[MIPS/GAS] Split Loongson EXT Instructions from loongson3a.
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168 };
169
170 /* The ABI to use. */
171 enum mips_abi_level
172 {
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179 };
180
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
183
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
186
187 /* Whether or not we have code which can be put into a shared
188 library. */
189 static bfd_boolean mips_in_shared = TRUE;
190
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195 struct mips_set_options
196 {
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265 };
266
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
269
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
275
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280 static struct mips_set_options file_mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287 };
288
289 /* This is similar to file_mips_opts, but for the current set of options. */
290
291 static struct mips_set_options mips_opts =
292 {
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298 };
299
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
311
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
323
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
325 #ifdef TE_IRIX
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327 #else
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334 #endif
335
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
338
339 /* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
343
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
346
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
426
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
454
455 #define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
459
460 #define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
464
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
466
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
468
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
476
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
482
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
488
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
491
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
502
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
505
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
515
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
518
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
555 )
556
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
567 )
568
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
584 )
585
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
596
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
610
611 /* MIPS PIC level. */
612
613 enum mips_pic_level mips_pic;
614
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
618
619 /* 1 if trap instructions should used for overflow rather than break
620 instructions. */
621 static int mips_trap = 0;
622
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
630
631 /* Non-zero if any .set noreorder directives were used. */
632
633 static int mips_any_noreorder;
634
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
638
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
643
644 #define N_RMASK 0xc4
645 #define N_VFP 0xd4
646
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
660
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
663
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
666
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
669
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
673
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
682
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
685
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
688
689 /* Chars that mean this number is a floating point constant */
690 /* As in 0f12.456 */
691 /* or 0d1.2345e12 */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705 };
706
707 /* Information about an error that was found while assembling the current
708 instruction. */
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732 };
733
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
736
737 static int auto_align = 1;
738
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743 static offsetT mips_cprestore_offset = -1;
744
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
752
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
756
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
760
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
764
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772 static int mips_optimize = 2;
773
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
777
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
780
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
783
784 /* The maximum number of NOPs needed for any purpose. */
785 #define MAX_NOPS 4
786
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
793
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798 };
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
802
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
808
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
817
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
822
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827 static fragS *prev_nop_frag;
828
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
831
832 /* The number of nop instructions that we know we need in
833 prev_nop_frag. */
834 static int prev_nop_frag_required;
835
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
838
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
849
850 struct mips_hi_fixup
851 {
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858 };
859
860 /* The list of unmatched HI relocs. */
861
862 static struct mips_hi_fixup *mips_hi_fixup_list;
863
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867 static fragS *prev_reloc_op_frag;
868
869 /* Map mips16 register numbers to normal MIPS register numbers. */
870
871 static const unsigned int mips16_to_32_reg_map[] =
872 {
873 16, 17, 2, 3, 4, 5, 6, 7
874 };
875
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
877
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
879
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
882 {
883 5, 5, 6, 4, 4, 4, 4, 4
884 };
885 static const unsigned int micromips_to_32_reg_h_map2[] =
886 {
887 6, 7, 7, 21, 22, 5, 6, 7
888 };
889
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
892 {
893 0, 17, 2, 3, 16, 18, 19, 20
894 };
895
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
901 {
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909 };
910
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
913
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
916
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
919
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
927
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
930
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
933
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
936
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
939
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945 static int mips_relax_branch;
946
947 /* TRUE if checks are suppressed for invalid branches between ISA modes.
948 Needed for broken assembly produced by some GCC versions and some
949 sloppy code out there, where branches to data labels are present. */
950 static bfd_boolean mips_ignore_branch_isa;
951 \f
952 /* The expansion of many macros depends on the type of symbol that
953 they refer to. For example, when generating position-dependent code,
954 a macro that refers to a symbol may have two different expansions,
955 one which uses GP-relative addresses and one which uses absolute
956 addresses. When generating SVR4-style PIC, a macro may have
957 different expansions for local and global symbols.
958
959 We handle these situations by generating both sequences and putting
960 them in variant frags. In position-dependent code, the first sequence
961 will be the GP-relative one and the second sequence will be the
962 absolute one. In SVR4 PIC, the first sequence will be for global
963 symbols and the second will be for local symbols.
964
965 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
966 SECOND are the lengths of the two sequences in bytes. These fields
967 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
968 the subtype has the following flags:
969
970 RELAX_PIC
971 Set if generating PIC code.
972
973 RELAX_USE_SECOND
974 Set if it has been decided that we should use the second
975 sequence instead of the first.
976
977 RELAX_SECOND_LONGER
978 Set in the first variant frag if the macro's second implementation
979 is longer than its first. This refers to the macro as a whole,
980 not an individual relaxation.
981
982 RELAX_NOMACRO
983 Set in the first variant frag if the macro appeared in a .set nomacro
984 block and if one alternative requires a warning but the other does not.
985
986 RELAX_DELAY_SLOT
987 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
988 delay slot.
989
990 RELAX_DELAY_SLOT_16BIT
991 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
992 16-bit instruction.
993
994 RELAX_DELAY_SLOT_SIZE_FIRST
995 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
996 the macro is of the wrong size for the branch delay slot.
997
998 RELAX_DELAY_SLOT_SIZE_SECOND
999 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
1000 the macro is of the wrong size for the branch delay slot.
1001
1002 The frag's "opcode" points to the first fixup for relaxable code.
1003
1004 Relaxable macros are generated using a sequence such as:
1005
1006 relax_start (SYMBOL);
1007 ... generate first expansion ...
1008 relax_switch ();
1009 ... generate second expansion ...
1010 relax_end ();
1011
1012 The code and fixups for the unwanted alternative are discarded
1013 by md_convert_frag. */
1014 #define RELAX_ENCODE(FIRST, SECOND, PIC) \
1015 (((FIRST) << 8) | (SECOND) | ((PIC) ? 0x10000 : 0))
1016
1017 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1018 #define RELAX_SECOND(X) ((X) & 0xff)
1019 #define RELAX_PIC(X) (((X) & 0x10000) != 0)
1020 #define RELAX_USE_SECOND 0x20000
1021 #define RELAX_SECOND_LONGER 0x40000
1022 #define RELAX_NOMACRO 0x80000
1023 #define RELAX_DELAY_SLOT 0x100000
1024 #define RELAX_DELAY_SLOT_16BIT 0x200000
1025 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x400000
1026 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x800000
1027
1028 /* Branch without likely bit. If label is out of range, we turn:
1029
1030 beq reg1, reg2, label
1031 delay slot
1032
1033 into
1034
1035 bne reg1, reg2, 0f
1036 nop
1037 j label
1038 0: delay slot
1039
1040 with the following opcode replacements:
1041
1042 beq <-> bne
1043 blez <-> bgtz
1044 bltz <-> bgez
1045 bc1f <-> bc1t
1046
1047 bltzal <-> bgezal (with jal label instead of j label)
1048
1049 Even though keeping the delay slot instruction in the delay slot of
1050 the branch would be more efficient, it would be very tricky to do
1051 correctly, because we'd have to introduce a variable frag *after*
1052 the delay slot instruction, and expand that instead. Let's do it
1053 the easy way for now, even if the branch-not-taken case now costs
1054 one additional instruction. Out-of-range branches are not supposed
1055 to be common, anyway.
1056
1057 Branch likely. If label is out of range, we turn:
1058
1059 beql reg1, reg2, label
1060 delay slot (annulled if branch not taken)
1061
1062 into
1063
1064 beql reg1, reg2, 1f
1065 nop
1066 beql $0, $0, 2f
1067 nop
1068 1: j[al] label
1069 delay slot (executed only if branch taken)
1070 2:
1071
1072 It would be possible to generate a shorter sequence by losing the
1073 likely bit, generating something like:
1074
1075 bne reg1, reg2, 0f
1076 nop
1077 j[al] label
1078 delay slot (executed only if branch taken)
1079 0:
1080
1081 beql -> bne
1082 bnel -> beq
1083 blezl -> bgtz
1084 bgtzl -> blez
1085 bltzl -> bgez
1086 bgezl -> bltz
1087 bc1fl -> bc1t
1088 bc1tl -> bc1f
1089
1090 bltzall -> bgezal (with jal label instead of j label)
1091 bgezall -> bltzal (ditto)
1092
1093
1094 but it's not clear that it would actually improve performance. */
1095 #define RELAX_BRANCH_ENCODE(at, pic, \
1096 uncond, likely, link, toofar) \
1097 ((relax_substateT) \
1098 (0xc0000000 \
1099 | ((at) & 0x1f) \
1100 | ((pic) ? 0x20 : 0) \
1101 | ((toofar) ? 0x40 : 0) \
1102 | ((link) ? 0x80 : 0) \
1103 | ((likely) ? 0x100 : 0) \
1104 | ((uncond) ? 0x200 : 0)))
1105 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1106 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x200) != 0)
1107 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x100) != 0)
1108 #define RELAX_BRANCH_LINK(i) (((i) & 0x80) != 0)
1109 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x40) != 0)
1110 #define RELAX_BRANCH_PIC(i) (((i) & 0x20) != 0)
1111 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1112
1113 /* For mips16 code, we use an entirely different form of relaxation.
1114 mips16 supports two versions of most instructions which take
1115 immediate values: a small one which takes some small value, and a
1116 larger one which takes a 16 bit value. Since branches also follow
1117 this pattern, relaxing these values is required.
1118
1119 We can assemble both mips16 and normal MIPS code in a single
1120 object. Therefore, we need to support this type of relaxation at
1121 the same time that we support the relaxation described above. We
1122 use the high bit of the subtype field to distinguish these cases.
1123
1124 The information we store for this type of relaxation is the
1125 argument code found in the opcode file for this relocation, whether
1126 the user explicitly requested a small or extended form, and whether
1127 the relocation is in a jump or jal delay slot. That tells us the
1128 size of the value, and how it should be stored. We also store
1129 whether the fragment is considered to be extended or not. We also
1130 store whether this is known to be a branch to a different section,
1131 whether we have tried to relax this frag yet, and whether we have
1132 ever extended a PC relative fragment because of a shift count. */
1133 #define RELAX_MIPS16_ENCODE(type, e2, pic, sym32, nomacro, \
1134 small, ext, \
1135 dslot, jal_dslot) \
1136 (0x80000000 \
1137 | ((type) & 0xff) \
1138 | ((e2) ? 0x100 : 0) \
1139 | ((pic) ? 0x200 : 0) \
1140 | ((sym32) ? 0x400 : 0) \
1141 | ((nomacro) ? 0x800 : 0) \
1142 | ((small) ? 0x1000 : 0) \
1143 | ((ext) ? 0x2000 : 0) \
1144 | ((dslot) ? 0x4000 : 0) \
1145 | ((jal_dslot) ? 0x8000 : 0))
1146
1147 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1148 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1149 #define RELAX_MIPS16_E2(i) (((i) & 0x100) != 0)
1150 #define RELAX_MIPS16_PIC(i) (((i) & 0x200) != 0)
1151 #define RELAX_MIPS16_SYM32(i) (((i) & 0x400) != 0)
1152 #define RELAX_MIPS16_NOMACRO(i) (((i) & 0x800) != 0)
1153 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x1000) != 0)
1154 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x2000) != 0)
1155 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x4000) != 0)
1156 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x8000) != 0)
1157
1158 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x10000) != 0)
1159 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x10000)
1160 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) & ~0x10000)
1161 #define RELAX_MIPS16_ALWAYS_EXTENDED(i) (((i) & 0x20000) != 0)
1162 #define RELAX_MIPS16_MARK_ALWAYS_EXTENDED(i) ((i) | 0x20000)
1163 #define RELAX_MIPS16_CLEAR_ALWAYS_EXTENDED(i) ((i) & ~0x20000)
1164 #define RELAX_MIPS16_MACRO(i) (((i) & 0x40000) != 0)
1165 #define RELAX_MIPS16_MARK_MACRO(i) ((i) | 0x40000)
1166 #define RELAX_MIPS16_CLEAR_MACRO(i) ((i) & ~0x40000)
1167
1168 /* For microMIPS code, we use relaxation similar to one we use for
1169 MIPS16 code. Some instructions that take immediate values support
1170 two encodings: a small one which takes some small value, and a
1171 larger one which takes a 16 bit value. As some branches also follow
1172 this pattern, relaxing these values is required.
1173
1174 We can assemble both microMIPS and normal MIPS code in a single
1175 object. Therefore, we need to support this type of relaxation at
1176 the same time that we support the relaxation described above. We
1177 use one of the high bits of the subtype field to distinguish these
1178 cases.
1179
1180 The information we store for this type of relaxation is the argument
1181 code found in the opcode file for this relocation, the register
1182 selected as the assembler temporary, whether in the 32-bit
1183 instruction mode, whether the branch is unconditional, whether it is
1184 compact, whether there is no delay-slot instruction available to fill
1185 in, whether it stores the link address implicitly in $ra, whether
1186 relaxation of out-of-range 32-bit branches to a sequence of
1187 instructions is enabled, and whether the displacement of a branch is
1188 too large to fit as an immediate argument of a 16-bit and a 32-bit
1189 branch, respectively. */
1190 #define RELAX_MICROMIPS_ENCODE(type, at, insn32, pic, \
1191 uncond, compact, link, nods, \
1192 relax32, toofar16, toofar32) \
1193 (0x40000000 \
1194 | ((type) & 0xff) \
1195 | (((at) & 0x1f) << 8) \
1196 | ((insn32) ? 0x2000 : 0) \
1197 | ((pic) ? 0x4000 : 0) \
1198 | ((uncond) ? 0x8000 : 0) \
1199 | ((compact) ? 0x10000 : 0) \
1200 | ((link) ? 0x20000 : 0) \
1201 | ((nods) ? 0x40000 : 0) \
1202 | ((relax32) ? 0x80000 : 0) \
1203 | ((toofar16) ? 0x100000 : 0) \
1204 | ((toofar32) ? 0x200000 : 0))
1205 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1206 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1207 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1208 #define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
1209 #define RELAX_MICROMIPS_PIC(i) (((i) & 0x4000) != 0)
1210 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x8000) != 0)
1211 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x10000) != 0)
1212 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x20000) != 0)
1213 #define RELAX_MICROMIPS_NODS(i) (((i) & 0x40000) != 0)
1214 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x80000) != 0)
1215
1216 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x100000) != 0)
1217 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x100000)
1218 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x100000)
1219 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x200000) != 0)
1220 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x200000)
1221 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x200000)
1222
1223 /* Sign-extend 16-bit value X. */
1224 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1225
1226 /* Is the given value a sign-extended 32-bit value? */
1227 #define IS_SEXT_32BIT_NUM(x) \
1228 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1229 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1230
1231 /* Is the given value a sign-extended 16-bit value? */
1232 #define IS_SEXT_16BIT_NUM(x) \
1233 (((x) &~ (offsetT) 0x7fff) == 0 \
1234 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1235
1236 /* Is the given value a sign-extended 12-bit value? */
1237 #define IS_SEXT_12BIT_NUM(x) \
1238 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1239
1240 /* Is the given value a sign-extended 9-bit value? */
1241 #define IS_SEXT_9BIT_NUM(x) \
1242 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1243
1244 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1245 #define IS_ZEXT_32BIT_NUM(x) \
1246 (((x) &~ (offsetT) 0xffffffff) == 0 \
1247 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1248
1249 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1250 SHIFT places. */
1251 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1252 (((STRUCT) >> (SHIFT)) & (MASK))
1253
1254 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1255 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1256 (!(MICROMIPS) \
1257 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1258 : EXTRACT_BITS ((INSN).insn_opcode, \
1259 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1260 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1261 EXTRACT_BITS ((INSN).insn_opcode, \
1262 MIPS16OP_MASK_##FIELD, \
1263 MIPS16OP_SH_##FIELD)
1264
1265 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1266 #define MIPS16_EXTEND (0xf000U << 16)
1267 \f
1268 /* Whether or not we are emitting a branch-likely macro. */
1269 static bfd_boolean emit_branch_likely_macro = FALSE;
1270
1271 /* Global variables used when generating relaxable macros. See the
1272 comment above RELAX_ENCODE for more details about how relaxation
1273 is used. */
1274 static struct {
1275 /* 0 if we're not emitting a relaxable macro.
1276 1 if we're emitting the first of the two relaxation alternatives.
1277 2 if we're emitting the second alternative. */
1278 int sequence;
1279
1280 /* The first relaxable fixup in the current frag. (In other words,
1281 the first fixup that refers to relaxable code.) */
1282 fixS *first_fixup;
1283
1284 /* sizes[0] says how many bytes of the first alternative are stored in
1285 the current frag. Likewise sizes[1] for the second alternative. */
1286 unsigned int sizes[2];
1287
1288 /* The symbol on which the choice of sequence depends. */
1289 symbolS *symbol;
1290 } mips_relax;
1291 \f
1292 /* Global variables used to decide whether a macro needs a warning. */
1293 static struct {
1294 /* True if the macro is in a branch delay slot. */
1295 bfd_boolean delay_slot_p;
1296
1297 /* Set to the length in bytes required if the macro is in a delay slot
1298 that requires a specific length of instruction, otherwise zero. */
1299 unsigned int delay_slot_length;
1300
1301 /* For relaxable macros, sizes[0] is the length of the first alternative
1302 in bytes and sizes[1] is the length of the second alternative.
1303 For non-relaxable macros, both elements give the length of the
1304 macro in bytes. */
1305 unsigned int sizes[2];
1306
1307 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1308 instruction of the first alternative in bytes and first_insn_sizes[1]
1309 is the length of the first instruction of the second alternative.
1310 For non-relaxable macros, both elements give the length of the first
1311 instruction in bytes.
1312
1313 Set to zero if we haven't yet seen the first instruction. */
1314 unsigned int first_insn_sizes[2];
1315
1316 /* For relaxable macros, insns[0] is the number of instructions for the
1317 first alternative and insns[1] is the number of instructions for the
1318 second alternative.
1319
1320 For non-relaxable macros, both elements give the number of
1321 instructions for the macro. */
1322 unsigned int insns[2];
1323
1324 /* The first variant frag for this macro. */
1325 fragS *first_frag;
1326 } mips_macro_warning;
1327 \f
1328 /* Prototypes for static functions. */
1329
1330 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1331
1332 static void append_insn
1333 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1334 bfd_boolean expansionp);
1335 static void mips_no_prev_insn (void);
1336 static void macro_build (expressionS *, const char *, const char *, ...);
1337 static void mips16_macro_build
1338 (expressionS *, const char *, const char *, va_list *);
1339 static void load_register (int, expressionS *, int);
1340 static void macro_start (void);
1341 static void macro_end (void);
1342 static void macro (struct mips_cl_insn *ip, char *str);
1343 static void mips16_macro (struct mips_cl_insn * ip);
1344 static void mips_ip (char *str, struct mips_cl_insn * ip);
1345 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1346 static unsigned long mips16_immed_extend (offsetT, unsigned int);
1347 static void mips16_immed
1348 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1349 unsigned int, unsigned long *);
1350 static size_t my_getSmallExpression
1351 (expressionS *, bfd_reloc_code_real_type *, char *);
1352 static void my_getExpression (expressionS *, char *);
1353 static void s_align (int);
1354 static void s_change_sec (int);
1355 static void s_change_section (int);
1356 static void s_cons (int);
1357 static void s_float_cons (int);
1358 static void s_mips_globl (int);
1359 static void s_option (int);
1360 static void s_mipsset (int);
1361 static void s_abicalls (int);
1362 static void s_cpload (int);
1363 static void s_cpsetup (int);
1364 static void s_cplocal (int);
1365 static void s_cprestore (int);
1366 static void s_cpreturn (int);
1367 static void s_dtprelword (int);
1368 static void s_dtpreldword (int);
1369 static void s_tprelword (int);
1370 static void s_tpreldword (int);
1371 static void s_gpvalue (int);
1372 static void s_gpword (int);
1373 static void s_gpdword (int);
1374 static void s_ehword (int);
1375 static void s_cpadd (int);
1376 static void s_insn (int);
1377 static void s_nan (int);
1378 static void s_module (int);
1379 static void s_mips_ent (int);
1380 static void s_mips_end (int);
1381 static void s_mips_frame (int);
1382 static void s_mips_mask (int reg_type);
1383 static void s_mips_stab (int);
1384 static void s_mips_weakext (int);
1385 static void s_mips_file (int);
1386 static void s_mips_loc (int);
1387 static bfd_boolean pic_need_relax (symbolS *);
1388 static int relaxed_branch_length (fragS *, asection *, int);
1389 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1390 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1391 static void file_mips_check_options (void);
1392
1393 /* Table and functions used to map between CPU/ISA names, and
1394 ISA levels, and CPU numbers. */
1395
1396 struct mips_cpu_info
1397 {
1398 const char *name; /* CPU or ISA name. */
1399 int flags; /* MIPS_CPU_* flags. */
1400 int ase; /* Set of ASEs implemented by the CPU. */
1401 int isa; /* ISA level. */
1402 int cpu; /* CPU number (default CPU if ISA). */
1403 };
1404
1405 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1406
1407 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1408 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1409 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1410 \f
1411 /* Command-line options. */
1412 const char *md_shortopts = "O::g::G:";
1413
1414 enum options
1415 {
1416 OPTION_MARCH = OPTION_MD_BASE,
1417 OPTION_MTUNE,
1418 OPTION_MIPS1,
1419 OPTION_MIPS2,
1420 OPTION_MIPS3,
1421 OPTION_MIPS4,
1422 OPTION_MIPS5,
1423 OPTION_MIPS32,
1424 OPTION_MIPS64,
1425 OPTION_MIPS32R2,
1426 OPTION_MIPS32R3,
1427 OPTION_MIPS32R5,
1428 OPTION_MIPS32R6,
1429 OPTION_MIPS64R2,
1430 OPTION_MIPS64R3,
1431 OPTION_MIPS64R5,
1432 OPTION_MIPS64R6,
1433 OPTION_MIPS16,
1434 OPTION_NO_MIPS16,
1435 OPTION_MIPS3D,
1436 OPTION_NO_MIPS3D,
1437 OPTION_MDMX,
1438 OPTION_NO_MDMX,
1439 OPTION_DSP,
1440 OPTION_NO_DSP,
1441 OPTION_MT,
1442 OPTION_NO_MT,
1443 OPTION_VIRT,
1444 OPTION_NO_VIRT,
1445 OPTION_MSA,
1446 OPTION_NO_MSA,
1447 OPTION_SMARTMIPS,
1448 OPTION_NO_SMARTMIPS,
1449 OPTION_DSPR2,
1450 OPTION_NO_DSPR2,
1451 OPTION_DSPR3,
1452 OPTION_NO_DSPR3,
1453 OPTION_EVA,
1454 OPTION_NO_EVA,
1455 OPTION_XPA,
1456 OPTION_NO_XPA,
1457 OPTION_MICROMIPS,
1458 OPTION_NO_MICROMIPS,
1459 OPTION_MCU,
1460 OPTION_NO_MCU,
1461 OPTION_MIPS16E2,
1462 OPTION_NO_MIPS16E2,
1463 OPTION_CRC,
1464 OPTION_NO_CRC,
1465 OPTION_M4650,
1466 OPTION_NO_M4650,
1467 OPTION_M4010,
1468 OPTION_NO_M4010,
1469 OPTION_M4100,
1470 OPTION_NO_M4100,
1471 OPTION_M3900,
1472 OPTION_NO_M3900,
1473 OPTION_M7000_HILO_FIX,
1474 OPTION_MNO_7000_HILO_FIX,
1475 OPTION_FIX_24K,
1476 OPTION_NO_FIX_24K,
1477 OPTION_FIX_RM7000,
1478 OPTION_NO_FIX_RM7000,
1479 OPTION_FIX_LOONGSON2F_JUMP,
1480 OPTION_NO_FIX_LOONGSON2F_JUMP,
1481 OPTION_FIX_LOONGSON2F_NOP,
1482 OPTION_NO_FIX_LOONGSON2F_NOP,
1483 OPTION_FIX_VR4120,
1484 OPTION_NO_FIX_VR4120,
1485 OPTION_FIX_VR4130,
1486 OPTION_NO_FIX_VR4130,
1487 OPTION_FIX_CN63XXP1,
1488 OPTION_NO_FIX_CN63XXP1,
1489 OPTION_TRAP,
1490 OPTION_BREAK,
1491 OPTION_EB,
1492 OPTION_EL,
1493 OPTION_FP32,
1494 OPTION_GP32,
1495 OPTION_CONSTRUCT_FLOATS,
1496 OPTION_NO_CONSTRUCT_FLOATS,
1497 OPTION_FP64,
1498 OPTION_FPXX,
1499 OPTION_GP64,
1500 OPTION_RELAX_BRANCH,
1501 OPTION_NO_RELAX_BRANCH,
1502 OPTION_IGNORE_BRANCH_ISA,
1503 OPTION_NO_IGNORE_BRANCH_ISA,
1504 OPTION_INSN32,
1505 OPTION_NO_INSN32,
1506 OPTION_MSHARED,
1507 OPTION_MNO_SHARED,
1508 OPTION_MSYM32,
1509 OPTION_MNO_SYM32,
1510 OPTION_SOFT_FLOAT,
1511 OPTION_HARD_FLOAT,
1512 OPTION_SINGLE_FLOAT,
1513 OPTION_DOUBLE_FLOAT,
1514 OPTION_32,
1515 OPTION_CALL_SHARED,
1516 OPTION_CALL_NONPIC,
1517 OPTION_NON_SHARED,
1518 OPTION_XGOT,
1519 OPTION_MABI,
1520 OPTION_N32,
1521 OPTION_64,
1522 OPTION_MDEBUG,
1523 OPTION_NO_MDEBUG,
1524 OPTION_PDR,
1525 OPTION_NO_PDR,
1526 OPTION_MVXWORKS_PIC,
1527 OPTION_NAN,
1528 OPTION_ODD_SPREG,
1529 OPTION_NO_ODD_SPREG,
1530 OPTION_GINV,
1531 OPTION_NO_GINV,
1532 OPTION_LOONGSON_MMI,
1533 OPTION_NO_LOONGSON_MMI,
1534 OPTION_LOONGSON_CAM,
1535 OPTION_NO_LOONGSON_CAM,
1536 OPTION_LOONGSON_EXT,
1537 OPTION_NO_LOONGSON_EXT,
1538 OPTION_END_OF_ENUM
1539 };
1540
1541 struct option md_longopts[] =
1542 {
1543 /* Options which specify architecture. */
1544 {"march", required_argument, NULL, OPTION_MARCH},
1545 {"mtune", required_argument, NULL, OPTION_MTUNE},
1546 {"mips0", no_argument, NULL, OPTION_MIPS1},
1547 {"mips1", no_argument, NULL, OPTION_MIPS1},
1548 {"mips2", no_argument, NULL, OPTION_MIPS2},
1549 {"mips3", no_argument, NULL, OPTION_MIPS3},
1550 {"mips4", no_argument, NULL, OPTION_MIPS4},
1551 {"mips5", no_argument, NULL, OPTION_MIPS5},
1552 {"mips32", no_argument, NULL, OPTION_MIPS32},
1553 {"mips64", no_argument, NULL, OPTION_MIPS64},
1554 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1555 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1556 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1557 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1558 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1559 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1560 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1561 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1562
1563 /* Options which specify Application Specific Extensions (ASEs). */
1564 {"mips16", no_argument, NULL, OPTION_MIPS16},
1565 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1566 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1567 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1568 {"mdmx", no_argument, NULL, OPTION_MDMX},
1569 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1570 {"mdsp", no_argument, NULL, OPTION_DSP},
1571 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1572 {"mmt", no_argument, NULL, OPTION_MT},
1573 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1574 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1575 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1576 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1577 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1578 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1579 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
1580 {"meva", no_argument, NULL, OPTION_EVA},
1581 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1582 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1583 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1584 {"mmcu", no_argument, NULL, OPTION_MCU},
1585 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1586 {"mvirt", no_argument, NULL, OPTION_VIRT},
1587 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1588 {"mmsa", no_argument, NULL, OPTION_MSA},
1589 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1590 {"mxpa", no_argument, NULL, OPTION_XPA},
1591 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1592 {"mmips16e2", no_argument, NULL, OPTION_MIPS16E2},
1593 {"mno-mips16e2", no_argument, NULL, OPTION_NO_MIPS16E2},
1594 {"mcrc", no_argument, NULL, OPTION_CRC},
1595 {"mno-crc", no_argument, NULL, OPTION_NO_CRC},
1596 {"mginv", no_argument, NULL, OPTION_GINV},
1597 {"mno-ginv", no_argument, NULL, OPTION_NO_GINV},
1598 {"mloongson-mmi", no_argument, NULL, OPTION_LOONGSON_MMI},
1599 {"mno-loongson-mmi", no_argument, NULL, OPTION_NO_LOONGSON_MMI},
1600 {"mloongson-cam", no_argument, NULL, OPTION_LOONGSON_CAM},
1601 {"mno-loongson-cam", no_argument, NULL, OPTION_NO_LOONGSON_CAM},
1602 {"mloongson-ext", no_argument, NULL, OPTION_LOONGSON_EXT},
1603 {"mno-loongson-ext", no_argument, NULL, OPTION_NO_LOONGSON_EXT},
1604
1605 /* Old-style architecture options. Don't add more of these. */
1606 {"m4650", no_argument, NULL, OPTION_M4650},
1607 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1608 {"m4010", no_argument, NULL, OPTION_M4010},
1609 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1610 {"m4100", no_argument, NULL, OPTION_M4100},
1611 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1612 {"m3900", no_argument, NULL, OPTION_M3900},
1613 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1614
1615 /* Options which enable bug fixes. */
1616 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1617 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1618 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1619 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1620 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1621 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1622 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1623 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1624 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1625 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1626 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1627 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1628 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1629 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1630 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1631 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1632 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1633
1634 /* Miscellaneous options. */
1635 {"trap", no_argument, NULL, OPTION_TRAP},
1636 {"no-break", no_argument, NULL, OPTION_TRAP},
1637 {"break", no_argument, NULL, OPTION_BREAK},
1638 {"no-trap", no_argument, NULL, OPTION_BREAK},
1639 {"EB", no_argument, NULL, OPTION_EB},
1640 {"EL", no_argument, NULL, OPTION_EL},
1641 {"mfp32", no_argument, NULL, OPTION_FP32},
1642 {"mgp32", no_argument, NULL, OPTION_GP32},
1643 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1644 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1645 {"mfp64", no_argument, NULL, OPTION_FP64},
1646 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1647 {"mgp64", no_argument, NULL, OPTION_GP64},
1648 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1649 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1650 {"mignore-branch-isa", no_argument, NULL, OPTION_IGNORE_BRANCH_ISA},
1651 {"mno-ignore-branch-isa", no_argument, NULL, OPTION_NO_IGNORE_BRANCH_ISA},
1652 {"minsn32", no_argument, NULL, OPTION_INSN32},
1653 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1654 {"mshared", no_argument, NULL, OPTION_MSHARED},
1655 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1656 {"msym32", no_argument, NULL, OPTION_MSYM32},
1657 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1658 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1659 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1660 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1661 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1662 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1663 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1664
1665 /* Strictly speaking this next option is ELF specific,
1666 but we allow it for other ports as well in order to
1667 make testing easier. */
1668 {"32", no_argument, NULL, OPTION_32},
1669
1670 /* ELF-specific options. */
1671 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1672 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1673 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1674 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1675 {"xgot", no_argument, NULL, OPTION_XGOT},
1676 {"mabi", required_argument, NULL, OPTION_MABI},
1677 {"n32", no_argument, NULL, OPTION_N32},
1678 {"64", no_argument, NULL, OPTION_64},
1679 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1680 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1681 {"mpdr", no_argument, NULL, OPTION_PDR},
1682 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1683 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1684 {"mnan", required_argument, NULL, OPTION_NAN},
1685
1686 {NULL, no_argument, NULL, 0}
1687 };
1688 size_t md_longopts_size = sizeof (md_longopts);
1689 \f
1690 /* Information about either an Application Specific Extension or an
1691 optional architecture feature that, for simplicity, we treat in the
1692 same way as an ASE. */
1693 struct mips_ase
1694 {
1695 /* The name of the ASE, used in both the command-line and .set options. */
1696 const char *name;
1697
1698 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1699 and 64-bit architectures, the flags here refer to the subset that
1700 is available on both. */
1701 unsigned int flags;
1702
1703 /* The ASE_* flag used for instructions that are available on 64-bit
1704 architectures but that are not included in FLAGS. */
1705 unsigned int flags64;
1706
1707 /* The command-line options that turn the ASE on and off. */
1708 int option_on;
1709 int option_off;
1710
1711 /* The minimum required architecture revisions for MIPS32, MIPS64,
1712 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1713 int mips32_rev;
1714 int mips64_rev;
1715 int micromips32_rev;
1716 int micromips64_rev;
1717
1718 /* The architecture where the ASE was removed or -1 if the extension has not
1719 been removed. */
1720 int rem_rev;
1721 };
1722
1723 /* A table of all supported ASEs. */
1724 static const struct mips_ase mips_ases[] = {
1725 { "dsp", ASE_DSP, ASE_DSP64,
1726 OPTION_DSP, OPTION_NO_DSP,
1727 2, 2, 2, 2,
1728 -1 },
1729
1730 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1731 OPTION_DSPR2, OPTION_NO_DSPR2,
1732 2, 2, 2, 2,
1733 -1 },
1734
1735 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1736 OPTION_DSPR3, OPTION_NO_DSPR3,
1737 6, 6, -1, -1,
1738 -1 },
1739
1740 { "eva", ASE_EVA, 0,
1741 OPTION_EVA, OPTION_NO_EVA,
1742 2, 2, 2, 2,
1743 -1 },
1744
1745 { "mcu", ASE_MCU, 0,
1746 OPTION_MCU, OPTION_NO_MCU,
1747 2, 2, 2, 2,
1748 -1 },
1749
1750 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1751 { "mdmx", ASE_MDMX, 0,
1752 OPTION_MDMX, OPTION_NO_MDMX,
1753 -1, 1, -1, -1,
1754 6 },
1755
1756 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1757 { "mips3d", ASE_MIPS3D, 0,
1758 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1759 2, 1, -1, -1,
1760 6 },
1761
1762 { "mt", ASE_MT, 0,
1763 OPTION_MT, OPTION_NO_MT,
1764 2, 2, -1, -1,
1765 -1 },
1766
1767 { "smartmips", ASE_SMARTMIPS, 0,
1768 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1769 1, -1, -1, -1,
1770 6 },
1771
1772 { "virt", ASE_VIRT, ASE_VIRT64,
1773 OPTION_VIRT, OPTION_NO_VIRT,
1774 2, 2, 2, 2,
1775 -1 },
1776
1777 { "msa", ASE_MSA, ASE_MSA64,
1778 OPTION_MSA, OPTION_NO_MSA,
1779 2, 2, 2, 2,
1780 -1 },
1781
1782 { "xpa", ASE_XPA, 0,
1783 OPTION_XPA, OPTION_NO_XPA,
1784 2, 2, 2, 2,
1785 -1 },
1786
1787 { "mips16e2", ASE_MIPS16E2, 0,
1788 OPTION_MIPS16E2, OPTION_NO_MIPS16E2,
1789 2, 2, -1, -1,
1790 6 },
1791
1792 { "crc", ASE_CRC, ASE_CRC64,
1793 OPTION_CRC, OPTION_NO_CRC,
1794 6, 6, -1, -1,
1795 -1 },
1796
1797 { "ginv", ASE_GINV, 0,
1798 OPTION_GINV, OPTION_NO_GINV,
1799 6, 6, 6, 6,
1800 -1 },
1801
1802 { "loongson-mmi", ASE_LOONGSON_MMI, 0,
1803 OPTION_LOONGSON_MMI, OPTION_NO_LOONGSON_MMI,
1804 0, 0, -1, -1,
1805 -1 },
1806
1807 { "loongson-cam", ASE_LOONGSON_CAM, 0,
1808 OPTION_LOONGSON_CAM, OPTION_NO_LOONGSON_CAM,
1809 0, 0, -1, -1,
1810 -1 },
1811
1812 { "loongson-ext", ASE_LOONGSON_EXT, 0,
1813 OPTION_LOONGSON_EXT, OPTION_NO_LOONGSON_EXT,
1814 0, 0, -1, -1,
1815 -1 },
1816 };
1817
1818 /* The set of ASEs that require -mfp64. */
1819 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1820
1821 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1822 static const unsigned int mips_ase_groups[] = {
1823 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
1824 };
1825 \f
1826 /* Pseudo-op table.
1827
1828 The following pseudo-ops from the Kane and Heinrich MIPS book
1829 should be defined here, but are currently unsupported: .alias,
1830 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1831
1832 The following pseudo-ops from the Kane and Heinrich MIPS book are
1833 specific to the type of debugging information being generated, and
1834 should be defined by the object format: .aent, .begin, .bend,
1835 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1836 .vreg.
1837
1838 The following pseudo-ops from the Kane and Heinrich MIPS book are
1839 not MIPS CPU specific, but are also not specific to the object file
1840 format. This file is probably the best place to define them, but
1841 they are not currently supported: .asm0, .endr, .lab, .struct. */
1842
1843 static const pseudo_typeS mips_pseudo_table[] =
1844 {
1845 /* MIPS specific pseudo-ops. */
1846 {"option", s_option, 0},
1847 {"set", s_mipsset, 0},
1848 {"rdata", s_change_sec, 'r'},
1849 {"sdata", s_change_sec, 's'},
1850 {"livereg", s_ignore, 0},
1851 {"abicalls", s_abicalls, 0},
1852 {"cpload", s_cpload, 0},
1853 {"cpsetup", s_cpsetup, 0},
1854 {"cplocal", s_cplocal, 0},
1855 {"cprestore", s_cprestore, 0},
1856 {"cpreturn", s_cpreturn, 0},
1857 {"dtprelword", s_dtprelword, 0},
1858 {"dtpreldword", s_dtpreldword, 0},
1859 {"tprelword", s_tprelword, 0},
1860 {"tpreldword", s_tpreldword, 0},
1861 {"gpvalue", s_gpvalue, 0},
1862 {"gpword", s_gpword, 0},
1863 {"gpdword", s_gpdword, 0},
1864 {"ehword", s_ehword, 0},
1865 {"cpadd", s_cpadd, 0},
1866 {"insn", s_insn, 0},
1867 {"nan", s_nan, 0},
1868 {"module", s_module, 0},
1869
1870 /* Relatively generic pseudo-ops that happen to be used on MIPS
1871 chips. */
1872 {"asciiz", stringer, 8 + 1},
1873 {"bss", s_change_sec, 'b'},
1874 {"err", s_err, 0},
1875 {"half", s_cons, 1},
1876 {"dword", s_cons, 3},
1877 {"weakext", s_mips_weakext, 0},
1878 {"origin", s_org, 0},
1879 {"repeat", s_rept, 0},
1880
1881 /* For MIPS this is non-standard, but we define it for consistency. */
1882 {"sbss", s_change_sec, 'B'},
1883
1884 /* These pseudo-ops are defined in read.c, but must be overridden
1885 here for one reason or another. */
1886 {"align", s_align, 0},
1887 {"byte", s_cons, 0},
1888 {"data", s_change_sec, 'd'},
1889 {"double", s_float_cons, 'd'},
1890 {"float", s_float_cons, 'f'},
1891 {"globl", s_mips_globl, 0},
1892 {"global", s_mips_globl, 0},
1893 {"hword", s_cons, 1},
1894 {"int", s_cons, 2},
1895 {"long", s_cons, 2},
1896 {"octa", s_cons, 4},
1897 {"quad", s_cons, 3},
1898 {"section", s_change_section, 0},
1899 {"short", s_cons, 1},
1900 {"single", s_float_cons, 'f'},
1901 {"stabd", s_mips_stab, 'd'},
1902 {"stabn", s_mips_stab, 'n'},
1903 {"stabs", s_mips_stab, 's'},
1904 {"text", s_change_sec, 't'},
1905 {"word", s_cons, 2},
1906
1907 { "extern", ecoff_directive_extern, 0},
1908
1909 { NULL, NULL, 0 },
1910 };
1911
1912 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1913 {
1914 /* These pseudo-ops should be defined by the object file format.
1915 However, a.out doesn't support them, so we have versions here. */
1916 {"aent", s_mips_ent, 1},
1917 {"bgnb", s_ignore, 0},
1918 {"end", s_mips_end, 0},
1919 {"endb", s_ignore, 0},
1920 {"ent", s_mips_ent, 0},
1921 {"file", s_mips_file, 0},
1922 {"fmask", s_mips_mask, 'F'},
1923 {"frame", s_mips_frame, 0},
1924 {"loc", s_mips_loc, 0},
1925 {"mask", s_mips_mask, 'R'},
1926 {"verstamp", s_ignore, 0},
1927 { NULL, NULL, 0 },
1928 };
1929
1930 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1931 purpose of the `.dc.a' internal pseudo-op. */
1932
1933 int
1934 mips_address_bytes (void)
1935 {
1936 file_mips_check_options ();
1937 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1938 }
1939
1940 extern void pop_insert (const pseudo_typeS *);
1941
1942 void
1943 mips_pop_insert (void)
1944 {
1945 pop_insert (mips_pseudo_table);
1946 if (! ECOFF_DEBUGGING)
1947 pop_insert (mips_nonecoff_pseudo_table);
1948 }
1949 \f
1950 /* Symbols labelling the current insn. */
1951
1952 struct insn_label_list
1953 {
1954 struct insn_label_list *next;
1955 symbolS *label;
1956 };
1957
1958 static struct insn_label_list *free_insn_labels;
1959 #define label_list tc_segment_info_data.labels
1960
1961 static void mips_clear_insn_labels (void);
1962 static void mips_mark_labels (void);
1963 static void mips_compressed_mark_labels (void);
1964
1965 static inline void
1966 mips_clear_insn_labels (void)
1967 {
1968 struct insn_label_list **pl;
1969 segment_info_type *si;
1970
1971 if (now_seg)
1972 {
1973 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1974 ;
1975
1976 si = seg_info (now_seg);
1977 *pl = si->label_list;
1978 si->label_list = NULL;
1979 }
1980 }
1981
1982 /* Mark instruction labels in MIPS16/microMIPS mode. */
1983
1984 static inline void
1985 mips_mark_labels (void)
1986 {
1987 if (HAVE_CODE_COMPRESSION)
1988 mips_compressed_mark_labels ();
1989 }
1990 \f
1991 static char *expr_end;
1992
1993 /* An expression in a macro instruction. This is set by mips_ip and
1994 mips16_ip and when populated is always an O_constant. */
1995
1996 static expressionS imm_expr;
1997
1998 /* The relocatable field in an instruction and the relocs associated
1999 with it. These variables are used for instructions like LUI and
2000 JAL as well as true offsets. They are also used for address
2001 operands in macros. */
2002
2003 static expressionS offset_expr;
2004 static bfd_reloc_code_real_type offset_reloc[3]
2005 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2006
2007 /* This is set to the resulting size of the instruction to be produced
2008 by mips16_ip if an explicit extension is used or by mips_ip if an
2009 explicit size is supplied. */
2010
2011 static unsigned int forced_insn_length;
2012
2013 /* True if we are assembling an instruction. All dot symbols defined during
2014 this time should be treated as code labels. */
2015
2016 static bfd_boolean mips_assembling_insn;
2017
2018 /* The pdr segment for per procedure frame/regmask info. Not used for
2019 ECOFF debugging. */
2020
2021 static segT pdr_seg;
2022
2023 /* The default target format to use. */
2024
2025 #if defined (TE_FreeBSD)
2026 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
2027 #elif defined (TE_TMIPS)
2028 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
2029 #else
2030 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
2031 #endif
2032
2033 const char *
2034 mips_target_format (void)
2035 {
2036 switch (OUTPUT_FLAVOR)
2037 {
2038 case bfd_target_elf_flavour:
2039 #ifdef TE_VXWORKS
2040 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
2041 return (target_big_endian
2042 ? "elf32-bigmips-vxworks"
2043 : "elf32-littlemips-vxworks");
2044 #endif
2045 return (target_big_endian
2046 ? (HAVE_64BIT_OBJECTS
2047 ? ELF_TARGET ("elf64-", "big")
2048 : (HAVE_NEWABI
2049 ? ELF_TARGET ("elf32-n", "big")
2050 : ELF_TARGET ("elf32-", "big")))
2051 : (HAVE_64BIT_OBJECTS
2052 ? ELF_TARGET ("elf64-", "little")
2053 : (HAVE_NEWABI
2054 ? ELF_TARGET ("elf32-n", "little")
2055 : ELF_TARGET ("elf32-", "little"))));
2056 default:
2057 abort ();
2058 return NULL;
2059 }
2060 }
2061
2062 /* Return the ISA revision that is currently in use, or 0 if we are
2063 generating code for MIPS V or below. */
2064
2065 static int
2066 mips_isa_rev (void)
2067 {
2068 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
2069 return 2;
2070
2071 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
2072 return 3;
2073
2074 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
2075 return 5;
2076
2077 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
2078 return 6;
2079
2080 /* microMIPS implies revision 2 or above. */
2081 if (mips_opts.micromips)
2082 return 2;
2083
2084 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
2085 return 1;
2086
2087 return 0;
2088 }
2089
2090 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
2091
2092 static unsigned int
2093 mips_ase_mask (unsigned int flags)
2094 {
2095 unsigned int i;
2096
2097 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2098 if (flags & mips_ase_groups[i])
2099 flags |= mips_ase_groups[i];
2100 return flags;
2101 }
2102
2103 /* Check whether the current ISA supports ASE. Issue a warning if
2104 appropriate. */
2105
2106 static void
2107 mips_check_isa_supports_ase (const struct mips_ase *ase)
2108 {
2109 const char *base;
2110 int min_rev, size;
2111 static unsigned int warned_isa;
2112 static unsigned int warned_fp32;
2113
2114 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2115 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2116 else
2117 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2118 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2119 && (warned_isa & ase->flags) != ase->flags)
2120 {
2121 warned_isa |= ase->flags;
2122 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2123 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2124 if (min_rev < 0)
2125 as_warn (_("the %d-bit %s architecture does not support the"
2126 " `%s' extension"), size, base, ase->name);
2127 else
2128 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2129 ase->name, base, size, min_rev);
2130 }
2131 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2132 && (warned_isa & ase->flags) != ase->flags)
2133 {
2134 warned_isa |= ase->flags;
2135 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2136 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2137 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2138 ase->name, base, size, ase->rem_rev);
2139 }
2140
2141 if ((ase->flags & FP64_ASES)
2142 && mips_opts.fp != 64
2143 && (warned_fp32 & ase->flags) != ase->flags)
2144 {
2145 warned_fp32 |= ase->flags;
2146 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2147 }
2148 }
2149
2150 /* Check all enabled ASEs to see whether they are supported by the
2151 chosen architecture. */
2152
2153 static void
2154 mips_check_isa_supports_ases (void)
2155 {
2156 unsigned int i, mask;
2157
2158 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2159 {
2160 mask = mips_ase_mask (mips_ases[i].flags);
2161 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2162 mips_check_isa_supports_ase (&mips_ases[i]);
2163 }
2164 }
2165
2166 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2167 that were affected. */
2168
2169 static unsigned int
2170 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2171 bfd_boolean enabled_p)
2172 {
2173 unsigned int mask;
2174
2175 mask = mips_ase_mask (ase->flags);
2176 opts->ase &= ~mask;
2177
2178 /* Clear combination ASE flags, which need to be recalculated based on
2179 updated regular ASE settings. */
2180 opts->ase &= ~(ASE_MIPS16E2_MT | ASE_XPA_VIRT);
2181
2182 if (enabled_p)
2183 opts->ase |= ase->flags;
2184
2185 /* The Virtualization ASE has eXtended Physical Addressing (XPA)
2186 instructions which are only valid when both ASEs are enabled.
2187 This sets the ASE_XPA_VIRT flag when both ASEs are present. */
2188 if ((opts->ase & (ASE_XPA | ASE_VIRT)) == (ASE_XPA | ASE_VIRT))
2189 {
2190 opts->ase |= ASE_XPA_VIRT;
2191 mask |= ASE_XPA_VIRT;
2192 }
2193 if ((opts->ase & (ASE_MIPS16E2 | ASE_MT)) == (ASE_MIPS16E2 | ASE_MT))
2194 {
2195 opts->ase |= ASE_MIPS16E2_MT;
2196 mask |= ASE_MIPS16E2_MT;
2197 }
2198
2199 return mask;
2200 }
2201
2202 /* Return the ASE called NAME, or null if none. */
2203
2204 static const struct mips_ase *
2205 mips_lookup_ase (const char *name)
2206 {
2207 unsigned int i;
2208
2209 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2210 if (strcmp (name, mips_ases[i].name) == 0)
2211 return &mips_ases[i];
2212 return NULL;
2213 }
2214
2215 /* Return the length of a microMIPS instruction in bytes. If bits of
2216 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2217 otherwise it is a 32-bit instruction. */
2218
2219 static inline unsigned int
2220 micromips_insn_length (const struct mips_opcode *mo)
2221 {
2222 return mips_opcode_32bit_p (mo) ? 4 : 2;
2223 }
2224
2225 /* Return the length of MIPS16 instruction OPCODE. */
2226
2227 static inline unsigned int
2228 mips16_opcode_length (unsigned long opcode)
2229 {
2230 return (opcode >> 16) == 0 ? 2 : 4;
2231 }
2232
2233 /* Return the length of instruction INSN. */
2234
2235 static inline unsigned int
2236 insn_length (const struct mips_cl_insn *insn)
2237 {
2238 if (mips_opts.micromips)
2239 return micromips_insn_length (insn->insn_mo);
2240 else if (mips_opts.mips16)
2241 return mips16_opcode_length (insn->insn_opcode);
2242 else
2243 return 4;
2244 }
2245
2246 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2247
2248 static void
2249 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2250 {
2251 size_t i;
2252
2253 insn->insn_mo = mo;
2254 insn->insn_opcode = mo->match;
2255 insn->frag = NULL;
2256 insn->where = 0;
2257 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2258 insn->fixp[i] = NULL;
2259 insn->fixed_p = (mips_opts.noreorder > 0);
2260 insn->noreorder_p = (mips_opts.noreorder > 0);
2261 insn->mips16_absolute_jump_p = 0;
2262 insn->complete_p = 0;
2263 insn->cleared_p = 0;
2264 }
2265
2266 /* Get a list of all the operands in INSN. */
2267
2268 static const struct mips_operand_array *
2269 insn_operands (const struct mips_cl_insn *insn)
2270 {
2271 if (insn->insn_mo >= &mips_opcodes[0]
2272 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2273 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2274
2275 if (insn->insn_mo >= &mips16_opcodes[0]
2276 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2277 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2278
2279 if (insn->insn_mo >= &micromips_opcodes[0]
2280 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2281 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2282
2283 abort ();
2284 }
2285
2286 /* Get a description of operand OPNO of INSN. */
2287
2288 static const struct mips_operand *
2289 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2290 {
2291 const struct mips_operand_array *operands;
2292
2293 operands = insn_operands (insn);
2294 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2295 abort ();
2296 return operands->operand[opno];
2297 }
2298
2299 /* Install UVAL as the value of OPERAND in INSN. */
2300
2301 static inline void
2302 insn_insert_operand (struct mips_cl_insn *insn,
2303 const struct mips_operand *operand, unsigned int uval)
2304 {
2305 if (mips_opts.mips16
2306 && operand->type == OP_INT && operand->lsb == 0
2307 && mips_opcode_32bit_p (insn->insn_mo))
2308 insn->insn_opcode |= mips16_immed_extend (uval, operand->size);
2309 else
2310 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2311 }
2312
2313 /* Extract the value of OPERAND from INSN. */
2314
2315 static inline unsigned
2316 insn_extract_operand (const struct mips_cl_insn *insn,
2317 const struct mips_operand *operand)
2318 {
2319 return mips_extract_operand (operand, insn->insn_opcode);
2320 }
2321
2322 /* Record the current MIPS16/microMIPS mode in now_seg. */
2323
2324 static void
2325 mips_record_compressed_mode (void)
2326 {
2327 segment_info_type *si;
2328
2329 si = seg_info (now_seg);
2330 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2331 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2332 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2333 si->tc_segment_info_data.micromips = mips_opts.micromips;
2334 }
2335
2336 /* Read a standard MIPS instruction from BUF. */
2337
2338 static unsigned long
2339 read_insn (char *buf)
2340 {
2341 if (target_big_endian)
2342 return bfd_getb32 ((bfd_byte *) buf);
2343 else
2344 return bfd_getl32 ((bfd_byte *) buf);
2345 }
2346
2347 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2348 the next byte. */
2349
2350 static char *
2351 write_insn (char *buf, unsigned int insn)
2352 {
2353 md_number_to_chars (buf, insn, 4);
2354 return buf + 4;
2355 }
2356
2357 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2358 has length LENGTH. */
2359
2360 static unsigned long
2361 read_compressed_insn (char *buf, unsigned int length)
2362 {
2363 unsigned long insn;
2364 unsigned int i;
2365
2366 insn = 0;
2367 for (i = 0; i < length; i += 2)
2368 {
2369 insn <<= 16;
2370 if (target_big_endian)
2371 insn |= bfd_getb16 ((char *) buf);
2372 else
2373 insn |= bfd_getl16 ((char *) buf);
2374 buf += 2;
2375 }
2376 return insn;
2377 }
2378
2379 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2380 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2381
2382 static char *
2383 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2384 {
2385 unsigned int i;
2386
2387 for (i = 0; i < length; i += 2)
2388 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2389 return buf + length;
2390 }
2391
2392 /* Install INSN at the location specified by its "frag" and "where" fields. */
2393
2394 static void
2395 install_insn (const struct mips_cl_insn *insn)
2396 {
2397 char *f = insn->frag->fr_literal + insn->where;
2398 if (HAVE_CODE_COMPRESSION)
2399 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2400 else
2401 write_insn (f, insn->insn_opcode);
2402 mips_record_compressed_mode ();
2403 }
2404
2405 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2406 and install the opcode in the new location. */
2407
2408 static void
2409 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2410 {
2411 size_t i;
2412
2413 insn->frag = frag;
2414 insn->where = where;
2415 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2416 if (insn->fixp[i] != NULL)
2417 {
2418 insn->fixp[i]->fx_frag = frag;
2419 insn->fixp[i]->fx_where = where;
2420 }
2421 install_insn (insn);
2422 }
2423
2424 /* Add INSN to the end of the output. */
2425
2426 static void
2427 add_fixed_insn (struct mips_cl_insn *insn)
2428 {
2429 char *f = frag_more (insn_length (insn));
2430 move_insn (insn, frag_now, f - frag_now->fr_literal);
2431 }
2432
2433 /* Start a variant frag and move INSN to the start of the variant part,
2434 marking it as fixed. The other arguments are as for frag_var. */
2435
2436 static void
2437 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2438 relax_substateT subtype, symbolS *symbol, offsetT offset)
2439 {
2440 frag_grow (max_chars);
2441 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2442 insn->fixed_p = 1;
2443 frag_var (rs_machine_dependent, max_chars, var,
2444 subtype, symbol, offset, NULL);
2445 }
2446
2447 /* Insert N copies of INSN into the history buffer, starting at
2448 position FIRST. Neither FIRST nor N need to be clipped. */
2449
2450 static void
2451 insert_into_history (unsigned int first, unsigned int n,
2452 const struct mips_cl_insn *insn)
2453 {
2454 if (mips_relax.sequence != 2)
2455 {
2456 unsigned int i;
2457
2458 for (i = ARRAY_SIZE (history); i-- > first;)
2459 if (i >= first + n)
2460 history[i] = history[i - n];
2461 else
2462 history[i] = *insn;
2463 }
2464 }
2465
2466 /* Clear the error in insn_error. */
2467
2468 static void
2469 clear_insn_error (void)
2470 {
2471 memset (&insn_error, 0, sizeof (insn_error));
2472 }
2473
2474 /* Possibly record error message MSG for the current instruction.
2475 If the error is about a particular argument, ARGNUM is the 1-based
2476 number of that argument, otherwise it is 0. FORMAT is the format
2477 of MSG. Return true if MSG was used, false if the current message
2478 was kept. */
2479
2480 static bfd_boolean
2481 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2482 const char *msg)
2483 {
2484 if (argnum == 0)
2485 {
2486 /* Give priority to errors against specific arguments, and to
2487 the first whole-instruction message. */
2488 if (insn_error.msg)
2489 return FALSE;
2490 }
2491 else
2492 {
2493 /* Keep insn_error if it is against a later argument. */
2494 if (argnum < insn_error.min_argnum)
2495 return FALSE;
2496
2497 /* If both errors are against the same argument but are different,
2498 give up on reporting a specific error for this argument.
2499 See the comment about mips_insn_error for details. */
2500 if (argnum == insn_error.min_argnum
2501 && insn_error.msg
2502 && strcmp (insn_error.msg, msg) != 0)
2503 {
2504 insn_error.msg = 0;
2505 insn_error.min_argnum += 1;
2506 return FALSE;
2507 }
2508 }
2509 insn_error.min_argnum = argnum;
2510 insn_error.format = format;
2511 insn_error.msg = msg;
2512 return TRUE;
2513 }
2514
2515 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2516 as for set_insn_error_format. */
2517
2518 static void
2519 set_insn_error (int argnum, const char *msg)
2520 {
2521 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2522 }
2523
2524 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2525 as for set_insn_error_format. */
2526
2527 static void
2528 set_insn_error_i (int argnum, const char *msg, int i)
2529 {
2530 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2531 insn_error.u.i = i;
2532 }
2533
2534 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2535 are as for set_insn_error_format. */
2536
2537 static void
2538 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2539 {
2540 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2541 {
2542 insn_error.u.ss[0] = s1;
2543 insn_error.u.ss[1] = s2;
2544 }
2545 }
2546
2547 /* Report the error in insn_error, which is against assembly code STR. */
2548
2549 static void
2550 report_insn_error (const char *str)
2551 {
2552 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2553
2554 switch (insn_error.format)
2555 {
2556 case ERR_FMT_PLAIN:
2557 as_bad (msg, str);
2558 break;
2559
2560 case ERR_FMT_I:
2561 as_bad (msg, insn_error.u.i, str);
2562 break;
2563
2564 case ERR_FMT_SS:
2565 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2566 break;
2567 }
2568
2569 free ((char *) msg);
2570 }
2571
2572 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2573 the idea is to make it obvious at a glance that each errata is
2574 included. */
2575
2576 static void
2577 init_vr4120_conflicts (void)
2578 {
2579 #define CONFLICT(FIRST, SECOND) \
2580 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2581
2582 /* Errata 21 - [D]DIV[U] after [D]MACC */
2583 CONFLICT (MACC, DIV);
2584 CONFLICT (DMACC, DIV);
2585
2586 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2587 CONFLICT (DMULT, DMULT);
2588 CONFLICT (DMULT, DMACC);
2589 CONFLICT (DMACC, DMULT);
2590 CONFLICT (DMACC, DMACC);
2591
2592 /* Errata 24 - MT{LO,HI} after [D]MACC */
2593 CONFLICT (MACC, MTHILO);
2594 CONFLICT (DMACC, MTHILO);
2595
2596 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2597 instruction is executed immediately after a MACC or DMACC
2598 instruction, the result of [either instruction] is incorrect." */
2599 CONFLICT (MACC, MULT);
2600 CONFLICT (MACC, DMULT);
2601 CONFLICT (DMACC, MULT);
2602 CONFLICT (DMACC, DMULT);
2603
2604 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2605 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2606 DDIV or DDIVU instruction, the result of the MACC or
2607 DMACC instruction is incorrect.". */
2608 CONFLICT (DMULT, MACC);
2609 CONFLICT (DMULT, DMACC);
2610 CONFLICT (DIV, MACC);
2611 CONFLICT (DIV, DMACC);
2612
2613 #undef CONFLICT
2614 }
2615
2616 struct regname {
2617 const char *name;
2618 unsigned int num;
2619 };
2620
2621 #define RNUM_MASK 0x00000ff
2622 #define RTYPE_MASK 0x0ffff00
2623 #define RTYPE_NUM 0x0000100
2624 #define RTYPE_FPU 0x0000200
2625 #define RTYPE_FCC 0x0000400
2626 #define RTYPE_VEC 0x0000800
2627 #define RTYPE_GP 0x0001000
2628 #define RTYPE_CP0 0x0002000
2629 #define RTYPE_PC 0x0004000
2630 #define RTYPE_ACC 0x0008000
2631 #define RTYPE_CCC 0x0010000
2632 #define RTYPE_VI 0x0020000
2633 #define RTYPE_VF 0x0040000
2634 #define RTYPE_R5900_I 0x0080000
2635 #define RTYPE_R5900_Q 0x0100000
2636 #define RTYPE_R5900_R 0x0200000
2637 #define RTYPE_R5900_ACC 0x0400000
2638 #define RTYPE_MSA 0x0800000
2639 #define RWARN 0x8000000
2640
2641 #define GENERIC_REGISTER_NUMBERS \
2642 {"$0", RTYPE_NUM | 0}, \
2643 {"$1", RTYPE_NUM | 1}, \
2644 {"$2", RTYPE_NUM | 2}, \
2645 {"$3", RTYPE_NUM | 3}, \
2646 {"$4", RTYPE_NUM | 4}, \
2647 {"$5", RTYPE_NUM | 5}, \
2648 {"$6", RTYPE_NUM | 6}, \
2649 {"$7", RTYPE_NUM | 7}, \
2650 {"$8", RTYPE_NUM | 8}, \
2651 {"$9", RTYPE_NUM | 9}, \
2652 {"$10", RTYPE_NUM | 10}, \
2653 {"$11", RTYPE_NUM | 11}, \
2654 {"$12", RTYPE_NUM | 12}, \
2655 {"$13", RTYPE_NUM | 13}, \
2656 {"$14", RTYPE_NUM | 14}, \
2657 {"$15", RTYPE_NUM | 15}, \
2658 {"$16", RTYPE_NUM | 16}, \
2659 {"$17", RTYPE_NUM | 17}, \
2660 {"$18", RTYPE_NUM | 18}, \
2661 {"$19", RTYPE_NUM | 19}, \
2662 {"$20", RTYPE_NUM | 20}, \
2663 {"$21", RTYPE_NUM | 21}, \
2664 {"$22", RTYPE_NUM | 22}, \
2665 {"$23", RTYPE_NUM | 23}, \
2666 {"$24", RTYPE_NUM | 24}, \
2667 {"$25", RTYPE_NUM | 25}, \
2668 {"$26", RTYPE_NUM | 26}, \
2669 {"$27", RTYPE_NUM | 27}, \
2670 {"$28", RTYPE_NUM | 28}, \
2671 {"$29", RTYPE_NUM | 29}, \
2672 {"$30", RTYPE_NUM | 30}, \
2673 {"$31", RTYPE_NUM | 31}
2674
2675 #define FPU_REGISTER_NAMES \
2676 {"$f0", RTYPE_FPU | 0}, \
2677 {"$f1", RTYPE_FPU | 1}, \
2678 {"$f2", RTYPE_FPU | 2}, \
2679 {"$f3", RTYPE_FPU | 3}, \
2680 {"$f4", RTYPE_FPU | 4}, \
2681 {"$f5", RTYPE_FPU | 5}, \
2682 {"$f6", RTYPE_FPU | 6}, \
2683 {"$f7", RTYPE_FPU | 7}, \
2684 {"$f8", RTYPE_FPU | 8}, \
2685 {"$f9", RTYPE_FPU | 9}, \
2686 {"$f10", RTYPE_FPU | 10}, \
2687 {"$f11", RTYPE_FPU | 11}, \
2688 {"$f12", RTYPE_FPU | 12}, \
2689 {"$f13", RTYPE_FPU | 13}, \
2690 {"$f14", RTYPE_FPU | 14}, \
2691 {"$f15", RTYPE_FPU | 15}, \
2692 {"$f16", RTYPE_FPU | 16}, \
2693 {"$f17", RTYPE_FPU | 17}, \
2694 {"$f18", RTYPE_FPU | 18}, \
2695 {"$f19", RTYPE_FPU | 19}, \
2696 {"$f20", RTYPE_FPU | 20}, \
2697 {"$f21", RTYPE_FPU | 21}, \
2698 {"$f22", RTYPE_FPU | 22}, \
2699 {"$f23", RTYPE_FPU | 23}, \
2700 {"$f24", RTYPE_FPU | 24}, \
2701 {"$f25", RTYPE_FPU | 25}, \
2702 {"$f26", RTYPE_FPU | 26}, \
2703 {"$f27", RTYPE_FPU | 27}, \
2704 {"$f28", RTYPE_FPU | 28}, \
2705 {"$f29", RTYPE_FPU | 29}, \
2706 {"$f30", RTYPE_FPU | 30}, \
2707 {"$f31", RTYPE_FPU | 31}
2708
2709 #define FPU_CONDITION_CODE_NAMES \
2710 {"$fcc0", RTYPE_FCC | 0}, \
2711 {"$fcc1", RTYPE_FCC | 1}, \
2712 {"$fcc2", RTYPE_FCC | 2}, \
2713 {"$fcc3", RTYPE_FCC | 3}, \
2714 {"$fcc4", RTYPE_FCC | 4}, \
2715 {"$fcc5", RTYPE_FCC | 5}, \
2716 {"$fcc6", RTYPE_FCC | 6}, \
2717 {"$fcc7", RTYPE_FCC | 7}
2718
2719 #define COPROC_CONDITION_CODE_NAMES \
2720 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2721 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2722 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2723 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2724 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2725 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2726 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2727 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2728
2729 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2730 {"$a4", RTYPE_GP | 8}, \
2731 {"$a5", RTYPE_GP | 9}, \
2732 {"$a6", RTYPE_GP | 10}, \
2733 {"$a7", RTYPE_GP | 11}, \
2734 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2735 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2736 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2737 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2738 {"$t0", RTYPE_GP | 12}, \
2739 {"$t1", RTYPE_GP | 13}, \
2740 {"$t2", RTYPE_GP | 14}, \
2741 {"$t3", RTYPE_GP | 15}
2742
2743 #define O32_SYMBOLIC_REGISTER_NAMES \
2744 {"$t0", RTYPE_GP | 8}, \
2745 {"$t1", RTYPE_GP | 9}, \
2746 {"$t2", RTYPE_GP | 10}, \
2747 {"$t3", RTYPE_GP | 11}, \
2748 {"$t4", RTYPE_GP | 12}, \
2749 {"$t5", RTYPE_GP | 13}, \
2750 {"$t6", RTYPE_GP | 14}, \
2751 {"$t7", RTYPE_GP | 15}, \
2752 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2753 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2754 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2755 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2756
2757 /* Remaining symbolic register names */
2758 #define SYMBOLIC_REGISTER_NAMES \
2759 {"$zero", RTYPE_GP | 0}, \
2760 {"$at", RTYPE_GP | 1}, \
2761 {"$AT", RTYPE_GP | 1}, \
2762 {"$v0", RTYPE_GP | 2}, \
2763 {"$v1", RTYPE_GP | 3}, \
2764 {"$a0", RTYPE_GP | 4}, \
2765 {"$a1", RTYPE_GP | 5}, \
2766 {"$a2", RTYPE_GP | 6}, \
2767 {"$a3", RTYPE_GP | 7}, \
2768 {"$s0", RTYPE_GP | 16}, \
2769 {"$s1", RTYPE_GP | 17}, \
2770 {"$s2", RTYPE_GP | 18}, \
2771 {"$s3", RTYPE_GP | 19}, \
2772 {"$s4", RTYPE_GP | 20}, \
2773 {"$s5", RTYPE_GP | 21}, \
2774 {"$s6", RTYPE_GP | 22}, \
2775 {"$s7", RTYPE_GP | 23}, \
2776 {"$t8", RTYPE_GP | 24}, \
2777 {"$t9", RTYPE_GP | 25}, \
2778 {"$k0", RTYPE_GP | 26}, \
2779 {"$kt0", RTYPE_GP | 26}, \
2780 {"$k1", RTYPE_GP | 27}, \
2781 {"$kt1", RTYPE_GP | 27}, \
2782 {"$gp", RTYPE_GP | 28}, \
2783 {"$sp", RTYPE_GP | 29}, \
2784 {"$s8", RTYPE_GP | 30}, \
2785 {"$fp", RTYPE_GP | 30}, \
2786 {"$ra", RTYPE_GP | 31}
2787
2788 #define MIPS16_SPECIAL_REGISTER_NAMES \
2789 {"$pc", RTYPE_PC | 0}
2790
2791 #define MDMX_VECTOR_REGISTER_NAMES \
2792 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2793 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2794 {"$v2", RTYPE_VEC | 2}, \
2795 {"$v3", RTYPE_VEC | 3}, \
2796 {"$v4", RTYPE_VEC | 4}, \
2797 {"$v5", RTYPE_VEC | 5}, \
2798 {"$v6", RTYPE_VEC | 6}, \
2799 {"$v7", RTYPE_VEC | 7}, \
2800 {"$v8", RTYPE_VEC | 8}, \
2801 {"$v9", RTYPE_VEC | 9}, \
2802 {"$v10", RTYPE_VEC | 10}, \
2803 {"$v11", RTYPE_VEC | 11}, \
2804 {"$v12", RTYPE_VEC | 12}, \
2805 {"$v13", RTYPE_VEC | 13}, \
2806 {"$v14", RTYPE_VEC | 14}, \
2807 {"$v15", RTYPE_VEC | 15}, \
2808 {"$v16", RTYPE_VEC | 16}, \
2809 {"$v17", RTYPE_VEC | 17}, \
2810 {"$v18", RTYPE_VEC | 18}, \
2811 {"$v19", RTYPE_VEC | 19}, \
2812 {"$v20", RTYPE_VEC | 20}, \
2813 {"$v21", RTYPE_VEC | 21}, \
2814 {"$v22", RTYPE_VEC | 22}, \
2815 {"$v23", RTYPE_VEC | 23}, \
2816 {"$v24", RTYPE_VEC | 24}, \
2817 {"$v25", RTYPE_VEC | 25}, \
2818 {"$v26", RTYPE_VEC | 26}, \
2819 {"$v27", RTYPE_VEC | 27}, \
2820 {"$v28", RTYPE_VEC | 28}, \
2821 {"$v29", RTYPE_VEC | 29}, \
2822 {"$v30", RTYPE_VEC | 30}, \
2823 {"$v31", RTYPE_VEC | 31}
2824
2825 #define R5900_I_NAMES \
2826 {"$I", RTYPE_R5900_I | 0}
2827
2828 #define R5900_Q_NAMES \
2829 {"$Q", RTYPE_R5900_Q | 0}
2830
2831 #define R5900_R_NAMES \
2832 {"$R", RTYPE_R5900_R | 0}
2833
2834 #define R5900_ACC_NAMES \
2835 {"$ACC", RTYPE_R5900_ACC | 0 }
2836
2837 #define MIPS_DSP_ACCUMULATOR_NAMES \
2838 {"$ac0", RTYPE_ACC | 0}, \
2839 {"$ac1", RTYPE_ACC | 1}, \
2840 {"$ac2", RTYPE_ACC | 2}, \
2841 {"$ac3", RTYPE_ACC | 3}
2842
2843 static const struct regname reg_names[] = {
2844 GENERIC_REGISTER_NUMBERS,
2845 FPU_REGISTER_NAMES,
2846 FPU_CONDITION_CODE_NAMES,
2847 COPROC_CONDITION_CODE_NAMES,
2848
2849 /* The $txx registers depends on the abi,
2850 these will be added later into the symbol table from
2851 one of the tables below once mips_abi is set after
2852 parsing of arguments from the command line. */
2853 SYMBOLIC_REGISTER_NAMES,
2854
2855 MIPS16_SPECIAL_REGISTER_NAMES,
2856 MDMX_VECTOR_REGISTER_NAMES,
2857 R5900_I_NAMES,
2858 R5900_Q_NAMES,
2859 R5900_R_NAMES,
2860 R5900_ACC_NAMES,
2861 MIPS_DSP_ACCUMULATOR_NAMES,
2862 {0, 0}
2863 };
2864
2865 static const struct regname reg_names_o32[] = {
2866 O32_SYMBOLIC_REGISTER_NAMES,
2867 {0, 0}
2868 };
2869
2870 static const struct regname reg_names_n32n64[] = {
2871 N32N64_SYMBOLIC_REGISTER_NAMES,
2872 {0, 0}
2873 };
2874
2875 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2876 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2877 of these register symbols, return the associated vector register,
2878 otherwise return SYMVAL itself. */
2879
2880 static unsigned int
2881 mips_prefer_vec_regno (unsigned int symval)
2882 {
2883 if ((symval & -2) == (RTYPE_GP | 2))
2884 return RTYPE_VEC | (symval & 1);
2885 return symval;
2886 }
2887
2888 /* Return true if string [S, E) is a valid register name, storing its
2889 symbol value in *SYMVAL_PTR if so. */
2890
2891 static bfd_boolean
2892 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2893 {
2894 char save_c;
2895 symbolS *symbol;
2896
2897 /* Terminate name. */
2898 save_c = *e;
2899 *e = '\0';
2900
2901 /* Look up the name. */
2902 symbol = symbol_find (s);
2903 *e = save_c;
2904
2905 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2906 return FALSE;
2907
2908 *symval_ptr = S_GET_VALUE (symbol);
2909 return TRUE;
2910 }
2911
2912 /* Return true if the string at *SPTR is a valid register name. Allow it
2913 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2914 is nonnull.
2915
2916 When returning true, move *SPTR past the register, store the
2917 register's symbol value in *SYMVAL_PTR and the channel mask in
2918 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2919 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2920 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2921
2922 static bfd_boolean
2923 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2924 unsigned int *channels_ptr)
2925 {
2926 char *s, *e, *m;
2927 const char *q;
2928 unsigned int channels, symval, bit;
2929
2930 /* Find end of name. */
2931 s = e = *sptr;
2932 if (is_name_beginner (*e))
2933 ++e;
2934 while (is_part_of_name (*e))
2935 ++e;
2936
2937 channels = 0;
2938 if (!mips_parse_register_1 (s, e, &symval))
2939 {
2940 if (!channels_ptr)
2941 return FALSE;
2942
2943 /* Eat characters from the end of the string that are valid
2944 channel suffixes. The preceding register must be $ACC or
2945 end with a digit, so there is no ambiguity. */
2946 bit = 1;
2947 m = e;
2948 for (q = "wzyx"; *q; q++, bit <<= 1)
2949 if (m > s && m[-1] == *q)
2950 {
2951 --m;
2952 channels |= bit;
2953 }
2954
2955 if (channels == 0
2956 || !mips_parse_register_1 (s, m, &symval)
2957 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2958 return FALSE;
2959 }
2960
2961 *sptr = e;
2962 *symval_ptr = symval;
2963 if (channels_ptr)
2964 *channels_ptr = channels;
2965 return TRUE;
2966 }
2967
2968 /* Check if SPTR points at a valid register specifier according to TYPES.
2969 If so, then return 1, advance S to consume the specifier and store
2970 the register's number in REGNOP, otherwise return 0. */
2971
2972 static int
2973 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2974 {
2975 unsigned int regno;
2976
2977 if (mips_parse_register (s, &regno, NULL))
2978 {
2979 if (types & RTYPE_VEC)
2980 regno = mips_prefer_vec_regno (regno);
2981 if (regno & types)
2982 regno &= RNUM_MASK;
2983 else
2984 regno = ~0;
2985 }
2986 else
2987 {
2988 if (types & RWARN)
2989 as_warn (_("unrecognized register name `%s'"), *s);
2990 regno = ~0;
2991 }
2992 if (regnop)
2993 *regnop = regno;
2994 return regno <= RNUM_MASK;
2995 }
2996
2997 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2998 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2999
3000 static char *
3001 mips_parse_vu0_channels (char *s, unsigned int *channels)
3002 {
3003 unsigned int i;
3004
3005 *channels = 0;
3006 for (i = 0; i < 4; i++)
3007 if (*s == "xyzw"[i])
3008 {
3009 *channels |= 1 << (3 - i);
3010 ++s;
3011 }
3012 return s;
3013 }
3014
3015 /* Token types for parsed operand lists. */
3016 enum mips_operand_token_type {
3017 /* A plain register, e.g. $f2. */
3018 OT_REG,
3019
3020 /* A 4-bit XYZW channel mask. */
3021 OT_CHANNELS,
3022
3023 /* A constant vector index, e.g. [1]. */
3024 OT_INTEGER_INDEX,
3025
3026 /* A register vector index, e.g. [$2]. */
3027 OT_REG_INDEX,
3028
3029 /* A continuous range of registers, e.g. $s0-$s4. */
3030 OT_REG_RANGE,
3031
3032 /* A (possibly relocated) expression. */
3033 OT_INTEGER,
3034
3035 /* A floating-point value. */
3036 OT_FLOAT,
3037
3038 /* A single character. This can be '(', ')' or ',', but '(' only appears
3039 before OT_REGs. */
3040 OT_CHAR,
3041
3042 /* A doubled character, either "--" or "++". */
3043 OT_DOUBLE_CHAR,
3044
3045 /* The end of the operand list. */
3046 OT_END
3047 };
3048
3049 /* A parsed operand token. */
3050 struct mips_operand_token
3051 {
3052 /* The type of token. */
3053 enum mips_operand_token_type type;
3054 union
3055 {
3056 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
3057 unsigned int regno;
3058
3059 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
3060 unsigned int channels;
3061
3062 /* The integer value of an OT_INTEGER_INDEX. */
3063 addressT index;
3064
3065 /* The two register symbol values involved in an OT_REG_RANGE. */
3066 struct {
3067 unsigned int regno1;
3068 unsigned int regno2;
3069 } reg_range;
3070
3071 /* The value of an OT_INTEGER. The value is represented as an
3072 expression and the relocation operators that were applied to
3073 that expression. The reloc entries are BFD_RELOC_UNUSED if no
3074 relocation operators were used. */
3075 struct {
3076 expressionS value;
3077 bfd_reloc_code_real_type relocs[3];
3078 } integer;
3079
3080 /* The binary data for an OT_FLOAT constant, and the number of bytes
3081 in the constant. */
3082 struct {
3083 unsigned char data[8];
3084 int length;
3085 } flt;
3086
3087 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
3088 char ch;
3089 } u;
3090 };
3091
3092 /* An obstack used to construct lists of mips_operand_tokens. */
3093 static struct obstack mips_operand_tokens;
3094
3095 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
3096
3097 static void
3098 mips_add_token (struct mips_operand_token *token,
3099 enum mips_operand_token_type type)
3100 {
3101 token->type = type;
3102 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
3103 }
3104
3105 /* Check whether S is '(' followed by a register name. Add OT_CHAR
3106 and OT_REG tokens for them if so, and return a pointer to the first
3107 unconsumed character. Return null otherwise. */
3108
3109 static char *
3110 mips_parse_base_start (char *s)
3111 {
3112 struct mips_operand_token token;
3113 unsigned int regno, channels;
3114 bfd_boolean decrement_p;
3115
3116 if (*s != '(')
3117 return 0;
3118
3119 ++s;
3120 SKIP_SPACE_TABS (s);
3121
3122 /* Only match "--" as part of a base expression. In other contexts "--X"
3123 is a double negative. */
3124 decrement_p = (s[0] == '-' && s[1] == '-');
3125 if (decrement_p)
3126 {
3127 s += 2;
3128 SKIP_SPACE_TABS (s);
3129 }
3130
3131 /* Allow a channel specifier because that leads to better error messages
3132 than treating something like "$vf0x++" as an expression. */
3133 if (!mips_parse_register (&s, &regno, &channels))
3134 return 0;
3135
3136 token.u.ch = '(';
3137 mips_add_token (&token, OT_CHAR);
3138
3139 if (decrement_p)
3140 {
3141 token.u.ch = '-';
3142 mips_add_token (&token, OT_DOUBLE_CHAR);
3143 }
3144
3145 token.u.regno = regno;
3146 mips_add_token (&token, OT_REG);
3147
3148 if (channels)
3149 {
3150 token.u.channels = channels;
3151 mips_add_token (&token, OT_CHANNELS);
3152 }
3153
3154 /* For consistency, only match "++" as part of base expressions too. */
3155 SKIP_SPACE_TABS (s);
3156 if (s[0] == '+' && s[1] == '+')
3157 {
3158 s += 2;
3159 token.u.ch = '+';
3160 mips_add_token (&token, OT_DOUBLE_CHAR);
3161 }
3162
3163 return s;
3164 }
3165
3166 /* Parse one or more tokens from S. Return a pointer to the first
3167 unconsumed character on success. Return null if an error was found
3168 and store the error text in insn_error. FLOAT_FORMAT is as for
3169 mips_parse_arguments. */
3170
3171 static char *
3172 mips_parse_argument_token (char *s, char float_format)
3173 {
3174 char *end, *save_in;
3175 const char *err;
3176 unsigned int regno1, regno2, channels;
3177 struct mips_operand_token token;
3178
3179 /* First look for "($reg", since we want to treat that as an
3180 OT_CHAR and OT_REG rather than an expression. */
3181 end = mips_parse_base_start (s);
3182 if (end)
3183 return end;
3184
3185 /* Handle other characters that end up as OT_CHARs. */
3186 if (*s == ')' || *s == ',')
3187 {
3188 token.u.ch = *s;
3189 mips_add_token (&token, OT_CHAR);
3190 ++s;
3191 return s;
3192 }
3193
3194 /* Handle tokens that start with a register. */
3195 if (mips_parse_register (&s, &regno1, &channels))
3196 {
3197 if (channels)
3198 {
3199 /* A register and a VU0 channel suffix. */
3200 token.u.regno = regno1;
3201 mips_add_token (&token, OT_REG);
3202
3203 token.u.channels = channels;
3204 mips_add_token (&token, OT_CHANNELS);
3205 return s;
3206 }
3207
3208 SKIP_SPACE_TABS (s);
3209 if (*s == '-')
3210 {
3211 /* A register range. */
3212 ++s;
3213 SKIP_SPACE_TABS (s);
3214 if (!mips_parse_register (&s, &regno2, NULL))
3215 {
3216 set_insn_error (0, _("invalid register range"));
3217 return 0;
3218 }
3219
3220 token.u.reg_range.regno1 = regno1;
3221 token.u.reg_range.regno2 = regno2;
3222 mips_add_token (&token, OT_REG_RANGE);
3223 return s;
3224 }
3225
3226 /* Add the register itself. */
3227 token.u.regno = regno1;
3228 mips_add_token (&token, OT_REG);
3229
3230 /* Check for a vector index. */
3231 if (*s == '[')
3232 {
3233 ++s;
3234 SKIP_SPACE_TABS (s);
3235 if (mips_parse_register (&s, &token.u.regno, NULL))
3236 mips_add_token (&token, OT_REG_INDEX);
3237 else
3238 {
3239 expressionS element;
3240
3241 my_getExpression (&element, s);
3242 if (element.X_op != O_constant)
3243 {
3244 set_insn_error (0, _("vector element must be constant"));
3245 return 0;
3246 }
3247 s = expr_end;
3248 token.u.index = element.X_add_number;
3249 mips_add_token (&token, OT_INTEGER_INDEX);
3250 }
3251 SKIP_SPACE_TABS (s);
3252 if (*s != ']')
3253 {
3254 set_insn_error (0, _("missing `]'"));
3255 return 0;
3256 }
3257 ++s;
3258 }
3259 return s;
3260 }
3261
3262 if (float_format)
3263 {
3264 /* First try to treat expressions as floats. */
3265 save_in = input_line_pointer;
3266 input_line_pointer = s;
3267 err = md_atof (float_format, (char *) token.u.flt.data,
3268 &token.u.flt.length);
3269 end = input_line_pointer;
3270 input_line_pointer = save_in;
3271 if (err && *err)
3272 {
3273 set_insn_error (0, err);
3274 return 0;
3275 }
3276 if (s != end)
3277 {
3278 mips_add_token (&token, OT_FLOAT);
3279 return end;
3280 }
3281 }
3282
3283 /* Treat everything else as an integer expression. */
3284 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3285 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3286 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3287 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3288 s = expr_end;
3289 mips_add_token (&token, OT_INTEGER);
3290 return s;
3291 }
3292
3293 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3294 if expressions should be treated as 32-bit floating-point constants,
3295 'd' if they should be treated as 64-bit floating-point constants,
3296 or 0 if they should be treated as integer expressions (the usual case).
3297
3298 Return a list of tokens on success, otherwise return 0. The caller
3299 must obstack_free the list after use. */
3300
3301 static struct mips_operand_token *
3302 mips_parse_arguments (char *s, char float_format)
3303 {
3304 struct mips_operand_token token;
3305
3306 SKIP_SPACE_TABS (s);
3307 while (*s)
3308 {
3309 s = mips_parse_argument_token (s, float_format);
3310 if (!s)
3311 {
3312 obstack_free (&mips_operand_tokens,
3313 obstack_finish (&mips_operand_tokens));
3314 return 0;
3315 }
3316 SKIP_SPACE_TABS (s);
3317 }
3318 mips_add_token (&token, OT_END);
3319 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3320 }
3321
3322 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3323 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3324
3325 static bfd_boolean
3326 is_opcode_valid (const struct mips_opcode *mo)
3327 {
3328 int isa = mips_opts.isa;
3329 int ase = mips_opts.ase;
3330 int fp_s, fp_d;
3331 unsigned int i;
3332
3333 if (ISA_HAS_64BIT_REGS (isa))
3334 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3335 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3336 ase |= mips_ases[i].flags64;
3337
3338 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3339 return FALSE;
3340
3341 /* Check whether the instruction or macro requires single-precision or
3342 double-precision floating-point support. Note that this information is
3343 stored differently in the opcode table for insns and macros. */
3344 if (mo->pinfo == INSN_MACRO)
3345 {
3346 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3347 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3348 }
3349 else
3350 {
3351 fp_s = mo->pinfo & FP_S;
3352 fp_d = mo->pinfo & FP_D;
3353 }
3354
3355 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3356 return FALSE;
3357
3358 if (fp_s && mips_opts.soft_float)
3359 return FALSE;
3360
3361 return TRUE;
3362 }
3363
3364 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3365 selected ISA and architecture. */
3366
3367 static bfd_boolean
3368 is_opcode_valid_16 (const struct mips_opcode *mo)
3369 {
3370 int isa = mips_opts.isa;
3371 int ase = mips_opts.ase;
3372 unsigned int i;
3373
3374 if (ISA_HAS_64BIT_REGS (isa))
3375 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3376 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3377 ase |= mips_ases[i].flags64;
3378
3379 return opcode_is_member (mo, isa, ase, mips_opts.arch);
3380 }
3381
3382 /* Return TRUE if the size of the microMIPS opcode MO matches one
3383 explicitly requested. Always TRUE in the standard MIPS mode.
3384 Use is_size_valid_16 for MIPS16 opcodes. */
3385
3386 static bfd_boolean
3387 is_size_valid (const struct mips_opcode *mo)
3388 {
3389 if (!mips_opts.micromips)
3390 return TRUE;
3391
3392 if (mips_opts.insn32)
3393 {
3394 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3395 return FALSE;
3396 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3397 return FALSE;
3398 }
3399 if (!forced_insn_length)
3400 return TRUE;
3401 if (mo->pinfo == INSN_MACRO)
3402 return FALSE;
3403 return forced_insn_length == micromips_insn_length (mo);
3404 }
3405
3406 /* Return TRUE if the size of the MIPS16 opcode MO matches one
3407 explicitly requested. */
3408
3409 static bfd_boolean
3410 is_size_valid_16 (const struct mips_opcode *mo)
3411 {
3412 if (!forced_insn_length)
3413 return TRUE;
3414 if (mo->pinfo == INSN_MACRO)
3415 return FALSE;
3416 if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
3417 return FALSE;
3418 if (forced_insn_length == 4 && (mo->pinfo2 & INSN2_SHORT_ONLY))
3419 return FALSE;
3420 return TRUE;
3421 }
3422
3423 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3424 of the preceding instruction. Always TRUE in the standard MIPS mode.
3425
3426 We don't accept macros in 16-bit delay slots to avoid a case where
3427 a macro expansion fails because it relies on a preceding 32-bit real
3428 instruction to have matched and does not handle the operands correctly.
3429 The only macros that may expand to 16-bit instructions are JAL that
3430 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3431 and BGT (that likewise cannot be placed in a delay slot) that decay to
3432 a NOP. In all these cases the macros precede any corresponding real
3433 instruction definitions in the opcode table, so they will match in the
3434 second pass where the size of the delay slot is ignored and therefore
3435 produce correct code. */
3436
3437 static bfd_boolean
3438 is_delay_slot_valid (const struct mips_opcode *mo)
3439 {
3440 if (!mips_opts.micromips)
3441 return TRUE;
3442
3443 if (mo->pinfo == INSN_MACRO)
3444 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3445 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3446 && micromips_insn_length (mo) != 4)
3447 return FALSE;
3448 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3449 && micromips_insn_length (mo) != 2)
3450 return FALSE;
3451
3452 return TRUE;
3453 }
3454
3455 /* For consistency checking, verify that all bits of OPCODE are specified
3456 either by the match/mask part of the instruction definition, or by the
3457 operand list. Also build up a list of operands in OPERANDS.
3458
3459 INSN_BITS says which bits of the instruction are significant.
3460 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3461 provides the mips_operand description of each operand. DECODE_OPERAND
3462 is null for MIPS16 instructions. */
3463
3464 static int
3465 validate_mips_insn (const struct mips_opcode *opcode,
3466 unsigned long insn_bits,
3467 const struct mips_operand *(*decode_operand) (const char *),
3468 struct mips_operand_array *operands)
3469 {
3470 const char *s;
3471 unsigned long used_bits, doubled, undefined, opno, mask;
3472 const struct mips_operand *operand;
3473
3474 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3475 if ((mask & opcode->match) != opcode->match)
3476 {
3477 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3478 opcode->name, opcode->args);
3479 return 0;
3480 }
3481 used_bits = 0;
3482 opno = 0;
3483 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3484 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3485 for (s = opcode->args; *s; ++s)
3486 switch (*s)
3487 {
3488 case ',':
3489 case '(':
3490 case ')':
3491 break;
3492
3493 case '#':
3494 s++;
3495 break;
3496
3497 default:
3498 if (!decode_operand)
3499 operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
3500 else
3501 operand = decode_operand (s);
3502 if (!operand && opcode->pinfo != INSN_MACRO)
3503 {
3504 as_bad (_("internal: unknown operand type: %s %s"),
3505 opcode->name, opcode->args);
3506 return 0;
3507 }
3508 gas_assert (opno < MAX_OPERANDS);
3509 operands->operand[opno] = operand;
3510 if (!decode_operand && operand
3511 && operand->type == OP_INT && operand->lsb == 0
3512 && mips_opcode_32bit_p (opcode))
3513 used_bits |= mips16_immed_extend (-1, operand->size);
3514 else if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3515 {
3516 used_bits = mips_insert_operand (operand, used_bits, -1);
3517 if (operand->type == OP_MDMX_IMM_REG)
3518 /* Bit 5 is the format selector (OB vs QH). The opcode table
3519 has separate entries for each format. */
3520 used_bits &= ~(1 << (operand->lsb + 5));
3521 if (operand->type == OP_ENTRY_EXIT_LIST)
3522 used_bits &= ~(mask & 0x700);
3523 /* interAptiv MR2 SAVE/RESTORE instructions have a discontiguous
3524 operand field that cannot be fully described with LSB/SIZE. */
3525 if (operand->type == OP_SAVE_RESTORE_LIST && operand->lsb == 6)
3526 used_bits &= ~0x6000;
3527 }
3528 /* Skip prefix characters. */
3529 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3530 ++s;
3531 opno += 1;
3532 break;
3533 }
3534 doubled = used_bits & mask & insn_bits;
3535 if (doubled)
3536 {
3537 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3538 " %s %s"), doubled, opcode->name, opcode->args);
3539 return 0;
3540 }
3541 used_bits |= mask;
3542 undefined = ~used_bits & insn_bits;
3543 if (opcode->pinfo != INSN_MACRO && undefined)
3544 {
3545 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3546 undefined, opcode->name, opcode->args);
3547 return 0;
3548 }
3549 used_bits &= ~insn_bits;
3550 if (used_bits)
3551 {
3552 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3553 used_bits, opcode->name, opcode->args);
3554 return 0;
3555 }
3556 return 1;
3557 }
3558
3559 /* The MIPS16 version of validate_mips_insn. */
3560
3561 static int
3562 validate_mips16_insn (const struct mips_opcode *opcode,
3563 struct mips_operand_array *operands)
3564 {
3565 unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
3566
3567 return validate_mips_insn (opcode, insn_bits, 0, operands);
3568 }
3569
3570 /* The microMIPS version of validate_mips_insn. */
3571
3572 static int
3573 validate_micromips_insn (const struct mips_opcode *opc,
3574 struct mips_operand_array *operands)
3575 {
3576 unsigned long insn_bits;
3577 unsigned long major;
3578 unsigned int length;
3579
3580 if (opc->pinfo == INSN_MACRO)
3581 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3582 operands);
3583
3584 length = micromips_insn_length (opc);
3585 if (length != 2 && length != 4)
3586 {
3587 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3588 "%s %s"), length, opc->name, opc->args);
3589 return 0;
3590 }
3591 major = opc->match >> (10 + 8 * (length - 2));
3592 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3593 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3594 {
3595 as_bad (_("internal error: bad microMIPS opcode "
3596 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3597 return 0;
3598 }
3599
3600 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3601 insn_bits = 1 << 4 * length;
3602 insn_bits <<= 4 * length;
3603 insn_bits -= 1;
3604 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3605 operands);
3606 }
3607
3608 /* This function is called once, at assembler startup time. It should set up
3609 all the tables, etc. that the MD part of the assembler will need. */
3610
3611 void
3612 md_begin (void)
3613 {
3614 const char *retval = NULL;
3615 int i = 0;
3616 int broken = 0;
3617
3618 if (mips_pic != NO_PIC)
3619 {
3620 if (g_switch_seen && g_switch_value != 0)
3621 as_bad (_("-G may not be used in position-independent code"));
3622 g_switch_value = 0;
3623 }
3624 else if (mips_abicalls)
3625 {
3626 if (g_switch_seen && g_switch_value != 0)
3627 as_bad (_("-G may not be used with abicalls"));
3628 g_switch_value = 0;
3629 }
3630
3631 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3632 as_warn (_("could not set architecture and machine"));
3633
3634 op_hash = hash_new ();
3635
3636 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3637 for (i = 0; i < NUMOPCODES;)
3638 {
3639 const char *name = mips_opcodes[i].name;
3640
3641 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3642 if (retval != NULL)
3643 {
3644 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3645 mips_opcodes[i].name, retval);
3646 /* Probably a memory allocation problem? Give up now. */
3647 as_fatal (_("broken assembler, no assembly attempted"));
3648 }
3649 do
3650 {
3651 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3652 decode_mips_operand, &mips_operands[i]))
3653 broken = 1;
3654 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3655 {
3656 create_insn (&nop_insn, mips_opcodes + i);
3657 if (mips_fix_loongson2f_nop)
3658 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3659 nop_insn.fixed_p = 1;
3660 }
3661 ++i;
3662 }
3663 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3664 }
3665
3666 mips16_op_hash = hash_new ();
3667 mips16_operands = XCNEWVEC (struct mips_operand_array,
3668 bfd_mips16_num_opcodes);
3669
3670 i = 0;
3671 while (i < bfd_mips16_num_opcodes)
3672 {
3673 const char *name = mips16_opcodes[i].name;
3674
3675 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3676 if (retval != NULL)
3677 as_fatal (_("internal: can't hash `%s': %s"),
3678 mips16_opcodes[i].name, retval);
3679 do
3680 {
3681 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3682 broken = 1;
3683 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3684 {
3685 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3686 mips16_nop_insn.fixed_p = 1;
3687 }
3688 ++i;
3689 }
3690 while (i < bfd_mips16_num_opcodes
3691 && strcmp (mips16_opcodes[i].name, name) == 0);
3692 }
3693
3694 micromips_op_hash = hash_new ();
3695 micromips_operands = XCNEWVEC (struct mips_operand_array,
3696 bfd_micromips_num_opcodes);
3697
3698 i = 0;
3699 while (i < bfd_micromips_num_opcodes)
3700 {
3701 const char *name = micromips_opcodes[i].name;
3702
3703 retval = hash_insert (micromips_op_hash, name,
3704 (void *) &micromips_opcodes[i]);
3705 if (retval != NULL)
3706 as_fatal (_("internal: can't hash `%s': %s"),
3707 micromips_opcodes[i].name, retval);
3708 do
3709 {
3710 struct mips_cl_insn *micromips_nop_insn;
3711
3712 if (!validate_micromips_insn (&micromips_opcodes[i],
3713 &micromips_operands[i]))
3714 broken = 1;
3715
3716 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3717 {
3718 if (micromips_insn_length (micromips_opcodes + i) == 2)
3719 micromips_nop_insn = &micromips_nop16_insn;
3720 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3721 micromips_nop_insn = &micromips_nop32_insn;
3722 else
3723 continue;
3724
3725 if (micromips_nop_insn->insn_mo == NULL
3726 && strcmp (name, "nop") == 0)
3727 {
3728 create_insn (micromips_nop_insn, micromips_opcodes + i);
3729 micromips_nop_insn->fixed_p = 1;
3730 }
3731 }
3732 }
3733 while (++i < bfd_micromips_num_opcodes
3734 && strcmp (micromips_opcodes[i].name, name) == 0);
3735 }
3736
3737 if (broken)
3738 as_fatal (_("broken assembler, no assembly attempted"));
3739
3740 /* We add all the general register names to the symbol table. This
3741 helps us detect invalid uses of them. */
3742 for (i = 0; reg_names[i].name; i++)
3743 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3744 reg_names[i].num, /* & RNUM_MASK, */
3745 &zero_address_frag));
3746 if (HAVE_NEWABI)
3747 for (i = 0; reg_names_n32n64[i].name; i++)
3748 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3749 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3750 &zero_address_frag));
3751 else
3752 for (i = 0; reg_names_o32[i].name; i++)
3753 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3754 reg_names_o32[i].num, /* & RNUM_MASK, */
3755 &zero_address_frag));
3756
3757 for (i = 0; i < 32; i++)
3758 {
3759 char regname[6];
3760
3761 /* R5900 VU0 floating-point register. */
3762 sprintf (regname, "$vf%d", i);
3763 symbol_table_insert (symbol_new (regname, reg_section,
3764 RTYPE_VF | i, &zero_address_frag));
3765
3766 /* R5900 VU0 integer register. */
3767 sprintf (regname, "$vi%d", i);
3768 symbol_table_insert (symbol_new (regname, reg_section,
3769 RTYPE_VI | i, &zero_address_frag));
3770
3771 /* MSA register. */
3772 sprintf (regname, "$w%d", i);
3773 symbol_table_insert (symbol_new (regname, reg_section,
3774 RTYPE_MSA | i, &zero_address_frag));
3775 }
3776
3777 obstack_init (&mips_operand_tokens);
3778
3779 mips_no_prev_insn ();
3780
3781 mips_gprmask = 0;
3782 mips_cprmask[0] = 0;
3783 mips_cprmask[1] = 0;
3784 mips_cprmask[2] = 0;
3785 mips_cprmask[3] = 0;
3786
3787 /* set the default alignment for the text section (2**2) */
3788 record_alignment (text_section, 2);
3789
3790 bfd_set_gp_size (stdoutput, g_switch_value);
3791
3792 /* On a native system other than VxWorks, sections must be aligned
3793 to 16 byte boundaries. When configured for an embedded ELF
3794 target, we don't bother. */
3795 if (strncmp (TARGET_OS, "elf", 3) != 0
3796 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3797 {
3798 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3799 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3800 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3801 }
3802
3803 /* Create a .reginfo section for register masks and a .mdebug
3804 section for debugging information. */
3805 {
3806 segT seg;
3807 subsegT subseg;
3808 flagword flags;
3809 segT sec;
3810
3811 seg = now_seg;
3812 subseg = now_subseg;
3813
3814 /* The ABI says this section should be loaded so that the
3815 running program can access it. However, we don't load it
3816 if we are configured for an embedded target */
3817 flags = SEC_READONLY | SEC_DATA;
3818 if (strncmp (TARGET_OS, "elf", 3) != 0)
3819 flags |= SEC_ALLOC | SEC_LOAD;
3820
3821 if (mips_abi != N64_ABI)
3822 {
3823 sec = subseg_new (".reginfo", (subsegT) 0);
3824
3825 bfd_set_section_flags (stdoutput, sec, flags);
3826 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3827
3828 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3829 }
3830 else
3831 {
3832 /* The 64-bit ABI uses a .MIPS.options section rather than
3833 .reginfo section. */
3834 sec = subseg_new (".MIPS.options", (subsegT) 0);
3835 bfd_set_section_flags (stdoutput, sec, flags);
3836 bfd_set_section_alignment (stdoutput, sec, 3);
3837
3838 /* Set up the option header. */
3839 {
3840 Elf_Internal_Options opthdr;
3841 char *f;
3842
3843 opthdr.kind = ODK_REGINFO;
3844 opthdr.size = (sizeof (Elf_External_Options)
3845 + sizeof (Elf64_External_RegInfo));
3846 opthdr.section = 0;
3847 opthdr.info = 0;
3848 f = frag_more (sizeof (Elf_External_Options));
3849 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3850 (Elf_External_Options *) f);
3851
3852 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3853 }
3854 }
3855
3856 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3857 bfd_set_section_flags (stdoutput, sec,
3858 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3859 bfd_set_section_alignment (stdoutput, sec, 3);
3860 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3861
3862 if (ECOFF_DEBUGGING)
3863 {
3864 sec = subseg_new (".mdebug", (subsegT) 0);
3865 (void) bfd_set_section_flags (stdoutput, sec,
3866 SEC_HAS_CONTENTS | SEC_READONLY);
3867 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3868 }
3869 else if (mips_flag_pdr)
3870 {
3871 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3872 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3873 SEC_READONLY | SEC_RELOC
3874 | SEC_DEBUGGING);
3875 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3876 }
3877
3878 subseg_set (seg, subseg);
3879 }
3880
3881 if (mips_fix_vr4120)
3882 init_vr4120_conflicts ();
3883 }
3884
3885 static inline void
3886 fpabi_incompatible_with (int fpabi, const char *what)
3887 {
3888 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3889 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3890 }
3891
3892 static inline void
3893 fpabi_requires (int fpabi, const char *what)
3894 {
3895 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3896 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3897 }
3898
3899 /* Check -mabi and register sizes against the specified FP ABI. */
3900 static void
3901 check_fpabi (int fpabi)
3902 {
3903 switch (fpabi)
3904 {
3905 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3906 if (file_mips_opts.soft_float)
3907 fpabi_incompatible_with (fpabi, "softfloat");
3908 else if (file_mips_opts.single_float)
3909 fpabi_incompatible_with (fpabi, "singlefloat");
3910 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3911 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3912 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3913 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3914 break;
3915
3916 case Val_GNU_MIPS_ABI_FP_XX:
3917 if (mips_abi != O32_ABI)
3918 fpabi_requires (fpabi, "-mabi=32");
3919 else if (file_mips_opts.soft_float)
3920 fpabi_incompatible_with (fpabi, "softfloat");
3921 else if (file_mips_opts.single_float)
3922 fpabi_incompatible_with (fpabi, "singlefloat");
3923 else if (file_mips_opts.fp != 0)
3924 fpabi_requires (fpabi, "fp=xx");
3925 break;
3926
3927 case Val_GNU_MIPS_ABI_FP_64A:
3928 case Val_GNU_MIPS_ABI_FP_64:
3929 if (mips_abi != O32_ABI)
3930 fpabi_requires (fpabi, "-mabi=32");
3931 else if (file_mips_opts.soft_float)
3932 fpabi_incompatible_with (fpabi, "softfloat");
3933 else if (file_mips_opts.single_float)
3934 fpabi_incompatible_with (fpabi, "singlefloat");
3935 else if (file_mips_opts.fp != 64)
3936 fpabi_requires (fpabi, "fp=64");
3937 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3938 fpabi_incompatible_with (fpabi, "nooddspreg");
3939 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3940 fpabi_requires (fpabi, "nooddspreg");
3941 break;
3942
3943 case Val_GNU_MIPS_ABI_FP_SINGLE:
3944 if (file_mips_opts.soft_float)
3945 fpabi_incompatible_with (fpabi, "softfloat");
3946 else if (!file_mips_opts.single_float)
3947 fpabi_requires (fpabi, "singlefloat");
3948 break;
3949
3950 case Val_GNU_MIPS_ABI_FP_SOFT:
3951 if (!file_mips_opts.soft_float)
3952 fpabi_requires (fpabi, "softfloat");
3953 break;
3954
3955 case Val_GNU_MIPS_ABI_FP_OLD_64:
3956 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3957 Tag_GNU_MIPS_ABI_FP, fpabi);
3958 break;
3959
3960 case Val_GNU_MIPS_ABI_FP_NAN2008:
3961 /* Silently ignore compatibility value. */
3962 break;
3963
3964 default:
3965 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3966 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3967 break;
3968 }
3969 }
3970
3971 /* Perform consistency checks on the current options. */
3972
3973 static void
3974 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3975 {
3976 /* Check the size of integer registers agrees with the ABI and ISA. */
3977 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3978 as_bad (_("`gp=64' used with a 32-bit processor"));
3979 else if (abi_checks
3980 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3981 as_bad (_("`gp=32' used with a 64-bit ABI"));
3982 else if (abi_checks
3983 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3984 as_bad (_("`gp=64' used with a 32-bit ABI"));
3985
3986 /* Check the size of the float registers agrees with the ABI and ISA. */
3987 switch (opts->fp)
3988 {
3989 case 0:
3990 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3991 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3992 else if (opts->single_float == 1)
3993 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3994 break;
3995 case 64:
3996 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3997 as_bad (_("`fp=64' used with a 32-bit fpu"));
3998 else if (abi_checks
3999 && ABI_NEEDS_32BIT_REGS (mips_abi)
4000 && !ISA_HAS_MXHC1 (opts->isa))
4001 as_warn (_("`fp=64' used with a 32-bit ABI"));
4002 break;
4003 case 32:
4004 if (abi_checks
4005 && ABI_NEEDS_64BIT_REGS (mips_abi))
4006 as_warn (_("`fp=32' used with a 64-bit ABI"));
4007 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
4008 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
4009 break;
4010 default:
4011 as_bad (_("Unknown size of floating point registers"));
4012 break;
4013 }
4014
4015 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
4016 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
4017
4018 if (opts->micromips == 1 && opts->mips16 == 1)
4019 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
4020 else if (ISA_IS_R6 (opts->isa)
4021 && (opts->micromips == 1
4022 || opts->mips16 == 1))
4023 as_fatal (_("`%s' cannot be used with `%s'"),
4024 opts->micromips ? "micromips" : "mips16",
4025 mips_cpu_info_from_isa (opts->isa)->name);
4026
4027 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
4028 as_fatal (_("branch relaxation is not supported in `%s'"),
4029 mips_cpu_info_from_isa (opts->isa)->name);
4030 }
4031
4032 /* Perform consistency checks on the module level options exactly once.
4033 This is a deferred check that happens:
4034 at the first .set directive
4035 or, at the first pseudo op that generates code (inc .dc.a)
4036 or, at the first instruction
4037 or, at the end. */
4038
4039 static void
4040 file_mips_check_options (void)
4041 {
4042 const struct mips_cpu_info *arch_info = 0;
4043
4044 if (file_mips_opts_checked)
4045 return;
4046
4047 /* The following code determines the register size.
4048 Similar code was added to GCC 3.3 (see override_options() in
4049 config/mips/mips.c). The GAS and GCC code should be kept in sync
4050 as much as possible. */
4051
4052 if (file_mips_opts.gp < 0)
4053 {
4054 /* Infer the integer register size from the ABI and processor.
4055 Restrict ourselves to 32-bit registers if that's all the
4056 processor has, or if the ABI cannot handle 64-bit registers. */
4057 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
4058 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
4059 ? 32 : 64;
4060 }
4061
4062 if (file_mips_opts.fp < 0)
4063 {
4064 /* No user specified float register size.
4065 ??? GAS treats single-float processors as though they had 64-bit
4066 float registers (although it complains when double-precision
4067 instructions are used). As things stand, saying they have 32-bit
4068 registers would lead to spurious "register must be even" messages.
4069 So here we assume float registers are never smaller than the
4070 integer ones. */
4071 if (file_mips_opts.gp == 64)
4072 /* 64-bit integer registers implies 64-bit float registers. */
4073 file_mips_opts.fp = 64;
4074 else if ((file_mips_opts.ase & FP64_ASES)
4075 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
4076 /* Handle ASEs that require 64-bit float registers, if possible. */
4077 file_mips_opts.fp = 64;
4078 else if (ISA_IS_R6 (mips_opts.isa))
4079 /* R6 implies 64-bit float registers. */
4080 file_mips_opts.fp = 64;
4081 else
4082 /* 32-bit float registers. */
4083 file_mips_opts.fp = 32;
4084 }
4085
4086 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
4087
4088 /* Disable operations on odd-numbered floating-point registers by default
4089 when using the FPXX ABI. */
4090 if (file_mips_opts.oddspreg < 0)
4091 {
4092 if (file_mips_opts.fp == 0)
4093 file_mips_opts.oddspreg = 0;
4094 else
4095 file_mips_opts.oddspreg = 1;
4096 }
4097
4098 /* End of GCC-shared inference code. */
4099
4100 /* This flag is set when we have a 64-bit capable CPU but use only
4101 32-bit wide registers. Note that EABI does not use it. */
4102 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
4103 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
4104 || mips_abi == O32_ABI))
4105 mips_32bitmode = 1;
4106
4107 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
4108 as_bad (_("trap exception not supported at ISA 1"));
4109
4110 /* If the selected architecture includes support for ASEs, enable
4111 generation of code for them. */
4112 if (file_mips_opts.mips16 == -1)
4113 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
4114 if (file_mips_opts.micromips == -1)
4115 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
4116 ? 1 : 0;
4117
4118 if (mips_nan2008 == -1)
4119 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
4120 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
4121 as_fatal (_("`%s' does not support legacy NaN"),
4122 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
4123
4124 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
4125 being selected implicitly. */
4126 if (file_mips_opts.fp != 64)
4127 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
4128
4129 /* If the user didn't explicitly select or deselect a particular ASE,
4130 use the default setting for the CPU. */
4131 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
4132
4133 /* Set up the current options. These may change throughout assembly. */
4134 mips_opts = file_mips_opts;
4135
4136 mips_check_isa_supports_ases ();
4137 mips_check_options (&file_mips_opts, TRUE);
4138 file_mips_opts_checked = TRUE;
4139
4140 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4141 as_warn (_("could not set architecture and machine"));
4142 }
4143
4144 void
4145 md_assemble (char *str)
4146 {
4147 struct mips_cl_insn insn;
4148 bfd_reloc_code_real_type unused_reloc[3]
4149 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4150
4151 file_mips_check_options ();
4152
4153 imm_expr.X_op = O_absent;
4154 offset_expr.X_op = O_absent;
4155 offset_reloc[0] = BFD_RELOC_UNUSED;
4156 offset_reloc[1] = BFD_RELOC_UNUSED;
4157 offset_reloc[2] = BFD_RELOC_UNUSED;
4158
4159 mips_mark_labels ();
4160 mips_assembling_insn = TRUE;
4161 clear_insn_error ();
4162
4163 if (mips_opts.mips16)
4164 mips16_ip (str, &insn);
4165 else
4166 {
4167 mips_ip (str, &insn);
4168 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4169 str, insn.insn_opcode));
4170 }
4171
4172 if (insn_error.msg)
4173 report_insn_error (str);
4174 else if (insn.insn_mo->pinfo == INSN_MACRO)
4175 {
4176 macro_start ();
4177 if (mips_opts.mips16)
4178 mips16_macro (&insn);
4179 else
4180 macro (&insn, str);
4181 macro_end ();
4182 }
4183 else
4184 {
4185 if (offset_expr.X_op != O_absent)
4186 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4187 else
4188 append_insn (&insn, NULL, unused_reloc, FALSE);
4189 }
4190
4191 mips_assembling_insn = FALSE;
4192 }
4193
4194 /* Convenience functions for abstracting away the differences between
4195 MIPS16 and non-MIPS16 relocations. */
4196
4197 static inline bfd_boolean
4198 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4199 {
4200 switch (reloc)
4201 {
4202 case BFD_RELOC_MIPS16_JMP:
4203 case BFD_RELOC_MIPS16_GPREL:
4204 case BFD_RELOC_MIPS16_GOT16:
4205 case BFD_RELOC_MIPS16_CALL16:
4206 case BFD_RELOC_MIPS16_HI16_S:
4207 case BFD_RELOC_MIPS16_HI16:
4208 case BFD_RELOC_MIPS16_LO16:
4209 case BFD_RELOC_MIPS16_16_PCREL_S1:
4210 return TRUE;
4211
4212 default:
4213 return FALSE;
4214 }
4215 }
4216
4217 static inline bfd_boolean
4218 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4219 {
4220 switch (reloc)
4221 {
4222 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4223 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4224 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4225 case BFD_RELOC_MICROMIPS_GPREL16:
4226 case BFD_RELOC_MICROMIPS_JMP:
4227 case BFD_RELOC_MICROMIPS_HI16:
4228 case BFD_RELOC_MICROMIPS_HI16_S:
4229 case BFD_RELOC_MICROMIPS_LO16:
4230 case BFD_RELOC_MICROMIPS_LITERAL:
4231 case BFD_RELOC_MICROMIPS_GOT16:
4232 case BFD_RELOC_MICROMIPS_CALL16:
4233 case BFD_RELOC_MICROMIPS_GOT_HI16:
4234 case BFD_RELOC_MICROMIPS_GOT_LO16:
4235 case BFD_RELOC_MICROMIPS_CALL_HI16:
4236 case BFD_RELOC_MICROMIPS_CALL_LO16:
4237 case BFD_RELOC_MICROMIPS_SUB:
4238 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4239 case BFD_RELOC_MICROMIPS_GOT_OFST:
4240 case BFD_RELOC_MICROMIPS_GOT_DISP:
4241 case BFD_RELOC_MICROMIPS_HIGHEST:
4242 case BFD_RELOC_MICROMIPS_HIGHER:
4243 case BFD_RELOC_MICROMIPS_SCN_DISP:
4244 case BFD_RELOC_MICROMIPS_JALR:
4245 return TRUE;
4246
4247 default:
4248 return FALSE;
4249 }
4250 }
4251
4252 static inline bfd_boolean
4253 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4254 {
4255 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4256 }
4257
4258 static inline bfd_boolean
4259 b_reloc_p (bfd_reloc_code_real_type reloc)
4260 {
4261 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4262 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4263 || reloc == BFD_RELOC_16_PCREL_S2
4264 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
4265 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4266 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4267 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4268 }
4269
4270 static inline bfd_boolean
4271 got16_reloc_p (bfd_reloc_code_real_type reloc)
4272 {
4273 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4274 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4275 }
4276
4277 static inline bfd_boolean
4278 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4279 {
4280 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4281 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4282 }
4283
4284 static inline bfd_boolean
4285 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4286 {
4287 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4288 || reloc == BFD_RELOC_MICROMIPS_LO16);
4289 }
4290
4291 static inline bfd_boolean
4292 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4293 {
4294 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4295 }
4296
4297 static inline bfd_boolean
4298 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4299 {
4300 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4301 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4302 }
4303
4304 /* Return true if RELOC is a PC-relative relocation that does not have
4305 full address range. */
4306
4307 static inline bfd_boolean
4308 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4309 {
4310 switch (reloc)
4311 {
4312 case BFD_RELOC_16_PCREL_S2:
4313 case BFD_RELOC_MIPS16_16_PCREL_S1:
4314 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4315 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4316 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4317 case BFD_RELOC_MIPS_21_PCREL_S2:
4318 case BFD_RELOC_MIPS_26_PCREL_S2:
4319 case BFD_RELOC_MIPS_18_PCREL_S3:
4320 case BFD_RELOC_MIPS_19_PCREL_S2:
4321 return TRUE;
4322
4323 case BFD_RELOC_32_PCREL:
4324 case BFD_RELOC_HI16_S_PCREL:
4325 case BFD_RELOC_LO16_PCREL:
4326 return HAVE_64BIT_ADDRESSES;
4327
4328 default:
4329 return FALSE;
4330 }
4331 }
4332
4333 /* Return true if the given relocation might need a matching %lo().
4334 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4335 need a matching %lo() when applied to local symbols. */
4336
4337 static inline bfd_boolean
4338 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4339 {
4340 return (HAVE_IN_PLACE_ADDENDS
4341 && (hi16_reloc_p (reloc)
4342 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4343 all GOT16 relocations evaluate to "G". */
4344 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4345 }
4346
4347 /* Return the type of %lo() reloc needed by RELOC, given that
4348 reloc_needs_lo_p. */
4349
4350 static inline bfd_reloc_code_real_type
4351 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4352 {
4353 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4354 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4355 : BFD_RELOC_LO16));
4356 }
4357
4358 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4359 relocation. */
4360
4361 static inline bfd_boolean
4362 fixup_has_matching_lo_p (fixS *fixp)
4363 {
4364 return (fixp->fx_next != NULL
4365 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4366 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4367 && fixp->fx_offset == fixp->fx_next->fx_offset);
4368 }
4369
4370 /* Move all labels in LABELS to the current insertion point. TEXT_P
4371 says whether the labels refer to text or data. */
4372
4373 static void
4374 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4375 {
4376 struct insn_label_list *l;
4377 valueT val;
4378
4379 for (l = labels; l != NULL; l = l->next)
4380 {
4381 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4382 symbol_set_frag (l->label, frag_now);
4383 val = (valueT) frag_now_fix ();
4384 /* MIPS16/microMIPS text labels are stored as odd. */
4385 if (text_p && HAVE_CODE_COMPRESSION)
4386 ++val;
4387 S_SET_VALUE (l->label, val);
4388 }
4389 }
4390
4391 /* Move all labels in insn_labels to the current insertion point
4392 and treat them as text labels. */
4393
4394 static void
4395 mips_move_text_labels (void)
4396 {
4397 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4398 }
4399
4400 /* Duplicate the test for LINK_ONCE sections as in `adjust_reloc_syms'. */
4401
4402 static bfd_boolean
4403 s_is_linkonce (symbolS *sym, segT from_seg)
4404 {
4405 bfd_boolean linkonce = FALSE;
4406 segT symseg = S_GET_SEGMENT (sym);
4407
4408 if (symseg != from_seg && !S_IS_LOCAL (sym))
4409 {
4410 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4411 linkonce = TRUE;
4412 /* The GNU toolchain uses an extension for ELF: a section
4413 beginning with the magic string .gnu.linkonce is a
4414 linkonce section. */
4415 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4416 sizeof ".gnu.linkonce" - 1) == 0)
4417 linkonce = TRUE;
4418 }
4419 return linkonce;
4420 }
4421
4422 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4423 linker to handle them specially, such as generating jalx instructions
4424 when needed. We also make them odd for the duration of the assembly,
4425 in order to generate the right sort of code. We will make them even
4426 in the adjust_symtab routine, while leaving them marked. This is
4427 convenient for the debugger and the disassembler. The linker knows
4428 to make them odd again. */
4429
4430 static void
4431 mips_compressed_mark_label (symbolS *label)
4432 {
4433 gas_assert (HAVE_CODE_COMPRESSION);
4434
4435 if (mips_opts.mips16)
4436 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4437 else
4438 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4439 if ((S_GET_VALUE (label) & 1) == 0
4440 /* Don't adjust the address if the label is global or weak, or
4441 in a link-once section, since we'll be emitting symbol reloc
4442 references to it which will be patched up by the linker, and
4443 the final value of the symbol may or may not be MIPS16/microMIPS. */
4444 && !S_IS_WEAK (label)
4445 && !S_IS_EXTERNAL (label)
4446 && !s_is_linkonce (label, now_seg))
4447 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4448 }
4449
4450 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4451
4452 static void
4453 mips_compressed_mark_labels (void)
4454 {
4455 struct insn_label_list *l;
4456
4457 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4458 mips_compressed_mark_label (l->label);
4459 }
4460
4461 /* End the current frag. Make it a variant frag and record the
4462 relaxation info. */
4463
4464 static void
4465 relax_close_frag (void)
4466 {
4467 mips_macro_warning.first_frag = frag_now;
4468 frag_var (rs_machine_dependent, 0, 0,
4469 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1],
4470 mips_pic != NO_PIC),
4471 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4472
4473 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4474 mips_relax.first_fixup = 0;
4475 }
4476
4477 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4478 See the comment above RELAX_ENCODE for more details. */
4479
4480 static void
4481 relax_start (symbolS *symbol)
4482 {
4483 gas_assert (mips_relax.sequence == 0);
4484 mips_relax.sequence = 1;
4485 mips_relax.symbol = symbol;
4486 }
4487
4488 /* Start generating the second version of a relaxable sequence.
4489 See the comment above RELAX_ENCODE for more details. */
4490
4491 static void
4492 relax_switch (void)
4493 {
4494 gas_assert (mips_relax.sequence == 1);
4495 mips_relax.sequence = 2;
4496 }
4497
4498 /* End the current relaxable sequence. */
4499
4500 static void
4501 relax_end (void)
4502 {
4503 gas_assert (mips_relax.sequence == 2);
4504 relax_close_frag ();
4505 mips_relax.sequence = 0;
4506 }
4507
4508 /* Return true if IP is a delayed branch or jump. */
4509
4510 static inline bfd_boolean
4511 delayed_branch_p (const struct mips_cl_insn *ip)
4512 {
4513 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4514 | INSN_COND_BRANCH_DELAY
4515 | INSN_COND_BRANCH_LIKELY)) != 0;
4516 }
4517
4518 /* Return true if IP is a compact branch or jump. */
4519
4520 static inline bfd_boolean
4521 compact_branch_p (const struct mips_cl_insn *ip)
4522 {
4523 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4524 | INSN2_COND_BRANCH)) != 0;
4525 }
4526
4527 /* Return true if IP is an unconditional branch or jump. */
4528
4529 static inline bfd_boolean
4530 uncond_branch_p (const struct mips_cl_insn *ip)
4531 {
4532 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4533 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4534 }
4535
4536 /* Return true if IP is a branch-likely instruction. */
4537
4538 static inline bfd_boolean
4539 branch_likely_p (const struct mips_cl_insn *ip)
4540 {
4541 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4542 }
4543
4544 /* Return the type of nop that should be used to fill the delay slot
4545 of delayed branch IP. */
4546
4547 static struct mips_cl_insn *
4548 get_delay_slot_nop (const struct mips_cl_insn *ip)
4549 {
4550 if (mips_opts.micromips
4551 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4552 return &micromips_nop32_insn;
4553 return NOP_INSN;
4554 }
4555
4556 /* Return a mask that has bit N set if OPCODE reads the register(s)
4557 in operand N. */
4558
4559 static unsigned int
4560 insn_read_mask (const struct mips_opcode *opcode)
4561 {
4562 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4563 }
4564
4565 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4566 in operand N. */
4567
4568 static unsigned int
4569 insn_write_mask (const struct mips_opcode *opcode)
4570 {
4571 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4572 }
4573
4574 /* Return a mask of the registers specified by operand OPERAND of INSN.
4575 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4576 is set. */
4577
4578 static unsigned int
4579 operand_reg_mask (const struct mips_cl_insn *insn,
4580 const struct mips_operand *operand,
4581 unsigned int type_mask)
4582 {
4583 unsigned int uval, vsel;
4584
4585 switch (operand->type)
4586 {
4587 case OP_INT:
4588 case OP_MAPPED_INT:
4589 case OP_MSB:
4590 case OP_PCREL:
4591 case OP_PERF_REG:
4592 case OP_ADDIUSP_INT:
4593 case OP_ENTRY_EXIT_LIST:
4594 case OP_REPEAT_DEST_REG:
4595 case OP_REPEAT_PREV_REG:
4596 case OP_PC:
4597 case OP_VU0_SUFFIX:
4598 case OP_VU0_MATCH_SUFFIX:
4599 case OP_IMM_INDEX:
4600 abort ();
4601
4602 case OP_REG28:
4603 return 1 << 28;
4604
4605 case OP_REG:
4606 case OP_OPTIONAL_REG:
4607 {
4608 const struct mips_reg_operand *reg_op;
4609
4610 reg_op = (const struct mips_reg_operand *) operand;
4611 if (!(type_mask & (1 << reg_op->reg_type)))
4612 return 0;
4613 uval = insn_extract_operand (insn, operand);
4614 return 1 << mips_decode_reg_operand (reg_op, uval);
4615 }
4616
4617 case OP_REG_PAIR:
4618 {
4619 const struct mips_reg_pair_operand *pair_op;
4620
4621 pair_op = (const struct mips_reg_pair_operand *) operand;
4622 if (!(type_mask & (1 << pair_op->reg_type)))
4623 return 0;
4624 uval = insn_extract_operand (insn, operand);
4625 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4626 }
4627
4628 case OP_CLO_CLZ_DEST:
4629 if (!(type_mask & (1 << OP_REG_GP)))
4630 return 0;
4631 uval = insn_extract_operand (insn, operand);
4632 return (1 << (uval & 31)) | (1 << (uval >> 5));
4633
4634 case OP_SAME_RS_RT:
4635 if (!(type_mask & (1 << OP_REG_GP)))
4636 return 0;
4637 uval = insn_extract_operand (insn, operand);
4638 gas_assert ((uval & 31) == (uval >> 5));
4639 return 1 << (uval & 31);
4640
4641 case OP_CHECK_PREV:
4642 case OP_NON_ZERO_REG:
4643 if (!(type_mask & (1 << OP_REG_GP)))
4644 return 0;
4645 uval = insn_extract_operand (insn, operand);
4646 return 1 << (uval & 31);
4647
4648 case OP_LWM_SWM_LIST:
4649 abort ();
4650
4651 case OP_SAVE_RESTORE_LIST:
4652 abort ();
4653
4654 case OP_MDMX_IMM_REG:
4655 if (!(type_mask & (1 << OP_REG_VEC)))
4656 return 0;
4657 uval = insn_extract_operand (insn, operand);
4658 vsel = uval >> 5;
4659 if ((vsel & 0x18) == 0x18)
4660 return 0;
4661 return 1 << (uval & 31);
4662
4663 case OP_REG_INDEX:
4664 if (!(type_mask & (1 << OP_REG_GP)))
4665 return 0;
4666 return 1 << insn_extract_operand (insn, operand);
4667 }
4668 abort ();
4669 }
4670
4671 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4672 where bit N of OPNO_MASK is set if operand N should be included.
4673 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4674 is set. */
4675
4676 static unsigned int
4677 insn_reg_mask (const struct mips_cl_insn *insn,
4678 unsigned int type_mask, unsigned int opno_mask)
4679 {
4680 unsigned int opno, reg_mask;
4681
4682 opno = 0;
4683 reg_mask = 0;
4684 while (opno_mask != 0)
4685 {
4686 if (opno_mask & 1)
4687 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4688 opno_mask >>= 1;
4689 opno += 1;
4690 }
4691 return reg_mask;
4692 }
4693
4694 /* Return the mask of core registers that IP reads. */
4695
4696 static unsigned int
4697 gpr_read_mask (const struct mips_cl_insn *ip)
4698 {
4699 unsigned long pinfo, pinfo2;
4700 unsigned int mask;
4701
4702 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4703 pinfo = ip->insn_mo->pinfo;
4704 pinfo2 = ip->insn_mo->pinfo2;
4705 if (pinfo & INSN_UDI)
4706 {
4707 /* UDI instructions have traditionally been assumed to read RS
4708 and RT. */
4709 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4710 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4711 }
4712 if (pinfo & INSN_READ_GPR_24)
4713 mask |= 1 << 24;
4714 if (pinfo2 & INSN2_READ_GPR_16)
4715 mask |= 1 << 16;
4716 if (pinfo2 & INSN2_READ_SP)
4717 mask |= 1 << SP;
4718 if (pinfo2 & INSN2_READ_GPR_31)
4719 mask |= 1 << 31;
4720 /* Don't include register 0. */
4721 return mask & ~1;
4722 }
4723
4724 /* Return the mask of core registers that IP writes. */
4725
4726 static unsigned int
4727 gpr_write_mask (const struct mips_cl_insn *ip)
4728 {
4729 unsigned long pinfo, pinfo2;
4730 unsigned int mask;
4731
4732 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4733 pinfo = ip->insn_mo->pinfo;
4734 pinfo2 = ip->insn_mo->pinfo2;
4735 if (pinfo & INSN_WRITE_GPR_24)
4736 mask |= 1 << 24;
4737 if (pinfo & INSN_WRITE_GPR_31)
4738 mask |= 1 << 31;
4739 if (pinfo & INSN_UDI)
4740 /* UDI instructions have traditionally been assumed to write to RD. */
4741 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4742 if (pinfo2 & INSN2_WRITE_SP)
4743 mask |= 1 << SP;
4744 /* Don't include register 0. */
4745 return mask & ~1;
4746 }
4747
4748 /* Return the mask of floating-point registers that IP reads. */
4749
4750 static unsigned int
4751 fpr_read_mask (const struct mips_cl_insn *ip)
4752 {
4753 unsigned long pinfo;
4754 unsigned int mask;
4755
4756 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4757 | (1 << OP_REG_MSA)),
4758 insn_read_mask (ip->insn_mo));
4759 pinfo = ip->insn_mo->pinfo;
4760 /* Conservatively treat all operands to an FP_D instruction are doubles.
4761 (This is overly pessimistic for things like cvt.d.s.) */
4762 if (FPR_SIZE != 64 && (pinfo & FP_D))
4763 mask |= mask << 1;
4764 return mask;
4765 }
4766
4767 /* Return the mask of floating-point registers that IP writes. */
4768
4769 static unsigned int
4770 fpr_write_mask (const struct mips_cl_insn *ip)
4771 {
4772 unsigned long pinfo;
4773 unsigned int mask;
4774
4775 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4776 | (1 << OP_REG_MSA)),
4777 insn_write_mask (ip->insn_mo));
4778 pinfo = ip->insn_mo->pinfo;
4779 /* Conservatively treat all operands to an FP_D instruction are doubles.
4780 (This is overly pessimistic for things like cvt.s.d.) */
4781 if (FPR_SIZE != 64 && (pinfo & FP_D))
4782 mask |= mask << 1;
4783 return mask;
4784 }
4785
4786 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4787 Check whether that is allowed. */
4788
4789 static bfd_boolean
4790 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4791 {
4792 const char *s = insn->name;
4793 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4794 || FPR_SIZE == 64)
4795 && mips_opts.oddspreg;
4796
4797 if (insn->pinfo == INSN_MACRO)
4798 /* Let a macro pass, we'll catch it later when it is expanded. */
4799 return TRUE;
4800
4801 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4802 otherwise it depends on oddspreg. */
4803 if ((insn->pinfo & FP_S)
4804 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4805 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4806 return FPR_SIZE == 32 || oddspreg;
4807
4808 /* Allow odd registers for single-precision ops and double-precision if the
4809 floating-point registers are 64-bit wide. */
4810 switch (insn->pinfo & (FP_S | FP_D))
4811 {
4812 case FP_S:
4813 case 0:
4814 return oddspreg;
4815 case FP_D:
4816 return FPR_SIZE == 64;
4817 default:
4818 break;
4819 }
4820
4821 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4822 s = strchr (insn->name, '.');
4823 if (s != NULL && opnum == 2)
4824 s = strchr (s + 1, '.');
4825 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4826 return oddspreg;
4827
4828 return FPR_SIZE == 64;
4829 }
4830
4831 /* Information about an instruction argument that we're trying to match. */
4832 struct mips_arg_info
4833 {
4834 /* The instruction so far. */
4835 struct mips_cl_insn *insn;
4836
4837 /* The first unconsumed operand token. */
4838 struct mips_operand_token *token;
4839
4840 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4841 int opnum;
4842
4843 /* The 1-based argument number, for error reporting. This does not
4844 count elided optional registers, etc.. */
4845 int argnum;
4846
4847 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4848 unsigned int last_regno;
4849
4850 /* If the first operand was an OP_REG, this is the register that it
4851 specified, otherwise it is ILLEGAL_REG. */
4852 unsigned int dest_regno;
4853
4854 /* The value of the last OP_INT operand. Only used for OP_MSB,
4855 where it gives the lsb position. */
4856 unsigned int last_op_int;
4857
4858 /* If true, match routines should assume that no later instruction
4859 alternative matches and should therefore be as accommodating as
4860 possible. Match routines should not report errors if something
4861 is only invalid for !LAX_MATCH. */
4862 bfd_boolean lax_match;
4863
4864 /* True if a reference to the current AT register was seen. */
4865 bfd_boolean seen_at;
4866 };
4867
4868 /* Record that the argument is out of range. */
4869
4870 static void
4871 match_out_of_range (struct mips_arg_info *arg)
4872 {
4873 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4874 }
4875
4876 /* Record that the argument isn't constant but needs to be. */
4877
4878 static void
4879 match_not_constant (struct mips_arg_info *arg)
4880 {
4881 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4882 arg->argnum);
4883 }
4884
4885 /* Try to match an OT_CHAR token for character CH. Consume the token
4886 and return true on success, otherwise return false. */
4887
4888 static bfd_boolean
4889 match_char (struct mips_arg_info *arg, char ch)
4890 {
4891 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4892 {
4893 ++arg->token;
4894 if (ch == ',')
4895 arg->argnum += 1;
4896 return TRUE;
4897 }
4898 return FALSE;
4899 }
4900
4901 /* Try to get an expression from the next tokens in ARG. Consume the
4902 tokens and return true on success, storing the expression value in
4903 VALUE and relocation types in R. */
4904
4905 static bfd_boolean
4906 match_expression (struct mips_arg_info *arg, expressionS *value,
4907 bfd_reloc_code_real_type *r)
4908 {
4909 /* If the next token is a '(' that was parsed as being part of a base
4910 expression, assume we have an elided offset. The later match will fail
4911 if this turns out to be wrong. */
4912 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4913 {
4914 value->X_op = O_constant;
4915 value->X_add_number = 0;
4916 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4917 return TRUE;
4918 }
4919
4920 /* Reject register-based expressions such as "0+$2" and "(($2))".
4921 For plain registers the default error seems more appropriate. */
4922 if (arg->token->type == OT_INTEGER
4923 && arg->token->u.integer.value.X_op == O_register)
4924 {
4925 set_insn_error (arg->argnum, _("register value used as expression"));
4926 return FALSE;
4927 }
4928
4929 if (arg->token->type == OT_INTEGER)
4930 {
4931 *value = arg->token->u.integer.value;
4932 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4933 ++arg->token;
4934 return TRUE;
4935 }
4936
4937 set_insn_error_i
4938 (arg->argnum, _("operand %d must be an immediate expression"),
4939 arg->argnum);
4940 return FALSE;
4941 }
4942
4943 /* Try to get a constant expression from the next tokens in ARG. Consume
4944 the tokens and return true on success, storing the constant value
4945 in *VALUE. */
4946
4947 static bfd_boolean
4948 match_const_int (struct mips_arg_info *arg, offsetT *value)
4949 {
4950 expressionS ex;
4951 bfd_reloc_code_real_type r[3];
4952
4953 if (!match_expression (arg, &ex, r))
4954 return FALSE;
4955
4956 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4957 *value = ex.X_add_number;
4958 else
4959 {
4960 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_big)
4961 match_out_of_range (arg);
4962 else
4963 match_not_constant (arg);
4964 return FALSE;
4965 }
4966 return TRUE;
4967 }
4968
4969 /* Return the RTYPE_* flags for a register operand of type TYPE that
4970 appears in instruction OPCODE. */
4971
4972 static unsigned int
4973 convert_reg_type (const struct mips_opcode *opcode,
4974 enum mips_reg_operand_type type)
4975 {
4976 switch (type)
4977 {
4978 case OP_REG_GP:
4979 return RTYPE_NUM | RTYPE_GP;
4980
4981 case OP_REG_FP:
4982 /* Allow vector register names for MDMX if the instruction is a 64-bit
4983 FPR load, store or move (including moves to and from GPRs). */
4984 if ((mips_opts.ase & ASE_MDMX)
4985 && (opcode->pinfo & FP_D)
4986 && (opcode->pinfo & (INSN_COPROC_MOVE
4987 | INSN_COPROC_MEMORY_DELAY
4988 | INSN_LOAD_COPROC
4989 | INSN_LOAD_MEMORY
4990 | INSN_STORE_MEMORY)))
4991 return RTYPE_FPU | RTYPE_VEC;
4992 return RTYPE_FPU;
4993
4994 case OP_REG_CCC:
4995 if (opcode->pinfo & (FP_D | FP_S))
4996 return RTYPE_CCC | RTYPE_FCC;
4997 return RTYPE_CCC;
4998
4999 case OP_REG_VEC:
5000 if (opcode->membership & INSN_5400)
5001 return RTYPE_FPU;
5002 return RTYPE_FPU | RTYPE_VEC;
5003
5004 case OP_REG_ACC:
5005 return RTYPE_ACC;
5006
5007 case OP_REG_COPRO:
5008 if (opcode->name[strlen (opcode->name) - 1] == '0')
5009 return RTYPE_NUM | RTYPE_CP0;
5010 return RTYPE_NUM;
5011
5012 case OP_REG_HW:
5013 return RTYPE_NUM;
5014
5015 case OP_REG_VI:
5016 return RTYPE_NUM | RTYPE_VI;
5017
5018 case OP_REG_VF:
5019 return RTYPE_NUM | RTYPE_VF;
5020
5021 case OP_REG_R5900_I:
5022 return RTYPE_R5900_I;
5023
5024 case OP_REG_R5900_Q:
5025 return RTYPE_R5900_Q;
5026
5027 case OP_REG_R5900_R:
5028 return RTYPE_R5900_R;
5029
5030 case OP_REG_R5900_ACC:
5031 return RTYPE_R5900_ACC;
5032
5033 case OP_REG_MSA:
5034 return RTYPE_MSA;
5035
5036 case OP_REG_MSA_CTRL:
5037 return RTYPE_NUM;
5038 }
5039 abort ();
5040 }
5041
5042 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
5043
5044 static void
5045 check_regno (struct mips_arg_info *arg,
5046 enum mips_reg_operand_type type, unsigned int regno)
5047 {
5048 if (AT && type == OP_REG_GP && regno == AT)
5049 arg->seen_at = TRUE;
5050
5051 if (type == OP_REG_FP
5052 && (regno & 1) != 0
5053 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
5054 {
5055 /* This was a warning prior to introducing O32 FPXX and FP64 support
5056 so maintain a warning for FP32 but raise an error for the new
5057 cases. */
5058 if (FPR_SIZE == 32)
5059 as_warn (_("float register should be even, was %d"), regno);
5060 else
5061 as_bad (_("float register should be even, was %d"), regno);
5062 }
5063
5064 if (type == OP_REG_CCC)
5065 {
5066 const char *name;
5067 size_t length;
5068
5069 name = arg->insn->insn_mo->name;
5070 length = strlen (name);
5071 if ((regno & 1) != 0
5072 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
5073 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
5074 as_warn (_("condition code register should be even for %s, was %d"),
5075 name, regno);
5076
5077 if ((regno & 3) != 0
5078 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
5079 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
5080 name, regno);
5081 }
5082 }
5083
5084 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
5085 a register of type TYPE. Return true on success, storing the register
5086 number in *REGNO and warning about any dubious uses. */
5087
5088 static bfd_boolean
5089 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5090 unsigned int symval, unsigned int *regno)
5091 {
5092 if (type == OP_REG_VEC)
5093 symval = mips_prefer_vec_regno (symval);
5094 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
5095 return FALSE;
5096
5097 *regno = symval & RNUM_MASK;
5098 check_regno (arg, type, *regno);
5099 return TRUE;
5100 }
5101
5102 /* Try to interpret the next token in ARG as a register of type TYPE.
5103 Consume the token and return true on success, storing the register
5104 number in *REGNO. Return false on failure. */
5105
5106 static bfd_boolean
5107 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5108 unsigned int *regno)
5109 {
5110 if (arg->token->type == OT_REG
5111 && match_regno (arg, type, arg->token->u.regno, regno))
5112 {
5113 ++arg->token;
5114 return TRUE;
5115 }
5116 return FALSE;
5117 }
5118
5119 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
5120 Consume the token and return true on success, storing the register numbers
5121 in *REGNO1 and *REGNO2. Return false on failure. */
5122
5123 static bfd_boolean
5124 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5125 unsigned int *regno1, unsigned int *regno2)
5126 {
5127 if (match_reg (arg, type, regno1))
5128 {
5129 *regno2 = *regno1;
5130 return TRUE;
5131 }
5132 if (arg->token->type == OT_REG_RANGE
5133 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
5134 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
5135 && *regno1 <= *regno2)
5136 {
5137 ++arg->token;
5138 return TRUE;
5139 }
5140 return FALSE;
5141 }
5142
5143 /* OP_INT matcher. */
5144
5145 static bfd_boolean
5146 match_int_operand (struct mips_arg_info *arg,
5147 const struct mips_operand *operand_base)
5148 {
5149 const struct mips_int_operand *operand;
5150 unsigned int uval;
5151 int min_val, max_val, factor;
5152 offsetT sval;
5153
5154 operand = (const struct mips_int_operand *) operand_base;
5155 factor = 1 << operand->shift;
5156 min_val = mips_int_operand_min (operand);
5157 max_val = mips_int_operand_max (operand);
5158
5159 if (operand_base->lsb == 0
5160 && operand_base->size == 16
5161 && operand->shift == 0
5162 && operand->bias == 0
5163 && (operand->max_val == 32767 || operand->max_val == 65535))
5164 {
5165 /* The operand can be relocated. */
5166 if (!match_expression (arg, &offset_expr, offset_reloc))
5167 return FALSE;
5168
5169 if (offset_expr.X_op == O_big)
5170 {
5171 match_out_of_range (arg);
5172 return FALSE;
5173 }
5174
5175 if (offset_reloc[0] != BFD_RELOC_UNUSED)
5176 /* Relocation operators were used. Accept the argument and
5177 leave the relocation value in offset_expr and offset_relocs
5178 for the caller to process. */
5179 return TRUE;
5180
5181 if (offset_expr.X_op != O_constant)
5182 {
5183 /* Accept non-constant operands if no later alternative matches,
5184 leaving it for the caller to process. */
5185 if (!arg->lax_match)
5186 {
5187 match_not_constant (arg);
5188 return FALSE;
5189 }
5190 offset_reloc[0] = BFD_RELOC_LO16;
5191 return TRUE;
5192 }
5193
5194 /* Clear the global state; we're going to install the operand
5195 ourselves. */
5196 sval = offset_expr.X_add_number;
5197 offset_expr.X_op = O_absent;
5198
5199 /* For compatibility with older assemblers, we accept
5200 0x8000-0xffff as signed 16-bit numbers when only
5201 signed numbers are allowed. */
5202 if (sval > max_val)
5203 {
5204 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5205 if (!arg->lax_match && sval <= max_val)
5206 {
5207 match_out_of_range (arg);
5208 return FALSE;
5209 }
5210 }
5211 }
5212 else
5213 {
5214 if (!match_const_int (arg, &sval))
5215 return FALSE;
5216 }
5217
5218 arg->last_op_int = sval;
5219
5220 if (sval < min_val || sval > max_val || sval % factor)
5221 {
5222 match_out_of_range (arg);
5223 return FALSE;
5224 }
5225
5226 uval = (unsigned int) sval >> operand->shift;
5227 uval -= operand->bias;
5228
5229 /* Handle -mfix-cn63xxp1. */
5230 if (arg->opnum == 1
5231 && mips_fix_cn63xxp1
5232 && !mips_opts.micromips
5233 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5234 switch (uval)
5235 {
5236 case 5:
5237 case 25:
5238 case 26:
5239 case 27:
5240 case 28:
5241 case 29:
5242 case 30:
5243 case 31:
5244 /* These are ok. */
5245 break;
5246
5247 default:
5248 /* The rest must be changed to 28. */
5249 uval = 28;
5250 break;
5251 }
5252
5253 insn_insert_operand (arg->insn, operand_base, uval);
5254 return TRUE;
5255 }
5256
5257 /* OP_MAPPED_INT matcher. */
5258
5259 static bfd_boolean
5260 match_mapped_int_operand (struct mips_arg_info *arg,
5261 const struct mips_operand *operand_base)
5262 {
5263 const struct mips_mapped_int_operand *operand;
5264 unsigned int uval, num_vals;
5265 offsetT sval;
5266
5267 operand = (const struct mips_mapped_int_operand *) operand_base;
5268 if (!match_const_int (arg, &sval))
5269 return FALSE;
5270
5271 num_vals = 1 << operand_base->size;
5272 for (uval = 0; uval < num_vals; uval++)
5273 if (operand->int_map[uval] == sval)
5274 break;
5275 if (uval == num_vals)
5276 {
5277 match_out_of_range (arg);
5278 return FALSE;
5279 }
5280
5281 insn_insert_operand (arg->insn, operand_base, uval);
5282 return TRUE;
5283 }
5284
5285 /* OP_MSB matcher. */
5286
5287 static bfd_boolean
5288 match_msb_operand (struct mips_arg_info *arg,
5289 const struct mips_operand *operand_base)
5290 {
5291 const struct mips_msb_operand *operand;
5292 int min_val, max_val, max_high;
5293 offsetT size, sval, high;
5294
5295 operand = (const struct mips_msb_operand *) operand_base;
5296 min_val = operand->bias;
5297 max_val = min_val + (1 << operand_base->size) - 1;
5298 max_high = operand->opsize;
5299
5300 if (!match_const_int (arg, &size))
5301 return FALSE;
5302
5303 high = size + arg->last_op_int;
5304 sval = operand->add_lsb ? high : size;
5305
5306 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5307 {
5308 match_out_of_range (arg);
5309 return FALSE;
5310 }
5311 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5312 return TRUE;
5313 }
5314
5315 /* OP_REG matcher. */
5316
5317 static bfd_boolean
5318 match_reg_operand (struct mips_arg_info *arg,
5319 const struct mips_operand *operand_base)
5320 {
5321 const struct mips_reg_operand *operand;
5322 unsigned int regno, uval, num_vals;
5323
5324 operand = (const struct mips_reg_operand *) operand_base;
5325 if (!match_reg (arg, operand->reg_type, &regno))
5326 return FALSE;
5327
5328 if (operand->reg_map)
5329 {
5330 num_vals = 1 << operand->root.size;
5331 for (uval = 0; uval < num_vals; uval++)
5332 if (operand->reg_map[uval] == regno)
5333 break;
5334 if (num_vals == uval)
5335 return FALSE;
5336 }
5337 else
5338 uval = regno;
5339
5340 arg->last_regno = regno;
5341 if (arg->opnum == 1)
5342 arg->dest_regno = regno;
5343 insn_insert_operand (arg->insn, operand_base, uval);
5344 return TRUE;
5345 }
5346
5347 /* OP_REG_PAIR matcher. */
5348
5349 static bfd_boolean
5350 match_reg_pair_operand (struct mips_arg_info *arg,
5351 const struct mips_operand *operand_base)
5352 {
5353 const struct mips_reg_pair_operand *operand;
5354 unsigned int regno1, regno2, uval, num_vals;
5355
5356 operand = (const struct mips_reg_pair_operand *) operand_base;
5357 if (!match_reg (arg, operand->reg_type, &regno1)
5358 || !match_char (arg, ',')
5359 || !match_reg (arg, operand->reg_type, &regno2))
5360 return FALSE;
5361
5362 num_vals = 1 << operand_base->size;
5363 for (uval = 0; uval < num_vals; uval++)
5364 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5365 break;
5366 if (uval == num_vals)
5367 return FALSE;
5368
5369 insn_insert_operand (arg->insn, operand_base, uval);
5370 return TRUE;
5371 }
5372
5373 /* OP_PCREL matcher. The caller chooses the relocation type. */
5374
5375 static bfd_boolean
5376 match_pcrel_operand (struct mips_arg_info *arg)
5377 {
5378 bfd_reloc_code_real_type r[3];
5379
5380 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5381 }
5382
5383 /* OP_PERF_REG matcher. */
5384
5385 static bfd_boolean
5386 match_perf_reg_operand (struct mips_arg_info *arg,
5387 const struct mips_operand *operand)
5388 {
5389 offsetT sval;
5390
5391 if (!match_const_int (arg, &sval))
5392 return FALSE;
5393
5394 if (sval != 0
5395 && (sval != 1
5396 || (mips_opts.arch == CPU_R5900
5397 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5398 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5399 {
5400 set_insn_error (arg->argnum, _("invalid performance register"));
5401 return FALSE;
5402 }
5403
5404 insn_insert_operand (arg->insn, operand, sval);
5405 return TRUE;
5406 }
5407
5408 /* OP_ADDIUSP matcher. */
5409
5410 static bfd_boolean
5411 match_addiusp_operand (struct mips_arg_info *arg,
5412 const struct mips_operand *operand)
5413 {
5414 offsetT sval;
5415 unsigned int uval;
5416
5417 if (!match_const_int (arg, &sval))
5418 return FALSE;
5419
5420 if (sval % 4)
5421 {
5422 match_out_of_range (arg);
5423 return FALSE;
5424 }
5425
5426 sval /= 4;
5427 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5428 {
5429 match_out_of_range (arg);
5430 return FALSE;
5431 }
5432
5433 uval = (unsigned int) sval;
5434 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5435 insn_insert_operand (arg->insn, operand, uval);
5436 return TRUE;
5437 }
5438
5439 /* OP_CLO_CLZ_DEST matcher. */
5440
5441 static bfd_boolean
5442 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5443 const struct mips_operand *operand)
5444 {
5445 unsigned int regno;
5446
5447 if (!match_reg (arg, OP_REG_GP, &regno))
5448 return FALSE;
5449
5450 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5451 return TRUE;
5452 }
5453
5454 /* OP_CHECK_PREV matcher. */
5455
5456 static bfd_boolean
5457 match_check_prev_operand (struct mips_arg_info *arg,
5458 const struct mips_operand *operand_base)
5459 {
5460 const struct mips_check_prev_operand *operand;
5461 unsigned int regno;
5462
5463 operand = (const struct mips_check_prev_operand *) operand_base;
5464
5465 if (!match_reg (arg, OP_REG_GP, &regno))
5466 return FALSE;
5467
5468 if (!operand->zero_ok && regno == 0)
5469 return FALSE;
5470
5471 if ((operand->less_than_ok && regno < arg->last_regno)
5472 || (operand->greater_than_ok && regno > arg->last_regno)
5473 || (operand->equal_ok && regno == arg->last_regno))
5474 {
5475 arg->last_regno = regno;
5476 insn_insert_operand (arg->insn, operand_base, regno);
5477 return TRUE;
5478 }
5479
5480 return FALSE;
5481 }
5482
5483 /* OP_SAME_RS_RT matcher. */
5484
5485 static bfd_boolean
5486 match_same_rs_rt_operand (struct mips_arg_info *arg,
5487 const struct mips_operand *operand)
5488 {
5489 unsigned int regno;
5490
5491 if (!match_reg (arg, OP_REG_GP, &regno))
5492 return FALSE;
5493
5494 if (regno == 0)
5495 {
5496 set_insn_error (arg->argnum, _("the source register must not be $0"));
5497 return FALSE;
5498 }
5499
5500 arg->last_regno = regno;
5501
5502 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5503 return TRUE;
5504 }
5505
5506 /* OP_LWM_SWM_LIST matcher. */
5507
5508 static bfd_boolean
5509 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5510 const struct mips_operand *operand)
5511 {
5512 unsigned int reglist, sregs, ra, regno1, regno2;
5513 struct mips_arg_info reset;
5514
5515 reglist = 0;
5516 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5517 return FALSE;
5518 do
5519 {
5520 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5521 {
5522 reglist |= 1 << FP;
5523 regno2 = S7;
5524 }
5525 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5526 reset = *arg;
5527 }
5528 while (match_char (arg, ',')
5529 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5530 *arg = reset;
5531
5532 if (operand->size == 2)
5533 {
5534 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5535
5536 s0, ra
5537 s0, s1, ra, s2, s3
5538 s0-s2, ra
5539
5540 and any permutations of these. */
5541 if ((reglist & 0xfff1ffff) != 0x80010000)
5542 return FALSE;
5543
5544 sregs = (reglist >> 17) & 7;
5545 ra = 0;
5546 }
5547 else
5548 {
5549 /* The list must include at least one of ra and s0-sN,
5550 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5551 which are $23 and $30 respectively.) E.g.:
5552
5553 ra
5554 s0
5555 ra, s0, s1, s2
5556 s0-s8
5557 s0-s5, ra
5558
5559 and any permutations of these. */
5560 if ((reglist & 0x3f00ffff) != 0)
5561 return FALSE;
5562
5563 ra = (reglist >> 27) & 0x10;
5564 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5565 }
5566 sregs += 1;
5567 if ((sregs & -sregs) != sregs)
5568 return FALSE;
5569
5570 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5571 return TRUE;
5572 }
5573
5574 /* OP_ENTRY_EXIT_LIST matcher. */
5575
5576 static unsigned int
5577 match_entry_exit_operand (struct mips_arg_info *arg,
5578 const struct mips_operand *operand)
5579 {
5580 unsigned int mask;
5581 bfd_boolean is_exit;
5582
5583 /* The format is the same for both ENTRY and EXIT, but the constraints
5584 are different. */
5585 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5586 mask = (is_exit ? 7 << 3 : 0);
5587 do
5588 {
5589 unsigned int regno1, regno2;
5590 bfd_boolean is_freg;
5591
5592 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5593 is_freg = FALSE;
5594 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5595 is_freg = TRUE;
5596 else
5597 return FALSE;
5598
5599 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5600 {
5601 mask &= ~(7 << 3);
5602 mask |= (5 + regno2) << 3;
5603 }
5604 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5605 mask |= (regno2 - 3) << 3;
5606 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5607 mask |= (regno2 - 15) << 1;
5608 else if (regno1 == RA && regno2 == RA)
5609 mask |= 1;
5610 else
5611 return FALSE;
5612 }
5613 while (match_char (arg, ','));
5614
5615 insn_insert_operand (arg->insn, operand, mask);
5616 return TRUE;
5617 }
5618
5619 /* Encode regular MIPS SAVE/RESTORE instruction operands according to
5620 the argument register mask AMASK, the number of static registers
5621 saved NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
5622 respectively, and the frame size FRAME_SIZE. */
5623
5624 static unsigned int
5625 mips_encode_save_restore (unsigned int amask, unsigned int nsreg,
5626 unsigned int ra, unsigned int s0, unsigned int s1,
5627 unsigned int frame_size)
5628 {
5629 return ((nsreg << 23) | ((frame_size & 0xf0) << 15) | (amask << 15)
5630 | (ra << 12) | (s0 << 11) | (s1 << 10) | ((frame_size & 0xf) << 6));
5631 }
5632
5633 /* Encode MIPS16 SAVE/RESTORE instruction operands according to the
5634 argument register mask AMASK, the number of static registers saved
5635 NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
5636 respectively, and the frame size FRAME_SIZE. */
5637
5638 static unsigned int
5639 mips16_encode_save_restore (unsigned int amask, unsigned int nsreg,
5640 unsigned int ra, unsigned int s0, unsigned int s1,
5641 unsigned int frame_size)
5642 {
5643 unsigned int args;
5644
5645 args = (ra << 6) | (s0 << 5) | (s1 << 4) | (frame_size & 0xf);
5646 if (nsreg || amask || frame_size == 0 || frame_size > 16)
5647 args |= (MIPS16_EXTEND | (nsreg << 24) | (amask << 16)
5648 | ((frame_size & 0xf0) << 16));
5649 return args;
5650 }
5651
5652 /* OP_SAVE_RESTORE_LIST matcher. */
5653
5654 static bfd_boolean
5655 match_save_restore_list_operand (struct mips_arg_info *arg)
5656 {
5657 unsigned int opcode, args, statics, sregs;
5658 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5659 unsigned int arg_mask, ra, s0, s1;
5660 offsetT frame_size;
5661
5662 opcode = arg->insn->insn_opcode;
5663 frame_size = 0;
5664 num_frame_sizes = 0;
5665 args = 0;
5666 statics = 0;
5667 sregs = 0;
5668 ra = 0;
5669 s0 = 0;
5670 s1 = 0;
5671 do
5672 {
5673 unsigned int regno1, regno2;
5674
5675 if (arg->token->type == OT_INTEGER)
5676 {
5677 /* Handle the frame size. */
5678 if (!match_const_int (arg, &frame_size))
5679 return FALSE;
5680 num_frame_sizes += 1;
5681 }
5682 else
5683 {
5684 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5685 return FALSE;
5686
5687 while (regno1 <= regno2)
5688 {
5689 if (regno1 >= 4 && regno1 <= 7)
5690 {
5691 if (num_frame_sizes == 0)
5692 /* args $a0-$a3 */
5693 args |= 1 << (regno1 - 4);
5694 else
5695 /* statics $a0-$a3 */
5696 statics |= 1 << (regno1 - 4);
5697 }
5698 else if (regno1 >= 16 && regno1 <= 23)
5699 /* $s0-$s7 */
5700 sregs |= 1 << (regno1 - 16);
5701 else if (regno1 == 30)
5702 /* $s8 */
5703 sregs |= 1 << 8;
5704 else if (regno1 == 31)
5705 /* Add $ra to insn. */
5706 ra = 1;
5707 else
5708 return FALSE;
5709 regno1 += 1;
5710 if (regno1 == 24)
5711 regno1 = 30;
5712 }
5713 }
5714 }
5715 while (match_char (arg, ','));
5716
5717 /* Encode args/statics combination. */
5718 if (args & statics)
5719 return FALSE;
5720 else if (args == 0xf)
5721 /* All $a0-$a3 are args. */
5722 arg_mask = MIPS_SVRS_ALL_ARGS;
5723 else if (statics == 0xf)
5724 /* All $a0-$a3 are statics. */
5725 arg_mask = MIPS_SVRS_ALL_STATICS;
5726 else
5727 {
5728 /* Count arg registers. */
5729 num_args = 0;
5730 while (args & 0x1)
5731 {
5732 args >>= 1;
5733 num_args += 1;
5734 }
5735 if (args != 0)
5736 return FALSE;
5737
5738 /* Count static registers. */
5739 num_statics = 0;
5740 while (statics & 0x8)
5741 {
5742 statics = (statics << 1) & 0xf;
5743 num_statics += 1;
5744 }
5745 if (statics != 0)
5746 return FALSE;
5747
5748 /* Encode args/statics. */
5749 arg_mask = (num_args << 2) | num_statics;
5750 }
5751
5752 /* Encode $s0/$s1. */
5753 if (sregs & (1 << 0)) /* $s0 */
5754 s0 = 1;
5755 if (sregs & (1 << 1)) /* $s1 */
5756 s1 = 1;
5757 sregs >>= 2;
5758
5759 /* Encode $s2-$s8. */
5760 num_sregs = 0;
5761 while (sregs & 1)
5762 {
5763 sregs >>= 1;
5764 num_sregs += 1;
5765 }
5766 if (sregs != 0)
5767 return FALSE;
5768
5769 /* Encode frame size. */
5770 if (num_frame_sizes == 0)
5771 {
5772 set_insn_error (arg->argnum, _("missing frame size"));
5773 return FALSE;
5774 }
5775 if (num_frame_sizes > 1)
5776 {
5777 set_insn_error (arg->argnum, _("frame size specified twice"));
5778 return FALSE;
5779 }
5780 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5781 {
5782 set_insn_error (arg->argnum, _("invalid frame size"));
5783 return FALSE;
5784 }
5785 frame_size /= 8;
5786
5787 /* Finally build the instruction. */
5788 if (mips_opts.mips16)
5789 opcode |= mips16_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
5790 frame_size);
5791 else if (!mips_opts.micromips)
5792 opcode |= mips_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
5793 frame_size);
5794 else
5795 abort ();
5796
5797 arg->insn->insn_opcode = opcode;
5798 return TRUE;
5799 }
5800
5801 /* OP_MDMX_IMM_REG matcher. */
5802
5803 static bfd_boolean
5804 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5805 const struct mips_operand *operand)
5806 {
5807 unsigned int regno, uval;
5808 bfd_boolean is_qh;
5809 const struct mips_opcode *opcode;
5810
5811 /* The mips_opcode records whether this is an octobyte or quadhalf
5812 instruction. Start out with that bit in place. */
5813 opcode = arg->insn->insn_mo;
5814 uval = mips_extract_operand (operand, opcode->match);
5815 is_qh = (uval != 0);
5816
5817 if (arg->token->type == OT_REG)
5818 {
5819 if ((opcode->membership & INSN_5400)
5820 && strcmp (opcode->name, "rzu.ob") == 0)
5821 {
5822 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5823 arg->argnum);
5824 return FALSE;
5825 }
5826
5827 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5828 return FALSE;
5829 ++arg->token;
5830
5831 /* Check whether this is a vector register or a broadcast of
5832 a single element. */
5833 if (arg->token->type == OT_INTEGER_INDEX)
5834 {
5835 if (arg->token->u.index > (is_qh ? 3 : 7))
5836 {
5837 set_insn_error (arg->argnum, _("invalid element selector"));
5838 return FALSE;
5839 }
5840 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5841 ++arg->token;
5842 }
5843 else
5844 {
5845 /* A full vector. */
5846 if ((opcode->membership & INSN_5400)
5847 && (strcmp (opcode->name, "sll.ob") == 0
5848 || strcmp (opcode->name, "srl.ob") == 0))
5849 {
5850 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5851 arg->argnum);
5852 return FALSE;
5853 }
5854
5855 if (is_qh)
5856 uval |= MDMX_FMTSEL_VEC_QH << 5;
5857 else
5858 uval |= MDMX_FMTSEL_VEC_OB << 5;
5859 }
5860 uval |= regno;
5861 }
5862 else
5863 {
5864 offsetT sval;
5865
5866 if (!match_const_int (arg, &sval))
5867 return FALSE;
5868 if (sval < 0 || sval > 31)
5869 {
5870 match_out_of_range (arg);
5871 return FALSE;
5872 }
5873 uval |= (sval & 31);
5874 if (is_qh)
5875 uval |= MDMX_FMTSEL_IMM_QH << 5;
5876 else
5877 uval |= MDMX_FMTSEL_IMM_OB << 5;
5878 }
5879 insn_insert_operand (arg->insn, operand, uval);
5880 return TRUE;
5881 }
5882
5883 /* OP_IMM_INDEX matcher. */
5884
5885 static bfd_boolean
5886 match_imm_index_operand (struct mips_arg_info *arg,
5887 const struct mips_operand *operand)
5888 {
5889 unsigned int max_val;
5890
5891 if (arg->token->type != OT_INTEGER_INDEX)
5892 return FALSE;
5893
5894 max_val = (1 << operand->size) - 1;
5895 if (arg->token->u.index > max_val)
5896 {
5897 match_out_of_range (arg);
5898 return FALSE;
5899 }
5900 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5901 ++arg->token;
5902 return TRUE;
5903 }
5904
5905 /* OP_REG_INDEX matcher. */
5906
5907 static bfd_boolean
5908 match_reg_index_operand (struct mips_arg_info *arg,
5909 const struct mips_operand *operand)
5910 {
5911 unsigned int regno;
5912
5913 if (arg->token->type != OT_REG_INDEX)
5914 return FALSE;
5915
5916 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5917 return FALSE;
5918
5919 insn_insert_operand (arg->insn, operand, regno);
5920 ++arg->token;
5921 return TRUE;
5922 }
5923
5924 /* OP_PC matcher. */
5925
5926 static bfd_boolean
5927 match_pc_operand (struct mips_arg_info *arg)
5928 {
5929 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5930 {
5931 ++arg->token;
5932 return TRUE;
5933 }
5934 return FALSE;
5935 }
5936
5937 /* OP_REG28 matcher. */
5938
5939 static bfd_boolean
5940 match_reg28_operand (struct mips_arg_info *arg)
5941 {
5942 unsigned int regno;
5943
5944 if (arg->token->type == OT_REG
5945 && match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno)
5946 && regno == GP)
5947 {
5948 ++arg->token;
5949 return TRUE;
5950 }
5951 return FALSE;
5952 }
5953
5954 /* OP_NON_ZERO_REG matcher. */
5955
5956 static bfd_boolean
5957 match_non_zero_reg_operand (struct mips_arg_info *arg,
5958 const struct mips_operand *operand)
5959 {
5960 unsigned int regno;
5961
5962 if (!match_reg (arg, OP_REG_GP, &regno))
5963 return FALSE;
5964
5965 if (regno == 0)
5966 return FALSE;
5967
5968 arg->last_regno = regno;
5969 insn_insert_operand (arg->insn, operand, regno);
5970 return TRUE;
5971 }
5972
5973 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5974 register that we need to match. */
5975
5976 static bfd_boolean
5977 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5978 {
5979 unsigned int regno;
5980
5981 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5982 }
5983
5984 /* Try to match a floating-point constant from ARG for LI.S or LI.D.
5985 LENGTH is the length of the value in bytes (4 for float, 8 for double)
5986 and USING_GPRS says whether the destination is a GPR rather than an FPR.
5987
5988 Return the constant in IMM and OFFSET as follows:
5989
5990 - If the constant should be loaded via memory, set IMM to O_absent and
5991 OFFSET to the memory address.
5992
5993 - Otherwise, if the constant should be loaded into two 32-bit registers,
5994 set IMM to the O_constant to load into the high register and OFFSET
5995 to the corresponding value for the low register.
5996
5997 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5998
5999 These constants only appear as the last operand in an instruction,
6000 and every instruction that accepts them in any variant accepts them
6001 in all variants. This means we don't have to worry about backing out
6002 any changes if the instruction does not match. We just match
6003 unconditionally and report an error if the constant is invalid. */
6004
6005 static bfd_boolean
6006 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
6007 expressionS *offset, int length, bfd_boolean using_gprs)
6008 {
6009 char *p;
6010 segT seg, new_seg;
6011 subsegT subseg;
6012 const char *newname;
6013 unsigned char *data;
6014
6015 /* Where the constant is placed is based on how the MIPS assembler
6016 does things:
6017
6018 length == 4 && using_gprs -- immediate value only
6019 length == 8 && using_gprs -- .rdata or immediate value
6020 length == 4 && !using_gprs -- .lit4 or immediate value
6021 length == 8 && !using_gprs -- .lit8 or immediate value
6022
6023 The .lit4 and .lit8 sections are only used if permitted by the
6024 -G argument. */
6025 if (arg->token->type != OT_FLOAT)
6026 {
6027 set_insn_error (arg->argnum, _("floating-point expression required"));
6028 return FALSE;
6029 }
6030
6031 gas_assert (arg->token->u.flt.length == length);
6032 data = arg->token->u.flt.data;
6033 ++arg->token;
6034
6035 /* Handle 32-bit constants for which an immediate value is best. */
6036 if (length == 4
6037 && (using_gprs
6038 || g_switch_value < 4
6039 || (data[0] == 0 && data[1] == 0)
6040 || (data[2] == 0 && data[3] == 0)))
6041 {
6042 imm->X_op = O_constant;
6043 if (!target_big_endian)
6044 imm->X_add_number = bfd_getl32 (data);
6045 else
6046 imm->X_add_number = bfd_getb32 (data);
6047 offset->X_op = O_absent;
6048 return TRUE;
6049 }
6050
6051 /* Handle 64-bit constants for which an immediate value is best. */
6052 if (length == 8
6053 && !mips_disable_float_construction
6054 /* Constants can only be constructed in GPRs and copied to FPRs if the
6055 GPRs are at least as wide as the FPRs or MTHC1 is available.
6056 Unlike most tests for 32-bit floating-point registers this check
6057 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
6058 permit 64-bit moves without MXHC1.
6059 Force the constant into memory otherwise. */
6060 && (using_gprs
6061 || GPR_SIZE == 64
6062 || ISA_HAS_MXHC1 (mips_opts.isa)
6063 || FPR_SIZE == 32)
6064 && ((data[0] == 0 && data[1] == 0)
6065 || (data[2] == 0 && data[3] == 0))
6066 && ((data[4] == 0 && data[5] == 0)
6067 || (data[6] == 0 && data[7] == 0)))
6068 {
6069 /* The value is simple enough to load with a couple of instructions.
6070 If using 32-bit registers, set IMM to the high order 32 bits and
6071 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
6072 64 bit constant. */
6073 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
6074 {
6075 imm->X_op = O_constant;
6076 offset->X_op = O_constant;
6077 if (!target_big_endian)
6078 {
6079 imm->X_add_number = bfd_getl32 (data + 4);
6080 offset->X_add_number = bfd_getl32 (data);
6081 }
6082 else
6083 {
6084 imm->X_add_number = bfd_getb32 (data);
6085 offset->X_add_number = bfd_getb32 (data + 4);
6086 }
6087 if (offset->X_add_number == 0)
6088 offset->X_op = O_absent;
6089 }
6090 else
6091 {
6092 imm->X_op = O_constant;
6093 if (!target_big_endian)
6094 imm->X_add_number = bfd_getl64 (data);
6095 else
6096 imm->X_add_number = bfd_getb64 (data);
6097 offset->X_op = O_absent;
6098 }
6099 return TRUE;
6100 }
6101
6102 /* Switch to the right section. */
6103 seg = now_seg;
6104 subseg = now_subseg;
6105 if (length == 4)
6106 {
6107 gas_assert (!using_gprs && g_switch_value >= 4);
6108 newname = ".lit4";
6109 }
6110 else
6111 {
6112 if (using_gprs || g_switch_value < 8)
6113 newname = RDATA_SECTION_NAME;
6114 else
6115 newname = ".lit8";
6116 }
6117
6118 new_seg = subseg_new (newname, (subsegT) 0);
6119 bfd_set_section_flags (stdoutput, new_seg,
6120 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
6121 frag_align (length == 4 ? 2 : 3, 0, 0);
6122 if (strncmp (TARGET_OS, "elf", 3) != 0)
6123 record_alignment (new_seg, 4);
6124 else
6125 record_alignment (new_seg, length == 4 ? 2 : 3);
6126 if (seg == now_seg)
6127 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
6128
6129 /* Set the argument to the current address in the section. */
6130 imm->X_op = O_absent;
6131 offset->X_op = O_symbol;
6132 offset->X_add_symbol = symbol_temp_new_now ();
6133 offset->X_add_number = 0;
6134
6135 /* Put the floating point number into the section. */
6136 p = frag_more (length);
6137 memcpy (p, data, length);
6138
6139 /* Switch back to the original section. */
6140 subseg_set (seg, subseg);
6141 return TRUE;
6142 }
6143
6144 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
6145 them. */
6146
6147 static bfd_boolean
6148 match_vu0_suffix_operand (struct mips_arg_info *arg,
6149 const struct mips_operand *operand,
6150 bfd_boolean match_p)
6151 {
6152 unsigned int uval;
6153
6154 /* The operand can be an XYZW mask or a single 2-bit channel index
6155 (with X being 0). */
6156 gas_assert (operand->size == 2 || operand->size == 4);
6157
6158 /* The suffix can be omitted when it is already part of the opcode. */
6159 if (arg->token->type != OT_CHANNELS)
6160 return match_p;
6161
6162 uval = arg->token->u.channels;
6163 if (operand->size == 2)
6164 {
6165 /* Check that a single bit is set and convert it into a 2-bit index. */
6166 if ((uval & -uval) != uval)
6167 return FALSE;
6168 uval = 4 - ffs (uval);
6169 }
6170
6171 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
6172 return FALSE;
6173
6174 ++arg->token;
6175 if (!match_p)
6176 insn_insert_operand (arg->insn, operand, uval);
6177 return TRUE;
6178 }
6179
6180 /* Try to match a token from ARG against OPERAND. Consume the token
6181 and return true on success, otherwise return false. */
6182
6183 static bfd_boolean
6184 match_operand (struct mips_arg_info *arg,
6185 const struct mips_operand *operand)
6186 {
6187 switch (operand->type)
6188 {
6189 case OP_INT:
6190 return match_int_operand (arg, operand);
6191
6192 case OP_MAPPED_INT:
6193 return match_mapped_int_operand (arg, operand);
6194
6195 case OP_MSB:
6196 return match_msb_operand (arg, operand);
6197
6198 case OP_REG:
6199 case OP_OPTIONAL_REG:
6200 return match_reg_operand (arg, operand);
6201
6202 case OP_REG_PAIR:
6203 return match_reg_pair_operand (arg, operand);
6204
6205 case OP_PCREL:
6206 return match_pcrel_operand (arg);
6207
6208 case OP_PERF_REG:
6209 return match_perf_reg_operand (arg, operand);
6210
6211 case OP_ADDIUSP_INT:
6212 return match_addiusp_operand (arg, operand);
6213
6214 case OP_CLO_CLZ_DEST:
6215 return match_clo_clz_dest_operand (arg, operand);
6216
6217 case OP_LWM_SWM_LIST:
6218 return match_lwm_swm_list_operand (arg, operand);
6219
6220 case OP_ENTRY_EXIT_LIST:
6221 return match_entry_exit_operand (arg, operand);
6222
6223 case OP_SAVE_RESTORE_LIST:
6224 return match_save_restore_list_operand (arg);
6225
6226 case OP_MDMX_IMM_REG:
6227 return match_mdmx_imm_reg_operand (arg, operand);
6228
6229 case OP_REPEAT_DEST_REG:
6230 return match_tied_reg_operand (arg, arg->dest_regno);
6231
6232 case OP_REPEAT_PREV_REG:
6233 return match_tied_reg_operand (arg, arg->last_regno);
6234
6235 case OP_PC:
6236 return match_pc_operand (arg);
6237
6238 case OP_REG28:
6239 return match_reg28_operand (arg);
6240
6241 case OP_VU0_SUFFIX:
6242 return match_vu0_suffix_operand (arg, operand, FALSE);
6243
6244 case OP_VU0_MATCH_SUFFIX:
6245 return match_vu0_suffix_operand (arg, operand, TRUE);
6246
6247 case OP_IMM_INDEX:
6248 return match_imm_index_operand (arg, operand);
6249
6250 case OP_REG_INDEX:
6251 return match_reg_index_operand (arg, operand);
6252
6253 case OP_SAME_RS_RT:
6254 return match_same_rs_rt_operand (arg, operand);
6255
6256 case OP_CHECK_PREV:
6257 return match_check_prev_operand (arg, operand);
6258
6259 case OP_NON_ZERO_REG:
6260 return match_non_zero_reg_operand (arg, operand);
6261 }
6262 abort ();
6263 }
6264
6265 /* ARG is the state after successfully matching an instruction.
6266 Issue any queued-up warnings. */
6267
6268 static void
6269 check_completed_insn (struct mips_arg_info *arg)
6270 {
6271 if (arg->seen_at)
6272 {
6273 if (AT == ATREG)
6274 as_warn (_("used $at without \".set noat\""));
6275 else
6276 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6277 }
6278 }
6279
6280 /* Return true if modifying general-purpose register REG needs a delay. */
6281
6282 static bfd_boolean
6283 reg_needs_delay (unsigned int reg)
6284 {
6285 unsigned long prev_pinfo;
6286
6287 prev_pinfo = history[0].insn_mo->pinfo;
6288 if (!mips_opts.noreorder
6289 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6290 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6291 && (gpr_write_mask (&history[0]) & (1 << reg)))
6292 return TRUE;
6293
6294 return FALSE;
6295 }
6296
6297 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6298 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6299 by VR4120 errata. */
6300
6301 static unsigned int
6302 classify_vr4120_insn (const char *name)
6303 {
6304 if (strncmp (name, "macc", 4) == 0)
6305 return FIX_VR4120_MACC;
6306 if (strncmp (name, "dmacc", 5) == 0)
6307 return FIX_VR4120_DMACC;
6308 if (strncmp (name, "mult", 4) == 0)
6309 return FIX_VR4120_MULT;
6310 if (strncmp (name, "dmult", 5) == 0)
6311 return FIX_VR4120_DMULT;
6312 if (strstr (name, "div"))
6313 return FIX_VR4120_DIV;
6314 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6315 return FIX_VR4120_MTHILO;
6316 return NUM_FIX_VR4120_CLASSES;
6317 }
6318
6319 #define INSN_ERET 0x42000018
6320 #define INSN_DERET 0x4200001f
6321 #define INSN_DMULT 0x1c
6322 #define INSN_DMULTU 0x1d
6323
6324 /* Return the number of instructions that must separate INSN1 and INSN2,
6325 where INSN1 is the earlier instruction. Return the worst-case value
6326 for any INSN2 if INSN2 is null. */
6327
6328 static unsigned int
6329 insns_between (const struct mips_cl_insn *insn1,
6330 const struct mips_cl_insn *insn2)
6331 {
6332 unsigned long pinfo1, pinfo2;
6333 unsigned int mask;
6334
6335 /* If INFO2 is null, pessimistically assume that all flags are set for
6336 the second instruction. */
6337 pinfo1 = insn1->insn_mo->pinfo;
6338 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6339
6340 /* For most targets, write-after-read dependencies on the HI and LO
6341 registers must be separated by at least two instructions. */
6342 if (!hilo_interlocks)
6343 {
6344 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6345 return 2;
6346 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6347 return 2;
6348 }
6349
6350 /* If we're working around r7000 errata, there must be two instructions
6351 between an mfhi or mflo and any instruction that uses the result. */
6352 if (mips_7000_hilo_fix
6353 && !mips_opts.micromips
6354 && MF_HILO_INSN (pinfo1)
6355 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6356 return 2;
6357
6358 /* If we're working around 24K errata, one instruction is required
6359 if an ERET or DERET is followed by a branch instruction. */
6360 if (mips_fix_24k && !mips_opts.micromips)
6361 {
6362 if (insn1->insn_opcode == INSN_ERET
6363 || insn1->insn_opcode == INSN_DERET)
6364 {
6365 if (insn2 == NULL
6366 || insn2->insn_opcode == INSN_ERET
6367 || insn2->insn_opcode == INSN_DERET
6368 || delayed_branch_p (insn2))
6369 return 1;
6370 }
6371 }
6372
6373 /* If we're working around PMC RM7000 errata, there must be three
6374 nops between a dmult and a load instruction. */
6375 if (mips_fix_rm7000 && !mips_opts.micromips)
6376 {
6377 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6378 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6379 {
6380 if (pinfo2 & INSN_LOAD_MEMORY)
6381 return 3;
6382 }
6383 }
6384
6385 /* If working around VR4120 errata, check for combinations that need
6386 a single intervening instruction. */
6387 if (mips_fix_vr4120 && !mips_opts.micromips)
6388 {
6389 unsigned int class1, class2;
6390
6391 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6392 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6393 {
6394 if (insn2 == NULL)
6395 return 1;
6396 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6397 if (vr4120_conflicts[class1] & (1 << class2))
6398 return 1;
6399 }
6400 }
6401
6402 if (!HAVE_CODE_COMPRESSION)
6403 {
6404 /* Check for GPR or coprocessor load delays. All such delays
6405 are on the RT register. */
6406 /* Itbl support may require additional care here. */
6407 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6408 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6409 {
6410 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6411 return 1;
6412 }
6413
6414 /* Check for generic coprocessor hazards.
6415
6416 This case is not handled very well. There is no special
6417 knowledge of CP0 handling, and the coprocessors other than
6418 the floating point unit are not distinguished at all. */
6419 /* Itbl support may require additional care here. FIXME!
6420 Need to modify this to include knowledge about
6421 user specified delays! */
6422 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6423 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6424 {
6425 /* Handle cases where INSN1 writes to a known general coprocessor
6426 register. There must be a one instruction delay before INSN2
6427 if INSN2 reads that register, otherwise no delay is needed. */
6428 mask = fpr_write_mask (insn1);
6429 if (mask != 0)
6430 {
6431 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6432 return 1;
6433 }
6434 else
6435 {
6436 /* Read-after-write dependencies on the control registers
6437 require a two-instruction gap. */
6438 if ((pinfo1 & INSN_WRITE_COND_CODE)
6439 && (pinfo2 & INSN_READ_COND_CODE))
6440 return 2;
6441
6442 /* We don't know exactly what INSN1 does. If INSN2 is
6443 also a coprocessor instruction, assume there must be
6444 a one instruction gap. */
6445 if (pinfo2 & INSN_COP)
6446 return 1;
6447 }
6448 }
6449
6450 /* Check for read-after-write dependencies on the coprocessor
6451 control registers in cases where INSN1 does not need a general
6452 coprocessor delay. This means that INSN1 is a floating point
6453 comparison instruction. */
6454 /* Itbl support may require additional care here. */
6455 else if (!cop_interlocks
6456 && (pinfo1 & INSN_WRITE_COND_CODE)
6457 && (pinfo2 & INSN_READ_COND_CODE))
6458 return 1;
6459 }
6460
6461 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6462 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6463 and pause. */
6464 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6465 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6466 || (insn2 && delayed_branch_p (insn2))))
6467 return 1;
6468
6469 return 0;
6470 }
6471
6472 /* Return the number of nops that would be needed to work around the
6473 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6474 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6475 that are contained within the first IGNORE instructions of HIST. */
6476
6477 static int
6478 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6479 const struct mips_cl_insn *insn)
6480 {
6481 int i, j;
6482 unsigned int mask;
6483
6484 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6485 are not affected by the errata. */
6486 if (insn != 0
6487 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6488 || strcmp (insn->insn_mo->name, "mtlo") == 0
6489 || strcmp (insn->insn_mo->name, "mthi") == 0))
6490 return 0;
6491
6492 /* Search for the first MFLO or MFHI. */
6493 for (i = 0; i < MAX_VR4130_NOPS; i++)
6494 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6495 {
6496 /* Extract the destination register. */
6497 mask = gpr_write_mask (&hist[i]);
6498
6499 /* No nops are needed if INSN reads that register. */
6500 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6501 return 0;
6502
6503 /* ...or if any of the intervening instructions do. */
6504 for (j = 0; j < i; j++)
6505 if (gpr_read_mask (&hist[j]) & mask)
6506 return 0;
6507
6508 if (i >= ignore)
6509 return MAX_VR4130_NOPS - i;
6510 }
6511 return 0;
6512 }
6513
6514 #define BASE_REG_EQ(INSN1, INSN2) \
6515 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6516 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6517
6518 /* Return the minimum alignment for this store instruction. */
6519
6520 static int
6521 fix_24k_align_to (const struct mips_opcode *mo)
6522 {
6523 if (strcmp (mo->name, "sh") == 0)
6524 return 2;
6525
6526 if (strcmp (mo->name, "swc1") == 0
6527 || strcmp (mo->name, "swc2") == 0
6528 || strcmp (mo->name, "sw") == 0
6529 || strcmp (mo->name, "sc") == 0
6530 || strcmp (mo->name, "s.s") == 0)
6531 return 4;
6532
6533 if (strcmp (mo->name, "sdc1") == 0
6534 || strcmp (mo->name, "sdc2") == 0
6535 || strcmp (mo->name, "s.d") == 0)
6536 return 8;
6537
6538 /* sb, swl, swr */
6539 return 1;
6540 }
6541
6542 struct fix_24k_store_info
6543 {
6544 /* Immediate offset, if any, for this store instruction. */
6545 short off;
6546 /* Alignment required by this store instruction. */
6547 int align_to;
6548 /* True for register offsets. */
6549 int register_offset;
6550 };
6551
6552 /* Comparison function used by qsort. */
6553
6554 static int
6555 fix_24k_sort (const void *a, const void *b)
6556 {
6557 const struct fix_24k_store_info *pos1 = a;
6558 const struct fix_24k_store_info *pos2 = b;
6559
6560 return (pos1->off - pos2->off);
6561 }
6562
6563 /* INSN is a store instruction. Try to record the store information
6564 in STINFO. Return false if the information isn't known. */
6565
6566 static bfd_boolean
6567 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6568 const struct mips_cl_insn *insn)
6569 {
6570 /* The instruction must have a known offset. */
6571 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6572 return FALSE;
6573
6574 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6575 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6576 return TRUE;
6577 }
6578
6579 /* Return the number of nops that would be needed to work around the 24k
6580 "lost data on stores during refill" errata if instruction INSN
6581 immediately followed the 2 instructions described by HIST.
6582 Ignore hazards that are contained within the first IGNORE
6583 instructions of HIST.
6584
6585 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6586 for the data cache refills and store data. The following describes
6587 the scenario where the store data could be lost.
6588
6589 * A data cache miss, due to either a load or a store, causing fill
6590 data to be supplied by the memory subsystem
6591 * The first three doublewords of fill data are returned and written
6592 into the cache
6593 * A sequence of four stores occurs in consecutive cycles around the
6594 final doubleword of the fill:
6595 * Store A
6596 * Store B
6597 * Store C
6598 * Zero, One or more instructions
6599 * Store D
6600
6601 The four stores A-D must be to different doublewords of the line that
6602 is being filled. The fourth instruction in the sequence above permits
6603 the fill of the final doubleword to be transferred from the FSB into
6604 the cache. In the sequence above, the stores may be either integer
6605 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6606 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6607 different doublewords on the line. If the floating point unit is
6608 running in 1:2 mode, it is not possible to create the sequence above
6609 using only floating point store instructions.
6610
6611 In this case, the cache line being filled is incorrectly marked
6612 invalid, thereby losing the data from any store to the line that
6613 occurs between the original miss and the completion of the five
6614 cycle sequence shown above.
6615
6616 The workarounds are:
6617
6618 * Run the data cache in write-through mode.
6619 * Insert a non-store instruction between
6620 Store A and Store B or Store B and Store C. */
6621
6622 static int
6623 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6624 const struct mips_cl_insn *insn)
6625 {
6626 struct fix_24k_store_info pos[3];
6627 int align, i, base_offset;
6628
6629 if (ignore >= 2)
6630 return 0;
6631
6632 /* If the previous instruction wasn't a store, there's nothing to
6633 worry about. */
6634 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6635 return 0;
6636
6637 /* If the instructions after the previous one are unknown, we have
6638 to assume the worst. */
6639 if (!insn)
6640 return 1;
6641
6642 /* Check whether we are dealing with three consecutive stores. */
6643 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6644 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6645 return 0;
6646
6647 /* If we don't know the relationship between the store addresses,
6648 assume the worst. */
6649 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6650 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6651 return 1;
6652
6653 if (!fix_24k_record_store_info (&pos[0], insn)
6654 || !fix_24k_record_store_info (&pos[1], &hist[0])
6655 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6656 return 1;
6657
6658 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6659
6660 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6661 X bytes and such that the base register + X is known to be aligned
6662 to align bytes. */
6663
6664 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6665 align = 8;
6666 else
6667 {
6668 align = pos[0].align_to;
6669 base_offset = pos[0].off;
6670 for (i = 1; i < 3; i++)
6671 if (align < pos[i].align_to)
6672 {
6673 align = pos[i].align_to;
6674 base_offset = pos[i].off;
6675 }
6676 for (i = 0; i < 3; i++)
6677 pos[i].off -= base_offset;
6678 }
6679
6680 pos[0].off &= ~align + 1;
6681 pos[1].off &= ~align + 1;
6682 pos[2].off &= ~align + 1;
6683
6684 /* If any two stores write to the same chunk, they also write to the
6685 same doubleword. The offsets are still sorted at this point. */
6686 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6687 return 0;
6688
6689 /* A range of at least 9 bytes is needed for the stores to be in
6690 non-overlapping doublewords. */
6691 if (pos[2].off - pos[0].off <= 8)
6692 return 0;
6693
6694 if (pos[2].off - pos[1].off >= 24
6695 || pos[1].off - pos[0].off >= 24
6696 || pos[2].off - pos[0].off >= 32)
6697 return 0;
6698
6699 return 1;
6700 }
6701
6702 /* Return the number of nops that would be needed if instruction INSN
6703 immediately followed the MAX_NOPS instructions given by HIST,
6704 where HIST[0] is the most recent instruction. Ignore hazards
6705 between INSN and the first IGNORE instructions in HIST.
6706
6707 If INSN is null, return the worse-case number of nops for any
6708 instruction. */
6709
6710 static int
6711 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6712 const struct mips_cl_insn *insn)
6713 {
6714 int i, nops, tmp_nops;
6715
6716 nops = 0;
6717 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6718 {
6719 tmp_nops = insns_between (hist + i, insn) - i;
6720 if (tmp_nops > nops)
6721 nops = tmp_nops;
6722 }
6723
6724 if (mips_fix_vr4130 && !mips_opts.micromips)
6725 {
6726 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6727 if (tmp_nops > nops)
6728 nops = tmp_nops;
6729 }
6730
6731 if (mips_fix_24k && !mips_opts.micromips)
6732 {
6733 tmp_nops = nops_for_24k (ignore, hist, insn);
6734 if (tmp_nops > nops)
6735 nops = tmp_nops;
6736 }
6737
6738 return nops;
6739 }
6740
6741 /* The variable arguments provide NUM_INSNS extra instructions that
6742 might be added to HIST. Return the largest number of nops that
6743 would be needed after the extended sequence, ignoring hazards
6744 in the first IGNORE instructions. */
6745
6746 static int
6747 nops_for_sequence (int num_insns, int ignore,
6748 const struct mips_cl_insn *hist, ...)
6749 {
6750 va_list args;
6751 struct mips_cl_insn buffer[MAX_NOPS];
6752 struct mips_cl_insn *cursor;
6753 int nops;
6754
6755 va_start (args, hist);
6756 cursor = buffer + num_insns;
6757 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6758 while (cursor > buffer)
6759 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6760
6761 nops = nops_for_insn (ignore, buffer, NULL);
6762 va_end (args);
6763 return nops;
6764 }
6765
6766 /* Like nops_for_insn, but if INSN is a branch, take into account the
6767 worst-case delay for the branch target. */
6768
6769 static int
6770 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6771 const struct mips_cl_insn *insn)
6772 {
6773 int nops, tmp_nops;
6774
6775 nops = nops_for_insn (ignore, hist, insn);
6776 if (delayed_branch_p (insn))
6777 {
6778 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6779 hist, insn, get_delay_slot_nop (insn));
6780 if (tmp_nops > nops)
6781 nops = tmp_nops;
6782 }
6783 else if (compact_branch_p (insn))
6784 {
6785 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6786 if (tmp_nops > nops)
6787 nops = tmp_nops;
6788 }
6789 return nops;
6790 }
6791
6792 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6793
6794 static void
6795 fix_loongson2f_nop (struct mips_cl_insn * ip)
6796 {
6797 gas_assert (!HAVE_CODE_COMPRESSION);
6798 if (strcmp (ip->insn_mo->name, "nop") == 0)
6799 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6800 }
6801
6802 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6803 jr target pc &= 'hffff_ffff_cfff_ffff. */
6804
6805 static void
6806 fix_loongson2f_jump (struct mips_cl_insn * ip)
6807 {
6808 gas_assert (!HAVE_CODE_COMPRESSION);
6809 if (strcmp (ip->insn_mo->name, "j") == 0
6810 || strcmp (ip->insn_mo->name, "jr") == 0
6811 || strcmp (ip->insn_mo->name, "jalr") == 0)
6812 {
6813 int sreg;
6814 expressionS ep;
6815
6816 if (! mips_opts.at)
6817 return;
6818
6819 sreg = EXTRACT_OPERAND (0, RS, *ip);
6820 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6821 return;
6822
6823 ep.X_op = O_constant;
6824 ep.X_add_number = 0xcfff0000;
6825 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6826 ep.X_add_number = 0xffff;
6827 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6828 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6829 }
6830 }
6831
6832 static void
6833 fix_loongson2f (struct mips_cl_insn * ip)
6834 {
6835 if (mips_fix_loongson2f_nop)
6836 fix_loongson2f_nop (ip);
6837
6838 if (mips_fix_loongson2f_jump)
6839 fix_loongson2f_jump (ip);
6840 }
6841
6842 /* IP is a branch that has a delay slot, and we need to fill it
6843 automatically. Return true if we can do that by swapping IP
6844 with the previous instruction.
6845 ADDRESS_EXPR is an operand of the instruction to be used with
6846 RELOC_TYPE. */
6847
6848 static bfd_boolean
6849 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6850 bfd_reloc_code_real_type *reloc_type)
6851 {
6852 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6853 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6854 unsigned int fpr_read, prev_fpr_write;
6855
6856 /* -O2 and above is required for this optimization. */
6857 if (mips_optimize < 2)
6858 return FALSE;
6859
6860 /* If we have seen .set volatile or .set nomove, don't optimize. */
6861 if (mips_opts.nomove)
6862 return FALSE;
6863
6864 /* We can't swap if the previous instruction's position is fixed. */
6865 if (history[0].fixed_p)
6866 return FALSE;
6867
6868 /* If the previous previous insn was in a .set noreorder, we can't
6869 swap. Actually, the MIPS assembler will swap in this situation.
6870 However, gcc configured -with-gnu-as will generate code like
6871
6872 .set noreorder
6873 lw $4,XXX
6874 .set reorder
6875 INSN
6876 bne $4,$0,foo
6877
6878 in which we can not swap the bne and INSN. If gcc is not configured
6879 -with-gnu-as, it does not output the .set pseudo-ops. */
6880 if (history[1].noreorder_p)
6881 return FALSE;
6882
6883 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6884 This means that the previous instruction was a 4-byte one anyhow. */
6885 if (mips_opts.mips16 && history[0].fixp[0])
6886 return FALSE;
6887
6888 /* If the branch is itself the target of a branch, we can not swap.
6889 We cheat on this; all we check for is whether there is a label on
6890 this instruction. If there are any branches to anything other than
6891 a label, users must use .set noreorder. */
6892 if (seg_info (now_seg)->label_list)
6893 return FALSE;
6894
6895 /* If the previous instruction is in a variant frag other than this
6896 branch's one, we cannot do the swap. This does not apply to
6897 MIPS16 code, which uses variant frags for different purposes. */
6898 if (!mips_opts.mips16
6899 && history[0].frag
6900 && history[0].frag->fr_type == rs_machine_dependent)
6901 return FALSE;
6902
6903 /* We do not swap with instructions that cannot architecturally
6904 be placed in a branch delay slot, such as SYNC or ERET. We
6905 also refrain from swapping with a trap instruction, since it
6906 complicates trap handlers to have the trap instruction be in
6907 a delay slot. */
6908 prev_pinfo = history[0].insn_mo->pinfo;
6909 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6910 return FALSE;
6911
6912 /* Check for conflicts between the branch and the instructions
6913 before the candidate delay slot. */
6914 if (nops_for_insn (0, history + 1, ip) > 0)
6915 return FALSE;
6916
6917 /* Check for conflicts between the swapped sequence and the
6918 target of the branch. */
6919 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6920 return FALSE;
6921
6922 /* If the branch reads a register that the previous
6923 instruction sets, we can not swap. */
6924 gpr_read = gpr_read_mask (ip);
6925 prev_gpr_write = gpr_write_mask (&history[0]);
6926 if (gpr_read & prev_gpr_write)
6927 return FALSE;
6928
6929 fpr_read = fpr_read_mask (ip);
6930 prev_fpr_write = fpr_write_mask (&history[0]);
6931 if (fpr_read & prev_fpr_write)
6932 return FALSE;
6933
6934 /* If the branch writes a register that the previous
6935 instruction sets, we can not swap. */
6936 gpr_write = gpr_write_mask (ip);
6937 if (gpr_write & prev_gpr_write)
6938 return FALSE;
6939
6940 /* If the branch writes a register that the previous
6941 instruction reads, we can not swap. */
6942 prev_gpr_read = gpr_read_mask (&history[0]);
6943 if (gpr_write & prev_gpr_read)
6944 return FALSE;
6945
6946 /* If one instruction sets a condition code and the
6947 other one uses a condition code, we can not swap. */
6948 pinfo = ip->insn_mo->pinfo;
6949 if ((pinfo & INSN_READ_COND_CODE)
6950 && (prev_pinfo & INSN_WRITE_COND_CODE))
6951 return FALSE;
6952 if ((pinfo & INSN_WRITE_COND_CODE)
6953 && (prev_pinfo & INSN_READ_COND_CODE))
6954 return FALSE;
6955
6956 /* If the previous instruction uses the PC, we can not swap. */
6957 prev_pinfo2 = history[0].insn_mo->pinfo2;
6958 if (prev_pinfo2 & INSN2_READ_PC)
6959 return FALSE;
6960
6961 /* If the previous instruction has an incorrect size for a fixed
6962 branch delay slot in microMIPS mode, we cannot swap. */
6963 pinfo2 = ip->insn_mo->pinfo2;
6964 if (mips_opts.micromips
6965 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6966 && insn_length (history) != 2)
6967 return FALSE;
6968 if (mips_opts.micromips
6969 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6970 && insn_length (history) != 4)
6971 return FALSE;
6972
6973 /* On R5900 short loops need to be fixed by inserting a nop in
6974 the branch delay slots.
6975 A short loop can be terminated too early. */
6976 if (mips_opts.arch == CPU_R5900
6977 /* Check if instruction has a parameter, ignore "j $31". */
6978 && (address_expr != NULL)
6979 /* Parameter must be 16 bit. */
6980 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6981 /* Branch to same segment. */
6982 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
6983 /* Branch to same code fragment. */
6984 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
6985 /* Can only calculate branch offset if value is known. */
6986 && symbol_constant_p (address_expr->X_add_symbol)
6987 /* Check if branch is really conditional. */
6988 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6989 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6990 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6991 {
6992 int distance;
6993 /* Check if loop is shorter than 6 instructions including
6994 branch and delay slot. */
6995 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
6996 if (distance <= 20)
6997 {
6998 int i;
6999 int rv;
7000
7001 rv = FALSE;
7002 /* When the loop includes branches or jumps,
7003 it is not a short loop. */
7004 for (i = 0; i < (distance / 4); i++)
7005 {
7006 if ((history[i].cleared_p)
7007 || delayed_branch_p (&history[i]))
7008 {
7009 rv = TRUE;
7010 break;
7011 }
7012 }
7013 if (!rv)
7014 {
7015 /* Insert nop after branch to fix short loop. */
7016 return FALSE;
7017 }
7018 }
7019 }
7020
7021 return TRUE;
7022 }
7023
7024 /* Decide how we should add IP to the instruction stream.
7025 ADDRESS_EXPR is an operand of the instruction to be used with
7026 RELOC_TYPE. */
7027
7028 static enum append_method
7029 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
7030 bfd_reloc_code_real_type *reloc_type)
7031 {
7032 /* The relaxed version of a macro sequence must be inherently
7033 hazard-free. */
7034 if (mips_relax.sequence == 2)
7035 return APPEND_ADD;
7036
7037 /* We must not dabble with instructions in a ".set noreorder" block. */
7038 if (mips_opts.noreorder)
7039 return APPEND_ADD;
7040
7041 /* Otherwise, it's our responsibility to fill branch delay slots. */
7042 if (delayed_branch_p (ip))
7043 {
7044 if (!branch_likely_p (ip)
7045 && can_swap_branch_p (ip, address_expr, reloc_type))
7046 return APPEND_SWAP;
7047
7048 if (mips_opts.mips16
7049 && ISA_SUPPORTS_MIPS16E
7050 && gpr_read_mask (ip) != 0)
7051 return APPEND_ADD_COMPACT;
7052
7053 if (mips_opts.micromips
7054 && ((ip->insn_opcode & 0xffe0) == 0x4580
7055 || (!forced_insn_length
7056 && ((ip->insn_opcode & 0xfc00) == 0xcc00
7057 || (ip->insn_opcode & 0xdc00) == 0x8c00))
7058 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
7059 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
7060 return APPEND_ADD_COMPACT;
7061
7062 return APPEND_ADD_WITH_NOP;
7063 }
7064
7065 return APPEND_ADD;
7066 }
7067
7068 /* IP is an instruction whose opcode we have just changed, END points
7069 to the end of the opcode table processed. Point IP->insn_mo to the
7070 new opcode's definition. */
7071
7072 static void
7073 find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
7074 {
7075 const struct mips_opcode *mo;
7076
7077 for (mo = ip->insn_mo; mo < end; mo++)
7078 if (mo->pinfo != INSN_MACRO
7079 && (ip->insn_opcode & mo->mask) == mo->match)
7080 {
7081 ip->insn_mo = mo;
7082 return;
7083 }
7084 abort ();
7085 }
7086
7087 /* IP is a MIPS16 instruction whose opcode we have just changed.
7088 Point IP->insn_mo to the new opcode's definition. */
7089
7090 static void
7091 find_altered_mips16_opcode (struct mips_cl_insn *ip)
7092 {
7093 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
7094 }
7095
7096 /* IP is a microMIPS instruction whose opcode we have just changed.
7097 Point IP->insn_mo to the new opcode's definition. */
7098
7099 static void
7100 find_altered_micromips_opcode (struct mips_cl_insn *ip)
7101 {
7102 find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
7103 }
7104
7105 /* For microMIPS macros, we need to generate a local number label
7106 as the target of branches. */
7107 #define MICROMIPS_LABEL_CHAR '\037'
7108 static unsigned long micromips_target_label;
7109 static char micromips_target_name[32];
7110
7111 static char *
7112 micromips_label_name (void)
7113 {
7114 char *p = micromips_target_name;
7115 char symbol_name_temporary[24];
7116 unsigned long l;
7117 int i;
7118
7119 if (*p)
7120 return p;
7121
7122 i = 0;
7123 l = micromips_target_label;
7124 #ifdef LOCAL_LABEL_PREFIX
7125 *p++ = LOCAL_LABEL_PREFIX;
7126 #endif
7127 *p++ = 'L';
7128 *p++ = MICROMIPS_LABEL_CHAR;
7129 do
7130 {
7131 symbol_name_temporary[i++] = l % 10 + '0';
7132 l /= 10;
7133 }
7134 while (l != 0);
7135 while (i > 0)
7136 *p++ = symbol_name_temporary[--i];
7137 *p = '\0';
7138
7139 return micromips_target_name;
7140 }
7141
7142 static void
7143 micromips_label_expr (expressionS *label_expr)
7144 {
7145 label_expr->X_op = O_symbol;
7146 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
7147 label_expr->X_add_number = 0;
7148 }
7149
7150 static void
7151 micromips_label_inc (void)
7152 {
7153 micromips_target_label++;
7154 *micromips_target_name = '\0';
7155 }
7156
7157 static void
7158 micromips_add_label (void)
7159 {
7160 symbolS *s;
7161
7162 s = colon (micromips_label_name ());
7163 micromips_label_inc ();
7164 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
7165 }
7166
7167 /* If assembling microMIPS code, then return the microMIPS reloc
7168 corresponding to the requested one if any. Otherwise return
7169 the reloc unchanged. */
7170
7171 static bfd_reloc_code_real_type
7172 micromips_map_reloc (bfd_reloc_code_real_type reloc)
7173 {
7174 static const bfd_reloc_code_real_type relocs[][2] =
7175 {
7176 /* Keep sorted incrementally by the left-hand key. */
7177 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
7178 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
7179 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
7180 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
7181 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
7182 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
7183 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
7184 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
7185 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
7186 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
7187 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
7188 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
7189 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
7190 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
7191 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
7192 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
7193 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
7194 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
7195 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
7196 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
7197 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
7198 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
7199 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
7200 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
7201 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
7202 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
7203 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
7204 };
7205 bfd_reloc_code_real_type r;
7206 size_t i;
7207
7208 if (!mips_opts.micromips)
7209 return reloc;
7210 for (i = 0; i < ARRAY_SIZE (relocs); i++)
7211 {
7212 r = relocs[i][0];
7213 if (r > reloc)
7214 return reloc;
7215 if (r == reloc)
7216 return relocs[i][1];
7217 }
7218 return reloc;
7219 }
7220
7221 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7222 Return true on success, storing the resolved value in RESULT. */
7223
7224 static bfd_boolean
7225 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7226 offsetT *result)
7227 {
7228 switch (reloc)
7229 {
7230 case BFD_RELOC_MIPS_HIGHEST:
7231 case BFD_RELOC_MICROMIPS_HIGHEST:
7232 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7233 return TRUE;
7234
7235 case BFD_RELOC_MIPS_HIGHER:
7236 case BFD_RELOC_MICROMIPS_HIGHER:
7237 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7238 return TRUE;
7239
7240 case BFD_RELOC_HI16_S:
7241 case BFD_RELOC_HI16_S_PCREL:
7242 case BFD_RELOC_MICROMIPS_HI16_S:
7243 case BFD_RELOC_MIPS16_HI16_S:
7244 *result = ((operand + 0x8000) >> 16) & 0xffff;
7245 return TRUE;
7246
7247 case BFD_RELOC_HI16:
7248 case BFD_RELOC_MICROMIPS_HI16:
7249 case BFD_RELOC_MIPS16_HI16:
7250 *result = (operand >> 16) & 0xffff;
7251 return TRUE;
7252
7253 case BFD_RELOC_LO16:
7254 case BFD_RELOC_LO16_PCREL:
7255 case BFD_RELOC_MICROMIPS_LO16:
7256 case BFD_RELOC_MIPS16_LO16:
7257 *result = operand & 0xffff;
7258 return TRUE;
7259
7260 case BFD_RELOC_UNUSED:
7261 *result = operand;
7262 return TRUE;
7263
7264 default:
7265 return FALSE;
7266 }
7267 }
7268
7269 /* Output an instruction. IP is the instruction information.
7270 ADDRESS_EXPR is an operand of the instruction to be used with
7271 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7272 a macro expansion. */
7273
7274 static void
7275 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7276 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7277 {
7278 unsigned long prev_pinfo2, pinfo;
7279 bfd_boolean relaxed_branch = FALSE;
7280 enum append_method method;
7281 bfd_boolean relax32;
7282 int branch_disp;
7283
7284 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7285 fix_loongson2f (ip);
7286
7287 file_ase_mips16 |= mips_opts.mips16;
7288 file_ase_micromips |= mips_opts.micromips;
7289
7290 prev_pinfo2 = history[0].insn_mo->pinfo2;
7291 pinfo = ip->insn_mo->pinfo;
7292
7293 /* Don't raise alarm about `nods' frags as they'll fill in the right
7294 kind of nop in relaxation if required. */
7295 if (mips_opts.micromips
7296 && !expansionp
7297 && !(history[0].frag
7298 && history[0].frag->fr_type == rs_machine_dependent
7299 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7300 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
7301 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7302 && micromips_insn_length (ip->insn_mo) != 2)
7303 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7304 && micromips_insn_length (ip->insn_mo) != 4)))
7305 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7306 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7307
7308 if (address_expr == NULL)
7309 ip->complete_p = 1;
7310 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7311 && reloc_type[1] == BFD_RELOC_UNUSED
7312 && reloc_type[2] == BFD_RELOC_UNUSED
7313 && address_expr->X_op == O_constant)
7314 {
7315 switch (*reloc_type)
7316 {
7317 case BFD_RELOC_MIPS_JMP:
7318 {
7319 int shift;
7320
7321 /* Shift is 2, unusually, for microMIPS JALX. */
7322 shift = (mips_opts.micromips
7323 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
7324 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7325 as_bad (_("jump to misaligned address (0x%lx)"),
7326 (unsigned long) address_expr->X_add_number);
7327 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7328 & 0x3ffffff);
7329 ip->complete_p = 1;
7330 }
7331 break;
7332
7333 case BFD_RELOC_MIPS16_JMP:
7334 if ((address_expr->X_add_number & 3) != 0)
7335 as_bad (_("jump to misaligned address (0x%lx)"),
7336 (unsigned long) address_expr->X_add_number);
7337 ip->insn_opcode |=
7338 (((address_expr->X_add_number & 0x7c0000) << 3)
7339 | ((address_expr->X_add_number & 0xf800000) >> 7)
7340 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7341 ip->complete_p = 1;
7342 break;
7343
7344 case BFD_RELOC_16_PCREL_S2:
7345 {
7346 int shift;
7347
7348 shift = mips_opts.micromips ? 1 : 2;
7349 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7350 as_bad (_("branch to misaligned address (0x%lx)"),
7351 (unsigned long) address_expr->X_add_number);
7352 if (!mips_relax_branch)
7353 {
7354 if ((address_expr->X_add_number + (1 << (shift + 15)))
7355 & ~((1 << (shift + 16)) - 1))
7356 as_bad (_("branch address range overflow (0x%lx)"),
7357 (unsigned long) address_expr->X_add_number);
7358 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7359 & 0xffff);
7360 }
7361 }
7362 break;
7363
7364 case BFD_RELOC_MIPS_21_PCREL_S2:
7365 {
7366 int shift;
7367
7368 shift = 2;
7369 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7370 as_bad (_("branch to misaligned address (0x%lx)"),
7371 (unsigned long) address_expr->X_add_number);
7372 if ((address_expr->X_add_number + (1 << (shift + 20)))
7373 & ~((1 << (shift + 21)) - 1))
7374 as_bad (_("branch address range overflow (0x%lx)"),
7375 (unsigned long) address_expr->X_add_number);
7376 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7377 & 0x1fffff);
7378 }
7379 break;
7380
7381 case BFD_RELOC_MIPS_26_PCREL_S2:
7382 {
7383 int shift;
7384
7385 shift = 2;
7386 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7387 as_bad (_("branch to misaligned address (0x%lx)"),
7388 (unsigned long) address_expr->X_add_number);
7389 if ((address_expr->X_add_number + (1 << (shift + 25)))
7390 & ~((1 << (shift + 26)) - 1))
7391 as_bad (_("branch address range overflow (0x%lx)"),
7392 (unsigned long) address_expr->X_add_number);
7393 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7394 & 0x3ffffff);
7395 }
7396 break;
7397
7398 default:
7399 {
7400 offsetT value;
7401
7402 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7403 &value))
7404 {
7405 ip->insn_opcode |= value & 0xffff;
7406 ip->complete_p = 1;
7407 }
7408 }
7409 break;
7410 }
7411 }
7412
7413 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7414 {
7415 /* There are a lot of optimizations we could do that we don't.
7416 In particular, we do not, in general, reorder instructions.
7417 If you use gcc with optimization, it will reorder
7418 instructions and generally do much more optimization then we
7419 do here; repeating all that work in the assembler would only
7420 benefit hand written assembly code, and does not seem worth
7421 it. */
7422 int nops = (mips_optimize == 0
7423 ? nops_for_insn (0, history, NULL)
7424 : nops_for_insn_or_target (0, history, ip));
7425 if (nops > 0)
7426 {
7427 fragS *old_frag;
7428 unsigned long old_frag_offset;
7429 int i;
7430
7431 old_frag = frag_now;
7432 old_frag_offset = frag_now_fix ();
7433
7434 for (i = 0; i < nops; i++)
7435 add_fixed_insn (NOP_INSN);
7436 insert_into_history (0, nops, NOP_INSN);
7437
7438 if (listing)
7439 {
7440 listing_prev_line ();
7441 /* We may be at the start of a variant frag. In case we
7442 are, make sure there is enough space for the frag
7443 after the frags created by listing_prev_line. The
7444 argument to frag_grow here must be at least as large
7445 as the argument to all other calls to frag_grow in
7446 this file. We don't have to worry about being in the
7447 middle of a variant frag, because the variants insert
7448 all needed nop instructions themselves. */
7449 frag_grow (40);
7450 }
7451
7452 mips_move_text_labels ();
7453
7454 #ifndef NO_ECOFF_DEBUGGING
7455 if (ECOFF_DEBUGGING)
7456 ecoff_fix_loc (old_frag, old_frag_offset);
7457 #endif
7458 }
7459 }
7460 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7461 {
7462 int nops;
7463
7464 /* Work out how many nops in prev_nop_frag are needed by IP,
7465 ignoring hazards generated by the first prev_nop_frag_since
7466 instructions. */
7467 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7468 gas_assert (nops <= prev_nop_frag_holds);
7469
7470 /* Enforce NOPS as a minimum. */
7471 if (nops > prev_nop_frag_required)
7472 prev_nop_frag_required = nops;
7473
7474 if (prev_nop_frag_holds == prev_nop_frag_required)
7475 {
7476 /* Settle for the current number of nops. Update the history
7477 accordingly (for the benefit of any future .set reorder code). */
7478 prev_nop_frag = NULL;
7479 insert_into_history (prev_nop_frag_since,
7480 prev_nop_frag_holds, NOP_INSN);
7481 }
7482 else
7483 {
7484 /* Allow this instruction to replace one of the nops that was
7485 tentatively added to prev_nop_frag. */
7486 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7487 prev_nop_frag_holds--;
7488 prev_nop_frag_since++;
7489 }
7490 }
7491
7492 method = get_append_method (ip, address_expr, reloc_type);
7493 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7494
7495 dwarf2_emit_insn (0);
7496 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7497 so "move" the instruction address accordingly.
7498
7499 Also, it doesn't seem appropriate for the assembler to reorder .loc
7500 entries. If this instruction is a branch that we are going to swap
7501 with the previous instruction, the two instructions should be
7502 treated as a unit, and the debug information for both instructions
7503 should refer to the start of the branch sequence. Using the
7504 current position is certainly wrong when swapping a 32-bit branch
7505 and a 16-bit delay slot, since the current position would then be
7506 in the middle of a branch. */
7507 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7508
7509 relax32 = (mips_relax_branch
7510 /* Don't try branch relaxation within .set nomacro, or within
7511 .set noat if we use $at for PIC computations. If it turns
7512 out that the branch was out-of-range, we'll get an error. */
7513 && !mips_opts.warn_about_macros
7514 && (mips_opts.at || mips_pic == NO_PIC)
7515 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7516 as they have no complementing branches. */
7517 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7518
7519 if (!HAVE_CODE_COMPRESSION
7520 && address_expr
7521 && relax32
7522 && *reloc_type == BFD_RELOC_16_PCREL_S2
7523 && delayed_branch_p (ip))
7524 {
7525 relaxed_branch = TRUE;
7526 add_relaxed_insn (ip, (relaxed_branch_length
7527 (NULL, NULL,
7528 uncond_branch_p (ip) ? -1
7529 : branch_likely_p (ip) ? 1
7530 : 0)), 4,
7531 RELAX_BRANCH_ENCODE
7532 (AT, mips_pic != NO_PIC,
7533 uncond_branch_p (ip),
7534 branch_likely_p (ip),
7535 pinfo & INSN_WRITE_GPR_31,
7536 0),
7537 address_expr->X_add_symbol,
7538 address_expr->X_add_number);
7539 *reloc_type = BFD_RELOC_UNUSED;
7540 }
7541 else if (mips_opts.micromips
7542 && address_expr
7543 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7544 || *reloc_type > BFD_RELOC_UNUSED)
7545 && (delayed_branch_p (ip) || compact_branch_p (ip))
7546 /* Don't try branch relaxation when users specify
7547 16-bit/32-bit instructions. */
7548 && !forced_insn_length)
7549 {
7550 bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
7551 && *reloc_type > BFD_RELOC_UNUSED);
7552 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7553 int uncond = uncond_branch_p (ip) ? -1 : 0;
7554 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7555 int nods = method == APPEND_ADD_WITH_NOP;
7556 int al = pinfo & INSN_WRITE_GPR_31;
7557 int length32 = nods ? 8 : 4;
7558
7559 gas_assert (address_expr != NULL);
7560 gas_assert (!mips_relax.sequence);
7561
7562 relaxed_branch = TRUE;
7563 if (nods)
7564 method = APPEND_ADD;
7565 if (relax32)
7566 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7567 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
7568 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
7569 mips_pic != NO_PIC,
7570 uncond, compact, al, nods,
7571 relax32, 0, 0),
7572 address_expr->X_add_symbol,
7573 address_expr->X_add_number);
7574 *reloc_type = BFD_RELOC_UNUSED;
7575 }
7576 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7577 {
7578 bfd_boolean require_unextended;
7579 bfd_boolean require_extended;
7580 symbolS *symbol;
7581 offsetT offset;
7582
7583 if (forced_insn_length != 0)
7584 {
7585 require_unextended = forced_insn_length == 2;
7586 require_extended = forced_insn_length == 4;
7587 }
7588 else
7589 {
7590 require_unextended = (mips_opts.noautoextend
7591 && !mips_opcode_32bit_p (ip->insn_mo));
7592 require_extended = 0;
7593 }
7594
7595 /* We need to set up a variant frag. */
7596 gas_assert (address_expr != NULL);
7597 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7598 symbol created by `make_expr_symbol' may not get a necessary
7599 external relocation produced. */
7600 if (address_expr->X_op == O_symbol)
7601 {
7602 symbol = address_expr->X_add_symbol;
7603 offset = address_expr->X_add_number;
7604 }
7605 else
7606 {
7607 symbol = make_expr_symbol (address_expr);
7608 symbol_append (symbol, symbol_lastP, &symbol_rootP, &symbol_lastP);
7609 offset = 0;
7610 }
7611 add_relaxed_insn (ip, 12, 0,
7612 RELAX_MIPS16_ENCODE
7613 (*reloc_type - BFD_RELOC_UNUSED,
7614 mips_opts.ase & ASE_MIPS16E2,
7615 mips_pic != NO_PIC,
7616 HAVE_32BIT_SYMBOLS,
7617 mips_opts.warn_about_macros,
7618 require_unextended, require_extended,
7619 delayed_branch_p (&history[0]),
7620 history[0].mips16_absolute_jump_p),
7621 symbol, offset);
7622 }
7623 else if (mips_opts.mips16 && insn_length (ip) == 2)
7624 {
7625 if (!delayed_branch_p (ip))
7626 /* Make sure there is enough room to swap this instruction with
7627 a following jump instruction. */
7628 frag_grow (6);
7629 add_fixed_insn (ip);
7630 }
7631 else
7632 {
7633 if (mips_opts.mips16
7634 && mips_opts.noreorder
7635 && delayed_branch_p (&history[0]))
7636 as_warn (_("extended instruction in delay slot"));
7637
7638 if (mips_relax.sequence)
7639 {
7640 /* If we've reached the end of this frag, turn it into a variant
7641 frag and record the information for the instructions we've
7642 written so far. */
7643 if (frag_room () < 4)
7644 relax_close_frag ();
7645 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7646 }
7647
7648 if (mips_relax.sequence != 2)
7649 {
7650 if (mips_macro_warning.first_insn_sizes[0] == 0)
7651 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7652 mips_macro_warning.sizes[0] += insn_length (ip);
7653 mips_macro_warning.insns[0]++;
7654 }
7655 if (mips_relax.sequence != 1)
7656 {
7657 if (mips_macro_warning.first_insn_sizes[1] == 0)
7658 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7659 mips_macro_warning.sizes[1] += insn_length (ip);
7660 mips_macro_warning.insns[1]++;
7661 }
7662
7663 if (mips_opts.mips16)
7664 {
7665 ip->fixed_p = 1;
7666 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7667 }
7668 add_fixed_insn (ip);
7669 }
7670
7671 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7672 {
7673 bfd_reloc_code_real_type final_type[3];
7674 reloc_howto_type *howto0;
7675 reloc_howto_type *howto;
7676 int i;
7677
7678 /* Perform any necessary conversion to microMIPS relocations
7679 and find out how many relocations there actually are. */
7680 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7681 final_type[i] = micromips_map_reloc (reloc_type[i]);
7682
7683 /* In a compound relocation, it is the final (outermost)
7684 operator that determines the relocated field. */
7685 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7686 if (!howto)
7687 abort ();
7688
7689 if (i > 1)
7690 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7691 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7692 bfd_get_reloc_size (howto),
7693 address_expr,
7694 howto0 && howto0->pc_relative,
7695 final_type[0]);
7696 /* Record non-PIC mode in `fx_tcbit2' for `md_apply_fix'. */
7697 ip->fixp[0]->fx_tcbit2 = mips_pic == NO_PIC;
7698
7699 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7700 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7701 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7702
7703 /* These relocations can have an addend that won't fit in
7704 4 octets for 64bit assembly. */
7705 if (GPR_SIZE == 64
7706 && ! howto->partial_inplace
7707 && (reloc_type[0] == BFD_RELOC_16
7708 || reloc_type[0] == BFD_RELOC_32
7709 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7710 || reloc_type[0] == BFD_RELOC_GPREL16
7711 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7712 || reloc_type[0] == BFD_RELOC_GPREL32
7713 || reloc_type[0] == BFD_RELOC_64
7714 || reloc_type[0] == BFD_RELOC_CTOR
7715 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7716 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7717 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7718 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7719 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7720 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7721 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7722 || hi16_reloc_p (reloc_type[0])
7723 || lo16_reloc_p (reloc_type[0])))
7724 ip->fixp[0]->fx_no_overflow = 1;
7725
7726 /* These relocations can have an addend that won't fit in 2 octets. */
7727 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7728 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7729 ip->fixp[0]->fx_no_overflow = 1;
7730
7731 if (mips_relax.sequence)
7732 {
7733 if (mips_relax.first_fixup == 0)
7734 mips_relax.first_fixup = ip->fixp[0];
7735 }
7736 else if (reloc_needs_lo_p (*reloc_type))
7737 {
7738 struct mips_hi_fixup *hi_fixup;
7739
7740 /* Reuse the last entry if it already has a matching %lo. */
7741 hi_fixup = mips_hi_fixup_list;
7742 if (hi_fixup == 0
7743 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7744 {
7745 hi_fixup = XNEW (struct mips_hi_fixup);
7746 hi_fixup->next = mips_hi_fixup_list;
7747 mips_hi_fixup_list = hi_fixup;
7748 }
7749 hi_fixup->fixp = ip->fixp[0];
7750 hi_fixup->seg = now_seg;
7751 }
7752
7753 /* Add fixups for the second and third relocations, if given.
7754 Note that the ABI allows the second relocation to be
7755 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7756 moment we only use RSS_UNDEF, but we could add support
7757 for the others if it ever becomes necessary. */
7758 for (i = 1; i < 3; i++)
7759 if (reloc_type[i] != BFD_RELOC_UNUSED)
7760 {
7761 ip->fixp[i] = fix_new (ip->frag, ip->where,
7762 ip->fixp[0]->fx_size, NULL, 0,
7763 FALSE, final_type[i]);
7764
7765 /* Use fx_tcbit to mark compound relocs. */
7766 ip->fixp[0]->fx_tcbit = 1;
7767 ip->fixp[i]->fx_tcbit = 1;
7768 }
7769 }
7770
7771 /* Update the register mask information. */
7772 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7773 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7774
7775 switch (method)
7776 {
7777 case APPEND_ADD:
7778 insert_into_history (0, 1, ip);
7779 break;
7780
7781 case APPEND_ADD_WITH_NOP:
7782 {
7783 struct mips_cl_insn *nop;
7784
7785 insert_into_history (0, 1, ip);
7786 nop = get_delay_slot_nop (ip);
7787 add_fixed_insn (nop);
7788 insert_into_history (0, 1, nop);
7789 if (mips_relax.sequence)
7790 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7791 }
7792 break;
7793
7794 case APPEND_ADD_COMPACT:
7795 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7796 if (mips_opts.mips16)
7797 {
7798 ip->insn_opcode |= 0x0080;
7799 find_altered_mips16_opcode (ip);
7800 }
7801 /* Convert microMIPS instructions. */
7802 else if (mips_opts.micromips)
7803 {
7804 /* jr16->jrc */
7805 if ((ip->insn_opcode & 0xffe0) == 0x4580)
7806 ip->insn_opcode |= 0x0020;
7807 /* b16->bc */
7808 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
7809 ip->insn_opcode = 0x40e00000;
7810 /* beqz16->beqzc, bnez16->bnezc */
7811 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
7812 {
7813 unsigned long regno;
7814
7815 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
7816 regno &= MICROMIPSOP_MASK_MD;
7817 regno = micromips_to_32_reg_d_map[regno];
7818 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
7819 | (regno << MICROMIPSOP_SH_RS)
7820 | 0x40a00000) ^ 0x00400000;
7821 }
7822 /* beqz->beqzc, bnez->bnezc */
7823 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
7824 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
7825 | ((ip->insn_opcode >> 7) & 0x00400000)
7826 | 0x40a00000) ^ 0x00400000;
7827 /* beq $0->beqzc, bne $0->bnezc */
7828 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
7829 ip->insn_opcode = (((ip->insn_opcode >>
7830 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
7831 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
7832 | ((ip->insn_opcode >> 7) & 0x00400000)
7833 | 0x40a00000) ^ 0x00400000;
7834 else
7835 abort ();
7836 find_altered_micromips_opcode (ip);
7837 }
7838 else
7839 abort ();
7840 install_insn (ip);
7841 insert_into_history (0, 1, ip);
7842 break;
7843
7844 case APPEND_SWAP:
7845 {
7846 struct mips_cl_insn delay = history[0];
7847
7848 if (relaxed_branch || delay.frag != ip->frag)
7849 {
7850 /* Add the delay slot instruction to the end of the
7851 current frag and shrink the fixed part of the
7852 original frag. If the branch occupies the tail of
7853 the latter, move it backwards to cover the gap. */
7854 delay.frag->fr_fix -= branch_disp;
7855 if (delay.frag == ip->frag)
7856 move_insn (ip, ip->frag, ip->where - branch_disp);
7857 add_fixed_insn (&delay);
7858 }
7859 else
7860 {
7861 /* If this is not a relaxed branch and we are in the
7862 same frag, then just swap the instructions. */
7863 move_insn (ip, delay.frag, delay.where);
7864 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7865 }
7866 history[0] = *ip;
7867 delay.fixed_p = 1;
7868 insert_into_history (0, 1, &delay);
7869 }
7870 break;
7871 }
7872
7873 /* If we have just completed an unconditional branch, clear the history. */
7874 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7875 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7876 {
7877 unsigned int i;
7878
7879 mips_no_prev_insn ();
7880
7881 for (i = 0; i < ARRAY_SIZE (history); i++)
7882 history[i].cleared_p = 1;
7883 }
7884
7885 /* We need to emit a label at the end of branch-likely macros. */
7886 if (emit_branch_likely_macro)
7887 {
7888 emit_branch_likely_macro = FALSE;
7889 micromips_add_label ();
7890 }
7891
7892 /* We just output an insn, so the next one doesn't have a label. */
7893 mips_clear_insn_labels ();
7894 }
7895
7896 /* Forget that there was any previous instruction or label.
7897 When BRANCH is true, the branch history is also flushed. */
7898
7899 static void
7900 mips_no_prev_insn (void)
7901 {
7902 prev_nop_frag = NULL;
7903 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7904 mips_clear_insn_labels ();
7905 }
7906
7907 /* This function must be called before we emit something other than
7908 instructions. It is like mips_no_prev_insn except that it inserts
7909 any NOPS that might be needed by previous instructions. */
7910
7911 void
7912 mips_emit_delays (void)
7913 {
7914 if (! mips_opts.noreorder)
7915 {
7916 int nops = nops_for_insn (0, history, NULL);
7917 if (nops > 0)
7918 {
7919 while (nops-- > 0)
7920 add_fixed_insn (NOP_INSN);
7921 mips_move_text_labels ();
7922 }
7923 }
7924 mips_no_prev_insn ();
7925 }
7926
7927 /* Start a (possibly nested) noreorder block. */
7928
7929 static void
7930 start_noreorder (void)
7931 {
7932 if (mips_opts.noreorder == 0)
7933 {
7934 unsigned int i;
7935 int nops;
7936
7937 /* None of the instructions before the .set noreorder can be moved. */
7938 for (i = 0; i < ARRAY_SIZE (history); i++)
7939 history[i].fixed_p = 1;
7940
7941 /* Insert any nops that might be needed between the .set noreorder
7942 block and the previous instructions. We will later remove any
7943 nops that turn out not to be needed. */
7944 nops = nops_for_insn (0, history, NULL);
7945 if (nops > 0)
7946 {
7947 if (mips_optimize != 0)
7948 {
7949 /* Record the frag which holds the nop instructions, so
7950 that we can remove them if we don't need them. */
7951 frag_grow (nops * NOP_INSN_SIZE);
7952 prev_nop_frag = frag_now;
7953 prev_nop_frag_holds = nops;
7954 prev_nop_frag_required = 0;
7955 prev_nop_frag_since = 0;
7956 }
7957
7958 for (; nops > 0; --nops)
7959 add_fixed_insn (NOP_INSN);
7960
7961 /* Move on to a new frag, so that it is safe to simply
7962 decrease the size of prev_nop_frag. */
7963 frag_wane (frag_now);
7964 frag_new (0);
7965 mips_move_text_labels ();
7966 }
7967 mips_mark_labels ();
7968 mips_clear_insn_labels ();
7969 }
7970 mips_opts.noreorder++;
7971 mips_any_noreorder = 1;
7972 }
7973
7974 /* End a nested noreorder block. */
7975
7976 static void
7977 end_noreorder (void)
7978 {
7979 mips_opts.noreorder--;
7980 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7981 {
7982 /* Commit to inserting prev_nop_frag_required nops and go back to
7983 handling nop insertion the .set reorder way. */
7984 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7985 * NOP_INSN_SIZE);
7986 insert_into_history (prev_nop_frag_since,
7987 prev_nop_frag_required, NOP_INSN);
7988 prev_nop_frag = NULL;
7989 }
7990 }
7991
7992 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7993 higher bits unset. */
7994
7995 static void
7996 normalize_constant_expr (expressionS *ex)
7997 {
7998 if (ex->X_op == O_constant
7999 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
8000 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
8001 - 0x80000000);
8002 }
8003
8004 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
8005 all higher bits unset. */
8006
8007 static void
8008 normalize_address_expr (expressionS *ex)
8009 {
8010 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
8011 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
8012 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
8013 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
8014 - 0x80000000);
8015 }
8016
8017 /* Try to match TOKENS against OPCODE, storing the result in INSN.
8018 Return true if the match was successful.
8019
8020 OPCODE_EXTRA is a value that should be ORed into the opcode
8021 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
8022 there are more alternatives after OPCODE and SOFT_MATCH is
8023 as for mips_arg_info. */
8024
8025 static bfd_boolean
8026 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8027 struct mips_operand_token *tokens, unsigned int opcode_extra,
8028 bfd_boolean lax_match, bfd_boolean complete_p)
8029 {
8030 const char *args;
8031 struct mips_arg_info arg;
8032 const struct mips_operand *operand;
8033 char c;
8034
8035 imm_expr.X_op = O_absent;
8036 offset_expr.X_op = O_absent;
8037 offset_reloc[0] = BFD_RELOC_UNUSED;
8038 offset_reloc[1] = BFD_RELOC_UNUSED;
8039 offset_reloc[2] = BFD_RELOC_UNUSED;
8040
8041 create_insn (insn, opcode);
8042 /* When no opcode suffix is specified, assume ".xyzw". */
8043 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
8044 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
8045 else
8046 insn->insn_opcode |= opcode_extra;
8047 memset (&arg, 0, sizeof (arg));
8048 arg.insn = insn;
8049 arg.token = tokens;
8050 arg.argnum = 1;
8051 arg.last_regno = ILLEGAL_REG;
8052 arg.dest_regno = ILLEGAL_REG;
8053 arg.lax_match = lax_match;
8054 for (args = opcode->args;; ++args)
8055 {
8056 if (arg.token->type == OT_END)
8057 {
8058 /* Handle unary instructions in which only one operand is given.
8059 The source is then the same as the destination. */
8060 if (arg.opnum == 1 && *args == ',')
8061 {
8062 operand = (mips_opts.micromips
8063 ? decode_micromips_operand (args + 1)
8064 : decode_mips_operand (args + 1));
8065 if (operand && mips_optional_operand_p (operand))
8066 {
8067 arg.token = tokens;
8068 arg.argnum = 1;
8069 continue;
8070 }
8071 }
8072
8073 /* Treat elided base registers as $0. */
8074 if (strcmp (args, "(b)") == 0)
8075 args += 3;
8076
8077 if (args[0] == '+')
8078 switch (args[1])
8079 {
8080 case 'K':
8081 case 'N':
8082 /* The register suffix is optional. */
8083 args += 2;
8084 break;
8085 }
8086
8087 /* Fail the match if there were too few operands. */
8088 if (*args)
8089 return FALSE;
8090
8091 /* Successful match. */
8092 if (!complete_p)
8093 return TRUE;
8094 clear_insn_error ();
8095 if (arg.dest_regno == arg.last_regno
8096 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
8097 {
8098 if (arg.opnum == 2)
8099 set_insn_error
8100 (0, _("source and destination must be different"));
8101 else if (arg.last_regno == 31)
8102 set_insn_error
8103 (0, _("a destination register must be supplied"));
8104 }
8105 else if (arg.last_regno == 31
8106 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
8107 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
8108 set_insn_error (0, _("the source register must not be $31"));
8109 check_completed_insn (&arg);
8110 return TRUE;
8111 }
8112
8113 /* Fail the match if the line has too many operands. */
8114 if (*args == 0)
8115 return FALSE;
8116
8117 /* Handle characters that need to match exactly. */
8118 if (*args == '(' || *args == ')' || *args == ',')
8119 {
8120 if (match_char (&arg, *args))
8121 continue;
8122 return FALSE;
8123 }
8124 if (*args == '#')
8125 {
8126 ++args;
8127 if (arg.token->type == OT_DOUBLE_CHAR
8128 && arg.token->u.ch == *args)
8129 {
8130 ++arg.token;
8131 continue;
8132 }
8133 return FALSE;
8134 }
8135
8136 /* Handle special macro operands. Work out the properties of
8137 other operands. */
8138 arg.opnum += 1;
8139 switch (*args)
8140 {
8141 case '-':
8142 switch (args[1])
8143 {
8144 case 'A':
8145 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
8146 break;
8147
8148 case 'B':
8149 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
8150 break;
8151 }
8152 break;
8153
8154 case '+':
8155 switch (args[1])
8156 {
8157 case 'i':
8158 *offset_reloc = BFD_RELOC_MIPS_JMP;
8159 break;
8160
8161 case '\'':
8162 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
8163 break;
8164
8165 case '\"':
8166 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
8167 break;
8168 }
8169 break;
8170
8171 case 'I':
8172 if (!match_const_int (&arg, &imm_expr.X_add_number))
8173 return FALSE;
8174 imm_expr.X_op = O_constant;
8175 if (GPR_SIZE == 32)
8176 normalize_constant_expr (&imm_expr);
8177 continue;
8178
8179 case 'A':
8180 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8181 {
8182 /* Assume that the offset has been elided and that what
8183 we saw was a base register. The match will fail later
8184 if that assumption turns out to be wrong. */
8185 offset_expr.X_op = O_constant;
8186 offset_expr.X_add_number = 0;
8187 }
8188 else
8189 {
8190 if (!match_expression (&arg, &offset_expr, offset_reloc))
8191 return FALSE;
8192 normalize_address_expr (&offset_expr);
8193 }
8194 continue;
8195
8196 case 'F':
8197 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8198 8, TRUE))
8199 return FALSE;
8200 continue;
8201
8202 case 'L':
8203 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8204 8, FALSE))
8205 return FALSE;
8206 continue;
8207
8208 case 'f':
8209 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8210 4, TRUE))
8211 return FALSE;
8212 continue;
8213
8214 case 'l':
8215 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8216 4, FALSE))
8217 return FALSE;
8218 continue;
8219
8220 case 'p':
8221 *offset_reloc = BFD_RELOC_16_PCREL_S2;
8222 break;
8223
8224 case 'a':
8225 *offset_reloc = BFD_RELOC_MIPS_JMP;
8226 break;
8227
8228 case 'm':
8229 gas_assert (mips_opts.micromips);
8230 c = args[1];
8231 switch (c)
8232 {
8233 case 'D':
8234 case 'E':
8235 if (!forced_insn_length)
8236 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
8237 else if (c == 'D')
8238 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8239 else
8240 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8241 break;
8242 }
8243 break;
8244 }
8245
8246 operand = (mips_opts.micromips
8247 ? decode_micromips_operand (args)
8248 : decode_mips_operand (args));
8249 if (!operand)
8250 abort ();
8251
8252 /* Skip prefixes. */
8253 if (*args == '+' || *args == 'm' || *args == '-')
8254 args++;
8255
8256 if (mips_optional_operand_p (operand)
8257 && args[1] == ','
8258 && (arg.token[0].type != OT_REG
8259 || arg.token[1].type == OT_END))
8260 {
8261 /* Assume that the register has been elided and is the
8262 same as the first operand. */
8263 arg.token = tokens;
8264 arg.argnum = 1;
8265 }
8266
8267 if (!match_operand (&arg, operand))
8268 return FALSE;
8269 }
8270 }
8271
8272 /* Like match_insn, but for MIPS16. */
8273
8274 static bfd_boolean
8275 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8276 struct mips_operand_token *tokens)
8277 {
8278 const char *args;
8279 const struct mips_operand *operand;
8280 const struct mips_operand *ext_operand;
8281 bfd_boolean pcrel = FALSE;
8282 int required_insn_length;
8283 struct mips_arg_info arg;
8284 int relax_char;
8285
8286 if (forced_insn_length)
8287 required_insn_length = forced_insn_length;
8288 else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
8289 required_insn_length = 2;
8290 else
8291 required_insn_length = 0;
8292
8293 create_insn (insn, opcode);
8294 imm_expr.X_op = O_absent;
8295 offset_expr.X_op = O_absent;
8296 offset_reloc[0] = BFD_RELOC_UNUSED;
8297 offset_reloc[1] = BFD_RELOC_UNUSED;
8298 offset_reloc[2] = BFD_RELOC_UNUSED;
8299 relax_char = 0;
8300
8301 memset (&arg, 0, sizeof (arg));
8302 arg.insn = insn;
8303 arg.token = tokens;
8304 arg.argnum = 1;
8305 arg.last_regno = ILLEGAL_REG;
8306 arg.dest_regno = ILLEGAL_REG;
8307 relax_char = 0;
8308 for (args = opcode->args;; ++args)
8309 {
8310 int c;
8311
8312 if (arg.token->type == OT_END)
8313 {
8314 offsetT value;
8315
8316 /* Handle unary instructions in which only one operand is given.
8317 The source is then the same as the destination. */
8318 if (arg.opnum == 1 && *args == ',')
8319 {
8320 operand = decode_mips16_operand (args[1], FALSE);
8321 if (operand && mips_optional_operand_p (operand))
8322 {
8323 arg.token = tokens;
8324 arg.argnum = 1;
8325 continue;
8326 }
8327 }
8328
8329 /* Fail the match if there were too few operands. */
8330 if (*args)
8331 return FALSE;
8332
8333 /* Successful match. Stuff the immediate value in now, if
8334 we can. */
8335 clear_insn_error ();
8336 if (opcode->pinfo == INSN_MACRO)
8337 {
8338 gas_assert (relax_char == 0 || relax_char == 'p');
8339 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8340 }
8341 else if (relax_char
8342 && offset_expr.X_op == O_constant
8343 && !pcrel
8344 && calculate_reloc (*offset_reloc,
8345 offset_expr.X_add_number,
8346 &value))
8347 {
8348 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
8349 required_insn_length, &insn->insn_opcode);
8350 offset_expr.X_op = O_absent;
8351 *offset_reloc = BFD_RELOC_UNUSED;
8352 }
8353 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8354 {
8355 if (required_insn_length == 2)
8356 set_insn_error (0, _("invalid unextended operand value"));
8357 else if (!mips_opcode_32bit_p (opcode))
8358 {
8359 forced_insn_length = 4;
8360 insn->insn_opcode |= MIPS16_EXTEND;
8361 }
8362 }
8363 else if (relax_char)
8364 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8365
8366 check_completed_insn (&arg);
8367 return TRUE;
8368 }
8369
8370 /* Fail the match if the line has too many operands. */
8371 if (*args == 0)
8372 return FALSE;
8373
8374 /* Handle characters that need to match exactly. */
8375 if (*args == '(' || *args == ')' || *args == ',')
8376 {
8377 if (match_char (&arg, *args))
8378 continue;
8379 return FALSE;
8380 }
8381
8382 arg.opnum += 1;
8383 c = *args;
8384 switch (c)
8385 {
8386 case 'p':
8387 case 'q':
8388 case 'A':
8389 case 'B':
8390 case 'E':
8391 case 'V':
8392 case 'u':
8393 relax_char = c;
8394 break;
8395
8396 case 'I':
8397 if (!match_const_int (&arg, &imm_expr.X_add_number))
8398 return FALSE;
8399 imm_expr.X_op = O_constant;
8400 if (GPR_SIZE == 32)
8401 normalize_constant_expr (&imm_expr);
8402 continue;
8403
8404 case 'a':
8405 case 'i':
8406 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8407 break;
8408 }
8409
8410 operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
8411 if (!operand)
8412 abort ();
8413
8414 if (operand->type == OP_PCREL)
8415 pcrel = TRUE;
8416 else
8417 {
8418 ext_operand = decode_mips16_operand (c, TRUE);
8419 if (operand != ext_operand)
8420 {
8421 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8422 {
8423 offset_expr.X_op = O_constant;
8424 offset_expr.X_add_number = 0;
8425 relax_char = c;
8426 continue;
8427 }
8428
8429 if (!match_expression (&arg, &offset_expr, offset_reloc))
8430 return FALSE;
8431
8432 /* '8' is used for SLTI(U) and has traditionally not
8433 been allowed to take relocation operators. */
8434 if (offset_reloc[0] != BFD_RELOC_UNUSED
8435 && (ext_operand->size != 16 || c == '8'))
8436 {
8437 match_not_constant (&arg);
8438 return FALSE;
8439 }
8440
8441 if (offset_expr.X_op == O_big)
8442 {
8443 match_out_of_range (&arg);
8444 return FALSE;
8445 }
8446
8447 relax_char = c;
8448 continue;
8449 }
8450 }
8451
8452 if (mips_optional_operand_p (operand)
8453 && args[1] == ','
8454 && (arg.token[0].type != OT_REG
8455 || arg.token[1].type == OT_END))
8456 {
8457 /* Assume that the register has been elided and is the
8458 same as the first operand. */
8459 arg.token = tokens;
8460 arg.argnum = 1;
8461 }
8462
8463 if (!match_operand (&arg, operand))
8464 return FALSE;
8465 }
8466 }
8467
8468 /* Record that the current instruction is invalid for the current ISA. */
8469
8470 static void
8471 match_invalid_for_isa (void)
8472 {
8473 set_insn_error_ss
8474 (0, _("opcode not supported on this processor: %s (%s)"),
8475 mips_cpu_info_from_arch (mips_opts.arch)->name,
8476 mips_cpu_info_from_isa (mips_opts.isa)->name);
8477 }
8478
8479 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8480 Return true if a definite match or failure was found, storing any match
8481 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8482 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8483 tried and failed to match under normal conditions and now want to try a
8484 more relaxed match. */
8485
8486 static bfd_boolean
8487 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8488 const struct mips_opcode *past, struct mips_operand_token *tokens,
8489 int opcode_extra, bfd_boolean lax_match)
8490 {
8491 const struct mips_opcode *opcode;
8492 const struct mips_opcode *invalid_delay_slot;
8493 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8494
8495 /* Search for a match, ignoring alternatives that don't satisfy the
8496 current ISA or forced_length. */
8497 invalid_delay_slot = 0;
8498 seen_valid_for_isa = FALSE;
8499 seen_valid_for_size = FALSE;
8500 opcode = first;
8501 do
8502 {
8503 gas_assert (strcmp (opcode->name, first->name) == 0);
8504 if (is_opcode_valid (opcode))
8505 {
8506 seen_valid_for_isa = TRUE;
8507 if (is_size_valid (opcode))
8508 {
8509 bfd_boolean delay_slot_ok;
8510
8511 seen_valid_for_size = TRUE;
8512 delay_slot_ok = is_delay_slot_valid (opcode);
8513 if (match_insn (insn, opcode, tokens, opcode_extra,
8514 lax_match, delay_slot_ok))
8515 {
8516 if (!delay_slot_ok)
8517 {
8518 if (!invalid_delay_slot)
8519 invalid_delay_slot = opcode;
8520 }
8521 else
8522 return TRUE;
8523 }
8524 }
8525 }
8526 ++opcode;
8527 }
8528 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8529
8530 /* If the only matches we found had the wrong length for the delay slot,
8531 pick the first such match. We'll issue an appropriate warning later. */
8532 if (invalid_delay_slot)
8533 {
8534 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8535 lax_match, TRUE))
8536 return TRUE;
8537 abort ();
8538 }
8539
8540 /* Handle the case where we didn't try to match an instruction because
8541 all the alternatives were incompatible with the current ISA. */
8542 if (!seen_valid_for_isa)
8543 {
8544 match_invalid_for_isa ();
8545 return TRUE;
8546 }
8547
8548 /* Handle the case where we didn't try to match an instruction because
8549 all the alternatives were of the wrong size. */
8550 if (!seen_valid_for_size)
8551 {
8552 if (mips_opts.insn32)
8553 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8554 else
8555 set_insn_error_i
8556 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8557 8 * forced_insn_length);
8558 return TRUE;
8559 }
8560
8561 return FALSE;
8562 }
8563
8564 /* Like match_insns, but for MIPS16. */
8565
8566 static bfd_boolean
8567 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8568 struct mips_operand_token *tokens)
8569 {
8570 const struct mips_opcode *opcode;
8571 bfd_boolean seen_valid_for_isa;
8572 bfd_boolean seen_valid_for_size;
8573
8574 /* Search for a match, ignoring alternatives that don't satisfy the
8575 current ISA. There are no separate entries for extended forms so
8576 we deal with forced_length later. */
8577 seen_valid_for_isa = FALSE;
8578 seen_valid_for_size = FALSE;
8579 opcode = first;
8580 do
8581 {
8582 gas_assert (strcmp (opcode->name, first->name) == 0);
8583 if (is_opcode_valid_16 (opcode))
8584 {
8585 seen_valid_for_isa = TRUE;
8586 if (is_size_valid_16 (opcode))
8587 {
8588 seen_valid_for_size = TRUE;
8589 if (match_mips16_insn (insn, opcode, tokens))
8590 return TRUE;
8591 }
8592 }
8593 ++opcode;
8594 }
8595 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8596 && strcmp (opcode->name, first->name) == 0);
8597
8598 /* Handle the case where we didn't try to match an instruction because
8599 all the alternatives were incompatible with the current ISA. */
8600 if (!seen_valid_for_isa)
8601 {
8602 match_invalid_for_isa ();
8603 return TRUE;
8604 }
8605
8606 /* Handle the case where we didn't try to match an instruction because
8607 all the alternatives were of the wrong size. */
8608 if (!seen_valid_for_size)
8609 {
8610 if (forced_insn_length == 2)
8611 set_insn_error
8612 (0, _("unrecognized unextended version of MIPS16 opcode"));
8613 else
8614 set_insn_error
8615 (0, _("unrecognized extended version of MIPS16 opcode"));
8616 return TRUE;
8617 }
8618
8619 return FALSE;
8620 }
8621
8622 /* Set up global variables for the start of a new macro. */
8623
8624 static void
8625 macro_start (void)
8626 {
8627 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8628 memset (&mips_macro_warning.first_insn_sizes, 0,
8629 sizeof (mips_macro_warning.first_insn_sizes));
8630 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8631 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8632 && delayed_branch_p (&history[0]));
8633 if (history[0].frag
8634 && history[0].frag->fr_type == rs_machine_dependent
8635 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8636 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8637 mips_macro_warning.delay_slot_length = 0;
8638 else
8639 switch (history[0].insn_mo->pinfo2
8640 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8641 {
8642 case INSN2_BRANCH_DELAY_32BIT:
8643 mips_macro_warning.delay_slot_length = 4;
8644 break;
8645 case INSN2_BRANCH_DELAY_16BIT:
8646 mips_macro_warning.delay_slot_length = 2;
8647 break;
8648 default:
8649 mips_macro_warning.delay_slot_length = 0;
8650 break;
8651 }
8652 mips_macro_warning.first_frag = NULL;
8653 }
8654
8655 /* Given that a macro is longer than one instruction or of the wrong size,
8656 return the appropriate warning for it. Return null if no warning is
8657 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8658 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8659 and RELAX_NOMACRO. */
8660
8661 static const char *
8662 macro_warning (relax_substateT subtype)
8663 {
8664 if (subtype & RELAX_DELAY_SLOT)
8665 return _("macro instruction expanded into multiple instructions"
8666 " in a branch delay slot");
8667 else if (subtype & RELAX_NOMACRO)
8668 return _("macro instruction expanded into multiple instructions");
8669 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8670 | RELAX_DELAY_SLOT_SIZE_SECOND))
8671 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8672 ? _("macro instruction expanded into a wrong size instruction"
8673 " in a 16-bit branch delay slot")
8674 : _("macro instruction expanded into a wrong size instruction"
8675 " in a 32-bit branch delay slot"));
8676 else
8677 return 0;
8678 }
8679
8680 /* Finish up a macro. Emit warnings as appropriate. */
8681
8682 static void
8683 macro_end (void)
8684 {
8685 /* Relaxation warning flags. */
8686 relax_substateT subtype = 0;
8687
8688 /* Check delay slot size requirements. */
8689 if (mips_macro_warning.delay_slot_length == 2)
8690 subtype |= RELAX_DELAY_SLOT_16BIT;
8691 if (mips_macro_warning.delay_slot_length != 0)
8692 {
8693 if (mips_macro_warning.delay_slot_length
8694 != mips_macro_warning.first_insn_sizes[0])
8695 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8696 if (mips_macro_warning.delay_slot_length
8697 != mips_macro_warning.first_insn_sizes[1])
8698 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8699 }
8700
8701 /* Check instruction count requirements. */
8702 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8703 {
8704 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8705 subtype |= RELAX_SECOND_LONGER;
8706 if (mips_opts.warn_about_macros)
8707 subtype |= RELAX_NOMACRO;
8708 if (mips_macro_warning.delay_slot_p)
8709 subtype |= RELAX_DELAY_SLOT;
8710 }
8711
8712 /* If both alternatives fail to fill a delay slot correctly,
8713 emit the warning now. */
8714 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8715 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8716 {
8717 relax_substateT s;
8718 const char *msg;
8719
8720 s = subtype & (RELAX_DELAY_SLOT_16BIT
8721 | RELAX_DELAY_SLOT_SIZE_FIRST
8722 | RELAX_DELAY_SLOT_SIZE_SECOND);
8723 msg = macro_warning (s);
8724 if (msg != NULL)
8725 as_warn ("%s", msg);
8726 subtype &= ~s;
8727 }
8728
8729 /* If both implementations are longer than 1 instruction, then emit the
8730 warning now. */
8731 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8732 {
8733 relax_substateT s;
8734 const char *msg;
8735
8736 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8737 msg = macro_warning (s);
8738 if (msg != NULL)
8739 as_warn ("%s", msg);
8740 subtype &= ~s;
8741 }
8742
8743 /* If any flags still set, then one implementation might need a warning
8744 and the other either will need one of a different kind or none at all.
8745 Pass any remaining flags over to relaxation. */
8746 if (mips_macro_warning.first_frag != NULL)
8747 mips_macro_warning.first_frag->fr_subtype |= subtype;
8748 }
8749
8750 /* Instruction operand formats used in macros that vary between
8751 standard MIPS and microMIPS code. */
8752
8753 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8754 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8755 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8756 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8757 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8758 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8759 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8760 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8761
8762 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8763 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8764 : cop12_fmt[mips_opts.micromips])
8765 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8766 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8767 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8768 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8769 : mem12_fmt[mips_opts.micromips])
8770 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8771 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8772 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8773
8774 /* Read a macro's relocation codes from *ARGS and store them in *R.
8775 The first argument in *ARGS will be either the code for a single
8776 relocation or -1 followed by the three codes that make up a
8777 composite relocation. */
8778
8779 static void
8780 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8781 {
8782 int i, next;
8783
8784 next = va_arg (*args, int);
8785 if (next >= 0)
8786 r[0] = (bfd_reloc_code_real_type) next;
8787 else
8788 {
8789 for (i = 0; i < 3; i++)
8790 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8791 /* This function is only used for 16-bit relocation fields.
8792 To make the macro code simpler, treat an unrelocated value
8793 in the same way as BFD_RELOC_LO16. */
8794 if (r[0] == BFD_RELOC_UNUSED)
8795 r[0] = BFD_RELOC_LO16;
8796 }
8797 }
8798
8799 /* Build an instruction created by a macro expansion. This is passed
8800 a pointer to the count of instructions created so far, an
8801 expression, the name of the instruction to build, an operand format
8802 string, and corresponding arguments. */
8803
8804 static void
8805 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8806 {
8807 const struct mips_opcode *mo = NULL;
8808 bfd_reloc_code_real_type r[3];
8809 const struct mips_opcode *amo;
8810 const struct mips_operand *operand;
8811 struct hash_control *hash;
8812 struct mips_cl_insn insn;
8813 va_list args;
8814 unsigned int uval;
8815
8816 va_start (args, fmt);
8817
8818 if (mips_opts.mips16)
8819 {
8820 mips16_macro_build (ep, name, fmt, &args);
8821 va_end (args);
8822 return;
8823 }
8824
8825 r[0] = BFD_RELOC_UNUSED;
8826 r[1] = BFD_RELOC_UNUSED;
8827 r[2] = BFD_RELOC_UNUSED;
8828 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8829 amo = (struct mips_opcode *) hash_find (hash, name);
8830 gas_assert (amo);
8831 gas_assert (strcmp (name, amo->name) == 0);
8832
8833 do
8834 {
8835 /* Search until we get a match for NAME. It is assumed here that
8836 macros will never generate MDMX, MIPS-3D, or MT instructions.
8837 We try to match an instruction that fulfills the branch delay
8838 slot instruction length requirement (if any) of the previous
8839 instruction. While doing this we record the first instruction
8840 seen that matches all the other conditions and use it anyway
8841 if the requirement cannot be met; we will issue an appropriate
8842 warning later on. */
8843 if (strcmp (fmt, amo->args) == 0
8844 && amo->pinfo != INSN_MACRO
8845 && is_opcode_valid (amo)
8846 && is_size_valid (amo))
8847 {
8848 if (is_delay_slot_valid (amo))
8849 {
8850 mo = amo;
8851 break;
8852 }
8853 else if (!mo)
8854 mo = amo;
8855 }
8856
8857 ++amo;
8858 gas_assert (amo->name);
8859 }
8860 while (strcmp (name, amo->name) == 0);
8861
8862 gas_assert (mo);
8863 create_insn (&insn, mo);
8864 for (; *fmt; ++fmt)
8865 {
8866 switch (*fmt)
8867 {
8868 case ',':
8869 case '(':
8870 case ')':
8871 case 'z':
8872 break;
8873
8874 case 'i':
8875 case 'j':
8876 macro_read_relocs (&args, r);
8877 gas_assert (*r == BFD_RELOC_GPREL16
8878 || *r == BFD_RELOC_MIPS_HIGHER
8879 || *r == BFD_RELOC_HI16_S
8880 || *r == BFD_RELOC_LO16
8881 || *r == BFD_RELOC_MIPS_GOT_OFST
8882 || (mips_opts.micromips
8883 && (*r == BFD_RELOC_16
8884 || *r == BFD_RELOC_MIPS_GOT16
8885 || *r == BFD_RELOC_MIPS_CALL16
8886 || *r == BFD_RELOC_MIPS_GOT_HI16
8887 || *r == BFD_RELOC_MIPS_GOT_LO16
8888 || *r == BFD_RELOC_MIPS_CALL_HI16
8889 || *r == BFD_RELOC_MIPS_CALL_LO16
8890 || *r == BFD_RELOC_MIPS_SUB
8891 || *r == BFD_RELOC_MIPS_GOT_PAGE
8892 || *r == BFD_RELOC_MIPS_HIGHEST
8893 || *r == BFD_RELOC_MIPS_GOT_DISP
8894 || *r == BFD_RELOC_MIPS_TLS_GD
8895 || *r == BFD_RELOC_MIPS_TLS_LDM
8896 || *r == BFD_RELOC_MIPS_TLS_DTPREL_HI16
8897 || *r == BFD_RELOC_MIPS_TLS_DTPREL_LO16
8898 || *r == BFD_RELOC_MIPS_TLS_GOTTPREL
8899 || *r == BFD_RELOC_MIPS_TLS_TPREL_HI16
8900 || *r == BFD_RELOC_MIPS_TLS_TPREL_LO16)));
8901 break;
8902
8903 case 'o':
8904 macro_read_relocs (&args, r);
8905 break;
8906
8907 case 'u':
8908 macro_read_relocs (&args, r);
8909 gas_assert (ep != NULL
8910 && (ep->X_op == O_constant
8911 || (ep->X_op == O_symbol
8912 && (*r == BFD_RELOC_MIPS_HIGHEST
8913 || *r == BFD_RELOC_HI16_S
8914 || *r == BFD_RELOC_HI16
8915 || *r == BFD_RELOC_GPREL16
8916 || *r == BFD_RELOC_MIPS_GOT_HI16
8917 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8918 break;
8919
8920 case 'p':
8921 gas_assert (ep != NULL);
8922
8923 /*
8924 * This allows macro() to pass an immediate expression for
8925 * creating short branches without creating a symbol.
8926 *
8927 * We don't allow branch relaxation for these branches, as
8928 * they should only appear in ".set nomacro" anyway.
8929 */
8930 if (ep->X_op == O_constant)
8931 {
8932 /* For microMIPS we always use relocations for branches.
8933 So we should not resolve immediate values. */
8934 gas_assert (!mips_opts.micromips);
8935
8936 if ((ep->X_add_number & 3) != 0)
8937 as_bad (_("branch to misaligned address (0x%lx)"),
8938 (unsigned long) ep->X_add_number);
8939 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8940 as_bad (_("branch address range overflow (0x%lx)"),
8941 (unsigned long) ep->X_add_number);
8942 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8943 ep = NULL;
8944 }
8945 else
8946 *r = BFD_RELOC_16_PCREL_S2;
8947 break;
8948
8949 case 'a':
8950 gas_assert (ep != NULL);
8951 *r = BFD_RELOC_MIPS_JMP;
8952 break;
8953
8954 default:
8955 operand = (mips_opts.micromips
8956 ? decode_micromips_operand (fmt)
8957 : decode_mips_operand (fmt));
8958 if (!operand)
8959 abort ();
8960
8961 uval = va_arg (args, int);
8962 if (operand->type == OP_CLO_CLZ_DEST)
8963 uval |= (uval << 5);
8964 insn_insert_operand (&insn, operand, uval);
8965
8966 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8967 ++fmt;
8968 break;
8969 }
8970 }
8971 va_end (args);
8972 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8973
8974 append_insn (&insn, ep, r, TRUE);
8975 }
8976
8977 static void
8978 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8979 va_list *args)
8980 {
8981 struct mips_opcode *mo;
8982 struct mips_cl_insn insn;
8983 const struct mips_operand *operand;
8984 bfd_reloc_code_real_type r[3]
8985 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8986
8987 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8988 gas_assert (mo);
8989 gas_assert (strcmp (name, mo->name) == 0);
8990
8991 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8992 {
8993 ++mo;
8994 gas_assert (mo->name);
8995 gas_assert (strcmp (name, mo->name) == 0);
8996 }
8997
8998 create_insn (&insn, mo);
8999 for (; *fmt; ++fmt)
9000 {
9001 int c;
9002
9003 c = *fmt;
9004 switch (c)
9005 {
9006 case ',':
9007 case '(':
9008 case ')':
9009 break;
9010
9011 case '.':
9012 case 'S':
9013 case 'P':
9014 case 'R':
9015 break;
9016
9017 case '<':
9018 case '5':
9019 case 'F':
9020 case 'H':
9021 case 'W':
9022 case 'D':
9023 case 'j':
9024 case '8':
9025 case 'V':
9026 case 'C':
9027 case 'U':
9028 case 'k':
9029 case 'K':
9030 case 'p':
9031 case 'q':
9032 {
9033 offsetT value;
9034
9035 gas_assert (ep != NULL);
9036
9037 if (ep->X_op != O_constant)
9038 *r = (int) BFD_RELOC_UNUSED + c;
9039 else if (calculate_reloc (*r, ep->X_add_number, &value))
9040 {
9041 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
9042 ep = NULL;
9043 *r = BFD_RELOC_UNUSED;
9044 }
9045 }
9046 break;
9047
9048 default:
9049 operand = decode_mips16_operand (c, FALSE);
9050 if (!operand)
9051 abort ();
9052
9053 insn_insert_operand (&insn, operand, va_arg (*args, int));
9054 break;
9055 }
9056 }
9057
9058 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
9059
9060 append_insn (&insn, ep, r, TRUE);
9061 }
9062
9063 /*
9064 * Generate a "jalr" instruction with a relocation hint to the called
9065 * function. This occurs in NewABI PIC code.
9066 */
9067 static void
9068 macro_build_jalr (expressionS *ep, int cprestore)
9069 {
9070 static const bfd_reloc_code_real_type jalr_relocs[2]
9071 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
9072 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
9073 const char *jalr;
9074 char *f = NULL;
9075
9076 if (MIPS_JALR_HINT_P (ep))
9077 {
9078 frag_grow (8);
9079 f = frag_more (0);
9080 }
9081 if (mips_opts.micromips)
9082 {
9083 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
9084 ? "jalr" : "jalrs");
9085 if (MIPS_JALR_HINT_P (ep)
9086 || mips_opts.insn32
9087 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9088 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
9089 else
9090 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
9091 }
9092 else
9093 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
9094 if (MIPS_JALR_HINT_P (ep))
9095 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
9096 }
9097
9098 /*
9099 * Generate a "lui" instruction.
9100 */
9101 static void
9102 macro_build_lui (expressionS *ep, int regnum)
9103 {
9104 gas_assert (! mips_opts.mips16);
9105
9106 if (ep->X_op != O_constant)
9107 {
9108 gas_assert (ep->X_op == O_symbol);
9109 /* _gp_disp is a special case, used from s_cpload.
9110 __gnu_local_gp is used if mips_no_shared. */
9111 gas_assert (mips_pic == NO_PIC
9112 || (! HAVE_NEWABI
9113 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
9114 || (! mips_in_shared
9115 && strcmp (S_GET_NAME (ep->X_add_symbol),
9116 "__gnu_local_gp") == 0));
9117 }
9118
9119 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
9120 }
9121
9122 /* Generate a sequence of instructions to do a load or store from a constant
9123 offset off of a base register (breg) into/from a target register (treg),
9124 using AT if necessary. */
9125 static void
9126 macro_build_ldst_constoffset (expressionS *ep, const char *op,
9127 int treg, int breg, int dbl)
9128 {
9129 gas_assert (ep->X_op == O_constant);
9130
9131 /* Sign-extending 32-bit constants makes their handling easier. */
9132 if (!dbl)
9133 normalize_constant_expr (ep);
9134
9135 /* Right now, this routine can only handle signed 32-bit constants. */
9136 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
9137 as_warn (_("operand overflow"));
9138
9139 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
9140 {
9141 /* Signed 16-bit offset will fit in the op. Easy! */
9142 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
9143 }
9144 else
9145 {
9146 /* 32-bit offset, need multiple instructions and AT, like:
9147 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
9148 addu $tempreg,$tempreg,$breg
9149 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
9150 to handle the complete offset. */
9151 macro_build_lui (ep, AT);
9152 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
9153 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
9154
9155 if (!mips_opts.at)
9156 as_bad (_("macro used $at after \".set noat\""));
9157 }
9158 }
9159
9160 /* set_at()
9161 * Generates code to set the $at register to true (one)
9162 * if reg is less than the immediate expression.
9163 */
9164 static void
9165 set_at (int reg, int unsignedp)
9166 {
9167 if (imm_expr.X_add_number >= -0x8000
9168 && imm_expr.X_add_number < 0x8000)
9169 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
9170 AT, reg, BFD_RELOC_LO16);
9171 else
9172 {
9173 load_register (AT, &imm_expr, GPR_SIZE == 64);
9174 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
9175 }
9176 }
9177
9178 /* Count the leading zeroes by performing a binary chop. This is a
9179 bulky bit of source, but performance is a LOT better for the
9180 majority of values than a simple loop to count the bits:
9181 for (lcnt = 0; (lcnt < 32); lcnt++)
9182 if ((v) & (1 << (31 - lcnt)))
9183 break;
9184 However it is not code size friendly, and the gain will drop a bit
9185 on certain cached systems.
9186 */
9187 #define COUNT_TOP_ZEROES(v) \
9188 (((v) & ~0xffff) == 0 \
9189 ? ((v) & ~0xff) == 0 \
9190 ? ((v) & ~0xf) == 0 \
9191 ? ((v) & ~0x3) == 0 \
9192 ? ((v) & ~0x1) == 0 \
9193 ? !(v) \
9194 ? 32 \
9195 : 31 \
9196 : 30 \
9197 : ((v) & ~0x7) == 0 \
9198 ? 29 \
9199 : 28 \
9200 : ((v) & ~0x3f) == 0 \
9201 ? ((v) & ~0x1f) == 0 \
9202 ? 27 \
9203 : 26 \
9204 : ((v) & ~0x7f) == 0 \
9205 ? 25 \
9206 : 24 \
9207 : ((v) & ~0xfff) == 0 \
9208 ? ((v) & ~0x3ff) == 0 \
9209 ? ((v) & ~0x1ff) == 0 \
9210 ? 23 \
9211 : 22 \
9212 : ((v) & ~0x7ff) == 0 \
9213 ? 21 \
9214 : 20 \
9215 : ((v) & ~0x3fff) == 0 \
9216 ? ((v) & ~0x1fff) == 0 \
9217 ? 19 \
9218 : 18 \
9219 : ((v) & ~0x7fff) == 0 \
9220 ? 17 \
9221 : 16 \
9222 : ((v) & ~0xffffff) == 0 \
9223 ? ((v) & ~0xfffff) == 0 \
9224 ? ((v) & ~0x3ffff) == 0 \
9225 ? ((v) & ~0x1ffff) == 0 \
9226 ? 15 \
9227 : 14 \
9228 : ((v) & ~0x7ffff) == 0 \
9229 ? 13 \
9230 : 12 \
9231 : ((v) & ~0x3fffff) == 0 \
9232 ? ((v) & ~0x1fffff) == 0 \
9233 ? 11 \
9234 : 10 \
9235 : ((v) & ~0x7fffff) == 0 \
9236 ? 9 \
9237 : 8 \
9238 : ((v) & ~0xfffffff) == 0 \
9239 ? ((v) & ~0x3ffffff) == 0 \
9240 ? ((v) & ~0x1ffffff) == 0 \
9241 ? 7 \
9242 : 6 \
9243 : ((v) & ~0x7ffffff) == 0 \
9244 ? 5 \
9245 : 4 \
9246 : ((v) & ~0x3fffffff) == 0 \
9247 ? ((v) & ~0x1fffffff) == 0 \
9248 ? 3 \
9249 : 2 \
9250 : ((v) & ~0x7fffffff) == 0 \
9251 ? 1 \
9252 : 0)
9253
9254 /* load_register()
9255 * This routine generates the least number of instructions necessary to load
9256 * an absolute expression value into a register.
9257 */
9258 static void
9259 load_register (int reg, expressionS *ep, int dbl)
9260 {
9261 int freg;
9262 expressionS hi32, lo32;
9263
9264 if (ep->X_op != O_big)
9265 {
9266 gas_assert (ep->X_op == O_constant);
9267
9268 /* Sign-extending 32-bit constants makes their handling easier. */
9269 if (!dbl)
9270 normalize_constant_expr (ep);
9271
9272 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
9273 {
9274 /* We can handle 16 bit signed values with an addiu to
9275 $zero. No need to ever use daddiu here, since $zero and
9276 the result are always correct in 32 bit mode. */
9277 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9278 return;
9279 }
9280 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
9281 {
9282 /* We can handle 16 bit unsigned values with an ori to
9283 $zero. */
9284 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9285 return;
9286 }
9287 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
9288 {
9289 /* 32 bit values require an lui. */
9290 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9291 if ((ep->X_add_number & 0xffff) != 0)
9292 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9293 return;
9294 }
9295 }
9296
9297 /* The value is larger than 32 bits. */
9298
9299 if (!dbl || GPR_SIZE == 32)
9300 {
9301 char value[32];
9302
9303 sprintf_vma (value, ep->X_add_number);
9304 as_bad (_("number (0x%s) larger than 32 bits"), value);
9305 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9306 return;
9307 }
9308
9309 if (ep->X_op != O_big)
9310 {
9311 hi32 = *ep;
9312 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9313 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9314 hi32.X_add_number &= 0xffffffff;
9315 lo32 = *ep;
9316 lo32.X_add_number &= 0xffffffff;
9317 }
9318 else
9319 {
9320 gas_assert (ep->X_add_number > 2);
9321 if (ep->X_add_number == 3)
9322 generic_bignum[3] = 0;
9323 else if (ep->X_add_number > 4)
9324 as_bad (_("number larger than 64 bits"));
9325 lo32.X_op = O_constant;
9326 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9327 hi32.X_op = O_constant;
9328 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9329 }
9330
9331 if (hi32.X_add_number == 0)
9332 freg = 0;
9333 else
9334 {
9335 int shift, bit;
9336 unsigned long hi, lo;
9337
9338 if (hi32.X_add_number == (offsetT) 0xffffffff)
9339 {
9340 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9341 {
9342 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9343 return;
9344 }
9345 if (lo32.X_add_number & 0x80000000)
9346 {
9347 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9348 if (lo32.X_add_number & 0xffff)
9349 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9350 return;
9351 }
9352 }
9353
9354 /* Check for 16bit shifted constant. We know that hi32 is
9355 non-zero, so start the mask on the first bit of the hi32
9356 value. */
9357 shift = 17;
9358 do
9359 {
9360 unsigned long himask, lomask;
9361
9362 if (shift < 32)
9363 {
9364 himask = 0xffff >> (32 - shift);
9365 lomask = (0xffff << shift) & 0xffffffff;
9366 }
9367 else
9368 {
9369 himask = 0xffff << (shift - 32);
9370 lomask = 0;
9371 }
9372 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9373 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9374 {
9375 expressionS tmp;
9376
9377 tmp.X_op = O_constant;
9378 if (shift < 32)
9379 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9380 | (lo32.X_add_number >> shift));
9381 else
9382 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
9383 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9384 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9385 reg, reg, (shift >= 32) ? shift - 32 : shift);
9386 return;
9387 }
9388 ++shift;
9389 }
9390 while (shift <= (64 - 16));
9391
9392 /* Find the bit number of the lowest one bit, and store the
9393 shifted value in hi/lo. */
9394 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9395 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9396 if (lo != 0)
9397 {
9398 bit = 0;
9399 while ((lo & 1) == 0)
9400 {
9401 lo >>= 1;
9402 ++bit;
9403 }
9404 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9405 hi >>= bit;
9406 }
9407 else
9408 {
9409 bit = 32;
9410 while ((hi & 1) == 0)
9411 {
9412 hi >>= 1;
9413 ++bit;
9414 }
9415 lo = hi;
9416 hi = 0;
9417 }
9418
9419 /* Optimize if the shifted value is a (power of 2) - 1. */
9420 if ((hi == 0 && ((lo + 1) & lo) == 0)
9421 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9422 {
9423 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9424 if (shift != 0)
9425 {
9426 expressionS tmp;
9427
9428 /* This instruction will set the register to be all
9429 ones. */
9430 tmp.X_op = O_constant;
9431 tmp.X_add_number = (offsetT) -1;
9432 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9433 if (bit != 0)
9434 {
9435 bit += shift;
9436 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9437 reg, reg, (bit >= 32) ? bit - 32 : bit);
9438 }
9439 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9440 reg, reg, (shift >= 32) ? shift - 32 : shift);
9441 return;
9442 }
9443 }
9444
9445 /* Sign extend hi32 before calling load_register, because we can
9446 generally get better code when we load a sign extended value. */
9447 if ((hi32.X_add_number & 0x80000000) != 0)
9448 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9449 load_register (reg, &hi32, 0);
9450 freg = reg;
9451 }
9452 if ((lo32.X_add_number & 0xffff0000) == 0)
9453 {
9454 if (freg != 0)
9455 {
9456 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9457 freg = reg;
9458 }
9459 }
9460 else
9461 {
9462 expressionS mid16;
9463
9464 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9465 {
9466 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9467 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9468 return;
9469 }
9470
9471 if (freg != 0)
9472 {
9473 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9474 freg = reg;
9475 }
9476 mid16 = lo32;
9477 mid16.X_add_number >>= 16;
9478 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9479 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9480 freg = reg;
9481 }
9482 if ((lo32.X_add_number & 0xffff) != 0)
9483 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9484 }
9485
9486 static inline void
9487 load_delay_nop (void)
9488 {
9489 if (!gpr_interlocks)
9490 macro_build (NULL, "nop", "");
9491 }
9492
9493 /* Load an address into a register. */
9494
9495 static void
9496 load_address (int reg, expressionS *ep, int *used_at)
9497 {
9498 if (ep->X_op != O_constant
9499 && ep->X_op != O_symbol)
9500 {
9501 as_bad (_("expression too complex"));
9502 ep->X_op = O_constant;
9503 }
9504
9505 if (ep->X_op == O_constant)
9506 {
9507 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9508 return;
9509 }
9510
9511 if (mips_pic == NO_PIC)
9512 {
9513 /* If this is a reference to a GP relative symbol, we want
9514 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9515 Otherwise we want
9516 lui $reg,<sym> (BFD_RELOC_HI16_S)
9517 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9518 If we have an addend, we always use the latter form.
9519
9520 With 64bit address space and a usable $at we want
9521 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9522 lui $at,<sym> (BFD_RELOC_HI16_S)
9523 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9524 daddiu $at,<sym> (BFD_RELOC_LO16)
9525 dsll32 $reg,0
9526 daddu $reg,$reg,$at
9527
9528 If $at is already in use, we use a path which is suboptimal
9529 on superscalar processors.
9530 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9531 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9532 dsll $reg,16
9533 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9534 dsll $reg,16
9535 daddiu $reg,<sym> (BFD_RELOC_LO16)
9536
9537 For GP relative symbols in 64bit address space we can use
9538 the same sequence as in 32bit address space. */
9539 if (HAVE_64BIT_SYMBOLS)
9540 {
9541 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9542 && !nopic_need_relax (ep->X_add_symbol, 1))
9543 {
9544 relax_start (ep->X_add_symbol);
9545 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9546 mips_gp_register, BFD_RELOC_GPREL16);
9547 relax_switch ();
9548 }
9549
9550 if (*used_at == 0 && mips_opts.at)
9551 {
9552 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9553 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9554 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9555 BFD_RELOC_MIPS_HIGHER);
9556 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9557 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9558 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9559 *used_at = 1;
9560 }
9561 else
9562 {
9563 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9564 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9565 BFD_RELOC_MIPS_HIGHER);
9566 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9567 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9568 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9569 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9570 }
9571
9572 if (mips_relax.sequence)
9573 relax_end ();
9574 }
9575 else
9576 {
9577 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9578 && !nopic_need_relax (ep->X_add_symbol, 1))
9579 {
9580 relax_start (ep->X_add_symbol);
9581 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9582 mips_gp_register, BFD_RELOC_GPREL16);
9583 relax_switch ();
9584 }
9585 macro_build_lui (ep, reg);
9586 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9587 reg, reg, BFD_RELOC_LO16);
9588 if (mips_relax.sequence)
9589 relax_end ();
9590 }
9591 }
9592 else if (!mips_big_got)
9593 {
9594 expressionS ex;
9595
9596 /* If this is a reference to an external symbol, we want
9597 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9598 Otherwise we want
9599 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9600 nop
9601 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9602 If there is a constant, it must be added in after.
9603
9604 If we have NewABI, we want
9605 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9606 unless we're referencing a global symbol with a non-zero
9607 offset, in which case cst must be added separately. */
9608 if (HAVE_NEWABI)
9609 {
9610 if (ep->X_add_number)
9611 {
9612 ex.X_add_number = ep->X_add_number;
9613 ep->X_add_number = 0;
9614 relax_start (ep->X_add_symbol);
9615 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9616 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9617 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9618 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9619 ex.X_op = O_constant;
9620 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9621 reg, reg, BFD_RELOC_LO16);
9622 ep->X_add_number = ex.X_add_number;
9623 relax_switch ();
9624 }
9625 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9626 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9627 if (mips_relax.sequence)
9628 relax_end ();
9629 }
9630 else
9631 {
9632 ex.X_add_number = ep->X_add_number;
9633 ep->X_add_number = 0;
9634 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9635 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9636 load_delay_nop ();
9637 relax_start (ep->X_add_symbol);
9638 relax_switch ();
9639 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9640 BFD_RELOC_LO16);
9641 relax_end ();
9642
9643 if (ex.X_add_number != 0)
9644 {
9645 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9646 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9647 ex.X_op = O_constant;
9648 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9649 reg, reg, BFD_RELOC_LO16);
9650 }
9651 }
9652 }
9653 else if (mips_big_got)
9654 {
9655 expressionS ex;
9656
9657 /* This is the large GOT case. If this is a reference to an
9658 external symbol, we want
9659 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9660 addu $reg,$reg,$gp
9661 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9662
9663 Otherwise, for a reference to a local symbol in old ABI, we want
9664 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9665 nop
9666 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9667 If there is a constant, it must be added in after.
9668
9669 In the NewABI, for local symbols, with or without offsets, we want:
9670 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9671 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9672 */
9673 if (HAVE_NEWABI)
9674 {
9675 ex.X_add_number = ep->X_add_number;
9676 ep->X_add_number = 0;
9677 relax_start (ep->X_add_symbol);
9678 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9679 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9680 reg, reg, mips_gp_register);
9681 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9682 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9683 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9684 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9685 else if (ex.X_add_number)
9686 {
9687 ex.X_op = O_constant;
9688 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9689 BFD_RELOC_LO16);
9690 }
9691
9692 ep->X_add_number = ex.X_add_number;
9693 relax_switch ();
9694 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9695 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9696 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9697 BFD_RELOC_MIPS_GOT_OFST);
9698 relax_end ();
9699 }
9700 else
9701 {
9702 ex.X_add_number = ep->X_add_number;
9703 ep->X_add_number = 0;
9704 relax_start (ep->X_add_symbol);
9705 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9706 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9707 reg, reg, mips_gp_register);
9708 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9709 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9710 relax_switch ();
9711 if (reg_needs_delay (mips_gp_register))
9712 {
9713 /* We need a nop before loading from $gp. This special
9714 check is required because the lui which starts the main
9715 instruction stream does not refer to $gp, and so will not
9716 insert the nop which may be required. */
9717 macro_build (NULL, "nop", "");
9718 }
9719 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9720 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9721 load_delay_nop ();
9722 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9723 BFD_RELOC_LO16);
9724 relax_end ();
9725
9726 if (ex.X_add_number != 0)
9727 {
9728 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9729 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9730 ex.X_op = O_constant;
9731 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9732 BFD_RELOC_LO16);
9733 }
9734 }
9735 }
9736 else
9737 abort ();
9738
9739 if (!mips_opts.at && *used_at == 1)
9740 as_bad (_("macro used $at after \".set noat\""));
9741 }
9742
9743 /* Move the contents of register SOURCE into register DEST. */
9744
9745 static void
9746 move_register (int dest, int source)
9747 {
9748 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9749 instruction specifically requires a 32-bit one. */
9750 if (mips_opts.micromips
9751 && !mips_opts.insn32
9752 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9753 macro_build (NULL, "move", "mp,mj", dest, source);
9754 else
9755 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9756 }
9757
9758 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9759 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9760 The two alternatives are:
9761
9762 Global symbol Local symbol
9763 ------------- ------------
9764 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9765 ... ...
9766 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9767
9768 load_got_offset emits the first instruction and add_got_offset
9769 emits the second for a 16-bit offset or add_got_offset_hilo emits
9770 a sequence to add a 32-bit offset using a scratch register. */
9771
9772 static void
9773 load_got_offset (int dest, expressionS *local)
9774 {
9775 expressionS global;
9776
9777 global = *local;
9778 global.X_add_number = 0;
9779
9780 relax_start (local->X_add_symbol);
9781 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9782 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9783 relax_switch ();
9784 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9785 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9786 relax_end ();
9787 }
9788
9789 static void
9790 add_got_offset (int dest, expressionS *local)
9791 {
9792 expressionS global;
9793
9794 global.X_op = O_constant;
9795 global.X_op_symbol = NULL;
9796 global.X_add_symbol = NULL;
9797 global.X_add_number = local->X_add_number;
9798
9799 relax_start (local->X_add_symbol);
9800 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9801 dest, dest, BFD_RELOC_LO16);
9802 relax_switch ();
9803 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9804 relax_end ();
9805 }
9806
9807 static void
9808 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9809 {
9810 expressionS global;
9811 int hold_mips_optimize;
9812
9813 global.X_op = O_constant;
9814 global.X_op_symbol = NULL;
9815 global.X_add_symbol = NULL;
9816 global.X_add_number = local->X_add_number;
9817
9818 relax_start (local->X_add_symbol);
9819 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9820 relax_switch ();
9821 /* Set mips_optimize around the lui instruction to avoid
9822 inserting an unnecessary nop after the lw. */
9823 hold_mips_optimize = mips_optimize;
9824 mips_optimize = 2;
9825 macro_build_lui (&global, tmp);
9826 mips_optimize = hold_mips_optimize;
9827 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9828 relax_end ();
9829
9830 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9831 }
9832
9833 /* Emit a sequence of instructions to emulate a branch likely operation.
9834 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9835 is its complementing branch with the original condition negated.
9836 CALL is set if the original branch specified the link operation.
9837 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9838
9839 Code like this is produced in the noreorder mode:
9840
9841 BRNEG <args>, 1f
9842 nop
9843 b <sym>
9844 delay slot (executed only if branch taken)
9845 1:
9846
9847 or, if CALL is set:
9848
9849 BRNEG <args>, 1f
9850 nop
9851 bal <sym>
9852 delay slot (executed only if branch taken)
9853 1:
9854
9855 In the reorder mode the delay slot would be filled with a nop anyway,
9856 so code produced is simply:
9857
9858 BR <args>, <sym>
9859 nop
9860
9861 This function is used when producing code for the microMIPS ASE that
9862 does not implement branch likely instructions in hardware. */
9863
9864 static void
9865 macro_build_branch_likely (const char *br, const char *brneg,
9866 int call, expressionS *ep, const char *fmt,
9867 unsigned int sreg, unsigned int treg)
9868 {
9869 int noreorder = mips_opts.noreorder;
9870 expressionS expr1;
9871
9872 gas_assert (mips_opts.micromips);
9873 start_noreorder ();
9874 if (noreorder)
9875 {
9876 micromips_label_expr (&expr1);
9877 macro_build (&expr1, brneg, fmt, sreg, treg);
9878 macro_build (NULL, "nop", "");
9879 macro_build (ep, call ? "bal" : "b", "p");
9880
9881 /* Set to true so that append_insn adds a label. */
9882 emit_branch_likely_macro = TRUE;
9883 }
9884 else
9885 {
9886 macro_build (ep, br, fmt, sreg, treg);
9887 macro_build (NULL, "nop", "");
9888 }
9889 end_noreorder ();
9890 }
9891
9892 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9893 the condition code tested. EP specifies the branch target. */
9894
9895 static void
9896 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9897 {
9898 const int call = 0;
9899 const char *brneg;
9900 const char *br;
9901
9902 switch (type)
9903 {
9904 case M_BC1FL:
9905 br = "bc1f";
9906 brneg = "bc1t";
9907 break;
9908 case M_BC1TL:
9909 br = "bc1t";
9910 brneg = "bc1f";
9911 break;
9912 case M_BC2FL:
9913 br = "bc2f";
9914 brneg = "bc2t";
9915 break;
9916 case M_BC2TL:
9917 br = "bc2t";
9918 brneg = "bc2f";
9919 break;
9920 default:
9921 abort ();
9922 }
9923 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9924 }
9925
9926 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9927 the register tested. EP specifies the branch target. */
9928
9929 static void
9930 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9931 {
9932 const char *brneg = NULL;
9933 const char *br;
9934 int call = 0;
9935
9936 switch (type)
9937 {
9938 case M_BGEZ:
9939 br = "bgez";
9940 break;
9941 case M_BGEZL:
9942 br = mips_opts.micromips ? "bgez" : "bgezl";
9943 brneg = "bltz";
9944 break;
9945 case M_BGEZALL:
9946 gas_assert (mips_opts.micromips);
9947 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9948 brneg = "bltz";
9949 call = 1;
9950 break;
9951 case M_BGTZ:
9952 br = "bgtz";
9953 break;
9954 case M_BGTZL:
9955 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9956 brneg = "blez";
9957 break;
9958 case M_BLEZ:
9959 br = "blez";
9960 break;
9961 case M_BLEZL:
9962 br = mips_opts.micromips ? "blez" : "blezl";
9963 brneg = "bgtz";
9964 break;
9965 case M_BLTZ:
9966 br = "bltz";
9967 break;
9968 case M_BLTZL:
9969 br = mips_opts.micromips ? "bltz" : "bltzl";
9970 brneg = "bgez";
9971 break;
9972 case M_BLTZALL:
9973 gas_assert (mips_opts.micromips);
9974 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9975 brneg = "bgez";
9976 call = 1;
9977 break;
9978 default:
9979 abort ();
9980 }
9981 if (mips_opts.micromips && brneg)
9982 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9983 else
9984 macro_build (ep, br, "s,p", sreg);
9985 }
9986
9987 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9988 TREG as the registers tested. EP specifies the branch target. */
9989
9990 static void
9991 macro_build_branch_rsrt (int type, expressionS *ep,
9992 unsigned int sreg, unsigned int treg)
9993 {
9994 const char *brneg = NULL;
9995 const int call = 0;
9996 const char *br;
9997
9998 switch (type)
9999 {
10000 case M_BEQ:
10001 case M_BEQ_I:
10002 br = "beq";
10003 break;
10004 case M_BEQL:
10005 case M_BEQL_I:
10006 br = mips_opts.micromips ? "beq" : "beql";
10007 brneg = "bne";
10008 break;
10009 case M_BNE:
10010 case M_BNE_I:
10011 br = "bne";
10012 break;
10013 case M_BNEL:
10014 case M_BNEL_I:
10015 br = mips_opts.micromips ? "bne" : "bnel";
10016 brneg = "beq";
10017 break;
10018 default:
10019 abort ();
10020 }
10021 if (mips_opts.micromips && brneg)
10022 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
10023 else
10024 macro_build (ep, br, "s,t,p", sreg, treg);
10025 }
10026
10027 /* Return the high part that should be loaded in order to make the low
10028 part of VALUE accessible using an offset of OFFBITS bits. */
10029
10030 static offsetT
10031 offset_high_part (offsetT value, unsigned int offbits)
10032 {
10033 offsetT bias;
10034 addressT low_mask;
10035
10036 if (offbits == 0)
10037 return value;
10038 bias = 1 << (offbits - 1);
10039 low_mask = bias * 2 - 1;
10040 return (value + bias) & ~low_mask;
10041 }
10042
10043 /* Return true if the value stored in offset_expr and offset_reloc
10044 fits into a signed offset of OFFBITS bits. RANGE is the maximum
10045 amount that the caller wants to add without inducing overflow
10046 and ALIGN is the known alignment of the value in bytes. */
10047
10048 static bfd_boolean
10049 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
10050 {
10051 if (offbits == 16)
10052 {
10053 /* Accept any relocation operator if overflow isn't a concern. */
10054 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
10055 return TRUE;
10056
10057 /* These relocations are guaranteed not to overflow in correct links. */
10058 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
10059 || gprel16_reloc_p (*offset_reloc))
10060 return TRUE;
10061 }
10062 if (offset_expr.X_op == O_constant
10063 && offset_high_part (offset_expr.X_add_number, offbits) == 0
10064 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
10065 return TRUE;
10066 return FALSE;
10067 }
10068
10069 /*
10070 * Build macros
10071 * This routine implements the seemingly endless macro or synthesized
10072 * instructions and addressing modes in the mips assembly language. Many
10073 * of these macros are simple and are similar to each other. These could
10074 * probably be handled by some kind of table or grammar approach instead of
10075 * this verbose method. Others are not simple macros but are more like
10076 * optimizing code generation.
10077 * One interesting optimization is when several store macros appear
10078 * consecutively that would load AT with the upper half of the same address.
10079 * The ensuing load upper instructions are omitted. This implies some kind
10080 * of global optimization. We currently only optimize within a single macro.
10081 * For many of the load and store macros if the address is specified as a
10082 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
10083 * first load register 'at' with zero and use it as the base register. The
10084 * mips assembler simply uses register $zero. Just one tiny optimization
10085 * we're missing.
10086 */
10087 static void
10088 macro (struct mips_cl_insn *ip, char *str)
10089 {
10090 const struct mips_operand_array *operands;
10091 unsigned int breg, i;
10092 unsigned int tempreg;
10093 int mask;
10094 int used_at = 0;
10095 expressionS label_expr;
10096 expressionS expr1;
10097 expressionS *ep;
10098 const char *s;
10099 const char *s2;
10100 const char *fmt;
10101 int likely = 0;
10102 int coproc = 0;
10103 int offbits = 16;
10104 int call = 0;
10105 int jals = 0;
10106 int dbl = 0;
10107 int imm = 0;
10108 int ust = 0;
10109 int lp = 0;
10110 bfd_boolean large_offset;
10111 int off;
10112 int hold_mips_optimize;
10113 unsigned int align;
10114 unsigned int op[MAX_OPERANDS];
10115
10116 gas_assert (! mips_opts.mips16);
10117
10118 operands = insn_operands (ip);
10119 for (i = 0; i < MAX_OPERANDS; i++)
10120 if (operands->operand[i])
10121 op[i] = insn_extract_operand (ip, operands->operand[i]);
10122 else
10123 op[i] = -1;
10124
10125 mask = ip->insn_mo->mask;
10126
10127 label_expr.X_op = O_constant;
10128 label_expr.X_op_symbol = NULL;
10129 label_expr.X_add_symbol = NULL;
10130 label_expr.X_add_number = 0;
10131
10132 expr1.X_op = O_constant;
10133 expr1.X_op_symbol = NULL;
10134 expr1.X_add_symbol = NULL;
10135 expr1.X_add_number = 1;
10136 align = 1;
10137
10138 switch (mask)
10139 {
10140 case M_DABS:
10141 dbl = 1;
10142 /* Fall through. */
10143 case M_ABS:
10144 /* bgez $a0,1f
10145 move v0,$a0
10146 sub v0,$zero,$a0
10147 1:
10148 */
10149
10150 start_noreorder ();
10151
10152 if (mips_opts.micromips)
10153 micromips_label_expr (&label_expr);
10154 else
10155 label_expr.X_add_number = 8;
10156 macro_build (&label_expr, "bgez", "s,p", op[1]);
10157 if (op[0] == op[1])
10158 macro_build (NULL, "nop", "");
10159 else
10160 move_register (op[0], op[1]);
10161 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
10162 if (mips_opts.micromips)
10163 micromips_add_label ();
10164
10165 end_noreorder ();
10166 break;
10167
10168 case M_ADD_I:
10169 s = "addi";
10170 s2 = "add";
10171 goto do_addi;
10172 case M_ADDU_I:
10173 s = "addiu";
10174 s2 = "addu";
10175 goto do_addi;
10176 case M_DADD_I:
10177 dbl = 1;
10178 s = "daddi";
10179 s2 = "dadd";
10180 if (!mips_opts.micromips)
10181 goto do_addi;
10182 if (imm_expr.X_add_number >= -0x200
10183 && imm_expr.X_add_number < 0x200)
10184 {
10185 macro_build (NULL, s, "t,r,.", op[0], op[1],
10186 (int) imm_expr.X_add_number);
10187 break;
10188 }
10189 goto do_addi_i;
10190 case M_DADDU_I:
10191 dbl = 1;
10192 s = "daddiu";
10193 s2 = "daddu";
10194 do_addi:
10195 if (imm_expr.X_add_number >= -0x8000
10196 && imm_expr.X_add_number < 0x8000)
10197 {
10198 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
10199 break;
10200 }
10201 do_addi_i:
10202 used_at = 1;
10203 load_register (AT, &imm_expr, dbl);
10204 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
10205 break;
10206
10207 case M_AND_I:
10208 s = "andi";
10209 s2 = "and";
10210 goto do_bit;
10211 case M_OR_I:
10212 s = "ori";
10213 s2 = "or";
10214 goto do_bit;
10215 case M_NOR_I:
10216 s = "";
10217 s2 = "nor";
10218 goto do_bit;
10219 case M_XOR_I:
10220 s = "xori";
10221 s2 = "xor";
10222 do_bit:
10223 if (imm_expr.X_add_number >= 0
10224 && imm_expr.X_add_number < 0x10000)
10225 {
10226 if (mask != M_NOR_I)
10227 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
10228 else
10229 {
10230 macro_build (&imm_expr, "ori", "t,r,i",
10231 op[0], op[1], BFD_RELOC_LO16);
10232 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
10233 }
10234 break;
10235 }
10236
10237 used_at = 1;
10238 load_register (AT, &imm_expr, GPR_SIZE == 64);
10239 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
10240 break;
10241
10242 case M_BALIGN:
10243 switch (imm_expr.X_add_number)
10244 {
10245 case 0:
10246 macro_build (NULL, "nop", "");
10247 break;
10248 case 2:
10249 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
10250 break;
10251 case 1:
10252 case 3:
10253 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
10254 (int) imm_expr.X_add_number);
10255 break;
10256 default:
10257 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
10258 (unsigned long) imm_expr.X_add_number);
10259 break;
10260 }
10261 break;
10262
10263 case M_BC1FL:
10264 case M_BC1TL:
10265 case M_BC2FL:
10266 case M_BC2TL:
10267 gas_assert (mips_opts.micromips);
10268 macro_build_branch_ccl (mask, &offset_expr,
10269 EXTRACT_OPERAND (1, BCC, *ip));
10270 break;
10271
10272 case M_BEQ_I:
10273 case M_BEQL_I:
10274 case M_BNE_I:
10275 case M_BNEL_I:
10276 if (imm_expr.X_add_number == 0)
10277 op[1] = 0;
10278 else
10279 {
10280 op[1] = AT;
10281 used_at = 1;
10282 load_register (op[1], &imm_expr, GPR_SIZE == 64);
10283 }
10284 /* Fall through. */
10285 case M_BEQL:
10286 case M_BNEL:
10287 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
10288 break;
10289
10290 case M_BGEL:
10291 likely = 1;
10292 /* Fall through. */
10293 case M_BGE:
10294 if (op[1] == 0)
10295 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10296 else if (op[0] == 0)
10297 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
10298 else
10299 {
10300 used_at = 1;
10301 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10302 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10303 &offset_expr, AT, ZERO);
10304 }
10305 break;
10306
10307 case M_BGEZL:
10308 case M_BGEZALL:
10309 case M_BGTZL:
10310 case M_BLEZL:
10311 case M_BLTZL:
10312 case M_BLTZALL:
10313 macro_build_branch_rs (mask, &offset_expr, op[0]);
10314 break;
10315
10316 case M_BGTL_I:
10317 likely = 1;
10318 /* Fall through. */
10319 case M_BGT_I:
10320 /* Check for > max integer. */
10321 if (imm_expr.X_add_number >= GPR_SMAX)
10322 {
10323 do_false:
10324 /* Result is always false. */
10325 if (! likely)
10326 macro_build (NULL, "nop", "");
10327 else
10328 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
10329 break;
10330 }
10331 ++imm_expr.X_add_number;
10332 /* FALLTHROUGH */
10333 case M_BGE_I:
10334 case M_BGEL_I:
10335 if (mask == M_BGEL_I)
10336 likely = 1;
10337 if (imm_expr.X_add_number == 0)
10338 {
10339 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
10340 &offset_expr, op[0]);
10341 break;
10342 }
10343 if (imm_expr.X_add_number == 1)
10344 {
10345 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
10346 &offset_expr, op[0]);
10347 break;
10348 }
10349 if (imm_expr.X_add_number <= GPR_SMIN)
10350 {
10351 do_true:
10352 /* result is always true */
10353 as_warn (_("branch %s is always true"), ip->insn_mo->name);
10354 macro_build (&offset_expr, "b", "p");
10355 break;
10356 }
10357 used_at = 1;
10358 set_at (op[0], 0);
10359 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10360 &offset_expr, AT, ZERO);
10361 break;
10362
10363 case M_BGEUL:
10364 likely = 1;
10365 /* Fall through. */
10366 case M_BGEU:
10367 if (op[1] == 0)
10368 goto do_true;
10369 else if (op[0] == 0)
10370 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10371 &offset_expr, ZERO, op[1]);
10372 else
10373 {
10374 used_at = 1;
10375 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10376 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10377 &offset_expr, AT, ZERO);
10378 }
10379 break;
10380
10381 case M_BGTUL_I:
10382 likely = 1;
10383 /* Fall through. */
10384 case M_BGTU_I:
10385 if (op[0] == 0
10386 || (GPR_SIZE == 32
10387 && imm_expr.X_add_number == -1))
10388 goto do_false;
10389 ++imm_expr.X_add_number;
10390 /* FALLTHROUGH */
10391 case M_BGEU_I:
10392 case M_BGEUL_I:
10393 if (mask == M_BGEUL_I)
10394 likely = 1;
10395 if (imm_expr.X_add_number == 0)
10396 goto do_true;
10397 else if (imm_expr.X_add_number == 1)
10398 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10399 &offset_expr, op[0], ZERO);
10400 else
10401 {
10402 used_at = 1;
10403 set_at (op[0], 1);
10404 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10405 &offset_expr, AT, ZERO);
10406 }
10407 break;
10408
10409 case M_BGTL:
10410 likely = 1;
10411 /* Fall through. */
10412 case M_BGT:
10413 if (op[1] == 0)
10414 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10415 else if (op[0] == 0)
10416 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
10417 else
10418 {
10419 used_at = 1;
10420 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10421 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10422 &offset_expr, AT, ZERO);
10423 }
10424 break;
10425
10426 case M_BGTUL:
10427 likely = 1;
10428 /* Fall through. */
10429 case M_BGTU:
10430 if (op[1] == 0)
10431 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10432 &offset_expr, op[0], ZERO);
10433 else if (op[0] == 0)
10434 goto do_false;
10435 else
10436 {
10437 used_at = 1;
10438 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10439 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10440 &offset_expr, AT, ZERO);
10441 }
10442 break;
10443
10444 case M_BLEL:
10445 likely = 1;
10446 /* Fall through. */
10447 case M_BLE:
10448 if (op[1] == 0)
10449 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10450 else if (op[0] == 0)
10451 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10452 else
10453 {
10454 used_at = 1;
10455 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10456 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10457 &offset_expr, AT, ZERO);
10458 }
10459 break;
10460
10461 case M_BLEL_I:
10462 likely = 1;
10463 /* Fall through. */
10464 case M_BLE_I:
10465 if (imm_expr.X_add_number >= GPR_SMAX)
10466 goto do_true;
10467 ++imm_expr.X_add_number;
10468 /* FALLTHROUGH */
10469 case M_BLT_I:
10470 case M_BLTL_I:
10471 if (mask == M_BLTL_I)
10472 likely = 1;
10473 if (imm_expr.X_add_number == 0)
10474 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10475 else if (imm_expr.X_add_number == 1)
10476 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10477 else
10478 {
10479 used_at = 1;
10480 set_at (op[0], 0);
10481 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10482 &offset_expr, AT, ZERO);
10483 }
10484 break;
10485
10486 case M_BLEUL:
10487 likely = 1;
10488 /* Fall through. */
10489 case M_BLEU:
10490 if (op[1] == 0)
10491 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10492 &offset_expr, op[0], ZERO);
10493 else if (op[0] == 0)
10494 goto do_true;
10495 else
10496 {
10497 used_at = 1;
10498 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10499 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10500 &offset_expr, AT, ZERO);
10501 }
10502 break;
10503
10504 case M_BLEUL_I:
10505 likely = 1;
10506 /* Fall through. */
10507 case M_BLEU_I:
10508 if (op[0] == 0
10509 || (GPR_SIZE == 32
10510 && imm_expr.X_add_number == -1))
10511 goto do_true;
10512 ++imm_expr.X_add_number;
10513 /* FALLTHROUGH */
10514 case M_BLTU_I:
10515 case M_BLTUL_I:
10516 if (mask == M_BLTUL_I)
10517 likely = 1;
10518 if (imm_expr.X_add_number == 0)
10519 goto do_false;
10520 else if (imm_expr.X_add_number == 1)
10521 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10522 &offset_expr, op[0], ZERO);
10523 else
10524 {
10525 used_at = 1;
10526 set_at (op[0], 1);
10527 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10528 &offset_expr, AT, ZERO);
10529 }
10530 break;
10531
10532 case M_BLTL:
10533 likely = 1;
10534 /* Fall through. */
10535 case M_BLT:
10536 if (op[1] == 0)
10537 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10538 else if (op[0] == 0)
10539 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10540 else
10541 {
10542 used_at = 1;
10543 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10544 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10545 &offset_expr, AT, ZERO);
10546 }
10547 break;
10548
10549 case M_BLTUL:
10550 likely = 1;
10551 /* Fall through. */
10552 case M_BLTU:
10553 if (op[1] == 0)
10554 goto do_false;
10555 else if (op[0] == 0)
10556 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10557 &offset_expr, ZERO, op[1]);
10558 else
10559 {
10560 used_at = 1;
10561 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10562 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10563 &offset_expr, AT, ZERO);
10564 }
10565 break;
10566
10567 case M_DDIV_3:
10568 dbl = 1;
10569 /* Fall through. */
10570 case M_DIV_3:
10571 s = "mflo";
10572 goto do_div3;
10573 case M_DREM_3:
10574 dbl = 1;
10575 /* Fall through. */
10576 case M_REM_3:
10577 s = "mfhi";
10578 do_div3:
10579 if (op[2] == 0)
10580 {
10581 as_warn (_("divide by zero"));
10582 if (mips_trap)
10583 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10584 else
10585 macro_build (NULL, "break", BRK_FMT, 7);
10586 break;
10587 }
10588
10589 start_noreorder ();
10590 if (mips_trap)
10591 {
10592 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10593 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10594 }
10595 else
10596 {
10597 if (mips_opts.micromips)
10598 micromips_label_expr (&label_expr);
10599 else
10600 label_expr.X_add_number = 8;
10601 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10602 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10603 macro_build (NULL, "break", BRK_FMT, 7);
10604 if (mips_opts.micromips)
10605 micromips_add_label ();
10606 }
10607 expr1.X_add_number = -1;
10608 used_at = 1;
10609 load_register (AT, &expr1, dbl);
10610 if (mips_opts.micromips)
10611 micromips_label_expr (&label_expr);
10612 else
10613 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10614 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10615 if (dbl)
10616 {
10617 expr1.X_add_number = 1;
10618 load_register (AT, &expr1, dbl);
10619 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10620 }
10621 else
10622 {
10623 expr1.X_add_number = 0x80000000;
10624 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10625 }
10626 if (mips_trap)
10627 {
10628 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10629 /* We want to close the noreorder block as soon as possible, so
10630 that later insns are available for delay slot filling. */
10631 end_noreorder ();
10632 }
10633 else
10634 {
10635 if (mips_opts.micromips)
10636 micromips_label_expr (&label_expr);
10637 else
10638 label_expr.X_add_number = 8;
10639 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10640 macro_build (NULL, "nop", "");
10641
10642 /* We want to close the noreorder block as soon as possible, so
10643 that later insns are available for delay slot filling. */
10644 end_noreorder ();
10645
10646 macro_build (NULL, "break", BRK_FMT, 6);
10647 }
10648 if (mips_opts.micromips)
10649 micromips_add_label ();
10650 macro_build (NULL, s, MFHL_FMT, op[0]);
10651 break;
10652
10653 case M_DIV_3I:
10654 s = "div";
10655 s2 = "mflo";
10656 goto do_divi;
10657 case M_DIVU_3I:
10658 s = "divu";
10659 s2 = "mflo";
10660 goto do_divi;
10661 case M_REM_3I:
10662 s = "div";
10663 s2 = "mfhi";
10664 goto do_divi;
10665 case M_REMU_3I:
10666 s = "divu";
10667 s2 = "mfhi";
10668 goto do_divi;
10669 case M_DDIV_3I:
10670 dbl = 1;
10671 s = "ddiv";
10672 s2 = "mflo";
10673 goto do_divi;
10674 case M_DDIVU_3I:
10675 dbl = 1;
10676 s = "ddivu";
10677 s2 = "mflo";
10678 goto do_divi;
10679 case M_DREM_3I:
10680 dbl = 1;
10681 s = "ddiv";
10682 s2 = "mfhi";
10683 goto do_divi;
10684 case M_DREMU_3I:
10685 dbl = 1;
10686 s = "ddivu";
10687 s2 = "mfhi";
10688 do_divi:
10689 if (imm_expr.X_add_number == 0)
10690 {
10691 as_warn (_("divide by zero"));
10692 if (mips_trap)
10693 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10694 else
10695 macro_build (NULL, "break", BRK_FMT, 7);
10696 break;
10697 }
10698 if (imm_expr.X_add_number == 1)
10699 {
10700 if (strcmp (s2, "mflo") == 0)
10701 move_register (op[0], op[1]);
10702 else
10703 move_register (op[0], ZERO);
10704 break;
10705 }
10706 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10707 {
10708 if (strcmp (s2, "mflo") == 0)
10709 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10710 else
10711 move_register (op[0], ZERO);
10712 break;
10713 }
10714
10715 used_at = 1;
10716 load_register (AT, &imm_expr, dbl);
10717 macro_build (NULL, s, "z,s,t", op[1], AT);
10718 macro_build (NULL, s2, MFHL_FMT, op[0]);
10719 break;
10720
10721 case M_DIVU_3:
10722 s = "divu";
10723 s2 = "mflo";
10724 goto do_divu3;
10725 case M_REMU_3:
10726 s = "divu";
10727 s2 = "mfhi";
10728 goto do_divu3;
10729 case M_DDIVU_3:
10730 s = "ddivu";
10731 s2 = "mflo";
10732 goto do_divu3;
10733 case M_DREMU_3:
10734 s = "ddivu";
10735 s2 = "mfhi";
10736 do_divu3:
10737 start_noreorder ();
10738 if (mips_trap)
10739 {
10740 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10741 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10742 /* We want to close the noreorder block as soon as possible, so
10743 that later insns are available for delay slot filling. */
10744 end_noreorder ();
10745 }
10746 else
10747 {
10748 if (mips_opts.micromips)
10749 micromips_label_expr (&label_expr);
10750 else
10751 label_expr.X_add_number = 8;
10752 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10753 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10754
10755 /* We want to close the noreorder block as soon as possible, so
10756 that later insns are available for delay slot filling. */
10757 end_noreorder ();
10758 macro_build (NULL, "break", BRK_FMT, 7);
10759 if (mips_opts.micromips)
10760 micromips_add_label ();
10761 }
10762 macro_build (NULL, s2, MFHL_FMT, op[0]);
10763 break;
10764
10765 case M_DLCA_AB:
10766 dbl = 1;
10767 /* Fall through. */
10768 case M_LCA_AB:
10769 call = 1;
10770 goto do_la;
10771 case M_DLA_AB:
10772 dbl = 1;
10773 /* Fall through. */
10774 case M_LA_AB:
10775 do_la:
10776 /* Load the address of a symbol into a register. If breg is not
10777 zero, we then add a base register to it. */
10778
10779 breg = op[2];
10780 if (dbl && GPR_SIZE == 32)
10781 as_warn (_("dla used to load 32-bit register; recommend using la "
10782 "instead"));
10783
10784 if (!dbl && HAVE_64BIT_OBJECTS)
10785 as_warn (_("la used to load 64-bit address; recommend using dla "
10786 "instead"));
10787
10788 if (small_offset_p (0, align, 16))
10789 {
10790 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10791 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10792 break;
10793 }
10794
10795 if (mips_opts.at && (op[0] == breg))
10796 {
10797 tempreg = AT;
10798 used_at = 1;
10799 }
10800 else
10801 tempreg = op[0];
10802
10803 if (offset_expr.X_op != O_symbol
10804 && offset_expr.X_op != O_constant)
10805 {
10806 as_bad (_("expression too complex"));
10807 offset_expr.X_op = O_constant;
10808 }
10809
10810 if (offset_expr.X_op == O_constant)
10811 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10812 else if (mips_pic == NO_PIC)
10813 {
10814 /* If this is a reference to a GP relative symbol, we want
10815 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10816 Otherwise we want
10817 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10818 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10819 If we have a constant, we need two instructions anyhow,
10820 so we may as well always use the latter form.
10821
10822 With 64bit address space and a usable $at we want
10823 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10824 lui $at,<sym> (BFD_RELOC_HI16_S)
10825 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10826 daddiu $at,<sym> (BFD_RELOC_LO16)
10827 dsll32 $tempreg,0
10828 daddu $tempreg,$tempreg,$at
10829
10830 If $at is already in use, we use a path which is suboptimal
10831 on superscalar processors.
10832 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10833 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10834 dsll $tempreg,16
10835 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10836 dsll $tempreg,16
10837 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10838
10839 For GP relative symbols in 64bit address space we can use
10840 the same sequence as in 32bit address space. */
10841 if (HAVE_64BIT_SYMBOLS)
10842 {
10843 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10844 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10845 {
10846 relax_start (offset_expr.X_add_symbol);
10847 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10848 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10849 relax_switch ();
10850 }
10851
10852 if (used_at == 0 && mips_opts.at)
10853 {
10854 macro_build (&offset_expr, "lui", LUI_FMT,
10855 tempreg, BFD_RELOC_MIPS_HIGHEST);
10856 macro_build (&offset_expr, "lui", LUI_FMT,
10857 AT, BFD_RELOC_HI16_S);
10858 macro_build (&offset_expr, "daddiu", "t,r,j",
10859 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10860 macro_build (&offset_expr, "daddiu", "t,r,j",
10861 AT, AT, BFD_RELOC_LO16);
10862 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10863 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10864 used_at = 1;
10865 }
10866 else
10867 {
10868 macro_build (&offset_expr, "lui", LUI_FMT,
10869 tempreg, BFD_RELOC_MIPS_HIGHEST);
10870 macro_build (&offset_expr, "daddiu", "t,r,j",
10871 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10872 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10873 macro_build (&offset_expr, "daddiu", "t,r,j",
10874 tempreg, tempreg, BFD_RELOC_HI16_S);
10875 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10876 macro_build (&offset_expr, "daddiu", "t,r,j",
10877 tempreg, tempreg, BFD_RELOC_LO16);
10878 }
10879
10880 if (mips_relax.sequence)
10881 relax_end ();
10882 }
10883 else
10884 {
10885 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10886 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10887 {
10888 relax_start (offset_expr.X_add_symbol);
10889 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10890 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10891 relax_switch ();
10892 }
10893 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10894 as_bad (_("offset too large"));
10895 macro_build_lui (&offset_expr, tempreg);
10896 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10897 tempreg, tempreg, BFD_RELOC_LO16);
10898 if (mips_relax.sequence)
10899 relax_end ();
10900 }
10901 }
10902 else if (!mips_big_got && !HAVE_NEWABI)
10903 {
10904 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10905
10906 /* If this is a reference to an external symbol, and there
10907 is no constant, we want
10908 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10909 or for lca or if tempreg is PIC_CALL_REG
10910 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10911 For a local symbol, we want
10912 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10913 nop
10914 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10915
10916 If we have a small constant, and this is a reference to
10917 an external symbol, we want
10918 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10919 nop
10920 addiu $tempreg,$tempreg,<constant>
10921 For a local symbol, we want the same instruction
10922 sequence, but we output a BFD_RELOC_LO16 reloc on the
10923 addiu instruction.
10924
10925 If we have a large constant, and this is a reference to
10926 an external symbol, we want
10927 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10928 lui $at,<hiconstant>
10929 addiu $at,$at,<loconstant>
10930 addu $tempreg,$tempreg,$at
10931 For a local symbol, we want the same instruction
10932 sequence, but we output a BFD_RELOC_LO16 reloc on the
10933 addiu instruction.
10934 */
10935
10936 if (offset_expr.X_add_number == 0)
10937 {
10938 if (mips_pic == SVR4_PIC
10939 && breg == 0
10940 && (call || tempreg == PIC_CALL_REG))
10941 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10942
10943 relax_start (offset_expr.X_add_symbol);
10944 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10945 lw_reloc_type, mips_gp_register);
10946 if (breg != 0)
10947 {
10948 /* We're going to put in an addu instruction using
10949 tempreg, so we may as well insert the nop right
10950 now. */
10951 load_delay_nop ();
10952 }
10953 relax_switch ();
10954 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10955 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10956 load_delay_nop ();
10957 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10958 tempreg, tempreg, BFD_RELOC_LO16);
10959 relax_end ();
10960 /* FIXME: If breg == 0, and the next instruction uses
10961 $tempreg, then if this variant case is used an extra
10962 nop will be generated. */
10963 }
10964 else if (offset_expr.X_add_number >= -0x8000
10965 && offset_expr.X_add_number < 0x8000)
10966 {
10967 load_got_offset (tempreg, &offset_expr);
10968 load_delay_nop ();
10969 add_got_offset (tempreg, &offset_expr);
10970 }
10971 else
10972 {
10973 expr1.X_add_number = offset_expr.X_add_number;
10974 offset_expr.X_add_number =
10975 SEXT_16BIT (offset_expr.X_add_number);
10976 load_got_offset (tempreg, &offset_expr);
10977 offset_expr.X_add_number = expr1.X_add_number;
10978 /* If we are going to add in a base register, and the
10979 target register and the base register are the same,
10980 then we are using AT as a temporary register. Since
10981 we want to load the constant into AT, we add our
10982 current AT (from the global offset table) and the
10983 register into the register now, and pretend we were
10984 not using a base register. */
10985 if (breg == op[0])
10986 {
10987 load_delay_nop ();
10988 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10989 op[0], AT, breg);
10990 breg = 0;
10991 tempreg = op[0];
10992 }
10993 add_got_offset_hilo (tempreg, &offset_expr, AT);
10994 used_at = 1;
10995 }
10996 }
10997 else if (!mips_big_got && HAVE_NEWABI)
10998 {
10999 int add_breg_early = 0;
11000
11001 /* If this is a reference to an external, and there is no
11002 constant, or local symbol (*), with or without a
11003 constant, we want
11004 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11005 or for lca or if tempreg is PIC_CALL_REG
11006 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11007
11008 If we have a small constant, and this is a reference to
11009 an external symbol, we want
11010 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11011 addiu $tempreg,$tempreg,<constant>
11012
11013 If we have a large constant, and this is a reference to
11014 an external symbol, we want
11015 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11016 lui $at,<hiconstant>
11017 addiu $at,$at,<loconstant>
11018 addu $tempreg,$tempreg,$at
11019
11020 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
11021 local symbols, even though it introduces an additional
11022 instruction. */
11023
11024 if (offset_expr.X_add_number)
11025 {
11026 expr1.X_add_number = offset_expr.X_add_number;
11027 offset_expr.X_add_number = 0;
11028
11029 relax_start (offset_expr.X_add_symbol);
11030 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11031 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11032
11033 if (expr1.X_add_number >= -0x8000
11034 && expr1.X_add_number < 0x8000)
11035 {
11036 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11037 tempreg, tempreg, BFD_RELOC_LO16);
11038 }
11039 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
11040 {
11041 unsigned int dreg;
11042
11043 /* If we are going to add in a base register, and the
11044 target register and the base register are the same,
11045 then we are using AT as a temporary register. Since
11046 we want to load the constant into AT, we add our
11047 current AT (from the global offset table) and the
11048 register into the register now, and pretend we were
11049 not using a base register. */
11050 if (breg != op[0])
11051 dreg = tempreg;
11052 else
11053 {
11054 gas_assert (tempreg == AT);
11055 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11056 op[0], AT, breg);
11057 dreg = op[0];
11058 add_breg_early = 1;
11059 }
11060
11061 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11062 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11063 dreg, dreg, AT);
11064
11065 used_at = 1;
11066 }
11067 else
11068 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11069
11070 relax_switch ();
11071 offset_expr.X_add_number = expr1.X_add_number;
11072
11073 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11074 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11075 if (add_breg_early)
11076 {
11077 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11078 op[0], tempreg, breg);
11079 breg = 0;
11080 tempreg = op[0];
11081 }
11082 relax_end ();
11083 }
11084 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
11085 {
11086 relax_start (offset_expr.X_add_symbol);
11087 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11088 BFD_RELOC_MIPS_CALL16, mips_gp_register);
11089 relax_switch ();
11090 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11091 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11092 relax_end ();
11093 }
11094 else
11095 {
11096 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11097 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11098 }
11099 }
11100 else if (mips_big_got && !HAVE_NEWABI)
11101 {
11102 int gpdelay;
11103 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11104 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
11105 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11106
11107 /* This is the large GOT case. If this is a reference to an
11108 external symbol, and there is no constant, we want
11109 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11110 addu $tempreg,$tempreg,$gp
11111 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11112 or for lca or if tempreg is PIC_CALL_REG
11113 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11114 addu $tempreg,$tempreg,$gp
11115 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11116 For a local symbol, we want
11117 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11118 nop
11119 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11120
11121 If we have a small constant, and this is a reference to
11122 an external symbol, we want
11123 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11124 addu $tempreg,$tempreg,$gp
11125 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11126 nop
11127 addiu $tempreg,$tempreg,<constant>
11128 For a local symbol, we want
11129 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11130 nop
11131 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
11132
11133 If we have a large constant, and this is a reference to
11134 an external symbol, we want
11135 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11136 addu $tempreg,$tempreg,$gp
11137 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11138 lui $at,<hiconstant>
11139 addiu $at,$at,<loconstant>
11140 addu $tempreg,$tempreg,$at
11141 For a local symbol, we want
11142 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11143 lui $at,<hiconstant>
11144 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
11145 addu $tempreg,$tempreg,$at
11146 */
11147
11148 expr1.X_add_number = offset_expr.X_add_number;
11149 offset_expr.X_add_number = 0;
11150 relax_start (offset_expr.X_add_symbol);
11151 gpdelay = reg_needs_delay (mips_gp_register);
11152 if (expr1.X_add_number == 0 && breg == 0
11153 && (call || tempreg == PIC_CALL_REG))
11154 {
11155 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11156 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11157 }
11158 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11159 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11160 tempreg, tempreg, mips_gp_register);
11161 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11162 tempreg, lw_reloc_type, tempreg);
11163 if (expr1.X_add_number == 0)
11164 {
11165 if (breg != 0)
11166 {
11167 /* We're going to put in an addu instruction using
11168 tempreg, so we may as well insert the nop right
11169 now. */
11170 load_delay_nop ();
11171 }
11172 }
11173 else if (expr1.X_add_number >= -0x8000
11174 && expr1.X_add_number < 0x8000)
11175 {
11176 load_delay_nop ();
11177 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11178 tempreg, tempreg, BFD_RELOC_LO16);
11179 }
11180 else
11181 {
11182 unsigned int dreg;
11183
11184 /* If we are going to add in a base register, and the
11185 target register and the base register are the same,
11186 then we are using AT as a temporary register. Since
11187 we want to load the constant into AT, we add our
11188 current AT (from the global offset table) and the
11189 register into the register now, and pretend we were
11190 not using a base register. */
11191 if (breg != op[0])
11192 dreg = tempreg;
11193 else
11194 {
11195 gas_assert (tempreg == AT);
11196 load_delay_nop ();
11197 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11198 op[0], AT, breg);
11199 dreg = op[0];
11200 }
11201
11202 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11203 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11204
11205 used_at = 1;
11206 }
11207 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
11208 relax_switch ();
11209
11210 if (gpdelay)
11211 {
11212 /* This is needed because this instruction uses $gp, but
11213 the first instruction on the main stream does not. */
11214 macro_build (NULL, "nop", "");
11215 }
11216
11217 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11218 local_reloc_type, mips_gp_register);
11219 if (expr1.X_add_number >= -0x8000
11220 && expr1.X_add_number < 0x8000)
11221 {
11222 load_delay_nop ();
11223 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11224 tempreg, tempreg, BFD_RELOC_LO16);
11225 /* FIXME: If add_number is 0, and there was no base
11226 register, the external symbol case ended with a load,
11227 so if the symbol turns out to not be external, and
11228 the next instruction uses tempreg, an unnecessary nop
11229 will be inserted. */
11230 }
11231 else
11232 {
11233 if (breg == op[0])
11234 {
11235 /* We must add in the base register now, as in the
11236 external symbol case. */
11237 gas_assert (tempreg == AT);
11238 load_delay_nop ();
11239 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11240 op[0], AT, breg);
11241 tempreg = op[0];
11242 /* We set breg to 0 because we have arranged to add
11243 it in in both cases. */
11244 breg = 0;
11245 }
11246
11247 macro_build_lui (&expr1, AT);
11248 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11249 AT, AT, BFD_RELOC_LO16);
11250 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11251 tempreg, tempreg, AT);
11252 used_at = 1;
11253 }
11254 relax_end ();
11255 }
11256 else if (mips_big_got && HAVE_NEWABI)
11257 {
11258 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11259 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
11260 int add_breg_early = 0;
11261
11262 /* This is the large GOT case. If this is a reference to an
11263 external symbol, and there is no constant, we want
11264 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11265 add $tempreg,$tempreg,$gp
11266 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11267 or for lca or if tempreg is PIC_CALL_REG
11268 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11269 add $tempreg,$tempreg,$gp
11270 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11271
11272 If we have a small constant, and this is a reference to
11273 an external symbol, we want
11274 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11275 add $tempreg,$tempreg,$gp
11276 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11277 addi $tempreg,$tempreg,<constant>
11278
11279 If we have a large constant, and this is a reference to
11280 an external symbol, we want
11281 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11282 addu $tempreg,$tempreg,$gp
11283 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11284 lui $at,<hiconstant>
11285 addi $at,$at,<loconstant>
11286 add $tempreg,$tempreg,$at
11287
11288 If we have NewABI, and we know it's a local symbol, we want
11289 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11290 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11291 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11292
11293 relax_start (offset_expr.X_add_symbol);
11294
11295 expr1.X_add_number = offset_expr.X_add_number;
11296 offset_expr.X_add_number = 0;
11297
11298 if (expr1.X_add_number == 0 && breg == 0
11299 && (call || tempreg == PIC_CALL_REG))
11300 {
11301 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11302 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11303 }
11304 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11305 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11306 tempreg, tempreg, mips_gp_register);
11307 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11308 tempreg, lw_reloc_type, tempreg);
11309
11310 if (expr1.X_add_number == 0)
11311 ;
11312 else if (expr1.X_add_number >= -0x8000
11313 && expr1.X_add_number < 0x8000)
11314 {
11315 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11316 tempreg, tempreg, BFD_RELOC_LO16);
11317 }
11318 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
11319 {
11320 unsigned int dreg;
11321
11322 /* If we are going to add in a base register, and the
11323 target register and the base register are the same,
11324 then we are using AT as a temporary register. Since
11325 we want to load the constant into AT, we add our
11326 current AT (from the global offset table) and the
11327 register into the register now, and pretend we were
11328 not using a base register. */
11329 if (breg != op[0])
11330 dreg = tempreg;
11331 else
11332 {
11333 gas_assert (tempreg == AT);
11334 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11335 op[0], AT, breg);
11336 dreg = op[0];
11337 add_breg_early = 1;
11338 }
11339
11340 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11341 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11342
11343 used_at = 1;
11344 }
11345 else
11346 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11347
11348 relax_switch ();
11349 offset_expr.X_add_number = expr1.X_add_number;
11350 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11351 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11352 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11353 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11354 if (add_breg_early)
11355 {
11356 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11357 op[0], tempreg, breg);
11358 breg = 0;
11359 tempreg = op[0];
11360 }
11361 relax_end ();
11362 }
11363 else
11364 abort ();
11365
11366 if (breg != 0)
11367 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
11368 break;
11369
11370 case M_MSGSND:
11371 gas_assert (!mips_opts.micromips);
11372 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
11373 break;
11374
11375 case M_MSGLD:
11376 gas_assert (!mips_opts.micromips);
11377 macro_build (NULL, "c2", "C", 0x02);
11378 break;
11379
11380 case M_MSGLD_T:
11381 gas_assert (!mips_opts.micromips);
11382 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
11383 break;
11384
11385 case M_MSGWAIT:
11386 gas_assert (!mips_opts.micromips);
11387 macro_build (NULL, "c2", "C", 3);
11388 break;
11389
11390 case M_MSGWAIT_T:
11391 gas_assert (!mips_opts.micromips);
11392 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
11393 break;
11394
11395 case M_J_A:
11396 /* The j instruction may not be used in PIC code, since it
11397 requires an absolute address. We convert it to a b
11398 instruction. */
11399 if (mips_pic == NO_PIC)
11400 macro_build (&offset_expr, "j", "a");
11401 else
11402 macro_build (&offset_expr, "b", "p");
11403 break;
11404
11405 /* The jal instructions must be handled as macros because when
11406 generating PIC code they expand to multi-instruction
11407 sequences. Normally they are simple instructions. */
11408 case M_JALS_1:
11409 op[1] = op[0];
11410 op[0] = RA;
11411 /* Fall through. */
11412 case M_JALS_2:
11413 gas_assert (mips_opts.micromips);
11414 if (mips_opts.insn32)
11415 {
11416 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11417 break;
11418 }
11419 jals = 1;
11420 goto jal;
11421 case M_JAL_1:
11422 op[1] = op[0];
11423 op[0] = RA;
11424 /* Fall through. */
11425 case M_JAL_2:
11426 jal:
11427 if (mips_pic == NO_PIC)
11428 {
11429 s = jals ? "jalrs" : "jalr";
11430 if (mips_opts.micromips
11431 && !mips_opts.insn32
11432 && op[0] == RA
11433 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11434 macro_build (NULL, s, "mj", op[1]);
11435 else
11436 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11437 }
11438 else
11439 {
11440 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11441 && mips_cprestore_offset >= 0);
11442
11443 if (op[1] != PIC_CALL_REG)
11444 as_warn (_("MIPS PIC call to register other than $25"));
11445
11446 s = ((mips_opts.micromips
11447 && !mips_opts.insn32
11448 && (!mips_opts.noreorder || cprestore))
11449 ? "jalrs" : "jalr");
11450 if (mips_opts.micromips
11451 && !mips_opts.insn32
11452 && op[0] == RA
11453 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11454 macro_build (NULL, s, "mj", op[1]);
11455 else
11456 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11457 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11458 {
11459 if (mips_cprestore_offset < 0)
11460 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11461 else
11462 {
11463 if (!mips_frame_reg_valid)
11464 {
11465 as_warn (_("no .frame pseudo-op used in PIC code"));
11466 /* Quiet this warning. */
11467 mips_frame_reg_valid = 1;
11468 }
11469 if (!mips_cprestore_valid)
11470 {
11471 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11472 /* Quiet this warning. */
11473 mips_cprestore_valid = 1;
11474 }
11475 if (mips_opts.noreorder)
11476 macro_build (NULL, "nop", "");
11477 expr1.X_add_number = mips_cprestore_offset;
11478 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11479 mips_gp_register,
11480 mips_frame_reg,
11481 HAVE_64BIT_ADDRESSES);
11482 }
11483 }
11484 }
11485
11486 break;
11487
11488 case M_JALS_A:
11489 gas_assert (mips_opts.micromips);
11490 if (mips_opts.insn32)
11491 {
11492 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11493 break;
11494 }
11495 jals = 1;
11496 /* Fall through. */
11497 case M_JAL_A:
11498 if (mips_pic == NO_PIC)
11499 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11500 else if (mips_pic == SVR4_PIC)
11501 {
11502 /* If this is a reference to an external symbol, and we are
11503 using a small GOT, we want
11504 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11505 nop
11506 jalr $ra,$25
11507 nop
11508 lw $gp,cprestore($sp)
11509 The cprestore value is set using the .cprestore
11510 pseudo-op. If we are using a big GOT, we want
11511 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11512 addu $25,$25,$gp
11513 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11514 nop
11515 jalr $ra,$25
11516 nop
11517 lw $gp,cprestore($sp)
11518 If the symbol is not external, we want
11519 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11520 nop
11521 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11522 jalr $ra,$25
11523 nop
11524 lw $gp,cprestore($sp)
11525
11526 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11527 sequences above, minus nops, unless the symbol is local,
11528 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11529 GOT_DISP. */
11530 if (HAVE_NEWABI)
11531 {
11532 if (!mips_big_got)
11533 {
11534 relax_start (offset_expr.X_add_symbol);
11535 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11536 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11537 mips_gp_register);
11538 relax_switch ();
11539 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11540 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11541 mips_gp_register);
11542 relax_end ();
11543 }
11544 else
11545 {
11546 relax_start (offset_expr.X_add_symbol);
11547 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11548 BFD_RELOC_MIPS_CALL_HI16);
11549 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11550 PIC_CALL_REG, mips_gp_register);
11551 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11552 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11553 PIC_CALL_REG);
11554 relax_switch ();
11555 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11556 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11557 mips_gp_register);
11558 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11559 PIC_CALL_REG, PIC_CALL_REG,
11560 BFD_RELOC_MIPS_GOT_OFST);
11561 relax_end ();
11562 }
11563
11564 macro_build_jalr (&offset_expr, 0);
11565 }
11566 else
11567 {
11568 relax_start (offset_expr.X_add_symbol);
11569 if (!mips_big_got)
11570 {
11571 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11572 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11573 mips_gp_register);
11574 load_delay_nop ();
11575 relax_switch ();
11576 }
11577 else
11578 {
11579 int gpdelay;
11580
11581 gpdelay = reg_needs_delay (mips_gp_register);
11582 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11583 BFD_RELOC_MIPS_CALL_HI16);
11584 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11585 PIC_CALL_REG, mips_gp_register);
11586 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11587 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11588 PIC_CALL_REG);
11589 load_delay_nop ();
11590 relax_switch ();
11591 if (gpdelay)
11592 macro_build (NULL, "nop", "");
11593 }
11594 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11595 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11596 mips_gp_register);
11597 load_delay_nop ();
11598 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11599 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11600 relax_end ();
11601 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11602
11603 if (mips_cprestore_offset < 0)
11604 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11605 else
11606 {
11607 if (!mips_frame_reg_valid)
11608 {
11609 as_warn (_("no .frame pseudo-op used in PIC code"));
11610 /* Quiet this warning. */
11611 mips_frame_reg_valid = 1;
11612 }
11613 if (!mips_cprestore_valid)
11614 {
11615 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11616 /* Quiet this warning. */
11617 mips_cprestore_valid = 1;
11618 }
11619 if (mips_opts.noreorder)
11620 macro_build (NULL, "nop", "");
11621 expr1.X_add_number = mips_cprestore_offset;
11622 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11623 mips_gp_register,
11624 mips_frame_reg,
11625 HAVE_64BIT_ADDRESSES);
11626 }
11627 }
11628 }
11629 else if (mips_pic == VXWORKS_PIC)
11630 as_bad (_("non-PIC jump used in PIC library"));
11631 else
11632 abort ();
11633
11634 break;
11635
11636 case M_LBUE_AB:
11637 s = "lbue";
11638 fmt = "t,+j(b)";
11639 offbits = 9;
11640 goto ld_st;
11641 case M_LHUE_AB:
11642 s = "lhue";
11643 fmt = "t,+j(b)";
11644 offbits = 9;
11645 goto ld_st;
11646 case M_LBE_AB:
11647 s = "lbe";
11648 fmt = "t,+j(b)";
11649 offbits = 9;
11650 goto ld_st;
11651 case M_LHE_AB:
11652 s = "lhe";
11653 fmt = "t,+j(b)";
11654 offbits = 9;
11655 goto ld_st;
11656 case M_LLE_AB:
11657 s = "lle";
11658 fmt = "t,+j(b)";
11659 offbits = 9;
11660 goto ld_st;
11661 case M_LWE_AB:
11662 s = "lwe";
11663 fmt = "t,+j(b)";
11664 offbits = 9;
11665 goto ld_st;
11666 case M_LWLE_AB:
11667 s = "lwle";
11668 fmt = "t,+j(b)";
11669 offbits = 9;
11670 goto ld_st;
11671 case M_LWRE_AB:
11672 s = "lwre";
11673 fmt = "t,+j(b)";
11674 offbits = 9;
11675 goto ld_st;
11676 case M_SBE_AB:
11677 s = "sbe";
11678 fmt = "t,+j(b)";
11679 offbits = 9;
11680 goto ld_st;
11681 case M_SCE_AB:
11682 s = "sce";
11683 fmt = "t,+j(b)";
11684 offbits = 9;
11685 goto ld_st;
11686 case M_SHE_AB:
11687 s = "she";
11688 fmt = "t,+j(b)";
11689 offbits = 9;
11690 goto ld_st;
11691 case M_SWE_AB:
11692 s = "swe";
11693 fmt = "t,+j(b)";
11694 offbits = 9;
11695 goto ld_st;
11696 case M_SWLE_AB:
11697 s = "swle";
11698 fmt = "t,+j(b)";
11699 offbits = 9;
11700 goto ld_st;
11701 case M_SWRE_AB:
11702 s = "swre";
11703 fmt = "t,+j(b)";
11704 offbits = 9;
11705 goto ld_st;
11706 case M_ACLR_AB:
11707 s = "aclr";
11708 fmt = "\\,~(b)";
11709 offbits = 12;
11710 goto ld_st;
11711 case M_ASET_AB:
11712 s = "aset";
11713 fmt = "\\,~(b)";
11714 offbits = 12;
11715 goto ld_st;
11716 case M_LB_AB:
11717 s = "lb";
11718 fmt = "t,o(b)";
11719 goto ld;
11720 case M_LBU_AB:
11721 s = "lbu";
11722 fmt = "t,o(b)";
11723 goto ld;
11724 case M_LH_AB:
11725 s = "lh";
11726 fmt = "t,o(b)";
11727 goto ld;
11728 case M_LHU_AB:
11729 s = "lhu";
11730 fmt = "t,o(b)";
11731 goto ld;
11732 case M_LW_AB:
11733 s = "lw";
11734 fmt = "t,o(b)";
11735 goto ld;
11736 case M_LWC0_AB:
11737 gas_assert (!mips_opts.micromips);
11738 s = "lwc0";
11739 fmt = "E,o(b)";
11740 /* Itbl support may require additional care here. */
11741 coproc = 1;
11742 goto ld_st;
11743 case M_LWC1_AB:
11744 s = "lwc1";
11745 fmt = "T,o(b)";
11746 /* Itbl support may require additional care here. */
11747 coproc = 1;
11748 goto ld_st;
11749 case M_LWC2_AB:
11750 s = "lwc2";
11751 fmt = COP12_FMT;
11752 offbits = (mips_opts.micromips ? 12
11753 : ISA_IS_R6 (mips_opts.isa) ? 11
11754 : 16);
11755 /* Itbl support may require additional care here. */
11756 coproc = 1;
11757 goto ld_st;
11758 case M_LWC3_AB:
11759 gas_assert (!mips_opts.micromips);
11760 s = "lwc3";
11761 fmt = "E,o(b)";
11762 /* Itbl support may require additional care here. */
11763 coproc = 1;
11764 goto ld_st;
11765 case M_LWL_AB:
11766 s = "lwl";
11767 fmt = MEM12_FMT;
11768 offbits = (mips_opts.micromips ? 12 : 16);
11769 goto ld_st;
11770 case M_LWR_AB:
11771 s = "lwr";
11772 fmt = MEM12_FMT;
11773 offbits = (mips_opts.micromips ? 12 : 16);
11774 goto ld_st;
11775 case M_LDC1_AB:
11776 s = "ldc1";
11777 fmt = "T,o(b)";
11778 /* Itbl support may require additional care here. */
11779 coproc = 1;
11780 goto ld_st;
11781 case M_LDC2_AB:
11782 s = "ldc2";
11783 fmt = COP12_FMT;
11784 offbits = (mips_opts.micromips ? 12
11785 : ISA_IS_R6 (mips_opts.isa) ? 11
11786 : 16);
11787 /* Itbl support may require additional care here. */
11788 coproc = 1;
11789 goto ld_st;
11790 case M_LQC2_AB:
11791 s = "lqc2";
11792 fmt = "+7,o(b)";
11793 /* Itbl support may require additional care here. */
11794 coproc = 1;
11795 goto ld_st;
11796 case M_LDC3_AB:
11797 s = "ldc3";
11798 fmt = "E,o(b)";
11799 /* Itbl support may require additional care here. */
11800 coproc = 1;
11801 goto ld_st;
11802 case M_LDL_AB:
11803 s = "ldl";
11804 fmt = MEM12_FMT;
11805 offbits = (mips_opts.micromips ? 12 : 16);
11806 goto ld_st;
11807 case M_LDR_AB:
11808 s = "ldr";
11809 fmt = MEM12_FMT;
11810 offbits = (mips_opts.micromips ? 12 : 16);
11811 goto ld_st;
11812 case M_LL_AB:
11813 s = "ll";
11814 fmt = LL_SC_FMT;
11815 offbits = (mips_opts.micromips ? 12
11816 : ISA_IS_R6 (mips_opts.isa) ? 9
11817 : 16);
11818 goto ld;
11819 case M_LLD_AB:
11820 s = "lld";
11821 fmt = LL_SC_FMT;
11822 offbits = (mips_opts.micromips ? 12
11823 : ISA_IS_R6 (mips_opts.isa) ? 9
11824 : 16);
11825 goto ld;
11826 case M_LWU_AB:
11827 s = "lwu";
11828 fmt = MEM12_FMT;
11829 offbits = (mips_opts.micromips ? 12 : 16);
11830 goto ld;
11831 case M_LWP_AB:
11832 gas_assert (mips_opts.micromips);
11833 s = "lwp";
11834 fmt = "t,~(b)";
11835 offbits = 12;
11836 lp = 1;
11837 goto ld;
11838 case M_LDP_AB:
11839 gas_assert (mips_opts.micromips);
11840 s = "ldp";
11841 fmt = "t,~(b)";
11842 offbits = 12;
11843 lp = 1;
11844 goto ld;
11845 case M_LWM_AB:
11846 gas_assert (mips_opts.micromips);
11847 s = "lwm";
11848 fmt = "n,~(b)";
11849 offbits = 12;
11850 goto ld_st;
11851 case M_LDM_AB:
11852 gas_assert (mips_opts.micromips);
11853 s = "ldm";
11854 fmt = "n,~(b)";
11855 offbits = 12;
11856 goto ld_st;
11857
11858 ld:
11859 /* We don't want to use $0 as tempreg. */
11860 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11861 goto ld_st;
11862 else
11863 tempreg = op[0] + lp;
11864 goto ld_noat;
11865
11866 case M_SB_AB:
11867 s = "sb";
11868 fmt = "t,o(b)";
11869 goto ld_st;
11870 case M_SH_AB:
11871 s = "sh";
11872 fmt = "t,o(b)";
11873 goto ld_st;
11874 case M_SW_AB:
11875 s = "sw";
11876 fmt = "t,o(b)";
11877 goto ld_st;
11878 case M_SWC0_AB:
11879 gas_assert (!mips_opts.micromips);
11880 s = "swc0";
11881 fmt = "E,o(b)";
11882 /* Itbl support may require additional care here. */
11883 coproc = 1;
11884 goto ld_st;
11885 case M_SWC1_AB:
11886 s = "swc1";
11887 fmt = "T,o(b)";
11888 /* Itbl support may require additional care here. */
11889 coproc = 1;
11890 goto ld_st;
11891 case M_SWC2_AB:
11892 s = "swc2";
11893 fmt = COP12_FMT;
11894 offbits = (mips_opts.micromips ? 12
11895 : ISA_IS_R6 (mips_opts.isa) ? 11
11896 : 16);
11897 /* Itbl support may require additional care here. */
11898 coproc = 1;
11899 goto ld_st;
11900 case M_SWC3_AB:
11901 gas_assert (!mips_opts.micromips);
11902 s = "swc3";
11903 fmt = "E,o(b)";
11904 /* Itbl support may require additional care here. */
11905 coproc = 1;
11906 goto ld_st;
11907 case M_SWL_AB:
11908 s = "swl";
11909 fmt = MEM12_FMT;
11910 offbits = (mips_opts.micromips ? 12 : 16);
11911 goto ld_st;
11912 case M_SWR_AB:
11913 s = "swr";
11914 fmt = MEM12_FMT;
11915 offbits = (mips_opts.micromips ? 12 : 16);
11916 goto ld_st;
11917 case M_SC_AB:
11918 s = "sc";
11919 fmt = LL_SC_FMT;
11920 offbits = (mips_opts.micromips ? 12
11921 : ISA_IS_R6 (mips_opts.isa) ? 9
11922 : 16);
11923 goto ld_st;
11924 case M_SCD_AB:
11925 s = "scd";
11926 fmt = LL_SC_FMT;
11927 offbits = (mips_opts.micromips ? 12
11928 : ISA_IS_R6 (mips_opts.isa) ? 9
11929 : 16);
11930 goto ld_st;
11931 case M_CACHE_AB:
11932 s = "cache";
11933 fmt = (mips_opts.micromips ? "k,~(b)"
11934 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11935 : "k,o(b)");
11936 offbits = (mips_opts.micromips ? 12
11937 : ISA_IS_R6 (mips_opts.isa) ? 9
11938 : 16);
11939 goto ld_st;
11940 case M_CACHEE_AB:
11941 s = "cachee";
11942 fmt = "k,+j(b)";
11943 offbits = 9;
11944 goto ld_st;
11945 case M_PREF_AB:
11946 s = "pref";
11947 fmt = (mips_opts.micromips ? "k,~(b)"
11948 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11949 : "k,o(b)");
11950 offbits = (mips_opts.micromips ? 12
11951 : ISA_IS_R6 (mips_opts.isa) ? 9
11952 : 16);
11953 goto ld_st;
11954 case M_PREFE_AB:
11955 s = "prefe";
11956 fmt = "k,+j(b)";
11957 offbits = 9;
11958 goto ld_st;
11959 case M_SDC1_AB:
11960 s = "sdc1";
11961 fmt = "T,o(b)";
11962 coproc = 1;
11963 /* Itbl support may require additional care here. */
11964 goto ld_st;
11965 case M_SDC2_AB:
11966 s = "sdc2";
11967 fmt = COP12_FMT;
11968 offbits = (mips_opts.micromips ? 12
11969 : ISA_IS_R6 (mips_opts.isa) ? 11
11970 : 16);
11971 /* Itbl support may require additional care here. */
11972 coproc = 1;
11973 goto ld_st;
11974 case M_SQC2_AB:
11975 s = "sqc2";
11976 fmt = "+7,o(b)";
11977 /* Itbl support may require additional care here. */
11978 coproc = 1;
11979 goto ld_st;
11980 case M_SDC3_AB:
11981 gas_assert (!mips_opts.micromips);
11982 s = "sdc3";
11983 fmt = "E,o(b)";
11984 /* Itbl support may require additional care here. */
11985 coproc = 1;
11986 goto ld_st;
11987 case M_SDL_AB:
11988 s = "sdl";
11989 fmt = MEM12_FMT;
11990 offbits = (mips_opts.micromips ? 12 : 16);
11991 goto ld_st;
11992 case M_SDR_AB:
11993 s = "sdr";
11994 fmt = MEM12_FMT;
11995 offbits = (mips_opts.micromips ? 12 : 16);
11996 goto ld_st;
11997 case M_SWP_AB:
11998 gas_assert (mips_opts.micromips);
11999 s = "swp";
12000 fmt = "t,~(b)";
12001 offbits = 12;
12002 goto ld_st;
12003 case M_SDP_AB:
12004 gas_assert (mips_opts.micromips);
12005 s = "sdp";
12006 fmt = "t,~(b)";
12007 offbits = 12;
12008 goto ld_st;
12009 case M_SWM_AB:
12010 gas_assert (mips_opts.micromips);
12011 s = "swm";
12012 fmt = "n,~(b)";
12013 offbits = 12;
12014 goto ld_st;
12015 case M_SDM_AB:
12016 gas_assert (mips_opts.micromips);
12017 s = "sdm";
12018 fmt = "n,~(b)";
12019 offbits = 12;
12020
12021 ld_st:
12022 tempreg = AT;
12023 ld_noat:
12024 breg = op[2];
12025 if (small_offset_p (0, align, 16))
12026 {
12027 /* The first case exists for M_LD_AB and M_SD_AB, which are
12028 macros for o32 but which should act like normal instructions
12029 otherwise. */
12030 if (offbits == 16)
12031 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
12032 offset_reloc[1], offset_reloc[2], breg);
12033 else if (small_offset_p (0, align, offbits))
12034 {
12035 if (offbits == 0)
12036 macro_build (NULL, s, fmt, op[0], breg);
12037 else
12038 macro_build (NULL, s, fmt, op[0],
12039 (int) offset_expr.X_add_number, breg);
12040 }
12041 else
12042 {
12043 if (tempreg == AT)
12044 used_at = 1;
12045 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
12046 tempreg, breg, -1, offset_reloc[0],
12047 offset_reloc[1], offset_reloc[2]);
12048 if (offbits == 0)
12049 macro_build (NULL, s, fmt, op[0], tempreg);
12050 else
12051 macro_build (NULL, s, fmt, op[0], 0, tempreg);
12052 }
12053 break;
12054 }
12055
12056 if (tempreg == AT)
12057 used_at = 1;
12058
12059 if (offset_expr.X_op != O_constant
12060 && offset_expr.X_op != O_symbol)
12061 {
12062 as_bad (_("expression too complex"));
12063 offset_expr.X_op = O_constant;
12064 }
12065
12066 if (HAVE_32BIT_ADDRESSES
12067 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12068 {
12069 char value [32];
12070
12071 sprintf_vma (value, offset_expr.X_add_number);
12072 as_bad (_("number (0x%s) larger than 32 bits"), value);
12073 }
12074
12075 /* A constant expression in PIC code can be handled just as it
12076 is in non PIC code. */
12077 if (offset_expr.X_op == O_constant)
12078 {
12079 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
12080 offbits == 0 ? 16 : offbits);
12081 offset_expr.X_add_number -= expr1.X_add_number;
12082
12083 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
12084 if (breg != 0)
12085 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12086 tempreg, tempreg, breg);
12087 if (offbits == 0)
12088 {
12089 if (offset_expr.X_add_number != 0)
12090 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
12091 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
12092 macro_build (NULL, s, fmt, op[0], tempreg);
12093 }
12094 else if (offbits == 16)
12095 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12096 else
12097 macro_build (NULL, s, fmt, op[0],
12098 (int) offset_expr.X_add_number, tempreg);
12099 }
12100 else if (offbits != 16)
12101 {
12102 /* The offset field is too narrow to be used for a low-part
12103 relocation, so load the whole address into the auxiliary
12104 register. */
12105 load_address (tempreg, &offset_expr, &used_at);
12106 if (breg != 0)
12107 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12108 tempreg, tempreg, breg);
12109 if (offbits == 0)
12110 macro_build (NULL, s, fmt, op[0], tempreg);
12111 else
12112 macro_build (NULL, s, fmt, op[0], 0, tempreg);
12113 }
12114 else if (mips_pic == NO_PIC)
12115 {
12116 /* If this is a reference to a GP relative symbol, and there
12117 is no base register, we want
12118 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12119 Otherwise, if there is no base register, we want
12120 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
12121 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12122 If we have a constant, we need two instructions anyhow,
12123 so we always use the latter form.
12124
12125 If we have a base register, and this is a reference to a
12126 GP relative symbol, we want
12127 addu $tempreg,$breg,$gp
12128 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
12129 Otherwise we want
12130 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
12131 addu $tempreg,$tempreg,$breg
12132 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12133 With a constant we always use the latter case.
12134
12135 With 64bit address space and no base register and $at usable,
12136 we want
12137 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12138 lui $at,<sym> (BFD_RELOC_HI16_S)
12139 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12140 dsll32 $tempreg,0
12141 daddu $tempreg,$at
12142 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12143 If we have a base register, we want
12144 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12145 lui $at,<sym> (BFD_RELOC_HI16_S)
12146 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12147 daddu $at,$breg
12148 dsll32 $tempreg,0
12149 daddu $tempreg,$at
12150 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12151
12152 Without $at we can't generate the optimal path for superscalar
12153 processors here since this would require two temporary registers.
12154 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12155 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12156 dsll $tempreg,16
12157 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12158 dsll $tempreg,16
12159 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12160 If we have a base register, we want
12161 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12162 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12163 dsll $tempreg,16
12164 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12165 dsll $tempreg,16
12166 daddu $tempreg,$tempreg,$breg
12167 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12168
12169 For GP relative symbols in 64bit address space we can use
12170 the same sequence as in 32bit address space. */
12171 if (HAVE_64BIT_SYMBOLS)
12172 {
12173 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12174 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12175 {
12176 relax_start (offset_expr.X_add_symbol);
12177 if (breg == 0)
12178 {
12179 macro_build (&offset_expr, s, fmt, op[0],
12180 BFD_RELOC_GPREL16, mips_gp_register);
12181 }
12182 else
12183 {
12184 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12185 tempreg, breg, mips_gp_register);
12186 macro_build (&offset_expr, s, fmt, op[0],
12187 BFD_RELOC_GPREL16, tempreg);
12188 }
12189 relax_switch ();
12190 }
12191
12192 if (used_at == 0 && mips_opts.at)
12193 {
12194 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12195 BFD_RELOC_MIPS_HIGHEST);
12196 macro_build (&offset_expr, "lui", LUI_FMT, AT,
12197 BFD_RELOC_HI16_S);
12198 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12199 tempreg, BFD_RELOC_MIPS_HIGHER);
12200 if (breg != 0)
12201 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
12202 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
12203 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
12204 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
12205 tempreg);
12206 used_at = 1;
12207 }
12208 else
12209 {
12210 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12211 BFD_RELOC_MIPS_HIGHEST);
12212 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12213 tempreg, BFD_RELOC_MIPS_HIGHER);
12214 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
12215 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12216 tempreg, BFD_RELOC_HI16_S);
12217 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
12218 if (breg != 0)
12219 macro_build (NULL, "daddu", "d,v,t",
12220 tempreg, tempreg, breg);
12221 macro_build (&offset_expr, s, fmt, op[0],
12222 BFD_RELOC_LO16, tempreg);
12223 }
12224
12225 if (mips_relax.sequence)
12226 relax_end ();
12227 break;
12228 }
12229
12230 if (breg == 0)
12231 {
12232 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12233 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12234 {
12235 relax_start (offset_expr.X_add_symbol);
12236 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
12237 mips_gp_register);
12238 relax_switch ();
12239 }
12240 macro_build_lui (&offset_expr, tempreg);
12241 macro_build (&offset_expr, s, fmt, op[0],
12242 BFD_RELOC_LO16, tempreg);
12243 if (mips_relax.sequence)
12244 relax_end ();
12245 }
12246 else
12247 {
12248 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12249 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12250 {
12251 relax_start (offset_expr.X_add_symbol);
12252 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12253 tempreg, breg, mips_gp_register);
12254 macro_build (&offset_expr, s, fmt, op[0],
12255 BFD_RELOC_GPREL16, tempreg);
12256 relax_switch ();
12257 }
12258 macro_build_lui (&offset_expr, tempreg);
12259 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12260 tempreg, tempreg, breg);
12261 macro_build (&offset_expr, s, fmt, op[0],
12262 BFD_RELOC_LO16, tempreg);
12263 if (mips_relax.sequence)
12264 relax_end ();
12265 }
12266 }
12267 else if (!mips_big_got)
12268 {
12269 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
12270
12271 /* If this is a reference to an external symbol, we want
12272 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12273 nop
12274 <op> op[0],0($tempreg)
12275 Otherwise we want
12276 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12277 nop
12278 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12279 <op> op[0],0($tempreg)
12280
12281 For NewABI, we want
12282 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12283 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
12284
12285 If there is a base register, we add it to $tempreg before
12286 the <op>. If there is a constant, we stick it in the
12287 <op> instruction. We don't handle constants larger than
12288 16 bits, because we have no way to load the upper 16 bits
12289 (actually, we could handle them for the subset of cases
12290 in which we are not using $at). */
12291 gas_assert (offset_expr.X_op == O_symbol);
12292 if (HAVE_NEWABI)
12293 {
12294 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12295 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12296 if (breg != 0)
12297 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12298 tempreg, tempreg, breg);
12299 macro_build (&offset_expr, s, fmt, op[0],
12300 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12301 break;
12302 }
12303 expr1.X_add_number = offset_expr.X_add_number;
12304 offset_expr.X_add_number = 0;
12305 if (expr1.X_add_number < -0x8000
12306 || expr1.X_add_number >= 0x8000)
12307 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12308 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12309 lw_reloc_type, mips_gp_register);
12310 load_delay_nop ();
12311 relax_start (offset_expr.X_add_symbol);
12312 relax_switch ();
12313 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12314 tempreg, BFD_RELOC_LO16);
12315 relax_end ();
12316 if (breg != 0)
12317 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12318 tempreg, tempreg, breg);
12319 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12320 }
12321 else if (mips_big_got && !HAVE_NEWABI)
12322 {
12323 int gpdelay;
12324
12325 /* If this is a reference to an external symbol, we want
12326 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12327 addu $tempreg,$tempreg,$gp
12328 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12329 <op> op[0],0($tempreg)
12330 Otherwise we want
12331 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12332 nop
12333 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12334 <op> op[0],0($tempreg)
12335 If there is a base register, we add it to $tempreg before
12336 the <op>. If there is a constant, we stick it in the
12337 <op> instruction. We don't handle constants larger than
12338 16 bits, because we have no way to load the upper 16 bits
12339 (actually, we could handle them for the subset of cases
12340 in which we are not using $at). */
12341 gas_assert (offset_expr.X_op == O_symbol);
12342 expr1.X_add_number = offset_expr.X_add_number;
12343 offset_expr.X_add_number = 0;
12344 if (expr1.X_add_number < -0x8000
12345 || expr1.X_add_number >= 0x8000)
12346 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12347 gpdelay = reg_needs_delay (mips_gp_register);
12348 relax_start (offset_expr.X_add_symbol);
12349 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12350 BFD_RELOC_MIPS_GOT_HI16);
12351 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12352 mips_gp_register);
12353 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12354 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12355 relax_switch ();
12356 if (gpdelay)
12357 macro_build (NULL, "nop", "");
12358 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12359 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12360 load_delay_nop ();
12361 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12362 tempreg, BFD_RELOC_LO16);
12363 relax_end ();
12364
12365 if (breg != 0)
12366 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12367 tempreg, tempreg, breg);
12368 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12369 }
12370 else if (mips_big_got && HAVE_NEWABI)
12371 {
12372 /* If this is a reference to an external symbol, we want
12373 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12374 add $tempreg,$tempreg,$gp
12375 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12376 <op> op[0],<ofst>($tempreg)
12377 Otherwise, for local symbols, we want:
12378 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12379 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
12380 gas_assert (offset_expr.X_op == O_symbol);
12381 expr1.X_add_number = offset_expr.X_add_number;
12382 offset_expr.X_add_number = 0;
12383 if (expr1.X_add_number < -0x8000
12384 || expr1.X_add_number >= 0x8000)
12385 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12386 relax_start (offset_expr.X_add_symbol);
12387 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12388 BFD_RELOC_MIPS_GOT_HI16);
12389 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12390 mips_gp_register);
12391 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12392 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12393 if (breg != 0)
12394 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12395 tempreg, tempreg, breg);
12396 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12397
12398 relax_switch ();
12399 offset_expr.X_add_number = expr1.X_add_number;
12400 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12401 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12402 if (breg != 0)
12403 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12404 tempreg, tempreg, breg);
12405 macro_build (&offset_expr, s, fmt, op[0],
12406 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12407 relax_end ();
12408 }
12409 else
12410 abort ();
12411
12412 break;
12413
12414 case M_JRADDIUSP:
12415 gas_assert (mips_opts.micromips);
12416 gas_assert (mips_opts.insn32);
12417 start_noreorder ();
12418 macro_build (NULL, "jr", "s", RA);
12419 expr1.X_add_number = op[0] << 2;
12420 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12421 end_noreorder ();
12422 break;
12423
12424 case M_JRC:
12425 gas_assert (mips_opts.micromips);
12426 gas_assert (mips_opts.insn32);
12427 macro_build (NULL, "jr", "s", op[0]);
12428 if (mips_opts.noreorder)
12429 macro_build (NULL, "nop", "");
12430 break;
12431
12432 case M_LI:
12433 case M_LI_S:
12434 load_register (op[0], &imm_expr, 0);
12435 break;
12436
12437 case M_DLI:
12438 load_register (op[0], &imm_expr, 1);
12439 break;
12440
12441 case M_LI_SS:
12442 if (imm_expr.X_op == O_constant)
12443 {
12444 used_at = 1;
12445 load_register (AT, &imm_expr, 0);
12446 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12447 break;
12448 }
12449 else
12450 {
12451 gas_assert (imm_expr.X_op == O_absent
12452 && offset_expr.X_op == O_symbol
12453 && strcmp (segment_name (S_GET_SEGMENT
12454 (offset_expr.X_add_symbol)),
12455 ".lit4") == 0
12456 && offset_expr.X_add_number == 0);
12457 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12458 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12459 break;
12460 }
12461
12462 case M_LI_D:
12463 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12464 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12465 order 32 bits of the value and the low order 32 bits are either
12466 zero or in OFFSET_EXPR. */
12467 if (imm_expr.X_op == O_constant)
12468 {
12469 if (GPR_SIZE == 64)
12470 load_register (op[0], &imm_expr, 1);
12471 else
12472 {
12473 int hreg, lreg;
12474
12475 if (target_big_endian)
12476 {
12477 hreg = op[0];
12478 lreg = op[0] + 1;
12479 }
12480 else
12481 {
12482 hreg = op[0] + 1;
12483 lreg = op[0];
12484 }
12485
12486 if (hreg <= 31)
12487 load_register (hreg, &imm_expr, 0);
12488 if (lreg <= 31)
12489 {
12490 if (offset_expr.X_op == O_absent)
12491 move_register (lreg, 0);
12492 else
12493 {
12494 gas_assert (offset_expr.X_op == O_constant);
12495 load_register (lreg, &offset_expr, 0);
12496 }
12497 }
12498 }
12499 break;
12500 }
12501 gas_assert (imm_expr.X_op == O_absent);
12502
12503 /* We know that sym is in the .rdata section. First we get the
12504 upper 16 bits of the address. */
12505 if (mips_pic == NO_PIC)
12506 {
12507 macro_build_lui (&offset_expr, AT);
12508 used_at = 1;
12509 }
12510 else
12511 {
12512 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12513 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12514 used_at = 1;
12515 }
12516
12517 /* Now we load the register(s). */
12518 if (GPR_SIZE == 64)
12519 {
12520 used_at = 1;
12521 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12522 BFD_RELOC_LO16, AT);
12523 }
12524 else
12525 {
12526 used_at = 1;
12527 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12528 BFD_RELOC_LO16, AT);
12529 if (op[0] != RA)
12530 {
12531 /* FIXME: How in the world do we deal with the possible
12532 overflow here? */
12533 offset_expr.X_add_number += 4;
12534 macro_build (&offset_expr, "lw", "t,o(b)",
12535 op[0] + 1, BFD_RELOC_LO16, AT);
12536 }
12537 }
12538 break;
12539
12540 case M_LI_DD:
12541 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12542 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12543 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12544 the value and the low order 32 bits are either zero or in
12545 OFFSET_EXPR. */
12546 if (imm_expr.X_op == O_constant)
12547 {
12548 used_at = 1;
12549 load_register (AT, &imm_expr, FPR_SIZE == 64);
12550 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12551 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12552 else
12553 {
12554 if (ISA_HAS_MXHC1 (mips_opts.isa))
12555 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12556 else if (FPR_SIZE != 32)
12557 as_bad (_("Unable to generate `%s' compliant code "
12558 "without mthc1"),
12559 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12560 else
12561 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12562 if (offset_expr.X_op == O_absent)
12563 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12564 else
12565 {
12566 gas_assert (offset_expr.X_op == O_constant);
12567 load_register (AT, &offset_expr, 0);
12568 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12569 }
12570 }
12571 break;
12572 }
12573
12574 gas_assert (imm_expr.X_op == O_absent
12575 && offset_expr.X_op == O_symbol
12576 && offset_expr.X_add_number == 0);
12577 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12578 if (strcmp (s, ".lit8") == 0)
12579 {
12580 op[2] = mips_gp_register;
12581 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12582 offset_reloc[1] = BFD_RELOC_UNUSED;
12583 offset_reloc[2] = BFD_RELOC_UNUSED;
12584 }
12585 else
12586 {
12587 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12588 used_at = 1;
12589 if (mips_pic != NO_PIC)
12590 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12591 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12592 else
12593 {
12594 /* FIXME: This won't work for a 64 bit address. */
12595 macro_build_lui (&offset_expr, AT);
12596 }
12597
12598 op[2] = AT;
12599 offset_reloc[0] = BFD_RELOC_LO16;
12600 offset_reloc[1] = BFD_RELOC_UNUSED;
12601 offset_reloc[2] = BFD_RELOC_UNUSED;
12602 }
12603 align = 8;
12604 /* Fall through */
12605
12606 case M_L_DAB:
12607 /*
12608 * The MIPS assembler seems to check for X_add_number not
12609 * being double aligned and generating:
12610 * lui at,%hi(foo+1)
12611 * addu at,at,v1
12612 * addiu at,at,%lo(foo+1)
12613 * lwc1 f2,0(at)
12614 * lwc1 f3,4(at)
12615 * But, the resulting address is the same after relocation so why
12616 * generate the extra instruction?
12617 */
12618 /* Itbl support may require additional care here. */
12619 coproc = 1;
12620 fmt = "T,o(b)";
12621 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12622 {
12623 s = "ldc1";
12624 goto ld_st;
12625 }
12626 s = "lwc1";
12627 goto ldd_std;
12628
12629 case M_S_DAB:
12630 gas_assert (!mips_opts.micromips);
12631 /* Itbl support may require additional care here. */
12632 coproc = 1;
12633 fmt = "T,o(b)";
12634 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12635 {
12636 s = "sdc1";
12637 goto ld_st;
12638 }
12639 s = "swc1";
12640 goto ldd_std;
12641
12642 case M_LQ_AB:
12643 fmt = "t,o(b)";
12644 s = "lq";
12645 goto ld;
12646
12647 case M_SQ_AB:
12648 fmt = "t,o(b)";
12649 s = "sq";
12650 goto ld_st;
12651
12652 case M_LD_AB:
12653 fmt = "t,o(b)";
12654 if (GPR_SIZE == 64)
12655 {
12656 s = "ld";
12657 goto ld;
12658 }
12659 s = "lw";
12660 goto ldd_std;
12661
12662 case M_SD_AB:
12663 fmt = "t,o(b)";
12664 if (GPR_SIZE == 64)
12665 {
12666 s = "sd";
12667 goto ld_st;
12668 }
12669 s = "sw";
12670
12671 ldd_std:
12672 /* Even on a big endian machine $fn comes before $fn+1. We have
12673 to adjust when loading from memory. We set coproc if we must
12674 load $fn+1 first. */
12675 /* Itbl support may require additional care here. */
12676 if (!target_big_endian)
12677 coproc = 0;
12678
12679 breg = op[2];
12680 if (small_offset_p (0, align, 16))
12681 {
12682 ep = &offset_expr;
12683 if (!small_offset_p (4, align, 16))
12684 {
12685 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12686 -1, offset_reloc[0], offset_reloc[1],
12687 offset_reloc[2]);
12688 expr1.X_add_number = 0;
12689 ep = &expr1;
12690 breg = AT;
12691 used_at = 1;
12692 offset_reloc[0] = BFD_RELOC_LO16;
12693 offset_reloc[1] = BFD_RELOC_UNUSED;
12694 offset_reloc[2] = BFD_RELOC_UNUSED;
12695 }
12696 if (strcmp (s, "lw") == 0 && op[0] == breg)
12697 {
12698 ep->X_add_number += 4;
12699 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12700 offset_reloc[1], offset_reloc[2], breg);
12701 ep->X_add_number -= 4;
12702 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12703 offset_reloc[1], offset_reloc[2], breg);
12704 }
12705 else
12706 {
12707 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12708 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12709 breg);
12710 ep->X_add_number += 4;
12711 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12712 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12713 breg);
12714 }
12715 break;
12716 }
12717
12718 if (offset_expr.X_op != O_symbol
12719 && offset_expr.X_op != O_constant)
12720 {
12721 as_bad (_("expression too complex"));
12722 offset_expr.X_op = O_constant;
12723 }
12724
12725 if (HAVE_32BIT_ADDRESSES
12726 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12727 {
12728 char value [32];
12729
12730 sprintf_vma (value, offset_expr.X_add_number);
12731 as_bad (_("number (0x%s) larger than 32 bits"), value);
12732 }
12733
12734 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12735 {
12736 /* If this is a reference to a GP relative symbol, we want
12737 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12738 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12739 If we have a base register, we use this
12740 addu $at,$breg,$gp
12741 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12742 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12743 If this is not a GP relative symbol, we want
12744 lui $at,<sym> (BFD_RELOC_HI16_S)
12745 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12746 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12747 If there is a base register, we add it to $at after the
12748 lui instruction. If there is a constant, we always use
12749 the last case. */
12750 if (offset_expr.X_op == O_symbol
12751 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12752 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12753 {
12754 relax_start (offset_expr.X_add_symbol);
12755 if (breg == 0)
12756 {
12757 tempreg = mips_gp_register;
12758 }
12759 else
12760 {
12761 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12762 AT, breg, mips_gp_register);
12763 tempreg = AT;
12764 used_at = 1;
12765 }
12766
12767 /* Itbl support may require additional care here. */
12768 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12769 BFD_RELOC_GPREL16, tempreg);
12770 offset_expr.X_add_number += 4;
12771
12772 /* Set mips_optimize to 2 to avoid inserting an
12773 undesired nop. */
12774 hold_mips_optimize = mips_optimize;
12775 mips_optimize = 2;
12776 /* Itbl support may require additional care here. */
12777 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12778 BFD_RELOC_GPREL16, tempreg);
12779 mips_optimize = hold_mips_optimize;
12780
12781 relax_switch ();
12782
12783 offset_expr.X_add_number -= 4;
12784 }
12785 used_at = 1;
12786 if (offset_high_part (offset_expr.X_add_number, 16)
12787 != offset_high_part (offset_expr.X_add_number + 4, 16))
12788 {
12789 load_address (AT, &offset_expr, &used_at);
12790 offset_expr.X_op = O_constant;
12791 offset_expr.X_add_number = 0;
12792 }
12793 else
12794 macro_build_lui (&offset_expr, AT);
12795 if (breg != 0)
12796 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12797 /* Itbl support may require additional care here. */
12798 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12799 BFD_RELOC_LO16, AT);
12800 /* FIXME: How do we handle overflow here? */
12801 offset_expr.X_add_number += 4;
12802 /* Itbl support may require additional care here. */
12803 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12804 BFD_RELOC_LO16, AT);
12805 if (mips_relax.sequence)
12806 relax_end ();
12807 }
12808 else if (!mips_big_got)
12809 {
12810 /* If this is a reference to an external symbol, we want
12811 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12812 nop
12813 <op> op[0],0($at)
12814 <op> op[0]+1,4($at)
12815 Otherwise we want
12816 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12817 nop
12818 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12819 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12820 If there is a base register we add it to $at before the
12821 lwc1 instructions. If there is a constant we include it
12822 in the lwc1 instructions. */
12823 used_at = 1;
12824 expr1.X_add_number = offset_expr.X_add_number;
12825 if (expr1.X_add_number < -0x8000
12826 || expr1.X_add_number >= 0x8000 - 4)
12827 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12828 load_got_offset (AT, &offset_expr);
12829 load_delay_nop ();
12830 if (breg != 0)
12831 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12832
12833 /* Set mips_optimize to 2 to avoid inserting an undesired
12834 nop. */
12835 hold_mips_optimize = mips_optimize;
12836 mips_optimize = 2;
12837
12838 /* Itbl support may require additional care here. */
12839 relax_start (offset_expr.X_add_symbol);
12840 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12841 BFD_RELOC_LO16, AT);
12842 expr1.X_add_number += 4;
12843 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12844 BFD_RELOC_LO16, AT);
12845 relax_switch ();
12846 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12847 BFD_RELOC_LO16, AT);
12848 offset_expr.X_add_number += 4;
12849 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12850 BFD_RELOC_LO16, AT);
12851 relax_end ();
12852
12853 mips_optimize = hold_mips_optimize;
12854 }
12855 else if (mips_big_got)
12856 {
12857 int gpdelay;
12858
12859 /* If this is a reference to an external symbol, we want
12860 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12861 addu $at,$at,$gp
12862 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12863 nop
12864 <op> op[0],0($at)
12865 <op> op[0]+1,4($at)
12866 Otherwise we want
12867 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12868 nop
12869 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12870 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12871 If there is a base register we add it to $at before the
12872 lwc1 instructions. If there is a constant we include it
12873 in the lwc1 instructions. */
12874 used_at = 1;
12875 expr1.X_add_number = offset_expr.X_add_number;
12876 offset_expr.X_add_number = 0;
12877 if (expr1.X_add_number < -0x8000
12878 || expr1.X_add_number >= 0x8000 - 4)
12879 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12880 gpdelay = reg_needs_delay (mips_gp_register);
12881 relax_start (offset_expr.X_add_symbol);
12882 macro_build (&offset_expr, "lui", LUI_FMT,
12883 AT, BFD_RELOC_MIPS_GOT_HI16);
12884 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12885 AT, AT, mips_gp_register);
12886 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12887 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12888 load_delay_nop ();
12889 if (breg != 0)
12890 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12891 /* Itbl support may require additional care here. */
12892 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12893 BFD_RELOC_LO16, AT);
12894 expr1.X_add_number += 4;
12895
12896 /* Set mips_optimize to 2 to avoid inserting an undesired
12897 nop. */
12898 hold_mips_optimize = mips_optimize;
12899 mips_optimize = 2;
12900 /* Itbl support may require additional care here. */
12901 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12902 BFD_RELOC_LO16, AT);
12903 mips_optimize = hold_mips_optimize;
12904 expr1.X_add_number -= 4;
12905
12906 relax_switch ();
12907 offset_expr.X_add_number = expr1.X_add_number;
12908 if (gpdelay)
12909 macro_build (NULL, "nop", "");
12910 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12911 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12912 load_delay_nop ();
12913 if (breg != 0)
12914 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12915 /* Itbl support may require additional care here. */
12916 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12917 BFD_RELOC_LO16, AT);
12918 offset_expr.X_add_number += 4;
12919
12920 /* Set mips_optimize to 2 to avoid inserting an undesired
12921 nop. */
12922 hold_mips_optimize = mips_optimize;
12923 mips_optimize = 2;
12924 /* Itbl support may require additional care here. */
12925 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12926 BFD_RELOC_LO16, AT);
12927 mips_optimize = hold_mips_optimize;
12928 relax_end ();
12929 }
12930 else
12931 abort ();
12932
12933 break;
12934
12935 case M_SAA_AB:
12936 s = "saa";
12937 goto saa_saad;
12938 case M_SAAD_AB:
12939 s = "saad";
12940 saa_saad:
12941 gas_assert (!mips_opts.micromips);
12942 offbits = 0;
12943 fmt = "t,(b)";
12944 goto ld_st;
12945
12946 /* New code added to support COPZ instructions.
12947 This code builds table entries out of the macros in mip_opcodes.
12948 R4000 uses interlocks to handle coproc delays.
12949 Other chips (like the R3000) require nops to be inserted for delays.
12950
12951 FIXME: Currently, we require that the user handle delays.
12952 In order to fill delay slots for non-interlocked chips,
12953 we must have a way to specify delays based on the coprocessor.
12954 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12955 What are the side-effects of the cop instruction?
12956 What cache support might we have and what are its effects?
12957 Both coprocessor & memory require delays. how long???
12958 What registers are read/set/modified?
12959
12960 If an itbl is provided to interpret cop instructions,
12961 this knowledge can be encoded in the itbl spec. */
12962
12963 case M_COP0:
12964 s = "c0";
12965 goto copz;
12966 case M_COP1:
12967 s = "c1";
12968 goto copz;
12969 case M_COP2:
12970 s = "c2";
12971 goto copz;
12972 case M_COP3:
12973 s = "c3";
12974 copz:
12975 gas_assert (!mips_opts.micromips);
12976 /* For now we just do C (same as Cz). The parameter will be
12977 stored in insn_opcode by mips_ip. */
12978 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12979 break;
12980
12981 case M_MOVE:
12982 move_register (op[0], op[1]);
12983 break;
12984
12985 case M_MOVEP:
12986 gas_assert (mips_opts.micromips);
12987 gas_assert (mips_opts.insn32);
12988 move_register (micromips_to_32_reg_h_map1[op[0]],
12989 micromips_to_32_reg_m_map[op[1]]);
12990 move_register (micromips_to_32_reg_h_map2[op[0]],
12991 micromips_to_32_reg_n_map[op[2]]);
12992 break;
12993
12994 case M_DMUL:
12995 dbl = 1;
12996 /* Fall through. */
12997 case M_MUL:
12998 if (mips_opts.arch == CPU_R5900)
12999 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
13000 op[2]);
13001 else
13002 {
13003 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
13004 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13005 }
13006 break;
13007
13008 case M_DMUL_I:
13009 dbl = 1;
13010 /* Fall through. */
13011 case M_MUL_I:
13012 /* The MIPS assembler some times generates shifts and adds. I'm
13013 not trying to be that fancy. GCC should do this for us
13014 anyway. */
13015 used_at = 1;
13016 load_register (AT, &imm_expr, dbl);
13017 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
13018 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13019 break;
13020
13021 case M_DMULO_I:
13022 dbl = 1;
13023 /* Fall through. */
13024 case M_MULO_I:
13025 imm = 1;
13026 goto do_mulo;
13027
13028 case M_DMULO:
13029 dbl = 1;
13030 /* Fall through. */
13031 case M_MULO:
13032 do_mulo:
13033 start_noreorder ();
13034 used_at = 1;
13035 if (imm)
13036 load_register (AT, &imm_expr, dbl);
13037 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
13038 op[1], imm ? AT : op[2]);
13039 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13040 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
13041 macro_build (NULL, "mfhi", MFHL_FMT, AT);
13042 if (mips_trap)
13043 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
13044 else
13045 {
13046 if (mips_opts.micromips)
13047 micromips_label_expr (&label_expr);
13048 else
13049 label_expr.X_add_number = 8;
13050 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
13051 macro_build (NULL, "nop", "");
13052 macro_build (NULL, "break", BRK_FMT, 6);
13053 if (mips_opts.micromips)
13054 micromips_add_label ();
13055 }
13056 end_noreorder ();
13057 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13058 break;
13059
13060 case M_DMULOU_I:
13061 dbl = 1;
13062 /* Fall through. */
13063 case M_MULOU_I:
13064 imm = 1;
13065 goto do_mulou;
13066
13067 case M_DMULOU:
13068 dbl = 1;
13069 /* Fall through. */
13070 case M_MULOU:
13071 do_mulou:
13072 start_noreorder ();
13073 used_at = 1;
13074 if (imm)
13075 load_register (AT, &imm_expr, dbl);
13076 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
13077 op[1], imm ? AT : op[2]);
13078 macro_build (NULL, "mfhi", MFHL_FMT, AT);
13079 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13080 if (mips_trap)
13081 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
13082 else
13083 {
13084 if (mips_opts.micromips)
13085 micromips_label_expr (&label_expr);
13086 else
13087 label_expr.X_add_number = 8;
13088 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
13089 macro_build (NULL, "nop", "");
13090 macro_build (NULL, "break", BRK_FMT, 6);
13091 if (mips_opts.micromips)
13092 micromips_add_label ();
13093 }
13094 end_noreorder ();
13095 break;
13096
13097 case M_DROL:
13098 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13099 {
13100 if (op[0] == op[1])
13101 {
13102 tempreg = AT;
13103 used_at = 1;
13104 }
13105 else
13106 tempreg = op[0];
13107 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
13108 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
13109 break;
13110 }
13111 used_at = 1;
13112 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
13113 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
13114 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
13115 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13116 break;
13117
13118 case M_ROL:
13119 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13120 {
13121 if (op[0] == op[1])
13122 {
13123 tempreg = AT;
13124 used_at = 1;
13125 }
13126 else
13127 tempreg = op[0];
13128 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
13129 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
13130 break;
13131 }
13132 used_at = 1;
13133 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13134 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
13135 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
13136 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13137 break;
13138
13139 case M_DROL_I:
13140 {
13141 unsigned int rot;
13142 const char *l;
13143 const char *rr;
13144
13145 rot = imm_expr.X_add_number & 0x3f;
13146 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13147 {
13148 rot = (64 - rot) & 0x3f;
13149 if (rot >= 32)
13150 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
13151 else
13152 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
13153 break;
13154 }
13155 if (rot == 0)
13156 {
13157 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
13158 break;
13159 }
13160 l = (rot < 0x20) ? "dsll" : "dsll32";
13161 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
13162 rot &= 0x1f;
13163 used_at = 1;
13164 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
13165 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13166 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13167 }
13168 break;
13169
13170 case M_ROL_I:
13171 {
13172 unsigned int rot;
13173
13174 rot = imm_expr.X_add_number & 0x1f;
13175 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13176 {
13177 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
13178 (32 - rot) & 0x1f);
13179 break;
13180 }
13181 if (rot == 0)
13182 {
13183 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
13184 break;
13185 }
13186 used_at = 1;
13187 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
13188 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13189 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13190 }
13191 break;
13192
13193 case M_DROR:
13194 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13195 {
13196 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
13197 break;
13198 }
13199 used_at = 1;
13200 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
13201 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
13202 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
13203 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13204 break;
13205
13206 case M_ROR:
13207 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13208 {
13209 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
13210 break;
13211 }
13212 used_at = 1;
13213 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13214 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
13215 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
13216 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13217 break;
13218
13219 case M_DROR_I:
13220 {
13221 unsigned int rot;
13222 const char *l;
13223 const char *rr;
13224
13225 rot = imm_expr.X_add_number & 0x3f;
13226 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13227 {
13228 if (rot >= 32)
13229 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
13230 else
13231 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
13232 break;
13233 }
13234 if (rot == 0)
13235 {
13236 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
13237 break;
13238 }
13239 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
13240 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
13241 rot &= 0x1f;
13242 used_at = 1;
13243 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
13244 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13245 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13246 }
13247 break;
13248
13249 case M_ROR_I:
13250 {
13251 unsigned int rot;
13252
13253 rot = imm_expr.X_add_number & 0x1f;
13254 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13255 {
13256 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
13257 break;
13258 }
13259 if (rot == 0)
13260 {
13261 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
13262 break;
13263 }
13264 used_at = 1;
13265 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
13266 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13267 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13268 }
13269 break;
13270
13271 case M_SEQ:
13272 if (op[1] == 0)
13273 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
13274 else if (op[2] == 0)
13275 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13276 else
13277 {
13278 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13279 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13280 }
13281 break;
13282
13283 case M_SEQ_I:
13284 if (imm_expr.X_add_number == 0)
13285 {
13286 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13287 break;
13288 }
13289 if (op[1] == 0)
13290 {
13291 as_warn (_("instruction %s: result is always false"),
13292 ip->insn_mo->name);
13293 move_register (op[0], 0);
13294 break;
13295 }
13296 if (CPU_HAS_SEQ (mips_opts.arch)
13297 && -512 <= imm_expr.X_add_number
13298 && imm_expr.X_add_number < 512)
13299 {
13300 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
13301 (int) imm_expr.X_add_number);
13302 break;
13303 }
13304 if (imm_expr.X_add_number >= 0
13305 && imm_expr.X_add_number < 0x10000)
13306 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
13307 else if (imm_expr.X_add_number > -0x8000
13308 && imm_expr.X_add_number < 0)
13309 {
13310 imm_expr.X_add_number = -imm_expr.X_add_number;
13311 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13312 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13313 }
13314 else if (CPU_HAS_SEQ (mips_opts.arch))
13315 {
13316 used_at = 1;
13317 load_register (AT, &imm_expr, GPR_SIZE == 64);
13318 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
13319 break;
13320 }
13321 else
13322 {
13323 load_register (AT, &imm_expr, GPR_SIZE == 64);
13324 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13325 used_at = 1;
13326 }
13327 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13328 break;
13329
13330 case M_SGE: /* X >= Y <==> not (X < Y) */
13331 s = "slt";
13332 goto sge;
13333 case M_SGEU:
13334 s = "sltu";
13335 sge:
13336 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13337 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13338 break;
13339
13340 case M_SGE_I: /* X >= I <==> not (X < I) */
13341 case M_SGEU_I:
13342 if (imm_expr.X_add_number >= -0x8000
13343 && imm_expr.X_add_number < 0x8000)
13344 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13345 op[0], op[1], BFD_RELOC_LO16);
13346 else
13347 {
13348 load_register (AT, &imm_expr, GPR_SIZE == 64);
13349 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
13350 op[0], op[1], AT);
13351 used_at = 1;
13352 }
13353 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13354 break;
13355
13356 case M_SGT: /* X > Y <==> Y < X */
13357 s = "slt";
13358 goto sgt;
13359 case M_SGTU:
13360 s = "sltu";
13361 sgt:
13362 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13363 break;
13364
13365 case M_SGT_I: /* X > I <==> I < X */
13366 s = "slt";
13367 goto sgti;
13368 case M_SGTU_I:
13369 s = "sltu";
13370 sgti:
13371 used_at = 1;
13372 load_register (AT, &imm_expr, GPR_SIZE == 64);
13373 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13374 break;
13375
13376 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
13377 s = "slt";
13378 goto sle;
13379 case M_SLEU:
13380 s = "sltu";
13381 sle:
13382 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13383 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13384 break;
13385
13386 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
13387 s = "slt";
13388 goto slei;
13389 case M_SLEU_I:
13390 s = "sltu";
13391 slei:
13392 used_at = 1;
13393 load_register (AT, &imm_expr, GPR_SIZE == 64);
13394 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13395 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13396 break;
13397
13398 case M_SLT_I:
13399 if (imm_expr.X_add_number >= -0x8000
13400 && imm_expr.X_add_number < 0x8000)
13401 {
13402 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13403 BFD_RELOC_LO16);
13404 break;
13405 }
13406 used_at = 1;
13407 load_register (AT, &imm_expr, GPR_SIZE == 64);
13408 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
13409 break;
13410
13411 case M_SLTU_I:
13412 if (imm_expr.X_add_number >= -0x8000
13413 && imm_expr.X_add_number < 0x8000)
13414 {
13415 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
13416 BFD_RELOC_LO16);
13417 break;
13418 }
13419 used_at = 1;
13420 load_register (AT, &imm_expr, GPR_SIZE == 64);
13421 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
13422 break;
13423
13424 case M_SNE:
13425 if (op[1] == 0)
13426 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13427 else if (op[2] == 0)
13428 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13429 else
13430 {
13431 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13432 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13433 }
13434 break;
13435
13436 case M_SNE_I:
13437 if (imm_expr.X_add_number == 0)
13438 {
13439 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13440 break;
13441 }
13442 if (op[1] == 0)
13443 {
13444 as_warn (_("instruction %s: result is always true"),
13445 ip->insn_mo->name);
13446 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13447 op[0], 0, BFD_RELOC_LO16);
13448 break;
13449 }
13450 if (CPU_HAS_SEQ (mips_opts.arch)
13451 && -512 <= imm_expr.X_add_number
13452 && imm_expr.X_add_number < 512)
13453 {
13454 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13455 (int) imm_expr.X_add_number);
13456 break;
13457 }
13458 if (imm_expr.X_add_number >= 0
13459 && imm_expr.X_add_number < 0x10000)
13460 {
13461 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13462 BFD_RELOC_LO16);
13463 }
13464 else if (imm_expr.X_add_number > -0x8000
13465 && imm_expr.X_add_number < 0)
13466 {
13467 imm_expr.X_add_number = -imm_expr.X_add_number;
13468 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13469 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13470 }
13471 else if (CPU_HAS_SEQ (mips_opts.arch))
13472 {
13473 used_at = 1;
13474 load_register (AT, &imm_expr, GPR_SIZE == 64);
13475 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13476 break;
13477 }
13478 else
13479 {
13480 load_register (AT, &imm_expr, GPR_SIZE == 64);
13481 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13482 used_at = 1;
13483 }
13484 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13485 break;
13486
13487 case M_SUB_I:
13488 s = "addi";
13489 s2 = "sub";
13490 goto do_subi;
13491 case M_SUBU_I:
13492 s = "addiu";
13493 s2 = "subu";
13494 goto do_subi;
13495 case M_DSUB_I:
13496 dbl = 1;
13497 s = "daddi";
13498 s2 = "dsub";
13499 if (!mips_opts.micromips)
13500 goto do_subi;
13501 if (imm_expr.X_add_number > -0x200
13502 && imm_expr.X_add_number <= 0x200)
13503 {
13504 macro_build (NULL, s, "t,r,.", op[0], op[1],
13505 (int) -imm_expr.X_add_number);
13506 break;
13507 }
13508 goto do_subi_i;
13509 case M_DSUBU_I:
13510 dbl = 1;
13511 s = "daddiu";
13512 s2 = "dsubu";
13513 do_subi:
13514 if (imm_expr.X_add_number > -0x8000
13515 && imm_expr.X_add_number <= 0x8000)
13516 {
13517 imm_expr.X_add_number = -imm_expr.X_add_number;
13518 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13519 break;
13520 }
13521 do_subi_i:
13522 used_at = 1;
13523 load_register (AT, &imm_expr, dbl);
13524 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13525 break;
13526
13527 case M_TEQ_I:
13528 s = "teq";
13529 goto trap;
13530 case M_TGE_I:
13531 s = "tge";
13532 goto trap;
13533 case M_TGEU_I:
13534 s = "tgeu";
13535 goto trap;
13536 case M_TLT_I:
13537 s = "tlt";
13538 goto trap;
13539 case M_TLTU_I:
13540 s = "tltu";
13541 goto trap;
13542 case M_TNE_I:
13543 s = "tne";
13544 trap:
13545 used_at = 1;
13546 load_register (AT, &imm_expr, GPR_SIZE == 64);
13547 macro_build (NULL, s, "s,t", op[0], AT);
13548 break;
13549
13550 case M_TRUNCWS:
13551 case M_TRUNCWD:
13552 gas_assert (!mips_opts.micromips);
13553 gas_assert (mips_opts.isa == ISA_MIPS1);
13554 used_at = 1;
13555
13556 /*
13557 * Is the double cfc1 instruction a bug in the mips assembler;
13558 * or is there a reason for it?
13559 */
13560 start_noreorder ();
13561 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13562 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13563 macro_build (NULL, "nop", "");
13564 expr1.X_add_number = 3;
13565 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13566 expr1.X_add_number = 2;
13567 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13568 macro_build (NULL, "ctc1", "t,G", AT, RA);
13569 macro_build (NULL, "nop", "");
13570 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13571 op[0], op[1]);
13572 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13573 macro_build (NULL, "nop", "");
13574 end_noreorder ();
13575 break;
13576
13577 case M_ULH_AB:
13578 s = "lb";
13579 s2 = "lbu";
13580 off = 1;
13581 goto uld_st;
13582 case M_ULHU_AB:
13583 s = "lbu";
13584 s2 = "lbu";
13585 off = 1;
13586 goto uld_st;
13587 case M_ULW_AB:
13588 s = "lwl";
13589 s2 = "lwr";
13590 offbits = (mips_opts.micromips ? 12 : 16);
13591 off = 3;
13592 goto uld_st;
13593 case M_ULD_AB:
13594 s = "ldl";
13595 s2 = "ldr";
13596 offbits = (mips_opts.micromips ? 12 : 16);
13597 off = 7;
13598 goto uld_st;
13599 case M_USH_AB:
13600 s = "sb";
13601 s2 = "sb";
13602 off = 1;
13603 ust = 1;
13604 goto uld_st;
13605 case M_USW_AB:
13606 s = "swl";
13607 s2 = "swr";
13608 offbits = (mips_opts.micromips ? 12 : 16);
13609 off = 3;
13610 ust = 1;
13611 goto uld_st;
13612 case M_USD_AB:
13613 s = "sdl";
13614 s2 = "sdr";
13615 offbits = (mips_opts.micromips ? 12 : 16);
13616 off = 7;
13617 ust = 1;
13618
13619 uld_st:
13620 breg = op[2];
13621 large_offset = !small_offset_p (off, align, offbits);
13622 ep = &offset_expr;
13623 expr1.X_add_number = 0;
13624 if (large_offset)
13625 {
13626 used_at = 1;
13627 tempreg = AT;
13628 if (small_offset_p (0, align, 16))
13629 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13630 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13631 else
13632 {
13633 load_address (tempreg, ep, &used_at);
13634 if (breg != 0)
13635 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13636 tempreg, tempreg, breg);
13637 }
13638 offset_reloc[0] = BFD_RELOC_LO16;
13639 offset_reloc[1] = BFD_RELOC_UNUSED;
13640 offset_reloc[2] = BFD_RELOC_UNUSED;
13641 breg = tempreg;
13642 tempreg = op[0];
13643 ep = &expr1;
13644 }
13645 else if (!ust && op[0] == breg)
13646 {
13647 used_at = 1;
13648 tempreg = AT;
13649 }
13650 else
13651 tempreg = op[0];
13652
13653 if (off == 1)
13654 goto ulh_sh;
13655
13656 if (!target_big_endian)
13657 ep->X_add_number += off;
13658 if (offbits == 12)
13659 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13660 else
13661 macro_build (ep, s, "t,o(b)", tempreg, -1,
13662 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13663
13664 if (!target_big_endian)
13665 ep->X_add_number -= off;
13666 else
13667 ep->X_add_number += off;
13668 if (offbits == 12)
13669 macro_build (NULL, s2, "t,~(b)",
13670 tempreg, (int) ep->X_add_number, breg);
13671 else
13672 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13673 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13674
13675 /* If necessary, move the result in tempreg to the final destination. */
13676 if (!ust && op[0] != tempreg)
13677 {
13678 /* Protect second load's delay slot. */
13679 load_delay_nop ();
13680 move_register (op[0], tempreg);
13681 }
13682 break;
13683
13684 ulh_sh:
13685 used_at = 1;
13686 if (target_big_endian == ust)
13687 ep->X_add_number += off;
13688 tempreg = ust || large_offset ? op[0] : AT;
13689 macro_build (ep, s, "t,o(b)", tempreg, -1,
13690 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13691
13692 /* For halfword transfers we need a temporary register to shuffle
13693 bytes. Unfortunately for M_USH_A we have none available before
13694 the next store as AT holds the base address. We deal with this
13695 case by clobbering TREG and then restoring it as with ULH. */
13696 tempreg = ust == large_offset ? op[0] : AT;
13697 if (ust)
13698 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13699
13700 if (target_big_endian == ust)
13701 ep->X_add_number -= off;
13702 else
13703 ep->X_add_number += off;
13704 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13705 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13706
13707 /* For M_USH_A re-retrieve the LSB. */
13708 if (ust && large_offset)
13709 {
13710 if (target_big_endian)
13711 ep->X_add_number += off;
13712 else
13713 ep->X_add_number -= off;
13714 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13715 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13716 }
13717 /* For ULH and M_USH_A OR the LSB in. */
13718 if (!ust || large_offset)
13719 {
13720 tempreg = !large_offset ? AT : op[0];
13721 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13722 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13723 }
13724 break;
13725
13726 default:
13727 /* FIXME: Check if this is one of the itbl macros, since they
13728 are added dynamically. */
13729 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13730 break;
13731 }
13732 if (!mips_opts.at && used_at)
13733 as_bad (_("macro used $at after \".set noat\""));
13734 }
13735
13736 /* Implement macros in mips16 mode. */
13737
13738 static void
13739 mips16_macro (struct mips_cl_insn *ip)
13740 {
13741 const struct mips_operand_array *operands;
13742 int mask;
13743 int tmp;
13744 expressionS expr1;
13745 int dbl;
13746 const char *s, *s2, *s3;
13747 unsigned int op[MAX_OPERANDS];
13748 unsigned int i;
13749
13750 mask = ip->insn_mo->mask;
13751
13752 operands = insn_operands (ip);
13753 for (i = 0; i < MAX_OPERANDS; i++)
13754 if (operands->operand[i])
13755 op[i] = insn_extract_operand (ip, operands->operand[i]);
13756 else
13757 op[i] = -1;
13758
13759 expr1.X_op = O_constant;
13760 expr1.X_op_symbol = NULL;
13761 expr1.X_add_symbol = NULL;
13762 expr1.X_add_number = 1;
13763
13764 dbl = 0;
13765
13766 switch (mask)
13767 {
13768 default:
13769 abort ();
13770
13771 case M_DDIV_3:
13772 dbl = 1;
13773 /* Fall through. */
13774 case M_DIV_3:
13775 s = "mflo";
13776 goto do_div3;
13777 case M_DREM_3:
13778 dbl = 1;
13779 /* Fall through. */
13780 case M_REM_3:
13781 s = "mfhi";
13782 do_div3:
13783 start_noreorder ();
13784 macro_build (NULL, dbl ? "ddiv" : "div", ".,x,y", op[1], op[2]);
13785 expr1.X_add_number = 2;
13786 macro_build (&expr1, "bnez", "x,p", op[2]);
13787 macro_build (NULL, "break", "6", 7);
13788
13789 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13790 since that causes an overflow. We should do that as well,
13791 but I don't see how to do the comparisons without a temporary
13792 register. */
13793 end_noreorder ();
13794 macro_build (NULL, s, "x", op[0]);
13795 break;
13796
13797 case M_DIVU_3:
13798 s = "divu";
13799 s2 = "mflo";
13800 goto do_divu3;
13801 case M_REMU_3:
13802 s = "divu";
13803 s2 = "mfhi";
13804 goto do_divu3;
13805 case M_DDIVU_3:
13806 s = "ddivu";
13807 s2 = "mflo";
13808 goto do_divu3;
13809 case M_DREMU_3:
13810 s = "ddivu";
13811 s2 = "mfhi";
13812 do_divu3:
13813 start_noreorder ();
13814 macro_build (NULL, s, ".,x,y", op[1], op[2]);
13815 expr1.X_add_number = 2;
13816 macro_build (&expr1, "bnez", "x,p", op[2]);
13817 macro_build (NULL, "break", "6", 7);
13818 end_noreorder ();
13819 macro_build (NULL, s2, "x", op[0]);
13820 break;
13821
13822 case M_DMUL:
13823 dbl = 1;
13824 /* Fall through. */
13825 case M_MUL:
13826 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13827 macro_build (NULL, "mflo", "x", op[0]);
13828 break;
13829
13830 case M_DSUBU_I:
13831 dbl = 1;
13832 goto do_subu;
13833 case M_SUBU_I:
13834 do_subu:
13835 imm_expr.X_add_number = -imm_expr.X_add_number;
13836 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,F", op[0], op[1]);
13837 break;
13838
13839 case M_SUBU_I_2:
13840 imm_expr.X_add_number = -imm_expr.X_add_number;
13841 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13842 break;
13843
13844 case M_DSUBU_I_2:
13845 imm_expr.X_add_number = -imm_expr.X_add_number;
13846 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13847 break;
13848
13849 case M_BEQ:
13850 s = "cmp";
13851 s2 = "bteqz";
13852 goto do_branch;
13853 case M_BNE:
13854 s = "cmp";
13855 s2 = "btnez";
13856 goto do_branch;
13857 case M_BLT:
13858 s = "slt";
13859 s2 = "btnez";
13860 goto do_branch;
13861 case M_BLTU:
13862 s = "sltu";
13863 s2 = "btnez";
13864 goto do_branch;
13865 case M_BLE:
13866 s = "slt";
13867 s2 = "bteqz";
13868 goto do_reverse_branch;
13869 case M_BLEU:
13870 s = "sltu";
13871 s2 = "bteqz";
13872 goto do_reverse_branch;
13873 case M_BGE:
13874 s = "slt";
13875 s2 = "bteqz";
13876 goto do_branch;
13877 case M_BGEU:
13878 s = "sltu";
13879 s2 = "bteqz";
13880 goto do_branch;
13881 case M_BGT:
13882 s = "slt";
13883 s2 = "btnez";
13884 goto do_reverse_branch;
13885 case M_BGTU:
13886 s = "sltu";
13887 s2 = "btnez";
13888
13889 do_reverse_branch:
13890 tmp = op[1];
13891 op[1] = op[0];
13892 op[0] = tmp;
13893
13894 do_branch:
13895 macro_build (NULL, s, "x,y", op[0], op[1]);
13896 macro_build (&offset_expr, s2, "p");
13897 break;
13898
13899 case M_BEQ_I:
13900 s = "cmpi";
13901 s2 = "bteqz";
13902 s3 = "x,U";
13903 goto do_branch_i;
13904 case M_BNE_I:
13905 s = "cmpi";
13906 s2 = "btnez";
13907 s3 = "x,U";
13908 goto do_branch_i;
13909 case M_BLT_I:
13910 s = "slti";
13911 s2 = "btnez";
13912 s3 = "x,8";
13913 goto do_branch_i;
13914 case M_BLTU_I:
13915 s = "sltiu";
13916 s2 = "btnez";
13917 s3 = "x,8";
13918 goto do_branch_i;
13919 case M_BLE_I:
13920 s = "slti";
13921 s2 = "btnez";
13922 s3 = "x,8";
13923 goto do_addone_branch_i;
13924 case M_BLEU_I:
13925 s = "sltiu";
13926 s2 = "btnez";
13927 s3 = "x,8";
13928 goto do_addone_branch_i;
13929 case M_BGE_I:
13930 s = "slti";
13931 s2 = "bteqz";
13932 s3 = "x,8";
13933 goto do_branch_i;
13934 case M_BGEU_I:
13935 s = "sltiu";
13936 s2 = "bteqz";
13937 s3 = "x,8";
13938 goto do_branch_i;
13939 case M_BGT_I:
13940 s = "slti";
13941 s2 = "bteqz";
13942 s3 = "x,8";
13943 goto do_addone_branch_i;
13944 case M_BGTU_I:
13945 s = "sltiu";
13946 s2 = "bteqz";
13947 s3 = "x,8";
13948
13949 do_addone_branch_i:
13950 ++imm_expr.X_add_number;
13951
13952 do_branch_i:
13953 macro_build (&imm_expr, s, s3, op[0]);
13954 macro_build (&offset_expr, s2, "p");
13955 break;
13956
13957 case M_ABS:
13958 expr1.X_add_number = 0;
13959 macro_build (&expr1, "slti", "x,8", op[1]);
13960 if (op[0] != op[1])
13961 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13962 expr1.X_add_number = 2;
13963 macro_build (&expr1, "bteqz", "p");
13964 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13965 break;
13966 }
13967 }
13968
13969 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13970 opcode bits in *OPCODE_EXTRA. */
13971
13972 static struct mips_opcode *
13973 mips_lookup_insn (struct hash_control *hash, const char *start,
13974 ssize_t length, unsigned int *opcode_extra)
13975 {
13976 char *name, *dot, *p;
13977 unsigned int mask, suffix;
13978 ssize_t opend;
13979 struct mips_opcode *insn;
13980
13981 /* Make a copy of the instruction so that we can fiddle with it. */
13982 name = xstrndup (start, length);
13983
13984 /* Look up the instruction as-is. */
13985 insn = (struct mips_opcode *) hash_find (hash, name);
13986 if (insn)
13987 goto end;
13988
13989 dot = strchr (name, '.');
13990 if (dot && dot[1])
13991 {
13992 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13993 p = mips_parse_vu0_channels (dot + 1, &mask);
13994 if (*p == 0 && mask != 0)
13995 {
13996 *dot = 0;
13997 insn = (struct mips_opcode *) hash_find (hash, name);
13998 *dot = '.';
13999 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
14000 {
14001 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
14002 goto end;
14003 }
14004 }
14005 }
14006
14007 if (mips_opts.micromips)
14008 {
14009 /* See if there's an instruction size override suffix,
14010 either `16' or `32', at the end of the mnemonic proper,
14011 that defines the operation, i.e. before the first `.'
14012 character if any. Strip it and retry. */
14013 opend = dot != NULL ? dot - name : length;
14014 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
14015 suffix = 2;
14016 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
14017 suffix = 4;
14018 else
14019 suffix = 0;
14020 if (suffix)
14021 {
14022 memmove (name + opend - 2, name + opend, length - opend + 1);
14023 insn = (struct mips_opcode *) hash_find (hash, name);
14024 if (insn)
14025 {
14026 forced_insn_length = suffix;
14027 goto end;
14028 }
14029 }
14030 }
14031
14032 insn = NULL;
14033 end:
14034 free (name);
14035 return insn;
14036 }
14037
14038 /* Assemble an instruction into its binary format. If the instruction
14039 is a macro, set imm_expr and offset_expr to the values associated
14040 with "I" and "A" operands respectively. Otherwise store the value
14041 of the relocatable field (if any) in offset_expr. In both cases
14042 set offset_reloc to the relocation operators applied to offset_expr. */
14043
14044 static void
14045 mips_ip (char *str, struct mips_cl_insn *insn)
14046 {
14047 const struct mips_opcode *first, *past;
14048 struct hash_control *hash;
14049 char format;
14050 size_t end;
14051 struct mips_operand_token *tokens;
14052 unsigned int opcode_extra;
14053
14054 if (mips_opts.micromips)
14055 {
14056 hash = micromips_op_hash;
14057 past = &micromips_opcodes[bfd_micromips_num_opcodes];
14058 }
14059 else
14060 {
14061 hash = op_hash;
14062 past = &mips_opcodes[NUMOPCODES];
14063 }
14064 forced_insn_length = 0;
14065 opcode_extra = 0;
14066
14067 /* We first try to match an instruction up to a space or to the end. */
14068 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
14069 continue;
14070
14071 first = mips_lookup_insn (hash, str, end, &opcode_extra);
14072 if (first == NULL)
14073 {
14074 set_insn_error (0, _("unrecognized opcode"));
14075 return;
14076 }
14077
14078 if (strcmp (first->name, "li.s") == 0)
14079 format = 'f';
14080 else if (strcmp (first->name, "li.d") == 0)
14081 format = 'd';
14082 else
14083 format = 0;
14084 tokens = mips_parse_arguments (str + end, format);
14085 if (!tokens)
14086 return;
14087
14088 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
14089 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
14090 set_insn_error (0, _("invalid operands"));
14091
14092 obstack_free (&mips_operand_tokens, tokens);
14093 }
14094
14095 /* As for mips_ip, but used when assembling MIPS16 code.
14096 Also set forced_insn_length to the resulting instruction size in
14097 bytes if the user explicitly requested a small or extended instruction. */
14098
14099 static void
14100 mips16_ip (char *str, struct mips_cl_insn *insn)
14101 {
14102 char *end, *s, c;
14103 struct mips_opcode *first;
14104 struct mips_operand_token *tokens;
14105 unsigned int l;
14106
14107 for (s = str; *s != '\0' && *s != '.' && *s != ' '; ++s)
14108 ;
14109 end = s;
14110 c = *end;
14111
14112 l = 0;
14113 switch (c)
14114 {
14115 case '\0':
14116 break;
14117
14118 case ' ':
14119 s++;
14120 break;
14121
14122 case '.':
14123 s++;
14124 if (*s == 't')
14125 {
14126 l = 2;
14127 s++;
14128 }
14129 else if (*s == 'e')
14130 {
14131 l = 4;
14132 s++;
14133 }
14134 if (*s == '\0')
14135 break;
14136 else if (*s++ == ' ')
14137 break;
14138 set_insn_error (0, _("unrecognized opcode"));
14139 return;
14140 }
14141 forced_insn_length = l;
14142
14143 *end = 0;
14144 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
14145 *end = c;
14146
14147 if (!first)
14148 {
14149 set_insn_error (0, _("unrecognized opcode"));
14150 return;
14151 }
14152
14153 tokens = mips_parse_arguments (s, 0);
14154 if (!tokens)
14155 return;
14156
14157 if (!match_mips16_insns (insn, first, tokens))
14158 set_insn_error (0, _("invalid operands"));
14159
14160 obstack_free (&mips_operand_tokens, tokens);
14161 }
14162
14163 /* Marshal immediate value VAL for an extended MIPS16 instruction.
14164 NBITS is the number of significant bits in VAL. */
14165
14166 static unsigned long
14167 mips16_immed_extend (offsetT val, unsigned int nbits)
14168 {
14169 int extval;
14170
14171 extval = 0;
14172 val &= (1U << nbits) - 1;
14173 if (nbits == 16 || nbits == 9)
14174 {
14175 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
14176 val &= 0x1f;
14177 }
14178 else if (nbits == 15)
14179 {
14180 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
14181 val &= 0xf;
14182 }
14183 else if (nbits == 6)
14184 {
14185 extval = ((val & 0x1f) << 6) | (val & 0x20);
14186 val = 0;
14187 }
14188 return (extval << 16) | val;
14189 }
14190
14191 /* Like decode_mips16_operand, but require the operand to be defined and
14192 require it to be an integer. */
14193
14194 static const struct mips_int_operand *
14195 mips16_immed_operand (int type, bfd_boolean extended_p)
14196 {
14197 const struct mips_operand *operand;
14198
14199 operand = decode_mips16_operand (type, extended_p);
14200 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
14201 abort ();
14202 return (const struct mips_int_operand *) operand;
14203 }
14204
14205 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
14206
14207 static bfd_boolean
14208 mips16_immed_in_range_p (const struct mips_int_operand *operand,
14209 bfd_reloc_code_real_type reloc, offsetT sval)
14210 {
14211 int min_val, max_val;
14212
14213 min_val = mips_int_operand_min (operand);
14214 max_val = mips_int_operand_max (operand);
14215 if (reloc != BFD_RELOC_UNUSED)
14216 {
14217 if (min_val < 0)
14218 sval = SEXT_16BIT (sval);
14219 else
14220 sval &= 0xffff;
14221 }
14222
14223 return (sval >= min_val
14224 && sval <= max_val
14225 && (sval & ((1 << operand->shift) - 1)) == 0);
14226 }
14227
14228 /* Install immediate value VAL into MIPS16 instruction *INSN,
14229 extending it if necessary. The instruction in *INSN may
14230 already be extended.
14231
14232 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
14233 if none. In the former case, VAL is a 16-bit number with no
14234 defined signedness.
14235
14236 TYPE is the type of the immediate field. USER_INSN_LENGTH
14237 is the length that the user requested, or 0 if none. */
14238
14239 static void
14240 mips16_immed (const char *file, unsigned int line, int type,
14241 bfd_reloc_code_real_type reloc, offsetT val,
14242 unsigned int user_insn_length, unsigned long *insn)
14243 {
14244 const struct mips_int_operand *operand;
14245 unsigned int uval, length;
14246
14247 operand = mips16_immed_operand (type, FALSE);
14248 if (!mips16_immed_in_range_p (operand, reloc, val))
14249 {
14250 /* We need an extended instruction. */
14251 if (user_insn_length == 2)
14252 as_bad_where (file, line, _("invalid unextended operand value"));
14253 else
14254 *insn |= MIPS16_EXTEND;
14255 }
14256 else if (user_insn_length == 4)
14257 {
14258 /* The operand doesn't force an unextended instruction to be extended.
14259 Warn if the user wanted an extended instruction anyway. */
14260 *insn |= MIPS16_EXTEND;
14261 as_warn_where (file, line,
14262 _("extended operand requested but not required"));
14263 }
14264
14265 length = mips16_opcode_length (*insn);
14266 if (length == 4)
14267 {
14268 operand = mips16_immed_operand (type, TRUE);
14269 if (!mips16_immed_in_range_p (operand, reloc, val))
14270 as_bad_where (file, line,
14271 _("operand value out of range for instruction"));
14272 }
14273 uval = ((unsigned int) val >> operand->shift) - operand->bias;
14274 if (length == 2 || operand->root.lsb != 0)
14275 *insn = mips_insert_operand (&operand->root, *insn, uval);
14276 else
14277 *insn |= mips16_immed_extend (uval, operand->root.size);
14278 }
14279 \f
14280 struct percent_op_match
14281 {
14282 const char *str;
14283 bfd_reloc_code_real_type reloc;
14284 };
14285
14286 static const struct percent_op_match mips_percent_op[] =
14287 {
14288 {"%lo", BFD_RELOC_LO16},
14289 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14290 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14291 {"%call16", BFD_RELOC_MIPS_CALL16},
14292 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14293 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14294 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14295 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14296 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14297 {"%got", BFD_RELOC_MIPS_GOT16},
14298 {"%gp_rel", BFD_RELOC_GPREL16},
14299 {"%gprel", BFD_RELOC_GPREL16},
14300 {"%half", BFD_RELOC_16},
14301 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14302 {"%higher", BFD_RELOC_MIPS_HIGHER},
14303 {"%neg", BFD_RELOC_MIPS_SUB},
14304 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14305 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14306 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14307 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14308 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14309 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14310 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
14311 {"%hi", BFD_RELOC_HI16_S},
14312 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14313 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
14314 };
14315
14316 static const struct percent_op_match mips16_percent_op[] =
14317 {
14318 {"%lo", BFD_RELOC_MIPS16_LO16},
14319 {"%gp_rel", BFD_RELOC_MIPS16_GPREL},
14320 {"%gprel", BFD_RELOC_MIPS16_GPREL},
14321 {"%got", BFD_RELOC_MIPS16_GOT16},
14322 {"%call16", BFD_RELOC_MIPS16_CALL16},
14323 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14324 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14325 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14326 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14327 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14328 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14329 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14330 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
14331 };
14332
14333
14334 /* Return true if *STR points to a relocation operator. When returning true,
14335 move *STR over the operator and store its relocation code in *RELOC.
14336 Leave both *STR and *RELOC alone when returning false. */
14337
14338 static bfd_boolean
14339 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
14340 {
14341 const struct percent_op_match *percent_op;
14342 size_t limit, i;
14343
14344 if (mips_opts.mips16)
14345 {
14346 percent_op = mips16_percent_op;
14347 limit = ARRAY_SIZE (mips16_percent_op);
14348 }
14349 else
14350 {
14351 percent_op = mips_percent_op;
14352 limit = ARRAY_SIZE (mips_percent_op);
14353 }
14354
14355 for (i = 0; i < limit; i++)
14356 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
14357 {
14358 int len = strlen (percent_op[i].str);
14359
14360 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14361 continue;
14362
14363 *str += strlen (percent_op[i].str);
14364 *reloc = percent_op[i].reloc;
14365
14366 /* Check whether the output BFD supports this relocation.
14367 If not, issue an error and fall back on something safe. */
14368 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
14369 {
14370 as_bad (_("relocation %s isn't supported by the current ABI"),
14371 percent_op[i].str);
14372 *reloc = BFD_RELOC_UNUSED;
14373 }
14374 return TRUE;
14375 }
14376 return FALSE;
14377 }
14378
14379
14380 /* Parse string STR as a 16-bit relocatable operand. Store the
14381 expression in *EP and the relocations in the array starting
14382 at RELOC. Return the number of relocation operators used.
14383
14384 On exit, EXPR_END points to the first character after the expression. */
14385
14386 static size_t
14387 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14388 char *str)
14389 {
14390 bfd_reloc_code_real_type reversed_reloc[3];
14391 size_t reloc_index, i;
14392 int crux_depth, str_depth;
14393 char *crux;
14394
14395 /* Search for the start of the main expression, recoding relocations
14396 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14397 of the main expression and with CRUX_DEPTH containing the number
14398 of open brackets at that point. */
14399 reloc_index = -1;
14400 str_depth = 0;
14401 do
14402 {
14403 reloc_index++;
14404 crux = str;
14405 crux_depth = str_depth;
14406
14407 /* Skip over whitespace and brackets, keeping count of the number
14408 of brackets. */
14409 while (*str == ' ' || *str == '\t' || *str == '(')
14410 if (*str++ == '(')
14411 str_depth++;
14412 }
14413 while (*str == '%'
14414 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14415 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14416
14417 my_getExpression (ep, crux);
14418 str = expr_end;
14419
14420 /* Match every open bracket. */
14421 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14422 if (*str++ == ')')
14423 crux_depth--;
14424
14425 if (crux_depth > 0)
14426 as_bad (_("unclosed '('"));
14427
14428 expr_end = str;
14429
14430 if (reloc_index != 0)
14431 {
14432 prev_reloc_op_frag = frag_now;
14433 for (i = 0; i < reloc_index; i++)
14434 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14435 }
14436
14437 return reloc_index;
14438 }
14439
14440 static void
14441 my_getExpression (expressionS *ep, char *str)
14442 {
14443 char *save_in;
14444
14445 save_in = input_line_pointer;
14446 input_line_pointer = str;
14447 expression (ep);
14448 expr_end = input_line_pointer;
14449 input_line_pointer = save_in;
14450 }
14451
14452 const char *
14453 md_atof (int type, char *litP, int *sizeP)
14454 {
14455 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14456 }
14457
14458 void
14459 md_number_to_chars (char *buf, valueT val, int n)
14460 {
14461 if (target_big_endian)
14462 number_to_chars_bigendian (buf, val, n);
14463 else
14464 number_to_chars_littleendian (buf, val, n);
14465 }
14466 \f
14467 static int support_64bit_objects(void)
14468 {
14469 const char **list, **l;
14470 int yes;
14471
14472 list = bfd_target_list ();
14473 for (l = list; *l != NULL; l++)
14474 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14475 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14476 break;
14477 yes = (*l != NULL);
14478 free (list);
14479 return yes;
14480 }
14481
14482 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14483 NEW_VALUE. Warn if another value was already specified. Note:
14484 we have to defer parsing the -march and -mtune arguments in order
14485 to handle 'from-abi' correctly, since the ABI might be specified
14486 in a later argument. */
14487
14488 static void
14489 mips_set_option_string (const char **string_ptr, const char *new_value)
14490 {
14491 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14492 as_warn (_("a different %s was already specified, is now %s"),
14493 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14494 new_value);
14495
14496 *string_ptr = new_value;
14497 }
14498
14499 int
14500 md_parse_option (int c, const char *arg)
14501 {
14502 unsigned int i;
14503
14504 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14505 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14506 {
14507 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14508 c == mips_ases[i].option_on);
14509 return 1;
14510 }
14511
14512 switch (c)
14513 {
14514 case OPTION_CONSTRUCT_FLOATS:
14515 mips_disable_float_construction = 0;
14516 break;
14517
14518 case OPTION_NO_CONSTRUCT_FLOATS:
14519 mips_disable_float_construction = 1;
14520 break;
14521
14522 case OPTION_TRAP:
14523 mips_trap = 1;
14524 break;
14525
14526 case OPTION_BREAK:
14527 mips_trap = 0;
14528 break;
14529
14530 case OPTION_EB:
14531 target_big_endian = 1;
14532 break;
14533
14534 case OPTION_EL:
14535 target_big_endian = 0;
14536 break;
14537
14538 case 'O':
14539 if (arg == NULL)
14540 mips_optimize = 1;
14541 else if (arg[0] == '0')
14542 mips_optimize = 0;
14543 else if (arg[0] == '1')
14544 mips_optimize = 1;
14545 else
14546 mips_optimize = 2;
14547 break;
14548
14549 case 'g':
14550 if (arg == NULL)
14551 mips_debug = 2;
14552 else
14553 mips_debug = atoi (arg);
14554 break;
14555
14556 case OPTION_MIPS1:
14557 file_mips_opts.isa = ISA_MIPS1;
14558 break;
14559
14560 case OPTION_MIPS2:
14561 file_mips_opts.isa = ISA_MIPS2;
14562 break;
14563
14564 case OPTION_MIPS3:
14565 file_mips_opts.isa = ISA_MIPS3;
14566 break;
14567
14568 case OPTION_MIPS4:
14569 file_mips_opts.isa = ISA_MIPS4;
14570 break;
14571
14572 case OPTION_MIPS5:
14573 file_mips_opts.isa = ISA_MIPS5;
14574 break;
14575
14576 case OPTION_MIPS32:
14577 file_mips_opts.isa = ISA_MIPS32;
14578 break;
14579
14580 case OPTION_MIPS32R2:
14581 file_mips_opts.isa = ISA_MIPS32R2;
14582 break;
14583
14584 case OPTION_MIPS32R3:
14585 file_mips_opts.isa = ISA_MIPS32R3;
14586 break;
14587
14588 case OPTION_MIPS32R5:
14589 file_mips_opts.isa = ISA_MIPS32R5;
14590 break;
14591
14592 case OPTION_MIPS32R6:
14593 file_mips_opts.isa = ISA_MIPS32R6;
14594 break;
14595
14596 case OPTION_MIPS64R2:
14597 file_mips_opts.isa = ISA_MIPS64R2;
14598 break;
14599
14600 case OPTION_MIPS64R3:
14601 file_mips_opts.isa = ISA_MIPS64R3;
14602 break;
14603
14604 case OPTION_MIPS64R5:
14605 file_mips_opts.isa = ISA_MIPS64R5;
14606 break;
14607
14608 case OPTION_MIPS64R6:
14609 file_mips_opts.isa = ISA_MIPS64R6;
14610 break;
14611
14612 case OPTION_MIPS64:
14613 file_mips_opts.isa = ISA_MIPS64;
14614 break;
14615
14616 case OPTION_MTUNE:
14617 mips_set_option_string (&mips_tune_string, arg);
14618 break;
14619
14620 case OPTION_MARCH:
14621 mips_set_option_string (&mips_arch_string, arg);
14622 break;
14623
14624 case OPTION_M4650:
14625 mips_set_option_string (&mips_arch_string, "4650");
14626 mips_set_option_string (&mips_tune_string, "4650");
14627 break;
14628
14629 case OPTION_NO_M4650:
14630 break;
14631
14632 case OPTION_M4010:
14633 mips_set_option_string (&mips_arch_string, "4010");
14634 mips_set_option_string (&mips_tune_string, "4010");
14635 break;
14636
14637 case OPTION_NO_M4010:
14638 break;
14639
14640 case OPTION_M4100:
14641 mips_set_option_string (&mips_arch_string, "4100");
14642 mips_set_option_string (&mips_tune_string, "4100");
14643 break;
14644
14645 case OPTION_NO_M4100:
14646 break;
14647
14648 case OPTION_M3900:
14649 mips_set_option_string (&mips_arch_string, "3900");
14650 mips_set_option_string (&mips_tune_string, "3900");
14651 break;
14652
14653 case OPTION_NO_M3900:
14654 break;
14655
14656 case OPTION_MICROMIPS:
14657 if (file_mips_opts.mips16 == 1)
14658 {
14659 as_bad (_("-mmicromips cannot be used with -mips16"));
14660 return 0;
14661 }
14662 file_mips_opts.micromips = 1;
14663 mips_no_prev_insn ();
14664 break;
14665
14666 case OPTION_NO_MICROMIPS:
14667 file_mips_opts.micromips = 0;
14668 mips_no_prev_insn ();
14669 break;
14670
14671 case OPTION_MIPS16:
14672 if (file_mips_opts.micromips == 1)
14673 {
14674 as_bad (_("-mips16 cannot be used with -micromips"));
14675 return 0;
14676 }
14677 file_mips_opts.mips16 = 1;
14678 mips_no_prev_insn ();
14679 break;
14680
14681 case OPTION_NO_MIPS16:
14682 file_mips_opts.mips16 = 0;
14683 mips_no_prev_insn ();
14684 break;
14685
14686 case OPTION_FIX_24K:
14687 mips_fix_24k = 1;
14688 break;
14689
14690 case OPTION_NO_FIX_24K:
14691 mips_fix_24k = 0;
14692 break;
14693
14694 case OPTION_FIX_RM7000:
14695 mips_fix_rm7000 = 1;
14696 break;
14697
14698 case OPTION_NO_FIX_RM7000:
14699 mips_fix_rm7000 = 0;
14700 break;
14701
14702 case OPTION_FIX_LOONGSON2F_JUMP:
14703 mips_fix_loongson2f_jump = TRUE;
14704 break;
14705
14706 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14707 mips_fix_loongson2f_jump = FALSE;
14708 break;
14709
14710 case OPTION_FIX_LOONGSON2F_NOP:
14711 mips_fix_loongson2f_nop = TRUE;
14712 break;
14713
14714 case OPTION_NO_FIX_LOONGSON2F_NOP:
14715 mips_fix_loongson2f_nop = FALSE;
14716 break;
14717
14718 case OPTION_FIX_VR4120:
14719 mips_fix_vr4120 = 1;
14720 break;
14721
14722 case OPTION_NO_FIX_VR4120:
14723 mips_fix_vr4120 = 0;
14724 break;
14725
14726 case OPTION_FIX_VR4130:
14727 mips_fix_vr4130 = 1;
14728 break;
14729
14730 case OPTION_NO_FIX_VR4130:
14731 mips_fix_vr4130 = 0;
14732 break;
14733
14734 case OPTION_FIX_CN63XXP1:
14735 mips_fix_cn63xxp1 = TRUE;
14736 break;
14737
14738 case OPTION_NO_FIX_CN63XXP1:
14739 mips_fix_cn63xxp1 = FALSE;
14740 break;
14741
14742 case OPTION_RELAX_BRANCH:
14743 mips_relax_branch = 1;
14744 break;
14745
14746 case OPTION_NO_RELAX_BRANCH:
14747 mips_relax_branch = 0;
14748 break;
14749
14750 case OPTION_IGNORE_BRANCH_ISA:
14751 mips_ignore_branch_isa = TRUE;
14752 break;
14753
14754 case OPTION_NO_IGNORE_BRANCH_ISA:
14755 mips_ignore_branch_isa = FALSE;
14756 break;
14757
14758 case OPTION_INSN32:
14759 file_mips_opts.insn32 = TRUE;
14760 break;
14761
14762 case OPTION_NO_INSN32:
14763 file_mips_opts.insn32 = FALSE;
14764 break;
14765
14766 case OPTION_MSHARED:
14767 mips_in_shared = TRUE;
14768 break;
14769
14770 case OPTION_MNO_SHARED:
14771 mips_in_shared = FALSE;
14772 break;
14773
14774 case OPTION_MSYM32:
14775 file_mips_opts.sym32 = TRUE;
14776 break;
14777
14778 case OPTION_MNO_SYM32:
14779 file_mips_opts.sym32 = FALSE;
14780 break;
14781
14782 /* When generating ELF code, we permit -KPIC and -call_shared to
14783 select SVR4_PIC, and -non_shared to select no PIC. This is
14784 intended to be compatible with Irix 5. */
14785 case OPTION_CALL_SHARED:
14786 mips_pic = SVR4_PIC;
14787 mips_abicalls = TRUE;
14788 break;
14789
14790 case OPTION_CALL_NONPIC:
14791 mips_pic = NO_PIC;
14792 mips_abicalls = TRUE;
14793 break;
14794
14795 case OPTION_NON_SHARED:
14796 mips_pic = NO_PIC;
14797 mips_abicalls = FALSE;
14798 break;
14799
14800 /* The -xgot option tells the assembler to use 32 bit offsets
14801 when accessing the got in SVR4_PIC mode. It is for Irix
14802 compatibility. */
14803 case OPTION_XGOT:
14804 mips_big_got = 1;
14805 break;
14806
14807 case 'G':
14808 g_switch_value = atoi (arg);
14809 g_switch_seen = 1;
14810 break;
14811
14812 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14813 and -mabi=64. */
14814 case OPTION_32:
14815 mips_abi = O32_ABI;
14816 break;
14817
14818 case OPTION_N32:
14819 mips_abi = N32_ABI;
14820 break;
14821
14822 case OPTION_64:
14823 mips_abi = N64_ABI;
14824 if (!support_64bit_objects())
14825 as_fatal (_("no compiled in support for 64 bit object file format"));
14826 break;
14827
14828 case OPTION_GP32:
14829 file_mips_opts.gp = 32;
14830 break;
14831
14832 case OPTION_GP64:
14833 file_mips_opts.gp = 64;
14834 break;
14835
14836 case OPTION_FP32:
14837 file_mips_opts.fp = 32;
14838 break;
14839
14840 case OPTION_FPXX:
14841 file_mips_opts.fp = 0;
14842 break;
14843
14844 case OPTION_FP64:
14845 file_mips_opts.fp = 64;
14846 break;
14847
14848 case OPTION_ODD_SPREG:
14849 file_mips_opts.oddspreg = 1;
14850 break;
14851
14852 case OPTION_NO_ODD_SPREG:
14853 file_mips_opts.oddspreg = 0;
14854 break;
14855
14856 case OPTION_SINGLE_FLOAT:
14857 file_mips_opts.single_float = 1;
14858 break;
14859
14860 case OPTION_DOUBLE_FLOAT:
14861 file_mips_opts.single_float = 0;
14862 break;
14863
14864 case OPTION_SOFT_FLOAT:
14865 file_mips_opts.soft_float = 1;
14866 break;
14867
14868 case OPTION_HARD_FLOAT:
14869 file_mips_opts.soft_float = 0;
14870 break;
14871
14872 case OPTION_MABI:
14873 if (strcmp (arg, "32") == 0)
14874 mips_abi = O32_ABI;
14875 else if (strcmp (arg, "o64") == 0)
14876 mips_abi = O64_ABI;
14877 else if (strcmp (arg, "n32") == 0)
14878 mips_abi = N32_ABI;
14879 else if (strcmp (arg, "64") == 0)
14880 {
14881 mips_abi = N64_ABI;
14882 if (! support_64bit_objects())
14883 as_fatal (_("no compiled in support for 64 bit object file "
14884 "format"));
14885 }
14886 else if (strcmp (arg, "eabi") == 0)
14887 mips_abi = EABI_ABI;
14888 else
14889 {
14890 as_fatal (_("invalid abi -mabi=%s"), arg);
14891 return 0;
14892 }
14893 break;
14894
14895 case OPTION_M7000_HILO_FIX:
14896 mips_7000_hilo_fix = TRUE;
14897 break;
14898
14899 case OPTION_MNO_7000_HILO_FIX:
14900 mips_7000_hilo_fix = FALSE;
14901 break;
14902
14903 case OPTION_MDEBUG:
14904 mips_flag_mdebug = TRUE;
14905 break;
14906
14907 case OPTION_NO_MDEBUG:
14908 mips_flag_mdebug = FALSE;
14909 break;
14910
14911 case OPTION_PDR:
14912 mips_flag_pdr = TRUE;
14913 break;
14914
14915 case OPTION_NO_PDR:
14916 mips_flag_pdr = FALSE;
14917 break;
14918
14919 case OPTION_MVXWORKS_PIC:
14920 mips_pic = VXWORKS_PIC;
14921 break;
14922
14923 case OPTION_NAN:
14924 if (strcmp (arg, "2008") == 0)
14925 mips_nan2008 = 1;
14926 else if (strcmp (arg, "legacy") == 0)
14927 mips_nan2008 = 0;
14928 else
14929 {
14930 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14931 return 0;
14932 }
14933 break;
14934
14935 default:
14936 return 0;
14937 }
14938
14939 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14940
14941 return 1;
14942 }
14943 \f
14944 /* Set up globals to tune for the ISA or processor described by INFO. */
14945
14946 static void
14947 mips_set_tune (const struct mips_cpu_info *info)
14948 {
14949 if (info != 0)
14950 mips_tune = info->cpu;
14951 }
14952
14953
14954 void
14955 mips_after_parse_args (void)
14956 {
14957 const struct mips_cpu_info *arch_info = 0;
14958 const struct mips_cpu_info *tune_info = 0;
14959
14960 /* GP relative stuff not working for PE */
14961 if (strncmp (TARGET_OS, "pe", 2) == 0)
14962 {
14963 if (g_switch_seen && g_switch_value != 0)
14964 as_bad (_("-G not supported in this configuration"));
14965 g_switch_value = 0;
14966 }
14967
14968 if (mips_abi == NO_ABI)
14969 mips_abi = MIPS_DEFAULT_ABI;
14970
14971 /* The following code determines the architecture.
14972 Similar code was added to GCC 3.3 (see override_options() in
14973 config/mips/mips.c). The GAS and GCC code should be kept in sync
14974 as much as possible. */
14975
14976 if (mips_arch_string != 0)
14977 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14978
14979 if (file_mips_opts.isa != ISA_UNKNOWN)
14980 {
14981 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14982 ISA level specified by -mipsN, while arch_info->isa contains
14983 the -march selection (if any). */
14984 if (arch_info != 0)
14985 {
14986 /* -march takes precedence over -mipsN, since it is more descriptive.
14987 There's no harm in specifying both as long as the ISA levels
14988 are the same. */
14989 if (file_mips_opts.isa != arch_info->isa)
14990 as_bad (_("-%s conflicts with the other architecture options,"
14991 " which imply -%s"),
14992 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14993 mips_cpu_info_from_isa (arch_info->isa)->name);
14994 }
14995 else
14996 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14997 }
14998
14999 if (arch_info == 0)
15000 {
15001 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
15002 gas_assert (arch_info);
15003 }
15004
15005 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
15006 as_bad (_("-march=%s is not compatible with the selected ABI"),
15007 arch_info->name);
15008
15009 file_mips_opts.arch = arch_info->cpu;
15010 file_mips_opts.isa = arch_info->isa;
15011
15012 /* Set up initial mips_opts state. */
15013 mips_opts = file_mips_opts;
15014
15015 /* The register size inference code is now placed in
15016 file_mips_check_options. */
15017
15018 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
15019 processor. */
15020 if (mips_tune_string != 0)
15021 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
15022
15023 if (tune_info == 0)
15024 mips_set_tune (arch_info);
15025 else
15026 mips_set_tune (tune_info);
15027
15028 if (mips_flag_mdebug < 0)
15029 mips_flag_mdebug = 0;
15030 }
15031 \f
15032 void
15033 mips_init_after_args (void)
15034 {
15035 /* initialize opcodes */
15036 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
15037 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
15038 }
15039
15040 long
15041 md_pcrel_from (fixS *fixP)
15042 {
15043 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
15044 switch (fixP->fx_r_type)
15045 {
15046 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15047 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15048 /* Return the address of the delay slot. */
15049 return addr + 2;
15050
15051 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15052 case BFD_RELOC_MICROMIPS_JMP:
15053 case BFD_RELOC_MIPS16_16_PCREL_S1:
15054 case BFD_RELOC_16_PCREL_S2:
15055 case BFD_RELOC_MIPS_21_PCREL_S2:
15056 case BFD_RELOC_MIPS_26_PCREL_S2:
15057 case BFD_RELOC_MIPS_JMP:
15058 /* Return the address of the delay slot. */
15059 return addr + 4;
15060
15061 case BFD_RELOC_MIPS_18_PCREL_S3:
15062 /* Return the aligned address of the doubleword containing
15063 the instruction. */
15064 return addr & ~7;
15065
15066 default:
15067 return addr;
15068 }
15069 }
15070
15071 /* This is called before the symbol table is processed. In order to
15072 work with gcc when using mips-tfile, we must keep all local labels.
15073 However, in other cases, we want to discard them. If we were
15074 called with -g, but we didn't see any debugging information, it may
15075 mean that gcc is smuggling debugging information through to
15076 mips-tfile, in which case we must generate all local labels. */
15077
15078 void
15079 mips_frob_file_before_adjust (void)
15080 {
15081 #ifndef NO_ECOFF_DEBUGGING
15082 if (ECOFF_DEBUGGING
15083 && mips_debug != 0
15084 && ! ecoff_debugging_seen)
15085 flag_keep_locals = 1;
15086 #endif
15087 }
15088
15089 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
15090 the corresponding LO16 reloc. This is called before md_apply_fix and
15091 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
15092 relocation operators.
15093
15094 For our purposes, a %lo() expression matches a %got() or %hi()
15095 expression if:
15096
15097 (a) it refers to the same symbol; and
15098 (b) the offset applied in the %lo() expression is no lower than
15099 the offset applied in the %got() or %hi().
15100
15101 (b) allows us to cope with code like:
15102
15103 lui $4,%hi(foo)
15104 lh $4,%lo(foo+2)($4)
15105
15106 ...which is legal on RELA targets, and has a well-defined behaviour
15107 if the user knows that adding 2 to "foo" will not induce a carry to
15108 the high 16 bits.
15109
15110 When several %lo()s match a particular %got() or %hi(), we use the
15111 following rules to distinguish them:
15112
15113 (1) %lo()s with smaller offsets are a better match than %lo()s with
15114 higher offsets.
15115
15116 (2) %lo()s with no matching %got() or %hi() are better than those
15117 that already have a matching %got() or %hi().
15118
15119 (3) later %lo()s are better than earlier %lo()s.
15120
15121 These rules are applied in order.
15122
15123 (1) means, among other things, that %lo()s with identical offsets are
15124 chosen if they exist.
15125
15126 (2) means that we won't associate several high-part relocations with
15127 the same low-part relocation unless there's no alternative. Having
15128 several high parts for the same low part is a GNU extension; this rule
15129 allows careful users to avoid it.
15130
15131 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
15132 with the last high-part relocation being at the front of the list.
15133 It therefore makes sense to choose the last matching low-part
15134 relocation, all other things being equal. It's also easier
15135 to code that way. */
15136
15137 void
15138 mips_frob_file (void)
15139 {
15140 struct mips_hi_fixup *l;
15141 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
15142
15143 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
15144 {
15145 segment_info_type *seginfo;
15146 bfd_boolean matched_lo_p;
15147 fixS **hi_pos, **lo_pos, **pos;
15148
15149 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
15150
15151 /* If a GOT16 relocation turns out to be against a global symbol,
15152 there isn't supposed to be a matching LO. Ignore %gots against
15153 constants; we'll report an error for those later. */
15154 if (got16_reloc_p (l->fixp->fx_r_type)
15155 && !(l->fixp->fx_addsy
15156 && pic_need_relax (l->fixp->fx_addsy)))
15157 continue;
15158
15159 /* Check quickly whether the next fixup happens to be a matching %lo. */
15160 if (fixup_has_matching_lo_p (l->fixp))
15161 continue;
15162
15163 seginfo = seg_info (l->seg);
15164
15165 /* Set HI_POS to the position of this relocation in the chain.
15166 Set LO_POS to the position of the chosen low-part relocation.
15167 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
15168 relocation that matches an immediately-preceding high-part
15169 relocation. */
15170 hi_pos = NULL;
15171 lo_pos = NULL;
15172 matched_lo_p = FALSE;
15173 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
15174
15175 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
15176 {
15177 if (*pos == l->fixp)
15178 hi_pos = pos;
15179
15180 if ((*pos)->fx_r_type == looking_for_rtype
15181 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
15182 && (*pos)->fx_offset >= l->fixp->fx_offset
15183 && (lo_pos == NULL
15184 || (*pos)->fx_offset < (*lo_pos)->fx_offset
15185 || (!matched_lo_p
15186 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
15187 lo_pos = pos;
15188
15189 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
15190 && fixup_has_matching_lo_p (*pos));
15191 }
15192
15193 /* If we found a match, remove the high-part relocation from its
15194 current position and insert it before the low-part relocation.
15195 Make the offsets match so that fixup_has_matching_lo_p()
15196 will return true.
15197
15198 We don't warn about unmatched high-part relocations since some
15199 versions of gcc have been known to emit dead "lui ...%hi(...)"
15200 instructions. */
15201 if (lo_pos != NULL)
15202 {
15203 l->fixp->fx_offset = (*lo_pos)->fx_offset;
15204 if (l->fixp->fx_next != *lo_pos)
15205 {
15206 *hi_pos = l->fixp->fx_next;
15207 l->fixp->fx_next = *lo_pos;
15208 *lo_pos = l->fixp;
15209 }
15210 }
15211 }
15212 }
15213
15214 int
15215 mips_force_relocation (fixS *fixp)
15216 {
15217 if (generic_force_reloc (fixp))
15218 return 1;
15219
15220 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
15221 so that the linker relaxation can update targets. */
15222 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15223 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15224 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
15225 return 1;
15226
15227 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
15228 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
15229 microMIPS symbols so that we can do cross-mode branch diagnostics
15230 and BAL to JALX conversion by the linker. */
15231 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15232 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15233 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
15234 && fixp->fx_addsy
15235 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
15236 return 1;
15237
15238 /* We want all PC-relative relocations to be kept for R6 relaxation. */
15239 if (ISA_IS_R6 (file_mips_opts.isa)
15240 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15241 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15242 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
15243 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
15244 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
15245 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
15246 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
15247 return 1;
15248
15249 return 0;
15250 }
15251
15252 /* Implement TC_FORCE_RELOCATION_ABS. */
15253
15254 bfd_boolean
15255 mips_force_relocation_abs (fixS *fixp)
15256 {
15257 if (generic_force_reloc (fixp))
15258 return TRUE;
15259
15260 /* These relocations do not have enough bits in the in-place addend
15261 to hold an arbitrary absolute section's offset. */
15262 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
15263 return TRUE;
15264
15265 return FALSE;
15266 }
15267
15268 /* Read the instruction associated with RELOC from BUF. */
15269
15270 static unsigned int
15271 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15272 {
15273 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15274 return read_compressed_insn (buf, 4);
15275 else
15276 return read_insn (buf);
15277 }
15278
15279 /* Write instruction INSN to BUF, given that it has been relocated
15280 by RELOC. */
15281
15282 static void
15283 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15284 unsigned long insn)
15285 {
15286 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15287 write_compressed_insn (buf, insn, 4);
15288 else
15289 write_insn (buf, insn);
15290 }
15291
15292 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15293 to a symbol in another ISA mode, which cannot be converted to JALX. */
15294
15295 static bfd_boolean
15296 fix_bad_cross_mode_jump_p (fixS *fixP)
15297 {
15298 unsigned long opcode;
15299 int other;
15300 char *buf;
15301
15302 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15303 return FALSE;
15304
15305 other = S_GET_OTHER (fixP->fx_addsy);
15306 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15307 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15308 switch (fixP->fx_r_type)
15309 {
15310 case BFD_RELOC_MIPS_JMP:
15311 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15312 case BFD_RELOC_MICROMIPS_JMP:
15313 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15314 default:
15315 return FALSE;
15316 }
15317 }
15318
15319 /* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15320 jump to a symbol in the same ISA mode. */
15321
15322 static bfd_boolean
15323 fix_bad_same_mode_jalx_p (fixS *fixP)
15324 {
15325 unsigned long opcode;
15326 int other;
15327 char *buf;
15328
15329 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15330 return FALSE;
15331
15332 other = S_GET_OTHER (fixP->fx_addsy);
15333 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15334 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15335 switch (fixP->fx_r_type)
15336 {
15337 case BFD_RELOC_MIPS_JMP:
15338 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15339 case BFD_RELOC_MIPS16_JMP:
15340 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15341 case BFD_RELOC_MICROMIPS_JMP:
15342 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15343 default:
15344 return FALSE;
15345 }
15346 }
15347
15348 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15349 to a symbol whose value plus addend is not aligned according to the
15350 ultimate (after linker relaxation) jump instruction's immediate field
15351 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15352 regular MIPS code, to (1 << 2). */
15353
15354 static bfd_boolean
15355 fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15356 {
15357 bfd_boolean micro_to_mips_p;
15358 valueT val;
15359 int other;
15360
15361 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15362 return FALSE;
15363
15364 other = S_GET_OTHER (fixP->fx_addsy);
15365 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15366 val += fixP->fx_offset;
15367 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15368 && !ELF_ST_IS_MICROMIPS (other));
15369 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15370 != ELF_ST_IS_COMPRESSED (other));
15371 }
15372
15373 /* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15374 to a symbol whose annotation indicates another ISA mode. For absolute
15375 symbols check the ISA bit instead.
15376
15377 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15378 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15379 MIPS symbols and associated with BAL instructions as these instructions
15380 may be converted to JALX by the linker. */
15381
15382 static bfd_boolean
15383 fix_bad_cross_mode_branch_p (fixS *fixP)
15384 {
15385 bfd_boolean absolute_p;
15386 unsigned long opcode;
15387 asection *symsec;
15388 valueT val;
15389 int other;
15390 char *buf;
15391
15392 if (mips_ignore_branch_isa)
15393 return FALSE;
15394
15395 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15396 return FALSE;
15397
15398 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15399 absolute_p = bfd_is_abs_section (symsec);
15400
15401 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15402 other = S_GET_OTHER (fixP->fx_addsy);
15403
15404 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15405 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15406 switch (fixP->fx_r_type)
15407 {
15408 case BFD_RELOC_16_PCREL_S2:
15409 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15410 && opcode != 0x0411);
15411 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15412 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15413 && opcode != 0x4060);
15414 case BFD_RELOC_MIPS_21_PCREL_S2:
15415 case BFD_RELOC_MIPS_26_PCREL_S2:
15416 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15417 case BFD_RELOC_MIPS16_16_PCREL_S1:
15418 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15419 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15420 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15421 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15422 default:
15423 abort ();
15424 }
15425 }
15426
15427 /* Return TRUE if the symbol plus addend associated with a regular MIPS
15428 branch instruction pointed to by FIXP is not aligned according to the
15429 branch instruction's immediate field requirement. We need the addend
15430 to preserve the ISA bit and also the sum must not have bit 2 set. We
15431 must explicitly OR in the ISA bit from symbol annotation as the bit
15432 won't be set in the symbol's value then. */
15433
15434 static bfd_boolean
15435 fix_bad_misaligned_branch_p (fixS *fixP)
15436 {
15437 bfd_boolean absolute_p;
15438 asection *symsec;
15439 valueT isa_bit;
15440 valueT val;
15441 valueT off;
15442 int other;
15443
15444 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15445 return FALSE;
15446
15447 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15448 absolute_p = bfd_is_abs_section (symsec);
15449
15450 val = S_GET_VALUE (fixP->fx_addsy);
15451 other = S_GET_OTHER (fixP->fx_addsy);
15452 off = fixP->fx_offset;
15453
15454 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15455 val |= ELF_ST_IS_COMPRESSED (other);
15456 val += off;
15457 return (val & 0x3) != isa_bit;
15458 }
15459
15460 /* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15461 and its calculated value VAL. */
15462
15463 static void
15464 fix_validate_branch (fixS *fixP, valueT val)
15465 {
15466 if (fixP->fx_done && (val & 0x3) != 0)
15467 as_bad_where (fixP->fx_file, fixP->fx_line,
15468 _("branch to misaligned address (0x%lx)"),
15469 (long) (val + md_pcrel_from (fixP)));
15470 else if (fix_bad_cross_mode_branch_p (fixP))
15471 as_bad_where (fixP->fx_file, fixP->fx_line,
15472 _("branch to a symbol in another ISA mode"));
15473 else if (fix_bad_misaligned_branch_p (fixP))
15474 as_bad_where (fixP->fx_file, fixP->fx_line,
15475 _("branch to misaligned address (0x%lx)"),
15476 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15477 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15478 as_bad_where (fixP->fx_file, fixP->fx_line,
15479 _("cannot encode misaligned addend "
15480 "in the relocatable field (0x%lx)"),
15481 (long) fixP->fx_offset);
15482 }
15483
15484 /* Apply a fixup to the object file. */
15485
15486 void
15487 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
15488 {
15489 char *buf;
15490 unsigned long insn;
15491 reloc_howto_type *howto;
15492
15493 if (fixP->fx_pcrel)
15494 switch (fixP->fx_r_type)
15495 {
15496 case BFD_RELOC_16_PCREL_S2:
15497 case BFD_RELOC_MIPS16_16_PCREL_S1:
15498 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15499 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15500 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15501 case BFD_RELOC_32_PCREL:
15502 case BFD_RELOC_MIPS_21_PCREL_S2:
15503 case BFD_RELOC_MIPS_26_PCREL_S2:
15504 case BFD_RELOC_MIPS_18_PCREL_S3:
15505 case BFD_RELOC_MIPS_19_PCREL_S2:
15506 case BFD_RELOC_HI16_S_PCREL:
15507 case BFD_RELOC_LO16_PCREL:
15508 break;
15509
15510 case BFD_RELOC_32:
15511 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15512 break;
15513
15514 default:
15515 as_bad_where (fixP->fx_file, fixP->fx_line,
15516 _("PC-relative reference to a different section"));
15517 break;
15518 }
15519
15520 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15521 that have no MIPS ELF equivalent. */
15522 if (fixP->fx_r_type != BFD_RELOC_8)
15523 {
15524 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15525 if (!howto)
15526 return;
15527 }
15528
15529 gas_assert (fixP->fx_size == 2
15530 || fixP->fx_size == 4
15531 || fixP->fx_r_type == BFD_RELOC_8
15532 || fixP->fx_r_type == BFD_RELOC_16
15533 || fixP->fx_r_type == BFD_RELOC_64
15534 || fixP->fx_r_type == BFD_RELOC_CTOR
15535 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
15536 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
15537 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15538 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
15539 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15540 || fixP->fx_r_type == BFD_RELOC_NONE);
15541
15542 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15543
15544 /* Don't treat parts of a composite relocation as done. There are two
15545 reasons for this:
15546
15547 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15548 should nevertheless be emitted if the first part is.
15549
15550 (2) In normal usage, composite relocations are never assembly-time
15551 constants. The easiest way of dealing with the pathological
15552 exceptions is to generate a relocation against STN_UNDEF and
15553 leave everything up to the linker. */
15554 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
15555 fixP->fx_done = 1;
15556
15557 switch (fixP->fx_r_type)
15558 {
15559 case BFD_RELOC_MIPS_TLS_GD:
15560 case BFD_RELOC_MIPS_TLS_LDM:
15561 case BFD_RELOC_MIPS_TLS_DTPREL32:
15562 case BFD_RELOC_MIPS_TLS_DTPREL64:
15563 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15564 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15565 case BFD_RELOC_MIPS_TLS_GOTTPREL:
15566 case BFD_RELOC_MIPS_TLS_TPREL32:
15567 case BFD_RELOC_MIPS_TLS_TPREL64:
15568 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15569 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
15570 case BFD_RELOC_MICROMIPS_TLS_GD:
15571 case BFD_RELOC_MICROMIPS_TLS_LDM:
15572 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15573 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15574 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15575 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15576 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
15577 case BFD_RELOC_MIPS16_TLS_GD:
15578 case BFD_RELOC_MIPS16_TLS_LDM:
15579 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15580 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15581 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15582 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15583 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
15584 if (fixP->fx_addsy)
15585 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15586 else
15587 as_bad_where (fixP->fx_file, fixP->fx_line,
15588 _("TLS relocation against a constant"));
15589 break;
15590
15591 case BFD_RELOC_MIPS_JMP:
15592 case BFD_RELOC_MIPS16_JMP:
15593 case BFD_RELOC_MICROMIPS_JMP:
15594 {
15595 int shift;
15596
15597 gas_assert (!fixP->fx_done);
15598
15599 /* Shift is 2, unusually, for microMIPS JALX. */
15600 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15601 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15602 shift = 1;
15603 else
15604 shift = 2;
15605
15606 if (fix_bad_cross_mode_jump_p (fixP))
15607 as_bad_where (fixP->fx_file, fixP->fx_line,
15608 _("jump to a symbol in another ISA mode"));
15609 else if (fix_bad_same_mode_jalx_p (fixP))
15610 as_bad_where (fixP->fx_file, fixP->fx_line,
15611 _("JALX to a symbol in the same ISA mode"));
15612 else if (fix_bad_misaligned_jump_p (fixP, shift))
15613 as_bad_where (fixP->fx_file, fixP->fx_line,
15614 _("jump to misaligned address (0x%lx)"),
15615 (long) (S_GET_VALUE (fixP->fx_addsy)
15616 + fixP->fx_offset));
15617 else if (HAVE_IN_PLACE_ADDENDS
15618 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15619 as_bad_where (fixP->fx_file, fixP->fx_line,
15620 _("cannot encode misaligned addend "
15621 "in the relocatable field (0x%lx)"),
15622 (long) fixP->fx_offset);
15623 }
15624 /* Fall through. */
15625
15626 case BFD_RELOC_MIPS_SHIFT5:
15627 case BFD_RELOC_MIPS_SHIFT6:
15628 case BFD_RELOC_MIPS_GOT_DISP:
15629 case BFD_RELOC_MIPS_GOT_PAGE:
15630 case BFD_RELOC_MIPS_GOT_OFST:
15631 case BFD_RELOC_MIPS_SUB:
15632 case BFD_RELOC_MIPS_INSERT_A:
15633 case BFD_RELOC_MIPS_INSERT_B:
15634 case BFD_RELOC_MIPS_DELETE:
15635 case BFD_RELOC_MIPS_HIGHEST:
15636 case BFD_RELOC_MIPS_HIGHER:
15637 case BFD_RELOC_MIPS_SCN_DISP:
15638 case BFD_RELOC_MIPS_REL16:
15639 case BFD_RELOC_MIPS_RELGOT:
15640 case BFD_RELOC_MIPS_JALR:
15641 case BFD_RELOC_HI16:
15642 case BFD_RELOC_HI16_S:
15643 case BFD_RELOC_LO16:
15644 case BFD_RELOC_GPREL16:
15645 case BFD_RELOC_MIPS_LITERAL:
15646 case BFD_RELOC_MIPS_CALL16:
15647 case BFD_RELOC_MIPS_GOT16:
15648 case BFD_RELOC_GPREL32:
15649 case BFD_RELOC_MIPS_GOT_HI16:
15650 case BFD_RELOC_MIPS_GOT_LO16:
15651 case BFD_RELOC_MIPS_CALL_HI16:
15652 case BFD_RELOC_MIPS_CALL_LO16:
15653 case BFD_RELOC_HI16_S_PCREL:
15654 case BFD_RELOC_LO16_PCREL:
15655 case BFD_RELOC_MIPS16_GPREL:
15656 case BFD_RELOC_MIPS16_GOT16:
15657 case BFD_RELOC_MIPS16_CALL16:
15658 case BFD_RELOC_MIPS16_HI16:
15659 case BFD_RELOC_MIPS16_HI16_S:
15660 case BFD_RELOC_MIPS16_LO16:
15661 case BFD_RELOC_MICROMIPS_GOT_DISP:
15662 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15663 case BFD_RELOC_MICROMIPS_GOT_OFST:
15664 case BFD_RELOC_MICROMIPS_SUB:
15665 case BFD_RELOC_MICROMIPS_HIGHEST:
15666 case BFD_RELOC_MICROMIPS_HIGHER:
15667 case BFD_RELOC_MICROMIPS_SCN_DISP:
15668 case BFD_RELOC_MICROMIPS_JALR:
15669 case BFD_RELOC_MICROMIPS_HI16:
15670 case BFD_RELOC_MICROMIPS_HI16_S:
15671 case BFD_RELOC_MICROMIPS_LO16:
15672 case BFD_RELOC_MICROMIPS_GPREL16:
15673 case BFD_RELOC_MICROMIPS_LITERAL:
15674 case BFD_RELOC_MICROMIPS_CALL16:
15675 case BFD_RELOC_MICROMIPS_GOT16:
15676 case BFD_RELOC_MICROMIPS_GOT_HI16:
15677 case BFD_RELOC_MICROMIPS_GOT_LO16:
15678 case BFD_RELOC_MICROMIPS_CALL_HI16:
15679 case BFD_RELOC_MICROMIPS_CALL_LO16:
15680 case BFD_RELOC_MIPS_EH:
15681 if (fixP->fx_done)
15682 {
15683 offsetT value;
15684
15685 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15686 {
15687 insn = read_reloc_insn (buf, fixP->fx_r_type);
15688 if (mips16_reloc_p (fixP->fx_r_type))
15689 insn |= mips16_immed_extend (value, 16);
15690 else
15691 insn |= (value & 0xffff);
15692 write_reloc_insn (buf, fixP->fx_r_type, insn);
15693 }
15694 else
15695 as_bad_where (fixP->fx_file, fixP->fx_line,
15696 _("unsupported constant in relocation"));
15697 }
15698 break;
15699
15700 case BFD_RELOC_64:
15701 /* This is handled like BFD_RELOC_32, but we output a sign
15702 extended value if we are only 32 bits. */
15703 if (fixP->fx_done)
15704 {
15705 if (8 <= sizeof (valueT))
15706 md_number_to_chars (buf, *valP, 8);
15707 else
15708 {
15709 valueT hiv;
15710
15711 if ((*valP & 0x80000000) != 0)
15712 hiv = 0xffffffff;
15713 else
15714 hiv = 0;
15715 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15716 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15717 }
15718 }
15719 break;
15720
15721 case BFD_RELOC_RVA:
15722 case BFD_RELOC_32:
15723 case BFD_RELOC_32_PCREL:
15724 case BFD_RELOC_16:
15725 case BFD_RELOC_8:
15726 /* If we are deleting this reloc entry, we must fill in the
15727 value now. This can happen if we have a .word which is not
15728 resolved when it appears but is later defined. */
15729 if (fixP->fx_done)
15730 md_number_to_chars (buf, *valP, fixP->fx_size);
15731 break;
15732
15733 case BFD_RELOC_MIPS_21_PCREL_S2:
15734 fix_validate_branch (fixP, *valP);
15735 if (!fixP->fx_done)
15736 break;
15737
15738 if (*valP + 0x400000 <= 0x7fffff)
15739 {
15740 insn = read_insn (buf);
15741 insn |= (*valP >> 2) & 0x1fffff;
15742 write_insn (buf, insn);
15743 }
15744 else
15745 as_bad_where (fixP->fx_file, fixP->fx_line,
15746 _("branch out of range"));
15747 break;
15748
15749 case BFD_RELOC_MIPS_26_PCREL_S2:
15750 fix_validate_branch (fixP, *valP);
15751 if (!fixP->fx_done)
15752 break;
15753
15754 if (*valP + 0x8000000 <= 0xfffffff)
15755 {
15756 insn = read_insn (buf);
15757 insn |= (*valP >> 2) & 0x3ffffff;
15758 write_insn (buf, insn);
15759 }
15760 else
15761 as_bad_where (fixP->fx_file, fixP->fx_line,
15762 _("branch out of range"));
15763 break;
15764
15765 case BFD_RELOC_MIPS_18_PCREL_S3:
15766 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15767 as_bad_where (fixP->fx_file, fixP->fx_line,
15768 _("PC-relative access using misaligned symbol (%lx)"),
15769 (long) S_GET_VALUE (fixP->fx_addsy));
15770 if ((fixP->fx_offset & 0x7) != 0)
15771 as_bad_where (fixP->fx_file, fixP->fx_line,
15772 _("PC-relative access using misaligned offset (%lx)"),
15773 (long) fixP->fx_offset);
15774 if (!fixP->fx_done)
15775 break;
15776
15777 if (*valP + 0x100000 <= 0x1fffff)
15778 {
15779 insn = read_insn (buf);
15780 insn |= (*valP >> 3) & 0x3ffff;
15781 write_insn (buf, insn);
15782 }
15783 else
15784 as_bad_where (fixP->fx_file, fixP->fx_line,
15785 _("PC-relative access out of range"));
15786 break;
15787
15788 case BFD_RELOC_MIPS_19_PCREL_S2:
15789 if ((*valP & 0x3) != 0)
15790 as_bad_where (fixP->fx_file, fixP->fx_line,
15791 _("PC-relative access to misaligned address (%lx)"),
15792 (long) *valP);
15793 if (!fixP->fx_done)
15794 break;
15795
15796 if (*valP + 0x100000 <= 0x1fffff)
15797 {
15798 insn = read_insn (buf);
15799 insn |= (*valP >> 2) & 0x7ffff;
15800 write_insn (buf, insn);
15801 }
15802 else
15803 as_bad_where (fixP->fx_file, fixP->fx_line,
15804 _("PC-relative access out of range"));
15805 break;
15806
15807 case BFD_RELOC_16_PCREL_S2:
15808 fix_validate_branch (fixP, *valP);
15809
15810 /* We need to save the bits in the instruction since fixup_segment()
15811 might be deleting the relocation entry (i.e., a branch within
15812 the current segment). */
15813 if (! fixP->fx_done)
15814 break;
15815
15816 /* Update old instruction data. */
15817 insn = read_insn (buf);
15818
15819 if (*valP + 0x20000 <= 0x3ffff)
15820 {
15821 insn |= (*valP >> 2) & 0xffff;
15822 write_insn (buf, insn);
15823 }
15824 else if (fixP->fx_tcbit2
15825 && fixP->fx_done
15826 && fixP->fx_frag->fr_address >= text_section->vma
15827 && (fixP->fx_frag->fr_address
15828 < text_section->vma + bfd_get_section_size (text_section))
15829 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15830 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15831 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15832 {
15833 /* The branch offset is too large. If this is an
15834 unconditional branch, and we are not generating PIC code,
15835 we can convert it to an absolute jump instruction. */
15836 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15837 insn = 0x0c000000; /* jal */
15838 else
15839 insn = 0x08000000; /* j */
15840 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15841 fixP->fx_done = 0;
15842 fixP->fx_addsy = section_symbol (text_section);
15843 *valP += md_pcrel_from (fixP);
15844 write_insn (buf, insn);
15845 }
15846 else
15847 {
15848 /* If we got here, we have branch-relaxation disabled,
15849 and there's nothing we can do to fix this instruction
15850 without turning it into a longer sequence. */
15851 as_bad_where (fixP->fx_file, fixP->fx_line,
15852 _("branch out of range"));
15853 }
15854 break;
15855
15856 case BFD_RELOC_MIPS16_16_PCREL_S1:
15857 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15858 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15859 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15860 gas_assert (!fixP->fx_done);
15861 if (fix_bad_cross_mode_branch_p (fixP))
15862 as_bad_where (fixP->fx_file, fixP->fx_line,
15863 _("branch to a symbol in another ISA mode"));
15864 else if (fixP->fx_addsy
15865 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
15866 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
15867 && (fixP->fx_offset & 0x1) != 0)
15868 as_bad_where (fixP->fx_file, fixP->fx_line,
15869 _("branch to misaligned address (0x%lx)"),
15870 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15871 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
15872 as_bad_where (fixP->fx_file, fixP->fx_line,
15873 _("cannot encode misaligned addend "
15874 "in the relocatable field (0x%lx)"),
15875 (long) fixP->fx_offset);
15876 break;
15877
15878 case BFD_RELOC_VTABLE_INHERIT:
15879 fixP->fx_done = 0;
15880 if (fixP->fx_addsy
15881 && !S_IS_DEFINED (fixP->fx_addsy)
15882 && !S_IS_WEAK (fixP->fx_addsy))
15883 S_SET_WEAK (fixP->fx_addsy);
15884 break;
15885
15886 case BFD_RELOC_NONE:
15887 case BFD_RELOC_VTABLE_ENTRY:
15888 fixP->fx_done = 0;
15889 break;
15890
15891 default:
15892 abort ();
15893 }
15894
15895 /* Remember value for tc_gen_reloc. */
15896 fixP->fx_addnumber = *valP;
15897 }
15898
15899 static symbolS *
15900 get_symbol (void)
15901 {
15902 int c;
15903 char *name;
15904 symbolS *p;
15905
15906 c = get_symbol_name (&name);
15907 p = (symbolS *) symbol_find_or_make (name);
15908 (void) restore_line_pointer (c);
15909 return p;
15910 }
15911
15912 /* Align the current frag to a given power of two. If a particular
15913 fill byte should be used, FILL points to an integer that contains
15914 that byte, otherwise FILL is null.
15915
15916 This function used to have the comment:
15917
15918 The MIPS assembler also automatically adjusts any preceding label.
15919
15920 The implementation therefore applied the adjustment to a maximum of
15921 one label. However, other label adjustments are applied to batches
15922 of labels, and adjusting just one caused problems when new labels
15923 were added for the sake of debugging or unwind information.
15924 We therefore adjust all preceding labels (given as LABELS) instead. */
15925
15926 static void
15927 mips_align (int to, int *fill, struct insn_label_list *labels)
15928 {
15929 mips_emit_delays ();
15930 mips_record_compressed_mode ();
15931 if (fill == NULL && subseg_text_p (now_seg))
15932 frag_align_code (to, 0);
15933 else
15934 frag_align (to, fill ? *fill : 0, 0);
15935 record_alignment (now_seg, to);
15936 mips_move_labels (labels, FALSE);
15937 }
15938
15939 /* Align to a given power of two. .align 0 turns off the automatic
15940 alignment used by the data creating pseudo-ops. */
15941
15942 static void
15943 s_align (int x ATTRIBUTE_UNUSED)
15944 {
15945 int temp, fill_value, *fill_ptr;
15946 long max_alignment = 28;
15947
15948 /* o Note that the assembler pulls down any immediately preceding label
15949 to the aligned address.
15950 o It's not documented but auto alignment is reinstated by
15951 a .align pseudo instruction.
15952 o Note also that after auto alignment is turned off the mips assembler
15953 issues an error on attempt to assemble an improperly aligned data item.
15954 We don't. */
15955
15956 temp = get_absolute_expression ();
15957 if (temp > max_alignment)
15958 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15959 else if (temp < 0)
15960 {
15961 as_warn (_("alignment negative, 0 assumed"));
15962 temp = 0;
15963 }
15964 if (*input_line_pointer == ',')
15965 {
15966 ++input_line_pointer;
15967 fill_value = get_absolute_expression ();
15968 fill_ptr = &fill_value;
15969 }
15970 else
15971 fill_ptr = 0;
15972 if (temp)
15973 {
15974 segment_info_type *si = seg_info (now_seg);
15975 struct insn_label_list *l = si->label_list;
15976 /* Auto alignment should be switched on by next section change. */
15977 auto_align = 1;
15978 mips_align (temp, fill_ptr, l);
15979 }
15980 else
15981 {
15982 auto_align = 0;
15983 }
15984
15985 demand_empty_rest_of_line ();
15986 }
15987
15988 static void
15989 s_change_sec (int sec)
15990 {
15991 segT seg;
15992
15993 /* The ELF backend needs to know that we are changing sections, so
15994 that .previous works correctly. We could do something like check
15995 for an obj_section_change_hook macro, but that might be confusing
15996 as it would not be appropriate to use it in the section changing
15997 functions in read.c, since obj-elf.c intercepts those. FIXME:
15998 This should be cleaner, somehow. */
15999 obj_elf_section_change_hook ();
16000
16001 mips_emit_delays ();
16002
16003 switch (sec)
16004 {
16005 case 't':
16006 s_text (0);
16007 break;
16008 case 'd':
16009 s_data (0);
16010 break;
16011 case 'b':
16012 subseg_set (bss_section, (subsegT) get_absolute_expression ());
16013 demand_empty_rest_of_line ();
16014 break;
16015
16016 case 'r':
16017 seg = subseg_new (RDATA_SECTION_NAME,
16018 (subsegT) get_absolute_expression ());
16019 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
16020 | SEC_READONLY | SEC_RELOC
16021 | SEC_DATA));
16022 if (strncmp (TARGET_OS, "elf", 3) != 0)
16023 record_alignment (seg, 4);
16024 demand_empty_rest_of_line ();
16025 break;
16026
16027 case 's':
16028 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
16029 bfd_set_section_flags (stdoutput, seg,
16030 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
16031 if (strncmp (TARGET_OS, "elf", 3) != 0)
16032 record_alignment (seg, 4);
16033 demand_empty_rest_of_line ();
16034 break;
16035
16036 case 'B':
16037 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
16038 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
16039 if (strncmp (TARGET_OS, "elf", 3) != 0)
16040 record_alignment (seg, 4);
16041 demand_empty_rest_of_line ();
16042 break;
16043 }
16044
16045 auto_align = 1;
16046 }
16047
16048 void
16049 s_change_section (int ignore ATTRIBUTE_UNUSED)
16050 {
16051 char *saved_ilp;
16052 char *section_name;
16053 char c, endc;
16054 char next_c = 0;
16055 int section_type;
16056 int section_flag;
16057 int section_entry_size;
16058 int section_alignment;
16059
16060 saved_ilp = input_line_pointer;
16061 endc = get_symbol_name (&section_name);
16062 c = (endc == '"' ? input_line_pointer[1] : endc);
16063 if (c)
16064 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
16065
16066 /* Do we have .section Name<,"flags">? */
16067 if (c != ',' || (c == ',' && next_c == '"'))
16068 {
16069 /* Just after name is now '\0'. */
16070 (void) restore_line_pointer (endc);
16071 input_line_pointer = saved_ilp;
16072 obj_elf_section (ignore);
16073 return;
16074 }
16075
16076 section_name = xstrdup (section_name);
16077 c = restore_line_pointer (endc);
16078
16079 input_line_pointer++;
16080
16081 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
16082 if (c == ',')
16083 section_type = get_absolute_expression ();
16084 else
16085 section_type = 0;
16086
16087 if (*input_line_pointer++ == ',')
16088 section_flag = get_absolute_expression ();
16089 else
16090 section_flag = 0;
16091
16092 if (*input_line_pointer++ == ',')
16093 section_entry_size = get_absolute_expression ();
16094 else
16095 section_entry_size = 0;
16096
16097 if (*input_line_pointer++ == ',')
16098 section_alignment = get_absolute_expression ();
16099 else
16100 section_alignment = 0;
16101
16102 /* FIXME: really ignore? */
16103 (void) section_alignment;
16104
16105 /* When using the generic form of .section (as implemented by obj-elf.c),
16106 there's no way to set the section type to SHT_MIPS_DWARF. Users have
16107 traditionally had to fall back on the more common @progbits instead.
16108
16109 There's nothing really harmful in this, since bfd will correct
16110 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
16111 means that, for backwards compatibility, the special_section entries
16112 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
16113
16114 Even so, we shouldn't force users of the MIPS .section syntax to
16115 incorrectly label the sections as SHT_PROGBITS. The best compromise
16116 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
16117 generic type-checking code. */
16118 if (section_type == SHT_MIPS_DWARF)
16119 section_type = SHT_PROGBITS;
16120
16121 obj_elf_change_section (section_name, section_type, 0, section_flag,
16122 section_entry_size, 0, 0, 0);
16123
16124 if (now_seg->name != section_name)
16125 free (section_name);
16126 }
16127
16128 void
16129 mips_enable_auto_align (void)
16130 {
16131 auto_align = 1;
16132 }
16133
16134 static void
16135 s_cons (int log_size)
16136 {
16137 segment_info_type *si = seg_info (now_seg);
16138 struct insn_label_list *l = si->label_list;
16139
16140 mips_emit_delays ();
16141 if (log_size > 0 && auto_align)
16142 mips_align (log_size, 0, l);
16143 cons (1 << log_size);
16144 mips_clear_insn_labels ();
16145 }
16146
16147 static void
16148 s_float_cons (int type)
16149 {
16150 segment_info_type *si = seg_info (now_seg);
16151 struct insn_label_list *l = si->label_list;
16152
16153 mips_emit_delays ();
16154
16155 if (auto_align)
16156 {
16157 if (type == 'd')
16158 mips_align (3, 0, l);
16159 else
16160 mips_align (2, 0, l);
16161 }
16162
16163 float_cons (type);
16164 mips_clear_insn_labels ();
16165 }
16166
16167 /* Handle .globl. We need to override it because on Irix 5 you are
16168 permitted to say
16169 .globl foo .text
16170 where foo is an undefined symbol, to mean that foo should be
16171 considered to be the address of a function. */
16172
16173 static void
16174 s_mips_globl (int x ATTRIBUTE_UNUSED)
16175 {
16176 char *name;
16177 int c;
16178 symbolS *symbolP;
16179 flagword flag;
16180
16181 do
16182 {
16183 c = get_symbol_name (&name);
16184 symbolP = symbol_find_or_make (name);
16185 S_SET_EXTERNAL (symbolP);
16186
16187 *input_line_pointer = c;
16188 SKIP_WHITESPACE_AFTER_NAME ();
16189
16190 /* On Irix 5, every global symbol that is not explicitly labelled as
16191 being a function is apparently labelled as being an object. */
16192 flag = BSF_OBJECT;
16193
16194 if (!is_end_of_line[(unsigned char) *input_line_pointer]
16195 && (*input_line_pointer != ','))
16196 {
16197 char *secname;
16198 asection *sec;
16199
16200 c = get_symbol_name (&secname);
16201 sec = bfd_get_section_by_name (stdoutput, secname);
16202 if (sec == NULL)
16203 as_bad (_("%s: no such section"), secname);
16204 (void) restore_line_pointer (c);
16205
16206 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
16207 flag = BSF_FUNCTION;
16208 }
16209
16210 symbol_get_bfdsym (symbolP)->flags |= flag;
16211
16212 c = *input_line_pointer;
16213 if (c == ',')
16214 {
16215 input_line_pointer++;
16216 SKIP_WHITESPACE ();
16217 if (is_end_of_line[(unsigned char) *input_line_pointer])
16218 c = '\n';
16219 }
16220 }
16221 while (c == ',');
16222
16223 demand_empty_rest_of_line ();
16224 }
16225
16226 static void
16227 s_option (int x ATTRIBUTE_UNUSED)
16228 {
16229 char *opt;
16230 char c;
16231
16232 c = get_symbol_name (&opt);
16233
16234 if (*opt == 'O')
16235 {
16236 /* FIXME: What does this mean? */
16237 }
16238 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
16239 {
16240 int i;
16241
16242 i = atoi (opt + 3);
16243 if (i != 0 && i != 2)
16244 as_bad (_(".option pic%d not supported"), i);
16245 else if (mips_pic == VXWORKS_PIC)
16246 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
16247 else if (i == 0)
16248 mips_pic = NO_PIC;
16249 else if (i == 2)
16250 {
16251 mips_pic = SVR4_PIC;
16252 mips_abicalls = TRUE;
16253 }
16254
16255 if (mips_pic == SVR4_PIC)
16256 {
16257 if (g_switch_seen && g_switch_value != 0)
16258 as_warn (_("-G may not be used with SVR4 PIC code"));
16259 g_switch_value = 0;
16260 bfd_set_gp_size (stdoutput, 0);
16261 }
16262 }
16263 else
16264 as_warn (_("unrecognized option \"%s\""), opt);
16265
16266 (void) restore_line_pointer (c);
16267 demand_empty_rest_of_line ();
16268 }
16269
16270 /* This structure is used to hold a stack of .set values. */
16271
16272 struct mips_option_stack
16273 {
16274 struct mips_option_stack *next;
16275 struct mips_set_options options;
16276 };
16277
16278 static struct mips_option_stack *mips_opts_stack;
16279
16280 /* Return status for .set/.module option handling. */
16281
16282 enum code_option_type
16283 {
16284 /* Unrecognized option. */
16285 OPTION_TYPE_BAD = -1,
16286
16287 /* Ordinary option. */
16288 OPTION_TYPE_NORMAL,
16289
16290 /* ISA changing option. */
16291 OPTION_TYPE_ISA
16292 };
16293
16294 /* Handle common .set/.module options. Return status indicating option
16295 type. */
16296
16297 static enum code_option_type
16298 parse_code_option (char * name)
16299 {
16300 bfd_boolean isa_set = FALSE;
16301 const struct mips_ase *ase;
16302
16303 if (strncmp (name, "at=", 3) == 0)
16304 {
16305 char *s = name + 3;
16306
16307 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
16308 as_bad (_("unrecognized register name `%s'"), s);
16309 }
16310 else if (strcmp (name, "at") == 0)
16311 mips_opts.at = ATREG;
16312 else if (strcmp (name, "noat") == 0)
16313 mips_opts.at = ZERO;
16314 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
16315 mips_opts.nomove = 0;
16316 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
16317 mips_opts.nomove = 1;
16318 else if (strcmp (name, "bopt") == 0)
16319 mips_opts.nobopt = 0;
16320 else if (strcmp (name, "nobopt") == 0)
16321 mips_opts.nobopt = 1;
16322 else if (strcmp (name, "gp=32") == 0)
16323 mips_opts.gp = 32;
16324 else if (strcmp (name, "gp=64") == 0)
16325 mips_opts.gp = 64;
16326 else if (strcmp (name, "fp=32") == 0)
16327 mips_opts.fp = 32;
16328 else if (strcmp (name, "fp=xx") == 0)
16329 mips_opts.fp = 0;
16330 else if (strcmp (name, "fp=64") == 0)
16331 mips_opts.fp = 64;
16332 else if (strcmp (name, "softfloat") == 0)
16333 mips_opts.soft_float = 1;
16334 else if (strcmp (name, "hardfloat") == 0)
16335 mips_opts.soft_float = 0;
16336 else if (strcmp (name, "singlefloat") == 0)
16337 mips_opts.single_float = 1;
16338 else if (strcmp (name, "doublefloat") == 0)
16339 mips_opts.single_float = 0;
16340 else if (strcmp (name, "nooddspreg") == 0)
16341 mips_opts.oddspreg = 0;
16342 else if (strcmp (name, "oddspreg") == 0)
16343 mips_opts.oddspreg = 1;
16344 else if (strcmp (name, "mips16") == 0
16345 || strcmp (name, "MIPS-16") == 0)
16346 mips_opts.mips16 = 1;
16347 else if (strcmp (name, "nomips16") == 0
16348 || strcmp (name, "noMIPS-16") == 0)
16349 mips_opts.mips16 = 0;
16350 else if (strcmp (name, "micromips") == 0)
16351 mips_opts.micromips = 1;
16352 else if (strcmp (name, "nomicromips") == 0)
16353 mips_opts.micromips = 0;
16354 else if (name[0] == 'n'
16355 && name[1] == 'o'
16356 && (ase = mips_lookup_ase (name + 2)))
16357 mips_set_ase (ase, &mips_opts, FALSE);
16358 else if ((ase = mips_lookup_ase (name)))
16359 mips_set_ase (ase, &mips_opts, TRUE);
16360 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
16361 {
16362 /* Permit the user to change the ISA and architecture on the fly.
16363 Needless to say, misuse can cause serious problems. */
16364 if (strncmp (name, "arch=", 5) == 0)
16365 {
16366 const struct mips_cpu_info *p;
16367
16368 p = mips_parse_cpu ("internal use", name + 5);
16369 if (!p)
16370 as_bad (_("unknown architecture %s"), name + 5);
16371 else
16372 {
16373 mips_opts.arch = p->cpu;
16374 mips_opts.isa = p->isa;
16375 isa_set = TRUE;
16376 }
16377 }
16378 else if (strncmp (name, "mips", 4) == 0)
16379 {
16380 const struct mips_cpu_info *p;
16381
16382 p = mips_parse_cpu ("internal use", name);
16383 if (!p)
16384 as_bad (_("unknown ISA level %s"), name + 4);
16385 else
16386 {
16387 mips_opts.arch = p->cpu;
16388 mips_opts.isa = p->isa;
16389 isa_set = TRUE;
16390 }
16391 }
16392 else
16393 as_bad (_("unknown ISA or architecture %s"), name);
16394 }
16395 else if (strcmp (name, "autoextend") == 0)
16396 mips_opts.noautoextend = 0;
16397 else if (strcmp (name, "noautoextend") == 0)
16398 mips_opts.noautoextend = 1;
16399 else if (strcmp (name, "insn32") == 0)
16400 mips_opts.insn32 = TRUE;
16401 else if (strcmp (name, "noinsn32") == 0)
16402 mips_opts.insn32 = FALSE;
16403 else if (strcmp (name, "sym32") == 0)
16404 mips_opts.sym32 = TRUE;
16405 else if (strcmp (name, "nosym32") == 0)
16406 mips_opts.sym32 = FALSE;
16407 else
16408 return OPTION_TYPE_BAD;
16409
16410 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
16411 }
16412
16413 /* Handle the .set pseudo-op. */
16414
16415 static void
16416 s_mipsset (int x ATTRIBUTE_UNUSED)
16417 {
16418 enum code_option_type type = OPTION_TYPE_NORMAL;
16419 char *name = input_line_pointer, ch;
16420
16421 file_mips_check_options ();
16422
16423 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16424 ++input_line_pointer;
16425 ch = *input_line_pointer;
16426 *input_line_pointer = '\0';
16427
16428 if (strchr (name, ','))
16429 {
16430 /* Generic ".set" directive; use the generic handler. */
16431 *input_line_pointer = ch;
16432 input_line_pointer = name;
16433 s_set (0);
16434 return;
16435 }
16436
16437 if (strcmp (name, "reorder") == 0)
16438 {
16439 if (mips_opts.noreorder)
16440 end_noreorder ();
16441 }
16442 else if (strcmp (name, "noreorder") == 0)
16443 {
16444 if (!mips_opts.noreorder)
16445 start_noreorder ();
16446 }
16447 else if (strcmp (name, "macro") == 0)
16448 mips_opts.warn_about_macros = 0;
16449 else if (strcmp (name, "nomacro") == 0)
16450 {
16451 if (mips_opts.noreorder == 0)
16452 as_bad (_("`noreorder' must be set before `nomacro'"));
16453 mips_opts.warn_about_macros = 1;
16454 }
16455 else if (strcmp (name, "gp=default") == 0)
16456 mips_opts.gp = file_mips_opts.gp;
16457 else if (strcmp (name, "fp=default") == 0)
16458 mips_opts.fp = file_mips_opts.fp;
16459 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16460 {
16461 mips_opts.isa = file_mips_opts.isa;
16462 mips_opts.arch = file_mips_opts.arch;
16463 mips_opts.gp = file_mips_opts.gp;
16464 mips_opts.fp = file_mips_opts.fp;
16465 }
16466 else if (strcmp (name, "push") == 0)
16467 {
16468 struct mips_option_stack *s;
16469
16470 s = XNEW (struct mips_option_stack);
16471 s->next = mips_opts_stack;
16472 s->options = mips_opts;
16473 mips_opts_stack = s;
16474 }
16475 else if (strcmp (name, "pop") == 0)
16476 {
16477 struct mips_option_stack *s;
16478
16479 s = mips_opts_stack;
16480 if (s == NULL)
16481 as_bad (_(".set pop with no .set push"));
16482 else
16483 {
16484 /* If we're changing the reorder mode we need to handle
16485 delay slots correctly. */
16486 if (s->options.noreorder && ! mips_opts.noreorder)
16487 start_noreorder ();
16488 else if (! s->options.noreorder && mips_opts.noreorder)
16489 end_noreorder ();
16490
16491 mips_opts = s->options;
16492 mips_opts_stack = s->next;
16493 free (s);
16494 }
16495 }
16496 else
16497 {
16498 type = parse_code_option (name);
16499 if (type == OPTION_TYPE_BAD)
16500 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16501 }
16502
16503 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16504 registers based on what is supported by the arch/cpu. */
16505 if (type == OPTION_TYPE_ISA)
16506 {
16507 switch (mips_opts.isa)
16508 {
16509 case 0:
16510 break;
16511 case ISA_MIPS1:
16512 /* MIPS I cannot support FPXX. */
16513 mips_opts.fp = 32;
16514 /* fall-through. */
16515 case ISA_MIPS2:
16516 case ISA_MIPS32:
16517 case ISA_MIPS32R2:
16518 case ISA_MIPS32R3:
16519 case ISA_MIPS32R5:
16520 mips_opts.gp = 32;
16521 if (mips_opts.fp != 0)
16522 mips_opts.fp = 32;
16523 break;
16524 case ISA_MIPS32R6:
16525 mips_opts.gp = 32;
16526 mips_opts.fp = 64;
16527 break;
16528 case ISA_MIPS3:
16529 case ISA_MIPS4:
16530 case ISA_MIPS5:
16531 case ISA_MIPS64:
16532 case ISA_MIPS64R2:
16533 case ISA_MIPS64R3:
16534 case ISA_MIPS64R5:
16535 case ISA_MIPS64R6:
16536 mips_opts.gp = 64;
16537 if (mips_opts.fp != 0)
16538 {
16539 if (mips_opts.arch == CPU_R5900)
16540 mips_opts.fp = 32;
16541 else
16542 mips_opts.fp = 64;
16543 }
16544 break;
16545 default:
16546 as_bad (_("unknown ISA level %s"), name + 4);
16547 break;
16548 }
16549 }
16550
16551 mips_check_options (&mips_opts, FALSE);
16552
16553 mips_check_isa_supports_ases ();
16554 *input_line_pointer = ch;
16555 demand_empty_rest_of_line ();
16556 }
16557
16558 /* Handle the .module pseudo-op. */
16559
16560 static void
16561 s_module (int ignore ATTRIBUTE_UNUSED)
16562 {
16563 char *name = input_line_pointer, ch;
16564
16565 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16566 ++input_line_pointer;
16567 ch = *input_line_pointer;
16568 *input_line_pointer = '\0';
16569
16570 if (!file_mips_opts_checked)
16571 {
16572 if (parse_code_option (name) == OPTION_TYPE_BAD)
16573 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16574
16575 /* Update module level settings from mips_opts. */
16576 file_mips_opts = mips_opts;
16577 }
16578 else
16579 as_bad (_(".module is not permitted after generating code"));
16580
16581 *input_line_pointer = ch;
16582 demand_empty_rest_of_line ();
16583 }
16584
16585 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
16586 .option pic2. It means to generate SVR4 PIC calls. */
16587
16588 static void
16589 s_abicalls (int ignore ATTRIBUTE_UNUSED)
16590 {
16591 mips_pic = SVR4_PIC;
16592 mips_abicalls = TRUE;
16593
16594 if (g_switch_seen && g_switch_value != 0)
16595 as_warn (_("-G may not be used with SVR4 PIC code"));
16596 g_switch_value = 0;
16597
16598 bfd_set_gp_size (stdoutput, 0);
16599 demand_empty_rest_of_line ();
16600 }
16601
16602 /* Handle the .cpload pseudo-op. This is used when generating SVR4
16603 PIC code. It sets the $gp register for the function based on the
16604 function address, which is in the register named in the argument.
16605 This uses a relocation against _gp_disp, which is handled specially
16606 by the linker. The result is:
16607 lui $gp,%hi(_gp_disp)
16608 addiu $gp,$gp,%lo(_gp_disp)
16609 addu $gp,$gp,.cpload argument
16610 The .cpload argument is normally $25 == $t9.
16611
16612 The -mno-shared option changes this to:
16613 lui $gp,%hi(__gnu_local_gp)
16614 addiu $gp,$gp,%lo(__gnu_local_gp)
16615 and the argument is ignored. This saves an instruction, but the
16616 resulting code is not position independent; it uses an absolute
16617 address for __gnu_local_gp. Thus code assembled with -mno-shared
16618 can go into an ordinary executable, but not into a shared library. */
16619
16620 static void
16621 s_cpload (int ignore ATTRIBUTE_UNUSED)
16622 {
16623 expressionS ex;
16624 int reg;
16625 int in_shared;
16626
16627 file_mips_check_options ();
16628
16629 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16630 .cpload is ignored. */
16631 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16632 {
16633 s_ignore (0);
16634 return;
16635 }
16636
16637 if (mips_opts.mips16)
16638 {
16639 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16640 ignore_rest_of_line ();
16641 return;
16642 }
16643
16644 /* .cpload should be in a .set noreorder section. */
16645 if (mips_opts.noreorder == 0)
16646 as_warn (_(".cpload not in noreorder section"));
16647
16648 reg = tc_get_register (0);
16649
16650 /* If we need to produce a 64-bit address, we are better off using
16651 the default instruction sequence. */
16652 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
16653
16654 ex.X_op = O_symbol;
16655 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16656 "__gnu_local_gp");
16657 ex.X_op_symbol = NULL;
16658 ex.X_add_number = 0;
16659
16660 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16661 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16662
16663 mips_mark_labels ();
16664 mips_assembling_insn = TRUE;
16665
16666 macro_start ();
16667 macro_build_lui (&ex, mips_gp_register);
16668 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16669 mips_gp_register, BFD_RELOC_LO16);
16670 if (in_shared)
16671 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16672 mips_gp_register, reg);
16673 macro_end ();
16674
16675 mips_assembling_insn = FALSE;
16676 demand_empty_rest_of_line ();
16677 }
16678
16679 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16680 .cpsetup $reg1, offset|$reg2, label
16681
16682 If offset is given, this results in:
16683 sd $gp, offset($sp)
16684 lui $gp, %hi(%neg(%gp_rel(label)))
16685 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16686 daddu $gp, $gp, $reg1
16687
16688 If $reg2 is given, this results in:
16689 or $reg2, $gp, $0
16690 lui $gp, %hi(%neg(%gp_rel(label)))
16691 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16692 daddu $gp, $gp, $reg1
16693 $reg1 is normally $25 == $t9.
16694
16695 The -mno-shared option replaces the last three instructions with
16696 lui $gp,%hi(_gp)
16697 addiu $gp,$gp,%lo(_gp) */
16698
16699 static void
16700 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16701 {
16702 expressionS ex_off;
16703 expressionS ex_sym;
16704 int reg1;
16705
16706 file_mips_check_options ();
16707
16708 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16709 We also need NewABI support. */
16710 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16711 {
16712 s_ignore (0);
16713 return;
16714 }
16715
16716 if (mips_opts.mips16)
16717 {
16718 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16719 ignore_rest_of_line ();
16720 return;
16721 }
16722
16723 reg1 = tc_get_register (0);
16724 SKIP_WHITESPACE ();
16725 if (*input_line_pointer != ',')
16726 {
16727 as_bad (_("missing argument separator ',' for .cpsetup"));
16728 return;
16729 }
16730 else
16731 ++input_line_pointer;
16732 SKIP_WHITESPACE ();
16733 if (*input_line_pointer == '$')
16734 {
16735 mips_cpreturn_register = tc_get_register (0);
16736 mips_cpreturn_offset = -1;
16737 }
16738 else
16739 {
16740 mips_cpreturn_offset = get_absolute_expression ();
16741 mips_cpreturn_register = -1;
16742 }
16743 SKIP_WHITESPACE ();
16744 if (*input_line_pointer != ',')
16745 {
16746 as_bad (_("missing argument separator ',' for .cpsetup"));
16747 return;
16748 }
16749 else
16750 ++input_line_pointer;
16751 SKIP_WHITESPACE ();
16752 expression (&ex_sym);
16753
16754 mips_mark_labels ();
16755 mips_assembling_insn = TRUE;
16756
16757 macro_start ();
16758 if (mips_cpreturn_register == -1)
16759 {
16760 ex_off.X_op = O_constant;
16761 ex_off.X_add_symbol = NULL;
16762 ex_off.X_op_symbol = NULL;
16763 ex_off.X_add_number = mips_cpreturn_offset;
16764
16765 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16766 BFD_RELOC_LO16, SP);
16767 }
16768 else
16769 move_register (mips_cpreturn_register, mips_gp_register);
16770
16771 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16772 {
16773 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16774 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16775 BFD_RELOC_HI16_S);
16776
16777 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16778 mips_gp_register, -1, BFD_RELOC_GPREL16,
16779 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16780
16781 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16782 mips_gp_register, reg1);
16783 }
16784 else
16785 {
16786 expressionS ex;
16787
16788 ex.X_op = O_symbol;
16789 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16790 ex.X_op_symbol = NULL;
16791 ex.X_add_number = 0;
16792
16793 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16794 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16795
16796 macro_build_lui (&ex, mips_gp_register);
16797 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16798 mips_gp_register, BFD_RELOC_LO16);
16799 }
16800
16801 macro_end ();
16802
16803 mips_assembling_insn = FALSE;
16804 demand_empty_rest_of_line ();
16805 }
16806
16807 static void
16808 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16809 {
16810 file_mips_check_options ();
16811
16812 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16813 .cplocal is ignored. */
16814 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16815 {
16816 s_ignore (0);
16817 return;
16818 }
16819
16820 if (mips_opts.mips16)
16821 {
16822 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16823 ignore_rest_of_line ();
16824 return;
16825 }
16826
16827 mips_gp_register = tc_get_register (0);
16828 demand_empty_rest_of_line ();
16829 }
16830
16831 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16832 offset from $sp. The offset is remembered, and after making a PIC
16833 call $gp is restored from that location. */
16834
16835 static void
16836 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16837 {
16838 expressionS ex;
16839
16840 file_mips_check_options ();
16841
16842 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16843 .cprestore is ignored. */
16844 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16845 {
16846 s_ignore (0);
16847 return;
16848 }
16849
16850 if (mips_opts.mips16)
16851 {
16852 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16853 ignore_rest_of_line ();
16854 return;
16855 }
16856
16857 mips_cprestore_offset = get_absolute_expression ();
16858 mips_cprestore_valid = 1;
16859
16860 ex.X_op = O_constant;
16861 ex.X_add_symbol = NULL;
16862 ex.X_op_symbol = NULL;
16863 ex.X_add_number = mips_cprestore_offset;
16864
16865 mips_mark_labels ();
16866 mips_assembling_insn = TRUE;
16867
16868 macro_start ();
16869 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16870 SP, HAVE_64BIT_ADDRESSES);
16871 macro_end ();
16872
16873 mips_assembling_insn = FALSE;
16874 demand_empty_rest_of_line ();
16875 }
16876
16877 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16878 was given in the preceding .cpsetup, it results in:
16879 ld $gp, offset($sp)
16880
16881 If a register $reg2 was given there, it results in:
16882 or $gp, $reg2, $0 */
16883
16884 static void
16885 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16886 {
16887 expressionS ex;
16888
16889 file_mips_check_options ();
16890
16891 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16892 We also need NewABI support. */
16893 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16894 {
16895 s_ignore (0);
16896 return;
16897 }
16898
16899 if (mips_opts.mips16)
16900 {
16901 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16902 ignore_rest_of_line ();
16903 return;
16904 }
16905
16906 mips_mark_labels ();
16907 mips_assembling_insn = TRUE;
16908
16909 macro_start ();
16910 if (mips_cpreturn_register == -1)
16911 {
16912 ex.X_op = O_constant;
16913 ex.X_add_symbol = NULL;
16914 ex.X_op_symbol = NULL;
16915 ex.X_add_number = mips_cpreturn_offset;
16916
16917 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16918 }
16919 else
16920 move_register (mips_gp_register, mips_cpreturn_register);
16921
16922 macro_end ();
16923
16924 mips_assembling_insn = FALSE;
16925 demand_empty_rest_of_line ();
16926 }
16927
16928 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16929 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16930 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16931 debug information or MIPS16 TLS. */
16932
16933 static void
16934 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16935 bfd_reloc_code_real_type rtype)
16936 {
16937 expressionS ex;
16938 char *p;
16939
16940 expression (&ex);
16941
16942 if (ex.X_op != O_symbol)
16943 {
16944 as_bad (_("unsupported use of %s"), dirstr);
16945 ignore_rest_of_line ();
16946 }
16947
16948 p = frag_more (bytes);
16949 md_number_to_chars (p, 0, bytes);
16950 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16951 demand_empty_rest_of_line ();
16952 mips_clear_insn_labels ();
16953 }
16954
16955 /* Handle .dtprelword. */
16956
16957 static void
16958 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16959 {
16960 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16961 }
16962
16963 /* Handle .dtpreldword. */
16964
16965 static void
16966 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16967 {
16968 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16969 }
16970
16971 /* Handle .tprelword. */
16972
16973 static void
16974 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16975 {
16976 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16977 }
16978
16979 /* Handle .tpreldword. */
16980
16981 static void
16982 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16983 {
16984 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16985 }
16986
16987 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16988 code. It sets the offset to use in gp_rel relocations. */
16989
16990 static void
16991 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16992 {
16993 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16994 We also need NewABI support. */
16995 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16996 {
16997 s_ignore (0);
16998 return;
16999 }
17000
17001 mips_gprel_offset = get_absolute_expression ();
17002
17003 demand_empty_rest_of_line ();
17004 }
17005
17006 /* Handle the .gpword pseudo-op. This is used when generating PIC
17007 code. It generates a 32 bit GP relative reloc. */
17008
17009 static void
17010 s_gpword (int ignore ATTRIBUTE_UNUSED)
17011 {
17012 segment_info_type *si;
17013 struct insn_label_list *l;
17014 expressionS ex;
17015 char *p;
17016
17017 /* When not generating PIC code, this is treated as .word. */
17018 if (mips_pic != SVR4_PIC)
17019 {
17020 s_cons (2);
17021 return;
17022 }
17023
17024 si = seg_info (now_seg);
17025 l = si->label_list;
17026 mips_emit_delays ();
17027 if (auto_align)
17028 mips_align (2, 0, l);
17029
17030 expression (&ex);
17031 mips_clear_insn_labels ();
17032
17033 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17034 {
17035 as_bad (_("unsupported use of .gpword"));
17036 ignore_rest_of_line ();
17037 }
17038
17039 p = frag_more (4);
17040 md_number_to_chars (p, 0, 4);
17041 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17042 BFD_RELOC_GPREL32);
17043
17044 demand_empty_rest_of_line ();
17045 }
17046
17047 static void
17048 s_gpdword (int ignore ATTRIBUTE_UNUSED)
17049 {
17050 segment_info_type *si;
17051 struct insn_label_list *l;
17052 expressionS ex;
17053 char *p;
17054
17055 /* When not generating PIC code, this is treated as .dword. */
17056 if (mips_pic != SVR4_PIC)
17057 {
17058 s_cons (3);
17059 return;
17060 }
17061
17062 si = seg_info (now_seg);
17063 l = si->label_list;
17064 mips_emit_delays ();
17065 if (auto_align)
17066 mips_align (3, 0, l);
17067
17068 expression (&ex);
17069 mips_clear_insn_labels ();
17070
17071 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17072 {
17073 as_bad (_("unsupported use of .gpdword"));
17074 ignore_rest_of_line ();
17075 }
17076
17077 p = frag_more (8);
17078 md_number_to_chars (p, 0, 8);
17079 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17080 BFD_RELOC_GPREL32)->fx_tcbit = 1;
17081
17082 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
17083 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
17084 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
17085
17086 demand_empty_rest_of_line ();
17087 }
17088
17089 /* Handle the .ehword pseudo-op. This is used when generating unwinding
17090 tables. It generates a R_MIPS_EH reloc. */
17091
17092 static void
17093 s_ehword (int ignore ATTRIBUTE_UNUSED)
17094 {
17095 expressionS ex;
17096 char *p;
17097
17098 mips_emit_delays ();
17099
17100 expression (&ex);
17101 mips_clear_insn_labels ();
17102
17103 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17104 {
17105 as_bad (_("unsupported use of .ehword"));
17106 ignore_rest_of_line ();
17107 }
17108
17109 p = frag_more (4);
17110 md_number_to_chars (p, 0, 4);
17111 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17112 BFD_RELOC_32_PCREL);
17113
17114 demand_empty_rest_of_line ();
17115 }
17116
17117 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
17118 tables in SVR4 PIC code. */
17119
17120 static void
17121 s_cpadd (int ignore ATTRIBUTE_UNUSED)
17122 {
17123 int reg;
17124
17125 file_mips_check_options ();
17126
17127 /* This is ignored when not generating SVR4 PIC code. */
17128 if (mips_pic != SVR4_PIC)
17129 {
17130 s_ignore (0);
17131 return;
17132 }
17133
17134 mips_mark_labels ();
17135 mips_assembling_insn = TRUE;
17136
17137 /* Add $gp to the register named as an argument. */
17138 macro_start ();
17139 reg = tc_get_register (0);
17140 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
17141 macro_end ();
17142
17143 mips_assembling_insn = FALSE;
17144 demand_empty_rest_of_line ();
17145 }
17146
17147 /* Handle the .insn pseudo-op. This marks instruction labels in
17148 mips16/micromips mode. This permits the linker to handle them specially,
17149 such as generating jalx instructions when needed. We also make
17150 them odd for the duration of the assembly, in order to generate the
17151 right sort of code. We will make them even in the adjust_symtab
17152 routine, while leaving them marked. This is convenient for the
17153 debugger and the disassembler. The linker knows to make them odd
17154 again. */
17155
17156 static void
17157 s_insn (int ignore ATTRIBUTE_UNUSED)
17158 {
17159 file_mips_check_options ();
17160 file_ase_mips16 |= mips_opts.mips16;
17161 file_ase_micromips |= mips_opts.micromips;
17162
17163 mips_mark_labels ();
17164
17165 demand_empty_rest_of_line ();
17166 }
17167
17168 /* Handle the .nan pseudo-op. */
17169
17170 static void
17171 s_nan (int ignore ATTRIBUTE_UNUSED)
17172 {
17173 static const char str_legacy[] = "legacy";
17174 static const char str_2008[] = "2008";
17175 size_t i;
17176
17177 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
17178
17179 if (i == sizeof (str_2008) - 1
17180 && memcmp (input_line_pointer, str_2008, i) == 0)
17181 mips_nan2008 = 1;
17182 else if (i == sizeof (str_legacy) - 1
17183 && memcmp (input_line_pointer, str_legacy, i) == 0)
17184 {
17185 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
17186 mips_nan2008 = 0;
17187 else
17188 as_bad (_("`%s' does not support legacy NaN"),
17189 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
17190 }
17191 else
17192 as_bad (_("bad .nan directive"));
17193
17194 input_line_pointer += i;
17195 demand_empty_rest_of_line ();
17196 }
17197
17198 /* Handle a .stab[snd] directive. Ideally these directives would be
17199 implemented in a transparent way, so that removing them would not
17200 have any effect on the generated instructions. However, s_stab
17201 internally changes the section, so in practice we need to decide
17202 now whether the preceding label marks compressed code. We do not
17203 support changing the compression mode of a label after a .stab*
17204 directive, such as in:
17205
17206 foo:
17207 .stabs ...
17208 .set mips16
17209
17210 so the current mode wins. */
17211
17212 static void
17213 s_mips_stab (int type)
17214 {
17215 file_mips_check_options ();
17216 mips_mark_labels ();
17217 s_stab (type);
17218 }
17219
17220 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
17221
17222 static void
17223 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
17224 {
17225 char *name;
17226 int c;
17227 symbolS *symbolP;
17228 expressionS exp;
17229
17230 c = get_symbol_name (&name);
17231 symbolP = symbol_find_or_make (name);
17232 S_SET_WEAK (symbolP);
17233 *input_line_pointer = c;
17234
17235 SKIP_WHITESPACE_AFTER_NAME ();
17236
17237 if (! is_end_of_line[(unsigned char) *input_line_pointer])
17238 {
17239 if (S_IS_DEFINED (symbolP))
17240 {
17241 as_bad (_("ignoring attempt to redefine symbol %s"),
17242 S_GET_NAME (symbolP));
17243 ignore_rest_of_line ();
17244 return;
17245 }
17246
17247 if (*input_line_pointer == ',')
17248 {
17249 ++input_line_pointer;
17250 SKIP_WHITESPACE ();
17251 }
17252
17253 expression (&exp);
17254 if (exp.X_op != O_symbol)
17255 {
17256 as_bad (_("bad .weakext directive"));
17257 ignore_rest_of_line ();
17258 return;
17259 }
17260 symbol_set_value_expression (symbolP, &exp);
17261 }
17262
17263 demand_empty_rest_of_line ();
17264 }
17265
17266 /* Parse a register string into a number. Called from the ECOFF code
17267 to parse .frame. The argument is non-zero if this is the frame
17268 register, so that we can record it in mips_frame_reg. */
17269
17270 int
17271 tc_get_register (int frame)
17272 {
17273 unsigned int reg;
17274
17275 SKIP_WHITESPACE ();
17276 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
17277 reg = 0;
17278 if (frame)
17279 {
17280 mips_frame_reg = reg != 0 ? reg : SP;
17281 mips_frame_reg_valid = 1;
17282 mips_cprestore_valid = 0;
17283 }
17284 return reg;
17285 }
17286
17287 valueT
17288 md_section_align (asection *seg, valueT addr)
17289 {
17290 int align = bfd_get_section_alignment (stdoutput, seg);
17291
17292 /* We don't need to align ELF sections to the full alignment.
17293 However, Irix 5 may prefer that we align them at least to a 16
17294 byte boundary. We don't bother to align the sections if we
17295 are targeted for an embedded system. */
17296 if (strncmp (TARGET_OS, "elf", 3) == 0)
17297 return addr;
17298 if (align > 4)
17299 align = 4;
17300
17301 return ((addr + (1 << align) - 1) & -(1 << align));
17302 }
17303
17304 /* Utility routine, called from above as well. If called while the
17305 input file is still being read, it's only an approximation. (For
17306 example, a symbol may later become defined which appeared to be
17307 undefined earlier.) */
17308
17309 static int
17310 nopic_need_relax (symbolS *sym, int before_relaxing)
17311 {
17312 if (sym == 0)
17313 return 0;
17314
17315 if (g_switch_value > 0)
17316 {
17317 const char *symname;
17318 int change;
17319
17320 /* Find out whether this symbol can be referenced off the $gp
17321 register. It can be if it is smaller than the -G size or if
17322 it is in the .sdata or .sbss section. Certain symbols can
17323 not be referenced off the $gp, although it appears as though
17324 they can. */
17325 symname = S_GET_NAME (sym);
17326 if (symname != (const char *) NULL
17327 && (strcmp (symname, "eprol") == 0
17328 || strcmp (symname, "etext") == 0
17329 || strcmp (symname, "_gp") == 0
17330 || strcmp (symname, "edata") == 0
17331 || strcmp (symname, "_fbss") == 0
17332 || strcmp (symname, "_fdata") == 0
17333 || strcmp (symname, "_ftext") == 0
17334 || strcmp (symname, "end") == 0
17335 || strcmp (symname, "_gp_disp") == 0))
17336 change = 1;
17337 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17338 && (0
17339 #ifndef NO_ECOFF_DEBUGGING
17340 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17341 && (symbol_get_obj (sym)->ecoff_extern_size
17342 <= g_switch_value))
17343 #endif
17344 /* We must defer this decision until after the whole
17345 file has been read, since there might be a .extern
17346 after the first use of this symbol. */
17347 || (before_relaxing
17348 #ifndef NO_ECOFF_DEBUGGING
17349 && symbol_get_obj (sym)->ecoff_extern_size == 0
17350 #endif
17351 && S_GET_VALUE (sym) == 0)
17352 || (S_GET_VALUE (sym) != 0
17353 && S_GET_VALUE (sym) <= g_switch_value)))
17354 change = 0;
17355 else
17356 {
17357 const char *segname;
17358
17359 segname = segment_name (S_GET_SEGMENT (sym));
17360 gas_assert (strcmp (segname, ".lit8") != 0
17361 && strcmp (segname, ".lit4") != 0);
17362 change = (strcmp (segname, ".sdata") != 0
17363 && strcmp (segname, ".sbss") != 0
17364 && strncmp (segname, ".sdata.", 7) != 0
17365 && strncmp (segname, ".sbss.", 6) != 0
17366 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
17367 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
17368 }
17369 return change;
17370 }
17371 else
17372 /* We are not optimizing for the $gp register. */
17373 return 1;
17374 }
17375
17376
17377 /* Return true if the given symbol should be considered local for SVR4 PIC. */
17378
17379 static bfd_boolean
17380 pic_need_relax (symbolS *sym)
17381 {
17382 asection *symsec;
17383
17384 /* Handle the case of a symbol equated to another symbol. */
17385 while (symbol_equated_reloc_p (sym))
17386 {
17387 symbolS *n;
17388
17389 /* It's possible to get a loop here in a badly written program. */
17390 n = symbol_get_value_expression (sym)->X_add_symbol;
17391 if (n == sym)
17392 break;
17393 sym = n;
17394 }
17395
17396 if (symbol_section_p (sym))
17397 return TRUE;
17398
17399 symsec = S_GET_SEGMENT (sym);
17400
17401 /* This must duplicate the test in adjust_reloc_syms. */
17402 return (!bfd_is_und_section (symsec)
17403 && !bfd_is_abs_section (symsec)
17404 && !bfd_is_com_section (symsec)
17405 /* A global or weak symbol is treated as external. */
17406 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
17407 }
17408 \f
17409 /* Given a MIPS16 variant frag FRAGP and PC-relative operand PCREL_OP
17410 convert a section-relative value VAL to the equivalent PC-relative
17411 value. */
17412
17413 static offsetT
17414 mips16_pcrel_val (fragS *fragp, const struct mips_pcrel_operand *pcrel_op,
17415 offsetT val, long stretch)
17416 {
17417 fragS *sym_frag;
17418 addressT addr;
17419
17420 gas_assert (pcrel_op->root.root.type == OP_PCREL);
17421
17422 sym_frag = symbol_get_frag (fragp->fr_symbol);
17423
17424 /* If the relax_marker of the symbol fragment differs from the
17425 relax_marker of this fragment, we have not yet adjusted the
17426 symbol fragment fr_address. We want to add in STRETCH in
17427 order to get a better estimate of the address. This
17428 particularly matters because of the shift bits. */
17429 if (stretch != 0 && sym_frag->relax_marker != fragp->relax_marker)
17430 {
17431 fragS *f;
17432
17433 /* Adjust stretch for any alignment frag. Note that if have
17434 been expanding the earlier code, the symbol may be
17435 defined in what appears to be an earlier frag. FIXME:
17436 This doesn't handle the fr_subtype field, which specifies
17437 a maximum number of bytes to skip when doing an
17438 alignment. */
17439 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17440 {
17441 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17442 {
17443 if (stretch < 0)
17444 stretch = -(-stretch & ~((1 << (int) f->fr_offset) - 1));
17445 else
17446 stretch &= ~((1 << (int) f->fr_offset) - 1);
17447 if (stretch == 0)
17448 break;
17449 }
17450 }
17451 if (f != NULL)
17452 val += stretch;
17453 }
17454
17455 addr = fragp->fr_address + fragp->fr_fix;
17456
17457 /* The base address rules are complicated. The base address of
17458 a branch is the following instruction. The base address of a
17459 PC relative load or add is the instruction itself, but if it
17460 is in a delay slot (in which case it can not be extended) use
17461 the address of the instruction whose delay slot it is in. */
17462 if (pcrel_op->include_isa_bit)
17463 {
17464 addr += 2;
17465
17466 /* If we are currently assuming that this frag should be
17467 extended, then the current address is two bytes higher. */
17468 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17469 addr += 2;
17470
17471 /* Ignore the low bit in the target, since it will be set
17472 for a text label. */
17473 val &= -2;
17474 }
17475 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17476 addr -= 4;
17477 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17478 addr -= 2;
17479
17480 val -= addr & -(1 << pcrel_op->align_log2);
17481
17482 return val;
17483 }
17484
17485 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17486 extended opcode. SEC is the section the frag is in. */
17487
17488 static int
17489 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
17490 {
17491 const struct mips_int_operand *operand;
17492 offsetT val;
17493 segT symsec;
17494 int type;
17495
17496 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17497 return 0;
17498 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17499 return 1;
17500
17501 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17502 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17503 operand = mips16_immed_operand (type, FALSE);
17504 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17505 || (operand->root.type == OP_PCREL
17506 ? sec != symsec
17507 : !bfd_is_abs_section (symsec)))
17508 return 1;
17509
17510 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17511
17512 if (operand->root.type == OP_PCREL)
17513 {
17514 const struct mips_pcrel_operand *pcrel_op;
17515 offsetT maxtiny;
17516
17517 if (RELAX_MIPS16_ALWAYS_EXTENDED (fragp->fr_subtype))
17518 return 1;
17519
17520 pcrel_op = (const struct mips_pcrel_operand *) operand;
17521 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17522
17523 /* If any of the shifted bits are set, we must use an extended
17524 opcode. If the address depends on the size of this
17525 instruction, this can lead to a loop, so we arrange to always
17526 use an extended opcode. */
17527 if ((val & ((1 << operand->shift) - 1)) != 0)
17528 {
17529 fragp->fr_subtype =
17530 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
17531 return 1;
17532 }
17533
17534 /* If we are about to mark a frag as extended because the value
17535 is precisely the next value above maxtiny, then there is a
17536 chance of an infinite loop as in the following code:
17537 la $4,foo
17538 .skip 1020
17539 .align 2
17540 foo:
17541 In this case when the la is extended, foo is 0x3fc bytes
17542 away, so the la can be shrunk, but then foo is 0x400 away, so
17543 the la must be extended. To avoid this loop, we mark the
17544 frag as extended if it was small, and is about to become
17545 extended with the next value above maxtiny. */
17546 maxtiny = mips_int_operand_max (operand);
17547 if (val == maxtiny + (1 << operand->shift)
17548 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17549 {
17550 fragp->fr_subtype =
17551 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
17552 return 1;
17553 }
17554 }
17555
17556 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17557 }
17558
17559 /* Given a MIPS16 variant frag FRAGP, return non-zero if it needs
17560 macro expansion. SEC is the section the frag is in. We only
17561 support PC-relative instructions (LA, DLA, LW, LD) here, in
17562 non-PIC code using 32-bit addressing. */
17563
17564 static int
17565 mips16_macro_frag (fragS *fragp, asection *sec, long stretch)
17566 {
17567 const struct mips_pcrel_operand *pcrel_op;
17568 const struct mips_int_operand *operand;
17569 offsetT val;
17570 segT symsec;
17571 int type;
17572
17573 gas_assert (!RELAX_MIPS16_USER_SMALL (fragp->fr_subtype));
17574
17575 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17576 return 0;
17577 if (!RELAX_MIPS16_SYM32 (fragp->fr_subtype))
17578 return 0;
17579
17580 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17581 switch (type)
17582 {
17583 case 'A':
17584 case 'B':
17585 case 'E':
17586 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17587 if (bfd_is_abs_section (symsec))
17588 return 1;
17589 if (RELAX_MIPS16_PIC (fragp->fr_subtype))
17590 return 0;
17591 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE) || sec != symsec)
17592 return 1;
17593
17594 operand = mips16_immed_operand (type, TRUE);
17595 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17596 pcrel_op = (const struct mips_pcrel_operand *) operand;
17597 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17598
17599 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17600
17601 default:
17602 return 0;
17603 }
17604 }
17605
17606 /* Compute the length of a branch sequence, and adjust the
17607 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17608 worst-case length is computed, with UPDATE being used to indicate
17609 whether an unconditional (-1), branch-likely (+1) or regular (0)
17610 branch is to be computed. */
17611 static int
17612 relaxed_branch_length (fragS *fragp, asection *sec, int update)
17613 {
17614 bfd_boolean toofar;
17615 int length;
17616
17617 if (fragp
17618 && S_IS_DEFINED (fragp->fr_symbol)
17619 && !S_IS_WEAK (fragp->fr_symbol)
17620 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17621 {
17622 addressT addr;
17623 offsetT val;
17624
17625 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17626
17627 addr = fragp->fr_address + fragp->fr_fix + 4;
17628
17629 val -= addr;
17630
17631 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17632 }
17633 else
17634 /* If the symbol is not defined or it's in a different segment,
17635 we emit the long sequence. */
17636 toofar = TRUE;
17637
17638 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17639 fragp->fr_subtype
17640 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17641 RELAX_BRANCH_PIC (fragp->fr_subtype),
17642 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
17643 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17644 RELAX_BRANCH_LINK (fragp->fr_subtype),
17645 toofar);
17646
17647 length = 4;
17648 if (toofar)
17649 {
17650 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17651 length += 8;
17652
17653 if (!fragp || RELAX_BRANCH_PIC (fragp->fr_subtype))
17654 {
17655 /* Additional space for PIC loading of target address. */
17656 length += 8;
17657 if (mips_opts.isa == ISA_MIPS1)
17658 /* Additional space for $at-stabilizing nop. */
17659 length += 4;
17660 }
17661
17662 /* If branch is conditional. */
17663 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17664 length += 8;
17665 }
17666
17667 return length;
17668 }
17669
17670 /* Get a FRAG's branch instruction delay slot size, either from the
17671 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
17672 or SHORT_INSN_SIZE otherwise. */
17673
17674 static int
17675 frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
17676 {
17677 char *buf = fragp->fr_literal + fragp->fr_fix;
17678
17679 if (al)
17680 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
17681 else
17682 return short_insn_size;
17683 }
17684
17685 /* Compute the length of a branch sequence, and adjust the
17686 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17687 worst-case length is computed, with UPDATE being used to indicate
17688 whether an unconditional (-1), or regular (0) branch is to be
17689 computed. */
17690
17691 static int
17692 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17693 {
17694 bfd_boolean insn32 = TRUE;
17695 bfd_boolean nods = TRUE;
17696 bfd_boolean pic = TRUE;
17697 bfd_boolean al = TRUE;
17698 int short_insn_size;
17699 bfd_boolean toofar;
17700 int length;
17701
17702 if (fragp)
17703 {
17704 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17705 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
17706 pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
17707 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17708 }
17709 short_insn_size = insn32 ? 4 : 2;
17710
17711 if (fragp
17712 && S_IS_DEFINED (fragp->fr_symbol)
17713 && !S_IS_WEAK (fragp->fr_symbol)
17714 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17715 {
17716 addressT addr;
17717 offsetT val;
17718
17719 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17720 /* Ignore the low bit in the target, since it will be set
17721 for a text label. */
17722 if ((val & 1) != 0)
17723 --val;
17724
17725 addr = fragp->fr_address + fragp->fr_fix + 4;
17726
17727 val -= addr;
17728
17729 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17730 }
17731 else
17732 /* If the symbol is not defined or it's in a different segment,
17733 we emit the long sequence. */
17734 toofar = TRUE;
17735
17736 if (fragp && update
17737 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17738 fragp->fr_subtype = (toofar
17739 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17740 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17741
17742 length = 4;
17743 if (toofar)
17744 {
17745 bfd_boolean compact_known = fragp != NULL;
17746 bfd_boolean compact = FALSE;
17747 bfd_boolean uncond;
17748
17749 if (fragp)
17750 {
17751 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17752 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
17753 }
17754 else
17755 uncond = update < 0;
17756
17757 /* If label is out of range, we turn branch <br>:
17758
17759 <br> label # 4 bytes
17760 0:
17761
17762 into:
17763
17764 j label # 4 bytes
17765 nop # 2/4 bytes if
17766 # compact && (!PIC || insn32)
17767 0:
17768 */
17769 if ((!pic || insn32) && (!compact_known || compact))
17770 length += short_insn_size;
17771
17772 /* If assembling PIC code, we further turn:
17773
17774 j label # 4 bytes
17775
17776 into:
17777
17778 lw/ld at, %got(label)(gp) # 4 bytes
17779 d/addiu at, %lo(label) # 4 bytes
17780 jr/c at # 2/4 bytes
17781 */
17782 if (pic)
17783 length += 4 + short_insn_size;
17784
17785 /* Add an extra nop if the jump has no compact form and we need
17786 to fill the delay slot. */
17787 if ((!pic || al) && nods)
17788 length += (fragp
17789 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
17790 : short_insn_size);
17791
17792 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17793
17794 <brneg> 0f # 4 bytes
17795 nop # 2/4 bytes if !compact
17796 */
17797 if (!uncond)
17798 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
17799 }
17800 else if (nods)
17801 {
17802 /* Add an extra nop to fill the delay slot. */
17803 gas_assert (fragp);
17804 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
17805 }
17806
17807 return length;
17808 }
17809
17810 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17811 bit accordingly. */
17812
17813 static int
17814 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17815 {
17816 bfd_boolean toofar;
17817
17818 if (fragp
17819 && S_IS_DEFINED (fragp->fr_symbol)
17820 && !S_IS_WEAK (fragp->fr_symbol)
17821 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17822 {
17823 addressT addr;
17824 offsetT val;
17825 int type;
17826
17827 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17828 /* Ignore the low bit in the target, since it will be set
17829 for a text label. */
17830 if ((val & 1) != 0)
17831 --val;
17832
17833 /* Assume this is a 2-byte branch. */
17834 addr = fragp->fr_address + fragp->fr_fix + 2;
17835
17836 /* We try to avoid the infinite loop by not adding 2 more bytes for
17837 long branches. */
17838
17839 val -= addr;
17840
17841 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17842 if (type == 'D')
17843 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17844 else if (type == 'E')
17845 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17846 else
17847 abort ();
17848 }
17849 else
17850 /* If the symbol is not defined or it's in a different segment,
17851 we emit a normal 32-bit branch. */
17852 toofar = TRUE;
17853
17854 if (fragp && update
17855 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17856 fragp->fr_subtype
17857 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17858 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17859
17860 if (toofar)
17861 return 4;
17862
17863 return 2;
17864 }
17865
17866 /* Estimate the size of a frag before relaxing. Unless this is the
17867 mips16, we are not really relaxing here, and the final size is
17868 encoded in the subtype information. For the mips16, we have to
17869 decide whether we are using an extended opcode or not. */
17870
17871 int
17872 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17873 {
17874 int change;
17875
17876 if (RELAX_BRANCH_P (fragp->fr_subtype))
17877 {
17878
17879 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17880
17881 return fragp->fr_var;
17882 }
17883
17884 if (RELAX_MIPS16_P (fragp->fr_subtype))
17885 {
17886 /* We don't want to modify the EXTENDED bit here; it might get us
17887 into infinite loops. We change it only in mips_relax_frag(). */
17888 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
17889 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 8 : 12;
17890 else
17891 return RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2;
17892 }
17893
17894 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17895 {
17896 int length = 4;
17897
17898 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17899 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17900 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17901 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17902 fragp->fr_var = length;
17903
17904 return length;
17905 }
17906
17907 if (mips_pic == VXWORKS_PIC)
17908 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17909 change = 0;
17910 else if (RELAX_PIC (fragp->fr_subtype))
17911 change = pic_need_relax (fragp->fr_symbol);
17912 else
17913 change = nopic_need_relax (fragp->fr_symbol, 0);
17914
17915 if (change)
17916 {
17917 fragp->fr_subtype |= RELAX_USE_SECOND;
17918 return -RELAX_FIRST (fragp->fr_subtype);
17919 }
17920 else
17921 return -RELAX_SECOND (fragp->fr_subtype);
17922 }
17923
17924 /* This is called to see whether a reloc against a defined symbol
17925 should be converted into a reloc against a section. */
17926
17927 int
17928 mips_fix_adjustable (fixS *fixp)
17929 {
17930 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17931 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17932 return 0;
17933
17934 if (fixp->fx_addsy == NULL)
17935 return 1;
17936
17937 /* Allow relocs used for EH tables. */
17938 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17939 return 1;
17940
17941 /* If symbol SYM is in a mergeable section, relocations of the form
17942 SYM + 0 can usually be made section-relative. The mergeable data
17943 is then identified by the section offset rather than by the symbol.
17944
17945 However, if we're generating REL LO16 relocations, the offset is split
17946 between the LO16 and partnering high part relocation. The linker will
17947 need to recalculate the complete offset in order to correctly identify
17948 the merge data.
17949
17950 The linker has traditionally not looked for the partnering high part
17951 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17952 placed anywhere. Rather than break backwards compatibility by changing
17953 this, it seems better not to force the issue, and instead keep the
17954 original symbol. This will work with either linker behavior. */
17955 if ((lo16_reloc_p (fixp->fx_r_type)
17956 || reloc_needs_lo_p (fixp->fx_r_type))
17957 && HAVE_IN_PLACE_ADDENDS
17958 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17959 return 0;
17960
17961 /* There is no place to store an in-place offset for JALR relocations. */
17962 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17963 return 0;
17964
17965 /* Likewise an in-range offset of limited PC-relative relocations may
17966 overflow the in-place relocatable field if recalculated against the
17967 start address of the symbol's containing section.
17968
17969 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17970 section relative to allow linker relaxations to be performed later on. */
17971 if (limited_pcrel_reloc_p (fixp->fx_r_type)
17972 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
17973 return 0;
17974
17975 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17976 to a floating-point stub. The same is true for non-R_MIPS16_26
17977 relocations against MIPS16 functions; in this case, the stub becomes
17978 the function's canonical address.
17979
17980 Floating-point stubs are stored in unique .mips16.call.* or
17981 .mips16.fn.* sections. If a stub T for function F is in section S,
17982 the first relocation in section S must be against F; this is how the
17983 linker determines the target function. All relocations that might
17984 resolve to T must also be against F. We therefore have the following
17985 restrictions, which are given in an intentionally-redundant way:
17986
17987 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17988 symbols.
17989
17990 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17991 if that stub might be used.
17992
17993 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17994 symbols.
17995
17996 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17997 that stub might be used.
17998
17999 There is a further restriction:
18000
18001 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
18002 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
18003 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
18004 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
18005 against MIPS16 or microMIPS symbols because we need to keep the
18006 MIPS16 or microMIPS symbol for the purpose of mode mismatch
18007 detection and JAL or BAL to JALX instruction conversion in the
18008 linker.
18009
18010 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
18011 against a MIPS16 symbol. We deal with (5) by additionally leaving
18012 alone any jump and branch relocations against a microMIPS symbol.
18013
18014 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
18015 relocation against some symbol R, no relocation against R may be
18016 reduced. (Note that this deals with (2) as well as (1) because
18017 relocations against global symbols will never be reduced on ELF
18018 targets.) This approach is a little simpler than trying to detect
18019 stub sections, and gives the "all or nothing" per-symbol consistency
18020 that we have for MIPS16 symbols. */
18021 if (fixp->fx_subsy == NULL
18022 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
18023 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
18024 && (jmp_reloc_p (fixp->fx_r_type)
18025 || b_reloc_p (fixp->fx_r_type)))
18026 || *symbol_get_tc (fixp->fx_addsy)))
18027 return 0;
18028
18029 return 1;
18030 }
18031
18032 /* Translate internal representation of relocation info to BFD target
18033 format. */
18034
18035 arelent **
18036 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
18037 {
18038 static arelent *retval[4];
18039 arelent *reloc;
18040 bfd_reloc_code_real_type code;
18041
18042 memset (retval, 0, sizeof(retval));
18043 reloc = retval[0] = XCNEW (arelent);
18044 reloc->sym_ptr_ptr = XNEW (asymbol *);
18045 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
18046 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
18047
18048 if (fixp->fx_pcrel)
18049 {
18050 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
18051 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
18052 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
18053 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
18054 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
18055 || fixp->fx_r_type == BFD_RELOC_32_PCREL
18056 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
18057 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
18058 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
18059 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
18060 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
18061 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
18062
18063 /* At this point, fx_addnumber is "symbol offset - pcrel address".
18064 Relocations want only the symbol offset. */
18065 switch (fixp->fx_r_type)
18066 {
18067 case BFD_RELOC_MIPS_18_PCREL_S3:
18068 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
18069 break;
18070 default:
18071 reloc->addend = fixp->fx_addnumber + reloc->address;
18072 break;
18073 }
18074 }
18075 else if (HAVE_IN_PLACE_ADDENDS
18076 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
18077 && (read_compressed_insn (fixp->fx_frag->fr_literal
18078 + fixp->fx_where, 4) >> 26) == 0x3c)
18079 {
18080 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
18081 addend accordingly. */
18082 reloc->addend = fixp->fx_addnumber >> 1;
18083 }
18084 else
18085 reloc->addend = fixp->fx_addnumber;
18086
18087 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
18088 entry to be used in the relocation's section offset. */
18089 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
18090 {
18091 reloc->address = reloc->addend;
18092 reloc->addend = 0;
18093 }
18094
18095 code = fixp->fx_r_type;
18096
18097 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
18098 if (reloc->howto == NULL)
18099 {
18100 as_bad_where (fixp->fx_file, fixp->fx_line,
18101 _("cannot represent %s relocation in this object file"
18102 " format"),
18103 bfd_get_reloc_code_name (code));
18104 retval[0] = NULL;
18105 }
18106
18107 return retval;
18108 }
18109
18110 /* Relax a machine dependent frag. This returns the amount by which
18111 the current size of the frag should change. */
18112
18113 int
18114 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
18115 {
18116 if (RELAX_BRANCH_P (fragp->fr_subtype))
18117 {
18118 offsetT old_var = fragp->fr_var;
18119
18120 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
18121
18122 return fragp->fr_var - old_var;
18123 }
18124
18125 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18126 {
18127 offsetT old_var = fragp->fr_var;
18128 offsetT new_var = 4;
18129
18130 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
18131 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
18132 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
18133 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
18134 fragp->fr_var = new_var;
18135
18136 return new_var - old_var;
18137 }
18138
18139 if (! RELAX_MIPS16_P (fragp->fr_subtype))
18140 return 0;
18141
18142 if (!mips16_extended_frag (fragp, sec, stretch))
18143 {
18144 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18145 {
18146 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
18147 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -6 : -10;
18148 }
18149 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18150 {
18151 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18152 return -2;
18153 }
18154 else
18155 return 0;
18156 }
18157 else if (!mips16_macro_frag (fragp, sec, stretch))
18158 {
18159 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18160 {
18161 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
18162 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
18163 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -4 : -8;
18164 }
18165 else if (!RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18166 {
18167 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
18168 return 2;
18169 }
18170 else
18171 return 0;
18172 }
18173 else
18174 {
18175 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18176 return 0;
18177 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18178 {
18179 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18180 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
18181 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 4 : 8;
18182 }
18183 else
18184 {
18185 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
18186 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 6 : 10;
18187 }
18188 }
18189
18190 return 0;
18191 }
18192
18193 /* Convert a machine dependent frag. */
18194
18195 void
18196 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
18197 {
18198 if (RELAX_BRANCH_P (fragp->fr_subtype))
18199 {
18200 char *buf;
18201 unsigned long insn;
18202 fixS *fixp;
18203
18204 buf = fragp->fr_literal + fragp->fr_fix;
18205 insn = read_insn (buf);
18206
18207 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
18208 {
18209 /* We generate a fixup instead of applying it right now
18210 because, if there are linker relaxations, we're going to
18211 need the relocations. */
18212 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18213 fragp->fr_symbol, fragp->fr_offset,
18214 TRUE, BFD_RELOC_16_PCREL_S2);
18215 fixp->fx_file = fragp->fr_file;
18216 fixp->fx_line = fragp->fr_line;
18217
18218 buf = write_insn (buf, insn);
18219 }
18220 else
18221 {
18222 int i;
18223
18224 as_warn_where (fragp->fr_file, fragp->fr_line,
18225 _("relaxed out-of-range branch into a jump"));
18226
18227 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
18228 goto uncond;
18229
18230 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18231 {
18232 /* Reverse the branch. */
18233 switch ((insn >> 28) & 0xf)
18234 {
18235 case 4:
18236 if ((insn & 0xff000000) == 0x47000000
18237 || (insn & 0xff600000) == 0x45600000)
18238 {
18239 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
18240 reversed by tweaking bit 23. */
18241 insn ^= 0x00800000;
18242 }
18243 else
18244 {
18245 /* bc[0-3][tf]l? instructions can have the condition
18246 reversed by tweaking a single TF bit, and their
18247 opcodes all have 0x4???????. */
18248 gas_assert ((insn & 0xf3e00000) == 0x41000000);
18249 insn ^= 0x00010000;
18250 }
18251 break;
18252
18253 case 0:
18254 /* bltz 0x04000000 bgez 0x04010000
18255 bltzal 0x04100000 bgezal 0x04110000 */
18256 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
18257 insn ^= 0x00010000;
18258 break;
18259
18260 case 1:
18261 /* beq 0x10000000 bne 0x14000000
18262 blez 0x18000000 bgtz 0x1c000000 */
18263 insn ^= 0x04000000;
18264 break;
18265
18266 default:
18267 abort ();
18268 }
18269 }
18270
18271 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18272 {
18273 /* Clear the and-link bit. */
18274 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
18275
18276 /* bltzal 0x04100000 bgezal 0x04110000
18277 bltzall 0x04120000 bgezall 0x04130000 */
18278 insn &= ~0x00100000;
18279 }
18280
18281 /* Branch over the branch (if the branch was likely) or the
18282 full jump (not likely case). Compute the offset from the
18283 current instruction to branch to. */
18284 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18285 i = 16;
18286 else
18287 {
18288 /* How many bytes in instructions we've already emitted? */
18289 i = buf - fragp->fr_literal - fragp->fr_fix;
18290 /* How many bytes in instructions from here to the end? */
18291 i = fragp->fr_var - i;
18292 }
18293 /* Convert to instruction count. */
18294 i >>= 2;
18295 /* Branch counts from the next instruction. */
18296 i--;
18297 insn |= i;
18298 /* Branch over the jump. */
18299 buf = write_insn (buf, insn);
18300
18301 /* nop */
18302 buf = write_insn (buf, 0);
18303
18304 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18305 {
18306 /* beql $0, $0, 2f */
18307 insn = 0x50000000;
18308 /* Compute the PC offset from the current instruction to
18309 the end of the variable frag. */
18310 /* How many bytes in instructions we've already emitted? */
18311 i = buf - fragp->fr_literal - fragp->fr_fix;
18312 /* How many bytes in instructions from here to the end? */
18313 i = fragp->fr_var - i;
18314 /* Convert to instruction count. */
18315 i >>= 2;
18316 /* Don't decrement i, because we want to branch over the
18317 delay slot. */
18318 insn |= i;
18319
18320 buf = write_insn (buf, insn);
18321 buf = write_insn (buf, 0);
18322 }
18323
18324 uncond:
18325 if (!RELAX_BRANCH_PIC (fragp->fr_subtype))
18326 {
18327 /* j or jal. */
18328 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
18329 ? 0x0c000000 : 0x08000000);
18330
18331 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18332 fragp->fr_symbol, fragp->fr_offset,
18333 FALSE, BFD_RELOC_MIPS_JMP);
18334 fixp->fx_file = fragp->fr_file;
18335 fixp->fx_line = fragp->fr_line;
18336
18337 buf = write_insn (buf, insn);
18338 }
18339 else
18340 {
18341 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
18342
18343 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
18344 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
18345 insn |= at << OP_SH_RT;
18346
18347 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18348 fragp->fr_symbol, fragp->fr_offset,
18349 FALSE, BFD_RELOC_MIPS_GOT16);
18350 fixp->fx_file = fragp->fr_file;
18351 fixp->fx_line = fragp->fr_line;
18352
18353 buf = write_insn (buf, insn);
18354
18355 if (mips_opts.isa == ISA_MIPS1)
18356 /* nop */
18357 buf = write_insn (buf, 0);
18358
18359 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
18360 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18361 insn |= at << OP_SH_RS | at << OP_SH_RT;
18362
18363 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18364 fragp->fr_symbol, fragp->fr_offset,
18365 FALSE, BFD_RELOC_LO16);
18366 fixp->fx_file = fragp->fr_file;
18367 fixp->fx_line = fragp->fr_line;
18368
18369 buf = write_insn (buf, insn);
18370
18371 /* j(al)r $at. */
18372 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18373 insn = 0x0000f809;
18374 else
18375 insn = 0x00000008;
18376 insn |= at << OP_SH_RS;
18377
18378 buf = write_insn (buf, insn);
18379 }
18380 }
18381
18382 fragp->fr_fix += fragp->fr_var;
18383 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18384 return;
18385 }
18386
18387 /* Relax microMIPS branches. */
18388 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18389 {
18390 char *buf = fragp->fr_literal + fragp->fr_fix;
18391 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18392 bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
18393 bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
18394 bfd_boolean pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
18395 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18396 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18397 bfd_boolean short_ds;
18398 unsigned long insn;
18399 fixS *fixp;
18400
18401 fragp->fr_fix += fragp->fr_var;
18402
18403 /* Handle 16-bit branches that fit or are forced to fit. */
18404 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18405 {
18406 /* We generate a fixup instead of applying it right now,
18407 because if there is linker relaxation, we're going to
18408 need the relocations. */
18409 switch (type)
18410 {
18411 case 'D':
18412 fixp = fix_new (fragp, buf - fragp->fr_literal, 2,
18413 fragp->fr_symbol, fragp->fr_offset,
18414 TRUE, BFD_RELOC_MICROMIPS_10_PCREL_S1);
18415 break;
18416 case 'E':
18417 fixp = fix_new (fragp, buf - fragp->fr_literal, 2,
18418 fragp->fr_symbol, fragp->fr_offset,
18419 TRUE, BFD_RELOC_MICROMIPS_7_PCREL_S1);
18420 break;
18421 default:
18422 abort ();
18423 }
18424
18425 fixp->fx_file = fragp->fr_file;
18426 fixp->fx_line = fragp->fr_line;
18427
18428 /* These relocations can have an addend that won't fit in
18429 2 octets. */
18430 fixp->fx_no_overflow = 1;
18431
18432 return;
18433 }
18434
18435 /* Handle 32-bit branches that fit or are forced to fit. */
18436 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18437 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18438 {
18439 /* We generate a fixup instead of applying it right now,
18440 because if there is linker relaxation, we're going to
18441 need the relocations. */
18442 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18443 fragp->fr_symbol, fragp->fr_offset,
18444 TRUE, BFD_RELOC_MICROMIPS_16_PCREL_S1);
18445 fixp->fx_file = fragp->fr_file;
18446 fixp->fx_line = fragp->fr_line;
18447
18448 if (type == 0)
18449 {
18450 insn = read_compressed_insn (buf, 4);
18451 buf += 4;
18452
18453 if (nods)
18454 {
18455 /* Check the short-delay-slot bit. */
18456 if (!al || (insn & 0x02000000) != 0)
18457 buf = write_compressed_insn (buf, 0x0c00, 2);
18458 else
18459 buf = write_compressed_insn (buf, 0x00000000, 4);
18460 }
18461
18462 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18463 return;
18464 }
18465 }
18466
18467 /* Relax 16-bit branches to 32-bit branches. */
18468 if (type != 0)
18469 {
18470 insn = read_compressed_insn (buf, 2);
18471
18472 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18473 insn = 0x94000000; /* beq */
18474 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18475 {
18476 unsigned long regno;
18477
18478 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18479 regno = micromips_to_32_reg_d_map [regno];
18480 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18481 insn |= regno << MICROMIPSOP_SH_RS;
18482 }
18483 else
18484 abort ();
18485
18486 /* Nothing else to do, just write it out. */
18487 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18488 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18489 {
18490 buf = write_compressed_insn (buf, insn, 4);
18491 if (nods)
18492 buf = write_compressed_insn (buf, 0x0c00, 2);
18493 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18494 return;
18495 }
18496 }
18497 else
18498 insn = read_compressed_insn (buf, 4);
18499
18500 /* Relax 32-bit branches to a sequence of instructions. */
18501 as_warn_where (fragp->fr_file, fragp->fr_line,
18502 _("relaxed out-of-range branch into a jump"));
18503
18504 /* Set the short-delay-slot bit. */
18505 short_ds = !al || (insn & 0x02000000) != 0;
18506
18507 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18508 {
18509 symbolS *l;
18510
18511 /* Reverse the branch. */
18512 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18513 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18514 insn ^= 0x20000000;
18515 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18516 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18517 || (insn & 0xffe00000) == 0x40800000 /* blez */
18518 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18519 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18520 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18521 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18522 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18523 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18524 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18525 insn ^= 0x00400000;
18526 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18527 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18528 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18529 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18530 insn ^= 0x00200000;
18531 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18532 BNZ.df */
18533 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18534 BNZ.V */
18535 insn ^= 0x00800000;
18536 else
18537 abort ();
18538
18539 if (al)
18540 {
18541 /* Clear the and-link and short-delay-slot bits. */
18542 gas_assert ((insn & 0xfda00000) == 0x40200000);
18543
18544 /* bltzal 0x40200000 bgezal 0x40600000 */
18545 /* bltzals 0x42200000 bgezals 0x42600000 */
18546 insn &= ~0x02200000;
18547 }
18548
18549 /* Make a label at the end for use with the branch. */
18550 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18551 micromips_label_inc ();
18552 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
18553
18554 /* Refer to it. */
18555 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18556 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18557 fixp->fx_file = fragp->fr_file;
18558 fixp->fx_line = fragp->fr_line;
18559
18560 /* Branch over the jump. */
18561 buf = write_compressed_insn (buf, insn, 4);
18562
18563 if (!compact)
18564 {
18565 /* nop */
18566 if (insn32)
18567 buf = write_compressed_insn (buf, 0x00000000, 4);
18568 else
18569 buf = write_compressed_insn (buf, 0x0c00, 2);
18570 }
18571 }
18572
18573 if (!pic)
18574 {
18575 unsigned long jal = (short_ds || nods
18576 ? 0x74000000 : 0xf4000000); /* jal/s */
18577
18578 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18579 insn = al ? jal : 0xd4000000;
18580
18581 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18582 fragp->fr_symbol, fragp->fr_offset,
18583 FALSE, BFD_RELOC_MICROMIPS_JMP);
18584 fixp->fx_file = fragp->fr_file;
18585 fixp->fx_line = fragp->fr_line;
18586
18587 buf = write_compressed_insn (buf, insn, 4);
18588
18589 if (compact || nods)
18590 {
18591 /* nop */
18592 if (insn32)
18593 buf = write_compressed_insn (buf, 0x00000000, 4);
18594 else
18595 buf = write_compressed_insn (buf, 0x0c00, 2);
18596 }
18597 }
18598 else
18599 {
18600 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18601
18602 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18603 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18604 insn |= at << MICROMIPSOP_SH_RT;
18605
18606 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18607 fragp->fr_symbol, fragp->fr_offset,
18608 FALSE, BFD_RELOC_MICROMIPS_GOT16);
18609 fixp->fx_file = fragp->fr_file;
18610 fixp->fx_line = fragp->fr_line;
18611
18612 buf = write_compressed_insn (buf, insn, 4);
18613
18614 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18615 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18616 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18617
18618 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18619 fragp->fr_symbol, fragp->fr_offset,
18620 FALSE, BFD_RELOC_MICROMIPS_LO16);
18621 fixp->fx_file = fragp->fr_file;
18622 fixp->fx_line = fragp->fr_line;
18623
18624 buf = write_compressed_insn (buf, insn, 4);
18625
18626 if (insn32)
18627 {
18628 /* jr/jalr $at */
18629 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18630 insn |= at << MICROMIPSOP_SH_RS;
18631
18632 buf = write_compressed_insn (buf, insn, 4);
18633
18634 if (compact || nods)
18635 /* nop */
18636 buf = write_compressed_insn (buf, 0x00000000, 4);
18637 }
18638 else
18639 {
18640 /* jr/jrc/jalr/jalrs $at */
18641 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
18642 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
18643
18644 insn = al ? jalr : jr;
18645 insn |= at << MICROMIPSOP_SH_MJ;
18646
18647 buf = write_compressed_insn (buf, insn, 2);
18648 if (al && nods)
18649 {
18650 /* nop */
18651 if (short_ds)
18652 buf = write_compressed_insn (buf, 0x0c00, 2);
18653 else
18654 buf = write_compressed_insn (buf, 0x00000000, 4);
18655 }
18656 }
18657 }
18658
18659 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18660 return;
18661 }
18662
18663 if (RELAX_MIPS16_P (fragp->fr_subtype))
18664 {
18665 int type;
18666 const struct mips_int_operand *operand;
18667 offsetT val;
18668 char *buf;
18669 unsigned int user_length;
18670 bfd_boolean need_reloc;
18671 unsigned long insn;
18672 bfd_boolean mac;
18673 bfd_boolean ext;
18674 segT symsec;
18675
18676 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
18677 operand = mips16_immed_operand (type, FALSE);
18678
18679 mac = RELAX_MIPS16_MACRO (fragp->fr_subtype);
18680 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
18681 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
18682
18683 symsec = S_GET_SEGMENT (fragp->fr_symbol);
18684 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
18685 || (operand->root.type == OP_PCREL && !mac
18686 ? asec != symsec
18687 : !bfd_is_abs_section (symsec)));
18688
18689 if (operand->root.type == OP_PCREL && !mac)
18690 {
18691 const struct mips_pcrel_operand *pcrel_op;
18692
18693 pcrel_op = (const struct mips_pcrel_operand *) operand;
18694
18695 if (pcrel_op->include_isa_bit && !need_reloc)
18696 {
18697 if (!mips_ignore_branch_isa
18698 && !ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
18699 as_bad_where (fragp->fr_file, fragp->fr_line,
18700 _("branch to a symbol in another ISA mode"));
18701 else if ((fragp->fr_offset & 0x1) != 0)
18702 as_bad_where (fragp->fr_file, fragp->fr_line,
18703 _("branch to misaligned address (0x%lx)"),
18704 (long) val);
18705 }
18706
18707 val = mips16_pcrel_val (fragp, pcrel_op, val, 0);
18708
18709 /* Make sure the section winds up with the alignment we have
18710 assumed. */
18711 if (operand->shift > 0)
18712 record_alignment (asec, operand->shift);
18713 }
18714
18715 if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18716 || RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18717 {
18718 if (mac)
18719 as_warn_where (fragp->fr_file, fragp->fr_line,
18720 _("macro instruction expanded into multiple "
18721 "instructions in a branch delay slot"));
18722 else if (ext)
18723 as_warn_where (fragp->fr_file, fragp->fr_line,
18724 _("extended instruction in a branch delay slot"));
18725 }
18726 else if (RELAX_MIPS16_NOMACRO (fragp->fr_subtype) && mac)
18727 as_warn_where (fragp->fr_file, fragp->fr_line,
18728 _("macro instruction expanded into multiple "
18729 "instructions"));
18730
18731 buf = fragp->fr_literal + fragp->fr_fix;
18732
18733 insn = read_compressed_insn (buf, 2);
18734 if (ext)
18735 insn |= MIPS16_EXTEND;
18736
18737 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18738 user_length = 4;
18739 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18740 user_length = 2;
18741 else
18742 user_length = 0;
18743
18744 if (mac)
18745 {
18746 unsigned long reg;
18747 unsigned long new;
18748 unsigned long op;
18749 bfd_boolean e2;
18750
18751 gas_assert (type == 'A' || type == 'B' || type == 'E');
18752 gas_assert (RELAX_MIPS16_SYM32 (fragp->fr_subtype));
18753
18754 e2 = RELAX_MIPS16_E2 (fragp->fr_subtype);
18755
18756 if (need_reloc)
18757 {
18758 fixS *fixp;
18759
18760 gas_assert (!RELAX_MIPS16_PIC (fragp->fr_subtype));
18761
18762 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18763 fragp->fr_symbol, fragp->fr_offset,
18764 FALSE, BFD_RELOC_MIPS16_HI16_S);
18765 fixp->fx_file = fragp->fr_file;
18766 fixp->fx_line = fragp->fr_line;
18767
18768 fixp = fix_new (fragp, buf - fragp->fr_literal + (e2 ? 4 : 8), 4,
18769 fragp->fr_symbol, fragp->fr_offset,
18770 FALSE, BFD_RELOC_MIPS16_LO16);
18771 fixp->fx_file = fragp->fr_file;
18772 fixp->fx_line = fragp->fr_line;
18773
18774 val = 0;
18775 }
18776
18777 switch (insn & 0xf800)
18778 {
18779 case 0x0800: /* ADDIU */
18780 reg = (insn >> 8) & 0x7;
18781 op = 0xf0004800 | (reg << 8);
18782 break;
18783 case 0xb000: /* LW */
18784 reg = (insn >> 8) & 0x7;
18785 op = 0xf0009800 | (reg << 8) | (reg << 5);
18786 break;
18787 case 0xf800: /* I64 */
18788 reg = (insn >> 5) & 0x7;
18789 switch (insn & 0x0700)
18790 {
18791 case 0x0400: /* LD */
18792 op = 0xf0003800 | (reg << 8) | (reg << 5);
18793 break;
18794 case 0x0600: /* DADDIU */
18795 op = 0xf000fd00 | (reg << 5);
18796 break;
18797 default:
18798 abort ();
18799 }
18800 break;
18801 default:
18802 abort ();
18803 }
18804
18805 new = (e2 ? 0xf0006820 : 0xf0006800) | (reg << 8); /* LUI/LI */
18806 new |= mips16_immed_extend ((val + 0x8000) >> 16, 16);
18807 buf = write_compressed_insn (buf, new, 4);
18808 if (!e2)
18809 {
18810 new = 0xf4003000 | (reg << 8) | (reg << 5); /* SLL */
18811 buf = write_compressed_insn (buf, new, 4);
18812 }
18813 op |= mips16_immed_extend (val, 16);
18814 buf = write_compressed_insn (buf, op, 4);
18815
18816 fragp->fr_fix += e2 ? 8 : 12;
18817 }
18818 else
18819 {
18820 unsigned int length = ext ? 4 : 2;
18821
18822 if (need_reloc)
18823 {
18824 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
18825 fixS *fixp;
18826
18827 switch (type)
18828 {
18829 case 'p':
18830 case 'q':
18831 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
18832 break;
18833 default:
18834 break;
18835 }
18836 if (mac || reloc == BFD_RELOC_NONE)
18837 as_bad_where (fragp->fr_file, fragp->fr_line,
18838 _("unsupported relocation"));
18839 else if (ext)
18840 {
18841 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18842 fragp->fr_symbol, fragp->fr_offset,
18843 TRUE, reloc);
18844 fixp->fx_file = fragp->fr_file;
18845 fixp->fx_line = fragp->fr_line;
18846 }
18847 else
18848 as_bad_where (fragp->fr_file, fragp->fr_line,
18849 _("invalid unextended operand value"));
18850 }
18851 else
18852 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18853 BFD_RELOC_UNUSED, val, user_length, &insn);
18854
18855 gas_assert (mips16_opcode_length (insn) == length);
18856 write_compressed_insn (buf, insn, length);
18857 fragp->fr_fix += length;
18858 }
18859 }
18860 else
18861 {
18862 relax_substateT subtype = fragp->fr_subtype;
18863 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18864 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
18865 int first, second;
18866 fixS *fixp;
18867
18868 first = RELAX_FIRST (subtype);
18869 second = RELAX_SECOND (subtype);
18870 fixp = (fixS *) fragp->fr_opcode;
18871
18872 /* If the delay slot chosen does not match the size of the instruction,
18873 then emit a warning. */
18874 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18875 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18876 {
18877 relax_substateT s;
18878 const char *msg;
18879
18880 s = subtype & (RELAX_DELAY_SLOT_16BIT
18881 | RELAX_DELAY_SLOT_SIZE_FIRST
18882 | RELAX_DELAY_SLOT_SIZE_SECOND);
18883 msg = macro_warning (s);
18884 if (msg != NULL)
18885 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18886 subtype &= ~s;
18887 }
18888
18889 /* Possibly emit a warning if we've chosen the longer option. */
18890 if (use_second == second_longer)
18891 {
18892 relax_substateT s;
18893 const char *msg;
18894
18895 s = (subtype
18896 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18897 msg = macro_warning (s);
18898 if (msg != NULL)
18899 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18900 subtype &= ~s;
18901 }
18902
18903 /* Go through all the fixups for the first sequence. Disable them
18904 (by marking them as done) if we're going to use the second
18905 sequence instead. */
18906 while (fixp
18907 && fixp->fx_frag == fragp
18908 && fixp->fx_where < fragp->fr_fix - second)
18909 {
18910 if (subtype & RELAX_USE_SECOND)
18911 fixp->fx_done = 1;
18912 fixp = fixp->fx_next;
18913 }
18914
18915 /* Go through the fixups for the second sequence. Disable them if
18916 we're going to use the first sequence, otherwise adjust their
18917 addresses to account for the relaxation. */
18918 while (fixp && fixp->fx_frag == fragp)
18919 {
18920 if (subtype & RELAX_USE_SECOND)
18921 fixp->fx_where -= first;
18922 else
18923 fixp->fx_done = 1;
18924 fixp = fixp->fx_next;
18925 }
18926
18927 /* Now modify the frag contents. */
18928 if (subtype & RELAX_USE_SECOND)
18929 {
18930 char *start;
18931
18932 start = fragp->fr_literal + fragp->fr_fix - first - second;
18933 memmove (start, start + first, second);
18934 fragp->fr_fix -= first;
18935 }
18936 else
18937 fragp->fr_fix -= second;
18938 }
18939 }
18940
18941 /* This function is called after the relocs have been generated.
18942 We've been storing mips16 text labels as odd. Here we convert them
18943 back to even for the convenience of the debugger. */
18944
18945 void
18946 mips_frob_file_after_relocs (void)
18947 {
18948 asymbol **syms;
18949 unsigned int count, i;
18950
18951 syms = bfd_get_outsymbols (stdoutput);
18952 count = bfd_get_symcount (stdoutput);
18953 for (i = 0; i < count; i++, syms++)
18954 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18955 && ((*syms)->value & 1) != 0)
18956 {
18957 (*syms)->value &= ~1;
18958 /* If the symbol has an odd size, it was probably computed
18959 incorrectly, so adjust that as well. */
18960 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18961 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18962 }
18963 }
18964
18965 /* This function is called whenever a label is defined, including fake
18966 labels instantiated off the dot special symbol. It is used when
18967 handling branch delays; if a branch has a label, we assume we cannot
18968 move it. This also bumps the value of the symbol by 1 in compressed
18969 code. */
18970
18971 static void
18972 mips_record_label (symbolS *sym)
18973 {
18974 segment_info_type *si = seg_info (now_seg);
18975 struct insn_label_list *l;
18976
18977 if (free_insn_labels == NULL)
18978 l = XNEW (struct insn_label_list);
18979 else
18980 {
18981 l = free_insn_labels;
18982 free_insn_labels = l->next;
18983 }
18984
18985 l->label = sym;
18986 l->next = si->label_list;
18987 si->label_list = l;
18988 }
18989
18990 /* This function is called as tc_frob_label() whenever a label is defined
18991 and adds a DWARF-2 record we only want for true labels. */
18992
18993 void
18994 mips_define_label (symbolS *sym)
18995 {
18996 mips_record_label (sym);
18997 dwarf2_emit_label (sym);
18998 }
18999
19000 /* This function is called by tc_new_dot_label whenever a new dot symbol
19001 is defined. */
19002
19003 void
19004 mips_add_dot_label (symbolS *sym)
19005 {
19006 mips_record_label (sym);
19007 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
19008 mips_compressed_mark_label (sym);
19009 }
19010 \f
19011 /* Converting ASE flags from internal to .MIPS.abiflags values. */
19012 static unsigned int
19013 mips_convert_ase_flags (int ase)
19014 {
19015 unsigned int ext_ases = 0;
19016
19017 if (ase & ASE_DSP)
19018 ext_ases |= AFL_ASE_DSP;
19019 if (ase & ASE_DSPR2)
19020 ext_ases |= AFL_ASE_DSPR2;
19021 if (ase & ASE_DSPR3)
19022 ext_ases |= AFL_ASE_DSPR3;
19023 if (ase & ASE_EVA)
19024 ext_ases |= AFL_ASE_EVA;
19025 if (ase & ASE_MCU)
19026 ext_ases |= AFL_ASE_MCU;
19027 if (ase & ASE_MDMX)
19028 ext_ases |= AFL_ASE_MDMX;
19029 if (ase & ASE_MIPS3D)
19030 ext_ases |= AFL_ASE_MIPS3D;
19031 if (ase & ASE_MT)
19032 ext_ases |= AFL_ASE_MT;
19033 if (ase & ASE_SMARTMIPS)
19034 ext_ases |= AFL_ASE_SMARTMIPS;
19035 if (ase & ASE_VIRT)
19036 ext_ases |= AFL_ASE_VIRT;
19037 if (ase & ASE_MSA)
19038 ext_ases |= AFL_ASE_MSA;
19039 if (ase & ASE_XPA)
19040 ext_ases |= AFL_ASE_XPA;
19041 if (ase & ASE_MIPS16E2)
19042 ext_ases |= file_ase_mips16 ? AFL_ASE_MIPS16E2 : 0;
19043 if (ase & ASE_CRC)
19044 ext_ases |= AFL_ASE_CRC;
19045 if (ase & ASE_GINV)
19046 ext_ases |= AFL_ASE_GINV;
19047 if (ase & ASE_LOONGSON_MMI)
19048 ext_ases |= AFL_ASE_LOONGSON_MMI;
19049 if (ase & ASE_LOONGSON_CAM)
19050 ext_ases |= AFL_ASE_LOONGSON_CAM;
19051 if (ase & ASE_LOONGSON_EXT)
19052 ext_ases |= AFL_ASE_LOONGSON_EXT;
19053
19054 return ext_ases;
19055 }
19056 /* Some special processing for a MIPS ELF file. */
19057
19058 void
19059 mips_elf_final_processing (void)
19060 {
19061 int fpabi;
19062 Elf_Internal_ABIFlags_v0 flags;
19063
19064 flags.version = 0;
19065 flags.isa_rev = 0;
19066 switch (file_mips_opts.isa)
19067 {
19068 case INSN_ISA1:
19069 flags.isa_level = 1;
19070 break;
19071 case INSN_ISA2:
19072 flags.isa_level = 2;
19073 break;
19074 case INSN_ISA3:
19075 flags.isa_level = 3;
19076 break;
19077 case INSN_ISA4:
19078 flags.isa_level = 4;
19079 break;
19080 case INSN_ISA5:
19081 flags.isa_level = 5;
19082 break;
19083 case INSN_ISA32:
19084 flags.isa_level = 32;
19085 flags.isa_rev = 1;
19086 break;
19087 case INSN_ISA32R2:
19088 flags.isa_level = 32;
19089 flags.isa_rev = 2;
19090 break;
19091 case INSN_ISA32R3:
19092 flags.isa_level = 32;
19093 flags.isa_rev = 3;
19094 break;
19095 case INSN_ISA32R5:
19096 flags.isa_level = 32;
19097 flags.isa_rev = 5;
19098 break;
19099 case INSN_ISA32R6:
19100 flags.isa_level = 32;
19101 flags.isa_rev = 6;
19102 break;
19103 case INSN_ISA64:
19104 flags.isa_level = 64;
19105 flags.isa_rev = 1;
19106 break;
19107 case INSN_ISA64R2:
19108 flags.isa_level = 64;
19109 flags.isa_rev = 2;
19110 break;
19111 case INSN_ISA64R3:
19112 flags.isa_level = 64;
19113 flags.isa_rev = 3;
19114 break;
19115 case INSN_ISA64R5:
19116 flags.isa_level = 64;
19117 flags.isa_rev = 5;
19118 break;
19119 case INSN_ISA64R6:
19120 flags.isa_level = 64;
19121 flags.isa_rev = 6;
19122 break;
19123 }
19124
19125 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
19126 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
19127 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
19128 : (file_mips_opts.fp == 64) ? AFL_REG_64
19129 : AFL_REG_32;
19130 flags.cpr2_size = AFL_REG_NONE;
19131 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19132 Tag_GNU_MIPS_ABI_FP);
19133 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
19134 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
19135 if (file_ase_mips16)
19136 flags.ases |= AFL_ASE_MIPS16;
19137 if (file_ase_micromips)
19138 flags.ases |= AFL_ASE_MICROMIPS;
19139 flags.flags1 = 0;
19140 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
19141 || file_mips_opts.fp == 64)
19142 && file_mips_opts.oddspreg)
19143 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
19144 flags.flags2 = 0;
19145
19146 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
19147 ((Elf_External_ABIFlags_v0 *)
19148 mips_flags_frag));
19149
19150 /* Write out the register information. */
19151 if (mips_abi != N64_ABI)
19152 {
19153 Elf32_RegInfo s;
19154
19155 s.ri_gprmask = mips_gprmask;
19156 s.ri_cprmask[0] = mips_cprmask[0];
19157 s.ri_cprmask[1] = mips_cprmask[1];
19158 s.ri_cprmask[2] = mips_cprmask[2];
19159 s.ri_cprmask[3] = mips_cprmask[3];
19160 /* The gp_value field is set by the MIPS ELF backend. */
19161
19162 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
19163 ((Elf32_External_RegInfo *)
19164 mips_regmask_frag));
19165 }
19166 else
19167 {
19168 Elf64_Internal_RegInfo s;
19169
19170 s.ri_gprmask = mips_gprmask;
19171 s.ri_pad = 0;
19172 s.ri_cprmask[0] = mips_cprmask[0];
19173 s.ri_cprmask[1] = mips_cprmask[1];
19174 s.ri_cprmask[2] = mips_cprmask[2];
19175 s.ri_cprmask[3] = mips_cprmask[3];
19176 /* The gp_value field is set by the MIPS ELF backend. */
19177
19178 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
19179 ((Elf64_External_RegInfo *)
19180 mips_regmask_frag));
19181 }
19182
19183 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
19184 sort of BFD interface for this. */
19185 if (mips_any_noreorder)
19186 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
19187 if (mips_pic != NO_PIC)
19188 {
19189 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
19190 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
19191 }
19192 if (mips_abicalls)
19193 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
19194
19195 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
19196 defined at present; this might need to change in future. */
19197 if (file_ase_mips16)
19198 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
19199 if (file_ase_micromips)
19200 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
19201 if (file_mips_opts.ase & ASE_MDMX)
19202 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
19203
19204 /* Set the MIPS ELF ABI flags. */
19205 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
19206 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
19207 else if (mips_abi == O64_ABI)
19208 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
19209 else if (mips_abi == EABI_ABI)
19210 {
19211 if (file_mips_opts.gp == 64)
19212 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
19213 else
19214 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
19215 }
19216
19217 /* Nothing to do for N32_ABI or N64_ABI. */
19218
19219 if (mips_32bitmode)
19220 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
19221
19222 if (mips_nan2008 == 1)
19223 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
19224
19225 /* 32 bit code with 64 bit FP registers. */
19226 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19227 Tag_GNU_MIPS_ABI_FP);
19228 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
19229 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
19230 }
19231 \f
19232 typedef struct proc {
19233 symbolS *func_sym;
19234 symbolS *func_end_sym;
19235 unsigned long reg_mask;
19236 unsigned long reg_offset;
19237 unsigned long fpreg_mask;
19238 unsigned long fpreg_offset;
19239 unsigned long frame_offset;
19240 unsigned long frame_reg;
19241 unsigned long pc_reg;
19242 } procS;
19243
19244 static procS cur_proc;
19245 static procS *cur_proc_ptr;
19246 static int numprocs;
19247
19248 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
19249 as "2", and a normal nop as "0". */
19250
19251 #define NOP_OPCODE_MIPS 0
19252 #define NOP_OPCODE_MIPS16 1
19253 #define NOP_OPCODE_MICROMIPS 2
19254
19255 char
19256 mips_nop_opcode (void)
19257 {
19258 if (seg_info (now_seg)->tc_segment_info_data.micromips)
19259 return NOP_OPCODE_MICROMIPS;
19260 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
19261 return NOP_OPCODE_MIPS16;
19262 else
19263 return NOP_OPCODE_MIPS;
19264 }
19265
19266 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
19267 32-bit microMIPS NOPs here (if applicable). */
19268
19269 void
19270 mips_handle_align (fragS *fragp)
19271 {
19272 char nop_opcode;
19273 char *p;
19274 int bytes, size, excess;
19275 valueT opcode;
19276
19277 if (fragp->fr_type != rs_align_code)
19278 return;
19279
19280 p = fragp->fr_literal + fragp->fr_fix;
19281 nop_opcode = *p;
19282 switch (nop_opcode)
19283 {
19284 case NOP_OPCODE_MICROMIPS:
19285 opcode = micromips_nop32_insn.insn_opcode;
19286 size = 4;
19287 break;
19288 case NOP_OPCODE_MIPS16:
19289 opcode = mips16_nop_insn.insn_opcode;
19290 size = 2;
19291 break;
19292 case NOP_OPCODE_MIPS:
19293 default:
19294 opcode = nop_insn.insn_opcode;
19295 size = 4;
19296 break;
19297 }
19298
19299 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
19300 excess = bytes % size;
19301
19302 /* Handle the leading part if we're not inserting a whole number of
19303 instructions, and make it the end of the fixed part of the frag.
19304 Try to fit in a short microMIPS NOP if applicable and possible,
19305 and use zeroes otherwise. */
19306 gas_assert (excess < 4);
19307 fragp->fr_fix += excess;
19308 switch (excess)
19309 {
19310 case 3:
19311 *p++ = '\0';
19312 /* Fall through. */
19313 case 2:
19314 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
19315 {
19316 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
19317 break;
19318 }
19319 *p++ = '\0';
19320 /* Fall through. */
19321 case 1:
19322 *p++ = '\0';
19323 /* Fall through. */
19324 case 0:
19325 break;
19326 }
19327
19328 md_number_to_chars (p, opcode, size);
19329 fragp->fr_var = size;
19330 }
19331
19332 static long
19333 get_number (void)
19334 {
19335 int negative = 0;
19336 long val = 0;
19337
19338 if (*input_line_pointer == '-')
19339 {
19340 ++input_line_pointer;
19341 negative = 1;
19342 }
19343 if (!ISDIGIT (*input_line_pointer))
19344 as_bad (_("expected simple number"));
19345 if (input_line_pointer[0] == '0')
19346 {
19347 if (input_line_pointer[1] == 'x')
19348 {
19349 input_line_pointer += 2;
19350 while (ISXDIGIT (*input_line_pointer))
19351 {
19352 val <<= 4;
19353 val |= hex_value (*input_line_pointer++);
19354 }
19355 return negative ? -val : val;
19356 }
19357 else
19358 {
19359 ++input_line_pointer;
19360 while (ISDIGIT (*input_line_pointer))
19361 {
19362 val <<= 3;
19363 val |= *input_line_pointer++ - '0';
19364 }
19365 return negative ? -val : val;
19366 }
19367 }
19368 if (!ISDIGIT (*input_line_pointer))
19369 {
19370 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
19371 *input_line_pointer, *input_line_pointer);
19372 as_warn (_("invalid number"));
19373 return -1;
19374 }
19375 while (ISDIGIT (*input_line_pointer))
19376 {
19377 val *= 10;
19378 val += *input_line_pointer++ - '0';
19379 }
19380 return negative ? -val : val;
19381 }
19382
19383 /* The .file directive; just like the usual .file directive, but there
19384 is an initial number which is the ECOFF file index. In the non-ECOFF
19385 case .file implies DWARF-2. */
19386
19387 static void
19388 s_mips_file (int x ATTRIBUTE_UNUSED)
19389 {
19390 static int first_file_directive = 0;
19391
19392 if (ECOFF_DEBUGGING)
19393 {
19394 get_number ();
19395 s_app_file (0);
19396 }
19397 else
19398 {
19399 char *filename;
19400
19401 filename = dwarf2_directive_filename ();
19402
19403 /* Versions of GCC up to 3.1 start files with a ".file"
19404 directive even for stabs output. Make sure that this
19405 ".file" is handled. Note that you need a version of GCC
19406 after 3.1 in order to support DWARF-2 on MIPS. */
19407 if (filename != NULL && ! first_file_directive)
19408 {
19409 (void) new_logical_line (filename, -1);
19410 s_app_file_string (filename, 0);
19411 }
19412 first_file_directive = 1;
19413 }
19414 }
19415
19416 /* The .loc directive, implying DWARF-2. */
19417
19418 static void
19419 s_mips_loc (int x ATTRIBUTE_UNUSED)
19420 {
19421 if (!ECOFF_DEBUGGING)
19422 dwarf2_directive_loc (0);
19423 }
19424
19425 /* The .end directive. */
19426
19427 static void
19428 s_mips_end (int x ATTRIBUTE_UNUSED)
19429 {
19430 symbolS *p;
19431
19432 /* Following functions need their own .frame and .cprestore directives. */
19433 mips_frame_reg_valid = 0;
19434 mips_cprestore_valid = 0;
19435
19436 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19437 {
19438 p = get_symbol ();
19439 demand_empty_rest_of_line ();
19440 }
19441 else
19442 p = NULL;
19443
19444 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19445 as_warn (_(".end not in text section"));
19446
19447 if (!cur_proc_ptr)
19448 {
19449 as_warn (_(".end directive without a preceding .ent directive"));
19450 demand_empty_rest_of_line ();
19451 return;
19452 }
19453
19454 if (p != NULL)
19455 {
19456 gas_assert (S_GET_NAME (p));
19457 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
19458 as_warn (_(".end symbol does not match .ent symbol"));
19459
19460 if (debug_type == DEBUG_STABS)
19461 stabs_generate_asm_endfunc (S_GET_NAME (p),
19462 S_GET_NAME (p));
19463 }
19464 else
19465 as_warn (_(".end directive missing or unknown symbol"));
19466
19467 /* Create an expression to calculate the size of the function. */
19468 if (p && cur_proc_ptr)
19469 {
19470 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
19471 expressionS *exp = XNEW (expressionS);
19472
19473 obj->size = exp;
19474 exp->X_op = O_subtract;
19475 exp->X_add_symbol = symbol_temp_new_now ();
19476 exp->X_op_symbol = p;
19477 exp->X_add_number = 0;
19478
19479 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19480 }
19481
19482 #ifdef md_flush_pending_output
19483 md_flush_pending_output ();
19484 #endif
19485
19486 /* Generate a .pdr section. */
19487 if (!ECOFF_DEBUGGING && mips_flag_pdr)
19488 {
19489 segT saved_seg = now_seg;
19490 subsegT saved_subseg = now_subseg;
19491 expressionS exp;
19492 char *fragp;
19493
19494 gas_assert (pdr_seg);
19495 subseg_set (pdr_seg, 0);
19496
19497 /* Write the symbol. */
19498 exp.X_op = O_symbol;
19499 exp.X_add_symbol = p;
19500 exp.X_add_number = 0;
19501 emit_expr (&exp, 4);
19502
19503 fragp = frag_more (7 * 4);
19504
19505 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19506 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19507 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19508 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19509 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19510 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19511 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
19512
19513 subseg_set (saved_seg, saved_subseg);
19514 }
19515
19516 cur_proc_ptr = NULL;
19517 }
19518
19519 /* The .aent and .ent directives. */
19520
19521 static void
19522 s_mips_ent (int aent)
19523 {
19524 symbolS *symbolP;
19525
19526 symbolP = get_symbol ();
19527 if (*input_line_pointer == ',')
19528 ++input_line_pointer;
19529 SKIP_WHITESPACE ();
19530 if (ISDIGIT (*input_line_pointer)
19531 || *input_line_pointer == '-')
19532 get_number ();
19533
19534 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19535 as_warn (_(".ent or .aent not in text section"));
19536
19537 if (!aent && cur_proc_ptr)
19538 as_warn (_("missing .end"));
19539
19540 if (!aent)
19541 {
19542 /* This function needs its own .frame and .cprestore directives. */
19543 mips_frame_reg_valid = 0;
19544 mips_cprestore_valid = 0;
19545
19546 cur_proc_ptr = &cur_proc;
19547 memset (cur_proc_ptr, '\0', sizeof (procS));
19548
19549 cur_proc_ptr->func_sym = symbolP;
19550
19551 ++numprocs;
19552
19553 if (debug_type == DEBUG_STABS)
19554 stabs_generate_asm_func (S_GET_NAME (symbolP),
19555 S_GET_NAME (symbolP));
19556 }
19557
19558 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19559
19560 demand_empty_rest_of_line ();
19561 }
19562
19563 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
19564 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
19565 s_mips_frame is used so that we can set the PDR information correctly.
19566 We can't use the ecoff routines because they make reference to the ecoff
19567 symbol table (in the mdebug section). */
19568
19569 static void
19570 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
19571 {
19572 if (ECOFF_DEBUGGING)
19573 s_ignore (ignore);
19574 else
19575 {
19576 long val;
19577
19578 if (cur_proc_ptr == (procS *) NULL)
19579 {
19580 as_warn (_(".frame outside of .ent"));
19581 demand_empty_rest_of_line ();
19582 return;
19583 }
19584
19585 cur_proc_ptr->frame_reg = tc_get_register (1);
19586
19587 SKIP_WHITESPACE ();
19588 if (*input_line_pointer++ != ','
19589 || get_absolute_expression_and_terminator (&val) != ',')
19590 {
19591 as_warn (_("bad .frame directive"));
19592 --input_line_pointer;
19593 demand_empty_rest_of_line ();
19594 return;
19595 }
19596
19597 cur_proc_ptr->frame_offset = val;
19598 cur_proc_ptr->pc_reg = tc_get_register (0);
19599
19600 demand_empty_rest_of_line ();
19601 }
19602 }
19603
19604 /* The .fmask and .mask directives. If the mdebug section is present
19605 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
19606 embedded targets, s_mips_mask is used so that we can set the PDR
19607 information correctly. We can't use the ecoff routines because they
19608 make reference to the ecoff symbol table (in the mdebug section). */
19609
19610 static void
19611 s_mips_mask (int reg_type)
19612 {
19613 if (ECOFF_DEBUGGING)
19614 s_ignore (reg_type);
19615 else
19616 {
19617 long mask, off;
19618
19619 if (cur_proc_ptr == (procS *) NULL)
19620 {
19621 as_warn (_(".mask/.fmask outside of .ent"));
19622 demand_empty_rest_of_line ();
19623 return;
19624 }
19625
19626 if (get_absolute_expression_and_terminator (&mask) != ',')
19627 {
19628 as_warn (_("bad .mask/.fmask directive"));
19629 --input_line_pointer;
19630 demand_empty_rest_of_line ();
19631 return;
19632 }
19633
19634 off = get_absolute_expression ();
19635
19636 if (reg_type == 'F')
19637 {
19638 cur_proc_ptr->fpreg_mask = mask;
19639 cur_proc_ptr->fpreg_offset = off;
19640 }
19641 else
19642 {
19643 cur_proc_ptr->reg_mask = mask;
19644 cur_proc_ptr->reg_offset = off;
19645 }
19646
19647 demand_empty_rest_of_line ();
19648 }
19649 }
19650
19651 /* A table describing all the processors gas knows about. Names are
19652 matched in the order listed.
19653
19654 To ease comparison, please keep this table in the same order as
19655 gcc's mips_cpu_info_table[]. */
19656 static const struct mips_cpu_info mips_cpu_info_table[] =
19657 {
19658 /* Entries for generic ISAs */
19659 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19660 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19661 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19662 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19663 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19664 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19665 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19666 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19667 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
19668 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
19669 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19670 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
19671 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
19672 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
19673 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
19674
19675 /* MIPS I */
19676 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19677 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19678 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
19679
19680 /* MIPS II */
19681 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
19682
19683 /* MIPS III */
19684 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19685 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19686 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19687 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19688 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19689 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19690 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19691 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19692 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19693 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19694 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19695 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19696 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
19697 /* ST Microelectronics Loongson 2E and 2F cores */
19698 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
19699 { "loongson2f", 0, ASE_LOONGSON_MMI, ISA_MIPS3, CPU_LOONGSON_2F },
19700
19701 /* MIPS IV */
19702 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19703 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19704 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19705 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19706 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19707 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19708 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19709 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19710 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19711 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19712 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19713 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19714 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19715 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19716 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
19717
19718 /* MIPS 32 */
19719 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19720 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19721 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19722 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
19723
19724 /* MIPS 32 Release 2 */
19725 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19726 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19727 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19728 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19729 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19730 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19731 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19732 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19733 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19734 ISA_MIPS32R2, CPU_MIPS32R2 },
19735 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19736 ISA_MIPS32R2, CPU_MIPS32R2 },
19737 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19738 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19739 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19740 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19741 /* Deprecated forms of the above. */
19742 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19743 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19744 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
19745 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19746 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19747 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19748 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19749 /* Deprecated forms of the above. */
19750 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19751 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19752 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
19753 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19754 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19755 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19756 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19757 /* Deprecated forms of the above. */
19758 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19759 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19760 /* 34Kn is a 34kc without DSP. */
19761 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19762 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
19763 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19764 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19765 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19766 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19767 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19768 /* Deprecated forms of the above. */
19769 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19770 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19771 /* 1004K cores are multiprocessor versions of the 34K. */
19772 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19773 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19774 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19775 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19776 /* interaptiv is the new name for 1004kf */
19777 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19778 { "interaptiv-mr2", 0,
19779 ASE_DSP | ASE_EVA | ASE_MT | ASE_MIPS16E2 | ASE_MIPS16E2_MT,
19780 ISA_MIPS32R3, CPU_INTERAPTIV_MR2 },
19781 /* M5100 family */
19782 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19783 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19784 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
19785 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
19786
19787 /* MIPS 64 */
19788 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19789 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19790 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19791 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19792
19793 /* Broadcom SB-1 CPU core */
19794 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19795 /* Broadcom SB-1A CPU core */
19796 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19797
19798 /* MIPS 64 Release 2 */
19799 /* Loongson CPU core */
19800 { "loongson3a", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT,
19801 ISA_MIPS64R2, CPU_LOONGSON_3A },
19802
19803 /* Cavium Networks Octeon CPU core */
19804 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
19805 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
19806 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
19807 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
19808
19809 /* RMI Xlr */
19810 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
19811
19812 /* Broadcom XLP.
19813 XLP is mostly like XLR, with the prominent exception that it is
19814 MIPS64R2 rather than MIPS64. */
19815 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
19816
19817 /* MIPS 64 Release 6 */
19818 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19819 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19820
19821 /* End marker */
19822 { NULL, 0, 0, 0, 0 }
19823 };
19824
19825
19826 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19827 with a final "000" replaced by "k". Ignore case.
19828
19829 Note: this function is shared between GCC and GAS. */
19830
19831 static bfd_boolean
19832 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
19833 {
19834 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19835 given++, canonical++;
19836
19837 return ((*given == 0 && *canonical == 0)
19838 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19839 }
19840
19841
19842 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19843 CPU name. We've traditionally allowed a lot of variation here.
19844
19845 Note: this function is shared between GCC and GAS. */
19846
19847 static bfd_boolean
19848 mips_matching_cpu_name_p (const char *canonical, const char *given)
19849 {
19850 /* First see if the name matches exactly, or with a final "000"
19851 turned into "k". */
19852 if (mips_strict_matching_cpu_name_p (canonical, given))
19853 return TRUE;
19854
19855 /* If not, try comparing based on numerical designation alone.
19856 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19857 if (TOLOWER (*given) == 'r')
19858 given++;
19859 if (!ISDIGIT (*given))
19860 return FALSE;
19861
19862 /* Skip over some well-known prefixes in the canonical name,
19863 hoping to find a number there too. */
19864 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19865 canonical += 2;
19866 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19867 canonical += 2;
19868 else if (TOLOWER (canonical[0]) == 'r')
19869 canonical += 1;
19870
19871 return mips_strict_matching_cpu_name_p (canonical, given);
19872 }
19873
19874
19875 /* Parse an option that takes the name of a processor as its argument.
19876 OPTION is the name of the option and CPU_STRING is the argument.
19877 Return the corresponding processor enumeration if the CPU_STRING is
19878 recognized, otherwise report an error and return null.
19879
19880 A similar function exists in GCC. */
19881
19882 static const struct mips_cpu_info *
19883 mips_parse_cpu (const char *option, const char *cpu_string)
19884 {
19885 const struct mips_cpu_info *p;
19886
19887 /* 'from-abi' selects the most compatible architecture for the given
19888 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19889 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19890 version. Look first at the -mgp options, if given, otherwise base
19891 the choice on MIPS_DEFAULT_64BIT.
19892
19893 Treat NO_ABI like the EABIs. One reason to do this is that the
19894 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19895 architecture. This code picks MIPS I for 'mips' and MIPS III for
19896 'mips64', just as we did in the days before 'from-abi'. */
19897 if (strcasecmp (cpu_string, "from-abi") == 0)
19898 {
19899 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19900 return mips_cpu_info_from_isa (ISA_MIPS1);
19901
19902 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19903 return mips_cpu_info_from_isa (ISA_MIPS3);
19904
19905 if (file_mips_opts.gp >= 0)
19906 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
19907 ? ISA_MIPS1 : ISA_MIPS3);
19908
19909 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19910 ? ISA_MIPS3
19911 : ISA_MIPS1);
19912 }
19913
19914 /* 'default' has traditionally been a no-op. Probably not very useful. */
19915 if (strcasecmp (cpu_string, "default") == 0)
19916 return 0;
19917
19918 for (p = mips_cpu_info_table; p->name != 0; p++)
19919 if (mips_matching_cpu_name_p (p->name, cpu_string))
19920 return p;
19921
19922 as_bad (_("bad value (%s) for %s"), cpu_string, option);
19923 return 0;
19924 }
19925
19926 /* Return the canonical processor information for ISA (a member of the
19927 ISA_MIPS* enumeration). */
19928
19929 static const struct mips_cpu_info *
19930 mips_cpu_info_from_isa (int isa)
19931 {
19932 int i;
19933
19934 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19935 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
19936 && isa == mips_cpu_info_table[i].isa)
19937 return (&mips_cpu_info_table[i]);
19938
19939 return NULL;
19940 }
19941
19942 static const struct mips_cpu_info *
19943 mips_cpu_info_from_arch (int arch)
19944 {
19945 int i;
19946
19947 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19948 if (arch == mips_cpu_info_table[i].cpu)
19949 return (&mips_cpu_info_table[i]);
19950
19951 return NULL;
19952 }
19953 \f
19954 static void
19955 show (FILE *stream, const char *string, int *col_p, int *first_p)
19956 {
19957 if (*first_p)
19958 {
19959 fprintf (stream, "%24s", "");
19960 *col_p = 24;
19961 }
19962 else
19963 {
19964 fprintf (stream, ", ");
19965 *col_p += 2;
19966 }
19967
19968 if (*col_p + strlen (string) > 72)
19969 {
19970 fprintf (stream, "\n%24s", "");
19971 *col_p = 24;
19972 }
19973
19974 fprintf (stream, "%s", string);
19975 *col_p += strlen (string);
19976
19977 *first_p = 0;
19978 }
19979
19980 void
19981 md_show_usage (FILE *stream)
19982 {
19983 int column, first;
19984 size_t i;
19985
19986 fprintf (stream, _("\
19987 MIPS options:\n\
19988 -EB generate big endian output\n\
19989 -EL generate little endian output\n\
19990 -g, -g2 do not remove unneeded NOPs or swap branches\n\
19991 -G NUM allow referencing objects up to NUM bytes\n\
19992 implicitly with the gp register [default 8]\n"));
19993 fprintf (stream, _("\
19994 -mips1 generate MIPS ISA I instructions\n\
19995 -mips2 generate MIPS ISA II instructions\n\
19996 -mips3 generate MIPS ISA III instructions\n\
19997 -mips4 generate MIPS ISA IV instructions\n\
19998 -mips5 generate MIPS ISA V instructions\n\
19999 -mips32 generate MIPS32 ISA instructions\n\
20000 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
20001 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
20002 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
20003 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
20004 -mips64 generate MIPS64 ISA instructions\n\
20005 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
20006 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
20007 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
20008 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
20009 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
20010
20011 first = 1;
20012
20013 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
20014 show (stream, mips_cpu_info_table[i].name, &column, &first);
20015 show (stream, "from-abi", &column, &first);
20016 fputc ('\n', stream);
20017
20018 fprintf (stream, _("\
20019 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
20020 -no-mCPU don't generate code specific to CPU.\n\
20021 For -mCPU and -no-mCPU, CPU must be one of:\n"));
20022
20023 first = 1;
20024
20025 show (stream, "3900", &column, &first);
20026 show (stream, "4010", &column, &first);
20027 show (stream, "4100", &column, &first);
20028 show (stream, "4650", &column, &first);
20029 fputc ('\n', stream);
20030
20031 fprintf (stream, _("\
20032 -mips16 generate mips16 instructions\n\
20033 -no-mips16 do not generate mips16 instructions\n"));
20034 fprintf (stream, _("\
20035 -mmips16e2 generate MIPS16e2 instructions\n\
20036 -mno-mips16e2 do not generate MIPS16e2 instructions\n"));
20037 fprintf (stream, _("\
20038 -mmicromips generate microMIPS instructions\n\
20039 -mno-micromips do not generate microMIPS instructions\n"));
20040 fprintf (stream, _("\
20041 -msmartmips generate smartmips instructions\n\
20042 -mno-smartmips do not generate smartmips instructions\n"));
20043 fprintf (stream, _("\
20044 -mdsp generate DSP instructions\n\
20045 -mno-dsp do not generate DSP instructions\n"));
20046 fprintf (stream, _("\
20047 -mdspr2 generate DSP R2 instructions\n\
20048 -mno-dspr2 do not generate DSP R2 instructions\n"));
20049 fprintf (stream, _("\
20050 -mdspr3 generate DSP R3 instructions\n\
20051 -mno-dspr3 do not generate DSP R3 instructions\n"));
20052 fprintf (stream, _("\
20053 -mmt generate MT instructions\n\
20054 -mno-mt do not generate MT instructions\n"));
20055 fprintf (stream, _("\
20056 -mmcu generate MCU instructions\n\
20057 -mno-mcu do not generate MCU instructions\n"));
20058 fprintf (stream, _("\
20059 -mmsa generate MSA instructions\n\
20060 -mno-msa do not generate MSA instructions\n"));
20061 fprintf (stream, _("\
20062 -mxpa generate eXtended Physical Address (XPA) instructions\n\
20063 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
20064 fprintf (stream, _("\
20065 -mvirt generate Virtualization instructions\n\
20066 -mno-virt do not generate Virtualization instructions\n"));
20067 fprintf (stream, _("\
20068 -mcrc generate CRC instructions\n\
20069 -mno-crc do not generate CRC instructions\n"));
20070 fprintf (stream, _("\
20071 -mginv generate Global INValidate (GINV) instructions\n\
20072 -mno-ginv do not generate Global INValidate instructions\n"));
20073 fprintf (stream, _("\
20074 -mloongson-mmi generate Loongson MultiMedia extensions Instructions (MMI) instructions\n\
20075 -mno-loongson-mmi do not generate Loongson MultiMedia extensions Instructions\n"));
20076 fprintf (stream, _("\
20077 -mloongson-cam generate Loongson Content Address Memory (CAM) instructions\n\
20078 -mno-loongson-cam do not generate Loongson Content Address Memory Instructions\n"));
20079 fprintf (stream, _("\
20080 -mloongson-ext generate Loongson EXTensions (EXT) instructions\n\
20081 -mno-loongson-ext do not generate Loongson EXTensions Instructions\n"));
20082 fprintf (stream, _("\
20083 -minsn32 only generate 32-bit microMIPS instructions\n\
20084 -mno-insn32 generate all microMIPS instructions\n"));
20085 fprintf (stream, _("\
20086 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
20087 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
20088 -mfix-vr4120 work around certain VR4120 errata\n\
20089 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
20090 -mfix-24k insert a nop after ERET and DERET instructions\n\
20091 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
20092 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
20093 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
20094 -msym32 assume all symbols have 32-bit values\n\
20095 -O0 do not remove unneeded NOPs, do not swap branches\n\
20096 -O, -O1 remove unneeded NOPs, do not swap branches\n\
20097 -O2 remove unneeded NOPs and swap branches\n\
20098 --trap, --no-break trap exception on div by 0 and mult overflow\n\
20099 --break, --no-trap break exception on div by 0 and mult overflow\n"));
20100 fprintf (stream, _("\
20101 -mhard-float allow floating-point instructions\n\
20102 -msoft-float do not allow floating-point instructions\n\
20103 -msingle-float only allow 32-bit floating-point operations\n\
20104 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
20105 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
20106 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
20107 -mignore-branch-isa accept invalid branches requiring an ISA mode switch\n\
20108 -mno-ignore-branch-isa reject invalid branches requiring an ISA mode switch\n\
20109 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
20110
20111 first = 1;
20112
20113 show (stream, "legacy", &column, &first);
20114 show (stream, "2008", &column, &first);
20115
20116 fputc ('\n', stream);
20117
20118 fprintf (stream, _("\
20119 -KPIC, -call_shared generate SVR4 position independent code\n\
20120 -call_nonpic generate non-PIC code that can operate with DSOs\n\
20121 -mvxworks-pic generate VxWorks position independent code\n\
20122 -non_shared do not generate code that can operate with DSOs\n\
20123 -xgot assume a 32 bit GOT\n\
20124 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
20125 -mshared, -mno-shared disable/enable .cpload optimization for\n\
20126 position dependent (non shared) code\n\
20127 -mabi=ABI create ABI conformant object file for:\n"));
20128
20129 first = 1;
20130
20131 show (stream, "32", &column, &first);
20132 show (stream, "o64", &column, &first);
20133 show (stream, "n32", &column, &first);
20134 show (stream, "64", &column, &first);
20135 show (stream, "eabi", &column, &first);
20136
20137 fputc ('\n', stream);
20138
20139 fprintf (stream, _("\
20140 -32 create o32 ABI object file%s\n"),
20141 MIPS_DEFAULT_ABI == O32_ABI ? _(" (default)") : "");
20142 fprintf (stream, _("\
20143 -n32 create n32 ABI object file%s\n"),
20144 MIPS_DEFAULT_ABI == N32_ABI ? _(" (default)") : "");
20145 fprintf (stream, _("\
20146 -64 create 64 ABI object file%s\n"),
20147 MIPS_DEFAULT_ABI == N64_ABI ? _(" (default)") : "");
20148 }
20149
20150 #ifdef TE_IRIX
20151 enum dwarf2_format
20152 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
20153 {
20154 if (HAVE_64BIT_SYMBOLS)
20155 return dwarf2_format_64bit_irix;
20156 else
20157 return dwarf2_format_32bit;
20158 }
20159 #endif
20160
20161 int
20162 mips_dwarf2_addr_size (void)
20163 {
20164 if (HAVE_64BIT_OBJECTS)
20165 return 8;
20166 else
20167 return 4;
20168 }
20169
20170 /* Standard calling conventions leave the CFA at SP on entry. */
20171 void
20172 mips_cfi_frame_initial_instructions (void)
20173 {
20174 cfi_add_CFA_def_cfa_register (SP);
20175 }
20176
20177 int
20178 tc_mips_regname_to_dw2regnum (char *regname)
20179 {
20180 unsigned int regnum = -1;
20181 unsigned int reg;
20182
20183 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
20184 regnum = reg;
20185
20186 return regnum;
20187 }
20188
20189 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
20190 Given a symbolic attribute NAME, return the proper integer value.
20191 Returns -1 if the attribute is not known. */
20192
20193 int
20194 mips_convert_symbolic_attribute (const char *name)
20195 {
20196 static const struct
20197 {
20198 const char * name;
20199 const int tag;
20200 }
20201 attribute_table[] =
20202 {
20203 #define T(tag) {#tag, tag}
20204 T (Tag_GNU_MIPS_ABI_FP),
20205 T (Tag_GNU_MIPS_ABI_MSA),
20206 #undef T
20207 };
20208 unsigned int i;
20209
20210 if (name == NULL)
20211 return -1;
20212
20213 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
20214 if (streq (name, attribute_table[i].name))
20215 return attribute_table[i].tag;
20216
20217 return -1;
20218 }
20219
20220 void
20221 md_mips_end (void)
20222 {
20223 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
20224
20225 mips_emit_delays ();
20226 if (cur_proc_ptr)
20227 as_warn (_("missing .end at end of assembly"));
20228
20229 /* Just in case no code was emitted, do the consistency check. */
20230 file_mips_check_options ();
20231
20232 /* Set a floating-point ABI if the user did not. */
20233 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
20234 {
20235 /* Perform consistency checks on the floating-point ABI. */
20236 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20237 Tag_GNU_MIPS_ABI_FP);
20238 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
20239 check_fpabi (fpabi);
20240 }
20241 else
20242 {
20243 /* Soft-float gets precedence over single-float, the two options should
20244 not be used together so this should not matter. */
20245 if (file_mips_opts.soft_float == 1)
20246 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
20247 /* Single-float gets precedence over all double_float cases. */
20248 else if (file_mips_opts.single_float == 1)
20249 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
20250 else
20251 {
20252 switch (file_mips_opts.fp)
20253 {
20254 case 32:
20255 if (file_mips_opts.gp == 32)
20256 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20257 break;
20258 case 0:
20259 fpabi = Val_GNU_MIPS_ABI_FP_XX;
20260 break;
20261 case 64:
20262 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
20263 fpabi = Val_GNU_MIPS_ABI_FP_64A;
20264 else if (file_mips_opts.gp == 32)
20265 fpabi = Val_GNU_MIPS_ABI_FP_64;
20266 else
20267 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20268 break;
20269 }
20270 }
20271
20272 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20273 Tag_GNU_MIPS_ABI_FP, fpabi);
20274 }
20275 }
20276
20277 /* Returns the relocation type required for a particular CFI encoding. */
20278
20279 bfd_reloc_code_real_type
20280 mips_cfi_reloc_for_encoding (int encoding)
20281 {
20282 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
20283 return BFD_RELOC_32_PCREL;
20284 else return BFD_RELOC_NONE;
20285 }
This page took 0.573804 seconds and 4 git commands to generate.