Fix spelling mistakes and typos in the GAS sources.
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168 };
169
170 /* The ABI to use. */
171 enum mips_abi_level
172 {
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179 };
180
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
183
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
186
187 /* Whether or not we have code which can be put into a shared
188 library. */
189 static bfd_boolean mips_in_shared = TRUE;
190
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195 struct mips_set_options
196 {
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265 };
266
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
269
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
275
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280 static struct mips_set_options file_mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287 };
288
289 /* This is similar to file_mips_opts, but for the current set of options. */
290
291 static struct mips_set_options mips_opts =
292 {
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298 };
299
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
311
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
323
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
325 #ifdef TE_IRIX
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327 #else
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334 #endif
335
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
338
339 /* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
343
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
346
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
426
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
454
455 #define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
459
460 #define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
464
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
466
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
468
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
476
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
482
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
488
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
491
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
502
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
505
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
515
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
518
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
555 )
556
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
567 )
568
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
584 )
585
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
596
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
610
611 /* MIPS PIC level. */
612
613 enum mips_pic_level mips_pic;
614
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
618
619 /* 1 if trap instructions should used for overflow rather than break
620 instructions. */
621 static int mips_trap = 0;
622
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
630
631 /* Non-zero if any .set noreorder directives were used. */
632
633 static int mips_any_noreorder;
634
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
638
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
643
644 #define N_RMASK 0xc4
645 #define N_VFP 0xd4
646
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
660
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
663
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
666
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
669
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
673
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
682
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
685
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
688
689 /* Chars that mean this number is a floating point constant */
690 /* As in 0f12.456 */
691 /* or 0d1.2345e12 */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705 };
706
707 /* Information about an error that was found while assembling the current
708 instruction. */
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732 };
733
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
736
737 static int auto_align = 1;
738
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743 static offsetT mips_cprestore_offset = -1;
744
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
752
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
756
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
760
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
764
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772 static int mips_optimize = 2;
773
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
777
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
780
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
783
784 /* The maximum number of NOPs needed for any purpose. */
785 #define MAX_NOPS 4
786
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
793
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798 };
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
802
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
808
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
817
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
822
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827 static fragS *prev_nop_frag;
828
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
831
832 /* The number of nop instructions that we know we need in
833 prev_nop_frag. */
834 static int prev_nop_frag_required;
835
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
838
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
849
850 struct mips_hi_fixup
851 {
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858 };
859
860 /* The list of unmatched HI relocs. */
861
862 static struct mips_hi_fixup *mips_hi_fixup_list;
863
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867 static fragS *prev_reloc_op_frag;
868
869 /* Map mips16 register numbers to normal MIPS register numbers. */
870
871 static const unsigned int mips16_to_32_reg_map[] =
872 {
873 16, 17, 2, 3, 4, 5, 6, 7
874 };
875
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
877
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
879
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
882 {
883 5, 5, 6, 4, 4, 4, 4, 4
884 };
885 static const unsigned int micromips_to_32_reg_h_map2[] =
886 {
887 6, 7, 7, 21, 22, 5, 6, 7
888 };
889
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
892 {
893 0, 17, 2, 3, 16, 18, 19, 20
894 };
895
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
901 {
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909 };
910
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
913
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
916
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
919
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
927
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
930
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
933
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
936
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
939
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945 static int mips_relax_branch;
946 \f
947 /* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
964
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
981
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
1006 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1007
1008 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009 #define RELAX_SECOND(X) ((X) & 0xff)
1010 #define RELAX_USE_SECOND 0x10000
1011 #define RELAX_SECOND_LONGER 0x20000
1012 #define RELAX_NOMACRO 0x40000
1013 #define RELAX_DELAY_SLOT 0x80000
1014 #define RELAX_DELAY_SLOT_16BIT 0x100000
1015 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1017
1018 /* Branch without likely bit. If label is out of range, we turn:
1019
1020 beq reg1, reg2, label
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
1064
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
1085 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
1093 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1094 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1099
1100 /* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
1127 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1128 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1139
1140 /* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
1154 selected as the assembler temporary, whether in the 32-bit
1155 instruction mode, whether the branch is unconditional, whether it is
1156 compact, whether there is no delay-slot instruction available to fill
1157 in, whether it stores the link address implicitly in $ra, whether
1158 relaxation of out-of-range 32-bit branches to a sequence of
1159 instructions is enabled, and whether the displacement of a branch is
1160 too large to fit as an immediate argument of a 16-bit and a 32-bit
1161 branch, respectively. */
1162 #define RELAX_MICROMIPS_ENCODE(type, at, insn32, \
1163 uncond, compact, link, nods, \
1164 relax32, toofar16, toofar32) \
1165 (0x40000000 \
1166 | ((type) & 0xff) \
1167 | (((at) & 0x1f) << 8) \
1168 | ((insn32) ? 0x2000 : 0) \
1169 | ((uncond) ? 0x4000 : 0) \
1170 | ((compact) ? 0x8000 : 0) \
1171 | ((link) ? 0x10000 : 0) \
1172 | ((nods) ? 0x20000 : 0) \
1173 | ((relax32) ? 0x40000 : 0) \
1174 | ((toofar16) ? 0x80000 : 0) \
1175 | ((toofar32) ? 0x100000 : 0))
1176 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1177 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1178 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1179 #define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
1180 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x4000) != 0)
1181 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x8000) != 0)
1182 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x10000) != 0)
1183 #define RELAX_MICROMIPS_NODS(i) (((i) & 0x20000) != 0)
1184 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x40000) != 0)
1185
1186 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x80000) != 0)
1187 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x80000)
1188 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x80000)
1189 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x100000) != 0)
1190 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x100000)
1191 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x100000)
1192
1193 /* Sign-extend 16-bit value X. */
1194 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1195
1196 /* Is the given value a sign-extended 32-bit value? */
1197 #define IS_SEXT_32BIT_NUM(x) \
1198 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1199 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1200
1201 /* Is the given value a sign-extended 16-bit value? */
1202 #define IS_SEXT_16BIT_NUM(x) \
1203 (((x) &~ (offsetT) 0x7fff) == 0 \
1204 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1205
1206 /* Is the given value a sign-extended 12-bit value? */
1207 #define IS_SEXT_12BIT_NUM(x) \
1208 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1209
1210 /* Is the given value a sign-extended 9-bit value? */
1211 #define IS_SEXT_9BIT_NUM(x) \
1212 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1213
1214 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1215 #define IS_ZEXT_32BIT_NUM(x) \
1216 (((x) &~ (offsetT) 0xffffffff) == 0 \
1217 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1218
1219 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1220 SHIFT places. */
1221 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1222 (((STRUCT) >> (SHIFT)) & (MASK))
1223
1224 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1225 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1226 (!(MICROMIPS) \
1227 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1228 : EXTRACT_BITS ((INSN).insn_opcode, \
1229 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1230 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1231 EXTRACT_BITS ((INSN).insn_opcode, \
1232 MIPS16OP_MASK_##FIELD, \
1233 MIPS16OP_SH_##FIELD)
1234
1235 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1236 #define MIPS16_EXTEND (0xf000U << 16)
1237 \f
1238 /* Whether or not we are emitting a branch-likely macro. */
1239 static bfd_boolean emit_branch_likely_macro = FALSE;
1240
1241 /* Global variables used when generating relaxable macros. See the
1242 comment above RELAX_ENCODE for more details about how relaxation
1243 is used. */
1244 static struct {
1245 /* 0 if we're not emitting a relaxable macro.
1246 1 if we're emitting the first of the two relaxation alternatives.
1247 2 if we're emitting the second alternative. */
1248 int sequence;
1249
1250 /* The first relaxable fixup in the current frag. (In other words,
1251 the first fixup that refers to relaxable code.) */
1252 fixS *first_fixup;
1253
1254 /* sizes[0] says how many bytes of the first alternative are stored in
1255 the current frag. Likewise sizes[1] for the second alternative. */
1256 unsigned int sizes[2];
1257
1258 /* The symbol on which the choice of sequence depends. */
1259 symbolS *symbol;
1260 } mips_relax;
1261 \f
1262 /* Global variables used to decide whether a macro needs a warning. */
1263 static struct {
1264 /* True if the macro is in a branch delay slot. */
1265 bfd_boolean delay_slot_p;
1266
1267 /* Set to the length in bytes required if the macro is in a delay slot
1268 that requires a specific length of instruction, otherwise zero. */
1269 unsigned int delay_slot_length;
1270
1271 /* For relaxable macros, sizes[0] is the length of the first alternative
1272 in bytes and sizes[1] is the length of the second alternative.
1273 For non-relaxable macros, both elements give the length of the
1274 macro in bytes. */
1275 unsigned int sizes[2];
1276
1277 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1278 instruction of the first alternative in bytes and first_insn_sizes[1]
1279 is the length of the first instruction of the second alternative.
1280 For non-relaxable macros, both elements give the length of the first
1281 instruction in bytes.
1282
1283 Set to zero if we haven't yet seen the first instruction. */
1284 unsigned int first_insn_sizes[2];
1285
1286 /* For relaxable macros, insns[0] is the number of instructions for the
1287 first alternative and insns[1] is the number of instructions for the
1288 second alternative.
1289
1290 For non-relaxable macros, both elements give the number of
1291 instructions for the macro. */
1292 unsigned int insns[2];
1293
1294 /* The first variant frag for this macro. */
1295 fragS *first_frag;
1296 } mips_macro_warning;
1297 \f
1298 /* Prototypes for static functions. */
1299
1300 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1301
1302 static void append_insn
1303 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1304 bfd_boolean expansionp);
1305 static void mips_no_prev_insn (void);
1306 static void macro_build (expressionS *, const char *, const char *, ...);
1307 static void mips16_macro_build
1308 (expressionS *, const char *, const char *, va_list *);
1309 static void load_register (int, expressionS *, int);
1310 static void macro_start (void);
1311 static void macro_end (void);
1312 static void macro (struct mips_cl_insn *ip, char *str);
1313 static void mips16_macro (struct mips_cl_insn * ip);
1314 static void mips_ip (char *str, struct mips_cl_insn * ip);
1315 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1316 static void mips16_immed
1317 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1318 unsigned int, unsigned long *);
1319 static size_t my_getSmallExpression
1320 (expressionS *, bfd_reloc_code_real_type *, char *);
1321 static void my_getExpression (expressionS *, char *);
1322 static void s_align (int);
1323 static void s_change_sec (int);
1324 static void s_change_section (int);
1325 static void s_cons (int);
1326 static void s_float_cons (int);
1327 static void s_mips_globl (int);
1328 static void s_option (int);
1329 static void s_mipsset (int);
1330 static void s_abicalls (int);
1331 static void s_cpload (int);
1332 static void s_cpsetup (int);
1333 static void s_cplocal (int);
1334 static void s_cprestore (int);
1335 static void s_cpreturn (int);
1336 static void s_dtprelword (int);
1337 static void s_dtpreldword (int);
1338 static void s_tprelword (int);
1339 static void s_tpreldword (int);
1340 static void s_gpvalue (int);
1341 static void s_gpword (int);
1342 static void s_gpdword (int);
1343 static void s_ehword (int);
1344 static void s_cpadd (int);
1345 static void s_insn (int);
1346 static void s_nan (int);
1347 static void s_module (int);
1348 static void s_mips_ent (int);
1349 static void s_mips_end (int);
1350 static void s_mips_frame (int);
1351 static void s_mips_mask (int reg_type);
1352 static void s_mips_stab (int);
1353 static void s_mips_weakext (int);
1354 static void s_mips_file (int);
1355 static void s_mips_loc (int);
1356 static bfd_boolean pic_need_relax (symbolS *);
1357 static int relaxed_branch_length (fragS *, asection *, int);
1358 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1359 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1360 static void file_mips_check_options (void);
1361
1362 /* Table and functions used to map between CPU/ISA names, and
1363 ISA levels, and CPU numbers. */
1364
1365 struct mips_cpu_info
1366 {
1367 const char *name; /* CPU or ISA name. */
1368 int flags; /* MIPS_CPU_* flags. */
1369 int ase; /* Set of ASEs implemented by the CPU. */
1370 int isa; /* ISA level. */
1371 int cpu; /* CPU number (default CPU if ISA). */
1372 };
1373
1374 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1375
1376 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1377 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1378 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1379 \f
1380 /* Command-line options. */
1381 const char *md_shortopts = "O::g::G:";
1382
1383 enum options
1384 {
1385 OPTION_MARCH = OPTION_MD_BASE,
1386 OPTION_MTUNE,
1387 OPTION_MIPS1,
1388 OPTION_MIPS2,
1389 OPTION_MIPS3,
1390 OPTION_MIPS4,
1391 OPTION_MIPS5,
1392 OPTION_MIPS32,
1393 OPTION_MIPS64,
1394 OPTION_MIPS32R2,
1395 OPTION_MIPS32R3,
1396 OPTION_MIPS32R5,
1397 OPTION_MIPS32R6,
1398 OPTION_MIPS64R2,
1399 OPTION_MIPS64R3,
1400 OPTION_MIPS64R5,
1401 OPTION_MIPS64R6,
1402 OPTION_MIPS16,
1403 OPTION_NO_MIPS16,
1404 OPTION_MIPS3D,
1405 OPTION_NO_MIPS3D,
1406 OPTION_MDMX,
1407 OPTION_NO_MDMX,
1408 OPTION_DSP,
1409 OPTION_NO_DSP,
1410 OPTION_MT,
1411 OPTION_NO_MT,
1412 OPTION_VIRT,
1413 OPTION_NO_VIRT,
1414 OPTION_MSA,
1415 OPTION_NO_MSA,
1416 OPTION_SMARTMIPS,
1417 OPTION_NO_SMARTMIPS,
1418 OPTION_DSPR2,
1419 OPTION_NO_DSPR2,
1420 OPTION_DSPR3,
1421 OPTION_NO_DSPR3,
1422 OPTION_EVA,
1423 OPTION_NO_EVA,
1424 OPTION_XPA,
1425 OPTION_NO_XPA,
1426 OPTION_MICROMIPS,
1427 OPTION_NO_MICROMIPS,
1428 OPTION_MCU,
1429 OPTION_NO_MCU,
1430 OPTION_COMPAT_ARCH_BASE,
1431 OPTION_M4650,
1432 OPTION_NO_M4650,
1433 OPTION_M4010,
1434 OPTION_NO_M4010,
1435 OPTION_M4100,
1436 OPTION_NO_M4100,
1437 OPTION_M3900,
1438 OPTION_NO_M3900,
1439 OPTION_M7000_HILO_FIX,
1440 OPTION_MNO_7000_HILO_FIX,
1441 OPTION_FIX_24K,
1442 OPTION_NO_FIX_24K,
1443 OPTION_FIX_RM7000,
1444 OPTION_NO_FIX_RM7000,
1445 OPTION_FIX_LOONGSON2F_JUMP,
1446 OPTION_NO_FIX_LOONGSON2F_JUMP,
1447 OPTION_FIX_LOONGSON2F_NOP,
1448 OPTION_NO_FIX_LOONGSON2F_NOP,
1449 OPTION_FIX_VR4120,
1450 OPTION_NO_FIX_VR4120,
1451 OPTION_FIX_VR4130,
1452 OPTION_NO_FIX_VR4130,
1453 OPTION_FIX_CN63XXP1,
1454 OPTION_NO_FIX_CN63XXP1,
1455 OPTION_TRAP,
1456 OPTION_BREAK,
1457 OPTION_EB,
1458 OPTION_EL,
1459 OPTION_FP32,
1460 OPTION_GP32,
1461 OPTION_CONSTRUCT_FLOATS,
1462 OPTION_NO_CONSTRUCT_FLOATS,
1463 OPTION_FP64,
1464 OPTION_FPXX,
1465 OPTION_GP64,
1466 OPTION_RELAX_BRANCH,
1467 OPTION_NO_RELAX_BRANCH,
1468 OPTION_INSN32,
1469 OPTION_NO_INSN32,
1470 OPTION_MSHARED,
1471 OPTION_MNO_SHARED,
1472 OPTION_MSYM32,
1473 OPTION_MNO_SYM32,
1474 OPTION_SOFT_FLOAT,
1475 OPTION_HARD_FLOAT,
1476 OPTION_SINGLE_FLOAT,
1477 OPTION_DOUBLE_FLOAT,
1478 OPTION_32,
1479 OPTION_CALL_SHARED,
1480 OPTION_CALL_NONPIC,
1481 OPTION_NON_SHARED,
1482 OPTION_XGOT,
1483 OPTION_MABI,
1484 OPTION_N32,
1485 OPTION_64,
1486 OPTION_MDEBUG,
1487 OPTION_NO_MDEBUG,
1488 OPTION_PDR,
1489 OPTION_NO_PDR,
1490 OPTION_MVXWORKS_PIC,
1491 OPTION_NAN,
1492 OPTION_ODD_SPREG,
1493 OPTION_NO_ODD_SPREG,
1494 OPTION_END_OF_ENUM
1495 };
1496
1497 struct option md_longopts[] =
1498 {
1499 /* Options which specify architecture. */
1500 {"march", required_argument, NULL, OPTION_MARCH},
1501 {"mtune", required_argument, NULL, OPTION_MTUNE},
1502 {"mips0", no_argument, NULL, OPTION_MIPS1},
1503 {"mips1", no_argument, NULL, OPTION_MIPS1},
1504 {"mips2", no_argument, NULL, OPTION_MIPS2},
1505 {"mips3", no_argument, NULL, OPTION_MIPS3},
1506 {"mips4", no_argument, NULL, OPTION_MIPS4},
1507 {"mips5", no_argument, NULL, OPTION_MIPS5},
1508 {"mips32", no_argument, NULL, OPTION_MIPS32},
1509 {"mips64", no_argument, NULL, OPTION_MIPS64},
1510 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1511 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1512 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1513 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1514 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1515 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1516 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1517 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1518
1519 /* Options which specify Application Specific Extensions (ASEs). */
1520 {"mips16", no_argument, NULL, OPTION_MIPS16},
1521 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1522 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1523 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1524 {"mdmx", no_argument, NULL, OPTION_MDMX},
1525 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1526 {"mdsp", no_argument, NULL, OPTION_DSP},
1527 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1528 {"mmt", no_argument, NULL, OPTION_MT},
1529 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1530 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1531 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1532 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1533 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1534 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1535 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
1536 {"meva", no_argument, NULL, OPTION_EVA},
1537 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1538 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1539 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1540 {"mmcu", no_argument, NULL, OPTION_MCU},
1541 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1542 {"mvirt", no_argument, NULL, OPTION_VIRT},
1543 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1544 {"mmsa", no_argument, NULL, OPTION_MSA},
1545 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1546 {"mxpa", no_argument, NULL, OPTION_XPA},
1547 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1548
1549 /* Old-style architecture options. Don't add more of these. */
1550 {"m4650", no_argument, NULL, OPTION_M4650},
1551 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1552 {"m4010", no_argument, NULL, OPTION_M4010},
1553 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1554 {"m4100", no_argument, NULL, OPTION_M4100},
1555 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1556 {"m3900", no_argument, NULL, OPTION_M3900},
1557 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1558
1559 /* Options which enable bug fixes. */
1560 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1561 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1562 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1563 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1564 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1565 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1566 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1567 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1568 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1569 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1570 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1571 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1572 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1573 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1574 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1575 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1576 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1577
1578 /* Miscellaneous options. */
1579 {"trap", no_argument, NULL, OPTION_TRAP},
1580 {"no-break", no_argument, NULL, OPTION_TRAP},
1581 {"break", no_argument, NULL, OPTION_BREAK},
1582 {"no-trap", no_argument, NULL, OPTION_BREAK},
1583 {"EB", no_argument, NULL, OPTION_EB},
1584 {"EL", no_argument, NULL, OPTION_EL},
1585 {"mfp32", no_argument, NULL, OPTION_FP32},
1586 {"mgp32", no_argument, NULL, OPTION_GP32},
1587 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1588 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1589 {"mfp64", no_argument, NULL, OPTION_FP64},
1590 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1591 {"mgp64", no_argument, NULL, OPTION_GP64},
1592 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1593 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1594 {"minsn32", no_argument, NULL, OPTION_INSN32},
1595 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1596 {"mshared", no_argument, NULL, OPTION_MSHARED},
1597 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1598 {"msym32", no_argument, NULL, OPTION_MSYM32},
1599 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1600 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1601 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1602 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1603 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1604 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1605 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1606
1607 /* Strictly speaking this next option is ELF specific,
1608 but we allow it for other ports as well in order to
1609 make testing easier. */
1610 {"32", no_argument, NULL, OPTION_32},
1611
1612 /* ELF-specific options. */
1613 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1614 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1615 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1616 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1617 {"xgot", no_argument, NULL, OPTION_XGOT},
1618 {"mabi", required_argument, NULL, OPTION_MABI},
1619 {"n32", no_argument, NULL, OPTION_N32},
1620 {"64", no_argument, NULL, OPTION_64},
1621 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1622 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1623 {"mpdr", no_argument, NULL, OPTION_PDR},
1624 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1625 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1626 {"mnan", required_argument, NULL, OPTION_NAN},
1627
1628 {NULL, no_argument, NULL, 0}
1629 };
1630 size_t md_longopts_size = sizeof (md_longopts);
1631 \f
1632 /* Information about either an Application Specific Extension or an
1633 optional architecture feature that, for simplicity, we treat in the
1634 same way as an ASE. */
1635 struct mips_ase
1636 {
1637 /* The name of the ASE, used in both the command-line and .set options. */
1638 const char *name;
1639
1640 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1641 and 64-bit architectures, the flags here refer to the subset that
1642 is available on both. */
1643 unsigned int flags;
1644
1645 /* The ASE_* flag used for instructions that are available on 64-bit
1646 architectures but that are not included in FLAGS. */
1647 unsigned int flags64;
1648
1649 /* The command-line options that turn the ASE on and off. */
1650 int option_on;
1651 int option_off;
1652
1653 /* The minimum required architecture revisions for MIPS32, MIPS64,
1654 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1655 int mips32_rev;
1656 int mips64_rev;
1657 int micromips32_rev;
1658 int micromips64_rev;
1659
1660 /* The architecture where the ASE was removed or -1 if the extension has not
1661 been removed. */
1662 int rem_rev;
1663 };
1664
1665 /* A table of all supported ASEs. */
1666 static const struct mips_ase mips_ases[] = {
1667 { "dsp", ASE_DSP, ASE_DSP64,
1668 OPTION_DSP, OPTION_NO_DSP,
1669 2, 2, 2, 2,
1670 -1 },
1671
1672 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1673 OPTION_DSPR2, OPTION_NO_DSPR2,
1674 2, 2, 2, 2,
1675 -1 },
1676
1677 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1678 OPTION_DSPR3, OPTION_NO_DSPR3,
1679 6, 6, -1, -1,
1680 -1 },
1681
1682 { "eva", ASE_EVA, 0,
1683 OPTION_EVA, OPTION_NO_EVA,
1684 2, 2, 2, 2,
1685 -1 },
1686
1687 { "mcu", ASE_MCU, 0,
1688 OPTION_MCU, OPTION_NO_MCU,
1689 2, 2, 2, 2,
1690 -1 },
1691
1692 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1693 { "mdmx", ASE_MDMX, 0,
1694 OPTION_MDMX, OPTION_NO_MDMX,
1695 -1, 1, -1, -1,
1696 6 },
1697
1698 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1699 { "mips3d", ASE_MIPS3D, 0,
1700 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1701 2, 1, -1, -1,
1702 6 },
1703
1704 { "mt", ASE_MT, 0,
1705 OPTION_MT, OPTION_NO_MT,
1706 2, 2, -1, -1,
1707 -1 },
1708
1709 { "smartmips", ASE_SMARTMIPS, 0,
1710 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1711 1, -1, -1, -1,
1712 6 },
1713
1714 { "virt", ASE_VIRT, ASE_VIRT64,
1715 OPTION_VIRT, OPTION_NO_VIRT,
1716 2, 2, 2, 2,
1717 -1 },
1718
1719 { "msa", ASE_MSA, ASE_MSA64,
1720 OPTION_MSA, OPTION_NO_MSA,
1721 2, 2, 2, 2,
1722 -1 },
1723
1724 { "xpa", ASE_XPA, 0,
1725 OPTION_XPA, OPTION_NO_XPA,
1726 2, 2, -1, -1,
1727 -1 },
1728 };
1729
1730 /* The set of ASEs that require -mfp64. */
1731 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1732
1733 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1734 static const unsigned int mips_ase_groups[] = {
1735 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
1736 };
1737 \f
1738 /* Pseudo-op table.
1739
1740 The following pseudo-ops from the Kane and Heinrich MIPS book
1741 should be defined here, but are currently unsupported: .alias,
1742 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1743
1744 The following pseudo-ops from the Kane and Heinrich MIPS book are
1745 specific to the type of debugging information being generated, and
1746 should be defined by the object format: .aent, .begin, .bend,
1747 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1748 .vreg.
1749
1750 The following pseudo-ops from the Kane and Heinrich MIPS book are
1751 not MIPS CPU specific, but are also not specific to the object file
1752 format. This file is probably the best place to define them, but
1753 they are not currently supported: .asm0, .endr, .lab, .struct. */
1754
1755 static const pseudo_typeS mips_pseudo_table[] =
1756 {
1757 /* MIPS specific pseudo-ops. */
1758 {"option", s_option, 0},
1759 {"set", s_mipsset, 0},
1760 {"rdata", s_change_sec, 'r'},
1761 {"sdata", s_change_sec, 's'},
1762 {"livereg", s_ignore, 0},
1763 {"abicalls", s_abicalls, 0},
1764 {"cpload", s_cpload, 0},
1765 {"cpsetup", s_cpsetup, 0},
1766 {"cplocal", s_cplocal, 0},
1767 {"cprestore", s_cprestore, 0},
1768 {"cpreturn", s_cpreturn, 0},
1769 {"dtprelword", s_dtprelword, 0},
1770 {"dtpreldword", s_dtpreldword, 0},
1771 {"tprelword", s_tprelword, 0},
1772 {"tpreldword", s_tpreldword, 0},
1773 {"gpvalue", s_gpvalue, 0},
1774 {"gpword", s_gpword, 0},
1775 {"gpdword", s_gpdword, 0},
1776 {"ehword", s_ehword, 0},
1777 {"cpadd", s_cpadd, 0},
1778 {"insn", s_insn, 0},
1779 {"nan", s_nan, 0},
1780 {"module", s_module, 0},
1781
1782 /* Relatively generic pseudo-ops that happen to be used on MIPS
1783 chips. */
1784 {"asciiz", stringer, 8 + 1},
1785 {"bss", s_change_sec, 'b'},
1786 {"err", s_err, 0},
1787 {"half", s_cons, 1},
1788 {"dword", s_cons, 3},
1789 {"weakext", s_mips_weakext, 0},
1790 {"origin", s_org, 0},
1791 {"repeat", s_rept, 0},
1792
1793 /* For MIPS this is non-standard, but we define it for consistency. */
1794 {"sbss", s_change_sec, 'B'},
1795
1796 /* These pseudo-ops are defined in read.c, but must be overridden
1797 here for one reason or another. */
1798 {"align", s_align, 0},
1799 {"byte", s_cons, 0},
1800 {"data", s_change_sec, 'd'},
1801 {"double", s_float_cons, 'd'},
1802 {"float", s_float_cons, 'f'},
1803 {"globl", s_mips_globl, 0},
1804 {"global", s_mips_globl, 0},
1805 {"hword", s_cons, 1},
1806 {"int", s_cons, 2},
1807 {"long", s_cons, 2},
1808 {"octa", s_cons, 4},
1809 {"quad", s_cons, 3},
1810 {"section", s_change_section, 0},
1811 {"short", s_cons, 1},
1812 {"single", s_float_cons, 'f'},
1813 {"stabd", s_mips_stab, 'd'},
1814 {"stabn", s_mips_stab, 'n'},
1815 {"stabs", s_mips_stab, 's'},
1816 {"text", s_change_sec, 't'},
1817 {"word", s_cons, 2},
1818
1819 { "extern", ecoff_directive_extern, 0},
1820
1821 { NULL, NULL, 0 },
1822 };
1823
1824 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1825 {
1826 /* These pseudo-ops should be defined by the object file format.
1827 However, a.out doesn't support them, so we have versions here. */
1828 {"aent", s_mips_ent, 1},
1829 {"bgnb", s_ignore, 0},
1830 {"end", s_mips_end, 0},
1831 {"endb", s_ignore, 0},
1832 {"ent", s_mips_ent, 0},
1833 {"file", s_mips_file, 0},
1834 {"fmask", s_mips_mask, 'F'},
1835 {"frame", s_mips_frame, 0},
1836 {"loc", s_mips_loc, 0},
1837 {"mask", s_mips_mask, 'R'},
1838 {"verstamp", s_ignore, 0},
1839 { NULL, NULL, 0 },
1840 };
1841
1842 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1843 purpose of the `.dc.a' internal pseudo-op. */
1844
1845 int
1846 mips_address_bytes (void)
1847 {
1848 file_mips_check_options ();
1849 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1850 }
1851
1852 extern void pop_insert (const pseudo_typeS *);
1853
1854 void
1855 mips_pop_insert (void)
1856 {
1857 pop_insert (mips_pseudo_table);
1858 if (! ECOFF_DEBUGGING)
1859 pop_insert (mips_nonecoff_pseudo_table);
1860 }
1861 \f
1862 /* Symbols labelling the current insn. */
1863
1864 struct insn_label_list
1865 {
1866 struct insn_label_list *next;
1867 symbolS *label;
1868 };
1869
1870 static struct insn_label_list *free_insn_labels;
1871 #define label_list tc_segment_info_data.labels
1872
1873 static void mips_clear_insn_labels (void);
1874 static void mips_mark_labels (void);
1875 static void mips_compressed_mark_labels (void);
1876
1877 static inline void
1878 mips_clear_insn_labels (void)
1879 {
1880 struct insn_label_list **pl;
1881 segment_info_type *si;
1882
1883 if (now_seg)
1884 {
1885 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1886 ;
1887
1888 si = seg_info (now_seg);
1889 *pl = si->label_list;
1890 si->label_list = NULL;
1891 }
1892 }
1893
1894 /* Mark instruction labels in MIPS16/microMIPS mode. */
1895
1896 static inline void
1897 mips_mark_labels (void)
1898 {
1899 if (HAVE_CODE_COMPRESSION)
1900 mips_compressed_mark_labels ();
1901 }
1902 \f
1903 static char *expr_end;
1904
1905 /* An expression in a macro instruction. This is set by mips_ip and
1906 mips16_ip and when populated is always an O_constant. */
1907
1908 static expressionS imm_expr;
1909
1910 /* The relocatable field in an instruction and the relocs associated
1911 with it. These variables are used for instructions like LUI and
1912 JAL as well as true offsets. They are also used for address
1913 operands in macros. */
1914
1915 static expressionS offset_expr;
1916 static bfd_reloc_code_real_type offset_reloc[3]
1917 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1918
1919 /* This is set to the resulting size of the instruction to be produced
1920 by mips16_ip if an explicit extension is used or by mips_ip if an
1921 explicit size is supplied. */
1922
1923 static unsigned int forced_insn_length;
1924
1925 /* True if we are assembling an instruction. All dot symbols defined during
1926 this time should be treated as code labels. */
1927
1928 static bfd_boolean mips_assembling_insn;
1929
1930 /* The pdr segment for per procedure frame/regmask info. Not used for
1931 ECOFF debugging. */
1932
1933 static segT pdr_seg;
1934
1935 /* The default target format to use. */
1936
1937 #if defined (TE_FreeBSD)
1938 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1939 #elif defined (TE_TMIPS)
1940 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1941 #else
1942 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1943 #endif
1944
1945 const char *
1946 mips_target_format (void)
1947 {
1948 switch (OUTPUT_FLAVOR)
1949 {
1950 case bfd_target_elf_flavour:
1951 #ifdef TE_VXWORKS
1952 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1953 return (target_big_endian
1954 ? "elf32-bigmips-vxworks"
1955 : "elf32-littlemips-vxworks");
1956 #endif
1957 return (target_big_endian
1958 ? (HAVE_64BIT_OBJECTS
1959 ? ELF_TARGET ("elf64-", "big")
1960 : (HAVE_NEWABI
1961 ? ELF_TARGET ("elf32-n", "big")
1962 : ELF_TARGET ("elf32-", "big")))
1963 : (HAVE_64BIT_OBJECTS
1964 ? ELF_TARGET ("elf64-", "little")
1965 : (HAVE_NEWABI
1966 ? ELF_TARGET ("elf32-n", "little")
1967 : ELF_TARGET ("elf32-", "little"))));
1968 default:
1969 abort ();
1970 return NULL;
1971 }
1972 }
1973
1974 /* Return the ISA revision that is currently in use, or 0 if we are
1975 generating code for MIPS V or below. */
1976
1977 static int
1978 mips_isa_rev (void)
1979 {
1980 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1981 return 2;
1982
1983 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1984 return 3;
1985
1986 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1987 return 5;
1988
1989 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1990 return 6;
1991
1992 /* microMIPS implies revision 2 or above. */
1993 if (mips_opts.micromips)
1994 return 2;
1995
1996 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1997 return 1;
1998
1999 return 0;
2000 }
2001
2002 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
2003
2004 static unsigned int
2005 mips_ase_mask (unsigned int flags)
2006 {
2007 unsigned int i;
2008
2009 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2010 if (flags & mips_ase_groups[i])
2011 flags |= mips_ase_groups[i];
2012 return flags;
2013 }
2014
2015 /* Check whether the current ISA supports ASE. Issue a warning if
2016 appropriate. */
2017
2018 static void
2019 mips_check_isa_supports_ase (const struct mips_ase *ase)
2020 {
2021 const char *base;
2022 int min_rev, size;
2023 static unsigned int warned_isa;
2024 static unsigned int warned_fp32;
2025
2026 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2027 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2028 else
2029 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2030 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2031 && (warned_isa & ase->flags) != ase->flags)
2032 {
2033 warned_isa |= ase->flags;
2034 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2035 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2036 if (min_rev < 0)
2037 as_warn (_("the %d-bit %s architecture does not support the"
2038 " `%s' extension"), size, base, ase->name);
2039 else
2040 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2041 ase->name, base, size, min_rev);
2042 }
2043 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2044 && (warned_isa & ase->flags) != ase->flags)
2045 {
2046 warned_isa |= ase->flags;
2047 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2048 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2049 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2050 ase->name, base, size, ase->rem_rev);
2051 }
2052
2053 if ((ase->flags & FP64_ASES)
2054 && mips_opts.fp != 64
2055 && (warned_fp32 & ase->flags) != ase->flags)
2056 {
2057 warned_fp32 |= ase->flags;
2058 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2059 }
2060 }
2061
2062 /* Check all enabled ASEs to see whether they are supported by the
2063 chosen architecture. */
2064
2065 static void
2066 mips_check_isa_supports_ases (void)
2067 {
2068 unsigned int i, mask;
2069
2070 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2071 {
2072 mask = mips_ase_mask (mips_ases[i].flags);
2073 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2074 mips_check_isa_supports_ase (&mips_ases[i]);
2075 }
2076 }
2077
2078 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2079 that were affected. */
2080
2081 static unsigned int
2082 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2083 bfd_boolean enabled_p)
2084 {
2085 unsigned int mask;
2086
2087 mask = mips_ase_mask (ase->flags);
2088 opts->ase &= ~mask;
2089 if (enabled_p)
2090 opts->ase |= ase->flags;
2091 return mask;
2092 }
2093
2094 /* Return the ASE called NAME, or null if none. */
2095
2096 static const struct mips_ase *
2097 mips_lookup_ase (const char *name)
2098 {
2099 unsigned int i;
2100
2101 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2102 if (strcmp (name, mips_ases[i].name) == 0)
2103 return &mips_ases[i];
2104 return NULL;
2105 }
2106
2107 /* Return the length of a microMIPS instruction in bytes. If bits of
2108 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2109 otherwise it is a 32-bit instruction. */
2110
2111 static inline unsigned int
2112 micromips_insn_length (const struct mips_opcode *mo)
2113 {
2114 return mips_opcode_32bit_p (mo) ? 4 : 2;
2115 }
2116
2117 /* Return the length of MIPS16 instruction OPCODE. */
2118
2119 static inline unsigned int
2120 mips16_opcode_length (unsigned long opcode)
2121 {
2122 return (opcode >> 16) == 0 ? 2 : 4;
2123 }
2124
2125 /* Return the length of instruction INSN. */
2126
2127 static inline unsigned int
2128 insn_length (const struct mips_cl_insn *insn)
2129 {
2130 if (mips_opts.micromips)
2131 return micromips_insn_length (insn->insn_mo);
2132 else if (mips_opts.mips16)
2133 return mips16_opcode_length (insn->insn_opcode);
2134 else
2135 return 4;
2136 }
2137
2138 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2139
2140 static void
2141 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2142 {
2143 size_t i;
2144
2145 insn->insn_mo = mo;
2146 insn->insn_opcode = mo->match;
2147 insn->frag = NULL;
2148 insn->where = 0;
2149 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2150 insn->fixp[i] = NULL;
2151 insn->fixed_p = (mips_opts.noreorder > 0);
2152 insn->noreorder_p = (mips_opts.noreorder > 0);
2153 insn->mips16_absolute_jump_p = 0;
2154 insn->complete_p = 0;
2155 insn->cleared_p = 0;
2156 }
2157
2158 /* Get a list of all the operands in INSN. */
2159
2160 static const struct mips_operand_array *
2161 insn_operands (const struct mips_cl_insn *insn)
2162 {
2163 if (insn->insn_mo >= &mips_opcodes[0]
2164 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2165 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2166
2167 if (insn->insn_mo >= &mips16_opcodes[0]
2168 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2169 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2170
2171 if (insn->insn_mo >= &micromips_opcodes[0]
2172 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2173 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2174
2175 abort ();
2176 }
2177
2178 /* Get a description of operand OPNO of INSN. */
2179
2180 static const struct mips_operand *
2181 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2182 {
2183 const struct mips_operand_array *operands;
2184
2185 operands = insn_operands (insn);
2186 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2187 abort ();
2188 return operands->operand[opno];
2189 }
2190
2191 /* Install UVAL as the value of OPERAND in INSN. */
2192
2193 static inline void
2194 insn_insert_operand (struct mips_cl_insn *insn,
2195 const struct mips_operand *operand, unsigned int uval)
2196 {
2197 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2198 }
2199
2200 /* Extract the value of OPERAND from INSN. */
2201
2202 static inline unsigned
2203 insn_extract_operand (const struct mips_cl_insn *insn,
2204 const struct mips_operand *operand)
2205 {
2206 return mips_extract_operand (operand, insn->insn_opcode);
2207 }
2208
2209 /* Record the current MIPS16/microMIPS mode in now_seg. */
2210
2211 static void
2212 mips_record_compressed_mode (void)
2213 {
2214 segment_info_type *si;
2215
2216 si = seg_info (now_seg);
2217 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2218 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2219 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2220 si->tc_segment_info_data.micromips = mips_opts.micromips;
2221 }
2222
2223 /* Read a standard MIPS instruction from BUF. */
2224
2225 static unsigned long
2226 read_insn (char *buf)
2227 {
2228 if (target_big_endian)
2229 return bfd_getb32 ((bfd_byte *) buf);
2230 else
2231 return bfd_getl32 ((bfd_byte *) buf);
2232 }
2233
2234 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2235 the next byte. */
2236
2237 static char *
2238 write_insn (char *buf, unsigned int insn)
2239 {
2240 md_number_to_chars (buf, insn, 4);
2241 return buf + 4;
2242 }
2243
2244 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2245 has length LENGTH. */
2246
2247 static unsigned long
2248 read_compressed_insn (char *buf, unsigned int length)
2249 {
2250 unsigned long insn;
2251 unsigned int i;
2252
2253 insn = 0;
2254 for (i = 0; i < length; i += 2)
2255 {
2256 insn <<= 16;
2257 if (target_big_endian)
2258 insn |= bfd_getb16 ((char *) buf);
2259 else
2260 insn |= bfd_getl16 ((char *) buf);
2261 buf += 2;
2262 }
2263 return insn;
2264 }
2265
2266 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2267 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2268
2269 static char *
2270 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2271 {
2272 unsigned int i;
2273
2274 for (i = 0; i < length; i += 2)
2275 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2276 return buf + length;
2277 }
2278
2279 /* Install INSN at the location specified by its "frag" and "where" fields. */
2280
2281 static void
2282 install_insn (const struct mips_cl_insn *insn)
2283 {
2284 char *f = insn->frag->fr_literal + insn->where;
2285 if (HAVE_CODE_COMPRESSION)
2286 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2287 else
2288 write_insn (f, insn->insn_opcode);
2289 mips_record_compressed_mode ();
2290 }
2291
2292 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2293 and install the opcode in the new location. */
2294
2295 static void
2296 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2297 {
2298 size_t i;
2299
2300 insn->frag = frag;
2301 insn->where = where;
2302 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2303 if (insn->fixp[i] != NULL)
2304 {
2305 insn->fixp[i]->fx_frag = frag;
2306 insn->fixp[i]->fx_where = where;
2307 }
2308 install_insn (insn);
2309 }
2310
2311 /* Add INSN to the end of the output. */
2312
2313 static void
2314 add_fixed_insn (struct mips_cl_insn *insn)
2315 {
2316 char *f = frag_more (insn_length (insn));
2317 move_insn (insn, frag_now, f - frag_now->fr_literal);
2318 }
2319
2320 /* Start a variant frag and move INSN to the start of the variant part,
2321 marking it as fixed. The other arguments are as for frag_var. */
2322
2323 static void
2324 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2325 relax_substateT subtype, symbolS *symbol, offsetT offset)
2326 {
2327 frag_grow (max_chars);
2328 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2329 insn->fixed_p = 1;
2330 frag_var (rs_machine_dependent, max_chars, var,
2331 subtype, symbol, offset, NULL);
2332 }
2333
2334 /* Insert N copies of INSN into the history buffer, starting at
2335 position FIRST. Neither FIRST nor N need to be clipped. */
2336
2337 static void
2338 insert_into_history (unsigned int first, unsigned int n,
2339 const struct mips_cl_insn *insn)
2340 {
2341 if (mips_relax.sequence != 2)
2342 {
2343 unsigned int i;
2344
2345 for (i = ARRAY_SIZE (history); i-- > first;)
2346 if (i >= first + n)
2347 history[i] = history[i - n];
2348 else
2349 history[i] = *insn;
2350 }
2351 }
2352
2353 /* Clear the error in insn_error. */
2354
2355 static void
2356 clear_insn_error (void)
2357 {
2358 memset (&insn_error, 0, sizeof (insn_error));
2359 }
2360
2361 /* Possibly record error message MSG for the current instruction.
2362 If the error is about a particular argument, ARGNUM is the 1-based
2363 number of that argument, otherwise it is 0. FORMAT is the format
2364 of MSG. Return true if MSG was used, false if the current message
2365 was kept. */
2366
2367 static bfd_boolean
2368 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2369 const char *msg)
2370 {
2371 if (argnum == 0)
2372 {
2373 /* Give priority to errors against specific arguments, and to
2374 the first whole-instruction message. */
2375 if (insn_error.msg)
2376 return FALSE;
2377 }
2378 else
2379 {
2380 /* Keep insn_error if it is against a later argument. */
2381 if (argnum < insn_error.min_argnum)
2382 return FALSE;
2383
2384 /* If both errors are against the same argument but are different,
2385 give up on reporting a specific error for this argument.
2386 See the comment about mips_insn_error for details. */
2387 if (argnum == insn_error.min_argnum
2388 && insn_error.msg
2389 && strcmp (insn_error.msg, msg) != 0)
2390 {
2391 insn_error.msg = 0;
2392 insn_error.min_argnum += 1;
2393 return FALSE;
2394 }
2395 }
2396 insn_error.min_argnum = argnum;
2397 insn_error.format = format;
2398 insn_error.msg = msg;
2399 return TRUE;
2400 }
2401
2402 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2403 as for set_insn_error_format. */
2404
2405 static void
2406 set_insn_error (int argnum, const char *msg)
2407 {
2408 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2409 }
2410
2411 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2412 as for set_insn_error_format. */
2413
2414 static void
2415 set_insn_error_i (int argnum, const char *msg, int i)
2416 {
2417 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2418 insn_error.u.i = i;
2419 }
2420
2421 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2422 are as for set_insn_error_format. */
2423
2424 static void
2425 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2426 {
2427 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2428 {
2429 insn_error.u.ss[0] = s1;
2430 insn_error.u.ss[1] = s2;
2431 }
2432 }
2433
2434 /* Report the error in insn_error, which is against assembly code STR. */
2435
2436 static void
2437 report_insn_error (const char *str)
2438 {
2439 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2440
2441 switch (insn_error.format)
2442 {
2443 case ERR_FMT_PLAIN:
2444 as_bad (msg, str);
2445 break;
2446
2447 case ERR_FMT_I:
2448 as_bad (msg, insn_error.u.i, str);
2449 break;
2450
2451 case ERR_FMT_SS:
2452 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2453 break;
2454 }
2455
2456 free ((char *) msg);
2457 }
2458
2459 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2460 the idea is to make it obvious at a glance that each errata is
2461 included. */
2462
2463 static void
2464 init_vr4120_conflicts (void)
2465 {
2466 #define CONFLICT(FIRST, SECOND) \
2467 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2468
2469 /* Errata 21 - [D]DIV[U] after [D]MACC */
2470 CONFLICT (MACC, DIV);
2471 CONFLICT (DMACC, DIV);
2472
2473 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2474 CONFLICT (DMULT, DMULT);
2475 CONFLICT (DMULT, DMACC);
2476 CONFLICT (DMACC, DMULT);
2477 CONFLICT (DMACC, DMACC);
2478
2479 /* Errata 24 - MT{LO,HI} after [D]MACC */
2480 CONFLICT (MACC, MTHILO);
2481 CONFLICT (DMACC, MTHILO);
2482
2483 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2484 instruction is executed immediately after a MACC or DMACC
2485 instruction, the result of [either instruction] is incorrect." */
2486 CONFLICT (MACC, MULT);
2487 CONFLICT (MACC, DMULT);
2488 CONFLICT (DMACC, MULT);
2489 CONFLICT (DMACC, DMULT);
2490
2491 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2492 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2493 DDIV or DDIVU instruction, the result of the MACC or
2494 DMACC instruction is incorrect.". */
2495 CONFLICT (DMULT, MACC);
2496 CONFLICT (DMULT, DMACC);
2497 CONFLICT (DIV, MACC);
2498 CONFLICT (DIV, DMACC);
2499
2500 #undef CONFLICT
2501 }
2502
2503 struct regname {
2504 const char *name;
2505 unsigned int num;
2506 };
2507
2508 #define RNUM_MASK 0x00000ff
2509 #define RTYPE_MASK 0x0ffff00
2510 #define RTYPE_NUM 0x0000100
2511 #define RTYPE_FPU 0x0000200
2512 #define RTYPE_FCC 0x0000400
2513 #define RTYPE_VEC 0x0000800
2514 #define RTYPE_GP 0x0001000
2515 #define RTYPE_CP0 0x0002000
2516 #define RTYPE_PC 0x0004000
2517 #define RTYPE_ACC 0x0008000
2518 #define RTYPE_CCC 0x0010000
2519 #define RTYPE_VI 0x0020000
2520 #define RTYPE_VF 0x0040000
2521 #define RTYPE_R5900_I 0x0080000
2522 #define RTYPE_R5900_Q 0x0100000
2523 #define RTYPE_R5900_R 0x0200000
2524 #define RTYPE_R5900_ACC 0x0400000
2525 #define RTYPE_MSA 0x0800000
2526 #define RWARN 0x8000000
2527
2528 #define GENERIC_REGISTER_NUMBERS \
2529 {"$0", RTYPE_NUM | 0}, \
2530 {"$1", RTYPE_NUM | 1}, \
2531 {"$2", RTYPE_NUM | 2}, \
2532 {"$3", RTYPE_NUM | 3}, \
2533 {"$4", RTYPE_NUM | 4}, \
2534 {"$5", RTYPE_NUM | 5}, \
2535 {"$6", RTYPE_NUM | 6}, \
2536 {"$7", RTYPE_NUM | 7}, \
2537 {"$8", RTYPE_NUM | 8}, \
2538 {"$9", RTYPE_NUM | 9}, \
2539 {"$10", RTYPE_NUM | 10}, \
2540 {"$11", RTYPE_NUM | 11}, \
2541 {"$12", RTYPE_NUM | 12}, \
2542 {"$13", RTYPE_NUM | 13}, \
2543 {"$14", RTYPE_NUM | 14}, \
2544 {"$15", RTYPE_NUM | 15}, \
2545 {"$16", RTYPE_NUM | 16}, \
2546 {"$17", RTYPE_NUM | 17}, \
2547 {"$18", RTYPE_NUM | 18}, \
2548 {"$19", RTYPE_NUM | 19}, \
2549 {"$20", RTYPE_NUM | 20}, \
2550 {"$21", RTYPE_NUM | 21}, \
2551 {"$22", RTYPE_NUM | 22}, \
2552 {"$23", RTYPE_NUM | 23}, \
2553 {"$24", RTYPE_NUM | 24}, \
2554 {"$25", RTYPE_NUM | 25}, \
2555 {"$26", RTYPE_NUM | 26}, \
2556 {"$27", RTYPE_NUM | 27}, \
2557 {"$28", RTYPE_NUM | 28}, \
2558 {"$29", RTYPE_NUM | 29}, \
2559 {"$30", RTYPE_NUM | 30}, \
2560 {"$31", RTYPE_NUM | 31}
2561
2562 #define FPU_REGISTER_NAMES \
2563 {"$f0", RTYPE_FPU | 0}, \
2564 {"$f1", RTYPE_FPU | 1}, \
2565 {"$f2", RTYPE_FPU | 2}, \
2566 {"$f3", RTYPE_FPU | 3}, \
2567 {"$f4", RTYPE_FPU | 4}, \
2568 {"$f5", RTYPE_FPU | 5}, \
2569 {"$f6", RTYPE_FPU | 6}, \
2570 {"$f7", RTYPE_FPU | 7}, \
2571 {"$f8", RTYPE_FPU | 8}, \
2572 {"$f9", RTYPE_FPU | 9}, \
2573 {"$f10", RTYPE_FPU | 10}, \
2574 {"$f11", RTYPE_FPU | 11}, \
2575 {"$f12", RTYPE_FPU | 12}, \
2576 {"$f13", RTYPE_FPU | 13}, \
2577 {"$f14", RTYPE_FPU | 14}, \
2578 {"$f15", RTYPE_FPU | 15}, \
2579 {"$f16", RTYPE_FPU | 16}, \
2580 {"$f17", RTYPE_FPU | 17}, \
2581 {"$f18", RTYPE_FPU | 18}, \
2582 {"$f19", RTYPE_FPU | 19}, \
2583 {"$f20", RTYPE_FPU | 20}, \
2584 {"$f21", RTYPE_FPU | 21}, \
2585 {"$f22", RTYPE_FPU | 22}, \
2586 {"$f23", RTYPE_FPU | 23}, \
2587 {"$f24", RTYPE_FPU | 24}, \
2588 {"$f25", RTYPE_FPU | 25}, \
2589 {"$f26", RTYPE_FPU | 26}, \
2590 {"$f27", RTYPE_FPU | 27}, \
2591 {"$f28", RTYPE_FPU | 28}, \
2592 {"$f29", RTYPE_FPU | 29}, \
2593 {"$f30", RTYPE_FPU | 30}, \
2594 {"$f31", RTYPE_FPU | 31}
2595
2596 #define FPU_CONDITION_CODE_NAMES \
2597 {"$fcc0", RTYPE_FCC | 0}, \
2598 {"$fcc1", RTYPE_FCC | 1}, \
2599 {"$fcc2", RTYPE_FCC | 2}, \
2600 {"$fcc3", RTYPE_FCC | 3}, \
2601 {"$fcc4", RTYPE_FCC | 4}, \
2602 {"$fcc5", RTYPE_FCC | 5}, \
2603 {"$fcc6", RTYPE_FCC | 6}, \
2604 {"$fcc7", RTYPE_FCC | 7}
2605
2606 #define COPROC_CONDITION_CODE_NAMES \
2607 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2608 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2609 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2610 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2611 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2612 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2613 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2614 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2615
2616 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2617 {"$a4", RTYPE_GP | 8}, \
2618 {"$a5", RTYPE_GP | 9}, \
2619 {"$a6", RTYPE_GP | 10}, \
2620 {"$a7", RTYPE_GP | 11}, \
2621 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2622 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2623 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2624 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2625 {"$t0", RTYPE_GP | 12}, \
2626 {"$t1", RTYPE_GP | 13}, \
2627 {"$t2", RTYPE_GP | 14}, \
2628 {"$t3", RTYPE_GP | 15}
2629
2630 #define O32_SYMBOLIC_REGISTER_NAMES \
2631 {"$t0", RTYPE_GP | 8}, \
2632 {"$t1", RTYPE_GP | 9}, \
2633 {"$t2", RTYPE_GP | 10}, \
2634 {"$t3", RTYPE_GP | 11}, \
2635 {"$t4", RTYPE_GP | 12}, \
2636 {"$t5", RTYPE_GP | 13}, \
2637 {"$t6", RTYPE_GP | 14}, \
2638 {"$t7", RTYPE_GP | 15}, \
2639 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2640 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2641 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2642 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2643
2644 /* Remaining symbolic register names */
2645 #define SYMBOLIC_REGISTER_NAMES \
2646 {"$zero", RTYPE_GP | 0}, \
2647 {"$at", RTYPE_GP | 1}, \
2648 {"$AT", RTYPE_GP | 1}, \
2649 {"$v0", RTYPE_GP | 2}, \
2650 {"$v1", RTYPE_GP | 3}, \
2651 {"$a0", RTYPE_GP | 4}, \
2652 {"$a1", RTYPE_GP | 5}, \
2653 {"$a2", RTYPE_GP | 6}, \
2654 {"$a3", RTYPE_GP | 7}, \
2655 {"$s0", RTYPE_GP | 16}, \
2656 {"$s1", RTYPE_GP | 17}, \
2657 {"$s2", RTYPE_GP | 18}, \
2658 {"$s3", RTYPE_GP | 19}, \
2659 {"$s4", RTYPE_GP | 20}, \
2660 {"$s5", RTYPE_GP | 21}, \
2661 {"$s6", RTYPE_GP | 22}, \
2662 {"$s7", RTYPE_GP | 23}, \
2663 {"$t8", RTYPE_GP | 24}, \
2664 {"$t9", RTYPE_GP | 25}, \
2665 {"$k0", RTYPE_GP | 26}, \
2666 {"$kt0", RTYPE_GP | 26}, \
2667 {"$k1", RTYPE_GP | 27}, \
2668 {"$kt1", RTYPE_GP | 27}, \
2669 {"$gp", RTYPE_GP | 28}, \
2670 {"$sp", RTYPE_GP | 29}, \
2671 {"$s8", RTYPE_GP | 30}, \
2672 {"$fp", RTYPE_GP | 30}, \
2673 {"$ra", RTYPE_GP | 31}
2674
2675 #define MIPS16_SPECIAL_REGISTER_NAMES \
2676 {"$pc", RTYPE_PC | 0}
2677
2678 #define MDMX_VECTOR_REGISTER_NAMES \
2679 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2680 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2681 {"$v2", RTYPE_VEC | 2}, \
2682 {"$v3", RTYPE_VEC | 3}, \
2683 {"$v4", RTYPE_VEC | 4}, \
2684 {"$v5", RTYPE_VEC | 5}, \
2685 {"$v6", RTYPE_VEC | 6}, \
2686 {"$v7", RTYPE_VEC | 7}, \
2687 {"$v8", RTYPE_VEC | 8}, \
2688 {"$v9", RTYPE_VEC | 9}, \
2689 {"$v10", RTYPE_VEC | 10}, \
2690 {"$v11", RTYPE_VEC | 11}, \
2691 {"$v12", RTYPE_VEC | 12}, \
2692 {"$v13", RTYPE_VEC | 13}, \
2693 {"$v14", RTYPE_VEC | 14}, \
2694 {"$v15", RTYPE_VEC | 15}, \
2695 {"$v16", RTYPE_VEC | 16}, \
2696 {"$v17", RTYPE_VEC | 17}, \
2697 {"$v18", RTYPE_VEC | 18}, \
2698 {"$v19", RTYPE_VEC | 19}, \
2699 {"$v20", RTYPE_VEC | 20}, \
2700 {"$v21", RTYPE_VEC | 21}, \
2701 {"$v22", RTYPE_VEC | 22}, \
2702 {"$v23", RTYPE_VEC | 23}, \
2703 {"$v24", RTYPE_VEC | 24}, \
2704 {"$v25", RTYPE_VEC | 25}, \
2705 {"$v26", RTYPE_VEC | 26}, \
2706 {"$v27", RTYPE_VEC | 27}, \
2707 {"$v28", RTYPE_VEC | 28}, \
2708 {"$v29", RTYPE_VEC | 29}, \
2709 {"$v30", RTYPE_VEC | 30}, \
2710 {"$v31", RTYPE_VEC | 31}
2711
2712 #define R5900_I_NAMES \
2713 {"$I", RTYPE_R5900_I | 0}
2714
2715 #define R5900_Q_NAMES \
2716 {"$Q", RTYPE_R5900_Q | 0}
2717
2718 #define R5900_R_NAMES \
2719 {"$R", RTYPE_R5900_R | 0}
2720
2721 #define R5900_ACC_NAMES \
2722 {"$ACC", RTYPE_R5900_ACC | 0 }
2723
2724 #define MIPS_DSP_ACCUMULATOR_NAMES \
2725 {"$ac0", RTYPE_ACC | 0}, \
2726 {"$ac1", RTYPE_ACC | 1}, \
2727 {"$ac2", RTYPE_ACC | 2}, \
2728 {"$ac3", RTYPE_ACC | 3}
2729
2730 static const struct regname reg_names[] = {
2731 GENERIC_REGISTER_NUMBERS,
2732 FPU_REGISTER_NAMES,
2733 FPU_CONDITION_CODE_NAMES,
2734 COPROC_CONDITION_CODE_NAMES,
2735
2736 /* The $txx registers depends on the abi,
2737 these will be added later into the symbol table from
2738 one of the tables below once mips_abi is set after
2739 parsing of arguments from the command line. */
2740 SYMBOLIC_REGISTER_NAMES,
2741
2742 MIPS16_SPECIAL_REGISTER_NAMES,
2743 MDMX_VECTOR_REGISTER_NAMES,
2744 R5900_I_NAMES,
2745 R5900_Q_NAMES,
2746 R5900_R_NAMES,
2747 R5900_ACC_NAMES,
2748 MIPS_DSP_ACCUMULATOR_NAMES,
2749 {0, 0}
2750 };
2751
2752 static const struct regname reg_names_o32[] = {
2753 O32_SYMBOLIC_REGISTER_NAMES,
2754 {0, 0}
2755 };
2756
2757 static const struct regname reg_names_n32n64[] = {
2758 N32N64_SYMBOLIC_REGISTER_NAMES,
2759 {0, 0}
2760 };
2761
2762 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2763 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2764 of these register symbols, return the associated vector register,
2765 otherwise return SYMVAL itself. */
2766
2767 static unsigned int
2768 mips_prefer_vec_regno (unsigned int symval)
2769 {
2770 if ((symval & -2) == (RTYPE_GP | 2))
2771 return RTYPE_VEC | (symval & 1);
2772 return symval;
2773 }
2774
2775 /* Return true if string [S, E) is a valid register name, storing its
2776 symbol value in *SYMVAL_PTR if so. */
2777
2778 static bfd_boolean
2779 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2780 {
2781 char save_c;
2782 symbolS *symbol;
2783
2784 /* Terminate name. */
2785 save_c = *e;
2786 *e = '\0';
2787
2788 /* Look up the name. */
2789 symbol = symbol_find (s);
2790 *e = save_c;
2791
2792 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2793 return FALSE;
2794
2795 *symval_ptr = S_GET_VALUE (symbol);
2796 return TRUE;
2797 }
2798
2799 /* Return true if the string at *SPTR is a valid register name. Allow it
2800 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2801 is nonnull.
2802
2803 When returning true, move *SPTR past the register, store the
2804 register's symbol value in *SYMVAL_PTR and the channel mask in
2805 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2806 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2807 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2808
2809 static bfd_boolean
2810 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2811 unsigned int *channels_ptr)
2812 {
2813 char *s, *e, *m;
2814 const char *q;
2815 unsigned int channels, symval, bit;
2816
2817 /* Find end of name. */
2818 s = e = *sptr;
2819 if (is_name_beginner (*e))
2820 ++e;
2821 while (is_part_of_name (*e))
2822 ++e;
2823
2824 channels = 0;
2825 if (!mips_parse_register_1 (s, e, &symval))
2826 {
2827 if (!channels_ptr)
2828 return FALSE;
2829
2830 /* Eat characters from the end of the string that are valid
2831 channel suffixes. The preceding register must be $ACC or
2832 end with a digit, so there is no ambiguity. */
2833 bit = 1;
2834 m = e;
2835 for (q = "wzyx"; *q; q++, bit <<= 1)
2836 if (m > s && m[-1] == *q)
2837 {
2838 --m;
2839 channels |= bit;
2840 }
2841
2842 if (channels == 0
2843 || !mips_parse_register_1 (s, m, &symval)
2844 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2845 return FALSE;
2846 }
2847
2848 *sptr = e;
2849 *symval_ptr = symval;
2850 if (channels_ptr)
2851 *channels_ptr = channels;
2852 return TRUE;
2853 }
2854
2855 /* Check if SPTR points at a valid register specifier according to TYPES.
2856 If so, then return 1, advance S to consume the specifier and store
2857 the register's number in REGNOP, otherwise return 0. */
2858
2859 static int
2860 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2861 {
2862 unsigned int regno;
2863
2864 if (mips_parse_register (s, &regno, NULL))
2865 {
2866 if (types & RTYPE_VEC)
2867 regno = mips_prefer_vec_regno (regno);
2868 if (regno & types)
2869 regno &= RNUM_MASK;
2870 else
2871 regno = ~0;
2872 }
2873 else
2874 {
2875 if (types & RWARN)
2876 as_warn (_("unrecognized register name `%s'"), *s);
2877 regno = ~0;
2878 }
2879 if (regnop)
2880 *regnop = regno;
2881 return regno <= RNUM_MASK;
2882 }
2883
2884 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2885 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2886
2887 static char *
2888 mips_parse_vu0_channels (char *s, unsigned int *channels)
2889 {
2890 unsigned int i;
2891
2892 *channels = 0;
2893 for (i = 0; i < 4; i++)
2894 if (*s == "xyzw"[i])
2895 {
2896 *channels |= 1 << (3 - i);
2897 ++s;
2898 }
2899 return s;
2900 }
2901
2902 /* Token types for parsed operand lists. */
2903 enum mips_operand_token_type {
2904 /* A plain register, e.g. $f2. */
2905 OT_REG,
2906
2907 /* A 4-bit XYZW channel mask. */
2908 OT_CHANNELS,
2909
2910 /* A constant vector index, e.g. [1]. */
2911 OT_INTEGER_INDEX,
2912
2913 /* A register vector index, e.g. [$2]. */
2914 OT_REG_INDEX,
2915
2916 /* A continuous range of registers, e.g. $s0-$s4. */
2917 OT_REG_RANGE,
2918
2919 /* A (possibly relocated) expression. */
2920 OT_INTEGER,
2921
2922 /* A floating-point value. */
2923 OT_FLOAT,
2924
2925 /* A single character. This can be '(', ')' or ',', but '(' only appears
2926 before OT_REGs. */
2927 OT_CHAR,
2928
2929 /* A doubled character, either "--" or "++". */
2930 OT_DOUBLE_CHAR,
2931
2932 /* The end of the operand list. */
2933 OT_END
2934 };
2935
2936 /* A parsed operand token. */
2937 struct mips_operand_token
2938 {
2939 /* The type of token. */
2940 enum mips_operand_token_type type;
2941 union
2942 {
2943 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2944 unsigned int regno;
2945
2946 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2947 unsigned int channels;
2948
2949 /* The integer value of an OT_INTEGER_INDEX. */
2950 addressT index;
2951
2952 /* The two register symbol values involved in an OT_REG_RANGE. */
2953 struct {
2954 unsigned int regno1;
2955 unsigned int regno2;
2956 } reg_range;
2957
2958 /* The value of an OT_INTEGER. The value is represented as an
2959 expression and the relocation operators that were applied to
2960 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2961 relocation operators were used. */
2962 struct {
2963 expressionS value;
2964 bfd_reloc_code_real_type relocs[3];
2965 } integer;
2966
2967 /* The binary data for an OT_FLOAT constant, and the number of bytes
2968 in the constant. */
2969 struct {
2970 unsigned char data[8];
2971 int length;
2972 } flt;
2973
2974 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2975 char ch;
2976 } u;
2977 };
2978
2979 /* An obstack used to construct lists of mips_operand_tokens. */
2980 static struct obstack mips_operand_tokens;
2981
2982 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2983
2984 static void
2985 mips_add_token (struct mips_operand_token *token,
2986 enum mips_operand_token_type type)
2987 {
2988 token->type = type;
2989 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2990 }
2991
2992 /* Check whether S is '(' followed by a register name. Add OT_CHAR
2993 and OT_REG tokens for them if so, and return a pointer to the first
2994 unconsumed character. Return null otherwise. */
2995
2996 static char *
2997 mips_parse_base_start (char *s)
2998 {
2999 struct mips_operand_token token;
3000 unsigned int regno, channels;
3001 bfd_boolean decrement_p;
3002
3003 if (*s != '(')
3004 return 0;
3005
3006 ++s;
3007 SKIP_SPACE_TABS (s);
3008
3009 /* Only match "--" as part of a base expression. In other contexts "--X"
3010 is a double negative. */
3011 decrement_p = (s[0] == '-' && s[1] == '-');
3012 if (decrement_p)
3013 {
3014 s += 2;
3015 SKIP_SPACE_TABS (s);
3016 }
3017
3018 /* Allow a channel specifier because that leads to better error messages
3019 than treating something like "$vf0x++" as an expression. */
3020 if (!mips_parse_register (&s, &regno, &channels))
3021 return 0;
3022
3023 token.u.ch = '(';
3024 mips_add_token (&token, OT_CHAR);
3025
3026 if (decrement_p)
3027 {
3028 token.u.ch = '-';
3029 mips_add_token (&token, OT_DOUBLE_CHAR);
3030 }
3031
3032 token.u.regno = regno;
3033 mips_add_token (&token, OT_REG);
3034
3035 if (channels)
3036 {
3037 token.u.channels = channels;
3038 mips_add_token (&token, OT_CHANNELS);
3039 }
3040
3041 /* For consistency, only match "++" as part of base expressions too. */
3042 SKIP_SPACE_TABS (s);
3043 if (s[0] == '+' && s[1] == '+')
3044 {
3045 s += 2;
3046 token.u.ch = '+';
3047 mips_add_token (&token, OT_DOUBLE_CHAR);
3048 }
3049
3050 return s;
3051 }
3052
3053 /* Parse one or more tokens from S. Return a pointer to the first
3054 unconsumed character on success. Return null if an error was found
3055 and store the error text in insn_error. FLOAT_FORMAT is as for
3056 mips_parse_arguments. */
3057
3058 static char *
3059 mips_parse_argument_token (char *s, char float_format)
3060 {
3061 char *end, *save_in;
3062 const char *err;
3063 unsigned int regno1, regno2, channels;
3064 struct mips_operand_token token;
3065
3066 /* First look for "($reg", since we want to treat that as an
3067 OT_CHAR and OT_REG rather than an expression. */
3068 end = mips_parse_base_start (s);
3069 if (end)
3070 return end;
3071
3072 /* Handle other characters that end up as OT_CHARs. */
3073 if (*s == ')' || *s == ',')
3074 {
3075 token.u.ch = *s;
3076 mips_add_token (&token, OT_CHAR);
3077 ++s;
3078 return s;
3079 }
3080
3081 /* Handle tokens that start with a register. */
3082 if (mips_parse_register (&s, &regno1, &channels))
3083 {
3084 if (channels)
3085 {
3086 /* A register and a VU0 channel suffix. */
3087 token.u.regno = regno1;
3088 mips_add_token (&token, OT_REG);
3089
3090 token.u.channels = channels;
3091 mips_add_token (&token, OT_CHANNELS);
3092 return s;
3093 }
3094
3095 SKIP_SPACE_TABS (s);
3096 if (*s == '-')
3097 {
3098 /* A register range. */
3099 ++s;
3100 SKIP_SPACE_TABS (s);
3101 if (!mips_parse_register (&s, &regno2, NULL))
3102 {
3103 set_insn_error (0, _("invalid register range"));
3104 return 0;
3105 }
3106
3107 token.u.reg_range.regno1 = regno1;
3108 token.u.reg_range.regno2 = regno2;
3109 mips_add_token (&token, OT_REG_RANGE);
3110 return s;
3111 }
3112
3113 /* Add the register itself. */
3114 token.u.regno = regno1;
3115 mips_add_token (&token, OT_REG);
3116
3117 /* Check for a vector index. */
3118 if (*s == '[')
3119 {
3120 ++s;
3121 SKIP_SPACE_TABS (s);
3122 if (mips_parse_register (&s, &token.u.regno, NULL))
3123 mips_add_token (&token, OT_REG_INDEX);
3124 else
3125 {
3126 expressionS element;
3127
3128 my_getExpression (&element, s);
3129 if (element.X_op != O_constant)
3130 {
3131 set_insn_error (0, _("vector element must be constant"));
3132 return 0;
3133 }
3134 s = expr_end;
3135 token.u.index = element.X_add_number;
3136 mips_add_token (&token, OT_INTEGER_INDEX);
3137 }
3138 SKIP_SPACE_TABS (s);
3139 if (*s != ']')
3140 {
3141 set_insn_error (0, _("missing `]'"));
3142 return 0;
3143 }
3144 ++s;
3145 }
3146 return s;
3147 }
3148
3149 if (float_format)
3150 {
3151 /* First try to treat expressions as floats. */
3152 save_in = input_line_pointer;
3153 input_line_pointer = s;
3154 err = md_atof (float_format, (char *) token.u.flt.data,
3155 &token.u.flt.length);
3156 end = input_line_pointer;
3157 input_line_pointer = save_in;
3158 if (err && *err)
3159 {
3160 set_insn_error (0, err);
3161 return 0;
3162 }
3163 if (s != end)
3164 {
3165 mips_add_token (&token, OT_FLOAT);
3166 return end;
3167 }
3168 }
3169
3170 /* Treat everything else as an integer expression. */
3171 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3172 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3173 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3174 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3175 s = expr_end;
3176 mips_add_token (&token, OT_INTEGER);
3177 return s;
3178 }
3179
3180 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3181 if expressions should be treated as 32-bit floating-point constants,
3182 'd' if they should be treated as 64-bit floating-point constants,
3183 or 0 if they should be treated as integer expressions (the usual case).
3184
3185 Return a list of tokens on success, otherwise return 0. The caller
3186 must obstack_free the list after use. */
3187
3188 static struct mips_operand_token *
3189 mips_parse_arguments (char *s, char float_format)
3190 {
3191 struct mips_operand_token token;
3192
3193 SKIP_SPACE_TABS (s);
3194 while (*s)
3195 {
3196 s = mips_parse_argument_token (s, float_format);
3197 if (!s)
3198 {
3199 obstack_free (&mips_operand_tokens,
3200 obstack_finish (&mips_operand_tokens));
3201 return 0;
3202 }
3203 SKIP_SPACE_TABS (s);
3204 }
3205 mips_add_token (&token, OT_END);
3206 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3207 }
3208
3209 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3210 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3211
3212 static bfd_boolean
3213 is_opcode_valid (const struct mips_opcode *mo)
3214 {
3215 int isa = mips_opts.isa;
3216 int ase = mips_opts.ase;
3217 int fp_s, fp_d;
3218 unsigned int i;
3219
3220 if (ISA_HAS_64BIT_REGS (isa))
3221 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3222 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3223 ase |= mips_ases[i].flags64;
3224
3225 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3226 return FALSE;
3227
3228 /* Check whether the instruction or macro requires single-precision or
3229 double-precision floating-point support. Note that this information is
3230 stored differently in the opcode table for insns and macros. */
3231 if (mo->pinfo == INSN_MACRO)
3232 {
3233 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3234 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3235 }
3236 else
3237 {
3238 fp_s = mo->pinfo & FP_S;
3239 fp_d = mo->pinfo & FP_D;
3240 }
3241
3242 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3243 return FALSE;
3244
3245 if (fp_s && mips_opts.soft_float)
3246 return FALSE;
3247
3248 return TRUE;
3249 }
3250
3251 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3252 selected ISA and architecture. */
3253
3254 static bfd_boolean
3255 is_opcode_valid_16 (const struct mips_opcode *mo)
3256 {
3257 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3258 }
3259
3260 /* Return TRUE if the size of the microMIPS opcode MO matches one
3261 explicitly requested. Always TRUE in the standard MIPS mode.
3262 Use is_size_valid_16 for MIPS16 opcodes. */
3263
3264 static bfd_boolean
3265 is_size_valid (const struct mips_opcode *mo)
3266 {
3267 if (!mips_opts.micromips)
3268 return TRUE;
3269
3270 if (mips_opts.insn32)
3271 {
3272 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3273 return FALSE;
3274 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3275 return FALSE;
3276 }
3277 if (!forced_insn_length)
3278 return TRUE;
3279 if (mo->pinfo == INSN_MACRO)
3280 return FALSE;
3281 return forced_insn_length == micromips_insn_length (mo);
3282 }
3283
3284 /* Return TRUE if the size of the MIPS16 opcode MO matches one
3285 explicitly requested. */
3286
3287 static bfd_boolean
3288 is_size_valid_16 (const struct mips_opcode *mo)
3289 {
3290 if (!forced_insn_length)
3291 return TRUE;
3292 if (mo->pinfo == INSN_MACRO)
3293 return FALSE;
3294 if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
3295 return FALSE;
3296 if (forced_insn_length == 4 && (mo->pinfo2 & INSN2_SHORT_ONLY))
3297 return FALSE;
3298 return TRUE;
3299 }
3300
3301 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3302 of the preceding instruction. Always TRUE in the standard MIPS mode.
3303
3304 We don't accept macros in 16-bit delay slots to avoid a case where
3305 a macro expansion fails because it relies on a preceding 32-bit real
3306 instruction to have matched and does not handle the operands correctly.
3307 The only macros that may expand to 16-bit instructions are JAL that
3308 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3309 and BGT (that likewise cannot be placed in a delay slot) that decay to
3310 a NOP. In all these cases the macros precede any corresponding real
3311 instruction definitions in the opcode table, so they will match in the
3312 second pass where the size of the delay slot is ignored and therefore
3313 produce correct code. */
3314
3315 static bfd_boolean
3316 is_delay_slot_valid (const struct mips_opcode *mo)
3317 {
3318 if (!mips_opts.micromips)
3319 return TRUE;
3320
3321 if (mo->pinfo == INSN_MACRO)
3322 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3323 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3324 && micromips_insn_length (mo) != 4)
3325 return FALSE;
3326 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3327 && micromips_insn_length (mo) != 2)
3328 return FALSE;
3329
3330 return TRUE;
3331 }
3332
3333 /* For consistency checking, verify that all bits of OPCODE are specified
3334 either by the match/mask part of the instruction definition, or by the
3335 operand list. Also build up a list of operands in OPERANDS.
3336
3337 INSN_BITS says which bits of the instruction are significant.
3338 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3339 provides the mips_operand description of each operand. DECODE_OPERAND
3340 is null for MIPS16 instructions. */
3341
3342 static int
3343 validate_mips_insn (const struct mips_opcode *opcode,
3344 unsigned long insn_bits,
3345 const struct mips_operand *(*decode_operand) (const char *),
3346 struct mips_operand_array *operands)
3347 {
3348 const char *s;
3349 unsigned long used_bits, doubled, undefined, opno, mask;
3350 const struct mips_operand *operand;
3351
3352 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3353 if ((mask & opcode->match) != opcode->match)
3354 {
3355 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3356 opcode->name, opcode->args);
3357 return 0;
3358 }
3359 used_bits = 0;
3360 opno = 0;
3361 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3362 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3363 for (s = opcode->args; *s; ++s)
3364 switch (*s)
3365 {
3366 case ',':
3367 case '(':
3368 case ')':
3369 break;
3370
3371 case '#':
3372 s++;
3373 break;
3374
3375 default:
3376 if (!decode_operand)
3377 operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
3378 else
3379 operand = decode_operand (s);
3380 if (!operand && opcode->pinfo != INSN_MACRO)
3381 {
3382 as_bad (_("internal: unknown operand type: %s %s"),
3383 opcode->name, opcode->args);
3384 return 0;
3385 }
3386 gas_assert (opno < MAX_OPERANDS);
3387 operands->operand[opno] = operand;
3388 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3389 {
3390 used_bits = mips_insert_operand (operand, used_bits, -1);
3391 if (operand->type == OP_MDMX_IMM_REG)
3392 /* Bit 5 is the format selector (OB vs QH). The opcode table
3393 has separate entries for each format. */
3394 used_bits &= ~(1 << (operand->lsb + 5));
3395 if (operand->type == OP_ENTRY_EXIT_LIST)
3396 used_bits &= ~(mask & 0x700);
3397 }
3398 /* Skip prefix characters. */
3399 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3400 ++s;
3401 opno += 1;
3402 break;
3403 }
3404 doubled = used_bits & mask & insn_bits;
3405 if (doubled)
3406 {
3407 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3408 " %s %s"), doubled, opcode->name, opcode->args);
3409 return 0;
3410 }
3411 used_bits |= mask;
3412 undefined = ~used_bits & insn_bits;
3413 if (opcode->pinfo != INSN_MACRO && undefined)
3414 {
3415 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3416 undefined, opcode->name, opcode->args);
3417 return 0;
3418 }
3419 used_bits &= ~insn_bits;
3420 if (used_bits)
3421 {
3422 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3423 used_bits, opcode->name, opcode->args);
3424 return 0;
3425 }
3426 return 1;
3427 }
3428
3429 /* The MIPS16 version of validate_mips_insn. */
3430
3431 static int
3432 validate_mips16_insn (const struct mips_opcode *opcode,
3433 struct mips_operand_array *operands)
3434 {
3435 unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
3436
3437 return validate_mips_insn (opcode, insn_bits, 0, operands);
3438 }
3439
3440 /* The microMIPS version of validate_mips_insn. */
3441
3442 static int
3443 validate_micromips_insn (const struct mips_opcode *opc,
3444 struct mips_operand_array *operands)
3445 {
3446 unsigned long insn_bits;
3447 unsigned long major;
3448 unsigned int length;
3449
3450 if (opc->pinfo == INSN_MACRO)
3451 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3452 operands);
3453
3454 length = micromips_insn_length (opc);
3455 if (length != 2 && length != 4)
3456 {
3457 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3458 "%s %s"), length, opc->name, opc->args);
3459 return 0;
3460 }
3461 major = opc->match >> (10 + 8 * (length - 2));
3462 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3463 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3464 {
3465 as_bad (_("internal error: bad microMIPS opcode "
3466 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3467 return 0;
3468 }
3469
3470 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3471 insn_bits = 1 << 4 * length;
3472 insn_bits <<= 4 * length;
3473 insn_bits -= 1;
3474 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3475 operands);
3476 }
3477
3478 /* This function is called once, at assembler startup time. It should set up
3479 all the tables, etc. that the MD part of the assembler will need. */
3480
3481 void
3482 md_begin (void)
3483 {
3484 const char *retval = NULL;
3485 int i = 0;
3486 int broken = 0;
3487
3488 if (mips_pic != NO_PIC)
3489 {
3490 if (g_switch_seen && g_switch_value != 0)
3491 as_bad (_("-G may not be used in position-independent code"));
3492 g_switch_value = 0;
3493 }
3494 else if (mips_abicalls)
3495 {
3496 if (g_switch_seen && g_switch_value != 0)
3497 as_bad (_("-G may not be used with abicalls"));
3498 g_switch_value = 0;
3499 }
3500
3501 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3502 as_warn (_("could not set architecture and machine"));
3503
3504 op_hash = hash_new ();
3505
3506 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3507 for (i = 0; i < NUMOPCODES;)
3508 {
3509 const char *name = mips_opcodes[i].name;
3510
3511 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3512 if (retval != NULL)
3513 {
3514 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3515 mips_opcodes[i].name, retval);
3516 /* Probably a memory allocation problem? Give up now. */
3517 as_fatal (_("broken assembler, no assembly attempted"));
3518 }
3519 do
3520 {
3521 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3522 decode_mips_operand, &mips_operands[i]))
3523 broken = 1;
3524 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3525 {
3526 create_insn (&nop_insn, mips_opcodes + i);
3527 if (mips_fix_loongson2f_nop)
3528 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3529 nop_insn.fixed_p = 1;
3530 }
3531 ++i;
3532 }
3533 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3534 }
3535
3536 mips16_op_hash = hash_new ();
3537 mips16_operands = XCNEWVEC (struct mips_operand_array,
3538 bfd_mips16_num_opcodes);
3539
3540 i = 0;
3541 while (i < bfd_mips16_num_opcodes)
3542 {
3543 const char *name = mips16_opcodes[i].name;
3544
3545 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3546 if (retval != NULL)
3547 as_fatal (_("internal: can't hash `%s': %s"),
3548 mips16_opcodes[i].name, retval);
3549 do
3550 {
3551 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3552 broken = 1;
3553 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3554 {
3555 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3556 mips16_nop_insn.fixed_p = 1;
3557 }
3558 ++i;
3559 }
3560 while (i < bfd_mips16_num_opcodes
3561 && strcmp (mips16_opcodes[i].name, name) == 0);
3562 }
3563
3564 micromips_op_hash = hash_new ();
3565 micromips_operands = XCNEWVEC (struct mips_operand_array,
3566 bfd_micromips_num_opcodes);
3567
3568 i = 0;
3569 while (i < bfd_micromips_num_opcodes)
3570 {
3571 const char *name = micromips_opcodes[i].name;
3572
3573 retval = hash_insert (micromips_op_hash, name,
3574 (void *) &micromips_opcodes[i]);
3575 if (retval != NULL)
3576 as_fatal (_("internal: can't hash `%s': %s"),
3577 micromips_opcodes[i].name, retval);
3578 do
3579 {
3580 struct mips_cl_insn *micromips_nop_insn;
3581
3582 if (!validate_micromips_insn (&micromips_opcodes[i],
3583 &micromips_operands[i]))
3584 broken = 1;
3585
3586 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3587 {
3588 if (micromips_insn_length (micromips_opcodes + i) == 2)
3589 micromips_nop_insn = &micromips_nop16_insn;
3590 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3591 micromips_nop_insn = &micromips_nop32_insn;
3592 else
3593 continue;
3594
3595 if (micromips_nop_insn->insn_mo == NULL
3596 && strcmp (name, "nop") == 0)
3597 {
3598 create_insn (micromips_nop_insn, micromips_opcodes + i);
3599 micromips_nop_insn->fixed_p = 1;
3600 }
3601 }
3602 }
3603 while (++i < bfd_micromips_num_opcodes
3604 && strcmp (micromips_opcodes[i].name, name) == 0);
3605 }
3606
3607 if (broken)
3608 as_fatal (_("broken assembler, no assembly attempted"));
3609
3610 /* We add all the general register names to the symbol table. This
3611 helps us detect invalid uses of them. */
3612 for (i = 0; reg_names[i].name; i++)
3613 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3614 reg_names[i].num, /* & RNUM_MASK, */
3615 &zero_address_frag));
3616 if (HAVE_NEWABI)
3617 for (i = 0; reg_names_n32n64[i].name; i++)
3618 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3619 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3620 &zero_address_frag));
3621 else
3622 for (i = 0; reg_names_o32[i].name; i++)
3623 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3624 reg_names_o32[i].num, /* & RNUM_MASK, */
3625 &zero_address_frag));
3626
3627 for (i = 0; i < 32; i++)
3628 {
3629 char regname[6];
3630
3631 /* R5900 VU0 floating-point register. */
3632 sprintf (regname, "$vf%d", i);
3633 symbol_table_insert (symbol_new (regname, reg_section,
3634 RTYPE_VF | i, &zero_address_frag));
3635
3636 /* R5900 VU0 integer register. */
3637 sprintf (regname, "$vi%d", i);
3638 symbol_table_insert (symbol_new (regname, reg_section,
3639 RTYPE_VI | i, &zero_address_frag));
3640
3641 /* MSA register. */
3642 sprintf (regname, "$w%d", i);
3643 symbol_table_insert (symbol_new (regname, reg_section,
3644 RTYPE_MSA | i, &zero_address_frag));
3645 }
3646
3647 obstack_init (&mips_operand_tokens);
3648
3649 mips_no_prev_insn ();
3650
3651 mips_gprmask = 0;
3652 mips_cprmask[0] = 0;
3653 mips_cprmask[1] = 0;
3654 mips_cprmask[2] = 0;
3655 mips_cprmask[3] = 0;
3656
3657 /* set the default alignment for the text section (2**2) */
3658 record_alignment (text_section, 2);
3659
3660 bfd_set_gp_size (stdoutput, g_switch_value);
3661
3662 /* On a native system other than VxWorks, sections must be aligned
3663 to 16 byte boundaries. When configured for an embedded ELF
3664 target, we don't bother. */
3665 if (strncmp (TARGET_OS, "elf", 3) != 0
3666 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3667 {
3668 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3669 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3670 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3671 }
3672
3673 /* Create a .reginfo section for register masks and a .mdebug
3674 section for debugging information. */
3675 {
3676 segT seg;
3677 subsegT subseg;
3678 flagword flags;
3679 segT sec;
3680
3681 seg = now_seg;
3682 subseg = now_subseg;
3683
3684 /* The ABI says this section should be loaded so that the
3685 running program can access it. However, we don't load it
3686 if we are configured for an embedded target */
3687 flags = SEC_READONLY | SEC_DATA;
3688 if (strncmp (TARGET_OS, "elf", 3) != 0)
3689 flags |= SEC_ALLOC | SEC_LOAD;
3690
3691 if (mips_abi != N64_ABI)
3692 {
3693 sec = subseg_new (".reginfo", (subsegT) 0);
3694
3695 bfd_set_section_flags (stdoutput, sec, flags);
3696 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3697
3698 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3699 }
3700 else
3701 {
3702 /* The 64-bit ABI uses a .MIPS.options section rather than
3703 .reginfo section. */
3704 sec = subseg_new (".MIPS.options", (subsegT) 0);
3705 bfd_set_section_flags (stdoutput, sec, flags);
3706 bfd_set_section_alignment (stdoutput, sec, 3);
3707
3708 /* Set up the option header. */
3709 {
3710 Elf_Internal_Options opthdr;
3711 char *f;
3712
3713 opthdr.kind = ODK_REGINFO;
3714 opthdr.size = (sizeof (Elf_External_Options)
3715 + sizeof (Elf64_External_RegInfo));
3716 opthdr.section = 0;
3717 opthdr.info = 0;
3718 f = frag_more (sizeof (Elf_External_Options));
3719 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3720 (Elf_External_Options *) f);
3721
3722 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3723 }
3724 }
3725
3726 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3727 bfd_set_section_flags (stdoutput, sec,
3728 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3729 bfd_set_section_alignment (stdoutput, sec, 3);
3730 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3731
3732 if (ECOFF_DEBUGGING)
3733 {
3734 sec = subseg_new (".mdebug", (subsegT) 0);
3735 (void) bfd_set_section_flags (stdoutput, sec,
3736 SEC_HAS_CONTENTS | SEC_READONLY);
3737 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3738 }
3739 else if (mips_flag_pdr)
3740 {
3741 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3742 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3743 SEC_READONLY | SEC_RELOC
3744 | SEC_DEBUGGING);
3745 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3746 }
3747
3748 subseg_set (seg, subseg);
3749 }
3750
3751 if (mips_fix_vr4120)
3752 init_vr4120_conflicts ();
3753 }
3754
3755 static inline void
3756 fpabi_incompatible_with (int fpabi, const char *what)
3757 {
3758 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3759 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3760 }
3761
3762 static inline void
3763 fpabi_requires (int fpabi, const char *what)
3764 {
3765 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3766 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3767 }
3768
3769 /* Check -mabi and register sizes against the specified FP ABI. */
3770 static void
3771 check_fpabi (int fpabi)
3772 {
3773 switch (fpabi)
3774 {
3775 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3776 if (file_mips_opts.soft_float)
3777 fpabi_incompatible_with (fpabi, "softfloat");
3778 else if (file_mips_opts.single_float)
3779 fpabi_incompatible_with (fpabi, "singlefloat");
3780 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3781 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3782 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3783 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3784 break;
3785
3786 case Val_GNU_MIPS_ABI_FP_XX:
3787 if (mips_abi != O32_ABI)
3788 fpabi_requires (fpabi, "-mabi=32");
3789 else if (file_mips_opts.soft_float)
3790 fpabi_incompatible_with (fpabi, "softfloat");
3791 else if (file_mips_opts.single_float)
3792 fpabi_incompatible_with (fpabi, "singlefloat");
3793 else if (file_mips_opts.fp != 0)
3794 fpabi_requires (fpabi, "fp=xx");
3795 break;
3796
3797 case Val_GNU_MIPS_ABI_FP_64A:
3798 case Val_GNU_MIPS_ABI_FP_64:
3799 if (mips_abi != O32_ABI)
3800 fpabi_requires (fpabi, "-mabi=32");
3801 else if (file_mips_opts.soft_float)
3802 fpabi_incompatible_with (fpabi, "softfloat");
3803 else if (file_mips_opts.single_float)
3804 fpabi_incompatible_with (fpabi, "singlefloat");
3805 else if (file_mips_opts.fp != 64)
3806 fpabi_requires (fpabi, "fp=64");
3807 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3808 fpabi_incompatible_with (fpabi, "nooddspreg");
3809 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3810 fpabi_requires (fpabi, "nooddspreg");
3811 break;
3812
3813 case Val_GNU_MIPS_ABI_FP_SINGLE:
3814 if (file_mips_opts.soft_float)
3815 fpabi_incompatible_with (fpabi, "softfloat");
3816 else if (!file_mips_opts.single_float)
3817 fpabi_requires (fpabi, "singlefloat");
3818 break;
3819
3820 case Val_GNU_MIPS_ABI_FP_SOFT:
3821 if (!file_mips_opts.soft_float)
3822 fpabi_requires (fpabi, "softfloat");
3823 break;
3824
3825 case Val_GNU_MIPS_ABI_FP_OLD_64:
3826 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3827 Tag_GNU_MIPS_ABI_FP, fpabi);
3828 break;
3829
3830 case Val_GNU_MIPS_ABI_FP_NAN2008:
3831 /* Silently ignore compatibility value. */
3832 break;
3833
3834 default:
3835 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3836 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3837 break;
3838 }
3839 }
3840
3841 /* Perform consistency checks on the current options. */
3842
3843 static void
3844 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3845 {
3846 /* Check the size of integer registers agrees with the ABI and ISA. */
3847 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3848 as_bad (_("`gp=64' used with a 32-bit processor"));
3849 else if (abi_checks
3850 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3851 as_bad (_("`gp=32' used with a 64-bit ABI"));
3852 else if (abi_checks
3853 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3854 as_bad (_("`gp=64' used with a 32-bit ABI"));
3855
3856 /* Check the size of the float registers agrees with the ABI and ISA. */
3857 switch (opts->fp)
3858 {
3859 case 0:
3860 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3861 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3862 else if (opts->single_float == 1)
3863 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3864 break;
3865 case 64:
3866 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3867 as_bad (_("`fp=64' used with a 32-bit fpu"));
3868 else if (abi_checks
3869 && ABI_NEEDS_32BIT_REGS (mips_abi)
3870 && !ISA_HAS_MXHC1 (opts->isa))
3871 as_warn (_("`fp=64' used with a 32-bit ABI"));
3872 break;
3873 case 32:
3874 if (abi_checks
3875 && ABI_NEEDS_64BIT_REGS (mips_abi))
3876 as_warn (_("`fp=32' used with a 64-bit ABI"));
3877 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
3878 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3879 break;
3880 default:
3881 as_bad (_("Unknown size of floating point registers"));
3882 break;
3883 }
3884
3885 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3886 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3887
3888 if (opts->micromips == 1 && opts->mips16 == 1)
3889 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
3890 else if (ISA_IS_R6 (opts->isa)
3891 && (opts->micromips == 1
3892 || opts->mips16 == 1))
3893 as_fatal (_("`%s' cannot be used with `%s'"),
3894 opts->micromips ? "micromips" : "mips16",
3895 mips_cpu_info_from_isa (opts->isa)->name);
3896
3897 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3898 as_fatal (_("branch relaxation is not supported in `%s'"),
3899 mips_cpu_info_from_isa (opts->isa)->name);
3900 }
3901
3902 /* Perform consistency checks on the module level options exactly once.
3903 This is a deferred check that happens:
3904 at the first .set directive
3905 or, at the first pseudo op that generates code (inc .dc.a)
3906 or, at the first instruction
3907 or, at the end. */
3908
3909 static void
3910 file_mips_check_options (void)
3911 {
3912 const struct mips_cpu_info *arch_info = 0;
3913
3914 if (file_mips_opts_checked)
3915 return;
3916
3917 /* The following code determines the register size.
3918 Similar code was added to GCC 3.3 (see override_options() in
3919 config/mips/mips.c). The GAS and GCC code should be kept in sync
3920 as much as possible. */
3921
3922 if (file_mips_opts.gp < 0)
3923 {
3924 /* Infer the integer register size from the ABI and processor.
3925 Restrict ourselves to 32-bit registers if that's all the
3926 processor has, or if the ABI cannot handle 64-bit registers. */
3927 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3928 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3929 ? 32 : 64;
3930 }
3931
3932 if (file_mips_opts.fp < 0)
3933 {
3934 /* No user specified float register size.
3935 ??? GAS treats single-float processors as though they had 64-bit
3936 float registers (although it complains when double-precision
3937 instructions are used). As things stand, saying they have 32-bit
3938 registers would lead to spurious "register must be even" messages.
3939 So here we assume float registers are never smaller than the
3940 integer ones. */
3941 if (file_mips_opts.gp == 64)
3942 /* 64-bit integer registers implies 64-bit float registers. */
3943 file_mips_opts.fp = 64;
3944 else if ((file_mips_opts.ase & FP64_ASES)
3945 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3946 /* Handle ASEs that require 64-bit float registers, if possible. */
3947 file_mips_opts.fp = 64;
3948 else if (ISA_IS_R6 (mips_opts.isa))
3949 /* R6 implies 64-bit float registers. */
3950 file_mips_opts.fp = 64;
3951 else
3952 /* 32-bit float registers. */
3953 file_mips_opts.fp = 32;
3954 }
3955
3956 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3957
3958 /* Disable operations on odd-numbered floating-point registers by default
3959 when using the FPXX ABI. */
3960 if (file_mips_opts.oddspreg < 0)
3961 {
3962 if (file_mips_opts.fp == 0)
3963 file_mips_opts.oddspreg = 0;
3964 else
3965 file_mips_opts.oddspreg = 1;
3966 }
3967
3968 /* End of GCC-shared inference code. */
3969
3970 /* This flag is set when we have a 64-bit capable CPU but use only
3971 32-bit wide registers. Note that EABI does not use it. */
3972 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3973 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3974 || mips_abi == O32_ABI))
3975 mips_32bitmode = 1;
3976
3977 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3978 as_bad (_("trap exception not supported at ISA 1"));
3979
3980 /* If the selected architecture includes support for ASEs, enable
3981 generation of code for them. */
3982 if (file_mips_opts.mips16 == -1)
3983 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3984 if (file_mips_opts.micromips == -1)
3985 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3986 ? 1 : 0;
3987
3988 if (mips_nan2008 == -1)
3989 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3990 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3991 as_fatal (_("`%s' does not support legacy NaN"),
3992 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3993
3994 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3995 being selected implicitly. */
3996 if (file_mips_opts.fp != 64)
3997 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3998
3999 /* If the user didn't explicitly select or deselect a particular ASE,
4000 use the default setting for the CPU. */
4001 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
4002
4003 /* Set up the current options. These may change throughout assembly. */
4004 mips_opts = file_mips_opts;
4005
4006 mips_check_isa_supports_ases ();
4007 mips_check_options (&file_mips_opts, TRUE);
4008 file_mips_opts_checked = TRUE;
4009
4010 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4011 as_warn (_("could not set architecture and machine"));
4012 }
4013
4014 void
4015 md_assemble (char *str)
4016 {
4017 struct mips_cl_insn insn;
4018 bfd_reloc_code_real_type unused_reloc[3]
4019 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4020
4021 file_mips_check_options ();
4022
4023 imm_expr.X_op = O_absent;
4024 offset_expr.X_op = O_absent;
4025 offset_reloc[0] = BFD_RELOC_UNUSED;
4026 offset_reloc[1] = BFD_RELOC_UNUSED;
4027 offset_reloc[2] = BFD_RELOC_UNUSED;
4028
4029 mips_mark_labels ();
4030 mips_assembling_insn = TRUE;
4031 clear_insn_error ();
4032
4033 if (mips_opts.mips16)
4034 mips16_ip (str, &insn);
4035 else
4036 {
4037 mips_ip (str, &insn);
4038 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4039 str, insn.insn_opcode));
4040 }
4041
4042 if (insn_error.msg)
4043 report_insn_error (str);
4044 else if (insn.insn_mo->pinfo == INSN_MACRO)
4045 {
4046 macro_start ();
4047 if (mips_opts.mips16)
4048 mips16_macro (&insn);
4049 else
4050 macro (&insn, str);
4051 macro_end ();
4052 }
4053 else
4054 {
4055 if (offset_expr.X_op != O_absent)
4056 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4057 else
4058 append_insn (&insn, NULL, unused_reloc, FALSE);
4059 }
4060
4061 mips_assembling_insn = FALSE;
4062 }
4063
4064 /* Convenience functions for abstracting away the differences between
4065 MIPS16 and non-MIPS16 relocations. */
4066
4067 static inline bfd_boolean
4068 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4069 {
4070 switch (reloc)
4071 {
4072 case BFD_RELOC_MIPS16_JMP:
4073 case BFD_RELOC_MIPS16_GPREL:
4074 case BFD_RELOC_MIPS16_GOT16:
4075 case BFD_RELOC_MIPS16_CALL16:
4076 case BFD_RELOC_MIPS16_HI16_S:
4077 case BFD_RELOC_MIPS16_HI16:
4078 case BFD_RELOC_MIPS16_LO16:
4079 case BFD_RELOC_MIPS16_16_PCREL_S1:
4080 return TRUE;
4081
4082 default:
4083 return FALSE;
4084 }
4085 }
4086
4087 static inline bfd_boolean
4088 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4089 {
4090 switch (reloc)
4091 {
4092 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4093 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4094 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4095 case BFD_RELOC_MICROMIPS_GPREL16:
4096 case BFD_RELOC_MICROMIPS_JMP:
4097 case BFD_RELOC_MICROMIPS_HI16:
4098 case BFD_RELOC_MICROMIPS_HI16_S:
4099 case BFD_RELOC_MICROMIPS_LO16:
4100 case BFD_RELOC_MICROMIPS_LITERAL:
4101 case BFD_RELOC_MICROMIPS_GOT16:
4102 case BFD_RELOC_MICROMIPS_CALL16:
4103 case BFD_RELOC_MICROMIPS_GOT_HI16:
4104 case BFD_RELOC_MICROMIPS_GOT_LO16:
4105 case BFD_RELOC_MICROMIPS_CALL_HI16:
4106 case BFD_RELOC_MICROMIPS_CALL_LO16:
4107 case BFD_RELOC_MICROMIPS_SUB:
4108 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4109 case BFD_RELOC_MICROMIPS_GOT_OFST:
4110 case BFD_RELOC_MICROMIPS_GOT_DISP:
4111 case BFD_RELOC_MICROMIPS_HIGHEST:
4112 case BFD_RELOC_MICROMIPS_HIGHER:
4113 case BFD_RELOC_MICROMIPS_SCN_DISP:
4114 case BFD_RELOC_MICROMIPS_JALR:
4115 return TRUE;
4116
4117 default:
4118 return FALSE;
4119 }
4120 }
4121
4122 static inline bfd_boolean
4123 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4124 {
4125 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4126 }
4127
4128 static inline bfd_boolean
4129 b_reloc_p (bfd_reloc_code_real_type reloc)
4130 {
4131 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4132 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4133 || reloc == BFD_RELOC_16_PCREL_S2
4134 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
4135 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4136 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4137 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4138 }
4139
4140 static inline bfd_boolean
4141 got16_reloc_p (bfd_reloc_code_real_type reloc)
4142 {
4143 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4144 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4145 }
4146
4147 static inline bfd_boolean
4148 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4149 {
4150 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4151 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4152 }
4153
4154 static inline bfd_boolean
4155 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4156 {
4157 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4158 || reloc == BFD_RELOC_MICROMIPS_LO16);
4159 }
4160
4161 static inline bfd_boolean
4162 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4163 {
4164 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4165 }
4166
4167 static inline bfd_boolean
4168 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4169 {
4170 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4171 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4172 }
4173
4174 /* Return true if RELOC is a PC-relative relocation that does not have
4175 full address range. */
4176
4177 static inline bfd_boolean
4178 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4179 {
4180 switch (reloc)
4181 {
4182 case BFD_RELOC_16_PCREL_S2:
4183 case BFD_RELOC_MIPS16_16_PCREL_S1:
4184 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4185 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4186 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4187 case BFD_RELOC_MIPS_21_PCREL_S2:
4188 case BFD_RELOC_MIPS_26_PCREL_S2:
4189 case BFD_RELOC_MIPS_18_PCREL_S3:
4190 case BFD_RELOC_MIPS_19_PCREL_S2:
4191 return TRUE;
4192
4193 case BFD_RELOC_32_PCREL:
4194 case BFD_RELOC_HI16_S_PCREL:
4195 case BFD_RELOC_LO16_PCREL:
4196 return HAVE_64BIT_ADDRESSES;
4197
4198 default:
4199 return FALSE;
4200 }
4201 }
4202
4203 /* Return true if the given relocation might need a matching %lo().
4204 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4205 need a matching %lo() when applied to local symbols. */
4206
4207 static inline bfd_boolean
4208 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4209 {
4210 return (HAVE_IN_PLACE_ADDENDS
4211 && (hi16_reloc_p (reloc)
4212 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4213 all GOT16 relocations evaluate to "G". */
4214 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4215 }
4216
4217 /* Return the type of %lo() reloc needed by RELOC, given that
4218 reloc_needs_lo_p. */
4219
4220 static inline bfd_reloc_code_real_type
4221 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4222 {
4223 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4224 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4225 : BFD_RELOC_LO16));
4226 }
4227
4228 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4229 relocation. */
4230
4231 static inline bfd_boolean
4232 fixup_has_matching_lo_p (fixS *fixp)
4233 {
4234 return (fixp->fx_next != NULL
4235 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4236 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4237 && fixp->fx_offset == fixp->fx_next->fx_offset);
4238 }
4239
4240 /* Move all labels in LABELS to the current insertion point. TEXT_P
4241 says whether the labels refer to text or data. */
4242
4243 static void
4244 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4245 {
4246 struct insn_label_list *l;
4247 valueT val;
4248
4249 for (l = labels; l != NULL; l = l->next)
4250 {
4251 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4252 symbol_set_frag (l->label, frag_now);
4253 val = (valueT) frag_now_fix ();
4254 /* MIPS16/microMIPS text labels are stored as odd. */
4255 if (text_p && HAVE_CODE_COMPRESSION)
4256 ++val;
4257 S_SET_VALUE (l->label, val);
4258 }
4259 }
4260
4261 /* Move all labels in insn_labels to the current insertion point
4262 and treat them as text labels. */
4263
4264 static void
4265 mips_move_text_labels (void)
4266 {
4267 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4268 }
4269
4270 /* Duplicate the test for LINK_ONCE sections as in `adjust_reloc_syms'. */
4271
4272 static bfd_boolean
4273 s_is_linkonce (symbolS *sym, segT from_seg)
4274 {
4275 bfd_boolean linkonce = FALSE;
4276 segT symseg = S_GET_SEGMENT (sym);
4277
4278 if (symseg != from_seg && !S_IS_LOCAL (sym))
4279 {
4280 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4281 linkonce = TRUE;
4282 /* The GNU toolchain uses an extension for ELF: a section
4283 beginning with the magic string .gnu.linkonce is a
4284 linkonce section. */
4285 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4286 sizeof ".gnu.linkonce" - 1) == 0)
4287 linkonce = TRUE;
4288 }
4289 return linkonce;
4290 }
4291
4292 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4293 linker to handle them specially, such as generating jalx instructions
4294 when needed. We also make them odd for the duration of the assembly,
4295 in order to generate the right sort of code. We will make them even
4296 in the adjust_symtab routine, while leaving them marked. This is
4297 convenient for the debugger and the disassembler. The linker knows
4298 to make them odd again. */
4299
4300 static void
4301 mips_compressed_mark_label (symbolS *label)
4302 {
4303 gas_assert (HAVE_CODE_COMPRESSION);
4304
4305 if (mips_opts.mips16)
4306 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4307 else
4308 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4309 if ((S_GET_VALUE (label) & 1) == 0
4310 /* Don't adjust the address if the label is global or weak, or
4311 in a link-once section, since we'll be emitting symbol reloc
4312 references to it which will be patched up by the linker, and
4313 the final value of the symbol may or may not be MIPS16/microMIPS. */
4314 && !S_IS_WEAK (label)
4315 && !S_IS_EXTERNAL (label)
4316 && !s_is_linkonce (label, now_seg))
4317 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4318 }
4319
4320 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4321
4322 static void
4323 mips_compressed_mark_labels (void)
4324 {
4325 struct insn_label_list *l;
4326
4327 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4328 mips_compressed_mark_label (l->label);
4329 }
4330
4331 /* End the current frag. Make it a variant frag and record the
4332 relaxation info. */
4333
4334 static void
4335 relax_close_frag (void)
4336 {
4337 mips_macro_warning.first_frag = frag_now;
4338 frag_var (rs_machine_dependent, 0, 0,
4339 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4340 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4341
4342 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4343 mips_relax.first_fixup = 0;
4344 }
4345
4346 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4347 See the comment above RELAX_ENCODE for more details. */
4348
4349 static void
4350 relax_start (symbolS *symbol)
4351 {
4352 gas_assert (mips_relax.sequence == 0);
4353 mips_relax.sequence = 1;
4354 mips_relax.symbol = symbol;
4355 }
4356
4357 /* Start generating the second version of a relaxable sequence.
4358 See the comment above RELAX_ENCODE for more details. */
4359
4360 static void
4361 relax_switch (void)
4362 {
4363 gas_assert (mips_relax.sequence == 1);
4364 mips_relax.sequence = 2;
4365 }
4366
4367 /* End the current relaxable sequence. */
4368
4369 static void
4370 relax_end (void)
4371 {
4372 gas_assert (mips_relax.sequence == 2);
4373 relax_close_frag ();
4374 mips_relax.sequence = 0;
4375 }
4376
4377 /* Return true if IP is a delayed branch or jump. */
4378
4379 static inline bfd_boolean
4380 delayed_branch_p (const struct mips_cl_insn *ip)
4381 {
4382 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4383 | INSN_COND_BRANCH_DELAY
4384 | INSN_COND_BRANCH_LIKELY)) != 0;
4385 }
4386
4387 /* Return true if IP is a compact branch or jump. */
4388
4389 static inline bfd_boolean
4390 compact_branch_p (const struct mips_cl_insn *ip)
4391 {
4392 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4393 | INSN2_COND_BRANCH)) != 0;
4394 }
4395
4396 /* Return true if IP is an unconditional branch or jump. */
4397
4398 static inline bfd_boolean
4399 uncond_branch_p (const struct mips_cl_insn *ip)
4400 {
4401 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4402 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4403 }
4404
4405 /* Return true if IP is a branch-likely instruction. */
4406
4407 static inline bfd_boolean
4408 branch_likely_p (const struct mips_cl_insn *ip)
4409 {
4410 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4411 }
4412
4413 /* Return the type of nop that should be used to fill the delay slot
4414 of delayed branch IP. */
4415
4416 static struct mips_cl_insn *
4417 get_delay_slot_nop (const struct mips_cl_insn *ip)
4418 {
4419 if (mips_opts.micromips
4420 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4421 return &micromips_nop32_insn;
4422 return NOP_INSN;
4423 }
4424
4425 /* Return a mask that has bit N set if OPCODE reads the register(s)
4426 in operand N. */
4427
4428 static unsigned int
4429 insn_read_mask (const struct mips_opcode *opcode)
4430 {
4431 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4432 }
4433
4434 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4435 in operand N. */
4436
4437 static unsigned int
4438 insn_write_mask (const struct mips_opcode *opcode)
4439 {
4440 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4441 }
4442
4443 /* Return a mask of the registers specified by operand OPERAND of INSN.
4444 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4445 is set. */
4446
4447 static unsigned int
4448 operand_reg_mask (const struct mips_cl_insn *insn,
4449 const struct mips_operand *operand,
4450 unsigned int type_mask)
4451 {
4452 unsigned int uval, vsel;
4453
4454 switch (operand->type)
4455 {
4456 case OP_INT:
4457 case OP_MAPPED_INT:
4458 case OP_MSB:
4459 case OP_PCREL:
4460 case OP_PERF_REG:
4461 case OP_ADDIUSP_INT:
4462 case OP_ENTRY_EXIT_LIST:
4463 case OP_REPEAT_DEST_REG:
4464 case OP_REPEAT_PREV_REG:
4465 case OP_PC:
4466 case OP_VU0_SUFFIX:
4467 case OP_VU0_MATCH_SUFFIX:
4468 case OP_IMM_INDEX:
4469 abort ();
4470
4471 case OP_REG:
4472 case OP_OPTIONAL_REG:
4473 {
4474 const struct mips_reg_operand *reg_op;
4475
4476 reg_op = (const struct mips_reg_operand *) operand;
4477 if (!(type_mask & (1 << reg_op->reg_type)))
4478 return 0;
4479 uval = insn_extract_operand (insn, operand);
4480 return 1 << mips_decode_reg_operand (reg_op, uval);
4481 }
4482
4483 case OP_REG_PAIR:
4484 {
4485 const struct mips_reg_pair_operand *pair_op;
4486
4487 pair_op = (const struct mips_reg_pair_operand *) operand;
4488 if (!(type_mask & (1 << pair_op->reg_type)))
4489 return 0;
4490 uval = insn_extract_operand (insn, operand);
4491 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4492 }
4493
4494 case OP_CLO_CLZ_DEST:
4495 if (!(type_mask & (1 << OP_REG_GP)))
4496 return 0;
4497 uval = insn_extract_operand (insn, operand);
4498 return (1 << (uval & 31)) | (1 << (uval >> 5));
4499
4500 case OP_SAME_RS_RT:
4501 if (!(type_mask & (1 << OP_REG_GP)))
4502 return 0;
4503 uval = insn_extract_operand (insn, operand);
4504 gas_assert ((uval & 31) == (uval >> 5));
4505 return 1 << (uval & 31);
4506
4507 case OP_CHECK_PREV:
4508 case OP_NON_ZERO_REG:
4509 if (!(type_mask & (1 << OP_REG_GP)))
4510 return 0;
4511 uval = insn_extract_operand (insn, operand);
4512 return 1 << (uval & 31);
4513
4514 case OP_LWM_SWM_LIST:
4515 abort ();
4516
4517 case OP_SAVE_RESTORE_LIST:
4518 abort ();
4519
4520 case OP_MDMX_IMM_REG:
4521 if (!(type_mask & (1 << OP_REG_VEC)))
4522 return 0;
4523 uval = insn_extract_operand (insn, operand);
4524 vsel = uval >> 5;
4525 if ((vsel & 0x18) == 0x18)
4526 return 0;
4527 return 1 << (uval & 31);
4528
4529 case OP_REG_INDEX:
4530 if (!(type_mask & (1 << OP_REG_GP)))
4531 return 0;
4532 return 1 << insn_extract_operand (insn, operand);
4533 }
4534 abort ();
4535 }
4536
4537 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4538 where bit N of OPNO_MASK is set if operand N should be included.
4539 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4540 is set. */
4541
4542 static unsigned int
4543 insn_reg_mask (const struct mips_cl_insn *insn,
4544 unsigned int type_mask, unsigned int opno_mask)
4545 {
4546 unsigned int opno, reg_mask;
4547
4548 opno = 0;
4549 reg_mask = 0;
4550 while (opno_mask != 0)
4551 {
4552 if (opno_mask & 1)
4553 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4554 opno_mask >>= 1;
4555 opno += 1;
4556 }
4557 return reg_mask;
4558 }
4559
4560 /* Return the mask of core registers that IP reads. */
4561
4562 static unsigned int
4563 gpr_read_mask (const struct mips_cl_insn *ip)
4564 {
4565 unsigned long pinfo, pinfo2;
4566 unsigned int mask;
4567
4568 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4569 pinfo = ip->insn_mo->pinfo;
4570 pinfo2 = ip->insn_mo->pinfo2;
4571 if (pinfo & INSN_UDI)
4572 {
4573 /* UDI instructions have traditionally been assumed to read RS
4574 and RT. */
4575 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4576 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4577 }
4578 if (pinfo & INSN_READ_GPR_24)
4579 mask |= 1 << 24;
4580 if (pinfo2 & INSN2_READ_GPR_16)
4581 mask |= 1 << 16;
4582 if (pinfo2 & INSN2_READ_SP)
4583 mask |= 1 << SP;
4584 if (pinfo2 & INSN2_READ_GPR_31)
4585 mask |= 1 << 31;
4586 /* Don't include register 0. */
4587 return mask & ~1;
4588 }
4589
4590 /* Return the mask of core registers that IP writes. */
4591
4592 static unsigned int
4593 gpr_write_mask (const struct mips_cl_insn *ip)
4594 {
4595 unsigned long pinfo, pinfo2;
4596 unsigned int mask;
4597
4598 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4599 pinfo = ip->insn_mo->pinfo;
4600 pinfo2 = ip->insn_mo->pinfo2;
4601 if (pinfo & INSN_WRITE_GPR_24)
4602 mask |= 1 << 24;
4603 if (pinfo & INSN_WRITE_GPR_31)
4604 mask |= 1 << 31;
4605 if (pinfo & INSN_UDI)
4606 /* UDI instructions have traditionally been assumed to write to RD. */
4607 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4608 if (pinfo2 & INSN2_WRITE_SP)
4609 mask |= 1 << SP;
4610 /* Don't include register 0. */
4611 return mask & ~1;
4612 }
4613
4614 /* Return the mask of floating-point registers that IP reads. */
4615
4616 static unsigned int
4617 fpr_read_mask (const struct mips_cl_insn *ip)
4618 {
4619 unsigned long pinfo;
4620 unsigned int mask;
4621
4622 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4623 | (1 << OP_REG_MSA)),
4624 insn_read_mask (ip->insn_mo));
4625 pinfo = ip->insn_mo->pinfo;
4626 /* Conservatively treat all operands to an FP_D instruction are doubles.
4627 (This is overly pessimistic for things like cvt.d.s.) */
4628 if (FPR_SIZE != 64 && (pinfo & FP_D))
4629 mask |= mask << 1;
4630 return mask;
4631 }
4632
4633 /* Return the mask of floating-point registers that IP writes. */
4634
4635 static unsigned int
4636 fpr_write_mask (const struct mips_cl_insn *ip)
4637 {
4638 unsigned long pinfo;
4639 unsigned int mask;
4640
4641 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4642 | (1 << OP_REG_MSA)),
4643 insn_write_mask (ip->insn_mo));
4644 pinfo = ip->insn_mo->pinfo;
4645 /* Conservatively treat all operands to an FP_D instruction are doubles.
4646 (This is overly pessimistic for things like cvt.s.d.) */
4647 if (FPR_SIZE != 64 && (pinfo & FP_D))
4648 mask |= mask << 1;
4649 return mask;
4650 }
4651
4652 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4653 Check whether that is allowed. */
4654
4655 static bfd_boolean
4656 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4657 {
4658 const char *s = insn->name;
4659 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4660 || FPR_SIZE == 64)
4661 && mips_opts.oddspreg;
4662
4663 if (insn->pinfo == INSN_MACRO)
4664 /* Let a macro pass, we'll catch it later when it is expanded. */
4665 return TRUE;
4666
4667 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4668 otherwise it depends on oddspreg. */
4669 if ((insn->pinfo & FP_S)
4670 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4671 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4672 return FPR_SIZE == 32 || oddspreg;
4673
4674 /* Allow odd registers for single-precision ops and double-precision if the
4675 floating-point registers are 64-bit wide. */
4676 switch (insn->pinfo & (FP_S | FP_D))
4677 {
4678 case FP_S:
4679 case 0:
4680 return oddspreg;
4681 case FP_D:
4682 return FPR_SIZE == 64;
4683 default:
4684 break;
4685 }
4686
4687 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4688 s = strchr (insn->name, '.');
4689 if (s != NULL && opnum == 2)
4690 s = strchr (s + 1, '.');
4691 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4692 return oddspreg;
4693
4694 return FPR_SIZE == 64;
4695 }
4696
4697 /* Information about an instruction argument that we're trying to match. */
4698 struct mips_arg_info
4699 {
4700 /* The instruction so far. */
4701 struct mips_cl_insn *insn;
4702
4703 /* The first unconsumed operand token. */
4704 struct mips_operand_token *token;
4705
4706 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4707 int opnum;
4708
4709 /* The 1-based argument number, for error reporting. This does not
4710 count elided optional registers, etc.. */
4711 int argnum;
4712
4713 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4714 unsigned int last_regno;
4715
4716 /* If the first operand was an OP_REG, this is the register that it
4717 specified, otherwise it is ILLEGAL_REG. */
4718 unsigned int dest_regno;
4719
4720 /* The value of the last OP_INT operand. Only used for OP_MSB,
4721 where it gives the lsb position. */
4722 unsigned int last_op_int;
4723
4724 /* If true, match routines should assume that no later instruction
4725 alternative matches and should therefore be as accommodating as
4726 possible. Match routines should not report errors if something
4727 is only invalid for !LAX_MATCH. */
4728 bfd_boolean lax_match;
4729
4730 /* True if a reference to the current AT register was seen. */
4731 bfd_boolean seen_at;
4732 };
4733
4734 /* Record that the argument is out of range. */
4735
4736 static void
4737 match_out_of_range (struct mips_arg_info *arg)
4738 {
4739 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4740 }
4741
4742 /* Record that the argument isn't constant but needs to be. */
4743
4744 static void
4745 match_not_constant (struct mips_arg_info *arg)
4746 {
4747 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4748 arg->argnum);
4749 }
4750
4751 /* Try to match an OT_CHAR token for character CH. Consume the token
4752 and return true on success, otherwise return false. */
4753
4754 static bfd_boolean
4755 match_char (struct mips_arg_info *arg, char ch)
4756 {
4757 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4758 {
4759 ++arg->token;
4760 if (ch == ',')
4761 arg->argnum += 1;
4762 return TRUE;
4763 }
4764 return FALSE;
4765 }
4766
4767 /* Try to get an expression from the next tokens in ARG. Consume the
4768 tokens and return true on success, storing the expression value in
4769 VALUE and relocation types in R. */
4770
4771 static bfd_boolean
4772 match_expression (struct mips_arg_info *arg, expressionS *value,
4773 bfd_reloc_code_real_type *r)
4774 {
4775 /* If the next token is a '(' that was parsed as being part of a base
4776 expression, assume we have an elided offset. The later match will fail
4777 if this turns out to be wrong. */
4778 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4779 {
4780 value->X_op = O_constant;
4781 value->X_add_number = 0;
4782 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4783 return TRUE;
4784 }
4785
4786 /* Reject register-based expressions such as "0+$2" and "(($2))".
4787 For plain registers the default error seems more appropriate. */
4788 if (arg->token->type == OT_INTEGER
4789 && arg->token->u.integer.value.X_op == O_register)
4790 {
4791 set_insn_error (arg->argnum, _("register value used as expression"));
4792 return FALSE;
4793 }
4794
4795 if (arg->token->type == OT_INTEGER)
4796 {
4797 *value = arg->token->u.integer.value;
4798 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4799 ++arg->token;
4800 return TRUE;
4801 }
4802
4803 set_insn_error_i
4804 (arg->argnum, _("operand %d must be an immediate expression"),
4805 arg->argnum);
4806 return FALSE;
4807 }
4808
4809 /* Try to get a constant expression from the next tokens in ARG. Consume
4810 the tokens and return return true on success, storing the constant value
4811 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4812 error. */
4813
4814 static bfd_boolean
4815 match_const_int (struct mips_arg_info *arg, offsetT *value)
4816 {
4817 expressionS ex;
4818 bfd_reloc_code_real_type r[3];
4819
4820 if (!match_expression (arg, &ex, r))
4821 return FALSE;
4822
4823 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4824 *value = ex.X_add_number;
4825 else
4826 {
4827 match_not_constant (arg);
4828 return FALSE;
4829 }
4830 return TRUE;
4831 }
4832
4833 /* Return the RTYPE_* flags for a register operand of type TYPE that
4834 appears in instruction OPCODE. */
4835
4836 static unsigned int
4837 convert_reg_type (const struct mips_opcode *opcode,
4838 enum mips_reg_operand_type type)
4839 {
4840 switch (type)
4841 {
4842 case OP_REG_GP:
4843 return RTYPE_NUM | RTYPE_GP;
4844
4845 case OP_REG_FP:
4846 /* Allow vector register names for MDMX if the instruction is a 64-bit
4847 FPR load, store or move (including moves to and from GPRs). */
4848 if ((mips_opts.ase & ASE_MDMX)
4849 && (opcode->pinfo & FP_D)
4850 && (opcode->pinfo & (INSN_COPROC_MOVE
4851 | INSN_COPROC_MEMORY_DELAY
4852 | INSN_LOAD_COPROC
4853 | INSN_LOAD_MEMORY
4854 | INSN_STORE_MEMORY)))
4855 return RTYPE_FPU | RTYPE_VEC;
4856 return RTYPE_FPU;
4857
4858 case OP_REG_CCC:
4859 if (opcode->pinfo & (FP_D | FP_S))
4860 return RTYPE_CCC | RTYPE_FCC;
4861 return RTYPE_CCC;
4862
4863 case OP_REG_VEC:
4864 if (opcode->membership & INSN_5400)
4865 return RTYPE_FPU;
4866 return RTYPE_FPU | RTYPE_VEC;
4867
4868 case OP_REG_ACC:
4869 return RTYPE_ACC;
4870
4871 case OP_REG_COPRO:
4872 if (opcode->name[strlen (opcode->name) - 1] == '0')
4873 return RTYPE_NUM | RTYPE_CP0;
4874 return RTYPE_NUM;
4875
4876 case OP_REG_HW:
4877 return RTYPE_NUM;
4878
4879 case OP_REG_VI:
4880 return RTYPE_NUM | RTYPE_VI;
4881
4882 case OP_REG_VF:
4883 return RTYPE_NUM | RTYPE_VF;
4884
4885 case OP_REG_R5900_I:
4886 return RTYPE_R5900_I;
4887
4888 case OP_REG_R5900_Q:
4889 return RTYPE_R5900_Q;
4890
4891 case OP_REG_R5900_R:
4892 return RTYPE_R5900_R;
4893
4894 case OP_REG_R5900_ACC:
4895 return RTYPE_R5900_ACC;
4896
4897 case OP_REG_MSA:
4898 return RTYPE_MSA;
4899
4900 case OP_REG_MSA_CTRL:
4901 return RTYPE_NUM;
4902 }
4903 abort ();
4904 }
4905
4906 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4907
4908 static void
4909 check_regno (struct mips_arg_info *arg,
4910 enum mips_reg_operand_type type, unsigned int regno)
4911 {
4912 if (AT && type == OP_REG_GP && regno == AT)
4913 arg->seen_at = TRUE;
4914
4915 if (type == OP_REG_FP
4916 && (regno & 1) != 0
4917 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4918 {
4919 /* This was a warning prior to introducing O32 FPXX and FP64 support
4920 so maintain a warning for FP32 but raise an error for the new
4921 cases. */
4922 if (FPR_SIZE == 32)
4923 as_warn (_("float register should be even, was %d"), regno);
4924 else
4925 as_bad (_("float register should be even, was %d"), regno);
4926 }
4927
4928 if (type == OP_REG_CCC)
4929 {
4930 const char *name;
4931 size_t length;
4932
4933 name = arg->insn->insn_mo->name;
4934 length = strlen (name);
4935 if ((regno & 1) != 0
4936 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4937 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4938 as_warn (_("condition code register should be even for %s, was %d"),
4939 name, regno);
4940
4941 if ((regno & 3) != 0
4942 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4943 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4944 name, regno);
4945 }
4946 }
4947
4948 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4949 a register of type TYPE. Return true on success, storing the register
4950 number in *REGNO and warning about any dubious uses. */
4951
4952 static bfd_boolean
4953 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4954 unsigned int symval, unsigned int *regno)
4955 {
4956 if (type == OP_REG_VEC)
4957 symval = mips_prefer_vec_regno (symval);
4958 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4959 return FALSE;
4960
4961 *regno = symval & RNUM_MASK;
4962 check_regno (arg, type, *regno);
4963 return TRUE;
4964 }
4965
4966 /* Try to interpret the next token in ARG as a register of type TYPE.
4967 Consume the token and return true on success, storing the register
4968 number in *REGNO. Return false on failure. */
4969
4970 static bfd_boolean
4971 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4972 unsigned int *regno)
4973 {
4974 if (arg->token->type == OT_REG
4975 && match_regno (arg, type, arg->token->u.regno, regno))
4976 {
4977 ++arg->token;
4978 return TRUE;
4979 }
4980 return FALSE;
4981 }
4982
4983 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4984 Consume the token and return true on success, storing the register numbers
4985 in *REGNO1 and *REGNO2. Return false on failure. */
4986
4987 static bfd_boolean
4988 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4989 unsigned int *regno1, unsigned int *regno2)
4990 {
4991 if (match_reg (arg, type, regno1))
4992 {
4993 *regno2 = *regno1;
4994 return TRUE;
4995 }
4996 if (arg->token->type == OT_REG_RANGE
4997 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4998 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4999 && *regno1 <= *regno2)
5000 {
5001 ++arg->token;
5002 return TRUE;
5003 }
5004 return FALSE;
5005 }
5006
5007 /* OP_INT matcher. */
5008
5009 static bfd_boolean
5010 match_int_operand (struct mips_arg_info *arg,
5011 const struct mips_operand *operand_base)
5012 {
5013 const struct mips_int_operand *operand;
5014 unsigned int uval;
5015 int min_val, max_val, factor;
5016 offsetT sval;
5017
5018 operand = (const struct mips_int_operand *) operand_base;
5019 factor = 1 << operand->shift;
5020 min_val = mips_int_operand_min (operand);
5021 max_val = mips_int_operand_max (operand);
5022
5023 if (operand_base->lsb == 0
5024 && operand_base->size == 16
5025 && operand->shift == 0
5026 && operand->bias == 0
5027 && (operand->max_val == 32767 || operand->max_val == 65535))
5028 {
5029 /* The operand can be relocated. */
5030 if (!match_expression (arg, &offset_expr, offset_reloc))
5031 return FALSE;
5032
5033 if (offset_reloc[0] != BFD_RELOC_UNUSED)
5034 /* Relocation operators were used. Accept the argument and
5035 leave the relocation value in offset_expr and offset_relocs
5036 for the caller to process. */
5037 return TRUE;
5038
5039 if (offset_expr.X_op != O_constant)
5040 {
5041 /* Accept non-constant operands if no later alternative matches,
5042 leaving it for the caller to process. */
5043 if (!arg->lax_match)
5044 return FALSE;
5045 offset_reloc[0] = BFD_RELOC_LO16;
5046 return TRUE;
5047 }
5048
5049 /* Clear the global state; we're going to install the operand
5050 ourselves. */
5051 sval = offset_expr.X_add_number;
5052 offset_expr.X_op = O_absent;
5053
5054 /* For compatibility with older assemblers, we accept
5055 0x8000-0xffff as signed 16-bit numbers when only
5056 signed numbers are allowed. */
5057 if (sval > max_val)
5058 {
5059 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5060 if (!arg->lax_match && sval <= max_val)
5061 return FALSE;
5062 }
5063 }
5064 else
5065 {
5066 if (!match_const_int (arg, &sval))
5067 return FALSE;
5068 }
5069
5070 arg->last_op_int = sval;
5071
5072 if (sval < min_val || sval > max_val || sval % factor)
5073 {
5074 match_out_of_range (arg);
5075 return FALSE;
5076 }
5077
5078 uval = (unsigned int) sval >> operand->shift;
5079 uval -= operand->bias;
5080
5081 /* Handle -mfix-cn63xxp1. */
5082 if (arg->opnum == 1
5083 && mips_fix_cn63xxp1
5084 && !mips_opts.micromips
5085 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5086 switch (uval)
5087 {
5088 case 5:
5089 case 25:
5090 case 26:
5091 case 27:
5092 case 28:
5093 case 29:
5094 case 30:
5095 case 31:
5096 /* These are ok. */
5097 break;
5098
5099 default:
5100 /* The rest must be changed to 28. */
5101 uval = 28;
5102 break;
5103 }
5104
5105 insn_insert_operand (arg->insn, operand_base, uval);
5106 return TRUE;
5107 }
5108
5109 /* OP_MAPPED_INT matcher. */
5110
5111 static bfd_boolean
5112 match_mapped_int_operand (struct mips_arg_info *arg,
5113 const struct mips_operand *operand_base)
5114 {
5115 const struct mips_mapped_int_operand *operand;
5116 unsigned int uval, num_vals;
5117 offsetT sval;
5118
5119 operand = (const struct mips_mapped_int_operand *) operand_base;
5120 if (!match_const_int (arg, &sval))
5121 return FALSE;
5122
5123 num_vals = 1 << operand_base->size;
5124 for (uval = 0; uval < num_vals; uval++)
5125 if (operand->int_map[uval] == sval)
5126 break;
5127 if (uval == num_vals)
5128 {
5129 match_out_of_range (arg);
5130 return FALSE;
5131 }
5132
5133 insn_insert_operand (arg->insn, operand_base, uval);
5134 return TRUE;
5135 }
5136
5137 /* OP_MSB matcher. */
5138
5139 static bfd_boolean
5140 match_msb_operand (struct mips_arg_info *arg,
5141 const struct mips_operand *operand_base)
5142 {
5143 const struct mips_msb_operand *operand;
5144 int min_val, max_val, max_high;
5145 offsetT size, sval, high;
5146
5147 operand = (const struct mips_msb_operand *) operand_base;
5148 min_val = operand->bias;
5149 max_val = min_val + (1 << operand_base->size) - 1;
5150 max_high = operand->opsize;
5151
5152 if (!match_const_int (arg, &size))
5153 return FALSE;
5154
5155 high = size + arg->last_op_int;
5156 sval = operand->add_lsb ? high : size;
5157
5158 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5159 {
5160 match_out_of_range (arg);
5161 return FALSE;
5162 }
5163 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5164 return TRUE;
5165 }
5166
5167 /* OP_REG matcher. */
5168
5169 static bfd_boolean
5170 match_reg_operand (struct mips_arg_info *arg,
5171 const struct mips_operand *operand_base)
5172 {
5173 const struct mips_reg_operand *operand;
5174 unsigned int regno, uval, num_vals;
5175
5176 operand = (const struct mips_reg_operand *) operand_base;
5177 if (!match_reg (arg, operand->reg_type, &regno))
5178 return FALSE;
5179
5180 if (operand->reg_map)
5181 {
5182 num_vals = 1 << operand->root.size;
5183 for (uval = 0; uval < num_vals; uval++)
5184 if (operand->reg_map[uval] == regno)
5185 break;
5186 if (num_vals == uval)
5187 return FALSE;
5188 }
5189 else
5190 uval = regno;
5191
5192 arg->last_regno = regno;
5193 if (arg->opnum == 1)
5194 arg->dest_regno = regno;
5195 insn_insert_operand (arg->insn, operand_base, uval);
5196 return TRUE;
5197 }
5198
5199 /* OP_REG_PAIR matcher. */
5200
5201 static bfd_boolean
5202 match_reg_pair_operand (struct mips_arg_info *arg,
5203 const struct mips_operand *operand_base)
5204 {
5205 const struct mips_reg_pair_operand *operand;
5206 unsigned int regno1, regno2, uval, num_vals;
5207
5208 operand = (const struct mips_reg_pair_operand *) operand_base;
5209 if (!match_reg (arg, operand->reg_type, &regno1)
5210 || !match_char (arg, ',')
5211 || !match_reg (arg, operand->reg_type, &regno2))
5212 return FALSE;
5213
5214 num_vals = 1 << operand_base->size;
5215 for (uval = 0; uval < num_vals; uval++)
5216 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5217 break;
5218 if (uval == num_vals)
5219 return FALSE;
5220
5221 insn_insert_operand (arg->insn, operand_base, uval);
5222 return TRUE;
5223 }
5224
5225 /* OP_PCREL matcher. The caller chooses the relocation type. */
5226
5227 static bfd_boolean
5228 match_pcrel_operand (struct mips_arg_info *arg)
5229 {
5230 bfd_reloc_code_real_type r[3];
5231
5232 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5233 }
5234
5235 /* OP_PERF_REG matcher. */
5236
5237 static bfd_boolean
5238 match_perf_reg_operand (struct mips_arg_info *arg,
5239 const struct mips_operand *operand)
5240 {
5241 offsetT sval;
5242
5243 if (!match_const_int (arg, &sval))
5244 return FALSE;
5245
5246 if (sval != 0
5247 && (sval != 1
5248 || (mips_opts.arch == CPU_R5900
5249 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5250 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5251 {
5252 set_insn_error (arg->argnum, _("invalid performance register"));
5253 return FALSE;
5254 }
5255
5256 insn_insert_operand (arg->insn, operand, sval);
5257 return TRUE;
5258 }
5259
5260 /* OP_ADDIUSP matcher. */
5261
5262 static bfd_boolean
5263 match_addiusp_operand (struct mips_arg_info *arg,
5264 const struct mips_operand *operand)
5265 {
5266 offsetT sval;
5267 unsigned int uval;
5268
5269 if (!match_const_int (arg, &sval))
5270 return FALSE;
5271
5272 if (sval % 4)
5273 {
5274 match_out_of_range (arg);
5275 return FALSE;
5276 }
5277
5278 sval /= 4;
5279 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5280 {
5281 match_out_of_range (arg);
5282 return FALSE;
5283 }
5284
5285 uval = (unsigned int) sval;
5286 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5287 insn_insert_operand (arg->insn, operand, uval);
5288 return TRUE;
5289 }
5290
5291 /* OP_CLO_CLZ_DEST matcher. */
5292
5293 static bfd_boolean
5294 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5295 const struct mips_operand *operand)
5296 {
5297 unsigned int regno;
5298
5299 if (!match_reg (arg, OP_REG_GP, &regno))
5300 return FALSE;
5301
5302 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5303 return TRUE;
5304 }
5305
5306 /* OP_CHECK_PREV matcher. */
5307
5308 static bfd_boolean
5309 match_check_prev_operand (struct mips_arg_info *arg,
5310 const struct mips_operand *operand_base)
5311 {
5312 const struct mips_check_prev_operand *operand;
5313 unsigned int regno;
5314
5315 operand = (const struct mips_check_prev_operand *) operand_base;
5316
5317 if (!match_reg (arg, OP_REG_GP, &regno))
5318 return FALSE;
5319
5320 if (!operand->zero_ok && regno == 0)
5321 return FALSE;
5322
5323 if ((operand->less_than_ok && regno < arg->last_regno)
5324 || (operand->greater_than_ok && regno > arg->last_regno)
5325 || (operand->equal_ok && regno == arg->last_regno))
5326 {
5327 arg->last_regno = regno;
5328 insn_insert_operand (arg->insn, operand_base, regno);
5329 return TRUE;
5330 }
5331
5332 return FALSE;
5333 }
5334
5335 /* OP_SAME_RS_RT matcher. */
5336
5337 static bfd_boolean
5338 match_same_rs_rt_operand (struct mips_arg_info *arg,
5339 const struct mips_operand *operand)
5340 {
5341 unsigned int regno;
5342
5343 if (!match_reg (arg, OP_REG_GP, &regno))
5344 return FALSE;
5345
5346 if (regno == 0)
5347 {
5348 set_insn_error (arg->argnum, _("the source register must not be $0"));
5349 return FALSE;
5350 }
5351
5352 arg->last_regno = regno;
5353
5354 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5355 return TRUE;
5356 }
5357
5358 /* OP_LWM_SWM_LIST matcher. */
5359
5360 static bfd_boolean
5361 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5362 const struct mips_operand *operand)
5363 {
5364 unsigned int reglist, sregs, ra, regno1, regno2;
5365 struct mips_arg_info reset;
5366
5367 reglist = 0;
5368 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5369 return FALSE;
5370 do
5371 {
5372 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5373 {
5374 reglist |= 1 << FP;
5375 regno2 = S7;
5376 }
5377 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5378 reset = *arg;
5379 }
5380 while (match_char (arg, ',')
5381 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5382 *arg = reset;
5383
5384 if (operand->size == 2)
5385 {
5386 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5387
5388 s0, ra
5389 s0, s1, ra, s2, s3
5390 s0-s2, ra
5391
5392 and any permutations of these. */
5393 if ((reglist & 0xfff1ffff) != 0x80010000)
5394 return FALSE;
5395
5396 sregs = (reglist >> 17) & 7;
5397 ra = 0;
5398 }
5399 else
5400 {
5401 /* The list must include at least one of ra and s0-sN,
5402 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5403 which are $23 and $30 respectively.) E.g.:
5404
5405 ra
5406 s0
5407 ra, s0, s1, s2
5408 s0-s8
5409 s0-s5, ra
5410
5411 and any permutations of these. */
5412 if ((reglist & 0x3f00ffff) != 0)
5413 return FALSE;
5414
5415 ra = (reglist >> 27) & 0x10;
5416 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5417 }
5418 sregs += 1;
5419 if ((sregs & -sregs) != sregs)
5420 return FALSE;
5421
5422 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5423 return TRUE;
5424 }
5425
5426 /* OP_ENTRY_EXIT_LIST matcher. */
5427
5428 static unsigned int
5429 match_entry_exit_operand (struct mips_arg_info *arg,
5430 const struct mips_operand *operand)
5431 {
5432 unsigned int mask;
5433 bfd_boolean is_exit;
5434
5435 /* The format is the same for both ENTRY and EXIT, but the constraints
5436 are different. */
5437 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5438 mask = (is_exit ? 7 << 3 : 0);
5439 do
5440 {
5441 unsigned int regno1, regno2;
5442 bfd_boolean is_freg;
5443
5444 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5445 is_freg = FALSE;
5446 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5447 is_freg = TRUE;
5448 else
5449 return FALSE;
5450
5451 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5452 {
5453 mask &= ~(7 << 3);
5454 mask |= (5 + regno2) << 3;
5455 }
5456 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5457 mask |= (regno2 - 3) << 3;
5458 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5459 mask |= (regno2 - 15) << 1;
5460 else if (regno1 == RA && regno2 == RA)
5461 mask |= 1;
5462 else
5463 return FALSE;
5464 }
5465 while (match_char (arg, ','));
5466
5467 insn_insert_operand (arg->insn, operand, mask);
5468 return TRUE;
5469 }
5470
5471 /* OP_SAVE_RESTORE_LIST matcher. */
5472
5473 static bfd_boolean
5474 match_save_restore_list_operand (struct mips_arg_info *arg)
5475 {
5476 unsigned int opcode, args, statics, sregs;
5477 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5478 offsetT frame_size;
5479
5480 opcode = arg->insn->insn_opcode;
5481 frame_size = 0;
5482 num_frame_sizes = 0;
5483 args = 0;
5484 statics = 0;
5485 sregs = 0;
5486 do
5487 {
5488 unsigned int regno1, regno2;
5489
5490 if (arg->token->type == OT_INTEGER)
5491 {
5492 /* Handle the frame size. */
5493 if (!match_const_int (arg, &frame_size))
5494 return FALSE;
5495 num_frame_sizes += 1;
5496 }
5497 else
5498 {
5499 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5500 return FALSE;
5501
5502 while (regno1 <= regno2)
5503 {
5504 if (regno1 >= 4 && regno1 <= 7)
5505 {
5506 if (num_frame_sizes == 0)
5507 /* args $a0-$a3 */
5508 args |= 1 << (regno1 - 4);
5509 else
5510 /* statics $a0-$a3 */
5511 statics |= 1 << (regno1 - 4);
5512 }
5513 else if (regno1 >= 16 && regno1 <= 23)
5514 /* $s0-$s7 */
5515 sregs |= 1 << (regno1 - 16);
5516 else if (regno1 == 30)
5517 /* $s8 */
5518 sregs |= 1 << 8;
5519 else if (regno1 == 31)
5520 /* Add $ra to insn. */
5521 opcode |= 0x40;
5522 else
5523 return FALSE;
5524 regno1 += 1;
5525 if (regno1 == 24)
5526 regno1 = 30;
5527 }
5528 }
5529 }
5530 while (match_char (arg, ','));
5531
5532 /* Encode args/statics combination. */
5533 if (args & statics)
5534 return FALSE;
5535 else if (args == 0xf)
5536 /* All $a0-$a3 are args. */
5537 opcode |= MIPS16_ALL_ARGS << 16;
5538 else if (statics == 0xf)
5539 /* All $a0-$a3 are statics. */
5540 opcode |= MIPS16_ALL_STATICS << 16;
5541 else
5542 {
5543 /* Count arg registers. */
5544 num_args = 0;
5545 while (args & 0x1)
5546 {
5547 args >>= 1;
5548 num_args += 1;
5549 }
5550 if (args != 0)
5551 return FALSE;
5552
5553 /* Count static registers. */
5554 num_statics = 0;
5555 while (statics & 0x8)
5556 {
5557 statics = (statics << 1) & 0xf;
5558 num_statics += 1;
5559 }
5560 if (statics != 0)
5561 return FALSE;
5562
5563 /* Encode args/statics. */
5564 opcode |= ((num_args << 2) | num_statics) << 16;
5565 }
5566
5567 /* Encode $s0/$s1. */
5568 if (sregs & (1 << 0)) /* $s0 */
5569 opcode |= 0x20;
5570 if (sregs & (1 << 1)) /* $s1 */
5571 opcode |= 0x10;
5572 sregs >>= 2;
5573
5574 /* Encode $s2-$s8. */
5575 num_sregs = 0;
5576 while (sregs & 1)
5577 {
5578 sregs >>= 1;
5579 num_sregs += 1;
5580 }
5581 if (sregs != 0)
5582 return FALSE;
5583 opcode |= num_sregs << 24;
5584
5585 /* Encode frame size. */
5586 if (num_frame_sizes == 0)
5587 {
5588 set_insn_error (arg->argnum, _("missing frame size"));
5589 return FALSE;
5590 }
5591 if (num_frame_sizes > 1)
5592 {
5593 set_insn_error (arg->argnum, _("frame size specified twice"));
5594 return FALSE;
5595 }
5596 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5597 {
5598 set_insn_error (arg->argnum, _("invalid frame size"));
5599 return FALSE;
5600 }
5601 if (frame_size != 128 || (opcode >> 16) != 0)
5602 {
5603 frame_size /= 8;
5604 opcode |= (((frame_size & 0xf0) << 16)
5605 | (frame_size & 0x0f));
5606 }
5607
5608 /* Finally build the instruction. */
5609 if ((opcode >> 16) != 0 || frame_size == 0)
5610 opcode |= MIPS16_EXTEND;
5611 arg->insn->insn_opcode = opcode;
5612 return TRUE;
5613 }
5614
5615 /* OP_MDMX_IMM_REG matcher. */
5616
5617 static bfd_boolean
5618 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5619 const struct mips_operand *operand)
5620 {
5621 unsigned int regno, uval;
5622 bfd_boolean is_qh;
5623 const struct mips_opcode *opcode;
5624
5625 /* The mips_opcode records whether this is an octobyte or quadhalf
5626 instruction. Start out with that bit in place. */
5627 opcode = arg->insn->insn_mo;
5628 uval = mips_extract_operand (operand, opcode->match);
5629 is_qh = (uval != 0);
5630
5631 if (arg->token->type == OT_REG)
5632 {
5633 if ((opcode->membership & INSN_5400)
5634 && strcmp (opcode->name, "rzu.ob") == 0)
5635 {
5636 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5637 arg->argnum);
5638 return FALSE;
5639 }
5640
5641 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5642 return FALSE;
5643 ++arg->token;
5644
5645 /* Check whether this is a vector register or a broadcast of
5646 a single element. */
5647 if (arg->token->type == OT_INTEGER_INDEX)
5648 {
5649 if (arg->token->u.index > (is_qh ? 3 : 7))
5650 {
5651 set_insn_error (arg->argnum, _("invalid element selector"));
5652 return FALSE;
5653 }
5654 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5655 ++arg->token;
5656 }
5657 else
5658 {
5659 /* A full vector. */
5660 if ((opcode->membership & INSN_5400)
5661 && (strcmp (opcode->name, "sll.ob") == 0
5662 || strcmp (opcode->name, "srl.ob") == 0))
5663 {
5664 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5665 arg->argnum);
5666 return FALSE;
5667 }
5668
5669 if (is_qh)
5670 uval |= MDMX_FMTSEL_VEC_QH << 5;
5671 else
5672 uval |= MDMX_FMTSEL_VEC_OB << 5;
5673 }
5674 uval |= regno;
5675 }
5676 else
5677 {
5678 offsetT sval;
5679
5680 if (!match_const_int (arg, &sval))
5681 return FALSE;
5682 if (sval < 0 || sval > 31)
5683 {
5684 match_out_of_range (arg);
5685 return FALSE;
5686 }
5687 uval |= (sval & 31);
5688 if (is_qh)
5689 uval |= MDMX_FMTSEL_IMM_QH << 5;
5690 else
5691 uval |= MDMX_FMTSEL_IMM_OB << 5;
5692 }
5693 insn_insert_operand (arg->insn, operand, uval);
5694 return TRUE;
5695 }
5696
5697 /* OP_IMM_INDEX matcher. */
5698
5699 static bfd_boolean
5700 match_imm_index_operand (struct mips_arg_info *arg,
5701 const struct mips_operand *operand)
5702 {
5703 unsigned int max_val;
5704
5705 if (arg->token->type != OT_INTEGER_INDEX)
5706 return FALSE;
5707
5708 max_val = (1 << operand->size) - 1;
5709 if (arg->token->u.index > max_val)
5710 {
5711 match_out_of_range (arg);
5712 return FALSE;
5713 }
5714 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5715 ++arg->token;
5716 return TRUE;
5717 }
5718
5719 /* OP_REG_INDEX matcher. */
5720
5721 static bfd_boolean
5722 match_reg_index_operand (struct mips_arg_info *arg,
5723 const struct mips_operand *operand)
5724 {
5725 unsigned int regno;
5726
5727 if (arg->token->type != OT_REG_INDEX)
5728 return FALSE;
5729
5730 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5731 return FALSE;
5732
5733 insn_insert_operand (arg->insn, operand, regno);
5734 ++arg->token;
5735 return TRUE;
5736 }
5737
5738 /* OP_PC matcher. */
5739
5740 static bfd_boolean
5741 match_pc_operand (struct mips_arg_info *arg)
5742 {
5743 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5744 {
5745 ++arg->token;
5746 return TRUE;
5747 }
5748 return FALSE;
5749 }
5750
5751 /* OP_NON_ZERO_REG matcher. */
5752
5753 static bfd_boolean
5754 match_non_zero_reg_operand (struct mips_arg_info *arg,
5755 const struct mips_operand *operand)
5756 {
5757 unsigned int regno;
5758
5759 if (!match_reg (arg, OP_REG_GP, &regno))
5760 return FALSE;
5761
5762 if (regno == 0)
5763 return FALSE;
5764
5765 arg->last_regno = regno;
5766 insn_insert_operand (arg->insn, operand, regno);
5767 return TRUE;
5768 }
5769
5770 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5771 register that we need to match. */
5772
5773 static bfd_boolean
5774 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5775 {
5776 unsigned int regno;
5777
5778 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5779 }
5780
5781 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5782 the length of the value in bytes (4 for float, 8 for double) and
5783 USING_GPRS says whether the destination is a GPR rather than an FPR.
5784
5785 Return the constant in IMM and OFFSET as follows:
5786
5787 - If the constant should be loaded via memory, set IMM to O_absent and
5788 OFFSET to the memory address.
5789
5790 - Otherwise, if the constant should be loaded into two 32-bit registers,
5791 set IMM to the O_constant to load into the high register and OFFSET
5792 to the corresponding value for the low register.
5793
5794 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5795
5796 These constants only appear as the last operand in an instruction,
5797 and every instruction that accepts them in any variant accepts them
5798 in all variants. This means we don't have to worry about backing out
5799 any changes if the instruction does not match. We just match
5800 unconditionally and report an error if the constant is invalid. */
5801
5802 static bfd_boolean
5803 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5804 expressionS *offset, int length, bfd_boolean using_gprs)
5805 {
5806 char *p;
5807 segT seg, new_seg;
5808 subsegT subseg;
5809 const char *newname;
5810 unsigned char *data;
5811
5812 /* Where the constant is placed is based on how the MIPS assembler
5813 does things:
5814
5815 length == 4 && using_gprs -- immediate value only
5816 length == 8 && using_gprs -- .rdata or immediate value
5817 length == 4 && !using_gprs -- .lit4 or immediate value
5818 length == 8 && !using_gprs -- .lit8 or immediate value
5819
5820 The .lit4 and .lit8 sections are only used if permitted by the
5821 -G argument. */
5822 if (arg->token->type != OT_FLOAT)
5823 {
5824 set_insn_error (arg->argnum, _("floating-point expression required"));
5825 return FALSE;
5826 }
5827
5828 gas_assert (arg->token->u.flt.length == length);
5829 data = arg->token->u.flt.data;
5830 ++arg->token;
5831
5832 /* Handle 32-bit constants for which an immediate value is best. */
5833 if (length == 4
5834 && (using_gprs
5835 || g_switch_value < 4
5836 || (data[0] == 0 && data[1] == 0)
5837 || (data[2] == 0 && data[3] == 0)))
5838 {
5839 imm->X_op = O_constant;
5840 if (!target_big_endian)
5841 imm->X_add_number = bfd_getl32 (data);
5842 else
5843 imm->X_add_number = bfd_getb32 (data);
5844 offset->X_op = O_absent;
5845 return TRUE;
5846 }
5847
5848 /* Handle 64-bit constants for which an immediate value is best. */
5849 if (length == 8
5850 && !mips_disable_float_construction
5851 /* Constants can only be constructed in GPRs and copied to FPRs if the
5852 GPRs are at least as wide as the FPRs or MTHC1 is available.
5853 Unlike most tests for 32-bit floating-point registers this check
5854 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5855 permit 64-bit moves without MXHC1.
5856 Force the constant into memory otherwise. */
5857 && (using_gprs
5858 || GPR_SIZE == 64
5859 || ISA_HAS_MXHC1 (mips_opts.isa)
5860 || FPR_SIZE == 32)
5861 && ((data[0] == 0 && data[1] == 0)
5862 || (data[2] == 0 && data[3] == 0))
5863 && ((data[4] == 0 && data[5] == 0)
5864 || (data[6] == 0 && data[7] == 0)))
5865 {
5866 /* The value is simple enough to load with a couple of instructions.
5867 If using 32-bit registers, set IMM to the high order 32 bits and
5868 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5869 64 bit constant. */
5870 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
5871 {
5872 imm->X_op = O_constant;
5873 offset->X_op = O_constant;
5874 if (!target_big_endian)
5875 {
5876 imm->X_add_number = bfd_getl32 (data + 4);
5877 offset->X_add_number = bfd_getl32 (data);
5878 }
5879 else
5880 {
5881 imm->X_add_number = bfd_getb32 (data);
5882 offset->X_add_number = bfd_getb32 (data + 4);
5883 }
5884 if (offset->X_add_number == 0)
5885 offset->X_op = O_absent;
5886 }
5887 else
5888 {
5889 imm->X_op = O_constant;
5890 if (!target_big_endian)
5891 imm->X_add_number = bfd_getl64 (data);
5892 else
5893 imm->X_add_number = bfd_getb64 (data);
5894 offset->X_op = O_absent;
5895 }
5896 return TRUE;
5897 }
5898
5899 /* Switch to the right section. */
5900 seg = now_seg;
5901 subseg = now_subseg;
5902 if (length == 4)
5903 {
5904 gas_assert (!using_gprs && g_switch_value >= 4);
5905 newname = ".lit4";
5906 }
5907 else
5908 {
5909 if (using_gprs || g_switch_value < 8)
5910 newname = RDATA_SECTION_NAME;
5911 else
5912 newname = ".lit8";
5913 }
5914
5915 new_seg = subseg_new (newname, (subsegT) 0);
5916 bfd_set_section_flags (stdoutput, new_seg,
5917 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5918 frag_align (length == 4 ? 2 : 3, 0, 0);
5919 if (strncmp (TARGET_OS, "elf", 3) != 0)
5920 record_alignment (new_seg, 4);
5921 else
5922 record_alignment (new_seg, length == 4 ? 2 : 3);
5923 if (seg == now_seg)
5924 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5925
5926 /* Set the argument to the current address in the section. */
5927 imm->X_op = O_absent;
5928 offset->X_op = O_symbol;
5929 offset->X_add_symbol = symbol_temp_new_now ();
5930 offset->X_add_number = 0;
5931
5932 /* Put the floating point number into the section. */
5933 p = frag_more (length);
5934 memcpy (p, data, length);
5935
5936 /* Switch back to the original section. */
5937 subseg_set (seg, subseg);
5938 return TRUE;
5939 }
5940
5941 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5942 them. */
5943
5944 static bfd_boolean
5945 match_vu0_suffix_operand (struct mips_arg_info *arg,
5946 const struct mips_operand *operand,
5947 bfd_boolean match_p)
5948 {
5949 unsigned int uval;
5950
5951 /* The operand can be an XYZW mask or a single 2-bit channel index
5952 (with X being 0). */
5953 gas_assert (operand->size == 2 || operand->size == 4);
5954
5955 /* The suffix can be omitted when it is already part of the opcode. */
5956 if (arg->token->type != OT_CHANNELS)
5957 return match_p;
5958
5959 uval = arg->token->u.channels;
5960 if (operand->size == 2)
5961 {
5962 /* Check that a single bit is set and convert it into a 2-bit index. */
5963 if ((uval & -uval) != uval)
5964 return FALSE;
5965 uval = 4 - ffs (uval);
5966 }
5967
5968 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5969 return FALSE;
5970
5971 ++arg->token;
5972 if (!match_p)
5973 insn_insert_operand (arg->insn, operand, uval);
5974 return TRUE;
5975 }
5976
5977 /* S is the text seen for ARG. Match it against OPERAND. Return the end
5978 of the argument text if the match is successful, otherwise return null. */
5979
5980 static bfd_boolean
5981 match_operand (struct mips_arg_info *arg,
5982 const struct mips_operand *operand)
5983 {
5984 switch (operand->type)
5985 {
5986 case OP_INT:
5987 return match_int_operand (arg, operand);
5988
5989 case OP_MAPPED_INT:
5990 return match_mapped_int_operand (arg, operand);
5991
5992 case OP_MSB:
5993 return match_msb_operand (arg, operand);
5994
5995 case OP_REG:
5996 case OP_OPTIONAL_REG:
5997 return match_reg_operand (arg, operand);
5998
5999 case OP_REG_PAIR:
6000 return match_reg_pair_operand (arg, operand);
6001
6002 case OP_PCREL:
6003 return match_pcrel_operand (arg);
6004
6005 case OP_PERF_REG:
6006 return match_perf_reg_operand (arg, operand);
6007
6008 case OP_ADDIUSP_INT:
6009 return match_addiusp_operand (arg, operand);
6010
6011 case OP_CLO_CLZ_DEST:
6012 return match_clo_clz_dest_operand (arg, operand);
6013
6014 case OP_LWM_SWM_LIST:
6015 return match_lwm_swm_list_operand (arg, operand);
6016
6017 case OP_ENTRY_EXIT_LIST:
6018 return match_entry_exit_operand (arg, operand);
6019
6020 case OP_SAVE_RESTORE_LIST:
6021 return match_save_restore_list_operand (arg);
6022
6023 case OP_MDMX_IMM_REG:
6024 return match_mdmx_imm_reg_operand (arg, operand);
6025
6026 case OP_REPEAT_DEST_REG:
6027 return match_tied_reg_operand (arg, arg->dest_regno);
6028
6029 case OP_REPEAT_PREV_REG:
6030 return match_tied_reg_operand (arg, arg->last_regno);
6031
6032 case OP_PC:
6033 return match_pc_operand (arg);
6034
6035 case OP_VU0_SUFFIX:
6036 return match_vu0_suffix_operand (arg, operand, FALSE);
6037
6038 case OP_VU0_MATCH_SUFFIX:
6039 return match_vu0_suffix_operand (arg, operand, TRUE);
6040
6041 case OP_IMM_INDEX:
6042 return match_imm_index_operand (arg, operand);
6043
6044 case OP_REG_INDEX:
6045 return match_reg_index_operand (arg, operand);
6046
6047 case OP_SAME_RS_RT:
6048 return match_same_rs_rt_operand (arg, operand);
6049
6050 case OP_CHECK_PREV:
6051 return match_check_prev_operand (arg, operand);
6052
6053 case OP_NON_ZERO_REG:
6054 return match_non_zero_reg_operand (arg, operand);
6055 }
6056 abort ();
6057 }
6058
6059 /* ARG is the state after successfully matching an instruction.
6060 Issue any queued-up warnings. */
6061
6062 static void
6063 check_completed_insn (struct mips_arg_info *arg)
6064 {
6065 if (arg->seen_at)
6066 {
6067 if (AT == ATREG)
6068 as_warn (_("used $at without \".set noat\""));
6069 else
6070 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6071 }
6072 }
6073
6074 /* Return true if modifying general-purpose register REG needs a delay. */
6075
6076 static bfd_boolean
6077 reg_needs_delay (unsigned int reg)
6078 {
6079 unsigned long prev_pinfo;
6080
6081 prev_pinfo = history[0].insn_mo->pinfo;
6082 if (!mips_opts.noreorder
6083 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6084 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6085 && (gpr_write_mask (&history[0]) & (1 << reg)))
6086 return TRUE;
6087
6088 return FALSE;
6089 }
6090
6091 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6092 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6093 by VR4120 errata. */
6094
6095 static unsigned int
6096 classify_vr4120_insn (const char *name)
6097 {
6098 if (strncmp (name, "macc", 4) == 0)
6099 return FIX_VR4120_MACC;
6100 if (strncmp (name, "dmacc", 5) == 0)
6101 return FIX_VR4120_DMACC;
6102 if (strncmp (name, "mult", 4) == 0)
6103 return FIX_VR4120_MULT;
6104 if (strncmp (name, "dmult", 5) == 0)
6105 return FIX_VR4120_DMULT;
6106 if (strstr (name, "div"))
6107 return FIX_VR4120_DIV;
6108 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6109 return FIX_VR4120_MTHILO;
6110 return NUM_FIX_VR4120_CLASSES;
6111 }
6112
6113 #define INSN_ERET 0x42000018
6114 #define INSN_DERET 0x4200001f
6115 #define INSN_DMULT 0x1c
6116 #define INSN_DMULTU 0x1d
6117
6118 /* Return the number of instructions that must separate INSN1 and INSN2,
6119 where INSN1 is the earlier instruction. Return the worst-case value
6120 for any INSN2 if INSN2 is null. */
6121
6122 static unsigned int
6123 insns_between (const struct mips_cl_insn *insn1,
6124 const struct mips_cl_insn *insn2)
6125 {
6126 unsigned long pinfo1, pinfo2;
6127 unsigned int mask;
6128
6129 /* If INFO2 is null, pessimistically assume that all flags are set for
6130 the second instruction. */
6131 pinfo1 = insn1->insn_mo->pinfo;
6132 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6133
6134 /* For most targets, write-after-read dependencies on the HI and LO
6135 registers must be separated by at least two instructions. */
6136 if (!hilo_interlocks)
6137 {
6138 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6139 return 2;
6140 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6141 return 2;
6142 }
6143
6144 /* If we're working around r7000 errata, there must be two instructions
6145 between an mfhi or mflo and any instruction that uses the result. */
6146 if (mips_7000_hilo_fix
6147 && !mips_opts.micromips
6148 && MF_HILO_INSN (pinfo1)
6149 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6150 return 2;
6151
6152 /* If we're working around 24K errata, one instruction is required
6153 if an ERET or DERET is followed by a branch instruction. */
6154 if (mips_fix_24k && !mips_opts.micromips)
6155 {
6156 if (insn1->insn_opcode == INSN_ERET
6157 || insn1->insn_opcode == INSN_DERET)
6158 {
6159 if (insn2 == NULL
6160 || insn2->insn_opcode == INSN_ERET
6161 || insn2->insn_opcode == INSN_DERET
6162 || delayed_branch_p (insn2))
6163 return 1;
6164 }
6165 }
6166
6167 /* If we're working around PMC RM7000 errata, there must be three
6168 nops between a dmult and a load instruction. */
6169 if (mips_fix_rm7000 && !mips_opts.micromips)
6170 {
6171 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6172 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6173 {
6174 if (pinfo2 & INSN_LOAD_MEMORY)
6175 return 3;
6176 }
6177 }
6178
6179 /* If working around VR4120 errata, check for combinations that need
6180 a single intervening instruction. */
6181 if (mips_fix_vr4120 && !mips_opts.micromips)
6182 {
6183 unsigned int class1, class2;
6184
6185 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6186 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6187 {
6188 if (insn2 == NULL)
6189 return 1;
6190 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6191 if (vr4120_conflicts[class1] & (1 << class2))
6192 return 1;
6193 }
6194 }
6195
6196 if (!HAVE_CODE_COMPRESSION)
6197 {
6198 /* Check for GPR or coprocessor load delays. All such delays
6199 are on the RT register. */
6200 /* Itbl support may require additional care here. */
6201 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6202 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6203 {
6204 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6205 return 1;
6206 }
6207
6208 /* Check for generic coprocessor hazards.
6209
6210 This case is not handled very well. There is no special
6211 knowledge of CP0 handling, and the coprocessors other than
6212 the floating point unit are not distinguished at all. */
6213 /* Itbl support may require additional care here. FIXME!
6214 Need to modify this to include knowledge about
6215 user specified delays! */
6216 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6217 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6218 {
6219 /* Handle cases where INSN1 writes to a known general coprocessor
6220 register. There must be a one instruction delay before INSN2
6221 if INSN2 reads that register, otherwise no delay is needed. */
6222 mask = fpr_write_mask (insn1);
6223 if (mask != 0)
6224 {
6225 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6226 return 1;
6227 }
6228 else
6229 {
6230 /* Read-after-write dependencies on the control registers
6231 require a two-instruction gap. */
6232 if ((pinfo1 & INSN_WRITE_COND_CODE)
6233 && (pinfo2 & INSN_READ_COND_CODE))
6234 return 2;
6235
6236 /* We don't know exactly what INSN1 does. If INSN2 is
6237 also a coprocessor instruction, assume there must be
6238 a one instruction gap. */
6239 if (pinfo2 & INSN_COP)
6240 return 1;
6241 }
6242 }
6243
6244 /* Check for read-after-write dependencies on the coprocessor
6245 control registers in cases where INSN1 does not need a general
6246 coprocessor delay. This means that INSN1 is a floating point
6247 comparison instruction. */
6248 /* Itbl support may require additional care here. */
6249 else if (!cop_interlocks
6250 && (pinfo1 & INSN_WRITE_COND_CODE)
6251 && (pinfo2 & INSN_READ_COND_CODE))
6252 return 1;
6253 }
6254
6255 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6256 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6257 and pause. */
6258 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6259 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6260 || (insn2 && delayed_branch_p (insn2))))
6261 return 1;
6262
6263 return 0;
6264 }
6265
6266 /* Return the number of nops that would be needed to work around the
6267 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6268 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6269 that are contained within the first IGNORE instructions of HIST. */
6270
6271 static int
6272 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6273 const struct mips_cl_insn *insn)
6274 {
6275 int i, j;
6276 unsigned int mask;
6277
6278 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6279 are not affected by the errata. */
6280 if (insn != 0
6281 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6282 || strcmp (insn->insn_mo->name, "mtlo") == 0
6283 || strcmp (insn->insn_mo->name, "mthi") == 0))
6284 return 0;
6285
6286 /* Search for the first MFLO or MFHI. */
6287 for (i = 0; i < MAX_VR4130_NOPS; i++)
6288 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6289 {
6290 /* Extract the destination register. */
6291 mask = gpr_write_mask (&hist[i]);
6292
6293 /* No nops are needed if INSN reads that register. */
6294 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6295 return 0;
6296
6297 /* ...or if any of the intervening instructions do. */
6298 for (j = 0; j < i; j++)
6299 if (gpr_read_mask (&hist[j]) & mask)
6300 return 0;
6301
6302 if (i >= ignore)
6303 return MAX_VR4130_NOPS - i;
6304 }
6305 return 0;
6306 }
6307
6308 #define BASE_REG_EQ(INSN1, INSN2) \
6309 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6310 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6311
6312 /* Return the minimum alignment for this store instruction. */
6313
6314 static int
6315 fix_24k_align_to (const struct mips_opcode *mo)
6316 {
6317 if (strcmp (mo->name, "sh") == 0)
6318 return 2;
6319
6320 if (strcmp (mo->name, "swc1") == 0
6321 || strcmp (mo->name, "swc2") == 0
6322 || strcmp (mo->name, "sw") == 0
6323 || strcmp (mo->name, "sc") == 0
6324 || strcmp (mo->name, "s.s") == 0)
6325 return 4;
6326
6327 if (strcmp (mo->name, "sdc1") == 0
6328 || strcmp (mo->name, "sdc2") == 0
6329 || strcmp (mo->name, "s.d") == 0)
6330 return 8;
6331
6332 /* sb, swl, swr */
6333 return 1;
6334 }
6335
6336 struct fix_24k_store_info
6337 {
6338 /* Immediate offset, if any, for this store instruction. */
6339 short off;
6340 /* Alignment required by this store instruction. */
6341 int align_to;
6342 /* True for register offsets. */
6343 int register_offset;
6344 };
6345
6346 /* Comparison function used by qsort. */
6347
6348 static int
6349 fix_24k_sort (const void *a, const void *b)
6350 {
6351 const struct fix_24k_store_info *pos1 = a;
6352 const struct fix_24k_store_info *pos2 = b;
6353
6354 return (pos1->off - pos2->off);
6355 }
6356
6357 /* INSN is a store instruction. Try to record the store information
6358 in STINFO. Return false if the information isn't known. */
6359
6360 static bfd_boolean
6361 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6362 const struct mips_cl_insn *insn)
6363 {
6364 /* The instruction must have a known offset. */
6365 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6366 return FALSE;
6367
6368 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6369 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6370 return TRUE;
6371 }
6372
6373 /* Return the number of nops that would be needed to work around the 24k
6374 "lost data on stores during refill" errata if instruction INSN
6375 immediately followed the 2 instructions described by HIST.
6376 Ignore hazards that are contained within the first IGNORE
6377 instructions of HIST.
6378
6379 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6380 for the data cache refills and store data. The following describes
6381 the scenario where the store data could be lost.
6382
6383 * A data cache miss, due to either a load or a store, causing fill
6384 data to be supplied by the memory subsystem
6385 * The first three doublewords of fill data are returned and written
6386 into the cache
6387 * A sequence of four stores occurs in consecutive cycles around the
6388 final doubleword of the fill:
6389 * Store A
6390 * Store B
6391 * Store C
6392 * Zero, One or more instructions
6393 * Store D
6394
6395 The four stores A-D must be to different doublewords of the line that
6396 is being filled. The fourth instruction in the sequence above permits
6397 the fill of the final doubleword to be transferred from the FSB into
6398 the cache. In the sequence above, the stores may be either integer
6399 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6400 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6401 different doublewords on the line. If the floating point unit is
6402 running in 1:2 mode, it is not possible to create the sequence above
6403 using only floating point store instructions.
6404
6405 In this case, the cache line being filled is incorrectly marked
6406 invalid, thereby losing the data from any store to the line that
6407 occurs between the original miss and the completion of the five
6408 cycle sequence shown above.
6409
6410 The workarounds are:
6411
6412 * Run the data cache in write-through mode.
6413 * Insert a non-store instruction between
6414 Store A and Store B or Store B and Store C. */
6415
6416 static int
6417 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6418 const struct mips_cl_insn *insn)
6419 {
6420 struct fix_24k_store_info pos[3];
6421 int align, i, base_offset;
6422
6423 if (ignore >= 2)
6424 return 0;
6425
6426 /* If the previous instruction wasn't a store, there's nothing to
6427 worry about. */
6428 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6429 return 0;
6430
6431 /* If the instructions after the previous one are unknown, we have
6432 to assume the worst. */
6433 if (!insn)
6434 return 1;
6435
6436 /* Check whether we are dealing with three consecutive stores. */
6437 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6438 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6439 return 0;
6440
6441 /* If we don't know the relationship between the store addresses,
6442 assume the worst. */
6443 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6444 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6445 return 1;
6446
6447 if (!fix_24k_record_store_info (&pos[0], insn)
6448 || !fix_24k_record_store_info (&pos[1], &hist[0])
6449 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6450 return 1;
6451
6452 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6453
6454 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6455 X bytes and such that the base register + X is known to be aligned
6456 to align bytes. */
6457
6458 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6459 align = 8;
6460 else
6461 {
6462 align = pos[0].align_to;
6463 base_offset = pos[0].off;
6464 for (i = 1; i < 3; i++)
6465 if (align < pos[i].align_to)
6466 {
6467 align = pos[i].align_to;
6468 base_offset = pos[i].off;
6469 }
6470 for (i = 0; i < 3; i++)
6471 pos[i].off -= base_offset;
6472 }
6473
6474 pos[0].off &= ~align + 1;
6475 pos[1].off &= ~align + 1;
6476 pos[2].off &= ~align + 1;
6477
6478 /* If any two stores write to the same chunk, they also write to the
6479 same doubleword. The offsets are still sorted at this point. */
6480 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6481 return 0;
6482
6483 /* A range of at least 9 bytes is needed for the stores to be in
6484 non-overlapping doublewords. */
6485 if (pos[2].off - pos[0].off <= 8)
6486 return 0;
6487
6488 if (pos[2].off - pos[1].off >= 24
6489 || pos[1].off - pos[0].off >= 24
6490 || pos[2].off - pos[0].off >= 32)
6491 return 0;
6492
6493 return 1;
6494 }
6495
6496 /* Return the number of nops that would be needed if instruction INSN
6497 immediately followed the MAX_NOPS instructions given by HIST,
6498 where HIST[0] is the most recent instruction. Ignore hazards
6499 between INSN and the first IGNORE instructions in HIST.
6500
6501 If INSN is null, return the worse-case number of nops for any
6502 instruction. */
6503
6504 static int
6505 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6506 const struct mips_cl_insn *insn)
6507 {
6508 int i, nops, tmp_nops;
6509
6510 nops = 0;
6511 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6512 {
6513 tmp_nops = insns_between (hist + i, insn) - i;
6514 if (tmp_nops > nops)
6515 nops = tmp_nops;
6516 }
6517
6518 if (mips_fix_vr4130 && !mips_opts.micromips)
6519 {
6520 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6521 if (tmp_nops > nops)
6522 nops = tmp_nops;
6523 }
6524
6525 if (mips_fix_24k && !mips_opts.micromips)
6526 {
6527 tmp_nops = nops_for_24k (ignore, hist, insn);
6528 if (tmp_nops > nops)
6529 nops = tmp_nops;
6530 }
6531
6532 return nops;
6533 }
6534
6535 /* The variable arguments provide NUM_INSNS extra instructions that
6536 might be added to HIST. Return the largest number of nops that
6537 would be needed after the extended sequence, ignoring hazards
6538 in the first IGNORE instructions. */
6539
6540 static int
6541 nops_for_sequence (int num_insns, int ignore,
6542 const struct mips_cl_insn *hist, ...)
6543 {
6544 va_list args;
6545 struct mips_cl_insn buffer[MAX_NOPS];
6546 struct mips_cl_insn *cursor;
6547 int nops;
6548
6549 va_start (args, hist);
6550 cursor = buffer + num_insns;
6551 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6552 while (cursor > buffer)
6553 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6554
6555 nops = nops_for_insn (ignore, buffer, NULL);
6556 va_end (args);
6557 return nops;
6558 }
6559
6560 /* Like nops_for_insn, but if INSN is a branch, take into account the
6561 worst-case delay for the branch target. */
6562
6563 static int
6564 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6565 const struct mips_cl_insn *insn)
6566 {
6567 int nops, tmp_nops;
6568
6569 nops = nops_for_insn (ignore, hist, insn);
6570 if (delayed_branch_p (insn))
6571 {
6572 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6573 hist, insn, get_delay_slot_nop (insn));
6574 if (tmp_nops > nops)
6575 nops = tmp_nops;
6576 }
6577 else if (compact_branch_p (insn))
6578 {
6579 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6580 if (tmp_nops > nops)
6581 nops = tmp_nops;
6582 }
6583 return nops;
6584 }
6585
6586 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6587
6588 static void
6589 fix_loongson2f_nop (struct mips_cl_insn * ip)
6590 {
6591 gas_assert (!HAVE_CODE_COMPRESSION);
6592 if (strcmp (ip->insn_mo->name, "nop") == 0)
6593 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6594 }
6595
6596 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6597 jr target pc &= 'hffff_ffff_cfff_ffff. */
6598
6599 static void
6600 fix_loongson2f_jump (struct mips_cl_insn * ip)
6601 {
6602 gas_assert (!HAVE_CODE_COMPRESSION);
6603 if (strcmp (ip->insn_mo->name, "j") == 0
6604 || strcmp (ip->insn_mo->name, "jr") == 0
6605 || strcmp (ip->insn_mo->name, "jalr") == 0)
6606 {
6607 int sreg;
6608 expressionS ep;
6609
6610 if (! mips_opts.at)
6611 return;
6612
6613 sreg = EXTRACT_OPERAND (0, RS, *ip);
6614 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6615 return;
6616
6617 ep.X_op = O_constant;
6618 ep.X_add_number = 0xcfff0000;
6619 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6620 ep.X_add_number = 0xffff;
6621 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6622 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6623 }
6624 }
6625
6626 static void
6627 fix_loongson2f (struct mips_cl_insn * ip)
6628 {
6629 if (mips_fix_loongson2f_nop)
6630 fix_loongson2f_nop (ip);
6631
6632 if (mips_fix_loongson2f_jump)
6633 fix_loongson2f_jump (ip);
6634 }
6635
6636 /* IP is a branch that has a delay slot, and we need to fill it
6637 automatically. Return true if we can do that by swapping IP
6638 with the previous instruction.
6639 ADDRESS_EXPR is an operand of the instruction to be used with
6640 RELOC_TYPE. */
6641
6642 static bfd_boolean
6643 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6644 bfd_reloc_code_real_type *reloc_type)
6645 {
6646 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6647 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6648 unsigned int fpr_read, prev_fpr_write;
6649
6650 /* -O2 and above is required for this optimization. */
6651 if (mips_optimize < 2)
6652 return FALSE;
6653
6654 /* If we have seen .set volatile or .set nomove, don't optimize. */
6655 if (mips_opts.nomove)
6656 return FALSE;
6657
6658 /* We can't swap if the previous instruction's position is fixed. */
6659 if (history[0].fixed_p)
6660 return FALSE;
6661
6662 /* If the previous previous insn was in a .set noreorder, we can't
6663 swap. Actually, the MIPS assembler will swap in this situation.
6664 However, gcc configured -with-gnu-as will generate code like
6665
6666 .set noreorder
6667 lw $4,XXX
6668 .set reorder
6669 INSN
6670 bne $4,$0,foo
6671
6672 in which we can not swap the bne and INSN. If gcc is not configured
6673 -with-gnu-as, it does not output the .set pseudo-ops. */
6674 if (history[1].noreorder_p)
6675 return FALSE;
6676
6677 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6678 This means that the previous instruction was a 4-byte one anyhow. */
6679 if (mips_opts.mips16 && history[0].fixp[0])
6680 return FALSE;
6681
6682 /* If the branch is itself the target of a branch, we can not swap.
6683 We cheat on this; all we check for is whether there is a label on
6684 this instruction. If there are any branches to anything other than
6685 a label, users must use .set noreorder. */
6686 if (seg_info (now_seg)->label_list)
6687 return FALSE;
6688
6689 /* If the previous instruction is in a variant frag other than this
6690 branch's one, we cannot do the swap. This does not apply to
6691 MIPS16 code, which uses variant frags for different purposes. */
6692 if (!mips_opts.mips16
6693 && history[0].frag
6694 && history[0].frag->fr_type == rs_machine_dependent)
6695 return FALSE;
6696
6697 /* We do not swap with instructions that cannot architecturally
6698 be placed in a branch delay slot, such as SYNC or ERET. We
6699 also refrain from swapping with a trap instruction, since it
6700 complicates trap handlers to have the trap instruction be in
6701 a delay slot. */
6702 prev_pinfo = history[0].insn_mo->pinfo;
6703 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6704 return FALSE;
6705
6706 /* Check for conflicts between the branch and the instructions
6707 before the candidate delay slot. */
6708 if (nops_for_insn (0, history + 1, ip) > 0)
6709 return FALSE;
6710
6711 /* Check for conflicts between the swapped sequence and the
6712 target of the branch. */
6713 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6714 return FALSE;
6715
6716 /* If the branch reads a register that the previous
6717 instruction sets, we can not swap. */
6718 gpr_read = gpr_read_mask (ip);
6719 prev_gpr_write = gpr_write_mask (&history[0]);
6720 if (gpr_read & prev_gpr_write)
6721 return FALSE;
6722
6723 fpr_read = fpr_read_mask (ip);
6724 prev_fpr_write = fpr_write_mask (&history[0]);
6725 if (fpr_read & prev_fpr_write)
6726 return FALSE;
6727
6728 /* If the branch writes a register that the previous
6729 instruction sets, we can not swap. */
6730 gpr_write = gpr_write_mask (ip);
6731 if (gpr_write & prev_gpr_write)
6732 return FALSE;
6733
6734 /* If the branch writes a register that the previous
6735 instruction reads, we can not swap. */
6736 prev_gpr_read = gpr_read_mask (&history[0]);
6737 if (gpr_write & prev_gpr_read)
6738 return FALSE;
6739
6740 /* If one instruction sets a condition code and the
6741 other one uses a condition code, we can not swap. */
6742 pinfo = ip->insn_mo->pinfo;
6743 if ((pinfo & INSN_READ_COND_CODE)
6744 && (prev_pinfo & INSN_WRITE_COND_CODE))
6745 return FALSE;
6746 if ((pinfo & INSN_WRITE_COND_CODE)
6747 && (prev_pinfo & INSN_READ_COND_CODE))
6748 return FALSE;
6749
6750 /* If the previous instruction uses the PC, we can not swap. */
6751 prev_pinfo2 = history[0].insn_mo->pinfo2;
6752 if (prev_pinfo2 & INSN2_READ_PC)
6753 return FALSE;
6754
6755 /* If the previous instruction has an incorrect size for a fixed
6756 branch delay slot in microMIPS mode, we cannot swap. */
6757 pinfo2 = ip->insn_mo->pinfo2;
6758 if (mips_opts.micromips
6759 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6760 && insn_length (history) != 2)
6761 return FALSE;
6762 if (mips_opts.micromips
6763 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6764 && insn_length (history) != 4)
6765 return FALSE;
6766
6767 /* On R5900 short loops need to be fixed by inserting a nop in
6768 the branch delay slots.
6769 A short loop can be terminated too early. */
6770 if (mips_opts.arch == CPU_R5900
6771 /* Check if instruction has a parameter, ignore "j $31". */
6772 && (address_expr != NULL)
6773 /* Parameter must be 16 bit. */
6774 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6775 /* Branch to same segment. */
6776 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
6777 /* Branch to same code fragment. */
6778 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
6779 /* Can only calculate branch offset if value is known. */
6780 && symbol_constant_p (address_expr->X_add_symbol)
6781 /* Check if branch is really conditional. */
6782 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6783 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6784 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6785 {
6786 int distance;
6787 /* Check if loop is shorter than 6 instructions including
6788 branch and delay slot. */
6789 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
6790 if (distance <= 20)
6791 {
6792 int i;
6793 int rv;
6794
6795 rv = FALSE;
6796 /* When the loop includes branches or jumps,
6797 it is not a short loop. */
6798 for (i = 0; i < (distance / 4); i++)
6799 {
6800 if ((history[i].cleared_p)
6801 || delayed_branch_p (&history[i]))
6802 {
6803 rv = TRUE;
6804 break;
6805 }
6806 }
6807 if (rv == FALSE)
6808 {
6809 /* Insert nop after branch to fix short loop. */
6810 return FALSE;
6811 }
6812 }
6813 }
6814
6815 return TRUE;
6816 }
6817
6818 /* Decide how we should add IP to the instruction stream.
6819 ADDRESS_EXPR is an operand of the instruction to be used with
6820 RELOC_TYPE. */
6821
6822 static enum append_method
6823 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6824 bfd_reloc_code_real_type *reloc_type)
6825 {
6826 /* The relaxed version of a macro sequence must be inherently
6827 hazard-free. */
6828 if (mips_relax.sequence == 2)
6829 return APPEND_ADD;
6830
6831 /* We must not dabble with instructions in a ".set noreorder" block. */
6832 if (mips_opts.noreorder)
6833 return APPEND_ADD;
6834
6835 /* Otherwise, it's our responsibility to fill branch delay slots. */
6836 if (delayed_branch_p (ip))
6837 {
6838 if (!branch_likely_p (ip)
6839 && can_swap_branch_p (ip, address_expr, reloc_type))
6840 return APPEND_SWAP;
6841
6842 if (mips_opts.mips16
6843 && ISA_SUPPORTS_MIPS16E
6844 && gpr_read_mask (ip) != 0)
6845 return APPEND_ADD_COMPACT;
6846
6847 if (mips_opts.micromips
6848 && ((ip->insn_opcode & 0xffe0) == 0x4580
6849 || (!forced_insn_length
6850 && ((ip->insn_opcode & 0xfc00) == 0xcc00
6851 || (ip->insn_opcode & 0xdc00) == 0x8c00))
6852 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
6853 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
6854 return APPEND_ADD_COMPACT;
6855
6856 return APPEND_ADD_WITH_NOP;
6857 }
6858
6859 return APPEND_ADD;
6860 }
6861
6862 /* IP is an instruction whose opcode we have just changed, END points
6863 to the end of the opcode table processed. Point IP->insn_mo to the
6864 new opcode's definition. */
6865
6866 static void
6867 find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
6868 {
6869 const struct mips_opcode *mo;
6870
6871 for (mo = ip->insn_mo; mo < end; mo++)
6872 if (mo->pinfo != INSN_MACRO
6873 && (ip->insn_opcode & mo->mask) == mo->match)
6874 {
6875 ip->insn_mo = mo;
6876 return;
6877 }
6878 abort ();
6879 }
6880
6881 /* IP is a MIPS16 instruction whose opcode we have just changed.
6882 Point IP->insn_mo to the new opcode's definition. */
6883
6884 static void
6885 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6886 {
6887 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
6888 }
6889
6890 /* IP is a microMIPS instruction whose opcode we have just changed.
6891 Point IP->insn_mo to the new opcode's definition. */
6892
6893 static void
6894 find_altered_micromips_opcode (struct mips_cl_insn *ip)
6895 {
6896 find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
6897 }
6898
6899 /* For microMIPS macros, we need to generate a local number label
6900 as the target of branches. */
6901 #define MICROMIPS_LABEL_CHAR '\037'
6902 static unsigned long micromips_target_label;
6903 static char micromips_target_name[32];
6904
6905 static char *
6906 micromips_label_name (void)
6907 {
6908 char *p = micromips_target_name;
6909 char symbol_name_temporary[24];
6910 unsigned long l;
6911 int i;
6912
6913 if (*p)
6914 return p;
6915
6916 i = 0;
6917 l = micromips_target_label;
6918 #ifdef LOCAL_LABEL_PREFIX
6919 *p++ = LOCAL_LABEL_PREFIX;
6920 #endif
6921 *p++ = 'L';
6922 *p++ = MICROMIPS_LABEL_CHAR;
6923 do
6924 {
6925 symbol_name_temporary[i++] = l % 10 + '0';
6926 l /= 10;
6927 }
6928 while (l != 0);
6929 while (i > 0)
6930 *p++ = symbol_name_temporary[--i];
6931 *p = '\0';
6932
6933 return micromips_target_name;
6934 }
6935
6936 static void
6937 micromips_label_expr (expressionS *label_expr)
6938 {
6939 label_expr->X_op = O_symbol;
6940 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6941 label_expr->X_add_number = 0;
6942 }
6943
6944 static void
6945 micromips_label_inc (void)
6946 {
6947 micromips_target_label++;
6948 *micromips_target_name = '\0';
6949 }
6950
6951 static void
6952 micromips_add_label (void)
6953 {
6954 symbolS *s;
6955
6956 s = colon (micromips_label_name ());
6957 micromips_label_inc ();
6958 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6959 }
6960
6961 /* If assembling microMIPS code, then return the microMIPS reloc
6962 corresponding to the requested one if any. Otherwise return
6963 the reloc unchanged. */
6964
6965 static bfd_reloc_code_real_type
6966 micromips_map_reloc (bfd_reloc_code_real_type reloc)
6967 {
6968 static const bfd_reloc_code_real_type relocs[][2] =
6969 {
6970 /* Keep sorted incrementally by the left-hand key. */
6971 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6972 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6973 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6974 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6975 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6976 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6977 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6978 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6979 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6980 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6981 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6982 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6983 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6984 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6985 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6986 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6987 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6988 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6989 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6990 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6991 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6992 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6993 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6994 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6995 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6996 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6997 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6998 };
6999 bfd_reloc_code_real_type r;
7000 size_t i;
7001
7002 if (!mips_opts.micromips)
7003 return reloc;
7004 for (i = 0; i < ARRAY_SIZE (relocs); i++)
7005 {
7006 r = relocs[i][0];
7007 if (r > reloc)
7008 return reloc;
7009 if (r == reloc)
7010 return relocs[i][1];
7011 }
7012 return reloc;
7013 }
7014
7015 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7016 Return true on success, storing the resolved value in RESULT. */
7017
7018 static bfd_boolean
7019 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7020 offsetT *result)
7021 {
7022 switch (reloc)
7023 {
7024 case BFD_RELOC_MIPS_HIGHEST:
7025 case BFD_RELOC_MICROMIPS_HIGHEST:
7026 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7027 return TRUE;
7028
7029 case BFD_RELOC_MIPS_HIGHER:
7030 case BFD_RELOC_MICROMIPS_HIGHER:
7031 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7032 return TRUE;
7033
7034 case BFD_RELOC_HI16_S:
7035 case BFD_RELOC_HI16_S_PCREL:
7036 case BFD_RELOC_MICROMIPS_HI16_S:
7037 case BFD_RELOC_MIPS16_HI16_S:
7038 *result = ((operand + 0x8000) >> 16) & 0xffff;
7039 return TRUE;
7040
7041 case BFD_RELOC_HI16:
7042 case BFD_RELOC_MICROMIPS_HI16:
7043 case BFD_RELOC_MIPS16_HI16:
7044 *result = (operand >> 16) & 0xffff;
7045 return TRUE;
7046
7047 case BFD_RELOC_LO16:
7048 case BFD_RELOC_LO16_PCREL:
7049 case BFD_RELOC_MICROMIPS_LO16:
7050 case BFD_RELOC_MIPS16_LO16:
7051 *result = operand & 0xffff;
7052 return TRUE;
7053
7054 case BFD_RELOC_UNUSED:
7055 *result = operand;
7056 return TRUE;
7057
7058 default:
7059 return FALSE;
7060 }
7061 }
7062
7063 /* Output an instruction. IP is the instruction information.
7064 ADDRESS_EXPR is an operand of the instruction to be used with
7065 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7066 a macro expansion. */
7067
7068 static void
7069 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7070 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7071 {
7072 unsigned long prev_pinfo2, pinfo;
7073 bfd_boolean relaxed_branch = FALSE;
7074 enum append_method method;
7075 bfd_boolean relax32;
7076 int branch_disp;
7077
7078 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7079 fix_loongson2f (ip);
7080
7081 file_ase_mips16 |= mips_opts.mips16;
7082 file_ase_micromips |= mips_opts.micromips;
7083
7084 prev_pinfo2 = history[0].insn_mo->pinfo2;
7085 pinfo = ip->insn_mo->pinfo;
7086
7087 /* Don't raise alarm about `nods' frags as they'll fill in the right
7088 kind of nop in relaxation if required. */
7089 if (mips_opts.micromips
7090 && !expansionp
7091 && !(history[0].frag
7092 && history[0].frag->fr_type == rs_machine_dependent
7093 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7094 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
7095 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7096 && micromips_insn_length (ip->insn_mo) != 2)
7097 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7098 && micromips_insn_length (ip->insn_mo) != 4)))
7099 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7100 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7101
7102 if (address_expr == NULL)
7103 ip->complete_p = 1;
7104 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7105 && reloc_type[1] == BFD_RELOC_UNUSED
7106 && reloc_type[2] == BFD_RELOC_UNUSED
7107 && address_expr->X_op == O_constant)
7108 {
7109 switch (*reloc_type)
7110 {
7111 case BFD_RELOC_MIPS_JMP:
7112 {
7113 int shift;
7114
7115 /* Shift is 2, unusually, for microMIPS JALX. */
7116 shift = (mips_opts.micromips
7117 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
7118 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7119 as_bad (_("jump to misaligned address (0x%lx)"),
7120 (unsigned long) address_expr->X_add_number);
7121 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7122 & 0x3ffffff);
7123 ip->complete_p = 1;
7124 }
7125 break;
7126
7127 case BFD_RELOC_MIPS16_JMP:
7128 if ((address_expr->X_add_number & 3) != 0)
7129 as_bad (_("jump to misaligned address (0x%lx)"),
7130 (unsigned long) address_expr->X_add_number);
7131 ip->insn_opcode |=
7132 (((address_expr->X_add_number & 0x7c0000) << 3)
7133 | ((address_expr->X_add_number & 0xf800000) >> 7)
7134 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7135 ip->complete_p = 1;
7136 break;
7137
7138 case BFD_RELOC_16_PCREL_S2:
7139 {
7140 int shift;
7141
7142 shift = mips_opts.micromips ? 1 : 2;
7143 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7144 as_bad (_("branch to misaligned address (0x%lx)"),
7145 (unsigned long) address_expr->X_add_number);
7146 if (!mips_relax_branch)
7147 {
7148 if ((address_expr->X_add_number + (1 << (shift + 15)))
7149 & ~((1 << (shift + 16)) - 1))
7150 as_bad (_("branch address range overflow (0x%lx)"),
7151 (unsigned long) address_expr->X_add_number);
7152 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7153 & 0xffff);
7154 }
7155 }
7156 break;
7157
7158 case BFD_RELOC_MIPS_21_PCREL_S2:
7159 {
7160 int shift;
7161
7162 shift = 2;
7163 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7164 as_bad (_("branch to misaligned address (0x%lx)"),
7165 (unsigned long) address_expr->X_add_number);
7166 if ((address_expr->X_add_number + (1 << (shift + 20)))
7167 & ~((1 << (shift + 21)) - 1))
7168 as_bad (_("branch address range overflow (0x%lx)"),
7169 (unsigned long) address_expr->X_add_number);
7170 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7171 & 0x1fffff);
7172 }
7173 break;
7174
7175 case BFD_RELOC_MIPS_26_PCREL_S2:
7176 {
7177 int shift;
7178
7179 shift = 2;
7180 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7181 as_bad (_("branch to misaligned address (0x%lx)"),
7182 (unsigned long) address_expr->X_add_number);
7183 if ((address_expr->X_add_number + (1 << (shift + 25)))
7184 & ~((1 << (shift + 26)) - 1))
7185 as_bad (_("branch address range overflow (0x%lx)"),
7186 (unsigned long) address_expr->X_add_number);
7187 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7188 & 0x3ffffff);
7189 }
7190 break;
7191
7192 default:
7193 {
7194 offsetT value;
7195
7196 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7197 &value))
7198 {
7199 ip->insn_opcode |= value & 0xffff;
7200 ip->complete_p = 1;
7201 }
7202 }
7203 break;
7204 }
7205 }
7206
7207 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7208 {
7209 /* There are a lot of optimizations we could do that we don't.
7210 In particular, we do not, in general, reorder instructions.
7211 If you use gcc with optimization, it will reorder
7212 instructions and generally do much more optimization then we
7213 do here; repeating all that work in the assembler would only
7214 benefit hand written assembly code, and does not seem worth
7215 it. */
7216 int nops = (mips_optimize == 0
7217 ? nops_for_insn (0, history, NULL)
7218 : nops_for_insn_or_target (0, history, ip));
7219 if (nops > 0)
7220 {
7221 fragS *old_frag;
7222 unsigned long old_frag_offset;
7223 int i;
7224
7225 old_frag = frag_now;
7226 old_frag_offset = frag_now_fix ();
7227
7228 for (i = 0; i < nops; i++)
7229 add_fixed_insn (NOP_INSN);
7230 insert_into_history (0, nops, NOP_INSN);
7231
7232 if (listing)
7233 {
7234 listing_prev_line ();
7235 /* We may be at the start of a variant frag. In case we
7236 are, make sure there is enough space for the frag
7237 after the frags created by listing_prev_line. The
7238 argument to frag_grow here must be at least as large
7239 as the argument to all other calls to frag_grow in
7240 this file. We don't have to worry about being in the
7241 middle of a variant frag, because the variants insert
7242 all needed nop instructions themselves. */
7243 frag_grow (40);
7244 }
7245
7246 mips_move_text_labels ();
7247
7248 #ifndef NO_ECOFF_DEBUGGING
7249 if (ECOFF_DEBUGGING)
7250 ecoff_fix_loc (old_frag, old_frag_offset);
7251 #endif
7252 }
7253 }
7254 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7255 {
7256 int nops;
7257
7258 /* Work out how many nops in prev_nop_frag are needed by IP,
7259 ignoring hazards generated by the first prev_nop_frag_since
7260 instructions. */
7261 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7262 gas_assert (nops <= prev_nop_frag_holds);
7263
7264 /* Enforce NOPS as a minimum. */
7265 if (nops > prev_nop_frag_required)
7266 prev_nop_frag_required = nops;
7267
7268 if (prev_nop_frag_holds == prev_nop_frag_required)
7269 {
7270 /* Settle for the current number of nops. Update the history
7271 accordingly (for the benefit of any future .set reorder code). */
7272 prev_nop_frag = NULL;
7273 insert_into_history (prev_nop_frag_since,
7274 prev_nop_frag_holds, NOP_INSN);
7275 }
7276 else
7277 {
7278 /* Allow this instruction to replace one of the nops that was
7279 tentatively added to prev_nop_frag. */
7280 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7281 prev_nop_frag_holds--;
7282 prev_nop_frag_since++;
7283 }
7284 }
7285
7286 method = get_append_method (ip, address_expr, reloc_type);
7287 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7288
7289 dwarf2_emit_insn (0);
7290 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7291 so "move" the instruction address accordingly.
7292
7293 Also, it doesn't seem appropriate for the assembler to reorder .loc
7294 entries. If this instruction is a branch that we are going to swap
7295 with the previous instruction, the two instructions should be
7296 treated as a unit, and the debug information for both instructions
7297 should refer to the start of the branch sequence. Using the
7298 current position is certainly wrong when swapping a 32-bit branch
7299 and a 16-bit delay slot, since the current position would then be
7300 in the middle of a branch. */
7301 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7302
7303 relax32 = (mips_relax_branch
7304 /* Don't try branch relaxation within .set nomacro, or within
7305 .set noat if we use $at for PIC computations. If it turns
7306 out that the branch was out-of-range, we'll get an error. */
7307 && !mips_opts.warn_about_macros
7308 && (mips_opts.at || mips_pic == NO_PIC)
7309 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7310 as they have no complementing branches. */
7311 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7312
7313 if (!HAVE_CODE_COMPRESSION
7314 && address_expr
7315 && relax32
7316 && *reloc_type == BFD_RELOC_16_PCREL_S2
7317 && delayed_branch_p (ip))
7318 {
7319 relaxed_branch = TRUE;
7320 add_relaxed_insn (ip, (relaxed_branch_length
7321 (NULL, NULL,
7322 uncond_branch_p (ip) ? -1
7323 : branch_likely_p (ip) ? 1
7324 : 0)), 4,
7325 RELAX_BRANCH_ENCODE
7326 (AT,
7327 uncond_branch_p (ip),
7328 branch_likely_p (ip),
7329 pinfo & INSN_WRITE_GPR_31,
7330 0),
7331 address_expr->X_add_symbol,
7332 address_expr->X_add_number);
7333 *reloc_type = BFD_RELOC_UNUSED;
7334 }
7335 else if (mips_opts.micromips
7336 && address_expr
7337 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7338 || *reloc_type > BFD_RELOC_UNUSED)
7339 && (delayed_branch_p (ip) || compact_branch_p (ip))
7340 /* Don't try branch relaxation when users specify
7341 16-bit/32-bit instructions. */
7342 && !forced_insn_length)
7343 {
7344 bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
7345 && *reloc_type > BFD_RELOC_UNUSED);
7346 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7347 int uncond = uncond_branch_p (ip) ? -1 : 0;
7348 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7349 int nods = method == APPEND_ADD_WITH_NOP;
7350 int al = pinfo & INSN_WRITE_GPR_31;
7351 int length32 = nods ? 8 : 4;
7352
7353 gas_assert (address_expr != NULL);
7354 gas_assert (!mips_relax.sequence);
7355
7356 relaxed_branch = TRUE;
7357 if (nods)
7358 method = APPEND_ADD;
7359 if (relax32)
7360 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7361 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
7362 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
7363 uncond, compact, al, nods,
7364 relax32, 0, 0),
7365 address_expr->X_add_symbol,
7366 address_expr->X_add_number);
7367 *reloc_type = BFD_RELOC_UNUSED;
7368 }
7369 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7370 {
7371 bfd_boolean require_unextended;
7372 bfd_boolean require_extended;
7373 symbolS *symbol;
7374 offsetT offset;
7375
7376 if (forced_insn_length != 0)
7377 {
7378 require_unextended = forced_insn_length == 2;
7379 require_extended = forced_insn_length == 4;
7380 }
7381 else
7382 {
7383 require_unextended = (mips_opts.noautoextend
7384 && !mips_opcode_32bit_p (ip->insn_mo));
7385 require_extended = 0;
7386 }
7387
7388 /* We need to set up a variant frag. */
7389 gas_assert (address_expr != NULL);
7390 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7391 symbol created by `make_expr_symbol' may not get a necessary
7392 external relocation produced. */
7393 if (address_expr->X_op == O_symbol)
7394 {
7395 symbol = address_expr->X_add_symbol;
7396 offset = address_expr->X_add_number;
7397 }
7398 else
7399 {
7400 symbol = make_expr_symbol (address_expr);
7401 offset = 0;
7402 }
7403 add_relaxed_insn (ip, 4, 0,
7404 RELAX_MIPS16_ENCODE
7405 (*reloc_type - BFD_RELOC_UNUSED,
7406 require_unextended, require_extended,
7407 delayed_branch_p (&history[0]),
7408 history[0].mips16_absolute_jump_p),
7409 symbol, offset);
7410 }
7411 else if (mips_opts.mips16 && insn_length (ip) == 2)
7412 {
7413 if (!delayed_branch_p (ip))
7414 /* Make sure there is enough room to swap this instruction with
7415 a following jump instruction. */
7416 frag_grow (6);
7417 add_fixed_insn (ip);
7418 }
7419 else
7420 {
7421 if (mips_opts.mips16
7422 && mips_opts.noreorder
7423 && delayed_branch_p (&history[0]))
7424 as_warn (_("extended instruction in delay slot"));
7425
7426 if (mips_relax.sequence)
7427 {
7428 /* If we've reached the end of this frag, turn it into a variant
7429 frag and record the information for the instructions we've
7430 written so far. */
7431 if (frag_room () < 4)
7432 relax_close_frag ();
7433 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7434 }
7435
7436 if (mips_relax.sequence != 2)
7437 {
7438 if (mips_macro_warning.first_insn_sizes[0] == 0)
7439 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7440 mips_macro_warning.sizes[0] += insn_length (ip);
7441 mips_macro_warning.insns[0]++;
7442 }
7443 if (mips_relax.sequence != 1)
7444 {
7445 if (mips_macro_warning.first_insn_sizes[1] == 0)
7446 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7447 mips_macro_warning.sizes[1] += insn_length (ip);
7448 mips_macro_warning.insns[1]++;
7449 }
7450
7451 if (mips_opts.mips16)
7452 {
7453 ip->fixed_p = 1;
7454 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7455 }
7456 add_fixed_insn (ip);
7457 }
7458
7459 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7460 {
7461 bfd_reloc_code_real_type final_type[3];
7462 reloc_howto_type *howto0;
7463 reloc_howto_type *howto;
7464 int i;
7465
7466 /* Perform any necessary conversion to microMIPS relocations
7467 and find out how many relocations there actually are. */
7468 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7469 final_type[i] = micromips_map_reloc (reloc_type[i]);
7470
7471 /* In a compound relocation, it is the final (outermost)
7472 operator that determines the relocated field. */
7473 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7474 if (!howto)
7475 abort ();
7476
7477 if (i > 1)
7478 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7479 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7480 bfd_get_reloc_size (howto),
7481 address_expr,
7482 howto0 && howto0->pc_relative,
7483 final_type[0]);
7484
7485 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7486 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7487 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7488
7489 /* These relocations can have an addend that won't fit in
7490 4 octets for 64bit assembly. */
7491 if (GPR_SIZE == 64
7492 && ! howto->partial_inplace
7493 && (reloc_type[0] == BFD_RELOC_16
7494 || reloc_type[0] == BFD_RELOC_32
7495 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7496 || reloc_type[0] == BFD_RELOC_GPREL16
7497 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7498 || reloc_type[0] == BFD_RELOC_GPREL32
7499 || reloc_type[0] == BFD_RELOC_64
7500 || reloc_type[0] == BFD_RELOC_CTOR
7501 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7502 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7503 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7504 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7505 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7506 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7507 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7508 || hi16_reloc_p (reloc_type[0])
7509 || lo16_reloc_p (reloc_type[0])))
7510 ip->fixp[0]->fx_no_overflow = 1;
7511
7512 /* These relocations can have an addend that won't fit in 2 octets. */
7513 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7514 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7515 ip->fixp[0]->fx_no_overflow = 1;
7516
7517 if (mips_relax.sequence)
7518 {
7519 if (mips_relax.first_fixup == 0)
7520 mips_relax.first_fixup = ip->fixp[0];
7521 }
7522 else if (reloc_needs_lo_p (*reloc_type))
7523 {
7524 struct mips_hi_fixup *hi_fixup;
7525
7526 /* Reuse the last entry if it already has a matching %lo. */
7527 hi_fixup = mips_hi_fixup_list;
7528 if (hi_fixup == 0
7529 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7530 {
7531 hi_fixup = XNEW (struct mips_hi_fixup);
7532 hi_fixup->next = mips_hi_fixup_list;
7533 mips_hi_fixup_list = hi_fixup;
7534 }
7535 hi_fixup->fixp = ip->fixp[0];
7536 hi_fixup->seg = now_seg;
7537 }
7538
7539 /* Add fixups for the second and third relocations, if given.
7540 Note that the ABI allows the second relocation to be
7541 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7542 moment we only use RSS_UNDEF, but we could add support
7543 for the others if it ever becomes necessary. */
7544 for (i = 1; i < 3; i++)
7545 if (reloc_type[i] != BFD_RELOC_UNUSED)
7546 {
7547 ip->fixp[i] = fix_new (ip->frag, ip->where,
7548 ip->fixp[0]->fx_size, NULL, 0,
7549 FALSE, final_type[i]);
7550
7551 /* Use fx_tcbit to mark compound relocs. */
7552 ip->fixp[0]->fx_tcbit = 1;
7553 ip->fixp[i]->fx_tcbit = 1;
7554 }
7555 }
7556
7557 /* Update the register mask information. */
7558 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7559 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7560
7561 switch (method)
7562 {
7563 case APPEND_ADD:
7564 insert_into_history (0, 1, ip);
7565 break;
7566
7567 case APPEND_ADD_WITH_NOP:
7568 {
7569 struct mips_cl_insn *nop;
7570
7571 insert_into_history (0, 1, ip);
7572 nop = get_delay_slot_nop (ip);
7573 add_fixed_insn (nop);
7574 insert_into_history (0, 1, nop);
7575 if (mips_relax.sequence)
7576 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7577 }
7578 break;
7579
7580 case APPEND_ADD_COMPACT:
7581 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7582 if (mips_opts.mips16)
7583 {
7584 ip->insn_opcode |= 0x0080;
7585 find_altered_mips16_opcode (ip);
7586 }
7587 /* Convert microMIPS instructions. */
7588 else if (mips_opts.micromips)
7589 {
7590 /* jr16->jrc */
7591 if ((ip->insn_opcode & 0xffe0) == 0x4580)
7592 ip->insn_opcode |= 0x0020;
7593 /* b16->bc */
7594 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
7595 ip->insn_opcode = 0x40e00000;
7596 /* beqz16->beqzc, bnez16->bnezc */
7597 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
7598 {
7599 unsigned long regno;
7600
7601 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
7602 regno &= MICROMIPSOP_MASK_MD;
7603 regno = micromips_to_32_reg_d_map[regno];
7604 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
7605 | (regno << MICROMIPSOP_SH_RS)
7606 | 0x40a00000) ^ 0x00400000;
7607 }
7608 /* beqz->beqzc, bnez->bnezc */
7609 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
7610 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
7611 | ((ip->insn_opcode >> 7) & 0x00400000)
7612 | 0x40a00000) ^ 0x00400000;
7613 /* beq $0->beqzc, bne $0->bnezc */
7614 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
7615 ip->insn_opcode = (((ip->insn_opcode >>
7616 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
7617 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
7618 | ((ip->insn_opcode >> 7) & 0x00400000)
7619 | 0x40a00000) ^ 0x00400000;
7620 else
7621 abort ();
7622 find_altered_micromips_opcode (ip);
7623 }
7624 else
7625 abort ();
7626 install_insn (ip);
7627 insert_into_history (0, 1, ip);
7628 break;
7629
7630 case APPEND_SWAP:
7631 {
7632 struct mips_cl_insn delay = history[0];
7633
7634 if (relaxed_branch || delay.frag != ip->frag)
7635 {
7636 /* Add the delay slot instruction to the end of the
7637 current frag and shrink the fixed part of the
7638 original frag. If the branch occupies the tail of
7639 the latter, move it backwards to cover the gap. */
7640 delay.frag->fr_fix -= branch_disp;
7641 if (delay.frag == ip->frag)
7642 move_insn (ip, ip->frag, ip->where - branch_disp);
7643 add_fixed_insn (&delay);
7644 }
7645 else
7646 {
7647 /* If this is not a relaxed branch and we are in the
7648 same frag, then just swap the instructions. */
7649 move_insn (ip, delay.frag, delay.where);
7650 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7651 }
7652 history[0] = *ip;
7653 delay.fixed_p = 1;
7654 insert_into_history (0, 1, &delay);
7655 }
7656 break;
7657 }
7658
7659 /* If we have just completed an unconditional branch, clear the history. */
7660 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7661 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7662 {
7663 unsigned int i;
7664
7665 mips_no_prev_insn ();
7666
7667 for (i = 0; i < ARRAY_SIZE (history); i++)
7668 history[i].cleared_p = 1;
7669 }
7670
7671 /* We need to emit a label at the end of branch-likely macros. */
7672 if (emit_branch_likely_macro)
7673 {
7674 emit_branch_likely_macro = FALSE;
7675 micromips_add_label ();
7676 }
7677
7678 /* We just output an insn, so the next one doesn't have a label. */
7679 mips_clear_insn_labels ();
7680 }
7681
7682 /* Forget that there was any previous instruction or label.
7683 When BRANCH is true, the branch history is also flushed. */
7684
7685 static void
7686 mips_no_prev_insn (void)
7687 {
7688 prev_nop_frag = NULL;
7689 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7690 mips_clear_insn_labels ();
7691 }
7692
7693 /* This function must be called before we emit something other than
7694 instructions. It is like mips_no_prev_insn except that it inserts
7695 any NOPS that might be needed by previous instructions. */
7696
7697 void
7698 mips_emit_delays (void)
7699 {
7700 if (! mips_opts.noreorder)
7701 {
7702 int nops = nops_for_insn (0, history, NULL);
7703 if (nops > 0)
7704 {
7705 while (nops-- > 0)
7706 add_fixed_insn (NOP_INSN);
7707 mips_move_text_labels ();
7708 }
7709 }
7710 mips_no_prev_insn ();
7711 }
7712
7713 /* Start a (possibly nested) noreorder block. */
7714
7715 static void
7716 start_noreorder (void)
7717 {
7718 if (mips_opts.noreorder == 0)
7719 {
7720 unsigned int i;
7721 int nops;
7722
7723 /* None of the instructions before the .set noreorder can be moved. */
7724 for (i = 0; i < ARRAY_SIZE (history); i++)
7725 history[i].fixed_p = 1;
7726
7727 /* Insert any nops that might be needed between the .set noreorder
7728 block and the previous instructions. We will later remove any
7729 nops that turn out not to be needed. */
7730 nops = nops_for_insn (0, history, NULL);
7731 if (nops > 0)
7732 {
7733 if (mips_optimize != 0)
7734 {
7735 /* Record the frag which holds the nop instructions, so
7736 that we can remove them if we don't need them. */
7737 frag_grow (nops * NOP_INSN_SIZE);
7738 prev_nop_frag = frag_now;
7739 prev_nop_frag_holds = nops;
7740 prev_nop_frag_required = 0;
7741 prev_nop_frag_since = 0;
7742 }
7743
7744 for (; nops > 0; --nops)
7745 add_fixed_insn (NOP_INSN);
7746
7747 /* Move on to a new frag, so that it is safe to simply
7748 decrease the size of prev_nop_frag. */
7749 frag_wane (frag_now);
7750 frag_new (0);
7751 mips_move_text_labels ();
7752 }
7753 mips_mark_labels ();
7754 mips_clear_insn_labels ();
7755 }
7756 mips_opts.noreorder++;
7757 mips_any_noreorder = 1;
7758 }
7759
7760 /* End a nested noreorder block. */
7761
7762 static void
7763 end_noreorder (void)
7764 {
7765 mips_opts.noreorder--;
7766 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7767 {
7768 /* Commit to inserting prev_nop_frag_required nops and go back to
7769 handling nop insertion the .set reorder way. */
7770 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7771 * NOP_INSN_SIZE);
7772 insert_into_history (prev_nop_frag_since,
7773 prev_nop_frag_required, NOP_INSN);
7774 prev_nop_frag = NULL;
7775 }
7776 }
7777
7778 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7779 higher bits unset. */
7780
7781 static void
7782 normalize_constant_expr (expressionS *ex)
7783 {
7784 if (ex->X_op == O_constant
7785 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7786 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7787 - 0x80000000);
7788 }
7789
7790 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7791 all higher bits unset. */
7792
7793 static void
7794 normalize_address_expr (expressionS *ex)
7795 {
7796 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7797 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7798 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7799 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7800 - 0x80000000);
7801 }
7802
7803 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7804 Return true if the match was successful.
7805
7806 OPCODE_EXTRA is a value that should be ORed into the opcode
7807 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7808 there are more alternatives after OPCODE and SOFT_MATCH is
7809 as for mips_arg_info. */
7810
7811 static bfd_boolean
7812 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7813 struct mips_operand_token *tokens, unsigned int opcode_extra,
7814 bfd_boolean lax_match, bfd_boolean complete_p)
7815 {
7816 const char *args;
7817 struct mips_arg_info arg;
7818 const struct mips_operand *operand;
7819 char c;
7820
7821 imm_expr.X_op = O_absent;
7822 offset_expr.X_op = O_absent;
7823 offset_reloc[0] = BFD_RELOC_UNUSED;
7824 offset_reloc[1] = BFD_RELOC_UNUSED;
7825 offset_reloc[2] = BFD_RELOC_UNUSED;
7826
7827 create_insn (insn, opcode);
7828 /* When no opcode suffix is specified, assume ".xyzw". */
7829 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7830 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7831 else
7832 insn->insn_opcode |= opcode_extra;
7833 memset (&arg, 0, sizeof (arg));
7834 arg.insn = insn;
7835 arg.token = tokens;
7836 arg.argnum = 1;
7837 arg.last_regno = ILLEGAL_REG;
7838 arg.dest_regno = ILLEGAL_REG;
7839 arg.lax_match = lax_match;
7840 for (args = opcode->args;; ++args)
7841 {
7842 if (arg.token->type == OT_END)
7843 {
7844 /* Handle unary instructions in which only one operand is given.
7845 The source is then the same as the destination. */
7846 if (arg.opnum == 1 && *args == ',')
7847 {
7848 operand = (mips_opts.micromips
7849 ? decode_micromips_operand (args + 1)
7850 : decode_mips_operand (args + 1));
7851 if (operand && mips_optional_operand_p (operand))
7852 {
7853 arg.token = tokens;
7854 arg.argnum = 1;
7855 continue;
7856 }
7857 }
7858
7859 /* Treat elided base registers as $0. */
7860 if (strcmp (args, "(b)") == 0)
7861 args += 3;
7862
7863 if (args[0] == '+')
7864 switch (args[1])
7865 {
7866 case 'K':
7867 case 'N':
7868 /* The register suffix is optional. */
7869 args += 2;
7870 break;
7871 }
7872
7873 /* Fail the match if there were too few operands. */
7874 if (*args)
7875 return FALSE;
7876
7877 /* Successful match. */
7878 if (!complete_p)
7879 return TRUE;
7880 clear_insn_error ();
7881 if (arg.dest_regno == arg.last_regno
7882 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7883 {
7884 if (arg.opnum == 2)
7885 set_insn_error
7886 (0, _("source and destination must be different"));
7887 else if (arg.last_regno == 31)
7888 set_insn_error
7889 (0, _("a destination register must be supplied"));
7890 }
7891 else if (arg.last_regno == 31
7892 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7893 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7894 set_insn_error (0, _("the source register must not be $31"));
7895 check_completed_insn (&arg);
7896 return TRUE;
7897 }
7898
7899 /* Fail the match if the line has too many operands. */
7900 if (*args == 0)
7901 return FALSE;
7902
7903 /* Handle characters that need to match exactly. */
7904 if (*args == '(' || *args == ')' || *args == ',')
7905 {
7906 if (match_char (&arg, *args))
7907 continue;
7908 return FALSE;
7909 }
7910 if (*args == '#')
7911 {
7912 ++args;
7913 if (arg.token->type == OT_DOUBLE_CHAR
7914 && arg.token->u.ch == *args)
7915 {
7916 ++arg.token;
7917 continue;
7918 }
7919 return FALSE;
7920 }
7921
7922 /* Handle special macro operands. Work out the properties of
7923 other operands. */
7924 arg.opnum += 1;
7925 switch (*args)
7926 {
7927 case '-':
7928 switch (args[1])
7929 {
7930 case 'A':
7931 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7932 break;
7933
7934 case 'B':
7935 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7936 break;
7937 }
7938 break;
7939
7940 case '+':
7941 switch (args[1])
7942 {
7943 case 'i':
7944 *offset_reloc = BFD_RELOC_MIPS_JMP;
7945 break;
7946
7947 case '\'':
7948 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7949 break;
7950
7951 case '\"':
7952 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7953 break;
7954 }
7955 break;
7956
7957 case 'I':
7958 if (!match_const_int (&arg, &imm_expr.X_add_number))
7959 return FALSE;
7960 imm_expr.X_op = O_constant;
7961 if (GPR_SIZE == 32)
7962 normalize_constant_expr (&imm_expr);
7963 continue;
7964
7965 case 'A':
7966 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7967 {
7968 /* Assume that the offset has been elided and that what
7969 we saw was a base register. The match will fail later
7970 if that assumption turns out to be wrong. */
7971 offset_expr.X_op = O_constant;
7972 offset_expr.X_add_number = 0;
7973 }
7974 else
7975 {
7976 if (!match_expression (&arg, &offset_expr, offset_reloc))
7977 return FALSE;
7978 normalize_address_expr (&offset_expr);
7979 }
7980 continue;
7981
7982 case 'F':
7983 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7984 8, TRUE))
7985 return FALSE;
7986 continue;
7987
7988 case 'L':
7989 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7990 8, FALSE))
7991 return FALSE;
7992 continue;
7993
7994 case 'f':
7995 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7996 4, TRUE))
7997 return FALSE;
7998 continue;
7999
8000 case 'l':
8001 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8002 4, FALSE))
8003 return FALSE;
8004 continue;
8005
8006 case 'p':
8007 *offset_reloc = BFD_RELOC_16_PCREL_S2;
8008 break;
8009
8010 case 'a':
8011 *offset_reloc = BFD_RELOC_MIPS_JMP;
8012 break;
8013
8014 case 'm':
8015 gas_assert (mips_opts.micromips);
8016 c = args[1];
8017 switch (c)
8018 {
8019 case 'D':
8020 case 'E':
8021 if (!forced_insn_length)
8022 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
8023 else if (c == 'D')
8024 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8025 else
8026 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8027 break;
8028 }
8029 break;
8030 }
8031
8032 operand = (mips_opts.micromips
8033 ? decode_micromips_operand (args)
8034 : decode_mips_operand (args));
8035 if (!operand)
8036 abort ();
8037
8038 /* Skip prefixes. */
8039 if (*args == '+' || *args == 'm' || *args == '-')
8040 args++;
8041
8042 if (mips_optional_operand_p (operand)
8043 && args[1] == ','
8044 && (arg.token[0].type != OT_REG
8045 || arg.token[1].type == OT_END))
8046 {
8047 /* Assume that the register has been elided and is the
8048 same as the first operand. */
8049 arg.token = tokens;
8050 arg.argnum = 1;
8051 }
8052
8053 if (!match_operand (&arg, operand))
8054 return FALSE;
8055 }
8056 }
8057
8058 /* Like match_insn, but for MIPS16. */
8059
8060 static bfd_boolean
8061 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8062 struct mips_operand_token *tokens)
8063 {
8064 const char *args;
8065 const struct mips_operand *operand;
8066 const struct mips_operand *ext_operand;
8067 int required_insn_length;
8068 struct mips_arg_info arg;
8069 int relax_char;
8070
8071 if (forced_insn_length)
8072 required_insn_length = forced_insn_length;
8073 else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
8074 required_insn_length = 2;
8075 else
8076 required_insn_length = 0;
8077
8078 create_insn (insn, opcode);
8079 imm_expr.X_op = O_absent;
8080 offset_expr.X_op = O_absent;
8081 offset_reloc[0] = BFD_RELOC_UNUSED;
8082 offset_reloc[1] = BFD_RELOC_UNUSED;
8083 offset_reloc[2] = BFD_RELOC_UNUSED;
8084 relax_char = 0;
8085
8086 memset (&arg, 0, sizeof (arg));
8087 arg.insn = insn;
8088 arg.token = tokens;
8089 arg.argnum = 1;
8090 arg.last_regno = ILLEGAL_REG;
8091 arg.dest_regno = ILLEGAL_REG;
8092 relax_char = 0;
8093 for (args = opcode->args;; ++args)
8094 {
8095 int c;
8096
8097 if (arg.token->type == OT_END)
8098 {
8099 offsetT value;
8100
8101 /* Handle unary instructions in which only one operand is given.
8102 The source is then the same as the destination. */
8103 if (arg.opnum == 1 && *args == ',')
8104 {
8105 operand = decode_mips16_operand (args[1], FALSE);
8106 if (operand && mips_optional_operand_p (operand))
8107 {
8108 arg.token = tokens;
8109 arg.argnum = 1;
8110 continue;
8111 }
8112 }
8113
8114 /* Fail the match if there were too few operands. */
8115 if (*args)
8116 return FALSE;
8117
8118 /* Successful match. Stuff the immediate value in now, if
8119 we can. */
8120 clear_insn_error ();
8121 if (opcode->pinfo == INSN_MACRO)
8122 {
8123 gas_assert (relax_char == 0 || relax_char == 'p');
8124 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8125 }
8126 else if (relax_char
8127 && offset_expr.X_op == O_constant
8128 && calculate_reloc (*offset_reloc,
8129 offset_expr.X_add_number,
8130 &value))
8131 {
8132 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
8133 required_insn_length, &insn->insn_opcode);
8134 offset_expr.X_op = O_absent;
8135 *offset_reloc = BFD_RELOC_UNUSED;
8136 }
8137 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8138 {
8139 if (required_insn_length == 2)
8140 set_insn_error (0, _("invalid unextended operand value"));
8141 else
8142 {
8143 forced_insn_length = 4;
8144 insn->insn_opcode |= MIPS16_EXTEND;
8145 }
8146 }
8147 else if (relax_char)
8148 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8149
8150 check_completed_insn (&arg);
8151 return TRUE;
8152 }
8153
8154 /* Fail the match if the line has too many operands. */
8155 if (*args == 0)
8156 return FALSE;
8157
8158 /* Handle characters that need to match exactly. */
8159 if (*args == '(' || *args == ')' || *args == ',')
8160 {
8161 if (match_char (&arg, *args))
8162 continue;
8163 return FALSE;
8164 }
8165
8166 arg.opnum += 1;
8167 c = *args;
8168 switch (c)
8169 {
8170 case 'p':
8171 case 'q':
8172 case 'A':
8173 case 'B':
8174 case 'E':
8175 relax_char = c;
8176 break;
8177
8178 case 'I':
8179 if (!match_const_int (&arg, &imm_expr.X_add_number))
8180 return FALSE;
8181 imm_expr.X_op = O_constant;
8182 if (GPR_SIZE == 32)
8183 normalize_constant_expr (&imm_expr);
8184 continue;
8185
8186 case 'a':
8187 case 'i':
8188 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8189 break;
8190 }
8191
8192 operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
8193 if (!operand)
8194 abort ();
8195
8196 if (operand->type != OP_PCREL)
8197 {
8198 ext_operand = decode_mips16_operand (c, TRUE);
8199 if (operand != ext_operand)
8200 {
8201 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8202 {
8203 offset_expr.X_op = O_constant;
8204 offset_expr.X_add_number = 0;
8205 relax_char = c;
8206 continue;
8207 }
8208
8209 /* We need the OT_INTEGER check because some MIPS16
8210 immediate variants are listed before the register ones. */
8211 if (arg.token->type != OT_INTEGER
8212 || !match_expression (&arg, &offset_expr, offset_reloc))
8213 return FALSE;
8214
8215 /* '8' is used for SLTI(U) and has traditionally not
8216 been allowed to take relocation operators. */
8217 if (offset_reloc[0] != BFD_RELOC_UNUSED
8218 && (ext_operand->size != 16 || c == '8'))
8219 return FALSE;
8220
8221 relax_char = c;
8222 continue;
8223 }
8224 }
8225
8226 if (mips_optional_operand_p (operand)
8227 && args[1] == ','
8228 && (arg.token[0].type != OT_REG
8229 || arg.token[1].type == OT_END))
8230 {
8231 /* Assume that the register has been elided and is the
8232 same as the first operand. */
8233 arg.token = tokens;
8234 arg.argnum = 1;
8235 }
8236
8237 if (!match_operand (&arg, operand))
8238 return FALSE;
8239 }
8240 }
8241
8242 /* Record that the current instruction is invalid for the current ISA. */
8243
8244 static void
8245 match_invalid_for_isa (void)
8246 {
8247 set_insn_error_ss
8248 (0, _("opcode not supported on this processor: %s (%s)"),
8249 mips_cpu_info_from_arch (mips_opts.arch)->name,
8250 mips_cpu_info_from_isa (mips_opts.isa)->name);
8251 }
8252
8253 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8254 Return true if a definite match or failure was found, storing any match
8255 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8256 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8257 tried and failed to match under normal conditions and now want to try a
8258 more relaxed match. */
8259
8260 static bfd_boolean
8261 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8262 const struct mips_opcode *past, struct mips_operand_token *tokens,
8263 int opcode_extra, bfd_boolean lax_match)
8264 {
8265 const struct mips_opcode *opcode;
8266 const struct mips_opcode *invalid_delay_slot;
8267 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8268
8269 /* Search for a match, ignoring alternatives that don't satisfy the
8270 current ISA or forced_length. */
8271 invalid_delay_slot = 0;
8272 seen_valid_for_isa = FALSE;
8273 seen_valid_for_size = FALSE;
8274 opcode = first;
8275 do
8276 {
8277 gas_assert (strcmp (opcode->name, first->name) == 0);
8278 if (is_opcode_valid (opcode))
8279 {
8280 seen_valid_for_isa = TRUE;
8281 if (is_size_valid (opcode))
8282 {
8283 bfd_boolean delay_slot_ok;
8284
8285 seen_valid_for_size = TRUE;
8286 delay_slot_ok = is_delay_slot_valid (opcode);
8287 if (match_insn (insn, opcode, tokens, opcode_extra,
8288 lax_match, delay_slot_ok))
8289 {
8290 if (!delay_slot_ok)
8291 {
8292 if (!invalid_delay_slot)
8293 invalid_delay_slot = opcode;
8294 }
8295 else
8296 return TRUE;
8297 }
8298 }
8299 }
8300 ++opcode;
8301 }
8302 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8303
8304 /* If the only matches we found had the wrong length for the delay slot,
8305 pick the first such match. We'll issue an appropriate warning later. */
8306 if (invalid_delay_slot)
8307 {
8308 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8309 lax_match, TRUE))
8310 return TRUE;
8311 abort ();
8312 }
8313
8314 /* Handle the case where we didn't try to match an instruction because
8315 all the alternatives were incompatible with the current ISA. */
8316 if (!seen_valid_for_isa)
8317 {
8318 match_invalid_for_isa ();
8319 return TRUE;
8320 }
8321
8322 /* Handle the case where we didn't try to match an instruction because
8323 all the alternatives were of the wrong size. */
8324 if (!seen_valid_for_size)
8325 {
8326 if (mips_opts.insn32)
8327 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8328 else
8329 set_insn_error_i
8330 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8331 8 * forced_insn_length);
8332 return TRUE;
8333 }
8334
8335 return FALSE;
8336 }
8337
8338 /* Like match_insns, but for MIPS16. */
8339
8340 static bfd_boolean
8341 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8342 struct mips_operand_token *tokens)
8343 {
8344 const struct mips_opcode *opcode;
8345 bfd_boolean seen_valid_for_isa;
8346 bfd_boolean seen_valid_for_size;
8347
8348 /* Search for a match, ignoring alternatives that don't satisfy the
8349 current ISA. There are no separate entries for extended forms so
8350 we deal with forced_length later. */
8351 seen_valid_for_isa = FALSE;
8352 seen_valid_for_size = FALSE;
8353 opcode = first;
8354 do
8355 {
8356 gas_assert (strcmp (opcode->name, first->name) == 0);
8357 if (is_opcode_valid_16 (opcode))
8358 {
8359 seen_valid_for_isa = TRUE;
8360 if (is_size_valid_16 (opcode))
8361 {
8362 seen_valid_for_size = TRUE;
8363 if (match_mips16_insn (insn, opcode, tokens))
8364 return TRUE;
8365 }
8366 }
8367 ++opcode;
8368 }
8369 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8370 && strcmp (opcode->name, first->name) == 0);
8371
8372 /* Handle the case where we didn't try to match an instruction because
8373 all the alternatives were incompatible with the current ISA. */
8374 if (!seen_valid_for_isa)
8375 {
8376 match_invalid_for_isa ();
8377 return TRUE;
8378 }
8379
8380 /* Handle the case where we didn't try to match an instruction because
8381 all the alternatives were of the wrong size. */
8382 if (!seen_valid_for_size)
8383 {
8384 if (forced_insn_length == 2)
8385 set_insn_error
8386 (0, _("unrecognized unextended version of MIPS16 opcode"));
8387 else
8388 set_insn_error
8389 (0, _("unrecognized extended version of MIPS16 opcode"));
8390 return TRUE;
8391 }
8392
8393 return FALSE;
8394 }
8395
8396 /* Set up global variables for the start of a new macro. */
8397
8398 static void
8399 macro_start (void)
8400 {
8401 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8402 memset (&mips_macro_warning.first_insn_sizes, 0,
8403 sizeof (mips_macro_warning.first_insn_sizes));
8404 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8405 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8406 && delayed_branch_p (&history[0]));
8407 if (history[0].frag
8408 && history[0].frag->fr_type == rs_machine_dependent
8409 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8410 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8411 mips_macro_warning.delay_slot_length = 0;
8412 else
8413 switch (history[0].insn_mo->pinfo2
8414 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8415 {
8416 case INSN2_BRANCH_DELAY_32BIT:
8417 mips_macro_warning.delay_slot_length = 4;
8418 break;
8419 case INSN2_BRANCH_DELAY_16BIT:
8420 mips_macro_warning.delay_slot_length = 2;
8421 break;
8422 default:
8423 mips_macro_warning.delay_slot_length = 0;
8424 break;
8425 }
8426 mips_macro_warning.first_frag = NULL;
8427 }
8428
8429 /* Given that a macro is longer than one instruction or of the wrong size,
8430 return the appropriate warning for it. Return null if no warning is
8431 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8432 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8433 and RELAX_NOMACRO. */
8434
8435 static const char *
8436 macro_warning (relax_substateT subtype)
8437 {
8438 if (subtype & RELAX_DELAY_SLOT)
8439 return _("macro instruction expanded into multiple instructions"
8440 " in a branch delay slot");
8441 else if (subtype & RELAX_NOMACRO)
8442 return _("macro instruction expanded into multiple instructions");
8443 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8444 | RELAX_DELAY_SLOT_SIZE_SECOND))
8445 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8446 ? _("macro instruction expanded into a wrong size instruction"
8447 " in a 16-bit branch delay slot")
8448 : _("macro instruction expanded into a wrong size instruction"
8449 " in a 32-bit branch delay slot"));
8450 else
8451 return 0;
8452 }
8453
8454 /* Finish up a macro. Emit warnings as appropriate. */
8455
8456 static void
8457 macro_end (void)
8458 {
8459 /* Relaxation warning flags. */
8460 relax_substateT subtype = 0;
8461
8462 /* Check delay slot size requirements. */
8463 if (mips_macro_warning.delay_slot_length == 2)
8464 subtype |= RELAX_DELAY_SLOT_16BIT;
8465 if (mips_macro_warning.delay_slot_length != 0)
8466 {
8467 if (mips_macro_warning.delay_slot_length
8468 != mips_macro_warning.first_insn_sizes[0])
8469 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8470 if (mips_macro_warning.delay_slot_length
8471 != mips_macro_warning.first_insn_sizes[1])
8472 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8473 }
8474
8475 /* Check instruction count requirements. */
8476 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8477 {
8478 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8479 subtype |= RELAX_SECOND_LONGER;
8480 if (mips_opts.warn_about_macros)
8481 subtype |= RELAX_NOMACRO;
8482 if (mips_macro_warning.delay_slot_p)
8483 subtype |= RELAX_DELAY_SLOT;
8484 }
8485
8486 /* If both alternatives fail to fill a delay slot correctly,
8487 emit the warning now. */
8488 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8489 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8490 {
8491 relax_substateT s;
8492 const char *msg;
8493
8494 s = subtype & (RELAX_DELAY_SLOT_16BIT
8495 | RELAX_DELAY_SLOT_SIZE_FIRST
8496 | RELAX_DELAY_SLOT_SIZE_SECOND);
8497 msg = macro_warning (s);
8498 if (msg != NULL)
8499 as_warn ("%s", msg);
8500 subtype &= ~s;
8501 }
8502
8503 /* If both implementations are longer than 1 instruction, then emit the
8504 warning now. */
8505 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8506 {
8507 relax_substateT s;
8508 const char *msg;
8509
8510 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8511 msg = macro_warning (s);
8512 if (msg != NULL)
8513 as_warn ("%s", msg);
8514 subtype &= ~s;
8515 }
8516
8517 /* If any flags still set, then one implementation might need a warning
8518 and the other either will need one of a different kind or none at all.
8519 Pass any remaining flags over to relaxation. */
8520 if (mips_macro_warning.first_frag != NULL)
8521 mips_macro_warning.first_frag->fr_subtype |= subtype;
8522 }
8523
8524 /* Instruction operand formats used in macros that vary between
8525 standard MIPS and microMIPS code. */
8526
8527 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8528 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8529 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8530 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8531 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8532 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8533 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8534 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8535
8536 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8537 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8538 : cop12_fmt[mips_opts.micromips])
8539 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8540 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8541 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8542 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8543 : mem12_fmt[mips_opts.micromips])
8544 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8545 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8546 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8547
8548 /* Read a macro's relocation codes from *ARGS and store them in *R.
8549 The first argument in *ARGS will be either the code for a single
8550 relocation or -1 followed by the three codes that make up a
8551 composite relocation. */
8552
8553 static void
8554 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8555 {
8556 int i, next;
8557
8558 next = va_arg (*args, int);
8559 if (next >= 0)
8560 r[0] = (bfd_reloc_code_real_type) next;
8561 else
8562 {
8563 for (i = 0; i < 3; i++)
8564 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8565 /* This function is only used for 16-bit relocation fields.
8566 To make the macro code simpler, treat an unrelocated value
8567 in the same way as BFD_RELOC_LO16. */
8568 if (r[0] == BFD_RELOC_UNUSED)
8569 r[0] = BFD_RELOC_LO16;
8570 }
8571 }
8572
8573 /* Build an instruction created by a macro expansion. This is passed
8574 a pointer to the count of instructions created so far, an
8575 expression, the name of the instruction to build, an operand format
8576 string, and corresponding arguments. */
8577
8578 static void
8579 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8580 {
8581 const struct mips_opcode *mo = NULL;
8582 bfd_reloc_code_real_type r[3];
8583 const struct mips_opcode *amo;
8584 const struct mips_operand *operand;
8585 struct hash_control *hash;
8586 struct mips_cl_insn insn;
8587 va_list args;
8588 unsigned int uval;
8589
8590 va_start (args, fmt);
8591
8592 if (mips_opts.mips16)
8593 {
8594 mips16_macro_build (ep, name, fmt, &args);
8595 va_end (args);
8596 return;
8597 }
8598
8599 r[0] = BFD_RELOC_UNUSED;
8600 r[1] = BFD_RELOC_UNUSED;
8601 r[2] = BFD_RELOC_UNUSED;
8602 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8603 amo = (struct mips_opcode *) hash_find (hash, name);
8604 gas_assert (amo);
8605 gas_assert (strcmp (name, amo->name) == 0);
8606
8607 do
8608 {
8609 /* Search until we get a match for NAME. It is assumed here that
8610 macros will never generate MDMX, MIPS-3D, or MT instructions.
8611 We try to match an instruction that fulfills the branch delay
8612 slot instruction length requirement (if any) of the previous
8613 instruction. While doing this we record the first instruction
8614 seen that matches all the other conditions and use it anyway
8615 if the requirement cannot be met; we will issue an appropriate
8616 warning later on. */
8617 if (strcmp (fmt, amo->args) == 0
8618 && amo->pinfo != INSN_MACRO
8619 && is_opcode_valid (amo)
8620 && is_size_valid (amo))
8621 {
8622 if (is_delay_slot_valid (amo))
8623 {
8624 mo = amo;
8625 break;
8626 }
8627 else if (!mo)
8628 mo = amo;
8629 }
8630
8631 ++amo;
8632 gas_assert (amo->name);
8633 }
8634 while (strcmp (name, amo->name) == 0);
8635
8636 gas_assert (mo);
8637 create_insn (&insn, mo);
8638 for (; *fmt; ++fmt)
8639 {
8640 switch (*fmt)
8641 {
8642 case ',':
8643 case '(':
8644 case ')':
8645 case 'z':
8646 break;
8647
8648 case 'i':
8649 case 'j':
8650 macro_read_relocs (&args, r);
8651 gas_assert (*r == BFD_RELOC_GPREL16
8652 || *r == BFD_RELOC_MIPS_HIGHER
8653 || *r == BFD_RELOC_HI16_S
8654 || *r == BFD_RELOC_LO16
8655 || *r == BFD_RELOC_MIPS_GOT_OFST);
8656 break;
8657
8658 case 'o':
8659 macro_read_relocs (&args, r);
8660 break;
8661
8662 case 'u':
8663 macro_read_relocs (&args, r);
8664 gas_assert (ep != NULL
8665 && (ep->X_op == O_constant
8666 || (ep->X_op == O_symbol
8667 && (*r == BFD_RELOC_MIPS_HIGHEST
8668 || *r == BFD_RELOC_HI16_S
8669 || *r == BFD_RELOC_HI16
8670 || *r == BFD_RELOC_GPREL16
8671 || *r == BFD_RELOC_MIPS_GOT_HI16
8672 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8673 break;
8674
8675 case 'p':
8676 gas_assert (ep != NULL);
8677
8678 /*
8679 * This allows macro() to pass an immediate expression for
8680 * creating short branches without creating a symbol.
8681 *
8682 * We don't allow branch relaxation for these branches, as
8683 * they should only appear in ".set nomacro" anyway.
8684 */
8685 if (ep->X_op == O_constant)
8686 {
8687 /* For microMIPS we always use relocations for branches.
8688 So we should not resolve immediate values. */
8689 gas_assert (!mips_opts.micromips);
8690
8691 if ((ep->X_add_number & 3) != 0)
8692 as_bad (_("branch to misaligned address (0x%lx)"),
8693 (unsigned long) ep->X_add_number);
8694 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8695 as_bad (_("branch address range overflow (0x%lx)"),
8696 (unsigned long) ep->X_add_number);
8697 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8698 ep = NULL;
8699 }
8700 else
8701 *r = BFD_RELOC_16_PCREL_S2;
8702 break;
8703
8704 case 'a':
8705 gas_assert (ep != NULL);
8706 *r = BFD_RELOC_MIPS_JMP;
8707 break;
8708
8709 default:
8710 operand = (mips_opts.micromips
8711 ? decode_micromips_operand (fmt)
8712 : decode_mips_operand (fmt));
8713 if (!operand)
8714 abort ();
8715
8716 uval = va_arg (args, int);
8717 if (operand->type == OP_CLO_CLZ_DEST)
8718 uval |= (uval << 5);
8719 insn_insert_operand (&insn, operand, uval);
8720
8721 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8722 ++fmt;
8723 break;
8724 }
8725 }
8726 va_end (args);
8727 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8728
8729 append_insn (&insn, ep, r, TRUE);
8730 }
8731
8732 static void
8733 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8734 va_list *args)
8735 {
8736 struct mips_opcode *mo;
8737 struct mips_cl_insn insn;
8738 const struct mips_operand *operand;
8739 bfd_reloc_code_real_type r[3]
8740 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8741
8742 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8743 gas_assert (mo);
8744 gas_assert (strcmp (name, mo->name) == 0);
8745
8746 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8747 {
8748 ++mo;
8749 gas_assert (mo->name);
8750 gas_assert (strcmp (name, mo->name) == 0);
8751 }
8752
8753 create_insn (&insn, mo);
8754 for (; *fmt; ++fmt)
8755 {
8756 int c;
8757
8758 c = *fmt;
8759 switch (c)
8760 {
8761 case ',':
8762 case '(':
8763 case ')':
8764 break;
8765
8766 case '.':
8767 case 'S':
8768 case 'P':
8769 case 'R':
8770 break;
8771
8772 case '<':
8773 case '5':
8774 case 'F':
8775 case 'H':
8776 case 'W':
8777 case 'D':
8778 case 'j':
8779 case '8':
8780 case 'V':
8781 case 'C':
8782 case 'U':
8783 case 'k':
8784 case 'K':
8785 case 'p':
8786 case 'q':
8787 {
8788 offsetT value;
8789
8790 gas_assert (ep != NULL);
8791
8792 if (ep->X_op != O_constant)
8793 *r = (int) BFD_RELOC_UNUSED + c;
8794 else if (calculate_reloc (*r, ep->X_add_number, &value))
8795 {
8796 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8797 ep = NULL;
8798 *r = BFD_RELOC_UNUSED;
8799 }
8800 }
8801 break;
8802
8803 default:
8804 operand = decode_mips16_operand (c, FALSE);
8805 if (!operand)
8806 abort ();
8807
8808 insn_insert_operand (&insn, operand, va_arg (*args, int));
8809 break;
8810 }
8811 }
8812
8813 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8814
8815 append_insn (&insn, ep, r, TRUE);
8816 }
8817
8818 /*
8819 * Generate a "jalr" instruction with a relocation hint to the called
8820 * function. This occurs in NewABI PIC code.
8821 */
8822 static void
8823 macro_build_jalr (expressionS *ep, int cprestore)
8824 {
8825 static const bfd_reloc_code_real_type jalr_relocs[2]
8826 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8827 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8828 const char *jalr;
8829 char *f = NULL;
8830
8831 if (MIPS_JALR_HINT_P (ep))
8832 {
8833 frag_grow (8);
8834 f = frag_more (0);
8835 }
8836 if (mips_opts.micromips)
8837 {
8838 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8839 ? "jalr" : "jalrs");
8840 if (MIPS_JALR_HINT_P (ep)
8841 || mips_opts.insn32
8842 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8843 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8844 else
8845 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8846 }
8847 else
8848 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8849 if (MIPS_JALR_HINT_P (ep))
8850 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8851 }
8852
8853 /*
8854 * Generate a "lui" instruction.
8855 */
8856 static void
8857 macro_build_lui (expressionS *ep, int regnum)
8858 {
8859 gas_assert (! mips_opts.mips16);
8860
8861 if (ep->X_op != O_constant)
8862 {
8863 gas_assert (ep->X_op == O_symbol);
8864 /* _gp_disp is a special case, used from s_cpload.
8865 __gnu_local_gp is used if mips_no_shared. */
8866 gas_assert (mips_pic == NO_PIC
8867 || (! HAVE_NEWABI
8868 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8869 || (! mips_in_shared
8870 && strcmp (S_GET_NAME (ep->X_add_symbol),
8871 "__gnu_local_gp") == 0));
8872 }
8873
8874 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8875 }
8876
8877 /* Generate a sequence of instructions to do a load or store from a constant
8878 offset off of a base register (breg) into/from a target register (treg),
8879 using AT if necessary. */
8880 static void
8881 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8882 int treg, int breg, int dbl)
8883 {
8884 gas_assert (ep->X_op == O_constant);
8885
8886 /* Sign-extending 32-bit constants makes their handling easier. */
8887 if (!dbl)
8888 normalize_constant_expr (ep);
8889
8890 /* Right now, this routine can only handle signed 32-bit constants. */
8891 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8892 as_warn (_("operand overflow"));
8893
8894 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8895 {
8896 /* Signed 16-bit offset will fit in the op. Easy! */
8897 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8898 }
8899 else
8900 {
8901 /* 32-bit offset, need multiple instructions and AT, like:
8902 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8903 addu $tempreg,$tempreg,$breg
8904 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8905 to handle the complete offset. */
8906 macro_build_lui (ep, AT);
8907 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8908 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8909
8910 if (!mips_opts.at)
8911 as_bad (_("macro used $at after \".set noat\""));
8912 }
8913 }
8914
8915 /* set_at()
8916 * Generates code to set the $at register to true (one)
8917 * if reg is less than the immediate expression.
8918 */
8919 static void
8920 set_at (int reg, int unsignedp)
8921 {
8922 if (imm_expr.X_add_number >= -0x8000
8923 && imm_expr.X_add_number < 0x8000)
8924 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8925 AT, reg, BFD_RELOC_LO16);
8926 else
8927 {
8928 load_register (AT, &imm_expr, GPR_SIZE == 64);
8929 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8930 }
8931 }
8932
8933 /* Count the leading zeroes by performing a binary chop. This is a
8934 bulky bit of source, but performance is a LOT better for the
8935 majority of values than a simple loop to count the bits:
8936 for (lcnt = 0; (lcnt < 32); lcnt++)
8937 if ((v) & (1 << (31 - lcnt)))
8938 break;
8939 However it is not code size friendly, and the gain will drop a bit
8940 on certain cached systems.
8941 */
8942 #define COUNT_TOP_ZEROES(v) \
8943 (((v) & ~0xffff) == 0 \
8944 ? ((v) & ~0xff) == 0 \
8945 ? ((v) & ~0xf) == 0 \
8946 ? ((v) & ~0x3) == 0 \
8947 ? ((v) & ~0x1) == 0 \
8948 ? !(v) \
8949 ? 32 \
8950 : 31 \
8951 : 30 \
8952 : ((v) & ~0x7) == 0 \
8953 ? 29 \
8954 : 28 \
8955 : ((v) & ~0x3f) == 0 \
8956 ? ((v) & ~0x1f) == 0 \
8957 ? 27 \
8958 : 26 \
8959 : ((v) & ~0x7f) == 0 \
8960 ? 25 \
8961 : 24 \
8962 : ((v) & ~0xfff) == 0 \
8963 ? ((v) & ~0x3ff) == 0 \
8964 ? ((v) & ~0x1ff) == 0 \
8965 ? 23 \
8966 : 22 \
8967 : ((v) & ~0x7ff) == 0 \
8968 ? 21 \
8969 : 20 \
8970 : ((v) & ~0x3fff) == 0 \
8971 ? ((v) & ~0x1fff) == 0 \
8972 ? 19 \
8973 : 18 \
8974 : ((v) & ~0x7fff) == 0 \
8975 ? 17 \
8976 : 16 \
8977 : ((v) & ~0xffffff) == 0 \
8978 ? ((v) & ~0xfffff) == 0 \
8979 ? ((v) & ~0x3ffff) == 0 \
8980 ? ((v) & ~0x1ffff) == 0 \
8981 ? 15 \
8982 : 14 \
8983 : ((v) & ~0x7ffff) == 0 \
8984 ? 13 \
8985 : 12 \
8986 : ((v) & ~0x3fffff) == 0 \
8987 ? ((v) & ~0x1fffff) == 0 \
8988 ? 11 \
8989 : 10 \
8990 : ((v) & ~0x7fffff) == 0 \
8991 ? 9 \
8992 : 8 \
8993 : ((v) & ~0xfffffff) == 0 \
8994 ? ((v) & ~0x3ffffff) == 0 \
8995 ? ((v) & ~0x1ffffff) == 0 \
8996 ? 7 \
8997 : 6 \
8998 : ((v) & ~0x7ffffff) == 0 \
8999 ? 5 \
9000 : 4 \
9001 : ((v) & ~0x3fffffff) == 0 \
9002 ? ((v) & ~0x1fffffff) == 0 \
9003 ? 3 \
9004 : 2 \
9005 : ((v) & ~0x7fffffff) == 0 \
9006 ? 1 \
9007 : 0)
9008
9009 /* load_register()
9010 * This routine generates the least number of instructions necessary to load
9011 * an absolute expression value into a register.
9012 */
9013 static void
9014 load_register (int reg, expressionS *ep, int dbl)
9015 {
9016 int freg;
9017 expressionS hi32, lo32;
9018
9019 if (ep->X_op != O_big)
9020 {
9021 gas_assert (ep->X_op == O_constant);
9022
9023 /* Sign-extending 32-bit constants makes their handling easier. */
9024 if (!dbl)
9025 normalize_constant_expr (ep);
9026
9027 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
9028 {
9029 /* We can handle 16 bit signed values with an addiu to
9030 $zero. No need to ever use daddiu here, since $zero and
9031 the result are always correct in 32 bit mode. */
9032 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9033 return;
9034 }
9035 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
9036 {
9037 /* We can handle 16 bit unsigned values with an ori to
9038 $zero. */
9039 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9040 return;
9041 }
9042 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
9043 {
9044 /* 32 bit values require an lui. */
9045 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9046 if ((ep->X_add_number & 0xffff) != 0)
9047 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9048 return;
9049 }
9050 }
9051
9052 /* The value is larger than 32 bits. */
9053
9054 if (!dbl || GPR_SIZE == 32)
9055 {
9056 char value[32];
9057
9058 sprintf_vma (value, ep->X_add_number);
9059 as_bad (_("number (0x%s) larger than 32 bits"), value);
9060 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9061 return;
9062 }
9063
9064 if (ep->X_op != O_big)
9065 {
9066 hi32 = *ep;
9067 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9068 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9069 hi32.X_add_number &= 0xffffffff;
9070 lo32 = *ep;
9071 lo32.X_add_number &= 0xffffffff;
9072 }
9073 else
9074 {
9075 gas_assert (ep->X_add_number > 2);
9076 if (ep->X_add_number == 3)
9077 generic_bignum[3] = 0;
9078 else if (ep->X_add_number > 4)
9079 as_bad (_("number larger than 64 bits"));
9080 lo32.X_op = O_constant;
9081 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9082 hi32.X_op = O_constant;
9083 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9084 }
9085
9086 if (hi32.X_add_number == 0)
9087 freg = 0;
9088 else
9089 {
9090 int shift, bit;
9091 unsigned long hi, lo;
9092
9093 if (hi32.X_add_number == (offsetT) 0xffffffff)
9094 {
9095 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9096 {
9097 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9098 return;
9099 }
9100 if (lo32.X_add_number & 0x80000000)
9101 {
9102 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9103 if (lo32.X_add_number & 0xffff)
9104 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9105 return;
9106 }
9107 }
9108
9109 /* Check for 16bit shifted constant. We know that hi32 is
9110 non-zero, so start the mask on the first bit of the hi32
9111 value. */
9112 shift = 17;
9113 do
9114 {
9115 unsigned long himask, lomask;
9116
9117 if (shift < 32)
9118 {
9119 himask = 0xffff >> (32 - shift);
9120 lomask = (0xffff << shift) & 0xffffffff;
9121 }
9122 else
9123 {
9124 himask = 0xffff << (shift - 32);
9125 lomask = 0;
9126 }
9127 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9128 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9129 {
9130 expressionS tmp;
9131
9132 tmp.X_op = O_constant;
9133 if (shift < 32)
9134 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9135 | (lo32.X_add_number >> shift));
9136 else
9137 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
9138 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9139 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9140 reg, reg, (shift >= 32) ? shift - 32 : shift);
9141 return;
9142 }
9143 ++shift;
9144 }
9145 while (shift <= (64 - 16));
9146
9147 /* Find the bit number of the lowest one bit, and store the
9148 shifted value in hi/lo. */
9149 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9150 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9151 if (lo != 0)
9152 {
9153 bit = 0;
9154 while ((lo & 1) == 0)
9155 {
9156 lo >>= 1;
9157 ++bit;
9158 }
9159 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9160 hi >>= bit;
9161 }
9162 else
9163 {
9164 bit = 32;
9165 while ((hi & 1) == 0)
9166 {
9167 hi >>= 1;
9168 ++bit;
9169 }
9170 lo = hi;
9171 hi = 0;
9172 }
9173
9174 /* Optimize if the shifted value is a (power of 2) - 1. */
9175 if ((hi == 0 && ((lo + 1) & lo) == 0)
9176 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9177 {
9178 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9179 if (shift != 0)
9180 {
9181 expressionS tmp;
9182
9183 /* This instruction will set the register to be all
9184 ones. */
9185 tmp.X_op = O_constant;
9186 tmp.X_add_number = (offsetT) -1;
9187 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9188 if (bit != 0)
9189 {
9190 bit += shift;
9191 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9192 reg, reg, (bit >= 32) ? bit - 32 : bit);
9193 }
9194 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9195 reg, reg, (shift >= 32) ? shift - 32 : shift);
9196 return;
9197 }
9198 }
9199
9200 /* Sign extend hi32 before calling load_register, because we can
9201 generally get better code when we load a sign extended value. */
9202 if ((hi32.X_add_number & 0x80000000) != 0)
9203 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9204 load_register (reg, &hi32, 0);
9205 freg = reg;
9206 }
9207 if ((lo32.X_add_number & 0xffff0000) == 0)
9208 {
9209 if (freg != 0)
9210 {
9211 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9212 freg = reg;
9213 }
9214 }
9215 else
9216 {
9217 expressionS mid16;
9218
9219 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9220 {
9221 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9222 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9223 return;
9224 }
9225
9226 if (freg != 0)
9227 {
9228 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9229 freg = reg;
9230 }
9231 mid16 = lo32;
9232 mid16.X_add_number >>= 16;
9233 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9234 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9235 freg = reg;
9236 }
9237 if ((lo32.X_add_number & 0xffff) != 0)
9238 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9239 }
9240
9241 static inline void
9242 load_delay_nop (void)
9243 {
9244 if (!gpr_interlocks)
9245 macro_build (NULL, "nop", "");
9246 }
9247
9248 /* Load an address into a register. */
9249
9250 static void
9251 load_address (int reg, expressionS *ep, int *used_at)
9252 {
9253 if (ep->X_op != O_constant
9254 && ep->X_op != O_symbol)
9255 {
9256 as_bad (_("expression too complex"));
9257 ep->X_op = O_constant;
9258 }
9259
9260 if (ep->X_op == O_constant)
9261 {
9262 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9263 return;
9264 }
9265
9266 if (mips_pic == NO_PIC)
9267 {
9268 /* If this is a reference to a GP relative symbol, we want
9269 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9270 Otherwise we want
9271 lui $reg,<sym> (BFD_RELOC_HI16_S)
9272 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9273 If we have an addend, we always use the latter form.
9274
9275 With 64bit address space and a usable $at we want
9276 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9277 lui $at,<sym> (BFD_RELOC_HI16_S)
9278 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9279 daddiu $at,<sym> (BFD_RELOC_LO16)
9280 dsll32 $reg,0
9281 daddu $reg,$reg,$at
9282
9283 If $at is already in use, we use a path which is suboptimal
9284 on superscalar processors.
9285 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9286 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9287 dsll $reg,16
9288 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9289 dsll $reg,16
9290 daddiu $reg,<sym> (BFD_RELOC_LO16)
9291
9292 For GP relative symbols in 64bit address space we can use
9293 the same sequence as in 32bit address space. */
9294 if (HAVE_64BIT_SYMBOLS)
9295 {
9296 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9297 && !nopic_need_relax (ep->X_add_symbol, 1))
9298 {
9299 relax_start (ep->X_add_symbol);
9300 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9301 mips_gp_register, BFD_RELOC_GPREL16);
9302 relax_switch ();
9303 }
9304
9305 if (*used_at == 0 && mips_opts.at)
9306 {
9307 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9308 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9309 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9310 BFD_RELOC_MIPS_HIGHER);
9311 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9312 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9313 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9314 *used_at = 1;
9315 }
9316 else
9317 {
9318 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9319 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9320 BFD_RELOC_MIPS_HIGHER);
9321 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9322 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9323 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9324 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9325 }
9326
9327 if (mips_relax.sequence)
9328 relax_end ();
9329 }
9330 else
9331 {
9332 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9333 && !nopic_need_relax (ep->X_add_symbol, 1))
9334 {
9335 relax_start (ep->X_add_symbol);
9336 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9337 mips_gp_register, BFD_RELOC_GPREL16);
9338 relax_switch ();
9339 }
9340 macro_build_lui (ep, reg);
9341 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9342 reg, reg, BFD_RELOC_LO16);
9343 if (mips_relax.sequence)
9344 relax_end ();
9345 }
9346 }
9347 else if (!mips_big_got)
9348 {
9349 expressionS ex;
9350
9351 /* If this is a reference to an external symbol, we want
9352 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9353 Otherwise we want
9354 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9355 nop
9356 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9357 If there is a constant, it must be added in after.
9358
9359 If we have NewABI, we want
9360 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9361 unless we're referencing a global symbol with a non-zero
9362 offset, in which case cst must be added separately. */
9363 if (HAVE_NEWABI)
9364 {
9365 if (ep->X_add_number)
9366 {
9367 ex.X_add_number = ep->X_add_number;
9368 ep->X_add_number = 0;
9369 relax_start (ep->X_add_symbol);
9370 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9371 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9372 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9373 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9374 ex.X_op = O_constant;
9375 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9376 reg, reg, BFD_RELOC_LO16);
9377 ep->X_add_number = ex.X_add_number;
9378 relax_switch ();
9379 }
9380 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9381 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9382 if (mips_relax.sequence)
9383 relax_end ();
9384 }
9385 else
9386 {
9387 ex.X_add_number = ep->X_add_number;
9388 ep->X_add_number = 0;
9389 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9390 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9391 load_delay_nop ();
9392 relax_start (ep->X_add_symbol);
9393 relax_switch ();
9394 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9395 BFD_RELOC_LO16);
9396 relax_end ();
9397
9398 if (ex.X_add_number != 0)
9399 {
9400 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9401 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9402 ex.X_op = O_constant;
9403 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9404 reg, reg, BFD_RELOC_LO16);
9405 }
9406 }
9407 }
9408 else if (mips_big_got)
9409 {
9410 expressionS ex;
9411
9412 /* This is the large GOT case. If this is a reference to an
9413 external symbol, we want
9414 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9415 addu $reg,$reg,$gp
9416 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9417
9418 Otherwise, for a reference to a local symbol in old ABI, we want
9419 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9420 nop
9421 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9422 If there is a constant, it must be added in after.
9423
9424 In the NewABI, for local symbols, with or without offsets, we want:
9425 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9426 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9427 */
9428 if (HAVE_NEWABI)
9429 {
9430 ex.X_add_number = ep->X_add_number;
9431 ep->X_add_number = 0;
9432 relax_start (ep->X_add_symbol);
9433 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9434 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9435 reg, reg, mips_gp_register);
9436 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9437 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9438 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9439 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9440 else if (ex.X_add_number)
9441 {
9442 ex.X_op = O_constant;
9443 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9444 BFD_RELOC_LO16);
9445 }
9446
9447 ep->X_add_number = ex.X_add_number;
9448 relax_switch ();
9449 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9450 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9451 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9452 BFD_RELOC_MIPS_GOT_OFST);
9453 relax_end ();
9454 }
9455 else
9456 {
9457 ex.X_add_number = ep->X_add_number;
9458 ep->X_add_number = 0;
9459 relax_start (ep->X_add_symbol);
9460 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9461 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9462 reg, reg, mips_gp_register);
9463 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9464 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9465 relax_switch ();
9466 if (reg_needs_delay (mips_gp_register))
9467 {
9468 /* We need a nop before loading from $gp. This special
9469 check is required because the lui which starts the main
9470 instruction stream does not refer to $gp, and so will not
9471 insert the nop which may be required. */
9472 macro_build (NULL, "nop", "");
9473 }
9474 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9475 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9476 load_delay_nop ();
9477 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9478 BFD_RELOC_LO16);
9479 relax_end ();
9480
9481 if (ex.X_add_number != 0)
9482 {
9483 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9484 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9485 ex.X_op = O_constant;
9486 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9487 BFD_RELOC_LO16);
9488 }
9489 }
9490 }
9491 else
9492 abort ();
9493
9494 if (!mips_opts.at && *used_at == 1)
9495 as_bad (_("macro used $at after \".set noat\""));
9496 }
9497
9498 /* Move the contents of register SOURCE into register DEST. */
9499
9500 static void
9501 move_register (int dest, int source)
9502 {
9503 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9504 instruction specifically requires a 32-bit one. */
9505 if (mips_opts.micromips
9506 && !mips_opts.insn32
9507 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9508 macro_build (NULL, "move", "mp,mj", dest, source);
9509 else
9510 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9511 }
9512
9513 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9514 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9515 The two alternatives are:
9516
9517 Global symbol Local symbol
9518 ------------- ------------
9519 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9520 ... ...
9521 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9522
9523 load_got_offset emits the first instruction and add_got_offset
9524 emits the second for a 16-bit offset or add_got_offset_hilo emits
9525 a sequence to add a 32-bit offset using a scratch register. */
9526
9527 static void
9528 load_got_offset (int dest, expressionS *local)
9529 {
9530 expressionS global;
9531
9532 global = *local;
9533 global.X_add_number = 0;
9534
9535 relax_start (local->X_add_symbol);
9536 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9537 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9538 relax_switch ();
9539 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9540 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9541 relax_end ();
9542 }
9543
9544 static void
9545 add_got_offset (int dest, expressionS *local)
9546 {
9547 expressionS global;
9548
9549 global.X_op = O_constant;
9550 global.X_op_symbol = NULL;
9551 global.X_add_symbol = NULL;
9552 global.X_add_number = local->X_add_number;
9553
9554 relax_start (local->X_add_symbol);
9555 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9556 dest, dest, BFD_RELOC_LO16);
9557 relax_switch ();
9558 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9559 relax_end ();
9560 }
9561
9562 static void
9563 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9564 {
9565 expressionS global;
9566 int hold_mips_optimize;
9567
9568 global.X_op = O_constant;
9569 global.X_op_symbol = NULL;
9570 global.X_add_symbol = NULL;
9571 global.X_add_number = local->X_add_number;
9572
9573 relax_start (local->X_add_symbol);
9574 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9575 relax_switch ();
9576 /* Set mips_optimize around the lui instruction to avoid
9577 inserting an unnecessary nop after the lw. */
9578 hold_mips_optimize = mips_optimize;
9579 mips_optimize = 2;
9580 macro_build_lui (&global, tmp);
9581 mips_optimize = hold_mips_optimize;
9582 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9583 relax_end ();
9584
9585 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9586 }
9587
9588 /* Emit a sequence of instructions to emulate a branch likely operation.
9589 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9590 is its complementing branch with the original condition negated.
9591 CALL is set if the original branch specified the link operation.
9592 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9593
9594 Code like this is produced in the noreorder mode:
9595
9596 BRNEG <args>, 1f
9597 nop
9598 b <sym>
9599 delay slot (executed only if branch taken)
9600 1:
9601
9602 or, if CALL is set:
9603
9604 BRNEG <args>, 1f
9605 nop
9606 bal <sym>
9607 delay slot (executed only if branch taken)
9608 1:
9609
9610 In the reorder mode the delay slot would be filled with a nop anyway,
9611 so code produced is simply:
9612
9613 BR <args>, <sym>
9614 nop
9615
9616 This function is used when producing code for the microMIPS ASE that
9617 does not implement branch likely instructions in hardware. */
9618
9619 static void
9620 macro_build_branch_likely (const char *br, const char *brneg,
9621 int call, expressionS *ep, const char *fmt,
9622 unsigned int sreg, unsigned int treg)
9623 {
9624 int noreorder = mips_opts.noreorder;
9625 expressionS expr1;
9626
9627 gas_assert (mips_opts.micromips);
9628 start_noreorder ();
9629 if (noreorder)
9630 {
9631 micromips_label_expr (&expr1);
9632 macro_build (&expr1, brneg, fmt, sreg, treg);
9633 macro_build (NULL, "nop", "");
9634 macro_build (ep, call ? "bal" : "b", "p");
9635
9636 /* Set to true so that append_insn adds a label. */
9637 emit_branch_likely_macro = TRUE;
9638 }
9639 else
9640 {
9641 macro_build (ep, br, fmt, sreg, treg);
9642 macro_build (NULL, "nop", "");
9643 }
9644 end_noreorder ();
9645 }
9646
9647 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9648 the condition code tested. EP specifies the branch target. */
9649
9650 static void
9651 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9652 {
9653 const int call = 0;
9654 const char *brneg;
9655 const char *br;
9656
9657 switch (type)
9658 {
9659 case M_BC1FL:
9660 br = "bc1f";
9661 brneg = "bc1t";
9662 break;
9663 case M_BC1TL:
9664 br = "bc1t";
9665 brneg = "bc1f";
9666 break;
9667 case M_BC2FL:
9668 br = "bc2f";
9669 brneg = "bc2t";
9670 break;
9671 case M_BC2TL:
9672 br = "bc2t";
9673 brneg = "bc2f";
9674 break;
9675 default:
9676 abort ();
9677 }
9678 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9679 }
9680
9681 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9682 the register tested. EP specifies the branch target. */
9683
9684 static void
9685 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9686 {
9687 const char *brneg = NULL;
9688 const char *br;
9689 int call = 0;
9690
9691 switch (type)
9692 {
9693 case M_BGEZ:
9694 br = "bgez";
9695 break;
9696 case M_BGEZL:
9697 br = mips_opts.micromips ? "bgez" : "bgezl";
9698 brneg = "bltz";
9699 break;
9700 case M_BGEZALL:
9701 gas_assert (mips_opts.micromips);
9702 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9703 brneg = "bltz";
9704 call = 1;
9705 break;
9706 case M_BGTZ:
9707 br = "bgtz";
9708 break;
9709 case M_BGTZL:
9710 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9711 brneg = "blez";
9712 break;
9713 case M_BLEZ:
9714 br = "blez";
9715 break;
9716 case M_BLEZL:
9717 br = mips_opts.micromips ? "blez" : "blezl";
9718 brneg = "bgtz";
9719 break;
9720 case M_BLTZ:
9721 br = "bltz";
9722 break;
9723 case M_BLTZL:
9724 br = mips_opts.micromips ? "bltz" : "bltzl";
9725 brneg = "bgez";
9726 break;
9727 case M_BLTZALL:
9728 gas_assert (mips_opts.micromips);
9729 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9730 brneg = "bgez";
9731 call = 1;
9732 break;
9733 default:
9734 abort ();
9735 }
9736 if (mips_opts.micromips && brneg)
9737 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9738 else
9739 macro_build (ep, br, "s,p", sreg);
9740 }
9741
9742 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9743 TREG as the registers tested. EP specifies the branch target. */
9744
9745 static void
9746 macro_build_branch_rsrt (int type, expressionS *ep,
9747 unsigned int sreg, unsigned int treg)
9748 {
9749 const char *brneg = NULL;
9750 const int call = 0;
9751 const char *br;
9752
9753 switch (type)
9754 {
9755 case M_BEQ:
9756 case M_BEQ_I:
9757 br = "beq";
9758 break;
9759 case M_BEQL:
9760 case M_BEQL_I:
9761 br = mips_opts.micromips ? "beq" : "beql";
9762 brneg = "bne";
9763 break;
9764 case M_BNE:
9765 case M_BNE_I:
9766 br = "bne";
9767 break;
9768 case M_BNEL:
9769 case M_BNEL_I:
9770 br = mips_opts.micromips ? "bne" : "bnel";
9771 brneg = "beq";
9772 break;
9773 default:
9774 abort ();
9775 }
9776 if (mips_opts.micromips && brneg)
9777 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9778 else
9779 macro_build (ep, br, "s,t,p", sreg, treg);
9780 }
9781
9782 /* Return the high part that should be loaded in order to make the low
9783 part of VALUE accessible using an offset of OFFBITS bits. */
9784
9785 static offsetT
9786 offset_high_part (offsetT value, unsigned int offbits)
9787 {
9788 offsetT bias;
9789 addressT low_mask;
9790
9791 if (offbits == 0)
9792 return value;
9793 bias = 1 << (offbits - 1);
9794 low_mask = bias * 2 - 1;
9795 return (value + bias) & ~low_mask;
9796 }
9797
9798 /* Return true if the value stored in offset_expr and offset_reloc
9799 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9800 amount that the caller wants to add without inducing overflow
9801 and ALIGN is the known alignment of the value in bytes. */
9802
9803 static bfd_boolean
9804 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9805 {
9806 if (offbits == 16)
9807 {
9808 /* Accept any relocation operator if overflow isn't a concern. */
9809 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9810 return TRUE;
9811
9812 /* These relocations are guaranteed not to overflow in correct links. */
9813 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9814 || gprel16_reloc_p (*offset_reloc))
9815 return TRUE;
9816 }
9817 if (offset_expr.X_op == O_constant
9818 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9819 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9820 return TRUE;
9821 return FALSE;
9822 }
9823
9824 /*
9825 * Build macros
9826 * This routine implements the seemingly endless macro or synthesized
9827 * instructions and addressing modes in the mips assembly language. Many
9828 * of these macros are simple and are similar to each other. These could
9829 * probably be handled by some kind of table or grammar approach instead of
9830 * this verbose method. Others are not simple macros but are more like
9831 * optimizing code generation.
9832 * One interesting optimization is when several store macros appear
9833 * consecutively that would load AT with the upper half of the same address.
9834 * The ensuing load upper instructions are omitted. This implies some kind
9835 * of global optimization. We currently only optimize within a single macro.
9836 * For many of the load and store macros if the address is specified as a
9837 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9838 * first load register 'at' with zero and use it as the base register. The
9839 * mips assembler simply uses register $zero. Just one tiny optimization
9840 * we're missing.
9841 */
9842 static void
9843 macro (struct mips_cl_insn *ip, char *str)
9844 {
9845 const struct mips_operand_array *operands;
9846 unsigned int breg, i;
9847 unsigned int tempreg;
9848 int mask;
9849 int used_at = 0;
9850 expressionS label_expr;
9851 expressionS expr1;
9852 expressionS *ep;
9853 const char *s;
9854 const char *s2;
9855 const char *fmt;
9856 int likely = 0;
9857 int coproc = 0;
9858 int offbits = 16;
9859 int call = 0;
9860 int jals = 0;
9861 int dbl = 0;
9862 int imm = 0;
9863 int ust = 0;
9864 int lp = 0;
9865 bfd_boolean large_offset;
9866 int off;
9867 int hold_mips_optimize;
9868 unsigned int align;
9869 unsigned int op[MAX_OPERANDS];
9870
9871 gas_assert (! mips_opts.mips16);
9872
9873 operands = insn_operands (ip);
9874 for (i = 0; i < MAX_OPERANDS; i++)
9875 if (operands->operand[i])
9876 op[i] = insn_extract_operand (ip, operands->operand[i]);
9877 else
9878 op[i] = -1;
9879
9880 mask = ip->insn_mo->mask;
9881
9882 label_expr.X_op = O_constant;
9883 label_expr.X_op_symbol = NULL;
9884 label_expr.X_add_symbol = NULL;
9885 label_expr.X_add_number = 0;
9886
9887 expr1.X_op = O_constant;
9888 expr1.X_op_symbol = NULL;
9889 expr1.X_add_symbol = NULL;
9890 expr1.X_add_number = 1;
9891 align = 1;
9892
9893 switch (mask)
9894 {
9895 case M_DABS:
9896 dbl = 1;
9897 /* Fall through. */
9898 case M_ABS:
9899 /* bgez $a0,1f
9900 move v0,$a0
9901 sub v0,$zero,$a0
9902 1:
9903 */
9904
9905 start_noreorder ();
9906
9907 if (mips_opts.micromips)
9908 micromips_label_expr (&label_expr);
9909 else
9910 label_expr.X_add_number = 8;
9911 macro_build (&label_expr, "bgez", "s,p", op[1]);
9912 if (op[0] == op[1])
9913 macro_build (NULL, "nop", "");
9914 else
9915 move_register (op[0], op[1]);
9916 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9917 if (mips_opts.micromips)
9918 micromips_add_label ();
9919
9920 end_noreorder ();
9921 break;
9922
9923 case M_ADD_I:
9924 s = "addi";
9925 s2 = "add";
9926 goto do_addi;
9927 case M_ADDU_I:
9928 s = "addiu";
9929 s2 = "addu";
9930 goto do_addi;
9931 case M_DADD_I:
9932 dbl = 1;
9933 s = "daddi";
9934 s2 = "dadd";
9935 if (!mips_opts.micromips)
9936 goto do_addi;
9937 if (imm_expr.X_add_number >= -0x200
9938 && imm_expr.X_add_number < 0x200)
9939 {
9940 macro_build (NULL, s, "t,r,.", op[0], op[1],
9941 (int) imm_expr.X_add_number);
9942 break;
9943 }
9944 goto do_addi_i;
9945 case M_DADDU_I:
9946 dbl = 1;
9947 s = "daddiu";
9948 s2 = "daddu";
9949 do_addi:
9950 if (imm_expr.X_add_number >= -0x8000
9951 && imm_expr.X_add_number < 0x8000)
9952 {
9953 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9954 break;
9955 }
9956 do_addi_i:
9957 used_at = 1;
9958 load_register (AT, &imm_expr, dbl);
9959 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9960 break;
9961
9962 case M_AND_I:
9963 s = "andi";
9964 s2 = "and";
9965 goto do_bit;
9966 case M_OR_I:
9967 s = "ori";
9968 s2 = "or";
9969 goto do_bit;
9970 case M_NOR_I:
9971 s = "";
9972 s2 = "nor";
9973 goto do_bit;
9974 case M_XOR_I:
9975 s = "xori";
9976 s2 = "xor";
9977 do_bit:
9978 if (imm_expr.X_add_number >= 0
9979 && imm_expr.X_add_number < 0x10000)
9980 {
9981 if (mask != M_NOR_I)
9982 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
9983 else
9984 {
9985 macro_build (&imm_expr, "ori", "t,r,i",
9986 op[0], op[1], BFD_RELOC_LO16);
9987 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
9988 }
9989 break;
9990 }
9991
9992 used_at = 1;
9993 load_register (AT, &imm_expr, GPR_SIZE == 64);
9994 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9995 break;
9996
9997 case M_BALIGN:
9998 switch (imm_expr.X_add_number)
9999 {
10000 case 0:
10001 macro_build (NULL, "nop", "");
10002 break;
10003 case 2:
10004 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
10005 break;
10006 case 1:
10007 case 3:
10008 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
10009 (int) imm_expr.X_add_number);
10010 break;
10011 default:
10012 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
10013 (unsigned long) imm_expr.X_add_number);
10014 break;
10015 }
10016 break;
10017
10018 case M_BC1FL:
10019 case M_BC1TL:
10020 case M_BC2FL:
10021 case M_BC2TL:
10022 gas_assert (mips_opts.micromips);
10023 macro_build_branch_ccl (mask, &offset_expr,
10024 EXTRACT_OPERAND (1, BCC, *ip));
10025 break;
10026
10027 case M_BEQ_I:
10028 case M_BEQL_I:
10029 case M_BNE_I:
10030 case M_BNEL_I:
10031 if (imm_expr.X_add_number == 0)
10032 op[1] = 0;
10033 else
10034 {
10035 op[1] = AT;
10036 used_at = 1;
10037 load_register (op[1], &imm_expr, GPR_SIZE == 64);
10038 }
10039 /* Fall through. */
10040 case M_BEQL:
10041 case M_BNEL:
10042 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
10043 break;
10044
10045 case M_BGEL:
10046 likely = 1;
10047 /* Fall through. */
10048 case M_BGE:
10049 if (op[1] == 0)
10050 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10051 else if (op[0] == 0)
10052 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
10053 else
10054 {
10055 used_at = 1;
10056 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10057 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10058 &offset_expr, AT, ZERO);
10059 }
10060 break;
10061
10062 case M_BGEZL:
10063 case M_BGEZALL:
10064 case M_BGTZL:
10065 case M_BLEZL:
10066 case M_BLTZL:
10067 case M_BLTZALL:
10068 macro_build_branch_rs (mask, &offset_expr, op[0]);
10069 break;
10070
10071 case M_BGTL_I:
10072 likely = 1;
10073 /* Fall through. */
10074 case M_BGT_I:
10075 /* Check for > max integer. */
10076 if (imm_expr.X_add_number >= GPR_SMAX)
10077 {
10078 do_false:
10079 /* Result is always false. */
10080 if (! likely)
10081 macro_build (NULL, "nop", "");
10082 else
10083 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
10084 break;
10085 }
10086 ++imm_expr.X_add_number;
10087 /* FALLTHROUGH */
10088 case M_BGE_I:
10089 case M_BGEL_I:
10090 if (mask == M_BGEL_I)
10091 likely = 1;
10092 if (imm_expr.X_add_number == 0)
10093 {
10094 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
10095 &offset_expr, op[0]);
10096 break;
10097 }
10098 if (imm_expr.X_add_number == 1)
10099 {
10100 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
10101 &offset_expr, op[0]);
10102 break;
10103 }
10104 if (imm_expr.X_add_number <= GPR_SMIN)
10105 {
10106 do_true:
10107 /* result is always true */
10108 as_warn (_("branch %s is always true"), ip->insn_mo->name);
10109 macro_build (&offset_expr, "b", "p");
10110 break;
10111 }
10112 used_at = 1;
10113 set_at (op[0], 0);
10114 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10115 &offset_expr, AT, ZERO);
10116 break;
10117
10118 case M_BGEUL:
10119 likely = 1;
10120 /* Fall through. */
10121 case M_BGEU:
10122 if (op[1] == 0)
10123 goto do_true;
10124 else if (op[0] == 0)
10125 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10126 &offset_expr, ZERO, op[1]);
10127 else
10128 {
10129 used_at = 1;
10130 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10131 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10132 &offset_expr, AT, ZERO);
10133 }
10134 break;
10135
10136 case M_BGTUL_I:
10137 likely = 1;
10138 /* Fall through. */
10139 case M_BGTU_I:
10140 if (op[0] == 0
10141 || (GPR_SIZE == 32
10142 && imm_expr.X_add_number == -1))
10143 goto do_false;
10144 ++imm_expr.X_add_number;
10145 /* FALLTHROUGH */
10146 case M_BGEU_I:
10147 case M_BGEUL_I:
10148 if (mask == M_BGEUL_I)
10149 likely = 1;
10150 if (imm_expr.X_add_number == 0)
10151 goto do_true;
10152 else if (imm_expr.X_add_number == 1)
10153 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10154 &offset_expr, op[0], ZERO);
10155 else
10156 {
10157 used_at = 1;
10158 set_at (op[0], 1);
10159 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10160 &offset_expr, AT, ZERO);
10161 }
10162 break;
10163
10164 case M_BGTL:
10165 likely = 1;
10166 /* Fall through. */
10167 case M_BGT:
10168 if (op[1] == 0)
10169 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10170 else if (op[0] == 0)
10171 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
10172 else
10173 {
10174 used_at = 1;
10175 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10176 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10177 &offset_expr, AT, ZERO);
10178 }
10179 break;
10180
10181 case M_BGTUL:
10182 likely = 1;
10183 /* Fall through. */
10184 case M_BGTU:
10185 if (op[1] == 0)
10186 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10187 &offset_expr, op[0], ZERO);
10188 else if (op[0] == 0)
10189 goto do_false;
10190 else
10191 {
10192 used_at = 1;
10193 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10194 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10195 &offset_expr, AT, ZERO);
10196 }
10197 break;
10198
10199 case M_BLEL:
10200 likely = 1;
10201 /* Fall through. */
10202 case M_BLE:
10203 if (op[1] == 0)
10204 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10205 else if (op[0] == 0)
10206 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10207 else
10208 {
10209 used_at = 1;
10210 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10211 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10212 &offset_expr, AT, ZERO);
10213 }
10214 break;
10215
10216 case M_BLEL_I:
10217 likely = 1;
10218 /* Fall through. */
10219 case M_BLE_I:
10220 if (imm_expr.X_add_number >= GPR_SMAX)
10221 goto do_true;
10222 ++imm_expr.X_add_number;
10223 /* FALLTHROUGH */
10224 case M_BLT_I:
10225 case M_BLTL_I:
10226 if (mask == M_BLTL_I)
10227 likely = 1;
10228 if (imm_expr.X_add_number == 0)
10229 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10230 else if (imm_expr.X_add_number == 1)
10231 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10232 else
10233 {
10234 used_at = 1;
10235 set_at (op[0], 0);
10236 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10237 &offset_expr, AT, ZERO);
10238 }
10239 break;
10240
10241 case M_BLEUL:
10242 likely = 1;
10243 /* Fall through. */
10244 case M_BLEU:
10245 if (op[1] == 0)
10246 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10247 &offset_expr, op[0], ZERO);
10248 else if (op[0] == 0)
10249 goto do_true;
10250 else
10251 {
10252 used_at = 1;
10253 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10254 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10255 &offset_expr, AT, ZERO);
10256 }
10257 break;
10258
10259 case M_BLEUL_I:
10260 likely = 1;
10261 /* Fall through. */
10262 case M_BLEU_I:
10263 if (op[0] == 0
10264 || (GPR_SIZE == 32
10265 && imm_expr.X_add_number == -1))
10266 goto do_true;
10267 ++imm_expr.X_add_number;
10268 /* FALLTHROUGH */
10269 case M_BLTU_I:
10270 case M_BLTUL_I:
10271 if (mask == M_BLTUL_I)
10272 likely = 1;
10273 if (imm_expr.X_add_number == 0)
10274 goto do_false;
10275 else if (imm_expr.X_add_number == 1)
10276 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10277 &offset_expr, op[0], ZERO);
10278 else
10279 {
10280 used_at = 1;
10281 set_at (op[0], 1);
10282 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10283 &offset_expr, AT, ZERO);
10284 }
10285 break;
10286
10287 case M_BLTL:
10288 likely = 1;
10289 /* Fall through. */
10290 case M_BLT:
10291 if (op[1] == 0)
10292 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10293 else if (op[0] == 0)
10294 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10295 else
10296 {
10297 used_at = 1;
10298 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10299 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10300 &offset_expr, AT, ZERO);
10301 }
10302 break;
10303
10304 case M_BLTUL:
10305 likely = 1;
10306 /* Fall through. */
10307 case M_BLTU:
10308 if (op[1] == 0)
10309 goto do_false;
10310 else if (op[0] == 0)
10311 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10312 &offset_expr, ZERO, op[1]);
10313 else
10314 {
10315 used_at = 1;
10316 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10317 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10318 &offset_expr, AT, ZERO);
10319 }
10320 break;
10321
10322 case M_DDIV_3:
10323 dbl = 1;
10324 /* Fall through. */
10325 case M_DIV_3:
10326 s = "mflo";
10327 goto do_div3;
10328 case M_DREM_3:
10329 dbl = 1;
10330 /* Fall through. */
10331 case M_REM_3:
10332 s = "mfhi";
10333 do_div3:
10334 if (op[2] == 0)
10335 {
10336 as_warn (_("divide by zero"));
10337 if (mips_trap)
10338 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10339 else
10340 macro_build (NULL, "break", BRK_FMT, 7);
10341 break;
10342 }
10343
10344 start_noreorder ();
10345 if (mips_trap)
10346 {
10347 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10348 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10349 }
10350 else
10351 {
10352 if (mips_opts.micromips)
10353 micromips_label_expr (&label_expr);
10354 else
10355 label_expr.X_add_number = 8;
10356 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10357 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10358 macro_build (NULL, "break", BRK_FMT, 7);
10359 if (mips_opts.micromips)
10360 micromips_add_label ();
10361 }
10362 expr1.X_add_number = -1;
10363 used_at = 1;
10364 load_register (AT, &expr1, dbl);
10365 if (mips_opts.micromips)
10366 micromips_label_expr (&label_expr);
10367 else
10368 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10369 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10370 if (dbl)
10371 {
10372 expr1.X_add_number = 1;
10373 load_register (AT, &expr1, dbl);
10374 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10375 }
10376 else
10377 {
10378 expr1.X_add_number = 0x80000000;
10379 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10380 }
10381 if (mips_trap)
10382 {
10383 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10384 /* We want to close the noreorder block as soon as possible, so
10385 that later insns are available for delay slot filling. */
10386 end_noreorder ();
10387 }
10388 else
10389 {
10390 if (mips_opts.micromips)
10391 micromips_label_expr (&label_expr);
10392 else
10393 label_expr.X_add_number = 8;
10394 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10395 macro_build (NULL, "nop", "");
10396
10397 /* We want to close the noreorder block as soon as possible, so
10398 that later insns are available for delay slot filling. */
10399 end_noreorder ();
10400
10401 macro_build (NULL, "break", BRK_FMT, 6);
10402 }
10403 if (mips_opts.micromips)
10404 micromips_add_label ();
10405 macro_build (NULL, s, MFHL_FMT, op[0]);
10406 break;
10407
10408 case M_DIV_3I:
10409 s = "div";
10410 s2 = "mflo";
10411 goto do_divi;
10412 case M_DIVU_3I:
10413 s = "divu";
10414 s2 = "mflo";
10415 goto do_divi;
10416 case M_REM_3I:
10417 s = "div";
10418 s2 = "mfhi";
10419 goto do_divi;
10420 case M_REMU_3I:
10421 s = "divu";
10422 s2 = "mfhi";
10423 goto do_divi;
10424 case M_DDIV_3I:
10425 dbl = 1;
10426 s = "ddiv";
10427 s2 = "mflo";
10428 goto do_divi;
10429 case M_DDIVU_3I:
10430 dbl = 1;
10431 s = "ddivu";
10432 s2 = "mflo";
10433 goto do_divi;
10434 case M_DREM_3I:
10435 dbl = 1;
10436 s = "ddiv";
10437 s2 = "mfhi";
10438 goto do_divi;
10439 case M_DREMU_3I:
10440 dbl = 1;
10441 s = "ddivu";
10442 s2 = "mfhi";
10443 do_divi:
10444 if (imm_expr.X_add_number == 0)
10445 {
10446 as_warn (_("divide by zero"));
10447 if (mips_trap)
10448 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10449 else
10450 macro_build (NULL, "break", BRK_FMT, 7);
10451 break;
10452 }
10453 if (imm_expr.X_add_number == 1)
10454 {
10455 if (strcmp (s2, "mflo") == 0)
10456 move_register (op[0], op[1]);
10457 else
10458 move_register (op[0], ZERO);
10459 break;
10460 }
10461 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10462 {
10463 if (strcmp (s2, "mflo") == 0)
10464 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10465 else
10466 move_register (op[0], ZERO);
10467 break;
10468 }
10469
10470 used_at = 1;
10471 load_register (AT, &imm_expr, dbl);
10472 macro_build (NULL, s, "z,s,t", op[1], AT);
10473 macro_build (NULL, s2, MFHL_FMT, op[0]);
10474 break;
10475
10476 case M_DIVU_3:
10477 s = "divu";
10478 s2 = "mflo";
10479 goto do_divu3;
10480 case M_REMU_3:
10481 s = "divu";
10482 s2 = "mfhi";
10483 goto do_divu3;
10484 case M_DDIVU_3:
10485 s = "ddivu";
10486 s2 = "mflo";
10487 goto do_divu3;
10488 case M_DREMU_3:
10489 s = "ddivu";
10490 s2 = "mfhi";
10491 do_divu3:
10492 start_noreorder ();
10493 if (mips_trap)
10494 {
10495 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10496 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10497 /* We want to close the noreorder block as soon as possible, so
10498 that later insns are available for delay slot filling. */
10499 end_noreorder ();
10500 }
10501 else
10502 {
10503 if (mips_opts.micromips)
10504 micromips_label_expr (&label_expr);
10505 else
10506 label_expr.X_add_number = 8;
10507 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10508 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10509
10510 /* We want to close the noreorder block as soon as possible, so
10511 that later insns are available for delay slot filling. */
10512 end_noreorder ();
10513 macro_build (NULL, "break", BRK_FMT, 7);
10514 if (mips_opts.micromips)
10515 micromips_add_label ();
10516 }
10517 macro_build (NULL, s2, MFHL_FMT, op[0]);
10518 break;
10519
10520 case M_DLCA_AB:
10521 dbl = 1;
10522 /* Fall through. */
10523 case M_LCA_AB:
10524 call = 1;
10525 goto do_la;
10526 case M_DLA_AB:
10527 dbl = 1;
10528 /* Fall through. */
10529 case M_LA_AB:
10530 do_la:
10531 /* Load the address of a symbol into a register. If breg is not
10532 zero, we then add a base register to it. */
10533
10534 breg = op[2];
10535 if (dbl && GPR_SIZE == 32)
10536 as_warn (_("dla used to load 32-bit register; recommend using la "
10537 "instead"));
10538
10539 if (!dbl && HAVE_64BIT_OBJECTS)
10540 as_warn (_("la used to load 64-bit address; recommend using dla "
10541 "instead"));
10542
10543 if (small_offset_p (0, align, 16))
10544 {
10545 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10546 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10547 break;
10548 }
10549
10550 if (mips_opts.at && (op[0] == breg))
10551 {
10552 tempreg = AT;
10553 used_at = 1;
10554 }
10555 else
10556 tempreg = op[0];
10557
10558 if (offset_expr.X_op != O_symbol
10559 && offset_expr.X_op != O_constant)
10560 {
10561 as_bad (_("expression too complex"));
10562 offset_expr.X_op = O_constant;
10563 }
10564
10565 if (offset_expr.X_op == O_constant)
10566 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10567 else if (mips_pic == NO_PIC)
10568 {
10569 /* If this is a reference to a GP relative symbol, we want
10570 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10571 Otherwise we want
10572 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10573 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10574 If we have a constant, we need two instructions anyhow,
10575 so we may as well always use the latter form.
10576
10577 With 64bit address space and a usable $at we want
10578 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10579 lui $at,<sym> (BFD_RELOC_HI16_S)
10580 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10581 daddiu $at,<sym> (BFD_RELOC_LO16)
10582 dsll32 $tempreg,0
10583 daddu $tempreg,$tempreg,$at
10584
10585 If $at is already in use, we use a path which is suboptimal
10586 on superscalar processors.
10587 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10588 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10589 dsll $tempreg,16
10590 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10591 dsll $tempreg,16
10592 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10593
10594 For GP relative symbols in 64bit address space we can use
10595 the same sequence as in 32bit address space. */
10596 if (HAVE_64BIT_SYMBOLS)
10597 {
10598 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10599 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10600 {
10601 relax_start (offset_expr.X_add_symbol);
10602 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10603 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10604 relax_switch ();
10605 }
10606
10607 if (used_at == 0 && mips_opts.at)
10608 {
10609 macro_build (&offset_expr, "lui", LUI_FMT,
10610 tempreg, BFD_RELOC_MIPS_HIGHEST);
10611 macro_build (&offset_expr, "lui", LUI_FMT,
10612 AT, BFD_RELOC_HI16_S);
10613 macro_build (&offset_expr, "daddiu", "t,r,j",
10614 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10615 macro_build (&offset_expr, "daddiu", "t,r,j",
10616 AT, AT, BFD_RELOC_LO16);
10617 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10618 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10619 used_at = 1;
10620 }
10621 else
10622 {
10623 macro_build (&offset_expr, "lui", LUI_FMT,
10624 tempreg, BFD_RELOC_MIPS_HIGHEST);
10625 macro_build (&offset_expr, "daddiu", "t,r,j",
10626 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10627 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10628 macro_build (&offset_expr, "daddiu", "t,r,j",
10629 tempreg, tempreg, BFD_RELOC_HI16_S);
10630 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10631 macro_build (&offset_expr, "daddiu", "t,r,j",
10632 tempreg, tempreg, BFD_RELOC_LO16);
10633 }
10634
10635 if (mips_relax.sequence)
10636 relax_end ();
10637 }
10638 else
10639 {
10640 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10641 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10642 {
10643 relax_start (offset_expr.X_add_symbol);
10644 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10645 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10646 relax_switch ();
10647 }
10648 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10649 as_bad (_("offset too large"));
10650 macro_build_lui (&offset_expr, tempreg);
10651 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10652 tempreg, tempreg, BFD_RELOC_LO16);
10653 if (mips_relax.sequence)
10654 relax_end ();
10655 }
10656 }
10657 else if (!mips_big_got && !HAVE_NEWABI)
10658 {
10659 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10660
10661 /* If this is a reference to an external symbol, and there
10662 is no constant, we want
10663 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10664 or for lca or if tempreg is PIC_CALL_REG
10665 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10666 For a local symbol, we want
10667 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10668 nop
10669 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10670
10671 If we have a small constant, and this is a reference to
10672 an external symbol, we want
10673 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10674 nop
10675 addiu $tempreg,$tempreg,<constant>
10676 For a local symbol, we want the same instruction
10677 sequence, but we output a BFD_RELOC_LO16 reloc on the
10678 addiu instruction.
10679
10680 If we have a large constant, and this is a reference to
10681 an external symbol, we want
10682 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10683 lui $at,<hiconstant>
10684 addiu $at,$at,<loconstant>
10685 addu $tempreg,$tempreg,$at
10686 For a local symbol, we want the same instruction
10687 sequence, but we output a BFD_RELOC_LO16 reloc on the
10688 addiu instruction.
10689 */
10690
10691 if (offset_expr.X_add_number == 0)
10692 {
10693 if (mips_pic == SVR4_PIC
10694 && breg == 0
10695 && (call || tempreg == PIC_CALL_REG))
10696 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10697
10698 relax_start (offset_expr.X_add_symbol);
10699 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10700 lw_reloc_type, mips_gp_register);
10701 if (breg != 0)
10702 {
10703 /* We're going to put in an addu instruction using
10704 tempreg, so we may as well insert the nop right
10705 now. */
10706 load_delay_nop ();
10707 }
10708 relax_switch ();
10709 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10710 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10711 load_delay_nop ();
10712 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10713 tempreg, tempreg, BFD_RELOC_LO16);
10714 relax_end ();
10715 /* FIXME: If breg == 0, and the next instruction uses
10716 $tempreg, then if this variant case is used an extra
10717 nop will be generated. */
10718 }
10719 else if (offset_expr.X_add_number >= -0x8000
10720 && offset_expr.X_add_number < 0x8000)
10721 {
10722 load_got_offset (tempreg, &offset_expr);
10723 load_delay_nop ();
10724 add_got_offset (tempreg, &offset_expr);
10725 }
10726 else
10727 {
10728 expr1.X_add_number = offset_expr.X_add_number;
10729 offset_expr.X_add_number =
10730 SEXT_16BIT (offset_expr.X_add_number);
10731 load_got_offset (tempreg, &offset_expr);
10732 offset_expr.X_add_number = expr1.X_add_number;
10733 /* If we are going to add in a base register, and the
10734 target register and the base register are the same,
10735 then we are using AT as a temporary register. Since
10736 we want to load the constant into AT, we add our
10737 current AT (from the global offset table) and the
10738 register into the register now, and pretend we were
10739 not using a base register. */
10740 if (breg == op[0])
10741 {
10742 load_delay_nop ();
10743 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10744 op[0], AT, breg);
10745 breg = 0;
10746 tempreg = op[0];
10747 }
10748 add_got_offset_hilo (tempreg, &offset_expr, AT);
10749 used_at = 1;
10750 }
10751 }
10752 else if (!mips_big_got && HAVE_NEWABI)
10753 {
10754 int add_breg_early = 0;
10755
10756 /* If this is a reference to an external, and there is no
10757 constant, or local symbol (*), with or without a
10758 constant, we want
10759 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10760 or for lca or if tempreg is PIC_CALL_REG
10761 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10762
10763 If we have a small constant, and this is a reference to
10764 an external symbol, we want
10765 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10766 addiu $tempreg,$tempreg,<constant>
10767
10768 If we have a large constant, and this is a reference to
10769 an external symbol, we want
10770 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10771 lui $at,<hiconstant>
10772 addiu $at,$at,<loconstant>
10773 addu $tempreg,$tempreg,$at
10774
10775 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10776 local symbols, even though it introduces an additional
10777 instruction. */
10778
10779 if (offset_expr.X_add_number)
10780 {
10781 expr1.X_add_number = offset_expr.X_add_number;
10782 offset_expr.X_add_number = 0;
10783
10784 relax_start (offset_expr.X_add_symbol);
10785 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10786 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10787
10788 if (expr1.X_add_number >= -0x8000
10789 && expr1.X_add_number < 0x8000)
10790 {
10791 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10792 tempreg, tempreg, BFD_RELOC_LO16);
10793 }
10794 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10795 {
10796 unsigned int dreg;
10797
10798 /* If we are going to add in a base register, and the
10799 target register and the base register are the same,
10800 then we are using AT as a temporary register. Since
10801 we want to load the constant into AT, we add our
10802 current AT (from the global offset table) and the
10803 register into the register now, and pretend we were
10804 not using a base register. */
10805 if (breg != op[0])
10806 dreg = tempreg;
10807 else
10808 {
10809 gas_assert (tempreg == AT);
10810 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10811 op[0], AT, breg);
10812 dreg = op[0];
10813 add_breg_early = 1;
10814 }
10815
10816 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10817 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10818 dreg, dreg, AT);
10819
10820 used_at = 1;
10821 }
10822 else
10823 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10824
10825 relax_switch ();
10826 offset_expr.X_add_number = expr1.X_add_number;
10827
10828 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10829 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10830 if (add_breg_early)
10831 {
10832 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10833 op[0], tempreg, breg);
10834 breg = 0;
10835 tempreg = op[0];
10836 }
10837 relax_end ();
10838 }
10839 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10840 {
10841 relax_start (offset_expr.X_add_symbol);
10842 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10843 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10844 relax_switch ();
10845 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10846 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10847 relax_end ();
10848 }
10849 else
10850 {
10851 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10852 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10853 }
10854 }
10855 else if (mips_big_got && !HAVE_NEWABI)
10856 {
10857 int gpdelay;
10858 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10859 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10860 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10861
10862 /* This is the large GOT case. If this is a reference to an
10863 external symbol, and there is no constant, we want
10864 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10865 addu $tempreg,$tempreg,$gp
10866 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10867 or for lca or if tempreg is PIC_CALL_REG
10868 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10869 addu $tempreg,$tempreg,$gp
10870 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10871 For a local symbol, we want
10872 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10873 nop
10874 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10875
10876 If we have a small constant, and this is a reference to
10877 an external symbol, we want
10878 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10879 addu $tempreg,$tempreg,$gp
10880 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10881 nop
10882 addiu $tempreg,$tempreg,<constant>
10883 For a local symbol, we want
10884 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10885 nop
10886 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10887
10888 If we have a large constant, and this is a reference to
10889 an external symbol, we want
10890 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10891 addu $tempreg,$tempreg,$gp
10892 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10893 lui $at,<hiconstant>
10894 addiu $at,$at,<loconstant>
10895 addu $tempreg,$tempreg,$at
10896 For a local symbol, we want
10897 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10898 lui $at,<hiconstant>
10899 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10900 addu $tempreg,$tempreg,$at
10901 */
10902
10903 expr1.X_add_number = offset_expr.X_add_number;
10904 offset_expr.X_add_number = 0;
10905 relax_start (offset_expr.X_add_symbol);
10906 gpdelay = reg_needs_delay (mips_gp_register);
10907 if (expr1.X_add_number == 0 && breg == 0
10908 && (call || tempreg == PIC_CALL_REG))
10909 {
10910 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10911 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10912 }
10913 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10914 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10915 tempreg, tempreg, mips_gp_register);
10916 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10917 tempreg, lw_reloc_type, tempreg);
10918 if (expr1.X_add_number == 0)
10919 {
10920 if (breg != 0)
10921 {
10922 /* We're going to put in an addu instruction using
10923 tempreg, so we may as well insert the nop right
10924 now. */
10925 load_delay_nop ();
10926 }
10927 }
10928 else if (expr1.X_add_number >= -0x8000
10929 && expr1.X_add_number < 0x8000)
10930 {
10931 load_delay_nop ();
10932 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10933 tempreg, tempreg, BFD_RELOC_LO16);
10934 }
10935 else
10936 {
10937 unsigned int dreg;
10938
10939 /* If we are going to add in a base register, and the
10940 target register and the base register are the same,
10941 then we are using AT as a temporary register. Since
10942 we want to load the constant into AT, we add our
10943 current AT (from the global offset table) and the
10944 register into the register now, and pretend we were
10945 not using a base register. */
10946 if (breg != op[0])
10947 dreg = tempreg;
10948 else
10949 {
10950 gas_assert (tempreg == AT);
10951 load_delay_nop ();
10952 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10953 op[0], AT, breg);
10954 dreg = op[0];
10955 }
10956
10957 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10958 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10959
10960 used_at = 1;
10961 }
10962 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
10963 relax_switch ();
10964
10965 if (gpdelay)
10966 {
10967 /* This is needed because this instruction uses $gp, but
10968 the first instruction on the main stream does not. */
10969 macro_build (NULL, "nop", "");
10970 }
10971
10972 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10973 local_reloc_type, mips_gp_register);
10974 if (expr1.X_add_number >= -0x8000
10975 && expr1.X_add_number < 0x8000)
10976 {
10977 load_delay_nop ();
10978 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10979 tempreg, tempreg, BFD_RELOC_LO16);
10980 /* FIXME: If add_number is 0, and there was no base
10981 register, the external symbol case ended with a load,
10982 so if the symbol turns out to not be external, and
10983 the next instruction uses tempreg, an unnecessary nop
10984 will be inserted. */
10985 }
10986 else
10987 {
10988 if (breg == op[0])
10989 {
10990 /* We must add in the base register now, as in the
10991 external symbol case. */
10992 gas_assert (tempreg == AT);
10993 load_delay_nop ();
10994 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10995 op[0], AT, breg);
10996 tempreg = op[0];
10997 /* We set breg to 0 because we have arranged to add
10998 it in in both cases. */
10999 breg = 0;
11000 }
11001
11002 macro_build_lui (&expr1, AT);
11003 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11004 AT, AT, BFD_RELOC_LO16);
11005 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11006 tempreg, tempreg, AT);
11007 used_at = 1;
11008 }
11009 relax_end ();
11010 }
11011 else if (mips_big_got && HAVE_NEWABI)
11012 {
11013 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11014 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
11015 int add_breg_early = 0;
11016
11017 /* This is the large GOT case. If this is a reference to an
11018 external symbol, and there is no constant, we want
11019 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11020 add $tempreg,$tempreg,$gp
11021 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11022 or for lca or if tempreg is PIC_CALL_REG
11023 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11024 add $tempreg,$tempreg,$gp
11025 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11026
11027 If we have a small constant, and this is a reference to
11028 an external symbol, we want
11029 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11030 add $tempreg,$tempreg,$gp
11031 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11032 addi $tempreg,$tempreg,<constant>
11033
11034 If we have a large constant, and this is a reference to
11035 an external symbol, we want
11036 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11037 addu $tempreg,$tempreg,$gp
11038 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11039 lui $at,<hiconstant>
11040 addi $at,$at,<loconstant>
11041 add $tempreg,$tempreg,$at
11042
11043 If we have NewABI, and we know it's a local symbol, we want
11044 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11045 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11046 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11047
11048 relax_start (offset_expr.X_add_symbol);
11049
11050 expr1.X_add_number = offset_expr.X_add_number;
11051 offset_expr.X_add_number = 0;
11052
11053 if (expr1.X_add_number == 0 && breg == 0
11054 && (call || tempreg == PIC_CALL_REG))
11055 {
11056 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11057 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11058 }
11059 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11060 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11061 tempreg, tempreg, mips_gp_register);
11062 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11063 tempreg, lw_reloc_type, tempreg);
11064
11065 if (expr1.X_add_number == 0)
11066 ;
11067 else if (expr1.X_add_number >= -0x8000
11068 && expr1.X_add_number < 0x8000)
11069 {
11070 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11071 tempreg, tempreg, BFD_RELOC_LO16);
11072 }
11073 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
11074 {
11075 unsigned int dreg;
11076
11077 /* If we are going to add in a base register, and the
11078 target register and the base register are the same,
11079 then we are using AT as a temporary register. Since
11080 we want to load the constant into AT, we add our
11081 current AT (from the global offset table) and the
11082 register into the register now, and pretend we were
11083 not using a base register. */
11084 if (breg != op[0])
11085 dreg = tempreg;
11086 else
11087 {
11088 gas_assert (tempreg == AT);
11089 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11090 op[0], AT, breg);
11091 dreg = op[0];
11092 add_breg_early = 1;
11093 }
11094
11095 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11096 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11097
11098 used_at = 1;
11099 }
11100 else
11101 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11102
11103 relax_switch ();
11104 offset_expr.X_add_number = expr1.X_add_number;
11105 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11106 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11107 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11108 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11109 if (add_breg_early)
11110 {
11111 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11112 op[0], tempreg, breg);
11113 breg = 0;
11114 tempreg = op[0];
11115 }
11116 relax_end ();
11117 }
11118 else
11119 abort ();
11120
11121 if (breg != 0)
11122 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
11123 break;
11124
11125 case M_MSGSND:
11126 gas_assert (!mips_opts.micromips);
11127 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
11128 break;
11129
11130 case M_MSGLD:
11131 gas_assert (!mips_opts.micromips);
11132 macro_build (NULL, "c2", "C", 0x02);
11133 break;
11134
11135 case M_MSGLD_T:
11136 gas_assert (!mips_opts.micromips);
11137 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
11138 break;
11139
11140 case M_MSGWAIT:
11141 gas_assert (!mips_opts.micromips);
11142 macro_build (NULL, "c2", "C", 3);
11143 break;
11144
11145 case M_MSGWAIT_T:
11146 gas_assert (!mips_opts.micromips);
11147 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
11148 break;
11149
11150 case M_J_A:
11151 /* The j instruction may not be used in PIC code, since it
11152 requires an absolute address. We convert it to a b
11153 instruction. */
11154 if (mips_pic == NO_PIC)
11155 macro_build (&offset_expr, "j", "a");
11156 else
11157 macro_build (&offset_expr, "b", "p");
11158 break;
11159
11160 /* The jal instructions must be handled as macros because when
11161 generating PIC code they expand to multi-instruction
11162 sequences. Normally they are simple instructions. */
11163 case M_JALS_1:
11164 op[1] = op[0];
11165 op[0] = RA;
11166 /* Fall through. */
11167 case M_JALS_2:
11168 gas_assert (mips_opts.micromips);
11169 if (mips_opts.insn32)
11170 {
11171 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11172 break;
11173 }
11174 jals = 1;
11175 goto jal;
11176 case M_JAL_1:
11177 op[1] = op[0];
11178 op[0] = RA;
11179 /* Fall through. */
11180 case M_JAL_2:
11181 jal:
11182 if (mips_pic == NO_PIC)
11183 {
11184 s = jals ? "jalrs" : "jalr";
11185 if (mips_opts.micromips
11186 && !mips_opts.insn32
11187 && op[0] == RA
11188 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11189 macro_build (NULL, s, "mj", op[1]);
11190 else
11191 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11192 }
11193 else
11194 {
11195 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11196 && mips_cprestore_offset >= 0);
11197
11198 if (op[1] != PIC_CALL_REG)
11199 as_warn (_("MIPS PIC call to register other than $25"));
11200
11201 s = ((mips_opts.micromips
11202 && !mips_opts.insn32
11203 && (!mips_opts.noreorder || cprestore))
11204 ? "jalrs" : "jalr");
11205 if (mips_opts.micromips
11206 && !mips_opts.insn32
11207 && op[0] == RA
11208 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11209 macro_build (NULL, s, "mj", op[1]);
11210 else
11211 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11212 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11213 {
11214 if (mips_cprestore_offset < 0)
11215 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11216 else
11217 {
11218 if (!mips_frame_reg_valid)
11219 {
11220 as_warn (_("no .frame pseudo-op used in PIC code"));
11221 /* Quiet this warning. */
11222 mips_frame_reg_valid = 1;
11223 }
11224 if (!mips_cprestore_valid)
11225 {
11226 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11227 /* Quiet this warning. */
11228 mips_cprestore_valid = 1;
11229 }
11230 if (mips_opts.noreorder)
11231 macro_build (NULL, "nop", "");
11232 expr1.X_add_number = mips_cprestore_offset;
11233 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11234 mips_gp_register,
11235 mips_frame_reg,
11236 HAVE_64BIT_ADDRESSES);
11237 }
11238 }
11239 }
11240
11241 break;
11242
11243 case M_JALS_A:
11244 gas_assert (mips_opts.micromips);
11245 if (mips_opts.insn32)
11246 {
11247 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11248 break;
11249 }
11250 jals = 1;
11251 /* Fall through. */
11252 case M_JAL_A:
11253 if (mips_pic == NO_PIC)
11254 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11255 else if (mips_pic == SVR4_PIC)
11256 {
11257 /* If this is a reference to an external symbol, and we are
11258 using a small GOT, we want
11259 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11260 nop
11261 jalr $ra,$25
11262 nop
11263 lw $gp,cprestore($sp)
11264 The cprestore value is set using the .cprestore
11265 pseudo-op. If we are using a big GOT, we want
11266 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11267 addu $25,$25,$gp
11268 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11269 nop
11270 jalr $ra,$25
11271 nop
11272 lw $gp,cprestore($sp)
11273 If the symbol is not external, we want
11274 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11275 nop
11276 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11277 jalr $ra,$25
11278 nop
11279 lw $gp,cprestore($sp)
11280
11281 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11282 sequences above, minus nops, unless the symbol is local,
11283 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11284 GOT_DISP. */
11285 if (HAVE_NEWABI)
11286 {
11287 if (!mips_big_got)
11288 {
11289 relax_start (offset_expr.X_add_symbol);
11290 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11291 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11292 mips_gp_register);
11293 relax_switch ();
11294 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11295 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11296 mips_gp_register);
11297 relax_end ();
11298 }
11299 else
11300 {
11301 relax_start (offset_expr.X_add_symbol);
11302 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11303 BFD_RELOC_MIPS_CALL_HI16);
11304 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11305 PIC_CALL_REG, mips_gp_register);
11306 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11307 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11308 PIC_CALL_REG);
11309 relax_switch ();
11310 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11311 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11312 mips_gp_register);
11313 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11314 PIC_CALL_REG, PIC_CALL_REG,
11315 BFD_RELOC_MIPS_GOT_OFST);
11316 relax_end ();
11317 }
11318
11319 macro_build_jalr (&offset_expr, 0);
11320 }
11321 else
11322 {
11323 relax_start (offset_expr.X_add_symbol);
11324 if (!mips_big_got)
11325 {
11326 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11327 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11328 mips_gp_register);
11329 load_delay_nop ();
11330 relax_switch ();
11331 }
11332 else
11333 {
11334 int gpdelay;
11335
11336 gpdelay = reg_needs_delay (mips_gp_register);
11337 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11338 BFD_RELOC_MIPS_CALL_HI16);
11339 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11340 PIC_CALL_REG, mips_gp_register);
11341 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11342 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11343 PIC_CALL_REG);
11344 load_delay_nop ();
11345 relax_switch ();
11346 if (gpdelay)
11347 macro_build (NULL, "nop", "");
11348 }
11349 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11350 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11351 mips_gp_register);
11352 load_delay_nop ();
11353 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11354 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11355 relax_end ();
11356 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11357
11358 if (mips_cprestore_offset < 0)
11359 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11360 else
11361 {
11362 if (!mips_frame_reg_valid)
11363 {
11364 as_warn (_("no .frame pseudo-op used in PIC code"));
11365 /* Quiet this warning. */
11366 mips_frame_reg_valid = 1;
11367 }
11368 if (!mips_cprestore_valid)
11369 {
11370 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11371 /* Quiet this warning. */
11372 mips_cprestore_valid = 1;
11373 }
11374 if (mips_opts.noreorder)
11375 macro_build (NULL, "nop", "");
11376 expr1.X_add_number = mips_cprestore_offset;
11377 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11378 mips_gp_register,
11379 mips_frame_reg,
11380 HAVE_64BIT_ADDRESSES);
11381 }
11382 }
11383 }
11384 else if (mips_pic == VXWORKS_PIC)
11385 as_bad (_("non-PIC jump used in PIC library"));
11386 else
11387 abort ();
11388
11389 break;
11390
11391 case M_LBUE_AB:
11392 s = "lbue";
11393 fmt = "t,+j(b)";
11394 offbits = 9;
11395 goto ld_st;
11396 case M_LHUE_AB:
11397 s = "lhue";
11398 fmt = "t,+j(b)";
11399 offbits = 9;
11400 goto ld_st;
11401 case M_LBE_AB:
11402 s = "lbe";
11403 fmt = "t,+j(b)";
11404 offbits = 9;
11405 goto ld_st;
11406 case M_LHE_AB:
11407 s = "lhe";
11408 fmt = "t,+j(b)";
11409 offbits = 9;
11410 goto ld_st;
11411 case M_LLE_AB:
11412 s = "lle";
11413 fmt = "t,+j(b)";
11414 offbits = 9;
11415 goto ld_st;
11416 case M_LWE_AB:
11417 s = "lwe";
11418 fmt = "t,+j(b)";
11419 offbits = 9;
11420 goto ld_st;
11421 case M_LWLE_AB:
11422 s = "lwle";
11423 fmt = "t,+j(b)";
11424 offbits = 9;
11425 goto ld_st;
11426 case M_LWRE_AB:
11427 s = "lwre";
11428 fmt = "t,+j(b)";
11429 offbits = 9;
11430 goto ld_st;
11431 case M_SBE_AB:
11432 s = "sbe";
11433 fmt = "t,+j(b)";
11434 offbits = 9;
11435 goto ld_st;
11436 case M_SCE_AB:
11437 s = "sce";
11438 fmt = "t,+j(b)";
11439 offbits = 9;
11440 goto ld_st;
11441 case M_SHE_AB:
11442 s = "she";
11443 fmt = "t,+j(b)";
11444 offbits = 9;
11445 goto ld_st;
11446 case M_SWE_AB:
11447 s = "swe";
11448 fmt = "t,+j(b)";
11449 offbits = 9;
11450 goto ld_st;
11451 case M_SWLE_AB:
11452 s = "swle";
11453 fmt = "t,+j(b)";
11454 offbits = 9;
11455 goto ld_st;
11456 case M_SWRE_AB:
11457 s = "swre";
11458 fmt = "t,+j(b)";
11459 offbits = 9;
11460 goto ld_st;
11461 case M_ACLR_AB:
11462 s = "aclr";
11463 fmt = "\\,~(b)";
11464 offbits = 12;
11465 goto ld_st;
11466 case M_ASET_AB:
11467 s = "aset";
11468 fmt = "\\,~(b)";
11469 offbits = 12;
11470 goto ld_st;
11471 case M_LB_AB:
11472 s = "lb";
11473 fmt = "t,o(b)";
11474 goto ld;
11475 case M_LBU_AB:
11476 s = "lbu";
11477 fmt = "t,o(b)";
11478 goto ld;
11479 case M_LH_AB:
11480 s = "lh";
11481 fmt = "t,o(b)";
11482 goto ld;
11483 case M_LHU_AB:
11484 s = "lhu";
11485 fmt = "t,o(b)";
11486 goto ld;
11487 case M_LW_AB:
11488 s = "lw";
11489 fmt = "t,o(b)";
11490 goto ld;
11491 case M_LWC0_AB:
11492 gas_assert (!mips_opts.micromips);
11493 s = "lwc0";
11494 fmt = "E,o(b)";
11495 /* Itbl support may require additional care here. */
11496 coproc = 1;
11497 goto ld_st;
11498 case M_LWC1_AB:
11499 s = "lwc1";
11500 fmt = "T,o(b)";
11501 /* Itbl support may require additional care here. */
11502 coproc = 1;
11503 goto ld_st;
11504 case M_LWC2_AB:
11505 s = "lwc2";
11506 fmt = COP12_FMT;
11507 offbits = (mips_opts.micromips ? 12
11508 : ISA_IS_R6 (mips_opts.isa) ? 11
11509 : 16);
11510 /* Itbl support may require additional care here. */
11511 coproc = 1;
11512 goto ld_st;
11513 case M_LWC3_AB:
11514 gas_assert (!mips_opts.micromips);
11515 s = "lwc3";
11516 fmt = "E,o(b)";
11517 /* Itbl support may require additional care here. */
11518 coproc = 1;
11519 goto ld_st;
11520 case M_LWL_AB:
11521 s = "lwl";
11522 fmt = MEM12_FMT;
11523 offbits = (mips_opts.micromips ? 12 : 16);
11524 goto ld_st;
11525 case M_LWR_AB:
11526 s = "lwr";
11527 fmt = MEM12_FMT;
11528 offbits = (mips_opts.micromips ? 12 : 16);
11529 goto ld_st;
11530 case M_LDC1_AB:
11531 s = "ldc1";
11532 fmt = "T,o(b)";
11533 /* Itbl support may require additional care here. */
11534 coproc = 1;
11535 goto ld_st;
11536 case M_LDC2_AB:
11537 s = "ldc2";
11538 fmt = COP12_FMT;
11539 offbits = (mips_opts.micromips ? 12
11540 : ISA_IS_R6 (mips_opts.isa) ? 11
11541 : 16);
11542 /* Itbl support may require additional care here. */
11543 coproc = 1;
11544 goto ld_st;
11545 case M_LQC2_AB:
11546 s = "lqc2";
11547 fmt = "+7,o(b)";
11548 /* Itbl support may require additional care here. */
11549 coproc = 1;
11550 goto ld_st;
11551 case M_LDC3_AB:
11552 s = "ldc3";
11553 fmt = "E,o(b)";
11554 /* Itbl support may require additional care here. */
11555 coproc = 1;
11556 goto ld_st;
11557 case M_LDL_AB:
11558 s = "ldl";
11559 fmt = MEM12_FMT;
11560 offbits = (mips_opts.micromips ? 12 : 16);
11561 goto ld_st;
11562 case M_LDR_AB:
11563 s = "ldr";
11564 fmt = MEM12_FMT;
11565 offbits = (mips_opts.micromips ? 12 : 16);
11566 goto ld_st;
11567 case M_LL_AB:
11568 s = "ll";
11569 fmt = LL_SC_FMT;
11570 offbits = (mips_opts.micromips ? 12
11571 : ISA_IS_R6 (mips_opts.isa) ? 9
11572 : 16);
11573 goto ld;
11574 case M_LLD_AB:
11575 s = "lld";
11576 fmt = LL_SC_FMT;
11577 offbits = (mips_opts.micromips ? 12
11578 : ISA_IS_R6 (mips_opts.isa) ? 9
11579 : 16);
11580 goto ld;
11581 case M_LWU_AB:
11582 s = "lwu";
11583 fmt = MEM12_FMT;
11584 offbits = (mips_opts.micromips ? 12 : 16);
11585 goto ld;
11586 case M_LWP_AB:
11587 gas_assert (mips_opts.micromips);
11588 s = "lwp";
11589 fmt = "t,~(b)";
11590 offbits = 12;
11591 lp = 1;
11592 goto ld;
11593 case M_LDP_AB:
11594 gas_assert (mips_opts.micromips);
11595 s = "ldp";
11596 fmt = "t,~(b)";
11597 offbits = 12;
11598 lp = 1;
11599 goto ld;
11600 case M_LWM_AB:
11601 gas_assert (mips_opts.micromips);
11602 s = "lwm";
11603 fmt = "n,~(b)";
11604 offbits = 12;
11605 goto ld_st;
11606 case M_LDM_AB:
11607 gas_assert (mips_opts.micromips);
11608 s = "ldm";
11609 fmt = "n,~(b)";
11610 offbits = 12;
11611 goto ld_st;
11612
11613 ld:
11614 /* We don't want to use $0 as tempreg. */
11615 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11616 goto ld_st;
11617 else
11618 tempreg = op[0] + lp;
11619 goto ld_noat;
11620
11621 case M_SB_AB:
11622 s = "sb";
11623 fmt = "t,o(b)";
11624 goto ld_st;
11625 case M_SH_AB:
11626 s = "sh";
11627 fmt = "t,o(b)";
11628 goto ld_st;
11629 case M_SW_AB:
11630 s = "sw";
11631 fmt = "t,o(b)";
11632 goto ld_st;
11633 case M_SWC0_AB:
11634 gas_assert (!mips_opts.micromips);
11635 s = "swc0";
11636 fmt = "E,o(b)";
11637 /* Itbl support may require additional care here. */
11638 coproc = 1;
11639 goto ld_st;
11640 case M_SWC1_AB:
11641 s = "swc1";
11642 fmt = "T,o(b)";
11643 /* Itbl support may require additional care here. */
11644 coproc = 1;
11645 goto ld_st;
11646 case M_SWC2_AB:
11647 s = "swc2";
11648 fmt = COP12_FMT;
11649 offbits = (mips_opts.micromips ? 12
11650 : ISA_IS_R6 (mips_opts.isa) ? 11
11651 : 16);
11652 /* Itbl support may require additional care here. */
11653 coproc = 1;
11654 goto ld_st;
11655 case M_SWC3_AB:
11656 gas_assert (!mips_opts.micromips);
11657 s = "swc3";
11658 fmt = "E,o(b)";
11659 /* Itbl support may require additional care here. */
11660 coproc = 1;
11661 goto ld_st;
11662 case M_SWL_AB:
11663 s = "swl";
11664 fmt = MEM12_FMT;
11665 offbits = (mips_opts.micromips ? 12 : 16);
11666 goto ld_st;
11667 case M_SWR_AB:
11668 s = "swr";
11669 fmt = MEM12_FMT;
11670 offbits = (mips_opts.micromips ? 12 : 16);
11671 goto ld_st;
11672 case M_SC_AB:
11673 s = "sc";
11674 fmt = LL_SC_FMT;
11675 offbits = (mips_opts.micromips ? 12
11676 : ISA_IS_R6 (mips_opts.isa) ? 9
11677 : 16);
11678 goto ld_st;
11679 case M_SCD_AB:
11680 s = "scd";
11681 fmt = LL_SC_FMT;
11682 offbits = (mips_opts.micromips ? 12
11683 : ISA_IS_R6 (mips_opts.isa) ? 9
11684 : 16);
11685 goto ld_st;
11686 case M_CACHE_AB:
11687 s = "cache";
11688 fmt = (mips_opts.micromips ? "k,~(b)"
11689 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11690 : "k,o(b)");
11691 offbits = (mips_opts.micromips ? 12
11692 : ISA_IS_R6 (mips_opts.isa) ? 9
11693 : 16);
11694 goto ld_st;
11695 case M_CACHEE_AB:
11696 s = "cachee";
11697 fmt = "k,+j(b)";
11698 offbits = 9;
11699 goto ld_st;
11700 case M_PREF_AB:
11701 s = "pref";
11702 fmt = (mips_opts.micromips ? "k,~(b)"
11703 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11704 : "k,o(b)");
11705 offbits = (mips_opts.micromips ? 12
11706 : ISA_IS_R6 (mips_opts.isa) ? 9
11707 : 16);
11708 goto ld_st;
11709 case M_PREFE_AB:
11710 s = "prefe";
11711 fmt = "k,+j(b)";
11712 offbits = 9;
11713 goto ld_st;
11714 case M_SDC1_AB:
11715 s = "sdc1";
11716 fmt = "T,o(b)";
11717 coproc = 1;
11718 /* Itbl support may require additional care here. */
11719 goto ld_st;
11720 case M_SDC2_AB:
11721 s = "sdc2";
11722 fmt = COP12_FMT;
11723 offbits = (mips_opts.micromips ? 12
11724 : ISA_IS_R6 (mips_opts.isa) ? 11
11725 : 16);
11726 /* Itbl support may require additional care here. */
11727 coproc = 1;
11728 goto ld_st;
11729 case M_SQC2_AB:
11730 s = "sqc2";
11731 fmt = "+7,o(b)";
11732 /* Itbl support may require additional care here. */
11733 coproc = 1;
11734 goto ld_st;
11735 case M_SDC3_AB:
11736 gas_assert (!mips_opts.micromips);
11737 s = "sdc3";
11738 fmt = "E,o(b)";
11739 /* Itbl support may require additional care here. */
11740 coproc = 1;
11741 goto ld_st;
11742 case M_SDL_AB:
11743 s = "sdl";
11744 fmt = MEM12_FMT;
11745 offbits = (mips_opts.micromips ? 12 : 16);
11746 goto ld_st;
11747 case M_SDR_AB:
11748 s = "sdr";
11749 fmt = MEM12_FMT;
11750 offbits = (mips_opts.micromips ? 12 : 16);
11751 goto ld_st;
11752 case M_SWP_AB:
11753 gas_assert (mips_opts.micromips);
11754 s = "swp";
11755 fmt = "t,~(b)";
11756 offbits = 12;
11757 goto ld_st;
11758 case M_SDP_AB:
11759 gas_assert (mips_opts.micromips);
11760 s = "sdp";
11761 fmt = "t,~(b)";
11762 offbits = 12;
11763 goto ld_st;
11764 case M_SWM_AB:
11765 gas_assert (mips_opts.micromips);
11766 s = "swm";
11767 fmt = "n,~(b)";
11768 offbits = 12;
11769 goto ld_st;
11770 case M_SDM_AB:
11771 gas_assert (mips_opts.micromips);
11772 s = "sdm";
11773 fmt = "n,~(b)";
11774 offbits = 12;
11775
11776 ld_st:
11777 tempreg = AT;
11778 ld_noat:
11779 breg = op[2];
11780 if (small_offset_p (0, align, 16))
11781 {
11782 /* The first case exists for M_LD_AB and M_SD_AB, which are
11783 macros for o32 but which should act like normal instructions
11784 otherwise. */
11785 if (offbits == 16)
11786 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11787 offset_reloc[1], offset_reloc[2], breg);
11788 else if (small_offset_p (0, align, offbits))
11789 {
11790 if (offbits == 0)
11791 macro_build (NULL, s, fmt, op[0], breg);
11792 else
11793 macro_build (NULL, s, fmt, op[0],
11794 (int) offset_expr.X_add_number, breg);
11795 }
11796 else
11797 {
11798 if (tempreg == AT)
11799 used_at = 1;
11800 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11801 tempreg, breg, -1, offset_reloc[0],
11802 offset_reloc[1], offset_reloc[2]);
11803 if (offbits == 0)
11804 macro_build (NULL, s, fmt, op[0], tempreg);
11805 else
11806 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11807 }
11808 break;
11809 }
11810
11811 if (tempreg == AT)
11812 used_at = 1;
11813
11814 if (offset_expr.X_op != O_constant
11815 && offset_expr.X_op != O_symbol)
11816 {
11817 as_bad (_("expression too complex"));
11818 offset_expr.X_op = O_constant;
11819 }
11820
11821 if (HAVE_32BIT_ADDRESSES
11822 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11823 {
11824 char value [32];
11825
11826 sprintf_vma (value, offset_expr.X_add_number);
11827 as_bad (_("number (0x%s) larger than 32 bits"), value);
11828 }
11829
11830 /* A constant expression in PIC code can be handled just as it
11831 is in non PIC code. */
11832 if (offset_expr.X_op == O_constant)
11833 {
11834 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11835 offbits == 0 ? 16 : offbits);
11836 offset_expr.X_add_number -= expr1.X_add_number;
11837
11838 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11839 if (breg != 0)
11840 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11841 tempreg, tempreg, breg);
11842 if (offbits == 0)
11843 {
11844 if (offset_expr.X_add_number != 0)
11845 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11846 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11847 macro_build (NULL, s, fmt, op[0], tempreg);
11848 }
11849 else if (offbits == 16)
11850 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11851 else
11852 macro_build (NULL, s, fmt, op[0],
11853 (int) offset_expr.X_add_number, tempreg);
11854 }
11855 else if (offbits != 16)
11856 {
11857 /* The offset field is too narrow to be used for a low-part
11858 relocation, so load the whole address into the auxiliary
11859 register. */
11860 load_address (tempreg, &offset_expr, &used_at);
11861 if (breg != 0)
11862 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11863 tempreg, tempreg, breg);
11864 if (offbits == 0)
11865 macro_build (NULL, s, fmt, op[0], tempreg);
11866 else
11867 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11868 }
11869 else if (mips_pic == NO_PIC)
11870 {
11871 /* If this is a reference to a GP relative symbol, and there
11872 is no base register, we want
11873 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11874 Otherwise, if there is no base register, we want
11875 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11876 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11877 If we have a constant, we need two instructions anyhow,
11878 so we always use the latter form.
11879
11880 If we have a base register, and this is a reference to a
11881 GP relative symbol, we want
11882 addu $tempreg,$breg,$gp
11883 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11884 Otherwise we want
11885 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11886 addu $tempreg,$tempreg,$breg
11887 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11888 With a constant we always use the latter case.
11889
11890 With 64bit address space and no base register and $at usable,
11891 we want
11892 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11893 lui $at,<sym> (BFD_RELOC_HI16_S)
11894 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11895 dsll32 $tempreg,0
11896 daddu $tempreg,$at
11897 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11898 If we have a base register, we want
11899 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11900 lui $at,<sym> (BFD_RELOC_HI16_S)
11901 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11902 daddu $at,$breg
11903 dsll32 $tempreg,0
11904 daddu $tempreg,$at
11905 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11906
11907 Without $at we can't generate the optimal path for superscalar
11908 processors here since this would require two temporary registers.
11909 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11910 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11911 dsll $tempreg,16
11912 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11913 dsll $tempreg,16
11914 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11915 If we have a base register, we want
11916 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11917 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11918 dsll $tempreg,16
11919 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11920 dsll $tempreg,16
11921 daddu $tempreg,$tempreg,$breg
11922 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11923
11924 For GP relative symbols in 64bit address space we can use
11925 the same sequence as in 32bit address space. */
11926 if (HAVE_64BIT_SYMBOLS)
11927 {
11928 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11929 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11930 {
11931 relax_start (offset_expr.X_add_symbol);
11932 if (breg == 0)
11933 {
11934 macro_build (&offset_expr, s, fmt, op[0],
11935 BFD_RELOC_GPREL16, mips_gp_register);
11936 }
11937 else
11938 {
11939 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11940 tempreg, breg, mips_gp_register);
11941 macro_build (&offset_expr, s, fmt, op[0],
11942 BFD_RELOC_GPREL16, tempreg);
11943 }
11944 relax_switch ();
11945 }
11946
11947 if (used_at == 0 && mips_opts.at)
11948 {
11949 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11950 BFD_RELOC_MIPS_HIGHEST);
11951 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11952 BFD_RELOC_HI16_S);
11953 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11954 tempreg, BFD_RELOC_MIPS_HIGHER);
11955 if (breg != 0)
11956 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
11957 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11958 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11959 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
11960 tempreg);
11961 used_at = 1;
11962 }
11963 else
11964 {
11965 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11966 BFD_RELOC_MIPS_HIGHEST);
11967 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11968 tempreg, BFD_RELOC_MIPS_HIGHER);
11969 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11970 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11971 tempreg, BFD_RELOC_HI16_S);
11972 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11973 if (breg != 0)
11974 macro_build (NULL, "daddu", "d,v,t",
11975 tempreg, tempreg, breg);
11976 macro_build (&offset_expr, s, fmt, op[0],
11977 BFD_RELOC_LO16, tempreg);
11978 }
11979
11980 if (mips_relax.sequence)
11981 relax_end ();
11982 break;
11983 }
11984
11985 if (breg == 0)
11986 {
11987 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11988 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11989 {
11990 relax_start (offset_expr.X_add_symbol);
11991 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
11992 mips_gp_register);
11993 relax_switch ();
11994 }
11995 macro_build_lui (&offset_expr, tempreg);
11996 macro_build (&offset_expr, s, fmt, op[0],
11997 BFD_RELOC_LO16, tempreg);
11998 if (mips_relax.sequence)
11999 relax_end ();
12000 }
12001 else
12002 {
12003 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12004 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12005 {
12006 relax_start (offset_expr.X_add_symbol);
12007 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12008 tempreg, breg, mips_gp_register);
12009 macro_build (&offset_expr, s, fmt, op[0],
12010 BFD_RELOC_GPREL16, tempreg);
12011 relax_switch ();
12012 }
12013 macro_build_lui (&offset_expr, tempreg);
12014 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12015 tempreg, tempreg, breg);
12016 macro_build (&offset_expr, s, fmt, op[0],
12017 BFD_RELOC_LO16, tempreg);
12018 if (mips_relax.sequence)
12019 relax_end ();
12020 }
12021 }
12022 else if (!mips_big_got)
12023 {
12024 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
12025
12026 /* If this is a reference to an external symbol, we want
12027 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12028 nop
12029 <op> op[0],0($tempreg)
12030 Otherwise we want
12031 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12032 nop
12033 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12034 <op> op[0],0($tempreg)
12035
12036 For NewABI, we want
12037 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12038 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
12039
12040 If there is a base register, we add it to $tempreg before
12041 the <op>. If there is a constant, we stick it in the
12042 <op> instruction. We don't handle constants larger than
12043 16 bits, because we have no way to load the upper 16 bits
12044 (actually, we could handle them for the subset of cases
12045 in which we are not using $at). */
12046 gas_assert (offset_expr.X_op == O_symbol);
12047 if (HAVE_NEWABI)
12048 {
12049 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12050 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12051 if (breg != 0)
12052 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12053 tempreg, tempreg, breg);
12054 macro_build (&offset_expr, s, fmt, op[0],
12055 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12056 break;
12057 }
12058 expr1.X_add_number = offset_expr.X_add_number;
12059 offset_expr.X_add_number = 0;
12060 if (expr1.X_add_number < -0x8000
12061 || expr1.X_add_number >= 0x8000)
12062 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12063 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12064 lw_reloc_type, mips_gp_register);
12065 load_delay_nop ();
12066 relax_start (offset_expr.X_add_symbol);
12067 relax_switch ();
12068 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12069 tempreg, BFD_RELOC_LO16);
12070 relax_end ();
12071 if (breg != 0)
12072 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12073 tempreg, tempreg, breg);
12074 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12075 }
12076 else if (mips_big_got && !HAVE_NEWABI)
12077 {
12078 int gpdelay;
12079
12080 /* If this is a reference to an external symbol, we want
12081 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12082 addu $tempreg,$tempreg,$gp
12083 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12084 <op> op[0],0($tempreg)
12085 Otherwise we want
12086 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12087 nop
12088 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12089 <op> op[0],0($tempreg)
12090 If there is a base register, we add it to $tempreg before
12091 the <op>. If there is a constant, we stick it in the
12092 <op> instruction. We don't handle constants larger than
12093 16 bits, because we have no way to load the upper 16 bits
12094 (actually, we could handle them for the subset of cases
12095 in which we are not using $at). */
12096 gas_assert (offset_expr.X_op == O_symbol);
12097 expr1.X_add_number = offset_expr.X_add_number;
12098 offset_expr.X_add_number = 0;
12099 if (expr1.X_add_number < -0x8000
12100 || expr1.X_add_number >= 0x8000)
12101 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12102 gpdelay = reg_needs_delay (mips_gp_register);
12103 relax_start (offset_expr.X_add_symbol);
12104 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12105 BFD_RELOC_MIPS_GOT_HI16);
12106 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12107 mips_gp_register);
12108 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12109 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12110 relax_switch ();
12111 if (gpdelay)
12112 macro_build (NULL, "nop", "");
12113 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12114 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12115 load_delay_nop ();
12116 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12117 tempreg, BFD_RELOC_LO16);
12118 relax_end ();
12119
12120 if (breg != 0)
12121 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12122 tempreg, tempreg, breg);
12123 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12124 }
12125 else if (mips_big_got && HAVE_NEWABI)
12126 {
12127 /* If this is a reference to an external symbol, we want
12128 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12129 add $tempreg,$tempreg,$gp
12130 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12131 <op> op[0],<ofst>($tempreg)
12132 Otherwise, for local symbols, we want:
12133 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12134 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
12135 gas_assert (offset_expr.X_op == O_symbol);
12136 expr1.X_add_number = offset_expr.X_add_number;
12137 offset_expr.X_add_number = 0;
12138 if (expr1.X_add_number < -0x8000
12139 || expr1.X_add_number >= 0x8000)
12140 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12141 relax_start (offset_expr.X_add_symbol);
12142 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12143 BFD_RELOC_MIPS_GOT_HI16);
12144 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12145 mips_gp_register);
12146 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12147 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12148 if (breg != 0)
12149 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12150 tempreg, tempreg, breg);
12151 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12152
12153 relax_switch ();
12154 offset_expr.X_add_number = expr1.X_add_number;
12155 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12156 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12157 if (breg != 0)
12158 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12159 tempreg, tempreg, breg);
12160 macro_build (&offset_expr, s, fmt, op[0],
12161 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12162 relax_end ();
12163 }
12164 else
12165 abort ();
12166
12167 break;
12168
12169 case M_JRADDIUSP:
12170 gas_assert (mips_opts.micromips);
12171 gas_assert (mips_opts.insn32);
12172 start_noreorder ();
12173 macro_build (NULL, "jr", "s", RA);
12174 expr1.X_add_number = op[0] << 2;
12175 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12176 end_noreorder ();
12177 break;
12178
12179 case M_JRC:
12180 gas_assert (mips_opts.micromips);
12181 gas_assert (mips_opts.insn32);
12182 macro_build (NULL, "jr", "s", op[0]);
12183 if (mips_opts.noreorder)
12184 macro_build (NULL, "nop", "");
12185 break;
12186
12187 case M_LI:
12188 case M_LI_S:
12189 load_register (op[0], &imm_expr, 0);
12190 break;
12191
12192 case M_DLI:
12193 load_register (op[0], &imm_expr, 1);
12194 break;
12195
12196 case M_LI_SS:
12197 if (imm_expr.X_op == O_constant)
12198 {
12199 used_at = 1;
12200 load_register (AT, &imm_expr, 0);
12201 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12202 break;
12203 }
12204 else
12205 {
12206 gas_assert (imm_expr.X_op == O_absent
12207 && offset_expr.X_op == O_symbol
12208 && strcmp (segment_name (S_GET_SEGMENT
12209 (offset_expr.X_add_symbol)),
12210 ".lit4") == 0
12211 && offset_expr.X_add_number == 0);
12212 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12213 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12214 break;
12215 }
12216
12217 case M_LI_D:
12218 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12219 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12220 order 32 bits of the value and the low order 32 bits are either
12221 zero or in OFFSET_EXPR. */
12222 if (imm_expr.X_op == O_constant)
12223 {
12224 if (GPR_SIZE == 64)
12225 load_register (op[0], &imm_expr, 1);
12226 else
12227 {
12228 int hreg, lreg;
12229
12230 if (target_big_endian)
12231 {
12232 hreg = op[0];
12233 lreg = op[0] + 1;
12234 }
12235 else
12236 {
12237 hreg = op[0] + 1;
12238 lreg = op[0];
12239 }
12240
12241 if (hreg <= 31)
12242 load_register (hreg, &imm_expr, 0);
12243 if (lreg <= 31)
12244 {
12245 if (offset_expr.X_op == O_absent)
12246 move_register (lreg, 0);
12247 else
12248 {
12249 gas_assert (offset_expr.X_op == O_constant);
12250 load_register (lreg, &offset_expr, 0);
12251 }
12252 }
12253 }
12254 break;
12255 }
12256 gas_assert (imm_expr.X_op == O_absent);
12257
12258 /* We know that sym is in the .rdata section. First we get the
12259 upper 16 bits of the address. */
12260 if (mips_pic == NO_PIC)
12261 {
12262 macro_build_lui (&offset_expr, AT);
12263 used_at = 1;
12264 }
12265 else
12266 {
12267 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12268 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12269 used_at = 1;
12270 }
12271
12272 /* Now we load the register(s). */
12273 if (GPR_SIZE == 64)
12274 {
12275 used_at = 1;
12276 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12277 BFD_RELOC_LO16, AT);
12278 }
12279 else
12280 {
12281 used_at = 1;
12282 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12283 BFD_RELOC_LO16, AT);
12284 if (op[0] != RA)
12285 {
12286 /* FIXME: How in the world do we deal with the possible
12287 overflow here? */
12288 offset_expr.X_add_number += 4;
12289 macro_build (&offset_expr, "lw", "t,o(b)",
12290 op[0] + 1, BFD_RELOC_LO16, AT);
12291 }
12292 }
12293 break;
12294
12295 case M_LI_DD:
12296 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12297 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12298 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12299 the value and the low order 32 bits are either zero or in
12300 OFFSET_EXPR. */
12301 if (imm_expr.X_op == O_constant)
12302 {
12303 used_at = 1;
12304 load_register (AT, &imm_expr, FPR_SIZE == 64);
12305 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12306 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12307 else
12308 {
12309 if (ISA_HAS_MXHC1 (mips_opts.isa))
12310 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12311 else if (FPR_SIZE != 32)
12312 as_bad (_("Unable to generate `%s' compliant code "
12313 "without mthc1"),
12314 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12315 else
12316 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12317 if (offset_expr.X_op == O_absent)
12318 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12319 else
12320 {
12321 gas_assert (offset_expr.X_op == O_constant);
12322 load_register (AT, &offset_expr, 0);
12323 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12324 }
12325 }
12326 break;
12327 }
12328
12329 gas_assert (imm_expr.X_op == O_absent
12330 && offset_expr.X_op == O_symbol
12331 && offset_expr.X_add_number == 0);
12332 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12333 if (strcmp (s, ".lit8") == 0)
12334 {
12335 op[2] = mips_gp_register;
12336 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12337 offset_reloc[1] = BFD_RELOC_UNUSED;
12338 offset_reloc[2] = BFD_RELOC_UNUSED;
12339 }
12340 else
12341 {
12342 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12343 used_at = 1;
12344 if (mips_pic != NO_PIC)
12345 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12346 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12347 else
12348 {
12349 /* FIXME: This won't work for a 64 bit address. */
12350 macro_build_lui (&offset_expr, AT);
12351 }
12352
12353 op[2] = AT;
12354 offset_reloc[0] = BFD_RELOC_LO16;
12355 offset_reloc[1] = BFD_RELOC_UNUSED;
12356 offset_reloc[2] = BFD_RELOC_UNUSED;
12357 }
12358 align = 8;
12359 /* Fall through */
12360
12361 case M_L_DAB:
12362 /*
12363 * The MIPS assembler seems to check for X_add_number not
12364 * being double aligned and generating:
12365 * lui at,%hi(foo+1)
12366 * addu at,at,v1
12367 * addiu at,at,%lo(foo+1)
12368 * lwc1 f2,0(at)
12369 * lwc1 f3,4(at)
12370 * But, the resulting address is the same after relocation so why
12371 * generate the extra instruction?
12372 */
12373 /* Itbl support may require additional care here. */
12374 coproc = 1;
12375 fmt = "T,o(b)";
12376 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12377 {
12378 s = "ldc1";
12379 goto ld_st;
12380 }
12381 s = "lwc1";
12382 goto ldd_std;
12383
12384 case M_S_DAB:
12385 gas_assert (!mips_opts.micromips);
12386 /* Itbl support may require additional care here. */
12387 coproc = 1;
12388 fmt = "T,o(b)";
12389 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12390 {
12391 s = "sdc1";
12392 goto ld_st;
12393 }
12394 s = "swc1";
12395 goto ldd_std;
12396
12397 case M_LQ_AB:
12398 fmt = "t,o(b)";
12399 s = "lq";
12400 goto ld;
12401
12402 case M_SQ_AB:
12403 fmt = "t,o(b)";
12404 s = "sq";
12405 goto ld_st;
12406
12407 case M_LD_AB:
12408 fmt = "t,o(b)";
12409 if (GPR_SIZE == 64)
12410 {
12411 s = "ld";
12412 goto ld;
12413 }
12414 s = "lw";
12415 goto ldd_std;
12416
12417 case M_SD_AB:
12418 fmt = "t,o(b)";
12419 if (GPR_SIZE == 64)
12420 {
12421 s = "sd";
12422 goto ld_st;
12423 }
12424 s = "sw";
12425
12426 ldd_std:
12427 /* Even on a big endian machine $fn comes before $fn+1. We have
12428 to adjust when loading from memory. We set coproc if we must
12429 load $fn+1 first. */
12430 /* Itbl support may require additional care here. */
12431 if (!target_big_endian)
12432 coproc = 0;
12433
12434 breg = op[2];
12435 if (small_offset_p (0, align, 16))
12436 {
12437 ep = &offset_expr;
12438 if (!small_offset_p (4, align, 16))
12439 {
12440 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12441 -1, offset_reloc[0], offset_reloc[1],
12442 offset_reloc[2]);
12443 expr1.X_add_number = 0;
12444 ep = &expr1;
12445 breg = AT;
12446 used_at = 1;
12447 offset_reloc[0] = BFD_RELOC_LO16;
12448 offset_reloc[1] = BFD_RELOC_UNUSED;
12449 offset_reloc[2] = BFD_RELOC_UNUSED;
12450 }
12451 if (strcmp (s, "lw") == 0 && op[0] == breg)
12452 {
12453 ep->X_add_number += 4;
12454 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12455 offset_reloc[1], offset_reloc[2], breg);
12456 ep->X_add_number -= 4;
12457 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12458 offset_reloc[1], offset_reloc[2], breg);
12459 }
12460 else
12461 {
12462 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12463 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12464 breg);
12465 ep->X_add_number += 4;
12466 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12467 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12468 breg);
12469 }
12470 break;
12471 }
12472
12473 if (offset_expr.X_op != O_symbol
12474 && offset_expr.X_op != O_constant)
12475 {
12476 as_bad (_("expression too complex"));
12477 offset_expr.X_op = O_constant;
12478 }
12479
12480 if (HAVE_32BIT_ADDRESSES
12481 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12482 {
12483 char value [32];
12484
12485 sprintf_vma (value, offset_expr.X_add_number);
12486 as_bad (_("number (0x%s) larger than 32 bits"), value);
12487 }
12488
12489 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12490 {
12491 /* If this is a reference to a GP relative symbol, we want
12492 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12493 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12494 If we have a base register, we use this
12495 addu $at,$breg,$gp
12496 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12497 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12498 If this is not a GP relative symbol, we want
12499 lui $at,<sym> (BFD_RELOC_HI16_S)
12500 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12501 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12502 If there is a base register, we add it to $at after the
12503 lui instruction. If there is a constant, we always use
12504 the last case. */
12505 if (offset_expr.X_op == O_symbol
12506 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12507 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12508 {
12509 relax_start (offset_expr.X_add_symbol);
12510 if (breg == 0)
12511 {
12512 tempreg = mips_gp_register;
12513 }
12514 else
12515 {
12516 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12517 AT, breg, mips_gp_register);
12518 tempreg = AT;
12519 used_at = 1;
12520 }
12521
12522 /* Itbl support may require additional care here. */
12523 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12524 BFD_RELOC_GPREL16, tempreg);
12525 offset_expr.X_add_number += 4;
12526
12527 /* Set mips_optimize to 2 to avoid inserting an
12528 undesired nop. */
12529 hold_mips_optimize = mips_optimize;
12530 mips_optimize = 2;
12531 /* Itbl support may require additional care here. */
12532 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12533 BFD_RELOC_GPREL16, tempreg);
12534 mips_optimize = hold_mips_optimize;
12535
12536 relax_switch ();
12537
12538 offset_expr.X_add_number -= 4;
12539 }
12540 used_at = 1;
12541 if (offset_high_part (offset_expr.X_add_number, 16)
12542 != offset_high_part (offset_expr.X_add_number + 4, 16))
12543 {
12544 load_address (AT, &offset_expr, &used_at);
12545 offset_expr.X_op = O_constant;
12546 offset_expr.X_add_number = 0;
12547 }
12548 else
12549 macro_build_lui (&offset_expr, AT);
12550 if (breg != 0)
12551 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12552 /* Itbl support may require additional care here. */
12553 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12554 BFD_RELOC_LO16, AT);
12555 /* FIXME: How do we handle overflow here? */
12556 offset_expr.X_add_number += 4;
12557 /* Itbl support may require additional care here. */
12558 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12559 BFD_RELOC_LO16, AT);
12560 if (mips_relax.sequence)
12561 relax_end ();
12562 }
12563 else if (!mips_big_got)
12564 {
12565 /* If this is a reference to an external symbol, we want
12566 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12567 nop
12568 <op> op[0],0($at)
12569 <op> op[0]+1,4($at)
12570 Otherwise we want
12571 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12572 nop
12573 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12574 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12575 If there is a base register we add it to $at before the
12576 lwc1 instructions. If there is a constant we include it
12577 in the lwc1 instructions. */
12578 used_at = 1;
12579 expr1.X_add_number = offset_expr.X_add_number;
12580 if (expr1.X_add_number < -0x8000
12581 || expr1.X_add_number >= 0x8000 - 4)
12582 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12583 load_got_offset (AT, &offset_expr);
12584 load_delay_nop ();
12585 if (breg != 0)
12586 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12587
12588 /* Set mips_optimize to 2 to avoid inserting an undesired
12589 nop. */
12590 hold_mips_optimize = mips_optimize;
12591 mips_optimize = 2;
12592
12593 /* Itbl support may require additional care here. */
12594 relax_start (offset_expr.X_add_symbol);
12595 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12596 BFD_RELOC_LO16, AT);
12597 expr1.X_add_number += 4;
12598 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12599 BFD_RELOC_LO16, AT);
12600 relax_switch ();
12601 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12602 BFD_RELOC_LO16, AT);
12603 offset_expr.X_add_number += 4;
12604 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12605 BFD_RELOC_LO16, AT);
12606 relax_end ();
12607
12608 mips_optimize = hold_mips_optimize;
12609 }
12610 else if (mips_big_got)
12611 {
12612 int gpdelay;
12613
12614 /* If this is a reference to an external symbol, we want
12615 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12616 addu $at,$at,$gp
12617 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12618 nop
12619 <op> op[0],0($at)
12620 <op> op[0]+1,4($at)
12621 Otherwise we want
12622 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12623 nop
12624 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12625 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12626 If there is a base register we add it to $at before the
12627 lwc1 instructions. If there is a constant we include it
12628 in the lwc1 instructions. */
12629 used_at = 1;
12630 expr1.X_add_number = offset_expr.X_add_number;
12631 offset_expr.X_add_number = 0;
12632 if (expr1.X_add_number < -0x8000
12633 || expr1.X_add_number >= 0x8000 - 4)
12634 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12635 gpdelay = reg_needs_delay (mips_gp_register);
12636 relax_start (offset_expr.X_add_symbol);
12637 macro_build (&offset_expr, "lui", LUI_FMT,
12638 AT, BFD_RELOC_MIPS_GOT_HI16);
12639 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12640 AT, AT, mips_gp_register);
12641 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12642 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12643 load_delay_nop ();
12644 if (breg != 0)
12645 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12646 /* Itbl support may require additional care here. */
12647 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12648 BFD_RELOC_LO16, AT);
12649 expr1.X_add_number += 4;
12650
12651 /* Set mips_optimize to 2 to avoid inserting an undesired
12652 nop. */
12653 hold_mips_optimize = mips_optimize;
12654 mips_optimize = 2;
12655 /* Itbl support may require additional care here. */
12656 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12657 BFD_RELOC_LO16, AT);
12658 mips_optimize = hold_mips_optimize;
12659 expr1.X_add_number -= 4;
12660
12661 relax_switch ();
12662 offset_expr.X_add_number = expr1.X_add_number;
12663 if (gpdelay)
12664 macro_build (NULL, "nop", "");
12665 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12666 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12667 load_delay_nop ();
12668 if (breg != 0)
12669 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12670 /* Itbl support may require additional care here. */
12671 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12672 BFD_RELOC_LO16, AT);
12673 offset_expr.X_add_number += 4;
12674
12675 /* Set mips_optimize to 2 to avoid inserting an undesired
12676 nop. */
12677 hold_mips_optimize = mips_optimize;
12678 mips_optimize = 2;
12679 /* Itbl support may require additional care here. */
12680 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12681 BFD_RELOC_LO16, AT);
12682 mips_optimize = hold_mips_optimize;
12683 relax_end ();
12684 }
12685 else
12686 abort ();
12687
12688 break;
12689
12690 case M_SAA_AB:
12691 s = "saa";
12692 goto saa_saad;
12693 case M_SAAD_AB:
12694 s = "saad";
12695 saa_saad:
12696 gas_assert (!mips_opts.micromips);
12697 offbits = 0;
12698 fmt = "t,(b)";
12699 goto ld_st;
12700
12701 /* New code added to support COPZ instructions.
12702 This code builds table entries out of the macros in mip_opcodes.
12703 R4000 uses interlocks to handle coproc delays.
12704 Other chips (like the R3000) require nops to be inserted for delays.
12705
12706 FIXME: Currently, we require that the user handle delays.
12707 In order to fill delay slots for non-interlocked chips,
12708 we must have a way to specify delays based on the coprocessor.
12709 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12710 What are the side-effects of the cop instruction?
12711 What cache support might we have and what are its effects?
12712 Both coprocessor & memory require delays. how long???
12713 What registers are read/set/modified?
12714
12715 If an itbl is provided to interpret cop instructions,
12716 this knowledge can be encoded in the itbl spec. */
12717
12718 case M_COP0:
12719 s = "c0";
12720 goto copz;
12721 case M_COP1:
12722 s = "c1";
12723 goto copz;
12724 case M_COP2:
12725 s = "c2";
12726 goto copz;
12727 case M_COP3:
12728 s = "c3";
12729 copz:
12730 gas_assert (!mips_opts.micromips);
12731 /* For now we just do C (same as Cz). The parameter will be
12732 stored in insn_opcode by mips_ip. */
12733 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12734 break;
12735
12736 case M_MOVE:
12737 move_register (op[0], op[1]);
12738 break;
12739
12740 case M_MOVEP:
12741 gas_assert (mips_opts.micromips);
12742 gas_assert (mips_opts.insn32);
12743 move_register (micromips_to_32_reg_h_map1[op[0]],
12744 micromips_to_32_reg_m_map[op[1]]);
12745 move_register (micromips_to_32_reg_h_map2[op[0]],
12746 micromips_to_32_reg_n_map[op[2]]);
12747 break;
12748
12749 case M_DMUL:
12750 dbl = 1;
12751 /* Fall through. */
12752 case M_MUL:
12753 if (mips_opts.arch == CPU_R5900)
12754 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12755 op[2]);
12756 else
12757 {
12758 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12759 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12760 }
12761 break;
12762
12763 case M_DMUL_I:
12764 dbl = 1;
12765 /* Fall through. */
12766 case M_MUL_I:
12767 /* The MIPS assembler some times generates shifts and adds. I'm
12768 not trying to be that fancy. GCC should do this for us
12769 anyway. */
12770 used_at = 1;
12771 load_register (AT, &imm_expr, dbl);
12772 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12773 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12774 break;
12775
12776 case M_DMULO_I:
12777 dbl = 1;
12778 /* Fall through. */
12779 case M_MULO_I:
12780 imm = 1;
12781 goto do_mulo;
12782
12783 case M_DMULO:
12784 dbl = 1;
12785 /* Fall through. */
12786 case M_MULO:
12787 do_mulo:
12788 start_noreorder ();
12789 used_at = 1;
12790 if (imm)
12791 load_register (AT, &imm_expr, dbl);
12792 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12793 op[1], imm ? AT : op[2]);
12794 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12795 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12796 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12797 if (mips_trap)
12798 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12799 else
12800 {
12801 if (mips_opts.micromips)
12802 micromips_label_expr (&label_expr);
12803 else
12804 label_expr.X_add_number = 8;
12805 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12806 macro_build (NULL, "nop", "");
12807 macro_build (NULL, "break", BRK_FMT, 6);
12808 if (mips_opts.micromips)
12809 micromips_add_label ();
12810 }
12811 end_noreorder ();
12812 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12813 break;
12814
12815 case M_DMULOU_I:
12816 dbl = 1;
12817 /* Fall through. */
12818 case M_MULOU_I:
12819 imm = 1;
12820 goto do_mulou;
12821
12822 case M_DMULOU:
12823 dbl = 1;
12824 /* Fall through. */
12825 case M_MULOU:
12826 do_mulou:
12827 start_noreorder ();
12828 used_at = 1;
12829 if (imm)
12830 load_register (AT, &imm_expr, dbl);
12831 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12832 op[1], imm ? AT : op[2]);
12833 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12834 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12835 if (mips_trap)
12836 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12837 else
12838 {
12839 if (mips_opts.micromips)
12840 micromips_label_expr (&label_expr);
12841 else
12842 label_expr.X_add_number = 8;
12843 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12844 macro_build (NULL, "nop", "");
12845 macro_build (NULL, "break", BRK_FMT, 6);
12846 if (mips_opts.micromips)
12847 micromips_add_label ();
12848 }
12849 end_noreorder ();
12850 break;
12851
12852 case M_DROL:
12853 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12854 {
12855 if (op[0] == op[1])
12856 {
12857 tempreg = AT;
12858 used_at = 1;
12859 }
12860 else
12861 tempreg = op[0];
12862 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12863 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12864 break;
12865 }
12866 used_at = 1;
12867 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12868 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12869 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12870 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12871 break;
12872
12873 case M_ROL:
12874 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12875 {
12876 if (op[0] == op[1])
12877 {
12878 tempreg = AT;
12879 used_at = 1;
12880 }
12881 else
12882 tempreg = op[0];
12883 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12884 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12885 break;
12886 }
12887 used_at = 1;
12888 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12889 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12890 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12891 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12892 break;
12893
12894 case M_DROL_I:
12895 {
12896 unsigned int rot;
12897 const char *l;
12898 const char *rr;
12899
12900 rot = imm_expr.X_add_number & 0x3f;
12901 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12902 {
12903 rot = (64 - rot) & 0x3f;
12904 if (rot >= 32)
12905 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12906 else
12907 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12908 break;
12909 }
12910 if (rot == 0)
12911 {
12912 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12913 break;
12914 }
12915 l = (rot < 0x20) ? "dsll" : "dsll32";
12916 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12917 rot &= 0x1f;
12918 used_at = 1;
12919 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12920 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12921 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12922 }
12923 break;
12924
12925 case M_ROL_I:
12926 {
12927 unsigned int rot;
12928
12929 rot = imm_expr.X_add_number & 0x1f;
12930 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12931 {
12932 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12933 (32 - rot) & 0x1f);
12934 break;
12935 }
12936 if (rot == 0)
12937 {
12938 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12939 break;
12940 }
12941 used_at = 1;
12942 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12943 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12944 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12945 }
12946 break;
12947
12948 case M_DROR:
12949 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12950 {
12951 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12952 break;
12953 }
12954 used_at = 1;
12955 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12956 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12957 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12958 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12959 break;
12960
12961 case M_ROR:
12962 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12963 {
12964 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
12965 break;
12966 }
12967 used_at = 1;
12968 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12969 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12970 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12971 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12972 break;
12973
12974 case M_DROR_I:
12975 {
12976 unsigned int rot;
12977 const char *l;
12978 const char *rr;
12979
12980 rot = imm_expr.X_add_number & 0x3f;
12981 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12982 {
12983 if (rot >= 32)
12984 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12985 else
12986 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12987 break;
12988 }
12989 if (rot == 0)
12990 {
12991 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12992 break;
12993 }
12994 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
12995 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12996 rot &= 0x1f;
12997 used_at = 1;
12998 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12999 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13000 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13001 }
13002 break;
13003
13004 case M_ROR_I:
13005 {
13006 unsigned int rot;
13007
13008 rot = imm_expr.X_add_number & 0x1f;
13009 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13010 {
13011 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
13012 break;
13013 }
13014 if (rot == 0)
13015 {
13016 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
13017 break;
13018 }
13019 used_at = 1;
13020 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
13021 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13022 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13023 }
13024 break;
13025
13026 case M_SEQ:
13027 if (op[1] == 0)
13028 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
13029 else if (op[2] == 0)
13030 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13031 else
13032 {
13033 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13034 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13035 }
13036 break;
13037
13038 case M_SEQ_I:
13039 if (imm_expr.X_add_number == 0)
13040 {
13041 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13042 break;
13043 }
13044 if (op[1] == 0)
13045 {
13046 as_warn (_("instruction %s: result is always false"),
13047 ip->insn_mo->name);
13048 move_register (op[0], 0);
13049 break;
13050 }
13051 if (CPU_HAS_SEQ (mips_opts.arch)
13052 && -512 <= imm_expr.X_add_number
13053 && imm_expr.X_add_number < 512)
13054 {
13055 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
13056 (int) imm_expr.X_add_number);
13057 break;
13058 }
13059 if (imm_expr.X_add_number >= 0
13060 && imm_expr.X_add_number < 0x10000)
13061 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
13062 else if (imm_expr.X_add_number > -0x8000
13063 && imm_expr.X_add_number < 0)
13064 {
13065 imm_expr.X_add_number = -imm_expr.X_add_number;
13066 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13067 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13068 }
13069 else if (CPU_HAS_SEQ (mips_opts.arch))
13070 {
13071 used_at = 1;
13072 load_register (AT, &imm_expr, GPR_SIZE == 64);
13073 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
13074 break;
13075 }
13076 else
13077 {
13078 load_register (AT, &imm_expr, GPR_SIZE == 64);
13079 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13080 used_at = 1;
13081 }
13082 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13083 break;
13084
13085 case M_SGE: /* X >= Y <==> not (X < Y) */
13086 s = "slt";
13087 goto sge;
13088 case M_SGEU:
13089 s = "sltu";
13090 sge:
13091 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13092 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13093 break;
13094
13095 case M_SGE_I: /* X >= I <==> not (X < I) */
13096 case M_SGEU_I:
13097 if (imm_expr.X_add_number >= -0x8000
13098 && imm_expr.X_add_number < 0x8000)
13099 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13100 op[0], op[1], BFD_RELOC_LO16);
13101 else
13102 {
13103 load_register (AT, &imm_expr, GPR_SIZE == 64);
13104 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
13105 op[0], op[1], AT);
13106 used_at = 1;
13107 }
13108 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13109 break;
13110
13111 case M_SGT: /* X > Y <==> Y < X */
13112 s = "slt";
13113 goto sgt;
13114 case M_SGTU:
13115 s = "sltu";
13116 sgt:
13117 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13118 break;
13119
13120 case M_SGT_I: /* X > I <==> I < X */
13121 s = "slt";
13122 goto sgti;
13123 case M_SGTU_I:
13124 s = "sltu";
13125 sgti:
13126 used_at = 1;
13127 load_register (AT, &imm_expr, GPR_SIZE == 64);
13128 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13129 break;
13130
13131 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
13132 s = "slt";
13133 goto sle;
13134 case M_SLEU:
13135 s = "sltu";
13136 sle:
13137 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13138 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13139 break;
13140
13141 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
13142 s = "slt";
13143 goto slei;
13144 case M_SLEU_I:
13145 s = "sltu";
13146 slei:
13147 used_at = 1;
13148 load_register (AT, &imm_expr, GPR_SIZE == 64);
13149 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13150 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13151 break;
13152
13153 case M_SLT_I:
13154 if (imm_expr.X_add_number >= -0x8000
13155 && imm_expr.X_add_number < 0x8000)
13156 {
13157 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13158 BFD_RELOC_LO16);
13159 break;
13160 }
13161 used_at = 1;
13162 load_register (AT, &imm_expr, GPR_SIZE == 64);
13163 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
13164 break;
13165
13166 case M_SLTU_I:
13167 if (imm_expr.X_add_number >= -0x8000
13168 && imm_expr.X_add_number < 0x8000)
13169 {
13170 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
13171 BFD_RELOC_LO16);
13172 break;
13173 }
13174 used_at = 1;
13175 load_register (AT, &imm_expr, GPR_SIZE == 64);
13176 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
13177 break;
13178
13179 case M_SNE:
13180 if (op[1] == 0)
13181 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13182 else if (op[2] == 0)
13183 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13184 else
13185 {
13186 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13187 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13188 }
13189 break;
13190
13191 case M_SNE_I:
13192 if (imm_expr.X_add_number == 0)
13193 {
13194 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13195 break;
13196 }
13197 if (op[1] == 0)
13198 {
13199 as_warn (_("instruction %s: result is always true"),
13200 ip->insn_mo->name);
13201 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13202 op[0], 0, BFD_RELOC_LO16);
13203 break;
13204 }
13205 if (CPU_HAS_SEQ (mips_opts.arch)
13206 && -512 <= imm_expr.X_add_number
13207 && imm_expr.X_add_number < 512)
13208 {
13209 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13210 (int) imm_expr.X_add_number);
13211 break;
13212 }
13213 if (imm_expr.X_add_number >= 0
13214 && imm_expr.X_add_number < 0x10000)
13215 {
13216 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13217 BFD_RELOC_LO16);
13218 }
13219 else if (imm_expr.X_add_number > -0x8000
13220 && imm_expr.X_add_number < 0)
13221 {
13222 imm_expr.X_add_number = -imm_expr.X_add_number;
13223 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13224 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13225 }
13226 else if (CPU_HAS_SEQ (mips_opts.arch))
13227 {
13228 used_at = 1;
13229 load_register (AT, &imm_expr, GPR_SIZE == 64);
13230 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13231 break;
13232 }
13233 else
13234 {
13235 load_register (AT, &imm_expr, GPR_SIZE == 64);
13236 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13237 used_at = 1;
13238 }
13239 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13240 break;
13241
13242 case M_SUB_I:
13243 s = "addi";
13244 s2 = "sub";
13245 goto do_subi;
13246 case M_SUBU_I:
13247 s = "addiu";
13248 s2 = "subu";
13249 goto do_subi;
13250 case M_DSUB_I:
13251 dbl = 1;
13252 s = "daddi";
13253 s2 = "dsub";
13254 if (!mips_opts.micromips)
13255 goto do_subi;
13256 if (imm_expr.X_add_number > -0x200
13257 && imm_expr.X_add_number <= 0x200)
13258 {
13259 macro_build (NULL, s, "t,r,.", op[0], op[1],
13260 (int) -imm_expr.X_add_number);
13261 break;
13262 }
13263 goto do_subi_i;
13264 case M_DSUBU_I:
13265 dbl = 1;
13266 s = "daddiu";
13267 s2 = "dsubu";
13268 do_subi:
13269 if (imm_expr.X_add_number > -0x8000
13270 && imm_expr.X_add_number <= 0x8000)
13271 {
13272 imm_expr.X_add_number = -imm_expr.X_add_number;
13273 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13274 break;
13275 }
13276 do_subi_i:
13277 used_at = 1;
13278 load_register (AT, &imm_expr, dbl);
13279 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13280 break;
13281
13282 case M_TEQ_I:
13283 s = "teq";
13284 goto trap;
13285 case M_TGE_I:
13286 s = "tge";
13287 goto trap;
13288 case M_TGEU_I:
13289 s = "tgeu";
13290 goto trap;
13291 case M_TLT_I:
13292 s = "tlt";
13293 goto trap;
13294 case M_TLTU_I:
13295 s = "tltu";
13296 goto trap;
13297 case M_TNE_I:
13298 s = "tne";
13299 trap:
13300 used_at = 1;
13301 load_register (AT, &imm_expr, GPR_SIZE == 64);
13302 macro_build (NULL, s, "s,t", op[0], AT);
13303 break;
13304
13305 case M_TRUNCWS:
13306 case M_TRUNCWD:
13307 gas_assert (!mips_opts.micromips);
13308 gas_assert (mips_opts.isa == ISA_MIPS1);
13309 used_at = 1;
13310
13311 /*
13312 * Is the double cfc1 instruction a bug in the mips assembler;
13313 * or is there a reason for it?
13314 */
13315 start_noreorder ();
13316 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13317 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13318 macro_build (NULL, "nop", "");
13319 expr1.X_add_number = 3;
13320 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13321 expr1.X_add_number = 2;
13322 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13323 macro_build (NULL, "ctc1", "t,G", AT, RA);
13324 macro_build (NULL, "nop", "");
13325 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13326 op[0], op[1]);
13327 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13328 macro_build (NULL, "nop", "");
13329 end_noreorder ();
13330 break;
13331
13332 case M_ULH_AB:
13333 s = "lb";
13334 s2 = "lbu";
13335 off = 1;
13336 goto uld_st;
13337 case M_ULHU_AB:
13338 s = "lbu";
13339 s2 = "lbu";
13340 off = 1;
13341 goto uld_st;
13342 case M_ULW_AB:
13343 s = "lwl";
13344 s2 = "lwr";
13345 offbits = (mips_opts.micromips ? 12 : 16);
13346 off = 3;
13347 goto uld_st;
13348 case M_ULD_AB:
13349 s = "ldl";
13350 s2 = "ldr";
13351 offbits = (mips_opts.micromips ? 12 : 16);
13352 off = 7;
13353 goto uld_st;
13354 case M_USH_AB:
13355 s = "sb";
13356 s2 = "sb";
13357 off = 1;
13358 ust = 1;
13359 goto uld_st;
13360 case M_USW_AB:
13361 s = "swl";
13362 s2 = "swr";
13363 offbits = (mips_opts.micromips ? 12 : 16);
13364 off = 3;
13365 ust = 1;
13366 goto uld_st;
13367 case M_USD_AB:
13368 s = "sdl";
13369 s2 = "sdr";
13370 offbits = (mips_opts.micromips ? 12 : 16);
13371 off = 7;
13372 ust = 1;
13373
13374 uld_st:
13375 breg = op[2];
13376 large_offset = !small_offset_p (off, align, offbits);
13377 ep = &offset_expr;
13378 expr1.X_add_number = 0;
13379 if (large_offset)
13380 {
13381 used_at = 1;
13382 tempreg = AT;
13383 if (small_offset_p (0, align, 16))
13384 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13385 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13386 else
13387 {
13388 load_address (tempreg, ep, &used_at);
13389 if (breg != 0)
13390 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13391 tempreg, tempreg, breg);
13392 }
13393 offset_reloc[0] = BFD_RELOC_LO16;
13394 offset_reloc[1] = BFD_RELOC_UNUSED;
13395 offset_reloc[2] = BFD_RELOC_UNUSED;
13396 breg = tempreg;
13397 tempreg = op[0];
13398 ep = &expr1;
13399 }
13400 else if (!ust && op[0] == breg)
13401 {
13402 used_at = 1;
13403 tempreg = AT;
13404 }
13405 else
13406 tempreg = op[0];
13407
13408 if (off == 1)
13409 goto ulh_sh;
13410
13411 if (!target_big_endian)
13412 ep->X_add_number += off;
13413 if (offbits == 12)
13414 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13415 else
13416 macro_build (ep, s, "t,o(b)", tempreg, -1,
13417 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13418
13419 if (!target_big_endian)
13420 ep->X_add_number -= off;
13421 else
13422 ep->X_add_number += off;
13423 if (offbits == 12)
13424 macro_build (NULL, s2, "t,~(b)",
13425 tempreg, (int) ep->X_add_number, breg);
13426 else
13427 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13428 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13429
13430 /* If necessary, move the result in tempreg to the final destination. */
13431 if (!ust && op[0] != tempreg)
13432 {
13433 /* Protect second load's delay slot. */
13434 load_delay_nop ();
13435 move_register (op[0], tempreg);
13436 }
13437 break;
13438
13439 ulh_sh:
13440 used_at = 1;
13441 if (target_big_endian == ust)
13442 ep->X_add_number += off;
13443 tempreg = ust || large_offset ? op[0] : AT;
13444 macro_build (ep, s, "t,o(b)", tempreg, -1,
13445 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13446
13447 /* For halfword transfers we need a temporary register to shuffle
13448 bytes. Unfortunately for M_USH_A we have none available before
13449 the next store as AT holds the base address. We deal with this
13450 case by clobbering TREG and then restoring it as with ULH. */
13451 tempreg = ust == large_offset ? op[0] : AT;
13452 if (ust)
13453 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13454
13455 if (target_big_endian == ust)
13456 ep->X_add_number -= off;
13457 else
13458 ep->X_add_number += off;
13459 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13460 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13461
13462 /* For M_USH_A re-retrieve the LSB. */
13463 if (ust && large_offset)
13464 {
13465 if (target_big_endian)
13466 ep->X_add_number += off;
13467 else
13468 ep->X_add_number -= off;
13469 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13470 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13471 }
13472 /* For ULH and M_USH_A OR the LSB in. */
13473 if (!ust || large_offset)
13474 {
13475 tempreg = !large_offset ? AT : op[0];
13476 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13477 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13478 }
13479 break;
13480
13481 default:
13482 /* FIXME: Check if this is one of the itbl macros, since they
13483 are added dynamically. */
13484 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13485 break;
13486 }
13487 if (!mips_opts.at && used_at)
13488 as_bad (_("macro used $at after \".set noat\""));
13489 }
13490
13491 /* Implement macros in mips16 mode. */
13492
13493 static void
13494 mips16_macro (struct mips_cl_insn *ip)
13495 {
13496 const struct mips_operand_array *operands;
13497 int mask;
13498 int tmp;
13499 expressionS expr1;
13500 int dbl;
13501 const char *s, *s2, *s3;
13502 unsigned int op[MAX_OPERANDS];
13503 unsigned int i;
13504
13505 mask = ip->insn_mo->mask;
13506
13507 operands = insn_operands (ip);
13508 for (i = 0; i < MAX_OPERANDS; i++)
13509 if (operands->operand[i])
13510 op[i] = insn_extract_operand (ip, operands->operand[i]);
13511 else
13512 op[i] = -1;
13513
13514 expr1.X_op = O_constant;
13515 expr1.X_op_symbol = NULL;
13516 expr1.X_add_symbol = NULL;
13517 expr1.X_add_number = 1;
13518
13519 dbl = 0;
13520
13521 switch (mask)
13522 {
13523 default:
13524 abort ();
13525
13526 case M_DDIV_3:
13527 dbl = 1;
13528 /* Fall through. */
13529 case M_DIV_3:
13530 s = "mflo";
13531 goto do_div3;
13532 case M_DREM_3:
13533 dbl = 1;
13534 /* Fall through. */
13535 case M_REM_3:
13536 s = "mfhi";
13537 do_div3:
13538 start_noreorder ();
13539 macro_build (NULL, dbl ? "ddiv" : "div", ".,x,y", op[1], op[2]);
13540 expr1.X_add_number = 2;
13541 macro_build (&expr1, "bnez", "x,p", op[2]);
13542 macro_build (NULL, "break", "6", 7);
13543
13544 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13545 since that causes an overflow. We should do that as well,
13546 but I don't see how to do the comparisons without a temporary
13547 register. */
13548 end_noreorder ();
13549 macro_build (NULL, s, "x", op[0]);
13550 break;
13551
13552 case M_DIVU_3:
13553 s = "divu";
13554 s2 = "mflo";
13555 goto do_divu3;
13556 case M_REMU_3:
13557 s = "divu";
13558 s2 = "mfhi";
13559 goto do_divu3;
13560 case M_DDIVU_3:
13561 s = "ddivu";
13562 s2 = "mflo";
13563 goto do_divu3;
13564 case M_DREMU_3:
13565 s = "ddivu";
13566 s2 = "mfhi";
13567 do_divu3:
13568 start_noreorder ();
13569 macro_build (NULL, s, ".,x,y", op[1], op[2]);
13570 expr1.X_add_number = 2;
13571 macro_build (&expr1, "bnez", "x,p", op[2]);
13572 macro_build (NULL, "break", "6", 7);
13573 end_noreorder ();
13574 macro_build (NULL, s2, "x", op[0]);
13575 break;
13576
13577 case M_DMUL:
13578 dbl = 1;
13579 /* Fall through. */
13580 case M_MUL:
13581 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13582 macro_build (NULL, "mflo", "x", op[0]);
13583 break;
13584
13585 case M_DSUBU_I:
13586 dbl = 1;
13587 goto do_subu;
13588 case M_SUBU_I:
13589 do_subu:
13590 imm_expr.X_add_number = -imm_expr.X_add_number;
13591 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,F", op[0], op[1]);
13592 break;
13593
13594 case M_SUBU_I_2:
13595 imm_expr.X_add_number = -imm_expr.X_add_number;
13596 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13597 break;
13598
13599 case M_DSUBU_I_2:
13600 imm_expr.X_add_number = -imm_expr.X_add_number;
13601 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13602 break;
13603
13604 case M_BEQ:
13605 s = "cmp";
13606 s2 = "bteqz";
13607 goto do_branch;
13608 case M_BNE:
13609 s = "cmp";
13610 s2 = "btnez";
13611 goto do_branch;
13612 case M_BLT:
13613 s = "slt";
13614 s2 = "btnez";
13615 goto do_branch;
13616 case M_BLTU:
13617 s = "sltu";
13618 s2 = "btnez";
13619 goto do_branch;
13620 case M_BLE:
13621 s = "slt";
13622 s2 = "bteqz";
13623 goto do_reverse_branch;
13624 case M_BLEU:
13625 s = "sltu";
13626 s2 = "bteqz";
13627 goto do_reverse_branch;
13628 case M_BGE:
13629 s = "slt";
13630 s2 = "bteqz";
13631 goto do_branch;
13632 case M_BGEU:
13633 s = "sltu";
13634 s2 = "bteqz";
13635 goto do_branch;
13636 case M_BGT:
13637 s = "slt";
13638 s2 = "btnez";
13639 goto do_reverse_branch;
13640 case M_BGTU:
13641 s = "sltu";
13642 s2 = "btnez";
13643
13644 do_reverse_branch:
13645 tmp = op[1];
13646 op[1] = op[0];
13647 op[0] = tmp;
13648
13649 do_branch:
13650 macro_build (NULL, s, "x,y", op[0], op[1]);
13651 macro_build (&offset_expr, s2, "p");
13652 break;
13653
13654 case M_BEQ_I:
13655 s = "cmpi";
13656 s2 = "bteqz";
13657 s3 = "x,U";
13658 goto do_branch_i;
13659 case M_BNE_I:
13660 s = "cmpi";
13661 s2 = "btnez";
13662 s3 = "x,U";
13663 goto do_branch_i;
13664 case M_BLT_I:
13665 s = "slti";
13666 s2 = "btnez";
13667 s3 = "x,8";
13668 goto do_branch_i;
13669 case M_BLTU_I:
13670 s = "sltiu";
13671 s2 = "btnez";
13672 s3 = "x,8";
13673 goto do_branch_i;
13674 case M_BLE_I:
13675 s = "slti";
13676 s2 = "btnez";
13677 s3 = "x,8";
13678 goto do_addone_branch_i;
13679 case M_BLEU_I:
13680 s = "sltiu";
13681 s2 = "btnez";
13682 s3 = "x,8";
13683 goto do_addone_branch_i;
13684 case M_BGE_I:
13685 s = "slti";
13686 s2 = "bteqz";
13687 s3 = "x,8";
13688 goto do_branch_i;
13689 case M_BGEU_I:
13690 s = "sltiu";
13691 s2 = "bteqz";
13692 s3 = "x,8";
13693 goto do_branch_i;
13694 case M_BGT_I:
13695 s = "slti";
13696 s2 = "bteqz";
13697 s3 = "x,8";
13698 goto do_addone_branch_i;
13699 case M_BGTU_I:
13700 s = "sltiu";
13701 s2 = "bteqz";
13702 s3 = "x,8";
13703
13704 do_addone_branch_i:
13705 ++imm_expr.X_add_number;
13706
13707 do_branch_i:
13708 macro_build (&imm_expr, s, s3, op[0]);
13709 macro_build (&offset_expr, s2, "p");
13710 break;
13711
13712 case M_ABS:
13713 expr1.X_add_number = 0;
13714 macro_build (&expr1, "slti", "x,8", op[1]);
13715 if (op[0] != op[1])
13716 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13717 expr1.X_add_number = 2;
13718 macro_build (&expr1, "bteqz", "p");
13719 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13720 break;
13721 }
13722 }
13723
13724 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13725 opcode bits in *OPCODE_EXTRA. */
13726
13727 static struct mips_opcode *
13728 mips_lookup_insn (struct hash_control *hash, const char *start,
13729 ssize_t length, unsigned int *opcode_extra)
13730 {
13731 char *name, *dot, *p;
13732 unsigned int mask, suffix;
13733 ssize_t opend;
13734 struct mips_opcode *insn;
13735
13736 /* Make a copy of the instruction so that we can fiddle with it. */
13737 name = xstrndup (start, length);
13738
13739 /* Look up the instruction as-is. */
13740 insn = (struct mips_opcode *) hash_find (hash, name);
13741 if (insn)
13742 goto end;
13743
13744 dot = strchr (name, '.');
13745 if (dot && dot[1])
13746 {
13747 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13748 p = mips_parse_vu0_channels (dot + 1, &mask);
13749 if (*p == 0 && mask != 0)
13750 {
13751 *dot = 0;
13752 insn = (struct mips_opcode *) hash_find (hash, name);
13753 *dot = '.';
13754 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13755 {
13756 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13757 goto end;
13758 }
13759 }
13760 }
13761
13762 if (mips_opts.micromips)
13763 {
13764 /* See if there's an instruction size override suffix,
13765 either `16' or `32', at the end of the mnemonic proper,
13766 that defines the operation, i.e. before the first `.'
13767 character if any. Strip it and retry. */
13768 opend = dot != NULL ? dot - name : length;
13769 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13770 suffix = 2;
13771 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13772 suffix = 4;
13773 else
13774 suffix = 0;
13775 if (suffix)
13776 {
13777 memcpy (name + opend - 2, name + opend, length - opend + 1);
13778 insn = (struct mips_opcode *) hash_find (hash, name);
13779 if (insn)
13780 {
13781 forced_insn_length = suffix;
13782 goto end;
13783 }
13784 }
13785 }
13786
13787 insn = NULL;
13788 end:
13789 free (name);
13790 return insn;
13791 }
13792
13793 /* Assemble an instruction into its binary format. If the instruction
13794 is a macro, set imm_expr and offset_expr to the values associated
13795 with "I" and "A" operands respectively. Otherwise store the value
13796 of the relocatable field (if any) in offset_expr. In both cases
13797 set offset_reloc to the relocation operators applied to offset_expr. */
13798
13799 static void
13800 mips_ip (char *str, struct mips_cl_insn *insn)
13801 {
13802 const struct mips_opcode *first, *past;
13803 struct hash_control *hash;
13804 char format;
13805 size_t end;
13806 struct mips_operand_token *tokens;
13807 unsigned int opcode_extra;
13808
13809 if (mips_opts.micromips)
13810 {
13811 hash = micromips_op_hash;
13812 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13813 }
13814 else
13815 {
13816 hash = op_hash;
13817 past = &mips_opcodes[NUMOPCODES];
13818 }
13819 forced_insn_length = 0;
13820 opcode_extra = 0;
13821
13822 /* We first try to match an instruction up to a space or to the end. */
13823 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13824 continue;
13825
13826 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13827 if (first == NULL)
13828 {
13829 set_insn_error (0, _("unrecognized opcode"));
13830 return;
13831 }
13832
13833 if (strcmp (first->name, "li.s") == 0)
13834 format = 'f';
13835 else if (strcmp (first->name, "li.d") == 0)
13836 format = 'd';
13837 else
13838 format = 0;
13839 tokens = mips_parse_arguments (str + end, format);
13840 if (!tokens)
13841 return;
13842
13843 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13844 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13845 set_insn_error (0, _("invalid operands"));
13846
13847 obstack_free (&mips_operand_tokens, tokens);
13848 }
13849
13850 /* As for mips_ip, but used when assembling MIPS16 code.
13851 Also set forced_insn_length to the resulting instruction size in
13852 bytes if the user explicitly requested a small or extended instruction. */
13853
13854 static void
13855 mips16_ip (char *str, struct mips_cl_insn *insn)
13856 {
13857 char *end, *s, c;
13858 struct mips_opcode *first;
13859 struct mips_operand_token *tokens;
13860 unsigned int l;
13861
13862 for (s = str; ISLOWER (*s); ++s)
13863 ;
13864 end = s;
13865 c = *end;
13866
13867 l = 0;
13868 switch (c)
13869 {
13870 case '\0':
13871 break;
13872
13873 case ' ':
13874 s++;
13875 break;
13876
13877 case '.':
13878 s++;
13879 if (*s == 't')
13880 {
13881 l = 2;
13882 s++;
13883 }
13884 else if (*s == 'e')
13885 {
13886 l = 4;
13887 s++;
13888 }
13889 if (*s == '\0')
13890 break;
13891 else if (*s++ == ' ')
13892 break;
13893 /* Fall through. */
13894 default:
13895 set_insn_error (0, _("unrecognized opcode"));
13896 return;
13897 }
13898 forced_insn_length = l;
13899
13900 *end = 0;
13901 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13902 *end = c;
13903
13904 if (!first)
13905 {
13906 set_insn_error (0, _("unrecognized opcode"));
13907 return;
13908 }
13909
13910 tokens = mips_parse_arguments (s, 0);
13911 if (!tokens)
13912 return;
13913
13914 if (!match_mips16_insns (insn, first, tokens))
13915 set_insn_error (0, _("invalid operands"));
13916
13917 obstack_free (&mips_operand_tokens, tokens);
13918 }
13919
13920 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13921 NBITS is the number of significant bits in VAL. */
13922
13923 static unsigned long
13924 mips16_immed_extend (offsetT val, unsigned int nbits)
13925 {
13926 int extval;
13927 if (nbits == 16)
13928 {
13929 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13930 val &= 0x1f;
13931 }
13932 else if (nbits == 15)
13933 {
13934 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13935 val &= 0xf;
13936 }
13937 else
13938 {
13939 extval = ((val & 0x1f) << 6) | (val & 0x20);
13940 val = 0;
13941 }
13942 return (extval << 16) | val;
13943 }
13944
13945 /* Like decode_mips16_operand, but require the operand to be defined and
13946 require it to be an integer. */
13947
13948 static const struct mips_int_operand *
13949 mips16_immed_operand (int type, bfd_boolean extended_p)
13950 {
13951 const struct mips_operand *operand;
13952
13953 operand = decode_mips16_operand (type, extended_p);
13954 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13955 abort ();
13956 return (const struct mips_int_operand *) operand;
13957 }
13958
13959 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13960
13961 static bfd_boolean
13962 mips16_immed_in_range_p (const struct mips_int_operand *operand,
13963 bfd_reloc_code_real_type reloc, offsetT sval)
13964 {
13965 int min_val, max_val;
13966
13967 min_val = mips_int_operand_min (operand);
13968 max_val = mips_int_operand_max (operand);
13969 if (reloc != BFD_RELOC_UNUSED)
13970 {
13971 if (min_val < 0)
13972 sval = SEXT_16BIT (sval);
13973 else
13974 sval &= 0xffff;
13975 }
13976
13977 return (sval >= min_val
13978 && sval <= max_val
13979 && (sval & ((1 << operand->shift) - 1)) == 0);
13980 }
13981
13982 /* Install immediate value VAL into MIPS16 instruction *INSN,
13983 extending it if necessary. The instruction in *INSN may
13984 already be extended.
13985
13986 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13987 if none. In the former case, VAL is a 16-bit number with no
13988 defined signedness.
13989
13990 TYPE is the type of the immediate field. USER_INSN_LENGTH
13991 is the length that the user requested, or 0 if none. */
13992
13993 static void
13994 mips16_immed (const char *file, unsigned int line, int type,
13995 bfd_reloc_code_real_type reloc, offsetT val,
13996 unsigned int user_insn_length, unsigned long *insn)
13997 {
13998 const struct mips_int_operand *operand;
13999 unsigned int uval, length;
14000
14001 operand = mips16_immed_operand (type, FALSE);
14002 if (!mips16_immed_in_range_p (operand, reloc, val))
14003 {
14004 /* We need an extended instruction. */
14005 if (user_insn_length == 2)
14006 as_bad_where (file, line, _("invalid unextended operand value"));
14007 else
14008 *insn |= MIPS16_EXTEND;
14009 }
14010 else if (user_insn_length == 4)
14011 {
14012 /* The operand doesn't force an unextended instruction to be extended.
14013 Warn if the user wanted an extended instruction anyway. */
14014 *insn |= MIPS16_EXTEND;
14015 as_warn_where (file, line,
14016 _("extended operand requested but not required"));
14017 }
14018
14019 length = mips16_opcode_length (*insn);
14020 if (length == 4)
14021 {
14022 operand = mips16_immed_operand (type, TRUE);
14023 if (!mips16_immed_in_range_p (operand, reloc, val))
14024 as_bad_where (file, line,
14025 _("operand value out of range for instruction"));
14026 }
14027 uval = ((unsigned int) val >> operand->shift) - operand->bias;
14028 if (length == 2 || operand->root.lsb != 0)
14029 *insn = mips_insert_operand (&operand->root, *insn, uval);
14030 else
14031 *insn |= mips16_immed_extend (uval, operand->root.size);
14032 }
14033 \f
14034 struct percent_op_match
14035 {
14036 const char *str;
14037 bfd_reloc_code_real_type reloc;
14038 };
14039
14040 static const struct percent_op_match mips_percent_op[] =
14041 {
14042 {"%lo", BFD_RELOC_LO16},
14043 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14044 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14045 {"%call16", BFD_RELOC_MIPS_CALL16},
14046 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14047 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14048 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14049 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14050 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14051 {"%got", BFD_RELOC_MIPS_GOT16},
14052 {"%gp_rel", BFD_RELOC_GPREL16},
14053 {"%half", BFD_RELOC_16},
14054 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14055 {"%higher", BFD_RELOC_MIPS_HIGHER},
14056 {"%neg", BFD_RELOC_MIPS_SUB},
14057 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14058 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14059 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14060 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14061 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14062 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14063 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
14064 {"%hi", BFD_RELOC_HI16_S},
14065 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14066 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
14067 };
14068
14069 static const struct percent_op_match mips16_percent_op[] =
14070 {
14071 {"%lo", BFD_RELOC_MIPS16_LO16},
14072 {"%gprel", BFD_RELOC_MIPS16_GPREL},
14073 {"%got", BFD_RELOC_MIPS16_GOT16},
14074 {"%call16", BFD_RELOC_MIPS16_CALL16},
14075 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14076 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14077 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14078 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14079 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14080 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14081 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14082 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
14083 };
14084
14085
14086 /* Return true if *STR points to a relocation operator. When returning true,
14087 move *STR over the operator and store its relocation code in *RELOC.
14088 Leave both *STR and *RELOC alone when returning false. */
14089
14090 static bfd_boolean
14091 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
14092 {
14093 const struct percent_op_match *percent_op;
14094 size_t limit, i;
14095
14096 if (mips_opts.mips16)
14097 {
14098 percent_op = mips16_percent_op;
14099 limit = ARRAY_SIZE (mips16_percent_op);
14100 }
14101 else
14102 {
14103 percent_op = mips_percent_op;
14104 limit = ARRAY_SIZE (mips_percent_op);
14105 }
14106
14107 for (i = 0; i < limit; i++)
14108 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
14109 {
14110 int len = strlen (percent_op[i].str);
14111
14112 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14113 continue;
14114
14115 *str += strlen (percent_op[i].str);
14116 *reloc = percent_op[i].reloc;
14117
14118 /* Check whether the output BFD supports this relocation.
14119 If not, issue an error and fall back on something safe. */
14120 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
14121 {
14122 as_bad (_("relocation %s isn't supported by the current ABI"),
14123 percent_op[i].str);
14124 *reloc = BFD_RELOC_UNUSED;
14125 }
14126 return TRUE;
14127 }
14128 return FALSE;
14129 }
14130
14131
14132 /* Parse string STR as a 16-bit relocatable operand. Store the
14133 expression in *EP and the relocations in the array starting
14134 at RELOC. Return the number of relocation operators used.
14135
14136 On exit, EXPR_END points to the first character after the expression. */
14137
14138 static size_t
14139 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14140 char *str)
14141 {
14142 bfd_reloc_code_real_type reversed_reloc[3];
14143 size_t reloc_index, i;
14144 int crux_depth, str_depth;
14145 char *crux;
14146
14147 /* Search for the start of the main expression, recoding relocations
14148 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14149 of the main expression and with CRUX_DEPTH containing the number
14150 of open brackets at that point. */
14151 reloc_index = -1;
14152 str_depth = 0;
14153 do
14154 {
14155 reloc_index++;
14156 crux = str;
14157 crux_depth = str_depth;
14158
14159 /* Skip over whitespace and brackets, keeping count of the number
14160 of brackets. */
14161 while (*str == ' ' || *str == '\t' || *str == '(')
14162 if (*str++ == '(')
14163 str_depth++;
14164 }
14165 while (*str == '%'
14166 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14167 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14168
14169 my_getExpression (ep, crux);
14170 str = expr_end;
14171
14172 /* Match every open bracket. */
14173 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14174 if (*str++ == ')')
14175 crux_depth--;
14176
14177 if (crux_depth > 0)
14178 as_bad (_("unclosed '('"));
14179
14180 expr_end = str;
14181
14182 if (reloc_index != 0)
14183 {
14184 prev_reloc_op_frag = frag_now;
14185 for (i = 0; i < reloc_index; i++)
14186 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14187 }
14188
14189 return reloc_index;
14190 }
14191
14192 static void
14193 my_getExpression (expressionS *ep, char *str)
14194 {
14195 char *save_in;
14196
14197 save_in = input_line_pointer;
14198 input_line_pointer = str;
14199 expression (ep);
14200 expr_end = input_line_pointer;
14201 input_line_pointer = save_in;
14202 }
14203
14204 const char *
14205 md_atof (int type, char *litP, int *sizeP)
14206 {
14207 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14208 }
14209
14210 void
14211 md_number_to_chars (char *buf, valueT val, int n)
14212 {
14213 if (target_big_endian)
14214 number_to_chars_bigendian (buf, val, n);
14215 else
14216 number_to_chars_littleendian (buf, val, n);
14217 }
14218 \f
14219 static int support_64bit_objects(void)
14220 {
14221 const char **list, **l;
14222 int yes;
14223
14224 list = bfd_target_list ();
14225 for (l = list; *l != NULL; l++)
14226 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14227 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14228 break;
14229 yes = (*l != NULL);
14230 free (list);
14231 return yes;
14232 }
14233
14234 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14235 NEW_VALUE. Warn if another value was already specified. Note:
14236 we have to defer parsing the -march and -mtune arguments in order
14237 to handle 'from-abi' correctly, since the ABI might be specified
14238 in a later argument. */
14239
14240 static void
14241 mips_set_option_string (const char **string_ptr, const char *new_value)
14242 {
14243 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14244 as_warn (_("a different %s was already specified, is now %s"),
14245 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14246 new_value);
14247
14248 *string_ptr = new_value;
14249 }
14250
14251 int
14252 md_parse_option (int c, const char *arg)
14253 {
14254 unsigned int i;
14255
14256 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14257 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14258 {
14259 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14260 c == mips_ases[i].option_on);
14261 return 1;
14262 }
14263
14264 switch (c)
14265 {
14266 case OPTION_CONSTRUCT_FLOATS:
14267 mips_disable_float_construction = 0;
14268 break;
14269
14270 case OPTION_NO_CONSTRUCT_FLOATS:
14271 mips_disable_float_construction = 1;
14272 break;
14273
14274 case OPTION_TRAP:
14275 mips_trap = 1;
14276 break;
14277
14278 case OPTION_BREAK:
14279 mips_trap = 0;
14280 break;
14281
14282 case OPTION_EB:
14283 target_big_endian = 1;
14284 break;
14285
14286 case OPTION_EL:
14287 target_big_endian = 0;
14288 break;
14289
14290 case 'O':
14291 if (arg == NULL)
14292 mips_optimize = 1;
14293 else if (arg[0] == '0')
14294 mips_optimize = 0;
14295 else if (arg[0] == '1')
14296 mips_optimize = 1;
14297 else
14298 mips_optimize = 2;
14299 break;
14300
14301 case 'g':
14302 if (arg == NULL)
14303 mips_debug = 2;
14304 else
14305 mips_debug = atoi (arg);
14306 break;
14307
14308 case OPTION_MIPS1:
14309 file_mips_opts.isa = ISA_MIPS1;
14310 break;
14311
14312 case OPTION_MIPS2:
14313 file_mips_opts.isa = ISA_MIPS2;
14314 break;
14315
14316 case OPTION_MIPS3:
14317 file_mips_opts.isa = ISA_MIPS3;
14318 break;
14319
14320 case OPTION_MIPS4:
14321 file_mips_opts.isa = ISA_MIPS4;
14322 break;
14323
14324 case OPTION_MIPS5:
14325 file_mips_opts.isa = ISA_MIPS5;
14326 break;
14327
14328 case OPTION_MIPS32:
14329 file_mips_opts.isa = ISA_MIPS32;
14330 break;
14331
14332 case OPTION_MIPS32R2:
14333 file_mips_opts.isa = ISA_MIPS32R2;
14334 break;
14335
14336 case OPTION_MIPS32R3:
14337 file_mips_opts.isa = ISA_MIPS32R3;
14338 break;
14339
14340 case OPTION_MIPS32R5:
14341 file_mips_opts.isa = ISA_MIPS32R5;
14342 break;
14343
14344 case OPTION_MIPS32R6:
14345 file_mips_opts.isa = ISA_MIPS32R6;
14346 break;
14347
14348 case OPTION_MIPS64R2:
14349 file_mips_opts.isa = ISA_MIPS64R2;
14350 break;
14351
14352 case OPTION_MIPS64R3:
14353 file_mips_opts.isa = ISA_MIPS64R3;
14354 break;
14355
14356 case OPTION_MIPS64R5:
14357 file_mips_opts.isa = ISA_MIPS64R5;
14358 break;
14359
14360 case OPTION_MIPS64R6:
14361 file_mips_opts.isa = ISA_MIPS64R6;
14362 break;
14363
14364 case OPTION_MIPS64:
14365 file_mips_opts.isa = ISA_MIPS64;
14366 break;
14367
14368 case OPTION_MTUNE:
14369 mips_set_option_string (&mips_tune_string, arg);
14370 break;
14371
14372 case OPTION_MARCH:
14373 mips_set_option_string (&mips_arch_string, arg);
14374 break;
14375
14376 case OPTION_M4650:
14377 mips_set_option_string (&mips_arch_string, "4650");
14378 mips_set_option_string (&mips_tune_string, "4650");
14379 break;
14380
14381 case OPTION_NO_M4650:
14382 break;
14383
14384 case OPTION_M4010:
14385 mips_set_option_string (&mips_arch_string, "4010");
14386 mips_set_option_string (&mips_tune_string, "4010");
14387 break;
14388
14389 case OPTION_NO_M4010:
14390 break;
14391
14392 case OPTION_M4100:
14393 mips_set_option_string (&mips_arch_string, "4100");
14394 mips_set_option_string (&mips_tune_string, "4100");
14395 break;
14396
14397 case OPTION_NO_M4100:
14398 break;
14399
14400 case OPTION_M3900:
14401 mips_set_option_string (&mips_arch_string, "3900");
14402 mips_set_option_string (&mips_tune_string, "3900");
14403 break;
14404
14405 case OPTION_NO_M3900:
14406 break;
14407
14408 case OPTION_MICROMIPS:
14409 if (file_mips_opts.mips16 == 1)
14410 {
14411 as_bad (_("-mmicromips cannot be used with -mips16"));
14412 return 0;
14413 }
14414 file_mips_opts.micromips = 1;
14415 mips_no_prev_insn ();
14416 break;
14417
14418 case OPTION_NO_MICROMIPS:
14419 file_mips_opts.micromips = 0;
14420 mips_no_prev_insn ();
14421 break;
14422
14423 case OPTION_MIPS16:
14424 if (file_mips_opts.micromips == 1)
14425 {
14426 as_bad (_("-mips16 cannot be used with -micromips"));
14427 return 0;
14428 }
14429 file_mips_opts.mips16 = 1;
14430 mips_no_prev_insn ();
14431 break;
14432
14433 case OPTION_NO_MIPS16:
14434 file_mips_opts.mips16 = 0;
14435 mips_no_prev_insn ();
14436 break;
14437
14438 case OPTION_FIX_24K:
14439 mips_fix_24k = 1;
14440 break;
14441
14442 case OPTION_NO_FIX_24K:
14443 mips_fix_24k = 0;
14444 break;
14445
14446 case OPTION_FIX_RM7000:
14447 mips_fix_rm7000 = 1;
14448 break;
14449
14450 case OPTION_NO_FIX_RM7000:
14451 mips_fix_rm7000 = 0;
14452 break;
14453
14454 case OPTION_FIX_LOONGSON2F_JUMP:
14455 mips_fix_loongson2f_jump = TRUE;
14456 break;
14457
14458 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14459 mips_fix_loongson2f_jump = FALSE;
14460 break;
14461
14462 case OPTION_FIX_LOONGSON2F_NOP:
14463 mips_fix_loongson2f_nop = TRUE;
14464 break;
14465
14466 case OPTION_NO_FIX_LOONGSON2F_NOP:
14467 mips_fix_loongson2f_nop = FALSE;
14468 break;
14469
14470 case OPTION_FIX_VR4120:
14471 mips_fix_vr4120 = 1;
14472 break;
14473
14474 case OPTION_NO_FIX_VR4120:
14475 mips_fix_vr4120 = 0;
14476 break;
14477
14478 case OPTION_FIX_VR4130:
14479 mips_fix_vr4130 = 1;
14480 break;
14481
14482 case OPTION_NO_FIX_VR4130:
14483 mips_fix_vr4130 = 0;
14484 break;
14485
14486 case OPTION_FIX_CN63XXP1:
14487 mips_fix_cn63xxp1 = TRUE;
14488 break;
14489
14490 case OPTION_NO_FIX_CN63XXP1:
14491 mips_fix_cn63xxp1 = FALSE;
14492 break;
14493
14494 case OPTION_RELAX_BRANCH:
14495 mips_relax_branch = 1;
14496 break;
14497
14498 case OPTION_NO_RELAX_BRANCH:
14499 mips_relax_branch = 0;
14500 break;
14501
14502 case OPTION_INSN32:
14503 file_mips_opts.insn32 = TRUE;
14504 break;
14505
14506 case OPTION_NO_INSN32:
14507 file_mips_opts.insn32 = FALSE;
14508 break;
14509
14510 case OPTION_MSHARED:
14511 mips_in_shared = TRUE;
14512 break;
14513
14514 case OPTION_MNO_SHARED:
14515 mips_in_shared = FALSE;
14516 break;
14517
14518 case OPTION_MSYM32:
14519 file_mips_opts.sym32 = TRUE;
14520 break;
14521
14522 case OPTION_MNO_SYM32:
14523 file_mips_opts.sym32 = FALSE;
14524 break;
14525
14526 /* When generating ELF code, we permit -KPIC and -call_shared to
14527 select SVR4_PIC, and -non_shared to select no PIC. This is
14528 intended to be compatible with Irix 5. */
14529 case OPTION_CALL_SHARED:
14530 mips_pic = SVR4_PIC;
14531 mips_abicalls = TRUE;
14532 break;
14533
14534 case OPTION_CALL_NONPIC:
14535 mips_pic = NO_PIC;
14536 mips_abicalls = TRUE;
14537 break;
14538
14539 case OPTION_NON_SHARED:
14540 mips_pic = NO_PIC;
14541 mips_abicalls = FALSE;
14542 break;
14543
14544 /* The -xgot option tells the assembler to use 32 bit offsets
14545 when accessing the got in SVR4_PIC mode. It is for Irix
14546 compatibility. */
14547 case OPTION_XGOT:
14548 mips_big_got = 1;
14549 break;
14550
14551 case 'G':
14552 g_switch_value = atoi (arg);
14553 g_switch_seen = 1;
14554 break;
14555
14556 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14557 and -mabi=64. */
14558 case OPTION_32:
14559 mips_abi = O32_ABI;
14560 break;
14561
14562 case OPTION_N32:
14563 mips_abi = N32_ABI;
14564 break;
14565
14566 case OPTION_64:
14567 mips_abi = N64_ABI;
14568 if (!support_64bit_objects())
14569 as_fatal (_("no compiled in support for 64 bit object file format"));
14570 break;
14571
14572 case OPTION_GP32:
14573 file_mips_opts.gp = 32;
14574 break;
14575
14576 case OPTION_GP64:
14577 file_mips_opts.gp = 64;
14578 break;
14579
14580 case OPTION_FP32:
14581 file_mips_opts.fp = 32;
14582 break;
14583
14584 case OPTION_FPXX:
14585 file_mips_opts.fp = 0;
14586 break;
14587
14588 case OPTION_FP64:
14589 file_mips_opts.fp = 64;
14590 break;
14591
14592 case OPTION_ODD_SPREG:
14593 file_mips_opts.oddspreg = 1;
14594 break;
14595
14596 case OPTION_NO_ODD_SPREG:
14597 file_mips_opts.oddspreg = 0;
14598 break;
14599
14600 case OPTION_SINGLE_FLOAT:
14601 file_mips_opts.single_float = 1;
14602 break;
14603
14604 case OPTION_DOUBLE_FLOAT:
14605 file_mips_opts.single_float = 0;
14606 break;
14607
14608 case OPTION_SOFT_FLOAT:
14609 file_mips_opts.soft_float = 1;
14610 break;
14611
14612 case OPTION_HARD_FLOAT:
14613 file_mips_opts.soft_float = 0;
14614 break;
14615
14616 case OPTION_MABI:
14617 if (strcmp (arg, "32") == 0)
14618 mips_abi = O32_ABI;
14619 else if (strcmp (arg, "o64") == 0)
14620 mips_abi = O64_ABI;
14621 else if (strcmp (arg, "n32") == 0)
14622 mips_abi = N32_ABI;
14623 else if (strcmp (arg, "64") == 0)
14624 {
14625 mips_abi = N64_ABI;
14626 if (! support_64bit_objects())
14627 as_fatal (_("no compiled in support for 64 bit object file "
14628 "format"));
14629 }
14630 else if (strcmp (arg, "eabi") == 0)
14631 mips_abi = EABI_ABI;
14632 else
14633 {
14634 as_fatal (_("invalid abi -mabi=%s"), arg);
14635 return 0;
14636 }
14637 break;
14638
14639 case OPTION_M7000_HILO_FIX:
14640 mips_7000_hilo_fix = TRUE;
14641 break;
14642
14643 case OPTION_MNO_7000_HILO_FIX:
14644 mips_7000_hilo_fix = FALSE;
14645 break;
14646
14647 case OPTION_MDEBUG:
14648 mips_flag_mdebug = TRUE;
14649 break;
14650
14651 case OPTION_NO_MDEBUG:
14652 mips_flag_mdebug = FALSE;
14653 break;
14654
14655 case OPTION_PDR:
14656 mips_flag_pdr = TRUE;
14657 break;
14658
14659 case OPTION_NO_PDR:
14660 mips_flag_pdr = FALSE;
14661 break;
14662
14663 case OPTION_MVXWORKS_PIC:
14664 mips_pic = VXWORKS_PIC;
14665 break;
14666
14667 case OPTION_NAN:
14668 if (strcmp (arg, "2008") == 0)
14669 mips_nan2008 = 1;
14670 else if (strcmp (arg, "legacy") == 0)
14671 mips_nan2008 = 0;
14672 else
14673 {
14674 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14675 return 0;
14676 }
14677 break;
14678
14679 default:
14680 return 0;
14681 }
14682
14683 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14684
14685 return 1;
14686 }
14687 \f
14688 /* Set up globals to tune for the ISA or processor described by INFO. */
14689
14690 static void
14691 mips_set_tune (const struct mips_cpu_info *info)
14692 {
14693 if (info != 0)
14694 mips_tune = info->cpu;
14695 }
14696
14697
14698 void
14699 mips_after_parse_args (void)
14700 {
14701 const struct mips_cpu_info *arch_info = 0;
14702 const struct mips_cpu_info *tune_info = 0;
14703
14704 /* GP relative stuff not working for PE */
14705 if (strncmp (TARGET_OS, "pe", 2) == 0)
14706 {
14707 if (g_switch_seen && g_switch_value != 0)
14708 as_bad (_("-G not supported in this configuration"));
14709 g_switch_value = 0;
14710 }
14711
14712 if (mips_abi == NO_ABI)
14713 mips_abi = MIPS_DEFAULT_ABI;
14714
14715 /* The following code determines the architecture.
14716 Similar code was added to GCC 3.3 (see override_options() in
14717 config/mips/mips.c). The GAS and GCC code should be kept in sync
14718 as much as possible. */
14719
14720 if (mips_arch_string != 0)
14721 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14722
14723 if (file_mips_opts.isa != ISA_UNKNOWN)
14724 {
14725 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14726 ISA level specified by -mipsN, while arch_info->isa contains
14727 the -march selection (if any). */
14728 if (arch_info != 0)
14729 {
14730 /* -march takes precedence over -mipsN, since it is more descriptive.
14731 There's no harm in specifying both as long as the ISA levels
14732 are the same. */
14733 if (file_mips_opts.isa != arch_info->isa)
14734 as_bad (_("-%s conflicts with the other architecture options,"
14735 " which imply -%s"),
14736 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14737 mips_cpu_info_from_isa (arch_info->isa)->name);
14738 }
14739 else
14740 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14741 }
14742
14743 if (arch_info == 0)
14744 {
14745 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14746 gas_assert (arch_info);
14747 }
14748
14749 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14750 as_bad (_("-march=%s is not compatible with the selected ABI"),
14751 arch_info->name);
14752
14753 file_mips_opts.arch = arch_info->cpu;
14754 file_mips_opts.isa = arch_info->isa;
14755
14756 /* Set up initial mips_opts state. */
14757 mips_opts = file_mips_opts;
14758
14759 /* The register size inference code is now placed in
14760 file_mips_check_options. */
14761
14762 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14763 processor. */
14764 if (mips_tune_string != 0)
14765 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14766
14767 if (tune_info == 0)
14768 mips_set_tune (arch_info);
14769 else
14770 mips_set_tune (tune_info);
14771
14772 if (mips_flag_mdebug < 0)
14773 mips_flag_mdebug = 0;
14774 }
14775 \f
14776 void
14777 mips_init_after_args (void)
14778 {
14779 /* initialize opcodes */
14780 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14781 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14782 }
14783
14784 long
14785 md_pcrel_from (fixS *fixP)
14786 {
14787 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14788 switch (fixP->fx_r_type)
14789 {
14790 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14791 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14792 /* Return the address of the delay slot. */
14793 return addr + 2;
14794
14795 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14796 case BFD_RELOC_MICROMIPS_JMP:
14797 case BFD_RELOC_MIPS16_16_PCREL_S1:
14798 case BFD_RELOC_16_PCREL_S2:
14799 case BFD_RELOC_MIPS_21_PCREL_S2:
14800 case BFD_RELOC_MIPS_26_PCREL_S2:
14801 case BFD_RELOC_MIPS_JMP:
14802 /* Return the address of the delay slot. */
14803 return addr + 4;
14804
14805 case BFD_RELOC_MIPS_18_PCREL_S3:
14806 /* Return the aligned address of the doubleword containing
14807 the instruction. */
14808 return addr & ~7;
14809
14810 default:
14811 return addr;
14812 }
14813 }
14814
14815 /* This is called before the symbol table is processed. In order to
14816 work with gcc when using mips-tfile, we must keep all local labels.
14817 However, in other cases, we want to discard them. If we were
14818 called with -g, but we didn't see any debugging information, it may
14819 mean that gcc is smuggling debugging information through to
14820 mips-tfile, in which case we must generate all local labels. */
14821
14822 void
14823 mips_frob_file_before_adjust (void)
14824 {
14825 #ifndef NO_ECOFF_DEBUGGING
14826 if (ECOFF_DEBUGGING
14827 && mips_debug != 0
14828 && ! ecoff_debugging_seen)
14829 flag_keep_locals = 1;
14830 #endif
14831 }
14832
14833 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14834 the corresponding LO16 reloc. This is called before md_apply_fix and
14835 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14836 relocation operators.
14837
14838 For our purposes, a %lo() expression matches a %got() or %hi()
14839 expression if:
14840
14841 (a) it refers to the same symbol; and
14842 (b) the offset applied in the %lo() expression is no lower than
14843 the offset applied in the %got() or %hi().
14844
14845 (b) allows us to cope with code like:
14846
14847 lui $4,%hi(foo)
14848 lh $4,%lo(foo+2)($4)
14849
14850 ...which is legal on RELA targets, and has a well-defined behaviour
14851 if the user knows that adding 2 to "foo" will not induce a carry to
14852 the high 16 bits.
14853
14854 When several %lo()s match a particular %got() or %hi(), we use the
14855 following rules to distinguish them:
14856
14857 (1) %lo()s with smaller offsets are a better match than %lo()s with
14858 higher offsets.
14859
14860 (2) %lo()s with no matching %got() or %hi() are better than those
14861 that already have a matching %got() or %hi().
14862
14863 (3) later %lo()s are better than earlier %lo()s.
14864
14865 These rules are applied in order.
14866
14867 (1) means, among other things, that %lo()s with identical offsets are
14868 chosen if they exist.
14869
14870 (2) means that we won't associate several high-part relocations with
14871 the same low-part relocation unless there's no alternative. Having
14872 several high parts for the same low part is a GNU extension; this rule
14873 allows careful users to avoid it.
14874
14875 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14876 with the last high-part relocation being at the front of the list.
14877 It therefore makes sense to choose the last matching low-part
14878 relocation, all other things being equal. It's also easier
14879 to code that way. */
14880
14881 void
14882 mips_frob_file (void)
14883 {
14884 struct mips_hi_fixup *l;
14885 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14886
14887 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14888 {
14889 segment_info_type *seginfo;
14890 bfd_boolean matched_lo_p;
14891 fixS **hi_pos, **lo_pos, **pos;
14892
14893 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14894
14895 /* If a GOT16 relocation turns out to be against a global symbol,
14896 there isn't supposed to be a matching LO. Ignore %gots against
14897 constants; we'll report an error for those later. */
14898 if (got16_reloc_p (l->fixp->fx_r_type)
14899 && !(l->fixp->fx_addsy
14900 && pic_need_relax (l->fixp->fx_addsy)))
14901 continue;
14902
14903 /* Check quickly whether the next fixup happens to be a matching %lo. */
14904 if (fixup_has_matching_lo_p (l->fixp))
14905 continue;
14906
14907 seginfo = seg_info (l->seg);
14908
14909 /* Set HI_POS to the position of this relocation in the chain.
14910 Set LO_POS to the position of the chosen low-part relocation.
14911 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14912 relocation that matches an immediately-preceding high-part
14913 relocation. */
14914 hi_pos = NULL;
14915 lo_pos = NULL;
14916 matched_lo_p = FALSE;
14917 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14918
14919 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14920 {
14921 if (*pos == l->fixp)
14922 hi_pos = pos;
14923
14924 if ((*pos)->fx_r_type == looking_for_rtype
14925 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14926 && (*pos)->fx_offset >= l->fixp->fx_offset
14927 && (lo_pos == NULL
14928 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14929 || (!matched_lo_p
14930 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14931 lo_pos = pos;
14932
14933 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14934 && fixup_has_matching_lo_p (*pos));
14935 }
14936
14937 /* If we found a match, remove the high-part relocation from its
14938 current position and insert it before the low-part relocation.
14939 Make the offsets match so that fixup_has_matching_lo_p()
14940 will return true.
14941
14942 We don't warn about unmatched high-part relocations since some
14943 versions of gcc have been known to emit dead "lui ...%hi(...)"
14944 instructions. */
14945 if (lo_pos != NULL)
14946 {
14947 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14948 if (l->fixp->fx_next != *lo_pos)
14949 {
14950 *hi_pos = l->fixp->fx_next;
14951 l->fixp->fx_next = *lo_pos;
14952 *lo_pos = l->fixp;
14953 }
14954 }
14955 }
14956 }
14957
14958 int
14959 mips_force_relocation (fixS *fixp)
14960 {
14961 if (generic_force_reloc (fixp))
14962 return 1;
14963
14964 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14965 so that the linker relaxation can update targets. */
14966 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14967 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14968 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14969 return 1;
14970
14971 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
14972 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
14973 microMIPS symbols so that we can do cross-mode branch diagnostics
14974 and BAL to JALX conversion by the linker. */
14975 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14976 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14977 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
14978 && fixp->fx_addsy
14979 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
14980 return 1;
14981
14982 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14983 if (ISA_IS_R6 (file_mips_opts.isa)
14984 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14985 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14986 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14987 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14988 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14989 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14990 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14991 return 1;
14992
14993 return 0;
14994 }
14995
14996 /* Implement TC_FORCE_RELOCATION_ABS. */
14997
14998 bfd_boolean
14999 mips_force_relocation_abs (fixS *fixp)
15000 {
15001 if (generic_force_reloc (fixp))
15002 return TRUE;
15003
15004 /* These relocations do not have enough bits in the in-place addend
15005 to hold an arbitrary absolute section's offset. */
15006 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
15007 return TRUE;
15008
15009 return FALSE;
15010 }
15011
15012 /* Read the instruction associated with RELOC from BUF. */
15013
15014 static unsigned int
15015 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15016 {
15017 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15018 return read_compressed_insn (buf, 4);
15019 else
15020 return read_insn (buf);
15021 }
15022
15023 /* Write instruction INSN to BUF, given that it has been relocated
15024 by RELOC. */
15025
15026 static void
15027 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15028 unsigned long insn)
15029 {
15030 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15031 write_compressed_insn (buf, insn, 4);
15032 else
15033 write_insn (buf, insn);
15034 }
15035
15036 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15037 to a symbol in another ISA mode, which cannot be converted to JALX. */
15038
15039 static bfd_boolean
15040 fix_bad_cross_mode_jump_p (fixS *fixP)
15041 {
15042 unsigned long opcode;
15043 int other;
15044 char *buf;
15045
15046 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15047 return FALSE;
15048
15049 other = S_GET_OTHER (fixP->fx_addsy);
15050 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15051 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15052 switch (fixP->fx_r_type)
15053 {
15054 case BFD_RELOC_MIPS_JMP:
15055 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15056 case BFD_RELOC_MICROMIPS_JMP:
15057 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15058 default:
15059 return FALSE;
15060 }
15061 }
15062
15063 /* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15064 jump to a symbol in the same ISA mode. */
15065
15066 static bfd_boolean
15067 fix_bad_same_mode_jalx_p (fixS *fixP)
15068 {
15069 unsigned long opcode;
15070 int other;
15071 char *buf;
15072
15073 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15074 return FALSE;
15075
15076 other = S_GET_OTHER (fixP->fx_addsy);
15077 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15078 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15079 switch (fixP->fx_r_type)
15080 {
15081 case BFD_RELOC_MIPS_JMP:
15082 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15083 case BFD_RELOC_MIPS16_JMP:
15084 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15085 case BFD_RELOC_MICROMIPS_JMP:
15086 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15087 default:
15088 return FALSE;
15089 }
15090 }
15091
15092 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15093 to a symbol whose value plus addend is not aligned according to the
15094 ultimate (after linker relaxation) jump instruction's immediate field
15095 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15096 regular MIPS code, to (1 << 2). */
15097
15098 static bfd_boolean
15099 fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15100 {
15101 bfd_boolean micro_to_mips_p;
15102 valueT val;
15103 int other;
15104
15105 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15106 return FALSE;
15107
15108 other = S_GET_OTHER (fixP->fx_addsy);
15109 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15110 val += fixP->fx_offset;
15111 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15112 && !ELF_ST_IS_MICROMIPS (other));
15113 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15114 != ELF_ST_IS_COMPRESSED (other));
15115 }
15116
15117 /* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15118 to a symbol whose annotation indicates another ISA mode. For absolute
15119 symbols check the ISA bit instead.
15120
15121 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15122 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15123 MIPS symbols and associated with BAL instructions as these instructions
15124 may be be converted to JALX by the linker. */
15125
15126 static bfd_boolean
15127 fix_bad_cross_mode_branch_p (fixS *fixP)
15128 {
15129 bfd_boolean absolute_p;
15130 unsigned long opcode;
15131 asection *symsec;
15132 valueT val;
15133 int other;
15134 char *buf;
15135
15136 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15137 return FALSE;
15138
15139 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15140 absolute_p = bfd_is_abs_section (symsec);
15141
15142 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15143 other = S_GET_OTHER (fixP->fx_addsy);
15144
15145 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15146 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15147 switch (fixP->fx_r_type)
15148 {
15149 case BFD_RELOC_16_PCREL_S2:
15150 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15151 && opcode != 0x0411);
15152 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15153 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15154 && opcode != 0x4060);
15155 case BFD_RELOC_MIPS_21_PCREL_S2:
15156 case BFD_RELOC_MIPS_26_PCREL_S2:
15157 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15158 case BFD_RELOC_MIPS16_16_PCREL_S1:
15159 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15160 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15161 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15162 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15163 default:
15164 abort ();
15165 }
15166 }
15167
15168 /* Return TRUE if the symbol plus addend associated with a regular MIPS
15169 branch instruction pointed to by FIXP is not aligned according to the
15170 branch instruction's immediate field requirement. We need the addend
15171 to preserve the ISA bit and also the sum must not have bit 2 set. We
15172 must explicitly OR in the ISA bit from symbol annotation as the bit
15173 won't be set in the symbol's value then. */
15174
15175 static bfd_boolean
15176 fix_bad_misaligned_branch_p (fixS *fixP)
15177 {
15178 bfd_boolean absolute_p;
15179 asection *symsec;
15180 valueT isa_bit;
15181 valueT val;
15182 valueT off;
15183 int other;
15184
15185 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15186 return FALSE;
15187
15188 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15189 absolute_p = bfd_is_abs_section (symsec);
15190
15191 val = S_GET_VALUE (fixP->fx_addsy);
15192 other = S_GET_OTHER (fixP->fx_addsy);
15193 off = fixP->fx_offset;
15194
15195 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15196 val |= ELF_ST_IS_COMPRESSED (other);
15197 val += off;
15198 return (val & 0x3) != isa_bit;
15199 }
15200
15201 /* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15202 and its calculated value VAL. */
15203
15204 static void
15205 fix_validate_branch (fixS *fixP, valueT val)
15206 {
15207 if (fixP->fx_done && (val & 0x3) != 0)
15208 as_bad_where (fixP->fx_file, fixP->fx_line,
15209 _("branch to misaligned address (0x%lx)"),
15210 (long) (val + md_pcrel_from (fixP)));
15211 else if (fix_bad_cross_mode_branch_p (fixP))
15212 as_bad_where (fixP->fx_file, fixP->fx_line,
15213 _("branch to a symbol in another ISA mode"));
15214 else if (fix_bad_misaligned_branch_p (fixP))
15215 as_bad_where (fixP->fx_file, fixP->fx_line,
15216 _("branch to misaligned address (0x%lx)"),
15217 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15218 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15219 as_bad_where (fixP->fx_file, fixP->fx_line,
15220 _("cannot encode misaligned addend "
15221 "in the relocatable field (0x%lx)"),
15222 (long) fixP->fx_offset);
15223 }
15224
15225 /* Apply a fixup to the object file. */
15226
15227 void
15228 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
15229 {
15230 char *buf;
15231 unsigned long insn;
15232 reloc_howto_type *howto;
15233
15234 if (fixP->fx_pcrel)
15235 switch (fixP->fx_r_type)
15236 {
15237 case BFD_RELOC_16_PCREL_S2:
15238 case BFD_RELOC_MIPS16_16_PCREL_S1:
15239 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15240 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15241 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15242 case BFD_RELOC_32_PCREL:
15243 case BFD_RELOC_MIPS_21_PCREL_S2:
15244 case BFD_RELOC_MIPS_26_PCREL_S2:
15245 case BFD_RELOC_MIPS_18_PCREL_S3:
15246 case BFD_RELOC_MIPS_19_PCREL_S2:
15247 case BFD_RELOC_HI16_S_PCREL:
15248 case BFD_RELOC_LO16_PCREL:
15249 break;
15250
15251 case BFD_RELOC_32:
15252 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15253 break;
15254
15255 default:
15256 as_bad_where (fixP->fx_file, fixP->fx_line,
15257 _("PC-relative reference to a different section"));
15258 break;
15259 }
15260
15261 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15262 that have no MIPS ELF equivalent. */
15263 if (fixP->fx_r_type != BFD_RELOC_8)
15264 {
15265 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15266 if (!howto)
15267 return;
15268 }
15269
15270 gas_assert (fixP->fx_size == 2
15271 || fixP->fx_size == 4
15272 || fixP->fx_r_type == BFD_RELOC_8
15273 || fixP->fx_r_type == BFD_RELOC_16
15274 || fixP->fx_r_type == BFD_RELOC_64
15275 || fixP->fx_r_type == BFD_RELOC_CTOR
15276 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
15277 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
15278 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15279 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
15280 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15281 || fixP->fx_r_type == BFD_RELOC_NONE);
15282
15283 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15284
15285 /* Don't treat parts of a composite relocation as done. There are two
15286 reasons for this:
15287
15288 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15289 should nevertheless be emitted if the first part is.
15290
15291 (2) In normal usage, composite relocations are never assembly-time
15292 constants. The easiest way of dealing with the pathological
15293 exceptions is to generate a relocation against STN_UNDEF and
15294 leave everything up to the linker. */
15295 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
15296 fixP->fx_done = 1;
15297
15298 switch (fixP->fx_r_type)
15299 {
15300 case BFD_RELOC_MIPS_TLS_GD:
15301 case BFD_RELOC_MIPS_TLS_LDM:
15302 case BFD_RELOC_MIPS_TLS_DTPREL32:
15303 case BFD_RELOC_MIPS_TLS_DTPREL64:
15304 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15305 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15306 case BFD_RELOC_MIPS_TLS_GOTTPREL:
15307 case BFD_RELOC_MIPS_TLS_TPREL32:
15308 case BFD_RELOC_MIPS_TLS_TPREL64:
15309 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15310 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
15311 case BFD_RELOC_MICROMIPS_TLS_GD:
15312 case BFD_RELOC_MICROMIPS_TLS_LDM:
15313 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15314 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15315 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15316 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15317 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
15318 case BFD_RELOC_MIPS16_TLS_GD:
15319 case BFD_RELOC_MIPS16_TLS_LDM:
15320 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15321 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15322 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15323 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15324 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
15325 if (fixP->fx_addsy)
15326 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15327 else
15328 as_bad_where (fixP->fx_file, fixP->fx_line,
15329 _("TLS relocation against a constant"));
15330 break;
15331
15332 case BFD_RELOC_MIPS_JMP:
15333 case BFD_RELOC_MIPS16_JMP:
15334 case BFD_RELOC_MICROMIPS_JMP:
15335 {
15336 int shift;
15337
15338 gas_assert (!fixP->fx_done);
15339
15340 /* Shift is 2, unusually, for microMIPS JALX. */
15341 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15342 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15343 shift = 1;
15344 else
15345 shift = 2;
15346
15347 if (fix_bad_cross_mode_jump_p (fixP))
15348 as_bad_where (fixP->fx_file, fixP->fx_line,
15349 _("jump to a symbol in another ISA mode"));
15350 else if (fix_bad_same_mode_jalx_p (fixP))
15351 as_bad_where (fixP->fx_file, fixP->fx_line,
15352 _("JALX to a symbol in the same ISA mode"));
15353 else if (fix_bad_misaligned_jump_p (fixP, shift))
15354 as_bad_where (fixP->fx_file, fixP->fx_line,
15355 _("jump to misaligned address (0x%lx)"),
15356 (long) (S_GET_VALUE (fixP->fx_addsy)
15357 + fixP->fx_offset));
15358 else if (HAVE_IN_PLACE_ADDENDS
15359 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15360 as_bad_where (fixP->fx_file, fixP->fx_line,
15361 _("cannot encode misaligned addend "
15362 "in the relocatable field (0x%lx)"),
15363 (long) fixP->fx_offset);
15364 }
15365 /* Fall through. */
15366
15367 case BFD_RELOC_MIPS_SHIFT5:
15368 case BFD_RELOC_MIPS_SHIFT6:
15369 case BFD_RELOC_MIPS_GOT_DISP:
15370 case BFD_RELOC_MIPS_GOT_PAGE:
15371 case BFD_RELOC_MIPS_GOT_OFST:
15372 case BFD_RELOC_MIPS_SUB:
15373 case BFD_RELOC_MIPS_INSERT_A:
15374 case BFD_RELOC_MIPS_INSERT_B:
15375 case BFD_RELOC_MIPS_DELETE:
15376 case BFD_RELOC_MIPS_HIGHEST:
15377 case BFD_RELOC_MIPS_HIGHER:
15378 case BFD_RELOC_MIPS_SCN_DISP:
15379 case BFD_RELOC_MIPS_REL16:
15380 case BFD_RELOC_MIPS_RELGOT:
15381 case BFD_RELOC_MIPS_JALR:
15382 case BFD_RELOC_HI16:
15383 case BFD_RELOC_HI16_S:
15384 case BFD_RELOC_LO16:
15385 case BFD_RELOC_GPREL16:
15386 case BFD_RELOC_MIPS_LITERAL:
15387 case BFD_RELOC_MIPS_CALL16:
15388 case BFD_RELOC_MIPS_GOT16:
15389 case BFD_RELOC_GPREL32:
15390 case BFD_RELOC_MIPS_GOT_HI16:
15391 case BFD_RELOC_MIPS_GOT_LO16:
15392 case BFD_RELOC_MIPS_CALL_HI16:
15393 case BFD_RELOC_MIPS_CALL_LO16:
15394 case BFD_RELOC_HI16_S_PCREL:
15395 case BFD_RELOC_LO16_PCREL:
15396 case BFD_RELOC_MIPS16_GPREL:
15397 case BFD_RELOC_MIPS16_GOT16:
15398 case BFD_RELOC_MIPS16_CALL16:
15399 case BFD_RELOC_MIPS16_HI16:
15400 case BFD_RELOC_MIPS16_HI16_S:
15401 case BFD_RELOC_MIPS16_LO16:
15402 case BFD_RELOC_MICROMIPS_GOT_DISP:
15403 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15404 case BFD_RELOC_MICROMIPS_GOT_OFST:
15405 case BFD_RELOC_MICROMIPS_SUB:
15406 case BFD_RELOC_MICROMIPS_HIGHEST:
15407 case BFD_RELOC_MICROMIPS_HIGHER:
15408 case BFD_RELOC_MICROMIPS_SCN_DISP:
15409 case BFD_RELOC_MICROMIPS_JALR:
15410 case BFD_RELOC_MICROMIPS_HI16:
15411 case BFD_RELOC_MICROMIPS_HI16_S:
15412 case BFD_RELOC_MICROMIPS_LO16:
15413 case BFD_RELOC_MICROMIPS_GPREL16:
15414 case BFD_RELOC_MICROMIPS_LITERAL:
15415 case BFD_RELOC_MICROMIPS_CALL16:
15416 case BFD_RELOC_MICROMIPS_GOT16:
15417 case BFD_RELOC_MICROMIPS_GOT_HI16:
15418 case BFD_RELOC_MICROMIPS_GOT_LO16:
15419 case BFD_RELOC_MICROMIPS_CALL_HI16:
15420 case BFD_RELOC_MICROMIPS_CALL_LO16:
15421 case BFD_RELOC_MIPS_EH:
15422 if (fixP->fx_done)
15423 {
15424 offsetT value;
15425
15426 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15427 {
15428 insn = read_reloc_insn (buf, fixP->fx_r_type);
15429 if (mips16_reloc_p (fixP->fx_r_type))
15430 insn |= mips16_immed_extend (value, 16);
15431 else
15432 insn |= (value & 0xffff);
15433 write_reloc_insn (buf, fixP->fx_r_type, insn);
15434 }
15435 else
15436 as_bad_where (fixP->fx_file, fixP->fx_line,
15437 _("unsupported constant in relocation"));
15438 }
15439 break;
15440
15441 case BFD_RELOC_64:
15442 /* This is handled like BFD_RELOC_32, but we output a sign
15443 extended value if we are only 32 bits. */
15444 if (fixP->fx_done)
15445 {
15446 if (8 <= sizeof (valueT))
15447 md_number_to_chars (buf, *valP, 8);
15448 else
15449 {
15450 valueT hiv;
15451
15452 if ((*valP & 0x80000000) != 0)
15453 hiv = 0xffffffff;
15454 else
15455 hiv = 0;
15456 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15457 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15458 }
15459 }
15460 break;
15461
15462 case BFD_RELOC_RVA:
15463 case BFD_RELOC_32:
15464 case BFD_RELOC_32_PCREL:
15465 case BFD_RELOC_16:
15466 case BFD_RELOC_8:
15467 /* If we are deleting this reloc entry, we must fill in the
15468 value now. This can happen if we have a .word which is not
15469 resolved when it appears but is later defined. */
15470 if (fixP->fx_done)
15471 md_number_to_chars (buf, *valP, fixP->fx_size);
15472 break;
15473
15474 case BFD_RELOC_MIPS_21_PCREL_S2:
15475 fix_validate_branch (fixP, *valP);
15476 if (!fixP->fx_done)
15477 break;
15478
15479 if (*valP + 0x400000 <= 0x7fffff)
15480 {
15481 insn = read_insn (buf);
15482 insn |= (*valP >> 2) & 0x1fffff;
15483 write_insn (buf, insn);
15484 }
15485 else
15486 as_bad_where (fixP->fx_file, fixP->fx_line,
15487 _("branch out of range"));
15488 break;
15489
15490 case BFD_RELOC_MIPS_26_PCREL_S2:
15491 fix_validate_branch (fixP, *valP);
15492 if (!fixP->fx_done)
15493 break;
15494
15495 if (*valP + 0x8000000 <= 0xfffffff)
15496 {
15497 insn = read_insn (buf);
15498 insn |= (*valP >> 2) & 0x3ffffff;
15499 write_insn (buf, insn);
15500 }
15501 else
15502 as_bad_where (fixP->fx_file, fixP->fx_line,
15503 _("branch out of range"));
15504 break;
15505
15506 case BFD_RELOC_MIPS_18_PCREL_S3:
15507 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15508 as_bad_where (fixP->fx_file, fixP->fx_line,
15509 _("PC-relative access using misaligned symbol (%lx)"),
15510 (long) S_GET_VALUE (fixP->fx_addsy));
15511 if ((fixP->fx_offset & 0x7) != 0)
15512 as_bad_where (fixP->fx_file, fixP->fx_line,
15513 _("PC-relative access using misaligned offset (%lx)"),
15514 (long) fixP->fx_offset);
15515 if (!fixP->fx_done)
15516 break;
15517
15518 if (*valP + 0x100000 <= 0x1fffff)
15519 {
15520 insn = read_insn (buf);
15521 insn |= (*valP >> 3) & 0x3ffff;
15522 write_insn (buf, insn);
15523 }
15524 else
15525 as_bad_where (fixP->fx_file, fixP->fx_line,
15526 _("PC-relative access out of range"));
15527 break;
15528
15529 case BFD_RELOC_MIPS_19_PCREL_S2:
15530 if ((*valP & 0x3) != 0)
15531 as_bad_where (fixP->fx_file, fixP->fx_line,
15532 _("PC-relative access to misaligned address (%lx)"),
15533 (long) *valP);
15534 if (!fixP->fx_done)
15535 break;
15536
15537 if (*valP + 0x100000 <= 0x1fffff)
15538 {
15539 insn = read_insn (buf);
15540 insn |= (*valP >> 2) & 0x7ffff;
15541 write_insn (buf, insn);
15542 }
15543 else
15544 as_bad_where (fixP->fx_file, fixP->fx_line,
15545 _("PC-relative access out of range"));
15546 break;
15547
15548 case BFD_RELOC_16_PCREL_S2:
15549 fix_validate_branch (fixP, *valP);
15550
15551 /* We need to save the bits in the instruction since fixup_segment()
15552 might be deleting the relocation entry (i.e., a branch within
15553 the current segment). */
15554 if (! fixP->fx_done)
15555 break;
15556
15557 /* Update old instruction data. */
15558 insn = read_insn (buf);
15559
15560 if (*valP + 0x20000 <= 0x3ffff)
15561 {
15562 insn |= (*valP >> 2) & 0xffff;
15563 write_insn (buf, insn);
15564 }
15565 else if (mips_pic == NO_PIC
15566 && fixP->fx_done
15567 && fixP->fx_frag->fr_address >= text_section->vma
15568 && (fixP->fx_frag->fr_address
15569 < text_section->vma + bfd_get_section_size (text_section))
15570 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15571 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15572 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15573 {
15574 /* The branch offset is too large. If this is an
15575 unconditional branch, and we are not generating PIC code,
15576 we can convert it to an absolute jump instruction. */
15577 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15578 insn = 0x0c000000; /* jal */
15579 else
15580 insn = 0x08000000; /* j */
15581 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15582 fixP->fx_done = 0;
15583 fixP->fx_addsy = section_symbol (text_section);
15584 *valP += md_pcrel_from (fixP);
15585 write_insn (buf, insn);
15586 }
15587 else
15588 {
15589 /* If we got here, we have branch-relaxation disabled,
15590 and there's nothing we can do to fix this instruction
15591 without turning it into a longer sequence. */
15592 as_bad_where (fixP->fx_file, fixP->fx_line,
15593 _("branch out of range"));
15594 }
15595 break;
15596
15597 case BFD_RELOC_MIPS16_16_PCREL_S1:
15598 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15599 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15600 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15601 gas_assert (!fixP->fx_done);
15602 if (fix_bad_cross_mode_branch_p (fixP))
15603 as_bad_where (fixP->fx_file, fixP->fx_line,
15604 _("branch to a symbol in another ISA mode"));
15605 else if (fixP->fx_addsy
15606 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
15607 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
15608 && (fixP->fx_offset & 0x1) != 0)
15609 as_bad_where (fixP->fx_file, fixP->fx_line,
15610 _("branch to misaligned address (0x%lx)"),
15611 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15612 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
15613 as_bad_where (fixP->fx_file, fixP->fx_line,
15614 _("cannot encode misaligned addend "
15615 "in the relocatable field (0x%lx)"),
15616 (long) fixP->fx_offset);
15617 break;
15618
15619 case BFD_RELOC_VTABLE_INHERIT:
15620 fixP->fx_done = 0;
15621 if (fixP->fx_addsy
15622 && !S_IS_DEFINED (fixP->fx_addsy)
15623 && !S_IS_WEAK (fixP->fx_addsy))
15624 S_SET_WEAK (fixP->fx_addsy);
15625 break;
15626
15627 case BFD_RELOC_NONE:
15628 case BFD_RELOC_VTABLE_ENTRY:
15629 fixP->fx_done = 0;
15630 break;
15631
15632 default:
15633 abort ();
15634 }
15635
15636 /* Remember value for tc_gen_reloc. */
15637 fixP->fx_addnumber = *valP;
15638 }
15639
15640 static symbolS *
15641 get_symbol (void)
15642 {
15643 int c;
15644 char *name;
15645 symbolS *p;
15646
15647 c = get_symbol_name (&name);
15648 p = (symbolS *) symbol_find_or_make (name);
15649 (void) restore_line_pointer (c);
15650 return p;
15651 }
15652
15653 /* Align the current frag to a given power of two. If a particular
15654 fill byte should be used, FILL points to an integer that contains
15655 that byte, otherwise FILL is null.
15656
15657 This function used to have the comment:
15658
15659 The MIPS assembler also automatically adjusts any preceding label.
15660
15661 The implementation therefore applied the adjustment to a maximum of
15662 one label. However, other label adjustments are applied to batches
15663 of labels, and adjusting just one caused problems when new labels
15664 were added for the sake of debugging or unwind information.
15665 We therefore adjust all preceding labels (given as LABELS) instead. */
15666
15667 static void
15668 mips_align (int to, int *fill, struct insn_label_list *labels)
15669 {
15670 mips_emit_delays ();
15671 mips_record_compressed_mode ();
15672 if (fill == NULL && subseg_text_p (now_seg))
15673 frag_align_code (to, 0);
15674 else
15675 frag_align (to, fill ? *fill : 0, 0);
15676 record_alignment (now_seg, to);
15677 mips_move_labels (labels, FALSE);
15678 }
15679
15680 /* Align to a given power of two. .align 0 turns off the automatic
15681 alignment used by the data creating pseudo-ops. */
15682
15683 static void
15684 s_align (int x ATTRIBUTE_UNUSED)
15685 {
15686 int temp, fill_value, *fill_ptr;
15687 long max_alignment = 28;
15688
15689 /* o Note that the assembler pulls down any immediately preceding label
15690 to the aligned address.
15691 o It's not documented but auto alignment is reinstated by
15692 a .align pseudo instruction.
15693 o Note also that after auto alignment is turned off the mips assembler
15694 issues an error on attempt to assemble an improperly aligned data item.
15695 We don't. */
15696
15697 temp = get_absolute_expression ();
15698 if (temp > max_alignment)
15699 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15700 else if (temp < 0)
15701 {
15702 as_warn (_("alignment negative, 0 assumed"));
15703 temp = 0;
15704 }
15705 if (*input_line_pointer == ',')
15706 {
15707 ++input_line_pointer;
15708 fill_value = get_absolute_expression ();
15709 fill_ptr = &fill_value;
15710 }
15711 else
15712 fill_ptr = 0;
15713 if (temp)
15714 {
15715 segment_info_type *si = seg_info (now_seg);
15716 struct insn_label_list *l = si->label_list;
15717 /* Auto alignment should be switched on by next section change. */
15718 auto_align = 1;
15719 mips_align (temp, fill_ptr, l);
15720 }
15721 else
15722 {
15723 auto_align = 0;
15724 }
15725
15726 demand_empty_rest_of_line ();
15727 }
15728
15729 static void
15730 s_change_sec (int sec)
15731 {
15732 segT seg;
15733
15734 /* The ELF backend needs to know that we are changing sections, so
15735 that .previous works correctly. We could do something like check
15736 for an obj_section_change_hook macro, but that might be confusing
15737 as it would not be appropriate to use it in the section changing
15738 functions in read.c, since obj-elf.c intercepts those. FIXME:
15739 This should be cleaner, somehow. */
15740 obj_elf_section_change_hook ();
15741
15742 mips_emit_delays ();
15743
15744 switch (sec)
15745 {
15746 case 't':
15747 s_text (0);
15748 break;
15749 case 'd':
15750 s_data (0);
15751 break;
15752 case 'b':
15753 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15754 demand_empty_rest_of_line ();
15755 break;
15756
15757 case 'r':
15758 seg = subseg_new (RDATA_SECTION_NAME,
15759 (subsegT) get_absolute_expression ());
15760 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15761 | SEC_READONLY | SEC_RELOC
15762 | SEC_DATA));
15763 if (strncmp (TARGET_OS, "elf", 3) != 0)
15764 record_alignment (seg, 4);
15765 demand_empty_rest_of_line ();
15766 break;
15767
15768 case 's':
15769 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15770 bfd_set_section_flags (stdoutput, seg,
15771 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15772 if (strncmp (TARGET_OS, "elf", 3) != 0)
15773 record_alignment (seg, 4);
15774 demand_empty_rest_of_line ();
15775 break;
15776
15777 case 'B':
15778 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15779 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15780 if (strncmp (TARGET_OS, "elf", 3) != 0)
15781 record_alignment (seg, 4);
15782 demand_empty_rest_of_line ();
15783 break;
15784 }
15785
15786 auto_align = 1;
15787 }
15788
15789 void
15790 s_change_section (int ignore ATTRIBUTE_UNUSED)
15791 {
15792 char *saved_ilp;
15793 char *section_name;
15794 char c, endc;
15795 char next_c = 0;
15796 int section_type;
15797 int section_flag;
15798 int section_entry_size;
15799 int section_alignment;
15800
15801 saved_ilp = input_line_pointer;
15802 endc = get_symbol_name (&section_name);
15803 c = (endc == '"' ? input_line_pointer[1] : endc);
15804 if (c)
15805 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
15806
15807 /* Do we have .section Name<,"flags">? */
15808 if (c != ',' || (c == ',' && next_c == '"'))
15809 {
15810 /* Just after name is now '\0'. */
15811 (void) restore_line_pointer (endc);
15812 input_line_pointer = saved_ilp;
15813 obj_elf_section (ignore);
15814 return;
15815 }
15816
15817 section_name = xstrdup (section_name);
15818 c = restore_line_pointer (endc);
15819
15820 input_line_pointer++;
15821
15822 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15823 if (c == ',')
15824 section_type = get_absolute_expression ();
15825 else
15826 section_type = 0;
15827
15828 if (*input_line_pointer++ == ',')
15829 section_flag = get_absolute_expression ();
15830 else
15831 section_flag = 0;
15832
15833 if (*input_line_pointer++ == ',')
15834 section_entry_size = get_absolute_expression ();
15835 else
15836 section_entry_size = 0;
15837
15838 if (*input_line_pointer++ == ',')
15839 section_alignment = get_absolute_expression ();
15840 else
15841 section_alignment = 0;
15842
15843 /* FIXME: really ignore? */
15844 (void) section_alignment;
15845
15846 /* When using the generic form of .section (as implemented by obj-elf.c),
15847 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15848 traditionally had to fall back on the more common @progbits instead.
15849
15850 There's nothing really harmful in this, since bfd will correct
15851 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15852 means that, for backwards compatibility, the special_section entries
15853 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15854
15855 Even so, we shouldn't force users of the MIPS .section syntax to
15856 incorrectly label the sections as SHT_PROGBITS. The best compromise
15857 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15858 generic type-checking code. */
15859 if (section_type == SHT_MIPS_DWARF)
15860 section_type = SHT_PROGBITS;
15861
15862 obj_elf_change_section (section_name, section_type, section_flag,
15863 section_entry_size, 0, 0, 0);
15864
15865 if (now_seg->name != section_name)
15866 free (section_name);
15867 }
15868
15869 void
15870 mips_enable_auto_align (void)
15871 {
15872 auto_align = 1;
15873 }
15874
15875 static void
15876 s_cons (int log_size)
15877 {
15878 segment_info_type *si = seg_info (now_seg);
15879 struct insn_label_list *l = si->label_list;
15880
15881 mips_emit_delays ();
15882 if (log_size > 0 && auto_align)
15883 mips_align (log_size, 0, l);
15884 cons (1 << log_size);
15885 mips_clear_insn_labels ();
15886 }
15887
15888 static void
15889 s_float_cons (int type)
15890 {
15891 segment_info_type *si = seg_info (now_seg);
15892 struct insn_label_list *l = si->label_list;
15893
15894 mips_emit_delays ();
15895
15896 if (auto_align)
15897 {
15898 if (type == 'd')
15899 mips_align (3, 0, l);
15900 else
15901 mips_align (2, 0, l);
15902 }
15903
15904 float_cons (type);
15905 mips_clear_insn_labels ();
15906 }
15907
15908 /* Handle .globl. We need to override it because on Irix 5 you are
15909 permitted to say
15910 .globl foo .text
15911 where foo is an undefined symbol, to mean that foo should be
15912 considered to be the address of a function. */
15913
15914 static void
15915 s_mips_globl (int x ATTRIBUTE_UNUSED)
15916 {
15917 char *name;
15918 int c;
15919 symbolS *symbolP;
15920 flagword flag;
15921
15922 do
15923 {
15924 c = get_symbol_name (&name);
15925 symbolP = symbol_find_or_make (name);
15926 S_SET_EXTERNAL (symbolP);
15927
15928 *input_line_pointer = c;
15929 SKIP_WHITESPACE_AFTER_NAME ();
15930
15931 /* On Irix 5, every global symbol that is not explicitly labelled as
15932 being a function is apparently labelled as being an object. */
15933 flag = BSF_OBJECT;
15934
15935 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15936 && (*input_line_pointer != ','))
15937 {
15938 char *secname;
15939 asection *sec;
15940
15941 c = get_symbol_name (&secname);
15942 sec = bfd_get_section_by_name (stdoutput, secname);
15943 if (sec == NULL)
15944 as_bad (_("%s: no such section"), secname);
15945 (void) restore_line_pointer (c);
15946
15947 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15948 flag = BSF_FUNCTION;
15949 }
15950
15951 symbol_get_bfdsym (symbolP)->flags |= flag;
15952
15953 c = *input_line_pointer;
15954 if (c == ',')
15955 {
15956 input_line_pointer++;
15957 SKIP_WHITESPACE ();
15958 if (is_end_of_line[(unsigned char) *input_line_pointer])
15959 c = '\n';
15960 }
15961 }
15962 while (c == ',');
15963
15964 demand_empty_rest_of_line ();
15965 }
15966
15967 static void
15968 s_option (int x ATTRIBUTE_UNUSED)
15969 {
15970 char *opt;
15971 char c;
15972
15973 c = get_symbol_name (&opt);
15974
15975 if (*opt == 'O')
15976 {
15977 /* FIXME: What does this mean? */
15978 }
15979 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
15980 {
15981 int i;
15982
15983 i = atoi (opt + 3);
15984 if (i != 0 && i != 2)
15985 as_bad (_(".option pic%d not supported"), i);
15986 else if (mips_pic == VXWORKS_PIC)
15987 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
15988 else if (i == 0)
15989 mips_pic = NO_PIC;
15990 else if (i == 2)
15991 {
15992 mips_pic = SVR4_PIC;
15993 mips_abicalls = TRUE;
15994 }
15995
15996 if (mips_pic == SVR4_PIC)
15997 {
15998 if (g_switch_seen && g_switch_value != 0)
15999 as_warn (_("-G may not be used with SVR4 PIC code"));
16000 g_switch_value = 0;
16001 bfd_set_gp_size (stdoutput, 0);
16002 }
16003 }
16004 else
16005 as_warn (_("unrecognized option \"%s\""), opt);
16006
16007 (void) restore_line_pointer (c);
16008 demand_empty_rest_of_line ();
16009 }
16010
16011 /* This structure is used to hold a stack of .set values. */
16012
16013 struct mips_option_stack
16014 {
16015 struct mips_option_stack *next;
16016 struct mips_set_options options;
16017 };
16018
16019 static struct mips_option_stack *mips_opts_stack;
16020
16021 /* Return status for .set/.module option handling. */
16022
16023 enum code_option_type
16024 {
16025 /* Unrecognized option. */
16026 OPTION_TYPE_BAD = -1,
16027
16028 /* Ordinary option. */
16029 OPTION_TYPE_NORMAL,
16030
16031 /* ISA changing option. */
16032 OPTION_TYPE_ISA
16033 };
16034
16035 /* Handle common .set/.module options. Return status indicating option
16036 type. */
16037
16038 static enum code_option_type
16039 parse_code_option (char * name)
16040 {
16041 bfd_boolean isa_set = FALSE;
16042 const struct mips_ase *ase;
16043
16044 if (strncmp (name, "at=", 3) == 0)
16045 {
16046 char *s = name + 3;
16047
16048 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
16049 as_bad (_("unrecognized register name `%s'"), s);
16050 }
16051 else if (strcmp (name, "at") == 0)
16052 mips_opts.at = ATREG;
16053 else if (strcmp (name, "noat") == 0)
16054 mips_opts.at = ZERO;
16055 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
16056 mips_opts.nomove = 0;
16057 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
16058 mips_opts.nomove = 1;
16059 else if (strcmp (name, "bopt") == 0)
16060 mips_opts.nobopt = 0;
16061 else if (strcmp (name, "nobopt") == 0)
16062 mips_opts.nobopt = 1;
16063 else if (strcmp (name, "gp=32") == 0)
16064 mips_opts.gp = 32;
16065 else if (strcmp (name, "gp=64") == 0)
16066 mips_opts.gp = 64;
16067 else if (strcmp (name, "fp=32") == 0)
16068 mips_opts.fp = 32;
16069 else if (strcmp (name, "fp=xx") == 0)
16070 mips_opts.fp = 0;
16071 else if (strcmp (name, "fp=64") == 0)
16072 mips_opts.fp = 64;
16073 else if (strcmp (name, "softfloat") == 0)
16074 mips_opts.soft_float = 1;
16075 else if (strcmp (name, "hardfloat") == 0)
16076 mips_opts.soft_float = 0;
16077 else if (strcmp (name, "singlefloat") == 0)
16078 mips_opts.single_float = 1;
16079 else if (strcmp (name, "doublefloat") == 0)
16080 mips_opts.single_float = 0;
16081 else if (strcmp (name, "nooddspreg") == 0)
16082 mips_opts.oddspreg = 0;
16083 else if (strcmp (name, "oddspreg") == 0)
16084 mips_opts.oddspreg = 1;
16085 else if (strcmp (name, "mips16") == 0
16086 || strcmp (name, "MIPS-16") == 0)
16087 mips_opts.mips16 = 1;
16088 else if (strcmp (name, "nomips16") == 0
16089 || strcmp (name, "noMIPS-16") == 0)
16090 mips_opts.mips16 = 0;
16091 else if (strcmp (name, "micromips") == 0)
16092 mips_opts.micromips = 1;
16093 else if (strcmp (name, "nomicromips") == 0)
16094 mips_opts.micromips = 0;
16095 else if (name[0] == 'n'
16096 && name[1] == 'o'
16097 && (ase = mips_lookup_ase (name + 2)))
16098 mips_set_ase (ase, &mips_opts, FALSE);
16099 else if ((ase = mips_lookup_ase (name)))
16100 mips_set_ase (ase, &mips_opts, TRUE);
16101 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
16102 {
16103 /* Permit the user to change the ISA and architecture on the fly.
16104 Needless to say, misuse can cause serious problems. */
16105 if (strncmp (name, "arch=", 5) == 0)
16106 {
16107 const struct mips_cpu_info *p;
16108
16109 p = mips_parse_cpu ("internal use", name + 5);
16110 if (!p)
16111 as_bad (_("unknown architecture %s"), name + 5);
16112 else
16113 {
16114 mips_opts.arch = p->cpu;
16115 mips_opts.isa = p->isa;
16116 isa_set = TRUE;
16117 }
16118 }
16119 else if (strncmp (name, "mips", 4) == 0)
16120 {
16121 const struct mips_cpu_info *p;
16122
16123 p = mips_parse_cpu ("internal use", name);
16124 if (!p)
16125 as_bad (_("unknown ISA level %s"), name + 4);
16126 else
16127 {
16128 mips_opts.arch = p->cpu;
16129 mips_opts.isa = p->isa;
16130 isa_set = TRUE;
16131 }
16132 }
16133 else
16134 as_bad (_("unknown ISA or architecture %s"), name);
16135 }
16136 else if (strcmp (name, "autoextend") == 0)
16137 mips_opts.noautoextend = 0;
16138 else if (strcmp (name, "noautoextend") == 0)
16139 mips_opts.noautoextend = 1;
16140 else if (strcmp (name, "insn32") == 0)
16141 mips_opts.insn32 = TRUE;
16142 else if (strcmp (name, "noinsn32") == 0)
16143 mips_opts.insn32 = FALSE;
16144 else if (strcmp (name, "sym32") == 0)
16145 mips_opts.sym32 = TRUE;
16146 else if (strcmp (name, "nosym32") == 0)
16147 mips_opts.sym32 = FALSE;
16148 else
16149 return OPTION_TYPE_BAD;
16150
16151 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
16152 }
16153
16154 /* Handle the .set pseudo-op. */
16155
16156 static void
16157 s_mipsset (int x ATTRIBUTE_UNUSED)
16158 {
16159 enum code_option_type type = OPTION_TYPE_NORMAL;
16160 char *name = input_line_pointer, ch;
16161
16162 file_mips_check_options ();
16163
16164 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16165 ++input_line_pointer;
16166 ch = *input_line_pointer;
16167 *input_line_pointer = '\0';
16168
16169 if (strchr (name, ','))
16170 {
16171 /* Generic ".set" directive; use the generic handler. */
16172 *input_line_pointer = ch;
16173 input_line_pointer = name;
16174 s_set (0);
16175 return;
16176 }
16177
16178 if (strcmp (name, "reorder") == 0)
16179 {
16180 if (mips_opts.noreorder)
16181 end_noreorder ();
16182 }
16183 else if (strcmp (name, "noreorder") == 0)
16184 {
16185 if (!mips_opts.noreorder)
16186 start_noreorder ();
16187 }
16188 else if (strcmp (name, "macro") == 0)
16189 mips_opts.warn_about_macros = 0;
16190 else if (strcmp (name, "nomacro") == 0)
16191 {
16192 if (mips_opts.noreorder == 0)
16193 as_bad (_("`noreorder' must be set before `nomacro'"));
16194 mips_opts.warn_about_macros = 1;
16195 }
16196 else if (strcmp (name, "gp=default") == 0)
16197 mips_opts.gp = file_mips_opts.gp;
16198 else if (strcmp (name, "fp=default") == 0)
16199 mips_opts.fp = file_mips_opts.fp;
16200 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16201 {
16202 mips_opts.isa = file_mips_opts.isa;
16203 mips_opts.arch = file_mips_opts.arch;
16204 mips_opts.gp = file_mips_opts.gp;
16205 mips_opts.fp = file_mips_opts.fp;
16206 }
16207 else if (strcmp (name, "push") == 0)
16208 {
16209 struct mips_option_stack *s;
16210
16211 s = XNEW (struct mips_option_stack);
16212 s->next = mips_opts_stack;
16213 s->options = mips_opts;
16214 mips_opts_stack = s;
16215 }
16216 else if (strcmp (name, "pop") == 0)
16217 {
16218 struct mips_option_stack *s;
16219
16220 s = mips_opts_stack;
16221 if (s == NULL)
16222 as_bad (_(".set pop with no .set push"));
16223 else
16224 {
16225 /* If we're changing the reorder mode we need to handle
16226 delay slots correctly. */
16227 if (s->options.noreorder && ! mips_opts.noreorder)
16228 start_noreorder ();
16229 else if (! s->options.noreorder && mips_opts.noreorder)
16230 end_noreorder ();
16231
16232 mips_opts = s->options;
16233 mips_opts_stack = s->next;
16234 free (s);
16235 }
16236 }
16237 else
16238 {
16239 type = parse_code_option (name);
16240 if (type == OPTION_TYPE_BAD)
16241 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16242 }
16243
16244 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16245 registers based on what is supported by the arch/cpu. */
16246 if (type == OPTION_TYPE_ISA)
16247 {
16248 switch (mips_opts.isa)
16249 {
16250 case 0:
16251 break;
16252 case ISA_MIPS1:
16253 /* MIPS I cannot support FPXX. */
16254 mips_opts.fp = 32;
16255 /* fall-through. */
16256 case ISA_MIPS2:
16257 case ISA_MIPS32:
16258 case ISA_MIPS32R2:
16259 case ISA_MIPS32R3:
16260 case ISA_MIPS32R5:
16261 mips_opts.gp = 32;
16262 if (mips_opts.fp != 0)
16263 mips_opts.fp = 32;
16264 break;
16265 case ISA_MIPS32R6:
16266 mips_opts.gp = 32;
16267 mips_opts.fp = 64;
16268 break;
16269 case ISA_MIPS3:
16270 case ISA_MIPS4:
16271 case ISA_MIPS5:
16272 case ISA_MIPS64:
16273 case ISA_MIPS64R2:
16274 case ISA_MIPS64R3:
16275 case ISA_MIPS64R5:
16276 case ISA_MIPS64R6:
16277 mips_opts.gp = 64;
16278 if (mips_opts.fp != 0)
16279 {
16280 if (mips_opts.arch == CPU_R5900)
16281 mips_opts.fp = 32;
16282 else
16283 mips_opts.fp = 64;
16284 }
16285 break;
16286 default:
16287 as_bad (_("unknown ISA level %s"), name + 4);
16288 break;
16289 }
16290 }
16291
16292 mips_check_options (&mips_opts, FALSE);
16293
16294 mips_check_isa_supports_ases ();
16295 *input_line_pointer = ch;
16296 demand_empty_rest_of_line ();
16297 }
16298
16299 /* Handle the .module pseudo-op. */
16300
16301 static void
16302 s_module (int ignore ATTRIBUTE_UNUSED)
16303 {
16304 char *name = input_line_pointer, ch;
16305
16306 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16307 ++input_line_pointer;
16308 ch = *input_line_pointer;
16309 *input_line_pointer = '\0';
16310
16311 if (!file_mips_opts_checked)
16312 {
16313 if (parse_code_option (name) == OPTION_TYPE_BAD)
16314 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16315
16316 /* Update module level settings from mips_opts. */
16317 file_mips_opts = mips_opts;
16318 }
16319 else
16320 as_bad (_(".module is not permitted after generating code"));
16321
16322 *input_line_pointer = ch;
16323 demand_empty_rest_of_line ();
16324 }
16325
16326 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
16327 .option pic2. It means to generate SVR4 PIC calls. */
16328
16329 static void
16330 s_abicalls (int ignore ATTRIBUTE_UNUSED)
16331 {
16332 mips_pic = SVR4_PIC;
16333 mips_abicalls = TRUE;
16334
16335 if (g_switch_seen && g_switch_value != 0)
16336 as_warn (_("-G may not be used with SVR4 PIC code"));
16337 g_switch_value = 0;
16338
16339 bfd_set_gp_size (stdoutput, 0);
16340 demand_empty_rest_of_line ();
16341 }
16342
16343 /* Handle the .cpload pseudo-op. This is used when generating SVR4
16344 PIC code. It sets the $gp register for the function based on the
16345 function address, which is in the register named in the argument.
16346 This uses a relocation against _gp_disp, which is handled specially
16347 by the linker. The result is:
16348 lui $gp,%hi(_gp_disp)
16349 addiu $gp,$gp,%lo(_gp_disp)
16350 addu $gp,$gp,.cpload argument
16351 The .cpload argument is normally $25 == $t9.
16352
16353 The -mno-shared option changes this to:
16354 lui $gp,%hi(__gnu_local_gp)
16355 addiu $gp,$gp,%lo(__gnu_local_gp)
16356 and the argument is ignored. This saves an instruction, but the
16357 resulting code is not position independent; it uses an absolute
16358 address for __gnu_local_gp. Thus code assembled with -mno-shared
16359 can go into an ordinary executable, but not into a shared library. */
16360
16361 static void
16362 s_cpload (int ignore ATTRIBUTE_UNUSED)
16363 {
16364 expressionS ex;
16365 int reg;
16366 int in_shared;
16367
16368 file_mips_check_options ();
16369
16370 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16371 .cpload is ignored. */
16372 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16373 {
16374 s_ignore (0);
16375 return;
16376 }
16377
16378 if (mips_opts.mips16)
16379 {
16380 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16381 ignore_rest_of_line ();
16382 return;
16383 }
16384
16385 /* .cpload should be in a .set noreorder section. */
16386 if (mips_opts.noreorder == 0)
16387 as_warn (_(".cpload not in noreorder section"));
16388
16389 reg = tc_get_register (0);
16390
16391 /* If we need to produce a 64-bit address, we are better off using
16392 the default instruction sequence. */
16393 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
16394
16395 ex.X_op = O_symbol;
16396 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16397 "__gnu_local_gp");
16398 ex.X_op_symbol = NULL;
16399 ex.X_add_number = 0;
16400
16401 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16402 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16403
16404 mips_mark_labels ();
16405 mips_assembling_insn = TRUE;
16406
16407 macro_start ();
16408 macro_build_lui (&ex, mips_gp_register);
16409 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16410 mips_gp_register, BFD_RELOC_LO16);
16411 if (in_shared)
16412 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16413 mips_gp_register, reg);
16414 macro_end ();
16415
16416 mips_assembling_insn = FALSE;
16417 demand_empty_rest_of_line ();
16418 }
16419
16420 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16421 .cpsetup $reg1, offset|$reg2, label
16422
16423 If offset is given, this results in:
16424 sd $gp, offset($sp)
16425 lui $gp, %hi(%neg(%gp_rel(label)))
16426 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16427 daddu $gp, $gp, $reg1
16428
16429 If $reg2 is given, this results in:
16430 or $reg2, $gp, $0
16431 lui $gp, %hi(%neg(%gp_rel(label)))
16432 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16433 daddu $gp, $gp, $reg1
16434 $reg1 is normally $25 == $t9.
16435
16436 The -mno-shared option replaces the last three instructions with
16437 lui $gp,%hi(_gp)
16438 addiu $gp,$gp,%lo(_gp) */
16439
16440 static void
16441 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16442 {
16443 expressionS ex_off;
16444 expressionS ex_sym;
16445 int reg1;
16446
16447 file_mips_check_options ();
16448
16449 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16450 We also need NewABI support. */
16451 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16452 {
16453 s_ignore (0);
16454 return;
16455 }
16456
16457 if (mips_opts.mips16)
16458 {
16459 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16460 ignore_rest_of_line ();
16461 return;
16462 }
16463
16464 reg1 = tc_get_register (0);
16465 SKIP_WHITESPACE ();
16466 if (*input_line_pointer != ',')
16467 {
16468 as_bad (_("missing argument separator ',' for .cpsetup"));
16469 return;
16470 }
16471 else
16472 ++input_line_pointer;
16473 SKIP_WHITESPACE ();
16474 if (*input_line_pointer == '$')
16475 {
16476 mips_cpreturn_register = tc_get_register (0);
16477 mips_cpreturn_offset = -1;
16478 }
16479 else
16480 {
16481 mips_cpreturn_offset = get_absolute_expression ();
16482 mips_cpreturn_register = -1;
16483 }
16484 SKIP_WHITESPACE ();
16485 if (*input_line_pointer != ',')
16486 {
16487 as_bad (_("missing argument separator ',' for .cpsetup"));
16488 return;
16489 }
16490 else
16491 ++input_line_pointer;
16492 SKIP_WHITESPACE ();
16493 expression (&ex_sym);
16494
16495 mips_mark_labels ();
16496 mips_assembling_insn = TRUE;
16497
16498 macro_start ();
16499 if (mips_cpreturn_register == -1)
16500 {
16501 ex_off.X_op = O_constant;
16502 ex_off.X_add_symbol = NULL;
16503 ex_off.X_op_symbol = NULL;
16504 ex_off.X_add_number = mips_cpreturn_offset;
16505
16506 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16507 BFD_RELOC_LO16, SP);
16508 }
16509 else
16510 move_register (mips_cpreturn_register, mips_gp_register);
16511
16512 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16513 {
16514 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16515 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16516 BFD_RELOC_HI16_S);
16517
16518 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16519 mips_gp_register, -1, BFD_RELOC_GPREL16,
16520 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16521
16522 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16523 mips_gp_register, reg1);
16524 }
16525 else
16526 {
16527 expressionS ex;
16528
16529 ex.X_op = O_symbol;
16530 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16531 ex.X_op_symbol = NULL;
16532 ex.X_add_number = 0;
16533
16534 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16535 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16536
16537 macro_build_lui (&ex, mips_gp_register);
16538 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16539 mips_gp_register, BFD_RELOC_LO16);
16540 }
16541
16542 macro_end ();
16543
16544 mips_assembling_insn = FALSE;
16545 demand_empty_rest_of_line ();
16546 }
16547
16548 static void
16549 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16550 {
16551 file_mips_check_options ();
16552
16553 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16554 .cplocal is ignored. */
16555 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16556 {
16557 s_ignore (0);
16558 return;
16559 }
16560
16561 if (mips_opts.mips16)
16562 {
16563 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16564 ignore_rest_of_line ();
16565 return;
16566 }
16567
16568 mips_gp_register = tc_get_register (0);
16569 demand_empty_rest_of_line ();
16570 }
16571
16572 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16573 offset from $sp. The offset is remembered, and after making a PIC
16574 call $gp is restored from that location. */
16575
16576 static void
16577 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16578 {
16579 expressionS ex;
16580
16581 file_mips_check_options ();
16582
16583 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16584 .cprestore is ignored. */
16585 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16586 {
16587 s_ignore (0);
16588 return;
16589 }
16590
16591 if (mips_opts.mips16)
16592 {
16593 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16594 ignore_rest_of_line ();
16595 return;
16596 }
16597
16598 mips_cprestore_offset = get_absolute_expression ();
16599 mips_cprestore_valid = 1;
16600
16601 ex.X_op = O_constant;
16602 ex.X_add_symbol = NULL;
16603 ex.X_op_symbol = NULL;
16604 ex.X_add_number = mips_cprestore_offset;
16605
16606 mips_mark_labels ();
16607 mips_assembling_insn = TRUE;
16608
16609 macro_start ();
16610 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16611 SP, HAVE_64BIT_ADDRESSES);
16612 macro_end ();
16613
16614 mips_assembling_insn = FALSE;
16615 demand_empty_rest_of_line ();
16616 }
16617
16618 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16619 was given in the preceding .cpsetup, it results in:
16620 ld $gp, offset($sp)
16621
16622 If a register $reg2 was given there, it results in:
16623 or $gp, $reg2, $0 */
16624
16625 static void
16626 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16627 {
16628 expressionS ex;
16629
16630 file_mips_check_options ();
16631
16632 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16633 We also need NewABI support. */
16634 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16635 {
16636 s_ignore (0);
16637 return;
16638 }
16639
16640 if (mips_opts.mips16)
16641 {
16642 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16643 ignore_rest_of_line ();
16644 return;
16645 }
16646
16647 mips_mark_labels ();
16648 mips_assembling_insn = TRUE;
16649
16650 macro_start ();
16651 if (mips_cpreturn_register == -1)
16652 {
16653 ex.X_op = O_constant;
16654 ex.X_add_symbol = NULL;
16655 ex.X_op_symbol = NULL;
16656 ex.X_add_number = mips_cpreturn_offset;
16657
16658 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16659 }
16660 else
16661 move_register (mips_gp_register, mips_cpreturn_register);
16662
16663 macro_end ();
16664
16665 mips_assembling_insn = FALSE;
16666 demand_empty_rest_of_line ();
16667 }
16668
16669 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16670 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16671 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16672 debug information or MIPS16 TLS. */
16673
16674 static void
16675 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16676 bfd_reloc_code_real_type rtype)
16677 {
16678 expressionS ex;
16679 char *p;
16680
16681 expression (&ex);
16682
16683 if (ex.X_op != O_symbol)
16684 {
16685 as_bad (_("unsupported use of %s"), dirstr);
16686 ignore_rest_of_line ();
16687 }
16688
16689 p = frag_more (bytes);
16690 md_number_to_chars (p, 0, bytes);
16691 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16692 demand_empty_rest_of_line ();
16693 mips_clear_insn_labels ();
16694 }
16695
16696 /* Handle .dtprelword. */
16697
16698 static void
16699 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16700 {
16701 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16702 }
16703
16704 /* Handle .dtpreldword. */
16705
16706 static void
16707 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16708 {
16709 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16710 }
16711
16712 /* Handle .tprelword. */
16713
16714 static void
16715 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16716 {
16717 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16718 }
16719
16720 /* Handle .tpreldword. */
16721
16722 static void
16723 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16724 {
16725 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16726 }
16727
16728 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16729 code. It sets the offset to use in gp_rel relocations. */
16730
16731 static void
16732 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16733 {
16734 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16735 We also need NewABI support. */
16736 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16737 {
16738 s_ignore (0);
16739 return;
16740 }
16741
16742 mips_gprel_offset = get_absolute_expression ();
16743
16744 demand_empty_rest_of_line ();
16745 }
16746
16747 /* Handle the .gpword pseudo-op. This is used when generating PIC
16748 code. It generates a 32 bit GP relative reloc. */
16749
16750 static void
16751 s_gpword (int ignore ATTRIBUTE_UNUSED)
16752 {
16753 segment_info_type *si;
16754 struct insn_label_list *l;
16755 expressionS ex;
16756 char *p;
16757
16758 /* When not generating PIC code, this is treated as .word. */
16759 if (mips_pic != SVR4_PIC)
16760 {
16761 s_cons (2);
16762 return;
16763 }
16764
16765 si = seg_info (now_seg);
16766 l = si->label_list;
16767 mips_emit_delays ();
16768 if (auto_align)
16769 mips_align (2, 0, l);
16770
16771 expression (&ex);
16772 mips_clear_insn_labels ();
16773
16774 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16775 {
16776 as_bad (_("unsupported use of .gpword"));
16777 ignore_rest_of_line ();
16778 }
16779
16780 p = frag_more (4);
16781 md_number_to_chars (p, 0, 4);
16782 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16783 BFD_RELOC_GPREL32);
16784
16785 demand_empty_rest_of_line ();
16786 }
16787
16788 static void
16789 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16790 {
16791 segment_info_type *si;
16792 struct insn_label_list *l;
16793 expressionS ex;
16794 char *p;
16795
16796 /* When not generating PIC code, this is treated as .dword. */
16797 if (mips_pic != SVR4_PIC)
16798 {
16799 s_cons (3);
16800 return;
16801 }
16802
16803 si = seg_info (now_seg);
16804 l = si->label_list;
16805 mips_emit_delays ();
16806 if (auto_align)
16807 mips_align (3, 0, l);
16808
16809 expression (&ex);
16810 mips_clear_insn_labels ();
16811
16812 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16813 {
16814 as_bad (_("unsupported use of .gpdword"));
16815 ignore_rest_of_line ();
16816 }
16817
16818 p = frag_more (8);
16819 md_number_to_chars (p, 0, 8);
16820 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16821 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16822
16823 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16824 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16825 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16826
16827 demand_empty_rest_of_line ();
16828 }
16829
16830 /* Handle the .ehword pseudo-op. This is used when generating unwinding
16831 tables. It generates a R_MIPS_EH reloc. */
16832
16833 static void
16834 s_ehword (int ignore ATTRIBUTE_UNUSED)
16835 {
16836 expressionS ex;
16837 char *p;
16838
16839 mips_emit_delays ();
16840
16841 expression (&ex);
16842 mips_clear_insn_labels ();
16843
16844 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16845 {
16846 as_bad (_("unsupported use of .ehword"));
16847 ignore_rest_of_line ();
16848 }
16849
16850 p = frag_more (4);
16851 md_number_to_chars (p, 0, 4);
16852 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16853 BFD_RELOC_32_PCREL);
16854
16855 demand_empty_rest_of_line ();
16856 }
16857
16858 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
16859 tables in SVR4 PIC code. */
16860
16861 static void
16862 s_cpadd (int ignore ATTRIBUTE_UNUSED)
16863 {
16864 int reg;
16865
16866 file_mips_check_options ();
16867
16868 /* This is ignored when not generating SVR4 PIC code. */
16869 if (mips_pic != SVR4_PIC)
16870 {
16871 s_ignore (0);
16872 return;
16873 }
16874
16875 mips_mark_labels ();
16876 mips_assembling_insn = TRUE;
16877
16878 /* Add $gp to the register named as an argument. */
16879 macro_start ();
16880 reg = tc_get_register (0);
16881 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16882 macro_end ();
16883
16884 mips_assembling_insn = FALSE;
16885 demand_empty_rest_of_line ();
16886 }
16887
16888 /* Handle the .insn pseudo-op. This marks instruction labels in
16889 mips16/micromips mode. This permits the linker to handle them specially,
16890 such as generating jalx instructions when needed. We also make
16891 them odd for the duration of the assembly, in order to generate the
16892 right sort of code. We will make them even in the adjust_symtab
16893 routine, while leaving them marked. This is convenient for the
16894 debugger and the disassembler. The linker knows to make them odd
16895 again. */
16896
16897 static void
16898 s_insn (int ignore ATTRIBUTE_UNUSED)
16899 {
16900 file_mips_check_options ();
16901 file_ase_mips16 |= mips_opts.mips16;
16902 file_ase_micromips |= mips_opts.micromips;
16903
16904 mips_mark_labels ();
16905
16906 demand_empty_rest_of_line ();
16907 }
16908
16909 /* Handle the .nan pseudo-op. */
16910
16911 static void
16912 s_nan (int ignore ATTRIBUTE_UNUSED)
16913 {
16914 static const char str_legacy[] = "legacy";
16915 static const char str_2008[] = "2008";
16916 size_t i;
16917
16918 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16919
16920 if (i == sizeof (str_2008) - 1
16921 && memcmp (input_line_pointer, str_2008, i) == 0)
16922 mips_nan2008 = 1;
16923 else if (i == sizeof (str_legacy) - 1
16924 && memcmp (input_line_pointer, str_legacy, i) == 0)
16925 {
16926 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16927 mips_nan2008 = 0;
16928 else
16929 as_bad (_("`%s' does not support legacy NaN"),
16930 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16931 }
16932 else
16933 as_bad (_("bad .nan directive"));
16934
16935 input_line_pointer += i;
16936 demand_empty_rest_of_line ();
16937 }
16938
16939 /* Handle a .stab[snd] directive. Ideally these directives would be
16940 implemented in a transparent way, so that removing them would not
16941 have any effect on the generated instructions. However, s_stab
16942 internally changes the section, so in practice we need to decide
16943 now whether the preceding label marks compressed code. We do not
16944 support changing the compression mode of a label after a .stab*
16945 directive, such as in:
16946
16947 foo:
16948 .stabs ...
16949 .set mips16
16950
16951 so the current mode wins. */
16952
16953 static void
16954 s_mips_stab (int type)
16955 {
16956 mips_mark_labels ();
16957 s_stab (type);
16958 }
16959
16960 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
16961
16962 static void
16963 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
16964 {
16965 char *name;
16966 int c;
16967 symbolS *symbolP;
16968 expressionS exp;
16969
16970 c = get_symbol_name (&name);
16971 symbolP = symbol_find_or_make (name);
16972 S_SET_WEAK (symbolP);
16973 *input_line_pointer = c;
16974
16975 SKIP_WHITESPACE_AFTER_NAME ();
16976
16977 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16978 {
16979 if (S_IS_DEFINED (symbolP))
16980 {
16981 as_bad (_("ignoring attempt to redefine symbol %s"),
16982 S_GET_NAME (symbolP));
16983 ignore_rest_of_line ();
16984 return;
16985 }
16986
16987 if (*input_line_pointer == ',')
16988 {
16989 ++input_line_pointer;
16990 SKIP_WHITESPACE ();
16991 }
16992
16993 expression (&exp);
16994 if (exp.X_op != O_symbol)
16995 {
16996 as_bad (_("bad .weakext directive"));
16997 ignore_rest_of_line ();
16998 return;
16999 }
17000 symbol_set_value_expression (symbolP, &exp);
17001 }
17002
17003 demand_empty_rest_of_line ();
17004 }
17005
17006 /* Parse a register string into a number. Called from the ECOFF code
17007 to parse .frame. The argument is non-zero if this is the frame
17008 register, so that we can record it in mips_frame_reg. */
17009
17010 int
17011 tc_get_register (int frame)
17012 {
17013 unsigned int reg;
17014
17015 SKIP_WHITESPACE ();
17016 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
17017 reg = 0;
17018 if (frame)
17019 {
17020 mips_frame_reg = reg != 0 ? reg : SP;
17021 mips_frame_reg_valid = 1;
17022 mips_cprestore_valid = 0;
17023 }
17024 return reg;
17025 }
17026
17027 valueT
17028 md_section_align (asection *seg, valueT addr)
17029 {
17030 int align = bfd_get_section_alignment (stdoutput, seg);
17031
17032 /* We don't need to align ELF sections to the full alignment.
17033 However, Irix 5 may prefer that we align them at least to a 16
17034 byte boundary. We don't bother to align the sections if we
17035 are targeted for an embedded system. */
17036 if (strncmp (TARGET_OS, "elf", 3) == 0)
17037 return addr;
17038 if (align > 4)
17039 align = 4;
17040
17041 return ((addr + (1 << align) - 1) & -(1 << align));
17042 }
17043
17044 /* Utility routine, called from above as well. If called while the
17045 input file is still being read, it's only an approximation. (For
17046 example, a symbol may later become defined which appeared to be
17047 undefined earlier.) */
17048
17049 static int
17050 nopic_need_relax (symbolS *sym, int before_relaxing)
17051 {
17052 if (sym == 0)
17053 return 0;
17054
17055 if (g_switch_value > 0)
17056 {
17057 const char *symname;
17058 int change;
17059
17060 /* Find out whether this symbol can be referenced off the $gp
17061 register. It can be if it is smaller than the -G size or if
17062 it is in the .sdata or .sbss section. Certain symbols can
17063 not be referenced off the $gp, although it appears as though
17064 they can. */
17065 symname = S_GET_NAME (sym);
17066 if (symname != (const char *) NULL
17067 && (strcmp (symname, "eprol") == 0
17068 || strcmp (symname, "etext") == 0
17069 || strcmp (symname, "_gp") == 0
17070 || strcmp (symname, "edata") == 0
17071 || strcmp (symname, "_fbss") == 0
17072 || strcmp (symname, "_fdata") == 0
17073 || strcmp (symname, "_ftext") == 0
17074 || strcmp (symname, "end") == 0
17075 || strcmp (symname, "_gp_disp") == 0))
17076 change = 1;
17077 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17078 && (0
17079 #ifndef NO_ECOFF_DEBUGGING
17080 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17081 && (symbol_get_obj (sym)->ecoff_extern_size
17082 <= g_switch_value))
17083 #endif
17084 /* We must defer this decision until after the whole
17085 file has been read, since there might be a .extern
17086 after the first use of this symbol. */
17087 || (before_relaxing
17088 #ifndef NO_ECOFF_DEBUGGING
17089 && symbol_get_obj (sym)->ecoff_extern_size == 0
17090 #endif
17091 && S_GET_VALUE (sym) == 0)
17092 || (S_GET_VALUE (sym) != 0
17093 && S_GET_VALUE (sym) <= g_switch_value)))
17094 change = 0;
17095 else
17096 {
17097 const char *segname;
17098
17099 segname = segment_name (S_GET_SEGMENT (sym));
17100 gas_assert (strcmp (segname, ".lit8") != 0
17101 && strcmp (segname, ".lit4") != 0);
17102 change = (strcmp (segname, ".sdata") != 0
17103 && strcmp (segname, ".sbss") != 0
17104 && strncmp (segname, ".sdata.", 7) != 0
17105 && strncmp (segname, ".sbss.", 6) != 0
17106 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
17107 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
17108 }
17109 return change;
17110 }
17111 else
17112 /* We are not optimizing for the $gp register. */
17113 return 1;
17114 }
17115
17116
17117 /* Return true if the given symbol should be considered local for SVR4 PIC. */
17118
17119 static bfd_boolean
17120 pic_need_relax (symbolS *sym)
17121 {
17122 asection *symsec;
17123
17124 /* Handle the case of a symbol equated to another symbol. */
17125 while (symbol_equated_reloc_p (sym))
17126 {
17127 symbolS *n;
17128
17129 /* It's possible to get a loop here in a badly written program. */
17130 n = symbol_get_value_expression (sym)->X_add_symbol;
17131 if (n == sym)
17132 break;
17133 sym = n;
17134 }
17135
17136 if (symbol_section_p (sym))
17137 return TRUE;
17138
17139 symsec = S_GET_SEGMENT (sym);
17140
17141 /* This must duplicate the test in adjust_reloc_syms. */
17142 return (!bfd_is_und_section (symsec)
17143 && !bfd_is_abs_section (symsec)
17144 && !bfd_is_com_section (symsec)
17145 /* A global or weak symbol is treated as external. */
17146 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
17147 }
17148
17149
17150 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17151 extended opcode. SEC is the section the frag is in. */
17152
17153 static int
17154 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
17155 {
17156 int type;
17157 const struct mips_int_operand *operand;
17158 offsetT val;
17159 segT symsec;
17160 fragS *sym_frag;
17161
17162 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17163 return 0;
17164 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17165 return 1;
17166
17167 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17168 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17169 operand = mips16_immed_operand (type, FALSE);
17170 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17171 || (operand->root.type == OP_PCREL
17172 ? sec != symsec
17173 : !bfd_is_abs_section (symsec)))
17174 return 1;
17175
17176 sym_frag = symbol_get_frag (fragp->fr_symbol);
17177 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17178
17179 if (operand->root.type == OP_PCREL)
17180 {
17181 const struct mips_pcrel_operand *pcrel_op;
17182 addressT addr;
17183 offsetT maxtiny;
17184
17185 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
17186 return 1;
17187
17188 pcrel_op = (const struct mips_pcrel_operand *) operand;
17189
17190 /* If the relax_marker of the symbol fragment differs from the
17191 relax_marker of this fragment, we have not yet adjusted the
17192 symbol fragment fr_address. We want to add in STRETCH in
17193 order to get a better estimate of the address. This
17194 particularly matters because of the shift bits. */
17195 if (stretch != 0
17196 && sym_frag->relax_marker != fragp->relax_marker)
17197 {
17198 fragS *f;
17199
17200 /* Adjust stretch for any alignment frag. Note that if have
17201 been expanding the earlier code, the symbol may be
17202 defined in what appears to be an earlier frag. FIXME:
17203 This doesn't handle the fr_subtype field, which specifies
17204 a maximum number of bytes to skip when doing an
17205 alignment. */
17206 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17207 {
17208 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17209 {
17210 if (stretch < 0)
17211 stretch = - ((- stretch)
17212 & ~ ((1 << (int) f->fr_offset) - 1));
17213 else
17214 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
17215 if (stretch == 0)
17216 break;
17217 }
17218 }
17219 if (f != NULL)
17220 val += stretch;
17221 }
17222
17223 addr = fragp->fr_address + fragp->fr_fix;
17224
17225 /* The base address rules are complicated. The base address of
17226 a branch is the following instruction. The base address of a
17227 PC relative load or add is the instruction itself, but if it
17228 is in a delay slot (in which case it can not be extended) use
17229 the address of the instruction whose delay slot it is in. */
17230 if (pcrel_op->include_isa_bit)
17231 {
17232 addr += 2;
17233
17234 /* If we are currently assuming that this frag should be
17235 extended, then, the current address is two bytes
17236 higher. */
17237 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17238 addr += 2;
17239
17240 /* Ignore the low bit in the target, since it will be set
17241 for a text label. */
17242 val &= -2;
17243 }
17244 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17245 addr -= 4;
17246 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17247 addr -= 2;
17248
17249 val -= addr & -(1 << pcrel_op->align_log2);
17250
17251 /* If any of the shifted bits are set, we must use an extended
17252 opcode. If the address depends on the size of this
17253 instruction, this can lead to a loop, so we arrange to always
17254 use an extended opcode. */
17255 if ((val & ((1 << operand->shift) - 1)) != 0)
17256 {
17257 fragp->fr_subtype =
17258 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17259 return 1;
17260 }
17261
17262 /* If we are about to mark a frag as extended because the value
17263 is precisely the next value above maxtiny, then there is a
17264 chance of an infinite loop as in the following code:
17265 la $4,foo
17266 .skip 1020
17267 .align 2
17268 foo:
17269 In this case when the la is extended, foo is 0x3fc bytes
17270 away, so the la can be shrunk, but then foo is 0x400 away, so
17271 the la must be extended. To avoid this loop, we mark the
17272 frag as extended if it was small, and is about to become
17273 extended with the next value above maxtiny. */
17274 maxtiny = mips_int_operand_max (operand);
17275 if (val == maxtiny + (1 << operand->shift)
17276 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17277 {
17278 fragp->fr_subtype =
17279 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17280 return 1;
17281 }
17282 }
17283
17284 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17285 }
17286
17287 /* Compute the length of a branch sequence, and adjust the
17288 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17289 worst-case length is computed, with UPDATE being used to indicate
17290 whether an unconditional (-1), branch-likely (+1) or regular (0)
17291 branch is to be computed. */
17292 static int
17293 relaxed_branch_length (fragS *fragp, asection *sec, int update)
17294 {
17295 bfd_boolean toofar;
17296 int length;
17297
17298 if (fragp
17299 && S_IS_DEFINED (fragp->fr_symbol)
17300 && !S_IS_WEAK (fragp->fr_symbol)
17301 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17302 {
17303 addressT addr;
17304 offsetT val;
17305
17306 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17307
17308 addr = fragp->fr_address + fragp->fr_fix + 4;
17309
17310 val -= addr;
17311
17312 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17313 }
17314 else
17315 /* If the symbol is not defined or it's in a different segment,
17316 we emit the long sequence. */
17317 toofar = TRUE;
17318
17319 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17320 fragp->fr_subtype
17321 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17322 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
17323 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17324 RELAX_BRANCH_LINK (fragp->fr_subtype),
17325 toofar);
17326
17327 length = 4;
17328 if (toofar)
17329 {
17330 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17331 length += 8;
17332
17333 if (mips_pic != NO_PIC)
17334 {
17335 /* Additional space for PIC loading of target address. */
17336 length += 8;
17337 if (mips_opts.isa == ISA_MIPS1)
17338 /* Additional space for $at-stabilizing nop. */
17339 length += 4;
17340 }
17341
17342 /* If branch is conditional. */
17343 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17344 length += 8;
17345 }
17346
17347 return length;
17348 }
17349
17350 /* Get a FRAG's branch instruction delay slot size, either from the
17351 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
17352 or SHORT_INSN_SIZE otherwise. */
17353
17354 static int
17355 frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
17356 {
17357 char *buf = fragp->fr_literal + fragp->fr_fix;
17358
17359 if (al)
17360 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
17361 else
17362 return short_insn_size;
17363 }
17364
17365 /* Compute the length of a branch sequence, and adjust the
17366 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17367 worst-case length is computed, with UPDATE being used to indicate
17368 whether an unconditional (-1), or regular (0) branch is to be
17369 computed. */
17370
17371 static int
17372 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17373 {
17374 bfd_boolean insn32 = TRUE;
17375 bfd_boolean nods = TRUE;
17376 bfd_boolean al = TRUE;
17377 int short_insn_size;
17378 bfd_boolean toofar;
17379 int length;
17380
17381 if (fragp)
17382 {
17383 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17384 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
17385 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17386 }
17387 short_insn_size = insn32 ? 4 : 2;
17388
17389 if (fragp
17390 && S_IS_DEFINED (fragp->fr_symbol)
17391 && !S_IS_WEAK (fragp->fr_symbol)
17392 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17393 {
17394 addressT addr;
17395 offsetT val;
17396
17397 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17398 /* Ignore the low bit in the target, since it will be set
17399 for a text label. */
17400 if ((val & 1) != 0)
17401 --val;
17402
17403 addr = fragp->fr_address + fragp->fr_fix + 4;
17404
17405 val -= addr;
17406
17407 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17408 }
17409 else
17410 /* If the symbol is not defined or it's in a different segment,
17411 we emit the long sequence. */
17412 toofar = TRUE;
17413
17414 if (fragp && update
17415 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17416 fragp->fr_subtype = (toofar
17417 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17418 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17419
17420 length = 4;
17421 if (toofar)
17422 {
17423 bfd_boolean compact_known = fragp != NULL;
17424 bfd_boolean compact = FALSE;
17425 bfd_boolean uncond;
17426
17427 if (fragp)
17428 {
17429 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17430 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
17431 }
17432 else
17433 uncond = update < 0;
17434
17435 /* If label is out of range, we turn branch <br>:
17436
17437 <br> label # 4 bytes
17438 0:
17439
17440 into:
17441
17442 j label # 4 bytes
17443 nop # 2/4 bytes if
17444 # compact && (!PIC || insn32)
17445 0:
17446 */
17447 if ((mips_pic == NO_PIC || insn32) && (!compact_known || compact))
17448 length += short_insn_size;
17449
17450 /* If assembling PIC code, we further turn:
17451
17452 j label # 4 bytes
17453
17454 into:
17455
17456 lw/ld at, %got(label)(gp) # 4 bytes
17457 d/addiu at, %lo(label) # 4 bytes
17458 jr/c at # 2/4 bytes
17459 */
17460 if (mips_pic != NO_PIC)
17461 length += 4 + short_insn_size;
17462
17463 /* Add an extra nop if the jump has no compact form and we need
17464 to fill the delay slot. */
17465 if ((mips_pic == NO_PIC || al) && nods)
17466 length += (fragp
17467 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
17468 : short_insn_size);
17469
17470 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17471
17472 <brneg> 0f # 4 bytes
17473 nop # 2/4 bytes if !compact
17474 */
17475 if (!uncond)
17476 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
17477 }
17478 else if (nods)
17479 {
17480 /* Add an extra nop to fill the delay slot. */
17481 gas_assert (fragp);
17482 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
17483 }
17484
17485 return length;
17486 }
17487
17488 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17489 bit accordingly. */
17490
17491 static int
17492 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17493 {
17494 bfd_boolean toofar;
17495
17496 if (fragp
17497 && S_IS_DEFINED (fragp->fr_symbol)
17498 && !S_IS_WEAK (fragp->fr_symbol)
17499 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17500 {
17501 addressT addr;
17502 offsetT val;
17503 int type;
17504
17505 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17506 /* Ignore the low bit in the target, since it will be set
17507 for a text label. */
17508 if ((val & 1) != 0)
17509 --val;
17510
17511 /* Assume this is a 2-byte branch. */
17512 addr = fragp->fr_address + fragp->fr_fix + 2;
17513
17514 /* We try to avoid the infinite loop by not adding 2 more bytes for
17515 long branches. */
17516
17517 val -= addr;
17518
17519 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17520 if (type == 'D')
17521 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17522 else if (type == 'E')
17523 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17524 else
17525 abort ();
17526 }
17527 else
17528 /* If the symbol is not defined or it's in a different segment,
17529 we emit a normal 32-bit branch. */
17530 toofar = TRUE;
17531
17532 if (fragp && update
17533 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17534 fragp->fr_subtype
17535 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17536 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17537
17538 if (toofar)
17539 return 4;
17540
17541 return 2;
17542 }
17543
17544 /* Estimate the size of a frag before relaxing. Unless this is the
17545 mips16, we are not really relaxing here, and the final size is
17546 encoded in the subtype information. For the mips16, we have to
17547 decide whether we are using an extended opcode or not. */
17548
17549 int
17550 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17551 {
17552 int change;
17553
17554 if (RELAX_BRANCH_P (fragp->fr_subtype))
17555 {
17556
17557 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17558
17559 return fragp->fr_var;
17560 }
17561
17562 if (RELAX_MIPS16_P (fragp->fr_subtype))
17563 /* We don't want to modify the EXTENDED bit here; it might get us
17564 into infinite loops. We change it only in mips_relax_frag(). */
17565 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17566
17567 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17568 {
17569 int length = 4;
17570
17571 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17572 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17573 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17574 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17575 fragp->fr_var = length;
17576
17577 return length;
17578 }
17579
17580 if (mips_pic == NO_PIC)
17581 change = nopic_need_relax (fragp->fr_symbol, 0);
17582 else if (mips_pic == SVR4_PIC)
17583 change = pic_need_relax (fragp->fr_symbol);
17584 else if (mips_pic == VXWORKS_PIC)
17585 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17586 change = 0;
17587 else
17588 abort ();
17589
17590 if (change)
17591 {
17592 fragp->fr_subtype |= RELAX_USE_SECOND;
17593 return -RELAX_FIRST (fragp->fr_subtype);
17594 }
17595 else
17596 return -RELAX_SECOND (fragp->fr_subtype);
17597 }
17598
17599 /* This is called to see whether a reloc against a defined symbol
17600 should be converted into a reloc against a section. */
17601
17602 int
17603 mips_fix_adjustable (fixS *fixp)
17604 {
17605 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17606 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17607 return 0;
17608
17609 if (fixp->fx_addsy == NULL)
17610 return 1;
17611
17612 /* Allow relocs used for EH tables. */
17613 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17614 return 1;
17615
17616 /* If symbol SYM is in a mergeable section, relocations of the form
17617 SYM + 0 can usually be made section-relative. The mergeable data
17618 is then identified by the section offset rather than by the symbol.
17619
17620 However, if we're generating REL LO16 relocations, the offset is split
17621 between the LO16 and partnering high part relocation. The linker will
17622 need to recalculate the complete offset in order to correctly identify
17623 the merge data.
17624
17625 The linker has traditionally not looked for the partnering high part
17626 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17627 placed anywhere. Rather than break backwards compatibility by changing
17628 this, it seems better not to force the issue, and instead keep the
17629 original symbol. This will work with either linker behavior. */
17630 if ((lo16_reloc_p (fixp->fx_r_type)
17631 || reloc_needs_lo_p (fixp->fx_r_type))
17632 && HAVE_IN_PLACE_ADDENDS
17633 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17634 return 0;
17635
17636 /* There is no place to store an in-place offset for JALR relocations. */
17637 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17638 return 0;
17639
17640 /* Likewise an in-range offset of limited PC-relative relocations may
17641 overflow the in-place relocatable field if recalculated against the
17642 start address of the symbol's containing section.
17643
17644 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17645 section relative to allow linker relaxations to be performed later on. */
17646 if (limited_pcrel_reloc_p (fixp->fx_r_type)
17647 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
17648 return 0;
17649
17650 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17651 to a floating-point stub. The same is true for non-R_MIPS16_26
17652 relocations against MIPS16 functions; in this case, the stub becomes
17653 the function's canonical address.
17654
17655 Floating-point stubs are stored in unique .mips16.call.* or
17656 .mips16.fn.* sections. If a stub T for function F is in section S,
17657 the first relocation in section S must be against F; this is how the
17658 linker determines the target function. All relocations that might
17659 resolve to T must also be against F. We therefore have the following
17660 restrictions, which are given in an intentionally-redundant way:
17661
17662 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17663 symbols.
17664
17665 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17666 if that stub might be used.
17667
17668 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17669 symbols.
17670
17671 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17672 that stub might be used.
17673
17674 There is a further restriction:
17675
17676 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17677 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
17678 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
17679 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
17680 against MIPS16 or microMIPS symbols because we need to keep the
17681 MIPS16 or microMIPS symbol for the purpose of mode mismatch
17682 detection and JAL or BAL to JALX instruction conversion in the
17683 linker.
17684
17685 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17686 against a MIPS16 symbol. We deal with (5) by additionally leaving
17687 alone any jump and branch relocations against a microMIPS symbol.
17688
17689 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17690 relocation against some symbol R, no relocation against R may be
17691 reduced. (Note that this deals with (2) as well as (1) because
17692 relocations against global symbols will never be reduced on ELF
17693 targets.) This approach is a little simpler than trying to detect
17694 stub sections, and gives the "all or nothing" per-symbol consistency
17695 that we have for MIPS16 symbols. */
17696 if (fixp->fx_subsy == NULL
17697 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17698 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17699 && (jmp_reloc_p (fixp->fx_r_type)
17700 || b_reloc_p (fixp->fx_r_type)))
17701 || *symbol_get_tc (fixp->fx_addsy)))
17702 return 0;
17703
17704 return 1;
17705 }
17706
17707 /* Translate internal representation of relocation info to BFD target
17708 format. */
17709
17710 arelent **
17711 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17712 {
17713 static arelent *retval[4];
17714 arelent *reloc;
17715 bfd_reloc_code_real_type code;
17716
17717 memset (retval, 0, sizeof(retval));
17718 reloc = retval[0] = XCNEW (arelent);
17719 reloc->sym_ptr_ptr = XNEW (asymbol *);
17720 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17721 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17722
17723 if (fixp->fx_pcrel)
17724 {
17725 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17726 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
17727 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17728 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17729 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17730 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17731 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17732 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17733 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17734 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17735 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17736 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17737
17738 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17739 Relocations want only the symbol offset. */
17740 switch (fixp->fx_r_type)
17741 {
17742 case BFD_RELOC_MIPS_18_PCREL_S3:
17743 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
17744 break;
17745 default:
17746 reloc->addend = fixp->fx_addnumber + reloc->address;
17747 break;
17748 }
17749 }
17750 else if (HAVE_IN_PLACE_ADDENDS
17751 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
17752 && (read_compressed_insn (fixp->fx_frag->fr_literal
17753 + fixp->fx_where, 4) >> 26) == 0x3c)
17754 {
17755 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
17756 addend accordingly. */
17757 reloc->addend = fixp->fx_addnumber >> 1;
17758 }
17759 else
17760 reloc->addend = fixp->fx_addnumber;
17761
17762 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17763 entry to be used in the relocation's section offset. */
17764 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17765 {
17766 reloc->address = reloc->addend;
17767 reloc->addend = 0;
17768 }
17769
17770 code = fixp->fx_r_type;
17771
17772 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17773 if (reloc->howto == NULL)
17774 {
17775 as_bad_where (fixp->fx_file, fixp->fx_line,
17776 _("cannot represent %s relocation in this object file"
17777 " format"),
17778 bfd_get_reloc_code_name (code));
17779 retval[0] = NULL;
17780 }
17781
17782 return retval;
17783 }
17784
17785 /* Relax a machine dependent frag. This returns the amount by which
17786 the current size of the frag should change. */
17787
17788 int
17789 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17790 {
17791 if (RELAX_BRANCH_P (fragp->fr_subtype))
17792 {
17793 offsetT old_var = fragp->fr_var;
17794
17795 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17796
17797 return fragp->fr_var - old_var;
17798 }
17799
17800 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17801 {
17802 offsetT old_var = fragp->fr_var;
17803 offsetT new_var = 4;
17804
17805 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17806 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17807 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17808 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17809 fragp->fr_var = new_var;
17810
17811 return new_var - old_var;
17812 }
17813
17814 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17815 return 0;
17816
17817 if (mips16_extended_frag (fragp, sec, stretch))
17818 {
17819 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17820 return 0;
17821 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17822 return 2;
17823 }
17824 else
17825 {
17826 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17827 return 0;
17828 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17829 return -2;
17830 }
17831
17832 return 0;
17833 }
17834
17835 /* Convert a machine dependent frag. */
17836
17837 void
17838 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17839 {
17840 if (RELAX_BRANCH_P (fragp->fr_subtype))
17841 {
17842 char *buf;
17843 unsigned long insn;
17844 expressionS exp;
17845 fixS *fixp;
17846
17847 buf = fragp->fr_literal + fragp->fr_fix;
17848 insn = read_insn (buf);
17849
17850 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17851 {
17852 /* We generate a fixup instead of applying it right now
17853 because, if there are linker relaxations, we're going to
17854 need the relocations. */
17855 exp.X_op = O_symbol;
17856 exp.X_add_symbol = fragp->fr_symbol;
17857 exp.X_add_number = fragp->fr_offset;
17858
17859 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17860 BFD_RELOC_16_PCREL_S2);
17861 fixp->fx_file = fragp->fr_file;
17862 fixp->fx_line = fragp->fr_line;
17863
17864 buf = write_insn (buf, insn);
17865 }
17866 else
17867 {
17868 int i;
17869
17870 as_warn_where (fragp->fr_file, fragp->fr_line,
17871 _("relaxed out-of-range branch into a jump"));
17872
17873 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17874 goto uncond;
17875
17876 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17877 {
17878 /* Reverse the branch. */
17879 switch ((insn >> 28) & 0xf)
17880 {
17881 case 4:
17882 if ((insn & 0xff000000) == 0x47000000
17883 || (insn & 0xff600000) == 0x45600000)
17884 {
17885 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17886 reversed by tweaking bit 23. */
17887 insn ^= 0x00800000;
17888 }
17889 else
17890 {
17891 /* bc[0-3][tf]l? instructions can have the condition
17892 reversed by tweaking a single TF bit, and their
17893 opcodes all have 0x4???????. */
17894 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17895 insn ^= 0x00010000;
17896 }
17897 break;
17898
17899 case 0:
17900 /* bltz 0x04000000 bgez 0x04010000
17901 bltzal 0x04100000 bgezal 0x04110000 */
17902 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
17903 insn ^= 0x00010000;
17904 break;
17905
17906 case 1:
17907 /* beq 0x10000000 bne 0x14000000
17908 blez 0x18000000 bgtz 0x1c000000 */
17909 insn ^= 0x04000000;
17910 break;
17911
17912 default:
17913 abort ();
17914 }
17915 }
17916
17917 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17918 {
17919 /* Clear the and-link bit. */
17920 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
17921
17922 /* bltzal 0x04100000 bgezal 0x04110000
17923 bltzall 0x04120000 bgezall 0x04130000 */
17924 insn &= ~0x00100000;
17925 }
17926
17927 /* Branch over the branch (if the branch was likely) or the
17928 full jump (not likely case). Compute the offset from the
17929 current instruction to branch to. */
17930 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17931 i = 16;
17932 else
17933 {
17934 /* How many bytes in instructions we've already emitted? */
17935 i = buf - fragp->fr_literal - fragp->fr_fix;
17936 /* How many bytes in instructions from here to the end? */
17937 i = fragp->fr_var - i;
17938 }
17939 /* Convert to instruction count. */
17940 i >>= 2;
17941 /* Branch counts from the next instruction. */
17942 i--;
17943 insn |= i;
17944 /* Branch over the jump. */
17945 buf = write_insn (buf, insn);
17946
17947 /* nop */
17948 buf = write_insn (buf, 0);
17949
17950 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17951 {
17952 /* beql $0, $0, 2f */
17953 insn = 0x50000000;
17954 /* Compute the PC offset from the current instruction to
17955 the end of the variable frag. */
17956 /* How many bytes in instructions we've already emitted? */
17957 i = buf - fragp->fr_literal - fragp->fr_fix;
17958 /* How many bytes in instructions from here to the end? */
17959 i = fragp->fr_var - i;
17960 /* Convert to instruction count. */
17961 i >>= 2;
17962 /* Don't decrement i, because we want to branch over the
17963 delay slot. */
17964 insn |= i;
17965
17966 buf = write_insn (buf, insn);
17967 buf = write_insn (buf, 0);
17968 }
17969
17970 uncond:
17971 if (mips_pic == NO_PIC)
17972 {
17973 /* j or jal. */
17974 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17975 ? 0x0c000000 : 0x08000000);
17976 exp.X_op = O_symbol;
17977 exp.X_add_symbol = fragp->fr_symbol;
17978 exp.X_add_number = fragp->fr_offset;
17979
17980 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17981 FALSE, BFD_RELOC_MIPS_JMP);
17982 fixp->fx_file = fragp->fr_file;
17983 fixp->fx_line = fragp->fr_line;
17984
17985 buf = write_insn (buf, insn);
17986 }
17987 else
17988 {
17989 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17990
17991 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
17992 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17993 insn |= at << OP_SH_RT;
17994 exp.X_op = O_symbol;
17995 exp.X_add_symbol = fragp->fr_symbol;
17996 exp.X_add_number = fragp->fr_offset;
17997
17998 if (fragp->fr_offset)
17999 {
18000 exp.X_add_symbol = make_expr_symbol (&exp);
18001 exp.X_add_number = 0;
18002 }
18003
18004 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18005 FALSE, BFD_RELOC_MIPS_GOT16);
18006 fixp->fx_file = fragp->fr_file;
18007 fixp->fx_line = fragp->fr_line;
18008
18009 buf = write_insn (buf, insn);
18010
18011 if (mips_opts.isa == ISA_MIPS1)
18012 /* nop */
18013 buf = write_insn (buf, 0);
18014
18015 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
18016 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18017 insn |= at << OP_SH_RS | at << OP_SH_RT;
18018
18019 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18020 FALSE, BFD_RELOC_LO16);
18021 fixp->fx_file = fragp->fr_file;
18022 fixp->fx_line = fragp->fr_line;
18023
18024 buf = write_insn (buf, insn);
18025
18026 /* j(al)r $at. */
18027 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18028 insn = 0x0000f809;
18029 else
18030 insn = 0x00000008;
18031 insn |= at << OP_SH_RS;
18032
18033 buf = write_insn (buf, insn);
18034 }
18035 }
18036
18037 fragp->fr_fix += fragp->fr_var;
18038 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18039 return;
18040 }
18041
18042 /* Relax microMIPS branches. */
18043 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18044 {
18045 char *buf = fragp->fr_literal + fragp->fr_fix;
18046 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18047 bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
18048 bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
18049 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18050 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18051 bfd_boolean short_ds;
18052 unsigned long insn;
18053 expressionS exp;
18054 fixS *fixp;
18055
18056 exp.X_op = O_symbol;
18057 exp.X_add_symbol = fragp->fr_symbol;
18058 exp.X_add_number = fragp->fr_offset;
18059
18060 fragp->fr_fix += fragp->fr_var;
18061
18062 /* Handle 16-bit branches that fit or are forced to fit. */
18063 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18064 {
18065 /* We generate a fixup instead of applying it right now,
18066 because if there is linker relaxation, we're going to
18067 need the relocations. */
18068 if (type == 'D')
18069 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18070 BFD_RELOC_MICROMIPS_10_PCREL_S1);
18071 else if (type == 'E')
18072 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18073 BFD_RELOC_MICROMIPS_7_PCREL_S1);
18074 else
18075 abort ();
18076
18077 fixp->fx_file = fragp->fr_file;
18078 fixp->fx_line = fragp->fr_line;
18079
18080 /* These relocations can have an addend that won't fit in
18081 2 octets. */
18082 fixp->fx_no_overflow = 1;
18083
18084 return;
18085 }
18086
18087 /* Handle 32-bit branches that fit or are forced to fit. */
18088 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18089 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18090 {
18091 /* We generate a fixup instead of applying it right now,
18092 because if there is linker relaxation, we're going to
18093 need the relocations. */
18094 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18095 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18096 fixp->fx_file = fragp->fr_file;
18097 fixp->fx_line = fragp->fr_line;
18098
18099 if (type == 0)
18100 {
18101 insn = read_compressed_insn (buf, 4);
18102 buf += 4;
18103
18104 if (nods)
18105 {
18106 /* Check the short-delay-slot bit. */
18107 if (!al || (insn & 0x02000000) != 0)
18108 buf = write_compressed_insn (buf, 0x0c00, 2);
18109 else
18110 buf = write_compressed_insn (buf, 0x00000000, 4);
18111 }
18112
18113 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18114 return;
18115 }
18116 }
18117
18118 /* Relax 16-bit branches to 32-bit branches. */
18119 if (type != 0)
18120 {
18121 insn = read_compressed_insn (buf, 2);
18122
18123 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18124 insn = 0x94000000; /* beq */
18125 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18126 {
18127 unsigned long regno;
18128
18129 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18130 regno = micromips_to_32_reg_d_map [regno];
18131 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18132 insn |= regno << MICROMIPSOP_SH_RS;
18133 }
18134 else
18135 abort ();
18136
18137 /* Nothing else to do, just write it out. */
18138 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18139 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18140 {
18141 buf = write_compressed_insn (buf, insn, 4);
18142 if (nods)
18143 buf = write_compressed_insn (buf, 0x0c00, 2);
18144 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18145 return;
18146 }
18147 }
18148 else
18149 insn = read_compressed_insn (buf, 4);
18150
18151 /* Relax 32-bit branches to a sequence of instructions. */
18152 as_warn_where (fragp->fr_file, fragp->fr_line,
18153 _("relaxed out-of-range branch into a jump"));
18154
18155 /* Set the short-delay-slot bit. */
18156 short_ds = !al || (insn & 0x02000000) != 0;
18157
18158 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18159 {
18160 symbolS *l;
18161
18162 /* Reverse the branch. */
18163 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18164 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18165 insn ^= 0x20000000;
18166 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18167 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18168 || (insn & 0xffe00000) == 0x40800000 /* blez */
18169 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18170 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18171 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18172 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18173 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18174 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18175 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18176 insn ^= 0x00400000;
18177 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18178 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18179 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18180 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18181 insn ^= 0x00200000;
18182 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18183 BNZ.df */
18184 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18185 BNZ.V */
18186 insn ^= 0x00800000;
18187 else
18188 abort ();
18189
18190 if (al)
18191 {
18192 /* Clear the and-link and short-delay-slot bits. */
18193 gas_assert ((insn & 0xfda00000) == 0x40200000);
18194
18195 /* bltzal 0x40200000 bgezal 0x40600000 */
18196 /* bltzals 0x42200000 bgezals 0x42600000 */
18197 insn &= ~0x02200000;
18198 }
18199
18200 /* Make a label at the end for use with the branch. */
18201 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18202 micromips_label_inc ();
18203 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
18204
18205 /* Refer to it. */
18206 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18207 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18208 fixp->fx_file = fragp->fr_file;
18209 fixp->fx_line = fragp->fr_line;
18210
18211 /* Branch over the jump. */
18212 buf = write_compressed_insn (buf, insn, 4);
18213
18214 if (!compact)
18215 {
18216 /* nop */
18217 if (insn32)
18218 buf = write_compressed_insn (buf, 0x00000000, 4);
18219 else
18220 buf = write_compressed_insn (buf, 0x0c00, 2);
18221 }
18222 }
18223
18224 if (mips_pic == NO_PIC)
18225 {
18226 unsigned long jal = (short_ds || nods
18227 ? 0x74000000 : 0xf4000000); /* jal/s */
18228
18229 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18230 insn = al ? jal : 0xd4000000;
18231
18232 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18233 BFD_RELOC_MICROMIPS_JMP);
18234 fixp->fx_file = fragp->fr_file;
18235 fixp->fx_line = fragp->fr_line;
18236
18237 buf = write_compressed_insn (buf, insn, 4);
18238
18239 if (compact || nods)
18240 {
18241 /* nop */
18242 if (insn32)
18243 buf = write_compressed_insn (buf, 0x00000000, 4);
18244 else
18245 buf = write_compressed_insn (buf, 0x0c00, 2);
18246 }
18247 }
18248 else
18249 {
18250 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18251
18252 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18253 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18254 insn |= at << MICROMIPSOP_SH_RT;
18255
18256 if (exp.X_add_number)
18257 {
18258 exp.X_add_symbol = make_expr_symbol (&exp);
18259 exp.X_add_number = 0;
18260 }
18261
18262 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18263 BFD_RELOC_MICROMIPS_GOT16);
18264 fixp->fx_file = fragp->fr_file;
18265 fixp->fx_line = fragp->fr_line;
18266
18267 buf = write_compressed_insn (buf, insn, 4);
18268
18269 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18270 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18271 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18272
18273 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18274 BFD_RELOC_MICROMIPS_LO16);
18275 fixp->fx_file = fragp->fr_file;
18276 fixp->fx_line = fragp->fr_line;
18277
18278 buf = write_compressed_insn (buf, insn, 4);
18279
18280 if (insn32)
18281 {
18282 /* jr/jalr $at */
18283 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18284 insn |= at << MICROMIPSOP_SH_RS;
18285
18286 buf = write_compressed_insn (buf, insn, 4);
18287
18288 if (compact || nods)
18289 /* nop */
18290 buf = write_compressed_insn (buf, 0x00000000, 4);
18291 }
18292 else
18293 {
18294 /* jr/jrc/jalr/jalrs $at */
18295 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
18296 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
18297
18298 insn = al ? jalr : jr;
18299 insn |= at << MICROMIPSOP_SH_MJ;
18300
18301 buf = write_compressed_insn (buf, insn, 2);
18302 if (al && nods)
18303 {
18304 /* nop */
18305 if (short_ds)
18306 buf = write_compressed_insn (buf, 0x0c00, 2);
18307 else
18308 buf = write_compressed_insn (buf, 0x00000000, 4);
18309 }
18310 }
18311 }
18312
18313 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18314 return;
18315 }
18316
18317 if (RELAX_MIPS16_P (fragp->fr_subtype))
18318 {
18319 int type;
18320 const struct mips_int_operand *operand;
18321 offsetT val;
18322 char *buf;
18323 unsigned int user_length, length;
18324 bfd_boolean need_reloc;
18325 unsigned long insn;
18326 bfd_boolean ext;
18327 segT symsec;
18328
18329 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
18330 operand = mips16_immed_operand (type, FALSE);
18331
18332 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
18333 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
18334
18335 symsec = S_GET_SEGMENT (fragp->fr_symbol);
18336 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
18337 || (operand->root.type == OP_PCREL
18338 ? asec != symsec
18339 : !bfd_is_abs_section (symsec)));
18340
18341 if (operand->root.type == OP_PCREL)
18342 {
18343 const struct mips_pcrel_operand *pcrel_op;
18344 addressT addr;
18345
18346 pcrel_op = (const struct mips_pcrel_operand *) operand;
18347 addr = fragp->fr_address + fragp->fr_fix;
18348
18349 /* The rules for the base address of a PC relative reloc are
18350 complicated; see mips16_extended_frag. */
18351 if (pcrel_op->include_isa_bit)
18352 {
18353 if (!need_reloc)
18354 {
18355 if (!ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
18356 as_bad_where (fragp->fr_file, fragp->fr_line,
18357 _("branch to a symbol in another ISA mode"));
18358 else if ((fragp->fr_offset & 0x1) != 0)
18359 as_bad_where (fragp->fr_file, fragp->fr_line,
18360 _("branch to misaligned address (0x%lx)"),
18361 (long) val);
18362 }
18363 addr += 2;
18364 if (ext)
18365 addr += 2;
18366 /* Ignore the low bit in the target, since it will be
18367 set for a text label. */
18368 val &= -2;
18369 }
18370 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
18371 addr -= 4;
18372 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18373 addr -= 2;
18374
18375 addr &= -(1 << pcrel_op->align_log2);
18376 val -= addr;
18377
18378 /* Make sure the section winds up with the alignment we have
18379 assumed. */
18380 if (operand->shift > 0)
18381 record_alignment (asec, operand->shift);
18382 }
18383
18384 if (ext
18385 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18386 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
18387 as_warn_where (fragp->fr_file, fragp->fr_line,
18388 _("extended instruction in delay slot"));
18389
18390 buf = fragp->fr_literal + fragp->fr_fix;
18391
18392 insn = read_compressed_insn (buf, 2);
18393 if (ext)
18394 insn |= MIPS16_EXTEND;
18395
18396 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18397 user_length = 4;
18398 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18399 user_length = 2;
18400 else
18401 user_length = 0;
18402
18403 if (need_reloc)
18404 {
18405 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
18406 expressionS exp;
18407 fixS *fixp;
18408
18409 switch (type)
18410 {
18411 case 'p':
18412 case 'q':
18413 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
18414 break;
18415 default:
18416 as_bad_where (fragp->fr_file, fragp->fr_line,
18417 _("unsupported relocation"));
18418 break;
18419 }
18420 if (reloc == BFD_RELOC_NONE)
18421 ;
18422 else if (ext)
18423 {
18424 exp.X_op = O_symbol;
18425 exp.X_add_symbol = fragp->fr_symbol;
18426 exp.X_add_number = fragp->fr_offset;
18427
18428 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp,
18429 TRUE, reloc);
18430
18431 fixp->fx_file = fragp->fr_file;
18432 fixp->fx_line = fragp->fr_line;
18433
18434 /* These relocations can have an addend that won't fit
18435 in 2 octets. */
18436 fixp->fx_no_overflow = 1;
18437 }
18438 else
18439 as_bad_where (fragp->fr_file, fragp->fr_line,
18440 _("invalid unextended operand value"));
18441 }
18442 else
18443 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18444 BFD_RELOC_UNUSED, val, user_length, &insn);
18445
18446 length = (ext ? 4 : 2);
18447 gas_assert (mips16_opcode_length (insn) == length);
18448 write_compressed_insn (buf, insn, length);
18449 fragp->fr_fix += length;
18450 }
18451 else
18452 {
18453 relax_substateT subtype = fragp->fr_subtype;
18454 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18455 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
18456 int first, second;
18457 fixS *fixp;
18458
18459 first = RELAX_FIRST (subtype);
18460 second = RELAX_SECOND (subtype);
18461 fixp = (fixS *) fragp->fr_opcode;
18462
18463 /* If the delay slot chosen does not match the size of the instruction,
18464 then emit a warning. */
18465 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18466 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18467 {
18468 relax_substateT s;
18469 const char *msg;
18470
18471 s = subtype & (RELAX_DELAY_SLOT_16BIT
18472 | RELAX_DELAY_SLOT_SIZE_FIRST
18473 | RELAX_DELAY_SLOT_SIZE_SECOND);
18474 msg = macro_warning (s);
18475 if (msg != NULL)
18476 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18477 subtype &= ~s;
18478 }
18479
18480 /* Possibly emit a warning if we've chosen the longer option. */
18481 if (use_second == second_longer)
18482 {
18483 relax_substateT s;
18484 const char *msg;
18485
18486 s = (subtype
18487 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18488 msg = macro_warning (s);
18489 if (msg != NULL)
18490 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18491 subtype &= ~s;
18492 }
18493
18494 /* Go through all the fixups for the first sequence. Disable them
18495 (by marking them as done) if we're going to use the second
18496 sequence instead. */
18497 while (fixp
18498 && fixp->fx_frag == fragp
18499 && fixp->fx_where < fragp->fr_fix - second)
18500 {
18501 if (subtype & RELAX_USE_SECOND)
18502 fixp->fx_done = 1;
18503 fixp = fixp->fx_next;
18504 }
18505
18506 /* Go through the fixups for the second sequence. Disable them if
18507 we're going to use the first sequence, otherwise adjust their
18508 addresses to account for the relaxation. */
18509 while (fixp && fixp->fx_frag == fragp)
18510 {
18511 if (subtype & RELAX_USE_SECOND)
18512 fixp->fx_where -= first;
18513 else
18514 fixp->fx_done = 1;
18515 fixp = fixp->fx_next;
18516 }
18517
18518 /* Now modify the frag contents. */
18519 if (subtype & RELAX_USE_SECOND)
18520 {
18521 char *start;
18522
18523 start = fragp->fr_literal + fragp->fr_fix - first - second;
18524 memmove (start, start + first, second);
18525 fragp->fr_fix -= first;
18526 }
18527 else
18528 fragp->fr_fix -= second;
18529 }
18530 }
18531
18532 /* This function is called after the relocs have been generated.
18533 We've been storing mips16 text labels as odd. Here we convert them
18534 back to even for the convenience of the debugger. */
18535
18536 void
18537 mips_frob_file_after_relocs (void)
18538 {
18539 asymbol **syms;
18540 unsigned int count, i;
18541
18542 syms = bfd_get_outsymbols (stdoutput);
18543 count = bfd_get_symcount (stdoutput);
18544 for (i = 0; i < count; i++, syms++)
18545 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18546 && ((*syms)->value & 1) != 0)
18547 {
18548 (*syms)->value &= ~1;
18549 /* If the symbol has an odd size, it was probably computed
18550 incorrectly, so adjust that as well. */
18551 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18552 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18553 }
18554 }
18555
18556 /* This function is called whenever a label is defined, including fake
18557 labels instantiated off the dot special symbol. It is used when
18558 handling branch delays; if a branch has a label, we assume we cannot
18559 move it. This also bumps the value of the symbol by 1 in compressed
18560 code. */
18561
18562 static void
18563 mips_record_label (symbolS *sym)
18564 {
18565 segment_info_type *si = seg_info (now_seg);
18566 struct insn_label_list *l;
18567
18568 if (free_insn_labels == NULL)
18569 l = XNEW (struct insn_label_list);
18570 else
18571 {
18572 l = free_insn_labels;
18573 free_insn_labels = l->next;
18574 }
18575
18576 l->label = sym;
18577 l->next = si->label_list;
18578 si->label_list = l;
18579 }
18580
18581 /* This function is called as tc_frob_label() whenever a label is defined
18582 and adds a DWARF-2 record we only want for true labels. */
18583
18584 void
18585 mips_define_label (symbolS *sym)
18586 {
18587 mips_record_label (sym);
18588 dwarf2_emit_label (sym);
18589 }
18590
18591 /* This function is called by tc_new_dot_label whenever a new dot symbol
18592 is defined. */
18593
18594 void
18595 mips_add_dot_label (symbolS *sym)
18596 {
18597 mips_record_label (sym);
18598 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18599 mips_compressed_mark_label (sym);
18600 }
18601 \f
18602 /* Converting ASE flags from internal to .MIPS.abiflags values. */
18603 static unsigned int
18604 mips_convert_ase_flags (int ase)
18605 {
18606 unsigned int ext_ases = 0;
18607
18608 if (ase & ASE_DSP)
18609 ext_ases |= AFL_ASE_DSP;
18610 if (ase & ASE_DSPR2)
18611 ext_ases |= AFL_ASE_DSPR2;
18612 if (ase & ASE_DSPR3)
18613 ext_ases |= AFL_ASE_DSPR3;
18614 if (ase & ASE_EVA)
18615 ext_ases |= AFL_ASE_EVA;
18616 if (ase & ASE_MCU)
18617 ext_ases |= AFL_ASE_MCU;
18618 if (ase & ASE_MDMX)
18619 ext_ases |= AFL_ASE_MDMX;
18620 if (ase & ASE_MIPS3D)
18621 ext_ases |= AFL_ASE_MIPS3D;
18622 if (ase & ASE_MT)
18623 ext_ases |= AFL_ASE_MT;
18624 if (ase & ASE_SMARTMIPS)
18625 ext_ases |= AFL_ASE_SMARTMIPS;
18626 if (ase & ASE_VIRT)
18627 ext_ases |= AFL_ASE_VIRT;
18628 if (ase & ASE_MSA)
18629 ext_ases |= AFL_ASE_MSA;
18630 if (ase & ASE_XPA)
18631 ext_ases |= AFL_ASE_XPA;
18632
18633 return ext_ases;
18634 }
18635 /* Some special processing for a MIPS ELF file. */
18636
18637 void
18638 mips_elf_final_processing (void)
18639 {
18640 int fpabi;
18641 Elf_Internal_ABIFlags_v0 flags;
18642
18643 flags.version = 0;
18644 flags.isa_rev = 0;
18645 switch (file_mips_opts.isa)
18646 {
18647 case INSN_ISA1:
18648 flags.isa_level = 1;
18649 break;
18650 case INSN_ISA2:
18651 flags.isa_level = 2;
18652 break;
18653 case INSN_ISA3:
18654 flags.isa_level = 3;
18655 break;
18656 case INSN_ISA4:
18657 flags.isa_level = 4;
18658 break;
18659 case INSN_ISA5:
18660 flags.isa_level = 5;
18661 break;
18662 case INSN_ISA32:
18663 flags.isa_level = 32;
18664 flags.isa_rev = 1;
18665 break;
18666 case INSN_ISA32R2:
18667 flags.isa_level = 32;
18668 flags.isa_rev = 2;
18669 break;
18670 case INSN_ISA32R3:
18671 flags.isa_level = 32;
18672 flags.isa_rev = 3;
18673 break;
18674 case INSN_ISA32R5:
18675 flags.isa_level = 32;
18676 flags.isa_rev = 5;
18677 break;
18678 case INSN_ISA32R6:
18679 flags.isa_level = 32;
18680 flags.isa_rev = 6;
18681 break;
18682 case INSN_ISA64:
18683 flags.isa_level = 64;
18684 flags.isa_rev = 1;
18685 break;
18686 case INSN_ISA64R2:
18687 flags.isa_level = 64;
18688 flags.isa_rev = 2;
18689 break;
18690 case INSN_ISA64R3:
18691 flags.isa_level = 64;
18692 flags.isa_rev = 3;
18693 break;
18694 case INSN_ISA64R5:
18695 flags.isa_level = 64;
18696 flags.isa_rev = 5;
18697 break;
18698 case INSN_ISA64R6:
18699 flags.isa_level = 64;
18700 flags.isa_rev = 6;
18701 break;
18702 }
18703
18704 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18705 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18706 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18707 : (file_mips_opts.fp == 64) ? AFL_REG_64
18708 : AFL_REG_32;
18709 flags.cpr2_size = AFL_REG_NONE;
18710 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18711 Tag_GNU_MIPS_ABI_FP);
18712 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18713 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18714 if (file_ase_mips16)
18715 flags.ases |= AFL_ASE_MIPS16;
18716 if (file_ase_micromips)
18717 flags.ases |= AFL_ASE_MICROMIPS;
18718 flags.flags1 = 0;
18719 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18720 || file_mips_opts.fp == 64)
18721 && file_mips_opts.oddspreg)
18722 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18723 flags.flags2 = 0;
18724
18725 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18726 ((Elf_External_ABIFlags_v0 *)
18727 mips_flags_frag));
18728
18729 /* Write out the register information. */
18730 if (mips_abi != N64_ABI)
18731 {
18732 Elf32_RegInfo s;
18733
18734 s.ri_gprmask = mips_gprmask;
18735 s.ri_cprmask[0] = mips_cprmask[0];
18736 s.ri_cprmask[1] = mips_cprmask[1];
18737 s.ri_cprmask[2] = mips_cprmask[2];
18738 s.ri_cprmask[3] = mips_cprmask[3];
18739 /* The gp_value field is set by the MIPS ELF backend. */
18740
18741 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18742 ((Elf32_External_RegInfo *)
18743 mips_regmask_frag));
18744 }
18745 else
18746 {
18747 Elf64_Internal_RegInfo s;
18748
18749 s.ri_gprmask = mips_gprmask;
18750 s.ri_pad = 0;
18751 s.ri_cprmask[0] = mips_cprmask[0];
18752 s.ri_cprmask[1] = mips_cprmask[1];
18753 s.ri_cprmask[2] = mips_cprmask[2];
18754 s.ri_cprmask[3] = mips_cprmask[3];
18755 /* The gp_value field is set by the MIPS ELF backend. */
18756
18757 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18758 ((Elf64_External_RegInfo *)
18759 mips_regmask_frag));
18760 }
18761
18762 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18763 sort of BFD interface for this. */
18764 if (mips_any_noreorder)
18765 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18766 if (mips_pic != NO_PIC)
18767 {
18768 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18769 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18770 }
18771 if (mips_abicalls)
18772 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18773
18774 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18775 defined at present; this might need to change in future. */
18776 if (file_ase_mips16)
18777 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18778 if (file_ase_micromips)
18779 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18780 if (file_mips_opts.ase & ASE_MDMX)
18781 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18782
18783 /* Set the MIPS ELF ABI flags. */
18784 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18785 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18786 else if (mips_abi == O64_ABI)
18787 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18788 else if (mips_abi == EABI_ABI)
18789 {
18790 if (file_mips_opts.gp == 64)
18791 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18792 else
18793 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18794 }
18795 else if (mips_abi == N32_ABI)
18796 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18797
18798 /* Nothing to do for N64_ABI. */
18799
18800 if (mips_32bitmode)
18801 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18802
18803 if (mips_nan2008 == 1)
18804 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18805
18806 /* 32 bit code with 64 bit FP registers. */
18807 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18808 Tag_GNU_MIPS_ABI_FP);
18809 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
18810 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
18811 }
18812 \f
18813 typedef struct proc {
18814 symbolS *func_sym;
18815 symbolS *func_end_sym;
18816 unsigned long reg_mask;
18817 unsigned long reg_offset;
18818 unsigned long fpreg_mask;
18819 unsigned long fpreg_offset;
18820 unsigned long frame_offset;
18821 unsigned long frame_reg;
18822 unsigned long pc_reg;
18823 } procS;
18824
18825 static procS cur_proc;
18826 static procS *cur_proc_ptr;
18827 static int numprocs;
18828
18829 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18830 as "2", and a normal nop as "0". */
18831
18832 #define NOP_OPCODE_MIPS 0
18833 #define NOP_OPCODE_MIPS16 1
18834 #define NOP_OPCODE_MICROMIPS 2
18835
18836 char
18837 mips_nop_opcode (void)
18838 {
18839 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18840 return NOP_OPCODE_MICROMIPS;
18841 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18842 return NOP_OPCODE_MIPS16;
18843 else
18844 return NOP_OPCODE_MIPS;
18845 }
18846
18847 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18848 32-bit microMIPS NOPs here (if applicable). */
18849
18850 void
18851 mips_handle_align (fragS *fragp)
18852 {
18853 char nop_opcode;
18854 char *p;
18855 int bytes, size, excess;
18856 valueT opcode;
18857
18858 if (fragp->fr_type != rs_align_code)
18859 return;
18860
18861 p = fragp->fr_literal + fragp->fr_fix;
18862 nop_opcode = *p;
18863 switch (nop_opcode)
18864 {
18865 case NOP_OPCODE_MICROMIPS:
18866 opcode = micromips_nop32_insn.insn_opcode;
18867 size = 4;
18868 break;
18869 case NOP_OPCODE_MIPS16:
18870 opcode = mips16_nop_insn.insn_opcode;
18871 size = 2;
18872 break;
18873 case NOP_OPCODE_MIPS:
18874 default:
18875 opcode = nop_insn.insn_opcode;
18876 size = 4;
18877 break;
18878 }
18879
18880 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18881 excess = bytes % size;
18882
18883 /* Handle the leading part if we're not inserting a whole number of
18884 instructions, and make it the end of the fixed part of the frag.
18885 Try to fit in a short microMIPS NOP if applicable and possible,
18886 and use zeroes otherwise. */
18887 gas_assert (excess < 4);
18888 fragp->fr_fix += excess;
18889 switch (excess)
18890 {
18891 case 3:
18892 *p++ = '\0';
18893 /* Fall through. */
18894 case 2:
18895 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
18896 {
18897 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18898 break;
18899 }
18900 *p++ = '\0';
18901 /* Fall through. */
18902 case 1:
18903 *p++ = '\0';
18904 /* Fall through. */
18905 case 0:
18906 break;
18907 }
18908
18909 md_number_to_chars (p, opcode, size);
18910 fragp->fr_var = size;
18911 }
18912
18913 static long
18914 get_number (void)
18915 {
18916 int negative = 0;
18917 long val = 0;
18918
18919 if (*input_line_pointer == '-')
18920 {
18921 ++input_line_pointer;
18922 negative = 1;
18923 }
18924 if (!ISDIGIT (*input_line_pointer))
18925 as_bad (_("expected simple number"));
18926 if (input_line_pointer[0] == '0')
18927 {
18928 if (input_line_pointer[1] == 'x')
18929 {
18930 input_line_pointer += 2;
18931 while (ISXDIGIT (*input_line_pointer))
18932 {
18933 val <<= 4;
18934 val |= hex_value (*input_line_pointer++);
18935 }
18936 return negative ? -val : val;
18937 }
18938 else
18939 {
18940 ++input_line_pointer;
18941 while (ISDIGIT (*input_line_pointer))
18942 {
18943 val <<= 3;
18944 val |= *input_line_pointer++ - '0';
18945 }
18946 return negative ? -val : val;
18947 }
18948 }
18949 if (!ISDIGIT (*input_line_pointer))
18950 {
18951 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18952 *input_line_pointer, *input_line_pointer);
18953 as_warn (_("invalid number"));
18954 return -1;
18955 }
18956 while (ISDIGIT (*input_line_pointer))
18957 {
18958 val *= 10;
18959 val += *input_line_pointer++ - '0';
18960 }
18961 return negative ? -val : val;
18962 }
18963
18964 /* The .file directive; just like the usual .file directive, but there
18965 is an initial number which is the ECOFF file index. In the non-ECOFF
18966 case .file implies DWARF-2. */
18967
18968 static void
18969 s_mips_file (int x ATTRIBUTE_UNUSED)
18970 {
18971 static int first_file_directive = 0;
18972
18973 if (ECOFF_DEBUGGING)
18974 {
18975 get_number ();
18976 s_app_file (0);
18977 }
18978 else
18979 {
18980 char *filename;
18981
18982 filename = dwarf2_directive_file (0);
18983
18984 /* Versions of GCC up to 3.1 start files with a ".file"
18985 directive even for stabs output. Make sure that this
18986 ".file" is handled. Note that you need a version of GCC
18987 after 3.1 in order to support DWARF-2 on MIPS. */
18988 if (filename != NULL && ! first_file_directive)
18989 {
18990 (void) new_logical_line (filename, -1);
18991 s_app_file_string (filename, 0);
18992 }
18993 first_file_directive = 1;
18994 }
18995 }
18996
18997 /* The .loc directive, implying DWARF-2. */
18998
18999 static void
19000 s_mips_loc (int x ATTRIBUTE_UNUSED)
19001 {
19002 if (!ECOFF_DEBUGGING)
19003 dwarf2_directive_loc (0);
19004 }
19005
19006 /* The .end directive. */
19007
19008 static void
19009 s_mips_end (int x ATTRIBUTE_UNUSED)
19010 {
19011 symbolS *p;
19012
19013 /* Following functions need their own .frame and .cprestore directives. */
19014 mips_frame_reg_valid = 0;
19015 mips_cprestore_valid = 0;
19016
19017 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19018 {
19019 p = get_symbol ();
19020 demand_empty_rest_of_line ();
19021 }
19022 else
19023 p = NULL;
19024
19025 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19026 as_warn (_(".end not in text section"));
19027
19028 if (!cur_proc_ptr)
19029 {
19030 as_warn (_(".end directive without a preceding .ent directive"));
19031 demand_empty_rest_of_line ();
19032 return;
19033 }
19034
19035 if (p != NULL)
19036 {
19037 gas_assert (S_GET_NAME (p));
19038 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
19039 as_warn (_(".end symbol does not match .ent symbol"));
19040
19041 if (debug_type == DEBUG_STABS)
19042 stabs_generate_asm_endfunc (S_GET_NAME (p),
19043 S_GET_NAME (p));
19044 }
19045 else
19046 as_warn (_(".end directive missing or unknown symbol"));
19047
19048 /* Create an expression to calculate the size of the function. */
19049 if (p && cur_proc_ptr)
19050 {
19051 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
19052 expressionS *exp = XNEW (expressionS);
19053
19054 obj->size = exp;
19055 exp->X_op = O_subtract;
19056 exp->X_add_symbol = symbol_temp_new_now ();
19057 exp->X_op_symbol = p;
19058 exp->X_add_number = 0;
19059
19060 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19061 }
19062
19063 /* Generate a .pdr section. */
19064 if (!ECOFF_DEBUGGING && mips_flag_pdr)
19065 {
19066 segT saved_seg = now_seg;
19067 subsegT saved_subseg = now_subseg;
19068 expressionS exp;
19069 char *fragp;
19070
19071 #ifdef md_flush_pending_output
19072 md_flush_pending_output ();
19073 #endif
19074
19075 gas_assert (pdr_seg);
19076 subseg_set (pdr_seg, 0);
19077
19078 /* Write the symbol. */
19079 exp.X_op = O_symbol;
19080 exp.X_add_symbol = p;
19081 exp.X_add_number = 0;
19082 emit_expr (&exp, 4);
19083
19084 fragp = frag_more (7 * 4);
19085
19086 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19087 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19088 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19089 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19090 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19091 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19092 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
19093
19094 subseg_set (saved_seg, saved_subseg);
19095 }
19096
19097 cur_proc_ptr = NULL;
19098 }
19099
19100 /* The .aent and .ent directives. */
19101
19102 static void
19103 s_mips_ent (int aent)
19104 {
19105 symbolS *symbolP;
19106
19107 symbolP = get_symbol ();
19108 if (*input_line_pointer == ',')
19109 ++input_line_pointer;
19110 SKIP_WHITESPACE ();
19111 if (ISDIGIT (*input_line_pointer)
19112 || *input_line_pointer == '-')
19113 get_number ();
19114
19115 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19116 as_warn (_(".ent or .aent not in text section"));
19117
19118 if (!aent && cur_proc_ptr)
19119 as_warn (_("missing .end"));
19120
19121 if (!aent)
19122 {
19123 /* This function needs its own .frame and .cprestore directives. */
19124 mips_frame_reg_valid = 0;
19125 mips_cprestore_valid = 0;
19126
19127 cur_proc_ptr = &cur_proc;
19128 memset (cur_proc_ptr, '\0', sizeof (procS));
19129
19130 cur_proc_ptr->func_sym = symbolP;
19131
19132 ++numprocs;
19133
19134 if (debug_type == DEBUG_STABS)
19135 stabs_generate_asm_func (S_GET_NAME (symbolP),
19136 S_GET_NAME (symbolP));
19137 }
19138
19139 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19140
19141 demand_empty_rest_of_line ();
19142 }
19143
19144 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
19145 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
19146 s_mips_frame is used so that we can set the PDR information correctly.
19147 We can't use the ecoff routines because they make reference to the ecoff
19148 symbol table (in the mdebug section). */
19149
19150 static void
19151 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
19152 {
19153 if (ECOFF_DEBUGGING)
19154 s_ignore (ignore);
19155 else
19156 {
19157 long val;
19158
19159 if (cur_proc_ptr == (procS *) NULL)
19160 {
19161 as_warn (_(".frame outside of .ent"));
19162 demand_empty_rest_of_line ();
19163 return;
19164 }
19165
19166 cur_proc_ptr->frame_reg = tc_get_register (1);
19167
19168 SKIP_WHITESPACE ();
19169 if (*input_line_pointer++ != ','
19170 || get_absolute_expression_and_terminator (&val) != ',')
19171 {
19172 as_warn (_("bad .frame directive"));
19173 --input_line_pointer;
19174 demand_empty_rest_of_line ();
19175 return;
19176 }
19177
19178 cur_proc_ptr->frame_offset = val;
19179 cur_proc_ptr->pc_reg = tc_get_register (0);
19180
19181 demand_empty_rest_of_line ();
19182 }
19183 }
19184
19185 /* The .fmask and .mask directives. If the mdebug section is present
19186 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
19187 embedded targets, s_mips_mask is used so that we can set the PDR
19188 information correctly. We can't use the ecoff routines because they
19189 make reference to the ecoff symbol table (in the mdebug section). */
19190
19191 static void
19192 s_mips_mask (int reg_type)
19193 {
19194 if (ECOFF_DEBUGGING)
19195 s_ignore (reg_type);
19196 else
19197 {
19198 long mask, off;
19199
19200 if (cur_proc_ptr == (procS *) NULL)
19201 {
19202 as_warn (_(".mask/.fmask outside of .ent"));
19203 demand_empty_rest_of_line ();
19204 return;
19205 }
19206
19207 if (get_absolute_expression_and_terminator (&mask) != ',')
19208 {
19209 as_warn (_("bad .mask/.fmask directive"));
19210 --input_line_pointer;
19211 demand_empty_rest_of_line ();
19212 return;
19213 }
19214
19215 off = get_absolute_expression ();
19216
19217 if (reg_type == 'F')
19218 {
19219 cur_proc_ptr->fpreg_mask = mask;
19220 cur_proc_ptr->fpreg_offset = off;
19221 }
19222 else
19223 {
19224 cur_proc_ptr->reg_mask = mask;
19225 cur_proc_ptr->reg_offset = off;
19226 }
19227
19228 demand_empty_rest_of_line ();
19229 }
19230 }
19231
19232 /* A table describing all the processors gas knows about. Names are
19233 matched in the order listed.
19234
19235 To ease comparison, please keep this table in the same order as
19236 gcc's mips_cpu_info_table[]. */
19237 static const struct mips_cpu_info mips_cpu_info_table[] =
19238 {
19239 /* Entries for generic ISAs */
19240 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19241 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19242 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19243 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19244 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19245 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19246 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19247 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19248 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
19249 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
19250 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19251 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
19252 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
19253 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
19254 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
19255
19256 /* MIPS I */
19257 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19258 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19259 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
19260
19261 /* MIPS II */
19262 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
19263
19264 /* MIPS III */
19265 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19266 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19267 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19268 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19269 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19270 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19271 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19272 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19273 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19274 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19275 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19276 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19277 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
19278 /* ST Microelectronics Loongson 2E and 2F cores */
19279 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
19280 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
19281
19282 /* MIPS IV */
19283 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19284 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19285 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19286 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19287 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19288 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19289 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19290 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19291 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19292 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19293 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19294 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19295 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19296 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19297 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
19298
19299 /* MIPS 32 */
19300 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19301 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19302 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19303 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
19304
19305 /* MIPS 32 Release 2 */
19306 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19307 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19308 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19309 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19310 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19311 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19312 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19313 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19314 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19315 ISA_MIPS32R2, CPU_MIPS32R2 },
19316 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19317 ISA_MIPS32R2, CPU_MIPS32R2 },
19318 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19319 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19320 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19321 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19322 /* Deprecated forms of the above. */
19323 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19324 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19325 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
19326 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19327 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19328 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19329 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19330 /* Deprecated forms of the above. */
19331 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19332 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19333 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
19334 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19335 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19336 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19337 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19338 /* Deprecated forms of the above. */
19339 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19340 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19341 /* 34Kn is a 34kc without DSP. */
19342 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19343 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
19344 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19345 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19346 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19347 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19348 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19349 /* Deprecated forms of the above. */
19350 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19351 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19352 /* 1004K cores are multiprocessor versions of the 34K. */
19353 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19354 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19355 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19356 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19357 /* interaptiv is the new name for 1004kf */
19358 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19359 /* M5100 family */
19360 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19361 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19362 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
19363 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
19364
19365 /* MIPS 64 */
19366 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19367 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19368 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19369 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19370
19371 /* Broadcom SB-1 CPU core */
19372 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19373 /* Broadcom SB-1A CPU core */
19374 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19375
19376 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
19377
19378 /* MIPS 64 Release 2 */
19379
19380 /* Cavium Networks Octeon CPU core */
19381 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
19382 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
19383 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
19384 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
19385
19386 /* RMI Xlr */
19387 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
19388
19389 /* Broadcom XLP.
19390 XLP is mostly like XLR, with the prominent exception that it is
19391 MIPS64R2 rather than MIPS64. */
19392 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
19393
19394 /* MIPS 64 Release 6 */
19395 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19396 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19397
19398 /* End marker */
19399 { NULL, 0, 0, 0, 0 }
19400 };
19401
19402
19403 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19404 with a final "000" replaced by "k". Ignore case.
19405
19406 Note: this function is shared between GCC and GAS. */
19407
19408 static bfd_boolean
19409 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
19410 {
19411 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19412 given++, canonical++;
19413
19414 return ((*given == 0 && *canonical == 0)
19415 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19416 }
19417
19418
19419 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19420 CPU name. We've traditionally allowed a lot of variation here.
19421
19422 Note: this function is shared between GCC and GAS. */
19423
19424 static bfd_boolean
19425 mips_matching_cpu_name_p (const char *canonical, const char *given)
19426 {
19427 /* First see if the name matches exactly, or with a final "000"
19428 turned into "k". */
19429 if (mips_strict_matching_cpu_name_p (canonical, given))
19430 return TRUE;
19431
19432 /* If not, try comparing based on numerical designation alone.
19433 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19434 if (TOLOWER (*given) == 'r')
19435 given++;
19436 if (!ISDIGIT (*given))
19437 return FALSE;
19438
19439 /* Skip over some well-known prefixes in the canonical name,
19440 hoping to find a number there too. */
19441 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19442 canonical += 2;
19443 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19444 canonical += 2;
19445 else if (TOLOWER (canonical[0]) == 'r')
19446 canonical += 1;
19447
19448 return mips_strict_matching_cpu_name_p (canonical, given);
19449 }
19450
19451
19452 /* Parse an option that takes the name of a processor as its argument.
19453 OPTION is the name of the option and CPU_STRING is the argument.
19454 Return the corresponding processor enumeration if the CPU_STRING is
19455 recognized, otherwise report an error and return null.
19456
19457 A similar function exists in GCC. */
19458
19459 static const struct mips_cpu_info *
19460 mips_parse_cpu (const char *option, const char *cpu_string)
19461 {
19462 const struct mips_cpu_info *p;
19463
19464 /* 'from-abi' selects the most compatible architecture for the given
19465 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19466 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19467 version. Look first at the -mgp options, if given, otherwise base
19468 the choice on MIPS_DEFAULT_64BIT.
19469
19470 Treat NO_ABI like the EABIs. One reason to do this is that the
19471 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19472 architecture. This code picks MIPS I for 'mips' and MIPS III for
19473 'mips64', just as we did in the days before 'from-abi'. */
19474 if (strcasecmp (cpu_string, "from-abi") == 0)
19475 {
19476 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19477 return mips_cpu_info_from_isa (ISA_MIPS1);
19478
19479 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19480 return mips_cpu_info_from_isa (ISA_MIPS3);
19481
19482 if (file_mips_opts.gp >= 0)
19483 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
19484 ? ISA_MIPS1 : ISA_MIPS3);
19485
19486 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19487 ? ISA_MIPS3
19488 : ISA_MIPS1);
19489 }
19490
19491 /* 'default' has traditionally been a no-op. Probably not very useful. */
19492 if (strcasecmp (cpu_string, "default") == 0)
19493 return 0;
19494
19495 for (p = mips_cpu_info_table; p->name != 0; p++)
19496 if (mips_matching_cpu_name_p (p->name, cpu_string))
19497 return p;
19498
19499 as_bad (_("bad value (%s) for %s"), cpu_string, option);
19500 return 0;
19501 }
19502
19503 /* Return the canonical processor information for ISA (a member of the
19504 ISA_MIPS* enumeration). */
19505
19506 static const struct mips_cpu_info *
19507 mips_cpu_info_from_isa (int isa)
19508 {
19509 int i;
19510
19511 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19512 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
19513 && isa == mips_cpu_info_table[i].isa)
19514 return (&mips_cpu_info_table[i]);
19515
19516 return NULL;
19517 }
19518
19519 static const struct mips_cpu_info *
19520 mips_cpu_info_from_arch (int arch)
19521 {
19522 int i;
19523
19524 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19525 if (arch == mips_cpu_info_table[i].cpu)
19526 return (&mips_cpu_info_table[i]);
19527
19528 return NULL;
19529 }
19530 \f
19531 static void
19532 show (FILE *stream, const char *string, int *col_p, int *first_p)
19533 {
19534 if (*first_p)
19535 {
19536 fprintf (stream, "%24s", "");
19537 *col_p = 24;
19538 }
19539 else
19540 {
19541 fprintf (stream, ", ");
19542 *col_p += 2;
19543 }
19544
19545 if (*col_p + strlen (string) > 72)
19546 {
19547 fprintf (stream, "\n%24s", "");
19548 *col_p = 24;
19549 }
19550
19551 fprintf (stream, "%s", string);
19552 *col_p += strlen (string);
19553
19554 *first_p = 0;
19555 }
19556
19557 void
19558 md_show_usage (FILE *stream)
19559 {
19560 int column, first;
19561 size_t i;
19562
19563 fprintf (stream, _("\
19564 MIPS options:\n\
19565 -EB generate big endian output\n\
19566 -EL generate little endian output\n\
19567 -g, -g2 do not remove unneeded NOPs or swap branches\n\
19568 -G NUM allow referencing objects up to NUM bytes\n\
19569 implicitly with the gp register [default 8]\n"));
19570 fprintf (stream, _("\
19571 -mips1 generate MIPS ISA I instructions\n\
19572 -mips2 generate MIPS ISA II instructions\n\
19573 -mips3 generate MIPS ISA III instructions\n\
19574 -mips4 generate MIPS ISA IV instructions\n\
19575 -mips5 generate MIPS ISA V instructions\n\
19576 -mips32 generate MIPS32 ISA instructions\n\
19577 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
19578 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
19579 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
19580 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
19581 -mips64 generate MIPS64 ISA instructions\n\
19582 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
19583 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
19584 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
19585 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
19586 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19587
19588 first = 1;
19589
19590 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19591 show (stream, mips_cpu_info_table[i].name, &column, &first);
19592 show (stream, "from-abi", &column, &first);
19593 fputc ('\n', stream);
19594
19595 fprintf (stream, _("\
19596 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19597 -no-mCPU don't generate code specific to CPU.\n\
19598 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19599
19600 first = 1;
19601
19602 show (stream, "3900", &column, &first);
19603 show (stream, "4010", &column, &first);
19604 show (stream, "4100", &column, &first);
19605 show (stream, "4650", &column, &first);
19606 fputc ('\n', stream);
19607
19608 fprintf (stream, _("\
19609 -mips16 generate mips16 instructions\n\
19610 -no-mips16 do not generate mips16 instructions\n"));
19611 fprintf (stream, _("\
19612 -mmicromips generate microMIPS instructions\n\
19613 -mno-micromips do not generate microMIPS instructions\n"));
19614 fprintf (stream, _("\
19615 -msmartmips generate smartmips instructions\n\
19616 -mno-smartmips do not generate smartmips instructions\n"));
19617 fprintf (stream, _("\
19618 -mdsp generate DSP instructions\n\
19619 -mno-dsp do not generate DSP instructions\n"));
19620 fprintf (stream, _("\
19621 -mdspr2 generate DSP R2 instructions\n\
19622 -mno-dspr2 do not generate DSP R2 instructions\n"));
19623 fprintf (stream, _("\
19624 -mdspr3 generate DSP R3 instructions\n\
19625 -mno-dspr3 do not generate DSP R3 instructions\n"));
19626 fprintf (stream, _("\
19627 -mmt generate MT instructions\n\
19628 -mno-mt do not generate MT instructions\n"));
19629 fprintf (stream, _("\
19630 -mmcu generate MCU instructions\n\
19631 -mno-mcu do not generate MCU instructions\n"));
19632 fprintf (stream, _("\
19633 -mmsa generate MSA instructions\n\
19634 -mno-msa do not generate MSA instructions\n"));
19635 fprintf (stream, _("\
19636 -mxpa generate eXtended Physical Address (XPA) instructions\n\
19637 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
19638 fprintf (stream, _("\
19639 -mvirt generate Virtualization instructions\n\
19640 -mno-virt do not generate Virtualization instructions\n"));
19641 fprintf (stream, _("\
19642 -minsn32 only generate 32-bit microMIPS instructions\n\
19643 -mno-insn32 generate all microMIPS instructions\n"));
19644 fprintf (stream, _("\
19645 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19646 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
19647 -mfix-vr4120 work around certain VR4120 errata\n\
19648 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
19649 -mfix-24k insert a nop after ERET and DERET instructions\n\
19650 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
19651 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19652 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
19653 -msym32 assume all symbols have 32-bit values\n\
19654 -O0 remove unneeded NOPs, do not swap branches\n\
19655 -O remove unneeded NOPs and swap branches\n\
19656 --trap, --no-break trap exception on div by 0 and mult overflow\n\
19657 --break, --no-trap break exception on div by 0 and mult overflow\n"));
19658 fprintf (stream, _("\
19659 -mhard-float allow floating-point instructions\n\
19660 -msoft-float do not allow floating-point instructions\n\
19661 -msingle-float only allow 32-bit floating-point operations\n\
19662 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
19663 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
19664 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
19665 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19666
19667 first = 1;
19668
19669 show (stream, "legacy", &column, &first);
19670 show (stream, "2008", &column, &first);
19671
19672 fputc ('\n', stream);
19673
19674 fprintf (stream, _("\
19675 -KPIC, -call_shared generate SVR4 position independent code\n\
19676 -call_nonpic generate non-PIC code that can operate with DSOs\n\
19677 -mvxworks-pic generate VxWorks position independent code\n\
19678 -non_shared do not generate code that can operate with DSOs\n\
19679 -xgot assume a 32 bit GOT\n\
19680 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
19681 -mshared, -mno-shared disable/enable .cpload optimization for\n\
19682 position dependent (non shared) code\n\
19683 -mabi=ABI create ABI conformant object file for:\n"));
19684
19685 first = 1;
19686
19687 show (stream, "32", &column, &first);
19688 show (stream, "o64", &column, &first);
19689 show (stream, "n32", &column, &first);
19690 show (stream, "64", &column, &first);
19691 show (stream, "eabi", &column, &first);
19692
19693 fputc ('\n', stream);
19694
19695 fprintf (stream, _("\
19696 -32 create o32 ABI object file (default)\n\
19697 -n32 create n32 ABI object file\n\
19698 -64 create 64 ABI object file\n"));
19699 }
19700
19701 #ifdef TE_IRIX
19702 enum dwarf2_format
19703 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19704 {
19705 if (HAVE_64BIT_SYMBOLS)
19706 return dwarf2_format_64bit_irix;
19707 else
19708 return dwarf2_format_32bit;
19709 }
19710 #endif
19711
19712 int
19713 mips_dwarf2_addr_size (void)
19714 {
19715 if (HAVE_64BIT_OBJECTS)
19716 return 8;
19717 else
19718 return 4;
19719 }
19720
19721 /* Standard calling conventions leave the CFA at SP on entry. */
19722 void
19723 mips_cfi_frame_initial_instructions (void)
19724 {
19725 cfi_add_CFA_def_cfa_register (SP);
19726 }
19727
19728 int
19729 tc_mips_regname_to_dw2regnum (char *regname)
19730 {
19731 unsigned int regnum = -1;
19732 unsigned int reg;
19733
19734 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19735 regnum = reg;
19736
19737 return regnum;
19738 }
19739
19740 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19741 Given a symbolic attribute NAME, return the proper integer value.
19742 Returns -1 if the attribute is not known. */
19743
19744 int
19745 mips_convert_symbolic_attribute (const char *name)
19746 {
19747 static const struct
19748 {
19749 const char * name;
19750 const int tag;
19751 }
19752 attribute_table[] =
19753 {
19754 #define T(tag) {#tag, tag}
19755 T (Tag_GNU_MIPS_ABI_FP),
19756 T (Tag_GNU_MIPS_ABI_MSA),
19757 #undef T
19758 };
19759 unsigned int i;
19760
19761 if (name == NULL)
19762 return -1;
19763
19764 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19765 if (streq (name, attribute_table[i].name))
19766 return attribute_table[i].tag;
19767
19768 return -1;
19769 }
19770
19771 void
19772 md_mips_end (void)
19773 {
19774 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19775
19776 mips_emit_delays ();
19777 if (cur_proc_ptr)
19778 as_warn (_("missing .end at end of assembly"));
19779
19780 /* Just in case no code was emitted, do the consistency check. */
19781 file_mips_check_options ();
19782
19783 /* Set a floating-point ABI if the user did not. */
19784 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19785 {
19786 /* Perform consistency checks on the floating-point ABI. */
19787 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19788 Tag_GNU_MIPS_ABI_FP);
19789 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19790 check_fpabi (fpabi);
19791 }
19792 else
19793 {
19794 /* Soft-float gets precedence over single-float, the two options should
19795 not be used together so this should not matter. */
19796 if (file_mips_opts.soft_float == 1)
19797 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19798 /* Single-float gets precedence over all double_float cases. */
19799 else if (file_mips_opts.single_float == 1)
19800 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19801 else
19802 {
19803 switch (file_mips_opts.fp)
19804 {
19805 case 32:
19806 if (file_mips_opts.gp == 32)
19807 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19808 break;
19809 case 0:
19810 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19811 break;
19812 case 64:
19813 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19814 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19815 else if (file_mips_opts.gp == 32)
19816 fpabi = Val_GNU_MIPS_ABI_FP_64;
19817 else
19818 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19819 break;
19820 }
19821 }
19822
19823 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19824 Tag_GNU_MIPS_ABI_FP, fpabi);
19825 }
19826 }
19827
19828 /* Returns the relocation type required for a particular CFI encoding. */
19829
19830 bfd_reloc_code_real_type
19831 mips_cfi_reloc_for_encoding (int encoding)
19832 {
19833 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19834 return BFD_RELOC_32_PCREL;
19835 else return BFD_RELOC_NONE;
19836 }
This page took 0.448082 seconds and 4 git commands to generate.