4a4f8271808e632c0cc8a07bb5732e909323993a
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5 Contributed by the OSF and Ralph Campbell.
6 Written by Keith Knowles and Ralph Campbell, working independently.
7 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
8 Support.
9
10 This file is part of GAS.
11
12 GAS is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
15 any later version.
16
17 GAS is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GAS; see the file COPYING. If not, write to the Free
24 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
25 02110-1301, USA. */
26
27 #include "as.h"
28 #include "config.h"
29 #include "subsegs.h"
30 #include "safe-ctype.h"
31
32 #include "opcode/mips.h"
33 #include "itbl-ops.h"
34 #include "dwarf2dbg.h"
35 #include "dw2gencfi.h"
36
37 #ifdef DEBUG
38 #define DBG(x) printf x
39 #else
40 #define DBG(x)
41 #endif
42
43 #ifdef OBJ_MAYBE_ELF
44 /* Clean up namespace so we can include obj-elf.h too. */
45 static int mips_output_flavor (void);
46 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
47 #undef OBJ_PROCESS_STAB
48 #undef OUTPUT_FLAVOR
49 #undef S_GET_ALIGN
50 #undef S_GET_SIZE
51 #undef S_SET_ALIGN
52 #undef S_SET_SIZE
53 #undef obj_frob_file
54 #undef obj_frob_file_after_relocs
55 #undef obj_frob_symbol
56 #undef obj_pop_insert
57 #undef obj_sec_sym_ok_for_reloc
58 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
59
60 #include "obj-elf.h"
61 /* Fix any of them that we actually care about. */
62 #undef OUTPUT_FLAVOR
63 #define OUTPUT_FLAVOR mips_output_flavor()
64 #endif
65
66 #if defined (OBJ_ELF)
67 #include "elf/mips.h"
68 #endif
69
70 #ifndef ECOFF_DEBUGGING
71 #define NO_ECOFF_DEBUGGING
72 #define ECOFF_DEBUGGING 0
73 #endif
74
75 int mips_flag_mdebug = -1;
76
77 /* Control generation of .pdr sections. Off by default on IRIX: the native
78 linker doesn't know about and discards them, but relocations against them
79 remain, leading to rld crashes. */
80 #ifdef TE_IRIX
81 int mips_flag_pdr = FALSE;
82 #else
83 int mips_flag_pdr = TRUE;
84 #endif
85
86 #include "ecoff.h"
87
88 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
89 static char *mips_regmask_frag;
90 #endif
91
92 #define ZERO 0
93 #define ATREG 1
94 #define S0 16
95 #define S7 23
96 #define TREG 24
97 #define PIC_CALL_REG 25
98 #define KT0 26
99 #define KT1 27
100 #define GP 28
101 #define SP 29
102 #define FP 30
103 #define RA 31
104
105 #define ILLEGAL_REG (32)
106
107 #define AT mips_opts.at
108
109 /* Allow override of standard little-endian ECOFF format. */
110
111 #ifndef ECOFF_LITTLE_FORMAT
112 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
113 #endif
114
115 extern int target_big_endian;
116
117 /* The name of the readonly data section. */
118 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
119 ? ".rdata" \
120 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
121 ? ".rdata" \
122 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
123 ? ".rodata" \
124 : (abort (), ""))
125
126 /* Ways in which an instruction can be "appended" to the output. */
127 enum append_method {
128 /* Just add it normally. */
129 APPEND_ADD,
130
131 /* Add it normally and then add a nop. */
132 APPEND_ADD_WITH_NOP,
133
134 /* Turn an instruction with a delay slot into a "compact" version. */
135 APPEND_ADD_COMPACT,
136
137 /* Insert the instruction before the last one. */
138 APPEND_SWAP
139 };
140
141 /* Information about an instruction, including its format, operands
142 and fixups. */
143 struct mips_cl_insn
144 {
145 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
146 const struct mips_opcode *insn_mo;
147
148 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
149 a copy of INSN_MO->match with the operands filled in. If we have
150 decided to use an extended MIPS16 instruction, this includes the
151 extension. */
152 unsigned long insn_opcode;
153
154 /* The frag that contains the instruction. */
155 struct frag *frag;
156
157 /* The offset into FRAG of the first instruction byte. */
158 long where;
159
160 /* The relocs associated with the instruction, if any. */
161 fixS *fixp[3];
162
163 /* True if this entry cannot be moved from its current position. */
164 unsigned int fixed_p : 1;
165
166 /* True if this instruction occurred in a .set noreorder block. */
167 unsigned int noreorder_p : 1;
168
169 /* True for mips16 instructions that jump to an absolute address. */
170 unsigned int mips16_absolute_jump_p : 1;
171
172 /* True if this instruction is complete. */
173 unsigned int complete_p : 1;
174
175 /* True if this instruction is cleared from history by unconditional
176 branch. */
177 unsigned int cleared_p : 1;
178 };
179
180 /* The ABI to use. */
181 enum mips_abi_level
182 {
183 NO_ABI = 0,
184 O32_ABI,
185 O64_ABI,
186 N32_ABI,
187 N64_ABI,
188 EABI_ABI
189 };
190
191 /* MIPS ABI we are using for this output file. */
192 static enum mips_abi_level mips_abi = NO_ABI;
193
194 /* Whether or not we have code that can call pic code. */
195 int mips_abicalls = FALSE;
196
197 /* Whether or not we have code which can be put into a shared
198 library. */
199 static bfd_boolean mips_in_shared = TRUE;
200
201 /* This is the set of options which may be modified by the .set
202 pseudo-op. We use a struct so that .set push and .set pop are more
203 reliable. */
204
205 struct mips_set_options
206 {
207 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
208 if it has not been initialized. Changed by `.set mipsN', and the
209 -mipsN command line option, and the default CPU. */
210 int isa;
211 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
212 <asename>', by command line options, and based on the default
213 architecture. */
214 int ase;
215 /* Whether we are assembling for the mips16 processor. 0 if we are
216 not, 1 if we are, and -1 if the value has not been initialized.
217 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
218 -nomips16 command line options, and the default CPU. */
219 int mips16;
220 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
221 1 if we are, and -1 if the value has not been initialized. Changed
222 by `.set micromips' and `.set nomicromips', and the -mmicromips
223 and -mno-micromips command line options, and the default CPU. */
224 int micromips;
225 /* Non-zero if we should not reorder instructions. Changed by `.set
226 reorder' and `.set noreorder'. */
227 int noreorder;
228 /* Non-zero if we should not permit the register designated "assembler
229 temporary" to be used in instructions. The value is the register
230 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
231 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
232 unsigned int at;
233 /* Non-zero if we should warn when a macro instruction expands into
234 more than one machine instruction. Changed by `.set nomacro' and
235 `.set macro'. */
236 int warn_about_macros;
237 /* Non-zero if we should not move instructions. Changed by `.set
238 move', `.set volatile', `.set nomove', and `.set novolatile'. */
239 int nomove;
240 /* Non-zero if we should not optimize branches by moving the target
241 of the branch into the delay slot. Actually, we don't perform
242 this optimization anyhow. Changed by `.set bopt' and `.set
243 nobopt'. */
244 int nobopt;
245 /* Non-zero if we should not autoextend mips16 instructions.
246 Changed by `.set autoextend' and `.set noautoextend'. */
247 int noautoextend;
248 /* Restrict general purpose registers and floating point registers
249 to 32 bit. This is initially determined when -mgp32 or -mfp32
250 is passed but can changed if the assembler code uses .set mipsN. */
251 int gp32;
252 int fp32;
253 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
254 command line option, and the default CPU. */
255 int arch;
256 /* True if ".set sym32" is in effect. */
257 bfd_boolean sym32;
258 /* True if floating-point operations are not allowed. Changed by .set
259 softfloat or .set hardfloat, by command line options -msoft-float or
260 -mhard-float. The default is false. */
261 bfd_boolean soft_float;
262
263 /* True if only single-precision floating-point operations are allowed.
264 Changed by .set singlefloat or .set doublefloat, command-line options
265 -msingle-float or -mdouble-float. The default is false. */
266 bfd_boolean single_float;
267 };
268
269 /* This is the struct we use to hold the current set of options. Note
270 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
271 -1 to indicate that they have not been initialized. */
272
273 /* True if -mgp32 was passed. */
274 static int file_mips_gp32 = -1;
275
276 /* True if -mfp32 was passed. */
277 static int file_mips_fp32 = -1;
278
279 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
280 static int file_mips_soft_float = 0;
281
282 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
283 static int file_mips_single_float = 0;
284
285 static struct mips_set_options mips_opts =
286 {
287 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
288 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
289 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* gp32 */ 0,
290 /* fp32 */ 0, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
291 /* soft_float */ FALSE, /* single_float */ FALSE
292 };
293
294 /* The set of ASEs that were selected on the command line, either
295 explicitly via ASE options or implicitly through things like -march. */
296 static unsigned int file_ase;
297
298 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
299 static unsigned int file_ase_explicit;
300
301 /* These variables are filled in with the masks of registers used.
302 The object format code reads them and puts them in the appropriate
303 place. */
304 unsigned long mips_gprmask;
305 unsigned long mips_cprmask[4];
306
307 /* MIPS ISA we are using for this output file. */
308 static int file_mips_isa = ISA_UNKNOWN;
309
310 /* True if any MIPS16 code was produced. */
311 static int file_ase_mips16;
312
313 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
314 || mips_opts.isa == ISA_MIPS32R2 \
315 || mips_opts.isa == ISA_MIPS64 \
316 || mips_opts.isa == ISA_MIPS64R2)
317
318 /* True if any microMIPS code was produced. */
319 static int file_ase_micromips;
320
321 /* True if we want to create R_MIPS_JALR for jalr $25. */
322 #ifdef TE_IRIX
323 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
324 #else
325 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
326 because there's no place for any addend, the only acceptable
327 expression is a bare symbol. */
328 #define MIPS_JALR_HINT_P(EXPR) \
329 (!HAVE_IN_PLACE_ADDENDS \
330 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
331 #endif
332
333 #define ISA_SUPPORTS_SMARTMIPS (mips_opts.isa == ISA_MIPS32 \
334 || mips_opts.isa == ISA_MIPS32R2)
335
336 #define ISA_SUPPORTS_DSP_ASE (mips_opts.isa == ISA_MIPS32R2 \
337 || mips_opts.isa == ISA_MIPS64R2 \
338 || mips_opts.micromips)
339
340 #define ISA_SUPPORTS_DSP64_ASE (mips_opts.isa == ISA_MIPS64R2)
341
342 #define ISA_SUPPORTS_DSPR2_ASE (mips_opts.isa == ISA_MIPS32R2 \
343 || mips_opts.isa == ISA_MIPS64R2 \
344 || mips_opts.micromips)
345
346 #define ISA_SUPPORTS_EVA_ASE (mips_opts.isa == ISA_MIPS32R2 \
347 || mips_opts.isa == ISA_MIPS64R2 \
348 || mips_opts.micromips)
349
350 #define ISA_SUPPORTS_MT_ASE (mips_opts.isa == ISA_MIPS32R2 \
351 || mips_opts.isa == ISA_MIPS64R2)
352
353 #define ISA_SUPPORTS_MCU_ASE (mips_opts.isa == ISA_MIPS32R2 \
354 || mips_opts.isa == ISA_MIPS64R2 \
355 || mips_opts.micromips)
356
357 #define ISA_SUPPORTS_VIRT_ASE (mips_opts.isa == ISA_MIPS32R2 \
358 || mips_opts.isa == ISA_MIPS64R2 \
359 || mips_opts.micromips)
360
361 #define ISA_SUPPORTS_VIRT64_ASE (mips_opts.isa == ISA_MIPS64R2 \
362 || (mips_opts.micromips \
363 && ISA_HAS_64BIT_REGS (mips_opts.isa)))
364
365 /* The argument of the -march= flag. The architecture we are assembling. */
366 static int file_mips_arch = CPU_UNKNOWN;
367 static const char *mips_arch_string;
368
369 /* The argument of the -mtune= flag. The architecture for which we
370 are optimizing. */
371 static int mips_tune = CPU_UNKNOWN;
372 static const char *mips_tune_string;
373
374 /* True when generating 32-bit code for a 64-bit processor. */
375 static int mips_32bitmode = 0;
376
377 /* True if the given ABI requires 32-bit registers. */
378 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
379
380 /* Likewise 64-bit registers. */
381 #define ABI_NEEDS_64BIT_REGS(ABI) \
382 ((ABI) == N32_ABI \
383 || (ABI) == N64_ABI \
384 || (ABI) == O64_ABI)
385
386 /* Return true if ISA supports 64 bit wide gp registers. */
387 #define ISA_HAS_64BIT_REGS(ISA) \
388 ((ISA) == ISA_MIPS3 \
389 || (ISA) == ISA_MIPS4 \
390 || (ISA) == ISA_MIPS5 \
391 || (ISA) == ISA_MIPS64 \
392 || (ISA) == ISA_MIPS64R2)
393
394 /* Return true if ISA supports 64 bit wide float registers. */
395 #define ISA_HAS_64BIT_FPRS(ISA) \
396 ((ISA) == ISA_MIPS3 \
397 || (ISA) == ISA_MIPS4 \
398 || (ISA) == ISA_MIPS5 \
399 || (ISA) == ISA_MIPS32R2 \
400 || (ISA) == ISA_MIPS64 \
401 || (ISA) == ISA_MIPS64R2)
402
403 /* Return true if ISA supports 64-bit right rotate (dror et al.)
404 instructions. */
405 #define ISA_HAS_DROR(ISA) \
406 ((ISA) == ISA_MIPS64R2 \
407 || (mips_opts.micromips \
408 && ISA_HAS_64BIT_REGS (ISA)) \
409 )
410
411 /* Return true if ISA supports 32-bit right rotate (ror et al.)
412 instructions. */
413 #define ISA_HAS_ROR(ISA) \
414 ((ISA) == ISA_MIPS32R2 \
415 || (ISA) == ISA_MIPS64R2 \
416 || (mips_opts.ase & ASE_SMARTMIPS) \
417 || mips_opts.micromips \
418 )
419
420 /* Return true if ISA supports single-precision floats in odd registers. */
421 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
422 ((ISA) == ISA_MIPS32 \
423 || (ISA) == ISA_MIPS32R2 \
424 || (ISA) == ISA_MIPS64 \
425 || (ISA) == ISA_MIPS64R2)
426
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS64R2)
432
433 #define HAVE_32BIT_GPRS \
434 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
435
436 #define HAVE_32BIT_FPRS \
437 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
438
439 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
440 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
441
442 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
443
444 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
445
446 /* True if relocations are stored in-place. */
447 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
448
449 /* The ABI-derived address size. */
450 #define HAVE_64BIT_ADDRESSES \
451 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
452 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
453
454 /* The size of symbolic constants (i.e., expressions of the form
455 "SYMBOL" or "SYMBOL + OFFSET"). */
456 #define HAVE_32BIT_SYMBOLS \
457 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
458 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
459
460 /* Addresses are loaded in different ways, depending on the address size
461 in use. The n32 ABI Documentation also mandates the use of additions
462 with overflow checking, but existing implementations don't follow it. */
463 #define ADDRESS_ADD_INSN \
464 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
465
466 #define ADDRESS_ADDI_INSN \
467 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
468
469 #define ADDRESS_LOAD_INSN \
470 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
471
472 #define ADDRESS_STORE_INSN \
473 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
474
475 /* Return true if the given CPU supports the MIPS16 ASE. */
476 #define CPU_HAS_MIPS16(cpu) \
477 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
478 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
479
480 /* Return true if the given CPU supports the microMIPS ASE. */
481 #define CPU_HAS_MICROMIPS(cpu) 0
482
483 /* True if CPU has a dror instruction. */
484 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
485
486 /* True if CPU has a ror instruction. */
487 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
488
489 /* True if CPU is in the Octeon family */
490 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP || (CPU) == CPU_OCTEON2)
491
492 /* True if CPU has seq/sne and seqi/snei instructions. */
493 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
494
495 /* True, if CPU has support for ldc1 and sdc1. */
496 #define CPU_HAS_LDC1_SDC1(CPU) \
497 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
498
499 /* True if mflo and mfhi can be immediately followed by instructions
500 which write to the HI and LO registers.
501
502 According to MIPS specifications, MIPS ISAs I, II, and III need
503 (at least) two instructions between the reads of HI/LO and
504 instructions which write them, and later ISAs do not. Contradicting
505 the MIPS specifications, some MIPS IV processor user manuals (e.g.
506 the UM for the NEC Vr5000) document needing the instructions between
507 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
508 MIPS64 and later ISAs to have the interlocks, plus any specific
509 earlier-ISA CPUs for which CPU documentation declares that the
510 instructions are really interlocked. */
511 #define hilo_interlocks \
512 (mips_opts.isa == ISA_MIPS32 \
513 || mips_opts.isa == ISA_MIPS32R2 \
514 || mips_opts.isa == ISA_MIPS64 \
515 || mips_opts.isa == ISA_MIPS64R2 \
516 || mips_opts.arch == CPU_R4010 \
517 || mips_opts.arch == CPU_R5900 \
518 || mips_opts.arch == CPU_R10000 \
519 || mips_opts.arch == CPU_R12000 \
520 || mips_opts.arch == CPU_R14000 \
521 || mips_opts.arch == CPU_R16000 \
522 || mips_opts.arch == CPU_RM7000 \
523 || mips_opts.arch == CPU_VR5500 \
524 || mips_opts.micromips \
525 )
526
527 /* Whether the processor uses hardware interlocks to protect reads
528 from the GPRs after they are loaded from memory, and thus does not
529 require nops to be inserted. This applies to instructions marked
530 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
531 level I and microMIPS mode instructions are always interlocked. */
532 #define gpr_interlocks \
533 (mips_opts.isa != ISA_MIPS1 \
534 || mips_opts.arch == CPU_R3900 \
535 || mips_opts.arch == CPU_R5900 \
536 || mips_opts.micromips \
537 )
538
539 /* Whether the processor uses hardware interlocks to avoid delays
540 required by coprocessor instructions, and thus does not require
541 nops to be inserted. This applies to instructions marked
542 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
543 between instructions marked INSN_WRITE_COND_CODE and ones marked
544 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
545 levels I, II, and III and microMIPS mode instructions are always
546 interlocked. */
547 /* Itbl support may require additional care here. */
548 #define cop_interlocks \
549 ((mips_opts.isa != ISA_MIPS1 \
550 && mips_opts.isa != ISA_MIPS2 \
551 && mips_opts.isa != ISA_MIPS3) \
552 || mips_opts.arch == CPU_R4300 \
553 || mips_opts.micromips \
554 )
555
556 /* Whether the processor uses hardware interlocks to protect reads
557 from coprocessor registers after they are loaded from memory, and
558 thus does not require nops to be inserted. This applies to
559 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
560 requires at MIPS ISA level I and microMIPS mode instructions are
561 always interlocked. */
562 #define cop_mem_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.micromips \
565 )
566
567 /* Is this a mfhi or mflo instruction? */
568 #define MF_HILO_INSN(PINFO) \
569 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
570
571 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
572 has been selected. This implies, in particular, that addresses of text
573 labels have their LSB set. */
574 #define HAVE_CODE_COMPRESSION \
575 ((mips_opts.mips16 | mips_opts.micromips) != 0)
576
577 /* MIPS PIC level. */
578
579 enum mips_pic_level mips_pic;
580
581 /* 1 if we should generate 32 bit offsets from the $gp register in
582 SVR4_PIC mode. Currently has no meaning in other modes. */
583 static int mips_big_got = 0;
584
585 /* 1 if trap instructions should used for overflow rather than break
586 instructions. */
587 static int mips_trap = 0;
588
589 /* 1 if double width floating point constants should not be constructed
590 by assembling two single width halves into two single width floating
591 point registers which just happen to alias the double width destination
592 register. On some architectures this aliasing can be disabled by a bit
593 in the status register, and the setting of this bit cannot be determined
594 automatically at assemble time. */
595 static int mips_disable_float_construction;
596
597 /* Non-zero if any .set noreorder directives were used. */
598
599 static int mips_any_noreorder;
600
601 /* Non-zero if nops should be inserted when the register referenced in
602 an mfhi/mflo instruction is read in the next two instructions. */
603 static int mips_7000_hilo_fix;
604
605 /* The size of objects in the small data section. */
606 static unsigned int g_switch_value = 8;
607 /* Whether the -G option was used. */
608 static int g_switch_seen = 0;
609
610 #define N_RMASK 0xc4
611 #define N_VFP 0xd4
612
613 /* If we can determine in advance that GP optimization won't be
614 possible, we can skip the relaxation stuff that tries to produce
615 GP-relative references. This makes delay slot optimization work
616 better.
617
618 This function can only provide a guess, but it seems to work for
619 gcc output. It needs to guess right for gcc, otherwise gcc
620 will put what it thinks is a GP-relative instruction in a branch
621 delay slot.
622
623 I don't know if a fix is needed for the SVR4_PIC mode. I've only
624 fixed it for the non-PIC mode. KR 95/04/07 */
625 static int nopic_need_relax (symbolS *, int);
626
627 /* handle of the OPCODE hash table */
628 static struct hash_control *op_hash = NULL;
629
630 /* The opcode hash table we use for the mips16. */
631 static struct hash_control *mips16_op_hash = NULL;
632
633 /* The opcode hash table we use for the microMIPS ASE. */
634 static struct hash_control *micromips_op_hash = NULL;
635
636 /* This array holds the chars that always start a comment. If the
637 pre-processor is disabled, these aren't very useful */
638 const char comment_chars[] = "#";
639
640 /* This array holds the chars that only start a comment at the beginning of
641 a line. If the line seems to have the form '# 123 filename'
642 .line and .file directives will appear in the pre-processed output */
643 /* Note that input_file.c hand checks for '#' at the beginning of the
644 first line of the input file. This is because the compiler outputs
645 #NO_APP at the beginning of its output. */
646 /* Also note that C style comments are always supported. */
647 const char line_comment_chars[] = "#";
648
649 /* This array holds machine specific line separator characters. */
650 const char line_separator_chars[] = ";";
651
652 /* Chars that can be used to separate mant from exp in floating point nums */
653 const char EXP_CHARS[] = "eE";
654
655 /* Chars that mean this number is a floating point constant */
656 /* As in 0f12.456 */
657 /* or 0d1.2345e12 */
658 const char FLT_CHARS[] = "rRsSfFdDxXpP";
659
660 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
661 changed in read.c . Ideally it shouldn't have to know about it at all,
662 but nothing is ideal around here.
663 */
664
665 static char *insn_error;
666
667 static int auto_align = 1;
668
669 /* When outputting SVR4 PIC code, the assembler needs to know the
670 offset in the stack frame from which to restore the $gp register.
671 This is set by the .cprestore pseudo-op, and saved in this
672 variable. */
673 static offsetT mips_cprestore_offset = -1;
674
675 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
676 more optimizations, it can use a register value instead of a memory-saved
677 offset and even an other register than $gp as global pointer. */
678 static offsetT mips_cpreturn_offset = -1;
679 static int mips_cpreturn_register = -1;
680 static int mips_gp_register = GP;
681 static int mips_gprel_offset = 0;
682
683 /* Whether mips_cprestore_offset has been set in the current function
684 (or whether it has already been warned about, if not). */
685 static int mips_cprestore_valid = 0;
686
687 /* This is the register which holds the stack frame, as set by the
688 .frame pseudo-op. This is needed to implement .cprestore. */
689 static int mips_frame_reg = SP;
690
691 /* Whether mips_frame_reg has been set in the current function
692 (or whether it has already been warned about, if not). */
693 static int mips_frame_reg_valid = 0;
694
695 /* To output NOP instructions correctly, we need to keep information
696 about the previous two instructions. */
697
698 /* Whether we are optimizing. The default value of 2 means to remove
699 unneeded NOPs and swap branch instructions when possible. A value
700 of 1 means to not swap branches. A value of 0 means to always
701 insert NOPs. */
702 static int mips_optimize = 2;
703
704 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
705 equivalent to seeing no -g option at all. */
706 static int mips_debug = 0;
707
708 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
709 #define MAX_VR4130_NOPS 4
710
711 /* The maximum number of NOPs needed to fill delay slots. */
712 #define MAX_DELAY_NOPS 2
713
714 /* The maximum number of NOPs needed for any purpose. */
715 #define MAX_NOPS 4
716
717 /* A list of previous instructions, with index 0 being the most recent.
718 We need to look back MAX_NOPS instructions when filling delay slots
719 or working around processor errata. We need to look back one
720 instruction further if we're thinking about using history[0] to
721 fill a branch delay slot. */
722 static struct mips_cl_insn history[1 + MAX_NOPS];
723
724 /* Nop instructions used by emit_nop. */
725 static struct mips_cl_insn nop_insn;
726 static struct mips_cl_insn mips16_nop_insn;
727 static struct mips_cl_insn micromips_nop16_insn;
728 static struct mips_cl_insn micromips_nop32_insn;
729
730 /* The appropriate nop for the current mode. */
731 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn \
732 : (mips_opts.micromips ? &micromips_nop16_insn : &nop_insn))
733
734 /* The size of NOP_INSN in bytes. */
735 #define NOP_INSN_SIZE (HAVE_CODE_COMPRESSION ? 2 : 4)
736
737 /* If this is set, it points to a frag holding nop instructions which
738 were inserted before the start of a noreorder section. If those
739 nops turn out to be unnecessary, the size of the frag can be
740 decreased. */
741 static fragS *prev_nop_frag;
742
743 /* The number of nop instructions we created in prev_nop_frag. */
744 static int prev_nop_frag_holds;
745
746 /* The number of nop instructions that we know we need in
747 prev_nop_frag. */
748 static int prev_nop_frag_required;
749
750 /* The number of instructions we've seen since prev_nop_frag. */
751 static int prev_nop_frag_since;
752
753 /* For ECOFF and ELF, relocations against symbols are done in two
754 parts, with a HI relocation and a LO relocation. Each relocation
755 has only 16 bits of space to store an addend. This means that in
756 order for the linker to handle carries correctly, it must be able
757 to locate both the HI and the LO relocation. This means that the
758 relocations must appear in order in the relocation table.
759
760 In order to implement this, we keep track of each unmatched HI
761 relocation. We then sort them so that they immediately precede the
762 corresponding LO relocation. */
763
764 struct mips_hi_fixup
765 {
766 /* Next HI fixup. */
767 struct mips_hi_fixup *next;
768 /* This fixup. */
769 fixS *fixp;
770 /* The section this fixup is in. */
771 segT seg;
772 };
773
774 /* The list of unmatched HI relocs. */
775
776 static struct mips_hi_fixup *mips_hi_fixup_list;
777
778 /* The frag containing the last explicit relocation operator.
779 Null if explicit relocations have not been used. */
780
781 static fragS *prev_reloc_op_frag;
782
783 /* Map normal MIPS register numbers to mips16 register numbers. */
784
785 #define X ILLEGAL_REG
786 static const int mips32_to_16_reg_map[] =
787 {
788 X, X, 2, 3, 4, 5, 6, 7,
789 X, X, X, X, X, X, X, X,
790 0, 1, X, X, X, X, X, X,
791 X, X, X, X, X, X, X, X
792 };
793 #undef X
794
795 /* Map mips16 register numbers to normal MIPS register numbers. */
796
797 static const unsigned int mips16_to_32_reg_map[] =
798 {
799 16, 17, 2, 3, 4, 5, 6, 7
800 };
801
802 /* Map normal MIPS register numbers to microMIPS register numbers. */
803
804 #define mips32_to_micromips_reg_b_map mips32_to_16_reg_map
805 #define mips32_to_micromips_reg_c_map mips32_to_16_reg_map
806 #define mips32_to_micromips_reg_d_map mips32_to_16_reg_map
807 #define mips32_to_micromips_reg_e_map mips32_to_16_reg_map
808 #define mips32_to_micromips_reg_f_map mips32_to_16_reg_map
809 #define mips32_to_micromips_reg_g_map mips32_to_16_reg_map
810 #define mips32_to_micromips_reg_l_map mips32_to_16_reg_map
811
812 #define X ILLEGAL_REG
813 /* reg type h: 4, 5, 6. */
814 static const int mips32_to_micromips_reg_h_map[] =
815 {
816 X, X, X, X, 4, 5, 6, X,
817 X, X, X, X, X, X, X, X,
818 X, X, X, X, X, X, X, X,
819 X, X, X, X, X, X, X, X
820 };
821
822 /* reg type m: 0, 17, 2, 3, 16, 18, 19, 20. */
823 static const int mips32_to_micromips_reg_m_map[] =
824 {
825 0, X, 2, 3, X, X, X, X,
826 X, X, X, X, X, X, X, X,
827 4, 1, 5, 6, 7, X, X, X,
828 X, X, X, X, X, X, X, X
829 };
830
831 /* reg type q: 0, 2-7. 17. */
832 static const int mips32_to_micromips_reg_q_map[] =
833 {
834 0, X, 2, 3, 4, 5, 6, 7,
835 X, X, X, X, X, X, X, X,
836 X, 1, X, X, X, X, X, X,
837 X, X, X, X, X, X, X, X
838 };
839
840 #define mips32_to_micromips_reg_n_map mips32_to_micromips_reg_m_map
841 #undef X
842
843 /* Map microMIPS register numbers to normal MIPS register numbers. */
844
845 #define micromips_to_32_reg_b_map mips16_to_32_reg_map
846 #define micromips_to_32_reg_c_map mips16_to_32_reg_map
847 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
848 #define micromips_to_32_reg_e_map mips16_to_32_reg_map
849 #define micromips_to_32_reg_f_map mips16_to_32_reg_map
850 #define micromips_to_32_reg_g_map mips16_to_32_reg_map
851
852 /* The microMIPS registers with type h. */
853 static const unsigned int micromips_to_32_reg_h_map[] =
854 {
855 5, 5, 6, 4, 4, 4, 4, 4
856 };
857
858 /* The microMIPS registers with type i. */
859 static const unsigned int micromips_to_32_reg_i_map[] =
860 {
861 6, 7, 7, 21, 22, 5, 6, 7
862 };
863
864 #define micromips_to_32_reg_l_map mips16_to_32_reg_map
865
866 /* The microMIPS registers with type m. */
867 static const unsigned int micromips_to_32_reg_m_map[] =
868 {
869 0, 17, 2, 3, 16, 18, 19, 20
870 };
871
872 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
873
874 /* The microMIPS registers with type q. */
875 static const unsigned int micromips_to_32_reg_q_map[] =
876 {
877 0, 17, 2, 3, 4, 5, 6, 7
878 };
879
880 /* microMIPS imm type B. */
881 static const int micromips_imm_b_map[] =
882 {
883 1, 4, 8, 12, 16, 20, 24, -1
884 };
885
886 /* microMIPS imm type C. */
887 static const int micromips_imm_c_map[] =
888 {
889 128, 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 255, 32768, 65535
890 };
891
892 /* Classifies the kind of instructions we're interested in when
893 implementing -mfix-vr4120. */
894 enum fix_vr4120_class
895 {
896 FIX_VR4120_MACC,
897 FIX_VR4120_DMACC,
898 FIX_VR4120_MULT,
899 FIX_VR4120_DMULT,
900 FIX_VR4120_DIV,
901 FIX_VR4120_MTHILO,
902 NUM_FIX_VR4120_CLASSES
903 };
904
905 /* ...likewise -mfix-loongson2f-jump. */
906 static bfd_boolean mips_fix_loongson2f_jump;
907
908 /* ...likewise -mfix-loongson2f-nop. */
909 static bfd_boolean mips_fix_loongson2f_nop;
910
911 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
912 static bfd_boolean mips_fix_loongson2f;
913
914 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
915 there must be at least one other instruction between an instruction
916 of type X and an instruction of type Y. */
917 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
918
919 /* True if -mfix-vr4120 is in force. */
920 static int mips_fix_vr4120;
921
922 /* ...likewise -mfix-vr4130. */
923 static int mips_fix_vr4130;
924
925 /* ...likewise -mfix-24k. */
926 static int mips_fix_24k;
927
928 /* ...likewise -mfix-cn63xxp1 */
929 static bfd_boolean mips_fix_cn63xxp1;
930
931 /* We don't relax branches by default, since this causes us to expand
932 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
933 fail to compute the offset before expanding the macro to the most
934 efficient expansion. */
935
936 static int mips_relax_branch;
937 \f
938 /* The expansion of many macros depends on the type of symbol that
939 they refer to. For example, when generating position-dependent code,
940 a macro that refers to a symbol may have two different expansions,
941 one which uses GP-relative addresses and one which uses absolute
942 addresses. When generating SVR4-style PIC, a macro may have
943 different expansions for local and global symbols.
944
945 We handle these situations by generating both sequences and putting
946 them in variant frags. In position-dependent code, the first sequence
947 will be the GP-relative one and the second sequence will be the
948 absolute one. In SVR4 PIC, the first sequence will be for global
949 symbols and the second will be for local symbols.
950
951 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
952 SECOND are the lengths of the two sequences in bytes. These fields
953 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
954 the subtype has the following flags:
955
956 RELAX_USE_SECOND
957 Set if it has been decided that we should use the second
958 sequence instead of the first.
959
960 RELAX_SECOND_LONGER
961 Set in the first variant frag if the macro's second implementation
962 is longer than its first. This refers to the macro as a whole,
963 not an individual relaxation.
964
965 RELAX_NOMACRO
966 Set in the first variant frag if the macro appeared in a .set nomacro
967 block and if one alternative requires a warning but the other does not.
968
969 RELAX_DELAY_SLOT
970 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
971 delay slot.
972
973 RELAX_DELAY_SLOT_16BIT
974 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
975 16-bit instruction.
976
977 RELAX_DELAY_SLOT_SIZE_FIRST
978 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
979 the macro is of the wrong size for the branch delay slot.
980
981 RELAX_DELAY_SLOT_SIZE_SECOND
982 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
983 the macro is of the wrong size for the branch delay slot.
984
985 The frag's "opcode" points to the first fixup for relaxable code.
986
987 Relaxable macros are generated using a sequence such as:
988
989 relax_start (SYMBOL);
990 ... generate first expansion ...
991 relax_switch ();
992 ... generate second expansion ...
993 relax_end ();
994
995 The code and fixups for the unwanted alternative are discarded
996 by md_convert_frag. */
997 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
998
999 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1000 #define RELAX_SECOND(X) ((X) & 0xff)
1001 #define RELAX_USE_SECOND 0x10000
1002 #define RELAX_SECOND_LONGER 0x20000
1003 #define RELAX_NOMACRO 0x40000
1004 #define RELAX_DELAY_SLOT 0x80000
1005 #define RELAX_DELAY_SLOT_16BIT 0x100000
1006 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1007 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1008
1009 /* Branch without likely bit. If label is out of range, we turn:
1010
1011 beq reg1, reg2, label
1012 delay slot
1013
1014 into
1015
1016 bne reg1, reg2, 0f
1017 nop
1018 j label
1019 0: delay slot
1020
1021 with the following opcode replacements:
1022
1023 beq <-> bne
1024 blez <-> bgtz
1025 bltz <-> bgez
1026 bc1f <-> bc1t
1027
1028 bltzal <-> bgezal (with jal label instead of j label)
1029
1030 Even though keeping the delay slot instruction in the delay slot of
1031 the branch would be more efficient, it would be very tricky to do
1032 correctly, because we'd have to introduce a variable frag *after*
1033 the delay slot instruction, and expand that instead. Let's do it
1034 the easy way for now, even if the branch-not-taken case now costs
1035 one additional instruction. Out-of-range branches are not supposed
1036 to be common, anyway.
1037
1038 Branch likely. If label is out of range, we turn:
1039
1040 beql reg1, reg2, label
1041 delay slot (annulled if branch not taken)
1042
1043 into
1044
1045 beql reg1, reg2, 1f
1046 nop
1047 beql $0, $0, 2f
1048 nop
1049 1: j[al] label
1050 delay slot (executed only if branch taken)
1051 2:
1052
1053 It would be possible to generate a shorter sequence by losing the
1054 likely bit, generating something like:
1055
1056 bne reg1, reg2, 0f
1057 nop
1058 j[al] label
1059 delay slot (executed only if branch taken)
1060 0:
1061
1062 beql -> bne
1063 bnel -> beq
1064 blezl -> bgtz
1065 bgtzl -> blez
1066 bltzl -> bgez
1067 bgezl -> bltz
1068 bc1fl -> bc1t
1069 bc1tl -> bc1f
1070
1071 bltzall -> bgezal (with jal label instead of j label)
1072 bgezall -> bltzal (ditto)
1073
1074
1075 but it's not clear that it would actually improve performance. */
1076 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1077 ((relax_substateT) \
1078 (0xc0000000 \
1079 | ((at) & 0x1f) \
1080 | ((toofar) ? 0x20 : 0) \
1081 | ((link) ? 0x40 : 0) \
1082 | ((likely) ? 0x80 : 0) \
1083 | ((uncond) ? 0x100 : 0)))
1084 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1085 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1086 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1087 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1088 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1089 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1090
1091 /* For mips16 code, we use an entirely different form of relaxation.
1092 mips16 supports two versions of most instructions which take
1093 immediate values: a small one which takes some small value, and a
1094 larger one which takes a 16 bit value. Since branches also follow
1095 this pattern, relaxing these values is required.
1096
1097 We can assemble both mips16 and normal MIPS code in a single
1098 object. Therefore, we need to support this type of relaxation at
1099 the same time that we support the relaxation described above. We
1100 use the high bit of the subtype field to distinguish these cases.
1101
1102 The information we store for this type of relaxation is the
1103 argument code found in the opcode file for this relocation, whether
1104 the user explicitly requested a small or extended form, and whether
1105 the relocation is in a jump or jal delay slot. That tells us the
1106 size of the value, and how it should be stored. We also store
1107 whether the fragment is considered to be extended or not. We also
1108 store whether this is known to be a branch to a different section,
1109 whether we have tried to relax this frag yet, and whether we have
1110 ever extended a PC relative fragment because of a shift count. */
1111 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1112 (0x80000000 \
1113 | ((type) & 0xff) \
1114 | ((small) ? 0x100 : 0) \
1115 | ((ext) ? 0x200 : 0) \
1116 | ((dslot) ? 0x400 : 0) \
1117 | ((jal_dslot) ? 0x800 : 0))
1118 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1119 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1120 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1121 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1122 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1123 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1124 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1125 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1126 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1127 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1128 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1129 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1130
1131 /* For microMIPS code, we use relaxation similar to one we use for
1132 MIPS16 code. Some instructions that take immediate values support
1133 two encodings: a small one which takes some small value, and a
1134 larger one which takes a 16 bit value. As some branches also follow
1135 this pattern, relaxing these values is required.
1136
1137 We can assemble both microMIPS and normal MIPS code in a single
1138 object. Therefore, we need to support this type of relaxation at
1139 the same time that we support the relaxation described above. We
1140 use one of the high bits of the subtype field to distinguish these
1141 cases.
1142
1143 The information we store for this type of relaxation is the argument
1144 code found in the opcode file for this relocation, the register
1145 selected as the assembler temporary, whether the branch is
1146 unconditional, whether it is compact, whether it stores the link
1147 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1148 branches to a sequence of instructions is enabled, and whether the
1149 displacement of a branch is too large to fit as an immediate argument
1150 of a 16-bit and a 32-bit branch, respectively. */
1151 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1152 relax32, toofar16, toofar32) \
1153 (0x40000000 \
1154 | ((type) & 0xff) \
1155 | (((at) & 0x1f) << 8) \
1156 | ((uncond) ? 0x2000 : 0) \
1157 | ((compact) ? 0x4000 : 0) \
1158 | ((link) ? 0x8000 : 0) \
1159 | ((relax32) ? 0x10000 : 0) \
1160 | ((toofar16) ? 0x20000 : 0) \
1161 | ((toofar32) ? 0x40000 : 0))
1162 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1163 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1164 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1165 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1166 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1167 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1168 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1169
1170 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1171 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1172 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1173 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1174 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1175 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1176
1177 /* Sign-extend 16-bit value X. */
1178 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1179
1180 /* Is the given value a sign-extended 32-bit value? */
1181 #define IS_SEXT_32BIT_NUM(x) \
1182 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1183 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1184
1185 /* Is the given value a sign-extended 16-bit value? */
1186 #define IS_SEXT_16BIT_NUM(x) \
1187 (((x) &~ (offsetT) 0x7fff) == 0 \
1188 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1189
1190 /* Is the given value a sign-extended 12-bit value? */
1191 #define IS_SEXT_12BIT_NUM(x) \
1192 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1193
1194 /* Is the given value a sign-extended 9-bit value? */
1195 #define IS_SEXT_9BIT_NUM(x) \
1196 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1197
1198 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1199 #define IS_ZEXT_32BIT_NUM(x) \
1200 (((x) &~ (offsetT) 0xffffffff) == 0 \
1201 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1202
1203 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in
1204 VALUE << SHIFT. VALUE is evaluated exactly once. */
1205 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \
1206 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \
1207 | (((VALUE) & (MASK)) << (SHIFT)))
1208
1209 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1210 SHIFT places. */
1211 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1212 (((STRUCT) >> (SHIFT)) & (MASK))
1213
1214 /* Change INSN's opcode so that the operand given by FIELD has value VALUE.
1215 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once.
1216
1217 include/opcode/mips.h specifies operand fields using the macros
1218 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start
1219 with "MIPS16OP" instead of "OP". */
1220 #define INSERT_OPERAND(MICROMIPS, FIELD, INSN, VALUE) \
1221 do \
1222 if (!(MICROMIPS)) \
1223 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1224 OP_MASK_##FIELD, OP_SH_##FIELD); \
1225 else \
1226 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1227 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD); \
1228 while (0)
1229 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \
1230 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1231 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD)
1232
1233 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1234 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1235 (!(MICROMIPS) \
1236 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1237 : EXTRACT_BITS ((INSN).insn_opcode, \
1238 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1239 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1240 EXTRACT_BITS ((INSN).insn_opcode, \
1241 MIPS16OP_MASK_##FIELD, \
1242 MIPS16OP_SH_##FIELD)
1243
1244 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1245 #define MIPS16_EXTEND (0xf000U << 16)
1246 \f
1247 /* Whether or not we are emitting a branch-likely macro. */
1248 static bfd_boolean emit_branch_likely_macro = FALSE;
1249
1250 /* Global variables used when generating relaxable macros. See the
1251 comment above RELAX_ENCODE for more details about how relaxation
1252 is used. */
1253 static struct {
1254 /* 0 if we're not emitting a relaxable macro.
1255 1 if we're emitting the first of the two relaxation alternatives.
1256 2 if we're emitting the second alternative. */
1257 int sequence;
1258
1259 /* The first relaxable fixup in the current frag. (In other words,
1260 the first fixup that refers to relaxable code.) */
1261 fixS *first_fixup;
1262
1263 /* sizes[0] says how many bytes of the first alternative are stored in
1264 the current frag. Likewise sizes[1] for the second alternative. */
1265 unsigned int sizes[2];
1266
1267 /* The symbol on which the choice of sequence depends. */
1268 symbolS *symbol;
1269 } mips_relax;
1270 \f
1271 /* Global variables used to decide whether a macro needs a warning. */
1272 static struct {
1273 /* True if the macro is in a branch delay slot. */
1274 bfd_boolean delay_slot_p;
1275
1276 /* Set to the length in bytes required if the macro is in a delay slot
1277 that requires a specific length of instruction, otherwise zero. */
1278 unsigned int delay_slot_length;
1279
1280 /* For relaxable macros, sizes[0] is the length of the first alternative
1281 in bytes and sizes[1] is the length of the second alternative.
1282 For non-relaxable macros, both elements give the length of the
1283 macro in bytes. */
1284 unsigned int sizes[2];
1285
1286 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1287 instruction of the first alternative in bytes and first_insn_sizes[1]
1288 is the length of the first instruction of the second alternative.
1289 For non-relaxable macros, both elements give the length of the first
1290 instruction in bytes.
1291
1292 Set to zero if we haven't yet seen the first instruction. */
1293 unsigned int first_insn_sizes[2];
1294
1295 /* For relaxable macros, insns[0] is the number of instructions for the
1296 first alternative and insns[1] is the number of instructions for the
1297 second alternative.
1298
1299 For non-relaxable macros, both elements give the number of
1300 instructions for the macro. */
1301 unsigned int insns[2];
1302
1303 /* The first variant frag for this macro. */
1304 fragS *first_frag;
1305 } mips_macro_warning;
1306 \f
1307 /* Prototypes for static functions. */
1308
1309 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1310
1311 static void append_insn
1312 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1313 bfd_boolean expansionp);
1314 static void mips_no_prev_insn (void);
1315 static void macro_build (expressionS *, const char *, const char *, ...);
1316 static void mips16_macro_build
1317 (expressionS *, const char *, const char *, va_list *);
1318 static void load_register (int, expressionS *, int);
1319 static void macro_start (void);
1320 static void macro_end (void);
1321 static void macro (struct mips_cl_insn * ip);
1322 static void mips16_macro (struct mips_cl_insn * ip);
1323 static void mips_ip (char *str, struct mips_cl_insn * ip);
1324 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1325 static void mips16_immed
1326 (char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1327 unsigned int, unsigned long *);
1328 static size_t my_getSmallExpression
1329 (expressionS *, bfd_reloc_code_real_type *, char *);
1330 static void my_getExpression (expressionS *, char *);
1331 static void s_align (int);
1332 static void s_change_sec (int);
1333 static void s_change_section (int);
1334 static void s_cons (int);
1335 static void s_float_cons (int);
1336 static void s_mips_globl (int);
1337 static void s_option (int);
1338 static void s_mipsset (int);
1339 static void s_abicalls (int);
1340 static void s_cpload (int);
1341 static void s_cpsetup (int);
1342 static void s_cplocal (int);
1343 static void s_cprestore (int);
1344 static void s_cpreturn (int);
1345 static void s_dtprelword (int);
1346 static void s_dtpreldword (int);
1347 static void s_tprelword (int);
1348 static void s_tpreldword (int);
1349 static void s_gpvalue (int);
1350 static void s_gpword (int);
1351 static void s_gpdword (int);
1352 static void s_ehword (int);
1353 static void s_cpadd (int);
1354 static void s_insn (int);
1355 static void md_obj_begin (void);
1356 static void md_obj_end (void);
1357 static void s_mips_ent (int);
1358 static void s_mips_end (int);
1359 static void s_mips_frame (int);
1360 static void s_mips_mask (int reg_type);
1361 static void s_mips_stab (int);
1362 static void s_mips_weakext (int);
1363 static void s_mips_file (int);
1364 static void s_mips_loc (int);
1365 static bfd_boolean pic_need_relax (symbolS *, asection *);
1366 static int relaxed_branch_length (fragS *, asection *, int);
1367 static int validate_mips_insn (const struct mips_opcode *);
1368 static int validate_micromips_insn (const struct mips_opcode *);
1369 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1370 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1371
1372 /* Table and functions used to map between CPU/ISA names, and
1373 ISA levels, and CPU numbers. */
1374
1375 struct mips_cpu_info
1376 {
1377 const char *name; /* CPU or ISA name. */
1378 int flags; /* MIPS_CPU_* flags. */
1379 int ase; /* Set of ASEs implemented by the CPU. */
1380 int isa; /* ISA level. */
1381 int cpu; /* CPU number (default CPU if ISA). */
1382 };
1383
1384 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1385
1386 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1387 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1388 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1389 \f
1390 /* Command-line options. */
1391 const char *md_shortopts = "O::g::G:";
1392
1393 enum options
1394 {
1395 OPTION_MARCH = OPTION_MD_BASE,
1396 OPTION_MTUNE,
1397 OPTION_MIPS1,
1398 OPTION_MIPS2,
1399 OPTION_MIPS3,
1400 OPTION_MIPS4,
1401 OPTION_MIPS5,
1402 OPTION_MIPS32,
1403 OPTION_MIPS64,
1404 OPTION_MIPS32R2,
1405 OPTION_MIPS64R2,
1406 OPTION_MIPS16,
1407 OPTION_NO_MIPS16,
1408 OPTION_MIPS3D,
1409 OPTION_NO_MIPS3D,
1410 OPTION_MDMX,
1411 OPTION_NO_MDMX,
1412 OPTION_DSP,
1413 OPTION_NO_DSP,
1414 OPTION_MT,
1415 OPTION_NO_MT,
1416 OPTION_VIRT,
1417 OPTION_NO_VIRT,
1418 OPTION_SMARTMIPS,
1419 OPTION_NO_SMARTMIPS,
1420 OPTION_DSPR2,
1421 OPTION_NO_DSPR2,
1422 OPTION_EVA,
1423 OPTION_NO_EVA,
1424 OPTION_MICROMIPS,
1425 OPTION_NO_MICROMIPS,
1426 OPTION_MCU,
1427 OPTION_NO_MCU,
1428 OPTION_COMPAT_ARCH_BASE,
1429 OPTION_M4650,
1430 OPTION_NO_M4650,
1431 OPTION_M4010,
1432 OPTION_NO_M4010,
1433 OPTION_M4100,
1434 OPTION_NO_M4100,
1435 OPTION_M3900,
1436 OPTION_NO_M3900,
1437 OPTION_M7000_HILO_FIX,
1438 OPTION_MNO_7000_HILO_FIX,
1439 OPTION_FIX_24K,
1440 OPTION_NO_FIX_24K,
1441 OPTION_FIX_LOONGSON2F_JUMP,
1442 OPTION_NO_FIX_LOONGSON2F_JUMP,
1443 OPTION_FIX_LOONGSON2F_NOP,
1444 OPTION_NO_FIX_LOONGSON2F_NOP,
1445 OPTION_FIX_VR4120,
1446 OPTION_NO_FIX_VR4120,
1447 OPTION_FIX_VR4130,
1448 OPTION_NO_FIX_VR4130,
1449 OPTION_FIX_CN63XXP1,
1450 OPTION_NO_FIX_CN63XXP1,
1451 OPTION_TRAP,
1452 OPTION_BREAK,
1453 OPTION_EB,
1454 OPTION_EL,
1455 OPTION_FP32,
1456 OPTION_GP32,
1457 OPTION_CONSTRUCT_FLOATS,
1458 OPTION_NO_CONSTRUCT_FLOATS,
1459 OPTION_FP64,
1460 OPTION_GP64,
1461 OPTION_RELAX_BRANCH,
1462 OPTION_NO_RELAX_BRANCH,
1463 OPTION_MSHARED,
1464 OPTION_MNO_SHARED,
1465 OPTION_MSYM32,
1466 OPTION_MNO_SYM32,
1467 OPTION_SOFT_FLOAT,
1468 OPTION_HARD_FLOAT,
1469 OPTION_SINGLE_FLOAT,
1470 OPTION_DOUBLE_FLOAT,
1471 OPTION_32,
1472 #ifdef OBJ_ELF
1473 OPTION_CALL_SHARED,
1474 OPTION_CALL_NONPIC,
1475 OPTION_NON_SHARED,
1476 OPTION_XGOT,
1477 OPTION_MABI,
1478 OPTION_N32,
1479 OPTION_64,
1480 OPTION_MDEBUG,
1481 OPTION_NO_MDEBUG,
1482 OPTION_PDR,
1483 OPTION_NO_PDR,
1484 OPTION_MVXWORKS_PIC,
1485 #endif /* OBJ_ELF */
1486 OPTION_END_OF_ENUM
1487 };
1488
1489 struct option md_longopts[] =
1490 {
1491 /* Options which specify architecture. */
1492 {"march", required_argument, NULL, OPTION_MARCH},
1493 {"mtune", required_argument, NULL, OPTION_MTUNE},
1494 {"mips0", no_argument, NULL, OPTION_MIPS1},
1495 {"mips1", no_argument, NULL, OPTION_MIPS1},
1496 {"mips2", no_argument, NULL, OPTION_MIPS2},
1497 {"mips3", no_argument, NULL, OPTION_MIPS3},
1498 {"mips4", no_argument, NULL, OPTION_MIPS4},
1499 {"mips5", no_argument, NULL, OPTION_MIPS5},
1500 {"mips32", no_argument, NULL, OPTION_MIPS32},
1501 {"mips64", no_argument, NULL, OPTION_MIPS64},
1502 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1503 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1504
1505 /* Options which specify Application Specific Extensions (ASEs). */
1506 {"mips16", no_argument, NULL, OPTION_MIPS16},
1507 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1508 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1509 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1510 {"mdmx", no_argument, NULL, OPTION_MDMX},
1511 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1512 {"mdsp", no_argument, NULL, OPTION_DSP},
1513 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1514 {"mmt", no_argument, NULL, OPTION_MT},
1515 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1516 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1517 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1518 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1519 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1520 {"meva", no_argument, NULL, OPTION_EVA},
1521 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1522 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1523 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1524 {"mmcu", no_argument, NULL, OPTION_MCU},
1525 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1526 {"mvirt", no_argument, NULL, OPTION_VIRT},
1527 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1528
1529 /* Old-style architecture options. Don't add more of these. */
1530 {"m4650", no_argument, NULL, OPTION_M4650},
1531 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1532 {"m4010", no_argument, NULL, OPTION_M4010},
1533 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1534 {"m4100", no_argument, NULL, OPTION_M4100},
1535 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1536 {"m3900", no_argument, NULL, OPTION_M3900},
1537 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1538
1539 /* Options which enable bug fixes. */
1540 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1541 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1542 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1543 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1544 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1545 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1546 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1547 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1548 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1549 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1550 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1551 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1552 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1553 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1554 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1555
1556 /* Miscellaneous options. */
1557 {"trap", no_argument, NULL, OPTION_TRAP},
1558 {"no-break", no_argument, NULL, OPTION_TRAP},
1559 {"break", no_argument, NULL, OPTION_BREAK},
1560 {"no-trap", no_argument, NULL, OPTION_BREAK},
1561 {"EB", no_argument, NULL, OPTION_EB},
1562 {"EL", no_argument, NULL, OPTION_EL},
1563 {"mfp32", no_argument, NULL, OPTION_FP32},
1564 {"mgp32", no_argument, NULL, OPTION_GP32},
1565 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1566 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1567 {"mfp64", no_argument, NULL, OPTION_FP64},
1568 {"mgp64", no_argument, NULL, OPTION_GP64},
1569 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1570 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1571 {"mshared", no_argument, NULL, OPTION_MSHARED},
1572 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1573 {"msym32", no_argument, NULL, OPTION_MSYM32},
1574 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1575 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1576 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1577 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1578 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1579
1580 /* Strictly speaking this next option is ELF specific,
1581 but we allow it for other ports as well in order to
1582 make testing easier. */
1583 {"32", no_argument, NULL, OPTION_32},
1584
1585 /* ELF-specific options. */
1586 #ifdef OBJ_ELF
1587 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1588 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1589 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1590 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1591 {"xgot", no_argument, NULL, OPTION_XGOT},
1592 {"mabi", required_argument, NULL, OPTION_MABI},
1593 {"n32", no_argument, NULL, OPTION_N32},
1594 {"64", no_argument, NULL, OPTION_64},
1595 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1596 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1597 {"mpdr", no_argument, NULL, OPTION_PDR},
1598 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1599 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1600 #endif /* OBJ_ELF */
1601
1602 {NULL, no_argument, NULL, 0}
1603 };
1604 size_t md_longopts_size = sizeof (md_longopts);
1605 \f
1606 /* Pseudo-op table.
1607
1608 The following pseudo-ops from the Kane and Heinrich MIPS book
1609 should be defined here, but are currently unsupported: .alias,
1610 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1611
1612 The following pseudo-ops from the Kane and Heinrich MIPS book are
1613 specific to the type of debugging information being generated, and
1614 should be defined by the object format: .aent, .begin, .bend,
1615 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1616 .vreg.
1617
1618 The following pseudo-ops from the Kane and Heinrich MIPS book are
1619 not MIPS CPU specific, but are also not specific to the object file
1620 format. This file is probably the best place to define them, but
1621 they are not currently supported: .asm0, .endr, .lab, .struct. */
1622
1623 static const pseudo_typeS mips_pseudo_table[] =
1624 {
1625 /* MIPS specific pseudo-ops. */
1626 {"option", s_option, 0},
1627 {"set", s_mipsset, 0},
1628 {"rdata", s_change_sec, 'r'},
1629 {"sdata", s_change_sec, 's'},
1630 {"livereg", s_ignore, 0},
1631 {"abicalls", s_abicalls, 0},
1632 {"cpload", s_cpload, 0},
1633 {"cpsetup", s_cpsetup, 0},
1634 {"cplocal", s_cplocal, 0},
1635 {"cprestore", s_cprestore, 0},
1636 {"cpreturn", s_cpreturn, 0},
1637 {"dtprelword", s_dtprelword, 0},
1638 {"dtpreldword", s_dtpreldword, 0},
1639 {"tprelword", s_tprelword, 0},
1640 {"tpreldword", s_tpreldword, 0},
1641 {"gpvalue", s_gpvalue, 0},
1642 {"gpword", s_gpword, 0},
1643 {"gpdword", s_gpdword, 0},
1644 {"ehword", s_ehword, 0},
1645 {"cpadd", s_cpadd, 0},
1646 {"insn", s_insn, 0},
1647
1648 /* Relatively generic pseudo-ops that happen to be used on MIPS
1649 chips. */
1650 {"asciiz", stringer, 8 + 1},
1651 {"bss", s_change_sec, 'b'},
1652 {"err", s_err, 0},
1653 {"half", s_cons, 1},
1654 {"dword", s_cons, 3},
1655 {"weakext", s_mips_weakext, 0},
1656 {"origin", s_org, 0},
1657 {"repeat", s_rept, 0},
1658
1659 /* For MIPS this is non-standard, but we define it for consistency. */
1660 {"sbss", s_change_sec, 'B'},
1661
1662 /* These pseudo-ops are defined in read.c, but must be overridden
1663 here for one reason or another. */
1664 {"align", s_align, 0},
1665 {"byte", s_cons, 0},
1666 {"data", s_change_sec, 'd'},
1667 {"double", s_float_cons, 'd'},
1668 {"float", s_float_cons, 'f'},
1669 {"globl", s_mips_globl, 0},
1670 {"global", s_mips_globl, 0},
1671 {"hword", s_cons, 1},
1672 {"int", s_cons, 2},
1673 {"long", s_cons, 2},
1674 {"octa", s_cons, 4},
1675 {"quad", s_cons, 3},
1676 {"section", s_change_section, 0},
1677 {"short", s_cons, 1},
1678 {"single", s_float_cons, 'f'},
1679 {"stabd", s_mips_stab, 'd'},
1680 {"stabn", s_mips_stab, 'n'},
1681 {"stabs", s_mips_stab, 's'},
1682 {"text", s_change_sec, 't'},
1683 {"word", s_cons, 2},
1684
1685 { "extern", ecoff_directive_extern, 0},
1686
1687 { NULL, NULL, 0 },
1688 };
1689
1690 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1691 {
1692 /* These pseudo-ops should be defined by the object file format.
1693 However, a.out doesn't support them, so we have versions here. */
1694 {"aent", s_mips_ent, 1},
1695 {"bgnb", s_ignore, 0},
1696 {"end", s_mips_end, 0},
1697 {"endb", s_ignore, 0},
1698 {"ent", s_mips_ent, 0},
1699 {"file", s_mips_file, 0},
1700 {"fmask", s_mips_mask, 'F'},
1701 {"frame", s_mips_frame, 0},
1702 {"loc", s_mips_loc, 0},
1703 {"mask", s_mips_mask, 'R'},
1704 {"verstamp", s_ignore, 0},
1705 { NULL, NULL, 0 },
1706 };
1707
1708 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1709 purpose of the `.dc.a' internal pseudo-op. */
1710
1711 int
1712 mips_address_bytes (void)
1713 {
1714 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1715 }
1716
1717 extern void pop_insert (const pseudo_typeS *);
1718
1719 void
1720 mips_pop_insert (void)
1721 {
1722 pop_insert (mips_pseudo_table);
1723 if (! ECOFF_DEBUGGING)
1724 pop_insert (mips_nonecoff_pseudo_table);
1725 }
1726 \f
1727 /* Symbols labelling the current insn. */
1728
1729 struct insn_label_list
1730 {
1731 struct insn_label_list *next;
1732 symbolS *label;
1733 };
1734
1735 static struct insn_label_list *free_insn_labels;
1736 #define label_list tc_segment_info_data.labels
1737
1738 static void mips_clear_insn_labels (void);
1739 static void mips_mark_labels (void);
1740 static void mips_compressed_mark_labels (void);
1741
1742 static inline void
1743 mips_clear_insn_labels (void)
1744 {
1745 register struct insn_label_list **pl;
1746 segment_info_type *si;
1747
1748 if (now_seg)
1749 {
1750 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1751 ;
1752
1753 si = seg_info (now_seg);
1754 *pl = si->label_list;
1755 si->label_list = NULL;
1756 }
1757 }
1758
1759 /* Mark instruction labels in MIPS16/microMIPS mode. */
1760
1761 static inline void
1762 mips_mark_labels (void)
1763 {
1764 if (HAVE_CODE_COMPRESSION)
1765 mips_compressed_mark_labels ();
1766 }
1767 \f
1768 static char *expr_end;
1769
1770 /* Expressions which appear in instructions. These are set by
1771 mips_ip. */
1772
1773 static expressionS imm_expr;
1774 static expressionS imm2_expr;
1775 static expressionS offset_expr;
1776
1777 /* Relocs associated with imm_expr and offset_expr. */
1778
1779 static bfd_reloc_code_real_type imm_reloc[3]
1780 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1781 static bfd_reloc_code_real_type offset_reloc[3]
1782 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1783
1784 /* This is set to the resulting size of the instruction to be produced
1785 by mips16_ip if an explicit extension is used or by mips_ip if an
1786 explicit size is supplied. */
1787
1788 static unsigned int forced_insn_length;
1789
1790 /* True if we are assembling an instruction. All dot symbols defined during
1791 this time should be treated as code labels. */
1792
1793 static bfd_boolean mips_assembling_insn;
1794
1795 #ifdef OBJ_ELF
1796 /* The pdr segment for per procedure frame/regmask info. Not used for
1797 ECOFF debugging. */
1798
1799 static segT pdr_seg;
1800 #endif
1801
1802 /* The default target format to use. */
1803
1804 #if defined (TE_FreeBSD)
1805 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1806 #elif defined (TE_TMIPS)
1807 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1808 #else
1809 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1810 #endif
1811
1812 const char *
1813 mips_target_format (void)
1814 {
1815 switch (OUTPUT_FLAVOR)
1816 {
1817 case bfd_target_ecoff_flavour:
1818 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1819 case bfd_target_coff_flavour:
1820 return "pe-mips";
1821 case bfd_target_elf_flavour:
1822 #ifdef TE_VXWORKS
1823 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1824 return (target_big_endian
1825 ? "elf32-bigmips-vxworks"
1826 : "elf32-littlemips-vxworks");
1827 #endif
1828 return (target_big_endian
1829 ? (HAVE_64BIT_OBJECTS
1830 ? ELF_TARGET ("elf64-", "big")
1831 : (HAVE_NEWABI
1832 ? ELF_TARGET ("elf32-n", "big")
1833 : ELF_TARGET ("elf32-", "big")))
1834 : (HAVE_64BIT_OBJECTS
1835 ? ELF_TARGET ("elf64-", "little")
1836 : (HAVE_NEWABI
1837 ? ELF_TARGET ("elf32-n", "little")
1838 : ELF_TARGET ("elf32-", "little"))));
1839 default:
1840 abort ();
1841 return NULL;
1842 }
1843 }
1844
1845 /* Return the length of a microMIPS instruction in bytes. If bits of
1846 the mask beyond the low 16 are 0, then it is a 16-bit instruction.
1847 Otherwise assume a 32-bit instruction; 48-bit instructions (0x1f
1848 major opcode) will require further modifications to the opcode
1849 table. */
1850
1851 static inline unsigned int
1852 micromips_insn_length (const struct mips_opcode *mo)
1853 {
1854 return (mo->mask >> 16) == 0 ? 2 : 4;
1855 }
1856
1857 /* Return the length of MIPS16 instruction OPCODE. */
1858
1859 static inline unsigned int
1860 mips16_opcode_length (unsigned long opcode)
1861 {
1862 return (opcode >> 16) == 0 ? 2 : 4;
1863 }
1864
1865 /* Return the length of instruction INSN. */
1866
1867 static inline unsigned int
1868 insn_length (const struct mips_cl_insn *insn)
1869 {
1870 if (mips_opts.micromips)
1871 return micromips_insn_length (insn->insn_mo);
1872 else if (mips_opts.mips16)
1873 return mips16_opcode_length (insn->insn_opcode);
1874 else
1875 return 4;
1876 }
1877
1878 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1879
1880 static void
1881 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1882 {
1883 size_t i;
1884
1885 insn->insn_mo = mo;
1886 insn->insn_opcode = mo->match;
1887 insn->frag = NULL;
1888 insn->where = 0;
1889 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1890 insn->fixp[i] = NULL;
1891 insn->fixed_p = (mips_opts.noreorder > 0);
1892 insn->noreorder_p = (mips_opts.noreorder > 0);
1893 insn->mips16_absolute_jump_p = 0;
1894 insn->complete_p = 0;
1895 insn->cleared_p = 0;
1896 }
1897
1898 /* Record the current MIPS16/microMIPS mode in now_seg. */
1899
1900 static void
1901 mips_record_compressed_mode (void)
1902 {
1903 segment_info_type *si;
1904
1905 si = seg_info (now_seg);
1906 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
1907 si->tc_segment_info_data.mips16 = mips_opts.mips16;
1908 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
1909 si->tc_segment_info_data.micromips = mips_opts.micromips;
1910 }
1911
1912 /* Read a standard MIPS instruction from BUF. */
1913
1914 static unsigned long
1915 read_insn (char *buf)
1916 {
1917 if (target_big_endian)
1918 return bfd_getb32 ((bfd_byte *) buf);
1919 else
1920 return bfd_getl32 ((bfd_byte *) buf);
1921 }
1922
1923 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
1924 the next byte. */
1925
1926 static char *
1927 write_insn (char *buf, unsigned int insn)
1928 {
1929 md_number_to_chars (buf, insn, 4);
1930 return buf + 4;
1931 }
1932
1933 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
1934 has length LENGTH. */
1935
1936 static unsigned long
1937 read_compressed_insn (char *buf, unsigned int length)
1938 {
1939 unsigned long insn;
1940 unsigned int i;
1941
1942 insn = 0;
1943 for (i = 0; i < length; i += 2)
1944 {
1945 insn <<= 16;
1946 if (target_big_endian)
1947 insn |= bfd_getb16 ((char *) buf);
1948 else
1949 insn |= bfd_getl16 ((char *) buf);
1950 buf += 2;
1951 }
1952 return insn;
1953 }
1954
1955 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
1956 instruction is LENGTH bytes long. Return a pointer to the next byte. */
1957
1958 static char *
1959 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
1960 {
1961 unsigned int i;
1962
1963 for (i = 0; i < length; i += 2)
1964 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
1965 return buf + length;
1966 }
1967
1968 /* Install INSN at the location specified by its "frag" and "where" fields. */
1969
1970 static void
1971 install_insn (const struct mips_cl_insn *insn)
1972 {
1973 char *f = insn->frag->fr_literal + insn->where;
1974 if (HAVE_CODE_COMPRESSION)
1975 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
1976 else
1977 write_insn (f, insn->insn_opcode);
1978 mips_record_compressed_mode ();
1979 }
1980
1981 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
1982 and install the opcode in the new location. */
1983
1984 static void
1985 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
1986 {
1987 size_t i;
1988
1989 insn->frag = frag;
1990 insn->where = where;
1991 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1992 if (insn->fixp[i] != NULL)
1993 {
1994 insn->fixp[i]->fx_frag = frag;
1995 insn->fixp[i]->fx_where = where;
1996 }
1997 install_insn (insn);
1998 }
1999
2000 /* Add INSN to the end of the output. */
2001
2002 static void
2003 add_fixed_insn (struct mips_cl_insn *insn)
2004 {
2005 char *f = frag_more (insn_length (insn));
2006 move_insn (insn, frag_now, f - frag_now->fr_literal);
2007 }
2008
2009 /* Start a variant frag and move INSN to the start of the variant part,
2010 marking it as fixed. The other arguments are as for frag_var. */
2011
2012 static void
2013 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2014 relax_substateT subtype, symbolS *symbol, offsetT offset)
2015 {
2016 frag_grow (max_chars);
2017 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2018 insn->fixed_p = 1;
2019 frag_var (rs_machine_dependent, max_chars, var,
2020 subtype, symbol, offset, NULL);
2021 }
2022
2023 /* Insert N copies of INSN into the history buffer, starting at
2024 position FIRST. Neither FIRST nor N need to be clipped. */
2025
2026 static void
2027 insert_into_history (unsigned int first, unsigned int n,
2028 const struct mips_cl_insn *insn)
2029 {
2030 if (mips_relax.sequence != 2)
2031 {
2032 unsigned int i;
2033
2034 for (i = ARRAY_SIZE (history); i-- > first;)
2035 if (i >= first + n)
2036 history[i] = history[i - n];
2037 else
2038 history[i] = *insn;
2039 }
2040 }
2041
2042 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2043 the idea is to make it obvious at a glance that each errata is
2044 included. */
2045
2046 static void
2047 init_vr4120_conflicts (void)
2048 {
2049 #define CONFLICT(FIRST, SECOND) \
2050 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2051
2052 /* Errata 21 - [D]DIV[U] after [D]MACC */
2053 CONFLICT (MACC, DIV);
2054 CONFLICT (DMACC, DIV);
2055
2056 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2057 CONFLICT (DMULT, DMULT);
2058 CONFLICT (DMULT, DMACC);
2059 CONFLICT (DMACC, DMULT);
2060 CONFLICT (DMACC, DMACC);
2061
2062 /* Errata 24 - MT{LO,HI} after [D]MACC */
2063 CONFLICT (MACC, MTHILO);
2064 CONFLICT (DMACC, MTHILO);
2065
2066 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2067 instruction is executed immediately after a MACC or DMACC
2068 instruction, the result of [either instruction] is incorrect." */
2069 CONFLICT (MACC, MULT);
2070 CONFLICT (MACC, DMULT);
2071 CONFLICT (DMACC, MULT);
2072 CONFLICT (DMACC, DMULT);
2073
2074 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2075 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2076 DDIV or DDIVU instruction, the result of the MACC or
2077 DMACC instruction is incorrect.". */
2078 CONFLICT (DMULT, MACC);
2079 CONFLICT (DMULT, DMACC);
2080 CONFLICT (DIV, MACC);
2081 CONFLICT (DIV, DMACC);
2082
2083 #undef CONFLICT
2084 }
2085
2086 struct regname {
2087 const char *name;
2088 unsigned int num;
2089 };
2090
2091 #define RTYPE_MASK 0x1ff00
2092 #define RTYPE_NUM 0x00100
2093 #define RTYPE_FPU 0x00200
2094 #define RTYPE_FCC 0x00400
2095 #define RTYPE_VEC 0x00800
2096 #define RTYPE_GP 0x01000
2097 #define RTYPE_CP0 0x02000
2098 #define RTYPE_PC 0x04000
2099 #define RTYPE_ACC 0x08000
2100 #define RTYPE_CCC 0x10000
2101 #define RNUM_MASK 0x000ff
2102 #define RWARN 0x80000
2103
2104 #define GENERIC_REGISTER_NUMBERS \
2105 {"$0", RTYPE_NUM | 0}, \
2106 {"$1", RTYPE_NUM | 1}, \
2107 {"$2", RTYPE_NUM | 2}, \
2108 {"$3", RTYPE_NUM | 3}, \
2109 {"$4", RTYPE_NUM | 4}, \
2110 {"$5", RTYPE_NUM | 5}, \
2111 {"$6", RTYPE_NUM | 6}, \
2112 {"$7", RTYPE_NUM | 7}, \
2113 {"$8", RTYPE_NUM | 8}, \
2114 {"$9", RTYPE_NUM | 9}, \
2115 {"$10", RTYPE_NUM | 10}, \
2116 {"$11", RTYPE_NUM | 11}, \
2117 {"$12", RTYPE_NUM | 12}, \
2118 {"$13", RTYPE_NUM | 13}, \
2119 {"$14", RTYPE_NUM | 14}, \
2120 {"$15", RTYPE_NUM | 15}, \
2121 {"$16", RTYPE_NUM | 16}, \
2122 {"$17", RTYPE_NUM | 17}, \
2123 {"$18", RTYPE_NUM | 18}, \
2124 {"$19", RTYPE_NUM | 19}, \
2125 {"$20", RTYPE_NUM | 20}, \
2126 {"$21", RTYPE_NUM | 21}, \
2127 {"$22", RTYPE_NUM | 22}, \
2128 {"$23", RTYPE_NUM | 23}, \
2129 {"$24", RTYPE_NUM | 24}, \
2130 {"$25", RTYPE_NUM | 25}, \
2131 {"$26", RTYPE_NUM | 26}, \
2132 {"$27", RTYPE_NUM | 27}, \
2133 {"$28", RTYPE_NUM | 28}, \
2134 {"$29", RTYPE_NUM | 29}, \
2135 {"$30", RTYPE_NUM | 30}, \
2136 {"$31", RTYPE_NUM | 31}
2137
2138 #define FPU_REGISTER_NAMES \
2139 {"$f0", RTYPE_FPU | 0}, \
2140 {"$f1", RTYPE_FPU | 1}, \
2141 {"$f2", RTYPE_FPU | 2}, \
2142 {"$f3", RTYPE_FPU | 3}, \
2143 {"$f4", RTYPE_FPU | 4}, \
2144 {"$f5", RTYPE_FPU | 5}, \
2145 {"$f6", RTYPE_FPU | 6}, \
2146 {"$f7", RTYPE_FPU | 7}, \
2147 {"$f8", RTYPE_FPU | 8}, \
2148 {"$f9", RTYPE_FPU | 9}, \
2149 {"$f10", RTYPE_FPU | 10}, \
2150 {"$f11", RTYPE_FPU | 11}, \
2151 {"$f12", RTYPE_FPU | 12}, \
2152 {"$f13", RTYPE_FPU | 13}, \
2153 {"$f14", RTYPE_FPU | 14}, \
2154 {"$f15", RTYPE_FPU | 15}, \
2155 {"$f16", RTYPE_FPU | 16}, \
2156 {"$f17", RTYPE_FPU | 17}, \
2157 {"$f18", RTYPE_FPU | 18}, \
2158 {"$f19", RTYPE_FPU | 19}, \
2159 {"$f20", RTYPE_FPU | 20}, \
2160 {"$f21", RTYPE_FPU | 21}, \
2161 {"$f22", RTYPE_FPU | 22}, \
2162 {"$f23", RTYPE_FPU | 23}, \
2163 {"$f24", RTYPE_FPU | 24}, \
2164 {"$f25", RTYPE_FPU | 25}, \
2165 {"$f26", RTYPE_FPU | 26}, \
2166 {"$f27", RTYPE_FPU | 27}, \
2167 {"$f28", RTYPE_FPU | 28}, \
2168 {"$f29", RTYPE_FPU | 29}, \
2169 {"$f30", RTYPE_FPU | 30}, \
2170 {"$f31", RTYPE_FPU | 31}
2171
2172 #define FPU_CONDITION_CODE_NAMES \
2173 {"$fcc0", RTYPE_FCC | 0}, \
2174 {"$fcc1", RTYPE_FCC | 1}, \
2175 {"$fcc2", RTYPE_FCC | 2}, \
2176 {"$fcc3", RTYPE_FCC | 3}, \
2177 {"$fcc4", RTYPE_FCC | 4}, \
2178 {"$fcc5", RTYPE_FCC | 5}, \
2179 {"$fcc6", RTYPE_FCC | 6}, \
2180 {"$fcc7", RTYPE_FCC | 7}
2181
2182 #define COPROC_CONDITION_CODE_NAMES \
2183 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2184 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2185 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2186 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2187 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2188 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2189 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2190 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2191
2192 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2193 {"$a4", RTYPE_GP | 8}, \
2194 {"$a5", RTYPE_GP | 9}, \
2195 {"$a6", RTYPE_GP | 10}, \
2196 {"$a7", RTYPE_GP | 11}, \
2197 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2198 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2199 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2200 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2201 {"$t0", RTYPE_GP | 12}, \
2202 {"$t1", RTYPE_GP | 13}, \
2203 {"$t2", RTYPE_GP | 14}, \
2204 {"$t3", RTYPE_GP | 15}
2205
2206 #define O32_SYMBOLIC_REGISTER_NAMES \
2207 {"$t0", RTYPE_GP | 8}, \
2208 {"$t1", RTYPE_GP | 9}, \
2209 {"$t2", RTYPE_GP | 10}, \
2210 {"$t3", RTYPE_GP | 11}, \
2211 {"$t4", RTYPE_GP | 12}, \
2212 {"$t5", RTYPE_GP | 13}, \
2213 {"$t6", RTYPE_GP | 14}, \
2214 {"$t7", RTYPE_GP | 15}, \
2215 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2216 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2217 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2218 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2219
2220 /* Remaining symbolic register names */
2221 #define SYMBOLIC_REGISTER_NAMES \
2222 {"$zero", RTYPE_GP | 0}, \
2223 {"$at", RTYPE_GP | 1}, \
2224 {"$AT", RTYPE_GP | 1}, \
2225 {"$v0", RTYPE_GP | 2}, \
2226 {"$v1", RTYPE_GP | 3}, \
2227 {"$a0", RTYPE_GP | 4}, \
2228 {"$a1", RTYPE_GP | 5}, \
2229 {"$a2", RTYPE_GP | 6}, \
2230 {"$a3", RTYPE_GP | 7}, \
2231 {"$s0", RTYPE_GP | 16}, \
2232 {"$s1", RTYPE_GP | 17}, \
2233 {"$s2", RTYPE_GP | 18}, \
2234 {"$s3", RTYPE_GP | 19}, \
2235 {"$s4", RTYPE_GP | 20}, \
2236 {"$s5", RTYPE_GP | 21}, \
2237 {"$s6", RTYPE_GP | 22}, \
2238 {"$s7", RTYPE_GP | 23}, \
2239 {"$t8", RTYPE_GP | 24}, \
2240 {"$t9", RTYPE_GP | 25}, \
2241 {"$k0", RTYPE_GP | 26}, \
2242 {"$kt0", RTYPE_GP | 26}, \
2243 {"$k1", RTYPE_GP | 27}, \
2244 {"$kt1", RTYPE_GP | 27}, \
2245 {"$gp", RTYPE_GP | 28}, \
2246 {"$sp", RTYPE_GP | 29}, \
2247 {"$s8", RTYPE_GP | 30}, \
2248 {"$fp", RTYPE_GP | 30}, \
2249 {"$ra", RTYPE_GP | 31}
2250
2251 #define MIPS16_SPECIAL_REGISTER_NAMES \
2252 {"$pc", RTYPE_PC | 0}
2253
2254 #define MDMX_VECTOR_REGISTER_NAMES \
2255 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2256 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2257 {"$v2", RTYPE_VEC | 2}, \
2258 {"$v3", RTYPE_VEC | 3}, \
2259 {"$v4", RTYPE_VEC | 4}, \
2260 {"$v5", RTYPE_VEC | 5}, \
2261 {"$v6", RTYPE_VEC | 6}, \
2262 {"$v7", RTYPE_VEC | 7}, \
2263 {"$v8", RTYPE_VEC | 8}, \
2264 {"$v9", RTYPE_VEC | 9}, \
2265 {"$v10", RTYPE_VEC | 10}, \
2266 {"$v11", RTYPE_VEC | 11}, \
2267 {"$v12", RTYPE_VEC | 12}, \
2268 {"$v13", RTYPE_VEC | 13}, \
2269 {"$v14", RTYPE_VEC | 14}, \
2270 {"$v15", RTYPE_VEC | 15}, \
2271 {"$v16", RTYPE_VEC | 16}, \
2272 {"$v17", RTYPE_VEC | 17}, \
2273 {"$v18", RTYPE_VEC | 18}, \
2274 {"$v19", RTYPE_VEC | 19}, \
2275 {"$v20", RTYPE_VEC | 20}, \
2276 {"$v21", RTYPE_VEC | 21}, \
2277 {"$v22", RTYPE_VEC | 22}, \
2278 {"$v23", RTYPE_VEC | 23}, \
2279 {"$v24", RTYPE_VEC | 24}, \
2280 {"$v25", RTYPE_VEC | 25}, \
2281 {"$v26", RTYPE_VEC | 26}, \
2282 {"$v27", RTYPE_VEC | 27}, \
2283 {"$v28", RTYPE_VEC | 28}, \
2284 {"$v29", RTYPE_VEC | 29}, \
2285 {"$v30", RTYPE_VEC | 30}, \
2286 {"$v31", RTYPE_VEC | 31}
2287
2288 #define MIPS_DSP_ACCUMULATOR_NAMES \
2289 {"$ac0", RTYPE_ACC | 0}, \
2290 {"$ac1", RTYPE_ACC | 1}, \
2291 {"$ac2", RTYPE_ACC | 2}, \
2292 {"$ac3", RTYPE_ACC | 3}
2293
2294 static const struct regname reg_names[] = {
2295 GENERIC_REGISTER_NUMBERS,
2296 FPU_REGISTER_NAMES,
2297 FPU_CONDITION_CODE_NAMES,
2298 COPROC_CONDITION_CODE_NAMES,
2299
2300 /* The $txx registers depends on the abi,
2301 these will be added later into the symbol table from
2302 one of the tables below once mips_abi is set after
2303 parsing of arguments from the command line. */
2304 SYMBOLIC_REGISTER_NAMES,
2305
2306 MIPS16_SPECIAL_REGISTER_NAMES,
2307 MDMX_VECTOR_REGISTER_NAMES,
2308 MIPS_DSP_ACCUMULATOR_NAMES,
2309 {0, 0}
2310 };
2311
2312 static const struct regname reg_names_o32[] = {
2313 O32_SYMBOLIC_REGISTER_NAMES,
2314 {0, 0}
2315 };
2316
2317 static const struct regname reg_names_n32n64[] = {
2318 N32N64_SYMBOLIC_REGISTER_NAMES,
2319 {0, 0}
2320 };
2321
2322 /* Check if S points at a valid register specifier according to TYPES.
2323 If so, then return 1, advance S to consume the specifier and store
2324 the register's number in REGNOP, otherwise return 0. */
2325
2326 static int
2327 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2328 {
2329 symbolS *symbolP;
2330 char *e;
2331 char save_c;
2332 int reg = -1;
2333
2334 /* Find end of name. */
2335 e = *s;
2336 if (is_name_beginner (*e))
2337 ++e;
2338 while (is_part_of_name (*e))
2339 ++e;
2340
2341 /* Terminate name. */
2342 save_c = *e;
2343 *e = '\0';
2344
2345 /* Look for a register symbol. */
2346 if ((symbolP = symbol_find (*s)) && S_GET_SEGMENT (symbolP) == reg_section)
2347 {
2348 int r = S_GET_VALUE (symbolP);
2349 if (r & types)
2350 reg = r & RNUM_MASK;
2351 else if ((types & RTYPE_VEC) && (r & ~1) == (RTYPE_GP | 2))
2352 /* Convert GP reg $v0/1 to MDMX reg $v0/1! */
2353 reg = (r & RNUM_MASK) - 2;
2354 }
2355 /* Else see if this is a register defined in an itbl entry. */
2356 else if ((types & RTYPE_GP) && itbl_have_entries)
2357 {
2358 char *n = *s;
2359 unsigned long r;
2360
2361 if (*n == '$')
2362 ++n;
2363 if (itbl_get_reg_val (n, &r))
2364 reg = r & RNUM_MASK;
2365 }
2366
2367 /* Advance to next token if a register was recognised. */
2368 if (reg >= 0)
2369 *s = e;
2370 else if (types & RWARN)
2371 as_warn (_("Unrecognized register name `%s'"), *s);
2372
2373 *e = save_c;
2374 if (regnop)
2375 *regnop = reg;
2376 return reg >= 0;
2377 }
2378
2379 /* Check if S points at a valid register list according to TYPES.
2380 If so, then return 1, advance S to consume the list and store
2381 the registers present on the list as a bitmask of ones in REGLISTP,
2382 otherwise return 0. A valid list comprises a comma-separated
2383 enumeration of valid single registers and/or dash-separated
2384 contiguous register ranges as determined by their numbers.
2385
2386 As a special exception if one of s0-s7 registers is specified as
2387 the range's lower delimiter and s8 (fp) is its upper one, then no
2388 registers whose numbers place them between s7 and s8 (i.e. $24-$29)
2389 are selected; they have to be listed separately if needed. */
2390
2391 static int
2392 reglist_lookup (char **s, unsigned int types, unsigned int *reglistp)
2393 {
2394 unsigned int reglist = 0;
2395 unsigned int lastregno;
2396 bfd_boolean ok = TRUE;
2397 unsigned int regmask;
2398 char *s_endlist = *s;
2399 char *s_reset = *s;
2400 unsigned int regno;
2401
2402 while (reg_lookup (s, types, &regno))
2403 {
2404 lastregno = regno;
2405 if (**s == '-')
2406 {
2407 (*s)++;
2408 ok = reg_lookup (s, types, &lastregno);
2409 if (ok && lastregno < regno)
2410 ok = FALSE;
2411 if (!ok)
2412 break;
2413 }
2414
2415 if (lastregno == FP && regno >= S0 && regno <= S7)
2416 {
2417 lastregno = S7;
2418 reglist |= 1 << FP;
2419 }
2420 regmask = 1 << lastregno;
2421 regmask = (regmask << 1) - 1;
2422 regmask ^= (1 << regno) - 1;
2423 reglist |= regmask;
2424
2425 s_endlist = *s;
2426 if (**s != ',')
2427 break;
2428 (*s)++;
2429 }
2430
2431 if (ok)
2432 *s = s_endlist;
2433 else
2434 *s = s_reset;
2435 if (reglistp)
2436 *reglistp = reglist;
2437 return ok && reglist != 0;
2438 }
2439
2440 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
2441 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
2442
2443 static bfd_boolean
2444 is_opcode_valid (const struct mips_opcode *mo)
2445 {
2446 int isa = mips_opts.isa;
2447 int ase = mips_opts.ase;
2448 int fp_s, fp_d;
2449
2450 if ((ase & ASE_DSP) && ISA_SUPPORTS_DSP64_ASE)
2451 ase |= ASE_DSP64;
2452 if ((ase & ASE_VIRT) && ISA_SUPPORTS_VIRT64_ASE)
2453 ase |= ASE_VIRT64;
2454
2455 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
2456 return FALSE;
2457
2458 /* Check whether the instruction or macro requires single-precision or
2459 double-precision floating-point support. Note that this information is
2460 stored differently in the opcode table for insns and macros. */
2461 if (mo->pinfo == INSN_MACRO)
2462 {
2463 fp_s = mo->pinfo2 & INSN2_M_FP_S;
2464 fp_d = mo->pinfo2 & INSN2_M_FP_D;
2465 }
2466 else
2467 {
2468 fp_s = mo->pinfo & FP_S;
2469 fp_d = mo->pinfo & FP_D;
2470 }
2471
2472 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
2473 return FALSE;
2474
2475 if (fp_s && mips_opts.soft_float)
2476 return FALSE;
2477
2478 return TRUE;
2479 }
2480
2481 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
2482 selected ISA and architecture. */
2483
2484 static bfd_boolean
2485 is_opcode_valid_16 (const struct mips_opcode *mo)
2486 {
2487 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
2488 }
2489
2490 /* Return TRUE if the size of the microMIPS opcode MO matches one
2491 explicitly requested. Always TRUE in the standard MIPS mode. */
2492
2493 static bfd_boolean
2494 is_size_valid (const struct mips_opcode *mo)
2495 {
2496 if (!mips_opts.micromips)
2497 return TRUE;
2498
2499 if (!forced_insn_length)
2500 return TRUE;
2501 if (mo->pinfo == INSN_MACRO)
2502 return FALSE;
2503 return forced_insn_length == micromips_insn_length (mo);
2504 }
2505
2506 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
2507 of the preceding instruction. Always TRUE in the standard MIPS mode.
2508
2509 We don't accept macros in 16-bit delay slots to avoid a case where
2510 a macro expansion fails because it relies on a preceding 32-bit real
2511 instruction to have matched and does not handle the operands correctly.
2512 The only macros that may expand to 16-bit instructions are JAL that
2513 cannot be placed in a delay slot anyway, and corner cases of BALIGN
2514 and BGT (that likewise cannot be placed in a delay slot) that decay to
2515 a NOP. In all these cases the macros precede any corresponding real
2516 instruction definitions in the opcode table, so they will match in the
2517 second pass where the size of the delay slot is ignored and therefore
2518 produce correct code. */
2519
2520 static bfd_boolean
2521 is_delay_slot_valid (const struct mips_opcode *mo)
2522 {
2523 if (!mips_opts.micromips)
2524 return TRUE;
2525
2526 if (mo->pinfo == INSN_MACRO)
2527 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
2528 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
2529 && micromips_insn_length (mo) != 4)
2530 return FALSE;
2531 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
2532 && micromips_insn_length (mo) != 2)
2533 return FALSE;
2534
2535 return TRUE;
2536 }
2537
2538 /* This function is called once, at assembler startup time. It should set up
2539 all the tables, etc. that the MD part of the assembler will need. */
2540
2541 void
2542 md_begin (void)
2543 {
2544 const char *retval = NULL;
2545 int i = 0;
2546 int broken = 0;
2547
2548 if (mips_pic != NO_PIC)
2549 {
2550 if (g_switch_seen && g_switch_value != 0)
2551 as_bad (_("-G may not be used in position-independent code"));
2552 g_switch_value = 0;
2553 }
2554
2555 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
2556 as_warn (_("Could not set architecture and machine"));
2557
2558 op_hash = hash_new ();
2559
2560 for (i = 0; i < NUMOPCODES;)
2561 {
2562 const char *name = mips_opcodes[i].name;
2563
2564 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
2565 if (retval != NULL)
2566 {
2567 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
2568 mips_opcodes[i].name, retval);
2569 /* Probably a memory allocation problem? Give up now. */
2570 as_fatal (_("Broken assembler. No assembly attempted."));
2571 }
2572 do
2573 {
2574 if (mips_opcodes[i].pinfo != INSN_MACRO)
2575 {
2576 if (!validate_mips_insn (&mips_opcodes[i]))
2577 broken = 1;
2578 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
2579 {
2580 create_insn (&nop_insn, mips_opcodes + i);
2581 if (mips_fix_loongson2f_nop)
2582 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
2583 nop_insn.fixed_p = 1;
2584 }
2585 }
2586 ++i;
2587 }
2588 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
2589 }
2590
2591 mips16_op_hash = hash_new ();
2592
2593 i = 0;
2594 while (i < bfd_mips16_num_opcodes)
2595 {
2596 const char *name = mips16_opcodes[i].name;
2597
2598 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
2599 if (retval != NULL)
2600 as_fatal (_("internal: can't hash `%s': %s"),
2601 mips16_opcodes[i].name, retval);
2602 do
2603 {
2604 if (mips16_opcodes[i].pinfo != INSN_MACRO
2605 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
2606 != mips16_opcodes[i].match))
2607 {
2608 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
2609 mips16_opcodes[i].name, mips16_opcodes[i].args);
2610 broken = 1;
2611 }
2612 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
2613 {
2614 create_insn (&mips16_nop_insn, mips16_opcodes + i);
2615 mips16_nop_insn.fixed_p = 1;
2616 }
2617 ++i;
2618 }
2619 while (i < bfd_mips16_num_opcodes
2620 && strcmp (mips16_opcodes[i].name, name) == 0);
2621 }
2622
2623 micromips_op_hash = hash_new ();
2624
2625 i = 0;
2626 while (i < bfd_micromips_num_opcodes)
2627 {
2628 const char *name = micromips_opcodes[i].name;
2629
2630 retval = hash_insert (micromips_op_hash, name,
2631 (void *) &micromips_opcodes[i]);
2632 if (retval != NULL)
2633 as_fatal (_("internal: can't hash `%s': %s"),
2634 micromips_opcodes[i].name, retval);
2635 do
2636 if (micromips_opcodes[i].pinfo != INSN_MACRO)
2637 {
2638 struct mips_cl_insn *micromips_nop_insn;
2639
2640 if (!validate_micromips_insn (&micromips_opcodes[i]))
2641 broken = 1;
2642
2643 if (micromips_insn_length (micromips_opcodes + i) == 2)
2644 micromips_nop_insn = &micromips_nop16_insn;
2645 else if (micromips_insn_length (micromips_opcodes + i) == 4)
2646 micromips_nop_insn = &micromips_nop32_insn;
2647 else
2648 continue;
2649
2650 if (micromips_nop_insn->insn_mo == NULL
2651 && strcmp (name, "nop") == 0)
2652 {
2653 create_insn (micromips_nop_insn, micromips_opcodes + i);
2654 micromips_nop_insn->fixed_p = 1;
2655 }
2656 }
2657 while (++i < bfd_micromips_num_opcodes
2658 && strcmp (micromips_opcodes[i].name, name) == 0);
2659 }
2660
2661 if (broken)
2662 as_fatal (_("Broken assembler. No assembly attempted."));
2663
2664 /* We add all the general register names to the symbol table. This
2665 helps us detect invalid uses of them. */
2666 for (i = 0; reg_names[i].name; i++)
2667 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
2668 reg_names[i].num, /* & RNUM_MASK, */
2669 &zero_address_frag));
2670 if (HAVE_NEWABI)
2671 for (i = 0; reg_names_n32n64[i].name; i++)
2672 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
2673 reg_names_n32n64[i].num, /* & RNUM_MASK, */
2674 &zero_address_frag));
2675 else
2676 for (i = 0; reg_names_o32[i].name; i++)
2677 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
2678 reg_names_o32[i].num, /* & RNUM_MASK, */
2679 &zero_address_frag));
2680
2681 mips_no_prev_insn ();
2682
2683 mips_gprmask = 0;
2684 mips_cprmask[0] = 0;
2685 mips_cprmask[1] = 0;
2686 mips_cprmask[2] = 0;
2687 mips_cprmask[3] = 0;
2688
2689 /* set the default alignment for the text section (2**2) */
2690 record_alignment (text_section, 2);
2691
2692 bfd_set_gp_size (stdoutput, g_switch_value);
2693
2694 #ifdef OBJ_ELF
2695 if (IS_ELF)
2696 {
2697 /* On a native system other than VxWorks, sections must be aligned
2698 to 16 byte boundaries. When configured for an embedded ELF
2699 target, we don't bother. */
2700 if (strncmp (TARGET_OS, "elf", 3) != 0
2701 && strncmp (TARGET_OS, "vxworks", 7) != 0)
2702 {
2703 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
2704 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
2705 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
2706 }
2707
2708 /* Create a .reginfo section for register masks and a .mdebug
2709 section for debugging information. */
2710 {
2711 segT seg;
2712 subsegT subseg;
2713 flagword flags;
2714 segT sec;
2715
2716 seg = now_seg;
2717 subseg = now_subseg;
2718
2719 /* The ABI says this section should be loaded so that the
2720 running program can access it. However, we don't load it
2721 if we are configured for an embedded target */
2722 flags = SEC_READONLY | SEC_DATA;
2723 if (strncmp (TARGET_OS, "elf", 3) != 0)
2724 flags |= SEC_ALLOC | SEC_LOAD;
2725
2726 if (mips_abi != N64_ABI)
2727 {
2728 sec = subseg_new (".reginfo", (subsegT) 0);
2729
2730 bfd_set_section_flags (stdoutput, sec, flags);
2731 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
2732
2733 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
2734 }
2735 else
2736 {
2737 /* The 64-bit ABI uses a .MIPS.options section rather than
2738 .reginfo section. */
2739 sec = subseg_new (".MIPS.options", (subsegT) 0);
2740 bfd_set_section_flags (stdoutput, sec, flags);
2741 bfd_set_section_alignment (stdoutput, sec, 3);
2742
2743 /* Set up the option header. */
2744 {
2745 Elf_Internal_Options opthdr;
2746 char *f;
2747
2748 opthdr.kind = ODK_REGINFO;
2749 opthdr.size = (sizeof (Elf_External_Options)
2750 + sizeof (Elf64_External_RegInfo));
2751 opthdr.section = 0;
2752 opthdr.info = 0;
2753 f = frag_more (sizeof (Elf_External_Options));
2754 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
2755 (Elf_External_Options *) f);
2756
2757 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
2758 }
2759 }
2760
2761 if (ECOFF_DEBUGGING)
2762 {
2763 sec = subseg_new (".mdebug", (subsegT) 0);
2764 (void) bfd_set_section_flags (stdoutput, sec,
2765 SEC_HAS_CONTENTS | SEC_READONLY);
2766 (void) bfd_set_section_alignment (stdoutput, sec, 2);
2767 }
2768 else if (mips_flag_pdr)
2769 {
2770 pdr_seg = subseg_new (".pdr", (subsegT) 0);
2771 (void) bfd_set_section_flags (stdoutput, pdr_seg,
2772 SEC_READONLY | SEC_RELOC
2773 | SEC_DEBUGGING);
2774 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
2775 }
2776
2777 subseg_set (seg, subseg);
2778 }
2779 }
2780 #endif /* OBJ_ELF */
2781
2782 if (! ECOFF_DEBUGGING)
2783 md_obj_begin ();
2784
2785 if (mips_fix_vr4120)
2786 init_vr4120_conflicts ();
2787 }
2788
2789 void
2790 md_mips_end (void)
2791 {
2792 mips_emit_delays ();
2793 if (! ECOFF_DEBUGGING)
2794 md_obj_end ();
2795 }
2796
2797 void
2798 md_assemble (char *str)
2799 {
2800 struct mips_cl_insn insn;
2801 bfd_reloc_code_real_type unused_reloc[3]
2802 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2803
2804 imm_expr.X_op = O_absent;
2805 imm2_expr.X_op = O_absent;
2806 offset_expr.X_op = O_absent;
2807 imm_reloc[0] = BFD_RELOC_UNUSED;
2808 imm_reloc[1] = BFD_RELOC_UNUSED;
2809 imm_reloc[2] = BFD_RELOC_UNUSED;
2810 offset_reloc[0] = BFD_RELOC_UNUSED;
2811 offset_reloc[1] = BFD_RELOC_UNUSED;
2812 offset_reloc[2] = BFD_RELOC_UNUSED;
2813
2814 mips_mark_labels ();
2815 mips_assembling_insn = TRUE;
2816
2817 if (mips_opts.mips16)
2818 mips16_ip (str, &insn);
2819 else
2820 {
2821 mips_ip (str, &insn);
2822 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
2823 str, insn.insn_opcode));
2824 }
2825
2826 if (insn_error)
2827 as_bad ("%s `%s'", insn_error, str);
2828 else if (insn.insn_mo->pinfo == INSN_MACRO)
2829 {
2830 macro_start ();
2831 if (mips_opts.mips16)
2832 mips16_macro (&insn);
2833 else
2834 macro (&insn);
2835 macro_end ();
2836 }
2837 else
2838 {
2839 if (imm_expr.X_op != O_absent)
2840 append_insn (&insn, &imm_expr, imm_reloc, FALSE);
2841 else if (offset_expr.X_op != O_absent)
2842 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
2843 else
2844 append_insn (&insn, NULL, unused_reloc, FALSE);
2845 }
2846
2847 mips_assembling_insn = FALSE;
2848 }
2849
2850 /* Convenience functions for abstracting away the differences between
2851 MIPS16 and non-MIPS16 relocations. */
2852
2853 static inline bfd_boolean
2854 mips16_reloc_p (bfd_reloc_code_real_type reloc)
2855 {
2856 switch (reloc)
2857 {
2858 case BFD_RELOC_MIPS16_JMP:
2859 case BFD_RELOC_MIPS16_GPREL:
2860 case BFD_RELOC_MIPS16_GOT16:
2861 case BFD_RELOC_MIPS16_CALL16:
2862 case BFD_RELOC_MIPS16_HI16_S:
2863 case BFD_RELOC_MIPS16_HI16:
2864 case BFD_RELOC_MIPS16_LO16:
2865 return TRUE;
2866
2867 default:
2868 return FALSE;
2869 }
2870 }
2871
2872 static inline bfd_boolean
2873 micromips_reloc_p (bfd_reloc_code_real_type reloc)
2874 {
2875 switch (reloc)
2876 {
2877 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
2878 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
2879 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
2880 case BFD_RELOC_MICROMIPS_GPREL16:
2881 case BFD_RELOC_MICROMIPS_JMP:
2882 case BFD_RELOC_MICROMIPS_HI16:
2883 case BFD_RELOC_MICROMIPS_HI16_S:
2884 case BFD_RELOC_MICROMIPS_LO16:
2885 case BFD_RELOC_MICROMIPS_LITERAL:
2886 case BFD_RELOC_MICROMIPS_GOT16:
2887 case BFD_RELOC_MICROMIPS_CALL16:
2888 case BFD_RELOC_MICROMIPS_GOT_HI16:
2889 case BFD_RELOC_MICROMIPS_GOT_LO16:
2890 case BFD_RELOC_MICROMIPS_CALL_HI16:
2891 case BFD_RELOC_MICROMIPS_CALL_LO16:
2892 case BFD_RELOC_MICROMIPS_SUB:
2893 case BFD_RELOC_MICROMIPS_GOT_PAGE:
2894 case BFD_RELOC_MICROMIPS_GOT_OFST:
2895 case BFD_RELOC_MICROMIPS_GOT_DISP:
2896 case BFD_RELOC_MICROMIPS_HIGHEST:
2897 case BFD_RELOC_MICROMIPS_HIGHER:
2898 case BFD_RELOC_MICROMIPS_SCN_DISP:
2899 case BFD_RELOC_MICROMIPS_JALR:
2900 return TRUE;
2901
2902 default:
2903 return FALSE;
2904 }
2905 }
2906
2907 static inline bfd_boolean
2908 jmp_reloc_p (bfd_reloc_code_real_type reloc)
2909 {
2910 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
2911 }
2912
2913 static inline bfd_boolean
2914 got16_reloc_p (bfd_reloc_code_real_type reloc)
2915 {
2916 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
2917 || reloc == BFD_RELOC_MICROMIPS_GOT16);
2918 }
2919
2920 static inline bfd_boolean
2921 hi16_reloc_p (bfd_reloc_code_real_type reloc)
2922 {
2923 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
2924 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
2925 }
2926
2927 static inline bfd_boolean
2928 lo16_reloc_p (bfd_reloc_code_real_type reloc)
2929 {
2930 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
2931 || reloc == BFD_RELOC_MICROMIPS_LO16);
2932 }
2933
2934 static inline bfd_boolean
2935 jalr_reloc_p (bfd_reloc_code_real_type reloc)
2936 {
2937 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
2938 }
2939
2940 /* Return true if RELOC is a PC-relative relocation that does not have
2941 full address range. */
2942
2943 static inline bfd_boolean
2944 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
2945 {
2946 switch (reloc)
2947 {
2948 case BFD_RELOC_16_PCREL_S2:
2949 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
2950 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
2951 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
2952 return TRUE;
2953
2954 case BFD_RELOC_32_PCREL:
2955 return HAVE_64BIT_ADDRESSES;
2956
2957 default:
2958 return FALSE;
2959 }
2960 }
2961
2962 /* Return true if the given relocation might need a matching %lo().
2963 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
2964 need a matching %lo() when applied to local symbols. */
2965
2966 static inline bfd_boolean
2967 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
2968 {
2969 return (HAVE_IN_PLACE_ADDENDS
2970 && (hi16_reloc_p (reloc)
2971 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
2972 all GOT16 relocations evaluate to "G". */
2973 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
2974 }
2975
2976 /* Return the type of %lo() reloc needed by RELOC, given that
2977 reloc_needs_lo_p. */
2978
2979 static inline bfd_reloc_code_real_type
2980 matching_lo_reloc (bfd_reloc_code_real_type reloc)
2981 {
2982 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
2983 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
2984 : BFD_RELOC_LO16));
2985 }
2986
2987 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
2988 relocation. */
2989
2990 static inline bfd_boolean
2991 fixup_has_matching_lo_p (fixS *fixp)
2992 {
2993 return (fixp->fx_next != NULL
2994 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
2995 && fixp->fx_addsy == fixp->fx_next->fx_addsy
2996 && fixp->fx_offset == fixp->fx_next->fx_offset);
2997 }
2998
2999 /* This function returns true if modifying a register requires a
3000 delay. */
3001
3002 static int
3003 reg_needs_delay (unsigned int reg)
3004 {
3005 unsigned long prev_pinfo;
3006
3007 prev_pinfo = history[0].insn_mo->pinfo;
3008 if (! mips_opts.noreorder
3009 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
3010 && ! gpr_interlocks)
3011 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
3012 && ! cop_interlocks)))
3013 {
3014 /* A load from a coprocessor or from memory. All load delays
3015 delay the use of general register rt for one instruction. */
3016 /* Itbl support may require additional care here. */
3017 know (prev_pinfo & INSN_WRITE_GPR_T);
3018 if (reg == EXTRACT_OPERAND (mips_opts.micromips, RT, history[0]))
3019 return 1;
3020 }
3021
3022 return 0;
3023 }
3024
3025 /* Move all labels in LABELS to the current insertion point. TEXT_P
3026 says whether the labels refer to text or data. */
3027
3028 static void
3029 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
3030 {
3031 struct insn_label_list *l;
3032 valueT val;
3033
3034 for (l = labels; l != NULL; l = l->next)
3035 {
3036 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
3037 symbol_set_frag (l->label, frag_now);
3038 val = (valueT) frag_now_fix ();
3039 /* MIPS16/microMIPS text labels are stored as odd. */
3040 if (text_p && HAVE_CODE_COMPRESSION)
3041 ++val;
3042 S_SET_VALUE (l->label, val);
3043 }
3044 }
3045
3046 /* Move all labels in insn_labels to the current insertion point
3047 and treat them as text labels. */
3048
3049 static void
3050 mips_move_text_labels (void)
3051 {
3052 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
3053 }
3054
3055 static bfd_boolean
3056 s_is_linkonce (symbolS *sym, segT from_seg)
3057 {
3058 bfd_boolean linkonce = FALSE;
3059 segT symseg = S_GET_SEGMENT (sym);
3060
3061 if (symseg != from_seg && !S_IS_LOCAL (sym))
3062 {
3063 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
3064 linkonce = TRUE;
3065 #ifdef OBJ_ELF
3066 /* The GNU toolchain uses an extension for ELF: a section
3067 beginning with the magic string .gnu.linkonce is a
3068 linkonce section. */
3069 if (strncmp (segment_name (symseg), ".gnu.linkonce",
3070 sizeof ".gnu.linkonce" - 1) == 0)
3071 linkonce = TRUE;
3072 #endif
3073 }
3074 return linkonce;
3075 }
3076
3077 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
3078 linker to handle them specially, such as generating jalx instructions
3079 when needed. We also make them odd for the duration of the assembly,
3080 in order to generate the right sort of code. We will make them even
3081 in the adjust_symtab routine, while leaving them marked. This is
3082 convenient for the debugger and the disassembler. The linker knows
3083 to make them odd again. */
3084
3085 static void
3086 mips_compressed_mark_label (symbolS *label)
3087 {
3088 gas_assert (HAVE_CODE_COMPRESSION);
3089
3090 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
3091 if (IS_ELF)
3092 {
3093 if (mips_opts.mips16)
3094 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
3095 else
3096 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
3097 }
3098 #endif
3099 if ((S_GET_VALUE (label) & 1) == 0
3100 /* Don't adjust the address if the label is global or weak, or
3101 in a link-once section, since we'll be emitting symbol reloc
3102 references to it which will be patched up by the linker, and
3103 the final value of the symbol may or may not be MIPS16/microMIPS. */
3104 && !S_IS_WEAK (label)
3105 && !S_IS_EXTERNAL (label)
3106 && !s_is_linkonce (label, now_seg))
3107 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
3108 }
3109
3110 /* Mark preceding MIPS16 or microMIPS instruction labels. */
3111
3112 static void
3113 mips_compressed_mark_labels (void)
3114 {
3115 struct insn_label_list *l;
3116
3117 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
3118 mips_compressed_mark_label (l->label);
3119 }
3120
3121 /* End the current frag. Make it a variant frag and record the
3122 relaxation info. */
3123
3124 static void
3125 relax_close_frag (void)
3126 {
3127 mips_macro_warning.first_frag = frag_now;
3128 frag_var (rs_machine_dependent, 0, 0,
3129 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
3130 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
3131
3132 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
3133 mips_relax.first_fixup = 0;
3134 }
3135
3136 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
3137 See the comment above RELAX_ENCODE for more details. */
3138
3139 static void
3140 relax_start (symbolS *symbol)
3141 {
3142 gas_assert (mips_relax.sequence == 0);
3143 mips_relax.sequence = 1;
3144 mips_relax.symbol = symbol;
3145 }
3146
3147 /* Start generating the second version of a relaxable sequence.
3148 See the comment above RELAX_ENCODE for more details. */
3149
3150 static void
3151 relax_switch (void)
3152 {
3153 gas_assert (mips_relax.sequence == 1);
3154 mips_relax.sequence = 2;
3155 }
3156
3157 /* End the current relaxable sequence. */
3158
3159 static void
3160 relax_end (void)
3161 {
3162 gas_assert (mips_relax.sequence == 2);
3163 relax_close_frag ();
3164 mips_relax.sequence = 0;
3165 }
3166
3167 /* Return true if IP is a delayed branch or jump. */
3168
3169 static inline bfd_boolean
3170 delayed_branch_p (const struct mips_cl_insn *ip)
3171 {
3172 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
3173 | INSN_COND_BRANCH_DELAY
3174 | INSN_COND_BRANCH_LIKELY)) != 0;
3175 }
3176
3177 /* Return true if IP is a compact branch or jump. */
3178
3179 static inline bfd_boolean
3180 compact_branch_p (const struct mips_cl_insn *ip)
3181 {
3182 if (mips_opts.mips16)
3183 return (ip->insn_mo->pinfo & (MIPS16_INSN_UNCOND_BRANCH
3184 | MIPS16_INSN_COND_BRANCH)) != 0;
3185 else
3186 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
3187 | INSN2_COND_BRANCH)) != 0;
3188 }
3189
3190 /* Return true if IP is an unconditional branch or jump. */
3191
3192 static inline bfd_boolean
3193 uncond_branch_p (const struct mips_cl_insn *ip)
3194 {
3195 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
3196 || (mips_opts.mips16
3197 ? (ip->insn_mo->pinfo & MIPS16_INSN_UNCOND_BRANCH) != 0
3198 : (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0));
3199 }
3200
3201 /* Return true if IP is a branch-likely instruction. */
3202
3203 static inline bfd_boolean
3204 branch_likely_p (const struct mips_cl_insn *ip)
3205 {
3206 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
3207 }
3208
3209 /* Return the type of nop that should be used to fill the delay slot
3210 of delayed branch IP. */
3211
3212 static struct mips_cl_insn *
3213 get_delay_slot_nop (const struct mips_cl_insn *ip)
3214 {
3215 if (mips_opts.micromips
3216 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
3217 return &micromips_nop32_insn;
3218 return NOP_INSN;
3219 }
3220
3221 /* Return the mask of core registers that IP reads or writes. */
3222
3223 static unsigned int
3224 gpr_mod_mask (const struct mips_cl_insn *ip)
3225 {
3226 unsigned long pinfo2;
3227 unsigned int mask;
3228
3229 mask = 0;
3230 pinfo2 = ip->insn_mo->pinfo2;
3231 if (mips_opts.micromips)
3232 {
3233 if (pinfo2 & INSN2_MOD_GPR_MD)
3234 mask |= 1 << micromips_to_32_reg_d_map[EXTRACT_OPERAND (1, MD, *ip)];
3235 if (pinfo2 & INSN2_MOD_GPR_MF)
3236 mask |= 1 << micromips_to_32_reg_f_map[EXTRACT_OPERAND (1, MF, *ip)];
3237 if (pinfo2 & INSN2_MOD_SP)
3238 mask |= 1 << SP;
3239 }
3240 return mask;
3241 }
3242
3243 /* Return the mask of core registers that IP reads. */
3244
3245 static unsigned int
3246 gpr_read_mask (const struct mips_cl_insn *ip)
3247 {
3248 unsigned long pinfo, pinfo2;
3249 unsigned int mask;
3250
3251 mask = gpr_mod_mask (ip);
3252 pinfo = ip->insn_mo->pinfo;
3253 pinfo2 = ip->insn_mo->pinfo2;
3254 if (mips_opts.mips16)
3255 {
3256 if (pinfo & MIPS16_INSN_READ_X)
3257 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)];
3258 if (pinfo & MIPS16_INSN_READ_Y)
3259 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)];
3260 if (pinfo & MIPS16_INSN_READ_T)
3261 mask |= 1 << TREG;
3262 if (pinfo & MIPS16_INSN_READ_SP)
3263 mask |= 1 << SP;
3264 if (pinfo & MIPS16_INSN_READ_31)
3265 mask |= 1 << RA;
3266 if (pinfo & MIPS16_INSN_READ_Z)
3267 mask |= 1 << (mips16_to_32_reg_map
3268 [MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]);
3269 if (pinfo & MIPS16_INSN_READ_GPR_X)
3270 mask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
3271 }
3272 else
3273 {
3274 if (pinfo2 & INSN2_READ_GPR_D)
3275 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
3276 if (pinfo & INSN_READ_GPR_T)
3277 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
3278 if (pinfo & INSN_READ_GPR_S)
3279 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
3280 if (pinfo2 & INSN2_READ_GP)
3281 mask |= 1 << GP;
3282 if (pinfo2 & INSN2_READ_GPR_31)
3283 mask |= 1 << RA;
3284 if (pinfo2 & INSN2_READ_GPR_Z)
3285 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RZ, *ip);
3286 }
3287 if (mips_opts.micromips)
3288 {
3289 if (pinfo2 & INSN2_READ_GPR_MC)
3290 mask |= 1 << micromips_to_32_reg_c_map[EXTRACT_OPERAND (1, MC, *ip)];
3291 if (pinfo2 & INSN2_READ_GPR_ME)
3292 mask |= 1 << micromips_to_32_reg_e_map[EXTRACT_OPERAND (1, ME, *ip)];
3293 if (pinfo2 & INSN2_READ_GPR_MG)
3294 mask |= 1 << micromips_to_32_reg_g_map[EXTRACT_OPERAND (1, MG, *ip)];
3295 if (pinfo2 & INSN2_READ_GPR_MJ)
3296 mask |= 1 << EXTRACT_OPERAND (1, MJ, *ip);
3297 if (pinfo2 & INSN2_READ_GPR_MMN)
3298 {
3299 mask |= 1 << micromips_to_32_reg_m_map[EXTRACT_OPERAND (1, MM, *ip)];
3300 mask |= 1 << micromips_to_32_reg_n_map[EXTRACT_OPERAND (1, MN, *ip)];
3301 }
3302 if (pinfo2 & INSN2_READ_GPR_MP)
3303 mask |= 1 << EXTRACT_OPERAND (1, MP, *ip);
3304 if (pinfo2 & INSN2_READ_GPR_MQ)
3305 mask |= 1 << micromips_to_32_reg_q_map[EXTRACT_OPERAND (1, MQ, *ip)];
3306 }
3307 /* Don't include register 0. */
3308 return mask & ~1;
3309 }
3310
3311 /* Return the mask of core registers that IP writes. */
3312
3313 static unsigned int
3314 gpr_write_mask (const struct mips_cl_insn *ip)
3315 {
3316 unsigned long pinfo, pinfo2;
3317 unsigned int mask;
3318
3319 mask = gpr_mod_mask (ip);
3320 pinfo = ip->insn_mo->pinfo;
3321 pinfo2 = ip->insn_mo->pinfo2;
3322 if (mips_opts.mips16)
3323 {
3324 if (pinfo & MIPS16_INSN_WRITE_X)
3325 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)];
3326 if (pinfo & MIPS16_INSN_WRITE_Y)
3327 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)];
3328 if (pinfo & MIPS16_INSN_WRITE_Z)
3329 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RZ, *ip)];
3330 if (pinfo & MIPS16_INSN_WRITE_T)
3331 mask |= 1 << TREG;
3332 if (pinfo & MIPS16_INSN_WRITE_SP)
3333 mask |= 1 << SP;
3334 if (pinfo & MIPS16_INSN_WRITE_31)
3335 mask |= 1 << RA;
3336 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
3337 mask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
3338 }
3339 else
3340 {
3341 if (pinfo & INSN_WRITE_GPR_D)
3342 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
3343 if (pinfo & INSN_WRITE_GPR_T)
3344 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
3345 if (pinfo & INSN_WRITE_GPR_S)
3346 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
3347 if (pinfo & INSN_WRITE_GPR_31)
3348 mask |= 1 << RA;
3349 if (pinfo2 & INSN2_WRITE_GPR_Z)
3350 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RZ, *ip);
3351 }
3352 if (mips_opts.micromips)
3353 {
3354 if (pinfo2 & INSN2_WRITE_GPR_MB)
3355 mask |= 1 << micromips_to_32_reg_b_map[EXTRACT_OPERAND (1, MB, *ip)];
3356 if (pinfo2 & INSN2_WRITE_GPR_MHI)
3357 {
3358 mask |= 1 << micromips_to_32_reg_h_map[EXTRACT_OPERAND (1, MH, *ip)];
3359 mask |= 1 << micromips_to_32_reg_i_map[EXTRACT_OPERAND (1, MI, *ip)];
3360 }
3361 if (pinfo2 & INSN2_WRITE_GPR_MJ)
3362 mask |= 1 << EXTRACT_OPERAND (1, MJ, *ip);
3363 if (pinfo2 & INSN2_WRITE_GPR_MP)
3364 mask |= 1 << EXTRACT_OPERAND (1, MP, *ip);
3365 }
3366 /* Don't include register 0. */
3367 return mask & ~1;
3368 }
3369
3370 /* Return the mask of floating-point registers that IP reads. */
3371
3372 static unsigned int
3373 fpr_read_mask (const struct mips_cl_insn *ip)
3374 {
3375 unsigned long pinfo, pinfo2;
3376 unsigned int mask;
3377
3378 mask = 0;
3379 pinfo = ip->insn_mo->pinfo;
3380 pinfo2 = ip->insn_mo->pinfo2;
3381 if (!mips_opts.mips16)
3382 {
3383 if (pinfo2 & INSN2_READ_FPR_D)
3384 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FD, *ip);
3385 if (pinfo & INSN_READ_FPR_S)
3386 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FS, *ip);
3387 if (pinfo & INSN_READ_FPR_T)
3388 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FT, *ip);
3389 if (pinfo & INSN_READ_FPR_R)
3390 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FR, *ip);
3391 if (pinfo2 & INSN2_READ_FPR_Z)
3392 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FZ, *ip);
3393 }
3394 /* Conservatively treat all operands to an FP_D instruction are doubles.
3395 (This is overly pessimistic for things like cvt.d.s.) */
3396 if (HAVE_32BIT_FPRS && (pinfo & FP_D))
3397 mask |= mask << 1;
3398 return mask;
3399 }
3400
3401 /* Return the mask of floating-point registers that IP writes. */
3402
3403 static unsigned int
3404 fpr_write_mask (const struct mips_cl_insn *ip)
3405 {
3406 unsigned long pinfo, pinfo2;
3407 unsigned int mask;
3408
3409 mask = 0;
3410 pinfo = ip->insn_mo->pinfo;
3411 pinfo2 = ip->insn_mo->pinfo2;
3412 if (!mips_opts.mips16)
3413 {
3414 if (pinfo & INSN_WRITE_FPR_D)
3415 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FD, *ip);
3416 if (pinfo & INSN_WRITE_FPR_S)
3417 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FS, *ip);
3418 if (pinfo & INSN_WRITE_FPR_T)
3419 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FT, *ip);
3420 if (pinfo2 & INSN2_WRITE_FPR_Z)
3421 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FZ, *ip);
3422 }
3423 /* Conservatively treat all operands to an FP_D instruction are doubles.
3424 (This is overly pessimistic for things like cvt.s.d.) */
3425 if (HAVE_32BIT_FPRS && (pinfo & FP_D))
3426 mask |= mask << 1;
3427 return mask;
3428 }
3429
3430 /* Classify an instruction according to the FIX_VR4120_* enumeration.
3431 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
3432 by VR4120 errata. */
3433
3434 static unsigned int
3435 classify_vr4120_insn (const char *name)
3436 {
3437 if (strncmp (name, "macc", 4) == 0)
3438 return FIX_VR4120_MACC;
3439 if (strncmp (name, "dmacc", 5) == 0)
3440 return FIX_VR4120_DMACC;
3441 if (strncmp (name, "mult", 4) == 0)
3442 return FIX_VR4120_MULT;
3443 if (strncmp (name, "dmult", 5) == 0)
3444 return FIX_VR4120_DMULT;
3445 if (strstr (name, "div"))
3446 return FIX_VR4120_DIV;
3447 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
3448 return FIX_VR4120_MTHILO;
3449 return NUM_FIX_VR4120_CLASSES;
3450 }
3451
3452 #define INSN_ERET 0x42000018
3453 #define INSN_DERET 0x4200001f
3454
3455 /* Return the number of instructions that must separate INSN1 and INSN2,
3456 where INSN1 is the earlier instruction. Return the worst-case value
3457 for any INSN2 if INSN2 is null. */
3458
3459 static unsigned int
3460 insns_between (const struct mips_cl_insn *insn1,
3461 const struct mips_cl_insn *insn2)
3462 {
3463 unsigned long pinfo1, pinfo2;
3464 unsigned int mask;
3465
3466 /* This function needs to know which pinfo flags are set for INSN2
3467 and which registers INSN2 uses. The former is stored in PINFO2 and
3468 the latter is tested via INSN2_USES_GPR. If INSN2 is null, PINFO2
3469 will have every flag set and INSN2_USES_GPR will always return true. */
3470 pinfo1 = insn1->insn_mo->pinfo;
3471 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
3472
3473 #define INSN2_USES_GPR(REG) \
3474 (insn2 == NULL || (gpr_read_mask (insn2) & (1U << (REG))) != 0)
3475
3476 /* For most targets, write-after-read dependencies on the HI and LO
3477 registers must be separated by at least two instructions. */
3478 if (!hilo_interlocks)
3479 {
3480 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
3481 return 2;
3482 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
3483 return 2;
3484 }
3485
3486 /* If we're working around r7000 errata, there must be two instructions
3487 between an mfhi or mflo and any instruction that uses the result. */
3488 if (mips_7000_hilo_fix
3489 && !mips_opts.micromips
3490 && MF_HILO_INSN (pinfo1)
3491 && INSN2_USES_GPR (EXTRACT_OPERAND (0, RD, *insn1)))
3492 return 2;
3493
3494 /* If we're working around 24K errata, one instruction is required
3495 if an ERET or DERET is followed by a branch instruction. */
3496 if (mips_fix_24k && !mips_opts.micromips)
3497 {
3498 if (insn1->insn_opcode == INSN_ERET
3499 || insn1->insn_opcode == INSN_DERET)
3500 {
3501 if (insn2 == NULL
3502 || insn2->insn_opcode == INSN_ERET
3503 || insn2->insn_opcode == INSN_DERET
3504 || delayed_branch_p (insn2))
3505 return 1;
3506 }
3507 }
3508
3509 /* If working around VR4120 errata, check for combinations that need
3510 a single intervening instruction. */
3511 if (mips_fix_vr4120 && !mips_opts.micromips)
3512 {
3513 unsigned int class1, class2;
3514
3515 class1 = classify_vr4120_insn (insn1->insn_mo->name);
3516 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
3517 {
3518 if (insn2 == NULL)
3519 return 1;
3520 class2 = classify_vr4120_insn (insn2->insn_mo->name);
3521 if (vr4120_conflicts[class1] & (1 << class2))
3522 return 1;
3523 }
3524 }
3525
3526 if (!HAVE_CODE_COMPRESSION)
3527 {
3528 /* Check for GPR or coprocessor load delays. All such delays
3529 are on the RT register. */
3530 /* Itbl support may require additional care here. */
3531 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
3532 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
3533 {
3534 know (pinfo1 & INSN_WRITE_GPR_T);
3535 if (INSN2_USES_GPR (EXTRACT_OPERAND (0, RT, *insn1)))
3536 return 1;
3537 }
3538
3539 /* Check for generic coprocessor hazards.
3540
3541 This case is not handled very well. There is no special
3542 knowledge of CP0 handling, and the coprocessors other than
3543 the floating point unit are not distinguished at all. */
3544 /* Itbl support may require additional care here. FIXME!
3545 Need to modify this to include knowledge about
3546 user specified delays! */
3547 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
3548 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
3549 {
3550 /* Handle cases where INSN1 writes to a known general coprocessor
3551 register. There must be a one instruction delay before INSN2
3552 if INSN2 reads that register, otherwise no delay is needed. */
3553 mask = fpr_write_mask (insn1);
3554 if (mask != 0)
3555 {
3556 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
3557 return 1;
3558 }
3559 else
3560 {
3561 /* Read-after-write dependencies on the control registers
3562 require a two-instruction gap. */
3563 if ((pinfo1 & INSN_WRITE_COND_CODE)
3564 && (pinfo2 & INSN_READ_COND_CODE))
3565 return 2;
3566
3567 /* We don't know exactly what INSN1 does. If INSN2 is
3568 also a coprocessor instruction, assume there must be
3569 a one instruction gap. */
3570 if (pinfo2 & INSN_COP)
3571 return 1;
3572 }
3573 }
3574
3575 /* Check for read-after-write dependencies on the coprocessor
3576 control registers in cases where INSN1 does not need a general
3577 coprocessor delay. This means that INSN1 is a floating point
3578 comparison instruction. */
3579 /* Itbl support may require additional care here. */
3580 else if (!cop_interlocks
3581 && (pinfo1 & INSN_WRITE_COND_CODE)
3582 && (pinfo2 & INSN_READ_COND_CODE))
3583 return 1;
3584 }
3585
3586 #undef INSN2_USES_GPR
3587
3588 return 0;
3589 }
3590
3591 /* Return the number of nops that would be needed to work around the
3592 VR4130 mflo/mfhi errata if instruction INSN immediately followed
3593 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
3594 that are contained within the first IGNORE instructions of HIST. */
3595
3596 static int
3597 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
3598 const struct mips_cl_insn *insn)
3599 {
3600 int i, j;
3601 unsigned int mask;
3602
3603 /* Check if the instruction writes to HI or LO. MTHI and MTLO
3604 are not affected by the errata. */
3605 if (insn != 0
3606 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
3607 || strcmp (insn->insn_mo->name, "mtlo") == 0
3608 || strcmp (insn->insn_mo->name, "mthi") == 0))
3609 return 0;
3610
3611 /* Search for the first MFLO or MFHI. */
3612 for (i = 0; i < MAX_VR4130_NOPS; i++)
3613 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
3614 {
3615 /* Extract the destination register. */
3616 mask = gpr_write_mask (&hist[i]);
3617
3618 /* No nops are needed if INSN reads that register. */
3619 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
3620 return 0;
3621
3622 /* ...or if any of the intervening instructions do. */
3623 for (j = 0; j < i; j++)
3624 if (gpr_read_mask (&hist[j]) & mask)
3625 return 0;
3626
3627 if (i >= ignore)
3628 return MAX_VR4130_NOPS - i;
3629 }
3630 return 0;
3631 }
3632
3633 #define BASE_REG_EQ(INSN1, INSN2) \
3634 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
3635 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
3636
3637 /* Return the minimum alignment for this store instruction. */
3638
3639 static int
3640 fix_24k_align_to (const struct mips_opcode *mo)
3641 {
3642 if (strcmp (mo->name, "sh") == 0)
3643 return 2;
3644
3645 if (strcmp (mo->name, "swc1") == 0
3646 || strcmp (mo->name, "swc2") == 0
3647 || strcmp (mo->name, "sw") == 0
3648 || strcmp (mo->name, "sc") == 0
3649 || strcmp (mo->name, "s.s") == 0)
3650 return 4;
3651
3652 if (strcmp (mo->name, "sdc1") == 0
3653 || strcmp (mo->name, "sdc2") == 0
3654 || strcmp (mo->name, "s.d") == 0)
3655 return 8;
3656
3657 /* sb, swl, swr */
3658 return 1;
3659 }
3660
3661 struct fix_24k_store_info
3662 {
3663 /* Immediate offset, if any, for this store instruction. */
3664 short off;
3665 /* Alignment required by this store instruction. */
3666 int align_to;
3667 /* True for register offsets. */
3668 int register_offset;
3669 };
3670
3671 /* Comparison function used by qsort. */
3672
3673 static int
3674 fix_24k_sort (const void *a, const void *b)
3675 {
3676 const struct fix_24k_store_info *pos1 = a;
3677 const struct fix_24k_store_info *pos2 = b;
3678
3679 return (pos1->off - pos2->off);
3680 }
3681
3682 /* INSN is a store instruction. Try to record the store information
3683 in STINFO. Return false if the information isn't known. */
3684
3685 static bfd_boolean
3686 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
3687 const struct mips_cl_insn *insn)
3688 {
3689 /* The instruction must have a known offset. */
3690 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
3691 return FALSE;
3692
3693 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
3694 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
3695 return TRUE;
3696 }
3697
3698 /* Return the number of nops that would be needed to work around the 24k
3699 "lost data on stores during refill" errata if instruction INSN
3700 immediately followed the 2 instructions described by HIST.
3701 Ignore hazards that are contained within the first IGNORE
3702 instructions of HIST.
3703
3704 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
3705 for the data cache refills and store data. The following describes
3706 the scenario where the store data could be lost.
3707
3708 * A data cache miss, due to either a load or a store, causing fill
3709 data to be supplied by the memory subsystem
3710 * The first three doublewords of fill data are returned and written
3711 into the cache
3712 * A sequence of four stores occurs in consecutive cycles around the
3713 final doubleword of the fill:
3714 * Store A
3715 * Store B
3716 * Store C
3717 * Zero, One or more instructions
3718 * Store D
3719
3720 The four stores A-D must be to different doublewords of the line that
3721 is being filled. The fourth instruction in the sequence above permits
3722 the fill of the final doubleword to be transferred from the FSB into
3723 the cache. In the sequence above, the stores may be either integer
3724 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
3725 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
3726 different doublewords on the line. If the floating point unit is
3727 running in 1:2 mode, it is not possible to create the sequence above
3728 using only floating point store instructions.
3729
3730 In this case, the cache line being filled is incorrectly marked
3731 invalid, thereby losing the data from any store to the line that
3732 occurs between the original miss and the completion of the five
3733 cycle sequence shown above.
3734
3735 The workarounds are:
3736
3737 * Run the data cache in write-through mode.
3738 * Insert a non-store instruction between
3739 Store A and Store B or Store B and Store C. */
3740
3741 static int
3742 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
3743 const struct mips_cl_insn *insn)
3744 {
3745 struct fix_24k_store_info pos[3];
3746 int align, i, base_offset;
3747
3748 if (ignore >= 2)
3749 return 0;
3750
3751 /* If the previous instruction wasn't a store, there's nothing to
3752 worry about. */
3753 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
3754 return 0;
3755
3756 /* If the instructions after the previous one are unknown, we have
3757 to assume the worst. */
3758 if (!insn)
3759 return 1;
3760
3761 /* Check whether we are dealing with three consecutive stores. */
3762 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
3763 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
3764 return 0;
3765
3766 /* If we don't know the relationship between the store addresses,
3767 assume the worst. */
3768 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
3769 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
3770 return 1;
3771
3772 if (!fix_24k_record_store_info (&pos[0], insn)
3773 || !fix_24k_record_store_info (&pos[1], &hist[0])
3774 || !fix_24k_record_store_info (&pos[2], &hist[1]))
3775 return 1;
3776
3777 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
3778
3779 /* Pick a value of ALIGN and X such that all offsets are adjusted by
3780 X bytes and such that the base register + X is known to be aligned
3781 to align bytes. */
3782
3783 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
3784 align = 8;
3785 else
3786 {
3787 align = pos[0].align_to;
3788 base_offset = pos[0].off;
3789 for (i = 1; i < 3; i++)
3790 if (align < pos[i].align_to)
3791 {
3792 align = pos[i].align_to;
3793 base_offset = pos[i].off;
3794 }
3795 for (i = 0; i < 3; i++)
3796 pos[i].off -= base_offset;
3797 }
3798
3799 pos[0].off &= ~align + 1;
3800 pos[1].off &= ~align + 1;
3801 pos[2].off &= ~align + 1;
3802
3803 /* If any two stores write to the same chunk, they also write to the
3804 same doubleword. The offsets are still sorted at this point. */
3805 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
3806 return 0;
3807
3808 /* A range of at least 9 bytes is needed for the stores to be in
3809 non-overlapping doublewords. */
3810 if (pos[2].off - pos[0].off <= 8)
3811 return 0;
3812
3813 if (pos[2].off - pos[1].off >= 24
3814 || pos[1].off - pos[0].off >= 24
3815 || pos[2].off - pos[0].off >= 32)
3816 return 0;
3817
3818 return 1;
3819 }
3820
3821 /* Return the number of nops that would be needed if instruction INSN
3822 immediately followed the MAX_NOPS instructions given by HIST,
3823 where HIST[0] is the most recent instruction. Ignore hazards
3824 between INSN and the first IGNORE instructions in HIST.
3825
3826 If INSN is null, return the worse-case number of nops for any
3827 instruction. */
3828
3829 static int
3830 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
3831 const struct mips_cl_insn *insn)
3832 {
3833 int i, nops, tmp_nops;
3834
3835 nops = 0;
3836 for (i = ignore; i < MAX_DELAY_NOPS; i++)
3837 {
3838 tmp_nops = insns_between (hist + i, insn) - i;
3839 if (tmp_nops > nops)
3840 nops = tmp_nops;
3841 }
3842
3843 if (mips_fix_vr4130 && !mips_opts.micromips)
3844 {
3845 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
3846 if (tmp_nops > nops)
3847 nops = tmp_nops;
3848 }
3849
3850 if (mips_fix_24k && !mips_opts.micromips)
3851 {
3852 tmp_nops = nops_for_24k (ignore, hist, insn);
3853 if (tmp_nops > nops)
3854 nops = tmp_nops;
3855 }
3856
3857 return nops;
3858 }
3859
3860 /* The variable arguments provide NUM_INSNS extra instructions that
3861 might be added to HIST. Return the largest number of nops that
3862 would be needed after the extended sequence, ignoring hazards
3863 in the first IGNORE instructions. */
3864
3865 static int
3866 nops_for_sequence (int num_insns, int ignore,
3867 const struct mips_cl_insn *hist, ...)
3868 {
3869 va_list args;
3870 struct mips_cl_insn buffer[MAX_NOPS];
3871 struct mips_cl_insn *cursor;
3872 int nops;
3873
3874 va_start (args, hist);
3875 cursor = buffer + num_insns;
3876 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
3877 while (cursor > buffer)
3878 *--cursor = *va_arg (args, const struct mips_cl_insn *);
3879
3880 nops = nops_for_insn (ignore, buffer, NULL);
3881 va_end (args);
3882 return nops;
3883 }
3884
3885 /* Like nops_for_insn, but if INSN is a branch, take into account the
3886 worst-case delay for the branch target. */
3887
3888 static int
3889 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
3890 const struct mips_cl_insn *insn)
3891 {
3892 int nops, tmp_nops;
3893
3894 nops = nops_for_insn (ignore, hist, insn);
3895 if (delayed_branch_p (insn))
3896 {
3897 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
3898 hist, insn, get_delay_slot_nop (insn));
3899 if (tmp_nops > nops)
3900 nops = tmp_nops;
3901 }
3902 else if (compact_branch_p (insn))
3903 {
3904 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
3905 if (tmp_nops > nops)
3906 nops = tmp_nops;
3907 }
3908 return nops;
3909 }
3910
3911 /* Fix NOP issue: Replace nops by "or at,at,zero". */
3912
3913 static void
3914 fix_loongson2f_nop (struct mips_cl_insn * ip)
3915 {
3916 gas_assert (!HAVE_CODE_COMPRESSION);
3917 if (strcmp (ip->insn_mo->name, "nop") == 0)
3918 ip->insn_opcode = LOONGSON2F_NOP_INSN;
3919 }
3920
3921 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
3922 jr target pc &= 'hffff_ffff_cfff_ffff. */
3923
3924 static void
3925 fix_loongson2f_jump (struct mips_cl_insn * ip)
3926 {
3927 gas_assert (!HAVE_CODE_COMPRESSION);
3928 if (strcmp (ip->insn_mo->name, "j") == 0
3929 || strcmp (ip->insn_mo->name, "jr") == 0
3930 || strcmp (ip->insn_mo->name, "jalr") == 0)
3931 {
3932 int sreg;
3933 expressionS ep;
3934
3935 if (! mips_opts.at)
3936 return;
3937
3938 sreg = EXTRACT_OPERAND (0, RS, *ip);
3939 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
3940 return;
3941
3942 ep.X_op = O_constant;
3943 ep.X_add_number = 0xcfff0000;
3944 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
3945 ep.X_add_number = 0xffff;
3946 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
3947 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
3948 }
3949 }
3950
3951 static void
3952 fix_loongson2f (struct mips_cl_insn * ip)
3953 {
3954 if (mips_fix_loongson2f_nop)
3955 fix_loongson2f_nop (ip);
3956
3957 if (mips_fix_loongson2f_jump)
3958 fix_loongson2f_jump (ip);
3959 }
3960
3961 /* IP is a branch that has a delay slot, and we need to fill it
3962 automatically. Return true if we can do that by swapping IP
3963 with the previous instruction.
3964 ADDRESS_EXPR is an operand of the instruction to be used with
3965 RELOC_TYPE. */
3966
3967 static bfd_boolean
3968 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
3969 bfd_reloc_code_real_type *reloc_type)
3970 {
3971 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
3972 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
3973
3974 /* -O2 and above is required for this optimization. */
3975 if (mips_optimize < 2)
3976 return FALSE;
3977
3978 /* If we have seen .set volatile or .set nomove, don't optimize. */
3979 if (mips_opts.nomove)
3980 return FALSE;
3981
3982 /* We can't swap if the previous instruction's position is fixed. */
3983 if (history[0].fixed_p)
3984 return FALSE;
3985
3986 /* If the previous previous insn was in a .set noreorder, we can't
3987 swap. Actually, the MIPS assembler will swap in this situation.
3988 However, gcc configured -with-gnu-as will generate code like
3989
3990 .set noreorder
3991 lw $4,XXX
3992 .set reorder
3993 INSN
3994 bne $4,$0,foo
3995
3996 in which we can not swap the bne and INSN. If gcc is not configured
3997 -with-gnu-as, it does not output the .set pseudo-ops. */
3998 if (history[1].noreorder_p)
3999 return FALSE;
4000
4001 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
4002 This means that the previous instruction was a 4-byte one anyhow. */
4003 if (mips_opts.mips16 && history[0].fixp[0])
4004 return FALSE;
4005
4006 /* If the branch is itself the target of a branch, we can not swap.
4007 We cheat on this; all we check for is whether there is a label on
4008 this instruction. If there are any branches to anything other than
4009 a label, users must use .set noreorder. */
4010 if (seg_info (now_seg)->label_list)
4011 return FALSE;
4012
4013 /* If the previous instruction is in a variant frag other than this
4014 branch's one, we cannot do the swap. This does not apply to
4015 MIPS16 code, which uses variant frags for different purposes. */
4016 if (!mips_opts.mips16
4017 && history[0].frag
4018 && history[0].frag->fr_type == rs_machine_dependent)
4019 return FALSE;
4020
4021 /* We do not swap with instructions that cannot architecturally
4022 be placed in a branch delay slot, such as SYNC or ERET. We
4023 also refrain from swapping with a trap instruction, since it
4024 complicates trap handlers to have the trap instruction be in
4025 a delay slot. */
4026 prev_pinfo = history[0].insn_mo->pinfo;
4027 if (prev_pinfo & INSN_NO_DELAY_SLOT)
4028 return FALSE;
4029
4030 /* Check for conflicts between the branch and the instructions
4031 before the candidate delay slot. */
4032 if (nops_for_insn (0, history + 1, ip) > 0)
4033 return FALSE;
4034
4035 /* Check for conflicts between the swapped sequence and the
4036 target of the branch. */
4037 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
4038 return FALSE;
4039
4040 /* If the branch reads a register that the previous
4041 instruction sets, we can not swap. */
4042 gpr_read = gpr_read_mask (ip);
4043 prev_gpr_write = gpr_write_mask (&history[0]);
4044 if (gpr_read & prev_gpr_write)
4045 return FALSE;
4046
4047 /* If the branch writes a register that the previous
4048 instruction sets, we can not swap. */
4049 gpr_write = gpr_write_mask (ip);
4050 if (gpr_write & prev_gpr_write)
4051 return FALSE;
4052
4053 /* If the branch writes a register that the previous
4054 instruction reads, we can not swap. */
4055 prev_gpr_read = gpr_read_mask (&history[0]);
4056 if (gpr_write & prev_gpr_read)
4057 return FALSE;
4058
4059 /* If one instruction sets a condition code and the
4060 other one uses a condition code, we can not swap. */
4061 pinfo = ip->insn_mo->pinfo;
4062 if ((pinfo & INSN_READ_COND_CODE)
4063 && (prev_pinfo & INSN_WRITE_COND_CODE))
4064 return FALSE;
4065 if ((pinfo & INSN_WRITE_COND_CODE)
4066 && (prev_pinfo & INSN_READ_COND_CODE))
4067 return FALSE;
4068
4069 /* If the previous instruction uses the PC, we can not swap. */
4070 prev_pinfo2 = history[0].insn_mo->pinfo2;
4071 if (mips_opts.mips16 && (prev_pinfo & MIPS16_INSN_READ_PC))
4072 return FALSE;
4073 if (mips_opts.micromips && (prev_pinfo2 & INSN2_READ_PC))
4074 return FALSE;
4075
4076 /* If the previous instruction has an incorrect size for a fixed
4077 branch delay slot in microMIPS mode, we cannot swap. */
4078 pinfo2 = ip->insn_mo->pinfo2;
4079 if (mips_opts.micromips
4080 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
4081 && insn_length (history) != 2)
4082 return FALSE;
4083 if (mips_opts.micromips
4084 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
4085 && insn_length (history) != 4)
4086 return FALSE;
4087
4088 /* On R5900 short loops need to be fixed by inserting a nop in
4089 the branch delay slots.
4090 A short loop can be terminated too early. */
4091 if (mips_opts.arch == CPU_R5900
4092 /* Check if instruction has a parameter, ignore "j $31". */
4093 && (address_expr != NULL)
4094 /* Parameter must be 16 bit. */
4095 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
4096 /* Branch to same segment. */
4097 && (S_GET_SEGMENT(address_expr->X_add_symbol) == now_seg)
4098 /* Branch to same code fragment. */
4099 && (symbol_get_frag(address_expr->X_add_symbol) == frag_now)
4100 /* Can only calculate branch offset if value is known. */
4101 && symbol_constant_p(address_expr->X_add_symbol)
4102 /* Check if branch is really conditional. */
4103 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
4104 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
4105 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
4106 {
4107 int distance;
4108 /* Check if loop is shorter than 6 instructions including
4109 branch and delay slot. */
4110 distance = frag_now_fix() - S_GET_VALUE(address_expr->X_add_symbol);
4111 if (distance <= 20)
4112 {
4113 int i;
4114 int rv;
4115
4116 rv = FALSE;
4117 /* When the loop includes branches or jumps,
4118 it is not a short loop. */
4119 for (i = 0; i < (distance / 4); i++)
4120 {
4121 if ((history[i].cleared_p)
4122 || delayed_branch_p(&history[i]))
4123 {
4124 rv = TRUE;
4125 break;
4126 }
4127 }
4128 if (rv == FALSE)
4129 {
4130 /* Insert nop after branch to fix short loop. */
4131 return FALSE;
4132 }
4133 }
4134 }
4135
4136 return TRUE;
4137 }
4138
4139 /* Decide how we should add IP to the instruction stream.
4140 ADDRESS_EXPR is an operand of the instruction to be used with
4141 RELOC_TYPE. */
4142
4143 static enum append_method
4144 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
4145 bfd_reloc_code_real_type *reloc_type)
4146 {
4147 unsigned long pinfo;
4148
4149 /* The relaxed version of a macro sequence must be inherently
4150 hazard-free. */
4151 if (mips_relax.sequence == 2)
4152 return APPEND_ADD;
4153
4154 /* We must not dabble with instructions in a ".set norerorder" block. */
4155 if (mips_opts.noreorder)
4156 return APPEND_ADD;
4157
4158 /* Otherwise, it's our responsibility to fill branch delay slots. */
4159 if (delayed_branch_p (ip))
4160 {
4161 if (!branch_likely_p (ip)
4162 && can_swap_branch_p (ip, address_expr, reloc_type))
4163 return APPEND_SWAP;
4164
4165 pinfo = ip->insn_mo->pinfo;
4166 if (mips_opts.mips16
4167 && ISA_SUPPORTS_MIPS16E
4168 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31)))
4169 return APPEND_ADD_COMPACT;
4170
4171 return APPEND_ADD_WITH_NOP;
4172 }
4173
4174 return APPEND_ADD;
4175 }
4176
4177 /* IP is a MIPS16 instruction whose opcode we have just changed.
4178 Point IP->insn_mo to the new opcode's definition. */
4179
4180 static void
4181 find_altered_mips16_opcode (struct mips_cl_insn *ip)
4182 {
4183 const struct mips_opcode *mo, *end;
4184
4185 end = &mips16_opcodes[bfd_mips16_num_opcodes];
4186 for (mo = ip->insn_mo; mo < end; mo++)
4187 if ((ip->insn_opcode & mo->mask) == mo->match)
4188 {
4189 ip->insn_mo = mo;
4190 return;
4191 }
4192 abort ();
4193 }
4194
4195 /* For microMIPS macros, we need to generate a local number label
4196 as the target of branches. */
4197 #define MICROMIPS_LABEL_CHAR '\037'
4198 static unsigned long micromips_target_label;
4199 static char micromips_target_name[32];
4200
4201 static char *
4202 micromips_label_name (void)
4203 {
4204 char *p = micromips_target_name;
4205 char symbol_name_temporary[24];
4206 unsigned long l;
4207 int i;
4208
4209 if (*p)
4210 return p;
4211
4212 i = 0;
4213 l = micromips_target_label;
4214 #ifdef LOCAL_LABEL_PREFIX
4215 *p++ = LOCAL_LABEL_PREFIX;
4216 #endif
4217 *p++ = 'L';
4218 *p++ = MICROMIPS_LABEL_CHAR;
4219 do
4220 {
4221 symbol_name_temporary[i++] = l % 10 + '0';
4222 l /= 10;
4223 }
4224 while (l != 0);
4225 while (i > 0)
4226 *p++ = symbol_name_temporary[--i];
4227 *p = '\0';
4228
4229 return micromips_target_name;
4230 }
4231
4232 static void
4233 micromips_label_expr (expressionS *label_expr)
4234 {
4235 label_expr->X_op = O_symbol;
4236 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
4237 label_expr->X_add_number = 0;
4238 }
4239
4240 static void
4241 micromips_label_inc (void)
4242 {
4243 micromips_target_label++;
4244 *micromips_target_name = '\0';
4245 }
4246
4247 static void
4248 micromips_add_label (void)
4249 {
4250 symbolS *s;
4251
4252 s = colon (micromips_label_name ());
4253 micromips_label_inc ();
4254 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
4255 if (IS_ELF)
4256 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
4257 #else
4258 (void) s;
4259 #endif
4260 }
4261
4262 /* If assembling microMIPS code, then return the microMIPS reloc
4263 corresponding to the requested one if any. Otherwise return
4264 the reloc unchanged. */
4265
4266 static bfd_reloc_code_real_type
4267 micromips_map_reloc (bfd_reloc_code_real_type reloc)
4268 {
4269 static const bfd_reloc_code_real_type relocs[][2] =
4270 {
4271 /* Keep sorted incrementally by the left-hand key. */
4272 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
4273 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
4274 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
4275 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
4276 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
4277 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
4278 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
4279 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
4280 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
4281 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
4282 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
4283 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
4284 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
4285 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
4286 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
4287 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
4288 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
4289 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
4290 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
4291 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
4292 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
4293 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
4294 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
4295 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
4296 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
4297 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
4298 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
4299 };
4300 bfd_reloc_code_real_type r;
4301 size_t i;
4302
4303 if (!mips_opts.micromips)
4304 return reloc;
4305 for (i = 0; i < ARRAY_SIZE (relocs); i++)
4306 {
4307 r = relocs[i][0];
4308 if (r > reloc)
4309 return reloc;
4310 if (r == reloc)
4311 return relocs[i][1];
4312 }
4313 return reloc;
4314 }
4315
4316 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
4317 Return true on success, storing the resolved value in RESULT. */
4318
4319 static bfd_boolean
4320 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
4321 offsetT *result)
4322 {
4323 switch (reloc)
4324 {
4325 case BFD_RELOC_MIPS_HIGHEST:
4326 case BFD_RELOC_MICROMIPS_HIGHEST:
4327 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
4328 return TRUE;
4329
4330 case BFD_RELOC_MIPS_HIGHER:
4331 case BFD_RELOC_MICROMIPS_HIGHER:
4332 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
4333 return TRUE;
4334
4335 case BFD_RELOC_HI16_S:
4336 case BFD_RELOC_MICROMIPS_HI16_S:
4337 case BFD_RELOC_MIPS16_HI16_S:
4338 *result = ((operand + 0x8000) >> 16) & 0xffff;
4339 return TRUE;
4340
4341 case BFD_RELOC_HI16:
4342 case BFD_RELOC_MICROMIPS_HI16:
4343 case BFD_RELOC_MIPS16_HI16:
4344 *result = (operand >> 16) & 0xffff;
4345 return TRUE;
4346
4347 case BFD_RELOC_LO16:
4348 case BFD_RELOC_MICROMIPS_LO16:
4349 case BFD_RELOC_MIPS16_LO16:
4350 *result = operand & 0xffff;
4351 return TRUE;
4352
4353 case BFD_RELOC_UNUSED:
4354 *result = operand;
4355 return TRUE;
4356
4357 default:
4358 return FALSE;
4359 }
4360 }
4361
4362 /* Output an instruction. IP is the instruction information.
4363 ADDRESS_EXPR is an operand of the instruction to be used with
4364 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
4365 a macro expansion. */
4366
4367 static void
4368 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
4369 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
4370 {
4371 unsigned long prev_pinfo2, pinfo;
4372 bfd_boolean relaxed_branch = FALSE;
4373 enum append_method method;
4374 bfd_boolean relax32;
4375 int branch_disp;
4376
4377 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
4378 fix_loongson2f (ip);
4379
4380 file_ase_mips16 |= mips_opts.mips16;
4381 file_ase_micromips |= mips_opts.micromips;
4382
4383 prev_pinfo2 = history[0].insn_mo->pinfo2;
4384 pinfo = ip->insn_mo->pinfo;
4385
4386 if (mips_opts.micromips
4387 && !expansionp
4388 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
4389 && micromips_insn_length (ip->insn_mo) != 2)
4390 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
4391 && micromips_insn_length (ip->insn_mo) != 4)))
4392 as_warn (_("Wrong size instruction in a %u-bit branch delay slot"),
4393 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
4394
4395 if (address_expr == NULL)
4396 ip->complete_p = 1;
4397 else if (reloc_type[0] <= BFD_RELOC_UNUSED
4398 && reloc_type[1] == BFD_RELOC_UNUSED
4399 && reloc_type[2] == BFD_RELOC_UNUSED
4400 && address_expr->X_op == O_constant)
4401 {
4402 switch (*reloc_type)
4403 {
4404 case BFD_RELOC_MIPS_JMP:
4405 {
4406 int shift;
4407
4408 shift = mips_opts.micromips ? 1 : 2;
4409 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
4410 as_bad (_("jump to misaligned address (0x%lx)"),
4411 (unsigned long) address_expr->X_add_number);
4412 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
4413 & 0x3ffffff);
4414 ip->complete_p = 1;
4415 }
4416 break;
4417
4418 case BFD_RELOC_MIPS16_JMP:
4419 if ((address_expr->X_add_number & 3) != 0)
4420 as_bad (_("jump to misaligned address (0x%lx)"),
4421 (unsigned long) address_expr->X_add_number);
4422 ip->insn_opcode |=
4423 (((address_expr->X_add_number & 0x7c0000) << 3)
4424 | ((address_expr->X_add_number & 0xf800000) >> 7)
4425 | ((address_expr->X_add_number & 0x3fffc) >> 2));
4426 ip->complete_p = 1;
4427 break;
4428
4429 case BFD_RELOC_16_PCREL_S2:
4430 {
4431 int shift;
4432
4433 shift = mips_opts.micromips ? 1 : 2;
4434 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
4435 as_bad (_("branch to misaligned address (0x%lx)"),
4436 (unsigned long) address_expr->X_add_number);
4437 if (!mips_relax_branch)
4438 {
4439 if ((address_expr->X_add_number + (1 << (shift + 15)))
4440 & ~((1 << (shift + 16)) - 1))
4441 as_bad (_("branch address range overflow (0x%lx)"),
4442 (unsigned long) address_expr->X_add_number);
4443 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
4444 & 0xffff);
4445 }
4446 }
4447 break;
4448
4449 default:
4450 {
4451 offsetT value;
4452
4453 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
4454 &value))
4455 {
4456 ip->insn_opcode |= value & 0xffff;
4457 ip->complete_p = 1;
4458 }
4459 }
4460 break;
4461 }
4462 }
4463
4464 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
4465 {
4466 /* There are a lot of optimizations we could do that we don't.
4467 In particular, we do not, in general, reorder instructions.
4468 If you use gcc with optimization, it will reorder
4469 instructions and generally do much more optimization then we
4470 do here; repeating all that work in the assembler would only
4471 benefit hand written assembly code, and does not seem worth
4472 it. */
4473 int nops = (mips_optimize == 0
4474 ? nops_for_insn (0, history, NULL)
4475 : nops_for_insn_or_target (0, history, ip));
4476 if (nops > 0)
4477 {
4478 fragS *old_frag;
4479 unsigned long old_frag_offset;
4480 int i;
4481
4482 old_frag = frag_now;
4483 old_frag_offset = frag_now_fix ();
4484
4485 for (i = 0; i < nops; i++)
4486 add_fixed_insn (NOP_INSN);
4487 insert_into_history (0, nops, NOP_INSN);
4488
4489 if (listing)
4490 {
4491 listing_prev_line ();
4492 /* We may be at the start of a variant frag. In case we
4493 are, make sure there is enough space for the frag
4494 after the frags created by listing_prev_line. The
4495 argument to frag_grow here must be at least as large
4496 as the argument to all other calls to frag_grow in
4497 this file. We don't have to worry about being in the
4498 middle of a variant frag, because the variants insert
4499 all needed nop instructions themselves. */
4500 frag_grow (40);
4501 }
4502
4503 mips_move_text_labels ();
4504
4505 #ifndef NO_ECOFF_DEBUGGING
4506 if (ECOFF_DEBUGGING)
4507 ecoff_fix_loc (old_frag, old_frag_offset);
4508 #endif
4509 }
4510 }
4511 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
4512 {
4513 int nops;
4514
4515 /* Work out how many nops in prev_nop_frag are needed by IP,
4516 ignoring hazards generated by the first prev_nop_frag_since
4517 instructions. */
4518 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
4519 gas_assert (nops <= prev_nop_frag_holds);
4520
4521 /* Enforce NOPS as a minimum. */
4522 if (nops > prev_nop_frag_required)
4523 prev_nop_frag_required = nops;
4524
4525 if (prev_nop_frag_holds == prev_nop_frag_required)
4526 {
4527 /* Settle for the current number of nops. Update the history
4528 accordingly (for the benefit of any future .set reorder code). */
4529 prev_nop_frag = NULL;
4530 insert_into_history (prev_nop_frag_since,
4531 prev_nop_frag_holds, NOP_INSN);
4532 }
4533 else
4534 {
4535 /* Allow this instruction to replace one of the nops that was
4536 tentatively added to prev_nop_frag. */
4537 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
4538 prev_nop_frag_holds--;
4539 prev_nop_frag_since++;
4540 }
4541 }
4542
4543 method = get_append_method (ip, address_expr, reloc_type);
4544 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
4545
4546 #ifdef OBJ_ELF
4547 dwarf2_emit_insn (0);
4548 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
4549 so "move" the instruction address accordingly.
4550
4551 Also, it doesn't seem appropriate for the assembler to reorder .loc
4552 entries. If this instruction is a branch that we are going to swap
4553 with the previous instruction, the two instructions should be
4554 treated as a unit, and the debug information for both instructions
4555 should refer to the start of the branch sequence. Using the
4556 current position is certainly wrong when swapping a 32-bit branch
4557 and a 16-bit delay slot, since the current position would then be
4558 in the middle of a branch. */
4559 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
4560 #endif
4561
4562 relax32 = (mips_relax_branch
4563 /* Don't try branch relaxation within .set nomacro, or within
4564 .set noat if we use $at for PIC computations. If it turns
4565 out that the branch was out-of-range, we'll get an error. */
4566 && !mips_opts.warn_about_macros
4567 && (mips_opts.at || mips_pic == NO_PIC)
4568 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
4569 as they have no complementing branches. */
4570 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
4571
4572 if (!HAVE_CODE_COMPRESSION
4573 && address_expr
4574 && relax32
4575 && *reloc_type == BFD_RELOC_16_PCREL_S2
4576 && delayed_branch_p (ip))
4577 {
4578 relaxed_branch = TRUE;
4579 add_relaxed_insn (ip, (relaxed_branch_length
4580 (NULL, NULL,
4581 uncond_branch_p (ip) ? -1
4582 : branch_likely_p (ip) ? 1
4583 : 0)), 4,
4584 RELAX_BRANCH_ENCODE
4585 (AT,
4586 uncond_branch_p (ip),
4587 branch_likely_p (ip),
4588 pinfo & INSN_WRITE_GPR_31,
4589 0),
4590 address_expr->X_add_symbol,
4591 address_expr->X_add_number);
4592 *reloc_type = BFD_RELOC_UNUSED;
4593 }
4594 else if (mips_opts.micromips
4595 && address_expr
4596 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
4597 || *reloc_type > BFD_RELOC_UNUSED)
4598 && (delayed_branch_p (ip) || compact_branch_p (ip))
4599 /* Don't try branch relaxation when users specify
4600 16-bit/32-bit instructions. */
4601 && !forced_insn_length)
4602 {
4603 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
4604 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
4605 int uncond = uncond_branch_p (ip) ? -1 : 0;
4606 int compact = compact_branch_p (ip);
4607 int al = pinfo & INSN_WRITE_GPR_31;
4608 int length32;
4609
4610 gas_assert (address_expr != NULL);
4611 gas_assert (!mips_relax.sequence);
4612
4613 relaxed_branch = TRUE;
4614 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
4615 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
4616 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
4617 relax32, 0, 0),
4618 address_expr->X_add_symbol,
4619 address_expr->X_add_number);
4620 *reloc_type = BFD_RELOC_UNUSED;
4621 }
4622 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
4623 {
4624 /* We need to set up a variant frag. */
4625 gas_assert (address_expr != NULL);
4626 add_relaxed_insn (ip, 4, 0,
4627 RELAX_MIPS16_ENCODE
4628 (*reloc_type - BFD_RELOC_UNUSED,
4629 forced_insn_length == 2, forced_insn_length == 4,
4630 delayed_branch_p (&history[0]),
4631 history[0].mips16_absolute_jump_p),
4632 make_expr_symbol (address_expr), 0);
4633 }
4634 else if (mips_opts.mips16 && insn_length (ip) == 2)
4635 {
4636 if (!delayed_branch_p (ip))
4637 /* Make sure there is enough room to swap this instruction with
4638 a following jump instruction. */
4639 frag_grow (6);
4640 add_fixed_insn (ip);
4641 }
4642 else
4643 {
4644 if (mips_opts.mips16
4645 && mips_opts.noreorder
4646 && delayed_branch_p (&history[0]))
4647 as_warn (_("extended instruction in delay slot"));
4648
4649 if (mips_relax.sequence)
4650 {
4651 /* If we've reached the end of this frag, turn it into a variant
4652 frag and record the information for the instructions we've
4653 written so far. */
4654 if (frag_room () < 4)
4655 relax_close_frag ();
4656 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
4657 }
4658
4659 if (mips_relax.sequence != 2)
4660 {
4661 if (mips_macro_warning.first_insn_sizes[0] == 0)
4662 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
4663 mips_macro_warning.sizes[0] += insn_length (ip);
4664 mips_macro_warning.insns[0]++;
4665 }
4666 if (mips_relax.sequence != 1)
4667 {
4668 if (mips_macro_warning.first_insn_sizes[1] == 0)
4669 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
4670 mips_macro_warning.sizes[1] += insn_length (ip);
4671 mips_macro_warning.insns[1]++;
4672 }
4673
4674 if (mips_opts.mips16)
4675 {
4676 ip->fixed_p = 1;
4677 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
4678 }
4679 add_fixed_insn (ip);
4680 }
4681
4682 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
4683 {
4684 bfd_reloc_code_real_type final_type[3];
4685 reloc_howto_type *howto0;
4686 reloc_howto_type *howto;
4687 int i;
4688
4689 /* Perform any necessary conversion to microMIPS relocations
4690 and find out how many relocations there actually are. */
4691 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
4692 final_type[i] = micromips_map_reloc (reloc_type[i]);
4693
4694 /* In a compound relocation, it is the final (outermost)
4695 operator that determines the relocated field. */
4696 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
4697
4698 if (howto == NULL)
4699 {
4700 /* To reproduce this failure try assembling gas/testsuites/
4701 gas/mips/mips16-intermix.s with a mips-ecoff targeted
4702 assembler. */
4703 as_bad (_("Unsupported MIPS relocation number %d"),
4704 final_type[i - 1]);
4705 howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_16);
4706 }
4707
4708 if (i > 1)
4709 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
4710 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
4711 bfd_get_reloc_size (howto),
4712 address_expr,
4713 howto0 && howto0->pc_relative,
4714 final_type[0]);
4715
4716 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
4717 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
4718 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
4719
4720 /* These relocations can have an addend that won't fit in
4721 4 octets for 64bit assembly. */
4722 if (HAVE_64BIT_GPRS
4723 && ! howto->partial_inplace
4724 && (reloc_type[0] == BFD_RELOC_16
4725 || reloc_type[0] == BFD_RELOC_32
4726 || reloc_type[0] == BFD_RELOC_MIPS_JMP
4727 || reloc_type[0] == BFD_RELOC_GPREL16
4728 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
4729 || reloc_type[0] == BFD_RELOC_GPREL32
4730 || reloc_type[0] == BFD_RELOC_64
4731 || reloc_type[0] == BFD_RELOC_CTOR
4732 || reloc_type[0] == BFD_RELOC_MIPS_SUB
4733 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
4734 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
4735 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
4736 || reloc_type[0] == BFD_RELOC_MIPS_REL16
4737 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
4738 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
4739 || hi16_reloc_p (reloc_type[0])
4740 || lo16_reloc_p (reloc_type[0])))
4741 ip->fixp[0]->fx_no_overflow = 1;
4742
4743 /* These relocations can have an addend that won't fit in 2 octets. */
4744 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
4745 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
4746 ip->fixp[0]->fx_no_overflow = 1;
4747
4748 if (mips_relax.sequence)
4749 {
4750 if (mips_relax.first_fixup == 0)
4751 mips_relax.first_fixup = ip->fixp[0];
4752 }
4753 else if (reloc_needs_lo_p (*reloc_type))
4754 {
4755 struct mips_hi_fixup *hi_fixup;
4756
4757 /* Reuse the last entry if it already has a matching %lo. */
4758 hi_fixup = mips_hi_fixup_list;
4759 if (hi_fixup == 0
4760 || !fixup_has_matching_lo_p (hi_fixup->fixp))
4761 {
4762 hi_fixup = ((struct mips_hi_fixup *)
4763 xmalloc (sizeof (struct mips_hi_fixup)));
4764 hi_fixup->next = mips_hi_fixup_list;
4765 mips_hi_fixup_list = hi_fixup;
4766 }
4767 hi_fixup->fixp = ip->fixp[0];
4768 hi_fixup->seg = now_seg;
4769 }
4770
4771 /* Add fixups for the second and third relocations, if given.
4772 Note that the ABI allows the second relocation to be
4773 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
4774 moment we only use RSS_UNDEF, but we could add support
4775 for the others if it ever becomes necessary. */
4776 for (i = 1; i < 3; i++)
4777 if (reloc_type[i] != BFD_RELOC_UNUSED)
4778 {
4779 ip->fixp[i] = fix_new (ip->frag, ip->where,
4780 ip->fixp[0]->fx_size, NULL, 0,
4781 FALSE, final_type[i]);
4782
4783 /* Use fx_tcbit to mark compound relocs. */
4784 ip->fixp[0]->fx_tcbit = 1;
4785 ip->fixp[i]->fx_tcbit = 1;
4786 }
4787 }
4788 install_insn (ip);
4789
4790 /* Update the register mask information. */
4791 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
4792 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
4793
4794 switch (method)
4795 {
4796 case APPEND_ADD:
4797 insert_into_history (0, 1, ip);
4798 break;
4799
4800 case APPEND_ADD_WITH_NOP:
4801 {
4802 struct mips_cl_insn *nop;
4803
4804 insert_into_history (0, 1, ip);
4805 nop = get_delay_slot_nop (ip);
4806 add_fixed_insn (nop);
4807 insert_into_history (0, 1, nop);
4808 if (mips_relax.sequence)
4809 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
4810 }
4811 break;
4812
4813 case APPEND_ADD_COMPACT:
4814 /* Convert MIPS16 jr/jalr into a "compact" jump. */
4815 gas_assert (mips_opts.mips16);
4816 ip->insn_opcode |= 0x0080;
4817 find_altered_mips16_opcode (ip);
4818 install_insn (ip);
4819 insert_into_history (0, 1, ip);
4820 break;
4821
4822 case APPEND_SWAP:
4823 {
4824 struct mips_cl_insn delay = history[0];
4825 if (mips_opts.mips16)
4826 {
4827 know (delay.frag == ip->frag);
4828 move_insn (ip, delay.frag, delay.where);
4829 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
4830 }
4831 else if (relaxed_branch || delay.frag != ip->frag)
4832 {
4833 /* Add the delay slot instruction to the end of the
4834 current frag and shrink the fixed part of the
4835 original frag. If the branch occupies the tail of
4836 the latter, move it backwards to cover the gap. */
4837 delay.frag->fr_fix -= branch_disp;
4838 if (delay.frag == ip->frag)
4839 move_insn (ip, ip->frag, ip->where - branch_disp);
4840 add_fixed_insn (&delay);
4841 }
4842 else
4843 {
4844 move_insn (&delay, ip->frag,
4845 ip->where - branch_disp + insn_length (ip));
4846 move_insn (ip, history[0].frag, history[0].where);
4847 }
4848 history[0] = *ip;
4849 delay.fixed_p = 1;
4850 insert_into_history (0, 1, &delay);
4851 }
4852 break;
4853 }
4854
4855 /* If we have just completed an unconditional branch, clear the history. */
4856 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
4857 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
4858 {
4859 unsigned int i;
4860
4861 mips_no_prev_insn ();
4862
4863 for (i = 0; i < ARRAY_SIZE (history); i++)
4864 history[i].cleared_p = 1;
4865 }
4866
4867 /* We need to emit a label at the end of branch-likely macros. */
4868 if (emit_branch_likely_macro)
4869 {
4870 emit_branch_likely_macro = FALSE;
4871 micromips_add_label ();
4872 }
4873
4874 /* We just output an insn, so the next one doesn't have a label. */
4875 mips_clear_insn_labels ();
4876 }
4877
4878 /* Forget that there was any previous instruction or label.
4879 When BRANCH is true, the branch history is also flushed. */
4880
4881 static void
4882 mips_no_prev_insn (void)
4883 {
4884 prev_nop_frag = NULL;
4885 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
4886 mips_clear_insn_labels ();
4887 }
4888
4889 /* This function must be called before we emit something other than
4890 instructions. It is like mips_no_prev_insn except that it inserts
4891 any NOPS that might be needed by previous instructions. */
4892
4893 void
4894 mips_emit_delays (void)
4895 {
4896 if (! mips_opts.noreorder)
4897 {
4898 int nops = nops_for_insn (0, history, NULL);
4899 if (nops > 0)
4900 {
4901 while (nops-- > 0)
4902 add_fixed_insn (NOP_INSN);
4903 mips_move_text_labels ();
4904 }
4905 }
4906 mips_no_prev_insn ();
4907 }
4908
4909 /* Start a (possibly nested) noreorder block. */
4910
4911 static void
4912 start_noreorder (void)
4913 {
4914 if (mips_opts.noreorder == 0)
4915 {
4916 unsigned int i;
4917 int nops;
4918
4919 /* None of the instructions before the .set noreorder can be moved. */
4920 for (i = 0; i < ARRAY_SIZE (history); i++)
4921 history[i].fixed_p = 1;
4922
4923 /* Insert any nops that might be needed between the .set noreorder
4924 block and the previous instructions. We will later remove any
4925 nops that turn out not to be needed. */
4926 nops = nops_for_insn (0, history, NULL);
4927 if (nops > 0)
4928 {
4929 if (mips_optimize != 0)
4930 {
4931 /* Record the frag which holds the nop instructions, so
4932 that we can remove them if we don't need them. */
4933 frag_grow (nops * NOP_INSN_SIZE);
4934 prev_nop_frag = frag_now;
4935 prev_nop_frag_holds = nops;
4936 prev_nop_frag_required = 0;
4937 prev_nop_frag_since = 0;
4938 }
4939
4940 for (; nops > 0; --nops)
4941 add_fixed_insn (NOP_INSN);
4942
4943 /* Move on to a new frag, so that it is safe to simply
4944 decrease the size of prev_nop_frag. */
4945 frag_wane (frag_now);
4946 frag_new (0);
4947 mips_move_text_labels ();
4948 }
4949 mips_mark_labels ();
4950 mips_clear_insn_labels ();
4951 }
4952 mips_opts.noreorder++;
4953 mips_any_noreorder = 1;
4954 }
4955
4956 /* End a nested noreorder block. */
4957
4958 static void
4959 end_noreorder (void)
4960 {
4961 mips_opts.noreorder--;
4962 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
4963 {
4964 /* Commit to inserting prev_nop_frag_required nops and go back to
4965 handling nop insertion the .set reorder way. */
4966 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
4967 * NOP_INSN_SIZE);
4968 insert_into_history (prev_nop_frag_since,
4969 prev_nop_frag_required, NOP_INSN);
4970 prev_nop_frag = NULL;
4971 }
4972 }
4973
4974 /* Set up global variables for the start of a new macro. */
4975
4976 static void
4977 macro_start (void)
4978 {
4979 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
4980 memset (&mips_macro_warning.first_insn_sizes, 0,
4981 sizeof (mips_macro_warning.first_insn_sizes));
4982 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
4983 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
4984 && delayed_branch_p (&history[0]));
4985 switch (history[0].insn_mo->pinfo2
4986 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
4987 {
4988 case INSN2_BRANCH_DELAY_32BIT:
4989 mips_macro_warning.delay_slot_length = 4;
4990 break;
4991 case INSN2_BRANCH_DELAY_16BIT:
4992 mips_macro_warning.delay_slot_length = 2;
4993 break;
4994 default:
4995 mips_macro_warning.delay_slot_length = 0;
4996 break;
4997 }
4998 mips_macro_warning.first_frag = NULL;
4999 }
5000
5001 /* Given that a macro is longer than one instruction or of the wrong size,
5002 return the appropriate warning for it. Return null if no warning is
5003 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
5004 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
5005 and RELAX_NOMACRO. */
5006
5007 static const char *
5008 macro_warning (relax_substateT subtype)
5009 {
5010 if (subtype & RELAX_DELAY_SLOT)
5011 return _("Macro instruction expanded into multiple instructions"
5012 " in a branch delay slot");
5013 else if (subtype & RELAX_NOMACRO)
5014 return _("Macro instruction expanded into multiple instructions");
5015 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
5016 | RELAX_DELAY_SLOT_SIZE_SECOND))
5017 return ((subtype & RELAX_DELAY_SLOT_16BIT)
5018 ? _("Macro instruction expanded into a wrong size instruction"
5019 " in a 16-bit branch delay slot")
5020 : _("Macro instruction expanded into a wrong size instruction"
5021 " in a 32-bit branch delay slot"));
5022 else
5023 return 0;
5024 }
5025
5026 /* Finish up a macro. Emit warnings as appropriate. */
5027
5028 static void
5029 macro_end (void)
5030 {
5031 /* Relaxation warning flags. */
5032 relax_substateT subtype = 0;
5033
5034 /* Check delay slot size requirements. */
5035 if (mips_macro_warning.delay_slot_length == 2)
5036 subtype |= RELAX_DELAY_SLOT_16BIT;
5037 if (mips_macro_warning.delay_slot_length != 0)
5038 {
5039 if (mips_macro_warning.delay_slot_length
5040 != mips_macro_warning.first_insn_sizes[0])
5041 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
5042 if (mips_macro_warning.delay_slot_length
5043 != mips_macro_warning.first_insn_sizes[1])
5044 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
5045 }
5046
5047 /* Check instruction count requirements. */
5048 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
5049 {
5050 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
5051 subtype |= RELAX_SECOND_LONGER;
5052 if (mips_opts.warn_about_macros)
5053 subtype |= RELAX_NOMACRO;
5054 if (mips_macro_warning.delay_slot_p)
5055 subtype |= RELAX_DELAY_SLOT;
5056 }
5057
5058 /* If both alternatives fail to fill a delay slot correctly,
5059 emit the warning now. */
5060 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
5061 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
5062 {
5063 relax_substateT s;
5064 const char *msg;
5065
5066 s = subtype & (RELAX_DELAY_SLOT_16BIT
5067 | RELAX_DELAY_SLOT_SIZE_FIRST
5068 | RELAX_DELAY_SLOT_SIZE_SECOND);
5069 msg = macro_warning (s);
5070 if (msg != NULL)
5071 as_warn ("%s", msg);
5072 subtype &= ~s;
5073 }
5074
5075 /* If both implementations are longer than 1 instruction, then emit the
5076 warning now. */
5077 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
5078 {
5079 relax_substateT s;
5080 const char *msg;
5081
5082 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
5083 msg = macro_warning (s);
5084 if (msg != NULL)
5085 as_warn ("%s", msg);
5086 subtype &= ~s;
5087 }
5088
5089 /* If any flags still set, then one implementation might need a warning
5090 and the other either will need one of a different kind or none at all.
5091 Pass any remaining flags over to relaxation. */
5092 if (mips_macro_warning.first_frag != NULL)
5093 mips_macro_warning.first_frag->fr_subtype |= subtype;
5094 }
5095
5096 /* Instruction operand formats used in macros that vary between
5097 standard MIPS and microMIPS code. */
5098
5099 static const char * const brk_fmt[2] = { "c", "mF" };
5100 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
5101 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
5102 static const char * const lui_fmt[2] = { "t,u", "s,u" };
5103 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
5104 static const char * const mfhl_fmt[2] = { "d", "mj" };
5105 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
5106 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
5107
5108 #define BRK_FMT (brk_fmt[mips_opts.micromips])
5109 #define COP12_FMT (cop12_fmt[mips_opts.micromips])
5110 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
5111 #define LUI_FMT (lui_fmt[mips_opts.micromips])
5112 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
5113 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips])
5114 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
5115 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
5116
5117 /* Read a macro's relocation codes from *ARGS and store them in *R.
5118 The first argument in *ARGS will be either the code for a single
5119 relocation or -1 followed by the three codes that make up a
5120 composite relocation. */
5121
5122 static void
5123 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
5124 {
5125 int i, next;
5126
5127 next = va_arg (*args, int);
5128 if (next >= 0)
5129 r[0] = (bfd_reloc_code_real_type) next;
5130 else
5131 for (i = 0; i < 3; i++)
5132 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
5133 }
5134
5135 /* Build an instruction created by a macro expansion. This is passed
5136 a pointer to the count of instructions created so far, an
5137 expression, the name of the instruction to build, an operand format
5138 string, and corresponding arguments. */
5139
5140 static void
5141 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
5142 {
5143 const struct mips_opcode *mo = NULL;
5144 bfd_reloc_code_real_type r[3];
5145 const struct mips_opcode *amo;
5146 struct hash_control *hash;
5147 struct mips_cl_insn insn;
5148 va_list args;
5149
5150 va_start (args, fmt);
5151
5152 if (mips_opts.mips16)
5153 {
5154 mips16_macro_build (ep, name, fmt, &args);
5155 va_end (args);
5156 return;
5157 }
5158
5159 r[0] = BFD_RELOC_UNUSED;
5160 r[1] = BFD_RELOC_UNUSED;
5161 r[2] = BFD_RELOC_UNUSED;
5162 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
5163 amo = (struct mips_opcode *) hash_find (hash, name);
5164 gas_assert (amo);
5165 gas_assert (strcmp (name, amo->name) == 0);
5166
5167 do
5168 {
5169 /* Search until we get a match for NAME. It is assumed here that
5170 macros will never generate MDMX, MIPS-3D, or MT instructions.
5171 We try to match an instruction that fulfils the branch delay
5172 slot instruction length requirement (if any) of the previous
5173 instruction. While doing this we record the first instruction
5174 seen that matches all the other conditions and use it anyway
5175 if the requirement cannot be met; we will issue an appropriate
5176 warning later on. */
5177 if (strcmp (fmt, amo->args) == 0
5178 && amo->pinfo != INSN_MACRO
5179 && is_opcode_valid (amo)
5180 && is_size_valid (amo))
5181 {
5182 if (is_delay_slot_valid (amo))
5183 {
5184 mo = amo;
5185 break;
5186 }
5187 else if (!mo)
5188 mo = amo;
5189 }
5190
5191 ++amo;
5192 gas_assert (amo->name);
5193 }
5194 while (strcmp (name, amo->name) == 0);
5195
5196 gas_assert (mo);
5197 create_insn (&insn, mo);
5198 for (;;)
5199 {
5200 switch (*fmt++)
5201 {
5202 case '\0':
5203 break;
5204
5205 case ',':
5206 case '(':
5207 case ')':
5208 continue;
5209
5210 case '+':
5211 switch (*fmt++)
5212 {
5213 case 'A':
5214 case 'E':
5215 INSERT_OPERAND (mips_opts.micromips,
5216 EXTLSB, insn, va_arg (args, int));
5217 continue;
5218
5219 case 'B':
5220 case 'F':
5221 /* Note that in the macro case, these arguments are already
5222 in MSB form. (When handling the instruction in the
5223 non-macro case, these arguments are sizes from which
5224 MSB values must be calculated.) */
5225 INSERT_OPERAND (mips_opts.micromips,
5226 INSMSB, insn, va_arg (args, int));
5227 continue;
5228
5229 case 'J':
5230 gas_assert (!mips_opts.micromips);
5231 INSERT_OPERAND (0, CODE10, insn, va_arg (args, int));
5232 continue;
5233
5234 case 'C':
5235 case 'G':
5236 case 'H':
5237 /* Note that in the macro case, these arguments are already
5238 in MSBD form. (When handling the instruction in the
5239 non-macro case, these arguments are sizes from which
5240 MSBD values must be calculated.) */
5241 INSERT_OPERAND (mips_opts.micromips,
5242 EXTMSBD, insn, va_arg (args, int));
5243 continue;
5244
5245 case 'Q':
5246 gas_assert (!mips_opts.micromips);
5247 INSERT_OPERAND (0, SEQI, insn, va_arg (args, int));
5248 continue;
5249
5250 case 'j':
5251 INSERT_OPERAND (mips_opts.micromips, EVAOFFSET, insn, va_arg (args, int));
5252 continue;
5253
5254 default:
5255 abort ();
5256 }
5257 continue;
5258
5259 case '2':
5260 INSERT_OPERAND (mips_opts.micromips, BP, insn, va_arg (args, int));
5261 continue;
5262
5263 case 'n':
5264 gas_assert (mips_opts.micromips);
5265 case 't':
5266 case 'w':
5267 case 'E':
5268 INSERT_OPERAND (mips_opts.micromips, RT, insn, va_arg (args, int));
5269 continue;
5270
5271 case 'c':
5272 gas_assert (!mips_opts.micromips);
5273 INSERT_OPERAND (0, CODE, insn, va_arg (args, int));
5274 continue;
5275
5276 case 'W':
5277 gas_assert (!mips_opts.micromips);
5278 case 'T':
5279 INSERT_OPERAND (mips_opts.micromips, FT, insn, va_arg (args, int));
5280 continue;
5281
5282 case 'G':
5283 if (mips_opts.micromips)
5284 INSERT_OPERAND (1, RS, insn, va_arg (args, int));
5285 else
5286 INSERT_OPERAND (0, RD, insn, va_arg (args, int));
5287 continue;
5288
5289 case 'K':
5290 gas_assert (!mips_opts.micromips);
5291 case 'd':
5292 INSERT_OPERAND (mips_opts.micromips, RD, insn, va_arg (args, int));
5293 continue;
5294
5295 case 'U':
5296 gas_assert (!mips_opts.micromips);
5297 {
5298 int tmp = va_arg (args, int);
5299
5300 INSERT_OPERAND (0, RT, insn, tmp);
5301 INSERT_OPERAND (0, RD, insn, tmp);
5302 }
5303 continue;
5304
5305 case 'V':
5306 case 'S':
5307 gas_assert (!mips_opts.micromips);
5308 INSERT_OPERAND (0, FS, insn, va_arg (args, int));
5309 continue;
5310
5311 case 'z':
5312 continue;
5313
5314 case '<':
5315 INSERT_OPERAND (mips_opts.micromips,
5316 SHAMT, insn, va_arg (args, int));
5317 continue;
5318
5319 case 'D':
5320 gas_assert (!mips_opts.micromips);
5321 INSERT_OPERAND (0, FD, insn, va_arg (args, int));
5322 continue;
5323
5324 case 'B':
5325 gas_assert (!mips_opts.micromips);
5326 INSERT_OPERAND (0, CODE20, insn, va_arg (args, int));
5327 continue;
5328
5329 case 'J':
5330 gas_assert (!mips_opts.micromips);
5331 INSERT_OPERAND (0, CODE19, insn, va_arg (args, int));
5332 continue;
5333
5334 case 'q':
5335 gas_assert (!mips_opts.micromips);
5336 INSERT_OPERAND (0, CODE2, insn, va_arg (args, int));
5337 continue;
5338
5339 case 'b':
5340 case 's':
5341 case 'r':
5342 case 'v':
5343 INSERT_OPERAND (mips_opts.micromips, RS, insn, va_arg (args, int));
5344 continue;
5345
5346 case 'i':
5347 case 'j':
5348 macro_read_relocs (&args, r);
5349 gas_assert (*r == BFD_RELOC_GPREL16
5350 || *r == BFD_RELOC_MIPS_HIGHER
5351 || *r == BFD_RELOC_HI16_S
5352 || *r == BFD_RELOC_LO16
5353 || *r == BFD_RELOC_MIPS_GOT_OFST);
5354 continue;
5355
5356 case 'o':
5357 macro_read_relocs (&args, r);
5358 continue;
5359
5360 case 'u':
5361 macro_read_relocs (&args, r);
5362 gas_assert (ep != NULL
5363 && (ep->X_op == O_constant
5364 || (ep->X_op == O_symbol
5365 && (*r == BFD_RELOC_MIPS_HIGHEST
5366 || *r == BFD_RELOC_HI16_S
5367 || *r == BFD_RELOC_HI16
5368 || *r == BFD_RELOC_GPREL16
5369 || *r == BFD_RELOC_MIPS_GOT_HI16
5370 || *r == BFD_RELOC_MIPS_CALL_HI16))));
5371 continue;
5372
5373 case 'p':
5374 gas_assert (ep != NULL);
5375
5376 /*
5377 * This allows macro() to pass an immediate expression for
5378 * creating short branches without creating a symbol.
5379 *
5380 * We don't allow branch relaxation for these branches, as
5381 * they should only appear in ".set nomacro" anyway.
5382 */
5383 if (ep->X_op == O_constant)
5384 {
5385 /* For microMIPS we always use relocations for branches.
5386 So we should not resolve immediate values. */
5387 gas_assert (!mips_opts.micromips);
5388
5389 if ((ep->X_add_number & 3) != 0)
5390 as_bad (_("branch to misaligned address (0x%lx)"),
5391 (unsigned long) ep->X_add_number);
5392 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
5393 as_bad (_("branch address range overflow (0x%lx)"),
5394 (unsigned long) ep->X_add_number);
5395 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
5396 ep = NULL;
5397 }
5398 else
5399 *r = BFD_RELOC_16_PCREL_S2;
5400 continue;
5401
5402 case 'a':
5403 gas_assert (ep != NULL);
5404 *r = BFD_RELOC_MIPS_JMP;
5405 continue;
5406
5407 case 'C':
5408 gas_assert (!mips_opts.micromips);
5409 INSERT_OPERAND (0, COPZ, insn, va_arg (args, unsigned long));
5410 continue;
5411
5412 case 'k':
5413 INSERT_OPERAND (mips_opts.micromips,
5414 CACHE, insn, va_arg (args, unsigned long));
5415 continue;
5416
5417 case '|':
5418 gas_assert (mips_opts.micromips);
5419 INSERT_OPERAND (1, TRAP, insn, va_arg (args, int));
5420 continue;
5421
5422 case '.':
5423 gas_assert (mips_opts.micromips);
5424 INSERT_OPERAND (1, OFFSET10, insn, va_arg (args, int));
5425 continue;
5426
5427 case '\\':
5428 INSERT_OPERAND (mips_opts.micromips,
5429 3BITPOS, insn, va_arg (args, unsigned int));
5430 continue;
5431
5432 case '~':
5433 INSERT_OPERAND (mips_opts.micromips,
5434 OFFSET12, insn, va_arg (args, unsigned long));
5435 continue;
5436
5437 case 'N':
5438 gas_assert (mips_opts.micromips);
5439 INSERT_OPERAND (1, BCC, insn, va_arg (args, int));
5440 continue;
5441
5442 case 'm': /* Opcode extension character. */
5443 gas_assert (mips_opts.micromips);
5444 switch (*fmt++)
5445 {
5446 case 'j':
5447 INSERT_OPERAND (1, MJ, insn, va_arg (args, int));
5448 break;
5449
5450 case 'p':
5451 INSERT_OPERAND (1, MP, insn, va_arg (args, int));
5452 break;
5453
5454 case 'F':
5455 INSERT_OPERAND (1, IMMF, insn, va_arg (args, int));
5456 break;
5457
5458 default:
5459 abort ();
5460 }
5461 continue;
5462
5463 default:
5464 abort ();
5465 }
5466 break;
5467 }
5468 va_end (args);
5469 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
5470
5471 append_insn (&insn, ep, r, TRUE);
5472 }
5473
5474 static void
5475 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
5476 va_list *args)
5477 {
5478 struct mips_opcode *mo;
5479 struct mips_cl_insn insn;
5480 bfd_reloc_code_real_type r[3]
5481 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
5482
5483 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
5484 gas_assert (mo);
5485 gas_assert (strcmp (name, mo->name) == 0);
5486
5487 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
5488 {
5489 ++mo;
5490 gas_assert (mo->name);
5491 gas_assert (strcmp (name, mo->name) == 0);
5492 }
5493
5494 create_insn (&insn, mo);
5495 for (;;)
5496 {
5497 int c;
5498
5499 c = *fmt++;
5500 switch (c)
5501 {
5502 case '\0':
5503 break;
5504
5505 case ',':
5506 case '(':
5507 case ')':
5508 continue;
5509
5510 case 'y':
5511 case 'w':
5512 MIPS16_INSERT_OPERAND (RY, insn, va_arg (*args, int));
5513 continue;
5514
5515 case 'x':
5516 case 'v':
5517 MIPS16_INSERT_OPERAND (RX, insn, va_arg (*args, int));
5518 continue;
5519
5520 case 'z':
5521 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (*args, int));
5522 continue;
5523
5524 case 'Z':
5525 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (*args, int));
5526 continue;
5527
5528 case '0':
5529 case 'S':
5530 case 'P':
5531 case 'R':
5532 continue;
5533
5534 case 'X':
5535 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (*args, int));
5536 continue;
5537
5538 case 'Y':
5539 {
5540 int regno;
5541
5542 regno = va_arg (*args, int);
5543 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
5544 MIPS16_INSERT_OPERAND (REG32R, insn, regno);
5545 }
5546 continue;
5547
5548 case '<':
5549 case '>':
5550 case '4':
5551 case '5':
5552 case 'H':
5553 case 'W':
5554 case 'D':
5555 case 'j':
5556 case '8':
5557 case 'V':
5558 case 'C':
5559 case 'U':
5560 case 'k':
5561 case 'K':
5562 case 'p':
5563 case 'q':
5564 {
5565 offsetT value;
5566
5567 gas_assert (ep != NULL);
5568
5569 if (ep->X_op != O_constant)
5570 *r = (int) BFD_RELOC_UNUSED + c;
5571 else if (calculate_reloc (*r, ep->X_add_number, &value))
5572 {
5573 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
5574 ep = NULL;
5575 *r = BFD_RELOC_UNUSED;
5576 }
5577 }
5578 continue;
5579
5580 case '6':
5581 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (*args, int));
5582 continue;
5583 }
5584
5585 break;
5586 }
5587
5588 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
5589
5590 append_insn (&insn, ep, r, TRUE);
5591 }
5592
5593 /*
5594 * Sign-extend 32-bit mode constants that have bit 31 set and all
5595 * higher bits unset.
5596 */
5597 static void
5598 normalize_constant_expr (expressionS *ex)
5599 {
5600 if (ex->X_op == O_constant
5601 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
5602 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
5603 - 0x80000000);
5604 }
5605
5606 /*
5607 * Sign-extend 32-bit mode address offsets that have bit 31 set and
5608 * all higher bits unset.
5609 */
5610 static void
5611 normalize_address_expr (expressionS *ex)
5612 {
5613 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
5614 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
5615 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
5616 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
5617 - 0x80000000);
5618 }
5619
5620 /*
5621 * Generate a "jalr" instruction with a relocation hint to the called
5622 * function. This occurs in NewABI PIC code.
5623 */
5624 static void
5625 macro_build_jalr (expressionS *ep, int cprestore)
5626 {
5627 static const bfd_reloc_code_real_type jalr_relocs[2]
5628 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
5629 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
5630 const char *jalr;
5631 char *f = NULL;
5632
5633 if (MIPS_JALR_HINT_P (ep))
5634 {
5635 frag_grow (8);
5636 f = frag_more (0);
5637 }
5638 if (mips_opts.micromips)
5639 {
5640 jalr = mips_opts.noreorder && !cprestore ? "jalr" : "jalrs";
5641 if (MIPS_JALR_HINT_P (ep)
5642 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
5643 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
5644 else
5645 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
5646 }
5647 else
5648 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
5649 if (MIPS_JALR_HINT_P (ep))
5650 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
5651 }
5652
5653 /*
5654 * Generate a "lui" instruction.
5655 */
5656 static void
5657 macro_build_lui (expressionS *ep, int regnum)
5658 {
5659 gas_assert (! mips_opts.mips16);
5660
5661 if (ep->X_op != O_constant)
5662 {
5663 gas_assert (ep->X_op == O_symbol);
5664 /* _gp_disp is a special case, used from s_cpload.
5665 __gnu_local_gp is used if mips_no_shared. */
5666 gas_assert (mips_pic == NO_PIC
5667 || (! HAVE_NEWABI
5668 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
5669 || (! mips_in_shared
5670 && strcmp (S_GET_NAME (ep->X_add_symbol),
5671 "__gnu_local_gp") == 0));
5672 }
5673
5674 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
5675 }
5676
5677 /* Generate a sequence of instructions to do a load or store from a constant
5678 offset off of a base register (breg) into/from a target register (treg),
5679 using AT if necessary. */
5680 static void
5681 macro_build_ldst_constoffset (expressionS *ep, const char *op,
5682 int treg, int breg, int dbl)
5683 {
5684 gas_assert (ep->X_op == O_constant);
5685
5686 /* Sign-extending 32-bit constants makes their handling easier. */
5687 if (!dbl)
5688 normalize_constant_expr (ep);
5689
5690 /* Right now, this routine can only handle signed 32-bit constants. */
5691 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
5692 as_warn (_("operand overflow"));
5693
5694 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
5695 {
5696 /* Signed 16-bit offset will fit in the op. Easy! */
5697 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
5698 }
5699 else
5700 {
5701 /* 32-bit offset, need multiple instructions and AT, like:
5702 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
5703 addu $tempreg,$tempreg,$breg
5704 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
5705 to handle the complete offset. */
5706 macro_build_lui (ep, AT);
5707 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
5708 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
5709
5710 if (!mips_opts.at)
5711 as_bad (_("Macro used $at after \".set noat\""));
5712 }
5713 }
5714
5715 /* set_at()
5716 * Generates code to set the $at register to true (one)
5717 * if reg is less than the immediate expression.
5718 */
5719 static void
5720 set_at (int reg, int unsignedp)
5721 {
5722 if (imm_expr.X_op == O_constant
5723 && imm_expr.X_add_number >= -0x8000
5724 && imm_expr.X_add_number < 0x8000)
5725 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
5726 AT, reg, BFD_RELOC_LO16);
5727 else
5728 {
5729 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
5730 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
5731 }
5732 }
5733
5734 /* Warn if an expression is not a constant. */
5735
5736 static void
5737 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
5738 {
5739 if (ex->X_op == O_big)
5740 as_bad (_("unsupported large constant"));
5741 else if (ex->X_op != O_constant)
5742 as_bad (_("Instruction %s requires absolute expression"),
5743 ip->insn_mo->name);
5744
5745 if (HAVE_32BIT_GPRS)
5746 normalize_constant_expr (ex);
5747 }
5748
5749 /* Count the leading zeroes by performing a binary chop. This is a
5750 bulky bit of source, but performance is a LOT better for the
5751 majority of values than a simple loop to count the bits:
5752 for (lcnt = 0; (lcnt < 32); lcnt++)
5753 if ((v) & (1 << (31 - lcnt)))
5754 break;
5755 However it is not code size friendly, and the gain will drop a bit
5756 on certain cached systems.
5757 */
5758 #define COUNT_TOP_ZEROES(v) \
5759 (((v) & ~0xffff) == 0 \
5760 ? ((v) & ~0xff) == 0 \
5761 ? ((v) & ~0xf) == 0 \
5762 ? ((v) & ~0x3) == 0 \
5763 ? ((v) & ~0x1) == 0 \
5764 ? !(v) \
5765 ? 32 \
5766 : 31 \
5767 : 30 \
5768 : ((v) & ~0x7) == 0 \
5769 ? 29 \
5770 : 28 \
5771 : ((v) & ~0x3f) == 0 \
5772 ? ((v) & ~0x1f) == 0 \
5773 ? 27 \
5774 : 26 \
5775 : ((v) & ~0x7f) == 0 \
5776 ? 25 \
5777 : 24 \
5778 : ((v) & ~0xfff) == 0 \
5779 ? ((v) & ~0x3ff) == 0 \
5780 ? ((v) & ~0x1ff) == 0 \
5781 ? 23 \
5782 : 22 \
5783 : ((v) & ~0x7ff) == 0 \
5784 ? 21 \
5785 : 20 \
5786 : ((v) & ~0x3fff) == 0 \
5787 ? ((v) & ~0x1fff) == 0 \
5788 ? 19 \
5789 : 18 \
5790 : ((v) & ~0x7fff) == 0 \
5791 ? 17 \
5792 : 16 \
5793 : ((v) & ~0xffffff) == 0 \
5794 ? ((v) & ~0xfffff) == 0 \
5795 ? ((v) & ~0x3ffff) == 0 \
5796 ? ((v) & ~0x1ffff) == 0 \
5797 ? 15 \
5798 : 14 \
5799 : ((v) & ~0x7ffff) == 0 \
5800 ? 13 \
5801 : 12 \
5802 : ((v) & ~0x3fffff) == 0 \
5803 ? ((v) & ~0x1fffff) == 0 \
5804 ? 11 \
5805 : 10 \
5806 : ((v) & ~0x7fffff) == 0 \
5807 ? 9 \
5808 : 8 \
5809 : ((v) & ~0xfffffff) == 0 \
5810 ? ((v) & ~0x3ffffff) == 0 \
5811 ? ((v) & ~0x1ffffff) == 0 \
5812 ? 7 \
5813 : 6 \
5814 : ((v) & ~0x7ffffff) == 0 \
5815 ? 5 \
5816 : 4 \
5817 : ((v) & ~0x3fffffff) == 0 \
5818 ? ((v) & ~0x1fffffff) == 0 \
5819 ? 3 \
5820 : 2 \
5821 : ((v) & ~0x7fffffff) == 0 \
5822 ? 1 \
5823 : 0)
5824
5825 /* load_register()
5826 * This routine generates the least number of instructions necessary to load
5827 * an absolute expression value into a register.
5828 */
5829 static void
5830 load_register (int reg, expressionS *ep, int dbl)
5831 {
5832 int freg;
5833 expressionS hi32, lo32;
5834
5835 if (ep->X_op != O_big)
5836 {
5837 gas_assert (ep->X_op == O_constant);
5838
5839 /* Sign-extending 32-bit constants makes their handling easier. */
5840 if (!dbl)
5841 normalize_constant_expr (ep);
5842
5843 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
5844 {
5845 /* We can handle 16 bit signed values with an addiu to
5846 $zero. No need to ever use daddiu here, since $zero and
5847 the result are always correct in 32 bit mode. */
5848 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
5849 return;
5850 }
5851 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
5852 {
5853 /* We can handle 16 bit unsigned values with an ori to
5854 $zero. */
5855 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
5856 return;
5857 }
5858 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
5859 {
5860 /* 32 bit values require an lui. */
5861 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
5862 if ((ep->X_add_number & 0xffff) != 0)
5863 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
5864 return;
5865 }
5866 }
5867
5868 /* The value is larger than 32 bits. */
5869
5870 if (!dbl || HAVE_32BIT_GPRS)
5871 {
5872 char value[32];
5873
5874 sprintf_vma (value, ep->X_add_number);
5875 as_bad (_("Number (0x%s) larger than 32 bits"), value);
5876 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
5877 return;
5878 }
5879
5880 if (ep->X_op != O_big)
5881 {
5882 hi32 = *ep;
5883 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
5884 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
5885 hi32.X_add_number &= 0xffffffff;
5886 lo32 = *ep;
5887 lo32.X_add_number &= 0xffffffff;
5888 }
5889 else
5890 {
5891 gas_assert (ep->X_add_number > 2);
5892 if (ep->X_add_number == 3)
5893 generic_bignum[3] = 0;
5894 else if (ep->X_add_number > 4)
5895 as_bad (_("Number larger than 64 bits"));
5896 lo32.X_op = O_constant;
5897 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
5898 hi32.X_op = O_constant;
5899 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
5900 }
5901
5902 if (hi32.X_add_number == 0)
5903 freg = 0;
5904 else
5905 {
5906 int shift, bit;
5907 unsigned long hi, lo;
5908
5909 if (hi32.X_add_number == (offsetT) 0xffffffff)
5910 {
5911 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
5912 {
5913 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
5914 return;
5915 }
5916 if (lo32.X_add_number & 0x80000000)
5917 {
5918 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
5919 if (lo32.X_add_number & 0xffff)
5920 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
5921 return;
5922 }
5923 }
5924
5925 /* Check for 16bit shifted constant. We know that hi32 is
5926 non-zero, so start the mask on the first bit of the hi32
5927 value. */
5928 shift = 17;
5929 do
5930 {
5931 unsigned long himask, lomask;
5932
5933 if (shift < 32)
5934 {
5935 himask = 0xffff >> (32 - shift);
5936 lomask = (0xffff << shift) & 0xffffffff;
5937 }
5938 else
5939 {
5940 himask = 0xffff << (shift - 32);
5941 lomask = 0;
5942 }
5943 if ((hi32.X_add_number & ~(offsetT) himask) == 0
5944 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
5945 {
5946 expressionS tmp;
5947
5948 tmp.X_op = O_constant;
5949 if (shift < 32)
5950 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
5951 | (lo32.X_add_number >> shift));
5952 else
5953 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
5954 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
5955 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
5956 reg, reg, (shift >= 32) ? shift - 32 : shift);
5957 return;
5958 }
5959 ++shift;
5960 }
5961 while (shift <= (64 - 16));
5962
5963 /* Find the bit number of the lowest one bit, and store the
5964 shifted value in hi/lo. */
5965 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
5966 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
5967 if (lo != 0)
5968 {
5969 bit = 0;
5970 while ((lo & 1) == 0)
5971 {
5972 lo >>= 1;
5973 ++bit;
5974 }
5975 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
5976 hi >>= bit;
5977 }
5978 else
5979 {
5980 bit = 32;
5981 while ((hi & 1) == 0)
5982 {
5983 hi >>= 1;
5984 ++bit;
5985 }
5986 lo = hi;
5987 hi = 0;
5988 }
5989
5990 /* Optimize if the shifted value is a (power of 2) - 1. */
5991 if ((hi == 0 && ((lo + 1) & lo) == 0)
5992 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
5993 {
5994 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
5995 if (shift != 0)
5996 {
5997 expressionS tmp;
5998
5999 /* This instruction will set the register to be all
6000 ones. */
6001 tmp.X_op = O_constant;
6002 tmp.X_add_number = (offsetT) -1;
6003 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
6004 if (bit != 0)
6005 {
6006 bit += shift;
6007 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
6008 reg, reg, (bit >= 32) ? bit - 32 : bit);
6009 }
6010 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
6011 reg, reg, (shift >= 32) ? shift - 32 : shift);
6012 return;
6013 }
6014 }
6015
6016 /* Sign extend hi32 before calling load_register, because we can
6017 generally get better code when we load a sign extended value. */
6018 if ((hi32.X_add_number & 0x80000000) != 0)
6019 hi32.X_add_number |= ~(offsetT) 0xffffffff;
6020 load_register (reg, &hi32, 0);
6021 freg = reg;
6022 }
6023 if ((lo32.X_add_number & 0xffff0000) == 0)
6024 {
6025 if (freg != 0)
6026 {
6027 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
6028 freg = reg;
6029 }
6030 }
6031 else
6032 {
6033 expressionS mid16;
6034
6035 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
6036 {
6037 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
6038 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
6039 return;
6040 }
6041
6042 if (freg != 0)
6043 {
6044 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
6045 freg = reg;
6046 }
6047 mid16 = lo32;
6048 mid16.X_add_number >>= 16;
6049 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
6050 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
6051 freg = reg;
6052 }
6053 if ((lo32.X_add_number & 0xffff) != 0)
6054 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
6055 }
6056
6057 static inline void
6058 load_delay_nop (void)
6059 {
6060 if (!gpr_interlocks)
6061 macro_build (NULL, "nop", "");
6062 }
6063
6064 /* Load an address into a register. */
6065
6066 static void
6067 load_address (int reg, expressionS *ep, int *used_at)
6068 {
6069 if (ep->X_op != O_constant
6070 && ep->X_op != O_symbol)
6071 {
6072 as_bad (_("expression too complex"));
6073 ep->X_op = O_constant;
6074 }
6075
6076 if (ep->X_op == O_constant)
6077 {
6078 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
6079 return;
6080 }
6081
6082 if (mips_pic == NO_PIC)
6083 {
6084 /* If this is a reference to a GP relative symbol, we want
6085 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
6086 Otherwise we want
6087 lui $reg,<sym> (BFD_RELOC_HI16_S)
6088 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
6089 If we have an addend, we always use the latter form.
6090
6091 With 64bit address space and a usable $at we want
6092 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6093 lui $at,<sym> (BFD_RELOC_HI16_S)
6094 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
6095 daddiu $at,<sym> (BFD_RELOC_LO16)
6096 dsll32 $reg,0
6097 daddu $reg,$reg,$at
6098
6099 If $at is already in use, we use a path which is suboptimal
6100 on superscalar processors.
6101 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6102 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
6103 dsll $reg,16
6104 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
6105 dsll $reg,16
6106 daddiu $reg,<sym> (BFD_RELOC_LO16)
6107
6108 For GP relative symbols in 64bit address space we can use
6109 the same sequence as in 32bit address space. */
6110 if (HAVE_64BIT_SYMBOLS)
6111 {
6112 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
6113 && !nopic_need_relax (ep->X_add_symbol, 1))
6114 {
6115 relax_start (ep->X_add_symbol);
6116 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
6117 mips_gp_register, BFD_RELOC_GPREL16);
6118 relax_switch ();
6119 }
6120
6121 if (*used_at == 0 && mips_opts.at)
6122 {
6123 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
6124 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
6125 macro_build (ep, "daddiu", "t,r,j", reg, reg,
6126 BFD_RELOC_MIPS_HIGHER);
6127 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
6128 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
6129 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
6130 *used_at = 1;
6131 }
6132 else
6133 {
6134 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
6135 macro_build (ep, "daddiu", "t,r,j", reg, reg,
6136 BFD_RELOC_MIPS_HIGHER);
6137 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
6138 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
6139 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
6140 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
6141 }
6142
6143 if (mips_relax.sequence)
6144 relax_end ();
6145 }
6146 else
6147 {
6148 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
6149 && !nopic_need_relax (ep->X_add_symbol, 1))
6150 {
6151 relax_start (ep->X_add_symbol);
6152 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
6153 mips_gp_register, BFD_RELOC_GPREL16);
6154 relax_switch ();
6155 }
6156 macro_build_lui (ep, reg);
6157 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
6158 reg, reg, BFD_RELOC_LO16);
6159 if (mips_relax.sequence)
6160 relax_end ();
6161 }
6162 }
6163 else if (!mips_big_got)
6164 {
6165 expressionS ex;
6166
6167 /* If this is a reference to an external symbol, we want
6168 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6169 Otherwise we want
6170 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6171 nop
6172 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
6173 If there is a constant, it must be added in after.
6174
6175 If we have NewABI, we want
6176 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
6177 unless we're referencing a global symbol with a non-zero
6178 offset, in which case cst must be added separately. */
6179 if (HAVE_NEWABI)
6180 {
6181 if (ep->X_add_number)
6182 {
6183 ex.X_add_number = ep->X_add_number;
6184 ep->X_add_number = 0;
6185 relax_start (ep->X_add_symbol);
6186 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
6187 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
6188 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
6189 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6190 ex.X_op = O_constant;
6191 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
6192 reg, reg, BFD_RELOC_LO16);
6193 ep->X_add_number = ex.X_add_number;
6194 relax_switch ();
6195 }
6196 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
6197 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
6198 if (mips_relax.sequence)
6199 relax_end ();
6200 }
6201 else
6202 {
6203 ex.X_add_number = ep->X_add_number;
6204 ep->X_add_number = 0;
6205 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
6206 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6207 load_delay_nop ();
6208 relax_start (ep->X_add_symbol);
6209 relax_switch ();
6210 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
6211 BFD_RELOC_LO16);
6212 relax_end ();
6213
6214 if (ex.X_add_number != 0)
6215 {
6216 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
6217 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6218 ex.X_op = O_constant;
6219 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
6220 reg, reg, BFD_RELOC_LO16);
6221 }
6222 }
6223 }
6224 else if (mips_big_got)
6225 {
6226 expressionS ex;
6227
6228 /* This is the large GOT case. If this is a reference to an
6229 external symbol, we want
6230 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6231 addu $reg,$reg,$gp
6232 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
6233
6234 Otherwise, for a reference to a local symbol in old ABI, we want
6235 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6236 nop
6237 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
6238 If there is a constant, it must be added in after.
6239
6240 In the NewABI, for local symbols, with or without offsets, we want:
6241 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6242 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
6243 */
6244 if (HAVE_NEWABI)
6245 {
6246 ex.X_add_number = ep->X_add_number;
6247 ep->X_add_number = 0;
6248 relax_start (ep->X_add_symbol);
6249 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
6250 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6251 reg, reg, mips_gp_register);
6252 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
6253 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
6254 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
6255 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6256 else if (ex.X_add_number)
6257 {
6258 ex.X_op = O_constant;
6259 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
6260 BFD_RELOC_LO16);
6261 }
6262
6263 ep->X_add_number = ex.X_add_number;
6264 relax_switch ();
6265 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
6266 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6267 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
6268 BFD_RELOC_MIPS_GOT_OFST);
6269 relax_end ();
6270 }
6271 else
6272 {
6273 ex.X_add_number = ep->X_add_number;
6274 ep->X_add_number = 0;
6275 relax_start (ep->X_add_symbol);
6276 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
6277 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6278 reg, reg, mips_gp_register);
6279 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
6280 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
6281 relax_switch ();
6282 if (reg_needs_delay (mips_gp_register))
6283 {
6284 /* We need a nop before loading from $gp. This special
6285 check is required because the lui which starts the main
6286 instruction stream does not refer to $gp, and so will not
6287 insert the nop which may be required. */
6288 macro_build (NULL, "nop", "");
6289 }
6290 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
6291 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6292 load_delay_nop ();
6293 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
6294 BFD_RELOC_LO16);
6295 relax_end ();
6296
6297 if (ex.X_add_number != 0)
6298 {
6299 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
6300 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6301 ex.X_op = O_constant;
6302 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
6303 BFD_RELOC_LO16);
6304 }
6305 }
6306 }
6307 else
6308 abort ();
6309
6310 if (!mips_opts.at && *used_at == 1)
6311 as_bad (_("Macro used $at after \".set noat\""));
6312 }
6313
6314 /* Move the contents of register SOURCE into register DEST. */
6315
6316 static void
6317 move_register (int dest, int source)
6318 {
6319 /* Prefer to use a 16-bit microMIPS instruction unless the previous
6320 instruction specifically requires a 32-bit one. */
6321 if (mips_opts.micromips
6322 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
6323 macro_build (NULL, "move", "mp,mj", dest, source);
6324 else
6325 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
6326 dest, source, 0);
6327 }
6328
6329 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
6330 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
6331 The two alternatives are:
6332
6333 Global symbol Local sybmol
6334 ------------- ------------
6335 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
6336 ... ...
6337 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
6338
6339 load_got_offset emits the first instruction and add_got_offset
6340 emits the second for a 16-bit offset or add_got_offset_hilo emits
6341 a sequence to add a 32-bit offset using a scratch register. */
6342
6343 static void
6344 load_got_offset (int dest, expressionS *local)
6345 {
6346 expressionS global;
6347
6348 global = *local;
6349 global.X_add_number = 0;
6350
6351 relax_start (local->X_add_symbol);
6352 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
6353 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6354 relax_switch ();
6355 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
6356 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6357 relax_end ();
6358 }
6359
6360 static void
6361 add_got_offset (int dest, expressionS *local)
6362 {
6363 expressionS global;
6364
6365 global.X_op = O_constant;
6366 global.X_op_symbol = NULL;
6367 global.X_add_symbol = NULL;
6368 global.X_add_number = local->X_add_number;
6369
6370 relax_start (local->X_add_symbol);
6371 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
6372 dest, dest, BFD_RELOC_LO16);
6373 relax_switch ();
6374 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
6375 relax_end ();
6376 }
6377
6378 static void
6379 add_got_offset_hilo (int dest, expressionS *local, int tmp)
6380 {
6381 expressionS global;
6382 int hold_mips_optimize;
6383
6384 global.X_op = O_constant;
6385 global.X_op_symbol = NULL;
6386 global.X_add_symbol = NULL;
6387 global.X_add_number = local->X_add_number;
6388
6389 relax_start (local->X_add_symbol);
6390 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
6391 relax_switch ();
6392 /* Set mips_optimize around the lui instruction to avoid
6393 inserting an unnecessary nop after the lw. */
6394 hold_mips_optimize = mips_optimize;
6395 mips_optimize = 2;
6396 macro_build_lui (&global, tmp);
6397 mips_optimize = hold_mips_optimize;
6398 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
6399 relax_end ();
6400
6401 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
6402 }
6403
6404 /* Emit a sequence of instructions to emulate a branch likely operation.
6405 BR is an ordinary branch corresponding to one to be emulated. BRNEG
6406 is its complementing branch with the original condition negated.
6407 CALL is set if the original branch specified the link operation.
6408 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
6409
6410 Code like this is produced in the noreorder mode:
6411
6412 BRNEG <args>, 1f
6413 nop
6414 b <sym>
6415 delay slot (executed only if branch taken)
6416 1:
6417
6418 or, if CALL is set:
6419
6420 BRNEG <args>, 1f
6421 nop
6422 bal <sym>
6423 delay slot (executed only if branch taken)
6424 1:
6425
6426 In the reorder mode the delay slot would be filled with a nop anyway,
6427 so code produced is simply:
6428
6429 BR <args>, <sym>
6430 nop
6431
6432 This function is used when producing code for the microMIPS ASE that
6433 does not implement branch likely instructions in hardware. */
6434
6435 static void
6436 macro_build_branch_likely (const char *br, const char *brneg,
6437 int call, expressionS *ep, const char *fmt,
6438 unsigned int sreg, unsigned int treg)
6439 {
6440 int noreorder = mips_opts.noreorder;
6441 expressionS expr1;
6442
6443 gas_assert (mips_opts.micromips);
6444 start_noreorder ();
6445 if (noreorder)
6446 {
6447 micromips_label_expr (&expr1);
6448 macro_build (&expr1, brneg, fmt, sreg, treg);
6449 macro_build (NULL, "nop", "");
6450 macro_build (ep, call ? "bal" : "b", "p");
6451
6452 /* Set to true so that append_insn adds a label. */
6453 emit_branch_likely_macro = TRUE;
6454 }
6455 else
6456 {
6457 macro_build (ep, br, fmt, sreg, treg);
6458 macro_build (NULL, "nop", "");
6459 }
6460 end_noreorder ();
6461 }
6462
6463 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
6464 the condition code tested. EP specifies the branch target. */
6465
6466 static void
6467 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
6468 {
6469 const int call = 0;
6470 const char *brneg;
6471 const char *br;
6472
6473 switch (type)
6474 {
6475 case M_BC1FL:
6476 br = "bc1f";
6477 brneg = "bc1t";
6478 break;
6479 case M_BC1TL:
6480 br = "bc1t";
6481 brneg = "bc1f";
6482 break;
6483 case M_BC2FL:
6484 br = "bc2f";
6485 brneg = "bc2t";
6486 break;
6487 case M_BC2TL:
6488 br = "bc2t";
6489 brneg = "bc2f";
6490 break;
6491 default:
6492 abort ();
6493 }
6494 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
6495 }
6496
6497 /* Emit a two-argument branch macro specified by TYPE, using SREG as
6498 the register tested. EP specifies the branch target. */
6499
6500 static void
6501 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
6502 {
6503 const char *brneg = NULL;
6504 const char *br;
6505 int call = 0;
6506
6507 switch (type)
6508 {
6509 case M_BGEZ:
6510 br = "bgez";
6511 break;
6512 case M_BGEZL:
6513 br = mips_opts.micromips ? "bgez" : "bgezl";
6514 brneg = "bltz";
6515 break;
6516 case M_BGEZALL:
6517 gas_assert (mips_opts.micromips);
6518 br = "bgezals";
6519 brneg = "bltz";
6520 call = 1;
6521 break;
6522 case M_BGTZ:
6523 br = "bgtz";
6524 break;
6525 case M_BGTZL:
6526 br = mips_opts.micromips ? "bgtz" : "bgtzl";
6527 brneg = "blez";
6528 break;
6529 case M_BLEZ:
6530 br = "blez";
6531 break;
6532 case M_BLEZL:
6533 br = mips_opts.micromips ? "blez" : "blezl";
6534 brneg = "bgtz";
6535 break;
6536 case M_BLTZ:
6537 br = "bltz";
6538 break;
6539 case M_BLTZL:
6540 br = mips_opts.micromips ? "bltz" : "bltzl";
6541 brneg = "bgez";
6542 break;
6543 case M_BLTZALL:
6544 gas_assert (mips_opts.micromips);
6545 br = "bltzals";
6546 brneg = "bgez";
6547 call = 1;
6548 break;
6549 default:
6550 abort ();
6551 }
6552 if (mips_opts.micromips && brneg)
6553 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
6554 else
6555 macro_build (ep, br, "s,p", sreg);
6556 }
6557
6558 /* Emit a three-argument branch macro specified by TYPE, using SREG and
6559 TREG as the registers tested. EP specifies the branch target. */
6560
6561 static void
6562 macro_build_branch_rsrt (int type, expressionS *ep,
6563 unsigned int sreg, unsigned int treg)
6564 {
6565 const char *brneg = NULL;
6566 const int call = 0;
6567 const char *br;
6568
6569 switch (type)
6570 {
6571 case M_BEQ:
6572 case M_BEQ_I:
6573 br = "beq";
6574 break;
6575 case M_BEQL:
6576 case M_BEQL_I:
6577 br = mips_opts.micromips ? "beq" : "beql";
6578 brneg = "bne";
6579 break;
6580 case M_BNE:
6581 case M_BNE_I:
6582 br = "bne";
6583 break;
6584 case M_BNEL:
6585 case M_BNEL_I:
6586 br = mips_opts.micromips ? "bne" : "bnel";
6587 brneg = "beq";
6588 break;
6589 default:
6590 abort ();
6591 }
6592 if (mips_opts.micromips && brneg)
6593 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
6594 else
6595 macro_build (ep, br, "s,t,p", sreg, treg);
6596 }
6597
6598 /*
6599 * Build macros
6600 * This routine implements the seemingly endless macro or synthesized
6601 * instructions and addressing modes in the mips assembly language. Many
6602 * of these macros are simple and are similar to each other. These could
6603 * probably be handled by some kind of table or grammar approach instead of
6604 * this verbose method. Others are not simple macros but are more like
6605 * optimizing code generation.
6606 * One interesting optimization is when several store macros appear
6607 * consecutively that would load AT with the upper half of the same address.
6608 * The ensuing load upper instructions are ommited. This implies some kind
6609 * of global optimization. We currently only optimize within a single macro.
6610 * For many of the load and store macros if the address is specified as a
6611 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
6612 * first load register 'at' with zero and use it as the base register. The
6613 * mips assembler simply uses register $zero. Just one tiny optimization
6614 * we're missing.
6615 */
6616 static void
6617 macro (struct mips_cl_insn *ip)
6618 {
6619 unsigned int treg, sreg, dreg, breg;
6620 unsigned int tempreg;
6621 int mask;
6622 int used_at = 0;
6623 expressionS label_expr;
6624 expressionS expr1;
6625 expressionS *ep;
6626 const char *s;
6627 const char *s2;
6628 const char *fmt;
6629 int likely = 0;
6630 int coproc = 0;
6631 int offbits = 16;
6632 int call = 0;
6633 int jals = 0;
6634 int dbl = 0;
6635 int imm = 0;
6636 int ust = 0;
6637 int lp = 0;
6638 int ab = 0;
6639 int off;
6640 offsetT maxnum;
6641 bfd_reloc_code_real_type r;
6642 int hold_mips_optimize;
6643
6644 gas_assert (! mips_opts.mips16);
6645
6646 treg = EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
6647 dreg = EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
6648 sreg = breg = EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
6649 mask = ip->insn_mo->mask;
6650
6651 label_expr.X_op = O_constant;
6652 label_expr.X_op_symbol = NULL;
6653 label_expr.X_add_symbol = NULL;
6654 label_expr.X_add_number = 0;
6655
6656 expr1.X_op = O_constant;
6657 expr1.X_op_symbol = NULL;
6658 expr1.X_add_symbol = NULL;
6659 expr1.X_add_number = 1;
6660
6661 switch (mask)
6662 {
6663 case M_DABS:
6664 dbl = 1;
6665 case M_ABS:
6666 /* bgez $a0,1f
6667 move v0,$a0
6668 sub v0,$zero,$a0
6669 1:
6670 */
6671
6672 start_noreorder ();
6673
6674 if (mips_opts.micromips)
6675 micromips_label_expr (&label_expr);
6676 else
6677 label_expr.X_add_number = 8;
6678 macro_build (&label_expr, "bgez", "s,p", sreg);
6679 if (dreg == sreg)
6680 macro_build (NULL, "nop", "");
6681 else
6682 move_register (dreg, sreg);
6683 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
6684 if (mips_opts.micromips)
6685 micromips_add_label ();
6686
6687 end_noreorder ();
6688 break;
6689
6690 case M_ADD_I:
6691 s = "addi";
6692 s2 = "add";
6693 goto do_addi;
6694 case M_ADDU_I:
6695 s = "addiu";
6696 s2 = "addu";
6697 goto do_addi;
6698 case M_DADD_I:
6699 dbl = 1;
6700 s = "daddi";
6701 s2 = "dadd";
6702 if (!mips_opts.micromips)
6703 goto do_addi;
6704 if (imm_expr.X_op == O_constant
6705 && imm_expr.X_add_number >= -0x200
6706 && imm_expr.X_add_number < 0x200)
6707 {
6708 macro_build (NULL, s, "t,r,.", treg, sreg, imm_expr.X_add_number);
6709 break;
6710 }
6711 goto do_addi_i;
6712 case M_DADDU_I:
6713 dbl = 1;
6714 s = "daddiu";
6715 s2 = "daddu";
6716 do_addi:
6717 if (imm_expr.X_op == O_constant
6718 && imm_expr.X_add_number >= -0x8000
6719 && imm_expr.X_add_number < 0x8000)
6720 {
6721 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
6722 break;
6723 }
6724 do_addi_i:
6725 used_at = 1;
6726 load_register (AT, &imm_expr, dbl);
6727 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
6728 break;
6729
6730 case M_AND_I:
6731 s = "andi";
6732 s2 = "and";
6733 goto do_bit;
6734 case M_OR_I:
6735 s = "ori";
6736 s2 = "or";
6737 goto do_bit;
6738 case M_NOR_I:
6739 s = "";
6740 s2 = "nor";
6741 goto do_bit;
6742 case M_XOR_I:
6743 s = "xori";
6744 s2 = "xor";
6745 do_bit:
6746 if (imm_expr.X_op == O_constant
6747 && imm_expr.X_add_number >= 0
6748 && imm_expr.X_add_number < 0x10000)
6749 {
6750 if (mask != M_NOR_I)
6751 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
6752 else
6753 {
6754 macro_build (&imm_expr, "ori", "t,r,i",
6755 treg, sreg, BFD_RELOC_LO16);
6756 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
6757 }
6758 break;
6759 }
6760
6761 used_at = 1;
6762 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
6763 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
6764 break;
6765
6766 case M_BALIGN:
6767 switch (imm_expr.X_add_number)
6768 {
6769 case 0:
6770 macro_build (NULL, "nop", "");
6771 break;
6772 case 2:
6773 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg);
6774 break;
6775 case 1:
6776 case 3:
6777 macro_build (NULL, "balign", "t,s,2", treg, sreg,
6778 (int) imm_expr.X_add_number);
6779 break;
6780 default:
6781 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
6782 (unsigned long) imm_expr.X_add_number);
6783 break;
6784 }
6785 break;
6786
6787 case M_BC1FL:
6788 case M_BC1TL:
6789 case M_BC2FL:
6790 case M_BC2TL:
6791 gas_assert (mips_opts.micromips);
6792 macro_build_branch_ccl (mask, &offset_expr,
6793 EXTRACT_OPERAND (1, BCC, *ip));
6794 break;
6795
6796 case M_BEQ_I:
6797 case M_BEQL_I:
6798 case M_BNE_I:
6799 case M_BNEL_I:
6800 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6801 treg = 0;
6802 else
6803 {
6804 treg = AT;
6805 used_at = 1;
6806 load_register (treg, &imm_expr, HAVE_64BIT_GPRS);
6807 }
6808 /* Fall through. */
6809 case M_BEQL:
6810 case M_BNEL:
6811 macro_build_branch_rsrt (mask, &offset_expr, sreg, treg);
6812 break;
6813
6814 case M_BGEL:
6815 likely = 1;
6816 case M_BGE:
6817 if (treg == 0)
6818 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, sreg);
6819 else if (sreg == 0)
6820 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, treg);
6821 else
6822 {
6823 used_at = 1;
6824 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
6825 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6826 &offset_expr, AT, ZERO);
6827 }
6828 break;
6829
6830 case M_BGEZL:
6831 case M_BGEZALL:
6832 case M_BGTZL:
6833 case M_BLEZL:
6834 case M_BLTZL:
6835 case M_BLTZALL:
6836 macro_build_branch_rs (mask, &offset_expr, sreg);
6837 break;
6838
6839 case M_BGTL_I:
6840 likely = 1;
6841 case M_BGT_I:
6842 /* Check for > max integer. */
6843 maxnum = 0x7fffffff;
6844 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
6845 {
6846 maxnum <<= 16;
6847 maxnum |= 0xffff;
6848 maxnum <<= 16;
6849 maxnum |= 0xffff;
6850 }
6851 if (imm_expr.X_op == O_constant
6852 && imm_expr.X_add_number >= maxnum
6853 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
6854 {
6855 do_false:
6856 /* Result is always false. */
6857 if (! likely)
6858 macro_build (NULL, "nop", "");
6859 else
6860 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
6861 break;
6862 }
6863 if (imm_expr.X_op != O_constant)
6864 as_bad (_("Unsupported large constant"));
6865 ++imm_expr.X_add_number;
6866 /* FALLTHROUGH */
6867 case M_BGE_I:
6868 case M_BGEL_I:
6869 if (mask == M_BGEL_I)
6870 likely = 1;
6871 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6872 {
6873 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
6874 &offset_expr, sreg);
6875 break;
6876 }
6877 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
6878 {
6879 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
6880 &offset_expr, sreg);
6881 break;
6882 }
6883 maxnum = 0x7fffffff;
6884 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
6885 {
6886 maxnum <<= 16;
6887 maxnum |= 0xffff;
6888 maxnum <<= 16;
6889 maxnum |= 0xffff;
6890 }
6891 maxnum = - maxnum - 1;
6892 if (imm_expr.X_op == O_constant
6893 && imm_expr.X_add_number <= maxnum
6894 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
6895 {
6896 do_true:
6897 /* result is always true */
6898 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
6899 macro_build (&offset_expr, "b", "p");
6900 break;
6901 }
6902 used_at = 1;
6903 set_at (sreg, 0);
6904 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6905 &offset_expr, AT, ZERO);
6906 break;
6907
6908 case M_BGEUL:
6909 likely = 1;
6910 case M_BGEU:
6911 if (treg == 0)
6912 goto do_true;
6913 else if (sreg == 0)
6914 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6915 &offset_expr, ZERO, treg);
6916 else
6917 {
6918 used_at = 1;
6919 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
6920 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6921 &offset_expr, AT, ZERO);
6922 }
6923 break;
6924
6925 case M_BGTUL_I:
6926 likely = 1;
6927 case M_BGTU_I:
6928 if (sreg == 0
6929 || (HAVE_32BIT_GPRS
6930 && imm_expr.X_op == O_constant
6931 && imm_expr.X_add_number == -1))
6932 goto do_false;
6933 if (imm_expr.X_op != O_constant)
6934 as_bad (_("Unsupported large constant"));
6935 ++imm_expr.X_add_number;
6936 /* FALLTHROUGH */
6937 case M_BGEU_I:
6938 case M_BGEUL_I:
6939 if (mask == M_BGEUL_I)
6940 likely = 1;
6941 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6942 goto do_true;
6943 else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
6944 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6945 &offset_expr, sreg, ZERO);
6946 else
6947 {
6948 used_at = 1;
6949 set_at (sreg, 1);
6950 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6951 &offset_expr, AT, ZERO);
6952 }
6953 break;
6954
6955 case M_BGTL:
6956 likely = 1;
6957 case M_BGT:
6958 if (treg == 0)
6959 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, sreg);
6960 else if (sreg == 0)
6961 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, treg);
6962 else
6963 {
6964 used_at = 1;
6965 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
6966 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6967 &offset_expr, AT, ZERO);
6968 }
6969 break;
6970
6971 case M_BGTUL:
6972 likely = 1;
6973 case M_BGTU:
6974 if (treg == 0)
6975 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6976 &offset_expr, sreg, ZERO);
6977 else if (sreg == 0)
6978 goto do_false;
6979 else
6980 {
6981 used_at = 1;
6982 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
6983 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6984 &offset_expr, AT, ZERO);
6985 }
6986 break;
6987
6988 case M_BLEL:
6989 likely = 1;
6990 case M_BLE:
6991 if (treg == 0)
6992 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, sreg);
6993 else if (sreg == 0)
6994 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, treg);
6995 else
6996 {
6997 used_at = 1;
6998 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
6999 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
7000 &offset_expr, AT, ZERO);
7001 }
7002 break;
7003
7004 case M_BLEL_I:
7005 likely = 1;
7006 case M_BLE_I:
7007 maxnum = 0x7fffffff;
7008 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
7009 {
7010 maxnum <<= 16;
7011 maxnum |= 0xffff;
7012 maxnum <<= 16;
7013 maxnum |= 0xffff;
7014 }
7015 if (imm_expr.X_op == O_constant
7016 && imm_expr.X_add_number >= maxnum
7017 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
7018 goto do_true;
7019 if (imm_expr.X_op != O_constant)
7020 as_bad (_("Unsupported large constant"));
7021 ++imm_expr.X_add_number;
7022 /* FALLTHROUGH */
7023 case M_BLT_I:
7024 case M_BLTL_I:
7025 if (mask == M_BLTL_I)
7026 likely = 1;
7027 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7028 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, sreg);
7029 else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
7030 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, sreg);
7031 else
7032 {
7033 used_at = 1;
7034 set_at (sreg, 0);
7035 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
7036 &offset_expr, AT, ZERO);
7037 }
7038 break;
7039
7040 case M_BLEUL:
7041 likely = 1;
7042 case M_BLEU:
7043 if (treg == 0)
7044 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
7045 &offset_expr, sreg, ZERO);
7046 else if (sreg == 0)
7047 goto do_true;
7048 else
7049 {
7050 used_at = 1;
7051 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
7052 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
7053 &offset_expr, AT, ZERO);
7054 }
7055 break;
7056
7057 case M_BLEUL_I:
7058 likely = 1;
7059 case M_BLEU_I:
7060 if (sreg == 0
7061 || (HAVE_32BIT_GPRS
7062 && imm_expr.X_op == O_constant
7063 && imm_expr.X_add_number == -1))
7064 goto do_true;
7065 if (imm_expr.X_op != O_constant)
7066 as_bad (_("Unsupported large constant"));
7067 ++imm_expr.X_add_number;
7068 /* FALLTHROUGH */
7069 case M_BLTU_I:
7070 case M_BLTUL_I:
7071 if (mask == M_BLTUL_I)
7072 likely = 1;
7073 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7074 goto do_false;
7075 else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
7076 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
7077 &offset_expr, sreg, ZERO);
7078 else
7079 {
7080 used_at = 1;
7081 set_at (sreg, 1);
7082 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
7083 &offset_expr, AT, ZERO);
7084 }
7085 break;
7086
7087 case M_BLTL:
7088 likely = 1;
7089 case M_BLT:
7090 if (treg == 0)
7091 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, sreg);
7092 else if (sreg == 0)
7093 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, treg);
7094 else
7095 {
7096 used_at = 1;
7097 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
7098 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
7099 &offset_expr, AT, ZERO);
7100 }
7101 break;
7102
7103 case M_BLTUL:
7104 likely = 1;
7105 case M_BLTU:
7106 if (treg == 0)
7107 goto do_false;
7108 else if (sreg == 0)
7109 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
7110 &offset_expr, ZERO, treg);
7111 else
7112 {
7113 used_at = 1;
7114 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
7115 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
7116 &offset_expr, AT, ZERO);
7117 }
7118 break;
7119
7120 case M_DEXT:
7121 {
7122 /* Use unsigned arithmetic. */
7123 addressT pos;
7124 addressT size;
7125
7126 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
7127 {
7128 as_bad (_("Unsupported large constant"));
7129 pos = size = 1;
7130 }
7131 else
7132 {
7133 pos = imm_expr.X_add_number;
7134 size = imm2_expr.X_add_number;
7135 }
7136
7137 if (pos > 63)
7138 {
7139 as_bad (_("Improper position (%lu)"), (unsigned long) pos);
7140 pos = 1;
7141 }
7142 if (size == 0 || size > 64 || (pos + size - 1) > 63)
7143 {
7144 as_bad (_("Improper extract size (%lu, position %lu)"),
7145 (unsigned long) size, (unsigned long) pos);
7146 size = 1;
7147 }
7148
7149 if (size <= 32 && pos < 32)
7150 {
7151 s = "dext";
7152 fmt = "t,r,+A,+C";
7153 }
7154 else if (size <= 32)
7155 {
7156 s = "dextu";
7157 fmt = "t,r,+E,+H";
7158 }
7159 else
7160 {
7161 s = "dextm";
7162 fmt = "t,r,+A,+G";
7163 }
7164 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
7165 (int) (size - 1));
7166 }
7167 break;
7168
7169 case M_DINS:
7170 {
7171 /* Use unsigned arithmetic. */
7172 addressT pos;
7173 addressT size;
7174
7175 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
7176 {
7177 as_bad (_("Unsupported large constant"));
7178 pos = size = 1;
7179 }
7180 else
7181 {
7182 pos = imm_expr.X_add_number;
7183 size = imm2_expr.X_add_number;
7184 }
7185
7186 if (pos > 63)
7187 {
7188 as_bad (_("Improper position (%lu)"), (unsigned long) pos);
7189 pos = 1;
7190 }
7191 if (size == 0 || size > 64 || (pos + size - 1) > 63)
7192 {
7193 as_bad (_("Improper insert size (%lu, position %lu)"),
7194 (unsigned long) size, (unsigned long) pos);
7195 size = 1;
7196 }
7197
7198 if (pos < 32 && (pos + size - 1) < 32)
7199 {
7200 s = "dins";
7201 fmt = "t,r,+A,+B";
7202 }
7203 else if (pos >= 32)
7204 {
7205 s = "dinsu";
7206 fmt = "t,r,+E,+F";
7207 }
7208 else
7209 {
7210 s = "dinsm";
7211 fmt = "t,r,+A,+F";
7212 }
7213 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
7214 (int) (pos + size - 1));
7215 }
7216 break;
7217
7218 case M_DDIV_3:
7219 dbl = 1;
7220 case M_DIV_3:
7221 s = "mflo";
7222 goto do_div3;
7223 case M_DREM_3:
7224 dbl = 1;
7225 case M_REM_3:
7226 s = "mfhi";
7227 do_div3:
7228 if (treg == 0)
7229 {
7230 as_warn (_("Divide by zero."));
7231 if (mips_trap)
7232 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
7233 else
7234 macro_build (NULL, "break", BRK_FMT, 7);
7235 break;
7236 }
7237
7238 start_noreorder ();
7239 if (mips_trap)
7240 {
7241 macro_build (NULL, "teq", TRAP_FMT, treg, ZERO, 7);
7242 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
7243 }
7244 else
7245 {
7246 if (mips_opts.micromips)
7247 micromips_label_expr (&label_expr);
7248 else
7249 label_expr.X_add_number = 8;
7250 macro_build (&label_expr, "bne", "s,t,p", treg, ZERO);
7251 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
7252 macro_build (NULL, "break", BRK_FMT, 7);
7253 if (mips_opts.micromips)
7254 micromips_add_label ();
7255 }
7256 expr1.X_add_number = -1;
7257 used_at = 1;
7258 load_register (AT, &expr1, dbl);
7259 if (mips_opts.micromips)
7260 micromips_label_expr (&label_expr);
7261 else
7262 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
7263 macro_build (&label_expr, "bne", "s,t,p", treg, AT);
7264 if (dbl)
7265 {
7266 expr1.X_add_number = 1;
7267 load_register (AT, &expr1, dbl);
7268 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
7269 }
7270 else
7271 {
7272 expr1.X_add_number = 0x80000000;
7273 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
7274 }
7275 if (mips_trap)
7276 {
7277 macro_build (NULL, "teq", TRAP_FMT, sreg, AT, 6);
7278 /* We want to close the noreorder block as soon as possible, so
7279 that later insns are available for delay slot filling. */
7280 end_noreorder ();
7281 }
7282 else
7283 {
7284 if (mips_opts.micromips)
7285 micromips_label_expr (&label_expr);
7286 else
7287 label_expr.X_add_number = 8;
7288 macro_build (&label_expr, "bne", "s,t,p", sreg, AT);
7289 macro_build (NULL, "nop", "");
7290
7291 /* We want to close the noreorder block as soon as possible, so
7292 that later insns are available for delay slot filling. */
7293 end_noreorder ();
7294
7295 macro_build (NULL, "break", BRK_FMT, 6);
7296 }
7297 if (mips_opts.micromips)
7298 micromips_add_label ();
7299 macro_build (NULL, s, MFHL_FMT, dreg);
7300 break;
7301
7302 case M_DIV_3I:
7303 s = "div";
7304 s2 = "mflo";
7305 goto do_divi;
7306 case M_DIVU_3I:
7307 s = "divu";
7308 s2 = "mflo";
7309 goto do_divi;
7310 case M_REM_3I:
7311 s = "div";
7312 s2 = "mfhi";
7313 goto do_divi;
7314 case M_REMU_3I:
7315 s = "divu";
7316 s2 = "mfhi";
7317 goto do_divi;
7318 case M_DDIV_3I:
7319 dbl = 1;
7320 s = "ddiv";
7321 s2 = "mflo";
7322 goto do_divi;
7323 case M_DDIVU_3I:
7324 dbl = 1;
7325 s = "ddivu";
7326 s2 = "mflo";
7327 goto do_divi;
7328 case M_DREM_3I:
7329 dbl = 1;
7330 s = "ddiv";
7331 s2 = "mfhi";
7332 goto do_divi;
7333 case M_DREMU_3I:
7334 dbl = 1;
7335 s = "ddivu";
7336 s2 = "mfhi";
7337 do_divi:
7338 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7339 {
7340 as_warn (_("Divide by zero."));
7341 if (mips_trap)
7342 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
7343 else
7344 macro_build (NULL, "break", BRK_FMT, 7);
7345 break;
7346 }
7347 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
7348 {
7349 if (strcmp (s2, "mflo") == 0)
7350 move_register (dreg, sreg);
7351 else
7352 move_register (dreg, ZERO);
7353 break;
7354 }
7355 if (imm_expr.X_op == O_constant
7356 && imm_expr.X_add_number == -1
7357 && s[strlen (s) - 1] != 'u')
7358 {
7359 if (strcmp (s2, "mflo") == 0)
7360 {
7361 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
7362 }
7363 else
7364 move_register (dreg, ZERO);
7365 break;
7366 }
7367
7368 used_at = 1;
7369 load_register (AT, &imm_expr, dbl);
7370 macro_build (NULL, s, "z,s,t", sreg, AT);
7371 macro_build (NULL, s2, MFHL_FMT, dreg);
7372 break;
7373
7374 case M_DIVU_3:
7375 s = "divu";
7376 s2 = "mflo";
7377 goto do_divu3;
7378 case M_REMU_3:
7379 s = "divu";
7380 s2 = "mfhi";
7381 goto do_divu3;
7382 case M_DDIVU_3:
7383 s = "ddivu";
7384 s2 = "mflo";
7385 goto do_divu3;
7386 case M_DREMU_3:
7387 s = "ddivu";
7388 s2 = "mfhi";
7389 do_divu3:
7390 start_noreorder ();
7391 if (mips_trap)
7392 {
7393 macro_build (NULL, "teq", TRAP_FMT, treg, ZERO, 7);
7394 macro_build (NULL, s, "z,s,t", sreg, treg);
7395 /* We want to close the noreorder block as soon as possible, so
7396 that later insns are available for delay slot filling. */
7397 end_noreorder ();
7398 }
7399 else
7400 {
7401 if (mips_opts.micromips)
7402 micromips_label_expr (&label_expr);
7403 else
7404 label_expr.X_add_number = 8;
7405 macro_build (&label_expr, "bne", "s,t,p", treg, ZERO);
7406 macro_build (NULL, s, "z,s,t", sreg, treg);
7407
7408 /* We want to close the noreorder block as soon as possible, so
7409 that later insns are available for delay slot filling. */
7410 end_noreorder ();
7411 macro_build (NULL, "break", BRK_FMT, 7);
7412 if (mips_opts.micromips)
7413 micromips_add_label ();
7414 }
7415 macro_build (NULL, s2, MFHL_FMT, dreg);
7416 break;
7417
7418 case M_DLCA_AB:
7419 dbl = 1;
7420 case M_LCA_AB:
7421 call = 1;
7422 goto do_la;
7423 case M_DLA_AB:
7424 dbl = 1;
7425 case M_LA_AB:
7426 do_la:
7427 /* Load the address of a symbol into a register. If breg is not
7428 zero, we then add a base register to it. */
7429
7430 if (dbl && HAVE_32BIT_GPRS)
7431 as_warn (_("dla used to load 32-bit register"));
7432
7433 if (!dbl && HAVE_64BIT_OBJECTS)
7434 as_warn (_("la used to load 64-bit address"));
7435
7436 if (offset_expr.X_op == O_constant
7437 && offset_expr.X_add_number >= -0x8000
7438 && offset_expr.X_add_number < 0x8000)
7439 {
7440 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
7441 "t,r,j", treg, sreg, BFD_RELOC_LO16);
7442 break;
7443 }
7444
7445 if (mips_opts.at && (treg == breg))
7446 {
7447 tempreg = AT;
7448 used_at = 1;
7449 }
7450 else
7451 {
7452 tempreg = treg;
7453 }
7454
7455 if (offset_expr.X_op != O_symbol
7456 && offset_expr.X_op != O_constant)
7457 {
7458 as_bad (_("Expression too complex"));
7459 offset_expr.X_op = O_constant;
7460 }
7461
7462 if (offset_expr.X_op == O_constant)
7463 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
7464 else if (mips_pic == NO_PIC)
7465 {
7466 /* If this is a reference to a GP relative symbol, we want
7467 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
7468 Otherwise we want
7469 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
7470 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
7471 If we have a constant, we need two instructions anyhow,
7472 so we may as well always use the latter form.
7473
7474 With 64bit address space and a usable $at we want
7475 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
7476 lui $at,<sym> (BFD_RELOC_HI16_S)
7477 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
7478 daddiu $at,<sym> (BFD_RELOC_LO16)
7479 dsll32 $tempreg,0
7480 daddu $tempreg,$tempreg,$at
7481
7482 If $at is already in use, we use a path which is suboptimal
7483 on superscalar processors.
7484 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
7485 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
7486 dsll $tempreg,16
7487 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
7488 dsll $tempreg,16
7489 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
7490
7491 For GP relative symbols in 64bit address space we can use
7492 the same sequence as in 32bit address space. */
7493 if (HAVE_64BIT_SYMBOLS)
7494 {
7495 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7496 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7497 {
7498 relax_start (offset_expr.X_add_symbol);
7499 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7500 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
7501 relax_switch ();
7502 }
7503
7504 if (used_at == 0 && mips_opts.at)
7505 {
7506 macro_build (&offset_expr, "lui", LUI_FMT,
7507 tempreg, BFD_RELOC_MIPS_HIGHEST);
7508 macro_build (&offset_expr, "lui", LUI_FMT,
7509 AT, BFD_RELOC_HI16_S);
7510 macro_build (&offset_expr, "daddiu", "t,r,j",
7511 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
7512 macro_build (&offset_expr, "daddiu", "t,r,j",
7513 AT, AT, BFD_RELOC_LO16);
7514 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
7515 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
7516 used_at = 1;
7517 }
7518 else
7519 {
7520 macro_build (&offset_expr, "lui", LUI_FMT,
7521 tempreg, BFD_RELOC_MIPS_HIGHEST);
7522 macro_build (&offset_expr, "daddiu", "t,r,j",
7523 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
7524 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
7525 macro_build (&offset_expr, "daddiu", "t,r,j",
7526 tempreg, tempreg, BFD_RELOC_HI16_S);
7527 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
7528 macro_build (&offset_expr, "daddiu", "t,r,j",
7529 tempreg, tempreg, BFD_RELOC_LO16);
7530 }
7531
7532 if (mips_relax.sequence)
7533 relax_end ();
7534 }
7535 else
7536 {
7537 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7538 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7539 {
7540 relax_start (offset_expr.X_add_symbol);
7541 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7542 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
7543 relax_switch ();
7544 }
7545 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
7546 as_bad (_("Offset too large"));
7547 macro_build_lui (&offset_expr, tempreg);
7548 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7549 tempreg, tempreg, BFD_RELOC_LO16);
7550 if (mips_relax.sequence)
7551 relax_end ();
7552 }
7553 }
7554 else if (!mips_big_got && !HAVE_NEWABI)
7555 {
7556 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
7557
7558 /* If this is a reference to an external symbol, and there
7559 is no constant, we want
7560 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7561 or for lca or if tempreg is PIC_CALL_REG
7562 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
7563 For a local symbol, we want
7564 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7565 nop
7566 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
7567
7568 If we have a small constant, and this is a reference to
7569 an external symbol, we want
7570 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7571 nop
7572 addiu $tempreg,$tempreg,<constant>
7573 For a local symbol, we want the same instruction
7574 sequence, but we output a BFD_RELOC_LO16 reloc on the
7575 addiu instruction.
7576
7577 If we have a large constant, and this is a reference to
7578 an external symbol, we want
7579 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7580 lui $at,<hiconstant>
7581 addiu $at,$at,<loconstant>
7582 addu $tempreg,$tempreg,$at
7583 For a local symbol, we want the same instruction
7584 sequence, but we output a BFD_RELOC_LO16 reloc on the
7585 addiu instruction.
7586 */
7587
7588 if (offset_expr.X_add_number == 0)
7589 {
7590 if (mips_pic == SVR4_PIC
7591 && breg == 0
7592 && (call || tempreg == PIC_CALL_REG))
7593 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
7594
7595 relax_start (offset_expr.X_add_symbol);
7596 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7597 lw_reloc_type, mips_gp_register);
7598 if (breg != 0)
7599 {
7600 /* We're going to put in an addu instruction using
7601 tempreg, so we may as well insert the nop right
7602 now. */
7603 load_delay_nop ();
7604 }
7605 relax_switch ();
7606 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7607 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
7608 load_delay_nop ();
7609 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7610 tempreg, tempreg, BFD_RELOC_LO16);
7611 relax_end ();
7612 /* FIXME: If breg == 0, and the next instruction uses
7613 $tempreg, then if this variant case is used an extra
7614 nop will be generated. */
7615 }
7616 else if (offset_expr.X_add_number >= -0x8000
7617 && offset_expr.X_add_number < 0x8000)
7618 {
7619 load_got_offset (tempreg, &offset_expr);
7620 load_delay_nop ();
7621 add_got_offset (tempreg, &offset_expr);
7622 }
7623 else
7624 {
7625 expr1.X_add_number = offset_expr.X_add_number;
7626 offset_expr.X_add_number =
7627 SEXT_16BIT (offset_expr.X_add_number);
7628 load_got_offset (tempreg, &offset_expr);
7629 offset_expr.X_add_number = expr1.X_add_number;
7630 /* If we are going to add in a base register, and the
7631 target register and the base register are the same,
7632 then we are using AT as a temporary register. Since
7633 we want to load the constant into AT, we add our
7634 current AT (from the global offset table) and the
7635 register into the register now, and pretend we were
7636 not using a base register. */
7637 if (breg == treg)
7638 {
7639 load_delay_nop ();
7640 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7641 treg, AT, breg);
7642 breg = 0;
7643 tempreg = treg;
7644 }
7645 add_got_offset_hilo (tempreg, &offset_expr, AT);
7646 used_at = 1;
7647 }
7648 }
7649 else if (!mips_big_got && HAVE_NEWABI)
7650 {
7651 int add_breg_early = 0;
7652
7653 /* If this is a reference to an external, and there is no
7654 constant, or local symbol (*), with or without a
7655 constant, we want
7656 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
7657 or for lca or if tempreg is PIC_CALL_REG
7658 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
7659
7660 If we have a small constant, and this is a reference to
7661 an external symbol, we want
7662 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
7663 addiu $tempreg,$tempreg,<constant>
7664
7665 If we have a large constant, and this is a reference to
7666 an external symbol, we want
7667 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
7668 lui $at,<hiconstant>
7669 addiu $at,$at,<loconstant>
7670 addu $tempreg,$tempreg,$at
7671
7672 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
7673 local symbols, even though it introduces an additional
7674 instruction. */
7675
7676 if (offset_expr.X_add_number)
7677 {
7678 expr1.X_add_number = offset_expr.X_add_number;
7679 offset_expr.X_add_number = 0;
7680
7681 relax_start (offset_expr.X_add_symbol);
7682 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7683 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7684
7685 if (expr1.X_add_number >= -0x8000
7686 && expr1.X_add_number < 0x8000)
7687 {
7688 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
7689 tempreg, tempreg, BFD_RELOC_LO16);
7690 }
7691 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
7692 {
7693 /* If we are going to add in a base register, and the
7694 target register and the base register are the same,
7695 then we are using AT as a temporary register. Since
7696 we want to load the constant into AT, we add our
7697 current AT (from the global offset table) and the
7698 register into the register now, and pretend we were
7699 not using a base register. */
7700 if (breg != treg)
7701 dreg = tempreg;
7702 else
7703 {
7704 gas_assert (tempreg == AT);
7705 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7706 treg, AT, breg);
7707 dreg = treg;
7708 add_breg_early = 1;
7709 }
7710
7711 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
7712 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7713 dreg, dreg, AT);
7714
7715 used_at = 1;
7716 }
7717 else
7718 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
7719
7720 relax_switch ();
7721 offset_expr.X_add_number = expr1.X_add_number;
7722
7723 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7724 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7725 if (add_breg_early)
7726 {
7727 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7728 treg, tempreg, breg);
7729 breg = 0;
7730 tempreg = treg;
7731 }
7732 relax_end ();
7733 }
7734 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
7735 {
7736 relax_start (offset_expr.X_add_symbol);
7737 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7738 BFD_RELOC_MIPS_CALL16, mips_gp_register);
7739 relax_switch ();
7740 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7741 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7742 relax_end ();
7743 }
7744 else
7745 {
7746 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7747 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7748 }
7749 }
7750 else if (mips_big_got && !HAVE_NEWABI)
7751 {
7752 int gpdelay;
7753 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
7754 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
7755 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
7756
7757 /* This is the large GOT case. If this is a reference to an
7758 external symbol, and there is no constant, we want
7759 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7760 addu $tempreg,$tempreg,$gp
7761 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7762 or for lca or if tempreg is PIC_CALL_REG
7763 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
7764 addu $tempreg,$tempreg,$gp
7765 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
7766 For a local symbol, we want
7767 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7768 nop
7769 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
7770
7771 If we have a small constant, and this is a reference to
7772 an external symbol, we want
7773 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7774 addu $tempreg,$tempreg,$gp
7775 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7776 nop
7777 addiu $tempreg,$tempreg,<constant>
7778 For a local symbol, we want
7779 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7780 nop
7781 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
7782
7783 If we have a large constant, and this is a reference to
7784 an external symbol, we want
7785 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7786 addu $tempreg,$tempreg,$gp
7787 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7788 lui $at,<hiconstant>
7789 addiu $at,$at,<loconstant>
7790 addu $tempreg,$tempreg,$at
7791 For a local symbol, we want
7792 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7793 lui $at,<hiconstant>
7794 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
7795 addu $tempreg,$tempreg,$at
7796 */
7797
7798 expr1.X_add_number = offset_expr.X_add_number;
7799 offset_expr.X_add_number = 0;
7800 relax_start (offset_expr.X_add_symbol);
7801 gpdelay = reg_needs_delay (mips_gp_register);
7802 if (expr1.X_add_number == 0 && breg == 0
7803 && (call || tempreg == PIC_CALL_REG))
7804 {
7805 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
7806 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
7807 }
7808 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
7809 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7810 tempreg, tempreg, mips_gp_register);
7811 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7812 tempreg, lw_reloc_type, tempreg);
7813 if (expr1.X_add_number == 0)
7814 {
7815 if (breg != 0)
7816 {
7817 /* We're going to put in an addu instruction using
7818 tempreg, so we may as well insert the nop right
7819 now. */
7820 load_delay_nop ();
7821 }
7822 }
7823 else if (expr1.X_add_number >= -0x8000
7824 && expr1.X_add_number < 0x8000)
7825 {
7826 load_delay_nop ();
7827 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
7828 tempreg, tempreg, BFD_RELOC_LO16);
7829 }
7830 else
7831 {
7832 /* If we are going to add in a base register, and the
7833 target register and the base register are the same,
7834 then we are using AT as a temporary register. Since
7835 we want to load the constant into AT, we add our
7836 current AT (from the global offset table) and the
7837 register into the register now, and pretend we were
7838 not using a base register. */
7839 if (breg != treg)
7840 dreg = tempreg;
7841 else
7842 {
7843 gas_assert (tempreg == AT);
7844 load_delay_nop ();
7845 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7846 treg, AT, breg);
7847 dreg = treg;
7848 }
7849
7850 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
7851 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
7852
7853 used_at = 1;
7854 }
7855 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
7856 relax_switch ();
7857
7858 if (gpdelay)
7859 {
7860 /* This is needed because this instruction uses $gp, but
7861 the first instruction on the main stream does not. */
7862 macro_build (NULL, "nop", "");
7863 }
7864
7865 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7866 local_reloc_type, mips_gp_register);
7867 if (expr1.X_add_number >= -0x8000
7868 && expr1.X_add_number < 0x8000)
7869 {
7870 load_delay_nop ();
7871 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7872 tempreg, tempreg, BFD_RELOC_LO16);
7873 /* FIXME: If add_number is 0, and there was no base
7874 register, the external symbol case ended with a load,
7875 so if the symbol turns out to not be external, and
7876 the next instruction uses tempreg, an unnecessary nop
7877 will be inserted. */
7878 }
7879 else
7880 {
7881 if (breg == treg)
7882 {
7883 /* We must add in the base register now, as in the
7884 external symbol case. */
7885 gas_assert (tempreg == AT);
7886 load_delay_nop ();
7887 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7888 treg, AT, breg);
7889 tempreg = treg;
7890 /* We set breg to 0 because we have arranged to add
7891 it in in both cases. */
7892 breg = 0;
7893 }
7894
7895 macro_build_lui (&expr1, AT);
7896 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7897 AT, AT, BFD_RELOC_LO16);
7898 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7899 tempreg, tempreg, AT);
7900 used_at = 1;
7901 }
7902 relax_end ();
7903 }
7904 else if (mips_big_got && HAVE_NEWABI)
7905 {
7906 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
7907 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
7908 int add_breg_early = 0;
7909
7910 /* This is the large GOT case. If this is a reference to an
7911 external symbol, and there is no constant, we want
7912 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7913 add $tempreg,$tempreg,$gp
7914 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7915 or for lca or if tempreg is PIC_CALL_REG
7916 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
7917 add $tempreg,$tempreg,$gp
7918 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
7919
7920 If we have a small constant, and this is a reference to
7921 an external symbol, we want
7922 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7923 add $tempreg,$tempreg,$gp
7924 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7925 addi $tempreg,$tempreg,<constant>
7926
7927 If we have a large constant, and this is a reference to
7928 an external symbol, we want
7929 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7930 addu $tempreg,$tempreg,$gp
7931 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7932 lui $at,<hiconstant>
7933 addi $at,$at,<loconstant>
7934 add $tempreg,$tempreg,$at
7935
7936 If we have NewABI, and we know it's a local symbol, we want
7937 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
7938 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
7939 otherwise we have to resort to GOT_HI16/GOT_LO16. */
7940
7941 relax_start (offset_expr.X_add_symbol);
7942
7943 expr1.X_add_number = offset_expr.X_add_number;
7944 offset_expr.X_add_number = 0;
7945
7946 if (expr1.X_add_number == 0 && breg == 0
7947 && (call || tempreg == PIC_CALL_REG))
7948 {
7949 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
7950 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
7951 }
7952 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
7953 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7954 tempreg, tempreg, mips_gp_register);
7955 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7956 tempreg, lw_reloc_type, tempreg);
7957
7958 if (expr1.X_add_number == 0)
7959 ;
7960 else if (expr1.X_add_number >= -0x8000
7961 && expr1.X_add_number < 0x8000)
7962 {
7963 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
7964 tempreg, tempreg, BFD_RELOC_LO16);
7965 }
7966 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
7967 {
7968 /* If we are going to add in a base register, and the
7969 target register and the base register are the same,
7970 then we are using AT as a temporary register. Since
7971 we want to load the constant into AT, we add our
7972 current AT (from the global offset table) and the
7973 register into the register now, and pretend we were
7974 not using a base register. */
7975 if (breg != treg)
7976 dreg = tempreg;
7977 else
7978 {
7979 gas_assert (tempreg == AT);
7980 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7981 treg, AT, breg);
7982 dreg = treg;
7983 add_breg_early = 1;
7984 }
7985
7986 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
7987 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
7988
7989 used_at = 1;
7990 }
7991 else
7992 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
7993
7994 relax_switch ();
7995 offset_expr.X_add_number = expr1.X_add_number;
7996 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7997 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
7998 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
7999 tempreg, BFD_RELOC_MIPS_GOT_OFST);
8000 if (add_breg_early)
8001 {
8002 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8003 treg, tempreg, breg);
8004 breg = 0;
8005 tempreg = treg;
8006 }
8007 relax_end ();
8008 }
8009 else
8010 abort ();
8011
8012 if (breg != 0)
8013 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
8014 break;
8015
8016 case M_MSGSND:
8017 gas_assert (!mips_opts.micromips);
8018 {
8019 unsigned long temp = (treg << 16) | (0x01);
8020 macro_build (NULL, "c2", "C", temp);
8021 }
8022 break;
8023
8024 case M_MSGLD:
8025 gas_assert (!mips_opts.micromips);
8026 {
8027 unsigned long temp = (0x02);
8028 macro_build (NULL, "c2", "C", temp);
8029 }
8030 break;
8031
8032 case M_MSGLD_T:
8033 gas_assert (!mips_opts.micromips);
8034 {
8035 unsigned long temp = (treg << 16) | (0x02);
8036 macro_build (NULL, "c2", "C", temp);
8037 }
8038 break;
8039
8040 case M_MSGWAIT:
8041 gas_assert (!mips_opts.micromips);
8042 macro_build (NULL, "c2", "C", 3);
8043 break;
8044
8045 case M_MSGWAIT_T:
8046 gas_assert (!mips_opts.micromips);
8047 {
8048 unsigned long temp = (treg << 16) | 0x03;
8049 macro_build (NULL, "c2", "C", temp);
8050 }
8051 break;
8052
8053 case M_J_A:
8054 /* The j instruction may not be used in PIC code, since it
8055 requires an absolute address. We convert it to a b
8056 instruction. */
8057 if (mips_pic == NO_PIC)
8058 macro_build (&offset_expr, "j", "a");
8059 else
8060 macro_build (&offset_expr, "b", "p");
8061 break;
8062
8063 /* The jal instructions must be handled as macros because when
8064 generating PIC code they expand to multi-instruction
8065 sequences. Normally they are simple instructions. */
8066 case M_JALS_1:
8067 dreg = RA;
8068 /* Fall through. */
8069 case M_JALS_2:
8070 gas_assert (mips_opts.micromips);
8071 jals = 1;
8072 goto jal;
8073 case M_JAL_1:
8074 dreg = RA;
8075 /* Fall through. */
8076 case M_JAL_2:
8077 jal:
8078 if (mips_pic == NO_PIC)
8079 {
8080 s = jals ? "jalrs" : "jalr";
8081 if (mips_opts.micromips
8082 && dreg == RA
8083 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8084 macro_build (NULL, s, "mj", sreg);
8085 else
8086 macro_build (NULL, s, JALR_FMT, dreg, sreg);
8087 }
8088 else
8089 {
8090 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
8091 && mips_cprestore_offset >= 0);
8092
8093 if (sreg != PIC_CALL_REG)
8094 as_warn (_("MIPS PIC call to register other than $25"));
8095
8096 s = (mips_opts.micromips && (!mips_opts.noreorder || cprestore)
8097 ? "jalrs" : "jalr");
8098 if (mips_opts.micromips
8099 && dreg == RA
8100 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8101 macro_build (NULL, s, "mj", sreg);
8102 else
8103 macro_build (NULL, s, JALR_FMT, dreg, sreg);
8104 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
8105 {
8106 if (mips_cprestore_offset < 0)
8107 as_warn (_("No .cprestore pseudo-op used in PIC code"));
8108 else
8109 {
8110 if (!mips_frame_reg_valid)
8111 {
8112 as_warn (_("No .frame pseudo-op used in PIC code"));
8113 /* Quiet this warning. */
8114 mips_frame_reg_valid = 1;
8115 }
8116 if (!mips_cprestore_valid)
8117 {
8118 as_warn (_("No .cprestore pseudo-op used in PIC code"));
8119 /* Quiet this warning. */
8120 mips_cprestore_valid = 1;
8121 }
8122 if (mips_opts.noreorder)
8123 macro_build (NULL, "nop", "");
8124 expr1.X_add_number = mips_cprestore_offset;
8125 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
8126 mips_gp_register,
8127 mips_frame_reg,
8128 HAVE_64BIT_ADDRESSES);
8129 }
8130 }
8131 }
8132
8133 break;
8134
8135 case M_JALS_A:
8136 gas_assert (mips_opts.micromips);
8137 jals = 1;
8138 /* Fall through. */
8139 case M_JAL_A:
8140 if (mips_pic == NO_PIC)
8141 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
8142 else if (mips_pic == SVR4_PIC)
8143 {
8144 /* If this is a reference to an external symbol, and we are
8145 using a small GOT, we want
8146 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
8147 nop
8148 jalr $ra,$25
8149 nop
8150 lw $gp,cprestore($sp)
8151 The cprestore value is set using the .cprestore
8152 pseudo-op. If we are using a big GOT, we want
8153 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
8154 addu $25,$25,$gp
8155 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
8156 nop
8157 jalr $ra,$25
8158 nop
8159 lw $gp,cprestore($sp)
8160 If the symbol is not external, we want
8161 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8162 nop
8163 addiu $25,$25,<sym> (BFD_RELOC_LO16)
8164 jalr $ra,$25
8165 nop
8166 lw $gp,cprestore($sp)
8167
8168 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
8169 sequences above, minus nops, unless the symbol is local,
8170 which enables us to use GOT_PAGE/GOT_OFST (big got) or
8171 GOT_DISP. */
8172 if (HAVE_NEWABI)
8173 {
8174 if (!mips_big_got)
8175 {
8176 relax_start (offset_expr.X_add_symbol);
8177 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
8178 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
8179 mips_gp_register);
8180 relax_switch ();
8181 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
8182 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
8183 mips_gp_register);
8184 relax_end ();
8185 }
8186 else
8187 {
8188 relax_start (offset_expr.X_add_symbol);
8189 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
8190 BFD_RELOC_MIPS_CALL_HI16);
8191 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
8192 PIC_CALL_REG, mips_gp_register);
8193 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
8194 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
8195 PIC_CALL_REG);
8196 relax_switch ();
8197 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
8198 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
8199 mips_gp_register);
8200 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
8201 PIC_CALL_REG, PIC_CALL_REG,
8202 BFD_RELOC_MIPS_GOT_OFST);
8203 relax_end ();
8204 }
8205
8206 macro_build_jalr (&offset_expr, 0);
8207 }
8208 else
8209 {
8210 relax_start (offset_expr.X_add_symbol);
8211 if (!mips_big_got)
8212 {
8213 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
8214 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
8215 mips_gp_register);
8216 load_delay_nop ();
8217 relax_switch ();
8218 }
8219 else
8220 {
8221 int gpdelay;
8222
8223 gpdelay = reg_needs_delay (mips_gp_register);
8224 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
8225 BFD_RELOC_MIPS_CALL_HI16);
8226 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
8227 PIC_CALL_REG, mips_gp_register);
8228 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
8229 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
8230 PIC_CALL_REG);
8231 load_delay_nop ();
8232 relax_switch ();
8233 if (gpdelay)
8234 macro_build (NULL, "nop", "");
8235 }
8236 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
8237 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
8238 mips_gp_register);
8239 load_delay_nop ();
8240 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
8241 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
8242 relax_end ();
8243 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
8244
8245 if (mips_cprestore_offset < 0)
8246 as_warn (_("No .cprestore pseudo-op used in PIC code"));
8247 else
8248 {
8249 if (!mips_frame_reg_valid)
8250 {
8251 as_warn (_("No .frame pseudo-op used in PIC code"));
8252 /* Quiet this warning. */
8253 mips_frame_reg_valid = 1;
8254 }
8255 if (!mips_cprestore_valid)
8256 {
8257 as_warn (_("No .cprestore pseudo-op used in PIC code"));
8258 /* Quiet this warning. */
8259 mips_cprestore_valid = 1;
8260 }
8261 if (mips_opts.noreorder)
8262 macro_build (NULL, "nop", "");
8263 expr1.X_add_number = mips_cprestore_offset;
8264 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
8265 mips_gp_register,
8266 mips_frame_reg,
8267 HAVE_64BIT_ADDRESSES);
8268 }
8269 }
8270 }
8271 else if (mips_pic == VXWORKS_PIC)
8272 as_bad (_("Non-PIC jump used in PIC library"));
8273 else
8274 abort ();
8275
8276 break;
8277
8278 case M_LBUE_AB:
8279 ab = 1;
8280 case M_LBUE_OB:
8281 s = "lbue";
8282 fmt = "t,+j(b)";
8283 offbits = 9;
8284 goto ld_st;
8285 case M_LHUE_AB:
8286 ab = 1;
8287 case M_LHUE_OB:
8288 s = "lhue";
8289 fmt = "t,+j(b)";
8290 offbits = 9;
8291 goto ld_st;
8292 case M_LBE_AB:
8293 ab = 1;
8294 case M_LBE_OB:
8295 s = "lbe";
8296 fmt = "t,+j(b)";
8297 offbits = 9;
8298 goto ld_st;
8299 case M_LHE_AB:
8300 ab = 1;
8301 case M_LHE_OB:
8302 s = "lhe";
8303 fmt = "t,+j(b)";
8304 offbits = 9;
8305 goto ld_st;
8306 case M_LLE_AB:
8307 ab = 1;
8308 case M_LLE_OB:
8309 s = "lle";
8310 fmt = "t,+j(b)";
8311 offbits = 9;
8312 goto ld_st;
8313 case M_LWE_AB:
8314 ab = 1;
8315 case M_LWE_OB:
8316 s = "lwe";
8317 fmt = "t,+j(b)";
8318 offbits = 9;
8319 goto ld_st;
8320 case M_LWLE_AB:
8321 ab = 1;
8322 case M_LWLE_OB:
8323 s = "lwle";
8324 fmt = "t,+j(b)";
8325 offbits = 9;
8326 goto ld_st;
8327 case M_LWRE_AB:
8328 ab = 1;
8329 case M_LWRE_OB:
8330 s = "lwre";
8331 fmt = "t,+j(b)";
8332 offbits = 9;
8333 goto ld_st;
8334 case M_SBE_AB:
8335 ab = 1;
8336 case M_SBE_OB:
8337 s = "sbe";
8338 fmt = "t,+j(b)";
8339 offbits = 9;
8340 goto ld_st;
8341 case M_SCE_AB:
8342 ab = 1;
8343 case M_SCE_OB:
8344 s = "sce";
8345 fmt = "t,+j(b)";
8346 offbits = 9;
8347 goto ld_st;
8348 case M_SHE_AB:
8349 ab = 1;
8350 case M_SHE_OB:
8351 s = "she";
8352 fmt = "t,+j(b)";
8353 offbits = 9;
8354 goto ld_st;
8355 case M_SWE_AB:
8356 ab = 1;
8357 case M_SWE_OB:
8358 s = "swe";
8359 fmt = "t,+j(b)";
8360 offbits = 9;
8361 goto ld_st;
8362 case M_SWLE_AB:
8363 ab = 1;
8364 case M_SWLE_OB:
8365 s = "swle";
8366 fmt = "t,+j(b)";
8367 offbits = 9;
8368 goto ld_st;
8369 case M_SWRE_AB:
8370 ab = 1;
8371 case M_SWRE_OB:
8372 s = "swre";
8373 fmt = "t,+j(b)";
8374 offbits = 9;
8375 goto ld_st;
8376 case M_ACLR_AB:
8377 ab = 1;
8378 case M_ACLR_OB:
8379 s = "aclr";
8380 treg = EXTRACT_OPERAND (mips_opts.micromips, 3BITPOS, *ip);
8381 fmt = "\\,~(b)";
8382 offbits = 12;
8383 goto ld_st;
8384 case M_ASET_AB:
8385 ab = 1;
8386 case M_ASET_OB:
8387 s = "aset";
8388 treg = EXTRACT_OPERAND (mips_opts.micromips, 3BITPOS, *ip);
8389 fmt = "\\,~(b)";
8390 offbits = 12;
8391 goto ld_st;
8392 case M_LB_AB:
8393 ab = 1;
8394 s = "lb";
8395 fmt = "t,o(b)";
8396 goto ld;
8397 case M_LBU_AB:
8398 ab = 1;
8399 s = "lbu";
8400 fmt = "t,o(b)";
8401 goto ld;
8402 case M_LH_AB:
8403 ab = 1;
8404 s = "lh";
8405 fmt = "t,o(b)";
8406 goto ld;
8407 case M_LHU_AB:
8408 ab = 1;
8409 s = "lhu";
8410 fmt = "t,o(b)";
8411 goto ld;
8412 case M_LW_AB:
8413 ab = 1;
8414 s = "lw";
8415 fmt = "t,o(b)";
8416 goto ld;
8417 case M_LWC0_AB:
8418 ab = 1;
8419 gas_assert (!mips_opts.micromips);
8420 s = "lwc0";
8421 fmt = "E,o(b)";
8422 /* Itbl support may require additional care here. */
8423 coproc = 1;
8424 goto ld_st;
8425 case M_LWC1_AB:
8426 ab = 1;
8427 s = "lwc1";
8428 fmt = "T,o(b)";
8429 /* Itbl support may require additional care here. */
8430 coproc = 1;
8431 goto ld_st;
8432 case M_LWC2_AB:
8433 ab = 1;
8434 case M_LWC2_OB:
8435 s = "lwc2";
8436 fmt = COP12_FMT;
8437 offbits = (mips_opts.micromips ? 12 : 16);
8438 /* Itbl support may require additional care here. */
8439 coproc = 1;
8440 goto ld_st;
8441 case M_LWC3_AB:
8442 ab = 1;
8443 gas_assert (!mips_opts.micromips);
8444 s = "lwc3";
8445 fmt = "E,o(b)";
8446 /* Itbl support may require additional care here. */
8447 coproc = 1;
8448 goto ld_st;
8449 case M_LWL_AB:
8450 ab = 1;
8451 case M_LWL_OB:
8452 s = "lwl";
8453 fmt = MEM12_FMT;
8454 offbits = (mips_opts.micromips ? 12 : 16);
8455 goto ld_st;
8456 case M_LWR_AB:
8457 ab = 1;
8458 case M_LWR_OB:
8459 s = "lwr";
8460 fmt = MEM12_FMT;
8461 offbits = (mips_opts.micromips ? 12 : 16);
8462 goto ld_st;
8463 case M_LDC1_AB:
8464 ab = 1;
8465 s = "ldc1";
8466 fmt = "T,o(b)";
8467 /* Itbl support may require additional care here. */
8468 coproc = 1;
8469 goto ld_st;
8470 case M_LDC2_AB:
8471 ab = 1;
8472 case M_LDC2_OB:
8473 s = "ldc2";
8474 fmt = COP12_FMT;
8475 offbits = (mips_opts.micromips ? 12 : 16);
8476 /* Itbl support may require additional care here. */
8477 coproc = 1;
8478 goto ld_st;
8479 case M_LQC2_AB:
8480 ab = 1;
8481 s = "lqc2";
8482 fmt = "E,o(b)";
8483 /* Itbl support may require additional care here. */
8484 coproc = 1;
8485 goto ld_st;
8486 case M_LDC3_AB:
8487 ab = 1;
8488 s = "ldc3";
8489 fmt = "E,o(b)";
8490 /* Itbl support may require additional care here. */
8491 coproc = 1;
8492 goto ld_st;
8493 case M_LDL_AB:
8494 ab = 1;
8495 case M_LDL_OB:
8496 s = "ldl";
8497 fmt = MEM12_FMT;
8498 offbits = (mips_opts.micromips ? 12 : 16);
8499 goto ld_st;
8500 case M_LDR_AB:
8501 ab = 1;
8502 case M_LDR_OB:
8503 s = "ldr";
8504 fmt = MEM12_FMT;
8505 offbits = (mips_opts.micromips ? 12 : 16);
8506 goto ld_st;
8507 case M_LL_AB:
8508 ab = 1;
8509 case M_LL_OB:
8510 s = "ll";
8511 fmt = MEM12_FMT;
8512 offbits = (mips_opts.micromips ? 12 : 16);
8513 goto ld;
8514 case M_LLD_AB:
8515 ab = 1;
8516 case M_LLD_OB:
8517 s = "lld";
8518 fmt = MEM12_FMT;
8519 offbits = (mips_opts.micromips ? 12 : 16);
8520 goto ld;
8521 case M_LWU_AB:
8522 ab = 1;
8523 case M_LWU_OB:
8524 s = "lwu";
8525 fmt = MEM12_FMT;
8526 offbits = (mips_opts.micromips ? 12 : 16);
8527 goto ld;
8528 case M_LWP_AB:
8529 ab = 1;
8530 case M_LWP_OB:
8531 gas_assert (mips_opts.micromips);
8532 s = "lwp";
8533 fmt = "t,~(b)";
8534 offbits = 12;
8535 lp = 1;
8536 goto ld;
8537 case M_LDP_AB:
8538 ab = 1;
8539 case M_LDP_OB:
8540 gas_assert (mips_opts.micromips);
8541 s = "ldp";
8542 fmt = "t,~(b)";
8543 offbits = 12;
8544 lp = 1;
8545 goto ld;
8546 case M_LWM_AB:
8547 ab = 1;
8548 case M_LWM_OB:
8549 gas_assert (mips_opts.micromips);
8550 s = "lwm";
8551 fmt = "n,~(b)";
8552 offbits = 12;
8553 goto ld_st;
8554 case M_LDM_AB:
8555 ab = 1;
8556 case M_LDM_OB:
8557 gas_assert (mips_opts.micromips);
8558 s = "ldm";
8559 fmt = "n,~(b)";
8560 offbits = 12;
8561 goto ld_st;
8562
8563 ld:
8564 /* We don't want to use $0 as tempreg. */
8565 if (breg == treg + lp || treg + lp == ZERO)
8566 goto ld_st;
8567 else
8568 tempreg = treg + lp;
8569 goto ld_noat;
8570
8571 case M_SB_AB:
8572 ab = 1;
8573 s = "sb";
8574 fmt = "t,o(b)";
8575 goto ld_st;
8576 case M_SH_AB:
8577 ab = 1;
8578 s = "sh";
8579 fmt = "t,o(b)";
8580 goto ld_st;
8581 case M_SW_AB:
8582 ab = 1;
8583 s = "sw";
8584 fmt = "t,o(b)";
8585 goto ld_st;
8586 case M_SWC0_AB:
8587 ab = 1;
8588 gas_assert (!mips_opts.micromips);
8589 s = "swc0";
8590 fmt = "E,o(b)";
8591 /* Itbl support may require additional care here. */
8592 coproc = 1;
8593 goto ld_st;
8594 case M_SWC1_AB:
8595 ab = 1;
8596 s = "swc1";
8597 fmt = "T,o(b)";
8598 /* Itbl support may require additional care here. */
8599 coproc = 1;
8600 goto ld_st;
8601 case M_SWC2_AB:
8602 ab = 1;
8603 case M_SWC2_OB:
8604 s = "swc2";
8605 fmt = COP12_FMT;
8606 offbits = (mips_opts.micromips ? 12 : 16);
8607 /* Itbl support may require additional care here. */
8608 coproc = 1;
8609 goto ld_st;
8610 case M_SWC3_AB:
8611 ab = 1;
8612 gas_assert (!mips_opts.micromips);
8613 s = "swc3";
8614 fmt = "E,o(b)";
8615 /* Itbl support may require additional care here. */
8616 coproc = 1;
8617 goto ld_st;
8618 case M_SWL_AB:
8619 ab = 1;
8620 case M_SWL_OB:
8621 s = "swl";
8622 fmt = MEM12_FMT;
8623 offbits = (mips_opts.micromips ? 12 : 16);
8624 goto ld_st;
8625 case M_SWR_AB:
8626 ab = 1;
8627 case M_SWR_OB:
8628 s = "swr";
8629 fmt = MEM12_FMT;
8630 offbits = (mips_opts.micromips ? 12 : 16);
8631 goto ld_st;
8632 case M_SC_AB:
8633 ab = 1;
8634 case M_SC_OB:
8635 s = "sc";
8636 fmt = MEM12_FMT;
8637 offbits = (mips_opts.micromips ? 12 : 16);
8638 goto ld_st;
8639 case M_SCD_AB:
8640 ab = 1;
8641 case M_SCD_OB:
8642 s = "scd";
8643 fmt = MEM12_FMT;
8644 offbits = (mips_opts.micromips ? 12 : 16);
8645 goto ld_st;
8646 case M_CACHE_AB:
8647 ab = 1;
8648 case M_CACHE_OB:
8649 s = "cache";
8650 fmt = mips_opts.micromips ? "k,~(b)" : "k,o(b)";
8651 offbits = (mips_opts.micromips ? 12 : 16);
8652 goto ld_st;
8653 case M_CACHEE_AB:
8654 ab = 1;
8655 case M_CACHEE_OB:
8656 s = "cachee";
8657 fmt = "k,+j(b)";
8658 offbits = 9;
8659 goto ld_st;
8660 case M_PREF_AB:
8661 ab = 1;
8662 case M_PREF_OB:
8663 s = "pref";
8664 fmt = !mips_opts.micromips ? "k,o(b)" : "k,~(b)";
8665 offbits = (mips_opts.micromips ? 12 : 16);
8666 goto ld_st;
8667 case M_PREFE_AB:
8668 ab = 1;
8669 case M_PREFE_OB:
8670 s = "prefe";
8671 fmt = "k,+j(b)";
8672 offbits = 9;
8673 goto ld_st;
8674 case M_SDC1_AB:
8675 ab = 1;
8676 s = "sdc1";
8677 fmt = "T,o(b)";
8678 coproc = 1;
8679 /* Itbl support may require additional care here. */
8680 goto ld_st;
8681 case M_SDC2_AB:
8682 ab = 1;
8683 case M_SDC2_OB:
8684 s = "sdc2";
8685 fmt = COP12_FMT;
8686 offbits = (mips_opts.micromips ? 12 : 16);
8687 /* Itbl support may require additional care here. */
8688 coproc = 1;
8689 goto ld_st;
8690 case M_SQC2_AB:
8691 ab = 1;
8692 s = "sqc2";
8693 fmt = "E,o(b)";
8694 /* Itbl support may require additional care here. */
8695 coproc = 1;
8696 goto ld_st;
8697 case M_SDC3_AB:
8698 ab = 1;
8699 gas_assert (!mips_opts.micromips);
8700 s = "sdc3";
8701 fmt = "E,o(b)";
8702 /* Itbl support may require additional care here. */
8703 coproc = 1;
8704 goto ld_st;
8705 case M_SDL_AB:
8706 ab = 1;
8707 case M_SDL_OB:
8708 s = "sdl";
8709 fmt = MEM12_FMT;
8710 offbits = (mips_opts.micromips ? 12 : 16);
8711 goto ld_st;
8712 case M_SDR_AB:
8713 ab = 1;
8714 case M_SDR_OB:
8715 s = "sdr";
8716 fmt = MEM12_FMT;
8717 offbits = (mips_opts.micromips ? 12 : 16);
8718 goto ld_st;
8719 case M_SWP_AB:
8720 ab = 1;
8721 case M_SWP_OB:
8722 gas_assert (mips_opts.micromips);
8723 s = "swp";
8724 fmt = "t,~(b)";
8725 offbits = 12;
8726 goto ld_st;
8727 case M_SDP_AB:
8728 ab = 1;
8729 case M_SDP_OB:
8730 gas_assert (mips_opts.micromips);
8731 s = "sdp";
8732 fmt = "t,~(b)";
8733 offbits = 12;
8734 goto ld_st;
8735 case M_SWM_AB:
8736 ab = 1;
8737 case M_SWM_OB:
8738 gas_assert (mips_opts.micromips);
8739 s = "swm";
8740 fmt = "n,~(b)";
8741 offbits = 12;
8742 goto ld_st;
8743 case M_SDM_AB:
8744 ab = 1;
8745 case M_SDM_OB:
8746 gas_assert (mips_opts.micromips);
8747 s = "sdm";
8748 fmt = "n,~(b)";
8749 offbits = 12;
8750
8751 ld_st:
8752 tempreg = AT;
8753 used_at = 1;
8754 ld_noat:
8755 if (offset_expr.X_op != O_constant
8756 && offset_expr.X_op != O_symbol)
8757 {
8758 as_bad (_("Expression too complex"));
8759 offset_expr.X_op = O_constant;
8760 }
8761
8762 if (HAVE_32BIT_ADDRESSES
8763 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
8764 {
8765 char value [32];
8766
8767 sprintf_vma (value, offset_expr.X_add_number);
8768 as_bad (_("Number (0x%s) larger than 32 bits"), value);
8769 }
8770
8771 /* A constant expression in PIC code can be handled just as it
8772 is in non PIC code. */
8773 if (offset_expr.X_op == O_constant)
8774 {
8775 int hipart = 0;
8776
8777 expr1.X_add_number = offset_expr.X_add_number;
8778 normalize_address_expr (&expr1);
8779 if ((offbits == 0 || offbits == 16)
8780 && !IS_SEXT_16BIT_NUM (expr1.X_add_number))
8781 {
8782 expr1.X_add_number = ((expr1.X_add_number + 0x8000)
8783 & ~(bfd_vma) 0xffff);
8784 hipart = 1;
8785 }
8786 else if (offbits == 12 && !IS_SEXT_12BIT_NUM (expr1.X_add_number))
8787 {
8788 expr1.X_add_number = ((expr1.X_add_number + 0x800)
8789 & ~(bfd_vma) 0xfff);
8790 hipart = 1;
8791 }
8792 else if (offbits == 9 && !IS_SEXT_9BIT_NUM (expr1.X_add_number))
8793 {
8794 expr1.X_add_number = ((expr1.X_add_number + 0x100)
8795 & ~(bfd_vma) 0x1ff);
8796 hipart = 1;
8797 }
8798 if (hipart)
8799 {
8800 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
8801 if (breg != 0)
8802 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8803 tempreg, tempreg, breg);
8804 breg = tempreg;
8805 }
8806 if (offbits == 0)
8807 {
8808 if (offset_expr.X_add_number == 0)
8809 tempreg = breg;
8810 else
8811 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
8812 "t,r,j", tempreg, breg, BFD_RELOC_LO16);
8813 macro_build (NULL, s, fmt, treg, tempreg);
8814 }
8815 else if (offbits == 16)
8816 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, breg);
8817 else
8818 macro_build (NULL, s, fmt,
8819 treg, (unsigned long) offset_expr.X_add_number, breg);
8820 }
8821 else if (offbits != 16)
8822 {
8823 /* The offset field is too narrow to be used for a low-part
8824 relocation, so load the whole address into the auxillary
8825 register. In the case of "A(b)" addresses, we first load
8826 absolute address "A" into the register and then add base
8827 register "b". In the case of "o(b)" addresses, we simply
8828 need to add 16-bit offset "o" to base register "b", and
8829 offset_reloc already contains the relocations associated
8830 with "o". */
8831 if (ab)
8832 {
8833 load_address (tempreg, &offset_expr, &used_at);
8834 if (breg != 0)
8835 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8836 tempreg, tempreg, breg);
8837 }
8838 else
8839 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
8840 tempreg, breg, -1,
8841 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
8842 expr1.X_add_number = 0;
8843 if (offbits == 0)
8844 macro_build (NULL, s, fmt, treg, tempreg);
8845 else
8846 macro_build (NULL, s, fmt,
8847 treg, (unsigned long) expr1.X_add_number, tempreg);
8848 }
8849 else if (mips_pic == NO_PIC)
8850 {
8851 /* If this is a reference to a GP relative symbol, and there
8852 is no base register, we want
8853 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
8854 Otherwise, if there is no base register, we want
8855 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
8856 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8857 If we have a constant, we need two instructions anyhow,
8858 so we always use the latter form.
8859
8860 If we have a base register, and this is a reference to a
8861 GP relative symbol, we want
8862 addu $tempreg,$breg,$gp
8863 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
8864 Otherwise we want
8865 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
8866 addu $tempreg,$tempreg,$breg
8867 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8868 With a constant we always use the latter case.
8869
8870 With 64bit address space and no base register and $at usable,
8871 we want
8872 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8873 lui $at,<sym> (BFD_RELOC_HI16_S)
8874 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8875 dsll32 $tempreg,0
8876 daddu $tempreg,$at
8877 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8878 If we have a base register, we want
8879 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8880 lui $at,<sym> (BFD_RELOC_HI16_S)
8881 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8882 daddu $at,$breg
8883 dsll32 $tempreg,0
8884 daddu $tempreg,$at
8885 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8886
8887 Without $at we can't generate the optimal path for superscalar
8888 processors here since this would require two temporary registers.
8889 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8890 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8891 dsll $tempreg,16
8892 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
8893 dsll $tempreg,16
8894 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8895 If we have a base register, we want
8896 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8897 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8898 dsll $tempreg,16
8899 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
8900 dsll $tempreg,16
8901 daddu $tempreg,$tempreg,$breg
8902 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8903
8904 For GP relative symbols in 64bit address space we can use
8905 the same sequence as in 32bit address space. */
8906 if (HAVE_64BIT_SYMBOLS)
8907 {
8908 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
8909 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
8910 {
8911 relax_start (offset_expr.X_add_symbol);
8912 if (breg == 0)
8913 {
8914 macro_build (&offset_expr, s, fmt, treg,
8915 BFD_RELOC_GPREL16, mips_gp_register);
8916 }
8917 else
8918 {
8919 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8920 tempreg, breg, mips_gp_register);
8921 macro_build (&offset_expr, s, fmt, treg,
8922 BFD_RELOC_GPREL16, tempreg);
8923 }
8924 relax_switch ();
8925 }
8926
8927 if (used_at == 0 && mips_opts.at)
8928 {
8929 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
8930 BFD_RELOC_MIPS_HIGHEST);
8931 macro_build (&offset_expr, "lui", LUI_FMT, AT,
8932 BFD_RELOC_HI16_S);
8933 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
8934 tempreg, BFD_RELOC_MIPS_HIGHER);
8935 if (breg != 0)
8936 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
8937 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
8938 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
8939 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
8940 tempreg);
8941 used_at = 1;
8942 }
8943 else
8944 {
8945 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
8946 BFD_RELOC_MIPS_HIGHEST);
8947 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
8948 tempreg, BFD_RELOC_MIPS_HIGHER);
8949 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
8950 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
8951 tempreg, BFD_RELOC_HI16_S);
8952 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
8953 if (breg != 0)
8954 macro_build (NULL, "daddu", "d,v,t",
8955 tempreg, tempreg, breg);
8956 macro_build (&offset_expr, s, fmt, treg,
8957 BFD_RELOC_LO16, tempreg);
8958 }
8959
8960 if (mips_relax.sequence)
8961 relax_end ();
8962 break;
8963 }
8964
8965 if (breg == 0)
8966 {
8967 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
8968 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
8969 {
8970 relax_start (offset_expr.X_add_symbol);
8971 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
8972 mips_gp_register);
8973 relax_switch ();
8974 }
8975 macro_build_lui (&offset_expr, tempreg);
8976 macro_build (&offset_expr, s, fmt, treg,
8977 BFD_RELOC_LO16, tempreg);
8978 if (mips_relax.sequence)
8979 relax_end ();
8980 }
8981 else
8982 {
8983 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
8984 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
8985 {
8986 relax_start (offset_expr.X_add_symbol);
8987 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8988 tempreg, breg, mips_gp_register);
8989 macro_build (&offset_expr, s, fmt, treg,
8990 BFD_RELOC_GPREL16, tempreg);
8991 relax_switch ();
8992 }
8993 macro_build_lui (&offset_expr, tempreg);
8994 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8995 tempreg, tempreg, breg);
8996 macro_build (&offset_expr, s, fmt, treg,
8997 BFD_RELOC_LO16, tempreg);
8998 if (mips_relax.sequence)
8999 relax_end ();
9000 }
9001 }
9002 else if (!mips_big_got)
9003 {
9004 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
9005
9006 /* If this is a reference to an external symbol, we want
9007 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9008 nop
9009 <op> $treg,0($tempreg)
9010 Otherwise we want
9011 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9012 nop
9013 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
9014 <op> $treg,0($tempreg)
9015
9016 For NewABI, we want
9017 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9018 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
9019
9020 If there is a base register, we add it to $tempreg before
9021 the <op>. If there is a constant, we stick it in the
9022 <op> instruction. We don't handle constants larger than
9023 16 bits, because we have no way to load the upper 16 bits
9024 (actually, we could handle them for the subset of cases
9025 in which we are not using $at). */
9026 gas_assert (offset_expr.X_op == O_symbol);
9027 if (HAVE_NEWABI)
9028 {
9029 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9030 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9031 if (breg != 0)
9032 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9033 tempreg, tempreg, breg);
9034 macro_build (&offset_expr, s, fmt, treg,
9035 BFD_RELOC_MIPS_GOT_OFST, tempreg);
9036 break;
9037 }
9038 expr1.X_add_number = offset_expr.X_add_number;
9039 offset_expr.X_add_number = 0;
9040 if (expr1.X_add_number < -0x8000
9041 || expr1.X_add_number >= 0x8000)
9042 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9043 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9044 lw_reloc_type, mips_gp_register);
9045 load_delay_nop ();
9046 relax_start (offset_expr.X_add_symbol);
9047 relax_switch ();
9048 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
9049 tempreg, BFD_RELOC_LO16);
9050 relax_end ();
9051 if (breg != 0)
9052 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9053 tempreg, tempreg, breg);
9054 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
9055 }
9056 else if (mips_big_got && !HAVE_NEWABI)
9057 {
9058 int gpdelay;
9059
9060 /* If this is a reference to an external symbol, we want
9061 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9062 addu $tempreg,$tempreg,$gp
9063 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
9064 <op> $treg,0($tempreg)
9065 Otherwise we want
9066 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9067 nop
9068 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
9069 <op> $treg,0($tempreg)
9070 If there is a base register, we add it to $tempreg before
9071 the <op>. If there is a constant, we stick it in the
9072 <op> instruction. We don't handle constants larger than
9073 16 bits, because we have no way to load the upper 16 bits
9074 (actually, we could handle them for the subset of cases
9075 in which we are not using $at). */
9076 gas_assert (offset_expr.X_op == O_symbol);
9077 expr1.X_add_number = offset_expr.X_add_number;
9078 offset_expr.X_add_number = 0;
9079 if (expr1.X_add_number < -0x8000
9080 || expr1.X_add_number >= 0x8000)
9081 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9082 gpdelay = reg_needs_delay (mips_gp_register);
9083 relax_start (offset_expr.X_add_symbol);
9084 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
9085 BFD_RELOC_MIPS_GOT_HI16);
9086 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
9087 mips_gp_register);
9088 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9089 BFD_RELOC_MIPS_GOT_LO16, tempreg);
9090 relax_switch ();
9091 if (gpdelay)
9092 macro_build (NULL, "nop", "");
9093 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9094 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9095 load_delay_nop ();
9096 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
9097 tempreg, BFD_RELOC_LO16);
9098 relax_end ();
9099
9100 if (breg != 0)
9101 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9102 tempreg, tempreg, breg);
9103 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
9104 }
9105 else if (mips_big_got && HAVE_NEWABI)
9106 {
9107 /* If this is a reference to an external symbol, we want
9108 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9109 add $tempreg,$tempreg,$gp
9110 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
9111 <op> $treg,<ofst>($tempreg)
9112 Otherwise, for local symbols, we want:
9113 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9114 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
9115 gas_assert (offset_expr.X_op == O_symbol);
9116 expr1.X_add_number = offset_expr.X_add_number;
9117 offset_expr.X_add_number = 0;
9118 if (expr1.X_add_number < -0x8000
9119 || expr1.X_add_number >= 0x8000)
9120 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9121 relax_start (offset_expr.X_add_symbol);
9122 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
9123 BFD_RELOC_MIPS_GOT_HI16);
9124 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
9125 mips_gp_register);
9126 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9127 BFD_RELOC_MIPS_GOT_LO16, tempreg);
9128 if (breg != 0)
9129 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9130 tempreg, tempreg, breg);
9131 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
9132
9133 relax_switch ();
9134 offset_expr.X_add_number = expr1.X_add_number;
9135 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9136 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9137 if (breg != 0)
9138 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9139 tempreg, tempreg, breg);
9140 macro_build (&offset_expr, s, fmt, treg,
9141 BFD_RELOC_MIPS_GOT_OFST, tempreg);
9142 relax_end ();
9143 }
9144 else
9145 abort ();
9146
9147 break;
9148
9149 case M_LI:
9150 case M_LI_S:
9151 load_register (treg, &imm_expr, 0);
9152 break;
9153
9154 case M_DLI:
9155 load_register (treg, &imm_expr, 1);
9156 break;
9157
9158 case M_LI_SS:
9159 if (imm_expr.X_op == O_constant)
9160 {
9161 used_at = 1;
9162 load_register (AT, &imm_expr, 0);
9163 macro_build (NULL, "mtc1", "t,G", AT, treg);
9164 break;
9165 }
9166 else
9167 {
9168 gas_assert (offset_expr.X_op == O_symbol
9169 && strcmp (segment_name (S_GET_SEGMENT
9170 (offset_expr.X_add_symbol)),
9171 ".lit4") == 0
9172 && offset_expr.X_add_number == 0);
9173 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
9174 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
9175 break;
9176 }
9177
9178 case M_LI_D:
9179 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
9180 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
9181 order 32 bits of the value and the low order 32 bits are either
9182 zero or in OFFSET_EXPR. */
9183 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
9184 {
9185 if (HAVE_64BIT_GPRS)
9186 load_register (treg, &imm_expr, 1);
9187 else
9188 {
9189 int hreg, lreg;
9190
9191 if (target_big_endian)
9192 {
9193 hreg = treg;
9194 lreg = treg + 1;
9195 }
9196 else
9197 {
9198 hreg = treg + 1;
9199 lreg = treg;
9200 }
9201
9202 if (hreg <= 31)
9203 load_register (hreg, &imm_expr, 0);
9204 if (lreg <= 31)
9205 {
9206 if (offset_expr.X_op == O_absent)
9207 move_register (lreg, 0);
9208 else
9209 {
9210 gas_assert (offset_expr.X_op == O_constant);
9211 load_register (lreg, &offset_expr, 0);
9212 }
9213 }
9214 }
9215 break;
9216 }
9217
9218 /* We know that sym is in the .rdata section. First we get the
9219 upper 16 bits of the address. */
9220 if (mips_pic == NO_PIC)
9221 {
9222 macro_build_lui (&offset_expr, AT);
9223 used_at = 1;
9224 }
9225 else
9226 {
9227 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
9228 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9229 used_at = 1;
9230 }
9231
9232 /* Now we load the register(s). */
9233 if (HAVE_64BIT_GPRS)
9234 {
9235 used_at = 1;
9236 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
9237 }
9238 else
9239 {
9240 used_at = 1;
9241 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
9242 if (treg != RA)
9243 {
9244 /* FIXME: How in the world do we deal with the possible
9245 overflow here? */
9246 offset_expr.X_add_number += 4;
9247 macro_build (&offset_expr, "lw", "t,o(b)",
9248 treg + 1, BFD_RELOC_LO16, AT);
9249 }
9250 }
9251 break;
9252
9253 case M_LI_DD:
9254 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
9255 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
9256 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
9257 the value and the low order 32 bits are either zero or in
9258 OFFSET_EXPR. */
9259 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
9260 {
9261 used_at = 1;
9262 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
9263 if (HAVE_64BIT_FPRS)
9264 {
9265 gas_assert (HAVE_64BIT_GPRS);
9266 macro_build (NULL, "dmtc1", "t,S", AT, treg);
9267 }
9268 else
9269 {
9270 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
9271 if (offset_expr.X_op == O_absent)
9272 macro_build (NULL, "mtc1", "t,G", 0, treg);
9273 else
9274 {
9275 gas_assert (offset_expr.X_op == O_constant);
9276 load_register (AT, &offset_expr, 0);
9277 macro_build (NULL, "mtc1", "t,G", AT, treg);
9278 }
9279 }
9280 break;
9281 }
9282
9283 gas_assert (offset_expr.X_op == O_symbol
9284 && offset_expr.X_add_number == 0);
9285 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
9286 if (strcmp (s, ".lit8") == 0)
9287 {
9288 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch) || mips_opts.micromips)
9289 {
9290 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
9291 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
9292 break;
9293 }
9294 breg = mips_gp_register;
9295 r = BFD_RELOC_MIPS_LITERAL;
9296 goto dob;
9297 }
9298 else
9299 {
9300 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
9301 used_at = 1;
9302 if (mips_pic != NO_PIC)
9303 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
9304 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9305 else
9306 {
9307 /* FIXME: This won't work for a 64 bit address. */
9308 macro_build_lui (&offset_expr, AT);
9309 }
9310
9311 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch) || mips_opts.micromips)
9312 {
9313 macro_build (&offset_expr, "ldc1", "T,o(b)",
9314 treg, BFD_RELOC_LO16, AT);
9315 break;
9316 }
9317 breg = AT;
9318 r = BFD_RELOC_LO16;
9319 goto dob;
9320 }
9321
9322 case M_L_DOB:
9323 /* Even on a big endian machine $fn comes before $fn+1. We have
9324 to adjust when loading from memory. */
9325 r = BFD_RELOC_LO16;
9326 dob:
9327 gas_assert (!mips_opts.micromips);
9328 gas_assert (!CPU_HAS_LDC1_SDC1 (mips_opts.arch));
9329 macro_build (&offset_expr, "lwc1", "T,o(b)",
9330 target_big_endian ? treg + 1 : treg, r, breg);
9331 /* FIXME: A possible overflow which I don't know how to deal
9332 with. */
9333 offset_expr.X_add_number += 4;
9334 macro_build (&offset_expr, "lwc1", "T,o(b)",
9335 target_big_endian ? treg : treg + 1, r, breg);
9336 break;
9337
9338 case M_S_DOB:
9339 gas_assert (!mips_opts.micromips);
9340 gas_assert (!CPU_HAS_LDC1_SDC1 (mips_opts.arch));
9341 /* Even on a big endian machine $fn comes before $fn+1. We have
9342 to adjust when storing to memory. */
9343 macro_build (&offset_expr, "swc1", "T,o(b)",
9344 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
9345 offset_expr.X_add_number += 4;
9346 macro_build (&offset_expr, "swc1", "T,o(b)",
9347 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
9348 break;
9349
9350 case M_L_DAB:
9351 gas_assert (!mips_opts.micromips);
9352 /*
9353 * The MIPS assembler seems to check for X_add_number not
9354 * being double aligned and generating:
9355 * lui at,%hi(foo+1)
9356 * addu at,at,v1
9357 * addiu at,at,%lo(foo+1)
9358 * lwc1 f2,0(at)
9359 * lwc1 f3,4(at)
9360 * But, the resulting address is the same after relocation so why
9361 * generate the extra instruction?
9362 */
9363 /* Itbl support may require additional care here. */
9364 coproc = 1;
9365 fmt = "T,o(b)";
9366 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
9367 {
9368 s = "ldc1";
9369 goto ld_st;
9370 }
9371 s = "lwc1";
9372 goto ldd_std;
9373
9374 case M_S_DAB:
9375 gas_assert (!mips_opts.micromips);
9376 /* Itbl support may require additional care here. */
9377 coproc = 1;
9378 fmt = "T,o(b)";
9379 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
9380 {
9381 s = "sdc1";
9382 goto ld_st;
9383 }
9384 s = "swc1";
9385 goto ldd_std;
9386
9387 case M_LQ_AB:
9388 fmt = "t,o(b)";
9389 s = "lq";
9390 goto ld;
9391
9392 case M_SQ_AB:
9393 fmt = "t,o(b)";
9394 s = "sq";
9395 goto ld_st;
9396
9397 case M_LD_AB:
9398 fmt = "t,o(b)";
9399 if (HAVE_64BIT_GPRS)
9400 {
9401 s = "ld";
9402 goto ld;
9403 }
9404 s = "lw";
9405 goto ldd_std;
9406
9407 case M_SD_AB:
9408 fmt = "t,o(b)";
9409 if (HAVE_64BIT_GPRS)
9410 {
9411 s = "sd";
9412 goto ld_st;
9413 }
9414 s = "sw";
9415
9416 ldd_std:
9417 if (offset_expr.X_op != O_symbol
9418 && offset_expr.X_op != O_constant)
9419 {
9420 as_bad (_("Expression too complex"));
9421 offset_expr.X_op = O_constant;
9422 }
9423
9424 if (HAVE_32BIT_ADDRESSES
9425 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
9426 {
9427 char value [32];
9428
9429 sprintf_vma (value, offset_expr.X_add_number);
9430 as_bad (_("Number (0x%s) larger than 32 bits"), value);
9431 }
9432
9433 /* Even on a big endian machine $fn comes before $fn+1. We have
9434 to adjust when loading from memory. We set coproc if we must
9435 load $fn+1 first. */
9436 /* Itbl support may require additional care here. */
9437 if (!target_big_endian)
9438 coproc = 0;
9439
9440 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
9441 {
9442 /* If this is a reference to a GP relative symbol, we want
9443 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
9444 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
9445 If we have a base register, we use this
9446 addu $at,$breg,$gp
9447 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
9448 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
9449 If this is not a GP relative symbol, we want
9450 lui $at,<sym> (BFD_RELOC_HI16_S)
9451 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
9452 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
9453 If there is a base register, we add it to $at after the
9454 lui instruction. If there is a constant, we always use
9455 the last case. */
9456 if (offset_expr.X_op == O_symbol
9457 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
9458 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
9459 {
9460 relax_start (offset_expr.X_add_symbol);
9461 if (breg == 0)
9462 {
9463 tempreg = mips_gp_register;
9464 }
9465 else
9466 {
9467 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9468 AT, breg, mips_gp_register);
9469 tempreg = AT;
9470 used_at = 1;
9471 }
9472
9473 /* Itbl support may require additional care here. */
9474 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
9475 BFD_RELOC_GPREL16, tempreg);
9476 offset_expr.X_add_number += 4;
9477
9478 /* Set mips_optimize to 2 to avoid inserting an
9479 undesired nop. */
9480 hold_mips_optimize = mips_optimize;
9481 mips_optimize = 2;
9482 /* Itbl support may require additional care here. */
9483 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
9484 BFD_RELOC_GPREL16, tempreg);
9485 mips_optimize = hold_mips_optimize;
9486
9487 relax_switch ();
9488
9489 offset_expr.X_add_number -= 4;
9490 }
9491 used_at = 1;
9492 macro_build_lui (&offset_expr, AT);
9493 if (breg != 0)
9494 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
9495 /* Itbl support may require additional care here. */
9496 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
9497 BFD_RELOC_LO16, AT);
9498 /* FIXME: How do we handle overflow here? */
9499 offset_expr.X_add_number += 4;
9500 /* Itbl support may require additional care here. */
9501 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
9502 BFD_RELOC_LO16, AT);
9503 if (mips_relax.sequence)
9504 relax_end ();
9505 }
9506 else if (!mips_big_got)
9507 {
9508 /* If this is a reference to an external symbol, we want
9509 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9510 nop
9511 <op> $treg,0($at)
9512 <op> $treg+1,4($at)
9513 Otherwise we want
9514 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9515 nop
9516 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
9517 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
9518 If there is a base register we add it to $at before the
9519 lwc1 instructions. If there is a constant we include it
9520 in the lwc1 instructions. */
9521 used_at = 1;
9522 expr1.X_add_number = offset_expr.X_add_number;
9523 if (expr1.X_add_number < -0x8000
9524 || expr1.X_add_number >= 0x8000 - 4)
9525 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9526 load_got_offset (AT, &offset_expr);
9527 load_delay_nop ();
9528 if (breg != 0)
9529 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
9530
9531 /* Set mips_optimize to 2 to avoid inserting an undesired
9532 nop. */
9533 hold_mips_optimize = mips_optimize;
9534 mips_optimize = 2;
9535
9536 /* Itbl support may require additional care here. */
9537 relax_start (offset_expr.X_add_symbol);
9538 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
9539 BFD_RELOC_LO16, AT);
9540 expr1.X_add_number += 4;
9541 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
9542 BFD_RELOC_LO16, AT);
9543 relax_switch ();
9544 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
9545 BFD_RELOC_LO16, AT);
9546 offset_expr.X_add_number += 4;
9547 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
9548 BFD_RELOC_LO16, AT);
9549 relax_end ();
9550
9551 mips_optimize = hold_mips_optimize;
9552 }
9553 else if (mips_big_got)
9554 {
9555 int gpdelay;
9556
9557 /* If this is a reference to an external symbol, we want
9558 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9559 addu $at,$at,$gp
9560 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
9561 nop
9562 <op> $treg,0($at)
9563 <op> $treg+1,4($at)
9564 Otherwise we want
9565 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9566 nop
9567 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
9568 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
9569 If there is a base register we add it to $at before the
9570 lwc1 instructions. If there is a constant we include it
9571 in the lwc1 instructions. */
9572 used_at = 1;
9573 expr1.X_add_number = offset_expr.X_add_number;
9574 offset_expr.X_add_number = 0;
9575 if (expr1.X_add_number < -0x8000
9576 || expr1.X_add_number >= 0x8000 - 4)
9577 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9578 gpdelay = reg_needs_delay (mips_gp_register);
9579 relax_start (offset_expr.X_add_symbol);
9580 macro_build (&offset_expr, "lui", LUI_FMT,
9581 AT, BFD_RELOC_MIPS_GOT_HI16);
9582 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9583 AT, AT, mips_gp_register);
9584 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9585 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
9586 load_delay_nop ();
9587 if (breg != 0)
9588 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
9589 /* Itbl support may require additional care here. */
9590 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
9591 BFD_RELOC_LO16, AT);
9592 expr1.X_add_number += 4;
9593
9594 /* Set mips_optimize to 2 to avoid inserting an undesired
9595 nop. */
9596 hold_mips_optimize = mips_optimize;
9597 mips_optimize = 2;
9598 /* Itbl support may require additional care here. */
9599 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
9600 BFD_RELOC_LO16, AT);
9601 mips_optimize = hold_mips_optimize;
9602 expr1.X_add_number -= 4;
9603
9604 relax_switch ();
9605 offset_expr.X_add_number = expr1.X_add_number;
9606 if (gpdelay)
9607 macro_build (NULL, "nop", "");
9608 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
9609 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9610 load_delay_nop ();
9611 if (breg != 0)
9612 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
9613 /* Itbl support may require additional care here. */
9614 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
9615 BFD_RELOC_LO16, AT);
9616 offset_expr.X_add_number += 4;
9617
9618 /* Set mips_optimize to 2 to avoid inserting an undesired
9619 nop. */
9620 hold_mips_optimize = mips_optimize;
9621 mips_optimize = 2;
9622 /* Itbl support may require additional care here. */
9623 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
9624 BFD_RELOC_LO16, AT);
9625 mips_optimize = hold_mips_optimize;
9626 relax_end ();
9627 }
9628 else
9629 abort ();
9630
9631 break;
9632
9633 case M_LD_OB:
9634 s = HAVE_64BIT_GPRS ? "ld" : "lw";
9635 goto sd_ob;
9636 case M_SD_OB:
9637 s = HAVE_64BIT_GPRS ? "sd" : "sw";
9638 sd_ob:
9639 macro_build (&offset_expr, s, "t,o(b)", treg,
9640 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
9641 breg);
9642 if (!HAVE_64BIT_GPRS)
9643 {
9644 offset_expr.X_add_number += 4;
9645 macro_build (&offset_expr, s, "t,o(b)", treg + 1,
9646 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
9647 breg);
9648 }
9649 break;
9650
9651
9652 case M_SAA_AB:
9653 ab = 1;
9654 case M_SAA_OB:
9655 s = "saa";
9656 offbits = 0;
9657 fmt = "t,(b)";
9658 goto ld_st;
9659 case M_SAAD_AB:
9660 ab = 1;
9661 case M_SAAD_OB:
9662 s = "saad";
9663 offbits = 0;
9664 fmt = "t,(b)";
9665 goto ld_st;
9666
9667 /* New code added to support COPZ instructions.
9668 This code builds table entries out of the macros in mip_opcodes.
9669 R4000 uses interlocks to handle coproc delays.
9670 Other chips (like the R3000) require nops to be inserted for delays.
9671
9672 FIXME: Currently, we require that the user handle delays.
9673 In order to fill delay slots for non-interlocked chips,
9674 we must have a way to specify delays based on the coprocessor.
9675 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
9676 What are the side-effects of the cop instruction?
9677 What cache support might we have and what are its effects?
9678 Both coprocessor & memory require delays. how long???
9679 What registers are read/set/modified?
9680
9681 If an itbl is provided to interpret cop instructions,
9682 this knowledge can be encoded in the itbl spec. */
9683
9684 case M_COP0:
9685 s = "c0";
9686 goto copz;
9687 case M_COP1:
9688 s = "c1";
9689 goto copz;
9690 case M_COP2:
9691 s = "c2";
9692 goto copz;
9693 case M_COP3:
9694 s = "c3";
9695 copz:
9696 gas_assert (!mips_opts.micromips);
9697 /* For now we just do C (same as Cz). The parameter will be
9698 stored in insn_opcode by mips_ip. */
9699 macro_build (NULL, s, "C", ip->insn_opcode);
9700 break;
9701
9702 case M_MOVE:
9703 move_register (dreg, sreg);
9704 break;
9705
9706 case M_DMUL:
9707 dbl = 1;
9708 case M_MUL:
9709 if (mips_opts.arch == CPU_R5900)
9710 {
9711 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", dreg, sreg, treg);
9712 }
9713 else
9714 {
9715 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
9716 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9717 }
9718 break;
9719
9720 case M_DMUL_I:
9721 dbl = 1;
9722 case M_MUL_I:
9723 /* The MIPS assembler some times generates shifts and adds. I'm
9724 not trying to be that fancy. GCC should do this for us
9725 anyway. */
9726 used_at = 1;
9727 load_register (AT, &imm_expr, dbl);
9728 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
9729 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9730 break;
9731
9732 case M_DMULO_I:
9733 dbl = 1;
9734 case M_MULO_I:
9735 imm = 1;
9736 goto do_mulo;
9737
9738 case M_DMULO:
9739 dbl = 1;
9740 case M_MULO:
9741 do_mulo:
9742 start_noreorder ();
9743 used_at = 1;
9744 if (imm)
9745 load_register (AT, &imm_expr, dbl);
9746 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
9747 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9748 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, dreg, dreg, RA);
9749 macro_build (NULL, "mfhi", MFHL_FMT, AT);
9750 if (mips_trap)
9751 macro_build (NULL, "tne", TRAP_FMT, dreg, AT, 6);
9752 else
9753 {
9754 if (mips_opts.micromips)
9755 micromips_label_expr (&label_expr);
9756 else
9757 label_expr.X_add_number = 8;
9758 macro_build (&label_expr, "beq", "s,t,p", dreg, AT);
9759 macro_build (NULL, "nop", "");
9760 macro_build (NULL, "break", BRK_FMT, 6);
9761 if (mips_opts.micromips)
9762 micromips_add_label ();
9763 }
9764 end_noreorder ();
9765 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9766 break;
9767
9768 case M_DMULOU_I:
9769 dbl = 1;
9770 case M_MULOU_I:
9771 imm = 1;
9772 goto do_mulou;
9773
9774 case M_DMULOU:
9775 dbl = 1;
9776 case M_MULOU:
9777 do_mulou:
9778 start_noreorder ();
9779 used_at = 1;
9780 if (imm)
9781 load_register (AT, &imm_expr, dbl);
9782 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
9783 sreg, imm ? AT : treg);
9784 macro_build (NULL, "mfhi", MFHL_FMT, AT);
9785 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9786 if (mips_trap)
9787 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
9788 else
9789 {
9790 if (mips_opts.micromips)
9791 micromips_label_expr (&label_expr);
9792 else
9793 label_expr.X_add_number = 8;
9794 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
9795 macro_build (NULL, "nop", "");
9796 macro_build (NULL, "break", BRK_FMT, 6);
9797 if (mips_opts.micromips)
9798 micromips_add_label ();
9799 }
9800 end_noreorder ();
9801 break;
9802
9803 case M_DROL:
9804 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
9805 {
9806 if (dreg == sreg)
9807 {
9808 tempreg = AT;
9809 used_at = 1;
9810 }
9811 else
9812 {
9813 tempreg = dreg;
9814 }
9815 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
9816 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
9817 break;
9818 }
9819 used_at = 1;
9820 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
9821 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
9822 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
9823 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9824 break;
9825
9826 case M_ROL:
9827 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
9828 {
9829 if (dreg == sreg)
9830 {
9831 tempreg = AT;
9832 used_at = 1;
9833 }
9834 else
9835 {
9836 tempreg = dreg;
9837 }
9838 macro_build (NULL, "negu", "d,w", tempreg, treg);
9839 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
9840 break;
9841 }
9842 used_at = 1;
9843 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
9844 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
9845 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
9846 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9847 break;
9848
9849 case M_DROL_I:
9850 {
9851 unsigned int rot;
9852 char *l;
9853 char *rr;
9854
9855 if (imm_expr.X_op != O_constant)
9856 as_bad (_("Improper rotate count"));
9857 rot = imm_expr.X_add_number & 0x3f;
9858 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
9859 {
9860 rot = (64 - rot) & 0x3f;
9861 if (rot >= 32)
9862 macro_build (NULL, "dror32", SHFT_FMT, dreg, sreg, rot - 32);
9863 else
9864 macro_build (NULL, "dror", SHFT_FMT, dreg, sreg, rot);
9865 break;
9866 }
9867 if (rot == 0)
9868 {
9869 macro_build (NULL, "dsrl", SHFT_FMT, dreg, sreg, 0);
9870 break;
9871 }
9872 l = (rot < 0x20) ? "dsll" : "dsll32";
9873 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
9874 rot &= 0x1f;
9875 used_at = 1;
9876 macro_build (NULL, l, SHFT_FMT, AT, sreg, rot);
9877 macro_build (NULL, rr, SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
9878 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9879 }
9880 break;
9881
9882 case M_ROL_I:
9883 {
9884 unsigned int rot;
9885
9886 if (imm_expr.X_op != O_constant)
9887 as_bad (_("Improper rotate count"));
9888 rot = imm_expr.X_add_number & 0x1f;
9889 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
9890 {
9891 macro_build (NULL, "ror", SHFT_FMT, dreg, sreg, (32 - rot) & 0x1f);
9892 break;
9893 }
9894 if (rot == 0)
9895 {
9896 macro_build (NULL, "srl", SHFT_FMT, dreg, sreg, 0);
9897 break;
9898 }
9899 used_at = 1;
9900 macro_build (NULL, "sll", SHFT_FMT, AT, sreg, rot);
9901 macro_build (NULL, "srl", SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
9902 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9903 }
9904 break;
9905
9906 case M_DROR:
9907 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
9908 {
9909 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
9910 break;
9911 }
9912 used_at = 1;
9913 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
9914 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
9915 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
9916 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9917 break;
9918
9919 case M_ROR:
9920 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
9921 {
9922 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
9923 break;
9924 }
9925 used_at = 1;
9926 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
9927 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
9928 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
9929 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9930 break;
9931
9932 case M_DROR_I:
9933 {
9934 unsigned int rot;
9935 char *l;
9936 char *rr;
9937
9938 if (imm_expr.X_op != O_constant)
9939 as_bad (_("Improper rotate count"));
9940 rot = imm_expr.X_add_number & 0x3f;
9941 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
9942 {
9943 if (rot >= 32)
9944 macro_build (NULL, "dror32", SHFT_FMT, dreg, sreg, rot - 32);
9945 else
9946 macro_build (NULL, "dror", SHFT_FMT, dreg, sreg, rot);
9947 break;
9948 }
9949 if (rot == 0)
9950 {
9951 macro_build (NULL, "dsrl", SHFT_FMT, dreg, sreg, 0);
9952 break;
9953 }
9954 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
9955 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
9956 rot &= 0x1f;
9957 used_at = 1;
9958 macro_build (NULL, rr, SHFT_FMT, AT, sreg, rot);
9959 macro_build (NULL, l, SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
9960 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9961 }
9962 break;
9963
9964 case M_ROR_I:
9965 {
9966 unsigned int rot;
9967
9968 if (imm_expr.X_op != O_constant)
9969 as_bad (_("Improper rotate count"));
9970 rot = imm_expr.X_add_number & 0x1f;
9971 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
9972 {
9973 macro_build (NULL, "ror", SHFT_FMT, dreg, sreg, rot);
9974 break;
9975 }
9976 if (rot == 0)
9977 {
9978 macro_build (NULL, "srl", SHFT_FMT, dreg, sreg, 0);
9979 break;
9980 }
9981 used_at = 1;
9982 macro_build (NULL, "srl", SHFT_FMT, AT, sreg, rot);
9983 macro_build (NULL, "sll", SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
9984 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9985 }
9986 break;
9987
9988 case M_SEQ:
9989 if (sreg == 0)
9990 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
9991 else if (treg == 0)
9992 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9993 else
9994 {
9995 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
9996 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
9997 }
9998 break;
9999
10000 case M_SEQ_I:
10001 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
10002 {
10003 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
10004 break;
10005 }
10006 if (sreg == 0)
10007 {
10008 as_warn (_("Instruction %s: result is always false"),
10009 ip->insn_mo->name);
10010 move_register (dreg, 0);
10011 break;
10012 }
10013 if (CPU_HAS_SEQ (mips_opts.arch)
10014 && -512 <= imm_expr.X_add_number
10015 && imm_expr.X_add_number < 512)
10016 {
10017 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg,
10018 (int) imm_expr.X_add_number);
10019 break;
10020 }
10021 if (imm_expr.X_op == O_constant
10022 && imm_expr.X_add_number >= 0
10023 && imm_expr.X_add_number < 0x10000)
10024 {
10025 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
10026 }
10027 else if (imm_expr.X_op == O_constant
10028 && imm_expr.X_add_number > -0x8000
10029 && imm_expr.X_add_number < 0)
10030 {
10031 imm_expr.X_add_number = -imm_expr.X_add_number;
10032 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
10033 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
10034 }
10035 else if (CPU_HAS_SEQ (mips_opts.arch))
10036 {
10037 used_at = 1;
10038 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
10039 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT);
10040 break;
10041 }
10042 else
10043 {
10044 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
10045 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
10046 used_at = 1;
10047 }
10048 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
10049 break;
10050
10051 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
10052 s = "slt";
10053 goto sge;
10054 case M_SGEU:
10055 s = "sltu";
10056 sge:
10057 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
10058 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
10059 break;
10060
10061 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
10062 case M_SGEU_I:
10063 if (imm_expr.X_op == O_constant
10064 && imm_expr.X_add_number >= -0x8000
10065 && imm_expr.X_add_number < 0x8000)
10066 {
10067 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
10068 dreg, sreg, BFD_RELOC_LO16);
10069 }
10070 else
10071 {
10072 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
10073 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
10074 dreg, sreg, AT);
10075 used_at = 1;
10076 }
10077 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
10078 break;
10079
10080 case M_SGT: /* sreg > treg <==> treg < sreg */
10081 s = "slt";
10082 goto sgt;
10083 case M_SGTU:
10084 s = "sltu";
10085 sgt:
10086 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
10087 break;
10088
10089 case M_SGT_I: /* sreg > I <==> I < sreg */
10090 s = "slt";
10091 goto sgti;
10092 case M_SGTU_I:
10093 s = "sltu";
10094 sgti:
10095 used_at = 1;
10096 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
10097 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
10098 break;
10099
10100 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
10101 s = "slt";
10102 goto sle;
10103 case M_SLEU:
10104 s = "sltu";
10105 sle:
10106 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
10107 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
10108 break;
10109
10110 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
10111 s = "slt";
10112 goto slei;
10113 case M_SLEU_I:
10114 s = "sltu";
10115 slei:
10116 used_at = 1;
10117 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
10118 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
10119 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
10120 break;
10121
10122 case M_SLT_I:
10123 if (imm_expr.X_op == O_constant
10124 && imm_expr.X_add_number >= -0x8000
10125 && imm_expr.X_add_number < 0x8000)
10126 {
10127 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
10128 break;
10129 }
10130 used_at = 1;
10131 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
10132 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
10133 break;
10134
10135 case M_SLTU_I:
10136 if (imm_expr.X_op == O_constant
10137 && imm_expr.X_add_number >= -0x8000
10138 && imm_expr.X_add_number < 0x8000)
10139 {
10140 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
10141 BFD_RELOC_LO16);
10142 break;
10143 }
10144 used_at = 1;
10145 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
10146 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
10147 break;
10148
10149 case M_SNE:
10150 if (sreg == 0)
10151 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
10152 else if (treg == 0)
10153 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
10154 else
10155 {
10156 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
10157 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
10158 }
10159 break;
10160
10161 case M_SNE_I:
10162 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
10163 {
10164 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
10165 break;
10166 }
10167 if (sreg == 0)
10168 {
10169 as_warn (_("Instruction %s: result is always true"),
10170 ip->insn_mo->name);
10171 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
10172 dreg, 0, BFD_RELOC_LO16);
10173 break;
10174 }
10175 if (CPU_HAS_SEQ (mips_opts.arch)
10176 && -512 <= imm_expr.X_add_number
10177 && imm_expr.X_add_number < 512)
10178 {
10179 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg,
10180 (int) imm_expr.X_add_number);
10181 break;
10182 }
10183 if (imm_expr.X_op == O_constant
10184 && imm_expr.X_add_number >= 0
10185 && imm_expr.X_add_number < 0x10000)
10186 {
10187 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
10188 }
10189 else if (imm_expr.X_op == O_constant
10190 && imm_expr.X_add_number > -0x8000
10191 && imm_expr.X_add_number < 0)
10192 {
10193 imm_expr.X_add_number = -imm_expr.X_add_number;
10194 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
10195 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
10196 }
10197 else if (CPU_HAS_SEQ (mips_opts.arch))
10198 {
10199 used_at = 1;
10200 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
10201 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT);
10202 break;
10203 }
10204 else
10205 {
10206 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
10207 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
10208 used_at = 1;
10209 }
10210 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
10211 break;
10212
10213 case M_SUB_I:
10214 s = "addi";
10215 s2 = "sub";
10216 goto do_subi;
10217 case M_SUBU_I:
10218 s = "addiu";
10219 s2 = "subu";
10220 goto do_subi;
10221 case M_DSUB_I:
10222 dbl = 1;
10223 s = "daddi";
10224 s2 = "dsub";
10225 if (!mips_opts.micromips)
10226 goto do_subi;
10227 if (imm_expr.X_op == O_constant
10228 && imm_expr.X_add_number > -0x200
10229 && imm_expr.X_add_number <= 0x200)
10230 {
10231 macro_build (NULL, s, "t,r,.", dreg, sreg, -imm_expr.X_add_number);
10232 break;
10233 }
10234 goto do_subi_i;
10235 case M_DSUBU_I:
10236 dbl = 1;
10237 s = "daddiu";
10238 s2 = "dsubu";
10239 do_subi:
10240 if (imm_expr.X_op == O_constant
10241 && imm_expr.X_add_number > -0x8000
10242 && imm_expr.X_add_number <= 0x8000)
10243 {
10244 imm_expr.X_add_number = -imm_expr.X_add_number;
10245 macro_build (&imm_expr, s, "t,r,j", dreg, sreg, BFD_RELOC_LO16);
10246 break;
10247 }
10248 do_subi_i:
10249 used_at = 1;
10250 load_register (AT, &imm_expr, dbl);
10251 macro_build (NULL, s2, "d,v,t", dreg, sreg, AT);
10252 break;
10253
10254 case M_TEQ_I:
10255 s = "teq";
10256 goto trap;
10257 case M_TGE_I:
10258 s = "tge";
10259 goto trap;
10260 case M_TGEU_I:
10261 s = "tgeu";
10262 goto trap;
10263 case M_TLT_I:
10264 s = "tlt";
10265 goto trap;
10266 case M_TLTU_I:
10267 s = "tltu";
10268 goto trap;
10269 case M_TNE_I:
10270 s = "tne";
10271 trap:
10272 used_at = 1;
10273 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
10274 macro_build (NULL, s, "s,t", sreg, AT);
10275 break;
10276
10277 case M_TRUNCWS:
10278 case M_TRUNCWD:
10279 gas_assert (!mips_opts.micromips);
10280 gas_assert (mips_opts.isa == ISA_MIPS1);
10281 used_at = 1;
10282 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
10283 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
10284
10285 /*
10286 * Is the double cfc1 instruction a bug in the mips assembler;
10287 * or is there a reason for it?
10288 */
10289 start_noreorder ();
10290 macro_build (NULL, "cfc1", "t,G", treg, RA);
10291 macro_build (NULL, "cfc1", "t,G", treg, RA);
10292 macro_build (NULL, "nop", "");
10293 expr1.X_add_number = 3;
10294 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
10295 expr1.X_add_number = 2;
10296 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
10297 macro_build (NULL, "ctc1", "t,G", AT, RA);
10298 macro_build (NULL, "nop", "");
10299 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
10300 dreg, sreg);
10301 macro_build (NULL, "ctc1", "t,G", treg, RA);
10302 macro_build (NULL, "nop", "");
10303 end_noreorder ();
10304 break;
10305
10306 case M_ULH_A:
10307 ab = 1;
10308 case M_ULH:
10309 s = "lb";
10310 s2 = "lbu";
10311 off = 1;
10312 goto uld_st;
10313 case M_ULHU_A:
10314 ab = 1;
10315 case M_ULHU:
10316 s = "lbu";
10317 s2 = "lbu";
10318 off = 1;
10319 goto uld_st;
10320 case M_ULW_A:
10321 ab = 1;
10322 case M_ULW:
10323 s = "lwl";
10324 s2 = "lwr";
10325 offbits = (mips_opts.micromips ? 12 : 16);
10326 off = 3;
10327 goto uld_st;
10328 case M_ULD_A:
10329 ab = 1;
10330 case M_ULD:
10331 s = "ldl";
10332 s2 = "ldr";
10333 offbits = (mips_opts.micromips ? 12 : 16);
10334 off = 7;
10335 goto uld_st;
10336 case M_USH_A:
10337 ab = 1;
10338 case M_USH:
10339 s = "sb";
10340 s2 = "sb";
10341 off = 1;
10342 ust = 1;
10343 goto uld_st;
10344 case M_USW_A:
10345 ab = 1;
10346 case M_USW:
10347 s = "swl";
10348 s2 = "swr";
10349 offbits = (mips_opts.micromips ? 12 : 16);
10350 off = 3;
10351 ust = 1;
10352 goto uld_st;
10353 case M_USD_A:
10354 ab = 1;
10355 case M_USD:
10356 s = "sdl";
10357 s2 = "sdr";
10358 offbits = (mips_opts.micromips ? 12 : 16);
10359 off = 7;
10360 ust = 1;
10361
10362 uld_st:
10363 if (!ab && offset_expr.X_add_number >= 0x8000 - off)
10364 as_bad (_("Operand overflow"));
10365
10366 ep = &offset_expr;
10367 expr1.X_add_number = 0;
10368 if (ab)
10369 {
10370 used_at = 1;
10371 tempreg = AT;
10372 load_address (tempreg, ep, &used_at);
10373 if (breg != 0)
10374 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10375 tempreg, tempreg, breg);
10376 breg = tempreg;
10377 tempreg = treg;
10378 ep = &expr1;
10379 }
10380 else if (offbits == 12
10381 && (offset_expr.X_op != O_constant
10382 || !IS_SEXT_12BIT_NUM (offset_expr.X_add_number)
10383 || !IS_SEXT_12BIT_NUM (offset_expr.X_add_number + off)))
10384 {
10385 used_at = 1;
10386 tempreg = AT;
10387 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg,
10388 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10389 breg = tempreg;
10390 tempreg = treg;
10391 ep = &expr1;
10392 }
10393 else if (!ust && treg == breg)
10394 {
10395 used_at = 1;
10396 tempreg = AT;
10397 }
10398 else
10399 tempreg = treg;
10400
10401 if (off == 1)
10402 goto ulh_sh;
10403
10404 if (!target_big_endian)
10405 ep->X_add_number += off;
10406 if (offbits != 12)
10407 macro_build (ep, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
10408 else
10409 macro_build (NULL, s, "t,~(b)",
10410 tempreg, (unsigned long) ep->X_add_number, breg);
10411
10412 if (!target_big_endian)
10413 ep->X_add_number -= off;
10414 else
10415 ep->X_add_number += off;
10416 if (offbits != 12)
10417 macro_build (ep, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
10418 else
10419 macro_build (NULL, s2, "t,~(b)",
10420 tempreg, (unsigned long) ep->X_add_number, breg);
10421
10422 /* If necessary, move the result in tempreg to the final destination. */
10423 if (!ust && treg != tempreg)
10424 {
10425 /* Protect second load's delay slot. */
10426 load_delay_nop ();
10427 move_register (treg, tempreg);
10428 }
10429 break;
10430
10431 ulh_sh:
10432 used_at = 1;
10433 if (target_big_endian == ust)
10434 ep->X_add_number += off;
10435 tempreg = ust || ab ? treg : AT;
10436 macro_build (ep, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
10437
10438 /* For halfword transfers we need a temporary register to shuffle
10439 bytes. Unfortunately for M_USH_A we have none available before
10440 the next store as AT holds the base address. We deal with this
10441 case by clobbering TREG and then restoring it as with ULH. */
10442 tempreg = ust == ab ? treg : AT;
10443 if (ust)
10444 macro_build (NULL, "srl", SHFT_FMT, tempreg, treg, 8);
10445
10446 if (target_big_endian == ust)
10447 ep->X_add_number -= off;
10448 else
10449 ep->X_add_number += off;
10450 macro_build (ep, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
10451
10452 /* For M_USH_A re-retrieve the LSB. */
10453 if (ust && ab)
10454 {
10455 if (target_big_endian)
10456 ep->X_add_number += off;
10457 else
10458 ep->X_add_number -= off;
10459 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
10460 }
10461 /* For ULH and M_USH_A OR the LSB in. */
10462 if (!ust || ab)
10463 {
10464 tempreg = !ab ? AT : treg;
10465 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
10466 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
10467 }
10468 break;
10469
10470 default:
10471 /* FIXME: Check if this is one of the itbl macros, since they
10472 are added dynamically. */
10473 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
10474 break;
10475 }
10476 if (!mips_opts.at && used_at)
10477 as_bad (_("Macro used $at after \".set noat\""));
10478 }
10479
10480 /* Implement macros in mips16 mode. */
10481
10482 static void
10483 mips16_macro (struct mips_cl_insn *ip)
10484 {
10485 int mask;
10486 int xreg, yreg, zreg, tmp;
10487 expressionS expr1;
10488 int dbl;
10489 const char *s, *s2, *s3;
10490
10491 mask = ip->insn_mo->mask;
10492
10493 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
10494 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
10495 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
10496
10497 expr1.X_op = O_constant;
10498 expr1.X_op_symbol = NULL;
10499 expr1.X_add_symbol = NULL;
10500 expr1.X_add_number = 1;
10501
10502 dbl = 0;
10503
10504 switch (mask)
10505 {
10506 default:
10507 abort ();
10508
10509 case M_DDIV_3:
10510 dbl = 1;
10511 case M_DIV_3:
10512 s = "mflo";
10513 goto do_div3;
10514 case M_DREM_3:
10515 dbl = 1;
10516 case M_REM_3:
10517 s = "mfhi";
10518 do_div3:
10519 start_noreorder ();
10520 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
10521 expr1.X_add_number = 2;
10522 macro_build (&expr1, "bnez", "x,p", yreg);
10523 macro_build (NULL, "break", "6", 7);
10524
10525 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
10526 since that causes an overflow. We should do that as well,
10527 but I don't see how to do the comparisons without a temporary
10528 register. */
10529 end_noreorder ();
10530 macro_build (NULL, s, "x", zreg);
10531 break;
10532
10533 case M_DIVU_3:
10534 s = "divu";
10535 s2 = "mflo";
10536 goto do_divu3;
10537 case M_REMU_3:
10538 s = "divu";
10539 s2 = "mfhi";
10540 goto do_divu3;
10541 case M_DDIVU_3:
10542 s = "ddivu";
10543 s2 = "mflo";
10544 goto do_divu3;
10545 case M_DREMU_3:
10546 s = "ddivu";
10547 s2 = "mfhi";
10548 do_divu3:
10549 start_noreorder ();
10550 macro_build (NULL, s, "0,x,y", xreg, yreg);
10551 expr1.X_add_number = 2;
10552 macro_build (&expr1, "bnez", "x,p", yreg);
10553 macro_build (NULL, "break", "6", 7);
10554 end_noreorder ();
10555 macro_build (NULL, s2, "x", zreg);
10556 break;
10557
10558 case M_DMUL:
10559 dbl = 1;
10560 case M_MUL:
10561 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
10562 macro_build (NULL, "mflo", "x", zreg);
10563 break;
10564
10565 case M_DSUBU_I:
10566 dbl = 1;
10567 goto do_subu;
10568 case M_SUBU_I:
10569 do_subu:
10570 if (imm_expr.X_op != O_constant)
10571 as_bad (_("Unsupported large constant"));
10572 imm_expr.X_add_number = -imm_expr.X_add_number;
10573 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
10574 break;
10575
10576 case M_SUBU_I_2:
10577 if (imm_expr.X_op != O_constant)
10578 as_bad (_("Unsupported large constant"));
10579 imm_expr.X_add_number = -imm_expr.X_add_number;
10580 macro_build (&imm_expr, "addiu", "x,k", xreg);
10581 break;
10582
10583 case M_DSUBU_I_2:
10584 if (imm_expr.X_op != O_constant)
10585 as_bad (_("Unsupported large constant"));
10586 imm_expr.X_add_number = -imm_expr.X_add_number;
10587 macro_build (&imm_expr, "daddiu", "y,j", yreg);
10588 break;
10589
10590 case M_BEQ:
10591 s = "cmp";
10592 s2 = "bteqz";
10593 goto do_branch;
10594 case M_BNE:
10595 s = "cmp";
10596 s2 = "btnez";
10597 goto do_branch;
10598 case M_BLT:
10599 s = "slt";
10600 s2 = "btnez";
10601 goto do_branch;
10602 case M_BLTU:
10603 s = "sltu";
10604 s2 = "btnez";
10605 goto do_branch;
10606 case M_BLE:
10607 s = "slt";
10608 s2 = "bteqz";
10609 goto do_reverse_branch;
10610 case M_BLEU:
10611 s = "sltu";
10612 s2 = "bteqz";
10613 goto do_reverse_branch;
10614 case M_BGE:
10615 s = "slt";
10616 s2 = "bteqz";
10617 goto do_branch;
10618 case M_BGEU:
10619 s = "sltu";
10620 s2 = "bteqz";
10621 goto do_branch;
10622 case M_BGT:
10623 s = "slt";
10624 s2 = "btnez";
10625 goto do_reverse_branch;
10626 case M_BGTU:
10627 s = "sltu";
10628 s2 = "btnez";
10629
10630 do_reverse_branch:
10631 tmp = xreg;
10632 xreg = yreg;
10633 yreg = tmp;
10634
10635 do_branch:
10636 macro_build (NULL, s, "x,y", xreg, yreg);
10637 macro_build (&offset_expr, s2, "p");
10638 break;
10639
10640 case M_BEQ_I:
10641 s = "cmpi";
10642 s2 = "bteqz";
10643 s3 = "x,U";
10644 goto do_branch_i;
10645 case M_BNE_I:
10646 s = "cmpi";
10647 s2 = "btnez";
10648 s3 = "x,U";
10649 goto do_branch_i;
10650 case M_BLT_I:
10651 s = "slti";
10652 s2 = "btnez";
10653 s3 = "x,8";
10654 goto do_branch_i;
10655 case M_BLTU_I:
10656 s = "sltiu";
10657 s2 = "btnez";
10658 s3 = "x,8";
10659 goto do_branch_i;
10660 case M_BLE_I:
10661 s = "slti";
10662 s2 = "btnez";
10663 s3 = "x,8";
10664 goto do_addone_branch_i;
10665 case M_BLEU_I:
10666 s = "sltiu";
10667 s2 = "btnez";
10668 s3 = "x,8";
10669 goto do_addone_branch_i;
10670 case M_BGE_I:
10671 s = "slti";
10672 s2 = "bteqz";
10673 s3 = "x,8";
10674 goto do_branch_i;
10675 case M_BGEU_I:
10676 s = "sltiu";
10677 s2 = "bteqz";
10678 s3 = "x,8";
10679 goto do_branch_i;
10680 case M_BGT_I:
10681 s = "slti";
10682 s2 = "bteqz";
10683 s3 = "x,8";
10684 goto do_addone_branch_i;
10685 case M_BGTU_I:
10686 s = "sltiu";
10687 s2 = "bteqz";
10688 s3 = "x,8";
10689
10690 do_addone_branch_i:
10691 if (imm_expr.X_op != O_constant)
10692 as_bad (_("Unsupported large constant"));
10693 ++imm_expr.X_add_number;
10694
10695 do_branch_i:
10696 macro_build (&imm_expr, s, s3, xreg);
10697 macro_build (&offset_expr, s2, "p");
10698 break;
10699
10700 case M_ABS:
10701 expr1.X_add_number = 0;
10702 macro_build (&expr1, "slti", "x,8", yreg);
10703 if (xreg != yreg)
10704 move_register (xreg, yreg);
10705 expr1.X_add_number = 2;
10706 macro_build (&expr1, "bteqz", "p");
10707 macro_build (NULL, "neg", "x,w", xreg, xreg);
10708 }
10709 }
10710
10711 /* For consistency checking, verify that all bits are specified either
10712 by the match/mask part of the instruction definition, or by the
10713 operand list. */
10714 static int
10715 validate_mips_insn (const struct mips_opcode *opc)
10716 {
10717 const char *p = opc->args;
10718 char c;
10719 unsigned long used_bits = opc->mask;
10720
10721 if ((used_bits & opc->match) != opc->match)
10722 {
10723 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
10724 opc->name, opc->args);
10725 return 0;
10726 }
10727 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
10728 while (*p)
10729 switch (c = *p++)
10730 {
10731 case ',': break;
10732 case '(': break;
10733 case ')': break;
10734 case '+':
10735 switch (c = *p++)
10736 {
10737 case '1': USE_BITS (OP_MASK_UDI1, OP_SH_UDI1); break;
10738 case '2': USE_BITS (OP_MASK_UDI2, OP_SH_UDI2); break;
10739 case '3': USE_BITS (OP_MASK_UDI3, OP_SH_UDI3); break;
10740 case '4': USE_BITS (OP_MASK_UDI4, OP_SH_UDI4); break;
10741 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10742 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
10743 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
10744 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
10745 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
10746 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10747 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
10748 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
10749 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
10750 case 'I': break;
10751 case 'J': USE_BITS (OP_MASK_CODE10, OP_SH_CODE10); break;
10752 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10753 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT);
10754 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
10755 case 'x': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
10756 case 'X': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
10757 case 'p': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
10758 case 'P': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
10759 case 'Q': USE_BITS (OP_MASK_SEQI, OP_SH_SEQI); break;
10760 case 's': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
10761 case 'S': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
10762 case 'z': USE_BITS (OP_MASK_RZ, OP_SH_RZ); break;
10763 case 'Z': USE_BITS (OP_MASK_FZ, OP_SH_FZ); break;
10764 case 'a': USE_BITS (OP_MASK_OFFSET_A, OP_SH_OFFSET_A); break;
10765 case 'b': USE_BITS (OP_MASK_OFFSET_B, OP_SH_OFFSET_B); break;
10766 case 'c': USE_BITS (OP_MASK_OFFSET_C, OP_SH_OFFSET_C); break;
10767 case 'j': USE_BITS (OP_MASK_EVAOFFSET, OP_SH_EVAOFFSET); break;
10768
10769 default:
10770 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
10771 c, opc->name, opc->args);
10772 return 0;
10773 }
10774 break;
10775 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10776 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10777 case 'A': break;
10778 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
10779 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
10780 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
10781 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10782 case 'F': break;
10783 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10784 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
10785 case 'I': break;
10786 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
10787 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10788 case 'L': break;
10789 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
10790 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
10791 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
10792 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
10793 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10794 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
10795 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
10796 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10797 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
10798 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10799 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
10800 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
10801 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10802 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
10803 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10804 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
10805 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10806 case 'f': break;
10807 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
10808 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
10809 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
10810 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
10811 case 'l': break;
10812 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
10813 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
10814 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
10815 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10816 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10817 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10818 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
10819 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10820 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10821 case 'x': break;
10822 case 'z': break;
10823 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
10824 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
10825 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10826 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
10827 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
10828 case '[': break;
10829 case ']': break;
10830 case '1': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10831 case '2': USE_BITS (OP_MASK_BP, OP_SH_BP); break;
10832 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break;
10833 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break;
10834 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break;
10835 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10836 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break;
10837 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break;
10838 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break;
10839 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break;
10840 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break;
10841 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break;
10842 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break;
10843 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break;
10844 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break;
10845 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break;
10846 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break;
10847 case '\\': USE_BITS (OP_MASK_3BITPOS, OP_SH_3BITPOS); break;
10848 case '~': USE_BITS (OP_MASK_OFFSET12, OP_SH_OFFSET12); break;
10849 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10850 default:
10851 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
10852 c, opc->name, opc->args);
10853 return 0;
10854 }
10855 #undef USE_BITS
10856 if (used_bits != 0xffffffff)
10857 {
10858 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
10859 ~used_bits & 0xffffffff, opc->name, opc->args);
10860 return 0;
10861 }
10862 return 1;
10863 }
10864
10865 /* For consistency checking, verify that the length implied matches the
10866 major opcode and that all bits are specified either by the match/mask
10867 part of the instruction definition, or by the operand list. */
10868
10869 static int
10870 validate_micromips_insn (const struct mips_opcode *opc)
10871 {
10872 unsigned long match = opc->match;
10873 unsigned long mask = opc->mask;
10874 const char *p = opc->args;
10875 unsigned long insn_bits;
10876 unsigned long used_bits;
10877 unsigned long major;
10878 unsigned int length;
10879 char e;
10880 char c;
10881
10882 if ((mask & match) != match)
10883 {
10884 as_bad (_("Internal error: bad microMIPS opcode (mask error): %s %s"),
10885 opc->name, opc->args);
10886 return 0;
10887 }
10888 length = micromips_insn_length (opc);
10889 if (length != 2 && length != 4)
10890 {
10891 as_bad (_("Internal error: bad microMIPS opcode (incorrect length: %u): "
10892 "%s %s"), length, opc->name, opc->args);
10893 return 0;
10894 }
10895 major = match >> (10 + 8 * (length - 2));
10896 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
10897 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
10898 {
10899 as_bad (_("Internal error: bad microMIPS opcode "
10900 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
10901 return 0;
10902 }
10903
10904 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
10905 insn_bits = 1 << 4 * length;
10906 insn_bits <<= 4 * length;
10907 insn_bits -= 1;
10908 used_bits = mask;
10909 #define USE_BITS(field) \
10910 (used_bits |= MICROMIPSOP_MASK_##field << MICROMIPSOP_SH_##field)
10911 while (*p)
10912 switch (c = *p++)
10913 {
10914 case ',': break;
10915 case '(': break;
10916 case ')': break;
10917 case '+':
10918 e = c;
10919 switch (c = *p++)
10920 {
10921 case 'A': USE_BITS (EXTLSB); break;
10922 case 'B': USE_BITS (INSMSB); break;
10923 case 'C': USE_BITS (EXTMSBD); break;
10924 case 'D': USE_BITS (RS); USE_BITS (SEL); break;
10925 case 'E': USE_BITS (EXTLSB); break;
10926 case 'F': USE_BITS (INSMSB); break;
10927 case 'G': USE_BITS (EXTMSBD); break;
10928 case 'H': USE_BITS (EXTMSBD); break;
10929 case 'j': USE_BITS (EVAOFFSET); break;
10930 default:
10931 as_bad (_("Internal error: bad mips opcode "
10932 "(unknown extension operand type `%c%c'): %s %s"),
10933 e, c, opc->name, opc->args);
10934 return 0;
10935 }
10936 break;
10937 case 'm':
10938 e = c;
10939 switch (c = *p++)
10940 {
10941 case 'A': USE_BITS (IMMA); break;
10942 case 'B': USE_BITS (IMMB); break;
10943 case 'C': USE_BITS (IMMC); break;
10944 case 'D': USE_BITS (IMMD); break;
10945 case 'E': USE_BITS (IMME); break;
10946 case 'F': USE_BITS (IMMF); break;
10947 case 'G': USE_BITS (IMMG); break;
10948 case 'H': USE_BITS (IMMH); break;
10949 case 'I': USE_BITS (IMMI); break;
10950 case 'J': USE_BITS (IMMJ); break;
10951 case 'L': USE_BITS (IMML); break;
10952 case 'M': USE_BITS (IMMM); break;
10953 case 'N': USE_BITS (IMMN); break;
10954 case 'O': USE_BITS (IMMO); break;
10955 case 'P': USE_BITS (IMMP); break;
10956 case 'Q': USE_BITS (IMMQ); break;
10957 case 'U': USE_BITS (IMMU); break;
10958 case 'W': USE_BITS (IMMW); break;
10959 case 'X': USE_BITS (IMMX); break;
10960 case 'Y': USE_BITS (IMMY); break;
10961 case 'Z': break;
10962 case 'a': break;
10963 case 'b': USE_BITS (MB); break;
10964 case 'c': USE_BITS (MC); break;
10965 case 'd': USE_BITS (MD); break;
10966 case 'e': USE_BITS (ME); break;
10967 case 'f': USE_BITS (MF); break;
10968 case 'g': USE_BITS (MG); break;
10969 case 'h': USE_BITS (MH); break;
10970 case 'i': USE_BITS (MI); break;
10971 case 'j': USE_BITS (MJ); break;
10972 case 'l': USE_BITS (ML); break;
10973 case 'm': USE_BITS (MM); break;
10974 case 'n': USE_BITS (MN); break;
10975 case 'p': USE_BITS (MP); break;
10976 case 'q': USE_BITS (MQ); break;
10977 case 'r': break;
10978 case 's': break;
10979 case 't': break;
10980 case 'x': break;
10981 case 'y': break;
10982 case 'z': break;
10983 default:
10984 as_bad (_("Internal error: bad mips opcode "
10985 "(unknown extension operand type `%c%c'): %s %s"),
10986 e, c, opc->name, opc->args);
10987 return 0;
10988 }
10989 break;
10990 case '.': USE_BITS (OFFSET10); break;
10991 case '1': USE_BITS (STYPE); break;
10992 case '2': USE_BITS (BP); break;
10993 case '3': USE_BITS (SA3); break;
10994 case '4': USE_BITS (SA4); break;
10995 case '5': USE_BITS (IMM8); break;
10996 case '6': USE_BITS (RS); break;
10997 case '7': USE_BITS (DSPACC); break;
10998 case '8': USE_BITS (WRDSP); break;
10999 case '0': USE_BITS (DSPSFT); break;
11000 case '<': USE_BITS (SHAMT); break;
11001 case '>': USE_BITS (SHAMT); break;
11002 case '@': USE_BITS (IMM10); break;
11003 case 'B': USE_BITS (CODE10); break;
11004 case 'C': USE_BITS (COPZ); break;
11005 case 'D': USE_BITS (FD); break;
11006 case 'E': USE_BITS (RT); break;
11007 case 'G': USE_BITS (RS); break;
11008 case 'H': USE_BITS (SEL); break;
11009 case 'K': USE_BITS (RS); break;
11010 case 'M': USE_BITS (CCC); break;
11011 case 'N': USE_BITS (BCC); break;
11012 case 'R': USE_BITS (FR); break;
11013 case 'S': USE_BITS (FS); break;
11014 case 'T': USE_BITS (FT); break;
11015 case 'V': USE_BITS (FS); break;
11016 case '\\': USE_BITS (3BITPOS); break;
11017 case '^': USE_BITS (RD); break;
11018 case 'a': USE_BITS (TARGET); break;
11019 case 'b': USE_BITS (RS); break;
11020 case 'c': USE_BITS (CODE); break;
11021 case 'd': USE_BITS (RD); break;
11022 case 'h': USE_BITS (PREFX); break;
11023 case 'i': USE_BITS (IMMEDIATE); break;
11024 case 'j': USE_BITS (DELTA); break;
11025 case 'k': USE_BITS (CACHE); break;
11026 case 'n': USE_BITS (RT); break;
11027 case 'o': USE_BITS (DELTA); break;
11028 case 'p': USE_BITS (DELTA); break;
11029 case 'q': USE_BITS (CODE2); break;
11030 case 'r': USE_BITS (RS); break;
11031 case 's': USE_BITS (RS); break;
11032 case 't': USE_BITS (RT); break;
11033 case 'u': USE_BITS (IMMEDIATE); break;
11034 case 'v': USE_BITS (RS); break;
11035 case 'w': USE_BITS (RT); break;
11036 case 'y': USE_BITS (RS3); break;
11037 case 'z': break;
11038 case '|': USE_BITS (TRAP); break;
11039 case '~': USE_BITS (OFFSET12); break;
11040 default:
11041 as_bad (_("Internal error: bad microMIPS opcode "
11042 "(unknown operand type `%c'): %s %s"),
11043 c, opc->name, opc->args);
11044 return 0;
11045 }
11046 #undef USE_BITS
11047 if (used_bits != insn_bits)
11048 {
11049 if (~used_bits & insn_bits)
11050 as_bad (_("Internal error: bad microMIPS opcode "
11051 "(bits 0x%lx undefined): %s %s"),
11052 ~used_bits & insn_bits, opc->name, opc->args);
11053 if (used_bits & ~insn_bits)
11054 as_bad (_("Internal error: bad microMIPS opcode "
11055 "(bits 0x%lx defined): %s %s"),
11056 used_bits & ~insn_bits, opc->name, opc->args);
11057 return 0;
11058 }
11059 return 1;
11060 }
11061
11062 /* UDI immediates. */
11063 struct mips_immed {
11064 char type;
11065 unsigned int shift;
11066 unsigned long mask;
11067 const char * desc;
11068 };
11069
11070 static const struct mips_immed mips_immed[] = {
11071 { '1', OP_SH_UDI1, OP_MASK_UDI1, 0},
11072 { '2', OP_SH_UDI2, OP_MASK_UDI2, 0},
11073 { '3', OP_SH_UDI3, OP_MASK_UDI3, 0},
11074 { '4', OP_SH_UDI4, OP_MASK_UDI4, 0},
11075 { 0,0,0,0 }
11076 };
11077
11078 /* Check whether an odd floating-point register is allowed. */
11079 static int
11080 mips_oddfpreg_ok (const struct mips_opcode *insn, int argnum)
11081 {
11082 const char *s = insn->name;
11083
11084 if (insn->pinfo == INSN_MACRO)
11085 /* Let a macro pass, we'll catch it later when it is expanded. */
11086 return 1;
11087
11088 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa) || (mips_opts.arch == CPU_R5900))
11089 {
11090 /* Allow odd registers for single-precision ops. */
11091 switch (insn->pinfo & (FP_S | FP_D))
11092 {
11093 case FP_S:
11094 case 0:
11095 return 1; /* both single precision - ok */
11096 case FP_D:
11097 return 0; /* both double precision - fail */
11098 default:
11099 break;
11100 }
11101
11102 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
11103 s = strchr (insn->name, '.');
11104 if (argnum == 2)
11105 s = s != NULL ? strchr (s + 1, '.') : NULL;
11106 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
11107 }
11108
11109 /* Single-precision coprocessor loads and moves are OK too. */
11110 if ((insn->pinfo & FP_S)
11111 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
11112 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
11113 return 1;
11114
11115 return 0;
11116 }
11117
11118 /* Check if EXPR is a constant between MIN (inclusive) and MAX (exclusive)
11119 taking bits from BIT up. */
11120 static int
11121 expr_const_in_range (expressionS *ep, offsetT min, offsetT max, int bit)
11122 {
11123 return (ep->X_op == O_constant
11124 && (ep->X_add_number & ((1 << bit) - 1)) == 0
11125 && ep->X_add_number >= min << bit
11126 && ep->X_add_number < max << bit);
11127 }
11128
11129 /* This routine assembles an instruction into its binary format. As a
11130 side effect, it sets one of the global variables imm_reloc or
11131 offset_reloc to the type of relocation to do if one of the operands
11132 is an address expression. */
11133
11134 static void
11135 mips_ip (char *str, struct mips_cl_insn *ip)
11136 {
11137 bfd_boolean wrong_delay_slot_insns = FALSE;
11138 bfd_boolean need_delay_slot_ok = TRUE;
11139 struct mips_opcode *firstinsn = NULL;
11140 const struct mips_opcode *past;
11141 struct hash_control *hash;
11142 char *s;
11143 const char *args;
11144 char c = 0;
11145 struct mips_opcode *insn;
11146 char *argsStart;
11147 unsigned int regno;
11148 unsigned int lastregno;
11149 unsigned int destregno = 0;
11150 unsigned int lastpos = 0;
11151 unsigned int limlo, limhi;
11152 int sizelo;
11153 char *s_reset;
11154 offsetT min_range, max_range;
11155 long opend;
11156 char *name;
11157 int argnum;
11158 unsigned int rtype;
11159 char *dot;
11160 long end;
11161
11162 insn_error = NULL;
11163
11164 if (mips_opts.micromips)
11165 {
11166 hash = micromips_op_hash;
11167 past = &micromips_opcodes[bfd_micromips_num_opcodes];
11168 }
11169 else
11170 {
11171 hash = op_hash;
11172 past = &mips_opcodes[NUMOPCODES];
11173 }
11174 forced_insn_length = 0;
11175 insn = NULL;
11176
11177 /* We first try to match an instruction up to a space or to the end. */
11178 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
11179 continue;
11180
11181 /* Make a copy of the instruction so that we can fiddle with it. */
11182 name = alloca (end + 1);
11183 memcpy (name, str, end);
11184 name[end] = '\0';
11185
11186 for (;;)
11187 {
11188 insn = (struct mips_opcode *) hash_find (hash, name);
11189
11190 if (insn != NULL || !mips_opts.micromips)
11191 break;
11192 if (forced_insn_length)
11193 break;
11194
11195 /* See if there's an instruction size override suffix,
11196 either `16' or `32', at the end of the mnemonic proper,
11197 that defines the operation, i.e. before the first `.'
11198 character if any. Strip it and retry. */
11199 dot = strchr (name, '.');
11200 opend = dot != NULL ? dot - name : end;
11201 if (opend < 3)
11202 break;
11203 if (name[opend - 2] == '1' && name[opend - 1] == '6')
11204 forced_insn_length = 2;
11205 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
11206 forced_insn_length = 4;
11207 else
11208 break;
11209 memcpy (name + opend - 2, name + opend, end - opend + 1);
11210 }
11211 if (insn == NULL)
11212 {
11213 insn_error = _("Unrecognized opcode");
11214 return;
11215 }
11216
11217 /* For microMIPS instructions placed in a fixed-length branch delay slot
11218 we make up to two passes over the relevant fragment of the opcode
11219 table. First we try instructions that meet the delay slot's length
11220 requirement. If none matched, then we retry with the remaining ones
11221 and if one matches, then we use it and then issue an appropriate
11222 warning later on. */
11223 argsStart = s = str + end;
11224 for (;;)
11225 {
11226 bfd_boolean delay_slot_ok;
11227 bfd_boolean size_ok;
11228 bfd_boolean ok;
11229
11230 gas_assert (strcmp (insn->name, name) == 0);
11231
11232 ok = is_opcode_valid (insn);
11233 size_ok = is_size_valid (insn);
11234 delay_slot_ok = is_delay_slot_valid (insn);
11235 if (!delay_slot_ok && !wrong_delay_slot_insns)
11236 {
11237 firstinsn = insn;
11238 wrong_delay_slot_insns = TRUE;
11239 }
11240 if (!ok || !size_ok || delay_slot_ok != need_delay_slot_ok)
11241 {
11242 static char buf[256];
11243
11244 if (insn + 1 < past && strcmp (insn->name, insn[1].name) == 0)
11245 {
11246 ++insn;
11247 continue;
11248 }
11249 if (wrong_delay_slot_insns && need_delay_slot_ok)
11250 {
11251 gas_assert (firstinsn);
11252 need_delay_slot_ok = FALSE;
11253 past = insn + 1;
11254 insn = firstinsn;
11255 continue;
11256 }
11257
11258 if (insn_error)
11259 return;
11260
11261 if (!ok)
11262 sprintf (buf, _("Opcode not supported on this processor: %s (%s)"),
11263 mips_cpu_info_from_arch (mips_opts.arch)->name,
11264 mips_cpu_info_from_isa (mips_opts.isa)->name);
11265 else
11266 sprintf (buf, _("Unrecognized %u-bit version of microMIPS opcode"),
11267 8 * forced_insn_length);
11268 insn_error = buf;
11269
11270 return;
11271 }
11272
11273 create_insn (ip, insn);
11274 insn_error = NULL;
11275 argnum = 1;
11276 lastregno = 0xffffffff;
11277 for (args = insn->args;; ++args)
11278 {
11279 int is_mdmx;
11280
11281 s += strspn (s, " \t");
11282 is_mdmx = 0;
11283 switch (*args)
11284 {
11285 case '\0': /* end of args */
11286 if (*s == '\0')
11287 return;
11288 break;
11289
11290 case '2':
11291 /* DSP 2-bit unsigned immediate in bit 11 (for standard MIPS
11292 code) or 14 (for microMIPS code). */
11293 my_getExpression (&imm_expr, s);
11294 check_absolute_expr (ip, &imm_expr);
11295 if ((unsigned long) imm_expr.X_add_number != 1
11296 && (unsigned long) imm_expr.X_add_number != 3)
11297 {
11298 as_bad (_("BALIGN immediate not 1 or 3 (%lu)"),
11299 (unsigned long) imm_expr.X_add_number);
11300 }
11301 INSERT_OPERAND (mips_opts.micromips,
11302 BP, *ip, imm_expr.X_add_number);
11303 imm_expr.X_op = O_absent;
11304 s = expr_end;
11305 continue;
11306
11307 case '3':
11308 /* DSP 3-bit unsigned immediate in bit 13 (for standard MIPS
11309 code) or 21 (for microMIPS code). */
11310 {
11311 unsigned long mask = (mips_opts.micromips
11312 ? MICROMIPSOP_MASK_SA3 : OP_MASK_SA3);
11313
11314 my_getExpression (&imm_expr, s);
11315 check_absolute_expr (ip, &imm_expr);
11316 if ((unsigned long) imm_expr.X_add_number > mask)
11317 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
11318 mask, (unsigned long) imm_expr.X_add_number);
11319 INSERT_OPERAND (mips_opts.micromips,
11320 SA3, *ip, imm_expr.X_add_number);
11321 imm_expr.X_op = O_absent;
11322 s = expr_end;
11323 }
11324 continue;
11325
11326 case '4':
11327 /* DSP 4-bit unsigned immediate in bit 12 (for standard MIPS
11328 code) or 21 (for microMIPS code). */
11329 {
11330 unsigned long mask = (mips_opts.micromips
11331 ? MICROMIPSOP_MASK_SA4 : OP_MASK_SA4);
11332
11333 my_getExpression (&imm_expr, s);
11334 check_absolute_expr (ip, &imm_expr);
11335 if ((unsigned long) imm_expr.X_add_number > mask)
11336 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
11337 mask, (unsigned long) imm_expr.X_add_number);
11338 INSERT_OPERAND (mips_opts.micromips,
11339 SA4, *ip, imm_expr.X_add_number);
11340 imm_expr.X_op = O_absent;
11341 s = expr_end;
11342 }
11343 continue;
11344
11345 case '5':
11346 /* DSP 8-bit unsigned immediate in bit 13 (for standard MIPS
11347 code) or 16 (for microMIPS code). */
11348 {
11349 unsigned long mask = (mips_opts.micromips
11350 ? MICROMIPSOP_MASK_IMM8 : OP_MASK_IMM8);
11351
11352 my_getExpression (&imm_expr, s);
11353 check_absolute_expr (ip, &imm_expr);
11354 if ((unsigned long) imm_expr.X_add_number > mask)
11355 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
11356 mask, (unsigned long) imm_expr.X_add_number);
11357 INSERT_OPERAND (mips_opts.micromips,
11358 IMM8, *ip, imm_expr.X_add_number);
11359 imm_expr.X_op = O_absent;
11360 s = expr_end;
11361 }
11362 continue;
11363
11364 case '6':
11365 /* DSP 5-bit unsigned immediate in bit 16 (for standard MIPS
11366 code) or 21 (for microMIPS code). */
11367 {
11368 unsigned long mask = (mips_opts.micromips
11369 ? MICROMIPSOP_MASK_RS : OP_MASK_RS);
11370
11371 my_getExpression (&imm_expr, s);
11372 check_absolute_expr (ip, &imm_expr);
11373 if ((unsigned long) imm_expr.X_add_number > mask)
11374 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
11375 mask, (unsigned long) imm_expr.X_add_number);
11376 INSERT_OPERAND (mips_opts.micromips,
11377 RS, *ip, imm_expr.X_add_number);
11378 imm_expr.X_op = O_absent;
11379 s = expr_end;
11380 }
11381 continue;
11382
11383 case '7': /* Four DSP accumulators in bits 11,12. */
11384 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c'
11385 && s[3] >= '0' && s[3] <= '3')
11386 {
11387 regno = s[3] - '0';
11388 s += 4;
11389 INSERT_OPERAND (mips_opts.micromips, DSPACC, *ip, regno);
11390 continue;
11391 }
11392 else
11393 as_bad (_("Invalid dsp acc register"));
11394 break;
11395
11396 case '8':
11397 /* DSP 6-bit unsigned immediate in bit 11 (for standard MIPS
11398 code) or 14 (for microMIPS code). */
11399 {
11400 unsigned long mask = (mips_opts.micromips
11401 ? MICROMIPSOP_MASK_WRDSP
11402 : OP_MASK_WRDSP);
11403
11404 my_getExpression (&imm_expr, s);
11405 check_absolute_expr (ip, &imm_expr);
11406 if ((unsigned long) imm_expr.X_add_number > mask)
11407 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
11408 mask, (unsigned long) imm_expr.X_add_number);
11409 INSERT_OPERAND (mips_opts.micromips,
11410 WRDSP, *ip, imm_expr.X_add_number);
11411 imm_expr.X_op = O_absent;
11412 s = expr_end;
11413 }
11414 continue;
11415
11416 case '9': /* Four DSP accumulators in bits 21,22. */
11417 gas_assert (!mips_opts.micromips);
11418 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c'
11419 && s[3] >= '0' && s[3] <= '3')
11420 {
11421 regno = s[3] - '0';
11422 s += 4;
11423 INSERT_OPERAND (0, DSPACC_S, *ip, regno);
11424 continue;
11425 }
11426 else
11427 as_bad (_("Invalid dsp acc register"));
11428 break;
11429
11430 case '0':
11431 /* DSP 6-bit signed immediate in bit 16 (for standard MIPS
11432 code) or 20 (for microMIPS code). */
11433 {
11434 long mask = (mips_opts.micromips
11435 ? MICROMIPSOP_MASK_DSPSFT : OP_MASK_DSPSFT);
11436
11437 my_getExpression (&imm_expr, s);
11438 check_absolute_expr (ip, &imm_expr);
11439 min_range = -((mask + 1) >> 1);
11440 max_range = ((mask + 1) >> 1) - 1;
11441 if (imm_expr.X_add_number < min_range
11442 || imm_expr.X_add_number > max_range)
11443 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
11444 (long) min_range, (long) max_range,
11445 (long) imm_expr.X_add_number);
11446 INSERT_OPERAND (mips_opts.micromips,
11447 DSPSFT, *ip, imm_expr.X_add_number);
11448 imm_expr.X_op = O_absent;
11449 s = expr_end;
11450 }
11451 continue;
11452
11453 case '\'': /* DSP 6-bit unsigned immediate in bit 16. */
11454 gas_assert (!mips_opts.micromips);
11455 my_getExpression (&imm_expr, s);
11456 check_absolute_expr (ip, &imm_expr);
11457 if (imm_expr.X_add_number & ~OP_MASK_RDDSP)
11458 {
11459 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
11460 OP_MASK_RDDSP,
11461 (unsigned long) imm_expr.X_add_number);
11462 }
11463 INSERT_OPERAND (0, RDDSP, *ip, imm_expr.X_add_number);
11464 imm_expr.X_op = O_absent;
11465 s = expr_end;
11466 continue;
11467
11468 case ':': /* DSP 7-bit signed immediate in bit 19. */
11469 gas_assert (!mips_opts.micromips);
11470 my_getExpression (&imm_expr, s);
11471 check_absolute_expr (ip, &imm_expr);
11472 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1);
11473 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1;
11474 if (imm_expr.X_add_number < min_range ||
11475 imm_expr.X_add_number > max_range)
11476 {
11477 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
11478 (long) min_range, (long) max_range,
11479 (long) imm_expr.X_add_number);
11480 }
11481 INSERT_OPERAND (0, DSPSFT_7, *ip, imm_expr.X_add_number);
11482 imm_expr.X_op = O_absent;
11483 s = expr_end;
11484 continue;
11485
11486 case '@': /* DSP 10-bit signed immediate in bit 16. */
11487 {
11488 long mask = (mips_opts.micromips
11489 ? MICROMIPSOP_MASK_IMM10 : OP_MASK_IMM10);
11490
11491 my_getExpression (&imm_expr, s);
11492 check_absolute_expr (ip, &imm_expr);
11493 min_range = -((mask + 1) >> 1);
11494 max_range = ((mask + 1) >> 1) - 1;
11495 if (imm_expr.X_add_number < min_range
11496 || imm_expr.X_add_number > max_range)
11497 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
11498 (long) min_range, (long) max_range,
11499 (long) imm_expr.X_add_number);
11500 INSERT_OPERAND (mips_opts.micromips,
11501 IMM10, *ip, imm_expr.X_add_number);
11502 imm_expr.X_op = O_absent;
11503 s = expr_end;
11504 }
11505 continue;
11506
11507 case '^': /* DSP 5-bit unsigned immediate in bit 11. */
11508 gas_assert (mips_opts.micromips);
11509 my_getExpression (&imm_expr, s);
11510 check_absolute_expr (ip, &imm_expr);
11511 if (imm_expr.X_add_number & ~MICROMIPSOP_MASK_RD)
11512 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
11513 MICROMIPSOP_MASK_RD,
11514 (unsigned long) imm_expr.X_add_number);
11515 INSERT_OPERAND (1, RD, *ip, imm_expr.X_add_number);
11516 imm_expr.X_op = O_absent;
11517 s = expr_end;
11518 continue;
11519
11520 case '!': /* MT usermode flag bit. */
11521 gas_assert (!mips_opts.micromips);
11522 my_getExpression (&imm_expr, s);
11523 check_absolute_expr (ip, &imm_expr);
11524 if (imm_expr.X_add_number & ~OP_MASK_MT_U)
11525 as_bad (_("MT usermode bit not 0 or 1 (%lu)"),
11526 (unsigned long) imm_expr.X_add_number);
11527 INSERT_OPERAND (0, MT_U, *ip, imm_expr.X_add_number);
11528 imm_expr.X_op = O_absent;
11529 s = expr_end;
11530 continue;
11531
11532 case '$': /* MT load high flag bit. */
11533 gas_assert (!mips_opts.micromips);
11534 my_getExpression (&imm_expr, s);
11535 check_absolute_expr (ip, &imm_expr);
11536 if (imm_expr.X_add_number & ~OP_MASK_MT_H)
11537 as_bad (_("MT load high bit not 0 or 1 (%lu)"),
11538 (unsigned long) imm_expr.X_add_number);
11539 INSERT_OPERAND (0, MT_H, *ip, imm_expr.X_add_number);
11540 imm_expr.X_op = O_absent;
11541 s = expr_end;
11542 continue;
11543
11544 case '*': /* Four DSP accumulators in bits 18,19. */
11545 gas_assert (!mips_opts.micromips);
11546 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
11547 s[3] >= '0' && s[3] <= '3')
11548 {
11549 regno = s[3] - '0';
11550 s += 4;
11551 INSERT_OPERAND (0, MTACC_T, *ip, regno);
11552 continue;
11553 }
11554 else
11555 as_bad (_("Invalid dsp/smartmips acc register"));
11556 break;
11557
11558 case '&': /* Four DSP accumulators in bits 13,14. */
11559 gas_assert (!mips_opts.micromips);
11560 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
11561 s[3] >= '0' && s[3] <= '3')
11562 {
11563 regno = s[3] - '0';
11564 s += 4;
11565 INSERT_OPERAND (0, MTACC_D, *ip, regno);
11566 continue;
11567 }
11568 else
11569 as_bad (_("Invalid dsp/smartmips acc register"));
11570 break;
11571
11572 case '\\': /* 3-bit bit position. */
11573 {
11574 unsigned long mask = (mips_opts.micromips
11575 ? MICROMIPSOP_MASK_3BITPOS
11576 : OP_MASK_3BITPOS);
11577
11578 my_getExpression (&imm_expr, s);
11579 check_absolute_expr (ip, &imm_expr);
11580 if ((unsigned long) imm_expr.X_add_number > mask)
11581 as_warn (_("Bit position for %s not in range 0..%lu (%lu)"),
11582 ip->insn_mo->name,
11583 mask, (unsigned long) imm_expr.X_add_number);
11584 INSERT_OPERAND (mips_opts.micromips,
11585 3BITPOS, *ip, imm_expr.X_add_number);
11586 imm_expr.X_op = O_absent;
11587 s = expr_end;
11588 }
11589 continue;
11590
11591 case ',':
11592 ++argnum;
11593 if (*s++ == *args)
11594 continue;
11595 s--;
11596 switch (*++args)
11597 {
11598 case 'r':
11599 case 'v':
11600 INSERT_OPERAND (mips_opts.micromips, RS, *ip, lastregno);
11601 continue;
11602
11603 case 'w':
11604 INSERT_OPERAND (mips_opts.micromips, RT, *ip, lastregno);
11605 continue;
11606
11607 case 'W':
11608 gas_assert (!mips_opts.micromips);
11609 INSERT_OPERAND (0, FT, *ip, lastregno);
11610 continue;
11611
11612 case 'V':
11613 INSERT_OPERAND (mips_opts.micromips, FS, *ip, lastregno);
11614 continue;
11615 }
11616 break;
11617
11618 case '(':
11619 /* Handle optional base register.
11620 Either the base register is omitted or
11621 we must have a left paren. */
11622 /* This is dependent on the next operand specifier
11623 is a base register specification. */
11624 gas_assert (args[1] == 'b'
11625 || (mips_opts.micromips
11626 && args[1] == 'm'
11627 && (args[2] == 'l' || args[2] == 'n'
11628 || args[2] == 's' || args[2] == 'a')));
11629 if (*s == '\0' && args[1] == 'b')
11630 return;
11631 /* Fall through. */
11632
11633 case ')': /* These must match exactly. */
11634 if (*s++ == *args)
11635 continue;
11636 break;
11637
11638 case '[': /* These must match exactly. */
11639 case ']':
11640 gas_assert (!mips_opts.micromips);
11641 if (*s++ == *args)
11642 continue;
11643 break;
11644
11645 case '+': /* Opcode extension character. */
11646 switch (*++args)
11647 {
11648 case '1': /* UDI immediates. */
11649 case '2':
11650 case '3':
11651 case '4':
11652 gas_assert (!mips_opts.micromips);
11653 {
11654 const struct mips_immed *imm = mips_immed;
11655
11656 while (imm->type && imm->type != *args)
11657 ++imm;
11658 if (! imm->type)
11659 abort ();
11660 my_getExpression (&imm_expr, s);
11661 check_absolute_expr (ip, &imm_expr);
11662 if ((unsigned long) imm_expr.X_add_number & ~imm->mask)
11663 {
11664 as_warn (_("Illegal %s number (%lu, 0x%lx)"),
11665 imm->desc ? imm->desc : ip->insn_mo->name,
11666 (unsigned long) imm_expr.X_add_number,
11667 (unsigned long) imm_expr.X_add_number);
11668 imm_expr.X_add_number &= imm->mask;
11669 }
11670 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
11671 << imm->shift);
11672 imm_expr.X_op = O_absent;
11673 s = expr_end;
11674 }
11675 continue;
11676
11677 case 'J': /* 10-bit hypcall code. */
11678 gas_assert (!mips_opts.micromips);
11679 {
11680 unsigned long mask = OP_MASK_CODE10;
11681
11682 my_getExpression (&imm_expr, s);
11683 check_absolute_expr (ip, &imm_expr);
11684 if ((unsigned long) imm_expr.X_add_number > mask)
11685 as_warn (_("Code for %s not in range 0..%lu (%lu)"),
11686 ip->insn_mo->name,
11687 mask, (unsigned long) imm_expr.X_add_number);
11688 INSERT_OPERAND (0, CODE10, *ip, imm_expr.X_add_number);
11689 imm_expr.X_op = O_absent;
11690 s = expr_end;
11691 }
11692 continue;
11693
11694 case 'A': /* ins/ext position, becomes LSB. */
11695 limlo = 0;
11696 limhi = 31;
11697 goto do_lsb;
11698 case 'E':
11699 limlo = 32;
11700 limhi = 63;
11701 goto do_lsb;
11702 do_lsb:
11703 my_getExpression (&imm_expr, s);
11704 check_absolute_expr (ip, &imm_expr);
11705 if ((unsigned long) imm_expr.X_add_number < limlo
11706 || (unsigned long) imm_expr.X_add_number > limhi)
11707 {
11708 as_bad (_("Improper position (%lu)"),
11709 (unsigned long) imm_expr.X_add_number);
11710 imm_expr.X_add_number = limlo;
11711 }
11712 lastpos = imm_expr.X_add_number;
11713 INSERT_OPERAND (mips_opts.micromips,
11714 EXTLSB, *ip, imm_expr.X_add_number);
11715 imm_expr.X_op = O_absent;
11716 s = expr_end;
11717 continue;
11718
11719 case 'B': /* ins size, becomes MSB. */
11720 limlo = 1;
11721 limhi = 32;
11722 goto do_msb;
11723 case 'F':
11724 limlo = 33;
11725 limhi = 64;
11726 goto do_msb;
11727 do_msb:
11728 my_getExpression (&imm_expr, s);
11729 check_absolute_expr (ip, &imm_expr);
11730 /* Check for negative input so that small negative numbers
11731 will not succeed incorrectly. The checks against
11732 (pos+size) transitively check "size" itself,
11733 assuming that "pos" is reasonable. */
11734 if ((long) imm_expr.X_add_number < 0
11735 || ((unsigned long) imm_expr.X_add_number
11736 + lastpos) < limlo
11737 || ((unsigned long) imm_expr.X_add_number
11738 + lastpos) > limhi)
11739 {
11740 as_bad (_("Improper insert size (%lu, position %lu)"),
11741 (unsigned long) imm_expr.X_add_number,
11742 (unsigned long) lastpos);
11743 imm_expr.X_add_number = limlo - lastpos;
11744 }
11745 INSERT_OPERAND (mips_opts.micromips, INSMSB, *ip,
11746 lastpos + imm_expr.X_add_number - 1);
11747 imm_expr.X_op = O_absent;
11748 s = expr_end;
11749 continue;
11750
11751 case 'C': /* ext size, becomes MSBD. */
11752 limlo = 1;
11753 limhi = 32;
11754 sizelo = 1;
11755 goto do_msbd;
11756 case 'G':
11757 limlo = 33;
11758 limhi = 64;
11759 sizelo = 33;
11760 goto do_msbd;
11761 case 'H':
11762 limlo = 33;
11763 limhi = 64;
11764 sizelo = 1;
11765 goto do_msbd;
11766 do_msbd:
11767 my_getExpression (&imm_expr, s);
11768 check_absolute_expr (ip, &imm_expr);
11769 /* The checks against (pos+size) don't transitively check
11770 "size" itself, assuming that "pos" is reasonable.
11771 We also need to check the lower bound of "size". */
11772 if ((long) imm_expr.X_add_number < sizelo
11773 || ((unsigned long) imm_expr.X_add_number
11774 + lastpos) < limlo
11775 || ((unsigned long) imm_expr.X_add_number
11776 + lastpos) > limhi)
11777 {
11778 as_bad (_("Improper extract size (%lu, position %lu)"),
11779 (unsigned long) imm_expr.X_add_number,
11780 (unsigned long) lastpos);
11781 imm_expr.X_add_number = limlo - lastpos;
11782 }
11783 INSERT_OPERAND (mips_opts.micromips,
11784 EXTMSBD, *ip, imm_expr.X_add_number - 1);
11785 imm_expr.X_op = O_absent;
11786 s = expr_end;
11787 continue;
11788
11789 case 'D':
11790 /* +D is for disassembly only; never match. */
11791 break;
11792
11793 case 'I':
11794 /* "+I" is like "I", except that imm2_expr is used. */
11795 my_getExpression (&imm2_expr, s);
11796 if (imm2_expr.X_op != O_big
11797 && imm2_expr.X_op != O_constant)
11798 insn_error = _("absolute expression required");
11799 if (HAVE_32BIT_GPRS)
11800 normalize_constant_expr (&imm2_expr);
11801 s = expr_end;
11802 continue;
11803
11804 case 'T': /* Coprocessor register. */
11805 gas_assert (!mips_opts.micromips);
11806 /* +T is for disassembly only; never match. */
11807 break;
11808
11809 case 't': /* Coprocessor register number. */
11810 gas_assert (!mips_opts.micromips);
11811 if (s[0] == '$' && ISDIGIT (s[1]))
11812 {
11813 ++s;
11814 regno = 0;
11815 do
11816 {
11817 regno *= 10;
11818 regno += *s - '0';
11819 ++s;
11820 }
11821 while (ISDIGIT (*s));
11822 if (regno > 31)
11823 as_bad (_("Invalid register number (%d)"), regno);
11824 else
11825 {
11826 INSERT_OPERAND (0, RT, *ip, regno);
11827 continue;
11828 }
11829 }
11830 else
11831 as_bad (_("Invalid coprocessor 0 register number"));
11832 break;
11833
11834 case 'x':
11835 /* bbit[01] and bbit[01]32 bit index. Give error if index
11836 is not in the valid range. */
11837 gas_assert (!mips_opts.micromips);
11838 my_getExpression (&imm_expr, s);
11839 check_absolute_expr (ip, &imm_expr);
11840 if ((unsigned) imm_expr.X_add_number > 31)
11841 {
11842 as_bad (_("Improper bit index (%lu)"),
11843 (unsigned long) imm_expr.X_add_number);
11844 imm_expr.X_add_number = 0;
11845 }
11846 INSERT_OPERAND (0, BBITIND, *ip, imm_expr.X_add_number);
11847 imm_expr.X_op = O_absent;
11848 s = expr_end;
11849 continue;
11850
11851 case 'X':
11852 /* bbit[01] bit index when bbit is used but we generate
11853 bbit[01]32 because the index is over 32. Move to the
11854 next candidate if index is not in the valid range. */
11855 gas_assert (!mips_opts.micromips);
11856 my_getExpression (&imm_expr, s);
11857 check_absolute_expr (ip, &imm_expr);
11858 if ((unsigned) imm_expr.X_add_number < 32
11859 || (unsigned) imm_expr.X_add_number > 63)
11860 break;
11861 INSERT_OPERAND (0, BBITIND, *ip, imm_expr.X_add_number - 32);
11862 imm_expr.X_op = O_absent;
11863 s = expr_end;
11864 continue;
11865
11866 case 'p':
11867 /* cins, cins32, exts and exts32 position field. Give error
11868 if it's not in the valid range. */
11869 gas_assert (!mips_opts.micromips);
11870 my_getExpression (&imm_expr, s);
11871 check_absolute_expr (ip, &imm_expr);
11872 if ((unsigned) imm_expr.X_add_number > 31)
11873 {
11874 as_bad (_("Improper position (%lu)"),
11875 (unsigned long) imm_expr.X_add_number);
11876 imm_expr.X_add_number = 0;
11877 }
11878 /* Make the pos explicit to simplify +S. */
11879 lastpos = imm_expr.X_add_number + 32;
11880 INSERT_OPERAND (0, CINSPOS, *ip, imm_expr.X_add_number);
11881 imm_expr.X_op = O_absent;
11882 s = expr_end;
11883 continue;
11884
11885 case 'P':
11886 /* cins, cins32, exts and exts32 position field. Move to
11887 the next candidate if it's not in the valid range. */
11888 gas_assert (!mips_opts.micromips);
11889 my_getExpression (&imm_expr, s);
11890 check_absolute_expr (ip, &imm_expr);
11891 if ((unsigned) imm_expr.X_add_number < 32
11892 || (unsigned) imm_expr.X_add_number > 63)
11893 break;
11894 lastpos = imm_expr.X_add_number;
11895 INSERT_OPERAND (0, CINSPOS, *ip, imm_expr.X_add_number - 32);
11896 imm_expr.X_op = O_absent;
11897 s = expr_end;
11898 continue;
11899
11900 case 's':
11901 /* cins and exts length-minus-one field. */
11902 gas_assert (!mips_opts.micromips);
11903 my_getExpression (&imm_expr, s);
11904 check_absolute_expr (ip, &imm_expr);
11905 if ((unsigned long) imm_expr.X_add_number > 31)
11906 {
11907 as_bad (_("Improper size (%lu)"),
11908 (unsigned long) imm_expr.X_add_number);
11909 imm_expr.X_add_number = 0;
11910 }
11911 INSERT_OPERAND (0, CINSLM1, *ip, imm_expr.X_add_number);
11912 imm_expr.X_op = O_absent;
11913 s = expr_end;
11914 continue;
11915
11916 case 'S':
11917 /* cins32/exts32 and cins/exts aliasing cint32/exts32
11918 length-minus-one field. */
11919 gas_assert (!mips_opts.micromips);
11920 my_getExpression (&imm_expr, s);
11921 check_absolute_expr (ip, &imm_expr);
11922 if ((long) imm_expr.X_add_number < 0
11923 || (unsigned long) imm_expr.X_add_number + lastpos > 63)
11924 {
11925 as_bad (_("Improper size (%lu)"),
11926 (unsigned long) imm_expr.X_add_number);
11927 imm_expr.X_add_number = 0;
11928 }
11929 INSERT_OPERAND (0, CINSLM1, *ip, imm_expr.X_add_number);
11930 imm_expr.X_op = O_absent;
11931 s = expr_end;
11932 continue;
11933
11934 case 'Q':
11935 /* seqi/snei immediate field. */
11936 gas_assert (!mips_opts.micromips);
11937 my_getExpression (&imm_expr, s);
11938 check_absolute_expr (ip, &imm_expr);
11939 if ((long) imm_expr.X_add_number < -512
11940 || (long) imm_expr.X_add_number >= 512)
11941 {
11942 as_bad (_("Improper immediate (%ld)"),
11943 (long) imm_expr.X_add_number);
11944 imm_expr.X_add_number = 0;
11945 }
11946 INSERT_OPERAND (0, SEQI, *ip, imm_expr.X_add_number);
11947 imm_expr.X_op = O_absent;
11948 s = expr_end;
11949 continue;
11950
11951 case 'a': /* 8-bit signed offset in bit 6 */
11952 gas_assert (!mips_opts.micromips);
11953 my_getExpression (&imm_expr, s);
11954 check_absolute_expr (ip, &imm_expr);
11955 min_range = -((OP_MASK_OFFSET_A + 1) >> 1);
11956 max_range = ((OP_MASK_OFFSET_A + 1) >> 1) - 1;
11957 if (imm_expr.X_add_number < min_range
11958 || imm_expr.X_add_number > max_range)
11959 {
11960 as_bad (_("Offset not in range %ld..%ld (%ld)"),
11961 (long) min_range, (long) max_range,
11962 (long) imm_expr.X_add_number);
11963 }
11964 INSERT_OPERAND (0, OFFSET_A, *ip, imm_expr.X_add_number);
11965 imm_expr.X_op = O_absent;
11966 s = expr_end;
11967 continue;
11968
11969 case 'b': /* 8-bit signed offset in bit 3 */
11970 gas_assert (!mips_opts.micromips);
11971 my_getExpression (&imm_expr, s);
11972 check_absolute_expr (ip, &imm_expr);
11973 min_range = -((OP_MASK_OFFSET_B + 1) >> 1);
11974 max_range = ((OP_MASK_OFFSET_B + 1) >> 1) - 1;
11975 if (imm_expr.X_add_number < min_range
11976 || imm_expr.X_add_number > max_range)
11977 {
11978 as_bad (_("Offset not in range %ld..%ld (%ld)"),
11979 (long) min_range, (long) max_range,
11980 (long) imm_expr.X_add_number);
11981 }
11982 INSERT_OPERAND (0, OFFSET_B, *ip, imm_expr.X_add_number);
11983 imm_expr.X_op = O_absent;
11984 s = expr_end;
11985 continue;
11986
11987 case 'c': /* 9-bit signed offset in bit 6 */
11988 gas_assert (!mips_opts.micromips);
11989 my_getExpression (&imm_expr, s);
11990 check_absolute_expr (ip, &imm_expr);
11991 min_range = -((OP_MASK_OFFSET_C + 1) >> 1);
11992 max_range = ((OP_MASK_OFFSET_C + 1) >> 1) - 1;
11993 /* We check the offset range before adjusted. */
11994 min_range <<= 4;
11995 max_range <<= 4;
11996 if (imm_expr.X_add_number < min_range
11997 || imm_expr.X_add_number > max_range)
11998 {
11999 as_bad (_("Offset not in range %ld..%ld (%ld)"),
12000 (long) min_range, (long) max_range,
12001 (long) imm_expr.X_add_number);
12002 }
12003 if (imm_expr.X_add_number & 0xf)
12004 {
12005 as_bad (_("Offset not 16 bytes alignment (%ld)"),
12006 (long) imm_expr.X_add_number);
12007 }
12008 /* Right shift 4 bits to adjust the offset operand. */
12009 INSERT_OPERAND (0, OFFSET_C, *ip,
12010 imm_expr.X_add_number >> 4);
12011 imm_expr.X_op = O_absent;
12012 s = expr_end;
12013 continue;
12014
12015 case 'z':
12016 gas_assert (!mips_opts.micromips);
12017 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
12018 break;
12019 if (regno == AT && mips_opts.at)
12020 {
12021 if (mips_opts.at == ATREG)
12022 as_warn (_("used $at without \".set noat\""));
12023 else
12024 as_warn (_("used $%u with \".set at=$%u\""),
12025 regno, mips_opts.at);
12026 }
12027 INSERT_OPERAND (0, RZ, *ip, regno);
12028 continue;
12029
12030 case 'Z':
12031 gas_assert (!mips_opts.micromips);
12032 if (!reg_lookup (&s, RTYPE_FPU, &regno))
12033 break;
12034 INSERT_OPERAND (0, FZ, *ip, regno);
12035 continue;
12036
12037 case 'j':
12038 {
12039 int shift = 8;
12040 size_t i;
12041 /* Check whether there is only a single bracketed expression
12042 left. If so, it must be the base register and the
12043 constant must be zero. */
12044 if (*s == '(' && strchr (s + 1, '(') == 0)
12045 continue;
12046
12047 /* If this value won't fit into the offset, then go find
12048 a macro that will generate a 16- or 32-bit offset code
12049 pattern. */
12050 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
12051 if ((i == 0 && (imm_expr.X_op != O_constant
12052 || imm_expr.X_add_number >= 1 << shift
12053 || imm_expr.X_add_number < -1 << shift))
12054 || i > 0)
12055 {
12056 imm_expr.X_op = O_absent;
12057 break;
12058 }
12059 INSERT_OPERAND (mips_opts.micromips, EVAOFFSET, *ip,
12060 imm_expr.X_add_number);
12061 imm_expr.X_op = O_absent;
12062 s = expr_end;
12063 }
12064 continue;
12065
12066 default:
12067 as_bad (_("Internal error: bad %s opcode "
12068 "(unknown extension operand type `+%c'): %s %s"),
12069 mips_opts.micromips ? "microMIPS" : "MIPS",
12070 *args, insn->name, insn->args);
12071 /* Further processing is fruitless. */
12072 return;
12073 }
12074 break;
12075
12076 case '.': /* 10-bit offset. */
12077 gas_assert (mips_opts.micromips);
12078 case '~': /* 12-bit offset. */
12079 {
12080 int shift = *args == '.' ? 9 : 11;
12081 size_t i;
12082
12083 /* Check whether there is only a single bracketed expression
12084 left. If so, it must be the base register and the
12085 constant must be zero. */
12086 if (*s == '(' && strchr (s + 1, '(') == 0)
12087 continue;
12088
12089 /* If this value won't fit into the offset, then go find
12090 a macro that will generate a 16- or 32-bit offset code
12091 pattern. */
12092 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
12093 if ((i == 0 && (imm_expr.X_op != O_constant
12094 || imm_expr.X_add_number >= 1 << shift
12095 || imm_expr.X_add_number < -1 << shift))
12096 || i > 0)
12097 {
12098 imm_expr.X_op = O_absent;
12099 break;
12100 }
12101 if (shift == 9)
12102 INSERT_OPERAND (1, OFFSET10, *ip, imm_expr.X_add_number);
12103 else
12104 INSERT_OPERAND (mips_opts.micromips,
12105 OFFSET12, *ip, imm_expr.X_add_number);
12106 imm_expr.X_op = O_absent;
12107 s = expr_end;
12108 }
12109 continue;
12110
12111 case '<': /* must be at least one digit */
12112 /*
12113 * According to the manual, if the shift amount is greater
12114 * than 31 or less than 0, then the shift amount should be
12115 * mod 32. In reality the mips assembler issues an error.
12116 * We issue a warning and mask out all but the low 5 bits.
12117 */
12118 my_getExpression (&imm_expr, s);
12119 check_absolute_expr (ip, &imm_expr);
12120 if ((unsigned long) imm_expr.X_add_number > 31)
12121 as_warn (_("Improper shift amount (%lu)"),
12122 (unsigned long) imm_expr.X_add_number);
12123 INSERT_OPERAND (mips_opts.micromips,
12124 SHAMT, *ip, imm_expr.X_add_number);
12125 imm_expr.X_op = O_absent;
12126 s = expr_end;
12127 continue;
12128
12129 case '>': /* shift amount minus 32 */
12130 my_getExpression (&imm_expr, s);
12131 check_absolute_expr (ip, &imm_expr);
12132 if ((unsigned long) imm_expr.X_add_number < 32
12133 || (unsigned long) imm_expr.X_add_number > 63)
12134 break;
12135 INSERT_OPERAND (mips_opts.micromips,
12136 SHAMT, *ip, imm_expr.X_add_number - 32);
12137 imm_expr.X_op = O_absent;
12138 s = expr_end;
12139 continue;
12140
12141 case 'k': /* CACHE code. */
12142 case 'h': /* PREFX code. */
12143 case '1': /* SYNC type. */
12144 my_getExpression (&imm_expr, s);
12145 check_absolute_expr (ip, &imm_expr);
12146 if ((unsigned long) imm_expr.X_add_number > 31)
12147 as_warn (_("Invalid value for `%s' (%lu)"),
12148 ip->insn_mo->name,
12149 (unsigned long) imm_expr.X_add_number);
12150 switch (*args)
12151 {
12152 case 'k':
12153 if (mips_fix_cn63xxp1
12154 && !mips_opts.micromips
12155 && strcmp ("pref", insn->name) == 0)
12156 switch (imm_expr.X_add_number)
12157 {
12158 case 5:
12159 case 25:
12160 case 26:
12161 case 27:
12162 case 28:
12163 case 29:
12164 case 30:
12165 case 31: /* These are ok. */
12166 break;
12167
12168 default: /* The rest must be changed to 28. */
12169 imm_expr.X_add_number = 28;
12170 break;
12171 }
12172 INSERT_OPERAND (mips_opts.micromips,
12173 CACHE, *ip, imm_expr.X_add_number);
12174 break;
12175 case 'h':
12176 INSERT_OPERAND (mips_opts.micromips,
12177 PREFX, *ip, imm_expr.X_add_number);
12178 break;
12179 case '1':
12180 INSERT_OPERAND (mips_opts.micromips,
12181 STYPE, *ip, imm_expr.X_add_number);
12182 break;
12183 }
12184 imm_expr.X_op = O_absent;
12185 s = expr_end;
12186 continue;
12187
12188 case 'c': /* BREAK code. */
12189 {
12190 unsigned long mask = (mips_opts.micromips
12191 ? MICROMIPSOP_MASK_CODE
12192 : OP_MASK_CODE);
12193
12194 my_getExpression (&imm_expr, s);
12195 check_absolute_expr (ip, &imm_expr);
12196 if ((unsigned long) imm_expr.X_add_number > mask)
12197 as_warn (_("Code for %s not in range 0..%lu (%lu)"),
12198 ip->insn_mo->name,
12199 mask, (unsigned long) imm_expr.X_add_number);
12200 INSERT_OPERAND (mips_opts.micromips,
12201 CODE, *ip, imm_expr.X_add_number);
12202 imm_expr.X_op = O_absent;
12203 s = expr_end;
12204 }
12205 continue;
12206
12207 case 'q': /* Lower BREAK code. */
12208 {
12209 unsigned long mask = (mips_opts.micromips
12210 ? MICROMIPSOP_MASK_CODE2
12211 : OP_MASK_CODE2);
12212
12213 my_getExpression (&imm_expr, s);
12214 check_absolute_expr (ip, &imm_expr);
12215 if ((unsigned long) imm_expr.X_add_number > mask)
12216 as_warn (_("Lower code for %s not in range 0..%lu (%lu)"),
12217 ip->insn_mo->name,
12218 mask, (unsigned long) imm_expr.X_add_number);
12219 INSERT_OPERAND (mips_opts.micromips,
12220 CODE2, *ip, imm_expr.X_add_number);
12221 imm_expr.X_op = O_absent;
12222 s = expr_end;
12223 }
12224 continue;
12225
12226 case 'B': /* 20- or 10-bit syscall/break/wait code. */
12227 {
12228 unsigned long mask = (mips_opts.micromips
12229 ? MICROMIPSOP_MASK_CODE10
12230 : OP_MASK_CODE20);
12231
12232 my_getExpression (&imm_expr, s);
12233 check_absolute_expr (ip, &imm_expr);
12234 if ((unsigned long) imm_expr.X_add_number > mask)
12235 as_warn (_("Code for %s not in range 0..%lu (%lu)"),
12236 ip->insn_mo->name,
12237 mask, (unsigned long) imm_expr.X_add_number);
12238 if (mips_opts.micromips)
12239 INSERT_OPERAND (1, CODE10, *ip, imm_expr.X_add_number);
12240 else
12241 INSERT_OPERAND (0, CODE20, *ip, imm_expr.X_add_number);
12242 imm_expr.X_op = O_absent;
12243 s = expr_end;
12244 }
12245 continue;
12246
12247 case 'C': /* 25- or 23-bit coprocessor code. */
12248 {
12249 unsigned long mask = (mips_opts.micromips
12250 ? MICROMIPSOP_MASK_COPZ
12251 : OP_MASK_COPZ);
12252
12253 my_getExpression (&imm_expr, s);
12254 check_absolute_expr (ip, &imm_expr);
12255 if ((unsigned long) imm_expr.X_add_number > mask)
12256 as_warn (_("Coproccesor code > %u bits (%lu)"),
12257 mips_opts.micromips ? 23U : 25U,
12258 (unsigned long) imm_expr.X_add_number);
12259 INSERT_OPERAND (mips_opts.micromips,
12260 COPZ, *ip, imm_expr.X_add_number);
12261 imm_expr.X_op = O_absent;
12262 s = expr_end;
12263 }
12264 continue;
12265
12266 case 'J': /* 19-bit WAIT code. */
12267 gas_assert (!mips_opts.micromips);
12268 my_getExpression (&imm_expr, s);
12269 check_absolute_expr (ip, &imm_expr);
12270 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
12271 {
12272 as_warn (_("Illegal 19-bit code (%lu)"),
12273 (unsigned long) imm_expr.X_add_number);
12274 imm_expr.X_add_number &= OP_MASK_CODE19;
12275 }
12276 INSERT_OPERAND (0, CODE19, *ip, imm_expr.X_add_number);
12277 imm_expr.X_op = O_absent;
12278 s = expr_end;
12279 continue;
12280
12281 case 'P': /* Performance register. */
12282 gas_assert (!mips_opts.micromips);
12283 my_getExpression (&imm_expr, s);
12284 check_absolute_expr (ip, &imm_expr);
12285 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
12286 as_warn (_("Invalid performance register (%lu)"),
12287 (unsigned long) imm_expr.X_add_number);
12288 if (imm_expr.X_add_number != 0 && mips_opts.arch == CPU_R5900
12289 && (!strcmp(insn->name,"mfps") || !strcmp(insn->name,"mtps")))
12290 as_warn (_("Invalid performance register (%lu)"),
12291 (unsigned long) imm_expr.X_add_number);
12292 INSERT_OPERAND (0, PERFREG, *ip, imm_expr.X_add_number);
12293 imm_expr.X_op = O_absent;
12294 s = expr_end;
12295 continue;
12296
12297 case 'G': /* Coprocessor destination register. */
12298 {
12299 unsigned long opcode = ip->insn_opcode;
12300 unsigned long mask;
12301 unsigned int types;
12302 int cop0;
12303
12304 if (mips_opts.micromips)
12305 {
12306 mask = ~((MICROMIPSOP_MASK_RT << MICROMIPSOP_SH_RT)
12307 | (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS)
12308 | (MICROMIPSOP_MASK_SEL << MICROMIPSOP_SH_SEL));
12309 opcode &= mask;
12310 switch (opcode)
12311 {
12312 case 0x000000fc: /* mfc0 */
12313 case 0x000002fc: /* mtc0 */
12314 case 0x580000fc: /* dmfc0 */
12315 case 0x580002fc: /* dmtc0 */
12316 cop0 = 1;
12317 break;
12318 default:
12319 cop0 = 0;
12320 break;
12321 }
12322 }
12323 else
12324 {
12325 opcode = (opcode >> OP_SH_OP) & OP_MASK_OP;
12326 cop0 = opcode == OP_OP_COP0;
12327 }
12328 types = RTYPE_NUM | (cop0 ? RTYPE_CP0 : RTYPE_GP);
12329 ok = reg_lookup (&s, types, &regno);
12330 if (mips_opts.micromips)
12331 INSERT_OPERAND (1, RS, *ip, regno);
12332 else
12333 INSERT_OPERAND (0, RD, *ip, regno);
12334 if (ok)
12335 {
12336 lastregno = regno;
12337 continue;
12338 }
12339 }
12340 break;
12341
12342 case 'y': /* ALNV.PS source register. */
12343 gas_assert (mips_opts.micromips);
12344 goto do_reg;
12345 case 'x': /* Ignore register name. */
12346 case 'U': /* Destination register (CLO/CLZ). */
12347 case 'g': /* Coprocessor destination register. */
12348 gas_assert (!mips_opts.micromips);
12349 case 'b': /* Base register. */
12350 case 'd': /* Destination register. */
12351 case 's': /* Source register. */
12352 case 't': /* Target register. */
12353 case 'r': /* Both target and source. */
12354 case 'v': /* Both dest and source. */
12355 case 'w': /* Both dest and target. */
12356 case 'E': /* Coprocessor target register. */
12357 case 'K': /* RDHWR destination register. */
12358 case 'z': /* Must be zero register. */
12359 do_reg:
12360 s_reset = s;
12361 if (*args == 'E' || *args == 'K')
12362 ok = reg_lookup (&s, RTYPE_NUM, &regno);
12363 else
12364 {
12365 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
12366 if (regno == AT && mips_opts.at)
12367 {
12368 if (mips_opts.at == ATREG)
12369 as_warn (_("Used $at without \".set noat\""));
12370 else
12371 as_warn (_("Used $%u with \".set at=$%u\""),
12372 regno, mips_opts.at);
12373 }
12374 }
12375 if (ok)
12376 {
12377 c = *args;
12378 if (*s == ' ')
12379 ++s;
12380 if (args[1] != *s)
12381 {
12382 if (c == 'r' || c == 'v' || c == 'w')
12383 {
12384 regno = lastregno;
12385 s = s_reset;
12386 ++args;
12387 }
12388 }
12389 /* 'z' only matches $0. */
12390 if (c == 'z' && regno != 0)
12391 break;
12392
12393 if (c == 's' && !strncmp (ip->insn_mo->name, "jalr", 4))
12394 {
12395 if (regno == lastregno)
12396 {
12397 insn_error
12398 = _("Source and destination must be different");
12399 continue;
12400 }
12401 if (regno == 31 && lastregno == 0xffffffff)
12402 {
12403 insn_error
12404 = _("A destination register must be supplied");
12405 continue;
12406 }
12407 }
12408 /* Now that we have assembled one operand, we use the args
12409 string to figure out where it goes in the instruction. */
12410 switch (c)
12411 {
12412 case 'r':
12413 case 's':
12414 case 'v':
12415 case 'b':
12416 INSERT_OPERAND (mips_opts.micromips, RS, *ip, regno);
12417 break;
12418
12419 case 'K':
12420 if (mips_opts.micromips)
12421 INSERT_OPERAND (1, RS, *ip, regno);
12422 else
12423 INSERT_OPERAND (0, RD, *ip, regno);
12424 break;
12425
12426 case 'd':
12427 case 'g':
12428 INSERT_OPERAND (mips_opts.micromips, RD, *ip, regno);
12429 break;
12430
12431 case 'U':
12432 gas_assert (!mips_opts.micromips);
12433 INSERT_OPERAND (0, RD, *ip, regno);
12434 INSERT_OPERAND (0, RT, *ip, regno);
12435 break;
12436
12437 case 'w':
12438 case 't':
12439 case 'E':
12440 INSERT_OPERAND (mips_opts.micromips, RT, *ip, regno);
12441 break;
12442
12443 case 'y':
12444 gas_assert (mips_opts.micromips);
12445 INSERT_OPERAND (1, RS3, *ip, regno);
12446 break;
12447
12448 case 'x':
12449 /* This case exists because on the r3000 trunc
12450 expands into a macro which requires a gp
12451 register. On the r6000 or r4000 it is
12452 assembled into a single instruction which
12453 ignores the register. Thus the insn version
12454 is MIPS_ISA2 and uses 'x', and the macro
12455 version is MIPS_ISA1 and uses 't'. */
12456 break;
12457
12458 case 'z':
12459 /* This case is for the div instruction, which
12460 acts differently if the destination argument
12461 is $0. This only matches $0, and is checked
12462 outside the switch. */
12463 break;
12464 }
12465 lastregno = regno;
12466 continue;
12467 }
12468 switch (*args++)
12469 {
12470 case 'r':
12471 case 'v':
12472 INSERT_OPERAND (mips_opts.micromips, RS, *ip, lastregno);
12473 continue;
12474
12475 case 'w':
12476 INSERT_OPERAND (mips_opts.micromips, RT, *ip, lastregno);
12477 continue;
12478 }
12479 break;
12480
12481 case 'O': /* MDMX alignment immediate constant. */
12482 gas_assert (!mips_opts.micromips);
12483 my_getExpression (&imm_expr, s);
12484 check_absolute_expr (ip, &imm_expr);
12485 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
12486 as_warn (_("Improper align amount (%ld), using low bits"),
12487 (long) imm_expr.X_add_number);
12488 INSERT_OPERAND (0, ALN, *ip, imm_expr.X_add_number);
12489 imm_expr.X_op = O_absent;
12490 s = expr_end;
12491 continue;
12492
12493 case 'Q': /* MDMX vector, element sel, or const. */
12494 if (s[0] != '$')
12495 {
12496 /* MDMX Immediate. */
12497 gas_assert (!mips_opts.micromips);
12498 my_getExpression (&imm_expr, s);
12499 check_absolute_expr (ip, &imm_expr);
12500 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
12501 as_warn (_("Invalid MDMX Immediate (%ld)"),
12502 (long) imm_expr.X_add_number);
12503 INSERT_OPERAND (0, FT, *ip, imm_expr.X_add_number);
12504 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
12505 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
12506 else
12507 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
12508 imm_expr.X_op = O_absent;
12509 s = expr_end;
12510 continue;
12511 }
12512 /* Not MDMX Immediate. Fall through. */
12513 case 'X': /* MDMX destination register. */
12514 case 'Y': /* MDMX source register. */
12515 case 'Z': /* MDMX target register. */
12516 is_mdmx = 1;
12517 case 'W':
12518 gas_assert (!mips_opts.micromips);
12519 case 'D': /* Floating point destination register. */
12520 case 'S': /* Floating point source register. */
12521 case 'T': /* Floating point target register. */
12522 case 'R': /* Floating point source register. */
12523 case 'V':
12524 rtype = RTYPE_FPU;
12525 if (is_mdmx
12526 || ((mips_opts.ase & ASE_MDMX)
12527 && (ip->insn_mo->pinfo & FP_D)
12528 && (ip->insn_mo->pinfo & (INSN_COPROC_MOVE_DELAY
12529 | INSN_COPROC_MEMORY_DELAY
12530 | INSN_LOAD_COPROC_DELAY
12531 | INSN_LOAD_MEMORY_DELAY
12532 | INSN_STORE_MEMORY))))
12533 rtype |= RTYPE_VEC;
12534 s_reset = s;
12535 if (reg_lookup (&s, rtype, &regno))
12536 {
12537 if ((regno & 1) != 0
12538 && HAVE_32BIT_FPRS
12539 && !mips_oddfpreg_ok (ip->insn_mo, argnum))
12540 as_warn (_("Float register should be even, was %d"),
12541 regno);
12542
12543 c = *args;
12544 if (*s == ' ')
12545 ++s;
12546 if (args[1] != *s)
12547 {
12548 if (c == 'V' || c == 'W')
12549 {
12550 regno = lastregno;
12551 s = s_reset;
12552 ++args;
12553 }
12554 }
12555 switch (c)
12556 {
12557 case 'D':
12558 case 'X':
12559 INSERT_OPERAND (mips_opts.micromips, FD, *ip, regno);
12560 break;
12561
12562 case 'V':
12563 case 'S':
12564 case 'Y':
12565 INSERT_OPERAND (mips_opts.micromips, FS, *ip, regno);
12566 break;
12567
12568 case 'Q':
12569 /* This is like 'Z', but also needs to fix the MDMX
12570 vector/scalar select bits. Note that the
12571 scalar immediate case is handled above. */
12572 if (*s == '[')
12573 {
12574 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
12575 int max_el = (is_qh ? 3 : 7);
12576 s++;
12577 my_getExpression(&imm_expr, s);
12578 check_absolute_expr (ip, &imm_expr);
12579 s = expr_end;
12580 if (imm_expr.X_add_number > max_el)
12581 as_bad (_("Bad element selector %ld"),
12582 (long) imm_expr.X_add_number);
12583 imm_expr.X_add_number &= max_el;
12584 ip->insn_opcode |= (imm_expr.X_add_number
12585 << (OP_SH_VSEL +
12586 (is_qh ? 2 : 1)));
12587 imm_expr.X_op = O_absent;
12588 if (*s != ']')
12589 as_warn (_("Expecting ']' found '%s'"), s);
12590 else
12591 s++;
12592 }
12593 else
12594 {
12595 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
12596 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
12597 << OP_SH_VSEL);
12598 else
12599 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
12600 OP_SH_VSEL);
12601 }
12602 /* Fall through. */
12603 case 'W':
12604 case 'T':
12605 case 'Z':
12606 INSERT_OPERAND (mips_opts.micromips, FT, *ip, regno);
12607 break;
12608
12609 case 'R':
12610 INSERT_OPERAND (mips_opts.micromips, FR, *ip, regno);
12611 break;
12612 }
12613 lastregno = regno;
12614 continue;
12615 }
12616
12617 switch (*args++)
12618 {
12619 case 'V':
12620 INSERT_OPERAND (mips_opts.micromips, FS, *ip, lastregno);
12621 continue;
12622
12623 case 'W':
12624 INSERT_OPERAND (mips_opts.micromips, FT, *ip, lastregno);
12625 continue;
12626 }
12627 break;
12628
12629 case 'I':
12630 my_getExpression (&imm_expr, s);
12631 if (imm_expr.X_op != O_big
12632 && imm_expr.X_op != O_constant)
12633 insn_error = _("absolute expression required");
12634 if (HAVE_32BIT_GPRS)
12635 normalize_constant_expr (&imm_expr);
12636 s = expr_end;
12637 continue;
12638
12639 case 'A':
12640 my_getExpression (&offset_expr, s);
12641 normalize_address_expr (&offset_expr);
12642 *imm_reloc = BFD_RELOC_32;
12643 s = expr_end;
12644 continue;
12645
12646 case 'F':
12647 case 'L':
12648 case 'f':
12649 case 'l':
12650 {
12651 int f64;
12652 int using_gprs;
12653 char *save_in;
12654 char *err;
12655 unsigned char temp[8];
12656 int len;
12657 unsigned int length;
12658 segT seg;
12659 subsegT subseg;
12660 char *p;
12661
12662 /* These only appear as the last operand in an
12663 instruction, and every instruction that accepts
12664 them in any variant accepts them in all variants.
12665 This means we don't have to worry about backing out
12666 any changes if the instruction does not match.
12667
12668 The difference between them is the size of the
12669 floating point constant and where it goes. For 'F'
12670 and 'L' the constant is 64 bits; for 'f' and 'l' it
12671 is 32 bits. Where the constant is placed is based
12672 on how the MIPS assembler does things:
12673 F -- .rdata
12674 L -- .lit8
12675 f -- immediate value
12676 l -- .lit4
12677
12678 The .lit4 and .lit8 sections are only used if
12679 permitted by the -G argument.
12680
12681 The code below needs to know whether the target register
12682 is 32 or 64 bits wide. It relies on the fact 'f' and
12683 'F' are used with GPR-based instructions and 'l' and
12684 'L' are used with FPR-based instructions. */
12685
12686 f64 = *args == 'F' || *args == 'L';
12687 using_gprs = *args == 'F' || *args == 'f';
12688
12689 save_in = input_line_pointer;
12690 input_line_pointer = s;
12691 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
12692 length = len;
12693 s = input_line_pointer;
12694 input_line_pointer = save_in;
12695 if (err != NULL && *err != '\0')
12696 {
12697 as_bad (_("Bad floating point constant: %s"), err);
12698 memset (temp, '\0', sizeof temp);
12699 length = f64 ? 8 : 4;
12700 }
12701
12702 gas_assert (length == (unsigned) (f64 ? 8 : 4));
12703
12704 if (*args == 'f'
12705 || (*args == 'l'
12706 && (g_switch_value < 4
12707 || (temp[0] == 0 && temp[1] == 0)
12708 || (temp[2] == 0 && temp[3] == 0))))
12709 {
12710 imm_expr.X_op = O_constant;
12711 if (!target_big_endian)
12712 imm_expr.X_add_number = bfd_getl32 (temp);
12713 else
12714 imm_expr.X_add_number = bfd_getb32 (temp);
12715 }
12716 else if (length > 4
12717 && !mips_disable_float_construction
12718 /* Constants can only be constructed in GPRs and
12719 copied to FPRs if the GPRs are at least as wide
12720 as the FPRs. Force the constant into memory if
12721 we are using 64-bit FPRs but the GPRs are only
12722 32 bits wide. */
12723 && (using_gprs
12724 || !(HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
12725 && ((temp[0] == 0 && temp[1] == 0)
12726 || (temp[2] == 0 && temp[3] == 0))
12727 && ((temp[4] == 0 && temp[5] == 0)
12728 || (temp[6] == 0 && temp[7] == 0)))
12729 {
12730 /* The value is simple enough to load with a couple of
12731 instructions. If using 32-bit registers, set
12732 imm_expr to the high order 32 bits and offset_expr to
12733 the low order 32 bits. Otherwise, set imm_expr to
12734 the entire 64 bit constant. */
12735 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
12736 {
12737 imm_expr.X_op = O_constant;
12738 offset_expr.X_op = O_constant;
12739 if (!target_big_endian)
12740 {
12741 imm_expr.X_add_number = bfd_getl32 (temp + 4);
12742 offset_expr.X_add_number = bfd_getl32 (temp);
12743 }
12744 else
12745 {
12746 imm_expr.X_add_number = bfd_getb32 (temp);
12747 offset_expr.X_add_number = bfd_getb32 (temp + 4);
12748 }
12749 if (offset_expr.X_add_number == 0)
12750 offset_expr.X_op = O_absent;
12751 }
12752 else if (sizeof (imm_expr.X_add_number) > 4)
12753 {
12754 imm_expr.X_op = O_constant;
12755 if (!target_big_endian)
12756 imm_expr.X_add_number = bfd_getl64 (temp);
12757 else
12758 imm_expr.X_add_number = bfd_getb64 (temp);
12759 }
12760 else
12761 {
12762 imm_expr.X_op = O_big;
12763 imm_expr.X_add_number = 4;
12764 if (!target_big_endian)
12765 {
12766 generic_bignum[0] = bfd_getl16 (temp);
12767 generic_bignum[1] = bfd_getl16 (temp + 2);
12768 generic_bignum[2] = bfd_getl16 (temp + 4);
12769 generic_bignum[3] = bfd_getl16 (temp + 6);
12770 }
12771 else
12772 {
12773 generic_bignum[0] = bfd_getb16 (temp + 6);
12774 generic_bignum[1] = bfd_getb16 (temp + 4);
12775 generic_bignum[2] = bfd_getb16 (temp + 2);
12776 generic_bignum[3] = bfd_getb16 (temp);
12777 }
12778 }
12779 }
12780 else
12781 {
12782 const char *newname;
12783 segT new_seg;
12784
12785 /* Switch to the right section. */
12786 seg = now_seg;
12787 subseg = now_subseg;
12788 switch (*args)
12789 {
12790 default: /* unused default case avoids warnings. */
12791 case 'L':
12792 newname = RDATA_SECTION_NAME;
12793 if (g_switch_value >= 8)
12794 newname = ".lit8";
12795 break;
12796 case 'F':
12797 newname = RDATA_SECTION_NAME;
12798 break;
12799 case 'l':
12800 gas_assert (g_switch_value >= 4);
12801 newname = ".lit4";
12802 break;
12803 }
12804 new_seg = subseg_new (newname, (subsegT) 0);
12805 if (IS_ELF)
12806 bfd_set_section_flags (stdoutput, new_seg,
12807 (SEC_ALLOC
12808 | SEC_LOAD
12809 | SEC_READONLY
12810 | SEC_DATA));
12811 frag_align (*args == 'l' ? 2 : 3, 0, 0);
12812 if (IS_ELF && strncmp (TARGET_OS, "elf", 3) != 0)
12813 record_alignment (new_seg, 4);
12814 else
12815 record_alignment (new_seg, *args == 'l' ? 2 : 3);
12816 if (seg == now_seg)
12817 as_bad (_("Can't use floating point insn in this section"));
12818
12819 /* Set the argument to the current address in the
12820 section. */
12821 offset_expr.X_op = O_symbol;
12822 offset_expr.X_add_symbol = symbol_temp_new_now ();
12823 offset_expr.X_add_number = 0;
12824
12825 /* Put the floating point number into the section. */
12826 p = frag_more ((int) length);
12827 memcpy (p, temp, length);
12828
12829 /* Switch back to the original section. */
12830 subseg_set (seg, subseg);
12831 }
12832 }
12833 continue;
12834
12835 case 'i': /* 16-bit unsigned immediate. */
12836 case 'j': /* 16-bit signed immediate. */
12837 *imm_reloc = BFD_RELOC_LO16;
12838 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
12839 {
12840 int more;
12841 offsetT minval, maxval;
12842
12843 more = (insn + 1 < past
12844 && strcmp (insn->name, insn[1].name) == 0);
12845
12846 /* If the expression was written as an unsigned number,
12847 only treat it as signed if there are no more
12848 alternatives. */
12849 if (more
12850 && *args == 'j'
12851 && sizeof (imm_expr.X_add_number) <= 4
12852 && imm_expr.X_op == O_constant
12853 && imm_expr.X_add_number < 0
12854 && imm_expr.X_unsigned
12855 && HAVE_64BIT_GPRS)
12856 break;
12857
12858 /* For compatibility with older assemblers, we accept
12859 0x8000-0xffff as signed 16-bit numbers when only
12860 signed numbers are allowed. */
12861 if (*args == 'i')
12862 minval = 0, maxval = 0xffff;
12863 else if (more)
12864 minval = -0x8000, maxval = 0x7fff;
12865 else
12866 minval = -0x8000, maxval = 0xffff;
12867
12868 if (imm_expr.X_op != O_constant
12869 || imm_expr.X_add_number < minval
12870 || imm_expr.X_add_number > maxval)
12871 {
12872 if (more)
12873 break;
12874 if (imm_expr.X_op == O_constant
12875 || imm_expr.X_op == O_big)
12876 as_bad (_("Expression out of range"));
12877 }
12878 }
12879 s = expr_end;
12880 continue;
12881
12882 case 'o': /* 16-bit offset. */
12883 offset_reloc[0] = BFD_RELOC_LO16;
12884 offset_reloc[1] = BFD_RELOC_UNUSED;
12885 offset_reloc[2] = BFD_RELOC_UNUSED;
12886
12887 /* Check whether there is only a single bracketed expression
12888 left. If so, it must be the base register and the
12889 constant must be zero. */
12890 if (*s == '(' && strchr (s + 1, '(') == 0)
12891 {
12892 offset_expr.X_op = O_constant;
12893 offset_expr.X_add_number = 0;
12894 continue;
12895 }
12896
12897 /* If this value won't fit into a 16 bit offset, then go
12898 find a macro that will generate the 32 bit offset
12899 code pattern. */
12900 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
12901 && (offset_expr.X_op != O_constant
12902 || offset_expr.X_add_number >= 0x8000
12903 || offset_expr.X_add_number < -0x8000))
12904 break;
12905
12906 s = expr_end;
12907 continue;
12908
12909 case 'p': /* PC-relative offset. */
12910 *offset_reloc = BFD_RELOC_16_PCREL_S2;
12911 my_getExpression (&offset_expr, s);
12912 s = expr_end;
12913 continue;
12914
12915 case 'u': /* Upper 16 bits. */
12916 *imm_reloc = BFD_RELOC_LO16;
12917 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
12918 && imm_expr.X_op == O_constant
12919 && (imm_expr.X_add_number < 0
12920 || imm_expr.X_add_number >= 0x10000))
12921 as_bad (_("lui expression (%lu) not in range 0..65535"),
12922 (unsigned long) imm_expr.X_add_number);
12923 s = expr_end;
12924 continue;
12925
12926 case 'a': /* 26-bit address. */
12927 *offset_reloc = BFD_RELOC_MIPS_JMP;
12928 my_getExpression (&offset_expr, s);
12929 s = expr_end;
12930 continue;
12931
12932 case 'N': /* 3-bit branch condition code. */
12933 case 'M': /* 3-bit compare condition code. */
12934 rtype = RTYPE_CCC;
12935 if (ip->insn_mo->pinfo & (FP_D | FP_S))
12936 rtype |= RTYPE_FCC;
12937 if (!reg_lookup (&s, rtype, &regno))
12938 break;
12939 if ((strcmp (str + strlen (str) - 3, ".ps") == 0
12940 || strcmp (str + strlen (str) - 5, "any2f") == 0
12941 || strcmp (str + strlen (str) - 5, "any2t") == 0)
12942 && (regno & 1) != 0)
12943 as_warn (_("Condition code register should be even for %s, "
12944 "was %d"),
12945 str, regno);
12946 if ((strcmp (str + strlen (str) - 5, "any4f") == 0
12947 || strcmp (str + strlen (str) - 5, "any4t") == 0)
12948 && (regno & 3) != 0)
12949 as_warn (_("Condition code register should be 0 or 4 for %s, "
12950 "was %d"),
12951 str, regno);
12952 if (*args == 'N')
12953 INSERT_OPERAND (mips_opts.micromips, BCC, *ip, regno);
12954 else
12955 INSERT_OPERAND (mips_opts.micromips, CCC, *ip, regno);
12956 continue;
12957
12958 case 'H':
12959 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
12960 s += 2;
12961 if (ISDIGIT (*s))
12962 {
12963 c = 0;
12964 do
12965 {
12966 c *= 10;
12967 c += *s - '0';
12968 ++s;
12969 }
12970 while (ISDIGIT (*s));
12971 }
12972 else
12973 c = 8; /* Invalid sel value. */
12974
12975 if (c > 7)
12976 as_bad (_("Invalid coprocessor sub-selection value (0-7)"));
12977 INSERT_OPERAND (mips_opts.micromips, SEL, *ip, c);
12978 continue;
12979
12980 case 'e':
12981 gas_assert (!mips_opts.micromips);
12982 /* Must be at least one digit. */
12983 my_getExpression (&imm_expr, s);
12984 check_absolute_expr (ip, &imm_expr);
12985
12986 if ((unsigned long) imm_expr.X_add_number
12987 > (unsigned long) OP_MASK_VECBYTE)
12988 {
12989 as_bad (_("bad byte vector index (%ld)"),
12990 (long) imm_expr.X_add_number);
12991 imm_expr.X_add_number = 0;
12992 }
12993
12994 INSERT_OPERAND (0, VECBYTE, *ip, imm_expr.X_add_number);
12995 imm_expr.X_op = O_absent;
12996 s = expr_end;
12997 continue;
12998
12999 case '%':
13000 gas_assert (!mips_opts.micromips);
13001 my_getExpression (&imm_expr, s);
13002 check_absolute_expr (ip, &imm_expr);
13003
13004 if ((unsigned long) imm_expr.X_add_number
13005 > (unsigned long) OP_MASK_VECALIGN)
13006 {
13007 as_bad (_("bad byte vector index (%ld)"),
13008 (long) imm_expr.X_add_number);
13009 imm_expr.X_add_number = 0;
13010 }
13011
13012 INSERT_OPERAND (0, VECALIGN, *ip, imm_expr.X_add_number);
13013 imm_expr.X_op = O_absent;
13014 s = expr_end;
13015 continue;
13016
13017 case 'm': /* Opcode extension character. */
13018 gas_assert (mips_opts.micromips);
13019 c = *++args;
13020 switch (c)
13021 {
13022 case 'r':
13023 if (strncmp (s, "$pc", 3) == 0)
13024 {
13025 s += 3;
13026 continue;
13027 }
13028 break;
13029
13030 case 'a':
13031 case 'b':
13032 case 'c':
13033 case 'd':
13034 case 'e':
13035 case 'f':
13036 case 'g':
13037 case 'h':
13038 case 'i':
13039 case 'j':
13040 case 'l':
13041 case 'm':
13042 case 'n':
13043 case 'p':
13044 case 'q':
13045 case 's':
13046 case 't':
13047 case 'x':
13048 case 'y':
13049 case 'z':
13050 s_reset = s;
13051 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
13052 if (regno == AT && mips_opts.at)
13053 {
13054 if (mips_opts.at == ATREG)
13055 as_warn (_("Used $at without \".set noat\""));
13056 else
13057 as_warn (_("Used $%u with \".set at=$%u\""),
13058 regno, mips_opts.at);
13059 }
13060 if (!ok)
13061 {
13062 if (c == 'c')
13063 {
13064 gas_assert (args[1] == ',');
13065 regno = lastregno;
13066 ++args;
13067 }
13068 else if (c == 't')
13069 {
13070 gas_assert (args[1] == ',');
13071 ++args;
13072 continue; /* Nothing to do. */
13073 }
13074 else
13075 break;
13076 }
13077
13078 if (c == 'j' && !strncmp (ip->insn_mo->name, "jalr", 4))
13079 {
13080 if (regno == lastregno)
13081 {
13082 insn_error
13083 = _("Source and destination must be different");
13084 continue;
13085 }
13086 if (regno == 31 && lastregno == 0xffffffff)
13087 {
13088 insn_error
13089 = _("A destination register must be supplied");
13090 continue;
13091 }
13092 }
13093
13094 if (*s == ' ')
13095 ++s;
13096 if (args[1] != *s)
13097 {
13098 if (c == 'e')
13099 {
13100 gas_assert (args[1] == ',');
13101 regno = lastregno;
13102 s = s_reset;
13103 ++args;
13104 }
13105 else if (c == 't')
13106 {
13107 gas_assert (args[1] == ',');
13108 s = s_reset;
13109 ++args;
13110 continue; /* Nothing to do. */
13111 }
13112 }
13113
13114 /* Make sure regno is the same as lastregno. */
13115 if (c == 't' && regno != lastregno)
13116 break;
13117
13118 /* Make sure regno is the same as destregno. */
13119 if (c == 'x' && regno != destregno)
13120 break;
13121
13122 /* We need to save regno, before regno maps to the
13123 microMIPS register encoding. */
13124 lastregno = regno;
13125
13126 if (c == 'f')
13127 destregno = regno;
13128
13129 switch (c)
13130 {
13131 case 'a':
13132 if (regno != GP)
13133 regno = ILLEGAL_REG;
13134 break;
13135
13136 case 'b':
13137 regno = mips32_to_micromips_reg_b_map[regno];
13138 break;
13139
13140 case 'c':
13141 regno = mips32_to_micromips_reg_c_map[regno];
13142 break;
13143
13144 case 'd':
13145 regno = mips32_to_micromips_reg_d_map[regno];
13146 break;
13147
13148 case 'e':
13149 regno = mips32_to_micromips_reg_e_map[regno];
13150 break;
13151
13152 case 'f':
13153 regno = mips32_to_micromips_reg_f_map[regno];
13154 break;
13155
13156 case 'g':
13157 regno = mips32_to_micromips_reg_g_map[regno];
13158 break;
13159
13160 case 'h':
13161 regno = mips32_to_micromips_reg_h_map[regno];
13162 break;
13163
13164 case 'i':
13165 switch (EXTRACT_OPERAND (1, MI, *ip))
13166 {
13167 case 4:
13168 if (regno == 21)
13169 regno = 3;
13170 else if (regno == 22)
13171 regno = 4;
13172 else if (regno == 5)
13173 regno = 5;
13174 else if (regno == 6)
13175 regno = 6;
13176 else if (regno == 7)
13177 regno = 7;
13178 else
13179 regno = ILLEGAL_REG;
13180 break;
13181
13182 case 5:
13183 if (regno == 6)
13184 regno = 0;
13185 else if (regno == 7)
13186 regno = 1;
13187 else
13188 regno = ILLEGAL_REG;
13189 break;
13190
13191 case 6:
13192 if (regno == 7)
13193 regno = 2;
13194 else
13195 regno = ILLEGAL_REG;
13196 break;
13197
13198 default:
13199 regno = ILLEGAL_REG;
13200 break;
13201 }
13202 break;
13203
13204 case 'l':
13205 regno = mips32_to_micromips_reg_l_map[regno];
13206 break;
13207
13208 case 'm':
13209 regno = mips32_to_micromips_reg_m_map[regno];
13210 break;
13211
13212 case 'n':
13213 regno = mips32_to_micromips_reg_n_map[regno];
13214 break;
13215
13216 case 'q':
13217 regno = mips32_to_micromips_reg_q_map[regno];
13218 break;
13219
13220 case 's':
13221 if (regno != SP)
13222 regno = ILLEGAL_REG;
13223 break;
13224
13225 case 'y':
13226 if (regno != 31)
13227 regno = ILLEGAL_REG;
13228 break;
13229
13230 case 'z':
13231 if (regno != ZERO)
13232 regno = ILLEGAL_REG;
13233 break;
13234
13235 case 'j': /* Do nothing. */
13236 case 'p':
13237 case 't':
13238 case 'x':
13239 break;
13240
13241 default:
13242 abort ();
13243 }
13244
13245 if (regno == ILLEGAL_REG)
13246 break;
13247
13248 switch (c)
13249 {
13250 case 'b':
13251 INSERT_OPERAND (1, MB, *ip, regno);
13252 break;
13253
13254 case 'c':
13255 INSERT_OPERAND (1, MC, *ip, regno);
13256 break;
13257
13258 case 'd':
13259 INSERT_OPERAND (1, MD, *ip, regno);
13260 break;
13261
13262 case 'e':
13263 INSERT_OPERAND (1, ME, *ip, regno);
13264 break;
13265
13266 case 'f':
13267 INSERT_OPERAND (1, MF, *ip, regno);
13268 break;
13269
13270 case 'g':
13271 INSERT_OPERAND (1, MG, *ip, regno);
13272 break;
13273
13274 case 'h':
13275 INSERT_OPERAND (1, MH, *ip, regno);
13276 break;
13277
13278 case 'i':
13279 INSERT_OPERAND (1, MI, *ip, regno);
13280 break;
13281
13282 case 'j':
13283 INSERT_OPERAND (1, MJ, *ip, regno);
13284 break;
13285
13286 case 'l':
13287 INSERT_OPERAND (1, ML, *ip, regno);
13288 break;
13289
13290 case 'm':
13291 INSERT_OPERAND (1, MM, *ip, regno);
13292 break;
13293
13294 case 'n':
13295 INSERT_OPERAND (1, MN, *ip, regno);
13296 break;
13297
13298 case 'p':
13299 INSERT_OPERAND (1, MP, *ip, regno);
13300 break;
13301
13302 case 'q':
13303 INSERT_OPERAND (1, MQ, *ip, regno);
13304 break;
13305
13306 case 'a': /* Do nothing. */
13307 case 's': /* Do nothing. */
13308 case 't': /* Do nothing. */
13309 case 'x': /* Do nothing. */
13310 case 'y': /* Do nothing. */
13311 case 'z': /* Do nothing. */
13312 break;
13313
13314 default:
13315 abort ();
13316 }
13317 continue;
13318
13319 case 'A':
13320 {
13321 bfd_reloc_code_real_type r[3];
13322 expressionS ep;
13323 int imm;
13324
13325 /* Check whether there is only a single bracketed
13326 expression left. If so, it must be the base register
13327 and the constant must be zero. */
13328 if (*s == '(' && strchr (s + 1, '(') == 0)
13329 {
13330 INSERT_OPERAND (1, IMMA, *ip, 0);
13331 continue;
13332 }
13333
13334 if (my_getSmallExpression (&ep, r, s) > 0
13335 || !expr_const_in_range (&ep, -64, 64, 2))
13336 break;
13337
13338 imm = ep.X_add_number >> 2;
13339 INSERT_OPERAND (1, IMMA, *ip, imm);
13340 }
13341 s = expr_end;
13342 continue;
13343
13344 case 'B':
13345 {
13346 bfd_reloc_code_real_type r[3];
13347 expressionS ep;
13348 int imm;
13349
13350 if (my_getSmallExpression (&ep, r, s) > 0
13351 || ep.X_op != O_constant)
13352 break;
13353
13354 for (imm = 0; imm < 8; imm++)
13355 if (micromips_imm_b_map[imm] == ep.X_add_number)
13356 break;
13357 if (imm >= 8)
13358 break;
13359
13360 INSERT_OPERAND (1, IMMB, *ip, imm);
13361 }
13362 s = expr_end;
13363 continue;
13364
13365 case 'C':
13366 {
13367 bfd_reloc_code_real_type r[3];
13368 expressionS ep;
13369 int imm;
13370
13371 if (my_getSmallExpression (&ep, r, s) > 0
13372 || ep.X_op != O_constant)
13373 break;
13374
13375 for (imm = 0; imm < 16; imm++)
13376 if (micromips_imm_c_map[imm] == ep.X_add_number)
13377 break;
13378 if (imm >= 16)
13379 break;
13380
13381 INSERT_OPERAND (1, IMMC, *ip, imm);
13382 }
13383 s = expr_end;
13384 continue;
13385
13386 case 'D': /* pc relative offset */
13387 case 'E': /* pc relative offset */
13388 my_getExpression (&offset_expr, s);
13389 if (offset_expr.X_op == O_register)
13390 break;
13391
13392 if (!forced_insn_length)
13393 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
13394 else if (c == 'D')
13395 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
13396 else
13397 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
13398 s = expr_end;
13399 continue;
13400
13401 case 'F':
13402 {
13403 bfd_reloc_code_real_type r[3];
13404 expressionS ep;
13405 int imm;
13406
13407 if (my_getSmallExpression (&ep, r, s) > 0
13408 || !expr_const_in_range (&ep, 0, 16, 0))
13409 break;
13410
13411 imm = ep.X_add_number;
13412 INSERT_OPERAND (1, IMMF, *ip, imm);
13413 }
13414 s = expr_end;
13415 continue;
13416
13417 case 'G':
13418 {
13419 bfd_reloc_code_real_type r[3];
13420 expressionS ep;
13421 int imm;
13422
13423 /* Check whether there is only a single bracketed
13424 expression left. If so, it must be the base register
13425 and the constant must be zero. */
13426 if (*s == '(' && strchr (s + 1, '(') == 0)
13427 {
13428 INSERT_OPERAND (1, IMMG, *ip, 0);
13429 continue;
13430 }
13431
13432 if (my_getSmallExpression (&ep, r, s) > 0
13433 || !expr_const_in_range (&ep, -1, 15, 0))
13434 break;
13435
13436 imm = ep.X_add_number & 15;
13437 INSERT_OPERAND (1, IMMG, *ip, imm);
13438 }
13439 s = expr_end;
13440 continue;
13441
13442 case 'H':
13443 {
13444 bfd_reloc_code_real_type r[3];
13445 expressionS ep;
13446 int imm;
13447
13448 /* Check whether there is only a single bracketed
13449 expression left. If so, it must be the base register
13450 and the constant must be zero. */
13451 if (*s == '(' && strchr (s + 1, '(') == 0)
13452 {
13453 INSERT_OPERAND (1, IMMH, *ip, 0);
13454 continue;
13455 }
13456
13457 if (my_getSmallExpression (&ep, r, s) > 0
13458 || !expr_const_in_range (&ep, 0, 16, 1))
13459 break;
13460
13461 imm = ep.X_add_number >> 1;
13462 INSERT_OPERAND (1, IMMH, *ip, imm);
13463 }
13464 s = expr_end;
13465 continue;
13466
13467 case 'I':
13468 {
13469 bfd_reloc_code_real_type r[3];
13470 expressionS ep;
13471 int imm;
13472
13473 if (my_getSmallExpression (&ep, r, s) > 0
13474 || !expr_const_in_range (&ep, -1, 127, 0))
13475 break;
13476
13477 imm = ep.X_add_number & 127;
13478 INSERT_OPERAND (1, IMMI, *ip, imm);
13479 }
13480 s = expr_end;
13481 continue;
13482
13483 case 'J':
13484 {
13485 bfd_reloc_code_real_type r[3];
13486 expressionS ep;
13487 int imm;
13488
13489 /* Check whether there is only a single bracketed
13490 expression left. If so, it must be the base register
13491 and the constant must be zero. */
13492 if (*s == '(' && strchr (s + 1, '(') == 0)
13493 {
13494 INSERT_OPERAND (1, IMMJ, *ip, 0);
13495 continue;
13496 }
13497
13498 if (my_getSmallExpression (&ep, r, s) > 0
13499 || !expr_const_in_range (&ep, 0, 16, 2))
13500 break;
13501
13502 imm = ep.X_add_number >> 2;
13503 INSERT_OPERAND (1, IMMJ, *ip, imm);
13504 }
13505 s = expr_end;
13506 continue;
13507
13508 case 'L':
13509 {
13510 bfd_reloc_code_real_type r[3];
13511 expressionS ep;
13512 int imm;
13513
13514 /* Check whether there is only a single bracketed
13515 expression left. If so, it must be the base register
13516 and the constant must be zero. */
13517 if (*s == '(' && strchr (s + 1, '(') == 0)
13518 {
13519 INSERT_OPERAND (1, IMML, *ip, 0);
13520 continue;
13521 }
13522
13523 if (my_getSmallExpression (&ep, r, s) > 0
13524 || !expr_const_in_range (&ep, 0, 16, 0))
13525 break;
13526
13527 imm = ep.X_add_number;
13528 INSERT_OPERAND (1, IMML, *ip, imm);
13529 }
13530 s = expr_end;
13531 continue;
13532
13533 case 'M':
13534 {
13535 bfd_reloc_code_real_type r[3];
13536 expressionS ep;
13537 int imm;
13538
13539 if (my_getSmallExpression (&ep, r, s) > 0
13540 || !expr_const_in_range (&ep, 1, 9, 0))
13541 break;
13542
13543 imm = ep.X_add_number & 7;
13544 INSERT_OPERAND (1, IMMM, *ip, imm);
13545 }
13546 s = expr_end;
13547 continue;
13548
13549 case 'N': /* Register list for lwm and swm. */
13550 {
13551 /* A comma-separated list of registers and/or
13552 dash-separated contiguous ranges including
13553 both ra and a set of one or more registers
13554 starting at s0 up to s3 which have to be
13555 consecutive, e.g.:
13556
13557 s0, ra
13558 s0, s1, ra, s2, s3
13559 s0-s2, ra
13560
13561 and any permutations of these. */
13562 unsigned int reglist;
13563 int imm;
13564
13565 if (!reglist_lookup (&s, RTYPE_NUM | RTYPE_GP, &reglist))
13566 break;
13567
13568 if ((reglist & 0xfff1ffff) != 0x80010000)
13569 break;
13570
13571 reglist = (reglist >> 17) & 7;
13572 reglist += 1;
13573 if ((reglist & -reglist) != reglist)
13574 break;
13575
13576 imm = ffs (reglist) - 1;
13577 INSERT_OPERAND (1, IMMN, *ip, imm);
13578 }
13579 continue;
13580
13581 case 'O': /* sdbbp 4-bit code. */
13582 {
13583 bfd_reloc_code_real_type r[3];
13584 expressionS ep;
13585 int imm;
13586
13587 if (my_getSmallExpression (&ep, r, s) > 0
13588 || !expr_const_in_range (&ep, 0, 16, 0))
13589 break;
13590
13591 imm = ep.X_add_number;
13592 INSERT_OPERAND (1, IMMO, *ip, imm);
13593 }
13594 s = expr_end;
13595 continue;
13596
13597 case 'P':
13598 {
13599 bfd_reloc_code_real_type r[3];
13600 expressionS ep;
13601 int imm;
13602
13603 if (my_getSmallExpression (&ep, r, s) > 0
13604 || !expr_const_in_range (&ep, 0, 32, 2))
13605 break;
13606
13607 imm = ep.X_add_number >> 2;
13608 INSERT_OPERAND (1, IMMP, *ip, imm);
13609 }
13610 s = expr_end;
13611 continue;
13612
13613 case 'Q':
13614 {
13615 bfd_reloc_code_real_type r[3];
13616 expressionS ep;
13617 int imm;
13618
13619 if (my_getSmallExpression (&ep, r, s) > 0
13620 || !expr_const_in_range (&ep, -0x400000, 0x400000, 2))
13621 break;
13622
13623 imm = ep.X_add_number >> 2;
13624 INSERT_OPERAND (1, IMMQ, *ip, imm);
13625 }
13626 s = expr_end;
13627 continue;
13628
13629 case 'U':
13630 {
13631 bfd_reloc_code_real_type r[3];
13632 expressionS ep;
13633 int imm;
13634
13635 /* Check whether there is only a single bracketed
13636 expression left. If so, it must be the base register
13637 and the constant must be zero. */
13638 if (*s == '(' && strchr (s + 1, '(') == 0)
13639 {
13640 INSERT_OPERAND (1, IMMU, *ip, 0);
13641 continue;
13642 }
13643
13644 if (my_getSmallExpression (&ep, r, s) > 0
13645 || !expr_const_in_range (&ep, 0, 32, 2))
13646 break;
13647
13648 imm = ep.X_add_number >> 2;
13649 INSERT_OPERAND (1, IMMU, *ip, imm);
13650 }
13651 s = expr_end;
13652 continue;
13653
13654 case 'W':
13655 {
13656 bfd_reloc_code_real_type r[3];
13657 expressionS ep;
13658 int imm;
13659
13660 if (my_getSmallExpression (&ep, r, s) > 0
13661 || !expr_const_in_range (&ep, 0, 64, 2))
13662 break;
13663
13664 imm = ep.X_add_number >> 2;
13665 INSERT_OPERAND (1, IMMW, *ip, imm);
13666 }
13667 s = expr_end;
13668 continue;
13669
13670 case 'X':
13671 {
13672 bfd_reloc_code_real_type r[3];
13673 expressionS ep;
13674 int imm;
13675
13676 if (my_getSmallExpression (&ep, r, s) > 0
13677 || !expr_const_in_range (&ep, -8, 8, 0))
13678 break;
13679
13680 imm = ep.X_add_number;
13681 INSERT_OPERAND (1, IMMX, *ip, imm);
13682 }
13683 s = expr_end;
13684 continue;
13685
13686 case 'Y':
13687 {
13688 bfd_reloc_code_real_type r[3];
13689 expressionS ep;
13690 int imm;
13691
13692 if (my_getSmallExpression (&ep, r, s) > 0
13693 || expr_const_in_range (&ep, -2, 2, 2)
13694 || !expr_const_in_range (&ep, -258, 258, 2))
13695 break;
13696
13697 imm = ep.X_add_number >> 2;
13698 imm = ((imm >> 1) & ~0xff) | (imm & 0xff);
13699 INSERT_OPERAND (1, IMMY, *ip, imm);
13700 }
13701 s = expr_end;
13702 continue;
13703
13704 case 'Z':
13705 {
13706 bfd_reloc_code_real_type r[3];
13707 expressionS ep;
13708
13709 if (my_getSmallExpression (&ep, r, s) > 0
13710 || !expr_const_in_range (&ep, 0, 1, 0))
13711 break;
13712 }
13713 s = expr_end;
13714 continue;
13715
13716 default:
13717 as_bad (_("Internal error: bad microMIPS opcode "
13718 "(unknown extension operand type `m%c'): %s %s"),
13719 *args, insn->name, insn->args);
13720 /* Further processing is fruitless. */
13721 return;
13722 }
13723 break;
13724
13725 case 'n': /* Register list for 32-bit lwm and swm. */
13726 gas_assert (mips_opts.micromips);
13727 {
13728 /* A comma-separated list of registers and/or
13729 dash-separated contiguous ranges including
13730 at least one of ra and a set of one or more
13731 registers starting at s0 up to s7 and then
13732 s8 which have to be consecutive, e.g.:
13733
13734 ra
13735 s0
13736 ra, s0, s1, s2
13737 s0-s8
13738 s0-s5, ra
13739
13740 and any permutations of these. */
13741 unsigned int reglist;
13742 int imm;
13743 int ra;
13744
13745 if (!reglist_lookup (&s, RTYPE_NUM | RTYPE_GP, &reglist))
13746 break;
13747
13748 if ((reglist & 0x3f00ffff) != 0)
13749 break;
13750
13751 ra = (reglist >> 27) & 0x10;
13752 reglist = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
13753 reglist += 1;
13754 if ((reglist & -reglist) != reglist)
13755 break;
13756
13757 imm = (ffs (reglist) - 1) | ra;
13758 INSERT_OPERAND (1, RT, *ip, imm);
13759 imm_expr.X_op = O_absent;
13760 }
13761 continue;
13762
13763 case '|': /* 4-bit trap code. */
13764 gas_assert (mips_opts.micromips);
13765 my_getExpression (&imm_expr, s);
13766 check_absolute_expr (ip, &imm_expr);
13767 if ((unsigned long) imm_expr.X_add_number
13768 > MICROMIPSOP_MASK_TRAP)
13769 as_bad (_("Trap code (%lu) for %s not in 0..15 range"),
13770 (unsigned long) imm_expr.X_add_number,
13771 ip->insn_mo->name);
13772 INSERT_OPERAND (1, TRAP, *ip, imm_expr.X_add_number);
13773 imm_expr.X_op = O_absent;
13774 s = expr_end;
13775 continue;
13776
13777 default:
13778 as_bad (_("Bad char = '%c'\n"), *args);
13779 abort ();
13780 }
13781 break;
13782 }
13783 /* Args don't match. */
13784 s = argsStart;
13785 insn_error = _("Illegal operands");
13786 if (insn + 1 < past && !strcmp (insn->name, insn[1].name))
13787 {
13788 ++insn;
13789 continue;
13790 }
13791 else if (wrong_delay_slot_insns && need_delay_slot_ok)
13792 {
13793 gas_assert (firstinsn);
13794 need_delay_slot_ok = FALSE;
13795 past = insn + 1;
13796 insn = firstinsn;
13797 continue;
13798 }
13799 return;
13800 }
13801 }
13802
13803 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); }
13804
13805 /* This routine assembles an instruction into its binary format when
13806 assembling for the mips16. As a side effect, it sets one of the
13807 global variables imm_reloc or offset_reloc to the type of relocation
13808 to do if one of the operands is an address expression. It also sets
13809 forced_insn_length to the resulting instruction size in bytes if the
13810 user explicitly requested a small or extended instruction. */
13811
13812 static void
13813 mips16_ip (char *str, struct mips_cl_insn *ip)
13814 {
13815 char *s;
13816 const char *args;
13817 struct mips_opcode *insn;
13818 char *argsstart;
13819 unsigned int regno;
13820 unsigned int lastregno = 0;
13821 char *s_reset;
13822 size_t i;
13823
13824 insn_error = NULL;
13825
13826 forced_insn_length = 0;
13827
13828 for (s = str; ISLOWER (*s); ++s)
13829 ;
13830 switch (*s)
13831 {
13832 case '\0':
13833 break;
13834
13835 case ' ':
13836 *s++ = '\0';
13837 break;
13838
13839 case '.':
13840 if (s[1] == 't' && s[2] == ' ')
13841 {
13842 *s = '\0';
13843 forced_insn_length = 2;
13844 s += 3;
13845 break;
13846 }
13847 else if (s[1] == 'e' && s[2] == ' ')
13848 {
13849 *s = '\0';
13850 forced_insn_length = 4;
13851 s += 3;
13852 break;
13853 }
13854 /* Fall through. */
13855 default:
13856 insn_error = _("unknown opcode");
13857 return;
13858 }
13859
13860 if (mips_opts.noautoextend && !forced_insn_length)
13861 forced_insn_length = 2;
13862
13863 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
13864 {
13865 insn_error = _("unrecognized opcode");
13866 return;
13867 }
13868
13869 argsstart = s;
13870 for (;;)
13871 {
13872 bfd_boolean ok;
13873
13874 gas_assert (strcmp (insn->name, str) == 0);
13875
13876 ok = is_opcode_valid_16 (insn);
13877 if (! ok)
13878 {
13879 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes]
13880 && strcmp (insn->name, insn[1].name) == 0)
13881 {
13882 ++insn;
13883 continue;
13884 }
13885 else
13886 {
13887 if (!insn_error)
13888 {
13889 static char buf[100];
13890 sprintf (buf,
13891 _("Opcode not supported on this processor: %s (%s)"),
13892 mips_cpu_info_from_arch (mips_opts.arch)->name,
13893 mips_cpu_info_from_isa (mips_opts.isa)->name);
13894 insn_error = buf;
13895 }
13896 return;
13897 }
13898 }
13899
13900 create_insn (ip, insn);
13901 imm_expr.X_op = O_absent;
13902 imm_reloc[0] = BFD_RELOC_UNUSED;
13903 imm_reloc[1] = BFD_RELOC_UNUSED;
13904 imm_reloc[2] = BFD_RELOC_UNUSED;
13905 imm2_expr.X_op = O_absent;
13906 offset_expr.X_op = O_absent;
13907 offset_reloc[0] = BFD_RELOC_UNUSED;
13908 offset_reloc[1] = BFD_RELOC_UNUSED;
13909 offset_reloc[2] = BFD_RELOC_UNUSED;
13910 for (args = insn->args; 1; ++args)
13911 {
13912 int c;
13913
13914 if (*s == ' ')
13915 ++s;
13916
13917 /* In this switch statement we call break if we did not find
13918 a match, continue if we did find a match, or return if we
13919 are done. */
13920
13921 c = *args;
13922 switch (c)
13923 {
13924 case '\0':
13925 if (*s == '\0')
13926 {
13927 offsetT value;
13928
13929 /* Stuff the immediate value in now, if we can. */
13930 if (imm_expr.X_op == O_constant
13931 && *imm_reloc > BFD_RELOC_UNUSED
13932 && insn->pinfo != INSN_MACRO
13933 && calculate_reloc (*offset_reloc,
13934 imm_expr.X_add_number, &value))
13935 {
13936 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
13937 *offset_reloc, value, forced_insn_length,
13938 &ip->insn_opcode);
13939 imm_expr.X_op = O_absent;
13940 *imm_reloc = BFD_RELOC_UNUSED;
13941 *offset_reloc = BFD_RELOC_UNUSED;
13942 }
13943
13944 return;
13945 }
13946 break;
13947
13948 case ',':
13949 if (*s++ == c)
13950 continue;
13951 s--;
13952 switch (*++args)
13953 {
13954 case 'v':
13955 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
13956 continue;
13957 case 'w':
13958 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
13959 continue;
13960 }
13961 break;
13962
13963 case '(':
13964 case ')':
13965 if (*s++ == c)
13966 continue;
13967 break;
13968
13969 case 'v':
13970 case 'w':
13971 if (s[0] != '$')
13972 {
13973 if (c == 'v')
13974 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
13975 else
13976 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
13977 ++args;
13978 continue;
13979 }
13980 /* Fall through. */
13981 case 'x':
13982 case 'y':
13983 case 'z':
13984 case 'Z':
13985 case '0':
13986 case 'S':
13987 case 'R':
13988 case 'X':
13989 case 'Y':
13990 s_reset = s;
13991 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
13992 {
13993 if (c == 'v' || c == 'w')
13994 {
13995 if (c == 'v')
13996 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
13997 else
13998 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
13999 ++args;
14000 continue;
14001 }
14002 break;
14003 }
14004
14005 if (*s == ' ')
14006 ++s;
14007 if (args[1] != *s)
14008 {
14009 if (c == 'v' || c == 'w')
14010 {
14011 regno = mips16_to_32_reg_map[lastregno];
14012 s = s_reset;
14013 ++args;
14014 }
14015 }
14016
14017 switch (c)
14018 {
14019 case 'x':
14020 case 'y':
14021 case 'z':
14022 case 'v':
14023 case 'w':
14024 case 'Z':
14025 regno = mips32_to_16_reg_map[regno];
14026 break;
14027
14028 case '0':
14029 if (regno != 0)
14030 regno = ILLEGAL_REG;
14031 break;
14032
14033 case 'S':
14034 if (regno != SP)
14035 regno = ILLEGAL_REG;
14036 break;
14037
14038 case 'R':
14039 if (regno != RA)
14040 regno = ILLEGAL_REG;
14041 break;
14042
14043 case 'X':
14044 case 'Y':
14045 if (regno == AT && mips_opts.at)
14046 {
14047 if (mips_opts.at == ATREG)
14048 as_warn (_("used $at without \".set noat\""));
14049 else
14050 as_warn (_("used $%u with \".set at=$%u\""),
14051 regno, mips_opts.at);
14052 }
14053 break;
14054
14055 default:
14056 abort ();
14057 }
14058
14059 if (regno == ILLEGAL_REG)
14060 break;
14061
14062 switch (c)
14063 {
14064 case 'x':
14065 case 'v':
14066 MIPS16_INSERT_OPERAND (RX, *ip, regno);
14067 break;
14068 case 'y':
14069 case 'w':
14070 MIPS16_INSERT_OPERAND (RY, *ip, regno);
14071 break;
14072 case 'z':
14073 MIPS16_INSERT_OPERAND (RZ, *ip, regno);
14074 break;
14075 case 'Z':
14076 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno);
14077 case '0':
14078 case 'S':
14079 case 'R':
14080 break;
14081 case 'X':
14082 MIPS16_INSERT_OPERAND (REGR32, *ip, regno);
14083 break;
14084 case 'Y':
14085 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
14086 MIPS16_INSERT_OPERAND (REG32R, *ip, regno);
14087 break;
14088 default:
14089 abort ();
14090 }
14091
14092 lastregno = regno;
14093 continue;
14094
14095 case 'P':
14096 if (strncmp (s, "$pc", 3) == 0)
14097 {
14098 s += 3;
14099 continue;
14100 }
14101 break;
14102
14103 case '5':
14104 case 'H':
14105 case 'W':
14106 case 'D':
14107 case 'j':
14108 case 'V':
14109 case 'C':
14110 case 'U':
14111 case 'k':
14112 case 'K':
14113 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
14114 if (i > 0)
14115 {
14116 if (imm_expr.X_op != O_constant)
14117 {
14118 forced_insn_length = 4;
14119 ip->insn_opcode |= MIPS16_EXTEND;
14120 }
14121 else
14122 {
14123 /* We need to relax this instruction. */
14124 *offset_reloc = *imm_reloc;
14125 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
14126 }
14127 s = expr_end;
14128 continue;
14129 }
14130 *imm_reloc = BFD_RELOC_UNUSED;
14131 /* Fall through. */
14132 case '<':
14133 case '>':
14134 case '[':
14135 case ']':
14136 case '4':
14137 case '8':
14138 my_getExpression (&imm_expr, s);
14139 if (imm_expr.X_op == O_register)
14140 {
14141 /* What we thought was an expression turned out to
14142 be a register. */
14143
14144 if (s[0] == '(' && args[1] == '(')
14145 {
14146 /* It looks like the expression was omitted
14147 before a register indirection, which means
14148 that the expression is implicitly zero. We
14149 still set up imm_expr, so that we handle
14150 explicit extensions correctly. */
14151 imm_expr.X_op = O_constant;
14152 imm_expr.X_add_number = 0;
14153 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
14154 continue;
14155 }
14156
14157 break;
14158 }
14159
14160 /* We need to relax this instruction. */
14161 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
14162 s = expr_end;
14163 continue;
14164
14165 case 'p':
14166 case 'q':
14167 case 'A':
14168 case 'B':
14169 case 'E':
14170 /* We use offset_reloc rather than imm_reloc for the PC
14171 relative operands. This lets macros with both
14172 immediate and address operands work correctly. */
14173 my_getExpression (&offset_expr, s);
14174
14175 if (offset_expr.X_op == O_register)
14176 break;
14177
14178 /* We need to relax this instruction. */
14179 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
14180 s = expr_end;
14181 continue;
14182
14183 case '6': /* break code */
14184 my_getExpression (&imm_expr, s);
14185 check_absolute_expr (ip, &imm_expr);
14186 if ((unsigned long) imm_expr.X_add_number > 63)
14187 as_warn (_("Invalid value for `%s' (%lu)"),
14188 ip->insn_mo->name,
14189 (unsigned long) imm_expr.X_add_number);
14190 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number);
14191 imm_expr.X_op = O_absent;
14192 s = expr_end;
14193 continue;
14194
14195 case 'a': /* 26 bit address */
14196 my_getExpression (&offset_expr, s);
14197 s = expr_end;
14198 *offset_reloc = BFD_RELOC_MIPS16_JMP;
14199 ip->insn_opcode <<= 16;
14200 continue;
14201
14202 case 'l': /* register list for entry macro */
14203 case 'L': /* register list for exit macro */
14204 {
14205 int mask;
14206
14207 if (c == 'l')
14208 mask = 0;
14209 else
14210 mask = 7 << 3;
14211 while (*s != '\0')
14212 {
14213 unsigned int freg, reg1, reg2;
14214
14215 while (*s == ' ' || *s == ',')
14216 ++s;
14217 if (reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
14218 freg = 0;
14219 else if (reg_lookup (&s, RTYPE_FPU, &reg1))
14220 freg = 1;
14221 else
14222 {
14223 as_bad (_("can't parse register list"));
14224 break;
14225 }
14226 if (*s == ' ')
14227 ++s;
14228 if (*s != '-')
14229 reg2 = reg1;
14230 else
14231 {
14232 ++s;
14233 if (!reg_lookup (&s, freg ? RTYPE_FPU
14234 : (RTYPE_GP | RTYPE_NUM), &reg2))
14235 {
14236 as_bad (_("invalid register list"));
14237 break;
14238 }
14239 }
14240 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
14241 {
14242 mask &= ~ (7 << 3);
14243 mask |= 5 << 3;
14244 }
14245 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
14246 {
14247 mask &= ~ (7 << 3);
14248 mask |= 6 << 3;
14249 }
14250 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
14251 mask |= (reg2 - 3) << 3;
14252 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
14253 mask |= (reg2 - 15) << 1;
14254 else if (reg1 == RA && reg2 == RA)
14255 mask |= 1;
14256 else
14257 {
14258 as_bad (_("invalid register list"));
14259 break;
14260 }
14261 }
14262 /* The mask is filled in in the opcode table for the
14263 benefit of the disassembler. We remove it before
14264 applying the actual mask. */
14265 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
14266 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
14267 }
14268 continue;
14269
14270 case 'm': /* Register list for save insn. */
14271 case 'M': /* Register list for restore insn. */
14272 {
14273 int opcode = ip->insn_opcode;
14274 int framesz = 0, seen_framesz = 0;
14275 int nargs = 0, statics = 0, sregs = 0;
14276
14277 while (*s != '\0')
14278 {
14279 unsigned int reg1, reg2;
14280
14281 SKIP_SPACE_TABS (s);
14282 while (*s == ',')
14283 ++s;
14284 SKIP_SPACE_TABS (s);
14285
14286 my_getExpression (&imm_expr, s);
14287 if (imm_expr.X_op == O_constant)
14288 {
14289 /* Handle the frame size. */
14290 if (seen_framesz)
14291 {
14292 as_bad (_("more than one frame size in list"));
14293 break;
14294 }
14295 seen_framesz = 1;
14296 framesz = imm_expr.X_add_number;
14297 imm_expr.X_op = O_absent;
14298 s = expr_end;
14299 continue;
14300 }
14301
14302 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
14303 {
14304 as_bad (_("can't parse register list"));
14305 break;
14306 }
14307
14308 while (*s == ' ')
14309 ++s;
14310
14311 if (*s != '-')
14312 reg2 = reg1;
14313 else
14314 {
14315 ++s;
14316 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg2)
14317 || reg2 < reg1)
14318 {
14319 as_bad (_("can't parse register list"));
14320 break;
14321 }
14322 }
14323
14324 while (reg1 <= reg2)
14325 {
14326 if (reg1 >= 4 && reg1 <= 7)
14327 {
14328 if (!seen_framesz)
14329 /* args $a0-$a3 */
14330 nargs |= 1 << (reg1 - 4);
14331 else
14332 /* statics $a0-$a3 */
14333 statics |= 1 << (reg1 - 4);
14334 }
14335 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30)
14336 {
14337 /* $s0-$s8 */
14338 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16));
14339 }
14340 else if (reg1 == 31)
14341 {
14342 /* Add $ra to insn. */
14343 opcode |= 0x40;
14344 }
14345 else
14346 {
14347 as_bad (_("unexpected register in list"));
14348 break;
14349 }
14350 if (++reg1 == 24)
14351 reg1 = 30;
14352 }
14353 }
14354
14355 /* Encode args/statics combination. */
14356 if (nargs & statics)
14357 as_bad (_("arg/static registers overlap"));
14358 else if (nargs == 0xf)
14359 /* All $a0-$a3 are args. */
14360 opcode |= MIPS16_ALL_ARGS << 16;
14361 else if (statics == 0xf)
14362 /* All $a0-$a3 are statics. */
14363 opcode |= MIPS16_ALL_STATICS << 16;
14364 else
14365 {
14366 int narg = 0, nstat = 0;
14367
14368 /* Count arg registers. */
14369 while (nargs & 0x1)
14370 {
14371 nargs >>= 1;
14372 narg++;
14373 }
14374 if (nargs != 0)
14375 as_bad (_("invalid arg register list"));
14376
14377 /* Count static registers. */
14378 while (statics & 0x8)
14379 {
14380 statics = (statics << 1) & 0xf;
14381 nstat++;
14382 }
14383 if (statics != 0)
14384 as_bad (_("invalid static register list"));
14385
14386 /* Encode args/statics. */
14387 opcode |= ((narg << 2) | nstat) << 16;
14388 }
14389
14390 /* Encode $s0/$s1. */
14391 if (sregs & (1 << 0)) /* $s0 */
14392 opcode |= 0x20;
14393 if (sregs & (1 << 1)) /* $s1 */
14394 opcode |= 0x10;
14395 sregs >>= 2;
14396
14397 if (sregs != 0)
14398 {
14399 /* Count regs $s2-$s8. */
14400 int nsreg = 0;
14401 while (sregs & 1)
14402 {
14403 sregs >>= 1;
14404 nsreg++;
14405 }
14406 if (sregs != 0)
14407 as_bad (_("invalid static register list"));
14408 /* Encode $s2-$s8. */
14409 opcode |= nsreg << 24;
14410 }
14411
14412 /* Encode frame size. */
14413 if (!seen_framesz)
14414 as_bad (_("missing frame size"));
14415 else if ((framesz & 7) != 0 || framesz < 0
14416 || framesz > 0xff * 8)
14417 as_bad (_("invalid frame size"));
14418 else if (framesz != 128 || (opcode >> 16) != 0)
14419 {
14420 framesz /= 8;
14421 opcode |= (((framesz & 0xf0) << 16)
14422 | (framesz & 0x0f));
14423 }
14424
14425 /* Finally build the instruction. */
14426 if ((opcode >> 16) != 0 || framesz == 0)
14427 opcode |= MIPS16_EXTEND;
14428 ip->insn_opcode = opcode;
14429 }
14430 continue;
14431
14432 case 'e': /* extend code */
14433 my_getExpression (&imm_expr, s);
14434 check_absolute_expr (ip, &imm_expr);
14435 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
14436 {
14437 as_warn (_("Invalid value for `%s' (%lu)"),
14438 ip->insn_mo->name,
14439 (unsigned long) imm_expr.X_add_number);
14440 imm_expr.X_add_number &= 0x7ff;
14441 }
14442 ip->insn_opcode |= imm_expr.X_add_number;
14443 imm_expr.X_op = O_absent;
14444 s = expr_end;
14445 continue;
14446
14447 default:
14448 abort ();
14449 }
14450 break;
14451 }
14452
14453 /* Args don't match. */
14454 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
14455 strcmp (insn->name, insn[1].name) == 0)
14456 {
14457 ++insn;
14458 s = argsstart;
14459 continue;
14460 }
14461
14462 insn_error = _("illegal operands");
14463
14464 return;
14465 }
14466 }
14467
14468 /* This structure holds information we know about a mips16 immediate
14469 argument type. */
14470
14471 struct mips16_immed_operand
14472 {
14473 /* The type code used in the argument string in the opcode table. */
14474 int type;
14475 /* The number of bits in the short form of the opcode. */
14476 int nbits;
14477 /* The number of bits in the extended form of the opcode. */
14478 int extbits;
14479 /* The amount by which the short form is shifted when it is used;
14480 for example, the sw instruction has a shift count of 2. */
14481 int shift;
14482 /* The amount by which the short form is shifted when it is stored
14483 into the instruction code. */
14484 int op_shift;
14485 /* Non-zero if the short form is unsigned. */
14486 int unsp;
14487 /* Non-zero if the extended form is unsigned. */
14488 int extu;
14489 /* Non-zero if the value is PC relative. */
14490 int pcrel;
14491 };
14492
14493 /* The mips16 immediate operand types. */
14494
14495 static const struct mips16_immed_operand mips16_immed_operands[] =
14496 {
14497 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
14498 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
14499 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
14500 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
14501 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
14502 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
14503 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
14504 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
14505 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
14506 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
14507 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
14508 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
14509 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
14510 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
14511 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
14512 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
14513 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
14514 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
14515 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
14516 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
14517 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
14518 };
14519
14520 #define MIPS16_NUM_IMMED \
14521 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
14522
14523 /* Marshal immediate value VAL for an extended MIPS16 instruction.
14524 NBITS is the number of significant bits in VAL. */
14525
14526 static unsigned long
14527 mips16_immed_extend (offsetT val, unsigned int nbits)
14528 {
14529 int extval;
14530 if (nbits == 16)
14531 {
14532 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
14533 val &= 0x1f;
14534 }
14535 else if (nbits == 15)
14536 {
14537 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
14538 val &= 0xf;
14539 }
14540 else
14541 {
14542 extval = ((val & 0x1f) << 6) | (val & 0x20);
14543 val = 0;
14544 }
14545 return (extval << 16) | val;
14546 }
14547
14548 /* Install immediate value VAL into MIPS16 instruction *INSN,
14549 extending it if necessary. The instruction in *INSN may
14550 already be extended.
14551
14552 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
14553 if none. In the former case, VAL is a 16-bit number with no
14554 defined signedness.
14555
14556 TYPE is the type of the immediate field. USER_INSN_LENGTH
14557 is the length that the user requested, or 0 if none. */
14558
14559 static void
14560 mips16_immed (char *file, unsigned int line, int type,
14561 bfd_reloc_code_real_type reloc, offsetT val,
14562 unsigned int user_insn_length, unsigned long *insn)
14563 {
14564 const struct mips16_immed_operand *op;
14565 int mintiny, maxtiny;
14566
14567 op = mips16_immed_operands;
14568 while (op->type != type)
14569 {
14570 ++op;
14571 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
14572 }
14573
14574 if (op->unsp)
14575 {
14576 if (type == '<' || type == '>' || type == '[' || type == ']')
14577 {
14578 mintiny = 1;
14579 maxtiny = 1 << op->nbits;
14580 }
14581 else
14582 {
14583 mintiny = 0;
14584 maxtiny = (1 << op->nbits) - 1;
14585 }
14586 if (reloc != BFD_RELOC_UNUSED)
14587 val &= 0xffff;
14588 }
14589 else
14590 {
14591 mintiny = - (1 << (op->nbits - 1));
14592 maxtiny = (1 << (op->nbits - 1)) - 1;
14593 if (reloc != BFD_RELOC_UNUSED)
14594 val = SEXT_16BIT (val);
14595 }
14596
14597 /* Branch offsets have an implicit 0 in the lowest bit. */
14598 if (type == 'p' || type == 'q')
14599 val /= 2;
14600
14601 if ((val & ((1 << op->shift) - 1)) != 0
14602 || val < (mintiny << op->shift)
14603 || val > (maxtiny << op->shift))
14604 {
14605 /* We need an extended instruction. */
14606 if (user_insn_length == 2)
14607 as_bad_where (file, line, _("invalid unextended operand value"));
14608 else
14609 *insn |= MIPS16_EXTEND;
14610 }
14611 else if (user_insn_length == 4)
14612 {
14613 /* The operand doesn't force an unextended instruction to be extended.
14614 Warn if the user wanted an extended instruction anyway. */
14615 *insn |= MIPS16_EXTEND;
14616 as_warn_where (file, line,
14617 _("extended operand requested but not required"));
14618 }
14619
14620 if (mips16_opcode_length (*insn) == 2)
14621 {
14622 int insnval;
14623
14624 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
14625 insnval <<= op->op_shift;
14626 *insn |= insnval;
14627 }
14628 else
14629 {
14630 long minext, maxext;
14631
14632 if (reloc == BFD_RELOC_UNUSED)
14633 {
14634 if (op->extu)
14635 {
14636 minext = 0;
14637 maxext = (1 << op->extbits) - 1;
14638 }
14639 else
14640 {
14641 minext = - (1 << (op->extbits - 1));
14642 maxext = (1 << (op->extbits - 1)) - 1;
14643 }
14644 if (val < minext || val > maxext)
14645 as_bad_where (file, line,
14646 _("operand value out of range for instruction"));
14647 }
14648
14649 *insn |= mips16_immed_extend (val, op->extbits);
14650 }
14651 }
14652 \f
14653 struct percent_op_match
14654 {
14655 const char *str;
14656 bfd_reloc_code_real_type reloc;
14657 };
14658
14659 static const struct percent_op_match mips_percent_op[] =
14660 {
14661 {"%lo", BFD_RELOC_LO16},
14662 #ifdef OBJ_ELF
14663 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14664 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14665 {"%call16", BFD_RELOC_MIPS_CALL16},
14666 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14667 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14668 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14669 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14670 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14671 {"%got", BFD_RELOC_MIPS_GOT16},
14672 {"%gp_rel", BFD_RELOC_GPREL16},
14673 {"%half", BFD_RELOC_16},
14674 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14675 {"%higher", BFD_RELOC_MIPS_HIGHER},
14676 {"%neg", BFD_RELOC_MIPS_SUB},
14677 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14678 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14679 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14680 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14681 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14682 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14683 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
14684 #endif
14685 {"%hi", BFD_RELOC_HI16_S}
14686 };
14687
14688 static const struct percent_op_match mips16_percent_op[] =
14689 {
14690 {"%lo", BFD_RELOC_MIPS16_LO16},
14691 {"%gprel", BFD_RELOC_MIPS16_GPREL},
14692 {"%got", BFD_RELOC_MIPS16_GOT16},
14693 {"%call16", BFD_RELOC_MIPS16_CALL16},
14694 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14695 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14696 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14697 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14698 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14699 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14700 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14701 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
14702 };
14703
14704
14705 /* Return true if *STR points to a relocation operator. When returning true,
14706 move *STR over the operator and store its relocation code in *RELOC.
14707 Leave both *STR and *RELOC alone when returning false. */
14708
14709 static bfd_boolean
14710 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
14711 {
14712 const struct percent_op_match *percent_op;
14713 size_t limit, i;
14714
14715 if (mips_opts.mips16)
14716 {
14717 percent_op = mips16_percent_op;
14718 limit = ARRAY_SIZE (mips16_percent_op);
14719 }
14720 else
14721 {
14722 percent_op = mips_percent_op;
14723 limit = ARRAY_SIZE (mips_percent_op);
14724 }
14725
14726 for (i = 0; i < limit; i++)
14727 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
14728 {
14729 int len = strlen (percent_op[i].str);
14730
14731 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14732 continue;
14733
14734 *str += strlen (percent_op[i].str);
14735 *reloc = percent_op[i].reloc;
14736
14737 /* Check whether the output BFD supports this relocation.
14738 If not, issue an error and fall back on something safe. */
14739 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
14740 {
14741 as_bad (_("relocation %s isn't supported by the current ABI"),
14742 percent_op[i].str);
14743 *reloc = BFD_RELOC_UNUSED;
14744 }
14745 return TRUE;
14746 }
14747 return FALSE;
14748 }
14749
14750
14751 /* Parse string STR as a 16-bit relocatable operand. Store the
14752 expression in *EP and the relocations in the array starting
14753 at RELOC. Return the number of relocation operators used.
14754
14755 On exit, EXPR_END points to the first character after the expression. */
14756
14757 static size_t
14758 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14759 char *str)
14760 {
14761 bfd_reloc_code_real_type reversed_reloc[3];
14762 size_t reloc_index, i;
14763 int crux_depth, str_depth;
14764 char *crux;
14765
14766 /* Search for the start of the main expression, recoding relocations
14767 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14768 of the main expression and with CRUX_DEPTH containing the number
14769 of open brackets at that point. */
14770 reloc_index = -1;
14771 str_depth = 0;
14772 do
14773 {
14774 reloc_index++;
14775 crux = str;
14776 crux_depth = str_depth;
14777
14778 /* Skip over whitespace and brackets, keeping count of the number
14779 of brackets. */
14780 while (*str == ' ' || *str == '\t' || *str == '(')
14781 if (*str++ == '(')
14782 str_depth++;
14783 }
14784 while (*str == '%'
14785 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14786 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14787
14788 my_getExpression (ep, crux);
14789 str = expr_end;
14790
14791 /* Match every open bracket. */
14792 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14793 if (*str++ == ')')
14794 crux_depth--;
14795
14796 if (crux_depth > 0)
14797 as_bad (_("unclosed '('"));
14798
14799 expr_end = str;
14800
14801 if (reloc_index != 0)
14802 {
14803 prev_reloc_op_frag = frag_now;
14804 for (i = 0; i < reloc_index; i++)
14805 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14806 }
14807
14808 return reloc_index;
14809 }
14810
14811 static void
14812 my_getExpression (expressionS *ep, char *str)
14813 {
14814 char *save_in;
14815
14816 save_in = input_line_pointer;
14817 input_line_pointer = str;
14818 expression (ep);
14819 expr_end = input_line_pointer;
14820 input_line_pointer = save_in;
14821 }
14822
14823 char *
14824 md_atof (int type, char *litP, int *sizeP)
14825 {
14826 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14827 }
14828
14829 void
14830 md_number_to_chars (char *buf, valueT val, int n)
14831 {
14832 if (target_big_endian)
14833 number_to_chars_bigendian (buf, val, n);
14834 else
14835 number_to_chars_littleendian (buf, val, n);
14836 }
14837 \f
14838 #ifdef OBJ_ELF
14839 static int support_64bit_objects(void)
14840 {
14841 const char **list, **l;
14842 int yes;
14843
14844 list = bfd_target_list ();
14845 for (l = list; *l != NULL; l++)
14846 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14847 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14848 break;
14849 yes = (*l != NULL);
14850 free (list);
14851 return yes;
14852 }
14853 #endif /* OBJ_ELF */
14854
14855 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14856 NEW_VALUE. Warn if another value was already specified. Note:
14857 we have to defer parsing the -march and -mtune arguments in order
14858 to handle 'from-abi' correctly, since the ABI might be specified
14859 in a later argument. */
14860
14861 static void
14862 mips_set_option_string (const char **string_ptr, const char *new_value)
14863 {
14864 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14865 as_warn (_("A different %s was already specified, is now %s"),
14866 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14867 new_value);
14868
14869 *string_ptr = new_value;
14870 }
14871
14872 int
14873 md_parse_option (int c, char *arg)
14874 {
14875 switch (c)
14876 {
14877 case OPTION_CONSTRUCT_FLOATS:
14878 mips_disable_float_construction = 0;
14879 break;
14880
14881 case OPTION_NO_CONSTRUCT_FLOATS:
14882 mips_disable_float_construction = 1;
14883 break;
14884
14885 case OPTION_TRAP:
14886 mips_trap = 1;
14887 break;
14888
14889 case OPTION_BREAK:
14890 mips_trap = 0;
14891 break;
14892
14893 case OPTION_EB:
14894 target_big_endian = 1;
14895 break;
14896
14897 case OPTION_EL:
14898 target_big_endian = 0;
14899 break;
14900
14901 case 'O':
14902 if (arg == NULL)
14903 mips_optimize = 1;
14904 else if (arg[0] == '0')
14905 mips_optimize = 0;
14906 else if (arg[0] == '1')
14907 mips_optimize = 1;
14908 else
14909 mips_optimize = 2;
14910 break;
14911
14912 case 'g':
14913 if (arg == NULL)
14914 mips_debug = 2;
14915 else
14916 mips_debug = atoi (arg);
14917 break;
14918
14919 case OPTION_MIPS1:
14920 file_mips_isa = ISA_MIPS1;
14921 break;
14922
14923 case OPTION_MIPS2:
14924 file_mips_isa = ISA_MIPS2;
14925 break;
14926
14927 case OPTION_MIPS3:
14928 file_mips_isa = ISA_MIPS3;
14929 break;
14930
14931 case OPTION_MIPS4:
14932 file_mips_isa = ISA_MIPS4;
14933 break;
14934
14935 case OPTION_MIPS5:
14936 file_mips_isa = ISA_MIPS5;
14937 break;
14938
14939 case OPTION_MIPS32:
14940 file_mips_isa = ISA_MIPS32;
14941 break;
14942
14943 case OPTION_MIPS32R2:
14944 file_mips_isa = ISA_MIPS32R2;
14945 break;
14946
14947 case OPTION_MIPS64R2:
14948 file_mips_isa = ISA_MIPS64R2;
14949 break;
14950
14951 case OPTION_MIPS64:
14952 file_mips_isa = ISA_MIPS64;
14953 break;
14954
14955 case OPTION_MTUNE:
14956 mips_set_option_string (&mips_tune_string, arg);
14957 break;
14958
14959 case OPTION_MARCH:
14960 mips_set_option_string (&mips_arch_string, arg);
14961 break;
14962
14963 case OPTION_M4650:
14964 mips_set_option_string (&mips_arch_string, "4650");
14965 mips_set_option_string (&mips_tune_string, "4650");
14966 break;
14967
14968 case OPTION_NO_M4650:
14969 break;
14970
14971 case OPTION_M4010:
14972 mips_set_option_string (&mips_arch_string, "4010");
14973 mips_set_option_string (&mips_tune_string, "4010");
14974 break;
14975
14976 case OPTION_NO_M4010:
14977 break;
14978
14979 case OPTION_M4100:
14980 mips_set_option_string (&mips_arch_string, "4100");
14981 mips_set_option_string (&mips_tune_string, "4100");
14982 break;
14983
14984 case OPTION_NO_M4100:
14985 break;
14986
14987 case OPTION_M3900:
14988 mips_set_option_string (&mips_arch_string, "3900");
14989 mips_set_option_string (&mips_tune_string, "3900");
14990 break;
14991
14992 case OPTION_NO_M3900:
14993 break;
14994
14995 case OPTION_MDMX:
14996 mips_opts.ase |= ASE_MDMX;
14997 file_ase_explicit |= ASE_MDMX;
14998 break;
14999
15000 case OPTION_NO_MDMX:
15001 mips_opts.ase &= ~ASE_MDMX;
15002 file_ase_explicit |= ASE_MDMX;
15003 break;
15004
15005 case OPTION_DSP:
15006 mips_opts.ase |= ASE_DSP;
15007 mips_opts.ase &= ~ASE_DSPR2;
15008 file_ase_explicit |= ASE_DSP | ASE_DSPR2;
15009 break;
15010
15011 case OPTION_DSPR2:
15012 mips_opts.ase |= ASE_DSP | ASE_DSPR2;
15013 file_ase_explicit |= ASE_DSP | ASE_DSPR2;
15014 break;
15015
15016 case OPTION_NO_DSP:
15017 case OPTION_NO_DSPR2:
15018 mips_opts.ase &= ~(ASE_DSP | ASE_DSPR2);
15019 file_ase_explicit |= ASE_DSP | ASE_DSPR2;
15020 break;
15021
15022 case OPTION_EVA:
15023 mips_opts.ase |= ASE_EVA;
15024 file_ase_explicit |= ASE_EVA;
15025 break;
15026
15027 case OPTION_NO_EVA:
15028 mips_opts.ase &= ~ASE_EVA;
15029 file_ase_explicit |= ASE_EVA;
15030 break;
15031
15032 case OPTION_MT:
15033 mips_opts.ase |= ASE_MT;
15034 file_ase_explicit |= ASE_MT;
15035 break;
15036
15037 case OPTION_NO_MT:
15038 mips_opts.ase &= ~ASE_MT;
15039 file_ase_explicit |= ASE_MT;
15040 break;
15041
15042 case OPTION_MCU:
15043 mips_opts.ase |= ASE_MCU;
15044 file_ase_explicit |= ASE_MCU;
15045 break;
15046
15047 case OPTION_NO_MCU:
15048 mips_opts.ase &= ~ASE_MCU;
15049 file_ase_explicit |= ASE_MCU;
15050 break;
15051
15052 case OPTION_MICROMIPS:
15053 if (mips_opts.mips16 == 1)
15054 {
15055 as_bad (_("-mmicromips cannot be used with -mips16"));
15056 return 0;
15057 }
15058 mips_opts.micromips = 1;
15059 mips_no_prev_insn ();
15060 break;
15061
15062 case OPTION_NO_MICROMIPS:
15063 mips_opts.micromips = 0;
15064 mips_no_prev_insn ();
15065 break;
15066
15067 case OPTION_VIRT:
15068 mips_opts.ase |= ASE_VIRT;
15069 file_ase_explicit |= ASE_VIRT;
15070 break;
15071
15072 case OPTION_NO_VIRT:
15073 mips_opts.ase &= ~ASE_VIRT;
15074 file_ase_explicit |= ASE_VIRT;
15075 break;
15076
15077 case OPTION_MIPS16:
15078 if (mips_opts.micromips == 1)
15079 {
15080 as_bad (_("-mips16 cannot be used with -micromips"));
15081 return 0;
15082 }
15083 mips_opts.mips16 = 1;
15084 mips_no_prev_insn ();
15085 break;
15086
15087 case OPTION_NO_MIPS16:
15088 mips_opts.mips16 = 0;
15089 mips_no_prev_insn ();
15090 break;
15091
15092 case OPTION_MIPS3D:
15093 mips_opts.ase |= ASE_MIPS3D;
15094 file_ase_explicit |= ASE_MIPS3D;
15095 break;
15096
15097 case OPTION_NO_MIPS3D:
15098 mips_opts.ase &= ~ASE_MIPS3D;
15099 file_ase_explicit |= ASE_MIPS3D;
15100 break;
15101
15102 case OPTION_SMARTMIPS:
15103 mips_opts.ase |= ASE_SMARTMIPS;
15104 file_ase_explicit |= ASE_SMARTMIPS;
15105 break;
15106
15107 case OPTION_NO_SMARTMIPS:
15108 mips_opts.ase &= ~ASE_SMARTMIPS;
15109 file_ase_explicit |= ASE_SMARTMIPS;
15110 break;
15111
15112 case OPTION_FIX_24K:
15113 mips_fix_24k = 1;
15114 break;
15115
15116 case OPTION_NO_FIX_24K:
15117 mips_fix_24k = 0;
15118 break;
15119
15120 case OPTION_FIX_LOONGSON2F_JUMP:
15121 mips_fix_loongson2f_jump = TRUE;
15122 break;
15123
15124 case OPTION_NO_FIX_LOONGSON2F_JUMP:
15125 mips_fix_loongson2f_jump = FALSE;
15126 break;
15127
15128 case OPTION_FIX_LOONGSON2F_NOP:
15129 mips_fix_loongson2f_nop = TRUE;
15130 break;
15131
15132 case OPTION_NO_FIX_LOONGSON2F_NOP:
15133 mips_fix_loongson2f_nop = FALSE;
15134 break;
15135
15136 case OPTION_FIX_VR4120:
15137 mips_fix_vr4120 = 1;
15138 break;
15139
15140 case OPTION_NO_FIX_VR4120:
15141 mips_fix_vr4120 = 0;
15142 break;
15143
15144 case OPTION_FIX_VR4130:
15145 mips_fix_vr4130 = 1;
15146 break;
15147
15148 case OPTION_NO_FIX_VR4130:
15149 mips_fix_vr4130 = 0;
15150 break;
15151
15152 case OPTION_FIX_CN63XXP1:
15153 mips_fix_cn63xxp1 = TRUE;
15154 break;
15155
15156 case OPTION_NO_FIX_CN63XXP1:
15157 mips_fix_cn63xxp1 = FALSE;
15158 break;
15159
15160 case OPTION_RELAX_BRANCH:
15161 mips_relax_branch = 1;
15162 break;
15163
15164 case OPTION_NO_RELAX_BRANCH:
15165 mips_relax_branch = 0;
15166 break;
15167
15168 case OPTION_MSHARED:
15169 mips_in_shared = TRUE;
15170 break;
15171
15172 case OPTION_MNO_SHARED:
15173 mips_in_shared = FALSE;
15174 break;
15175
15176 case OPTION_MSYM32:
15177 mips_opts.sym32 = TRUE;
15178 break;
15179
15180 case OPTION_MNO_SYM32:
15181 mips_opts.sym32 = FALSE;
15182 break;
15183
15184 #ifdef OBJ_ELF
15185 /* When generating ELF code, we permit -KPIC and -call_shared to
15186 select SVR4_PIC, and -non_shared to select no PIC. This is
15187 intended to be compatible with Irix 5. */
15188 case OPTION_CALL_SHARED:
15189 if (!IS_ELF)
15190 {
15191 as_bad (_("-call_shared is supported only for ELF format"));
15192 return 0;
15193 }
15194 mips_pic = SVR4_PIC;
15195 mips_abicalls = TRUE;
15196 break;
15197
15198 case OPTION_CALL_NONPIC:
15199 if (!IS_ELF)
15200 {
15201 as_bad (_("-call_nonpic is supported only for ELF format"));
15202 return 0;
15203 }
15204 mips_pic = NO_PIC;
15205 mips_abicalls = TRUE;
15206 break;
15207
15208 case OPTION_NON_SHARED:
15209 if (!IS_ELF)
15210 {
15211 as_bad (_("-non_shared is supported only for ELF format"));
15212 return 0;
15213 }
15214 mips_pic = NO_PIC;
15215 mips_abicalls = FALSE;
15216 break;
15217
15218 /* The -xgot option tells the assembler to use 32 bit offsets
15219 when accessing the got in SVR4_PIC mode. It is for Irix
15220 compatibility. */
15221 case OPTION_XGOT:
15222 mips_big_got = 1;
15223 break;
15224 #endif /* OBJ_ELF */
15225
15226 case 'G':
15227 g_switch_value = atoi (arg);
15228 g_switch_seen = 1;
15229 break;
15230
15231 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
15232 and -mabi=64. */
15233 case OPTION_32:
15234 if (IS_ELF)
15235 mips_abi = O32_ABI;
15236 /* We silently ignore -32 for non-ELF targets. This greatly
15237 simplifies the construction of the MIPS GAS test cases. */
15238 break;
15239
15240 #ifdef OBJ_ELF
15241 case OPTION_N32:
15242 if (!IS_ELF)
15243 {
15244 as_bad (_("-n32 is supported for ELF format only"));
15245 return 0;
15246 }
15247 mips_abi = N32_ABI;
15248 break;
15249
15250 case OPTION_64:
15251 if (!IS_ELF)
15252 {
15253 as_bad (_("-64 is supported for ELF format only"));
15254 return 0;
15255 }
15256 mips_abi = N64_ABI;
15257 if (!support_64bit_objects())
15258 as_fatal (_("No compiled in support for 64 bit object file format"));
15259 break;
15260 #endif /* OBJ_ELF */
15261
15262 case OPTION_GP32:
15263 file_mips_gp32 = 1;
15264 break;
15265
15266 case OPTION_GP64:
15267 file_mips_gp32 = 0;
15268 break;
15269
15270 case OPTION_FP32:
15271 file_mips_fp32 = 1;
15272 break;
15273
15274 case OPTION_FP64:
15275 file_mips_fp32 = 0;
15276 break;
15277
15278 case OPTION_SINGLE_FLOAT:
15279 file_mips_single_float = 1;
15280 break;
15281
15282 case OPTION_DOUBLE_FLOAT:
15283 file_mips_single_float = 0;
15284 break;
15285
15286 case OPTION_SOFT_FLOAT:
15287 file_mips_soft_float = 1;
15288 break;
15289
15290 case OPTION_HARD_FLOAT:
15291 file_mips_soft_float = 0;
15292 break;
15293
15294 #ifdef OBJ_ELF
15295 case OPTION_MABI:
15296 if (!IS_ELF)
15297 {
15298 as_bad (_("-mabi is supported for ELF format only"));
15299 return 0;
15300 }
15301 if (strcmp (arg, "32") == 0)
15302 mips_abi = O32_ABI;
15303 else if (strcmp (arg, "o64") == 0)
15304 mips_abi = O64_ABI;
15305 else if (strcmp (arg, "n32") == 0)
15306 mips_abi = N32_ABI;
15307 else if (strcmp (arg, "64") == 0)
15308 {
15309 mips_abi = N64_ABI;
15310 if (! support_64bit_objects())
15311 as_fatal (_("No compiled in support for 64 bit object file "
15312 "format"));
15313 }
15314 else if (strcmp (arg, "eabi") == 0)
15315 mips_abi = EABI_ABI;
15316 else
15317 {
15318 as_fatal (_("invalid abi -mabi=%s"), arg);
15319 return 0;
15320 }
15321 break;
15322 #endif /* OBJ_ELF */
15323
15324 case OPTION_M7000_HILO_FIX:
15325 mips_7000_hilo_fix = TRUE;
15326 break;
15327
15328 case OPTION_MNO_7000_HILO_FIX:
15329 mips_7000_hilo_fix = FALSE;
15330 break;
15331
15332 #ifdef OBJ_ELF
15333 case OPTION_MDEBUG:
15334 mips_flag_mdebug = TRUE;
15335 break;
15336
15337 case OPTION_NO_MDEBUG:
15338 mips_flag_mdebug = FALSE;
15339 break;
15340
15341 case OPTION_PDR:
15342 mips_flag_pdr = TRUE;
15343 break;
15344
15345 case OPTION_NO_PDR:
15346 mips_flag_pdr = FALSE;
15347 break;
15348
15349 case OPTION_MVXWORKS_PIC:
15350 mips_pic = VXWORKS_PIC;
15351 break;
15352 #endif /* OBJ_ELF */
15353
15354 default:
15355 return 0;
15356 }
15357
15358 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
15359
15360 return 1;
15361 }
15362 \f
15363 /* Set up globals to generate code for the ISA or processor
15364 described by INFO. */
15365
15366 static void
15367 mips_set_architecture (const struct mips_cpu_info *info)
15368 {
15369 if (info != 0)
15370 {
15371 file_mips_arch = info->cpu;
15372 mips_opts.arch = info->cpu;
15373 mips_opts.isa = info->isa;
15374 }
15375 }
15376
15377
15378 /* Likewise for tuning. */
15379
15380 static void
15381 mips_set_tune (const struct mips_cpu_info *info)
15382 {
15383 if (info != 0)
15384 mips_tune = info->cpu;
15385 }
15386
15387
15388 void
15389 mips_after_parse_args (void)
15390 {
15391 const struct mips_cpu_info *arch_info = 0;
15392 const struct mips_cpu_info *tune_info = 0;
15393
15394 /* GP relative stuff not working for PE */
15395 if (strncmp (TARGET_OS, "pe", 2) == 0)
15396 {
15397 if (g_switch_seen && g_switch_value != 0)
15398 as_bad (_("-G not supported in this configuration."));
15399 g_switch_value = 0;
15400 }
15401
15402 if (mips_abi == NO_ABI)
15403 mips_abi = MIPS_DEFAULT_ABI;
15404
15405 /* The following code determines the architecture and register size.
15406 Similar code was added to GCC 3.3 (see override_options() in
15407 config/mips/mips.c). The GAS and GCC code should be kept in sync
15408 as much as possible. */
15409
15410 if (mips_arch_string != 0)
15411 arch_info = mips_parse_cpu ("-march", mips_arch_string);
15412
15413 if (file_mips_isa != ISA_UNKNOWN)
15414 {
15415 /* Handle -mipsN. At this point, file_mips_isa contains the
15416 ISA level specified by -mipsN, while arch_info->isa contains
15417 the -march selection (if any). */
15418 if (arch_info != 0)
15419 {
15420 /* -march takes precedence over -mipsN, since it is more descriptive.
15421 There's no harm in specifying both as long as the ISA levels
15422 are the same. */
15423 if (file_mips_isa != arch_info->isa)
15424 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
15425 mips_cpu_info_from_isa (file_mips_isa)->name,
15426 mips_cpu_info_from_isa (arch_info->isa)->name);
15427 }
15428 else
15429 arch_info = mips_cpu_info_from_isa (file_mips_isa);
15430 }
15431
15432 if (arch_info == 0)
15433 {
15434 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
15435 gas_assert (arch_info);
15436 }
15437
15438 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
15439 as_bad (_("-march=%s is not compatible with the selected ABI"),
15440 arch_info->name);
15441
15442 mips_set_architecture (arch_info);
15443
15444 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
15445 if (mips_tune_string != 0)
15446 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
15447
15448 if (tune_info == 0)
15449 mips_set_tune (arch_info);
15450 else
15451 mips_set_tune (tune_info);
15452
15453 if (file_mips_gp32 >= 0)
15454 {
15455 /* The user specified the size of the integer registers. Make sure
15456 it agrees with the ABI and ISA. */
15457 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
15458 as_bad (_("-mgp64 used with a 32-bit processor"));
15459 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
15460 as_bad (_("-mgp32 used with a 64-bit ABI"));
15461 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
15462 as_bad (_("-mgp64 used with a 32-bit ABI"));
15463 }
15464 else
15465 {
15466 /* Infer the integer register size from the ABI and processor.
15467 Restrict ourselves to 32-bit registers if that's all the
15468 processor has, or if the ABI cannot handle 64-bit registers. */
15469 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
15470 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
15471 }
15472
15473 switch (file_mips_fp32)
15474 {
15475 default:
15476 case -1:
15477 /* No user specified float register size.
15478 ??? GAS treats single-float processors as though they had 64-bit
15479 float registers (although it complains when double-precision
15480 instructions are used). As things stand, saying they have 32-bit
15481 registers would lead to spurious "register must be even" messages.
15482 So here we assume float registers are never smaller than the
15483 integer ones. */
15484 if (file_mips_gp32 == 0)
15485 /* 64-bit integer registers implies 64-bit float registers. */
15486 file_mips_fp32 = 0;
15487 else if ((mips_opts.ase & (ASE_MIPS3D | ASE_MDMX))
15488 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
15489 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
15490 file_mips_fp32 = 0;
15491 else
15492 /* 32-bit float registers. */
15493 file_mips_fp32 = 1;
15494 break;
15495
15496 /* The user specified the size of the float registers. Check if it
15497 agrees with the ABI and ISA. */
15498 case 0:
15499 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
15500 as_bad (_("-mfp64 used with a 32-bit fpu"));
15501 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
15502 && !ISA_HAS_MXHC1 (mips_opts.isa))
15503 as_warn (_("-mfp64 used with a 32-bit ABI"));
15504 break;
15505 case 1:
15506 if (ABI_NEEDS_64BIT_REGS (mips_abi))
15507 as_warn (_("-mfp32 used with a 64-bit ABI"));
15508 break;
15509 }
15510
15511 /* End of GCC-shared inference code. */
15512
15513 /* This flag is set when we have a 64-bit capable CPU but use only
15514 32-bit wide registers. Note that EABI does not use it. */
15515 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
15516 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
15517 || mips_abi == O32_ABI))
15518 mips_32bitmode = 1;
15519
15520 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
15521 as_bad (_("trap exception not supported at ISA 1"));
15522
15523 /* If the selected architecture includes support for ASEs, enable
15524 generation of code for them. */
15525 if (mips_opts.mips16 == -1)
15526 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
15527 if (mips_opts.micromips == -1)
15528 mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_arch)) ? 1 : 0;
15529
15530 /* MIPS3D and MDMX require 64-bit FPRs, so -mfp32 should stop those
15531 ASEs from being selected implicitly. */
15532 if (file_mips_fp32 == 1)
15533 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX;
15534
15535 /* If the user didn't explicitly select or deselect a particular ASE,
15536 use the default setting for the CPU. */
15537 mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
15538
15539 if ((mips_opts.ase & ASE_MIPS3D) && file_mips_fp32 == 1)
15540 as_bad (_("-mfp32 used with -mips3d"));
15541
15542 if ((mips_opts.ase & ASE_MDMX) && file_mips_fp32 == 1)
15543 as_bad (_("-mfp32 used with -mdmx"));
15544
15545 if ((mips_opts.ase & ASE_SMARTMIPS) && !ISA_SUPPORTS_SMARTMIPS)
15546 as_warn (_("%s ISA does not support SmartMIPS"),
15547 mips_cpu_info_from_isa (mips_opts.isa)->name);
15548
15549 if ((mips_opts.ase & ASE_DSP) && !ISA_SUPPORTS_DSP_ASE)
15550 as_warn (_("%s ISA does not support DSP ASE"),
15551 mips_cpu_info_from_isa (mips_opts.isa)->name);
15552
15553 if ((mips_opts.ase & ASE_DSPR2) && !ISA_SUPPORTS_DSPR2_ASE)
15554 as_warn (_("%s ISA does not support DSP R2 ASE"),
15555 mips_cpu_info_from_isa (mips_opts.isa)->name);
15556
15557 if ((mips_opts.ase & ASE_EVA) && !ISA_SUPPORTS_EVA_ASE)
15558 as_warn (_("%s ISA does not support EVA ASE"),
15559 mips_cpu_info_from_isa (mips_opts.isa)->name);
15560
15561 if ((mips_opts.ase & ASE_MT) && !ISA_SUPPORTS_MT_ASE)
15562 as_warn (_("%s ISA does not support MT ASE"),
15563 mips_cpu_info_from_isa (mips_opts.isa)->name);
15564
15565 if ((mips_opts.ase & ASE_MCU) && !ISA_SUPPORTS_MCU_ASE)
15566 as_warn (_("%s ISA does not support MCU ASE"),
15567 mips_cpu_info_from_isa (mips_opts.isa)->name);
15568
15569 if ((mips_opts.ase & ASE_VIRT) && !ISA_SUPPORTS_VIRT_ASE)
15570 as_warn (_("%s ISA does not support Virtualization ASE"),
15571 mips_cpu_info_from_isa (mips_opts.isa)->name);
15572
15573 file_mips_isa = mips_opts.isa;
15574 file_ase = mips_opts.ase;
15575 mips_opts.gp32 = file_mips_gp32;
15576 mips_opts.fp32 = file_mips_fp32;
15577 mips_opts.soft_float = file_mips_soft_float;
15578 mips_opts.single_float = file_mips_single_float;
15579
15580 if (mips_flag_mdebug < 0)
15581 {
15582 #ifdef OBJ_MAYBE_ECOFF
15583 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
15584 mips_flag_mdebug = 1;
15585 else
15586 #endif /* OBJ_MAYBE_ECOFF */
15587 mips_flag_mdebug = 0;
15588 }
15589 }
15590 \f
15591 void
15592 mips_init_after_args (void)
15593 {
15594 /* initialize opcodes */
15595 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
15596 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
15597 }
15598
15599 long
15600 md_pcrel_from (fixS *fixP)
15601 {
15602 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
15603 switch (fixP->fx_r_type)
15604 {
15605 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15606 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15607 /* Return the address of the delay slot. */
15608 return addr + 2;
15609
15610 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15611 case BFD_RELOC_MICROMIPS_JMP:
15612 case BFD_RELOC_16_PCREL_S2:
15613 case BFD_RELOC_MIPS_JMP:
15614 /* Return the address of the delay slot. */
15615 return addr + 4;
15616
15617 case BFD_RELOC_32_PCREL:
15618 return addr;
15619
15620 default:
15621 /* We have no relocation type for PC relative MIPS16 instructions. */
15622 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
15623 as_bad_where (fixP->fx_file, fixP->fx_line,
15624 _("PC relative MIPS16 instruction references a different section"));
15625 return addr;
15626 }
15627 }
15628
15629 /* This is called before the symbol table is processed. In order to
15630 work with gcc when using mips-tfile, we must keep all local labels.
15631 However, in other cases, we want to discard them. If we were
15632 called with -g, but we didn't see any debugging information, it may
15633 mean that gcc is smuggling debugging information through to
15634 mips-tfile, in which case we must generate all local labels. */
15635
15636 void
15637 mips_frob_file_before_adjust (void)
15638 {
15639 #ifndef NO_ECOFF_DEBUGGING
15640 if (ECOFF_DEBUGGING
15641 && mips_debug != 0
15642 && ! ecoff_debugging_seen)
15643 flag_keep_locals = 1;
15644 #endif
15645 }
15646
15647 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
15648 the corresponding LO16 reloc. This is called before md_apply_fix and
15649 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
15650 relocation operators.
15651
15652 For our purposes, a %lo() expression matches a %got() or %hi()
15653 expression if:
15654
15655 (a) it refers to the same symbol; and
15656 (b) the offset applied in the %lo() expression is no lower than
15657 the offset applied in the %got() or %hi().
15658
15659 (b) allows us to cope with code like:
15660
15661 lui $4,%hi(foo)
15662 lh $4,%lo(foo+2)($4)
15663
15664 ...which is legal on RELA targets, and has a well-defined behaviour
15665 if the user knows that adding 2 to "foo" will not induce a carry to
15666 the high 16 bits.
15667
15668 When several %lo()s match a particular %got() or %hi(), we use the
15669 following rules to distinguish them:
15670
15671 (1) %lo()s with smaller offsets are a better match than %lo()s with
15672 higher offsets.
15673
15674 (2) %lo()s with no matching %got() or %hi() are better than those
15675 that already have a matching %got() or %hi().
15676
15677 (3) later %lo()s are better than earlier %lo()s.
15678
15679 These rules are applied in order.
15680
15681 (1) means, among other things, that %lo()s with identical offsets are
15682 chosen if they exist.
15683
15684 (2) means that we won't associate several high-part relocations with
15685 the same low-part relocation unless there's no alternative. Having
15686 several high parts for the same low part is a GNU extension; this rule
15687 allows careful users to avoid it.
15688
15689 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
15690 with the last high-part relocation being at the front of the list.
15691 It therefore makes sense to choose the last matching low-part
15692 relocation, all other things being equal. It's also easier
15693 to code that way. */
15694
15695 void
15696 mips_frob_file (void)
15697 {
15698 struct mips_hi_fixup *l;
15699 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
15700
15701 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
15702 {
15703 segment_info_type *seginfo;
15704 bfd_boolean matched_lo_p;
15705 fixS **hi_pos, **lo_pos, **pos;
15706
15707 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
15708
15709 /* If a GOT16 relocation turns out to be against a global symbol,
15710 there isn't supposed to be a matching LO. Ignore %gots against
15711 constants; we'll report an error for those later. */
15712 if (got16_reloc_p (l->fixp->fx_r_type)
15713 && !(l->fixp->fx_addsy
15714 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
15715 continue;
15716
15717 /* Check quickly whether the next fixup happens to be a matching %lo. */
15718 if (fixup_has_matching_lo_p (l->fixp))
15719 continue;
15720
15721 seginfo = seg_info (l->seg);
15722
15723 /* Set HI_POS to the position of this relocation in the chain.
15724 Set LO_POS to the position of the chosen low-part relocation.
15725 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
15726 relocation that matches an immediately-preceding high-part
15727 relocation. */
15728 hi_pos = NULL;
15729 lo_pos = NULL;
15730 matched_lo_p = FALSE;
15731 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
15732
15733 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
15734 {
15735 if (*pos == l->fixp)
15736 hi_pos = pos;
15737
15738 if ((*pos)->fx_r_type == looking_for_rtype
15739 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
15740 && (*pos)->fx_offset >= l->fixp->fx_offset
15741 && (lo_pos == NULL
15742 || (*pos)->fx_offset < (*lo_pos)->fx_offset
15743 || (!matched_lo_p
15744 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
15745 lo_pos = pos;
15746
15747 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
15748 && fixup_has_matching_lo_p (*pos));
15749 }
15750
15751 /* If we found a match, remove the high-part relocation from its
15752 current position and insert it before the low-part relocation.
15753 Make the offsets match so that fixup_has_matching_lo_p()
15754 will return true.
15755
15756 We don't warn about unmatched high-part relocations since some
15757 versions of gcc have been known to emit dead "lui ...%hi(...)"
15758 instructions. */
15759 if (lo_pos != NULL)
15760 {
15761 l->fixp->fx_offset = (*lo_pos)->fx_offset;
15762 if (l->fixp->fx_next != *lo_pos)
15763 {
15764 *hi_pos = l->fixp->fx_next;
15765 l->fixp->fx_next = *lo_pos;
15766 *lo_pos = l->fixp;
15767 }
15768 }
15769 }
15770 }
15771
15772 int
15773 mips_force_relocation (fixS *fixp)
15774 {
15775 if (generic_force_reloc (fixp))
15776 return 1;
15777
15778 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
15779 so that the linker relaxation can update targets. */
15780 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15781 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15782 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
15783 return 1;
15784
15785 return 0;
15786 }
15787
15788 /* Read the instruction associated with RELOC from BUF. */
15789
15790 static unsigned int
15791 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15792 {
15793 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15794 return read_compressed_insn (buf, 4);
15795 else
15796 return read_insn (buf);
15797 }
15798
15799 /* Write instruction INSN to BUF, given that it has been relocated
15800 by RELOC. */
15801
15802 static void
15803 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15804 unsigned long insn)
15805 {
15806 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15807 write_compressed_insn (buf, insn, 4);
15808 else
15809 write_insn (buf, insn);
15810 }
15811
15812 /* Apply a fixup to the object file. */
15813
15814 void
15815 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
15816 {
15817 char *buf;
15818 unsigned long insn;
15819 reloc_howto_type *howto;
15820
15821 /* We ignore generic BFD relocations we don't know about. */
15822 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15823 if (! howto)
15824 return;
15825
15826 gas_assert (fixP->fx_size == 2
15827 || fixP->fx_size == 4
15828 || fixP->fx_r_type == BFD_RELOC_16
15829 || fixP->fx_r_type == BFD_RELOC_64
15830 || fixP->fx_r_type == BFD_RELOC_CTOR
15831 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
15832 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
15833 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15834 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
15835 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
15836
15837 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15838
15839 gas_assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2
15840 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15841 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15842 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
15843 || fixP->fx_r_type == BFD_RELOC_32_PCREL);
15844
15845 /* Don't treat parts of a composite relocation as done. There are two
15846 reasons for this:
15847
15848 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15849 should nevertheless be emitted if the first part is.
15850
15851 (2) In normal usage, composite relocations are never assembly-time
15852 constants. The easiest way of dealing with the pathological
15853 exceptions is to generate a relocation against STN_UNDEF and
15854 leave everything up to the linker. */
15855 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
15856 fixP->fx_done = 1;
15857
15858 switch (fixP->fx_r_type)
15859 {
15860 case BFD_RELOC_MIPS_TLS_GD:
15861 case BFD_RELOC_MIPS_TLS_LDM:
15862 case BFD_RELOC_MIPS_TLS_DTPREL32:
15863 case BFD_RELOC_MIPS_TLS_DTPREL64:
15864 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15865 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15866 case BFD_RELOC_MIPS_TLS_GOTTPREL:
15867 case BFD_RELOC_MIPS_TLS_TPREL32:
15868 case BFD_RELOC_MIPS_TLS_TPREL64:
15869 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15870 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
15871 case BFD_RELOC_MICROMIPS_TLS_GD:
15872 case BFD_RELOC_MICROMIPS_TLS_LDM:
15873 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15874 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15875 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15876 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15877 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
15878 case BFD_RELOC_MIPS16_TLS_GD:
15879 case BFD_RELOC_MIPS16_TLS_LDM:
15880 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15881 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15882 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15883 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15884 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
15885 if (!fixP->fx_addsy)
15886 {
15887 as_bad_where (fixP->fx_file, fixP->fx_line,
15888 _("TLS relocation against a constant"));
15889 break;
15890 }
15891 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15892 /* fall through */
15893
15894 case BFD_RELOC_MIPS_JMP:
15895 case BFD_RELOC_MIPS_SHIFT5:
15896 case BFD_RELOC_MIPS_SHIFT6:
15897 case BFD_RELOC_MIPS_GOT_DISP:
15898 case BFD_RELOC_MIPS_GOT_PAGE:
15899 case BFD_RELOC_MIPS_GOT_OFST:
15900 case BFD_RELOC_MIPS_SUB:
15901 case BFD_RELOC_MIPS_INSERT_A:
15902 case BFD_RELOC_MIPS_INSERT_B:
15903 case BFD_RELOC_MIPS_DELETE:
15904 case BFD_RELOC_MIPS_HIGHEST:
15905 case BFD_RELOC_MIPS_HIGHER:
15906 case BFD_RELOC_MIPS_SCN_DISP:
15907 case BFD_RELOC_MIPS_REL16:
15908 case BFD_RELOC_MIPS_RELGOT:
15909 case BFD_RELOC_MIPS_JALR:
15910 case BFD_RELOC_HI16:
15911 case BFD_RELOC_HI16_S:
15912 case BFD_RELOC_LO16:
15913 case BFD_RELOC_GPREL16:
15914 case BFD_RELOC_MIPS_LITERAL:
15915 case BFD_RELOC_MIPS_CALL16:
15916 case BFD_RELOC_MIPS_GOT16:
15917 case BFD_RELOC_GPREL32:
15918 case BFD_RELOC_MIPS_GOT_HI16:
15919 case BFD_RELOC_MIPS_GOT_LO16:
15920 case BFD_RELOC_MIPS_CALL_HI16:
15921 case BFD_RELOC_MIPS_CALL_LO16:
15922 case BFD_RELOC_MIPS16_GPREL:
15923 case BFD_RELOC_MIPS16_GOT16:
15924 case BFD_RELOC_MIPS16_CALL16:
15925 case BFD_RELOC_MIPS16_HI16:
15926 case BFD_RELOC_MIPS16_HI16_S:
15927 case BFD_RELOC_MIPS16_LO16:
15928 case BFD_RELOC_MIPS16_JMP:
15929 case BFD_RELOC_MICROMIPS_JMP:
15930 case BFD_RELOC_MICROMIPS_GOT_DISP:
15931 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15932 case BFD_RELOC_MICROMIPS_GOT_OFST:
15933 case BFD_RELOC_MICROMIPS_SUB:
15934 case BFD_RELOC_MICROMIPS_HIGHEST:
15935 case BFD_RELOC_MICROMIPS_HIGHER:
15936 case BFD_RELOC_MICROMIPS_SCN_DISP:
15937 case BFD_RELOC_MICROMIPS_JALR:
15938 case BFD_RELOC_MICROMIPS_HI16:
15939 case BFD_RELOC_MICROMIPS_HI16_S:
15940 case BFD_RELOC_MICROMIPS_LO16:
15941 case BFD_RELOC_MICROMIPS_GPREL16:
15942 case BFD_RELOC_MICROMIPS_LITERAL:
15943 case BFD_RELOC_MICROMIPS_CALL16:
15944 case BFD_RELOC_MICROMIPS_GOT16:
15945 case BFD_RELOC_MICROMIPS_GOT_HI16:
15946 case BFD_RELOC_MICROMIPS_GOT_LO16:
15947 case BFD_RELOC_MICROMIPS_CALL_HI16:
15948 case BFD_RELOC_MICROMIPS_CALL_LO16:
15949 case BFD_RELOC_MIPS_EH:
15950 if (fixP->fx_done)
15951 {
15952 offsetT value;
15953
15954 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15955 {
15956 insn = read_reloc_insn (buf, fixP->fx_r_type);
15957 if (mips16_reloc_p (fixP->fx_r_type))
15958 insn |= mips16_immed_extend (value, 16);
15959 else
15960 insn |= (value & 0xffff);
15961 write_reloc_insn (buf, fixP->fx_r_type, insn);
15962 }
15963 else
15964 as_bad_where (fixP->fx_file, fixP->fx_line,
15965 _("Unsupported constant in relocation"));
15966 }
15967 break;
15968
15969 case BFD_RELOC_64:
15970 /* This is handled like BFD_RELOC_32, but we output a sign
15971 extended value if we are only 32 bits. */
15972 if (fixP->fx_done)
15973 {
15974 if (8 <= sizeof (valueT))
15975 md_number_to_chars (buf, *valP, 8);
15976 else
15977 {
15978 valueT hiv;
15979
15980 if ((*valP & 0x80000000) != 0)
15981 hiv = 0xffffffff;
15982 else
15983 hiv = 0;
15984 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15985 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15986 }
15987 }
15988 break;
15989
15990 case BFD_RELOC_RVA:
15991 case BFD_RELOC_32:
15992 case BFD_RELOC_32_PCREL:
15993 case BFD_RELOC_16:
15994 /* If we are deleting this reloc entry, we must fill in the
15995 value now. This can happen if we have a .word which is not
15996 resolved when it appears but is later defined. */
15997 if (fixP->fx_done)
15998 md_number_to_chars (buf, *valP, fixP->fx_size);
15999 break;
16000
16001 case BFD_RELOC_16_PCREL_S2:
16002 if ((*valP & 0x3) != 0)
16003 as_bad_where (fixP->fx_file, fixP->fx_line,
16004 _("Branch to misaligned address (%lx)"), (long) *valP);
16005
16006 /* We need to save the bits in the instruction since fixup_segment()
16007 might be deleting the relocation entry (i.e., a branch within
16008 the current segment). */
16009 if (! fixP->fx_done)
16010 break;
16011
16012 /* Update old instruction data. */
16013 insn = read_insn (buf);
16014
16015 if (*valP + 0x20000 <= 0x3ffff)
16016 {
16017 insn |= (*valP >> 2) & 0xffff;
16018 write_insn (buf, insn);
16019 }
16020 else if (mips_pic == NO_PIC
16021 && fixP->fx_done
16022 && fixP->fx_frag->fr_address >= text_section->vma
16023 && (fixP->fx_frag->fr_address
16024 < text_section->vma + bfd_get_section_size (text_section))
16025 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
16026 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
16027 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
16028 {
16029 /* The branch offset is too large. If this is an
16030 unconditional branch, and we are not generating PIC code,
16031 we can convert it to an absolute jump instruction. */
16032 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
16033 insn = 0x0c000000; /* jal */
16034 else
16035 insn = 0x08000000; /* j */
16036 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
16037 fixP->fx_done = 0;
16038 fixP->fx_addsy = section_symbol (text_section);
16039 *valP += md_pcrel_from (fixP);
16040 write_insn (buf, insn);
16041 }
16042 else
16043 {
16044 /* If we got here, we have branch-relaxation disabled,
16045 and there's nothing we can do to fix this instruction
16046 without turning it into a longer sequence. */
16047 as_bad_where (fixP->fx_file, fixP->fx_line,
16048 _("Branch out of range"));
16049 }
16050 break;
16051
16052 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
16053 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
16054 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
16055 /* We adjust the offset back to even. */
16056 if ((*valP & 0x1) != 0)
16057 --(*valP);
16058
16059 if (! fixP->fx_done)
16060 break;
16061
16062 /* Should never visit here, because we keep the relocation. */
16063 abort ();
16064 break;
16065
16066 case BFD_RELOC_VTABLE_INHERIT:
16067 fixP->fx_done = 0;
16068 if (fixP->fx_addsy
16069 && !S_IS_DEFINED (fixP->fx_addsy)
16070 && !S_IS_WEAK (fixP->fx_addsy))
16071 S_SET_WEAK (fixP->fx_addsy);
16072 break;
16073
16074 case BFD_RELOC_VTABLE_ENTRY:
16075 fixP->fx_done = 0;
16076 break;
16077
16078 default:
16079 abort ();
16080 }
16081
16082 /* Remember value for tc_gen_reloc. */
16083 fixP->fx_addnumber = *valP;
16084 }
16085
16086 static symbolS *
16087 get_symbol (void)
16088 {
16089 int c;
16090 char *name;
16091 symbolS *p;
16092
16093 name = input_line_pointer;
16094 c = get_symbol_end ();
16095 p = (symbolS *) symbol_find_or_make (name);
16096 *input_line_pointer = c;
16097 return p;
16098 }
16099
16100 /* Align the current frag to a given power of two. If a particular
16101 fill byte should be used, FILL points to an integer that contains
16102 that byte, otherwise FILL is null.
16103
16104 This function used to have the comment:
16105
16106 The MIPS assembler also automatically adjusts any preceding label.
16107
16108 The implementation therefore applied the adjustment to a maximum of
16109 one label. However, other label adjustments are applied to batches
16110 of labels, and adjusting just one caused problems when new labels
16111 were added for the sake of debugging or unwind information.
16112 We therefore adjust all preceding labels (given as LABELS) instead. */
16113
16114 static void
16115 mips_align (int to, int *fill, struct insn_label_list *labels)
16116 {
16117 mips_emit_delays ();
16118 mips_record_compressed_mode ();
16119 if (fill == NULL && subseg_text_p (now_seg))
16120 frag_align_code (to, 0);
16121 else
16122 frag_align (to, fill ? *fill : 0, 0);
16123 record_alignment (now_seg, to);
16124 mips_move_labels (labels, FALSE);
16125 }
16126
16127 /* Align to a given power of two. .align 0 turns off the automatic
16128 alignment used by the data creating pseudo-ops. */
16129
16130 static void
16131 s_align (int x ATTRIBUTE_UNUSED)
16132 {
16133 int temp, fill_value, *fill_ptr;
16134 long max_alignment = 28;
16135
16136 /* o Note that the assembler pulls down any immediately preceding label
16137 to the aligned address.
16138 o It's not documented but auto alignment is reinstated by
16139 a .align pseudo instruction.
16140 o Note also that after auto alignment is turned off the mips assembler
16141 issues an error on attempt to assemble an improperly aligned data item.
16142 We don't. */
16143
16144 temp = get_absolute_expression ();
16145 if (temp > max_alignment)
16146 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
16147 else if (temp < 0)
16148 {
16149 as_warn (_("Alignment negative: 0 assumed."));
16150 temp = 0;
16151 }
16152 if (*input_line_pointer == ',')
16153 {
16154 ++input_line_pointer;
16155 fill_value = get_absolute_expression ();
16156 fill_ptr = &fill_value;
16157 }
16158 else
16159 fill_ptr = 0;
16160 if (temp)
16161 {
16162 segment_info_type *si = seg_info (now_seg);
16163 struct insn_label_list *l = si->label_list;
16164 /* Auto alignment should be switched on by next section change. */
16165 auto_align = 1;
16166 mips_align (temp, fill_ptr, l);
16167 }
16168 else
16169 {
16170 auto_align = 0;
16171 }
16172
16173 demand_empty_rest_of_line ();
16174 }
16175
16176 static void
16177 s_change_sec (int sec)
16178 {
16179 segT seg;
16180
16181 #ifdef OBJ_ELF
16182 /* The ELF backend needs to know that we are changing sections, so
16183 that .previous works correctly. We could do something like check
16184 for an obj_section_change_hook macro, but that might be confusing
16185 as it would not be appropriate to use it in the section changing
16186 functions in read.c, since obj-elf.c intercepts those. FIXME:
16187 This should be cleaner, somehow. */
16188 if (IS_ELF)
16189 obj_elf_section_change_hook ();
16190 #endif
16191
16192 mips_emit_delays ();
16193
16194 switch (sec)
16195 {
16196 case 't':
16197 s_text (0);
16198 break;
16199 case 'd':
16200 s_data (0);
16201 break;
16202 case 'b':
16203 subseg_set (bss_section, (subsegT) get_absolute_expression ());
16204 demand_empty_rest_of_line ();
16205 break;
16206
16207 case 'r':
16208 seg = subseg_new (RDATA_SECTION_NAME,
16209 (subsegT) get_absolute_expression ());
16210 if (IS_ELF)
16211 {
16212 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
16213 | SEC_READONLY | SEC_RELOC
16214 | SEC_DATA));
16215 if (strncmp (TARGET_OS, "elf", 3) != 0)
16216 record_alignment (seg, 4);
16217 }
16218 demand_empty_rest_of_line ();
16219 break;
16220
16221 case 's':
16222 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
16223 if (IS_ELF)
16224 {
16225 bfd_set_section_flags (stdoutput, seg,
16226 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
16227 if (strncmp (TARGET_OS, "elf", 3) != 0)
16228 record_alignment (seg, 4);
16229 }
16230 demand_empty_rest_of_line ();
16231 break;
16232
16233 case 'B':
16234 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
16235 if (IS_ELF)
16236 {
16237 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
16238 if (strncmp (TARGET_OS, "elf", 3) != 0)
16239 record_alignment (seg, 4);
16240 }
16241 demand_empty_rest_of_line ();
16242 break;
16243 }
16244
16245 auto_align = 1;
16246 }
16247
16248 void
16249 s_change_section (int ignore ATTRIBUTE_UNUSED)
16250 {
16251 #ifdef OBJ_ELF
16252 char *section_name;
16253 char c;
16254 char next_c = 0;
16255 int section_type;
16256 int section_flag;
16257 int section_entry_size;
16258 int section_alignment;
16259
16260 if (!IS_ELF)
16261 return;
16262
16263 section_name = input_line_pointer;
16264 c = get_symbol_end ();
16265 if (c)
16266 next_c = *(input_line_pointer + 1);
16267
16268 /* Do we have .section Name<,"flags">? */
16269 if (c != ',' || (c == ',' && next_c == '"'))
16270 {
16271 /* just after name is now '\0'. */
16272 *input_line_pointer = c;
16273 input_line_pointer = section_name;
16274 obj_elf_section (ignore);
16275 return;
16276 }
16277 input_line_pointer++;
16278
16279 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
16280 if (c == ',')
16281 section_type = get_absolute_expression ();
16282 else
16283 section_type = 0;
16284 if (*input_line_pointer++ == ',')
16285 section_flag = get_absolute_expression ();
16286 else
16287 section_flag = 0;
16288 if (*input_line_pointer++ == ',')
16289 section_entry_size = get_absolute_expression ();
16290 else
16291 section_entry_size = 0;
16292 if (*input_line_pointer++ == ',')
16293 section_alignment = get_absolute_expression ();
16294 else
16295 section_alignment = 0;
16296 /* FIXME: really ignore? */
16297 (void) section_alignment;
16298
16299 section_name = xstrdup (section_name);
16300
16301 /* When using the generic form of .section (as implemented by obj-elf.c),
16302 there's no way to set the section type to SHT_MIPS_DWARF. Users have
16303 traditionally had to fall back on the more common @progbits instead.
16304
16305 There's nothing really harmful in this, since bfd will correct
16306 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
16307 means that, for backwards compatibility, the special_section entries
16308 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
16309
16310 Even so, we shouldn't force users of the MIPS .section syntax to
16311 incorrectly label the sections as SHT_PROGBITS. The best compromise
16312 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
16313 generic type-checking code. */
16314 if (section_type == SHT_MIPS_DWARF)
16315 section_type = SHT_PROGBITS;
16316
16317 obj_elf_change_section (section_name, section_type, section_flag,
16318 section_entry_size, 0, 0, 0);
16319
16320 if (now_seg->name != section_name)
16321 free (section_name);
16322 #endif /* OBJ_ELF */
16323 }
16324
16325 void
16326 mips_enable_auto_align (void)
16327 {
16328 auto_align = 1;
16329 }
16330
16331 static void
16332 s_cons (int log_size)
16333 {
16334 segment_info_type *si = seg_info (now_seg);
16335 struct insn_label_list *l = si->label_list;
16336
16337 mips_emit_delays ();
16338 if (log_size > 0 && auto_align)
16339 mips_align (log_size, 0, l);
16340 cons (1 << log_size);
16341 mips_clear_insn_labels ();
16342 }
16343
16344 static void
16345 s_float_cons (int type)
16346 {
16347 segment_info_type *si = seg_info (now_seg);
16348 struct insn_label_list *l = si->label_list;
16349
16350 mips_emit_delays ();
16351
16352 if (auto_align)
16353 {
16354 if (type == 'd')
16355 mips_align (3, 0, l);
16356 else
16357 mips_align (2, 0, l);
16358 }
16359
16360 float_cons (type);
16361 mips_clear_insn_labels ();
16362 }
16363
16364 /* Handle .globl. We need to override it because on Irix 5 you are
16365 permitted to say
16366 .globl foo .text
16367 where foo is an undefined symbol, to mean that foo should be
16368 considered to be the address of a function. */
16369
16370 static void
16371 s_mips_globl (int x ATTRIBUTE_UNUSED)
16372 {
16373 char *name;
16374 int c;
16375 symbolS *symbolP;
16376 flagword flag;
16377
16378 do
16379 {
16380 name = input_line_pointer;
16381 c = get_symbol_end ();
16382 symbolP = symbol_find_or_make (name);
16383 S_SET_EXTERNAL (symbolP);
16384
16385 *input_line_pointer = c;
16386 SKIP_WHITESPACE ();
16387
16388 /* On Irix 5, every global symbol that is not explicitly labelled as
16389 being a function is apparently labelled as being an object. */
16390 flag = BSF_OBJECT;
16391
16392 if (!is_end_of_line[(unsigned char) *input_line_pointer]
16393 && (*input_line_pointer != ','))
16394 {
16395 char *secname;
16396 asection *sec;
16397
16398 secname = input_line_pointer;
16399 c = get_symbol_end ();
16400 sec = bfd_get_section_by_name (stdoutput, secname);
16401 if (sec == NULL)
16402 as_bad (_("%s: no such section"), secname);
16403 *input_line_pointer = c;
16404
16405 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
16406 flag = BSF_FUNCTION;
16407 }
16408
16409 symbol_get_bfdsym (symbolP)->flags |= flag;
16410
16411 c = *input_line_pointer;
16412 if (c == ',')
16413 {
16414 input_line_pointer++;
16415 SKIP_WHITESPACE ();
16416 if (is_end_of_line[(unsigned char) *input_line_pointer])
16417 c = '\n';
16418 }
16419 }
16420 while (c == ',');
16421
16422 demand_empty_rest_of_line ();
16423 }
16424
16425 static void
16426 s_option (int x ATTRIBUTE_UNUSED)
16427 {
16428 char *opt;
16429 char c;
16430
16431 opt = input_line_pointer;
16432 c = get_symbol_end ();
16433
16434 if (*opt == 'O')
16435 {
16436 /* FIXME: What does this mean? */
16437 }
16438 else if (strncmp (opt, "pic", 3) == 0)
16439 {
16440 int i;
16441
16442 i = atoi (opt + 3);
16443 if (i == 0)
16444 mips_pic = NO_PIC;
16445 else if (i == 2)
16446 {
16447 mips_pic = SVR4_PIC;
16448 mips_abicalls = TRUE;
16449 }
16450 else
16451 as_bad (_(".option pic%d not supported"), i);
16452
16453 if (mips_pic == SVR4_PIC)
16454 {
16455 if (g_switch_seen && g_switch_value != 0)
16456 as_warn (_("-G may not be used with SVR4 PIC code"));
16457 g_switch_value = 0;
16458 bfd_set_gp_size (stdoutput, 0);
16459 }
16460 }
16461 else
16462 as_warn (_("Unrecognized option \"%s\""), opt);
16463
16464 *input_line_pointer = c;
16465 demand_empty_rest_of_line ();
16466 }
16467
16468 /* This structure is used to hold a stack of .set values. */
16469
16470 struct mips_option_stack
16471 {
16472 struct mips_option_stack *next;
16473 struct mips_set_options options;
16474 };
16475
16476 static struct mips_option_stack *mips_opts_stack;
16477
16478 /* Handle the .set pseudo-op. */
16479
16480 static void
16481 s_mipsset (int x ATTRIBUTE_UNUSED)
16482 {
16483 char *name = input_line_pointer, ch;
16484
16485 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16486 ++input_line_pointer;
16487 ch = *input_line_pointer;
16488 *input_line_pointer = '\0';
16489
16490 if (strcmp (name, "reorder") == 0)
16491 {
16492 if (mips_opts.noreorder)
16493 end_noreorder ();
16494 }
16495 else if (strcmp (name, "noreorder") == 0)
16496 {
16497 if (!mips_opts.noreorder)
16498 start_noreorder ();
16499 }
16500 else if (strncmp (name, "at=", 3) == 0)
16501 {
16502 char *s = name + 3;
16503
16504 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
16505 as_bad (_("Unrecognized register name `%s'"), s);
16506 }
16507 else if (strcmp (name, "at") == 0)
16508 {
16509 mips_opts.at = ATREG;
16510 }
16511 else if (strcmp (name, "noat") == 0)
16512 {
16513 mips_opts.at = ZERO;
16514 }
16515 else if (strcmp (name, "macro") == 0)
16516 {
16517 mips_opts.warn_about_macros = 0;
16518 }
16519 else if (strcmp (name, "nomacro") == 0)
16520 {
16521 if (mips_opts.noreorder == 0)
16522 as_bad (_("`noreorder' must be set before `nomacro'"));
16523 mips_opts.warn_about_macros = 1;
16524 }
16525 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
16526 {
16527 mips_opts.nomove = 0;
16528 }
16529 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
16530 {
16531 mips_opts.nomove = 1;
16532 }
16533 else if (strcmp (name, "bopt") == 0)
16534 {
16535 mips_opts.nobopt = 0;
16536 }
16537 else if (strcmp (name, "nobopt") == 0)
16538 {
16539 mips_opts.nobopt = 1;
16540 }
16541 else if (strcmp (name, "gp=default") == 0)
16542 mips_opts.gp32 = file_mips_gp32;
16543 else if (strcmp (name, "gp=32") == 0)
16544 mips_opts.gp32 = 1;
16545 else if (strcmp (name, "gp=64") == 0)
16546 {
16547 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
16548 as_warn (_("%s isa does not support 64-bit registers"),
16549 mips_cpu_info_from_isa (mips_opts.isa)->name);
16550 mips_opts.gp32 = 0;
16551 }
16552 else if (strcmp (name, "fp=default") == 0)
16553 mips_opts.fp32 = file_mips_fp32;
16554 else if (strcmp (name, "fp=32") == 0)
16555 mips_opts.fp32 = 1;
16556 else if (strcmp (name, "fp=64") == 0)
16557 {
16558 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
16559 as_warn (_("%s isa does not support 64-bit floating point registers"),
16560 mips_cpu_info_from_isa (mips_opts.isa)->name);
16561 mips_opts.fp32 = 0;
16562 }
16563 else if (strcmp (name, "softfloat") == 0)
16564 mips_opts.soft_float = 1;
16565 else if (strcmp (name, "hardfloat") == 0)
16566 mips_opts.soft_float = 0;
16567 else if (strcmp (name, "singlefloat") == 0)
16568 mips_opts.single_float = 1;
16569 else if (strcmp (name, "doublefloat") == 0)
16570 mips_opts.single_float = 0;
16571 else if (strcmp (name, "mips16") == 0
16572 || strcmp (name, "MIPS-16") == 0)
16573 {
16574 if (mips_opts.micromips == 1)
16575 as_fatal (_("`mips16' cannot be used with `micromips'"));
16576 mips_opts.mips16 = 1;
16577 }
16578 else if (strcmp (name, "nomips16") == 0
16579 || strcmp (name, "noMIPS-16") == 0)
16580 mips_opts.mips16 = 0;
16581 else if (strcmp (name, "micromips") == 0)
16582 {
16583 if (mips_opts.mips16 == 1)
16584 as_fatal (_("`micromips' cannot be used with `mips16'"));
16585 mips_opts.micromips = 1;
16586 }
16587 else if (strcmp (name, "nomicromips") == 0)
16588 mips_opts.micromips = 0;
16589 else if (strcmp (name, "smartmips") == 0)
16590 {
16591 if (!ISA_SUPPORTS_SMARTMIPS)
16592 as_warn (_("%s ISA does not support SmartMIPS ASE"),
16593 mips_cpu_info_from_isa (mips_opts.isa)->name);
16594 mips_opts.ase |= ASE_SMARTMIPS;
16595 }
16596 else if (strcmp (name, "nosmartmips") == 0)
16597 mips_opts.ase &= ~ASE_SMARTMIPS;
16598 else if (strcmp (name, "mips3d") == 0)
16599 mips_opts.ase |= ASE_MIPS3D;
16600 else if (strcmp (name, "nomips3d") == 0)
16601 mips_opts.ase &= ~ASE_MIPS3D;
16602 else if (strcmp (name, "mdmx") == 0)
16603 mips_opts.ase |= ASE_MDMX;
16604 else if (strcmp (name, "nomdmx") == 0)
16605 mips_opts.ase &= ~ASE_MDMX;
16606 else if (strcmp (name, "dsp") == 0)
16607 {
16608 if (!ISA_SUPPORTS_DSP_ASE)
16609 as_warn (_("%s ISA does not support DSP ASE"),
16610 mips_cpu_info_from_isa (mips_opts.isa)->name);
16611 mips_opts.ase |= ASE_DSP;
16612 mips_opts.ase &= ~ASE_DSPR2;
16613 }
16614 else if (strcmp (name, "dspr2") == 0)
16615 {
16616 if (!ISA_SUPPORTS_DSPR2_ASE)
16617 as_warn (_("%s ISA does not support DSP R2 ASE"),
16618 mips_cpu_info_from_isa (mips_opts.isa)->name);
16619 mips_opts.ase |= ASE_DSP | ASE_DSPR2;
16620 }
16621 else if (strcmp (name, "nodsp") == 0
16622 || strcmp (name, "nodspr2") == 0)
16623 mips_opts.ase &= ~(ASE_DSP | ASE_DSPR2);
16624 else if (strcmp (name, "eva") == 0)
16625 {
16626 if (!ISA_SUPPORTS_EVA_ASE)
16627 as_warn (_("%s ISA does not support EVA ASE"),
16628 mips_cpu_info_from_isa (mips_opts.isa)->name);
16629 mips_opts.ase |= ASE_EVA;
16630 }
16631 else if (strcmp (name, "noeva") == 0)
16632 mips_opts.ase &= ~ASE_EVA;
16633 else if (strcmp (name, "mt") == 0)
16634 {
16635 if (!ISA_SUPPORTS_MT_ASE)
16636 as_warn (_("%s ISA does not support MT ASE"),
16637 mips_cpu_info_from_isa (mips_opts.isa)->name);
16638 mips_opts.ase |= ASE_MT;
16639 }
16640 else if (strcmp (name, "nomt") == 0)
16641 mips_opts.ase &= ~ASE_MT;
16642 else if (strcmp (name, "mcu") == 0)
16643 mips_opts.ase |= ASE_MCU;
16644 else if (strcmp (name, "nomcu") == 0)
16645 mips_opts.ase &= ~ASE_MCU;
16646 else if (strcmp (name, "virt") == 0)
16647 {
16648 if (!ISA_SUPPORTS_VIRT_ASE)
16649 as_warn (_("%s ISA does not support Virtualization ASE"),
16650 mips_cpu_info_from_isa (mips_opts.isa)->name);
16651 mips_opts.ase |= ASE_VIRT;
16652 }
16653 else if (strcmp (name, "novirt") == 0)
16654 mips_opts.ase &= ~ASE_VIRT;
16655 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
16656 {
16657 int reset = 0;
16658
16659 /* Permit the user to change the ISA and architecture on the fly.
16660 Needless to say, misuse can cause serious problems. */
16661 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16662 {
16663 reset = 1;
16664 mips_opts.isa = file_mips_isa;
16665 mips_opts.arch = file_mips_arch;
16666 }
16667 else if (strncmp (name, "arch=", 5) == 0)
16668 {
16669 const struct mips_cpu_info *p;
16670
16671 p = mips_parse_cpu("internal use", name + 5);
16672 if (!p)
16673 as_bad (_("unknown architecture %s"), name + 5);
16674 else
16675 {
16676 mips_opts.arch = p->cpu;
16677 mips_opts.isa = p->isa;
16678 }
16679 }
16680 else if (strncmp (name, "mips", 4) == 0)
16681 {
16682 const struct mips_cpu_info *p;
16683
16684 p = mips_parse_cpu("internal use", name);
16685 if (!p)
16686 as_bad (_("unknown ISA level %s"), name + 4);
16687 else
16688 {
16689 mips_opts.arch = p->cpu;
16690 mips_opts.isa = p->isa;
16691 }
16692 }
16693 else
16694 as_bad (_("unknown ISA or architecture %s"), name);
16695
16696 switch (mips_opts.isa)
16697 {
16698 case 0:
16699 break;
16700 case ISA_MIPS1:
16701 case ISA_MIPS2:
16702 case ISA_MIPS32:
16703 case ISA_MIPS32R2:
16704 mips_opts.gp32 = 1;
16705 mips_opts.fp32 = 1;
16706 break;
16707 case ISA_MIPS3:
16708 case ISA_MIPS4:
16709 case ISA_MIPS5:
16710 case ISA_MIPS64:
16711 case ISA_MIPS64R2:
16712 mips_opts.gp32 = 0;
16713 if (mips_opts.arch == CPU_R5900)
16714 {
16715 mips_opts.fp32 = 1;
16716 }
16717 else
16718 {
16719 mips_opts.fp32 = 0;
16720 }
16721 break;
16722 default:
16723 as_bad (_("unknown ISA level %s"), name + 4);
16724 break;
16725 }
16726 if (reset)
16727 {
16728 mips_opts.gp32 = file_mips_gp32;
16729 mips_opts.fp32 = file_mips_fp32;
16730 }
16731 }
16732 else if (strcmp (name, "autoextend") == 0)
16733 mips_opts.noautoextend = 0;
16734 else if (strcmp (name, "noautoextend") == 0)
16735 mips_opts.noautoextend = 1;
16736 else if (strcmp (name, "push") == 0)
16737 {
16738 struct mips_option_stack *s;
16739
16740 s = (struct mips_option_stack *) xmalloc (sizeof *s);
16741 s->next = mips_opts_stack;
16742 s->options = mips_opts;
16743 mips_opts_stack = s;
16744 }
16745 else if (strcmp (name, "pop") == 0)
16746 {
16747 struct mips_option_stack *s;
16748
16749 s = mips_opts_stack;
16750 if (s == NULL)
16751 as_bad (_(".set pop with no .set push"));
16752 else
16753 {
16754 /* If we're changing the reorder mode we need to handle
16755 delay slots correctly. */
16756 if (s->options.noreorder && ! mips_opts.noreorder)
16757 start_noreorder ();
16758 else if (! s->options.noreorder && mips_opts.noreorder)
16759 end_noreorder ();
16760
16761 mips_opts = s->options;
16762 mips_opts_stack = s->next;
16763 free (s);
16764 }
16765 }
16766 else if (strcmp (name, "sym32") == 0)
16767 mips_opts.sym32 = TRUE;
16768 else if (strcmp (name, "nosym32") == 0)
16769 mips_opts.sym32 = FALSE;
16770 else if (strchr (name, ','))
16771 {
16772 /* Generic ".set" directive; use the generic handler. */
16773 *input_line_pointer = ch;
16774 input_line_pointer = name;
16775 s_set (0);
16776 return;
16777 }
16778 else
16779 {
16780 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
16781 }
16782 *input_line_pointer = ch;
16783 demand_empty_rest_of_line ();
16784 }
16785
16786 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
16787 .option pic2. It means to generate SVR4 PIC calls. */
16788
16789 static void
16790 s_abicalls (int ignore ATTRIBUTE_UNUSED)
16791 {
16792 mips_pic = SVR4_PIC;
16793 mips_abicalls = TRUE;
16794
16795 if (g_switch_seen && g_switch_value != 0)
16796 as_warn (_("-G may not be used with SVR4 PIC code"));
16797 g_switch_value = 0;
16798
16799 bfd_set_gp_size (stdoutput, 0);
16800 demand_empty_rest_of_line ();
16801 }
16802
16803 /* Handle the .cpload pseudo-op. This is used when generating SVR4
16804 PIC code. It sets the $gp register for the function based on the
16805 function address, which is in the register named in the argument.
16806 This uses a relocation against _gp_disp, which is handled specially
16807 by the linker. The result is:
16808 lui $gp,%hi(_gp_disp)
16809 addiu $gp,$gp,%lo(_gp_disp)
16810 addu $gp,$gp,.cpload argument
16811 The .cpload argument is normally $25 == $t9.
16812
16813 The -mno-shared option changes this to:
16814 lui $gp,%hi(__gnu_local_gp)
16815 addiu $gp,$gp,%lo(__gnu_local_gp)
16816 and the argument is ignored. This saves an instruction, but the
16817 resulting code is not position independent; it uses an absolute
16818 address for __gnu_local_gp. Thus code assembled with -mno-shared
16819 can go into an ordinary executable, but not into a shared library. */
16820
16821 static void
16822 s_cpload (int ignore ATTRIBUTE_UNUSED)
16823 {
16824 expressionS ex;
16825 int reg;
16826 int in_shared;
16827
16828 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16829 .cpload is ignored. */
16830 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16831 {
16832 s_ignore (0);
16833 return;
16834 }
16835
16836 if (mips_opts.mips16)
16837 {
16838 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16839 ignore_rest_of_line ();
16840 return;
16841 }
16842
16843 /* .cpload should be in a .set noreorder section. */
16844 if (mips_opts.noreorder == 0)
16845 as_warn (_(".cpload not in noreorder section"));
16846
16847 reg = tc_get_register (0);
16848
16849 /* If we need to produce a 64-bit address, we are better off using
16850 the default instruction sequence. */
16851 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
16852
16853 ex.X_op = O_symbol;
16854 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16855 "__gnu_local_gp");
16856 ex.X_op_symbol = NULL;
16857 ex.X_add_number = 0;
16858
16859 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16860 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16861
16862 mips_mark_labels ();
16863 mips_assembling_insn = TRUE;
16864
16865 macro_start ();
16866 macro_build_lui (&ex, mips_gp_register);
16867 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16868 mips_gp_register, BFD_RELOC_LO16);
16869 if (in_shared)
16870 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16871 mips_gp_register, reg);
16872 macro_end ();
16873
16874 mips_assembling_insn = FALSE;
16875 demand_empty_rest_of_line ();
16876 }
16877
16878 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16879 .cpsetup $reg1, offset|$reg2, label
16880
16881 If offset is given, this results in:
16882 sd $gp, offset($sp)
16883 lui $gp, %hi(%neg(%gp_rel(label)))
16884 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16885 daddu $gp, $gp, $reg1
16886
16887 If $reg2 is given, this results in:
16888 daddu $reg2, $gp, $0
16889 lui $gp, %hi(%neg(%gp_rel(label)))
16890 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16891 daddu $gp, $gp, $reg1
16892 $reg1 is normally $25 == $t9.
16893
16894 The -mno-shared option replaces the last three instructions with
16895 lui $gp,%hi(_gp)
16896 addiu $gp,$gp,%lo(_gp) */
16897
16898 static void
16899 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16900 {
16901 expressionS ex_off;
16902 expressionS ex_sym;
16903 int reg1;
16904
16905 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16906 We also need NewABI support. */
16907 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16908 {
16909 s_ignore (0);
16910 return;
16911 }
16912
16913 if (mips_opts.mips16)
16914 {
16915 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16916 ignore_rest_of_line ();
16917 return;
16918 }
16919
16920 reg1 = tc_get_register (0);
16921 SKIP_WHITESPACE ();
16922 if (*input_line_pointer != ',')
16923 {
16924 as_bad (_("missing argument separator ',' for .cpsetup"));
16925 return;
16926 }
16927 else
16928 ++input_line_pointer;
16929 SKIP_WHITESPACE ();
16930 if (*input_line_pointer == '$')
16931 {
16932 mips_cpreturn_register = tc_get_register (0);
16933 mips_cpreturn_offset = -1;
16934 }
16935 else
16936 {
16937 mips_cpreturn_offset = get_absolute_expression ();
16938 mips_cpreturn_register = -1;
16939 }
16940 SKIP_WHITESPACE ();
16941 if (*input_line_pointer != ',')
16942 {
16943 as_bad (_("missing argument separator ',' for .cpsetup"));
16944 return;
16945 }
16946 else
16947 ++input_line_pointer;
16948 SKIP_WHITESPACE ();
16949 expression (&ex_sym);
16950
16951 mips_mark_labels ();
16952 mips_assembling_insn = TRUE;
16953
16954 macro_start ();
16955 if (mips_cpreturn_register == -1)
16956 {
16957 ex_off.X_op = O_constant;
16958 ex_off.X_add_symbol = NULL;
16959 ex_off.X_op_symbol = NULL;
16960 ex_off.X_add_number = mips_cpreturn_offset;
16961
16962 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16963 BFD_RELOC_LO16, SP);
16964 }
16965 else
16966 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
16967 mips_gp_register, 0);
16968
16969 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16970 {
16971 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16972 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16973 BFD_RELOC_HI16_S);
16974
16975 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16976 mips_gp_register, -1, BFD_RELOC_GPREL16,
16977 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16978
16979 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16980 mips_gp_register, reg1);
16981 }
16982 else
16983 {
16984 expressionS ex;
16985
16986 ex.X_op = O_symbol;
16987 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16988 ex.X_op_symbol = NULL;
16989 ex.X_add_number = 0;
16990
16991 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16992 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16993
16994 macro_build_lui (&ex, mips_gp_register);
16995 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16996 mips_gp_register, BFD_RELOC_LO16);
16997 }
16998
16999 macro_end ();
17000
17001 mips_assembling_insn = FALSE;
17002 demand_empty_rest_of_line ();
17003 }
17004
17005 static void
17006 s_cplocal (int ignore ATTRIBUTE_UNUSED)
17007 {
17008 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
17009 .cplocal is ignored. */
17010 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
17011 {
17012 s_ignore (0);
17013 return;
17014 }
17015
17016 if (mips_opts.mips16)
17017 {
17018 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
17019 ignore_rest_of_line ();
17020 return;
17021 }
17022
17023 mips_gp_register = tc_get_register (0);
17024 demand_empty_rest_of_line ();
17025 }
17026
17027 /* Handle the .cprestore pseudo-op. This stores $gp into a given
17028 offset from $sp. The offset is remembered, and after making a PIC
17029 call $gp is restored from that location. */
17030
17031 static void
17032 s_cprestore (int ignore ATTRIBUTE_UNUSED)
17033 {
17034 expressionS ex;
17035
17036 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
17037 .cprestore is ignored. */
17038 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
17039 {
17040 s_ignore (0);
17041 return;
17042 }
17043
17044 if (mips_opts.mips16)
17045 {
17046 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
17047 ignore_rest_of_line ();
17048 return;
17049 }
17050
17051 mips_cprestore_offset = get_absolute_expression ();
17052 mips_cprestore_valid = 1;
17053
17054 ex.X_op = O_constant;
17055 ex.X_add_symbol = NULL;
17056 ex.X_op_symbol = NULL;
17057 ex.X_add_number = mips_cprestore_offset;
17058
17059 mips_mark_labels ();
17060 mips_assembling_insn = TRUE;
17061
17062 macro_start ();
17063 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
17064 SP, HAVE_64BIT_ADDRESSES);
17065 macro_end ();
17066
17067 mips_assembling_insn = FALSE;
17068 demand_empty_rest_of_line ();
17069 }
17070
17071 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
17072 was given in the preceding .cpsetup, it results in:
17073 ld $gp, offset($sp)
17074
17075 If a register $reg2 was given there, it results in:
17076 daddu $gp, $reg2, $0 */
17077
17078 static void
17079 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
17080 {
17081 expressionS ex;
17082
17083 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
17084 We also need NewABI support. */
17085 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
17086 {
17087 s_ignore (0);
17088 return;
17089 }
17090
17091 if (mips_opts.mips16)
17092 {
17093 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
17094 ignore_rest_of_line ();
17095 return;
17096 }
17097
17098 mips_mark_labels ();
17099 mips_assembling_insn = TRUE;
17100
17101 macro_start ();
17102 if (mips_cpreturn_register == -1)
17103 {
17104 ex.X_op = O_constant;
17105 ex.X_add_symbol = NULL;
17106 ex.X_op_symbol = NULL;
17107 ex.X_add_number = mips_cpreturn_offset;
17108
17109 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
17110 }
17111 else
17112 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
17113 mips_cpreturn_register, 0);
17114 macro_end ();
17115
17116 mips_assembling_insn = FALSE;
17117 demand_empty_rest_of_line ();
17118 }
17119
17120 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
17121 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
17122 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
17123 debug information or MIPS16 TLS. */
17124
17125 static void
17126 s_tls_rel_directive (const size_t bytes, const char *dirstr,
17127 bfd_reloc_code_real_type rtype)
17128 {
17129 expressionS ex;
17130 char *p;
17131
17132 expression (&ex);
17133
17134 if (ex.X_op != O_symbol)
17135 {
17136 as_bad (_("Unsupported use of %s"), dirstr);
17137 ignore_rest_of_line ();
17138 }
17139
17140 p = frag_more (bytes);
17141 md_number_to_chars (p, 0, bytes);
17142 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
17143 demand_empty_rest_of_line ();
17144 mips_clear_insn_labels ();
17145 }
17146
17147 /* Handle .dtprelword. */
17148
17149 static void
17150 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
17151 {
17152 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
17153 }
17154
17155 /* Handle .dtpreldword. */
17156
17157 static void
17158 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
17159 {
17160 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
17161 }
17162
17163 /* Handle .tprelword. */
17164
17165 static void
17166 s_tprelword (int ignore ATTRIBUTE_UNUSED)
17167 {
17168 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
17169 }
17170
17171 /* Handle .tpreldword. */
17172
17173 static void
17174 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
17175 {
17176 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
17177 }
17178
17179 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
17180 code. It sets the offset to use in gp_rel relocations. */
17181
17182 static void
17183 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
17184 {
17185 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
17186 We also need NewABI support. */
17187 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
17188 {
17189 s_ignore (0);
17190 return;
17191 }
17192
17193 mips_gprel_offset = get_absolute_expression ();
17194
17195 demand_empty_rest_of_line ();
17196 }
17197
17198 /* Handle the .gpword pseudo-op. This is used when generating PIC
17199 code. It generates a 32 bit GP relative reloc. */
17200
17201 static void
17202 s_gpword (int ignore ATTRIBUTE_UNUSED)
17203 {
17204 segment_info_type *si;
17205 struct insn_label_list *l;
17206 expressionS ex;
17207 char *p;
17208
17209 /* When not generating PIC code, this is treated as .word. */
17210 if (mips_pic != SVR4_PIC)
17211 {
17212 s_cons (2);
17213 return;
17214 }
17215
17216 si = seg_info (now_seg);
17217 l = si->label_list;
17218 mips_emit_delays ();
17219 if (auto_align)
17220 mips_align (2, 0, l);
17221
17222 expression (&ex);
17223 mips_clear_insn_labels ();
17224
17225 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17226 {
17227 as_bad (_("Unsupported use of .gpword"));
17228 ignore_rest_of_line ();
17229 }
17230
17231 p = frag_more (4);
17232 md_number_to_chars (p, 0, 4);
17233 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17234 BFD_RELOC_GPREL32);
17235
17236 demand_empty_rest_of_line ();
17237 }
17238
17239 static void
17240 s_gpdword (int ignore ATTRIBUTE_UNUSED)
17241 {
17242 segment_info_type *si;
17243 struct insn_label_list *l;
17244 expressionS ex;
17245 char *p;
17246
17247 /* When not generating PIC code, this is treated as .dword. */
17248 if (mips_pic != SVR4_PIC)
17249 {
17250 s_cons (3);
17251 return;
17252 }
17253
17254 si = seg_info (now_seg);
17255 l = si->label_list;
17256 mips_emit_delays ();
17257 if (auto_align)
17258 mips_align (3, 0, l);
17259
17260 expression (&ex);
17261 mips_clear_insn_labels ();
17262
17263 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17264 {
17265 as_bad (_("Unsupported use of .gpdword"));
17266 ignore_rest_of_line ();
17267 }
17268
17269 p = frag_more (8);
17270 md_number_to_chars (p, 0, 8);
17271 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17272 BFD_RELOC_GPREL32)->fx_tcbit = 1;
17273
17274 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
17275 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
17276 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
17277
17278 demand_empty_rest_of_line ();
17279 }
17280
17281 /* Handle the .ehword pseudo-op. This is used when generating unwinding
17282 tables. It generates a R_MIPS_EH reloc. */
17283
17284 static void
17285 s_ehword (int ignore ATTRIBUTE_UNUSED)
17286 {
17287 expressionS ex;
17288 char *p;
17289
17290 mips_emit_delays ();
17291
17292 expression (&ex);
17293 mips_clear_insn_labels ();
17294
17295 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17296 {
17297 as_bad (_("Unsupported use of .ehword"));
17298 ignore_rest_of_line ();
17299 }
17300
17301 p = frag_more (4);
17302 md_number_to_chars (p, 0, 4);
17303 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17304 BFD_RELOC_MIPS_EH);
17305
17306 demand_empty_rest_of_line ();
17307 }
17308
17309 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
17310 tables in SVR4 PIC code. */
17311
17312 static void
17313 s_cpadd (int ignore ATTRIBUTE_UNUSED)
17314 {
17315 int reg;
17316
17317 /* This is ignored when not generating SVR4 PIC code. */
17318 if (mips_pic != SVR4_PIC)
17319 {
17320 s_ignore (0);
17321 return;
17322 }
17323
17324 mips_mark_labels ();
17325 mips_assembling_insn = TRUE;
17326
17327 /* Add $gp to the register named as an argument. */
17328 macro_start ();
17329 reg = tc_get_register (0);
17330 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
17331 macro_end ();
17332
17333 mips_assembling_insn = FALSE;
17334 demand_empty_rest_of_line ();
17335 }
17336
17337 /* Handle the .insn pseudo-op. This marks instruction labels in
17338 mips16/micromips mode. This permits the linker to handle them specially,
17339 such as generating jalx instructions when needed. We also make
17340 them odd for the duration of the assembly, in order to generate the
17341 right sort of code. We will make them even in the adjust_symtab
17342 routine, while leaving them marked. This is convenient for the
17343 debugger and the disassembler. The linker knows to make them odd
17344 again. */
17345
17346 static void
17347 s_insn (int ignore ATTRIBUTE_UNUSED)
17348 {
17349 mips_mark_labels ();
17350
17351 demand_empty_rest_of_line ();
17352 }
17353
17354 /* Handle a .stab[snd] directive. Ideally these directives would be
17355 implemented in a transparent way, so that removing them would not
17356 have any effect on the generated instructions. However, s_stab
17357 internally changes the section, so in practice we need to decide
17358 now whether the preceding label marks compressed code. We do not
17359 support changing the compression mode of a label after a .stab*
17360 directive, such as in:
17361
17362 foo:
17363 .stabs ...
17364 .set mips16
17365
17366 so the current mode wins. */
17367
17368 static void
17369 s_mips_stab (int type)
17370 {
17371 mips_mark_labels ();
17372 s_stab (type);
17373 }
17374
17375 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
17376
17377 static void
17378 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
17379 {
17380 char *name;
17381 int c;
17382 symbolS *symbolP;
17383 expressionS exp;
17384
17385 name = input_line_pointer;
17386 c = get_symbol_end ();
17387 symbolP = symbol_find_or_make (name);
17388 S_SET_WEAK (symbolP);
17389 *input_line_pointer = c;
17390
17391 SKIP_WHITESPACE ();
17392
17393 if (! is_end_of_line[(unsigned char) *input_line_pointer])
17394 {
17395 if (S_IS_DEFINED (symbolP))
17396 {
17397 as_bad (_("ignoring attempt to redefine symbol %s"),
17398 S_GET_NAME (symbolP));
17399 ignore_rest_of_line ();
17400 return;
17401 }
17402
17403 if (*input_line_pointer == ',')
17404 {
17405 ++input_line_pointer;
17406 SKIP_WHITESPACE ();
17407 }
17408
17409 expression (&exp);
17410 if (exp.X_op != O_symbol)
17411 {
17412 as_bad (_("bad .weakext directive"));
17413 ignore_rest_of_line ();
17414 return;
17415 }
17416 symbol_set_value_expression (symbolP, &exp);
17417 }
17418
17419 demand_empty_rest_of_line ();
17420 }
17421
17422 /* Parse a register string into a number. Called from the ECOFF code
17423 to parse .frame. The argument is non-zero if this is the frame
17424 register, so that we can record it in mips_frame_reg. */
17425
17426 int
17427 tc_get_register (int frame)
17428 {
17429 unsigned int reg;
17430
17431 SKIP_WHITESPACE ();
17432 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
17433 reg = 0;
17434 if (frame)
17435 {
17436 mips_frame_reg = reg != 0 ? reg : SP;
17437 mips_frame_reg_valid = 1;
17438 mips_cprestore_valid = 0;
17439 }
17440 return reg;
17441 }
17442
17443 valueT
17444 md_section_align (asection *seg, valueT addr)
17445 {
17446 int align = bfd_get_section_alignment (stdoutput, seg);
17447
17448 if (IS_ELF)
17449 {
17450 /* We don't need to align ELF sections to the full alignment.
17451 However, Irix 5 may prefer that we align them at least to a 16
17452 byte boundary. We don't bother to align the sections if we
17453 are targeted for an embedded system. */
17454 if (strncmp (TARGET_OS, "elf", 3) == 0)
17455 return addr;
17456 if (align > 4)
17457 align = 4;
17458 }
17459
17460 return ((addr + (1 << align) - 1) & (-1 << align));
17461 }
17462
17463 /* Utility routine, called from above as well. If called while the
17464 input file is still being read, it's only an approximation. (For
17465 example, a symbol may later become defined which appeared to be
17466 undefined earlier.) */
17467
17468 static int
17469 nopic_need_relax (symbolS *sym, int before_relaxing)
17470 {
17471 if (sym == 0)
17472 return 0;
17473
17474 if (g_switch_value > 0)
17475 {
17476 const char *symname;
17477 int change;
17478
17479 /* Find out whether this symbol can be referenced off the $gp
17480 register. It can be if it is smaller than the -G size or if
17481 it is in the .sdata or .sbss section. Certain symbols can
17482 not be referenced off the $gp, although it appears as though
17483 they can. */
17484 symname = S_GET_NAME (sym);
17485 if (symname != (const char *) NULL
17486 && (strcmp (symname, "eprol") == 0
17487 || strcmp (symname, "etext") == 0
17488 || strcmp (symname, "_gp") == 0
17489 || strcmp (symname, "edata") == 0
17490 || strcmp (symname, "_fbss") == 0
17491 || strcmp (symname, "_fdata") == 0
17492 || strcmp (symname, "_ftext") == 0
17493 || strcmp (symname, "end") == 0
17494 || strcmp (symname, "_gp_disp") == 0))
17495 change = 1;
17496 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17497 && (0
17498 #ifndef NO_ECOFF_DEBUGGING
17499 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17500 && (symbol_get_obj (sym)->ecoff_extern_size
17501 <= g_switch_value))
17502 #endif
17503 /* We must defer this decision until after the whole
17504 file has been read, since there might be a .extern
17505 after the first use of this symbol. */
17506 || (before_relaxing
17507 #ifndef NO_ECOFF_DEBUGGING
17508 && symbol_get_obj (sym)->ecoff_extern_size == 0
17509 #endif
17510 && S_GET_VALUE (sym) == 0)
17511 || (S_GET_VALUE (sym) != 0
17512 && S_GET_VALUE (sym) <= g_switch_value)))
17513 change = 0;
17514 else
17515 {
17516 const char *segname;
17517
17518 segname = segment_name (S_GET_SEGMENT (sym));
17519 gas_assert (strcmp (segname, ".lit8") != 0
17520 && strcmp (segname, ".lit4") != 0);
17521 change = (strcmp (segname, ".sdata") != 0
17522 && strcmp (segname, ".sbss") != 0
17523 && strncmp (segname, ".sdata.", 7) != 0
17524 && strncmp (segname, ".sbss.", 6) != 0
17525 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
17526 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
17527 }
17528 return change;
17529 }
17530 else
17531 /* We are not optimizing for the $gp register. */
17532 return 1;
17533 }
17534
17535
17536 /* Return true if the given symbol should be considered local for SVR4 PIC. */
17537
17538 static bfd_boolean
17539 pic_need_relax (symbolS *sym, asection *segtype)
17540 {
17541 asection *symsec;
17542
17543 /* Handle the case of a symbol equated to another symbol. */
17544 while (symbol_equated_reloc_p (sym))
17545 {
17546 symbolS *n;
17547
17548 /* It's possible to get a loop here in a badly written program. */
17549 n = symbol_get_value_expression (sym)->X_add_symbol;
17550 if (n == sym)
17551 break;
17552 sym = n;
17553 }
17554
17555 if (symbol_section_p (sym))
17556 return TRUE;
17557
17558 symsec = S_GET_SEGMENT (sym);
17559
17560 /* This must duplicate the test in adjust_reloc_syms. */
17561 return (!bfd_is_und_section (symsec)
17562 && !bfd_is_abs_section (symsec)
17563 && !bfd_is_com_section (symsec)
17564 && !s_is_linkonce (sym, segtype)
17565 #ifdef OBJ_ELF
17566 /* A global or weak symbol is treated as external. */
17567 && (!IS_ELF || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym)))
17568 #endif
17569 );
17570 }
17571
17572
17573 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17574 extended opcode. SEC is the section the frag is in. */
17575
17576 static int
17577 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
17578 {
17579 int type;
17580 const struct mips16_immed_operand *op;
17581 offsetT val;
17582 int mintiny, maxtiny;
17583 segT symsec;
17584 fragS *sym_frag;
17585
17586 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17587 return 0;
17588 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17589 return 1;
17590
17591 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17592 op = mips16_immed_operands;
17593 while (op->type != type)
17594 {
17595 ++op;
17596 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
17597 }
17598
17599 if (op->unsp)
17600 {
17601 if (type == '<' || type == '>' || type == '[' || type == ']')
17602 {
17603 mintiny = 1;
17604 maxtiny = 1 << op->nbits;
17605 }
17606 else
17607 {
17608 mintiny = 0;
17609 maxtiny = (1 << op->nbits) - 1;
17610 }
17611 }
17612 else
17613 {
17614 mintiny = - (1 << (op->nbits - 1));
17615 maxtiny = (1 << (op->nbits - 1)) - 1;
17616 }
17617
17618 sym_frag = symbol_get_frag (fragp->fr_symbol);
17619 val = S_GET_VALUE (fragp->fr_symbol);
17620 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17621
17622 if (op->pcrel)
17623 {
17624 addressT addr;
17625
17626 /* We won't have the section when we are called from
17627 mips_relax_frag. However, we will always have been called
17628 from md_estimate_size_before_relax first. If this is a
17629 branch to a different section, we mark it as such. If SEC is
17630 NULL, and the frag is not marked, then it must be a branch to
17631 the same section. */
17632 if (sec == NULL)
17633 {
17634 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
17635 return 1;
17636 }
17637 else
17638 {
17639 /* Must have been called from md_estimate_size_before_relax. */
17640 if (symsec != sec)
17641 {
17642 fragp->fr_subtype =
17643 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17644
17645 /* FIXME: We should support this, and let the linker
17646 catch branches and loads that are out of range. */
17647 as_bad_where (fragp->fr_file, fragp->fr_line,
17648 _("unsupported PC relative reference to different section"));
17649
17650 return 1;
17651 }
17652 if (fragp != sym_frag && sym_frag->fr_address == 0)
17653 /* Assume non-extended on the first relaxation pass.
17654 The address we have calculated will be bogus if this is
17655 a forward branch to another frag, as the forward frag
17656 will have fr_address == 0. */
17657 return 0;
17658 }
17659
17660 /* In this case, we know for sure that the symbol fragment is in
17661 the same section. If the relax_marker of the symbol fragment
17662 differs from the relax_marker of this fragment, we have not
17663 yet adjusted the symbol fragment fr_address. We want to add
17664 in STRETCH in order to get a better estimate of the address.
17665 This particularly matters because of the shift bits. */
17666 if (stretch != 0
17667 && sym_frag->relax_marker != fragp->relax_marker)
17668 {
17669 fragS *f;
17670
17671 /* Adjust stretch for any alignment frag. Note that if have
17672 been expanding the earlier code, the symbol may be
17673 defined in what appears to be an earlier frag. FIXME:
17674 This doesn't handle the fr_subtype field, which specifies
17675 a maximum number of bytes to skip when doing an
17676 alignment. */
17677 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17678 {
17679 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17680 {
17681 if (stretch < 0)
17682 stretch = - ((- stretch)
17683 & ~ ((1 << (int) f->fr_offset) - 1));
17684 else
17685 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
17686 if (stretch == 0)
17687 break;
17688 }
17689 }
17690 if (f != NULL)
17691 val += stretch;
17692 }
17693
17694 addr = fragp->fr_address + fragp->fr_fix;
17695
17696 /* The base address rules are complicated. The base address of
17697 a branch is the following instruction. The base address of a
17698 PC relative load or add is the instruction itself, but if it
17699 is in a delay slot (in which case it can not be extended) use
17700 the address of the instruction whose delay slot it is in. */
17701 if (type == 'p' || type == 'q')
17702 {
17703 addr += 2;
17704
17705 /* If we are currently assuming that this frag should be
17706 extended, then, the current address is two bytes
17707 higher. */
17708 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17709 addr += 2;
17710
17711 /* Ignore the low bit in the target, since it will be set
17712 for a text label. */
17713 if ((val & 1) != 0)
17714 --val;
17715 }
17716 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17717 addr -= 4;
17718 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17719 addr -= 2;
17720
17721 val -= addr & ~ ((1 << op->shift) - 1);
17722
17723 /* Branch offsets have an implicit 0 in the lowest bit. */
17724 if (type == 'p' || type == 'q')
17725 val /= 2;
17726
17727 /* If any of the shifted bits are set, we must use an extended
17728 opcode. If the address depends on the size of this
17729 instruction, this can lead to a loop, so we arrange to always
17730 use an extended opcode. We only check this when we are in
17731 the main relaxation loop, when SEC is NULL. */
17732 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
17733 {
17734 fragp->fr_subtype =
17735 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17736 return 1;
17737 }
17738
17739 /* If we are about to mark a frag as extended because the value
17740 is precisely maxtiny + 1, then there is a chance of an
17741 infinite loop as in the following code:
17742 la $4,foo
17743 .skip 1020
17744 .align 2
17745 foo:
17746 In this case when the la is extended, foo is 0x3fc bytes
17747 away, so the la can be shrunk, but then foo is 0x400 away, so
17748 the la must be extended. To avoid this loop, we mark the
17749 frag as extended if it was small, and is about to become
17750 extended with a value of maxtiny + 1. */
17751 if (val == ((maxtiny + 1) << op->shift)
17752 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
17753 && sec == NULL)
17754 {
17755 fragp->fr_subtype =
17756 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17757 return 1;
17758 }
17759 }
17760 else if (symsec != absolute_section && sec != NULL)
17761 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
17762
17763 if ((val & ((1 << op->shift) - 1)) != 0
17764 || val < (mintiny << op->shift)
17765 || val > (maxtiny << op->shift))
17766 return 1;
17767 else
17768 return 0;
17769 }
17770
17771 /* Compute the length of a branch sequence, and adjust the
17772 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17773 worst-case length is computed, with UPDATE being used to indicate
17774 whether an unconditional (-1), branch-likely (+1) or regular (0)
17775 branch is to be computed. */
17776 static int
17777 relaxed_branch_length (fragS *fragp, asection *sec, int update)
17778 {
17779 bfd_boolean toofar;
17780 int length;
17781
17782 if (fragp
17783 && S_IS_DEFINED (fragp->fr_symbol)
17784 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17785 {
17786 addressT addr;
17787 offsetT val;
17788
17789 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17790
17791 addr = fragp->fr_address + fragp->fr_fix + 4;
17792
17793 val -= addr;
17794
17795 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17796 }
17797 else if (fragp)
17798 /* If the symbol is not defined or it's in a different segment,
17799 assume the user knows what's going on and emit a short
17800 branch. */
17801 toofar = FALSE;
17802 else
17803 toofar = TRUE;
17804
17805 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17806 fragp->fr_subtype
17807 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17808 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
17809 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17810 RELAX_BRANCH_LINK (fragp->fr_subtype),
17811 toofar);
17812
17813 length = 4;
17814 if (toofar)
17815 {
17816 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17817 length += 8;
17818
17819 if (mips_pic != NO_PIC)
17820 {
17821 /* Additional space for PIC loading of target address. */
17822 length += 8;
17823 if (mips_opts.isa == ISA_MIPS1)
17824 /* Additional space for $at-stabilizing nop. */
17825 length += 4;
17826 }
17827
17828 /* If branch is conditional. */
17829 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17830 length += 8;
17831 }
17832
17833 return length;
17834 }
17835
17836 /* Compute the length of a branch sequence, and adjust the
17837 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17838 worst-case length is computed, with UPDATE being used to indicate
17839 whether an unconditional (-1), or regular (0) branch is to be
17840 computed. */
17841
17842 static int
17843 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17844 {
17845 bfd_boolean toofar;
17846 int length;
17847
17848 if (fragp
17849 && S_IS_DEFINED (fragp->fr_symbol)
17850 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17851 {
17852 addressT addr;
17853 offsetT val;
17854
17855 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17856 /* Ignore the low bit in the target, since it will be set
17857 for a text label. */
17858 if ((val & 1) != 0)
17859 --val;
17860
17861 addr = fragp->fr_address + fragp->fr_fix + 4;
17862
17863 val -= addr;
17864
17865 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17866 }
17867 else if (fragp)
17868 /* If the symbol is not defined or it's in a different segment,
17869 assume the user knows what's going on and emit a short
17870 branch. */
17871 toofar = FALSE;
17872 else
17873 toofar = TRUE;
17874
17875 if (fragp && update
17876 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17877 fragp->fr_subtype = (toofar
17878 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17879 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17880
17881 length = 4;
17882 if (toofar)
17883 {
17884 bfd_boolean compact_known = fragp != NULL;
17885 bfd_boolean compact = FALSE;
17886 bfd_boolean uncond;
17887
17888 if (compact_known)
17889 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17890 if (fragp)
17891 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
17892 else
17893 uncond = update < 0;
17894
17895 /* If label is out of range, we turn branch <br>:
17896
17897 <br> label # 4 bytes
17898 0:
17899
17900 into:
17901
17902 j label # 4 bytes
17903 nop # 2 bytes if compact && !PIC
17904 0:
17905 */
17906 if (mips_pic == NO_PIC && (!compact_known || compact))
17907 length += 2;
17908
17909 /* If assembling PIC code, we further turn:
17910
17911 j label # 4 bytes
17912
17913 into:
17914
17915 lw/ld at, %got(label)(gp) # 4 bytes
17916 d/addiu at, %lo(label) # 4 bytes
17917 jr/c at # 2 bytes
17918 */
17919 if (mips_pic != NO_PIC)
17920 length += 6;
17921
17922 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17923
17924 <brneg> 0f # 4 bytes
17925 nop # 2 bytes if !compact
17926 */
17927 if (!uncond)
17928 length += (compact_known && compact) ? 4 : 6;
17929 }
17930
17931 return length;
17932 }
17933
17934 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17935 bit accordingly. */
17936
17937 static int
17938 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17939 {
17940 bfd_boolean toofar;
17941
17942 if (fragp
17943 && S_IS_DEFINED (fragp->fr_symbol)
17944 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17945 {
17946 addressT addr;
17947 offsetT val;
17948 int type;
17949
17950 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17951 /* Ignore the low bit in the target, since it will be set
17952 for a text label. */
17953 if ((val & 1) != 0)
17954 --val;
17955
17956 /* Assume this is a 2-byte branch. */
17957 addr = fragp->fr_address + fragp->fr_fix + 2;
17958
17959 /* We try to avoid the infinite loop by not adding 2 more bytes for
17960 long branches. */
17961
17962 val -= addr;
17963
17964 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17965 if (type == 'D')
17966 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17967 else if (type == 'E')
17968 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17969 else
17970 abort ();
17971 }
17972 else
17973 /* If the symbol is not defined or it's in a different segment,
17974 we emit a normal 32-bit branch. */
17975 toofar = TRUE;
17976
17977 if (fragp && update
17978 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17979 fragp->fr_subtype
17980 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17981 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17982
17983 if (toofar)
17984 return 4;
17985
17986 return 2;
17987 }
17988
17989 /* Estimate the size of a frag before relaxing. Unless this is the
17990 mips16, we are not really relaxing here, and the final size is
17991 encoded in the subtype information. For the mips16, we have to
17992 decide whether we are using an extended opcode or not. */
17993
17994 int
17995 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17996 {
17997 int change;
17998
17999 if (RELAX_BRANCH_P (fragp->fr_subtype))
18000 {
18001
18002 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
18003
18004 return fragp->fr_var;
18005 }
18006
18007 if (RELAX_MIPS16_P (fragp->fr_subtype))
18008 /* We don't want to modify the EXTENDED bit here; it might get us
18009 into infinite loops. We change it only in mips_relax_frag(). */
18010 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
18011
18012 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18013 {
18014 int length = 4;
18015
18016 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
18017 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
18018 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
18019 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
18020 fragp->fr_var = length;
18021
18022 return length;
18023 }
18024
18025 if (mips_pic == NO_PIC)
18026 change = nopic_need_relax (fragp->fr_symbol, 0);
18027 else if (mips_pic == SVR4_PIC)
18028 change = pic_need_relax (fragp->fr_symbol, segtype);
18029 else if (mips_pic == VXWORKS_PIC)
18030 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
18031 change = 0;
18032 else
18033 abort ();
18034
18035 if (change)
18036 {
18037 fragp->fr_subtype |= RELAX_USE_SECOND;
18038 return -RELAX_FIRST (fragp->fr_subtype);
18039 }
18040 else
18041 return -RELAX_SECOND (fragp->fr_subtype);
18042 }
18043
18044 /* This is called to see whether a reloc against a defined symbol
18045 should be converted into a reloc against a section. */
18046
18047 int
18048 mips_fix_adjustable (fixS *fixp)
18049 {
18050 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
18051 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
18052 return 0;
18053
18054 if (fixp->fx_addsy == NULL)
18055 return 1;
18056
18057 /* If symbol SYM is in a mergeable section, relocations of the form
18058 SYM + 0 can usually be made section-relative. The mergeable data
18059 is then identified by the section offset rather than by the symbol.
18060
18061 However, if we're generating REL LO16 relocations, the offset is split
18062 between the LO16 and parterning high part relocation. The linker will
18063 need to recalculate the complete offset in order to correctly identify
18064 the merge data.
18065
18066 The linker has traditionally not looked for the parterning high part
18067 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
18068 placed anywhere. Rather than break backwards compatibility by changing
18069 this, it seems better not to force the issue, and instead keep the
18070 original symbol. This will work with either linker behavior. */
18071 if ((lo16_reloc_p (fixp->fx_r_type)
18072 || reloc_needs_lo_p (fixp->fx_r_type))
18073 && HAVE_IN_PLACE_ADDENDS
18074 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
18075 return 0;
18076
18077 /* There is no place to store an in-place offset for JALR relocations.
18078 Likewise an in-range offset of limited PC-relative relocations may
18079 overflow the in-place relocatable field if recalculated against the
18080 start address of the symbol's containing section. */
18081 if (HAVE_IN_PLACE_ADDENDS
18082 && (limited_pcrel_reloc_p (fixp->fx_r_type)
18083 || jalr_reloc_p (fixp->fx_r_type)))
18084 return 0;
18085
18086 #ifdef OBJ_ELF
18087 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
18088 to a floating-point stub. The same is true for non-R_MIPS16_26
18089 relocations against MIPS16 functions; in this case, the stub becomes
18090 the function's canonical address.
18091
18092 Floating-point stubs are stored in unique .mips16.call.* or
18093 .mips16.fn.* sections. If a stub T for function F is in section S,
18094 the first relocation in section S must be against F; this is how the
18095 linker determines the target function. All relocations that might
18096 resolve to T must also be against F. We therefore have the following
18097 restrictions, which are given in an intentionally-redundant way:
18098
18099 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
18100 symbols.
18101
18102 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
18103 if that stub might be used.
18104
18105 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
18106 symbols.
18107
18108 4. We cannot reduce a stub's relocations against MIPS16 symbols if
18109 that stub might be used.
18110
18111 There is a further restriction:
18112
18113 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
18114 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
18115 targets with in-place addends; the relocation field cannot
18116 encode the low bit.
18117
18118 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
18119 against a MIPS16 symbol. We deal with (5) by by not reducing any
18120 such relocations on REL targets.
18121
18122 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
18123 relocation against some symbol R, no relocation against R may be
18124 reduced. (Note that this deals with (2) as well as (1) because
18125 relocations against global symbols will never be reduced on ELF
18126 targets.) This approach is a little simpler than trying to detect
18127 stub sections, and gives the "all or nothing" per-symbol consistency
18128 that we have for MIPS16 symbols. */
18129 if (IS_ELF
18130 && fixp->fx_subsy == NULL
18131 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
18132 || *symbol_get_tc (fixp->fx_addsy)
18133 || (HAVE_IN_PLACE_ADDENDS
18134 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
18135 && jmp_reloc_p (fixp->fx_r_type))))
18136 return 0;
18137 #endif
18138
18139 return 1;
18140 }
18141
18142 /* Translate internal representation of relocation info to BFD target
18143 format. */
18144
18145 arelent **
18146 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
18147 {
18148 static arelent *retval[4];
18149 arelent *reloc;
18150 bfd_reloc_code_real_type code;
18151
18152 memset (retval, 0, sizeof(retval));
18153 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
18154 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
18155 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
18156 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
18157
18158 if (fixp->fx_pcrel)
18159 {
18160 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
18161 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
18162 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
18163 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
18164 || fixp->fx_r_type == BFD_RELOC_32_PCREL);
18165
18166 /* At this point, fx_addnumber is "symbol offset - pcrel address".
18167 Relocations want only the symbol offset. */
18168 reloc->addend = fixp->fx_addnumber + reloc->address;
18169 if (!IS_ELF)
18170 {
18171 /* A gruesome hack which is a result of the gruesome gas
18172 reloc handling. What's worse, for COFF (as opposed to
18173 ECOFF), we might need yet another copy of reloc->address.
18174 See bfd_install_relocation. */
18175 reloc->addend += reloc->address;
18176 }
18177 }
18178 else
18179 reloc->addend = fixp->fx_addnumber;
18180
18181 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
18182 entry to be used in the relocation's section offset. */
18183 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
18184 {
18185 reloc->address = reloc->addend;
18186 reloc->addend = 0;
18187 }
18188
18189 code = fixp->fx_r_type;
18190
18191 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
18192 if (reloc->howto == NULL)
18193 {
18194 as_bad_where (fixp->fx_file, fixp->fx_line,
18195 _("Can not represent %s relocation in this object file format"),
18196 bfd_get_reloc_code_name (code));
18197 retval[0] = NULL;
18198 }
18199
18200 return retval;
18201 }
18202
18203 /* Relax a machine dependent frag. This returns the amount by which
18204 the current size of the frag should change. */
18205
18206 int
18207 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
18208 {
18209 if (RELAX_BRANCH_P (fragp->fr_subtype))
18210 {
18211 offsetT old_var = fragp->fr_var;
18212
18213 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
18214
18215 return fragp->fr_var - old_var;
18216 }
18217
18218 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18219 {
18220 offsetT old_var = fragp->fr_var;
18221 offsetT new_var = 4;
18222
18223 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
18224 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
18225 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
18226 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
18227 fragp->fr_var = new_var;
18228
18229 return new_var - old_var;
18230 }
18231
18232 if (! RELAX_MIPS16_P (fragp->fr_subtype))
18233 return 0;
18234
18235 if (mips16_extended_frag (fragp, NULL, stretch))
18236 {
18237 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18238 return 0;
18239 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
18240 return 2;
18241 }
18242 else
18243 {
18244 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18245 return 0;
18246 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18247 return -2;
18248 }
18249
18250 return 0;
18251 }
18252
18253 /* Convert a machine dependent frag. */
18254
18255 void
18256 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
18257 {
18258 if (RELAX_BRANCH_P (fragp->fr_subtype))
18259 {
18260 char *buf;
18261 unsigned long insn;
18262 expressionS exp;
18263 fixS *fixp;
18264
18265 buf = fragp->fr_literal + fragp->fr_fix;
18266 insn = read_insn (buf);
18267
18268 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
18269 {
18270 /* We generate a fixup instead of applying it right now
18271 because, if there are linker relaxations, we're going to
18272 need the relocations. */
18273 exp.X_op = O_symbol;
18274 exp.X_add_symbol = fragp->fr_symbol;
18275 exp.X_add_number = fragp->fr_offset;
18276
18277 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18278 BFD_RELOC_16_PCREL_S2);
18279 fixp->fx_file = fragp->fr_file;
18280 fixp->fx_line = fragp->fr_line;
18281
18282 buf = write_insn (buf, insn);
18283 }
18284 else
18285 {
18286 int i;
18287
18288 as_warn_where (fragp->fr_file, fragp->fr_line,
18289 _("Relaxed out-of-range branch into a jump"));
18290
18291 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
18292 goto uncond;
18293
18294 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18295 {
18296 /* Reverse the branch. */
18297 switch ((insn >> 28) & 0xf)
18298 {
18299 case 4:
18300 /* bc[0-3][tf]l? instructions can have the condition
18301 reversed by tweaking a single TF bit, and their
18302 opcodes all have 0x4???????. */
18303 gas_assert ((insn & 0xf3e00000) == 0x41000000);
18304 insn ^= 0x00010000;
18305 break;
18306
18307 case 0:
18308 /* bltz 0x04000000 bgez 0x04010000
18309 bltzal 0x04100000 bgezal 0x04110000 */
18310 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
18311 insn ^= 0x00010000;
18312 break;
18313
18314 case 1:
18315 /* beq 0x10000000 bne 0x14000000
18316 blez 0x18000000 bgtz 0x1c000000 */
18317 insn ^= 0x04000000;
18318 break;
18319
18320 default:
18321 abort ();
18322 }
18323 }
18324
18325 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18326 {
18327 /* Clear the and-link bit. */
18328 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
18329
18330 /* bltzal 0x04100000 bgezal 0x04110000
18331 bltzall 0x04120000 bgezall 0x04130000 */
18332 insn &= ~0x00100000;
18333 }
18334
18335 /* Branch over the branch (if the branch was likely) or the
18336 full jump (not likely case). Compute the offset from the
18337 current instruction to branch to. */
18338 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18339 i = 16;
18340 else
18341 {
18342 /* How many bytes in instructions we've already emitted? */
18343 i = buf - fragp->fr_literal - fragp->fr_fix;
18344 /* How many bytes in instructions from here to the end? */
18345 i = fragp->fr_var - i;
18346 }
18347 /* Convert to instruction count. */
18348 i >>= 2;
18349 /* Branch counts from the next instruction. */
18350 i--;
18351 insn |= i;
18352 /* Branch over the jump. */
18353 buf = write_insn (buf, insn);
18354
18355 /* nop */
18356 buf = write_insn (buf, 0);
18357
18358 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18359 {
18360 /* beql $0, $0, 2f */
18361 insn = 0x50000000;
18362 /* Compute the PC offset from the current instruction to
18363 the end of the variable frag. */
18364 /* How many bytes in instructions we've already emitted? */
18365 i = buf - fragp->fr_literal - fragp->fr_fix;
18366 /* How many bytes in instructions from here to the end? */
18367 i = fragp->fr_var - i;
18368 /* Convert to instruction count. */
18369 i >>= 2;
18370 /* Don't decrement i, because we want to branch over the
18371 delay slot. */
18372 insn |= i;
18373
18374 buf = write_insn (buf, insn);
18375 buf = write_insn (buf, 0);
18376 }
18377
18378 uncond:
18379 if (mips_pic == NO_PIC)
18380 {
18381 /* j or jal. */
18382 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
18383 ? 0x0c000000 : 0x08000000);
18384 exp.X_op = O_symbol;
18385 exp.X_add_symbol = fragp->fr_symbol;
18386 exp.X_add_number = fragp->fr_offset;
18387
18388 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18389 FALSE, BFD_RELOC_MIPS_JMP);
18390 fixp->fx_file = fragp->fr_file;
18391 fixp->fx_line = fragp->fr_line;
18392
18393 buf = write_insn (buf, insn);
18394 }
18395 else
18396 {
18397 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
18398
18399 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
18400 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
18401 insn |= at << OP_SH_RT;
18402 exp.X_op = O_symbol;
18403 exp.X_add_symbol = fragp->fr_symbol;
18404 exp.X_add_number = fragp->fr_offset;
18405
18406 if (fragp->fr_offset)
18407 {
18408 exp.X_add_symbol = make_expr_symbol (&exp);
18409 exp.X_add_number = 0;
18410 }
18411
18412 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18413 FALSE, BFD_RELOC_MIPS_GOT16);
18414 fixp->fx_file = fragp->fr_file;
18415 fixp->fx_line = fragp->fr_line;
18416
18417 buf = write_insn (buf, insn);
18418
18419 if (mips_opts.isa == ISA_MIPS1)
18420 /* nop */
18421 buf = write_insn (buf, 0);
18422
18423 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
18424 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18425 insn |= at << OP_SH_RS | at << OP_SH_RT;
18426
18427 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18428 FALSE, BFD_RELOC_LO16);
18429 fixp->fx_file = fragp->fr_file;
18430 fixp->fx_line = fragp->fr_line;
18431
18432 buf = write_insn (buf, insn);
18433
18434 /* j(al)r $at. */
18435 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18436 insn = 0x0000f809;
18437 else
18438 insn = 0x00000008;
18439 insn |= at << OP_SH_RS;
18440
18441 buf = write_insn (buf, insn);
18442 }
18443 }
18444
18445 fragp->fr_fix += fragp->fr_var;
18446 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18447 return;
18448 }
18449
18450 /* Relax microMIPS branches. */
18451 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18452 {
18453 char *buf = fragp->fr_literal + fragp->fr_fix;
18454 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18455 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18456 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18457 bfd_boolean short_ds;
18458 unsigned long insn;
18459 expressionS exp;
18460 fixS *fixp;
18461
18462 exp.X_op = O_symbol;
18463 exp.X_add_symbol = fragp->fr_symbol;
18464 exp.X_add_number = fragp->fr_offset;
18465
18466 fragp->fr_fix += fragp->fr_var;
18467
18468 /* Handle 16-bit branches that fit or are forced to fit. */
18469 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18470 {
18471 /* We generate a fixup instead of applying it right now,
18472 because if there is linker relaxation, we're going to
18473 need the relocations. */
18474 if (type == 'D')
18475 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18476 BFD_RELOC_MICROMIPS_10_PCREL_S1);
18477 else if (type == 'E')
18478 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18479 BFD_RELOC_MICROMIPS_7_PCREL_S1);
18480 else
18481 abort ();
18482
18483 fixp->fx_file = fragp->fr_file;
18484 fixp->fx_line = fragp->fr_line;
18485
18486 /* These relocations can have an addend that won't fit in
18487 2 octets. */
18488 fixp->fx_no_overflow = 1;
18489
18490 return;
18491 }
18492
18493 /* Handle 32-bit branches that fit or are forced to fit. */
18494 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18495 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18496 {
18497 /* We generate a fixup instead of applying it right now,
18498 because if there is linker relaxation, we're going to
18499 need the relocations. */
18500 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18501 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18502 fixp->fx_file = fragp->fr_file;
18503 fixp->fx_line = fragp->fr_line;
18504
18505 if (type == 0)
18506 return;
18507 }
18508
18509 /* Relax 16-bit branches to 32-bit branches. */
18510 if (type != 0)
18511 {
18512 insn = read_compressed_insn (buf, 2);
18513
18514 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18515 insn = 0x94000000; /* beq */
18516 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18517 {
18518 unsigned long regno;
18519
18520 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18521 regno = micromips_to_32_reg_d_map [regno];
18522 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18523 insn |= regno << MICROMIPSOP_SH_RS;
18524 }
18525 else
18526 abort ();
18527
18528 /* Nothing else to do, just write it out. */
18529 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18530 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18531 {
18532 buf = write_compressed_insn (buf, insn, 4);
18533 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18534 return;
18535 }
18536 }
18537 else
18538 insn = read_compressed_insn (buf, 4);
18539
18540 /* Relax 32-bit branches to a sequence of instructions. */
18541 as_warn_where (fragp->fr_file, fragp->fr_line,
18542 _("Relaxed out-of-range branch into a jump"));
18543
18544 /* Set the short-delay-slot bit. */
18545 short_ds = al && (insn & 0x02000000) != 0;
18546
18547 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18548 {
18549 symbolS *l;
18550
18551 /* Reverse the branch. */
18552 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18553 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18554 insn ^= 0x20000000;
18555 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18556 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18557 || (insn & 0xffe00000) == 0x40800000 /* blez */
18558 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18559 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18560 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18561 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18562 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18563 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18564 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18565 insn ^= 0x00400000;
18566 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18567 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18568 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18569 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18570 insn ^= 0x00200000;
18571 else
18572 abort ();
18573
18574 if (al)
18575 {
18576 /* Clear the and-link and short-delay-slot bits. */
18577 gas_assert ((insn & 0xfda00000) == 0x40200000);
18578
18579 /* bltzal 0x40200000 bgezal 0x40600000 */
18580 /* bltzals 0x42200000 bgezals 0x42600000 */
18581 insn &= ~0x02200000;
18582 }
18583
18584 /* Make a label at the end for use with the branch. */
18585 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18586 micromips_label_inc ();
18587 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
18588 if (IS_ELF)
18589 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
18590 #endif
18591
18592 /* Refer to it. */
18593 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18594 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18595 fixp->fx_file = fragp->fr_file;
18596 fixp->fx_line = fragp->fr_line;
18597
18598 /* Branch over the jump. */
18599 buf = write_compressed_insn (buf, insn, 4);
18600 if (!compact)
18601 /* nop */
18602 buf = write_compressed_insn (buf, 0x0c00, 2);
18603 }
18604
18605 if (mips_pic == NO_PIC)
18606 {
18607 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
18608
18609 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18610 insn = al ? jal : 0xd4000000;
18611
18612 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18613 BFD_RELOC_MICROMIPS_JMP);
18614 fixp->fx_file = fragp->fr_file;
18615 fixp->fx_line = fragp->fr_line;
18616
18617 buf = write_compressed_insn (buf, insn, 4);
18618 if (compact)
18619 /* nop */
18620 buf = write_compressed_insn (buf, 0x0c00, 2);
18621 }
18622 else
18623 {
18624 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18625 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
18626 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
18627
18628 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18629 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18630 insn |= at << MICROMIPSOP_SH_RT;
18631
18632 if (exp.X_add_number)
18633 {
18634 exp.X_add_symbol = make_expr_symbol (&exp);
18635 exp.X_add_number = 0;
18636 }
18637
18638 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18639 BFD_RELOC_MICROMIPS_GOT16);
18640 fixp->fx_file = fragp->fr_file;
18641 fixp->fx_line = fragp->fr_line;
18642
18643 buf = write_compressed_insn (buf, insn, 4);
18644
18645 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18646 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18647 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18648
18649 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18650 BFD_RELOC_MICROMIPS_LO16);
18651 fixp->fx_file = fragp->fr_file;
18652 fixp->fx_line = fragp->fr_line;
18653
18654 buf = write_compressed_insn (buf, insn, 4);
18655
18656 /* jr/jrc/jalr/jalrs $at */
18657 insn = al ? jalr : jr;
18658 insn |= at << MICROMIPSOP_SH_MJ;
18659
18660 buf = write_compressed_insn (buf, insn, 2);
18661 }
18662
18663 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18664 return;
18665 }
18666
18667 if (RELAX_MIPS16_P (fragp->fr_subtype))
18668 {
18669 int type;
18670 const struct mips16_immed_operand *op;
18671 offsetT val;
18672 char *buf;
18673 unsigned int user_length, length;
18674 unsigned long insn;
18675 bfd_boolean ext;
18676
18677 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
18678 op = mips16_immed_operands;
18679 while (op->type != type)
18680 ++op;
18681
18682 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
18683 val = resolve_symbol_value (fragp->fr_symbol);
18684 if (op->pcrel)
18685 {
18686 addressT addr;
18687
18688 addr = fragp->fr_address + fragp->fr_fix;
18689
18690 /* The rules for the base address of a PC relative reloc are
18691 complicated; see mips16_extended_frag. */
18692 if (type == 'p' || type == 'q')
18693 {
18694 addr += 2;
18695 if (ext)
18696 addr += 2;
18697 /* Ignore the low bit in the target, since it will be
18698 set for a text label. */
18699 if ((val & 1) != 0)
18700 --val;
18701 }
18702 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
18703 addr -= 4;
18704 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18705 addr -= 2;
18706
18707 addr &= ~ (addressT) ((1 << op->shift) - 1);
18708 val -= addr;
18709
18710 /* Make sure the section winds up with the alignment we have
18711 assumed. */
18712 if (op->shift > 0)
18713 record_alignment (asec, op->shift);
18714 }
18715
18716 if (ext
18717 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18718 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
18719 as_warn_where (fragp->fr_file, fragp->fr_line,
18720 _("extended instruction in delay slot"));
18721
18722 buf = fragp->fr_literal + fragp->fr_fix;
18723
18724 insn = read_compressed_insn (buf, 2);
18725 if (ext)
18726 insn |= MIPS16_EXTEND;
18727
18728 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18729 user_length = 4;
18730 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18731 user_length = 2;
18732 else
18733 user_length = 0;
18734
18735 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18736 BFD_RELOC_UNUSED, val, user_length, &insn);
18737
18738 length = (ext ? 4 : 2);
18739 gas_assert (mips16_opcode_length (insn) == length);
18740 write_compressed_insn (buf, insn, length);
18741 fragp->fr_fix += length;
18742 }
18743 else
18744 {
18745 relax_substateT subtype = fragp->fr_subtype;
18746 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18747 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
18748 int first, second;
18749 fixS *fixp;
18750
18751 first = RELAX_FIRST (subtype);
18752 second = RELAX_SECOND (subtype);
18753 fixp = (fixS *) fragp->fr_opcode;
18754
18755 /* If the delay slot chosen does not match the size of the instruction,
18756 then emit a warning. */
18757 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18758 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18759 {
18760 relax_substateT s;
18761 const char *msg;
18762
18763 s = subtype & (RELAX_DELAY_SLOT_16BIT
18764 | RELAX_DELAY_SLOT_SIZE_FIRST
18765 | RELAX_DELAY_SLOT_SIZE_SECOND);
18766 msg = macro_warning (s);
18767 if (msg != NULL)
18768 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18769 subtype &= ~s;
18770 }
18771
18772 /* Possibly emit a warning if we've chosen the longer option. */
18773 if (use_second == second_longer)
18774 {
18775 relax_substateT s;
18776 const char *msg;
18777
18778 s = (subtype
18779 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18780 msg = macro_warning (s);
18781 if (msg != NULL)
18782 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18783 subtype &= ~s;
18784 }
18785
18786 /* Go through all the fixups for the first sequence. Disable them
18787 (by marking them as done) if we're going to use the second
18788 sequence instead. */
18789 while (fixp
18790 && fixp->fx_frag == fragp
18791 && fixp->fx_where < fragp->fr_fix - second)
18792 {
18793 if (subtype & RELAX_USE_SECOND)
18794 fixp->fx_done = 1;
18795 fixp = fixp->fx_next;
18796 }
18797
18798 /* Go through the fixups for the second sequence. Disable them if
18799 we're going to use the first sequence, otherwise adjust their
18800 addresses to account for the relaxation. */
18801 while (fixp && fixp->fx_frag == fragp)
18802 {
18803 if (subtype & RELAX_USE_SECOND)
18804 fixp->fx_where -= first;
18805 else
18806 fixp->fx_done = 1;
18807 fixp = fixp->fx_next;
18808 }
18809
18810 /* Now modify the frag contents. */
18811 if (subtype & RELAX_USE_SECOND)
18812 {
18813 char *start;
18814
18815 start = fragp->fr_literal + fragp->fr_fix - first - second;
18816 memmove (start, start + first, second);
18817 fragp->fr_fix -= first;
18818 }
18819 else
18820 fragp->fr_fix -= second;
18821 }
18822 }
18823
18824 #ifdef OBJ_ELF
18825
18826 /* This function is called after the relocs have been generated.
18827 We've been storing mips16 text labels as odd. Here we convert them
18828 back to even for the convenience of the debugger. */
18829
18830 void
18831 mips_frob_file_after_relocs (void)
18832 {
18833 asymbol **syms;
18834 unsigned int count, i;
18835
18836 if (!IS_ELF)
18837 return;
18838
18839 syms = bfd_get_outsymbols (stdoutput);
18840 count = bfd_get_symcount (stdoutput);
18841 for (i = 0; i < count; i++, syms++)
18842 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18843 && ((*syms)->value & 1) != 0)
18844 {
18845 (*syms)->value &= ~1;
18846 /* If the symbol has an odd size, it was probably computed
18847 incorrectly, so adjust that as well. */
18848 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18849 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18850 }
18851 }
18852
18853 #endif
18854
18855 /* This function is called whenever a label is defined, including fake
18856 labels instantiated off the dot special symbol. It is used when
18857 handling branch delays; if a branch has a label, we assume we cannot
18858 move it. This also bumps the value of the symbol by 1 in compressed
18859 code. */
18860
18861 static void
18862 mips_record_label (symbolS *sym)
18863 {
18864 segment_info_type *si = seg_info (now_seg);
18865 struct insn_label_list *l;
18866
18867 if (free_insn_labels == NULL)
18868 l = (struct insn_label_list *) xmalloc (sizeof *l);
18869 else
18870 {
18871 l = free_insn_labels;
18872 free_insn_labels = l->next;
18873 }
18874
18875 l->label = sym;
18876 l->next = si->label_list;
18877 si->label_list = l;
18878 }
18879
18880 /* This function is called as tc_frob_label() whenever a label is defined
18881 and adds a DWARF-2 record we only want for true labels. */
18882
18883 void
18884 mips_define_label (symbolS *sym)
18885 {
18886 mips_record_label (sym);
18887 #ifdef OBJ_ELF
18888 dwarf2_emit_label (sym);
18889 #endif
18890 }
18891
18892 /* This function is called by tc_new_dot_label whenever a new dot symbol
18893 is defined. */
18894
18895 void
18896 mips_add_dot_label (symbolS *sym)
18897 {
18898 mips_record_label (sym);
18899 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18900 mips_compressed_mark_label (sym);
18901 }
18902 \f
18903 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
18904
18905 /* Some special processing for a MIPS ELF file. */
18906
18907 void
18908 mips_elf_final_processing (void)
18909 {
18910 /* Write out the register information. */
18911 if (mips_abi != N64_ABI)
18912 {
18913 Elf32_RegInfo s;
18914
18915 s.ri_gprmask = mips_gprmask;
18916 s.ri_cprmask[0] = mips_cprmask[0];
18917 s.ri_cprmask[1] = mips_cprmask[1];
18918 s.ri_cprmask[2] = mips_cprmask[2];
18919 s.ri_cprmask[3] = mips_cprmask[3];
18920 /* The gp_value field is set by the MIPS ELF backend. */
18921
18922 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18923 ((Elf32_External_RegInfo *)
18924 mips_regmask_frag));
18925 }
18926 else
18927 {
18928 Elf64_Internal_RegInfo s;
18929
18930 s.ri_gprmask = mips_gprmask;
18931 s.ri_pad = 0;
18932 s.ri_cprmask[0] = mips_cprmask[0];
18933 s.ri_cprmask[1] = mips_cprmask[1];
18934 s.ri_cprmask[2] = mips_cprmask[2];
18935 s.ri_cprmask[3] = mips_cprmask[3];
18936 /* The gp_value field is set by the MIPS ELF backend. */
18937
18938 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18939 ((Elf64_External_RegInfo *)
18940 mips_regmask_frag));
18941 }
18942
18943 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18944 sort of BFD interface for this. */
18945 if (mips_any_noreorder)
18946 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18947 if (mips_pic != NO_PIC)
18948 {
18949 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18950 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18951 }
18952 if (mips_abicalls)
18953 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18954
18955 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18956 defined at present; this might need to change in future. */
18957 if (file_ase_mips16)
18958 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18959 if (file_ase_micromips)
18960 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18961 if (file_ase & ASE_MDMX)
18962 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18963
18964 /* Set the MIPS ELF ABI flags. */
18965 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18966 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18967 else if (mips_abi == O64_ABI)
18968 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18969 else if (mips_abi == EABI_ABI)
18970 {
18971 if (!file_mips_gp32)
18972 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18973 else
18974 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18975 }
18976 else if (mips_abi == N32_ABI)
18977 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18978
18979 /* Nothing to do for N64_ABI. */
18980
18981 if (mips_32bitmode)
18982 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18983
18984 #if 0 /* XXX FIXME */
18985 /* 32 bit code with 64 bit FP registers. */
18986 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
18987 elf_elfheader (stdoutput)->e_flags |= ???;
18988 #endif
18989 }
18990
18991 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
18992 \f
18993 typedef struct proc {
18994 symbolS *func_sym;
18995 symbolS *func_end_sym;
18996 unsigned long reg_mask;
18997 unsigned long reg_offset;
18998 unsigned long fpreg_mask;
18999 unsigned long fpreg_offset;
19000 unsigned long frame_offset;
19001 unsigned long frame_reg;
19002 unsigned long pc_reg;
19003 } procS;
19004
19005 static procS cur_proc;
19006 static procS *cur_proc_ptr;
19007 static int numprocs;
19008
19009 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
19010 as "2", and a normal nop as "0". */
19011
19012 #define NOP_OPCODE_MIPS 0
19013 #define NOP_OPCODE_MIPS16 1
19014 #define NOP_OPCODE_MICROMIPS 2
19015
19016 char
19017 mips_nop_opcode (void)
19018 {
19019 if (seg_info (now_seg)->tc_segment_info_data.micromips)
19020 return NOP_OPCODE_MICROMIPS;
19021 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
19022 return NOP_OPCODE_MIPS16;
19023 else
19024 return NOP_OPCODE_MIPS;
19025 }
19026
19027 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
19028 32-bit microMIPS NOPs here (if applicable). */
19029
19030 void
19031 mips_handle_align (fragS *fragp)
19032 {
19033 char nop_opcode;
19034 char *p;
19035 int bytes, size, excess;
19036 valueT opcode;
19037
19038 if (fragp->fr_type != rs_align_code)
19039 return;
19040
19041 p = fragp->fr_literal + fragp->fr_fix;
19042 nop_opcode = *p;
19043 switch (nop_opcode)
19044 {
19045 case NOP_OPCODE_MICROMIPS:
19046 opcode = micromips_nop32_insn.insn_opcode;
19047 size = 4;
19048 break;
19049 case NOP_OPCODE_MIPS16:
19050 opcode = mips16_nop_insn.insn_opcode;
19051 size = 2;
19052 break;
19053 case NOP_OPCODE_MIPS:
19054 default:
19055 opcode = nop_insn.insn_opcode;
19056 size = 4;
19057 break;
19058 }
19059
19060 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
19061 excess = bytes % size;
19062
19063 /* Handle the leading part if we're not inserting a whole number of
19064 instructions, and make it the end of the fixed part of the frag.
19065 Try to fit in a short microMIPS NOP if applicable and possible,
19066 and use zeroes otherwise. */
19067 gas_assert (excess < 4);
19068 fragp->fr_fix += excess;
19069 switch (excess)
19070 {
19071 case 3:
19072 *p++ = '\0';
19073 /* Fall through. */
19074 case 2:
19075 if (nop_opcode == NOP_OPCODE_MICROMIPS)
19076 {
19077 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
19078 break;
19079 }
19080 *p++ = '\0';
19081 /* Fall through. */
19082 case 1:
19083 *p++ = '\0';
19084 /* Fall through. */
19085 case 0:
19086 break;
19087 }
19088
19089 md_number_to_chars (p, opcode, size);
19090 fragp->fr_var = size;
19091 }
19092
19093 static void
19094 md_obj_begin (void)
19095 {
19096 }
19097
19098 static void
19099 md_obj_end (void)
19100 {
19101 /* Check for premature end, nesting errors, etc. */
19102 if (cur_proc_ptr)
19103 as_warn (_("missing .end at end of assembly"));
19104 }
19105
19106 static long
19107 get_number (void)
19108 {
19109 int negative = 0;
19110 long val = 0;
19111
19112 if (*input_line_pointer == '-')
19113 {
19114 ++input_line_pointer;
19115 negative = 1;
19116 }
19117 if (!ISDIGIT (*input_line_pointer))
19118 as_bad (_("expected simple number"));
19119 if (input_line_pointer[0] == '0')
19120 {
19121 if (input_line_pointer[1] == 'x')
19122 {
19123 input_line_pointer += 2;
19124 while (ISXDIGIT (*input_line_pointer))
19125 {
19126 val <<= 4;
19127 val |= hex_value (*input_line_pointer++);
19128 }
19129 return negative ? -val : val;
19130 }
19131 else
19132 {
19133 ++input_line_pointer;
19134 while (ISDIGIT (*input_line_pointer))
19135 {
19136 val <<= 3;
19137 val |= *input_line_pointer++ - '0';
19138 }
19139 return negative ? -val : val;
19140 }
19141 }
19142 if (!ISDIGIT (*input_line_pointer))
19143 {
19144 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
19145 *input_line_pointer, *input_line_pointer);
19146 as_warn (_("invalid number"));
19147 return -1;
19148 }
19149 while (ISDIGIT (*input_line_pointer))
19150 {
19151 val *= 10;
19152 val += *input_line_pointer++ - '0';
19153 }
19154 return negative ? -val : val;
19155 }
19156
19157 /* The .file directive; just like the usual .file directive, but there
19158 is an initial number which is the ECOFF file index. In the non-ECOFF
19159 case .file implies DWARF-2. */
19160
19161 static void
19162 s_mips_file (int x ATTRIBUTE_UNUSED)
19163 {
19164 static int first_file_directive = 0;
19165
19166 if (ECOFF_DEBUGGING)
19167 {
19168 get_number ();
19169 s_app_file (0);
19170 }
19171 else
19172 {
19173 char *filename;
19174
19175 filename = dwarf2_directive_file (0);
19176
19177 /* Versions of GCC up to 3.1 start files with a ".file"
19178 directive even for stabs output. Make sure that this
19179 ".file" is handled. Note that you need a version of GCC
19180 after 3.1 in order to support DWARF-2 on MIPS. */
19181 if (filename != NULL && ! first_file_directive)
19182 {
19183 (void) new_logical_line (filename, -1);
19184 s_app_file_string (filename, 0);
19185 }
19186 first_file_directive = 1;
19187 }
19188 }
19189
19190 /* The .loc directive, implying DWARF-2. */
19191
19192 static void
19193 s_mips_loc (int x ATTRIBUTE_UNUSED)
19194 {
19195 if (!ECOFF_DEBUGGING)
19196 dwarf2_directive_loc (0);
19197 }
19198
19199 /* The .end directive. */
19200
19201 static void
19202 s_mips_end (int x ATTRIBUTE_UNUSED)
19203 {
19204 symbolS *p;
19205
19206 /* Following functions need their own .frame and .cprestore directives. */
19207 mips_frame_reg_valid = 0;
19208 mips_cprestore_valid = 0;
19209
19210 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19211 {
19212 p = get_symbol ();
19213 demand_empty_rest_of_line ();
19214 }
19215 else
19216 p = NULL;
19217
19218 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19219 as_warn (_(".end not in text section"));
19220
19221 if (!cur_proc_ptr)
19222 {
19223 as_warn (_(".end directive without a preceding .ent directive."));
19224 demand_empty_rest_of_line ();
19225 return;
19226 }
19227
19228 if (p != NULL)
19229 {
19230 gas_assert (S_GET_NAME (p));
19231 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
19232 as_warn (_(".end symbol does not match .ent symbol."));
19233
19234 if (debug_type == DEBUG_STABS)
19235 stabs_generate_asm_endfunc (S_GET_NAME (p),
19236 S_GET_NAME (p));
19237 }
19238 else
19239 as_warn (_(".end directive missing or unknown symbol"));
19240
19241 #ifdef OBJ_ELF
19242 /* Create an expression to calculate the size of the function. */
19243 if (p && cur_proc_ptr)
19244 {
19245 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
19246 expressionS *exp = xmalloc (sizeof (expressionS));
19247
19248 obj->size = exp;
19249 exp->X_op = O_subtract;
19250 exp->X_add_symbol = symbol_temp_new_now ();
19251 exp->X_op_symbol = p;
19252 exp->X_add_number = 0;
19253
19254 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19255 }
19256
19257 /* Generate a .pdr section. */
19258 if (IS_ELF && !ECOFF_DEBUGGING && mips_flag_pdr)
19259 {
19260 segT saved_seg = now_seg;
19261 subsegT saved_subseg = now_subseg;
19262 expressionS exp;
19263 char *fragp;
19264
19265 #ifdef md_flush_pending_output
19266 md_flush_pending_output ();
19267 #endif
19268
19269 gas_assert (pdr_seg);
19270 subseg_set (pdr_seg, 0);
19271
19272 /* Write the symbol. */
19273 exp.X_op = O_symbol;
19274 exp.X_add_symbol = p;
19275 exp.X_add_number = 0;
19276 emit_expr (&exp, 4);
19277
19278 fragp = frag_more (7 * 4);
19279
19280 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19281 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19282 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19283 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19284 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19285 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19286 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
19287
19288 subseg_set (saved_seg, saved_subseg);
19289 }
19290 #endif /* OBJ_ELF */
19291
19292 cur_proc_ptr = NULL;
19293 }
19294
19295 /* The .aent and .ent directives. */
19296
19297 static void
19298 s_mips_ent (int aent)
19299 {
19300 symbolS *symbolP;
19301
19302 symbolP = get_symbol ();
19303 if (*input_line_pointer == ',')
19304 ++input_line_pointer;
19305 SKIP_WHITESPACE ();
19306 if (ISDIGIT (*input_line_pointer)
19307 || *input_line_pointer == '-')
19308 get_number ();
19309
19310 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19311 as_warn (_(".ent or .aent not in text section."));
19312
19313 if (!aent && cur_proc_ptr)
19314 as_warn (_("missing .end"));
19315
19316 if (!aent)
19317 {
19318 /* This function needs its own .frame and .cprestore directives. */
19319 mips_frame_reg_valid = 0;
19320 mips_cprestore_valid = 0;
19321
19322 cur_proc_ptr = &cur_proc;
19323 memset (cur_proc_ptr, '\0', sizeof (procS));
19324
19325 cur_proc_ptr->func_sym = symbolP;
19326
19327 ++numprocs;
19328
19329 if (debug_type == DEBUG_STABS)
19330 stabs_generate_asm_func (S_GET_NAME (symbolP),
19331 S_GET_NAME (symbolP));
19332 }
19333
19334 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19335
19336 demand_empty_rest_of_line ();
19337 }
19338
19339 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
19340 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
19341 s_mips_frame is used so that we can set the PDR information correctly.
19342 We can't use the ecoff routines because they make reference to the ecoff
19343 symbol table (in the mdebug section). */
19344
19345 static void
19346 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
19347 {
19348 #ifdef OBJ_ELF
19349 if (IS_ELF && !ECOFF_DEBUGGING)
19350 {
19351 long val;
19352
19353 if (cur_proc_ptr == (procS *) NULL)
19354 {
19355 as_warn (_(".frame outside of .ent"));
19356 demand_empty_rest_of_line ();
19357 return;
19358 }
19359
19360 cur_proc_ptr->frame_reg = tc_get_register (1);
19361
19362 SKIP_WHITESPACE ();
19363 if (*input_line_pointer++ != ','
19364 || get_absolute_expression_and_terminator (&val) != ',')
19365 {
19366 as_warn (_("Bad .frame directive"));
19367 --input_line_pointer;
19368 demand_empty_rest_of_line ();
19369 return;
19370 }
19371
19372 cur_proc_ptr->frame_offset = val;
19373 cur_proc_ptr->pc_reg = tc_get_register (0);
19374
19375 demand_empty_rest_of_line ();
19376 }
19377 else
19378 #endif /* OBJ_ELF */
19379 s_ignore (ignore);
19380 }
19381
19382 /* The .fmask and .mask directives. If the mdebug section is present
19383 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
19384 embedded targets, s_mips_mask is used so that we can set the PDR
19385 information correctly. We can't use the ecoff routines because they
19386 make reference to the ecoff symbol table (in the mdebug section). */
19387
19388 static void
19389 s_mips_mask (int reg_type)
19390 {
19391 #ifdef OBJ_ELF
19392 if (IS_ELF && !ECOFF_DEBUGGING)
19393 {
19394 long mask, off;
19395
19396 if (cur_proc_ptr == (procS *) NULL)
19397 {
19398 as_warn (_(".mask/.fmask outside of .ent"));
19399 demand_empty_rest_of_line ();
19400 return;
19401 }
19402
19403 if (get_absolute_expression_and_terminator (&mask) != ',')
19404 {
19405 as_warn (_("Bad .mask/.fmask directive"));
19406 --input_line_pointer;
19407 demand_empty_rest_of_line ();
19408 return;
19409 }
19410
19411 off = get_absolute_expression ();
19412
19413 if (reg_type == 'F')
19414 {
19415 cur_proc_ptr->fpreg_mask = mask;
19416 cur_proc_ptr->fpreg_offset = off;
19417 }
19418 else
19419 {
19420 cur_proc_ptr->reg_mask = mask;
19421 cur_proc_ptr->reg_offset = off;
19422 }
19423
19424 demand_empty_rest_of_line ();
19425 }
19426 else
19427 #endif /* OBJ_ELF */
19428 s_ignore (reg_type);
19429 }
19430
19431 /* A table describing all the processors gas knows about. Names are
19432 matched in the order listed.
19433
19434 To ease comparison, please keep this table in the same order as
19435 gcc's mips_cpu_info_table[]. */
19436 static const struct mips_cpu_info mips_cpu_info_table[] =
19437 {
19438 /* Entries for generic ISAs */
19439 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19440 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19441 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19442 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19443 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19444 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19445 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19446 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19447 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
19448
19449 /* MIPS I */
19450 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19451 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19452 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
19453
19454 /* MIPS II */
19455 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
19456
19457 /* MIPS III */
19458 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19459 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19460 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19461 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19462 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19463 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19464 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19465 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19466 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19467 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19468 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19469 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19470 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
19471 /* ST Microelectronics Loongson 2E and 2F cores */
19472 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
19473 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
19474
19475 /* MIPS IV */
19476 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19477 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19478 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19479 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19480 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19481 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19482 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19483 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19484 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19485 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19486 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19487 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19488 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19489 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19490 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
19491
19492 /* MIPS 32 */
19493 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19494 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19495 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19496 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
19497
19498 /* MIPS 32 Release 2 */
19499 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19500 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19501 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19502 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19503 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19504 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19505 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19506 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19507 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19508 ISA_MIPS32R2, CPU_MIPS32R2 },
19509 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19510 ISA_MIPS32R2, CPU_MIPS32R2 },
19511 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19512 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19513 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19514 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19515 /* Deprecated forms of the above. */
19516 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19517 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19518 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
19519 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19520 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19521 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19522 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19523 /* Deprecated forms of the above. */
19524 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19525 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19526 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
19527 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19528 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19529 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19530 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19531 /* Deprecated forms of the above. */
19532 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19533 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19534 /* 34Kn is a 34kc without DSP. */
19535 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19536 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
19537 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19538 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19539 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19540 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19541 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19542 /* Deprecated forms of the above. */
19543 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19544 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19545 /* 1004K cores are multiprocessor versions of the 34K. */
19546 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19547 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19548 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19549 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19550
19551 /* MIPS 64 */
19552 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19553 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19554 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19555 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19556
19557 /* Broadcom SB-1 CPU core */
19558 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19559 /* Broadcom SB-1A CPU core */
19560 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19561
19562 { "loongson3a", 0, 0, ISA_MIPS64, CPU_LOONGSON_3A },
19563
19564 /* MIPS 64 Release 2 */
19565
19566 /* Cavium Networks Octeon CPU core */
19567 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
19568 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
19569 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
19570
19571 /* RMI Xlr */
19572 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
19573
19574 /* Broadcom XLP.
19575 XLP is mostly like XLR, with the prominent exception that it is
19576 MIPS64R2 rather than MIPS64. */
19577 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
19578
19579 /* End marker */
19580 { NULL, 0, 0, 0, 0 }
19581 };
19582
19583
19584 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19585 with a final "000" replaced by "k". Ignore case.
19586
19587 Note: this function is shared between GCC and GAS. */
19588
19589 static bfd_boolean
19590 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
19591 {
19592 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19593 given++, canonical++;
19594
19595 return ((*given == 0 && *canonical == 0)
19596 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19597 }
19598
19599
19600 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19601 CPU name. We've traditionally allowed a lot of variation here.
19602
19603 Note: this function is shared between GCC and GAS. */
19604
19605 static bfd_boolean
19606 mips_matching_cpu_name_p (const char *canonical, const char *given)
19607 {
19608 /* First see if the name matches exactly, or with a final "000"
19609 turned into "k". */
19610 if (mips_strict_matching_cpu_name_p (canonical, given))
19611 return TRUE;
19612
19613 /* If not, try comparing based on numerical designation alone.
19614 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19615 if (TOLOWER (*given) == 'r')
19616 given++;
19617 if (!ISDIGIT (*given))
19618 return FALSE;
19619
19620 /* Skip over some well-known prefixes in the canonical name,
19621 hoping to find a number there too. */
19622 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19623 canonical += 2;
19624 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19625 canonical += 2;
19626 else if (TOLOWER (canonical[0]) == 'r')
19627 canonical += 1;
19628
19629 return mips_strict_matching_cpu_name_p (canonical, given);
19630 }
19631
19632
19633 /* Parse an option that takes the name of a processor as its argument.
19634 OPTION is the name of the option and CPU_STRING is the argument.
19635 Return the corresponding processor enumeration if the CPU_STRING is
19636 recognized, otherwise report an error and return null.
19637
19638 A similar function exists in GCC. */
19639
19640 static const struct mips_cpu_info *
19641 mips_parse_cpu (const char *option, const char *cpu_string)
19642 {
19643 const struct mips_cpu_info *p;
19644
19645 /* 'from-abi' selects the most compatible architecture for the given
19646 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19647 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19648 version. Look first at the -mgp options, if given, otherwise base
19649 the choice on MIPS_DEFAULT_64BIT.
19650
19651 Treat NO_ABI like the EABIs. One reason to do this is that the
19652 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19653 architecture. This code picks MIPS I for 'mips' and MIPS III for
19654 'mips64', just as we did in the days before 'from-abi'. */
19655 if (strcasecmp (cpu_string, "from-abi") == 0)
19656 {
19657 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19658 return mips_cpu_info_from_isa (ISA_MIPS1);
19659
19660 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19661 return mips_cpu_info_from_isa (ISA_MIPS3);
19662
19663 if (file_mips_gp32 >= 0)
19664 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
19665
19666 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19667 ? ISA_MIPS3
19668 : ISA_MIPS1);
19669 }
19670
19671 /* 'default' has traditionally been a no-op. Probably not very useful. */
19672 if (strcasecmp (cpu_string, "default") == 0)
19673 return 0;
19674
19675 for (p = mips_cpu_info_table; p->name != 0; p++)
19676 if (mips_matching_cpu_name_p (p->name, cpu_string))
19677 return p;
19678
19679 as_bad (_("Bad value (%s) for %s"), cpu_string, option);
19680 return 0;
19681 }
19682
19683 /* Return the canonical processor information for ISA (a member of the
19684 ISA_MIPS* enumeration). */
19685
19686 static const struct mips_cpu_info *
19687 mips_cpu_info_from_isa (int isa)
19688 {
19689 int i;
19690
19691 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19692 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
19693 && isa == mips_cpu_info_table[i].isa)
19694 return (&mips_cpu_info_table[i]);
19695
19696 return NULL;
19697 }
19698
19699 static const struct mips_cpu_info *
19700 mips_cpu_info_from_arch (int arch)
19701 {
19702 int i;
19703
19704 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19705 if (arch == mips_cpu_info_table[i].cpu)
19706 return (&mips_cpu_info_table[i]);
19707
19708 return NULL;
19709 }
19710 \f
19711 static void
19712 show (FILE *stream, const char *string, int *col_p, int *first_p)
19713 {
19714 if (*first_p)
19715 {
19716 fprintf (stream, "%24s", "");
19717 *col_p = 24;
19718 }
19719 else
19720 {
19721 fprintf (stream, ", ");
19722 *col_p += 2;
19723 }
19724
19725 if (*col_p + strlen (string) > 72)
19726 {
19727 fprintf (stream, "\n%24s", "");
19728 *col_p = 24;
19729 }
19730
19731 fprintf (stream, "%s", string);
19732 *col_p += strlen (string);
19733
19734 *first_p = 0;
19735 }
19736
19737 void
19738 md_show_usage (FILE *stream)
19739 {
19740 int column, first;
19741 size_t i;
19742
19743 fprintf (stream, _("\
19744 MIPS options:\n\
19745 -EB generate big endian output\n\
19746 -EL generate little endian output\n\
19747 -g, -g2 do not remove unneeded NOPs or swap branches\n\
19748 -G NUM allow referencing objects up to NUM bytes\n\
19749 implicitly with the gp register [default 8]\n"));
19750 fprintf (stream, _("\
19751 -mips1 generate MIPS ISA I instructions\n\
19752 -mips2 generate MIPS ISA II instructions\n\
19753 -mips3 generate MIPS ISA III instructions\n\
19754 -mips4 generate MIPS ISA IV instructions\n\
19755 -mips5 generate MIPS ISA V instructions\n\
19756 -mips32 generate MIPS32 ISA instructions\n\
19757 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
19758 -mips64 generate MIPS64 ISA instructions\n\
19759 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
19760 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19761
19762 first = 1;
19763
19764 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19765 show (stream, mips_cpu_info_table[i].name, &column, &first);
19766 show (stream, "from-abi", &column, &first);
19767 fputc ('\n', stream);
19768
19769 fprintf (stream, _("\
19770 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19771 -no-mCPU don't generate code specific to CPU.\n\
19772 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19773
19774 first = 1;
19775
19776 show (stream, "3900", &column, &first);
19777 show (stream, "4010", &column, &first);
19778 show (stream, "4100", &column, &first);
19779 show (stream, "4650", &column, &first);
19780 fputc ('\n', stream);
19781
19782 fprintf (stream, _("\
19783 -mips16 generate mips16 instructions\n\
19784 -no-mips16 do not generate mips16 instructions\n"));
19785 fprintf (stream, _("\
19786 -mmicromips generate microMIPS instructions\n\
19787 -mno-micromips do not generate microMIPS instructions\n"));
19788 fprintf (stream, _("\
19789 -msmartmips generate smartmips instructions\n\
19790 -mno-smartmips do not generate smartmips instructions\n"));
19791 fprintf (stream, _("\
19792 -mdsp generate DSP instructions\n\
19793 -mno-dsp do not generate DSP instructions\n"));
19794 fprintf (stream, _("\
19795 -mdspr2 generate DSP R2 instructions\n\
19796 -mno-dspr2 do not generate DSP R2 instructions\n"));
19797 fprintf (stream, _("\
19798 -mmt generate MT instructions\n\
19799 -mno-mt do not generate MT instructions\n"));
19800 fprintf (stream, _("\
19801 -mmcu generate MCU instructions\n\
19802 -mno-mcu do not generate MCU instructions\n"));
19803 fprintf (stream, _("\
19804 -mvirt generate Virtualization instructions\n\
19805 -mno-virt do not generate Virtualization instructions\n"));
19806 fprintf (stream, _("\
19807 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19808 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
19809 -mfix-vr4120 work around certain VR4120 errata\n\
19810 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
19811 -mfix-24k insert a nop after ERET and DERET instructions\n\
19812 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
19813 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19814 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
19815 -msym32 assume all symbols have 32-bit values\n\
19816 -O0 remove unneeded NOPs, do not swap branches\n\
19817 -O remove unneeded NOPs and swap branches\n\
19818 --trap, --no-break trap exception on div by 0 and mult overflow\n\
19819 --break, --no-trap break exception on div by 0 and mult overflow\n"));
19820 fprintf (stream, _("\
19821 -mhard-float allow floating-point instructions\n\
19822 -msoft-float do not allow floating-point instructions\n\
19823 -msingle-float only allow 32-bit floating-point operations\n\
19824 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
19825 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
19826 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n"
19827 ));
19828 #ifdef OBJ_ELF
19829 fprintf (stream, _("\
19830 -KPIC, -call_shared generate SVR4 position independent code\n\
19831 -call_nonpic generate non-PIC code that can operate with DSOs\n\
19832 -mvxworks-pic generate VxWorks position independent code\n\
19833 -non_shared do not generate code that can operate with DSOs\n\
19834 -xgot assume a 32 bit GOT\n\
19835 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
19836 -mshared, -mno-shared disable/enable .cpload optimization for\n\
19837 position dependent (non shared) code\n\
19838 -mabi=ABI create ABI conformant object file for:\n"));
19839
19840 first = 1;
19841
19842 show (stream, "32", &column, &first);
19843 show (stream, "o64", &column, &first);
19844 show (stream, "n32", &column, &first);
19845 show (stream, "64", &column, &first);
19846 show (stream, "eabi", &column, &first);
19847
19848 fputc ('\n', stream);
19849
19850 fprintf (stream, _("\
19851 -32 create o32 ABI object file (default)\n\
19852 -n32 create n32 ABI object file\n\
19853 -64 create 64 ABI object file\n"));
19854 #endif
19855 }
19856
19857 #ifdef TE_IRIX
19858 enum dwarf2_format
19859 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19860 {
19861 if (HAVE_64BIT_SYMBOLS)
19862 return dwarf2_format_64bit_irix;
19863 else
19864 return dwarf2_format_32bit;
19865 }
19866 #endif
19867
19868 int
19869 mips_dwarf2_addr_size (void)
19870 {
19871 if (HAVE_64BIT_OBJECTS)
19872 return 8;
19873 else
19874 return 4;
19875 }
19876
19877 /* Standard calling conventions leave the CFA at SP on entry. */
19878 void
19879 mips_cfi_frame_initial_instructions (void)
19880 {
19881 cfi_add_CFA_def_cfa_register (SP);
19882 }
19883
19884 int
19885 tc_mips_regname_to_dw2regnum (char *regname)
19886 {
19887 unsigned int regnum = -1;
19888 unsigned int reg;
19889
19890 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19891 regnum = reg;
19892
19893 return regnum;
19894 }
This page took 0.45573 seconds and 4 git commands to generate.