* symbols.c (S_FORCE_RELOC): Add "strict" param.
[deliverable/binutils-gdb.git] / gas / config / tc-mcore.c
1 /* tc-mcore.c -- Assemble code for M*Core
2 Copyright 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 #include <stdio.h>
22 #include "as.h"
23 #include "bfd.h"
24 #include "subsegs.h"
25 #define DEFINE_TABLE
26 #include "../opcodes/mcore-opc.h"
27 #include "safe-ctype.h"
28 #include <string.h>
29
30 #ifdef OBJ_ELF
31 #include "elf/mcore.h"
32 #endif
33
34 #ifndef streq
35 #define streq(a,b) (strcmp (a, b) == 0)
36 #endif
37
38 /* Forward declarations for dumb compilers. */
39 static void mcore_s_literals PARAMS ((int));
40 static void mcore_pool_count PARAMS ((void (*) (int), int));
41 static void mcore_cons PARAMS ((int));
42 static void mcore_float_cons PARAMS ((int));
43 static void mcore_stringer PARAMS ((int));
44 static void mcore_fill PARAMS ((int));
45 static int log2 PARAMS ((unsigned int));
46 static char * parse_reg PARAMS ((char *, unsigned *));
47 static char * parse_creg PARAMS ((char *, unsigned *));
48 static char * parse_exp PARAMS ((char *, expressionS *));
49 static char * parse_rt PARAMS ((char *, char **, int, expressionS *));
50 static char * parse_imm PARAMS ((char *, unsigned *, unsigned, unsigned));
51 static char * parse_mem PARAMS ((char *, unsigned *, unsigned *, unsigned));
52 static char * parse_psrmod PARAMS ((char *, unsigned *));
53 static void make_name PARAMS ((char *, char *, int));
54 static int enter_literal PARAMS ((expressionS *, int));
55 static void dump_literals PARAMS ((int));
56 static void check_literals PARAMS ((int, int));
57 static void mcore_s_text PARAMS ((int));
58 static void mcore_s_data PARAMS ((int));
59 static void mcore_s_section PARAMS ((int));
60 static void mcore_s_bss PARAMS ((int));
61 #ifdef OBJ_ELF
62 static void mcore_s_comm PARAMS ((int));
63 #endif
64
65 /* Several places in this file insert raw instructions into the
66 object. They should use MCORE_INST_XXX macros to get the opcodes
67 and then use these two macros to crack the MCORE_INST value into
68 the appropriate byte values. */
69 #define INST_BYTE0(x) (target_big_endian ? (((x) >> 8) & 0xFF) : ((x) & 0xFF))
70 #define INST_BYTE1(x) (target_big_endian ? ((x) & 0xFF) : (((x) >> 8) & 0xFF))
71
72 const char comment_chars[] = "#/";
73 const char line_separator_chars[] = ";";
74 const char line_comment_chars[] = "#/";
75
76 const int md_reloc_size = 8;
77
78 static int do_jsri2bsr = 0; /* Change here from 1 by Cruess 19 August 97. */
79 static int sifilter_mode = 0;
80
81 const char EXP_CHARS[] = "eE";
82
83 /* Chars that mean this number is a floating point constant
84 As in 0f12.456
85 or 0d1.2345e12 */
86 const char FLT_CHARS[] = "rRsSfFdDxXpP";
87
88 #define C(what,length) (((what) << 2) + (length))
89 #define GET_WHAT(x) ((x >> 2))
90
91 /* These are the two types of relaxable instruction */
92 #define COND_JUMP 1
93 #define UNCD_JUMP 2
94
95 #define UNDEF_DISP 0
96 #define DISP12 1
97 #define DISP32 2
98 #define UNDEF_WORD_DISP 3
99
100 #define C12_LEN 2
101 #define C32_LEN 10 /* allow for align */
102 #define U12_LEN 2
103 #define U32_LEN 8 /* allow for align */
104
105 typedef enum
106 {
107 M210,
108 M340
109 }
110 cpu_type;
111
112 cpu_type cpu = M340;
113
114 /* Initialize the relax table. */
115 const relax_typeS md_relax_table[] = {
116 { 0, 0, 0, 0 },
117 { 0, 0, 0, 0 },
118 { 0, 0, 0, 0 },
119 { 0, 0, 0, 0 },
120
121 /* COND_JUMP */
122 { 0, 0, 0, 0 }, /* UNDEF_DISP */
123 { 2048, -2046, C12_LEN, C(COND_JUMP, DISP32) }, /* DISP12 */
124 { 0, 0, C32_LEN, 0 }, /* DISP32 */
125 { 0, 0, C32_LEN, 0 }, /* UNDEF_WORD_DISP */
126
127 /* UNCD_JUMP */
128 { 0, 0, 0, 0 }, /* UNDEF_DISP */
129 { 2048, -2046, U12_LEN, C(UNCD_JUMP, DISP32) }, /* DISP12 */
130 { 0, 0, U32_LEN, 0 }, /* DISP32 */
131 { 0, 0, U32_LEN, 0 } /* UNDEF_WORD_DISP */
132
133 };
134
135 /* Literal pool data structures. */
136 struct literal
137 {
138 unsigned short refcnt;
139 unsigned char ispcrel;
140 unsigned char unused;
141 expressionS e;
142 };
143
144 #define MAX_POOL_SIZE (1024/4)
145 static struct literal litpool [MAX_POOL_SIZE];
146 static unsigned poolsize;
147 static unsigned poolnumber;
148 static unsigned long poolspan;
149
150 /* SPANPANIC: the point at which we get too scared and force a dump
151 of the literal pool, and perhaps put a branch in place.
152 Calculated as:
153 1024 span of lrw/jmpi/jsri insn (actually span+1)
154 -2 possible alignment at the insn.
155 -2 possible alignment to get the table aligned.
156 -2 an inserted branch around the table.
157 == 1018
158 at 1018, we might be in trouble.
159 -- so we have to be smaller than 1018 and since we deal with 2-byte
160 instructions, the next good choice is 1016.
161 -- Note we have a test case that fails when we've got 1018 here. */
162 #define SPANPANIC (1016) /* 1024 - 1 entry - 2 byte rounding. */
163 #define SPANCLOSE (900)
164 #define SPANEXIT (600)
165 static symbolS * poolsym; /* label for current pool. */
166 static char poolname[8];
167 static struct hash_control * opcode_hash_control; /* Opcode mnemonics. */
168
169 /* This table describes all the machine specific pseudo-ops the assembler
170 has to support. The fields are:
171 Pseudo-op name without dot
172 Function to call to execute this pseudo-op
173 Integer arg to pass to the function. */
174 const pseudo_typeS md_pseudo_table[] =
175 {
176 { "export", s_globl, 0 },
177 { "import", s_ignore, 0 },
178 { "literals", mcore_s_literals, 0 },
179 { "page", listing_eject, 0 },
180
181 /* The following are to intercept the placement of data into the text
182 section (eg addresses for a switch table), so that the space they
183 occupy can be taken into account when deciding whether or not to
184 dump the current literal pool.
185 XXX - currently we do not cope with the .space and .dcb.d directives. */
186 { "ascii", mcore_stringer, 0 },
187 { "asciz", mcore_stringer, 1 },
188 { "byte", mcore_cons, 1 },
189 { "dc", mcore_cons, 2 },
190 { "dc.b", mcore_cons, 1 },
191 { "dc.d", mcore_float_cons, 'd'},
192 { "dc.l", mcore_cons, 4 },
193 { "dc.s", mcore_float_cons, 'f'},
194 { "dc.w", mcore_cons, 2 },
195 { "dc.x", mcore_float_cons, 'x'},
196 { "double", mcore_float_cons, 'd'},
197 { "float", mcore_float_cons, 'f'},
198 { "hword", mcore_cons, 2 },
199 { "int", mcore_cons, 4 },
200 { "long", mcore_cons, 4 },
201 { "octa", mcore_cons, 16 },
202 { "quad", mcore_cons, 8 },
203 { "short", mcore_cons, 2 },
204 { "single", mcore_float_cons, 'f'},
205 { "string", mcore_stringer, 1 },
206 { "word", mcore_cons, 2 },
207 { "fill", mcore_fill, 0 },
208
209 /* Allow for the effect of section changes. */
210 { "text", mcore_s_text, 0 },
211 { "data", mcore_s_data, 0 },
212 { "bss", mcore_s_bss, 1 },
213 #ifdef OBJ_ELF
214 { "comm", mcore_s_comm, 0 },
215 #endif
216 { "section", mcore_s_section, 0 },
217 { "section.s", mcore_s_section, 0 },
218 { "sect", mcore_s_section, 0 },
219 { "sect.s", mcore_s_section, 0 },
220
221 { 0, 0, 0 }
222 };
223
224 static void
225 mcore_s_literals (ignore)
226 int ignore ATTRIBUTE_UNUSED;
227 {
228 dump_literals (0);
229 demand_empty_rest_of_line ();
230 }
231
232 /* Perform FUNC (ARG), and track number of bytes added to frag. */
233
234 static void
235 mcore_pool_count (func, arg)
236 void (*func) PARAMS ((int));
237 int arg;
238 {
239 const fragS *curr_frag = frag_now;
240 offsetT added = -frag_now_fix_octets ();
241
242 (*func) (arg);
243
244 while (curr_frag != frag_now)
245 {
246 added += curr_frag->fr_fix;
247 curr_frag = curr_frag->fr_next;
248 }
249
250 added += frag_now_fix_octets ();
251 poolspan += added;
252 }
253
254 static void
255 mcore_cons (nbytes)
256 int nbytes;
257 {
258 if (now_seg == text_section)
259 mcore_pool_count (cons, nbytes);
260 else
261 cons (nbytes);
262
263 /* In theory we ought to call check_literals (2,0) here in case
264 we need to dump the literal table. We cannot do this however,
265 as the directives that we are intercepting may be being used
266 to build a switch table, and we must not interfere with its
267 contents. Instead we cross our fingers and pray... */
268 }
269
270 static void
271 mcore_float_cons (float_type)
272 int float_type;
273 {
274 if (now_seg == text_section)
275 mcore_pool_count (float_cons, float_type);
276 else
277 float_cons (float_type);
278
279 /* See the comment in mcore_cons () about calling check_literals.
280 It is unlikely that a switch table will be constructed using
281 floating point values, but it is still likely that an indexed
282 table of floating point constants is being created by these
283 directives, so again we must not interfere with their placement. */
284 }
285
286 static void
287 mcore_stringer (append_zero)
288 int append_zero;
289 {
290 if (now_seg == text_section)
291 mcore_pool_count (stringer, append_zero);
292 else
293 stringer (append_zero);
294
295 /* We call check_literals here in case a large number of strings are
296 being placed into the text section with a sequence of stringer
297 directives. In theory we could be upsetting something if these
298 strings are actually in an indexed table instead of referenced by
299 individual labels. Let us hope that that never happens. */
300 check_literals (2, 0);
301 }
302
303 static void
304 mcore_fill (unused)
305 int unused;
306 {
307 if (now_seg == text_section)
308 mcore_pool_count (s_fill, unused);
309 else
310 s_fill (unused);
311
312 check_literals (2, 0);
313 }
314
315 /* Handle the section changing pseudo-ops. These call through to the
316 normal implementations, but they dump the literal pool first. */
317 static void
318 mcore_s_text (ignore)
319 int ignore;
320 {
321 dump_literals (0);
322
323 #ifdef OBJ_ELF
324 obj_elf_text (ignore);
325 #else
326 s_text (ignore);
327 #endif
328 }
329
330 static void
331 mcore_s_data (ignore)
332 int ignore;
333 {
334 dump_literals (0);
335
336 #ifdef OBJ_ELF
337 obj_elf_data (ignore);
338 #else
339 s_data (ignore);
340 #endif
341 }
342
343 static void
344 mcore_s_section (ignore)
345 int ignore;
346 {
347 /* Scan forwards to find the name of the section. If the section
348 being switched to is ".line" then this is a DWARF1 debug section
349 which is arbitarily placed inside generated code. In this case
350 do not dump the literal pool because it is a) inefficient and
351 b) would require the generation of extra code to jump around the
352 pool. */
353 char * ilp = input_line_pointer;
354
355 while (*ilp != 0 && ISSPACE (*ilp))
356 ++ ilp;
357
358 if (strncmp (ilp, ".line", 5) == 0
359 && (ISSPACE (ilp[5]) || *ilp == '\n' || *ilp == '\r'))
360 ;
361 else
362 dump_literals (0);
363
364 #ifdef OBJ_ELF
365 obj_elf_section (ignore);
366 #endif
367 #ifdef OBJ_COFF
368 obj_coff_section (ignore);
369 #endif
370 }
371
372 static void
373 mcore_s_bss (needs_align)
374 int needs_align;
375 {
376 dump_literals (0);
377
378 s_lcomm_bytes (needs_align);
379 }
380
381 #ifdef OBJ_ELF
382 static void
383 mcore_s_comm (needs_align)
384 int needs_align;
385 {
386 dump_literals (0);
387
388 obj_elf_common (needs_align);
389 }
390 #endif
391
392 /* This function is called once, at assembler startup time. This should
393 set up all the tables, etc that the MD part of the assembler needs. */
394 void
395 md_begin ()
396 {
397 const mcore_opcode_info * opcode;
398 char * prev_name = "";
399
400 opcode_hash_control = hash_new ();
401
402 /* Insert unique names into hash table */
403 for (opcode = mcore_table; opcode->name; opcode ++)
404 {
405 if (! streq (prev_name, opcode->name))
406 {
407 prev_name = opcode->name;
408 hash_insert (opcode_hash_control, opcode->name, (char *) opcode);
409 }
410 }
411 }
412
413 /* Get a log2(val). */
414 static int
415 log2 (val)
416 unsigned int val;
417 {
418 int log = -1;
419 while (val != 0)
420 {
421 log ++;
422 val >>= 1;
423 }
424
425 return log;
426 }
427
428 /* Try to parse a reg name. */
429 static char *
430 parse_reg (s, reg)
431 char * s;
432 unsigned * reg;
433 {
434 /* Strip leading whitespace. */
435 while (ISSPACE (* s))
436 ++ s;
437
438 if (TOLOWER (s[0]) == 'r')
439 {
440 if (s[1] == '1' && s[2] >= '0' && s[2] <= '5')
441 {
442 *reg = 10 + s[2] - '0';
443 return s + 3;
444 }
445
446 if (s[1] >= '0' && s[1] <= '9')
447 {
448 *reg = s[1] - '0';
449 return s + 2;
450 }
451 }
452 else if ( TOLOWER (s[0]) == 's'
453 && TOLOWER (s[1]) == 'p'
454 && ! ISALNUM (s[2]))
455 {
456 * reg = 0;
457 return s + 2;
458 }
459
460 as_bad (_("register expected, but saw '%.6s'"), s);
461 return s;
462 }
463
464 static struct Cregs
465 {
466 char * name;
467 unsigned int crnum;
468 }
469 cregs[] =
470 {
471 { "psr", 0},
472 { "vbr", 1},
473 { "epsr", 2},
474 { "fpsr", 3},
475 { "epc", 4},
476 { "fpc", 5},
477 { "ss0", 6},
478 { "ss1", 7},
479 { "ss2", 8},
480 { "ss3", 9},
481 { "ss4", 10},
482 { "gcr", 11},
483 { "gsr", 12},
484 { "", 0}
485 };
486
487 static char *
488 parse_creg (s, reg)
489 char * s;
490 unsigned * reg;
491 {
492 int i;
493
494 /* Strip leading whitespace. */
495 while (ISSPACE (* s))
496 ++s;
497
498 if ((TOLOWER (s[0]) == 'c' && TOLOWER (s[1]) == 'r'))
499 {
500 if (s[2] == '3' && s[3] >= '0' && s[3] <= '1')
501 {
502 *reg = 30 + s[3] - '0';
503 return s + 4;
504 }
505
506 if (s[2] == '2' && s[3] >= '0' && s[3] <= '9')
507 {
508 *reg = 20 + s[3] - '0';
509 return s + 4;
510 }
511
512 if (s[2] == '1' && s[3] >= '0' && s[3] <= '9')
513 {
514 *reg = 10 + s[3] - '0';
515 return s + 4;
516 }
517
518 if (s[2] >= '0' && s[2] <= '9')
519 {
520 *reg = s[2] - '0';
521 return s + 3;
522 }
523 }
524
525 /* Look at alternate creg names before giving error. */
526 for (i = 0; cregs[i].name[0] != '\0'; i++)
527 {
528 char buf [10];
529 int length;
530 int j;
531
532 length = strlen (cregs[i].name);
533
534 for (j = 0; j < length; j++)
535 buf[j] = TOLOWER (s[j]);
536
537 if (strncmp (cregs[i].name, buf, length) == 0)
538 {
539 *reg = cregs[i].crnum;
540 return s + length;
541 }
542 }
543
544 as_bad (_("control register expected, but saw '%.6s'"), s);
545
546 return s;
547 }
548
549 static char *
550 parse_psrmod (s, reg)
551 char * s;
552 unsigned * reg;
553 {
554 int i;
555 char buf[10];
556 static struct psrmods
557 {
558 char * name;
559 unsigned int value;
560 }
561 psrmods[] =
562 {
563 { "ie", 1 },
564 { "fe", 2 },
565 { "ee", 4 },
566 { "af", 8 } /* Really 0 and non-combinable. */
567 };
568
569 for (i = 0; i < 2; i++)
570 buf[i] = TOLOWER (s[i]);
571
572 for (i = sizeof (psrmods) / sizeof (psrmods[0]); i--;)
573 {
574 if (! strncmp (psrmods[i].name, buf, 2))
575 {
576 * reg = psrmods[i].value;
577
578 return s + 2;
579 }
580 }
581
582 as_bad (_("bad/missing psr specifier"));
583
584 * reg = 0;
585
586 return s;
587 }
588
589 static char *
590 parse_exp (s, e)
591 char * s;
592 expressionS * e;
593 {
594 char * save;
595 char * new;
596
597 /* Skip whitespace. */
598 while (ISSPACE (* s))
599 ++ s;
600
601 save = input_line_pointer;
602 input_line_pointer = s;
603
604 expression (e);
605
606 if (e->X_op == O_absent)
607 as_bad (_("missing operand"));
608
609 new = input_line_pointer;
610 input_line_pointer = save;
611
612 return new;
613 }
614
615 static void
616 make_name (s, p, n)
617 char * s;
618 char * p;
619 int n;
620 {
621 static const char hex[] = "0123456789ABCDEF";
622
623 s[0] = p[0];
624 s[1] = p[1];
625 s[2] = p[2];
626 s[3] = hex[(n >> 12) & 0xF];
627 s[4] = hex[(n >> 8) & 0xF];
628 s[5] = hex[(n >> 4) & 0xF];
629 s[6] = hex[(n) & 0xF];
630 s[7] = 0;
631 }
632
633 #define POOL_END_LABEL ".LE"
634 #define POOL_START_LABEL ".LS"
635
636 static void
637 dump_literals (isforce)
638 int isforce;
639 {
640 unsigned int i;
641 struct literal * p;
642 symbolS * brarsym = NULL;
643
644 if (poolsize == 0)
645 return;
646
647 /* Must we branch around the literal table? */
648 if (isforce)
649 {
650 char * output;
651 char brarname[8];
652
653 make_name (brarname, POOL_END_LABEL, poolnumber);
654
655 brarsym = symbol_make (brarname);
656
657 symbol_table_insert (brarsym);
658
659 output = frag_var (rs_machine_dependent,
660 md_relax_table[C (UNCD_JUMP, DISP32)].rlx_length,
661 md_relax_table[C (UNCD_JUMP, DISP12)].rlx_length,
662 C (UNCD_JUMP, 0), brarsym, 0, 0);
663 output[0] = INST_BYTE0 (MCORE_INST_BR); /* br .+xxx */
664 output[1] = INST_BYTE1 (MCORE_INST_BR);
665 }
666
667 /* Make sure that the section is sufficiently aligned and that
668 the literal table is aligned within it. */
669 record_alignment (now_seg, 2);
670 frag_align (2, 0, 0);
671
672 colon (S_GET_NAME (poolsym));
673
674 for (i = 0, p = litpool; i < poolsize; i++, p++)
675 emit_expr (& p->e, 4);
676
677 if (brarsym != NULL)
678 colon (S_GET_NAME (brarsym));
679
680 poolsize = 0;
681 }
682
683 static void
684 check_literals (kind, offset)
685 int kind;
686 int offset;
687 {
688 poolspan += offset;
689
690 /* SPANCLOSE and SPANEXIT are smaller numbers than SPANPANIC.
691 SPANPANIC means that we must dump now.
692 kind == 0 is any old instruction.
693 kind > 0 means we just had a control transfer instruction.
694 kind == 1 means within a function
695 kind == 2 means we just left a function
696
697 The dump_literals (1) call inserts a branch around the table, so
698 we first look to see if its a situation where we won't have to
699 insert a branch (e.g., the previous instruction was an unconditional
700 branch).
701
702 SPANPANIC is the point where we must dump a single-entry pool.
703 it accounts for alignments and an inserted branch.
704 the 'poolsize*2' accounts for the scenario where we do:
705 lrw r1,lit1; lrw r2,lit2; lrw r3,lit3
706 Note that the 'lit2' reference is 2 bytes further along
707 but the literal it references will be 4 bytes further along,
708 so we must consider the poolsize into this equation.
709 This is slightly over-cautious, but guarantees that we won't
710 panic because a relocation is too distant. */
711
712 if (poolspan > SPANCLOSE && kind > 0)
713 dump_literals (0);
714 else if (poolspan > SPANEXIT && kind > 1)
715 dump_literals (0);
716 else if (poolspan >= (SPANPANIC - poolsize * 2))
717 dump_literals (1);
718 }
719
720 static int
721 enter_literal (e, ispcrel)
722 expressionS * e;
723 int ispcrel;
724 {
725 unsigned int i;
726 struct literal * p;
727
728 if (poolsize >= MAX_POOL_SIZE - 2)
729 {
730 /* The literal pool is as full as we can handle. We have
731 to be 2 entries shy of the 1024/4=256 entries because we
732 have to allow for the branch (2 bytes) and the alignment
733 (2 bytes before the first insn referencing the pool and
734 2 bytes before the pool itself) == 6 bytes, rounds up
735 to 2 entries. */
736 dump_literals (1);
737 }
738
739 if (poolsize == 0)
740 {
741 /* Create new literal pool. */
742 if (++ poolnumber > 0xFFFF)
743 as_fatal (_("more than 65K literal pools"));
744
745 make_name (poolname, POOL_START_LABEL, poolnumber);
746 poolsym = symbol_make (poolname);
747 symbol_table_insert (poolsym);
748 poolspan = 0;
749 }
750
751 /* Search pool for value so we don't have duplicates. */
752 for (p = litpool, i = 0; i < poolsize; i++, p++)
753 {
754 if (e->X_op == p->e.X_op
755 && e->X_add_symbol == p->e.X_add_symbol
756 && e->X_add_number == p->e.X_add_number
757 && ispcrel == p->ispcrel)
758 {
759 p->refcnt ++;
760 return i;
761 }
762 }
763
764 p->refcnt = 1;
765 p->ispcrel = ispcrel;
766 p->e = * e;
767
768 poolsize ++;
769
770 return i;
771 }
772
773 /* Parse a literal specification. -- either new or old syntax.
774 old syntax: the user supplies the label and places the literal.
775 new syntax: we put it into the literal pool. */
776 static char *
777 parse_rt (s, outputp, ispcrel, ep)
778 char * s;
779 char ** outputp;
780 int ispcrel;
781 expressionS * ep;
782 {
783 expressionS e;
784 int n;
785
786 if (ep)
787 /* Indicate nothing there. */
788 ep->X_op = O_absent;
789
790 if (*s == '[')
791 {
792 s = parse_exp (s + 1, & e);
793
794 if (*s == ']')
795 s++;
796 else
797 as_bad (_("missing ']'"));
798 }
799 else
800 {
801 s = parse_exp (s, & e);
802
803 n = enter_literal (& e, ispcrel);
804
805 if (ep)
806 *ep = e;
807
808 /* Create a reference to pool entry. */
809 e.X_op = O_symbol;
810 e.X_add_symbol = poolsym;
811 e.X_add_number = n << 2;
812 }
813
814 * outputp = frag_more (2);
815
816 fix_new_exp (frag_now, (*outputp) - frag_now->fr_literal, 2, & e, 1,
817 BFD_RELOC_MCORE_PCREL_IMM8BY4);
818
819 return s;
820 }
821
822 static char *
823 parse_imm (s, val, min, max)
824 char * s;
825 unsigned * val;
826 unsigned min;
827 unsigned max;
828 {
829 char * new;
830 expressionS e;
831
832 new = parse_exp (s, & e);
833
834 if (e.X_op == O_absent)
835 ; /* An error message has already been emitted. */
836 else if (e.X_op != O_constant)
837 as_bad (_("operand must be a constant"));
838 else if ((addressT) e.X_add_number < min || (addressT) e.X_add_number > max)
839 as_bad (_("operand must be absolute in range %u..%u, not %ld"),
840 min, max, (long) e.X_add_number);
841
842 * val = e.X_add_number;
843
844 return new;
845 }
846
847 static char *
848 parse_mem (s, reg, off, siz)
849 char * s;
850 unsigned * reg;
851 unsigned * off;
852 unsigned siz;
853 {
854 * off = 0;
855
856 while (ISSPACE (* s))
857 ++ s;
858
859 if (* s == '(')
860 {
861 s = parse_reg (s + 1, reg);
862
863 while (ISSPACE (* s))
864 ++ s;
865
866 if (* s == ',')
867 {
868 s = parse_imm (s + 1, off, 0, 63);
869
870 if (siz > 1)
871 {
872 if (siz > 2)
873 {
874 if (* off & 0x3)
875 as_bad (_("operand must be a multiple of 4"));
876
877 * off >>= 2;
878 }
879 else
880 {
881 if (* off & 0x1)
882 as_bad (_("operand must be a multiple of 2"));
883
884 * off >>= 1;
885 }
886 }
887 }
888
889 while (ISSPACE (* s))
890 ++ s;
891
892 if (* s == ')')
893 s ++;
894 }
895 else
896 as_bad (_("base register expected"));
897
898 return s;
899 }
900
901 /* This is the guts of the machine-dependent assembler. STR points to a
902 machine dependent instruction. This function is supposed to emit
903 the frags/bytes it assembles to. */
904
905 void
906 md_assemble (str)
907 char * str;
908 {
909 char * op_start;
910 char * op_end;
911 mcore_opcode_info * opcode;
912 char * output;
913 int nlen = 0;
914 unsigned short inst;
915 unsigned reg;
916 unsigned off;
917 unsigned isize;
918 expressionS e;
919 char name[20];
920
921 /* Drop leading whitespace. */
922 while (ISSPACE (* str))
923 str ++;
924
925 /* Find the op code end. */
926 for (op_start = op_end = str;
927 nlen < 20 && !is_end_of_line [(unsigned char) *op_end] && *op_end != ' ';
928 op_end++)
929 {
930 name[nlen] = op_start[nlen];
931 nlen++;
932 }
933
934 name [nlen] = 0;
935
936 if (nlen == 0)
937 {
938 as_bad (_("can't find opcode "));
939 return;
940 }
941
942 opcode = (mcore_opcode_info *) hash_find (opcode_hash_control, name);
943 if (opcode == NULL)
944 {
945 as_bad (_("unknown opcode \"%s\""), name);
946 return;
947 }
948
949 inst = opcode->inst;
950 isize = 2;
951
952 switch (opcode->opclass)
953 {
954 case O0:
955 output = frag_more (2);
956 break;
957
958 case OT:
959 op_end = parse_imm (op_end + 1, & reg, 0, 3);
960 inst |= reg;
961 output = frag_more (2);
962 break;
963
964 case O1:
965 op_end = parse_reg (op_end + 1, & reg);
966 inst |= reg;
967 output = frag_more (2);
968 break;
969
970 case JMP:
971 op_end = parse_reg (op_end + 1, & reg);
972 inst |= reg;
973 output = frag_more (2);
974 /* In a sifilter mode, we emit this insn 2 times,
975 fixes problem of an interrupt during a jmp.. */
976 if (sifilter_mode)
977 {
978 output[0] = INST_BYTE0 (inst);
979 output[1] = INST_BYTE1 (inst);
980 output = frag_more (2);
981 }
982 break;
983
984 case JSR:
985 op_end = parse_reg (op_end + 1, & reg);
986
987 if (reg == 15)
988 as_bad (_("invalid register: r15 illegal"));
989
990 inst |= reg;
991 output = frag_more (2);
992
993 if (sifilter_mode)
994 {
995 /* Replace with: bsr .+2 ; addi r15,6; jmp rx ; jmp rx */
996 inst = MCORE_INST_BSR; /* with 0 displacement */
997 output[0] = INST_BYTE0 (inst);
998 output[1] = INST_BYTE1 (inst);
999
1000 output = frag_more (2);
1001 inst = MCORE_INST_ADDI;
1002 inst |= 15; /* addi r15,6 */
1003 inst |= (6 - 1) << 4; /* over the jmp's */
1004 output[0] = INST_BYTE0 (inst);
1005 output[1] = INST_BYTE1 (inst);
1006
1007 output = frag_more (2);
1008 inst = MCORE_INST_JMP | reg;
1009 output[0] = INST_BYTE0 (inst);
1010 output[1] = INST_BYTE1 (inst);
1011
1012 output = frag_more (2); /* 2nd emitted in fallthru */
1013 }
1014 break;
1015
1016 case OC:
1017 op_end = parse_reg (op_end + 1, & reg);
1018 inst |= reg;
1019
1020 /* Skip whitespace. */
1021 while (ISSPACE (* op_end))
1022 ++ op_end;
1023
1024 if (*op_end == ',')
1025 {
1026 op_end = parse_creg (op_end + 1, & reg);
1027 inst |= reg << 4;
1028 }
1029
1030 output = frag_more (2);
1031 break;
1032
1033 case MULSH:
1034 if (cpu == M210)
1035 {
1036 as_bad (_("M340 specific opcode used when assembling for M210"));
1037 break;
1038 }
1039 /* drop through... */
1040 case O2:
1041 op_end = parse_reg (op_end + 1, & reg);
1042 inst |= reg;
1043
1044 /* Skip whitespace. */
1045 while (ISSPACE (* op_end))
1046 ++ op_end;
1047
1048 if (* op_end == ',')
1049 {
1050 op_end = parse_reg (op_end + 1, & reg);
1051 inst |= reg << 4;
1052 }
1053 else
1054 as_bad (_("second operand missing"));
1055
1056 output = frag_more (2);
1057 break;
1058
1059 case X1: /* Handle both syntax-> xtrb- r1,rx OR xtrb- rx */
1060 op_end = parse_reg (op_end + 1, & reg);
1061
1062 /* Skip whitespace. */
1063 while (ISSPACE (* op_end))
1064 ++ op_end;
1065
1066 if (* op_end == ',') /* xtrb- r1,rx */
1067 {
1068 if (reg != 1)
1069 as_bad (_("destination register must be r1"));
1070
1071 op_end = parse_reg (op_end + 1, & reg);
1072 }
1073
1074 inst |= reg;
1075 output = frag_more (2);
1076 break;
1077
1078 case O1R1: /* div- rx,r1 */
1079 op_end = parse_reg (op_end + 1, & reg);
1080 inst |= reg;
1081
1082 /* Skip whitespace. */
1083 while (ISSPACE (* op_end))
1084 ++ op_end;
1085
1086 if (* op_end == ',')
1087 {
1088 op_end = parse_reg (op_end + 1, & reg);
1089 if (reg != 1)
1090 as_bad (_("source register must be r1"));
1091 }
1092 else
1093 as_bad (_("second operand missing"));
1094
1095 output = frag_more (2);
1096 break;
1097
1098 case OI:
1099 op_end = parse_reg (op_end + 1, & reg);
1100 inst |= reg;
1101
1102 /* Skip whitespace. */
1103 while (ISSPACE (* op_end))
1104 ++ op_end;
1105
1106 if (* op_end == ',')
1107 {
1108 op_end = parse_imm (op_end + 1, & reg, 1, 32);
1109 inst |= (reg - 1) << 4;
1110 }
1111 else
1112 as_bad (_("second operand missing"));
1113
1114 output = frag_more (2);
1115 break;
1116
1117 case OB:
1118 op_end = parse_reg (op_end + 1, & reg);
1119 inst |= reg;
1120
1121 /* Skip whitespace. */
1122 while (ISSPACE (* op_end))
1123 ++ op_end;
1124
1125 if (* op_end == ',')
1126 {
1127 op_end = parse_imm (op_end + 1, & reg, 0, 31);
1128 inst |= reg << 4;
1129 }
1130 else
1131 as_bad (_("second operand missing"));
1132
1133 output = frag_more (2);
1134 break;
1135
1136 case OB2: /* like OB, but arg is 2^n instead of n */
1137 op_end = parse_reg (op_end + 1, & reg);
1138 inst |= reg;
1139
1140 /* Skip whitespace. */
1141 while (ISSPACE (* op_end))
1142 ++ op_end;
1143
1144 if (* op_end == ',')
1145 {
1146 op_end = parse_imm (op_end + 1, & reg, 1, 1 << 31);
1147 /* Further restrict the immediate to a power of two. */
1148 if ((reg & (reg - 1)) == 0)
1149 reg = log2 (reg);
1150 else
1151 {
1152 reg = 0;
1153 as_bad (_("immediate is not a power of two"));
1154 }
1155 inst |= (reg) << 4;
1156 }
1157 else
1158 as_bad (_("second operand missing"));
1159
1160 output = frag_more (2);
1161 break;
1162
1163 case OBRa: /* Specific for bgeni: imm of 0->6 translate to movi. */
1164 case OBRb:
1165 case OBRc:
1166 op_end = parse_reg (op_end + 1, & reg);
1167 inst |= reg;
1168
1169 /* Skip whitespace. */
1170 while (ISSPACE (* op_end))
1171 ++ op_end;
1172
1173 if (* op_end == ',')
1174 {
1175 op_end = parse_imm (op_end + 1, & reg, 0, 31);
1176 /* immediate values of 0 -> 6 translate to movi */
1177 if (reg <= 6)
1178 {
1179 inst = (inst & 0xF) | MCORE_INST_BGENI_ALT;
1180 reg = 0x1 << reg;
1181 as_warn (_("translating bgeni to movi"));
1182 }
1183 inst &= ~ 0x01f0;
1184 inst |= reg << 4;
1185 }
1186 else
1187 as_bad (_("second operand missing"));
1188
1189 output = frag_more (2);
1190 break;
1191
1192 case OBR2: /* like OBR, but arg is 2^n instead of n */
1193 op_end = parse_reg (op_end + 1, & reg);
1194 inst |= reg;
1195
1196 /* Skip whitespace. */
1197 while (ISSPACE (* op_end))
1198 ++ op_end;
1199
1200 if (* op_end == ',')
1201 {
1202 op_end = parse_imm (op_end + 1, & reg, 1, 1 << 31);
1203
1204 /* Further restrict the immediate to a power of two. */
1205 if ((reg & (reg - 1)) == 0)
1206 reg = log2 (reg);
1207 else
1208 {
1209 reg = 0;
1210 as_bad (_("immediate is not a power of two"));
1211 }
1212
1213 /* Immediate values of 0 -> 6 translate to movi. */
1214 if (reg <= 6)
1215 {
1216 inst = (inst & 0xF) | MCORE_INST_BGENI_ALT;
1217 reg = 0x1 << reg;
1218 as_warn (_("translating mgeni to movi"));
1219 }
1220
1221 inst |= reg << 4;
1222 }
1223 else
1224 as_bad (_("second operand missing"));
1225
1226 output = frag_more (2);
1227 break;
1228
1229 case OMa: /* Specific for bmaski: imm 1->7 translate to movi. */
1230 case OMb:
1231 case OMc:
1232 op_end = parse_reg (op_end + 1, & reg);
1233 inst |= reg;
1234
1235 /* Skip whitespace. */
1236 while (ISSPACE (* op_end))
1237 ++ op_end;
1238
1239 if (* op_end == ',')
1240 {
1241 op_end = parse_imm (op_end + 1, & reg, 1, 32);
1242
1243 /* Immediate values of 1 -> 7 translate to movi. */
1244 if (reg <= 7)
1245 {
1246 inst = (inst & 0xF) | MCORE_INST_BMASKI_ALT;
1247 reg = (0x1 << reg) - 1;
1248 inst |= reg << 4;
1249
1250 as_warn (_("translating bmaski to movi"));
1251 }
1252 else
1253 {
1254 inst &= ~ 0x01F0;
1255 inst |= (reg & 0x1F) << 4;
1256 }
1257 }
1258 else
1259 as_bad (_("second operand missing"));
1260
1261 output = frag_more (2);
1262 break;
1263
1264 case SI:
1265 op_end = parse_reg (op_end + 1, & reg);
1266 inst |= reg;
1267
1268 /* Skip whitespace. */
1269 while (ISSPACE (* op_end))
1270 ++ op_end;
1271
1272 if (* op_end == ',')
1273 {
1274 op_end = parse_imm (op_end + 1, & reg, 1, 31);
1275 inst |= reg << 4;
1276 }
1277 else
1278 as_bad (_("second operand missing"));
1279
1280 output = frag_more (2);
1281 break;
1282
1283 case I7:
1284 op_end = parse_reg (op_end + 1, & reg);
1285 inst |= reg;
1286
1287 /* Skip whitespace. */
1288 while (ISSPACE (* op_end))
1289 ++ op_end;
1290
1291 if (* op_end == ',')
1292 {
1293 op_end = parse_imm (op_end + 1, & reg, 0, 0x7F);
1294 inst |= reg << 4;
1295 }
1296 else
1297 as_bad (_("second operand missing"));
1298
1299 output = frag_more (2);
1300 break;
1301
1302 case LS:
1303 op_end = parse_reg (op_end + 1, & reg);
1304 inst |= reg << 8;
1305
1306 /* Skip whitespace. */
1307 while (ISSPACE (* op_end))
1308 ++ op_end;
1309
1310 if (* op_end == ',')
1311 {
1312 int size;
1313
1314 if ((inst & 0x6000) == 0)
1315 size = 4;
1316 else if ((inst & 0x6000) == 0x4000)
1317 size = 2;
1318 else if ((inst & 0x6000) == 0x2000)
1319 size = 1;
1320 else
1321 abort ();
1322
1323 op_end = parse_mem (op_end + 1, & reg, & off, size);
1324
1325 if (off > 16)
1326 as_bad (_("displacement too large (%d)"), off);
1327 else
1328 inst |= (reg) | (off << 4);
1329 }
1330 else
1331 as_bad (_("second operand missing"));
1332
1333 output = frag_more (2);
1334 break;
1335
1336 case LR:
1337 op_end = parse_reg (op_end + 1, & reg);
1338
1339 if (reg == 0 || reg == 15)
1340 as_bad (_("Invalid register: r0 and r15 illegal"));
1341
1342 inst |= (reg << 8);
1343
1344 /* Skip whitespace. */
1345 while (ISSPACE (* op_end))
1346 ++ op_end;
1347
1348 if (* op_end == ',')
1349 {
1350 /* parse_rt calls frag_more() for us. */
1351 input_line_pointer = parse_rt (op_end + 1, & output, 0, 0);
1352 op_end = input_line_pointer;
1353 }
1354 else
1355 {
1356 as_bad (_("second operand missing"));
1357 output = frag_more (2); /* save its space */
1358 }
1359 break;
1360
1361 case LJ:
1362 input_line_pointer = parse_rt (op_end + 1, & output, 1, 0);
1363 /* parse_rt() calls frag_more() for us. */
1364 op_end = input_line_pointer;
1365 break;
1366
1367 case RM:
1368 op_end = parse_reg (op_end + 1, & reg);
1369
1370 if (reg == 0 || reg == 15)
1371 as_bad (_("bad starting register: r0 and r15 invalid"));
1372
1373 inst |= reg;
1374
1375 /* Skip whitespace. */
1376 while (ISSPACE (* op_end))
1377 ++ op_end;
1378
1379 if (* op_end == '-')
1380 {
1381 op_end = parse_reg (op_end + 1, & reg);
1382
1383 if (reg != 15)
1384 as_bad (_("ending register must be r15"));
1385
1386 /* Skip whitespace. */
1387 while (ISSPACE (* op_end))
1388 ++ op_end;
1389 }
1390
1391 if (* op_end == ',')
1392 {
1393 op_end ++;
1394
1395 /* Skip whitespace. */
1396 while (ISSPACE (* op_end))
1397 ++ op_end;
1398
1399 if (* op_end == '(')
1400 {
1401 op_end = parse_reg (op_end + 1, & reg);
1402
1403 if (reg != 0)
1404 as_bad (_("bad base register: must be r0"));
1405
1406 if (* op_end == ')')
1407 op_end ++;
1408 }
1409 else
1410 as_bad (_("base register expected"));
1411 }
1412 else
1413 as_bad (_("second operand missing"));
1414
1415 output = frag_more (2);
1416 break;
1417
1418 case RQ:
1419 op_end = parse_reg (op_end + 1, & reg);
1420
1421 if (reg != 4)
1422 as_fatal (_("first register must be r4"));
1423
1424 /* Skip whitespace. */
1425 while (ISSPACE (* op_end))
1426 ++ op_end;
1427
1428 if (* op_end == '-')
1429 {
1430 op_end = parse_reg (op_end + 1, & reg);
1431
1432 if (reg != 7)
1433 as_fatal (_("last register must be r7"));
1434
1435 /* Skip whitespace. */
1436 while (ISSPACE (* op_end))
1437 ++ op_end;
1438
1439 if (* op_end == ',')
1440 {
1441 op_end ++;
1442
1443 /* Skip whitespace. */
1444 while (ISSPACE (* op_end))
1445 ++ op_end;
1446
1447 if (* op_end == '(')
1448 {
1449 op_end = parse_reg (op_end + 1, & reg);
1450
1451 if (reg >= 4 && reg <= 7)
1452 as_fatal ("base register cannot be r4, r5, r6, or r7");
1453
1454 inst |= reg;
1455
1456 /* Skip whitespace. */
1457 while (ISSPACE (* op_end))
1458 ++ op_end;
1459
1460 if (* op_end == ')')
1461 op_end ++;
1462 }
1463 else
1464 as_bad (_("base register expected"));
1465 }
1466 else
1467 as_bad (_("second operand missing"));
1468 }
1469 else
1470 as_bad (_("reg-reg expected"));
1471
1472 output = frag_more (2);
1473 break;
1474
1475 case BR:
1476 input_line_pointer = parse_exp (op_end + 1, & e);
1477 op_end = input_line_pointer;
1478
1479 output = frag_more (2);
1480
1481 fix_new_exp (frag_now, output-frag_now->fr_literal,
1482 2, & e, 1, BFD_RELOC_MCORE_PCREL_IMM11BY2);
1483 break;
1484
1485 case BL:
1486 op_end = parse_reg (op_end + 1, & reg);
1487 inst |= reg << 4;
1488
1489 /* Skip whitespace. */
1490 while (ISSPACE (* op_end))
1491 ++ op_end;
1492
1493 if (* op_end == ',')
1494 {
1495 op_end = parse_exp (op_end + 1, & e);
1496 output = frag_more (2);
1497
1498 fix_new_exp (frag_now, output-frag_now->fr_literal,
1499 2, & e, 1, BFD_RELOC_MCORE_PCREL_IMM4BY2);
1500 }
1501 else
1502 {
1503 as_bad (_("second operand missing"));
1504 output = frag_more (2);
1505 }
1506 break;
1507
1508 case JC:
1509 input_line_pointer = parse_exp (op_end + 1, & e);
1510 op_end = input_line_pointer;
1511
1512 output = frag_var (rs_machine_dependent,
1513 md_relax_table[C (COND_JUMP, DISP32)].rlx_length,
1514 md_relax_table[C (COND_JUMP, DISP12)].rlx_length,
1515 C (COND_JUMP, 0), e.X_add_symbol, e.X_add_number, 0);
1516 isize = C32_LEN;
1517 break;
1518
1519 case JU:
1520 input_line_pointer = parse_exp (op_end + 1, & e);
1521 op_end = input_line_pointer;
1522
1523 output = frag_var (rs_machine_dependent,
1524 md_relax_table[C (UNCD_JUMP, DISP32)].rlx_length,
1525 md_relax_table[C (UNCD_JUMP, DISP12)].rlx_length,
1526 C (UNCD_JUMP, 0), e.X_add_symbol, e.X_add_number, 0);
1527 isize = U32_LEN;
1528 break;
1529
1530 case JL:
1531 inst = MCORE_INST_JSRI; /* jsri */
1532 input_line_pointer = parse_rt (op_end + 1, & output, 1, & e);
1533 /* parse_rt() calls frag_more for us. */
1534 op_end = input_line_pointer;
1535
1536 /* Only do this if we know how to do it ... */
1537 if (e.X_op != O_absent && do_jsri2bsr)
1538 {
1539 /* Look at adding the R_PCREL_JSRIMM11BY2. */
1540 fix_new_exp (frag_now, output-frag_now->fr_literal,
1541 2, & e, 1, BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2);
1542 }
1543 break;
1544
1545 case RSI: /* SI, but imm becomes 32-imm */
1546 op_end = parse_reg (op_end + 1, & reg);
1547 inst |= reg;
1548
1549 /* Skip whitespace. */
1550 while (ISSPACE (* op_end))
1551 ++ op_end;
1552
1553 if (* op_end == ',')
1554 {
1555 op_end = parse_imm (op_end + 1, & reg, 1, 31);
1556
1557 reg = 32 - reg;
1558 inst |= reg << 4;
1559 }
1560 else
1561 as_bad (_("second operand missing"));
1562
1563 output = frag_more (2);
1564 break;
1565
1566 case DO21: /* O2, dup rd, lit must be 1 */
1567 op_end = parse_reg (op_end + 1, & reg);
1568 inst |= reg;
1569 inst |= reg << 4;
1570
1571 /* Skip whitespace. */
1572 while (ISSPACE (* op_end))
1573 ++ op_end;
1574
1575 if (* op_end == ',')
1576 {
1577 op_end = parse_imm (op_end + 1, & reg, 1, 31);
1578
1579 if (reg != 1)
1580 as_bad (_("second operand must be 1"));
1581 }
1582 else
1583 as_bad (_("second operand missing"));
1584
1585 output = frag_more (2);
1586 break;
1587
1588 case SIa:
1589 op_end = parse_reg (op_end + 1, & reg);
1590 inst |= reg;
1591
1592 /* Skip whitespace. */
1593 while (ISSPACE (* op_end))
1594 ++ op_end;
1595
1596 if (* op_end == ',')
1597 {
1598 op_end = parse_imm (op_end + 1, & reg, 1, 31);
1599
1600 if (reg == 0)
1601 as_bad (_("zero used as immediate value"));
1602
1603 inst |= reg << 4;
1604 }
1605 else
1606 as_bad (_("second operand missing"));
1607
1608 output = frag_more (2);
1609 break;
1610
1611 case OPSR:
1612 if (cpu == M210)
1613 {
1614 as_bad (_("M340 specific opcode used when assembling for M210"));
1615 break;
1616 }
1617
1618 op_end = parse_psrmod (op_end + 1, & reg);
1619
1620 /* Look for further selectors. */
1621 while (* op_end == ',')
1622 {
1623 unsigned value;
1624
1625 op_end = parse_psrmod (op_end + 1, & value);
1626
1627 if (value & reg)
1628 as_bad (_("duplicated psr bit specifier"));
1629
1630 reg |= value;
1631 }
1632
1633 if (reg > 8)
1634 as_bad (_("`af' must appear alone"));
1635
1636 inst |= (reg & 0x7);
1637 output = frag_more (2);
1638 break;
1639
1640 default:
1641 as_bad (_("unimplemented opcode \"%s\""), name);
1642 }
1643
1644 /* Drop whitespace after all the operands have been parsed. */
1645 while (ISSPACE (* op_end))
1646 op_end ++;
1647
1648 /* Give warning message if the insn has more operands than required. */
1649 if (strcmp (op_end, opcode->name) && strcmp (op_end, ""))
1650 as_warn (_("ignoring operands: %s "), op_end);
1651
1652 output[0] = INST_BYTE0 (inst);
1653 output[1] = INST_BYTE1 (inst);
1654
1655 check_literals (opcode->transfer, isize);
1656 }
1657
1658 symbolS *
1659 md_undefined_symbol (name)
1660 char *name ATTRIBUTE_UNUSED;
1661 {
1662 return 0;
1663 }
1664
1665 void
1666 md_mcore_end ()
1667 {
1668 dump_literals (0);
1669 subseg_set (text_section, 0);
1670 }
1671
1672 /* Various routines to kill one day. */
1673 /* Equal to MAX_PRECISION in atof-ieee.c */
1674 #define MAX_LITTLENUMS 6
1675
1676 /* Turn a string in input_line_pointer into a floating point constant of type
1677 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
1678 emitted is stored in *sizeP. An error message is returned, or NULL on OK.*/
1679 char *
1680 md_atof (type, litP, sizeP)
1681 int type;
1682 char * litP;
1683 int * sizeP;
1684 {
1685 int prec;
1686 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1687 int i;
1688 char * t;
1689
1690 switch (type)
1691 {
1692 case 'f':
1693 case 'F':
1694 case 's':
1695 case 'S':
1696 prec = 2;
1697 break;
1698
1699 case 'd':
1700 case 'D':
1701 case 'r':
1702 case 'R':
1703 prec = 4;
1704 break;
1705
1706 case 'x':
1707 case 'X':
1708 prec = 6;
1709 break;
1710
1711 case 'p':
1712 case 'P':
1713 prec = 6;
1714 break;
1715
1716 default:
1717 *sizeP = 0;
1718 return _("Bad call to MD_NTOF()");
1719 }
1720
1721 t = atof_ieee (input_line_pointer, type, words);
1722
1723 if (t)
1724 input_line_pointer = t;
1725
1726 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1727
1728 if (! target_big_endian)
1729 {
1730 for (i = prec - 1; i >= 0; i--)
1731 {
1732 md_number_to_chars (litP, (valueT) words[i],
1733 sizeof (LITTLENUM_TYPE));
1734 litP += sizeof (LITTLENUM_TYPE);
1735 }
1736 }
1737 else
1738 for (i = 0; i < prec; i++)
1739 {
1740 md_number_to_chars (litP, (valueT) words[i],
1741 sizeof (LITTLENUM_TYPE));
1742 litP += sizeof (LITTLENUM_TYPE);
1743 }
1744
1745 return 0;
1746 }
1747 \f
1748 const char * md_shortopts = "";
1749
1750 #define OPTION_JSRI2BSR_ON (OPTION_MD_BASE + 0)
1751 #define OPTION_JSRI2BSR_OFF (OPTION_MD_BASE + 1)
1752 #define OPTION_SIFILTER_ON (OPTION_MD_BASE + 2)
1753 #define OPTION_SIFILTER_OFF (OPTION_MD_BASE + 3)
1754 #define OPTION_CPU (OPTION_MD_BASE + 4)
1755 #define OPTION_EB (OPTION_MD_BASE + 5)
1756 #define OPTION_EL (OPTION_MD_BASE + 6)
1757
1758 struct option md_longopts[] =
1759 {
1760 { "no-jsri2bsr", no_argument, NULL, OPTION_JSRI2BSR_OFF},
1761 { "jsri2bsr", no_argument, NULL, OPTION_JSRI2BSR_ON},
1762 { "sifilter", no_argument, NULL, OPTION_SIFILTER_ON},
1763 { "no-sifilter", no_argument, NULL, OPTION_SIFILTER_OFF},
1764 { "cpu", required_argument, NULL, OPTION_CPU},
1765 { "EB", no_argument, NULL, OPTION_EB},
1766 { "EL", no_argument, NULL, OPTION_EL},
1767 { NULL, no_argument, NULL, 0}
1768 };
1769
1770 size_t md_longopts_size = sizeof (md_longopts);
1771
1772 int
1773 md_parse_option (c, arg)
1774 int c;
1775 char * arg;
1776 {
1777 switch (c)
1778 {
1779 case OPTION_CPU:
1780 if (streq (arg, "210"))
1781 {
1782 cpu = M210;
1783 target_big_endian = 1;
1784 }
1785 else if (streq (arg, "340"))
1786 cpu = M340;
1787 else
1788 as_warn (_("unrecognised cpu type '%s'"), arg);
1789 break;
1790
1791 case OPTION_EB: target_big_endian = 1; break;
1792 case OPTION_EL: target_big_endian = 0; cpu = M340; break;
1793 case OPTION_JSRI2BSR_ON: do_jsri2bsr = 1; break;
1794 case OPTION_JSRI2BSR_OFF: do_jsri2bsr = 0; break;
1795 case OPTION_SIFILTER_ON: sifilter_mode = 1; break;
1796 case OPTION_SIFILTER_OFF: sifilter_mode = 0; break;
1797 default: return 0;
1798 }
1799
1800 return 1;
1801 }
1802
1803 void
1804 md_show_usage (stream)
1805 FILE * stream;
1806 {
1807 fprintf (stream, _("\
1808 MCORE specific options:\n\
1809 -{no-}jsri2bsr {dis}able jsri to bsr transformation (def: dis)\n\
1810 -{no-}sifilter {dis}able silicon filter behavior (def: dis)\n\
1811 -cpu=[210|340] select CPU type\n\
1812 -EB assemble for a big endian system (default)\n\
1813 -EL assemble for a little endian system\n"));
1814 }
1815 \f
1816 int md_short_jump_size;
1817
1818 void
1819 md_create_short_jump (ptr, from_Nddr, to_Nddr, frag, to_symbol)
1820 char * ptr ATTRIBUTE_UNUSED;
1821 addressT from_Nddr ATTRIBUTE_UNUSED;
1822 addressT to_Nddr ATTRIBUTE_UNUSED;
1823 fragS * frag ATTRIBUTE_UNUSED;
1824 symbolS * to_symbol ATTRIBUTE_UNUSED;
1825 {
1826 as_fatal (_("failed sanity check: short_jump"));
1827 }
1828
1829 void
1830 md_create_long_jump (ptr, from_Nddr, to_Nddr, frag, to_symbol)
1831 char * ptr ATTRIBUTE_UNUSED;
1832 addressT from_Nddr ATTRIBUTE_UNUSED;
1833 addressT to_Nddr ATTRIBUTE_UNUSED;
1834 fragS * frag ATTRIBUTE_UNUSED;
1835 symbolS * to_symbol ATTRIBUTE_UNUSED;
1836 {
1837 as_fatal (_("failed sanity check: long_jump"));
1838 }
1839
1840 /* Called after relaxing, change the frags so they know how big they are. */
1841 void
1842 md_convert_frag (abfd, sec, fragP)
1843 bfd * abfd ATTRIBUTE_UNUSED;
1844 segT sec ATTRIBUTE_UNUSED;
1845 register fragS * fragP;
1846 {
1847 unsigned char * buffer;
1848 int targ_addr = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
1849
1850 buffer = (unsigned char *) (fragP->fr_fix + fragP->fr_literal);
1851
1852 switch (fragP->fr_subtype)
1853 {
1854 case C (COND_JUMP, DISP12):
1855 case C (UNCD_JUMP, DISP12):
1856 {
1857 /* Get the address of the end of the instruction. */
1858 int next_inst = fragP->fr_fix + fragP->fr_address + 2;
1859 unsigned char t0;
1860 int disp = targ_addr - next_inst;
1861
1862 if (disp & 1)
1863 as_bad (_("odd displacement at %x"), next_inst - 2);
1864
1865 disp >>= 1;
1866
1867 if (! target_big_endian)
1868 {
1869 t0 = buffer[1] & 0xF8;
1870
1871 md_number_to_chars (buffer, disp, 2);
1872
1873 buffer[1] = (buffer[1] & 0x07) | t0;
1874 }
1875 else
1876 {
1877 t0 = buffer[0] & 0xF8;
1878
1879 md_number_to_chars (buffer, disp, 2);
1880
1881 buffer[0] = (buffer[0] & 0x07) | t0;
1882 }
1883
1884 fragP->fr_fix += 2;
1885 }
1886 break;
1887
1888 case C (COND_JUMP, DISP32):
1889 case C (COND_JUMP, UNDEF_WORD_DISP):
1890 {
1891 /* A conditional branch wont fit into 12 bits so:
1892 * b!cond 1f
1893 * jmpi 0f
1894 * .align 2
1895 * 0: .long disp
1896 * 1:
1897 *
1898 * if the b!cond is 4 byte aligned, the literal which would
1899 * go at x+4 will also be aligned.
1900 */
1901 int first_inst = fragP->fr_fix + fragP->fr_address;
1902 int needpad = (first_inst & 3);
1903
1904 if (! target_big_endian)
1905 buffer[1] ^= 0x08;
1906 else
1907 buffer[0] ^= 0x08; /* Toggle T/F bit */
1908
1909 buffer[2] = INST_BYTE0 (MCORE_INST_JMPI); /* Build jmpi */
1910 buffer[3] = INST_BYTE1 (MCORE_INST_JMPI);
1911
1912 if (needpad)
1913 {
1914 if (! target_big_endian)
1915 {
1916 buffer[0] = 4; /* branch over jmpi, pad, and ptr */
1917 buffer[2] = 1; /* jmpi offset of 1 gets the pointer */
1918 }
1919 else
1920 {
1921 buffer[1] = 4; /* branch over jmpi, pad, and ptr */
1922 buffer[3] = 1; /* jmpi offset of 1 gets the pointer */
1923 }
1924
1925 buffer[4] = 0; /* alignment/pad */
1926 buffer[5] = 0;
1927 buffer[6] = 0; /* space for 32 bit address */
1928 buffer[7] = 0;
1929 buffer[8] = 0;
1930 buffer[9] = 0;
1931
1932 /* Make reloc for the long disp */
1933 fix_new (fragP, fragP->fr_fix + 6, 4,
1934 fragP->fr_symbol, fragP->fr_offset, 0, BFD_RELOC_32);
1935
1936 fragP->fr_fix += C32_LEN;
1937 }
1938 else
1939 {
1940 /* See comment below about this given gas' limitations for
1941 shrinking the fragment. '3' is the amount of code that
1942 we inserted here, but '4' is right for the space we reserved
1943 for this fragment. */
1944 if (! target_big_endian)
1945 {
1946 buffer[0] = 3; /* branch over jmpi, and ptr */
1947 buffer[2] = 0; /* jmpi offset of 0 gets the pointer */
1948 }
1949 else
1950 {
1951 buffer[1] = 3; /* branch over jmpi, and ptr */
1952 buffer[3] = 0; /* jmpi offset of 0 gets the pointer */
1953 }
1954
1955 buffer[4] = 0; /* space for 32 bit address */
1956 buffer[5] = 0;
1957 buffer[6] = 0;
1958 buffer[7] = 0;
1959
1960 /* Make reloc for the long disp. */
1961 fix_new (fragP, fragP->fr_fix + 4, 4,
1962 fragP->fr_symbol, fragP->fr_offset, 0, BFD_RELOC_32);
1963 fragP->fr_fix += C32_LEN;
1964
1965 /* Frag is actually shorter (see the other side of this ifdef)
1966 but gas isn't prepared for that. We have to re-adjust
1967 the branch displacement so that it goes beyond the
1968 full length of the fragment, not just what we actually
1969 filled in. */
1970 if (! target_big_endian)
1971 buffer[0] = 4; /* jmpi, ptr, and the 'tail pad' */
1972 else
1973 buffer[1] = 4; /* jmpi, ptr, and the 'tail pad' */
1974 }
1975 }
1976 break;
1977
1978 case C (UNCD_JUMP, DISP32):
1979 case C (UNCD_JUMP, UNDEF_WORD_DISP):
1980 {
1981 /* An unconditional branch will not fit in 12 bits, make code which
1982 looks like:
1983 jmpi 0f
1984 .align 2
1985 0: .long disp
1986 we need a pad if "first_inst" is 4 byte aligned.
1987 [because the natural literal place is x + 2] */
1988 int first_inst = fragP->fr_fix + fragP->fr_address;
1989 int needpad = !(first_inst & 3);
1990
1991 buffer[0] = INST_BYTE0 (MCORE_INST_JMPI); /* Build jmpi */
1992 buffer[1] = INST_BYTE1 (MCORE_INST_JMPI);
1993
1994 if (needpad)
1995 {
1996 if (! target_big_endian)
1997 buffer[0] = 1; /* jmpi offset of 1 since padded */
1998 else
1999 buffer[1] = 1; /* jmpi offset of 1 since padded */
2000 buffer[2] = 0; /* alignment */
2001 buffer[3] = 0;
2002 buffer[4] = 0; /* space for 32 bit address */
2003 buffer[5] = 0;
2004 buffer[6] = 0;
2005 buffer[7] = 0;
2006
2007 /* Make reloc for the long disp. */
2008 fix_new (fragP, fragP->fr_fix + 4, 4,
2009 fragP->fr_symbol, fragP->fr_offset, 0, BFD_RELOC_32);
2010
2011 fragP->fr_fix += U32_LEN;
2012 }
2013 else
2014 {
2015 if (! target_big_endian)
2016 buffer[0] = 0; /* jmpi offset of 0 if no pad */
2017 else
2018 buffer[1] = 0; /* jmpi offset of 0 if no pad */
2019 buffer[2] = 0; /* space for 32 bit address */
2020 buffer[3] = 0;
2021 buffer[4] = 0;
2022 buffer[5] = 0;
2023
2024 /* Make reloc for the long disp. */
2025 fix_new (fragP, fragP->fr_fix + 2, 4,
2026 fragP->fr_symbol, fragP->fr_offset, 0, BFD_RELOC_32);
2027 fragP->fr_fix += U32_LEN;
2028 }
2029 }
2030 break;
2031
2032 default:
2033 abort ();
2034 }
2035 }
2036
2037 /* Applies the desired value to the specified location.
2038 Also sets up addends for 'rela' type relocations. */
2039
2040 void
2041 md_apply_fix3 (fixP, valP, segment)
2042 fixS * fixP;
2043 valueT * valP;
2044 segT segment ATTRIBUTE_UNUSED;
2045 {
2046 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
2047 char * file = fixP->fx_file ? fixP->fx_file : _("unknown");
2048 const char * symname;
2049 /* Note: use offsetT because it is signed, valueT is unsigned. */
2050 offsetT val = *valP;
2051
2052 symname = fixP->fx_addsy ? S_GET_NAME (fixP->fx_addsy) : _("<unknown>");
2053 /* Save this for the addend in the relocation record. */
2054 fixP->fx_addnumber = val;
2055
2056 if (fixP->fx_addsy != NULL)
2057 {
2058 #ifdef OBJ_ELF
2059 /* For ELF we can just return and let the reloc that will be generated
2060 take care of everything. For COFF we still have to insert 'val'
2061 into the insn since the addend field will be ignored. */
2062 return;
2063 #endif
2064 }
2065 else
2066 fixP->fx_done = 1;
2067
2068 switch (fixP->fx_r_type)
2069 {
2070 case BFD_RELOC_MCORE_PCREL_IMM11BY2: /* second byte of 2 byte opcode */
2071 if ((val & 1) != 0)
2072 as_bad_where (file, fixP->fx_line,
2073 _("odd distance branch (0x%lx bytes)"), (long) val);
2074 val /= 2;
2075 if (((val & ~0x3ff) != 0) && ((val | 0x3ff) != -1))
2076 as_bad_where (file, fixP->fx_line,
2077 _("pcrel for branch to %s too far (0x%lx)"),
2078 symname, (long) val);
2079 if (target_big_endian)
2080 {
2081 buf[0] |= ((val >> 8) & 0x7);
2082 buf[1] |= (val & 0xff);
2083 }
2084 else
2085 {
2086 buf[1] |= ((val >> 8) & 0x7);
2087 buf[0] |= (val & 0xff);
2088 }
2089 break;
2090
2091 case BFD_RELOC_MCORE_PCREL_IMM8BY4: /* lower 8 bits of 2 byte opcode */
2092 val += 3;
2093 val /= 4;
2094 if (val & ~0xff)
2095 as_bad_where (file, fixP->fx_line,
2096 _("pcrel for lrw/jmpi/jsri to %s too far (0x%lx)"),
2097 symname, (long) val);
2098 else if (! target_big_endian)
2099 buf[0] |= (val & 0xff);
2100 else
2101 buf[1] |= (val & 0xff);
2102 break;
2103
2104 case BFD_RELOC_MCORE_PCREL_IMM4BY2: /* loopt instruction */
2105 if ((val < -32) || (val > -2))
2106 as_bad_where (file, fixP->fx_line,
2107 _("pcrel for loopt too far (0x%lx)"), (long) val);
2108 val /= 2;
2109 if (! target_big_endian)
2110 buf[0] |= (val & 0xf);
2111 else
2112 buf[1] |= (val & 0xf);
2113 break;
2114
2115 case BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2:
2116 /* Conditional linker map jsri to bsr. */
2117 /* If its a local target and close enough, fix it.
2118 NB: >= -2k for backwards bsr; < 2k for forwards... */
2119 if (fixP->fx_addsy == 0 && val >= -2048 && val < 2048)
2120 {
2121 long nval = (val / 2) & 0x7ff;
2122 nval |= MCORE_INST_BSR;
2123
2124 /* REPLACE the instruction, don't just modify it. */
2125 buf[0] = INST_BYTE0 (nval);
2126 buf[1] = INST_BYTE1 (nval);
2127 }
2128 else
2129 fixP->fx_done = 0;
2130 break;
2131
2132 case BFD_RELOC_MCORE_PCREL_32:
2133 case BFD_RELOC_VTABLE_INHERIT:
2134 case BFD_RELOC_VTABLE_ENTRY:
2135 fixP->fx_done = 0;
2136 break;
2137
2138 default:
2139 if (fixP->fx_addsy != NULL)
2140 {
2141 /* If the fix is an absolute reloc based on a symbol's
2142 address, then it cannot be resolved until the final link. */
2143 fixP->fx_done = 0;
2144 }
2145 #ifdef OBJ_ELF
2146 else
2147 #endif
2148 {
2149 if (fixP->fx_size == 4)
2150 ;
2151 else if (fixP->fx_size == 2 && val >= -32768 && val <= 32767)
2152 ;
2153 else if (fixP->fx_size == 1 && val >= -256 && val <= 255)
2154 ;
2155 else
2156 abort ();
2157 md_number_to_chars (buf, val, fixP->fx_size);
2158 }
2159 break;
2160 }
2161 }
2162
2163 void
2164 md_operand (expressionP)
2165 expressionS * expressionP;
2166 {
2167 /* Ignore leading hash symbol, if poresent. */
2168 if (* input_line_pointer == '#')
2169 {
2170 input_line_pointer ++;
2171 expression (expressionP);
2172 }
2173 }
2174
2175 int md_long_jump_size;
2176
2177 /* Called just before address relaxation, return the length
2178 by which a fragment must grow to reach it's destination. */
2179 int
2180 md_estimate_size_before_relax (fragP, segment_type)
2181 register fragS * fragP;
2182 register segT segment_type;
2183 {
2184 switch (fragP->fr_subtype)
2185 {
2186 default:
2187 abort ();
2188
2189 case C (UNCD_JUMP, UNDEF_DISP):
2190 /* Used to be a branch to somewhere which was unknown. */
2191 if (!fragP->fr_symbol)
2192 {
2193 fragP->fr_subtype = C (UNCD_JUMP, DISP12);
2194 }
2195 else if (S_GET_SEGMENT (fragP->fr_symbol) == segment_type)
2196 {
2197 fragP->fr_subtype = C (UNCD_JUMP, DISP12);
2198 }
2199 else
2200 {
2201 fragP->fr_subtype = C (UNCD_JUMP, UNDEF_WORD_DISP);
2202 }
2203 break;
2204
2205 case C (COND_JUMP, UNDEF_DISP):
2206 /* Used to be a branch to somewhere which was unknown. */
2207 if (fragP->fr_symbol
2208 && S_GET_SEGMENT (fragP->fr_symbol) == segment_type)
2209 {
2210 /* Got a symbol and it's defined in this segment, become byte
2211 sized - maybe it will fix up */
2212 fragP->fr_subtype = C (COND_JUMP, DISP12);
2213 }
2214 else if (fragP->fr_symbol)
2215 {
2216 /* Its got a segment, but its not ours, so it will always be long. */
2217 fragP->fr_subtype = C (COND_JUMP, UNDEF_WORD_DISP);
2218 }
2219 else
2220 {
2221 /* We know the abs value. */
2222 fragP->fr_subtype = C (COND_JUMP, DISP12);
2223 }
2224 break;
2225
2226 case C (UNCD_JUMP, DISP12):
2227 case C (UNCD_JUMP, DISP32):
2228 case C (UNCD_JUMP, UNDEF_WORD_DISP):
2229 case C (COND_JUMP, DISP12):
2230 case C (COND_JUMP, DISP32):
2231 case C (COND_JUMP, UNDEF_WORD_DISP):
2232 /* When relaxing a section for the second time, we don't need to
2233 do anything besides return the current size. */
2234 break;
2235 }
2236
2237 return md_relax_table[fragP->fr_subtype].rlx_length;
2238 }
2239
2240 /* Put number into target byte order. */
2241 void
2242 md_number_to_chars (ptr, use, nbytes)
2243 char * ptr;
2244 valueT use;
2245 int nbytes;
2246 {
2247 if (! target_big_endian)
2248 switch (nbytes)
2249 {
2250 case 4: ptr[3] = (use >> 24) & 0xff; /* fall through */
2251 case 3: ptr[2] = (use >> 16) & 0xff; /* fall through */
2252 case 2: ptr[1] = (use >> 8) & 0xff; /* fall through */
2253 case 1: ptr[0] = (use >> 0) & 0xff; break;
2254 default: abort ();
2255 }
2256 else
2257 switch (nbytes)
2258 {
2259 case 4: *ptr++ = (use >> 24) & 0xff; /* fall through */
2260 case 3: *ptr++ = (use >> 16) & 0xff; /* fall through */
2261 case 2: *ptr++ = (use >> 8) & 0xff; /* fall through */
2262 case 1: *ptr++ = (use >> 0) & 0xff; break;
2263 default: abort ();
2264 }
2265 }
2266
2267 /* Round up a section size to the appropriate boundary. */
2268 valueT
2269 md_section_align (segment, size)
2270 segT segment ATTRIBUTE_UNUSED;
2271 valueT size;
2272 {
2273 return size; /* Byte alignment is fine */
2274 }
2275
2276 /* The location from which a PC relative jump should be calculated,
2277 given a PC relative reloc. */
2278 long
2279 md_pcrel_from_section (fixp, sec)
2280 fixS * fixp;
2281 segT sec ATTRIBUTE_UNUSED;
2282 {
2283 #ifdef OBJ_ELF
2284 /* If the symbol is undefined or defined in another section
2285 we leave the add number alone for the linker to fix it later.
2286 Only account for the PC pre-bump (which is 2 bytes on the MCore). */
2287 if (fixp->fx_addsy != (symbolS *) NULL
2288 && (! S_IS_DEFINED (fixp->fx_addsy)
2289 || (S_GET_SEGMENT (fixp->fx_addsy) != sec)))
2290
2291 {
2292 assert (fixp->fx_size == 2); /* must be an insn */
2293 return fixp->fx_size;
2294 }
2295 #endif
2296
2297 /* The case where we are going to resolve things... */
2298 return fixp->fx_size + fixp->fx_where + fixp->fx_frag->fr_address;
2299 }
2300
2301 #define F(SZ,PCREL) (((SZ) << 1) + (PCREL))
2302 #define MAP(SZ,PCREL,TYPE) case F (SZ, PCREL): code = (TYPE); break
2303
2304 arelent *
2305 tc_gen_reloc (section, fixp)
2306 asection * section ATTRIBUTE_UNUSED;
2307 fixS * fixp;
2308 {
2309 arelent * rel;
2310 bfd_reloc_code_real_type code;
2311
2312 switch (fixp->fx_r_type)
2313 {
2314 /* These confuse the size/pcrel macro approach. */
2315 case BFD_RELOC_VTABLE_INHERIT:
2316 case BFD_RELOC_VTABLE_ENTRY:
2317 case BFD_RELOC_MCORE_PCREL_IMM4BY2:
2318 case BFD_RELOC_MCORE_PCREL_IMM8BY4:
2319 case BFD_RELOC_MCORE_PCREL_IMM11BY2:
2320 case BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2:
2321 case BFD_RELOC_RVA:
2322 code = fixp->fx_r_type;
2323 break;
2324
2325 default:
2326 switch (F (fixp->fx_size, fixp->fx_pcrel))
2327 {
2328 MAP (1, 0, BFD_RELOC_8);
2329 MAP (2, 0, BFD_RELOC_16);
2330 MAP (4, 0, BFD_RELOC_32);
2331 MAP (1, 1, BFD_RELOC_8_PCREL);
2332 MAP (2, 1, BFD_RELOC_16_PCREL);
2333 MAP (4, 1, BFD_RELOC_32_PCREL);
2334 default:
2335 code = fixp->fx_r_type;
2336 as_bad (_("Can not do %d byte %srelocation"),
2337 fixp->fx_size,
2338 fixp->fx_pcrel ? _("pc-relative") : "");
2339 }
2340 break;
2341 }
2342
2343 rel = (arelent *) xmalloc (sizeof (arelent));
2344 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
2345 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
2346 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
2347 /* Always pass the addend along! */
2348 rel->addend = fixp->fx_addnumber;
2349
2350 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
2351
2352 if (rel->howto == NULL)
2353 {
2354 as_bad_where (fixp->fx_file, fixp->fx_line,
2355 _("Cannot represent relocation type %s"),
2356 bfd_get_reloc_code_name (code));
2357
2358 /* Set howto to a garbage value so that we can keep going. */
2359 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
2360 assert (rel->howto != NULL);
2361 }
2362
2363 return rel;
2364 }
2365
2366 #ifdef OBJ_ELF
2367 /* See whether we need to force a relocation into the output file.
2368 This is used to force out switch and PC relative relocations when
2369 relaxing. */
2370 int
2371 mcore_force_relocation (fix)
2372 fixS * fix;
2373 {
2374 if (fix->fx_r_type == BFD_RELOC_RVA)
2375 return 1;
2376
2377 return generic_force_reloc (fix);
2378 }
2379
2380 /* Return true if the fix can be handled by GAS, false if it must
2381 be passed through to the linker. */
2382 bfd_boolean
2383 mcore_fix_adjustable (fixP)
2384 fixS * fixP;
2385 {
2386 /* We need the symbol name for the VTABLE entries. */
2387 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2388 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2389 return 0;
2390
2391 return 1;
2392 }
2393 #endif /* OBJ_ELF */
This page took 0.075584 seconds and 5 git commands to generate.