd[i].X_op == O_big)
6219 {
6220 /* This must be the value 0x10000000000000000. */
6221 assert (idesc->operands[i] == IA64_OPND_IMM8M1U8);
6222 val = 0;
6223 }
6224 else
6225 val = 0;
6226
6227 switch (idesc->operands[i])
6228 {
6229 case IA64_OPND_IMMU64:
6230 *insnp++ = (val >> 22) & 0x1ffffffffffLL;
6231 insn |= (((val & 0x7f) << 13) | (((val >> 7) & 0x1ff) << 27)
6232 | (((val >> 16) & 0x1f) << 22) | (((val >> 21) & 0x1) << 21)
6233 | (((val >> 63) & 0x1) << 36));
6234 continue;
6235
6236 case IA64_OPND_IMMU62:
6237 val &= 0x3fffffffffffffffULL;
6238 if (val != slot->opnd[i].X_add_number)
6239 as_warn (_("Value truncated to 62 bits"));
6240 *insnp++ = (val >> 21) & 0x1ffffffffffLL;
6241 insn |= (((val & 0xfffff) << 6) | (((val >> 20) & 0x1) << 36));
6242 continue;
6243
6244 case IA64_OPND_TGT64:
6245 val >>= 4;
6246 *insnp++ = ((val >> 20) & 0x7fffffffffLL) << 2;
6247 insn |= ((((val >> 59) & 0x1) << 36)
6248 | (((val >> 0) & 0xfffff) << 13));
6249 continue;
6250
6251 case IA64_OPND_AR3:
6252 val -= REG_AR;
6253 break;
6254
6255 case IA64_OPND_B1:
6256 case IA64_OPND_B2:
6257 val -= REG_BR;
6258 break;
6259
6260 case IA64_OPND_CR3:
6261 val -= REG_CR;
6262 break;
6263
6264 case IA64_OPND_F1:
6265 case IA64_OPND_F2:
6266 case IA64_OPND_F3:
6267 case IA64_OPND_F4:
6268 val -= REG_FR;
6269 break;
6270
6271 case IA64_OPND_P1:
6272 case IA64_OPND_P2:
6273 val -= REG_P;
6274 break;
6275
6276 case IA64_OPND_R1:
6277 case IA64_OPND_R2:
6278 case IA64_OPND_R3:
6279 case IA64_OPND_R3_2:
6280 case IA64_OPND_CPUID_R3:
6281 case IA64_OPND_DBR_R3:
6282 case IA64_OPND_DTR_R3:
6283 case IA64_OPND_ITR_R3:
6284 case IA64_OPND_IBR_R3:
6285 case IA64_OPND_MR3:
6286 case IA64_OPND_MSR_R3:
6287 case IA64_OPND_PKR_R3:
6288 case IA64_OPND_PMC_R3:
6289 case IA64_OPND_PMD_R3:
6290 case IA64_OPND_RR_R3:
6291 val -= REG_GR;
6292 break;
6293
6294 default:
6295 break;
6296 }
6297
6298 odesc = elf64_ia64_operands + idesc->operands[i];
6299 err = (*odesc->insert) (odesc, val, &insn);
6300 if (err)
6301 as_bad_where (slot->src_file, slot->src_line,
6302 "Bad operand value: %s", err);
6303 if (idesc->flags & IA64_OPCODE_PSEUDO)
6304 {
6305 if ((idesc->flags & IA64_OPCODE_F2_EQ_F3)
6306 && odesc == elf64_ia64_operands + IA64_OPND_F3)
6307 {
6308 o2desc = elf64_ia64_operands + IA64_OPND_F2;
6309 (*o2desc->insert) (o2desc, val, &insn);
6310 }
6311 if ((idesc->flags & IA64_OPCODE_LEN_EQ_64MCNT)
6312 && (odesc == elf64_ia64_operands + IA64_OPND_CPOS6a
6313 || odesc == elf64_ia64_operands + IA64_OPND_POS6))
6314 {
6315 o2desc = elf64_ia64_operands + IA64_OPND_LEN6;
6316 (*o2desc->insert) (o2desc, 64 - val, &insn);
6317 }
6318 }
6319 }
6320 *insnp = insn;
6321 }
6322
6323 static void
6324 emit_one_bundle ()
6325 {
6326 int manual_bundling_off = 0, manual_bundling = 0;
6327 enum ia64_unit required_unit, insn_unit = 0;
6328 enum ia64_insn_type type[3], insn_type;
6329 unsigned int template, orig_template;
6330 bfd_vma insn[3] = { -1, -1, -1 };
6331 struct ia64_opcode *idesc;
6332 int end_of_insn_group = 0, user_template = -1;
6333 int n, i, j, first, curr;
6334 unw_rec_list *ptr, *last_ptr, *end_ptr;
6335 bfd_vma t0 = 0, t1 = 0;
6336 struct label_fix *lfix;
6337 struct insn_fix *ifix;
6338 char mnemonic[16];
6339 fixS *fix;
6340 char *f;
6341 int addr_mod;
6342
6343 first = (md.curr_slot + NUM_SLOTS - md.num_slots_in_use) % NUM_SLOTS;
6344 know (first >= 0 & first < NUM_SLOTS);
6345 n = MIN (3, md.num_slots_in_use);
6346
6347 /* Determine template: user user_template if specified, best match
6348 otherwise: */
6349
6350 if (md.slot[first].user_template >= 0)
6351 user_template = template = md.slot[first].user_template;
6352 else
6353 {
6354 /* Auto select appropriate template. */
6355 memset (type, 0, sizeof (type));
6356 curr = first;
6357 for (i = 0; i < n; ++i)
6358 {
6359 if (md.slot[curr].label_fixups && i != 0)
6360 break;
6361 type[i] = md.slot[curr].idesc->type;
6362 curr = (curr + 1) % NUM_SLOTS;
6363 }
6364 template = best_template[type[0]][type[1]][type[2]];
6365 }
6366
6367 /* initialize instructions with appropriate nops: */
6368 for (i = 0; i < 3; ++i)
6369 insn[i] = nop[ia64_templ_desc[template].exec_unit[i]];
6370
6371 f = frag_more (16);
6372
6373 /* Check to see if this bundle is at an offset that is a multiple of 16-bytes
6374 from the start of the frag. */
6375 addr_mod = frag_now_fix () & 15;
6376 if (frag_now->has_code && frag_now->insn_addr != addr_mod)
6377 as_bad (_("instruction address is not a multiple of 16"));
6378 frag_now->insn_addr = addr_mod;
6379 frag_now->has_code = 1;
6380
6381 /* now fill in slots with as many insns as possible: */
6382 curr = first;
6383 idesc = md.slot[curr].idesc;
6384 end_of_insn_group = 0;
6385 for (i = 0; i < 3 && md.num_slots_in_use > 0; ++i)
6386 {
6387 /* If we have unwind records, we may need to update some now. */
6388 ptr = md.slot[curr].unwind_record;
6389 if (ptr)
6390 {
6391 /* Find the last prologue/body record in the list for the current
6392 insn, and set the slot number for all records up to that point.
6393 This needs to be done now, because prologue/body records refer to
6394 the current point, not the point after the instruction has been
6395 issued. This matters because there may have been nops emitted
6396 meanwhile. Any non-prologue non-body record followed by a
6397 prologue/body record must also refer to the current point. */
6398 last_ptr = NULL;
6399 end_ptr = md.slot[(curr + 1) % NUM_SLOTS].unwind_record;
6400 for (; ptr != end_ptr; ptr = ptr->next)
6401 if (ptr->r.type == prologue || ptr->r.type == prologue_gr
6402 || ptr->r.type == body)
6403 last_ptr = ptr;
6404 if (last_ptr)
6405 {
6406 /* Make last_ptr point one after the last prologue/body
6407 record. */
6408 last_ptr = last_ptr->next;
6409 for (ptr = md.slot[curr].unwind_record; ptr != last_ptr;
6410 ptr = ptr->next)
6411 {
6412 ptr->slot_number = (unsigned long) f + i;
6413 ptr->slot_frag = frag_now;
6414 }
6415 /* Remove the initialized records, so that we won't accidentally
6416 update them again if we insert a nop and continue. */
6417 md.slot[curr].unwind_record = last_ptr;
6418 }
6419 }
6420
6421 manual_bundling_off = md.slot[curr].manual_bundling_off;
6422 if (md.slot[curr].manual_bundling_on)
6423 {
6424 if (curr == first)
6425 manual_bundling = 1;
6426 else
6427 break; /* Need to start a new bundle. */
6428 }
6429
6430 if (idesc->flags & IA64_OPCODE_SLOT2)
6431 {
6432 if (manual_bundling && !manual_bundling_off)
6433 {
6434 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6435 "`%s' must be last in bundle", idesc->name);
6436 if (i < 2)
6437 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6438 }
6439 i = 2;
6440 }
6441 if (idesc->flags & IA64_OPCODE_LAST)
6442 {
6443 int required_slot;
6444 unsigned int required_template;
6445
6446 /* If we need a stop bit after an M slot, our only choice is
6447 template 5 (M;;MI). If we need a stop bit after a B
6448 slot, our only choice is to place it at the end of the
6449 bundle, because the only available templates are MIB,
6450 MBB, BBB, MMB, and MFB. We don't handle anything other
6451 than M and B slots because these are the only kind of
6452 instructions that can have the IA64_OPCODE_LAST bit set. */
6453 required_template = template;
6454 switch (idesc->type)
6455 {
6456 case IA64_TYPE_M:
6457 required_slot = 0;
6458 required_template = 5;
6459 break;
6460
6461 case IA64_TYPE_B:
6462 required_slot = 2;
6463 break;
6464
6465 default:
6466 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6467 "Internal error: don't know how to force %s to end"
6468 "of instruction group", idesc->name);
6469 required_slot = i;
6470 break;
6471 }
6472 if (manual_bundling
6473 && (i > required_slot
6474 || (required_slot == 2 && !manual_bundling_off)
6475 || (user_template >= 0
6476 /* Changing from MMI to M;MI is OK. */
6477 && (template ^ required_template) > 1)))
6478 {
6479 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6480 "`%s' must be last in instruction group",
6481 idesc->name);
6482 if (i < 2 && required_slot == 2 && !manual_bundling_off)
6483 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6484 }
6485 if (required_slot < i)
6486 /* Can't fit this instruction. */
6487 break;
6488
6489 i = required_slot;
6490 if (required_template != template)
6491 {
6492 /* If we switch the template, we need to reset the NOPs
6493 after slot i. The slot-types of the instructions ahead
6494 of i never change, so we don't need to worry about
6495 changing NOPs in front of this slot. */
6496 for (j = i; j < 3; ++j)
6497 insn[j] = nop[ia64_templ_desc[required_template].exec_unit[j]];
6498 }
6499 template = required_template;
6500 }
6501 if (curr != first && md.slot[curr].label_fixups)
6502 {
6503 if (manual_bundling)
6504 {
6505 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6506 "Label must be first in a bundle");
6507 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6508 }
6509 /* This insn must go into the first slot of a bundle. */
6510 break;
6511 }
6512
6513 if (end_of_insn_group && md.num_slots_in_use >= 1)
6514 {
6515 /* We need an instruction group boundary in the middle of a
6516 bundle. See if we can switch to an other template with
6517 an appropriate boundary. */
6518
6519 orig_template = template;
6520 if (i == 1 && (user_template == 4
6521 || (user_template < 0
6522 && (ia64_templ_desc[template].exec_unit[0]
6523 == IA64_UNIT_M))))
6524 {
6525 template = 5;
6526 end_of_insn_group = 0;
6527 }
6528 else if (i == 2 && (user_template == 0
6529 || (user_template < 0
6530 && (ia64_templ_desc[template].exec_unit[1]
6531 == IA64_UNIT_I)))
6532 /* This test makes sure we don't switch the template if
6533 the next instruction is one that needs to be first in
6534 an instruction group. Since all those instructions are
6535 in the M group, there is no way such an instruction can
6536 fit in this bundle even if we switch the template. The
6537 reason we have to check for this is that otherwise we
6538 may end up generating "MI;;I M.." which has the deadly
6539 effect that the second M instruction is no longer the
6540 first in the group! --davidm 99/12/16 */
6541 && (idesc->flags & IA64_OPCODE_FIRST) == 0)
6542 {
6543 template = 1;
6544 end_of_insn_group = 0;
6545 }
6546 else if (i == 1
6547 && user_template == 0
6548 && !(idesc->flags & IA64_OPCODE_FIRST))
6549 /* Use the next slot. */
6550 continue;
6551 else if (curr != first)
6552 /* can't fit this insn */
6553 break;
6554
6555 if (template != orig_template)
6556 /* if we switch the template, we need to reset the NOPs
6557 after slot i. The slot-types of the instructions ahead
6558 of i never change, so we don't need to worry about
6559 changing NOPs in front of this slot. */
6560 for (j = i; j < 3; ++j)
6561 insn[j] = nop[ia64_templ_desc[template].exec_unit[j]];
6562 }
6563 required_unit = ia64_templ_desc[template].exec_unit[i];
6564
6565 /* resolve dynamic opcodes such as "break", "hint", and "nop": */
6566 if (idesc->type == IA64_TYPE_DYN)
6567 {
6568 enum ia64_opnd opnd1, opnd2;
6569
6570 if ((strcmp (idesc->name, "nop") == 0)
6571 || (strcmp (idesc->name, "hint") == 0)
6572 || (strcmp (idesc->name, "break") == 0))
6573 insn_unit = required_unit;
6574 else if (strcmp (idesc->name, "chk.s") == 0
6575 || strcmp (idesc->name, "mov") == 0)
6576 {
6577 insn_unit = IA64_UNIT_M;
6578 if (required_unit == IA64_UNIT_I
6579 || (required_unit == IA64_UNIT_F && template == 6))
6580 insn_unit = IA64_UNIT_I;
6581 }
6582 else
6583 as_fatal ("emit_one_bundle: unexpected dynamic op");
6584
6585 sprintf (mnemonic, "%s.%c", idesc->name, "?imbfxx"[insn_unit]);
6586 opnd1 = idesc->operands[0];
6587 opnd2 = idesc->operands[1];
6588 ia64_free_opcode (idesc);
6589 idesc = ia64_find_opcode (mnemonic);
6590 /* moves to/from ARs have collisions */
6591 if (opnd1 == IA64_OPND_AR3 || opnd2 == IA64_OPND_AR3)
6592 {
6593 while (idesc != NULL
6594 && (idesc->operands[0] != opnd1
6595 || idesc->operands[1] != opnd2))
6596 idesc = get_next_opcode (idesc);
6597 }
6598 md.slot[curr].idesc = idesc;
6599 }
6600 else
6601 {
6602 insn_type = idesc->type;
6603 insn_unit = IA64_UNIT_NIL;
6604 switch (insn_type)
6605 {
6606 case IA64_TYPE_A:
6607 if (required_unit == IA64_UNIT_I || required_unit == IA64_UNIT_M)
6608 insn_unit = required_unit;
6609 break;
6610 case IA64_TYPE_X: insn_unit = IA64_UNIT_L; break;
6611 case IA64_TYPE_I: insn_unit = IA64_UNIT_I; break;
6612 case IA64_TYPE_M: insn_unit = IA64_UNIT_M; break;
6613 case IA64_TYPE_B: insn_unit = IA64_UNIT_B; break;
6614 case IA64_TYPE_F: insn_unit = IA64_UNIT_F; break;
6615 default: break;
6616 }
6617 }
6618
6619 if (insn_unit != required_unit)
6620 {
6621 if (required_unit == IA64_UNIT_L
6622 && insn_unit == IA64_UNIT_I
6623 && !(idesc->flags & IA64_OPCODE_X_IN_MLX))
6624 {
6625 /* we got ourselves an MLX template but the current
6626 instruction isn't an X-unit, or an I-unit instruction
6627 that can go into the X slot of an MLX template. Duh. */
6628 if (md.num_slots_in_use >= NUM_SLOTS)
6629 {
6630 as_bad_where (md.slot[curr].src_file,
6631 md.slot[curr].src_line,
6632 "`%s' can't go in X slot of "
6633 "MLX template", idesc->name);
6634 /* drop this insn so we don't livelock: */
6635 --md.num_slots_in_use;
6636 }
6637 break;
6638 }
6639 continue; /* try next slot */
6640 }
6641
6642 if (debug_type == DEBUG_DWARF2 || md.slot[curr].loc_directive_seen)
6643 {
6644 bfd_vma addr = frag_now->fr_address + frag_now_fix () - 16 + i;
6645
6646 md.slot[curr].loc_directive_seen = 0;
6647 dwarf2_gen_line_info (addr, &md.slot[curr].debug_line);
6648 }
6649
6650 build_insn (md.slot + curr, insn + i);
6651
6652 ptr = md.slot[curr].unwind_record;
6653 if (ptr)
6654 {
6655 /* Set slot numbers for all remaining unwind records belonging to the
6656 current insn. There can not be any prologue/body unwind records
6657 here. */
6658 end_ptr = md.slot[(curr + 1) % NUM_SLOTS].unwind_record;
6659 for (; ptr != end_ptr; ptr = ptr->next)
6660 {
6661 ptr->slot_number = (unsigned long) f + i;
6662 ptr->slot_frag = frag_now;
6663 }
6664 md.slot[curr].unwind_record = NULL;
6665 }
6666
6667 if (required_unit == IA64_UNIT_L)
6668 {
6669 know (i == 1);
6670 /* skip one slot for long/X-unit instructions */
6671 ++i;
6672 }
6673 --md.num_slots_in_use;
6674
6675 /* now is a good time to fix up the labels for this insn: */
6676 for (lfix = md.slot[curr].label_fixups; lfix; lfix = lfix->next)
6677 {
6678 S_SET_VALUE (lfix->sym, frag_now_fix () - 16);
6679 symbol_set_frag (lfix->sym, frag_now);
6680 }
6681 /* and fix up the tags also. */
6682 for (lfix = md.slot[curr].tag_fixups; lfix; lfix = lfix->next)
6683 {
6684 S_SET_VALUE (lfix->sym, frag_now_fix () - 16 + i);
6685 symbol_set_frag (lfix->sym, frag_now);
6686 }
6687
6688 for (j = 0; j < md.slot[curr].num_fixups; ++j)
6689 {
6690 ifix = md.slot[curr].fixup + j;
6691 fix = fix_new_exp (frag_now, frag_now_fix () - 16 + i, 8,
6692 &ifix->expr, ifix->is_pcrel, ifix->code);
6693 fix->tc_fix_data.opnd = ifix->opnd;
6694 fix->fx_plt = (fix->fx_r_type == BFD_RELOC_IA64_PLTOFF22);
6695 fix->fx_file = md.slot[curr].src_file;
6696 fix->fx_line = md.slot[curr].src_line;
6697 }
6698
6699 end_of_insn_group = md.slot[curr].end_of_insn_group;
6700
6701 /* clear slot: */
6702 ia64_free_opcode (md.slot[curr].idesc);
6703 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
6704 md.slot[curr].user_template = -1;
6705
6706 if (manual_bundling_off)
6707 {
6708 manual_bundling = 0;
6709 break;
6710 }
6711 curr = (curr + 1) % NUM_SLOTS;
6712 idesc = md.slot[curr].idesc;
6713 }
6714 if (manual_bundling > 0)
6715 {
6716 if (md.num_slots_in_use > 0)
6717 {
6718 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6719 "`%s' does not fit into %s template",
6720 idesc->name, ia64_templ_desc[template].name);
6721 --md.num_slots_in_use;
6722 }
6723 else
6724 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6725 "Missing '}' at end of file");
6726 }
6727 know (md.num_slots_in_use < NUM_SLOTS);
6728
6729 t0 = end_of_insn_group | (template << 1) | (insn[0] << 5) | (insn[1] << 46);
6730 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
6731
6732 number_to_chars_littleendian (f + 0, t0, 8);
6733 number_to_chars_littleendian (f + 8, t1, 8);
6734
6735 if (unwind.list)
6736 {
6737 unwind.list->next_slot_number = (unsigned long) f + 16;
6738 unwind.list->next_slot_frag = frag_now;
6739 }
6740 }
6741
6742 int
6743 md_parse_option (c, arg)
6744 int c;
6745 char *arg;
6746 {
6747
6748 switch (c)
6749 {
6750 /* Switches from the Intel assembler. */
6751 case 'm':
6752 if (strcmp (arg, "ilp64") == 0
6753 || strcmp (arg, "lp64") == 0
6754 || strcmp (arg, "p64") == 0)
6755 {
6756 md.flags |= EF_IA_64_ABI64;
6757 }
6758 else if (strcmp (arg, "ilp32") == 0)
6759 {
6760 md.flags &= ~EF_IA_64_ABI64;
6761 }
6762 else if (strcmp (arg, "le") == 0)
6763 {
6764 md.flags &= ~EF_IA_64_BE;
6765 default_big_endian = 0;
6766 }
6767 else if (strcmp (arg, "be") == 0)
6768 {
6769 md.flags |= EF_IA_64_BE;
6770 default_big_endian = 1;
6771 }
6772 else if (strncmp (arg, "unwind-check=", 13) == 0)
6773 {
6774 arg += 13;
6775 if (strcmp (arg, "warning") == 0)
6776 md.unwind_check = unwind_check_warning;
6777 else if (strcmp (arg, "error") == 0)
6778 md.unwind_check = unwind_check_error;
6779 else
6780 return 0;
6781 }
6782 else
6783 return 0;
6784 break;
6785
6786 case 'N':
6787 if (strcmp (arg, "so") == 0)
6788 {
6789 /* Suppress signon message. */
6790 }
6791 else if (strcmp (arg, "pi") == 0)
6792 {
6793 /* Reject privileged instructions. FIXME */
6794 }
6795 else if (strcmp (arg, "us") == 0)
6796 {
6797 /* Allow union of signed and unsigned range. FIXME */
6798 }
6799 else if (strcmp (arg, "close_fcalls") == 0)
6800 {
6801 /* Do not resolve global function calls. */
6802 }
6803 else
6804 return 0;
6805 break;
6806
6807 case 'C':
6808 /* temp[="prefix"] Insert temporary labels into the object file
6809 symbol table prefixed by "prefix".
6810 Default prefix is ":temp:".
6811 */
6812 break;
6813
6814 case 'a':
6815 /* indirect=<tgt> Assume unannotated indirect branches behavior
6816 according to <tgt> --
6817 exit: branch out from the current context (default)
6818 labels: all labels in context may be branch targets
6819 */
6820 if (strncmp (arg, "indirect=", 9) != 0)
6821 return 0;
6822 break;
6823
6824 case 'x':
6825 /* -X conflicts with an ignored option, use -x instead */
6826 md.detect_dv = 1;
6827 if (!arg || strcmp (arg, "explicit") == 0)
6828 {
6829 /* set default mode to explicit */
6830 md.default_explicit_mode = 1;
6831 break;
6832 }
6833 else if (strcmp (arg, "auto") == 0)
6834 {
6835 md.default_explicit_mode = 0;
6836 }
6837 else if (strcmp (arg, "none") == 0)
6838 {
6839 md.detect_dv = 0;
6840 }
6841 else if (strcmp (arg, "debug") == 0)
6842 {
6843 md.debug_dv = 1;
6844 }
6845 else if (strcmp (arg, "debugx") == 0)
6846 {
6847 md.default_explicit_mode = 1;
6848 md.debug_dv = 1;
6849 }
6850 else if (strcmp (arg, "debugn") == 0)
6851 {
6852 md.debug_dv = 1;
6853 md.detect_dv = 0;
6854 }
6855 else
6856 {
6857 as_bad (_("Unrecognized option '-x%s'"), arg);
6858 }
6859 break;
6860
6861 case 'S':
6862 /* nops Print nops statistics. */
6863 break;
6864
6865 /* GNU specific switches for gcc. */
6866 case OPTION_MCONSTANT_GP:
6867 md.flags |= EF_IA_64_CONS_GP;
6868 break;
6869
6870 case OPTION_MAUTO_PIC:
6871 md.flags |= EF_IA_64_NOFUNCDESC_CONS_GP;
6872 break;
6873
6874 default:
6875 return 0;
6876 }
6877
6878 return 1;
6879 }
6880
6881 void
6882 md_show_usage (stream)
6883 FILE *stream;
6884 {
6885 fputs (_("\
6886 IA-64 options:\n\
6887 --mconstant-gp mark output file as using the constant-GP model\n\
6888 (sets ELF header flag EF_IA_64_CONS_GP)\n\
6889 --mauto-pic mark output file as using the constant-GP model\n\
6890 without function descriptors (sets ELF header flag\n\
6891 EF_IA_64_NOFUNCDESC_CONS_GP)\n\
6892 -milp32|-milp64|-mlp64|-mp64 select data model (default -mlp64)\n\
6893 -mle | -mbe select little- or big-endian byte order (default -mle)\n\
6894 -munwind-check=[warning|error]\n\
6895 unwind directive check (default -munwind-check=warning)\n\
6896 -x | -xexplicit turn on dependency violation checking\n\
6897 -xauto automagically remove dependency violations (default)\n\
6898 -xnone turn off dependency violation checking\n\
6899 -xdebug debug dependency violation checker\n\
6900 -xdebugn debug dependency violation checker but turn off\n\
6901 dependency violation checking\n\
6902 -xdebugx debug dependency violation checker and turn on\n\
6903 dependency violation checking\n"),
6904 stream);
6905 }
6906
6907 void
6908 ia64_after_parse_args ()
6909 {
6910 if (debug_type == DEBUG_STABS)
6911 as_fatal (_("--gstabs is not supported for ia64"));
6912 }
6913
6914 /* Return true if TYPE fits in TEMPL at SLOT. */
6915
6916 static int
6917 match (int templ, int type, int slot)
6918 {
6919 enum ia64_unit unit;
6920 int result;
6921
6922 unit = ia64_templ_desc[templ].exec_unit[slot];
6923 switch (type)
6924 {
6925 case IA64_TYPE_DYN: result = 1; break; /* for nop and break */
6926 case IA64_TYPE_A:
6927 result = (unit == IA64_UNIT_I || unit == IA64_UNIT_M);
6928 break;
6929 case IA64_TYPE_X: result = (unit == IA64_UNIT_L); break;
6930 case IA64_TYPE_I: result = (unit == IA64_UNIT_I); break;
6931 case IA64_TYPE_M: result = (unit == IA64_UNIT_M); break;
6932 case IA64_TYPE_B: result = (unit == IA64_UNIT_B); break;
6933 case IA64_TYPE_F: result = (unit == IA64_UNIT_F); break;
6934 default: result = 0; break;
6935 }
6936 return result;
6937 }
6938
6939 /* Add a bit of extra goodness if a nop of type F or B would fit
6940 in TEMPL at SLOT. */
6941
6942 static inline int
6943 extra_goodness (int templ, int slot)
6944 {
6945 if (slot == 1 && match (templ, IA64_TYPE_F, slot))
6946 return 2;
6947 if (slot == 2 && match (templ, IA64_TYPE_B, slot))
6948 return 1;
6949 return 0;
6950 }
6951
6952 /* This function is called once, at assembler startup time. It sets
6953 up all the tables, etc. that the MD part of the assembler will need
6954 that can be determined before arguments are parsed. */
6955 void
6956 md_begin ()
6957 {
6958 int i, j, k, t, total, ar_base, cr_base, goodness, best, regnum, ok;
6959 const char *err;
6960 char name[8];
6961
6962 md.auto_align = 1;
6963 md.explicit_mode = md.default_explicit_mode;
6964
6965 bfd_set_section_alignment (stdoutput, text_section, 4);
6966
6967 /* Make sure function pointers get initialized. */
6968 target_big_endian = -1;
6969 dot_byteorder (default_big_endian);
6970
6971 alias_hash = hash_new ();
6972 alias_name_hash = hash_new ();
6973 secalias_hash = hash_new ();
6974 secalias_name_hash = hash_new ();
6975
6976 pseudo_func[FUNC_DTP_MODULE].u.sym =
6977 symbol_new (".<dtpmod>", undefined_section, FUNC_DTP_MODULE,
6978 &zero_address_frag);
6979
6980 pseudo_func[FUNC_DTP_RELATIVE].u.sym =
6981 symbol_new (".<dtprel>", undefined_section, FUNC_DTP_RELATIVE,
6982 &zero_address_frag);
6983
6984 pseudo_func[FUNC_FPTR_RELATIVE].u.sym =
6985 symbol_new (".<fptr>", undefined_section, FUNC_FPTR_RELATIVE,
6986 &zero_address_frag);
6987
6988 pseudo_func[FUNC_GP_RELATIVE].u.sym =
6989 symbol_new (".<gprel>", undefined_section, FUNC_GP_RELATIVE,
6990 &zero_address_frag);
6991
6992 pseudo_func[FUNC_LT_RELATIVE].u.sym =
6993 symbol_new (".<ltoff>", undefined_section, FUNC_LT_RELATIVE,
6994 &zero_address_frag);
6995
6996 pseudo_func[FUNC_LT_RELATIVE_X].u.sym =
6997 symbol_new (".<ltoffx>", undefined_section, FUNC_LT_RELATIVE_X,
6998 &zero_address_frag);
6999
7000 pseudo_func[FUNC_PC_RELATIVE].u.sym =
7001 symbol_new (".<pcrel>", undefined_section, FUNC_PC_RELATIVE,
7002 &zero_address_frag);
7003
7004 pseudo_func[FUNC_PLT_RELATIVE].u.sym =
7005 symbol_new (".<pltoff>", undefined_section, FUNC_PLT_RELATIVE,
7006 &zero_address_frag);
7007
7008 pseudo_func[FUNC_SEC_RELATIVE].u.sym =
7009 symbol_new (".<secrel>", undefined_section, FUNC_SEC_RELATIVE,
7010 &zero_address_frag);
7011
7012 pseudo_func[FUNC_SEG_RELATIVE].u.sym =
7013 symbol_new (".<segrel>", undefined_section, FUNC_SEG_RELATIVE,
7014 &zero_address_frag);
7015
7016 pseudo_func[FUNC_TP_RELATIVE].u.sym =
7017 symbol_new (".<tprel>", undefined_section, FUNC_TP_RELATIVE,
7018 &zero_address_frag);
7019
7020 pseudo_func[FUNC_LTV_RELATIVE].u.sym =
7021 symbol_new (".<ltv>", undefined_section, FUNC_LTV_RELATIVE,
7022 &zero_address_frag);
7023
7024 pseudo_func[FUNC_LT_FPTR_RELATIVE].u.sym =
7025 symbol_new (".<ltoff.fptr>", undefined_section, FUNC_LT_FPTR_RELATIVE,
7026 &zero_address_frag);
7027
7028 pseudo_func[FUNC_LT_DTP_MODULE].u.sym =
7029 symbol_new (".<ltoff.dtpmod>", undefined_section, FUNC_LT_DTP_MODULE,
7030 &zero_address_frag);
7031
7032 pseudo_func[FUNC_LT_DTP_RELATIVE].u.sym =
7033 symbol_new (".<ltoff.dptrel>", undefined_section, FUNC_LT_DTP_RELATIVE,
7034 &zero_address_frag);
7035
7036 pseudo_func[FUNC_LT_TP_RELATIVE].u.sym =
7037 symbol_new (".<ltoff.tprel>", undefined_section, FUNC_LT_TP_RELATIVE,
7038 &zero_address_frag);
7039
7040 pseudo_func[FUNC_IPLT_RELOC].u.sym =
7041 symbol_new (".<iplt>", undefined_section, FUNC_IPLT_RELOC,
7042 &zero_address_frag);
7043
7044 /* Compute the table of best templates. We compute goodness as a
7045 base 4 value, in which each match counts for 3, each F counts
7046 for 2, each B counts for 1. This should maximize the number of
7047 F and B nops in the chosen bundles, which is good because these
7048 pipelines are least likely to be overcommitted. */
7049 for (i = 0; i < IA64_NUM_TYPES; ++i)
7050 for (j = 0; j < IA64_NUM_TYPES; ++j)
7051 for (k = 0; k < IA64_NUM_TYPES; ++k)
7052 {
7053 best = 0;
7054 for (t = 0; t < NELEMS (ia64_templ_desc); ++t)
7055 {
7056 goodness = 0;
7057 if (match (t, i, 0))
7058 {
7059 if (match (t, j, 1))
7060 {
7061 if (match (t, k, 2))
7062 goodness = 3 + 3 + 3;
7063 else
7064 goodness = 3 + 3 + extra_goodness (t, 2);
7065 }
7066 else if (match (t, j, 2))
7067 goodness = 3 + 3 + extra_goodness (t, 1);
7068 else
7069 {
7070 goodness = 3;
7071 goodness += extra_goodness (t, 1);
7072 goodness += extra_goodness (t, 2);
7073 }
7074 }
7075 else if (match (t, i, 1))
7076 {
7077 if (match (t, j, 2))
7078 goodness = 3 + 3;
7079 else
7080 goodness = 3 + extra_goodness (t, 2);
7081 }
7082 else if (match (t, i, 2))
7083 goodness = 3 + extra_goodness (t, 1);
7084
7085 if (goodness > best)
7086 {
7087 best = goodness;
7088 best_template[i][j][k] = t;
7089 }
7090 }
7091 }
7092
7093 for (i = 0; i < NUM_SLOTS; ++i)
7094 md.slot[i].user_template = -1;
7095
7096 md.pseudo_hash = hash_new ();
7097 for (i = 0; i < NELEMS (pseudo_opcode); ++i)
7098 {
7099 err = hash_insert (md.pseudo_hash, pseudo_opcode[i].name,
7100 (void *) (pseudo_opcode + i));
7101 if (err)
7102 as_fatal ("ia64.md_begin: can't hash `%s': %s",
7103 pseudo_opcode[i].name, err);
7104 }
7105
7106 md.reg_hash = hash_new ();
7107 md.dynreg_hash = hash_new ();
7108 md.const_hash = hash_new ();
7109 md.entry_hash = hash_new ();
7110
7111 /* general registers: */
7112
7113 total = 128;
7114 for (i = 0; i < total; ++i)
7115 {
7116 sprintf (name, "r%d", i - REG_GR);
7117 md.regsym[i] = declare_register (name, i);
7118 }
7119
7120 /* floating point registers: */
7121 total += 128;
7122 for (; i < total; ++i)
7123 {
7124 sprintf (name, "f%d", i - REG_FR);
7125 md.regsym[i] = declare_register (name, i);
7126 }
7127
7128 /* application registers: */
7129 total += 128;
7130 ar_base = i;
7131 for (; i < total; ++i)
7132 {
7133 sprintf (name, "ar%d", i - REG_AR);
7134 md.regsym[i] = declare_register (name, i);
7135 }
7136
7137 /* control registers: */
7138 total += 128;
7139 cr_base = i;
7140 for (; i < total; ++i)
7141 {
7142 sprintf (name, "cr%d", i - REG_CR);
7143 md.regsym[i] = declare_register (name, i);
7144 }
7145
7146 /* predicate registers: */
7147 total += 64;
7148 for (; i < total; ++i)
7149 {
7150 sprintf (name, "p%d", i - REG_P);
7151 md.regsym[i] = declare_register (name, i);
7152 }
7153
7154 /* branch registers: */
7155 total += 8;
7156 for (; i < total; ++i)
7157 {
7158 sprintf (name, "b%d", i - REG_BR);
7159 md.regsym[i] = declare_register (name, i);
7160 }
7161
7162 md.regsym[REG_IP] = declare_register ("ip", REG_IP);
7163 md.regsym[REG_CFM] = declare_register ("cfm", REG_CFM);
7164 md.regsym[REG_PR] = declare_register ("pr", REG_PR);
7165 md.regsym[REG_PR_ROT] = declare_register ("pr.rot", REG_PR_ROT);
7166 md.regsym[REG_PSR] = declare_register ("psr", REG_PSR);
7167 md.regsym[REG_PSR_L] = declare_register ("psr.l", REG_PSR_L);
7168 md.regsym[REG_PSR_UM] = declare_register ("psr.um", REG_PSR_UM);
7169
7170 for (i = 0; i < NELEMS (indirect_reg); ++i)
7171 {
7172 regnum = indirect_reg[i].regnum;
7173 md.regsym[regnum] = declare_register (indirect_reg[i].name, regnum);
7174 }
7175
7176 /* define synonyms for application registers: */
7177 for (i = REG_AR; i < REG_AR + NELEMS (ar); ++i)
7178 md.regsym[i] = declare_register (ar[i - REG_AR].name,
7179 REG_AR + ar[i - REG_AR].regnum);
7180
7181 /* define synonyms for control registers: */
7182 for (i = REG_CR; i < REG_CR + NELEMS (cr); ++i)
7183 md.regsym[i] = declare_register (cr[i - REG_CR].name,
7184 REG_CR + cr[i - REG_CR].regnum);
7185
7186 declare_register ("gp", REG_GR + 1);
7187 declare_register ("sp", REG_GR + 12);
7188 declare_register ("rp", REG_BR + 0);
7189
7190 /* pseudo-registers used to specify unwind info: */
7191 declare_register ("psp", REG_PSP);
7192
7193 declare_register_set ("ret", 4, REG_GR + 8);
7194 declare_register_set ("farg", 8, REG_FR + 8);
7195 declare_register_set ("fret", 8, REG_FR + 8);
7196
7197 for (i = 0; i < NELEMS (const_bits); ++i)
7198 {
7199 err = hash_insert (md.const_hash, const_bits[i].name,
7200 (PTR) (const_bits + i));
7201 if (err)
7202 as_fatal ("Inserting \"%s\" into constant hash table failed: %s",
7203 name, err);
7204 }
7205
7206 /* Set the architecture and machine depending on defaults and command line
7207 options. */
7208 if (md.flags & EF_IA_64_ABI64)
7209 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf64);
7210 else
7211 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf32);
7212
7213 if (! ok)
7214 as_warn (_("Could not set architecture and machine"));
7215
7216 /* Set the pointer size and pointer shift size depending on md.flags */
7217
7218 if (md.flags & EF_IA_64_ABI64)
7219 {
7220 md.pointer_size = 8; /* pointers are 8 bytes */
7221 md.pointer_size_shift = 3; /* alignment is 8 bytes = 2^2 */
7222 }
7223 else
7224 {
7225 md.pointer_size = 4; /* pointers are 4 bytes */
7226 md.pointer_size_shift = 2; /* alignment is 4 bytes = 2^2 */
7227 }
7228
7229 md.mem_offset.hint = 0;
7230 md.path = 0;
7231 md.maxpaths = 0;
7232 md.entry_labels = NULL;
7233 }
7234
7235 /* Set the default options in md. Cannot do this in md_begin because
7236 that is called after md_parse_option which is where we set the
7237 options in md based on command line options. */
7238
7239 void
7240 ia64_init (argc, argv)
7241 int argc ATTRIBUTE_UNUSED;
7242 char **argv ATTRIBUTE_UNUSED;
7243 {
7244 md.flags = MD_FLAGS_DEFAULT;
7245 md.detect_dv = 1;
7246 /* FIXME: We should change it to unwind_check_error someday. */
7247 md.unwind_check = unwind_check_warning;
7248 }
7249
7250 /* Return a string for the target object file format. */
7251
7252 const char *
7253 ia64_target_format ()
7254 {
7255 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
7256 {
7257 if (md.flags & EF_IA_64_BE)
7258 {
7259 if (md.flags & EF_IA_64_ABI64)
7260 #if defined(TE_AIX50)
7261 return "elf64-ia64-aix-big";
7262 #elif defined(TE_HPUX)
7263 return "elf64-ia64-hpux-big";
7264 #else
7265 return "elf64-ia64-big";
7266 #endif
7267 else
7268 #if defined(TE_AIX50)
7269 return "elf32-ia64-aix-big";
7270 #elif defined(TE_HPUX)
7271 return "elf32-ia64-hpux-big";
7272 #else
7273 return "elf32-ia64-big";
7274 #endif
7275 }
7276 else
7277 {
7278 if (md.flags & EF_IA_64_ABI64)
7279 #ifdef TE_AIX50
7280 return "elf64-ia64-aix-little";
7281 #else
7282 return "elf64-ia64-little";
7283 #endif
7284 else
7285 #ifdef TE_AIX50
7286 return "elf32-ia64-aix-little";
7287 #else
7288 return "elf32-ia64-little";
7289 #endif
7290 }
7291 }
7292 else
7293 return "unknown-format";
7294 }
7295
7296 void
7297 ia64_end_of_source ()
7298 {
7299 /* terminate insn group upon reaching end of file: */
7300 insn_group_break (1, 0, 0);
7301
7302 /* emits slots we haven't written yet: */
7303 ia64_flush_insns ();
7304
7305 bfd_set_private_flags (stdoutput, md.flags);
7306
7307 md.mem_offset.hint = 0;
7308 }
7309
7310 void
7311 ia64_start_line ()
7312 {
7313 if (md.qp.X_op == O_register)
7314 as_bad ("qualifying predicate not followed by instruction");
7315 md.qp.X_op = O_absent;
7316
7317 if (ignore_input ())
7318 return;
7319
7320 if (input_line_pointer[0] == ';' && input_line_pointer[-1] == ';')
7321 {
7322 if (md.detect_dv && !md.explicit_mode)
7323 {
7324 static int warned;
7325
7326 if (!warned)
7327 {
7328 warned = 1;
7329 as_warn (_("Explicit stops are ignored in auto mode"));
7330 }
7331 }
7332 else
7333 insn_group_break (1, 0, 0);
7334 }
7335 }
7336
7337 /* This is a hook for ia64_frob_label, so that it can distinguish tags from
7338 labels. */
7339 static int defining_tag = 0;
7340
7341 int
7342 ia64_unrecognized_line (ch)
7343 int ch;
7344 {
7345 switch (ch)
7346 {
7347 case '(':
7348 expression (&md.qp);
7349 if (*input_line_pointer++ != ')')
7350 {
7351 as_bad ("Expected ')'");
7352 return 0;
7353 }
7354 if (md.qp.X_op != O_register)
7355 {
7356 as_bad ("Qualifying predicate expected");
7357 return 0;
7358 }
7359 if (md.qp.X_add_number < REG_P || md.qp.X_add_number >= REG_P + 64)
7360 {
7361 as_bad ("Predicate register expected");
7362 return 0;
7363 }
7364 return 1;
7365
7366 case '{':
7367 if (md.manual_bundling)
7368 as_warn ("Found '{' when manual bundling is already turned on");
7369 else
7370 CURR_SLOT.manual_bundling_on = 1;
7371 md.manual_bundling = 1;
7372
7373 /* Bundling is only acceptable in explicit mode
7374 or when in default automatic mode. */
7375 if (md.detect_dv && !md.explicit_mode)
7376 {
7377 if (!md.mode_explicitly_set
7378 && !md.default_explicit_mode)
7379 dot_dv_mode ('E');
7380 else
7381 as_warn (_("Found '{' after explicit switch to automatic mode"));
7382 }
7383 return 1;
7384
7385 case '}':
7386 if (!md.manual_bundling)
7387 as_warn ("Found '}' when manual bundling is off");
7388 else
7389 PREV_SLOT.manual_bundling_off = 1;
7390 md.manual_bundling = 0;
7391
7392 /* switch back to automatic mode, if applicable */
7393 if (md.detect_dv
7394 && md.explicit_mode
7395 && !md.mode_explicitly_set
7396 && !md.default_explicit_mode)
7397 dot_dv_mode ('A');
7398
7399 /* Allow '{' to follow on the same line. We also allow ";;", but that
7400 happens automatically because ';' is an end of line marker. */
7401 SKIP_WHITESPACE ();
7402 if (input_line_pointer[0] == '{')
7403 {
7404 input_line_pointer++;
7405 return ia64_unrecognized_line ('{');
7406 }
7407
7408 demand_empty_rest_of_line ();
7409 return 1;
7410
7411 case '[':
7412 {
7413 char *s;
7414 char c;
7415 symbolS *tag;
7416 int temp;
7417
7418 if (md.qp.X_op == O_register)
7419 {
7420 as_bad ("Tag must come before qualifying predicate.");
7421 return 0;
7422 }
7423
7424 /* This implements just enough of read_a_source_file in read.c to
7425 recognize labels. */
7426 if (is_name_beginner (*input_line_pointer))
7427 {
7428 s = input_line_pointer;
7429 c = get_symbol_end ();
7430 }
7431 else if (LOCAL_LABELS_FB
7432 && ISDIGIT (*input_line_pointer))
7433 {
7434 temp = 0;
7435 while (ISDIGIT (*input_line_pointer))
7436 temp = (temp * 10) + *input_line_pointer++ - '0';
7437 fb_label_instance_inc (temp);
7438 s = fb_label_name (temp, 0);
7439 c = *input_line_pointer;
7440 }
7441 else
7442 {
7443 s = NULL;
7444 c = '\0';
7445 }
7446 if (c != ':')
7447 {
7448 /* Put ':' back for error messages' sake. */
7449 *input_line_pointer++ = ':';
7450 as_bad ("Expected ':'");
7451 return 0;
7452 }
7453
7454 defining_tag = 1;
7455 tag = colon (s);
7456 defining_tag = 0;
7457 /* Put ':' back for error messages' sake. */
7458 *input_line_pointer++ = ':';
7459 if (*input_line_pointer++ != ']')
7460 {
7461 as_bad ("Expected ']'");
7462 return 0;
7463 }
7464 if (! tag)
7465 {
7466 as_bad ("Tag name expected");
7467 return 0;
7468 }
7469 return 1;
7470 }
7471
7472 default:
7473 break;
7474 }
7475
7476 /* Not a valid line. */
7477 return 0;
7478 }
7479
7480 void
7481 ia64_frob_label (sym)
7482 struct symbol *sym;
7483 {
7484 struct label_fix *fix;
7485
7486 /* Tags need special handling since they are not bundle breaks like
7487 labels. */
7488 if (defining_tag)
7489 {
7490 fix = obstack_alloc (&notes, sizeof (*fix));
7491 fix->sym = sym;
7492 fix->next = CURR_SLOT.tag_fixups;
7493 CURR_SLOT.tag_fixups = fix;
7494
7495 return;
7496 }
7497
7498 if (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7499 {
7500 md.last_text_seg = now_seg;
7501 fix = obstack_alloc (&notes, sizeof (*fix));
7502 fix->sym = sym;
7503 fix->next = CURR_SLOT.label_fixups;
7504 CURR_SLOT.label_fixups = fix;
7505
7506 /* Keep track of how many code entry points we've seen. */
7507 if (md.path == md.maxpaths)
7508 {
7509 md.maxpaths += 20;
7510 md.entry_labels = (const char **)
7511 xrealloc ((void *) md.entry_labels,
7512 md.maxpaths * sizeof (char *));
7513 }
7514 md.entry_labels[md.path++] = S_GET_NAME (sym);
7515 }
7516 }
7517
7518 #ifdef TE_HPUX
7519 /* The HP-UX linker will give unresolved symbol errors for symbols
7520 that are declared but unused. This routine removes declared,
7521 unused symbols from an object. */
7522 int
7523 ia64_frob_symbol (sym)
7524 struct symbol *sym;
7525 {
7526 if ((S_GET_SEGMENT (sym) == &bfd_und_section && ! symbol_used_p (sym) &&
7527 ELF_ST_VISIBILITY (S_GET_OTHER (sym)) == STV_DEFAULT)
7528 || (S_GET_SEGMENT (sym) == &bfd_abs_section
7529 && ! S_IS_EXTERNAL (sym)))
7530 return 1;
7531 return 0;
7532 }
7533 #endif
7534
7535 void
7536 ia64_flush_pending_output ()
7537 {
7538 if (!md.keep_pending_output
7539 && bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7540 {
7541 /* ??? This causes many unnecessary stop bits to be emitted.
7542 Unfortunately, it isn't clear if it is safe to remove this. */
7543 insn_group_break (1, 0, 0);
7544 ia64_flush_insns ();
7545 }
7546 }
7547
7548 /* Do ia64-specific expression optimization. All that's done here is
7549 to transform index expressions that are either due to the indexing
7550 of rotating registers or due to the indexing of indirect register
7551 sets. */
7552 int
7553 ia64_optimize_expr (l, op, r)
7554 expressionS *l;
7555 operatorT op;
7556 expressionS *r;
7557 {
7558 unsigned num_regs;
7559
7560 if (op == O_index)
7561 {
7562 if (l->X_op == O_register && r->X_op == O_constant)
7563 {
7564 num_regs = (l->X_add_number >> 16);
7565 if ((unsigned) r->X_add_number >= num_regs)
7566 {
7567 if (!num_regs)
7568 as_bad ("No current frame");
7569 else
7570 as_bad ("Index out of range 0..%u", num_regs - 1);
7571 r->X_add_number = 0;
7572 }
7573 l->X_add_number = (l->X_add_number & 0xffff) + r->X_add_number;
7574 return 1;
7575 }
7576 else if (l->X_op == O_register && r->X_op == O_register)
7577 {
7578 if (l->X_add_number < IND_CPUID || l->X_add_number > IND_RR
7579 || l->X_add_number == IND_MEM)
7580 {
7581 as_bad ("Indirect register set name expected");
7582 l->X_add_number = IND_CPUID;
7583 }
7584 l->X_op = O_index;
7585 l->X_op_symbol = md.regsym[l->X_add_number];
7586 l->X_add_number = r->X_add_number;
7587 return 1;
7588 }
7589 }
7590 return 0;
7591 }
7592
7593 int
7594 ia64_parse_name (name, e, nextcharP)
7595 char *name;
7596 expressionS *e;
7597 char *nextcharP;
7598 {
7599 struct const_desc *cdesc;
7600 struct dynreg *dr = 0;
7601 unsigned int regnum;
7602 unsigned int idx;
7603 struct symbol *sym;
7604 char *end;
7605
7606 if (*name == '@')
7607 {
7608 enum pseudo_type pseudo_type = PSEUDO_FUNC_NONE;
7609
7610 /* Find what relocation pseudo-function we're dealing with. */
7611 for (idx = 0; idx < NELEMS (pseudo_func); ++idx)
7612 if (pseudo_func[idx].name
7613 && pseudo_func[idx].name[0] == name[1]
7614 && strcmp (pseudo_func[idx].name + 1, name + 2) == 0)
7615 {
7616 pseudo_type = pseudo_func[idx].type;
7617 break;
7618 }
7619 switch (pseudo_type)
7620 {
7621 case PSEUDO_FUNC_RELOC:
7622 end = input_line_pointer;
7623 if (*nextcharP != '(')
7624 {
7625 as_bad ("Expected '('");
7626 break;
7627 }
7628 /* Skip '('. */
7629 ++input_line_pointer;
7630 expression (e);
7631 if (*input_line_pointer != ')')
7632 {
7633 as_bad ("Missing ')'");
7634 goto done;
7635 }
7636 /* Skip ')'. */
7637 ++input_line_pointer;
7638 if (e->X_op != O_symbol)
7639 {
7640 if (e->X_op != O_pseudo_fixup)
7641 {
7642 as_bad ("Not a symbolic expression");
7643 goto done;
7644 }
7645 if (idx != FUNC_LT_RELATIVE)
7646 {
7647 as_bad ("Illegal combination of relocation functions");
7648 goto done;
7649 }
7650 switch (S_GET_VALUE (e->X_op_symbol))
7651 {
7652 case FUNC_FPTR_RELATIVE:
7653 idx = FUNC_LT_FPTR_RELATIVE; break;
7654 case FUNC_DTP_MODULE:
7655 idx = FUNC_LT_DTP_MODULE; break;
7656 case FUNC_DTP_RELATIVE:
7657 idx = FUNC_LT_DTP_RELATIVE; break;
7658 case FUNC_TP_RELATIVE:
7659 idx = FUNC_LT_TP_RELATIVE; break;
7660 default:
7661 as_bad ("Illegal combination of relocation functions");
7662 goto done;
7663 }
7664 }
7665 /* Make sure gas doesn't get rid of local symbols that are used
7666 in relocs. */
7667 e->X_op = O_pseudo_fixup;
7668 e->X_op_symbol = pseudo_func[idx].u.sym;
7669 done:
7670 *nextcharP = *input_line_pointer;
7671 break;
7672
7673 case PSEUDO_FUNC_CONST:
7674 e->X_op = O_constant;
7675 e->X_add_number = pseudo_func[idx].u.ival;
7676 break;
7677
7678 case PSEUDO_FUNC_REG:
7679 e->X_op = O_register;
7680 e->X_add_number = pseudo_func[idx].u.ival;
7681 break;
7682
7683 default:
7684 return 0;
7685 }
7686 return 1;
7687 }
7688
7689 /* first see if NAME is a known register name: */
7690 sym = hash_find (md.reg_hash, name);
7691 if (sym)
7692 {
7693 e->X_op = O_register;
7694 e->X_add_number = S_GET_VALUE (sym);
7695 return 1;
7696 }
7697
7698 cdesc = hash_find (md.const_hash, name);
7699 if (cdesc)
7700 {
7701 e->X_op = O_constant;
7702 e->X_add_number = cdesc->value;
7703 return 1;
7704 }
7705
7706 /* check for inN, locN, or outN: */
7707 switch (name[0])
7708 {
7709 case 'i':
7710 if (name[1] == 'n' && ISDIGIT (name[2]))
7711 {
7712 dr = &md.in;
7713 name += 2;
7714 }
7715 break;
7716
7717 case 'l':
7718 if (name[1] == 'o' && name[2] == 'c' && ISDIGIT (name[3]))
7719 {
7720 dr = &md.loc;
7721 name += 3;
7722 }
7723 break;
7724
7725 case 'o':
7726 if (name[1] == 'u' && name[2] == 't' && ISDIGIT (name[3]))
7727 {
7728 dr = &md.out;
7729 name += 3;
7730 }
7731 break;
7732
7733 default:
7734 break;
7735 }
7736
7737 if (dr)
7738 {
7739 /* The name is inN, locN, or outN; parse the register number. */
7740 regnum = strtoul (name, &end, 10);
7741 if (end > name && *end == '\0')
7742 {
7743 if ((unsigned) regnum >= dr->num_regs)
7744 {
7745 if (!dr->num_regs)
7746 as_bad ("No current frame");
7747 else
7748 as_bad ("Register number out of range 0..%u",
7749 dr->num_regs - 1);
7750 regnum = 0;
7751 }
7752 e->X_op = O_register;
7753 e->X_add_number = dr->base + regnum;
7754 return 1;
7755 }
7756 }
7757
7758 end = alloca (strlen (name) + 1);
7759 strcpy (end, name);
7760 name = ia64_canonicalize_symbol_name (end);
7761 if ((dr = hash_find (md.dynreg_hash, name)))
7762 {
7763 /* We've got ourselves the name of a rotating register set.
7764 Store the base register number in the low 16 bits of
7765 X_add_number and the size of the register set in the top 16
7766 bits. */
7767 e->X_op = O_register;
7768 e->X_add_number = dr->base | (dr->num_regs << 16);
7769 return 1;
7770 }
7771 return 0;
7772 }
7773
7774 /* Remove the '#' suffix that indicates a symbol as opposed to a register. */
7775
7776 char *
7777 ia64_canonicalize_symbol_name (name)
7778 char *name;
7779 {
7780 size_t len = strlen (name), full = len;
7781
7782 while (len > 0 && name[len - 1] == '#')
7783 --len;
7784 if (len <= 0)
7785 {
7786 if (full > 0)
7787 as_bad ("Standalone `#' is illegal");
7788 else
7789 as_bad ("Zero-length symbol is illegal");
7790 }
7791 else if (len < full - 1)
7792 as_warn ("Redundant `#' suffix operators");
7793 name[len] = '\0';
7794 return name;
7795 }
7796
7797 /* Return true if idesc is a conditional branch instruction. This excludes
7798 the modulo scheduled branches, and br.ia. Mod-sched branches are excluded
7799 because they always read/write resources regardless of the value of the
7800 qualifying predicate. br.ia must always use p0, and hence is always
7801 taken. Thus this function returns true for branches which can fall
7802 through, and which use no resources if they do fall through. */
7803
7804 static int
7805 is_conditional_branch (idesc)
7806 struct ia64_opcode *idesc;
7807 {
7808 /* br is a conditional branch. Everything that starts with br. except
7809 br.ia, br.c{loop,top,exit}, and br.w{top,exit} is a conditional branch.
7810 Everything that starts with brl is a conditional branch. */
7811 return (idesc->name[0] == 'b' && idesc->name[1] == 'r'
7812 && (idesc->name[2] == '\0'
7813 || (idesc->name[2] == '.' && idesc->name[3] != 'i'
7814 && idesc->name[3] != 'c' && idesc->name[3] != 'w')
7815 || idesc->name[2] == 'l'
7816 /* br.cond, br.call, br.clr */
7817 || (idesc->name[2] == '.' && idesc->name[3] == 'c'
7818 && (idesc->name[4] == 'a' || idesc->name[4] == 'o'
7819 || (idesc->name[4] == 'l' && idesc->name[5] == 'r')))));
7820 }
7821
7822 /* Return whether the given opcode is a taken branch. If there's any doubt,
7823 returns zero. */
7824
7825 static int
7826 is_taken_branch (idesc)
7827 struct ia64_opcode *idesc;
7828 {
7829 return ((is_conditional_branch (idesc) && CURR_SLOT.qp_regno == 0)
7830 || strncmp (idesc->name, "br.ia", 5) == 0);
7831 }
7832
7833 /* Return whether the given opcode is an interruption or rfi. If there's any
7834 doubt, returns zero. */
7835
7836 static int
7837 is_interruption_or_rfi (idesc)
7838 struct ia64_opcode *idesc;
7839 {
7840 if (strcmp (idesc->name, "rfi") == 0)
7841 return 1;
7842 return 0;
7843 }
7844
7845 /* Returns the index of the given dependency in the opcode's list of chks, or
7846 -1 if there is no dependency. */
7847
7848 static int
7849 depends_on (depind, idesc)
7850 int depind;
7851 struct ia64_opcode *idesc;
7852 {
7853 int i;
7854 const struct ia64_opcode_dependency *dep = idesc->dependencies;
7855 for (i = 0; i < dep->nchks; i++)
7856 {
7857 if (depind == DEP (dep->chks[i]))
7858 return i;
7859 }
7860 return -1;
7861 }
7862
7863 /* Determine a set of specific resources used for a particular resource
7864 class. Returns the number of specific resources identified For those
7865 cases which are not determinable statically, the resource returned is
7866 marked nonspecific.
7867
7868 Meanings of value in 'NOTE':
7869 1) only read/write when the register number is explicitly encoded in the
7870 insn.
7871 2) only read CFM when accessing a rotating GR, FR, or PR. mov pr only
7872 accesses CFM when qualifying predicate is in the rotating region.
7873 3) general register value is used to specify an indirect register; not
7874 determinable statically.
7875 4) only read the given resource when bits 7:0 of the indirect index
7876 register value does not match the register number of the resource; not
7877 determinable statically.
7878 5) all rules are implementation specific.
7879 6) only when both the index specified by the reader and the index specified
7880 by the writer have the same value in bits 63:61; not determinable
7881 statically.
7882 7) only access the specified resource when the corresponding mask bit is
7883 set
7884 8) PSR.dfh is only read when these insns reference FR32-127. PSR.dfl is
7885 only read when these insns reference FR2-31
7886 9) PSR.mfl is only written when these insns write FR2-31. PSR.mfh is only
7887 written when these insns write FR32-127
7888 10) The PSR.bn bit is only accessed when one of GR16-31 is specified in the
7889 instruction
7890 11) The target predicates are written independently of PR[qp], but source
7891 registers are only read if PR[qp] is true. Since the state of PR[qp]
7892 cannot statically be determined, all source registers are marked used.
7893 12) This insn only reads the specified predicate register when that
7894 register is the PR[qp].
7895 13) This reference to ld-c only applies to teh GR whose value is loaded
7896 with data returned from memory, not the post-incremented address register.
7897 14) The RSE resource includes the implementation-specific RSE internal
7898 state resources. At least one (and possibly more) of these resources are
7899 read by each instruction listed in IC:rse-readers. At least one (and
7900 possibly more) of these resources are written by each insn listed in
7901 IC:rse-writers.
7902 15+16) Represents reserved instructions, which the assembler does not
7903 generate.
7904
7905 Memory resources (i.e. locations in memory) are *not* marked or tracked by
7906 this code; there are no dependency violations based on memory access.
7907 */
7908
7909 #define MAX_SPECS 256
7910 #define DV_CHK 1
7911 #define DV_REG 0
7912
7913 static int
7914 specify_resource (dep, idesc, type, specs, note, path)
7915 const struct ia64_dependency *dep;
7916 struct ia64_opcode *idesc;
7917 int type; /* is this a DV chk or a DV reg? */
7918 struct rsrc specs[MAX_SPECS]; /* returned specific resources */
7919 int note; /* resource note for this insn's usage */
7920 int path; /* which execution path to examine */
7921 {
7922 int count = 0;
7923 int i;
7924 int rsrc_write = 0;
7925 struct rsrc tmpl;
7926
7927 if (dep->mode == IA64_DV_WAW
7928 || (dep->mode == IA64_DV_RAW && type == DV_REG)
7929 || (dep->mode == IA64_DV_WAR && type == DV_CHK))
7930 rsrc_write = 1;
7931
7932 /* template for any resources we identify */
7933 tmpl.dependency = dep;
7934 tmpl.note = note;
7935 tmpl.insn_srlz = tmpl.data_srlz = 0;
7936 tmpl.qp_regno = CURR_SLOT.qp_regno;
7937 tmpl.link_to_qp_branch = 1;
7938 tmpl.mem_offset.hint = 0;
7939 tmpl.specific = 1;
7940 tmpl.index = 0;
7941 tmpl.cmp_type = CMP_NONE;
7942
7943 #define UNHANDLED \
7944 as_warn (_("Unhandled dependency %s for %s (%s), note %d"), \
7945 dep->name, idesc->name, (rsrc_write?"write":"read"), note)
7946 #define KNOWN(REG) (gr_values[REG].known && gr_values[REG].path >= path)
7947
7948 /* we don't need to track these */
7949 if (dep->semantics == IA64_DVS_NONE)
7950 return 0;
7951
7952 switch (dep->specifier)
7953 {
7954 case IA64_RS_AR_K:
7955 if (note == 1)
7956 {
7957 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
7958 {
7959 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
7960 if (regno >= 0 && regno <= 7)
7961 {
7962 specs[count] = tmpl;
7963 specs[count++].index = regno;
7964 }
7965 }
7966 }
7967 else if (note == 0)
7968 {
7969 for (i = 0; i < 8; i++)
7970 {
7971 specs[count] = tmpl;
7972 specs[count++].index = i;
7973 }
7974 }
7975 else
7976 {
7977 UNHANDLED;
7978 }
7979 break;
7980
7981 case IA64_RS_AR_UNAT:
7982 /* This is a mov =AR or mov AR= instruction. */
7983 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
7984 {
7985 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
7986 if (regno == AR_UNAT)
7987 {
7988 specs[count++] = tmpl;
7989 }
7990 }
7991 else
7992 {
7993 /* This is a spill/fill, or other instruction that modifies the
7994 unat register. */
7995
7996 /* Unless we can determine the specific bits used, mark the whole
7997 thing; bits 8:3 of the memory address indicate the bit used in
7998 UNAT. The .mem.offset hint may be used to eliminate a small
7999 subset of conflicts. */
8000 specs[count] = tmpl;
8001 if (md.mem_offset.hint)
8002 {
8003 if (md.debug_dv)
8004 fprintf (stderr, " Using hint for spill/fill\n");
8005 /* The index isn't actually used, just set it to something
8006 approximating the bit index. */
8007 specs[count].index = (md.mem_offset.offset >> 3) & 0x3F;
8008 specs[count].mem_offset.hint = 1;
8009 specs[count].mem_offset.offset = md.mem_offset.offset;
8010 specs[count++].mem_offset.base = md.mem_offset.base;
8011 }
8012 else
8013 {
8014 specs[count++].specific = 0;
8015 }
8016 }
8017 break;
8018
8019 case IA64_RS_AR:
8020 if (note == 1)
8021 {
8022 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8023 {
8024 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8025 if ((regno >= 8 && regno <= 15)
8026 || (regno >= 20 && regno <= 23)
8027 || (regno >= 31 && regno <= 39)
8028 || (regno >= 41 && regno <= 47)
8029 || (regno >= 67 && regno <= 111))
8030 {
8031 specs[count] = tmpl;
8032 specs[count++].index = regno;
8033 }
8034 }
8035 }
8036 else
8037 {
8038 UNHANDLED;
8039 }
8040 break;
8041
8042 case IA64_RS_ARb:
8043 if (note == 1)
8044 {
8045 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8046 {
8047 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8048 if ((regno >= 48 && regno <= 63)
8049 || (regno >= 112 && regno <= 127))
8050 {
8051 specs[count] = tmpl;
8052 specs[count++].index = regno;
8053 }
8054 }
8055 }
8056 else if (note == 0)
8057 {
8058 for (i = 48; i < 64; i++)
8059 {
8060 specs[count] = tmpl;
8061 specs[count++].index = i;
8062 }
8063 for (i = 112; i < 128; i++)
8064 {
8065 specs[count] = tmpl;
8066 specs[count++].index = i;
8067 }
8068 }
8069 else
8070 {
8071 UNHANDLED;
8072 }
8073 break;
8074
8075 case IA64_RS_BR:
8076 if (note != 1)
8077 {
8078 UNHANDLED;
8079 }
8080 else
8081 {
8082 if (rsrc_write)
8083 {
8084 for (i = 0; i < idesc->num_outputs; i++)
8085 if (idesc->operands[i] == IA64_OPND_B1
8086 || idesc->operands[i] == IA64_OPND_B2)
8087 {
8088 specs[count] = tmpl;
8089 specs[count++].index =
8090 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8091 }
8092 }
8093 else
8094 {
8095 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8096 if (idesc->operands[i] == IA64_OPND_B1
8097 || idesc->operands[i] == IA64_OPND_B2)
8098 {
8099 specs[count] = tmpl;
8100 specs[count++].index =
8101 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8102 }
8103 }
8104 }
8105 break;
8106
8107 case IA64_RS_CPUID: /* four or more registers */
8108 if (note == 3)
8109 {
8110 if (idesc->operands[!rsrc_write] == IA64_OPND_CPUID_R3)
8111 {
8112 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8113 if (regno >= 0 && regno < NELEMS (gr_values)
8114 && KNOWN (regno))
8115 {
8116 specs[count] = tmpl;
8117 specs[count++].index = gr_values[regno].value & 0xFF;
8118 }
8119 else
8120 {
8121 specs[count] = tmpl;
8122 specs[count++].specific = 0;
8123 }
8124 }
8125 }
8126 else
8127 {
8128 UNHANDLED;
8129 }
8130 break;
8131
8132 case IA64_RS_DBR: /* four or more registers */
8133 if (note == 3)
8134 {
8135 if (idesc->operands[!rsrc_write] == IA64_OPND_DBR_R3)
8136 {
8137 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8138 if (regno >= 0 && regno < NELEMS (gr_values)
8139 && KNOWN (regno))
8140 {
8141 specs[count] = tmpl;
8142 specs[count++].index = gr_values[regno].value & 0xFF;
8143 }
8144 else
8145 {
8146 specs[count] = tmpl;
8147 specs[count++].specific = 0;
8148 }
8149 }
8150 }
8151 else if (note == 0 && !rsrc_write)
8152 {
8153 specs[count] = tmpl;
8154 specs[count++].specific = 0;
8155 }
8156 else
8157 {
8158 UNHANDLED;
8159 }
8160 break;
8161
8162 case IA64_RS_IBR: /* four or more registers */
8163 if (note == 3)
8164 {
8165 if (idesc->operands[!rsrc_write] == IA64_OPND_IBR_R3)
8166 {
8167 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8168 if (regno >= 0 && regno < NELEMS (gr_values)
8169 && KNOWN (regno))
8170 {
8171 specs[count] = tmpl;
8172 specs[count++].index = gr_values[regno].value & 0xFF;
8173 }
8174 else
8175 {
8176 specs[count] = tmpl;
8177 specs[count++].specific = 0;
8178 }
8179 }
8180 }
8181 else
8182 {
8183 UNHANDLED;
8184 }
8185 break;
8186
8187 case IA64_RS_MSR:
8188 if (note == 5)
8189 {
8190 /* These are implementation specific. Force all references to
8191 conflict with all other references. */
8192 specs[count] = tmpl;
8193 specs[count++].specific = 0;
8194 }
8195 else
8196 {
8197 UNHANDLED;
8198 }
8199 break;
8200
8201 case IA64_RS_PKR: /* 16 or more registers */
8202 if (note == 3 || note == 4)
8203 {
8204 if (idesc->operands[!rsrc_write] == IA64_OPND_PKR_R3)
8205 {
8206 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8207 if (regno >= 0 && regno < NELEMS (gr_values)
8208 && KNOWN (regno))
8209 {
8210 if (note == 3)
8211 {
8212 specs[count] = tmpl;
8213 specs[count++].index = gr_values[regno].value & 0xFF;
8214 }
8215 else
8216 for (i = 0; i < NELEMS (gr_values); i++)
8217 {
8218 /* Uses all registers *except* the one in R3. */
8219 if ((unsigned)i != (gr_values[regno].value & 0xFF))
8220 {
8221 specs[count] = tmpl;
8222 specs[count++].index = i;
8223 }
8224 }
8225 }
8226 else
8227 {
8228 specs[count] = tmpl;
8229 specs[count++].specific = 0;
8230 }
8231 }
8232 }
8233 else if (note == 0)
8234 {
8235 /* probe et al. */
8236 specs[count] = tmpl;
8237 specs[count++].specific = 0;
8238 }
8239 break;
8240
8241 case IA64_RS_PMC: /* four or more registers */
8242 if (note == 3)
8243 {
8244 if (idesc->operands[!rsrc_write] == IA64_OPND_PMC_R3
8245 || (!rsrc_write && idesc->operands[1] == IA64_OPND_PMD_R3))
8246
8247 {
8248 int index = ((idesc->operands[1] == IA64_OPND_R3 && !rsrc_write)
8249 ? 1 : !rsrc_write);
8250 int regno = CURR_SLOT.opnd[index].X_add_number - REG_GR;
8251 if (regno >= 0 && regno < NELEMS (gr_values)
8252 && KNOWN (regno))
8253 {
8254 specs[count] = tmpl;
8255 specs[count++].index = gr_values[regno].value & 0xFF;
8256 }
8257 else
8258 {
8259 specs[count] = tmpl;
8260 specs[count++].specific = 0;
8261 }
8262 }
8263 }
8264 else
8265 {
8266 UNHANDLED;
8267 }
8268 break;
8269
8270 case IA64_RS_PMD: /* four or more registers */
8271 if (note == 3)
8272 {
8273 if (idesc->operands[!rsrc_write] == IA64_OPND_PMD_R3)
8274 {
8275 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8276 if (regno >= 0 && regno < NELEMS (gr_values)
8277 && KNOWN (regno))
8278 {
8279 specs[count] = tmpl;
8280 specs[count++].index = gr_values[regno].value & 0xFF;
8281 }
8282 else
8283 {
8284 specs[count] = tmpl;
8285 specs[count++].specific = 0;
8286 }
8287 }
8288 }
8289 else
8290 {
8291 UNHANDLED;
8292 }
8293 break;
8294
8295 case IA64_RS_RR: /* eight registers */
8296 if (note == 6)
8297 {
8298 if (idesc->operands[!rsrc_write] == IA64_OPND_RR_R3)
8299 {
8300 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8301 if (regno >= 0 && regno < NELEMS (gr_values)
8302 && KNOWN (regno))
8303 {
8304 specs[count] = tmpl;
8305 specs[count++].index = (gr_values[regno].value >> 61) & 0x7;
8306 }
8307 else
8308 {
8309 specs[count] = tmpl;
8310 specs[count++].specific = 0;
8311 }
8312 }
8313 }
8314 else if (note == 0 && !rsrc_write)
8315 {
8316 specs[count] = tmpl;
8317 specs[count++].specific = 0;
8318 }
8319 else
8320 {
8321 UNHANDLED;
8322 }
8323 break;
8324
8325 case IA64_RS_CR_IRR:
8326 if (note == 0)
8327 {
8328 /* handle mov-from-CR-IVR; it's a read that writes CR[IRR] */
8329 int regno = CURR_SLOT.opnd[1].X_add_number - REG_CR;
8330 if (rsrc_write
8331 && idesc->operands[1] == IA64_OPND_CR3
8332 && regno == CR_IVR)
8333 {
8334 for (i = 0; i < 4; i++)
8335 {
8336 specs[count] = tmpl;
8337 specs[count++].index = CR_IRR0 + i;
8338 }
8339 }
8340 }
8341 else if (note == 1)
8342 {
8343 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8344 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8345 && regno >= CR_IRR0
8346 && regno <= CR_IRR3)
8347 {
8348 specs[count] = tmpl;
8349 specs[count++].index = regno;
8350 }
8351 }
8352 else
8353 {
8354 UNHANDLED;
8355 }
8356 break;
8357
8358 case IA64_RS_CR_LRR:
8359 if (note != 1)
8360 {
8361 UNHANDLED;
8362 }
8363 else
8364 {
8365 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8366 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8367 && (regno == CR_LRR0 || regno == CR_LRR1))
8368 {
8369 specs[count] = tmpl;
8370 specs[count++].index = regno;
8371 }
8372 }
8373 break;
8374
8375 case IA64_RS_CR:
8376 if (note == 1)
8377 {
8378 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
8379 {
8380 specs[count] = tmpl;
8381 specs[count++].index =
8382 CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8383 }
8384 }
8385 else
8386 {
8387 UNHANDLED;
8388 }
8389 break;
8390
8391 case IA64_RS_FR:
8392 case IA64_RS_FRb:
8393 if (note != 1)
8394 {
8395 UNHANDLED;
8396 }
8397 else if (rsrc_write)
8398 {
8399 if (dep->specifier == IA64_RS_FRb
8400 && idesc->operands[0] == IA64_OPND_F1)
8401 {
8402 specs[count] = tmpl;
8403 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_FR;
8404 }
8405 }
8406 else
8407 {
8408 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8409 {
8410 if (idesc->operands[i] == IA64_OPND_F2
8411 || idesc->operands[i] == IA64_OPND_F3
8412 || idesc->operands[i] == IA64_OPND_F4)
8413 {
8414 specs[count] = tmpl;
8415 specs[count++].index =
8416 CURR_SLOT.opnd[i].X_add_number - REG_FR;
8417 }
8418 }
8419 }
8420 break;
8421
8422 case IA64_RS_GR:
8423 if (note == 13)
8424 {
8425 /* This reference applies only to the GR whose value is loaded with
8426 data returned from memory. */
8427 specs[count] = tmpl;
8428 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_GR;
8429 }
8430 else if (note == 1)
8431 {
8432 if (rsrc_write)
8433 {
8434 for (i = 0; i < idesc->num_outputs; i++)
8435 if (idesc->operands[i] == IA64_OPND_R1
8436 || idesc->operands[i] == IA64_OPND_R2
8437 || idesc->operands[i] == IA64_OPND_R3)
8438 {
8439 specs[count] = tmpl;
8440 specs[count++].index =
8441 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8442 }
8443 if (idesc->flags & IA64_OPCODE_POSTINC)
8444 for (i = 0; i < NELEMS (idesc->operands); i++)
8445 if (idesc->operands[i] == IA64_OPND_MR3)
8446 {
8447 specs[count] = tmpl;
8448 specs[count++].index =
8449 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8450 }
8451 }
8452 else
8453 {
8454 /* Look for anything that reads a GR. */
8455 for (i = 0; i < NELEMS (idesc->operands); i++)
8456 {
8457 if (idesc->operands[i] == IA64_OPND_MR3
8458 || idesc->operands[i] == IA64_OPND_CPUID_R3
8459 || idesc->operands[i] == IA64_OPND_DBR_R3
8460 || idesc->operands[i] == IA64_OPND_IBR_R3
8461 || idesc->operands[i] == IA64_OPND_MSR_R3
8462 || idesc->operands[i] == IA64_OPND_PKR_R3
8463 || idesc->operands[i] == IA64_OPND_PMC_R3
8464 || idesc->operands[i] == IA64_OPND_PMD_R3
8465 || idesc->operands[i] == IA64_OPND_RR_R3
8466 || ((i >= idesc->num_outputs)
8467 && (idesc->operands[i] == IA64_OPND_R1
8468 || idesc->operands[i] == IA64_OPND_R2
8469 || idesc->operands[i] == IA64_OPND_R3
8470 /* addl source register. */
8471 || idesc->operands[i] == IA64_OPND_R3_2)))
8472 {
8473 specs[count] = tmpl;
8474 specs[count++].index =
8475 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8476 }
8477 }
8478 }
8479 }
8480 else
8481 {
8482 UNHANDLED;
8483 }
8484 break;
8485
8486 /* This is the same as IA64_RS_PRr, except that the register range is
8487 from 1 - 15, and there are no rotating register reads/writes here. */
8488 case IA64_RS_PR:
8489 if (note == 0)
8490 {
8491 for (i = 1; i < 16; i++)
8492 {
8493 specs[count] = tmpl;
8494 specs[count++].index = i;
8495 }
8496 }
8497 else if (note == 7)
8498 {
8499 valueT mask = 0;
8500 /* Mark only those registers indicated by the mask. */
8501 if (rsrc_write)
8502 {
8503 mask = CURR_SLOT.opnd[2].X_add_number;
8504 for (i = 1; i < 16; i++)
8505 if (mask & ((valueT) 1 << i))
8506 {
8507 specs[count] = tmpl;
8508 specs[count++].index = i;
8509 }
8510 }
8511 else
8512 {
8513 UNHANDLED;
8514 }
8515 }
8516 else if (note == 11) /* note 11 implies note 1 as well */
8517 {
8518 if (rsrc_write)
8519 {
8520 for (i = 0; i < idesc->num_outputs; i++)
8521 {
8522 if (idesc->operands[i] == IA64_OPND_P1
8523 || idesc->operands[i] == IA64_OPND_P2)
8524 {
8525 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8526 if (regno >= 1 && regno < 16)
8527 {
8528 specs[count] = tmpl;
8529 specs[count++].index = regno;
8530 }
8531 }
8532 }
8533 }
8534 else
8535 {
8536 UNHANDLED;
8537 }
8538 }
8539 else if (note == 12)
8540 {
8541 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8542 {
8543 specs[count] = tmpl;
8544 specs[count++].index = CURR_SLOT.qp_regno;
8545 }
8546 }
8547 else if (note == 1)
8548 {
8549 if (rsrc_write)
8550 {
8551 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8552 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8553 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8554 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8555
8556 if ((idesc->operands[0] == IA64_OPND_P1
8557 || idesc->operands[0] == IA64_OPND_P2)
8558 && p1 >= 1 && p1 < 16)
8559 {
8560 specs[count] = tmpl;
8561 specs[count].cmp_type =
8562 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
8563 specs[count++].index = p1;
8564 }
8565 if ((idesc->operands[1] == IA64_OPND_P1
8566 || idesc->operands[1] == IA64_OPND_P2)
8567 && p2 >= 1 && p2 < 16)
8568 {
8569 specs[count] = tmpl;
8570 specs[count].cmp_type =
8571 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
8572 specs[count++].index = p2;
8573 }
8574 }
8575 else
8576 {
8577 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8578 {
8579 specs[count] = tmpl;
8580 specs[count++].index = CURR_SLOT.qp_regno;
8581 }
8582 if (idesc->operands[1] == IA64_OPND_PR)
8583 {
8584 for (i = 1; i < 16; i++)
8585 {
8586 specs[count] = tmpl;
8587 specs[count++].index = i;
8588 }
8589 }
8590 }
8591 }
8592 else
8593 {
8594 UNHANDLED;
8595 }
8596 break;
8597
8598 /* This is the general case for PRs. IA64_RS_PR and IA64_RS_PR63 are
8599 simplified cases of this. */
8600 case IA64_RS_PRr:
8601 if (note == 0)
8602 {
8603 for (i = 16; i < 63; i++)
8604 {
8605 specs[count] = tmpl;
8606 specs[count++].index = i;
8607 }
8608 }
8609 else if (note == 7)
8610 {
8611 valueT mask = 0;
8612 /* Mark only those registers indicated by the mask. */
8613 if (rsrc_write
8614 && idesc->operands[0] == IA64_OPND_PR)
8615 {
8616 mask = CURR_SLOT.opnd[2].X_add_number;
8617 if (mask & ((valueT) 1 << 16))
8618 for (i = 16; i < 63; i++)
8619 {
8620 specs[count] = tmpl;
8621 specs[count++].index = i;
8622 }
8623 }
8624 else if (rsrc_write
8625 && idesc->operands[0] == IA64_OPND_PR_ROT)
8626 {
8627 for (i = 16; i < 63; i++)
8628 {
8629 specs[count] = tmpl;
8630 specs[count++].index = i;
8631 }
8632 }
8633 else
8634 {
8635 UNHANDLED;
8636 }
8637 }
8638 else if (note == 11) /* note 11 implies note 1 as well */
8639 {
8640 if (rsrc_write)
8641 {
8642 for (i = 0; i < idesc->num_outputs; i++)
8643 {
8644 if (idesc->operands[i] == IA64_OPND_P1
8645 || idesc->operands[i] == IA64_OPND_P2)
8646 {
8647 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8648 if (regno >= 16 && regno < 63)
8649 {
8650 specs[count] = tmpl;
8651 specs[count++].index = regno;
8652 }
8653 }
8654 }
8655 }
8656 else
8657 {
8658 UNHANDLED;
8659 }
8660 }
8661 else if (note == 12)
8662 {
8663 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
8664 {
8665 specs[count] = tmpl;
8666 specs[count++].index = CURR_SLOT.qp_regno;
8667 }
8668 }
8669 else if (note == 1)
8670 {
8671 if (rsrc_write)
8672 {
8673 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8674 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8675 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8676 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8677
8678 if ((idesc->operands[0] == IA64_OPND_P1
8679 || idesc->operands[0] == IA64_OPND_P2)
8680 && p1 >= 16 && p1 < 63)
8681 {
8682 specs[count] = tmpl;
8683 specs[count].cmp_type =
8684 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
8685 specs[count++].index = p1;
8686 }
8687 if ((idesc->operands[1] == IA64_OPND_P1
8688 || idesc->operands[1] == IA64_OPND_P2)
8689 && p2 >= 16 && p2 < 63)
8690 {
8691 specs[count] = tmpl;
8692 specs[count].cmp_type =
8693 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
8694 specs[count++].index = p2;
8695 }
8696 }
8697 else
8698 {
8699 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
8700 {
8701 specs[count] = tmpl;
8702 specs[count++].index = CURR_SLOT.qp_regno;
8703 }
8704 if (idesc->operands[1] == IA64_OPND_PR)
8705 {
8706 for (i = 16; i < 63; i++)
8707 {
8708 specs[count] = tmpl;
8709 specs[count++].index = i;
8710 }
8711 }
8712 }
8713 }
8714 else
8715 {
8716 UNHANDLED;
8717 }
8718 break;
8719
8720 case IA64_RS_PSR:
8721 /* Verify that the instruction is using the PSR bit indicated in
8722 dep->regindex. */
8723 if (note == 0)
8724 {
8725 if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_UM)
8726 {
8727 if (dep->regindex < 6)
8728 {
8729 specs[count++] = tmpl;
8730 }
8731 }
8732 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR)
8733 {
8734 if (dep->regindex < 32
8735 || dep->regindex == 35
8736 || dep->regindex == 36
8737 || (!rsrc_write && dep->regindex == PSR_CPL))
8738 {
8739 specs[count++] = tmpl;
8740 }
8741 }
8742 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_L)
8743 {
8744 if (dep->regindex < 32
8745 || dep->regindex == 35
8746 || dep->regindex == 36
8747 || (rsrc_write && dep->regindex == PSR_CPL))
8748 {
8749 specs[count++] = tmpl;
8750 }
8751 }
8752 else
8753 {
8754 /* Several PSR bits have very specific dependencies. */
8755 switch (dep->regindex)
8756 {
8757 default:
8758 specs[count++] = tmpl;
8759 break;
8760 case PSR_IC:
8761 if (rsrc_write)
8762 {
8763 specs[count++] = tmpl;
8764 }
8765 else
8766 {
8767 /* Only certain CR accesses use PSR.ic */
8768 if (idesc->operands[0] == IA64_OPND_CR3
8769 || idesc->operands[1] == IA64_OPND_CR3)
8770 {
8771 int index =
8772 ((idesc->operands[0] == IA64_OPND_CR3)
8773 ? 0 : 1);
8774 int regno =
8775 CURR_SLOT.opnd[index].X_add_number - REG_CR;
8776
8777 switch (regno)
8778 {
8779 default:
8780 break;
8781 case CR_ITIR:
8782 case CR_IFS:
8783 case CR_IIM:
8784 case CR_IIP:
8785 case CR_IPSR:
8786 case CR_ISR:
8787 case CR_IFA:
8788 case CR_IHA:
8789 case CR_IIPA:
8790 specs[count++] = tmpl;
8791 break;
8792 }
8793 }
8794 }
8795 break;
8796 case PSR_CPL:
8797 if (rsrc_write)
8798 {
8799 specs[count++] = tmpl;
8800 }
8801 else
8802 {
8803 /* Only some AR accesses use cpl */
8804 if (idesc->operands[0] == IA64_OPND_AR3
8805 || idesc->operands[1] == IA64_OPND_AR3)
8806 {
8807 int index =
8808 ((idesc->operands[0] == IA64_OPND_AR3)
8809 ? 0 : 1);
8810 int regno =
8811 CURR_SLOT.opnd[index].X_add_number - REG_AR;
8812
8813 if (regno == AR_ITC
8814 || (index == 0
8815 && (regno == AR_ITC
8816 || regno == AR_RSC
8817 || (regno >= AR_K0
8818 && regno <= AR_K7))))
8819 {
8820 specs[count++] = tmpl;
8821 }
8822 }
8823 else
8824 {
8825 specs[count++] = tmpl;
8826 }
8827 break;
8828 }
8829 }
8830 }
8831 }
8832 else if (note == 7)
8833 {
8834 valueT mask = 0;
8835 if (idesc->operands[0] == IA64_OPND_IMMU24)
8836 {
8837 mask = CURR_SLOT.opnd[0].X_add_number;
8838 }
8839 else
8840 {
8841 UNHANDLED;
8842 }
8843 if (mask & ((valueT) 1 << dep->regindex))
8844 {
8845 specs[count++] = tmpl;
8846 }
8847 }
8848 else if (note == 8)
8849 {
8850 int min = dep->regindex == PSR_DFL ? 2 : 32;
8851 int max = dep->regindex == PSR_DFL ? 31 : 127;
8852 /* dfh is read on FR32-127; dfl is read on FR2-31 */
8853 for (i = 0; i < NELEMS (idesc->operands); i++)
8854 {
8855 if (idesc->operands[i] == IA64_OPND_F1
8856 || idesc->operands[i] == IA64_OPND_F2
8857 || idesc->operands[i] == IA64_OPND_F3
8858 || idesc->operands[i] == IA64_OPND_F4)
8859 {
8860 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
8861 if (reg >= min && reg <= max)
8862 {
8863 specs[count++] = tmpl;
8864 }
8865 }
8866 }
8867 }
8868 else if (note == 9)
8869 {
8870 int min = dep->regindex == PSR_MFL ? 2 : 32;
8871 int max = dep->regindex == PSR_MFL ? 31 : 127;
8872 /* mfh is read on writes to FR32-127; mfl is read on writes to
8873 FR2-31 */
8874 for (i = 0; i < idesc->num_outputs; i++)
8875 {
8876 if (idesc->operands[i] == IA64_OPND_F1)
8877 {
8878 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
8879 if (reg >= min && reg <= max)
8880 {
8881 specs[count++] = tmpl;
8882 }
8883 }
8884 }
8885 }
8886 else if (note == 10)
8887 {
8888 for (i = 0; i < NELEMS (idesc->operands); i++)
8889 {
8890 if (idesc->operands[i] == IA64_OPND_R1
8891 || idesc->operands[i] == IA64_OPND_R2
8892 || idesc->operands[i] == IA64_OPND_R3)
8893 {
8894 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
8895 if (regno >= 16 && regno <= 31)
8896 {
8897 specs[count++] = tmpl;
8898 }
8899 }
8900 }
8901 }
8902 else
8903 {
8904 UNHANDLED;
8905 }
8906 break;
8907
8908 case IA64_RS_AR_FPSR:
8909 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8910 {
8911 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8912 if (regno == AR_FPSR)
8913 {
8914 specs[count++] = tmpl;
8915 }
8916 }
8917 else
8918 {
8919 specs[count++] = tmpl;
8920 }
8921 break;
8922
8923 case IA64_RS_ARX:
8924 /* Handle all AR[REG] resources */
8925 if (note == 0 || note == 1)
8926 {
8927 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8928 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3
8929 && regno == dep->regindex)
8930 {
8931 specs[count++] = tmpl;
8932 }
8933 /* other AR[REG] resources may be affected by AR accesses */
8934 else if (idesc->operands[0] == IA64_OPND_AR3)
8935 {
8936 /* AR[] writes */
8937 regno = CURR_SLOT.opnd[0].X_add_number - REG_AR;
8938 switch (dep->regindex)
8939 {
8940 default:
8941 break;
8942 case AR_BSP:
8943 case AR_RNAT:
8944 if (regno == AR_BSPSTORE)
8945 {
8946 specs[count++] = tmpl;
8947 }
8948 case AR_RSC:
8949 if (!rsrc_write &&
8950 (regno == AR_BSPSTORE
8951 || regno == AR_RNAT))
8952 {
8953 specs[count++] = tmpl;
8954 }
8955 break;
8956 }
8957 }
8958 else if (idesc->operands[1] == IA64_OPND_AR3)
8959 {
8960 /* AR[] reads */
8961 regno = CURR_SLOT.opnd[1].X_add_number - REG_AR;
8962 switch (dep->regindex)
8963 {
8964 default:
8965 break;
8966 case AR_RSC:
8967 if (regno == AR_BSPSTORE || regno == AR_RNAT)
8968 {
8969 specs[count++] = tmpl;
8970 }
8971 break;
8972 }
8973 }
8974 else
8975 {
8976 specs[count++] = tmpl;
8977 }
8978 }
8979 else
8980 {
8981 UNHANDLED;
8982 }
8983 break;
8984
8985 case IA64_RS_CRX:
8986 /* Handle all CR[REG] resources */
8987 if (note == 0 || note == 1)
8988 {
8989 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
8990 {
8991 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8992 if (regno == dep->regindex)
8993 {
8994 specs[count++] = tmpl;
8995 }
8996 else if (!rsrc_write)
8997 {
8998 /* Reads from CR[IVR] affect other resources. */
8999 if (regno == CR_IVR)
9000 {
9001 if ((dep->regindex >= CR_IRR0
9002 && dep->regindex <= CR_IRR3)
9003 || dep->regindex == CR_TPR)
9004 {
9005 specs[count++] = tmpl;
9006 }
9007 }
9008 }
9009 }
9010 else
9011 {
9012 specs[count++] = tmpl;
9013 }
9014 }
9015 else
9016 {
9017 UNHANDLED;
9018 }
9019 break;
9020
9021 case IA64_RS_INSERVICE:
9022 /* look for write of EOI (67) or read of IVR (65) */
9023 if ((idesc->operands[0] == IA64_OPND_CR3
9024 && CURR_SLOT.opnd[0].X_add_number - REG_CR == CR_EOI)
9025 || (idesc->operands[1] == IA64_OPND_CR3
9026 && CURR_SLOT.opnd[1].X_add_number - REG_CR == CR_IVR))
9027 {
9028 specs[count++] = tmpl;
9029 }
9030 break;
9031
9032 case IA64_RS_GR0:
9033 if (note == 1)
9034 {
9035 specs[count++] = tmpl;
9036 }
9037 else
9038 {
9039 UNHANDLED;
9040 }
9041 break;
9042
9043 case IA64_RS_CFM:
9044 if (note != 2)
9045 {
9046 specs[count++] = tmpl;
9047 }
9048 else
9049 {
9050 /* Check if any of the registers accessed are in the rotating region.
9051 mov to/from pr accesses CFM only when qp_regno is in the rotating
9052 region */
9053 for (i = 0; i < NELEMS (idesc->operands); i++)
9054 {
9055 if (idesc->operands[i] == IA64_OPND_R1
9056 || idesc->operands[i] == IA64_OPND_R2
9057 || idesc->operands[i] == IA64_OPND_R3)
9058 {
9059 int num = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9060 /* Assumes that md.rot.num_regs is always valid */
9061 if (md.rot.num_regs > 0
9062 && num > 31
9063 && num < 31 + md.rot.num_regs)
9064 {
9065 specs[count] = tmpl;
9066 specs[count++].specific = 0;
9067 }
9068 }
9069 else if (idesc->operands[i] == IA64_OPND_F1
9070 || idesc->operands[i] == IA64_OPND_F2
9071 || idesc->operands[i] == IA64_OPND_F3
9072 || idesc->operands[i] == IA64_OPND_F4)
9073 {
9074 int num = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9075 if (num > 31)
9076 {
9077 specs[count] = tmpl;
9078 specs[count++].specific = 0;
9079 }
9080 }
9081 else if (idesc->operands[i] == IA64_OPND_P1
9082 || idesc->operands[i] == IA64_OPND_P2)
9083 {
9084 int num = CURR_SLOT.opnd[i].X_add_number - REG_P;
9085 if (num > 15)
9086 {
9087 specs[count] = tmpl;
9088 specs[count++].specific = 0;
9089 }
9090 }
9091 }
9092 if (CURR_SLOT.qp_regno > 15)
9093 {
9094 specs[count] = tmpl;
9095 specs[count++].specific = 0;
9096 }
9097 }
9098 break;
9099
9100 /* This is the same as IA64_RS_PRr, except simplified to account for
9101 the fact that there is only one register. */
9102 case IA64_RS_PR63:
9103 if (note == 0)
9104 {
9105 specs[count++] = tmpl;
9106 }
9107 else if (note == 7)
9108 {
9109 valueT mask = 0;
9110 if (idesc->operands[2] == IA64_OPND_IMM17)
9111 mask = CURR_SLOT.opnd[2].X_add_number;
9112 if (mask & ((valueT) 1 << 63))
9113 specs[count++] = tmpl;
9114 }
9115 else if (note == 11)
9116 {
9117 if ((idesc->operands[0] == IA64_OPND_P1
9118 && CURR_SLOT.opnd[0].X_add_number - REG_P == 63)
9119 || (idesc->operands[1] == IA64_OPND_P2
9120 && CURR_SLOT.opnd[1].X_add_number - REG_P == 63))
9121 {
9122 specs[count++] = tmpl;
9123 }
9124 }
9125 else if (note == 12)
9126 {
9127 if (CURR_SLOT.qp_regno == 63)
9128 {
9129 specs[count++] = tmpl;
9130 }
9131 }
9132 else if (note == 1)
9133 {
9134 if (rsrc_write)
9135 {
9136 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9137 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9138 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9139 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9140
9141 if (p1 == 63
9142 && (idesc->operands[0] == IA64_OPND_P1
9143 || idesc->operands[0] == IA64_OPND_P2))
9144 {
9145 specs[count] = tmpl;
9146 specs[count++].cmp_type =
9147 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9148 }
9149 if (p2 == 63
9150 && (idesc->operands[1] == IA64_OPND_P1
9151 || idesc->operands[1] == IA64_OPND_P2))
9152 {
9153 specs[count] = tmpl;
9154 specs[count++].cmp_type =
9155 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9156 }
9157 }
9158 else
9159 {
9160 if (CURR_SLOT.qp_regno == 63)
9161 {
9162 specs[count++] = tmpl;
9163 }
9164 }
9165 }
9166 else
9167 {
9168 UNHANDLED;
9169 }
9170 break;
9171
9172 case IA64_RS_RSE:
9173 /* FIXME we can identify some individual RSE written resources, but RSE
9174 read resources have not yet been completely identified, so for now
9175 treat RSE as a single resource */
9176 if (strncmp (idesc->name, "mov", 3) == 0)
9177 {
9178 if (rsrc_write)
9179 {
9180 if (idesc->operands[0] == IA64_OPND_AR3
9181 && CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE)
9182 {
9183 specs[count] = tmpl;
9184 specs[count++].index = 0; /* IA64_RSE_BSPLOAD/RNATBITINDEX */
9185 }
9186 }
9187 else
9188 {
9189 if (idesc->operands[0] == IA64_OPND_AR3)
9190 {
9191 if (CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE
9192 || CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_RNAT)
9193 {
9194 specs[count++] = tmpl;
9195 }
9196 }
9197 else if (idesc->operands[1] == IA64_OPND_AR3)
9198 {
9199 if (CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSP
9200 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSPSTORE
9201 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_RNAT)
9202 {
9203 specs[count++] = tmpl;
9204 }
9205 }
9206 }
9207 }
9208 else
9209 {
9210 specs[count++] = tmpl;
9211 }
9212 break;
9213
9214 case IA64_RS_ANY:
9215 /* FIXME -- do any of these need to be non-specific? */
9216 specs[count++] = tmpl;
9217 break;
9218
9219 default:
9220 as_bad (_("Unrecognized dependency specifier %d\n"), dep->specifier);
9221 break;
9222 }
9223
9224 return count;
9225 }
9226
9227 /* Clear branch flags on marked resources. This breaks the link between the
9228 QP of the marking instruction and a subsequent branch on the same QP. */
9229
9230 static void
9231 clear_qp_branch_flag (mask)
9232 valueT mask;
9233 {
9234 int i;
9235 for (i = 0; i < regdepslen; i++)
9236 {
9237 valueT bit = ((valueT) 1 << regdeps[i].qp_regno);
9238 if ((bit & mask) != 0)
9239 {
9240 regdeps[i].link_to_qp_branch = 0;
9241 }
9242 }
9243 }
9244
9245 /* MASK contains 2 and only 2 PRs which are mutually exclusive. Remove
9246 any mutexes which contain one of the PRs and create new ones when
9247 needed. */
9248
9249 static int
9250 update_qp_mutex (valueT mask)
9251 {
9252 int i;
9253 int add = 0;
9254
9255 i = 0;
9256 while (i < qp_mutexeslen)
9257 {
9258 if ((qp_mutexes[i].prmask & mask) != 0)
9259 {
9260 /* If it destroys and creates the same mutex, do nothing. */
9261 if (qp_mutexes[i].prmask == mask
9262 && qp_mutexes[i].path == md.path)
9263 {
9264 i++;
9265 add = -1;
9266 }
9267 else
9268 {
9269 int keep = 0;
9270
9271 if (md.debug_dv)
9272 {
9273 fprintf (stderr, " Clearing mutex relation");
9274 print_prmask (qp_mutexes[i].prmask);
9275 fprintf (stderr, "\n");
9276 }
9277
9278 /* Deal with the old mutex with more than 3+ PRs only if
9279 the new mutex on the same execution path with it.
9280
9281 FIXME: The 3+ mutex support is incomplete.
9282 dot_pred_rel () may be a better place to fix it. */
9283 if (qp_mutexes[i].path == md.path)
9284 {
9285 /* If it is a proper subset of the mutex, create a
9286 new mutex. */
9287 if (add == 0
9288 && (qp_mutexes[i].prmask & mask) == mask)
9289 add = 1;
9290
9291 qp_mutexes[i].prmask &= ~mask;
9292 if (qp_mutexes[i].prmask & (qp_mutexes[i].prmask - 1))
9293 {
9294 /* Modify the mutex if there are more than one
9295 PR left. */
9296 keep = 1;
9297 i++;
9298 }
9299 }
9300
9301 if (keep == 0)
9302 /* Remove the mutex. */
9303 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9304 }
9305 }
9306 else
9307 ++i;
9308 }
9309
9310 if (add == 1)
9311 add_qp_mutex (mask);
9312
9313 return add;
9314 }
9315
9316 /* Remove any mutexes which contain any of the PRs indicated in the mask.
9317
9318 Any changes to a PR clears the mutex relations which include that PR. */
9319
9320 static void
9321 clear_qp_mutex (mask)
9322 valueT mask;
9323 {
9324 int i;
9325
9326 i = 0;
9327 while (i < qp_mutexeslen)
9328 {
9329 if ((qp_mutexes[i].prmask & mask) != 0)
9330 {
9331 if (md.debug_dv)
9332 {
9333 fprintf (stderr, " Clearing mutex relation");
9334 print_prmask (qp_mutexes[i].prmask);
9335 fprintf (stderr, "\n");
9336 }
9337 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9338 }
9339 else
9340 ++i;
9341 }
9342 }
9343
9344 /* Clear implies relations which contain PRs in the given masks.
9345 P1_MASK indicates the source of the implies relation, while P2_MASK
9346 indicates the implied PR. */
9347
9348 static void
9349 clear_qp_implies (p1_mask, p2_mask)
9350 valueT p1_mask;
9351 valueT p2_mask;
9352 {
9353 int i;
9354
9355 i = 0;
9356 while (i < qp_implieslen)
9357 {
9358 if ((((valueT) 1 << qp_implies[i].p1) & p1_mask) != 0
9359 || (((valueT) 1 << qp_implies[i].p2) & p2_mask) != 0)
9360 {
9361 if (md.debug_dv)
9362 fprintf (stderr, "Clearing implied relation PR%d->PR%d\n",
9363 qp_implies[i].p1, qp_implies[i].p2);
9364 qp_implies[i] = qp_implies[--qp_implieslen];
9365 }
9366 else
9367 ++i;
9368 }
9369 }
9370
9371 /* Add the PRs specified to the list of implied relations. */
9372
9373 static void
9374 add_qp_imply (p1, p2)
9375 int p1, p2;
9376 {
9377 valueT mask;
9378 valueT bit;
9379 int i;
9380
9381 /* p0 is not meaningful here. */
9382 if (p1 == 0 || p2 == 0)
9383 abort ();
9384
9385 if (p1 == p2)
9386 return;
9387
9388 /* If it exists already, ignore it. */
9389 for (i = 0; i < qp_implieslen; i++)
9390 {
9391 if (qp_implies[i].p1 == p1
9392 && qp_implies[i].p2 == p2
9393 && qp_implies[i].path == md.path
9394 && !qp_implies[i].p2_branched)
9395 return;
9396 }
9397
9398 if (qp_implieslen == qp_impliestotlen)
9399 {
9400 qp_impliestotlen += 20;
9401 qp_implies = (struct qp_imply *)
9402 xrealloc ((void *) qp_implies,
9403 qp_impliestotlen * sizeof (struct qp_imply));
9404 }
9405 if (md.debug_dv)
9406 fprintf (stderr, " Registering PR%d implies PR%d\n", p1, p2);
9407 qp_implies[qp_implieslen].p1 = p1;
9408 qp_implies[qp_implieslen].p2 = p2;
9409 qp_implies[qp_implieslen].path = md.path;
9410 qp_implies[qp_implieslen++].p2_branched = 0;
9411
9412 /* Add in the implied transitive relations; for everything that p2 implies,
9413 make p1 imply that, too; for everything that implies p1, make it imply p2
9414 as well. */
9415 for (i = 0; i < qp_implieslen; i++)
9416 {
9417 if (qp_implies[i].p1 == p2)
9418 add_qp_imply (p1, qp_implies[i].p2);
9419 if (qp_implies[i].p2 == p1)
9420 add_qp_imply (qp_implies[i].p1, p2);
9421 }
9422 /* Add in mutex relations implied by this implies relation; for each mutex
9423 relation containing p2, duplicate it and replace p2 with p1. */
9424 bit = (valueT) 1 << p1;
9425 mask = (valueT) 1 << p2;
9426 for (i = 0; i < qp_mutexeslen; i++)
9427 {
9428 if (qp_mutexes[i].prmask & mask)
9429 add_qp_mutex ((qp_mutexes[i].prmask & ~mask) | bit);
9430 }
9431 }
9432
9433 /* Add the PRs specified in the mask to the mutex list; this means that only
9434 one of the PRs can be true at any time. PR0 should never be included in
9435 the mask. */
9436
9437 static void
9438 add_qp_mutex (mask)
9439 valueT mask;
9440 {
9441 if (mask & 0x1)
9442 abort ();
9443
9444 if (qp_mutexeslen == qp_mutexestotlen)
9445 {
9446 qp_mutexestotlen += 20;
9447 qp_mutexes = (struct qpmutex *)
9448 xrealloc ((void *) qp_mutexes,
9449 qp_mutexestotlen * sizeof (struct qpmutex));
9450 }
9451 if (md.debug_dv)
9452 {
9453 fprintf (stderr, " Registering mutex on");
9454 print_prmask (mask);
9455 fprintf (stderr, "\n");
9456 }
9457 qp_mutexes[qp_mutexeslen].path = md.path;
9458 qp_mutexes[qp_mutexeslen++].prmask = mask;
9459 }
9460
9461 static int
9462 has_suffix_p (name, suffix)
9463 const char *name;
9464 const char *suffix;
9465 {
9466 size_t namelen = strlen (name);
9467 size_t sufflen = strlen (suffix);
9468
9469 if (namelen <= sufflen)
9470 return 0;
9471 return strcmp (name + namelen - sufflen, suffix) == 0;
9472 }
9473
9474 static void
9475 clear_register_values ()
9476 {
9477 int i;
9478 if (md.debug_dv)
9479 fprintf (stderr, " Clearing register values\n");
9480 for (i = 1; i < NELEMS (gr_values); i++)
9481 gr_values[i].known = 0;
9482 }
9483
9484 /* Keep track of register values/changes which affect DV tracking.
9485
9486 optimization note: should add a flag to classes of insns where otherwise we
9487 have to examine a group of strings to identify them. */
9488
9489 static void
9490 note_register_values (idesc)
9491 struct ia64_opcode *idesc;
9492 {
9493 valueT qp_changemask = 0;
9494 int i;
9495
9496 /* Invalidate values for registers being written to. */
9497 for (i = 0; i < idesc->num_outputs; i++)
9498 {
9499 if (idesc->operands[i] == IA64_OPND_R1
9500 || idesc->operands[i] == IA64_OPND_R2
9501 || idesc->operands[i] == IA64_OPND_R3)
9502 {
9503 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9504 if (regno > 0 && regno < NELEMS (gr_values))
9505 gr_values[regno].known = 0;
9506 }
9507 else if (idesc->operands[i] == IA64_OPND_R3_2)
9508 {
9509 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9510 if (regno > 0 && regno < 4)
9511 gr_values[regno].known = 0;
9512 }
9513 else if (idesc->operands[i] == IA64_OPND_P1
9514 || idesc->operands[i] == IA64_OPND_P2)
9515 {
9516 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9517 qp_changemask |= (valueT) 1 << regno;
9518 }
9519 else if (idesc->operands[i] == IA64_OPND_PR)
9520 {
9521 if (idesc->operands[2] & (valueT) 0x10000)
9522 qp_changemask = ~(valueT) 0x1FFFF | idesc->operands[2];
9523 else
9524 qp_changemask = idesc->operands[2];
9525 break;
9526 }
9527 else if (idesc->operands[i] == IA64_OPND_PR_ROT)
9528 {
9529 if (idesc->operands[1] & ((valueT) 1 << 43))
9530 qp_changemask = -((valueT) 1 << 44) | idesc->operands[1];
9531 else
9532 qp_changemask = idesc->operands[1];
9533 qp_changemask &= ~(valueT) 0xFFFF;
9534 break;
9535 }
9536 }
9537
9538 /* Always clear qp branch flags on any PR change. */
9539 /* FIXME there may be exceptions for certain compares. */
9540 clear_qp_branch_flag (qp_changemask);
9541
9542 /* Invalidate rotating registers on insns which affect RRBs in CFM. */
9543 if (idesc->flags & IA64_OPCODE_MOD_RRBS)
9544 {
9545 qp_changemask |= ~(valueT) 0xFFFF;
9546 if (strcmp (idesc->name, "clrrrb.pr") != 0)
9547 {
9548 for (i = 32; i < 32 + md.rot.num_regs; i++)
9549 gr_values[i].known = 0;
9550 }
9551 clear_qp_mutex (qp_changemask);
9552 clear_qp_implies (qp_changemask, qp_changemask);
9553 }
9554 /* After a call, all register values are undefined, except those marked
9555 as "safe". */
9556 else if (strncmp (idesc->name, "br.call", 6) == 0
9557 || strncmp (idesc->name, "brl.call", 7) == 0)
9558 {
9559 /* FIXME keep GR values which are marked as "safe_across_calls" */
9560 clear_register_values ();
9561 clear_qp_mutex (~qp_safe_across_calls);
9562 clear_qp_implies (~qp_safe_across_calls, ~qp_safe_across_calls);
9563 clear_qp_branch_flag (~qp_safe_across_calls);
9564 }
9565 else if (is_interruption_or_rfi (idesc)
9566 || is_taken_branch (idesc))
9567 {
9568 clear_register_values ();
9569 clear_qp_mutex (~(valueT) 0);
9570 clear_qp_implies (~(valueT) 0, ~(valueT) 0);
9571 }
9572 /* Look for mutex and implies relations. */
9573 else if ((idesc->operands[0] == IA64_OPND_P1
9574 || idesc->operands[0] == IA64_OPND_P2)
9575 && (idesc->operands[1] == IA64_OPND_P1
9576 || idesc->operands[1] == IA64_OPND_P2))
9577 {
9578 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9579 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9580 valueT p1mask = (p1 != 0) ? (valueT) 1 << p1 : 0;
9581 valueT p2mask = (p2 != 0) ? (valueT) 1 << p2 : 0;
9582
9583 /* If both PRs are PR0, we can't really do anything. */
9584 if (p1 == 0 && p2 == 0)
9585 {
9586 if (md.debug_dv)
9587 fprintf (stderr, " Ignoring PRs due to inclusion of p0\n");
9588 }
9589 /* In general, clear mutexes and implies which include P1 or P2,
9590 with the following exceptions. */
9591 else if (has_suffix_p (idesc->name, ".or.andcm")
9592 || has_suffix_p (idesc->name, ".and.orcm"))
9593 {
9594 clear_qp_implies (p2mask, p1mask);
9595 }
9596 else if (has_suffix_p (idesc->name, ".andcm")
9597 || has_suffix_p (idesc->name, ".and"))
9598 {
9599 clear_qp_implies (0, p1mask | p2mask);
9600 }
9601 else if (has_suffix_p (idesc->name, ".orcm")
9602 || has_suffix_p (idesc->name, ".or"))
9603 {
9604 clear_qp_mutex (p1mask | p2mask);
9605 clear_qp_implies (p1mask | p2mask, 0);
9606 }
9607 else
9608 {
9609 int added = 0;
9610
9611 clear_qp_implies (p1mask | p2mask, p1mask | p2mask);
9612
9613 /* If one of the PRs is PR0, we call clear_qp_mutex. */
9614 if (p1 == 0 || p2 == 0)
9615 clear_qp_mutex (p1mask | p2mask);
9616 else
9617 added = update_qp_mutex (p1mask | p2mask);
9618
9619 if (CURR_SLOT.qp_regno == 0
9620 || has_suffix_p (idesc->name, ".unc"))
9621 {
9622 if (added == 0 && p1 && p2)
9623 add_qp_mutex (p1mask | p2mask);
9624 if (CURR_SLOT.qp_regno != 0)
9625 {
9626 if (p1)
9627 add_qp_imply (p1, CURR_SLOT.qp_regno);
9628 if (p2)
9629 add_qp_imply (p2, CURR_SLOT.qp_regno);
9630 }
9631 }
9632 }
9633 }
9634 /* Look for mov imm insns into GRs. */
9635 else if (idesc->operands[0] == IA64_OPND_R1
9636 && (idesc->operands[1] == IA64_OPND_IMM22
9637 || idesc->operands[1] == IA64_OPND_IMMU64)
9638 && (strcmp (idesc->name, "mov") == 0
9639 || strcmp (idesc->name, "movl") == 0))
9640 {
9641 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
9642 if (regno > 0 && regno < NELEMS (gr_values))
9643 {
9644 gr_values[regno].known = 1;
9645 gr_values[regno].value = CURR_SLOT.opnd[1].X_add_number;
9646 gr_values[regno].path = md.path;
9647 if (md.debug_dv)
9648 {
9649 fprintf (stderr, " Know gr%d = ", regno);
9650 fprintf_vma (stderr, gr_values[regno].value);
9651 fputs ("\n", stderr);
9652 }
9653 }
9654 }
9655 else
9656 {
9657 clear_qp_mutex (qp_changemask);
9658 clear_qp_implies (qp_changemask, qp_changemask);
9659 }
9660 }
9661
9662 /* Return whether the given predicate registers are currently mutex. */
9663
9664 static int
9665 qp_mutex (p1, p2, path)
9666 int p1;
9667 int p2;
9668 int path;
9669 {
9670 int i;
9671 valueT mask;
9672
9673 if (p1 != p2)
9674 {
9675 mask = ((valueT) 1 << p1) | (valueT) 1 << p2;
9676 for (i = 0; i < qp_mutexeslen; i++)
9677 {
9678 if (qp_mutexes[i].path >= path
9679 && (qp_mutexes[i].prmask & mask) == mask)
9680 return 1;
9681 }
9682 }
9683 return 0;
9684 }
9685
9686 /* Return whether the given resource is in the given insn's list of chks
9687 Return 1 if the conflict is absolutely determined, 2 if it's a potential
9688 conflict. */
9689
9690 static int
9691 resources_match (rs, idesc, note, qp_regno, path)
9692 struct rsrc *rs;
9693 struct ia64_opcode *idesc;
9694 int note;
9695 int qp_regno;
9696 int path;
9697 {
9698 struct rsrc specs[MAX_SPECS];
9699 int count;
9700
9701 /* If the marked resource's qp_regno and the given qp_regno are mutex,
9702 we don't need to check. One exception is note 11, which indicates that
9703 target predicates are written regardless of PR[qp]. */
9704 if (qp_mutex (rs->qp_regno, qp_regno, path)
9705 && note != 11)
9706 return 0;
9707
9708 count = specify_resource (rs->dependency, idesc, DV_CHK, specs, note, path);
9709 while (count-- > 0)
9710 {
9711 /* UNAT checking is a bit more specific than other resources */
9712 if (rs->dependency->specifier == IA64_RS_AR_UNAT
9713 && specs[count].mem_offset.hint
9714 && rs->mem_offset.hint)
9715 {
9716 if (rs->mem_offset.base == specs[count].mem_offset.base)
9717 {
9718 if (((rs->mem_offset.offset >> 3) & 0x3F) ==
9719 ((specs[count].mem_offset.offset >> 3) & 0x3F))
9720 return 1;
9721 else
9722 continue;
9723 }
9724 }
9725
9726 /* Skip apparent PR write conflicts where both writes are an AND or both
9727 writes are an OR. */
9728 if (rs->dependency->specifier == IA64_RS_PR
9729 || rs->dependency->specifier == IA64_RS_PRr
9730 || rs->dependency->specifier == IA64_RS_PR63)
9731 {
9732 if (specs[count].cmp_type != CMP_NONE
9733 && specs[count].cmp_type == rs->cmp_type)
9734 {
9735 if (md.debug_dv)
9736 fprintf (stderr, " %s on parallel compare allowed (PR%d)\n",
9737 dv_mode[rs->dependency->mode],
9738 rs->dependency->specifier != IA64_RS_PR63 ?
9739 specs[count].index : 63);
9740 continue;
9741 }
9742 if (md.debug_dv)
9743 fprintf (stderr,
9744 " %s on parallel compare conflict %s vs %s on PR%d\n",
9745 dv_mode[rs->dependency->mode],
9746 dv_cmp_type[rs->cmp_type],
9747 dv_cmp_type[specs[count].cmp_type],
9748 rs->dependency->specifier != IA64_RS_PR63 ?
9749 specs[count].index : 63);
9750
9751 }
9752
9753 /* If either resource is not specific, conservatively assume a conflict
9754 */
9755 if (!specs[count].specific || !rs->specific)
9756 return 2;
9757 else if (specs[count].index == rs->index)
9758 return 1;
9759 }
9760
9761 return 0;
9762 }
9763
9764 /* Indicate an instruction group break; if INSERT_STOP is non-zero, then
9765 insert a stop to create the break. Update all resource dependencies
9766 appropriately. If QP_REGNO is non-zero, only apply the break to resources
9767 which use the same QP_REGNO and have the link_to_qp_branch flag set.
9768 If SAVE_CURRENT is non-zero, don't affect resources marked by the current
9769 instruction. */
9770
9771 static void
9772 insn_group_break (insert_stop, qp_regno, save_current)
9773 int insert_stop;
9774 int qp_regno;
9775 int save_current;
9776 {
9777 int i;
9778
9779 if (insert_stop && md.num_slots_in_use > 0)
9780 PREV_SLOT.end_of_insn_group = 1;
9781
9782 if (md.debug_dv)
9783 {
9784 fprintf (stderr, " Insn group break%s",
9785 (insert_stop ? " (w/stop)" : ""));
9786 if (qp_regno != 0)
9787 fprintf (stderr, " effective for QP=%d", qp_regno);
9788 fprintf (stderr, "\n");
9789 }
9790
9791 i = 0;
9792 while (i < regdepslen)
9793 {
9794 const struct ia64_dependency *dep = regdeps[i].dependency;
9795
9796 if (qp_regno != 0
9797 && regdeps[i].qp_regno != qp_regno)
9798 {
9799 ++i;
9800 continue;
9801 }
9802
9803 if (save_current
9804 && CURR_SLOT.src_file == regdeps[i].file
9805 && CURR_SLOT.src_line == regdeps[i].line)
9806 {
9807 ++i;
9808 continue;
9809 }
9810
9811 /* clear dependencies which are automatically cleared by a stop, or
9812 those that have reached the appropriate state of insn serialization */
9813 if (dep->semantics == IA64_DVS_IMPLIED
9814 || dep->semantics == IA64_DVS_IMPLIEDF
9815 || regdeps[i].insn_srlz == STATE_SRLZ)
9816 {
9817 print_dependency ("Removing", i);
9818 regdeps[i] = regdeps[--regdepslen];
9819 }
9820 else
9821 {
9822 if (dep->semantics == IA64_DVS_DATA
9823 || dep->semantics == IA64_DVS_INSTR
9824 || dep->semantics == IA64_DVS_SPECIFIC)
9825 {
9826 if (regdeps[i].insn_srlz == STATE_NONE)
9827 regdeps[i].insn_srlz = STATE_STOP;
9828 if (regdeps[i].data_srlz == STATE_NONE)
9829 regdeps[i].data_srlz = STATE_STOP;
9830 }
9831 ++i;
9832 }
9833 }
9834 }
9835
9836 /* Add the given resource usage spec to the list of active dependencies. */
9837
9838 static void
9839 mark_resource (idesc, dep, spec, depind, path)
9840 struct ia64_opcode *idesc ATTRIBUTE_UNUSED;
9841 const struct ia64_dependency *dep ATTRIBUTE_UNUSED;
9842 struct rsrc *spec;
9843 int depind;
9844 int path;
9845 {
9846 if (regdepslen == regdepstotlen)
9847 {
9848 regdepstotlen += 20;
9849 regdeps = (struct rsrc *)
9850 xrealloc ((void *) regdeps,
9851 regdepstotlen * sizeof (struct rsrc));
9852 }
9853
9854 regdeps[regdepslen] = *spec;
9855 regdeps[regdepslen].depind = depind;
9856 regdeps[regdepslen].path = path;
9857 regdeps[regdepslen].file = CURR_SLOT.src_file;
9858 regdeps[regdepslen].line = CURR_SLOT.src_line;
9859
9860 print_dependency ("Adding", regdepslen);
9861
9862 ++regdepslen;
9863 }
9864
9865 static void
9866 print_dependency (action, depind)
9867 const char *action;
9868 int depind;
9869 {
9870 if (md.debug_dv)
9871 {
9872 fprintf (stderr, " %s %s '%s'",
9873 action, dv_mode[(regdeps[depind].dependency)->mode],
9874 (regdeps[depind].dependency)->name);
9875 if (regdeps[depind].specific && regdeps[depind].index != 0)
9876 fprintf (stderr, " (%d)", regdeps[depind].index);
9877 if (regdeps[depind].mem_offset.hint)
9878 {
9879 fputs (" ", stderr);
9880 fprintf_vma (stderr, regdeps[depind].mem_offset.base);
9881 fputs ("+", stderr);
9882 fprintf_vma (stderr, regdeps[depind].mem_offset.offset);
9883 }
9884 fprintf (stderr, "\n");
9885 }
9886 }
9887
9888 static void
9889 instruction_serialization ()
9890 {
9891 int i;
9892 if (md.debug_dv)
9893 fprintf (stderr, " Instruction serialization\n");
9894 for (i = 0; i < regdepslen; i++)
9895 if (regdeps[i].insn_srlz == STATE_STOP)
9896 regdeps[i].insn_srlz = STATE_SRLZ;
9897 }
9898
9899 static void
9900 data_serialization ()
9901 {
9902 int i = 0;
9903 if (md.debug_dv)
9904 fprintf (stderr, " Data serialization\n");
9905 while (i < regdepslen)
9906 {
9907 if (regdeps[i].data_srlz == STATE_STOP
9908 /* Note: as of 991210, all "other" dependencies are cleared by a
9909 data serialization. This might change with new tables */
9910 || (regdeps[i].dependency)->semantics == IA64_DVS_OTHER)
9911 {
9912 print_dependency ("Removing", i);
9913 regdeps[i] = regdeps[--regdepslen];
9914 }
9915 else
9916 ++i;
9917 }
9918 }
9919
9920 /* Insert stops and serializations as needed to avoid DVs. */
9921
9922 static void
9923 remove_marked_resource (rs)
9924 struct rsrc *rs;
9925 {
9926 switch (rs->dependency->semantics)
9927 {
9928 case IA64_DVS_SPECIFIC:
9929 if (md.debug_dv)
9930 fprintf (stderr, "Implementation-specific, assume worst case...\n");
9931 /* ...fall through... */
9932 case IA64_DVS_INSTR:
9933 if (md.debug_dv)
9934 fprintf (stderr, "Inserting instr serialization\n");
9935 if (rs->insn_srlz < STATE_STOP)
9936 insn_group_break (1, 0, 0);
9937 if (rs->insn_srlz < STATE_SRLZ)
9938 {
9939 struct slot oldslot = CURR_SLOT;
9940 /* Manually jam a srlz.i insn into the stream */
9941 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
9942 CURR_SLOT.idesc = ia64_find_opcode ("srlz.i");
9943 instruction_serialization ();
9944 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
9945 if (++md.num_slots_in_use >= NUM_SLOTS)
9946 emit_one_bundle ();
9947 CURR_SLOT = oldslot;
9948 }
9949 insn_group_break (1, 0, 0);
9950 break;
9951 case IA64_DVS_OTHER: /* as of rev2 (991220) of the DV tables, all
9952 "other" types of DV are eliminated
9953 by a data serialization */
9954 case IA64_DVS_DATA:
9955 if (md.debug_dv)
9956 fprintf (stderr, "Inserting data serialization\n");
9957 if (rs->data_srlz < STATE_STOP)
9958 insn_group_break (1, 0, 0);
9959 {
9960 struct slot oldslot = CURR_SLOT;
9961 /* Manually jam a srlz.d insn into the stream */
9962 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
9963 CURR_SLOT.idesc = ia64_find_opcode ("srlz.d");
9964 data_serialization ();
9965 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
9966 if (++md.num_slots_in_use >= NUM_SLOTS)
9967 emit_one_bundle ();
9968 CURR_SLOT = oldslot;
9969 }
9970 break;
9971 case IA64_DVS_IMPLIED:
9972 case IA64_DVS_IMPLIEDF:
9973 if (md.debug_dv)
9974 fprintf (stderr, "Inserting stop\n");
9975 insn_group_break (1, 0, 0);
9976 break;
9977 default:
9978 break;
9979 }
9980 }
9981
9982 /* Check the resources used by the given opcode against the current dependency
9983 list.
9984
9985 The check is run once for each execution path encountered. In this case,
9986 a unique execution path is the sequence of instructions following a code
9987 entry point, e.g. the following has three execution paths, one starting
9988 at L0, one at L1, and one at L2.
9989
9990 L0: nop
9991 L1: add
9992 L2: add
9993 br.ret
9994 */
9995
9996 static void
9997 check_dependencies (idesc)
9998 struct ia64_opcode *idesc;
9999 {
10000 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10001 int path;
10002 int i;
10003
10004 /* Note that the number of marked resources may change within the
10005 loop if in auto mode. */
10006 i = 0;
10007 while (i < regdepslen)
10008 {
10009 struct rsrc *rs = &regdeps[i];
10010 const struct ia64_dependency *dep = rs->dependency;
10011 int chkind;
10012 int note;
10013 int start_over = 0;
10014
10015 if (dep->semantics == IA64_DVS_NONE
10016 || (chkind = depends_on (rs->depind, idesc)) == -1)
10017 {
10018 ++i;
10019 continue;
10020 }
10021
10022 note = NOTE (opdeps->chks[chkind]);
10023
10024 /* Check this resource against each execution path seen thus far. */
10025 for (path = 0; path <= md.path; path++)
10026 {
10027 int matchtype;
10028
10029 /* If the dependency wasn't on the path being checked, ignore it. */
10030 if (rs->path < path)
10031 continue;
10032
10033 /* If the QP for this insn implies a QP which has branched, don't
10034 bother checking. Ed. NOTE: I don't think this check is terribly
10035 useful; what's the point of generating code which will only be
10036 reached if its QP is zero?
10037 This code was specifically inserted to handle the following code,
10038 based on notes from Intel's DV checking code, where p1 implies p2.
10039
10040 mov r4 = 2
10041 (p2) br.cond L
10042 (p1) mov r4 = 7
10043 */
10044 if (CURR_SLOT.qp_regno != 0)
10045 {
10046 int skip = 0;
10047 int implies;
10048 for (implies = 0; implies < qp_implieslen; implies++)
10049 {
10050 if (qp_implies[implies].path >= path
10051 && qp_implies[implies].p1 == CURR_SLOT.qp_regno
10052 && qp_implies[implies].p2_branched)
10053 {
10054 skip = 1;
10055 break;
10056 }
10057 }
10058 if (skip)
10059 continue;
10060 }
10061
10062 if ((matchtype = resources_match (rs, idesc, note,
10063 CURR_SLOT.qp_regno, path)) != 0)
10064 {
10065 char msg[1024];
10066 char pathmsg[256] = "";
10067 char indexmsg[256] = "";
10068 int certain = (matchtype == 1 && CURR_SLOT.qp_regno == 0);
10069
10070 if (path != 0)
10071 sprintf (pathmsg, " when entry is at label '%s'",
10072 md.entry_labels[path - 1]);
10073 if (rs->specific && rs->index != 0)
10074 sprintf (indexmsg, ", specific resource number is %d",
10075 rs->index);
10076 sprintf (msg, "Use of '%s' %s %s dependency '%s' (%s)%s%s",
10077 idesc->name,
10078 (certain ? "violates" : "may violate"),
10079 dv_mode[dep->mode], dep->name,
10080 dv_sem[dep->semantics],
10081 pathmsg, indexmsg);
10082
10083 if (md.explicit_mode)
10084 {
10085 as_warn ("%s", msg);
10086 if (path < md.path)
10087 as_warn (_("Only the first path encountering the conflict "
10088 "is reported"));
10089 as_warn_where (rs->file, rs->line,
10090 _("This is the location of the "
10091 "conflicting usage"));
10092 /* Don't bother checking other paths, to avoid duplicating
10093 the same warning */
10094 break;
10095 }
10096 else
10097 {
10098 if (md.debug_dv)
10099 fprintf (stderr, "%s @ %s:%d\n", msg, rs->file, rs->line);
10100
10101 remove_marked_resource (rs);
10102
10103 /* since the set of dependencies has changed, start over */
10104 /* FIXME -- since we're removing dvs as we go, we
10105 probably don't really need to start over... */
10106 start_over = 1;
10107 break;
10108 }
10109 }
10110 }
10111 if (start_over)
10112 i = 0;
10113 else
10114 ++i;
10115 }
10116 }
10117
10118 /* Register new dependencies based on the given opcode. */
10119
10120 static void
10121 mark_resources (idesc)
10122 struct ia64_opcode *idesc;
10123 {
10124 int i;
10125 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10126 int add_only_qp_reads = 0;
10127
10128 /* A conditional branch only uses its resources if it is taken; if it is
10129 taken, we stop following that path. The other branch types effectively
10130 *always* write their resources. If it's not taken, register only QP
10131 reads. */
10132 if (is_conditional_branch (idesc) || is_interruption_or_rfi (idesc))
10133 {
10134 add_only_qp_reads = 1;
10135 }
10136
10137 if (md.debug_dv)
10138 fprintf (stderr, "Registering '%s' resource usage\n", idesc->name);
10139
10140 for (i = 0; i < opdeps->nregs; i++)
10141 {
10142 const struct ia64_dependency *dep;
10143 struct rsrc specs[MAX_SPECS];
10144 int note;
10145 int path;
10146 int count;
10147
10148 dep = ia64_find_dependency (opdeps->regs[i]);
10149 note = NOTE (opdeps->regs[i]);
10150
10151 if (add_only_qp_reads
10152 && !(dep->mode == IA64_DV_WAR
10153 && (dep->specifier == IA64_RS_PR
10154 || dep->specifier == IA64_RS_PRr
10155 || dep->specifier == IA64_RS_PR63)))
10156 continue;
10157
10158 count = specify_resource (dep, idesc, DV_REG, specs, note, md.path);
10159
10160 while (count-- > 0)
10161 {
10162 mark_resource (idesc, dep, &specs[count],
10163 DEP (opdeps->regs[i]), md.path);
10164 }
10165
10166 /* The execution path may affect register values, which may in turn
10167 affect which indirect-access resources are accessed. */
10168 switch (dep->specifier)
10169 {
10170 default:
10171 break;
10172 case IA64_RS_CPUID:
10173 case IA64_RS_DBR:
10174 case IA64_RS_IBR:
10175 case IA64_RS_MSR:
10176 case IA64_RS_PKR:
10177 case IA64_RS_PMC:
10178 case IA64_RS_PMD:
10179 case IA64_RS_RR:
10180 for (path = 0; path < md.path; path++)
10181 {
10182 count = specify_resource (dep, idesc, DV_REG, specs, note, path);
10183 while (count-- > 0)
10184 mark_resource (idesc, dep, &specs[count],
10185 DEP (opdeps->regs[i]), path);
10186 }
10187 break;
10188 }
10189 }
10190 }
10191
10192 /* Remove dependencies when they no longer apply. */
10193
10194 static void
10195 update_dependencies (idesc)
10196 struct ia64_opcode *idesc;
10197 {
10198 int i;
10199
10200 if (strcmp (idesc->name, "srlz.i") == 0)
10201 {
10202 instruction_serialization ();
10203 }
10204 else if (strcmp (idesc->name, "srlz.d") == 0)
10205 {
10206 data_serialization ();
10207 }
10208 else if (is_interruption_or_rfi (idesc)
10209 || is_taken_branch (idesc))
10210 {
10211 /* Although technically the taken branch doesn't clear dependencies
10212 which require a srlz.[id], we don't follow the branch; the next
10213 instruction is assumed to start with a clean slate. */
10214 regdepslen = 0;
10215 md.path = 0;
10216 }
10217 else if (is_conditional_branch (idesc)
10218 && CURR_SLOT.qp_regno != 0)
10219 {
10220 int is_call = strstr (idesc->name, ".call") != NULL;
10221
10222 for (i = 0; i < qp_implieslen; i++)
10223 {
10224 /* If the conditional branch's predicate is implied by the predicate
10225 in an existing dependency, remove that dependency. */
10226 if (qp_implies[i].p2 == CURR_SLOT.qp_regno)
10227 {
10228 int depind = 0;
10229 /* Note that this implied predicate takes a branch so that if
10230 a later insn generates a DV but its predicate implies this
10231 one, we can avoid the false DV warning. */
10232 qp_implies[i].p2_branched = 1;
10233 while (depind < regdepslen)
10234 {
10235 if (regdeps[depind].qp_regno == qp_implies[i].p1)
10236 {
10237 print_dependency ("Removing", depind);
10238 regdeps[depind] = regdeps[--regdepslen];
10239 }
10240 else
10241 ++depind;
10242 }
10243 }
10244 }
10245 /* Any marked resources which have this same predicate should be
10246 cleared, provided that the QP hasn't been modified between the
10247 marking instruction and the branch. */
10248 if (is_call)
10249 {
10250 insn_group_break (0, CURR_SLOT.qp_regno, 1);
10251 }
10252 else
10253 {
10254 i = 0;
10255 while (i < regdepslen)
10256 {
10257 if (regdeps[i].qp_regno == CURR_SLOT.qp_regno
10258 && regdeps[i].link_to_qp_branch
10259 && (regdeps[i].file != CURR_SLOT.src_file
10260 || regdeps[i].line != CURR_SLOT.src_line))
10261 {
10262 /* Treat like a taken branch */
10263 print_dependency ("Removing", i);
10264 regdeps[i] = regdeps[--regdepslen];
10265 }
10266 else
10267 ++i;
10268 }
10269 }
10270 }
10271 }
10272
10273 /* Examine the current instruction for dependency violations. */
10274
10275 static int
10276 check_dv (idesc)
10277 struct ia64_opcode *idesc;
10278 {
10279 if (md.debug_dv)
10280 {
10281 fprintf (stderr, "Checking %s for violations (line %d, %d/%d)\n",
10282 idesc->name, CURR_SLOT.src_line,
10283 idesc->dependencies->nchks,
10284 idesc->dependencies->nregs);
10285 }
10286
10287 /* Look through the list of currently marked resources; if the current
10288 instruction has the dependency in its chks list which uses that resource,
10289 check against the specific resources used. */
10290 check_dependencies (idesc);
10291
10292 /* Look up the instruction's regdeps (RAW writes, WAW writes, and WAR reads),
10293 then add them to the list of marked resources. */
10294 mark_resources (idesc);
10295
10296 /* There are several types of dependency semantics, and each has its own
10297 requirements for being cleared
10298
10299 Instruction serialization (insns separated by interruption, rfi, or
10300 writer + srlz.i + reader, all in separate groups) clears DVS_INSTR.
10301
10302 Data serialization (instruction serialization, or writer + srlz.d +
10303 reader, where writer and srlz.d are in separate groups) clears
10304 DVS_DATA. (This also clears DVS_OTHER, but that is not guaranteed to
10305 always be the case).
10306
10307 Instruction group break (groups separated by stop, taken branch,
10308 interruption or rfi) clears DVS_IMPLIED and DVS_IMPLIEDF.
10309 */
10310 update_dependencies (idesc);
10311
10312 /* Sometimes, knowing a register value allows us to avoid giving a false DV
10313 warning. Keep track of as many as possible that are useful. */
10314 note_register_values (idesc);
10315
10316 /* We don't need or want this anymore. */
10317 md.mem_offset.hint = 0;
10318
10319 return 0;
10320 }
10321
10322 /* Translate one line of assembly. Pseudo ops and labels do not show
10323 here. */
10324 void
10325 md_assemble (str)
10326 char *str;
10327 {
10328 char *saved_input_line_pointer, *mnemonic;
10329 const struct pseudo_opcode *pdesc;
10330 struct ia64_opcode *idesc;
10331 unsigned char qp_regno;
10332 unsigned int flags;
10333 int ch;
10334
10335 saved_input_line_pointer = input_line_pointer;
10336 input_line_pointer = str;
10337
10338 /* extract the opcode (mnemonic): */
10339
10340 mnemonic = input_line_pointer;
10341 ch = get_symbol_end ();
10342 pdesc = (struct pseudo_opcode *) hash_find (md.pseudo_hash, mnemonic);
10343 if (pdesc)
10344 {
10345 *input_line_pointer = ch;
10346 (*pdesc->handler) (pdesc->arg);
10347 goto done;
10348 }
10349
10350 /* Find the instruction descriptor matching the arguments. */
10351
10352 idesc = ia64_find_opcode (mnemonic);
10353 *input_line_pointer = ch;
10354 if (!idesc)
10355 {
10356 as_bad ("Unknown opcode `%s'", mnemonic);
10357 goto done;
10358 }
10359
10360 idesc = parse_operands (idesc);
10361 if (!idesc)
10362 goto done;
10363
10364 /* Handle the dynamic ops we can handle now: */
10365 if (idesc->type == IA64_TYPE_DYN)
10366 {
10367 if (strcmp (idesc->name, "add") == 0)
10368 {
10369 if (CURR_SLOT.opnd[2].X_op == O_register
10370 && CURR_SLOT.opnd[2].X_add_number < 4)
10371 mnemonic = "addl";
10372 else
10373 mnemonic = "adds";
10374 ia64_free_opcode (idesc);
10375 idesc = ia64_find_opcode (mnemonic);
10376 }
10377 else if (strcmp (idesc->name, "mov") == 0)
10378 {
10379 enum ia64_opnd opnd1, opnd2;
10380 int rop;
10381
10382 opnd1 = idesc->operands[0];
10383 opnd2 = idesc->operands[1];
10384 if (opnd1 == IA64_OPND_AR3)
10385 rop = 0;
10386 else if (opnd2 == IA64_OPND_AR3)
10387 rop = 1;
10388 else
10389 abort ();
10390 if (CURR_SLOT.opnd[rop].X_op == O_register)
10391 {
10392 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10393 mnemonic = "mov.i";
10394 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10395 mnemonic = "mov.m";
10396 else
10397 rop = -1;
10398 }
10399 else
10400 abort ();
10401 if (rop >= 0)
10402 {
10403 ia64_free_opcode (idesc);
10404 idesc = ia64_find_opcode (mnemonic);
10405 while (idesc != NULL
10406 && (idesc->operands[0] != opnd1
10407 || idesc->operands[1] != opnd2))
10408 idesc = get_next_opcode (idesc);
10409 }
10410 }
10411 }
10412 else if (strcmp (idesc->name, "mov.i") == 0
10413 || strcmp (idesc->name, "mov.m") == 0)
10414 {
10415 enum ia64_opnd opnd1, opnd2;
10416 int rop;
10417
10418 opnd1 = idesc->operands[0];
10419 opnd2 = idesc->operands[1];
10420 if (opnd1 == IA64_OPND_AR3)
10421 rop = 0;
10422 else if (opnd2 == IA64_OPND_AR3)
10423 rop = 1;
10424 else
10425 abort ();
10426 if (CURR_SLOT.opnd[rop].X_op == O_register)
10427 {
10428 char unit = 'a';
10429 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10430 unit = 'i';
10431 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10432 unit = 'm';
10433 if (unit != 'a' && unit != idesc->name [4])
10434 as_bad ("AR %d cannot be accessed by %c-unit",
10435 (int) (CURR_SLOT.opnd[rop].X_add_number - REG_AR),
10436 TOUPPER (unit));
10437 }
10438 }
10439
10440 qp_regno = 0;
10441 if (md.qp.X_op == O_register)
10442 {
10443 qp_regno = md.qp.X_add_number - REG_P;
10444 md.qp.X_op = O_absent;
10445 }
10446
10447 flags = idesc->flags;
10448
10449 if ((flags & IA64_OPCODE_FIRST) != 0)
10450 {
10451 /* The alignment frag has to end with a stop bit only if the
10452 next instruction after the alignment directive has to be
10453 the first instruction in an instruction group. */
10454 if (align_frag)
10455 {
10456 while (align_frag->fr_type != rs_align_code)
10457 {
10458 align_frag = align_frag->fr_next;
10459 if (!align_frag)
10460 break;
10461 }
10462 /* align_frag can be NULL if there are directives in
10463 between. */
10464 if (align_frag && align_frag->fr_next == frag_now)
10465 align_frag->tc_frag_data = 1;
10466 }
10467
10468 insn_group_break (1, 0, 0);
10469 }
10470 align_frag = NULL;
10471
10472 if ((flags & IA64_OPCODE_NO_PRED) != 0 && qp_regno != 0)
10473 {
10474 as_bad ("`%s' cannot be predicated", idesc->name);
10475 goto done;
10476 }
10477
10478 /* Build the instruction. */
10479 CURR_SLOT.qp_regno = qp_regno;
10480 CURR_SLOT.idesc = idesc;
10481 as_where (&CURR_SLOT.src_file, &CURR_SLOT.src_line);
10482 dwarf2_where (&CURR_SLOT.debug_line);
10483
10484 /* Add unwind entry, if there is one. */
10485 if (unwind.current_entry)
10486 {
10487 CURR_SLOT.unwind_record = unwind.current_entry;
10488 unwind.current_entry = NULL;
10489 }
10490 if (unwind.proc_start && S_IS_DEFINED (unwind.proc_start))
10491 unwind.insn = 1;
10492
10493 /* Check for dependency violations. */
10494 if (md.detect_dv)
10495 check_dv (idesc);
10496
10497 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10498 if (++md.num_slots_in_use >= NUM_SLOTS)
10499 emit_one_bundle ();
10500
10501 if ((flags & IA64_OPCODE_LAST) != 0)
10502 insn_group_break (1, 0, 0);
10503
10504 md.last_text_seg = now_seg;
10505
10506 done:
10507 input_line_pointer = saved_input_line_pointer;
10508 }
10509
10510 /* Called when symbol NAME cannot be found in the symbol table.
10511 Should be used for dynamic valued symbols only. */
10512
10513 symbolS *
10514 md_undefined_symbol (name)
10515 char *name ATTRIBUTE_UNUSED;
10516 {
10517 return 0;
10518 }
10519
10520 /* Called for any expression that can not be recognized. When the
10521 function is called, `input_line_pointer' will point to the start of
10522 the expression. */
10523
10524 void
10525 md_operand (e)
10526 expressionS *e;
10527 {
10528 switch (*input_line_pointer)
10529 {
10530 case '[':
10531 ++input_line_pointer;
10532 expression (e);
10533 if (*input_line_pointer != ']')
10534 {
10535 as_bad ("Closing bracket missing");
10536 goto err;
10537 }
10538 else
10539 {
10540 if (e->X_op != O_register)
10541 as_bad ("Register expected as index");
10542
10543 ++input_line_pointer;
10544 e->X_op = O_index;
10545 }
10546 break;
10547
10548 default:
10549 break;
10550 }
10551 return;
10552
10553 err:
10554 ignore_rest_of_line ();
10555 }
10556
10557 /* Return 1 if it's OK to adjust a reloc by replacing the symbol with
10558 a section symbol plus some offset. For relocs involving @fptr(),
10559 directives we don't want such adjustments since we need to have the
10560 original symbol's name in the reloc. */
10561 int
10562 ia64_fix_adjustable (fix)
10563 fixS *fix;
10564 {
10565 /* Prevent all adjustments to global symbols */
10566 if (S_IS_EXTERN (fix->fx_addsy) || S_IS_WEAK (fix->fx_addsy))
10567 return 0;
10568
10569 switch (fix->fx_r_type)
10570 {
10571 case BFD_RELOC_IA64_FPTR64I:
10572 case BFD_RELOC_IA64_FPTR32MSB:
10573 case BFD_RELOC_IA64_FPTR32LSB:
10574 case BFD_RELOC_IA64_FPTR64MSB:
10575 case BFD_RELOC_IA64_FPTR64LSB:
10576 case BFD_RELOC_IA64_LTOFF_FPTR22:
10577 case BFD_RELOC_IA64_LTOFF_FPTR64I:
10578 return 0;
10579 default:
10580 break;
10581 }
10582
10583 return 1;
10584 }
10585
10586 int
10587 ia64_force_relocation (fix)
10588 fixS *fix;
10589 {
10590 switch (fix->fx_r_type)
10591 {
10592 case BFD_RELOC_IA64_FPTR64I:
10593 case BFD_RELOC_IA64_FPTR32MSB:
10594 case BFD_RELOC_IA64_FPTR32LSB:
10595 case BFD_RELOC_IA64_FPTR64MSB:
10596 case BFD_RELOC_IA64_FPTR64LSB:
10597
10598 case BFD_RELOC_IA64_LTOFF22:
10599 case BFD_RELOC_IA64_LTOFF64I:
10600 case BFD_RELOC_IA64_LTOFF_FPTR22:
10601 case BFD_RELOC_IA64_LTOFF_FPTR64I:
10602 case BFD_RELOC_IA64_PLTOFF22:
10603 case BFD_RELOC_IA64_PLTOFF64I:
10604 case BFD_RELOC_IA64_PLTOFF64MSB:
10605 case BFD_RELOC_IA64_PLTOFF64LSB:
10606
10607 case BFD_RELOC_IA64_LTOFF22X:
10608 case BFD_RELOC_IA64_LDXMOV:
10609 return 1;
10610
10611 default:
10612 break;
10613 }
10614
10615 return generic_force_reloc (fix);
10616 }
10617
10618 /* Decide from what point a pc-relative relocation is relative to,
10619 relative to the pc-relative fixup. Er, relatively speaking. */
10620 long
10621 ia64_pcrel_from_section (fix, sec)
10622 fixS *fix;
10623 segT sec;
10624 {
10625 unsigned long off = fix->fx_frag->fr_address + fix->fx_where;
10626
10627 if (bfd_get_section_flags (stdoutput, sec) & SEC_CODE)
10628 off &= ~0xfUL;
10629
10630 return off;
10631 }
10632
10633
10634 /* Used to emit section-relative relocs for the dwarf2 debug data. */
10635 void
10636 ia64_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10637 {
10638 expressionS expr;
10639
10640 expr.X_op = O_pseudo_fixup;
10641 expr.X_op_symbol = pseudo_func[FUNC_SEC_RELATIVE].u.sym;
10642 expr.X_add_number = 0;
10643 expr.X_add_symbol = symbol;
10644 emit_expr (&expr, size);
10645 }
10646
10647 /* This is called whenever some data item (not an instruction) needs a
10648 fixup. We pick the right reloc code depending on the byteorder
10649 currently in effect. */
10650 void
10651 ia64_cons_fix_new (f, where, nbytes, exp)
10652 fragS *f;
10653 int where;
10654 int nbytes;
10655 expressionS *exp;
10656 {
10657 bfd_reloc_code_real_type code;
10658 fixS *fix;
10659
10660 switch (nbytes)
10661 {
10662 /* There are no reloc for 8 and 16 bit quantities, but we allow
10663 them here since they will work fine as long as the expression
10664 is fully defined at the end of the pass over the source file. */
10665 case 1: code = BFD_RELOC_8; break;
10666 case 2: code = BFD_RELOC_16; break;
10667 case 4:
10668 if (target_big_endian)
10669 code = BFD_RELOC_IA64_DIR32MSB;
10670 else
10671 code = BFD_RELOC_IA64_DIR32LSB;
10672 break;
10673
10674 case 8:
10675 /* In 32-bit mode, data8 could mean function descriptors too. */
10676 if (exp->X_op == O_pseudo_fixup
10677 && exp->X_op_symbol
10678 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC
10679 && !(md.flags & EF_IA_64_ABI64))
10680 {
10681 if (target_big_endian)
10682 code = BFD_RELOC_IA64_IPLTMSB;
10683 else
10684 code = BFD_RELOC_IA64_IPLTLSB;
10685 exp->X_op = O_symbol;
10686 break;
10687 }
10688 else
10689 {
10690 if (target_big_endian)
10691 code = BFD_RELOC_IA64_DIR64MSB;
10692 else
10693 code = BFD_RELOC_IA64_DIR64LSB;
10694 break;
10695 }
10696
10697 case 16:
10698 if (exp->X_op == O_pseudo_fixup
10699 && exp->X_op_symbol
10700 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC)
10701 {
10702 if (target_big_endian)
10703 code = BFD_RELOC_IA64_IPLTMSB;
10704 else
10705 code = BFD_RELOC_IA64_IPLTLSB;
10706 exp->X_op = O_symbol;
10707 break;
10708 }
10709 /* FALLTHRU */
10710
10711 default:
10712 as_bad ("Unsupported fixup size %d", nbytes);
10713 ignore_rest_of_line ();
10714 return;
10715 }
10716
10717 if (exp->X_op == O_pseudo_fixup)
10718 {
10719 exp->X_op = O_symbol;
10720 code = ia64_gen_real_reloc_type (exp->X_op_symbol, code);
10721 /* ??? If code unchanged, unsupported. */
10722 }
10723
10724 fix = fix_new_exp (f, where, nbytes, exp, 0, code);
10725 /* We need to store the byte order in effect in case we're going
10726 to fix an 8 or 16 bit relocation (for which there no real
10727 relocs available). See md_apply_fix3(). */
10728 fix->tc_fix_data.bigendian = target_big_endian;
10729 }
10730
10731 /* Return the actual relocation we wish to associate with the pseudo
10732 reloc described by SYM and R_TYPE. SYM should be one of the
10733 symbols in the pseudo_func array, or NULL. */
10734
10735 static bfd_reloc_code_real_type
10736 ia64_gen_real_reloc_type (sym, r_type)
10737 struct symbol *sym;
10738 bfd_reloc_code_real_type r_type;
10739 {
10740 bfd_reloc_code_real_type new = 0;
10741 const char *type = NULL, *suffix = "";
10742
10743 if (sym == NULL)
10744 {
10745 return r_type;
10746 }
10747
10748 switch (S_GET_VALUE (sym))
10749 {
10750 case FUNC_FPTR_RELATIVE:
10751 switch (r_type)
10752 {
10753 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_FPTR64I; break;
10754 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_FPTR32MSB; break;
10755 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_FPTR32LSB; break;
10756 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_FPTR64MSB; break;
10757 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_FPTR64LSB; break;
10758 default: type = "FPTR"; break;
10759 }
10760 break;
10761
10762 case FUNC_GP_RELATIVE:
10763 switch (r_type)
10764 {
10765 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_GPREL22; break;
10766 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_GPREL64I; break;
10767 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_GPREL32MSB; break;
10768 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_GPREL32LSB; break;
10769 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_GPREL64MSB; break;
10770 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_GPREL64LSB; break;
10771 default: type = "GPREL"; break;
10772 }
10773 break;
10774
10775 case FUNC_LT_RELATIVE:
10776 switch (r_type)
10777 {
10778 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22; break;
10779 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_LTOFF64I; break;
10780 default: type = "LTOFF"; break;
10781 }
10782 break;
10783
10784 case FUNC_LT_RELATIVE_X:
10785 switch (r_type)
10786 {
10787 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22X; break;
10788 default: type = "LTOFF"; suffix = "X"; break;
10789 }
10790 break;
10791
10792 case FUNC_PC_RELATIVE:
10793 switch (r_type)
10794 {
10795 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PCREL22; break;
10796 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PCREL64I; break;
10797 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_PCREL32MSB; break;
10798 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_PCREL32LSB; break;
10799 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PCREL64MSB; break;
10800 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PCREL64LSB; break;
10801 default: type = "PCREL"; break;
10802 }
10803 break;
10804
10805 case FUNC_PLT_RELATIVE:
10806 switch (r_type)
10807 {
10808 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PLTOFF22; break;
10809 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PLTOFF64I; break;
10810 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PLTOFF64MSB;break;
10811 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PLTOFF64LSB;break;
10812 default: type = "PLTOFF"; break;
10813 }
10814 break;
10815
10816 case FUNC_SEC_RELATIVE:
10817 switch (r_type)
10818 {
10819 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SECREL32MSB;break;
10820 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SECREL32LSB;break;
10821 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SECREL64MSB;break;
10822 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SECREL64LSB;break;
10823 default: type = "SECREL"; break;
10824 }
10825 break;
10826
10827 case FUNC_SEG_RELATIVE:
10828 switch (r_type)
10829 {
10830 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SEGREL32MSB;break;
10831 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SEGREL32LSB;break;
10832 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SEGREL64MSB;break;
10833 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SEGREL64LSB;break;
10834 default: type = "SEGREL"; break;
10835 }
10836 break;
10837
10838 case FUNC_LTV_RELATIVE:
10839 switch (r_type)
10840 {
10841 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_LTV32MSB; break;
10842 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_LTV32LSB; break;
10843 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_LTV64MSB; break;
10844 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_LTV64LSB; break;
10845 default: type = "LTV"; break;
10846 }
10847 break;
10848
10849 case FUNC_LT_FPTR_RELATIVE:
10850 switch (r_type)
10851 {
10852 case BFD_RELOC_IA64_IMM22:
10853 new = BFD_RELOC_IA64_LTOFF_FPTR22; break;
10854 case BFD_RELOC_IA64_IMM64:
10855 new = BFD_RELOC_IA64_LTOFF_FPTR64I; break;
10856 case BFD_RELOC_IA64_DIR32MSB:
10857 new = BFD_RELOC_IA64_LTOFF_FPTR32MSB; break;
10858 case BFD_RELOC_IA64_DIR32LSB:
10859 new = BFD_RELOC_IA64_LTOFF_FPTR32LSB; break;
10860 case BFD_RELOC_IA64_DIR64MSB:
10861 new = BFD_RELOC_IA64_LTOFF_FPTR64MSB; break;
10862 case BFD_RELOC_IA64_DIR64LSB:
10863 new = BFD_RELOC_IA64_LTOFF_FPTR64LSB; break;
10864 default:
10865 type = "LTOFF_FPTR"; break;
10866 }
10867 break;
10868
10869 case FUNC_TP_RELATIVE:
10870 switch (r_type)
10871 {
10872 case BFD_RELOC_IA64_IMM14: new = BFD_RELOC_IA64_TPREL14; break;
10873 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_TPREL22; break;
10874 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_TPREL64I; break;
10875 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_TPREL64MSB; break;
10876 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_TPREL64LSB; break;
10877 default: type = "TPREL"; break;
10878 }
10879 break;
10880
10881 case FUNC_LT_TP_RELATIVE:
10882 switch (r_type)
10883 {
10884 case BFD_RELOC_IA64_IMM22:
10885 new = BFD_RELOC_IA64_LTOFF_TPREL22; break;
10886 default:
10887 type = "LTOFF_TPREL"; break;
10888 }
10889 break;
10890
10891 case FUNC_DTP_MODULE:
10892 switch (r_type)
10893 {
10894 case BFD_RELOC_IA64_DIR64MSB:
10895 new = BFD_RELOC_IA64_DTPMOD64MSB; break;
10896 case BFD_RELOC_IA64_DIR64LSB:
10897 new = BFD_RELOC_IA64_DTPMOD64LSB; break;
10898 default:
10899 type = "DTPMOD"; break;
10900 }
10901 break;
10902
10903 case FUNC_LT_DTP_MODULE:
10904 switch (r_type)
10905 {
10906 case BFD_RELOC_IA64_IMM22:
10907 new = BFD_RELOC_IA64_LTOFF_DTPMOD22; break;
10908 default:
10909 type = "LTOFF_DTPMOD"; break;
10910 }
10911 break;
10912
10913 case FUNC_DTP_RELATIVE:
10914 switch (r_type)
10915 {
10916 case BFD_RELOC_IA64_DIR32MSB:
10917 new = BFD_RELOC_IA64_DTPREL32MSB; break;
10918 case BFD_RELOC_IA64_DIR32LSB:
10919 new = BFD_RELOC_IA64_DTPREL32LSB; break;
10920 case BFD_RELOC_IA64_DIR64MSB:
10921 new = BFD_RELOC_IA64_DTPREL64MSB; break;
10922 case BFD_RELOC_IA64_DIR64LSB:
10923 new = BFD_RELOC_IA64_DTPREL64LSB; break;
10924 case BFD_RELOC_IA64_IMM14:
10925 new = BFD_RELOC_IA64_DTPREL14; break;
10926 case BFD_RELOC_IA64_IMM22:
10927 new = BFD_RELOC_IA64_DTPREL22; break;
10928 case BFD_RELOC_IA64_IMM64:
10929 new = BFD_RELOC_IA64_DTPREL64I; break;
10930 default:
10931 type = "DTPREL"; break;
10932 }
10933 break;
10934
10935 case FUNC_LT_DTP_RELATIVE:
10936 switch (r_type)
10937 {
10938 case BFD_RELOC_IA64_IMM22:
10939 new = BFD_RELOC_IA64_LTOFF_DTPREL22; break;
10940 default:
10941 type = "LTOFF_DTPREL"; break;
10942 }
10943 break;
10944
10945 case FUNC_IPLT_RELOC:
10946 switch (r_type)
10947 {
10948 case BFD_RELOC_IA64_IPLTMSB: return r_type;
10949 case BFD_RELOC_IA64_IPLTLSB: return r_type;
10950 default: type = "IPLT"; break;
10951 }
10952 break;
10953
10954 default:
10955 abort ();
10956 }
10957
10958 if (new)
10959 return new;
10960 else
10961 {
10962 int width;
10963
10964 if (!type)
10965 abort ();
10966 switch (r_type)
10967 {
10968 case BFD_RELOC_IA64_DIR32MSB: width = 32; suffix = "MSB"; break;
10969 case BFD_RELOC_IA64_DIR32LSB: width = 32; suffix = "LSB"; break;
10970 case BFD_RELOC_IA64_DIR64MSB: width = 64; suffix = "MSB"; break;
10971 case BFD_RELOC_IA64_DIR64LSB: width = 64; suffix = "LSB"; break;
10972 case BFD_RELOC_IA64_IMM14: width = 14; break;
10973 case BFD_RELOC_IA64_IMM22: width = 22; break;
10974 case BFD_RELOC_IA64_IMM64: width = 64; suffix = "I"; break;
10975 default: abort ();
10976 }
10977
10978 /* This should be an error, but since previously there wasn't any
10979 diagnostic here, dont't make it fail because of this for now. */
10980 as_warn ("Cannot express %s%d%s relocation", type, width, suffix);
10981 return r_type;
10982 }
10983 }
10984
10985 /* Here is where generate the appropriate reloc for pseudo relocation
10986 functions. */
10987 void
10988 ia64_validate_fix (fix)
10989 fixS *fix;
10990 {
10991 switch (fix->fx_r_type)
10992 {
10993 case BFD_RELOC_IA64_FPTR64I:
10994 case BFD_RELOC_IA64_FPTR32MSB:
10995 case BFD_RELOC_IA64_FPTR64LSB:
10996 case BFD_RELOC_IA64_LTOFF_FPTR22:
10997 case BFD_RELOC_IA64_LTOFF_FPTR64I:
10998 if (fix->fx_offset != 0)
10999 as_bad_where (fix->fx_file, fix->fx_line,
11000 "No addend allowed in @fptr() relocation");
11001 break;
11002 default:
11003 break;
11004 }
11005 }
11006
11007 static void
11008 fix_insn (fix, odesc, value)
11009 fixS *fix;
11010 const struct ia64_operand *odesc;
11011 valueT value;
11012 {
11013 bfd_vma insn[3], t0, t1, control_bits;
11014 const char *err;
11015 char *fixpos;
11016 long slot;
11017
11018 slot = fix->fx_where & 0x3;
11019 fixpos = fix->fx_frag->fr_literal + (fix->fx_where - slot);
11020
11021 /* Bundles are always in little-endian byte order */
11022 t0 = bfd_getl64 (fixpos);
11023 t1 = bfd_getl64 (fixpos + 8);
11024 control_bits = t0 & 0x1f;
11025 insn[0] = (t0 >> 5) & 0x1ffffffffffLL;
11026 insn[1] = ((t0 >> 46) & 0x3ffff) | ((t1 & 0x7fffff) << 18);
11027 insn[2] = (t1 >> 23) & 0x1ffffffffffLL;
11028
11029 err = NULL;
11030 if (odesc - elf64_ia64_operands == IA64_OPND_IMMU64)
11031 {
11032 insn[1] = (value >> 22) & 0x1ffffffffffLL;
11033 insn[2] |= (((value & 0x7f) << 13)
11034 | (((value >> 7) & 0x1ff) << 27)
11035 | (((value >> 16) & 0x1f) << 22)
11036 | (((value >> 21) & 0x1) << 21)
11037 | (((value >> 63) & 0x1) << 36));
11038 }
11039 else if (odesc - elf64_ia64_operands == IA64_OPND_IMMU62)
11040 {
11041 if (value & ~0x3fffffffffffffffULL)
11042 err = "integer operand out of range";
11043 insn[1] = (value >> 21) & 0x1ffffffffffLL;
11044 insn[2] |= (((value & 0xfffff) << 6) | (((value >> 20) & 0x1) << 36));
11045 }
11046 else if (odesc - elf64_ia64_operands == IA64_OPND_TGT64)
11047 {
11048 value >>= 4;
11049 insn[1] = ((value >> 20) & 0x7fffffffffLL) << 2;
11050 insn[2] |= ((((value >> 59) & 0x1) << 36)
11051 | (((value >> 0) & 0xfffff) << 13));
11052 }
11053 else
11054 err = (*odesc->insert) (odesc, value, insn + slot);
11055
11056 if (err)
11057 as_bad_where (fix->fx_file, fix->fx_line, err);
11058
11059 t0 = control_bits | (insn[0] << 5) | (insn[1] << 46);
11060 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
11061 number_to_chars_littleendian (fixpos + 0, t0, 8);
11062 number_to_chars_littleendian (fixpos + 8, t1, 8);
11063 }
11064
11065 /* Attempt to simplify or even eliminate a fixup. The return value is
11066 ignored; perhaps it was once meaningful, but now it is historical.
11067 To indicate that a fixup has been eliminated, set FIXP->FX_DONE.
11068
11069 If fixp->fx_addsy is non-NULL, we'll have to generate a reloc entry
11070 (if possible). */
11071
11072 void
11073 md_apply_fix3 (fix, valP, seg)
11074 fixS *fix;
11075 valueT *valP;
11076 segT seg ATTRIBUTE_UNUSED;
11077 {
11078 char *fixpos;
11079 valueT value = *valP;
11080
11081 fixpos = fix->fx_frag->fr_literal + fix->fx_where;
11082
11083 if (fix->fx_pcrel)
11084 {
11085 switch (fix->fx_r_type)
11086 {
11087 case BFD_RELOC_IA64_DIR32MSB:
11088 fix->fx_r_type = BFD_RELOC_IA64_PCREL32MSB;
11089 break;
11090
11091 case BFD_RELOC_IA64_DIR32LSB:
11092 fix->fx_r_type = BFD_RELOC_IA64_PCREL32LSB;
11093 break;
11094
11095 case BFD_RELOC_IA64_DIR64MSB:
11096 fix->fx_r_type = BFD_RELOC_IA64_PCREL64MSB;
11097 break;
11098
11099 case BFD_RELOC_IA64_DIR64LSB:
11100 fix->fx_r_type = BFD_RELOC_IA64_PCREL64LSB;
11101 break;
11102
11103 default:
11104 break;
11105 }
11106 }
11107 if (fix->fx_addsy)
11108 {
11109 switch (fix->fx_r_type)
11110 {
11111 case BFD_RELOC_UNUSED:
11112 /* This must be a TAG13 or TAG13b operand. There are no external
11113 relocs defined for them, so we must give an error. */
11114 as_bad_where (fix->fx_file, fix->fx_line,
11115 "%s must have a constant value",
11116 elf64_ia64_operands[fix->tc_fix_data.opnd].desc);
11117 fix->fx_done = 1;
11118 return;
11119
11120 case BFD_RELOC_IA64_TPREL14:
11121 case BFD_RELOC_IA64_TPREL22:
11122 case BFD_RELOC_IA64_TPREL64I:
11123 case BFD_RELOC_IA64_LTOFF_TPREL22:
11124 case BFD_RELOC_IA64_LTOFF_DTPMOD22:
11125 case BFD_RELOC_IA64_DTPREL14:
11126 case BFD_RELOC_IA64_DTPREL22:
11127 case BFD_RELOC_IA64_DTPREL64I:
11128 case BFD_RELOC_IA64_LTOFF_DTPREL22:
11129 S_SET_THREAD_LOCAL (fix->fx_addsy);
11130 break;
11131
11132 default:
11133 break;
11134 }
11135 }
11136 else if (fix->tc_fix_data.opnd == IA64_OPND_NIL)
11137 {
11138 if (fix->tc_fix_data.bigendian)
11139 number_to_chars_bigendian (fixpos, value, fix->fx_size);
11140 else
11141 number_to_chars_littleendian (fixpos, value, fix->fx_size);
11142 fix->fx_done = 1;
11143 }
11144 else
11145 {
11146 fix_insn (fix, elf64_ia64_operands + fix->tc_fix_data.opnd, value);
11147 fix->fx_done = 1;
11148 }
11149 }
11150
11151 /* Generate the BFD reloc to be stuck in the object file from the
11152 fixup used internally in the assembler. */
11153
11154 arelent *
11155 tc_gen_reloc (sec, fixp)
11156 asection *sec ATTRIBUTE_UNUSED;
11157 fixS *fixp;
11158 {
11159 arelent *reloc;
11160
11161 reloc = xmalloc (sizeof (*reloc));
11162 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
11163 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11164 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
11165 reloc->addend = fixp->fx_offset;
11166 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
11167
11168 if (!reloc->howto)
11169 {
11170 as_bad_where (fixp->fx_file, fixp->fx_line,
11171 "Cannot represent %s relocation in object file",
11172 bfd_get_reloc_code_name (fixp->fx_r_type));
11173 }
11174 return reloc;
11175 }
11176
11177 /* Turn a string in input_line_pointer into a floating point constant
11178 of type TYPE, and store the appropriate bytes in *LIT. The number
11179 of LITTLENUMS emitted is stored in *SIZE. An error message is
11180 returned, or NULL on OK. */
11181
11182 #define MAX_LITTLENUMS 5
11183
11184 char *
11185 md_atof (type, lit, size)
11186 int type;
11187 char *lit;
11188 int *size;
11189 {
11190 LITTLENUM_TYPE words[MAX_LITTLENUMS];
11191 char *t;
11192 int prec;
11193
11194 switch (type)
11195 {
11196 /* IEEE floats */
11197 case 'f':
11198 case 'F':
11199 case 's':
11200 case 'S':
11201 prec = 2;
11202 break;
11203
11204 case 'd':
11205 case 'D':
11206 case 'r':
11207 case 'R':
11208 prec = 4;
11209 break;
11210
11211 case 'x':
11212 case 'X':
11213 case 'p':
11214 case 'P':
11215 prec = 5;
11216 break;
11217
11218 default:
11219 *size = 0;
11220 return "Bad call to MD_ATOF()";
11221 }
11222 t = atof_ieee (input_line_pointer, type, words);
11223 if (t)
11224 input_line_pointer = t;
11225
11226 (*ia64_float_to_chars) (lit, words, prec);
11227
11228 if (type == 'X')
11229 {
11230 /* It is 10 byte floating point with 6 byte padding. */
11231 memset (&lit [10], 0, 6);
11232 *size = 8 * sizeof (LITTLENUM_TYPE);
11233 }
11234 else
11235 *size = prec * sizeof (LITTLENUM_TYPE);
11236
11237 return 0;
11238 }
11239
11240 /* Handle ia64 specific semantics of the align directive. */
11241
11242 void
11243 ia64_md_do_align (n, fill, len, max)
11244 int n ATTRIBUTE_UNUSED;
11245 const char *fill ATTRIBUTE_UNUSED;
11246 int len ATTRIBUTE_UNUSED;
11247 int max ATTRIBUTE_UNUSED;
11248 {
11249 if (subseg_text_p (now_seg))
11250 ia64_flush_insns ();
11251 }
11252
11253 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
11254 of an rs_align_code fragment. */
11255
11256 void
11257 ia64_handle_align (fragp)
11258 fragS *fragp;
11259 {
11260 /* Use mfi bundle of nops with no stop bits. */
11261 static const unsigned char le_nop[]
11262 = { 0x0c, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
11263 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00};
11264 static const unsigned char le_nop_stop[]
11265 = { 0x0d, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
11266 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00};
11267
11268 int bytes;
11269 char *p;
11270 const unsigned char *nop;
11271
11272 if (fragp->fr_type != rs_align_code)
11273 return;
11274
11275 /* Check if this frag has to end with a stop bit. */
11276 nop = fragp->tc_frag_data ? le_nop_stop : le_nop;
11277
11278 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
11279 p = fragp->fr_literal + fragp->fr_fix;
11280
11281 /* If no paddings are needed, we check if we need a stop bit. */
11282 if (!bytes && fragp->tc_frag_data)
11283 {
11284 if (fragp->fr_fix < 16)
11285 #if 1
11286 /* FIXME: It won't work with
11287 .align 16
11288 alloc r32=ar.pfs,1,2,4,0
11289 */
11290 ;
11291 #else
11292 as_bad_where (fragp->fr_file, fragp->fr_line,
11293 _("Can't add stop bit to mark end of instruction group"));
11294 #endif
11295 else
11296 /* Bundles are always in little-endian byte order. Make sure
11297 the previous bundle has the stop bit. */
11298 *(p - 16) |= 1;
11299 }
11300
11301 /* Make sure we are on a 16-byte boundary, in case someone has been
11302 putting data into a text section. */
11303 if (bytes & 15)
11304 {
11305 int fix = bytes & 15;
11306 memset (p, 0, fix);
11307 p += fix;
11308 bytes -= fix;
11309 fragp->fr_fix += fix;
11310 }
11311
11312 /* Instruction bundles are always little-endian. */
11313 memcpy (p, nop, 16);
11314 fragp->fr_var = 16;
11315 }
11316
11317 static void
11318 ia64_float_to_chars_bigendian (char *lit, LITTLENUM_TYPE *words,
11319 int prec)
11320 {
11321 while (prec--)
11322 {
11323 number_to_chars_bigendian (lit, (long) (*words++),
11324 sizeof (LITTLENUM_TYPE));
11325 lit += sizeof (LITTLENUM_TYPE);
11326 }
11327 }
11328
11329 static void
11330 ia64_float_to_chars_littleendian (char *lit, LITTLENUM_TYPE *words,
11331 int prec)
11332 {
11333 while (prec--)
11334 {
11335 number_to_chars_littleendian (lit, (long) (words[prec]),
11336 sizeof (LITTLENUM_TYPE));
11337 lit += sizeof (LITTLENUM_TYPE);
11338 }
11339 }
11340
11341 void
11342 ia64_elf_section_change_hook (void)
11343 {
11344 if (elf_section_type (now_seg) == SHT_IA_64_UNWIND
11345 && elf_linked_to_section (now_seg) == NULL)
11346 elf_linked_to_section (now_seg) = text_section;
11347 dot_byteorder (-1);
11348 }
11349
11350 /* Check if a label should be made global. */
11351 void
11352 ia64_check_label (symbolS *label)
11353 {
11354 if (*input_line_pointer == ':')
11355 {
11356 S_SET_EXTERNAL (label);
11357 input_line_pointer++;
11358 }
11359 }
11360
11361 /* Used to remember where .alias and .secalias directives are seen. We
11362 will rename symbol and section names when we are about to output
11363 the relocatable file. */
11364 struct alias
11365 {
11366 char *file; /* The file where the directive is seen. */
11367 unsigned int line; /* The line number the directive is at. */
11368 const char *name; /* The orignale name of the symbol. */
11369 };
11370
11371 /* Called for .alias and .secalias directives. If SECTION is 1, it is
11372 .secalias. Otherwise, it is .alias. */
11373 static void
11374 dot_alias (int section)
11375 {
11376 char *name, *alias;
11377 char delim;
11378 char *end_name;
11379 int len;
11380 const char *error_string;
11381 struct alias *h;
11382 const char *a;
11383 struct hash_control *ahash, *nhash;
11384 const char *kind;
11385
11386 name = input_line_pointer;
11387 delim = get_symbol_end ();
11388 end_name = input_line_pointer;
11389 *end_name = delim;
11390
11391 if (name == end_name)
11392 {
11393 as_bad (_("expected symbol name"));
11394 discard_rest_of_line ();
11395 return;
11396 }
11397
11398 SKIP_WHITESPACE ();
11399
11400 if (*input_line_pointer != ',')
11401 {
11402 *end_name = 0;
11403 as_bad (_("expected comma after \"%s\""), name);
11404 *end_name = delim;
11405 ignore_rest_of_line ();
11406 return;
11407 }
11408
11409 input_line_pointer++;
11410 *end_name = 0;
11411 ia64_canonicalize_symbol_name (name);
11412
11413 /* We call demand_copy_C_string to check if alias string is valid.
11414 There should be a closing `"' and no `\0' in the string. */
11415 alias = demand_copy_C_string (&len);
11416 if (alias == NULL)
11417 {
11418 ignore_rest_of_line ();
11419 return;
11420 }
11421
11422 /* Make a copy of name string. */
11423 len = strlen (name) + 1;
11424 obstack_grow (&notes, name, len);
11425 name = obstack_finish (&notes);
11426
11427 if (section)
11428 {
11429 kind = "section";
11430 ahash = secalias_hash;
11431 nhash = secalias_name_hash;
11432 }
11433 else
11434 {
11435 kind = "symbol";
11436 ahash = alias_hash;
11437 nhash = alias_name_hash;
11438 }
11439
11440 /* Check if alias has been used before. */
11441 h = (struct alias *) hash_find (ahash, alias);
11442 if (h)
11443 {
11444 if (strcmp (h->name, name))
11445 as_bad (_("`%s' is already the alias of %s `%s'"),
11446 alias, kind, h->name);
11447 goto out;
11448 }
11449
11450 /* Check if name already has an alias. */
11451 a = (const char *) hash_find (nhash, name);
11452 if (a)
11453 {
11454 if (strcmp (a, alias))
11455 as_bad (_("%s `%s' already has an alias `%s'"), kind, name, a);
11456 goto out;
11457 }
11458
11459 h = (struct alias *) xmalloc (sizeof (struct alias));
11460 as_where (&h->file, &h->line);
11461 h->name = name;
11462
11463 error_string = hash_jam (ahash, alias, (PTR) h);
11464 if (error_string)
11465 {
11466 as_fatal (_("inserting \"%s\" into %s alias hash table failed: %s"),
11467 alias, kind, error_string);
11468 goto out;
11469 }
11470
11471 error_string = hash_jam (nhash, name, (PTR) alias);
11472 if (error_string)
11473 {
11474 as_fatal (_("inserting \"%s\" into %s name hash table failed: %s"),
11475 alias, kind, error_string);
11476 out:
11477 obstack_free (&notes, name);
11478 obstack_free (&notes, alias);
11479 }
11480
11481 demand_empty_rest_of_line ();
11482 }
11483
11484 /* It renames the original symbol name to its alias. */
11485 static void
11486 do_alias (const char *alias, PTR value)
11487 {
11488 struct alias *h = (struct alias *) value;
11489 symbolS *sym = symbol_find (h->name);
11490
11491 if (sym == NULL)
11492 as_warn_where (h->file, h->line,
11493 _("symbol `%s' aliased to `%s' is not used"),
11494 h->name, alias);
11495 else
11496 S_SET_NAME (sym, (char *) alias);
11497 }
11498
11499 /* Called from write_object_file. */
11500 void
11501 ia64_adjust_symtab (void)
11502 {
11503 hash_traverse (alias_hash, do_alias);
11504 }
11505
11506 /* It renames the original section name to its alias. */
11507 static void
11508 do_secalias (const char *alias, PTR value)
11509 {
11510 struct alias *h = (struct alias *) value;
11511 segT sec = bfd_get_section_by_name (stdoutput, h->name);
11512
11513 if (sec == NULL)
11514 as_warn_where (h->file, h->line,
11515 _("section `%s' aliased to `%s' is not used"),
11516 h->name, alias);
11517 else
11518 sec->name = alias;
11519 }
11520
11521 /* Called from write_object_file. */
11522 void
11523 ia64_frob_file (void)
11524 {
11525 hash_traverse (secalias_hash, do_secalias);
11526 }
This page took 0.395297 seconds and 4 git commands to generate.