7e927b23fa36bddd7d2c42569ba7c61e7610cbcb
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168 };
169
170 /* The ABI to use. */
171 enum mips_abi_level
172 {
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179 };
180
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
183
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
186
187 /* Whether or not we have code which can be put into a shared
188 library. */
189 static bfd_boolean mips_in_shared = TRUE;
190
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195 struct mips_set_options
196 {
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265 };
266
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
269
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
275
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280 static struct mips_set_options file_mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287 };
288
289 /* This is similar to file_mips_opts, but for the current set of options. */
290
291 static struct mips_set_options mips_opts =
292 {
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298 };
299
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
311
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
323
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
325 #ifdef TE_IRIX
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327 #else
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334 #endif
335
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
338
339 /* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
343
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
346
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
426
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
454
455 #define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
459
460 #define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
464
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
466
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
468
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
476
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
482
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
488
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
491
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
502
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
505
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
515
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
518
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
555 )
556
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
567 )
568
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
584 )
585
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
596
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
610
611 /* MIPS PIC level. */
612
613 enum mips_pic_level mips_pic;
614
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
618
619 /* 1 if trap instructions should used for overflow rather than break
620 instructions. */
621 static int mips_trap = 0;
622
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
630
631 /* Non-zero if any .set noreorder directives were used. */
632
633 static int mips_any_noreorder;
634
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
638
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
643
644 #define N_RMASK 0xc4
645 #define N_VFP 0xd4
646
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
660
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
663
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
666
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
669
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
673
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
682
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
685
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
688
689 /* Chars that mean this number is a floating point constant */
690 /* As in 0f12.456 */
691 /* or 0d1.2345e12 */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705 };
706
707 /* Information about an error that was found while assembling the current
708 instruction. */
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732 };
733
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
736
737 static int auto_align = 1;
738
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743 static offsetT mips_cprestore_offset = -1;
744
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
752
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
756
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
760
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
764
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772 static int mips_optimize = 2;
773
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
777
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
780
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
783
784 /* The maximum number of NOPs needed for any purpose. */
785 #define MAX_NOPS 4
786
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
793
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798 };
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
802
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
808
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
817
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
822
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827 static fragS *prev_nop_frag;
828
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
831
832 /* The number of nop instructions that we know we need in
833 prev_nop_frag. */
834 static int prev_nop_frag_required;
835
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
838
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
849
850 struct mips_hi_fixup
851 {
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858 };
859
860 /* The list of unmatched HI relocs. */
861
862 static struct mips_hi_fixup *mips_hi_fixup_list;
863
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867 static fragS *prev_reloc_op_frag;
868
869 /* Map mips16 register numbers to normal MIPS register numbers. */
870
871 static const unsigned int mips16_to_32_reg_map[] =
872 {
873 16, 17, 2, 3, 4, 5, 6, 7
874 };
875
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
877
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
879
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
882 {
883 5, 5, 6, 4, 4, 4, 4, 4
884 };
885 static const unsigned int micromips_to_32_reg_h_map2[] =
886 {
887 6, 7, 7, 21, 22, 5, 6, 7
888 };
889
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
892 {
893 0, 17, 2, 3, 16, 18, 19, 20
894 };
895
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
901 {
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909 };
910
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
913
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
916
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
919
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
927
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
930
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
933
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
936
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
939
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945 static int mips_relax_branch;
946
947 /* TRUE if checks are suppressed for invalid branches between ISA modes.
948 Needed for broken assembly produced by some GCC versions and some
949 sloppy code out there, where branches to data labels are present. */
950 static bfd_boolean mips_ignore_branch_isa;
951 \f
952 /* The expansion of many macros depends on the type of symbol that
953 they refer to. For example, when generating position-dependent code,
954 a macro that refers to a symbol may have two different expansions,
955 one which uses GP-relative addresses and one which uses absolute
956 addresses. When generating SVR4-style PIC, a macro may have
957 different expansions for local and global symbols.
958
959 We handle these situations by generating both sequences and putting
960 them in variant frags. In position-dependent code, the first sequence
961 will be the GP-relative one and the second sequence will be the
962 absolute one. In SVR4 PIC, the first sequence will be for global
963 symbols and the second will be for local symbols.
964
965 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
966 SECOND are the lengths of the two sequences in bytes. These fields
967 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
968 the subtype has the following flags:
969
970 RELAX_PIC
971 Set if generating PIC code.
972
973 RELAX_USE_SECOND
974 Set if it has been decided that we should use the second
975 sequence instead of the first.
976
977 RELAX_SECOND_LONGER
978 Set in the first variant frag if the macro's second implementation
979 is longer than its first. This refers to the macro as a whole,
980 not an individual relaxation.
981
982 RELAX_NOMACRO
983 Set in the first variant frag if the macro appeared in a .set nomacro
984 block and if one alternative requires a warning but the other does not.
985
986 RELAX_DELAY_SLOT
987 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
988 delay slot.
989
990 RELAX_DELAY_SLOT_16BIT
991 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
992 16-bit instruction.
993
994 RELAX_DELAY_SLOT_SIZE_FIRST
995 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
996 the macro is of the wrong size for the branch delay slot.
997
998 RELAX_DELAY_SLOT_SIZE_SECOND
999 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
1000 the macro is of the wrong size for the branch delay slot.
1001
1002 The frag's "opcode" points to the first fixup for relaxable code.
1003
1004 Relaxable macros are generated using a sequence such as:
1005
1006 relax_start (SYMBOL);
1007 ... generate first expansion ...
1008 relax_switch ();
1009 ... generate second expansion ...
1010 relax_end ();
1011
1012 The code and fixups for the unwanted alternative are discarded
1013 by md_convert_frag. */
1014 #define RELAX_ENCODE(FIRST, SECOND, PIC) \
1015 (((FIRST) << 8) | (SECOND) | ((PIC) ? 0x10000 : 0))
1016
1017 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1018 #define RELAX_SECOND(X) ((X) & 0xff)
1019 #define RELAX_PIC(X) (((X) & 0x10000) != 0)
1020 #define RELAX_USE_SECOND 0x20000
1021 #define RELAX_SECOND_LONGER 0x40000
1022 #define RELAX_NOMACRO 0x80000
1023 #define RELAX_DELAY_SLOT 0x100000
1024 #define RELAX_DELAY_SLOT_16BIT 0x200000
1025 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x400000
1026 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x800000
1027
1028 /* Branch without likely bit. If label is out of range, we turn:
1029
1030 beq reg1, reg2, label
1031 delay slot
1032
1033 into
1034
1035 bne reg1, reg2, 0f
1036 nop
1037 j label
1038 0: delay slot
1039
1040 with the following opcode replacements:
1041
1042 beq <-> bne
1043 blez <-> bgtz
1044 bltz <-> bgez
1045 bc1f <-> bc1t
1046
1047 bltzal <-> bgezal (with jal label instead of j label)
1048
1049 Even though keeping the delay slot instruction in the delay slot of
1050 the branch would be more efficient, it would be very tricky to do
1051 correctly, because we'd have to introduce a variable frag *after*
1052 the delay slot instruction, and expand that instead. Let's do it
1053 the easy way for now, even if the branch-not-taken case now costs
1054 one additional instruction. Out-of-range branches are not supposed
1055 to be common, anyway.
1056
1057 Branch likely. If label is out of range, we turn:
1058
1059 beql reg1, reg2, label
1060 delay slot (annulled if branch not taken)
1061
1062 into
1063
1064 beql reg1, reg2, 1f
1065 nop
1066 beql $0, $0, 2f
1067 nop
1068 1: j[al] label
1069 delay slot (executed only if branch taken)
1070 2:
1071
1072 It would be possible to generate a shorter sequence by losing the
1073 likely bit, generating something like:
1074
1075 bne reg1, reg2, 0f
1076 nop
1077 j[al] label
1078 delay slot (executed only if branch taken)
1079 0:
1080
1081 beql -> bne
1082 bnel -> beq
1083 blezl -> bgtz
1084 bgtzl -> blez
1085 bltzl -> bgez
1086 bgezl -> bltz
1087 bc1fl -> bc1t
1088 bc1tl -> bc1f
1089
1090 bltzall -> bgezal (with jal label instead of j label)
1091 bgezall -> bltzal (ditto)
1092
1093
1094 but it's not clear that it would actually improve performance. */
1095 #define RELAX_BRANCH_ENCODE(at, pic, \
1096 uncond, likely, link, toofar) \
1097 ((relax_substateT) \
1098 (0xc0000000 \
1099 | ((at) & 0x1f) \
1100 | ((pic) ? 0x20 : 0) \
1101 | ((toofar) ? 0x40 : 0) \
1102 | ((link) ? 0x80 : 0) \
1103 | ((likely) ? 0x100 : 0) \
1104 | ((uncond) ? 0x200 : 0)))
1105 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1106 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x200) != 0)
1107 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x100) != 0)
1108 #define RELAX_BRANCH_LINK(i) (((i) & 0x80) != 0)
1109 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x40) != 0)
1110 #define RELAX_BRANCH_PIC(i) (((i) & 0x20) != 0)
1111 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1112
1113 /* For mips16 code, we use an entirely different form of relaxation.
1114 mips16 supports two versions of most instructions which take
1115 immediate values: a small one which takes some small value, and a
1116 larger one which takes a 16 bit value. Since branches also follow
1117 this pattern, relaxing these values is required.
1118
1119 We can assemble both mips16 and normal MIPS code in a single
1120 object. Therefore, we need to support this type of relaxation at
1121 the same time that we support the relaxation described above. We
1122 use the high bit of the subtype field to distinguish these cases.
1123
1124 The information we store for this type of relaxation is the
1125 argument code found in the opcode file for this relocation, whether
1126 the user explicitly requested a small or extended form, and whether
1127 the relocation is in a jump or jal delay slot. That tells us the
1128 size of the value, and how it should be stored. We also store
1129 whether the fragment is considered to be extended or not. We also
1130 store whether this is known to be a branch to a different section,
1131 whether we have tried to relax this frag yet, and whether we have
1132 ever extended a PC relative fragment because of a shift count. */
1133 #define RELAX_MIPS16_ENCODE(type, e2, pic, sym32, nomacro, \
1134 small, ext, \
1135 dslot, jal_dslot) \
1136 (0x80000000 \
1137 | ((type) & 0xff) \
1138 | ((e2) ? 0x100 : 0) \
1139 | ((pic) ? 0x200 : 0) \
1140 | ((sym32) ? 0x400 : 0) \
1141 | ((nomacro) ? 0x800 : 0) \
1142 | ((small) ? 0x1000 : 0) \
1143 | ((ext) ? 0x2000 : 0) \
1144 | ((dslot) ? 0x4000 : 0) \
1145 | ((jal_dslot) ? 0x8000 : 0))
1146
1147 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1148 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1149 #define RELAX_MIPS16_E2(i) (((i) & 0x100) != 0)
1150 #define RELAX_MIPS16_PIC(i) (((i) & 0x200) != 0)
1151 #define RELAX_MIPS16_SYM32(i) (((i) & 0x400) != 0)
1152 #define RELAX_MIPS16_NOMACRO(i) (((i) & 0x800) != 0)
1153 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x1000) != 0)
1154 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x2000) != 0)
1155 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x4000) != 0)
1156 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x8000) != 0)
1157
1158 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x10000) != 0)
1159 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x10000)
1160 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) & ~0x10000)
1161 #define RELAX_MIPS16_ALWAYS_EXTENDED(i) (((i) & 0x20000) != 0)
1162 #define RELAX_MIPS16_MARK_ALWAYS_EXTENDED(i) ((i) | 0x20000)
1163 #define RELAX_MIPS16_CLEAR_ALWAYS_EXTENDED(i) ((i) & ~0x20000)
1164 #define RELAX_MIPS16_MACRO(i) (((i) & 0x40000) != 0)
1165 #define RELAX_MIPS16_MARK_MACRO(i) ((i) | 0x40000)
1166 #define RELAX_MIPS16_CLEAR_MACRO(i) ((i) & ~0x40000)
1167
1168 /* For microMIPS code, we use relaxation similar to one we use for
1169 MIPS16 code. Some instructions that take immediate values support
1170 two encodings: a small one which takes some small value, and a
1171 larger one which takes a 16 bit value. As some branches also follow
1172 this pattern, relaxing these values is required.
1173
1174 We can assemble both microMIPS and normal MIPS code in a single
1175 object. Therefore, we need to support this type of relaxation at
1176 the same time that we support the relaxation described above. We
1177 use one of the high bits of the subtype field to distinguish these
1178 cases.
1179
1180 The information we store for this type of relaxation is the argument
1181 code found in the opcode file for this relocation, the register
1182 selected as the assembler temporary, whether in the 32-bit
1183 instruction mode, whether the branch is unconditional, whether it is
1184 compact, whether there is no delay-slot instruction available to fill
1185 in, whether it stores the link address implicitly in $ra, whether
1186 relaxation of out-of-range 32-bit branches to a sequence of
1187 instructions is enabled, and whether the displacement of a branch is
1188 too large to fit as an immediate argument of a 16-bit and a 32-bit
1189 branch, respectively. */
1190 #define RELAX_MICROMIPS_ENCODE(type, at, insn32, pic, \
1191 uncond, compact, link, nods, \
1192 relax32, toofar16, toofar32) \
1193 (0x40000000 \
1194 | ((type) & 0xff) \
1195 | (((at) & 0x1f) << 8) \
1196 | ((insn32) ? 0x2000 : 0) \
1197 | ((pic) ? 0x4000 : 0) \
1198 | ((uncond) ? 0x8000 : 0) \
1199 | ((compact) ? 0x10000 : 0) \
1200 | ((link) ? 0x20000 : 0) \
1201 | ((nods) ? 0x40000 : 0) \
1202 | ((relax32) ? 0x80000 : 0) \
1203 | ((toofar16) ? 0x100000 : 0) \
1204 | ((toofar32) ? 0x200000 : 0))
1205 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1206 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1207 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1208 #define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
1209 #define RELAX_MICROMIPS_PIC(i) (((i) & 0x4000) != 0)
1210 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x8000) != 0)
1211 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x10000) != 0)
1212 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x20000) != 0)
1213 #define RELAX_MICROMIPS_NODS(i) (((i) & 0x40000) != 0)
1214 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x80000) != 0)
1215
1216 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x100000) != 0)
1217 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x100000)
1218 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x100000)
1219 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x200000) != 0)
1220 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x200000)
1221 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x200000)
1222
1223 /* Sign-extend 16-bit value X. */
1224 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1225
1226 /* Is the given value a sign-extended 32-bit value? */
1227 #define IS_SEXT_32BIT_NUM(x) \
1228 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1229 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1230
1231 /* Is the given value a sign-extended 16-bit value? */
1232 #define IS_SEXT_16BIT_NUM(x) \
1233 (((x) &~ (offsetT) 0x7fff) == 0 \
1234 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1235
1236 /* Is the given value a sign-extended 12-bit value? */
1237 #define IS_SEXT_12BIT_NUM(x) \
1238 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1239
1240 /* Is the given value a sign-extended 9-bit value? */
1241 #define IS_SEXT_9BIT_NUM(x) \
1242 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1243
1244 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1245 #define IS_ZEXT_32BIT_NUM(x) \
1246 (((x) &~ (offsetT) 0xffffffff) == 0 \
1247 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1248
1249 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1250 SHIFT places. */
1251 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1252 (((STRUCT) >> (SHIFT)) & (MASK))
1253
1254 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1255 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1256 (!(MICROMIPS) \
1257 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1258 : EXTRACT_BITS ((INSN).insn_opcode, \
1259 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1260 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1261 EXTRACT_BITS ((INSN).insn_opcode, \
1262 MIPS16OP_MASK_##FIELD, \
1263 MIPS16OP_SH_##FIELD)
1264
1265 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1266 #define MIPS16_EXTEND (0xf000U << 16)
1267 \f
1268 /* Whether or not we are emitting a branch-likely macro. */
1269 static bfd_boolean emit_branch_likely_macro = FALSE;
1270
1271 /* Global variables used when generating relaxable macros. See the
1272 comment above RELAX_ENCODE for more details about how relaxation
1273 is used. */
1274 static struct {
1275 /* 0 if we're not emitting a relaxable macro.
1276 1 if we're emitting the first of the two relaxation alternatives.
1277 2 if we're emitting the second alternative. */
1278 int sequence;
1279
1280 /* The first relaxable fixup in the current frag. (In other words,
1281 the first fixup that refers to relaxable code.) */
1282 fixS *first_fixup;
1283
1284 /* sizes[0] says how many bytes of the first alternative are stored in
1285 the current frag. Likewise sizes[1] for the second alternative. */
1286 unsigned int sizes[2];
1287
1288 /* The symbol on which the choice of sequence depends. */
1289 symbolS *symbol;
1290 } mips_relax;
1291 \f
1292 /* Global variables used to decide whether a macro needs a warning. */
1293 static struct {
1294 /* True if the macro is in a branch delay slot. */
1295 bfd_boolean delay_slot_p;
1296
1297 /* Set to the length in bytes required if the macro is in a delay slot
1298 that requires a specific length of instruction, otherwise zero. */
1299 unsigned int delay_slot_length;
1300
1301 /* For relaxable macros, sizes[0] is the length of the first alternative
1302 in bytes and sizes[1] is the length of the second alternative.
1303 For non-relaxable macros, both elements give the length of the
1304 macro in bytes. */
1305 unsigned int sizes[2];
1306
1307 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1308 instruction of the first alternative in bytes and first_insn_sizes[1]
1309 is the length of the first instruction of the second alternative.
1310 For non-relaxable macros, both elements give the length of the first
1311 instruction in bytes.
1312
1313 Set to zero if we haven't yet seen the first instruction. */
1314 unsigned int first_insn_sizes[2];
1315
1316 /* For relaxable macros, insns[0] is the number of instructions for the
1317 first alternative and insns[1] is the number of instructions for the
1318 second alternative.
1319
1320 For non-relaxable macros, both elements give the number of
1321 instructions for the macro. */
1322 unsigned int insns[2];
1323
1324 /* The first variant frag for this macro. */
1325 fragS *first_frag;
1326 } mips_macro_warning;
1327 \f
1328 /* Prototypes for static functions. */
1329
1330 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1331
1332 static void append_insn
1333 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1334 bfd_boolean expansionp);
1335 static void mips_no_prev_insn (void);
1336 static void macro_build (expressionS *, const char *, const char *, ...);
1337 static void mips16_macro_build
1338 (expressionS *, const char *, const char *, va_list *);
1339 static void load_register (int, expressionS *, int);
1340 static void macro_start (void);
1341 static void macro_end (void);
1342 static void macro (struct mips_cl_insn *ip, char *str);
1343 static void mips16_macro (struct mips_cl_insn * ip);
1344 static void mips_ip (char *str, struct mips_cl_insn * ip);
1345 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1346 static unsigned long mips16_immed_extend (offsetT, unsigned int);
1347 static void mips16_immed
1348 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1349 unsigned int, unsigned long *);
1350 static size_t my_getSmallExpression
1351 (expressionS *, bfd_reloc_code_real_type *, char *);
1352 static void my_getExpression (expressionS *, char *);
1353 static void s_align (int);
1354 static void s_change_sec (int);
1355 static void s_change_section (int);
1356 static void s_cons (int);
1357 static void s_float_cons (int);
1358 static void s_mips_globl (int);
1359 static void s_option (int);
1360 static void s_mipsset (int);
1361 static void s_abicalls (int);
1362 static void s_cpload (int);
1363 static void s_cpsetup (int);
1364 static void s_cplocal (int);
1365 static void s_cprestore (int);
1366 static void s_cpreturn (int);
1367 static void s_dtprelword (int);
1368 static void s_dtpreldword (int);
1369 static void s_tprelword (int);
1370 static void s_tpreldword (int);
1371 static void s_gpvalue (int);
1372 static void s_gpword (int);
1373 static void s_gpdword (int);
1374 static void s_ehword (int);
1375 static void s_cpadd (int);
1376 static void s_insn (int);
1377 static void s_nan (int);
1378 static void s_module (int);
1379 static void s_mips_ent (int);
1380 static void s_mips_end (int);
1381 static void s_mips_frame (int);
1382 static void s_mips_mask (int reg_type);
1383 static void s_mips_stab (int);
1384 static void s_mips_weakext (int);
1385 static void s_mips_file (int);
1386 static void s_mips_loc (int);
1387 static bfd_boolean pic_need_relax (symbolS *);
1388 static int relaxed_branch_length (fragS *, asection *, int);
1389 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1390 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1391 static void file_mips_check_options (void);
1392
1393 /* Table and functions used to map between CPU/ISA names, and
1394 ISA levels, and CPU numbers. */
1395
1396 struct mips_cpu_info
1397 {
1398 const char *name; /* CPU or ISA name. */
1399 int flags; /* MIPS_CPU_* flags. */
1400 int ase; /* Set of ASEs implemented by the CPU. */
1401 int isa; /* ISA level. */
1402 int cpu; /* CPU number (default CPU if ISA). */
1403 };
1404
1405 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1406
1407 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1408 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1409 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1410 \f
1411 /* Command-line options. */
1412 const char *md_shortopts = "O::g::G:";
1413
1414 enum options
1415 {
1416 OPTION_MARCH = OPTION_MD_BASE,
1417 OPTION_MTUNE,
1418 OPTION_MIPS1,
1419 OPTION_MIPS2,
1420 OPTION_MIPS3,
1421 OPTION_MIPS4,
1422 OPTION_MIPS5,
1423 OPTION_MIPS32,
1424 OPTION_MIPS64,
1425 OPTION_MIPS32R2,
1426 OPTION_MIPS32R3,
1427 OPTION_MIPS32R5,
1428 OPTION_MIPS32R6,
1429 OPTION_MIPS64R2,
1430 OPTION_MIPS64R3,
1431 OPTION_MIPS64R5,
1432 OPTION_MIPS64R6,
1433 OPTION_MIPS16,
1434 OPTION_NO_MIPS16,
1435 OPTION_MIPS3D,
1436 OPTION_NO_MIPS3D,
1437 OPTION_MDMX,
1438 OPTION_NO_MDMX,
1439 OPTION_DSP,
1440 OPTION_NO_DSP,
1441 OPTION_MT,
1442 OPTION_NO_MT,
1443 OPTION_VIRT,
1444 OPTION_NO_VIRT,
1445 OPTION_MSA,
1446 OPTION_NO_MSA,
1447 OPTION_SMARTMIPS,
1448 OPTION_NO_SMARTMIPS,
1449 OPTION_DSPR2,
1450 OPTION_NO_DSPR2,
1451 OPTION_DSPR3,
1452 OPTION_NO_DSPR3,
1453 OPTION_EVA,
1454 OPTION_NO_EVA,
1455 OPTION_XPA,
1456 OPTION_NO_XPA,
1457 OPTION_MICROMIPS,
1458 OPTION_NO_MICROMIPS,
1459 OPTION_MCU,
1460 OPTION_NO_MCU,
1461 OPTION_MIPS16E2,
1462 OPTION_NO_MIPS16E2,
1463 OPTION_COMPAT_ARCH_BASE,
1464 OPTION_M4650,
1465 OPTION_NO_M4650,
1466 OPTION_M4010,
1467 OPTION_NO_M4010,
1468 OPTION_M4100,
1469 OPTION_NO_M4100,
1470 OPTION_M3900,
1471 OPTION_NO_M3900,
1472 OPTION_M7000_HILO_FIX,
1473 OPTION_MNO_7000_HILO_FIX,
1474 OPTION_FIX_24K,
1475 OPTION_NO_FIX_24K,
1476 OPTION_FIX_RM7000,
1477 OPTION_NO_FIX_RM7000,
1478 OPTION_FIX_LOONGSON2F_JUMP,
1479 OPTION_NO_FIX_LOONGSON2F_JUMP,
1480 OPTION_FIX_LOONGSON2F_NOP,
1481 OPTION_NO_FIX_LOONGSON2F_NOP,
1482 OPTION_FIX_VR4120,
1483 OPTION_NO_FIX_VR4120,
1484 OPTION_FIX_VR4130,
1485 OPTION_NO_FIX_VR4130,
1486 OPTION_FIX_CN63XXP1,
1487 OPTION_NO_FIX_CN63XXP1,
1488 OPTION_TRAP,
1489 OPTION_BREAK,
1490 OPTION_EB,
1491 OPTION_EL,
1492 OPTION_FP32,
1493 OPTION_GP32,
1494 OPTION_CONSTRUCT_FLOATS,
1495 OPTION_NO_CONSTRUCT_FLOATS,
1496 OPTION_FP64,
1497 OPTION_FPXX,
1498 OPTION_GP64,
1499 OPTION_RELAX_BRANCH,
1500 OPTION_NO_RELAX_BRANCH,
1501 OPTION_IGNORE_BRANCH_ISA,
1502 OPTION_NO_IGNORE_BRANCH_ISA,
1503 OPTION_INSN32,
1504 OPTION_NO_INSN32,
1505 OPTION_MSHARED,
1506 OPTION_MNO_SHARED,
1507 OPTION_MSYM32,
1508 OPTION_MNO_SYM32,
1509 OPTION_SOFT_FLOAT,
1510 OPTION_HARD_FLOAT,
1511 OPTION_SINGLE_FLOAT,
1512 OPTION_DOUBLE_FLOAT,
1513 OPTION_32,
1514 OPTION_CALL_SHARED,
1515 OPTION_CALL_NONPIC,
1516 OPTION_NON_SHARED,
1517 OPTION_XGOT,
1518 OPTION_MABI,
1519 OPTION_N32,
1520 OPTION_64,
1521 OPTION_MDEBUG,
1522 OPTION_NO_MDEBUG,
1523 OPTION_PDR,
1524 OPTION_NO_PDR,
1525 OPTION_MVXWORKS_PIC,
1526 OPTION_NAN,
1527 OPTION_ODD_SPREG,
1528 OPTION_NO_ODD_SPREG,
1529 OPTION_END_OF_ENUM
1530 };
1531
1532 struct option md_longopts[] =
1533 {
1534 /* Options which specify architecture. */
1535 {"march", required_argument, NULL, OPTION_MARCH},
1536 {"mtune", required_argument, NULL, OPTION_MTUNE},
1537 {"mips0", no_argument, NULL, OPTION_MIPS1},
1538 {"mips1", no_argument, NULL, OPTION_MIPS1},
1539 {"mips2", no_argument, NULL, OPTION_MIPS2},
1540 {"mips3", no_argument, NULL, OPTION_MIPS3},
1541 {"mips4", no_argument, NULL, OPTION_MIPS4},
1542 {"mips5", no_argument, NULL, OPTION_MIPS5},
1543 {"mips32", no_argument, NULL, OPTION_MIPS32},
1544 {"mips64", no_argument, NULL, OPTION_MIPS64},
1545 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1546 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1547 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1548 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1549 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1550 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1551 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1552 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1553
1554 /* Options which specify Application Specific Extensions (ASEs). */
1555 {"mips16", no_argument, NULL, OPTION_MIPS16},
1556 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1557 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1558 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1559 {"mdmx", no_argument, NULL, OPTION_MDMX},
1560 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1561 {"mdsp", no_argument, NULL, OPTION_DSP},
1562 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1563 {"mmt", no_argument, NULL, OPTION_MT},
1564 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1565 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1566 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1567 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1568 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1569 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1570 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
1571 {"meva", no_argument, NULL, OPTION_EVA},
1572 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1573 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1574 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1575 {"mmcu", no_argument, NULL, OPTION_MCU},
1576 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1577 {"mvirt", no_argument, NULL, OPTION_VIRT},
1578 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1579 {"mmsa", no_argument, NULL, OPTION_MSA},
1580 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1581 {"mxpa", no_argument, NULL, OPTION_XPA},
1582 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1583 {"mmips16e2", no_argument, NULL, OPTION_MIPS16E2},
1584 {"mno-mips16e2", no_argument, NULL, OPTION_NO_MIPS16E2},
1585
1586 /* Old-style architecture options. Don't add more of these. */
1587 {"m4650", no_argument, NULL, OPTION_M4650},
1588 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1589 {"m4010", no_argument, NULL, OPTION_M4010},
1590 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1591 {"m4100", no_argument, NULL, OPTION_M4100},
1592 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1593 {"m3900", no_argument, NULL, OPTION_M3900},
1594 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1595
1596 /* Options which enable bug fixes. */
1597 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1598 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1599 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1600 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1601 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1602 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1603 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1604 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1605 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1606 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1607 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1608 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1609 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1610 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1611 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1612 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1613 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1614
1615 /* Miscellaneous options. */
1616 {"trap", no_argument, NULL, OPTION_TRAP},
1617 {"no-break", no_argument, NULL, OPTION_TRAP},
1618 {"break", no_argument, NULL, OPTION_BREAK},
1619 {"no-trap", no_argument, NULL, OPTION_BREAK},
1620 {"EB", no_argument, NULL, OPTION_EB},
1621 {"EL", no_argument, NULL, OPTION_EL},
1622 {"mfp32", no_argument, NULL, OPTION_FP32},
1623 {"mgp32", no_argument, NULL, OPTION_GP32},
1624 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1625 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1626 {"mfp64", no_argument, NULL, OPTION_FP64},
1627 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1628 {"mgp64", no_argument, NULL, OPTION_GP64},
1629 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1630 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1631 {"mignore-branch-isa", no_argument, NULL, OPTION_IGNORE_BRANCH_ISA},
1632 {"mno-ignore-branch-isa", no_argument, NULL, OPTION_NO_IGNORE_BRANCH_ISA},
1633 {"minsn32", no_argument, NULL, OPTION_INSN32},
1634 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1635 {"mshared", no_argument, NULL, OPTION_MSHARED},
1636 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1637 {"msym32", no_argument, NULL, OPTION_MSYM32},
1638 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1639 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1640 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1641 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1642 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1643 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1644 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1645
1646 /* Strictly speaking this next option is ELF specific,
1647 but we allow it for other ports as well in order to
1648 make testing easier. */
1649 {"32", no_argument, NULL, OPTION_32},
1650
1651 /* ELF-specific options. */
1652 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1653 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1654 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1655 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1656 {"xgot", no_argument, NULL, OPTION_XGOT},
1657 {"mabi", required_argument, NULL, OPTION_MABI},
1658 {"n32", no_argument, NULL, OPTION_N32},
1659 {"64", no_argument, NULL, OPTION_64},
1660 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1661 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1662 {"mpdr", no_argument, NULL, OPTION_PDR},
1663 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1664 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1665 {"mnan", required_argument, NULL, OPTION_NAN},
1666
1667 {NULL, no_argument, NULL, 0}
1668 };
1669 size_t md_longopts_size = sizeof (md_longopts);
1670 \f
1671 /* Information about either an Application Specific Extension or an
1672 optional architecture feature that, for simplicity, we treat in the
1673 same way as an ASE. */
1674 struct mips_ase
1675 {
1676 /* The name of the ASE, used in both the command-line and .set options. */
1677 const char *name;
1678
1679 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1680 and 64-bit architectures, the flags here refer to the subset that
1681 is available on both. */
1682 unsigned int flags;
1683
1684 /* The ASE_* flag used for instructions that are available on 64-bit
1685 architectures but that are not included in FLAGS. */
1686 unsigned int flags64;
1687
1688 /* The command-line options that turn the ASE on and off. */
1689 int option_on;
1690 int option_off;
1691
1692 /* The minimum required architecture revisions for MIPS32, MIPS64,
1693 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1694 int mips32_rev;
1695 int mips64_rev;
1696 int micromips32_rev;
1697 int micromips64_rev;
1698
1699 /* The architecture where the ASE was removed or -1 if the extension has not
1700 been removed. */
1701 int rem_rev;
1702 };
1703
1704 /* A table of all supported ASEs. */
1705 static const struct mips_ase mips_ases[] = {
1706 { "dsp", ASE_DSP, ASE_DSP64,
1707 OPTION_DSP, OPTION_NO_DSP,
1708 2, 2, 2, 2,
1709 -1 },
1710
1711 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1712 OPTION_DSPR2, OPTION_NO_DSPR2,
1713 2, 2, 2, 2,
1714 -1 },
1715
1716 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1717 OPTION_DSPR3, OPTION_NO_DSPR3,
1718 6, 6, -1, -1,
1719 -1 },
1720
1721 { "eva", ASE_EVA, 0,
1722 OPTION_EVA, OPTION_NO_EVA,
1723 2, 2, 2, 2,
1724 -1 },
1725
1726 { "mcu", ASE_MCU, 0,
1727 OPTION_MCU, OPTION_NO_MCU,
1728 2, 2, 2, 2,
1729 -1 },
1730
1731 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1732 { "mdmx", ASE_MDMX, 0,
1733 OPTION_MDMX, OPTION_NO_MDMX,
1734 -1, 1, -1, -1,
1735 6 },
1736
1737 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1738 { "mips3d", ASE_MIPS3D, 0,
1739 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1740 2, 1, -1, -1,
1741 6 },
1742
1743 { "mt", ASE_MT, 0,
1744 OPTION_MT, OPTION_NO_MT,
1745 2, 2, -1, -1,
1746 -1 },
1747
1748 { "smartmips", ASE_SMARTMIPS, 0,
1749 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1750 1, -1, -1, -1,
1751 6 },
1752
1753 { "virt", ASE_VIRT, ASE_VIRT64,
1754 OPTION_VIRT, OPTION_NO_VIRT,
1755 2, 2, 2, 2,
1756 -1 },
1757
1758 { "msa", ASE_MSA, ASE_MSA64,
1759 OPTION_MSA, OPTION_NO_MSA,
1760 2, 2, 2, 2,
1761 -1 },
1762
1763 { "xpa", ASE_XPA, 0,
1764 OPTION_XPA, OPTION_NO_XPA,
1765 2, 2, -1, -1,
1766 -1 },
1767
1768 { "mips16e2", ASE_MIPS16E2, 0,
1769 OPTION_MIPS16E2, OPTION_NO_MIPS16E2,
1770 2, 2, -1, -1,
1771 6 },
1772 };
1773
1774 /* The set of ASEs that require -mfp64. */
1775 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1776
1777 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1778 static const unsigned int mips_ase_groups[] = {
1779 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
1780 };
1781 \f
1782 /* Pseudo-op table.
1783
1784 The following pseudo-ops from the Kane and Heinrich MIPS book
1785 should be defined here, but are currently unsupported: .alias,
1786 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1787
1788 The following pseudo-ops from the Kane and Heinrich MIPS book are
1789 specific to the type of debugging information being generated, and
1790 should be defined by the object format: .aent, .begin, .bend,
1791 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1792 .vreg.
1793
1794 The following pseudo-ops from the Kane and Heinrich MIPS book are
1795 not MIPS CPU specific, but are also not specific to the object file
1796 format. This file is probably the best place to define them, but
1797 they are not currently supported: .asm0, .endr, .lab, .struct. */
1798
1799 static const pseudo_typeS mips_pseudo_table[] =
1800 {
1801 /* MIPS specific pseudo-ops. */
1802 {"option", s_option, 0},
1803 {"set", s_mipsset, 0},
1804 {"rdata", s_change_sec, 'r'},
1805 {"sdata", s_change_sec, 's'},
1806 {"livereg", s_ignore, 0},
1807 {"abicalls", s_abicalls, 0},
1808 {"cpload", s_cpload, 0},
1809 {"cpsetup", s_cpsetup, 0},
1810 {"cplocal", s_cplocal, 0},
1811 {"cprestore", s_cprestore, 0},
1812 {"cpreturn", s_cpreturn, 0},
1813 {"dtprelword", s_dtprelword, 0},
1814 {"dtpreldword", s_dtpreldword, 0},
1815 {"tprelword", s_tprelword, 0},
1816 {"tpreldword", s_tpreldword, 0},
1817 {"gpvalue", s_gpvalue, 0},
1818 {"gpword", s_gpword, 0},
1819 {"gpdword", s_gpdword, 0},
1820 {"ehword", s_ehword, 0},
1821 {"cpadd", s_cpadd, 0},
1822 {"insn", s_insn, 0},
1823 {"nan", s_nan, 0},
1824 {"module", s_module, 0},
1825
1826 /* Relatively generic pseudo-ops that happen to be used on MIPS
1827 chips. */
1828 {"asciiz", stringer, 8 + 1},
1829 {"bss", s_change_sec, 'b'},
1830 {"err", s_err, 0},
1831 {"half", s_cons, 1},
1832 {"dword", s_cons, 3},
1833 {"weakext", s_mips_weakext, 0},
1834 {"origin", s_org, 0},
1835 {"repeat", s_rept, 0},
1836
1837 /* For MIPS this is non-standard, but we define it for consistency. */
1838 {"sbss", s_change_sec, 'B'},
1839
1840 /* These pseudo-ops are defined in read.c, but must be overridden
1841 here for one reason or another. */
1842 {"align", s_align, 0},
1843 {"byte", s_cons, 0},
1844 {"data", s_change_sec, 'd'},
1845 {"double", s_float_cons, 'd'},
1846 {"float", s_float_cons, 'f'},
1847 {"globl", s_mips_globl, 0},
1848 {"global", s_mips_globl, 0},
1849 {"hword", s_cons, 1},
1850 {"int", s_cons, 2},
1851 {"long", s_cons, 2},
1852 {"octa", s_cons, 4},
1853 {"quad", s_cons, 3},
1854 {"section", s_change_section, 0},
1855 {"short", s_cons, 1},
1856 {"single", s_float_cons, 'f'},
1857 {"stabd", s_mips_stab, 'd'},
1858 {"stabn", s_mips_stab, 'n'},
1859 {"stabs", s_mips_stab, 's'},
1860 {"text", s_change_sec, 't'},
1861 {"word", s_cons, 2},
1862
1863 { "extern", ecoff_directive_extern, 0},
1864
1865 { NULL, NULL, 0 },
1866 };
1867
1868 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1869 {
1870 /* These pseudo-ops should be defined by the object file format.
1871 However, a.out doesn't support them, so we have versions here. */
1872 {"aent", s_mips_ent, 1},
1873 {"bgnb", s_ignore, 0},
1874 {"end", s_mips_end, 0},
1875 {"endb", s_ignore, 0},
1876 {"ent", s_mips_ent, 0},
1877 {"file", s_mips_file, 0},
1878 {"fmask", s_mips_mask, 'F'},
1879 {"frame", s_mips_frame, 0},
1880 {"loc", s_mips_loc, 0},
1881 {"mask", s_mips_mask, 'R'},
1882 {"verstamp", s_ignore, 0},
1883 { NULL, NULL, 0 },
1884 };
1885
1886 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1887 purpose of the `.dc.a' internal pseudo-op. */
1888
1889 int
1890 mips_address_bytes (void)
1891 {
1892 file_mips_check_options ();
1893 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1894 }
1895
1896 extern void pop_insert (const pseudo_typeS *);
1897
1898 void
1899 mips_pop_insert (void)
1900 {
1901 pop_insert (mips_pseudo_table);
1902 if (! ECOFF_DEBUGGING)
1903 pop_insert (mips_nonecoff_pseudo_table);
1904 }
1905 \f
1906 /* Symbols labelling the current insn. */
1907
1908 struct insn_label_list
1909 {
1910 struct insn_label_list *next;
1911 symbolS *label;
1912 };
1913
1914 static struct insn_label_list *free_insn_labels;
1915 #define label_list tc_segment_info_data.labels
1916
1917 static void mips_clear_insn_labels (void);
1918 static void mips_mark_labels (void);
1919 static void mips_compressed_mark_labels (void);
1920
1921 static inline void
1922 mips_clear_insn_labels (void)
1923 {
1924 struct insn_label_list **pl;
1925 segment_info_type *si;
1926
1927 if (now_seg)
1928 {
1929 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1930 ;
1931
1932 si = seg_info (now_seg);
1933 *pl = si->label_list;
1934 si->label_list = NULL;
1935 }
1936 }
1937
1938 /* Mark instruction labels in MIPS16/microMIPS mode. */
1939
1940 static inline void
1941 mips_mark_labels (void)
1942 {
1943 if (HAVE_CODE_COMPRESSION)
1944 mips_compressed_mark_labels ();
1945 }
1946 \f
1947 static char *expr_end;
1948
1949 /* An expression in a macro instruction. This is set by mips_ip and
1950 mips16_ip and when populated is always an O_constant. */
1951
1952 static expressionS imm_expr;
1953
1954 /* The relocatable field in an instruction and the relocs associated
1955 with it. These variables are used for instructions like LUI and
1956 JAL as well as true offsets. They are also used for address
1957 operands in macros. */
1958
1959 static expressionS offset_expr;
1960 static bfd_reloc_code_real_type offset_reloc[3]
1961 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1962
1963 /* This is set to the resulting size of the instruction to be produced
1964 by mips16_ip if an explicit extension is used or by mips_ip if an
1965 explicit size is supplied. */
1966
1967 static unsigned int forced_insn_length;
1968
1969 /* True if we are assembling an instruction. All dot symbols defined during
1970 this time should be treated as code labels. */
1971
1972 static bfd_boolean mips_assembling_insn;
1973
1974 /* The pdr segment for per procedure frame/regmask info. Not used for
1975 ECOFF debugging. */
1976
1977 static segT pdr_seg;
1978
1979 /* The default target format to use. */
1980
1981 #if defined (TE_FreeBSD)
1982 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1983 #elif defined (TE_TMIPS)
1984 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1985 #else
1986 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1987 #endif
1988
1989 const char *
1990 mips_target_format (void)
1991 {
1992 switch (OUTPUT_FLAVOR)
1993 {
1994 case bfd_target_elf_flavour:
1995 #ifdef TE_VXWORKS
1996 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1997 return (target_big_endian
1998 ? "elf32-bigmips-vxworks"
1999 : "elf32-littlemips-vxworks");
2000 #endif
2001 return (target_big_endian
2002 ? (HAVE_64BIT_OBJECTS
2003 ? ELF_TARGET ("elf64-", "big")
2004 : (HAVE_NEWABI
2005 ? ELF_TARGET ("elf32-n", "big")
2006 : ELF_TARGET ("elf32-", "big")))
2007 : (HAVE_64BIT_OBJECTS
2008 ? ELF_TARGET ("elf64-", "little")
2009 : (HAVE_NEWABI
2010 ? ELF_TARGET ("elf32-n", "little")
2011 : ELF_TARGET ("elf32-", "little"))));
2012 default:
2013 abort ();
2014 return NULL;
2015 }
2016 }
2017
2018 /* Return the ISA revision that is currently in use, or 0 if we are
2019 generating code for MIPS V or below. */
2020
2021 static int
2022 mips_isa_rev (void)
2023 {
2024 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
2025 return 2;
2026
2027 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
2028 return 3;
2029
2030 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
2031 return 5;
2032
2033 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
2034 return 6;
2035
2036 /* microMIPS implies revision 2 or above. */
2037 if (mips_opts.micromips)
2038 return 2;
2039
2040 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
2041 return 1;
2042
2043 return 0;
2044 }
2045
2046 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
2047
2048 static unsigned int
2049 mips_ase_mask (unsigned int flags)
2050 {
2051 unsigned int i;
2052
2053 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2054 if (flags & mips_ase_groups[i])
2055 flags |= mips_ase_groups[i];
2056 return flags;
2057 }
2058
2059 /* Check whether the current ISA supports ASE. Issue a warning if
2060 appropriate. */
2061
2062 static void
2063 mips_check_isa_supports_ase (const struct mips_ase *ase)
2064 {
2065 const char *base;
2066 int min_rev, size;
2067 static unsigned int warned_isa;
2068 static unsigned int warned_fp32;
2069
2070 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2071 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2072 else
2073 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2074 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2075 && (warned_isa & ase->flags) != ase->flags)
2076 {
2077 warned_isa |= ase->flags;
2078 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2079 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2080 if (min_rev < 0)
2081 as_warn (_("the %d-bit %s architecture does not support the"
2082 " `%s' extension"), size, base, ase->name);
2083 else
2084 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2085 ase->name, base, size, min_rev);
2086 }
2087 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2088 && (warned_isa & ase->flags) != ase->flags)
2089 {
2090 warned_isa |= ase->flags;
2091 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2092 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2093 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2094 ase->name, base, size, ase->rem_rev);
2095 }
2096
2097 if ((ase->flags & FP64_ASES)
2098 && mips_opts.fp != 64
2099 && (warned_fp32 & ase->flags) != ase->flags)
2100 {
2101 warned_fp32 |= ase->flags;
2102 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2103 }
2104 }
2105
2106 /* Check all enabled ASEs to see whether they are supported by the
2107 chosen architecture. */
2108
2109 static void
2110 mips_check_isa_supports_ases (void)
2111 {
2112 unsigned int i, mask;
2113
2114 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2115 {
2116 mask = mips_ase_mask (mips_ases[i].flags);
2117 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2118 mips_check_isa_supports_ase (&mips_ases[i]);
2119 }
2120 }
2121
2122 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2123 that were affected. */
2124
2125 static unsigned int
2126 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2127 bfd_boolean enabled_p)
2128 {
2129 unsigned int mask;
2130
2131 mask = mips_ase_mask (ase->flags);
2132 opts->ase &= ~mask;
2133 if (enabled_p)
2134 opts->ase |= ase->flags;
2135
2136 if ((opts->ase & (ASE_MIPS16E2 | ASE_MT)) == (ASE_MIPS16E2 | ASE_MT))
2137 {
2138 opts->ase |= ASE_MIPS16E2_MT;
2139 mask |= ASE_MIPS16E2_MT;
2140 }
2141
2142 return mask;
2143 }
2144
2145 /* Return the ASE called NAME, or null if none. */
2146
2147 static const struct mips_ase *
2148 mips_lookup_ase (const char *name)
2149 {
2150 unsigned int i;
2151
2152 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2153 if (strcmp (name, mips_ases[i].name) == 0)
2154 return &mips_ases[i];
2155 return NULL;
2156 }
2157
2158 /* Return the length of a microMIPS instruction in bytes. If bits of
2159 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2160 otherwise it is a 32-bit instruction. */
2161
2162 static inline unsigned int
2163 micromips_insn_length (const struct mips_opcode *mo)
2164 {
2165 return mips_opcode_32bit_p (mo) ? 4 : 2;
2166 }
2167
2168 /* Return the length of MIPS16 instruction OPCODE. */
2169
2170 static inline unsigned int
2171 mips16_opcode_length (unsigned long opcode)
2172 {
2173 return (opcode >> 16) == 0 ? 2 : 4;
2174 }
2175
2176 /* Return the length of instruction INSN. */
2177
2178 static inline unsigned int
2179 insn_length (const struct mips_cl_insn *insn)
2180 {
2181 if (mips_opts.micromips)
2182 return micromips_insn_length (insn->insn_mo);
2183 else if (mips_opts.mips16)
2184 return mips16_opcode_length (insn->insn_opcode);
2185 else
2186 return 4;
2187 }
2188
2189 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2190
2191 static void
2192 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2193 {
2194 size_t i;
2195
2196 insn->insn_mo = mo;
2197 insn->insn_opcode = mo->match;
2198 insn->frag = NULL;
2199 insn->where = 0;
2200 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2201 insn->fixp[i] = NULL;
2202 insn->fixed_p = (mips_opts.noreorder > 0);
2203 insn->noreorder_p = (mips_opts.noreorder > 0);
2204 insn->mips16_absolute_jump_p = 0;
2205 insn->complete_p = 0;
2206 insn->cleared_p = 0;
2207 }
2208
2209 /* Get a list of all the operands in INSN. */
2210
2211 static const struct mips_operand_array *
2212 insn_operands (const struct mips_cl_insn *insn)
2213 {
2214 if (insn->insn_mo >= &mips_opcodes[0]
2215 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2216 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2217
2218 if (insn->insn_mo >= &mips16_opcodes[0]
2219 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2220 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2221
2222 if (insn->insn_mo >= &micromips_opcodes[0]
2223 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2224 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2225
2226 abort ();
2227 }
2228
2229 /* Get a description of operand OPNO of INSN. */
2230
2231 static const struct mips_operand *
2232 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2233 {
2234 const struct mips_operand_array *operands;
2235
2236 operands = insn_operands (insn);
2237 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2238 abort ();
2239 return operands->operand[opno];
2240 }
2241
2242 /* Install UVAL as the value of OPERAND in INSN. */
2243
2244 static inline void
2245 insn_insert_operand (struct mips_cl_insn *insn,
2246 const struct mips_operand *operand, unsigned int uval)
2247 {
2248 if (mips_opts.mips16
2249 && operand->type == OP_INT && operand->lsb == 0
2250 && mips_opcode_32bit_p (insn->insn_mo))
2251 insn->insn_opcode |= mips16_immed_extend (uval, operand->size);
2252 else
2253 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2254 }
2255
2256 /* Extract the value of OPERAND from INSN. */
2257
2258 static inline unsigned
2259 insn_extract_operand (const struct mips_cl_insn *insn,
2260 const struct mips_operand *operand)
2261 {
2262 return mips_extract_operand (operand, insn->insn_opcode);
2263 }
2264
2265 /* Record the current MIPS16/microMIPS mode in now_seg. */
2266
2267 static void
2268 mips_record_compressed_mode (void)
2269 {
2270 segment_info_type *si;
2271
2272 si = seg_info (now_seg);
2273 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2274 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2275 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2276 si->tc_segment_info_data.micromips = mips_opts.micromips;
2277 }
2278
2279 /* Read a standard MIPS instruction from BUF. */
2280
2281 static unsigned long
2282 read_insn (char *buf)
2283 {
2284 if (target_big_endian)
2285 return bfd_getb32 ((bfd_byte *) buf);
2286 else
2287 return bfd_getl32 ((bfd_byte *) buf);
2288 }
2289
2290 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2291 the next byte. */
2292
2293 static char *
2294 write_insn (char *buf, unsigned int insn)
2295 {
2296 md_number_to_chars (buf, insn, 4);
2297 return buf + 4;
2298 }
2299
2300 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2301 has length LENGTH. */
2302
2303 static unsigned long
2304 read_compressed_insn (char *buf, unsigned int length)
2305 {
2306 unsigned long insn;
2307 unsigned int i;
2308
2309 insn = 0;
2310 for (i = 0; i < length; i += 2)
2311 {
2312 insn <<= 16;
2313 if (target_big_endian)
2314 insn |= bfd_getb16 ((char *) buf);
2315 else
2316 insn |= bfd_getl16 ((char *) buf);
2317 buf += 2;
2318 }
2319 return insn;
2320 }
2321
2322 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2323 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2324
2325 static char *
2326 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2327 {
2328 unsigned int i;
2329
2330 for (i = 0; i < length; i += 2)
2331 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2332 return buf + length;
2333 }
2334
2335 /* Install INSN at the location specified by its "frag" and "where" fields. */
2336
2337 static void
2338 install_insn (const struct mips_cl_insn *insn)
2339 {
2340 char *f = insn->frag->fr_literal + insn->where;
2341 if (HAVE_CODE_COMPRESSION)
2342 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2343 else
2344 write_insn (f, insn->insn_opcode);
2345 mips_record_compressed_mode ();
2346 }
2347
2348 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2349 and install the opcode in the new location. */
2350
2351 static void
2352 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2353 {
2354 size_t i;
2355
2356 insn->frag = frag;
2357 insn->where = where;
2358 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2359 if (insn->fixp[i] != NULL)
2360 {
2361 insn->fixp[i]->fx_frag = frag;
2362 insn->fixp[i]->fx_where = where;
2363 }
2364 install_insn (insn);
2365 }
2366
2367 /* Add INSN to the end of the output. */
2368
2369 static void
2370 add_fixed_insn (struct mips_cl_insn *insn)
2371 {
2372 char *f = frag_more (insn_length (insn));
2373 move_insn (insn, frag_now, f - frag_now->fr_literal);
2374 }
2375
2376 /* Start a variant frag and move INSN to the start of the variant part,
2377 marking it as fixed. The other arguments are as for frag_var. */
2378
2379 static void
2380 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2381 relax_substateT subtype, symbolS *symbol, offsetT offset)
2382 {
2383 frag_grow (max_chars);
2384 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2385 insn->fixed_p = 1;
2386 frag_var (rs_machine_dependent, max_chars, var,
2387 subtype, symbol, offset, NULL);
2388 }
2389
2390 /* Insert N copies of INSN into the history buffer, starting at
2391 position FIRST. Neither FIRST nor N need to be clipped. */
2392
2393 static void
2394 insert_into_history (unsigned int first, unsigned int n,
2395 const struct mips_cl_insn *insn)
2396 {
2397 if (mips_relax.sequence != 2)
2398 {
2399 unsigned int i;
2400
2401 for (i = ARRAY_SIZE (history); i-- > first;)
2402 if (i >= first + n)
2403 history[i] = history[i - n];
2404 else
2405 history[i] = *insn;
2406 }
2407 }
2408
2409 /* Clear the error in insn_error. */
2410
2411 static void
2412 clear_insn_error (void)
2413 {
2414 memset (&insn_error, 0, sizeof (insn_error));
2415 }
2416
2417 /* Possibly record error message MSG for the current instruction.
2418 If the error is about a particular argument, ARGNUM is the 1-based
2419 number of that argument, otherwise it is 0. FORMAT is the format
2420 of MSG. Return true if MSG was used, false if the current message
2421 was kept. */
2422
2423 static bfd_boolean
2424 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2425 const char *msg)
2426 {
2427 if (argnum == 0)
2428 {
2429 /* Give priority to errors against specific arguments, and to
2430 the first whole-instruction message. */
2431 if (insn_error.msg)
2432 return FALSE;
2433 }
2434 else
2435 {
2436 /* Keep insn_error if it is against a later argument. */
2437 if (argnum < insn_error.min_argnum)
2438 return FALSE;
2439
2440 /* If both errors are against the same argument but are different,
2441 give up on reporting a specific error for this argument.
2442 See the comment about mips_insn_error for details. */
2443 if (argnum == insn_error.min_argnum
2444 && insn_error.msg
2445 && strcmp (insn_error.msg, msg) != 0)
2446 {
2447 insn_error.msg = 0;
2448 insn_error.min_argnum += 1;
2449 return FALSE;
2450 }
2451 }
2452 insn_error.min_argnum = argnum;
2453 insn_error.format = format;
2454 insn_error.msg = msg;
2455 return TRUE;
2456 }
2457
2458 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2459 as for set_insn_error_format. */
2460
2461 static void
2462 set_insn_error (int argnum, const char *msg)
2463 {
2464 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2465 }
2466
2467 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2468 as for set_insn_error_format. */
2469
2470 static void
2471 set_insn_error_i (int argnum, const char *msg, int i)
2472 {
2473 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2474 insn_error.u.i = i;
2475 }
2476
2477 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2478 are as for set_insn_error_format. */
2479
2480 static void
2481 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2482 {
2483 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2484 {
2485 insn_error.u.ss[0] = s1;
2486 insn_error.u.ss[1] = s2;
2487 }
2488 }
2489
2490 /* Report the error in insn_error, which is against assembly code STR. */
2491
2492 static void
2493 report_insn_error (const char *str)
2494 {
2495 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2496
2497 switch (insn_error.format)
2498 {
2499 case ERR_FMT_PLAIN:
2500 as_bad (msg, str);
2501 break;
2502
2503 case ERR_FMT_I:
2504 as_bad (msg, insn_error.u.i, str);
2505 break;
2506
2507 case ERR_FMT_SS:
2508 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2509 break;
2510 }
2511
2512 free ((char *) msg);
2513 }
2514
2515 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2516 the idea is to make it obvious at a glance that each errata is
2517 included. */
2518
2519 static void
2520 init_vr4120_conflicts (void)
2521 {
2522 #define CONFLICT(FIRST, SECOND) \
2523 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2524
2525 /* Errata 21 - [D]DIV[U] after [D]MACC */
2526 CONFLICT (MACC, DIV);
2527 CONFLICT (DMACC, DIV);
2528
2529 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2530 CONFLICT (DMULT, DMULT);
2531 CONFLICT (DMULT, DMACC);
2532 CONFLICT (DMACC, DMULT);
2533 CONFLICT (DMACC, DMACC);
2534
2535 /* Errata 24 - MT{LO,HI} after [D]MACC */
2536 CONFLICT (MACC, MTHILO);
2537 CONFLICT (DMACC, MTHILO);
2538
2539 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2540 instruction is executed immediately after a MACC or DMACC
2541 instruction, the result of [either instruction] is incorrect." */
2542 CONFLICT (MACC, MULT);
2543 CONFLICT (MACC, DMULT);
2544 CONFLICT (DMACC, MULT);
2545 CONFLICT (DMACC, DMULT);
2546
2547 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2548 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2549 DDIV or DDIVU instruction, the result of the MACC or
2550 DMACC instruction is incorrect.". */
2551 CONFLICT (DMULT, MACC);
2552 CONFLICT (DMULT, DMACC);
2553 CONFLICT (DIV, MACC);
2554 CONFLICT (DIV, DMACC);
2555
2556 #undef CONFLICT
2557 }
2558
2559 struct regname {
2560 const char *name;
2561 unsigned int num;
2562 };
2563
2564 #define RNUM_MASK 0x00000ff
2565 #define RTYPE_MASK 0x0ffff00
2566 #define RTYPE_NUM 0x0000100
2567 #define RTYPE_FPU 0x0000200
2568 #define RTYPE_FCC 0x0000400
2569 #define RTYPE_VEC 0x0000800
2570 #define RTYPE_GP 0x0001000
2571 #define RTYPE_CP0 0x0002000
2572 #define RTYPE_PC 0x0004000
2573 #define RTYPE_ACC 0x0008000
2574 #define RTYPE_CCC 0x0010000
2575 #define RTYPE_VI 0x0020000
2576 #define RTYPE_VF 0x0040000
2577 #define RTYPE_R5900_I 0x0080000
2578 #define RTYPE_R5900_Q 0x0100000
2579 #define RTYPE_R5900_R 0x0200000
2580 #define RTYPE_R5900_ACC 0x0400000
2581 #define RTYPE_MSA 0x0800000
2582 #define RWARN 0x8000000
2583
2584 #define GENERIC_REGISTER_NUMBERS \
2585 {"$0", RTYPE_NUM | 0}, \
2586 {"$1", RTYPE_NUM | 1}, \
2587 {"$2", RTYPE_NUM | 2}, \
2588 {"$3", RTYPE_NUM | 3}, \
2589 {"$4", RTYPE_NUM | 4}, \
2590 {"$5", RTYPE_NUM | 5}, \
2591 {"$6", RTYPE_NUM | 6}, \
2592 {"$7", RTYPE_NUM | 7}, \
2593 {"$8", RTYPE_NUM | 8}, \
2594 {"$9", RTYPE_NUM | 9}, \
2595 {"$10", RTYPE_NUM | 10}, \
2596 {"$11", RTYPE_NUM | 11}, \
2597 {"$12", RTYPE_NUM | 12}, \
2598 {"$13", RTYPE_NUM | 13}, \
2599 {"$14", RTYPE_NUM | 14}, \
2600 {"$15", RTYPE_NUM | 15}, \
2601 {"$16", RTYPE_NUM | 16}, \
2602 {"$17", RTYPE_NUM | 17}, \
2603 {"$18", RTYPE_NUM | 18}, \
2604 {"$19", RTYPE_NUM | 19}, \
2605 {"$20", RTYPE_NUM | 20}, \
2606 {"$21", RTYPE_NUM | 21}, \
2607 {"$22", RTYPE_NUM | 22}, \
2608 {"$23", RTYPE_NUM | 23}, \
2609 {"$24", RTYPE_NUM | 24}, \
2610 {"$25", RTYPE_NUM | 25}, \
2611 {"$26", RTYPE_NUM | 26}, \
2612 {"$27", RTYPE_NUM | 27}, \
2613 {"$28", RTYPE_NUM | 28}, \
2614 {"$29", RTYPE_NUM | 29}, \
2615 {"$30", RTYPE_NUM | 30}, \
2616 {"$31", RTYPE_NUM | 31}
2617
2618 #define FPU_REGISTER_NAMES \
2619 {"$f0", RTYPE_FPU | 0}, \
2620 {"$f1", RTYPE_FPU | 1}, \
2621 {"$f2", RTYPE_FPU | 2}, \
2622 {"$f3", RTYPE_FPU | 3}, \
2623 {"$f4", RTYPE_FPU | 4}, \
2624 {"$f5", RTYPE_FPU | 5}, \
2625 {"$f6", RTYPE_FPU | 6}, \
2626 {"$f7", RTYPE_FPU | 7}, \
2627 {"$f8", RTYPE_FPU | 8}, \
2628 {"$f9", RTYPE_FPU | 9}, \
2629 {"$f10", RTYPE_FPU | 10}, \
2630 {"$f11", RTYPE_FPU | 11}, \
2631 {"$f12", RTYPE_FPU | 12}, \
2632 {"$f13", RTYPE_FPU | 13}, \
2633 {"$f14", RTYPE_FPU | 14}, \
2634 {"$f15", RTYPE_FPU | 15}, \
2635 {"$f16", RTYPE_FPU | 16}, \
2636 {"$f17", RTYPE_FPU | 17}, \
2637 {"$f18", RTYPE_FPU | 18}, \
2638 {"$f19", RTYPE_FPU | 19}, \
2639 {"$f20", RTYPE_FPU | 20}, \
2640 {"$f21", RTYPE_FPU | 21}, \
2641 {"$f22", RTYPE_FPU | 22}, \
2642 {"$f23", RTYPE_FPU | 23}, \
2643 {"$f24", RTYPE_FPU | 24}, \
2644 {"$f25", RTYPE_FPU | 25}, \
2645 {"$f26", RTYPE_FPU | 26}, \
2646 {"$f27", RTYPE_FPU | 27}, \
2647 {"$f28", RTYPE_FPU | 28}, \
2648 {"$f29", RTYPE_FPU | 29}, \
2649 {"$f30", RTYPE_FPU | 30}, \
2650 {"$f31", RTYPE_FPU | 31}
2651
2652 #define FPU_CONDITION_CODE_NAMES \
2653 {"$fcc0", RTYPE_FCC | 0}, \
2654 {"$fcc1", RTYPE_FCC | 1}, \
2655 {"$fcc2", RTYPE_FCC | 2}, \
2656 {"$fcc3", RTYPE_FCC | 3}, \
2657 {"$fcc4", RTYPE_FCC | 4}, \
2658 {"$fcc5", RTYPE_FCC | 5}, \
2659 {"$fcc6", RTYPE_FCC | 6}, \
2660 {"$fcc7", RTYPE_FCC | 7}
2661
2662 #define COPROC_CONDITION_CODE_NAMES \
2663 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2664 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2665 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2666 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2667 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2668 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2669 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2670 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2671
2672 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2673 {"$a4", RTYPE_GP | 8}, \
2674 {"$a5", RTYPE_GP | 9}, \
2675 {"$a6", RTYPE_GP | 10}, \
2676 {"$a7", RTYPE_GP | 11}, \
2677 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2678 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2679 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2680 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2681 {"$t0", RTYPE_GP | 12}, \
2682 {"$t1", RTYPE_GP | 13}, \
2683 {"$t2", RTYPE_GP | 14}, \
2684 {"$t3", RTYPE_GP | 15}
2685
2686 #define O32_SYMBOLIC_REGISTER_NAMES \
2687 {"$t0", RTYPE_GP | 8}, \
2688 {"$t1", RTYPE_GP | 9}, \
2689 {"$t2", RTYPE_GP | 10}, \
2690 {"$t3", RTYPE_GP | 11}, \
2691 {"$t4", RTYPE_GP | 12}, \
2692 {"$t5", RTYPE_GP | 13}, \
2693 {"$t6", RTYPE_GP | 14}, \
2694 {"$t7", RTYPE_GP | 15}, \
2695 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2696 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2697 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2698 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2699
2700 /* Remaining symbolic register names */
2701 #define SYMBOLIC_REGISTER_NAMES \
2702 {"$zero", RTYPE_GP | 0}, \
2703 {"$at", RTYPE_GP | 1}, \
2704 {"$AT", RTYPE_GP | 1}, \
2705 {"$v0", RTYPE_GP | 2}, \
2706 {"$v1", RTYPE_GP | 3}, \
2707 {"$a0", RTYPE_GP | 4}, \
2708 {"$a1", RTYPE_GP | 5}, \
2709 {"$a2", RTYPE_GP | 6}, \
2710 {"$a3", RTYPE_GP | 7}, \
2711 {"$s0", RTYPE_GP | 16}, \
2712 {"$s1", RTYPE_GP | 17}, \
2713 {"$s2", RTYPE_GP | 18}, \
2714 {"$s3", RTYPE_GP | 19}, \
2715 {"$s4", RTYPE_GP | 20}, \
2716 {"$s5", RTYPE_GP | 21}, \
2717 {"$s6", RTYPE_GP | 22}, \
2718 {"$s7", RTYPE_GP | 23}, \
2719 {"$t8", RTYPE_GP | 24}, \
2720 {"$t9", RTYPE_GP | 25}, \
2721 {"$k0", RTYPE_GP | 26}, \
2722 {"$kt0", RTYPE_GP | 26}, \
2723 {"$k1", RTYPE_GP | 27}, \
2724 {"$kt1", RTYPE_GP | 27}, \
2725 {"$gp", RTYPE_GP | 28}, \
2726 {"$sp", RTYPE_GP | 29}, \
2727 {"$s8", RTYPE_GP | 30}, \
2728 {"$fp", RTYPE_GP | 30}, \
2729 {"$ra", RTYPE_GP | 31}
2730
2731 #define MIPS16_SPECIAL_REGISTER_NAMES \
2732 {"$pc", RTYPE_PC | 0}
2733
2734 #define MDMX_VECTOR_REGISTER_NAMES \
2735 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2736 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2737 {"$v2", RTYPE_VEC | 2}, \
2738 {"$v3", RTYPE_VEC | 3}, \
2739 {"$v4", RTYPE_VEC | 4}, \
2740 {"$v5", RTYPE_VEC | 5}, \
2741 {"$v6", RTYPE_VEC | 6}, \
2742 {"$v7", RTYPE_VEC | 7}, \
2743 {"$v8", RTYPE_VEC | 8}, \
2744 {"$v9", RTYPE_VEC | 9}, \
2745 {"$v10", RTYPE_VEC | 10}, \
2746 {"$v11", RTYPE_VEC | 11}, \
2747 {"$v12", RTYPE_VEC | 12}, \
2748 {"$v13", RTYPE_VEC | 13}, \
2749 {"$v14", RTYPE_VEC | 14}, \
2750 {"$v15", RTYPE_VEC | 15}, \
2751 {"$v16", RTYPE_VEC | 16}, \
2752 {"$v17", RTYPE_VEC | 17}, \
2753 {"$v18", RTYPE_VEC | 18}, \
2754 {"$v19", RTYPE_VEC | 19}, \
2755 {"$v20", RTYPE_VEC | 20}, \
2756 {"$v21", RTYPE_VEC | 21}, \
2757 {"$v22", RTYPE_VEC | 22}, \
2758 {"$v23", RTYPE_VEC | 23}, \
2759 {"$v24", RTYPE_VEC | 24}, \
2760 {"$v25", RTYPE_VEC | 25}, \
2761 {"$v26", RTYPE_VEC | 26}, \
2762 {"$v27", RTYPE_VEC | 27}, \
2763 {"$v28", RTYPE_VEC | 28}, \
2764 {"$v29", RTYPE_VEC | 29}, \
2765 {"$v30", RTYPE_VEC | 30}, \
2766 {"$v31", RTYPE_VEC | 31}
2767
2768 #define R5900_I_NAMES \
2769 {"$I", RTYPE_R5900_I | 0}
2770
2771 #define R5900_Q_NAMES \
2772 {"$Q", RTYPE_R5900_Q | 0}
2773
2774 #define R5900_R_NAMES \
2775 {"$R", RTYPE_R5900_R | 0}
2776
2777 #define R5900_ACC_NAMES \
2778 {"$ACC", RTYPE_R5900_ACC | 0 }
2779
2780 #define MIPS_DSP_ACCUMULATOR_NAMES \
2781 {"$ac0", RTYPE_ACC | 0}, \
2782 {"$ac1", RTYPE_ACC | 1}, \
2783 {"$ac2", RTYPE_ACC | 2}, \
2784 {"$ac3", RTYPE_ACC | 3}
2785
2786 static const struct regname reg_names[] = {
2787 GENERIC_REGISTER_NUMBERS,
2788 FPU_REGISTER_NAMES,
2789 FPU_CONDITION_CODE_NAMES,
2790 COPROC_CONDITION_CODE_NAMES,
2791
2792 /* The $txx registers depends on the abi,
2793 these will be added later into the symbol table from
2794 one of the tables below once mips_abi is set after
2795 parsing of arguments from the command line. */
2796 SYMBOLIC_REGISTER_NAMES,
2797
2798 MIPS16_SPECIAL_REGISTER_NAMES,
2799 MDMX_VECTOR_REGISTER_NAMES,
2800 R5900_I_NAMES,
2801 R5900_Q_NAMES,
2802 R5900_R_NAMES,
2803 R5900_ACC_NAMES,
2804 MIPS_DSP_ACCUMULATOR_NAMES,
2805 {0, 0}
2806 };
2807
2808 static const struct regname reg_names_o32[] = {
2809 O32_SYMBOLIC_REGISTER_NAMES,
2810 {0, 0}
2811 };
2812
2813 static const struct regname reg_names_n32n64[] = {
2814 N32N64_SYMBOLIC_REGISTER_NAMES,
2815 {0, 0}
2816 };
2817
2818 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2819 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2820 of these register symbols, return the associated vector register,
2821 otherwise return SYMVAL itself. */
2822
2823 static unsigned int
2824 mips_prefer_vec_regno (unsigned int symval)
2825 {
2826 if ((symval & -2) == (RTYPE_GP | 2))
2827 return RTYPE_VEC | (symval & 1);
2828 return symval;
2829 }
2830
2831 /* Return true if string [S, E) is a valid register name, storing its
2832 symbol value in *SYMVAL_PTR if so. */
2833
2834 static bfd_boolean
2835 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2836 {
2837 char save_c;
2838 symbolS *symbol;
2839
2840 /* Terminate name. */
2841 save_c = *e;
2842 *e = '\0';
2843
2844 /* Look up the name. */
2845 symbol = symbol_find (s);
2846 *e = save_c;
2847
2848 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2849 return FALSE;
2850
2851 *symval_ptr = S_GET_VALUE (symbol);
2852 return TRUE;
2853 }
2854
2855 /* Return true if the string at *SPTR is a valid register name. Allow it
2856 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2857 is nonnull.
2858
2859 When returning true, move *SPTR past the register, store the
2860 register's symbol value in *SYMVAL_PTR and the channel mask in
2861 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2862 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2863 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2864
2865 static bfd_boolean
2866 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2867 unsigned int *channels_ptr)
2868 {
2869 char *s, *e, *m;
2870 const char *q;
2871 unsigned int channels, symval, bit;
2872
2873 /* Find end of name. */
2874 s = e = *sptr;
2875 if (is_name_beginner (*e))
2876 ++e;
2877 while (is_part_of_name (*e))
2878 ++e;
2879
2880 channels = 0;
2881 if (!mips_parse_register_1 (s, e, &symval))
2882 {
2883 if (!channels_ptr)
2884 return FALSE;
2885
2886 /* Eat characters from the end of the string that are valid
2887 channel suffixes. The preceding register must be $ACC or
2888 end with a digit, so there is no ambiguity. */
2889 bit = 1;
2890 m = e;
2891 for (q = "wzyx"; *q; q++, bit <<= 1)
2892 if (m > s && m[-1] == *q)
2893 {
2894 --m;
2895 channels |= bit;
2896 }
2897
2898 if (channels == 0
2899 || !mips_parse_register_1 (s, m, &symval)
2900 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2901 return FALSE;
2902 }
2903
2904 *sptr = e;
2905 *symval_ptr = symval;
2906 if (channels_ptr)
2907 *channels_ptr = channels;
2908 return TRUE;
2909 }
2910
2911 /* Check if SPTR points at a valid register specifier according to TYPES.
2912 If so, then return 1, advance S to consume the specifier and store
2913 the register's number in REGNOP, otherwise return 0. */
2914
2915 static int
2916 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2917 {
2918 unsigned int regno;
2919
2920 if (mips_parse_register (s, &regno, NULL))
2921 {
2922 if (types & RTYPE_VEC)
2923 regno = mips_prefer_vec_regno (regno);
2924 if (regno & types)
2925 regno &= RNUM_MASK;
2926 else
2927 regno = ~0;
2928 }
2929 else
2930 {
2931 if (types & RWARN)
2932 as_warn (_("unrecognized register name `%s'"), *s);
2933 regno = ~0;
2934 }
2935 if (regnop)
2936 *regnop = regno;
2937 return regno <= RNUM_MASK;
2938 }
2939
2940 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2941 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2942
2943 static char *
2944 mips_parse_vu0_channels (char *s, unsigned int *channels)
2945 {
2946 unsigned int i;
2947
2948 *channels = 0;
2949 for (i = 0; i < 4; i++)
2950 if (*s == "xyzw"[i])
2951 {
2952 *channels |= 1 << (3 - i);
2953 ++s;
2954 }
2955 return s;
2956 }
2957
2958 /* Token types for parsed operand lists. */
2959 enum mips_operand_token_type {
2960 /* A plain register, e.g. $f2. */
2961 OT_REG,
2962
2963 /* A 4-bit XYZW channel mask. */
2964 OT_CHANNELS,
2965
2966 /* A constant vector index, e.g. [1]. */
2967 OT_INTEGER_INDEX,
2968
2969 /* A register vector index, e.g. [$2]. */
2970 OT_REG_INDEX,
2971
2972 /* A continuous range of registers, e.g. $s0-$s4. */
2973 OT_REG_RANGE,
2974
2975 /* A (possibly relocated) expression. */
2976 OT_INTEGER,
2977
2978 /* A floating-point value. */
2979 OT_FLOAT,
2980
2981 /* A single character. This can be '(', ')' or ',', but '(' only appears
2982 before OT_REGs. */
2983 OT_CHAR,
2984
2985 /* A doubled character, either "--" or "++". */
2986 OT_DOUBLE_CHAR,
2987
2988 /* The end of the operand list. */
2989 OT_END
2990 };
2991
2992 /* A parsed operand token. */
2993 struct mips_operand_token
2994 {
2995 /* The type of token. */
2996 enum mips_operand_token_type type;
2997 union
2998 {
2999 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
3000 unsigned int regno;
3001
3002 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
3003 unsigned int channels;
3004
3005 /* The integer value of an OT_INTEGER_INDEX. */
3006 addressT index;
3007
3008 /* The two register symbol values involved in an OT_REG_RANGE. */
3009 struct {
3010 unsigned int regno1;
3011 unsigned int regno2;
3012 } reg_range;
3013
3014 /* The value of an OT_INTEGER. The value is represented as an
3015 expression and the relocation operators that were applied to
3016 that expression. The reloc entries are BFD_RELOC_UNUSED if no
3017 relocation operators were used. */
3018 struct {
3019 expressionS value;
3020 bfd_reloc_code_real_type relocs[3];
3021 } integer;
3022
3023 /* The binary data for an OT_FLOAT constant, and the number of bytes
3024 in the constant. */
3025 struct {
3026 unsigned char data[8];
3027 int length;
3028 } flt;
3029
3030 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
3031 char ch;
3032 } u;
3033 };
3034
3035 /* An obstack used to construct lists of mips_operand_tokens. */
3036 static struct obstack mips_operand_tokens;
3037
3038 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
3039
3040 static void
3041 mips_add_token (struct mips_operand_token *token,
3042 enum mips_operand_token_type type)
3043 {
3044 token->type = type;
3045 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
3046 }
3047
3048 /* Check whether S is '(' followed by a register name. Add OT_CHAR
3049 and OT_REG tokens for them if so, and return a pointer to the first
3050 unconsumed character. Return null otherwise. */
3051
3052 static char *
3053 mips_parse_base_start (char *s)
3054 {
3055 struct mips_operand_token token;
3056 unsigned int regno, channels;
3057 bfd_boolean decrement_p;
3058
3059 if (*s != '(')
3060 return 0;
3061
3062 ++s;
3063 SKIP_SPACE_TABS (s);
3064
3065 /* Only match "--" as part of a base expression. In other contexts "--X"
3066 is a double negative. */
3067 decrement_p = (s[0] == '-' && s[1] == '-');
3068 if (decrement_p)
3069 {
3070 s += 2;
3071 SKIP_SPACE_TABS (s);
3072 }
3073
3074 /* Allow a channel specifier because that leads to better error messages
3075 than treating something like "$vf0x++" as an expression. */
3076 if (!mips_parse_register (&s, &regno, &channels))
3077 return 0;
3078
3079 token.u.ch = '(';
3080 mips_add_token (&token, OT_CHAR);
3081
3082 if (decrement_p)
3083 {
3084 token.u.ch = '-';
3085 mips_add_token (&token, OT_DOUBLE_CHAR);
3086 }
3087
3088 token.u.regno = regno;
3089 mips_add_token (&token, OT_REG);
3090
3091 if (channels)
3092 {
3093 token.u.channels = channels;
3094 mips_add_token (&token, OT_CHANNELS);
3095 }
3096
3097 /* For consistency, only match "++" as part of base expressions too. */
3098 SKIP_SPACE_TABS (s);
3099 if (s[0] == '+' && s[1] == '+')
3100 {
3101 s += 2;
3102 token.u.ch = '+';
3103 mips_add_token (&token, OT_DOUBLE_CHAR);
3104 }
3105
3106 return s;
3107 }
3108
3109 /* Parse one or more tokens from S. Return a pointer to the first
3110 unconsumed character on success. Return null if an error was found
3111 and store the error text in insn_error. FLOAT_FORMAT is as for
3112 mips_parse_arguments. */
3113
3114 static char *
3115 mips_parse_argument_token (char *s, char float_format)
3116 {
3117 char *end, *save_in;
3118 const char *err;
3119 unsigned int regno1, regno2, channels;
3120 struct mips_operand_token token;
3121
3122 /* First look for "($reg", since we want to treat that as an
3123 OT_CHAR and OT_REG rather than an expression. */
3124 end = mips_parse_base_start (s);
3125 if (end)
3126 return end;
3127
3128 /* Handle other characters that end up as OT_CHARs. */
3129 if (*s == ')' || *s == ',')
3130 {
3131 token.u.ch = *s;
3132 mips_add_token (&token, OT_CHAR);
3133 ++s;
3134 return s;
3135 }
3136
3137 /* Handle tokens that start with a register. */
3138 if (mips_parse_register (&s, &regno1, &channels))
3139 {
3140 if (channels)
3141 {
3142 /* A register and a VU0 channel suffix. */
3143 token.u.regno = regno1;
3144 mips_add_token (&token, OT_REG);
3145
3146 token.u.channels = channels;
3147 mips_add_token (&token, OT_CHANNELS);
3148 return s;
3149 }
3150
3151 SKIP_SPACE_TABS (s);
3152 if (*s == '-')
3153 {
3154 /* A register range. */
3155 ++s;
3156 SKIP_SPACE_TABS (s);
3157 if (!mips_parse_register (&s, &regno2, NULL))
3158 {
3159 set_insn_error (0, _("invalid register range"));
3160 return 0;
3161 }
3162
3163 token.u.reg_range.regno1 = regno1;
3164 token.u.reg_range.regno2 = regno2;
3165 mips_add_token (&token, OT_REG_RANGE);
3166 return s;
3167 }
3168
3169 /* Add the register itself. */
3170 token.u.regno = regno1;
3171 mips_add_token (&token, OT_REG);
3172
3173 /* Check for a vector index. */
3174 if (*s == '[')
3175 {
3176 ++s;
3177 SKIP_SPACE_TABS (s);
3178 if (mips_parse_register (&s, &token.u.regno, NULL))
3179 mips_add_token (&token, OT_REG_INDEX);
3180 else
3181 {
3182 expressionS element;
3183
3184 my_getExpression (&element, s);
3185 if (element.X_op != O_constant)
3186 {
3187 set_insn_error (0, _("vector element must be constant"));
3188 return 0;
3189 }
3190 s = expr_end;
3191 token.u.index = element.X_add_number;
3192 mips_add_token (&token, OT_INTEGER_INDEX);
3193 }
3194 SKIP_SPACE_TABS (s);
3195 if (*s != ']')
3196 {
3197 set_insn_error (0, _("missing `]'"));
3198 return 0;
3199 }
3200 ++s;
3201 }
3202 return s;
3203 }
3204
3205 if (float_format)
3206 {
3207 /* First try to treat expressions as floats. */
3208 save_in = input_line_pointer;
3209 input_line_pointer = s;
3210 err = md_atof (float_format, (char *) token.u.flt.data,
3211 &token.u.flt.length);
3212 end = input_line_pointer;
3213 input_line_pointer = save_in;
3214 if (err && *err)
3215 {
3216 set_insn_error (0, err);
3217 return 0;
3218 }
3219 if (s != end)
3220 {
3221 mips_add_token (&token, OT_FLOAT);
3222 return end;
3223 }
3224 }
3225
3226 /* Treat everything else as an integer expression. */
3227 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3228 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3229 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3230 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3231 s = expr_end;
3232 mips_add_token (&token, OT_INTEGER);
3233 return s;
3234 }
3235
3236 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3237 if expressions should be treated as 32-bit floating-point constants,
3238 'd' if they should be treated as 64-bit floating-point constants,
3239 or 0 if they should be treated as integer expressions (the usual case).
3240
3241 Return a list of tokens on success, otherwise return 0. The caller
3242 must obstack_free the list after use. */
3243
3244 static struct mips_operand_token *
3245 mips_parse_arguments (char *s, char float_format)
3246 {
3247 struct mips_operand_token token;
3248
3249 SKIP_SPACE_TABS (s);
3250 while (*s)
3251 {
3252 s = mips_parse_argument_token (s, float_format);
3253 if (!s)
3254 {
3255 obstack_free (&mips_operand_tokens,
3256 obstack_finish (&mips_operand_tokens));
3257 return 0;
3258 }
3259 SKIP_SPACE_TABS (s);
3260 }
3261 mips_add_token (&token, OT_END);
3262 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3263 }
3264
3265 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3266 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3267
3268 static bfd_boolean
3269 is_opcode_valid (const struct mips_opcode *mo)
3270 {
3271 int isa = mips_opts.isa;
3272 int ase = mips_opts.ase;
3273 int fp_s, fp_d;
3274 unsigned int i;
3275
3276 if (ISA_HAS_64BIT_REGS (isa))
3277 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3278 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3279 ase |= mips_ases[i].flags64;
3280
3281 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3282 return FALSE;
3283
3284 /* Check whether the instruction or macro requires single-precision or
3285 double-precision floating-point support. Note that this information is
3286 stored differently in the opcode table for insns and macros. */
3287 if (mo->pinfo == INSN_MACRO)
3288 {
3289 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3290 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3291 }
3292 else
3293 {
3294 fp_s = mo->pinfo & FP_S;
3295 fp_d = mo->pinfo & FP_D;
3296 }
3297
3298 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3299 return FALSE;
3300
3301 if (fp_s && mips_opts.soft_float)
3302 return FALSE;
3303
3304 return TRUE;
3305 }
3306
3307 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3308 selected ISA and architecture. */
3309
3310 static bfd_boolean
3311 is_opcode_valid_16 (const struct mips_opcode *mo)
3312 {
3313 int isa = mips_opts.isa;
3314 int ase = mips_opts.ase;
3315 unsigned int i;
3316
3317 if (ISA_HAS_64BIT_REGS (isa))
3318 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3319 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3320 ase |= mips_ases[i].flags64;
3321
3322 return opcode_is_member (mo, isa, ase, mips_opts.arch);
3323 }
3324
3325 /* Return TRUE if the size of the microMIPS opcode MO matches one
3326 explicitly requested. Always TRUE in the standard MIPS mode.
3327 Use is_size_valid_16 for MIPS16 opcodes. */
3328
3329 static bfd_boolean
3330 is_size_valid (const struct mips_opcode *mo)
3331 {
3332 if (!mips_opts.micromips)
3333 return TRUE;
3334
3335 if (mips_opts.insn32)
3336 {
3337 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3338 return FALSE;
3339 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3340 return FALSE;
3341 }
3342 if (!forced_insn_length)
3343 return TRUE;
3344 if (mo->pinfo == INSN_MACRO)
3345 return FALSE;
3346 return forced_insn_length == micromips_insn_length (mo);
3347 }
3348
3349 /* Return TRUE if the size of the MIPS16 opcode MO matches one
3350 explicitly requested. */
3351
3352 static bfd_boolean
3353 is_size_valid_16 (const struct mips_opcode *mo)
3354 {
3355 if (!forced_insn_length)
3356 return TRUE;
3357 if (mo->pinfo == INSN_MACRO)
3358 return FALSE;
3359 if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
3360 return FALSE;
3361 if (forced_insn_length == 4 && (mo->pinfo2 & INSN2_SHORT_ONLY))
3362 return FALSE;
3363 return TRUE;
3364 }
3365
3366 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3367 of the preceding instruction. Always TRUE in the standard MIPS mode.
3368
3369 We don't accept macros in 16-bit delay slots to avoid a case where
3370 a macro expansion fails because it relies on a preceding 32-bit real
3371 instruction to have matched and does not handle the operands correctly.
3372 The only macros that may expand to 16-bit instructions are JAL that
3373 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3374 and BGT (that likewise cannot be placed in a delay slot) that decay to
3375 a NOP. In all these cases the macros precede any corresponding real
3376 instruction definitions in the opcode table, so they will match in the
3377 second pass where the size of the delay slot is ignored and therefore
3378 produce correct code. */
3379
3380 static bfd_boolean
3381 is_delay_slot_valid (const struct mips_opcode *mo)
3382 {
3383 if (!mips_opts.micromips)
3384 return TRUE;
3385
3386 if (mo->pinfo == INSN_MACRO)
3387 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3388 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3389 && micromips_insn_length (mo) != 4)
3390 return FALSE;
3391 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3392 && micromips_insn_length (mo) != 2)
3393 return FALSE;
3394
3395 return TRUE;
3396 }
3397
3398 /* For consistency checking, verify that all bits of OPCODE are specified
3399 either by the match/mask part of the instruction definition, or by the
3400 operand list. Also build up a list of operands in OPERANDS.
3401
3402 INSN_BITS says which bits of the instruction are significant.
3403 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3404 provides the mips_operand description of each operand. DECODE_OPERAND
3405 is null for MIPS16 instructions. */
3406
3407 static int
3408 validate_mips_insn (const struct mips_opcode *opcode,
3409 unsigned long insn_bits,
3410 const struct mips_operand *(*decode_operand) (const char *),
3411 struct mips_operand_array *operands)
3412 {
3413 const char *s;
3414 unsigned long used_bits, doubled, undefined, opno, mask;
3415 const struct mips_operand *operand;
3416
3417 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3418 if ((mask & opcode->match) != opcode->match)
3419 {
3420 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3421 opcode->name, opcode->args);
3422 return 0;
3423 }
3424 used_bits = 0;
3425 opno = 0;
3426 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3427 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3428 for (s = opcode->args; *s; ++s)
3429 switch (*s)
3430 {
3431 case ',':
3432 case '(':
3433 case ')':
3434 break;
3435
3436 case '#':
3437 s++;
3438 break;
3439
3440 default:
3441 if (!decode_operand)
3442 operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
3443 else
3444 operand = decode_operand (s);
3445 if (!operand && opcode->pinfo != INSN_MACRO)
3446 {
3447 as_bad (_("internal: unknown operand type: %s %s"),
3448 opcode->name, opcode->args);
3449 return 0;
3450 }
3451 gas_assert (opno < MAX_OPERANDS);
3452 operands->operand[opno] = operand;
3453 if (!decode_operand && operand
3454 && operand->type == OP_INT && operand->lsb == 0
3455 && mips_opcode_32bit_p (opcode))
3456 used_bits |= mips16_immed_extend (-1, operand->size);
3457 else if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3458 {
3459 used_bits = mips_insert_operand (operand, used_bits, -1);
3460 if (operand->type == OP_MDMX_IMM_REG)
3461 /* Bit 5 is the format selector (OB vs QH). The opcode table
3462 has separate entries for each format. */
3463 used_bits &= ~(1 << (operand->lsb + 5));
3464 if (operand->type == OP_ENTRY_EXIT_LIST)
3465 used_bits &= ~(mask & 0x700);
3466 }
3467 /* Skip prefix characters. */
3468 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3469 ++s;
3470 opno += 1;
3471 break;
3472 }
3473 doubled = used_bits & mask & insn_bits;
3474 if (doubled)
3475 {
3476 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3477 " %s %s"), doubled, opcode->name, opcode->args);
3478 return 0;
3479 }
3480 used_bits |= mask;
3481 undefined = ~used_bits & insn_bits;
3482 if (opcode->pinfo != INSN_MACRO && undefined)
3483 {
3484 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3485 undefined, opcode->name, opcode->args);
3486 return 0;
3487 }
3488 used_bits &= ~insn_bits;
3489 if (used_bits)
3490 {
3491 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3492 used_bits, opcode->name, opcode->args);
3493 return 0;
3494 }
3495 return 1;
3496 }
3497
3498 /* The MIPS16 version of validate_mips_insn. */
3499
3500 static int
3501 validate_mips16_insn (const struct mips_opcode *opcode,
3502 struct mips_operand_array *operands)
3503 {
3504 unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
3505
3506 return validate_mips_insn (opcode, insn_bits, 0, operands);
3507 }
3508
3509 /* The microMIPS version of validate_mips_insn. */
3510
3511 static int
3512 validate_micromips_insn (const struct mips_opcode *opc,
3513 struct mips_operand_array *operands)
3514 {
3515 unsigned long insn_bits;
3516 unsigned long major;
3517 unsigned int length;
3518
3519 if (opc->pinfo == INSN_MACRO)
3520 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3521 operands);
3522
3523 length = micromips_insn_length (opc);
3524 if (length != 2 && length != 4)
3525 {
3526 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3527 "%s %s"), length, opc->name, opc->args);
3528 return 0;
3529 }
3530 major = opc->match >> (10 + 8 * (length - 2));
3531 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3532 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3533 {
3534 as_bad (_("internal error: bad microMIPS opcode "
3535 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3536 return 0;
3537 }
3538
3539 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3540 insn_bits = 1 << 4 * length;
3541 insn_bits <<= 4 * length;
3542 insn_bits -= 1;
3543 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3544 operands);
3545 }
3546
3547 /* This function is called once, at assembler startup time. It should set up
3548 all the tables, etc. that the MD part of the assembler will need. */
3549
3550 void
3551 md_begin (void)
3552 {
3553 const char *retval = NULL;
3554 int i = 0;
3555 int broken = 0;
3556
3557 if (mips_pic != NO_PIC)
3558 {
3559 if (g_switch_seen && g_switch_value != 0)
3560 as_bad (_("-G may not be used in position-independent code"));
3561 g_switch_value = 0;
3562 }
3563 else if (mips_abicalls)
3564 {
3565 if (g_switch_seen && g_switch_value != 0)
3566 as_bad (_("-G may not be used with abicalls"));
3567 g_switch_value = 0;
3568 }
3569
3570 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3571 as_warn (_("could not set architecture and machine"));
3572
3573 op_hash = hash_new ();
3574
3575 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3576 for (i = 0; i < NUMOPCODES;)
3577 {
3578 const char *name = mips_opcodes[i].name;
3579
3580 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3581 if (retval != NULL)
3582 {
3583 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3584 mips_opcodes[i].name, retval);
3585 /* Probably a memory allocation problem? Give up now. */
3586 as_fatal (_("broken assembler, no assembly attempted"));
3587 }
3588 do
3589 {
3590 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3591 decode_mips_operand, &mips_operands[i]))
3592 broken = 1;
3593 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3594 {
3595 create_insn (&nop_insn, mips_opcodes + i);
3596 if (mips_fix_loongson2f_nop)
3597 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3598 nop_insn.fixed_p = 1;
3599 }
3600 ++i;
3601 }
3602 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3603 }
3604
3605 mips16_op_hash = hash_new ();
3606 mips16_operands = XCNEWVEC (struct mips_operand_array,
3607 bfd_mips16_num_opcodes);
3608
3609 i = 0;
3610 while (i < bfd_mips16_num_opcodes)
3611 {
3612 const char *name = mips16_opcodes[i].name;
3613
3614 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3615 if (retval != NULL)
3616 as_fatal (_("internal: can't hash `%s': %s"),
3617 mips16_opcodes[i].name, retval);
3618 do
3619 {
3620 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3621 broken = 1;
3622 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3623 {
3624 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3625 mips16_nop_insn.fixed_p = 1;
3626 }
3627 ++i;
3628 }
3629 while (i < bfd_mips16_num_opcodes
3630 && strcmp (mips16_opcodes[i].name, name) == 0);
3631 }
3632
3633 micromips_op_hash = hash_new ();
3634 micromips_operands = XCNEWVEC (struct mips_operand_array,
3635 bfd_micromips_num_opcodes);
3636
3637 i = 0;
3638 while (i < bfd_micromips_num_opcodes)
3639 {
3640 const char *name = micromips_opcodes[i].name;
3641
3642 retval = hash_insert (micromips_op_hash, name,
3643 (void *) &micromips_opcodes[i]);
3644 if (retval != NULL)
3645 as_fatal (_("internal: can't hash `%s': %s"),
3646 micromips_opcodes[i].name, retval);
3647 do
3648 {
3649 struct mips_cl_insn *micromips_nop_insn;
3650
3651 if (!validate_micromips_insn (&micromips_opcodes[i],
3652 &micromips_operands[i]))
3653 broken = 1;
3654
3655 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3656 {
3657 if (micromips_insn_length (micromips_opcodes + i) == 2)
3658 micromips_nop_insn = &micromips_nop16_insn;
3659 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3660 micromips_nop_insn = &micromips_nop32_insn;
3661 else
3662 continue;
3663
3664 if (micromips_nop_insn->insn_mo == NULL
3665 && strcmp (name, "nop") == 0)
3666 {
3667 create_insn (micromips_nop_insn, micromips_opcodes + i);
3668 micromips_nop_insn->fixed_p = 1;
3669 }
3670 }
3671 }
3672 while (++i < bfd_micromips_num_opcodes
3673 && strcmp (micromips_opcodes[i].name, name) == 0);
3674 }
3675
3676 if (broken)
3677 as_fatal (_("broken assembler, no assembly attempted"));
3678
3679 /* We add all the general register names to the symbol table. This
3680 helps us detect invalid uses of them. */
3681 for (i = 0; reg_names[i].name; i++)
3682 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3683 reg_names[i].num, /* & RNUM_MASK, */
3684 &zero_address_frag));
3685 if (HAVE_NEWABI)
3686 for (i = 0; reg_names_n32n64[i].name; i++)
3687 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3688 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3689 &zero_address_frag));
3690 else
3691 for (i = 0; reg_names_o32[i].name; i++)
3692 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3693 reg_names_o32[i].num, /* & RNUM_MASK, */
3694 &zero_address_frag));
3695
3696 for (i = 0; i < 32; i++)
3697 {
3698 char regname[6];
3699
3700 /* R5900 VU0 floating-point register. */
3701 sprintf (regname, "$vf%d", i);
3702 symbol_table_insert (symbol_new (regname, reg_section,
3703 RTYPE_VF | i, &zero_address_frag));
3704
3705 /* R5900 VU0 integer register. */
3706 sprintf (regname, "$vi%d", i);
3707 symbol_table_insert (symbol_new (regname, reg_section,
3708 RTYPE_VI | i, &zero_address_frag));
3709
3710 /* MSA register. */
3711 sprintf (regname, "$w%d", i);
3712 symbol_table_insert (symbol_new (regname, reg_section,
3713 RTYPE_MSA | i, &zero_address_frag));
3714 }
3715
3716 obstack_init (&mips_operand_tokens);
3717
3718 mips_no_prev_insn ();
3719
3720 mips_gprmask = 0;
3721 mips_cprmask[0] = 0;
3722 mips_cprmask[1] = 0;
3723 mips_cprmask[2] = 0;
3724 mips_cprmask[3] = 0;
3725
3726 /* set the default alignment for the text section (2**2) */
3727 record_alignment (text_section, 2);
3728
3729 bfd_set_gp_size (stdoutput, g_switch_value);
3730
3731 /* On a native system other than VxWorks, sections must be aligned
3732 to 16 byte boundaries. When configured for an embedded ELF
3733 target, we don't bother. */
3734 if (strncmp (TARGET_OS, "elf", 3) != 0
3735 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3736 {
3737 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3738 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3739 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3740 }
3741
3742 /* Create a .reginfo section for register masks and a .mdebug
3743 section for debugging information. */
3744 {
3745 segT seg;
3746 subsegT subseg;
3747 flagword flags;
3748 segT sec;
3749
3750 seg = now_seg;
3751 subseg = now_subseg;
3752
3753 /* The ABI says this section should be loaded so that the
3754 running program can access it. However, we don't load it
3755 if we are configured for an embedded target */
3756 flags = SEC_READONLY | SEC_DATA;
3757 if (strncmp (TARGET_OS, "elf", 3) != 0)
3758 flags |= SEC_ALLOC | SEC_LOAD;
3759
3760 if (mips_abi != N64_ABI)
3761 {
3762 sec = subseg_new (".reginfo", (subsegT) 0);
3763
3764 bfd_set_section_flags (stdoutput, sec, flags);
3765 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3766
3767 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3768 }
3769 else
3770 {
3771 /* The 64-bit ABI uses a .MIPS.options section rather than
3772 .reginfo section. */
3773 sec = subseg_new (".MIPS.options", (subsegT) 0);
3774 bfd_set_section_flags (stdoutput, sec, flags);
3775 bfd_set_section_alignment (stdoutput, sec, 3);
3776
3777 /* Set up the option header. */
3778 {
3779 Elf_Internal_Options opthdr;
3780 char *f;
3781
3782 opthdr.kind = ODK_REGINFO;
3783 opthdr.size = (sizeof (Elf_External_Options)
3784 + sizeof (Elf64_External_RegInfo));
3785 opthdr.section = 0;
3786 opthdr.info = 0;
3787 f = frag_more (sizeof (Elf_External_Options));
3788 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3789 (Elf_External_Options *) f);
3790
3791 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3792 }
3793 }
3794
3795 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3796 bfd_set_section_flags (stdoutput, sec,
3797 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3798 bfd_set_section_alignment (stdoutput, sec, 3);
3799 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3800
3801 if (ECOFF_DEBUGGING)
3802 {
3803 sec = subseg_new (".mdebug", (subsegT) 0);
3804 (void) bfd_set_section_flags (stdoutput, sec,
3805 SEC_HAS_CONTENTS | SEC_READONLY);
3806 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3807 }
3808 else if (mips_flag_pdr)
3809 {
3810 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3811 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3812 SEC_READONLY | SEC_RELOC
3813 | SEC_DEBUGGING);
3814 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3815 }
3816
3817 subseg_set (seg, subseg);
3818 }
3819
3820 if (mips_fix_vr4120)
3821 init_vr4120_conflicts ();
3822 }
3823
3824 static inline void
3825 fpabi_incompatible_with (int fpabi, const char *what)
3826 {
3827 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3828 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3829 }
3830
3831 static inline void
3832 fpabi_requires (int fpabi, const char *what)
3833 {
3834 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3835 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3836 }
3837
3838 /* Check -mabi and register sizes against the specified FP ABI. */
3839 static void
3840 check_fpabi (int fpabi)
3841 {
3842 switch (fpabi)
3843 {
3844 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3845 if (file_mips_opts.soft_float)
3846 fpabi_incompatible_with (fpabi, "softfloat");
3847 else if (file_mips_opts.single_float)
3848 fpabi_incompatible_with (fpabi, "singlefloat");
3849 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3850 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3851 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3852 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3853 break;
3854
3855 case Val_GNU_MIPS_ABI_FP_XX:
3856 if (mips_abi != O32_ABI)
3857 fpabi_requires (fpabi, "-mabi=32");
3858 else if (file_mips_opts.soft_float)
3859 fpabi_incompatible_with (fpabi, "softfloat");
3860 else if (file_mips_opts.single_float)
3861 fpabi_incompatible_with (fpabi, "singlefloat");
3862 else if (file_mips_opts.fp != 0)
3863 fpabi_requires (fpabi, "fp=xx");
3864 break;
3865
3866 case Val_GNU_MIPS_ABI_FP_64A:
3867 case Val_GNU_MIPS_ABI_FP_64:
3868 if (mips_abi != O32_ABI)
3869 fpabi_requires (fpabi, "-mabi=32");
3870 else if (file_mips_opts.soft_float)
3871 fpabi_incompatible_with (fpabi, "softfloat");
3872 else if (file_mips_opts.single_float)
3873 fpabi_incompatible_with (fpabi, "singlefloat");
3874 else if (file_mips_opts.fp != 64)
3875 fpabi_requires (fpabi, "fp=64");
3876 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3877 fpabi_incompatible_with (fpabi, "nooddspreg");
3878 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3879 fpabi_requires (fpabi, "nooddspreg");
3880 break;
3881
3882 case Val_GNU_MIPS_ABI_FP_SINGLE:
3883 if (file_mips_opts.soft_float)
3884 fpabi_incompatible_with (fpabi, "softfloat");
3885 else if (!file_mips_opts.single_float)
3886 fpabi_requires (fpabi, "singlefloat");
3887 break;
3888
3889 case Val_GNU_MIPS_ABI_FP_SOFT:
3890 if (!file_mips_opts.soft_float)
3891 fpabi_requires (fpabi, "softfloat");
3892 break;
3893
3894 case Val_GNU_MIPS_ABI_FP_OLD_64:
3895 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3896 Tag_GNU_MIPS_ABI_FP, fpabi);
3897 break;
3898
3899 case Val_GNU_MIPS_ABI_FP_NAN2008:
3900 /* Silently ignore compatibility value. */
3901 break;
3902
3903 default:
3904 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3905 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3906 break;
3907 }
3908 }
3909
3910 /* Perform consistency checks on the current options. */
3911
3912 static void
3913 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3914 {
3915 /* Check the size of integer registers agrees with the ABI and ISA. */
3916 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3917 as_bad (_("`gp=64' used with a 32-bit processor"));
3918 else if (abi_checks
3919 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3920 as_bad (_("`gp=32' used with a 64-bit ABI"));
3921 else if (abi_checks
3922 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3923 as_bad (_("`gp=64' used with a 32-bit ABI"));
3924
3925 /* Check the size of the float registers agrees with the ABI and ISA. */
3926 switch (opts->fp)
3927 {
3928 case 0:
3929 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3930 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3931 else if (opts->single_float == 1)
3932 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3933 break;
3934 case 64:
3935 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3936 as_bad (_("`fp=64' used with a 32-bit fpu"));
3937 else if (abi_checks
3938 && ABI_NEEDS_32BIT_REGS (mips_abi)
3939 && !ISA_HAS_MXHC1 (opts->isa))
3940 as_warn (_("`fp=64' used with a 32-bit ABI"));
3941 break;
3942 case 32:
3943 if (abi_checks
3944 && ABI_NEEDS_64BIT_REGS (mips_abi))
3945 as_warn (_("`fp=32' used with a 64-bit ABI"));
3946 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
3947 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3948 break;
3949 default:
3950 as_bad (_("Unknown size of floating point registers"));
3951 break;
3952 }
3953
3954 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3955 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3956
3957 if (opts->micromips == 1 && opts->mips16 == 1)
3958 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
3959 else if (ISA_IS_R6 (opts->isa)
3960 && (opts->micromips == 1
3961 || opts->mips16 == 1))
3962 as_fatal (_("`%s' cannot be used with `%s'"),
3963 opts->micromips ? "micromips" : "mips16",
3964 mips_cpu_info_from_isa (opts->isa)->name);
3965
3966 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3967 as_fatal (_("branch relaxation is not supported in `%s'"),
3968 mips_cpu_info_from_isa (opts->isa)->name);
3969 }
3970
3971 /* Perform consistency checks on the module level options exactly once.
3972 This is a deferred check that happens:
3973 at the first .set directive
3974 or, at the first pseudo op that generates code (inc .dc.a)
3975 or, at the first instruction
3976 or, at the end. */
3977
3978 static void
3979 file_mips_check_options (void)
3980 {
3981 const struct mips_cpu_info *arch_info = 0;
3982
3983 if (file_mips_opts_checked)
3984 return;
3985
3986 /* The following code determines the register size.
3987 Similar code was added to GCC 3.3 (see override_options() in
3988 config/mips/mips.c). The GAS and GCC code should be kept in sync
3989 as much as possible. */
3990
3991 if (file_mips_opts.gp < 0)
3992 {
3993 /* Infer the integer register size from the ABI and processor.
3994 Restrict ourselves to 32-bit registers if that's all the
3995 processor has, or if the ABI cannot handle 64-bit registers. */
3996 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3997 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3998 ? 32 : 64;
3999 }
4000
4001 if (file_mips_opts.fp < 0)
4002 {
4003 /* No user specified float register size.
4004 ??? GAS treats single-float processors as though they had 64-bit
4005 float registers (although it complains when double-precision
4006 instructions are used). As things stand, saying they have 32-bit
4007 registers would lead to spurious "register must be even" messages.
4008 So here we assume float registers are never smaller than the
4009 integer ones. */
4010 if (file_mips_opts.gp == 64)
4011 /* 64-bit integer registers implies 64-bit float registers. */
4012 file_mips_opts.fp = 64;
4013 else if ((file_mips_opts.ase & FP64_ASES)
4014 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
4015 /* Handle ASEs that require 64-bit float registers, if possible. */
4016 file_mips_opts.fp = 64;
4017 else if (ISA_IS_R6 (mips_opts.isa))
4018 /* R6 implies 64-bit float registers. */
4019 file_mips_opts.fp = 64;
4020 else
4021 /* 32-bit float registers. */
4022 file_mips_opts.fp = 32;
4023 }
4024
4025 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
4026
4027 /* Disable operations on odd-numbered floating-point registers by default
4028 when using the FPXX ABI. */
4029 if (file_mips_opts.oddspreg < 0)
4030 {
4031 if (file_mips_opts.fp == 0)
4032 file_mips_opts.oddspreg = 0;
4033 else
4034 file_mips_opts.oddspreg = 1;
4035 }
4036
4037 /* End of GCC-shared inference code. */
4038
4039 /* This flag is set when we have a 64-bit capable CPU but use only
4040 32-bit wide registers. Note that EABI does not use it. */
4041 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
4042 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
4043 || mips_abi == O32_ABI))
4044 mips_32bitmode = 1;
4045
4046 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
4047 as_bad (_("trap exception not supported at ISA 1"));
4048
4049 /* If the selected architecture includes support for ASEs, enable
4050 generation of code for them. */
4051 if (file_mips_opts.mips16 == -1)
4052 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
4053 if (file_mips_opts.micromips == -1)
4054 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
4055 ? 1 : 0;
4056
4057 if (mips_nan2008 == -1)
4058 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
4059 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
4060 as_fatal (_("`%s' does not support legacy NaN"),
4061 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
4062
4063 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
4064 being selected implicitly. */
4065 if (file_mips_opts.fp != 64)
4066 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
4067
4068 /* If the user didn't explicitly select or deselect a particular ASE,
4069 use the default setting for the CPU. */
4070 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
4071
4072 /* Set up the current options. These may change throughout assembly. */
4073 mips_opts = file_mips_opts;
4074
4075 mips_check_isa_supports_ases ();
4076 mips_check_options (&file_mips_opts, TRUE);
4077 file_mips_opts_checked = TRUE;
4078
4079 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4080 as_warn (_("could not set architecture and machine"));
4081 }
4082
4083 void
4084 md_assemble (char *str)
4085 {
4086 struct mips_cl_insn insn;
4087 bfd_reloc_code_real_type unused_reloc[3]
4088 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4089
4090 file_mips_check_options ();
4091
4092 imm_expr.X_op = O_absent;
4093 offset_expr.X_op = O_absent;
4094 offset_reloc[0] = BFD_RELOC_UNUSED;
4095 offset_reloc[1] = BFD_RELOC_UNUSED;
4096 offset_reloc[2] = BFD_RELOC_UNUSED;
4097
4098 mips_mark_labels ();
4099 mips_assembling_insn = TRUE;
4100 clear_insn_error ();
4101
4102 if (mips_opts.mips16)
4103 mips16_ip (str, &insn);
4104 else
4105 {
4106 mips_ip (str, &insn);
4107 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4108 str, insn.insn_opcode));
4109 }
4110
4111 if (insn_error.msg)
4112 report_insn_error (str);
4113 else if (insn.insn_mo->pinfo == INSN_MACRO)
4114 {
4115 macro_start ();
4116 if (mips_opts.mips16)
4117 mips16_macro (&insn);
4118 else
4119 macro (&insn, str);
4120 macro_end ();
4121 }
4122 else
4123 {
4124 if (offset_expr.X_op != O_absent)
4125 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4126 else
4127 append_insn (&insn, NULL, unused_reloc, FALSE);
4128 }
4129
4130 mips_assembling_insn = FALSE;
4131 }
4132
4133 /* Convenience functions for abstracting away the differences between
4134 MIPS16 and non-MIPS16 relocations. */
4135
4136 static inline bfd_boolean
4137 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4138 {
4139 switch (reloc)
4140 {
4141 case BFD_RELOC_MIPS16_JMP:
4142 case BFD_RELOC_MIPS16_GPREL:
4143 case BFD_RELOC_MIPS16_GOT16:
4144 case BFD_RELOC_MIPS16_CALL16:
4145 case BFD_RELOC_MIPS16_HI16_S:
4146 case BFD_RELOC_MIPS16_HI16:
4147 case BFD_RELOC_MIPS16_LO16:
4148 case BFD_RELOC_MIPS16_16_PCREL_S1:
4149 return TRUE;
4150
4151 default:
4152 return FALSE;
4153 }
4154 }
4155
4156 static inline bfd_boolean
4157 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4158 {
4159 switch (reloc)
4160 {
4161 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4162 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4163 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4164 case BFD_RELOC_MICROMIPS_GPREL16:
4165 case BFD_RELOC_MICROMIPS_JMP:
4166 case BFD_RELOC_MICROMIPS_HI16:
4167 case BFD_RELOC_MICROMIPS_HI16_S:
4168 case BFD_RELOC_MICROMIPS_LO16:
4169 case BFD_RELOC_MICROMIPS_LITERAL:
4170 case BFD_RELOC_MICROMIPS_GOT16:
4171 case BFD_RELOC_MICROMIPS_CALL16:
4172 case BFD_RELOC_MICROMIPS_GOT_HI16:
4173 case BFD_RELOC_MICROMIPS_GOT_LO16:
4174 case BFD_RELOC_MICROMIPS_CALL_HI16:
4175 case BFD_RELOC_MICROMIPS_CALL_LO16:
4176 case BFD_RELOC_MICROMIPS_SUB:
4177 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4178 case BFD_RELOC_MICROMIPS_GOT_OFST:
4179 case BFD_RELOC_MICROMIPS_GOT_DISP:
4180 case BFD_RELOC_MICROMIPS_HIGHEST:
4181 case BFD_RELOC_MICROMIPS_HIGHER:
4182 case BFD_RELOC_MICROMIPS_SCN_DISP:
4183 case BFD_RELOC_MICROMIPS_JALR:
4184 return TRUE;
4185
4186 default:
4187 return FALSE;
4188 }
4189 }
4190
4191 static inline bfd_boolean
4192 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4193 {
4194 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4195 }
4196
4197 static inline bfd_boolean
4198 b_reloc_p (bfd_reloc_code_real_type reloc)
4199 {
4200 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4201 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4202 || reloc == BFD_RELOC_16_PCREL_S2
4203 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
4204 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4205 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4206 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4207 }
4208
4209 static inline bfd_boolean
4210 got16_reloc_p (bfd_reloc_code_real_type reloc)
4211 {
4212 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4213 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4214 }
4215
4216 static inline bfd_boolean
4217 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4218 {
4219 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4220 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4221 }
4222
4223 static inline bfd_boolean
4224 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4225 {
4226 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4227 || reloc == BFD_RELOC_MICROMIPS_LO16);
4228 }
4229
4230 static inline bfd_boolean
4231 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4232 {
4233 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4234 }
4235
4236 static inline bfd_boolean
4237 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4238 {
4239 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4240 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4241 }
4242
4243 /* Return true if RELOC is a PC-relative relocation that does not have
4244 full address range. */
4245
4246 static inline bfd_boolean
4247 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4248 {
4249 switch (reloc)
4250 {
4251 case BFD_RELOC_16_PCREL_S2:
4252 case BFD_RELOC_MIPS16_16_PCREL_S1:
4253 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4254 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4255 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4256 case BFD_RELOC_MIPS_21_PCREL_S2:
4257 case BFD_RELOC_MIPS_26_PCREL_S2:
4258 case BFD_RELOC_MIPS_18_PCREL_S3:
4259 case BFD_RELOC_MIPS_19_PCREL_S2:
4260 return TRUE;
4261
4262 case BFD_RELOC_32_PCREL:
4263 case BFD_RELOC_HI16_S_PCREL:
4264 case BFD_RELOC_LO16_PCREL:
4265 return HAVE_64BIT_ADDRESSES;
4266
4267 default:
4268 return FALSE;
4269 }
4270 }
4271
4272 /* Return true if the given relocation might need a matching %lo().
4273 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4274 need a matching %lo() when applied to local symbols. */
4275
4276 static inline bfd_boolean
4277 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4278 {
4279 return (HAVE_IN_PLACE_ADDENDS
4280 && (hi16_reloc_p (reloc)
4281 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4282 all GOT16 relocations evaluate to "G". */
4283 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4284 }
4285
4286 /* Return the type of %lo() reloc needed by RELOC, given that
4287 reloc_needs_lo_p. */
4288
4289 static inline bfd_reloc_code_real_type
4290 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4291 {
4292 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4293 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4294 : BFD_RELOC_LO16));
4295 }
4296
4297 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4298 relocation. */
4299
4300 static inline bfd_boolean
4301 fixup_has_matching_lo_p (fixS *fixp)
4302 {
4303 return (fixp->fx_next != NULL
4304 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4305 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4306 && fixp->fx_offset == fixp->fx_next->fx_offset);
4307 }
4308
4309 /* Move all labels in LABELS to the current insertion point. TEXT_P
4310 says whether the labels refer to text or data. */
4311
4312 static void
4313 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4314 {
4315 struct insn_label_list *l;
4316 valueT val;
4317
4318 for (l = labels; l != NULL; l = l->next)
4319 {
4320 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4321 symbol_set_frag (l->label, frag_now);
4322 val = (valueT) frag_now_fix ();
4323 /* MIPS16/microMIPS text labels are stored as odd. */
4324 if (text_p && HAVE_CODE_COMPRESSION)
4325 ++val;
4326 S_SET_VALUE (l->label, val);
4327 }
4328 }
4329
4330 /* Move all labels in insn_labels to the current insertion point
4331 and treat them as text labels. */
4332
4333 static void
4334 mips_move_text_labels (void)
4335 {
4336 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4337 }
4338
4339 /* Duplicate the test for LINK_ONCE sections as in `adjust_reloc_syms'. */
4340
4341 static bfd_boolean
4342 s_is_linkonce (symbolS *sym, segT from_seg)
4343 {
4344 bfd_boolean linkonce = FALSE;
4345 segT symseg = S_GET_SEGMENT (sym);
4346
4347 if (symseg != from_seg && !S_IS_LOCAL (sym))
4348 {
4349 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4350 linkonce = TRUE;
4351 /* The GNU toolchain uses an extension for ELF: a section
4352 beginning with the magic string .gnu.linkonce is a
4353 linkonce section. */
4354 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4355 sizeof ".gnu.linkonce" - 1) == 0)
4356 linkonce = TRUE;
4357 }
4358 return linkonce;
4359 }
4360
4361 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4362 linker to handle them specially, such as generating jalx instructions
4363 when needed. We also make them odd for the duration of the assembly,
4364 in order to generate the right sort of code. We will make them even
4365 in the adjust_symtab routine, while leaving them marked. This is
4366 convenient for the debugger and the disassembler. The linker knows
4367 to make them odd again. */
4368
4369 static void
4370 mips_compressed_mark_label (symbolS *label)
4371 {
4372 gas_assert (HAVE_CODE_COMPRESSION);
4373
4374 if (mips_opts.mips16)
4375 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4376 else
4377 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4378 if ((S_GET_VALUE (label) & 1) == 0
4379 /* Don't adjust the address if the label is global or weak, or
4380 in a link-once section, since we'll be emitting symbol reloc
4381 references to it which will be patched up by the linker, and
4382 the final value of the symbol may or may not be MIPS16/microMIPS. */
4383 && !S_IS_WEAK (label)
4384 && !S_IS_EXTERNAL (label)
4385 && !s_is_linkonce (label, now_seg))
4386 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4387 }
4388
4389 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4390
4391 static void
4392 mips_compressed_mark_labels (void)
4393 {
4394 struct insn_label_list *l;
4395
4396 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4397 mips_compressed_mark_label (l->label);
4398 }
4399
4400 /* End the current frag. Make it a variant frag and record the
4401 relaxation info. */
4402
4403 static void
4404 relax_close_frag (void)
4405 {
4406 mips_macro_warning.first_frag = frag_now;
4407 frag_var (rs_machine_dependent, 0, 0,
4408 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1],
4409 mips_pic != NO_PIC),
4410 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4411
4412 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4413 mips_relax.first_fixup = 0;
4414 }
4415
4416 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4417 See the comment above RELAX_ENCODE for more details. */
4418
4419 static void
4420 relax_start (symbolS *symbol)
4421 {
4422 gas_assert (mips_relax.sequence == 0);
4423 mips_relax.sequence = 1;
4424 mips_relax.symbol = symbol;
4425 }
4426
4427 /* Start generating the second version of a relaxable sequence.
4428 See the comment above RELAX_ENCODE for more details. */
4429
4430 static void
4431 relax_switch (void)
4432 {
4433 gas_assert (mips_relax.sequence == 1);
4434 mips_relax.sequence = 2;
4435 }
4436
4437 /* End the current relaxable sequence. */
4438
4439 static void
4440 relax_end (void)
4441 {
4442 gas_assert (mips_relax.sequence == 2);
4443 relax_close_frag ();
4444 mips_relax.sequence = 0;
4445 }
4446
4447 /* Return true if IP is a delayed branch or jump. */
4448
4449 static inline bfd_boolean
4450 delayed_branch_p (const struct mips_cl_insn *ip)
4451 {
4452 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4453 | INSN_COND_BRANCH_DELAY
4454 | INSN_COND_BRANCH_LIKELY)) != 0;
4455 }
4456
4457 /* Return true if IP is a compact branch or jump. */
4458
4459 static inline bfd_boolean
4460 compact_branch_p (const struct mips_cl_insn *ip)
4461 {
4462 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4463 | INSN2_COND_BRANCH)) != 0;
4464 }
4465
4466 /* Return true if IP is an unconditional branch or jump. */
4467
4468 static inline bfd_boolean
4469 uncond_branch_p (const struct mips_cl_insn *ip)
4470 {
4471 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4472 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4473 }
4474
4475 /* Return true if IP is a branch-likely instruction. */
4476
4477 static inline bfd_boolean
4478 branch_likely_p (const struct mips_cl_insn *ip)
4479 {
4480 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4481 }
4482
4483 /* Return the type of nop that should be used to fill the delay slot
4484 of delayed branch IP. */
4485
4486 static struct mips_cl_insn *
4487 get_delay_slot_nop (const struct mips_cl_insn *ip)
4488 {
4489 if (mips_opts.micromips
4490 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4491 return &micromips_nop32_insn;
4492 return NOP_INSN;
4493 }
4494
4495 /* Return a mask that has bit N set if OPCODE reads the register(s)
4496 in operand N. */
4497
4498 static unsigned int
4499 insn_read_mask (const struct mips_opcode *opcode)
4500 {
4501 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4502 }
4503
4504 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4505 in operand N. */
4506
4507 static unsigned int
4508 insn_write_mask (const struct mips_opcode *opcode)
4509 {
4510 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4511 }
4512
4513 /* Return a mask of the registers specified by operand OPERAND of INSN.
4514 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4515 is set. */
4516
4517 static unsigned int
4518 operand_reg_mask (const struct mips_cl_insn *insn,
4519 const struct mips_operand *operand,
4520 unsigned int type_mask)
4521 {
4522 unsigned int uval, vsel;
4523
4524 switch (operand->type)
4525 {
4526 case OP_INT:
4527 case OP_MAPPED_INT:
4528 case OP_MSB:
4529 case OP_PCREL:
4530 case OP_PERF_REG:
4531 case OP_ADDIUSP_INT:
4532 case OP_ENTRY_EXIT_LIST:
4533 case OP_REPEAT_DEST_REG:
4534 case OP_REPEAT_PREV_REG:
4535 case OP_PC:
4536 case OP_VU0_SUFFIX:
4537 case OP_VU0_MATCH_SUFFIX:
4538 case OP_IMM_INDEX:
4539 abort ();
4540
4541 case OP_REG28:
4542 return 1 << 28;
4543
4544 case OP_REG:
4545 case OP_OPTIONAL_REG:
4546 {
4547 const struct mips_reg_operand *reg_op;
4548
4549 reg_op = (const struct mips_reg_operand *) operand;
4550 if (!(type_mask & (1 << reg_op->reg_type)))
4551 return 0;
4552 uval = insn_extract_operand (insn, operand);
4553 return 1 << mips_decode_reg_operand (reg_op, uval);
4554 }
4555
4556 case OP_REG_PAIR:
4557 {
4558 const struct mips_reg_pair_operand *pair_op;
4559
4560 pair_op = (const struct mips_reg_pair_operand *) operand;
4561 if (!(type_mask & (1 << pair_op->reg_type)))
4562 return 0;
4563 uval = insn_extract_operand (insn, operand);
4564 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4565 }
4566
4567 case OP_CLO_CLZ_DEST:
4568 if (!(type_mask & (1 << OP_REG_GP)))
4569 return 0;
4570 uval = insn_extract_operand (insn, operand);
4571 return (1 << (uval & 31)) | (1 << (uval >> 5));
4572
4573 case OP_SAME_RS_RT:
4574 if (!(type_mask & (1 << OP_REG_GP)))
4575 return 0;
4576 uval = insn_extract_operand (insn, operand);
4577 gas_assert ((uval & 31) == (uval >> 5));
4578 return 1 << (uval & 31);
4579
4580 case OP_CHECK_PREV:
4581 case OP_NON_ZERO_REG:
4582 if (!(type_mask & (1 << OP_REG_GP)))
4583 return 0;
4584 uval = insn_extract_operand (insn, operand);
4585 return 1 << (uval & 31);
4586
4587 case OP_LWM_SWM_LIST:
4588 abort ();
4589
4590 case OP_SAVE_RESTORE_LIST:
4591 abort ();
4592
4593 case OP_MDMX_IMM_REG:
4594 if (!(type_mask & (1 << OP_REG_VEC)))
4595 return 0;
4596 uval = insn_extract_operand (insn, operand);
4597 vsel = uval >> 5;
4598 if ((vsel & 0x18) == 0x18)
4599 return 0;
4600 return 1 << (uval & 31);
4601
4602 case OP_REG_INDEX:
4603 if (!(type_mask & (1 << OP_REG_GP)))
4604 return 0;
4605 return 1 << insn_extract_operand (insn, operand);
4606 }
4607 abort ();
4608 }
4609
4610 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4611 where bit N of OPNO_MASK is set if operand N should be included.
4612 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4613 is set. */
4614
4615 static unsigned int
4616 insn_reg_mask (const struct mips_cl_insn *insn,
4617 unsigned int type_mask, unsigned int opno_mask)
4618 {
4619 unsigned int opno, reg_mask;
4620
4621 opno = 0;
4622 reg_mask = 0;
4623 while (opno_mask != 0)
4624 {
4625 if (opno_mask & 1)
4626 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4627 opno_mask >>= 1;
4628 opno += 1;
4629 }
4630 return reg_mask;
4631 }
4632
4633 /* Return the mask of core registers that IP reads. */
4634
4635 static unsigned int
4636 gpr_read_mask (const struct mips_cl_insn *ip)
4637 {
4638 unsigned long pinfo, pinfo2;
4639 unsigned int mask;
4640
4641 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4642 pinfo = ip->insn_mo->pinfo;
4643 pinfo2 = ip->insn_mo->pinfo2;
4644 if (pinfo & INSN_UDI)
4645 {
4646 /* UDI instructions have traditionally been assumed to read RS
4647 and RT. */
4648 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4649 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4650 }
4651 if (pinfo & INSN_READ_GPR_24)
4652 mask |= 1 << 24;
4653 if (pinfo2 & INSN2_READ_GPR_16)
4654 mask |= 1 << 16;
4655 if (pinfo2 & INSN2_READ_SP)
4656 mask |= 1 << SP;
4657 if (pinfo2 & INSN2_READ_GPR_31)
4658 mask |= 1 << 31;
4659 /* Don't include register 0. */
4660 return mask & ~1;
4661 }
4662
4663 /* Return the mask of core registers that IP writes. */
4664
4665 static unsigned int
4666 gpr_write_mask (const struct mips_cl_insn *ip)
4667 {
4668 unsigned long pinfo, pinfo2;
4669 unsigned int mask;
4670
4671 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4672 pinfo = ip->insn_mo->pinfo;
4673 pinfo2 = ip->insn_mo->pinfo2;
4674 if (pinfo & INSN_WRITE_GPR_24)
4675 mask |= 1 << 24;
4676 if (pinfo & INSN_WRITE_GPR_31)
4677 mask |= 1 << 31;
4678 if (pinfo & INSN_UDI)
4679 /* UDI instructions have traditionally been assumed to write to RD. */
4680 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4681 if (pinfo2 & INSN2_WRITE_SP)
4682 mask |= 1 << SP;
4683 /* Don't include register 0. */
4684 return mask & ~1;
4685 }
4686
4687 /* Return the mask of floating-point registers that IP reads. */
4688
4689 static unsigned int
4690 fpr_read_mask (const struct mips_cl_insn *ip)
4691 {
4692 unsigned long pinfo;
4693 unsigned int mask;
4694
4695 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4696 | (1 << OP_REG_MSA)),
4697 insn_read_mask (ip->insn_mo));
4698 pinfo = ip->insn_mo->pinfo;
4699 /* Conservatively treat all operands to an FP_D instruction are doubles.
4700 (This is overly pessimistic for things like cvt.d.s.) */
4701 if (FPR_SIZE != 64 && (pinfo & FP_D))
4702 mask |= mask << 1;
4703 return mask;
4704 }
4705
4706 /* Return the mask of floating-point registers that IP writes. */
4707
4708 static unsigned int
4709 fpr_write_mask (const struct mips_cl_insn *ip)
4710 {
4711 unsigned long pinfo;
4712 unsigned int mask;
4713
4714 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4715 | (1 << OP_REG_MSA)),
4716 insn_write_mask (ip->insn_mo));
4717 pinfo = ip->insn_mo->pinfo;
4718 /* Conservatively treat all operands to an FP_D instruction are doubles.
4719 (This is overly pessimistic for things like cvt.s.d.) */
4720 if (FPR_SIZE != 64 && (pinfo & FP_D))
4721 mask |= mask << 1;
4722 return mask;
4723 }
4724
4725 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4726 Check whether that is allowed. */
4727
4728 static bfd_boolean
4729 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4730 {
4731 const char *s = insn->name;
4732 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4733 || FPR_SIZE == 64)
4734 && mips_opts.oddspreg;
4735
4736 if (insn->pinfo == INSN_MACRO)
4737 /* Let a macro pass, we'll catch it later when it is expanded. */
4738 return TRUE;
4739
4740 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4741 otherwise it depends on oddspreg. */
4742 if ((insn->pinfo & FP_S)
4743 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4744 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4745 return FPR_SIZE == 32 || oddspreg;
4746
4747 /* Allow odd registers for single-precision ops and double-precision if the
4748 floating-point registers are 64-bit wide. */
4749 switch (insn->pinfo & (FP_S | FP_D))
4750 {
4751 case FP_S:
4752 case 0:
4753 return oddspreg;
4754 case FP_D:
4755 return FPR_SIZE == 64;
4756 default:
4757 break;
4758 }
4759
4760 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4761 s = strchr (insn->name, '.');
4762 if (s != NULL && opnum == 2)
4763 s = strchr (s + 1, '.');
4764 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4765 return oddspreg;
4766
4767 return FPR_SIZE == 64;
4768 }
4769
4770 /* Information about an instruction argument that we're trying to match. */
4771 struct mips_arg_info
4772 {
4773 /* The instruction so far. */
4774 struct mips_cl_insn *insn;
4775
4776 /* The first unconsumed operand token. */
4777 struct mips_operand_token *token;
4778
4779 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4780 int opnum;
4781
4782 /* The 1-based argument number, for error reporting. This does not
4783 count elided optional registers, etc.. */
4784 int argnum;
4785
4786 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4787 unsigned int last_regno;
4788
4789 /* If the first operand was an OP_REG, this is the register that it
4790 specified, otherwise it is ILLEGAL_REG. */
4791 unsigned int dest_regno;
4792
4793 /* The value of the last OP_INT operand. Only used for OP_MSB,
4794 where it gives the lsb position. */
4795 unsigned int last_op_int;
4796
4797 /* If true, match routines should assume that no later instruction
4798 alternative matches and should therefore be as accommodating as
4799 possible. Match routines should not report errors if something
4800 is only invalid for !LAX_MATCH. */
4801 bfd_boolean lax_match;
4802
4803 /* True if a reference to the current AT register was seen. */
4804 bfd_boolean seen_at;
4805 };
4806
4807 /* Record that the argument is out of range. */
4808
4809 static void
4810 match_out_of_range (struct mips_arg_info *arg)
4811 {
4812 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4813 }
4814
4815 /* Record that the argument isn't constant but needs to be. */
4816
4817 static void
4818 match_not_constant (struct mips_arg_info *arg)
4819 {
4820 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4821 arg->argnum);
4822 }
4823
4824 /* Try to match an OT_CHAR token for character CH. Consume the token
4825 and return true on success, otherwise return false. */
4826
4827 static bfd_boolean
4828 match_char (struct mips_arg_info *arg, char ch)
4829 {
4830 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4831 {
4832 ++arg->token;
4833 if (ch == ',')
4834 arg->argnum += 1;
4835 return TRUE;
4836 }
4837 return FALSE;
4838 }
4839
4840 /* Try to get an expression from the next tokens in ARG. Consume the
4841 tokens and return true on success, storing the expression value in
4842 VALUE and relocation types in R. */
4843
4844 static bfd_boolean
4845 match_expression (struct mips_arg_info *arg, expressionS *value,
4846 bfd_reloc_code_real_type *r)
4847 {
4848 /* If the next token is a '(' that was parsed as being part of a base
4849 expression, assume we have an elided offset. The later match will fail
4850 if this turns out to be wrong. */
4851 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4852 {
4853 value->X_op = O_constant;
4854 value->X_add_number = 0;
4855 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4856 return TRUE;
4857 }
4858
4859 /* Reject register-based expressions such as "0+$2" and "(($2))".
4860 For plain registers the default error seems more appropriate. */
4861 if (arg->token->type == OT_INTEGER
4862 && arg->token->u.integer.value.X_op == O_register)
4863 {
4864 set_insn_error (arg->argnum, _("register value used as expression"));
4865 return FALSE;
4866 }
4867
4868 if (arg->token->type == OT_INTEGER)
4869 {
4870 *value = arg->token->u.integer.value;
4871 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4872 ++arg->token;
4873 return TRUE;
4874 }
4875
4876 set_insn_error_i
4877 (arg->argnum, _("operand %d must be an immediate expression"),
4878 arg->argnum);
4879 return FALSE;
4880 }
4881
4882 /* Try to get a constant expression from the next tokens in ARG. Consume
4883 the tokens and return return true on success, storing the constant value
4884 in *VALUE. */
4885
4886 static bfd_boolean
4887 match_const_int (struct mips_arg_info *arg, offsetT *value)
4888 {
4889 expressionS ex;
4890 bfd_reloc_code_real_type r[3];
4891
4892 if (!match_expression (arg, &ex, r))
4893 return FALSE;
4894
4895 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4896 *value = ex.X_add_number;
4897 else
4898 {
4899 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_big)
4900 match_out_of_range (arg);
4901 else
4902 match_not_constant (arg);
4903 return FALSE;
4904 }
4905 return TRUE;
4906 }
4907
4908 /* Return the RTYPE_* flags for a register operand of type TYPE that
4909 appears in instruction OPCODE. */
4910
4911 static unsigned int
4912 convert_reg_type (const struct mips_opcode *opcode,
4913 enum mips_reg_operand_type type)
4914 {
4915 switch (type)
4916 {
4917 case OP_REG_GP:
4918 return RTYPE_NUM | RTYPE_GP;
4919
4920 case OP_REG_FP:
4921 /* Allow vector register names for MDMX if the instruction is a 64-bit
4922 FPR load, store or move (including moves to and from GPRs). */
4923 if ((mips_opts.ase & ASE_MDMX)
4924 && (opcode->pinfo & FP_D)
4925 && (opcode->pinfo & (INSN_COPROC_MOVE
4926 | INSN_COPROC_MEMORY_DELAY
4927 | INSN_LOAD_COPROC
4928 | INSN_LOAD_MEMORY
4929 | INSN_STORE_MEMORY)))
4930 return RTYPE_FPU | RTYPE_VEC;
4931 return RTYPE_FPU;
4932
4933 case OP_REG_CCC:
4934 if (opcode->pinfo & (FP_D | FP_S))
4935 return RTYPE_CCC | RTYPE_FCC;
4936 return RTYPE_CCC;
4937
4938 case OP_REG_VEC:
4939 if (opcode->membership & INSN_5400)
4940 return RTYPE_FPU;
4941 return RTYPE_FPU | RTYPE_VEC;
4942
4943 case OP_REG_ACC:
4944 return RTYPE_ACC;
4945
4946 case OP_REG_COPRO:
4947 if (opcode->name[strlen (opcode->name) - 1] == '0')
4948 return RTYPE_NUM | RTYPE_CP0;
4949 return RTYPE_NUM;
4950
4951 case OP_REG_HW:
4952 return RTYPE_NUM;
4953
4954 case OP_REG_VI:
4955 return RTYPE_NUM | RTYPE_VI;
4956
4957 case OP_REG_VF:
4958 return RTYPE_NUM | RTYPE_VF;
4959
4960 case OP_REG_R5900_I:
4961 return RTYPE_R5900_I;
4962
4963 case OP_REG_R5900_Q:
4964 return RTYPE_R5900_Q;
4965
4966 case OP_REG_R5900_R:
4967 return RTYPE_R5900_R;
4968
4969 case OP_REG_R5900_ACC:
4970 return RTYPE_R5900_ACC;
4971
4972 case OP_REG_MSA:
4973 return RTYPE_MSA;
4974
4975 case OP_REG_MSA_CTRL:
4976 return RTYPE_NUM;
4977 }
4978 abort ();
4979 }
4980
4981 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4982
4983 static void
4984 check_regno (struct mips_arg_info *arg,
4985 enum mips_reg_operand_type type, unsigned int regno)
4986 {
4987 if (AT && type == OP_REG_GP && regno == AT)
4988 arg->seen_at = TRUE;
4989
4990 if (type == OP_REG_FP
4991 && (regno & 1) != 0
4992 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4993 {
4994 /* This was a warning prior to introducing O32 FPXX and FP64 support
4995 so maintain a warning for FP32 but raise an error for the new
4996 cases. */
4997 if (FPR_SIZE == 32)
4998 as_warn (_("float register should be even, was %d"), regno);
4999 else
5000 as_bad (_("float register should be even, was %d"), regno);
5001 }
5002
5003 if (type == OP_REG_CCC)
5004 {
5005 const char *name;
5006 size_t length;
5007
5008 name = arg->insn->insn_mo->name;
5009 length = strlen (name);
5010 if ((regno & 1) != 0
5011 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
5012 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
5013 as_warn (_("condition code register should be even for %s, was %d"),
5014 name, regno);
5015
5016 if ((regno & 3) != 0
5017 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
5018 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
5019 name, regno);
5020 }
5021 }
5022
5023 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
5024 a register of type TYPE. Return true on success, storing the register
5025 number in *REGNO and warning about any dubious uses. */
5026
5027 static bfd_boolean
5028 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5029 unsigned int symval, unsigned int *regno)
5030 {
5031 if (type == OP_REG_VEC)
5032 symval = mips_prefer_vec_regno (symval);
5033 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
5034 return FALSE;
5035
5036 *regno = symval & RNUM_MASK;
5037 check_regno (arg, type, *regno);
5038 return TRUE;
5039 }
5040
5041 /* Try to interpret the next token in ARG as a register of type TYPE.
5042 Consume the token and return true on success, storing the register
5043 number in *REGNO. Return false on failure. */
5044
5045 static bfd_boolean
5046 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5047 unsigned int *regno)
5048 {
5049 if (arg->token->type == OT_REG
5050 && match_regno (arg, type, arg->token->u.regno, regno))
5051 {
5052 ++arg->token;
5053 return TRUE;
5054 }
5055 return FALSE;
5056 }
5057
5058 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
5059 Consume the token and return true on success, storing the register numbers
5060 in *REGNO1 and *REGNO2. Return false on failure. */
5061
5062 static bfd_boolean
5063 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5064 unsigned int *regno1, unsigned int *regno2)
5065 {
5066 if (match_reg (arg, type, regno1))
5067 {
5068 *regno2 = *regno1;
5069 return TRUE;
5070 }
5071 if (arg->token->type == OT_REG_RANGE
5072 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
5073 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
5074 && *regno1 <= *regno2)
5075 {
5076 ++arg->token;
5077 return TRUE;
5078 }
5079 return FALSE;
5080 }
5081
5082 /* OP_INT matcher. */
5083
5084 static bfd_boolean
5085 match_int_operand (struct mips_arg_info *arg,
5086 const struct mips_operand *operand_base)
5087 {
5088 const struct mips_int_operand *operand;
5089 unsigned int uval;
5090 int min_val, max_val, factor;
5091 offsetT sval;
5092
5093 operand = (const struct mips_int_operand *) operand_base;
5094 factor = 1 << operand->shift;
5095 min_val = mips_int_operand_min (operand);
5096 max_val = mips_int_operand_max (operand);
5097
5098 if (operand_base->lsb == 0
5099 && operand_base->size == 16
5100 && operand->shift == 0
5101 && operand->bias == 0
5102 && (operand->max_val == 32767 || operand->max_val == 65535))
5103 {
5104 /* The operand can be relocated. */
5105 if (!match_expression (arg, &offset_expr, offset_reloc))
5106 return FALSE;
5107
5108 if (offset_expr.X_op == O_big)
5109 {
5110 match_out_of_range (arg);
5111 return FALSE;
5112 }
5113
5114 if (offset_reloc[0] != BFD_RELOC_UNUSED)
5115 /* Relocation operators were used. Accept the argument and
5116 leave the relocation value in offset_expr and offset_relocs
5117 for the caller to process. */
5118 return TRUE;
5119
5120 if (offset_expr.X_op != O_constant)
5121 {
5122 /* Accept non-constant operands if no later alternative matches,
5123 leaving it for the caller to process. */
5124 if (!arg->lax_match)
5125 {
5126 match_not_constant (arg);
5127 return FALSE;
5128 }
5129 offset_reloc[0] = BFD_RELOC_LO16;
5130 return TRUE;
5131 }
5132
5133 /* Clear the global state; we're going to install the operand
5134 ourselves. */
5135 sval = offset_expr.X_add_number;
5136 offset_expr.X_op = O_absent;
5137
5138 /* For compatibility with older assemblers, we accept
5139 0x8000-0xffff as signed 16-bit numbers when only
5140 signed numbers are allowed. */
5141 if (sval > max_val)
5142 {
5143 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5144 if (!arg->lax_match && sval <= max_val)
5145 {
5146 match_out_of_range (arg);
5147 return FALSE;
5148 }
5149 }
5150 }
5151 else
5152 {
5153 if (!match_const_int (arg, &sval))
5154 return FALSE;
5155 }
5156
5157 arg->last_op_int = sval;
5158
5159 if (sval < min_val || sval > max_val || sval % factor)
5160 {
5161 match_out_of_range (arg);
5162 return FALSE;
5163 }
5164
5165 uval = (unsigned int) sval >> operand->shift;
5166 uval -= operand->bias;
5167
5168 /* Handle -mfix-cn63xxp1. */
5169 if (arg->opnum == 1
5170 && mips_fix_cn63xxp1
5171 && !mips_opts.micromips
5172 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5173 switch (uval)
5174 {
5175 case 5:
5176 case 25:
5177 case 26:
5178 case 27:
5179 case 28:
5180 case 29:
5181 case 30:
5182 case 31:
5183 /* These are ok. */
5184 break;
5185
5186 default:
5187 /* The rest must be changed to 28. */
5188 uval = 28;
5189 break;
5190 }
5191
5192 insn_insert_operand (arg->insn, operand_base, uval);
5193 return TRUE;
5194 }
5195
5196 /* OP_MAPPED_INT matcher. */
5197
5198 static bfd_boolean
5199 match_mapped_int_operand (struct mips_arg_info *arg,
5200 const struct mips_operand *operand_base)
5201 {
5202 const struct mips_mapped_int_operand *operand;
5203 unsigned int uval, num_vals;
5204 offsetT sval;
5205
5206 operand = (const struct mips_mapped_int_operand *) operand_base;
5207 if (!match_const_int (arg, &sval))
5208 return FALSE;
5209
5210 num_vals = 1 << operand_base->size;
5211 for (uval = 0; uval < num_vals; uval++)
5212 if (operand->int_map[uval] == sval)
5213 break;
5214 if (uval == num_vals)
5215 {
5216 match_out_of_range (arg);
5217 return FALSE;
5218 }
5219
5220 insn_insert_operand (arg->insn, operand_base, uval);
5221 return TRUE;
5222 }
5223
5224 /* OP_MSB matcher. */
5225
5226 static bfd_boolean
5227 match_msb_operand (struct mips_arg_info *arg,
5228 const struct mips_operand *operand_base)
5229 {
5230 const struct mips_msb_operand *operand;
5231 int min_val, max_val, max_high;
5232 offsetT size, sval, high;
5233
5234 operand = (const struct mips_msb_operand *) operand_base;
5235 min_val = operand->bias;
5236 max_val = min_val + (1 << operand_base->size) - 1;
5237 max_high = operand->opsize;
5238
5239 if (!match_const_int (arg, &size))
5240 return FALSE;
5241
5242 high = size + arg->last_op_int;
5243 sval = operand->add_lsb ? high : size;
5244
5245 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5246 {
5247 match_out_of_range (arg);
5248 return FALSE;
5249 }
5250 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5251 return TRUE;
5252 }
5253
5254 /* OP_REG matcher. */
5255
5256 static bfd_boolean
5257 match_reg_operand (struct mips_arg_info *arg,
5258 const struct mips_operand *operand_base)
5259 {
5260 const struct mips_reg_operand *operand;
5261 unsigned int regno, uval, num_vals;
5262
5263 operand = (const struct mips_reg_operand *) operand_base;
5264 if (!match_reg (arg, operand->reg_type, &regno))
5265 return FALSE;
5266
5267 if (operand->reg_map)
5268 {
5269 num_vals = 1 << operand->root.size;
5270 for (uval = 0; uval < num_vals; uval++)
5271 if (operand->reg_map[uval] == regno)
5272 break;
5273 if (num_vals == uval)
5274 return FALSE;
5275 }
5276 else
5277 uval = regno;
5278
5279 arg->last_regno = regno;
5280 if (arg->opnum == 1)
5281 arg->dest_regno = regno;
5282 insn_insert_operand (arg->insn, operand_base, uval);
5283 return TRUE;
5284 }
5285
5286 /* OP_REG_PAIR matcher. */
5287
5288 static bfd_boolean
5289 match_reg_pair_operand (struct mips_arg_info *arg,
5290 const struct mips_operand *operand_base)
5291 {
5292 const struct mips_reg_pair_operand *operand;
5293 unsigned int regno1, regno2, uval, num_vals;
5294
5295 operand = (const struct mips_reg_pair_operand *) operand_base;
5296 if (!match_reg (arg, operand->reg_type, &regno1)
5297 || !match_char (arg, ',')
5298 || !match_reg (arg, operand->reg_type, &regno2))
5299 return FALSE;
5300
5301 num_vals = 1 << operand_base->size;
5302 for (uval = 0; uval < num_vals; uval++)
5303 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5304 break;
5305 if (uval == num_vals)
5306 return FALSE;
5307
5308 insn_insert_operand (arg->insn, operand_base, uval);
5309 return TRUE;
5310 }
5311
5312 /* OP_PCREL matcher. The caller chooses the relocation type. */
5313
5314 static bfd_boolean
5315 match_pcrel_operand (struct mips_arg_info *arg)
5316 {
5317 bfd_reloc_code_real_type r[3];
5318
5319 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5320 }
5321
5322 /* OP_PERF_REG matcher. */
5323
5324 static bfd_boolean
5325 match_perf_reg_operand (struct mips_arg_info *arg,
5326 const struct mips_operand *operand)
5327 {
5328 offsetT sval;
5329
5330 if (!match_const_int (arg, &sval))
5331 return FALSE;
5332
5333 if (sval != 0
5334 && (sval != 1
5335 || (mips_opts.arch == CPU_R5900
5336 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5337 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5338 {
5339 set_insn_error (arg->argnum, _("invalid performance register"));
5340 return FALSE;
5341 }
5342
5343 insn_insert_operand (arg->insn, operand, sval);
5344 return TRUE;
5345 }
5346
5347 /* OP_ADDIUSP matcher. */
5348
5349 static bfd_boolean
5350 match_addiusp_operand (struct mips_arg_info *arg,
5351 const struct mips_operand *operand)
5352 {
5353 offsetT sval;
5354 unsigned int uval;
5355
5356 if (!match_const_int (arg, &sval))
5357 return FALSE;
5358
5359 if (sval % 4)
5360 {
5361 match_out_of_range (arg);
5362 return FALSE;
5363 }
5364
5365 sval /= 4;
5366 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5367 {
5368 match_out_of_range (arg);
5369 return FALSE;
5370 }
5371
5372 uval = (unsigned int) sval;
5373 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5374 insn_insert_operand (arg->insn, operand, uval);
5375 return TRUE;
5376 }
5377
5378 /* OP_CLO_CLZ_DEST matcher. */
5379
5380 static bfd_boolean
5381 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5382 const struct mips_operand *operand)
5383 {
5384 unsigned int regno;
5385
5386 if (!match_reg (arg, OP_REG_GP, &regno))
5387 return FALSE;
5388
5389 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5390 return TRUE;
5391 }
5392
5393 /* OP_CHECK_PREV matcher. */
5394
5395 static bfd_boolean
5396 match_check_prev_operand (struct mips_arg_info *arg,
5397 const struct mips_operand *operand_base)
5398 {
5399 const struct mips_check_prev_operand *operand;
5400 unsigned int regno;
5401
5402 operand = (const struct mips_check_prev_operand *) operand_base;
5403
5404 if (!match_reg (arg, OP_REG_GP, &regno))
5405 return FALSE;
5406
5407 if (!operand->zero_ok && regno == 0)
5408 return FALSE;
5409
5410 if ((operand->less_than_ok && regno < arg->last_regno)
5411 || (operand->greater_than_ok && regno > arg->last_regno)
5412 || (operand->equal_ok && regno == arg->last_regno))
5413 {
5414 arg->last_regno = regno;
5415 insn_insert_operand (arg->insn, operand_base, regno);
5416 return TRUE;
5417 }
5418
5419 return FALSE;
5420 }
5421
5422 /* OP_SAME_RS_RT matcher. */
5423
5424 static bfd_boolean
5425 match_same_rs_rt_operand (struct mips_arg_info *arg,
5426 const struct mips_operand *operand)
5427 {
5428 unsigned int regno;
5429
5430 if (!match_reg (arg, OP_REG_GP, &regno))
5431 return FALSE;
5432
5433 if (regno == 0)
5434 {
5435 set_insn_error (arg->argnum, _("the source register must not be $0"));
5436 return FALSE;
5437 }
5438
5439 arg->last_regno = regno;
5440
5441 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5442 return TRUE;
5443 }
5444
5445 /* OP_LWM_SWM_LIST matcher. */
5446
5447 static bfd_boolean
5448 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5449 const struct mips_operand *operand)
5450 {
5451 unsigned int reglist, sregs, ra, regno1, regno2;
5452 struct mips_arg_info reset;
5453
5454 reglist = 0;
5455 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5456 return FALSE;
5457 do
5458 {
5459 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5460 {
5461 reglist |= 1 << FP;
5462 regno2 = S7;
5463 }
5464 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5465 reset = *arg;
5466 }
5467 while (match_char (arg, ',')
5468 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5469 *arg = reset;
5470
5471 if (operand->size == 2)
5472 {
5473 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5474
5475 s0, ra
5476 s0, s1, ra, s2, s3
5477 s0-s2, ra
5478
5479 and any permutations of these. */
5480 if ((reglist & 0xfff1ffff) != 0x80010000)
5481 return FALSE;
5482
5483 sregs = (reglist >> 17) & 7;
5484 ra = 0;
5485 }
5486 else
5487 {
5488 /* The list must include at least one of ra and s0-sN,
5489 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5490 which are $23 and $30 respectively.) E.g.:
5491
5492 ra
5493 s0
5494 ra, s0, s1, s2
5495 s0-s8
5496 s0-s5, ra
5497
5498 and any permutations of these. */
5499 if ((reglist & 0x3f00ffff) != 0)
5500 return FALSE;
5501
5502 ra = (reglist >> 27) & 0x10;
5503 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5504 }
5505 sregs += 1;
5506 if ((sregs & -sregs) != sregs)
5507 return FALSE;
5508
5509 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5510 return TRUE;
5511 }
5512
5513 /* OP_ENTRY_EXIT_LIST matcher. */
5514
5515 static unsigned int
5516 match_entry_exit_operand (struct mips_arg_info *arg,
5517 const struct mips_operand *operand)
5518 {
5519 unsigned int mask;
5520 bfd_boolean is_exit;
5521
5522 /* The format is the same for both ENTRY and EXIT, but the constraints
5523 are different. */
5524 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5525 mask = (is_exit ? 7 << 3 : 0);
5526 do
5527 {
5528 unsigned int regno1, regno2;
5529 bfd_boolean is_freg;
5530
5531 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5532 is_freg = FALSE;
5533 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5534 is_freg = TRUE;
5535 else
5536 return FALSE;
5537
5538 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5539 {
5540 mask &= ~(7 << 3);
5541 mask |= (5 + regno2) << 3;
5542 }
5543 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5544 mask |= (regno2 - 3) << 3;
5545 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5546 mask |= (regno2 - 15) << 1;
5547 else if (regno1 == RA && regno2 == RA)
5548 mask |= 1;
5549 else
5550 return FALSE;
5551 }
5552 while (match_char (arg, ','));
5553
5554 insn_insert_operand (arg->insn, operand, mask);
5555 return TRUE;
5556 }
5557
5558 /* OP_SAVE_RESTORE_LIST matcher. */
5559
5560 static bfd_boolean
5561 match_save_restore_list_operand (struct mips_arg_info *arg)
5562 {
5563 unsigned int opcode, args, statics, sregs;
5564 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5565 offsetT frame_size;
5566
5567 opcode = arg->insn->insn_opcode;
5568 frame_size = 0;
5569 num_frame_sizes = 0;
5570 args = 0;
5571 statics = 0;
5572 sregs = 0;
5573 do
5574 {
5575 unsigned int regno1, regno2;
5576
5577 if (arg->token->type == OT_INTEGER)
5578 {
5579 /* Handle the frame size. */
5580 if (!match_const_int (arg, &frame_size))
5581 return FALSE;
5582 num_frame_sizes += 1;
5583 }
5584 else
5585 {
5586 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5587 return FALSE;
5588
5589 while (regno1 <= regno2)
5590 {
5591 if (regno1 >= 4 && regno1 <= 7)
5592 {
5593 if (num_frame_sizes == 0)
5594 /* args $a0-$a3 */
5595 args |= 1 << (regno1 - 4);
5596 else
5597 /* statics $a0-$a3 */
5598 statics |= 1 << (regno1 - 4);
5599 }
5600 else if (regno1 >= 16 && regno1 <= 23)
5601 /* $s0-$s7 */
5602 sregs |= 1 << (regno1 - 16);
5603 else if (regno1 == 30)
5604 /* $s8 */
5605 sregs |= 1 << 8;
5606 else if (regno1 == 31)
5607 /* Add $ra to insn. */
5608 opcode |= 0x40;
5609 else
5610 return FALSE;
5611 regno1 += 1;
5612 if (regno1 == 24)
5613 regno1 = 30;
5614 }
5615 }
5616 }
5617 while (match_char (arg, ','));
5618
5619 /* Encode args/statics combination. */
5620 if (args & statics)
5621 return FALSE;
5622 else if (args == 0xf)
5623 /* All $a0-$a3 are args. */
5624 opcode |= MIPS16_ALL_ARGS << 16;
5625 else if (statics == 0xf)
5626 /* All $a0-$a3 are statics. */
5627 opcode |= MIPS16_ALL_STATICS << 16;
5628 else
5629 {
5630 /* Count arg registers. */
5631 num_args = 0;
5632 while (args & 0x1)
5633 {
5634 args >>= 1;
5635 num_args += 1;
5636 }
5637 if (args != 0)
5638 return FALSE;
5639
5640 /* Count static registers. */
5641 num_statics = 0;
5642 while (statics & 0x8)
5643 {
5644 statics = (statics << 1) & 0xf;
5645 num_statics += 1;
5646 }
5647 if (statics != 0)
5648 return FALSE;
5649
5650 /* Encode args/statics. */
5651 opcode |= ((num_args << 2) | num_statics) << 16;
5652 }
5653
5654 /* Encode $s0/$s1. */
5655 if (sregs & (1 << 0)) /* $s0 */
5656 opcode |= 0x20;
5657 if (sregs & (1 << 1)) /* $s1 */
5658 opcode |= 0x10;
5659 sregs >>= 2;
5660
5661 /* Encode $s2-$s8. */
5662 num_sregs = 0;
5663 while (sregs & 1)
5664 {
5665 sregs >>= 1;
5666 num_sregs += 1;
5667 }
5668 if (sregs != 0)
5669 return FALSE;
5670 opcode |= num_sregs << 24;
5671
5672 /* Encode frame size. */
5673 if (num_frame_sizes == 0)
5674 {
5675 set_insn_error (arg->argnum, _("missing frame size"));
5676 return FALSE;
5677 }
5678 if (num_frame_sizes > 1)
5679 {
5680 set_insn_error (arg->argnum, _("frame size specified twice"));
5681 return FALSE;
5682 }
5683 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5684 {
5685 set_insn_error (arg->argnum, _("invalid frame size"));
5686 return FALSE;
5687 }
5688 if (frame_size != 128 || (opcode >> 16) != 0)
5689 {
5690 frame_size /= 8;
5691 opcode |= (((frame_size & 0xf0) << 16)
5692 | (frame_size & 0x0f));
5693 }
5694
5695 /* Finally build the instruction. */
5696 if ((opcode >> 16) != 0 || frame_size == 0)
5697 opcode |= MIPS16_EXTEND;
5698 arg->insn->insn_opcode = opcode;
5699 return TRUE;
5700 }
5701
5702 /* OP_MDMX_IMM_REG matcher. */
5703
5704 static bfd_boolean
5705 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5706 const struct mips_operand *operand)
5707 {
5708 unsigned int regno, uval;
5709 bfd_boolean is_qh;
5710 const struct mips_opcode *opcode;
5711
5712 /* The mips_opcode records whether this is an octobyte or quadhalf
5713 instruction. Start out with that bit in place. */
5714 opcode = arg->insn->insn_mo;
5715 uval = mips_extract_operand (operand, opcode->match);
5716 is_qh = (uval != 0);
5717
5718 if (arg->token->type == OT_REG)
5719 {
5720 if ((opcode->membership & INSN_5400)
5721 && strcmp (opcode->name, "rzu.ob") == 0)
5722 {
5723 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5724 arg->argnum);
5725 return FALSE;
5726 }
5727
5728 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5729 return FALSE;
5730 ++arg->token;
5731
5732 /* Check whether this is a vector register or a broadcast of
5733 a single element. */
5734 if (arg->token->type == OT_INTEGER_INDEX)
5735 {
5736 if (arg->token->u.index > (is_qh ? 3 : 7))
5737 {
5738 set_insn_error (arg->argnum, _("invalid element selector"));
5739 return FALSE;
5740 }
5741 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5742 ++arg->token;
5743 }
5744 else
5745 {
5746 /* A full vector. */
5747 if ((opcode->membership & INSN_5400)
5748 && (strcmp (opcode->name, "sll.ob") == 0
5749 || strcmp (opcode->name, "srl.ob") == 0))
5750 {
5751 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5752 arg->argnum);
5753 return FALSE;
5754 }
5755
5756 if (is_qh)
5757 uval |= MDMX_FMTSEL_VEC_QH << 5;
5758 else
5759 uval |= MDMX_FMTSEL_VEC_OB << 5;
5760 }
5761 uval |= regno;
5762 }
5763 else
5764 {
5765 offsetT sval;
5766
5767 if (!match_const_int (arg, &sval))
5768 return FALSE;
5769 if (sval < 0 || sval > 31)
5770 {
5771 match_out_of_range (arg);
5772 return FALSE;
5773 }
5774 uval |= (sval & 31);
5775 if (is_qh)
5776 uval |= MDMX_FMTSEL_IMM_QH << 5;
5777 else
5778 uval |= MDMX_FMTSEL_IMM_OB << 5;
5779 }
5780 insn_insert_operand (arg->insn, operand, uval);
5781 return TRUE;
5782 }
5783
5784 /* OP_IMM_INDEX matcher. */
5785
5786 static bfd_boolean
5787 match_imm_index_operand (struct mips_arg_info *arg,
5788 const struct mips_operand *operand)
5789 {
5790 unsigned int max_val;
5791
5792 if (arg->token->type != OT_INTEGER_INDEX)
5793 return FALSE;
5794
5795 max_val = (1 << operand->size) - 1;
5796 if (arg->token->u.index > max_val)
5797 {
5798 match_out_of_range (arg);
5799 return FALSE;
5800 }
5801 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5802 ++arg->token;
5803 return TRUE;
5804 }
5805
5806 /* OP_REG_INDEX matcher. */
5807
5808 static bfd_boolean
5809 match_reg_index_operand (struct mips_arg_info *arg,
5810 const struct mips_operand *operand)
5811 {
5812 unsigned int regno;
5813
5814 if (arg->token->type != OT_REG_INDEX)
5815 return FALSE;
5816
5817 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5818 return FALSE;
5819
5820 insn_insert_operand (arg->insn, operand, regno);
5821 ++arg->token;
5822 return TRUE;
5823 }
5824
5825 /* OP_PC matcher. */
5826
5827 static bfd_boolean
5828 match_pc_operand (struct mips_arg_info *arg)
5829 {
5830 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5831 {
5832 ++arg->token;
5833 return TRUE;
5834 }
5835 return FALSE;
5836 }
5837
5838 /* OP_REG28 matcher. */
5839
5840 static bfd_boolean
5841 match_reg28_operand (struct mips_arg_info *arg)
5842 {
5843 unsigned int regno;
5844
5845 if (arg->token->type == OT_REG
5846 && match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno)
5847 && regno == GP)
5848 {
5849 ++arg->token;
5850 return TRUE;
5851 }
5852 return FALSE;
5853 }
5854
5855 /* OP_NON_ZERO_REG matcher. */
5856
5857 static bfd_boolean
5858 match_non_zero_reg_operand (struct mips_arg_info *arg,
5859 const struct mips_operand *operand)
5860 {
5861 unsigned int regno;
5862
5863 if (!match_reg (arg, OP_REG_GP, &regno))
5864 return FALSE;
5865
5866 if (regno == 0)
5867 return FALSE;
5868
5869 arg->last_regno = regno;
5870 insn_insert_operand (arg->insn, operand, regno);
5871 return TRUE;
5872 }
5873
5874 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5875 register that we need to match. */
5876
5877 static bfd_boolean
5878 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5879 {
5880 unsigned int regno;
5881
5882 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5883 }
5884
5885 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5886 the length of the value in bytes (4 for float, 8 for double) and
5887 USING_GPRS says whether the destination is a GPR rather than an FPR.
5888
5889 Return the constant in IMM and OFFSET as follows:
5890
5891 - If the constant should be loaded via memory, set IMM to O_absent and
5892 OFFSET to the memory address.
5893
5894 - Otherwise, if the constant should be loaded into two 32-bit registers,
5895 set IMM to the O_constant to load into the high register and OFFSET
5896 to the corresponding value for the low register.
5897
5898 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5899
5900 These constants only appear as the last operand in an instruction,
5901 and every instruction that accepts them in any variant accepts them
5902 in all variants. This means we don't have to worry about backing out
5903 any changes if the instruction does not match. We just match
5904 unconditionally and report an error if the constant is invalid. */
5905
5906 static bfd_boolean
5907 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5908 expressionS *offset, int length, bfd_boolean using_gprs)
5909 {
5910 char *p;
5911 segT seg, new_seg;
5912 subsegT subseg;
5913 const char *newname;
5914 unsigned char *data;
5915
5916 /* Where the constant is placed is based on how the MIPS assembler
5917 does things:
5918
5919 length == 4 && using_gprs -- immediate value only
5920 length == 8 && using_gprs -- .rdata or immediate value
5921 length == 4 && !using_gprs -- .lit4 or immediate value
5922 length == 8 && !using_gprs -- .lit8 or immediate value
5923
5924 The .lit4 and .lit8 sections are only used if permitted by the
5925 -G argument. */
5926 if (arg->token->type != OT_FLOAT)
5927 {
5928 set_insn_error (arg->argnum, _("floating-point expression required"));
5929 return FALSE;
5930 }
5931
5932 gas_assert (arg->token->u.flt.length == length);
5933 data = arg->token->u.flt.data;
5934 ++arg->token;
5935
5936 /* Handle 32-bit constants for which an immediate value is best. */
5937 if (length == 4
5938 && (using_gprs
5939 || g_switch_value < 4
5940 || (data[0] == 0 && data[1] == 0)
5941 || (data[2] == 0 && data[3] == 0)))
5942 {
5943 imm->X_op = O_constant;
5944 if (!target_big_endian)
5945 imm->X_add_number = bfd_getl32 (data);
5946 else
5947 imm->X_add_number = bfd_getb32 (data);
5948 offset->X_op = O_absent;
5949 return TRUE;
5950 }
5951
5952 /* Handle 64-bit constants for which an immediate value is best. */
5953 if (length == 8
5954 && !mips_disable_float_construction
5955 /* Constants can only be constructed in GPRs and copied to FPRs if the
5956 GPRs are at least as wide as the FPRs or MTHC1 is available.
5957 Unlike most tests for 32-bit floating-point registers this check
5958 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5959 permit 64-bit moves without MXHC1.
5960 Force the constant into memory otherwise. */
5961 && (using_gprs
5962 || GPR_SIZE == 64
5963 || ISA_HAS_MXHC1 (mips_opts.isa)
5964 || FPR_SIZE == 32)
5965 && ((data[0] == 0 && data[1] == 0)
5966 || (data[2] == 0 && data[3] == 0))
5967 && ((data[4] == 0 && data[5] == 0)
5968 || (data[6] == 0 && data[7] == 0)))
5969 {
5970 /* The value is simple enough to load with a couple of instructions.
5971 If using 32-bit registers, set IMM to the high order 32 bits and
5972 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5973 64 bit constant. */
5974 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
5975 {
5976 imm->X_op = O_constant;
5977 offset->X_op = O_constant;
5978 if (!target_big_endian)
5979 {
5980 imm->X_add_number = bfd_getl32 (data + 4);
5981 offset->X_add_number = bfd_getl32 (data);
5982 }
5983 else
5984 {
5985 imm->X_add_number = bfd_getb32 (data);
5986 offset->X_add_number = bfd_getb32 (data + 4);
5987 }
5988 if (offset->X_add_number == 0)
5989 offset->X_op = O_absent;
5990 }
5991 else
5992 {
5993 imm->X_op = O_constant;
5994 if (!target_big_endian)
5995 imm->X_add_number = bfd_getl64 (data);
5996 else
5997 imm->X_add_number = bfd_getb64 (data);
5998 offset->X_op = O_absent;
5999 }
6000 return TRUE;
6001 }
6002
6003 /* Switch to the right section. */
6004 seg = now_seg;
6005 subseg = now_subseg;
6006 if (length == 4)
6007 {
6008 gas_assert (!using_gprs && g_switch_value >= 4);
6009 newname = ".lit4";
6010 }
6011 else
6012 {
6013 if (using_gprs || g_switch_value < 8)
6014 newname = RDATA_SECTION_NAME;
6015 else
6016 newname = ".lit8";
6017 }
6018
6019 new_seg = subseg_new (newname, (subsegT) 0);
6020 bfd_set_section_flags (stdoutput, new_seg,
6021 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
6022 frag_align (length == 4 ? 2 : 3, 0, 0);
6023 if (strncmp (TARGET_OS, "elf", 3) != 0)
6024 record_alignment (new_seg, 4);
6025 else
6026 record_alignment (new_seg, length == 4 ? 2 : 3);
6027 if (seg == now_seg)
6028 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
6029
6030 /* Set the argument to the current address in the section. */
6031 imm->X_op = O_absent;
6032 offset->X_op = O_symbol;
6033 offset->X_add_symbol = symbol_temp_new_now ();
6034 offset->X_add_number = 0;
6035
6036 /* Put the floating point number into the section. */
6037 p = frag_more (length);
6038 memcpy (p, data, length);
6039
6040 /* Switch back to the original section. */
6041 subseg_set (seg, subseg);
6042 return TRUE;
6043 }
6044
6045 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
6046 them. */
6047
6048 static bfd_boolean
6049 match_vu0_suffix_operand (struct mips_arg_info *arg,
6050 const struct mips_operand *operand,
6051 bfd_boolean match_p)
6052 {
6053 unsigned int uval;
6054
6055 /* The operand can be an XYZW mask or a single 2-bit channel index
6056 (with X being 0). */
6057 gas_assert (operand->size == 2 || operand->size == 4);
6058
6059 /* The suffix can be omitted when it is already part of the opcode. */
6060 if (arg->token->type != OT_CHANNELS)
6061 return match_p;
6062
6063 uval = arg->token->u.channels;
6064 if (operand->size == 2)
6065 {
6066 /* Check that a single bit is set and convert it into a 2-bit index. */
6067 if ((uval & -uval) != uval)
6068 return FALSE;
6069 uval = 4 - ffs (uval);
6070 }
6071
6072 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
6073 return FALSE;
6074
6075 ++arg->token;
6076 if (!match_p)
6077 insn_insert_operand (arg->insn, operand, uval);
6078 return TRUE;
6079 }
6080
6081 /* S is the text seen for ARG. Match it against OPERAND. Return the end
6082 of the argument text if the match is successful, otherwise return null. */
6083
6084 static bfd_boolean
6085 match_operand (struct mips_arg_info *arg,
6086 const struct mips_operand *operand)
6087 {
6088 switch (operand->type)
6089 {
6090 case OP_INT:
6091 return match_int_operand (arg, operand);
6092
6093 case OP_MAPPED_INT:
6094 return match_mapped_int_operand (arg, operand);
6095
6096 case OP_MSB:
6097 return match_msb_operand (arg, operand);
6098
6099 case OP_REG:
6100 case OP_OPTIONAL_REG:
6101 return match_reg_operand (arg, operand);
6102
6103 case OP_REG_PAIR:
6104 return match_reg_pair_operand (arg, operand);
6105
6106 case OP_PCREL:
6107 return match_pcrel_operand (arg);
6108
6109 case OP_PERF_REG:
6110 return match_perf_reg_operand (arg, operand);
6111
6112 case OP_ADDIUSP_INT:
6113 return match_addiusp_operand (arg, operand);
6114
6115 case OP_CLO_CLZ_DEST:
6116 return match_clo_clz_dest_operand (arg, operand);
6117
6118 case OP_LWM_SWM_LIST:
6119 return match_lwm_swm_list_operand (arg, operand);
6120
6121 case OP_ENTRY_EXIT_LIST:
6122 return match_entry_exit_operand (arg, operand);
6123
6124 case OP_SAVE_RESTORE_LIST:
6125 return match_save_restore_list_operand (arg);
6126
6127 case OP_MDMX_IMM_REG:
6128 return match_mdmx_imm_reg_operand (arg, operand);
6129
6130 case OP_REPEAT_DEST_REG:
6131 return match_tied_reg_operand (arg, arg->dest_regno);
6132
6133 case OP_REPEAT_PREV_REG:
6134 return match_tied_reg_operand (arg, arg->last_regno);
6135
6136 case OP_PC:
6137 return match_pc_operand (arg);
6138
6139 case OP_REG28:
6140 return match_reg28_operand (arg);
6141
6142 case OP_VU0_SUFFIX:
6143 return match_vu0_suffix_operand (arg, operand, FALSE);
6144
6145 case OP_VU0_MATCH_SUFFIX:
6146 return match_vu0_suffix_operand (arg, operand, TRUE);
6147
6148 case OP_IMM_INDEX:
6149 return match_imm_index_operand (arg, operand);
6150
6151 case OP_REG_INDEX:
6152 return match_reg_index_operand (arg, operand);
6153
6154 case OP_SAME_RS_RT:
6155 return match_same_rs_rt_operand (arg, operand);
6156
6157 case OP_CHECK_PREV:
6158 return match_check_prev_operand (arg, operand);
6159
6160 case OP_NON_ZERO_REG:
6161 return match_non_zero_reg_operand (arg, operand);
6162 }
6163 abort ();
6164 }
6165
6166 /* ARG is the state after successfully matching an instruction.
6167 Issue any queued-up warnings. */
6168
6169 static void
6170 check_completed_insn (struct mips_arg_info *arg)
6171 {
6172 if (arg->seen_at)
6173 {
6174 if (AT == ATREG)
6175 as_warn (_("used $at without \".set noat\""));
6176 else
6177 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6178 }
6179 }
6180
6181 /* Return true if modifying general-purpose register REG needs a delay. */
6182
6183 static bfd_boolean
6184 reg_needs_delay (unsigned int reg)
6185 {
6186 unsigned long prev_pinfo;
6187
6188 prev_pinfo = history[0].insn_mo->pinfo;
6189 if (!mips_opts.noreorder
6190 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6191 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6192 && (gpr_write_mask (&history[0]) & (1 << reg)))
6193 return TRUE;
6194
6195 return FALSE;
6196 }
6197
6198 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6199 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6200 by VR4120 errata. */
6201
6202 static unsigned int
6203 classify_vr4120_insn (const char *name)
6204 {
6205 if (strncmp (name, "macc", 4) == 0)
6206 return FIX_VR4120_MACC;
6207 if (strncmp (name, "dmacc", 5) == 0)
6208 return FIX_VR4120_DMACC;
6209 if (strncmp (name, "mult", 4) == 0)
6210 return FIX_VR4120_MULT;
6211 if (strncmp (name, "dmult", 5) == 0)
6212 return FIX_VR4120_DMULT;
6213 if (strstr (name, "div"))
6214 return FIX_VR4120_DIV;
6215 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6216 return FIX_VR4120_MTHILO;
6217 return NUM_FIX_VR4120_CLASSES;
6218 }
6219
6220 #define INSN_ERET 0x42000018
6221 #define INSN_DERET 0x4200001f
6222 #define INSN_DMULT 0x1c
6223 #define INSN_DMULTU 0x1d
6224
6225 /* Return the number of instructions that must separate INSN1 and INSN2,
6226 where INSN1 is the earlier instruction. Return the worst-case value
6227 for any INSN2 if INSN2 is null. */
6228
6229 static unsigned int
6230 insns_between (const struct mips_cl_insn *insn1,
6231 const struct mips_cl_insn *insn2)
6232 {
6233 unsigned long pinfo1, pinfo2;
6234 unsigned int mask;
6235
6236 /* If INFO2 is null, pessimistically assume that all flags are set for
6237 the second instruction. */
6238 pinfo1 = insn1->insn_mo->pinfo;
6239 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6240
6241 /* For most targets, write-after-read dependencies on the HI and LO
6242 registers must be separated by at least two instructions. */
6243 if (!hilo_interlocks)
6244 {
6245 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6246 return 2;
6247 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6248 return 2;
6249 }
6250
6251 /* If we're working around r7000 errata, there must be two instructions
6252 between an mfhi or mflo and any instruction that uses the result. */
6253 if (mips_7000_hilo_fix
6254 && !mips_opts.micromips
6255 && MF_HILO_INSN (pinfo1)
6256 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6257 return 2;
6258
6259 /* If we're working around 24K errata, one instruction is required
6260 if an ERET or DERET is followed by a branch instruction. */
6261 if (mips_fix_24k && !mips_opts.micromips)
6262 {
6263 if (insn1->insn_opcode == INSN_ERET
6264 || insn1->insn_opcode == INSN_DERET)
6265 {
6266 if (insn2 == NULL
6267 || insn2->insn_opcode == INSN_ERET
6268 || insn2->insn_opcode == INSN_DERET
6269 || delayed_branch_p (insn2))
6270 return 1;
6271 }
6272 }
6273
6274 /* If we're working around PMC RM7000 errata, there must be three
6275 nops between a dmult and a load instruction. */
6276 if (mips_fix_rm7000 && !mips_opts.micromips)
6277 {
6278 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6279 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6280 {
6281 if (pinfo2 & INSN_LOAD_MEMORY)
6282 return 3;
6283 }
6284 }
6285
6286 /* If working around VR4120 errata, check for combinations that need
6287 a single intervening instruction. */
6288 if (mips_fix_vr4120 && !mips_opts.micromips)
6289 {
6290 unsigned int class1, class2;
6291
6292 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6293 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6294 {
6295 if (insn2 == NULL)
6296 return 1;
6297 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6298 if (vr4120_conflicts[class1] & (1 << class2))
6299 return 1;
6300 }
6301 }
6302
6303 if (!HAVE_CODE_COMPRESSION)
6304 {
6305 /* Check for GPR or coprocessor load delays. All such delays
6306 are on the RT register. */
6307 /* Itbl support may require additional care here. */
6308 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6309 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6310 {
6311 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6312 return 1;
6313 }
6314
6315 /* Check for generic coprocessor hazards.
6316
6317 This case is not handled very well. There is no special
6318 knowledge of CP0 handling, and the coprocessors other than
6319 the floating point unit are not distinguished at all. */
6320 /* Itbl support may require additional care here. FIXME!
6321 Need to modify this to include knowledge about
6322 user specified delays! */
6323 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6324 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6325 {
6326 /* Handle cases where INSN1 writes to a known general coprocessor
6327 register. There must be a one instruction delay before INSN2
6328 if INSN2 reads that register, otherwise no delay is needed. */
6329 mask = fpr_write_mask (insn1);
6330 if (mask != 0)
6331 {
6332 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6333 return 1;
6334 }
6335 else
6336 {
6337 /* Read-after-write dependencies on the control registers
6338 require a two-instruction gap. */
6339 if ((pinfo1 & INSN_WRITE_COND_CODE)
6340 && (pinfo2 & INSN_READ_COND_CODE))
6341 return 2;
6342
6343 /* We don't know exactly what INSN1 does. If INSN2 is
6344 also a coprocessor instruction, assume there must be
6345 a one instruction gap. */
6346 if (pinfo2 & INSN_COP)
6347 return 1;
6348 }
6349 }
6350
6351 /* Check for read-after-write dependencies on the coprocessor
6352 control registers in cases where INSN1 does not need a general
6353 coprocessor delay. This means that INSN1 is a floating point
6354 comparison instruction. */
6355 /* Itbl support may require additional care here. */
6356 else if (!cop_interlocks
6357 && (pinfo1 & INSN_WRITE_COND_CODE)
6358 && (pinfo2 & INSN_READ_COND_CODE))
6359 return 1;
6360 }
6361
6362 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6363 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6364 and pause. */
6365 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6366 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6367 || (insn2 && delayed_branch_p (insn2))))
6368 return 1;
6369
6370 return 0;
6371 }
6372
6373 /* Return the number of nops that would be needed to work around the
6374 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6375 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6376 that are contained within the first IGNORE instructions of HIST. */
6377
6378 static int
6379 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6380 const struct mips_cl_insn *insn)
6381 {
6382 int i, j;
6383 unsigned int mask;
6384
6385 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6386 are not affected by the errata. */
6387 if (insn != 0
6388 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6389 || strcmp (insn->insn_mo->name, "mtlo") == 0
6390 || strcmp (insn->insn_mo->name, "mthi") == 0))
6391 return 0;
6392
6393 /* Search for the first MFLO or MFHI. */
6394 for (i = 0; i < MAX_VR4130_NOPS; i++)
6395 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6396 {
6397 /* Extract the destination register. */
6398 mask = gpr_write_mask (&hist[i]);
6399
6400 /* No nops are needed if INSN reads that register. */
6401 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6402 return 0;
6403
6404 /* ...or if any of the intervening instructions do. */
6405 for (j = 0; j < i; j++)
6406 if (gpr_read_mask (&hist[j]) & mask)
6407 return 0;
6408
6409 if (i >= ignore)
6410 return MAX_VR4130_NOPS - i;
6411 }
6412 return 0;
6413 }
6414
6415 #define BASE_REG_EQ(INSN1, INSN2) \
6416 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6417 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6418
6419 /* Return the minimum alignment for this store instruction. */
6420
6421 static int
6422 fix_24k_align_to (const struct mips_opcode *mo)
6423 {
6424 if (strcmp (mo->name, "sh") == 0)
6425 return 2;
6426
6427 if (strcmp (mo->name, "swc1") == 0
6428 || strcmp (mo->name, "swc2") == 0
6429 || strcmp (mo->name, "sw") == 0
6430 || strcmp (mo->name, "sc") == 0
6431 || strcmp (mo->name, "s.s") == 0)
6432 return 4;
6433
6434 if (strcmp (mo->name, "sdc1") == 0
6435 || strcmp (mo->name, "sdc2") == 0
6436 || strcmp (mo->name, "s.d") == 0)
6437 return 8;
6438
6439 /* sb, swl, swr */
6440 return 1;
6441 }
6442
6443 struct fix_24k_store_info
6444 {
6445 /* Immediate offset, if any, for this store instruction. */
6446 short off;
6447 /* Alignment required by this store instruction. */
6448 int align_to;
6449 /* True for register offsets. */
6450 int register_offset;
6451 };
6452
6453 /* Comparison function used by qsort. */
6454
6455 static int
6456 fix_24k_sort (const void *a, const void *b)
6457 {
6458 const struct fix_24k_store_info *pos1 = a;
6459 const struct fix_24k_store_info *pos2 = b;
6460
6461 return (pos1->off - pos2->off);
6462 }
6463
6464 /* INSN is a store instruction. Try to record the store information
6465 in STINFO. Return false if the information isn't known. */
6466
6467 static bfd_boolean
6468 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6469 const struct mips_cl_insn *insn)
6470 {
6471 /* The instruction must have a known offset. */
6472 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6473 return FALSE;
6474
6475 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6476 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6477 return TRUE;
6478 }
6479
6480 /* Return the number of nops that would be needed to work around the 24k
6481 "lost data on stores during refill" errata if instruction INSN
6482 immediately followed the 2 instructions described by HIST.
6483 Ignore hazards that are contained within the first IGNORE
6484 instructions of HIST.
6485
6486 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6487 for the data cache refills and store data. The following describes
6488 the scenario where the store data could be lost.
6489
6490 * A data cache miss, due to either a load or a store, causing fill
6491 data to be supplied by the memory subsystem
6492 * The first three doublewords of fill data are returned and written
6493 into the cache
6494 * A sequence of four stores occurs in consecutive cycles around the
6495 final doubleword of the fill:
6496 * Store A
6497 * Store B
6498 * Store C
6499 * Zero, One or more instructions
6500 * Store D
6501
6502 The four stores A-D must be to different doublewords of the line that
6503 is being filled. The fourth instruction in the sequence above permits
6504 the fill of the final doubleword to be transferred from the FSB into
6505 the cache. In the sequence above, the stores may be either integer
6506 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6507 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6508 different doublewords on the line. If the floating point unit is
6509 running in 1:2 mode, it is not possible to create the sequence above
6510 using only floating point store instructions.
6511
6512 In this case, the cache line being filled is incorrectly marked
6513 invalid, thereby losing the data from any store to the line that
6514 occurs between the original miss and the completion of the five
6515 cycle sequence shown above.
6516
6517 The workarounds are:
6518
6519 * Run the data cache in write-through mode.
6520 * Insert a non-store instruction between
6521 Store A and Store B or Store B and Store C. */
6522
6523 static int
6524 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6525 const struct mips_cl_insn *insn)
6526 {
6527 struct fix_24k_store_info pos[3];
6528 int align, i, base_offset;
6529
6530 if (ignore >= 2)
6531 return 0;
6532
6533 /* If the previous instruction wasn't a store, there's nothing to
6534 worry about. */
6535 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6536 return 0;
6537
6538 /* If the instructions after the previous one are unknown, we have
6539 to assume the worst. */
6540 if (!insn)
6541 return 1;
6542
6543 /* Check whether we are dealing with three consecutive stores. */
6544 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6545 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6546 return 0;
6547
6548 /* If we don't know the relationship between the store addresses,
6549 assume the worst. */
6550 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6551 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6552 return 1;
6553
6554 if (!fix_24k_record_store_info (&pos[0], insn)
6555 || !fix_24k_record_store_info (&pos[1], &hist[0])
6556 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6557 return 1;
6558
6559 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6560
6561 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6562 X bytes and such that the base register + X is known to be aligned
6563 to align bytes. */
6564
6565 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6566 align = 8;
6567 else
6568 {
6569 align = pos[0].align_to;
6570 base_offset = pos[0].off;
6571 for (i = 1; i < 3; i++)
6572 if (align < pos[i].align_to)
6573 {
6574 align = pos[i].align_to;
6575 base_offset = pos[i].off;
6576 }
6577 for (i = 0; i < 3; i++)
6578 pos[i].off -= base_offset;
6579 }
6580
6581 pos[0].off &= ~align + 1;
6582 pos[1].off &= ~align + 1;
6583 pos[2].off &= ~align + 1;
6584
6585 /* If any two stores write to the same chunk, they also write to the
6586 same doubleword. The offsets are still sorted at this point. */
6587 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6588 return 0;
6589
6590 /* A range of at least 9 bytes is needed for the stores to be in
6591 non-overlapping doublewords. */
6592 if (pos[2].off - pos[0].off <= 8)
6593 return 0;
6594
6595 if (pos[2].off - pos[1].off >= 24
6596 || pos[1].off - pos[0].off >= 24
6597 || pos[2].off - pos[0].off >= 32)
6598 return 0;
6599
6600 return 1;
6601 }
6602
6603 /* Return the number of nops that would be needed if instruction INSN
6604 immediately followed the MAX_NOPS instructions given by HIST,
6605 where HIST[0] is the most recent instruction. Ignore hazards
6606 between INSN and the first IGNORE instructions in HIST.
6607
6608 If INSN is null, return the worse-case number of nops for any
6609 instruction. */
6610
6611 static int
6612 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6613 const struct mips_cl_insn *insn)
6614 {
6615 int i, nops, tmp_nops;
6616
6617 nops = 0;
6618 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6619 {
6620 tmp_nops = insns_between (hist + i, insn) - i;
6621 if (tmp_nops > nops)
6622 nops = tmp_nops;
6623 }
6624
6625 if (mips_fix_vr4130 && !mips_opts.micromips)
6626 {
6627 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6628 if (tmp_nops > nops)
6629 nops = tmp_nops;
6630 }
6631
6632 if (mips_fix_24k && !mips_opts.micromips)
6633 {
6634 tmp_nops = nops_for_24k (ignore, hist, insn);
6635 if (tmp_nops > nops)
6636 nops = tmp_nops;
6637 }
6638
6639 return nops;
6640 }
6641
6642 /* The variable arguments provide NUM_INSNS extra instructions that
6643 might be added to HIST. Return the largest number of nops that
6644 would be needed after the extended sequence, ignoring hazards
6645 in the first IGNORE instructions. */
6646
6647 static int
6648 nops_for_sequence (int num_insns, int ignore,
6649 const struct mips_cl_insn *hist, ...)
6650 {
6651 va_list args;
6652 struct mips_cl_insn buffer[MAX_NOPS];
6653 struct mips_cl_insn *cursor;
6654 int nops;
6655
6656 va_start (args, hist);
6657 cursor = buffer + num_insns;
6658 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6659 while (cursor > buffer)
6660 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6661
6662 nops = nops_for_insn (ignore, buffer, NULL);
6663 va_end (args);
6664 return nops;
6665 }
6666
6667 /* Like nops_for_insn, but if INSN is a branch, take into account the
6668 worst-case delay for the branch target. */
6669
6670 static int
6671 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6672 const struct mips_cl_insn *insn)
6673 {
6674 int nops, tmp_nops;
6675
6676 nops = nops_for_insn (ignore, hist, insn);
6677 if (delayed_branch_p (insn))
6678 {
6679 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6680 hist, insn, get_delay_slot_nop (insn));
6681 if (tmp_nops > nops)
6682 nops = tmp_nops;
6683 }
6684 else if (compact_branch_p (insn))
6685 {
6686 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6687 if (tmp_nops > nops)
6688 nops = tmp_nops;
6689 }
6690 return nops;
6691 }
6692
6693 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6694
6695 static void
6696 fix_loongson2f_nop (struct mips_cl_insn * ip)
6697 {
6698 gas_assert (!HAVE_CODE_COMPRESSION);
6699 if (strcmp (ip->insn_mo->name, "nop") == 0)
6700 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6701 }
6702
6703 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6704 jr target pc &= 'hffff_ffff_cfff_ffff. */
6705
6706 static void
6707 fix_loongson2f_jump (struct mips_cl_insn * ip)
6708 {
6709 gas_assert (!HAVE_CODE_COMPRESSION);
6710 if (strcmp (ip->insn_mo->name, "j") == 0
6711 || strcmp (ip->insn_mo->name, "jr") == 0
6712 || strcmp (ip->insn_mo->name, "jalr") == 0)
6713 {
6714 int sreg;
6715 expressionS ep;
6716
6717 if (! mips_opts.at)
6718 return;
6719
6720 sreg = EXTRACT_OPERAND (0, RS, *ip);
6721 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6722 return;
6723
6724 ep.X_op = O_constant;
6725 ep.X_add_number = 0xcfff0000;
6726 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6727 ep.X_add_number = 0xffff;
6728 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6729 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6730 }
6731 }
6732
6733 static void
6734 fix_loongson2f (struct mips_cl_insn * ip)
6735 {
6736 if (mips_fix_loongson2f_nop)
6737 fix_loongson2f_nop (ip);
6738
6739 if (mips_fix_loongson2f_jump)
6740 fix_loongson2f_jump (ip);
6741 }
6742
6743 /* IP is a branch that has a delay slot, and we need to fill it
6744 automatically. Return true if we can do that by swapping IP
6745 with the previous instruction.
6746 ADDRESS_EXPR is an operand of the instruction to be used with
6747 RELOC_TYPE. */
6748
6749 static bfd_boolean
6750 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6751 bfd_reloc_code_real_type *reloc_type)
6752 {
6753 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6754 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6755 unsigned int fpr_read, prev_fpr_write;
6756
6757 /* -O2 and above is required for this optimization. */
6758 if (mips_optimize < 2)
6759 return FALSE;
6760
6761 /* If we have seen .set volatile or .set nomove, don't optimize. */
6762 if (mips_opts.nomove)
6763 return FALSE;
6764
6765 /* We can't swap if the previous instruction's position is fixed. */
6766 if (history[0].fixed_p)
6767 return FALSE;
6768
6769 /* If the previous previous insn was in a .set noreorder, we can't
6770 swap. Actually, the MIPS assembler will swap in this situation.
6771 However, gcc configured -with-gnu-as will generate code like
6772
6773 .set noreorder
6774 lw $4,XXX
6775 .set reorder
6776 INSN
6777 bne $4,$0,foo
6778
6779 in which we can not swap the bne and INSN. If gcc is not configured
6780 -with-gnu-as, it does not output the .set pseudo-ops. */
6781 if (history[1].noreorder_p)
6782 return FALSE;
6783
6784 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6785 This means that the previous instruction was a 4-byte one anyhow. */
6786 if (mips_opts.mips16 && history[0].fixp[0])
6787 return FALSE;
6788
6789 /* If the branch is itself the target of a branch, we can not swap.
6790 We cheat on this; all we check for is whether there is a label on
6791 this instruction. If there are any branches to anything other than
6792 a label, users must use .set noreorder. */
6793 if (seg_info (now_seg)->label_list)
6794 return FALSE;
6795
6796 /* If the previous instruction is in a variant frag other than this
6797 branch's one, we cannot do the swap. This does not apply to
6798 MIPS16 code, which uses variant frags for different purposes. */
6799 if (!mips_opts.mips16
6800 && history[0].frag
6801 && history[0].frag->fr_type == rs_machine_dependent)
6802 return FALSE;
6803
6804 /* We do not swap with instructions that cannot architecturally
6805 be placed in a branch delay slot, such as SYNC or ERET. We
6806 also refrain from swapping with a trap instruction, since it
6807 complicates trap handlers to have the trap instruction be in
6808 a delay slot. */
6809 prev_pinfo = history[0].insn_mo->pinfo;
6810 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6811 return FALSE;
6812
6813 /* Check for conflicts between the branch and the instructions
6814 before the candidate delay slot. */
6815 if (nops_for_insn (0, history + 1, ip) > 0)
6816 return FALSE;
6817
6818 /* Check for conflicts between the swapped sequence and the
6819 target of the branch. */
6820 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6821 return FALSE;
6822
6823 /* If the branch reads a register that the previous
6824 instruction sets, we can not swap. */
6825 gpr_read = gpr_read_mask (ip);
6826 prev_gpr_write = gpr_write_mask (&history[0]);
6827 if (gpr_read & prev_gpr_write)
6828 return FALSE;
6829
6830 fpr_read = fpr_read_mask (ip);
6831 prev_fpr_write = fpr_write_mask (&history[0]);
6832 if (fpr_read & prev_fpr_write)
6833 return FALSE;
6834
6835 /* If the branch writes a register that the previous
6836 instruction sets, we can not swap. */
6837 gpr_write = gpr_write_mask (ip);
6838 if (gpr_write & prev_gpr_write)
6839 return FALSE;
6840
6841 /* If the branch writes a register that the previous
6842 instruction reads, we can not swap. */
6843 prev_gpr_read = gpr_read_mask (&history[0]);
6844 if (gpr_write & prev_gpr_read)
6845 return FALSE;
6846
6847 /* If one instruction sets a condition code and the
6848 other one uses a condition code, we can not swap. */
6849 pinfo = ip->insn_mo->pinfo;
6850 if ((pinfo & INSN_READ_COND_CODE)
6851 && (prev_pinfo & INSN_WRITE_COND_CODE))
6852 return FALSE;
6853 if ((pinfo & INSN_WRITE_COND_CODE)
6854 && (prev_pinfo & INSN_READ_COND_CODE))
6855 return FALSE;
6856
6857 /* If the previous instruction uses the PC, we can not swap. */
6858 prev_pinfo2 = history[0].insn_mo->pinfo2;
6859 if (prev_pinfo2 & INSN2_READ_PC)
6860 return FALSE;
6861
6862 /* If the previous instruction has an incorrect size for a fixed
6863 branch delay slot in microMIPS mode, we cannot swap. */
6864 pinfo2 = ip->insn_mo->pinfo2;
6865 if (mips_opts.micromips
6866 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6867 && insn_length (history) != 2)
6868 return FALSE;
6869 if (mips_opts.micromips
6870 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6871 && insn_length (history) != 4)
6872 return FALSE;
6873
6874 /* On R5900 short loops need to be fixed by inserting a nop in
6875 the branch delay slots.
6876 A short loop can be terminated too early. */
6877 if (mips_opts.arch == CPU_R5900
6878 /* Check if instruction has a parameter, ignore "j $31". */
6879 && (address_expr != NULL)
6880 /* Parameter must be 16 bit. */
6881 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6882 /* Branch to same segment. */
6883 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
6884 /* Branch to same code fragment. */
6885 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
6886 /* Can only calculate branch offset if value is known. */
6887 && symbol_constant_p (address_expr->X_add_symbol)
6888 /* Check if branch is really conditional. */
6889 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6890 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6891 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6892 {
6893 int distance;
6894 /* Check if loop is shorter than 6 instructions including
6895 branch and delay slot. */
6896 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
6897 if (distance <= 20)
6898 {
6899 int i;
6900 int rv;
6901
6902 rv = FALSE;
6903 /* When the loop includes branches or jumps,
6904 it is not a short loop. */
6905 for (i = 0; i < (distance / 4); i++)
6906 {
6907 if ((history[i].cleared_p)
6908 || delayed_branch_p (&history[i]))
6909 {
6910 rv = TRUE;
6911 break;
6912 }
6913 }
6914 if (rv == FALSE)
6915 {
6916 /* Insert nop after branch to fix short loop. */
6917 return FALSE;
6918 }
6919 }
6920 }
6921
6922 return TRUE;
6923 }
6924
6925 /* Decide how we should add IP to the instruction stream.
6926 ADDRESS_EXPR is an operand of the instruction to be used with
6927 RELOC_TYPE. */
6928
6929 static enum append_method
6930 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6931 bfd_reloc_code_real_type *reloc_type)
6932 {
6933 /* The relaxed version of a macro sequence must be inherently
6934 hazard-free. */
6935 if (mips_relax.sequence == 2)
6936 return APPEND_ADD;
6937
6938 /* We must not dabble with instructions in a ".set noreorder" block. */
6939 if (mips_opts.noreorder)
6940 return APPEND_ADD;
6941
6942 /* Otherwise, it's our responsibility to fill branch delay slots. */
6943 if (delayed_branch_p (ip))
6944 {
6945 if (!branch_likely_p (ip)
6946 && can_swap_branch_p (ip, address_expr, reloc_type))
6947 return APPEND_SWAP;
6948
6949 if (mips_opts.mips16
6950 && ISA_SUPPORTS_MIPS16E
6951 && gpr_read_mask (ip) != 0)
6952 return APPEND_ADD_COMPACT;
6953
6954 if (mips_opts.micromips
6955 && ((ip->insn_opcode & 0xffe0) == 0x4580
6956 || (!forced_insn_length
6957 && ((ip->insn_opcode & 0xfc00) == 0xcc00
6958 || (ip->insn_opcode & 0xdc00) == 0x8c00))
6959 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
6960 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
6961 return APPEND_ADD_COMPACT;
6962
6963 return APPEND_ADD_WITH_NOP;
6964 }
6965
6966 return APPEND_ADD;
6967 }
6968
6969 /* IP is an instruction whose opcode we have just changed, END points
6970 to the end of the opcode table processed. Point IP->insn_mo to the
6971 new opcode's definition. */
6972
6973 static void
6974 find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
6975 {
6976 const struct mips_opcode *mo;
6977
6978 for (mo = ip->insn_mo; mo < end; mo++)
6979 if (mo->pinfo != INSN_MACRO
6980 && (ip->insn_opcode & mo->mask) == mo->match)
6981 {
6982 ip->insn_mo = mo;
6983 return;
6984 }
6985 abort ();
6986 }
6987
6988 /* IP is a MIPS16 instruction whose opcode we have just changed.
6989 Point IP->insn_mo to the new opcode's definition. */
6990
6991 static void
6992 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6993 {
6994 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
6995 }
6996
6997 /* IP is a microMIPS instruction whose opcode we have just changed.
6998 Point IP->insn_mo to the new opcode's definition. */
6999
7000 static void
7001 find_altered_micromips_opcode (struct mips_cl_insn *ip)
7002 {
7003 find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
7004 }
7005
7006 /* For microMIPS macros, we need to generate a local number label
7007 as the target of branches. */
7008 #define MICROMIPS_LABEL_CHAR '\037'
7009 static unsigned long micromips_target_label;
7010 static char micromips_target_name[32];
7011
7012 static char *
7013 micromips_label_name (void)
7014 {
7015 char *p = micromips_target_name;
7016 char symbol_name_temporary[24];
7017 unsigned long l;
7018 int i;
7019
7020 if (*p)
7021 return p;
7022
7023 i = 0;
7024 l = micromips_target_label;
7025 #ifdef LOCAL_LABEL_PREFIX
7026 *p++ = LOCAL_LABEL_PREFIX;
7027 #endif
7028 *p++ = 'L';
7029 *p++ = MICROMIPS_LABEL_CHAR;
7030 do
7031 {
7032 symbol_name_temporary[i++] = l % 10 + '0';
7033 l /= 10;
7034 }
7035 while (l != 0);
7036 while (i > 0)
7037 *p++ = symbol_name_temporary[--i];
7038 *p = '\0';
7039
7040 return micromips_target_name;
7041 }
7042
7043 static void
7044 micromips_label_expr (expressionS *label_expr)
7045 {
7046 label_expr->X_op = O_symbol;
7047 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
7048 label_expr->X_add_number = 0;
7049 }
7050
7051 static void
7052 micromips_label_inc (void)
7053 {
7054 micromips_target_label++;
7055 *micromips_target_name = '\0';
7056 }
7057
7058 static void
7059 micromips_add_label (void)
7060 {
7061 symbolS *s;
7062
7063 s = colon (micromips_label_name ());
7064 micromips_label_inc ();
7065 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
7066 }
7067
7068 /* If assembling microMIPS code, then return the microMIPS reloc
7069 corresponding to the requested one if any. Otherwise return
7070 the reloc unchanged. */
7071
7072 static bfd_reloc_code_real_type
7073 micromips_map_reloc (bfd_reloc_code_real_type reloc)
7074 {
7075 static const bfd_reloc_code_real_type relocs[][2] =
7076 {
7077 /* Keep sorted incrementally by the left-hand key. */
7078 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
7079 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
7080 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
7081 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
7082 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
7083 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
7084 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
7085 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
7086 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
7087 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
7088 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
7089 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
7090 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
7091 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
7092 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
7093 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
7094 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
7095 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
7096 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
7097 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
7098 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
7099 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
7100 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
7101 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
7102 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
7103 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
7104 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
7105 };
7106 bfd_reloc_code_real_type r;
7107 size_t i;
7108
7109 if (!mips_opts.micromips)
7110 return reloc;
7111 for (i = 0; i < ARRAY_SIZE (relocs); i++)
7112 {
7113 r = relocs[i][0];
7114 if (r > reloc)
7115 return reloc;
7116 if (r == reloc)
7117 return relocs[i][1];
7118 }
7119 return reloc;
7120 }
7121
7122 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7123 Return true on success, storing the resolved value in RESULT. */
7124
7125 static bfd_boolean
7126 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7127 offsetT *result)
7128 {
7129 switch (reloc)
7130 {
7131 case BFD_RELOC_MIPS_HIGHEST:
7132 case BFD_RELOC_MICROMIPS_HIGHEST:
7133 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7134 return TRUE;
7135
7136 case BFD_RELOC_MIPS_HIGHER:
7137 case BFD_RELOC_MICROMIPS_HIGHER:
7138 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7139 return TRUE;
7140
7141 case BFD_RELOC_HI16_S:
7142 case BFD_RELOC_HI16_S_PCREL:
7143 case BFD_RELOC_MICROMIPS_HI16_S:
7144 case BFD_RELOC_MIPS16_HI16_S:
7145 *result = ((operand + 0x8000) >> 16) & 0xffff;
7146 return TRUE;
7147
7148 case BFD_RELOC_HI16:
7149 case BFD_RELOC_MICROMIPS_HI16:
7150 case BFD_RELOC_MIPS16_HI16:
7151 *result = (operand >> 16) & 0xffff;
7152 return TRUE;
7153
7154 case BFD_RELOC_LO16:
7155 case BFD_RELOC_LO16_PCREL:
7156 case BFD_RELOC_MICROMIPS_LO16:
7157 case BFD_RELOC_MIPS16_LO16:
7158 *result = operand & 0xffff;
7159 return TRUE;
7160
7161 case BFD_RELOC_UNUSED:
7162 *result = operand;
7163 return TRUE;
7164
7165 default:
7166 return FALSE;
7167 }
7168 }
7169
7170 /* Output an instruction. IP is the instruction information.
7171 ADDRESS_EXPR is an operand of the instruction to be used with
7172 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7173 a macro expansion. */
7174
7175 static void
7176 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7177 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7178 {
7179 unsigned long prev_pinfo2, pinfo;
7180 bfd_boolean relaxed_branch = FALSE;
7181 enum append_method method;
7182 bfd_boolean relax32;
7183 int branch_disp;
7184
7185 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7186 fix_loongson2f (ip);
7187
7188 file_ase_mips16 |= mips_opts.mips16;
7189 file_ase_micromips |= mips_opts.micromips;
7190
7191 prev_pinfo2 = history[0].insn_mo->pinfo2;
7192 pinfo = ip->insn_mo->pinfo;
7193
7194 /* Don't raise alarm about `nods' frags as they'll fill in the right
7195 kind of nop in relaxation if required. */
7196 if (mips_opts.micromips
7197 && !expansionp
7198 && !(history[0].frag
7199 && history[0].frag->fr_type == rs_machine_dependent
7200 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7201 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
7202 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7203 && micromips_insn_length (ip->insn_mo) != 2)
7204 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7205 && micromips_insn_length (ip->insn_mo) != 4)))
7206 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7207 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7208
7209 if (address_expr == NULL)
7210 ip->complete_p = 1;
7211 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7212 && reloc_type[1] == BFD_RELOC_UNUSED
7213 && reloc_type[2] == BFD_RELOC_UNUSED
7214 && address_expr->X_op == O_constant)
7215 {
7216 switch (*reloc_type)
7217 {
7218 case BFD_RELOC_MIPS_JMP:
7219 {
7220 int shift;
7221
7222 /* Shift is 2, unusually, for microMIPS JALX. */
7223 shift = (mips_opts.micromips
7224 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
7225 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7226 as_bad (_("jump to misaligned address (0x%lx)"),
7227 (unsigned long) address_expr->X_add_number);
7228 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7229 & 0x3ffffff);
7230 ip->complete_p = 1;
7231 }
7232 break;
7233
7234 case BFD_RELOC_MIPS16_JMP:
7235 if ((address_expr->X_add_number & 3) != 0)
7236 as_bad (_("jump to misaligned address (0x%lx)"),
7237 (unsigned long) address_expr->X_add_number);
7238 ip->insn_opcode |=
7239 (((address_expr->X_add_number & 0x7c0000) << 3)
7240 | ((address_expr->X_add_number & 0xf800000) >> 7)
7241 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7242 ip->complete_p = 1;
7243 break;
7244
7245 case BFD_RELOC_16_PCREL_S2:
7246 {
7247 int shift;
7248
7249 shift = mips_opts.micromips ? 1 : 2;
7250 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7251 as_bad (_("branch to misaligned address (0x%lx)"),
7252 (unsigned long) address_expr->X_add_number);
7253 if (!mips_relax_branch)
7254 {
7255 if ((address_expr->X_add_number + (1 << (shift + 15)))
7256 & ~((1 << (shift + 16)) - 1))
7257 as_bad (_("branch address range overflow (0x%lx)"),
7258 (unsigned long) address_expr->X_add_number);
7259 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7260 & 0xffff);
7261 }
7262 }
7263 break;
7264
7265 case BFD_RELOC_MIPS_21_PCREL_S2:
7266 {
7267 int shift;
7268
7269 shift = 2;
7270 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7271 as_bad (_("branch to misaligned address (0x%lx)"),
7272 (unsigned long) address_expr->X_add_number);
7273 if ((address_expr->X_add_number + (1 << (shift + 20)))
7274 & ~((1 << (shift + 21)) - 1))
7275 as_bad (_("branch address range overflow (0x%lx)"),
7276 (unsigned long) address_expr->X_add_number);
7277 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7278 & 0x1fffff);
7279 }
7280 break;
7281
7282 case BFD_RELOC_MIPS_26_PCREL_S2:
7283 {
7284 int shift;
7285
7286 shift = 2;
7287 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7288 as_bad (_("branch to misaligned address (0x%lx)"),
7289 (unsigned long) address_expr->X_add_number);
7290 if ((address_expr->X_add_number + (1 << (shift + 25)))
7291 & ~((1 << (shift + 26)) - 1))
7292 as_bad (_("branch address range overflow (0x%lx)"),
7293 (unsigned long) address_expr->X_add_number);
7294 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7295 & 0x3ffffff);
7296 }
7297 break;
7298
7299 default:
7300 {
7301 offsetT value;
7302
7303 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7304 &value))
7305 {
7306 ip->insn_opcode |= value & 0xffff;
7307 ip->complete_p = 1;
7308 }
7309 }
7310 break;
7311 }
7312 }
7313
7314 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7315 {
7316 /* There are a lot of optimizations we could do that we don't.
7317 In particular, we do not, in general, reorder instructions.
7318 If you use gcc with optimization, it will reorder
7319 instructions and generally do much more optimization then we
7320 do here; repeating all that work in the assembler would only
7321 benefit hand written assembly code, and does not seem worth
7322 it. */
7323 int nops = (mips_optimize == 0
7324 ? nops_for_insn (0, history, NULL)
7325 : nops_for_insn_or_target (0, history, ip));
7326 if (nops > 0)
7327 {
7328 fragS *old_frag;
7329 unsigned long old_frag_offset;
7330 int i;
7331
7332 old_frag = frag_now;
7333 old_frag_offset = frag_now_fix ();
7334
7335 for (i = 0; i < nops; i++)
7336 add_fixed_insn (NOP_INSN);
7337 insert_into_history (0, nops, NOP_INSN);
7338
7339 if (listing)
7340 {
7341 listing_prev_line ();
7342 /* We may be at the start of a variant frag. In case we
7343 are, make sure there is enough space for the frag
7344 after the frags created by listing_prev_line. The
7345 argument to frag_grow here must be at least as large
7346 as the argument to all other calls to frag_grow in
7347 this file. We don't have to worry about being in the
7348 middle of a variant frag, because the variants insert
7349 all needed nop instructions themselves. */
7350 frag_grow (40);
7351 }
7352
7353 mips_move_text_labels ();
7354
7355 #ifndef NO_ECOFF_DEBUGGING
7356 if (ECOFF_DEBUGGING)
7357 ecoff_fix_loc (old_frag, old_frag_offset);
7358 #endif
7359 }
7360 }
7361 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7362 {
7363 int nops;
7364
7365 /* Work out how many nops in prev_nop_frag are needed by IP,
7366 ignoring hazards generated by the first prev_nop_frag_since
7367 instructions. */
7368 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7369 gas_assert (nops <= prev_nop_frag_holds);
7370
7371 /* Enforce NOPS as a minimum. */
7372 if (nops > prev_nop_frag_required)
7373 prev_nop_frag_required = nops;
7374
7375 if (prev_nop_frag_holds == prev_nop_frag_required)
7376 {
7377 /* Settle for the current number of nops. Update the history
7378 accordingly (for the benefit of any future .set reorder code). */
7379 prev_nop_frag = NULL;
7380 insert_into_history (prev_nop_frag_since,
7381 prev_nop_frag_holds, NOP_INSN);
7382 }
7383 else
7384 {
7385 /* Allow this instruction to replace one of the nops that was
7386 tentatively added to prev_nop_frag. */
7387 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7388 prev_nop_frag_holds--;
7389 prev_nop_frag_since++;
7390 }
7391 }
7392
7393 method = get_append_method (ip, address_expr, reloc_type);
7394 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7395
7396 dwarf2_emit_insn (0);
7397 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7398 so "move" the instruction address accordingly.
7399
7400 Also, it doesn't seem appropriate for the assembler to reorder .loc
7401 entries. If this instruction is a branch that we are going to swap
7402 with the previous instruction, the two instructions should be
7403 treated as a unit, and the debug information for both instructions
7404 should refer to the start of the branch sequence. Using the
7405 current position is certainly wrong when swapping a 32-bit branch
7406 and a 16-bit delay slot, since the current position would then be
7407 in the middle of a branch. */
7408 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7409
7410 relax32 = (mips_relax_branch
7411 /* Don't try branch relaxation within .set nomacro, or within
7412 .set noat if we use $at for PIC computations. If it turns
7413 out that the branch was out-of-range, we'll get an error. */
7414 && !mips_opts.warn_about_macros
7415 && (mips_opts.at || mips_pic == NO_PIC)
7416 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7417 as they have no complementing branches. */
7418 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7419
7420 if (!HAVE_CODE_COMPRESSION
7421 && address_expr
7422 && relax32
7423 && *reloc_type == BFD_RELOC_16_PCREL_S2
7424 && delayed_branch_p (ip))
7425 {
7426 relaxed_branch = TRUE;
7427 add_relaxed_insn (ip, (relaxed_branch_length
7428 (NULL, NULL,
7429 uncond_branch_p (ip) ? -1
7430 : branch_likely_p (ip) ? 1
7431 : 0)), 4,
7432 RELAX_BRANCH_ENCODE
7433 (AT, mips_pic != NO_PIC,
7434 uncond_branch_p (ip),
7435 branch_likely_p (ip),
7436 pinfo & INSN_WRITE_GPR_31,
7437 0),
7438 address_expr->X_add_symbol,
7439 address_expr->X_add_number);
7440 *reloc_type = BFD_RELOC_UNUSED;
7441 }
7442 else if (mips_opts.micromips
7443 && address_expr
7444 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7445 || *reloc_type > BFD_RELOC_UNUSED)
7446 && (delayed_branch_p (ip) || compact_branch_p (ip))
7447 /* Don't try branch relaxation when users specify
7448 16-bit/32-bit instructions. */
7449 && !forced_insn_length)
7450 {
7451 bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
7452 && *reloc_type > BFD_RELOC_UNUSED);
7453 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7454 int uncond = uncond_branch_p (ip) ? -1 : 0;
7455 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7456 int nods = method == APPEND_ADD_WITH_NOP;
7457 int al = pinfo & INSN_WRITE_GPR_31;
7458 int length32 = nods ? 8 : 4;
7459
7460 gas_assert (address_expr != NULL);
7461 gas_assert (!mips_relax.sequence);
7462
7463 relaxed_branch = TRUE;
7464 if (nods)
7465 method = APPEND_ADD;
7466 if (relax32)
7467 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7468 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
7469 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
7470 mips_pic != NO_PIC,
7471 uncond, compact, al, nods,
7472 relax32, 0, 0),
7473 address_expr->X_add_symbol,
7474 address_expr->X_add_number);
7475 *reloc_type = BFD_RELOC_UNUSED;
7476 }
7477 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7478 {
7479 bfd_boolean require_unextended;
7480 bfd_boolean require_extended;
7481 symbolS *symbol;
7482 offsetT offset;
7483
7484 if (forced_insn_length != 0)
7485 {
7486 require_unextended = forced_insn_length == 2;
7487 require_extended = forced_insn_length == 4;
7488 }
7489 else
7490 {
7491 require_unextended = (mips_opts.noautoextend
7492 && !mips_opcode_32bit_p (ip->insn_mo));
7493 require_extended = 0;
7494 }
7495
7496 /* We need to set up a variant frag. */
7497 gas_assert (address_expr != NULL);
7498 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7499 symbol created by `make_expr_symbol' may not get a necessary
7500 external relocation produced. */
7501 if (address_expr->X_op == O_symbol)
7502 {
7503 symbol = address_expr->X_add_symbol;
7504 offset = address_expr->X_add_number;
7505 }
7506 else
7507 {
7508 symbol = make_expr_symbol (address_expr);
7509 symbol_append (symbol, symbol_lastP, &symbol_rootP, &symbol_lastP);
7510 offset = 0;
7511 }
7512 add_relaxed_insn (ip, 12, 0,
7513 RELAX_MIPS16_ENCODE
7514 (*reloc_type - BFD_RELOC_UNUSED,
7515 mips_opts.ase & ASE_MIPS16E2,
7516 mips_pic != NO_PIC,
7517 HAVE_32BIT_SYMBOLS,
7518 mips_opts.warn_about_macros,
7519 require_unextended, require_extended,
7520 delayed_branch_p (&history[0]),
7521 history[0].mips16_absolute_jump_p),
7522 symbol, offset);
7523 }
7524 else if (mips_opts.mips16 && insn_length (ip) == 2)
7525 {
7526 if (!delayed_branch_p (ip))
7527 /* Make sure there is enough room to swap this instruction with
7528 a following jump instruction. */
7529 frag_grow (6);
7530 add_fixed_insn (ip);
7531 }
7532 else
7533 {
7534 if (mips_opts.mips16
7535 && mips_opts.noreorder
7536 && delayed_branch_p (&history[0]))
7537 as_warn (_("extended instruction in delay slot"));
7538
7539 if (mips_relax.sequence)
7540 {
7541 /* If we've reached the end of this frag, turn it into a variant
7542 frag and record the information for the instructions we've
7543 written so far. */
7544 if (frag_room () < 4)
7545 relax_close_frag ();
7546 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7547 }
7548
7549 if (mips_relax.sequence != 2)
7550 {
7551 if (mips_macro_warning.first_insn_sizes[0] == 0)
7552 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7553 mips_macro_warning.sizes[0] += insn_length (ip);
7554 mips_macro_warning.insns[0]++;
7555 }
7556 if (mips_relax.sequence != 1)
7557 {
7558 if (mips_macro_warning.first_insn_sizes[1] == 0)
7559 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7560 mips_macro_warning.sizes[1] += insn_length (ip);
7561 mips_macro_warning.insns[1]++;
7562 }
7563
7564 if (mips_opts.mips16)
7565 {
7566 ip->fixed_p = 1;
7567 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7568 }
7569 add_fixed_insn (ip);
7570 }
7571
7572 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7573 {
7574 bfd_reloc_code_real_type final_type[3];
7575 reloc_howto_type *howto0;
7576 reloc_howto_type *howto;
7577 int i;
7578
7579 /* Perform any necessary conversion to microMIPS relocations
7580 and find out how many relocations there actually are. */
7581 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7582 final_type[i] = micromips_map_reloc (reloc_type[i]);
7583
7584 /* In a compound relocation, it is the final (outermost)
7585 operator that determines the relocated field. */
7586 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7587 if (!howto)
7588 abort ();
7589
7590 if (i > 1)
7591 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7592 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7593 bfd_get_reloc_size (howto),
7594 address_expr,
7595 howto0 && howto0->pc_relative,
7596 final_type[0]);
7597 /* Record non-PIC mode in `fx_tcbit2' for `md_apply_fix'. */
7598 ip->fixp[0]->fx_tcbit2 = mips_pic == NO_PIC;
7599
7600 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7601 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7602 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7603
7604 /* These relocations can have an addend that won't fit in
7605 4 octets for 64bit assembly. */
7606 if (GPR_SIZE == 64
7607 && ! howto->partial_inplace
7608 && (reloc_type[0] == BFD_RELOC_16
7609 || reloc_type[0] == BFD_RELOC_32
7610 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7611 || reloc_type[0] == BFD_RELOC_GPREL16
7612 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7613 || reloc_type[0] == BFD_RELOC_GPREL32
7614 || reloc_type[0] == BFD_RELOC_64
7615 || reloc_type[0] == BFD_RELOC_CTOR
7616 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7617 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7618 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7619 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7620 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7621 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7622 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7623 || hi16_reloc_p (reloc_type[0])
7624 || lo16_reloc_p (reloc_type[0])))
7625 ip->fixp[0]->fx_no_overflow = 1;
7626
7627 /* These relocations can have an addend that won't fit in 2 octets. */
7628 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7629 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7630 ip->fixp[0]->fx_no_overflow = 1;
7631
7632 if (mips_relax.sequence)
7633 {
7634 if (mips_relax.first_fixup == 0)
7635 mips_relax.first_fixup = ip->fixp[0];
7636 }
7637 else if (reloc_needs_lo_p (*reloc_type))
7638 {
7639 struct mips_hi_fixup *hi_fixup;
7640
7641 /* Reuse the last entry if it already has a matching %lo. */
7642 hi_fixup = mips_hi_fixup_list;
7643 if (hi_fixup == 0
7644 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7645 {
7646 hi_fixup = XNEW (struct mips_hi_fixup);
7647 hi_fixup->next = mips_hi_fixup_list;
7648 mips_hi_fixup_list = hi_fixup;
7649 }
7650 hi_fixup->fixp = ip->fixp[0];
7651 hi_fixup->seg = now_seg;
7652 }
7653
7654 /* Add fixups for the second and third relocations, if given.
7655 Note that the ABI allows the second relocation to be
7656 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7657 moment we only use RSS_UNDEF, but we could add support
7658 for the others if it ever becomes necessary. */
7659 for (i = 1; i < 3; i++)
7660 if (reloc_type[i] != BFD_RELOC_UNUSED)
7661 {
7662 ip->fixp[i] = fix_new (ip->frag, ip->where,
7663 ip->fixp[0]->fx_size, NULL, 0,
7664 FALSE, final_type[i]);
7665
7666 /* Use fx_tcbit to mark compound relocs. */
7667 ip->fixp[0]->fx_tcbit = 1;
7668 ip->fixp[i]->fx_tcbit = 1;
7669 }
7670 }
7671
7672 /* Update the register mask information. */
7673 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7674 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7675
7676 switch (method)
7677 {
7678 case APPEND_ADD:
7679 insert_into_history (0, 1, ip);
7680 break;
7681
7682 case APPEND_ADD_WITH_NOP:
7683 {
7684 struct mips_cl_insn *nop;
7685
7686 insert_into_history (0, 1, ip);
7687 nop = get_delay_slot_nop (ip);
7688 add_fixed_insn (nop);
7689 insert_into_history (0, 1, nop);
7690 if (mips_relax.sequence)
7691 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7692 }
7693 break;
7694
7695 case APPEND_ADD_COMPACT:
7696 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7697 if (mips_opts.mips16)
7698 {
7699 ip->insn_opcode |= 0x0080;
7700 find_altered_mips16_opcode (ip);
7701 }
7702 /* Convert microMIPS instructions. */
7703 else if (mips_opts.micromips)
7704 {
7705 /* jr16->jrc */
7706 if ((ip->insn_opcode & 0xffe0) == 0x4580)
7707 ip->insn_opcode |= 0x0020;
7708 /* b16->bc */
7709 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
7710 ip->insn_opcode = 0x40e00000;
7711 /* beqz16->beqzc, bnez16->bnezc */
7712 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
7713 {
7714 unsigned long regno;
7715
7716 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
7717 regno &= MICROMIPSOP_MASK_MD;
7718 regno = micromips_to_32_reg_d_map[regno];
7719 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
7720 | (regno << MICROMIPSOP_SH_RS)
7721 | 0x40a00000) ^ 0x00400000;
7722 }
7723 /* beqz->beqzc, bnez->bnezc */
7724 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
7725 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
7726 | ((ip->insn_opcode >> 7) & 0x00400000)
7727 | 0x40a00000) ^ 0x00400000;
7728 /* beq $0->beqzc, bne $0->bnezc */
7729 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
7730 ip->insn_opcode = (((ip->insn_opcode >>
7731 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
7732 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
7733 | ((ip->insn_opcode >> 7) & 0x00400000)
7734 | 0x40a00000) ^ 0x00400000;
7735 else
7736 abort ();
7737 find_altered_micromips_opcode (ip);
7738 }
7739 else
7740 abort ();
7741 install_insn (ip);
7742 insert_into_history (0, 1, ip);
7743 break;
7744
7745 case APPEND_SWAP:
7746 {
7747 struct mips_cl_insn delay = history[0];
7748
7749 if (relaxed_branch || delay.frag != ip->frag)
7750 {
7751 /* Add the delay slot instruction to the end of the
7752 current frag and shrink the fixed part of the
7753 original frag. If the branch occupies the tail of
7754 the latter, move it backwards to cover the gap. */
7755 delay.frag->fr_fix -= branch_disp;
7756 if (delay.frag == ip->frag)
7757 move_insn (ip, ip->frag, ip->where - branch_disp);
7758 add_fixed_insn (&delay);
7759 }
7760 else
7761 {
7762 /* If this is not a relaxed branch and we are in the
7763 same frag, then just swap the instructions. */
7764 move_insn (ip, delay.frag, delay.where);
7765 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7766 }
7767 history[0] = *ip;
7768 delay.fixed_p = 1;
7769 insert_into_history (0, 1, &delay);
7770 }
7771 break;
7772 }
7773
7774 /* If we have just completed an unconditional branch, clear the history. */
7775 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7776 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7777 {
7778 unsigned int i;
7779
7780 mips_no_prev_insn ();
7781
7782 for (i = 0; i < ARRAY_SIZE (history); i++)
7783 history[i].cleared_p = 1;
7784 }
7785
7786 /* We need to emit a label at the end of branch-likely macros. */
7787 if (emit_branch_likely_macro)
7788 {
7789 emit_branch_likely_macro = FALSE;
7790 micromips_add_label ();
7791 }
7792
7793 /* We just output an insn, so the next one doesn't have a label. */
7794 mips_clear_insn_labels ();
7795 }
7796
7797 /* Forget that there was any previous instruction or label.
7798 When BRANCH is true, the branch history is also flushed. */
7799
7800 static void
7801 mips_no_prev_insn (void)
7802 {
7803 prev_nop_frag = NULL;
7804 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7805 mips_clear_insn_labels ();
7806 }
7807
7808 /* This function must be called before we emit something other than
7809 instructions. It is like mips_no_prev_insn except that it inserts
7810 any NOPS that might be needed by previous instructions. */
7811
7812 void
7813 mips_emit_delays (void)
7814 {
7815 if (! mips_opts.noreorder)
7816 {
7817 int nops = nops_for_insn (0, history, NULL);
7818 if (nops > 0)
7819 {
7820 while (nops-- > 0)
7821 add_fixed_insn (NOP_INSN);
7822 mips_move_text_labels ();
7823 }
7824 }
7825 mips_no_prev_insn ();
7826 }
7827
7828 /* Start a (possibly nested) noreorder block. */
7829
7830 static void
7831 start_noreorder (void)
7832 {
7833 if (mips_opts.noreorder == 0)
7834 {
7835 unsigned int i;
7836 int nops;
7837
7838 /* None of the instructions before the .set noreorder can be moved. */
7839 for (i = 0; i < ARRAY_SIZE (history); i++)
7840 history[i].fixed_p = 1;
7841
7842 /* Insert any nops that might be needed between the .set noreorder
7843 block and the previous instructions. We will later remove any
7844 nops that turn out not to be needed. */
7845 nops = nops_for_insn (0, history, NULL);
7846 if (nops > 0)
7847 {
7848 if (mips_optimize != 0)
7849 {
7850 /* Record the frag which holds the nop instructions, so
7851 that we can remove them if we don't need them. */
7852 frag_grow (nops * NOP_INSN_SIZE);
7853 prev_nop_frag = frag_now;
7854 prev_nop_frag_holds = nops;
7855 prev_nop_frag_required = 0;
7856 prev_nop_frag_since = 0;
7857 }
7858
7859 for (; nops > 0; --nops)
7860 add_fixed_insn (NOP_INSN);
7861
7862 /* Move on to a new frag, so that it is safe to simply
7863 decrease the size of prev_nop_frag. */
7864 frag_wane (frag_now);
7865 frag_new (0);
7866 mips_move_text_labels ();
7867 }
7868 mips_mark_labels ();
7869 mips_clear_insn_labels ();
7870 }
7871 mips_opts.noreorder++;
7872 mips_any_noreorder = 1;
7873 }
7874
7875 /* End a nested noreorder block. */
7876
7877 static void
7878 end_noreorder (void)
7879 {
7880 mips_opts.noreorder--;
7881 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7882 {
7883 /* Commit to inserting prev_nop_frag_required nops and go back to
7884 handling nop insertion the .set reorder way. */
7885 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7886 * NOP_INSN_SIZE);
7887 insert_into_history (prev_nop_frag_since,
7888 prev_nop_frag_required, NOP_INSN);
7889 prev_nop_frag = NULL;
7890 }
7891 }
7892
7893 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7894 higher bits unset. */
7895
7896 static void
7897 normalize_constant_expr (expressionS *ex)
7898 {
7899 if (ex->X_op == O_constant
7900 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7901 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7902 - 0x80000000);
7903 }
7904
7905 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7906 all higher bits unset. */
7907
7908 static void
7909 normalize_address_expr (expressionS *ex)
7910 {
7911 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7912 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7913 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7914 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7915 - 0x80000000);
7916 }
7917
7918 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7919 Return true if the match was successful.
7920
7921 OPCODE_EXTRA is a value that should be ORed into the opcode
7922 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7923 there are more alternatives after OPCODE and SOFT_MATCH is
7924 as for mips_arg_info. */
7925
7926 static bfd_boolean
7927 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7928 struct mips_operand_token *tokens, unsigned int opcode_extra,
7929 bfd_boolean lax_match, bfd_boolean complete_p)
7930 {
7931 const char *args;
7932 struct mips_arg_info arg;
7933 const struct mips_operand *operand;
7934 char c;
7935
7936 imm_expr.X_op = O_absent;
7937 offset_expr.X_op = O_absent;
7938 offset_reloc[0] = BFD_RELOC_UNUSED;
7939 offset_reloc[1] = BFD_RELOC_UNUSED;
7940 offset_reloc[2] = BFD_RELOC_UNUSED;
7941
7942 create_insn (insn, opcode);
7943 /* When no opcode suffix is specified, assume ".xyzw". */
7944 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7945 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7946 else
7947 insn->insn_opcode |= opcode_extra;
7948 memset (&arg, 0, sizeof (arg));
7949 arg.insn = insn;
7950 arg.token = tokens;
7951 arg.argnum = 1;
7952 arg.last_regno = ILLEGAL_REG;
7953 arg.dest_regno = ILLEGAL_REG;
7954 arg.lax_match = lax_match;
7955 for (args = opcode->args;; ++args)
7956 {
7957 if (arg.token->type == OT_END)
7958 {
7959 /* Handle unary instructions in which only one operand is given.
7960 The source is then the same as the destination. */
7961 if (arg.opnum == 1 && *args == ',')
7962 {
7963 operand = (mips_opts.micromips
7964 ? decode_micromips_operand (args + 1)
7965 : decode_mips_operand (args + 1));
7966 if (operand && mips_optional_operand_p (operand))
7967 {
7968 arg.token = tokens;
7969 arg.argnum = 1;
7970 continue;
7971 }
7972 }
7973
7974 /* Treat elided base registers as $0. */
7975 if (strcmp (args, "(b)") == 0)
7976 args += 3;
7977
7978 if (args[0] == '+')
7979 switch (args[1])
7980 {
7981 case 'K':
7982 case 'N':
7983 /* The register suffix is optional. */
7984 args += 2;
7985 break;
7986 }
7987
7988 /* Fail the match if there were too few operands. */
7989 if (*args)
7990 return FALSE;
7991
7992 /* Successful match. */
7993 if (!complete_p)
7994 return TRUE;
7995 clear_insn_error ();
7996 if (arg.dest_regno == arg.last_regno
7997 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7998 {
7999 if (arg.opnum == 2)
8000 set_insn_error
8001 (0, _("source and destination must be different"));
8002 else if (arg.last_regno == 31)
8003 set_insn_error
8004 (0, _("a destination register must be supplied"));
8005 }
8006 else if (arg.last_regno == 31
8007 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
8008 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
8009 set_insn_error (0, _("the source register must not be $31"));
8010 check_completed_insn (&arg);
8011 return TRUE;
8012 }
8013
8014 /* Fail the match if the line has too many operands. */
8015 if (*args == 0)
8016 return FALSE;
8017
8018 /* Handle characters that need to match exactly. */
8019 if (*args == '(' || *args == ')' || *args == ',')
8020 {
8021 if (match_char (&arg, *args))
8022 continue;
8023 return FALSE;
8024 }
8025 if (*args == '#')
8026 {
8027 ++args;
8028 if (arg.token->type == OT_DOUBLE_CHAR
8029 && arg.token->u.ch == *args)
8030 {
8031 ++arg.token;
8032 continue;
8033 }
8034 return FALSE;
8035 }
8036
8037 /* Handle special macro operands. Work out the properties of
8038 other operands. */
8039 arg.opnum += 1;
8040 switch (*args)
8041 {
8042 case '-':
8043 switch (args[1])
8044 {
8045 case 'A':
8046 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
8047 break;
8048
8049 case 'B':
8050 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
8051 break;
8052 }
8053 break;
8054
8055 case '+':
8056 switch (args[1])
8057 {
8058 case 'i':
8059 *offset_reloc = BFD_RELOC_MIPS_JMP;
8060 break;
8061
8062 case '\'':
8063 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
8064 break;
8065
8066 case '\"':
8067 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
8068 break;
8069 }
8070 break;
8071
8072 case 'I':
8073 if (!match_const_int (&arg, &imm_expr.X_add_number))
8074 return FALSE;
8075 imm_expr.X_op = O_constant;
8076 if (GPR_SIZE == 32)
8077 normalize_constant_expr (&imm_expr);
8078 continue;
8079
8080 case 'A':
8081 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8082 {
8083 /* Assume that the offset has been elided and that what
8084 we saw was a base register. The match will fail later
8085 if that assumption turns out to be wrong. */
8086 offset_expr.X_op = O_constant;
8087 offset_expr.X_add_number = 0;
8088 }
8089 else
8090 {
8091 if (!match_expression (&arg, &offset_expr, offset_reloc))
8092 return FALSE;
8093 normalize_address_expr (&offset_expr);
8094 }
8095 continue;
8096
8097 case 'F':
8098 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8099 8, TRUE))
8100 return FALSE;
8101 continue;
8102
8103 case 'L':
8104 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8105 8, FALSE))
8106 return FALSE;
8107 continue;
8108
8109 case 'f':
8110 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8111 4, TRUE))
8112 return FALSE;
8113 continue;
8114
8115 case 'l':
8116 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8117 4, FALSE))
8118 return FALSE;
8119 continue;
8120
8121 case 'p':
8122 *offset_reloc = BFD_RELOC_16_PCREL_S2;
8123 break;
8124
8125 case 'a':
8126 *offset_reloc = BFD_RELOC_MIPS_JMP;
8127 break;
8128
8129 case 'm':
8130 gas_assert (mips_opts.micromips);
8131 c = args[1];
8132 switch (c)
8133 {
8134 case 'D':
8135 case 'E':
8136 if (!forced_insn_length)
8137 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
8138 else if (c == 'D')
8139 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8140 else
8141 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8142 break;
8143 }
8144 break;
8145 }
8146
8147 operand = (mips_opts.micromips
8148 ? decode_micromips_operand (args)
8149 : decode_mips_operand (args));
8150 if (!operand)
8151 abort ();
8152
8153 /* Skip prefixes. */
8154 if (*args == '+' || *args == 'm' || *args == '-')
8155 args++;
8156
8157 if (mips_optional_operand_p (operand)
8158 && args[1] == ','
8159 && (arg.token[0].type != OT_REG
8160 || arg.token[1].type == OT_END))
8161 {
8162 /* Assume that the register has been elided and is the
8163 same as the first operand. */
8164 arg.token = tokens;
8165 arg.argnum = 1;
8166 }
8167
8168 if (!match_operand (&arg, operand))
8169 return FALSE;
8170 }
8171 }
8172
8173 /* Like match_insn, but for MIPS16. */
8174
8175 static bfd_boolean
8176 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8177 struct mips_operand_token *tokens)
8178 {
8179 const char *args;
8180 const struct mips_operand *operand;
8181 const struct mips_operand *ext_operand;
8182 bfd_boolean pcrel = FALSE;
8183 int required_insn_length;
8184 struct mips_arg_info arg;
8185 int relax_char;
8186
8187 if (forced_insn_length)
8188 required_insn_length = forced_insn_length;
8189 else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
8190 required_insn_length = 2;
8191 else
8192 required_insn_length = 0;
8193
8194 create_insn (insn, opcode);
8195 imm_expr.X_op = O_absent;
8196 offset_expr.X_op = O_absent;
8197 offset_reloc[0] = BFD_RELOC_UNUSED;
8198 offset_reloc[1] = BFD_RELOC_UNUSED;
8199 offset_reloc[2] = BFD_RELOC_UNUSED;
8200 relax_char = 0;
8201
8202 memset (&arg, 0, sizeof (arg));
8203 arg.insn = insn;
8204 arg.token = tokens;
8205 arg.argnum = 1;
8206 arg.last_regno = ILLEGAL_REG;
8207 arg.dest_regno = ILLEGAL_REG;
8208 relax_char = 0;
8209 for (args = opcode->args;; ++args)
8210 {
8211 int c;
8212
8213 if (arg.token->type == OT_END)
8214 {
8215 offsetT value;
8216
8217 /* Handle unary instructions in which only one operand is given.
8218 The source is then the same as the destination. */
8219 if (arg.opnum == 1 && *args == ',')
8220 {
8221 operand = decode_mips16_operand (args[1], FALSE);
8222 if (operand && mips_optional_operand_p (operand))
8223 {
8224 arg.token = tokens;
8225 arg.argnum = 1;
8226 continue;
8227 }
8228 }
8229
8230 /* Fail the match if there were too few operands. */
8231 if (*args)
8232 return FALSE;
8233
8234 /* Successful match. Stuff the immediate value in now, if
8235 we can. */
8236 clear_insn_error ();
8237 if (opcode->pinfo == INSN_MACRO)
8238 {
8239 gas_assert (relax_char == 0 || relax_char == 'p');
8240 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8241 }
8242 else if (relax_char
8243 && offset_expr.X_op == O_constant
8244 && !pcrel
8245 && calculate_reloc (*offset_reloc,
8246 offset_expr.X_add_number,
8247 &value))
8248 {
8249 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
8250 required_insn_length, &insn->insn_opcode);
8251 offset_expr.X_op = O_absent;
8252 *offset_reloc = BFD_RELOC_UNUSED;
8253 }
8254 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8255 {
8256 if (required_insn_length == 2)
8257 set_insn_error (0, _("invalid unextended operand value"));
8258 else if (!mips_opcode_32bit_p (opcode))
8259 {
8260 forced_insn_length = 4;
8261 insn->insn_opcode |= MIPS16_EXTEND;
8262 }
8263 }
8264 else if (relax_char)
8265 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8266
8267 check_completed_insn (&arg);
8268 return TRUE;
8269 }
8270
8271 /* Fail the match if the line has too many operands. */
8272 if (*args == 0)
8273 return FALSE;
8274
8275 /* Handle characters that need to match exactly. */
8276 if (*args == '(' || *args == ')' || *args == ',')
8277 {
8278 if (match_char (&arg, *args))
8279 continue;
8280 return FALSE;
8281 }
8282
8283 arg.opnum += 1;
8284 c = *args;
8285 switch (c)
8286 {
8287 case 'p':
8288 case 'q':
8289 case 'A':
8290 case 'B':
8291 case 'E':
8292 case 'V':
8293 case 'u':
8294 relax_char = c;
8295 break;
8296
8297 case 'I':
8298 if (!match_const_int (&arg, &imm_expr.X_add_number))
8299 return FALSE;
8300 imm_expr.X_op = O_constant;
8301 if (GPR_SIZE == 32)
8302 normalize_constant_expr (&imm_expr);
8303 continue;
8304
8305 case 'a':
8306 case 'i':
8307 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8308 break;
8309 }
8310
8311 operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
8312 if (!operand)
8313 abort ();
8314
8315 if (operand->type == OP_PCREL)
8316 pcrel = TRUE;
8317 else
8318 {
8319 ext_operand = decode_mips16_operand (c, TRUE);
8320 if (operand != ext_operand)
8321 {
8322 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8323 {
8324 offset_expr.X_op = O_constant;
8325 offset_expr.X_add_number = 0;
8326 relax_char = c;
8327 continue;
8328 }
8329
8330 if (!match_expression (&arg, &offset_expr, offset_reloc))
8331 return FALSE;
8332
8333 /* '8' is used for SLTI(U) and has traditionally not
8334 been allowed to take relocation operators. */
8335 if (offset_reloc[0] != BFD_RELOC_UNUSED
8336 && (ext_operand->size != 16 || c == '8'))
8337 {
8338 match_not_constant (&arg);
8339 return FALSE;
8340 }
8341
8342 if (offset_expr.X_op == O_big)
8343 {
8344 match_out_of_range (&arg);
8345 return FALSE;
8346 }
8347
8348 relax_char = c;
8349 continue;
8350 }
8351 }
8352
8353 if (mips_optional_operand_p (operand)
8354 && args[1] == ','
8355 && (arg.token[0].type != OT_REG
8356 || arg.token[1].type == OT_END))
8357 {
8358 /* Assume that the register has been elided and is the
8359 same as the first operand. */
8360 arg.token = tokens;
8361 arg.argnum = 1;
8362 }
8363
8364 if (!match_operand (&arg, operand))
8365 return FALSE;
8366 }
8367 }
8368
8369 /* Record that the current instruction is invalid for the current ISA. */
8370
8371 static void
8372 match_invalid_for_isa (void)
8373 {
8374 set_insn_error_ss
8375 (0, _("opcode not supported on this processor: %s (%s)"),
8376 mips_cpu_info_from_arch (mips_opts.arch)->name,
8377 mips_cpu_info_from_isa (mips_opts.isa)->name);
8378 }
8379
8380 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8381 Return true if a definite match or failure was found, storing any match
8382 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8383 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8384 tried and failed to match under normal conditions and now want to try a
8385 more relaxed match. */
8386
8387 static bfd_boolean
8388 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8389 const struct mips_opcode *past, struct mips_operand_token *tokens,
8390 int opcode_extra, bfd_boolean lax_match)
8391 {
8392 const struct mips_opcode *opcode;
8393 const struct mips_opcode *invalid_delay_slot;
8394 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8395
8396 /* Search for a match, ignoring alternatives that don't satisfy the
8397 current ISA or forced_length. */
8398 invalid_delay_slot = 0;
8399 seen_valid_for_isa = FALSE;
8400 seen_valid_for_size = FALSE;
8401 opcode = first;
8402 do
8403 {
8404 gas_assert (strcmp (opcode->name, first->name) == 0);
8405 if (is_opcode_valid (opcode))
8406 {
8407 seen_valid_for_isa = TRUE;
8408 if (is_size_valid (opcode))
8409 {
8410 bfd_boolean delay_slot_ok;
8411
8412 seen_valid_for_size = TRUE;
8413 delay_slot_ok = is_delay_slot_valid (opcode);
8414 if (match_insn (insn, opcode, tokens, opcode_extra,
8415 lax_match, delay_slot_ok))
8416 {
8417 if (!delay_slot_ok)
8418 {
8419 if (!invalid_delay_slot)
8420 invalid_delay_slot = opcode;
8421 }
8422 else
8423 return TRUE;
8424 }
8425 }
8426 }
8427 ++opcode;
8428 }
8429 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8430
8431 /* If the only matches we found had the wrong length for the delay slot,
8432 pick the first such match. We'll issue an appropriate warning later. */
8433 if (invalid_delay_slot)
8434 {
8435 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8436 lax_match, TRUE))
8437 return TRUE;
8438 abort ();
8439 }
8440
8441 /* Handle the case where we didn't try to match an instruction because
8442 all the alternatives were incompatible with the current ISA. */
8443 if (!seen_valid_for_isa)
8444 {
8445 match_invalid_for_isa ();
8446 return TRUE;
8447 }
8448
8449 /* Handle the case where we didn't try to match an instruction because
8450 all the alternatives were of the wrong size. */
8451 if (!seen_valid_for_size)
8452 {
8453 if (mips_opts.insn32)
8454 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8455 else
8456 set_insn_error_i
8457 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8458 8 * forced_insn_length);
8459 return TRUE;
8460 }
8461
8462 return FALSE;
8463 }
8464
8465 /* Like match_insns, but for MIPS16. */
8466
8467 static bfd_boolean
8468 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8469 struct mips_operand_token *tokens)
8470 {
8471 const struct mips_opcode *opcode;
8472 bfd_boolean seen_valid_for_isa;
8473 bfd_boolean seen_valid_for_size;
8474
8475 /* Search for a match, ignoring alternatives that don't satisfy the
8476 current ISA. There are no separate entries for extended forms so
8477 we deal with forced_length later. */
8478 seen_valid_for_isa = FALSE;
8479 seen_valid_for_size = FALSE;
8480 opcode = first;
8481 do
8482 {
8483 gas_assert (strcmp (opcode->name, first->name) == 0);
8484 if (is_opcode_valid_16 (opcode))
8485 {
8486 seen_valid_for_isa = TRUE;
8487 if (is_size_valid_16 (opcode))
8488 {
8489 seen_valid_for_size = TRUE;
8490 if (match_mips16_insn (insn, opcode, tokens))
8491 return TRUE;
8492 }
8493 }
8494 ++opcode;
8495 }
8496 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8497 && strcmp (opcode->name, first->name) == 0);
8498
8499 /* Handle the case where we didn't try to match an instruction because
8500 all the alternatives were incompatible with the current ISA. */
8501 if (!seen_valid_for_isa)
8502 {
8503 match_invalid_for_isa ();
8504 return TRUE;
8505 }
8506
8507 /* Handle the case where we didn't try to match an instruction because
8508 all the alternatives were of the wrong size. */
8509 if (!seen_valid_for_size)
8510 {
8511 if (forced_insn_length == 2)
8512 set_insn_error
8513 (0, _("unrecognized unextended version of MIPS16 opcode"));
8514 else
8515 set_insn_error
8516 (0, _("unrecognized extended version of MIPS16 opcode"));
8517 return TRUE;
8518 }
8519
8520 return FALSE;
8521 }
8522
8523 /* Set up global variables for the start of a new macro. */
8524
8525 static void
8526 macro_start (void)
8527 {
8528 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8529 memset (&mips_macro_warning.first_insn_sizes, 0,
8530 sizeof (mips_macro_warning.first_insn_sizes));
8531 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8532 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8533 && delayed_branch_p (&history[0]));
8534 if (history[0].frag
8535 && history[0].frag->fr_type == rs_machine_dependent
8536 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8537 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8538 mips_macro_warning.delay_slot_length = 0;
8539 else
8540 switch (history[0].insn_mo->pinfo2
8541 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8542 {
8543 case INSN2_BRANCH_DELAY_32BIT:
8544 mips_macro_warning.delay_slot_length = 4;
8545 break;
8546 case INSN2_BRANCH_DELAY_16BIT:
8547 mips_macro_warning.delay_slot_length = 2;
8548 break;
8549 default:
8550 mips_macro_warning.delay_slot_length = 0;
8551 break;
8552 }
8553 mips_macro_warning.first_frag = NULL;
8554 }
8555
8556 /* Given that a macro is longer than one instruction or of the wrong size,
8557 return the appropriate warning for it. Return null if no warning is
8558 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8559 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8560 and RELAX_NOMACRO. */
8561
8562 static const char *
8563 macro_warning (relax_substateT subtype)
8564 {
8565 if (subtype & RELAX_DELAY_SLOT)
8566 return _("macro instruction expanded into multiple instructions"
8567 " in a branch delay slot");
8568 else if (subtype & RELAX_NOMACRO)
8569 return _("macro instruction expanded into multiple instructions");
8570 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8571 | RELAX_DELAY_SLOT_SIZE_SECOND))
8572 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8573 ? _("macro instruction expanded into a wrong size instruction"
8574 " in a 16-bit branch delay slot")
8575 : _("macro instruction expanded into a wrong size instruction"
8576 " in a 32-bit branch delay slot"));
8577 else
8578 return 0;
8579 }
8580
8581 /* Finish up a macro. Emit warnings as appropriate. */
8582
8583 static void
8584 macro_end (void)
8585 {
8586 /* Relaxation warning flags. */
8587 relax_substateT subtype = 0;
8588
8589 /* Check delay slot size requirements. */
8590 if (mips_macro_warning.delay_slot_length == 2)
8591 subtype |= RELAX_DELAY_SLOT_16BIT;
8592 if (mips_macro_warning.delay_slot_length != 0)
8593 {
8594 if (mips_macro_warning.delay_slot_length
8595 != mips_macro_warning.first_insn_sizes[0])
8596 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8597 if (mips_macro_warning.delay_slot_length
8598 != mips_macro_warning.first_insn_sizes[1])
8599 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8600 }
8601
8602 /* Check instruction count requirements. */
8603 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8604 {
8605 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8606 subtype |= RELAX_SECOND_LONGER;
8607 if (mips_opts.warn_about_macros)
8608 subtype |= RELAX_NOMACRO;
8609 if (mips_macro_warning.delay_slot_p)
8610 subtype |= RELAX_DELAY_SLOT;
8611 }
8612
8613 /* If both alternatives fail to fill a delay slot correctly,
8614 emit the warning now. */
8615 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8616 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8617 {
8618 relax_substateT s;
8619 const char *msg;
8620
8621 s = subtype & (RELAX_DELAY_SLOT_16BIT
8622 | RELAX_DELAY_SLOT_SIZE_FIRST
8623 | RELAX_DELAY_SLOT_SIZE_SECOND);
8624 msg = macro_warning (s);
8625 if (msg != NULL)
8626 as_warn ("%s", msg);
8627 subtype &= ~s;
8628 }
8629
8630 /* If both implementations are longer than 1 instruction, then emit the
8631 warning now. */
8632 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8633 {
8634 relax_substateT s;
8635 const char *msg;
8636
8637 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8638 msg = macro_warning (s);
8639 if (msg != NULL)
8640 as_warn ("%s", msg);
8641 subtype &= ~s;
8642 }
8643
8644 /* If any flags still set, then one implementation might need a warning
8645 and the other either will need one of a different kind or none at all.
8646 Pass any remaining flags over to relaxation. */
8647 if (mips_macro_warning.first_frag != NULL)
8648 mips_macro_warning.first_frag->fr_subtype |= subtype;
8649 }
8650
8651 /* Instruction operand formats used in macros that vary between
8652 standard MIPS and microMIPS code. */
8653
8654 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8655 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8656 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8657 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8658 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8659 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8660 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8661 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8662
8663 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8664 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8665 : cop12_fmt[mips_opts.micromips])
8666 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8667 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8668 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8669 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8670 : mem12_fmt[mips_opts.micromips])
8671 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8672 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8673 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8674
8675 /* Read a macro's relocation codes from *ARGS and store them in *R.
8676 The first argument in *ARGS will be either the code for a single
8677 relocation or -1 followed by the three codes that make up a
8678 composite relocation. */
8679
8680 static void
8681 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8682 {
8683 int i, next;
8684
8685 next = va_arg (*args, int);
8686 if (next >= 0)
8687 r[0] = (bfd_reloc_code_real_type) next;
8688 else
8689 {
8690 for (i = 0; i < 3; i++)
8691 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8692 /* This function is only used for 16-bit relocation fields.
8693 To make the macro code simpler, treat an unrelocated value
8694 in the same way as BFD_RELOC_LO16. */
8695 if (r[0] == BFD_RELOC_UNUSED)
8696 r[0] = BFD_RELOC_LO16;
8697 }
8698 }
8699
8700 /* Build an instruction created by a macro expansion. This is passed
8701 a pointer to the count of instructions created so far, an
8702 expression, the name of the instruction to build, an operand format
8703 string, and corresponding arguments. */
8704
8705 static void
8706 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8707 {
8708 const struct mips_opcode *mo = NULL;
8709 bfd_reloc_code_real_type r[3];
8710 const struct mips_opcode *amo;
8711 const struct mips_operand *operand;
8712 struct hash_control *hash;
8713 struct mips_cl_insn insn;
8714 va_list args;
8715 unsigned int uval;
8716
8717 va_start (args, fmt);
8718
8719 if (mips_opts.mips16)
8720 {
8721 mips16_macro_build (ep, name, fmt, &args);
8722 va_end (args);
8723 return;
8724 }
8725
8726 r[0] = BFD_RELOC_UNUSED;
8727 r[1] = BFD_RELOC_UNUSED;
8728 r[2] = BFD_RELOC_UNUSED;
8729 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8730 amo = (struct mips_opcode *) hash_find (hash, name);
8731 gas_assert (amo);
8732 gas_assert (strcmp (name, amo->name) == 0);
8733
8734 do
8735 {
8736 /* Search until we get a match for NAME. It is assumed here that
8737 macros will never generate MDMX, MIPS-3D, or MT instructions.
8738 We try to match an instruction that fulfills the branch delay
8739 slot instruction length requirement (if any) of the previous
8740 instruction. While doing this we record the first instruction
8741 seen that matches all the other conditions and use it anyway
8742 if the requirement cannot be met; we will issue an appropriate
8743 warning later on. */
8744 if (strcmp (fmt, amo->args) == 0
8745 && amo->pinfo != INSN_MACRO
8746 && is_opcode_valid (amo)
8747 && is_size_valid (amo))
8748 {
8749 if (is_delay_slot_valid (amo))
8750 {
8751 mo = amo;
8752 break;
8753 }
8754 else if (!mo)
8755 mo = amo;
8756 }
8757
8758 ++amo;
8759 gas_assert (amo->name);
8760 }
8761 while (strcmp (name, amo->name) == 0);
8762
8763 gas_assert (mo);
8764 create_insn (&insn, mo);
8765 for (; *fmt; ++fmt)
8766 {
8767 switch (*fmt)
8768 {
8769 case ',':
8770 case '(':
8771 case ')':
8772 case 'z':
8773 break;
8774
8775 case 'i':
8776 case 'j':
8777 macro_read_relocs (&args, r);
8778 gas_assert (*r == BFD_RELOC_GPREL16
8779 || *r == BFD_RELOC_MIPS_HIGHER
8780 || *r == BFD_RELOC_HI16_S
8781 || *r == BFD_RELOC_LO16
8782 || *r == BFD_RELOC_MIPS_GOT_OFST);
8783 break;
8784
8785 case 'o':
8786 macro_read_relocs (&args, r);
8787 break;
8788
8789 case 'u':
8790 macro_read_relocs (&args, r);
8791 gas_assert (ep != NULL
8792 && (ep->X_op == O_constant
8793 || (ep->X_op == O_symbol
8794 && (*r == BFD_RELOC_MIPS_HIGHEST
8795 || *r == BFD_RELOC_HI16_S
8796 || *r == BFD_RELOC_HI16
8797 || *r == BFD_RELOC_GPREL16
8798 || *r == BFD_RELOC_MIPS_GOT_HI16
8799 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8800 break;
8801
8802 case 'p':
8803 gas_assert (ep != NULL);
8804
8805 /*
8806 * This allows macro() to pass an immediate expression for
8807 * creating short branches without creating a symbol.
8808 *
8809 * We don't allow branch relaxation for these branches, as
8810 * they should only appear in ".set nomacro" anyway.
8811 */
8812 if (ep->X_op == O_constant)
8813 {
8814 /* For microMIPS we always use relocations for branches.
8815 So we should not resolve immediate values. */
8816 gas_assert (!mips_opts.micromips);
8817
8818 if ((ep->X_add_number & 3) != 0)
8819 as_bad (_("branch to misaligned address (0x%lx)"),
8820 (unsigned long) ep->X_add_number);
8821 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8822 as_bad (_("branch address range overflow (0x%lx)"),
8823 (unsigned long) ep->X_add_number);
8824 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8825 ep = NULL;
8826 }
8827 else
8828 *r = BFD_RELOC_16_PCREL_S2;
8829 break;
8830
8831 case 'a':
8832 gas_assert (ep != NULL);
8833 *r = BFD_RELOC_MIPS_JMP;
8834 break;
8835
8836 default:
8837 operand = (mips_opts.micromips
8838 ? decode_micromips_operand (fmt)
8839 : decode_mips_operand (fmt));
8840 if (!operand)
8841 abort ();
8842
8843 uval = va_arg (args, int);
8844 if (operand->type == OP_CLO_CLZ_DEST)
8845 uval |= (uval << 5);
8846 insn_insert_operand (&insn, operand, uval);
8847
8848 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8849 ++fmt;
8850 break;
8851 }
8852 }
8853 va_end (args);
8854 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8855
8856 append_insn (&insn, ep, r, TRUE);
8857 }
8858
8859 static void
8860 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8861 va_list *args)
8862 {
8863 struct mips_opcode *mo;
8864 struct mips_cl_insn insn;
8865 const struct mips_operand *operand;
8866 bfd_reloc_code_real_type r[3]
8867 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8868
8869 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8870 gas_assert (mo);
8871 gas_assert (strcmp (name, mo->name) == 0);
8872
8873 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8874 {
8875 ++mo;
8876 gas_assert (mo->name);
8877 gas_assert (strcmp (name, mo->name) == 0);
8878 }
8879
8880 create_insn (&insn, mo);
8881 for (; *fmt; ++fmt)
8882 {
8883 int c;
8884
8885 c = *fmt;
8886 switch (c)
8887 {
8888 case ',':
8889 case '(':
8890 case ')':
8891 break;
8892
8893 case '.':
8894 case 'S':
8895 case 'P':
8896 case 'R':
8897 break;
8898
8899 case '<':
8900 case '5':
8901 case 'F':
8902 case 'H':
8903 case 'W':
8904 case 'D':
8905 case 'j':
8906 case '8':
8907 case 'V':
8908 case 'C':
8909 case 'U':
8910 case 'k':
8911 case 'K':
8912 case 'p':
8913 case 'q':
8914 {
8915 offsetT value;
8916
8917 gas_assert (ep != NULL);
8918
8919 if (ep->X_op != O_constant)
8920 *r = (int) BFD_RELOC_UNUSED + c;
8921 else if (calculate_reloc (*r, ep->X_add_number, &value))
8922 {
8923 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8924 ep = NULL;
8925 *r = BFD_RELOC_UNUSED;
8926 }
8927 }
8928 break;
8929
8930 default:
8931 operand = decode_mips16_operand (c, FALSE);
8932 if (!operand)
8933 abort ();
8934
8935 insn_insert_operand (&insn, operand, va_arg (*args, int));
8936 break;
8937 }
8938 }
8939
8940 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8941
8942 append_insn (&insn, ep, r, TRUE);
8943 }
8944
8945 /*
8946 * Generate a "jalr" instruction with a relocation hint to the called
8947 * function. This occurs in NewABI PIC code.
8948 */
8949 static void
8950 macro_build_jalr (expressionS *ep, int cprestore)
8951 {
8952 static const bfd_reloc_code_real_type jalr_relocs[2]
8953 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8954 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8955 const char *jalr;
8956 char *f = NULL;
8957
8958 if (MIPS_JALR_HINT_P (ep))
8959 {
8960 frag_grow (8);
8961 f = frag_more (0);
8962 }
8963 if (mips_opts.micromips)
8964 {
8965 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8966 ? "jalr" : "jalrs");
8967 if (MIPS_JALR_HINT_P (ep)
8968 || mips_opts.insn32
8969 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8970 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8971 else
8972 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8973 }
8974 else
8975 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8976 if (MIPS_JALR_HINT_P (ep))
8977 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8978 }
8979
8980 /*
8981 * Generate a "lui" instruction.
8982 */
8983 static void
8984 macro_build_lui (expressionS *ep, int regnum)
8985 {
8986 gas_assert (! mips_opts.mips16);
8987
8988 if (ep->X_op != O_constant)
8989 {
8990 gas_assert (ep->X_op == O_symbol);
8991 /* _gp_disp is a special case, used from s_cpload.
8992 __gnu_local_gp is used if mips_no_shared. */
8993 gas_assert (mips_pic == NO_PIC
8994 || (! HAVE_NEWABI
8995 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8996 || (! mips_in_shared
8997 && strcmp (S_GET_NAME (ep->X_add_symbol),
8998 "__gnu_local_gp") == 0));
8999 }
9000
9001 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
9002 }
9003
9004 /* Generate a sequence of instructions to do a load or store from a constant
9005 offset off of a base register (breg) into/from a target register (treg),
9006 using AT if necessary. */
9007 static void
9008 macro_build_ldst_constoffset (expressionS *ep, const char *op,
9009 int treg, int breg, int dbl)
9010 {
9011 gas_assert (ep->X_op == O_constant);
9012
9013 /* Sign-extending 32-bit constants makes their handling easier. */
9014 if (!dbl)
9015 normalize_constant_expr (ep);
9016
9017 /* Right now, this routine can only handle signed 32-bit constants. */
9018 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
9019 as_warn (_("operand overflow"));
9020
9021 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
9022 {
9023 /* Signed 16-bit offset will fit in the op. Easy! */
9024 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
9025 }
9026 else
9027 {
9028 /* 32-bit offset, need multiple instructions and AT, like:
9029 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
9030 addu $tempreg,$tempreg,$breg
9031 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
9032 to handle the complete offset. */
9033 macro_build_lui (ep, AT);
9034 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
9035 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
9036
9037 if (!mips_opts.at)
9038 as_bad (_("macro used $at after \".set noat\""));
9039 }
9040 }
9041
9042 /* set_at()
9043 * Generates code to set the $at register to true (one)
9044 * if reg is less than the immediate expression.
9045 */
9046 static void
9047 set_at (int reg, int unsignedp)
9048 {
9049 if (imm_expr.X_add_number >= -0x8000
9050 && imm_expr.X_add_number < 0x8000)
9051 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
9052 AT, reg, BFD_RELOC_LO16);
9053 else
9054 {
9055 load_register (AT, &imm_expr, GPR_SIZE == 64);
9056 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
9057 }
9058 }
9059
9060 /* Count the leading zeroes by performing a binary chop. This is a
9061 bulky bit of source, but performance is a LOT better for the
9062 majority of values than a simple loop to count the bits:
9063 for (lcnt = 0; (lcnt < 32); lcnt++)
9064 if ((v) & (1 << (31 - lcnt)))
9065 break;
9066 However it is not code size friendly, and the gain will drop a bit
9067 on certain cached systems.
9068 */
9069 #define COUNT_TOP_ZEROES(v) \
9070 (((v) & ~0xffff) == 0 \
9071 ? ((v) & ~0xff) == 0 \
9072 ? ((v) & ~0xf) == 0 \
9073 ? ((v) & ~0x3) == 0 \
9074 ? ((v) & ~0x1) == 0 \
9075 ? !(v) \
9076 ? 32 \
9077 : 31 \
9078 : 30 \
9079 : ((v) & ~0x7) == 0 \
9080 ? 29 \
9081 : 28 \
9082 : ((v) & ~0x3f) == 0 \
9083 ? ((v) & ~0x1f) == 0 \
9084 ? 27 \
9085 : 26 \
9086 : ((v) & ~0x7f) == 0 \
9087 ? 25 \
9088 : 24 \
9089 : ((v) & ~0xfff) == 0 \
9090 ? ((v) & ~0x3ff) == 0 \
9091 ? ((v) & ~0x1ff) == 0 \
9092 ? 23 \
9093 : 22 \
9094 : ((v) & ~0x7ff) == 0 \
9095 ? 21 \
9096 : 20 \
9097 : ((v) & ~0x3fff) == 0 \
9098 ? ((v) & ~0x1fff) == 0 \
9099 ? 19 \
9100 : 18 \
9101 : ((v) & ~0x7fff) == 0 \
9102 ? 17 \
9103 : 16 \
9104 : ((v) & ~0xffffff) == 0 \
9105 ? ((v) & ~0xfffff) == 0 \
9106 ? ((v) & ~0x3ffff) == 0 \
9107 ? ((v) & ~0x1ffff) == 0 \
9108 ? 15 \
9109 : 14 \
9110 : ((v) & ~0x7ffff) == 0 \
9111 ? 13 \
9112 : 12 \
9113 : ((v) & ~0x3fffff) == 0 \
9114 ? ((v) & ~0x1fffff) == 0 \
9115 ? 11 \
9116 : 10 \
9117 : ((v) & ~0x7fffff) == 0 \
9118 ? 9 \
9119 : 8 \
9120 : ((v) & ~0xfffffff) == 0 \
9121 ? ((v) & ~0x3ffffff) == 0 \
9122 ? ((v) & ~0x1ffffff) == 0 \
9123 ? 7 \
9124 : 6 \
9125 : ((v) & ~0x7ffffff) == 0 \
9126 ? 5 \
9127 : 4 \
9128 : ((v) & ~0x3fffffff) == 0 \
9129 ? ((v) & ~0x1fffffff) == 0 \
9130 ? 3 \
9131 : 2 \
9132 : ((v) & ~0x7fffffff) == 0 \
9133 ? 1 \
9134 : 0)
9135
9136 /* load_register()
9137 * This routine generates the least number of instructions necessary to load
9138 * an absolute expression value into a register.
9139 */
9140 static void
9141 load_register (int reg, expressionS *ep, int dbl)
9142 {
9143 int freg;
9144 expressionS hi32, lo32;
9145
9146 if (ep->X_op != O_big)
9147 {
9148 gas_assert (ep->X_op == O_constant);
9149
9150 /* Sign-extending 32-bit constants makes their handling easier. */
9151 if (!dbl)
9152 normalize_constant_expr (ep);
9153
9154 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
9155 {
9156 /* We can handle 16 bit signed values with an addiu to
9157 $zero. No need to ever use daddiu here, since $zero and
9158 the result are always correct in 32 bit mode. */
9159 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9160 return;
9161 }
9162 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
9163 {
9164 /* We can handle 16 bit unsigned values with an ori to
9165 $zero. */
9166 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9167 return;
9168 }
9169 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
9170 {
9171 /* 32 bit values require an lui. */
9172 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9173 if ((ep->X_add_number & 0xffff) != 0)
9174 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9175 return;
9176 }
9177 }
9178
9179 /* The value is larger than 32 bits. */
9180
9181 if (!dbl || GPR_SIZE == 32)
9182 {
9183 char value[32];
9184
9185 sprintf_vma (value, ep->X_add_number);
9186 as_bad (_("number (0x%s) larger than 32 bits"), value);
9187 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9188 return;
9189 }
9190
9191 if (ep->X_op != O_big)
9192 {
9193 hi32 = *ep;
9194 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9195 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9196 hi32.X_add_number &= 0xffffffff;
9197 lo32 = *ep;
9198 lo32.X_add_number &= 0xffffffff;
9199 }
9200 else
9201 {
9202 gas_assert (ep->X_add_number > 2);
9203 if (ep->X_add_number == 3)
9204 generic_bignum[3] = 0;
9205 else if (ep->X_add_number > 4)
9206 as_bad (_("number larger than 64 bits"));
9207 lo32.X_op = O_constant;
9208 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9209 hi32.X_op = O_constant;
9210 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9211 }
9212
9213 if (hi32.X_add_number == 0)
9214 freg = 0;
9215 else
9216 {
9217 int shift, bit;
9218 unsigned long hi, lo;
9219
9220 if (hi32.X_add_number == (offsetT) 0xffffffff)
9221 {
9222 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9223 {
9224 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9225 return;
9226 }
9227 if (lo32.X_add_number & 0x80000000)
9228 {
9229 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9230 if (lo32.X_add_number & 0xffff)
9231 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9232 return;
9233 }
9234 }
9235
9236 /* Check for 16bit shifted constant. We know that hi32 is
9237 non-zero, so start the mask on the first bit of the hi32
9238 value. */
9239 shift = 17;
9240 do
9241 {
9242 unsigned long himask, lomask;
9243
9244 if (shift < 32)
9245 {
9246 himask = 0xffff >> (32 - shift);
9247 lomask = (0xffff << shift) & 0xffffffff;
9248 }
9249 else
9250 {
9251 himask = 0xffff << (shift - 32);
9252 lomask = 0;
9253 }
9254 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9255 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9256 {
9257 expressionS tmp;
9258
9259 tmp.X_op = O_constant;
9260 if (shift < 32)
9261 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9262 | (lo32.X_add_number >> shift));
9263 else
9264 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
9265 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9266 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9267 reg, reg, (shift >= 32) ? shift - 32 : shift);
9268 return;
9269 }
9270 ++shift;
9271 }
9272 while (shift <= (64 - 16));
9273
9274 /* Find the bit number of the lowest one bit, and store the
9275 shifted value in hi/lo. */
9276 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9277 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9278 if (lo != 0)
9279 {
9280 bit = 0;
9281 while ((lo & 1) == 0)
9282 {
9283 lo >>= 1;
9284 ++bit;
9285 }
9286 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9287 hi >>= bit;
9288 }
9289 else
9290 {
9291 bit = 32;
9292 while ((hi & 1) == 0)
9293 {
9294 hi >>= 1;
9295 ++bit;
9296 }
9297 lo = hi;
9298 hi = 0;
9299 }
9300
9301 /* Optimize if the shifted value is a (power of 2) - 1. */
9302 if ((hi == 0 && ((lo + 1) & lo) == 0)
9303 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9304 {
9305 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9306 if (shift != 0)
9307 {
9308 expressionS tmp;
9309
9310 /* This instruction will set the register to be all
9311 ones. */
9312 tmp.X_op = O_constant;
9313 tmp.X_add_number = (offsetT) -1;
9314 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9315 if (bit != 0)
9316 {
9317 bit += shift;
9318 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9319 reg, reg, (bit >= 32) ? bit - 32 : bit);
9320 }
9321 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9322 reg, reg, (shift >= 32) ? shift - 32 : shift);
9323 return;
9324 }
9325 }
9326
9327 /* Sign extend hi32 before calling load_register, because we can
9328 generally get better code when we load a sign extended value. */
9329 if ((hi32.X_add_number & 0x80000000) != 0)
9330 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9331 load_register (reg, &hi32, 0);
9332 freg = reg;
9333 }
9334 if ((lo32.X_add_number & 0xffff0000) == 0)
9335 {
9336 if (freg != 0)
9337 {
9338 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9339 freg = reg;
9340 }
9341 }
9342 else
9343 {
9344 expressionS mid16;
9345
9346 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9347 {
9348 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9349 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9350 return;
9351 }
9352
9353 if (freg != 0)
9354 {
9355 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9356 freg = reg;
9357 }
9358 mid16 = lo32;
9359 mid16.X_add_number >>= 16;
9360 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9361 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9362 freg = reg;
9363 }
9364 if ((lo32.X_add_number & 0xffff) != 0)
9365 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9366 }
9367
9368 static inline void
9369 load_delay_nop (void)
9370 {
9371 if (!gpr_interlocks)
9372 macro_build (NULL, "nop", "");
9373 }
9374
9375 /* Load an address into a register. */
9376
9377 static void
9378 load_address (int reg, expressionS *ep, int *used_at)
9379 {
9380 if (ep->X_op != O_constant
9381 && ep->X_op != O_symbol)
9382 {
9383 as_bad (_("expression too complex"));
9384 ep->X_op = O_constant;
9385 }
9386
9387 if (ep->X_op == O_constant)
9388 {
9389 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9390 return;
9391 }
9392
9393 if (mips_pic == NO_PIC)
9394 {
9395 /* If this is a reference to a GP relative symbol, we want
9396 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9397 Otherwise we want
9398 lui $reg,<sym> (BFD_RELOC_HI16_S)
9399 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9400 If we have an addend, we always use the latter form.
9401
9402 With 64bit address space and a usable $at we want
9403 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9404 lui $at,<sym> (BFD_RELOC_HI16_S)
9405 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9406 daddiu $at,<sym> (BFD_RELOC_LO16)
9407 dsll32 $reg,0
9408 daddu $reg,$reg,$at
9409
9410 If $at is already in use, we use a path which is suboptimal
9411 on superscalar processors.
9412 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9413 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9414 dsll $reg,16
9415 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9416 dsll $reg,16
9417 daddiu $reg,<sym> (BFD_RELOC_LO16)
9418
9419 For GP relative symbols in 64bit address space we can use
9420 the same sequence as in 32bit address space. */
9421 if (HAVE_64BIT_SYMBOLS)
9422 {
9423 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9424 && !nopic_need_relax (ep->X_add_symbol, 1))
9425 {
9426 relax_start (ep->X_add_symbol);
9427 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9428 mips_gp_register, BFD_RELOC_GPREL16);
9429 relax_switch ();
9430 }
9431
9432 if (*used_at == 0 && mips_opts.at)
9433 {
9434 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9435 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9436 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9437 BFD_RELOC_MIPS_HIGHER);
9438 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9439 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9440 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9441 *used_at = 1;
9442 }
9443 else
9444 {
9445 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9446 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9447 BFD_RELOC_MIPS_HIGHER);
9448 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9449 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9450 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9451 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9452 }
9453
9454 if (mips_relax.sequence)
9455 relax_end ();
9456 }
9457 else
9458 {
9459 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9460 && !nopic_need_relax (ep->X_add_symbol, 1))
9461 {
9462 relax_start (ep->X_add_symbol);
9463 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9464 mips_gp_register, BFD_RELOC_GPREL16);
9465 relax_switch ();
9466 }
9467 macro_build_lui (ep, reg);
9468 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9469 reg, reg, BFD_RELOC_LO16);
9470 if (mips_relax.sequence)
9471 relax_end ();
9472 }
9473 }
9474 else if (!mips_big_got)
9475 {
9476 expressionS ex;
9477
9478 /* If this is a reference to an external symbol, we want
9479 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9480 Otherwise we want
9481 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9482 nop
9483 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9484 If there is a constant, it must be added in after.
9485
9486 If we have NewABI, we want
9487 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9488 unless we're referencing a global symbol with a non-zero
9489 offset, in which case cst must be added separately. */
9490 if (HAVE_NEWABI)
9491 {
9492 if (ep->X_add_number)
9493 {
9494 ex.X_add_number = ep->X_add_number;
9495 ep->X_add_number = 0;
9496 relax_start (ep->X_add_symbol);
9497 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9498 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9499 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9500 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9501 ex.X_op = O_constant;
9502 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9503 reg, reg, BFD_RELOC_LO16);
9504 ep->X_add_number = ex.X_add_number;
9505 relax_switch ();
9506 }
9507 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9508 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9509 if (mips_relax.sequence)
9510 relax_end ();
9511 }
9512 else
9513 {
9514 ex.X_add_number = ep->X_add_number;
9515 ep->X_add_number = 0;
9516 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9517 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9518 load_delay_nop ();
9519 relax_start (ep->X_add_symbol);
9520 relax_switch ();
9521 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9522 BFD_RELOC_LO16);
9523 relax_end ();
9524
9525 if (ex.X_add_number != 0)
9526 {
9527 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9528 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9529 ex.X_op = O_constant;
9530 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9531 reg, reg, BFD_RELOC_LO16);
9532 }
9533 }
9534 }
9535 else if (mips_big_got)
9536 {
9537 expressionS ex;
9538
9539 /* This is the large GOT case. If this is a reference to an
9540 external symbol, we want
9541 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9542 addu $reg,$reg,$gp
9543 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9544
9545 Otherwise, for a reference to a local symbol in old ABI, we want
9546 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9547 nop
9548 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9549 If there is a constant, it must be added in after.
9550
9551 In the NewABI, for local symbols, with or without offsets, we want:
9552 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9553 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9554 */
9555 if (HAVE_NEWABI)
9556 {
9557 ex.X_add_number = ep->X_add_number;
9558 ep->X_add_number = 0;
9559 relax_start (ep->X_add_symbol);
9560 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9561 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9562 reg, reg, mips_gp_register);
9563 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9564 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9565 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9566 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9567 else if (ex.X_add_number)
9568 {
9569 ex.X_op = O_constant;
9570 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9571 BFD_RELOC_LO16);
9572 }
9573
9574 ep->X_add_number = ex.X_add_number;
9575 relax_switch ();
9576 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9577 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9578 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9579 BFD_RELOC_MIPS_GOT_OFST);
9580 relax_end ();
9581 }
9582 else
9583 {
9584 ex.X_add_number = ep->X_add_number;
9585 ep->X_add_number = 0;
9586 relax_start (ep->X_add_symbol);
9587 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9588 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9589 reg, reg, mips_gp_register);
9590 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9591 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9592 relax_switch ();
9593 if (reg_needs_delay (mips_gp_register))
9594 {
9595 /* We need a nop before loading from $gp. This special
9596 check is required because the lui which starts the main
9597 instruction stream does not refer to $gp, and so will not
9598 insert the nop which may be required. */
9599 macro_build (NULL, "nop", "");
9600 }
9601 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9602 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9603 load_delay_nop ();
9604 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9605 BFD_RELOC_LO16);
9606 relax_end ();
9607
9608 if (ex.X_add_number != 0)
9609 {
9610 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9611 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9612 ex.X_op = O_constant;
9613 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9614 BFD_RELOC_LO16);
9615 }
9616 }
9617 }
9618 else
9619 abort ();
9620
9621 if (!mips_opts.at && *used_at == 1)
9622 as_bad (_("macro used $at after \".set noat\""));
9623 }
9624
9625 /* Move the contents of register SOURCE into register DEST. */
9626
9627 static void
9628 move_register (int dest, int source)
9629 {
9630 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9631 instruction specifically requires a 32-bit one. */
9632 if (mips_opts.micromips
9633 && !mips_opts.insn32
9634 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9635 macro_build (NULL, "move", "mp,mj", dest, source);
9636 else
9637 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9638 }
9639
9640 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9641 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9642 The two alternatives are:
9643
9644 Global symbol Local symbol
9645 ------------- ------------
9646 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9647 ... ...
9648 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9649
9650 load_got_offset emits the first instruction and add_got_offset
9651 emits the second for a 16-bit offset or add_got_offset_hilo emits
9652 a sequence to add a 32-bit offset using a scratch register. */
9653
9654 static void
9655 load_got_offset (int dest, expressionS *local)
9656 {
9657 expressionS global;
9658
9659 global = *local;
9660 global.X_add_number = 0;
9661
9662 relax_start (local->X_add_symbol);
9663 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9664 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9665 relax_switch ();
9666 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9667 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9668 relax_end ();
9669 }
9670
9671 static void
9672 add_got_offset (int dest, expressionS *local)
9673 {
9674 expressionS global;
9675
9676 global.X_op = O_constant;
9677 global.X_op_symbol = NULL;
9678 global.X_add_symbol = NULL;
9679 global.X_add_number = local->X_add_number;
9680
9681 relax_start (local->X_add_symbol);
9682 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9683 dest, dest, BFD_RELOC_LO16);
9684 relax_switch ();
9685 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9686 relax_end ();
9687 }
9688
9689 static void
9690 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9691 {
9692 expressionS global;
9693 int hold_mips_optimize;
9694
9695 global.X_op = O_constant;
9696 global.X_op_symbol = NULL;
9697 global.X_add_symbol = NULL;
9698 global.X_add_number = local->X_add_number;
9699
9700 relax_start (local->X_add_symbol);
9701 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9702 relax_switch ();
9703 /* Set mips_optimize around the lui instruction to avoid
9704 inserting an unnecessary nop after the lw. */
9705 hold_mips_optimize = mips_optimize;
9706 mips_optimize = 2;
9707 macro_build_lui (&global, tmp);
9708 mips_optimize = hold_mips_optimize;
9709 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9710 relax_end ();
9711
9712 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9713 }
9714
9715 /* Emit a sequence of instructions to emulate a branch likely operation.
9716 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9717 is its complementing branch with the original condition negated.
9718 CALL is set if the original branch specified the link operation.
9719 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9720
9721 Code like this is produced in the noreorder mode:
9722
9723 BRNEG <args>, 1f
9724 nop
9725 b <sym>
9726 delay slot (executed only if branch taken)
9727 1:
9728
9729 or, if CALL is set:
9730
9731 BRNEG <args>, 1f
9732 nop
9733 bal <sym>
9734 delay slot (executed only if branch taken)
9735 1:
9736
9737 In the reorder mode the delay slot would be filled with a nop anyway,
9738 so code produced is simply:
9739
9740 BR <args>, <sym>
9741 nop
9742
9743 This function is used when producing code for the microMIPS ASE that
9744 does not implement branch likely instructions in hardware. */
9745
9746 static void
9747 macro_build_branch_likely (const char *br, const char *brneg,
9748 int call, expressionS *ep, const char *fmt,
9749 unsigned int sreg, unsigned int treg)
9750 {
9751 int noreorder = mips_opts.noreorder;
9752 expressionS expr1;
9753
9754 gas_assert (mips_opts.micromips);
9755 start_noreorder ();
9756 if (noreorder)
9757 {
9758 micromips_label_expr (&expr1);
9759 macro_build (&expr1, brneg, fmt, sreg, treg);
9760 macro_build (NULL, "nop", "");
9761 macro_build (ep, call ? "bal" : "b", "p");
9762
9763 /* Set to true so that append_insn adds a label. */
9764 emit_branch_likely_macro = TRUE;
9765 }
9766 else
9767 {
9768 macro_build (ep, br, fmt, sreg, treg);
9769 macro_build (NULL, "nop", "");
9770 }
9771 end_noreorder ();
9772 }
9773
9774 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9775 the condition code tested. EP specifies the branch target. */
9776
9777 static void
9778 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9779 {
9780 const int call = 0;
9781 const char *brneg;
9782 const char *br;
9783
9784 switch (type)
9785 {
9786 case M_BC1FL:
9787 br = "bc1f";
9788 brneg = "bc1t";
9789 break;
9790 case M_BC1TL:
9791 br = "bc1t";
9792 brneg = "bc1f";
9793 break;
9794 case M_BC2FL:
9795 br = "bc2f";
9796 brneg = "bc2t";
9797 break;
9798 case M_BC2TL:
9799 br = "bc2t";
9800 brneg = "bc2f";
9801 break;
9802 default:
9803 abort ();
9804 }
9805 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9806 }
9807
9808 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9809 the register tested. EP specifies the branch target. */
9810
9811 static void
9812 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9813 {
9814 const char *brneg = NULL;
9815 const char *br;
9816 int call = 0;
9817
9818 switch (type)
9819 {
9820 case M_BGEZ:
9821 br = "bgez";
9822 break;
9823 case M_BGEZL:
9824 br = mips_opts.micromips ? "bgez" : "bgezl";
9825 brneg = "bltz";
9826 break;
9827 case M_BGEZALL:
9828 gas_assert (mips_opts.micromips);
9829 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9830 brneg = "bltz";
9831 call = 1;
9832 break;
9833 case M_BGTZ:
9834 br = "bgtz";
9835 break;
9836 case M_BGTZL:
9837 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9838 brneg = "blez";
9839 break;
9840 case M_BLEZ:
9841 br = "blez";
9842 break;
9843 case M_BLEZL:
9844 br = mips_opts.micromips ? "blez" : "blezl";
9845 brneg = "bgtz";
9846 break;
9847 case M_BLTZ:
9848 br = "bltz";
9849 break;
9850 case M_BLTZL:
9851 br = mips_opts.micromips ? "bltz" : "bltzl";
9852 brneg = "bgez";
9853 break;
9854 case M_BLTZALL:
9855 gas_assert (mips_opts.micromips);
9856 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9857 brneg = "bgez";
9858 call = 1;
9859 break;
9860 default:
9861 abort ();
9862 }
9863 if (mips_opts.micromips && brneg)
9864 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9865 else
9866 macro_build (ep, br, "s,p", sreg);
9867 }
9868
9869 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9870 TREG as the registers tested. EP specifies the branch target. */
9871
9872 static void
9873 macro_build_branch_rsrt (int type, expressionS *ep,
9874 unsigned int sreg, unsigned int treg)
9875 {
9876 const char *brneg = NULL;
9877 const int call = 0;
9878 const char *br;
9879
9880 switch (type)
9881 {
9882 case M_BEQ:
9883 case M_BEQ_I:
9884 br = "beq";
9885 break;
9886 case M_BEQL:
9887 case M_BEQL_I:
9888 br = mips_opts.micromips ? "beq" : "beql";
9889 brneg = "bne";
9890 break;
9891 case M_BNE:
9892 case M_BNE_I:
9893 br = "bne";
9894 break;
9895 case M_BNEL:
9896 case M_BNEL_I:
9897 br = mips_opts.micromips ? "bne" : "bnel";
9898 brneg = "beq";
9899 break;
9900 default:
9901 abort ();
9902 }
9903 if (mips_opts.micromips && brneg)
9904 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9905 else
9906 macro_build (ep, br, "s,t,p", sreg, treg);
9907 }
9908
9909 /* Return the high part that should be loaded in order to make the low
9910 part of VALUE accessible using an offset of OFFBITS bits. */
9911
9912 static offsetT
9913 offset_high_part (offsetT value, unsigned int offbits)
9914 {
9915 offsetT bias;
9916 addressT low_mask;
9917
9918 if (offbits == 0)
9919 return value;
9920 bias = 1 << (offbits - 1);
9921 low_mask = bias * 2 - 1;
9922 return (value + bias) & ~low_mask;
9923 }
9924
9925 /* Return true if the value stored in offset_expr and offset_reloc
9926 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9927 amount that the caller wants to add without inducing overflow
9928 and ALIGN is the known alignment of the value in bytes. */
9929
9930 static bfd_boolean
9931 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9932 {
9933 if (offbits == 16)
9934 {
9935 /* Accept any relocation operator if overflow isn't a concern. */
9936 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9937 return TRUE;
9938
9939 /* These relocations are guaranteed not to overflow in correct links. */
9940 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9941 || gprel16_reloc_p (*offset_reloc))
9942 return TRUE;
9943 }
9944 if (offset_expr.X_op == O_constant
9945 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9946 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9947 return TRUE;
9948 return FALSE;
9949 }
9950
9951 /*
9952 * Build macros
9953 * This routine implements the seemingly endless macro or synthesized
9954 * instructions and addressing modes in the mips assembly language. Many
9955 * of these macros are simple and are similar to each other. These could
9956 * probably be handled by some kind of table or grammar approach instead of
9957 * this verbose method. Others are not simple macros but are more like
9958 * optimizing code generation.
9959 * One interesting optimization is when several store macros appear
9960 * consecutively that would load AT with the upper half of the same address.
9961 * The ensuing load upper instructions are omitted. This implies some kind
9962 * of global optimization. We currently only optimize within a single macro.
9963 * For many of the load and store macros if the address is specified as a
9964 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9965 * first load register 'at' with zero and use it as the base register. The
9966 * mips assembler simply uses register $zero. Just one tiny optimization
9967 * we're missing.
9968 */
9969 static void
9970 macro (struct mips_cl_insn *ip, char *str)
9971 {
9972 const struct mips_operand_array *operands;
9973 unsigned int breg, i;
9974 unsigned int tempreg;
9975 int mask;
9976 int used_at = 0;
9977 expressionS label_expr;
9978 expressionS expr1;
9979 expressionS *ep;
9980 const char *s;
9981 const char *s2;
9982 const char *fmt;
9983 int likely = 0;
9984 int coproc = 0;
9985 int offbits = 16;
9986 int call = 0;
9987 int jals = 0;
9988 int dbl = 0;
9989 int imm = 0;
9990 int ust = 0;
9991 int lp = 0;
9992 bfd_boolean large_offset;
9993 int off;
9994 int hold_mips_optimize;
9995 unsigned int align;
9996 unsigned int op[MAX_OPERANDS];
9997
9998 gas_assert (! mips_opts.mips16);
9999
10000 operands = insn_operands (ip);
10001 for (i = 0; i < MAX_OPERANDS; i++)
10002 if (operands->operand[i])
10003 op[i] = insn_extract_operand (ip, operands->operand[i]);
10004 else
10005 op[i] = -1;
10006
10007 mask = ip->insn_mo->mask;
10008
10009 label_expr.X_op = O_constant;
10010 label_expr.X_op_symbol = NULL;
10011 label_expr.X_add_symbol = NULL;
10012 label_expr.X_add_number = 0;
10013
10014 expr1.X_op = O_constant;
10015 expr1.X_op_symbol = NULL;
10016 expr1.X_add_symbol = NULL;
10017 expr1.X_add_number = 1;
10018 align = 1;
10019
10020 switch (mask)
10021 {
10022 case M_DABS:
10023 dbl = 1;
10024 /* Fall through. */
10025 case M_ABS:
10026 /* bgez $a0,1f
10027 move v0,$a0
10028 sub v0,$zero,$a0
10029 1:
10030 */
10031
10032 start_noreorder ();
10033
10034 if (mips_opts.micromips)
10035 micromips_label_expr (&label_expr);
10036 else
10037 label_expr.X_add_number = 8;
10038 macro_build (&label_expr, "bgez", "s,p", op[1]);
10039 if (op[0] == op[1])
10040 macro_build (NULL, "nop", "");
10041 else
10042 move_register (op[0], op[1]);
10043 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
10044 if (mips_opts.micromips)
10045 micromips_add_label ();
10046
10047 end_noreorder ();
10048 break;
10049
10050 case M_ADD_I:
10051 s = "addi";
10052 s2 = "add";
10053 goto do_addi;
10054 case M_ADDU_I:
10055 s = "addiu";
10056 s2 = "addu";
10057 goto do_addi;
10058 case M_DADD_I:
10059 dbl = 1;
10060 s = "daddi";
10061 s2 = "dadd";
10062 if (!mips_opts.micromips)
10063 goto do_addi;
10064 if (imm_expr.X_add_number >= -0x200
10065 && imm_expr.X_add_number < 0x200)
10066 {
10067 macro_build (NULL, s, "t,r,.", op[0], op[1],
10068 (int) imm_expr.X_add_number);
10069 break;
10070 }
10071 goto do_addi_i;
10072 case M_DADDU_I:
10073 dbl = 1;
10074 s = "daddiu";
10075 s2 = "daddu";
10076 do_addi:
10077 if (imm_expr.X_add_number >= -0x8000
10078 && imm_expr.X_add_number < 0x8000)
10079 {
10080 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
10081 break;
10082 }
10083 do_addi_i:
10084 used_at = 1;
10085 load_register (AT, &imm_expr, dbl);
10086 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
10087 break;
10088
10089 case M_AND_I:
10090 s = "andi";
10091 s2 = "and";
10092 goto do_bit;
10093 case M_OR_I:
10094 s = "ori";
10095 s2 = "or";
10096 goto do_bit;
10097 case M_NOR_I:
10098 s = "";
10099 s2 = "nor";
10100 goto do_bit;
10101 case M_XOR_I:
10102 s = "xori";
10103 s2 = "xor";
10104 do_bit:
10105 if (imm_expr.X_add_number >= 0
10106 && imm_expr.X_add_number < 0x10000)
10107 {
10108 if (mask != M_NOR_I)
10109 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
10110 else
10111 {
10112 macro_build (&imm_expr, "ori", "t,r,i",
10113 op[0], op[1], BFD_RELOC_LO16);
10114 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
10115 }
10116 break;
10117 }
10118
10119 used_at = 1;
10120 load_register (AT, &imm_expr, GPR_SIZE == 64);
10121 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
10122 break;
10123
10124 case M_BALIGN:
10125 switch (imm_expr.X_add_number)
10126 {
10127 case 0:
10128 macro_build (NULL, "nop", "");
10129 break;
10130 case 2:
10131 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
10132 break;
10133 case 1:
10134 case 3:
10135 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
10136 (int) imm_expr.X_add_number);
10137 break;
10138 default:
10139 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
10140 (unsigned long) imm_expr.X_add_number);
10141 break;
10142 }
10143 break;
10144
10145 case M_BC1FL:
10146 case M_BC1TL:
10147 case M_BC2FL:
10148 case M_BC2TL:
10149 gas_assert (mips_opts.micromips);
10150 macro_build_branch_ccl (mask, &offset_expr,
10151 EXTRACT_OPERAND (1, BCC, *ip));
10152 break;
10153
10154 case M_BEQ_I:
10155 case M_BEQL_I:
10156 case M_BNE_I:
10157 case M_BNEL_I:
10158 if (imm_expr.X_add_number == 0)
10159 op[1] = 0;
10160 else
10161 {
10162 op[1] = AT;
10163 used_at = 1;
10164 load_register (op[1], &imm_expr, GPR_SIZE == 64);
10165 }
10166 /* Fall through. */
10167 case M_BEQL:
10168 case M_BNEL:
10169 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
10170 break;
10171
10172 case M_BGEL:
10173 likely = 1;
10174 /* Fall through. */
10175 case M_BGE:
10176 if (op[1] == 0)
10177 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10178 else if (op[0] == 0)
10179 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
10180 else
10181 {
10182 used_at = 1;
10183 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10184 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10185 &offset_expr, AT, ZERO);
10186 }
10187 break;
10188
10189 case M_BGEZL:
10190 case M_BGEZALL:
10191 case M_BGTZL:
10192 case M_BLEZL:
10193 case M_BLTZL:
10194 case M_BLTZALL:
10195 macro_build_branch_rs (mask, &offset_expr, op[0]);
10196 break;
10197
10198 case M_BGTL_I:
10199 likely = 1;
10200 /* Fall through. */
10201 case M_BGT_I:
10202 /* Check for > max integer. */
10203 if (imm_expr.X_add_number >= GPR_SMAX)
10204 {
10205 do_false:
10206 /* Result is always false. */
10207 if (! likely)
10208 macro_build (NULL, "nop", "");
10209 else
10210 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
10211 break;
10212 }
10213 ++imm_expr.X_add_number;
10214 /* FALLTHROUGH */
10215 case M_BGE_I:
10216 case M_BGEL_I:
10217 if (mask == M_BGEL_I)
10218 likely = 1;
10219 if (imm_expr.X_add_number == 0)
10220 {
10221 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
10222 &offset_expr, op[0]);
10223 break;
10224 }
10225 if (imm_expr.X_add_number == 1)
10226 {
10227 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
10228 &offset_expr, op[0]);
10229 break;
10230 }
10231 if (imm_expr.X_add_number <= GPR_SMIN)
10232 {
10233 do_true:
10234 /* result is always true */
10235 as_warn (_("branch %s is always true"), ip->insn_mo->name);
10236 macro_build (&offset_expr, "b", "p");
10237 break;
10238 }
10239 used_at = 1;
10240 set_at (op[0], 0);
10241 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10242 &offset_expr, AT, ZERO);
10243 break;
10244
10245 case M_BGEUL:
10246 likely = 1;
10247 /* Fall through. */
10248 case M_BGEU:
10249 if (op[1] == 0)
10250 goto do_true;
10251 else if (op[0] == 0)
10252 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10253 &offset_expr, ZERO, op[1]);
10254 else
10255 {
10256 used_at = 1;
10257 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10258 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10259 &offset_expr, AT, ZERO);
10260 }
10261 break;
10262
10263 case M_BGTUL_I:
10264 likely = 1;
10265 /* Fall through. */
10266 case M_BGTU_I:
10267 if (op[0] == 0
10268 || (GPR_SIZE == 32
10269 && imm_expr.X_add_number == -1))
10270 goto do_false;
10271 ++imm_expr.X_add_number;
10272 /* FALLTHROUGH */
10273 case M_BGEU_I:
10274 case M_BGEUL_I:
10275 if (mask == M_BGEUL_I)
10276 likely = 1;
10277 if (imm_expr.X_add_number == 0)
10278 goto do_true;
10279 else if (imm_expr.X_add_number == 1)
10280 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10281 &offset_expr, op[0], ZERO);
10282 else
10283 {
10284 used_at = 1;
10285 set_at (op[0], 1);
10286 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10287 &offset_expr, AT, ZERO);
10288 }
10289 break;
10290
10291 case M_BGTL:
10292 likely = 1;
10293 /* Fall through. */
10294 case M_BGT:
10295 if (op[1] == 0)
10296 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10297 else if (op[0] == 0)
10298 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
10299 else
10300 {
10301 used_at = 1;
10302 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10303 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10304 &offset_expr, AT, ZERO);
10305 }
10306 break;
10307
10308 case M_BGTUL:
10309 likely = 1;
10310 /* Fall through. */
10311 case M_BGTU:
10312 if (op[1] == 0)
10313 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10314 &offset_expr, op[0], ZERO);
10315 else if (op[0] == 0)
10316 goto do_false;
10317 else
10318 {
10319 used_at = 1;
10320 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10321 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10322 &offset_expr, AT, ZERO);
10323 }
10324 break;
10325
10326 case M_BLEL:
10327 likely = 1;
10328 /* Fall through. */
10329 case M_BLE:
10330 if (op[1] == 0)
10331 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10332 else if (op[0] == 0)
10333 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10334 else
10335 {
10336 used_at = 1;
10337 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10338 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10339 &offset_expr, AT, ZERO);
10340 }
10341 break;
10342
10343 case M_BLEL_I:
10344 likely = 1;
10345 /* Fall through. */
10346 case M_BLE_I:
10347 if (imm_expr.X_add_number >= GPR_SMAX)
10348 goto do_true;
10349 ++imm_expr.X_add_number;
10350 /* FALLTHROUGH */
10351 case M_BLT_I:
10352 case M_BLTL_I:
10353 if (mask == M_BLTL_I)
10354 likely = 1;
10355 if (imm_expr.X_add_number == 0)
10356 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10357 else if (imm_expr.X_add_number == 1)
10358 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10359 else
10360 {
10361 used_at = 1;
10362 set_at (op[0], 0);
10363 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10364 &offset_expr, AT, ZERO);
10365 }
10366 break;
10367
10368 case M_BLEUL:
10369 likely = 1;
10370 /* Fall through. */
10371 case M_BLEU:
10372 if (op[1] == 0)
10373 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10374 &offset_expr, op[0], ZERO);
10375 else if (op[0] == 0)
10376 goto do_true;
10377 else
10378 {
10379 used_at = 1;
10380 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10381 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10382 &offset_expr, AT, ZERO);
10383 }
10384 break;
10385
10386 case M_BLEUL_I:
10387 likely = 1;
10388 /* Fall through. */
10389 case M_BLEU_I:
10390 if (op[0] == 0
10391 || (GPR_SIZE == 32
10392 && imm_expr.X_add_number == -1))
10393 goto do_true;
10394 ++imm_expr.X_add_number;
10395 /* FALLTHROUGH */
10396 case M_BLTU_I:
10397 case M_BLTUL_I:
10398 if (mask == M_BLTUL_I)
10399 likely = 1;
10400 if (imm_expr.X_add_number == 0)
10401 goto do_false;
10402 else if (imm_expr.X_add_number == 1)
10403 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10404 &offset_expr, op[0], ZERO);
10405 else
10406 {
10407 used_at = 1;
10408 set_at (op[0], 1);
10409 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10410 &offset_expr, AT, ZERO);
10411 }
10412 break;
10413
10414 case M_BLTL:
10415 likely = 1;
10416 /* Fall through. */
10417 case M_BLT:
10418 if (op[1] == 0)
10419 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10420 else if (op[0] == 0)
10421 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10422 else
10423 {
10424 used_at = 1;
10425 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10426 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10427 &offset_expr, AT, ZERO);
10428 }
10429 break;
10430
10431 case M_BLTUL:
10432 likely = 1;
10433 /* Fall through. */
10434 case M_BLTU:
10435 if (op[1] == 0)
10436 goto do_false;
10437 else if (op[0] == 0)
10438 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10439 &offset_expr, ZERO, op[1]);
10440 else
10441 {
10442 used_at = 1;
10443 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10444 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10445 &offset_expr, AT, ZERO);
10446 }
10447 break;
10448
10449 case M_DDIV_3:
10450 dbl = 1;
10451 /* Fall through. */
10452 case M_DIV_3:
10453 s = "mflo";
10454 goto do_div3;
10455 case M_DREM_3:
10456 dbl = 1;
10457 /* Fall through. */
10458 case M_REM_3:
10459 s = "mfhi";
10460 do_div3:
10461 if (op[2] == 0)
10462 {
10463 as_warn (_("divide by zero"));
10464 if (mips_trap)
10465 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10466 else
10467 macro_build (NULL, "break", BRK_FMT, 7);
10468 break;
10469 }
10470
10471 start_noreorder ();
10472 if (mips_trap)
10473 {
10474 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10475 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10476 }
10477 else
10478 {
10479 if (mips_opts.micromips)
10480 micromips_label_expr (&label_expr);
10481 else
10482 label_expr.X_add_number = 8;
10483 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10484 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10485 macro_build (NULL, "break", BRK_FMT, 7);
10486 if (mips_opts.micromips)
10487 micromips_add_label ();
10488 }
10489 expr1.X_add_number = -1;
10490 used_at = 1;
10491 load_register (AT, &expr1, dbl);
10492 if (mips_opts.micromips)
10493 micromips_label_expr (&label_expr);
10494 else
10495 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10496 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10497 if (dbl)
10498 {
10499 expr1.X_add_number = 1;
10500 load_register (AT, &expr1, dbl);
10501 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10502 }
10503 else
10504 {
10505 expr1.X_add_number = 0x80000000;
10506 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10507 }
10508 if (mips_trap)
10509 {
10510 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10511 /* We want to close the noreorder block as soon as possible, so
10512 that later insns are available for delay slot filling. */
10513 end_noreorder ();
10514 }
10515 else
10516 {
10517 if (mips_opts.micromips)
10518 micromips_label_expr (&label_expr);
10519 else
10520 label_expr.X_add_number = 8;
10521 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10522 macro_build (NULL, "nop", "");
10523
10524 /* We want to close the noreorder block as soon as possible, so
10525 that later insns are available for delay slot filling. */
10526 end_noreorder ();
10527
10528 macro_build (NULL, "break", BRK_FMT, 6);
10529 }
10530 if (mips_opts.micromips)
10531 micromips_add_label ();
10532 macro_build (NULL, s, MFHL_FMT, op[0]);
10533 break;
10534
10535 case M_DIV_3I:
10536 s = "div";
10537 s2 = "mflo";
10538 goto do_divi;
10539 case M_DIVU_3I:
10540 s = "divu";
10541 s2 = "mflo";
10542 goto do_divi;
10543 case M_REM_3I:
10544 s = "div";
10545 s2 = "mfhi";
10546 goto do_divi;
10547 case M_REMU_3I:
10548 s = "divu";
10549 s2 = "mfhi";
10550 goto do_divi;
10551 case M_DDIV_3I:
10552 dbl = 1;
10553 s = "ddiv";
10554 s2 = "mflo";
10555 goto do_divi;
10556 case M_DDIVU_3I:
10557 dbl = 1;
10558 s = "ddivu";
10559 s2 = "mflo";
10560 goto do_divi;
10561 case M_DREM_3I:
10562 dbl = 1;
10563 s = "ddiv";
10564 s2 = "mfhi";
10565 goto do_divi;
10566 case M_DREMU_3I:
10567 dbl = 1;
10568 s = "ddivu";
10569 s2 = "mfhi";
10570 do_divi:
10571 if (imm_expr.X_add_number == 0)
10572 {
10573 as_warn (_("divide by zero"));
10574 if (mips_trap)
10575 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10576 else
10577 macro_build (NULL, "break", BRK_FMT, 7);
10578 break;
10579 }
10580 if (imm_expr.X_add_number == 1)
10581 {
10582 if (strcmp (s2, "mflo") == 0)
10583 move_register (op[0], op[1]);
10584 else
10585 move_register (op[0], ZERO);
10586 break;
10587 }
10588 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10589 {
10590 if (strcmp (s2, "mflo") == 0)
10591 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10592 else
10593 move_register (op[0], ZERO);
10594 break;
10595 }
10596
10597 used_at = 1;
10598 load_register (AT, &imm_expr, dbl);
10599 macro_build (NULL, s, "z,s,t", op[1], AT);
10600 macro_build (NULL, s2, MFHL_FMT, op[0]);
10601 break;
10602
10603 case M_DIVU_3:
10604 s = "divu";
10605 s2 = "mflo";
10606 goto do_divu3;
10607 case M_REMU_3:
10608 s = "divu";
10609 s2 = "mfhi";
10610 goto do_divu3;
10611 case M_DDIVU_3:
10612 s = "ddivu";
10613 s2 = "mflo";
10614 goto do_divu3;
10615 case M_DREMU_3:
10616 s = "ddivu";
10617 s2 = "mfhi";
10618 do_divu3:
10619 start_noreorder ();
10620 if (mips_trap)
10621 {
10622 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10623 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10624 /* We want to close the noreorder block as soon as possible, so
10625 that later insns are available for delay slot filling. */
10626 end_noreorder ();
10627 }
10628 else
10629 {
10630 if (mips_opts.micromips)
10631 micromips_label_expr (&label_expr);
10632 else
10633 label_expr.X_add_number = 8;
10634 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10635 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10636
10637 /* We want to close the noreorder block as soon as possible, so
10638 that later insns are available for delay slot filling. */
10639 end_noreorder ();
10640 macro_build (NULL, "break", BRK_FMT, 7);
10641 if (mips_opts.micromips)
10642 micromips_add_label ();
10643 }
10644 macro_build (NULL, s2, MFHL_FMT, op[0]);
10645 break;
10646
10647 case M_DLCA_AB:
10648 dbl = 1;
10649 /* Fall through. */
10650 case M_LCA_AB:
10651 call = 1;
10652 goto do_la;
10653 case M_DLA_AB:
10654 dbl = 1;
10655 /* Fall through. */
10656 case M_LA_AB:
10657 do_la:
10658 /* Load the address of a symbol into a register. If breg is not
10659 zero, we then add a base register to it. */
10660
10661 breg = op[2];
10662 if (dbl && GPR_SIZE == 32)
10663 as_warn (_("dla used to load 32-bit register; recommend using la "
10664 "instead"));
10665
10666 if (!dbl && HAVE_64BIT_OBJECTS)
10667 as_warn (_("la used to load 64-bit address; recommend using dla "
10668 "instead"));
10669
10670 if (small_offset_p (0, align, 16))
10671 {
10672 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10673 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10674 break;
10675 }
10676
10677 if (mips_opts.at && (op[0] == breg))
10678 {
10679 tempreg = AT;
10680 used_at = 1;
10681 }
10682 else
10683 tempreg = op[0];
10684
10685 if (offset_expr.X_op != O_symbol
10686 && offset_expr.X_op != O_constant)
10687 {
10688 as_bad (_("expression too complex"));
10689 offset_expr.X_op = O_constant;
10690 }
10691
10692 if (offset_expr.X_op == O_constant)
10693 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10694 else if (mips_pic == NO_PIC)
10695 {
10696 /* If this is a reference to a GP relative symbol, we want
10697 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10698 Otherwise we want
10699 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10700 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10701 If we have a constant, we need two instructions anyhow,
10702 so we may as well always use the latter form.
10703
10704 With 64bit address space and a usable $at we want
10705 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10706 lui $at,<sym> (BFD_RELOC_HI16_S)
10707 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10708 daddiu $at,<sym> (BFD_RELOC_LO16)
10709 dsll32 $tempreg,0
10710 daddu $tempreg,$tempreg,$at
10711
10712 If $at is already in use, we use a path which is suboptimal
10713 on superscalar processors.
10714 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10715 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10716 dsll $tempreg,16
10717 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10718 dsll $tempreg,16
10719 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10720
10721 For GP relative symbols in 64bit address space we can use
10722 the same sequence as in 32bit address space. */
10723 if (HAVE_64BIT_SYMBOLS)
10724 {
10725 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10726 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10727 {
10728 relax_start (offset_expr.X_add_symbol);
10729 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10730 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10731 relax_switch ();
10732 }
10733
10734 if (used_at == 0 && mips_opts.at)
10735 {
10736 macro_build (&offset_expr, "lui", LUI_FMT,
10737 tempreg, BFD_RELOC_MIPS_HIGHEST);
10738 macro_build (&offset_expr, "lui", LUI_FMT,
10739 AT, BFD_RELOC_HI16_S);
10740 macro_build (&offset_expr, "daddiu", "t,r,j",
10741 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10742 macro_build (&offset_expr, "daddiu", "t,r,j",
10743 AT, AT, BFD_RELOC_LO16);
10744 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10745 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10746 used_at = 1;
10747 }
10748 else
10749 {
10750 macro_build (&offset_expr, "lui", LUI_FMT,
10751 tempreg, BFD_RELOC_MIPS_HIGHEST);
10752 macro_build (&offset_expr, "daddiu", "t,r,j",
10753 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10754 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10755 macro_build (&offset_expr, "daddiu", "t,r,j",
10756 tempreg, tempreg, BFD_RELOC_HI16_S);
10757 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10758 macro_build (&offset_expr, "daddiu", "t,r,j",
10759 tempreg, tempreg, BFD_RELOC_LO16);
10760 }
10761
10762 if (mips_relax.sequence)
10763 relax_end ();
10764 }
10765 else
10766 {
10767 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10768 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10769 {
10770 relax_start (offset_expr.X_add_symbol);
10771 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10772 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10773 relax_switch ();
10774 }
10775 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10776 as_bad (_("offset too large"));
10777 macro_build_lui (&offset_expr, tempreg);
10778 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10779 tempreg, tempreg, BFD_RELOC_LO16);
10780 if (mips_relax.sequence)
10781 relax_end ();
10782 }
10783 }
10784 else if (!mips_big_got && !HAVE_NEWABI)
10785 {
10786 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10787
10788 /* If this is a reference to an external symbol, and there
10789 is no constant, we want
10790 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10791 or for lca or if tempreg is PIC_CALL_REG
10792 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10793 For a local symbol, we want
10794 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10795 nop
10796 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10797
10798 If we have a small constant, and this is a reference to
10799 an external symbol, we want
10800 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10801 nop
10802 addiu $tempreg,$tempreg,<constant>
10803 For a local symbol, we want the same instruction
10804 sequence, but we output a BFD_RELOC_LO16 reloc on the
10805 addiu instruction.
10806
10807 If we have a large constant, and this is a reference to
10808 an external symbol, we want
10809 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10810 lui $at,<hiconstant>
10811 addiu $at,$at,<loconstant>
10812 addu $tempreg,$tempreg,$at
10813 For a local symbol, we want the same instruction
10814 sequence, but we output a BFD_RELOC_LO16 reloc on the
10815 addiu instruction.
10816 */
10817
10818 if (offset_expr.X_add_number == 0)
10819 {
10820 if (mips_pic == SVR4_PIC
10821 && breg == 0
10822 && (call || tempreg == PIC_CALL_REG))
10823 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10824
10825 relax_start (offset_expr.X_add_symbol);
10826 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10827 lw_reloc_type, mips_gp_register);
10828 if (breg != 0)
10829 {
10830 /* We're going to put in an addu instruction using
10831 tempreg, so we may as well insert the nop right
10832 now. */
10833 load_delay_nop ();
10834 }
10835 relax_switch ();
10836 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10837 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10838 load_delay_nop ();
10839 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10840 tempreg, tempreg, BFD_RELOC_LO16);
10841 relax_end ();
10842 /* FIXME: If breg == 0, and the next instruction uses
10843 $tempreg, then if this variant case is used an extra
10844 nop will be generated. */
10845 }
10846 else if (offset_expr.X_add_number >= -0x8000
10847 && offset_expr.X_add_number < 0x8000)
10848 {
10849 load_got_offset (tempreg, &offset_expr);
10850 load_delay_nop ();
10851 add_got_offset (tempreg, &offset_expr);
10852 }
10853 else
10854 {
10855 expr1.X_add_number = offset_expr.X_add_number;
10856 offset_expr.X_add_number =
10857 SEXT_16BIT (offset_expr.X_add_number);
10858 load_got_offset (tempreg, &offset_expr);
10859 offset_expr.X_add_number = expr1.X_add_number;
10860 /* If we are going to add in a base register, and the
10861 target register and the base register are the same,
10862 then we are using AT as a temporary register. Since
10863 we want to load the constant into AT, we add our
10864 current AT (from the global offset table) and the
10865 register into the register now, and pretend we were
10866 not using a base register. */
10867 if (breg == op[0])
10868 {
10869 load_delay_nop ();
10870 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10871 op[0], AT, breg);
10872 breg = 0;
10873 tempreg = op[0];
10874 }
10875 add_got_offset_hilo (tempreg, &offset_expr, AT);
10876 used_at = 1;
10877 }
10878 }
10879 else if (!mips_big_got && HAVE_NEWABI)
10880 {
10881 int add_breg_early = 0;
10882
10883 /* If this is a reference to an external, and there is no
10884 constant, or local symbol (*), with or without a
10885 constant, we want
10886 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10887 or for lca or if tempreg is PIC_CALL_REG
10888 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10889
10890 If we have a small constant, and this is a reference to
10891 an external symbol, we want
10892 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10893 addiu $tempreg,$tempreg,<constant>
10894
10895 If we have a large constant, and this is a reference to
10896 an external symbol, we want
10897 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10898 lui $at,<hiconstant>
10899 addiu $at,$at,<loconstant>
10900 addu $tempreg,$tempreg,$at
10901
10902 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10903 local symbols, even though it introduces an additional
10904 instruction. */
10905
10906 if (offset_expr.X_add_number)
10907 {
10908 expr1.X_add_number = offset_expr.X_add_number;
10909 offset_expr.X_add_number = 0;
10910
10911 relax_start (offset_expr.X_add_symbol);
10912 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10913 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10914
10915 if (expr1.X_add_number >= -0x8000
10916 && expr1.X_add_number < 0x8000)
10917 {
10918 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10919 tempreg, tempreg, BFD_RELOC_LO16);
10920 }
10921 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10922 {
10923 unsigned int dreg;
10924
10925 /* If we are going to add in a base register, and the
10926 target register and the base register are the same,
10927 then we are using AT as a temporary register. Since
10928 we want to load the constant into AT, we add our
10929 current AT (from the global offset table) and the
10930 register into the register now, and pretend we were
10931 not using a base register. */
10932 if (breg != op[0])
10933 dreg = tempreg;
10934 else
10935 {
10936 gas_assert (tempreg == AT);
10937 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10938 op[0], AT, breg);
10939 dreg = op[0];
10940 add_breg_early = 1;
10941 }
10942
10943 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10944 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10945 dreg, dreg, AT);
10946
10947 used_at = 1;
10948 }
10949 else
10950 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10951
10952 relax_switch ();
10953 offset_expr.X_add_number = expr1.X_add_number;
10954
10955 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10956 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10957 if (add_breg_early)
10958 {
10959 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10960 op[0], tempreg, breg);
10961 breg = 0;
10962 tempreg = op[0];
10963 }
10964 relax_end ();
10965 }
10966 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10967 {
10968 relax_start (offset_expr.X_add_symbol);
10969 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10970 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10971 relax_switch ();
10972 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10973 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10974 relax_end ();
10975 }
10976 else
10977 {
10978 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10979 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10980 }
10981 }
10982 else if (mips_big_got && !HAVE_NEWABI)
10983 {
10984 int gpdelay;
10985 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10986 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10987 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10988
10989 /* This is the large GOT case. If this is a reference to an
10990 external symbol, and there is no constant, we want
10991 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10992 addu $tempreg,$tempreg,$gp
10993 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10994 or for lca or if tempreg is PIC_CALL_REG
10995 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10996 addu $tempreg,$tempreg,$gp
10997 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10998 For a local symbol, we want
10999 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11000 nop
11001 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11002
11003 If we have a small constant, and this is a reference to
11004 an external symbol, we want
11005 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11006 addu $tempreg,$tempreg,$gp
11007 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11008 nop
11009 addiu $tempreg,$tempreg,<constant>
11010 For a local symbol, we want
11011 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11012 nop
11013 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
11014
11015 If we have a large constant, and this is a reference to
11016 an external symbol, we want
11017 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11018 addu $tempreg,$tempreg,$gp
11019 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11020 lui $at,<hiconstant>
11021 addiu $at,$at,<loconstant>
11022 addu $tempreg,$tempreg,$at
11023 For a local symbol, we want
11024 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11025 lui $at,<hiconstant>
11026 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
11027 addu $tempreg,$tempreg,$at
11028 */
11029
11030 expr1.X_add_number = offset_expr.X_add_number;
11031 offset_expr.X_add_number = 0;
11032 relax_start (offset_expr.X_add_symbol);
11033 gpdelay = reg_needs_delay (mips_gp_register);
11034 if (expr1.X_add_number == 0 && breg == 0
11035 && (call || tempreg == PIC_CALL_REG))
11036 {
11037 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11038 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11039 }
11040 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11041 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11042 tempreg, tempreg, mips_gp_register);
11043 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11044 tempreg, lw_reloc_type, tempreg);
11045 if (expr1.X_add_number == 0)
11046 {
11047 if (breg != 0)
11048 {
11049 /* We're going to put in an addu instruction using
11050 tempreg, so we may as well insert the nop right
11051 now. */
11052 load_delay_nop ();
11053 }
11054 }
11055 else if (expr1.X_add_number >= -0x8000
11056 && expr1.X_add_number < 0x8000)
11057 {
11058 load_delay_nop ();
11059 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11060 tempreg, tempreg, BFD_RELOC_LO16);
11061 }
11062 else
11063 {
11064 unsigned int dreg;
11065
11066 /* If we are going to add in a base register, and the
11067 target register and the base register are the same,
11068 then we are using AT as a temporary register. Since
11069 we want to load the constant into AT, we add our
11070 current AT (from the global offset table) and the
11071 register into the register now, and pretend we were
11072 not using a base register. */
11073 if (breg != op[0])
11074 dreg = tempreg;
11075 else
11076 {
11077 gas_assert (tempreg == AT);
11078 load_delay_nop ();
11079 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11080 op[0], AT, breg);
11081 dreg = op[0];
11082 }
11083
11084 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11085 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11086
11087 used_at = 1;
11088 }
11089 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
11090 relax_switch ();
11091
11092 if (gpdelay)
11093 {
11094 /* This is needed because this instruction uses $gp, but
11095 the first instruction on the main stream does not. */
11096 macro_build (NULL, "nop", "");
11097 }
11098
11099 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11100 local_reloc_type, mips_gp_register);
11101 if (expr1.X_add_number >= -0x8000
11102 && expr1.X_add_number < 0x8000)
11103 {
11104 load_delay_nop ();
11105 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11106 tempreg, tempreg, BFD_RELOC_LO16);
11107 /* FIXME: If add_number is 0, and there was no base
11108 register, the external symbol case ended with a load,
11109 so if the symbol turns out to not be external, and
11110 the next instruction uses tempreg, an unnecessary nop
11111 will be inserted. */
11112 }
11113 else
11114 {
11115 if (breg == op[0])
11116 {
11117 /* We must add in the base register now, as in the
11118 external symbol case. */
11119 gas_assert (tempreg == AT);
11120 load_delay_nop ();
11121 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11122 op[0], AT, breg);
11123 tempreg = op[0];
11124 /* We set breg to 0 because we have arranged to add
11125 it in in both cases. */
11126 breg = 0;
11127 }
11128
11129 macro_build_lui (&expr1, AT);
11130 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11131 AT, AT, BFD_RELOC_LO16);
11132 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11133 tempreg, tempreg, AT);
11134 used_at = 1;
11135 }
11136 relax_end ();
11137 }
11138 else if (mips_big_got && HAVE_NEWABI)
11139 {
11140 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11141 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
11142 int add_breg_early = 0;
11143
11144 /* This is the large GOT case. If this is a reference to an
11145 external symbol, and there is no constant, we want
11146 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11147 add $tempreg,$tempreg,$gp
11148 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11149 or for lca or if tempreg is PIC_CALL_REG
11150 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11151 add $tempreg,$tempreg,$gp
11152 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11153
11154 If we have a small constant, and this is a reference to
11155 an external symbol, we want
11156 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11157 add $tempreg,$tempreg,$gp
11158 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11159 addi $tempreg,$tempreg,<constant>
11160
11161 If we have a large constant, and this is a reference to
11162 an external symbol, we want
11163 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11164 addu $tempreg,$tempreg,$gp
11165 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11166 lui $at,<hiconstant>
11167 addi $at,$at,<loconstant>
11168 add $tempreg,$tempreg,$at
11169
11170 If we have NewABI, and we know it's a local symbol, we want
11171 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11172 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11173 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11174
11175 relax_start (offset_expr.X_add_symbol);
11176
11177 expr1.X_add_number = offset_expr.X_add_number;
11178 offset_expr.X_add_number = 0;
11179
11180 if (expr1.X_add_number == 0 && breg == 0
11181 && (call || tempreg == PIC_CALL_REG))
11182 {
11183 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11184 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11185 }
11186 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11187 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11188 tempreg, tempreg, mips_gp_register);
11189 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11190 tempreg, lw_reloc_type, tempreg);
11191
11192 if (expr1.X_add_number == 0)
11193 ;
11194 else if (expr1.X_add_number >= -0x8000
11195 && expr1.X_add_number < 0x8000)
11196 {
11197 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11198 tempreg, tempreg, BFD_RELOC_LO16);
11199 }
11200 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
11201 {
11202 unsigned int dreg;
11203
11204 /* If we are going to add in a base register, and the
11205 target register and the base register are the same,
11206 then we are using AT as a temporary register. Since
11207 we want to load the constant into AT, we add our
11208 current AT (from the global offset table) and the
11209 register into the register now, and pretend we were
11210 not using a base register. */
11211 if (breg != op[0])
11212 dreg = tempreg;
11213 else
11214 {
11215 gas_assert (tempreg == AT);
11216 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11217 op[0], AT, breg);
11218 dreg = op[0];
11219 add_breg_early = 1;
11220 }
11221
11222 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11223 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11224
11225 used_at = 1;
11226 }
11227 else
11228 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11229
11230 relax_switch ();
11231 offset_expr.X_add_number = expr1.X_add_number;
11232 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11233 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11234 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11235 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11236 if (add_breg_early)
11237 {
11238 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11239 op[0], tempreg, breg);
11240 breg = 0;
11241 tempreg = op[0];
11242 }
11243 relax_end ();
11244 }
11245 else
11246 abort ();
11247
11248 if (breg != 0)
11249 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
11250 break;
11251
11252 case M_MSGSND:
11253 gas_assert (!mips_opts.micromips);
11254 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
11255 break;
11256
11257 case M_MSGLD:
11258 gas_assert (!mips_opts.micromips);
11259 macro_build (NULL, "c2", "C", 0x02);
11260 break;
11261
11262 case M_MSGLD_T:
11263 gas_assert (!mips_opts.micromips);
11264 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
11265 break;
11266
11267 case M_MSGWAIT:
11268 gas_assert (!mips_opts.micromips);
11269 macro_build (NULL, "c2", "C", 3);
11270 break;
11271
11272 case M_MSGWAIT_T:
11273 gas_assert (!mips_opts.micromips);
11274 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
11275 break;
11276
11277 case M_J_A:
11278 /* The j instruction may not be used in PIC code, since it
11279 requires an absolute address. We convert it to a b
11280 instruction. */
11281 if (mips_pic == NO_PIC)
11282 macro_build (&offset_expr, "j", "a");
11283 else
11284 macro_build (&offset_expr, "b", "p");
11285 break;
11286
11287 /* The jal instructions must be handled as macros because when
11288 generating PIC code they expand to multi-instruction
11289 sequences. Normally they are simple instructions. */
11290 case M_JALS_1:
11291 op[1] = op[0];
11292 op[0] = RA;
11293 /* Fall through. */
11294 case M_JALS_2:
11295 gas_assert (mips_opts.micromips);
11296 if (mips_opts.insn32)
11297 {
11298 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11299 break;
11300 }
11301 jals = 1;
11302 goto jal;
11303 case M_JAL_1:
11304 op[1] = op[0];
11305 op[0] = RA;
11306 /* Fall through. */
11307 case M_JAL_2:
11308 jal:
11309 if (mips_pic == NO_PIC)
11310 {
11311 s = jals ? "jalrs" : "jalr";
11312 if (mips_opts.micromips
11313 && !mips_opts.insn32
11314 && op[0] == RA
11315 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11316 macro_build (NULL, s, "mj", op[1]);
11317 else
11318 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11319 }
11320 else
11321 {
11322 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11323 && mips_cprestore_offset >= 0);
11324
11325 if (op[1] != PIC_CALL_REG)
11326 as_warn (_("MIPS PIC call to register other than $25"));
11327
11328 s = ((mips_opts.micromips
11329 && !mips_opts.insn32
11330 && (!mips_opts.noreorder || cprestore))
11331 ? "jalrs" : "jalr");
11332 if (mips_opts.micromips
11333 && !mips_opts.insn32
11334 && op[0] == RA
11335 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11336 macro_build (NULL, s, "mj", op[1]);
11337 else
11338 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11339 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11340 {
11341 if (mips_cprestore_offset < 0)
11342 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11343 else
11344 {
11345 if (!mips_frame_reg_valid)
11346 {
11347 as_warn (_("no .frame pseudo-op used in PIC code"));
11348 /* Quiet this warning. */
11349 mips_frame_reg_valid = 1;
11350 }
11351 if (!mips_cprestore_valid)
11352 {
11353 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11354 /* Quiet this warning. */
11355 mips_cprestore_valid = 1;
11356 }
11357 if (mips_opts.noreorder)
11358 macro_build (NULL, "nop", "");
11359 expr1.X_add_number = mips_cprestore_offset;
11360 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11361 mips_gp_register,
11362 mips_frame_reg,
11363 HAVE_64BIT_ADDRESSES);
11364 }
11365 }
11366 }
11367
11368 break;
11369
11370 case M_JALS_A:
11371 gas_assert (mips_opts.micromips);
11372 if (mips_opts.insn32)
11373 {
11374 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11375 break;
11376 }
11377 jals = 1;
11378 /* Fall through. */
11379 case M_JAL_A:
11380 if (mips_pic == NO_PIC)
11381 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11382 else if (mips_pic == SVR4_PIC)
11383 {
11384 /* If this is a reference to an external symbol, and we are
11385 using a small GOT, we want
11386 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11387 nop
11388 jalr $ra,$25
11389 nop
11390 lw $gp,cprestore($sp)
11391 The cprestore value is set using the .cprestore
11392 pseudo-op. If we are using a big GOT, we want
11393 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11394 addu $25,$25,$gp
11395 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11396 nop
11397 jalr $ra,$25
11398 nop
11399 lw $gp,cprestore($sp)
11400 If the symbol is not external, we want
11401 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11402 nop
11403 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11404 jalr $ra,$25
11405 nop
11406 lw $gp,cprestore($sp)
11407
11408 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11409 sequences above, minus nops, unless the symbol is local,
11410 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11411 GOT_DISP. */
11412 if (HAVE_NEWABI)
11413 {
11414 if (!mips_big_got)
11415 {
11416 relax_start (offset_expr.X_add_symbol);
11417 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11418 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11419 mips_gp_register);
11420 relax_switch ();
11421 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11422 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11423 mips_gp_register);
11424 relax_end ();
11425 }
11426 else
11427 {
11428 relax_start (offset_expr.X_add_symbol);
11429 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11430 BFD_RELOC_MIPS_CALL_HI16);
11431 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11432 PIC_CALL_REG, mips_gp_register);
11433 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11434 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11435 PIC_CALL_REG);
11436 relax_switch ();
11437 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11438 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11439 mips_gp_register);
11440 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11441 PIC_CALL_REG, PIC_CALL_REG,
11442 BFD_RELOC_MIPS_GOT_OFST);
11443 relax_end ();
11444 }
11445
11446 macro_build_jalr (&offset_expr, 0);
11447 }
11448 else
11449 {
11450 relax_start (offset_expr.X_add_symbol);
11451 if (!mips_big_got)
11452 {
11453 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11454 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11455 mips_gp_register);
11456 load_delay_nop ();
11457 relax_switch ();
11458 }
11459 else
11460 {
11461 int gpdelay;
11462
11463 gpdelay = reg_needs_delay (mips_gp_register);
11464 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11465 BFD_RELOC_MIPS_CALL_HI16);
11466 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11467 PIC_CALL_REG, mips_gp_register);
11468 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11469 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11470 PIC_CALL_REG);
11471 load_delay_nop ();
11472 relax_switch ();
11473 if (gpdelay)
11474 macro_build (NULL, "nop", "");
11475 }
11476 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11477 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11478 mips_gp_register);
11479 load_delay_nop ();
11480 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11481 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11482 relax_end ();
11483 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11484
11485 if (mips_cprestore_offset < 0)
11486 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11487 else
11488 {
11489 if (!mips_frame_reg_valid)
11490 {
11491 as_warn (_("no .frame pseudo-op used in PIC code"));
11492 /* Quiet this warning. */
11493 mips_frame_reg_valid = 1;
11494 }
11495 if (!mips_cprestore_valid)
11496 {
11497 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11498 /* Quiet this warning. */
11499 mips_cprestore_valid = 1;
11500 }
11501 if (mips_opts.noreorder)
11502 macro_build (NULL, "nop", "");
11503 expr1.X_add_number = mips_cprestore_offset;
11504 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11505 mips_gp_register,
11506 mips_frame_reg,
11507 HAVE_64BIT_ADDRESSES);
11508 }
11509 }
11510 }
11511 else if (mips_pic == VXWORKS_PIC)
11512 as_bad (_("non-PIC jump used in PIC library"));
11513 else
11514 abort ();
11515
11516 break;
11517
11518 case M_LBUE_AB:
11519 s = "lbue";
11520 fmt = "t,+j(b)";
11521 offbits = 9;
11522 goto ld_st;
11523 case M_LHUE_AB:
11524 s = "lhue";
11525 fmt = "t,+j(b)";
11526 offbits = 9;
11527 goto ld_st;
11528 case M_LBE_AB:
11529 s = "lbe";
11530 fmt = "t,+j(b)";
11531 offbits = 9;
11532 goto ld_st;
11533 case M_LHE_AB:
11534 s = "lhe";
11535 fmt = "t,+j(b)";
11536 offbits = 9;
11537 goto ld_st;
11538 case M_LLE_AB:
11539 s = "lle";
11540 fmt = "t,+j(b)";
11541 offbits = 9;
11542 goto ld_st;
11543 case M_LWE_AB:
11544 s = "lwe";
11545 fmt = "t,+j(b)";
11546 offbits = 9;
11547 goto ld_st;
11548 case M_LWLE_AB:
11549 s = "lwle";
11550 fmt = "t,+j(b)";
11551 offbits = 9;
11552 goto ld_st;
11553 case M_LWRE_AB:
11554 s = "lwre";
11555 fmt = "t,+j(b)";
11556 offbits = 9;
11557 goto ld_st;
11558 case M_SBE_AB:
11559 s = "sbe";
11560 fmt = "t,+j(b)";
11561 offbits = 9;
11562 goto ld_st;
11563 case M_SCE_AB:
11564 s = "sce";
11565 fmt = "t,+j(b)";
11566 offbits = 9;
11567 goto ld_st;
11568 case M_SHE_AB:
11569 s = "she";
11570 fmt = "t,+j(b)";
11571 offbits = 9;
11572 goto ld_st;
11573 case M_SWE_AB:
11574 s = "swe";
11575 fmt = "t,+j(b)";
11576 offbits = 9;
11577 goto ld_st;
11578 case M_SWLE_AB:
11579 s = "swle";
11580 fmt = "t,+j(b)";
11581 offbits = 9;
11582 goto ld_st;
11583 case M_SWRE_AB:
11584 s = "swre";
11585 fmt = "t,+j(b)";
11586 offbits = 9;
11587 goto ld_st;
11588 case M_ACLR_AB:
11589 s = "aclr";
11590 fmt = "\\,~(b)";
11591 offbits = 12;
11592 goto ld_st;
11593 case M_ASET_AB:
11594 s = "aset";
11595 fmt = "\\,~(b)";
11596 offbits = 12;
11597 goto ld_st;
11598 case M_LB_AB:
11599 s = "lb";
11600 fmt = "t,o(b)";
11601 goto ld;
11602 case M_LBU_AB:
11603 s = "lbu";
11604 fmt = "t,o(b)";
11605 goto ld;
11606 case M_LH_AB:
11607 s = "lh";
11608 fmt = "t,o(b)";
11609 goto ld;
11610 case M_LHU_AB:
11611 s = "lhu";
11612 fmt = "t,o(b)";
11613 goto ld;
11614 case M_LW_AB:
11615 s = "lw";
11616 fmt = "t,o(b)";
11617 goto ld;
11618 case M_LWC0_AB:
11619 gas_assert (!mips_opts.micromips);
11620 s = "lwc0";
11621 fmt = "E,o(b)";
11622 /* Itbl support may require additional care here. */
11623 coproc = 1;
11624 goto ld_st;
11625 case M_LWC1_AB:
11626 s = "lwc1";
11627 fmt = "T,o(b)";
11628 /* Itbl support may require additional care here. */
11629 coproc = 1;
11630 goto ld_st;
11631 case M_LWC2_AB:
11632 s = "lwc2";
11633 fmt = COP12_FMT;
11634 offbits = (mips_opts.micromips ? 12
11635 : ISA_IS_R6 (mips_opts.isa) ? 11
11636 : 16);
11637 /* Itbl support may require additional care here. */
11638 coproc = 1;
11639 goto ld_st;
11640 case M_LWC3_AB:
11641 gas_assert (!mips_opts.micromips);
11642 s = "lwc3";
11643 fmt = "E,o(b)";
11644 /* Itbl support may require additional care here. */
11645 coproc = 1;
11646 goto ld_st;
11647 case M_LWL_AB:
11648 s = "lwl";
11649 fmt = MEM12_FMT;
11650 offbits = (mips_opts.micromips ? 12 : 16);
11651 goto ld_st;
11652 case M_LWR_AB:
11653 s = "lwr";
11654 fmt = MEM12_FMT;
11655 offbits = (mips_opts.micromips ? 12 : 16);
11656 goto ld_st;
11657 case M_LDC1_AB:
11658 s = "ldc1";
11659 fmt = "T,o(b)";
11660 /* Itbl support may require additional care here. */
11661 coproc = 1;
11662 goto ld_st;
11663 case M_LDC2_AB:
11664 s = "ldc2";
11665 fmt = COP12_FMT;
11666 offbits = (mips_opts.micromips ? 12
11667 : ISA_IS_R6 (mips_opts.isa) ? 11
11668 : 16);
11669 /* Itbl support may require additional care here. */
11670 coproc = 1;
11671 goto ld_st;
11672 case M_LQC2_AB:
11673 s = "lqc2";
11674 fmt = "+7,o(b)";
11675 /* Itbl support may require additional care here. */
11676 coproc = 1;
11677 goto ld_st;
11678 case M_LDC3_AB:
11679 s = "ldc3";
11680 fmt = "E,o(b)";
11681 /* Itbl support may require additional care here. */
11682 coproc = 1;
11683 goto ld_st;
11684 case M_LDL_AB:
11685 s = "ldl";
11686 fmt = MEM12_FMT;
11687 offbits = (mips_opts.micromips ? 12 : 16);
11688 goto ld_st;
11689 case M_LDR_AB:
11690 s = "ldr";
11691 fmt = MEM12_FMT;
11692 offbits = (mips_opts.micromips ? 12 : 16);
11693 goto ld_st;
11694 case M_LL_AB:
11695 s = "ll";
11696 fmt = LL_SC_FMT;
11697 offbits = (mips_opts.micromips ? 12
11698 : ISA_IS_R6 (mips_opts.isa) ? 9
11699 : 16);
11700 goto ld;
11701 case M_LLD_AB:
11702 s = "lld";
11703 fmt = LL_SC_FMT;
11704 offbits = (mips_opts.micromips ? 12
11705 : ISA_IS_R6 (mips_opts.isa) ? 9
11706 : 16);
11707 goto ld;
11708 case M_LWU_AB:
11709 s = "lwu";
11710 fmt = MEM12_FMT;
11711 offbits = (mips_opts.micromips ? 12 : 16);
11712 goto ld;
11713 case M_LWP_AB:
11714 gas_assert (mips_opts.micromips);
11715 s = "lwp";
11716 fmt = "t,~(b)";
11717 offbits = 12;
11718 lp = 1;
11719 goto ld;
11720 case M_LDP_AB:
11721 gas_assert (mips_opts.micromips);
11722 s = "ldp";
11723 fmt = "t,~(b)";
11724 offbits = 12;
11725 lp = 1;
11726 goto ld;
11727 case M_LWM_AB:
11728 gas_assert (mips_opts.micromips);
11729 s = "lwm";
11730 fmt = "n,~(b)";
11731 offbits = 12;
11732 goto ld_st;
11733 case M_LDM_AB:
11734 gas_assert (mips_opts.micromips);
11735 s = "ldm";
11736 fmt = "n,~(b)";
11737 offbits = 12;
11738 goto ld_st;
11739
11740 ld:
11741 /* We don't want to use $0 as tempreg. */
11742 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11743 goto ld_st;
11744 else
11745 tempreg = op[0] + lp;
11746 goto ld_noat;
11747
11748 case M_SB_AB:
11749 s = "sb";
11750 fmt = "t,o(b)";
11751 goto ld_st;
11752 case M_SH_AB:
11753 s = "sh";
11754 fmt = "t,o(b)";
11755 goto ld_st;
11756 case M_SW_AB:
11757 s = "sw";
11758 fmt = "t,o(b)";
11759 goto ld_st;
11760 case M_SWC0_AB:
11761 gas_assert (!mips_opts.micromips);
11762 s = "swc0";
11763 fmt = "E,o(b)";
11764 /* Itbl support may require additional care here. */
11765 coproc = 1;
11766 goto ld_st;
11767 case M_SWC1_AB:
11768 s = "swc1";
11769 fmt = "T,o(b)";
11770 /* Itbl support may require additional care here. */
11771 coproc = 1;
11772 goto ld_st;
11773 case M_SWC2_AB:
11774 s = "swc2";
11775 fmt = COP12_FMT;
11776 offbits = (mips_opts.micromips ? 12
11777 : ISA_IS_R6 (mips_opts.isa) ? 11
11778 : 16);
11779 /* Itbl support may require additional care here. */
11780 coproc = 1;
11781 goto ld_st;
11782 case M_SWC3_AB:
11783 gas_assert (!mips_opts.micromips);
11784 s = "swc3";
11785 fmt = "E,o(b)";
11786 /* Itbl support may require additional care here. */
11787 coproc = 1;
11788 goto ld_st;
11789 case M_SWL_AB:
11790 s = "swl";
11791 fmt = MEM12_FMT;
11792 offbits = (mips_opts.micromips ? 12 : 16);
11793 goto ld_st;
11794 case M_SWR_AB:
11795 s = "swr";
11796 fmt = MEM12_FMT;
11797 offbits = (mips_opts.micromips ? 12 : 16);
11798 goto ld_st;
11799 case M_SC_AB:
11800 s = "sc";
11801 fmt = LL_SC_FMT;
11802 offbits = (mips_opts.micromips ? 12
11803 : ISA_IS_R6 (mips_opts.isa) ? 9
11804 : 16);
11805 goto ld_st;
11806 case M_SCD_AB:
11807 s = "scd";
11808 fmt = LL_SC_FMT;
11809 offbits = (mips_opts.micromips ? 12
11810 : ISA_IS_R6 (mips_opts.isa) ? 9
11811 : 16);
11812 goto ld_st;
11813 case M_CACHE_AB:
11814 s = "cache";
11815 fmt = (mips_opts.micromips ? "k,~(b)"
11816 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11817 : "k,o(b)");
11818 offbits = (mips_opts.micromips ? 12
11819 : ISA_IS_R6 (mips_opts.isa) ? 9
11820 : 16);
11821 goto ld_st;
11822 case M_CACHEE_AB:
11823 s = "cachee";
11824 fmt = "k,+j(b)";
11825 offbits = 9;
11826 goto ld_st;
11827 case M_PREF_AB:
11828 s = "pref";
11829 fmt = (mips_opts.micromips ? "k,~(b)"
11830 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11831 : "k,o(b)");
11832 offbits = (mips_opts.micromips ? 12
11833 : ISA_IS_R6 (mips_opts.isa) ? 9
11834 : 16);
11835 goto ld_st;
11836 case M_PREFE_AB:
11837 s = "prefe";
11838 fmt = "k,+j(b)";
11839 offbits = 9;
11840 goto ld_st;
11841 case M_SDC1_AB:
11842 s = "sdc1";
11843 fmt = "T,o(b)";
11844 coproc = 1;
11845 /* Itbl support may require additional care here. */
11846 goto ld_st;
11847 case M_SDC2_AB:
11848 s = "sdc2";
11849 fmt = COP12_FMT;
11850 offbits = (mips_opts.micromips ? 12
11851 : ISA_IS_R6 (mips_opts.isa) ? 11
11852 : 16);
11853 /* Itbl support may require additional care here. */
11854 coproc = 1;
11855 goto ld_st;
11856 case M_SQC2_AB:
11857 s = "sqc2";
11858 fmt = "+7,o(b)";
11859 /* Itbl support may require additional care here. */
11860 coproc = 1;
11861 goto ld_st;
11862 case M_SDC3_AB:
11863 gas_assert (!mips_opts.micromips);
11864 s = "sdc3";
11865 fmt = "E,o(b)";
11866 /* Itbl support may require additional care here. */
11867 coproc = 1;
11868 goto ld_st;
11869 case M_SDL_AB:
11870 s = "sdl";
11871 fmt = MEM12_FMT;
11872 offbits = (mips_opts.micromips ? 12 : 16);
11873 goto ld_st;
11874 case M_SDR_AB:
11875 s = "sdr";
11876 fmt = MEM12_FMT;
11877 offbits = (mips_opts.micromips ? 12 : 16);
11878 goto ld_st;
11879 case M_SWP_AB:
11880 gas_assert (mips_opts.micromips);
11881 s = "swp";
11882 fmt = "t,~(b)";
11883 offbits = 12;
11884 goto ld_st;
11885 case M_SDP_AB:
11886 gas_assert (mips_opts.micromips);
11887 s = "sdp";
11888 fmt = "t,~(b)";
11889 offbits = 12;
11890 goto ld_st;
11891 case M_SWM_AB:
11892 gas_assert (mips_opts.micromips);
11893 s = "swm";
11894 fmt = "n,~(b)";
11895 offbits = 12;
11896 goto ld_st;
11897 case M_SDM_AB:
11898 gas_assert (mips_opts.micromips);
11899 s = "sdm";
11900 fmt = "n,~(b)";
11901 offbits = 12;
11902
11903 ld_st:
11904 tempreg = AT;
11905 ld_noat:
11906 breg = op[2];
11907 if (small_offset_p (0, align, 16))
11908 {
11909 /* The first case exists for M_LD_AB and M_SD_AB, which are
11910 macros for o32 but which should act like normal instructions
11911 otherwise. */
11912 if (offbits == 16)
11913 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11914 offset_reloc[1], offset_reloc[2], breg);
11915 else if (small_offset_p (0, align, offbits))
11916 {
11917 if (offbits == 0)
11918 macro_build (NULL, s, fmt, op[0], breg);
11919 else
11920 macro_build (NULL, s, fmt, op[0],
11921 (int) offset_expr.X_add_number, breg);
11922 }
11923 else
11924 {
11925 if (tempreg == AT)
11926 used_at = 1;
11927 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11928 tempreg, breg, -1, offset_reloc[0],
11929 offset_reloc[1], offset_reloc[2]);
11930 if (offbits == 0)
11931 macro_build (NULL, s, fmt, op[0], tempreg);
11932 else
11933 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11934 }
11935 break;
11936 }
11937
11938 if (tempreg == AT)
11939 used_at = 1;
11940
11941 if (offset_expr.X_op != O_constant
11942 && offset_expr.X_op != O_symbol)
11943 {
11944 as_bad (_("expression too complex"));
11945 offset_expr.X_op = O_constant;
11946 }
11947
11948 if (HAVE_32BIT_ADDRESSES
11949 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11950 {
11951 char value [32];
11952
11953 sprintf_vma (value, offset_expr.X_add_number);
11954 as_bad (_("number (0x%s) larger than 32 bits"), value);
11955 }
11956
11957 /* A constant expression in PIC code can be handled just as it
11958 is in non PIC code. */
11959 if (offset_expr.X_op == O_constant)
11960 {
11961 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11962 offbits == 0 ? 16 : offbits);
11963 offset_expr.X_add_number -= expr1.X_add_number;
11964
11965 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11966 if (breg != 0)
11967 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11968 tempreg, tempreg, breg);
11969 if (offbits == 0)
11970 {
11971 if (offset_expr.X_add_number != 0)
11972 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11973 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11974 macro_build (NULL, s, fmt, op[0], tempreg);
11975 }
11976 else if (offbits == 16)
11977 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11978 else
11979 macro_build (NULL, s, fmt, op[0],
11980 (int) offset_expr.X_add_number, tempreg);
11981 }
11982 else if (offbits != 16)
11983 {
11984 /* The offset field is too narrow to be used for a low-part
11985 relocation, so load the whole address into the auxiliary
11986 register. */
11987 load_address (tempreg, &offset_expr, &used_at);
11988 if (breg != 0)
11989 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11990 tempreg, tempreg, breg);
11991 if (offbits == 0)
11992 macro_build (NULL, s, fmt, op[0], tempreg);
11993 else
11994 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11995 }
11996 else if (mips_pic == NO_PIC)
11997 {
11998 /* If this is a reference to a GP relative symbol, and there
11999 is no base register, we want
12000 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12001 Otherwise, if there is no base register, we want
12002 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
12003 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12004 If we have a constant, we need two instructions anyhow,
12005 so we always use the latter form.
12006
12007 If we have a base register, and this is a reference to a
12008 GP relative symbol, we want
12009 addu $tempreg,$breg,$gp
12010 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
12011 Otherwise we want
12012 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
12013 addu $tempreg,$tempreg,$breg
12014 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12015 With a constant we always use the latter case.
12016
12017 With 64bit address space and no base register and $at usable,
12018 we want
12019 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12020 lui $at,<sym> (BFD_RELOC_HI16_S)
12021 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12022 dsll32 $tempreg,0
12023 daddu $tempreg,$at
12024 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12025 If we have a base register, we want
12026 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12027 lui $at,<sym> (BFD_RELOC_HI16_S)
12028 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12029 daddu $at,$breg
12030 dsll32 $tempreg,0
12031 daddu $tempreg,$at
12032 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12033
12034 Without $at we can't generate the optimal path for superscalar
12035 processors here since this would require two temporary registers.
12036 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12037 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12038 dsll $tempreg,16
12039 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12040 dsll $tempreg,16
12041 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12042 If we have a base register, we want
12043 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12044 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12045 dsll $tempreg,16
12046 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12047 dsll $tempreg,16
12048 daddu $tempreg,$tempreg,$breg
12049 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12050
12051 For GP relative symbols in 64bit address space we can use
12052 the same sequence as in 32bit address space. */
12053 if (HAVE_64BIT_SYMBOLS)
12054 {
12055 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12056 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12057 {
12058 relax_start (offset_expr.X_add_symbol);
12059 if (breg == 0)
12060 {
12061 macro_build (&offset_expr, s, fmt, op[0],
12062 BFD_RELOC_GPREL16, mips_gp_register);
12063 }
12064 else
12065 {
12066 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12067 tempreg, breg, mips_gp_register);
12068 macro_build (&offset_expr, s, fmt, op[0],
12069 BFD_RELOC_GPREL16, tempreg);
12070 }
12071 relax_switch ();
12072 }
12073
12074 if (used_at == 0 && mips_opts.at)
12075 {
12076 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12077 BFD_RELOC_MIPS_HIGHEST);
12078 macro_build (&offset_expr, "lui", LUI_FMT, AT,
12079 BFD_RELOC_HI16_S);
12080 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12081 tempreg, BFD_RELOC_MIPS_HIGHER);
12082 if (breg != 0)
12083 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
12084 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
12085 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
12086 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
12087 tempreg);
12088 used_at = 1;
12089 }
12090 else
12091 {
12092 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12093 BFD_RELOC_MIPS_HIGHEST);
12094 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12095 tempreg, BFD_RELOC_MIPS_HIGHER);
12096 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
12097 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12098 tempreg, BFD_RELOC_HI16_S);
12099 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
12100 if (breg != 0)
12101 macro_build (NULL, "daddu", "d,v,t",
12102 tempreg, tempreg, breg);
12103 macro_build (&offset_expr, s, fmt, op[0],
12104 BFD_RELOC_LO16, tempreg);
12105 }
12106
12107 if (mips_relax.sequence)
12108 relax_end ();
12109 break;
12110 }
12111
12112 if (breg == 0)
12113 {
12114 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12115 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12116 {
12117 relax_start (offset_expr.X_add_symbol);
12118 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
12119 mips_gp_register);
12120 relax_switch ();
12121 }
12122 macro_build_lui (&offset_expr, tempreg);
12123 macro_build (&offset_expr, s, fmt, op[0],
12124 BFD_RELOC_LO16, tempreg);
12125 if (mips_relax.sequence)
12126 relax_end ();
12127 }
12128 else
12129 {
12130 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12131 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12132 {
12133 relax_start (offset_expr.X_add_symbol);
12134 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12135 tempreg, breg, mips_gp_register);
12136 macro_build (&offset_expr, s, fmt, op[0],
12137 BFD_RELOC_GPREL16, tempreg);
12138 relax_switch ();
12139 }
12140 macro_build_lui (&offset_expr, tempreg);
12141 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12142 tempreg, tempreg, breg);
12143 macro_build (&offset_expr, s, fmt, op[0],
12144 BFD_RELOC_LO16, tempreg);
12145 if (mips_relax.sequence)
12146 relax_end ();
12147 }
12148 }
12149 else if (!mips_big_got)
12150 {
12151 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
12152
12153 /* If this is a reference to an external symbol, we want
12154 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12155 nop
12156 <op> op[0],0($tempreg)
12157 Otherwise we want
12158 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12159 nop
12160 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12161 <op> op[0],0($tempreg)
12162
12163 For NewABI, we want
12164 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12165 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
12166
12167 If there is a base register, we add it to $tempreg before
12168 the <op>. If there is a constant, we stick it in the
12169 <op> instruction. We don't handle constants larger than
12170 16 bits, because we have no way to load the upper 16 bits
12171 (actually, we could handle them for the subset of cases
12172 in which we are not using $at). */
12173 gas_assert (offset_expr.X_op == O_symbol);
12174 if (HAVE_NEWABI)
12175 {
12176 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12177 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12178 if (breg != 0)
12179 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12180 tempreg, tempreg, breg);
12181 macro_build (&offset_expr, s, fmt, op[0],
12182 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12183 break;
12184 }
12185 expr1.X_add_number = offset_expr.X_add_number;
12186 offset_expr.X_add_number = 0;
12187 if (expr1.X_add_number < -0x8000
12188 || expr1.X_add_number >= 0x8000)
12189 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12190 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12191 lw_reloc_type, mips_gp_register);
12192 load_delay_nop ();
12193 relax_start (offset_expr.X_add_symbol);
12194 relax_switch ();
12195 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12196 tempreg, BFD_RELOC_LO16);
12197 relax_end ();
12198 if (breg != 0)
12199 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12200 tempreg, tempreg, breg);
12201 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12202 }
12203 else if (mips_big_got && !HAVE_NEWABI)
12204 {
12205 int gpdelay;
12206
12207 /* If this is a reference to an external symbol, we want
12208 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12209 addu $tempreg,$tempreg,$gp
12210 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12211 <op> op[0],0($tempreg)
12212 Otherwise we want
12213 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12214 nop
12215 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12216 <op> op[0],0($tempreg)
12217 If there is a base register, we add it to $tempreg before
12218 the <op>. If there is a constant, we stick it in the
12219 <op> instruction. We don't handle constants larger than
12220 16 bits, because we have no way to load the upper 16 bits
12221 (actually, we could handle them for the subset of cases
12222 in which we are not using $at). */
12223 gas_assert (offset_expr.X_op == O_symbol);
12224 expr1.X_add_number = offset_expr.X_add_number;
12225 offset_expr.X_add_number = 0;
12226 if (expr1.X_add_number < -0x8000
12227 || expr1.X_add_number >= 0x8000)
12228 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12229 gpdelay = reg_needs_delay (mips_gp_register);
12230 relax_start (offset_expr.X_add_symbol);
12231 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12232 BFD_RELOC_MIPS_GOT_HI16);
12233 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12234 mips_gp_register);
12235 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12236 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12237 relax_switch ();
12238 if (gpdelay)
12239 macro_build (NULL, "nop", "");
12240 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12241 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12242 load_delay_nop ();
12243 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12244 tempreg, BFD_RELOC_LO16);
12245 relax_end ();
12246
12247 if (breg != 0)
12248 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12249 tempreg, tempreg, breg);
12250 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12251 }
12252 else if (mips_big_got && HAVE_NEWABI)
12253 {
12254 /* If this is a reference to an external symbol, we want
12255 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12256 add $tempreg,$tempreg,$gp
12257 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12258 <op> op[0],<ofst>($tempreg)
12259 Otherwise, for local symbols, we want:
12260 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12261 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
12262 gas_assert (offset_expr.X_op == O_symbol);
12263 expr1.X_add_number = offset_expr.X_add_number;
12264 offset_expr.X_add_number = 0;
12265 if (expr1.X_add_number < -0x8000
12266 || expr1.X_add_number >= 0x8000)
12267 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12268 relax_start (offset_expr.X_add_symbol);
12269 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12270 BFD_RELOC_MIPS_GOT_HI16);
12271 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12272 mips_gp_register);
12273 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12274 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12275 if (breg != 0)
12276 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12277 tempreg, tempreg, breg);
12278 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12279
12280 relax_switch ();
12281 offset_expr.X_add_number = expr1.X_add_number;
12282 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12283 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12284 if (breg != 0)
12285 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12286 tempreg, tempreg, breg);
12287 macro_build (&offset_expr, s, fmt, op[0],
12288 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12289 relax_end ();
12290 }
12291 else
12292 abort ();
12293
12294 break;
12295
12296 case M_JRADDIUSP:
12297 gas_assert (mips_opts.micromips);
12298 gas_assert (mips_opts.insn32);
12299 start_noreorder ();
12300 macro_build (NULL, "jr", "s", RA);
12301 expr1.X_add_number = op[0] << 2;
12302 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12303 end_noreorder ();
12304 break;
12305
12306 case M_JRC:
12307 gas_assert (mips_opts.micromips);
12308 gas_assert (mips_opts.insn32);
12309 macro_build (NULL, "jr", "s", op[0]);
12310 if (mips_opts.noreorder)
12311 macro_build (NULL, "nop", "");
12312 break;
12313
12314 case M_LI:
12315 case M_LI_S:
12316 load_register (op[0], &imm_expr, 0);
12317 break;
12318
12319 case M_DLI:
12320 load_register (op[0], &imm_expr, 1);
12321 break;
12322
12323 case M_LI_SS:
12324 if (imm_expr.X_op == O_constant)
12325 {
12326 used_at = 1;
12327 load_register (AT, &imm_expr, 0);
12328 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12329 break;
12330 }
12331 else
12332 {
12333 gas_assert (imm_expr.X_op == O_absent
12334 && offset_expr.X_op == O_symbol
12335 && strcmp (segment_name (S_GET_SEGMENT
12336 (offset_expr.X_add_symbol)),
12337 ".lit4") == 0
12338 && offset_expr.X_add_number == 0);
12339 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12340 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12341 break;
12342 }
12343
12344 case M_LI_D:
12345 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12346 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12347 order 32 bits of the value and the low order 32 bits are either
12348 zero or in OFFSET_EXPR. */
12349 if (imm_expr.X_op == O_constant)
12350 {
12351 if (GPR_SIZE == 64)
12352 load_register (op[0], &imm_expr, 1);
12353 else
12354 {
12355 int hreg, lreg;
12356
12357 if (target_big_endian)
12358 {
12359 hreg = op[0];
12360 lreg = op[0] + 1;
12361 }
12362 else
12363 {
12364 hreg = op[0] + 1;
12365 lreg = op[0];
12366 }
12367
12368 if (hreg <= 31)
12369 load_register (hreg, &imm_expr, 0);
12370 if (lreg <= 31)
12371 {
12372 if (offset_expr.X_op == O_absent)
12373 move_register (lreg, 0);
12374 else
12375 {
12376 gas_assert (offset_expr.X_op == O_constant);
12377 load_register (lreg, &offset_expr, 0);
12378 }
12379 }
12380 }
12381 break;
12382 }
12383 gas_assert (imm_expr.X_op == O_absent);
12384
12385 /* We know that sym is in the .rdata section. First we get the
12386 upper 16 bits of the address. */
12387 if (mips_pic == NO_PIC)
12388 {
12389 macro_build_lui (&offset_expr, AT);
12390 used_at = 1;
12391 }
12392 else
12393 {
12394 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12395 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12396 used_at = 1;
12397 }
12398
12399 /* Now we load the register(s). */
12400 if (GPR_SIZE == 64)
12401 {
12402 used_at = 1;
12403 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12404 BFD_RELOC_LO16, AT);
12405 }
12406 else
12407 {
12408 used_at = 1;
12409 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12410 BFD_RELOC_LO16, AT);
12411 if (op[0] != RA)
12412 {
12413 /* FIXME: How in the world do we deal with the possible
12414 overflow here? */
12415 offset_expr.X_add_number += 4;
12416 macro_build (&offset_expr, "lw", "t,o(b)",
12417 op[0] + 1, BFD_RELOC_LO16, AT);
12418 }
12419 }
12420 break;
12421
12422 case M_LI_DD:
12423 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12424 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12425 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12426 the value and the low order 32 bits are either zero or in
12427 OFFSET_EXPR. */
12428 if (imm_expr.X_op == O_constant)
12429 {
12430 used_at = 1;
12431 load_register (AT, &imm_expr, FPR_SIZE == 64);
12432 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12433 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12434 else
12435 {
12436 if (ISA_HAS_MXHC1 (mips_opts.isa))
12437 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12438 else if (FPR_SIZE != 32)
12439 as_bad (_("Unable to generate `%s' compliant code "
12440 "without mthc1"),
12441 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12442 else
12443 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12444 if (offset_expr.X_op == O_absent)
12445 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12446 else
12447 {
12448 gas_assert (offset_expr.X_op == O_constant);
12449 load_register (AT, &offset_expr, 0);
12450 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12451 }
12452 }
12453 break;
12454 }
12455
12456 gas_assert (imm_expr.X_op == O_absent
12457 && offset_expr.X_op == O_symbol
12458 && offset_expr.X_add_number == 0);
12459 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12460 if (strcmp (s, ".lit8") == 0)
12461 {
12462 op[2] = mips_gp_register;
12463 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12464 offset_reloc[1] = BFD_RELOC_UNUSED;
12465 offset_reloc[2] = BFD_RELOC_UNUSED;
12466 }
12467 else
12468 {
12469 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12470 used_at = 1;
12471 if (mips_pic != NO_PIC)
12472 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12473 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12474 else
12475 {
12476 /* FIXME: This won't work for a 64 bit address. */
12477 macro_build_lui (&offset_expr, AT);
12478 }
12479
12480 op[2] = AT;
12481 offset_reloc[0] = BFD_RELOC_LO16;
12482 offset_reloc[1] = BFD_RELOC_UNUSED;
12483 offset_reloc[2] = BFD_RELOC_UNUSED;
12484 }
12485 align = 8;
12486 /* Fall through */
12487
12488 case M_L_DAB:
12489 /*
12490 * The MIPS assembler seems to check for X_add_number not
12491 * being double aligned and generating:
12492 * lui at,%hi(foo+1)
12493 * addu at,at,v1
12494 * addiu at,at,%lo(foo+1)
12495 * lwc1 f2,0(at)
12496 * lwc1 f3,4(at)
12497 * But, the resulting address is the same after relocation so why
12498 * generate the extra instruction?
12499 */
12500 /* Itbl support may require additional care here. */
12501 coproc = 1;
12502 fmt = "T,o(b)";
12503 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12504 {
12505 s = "ldc1";
12506 goto ld_st;
12507 }
12508 s = "lwc1";
12509 goto ldd_std;
12510
12511 case M_S_DAB:
12512 gas_assert (!mips_opts.micromips);
12513 /* Itbl support may require additional care here. */
12514 coproc = 1;
12515 fmt = "T,o(b)";
12516 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12517 {
12518 s = "sdc1";
12519 goto ld_st;
12520 }
12521 s = "swc1";
12522 goto ldd_std;
12523
12524 case M_LQ_AB:
12525 fmt = "t,o(b)";
12526 s = "lq";
12527 goto ld;
12528
12529 case M_SQ_AB:
12530 fmt = "t,o(b)";
12531 s = "sq";
12532 goto ld_st;
12533
12534 case M_LD_AB:
12535 fmt = "t,o(b)";
12536 if (GPR_SIZE == 64)
12537 {
12538 s = "ld";
12539 goto ld;
12540 }
12541 s = "lw";
12542 goto ldd_std;
12543
12544 case M_SD_AB:
12545 fmt = "t,o(b)";
12546 if (GPR_SIZE == 64)
12547 {
12548 s = "sd";
12549 goto ld_st;
12550 }
12551 s = "sw";
12552
12553 ldd_std:
12554 /* Even on a big endian machine $fn comes before $fn+1. We have
12555 to adjust when loading from memory. We set coproc if we must
12556 load $fn+1 first. */
12557 /* Itbl support may require additional care here. */
12558 if (!target_big_endian)
12559 coproc = 0;
12560
12561 breg = op[2];
12562 if (small_offset_p (0, align, 16))
12563 {
12564 ep = &offset_expr;
12565 if (!small_offset_p (4, align, 16))
12566 {
12567 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12568 -1, offset_reloc[0], offset_reloc[1],
12569 offset_reloc[2]);
12570 expr1.X_add_number = 0;
12571 ep = &expr1;
12572 breg = AT;
12573 used_at = 1;
12574 offset_reloc[0] = BFD_RELOC_LO16;
12575 offset_reloc[1] = BFD_RELOC_UNUSED;
12576 offset_reloc[2] = BFD_RELOC_UNUSED;
12577 }
12578 if (strcmp (s, "lw") == 0 && op[0] == breg)
12579 {
12580 ep->X_add_number += 4;
12581 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12582 offset_reloc[1], offset_reloc[2], breg);
12583 ep->X_add_number -= 4;
12584 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12585 offset_reloc[1], offset_reloc[2], breg);
12586 }
12587 else
12588 {
12589 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12590 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12591 breg);
12592 ep->X_add_number += 4;
12593 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12594 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12595 breg);
12596 }
12597 break;
12598 }
12599
12600 if (offset_expr.X_op != O_symbol
12601 && offset_expr.X_op != O_constant)
12602 {
12603 as_bad (_("expression too complex"));
12604 offset_expr.X_op = O_constant;
12605 }
12606
12607 if (HAVE_32BIT_ADDRESSES
12608 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12609 {
12610 char value [32];
12611
12612 sprintf_vma (value, offset_expr.X_add_number);
12613 as_bad (_("number (0x%s) larger than 32 bits"), value);
12614 }
12615
12616 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12617 {
12618 /* If this is a reference to a GP relative symbol, we want
12619 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12620 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12621 If we have a base register, we use this
12622 addu $at,$breg,$gp
12623 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12624 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12625 If this is not a GP relative symbol, we want
12626 lui $at,<sym> (BFD_RELOC_HI16_S)
12627 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12628 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12629 If there is a base register, we add it to $at after the
12630 lui instruction. If there is a constant, we always use
12631 the last case. */
12632 if (offset_expr.X_op == O_symbol
12633 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12634 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12635 {
12636 relax_start (offset_expr.X_add_symbol);
12637 if (breg == 0)
12638 {
12639 tempreg = mips_gp_register;
12640 }
12641 else
12642 {
12643 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12644 AT, breg, mips_gp_register);
12645 tempreg = AT;
12646 used_at = 1;
12647 }
12648
12649 /* Itbl support may require additional care here. */
12650 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12651 BFD_RELOC_GPREL16, tempreg);
12652 offset_expr.X_add_number += 4;
12653
12654 /* Set mips_optimize to 2 to avoid inserting an
12655 undesired nop. */
12656 hold_mips_optimize = mips_optimize;
12657 mips_optimize = 2;
12658 /* Itbl support may require additional care here. */
12659 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12660 BFD_RELOC_GPREL16, tempreg);
12661 mips_optimize = hold_mips_optimize;
12662
12663 relax_switch ();
12664
12665 offset_expr.X_add_number -= 4;
12666 }
12667 used_at = 1;
12668 if (offset_high_part (offset_expr.X_add_number, 16)
12669 != offset_high_part (offset_expr.X_add_number + 4, 16))
12670 {
12671 load_address (AT, &offset_expr, &used_at);
12672 offset_expr.X_op = O_constant;
12673 offset_expr.X_add_number = 0;
12674 }
12675 else
12676 macro_build_lui (&offset_expr, AT);
12677 if (breg != 0)
12678 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12679 /* Itbl support may require additional care here. */
12680 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12681 BFD_RELOC_LO16, AT);
12682 /* FIXME: How do we handle overflow here? */
12683 offset_expr.X_add_number += 4;
12684 /* Itbl support may require additional care here. */
12685 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12686 BFD_RELOC_LO16, AT);
12687 if (mips_relax.sequence)
12688 relax_end ();
12689 }
12690 else if (!mips_big_got)
12691 {
12692 /* If this is a reference to an external symbol, we want
12693 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12694 nop
12695 <op> op[0],0($at)
12696 <op> op[0]+1,4($at)
12697 Otherwise we want
12698 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12699 nop
12700 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12701 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12702 If there is a base register we add it to $at before the
12703 lwc1 instructions. If there is a constant we include it
12704 in the lwc1 instructions. */
12705 used_at = 1;
12706 expr1.X_add_number = offset_expr.X_add_number;
12707 if (expr1.X_add_number < -0x8000
12708 || expr1.X_add_number >= 0x8000 - 4)
12709 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12710 load_got_offset (AT, &offset_expr);
12711 load_delay_nop ();
12712 if (breg != 0)
12713 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12714
12715 /* Set mips_optimize to 2 to avoid inserting an undesired
12716 nop. */
12717 hold_mips_optimize = mips_optimize;
12718 mips_optimize = 2;
12719
12720 /* Itbl support may require additional care here. */
12721 relax_start (offset_expr.X_add_symbol);
12722 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12723 BFD_RELOC_LO16, AT);
12724 expr1.X_add_number += 4;
12725 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12726 BFD_RELOC_LO16, AT);
12727 relax_switch ();
12728 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12729 BFD_RELOC_LO16, AT);
12730 offset_expr.X_add_number += 4;
12731 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12732 BFD_RELOC_LO16, AT);
12733 relax_end ();
12734
12735 mips_optimize = hold_mips_optimize;
12736 }
12737 else if (mips_big_got)
12738 {
12739 int gpdelay;
12740
12741 /* If this is a reference to an external symbol, we want
12742 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12743 addu $at,$at,$gp
12744 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12745 nop
12746 <op> op[0],0($at)
12747 <op> op[0]+1,4($at)
12748 Otherwise we want
12749 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12750 nop
12751 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12752 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12753 If there is a base register we add it to $at before the
12754 lwc1 instructions. If there is a constant we include it
12755 in the lwc1 instructions. */
12756 used_at = 1;
12757 expr1.X_add_number = offset_expr.X_add_number;
12758 offset_expr.X_add_number = 0;
12759 if (expr1.X_add_number < -0x8000
12760 || expr1.X_add_number >= 0x8000 - 4)
12761 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12762 gpdelay = reg_needs_delay (mips_gp_register);
12763 relax_start (offset_expr.X_add_symbol);
12764 macro_build (&offset_expr, "lui", LUI_FMT,
12765 AT, BFD_RELOC_MIPS_GOT_HI16);
12766 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12767 AT, AT, mips_gp_register);
12768 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12769 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12770 load_delay_nop ();
12771 if (breg != 0)
12772 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12773 /* Itbl support may require additional care here. */
12774 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12775 BFD_RELOC_LO16, AT);
12776 expr1.X_add_number += 4;
12777
12778 /* Set mips_optimize to 2 to avoid inserting an undesired
12779 nop. */
12780 hold_mips_optimize = mips_optimize;
12781 mips_optimize = 2;
12782 /* Itbl support may require additional care here. */
12783 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12784 BFD_RELOC_LO16, AT);
12785 mips_optimize = hold_mips_optimize;
12786 expr1.X_add_number -= 4;
12787
12788 relax_switch ();
12789 offset_expr.X_add_number = expr1.X_add_number;
12790 if (gpdelay)
12791 macro_build (NULL, "nop", "");
12792 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12793 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12794 load_delay_nop ();
12795 if (breg != 0)
12796 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12797 /* Itbl support may require additional care here. */
12798 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12799 BFD_RELOC_LO16, AT);
12800 offset_expr.X_add_number += 4;
12801
12802 /* Set mips_optimize to 2 to avoid inserting an undesired
12803 nop. */
12804 hold_mips_optimize = mips_optimize;
12805 mips_optimize = 2;
12806 /* Itbl support may require additional care here. */
12807 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12808 BFD_RELOC_LO16, AT);
12809 mips_optimize = hold_mips_optimize;
12810 relax_end ();
12811 }
12812 else
12813 abort ();
12814
12815 break;
12816
12817 case M_SAA_AB:
12818 s = "saa";
12819 goto saa_saad;
12820 case M_SAAD_AB:
12821 s = "saad";
12822 saa_saad:
12823 gas_assert (!mips_opts.micromips);
12824 offbits = 0;
12825 fmt = "t,(b)";
12826 goto ld_st;
12827
12828 /* New code added to support COPZ instructions.
12829 This code builds table entries out of the macros in mip_opcodes.
12830 R4000 uses interlocks to handle coproc delays.
12831 Other chips (like the R3000) require nops to be inserted for delays.
12832
12833 FIXME: Currently, we require that the user handle delays.
12834 In order to fill delay slots for non-interlocked chips,
12835 we must have a way to specify delays based on the coprocessor.
12836 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12837 What are the side-effects of the cop instruction?
12838 What cache support might we have and what are its effects?
12839 Both coprocessor & memory require delays. how long???
12840 What registers are read/set/modified?
12841
12842 If an itbl is provided to interpret cop instructions,
12843 this knowledge can be encoded in the itbl spec. */
12844
12845 case M_COP0:
12846 s = "c0";
12847 goto copz;
12848 case M_COP1:
12849 s = "c1";
12850 goto copz;
12851 case M_COP2:
12852 s = "c2";
12853 goto copz;
12854 case M_COP3:
12855 s = "c3";
12856 copz:
12857 gas_assert (!mips_opts.micromips);
12858 /* For now we just do C (same as Cz). The parameter will be
12859 stored in insn_opcode by mips_ip. */
12860 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12861 break;
12862
12863 case M_MOVE:
12864 move_register (op[0], op[1]);
12865 break;
12866
12867 case M_MOVEP:
12868 gas_assert (mips_opts.micromips);
12869 gas_assert (mips_opts.insn32);
12870 move_register (micromips_to_32_reg_h_map1[op[0]],
12871 micromips_to_32_reg_m_map[op[1]]);
12872 move_register (micromips_to_32_reg_h_map2[op[0]],
12873 micromips_to_32_reg_n_map[op[2]]);
12874 break;
12875
12876 case M_DMUL:
12877 dbl = 1;
12878 /* Fall through. */
12879 case M_MUL:
12880 if (mips_opts.arch == CPU_R5900)
12881 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12882 op[2]);
12883 else
12884 {
12885 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12886 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12887 }
12888 break;
12889
12890 case M_DMUL_I:
12891 dbl = 1;
12892 /* Fall through. */
12893 case M_MUL_I:
12894 /* The MIPS assembler some times generates shifts and adds. I'm
12895 not trying to be that fancy. GCC should do this for us
12896 anyway. */
12897 used_at = 1;
12898 load_register (AT, &imm_expr, dbl);
12899 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12900 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12901 break;
12902
12903 case M_DMULO_I:
12904 dbl = 1;
12905 /* Fall through. */
12906 case M_MULO_I:
12907 imm = 1;
12908 goto do_mulo;
12909
12910 case M_DMULO:
12911 dbl = 1;
12912 /* Fall through. */
12913 case M_MULO:
12914 do_mulo:
12915 start_noreorder ();
12916 used_at = 1;
12917 if (imm)
12918 load_register (AT, &imm_expr, dbl);
12919 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12920 op[1], imm ? AT : op[2]);
12921 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12922 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12923 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12924 if (mips_trap)
12925 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12926 else
12927 {
12928 if (mips_opts.micromips)
12929 micromips_label_expr (&label_expr);
12930 else
12931 label_expr.X_add_number = 8;
12932 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12933 macro_build (NULL, "nop", "");
12934 macro_build (NULL, "break", BRK_FMT, 6);
12935 if (mips_opts.micromips)
12936 micromips_add_label ();
12937 }
12938 end_noreorder ();
12939 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12940 break;
12941
12942 case M_DMULOU_I:
12943 dbl = 1;
12944 /* Fall through. */
12945 case M_MULOU_I:
12946 imm = 1;
12947 goto do_mulou;
12948
12949 case M_DMULOU:
12950 dbl = 1;
12951 /* Fall through. */
12952 case M_MULOU:
12953 do_mulou:
12954 start_noreorder ();
12955 used_at = 1;
12956 if (imm)
12957 load_register (AT, &imm_expr, dbl);
12958 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12959 op[1], imm ? AT : op[2]);
12960 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12961 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12962 if (mips_trap)
12963 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12964 else
12965 {
12966 if (mips_opts.micromips)
12967 micromips_label_expr (&label_expr);
12968 else
12969 label_expr.X_add_number = 8;
12970 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12971 macro_build (NULL, "nop", "");
12972 macro_build (NULL, "break", BRK_FMT, 6);
12973 if (mips_opts.micromips)
12974 micromips_add_label ();
12975 }
12976 end_noreorder ();
12977 break;
12978
12979 case M_DROL:
12980 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12981 {
12982 if (op[0] == op[1])
12983 {
12984 tempreg = AT;
12985 used_at = 1;
12986 }
12987 else
12988 tempreg = op[0];
12989 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12990 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12991 break;
12992 }
12993 used_at = 1;
12994 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12995 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12996 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12997 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12998 break;
12999
13000 case M_ROL:
13001 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13002 {
13003 if (op[0] == op[1])
13004 {
13005 tempreg = AT;
13006 used_at = 1;
13007 }
13008 else
13009 tempreg = op[0];
13010 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
13011 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
13012 break;
13013 }
13014 used_at = 1;
13015 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13016 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
13017 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
13018 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13019 break;
13020
13021 case M_DROL_I:
13022 {
13023 unsigned int rot;
13024 const char *l;
13025 const char *rr;
13026
13027 rot = imm_expr.X_add_number & 0x3f;
13028 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13029 {
13030 rot = (64 - rot) & 0x3f;
13031 if (rot >= 32)
13032 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
13033 else
13034 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
13035 break;
13036 }
13037 if (rot == 0)
13038 {
13039 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
13040 break;
13041 }
13042 l = (rot < 0x20) ? "dsll" : "dsll32";
13043 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
13044 rot &= 0x1f;
13045 used_at = 1;
13046 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
13047 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13048 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13049 }
13050 break;
13051
13052 case M_ROL_I:
13053 {
13054 unsigned int rot;
13055
13056 rot = imm_expr.X_add_number & 0x1f;
13057 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13058 {
13059 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
13060 (32 - rot) & 0x1f);
13061 break;
13062 }
13063 if (rot == 0)
13064 {
13065 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
13066 break;
13067 }
13068 used_at = 1;
13069 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
13070 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13071 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13072 }
13073 break;
13074
13075 case M_DROR:
13076 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13077 {
13078 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
13079 break;
13080 }
13081 used_at = 1;
13082 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
13083 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
13084 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
13085 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13086 break;
13087
13088 case M_ROR:
13089 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13090 {
13091 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
13092 break;
13093 }
13094 used_at = 1;
13095 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13096 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
13097 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
13098 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13099 break;
13100
13101 case M_DROR_I:
13102 {
13103 unsigned int rot;
13104 const char *l;
13105 const char *rr;
13106
13107 rot = imm_expr.X_add_number & 0x3f;
13108 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13109 {
13110 if (rot >= 32)
13111 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
13112 else
13113 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
13114 break;
13115 }
13116 if (rot == 0)
13117 {
13118 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
13119 break;
13120 }
13121 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
13122 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
13123 rot &= 0x1f;
13124 used_at = 1;
13125 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
13126 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13127 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13128 }
13129 break;
13130
13131 case M_ROR_I:
13132 {
13133 unsigned int rot;
13134
13135 rot = imm_expr.X_add_number & 0x1f;
13136 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13137 {
13138 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
13139 break;
13140 }
13141 if (rot == 0)
13142 {
13143 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
13144 break;
13145 }
13146 used_at = 1;
13147 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
13148 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13149 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13150 }
13151 break;
13152
13153 case M_SEQ:
13154 if (op[1] == 0)
13155 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
13156 else if (op[2] == 0)
13157 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13158 else
13159 {
13160 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13161 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13162 }
13163 break;
13164
13165 case M_SEQ_I:
13166 if (imm_expr.X_add_number == 0)
13167 {
13168 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13169 break;
13170 }
13171 if (op[1] == 0)
13172 {
13173 as_warn (_("instruction %s: result is always false"),
13174 ip->insn_mo->name);
13175 move_register (op[0], 0);
13176 break;
13177 }
13178 if (CPU_HAS_SEQ (mips_opts.arch)
13179 && -512 <= imm_expr.X_add_number
13180 && imm_expr.X_add_number < 512)
13181 {
13182 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
13183 (int) imm_expr.X_add_number);
13184 break;
13185 }
13186 if (imm_expr.X_add_number >= 0
13187 && imm_expr.X_add_number < 0x10000)
13188 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
13189 else if (imm_expr.X_add_number > -0x8000
13190 && imm_expr.X_add_number < 0)
13191 {
13192 imm_expr.X_add_number = -imm_expr.X_add_number;
13193 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13194 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13195 }
13196 else if (CPU_HAS_SEQ (mips_opts.arch))
13197 {
13198 used_at = 1;
13199 load_register (AT, &imm_expr, GPR_SIZE == 64);
13200 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
13201 break;
13202 }
13203 else
13204 {
13205 load_register (AT, &imm_expr, GPR_SIZE == 64);
13206 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13207 used_at = 1;
13208 }
13209 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13210 break;
13211
13212 case M_SGE: /* X >= Y <==> not (X < Y) */
13213 s = "slt";
13214 goto sge;
13215 case M_SGEU:
13216 s = "sltu";
13217 sge:
13218 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13219 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13220 break;
13221
13222 case M_SGE_I: /* X >= I <==> not (X < I) */
13223 case M_SGEU_I:
13224 if (imm_expr.X_add_number >= -0x8000
13225 && imm_expr.X_add_number < 0x8000)
13226 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13227 op[0], op[1], BFD_RELOC_LO16);
13228 else
13229 {
13230 load_register (AT, &imm_expr, GPR_SIZE == 64);
13231 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
13232 op[0], op[1], AT);
13233 used_at = 1;
13234 }
13235 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13236 break;
13237
13238 case M_SGT: /* X > Y <==> Y < X */
13239 s = "slt";
13240 goto sgt;
13241 case M_SGTU:
13242 s = "sltu";
13243 sgt:
13244 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13245 break;
13246
13247 case M_SGT_I: /* X > I <==> I < X */
13248 s = "slt";
13249 goto sgti;
13250 case M_SGTU_I:
13251 s = "sltu";
13252 sgti:
13253 used_at = 1;
13254 load_register (AT, &imm_expr, GPR_SIZE == 64);
13255 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13256 break;
13257
13258 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
13259 s = "slt";
13260 goto sle;
13261 case M_SLEU:
13262 s = "sltu";
13263 sle:
13264 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13265 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13266 break;
13267
13268 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
13269 s = "slt";
13270 goto slei;
13271 case M_SLEU_I:
13272 s = "sltu";
13273 slei:
13274 used_at = 1;
13275 load_register (AT, &imm_expr, GPR_SIZE == 64);
13276 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13277 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13278 break;
13279
13280 case M_SLT_I:
13281 if (imm_expr.X_add_number >= -0x8000
13282 && imm_expr.X_add_number < 0x8000)
13283 {
13284 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13285 BFD_RELOC_LO16);
13286 break;
13287 }
13288 used_at = 1;
13289 load_register (AT, &imm_expr, GPR_SIZE == 64);
13290 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
13291 break;
13292
13293 case M_SLTU_I:
13294 if (imm_expr.X_add_number >= -0x8000
13295 && imm_expr.X_add_number < 0x8000)
13296 {
13297 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
13298 BFD_RELOC_LO16);
13299 break;
13300 }
13301 used_at = 1;
13302 load_register (AT, &imm_expr, GPR_SIZE == 64);
13303 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
13304 break;
13305
13306 case M_SNE:
13307 if (op[1] == 0)
13308 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13309 else if (op[2] == 0)
13310 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13311 else
13312 {
13313 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13314 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13315 }
13316 break;
13317
13318 case M_SNE_I:
13319 if (imm_expr.X_add_number == 0)
13320 {
13321 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13322 break;
13323 }
13324 if (op[1] == 0)
13325 {
13326 as_warn (_("instruction %s: result is always true"),
13327 ip->insn_mo->name);
13328 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13329 op[0], 0, BFD_RELOC_LO16);
13330 break;
13331 }
13332 if (CPU_HAS_SEQ (mips_opts.arch)
13333 && -512 <= imm_expr.X_add_number
13334 && imm_expr.X_add_number < 512)
13335 {
13336 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13337 (int) imm_expr.X_add_number);
13338 break;
13339 }
13340 if (imm_expr.X_add_number >= 0
13341 && imm_expr.X_add_number < 0x10000)
13342 {
13343 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13344 BFD_RELOC_LO16);
13345 }
13346 else if (imm_expr.X_add_number > -0x8000
13347 && imm_expr.X_add_number < 0)
13348 {
13349 imm_expr.X_add_number = -imm_expr.X_add_number;
13350 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13351 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13352 }
13353 else if (CPU_HAS_SEQ (mips_opts.arch))
13354 {
13355 used_at = 1;
13356 load_register (AT, &imm_expr, GPR_SIZE == 64);
13357 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13358 break;
13359 }
13360 else
13361 {
13362 load_register (AT, &imm_expr, GPR_SIZE == 64);
13363 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13364 used_at = 1;
13365 }
13366 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13367 break;
13368
13369 case M_SUB_I:
13370 s = "addi";
13371 s2 = "sub";
13372 goto do_subi;
13373 case M_SUBU_I:
13374 s = "addiu";
13375 s2 = "subu";
13376 goto do_subi;
13377 case M_DSUB_I:
13378 dbl = 1;
13379 s = "daddi";
13380 s2 = "dsub";
13381 if (!mips_opts.micromips)
13382 goto do_subi;
13383 if (imm_expr.X_add_number > -0x200
13384 && imm_expr.X_add_number <= 0x200)
13385 {
13386 macro_build (NULL, s, "t,r,.", op[0], op[1],
13387 (int) -imm_expr.X_add_number);
13388 break;
13389 }
13390 goto do_subi_i;
13391 case M_DSUBU_I:
13392 dbl = 1;
13393 s = "daddiu";
13394 s2 = "dsubu";
13395 do_subi:
13396 if (imm_expr.X_add_number > -0x8000
13397 && imm_expr.X_add_number <= 0x8000)
13398 {
13399 imm_expr.X_add_number = -imm_expr.X_add_number;
13400 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13401 break;
13402 }
13403 do_subi_i:
13404 used_at = 1;
13405 load_register (AT, &imm_expr, dbl);
13406 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13407 break;
13408
13409 case M_TEQ_I:
13410 s = "teq";
13411 goto trap;
13412 case M_TGE_I:
13413 s = "tge";
13414 goto trap;
13415 case M_TGEU_I:
13416 s = "tgeu";
13417 goto trap;
13418 case M_TLT_I:
13419 s = "tlt";
13420 goto trap;
13421 case M_TLTU_I:
13422 s = "tltu";
13423 goto trap;
13424 case M_TNE_I:
13425 s = "tne";
13426 trap:
13427 used_at = 1;
13428 load_register (AT, &imm_expr, GPR_SIZE == 64);
13429 macro_build (NULL, s, "s,t", op[0], AT);
13430 break;
13431
13432 case M_TRUNCWS:
13433 case M_TRUNCWD:
13434 gas_assert (!mips_opts.micromips);
13435 gas_assert (mips_opts.isa == ISA_MIPS1);
13436 used_at = 1;
13437
13438 /*
13439 * Is the double cfc1 instruction a bug in the mips assembler;
13440 * or is there a reason for it?
13441 */
13442 start_noreorder ();
13443 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13444 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13445 macro_build (NULL, "nop", "");
13446 expr1.X_add_number = 3;
13447 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13448 expr1.X_add_number = 2;
13449 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13450 macro_build (NULL, "ctc1", "t,G", AT, RA);
13451 macro_build (NULL, "nop", "");
13452 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13453 op[0], op[1]);
13454 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13455 macro_build (NULL, "nop", "");
13456 end_noreorder ();
13457 break;
13458
13459 case M_ULH_AB:
13460 s = "lb";
13461 s2 = "lbu";
13462 off = 1;
13463 goto uld_st;
13464 case M_ULHU_AB:
13465 s = "lbu";
13466 s2 = "lbu";
13467 off = 1;
13468 goto uld_st;
13469 case M_ULW_AB:
13470 s = "lwl";
13471 s2 = "lwr";
13472 offbits = (mips_opts.micromips ? 12 : 16);
13473 off = 3;
13474 goto uld_st;
13475 case M_ULD_AB:
13476 s = "ldl";
13477 s2 = "ldr";
13478 offbits = (mips_opts.micromips ? 12 : 16);
13479 off = 7;
13480 goto uld_st;
13481 case M_USH_AB:
13482 s = "sb";
13483 s2 = "sb";
13484 off = 1;
13485 ust = 1;
13486 goto uld_st;
13487 case M_USW_AB:
13488 s = "swl";
13489 s2 = "swr";
13490 offbits = (mips_opts.micromips ? 12 : 16);
13491 off = 3;
13492 ust = 1;
13493 goto uld_st;
13494 case M_USD_AB:
13495 s = "sdl";
13496 s2 = "sdr";
13497 offbits = (mips_opts.micromips ? 12 : 16);
13498 off = 7;
13499 ust = 1;
13500
13501 uld_st:
13502 breg = op[2];
13503 large_offset = !small_offset_p (off, align, offbits);
13504 ep = &offset_expr;
13505 expr1.X_add_number = 0;
13506 if (large_offset)
13507 {
13508 used_at = 1;
13509 tempreg = AT;
13510 if (small_offset_p (0, align, 16))
13511 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13512 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13513 else
13514 {
13515 load_address (tempreg, ep, &used_at);
13516 if (breg != 0)
13517 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13518 tempreg, tempreg, breg);
13519 }
13520 offset_reloc[0] = BFD_RELOC_LO16;
13521 offset_reloc[1] = BFD_RELOC_UNUSED;
13522 offset_reloc[2] = BFD_RELOC_UNUSED;
13523 breg = tempreg;
13524 tempreg = op[0];
13525 ep = &expr1;
13526 }
13527 else if (!ust && op[0] == breg)
13528 {
13529 used_at = 1;
13530 tempreg = AT;
13531 }
13532 else
13533 tempreg = op[0];
13534
13535 if (off == 1)
13536 goto ulh_sh;
13537
13538 if (!target_big_endian)
13539 ep->X_add_number += off;
13540 if (offbits == 12)
13541 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13542 else
13543 macro_build (ep, s, "t,o(b)", tempreg, -1,
13544 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13545
13546 if (!target_big_endian)
13547 ep->X_add_number -= off;
13548 else
13549 ep->X_add_number += off;
13550 if (offbits == 12)
13551 macro_build (NULL, s2, "t,~(b)",
13552 tempreg, (int) ep->X_add_number, breg);
13553 else
13554 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13555 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13556
13557 /* If necessary, move the result in tempreg to the final destination. */
13558 if (!ust && op[0] != tempreg)
13559 {
13560 /* Protect second load's delay slot. */
13561 load_delay_nop ();
13562 move_register (op[0], tempreg);
13563 }
13564 break;
13565
13566 ulh_sh:
13567 used_at = 1;
13568 if (target_big_endian == ust)
13569 ep->X_add_number += off;
13570 tempreg = ust || large_offset ? op[0] : AT;
13571 macro_build (ep, s, "t,o(b)", tempreg, -1,
13572 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13573
13574 /* For halfword transfers we need a temporary register to shuffle
13575 bytes. Unfortunately for M_USH_A we have none available before
13576 the next store as AT holds the base address. We deal with this
13577 case by clobbering TREG and then restoring it as with ULH. */
13578 tempreg = ust == large_offset ? op[0] : AT;
13579 if (ust)
13580 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13581
13582 if (target_big_endian == ust)
13583 ep->X_add_number -= off;
13584 else
13585 ep->X_add_number += off;
13586 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13587 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13588
13589 /* For M_USH_A re-retrieve the LSB. */
13590 if (ust && large_offset)
13591 {
13592 if (target_big_endian)
13593 ep->X_add_number += off;
13594 else
13595 ep->X_add_number -= off;
13596 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13597 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13598 }
13599 /* For ULH and M_USH_A OR the LSB in. */
13600 if (!ust || large_offset)
13601 {
13602 tempreg = !large_offset ? AT : op[0];
13603 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13604 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13605 }
13606 break;
13607
13608 default:
13609 /* FIXME: Check if this is one of the itbl macros, since they
13610 are added dynamically. */
13611 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13612 break;
13613 }
13614 if (!mips_opts.at && used_at)
13615 as_bad (_("macro used $at after \".set noat\""));
13616 }
13617
13618 /* Implement macros in mips16 mode. */
13619
13620 static void
13621 mips16_macro (struct mips_cl_insn *ip)
13622 {
13623 const struct mips_operand_array *operands;
13624 int mask;
13625 int tmp;
13626 expressionS expr1;
13627 int dbl;
13628 const char *s, *s2, *s3;
13629 unsigned int op[MAX_OPERANDS];
13630 unsigned int i;
13631
13632 mask = ip->insn_mo->mask;
13633
13634 operands = insn_operands (ip);
13635 for (i = 0; i < MAX_OPERANDS; i++)
13636 if (operands->operand[i])
13637 op[i] = insn_extract_operand (ip, operands->operand[i]);
13638 else
13639 op[i] = -1;
13640
13641 expr1.X_op = O_constant;
13642 expr1.X_op_symbol = NULL;
13643 expr1.X_add_symbol = NULL;
13644 expr1.X_add_number = 1;
13645
13646 dbl = 0;
13647
13648 switch (mask)
13649 {
13650 default:
13651 abort ();
13652
13653 case M_DDIV_3:
13654 dbl = 1;
13655 /* Fall through. */
13656 case M_DIV_3:
13657 s = "mflo";
13658 goto do_div3;
13659 case M_DREM_3:
13660 dbl = 1;
13661 /* Fall through. */
13662 case M_REM_3:
13663 s = "mfhi";
13664 do_div3:
13665 start_noreorder ();
13666 macro_build (NULL, dbl ? "ddiv" : "div", ".,x,y", op[1], op[2]);
13667 expr1.X_add_number = 2;
13668 macro_build (&expr1, "bnez", "x,p", op[2]);
13669 macro_build (NULL, "break", "6", 7);
13670
13671 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13672 since that causes an overflow. We should do that as well,
13673 but I don't see how to do the comparisons without a temporary
13674 register. */
13675 end_noreorder ();
13676 macro_build (NULL, s, "x", op[0]);
13677 break;
13678
13679 case M_DIVU_3:
13680 s = "divu";
13681 s2 = "mflo";
13682 goto do_divu3;
13683 case M_REMU_3:
13684 s = "divu";
13685 s2 = "mfhi";
13686 goto do_divu3;
13687 case M_DDIVU_3:
13688 s = "ddivu";
13689 s2 = "mflo";
13690 goto do_divu3;
13691 case M_DREMU_3:
13692 s = "ddivu";
13693 s2 = "mfhi";
13694 do_divu3:
13695 start_noreorder ();
13696 macro_build (NULL, s, ".,x,y", op[1], op[2]);
13697 expr1.X_add_number = 2;
13698 macro_build (&expr1, "bnez", "x,p", op[2]);
13699 macro_build (NULL, "break", "6", 7);
13700 end_noreorder ();
13701 macro_build (NULL, s2, "x", op[0]);
13702 break;
13703
13704 case M_DMUL:
13705 dbl = 1;
13706 /* Fall through. */
13707 case M_MUL:
13708 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13709 macro_build (NULL, "mflo", "x", op[0]);
13710 break;
13711
13712 case M_DSUBU_I:
13713 dbl = 1;
13714 goto do_subu;
13715 case M_SUBU_I:
13716 do_subu:
13717 imm_expr.X_add_number = -imm_expr.X_add_number;
13718 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,F", op[0], op[1]);
13719 break;
13720
13721 case M_SUBU_I_2:
13722 imm_expr.X_add_number = -imm_expr.X_add_number;
13723 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13724 break;
13725
13726 case M_DSUBU_I_2:
13727 imm_expr.X_add_number = -imm_expr.X_add_number;
13728 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13729 break;
13730
13731 case M_BEQ:
13732 s = "cmp";
13733 s2 = "bteqz";
13734 goto do_branch;
13735 case M_BNE:
13736 s = "cmp";
13737 s2 = "btnez";
13738 goto do_branch;
13739 case M_BLT:
13740 s = "slt";
13741 s2 = "btnez";
13742 goto do_branch;
13743 case M_BLTU:
13744 s = "sltu";
13745 s2 = "btnez";
13746 goto do_branch;
13747 case M_BLE:
13748 s = "slt";
13749 s2 = "bteqz";
13750 goto do_reverse_branch;
13751 case M_BLEU:
13752 s = "sltu";
13753 s2 = "bteqz";
13754 goto do_reverse_branch;
13755 case M_BGE:
13756 s = "slt";
13757 s2 = "bteqz";
13758 goto do_branch;
13759 case M_BGEU:
13760 s = "sltu";
13761 s2 = "bteqz";
13762 goto do_branch;
13763 case M_BGT:
13764 s = "slt";
13765 s2 = "btnez";
13766 goto do_reverse_branch;
13767 case M_BGTU:
13768 s = "sltu";
13769 s2 = "btnez";
13770
13771 do_reverse_branch:
13772 tmp = op[1];
13773 op[1] = op[0];
13774 op[0] = tmp;
13775
13776 do_branch:
13777 macro_build (NULL, s, "x,y", op[0], op[1]);
13778 macro_build (&offset_expr, s2, "p");
13779 break;
13780
13781 case M_BEQ_I:
13782 s = "cmpi";
13783 s2 = "bteqz";
13784 s3 = "x,U";
13785 goto do_branch_i;
13786 case M_BNE_I:
13787 s = "cmpi";
13788 s2 = "btnez";
13789 s3 = "x,U";
13790 goto do_branch_i;
13791 case M_BLT_I:
13792 s = "slti";
13793 s2 = "btnez";
13794 s3 = "x,8";
13795 goto do_branch_i;
13796 case M_BLTU_I:
13797 s = "sltiu";
13798 s2 = "btnez";
13799 s3 = "x,8";
13800 goto do_branch_i;
13801 case M_BLE_I:
13802 s = "slti";
13803 s2 = "btnez";
13804 s3 = "x,8";
13805 goto do_addone_branch_i;
13806 case M_BLEU_I:
13807 s = "sltiu";
13808 s2 = "btnez";
13809 s3 = "x,8";
13810 goto do_addone_branch_i;
13811 case M_BGE_I:
13812 s = "slti";
13813 s2 = "bteqz";
13814 s3 = "x,8";
13815 goto do_branch_i;
13816 case M_BGEU_I:
13817 s = "sltiu";
13818 s2 = "bteqz";
13819 s3 = "x,8";
13820 goto do_branch_i;
13821 case M_BGT_I:
13822 s = "slti";
13823 s2 = "bteqz";
13824 s3 = "x,8";
13825 goto do_addone_branch_i;
13826 case M_BGTU_I:
13827 s = "sltiu";
13828 s2 = "bteqz";
13829 s3 = "x,8";
13830
13831 do_addone_branch_i:
13832 ++imm_expr.X_add_number;
13833
13834 do_branch_i:
13835 macro_build (&imm_expr, s, s3, op[0]);
13836 macro_build (&offset_expr, s2, "p");
13837 break;
13838
13839 case M_ABS:
13840 expr1.X_add_number = 0;
13841 macro_build (&expr1, "slti", "x,8", op[1]);
13842 if (op[0] != op[1])
13843 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13844 expr1.X_add_number = 2;
13845 macro_build (&expr1, "bteqz", "p");
13846 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13847 break;
13848 }
13849 }
13850
13851 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13852 opcode bits in *OPCODE_EXTRA. */
13853
13854 static struct mips_opcode *
13855 mips_lookup_insn (struct hash_control *hash, const char *start,
13856 ssize_t length, unsigned int *opcode_extra)
13857 {
13858 char *name, *dot, *p;
13859 unsigned int mask, suffix;
13860 ssize_t opend;
13861 struct mips_opcode *insn;
13862
13863 /* Make a copy of the instruction so that we can fiddle with it. */
13864 name = xstrndup (start, length);
13865
13866 /* Look up the instruction as-is. */
13867 insn = (struct mips_opcode *) hash_find (hash, name);
13868 if (insn)
13869 goto end;
13870
13871 dot = strchr (name, '.');
13872 if (dot && dot[1])
13873 {
13874 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13875 p = mips_parse_vu0_channels (dot + 1, &mask);
13876 if (*p == 0 && mask != 0)
13877 {
13878 *dot = 0;
13879 insn = (struct mips_opcode *) hash_find (hash, name);
13880 *dot = '.';
13881 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13882 {
13883 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13884 goto end;
13885 }
13886 }
13887 }
13888
13889 if (mips_opts.micromips)
13890 {
13891 /* See if there's an instruction size override suffix,
13892 either `16' or `32', at the end of the mnemonic proper,
13893 that defines the operation, i.e. before the first `.'
13894 character if any. Strip it and retry. */
13895 opend = dot != NULL ? dot - name : length;
13896 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13897 suffix = 2;
13898 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13899 suffix = 4;
13900 else
13901 suffix = 0;
13902 if (suffix)
13903 {
13904 memcpy (name + opend - 2, name + opend, length - opend + 1);
13905 insn = (struct mips_opcode *) hash_find (hash, name);
13906 if (insn)
13907 {
13908 forced_insn_length = suffix;
13909 goto end;
13910 }
13911 }
13912 }
13913
13914 insn = NULL;
13915 end:
13916 free (name);
13917 return insn;
13918 }
13919
13920 /* Assemble an instruction into its binary format. If the instruction
13921 is a macro, set imm_expr and offset_expr to the values associated
13922 with "I" and "A" operands respectively. Otherwise store the value
13923 of the relocatable field (if any) in offset_expr. In both cases
13924 set offset_reloc to the relocation operators applied to offset_expr. */
13925
13926 static void
13927 mips_ip (char *str, struct mips_cl_insn *insn)
13928 {
13929 const struct mips_opcode *first, *past;
13930 struct hash_control *hash;
13931 char format;
13932 size_t end;
13933 struct mips_operand_token *tokens;
13934 unsigned int opcode_extra;
13935
13936 if (mips_opts.micromips)
13937 {
13938 hash = micromips_op_hash;
13939 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13940 }
13941 else
13942 {
13943 hash = op_hash;
13944 past = &mips_opcodes[NUMOPCODES];
13945 }
13946 forced_insn_length = 0;
13947 opcode_extra = 0;
13948
13949 /* We first try to match an instruction up to a space or to the end. */
13950 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13951 continue;
13952
13953 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13954 if (first == NULL)
13955 {
13956 set_insn_error (0, _("unrecognized opcode"));
13957 return;
13958 }
13959
13960 if (strcmp (first->name, "li.s") == 0)
13961 format = 'f';
13962 else if (strcmp (first->name, "li.d") == 0)
13963 format = 'd';
13964 else
13965 format = 0;
13966 tokens = mips_parse_arguments (str + end, format);
13967 if (!tokens)
13968 return;
13969
13970 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13971 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13972 set_insn_error (0, _("invalid operands"));
13973
13974 obstack_free (&mips_operand_tokens, tokens);
13975 }
13976
13977 /* As for mips_ip, but used when assembling MIPS16 code.
13978 Also set forced_insn_length to the resulting instruction size in
13979 bytes if the user explicitly requested a small or extended instruction. */
13980
13981 static void
13982 mips16_ip (char *str, struct mips_cl_insn *insn)
13983 {
13984 char *end, *s, c;
13985 struct mips_opcode *first;
13986 struct mips_operand_token *tokens;
13987 unsigned int l;
13988
13989 for (s = str; *s != '\0' && *s != '.' && *s != ' '; ++s)
13990 ;
13991 end = s;
13992 c = *end;
13993
13994 l = 0;
13995 switch (c)
13996 {
13997 case '\0':
13998 break;
13999
14000 case ' ':
14001 s++;
14002 break;
14003
14004 case '.':
14005 s++;
14006 if (*s == 't')
14007 {
14008 l = 2;
14009 s++;
14010 }
14011 else if (*s == 'e')
14012 {
14013 l = 4;
14014 s++;
14015 }
14016 if (*s == '\0')
14017 break;
14018 else if (*s++ == ' ')
14019 break;
14020 set_insn_error (0, _("unrecognized opcode"));
14021 return;
14022 }
14023 forced_insn_length = l;
14024
14025 *end = 0;
14026 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
14027 *end = c;
14028
14029 if (!first)
14030 {
14031 set_insn_error (0, _("unrecognized opcode"));
14032 return;
14033 }
14034
14035 tokens = mips_parse_arguments (s, 0);
14036 if (!tokens)
14037 return;
14038
14039 if (!match_mips16_insns (insn, first, tokens))
14040 set_insn_error (0, _("invalid operands"));
14041
14042 obstack_free (&mips_operand_tokens, tokens);
14043 }
14044
14045 /* Marshal immediate value VAL for an extended MIPS16 instruction.
14046 NBITS is the number of significant bits in VAL. */
14047
14048 static unsigned long
14049 mips16_immed_extend (offsetT val, unsigned int nbits)
14050 {
14051 int extval;
14052
14053 extval = 0;
14054 val &= (1U << nbits) - 1;
14055 if (nbits == 16 || nbits == 9)
14056 {
14057 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
14058 val &= 0x1f;
14059 }
14060 else if (nbits == 15)
14061 {
14062 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
14063 val &= 0xf;
14064 }
14065 else if (nbits == 6)
14066 {
14067 extval = ((val & 0x1f) << 6) | (val & 0x20);
14068 val = 0;
14069 }
14070 return (extval << 16) | val;
14071 }
14072
14073 /* Like decode_mips16_operand, but require the operand to be defined and
14074 require it to be an integer. */
14075
14076 static const struct mips_int_operand *
14077 mips16_immed_operand (int type, bfd_boolean extended_p)
14078 {
14079 const struct mips_operand *operand;
14080
14081 operand = decode_mips16_operand (type, extended_p);
14082 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
14083 abort ();
14084 return (const struct mips_int_operand *) operand;
14085 }
14086
14087 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
14088
14089 static bfd_boolean
14090 mips16_immed_in_range_p (const struct mips_int_operand *operand,
14091 bfd_reloc_code_real_type reloc, offsetT sval)
14092 {
14093 int min_val, max_val;
14094
14095 min_val = mips_int_operand_min (operand);
14096 max_val = mips_int_operand_max (operand);
14097 if (reloc != BFD_RELOC_UNUSED)
14098 {
14099 if (min_val < 0)
14100 sval = SEXT_16BIT (sval);
14101 else
14102 sval &= 0xffff;
14103 }
14104
14105 return (sval >= min_val
14106 && sval <= max_val
14107 && (sval & ((1 << operand->shift) - 1)) == 0);
14108 }
14109
14110 /* Install immediate value VAL into MIPS16 instruction *INSN,
14111 extending it if necessary. The instruction in *INSN may
14112 already be extended.
14113
14114 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
14115 if none. In the former case, VAL is a 16-bit number with no
14116 defined signedness.
14117
14118 TYPE is the type of the immediate field. USER_INSN_LENGTH
14119 is the length that the user requested, or 0 if none. */
14120
14121 static void
14122 mips16_immed (const char *file, unsigned int line, int type,
14123 bfd_reloc_code_real_type reloc, offsetT val,
14124 unsigned int user_insn_length, unsigned long *insn)
14125 {
14126 const struct mips_int_operand *operand;
14127 unsigned int uval, length;
14128
14129 operand = mips16_immed_operand (type, FALSE);
14130 if (!mips16_immed_in_range_p (operand, reloc, val))
14131 {
14132 /* We need an extended instruction. */
14133 if (user_insn_length == 2)
14134 as_bad_where (file, line, _("invalid unextended operand value"));
14135 else
14136 *insn |= MIPS16_EXTEND;
14137 }
14138 else if (user_insn_length == 4)
14139 {
14140 /* The operand doesn't force an unextended instruction to be extended.
14141 Warn if the user wanted an extended instruction anyway. */
14142 *insn |= MIPS16_EXTEND;
14143 as_warn_where (file, line,
14144 _("extended operand requested but not required"));
14145 }
14146
14147 length = mips16_opcode_length (*insn);
14148 if (length == 4)
14149 {
14150 operand = mips16_immed_operand (type, TRUE);
14151 if (!mips16_immed_in_range_p (operand, reloc, val))
14152 as_bad_where (file, line,
14153 _("operand value out of range for instruction"));
14154 }
14155 uval = ((unsigned int) val >> operand->shift) - operand->bias;
14156 if (length == 2 || operand->root.lsb != 0)
14157 *insn = mips_insert_operand (&operand->root, *insn, uval);
14158 else
14159 *insn |= mips16_immed_extend (uval, operand->root.size);
14160 }
14161 \f
14162 struct percent_op_match
14163 {
14164 const char *str;
14165 bfd_reloc_code_real_type reloc;
14166 };
14167
14168 static const struct percent_op_match mips_percent_op[] =
14169 {
14170 {"%lo", BFD_RELOC_LO16},
14171 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14172 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14173 {"%call16", BFD_RELOC_MIPS_CALL16},
14174 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14175 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14176 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14177 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14178 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14179 {"%got", BFD_RELOC_MIPS_GOT16},
14180 {"%gp_rel", BFD_RELOC_GPREL16},
14181 {"%gprel", BFD_RELOC_GPREL16},
14182 {"%half", BFD_RELOC_16},
14183 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14184 {"%higher", BFD_RELOC_MIPS_HIGHER},
14185 {"%neg", BFD_RELOC_MIPS_SUB},
14186 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14187 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14188 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14189 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14190 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14191 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14192 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
14193 {"%hi", BFD_RELOC_HI16_S},
14194 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14195 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
14196 };
14197
14198 static const struct percent_op_match mips16_percent_op[] =
14199 {
14200 {"%lo", BFD_RELOC_MIPS16_LO16},
14201 {"%gp_rel", BFD_RELOC_MIPS16_GPREL},
14202 {"%gprel", BFD_RELOC_MIPS16_GPREL},
14203 {"%got", BFD_RELOC_MIPS16_GOT16},
14204 {"%call16", BFD_RELOC_MIPS16_CALL16},
14205 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14206 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14207 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14208 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14209 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14210 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14211 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14212 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
14213 };
14214
14215
14216 /* Return true if *STR points to a relocation operator. When returning true,
14217 move *STR over the operator and store its relocation code in *RELOC.
14218 Leave both *STR and *RELOC alone when returning false. */
14219
14220 static bfd_boolean
14221 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
14222 {
14223 const struct percent_op_match *percent_op;
14224 size_t limit, i;
14225
14226 if (mips_opts.mips16)
14227 {
14228 percent_op = mips16_percent_op;
14229 limit = ARRAY_SIZE (mips16_percent_op);
14230 }
14231 else
14232 {
14233 percent_op = mips_percent_op;
14234 limit = ARRAY_SIZE (mips_percent_op);
14235 }
14236
14237 for (i = 0; i < limit; i++)
14238 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
14239 {
14240 int len = strlen (percent_op[i].str);
14241
14242 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14243 continue;
14244
14245 *str += strlen (percent_op[i].str);
14246 *reloc = percent_op[i].reloc;
14247
14248 /* Check whether the output BFD supports this relocation.
14249 If not, issue an error and fall back on something safe. */
14250 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
14251 {
14252 as_bad (_("relocation %s isn't supported by the current ABI"),
14253 percent_op[i].str);
14254 *reloc = BFD_RELOC_UNUSED;
14255 }
14256 return TRUE;
14257 }
14258 return FALSE;
14259 }
14260
14261
14262 /* Parse string STR as a 16-bit relocatable operand. Store the
14263 expression in *EP and the relocations in the array starting
14264 at RELOC. Return the number of relocation operators used.
14265
14266 On exit, EXPR_END points to the first character after the expression. */
14267
14268 static size_t
14269 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14270 char *str)
14271 {
14272 bfd_reloc_code_real_type reversed_reloc[3];
14273 size_t reloc_index, i;
14274 int crux_depth, str_depth;
14275 char *crux;
14276
14277 /* Search for the start of the main expression, recoding relocations
14278 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14279 of the main expression and with CRUX_DEPTH containing the number
14280 of open brackets at that point. */
14281 reloc_index = -1;
14282 str_depth = 0;
14283 do
14284 {
14285 reloc_index++;
14286 crux = str;
14287 crux_depth = str_depth;
14288
14289 /* Skip over whitespace and brackets, keeping count of the number
14290 of brackets. */
14291 while (*str == ' ' || *str == '\t' || *str == '(')
14292 if (*str++ == '(')
14293 str_depth++;
14294 }
14295 while (*str == '%'
14296 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14297 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14298
14299 my_getExpression (ep, crux);
14300 str = expr_end;
14301
14302 /* Match every open bracket. */
14303 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14304 if (*str++ == ')')
14305 crux_depth--;
14306
14307 if (crux_depth > 0)
14308 as_bad (_("unclosed '('"));
14309
14310 expr_end = str;
14311
14312 if (reloc_index != 0)
14313 {
14314 prev_reloc_op_frag = frag_now;
14315 for (i = 0; i < reloc_index; i++)
14316 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14317 }
14318
14319 return reloc_index;
14320 }
14321
14322 static void
14323 my_getExpression (expressionS *ep, char *str)
14324 {
14325 char *save_in;
14326
14327 save_in = input_line_pointer;
14328 input_line_pointer = str;
14329 expression (ep);
14330 expr_end = input_line_pointer;
14331 input_line_pointer = save_in;
14332 }
14333
14334 const char *
14335 md_atof (int type, char *litP, int *sizeP)
14336 {
14337 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14338 }
14339
14340 void
14341 md_number_to_chars (char *buf, valueT val, int n)
14342 {
14343 if (target_big_endian)
14344 number_to_chars_bigendian (buf, val, n);
14345 else
14346 number_to_chars_littleendian (buf, val, n);
14347 }
14348 \f
14349 static int support_64bit_objects(void)
14350 {
14351 const char **list, **l;
14352 int yes;
14353
14354 list = bfd_target_list ();
14355 for (l = list; *l != NULL; l++)
14356 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14357 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14358 break;
14359 yes = (*l != NULL);
14360 free (list);
14361 return yes;
14362 }
14363
14364 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14365 NEW_VALUE. Warn if another value was already specified. Note:
14366 we have to defer parsing the -march and -mtune arguments in order
14367 to handle 'from-abi' correctly, since the ABI might be specified
14368 in a later argument. */
14369
14370 static void
14371 mips_set_option_string (const char **string_ptr, const char *new_value)
14372 {
14373 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14374 as_warn (_("a different %s was already specified, is now %s"),
14375 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14376 new_value);
14377
14378 *string_ptr = new_value;
14379 }
14380
14381 int
14382 md_parse_option (int c, const char *arg)
14383 {
14384 unsigned int i;
14385
14386 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14387 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14388 {
14389 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14390 c == mips_ases[i].option_on);
14391 return 1;
14392 }
14393
14394 switch (c)
14395 {
14396 case OPTION_CONSTRUCT_FLOATS:
14397 mips_disable_float_construction = 0;
14398 break;
14399
14400 case OPTION_NO_CONSTRUCT_FLOATS:
14401 mips_disable_float_construction = 1;
14402 break;
14403
14404 case OPTION_TRAP:
14405 mips_trap = 1;
14406 break;
14407
14408 case OPTION_BREAK:
14409 mips_trap = 0;
14410 break;
14411
14412 case OPTION_EB:
14413 target_big_endian = 1;
14414 break;
14415
14416 case OPTION_EL:
14417 target_big_endian = 0;
14418 break;
14419
14420 case 'O':
14421 if (arg == NULL)
14422 mips_optimize = 1;
14423 else if (arg[0] == '0')
14424 mips_optimize = 0;
14425 else if (arg[0] == '1')
14426 mips_optimize = 1;
14427 else
14428 mips_optimize = 2;
14429 break;
14430
14431 case 'g':
14432 if (arg == NULL)
14433 mips_debug = 2;
14434 else
14435 mips_debug = atoi (arg);
14436 break;
14437
14438 case OPTION_MIPS1:
14439 file_mips_opts.isa = ISA_MIPS1;
14440 break;
14441
14442 case OPTION_MIPS2:
14443 file_mips_opts.isa = ISA_MIPS2;
14444 break;
14445
14446 case OPTION_MIPS3:
14447 file_mips_opts.isa = ISA_MIPS3;
14448 break;
14449
14450 case OPTION_MIPS4:
14451 file_mips_opts.isa = ISA_MIPS4;
14452 break;
14453
14454 case OPTION_MIPS5:
14455 file_mips_opts.isa = ISA_MIPS5;
14456 break;
14457
14458 case OPTION_MIPS32:
14459 file_mips_opts.isa = ISA_MIPS32;
14460 break;
14461
14462 case OPTION_MIPS32R2:
14463 file_mips_opts.isa = ISA_MIPS32R2;
14464 break;
14465
14466 case OPTION_MIPS32R3:
14467 file_mips_opts.isa = ISA_MIPS32R3;
14468 break;
14469
14470 case OPTION_MIPS32R5:
14471 file_mips_opts.isa = ISA_MIPS32R5;
14472 break;
14473
14474 case OPTION_MIPS32R6:
14475 file_mips_opts.isa = ISA_MIPS32R6;
14476 break;
14477
14478 case OPTION_MIPS64R2:
14479 file_mips_opts.isa = ISA_MIPS64R2;
14480 break;
14481
14482 case OPTION_MIPS64R3:
14483 file_mips_opts.isa = ISA_MIPS64R3;
14484 break;
14485
14486 case OPTION_MIPS64R5:
14487 file_mips_opts.isa = ISA_MIPS64R5;
14488 break;
14489
14490 case OPTION_MIPS64R6:
14491 file_mips_opts.isa = ISA_MIPS64R6;
14492 break;
14493
14494 case OPTION_MIPS64:
14495 file_mips_opts.isa = ISA_MIPS64;
14496 break;
14497
14498 case OPTION_MTUNE:
14499 mips_set_option_string (&mips_tune_string, arg);
14500 break;
14501
14502 case OPTION_MARCH:
14503 mips_set_option_string (&mips_arch_string, arg);
14504 break;
14505
14506 case OPTION_M4650:
14507 mips_set_option_string (&mips_arch_string, "4650");
14508 mips_set_option_string (&mips_tune_string, "4650");
14509 break;
14510
14511 case OPTION_NO_M4650:
14512 break;
14513
14514 case OPTION_M4010:
14515 mips_set_option_string (&mips_arch_string, "4010");
14516 mips_set_option_string (&mips_tune_string, "4010");
14517 break;
14518
14519 case OPTION_NO_M4010:
14520 break;
14521
14522 case OPTION_M4100:
14523 mips_set_option_string (&mips_arch_string, "4100");
14524 mips_set_option_string (&mips_tune_string, "4100");
14525 break;
14526
14527 case OPTION_NO_M4100:
14528 break;
14529
14530 case OPTION_M3900:
14531 mips_set_option_string (&mips_arch_string, "3900");
14532 mips_set_option_string (&mips_tune_string, "3900");
14533 break;
14534
14535 case OPTION_NO_M3900:
14536 break;
14537
14538 case OPTION_MICROMIPS:
14539 if (file_mips_opts.mips16 == 1)
14540 {
14541 as_bad (_("-mmicromips cannot be used with -mips16"));
14542 return 0;
14543 }
14544 file_mips_opts.micromips = 1;
14545 mips_no_prev_insn ();
14546 break;
14547
14548 case OPTION_NO_MICROMIPS:
14549 file_mips_opts.micromips = 0;
14550 mips_no_prev_insn ();
14551 break;
14552
14553 case OPTION_MIPS16:
14554 if (file_mips_opts.micromips == 1)
14555 {
14556 as_bad (_("-mips16 cannot be used with -micromips"));
14557 return 0;
14558 }
14559 file_mips_opts.mips16 = 1;
14560 mips_no_prev_insn ();
14561 break;
14562
14563 case OPTION_NO_MIPS16:
14564 file_mips_opts.mips16 = 0;
14565 mips_no_prev_insn ();
14566 break;
14567
14568 case OPTION_FIX_24K:
14569 mips_fix_24k = 1;
14570 break;
14571
14572 case OPTION_NO_FIX_24K:
14573 mips_fix_24k = 0;
14574 break;
14575
14576 case OPTION_FIX_RM7000:
14577 mips_fix_rm7000 = 1;
14578 break;
14579
14580 case OPTION_NO_FIX_RM7000:
14581 mips_fix_rm7000 = 0;
14582 break;
14583
14584 case OPTION_FIX_LOONGSON2F_JUMP:
14585 mips_fix_loongson2f_jump = TRUE;
14586 break;
14587
14588 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14589 mips_fix_loongson2f_jump = FALSE;
14590 break;
14591
14592 case OPTION_FIX_LOONGSON2F_NOP:
14593 mips_fix_loongson2f_nop = TRUE;
14594 break;
14595
14596 case OPTION_NO_FIX_LOONGSON2F_NOP:
14597 mips_fix_loongson2f_nop = FALSE;
14598 break;
14599
14600 case OPTION_FIX_VR4120:
14601 mips_fix_vr4120 = 1;
14602 break;
14603
14604 case OPTION_NO_FIX_VR4120:
14605 mips_fix_vr4120 = 0;
14606 break;
14607
14608 case OPTION_FIX_VR4130:
14609 mips_fix_vr4130 = 1;
14610 break;
14611
14612 case OPTION_NO_FIX_VR4130:
14613 mips_fix_vr4130 = 0;
14614 break;
14615
14616 case OPTION_FIX_CN63XXP1:
14617 mips_fix_cn63xxp1 = TRUE;
14618 break;
14619
14620 case OPTION_NO_FIX_CN63XXP1:
14621 mips_fix_cn63xxp1 = FALSE;
14622 break;
14623
14624 case OPTION_RELAX_BRANCH:
14625 mips_relax_branch = 1;
14626 break;
14627
14628 case OPTION_NO_RELAX_BRANCH:
14629 mips_relax_branch = 0;
14630 break;
14631
14632 case OPTION_IGNORE_BRANCH_ISA:
14633 mips_ignore_branch_isa = TRUE;
14634 break;
14635
14636 case OPTION_NO_IGNORE_BRANCH_ISA:
14637 mips_ignore_branch_isa = FALSE;
14638 break;
14639
14640 case OPTION_INSN32:
14641 file_mips_opts.insn32 = TRUE;
14642 break;
14643
14644 case OPTION_NO_INSN32:
14645 file_mips_opts.insn32 = FALSE;
14646 break;
14647
14648 case OPTION_MSHARED:
14649 mips_in_shared = TRUE;
14650 break;
14651
14652 case OPTION_MNO_SHARED:
14653 mips_in_shared = FALSE;
14654 break;
14655
14656 case OPTION_MSYM32:
14657 file_mips_opts.sym32 = TRUE;
14658 break;
14659
14660 case OPTION_MNO_SYM32:
14661 file_mips_opts.sym32 = FALSE;
14662 break;
14663
14664 /* When generating ELF code, we permit -KPIC and -call_shared to
14665 select SVR4_PIC, and -non_shared to select no PIC. This is
14666 intended to be compatible with Irix 5. */
14667 case OPTION_CALL_SHARED:
14668 mips_pic = SVR4_PIC;
14669 mips_abicalls = TRUE;
14670 break;
14671
14672 case OPTION_CALL_NONPIC:
14673 mips_pic = NO_PIC;
14674 mips_abicalls = TRUE;
14675 break;
14676
14677 case OPTION_NON_SHARED:
14678 mips_pic = NO_PIC;
14679 mips_abicalls = FALSE;
14680 break;
14681
14682 /* The -xgot option tells the assembler to use 32 bit offsets
14683 when accessing the got in SVR4_PIC mode. It is for Irix
14684 compatibility. */
14685 case OPTION_XGOT:
14686 mips_big_got = 1;
14687 break;
14688
14689 case 'G':
14690 g_switch_value = atoi (arg);
14691 g_switch_seen = 1;
14692 break;
14693
14694 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14695 and -mabi=64. */
14696 case OPTION_32:
14697 mips_abi = O32_ABI;
14698 break;
14699
14700 case OPTION_N32:
14701 mips_abi = N32_ABI;
14702 break;
14703
14704 case OPTION_64:
14705 mips_abi = N64_ABI;
14706 if (!support_64bit_objects())
14707 as_fatal (_("no compiled in support for 64 bit object file format"));
14708 break;
14709
14710 case OPTION_GP32:
14711 file_mips_opts.gp = 32;
14712 break;
14713
14714 case OPTION_GP64:
14715 file_mips_opts.gp = 64;
14716 break;
14717
14718 case OPTION_FP32:
14719 file_mips_opts.fp = 32;
14720 break;
14721
14722 case OPTION_FPXX:
14723 file_mips_opts.fp = 0;
14724 break;
14725
14726 case OPTION_FP64:
14727 file_mips_opts.fp = 64;
14728 break;
14729
14730 case OPTION_ODD_SPREG:
14731 file_mips_opts.oddspreg = 1;
14732 break;
14733
14734 case OPTION_NO_ODD_SPREG:
14735 file_mips_opts.oddspreg = 0;
14736 break;
14737
14738 case OPTION_SINGLE_FLOAT:
14739 file_mips_opts.single_float = 1;
14740 break;
14741
14742 case OPTION_DOUBLE_FLOAT:
14743 file_mips_opts.single_float = 0;
14744 break;
14745
14746 case OPTION_SOFT_FLOAT:
14747 file_mips_opts.soft_float = 1;
14748 break;
14749
14750 case OPTION_HARD_FLOAT:
14751 file_mips_opts.soft_float = 0;
14752 break;
14753
14754 case OPTION_MABI:
14755 if (strcmp (arg, "32") == 0)
14756 mips_abi = O32_ABI;
14757 else if (strcmp (arg, "o64") == 0)
14758 mips_abi = O64_ABI;
14759 else if (strcmp (arg, "n32") == 0)
14760 mips_abi = N32_ABI;
14761 else if (strcmp (arg, "64") == 0)
14762 {
14763 mips_abi = N64_ABI;
14764 if (! support_64bit_objects())
14765 as_fatal (_("no compiled in support for 64 bit object file "
14766 "format"));
14767 }
14768 else if (strcmp (arg, "eabi") == 0)
14769 mips_abi = EABI_ABI;
14770 else
14771 {
14772 as_fatal (_("invalid abi -mabi=%s"), arg);
14773 return 0;
14774 }
14775 break;
14776
14777 case OPTION_M7000_HILO_FIX:
14778 mips_7000_hilo_fix = TRUE;
14779 break;
14780
14781 case OPTION_MNO_7000_HILO_FIX:
14782 mips_7000_hilo_fix = FALSE;
14783 break;
14784
14785 case OPTION_MDEBUG:
14786 mips_flag_mdebug = TRUE;
14787 break;
14788
14789 case OPTION_NO_MDEBUG:
14790 mips_flag_mdebug = FALSE;
14791 break;
14792
14793 case OPTION_PDR:
14794 mips_flag_pdr = TRUE;
14795 break;
14796
14797 case OPTION_NO_PDR:
14798 mips_flag_pdr = FALSE;
14799 break;
14800
14801 case OPTION_MVXWORKS_PIC:
14802 mips_pic = VXWORKS_PIC;
14803 break;
14804
14805 case OPTION_NAN:
14806 if (strcmp (arg, "2008") == 0)
14807 mips_nan2008 = 1;
14808 else if (strcmp (arg, "legacy") == 0)
14809 mips_nan2008 = 0;
14810 else
14811 {
14812 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14813 return 0;
14814 }
14815 break;
14816
14817 default:
14818 return 0;
14819 }
14820
14821 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14822
14823 return 1;
14824 }
14825 \f
14826 /* Set up globals to tune for the ISA or processor described by INFO. */
14827
14828 static void
14829 mips_set_tune (const struct mips_cpu_info *info)
14830 {
14831 if (info != 0)
14832 mips_tune = info->cpu;
14833 }
14834
14835
14836 void
14837 mips_after_parse_args (void)
14838 {
14839 const struct mips_cpu_info *arch_info = 0;
14840 const struct mips_cpu_info *tune_info = 0;
14841
14842 /* GP relative stuff not working for PE */
14843 if (strncmp (TARGET_OS, "pe", 2) == 0)
14844 {
14845 if (g_switch_seen && g_switch_value != 0)
14846 as_bad (_("-G not supported in this configuration"));
14847 g_switch_value = 0;
14848 }
14849
14850 if (mips_abi == NO_ABI)
14851 mips_abi = MIPS_DEFAULT_ABI;
14852
14853 /* The following code determines the architecture.
14854 Similar code was added to GCC 3.3 (see override_options() in
14855 config/mips/mips.c). The GAS and GCC code should be kept in sync
14856 as much as possible. */
14857
14858 if (mips_arch_string != 0)
14859 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14860
14861 if (file_mips_opts.isa != ISA_UNKNOWN)
14862 {
14863 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14864 ISA level specified by -mipsN, while arch_info->isa contains
14865 the -march selection (if any). */
14866 if (arch_info != 0)
14867 {
14868 /* -march takes precedence over -mipsN, since it is more descriptive.
14869 There's no harm in specifying both as long as the ISA levels
14870 are the same. */
14871 if (file_mips_opts.isa != arch_info->isa)
14872 as_bad (_("-%s conflicts with the other architecture options,"
14873 " which imply -%s"),
14874 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14875 mips_cpu_info_from_isa (arch_info->isa)->name);
14876 }
14877 else
14878 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14879 }
14880
14881 if (arch_info == 0)
14882 {
14883 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14884 gas_assert (arch_info);
14885 }
14886
14887 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14888 as_bad (_("-march=%s is not compatible with the selected ABI"),
14889 arch_info->name);
14890
14891 file_mips_opts.arch = arch_info->cpu;
14892 file_mips_opts.isa = arch_info->isa;
14893
14894 /* Set up initial mips_opts state. */
14895 mips_opts = file_mips_opts;
14896
14897 /* The register size inference code is now placed in
14898 file_mips_check_options. */
14899
14900 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14901 processor. */
14902 if (mips_tune_string != 0)
14903 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14904
14905 if (tune_info == 0)
14906 mips_set_tune (arch_info);
14907 else
14908 mips_set_tune (tune_info);
14909
14910 if (mips_flag_mdebug < 0)
14911 mips_flag_mdebug = 0;
14912 }
14913 \f
14914 void
14915 mips_init_after_args (void)
14916 {
14917 /* initialize opcodes */
14918 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14919 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14920 }
14921
14922 long
14923 md_pcrel_from (fixS *fixP)
14924 {
14925 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14926 switch (fixP->fx_r_type)
14927 {
14928 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14929 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14930 /* Return the address of the delay slot. */
14931 return addr + 2;
14932
14933 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14934 case BFD_RELOC_MICROMIPS_JMP:
14935 case BFD_RELOC_MIPS16_16_PCREL_S1:
14936 case BFD_RELOC_16_PCREL_S2:
14937 case BFD_RELOC_MIPS_21_PCREL_S2:
14938 case BFD_RELOC_MIPS_26_PCREL_S2:
14939 case BFD_RELOC_MIPS_JMP:
14940 /* Return the address of the delay slot. */
14941 return addr + 4;
14942
14943 case BFD_RELOC_MIPS_18_PCREL_S3:
14944 /* Return the aligned address of the doubleword containing
14945 the instruction. */
14946 return addr & ~7;
14947
14948 default:
14949 return addr;
14950 }
14951 }
14952
14953 /* This is called before the symbol table is processed. In order to
14954 work with gcc when using mips-tfile, we must keep all local labels.
14955 However, in other cases, we want to discard them. If we were
14956 called with -g, but we didn't see any debugging information, it may
14957 mean that gcc is smuggling debugging information through to
14958 mips-tfile, in which case we must generate all local labels. */
14959
14960 void
14961 mips_frob_file_before_adjust (void)
14962 {
14963 #ifndef NO_ECOFF_DEBUGGING
14964 if (ECOFF_DEBUGGING
14965 && mips_debug != 0
14966 && ! ecoff_debugging_seen)
14967 flag_keep_locals = 1;
14968 #endif
14969 }
14970
14971 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14972 the corresponding LO16 reloc. This is called before md_apply_fix and
14973 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14974 relocation operators.
14975
14976 For our purposes, a %lo() expression matches a %got() or %hi()
14977 expression if:
14978
14979 (a) it refers to the same symbol; and
14980 (b) the offset applied in the %lo() expression is no lower than
14981 the offset applied in the %got() or %hi().
14982
14983 (b) allows us to cope with code like:
14984
14985 lui $4,%hi(foo)
14986 lh $4,%lo(foo+2)($4)
14987
14988 ...which is legal on RELA targets, and has a well-defined behaviour
14989 if the user knows that adding 2 to "foo" will not induce a carry to
14990 the high 16 bits.
14991
14992 When several %lo()s match a particular %got() or %hi(), we use the
14993 following rules to distinguish them:
14994
14995 (1) %lo()s with smaller offsets are a better match than %lo()s with
14996 higher offsets.
14997
14998 (2) %lo()s with no matching %got() or %hi() are better than those
14999 that already have a matching %got() or %hi().
15000
15001 (3) later %lo()s are better than earlier %lo()s.
15002
15003 These rules are applied in order.
15004
15005 (1) means, among other things, that %lo()s with identical offsets are
15006 chosen if they exist.
15007
15008 (2) means that we won't associate several high-part relocations with
15009 the same low-part relocation unless there's no alternative. Having
15010 several high parts for the same low part is a GNU extension; this rule
15011 allows careful users to avoid it.
15012
15013 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
15014 with the last high-part relocation being at the front of the list.
15015 It therefore makes sense to choose the last matching low-part
15016 relocation, all other things being equal. It's also easier
15017 to code that way. */
15018
15019 void
15020 mips_frob_file (void)
15021 {
15022 struct mips_hi_fixup *l;
15023 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
15024
15025 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
15026 {
15027 segment_info_type *seginfo;
15028 bfd_boolean matched_lo_p;
15029 fixS **hi_pos, **lo_pos, **pos;
15030
15031 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
15032
15033 /* If a GOT16 relocation turns out to be against a global symbol,
15034 there isn't supposed to be a matching LO. Ignore %gots against
15035 constants; we'll report an error for those later. */
15036 if (got16_reloc_p (l->fixp->fx_r_type)
15037 && !(l->fixp->fx_addsy
15038 && pic_need_relax (l->fixp->fx_addsy)))
15039 continue;
15040
15041 /* Check quickly whether the next fixup happens to be a matching %lo. */
15042 if (fixup_has_matching_lo_p (l->fixp))
15043 continue;
15044
15045 seginfo = seg_info (l->seg);
15046
15047 /* Set HI_POS to the position of this relocation in the chain.
15048 Set LO_POS to the position of the chosen low-part relocation.
15049 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
15050 relocation that matches an immediately-preceding high-part
15051 relocation. */
15052 hi_pos = NULL;
15053 lo_pos = NULL;
15054 matched_lo_p = FALSE;
15055 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
15056
15057 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
15058 {
15059 if (*pos == l->fixp)
15060 hi_pos = pos;
15061
15062 if ((*pos)->fx_r_type == looking_for_rtype
15063 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
15064 && (*pos)->fx_offset >= l->fixp->fx_offset
15065 && (lo_pos == NULL
15066 || (*pos)->fx_offset < (*lo_pos)->fx_offset
15067 || (!matched_lo_p
15068 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
15069 lo_pos = pos;
15070
15071 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
15072 && fixup_has_matching_lo_p (*pos));
15073 }
15074
15075 /* If we found a match, remove the high-part relocation from its
15076 current position and insert it before the low-part relocation.
15077 Make the offsets match so that fixup_has_matching_lo_p()
15078 will return true.
15079
15080 We don't warn about unmatched high-part relocations since some
15081 versions of gcc have been known to emit dead "lui ...%hi(...)"
15082 instructions. */
15083 if (lo_pos != NULL)
15084 {
15085 l->fixp->fx_offset = (*lo_pos)->fx_offset;
15086 if (l->fixp->fx_next != *lo_pos)
15087 {
15088 *hi_pos = l->fixp->fx_next;
15089 l->fixp->fx_next = *lo_pos;
15090 *lo_pos = l->fixp;
15091 }
15092 }
15093 }
15094 }
15095
15096 int
15097 mips_force_relocation (fixS *fixp)
15098 {
15099 if (generic_force_reloc (fixp))
15100 return 1;
15101
15102 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
15103 so that the linker relaxation can update targets. */
15104 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15105 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15106 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
15107 return 1;
15108
15109 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
15110 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
15111 microMIPS symbols so that we can do cross-mode branch diagnostics
15112 and BAL to JALX conversion by the linker. */
15113 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15114 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15115 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
15116 && fixp->fx_addsy
15117 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
15118 return 1;
15119
15120 /* We want all PC-relative relocations to be kept for R6 relaxation. */
15121 if (ISA_IS_R6 (file_mips_opts.isa)
15122 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15123 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15124 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
15125 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
15126 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
15127 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
15128 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
15129 return 1;
15130
15131 return 0;
15132 }
15133
15134 /* Implement TC_FORCE_RELOCATION_ABS. */
15135
15136 bfd_boolean
15137 mips_force_relocation_abs (fixS *fixp)
15138 {
15139 if (generic_force_reloc (fixp))
15140 return TRUE;
15141
15142 /* These relocations do not have enough bits in the in-place addend
15143 to hold an arbitrary absolute section's offset. */
15144 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
15145 return TRUE;
15146
15147 return FALSE;
15148 }
15149
15150 /* Read the instruction associated with RELOC from BUF. */
15151
15152 static unsigned int
15153 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15154 {
15155 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15156 return read_compressed_insn (buf, 4);
15157 else
15158 return read_insn (buf);
15159 }
15160
15161 /* Write instruction INSN to BUF, given that it has been relocated
15162 by RELOC. */
15163
15164 static void
15165 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15166 unsigned long insn)
15167 {
15168 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15169 write_compressed_insn (buf, insn, 4);
15170 else
15171 write_insn (buf, insn);
15172 }
15173
15174 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15175 to a symbol in another ISA mode, which cannot be converted to JALX. */
15176
15177 static bfd_boolean
15178 fix_bad_cross_mode_jump_p (fixS *fixP)
15179 {
15180 unsigned long opcode;
15181 int other;
15182 char *buf;
15183
15184 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15185 return FALSE;
15186
15187 other = S_GET_OTHER (fixP->fx_addsy);
15188 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15189 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15190 switch (fixP->fx_r_type)
15191 {
15192 case BFD_RELOC_MIPS_JMP:
15193 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15194 case BFD_RELOC_MICROMIPS_JMP:
15195 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15196 default:
15197 return FALSE;
15198 }
15199 }
15200
15201 /* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15202 jump to a symbol in the same ISA mode. */
15203
15204 static bfd_boolean
15205 fix_bad_same_mode_jalx_p (fixS *fixP)
15206 {
15207 unsigned long opcode;
15208 int other;
15209 char *buf;
15210
15211 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15212 return FALSE;
15213
15214 other = S_GET_OTHER (fixP->fx_addsy);
15215 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15216 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15217 switch (fixP->fx_r_type)
15218 {
15219 case BFD_RELOC_MIPS_JMP:
15220 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15221 case BFD_RELOC_MIPS16_JMP:
15222 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15223 case BFD_RELOC_MICROMIPS_JMP:
15224 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15225 default:
15226 return FALSE;
15227 }
15228 }
15229
15230 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15231 to a symbol whose value plus addend is not aligned according to the
15232 ultimate (after linker relaxation) jump instruction's immediate field
15233 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15234 regular MIPS code, to (1 << 2). */
15235
15236 static bfd_boolean
15237 fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15238 {
15239 bfd_boolean micro_to_mips_p;
15240 valueT val;
15241 int other;
15242
15243 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15244 return FALSE;
15245
15246 other = S_GET_OTHER (fixP->fx_addsy);
15247 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15248 val += fixP->fx_offset;
15249 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15250 && !ELF_ST_IS_MICROMIPS (other));
15251 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15252 != ELF_ST_IS_COMPRESSED (other));
15253 }
15254
15255 /* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15256 to a symbol whose annotation indicates another ISA mode. For absolute
15257 symbols check the ISA bit instead.
15258
15259 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15260 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15261 MIPS symbols and associated with BAL instructions as these instructions
15262 may be be converted to JALX by the linker. */
15263
15264 static bfd_boolean
15265 fix_bad_cross_mode_branch_p (fixS *fixP)
15266 {
15267 bfd_boolean absolute_p;
15268 unsigned long opcode;
15269 asection *symsec;
15270 valueT val;
15271 int other;
15272 char *buf;
15273
15274 if (mips_ignore_branch_isa)
15275 return FALSE;
15276
15277 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15278 return FALSE;
15279
15280 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15281 absolute_p = bfd_is_abs_section (symsec);
15282
15283 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15284 other = S_GET_OTHER (fixP->fx_addsy);
15285
15286 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15287 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15288 switch (fixP->fx_r_type)
15289 {
15290 case BFD_RELOC_16_PCREL_S2:
15291 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15292 && opcode != 0x0411);
15293 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15294 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15295 && opcode != 0x4060);
15296 case BFD_RELOC_MIPS_21_PCREL_S2:
15297 case BFD_RELOC_MIPS_26_PCREL_S2:
15298 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15299 case BFD_RELOC_MIPS16_16_PCREL_S1:
15300 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15301 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15302 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15303 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15304 default:
15305 abort ();
15306 }
15307 }
15308
15309 /* Return TRUE if the symbol plus addend associated with a regular MIPS
15310 branch instruction pointed to by FIXP is not aligned according to the
15311 branch instruction's immediate field requirement. We need the addend
15312 to preserve the ISA bit and also the sum must not have bit 2 set. We
15313 must explicitly OR in the ISA bit from symbol annotation as the bit
15314 won't be set in the symbol's value then. */
15315
15316 static bfd_boolean
15317 fix_bad_misaligned_branch_p (fixS *fixP)
15318 {
15319 bfd_boolean absolute_p;
15320 asection *symsec;
15321 valueT isa_bit;
15322 valueT val;
15323 valueT off;
15324 int other;
15325
15326 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15327 return FALSE;
15328
15329 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15330 absolute_p = bfd_is_abs_section (symsec);
15331
15332 val = S_GET_VALUE (fixP->fx_addsy);
15333 other = S_GET_OTHER (fixP->fx_addsy);
15334 off = fixP->fx_offset;
15335
15336 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15337 val |= ELF_ST_IS_COMPRESSED (other);
15338 val += off;
15339 return (val & 0x3) != isa_bit;
15340 }
15341
15342 /* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15343 and its calculated value VAL. */
15344
15345 static void
15346 fix_validate_branch (fixS *fixP, valueT val)
15347 {
15348 if (fixP->fx_done && (val & 0x3) != 0)
15349 as_bad_where (fixP->fx_file, fixP->fx_line,
15350 _("branch to misaligned address (0x%lx)"),
15351 (long) (val + md_pcrel_from (fixP)));
15352 else if (fix_bad_cross_mode_branch_p (fixP))
15353 as_bad_where (fixP->fx_file, fixP->fx_line,
15354 _("branch to a symbol in another ISA mode"));
15355 else if (fix_bad_misaligned_branch_p (fixP))
15356 as_bad_where (fixP->fx_file, fixP->fx_line,
15357 _("branch to misaligned address (0x%lx)"),
15358 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15359 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15360 as_bad_where (fixP->fx_file, fixP->fx_line,
15361 _("cannot encode misaligned addend "
15362 "in the relocatable field (0x%lx)"),
15363 (long) fixP->fx_offset);
15364 }
15365
15366 /* Apply a fixup to the object file. */
15367
15368 void
15369 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
15370 {
15371 char *buf;
15372 unsigned long insn;
15373 reloc_howto_type *howto;
15374
15375 if (fixP->fx_pcrel)
15376 switch (fixP->fx_r_type)
15377 {
15378 case BFD_RELOC_16_PCREL_S2:
15379 case BFD_RELOC_MIPS16_16_PCREL_S1:
15380 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15381 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15382 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15383 case BFD_RELOC_32_PCREL:
15384 case BFD_RELOC_MIPS_21_PCREL_S2:
15385 case BFD_RELOC_MIPS_26_PCREL_S2:
15386 case BFD_RELOC_MIPS_18_PCREL_S3:
15387 case BFD_RELOC_MIPS_19_PCREL_S2:
15388 case BFD_RELOC_HI16_S_PCREL:
15389 case BFD_RELOC_LO16_PCREL:
15390 break;
15391
15392 case BFD_RELOC_32:
15393 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15394 break;
15395
15396 default:
15397 as_bad_where (fixP->fx_file, fixP->fx_line,
15398 _("PC-relative reference to a different section"));
15399 break;
15400 }
15401
15402 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15403 that have no MIPS ELF equivalent. */
15404 if (fixP->fx_r_type != BFD_RELOC_8)
15405 {
15406 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15407 if (!howto)
15408 return;
15409 }
15410
15411 gas_assert (fixP->fx_size == 2
15412 || fixP->fx_size == 4
15413 || fixP->fx_r_type == BFD_RELOC_8
15414 || fixP->fx_r_type == BFD_RELOC_16
15415 || fixP->fx_r_type == BFD_RELOC_64
15416 || fixP->fx_r_type == BFD_RELOC_CTOR
15417 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
15418 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
15419 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15420 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
15421 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15422 || fixP->fx_r_type == BFD_RELOC_NONE);
15423
15424 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15425
15426 /* Don't treat parts of a composite relocation as done. There are two
15427 reasons for this:
15428
15429 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15430 should nevertheless be emitted if the first part is.
15431
15432 (2) In normal usage, composite relocations are never assembly-time
15433 constants. The easiest way of dealing with the pathological
15434 exceptions is to generate a relocation against STN_UNDEF and
15435 leave everything up to the linker. */
15436 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
15437 fixP->fx_done = 1;
15438
15439 switch (fixP->fx_r_type)
15440 {
15441 case BFD_RELOC_MIPS_TLS_GD:
15442 case BFD_RELOC_MIPS_TLS_LDM:
15443 case BFD_RELOC_MIPS_TLS_DTPREL32:
15444 case BFD_RELOC_MIPS_TLS_DTPREL64:
15445 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15446 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15447 case BFD_RELOC_MIPS_TLS_GOTTPREL:
15448 case BFD_RELOC_MIPS_TLS_TPREL32:
15449 case BFD_RELOC_MIPS_TLS_TPREL64:
15450 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15451 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
15452 case BFD_RELOC_MICROMIPS_TLS_GD:
15453 case BFD_RELOC_MICROMIPS_TLS_LDM:
15454 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15455 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15456 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15457 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15458 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
15459 case BFD_RELOC_MIPS16_TLS_GD:
15460 case BFD_RELOC_MIPS16_TLS_LDM:
15461 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15462 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15463 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15464 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15465 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
15466 if (fixP->fx_addsy)
15467 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15468 else
15469 as_bad_where (fixP->fx_file, fixP->fx_line,
15470 _("TLS relocation against a constant"));
15471 break;
15472
15473 case BFD_RELOC_MIPS_JMP:
15474 case BFD_RELOC_MIPS16_JMP:
15475 case BFD_RELOC_MICROMIPS_JMP:
15476 {
15477 int shift;
15478
15479 gas_assert (!fixP->fx_done);
15480
15481 /* Shift is 2, unusually, for microMIPS JALX. */
15482 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15483 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15484 shift = 1;
15485 else
15486 shift = 2;
15487
15488 if (fix_bad_cross_mode_jump_p (fixP))
15489 as_bad_where (fixP->fx_file, fixP->fx_line,
15490 _("jump to a symbol in another ISA mode"));
15491 else if (fix_bad_same_mode_jalx_p (fixP))
15492 as_bad_where (fixP->fx_file, fixP->fx_line,
15493 _("JALX to a symbol in the same ISA mode"));
15494 else if (fix_bad_misaligned_jump_p (fixP, shift))
15495 as_bad_where (fixP->fx_file, fixP->fx_line,
15496 _("jump to misaligned address (0x%lx)"),
15497 (long) (S_GET_VALUE (fixP->fx_addsy)
15498 + fixP->fx_offset));
15499 else if (HAVE_IN_PLACE_ADDENDS
15500 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15501 as_bad_where (fixP->fx_file, fixP->fx_line,
15502 _("cannot encode misaligned addend "
15503 "in the relocatable field (0x%lx)"),
15504 (long) fixP->fx_offset);
15505 }
15506 /* Fall through. */
15507
15508 case BFD_RELOC_MIPS_SHIFT5:
15509 case BFD_RELOC_MIPS_SHIFT6:
15510 case BFD_RELOC_MIPS_GOT_DISP:
15511 case BFD_RELOC_MIPS_GOT_PAGE:
15512 case BFD_RELOC_MIPS_GOT_OFST:
15513 case BFD_RELOC_MIPS_SUB:
15514 case BFD_RELOC_MIPS_INSERT_A:
15515 case BFD_RELOC_MIPS_INSERT_B:
15516 case BFD_RELOC_MIPS_DELETE:
15517 case BFD_RELOC_MIPS_HIGHEST:
15518 case BFD_RELOC_MIPS_HIGHER:
15519 case BFD_RELOC_MIPS_SCN_DISP:
15520 case BFD_RELOC_MIPS_REL16:
15521 case BFD_RELOC_MIPS_RELGOT:
15522 case BFD_RELOC_MIPS_JALR:
15523 case BFD_RELOC_HI16:
15524 case BFD_RELOC_HI16_S:
15525 case BFD_RELOC_LO16:
15526 case BFD_RELOC_GPREL16:
15527 case BFD_RELOC_MIPS_LITERAL:
15528 case BFD_RELOC_MIPS_CALL16:
15529 case BFD_RELOC_MIPS_GOT16:
15530 case BFD_RELOC_GPREL32:
15531 case BFD_RELOC_MIPS_GOT_HI16:
15532 case BFD_RELOC_MIPS_GOT_LO16:
15533 case BFD_RELOC_MIPS_CALL_HI16:
15534 case BFD_RELOC_MIPS_CALL_LO16:
15535 case BFD_RELOC_HI16_S_PCREL:
15536 case BFD_RELOC_LO16_PCREL:
15537 case BFD_RELOC_MIPS16_GPREL:
15538 case BFD_RELOC_MIPS16_GOT16:
15539 case BFD_RELOC_MIPS16_CALL16:
15540 case BFD_RELOC_MIPS16_HI16:
15541 case BFD_RELOC_MIPS16_HI16_S:
15542 case BFD_RELOC_MIPS16_LO16:
15543 case BFD_RELOC_MICROMIPS_GOT_DISP:
15544 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15545 case BFD_RELOC_MICROMIPS_GOT_OFST:
15546 case BFD_RELOC_MICROMIPS_SUB:
15547 case BFD_RELOC_MICROMIPS_HIGHEST:
15548 case BFD_RELOC_MICROMIPS_HIGHER:
15549 case BFD_RELOC_MICROMIPS_SCN_DISP:
15550 case BFD_RELOC_MICROMIPS_JALR:
15551 case BFD_RELOC_MICROMIPS_HI16:
15552 case BFD_RELOC_MICROMIPS_HI16_S:
15553 case BFD_RELOC_MICROMIPS_LO16:
15554 case BFD_RELOC_MICROMIPS_GPREL16:
15555 case BFD_RELOC_MICROMIPS_LITERAL:
15556 case BFD_RELOC_MICROMIPS_CALL16:
15557 case BFD_RELOC_MICROMIPS_GOT16:
15558 case BFD_RELOC_MICROMIPS_GOT_HI16:
15559 case BFD_RELOC_MICROMIPS_GOT_LO16:
15560 case BFD_RELOC_MICROMIPS_CALL_HI16:
15561 case BFD_RELOC_MICROMIPS_CALL_LO16:
15562 case BFD_RELOC_MIPS_EH:
15563 if (fixP->fx_done)
15564 {
15565 offsetT value;
15566
15567 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15568 {
15569 insn = read_reloc_insn (buf, fixP->fx_r_type);
15570 if (mips16_reloc_p (fixP->fx_r_type))
15571 insn |= mips16_immed_extend (value, 16);
15572 else
15573 insn |= (value & 0xffff);
15574 write_reloc_insn (buf, fixP->fx_r_type, insn);
15575 }
15576 else
15577 as_bad_where (fixP->fx_file, fixP->fx_line,
15578 _("unsupported constant in relocation"));
15579 }
15580 break;
15581
15582 case BFD_RELOC_64:
15583 /* This is handled like BFD_RELOC_32, but we output a sign
15584 extended value if we are only 32 bits. */
15585 if (fixP->fx_done)
15586 {
15587 if (8 <= sizeof (valueT))
15588 md_number_to_chars (buf, *valP, 8);
15589 else
15590 {
15591 valueT hiv;
15592
15593 if ((*valP & 0x80000000) != 0)
15594 hiv = 0xffffffff;
15595 else
15596 hiv = 0;
15597 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15598 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15599 }
15600 }
15601 break;
15602
15603 case BFD_RELOC_RVA:
15604 case BFD_RELOC_32:
15605 case BFD_RELOC_32_PCREL:
15606 case BFD_RELOC_16:
15607 case BFD_RELOC_8:
15608 /* If we are deleting this reloc entry, we must fill in the
15609 value now. This can happen if we have a .word which is not
15610 resolved when it appears but is later defined. */
15611 if (fixP->fx_done)
15612 md_number_to_chars (buf, *valP, fixP->fx_size);
15613 break;
15614
15615 case BFD_RELOC_MIPS_21_PCREL_S2:
15616 fix_validate_branch (fixP, *valP);
15617 if (!fixP->fx_done)
15618 break;
15619
15620 if (*valP + 0x400000 <= 0x7fffff)
15621 {
15622 insn = read_insn (buf);
15623 insn |= (*valP >> 2) & 0x1fffff;
15624 write_insn (buf, insn);
15625 }
15626 else
15627 as_bad_where (fixP->fx_file, fixP->fx_line,
15628 _("branch out of range"));
15629 break;
15630
15631 case BFD_RELOC_MIPS_26_PCREL_S2:
15632 fix_validate_branch (fixP, *valP);
15633 if (!fixP->fx_done)
15634 break;
15635
15636 if (*valP + 0x8000000 <= 0xfffffff)
15637 {
15638 insn = read_insn (buf);
15639 insn |= (*valP >> 2) & 0x3ffffff;
15640 write_insn (buf, insn);
15641 }
15642 else
15643 as_bad_where (fixP->fx_file, fixP->fx_line,
15644 _("branch out of range"));
15645 break;
15646
15647 case BFD_RELOC_MIPS_18_PCREL_S3:
15648 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15649 as_bad_where (fixP->fx_file, fixP->fx_line,
15650 _("PC-relative access using misaligned symbol (%lx)"),
15651 (long) S_GET_VALUE (fixP->fx_addsy));
15652 if ((fixP->fx_offset & 0x7) != 0)
15653 as_bad_where (fixP->fx_file, fixP->fx_line,
15654 _("PC-relative access using misaligned offset (%lx)"),
15655 (long) fixP->fx_offset);
15656 if (!fixP->fx_done)
15657 break;
15658
15659 if (*valP + 0x100000 <= 0x1fffff)
15660 {
15661 insn = read_insn (buf);
15662 insn |= (*valP >> 3) & 0x3ffff;
15663 write_insn (buf, insn);
15664 }
15665 else
15666 as_bad_where (fixP->fx_file, fixP->fx_line,
15667 _("PC-relative access out of range"));
15668 break;
15669
15670 case BFD_RELOC_MIPS_19_PCREL_S2:
15671 if ((*valP & 0x3) != 0)
15672 as_bad_where (fixP->fx_file, fixP->fx_line,
15673 _("PC-relative access to misaligned address (%lx)"),
15674 (long) *valP);
15675 if (!fixP->fx_done)
15676 break;
15677
15678 if (*valP + 0x100000 <= 0x1fffff)
15679 {
15680 insn = read_insn (buf);
15681 insn |= (*valP >> 2) & 0x7ffff;
15682 write_insn (buf, insn);
15683 }
15684 else
15685 as_bad_where (fixP->fx_file, fixP->fx_line,
15686 _("PC-relative access out of range"));
15687 break;
15688
15689 case BFD_RELOC_16_PCREL_S2:
15690 fix_validate_branch (fixP, *valP);
15691
15692 /* We need to save the bits in the instruction since fixup_segment()
15693 might be deleting the relocation entry (i.e., a branch within
15694 the current segment). */
15695 if (! fixP->fx_done)
15696 break;
15697
15698 /* Update old instruction data. */
15699 insn = read_insn (buf);
15700
15701 if (*valP + 0x20000 <= 0x3ffff)
15702 {
15703 insn |= (*valP >> 2) & 0xffff;
15704 write_insn (buf, insn);
15705 }
15706 else if (fixP->fx_tcbit2
15707 && fixP->fx_done
15708 && fixP->fx_frag->fr_address >= text_section->vma
15709 && (fixP->fx_frag->fr_address
15710 < text_section->vma + bfd_get_section_size (text_section))
15711 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15712 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15713 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15714 {
15715 /* The branch offset is too large. If this is an
15716 unconditional branch, and we are not generating PIC code,
15717 we can convert it to an absolute jump instruction. */
15718 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15719 insn = 0x0c000000; /* jal */
15720 else
15721 insn = 0x08000000; /* j */
15722 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15723 fixP->fx_done = 0;
15724 fixP->fx_addsy = section_symbol (text_section);
15725 *valP += md_pcrel_from (fixP);
15726 write_insn (buf, insn);
15727 }
15728 else
15729 {
15730 /* If we got here, we have branch-relaxation disabled,
15731 and there's nothing we can do to fix this instruction
15732 without turning it into a longer sequence. */
15733 as_bad_where (fixP->fx_file, fixP->fx_line,
15734 _("branch out of range"));
15735 }
15736 break;
15737
15738 case BFD_RELOC_MIPS16_16_PCREL_S1:
15739 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15740 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15741 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15742 gas_assert (!fixP->fx_done);
15743 if (fix_bad_cross_mode_branch_p (fixP))
15744 as_bad_where (fixP->fx_file, fixP->fx_line,
15745 _("branch to a symbol in another ISA mode"));
15746 else if (fixP->fx_addsy
15747 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
15748 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
15749 && (fixP->fx_offset & 0x1) != 0)
15750 as_bad_where (fixP->fx_file, fixP->fx_line,
15751 _("branch to misaligned address (0x%lx)"),
15752 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15753 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
15754 as_bad_where (fixP->fx_file, fixP->fx_line,
15755 _("cannot encode misaligned addend "
15756 "in the relocatable field (0x%lx)"),
15757 (long) fixP->fx_offset);
15758 break;
15759
15760 case BFD_RELOC_VTABLE_INHERIT:
15761 fixP->fx_done = 0;
15762 if (fixP->fx_addsy
15763 && !S_IS_DEFINED (fixP->fx_addsy)
15764 && !S_IS_WEAK (fixP->fx_addsy))
15765 S_SET_WEAK (fixP->fx_addsy);
15766 break;
15767
15768 case BFD_RELOC_NONE:
15769 case BFD_RELOC_VTABLE_ENTRY:
15770 fixP->fx_done = 0;
15771 break;
15772
15773 default:
15774 abort ();
15775 }
15776
15777 /* Remember value for tc_gen_reloc. */
15778 fixP->fx_addnumber = *valP;
15779 }
15780
15781 static symbolS *
15782 get_symbol (void)
15783 {
15784 int c;
15785 char *name;
15786 symbolS *p;
15787
15788 c = get_symbol_name (&name);
15789 p = (symbolS *) symbol_find_or_make (name);
15790 (void) restore_line_pointer (c);
15791 return p;
15792 }
15793
15794 /* Align the current frag to a given power of two. If a particular
15795 fill byte should be used, FILL points to an integer that contains
15796 that byte, otherwise FILL is null.
15797
15798 This function used to have the comment:
15799
15800 The MIPS assembler also automatically adjusts any preceding label.
15801
15802 The implementation therefore applied the adjustment to a maximum of
15803 one label. However, other label adjustments are applied to batches
15804 of labels, and adjusting just one caused problems when new labels
15805 were added for the sake of debugging or unwind information.
15806 We therefore adjust all preceding labels (given as LABELS) instead. */
15807
15808 static void
15809 mips_align (int to, int *fill, struct insn_label_list *labels)
15810 {
15811 mips_emit_delays ();
15812 mips_record_compressed_mode ();
15813 if (fill == NULL && subseg_text_p (now_seg))
15814 frag_align_code (to, 0);
15815 else
15816 frag_align (to, fill ? *fill : 0, 0);
15817 record_alignment (now_seg, to);
15818 mips_move_labels (labels, FALSE);
15819 }
15820
15821 /* Align to a given power of two. .align 0 turns off the automatic
15822 alignment used by the data creating pseudo-ops. */
15823
15824 static void
15825 s_align (int x ATTRIBUTE_UNUSED)
15826 {
15827 int temp, fill_value, *fill_ptr;
15828 long max_alignment = 28;
15829
15830 /* o Note that the assembler pulls down any immediately preceding label
15831 to the aligned address.
15832 o It's not documented but auto alignment is reinstated by
15833 a .align pseudo instruction.
15834 o Note also that after auto alignment is turned off the mips assembler
15835 issues an error on attempt to assemble an improperly aligned data item.
15836 We don't. */
15837
15838 temp = get_absolute_expression ();
15839 if (temp > max_alignment)
15840 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15841 else if (temp < 0)
15842 {
15843 as_warn (_("alignment negative, 0 assumed"));
15844 temp = 0;
15845 }
15846 if (*input_line_pointer == ',')
15847 {
15848 ++input_line_pointer;
15849 fill_value = get_absolute_expression ();
15850 fill_ptr = &fill_value;
15851 }
15852 else
15853 fill_ptr = 0;
15854 if (temp)
15855 {
15856 segment_info_type *si = seg_info (now_seg);
15857 struct insn_label_list *l = si->label_list;
15858 /* Auto alignment should be switched on by next section change. */
15859 auto_align = 1;
15860 mips_align (temp, fill_ptr, l);
15861 }
15862 else
15863 {
15864 auto_align = 0;
15865 }
15866
15867 demand_empty_rest_of_line ();
15868 }
15869
15870 static void
15871 s_change_sec (int sec)
15872 {
15873 segT seg;
15874
15875 /* The ELF backend needs to know that we are changing sections, so
15876 that .previous works correctly. We could do something like check
15877 for an obj_section_change_hook macro, but that might be confusing
15878 as it would not be appropriate to use it in the section changing
15879 functions in read.c, since obj-elf.c intercepts those. FIXME:
15880 This should be cleaner, somehow. */
15881 obj_elf_section_change_hook ();
15882
15883 mips_emit_delays ();
15884
15885 switch (sec)
15886 {
15887 case 't':
15888 s_text (0);
15889 break;
15890 case 'd':
15891 s_data (0);
15892 break;
15893 case 'b':
15894 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15895 demand_empty_rest_of_line ();
15896 break;
15897
15898 case 'r':
15899 seg = subseg_new (RDATA_SECTION_NAME,
15900 (subsegT) get_absolute_expression ());
15901 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15902 | SEC_READONLY | SEC_RELOC
15903 | SEC_DATA));
15904 if (strncmp (TARGET_OS, "elf", 3) != 0)
15905 record_alignment (seg, 4);
15906 demand_empty_rest_of_line ();
15907 break;
15908
15909 case 's':
15910 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15911 bfd_set_section_flags (stdoutput, seg,
15912 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15913 if (strncmp (TARGET_OS, "elf", 3) != 0)
15914 record_alignment (seg, 4);
15915 demand_empty_rest_of_line ();
15916 break;
15917
15918 case 'B':
15919 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15920 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15921 if (strncmp (TARGET_OS, "elf", 3) != 0)
15922 record_alignment (seg, 4);
15923 demand_empty_rest_of_line ();
15924 break;
15925 }
15926
15927 auto_align = 1;
15928 }
15929
15930 void
15931 s_change_section (int ignore ATTRIBUTE_UNUSED)
15932 {
15933 char *saved_ilp;
15934 char *section_name;
15935 char c, endc;
15936 char next_c = 0;
15937 int section_type;
15938 int section_flag;
15939 int section_entry_size;
15940 int section_alignment;
15941
15942 saved_ilp = input_line_pointer;
15943 endc = get_symbol_name (&section_name);
15944 c = (endc == '"' ? input_line_pointer[1] : endc);
15945 if (c)
15946 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
15947
15948 /* Do we have .section Name<,"flags">? */
15949 if (c != ',' || (c == ',' && next_c == '"'))
15950 {
15951 /* Just after name is now '\0'. */
15952 (void) restore_line_pointer (endc);
15953 input_line_pointer = saved_ilp;
15954 obj_elf_section (ignore);
15955 return;
15956 }
15957
15958 section_name = xstrdup (section_name);
15959 c = restore_line_pointer (endc);
15960
15961 input_line_pointer++;
15962
15963 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15964 if (c == ',')
15965 section_type = get_absolute_expression ();
15966 else
15967 section_type = 0;
15968
15969 if (*input_line_pointer++ == ',')
15970 section_flag = get_absolute_expression ();
15971 else
15972 section_flag = 0;
15973
15974 if (*input_line_pointer++ == ',')
15975 section_entry_size = get_absolute_expression ();
15976 else
15977 section_entry_size = 0;
15978
15979 if (*input_line_pointer++ == ',')
15980 section_alignment = get_absolute_expression ();
15981 else
15982 section_alignment = 0;
15983
15984 /* FIXME: really ignore? */
15985 (void) section_alignment;
15986
15987 /* When using the generic form of .section (as implemented by obj-elf.c),
15988 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15989 traditionally had to fall back on the more common @progbits instead.
15990
15991 There's nothing really harmful in this, since bfd will correct
15992 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15993 means that, for backwards compatibility, the special_section entries
15994 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15995
15996 Even so, we shouldn't force users of the MIPS .section syntax to
15997 incorrectly label the sections as SHT_PROGBITS. The best compromise
15998 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15999 generic type-checking code. */
16000 if (section_type == SHT_MIPS_DWARF)
16001 section_type = SHT_PROGBITS;
16002
16003 obj_elf_change_section (section_name, section_type, 0, section_flag,
16004 section_entry_size, 0, 0, 0);
16005
16006 if (now_seg->name != section_name)
16007 free (section_name);
16008 }
16009
16010 void
16011 mips_enable_auto_align (void)
16012 {
16013 auto_align = 1;
16014 }
16015
16016 static void
16017 s_cons (int log_size)
16018 {
16019 segment_info_type *si = seg_info (now_seg);
16020 struct insn_label_list *l = si->label_list;
16021
16022 mips_emit_delays ();
16023 if (log_size > 0 && auto_align)
16024 mips_align (log_size, 0, l);
16025 cons (1 << log_size);
16026 mips_clear_insn_labels ();
16027 }
16028
16029 static void
16030 s_float_cons (int type)
16031 {
16032 segment_info_type *si = seg_info (now_seg);
16033 struct insn_label_list *l = si->label_list;
16034
16035 mips_emit_delays ();
16036
16037 if (auto_align)
16038 {
16039 if (type == 'd')
16040 mips_align (3, 0, l);
16041 else
16042 mips_align (2, 0, l);
16043 }
16044
16045 float_cons (type);
16046 mips_clear_insn_labels ();
16047 }
16048
16049 /* Handle .globl. We need to override it because on Irix 5 you are
16050 permitted to say
16051 .globl foo .text
16052 where foo is an undefined symbol, to mean that foo should be
16053 considered to be the address of a function. */
16054
16055 static void
16056 s_mips_globl (int x ATTRIBUTE_UNUSED)
16057 {
16058 char *name;
16059 int c;
16060 symbolS *symbolP;
16061 flagword flag;
16062
16063 do
16064 {
16065 c = get_symbol_name (&name);
16066 symbolP = symbol_find_or_make (name);
16067 S_SET_EXTERNAL (symbolP);
16068
16069 *input_line_pointer = c;
16070 SKIP_WHITESPACE_AFTER_NAME ();
16071
16072 /* On Irix 5, every global symbol that is not explicitly labelled as
16073 being a function is apparently labelled as being an object. */
16074 flag = BSF_OBJECT;
16075
16076 if (!is_end_of_line[(unsigned char) *input_line_pointer]
16077 && (*input_line_pointer != ','))
16078 {
16079 char *secname;
16080 asection *sec;
16081
16082 c = get_symbol_name (&secname);
16083 sec = bfd_get_section_by_name (stdoutput, secname);
16084 if (sec == NULL)
16085 as_bad (_("%s: no such section"), secname);
16086 (void) restore_line_pointer (c);
16087
16088 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
16089 flag = BSF_FUNCTION;
16090 }
16091
16092 symbol_get_bfdsym (symbolP)->flags |= flag;
16093
16094 c = *input_line_pointer;
16095 if (c == ',')
16096 {
16097 input_line_pointer++;
16098 SKIP_WHITESPACE ();
16099 if (is_end_of_line[(unsigned char) *input_line_pointer])
16100 c = '\n';
16101 }
16102 }
16103 while (c == ',');
16104
16105 demand_empty_rest_of_line ();
16106 }
16107
16108 static void
16109 s_option (int x ATTRIBUTE_UNUSED)
16110 {
16111 char *opt;
16112 char c;
16113
16114 c = get_symbol_name (&opt);
16115
16116 if (*opt == 'O')
16117 {
16118 /* FIXME: What does this mean? */
16119 }
16120 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
16121 {
16122 int i;
16123
16124 i = atoi (opt + 3);
16125 if (i != 0 && i != 2)
16126 as_bad (_(".option pic%d not supported"), i);
16127 else if (mips_pic == VXWORKS_PIC)
16128 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
16129 else if (i == 0)
16130 mips_pic = NO_PIC;
16131 else if (i == 2)
16132 {
16133 mips_pic = SVR4_PIC;
16134 mips_abicalls = TRUE;
16135 }
16136
16137 if (mips_pic == SVR4_PIC)
16138 {
16139 if (g_switch_seen && g_switch_value != 0)
16140 as_warn (_("-G may not be used with SVR4 PIC code"));
16141 g_switch_value = 0;
16142 bfd_set_gp_size (stdoutput, 0);
16143 }
16144 }
16145 else
16146 as_warn (_("unrecognized option \"%s\""), opt);
16147
16148 (void) restore_line_pointer (c);
16149 demand_empty_rest_of_line ();
16150 }
16151
16152 /* This structure is used to hold a stack of .set values. */
16153
16154 struct mips_option_stack
16155 {
16156 struct mips_option_stack *next;
16157 struct mips_set_options options;
16158 };
16159
16160 static struct mips_option_stack *mips_opts_stack;
16161
16162 /* Return status for .set/.module option handling. */
16163
16164 enum code_option_type
16165 {
16166 /* Unrecognized option. */
16167 OPTION_TYPE_BAD = -1,
16168
16169 /* Ordinary option. */
16170 OPTION_TYPE_NORMAL,
16171
16172 /* ISA changing option. */
16173 OPTION_TYPE_ISA
16174 };
16175
16176 /* Handle common .set/.module options. Return status indicating option
16177 type. */
16178
16179 static enum code_option_type
16180 parse_code_option (char * name)
16181 {
16182 bfd_boolean isa_set = FALSE;
16183 const struct mips_ase *ase;
16184
16185 if (strncmp (name, "at=", 3) == 0)
16186 {
16187 char *s = name + 3;
16188
16189 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
16190 as_bad (_("unrecognized register name `%s'"), s);
16191 }
16192 else if (strcmp (name, "at") == 0)
16193 mips_opts.at = ATREG;
16194 else if (strcmp (name, "noat") == 0)
16195 mips_opts.at = ZERO;
16196 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
16197 mips_opts.nomove = 0;
16198 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
16199 mips_opts.nomove = 1;
16200 else if (strcmp (name, "bopt") == 0)
16201 mips_opts.nobopt = 0;
16202 else if (strcmp (name, "nobopt") == 0)
16203 mips_opts.nobopt = 1;
16204 else if (strcmp (name, "gp=32") == 0)
16205 mips_opts.gp = 32;
16206 else if (strcmp (name, "gp=64") == 0)
16207 mips_opts.gp = 64;
16208 else if (strcmp (name, "fp=32") == 0)
16209 mips_opts.fp = 32;
16210 else if (strcmp (name, "fp=xx") == 0)
16211 mips_opts.fp = 0;
16212 else if (strcmp (name, "fp=64") == 0)
16213 mips_opts.fp = 64;
16214 else if (strcmp (name, "softfloat") == 0)
16215 mips_opts.soft_float = 1;
16216 else if (strcmp (name, "hardfloat") == 0)
16217 mips_opts.soft_float = 0;
16218 else if (strcmp (name, "singlefloat") == 0)
16219 mips_opts.single_float = 1;
16220 else if (strcmp (name, "doublefloat") == 0)
16221 mips_opts.single_float = 0;
16222 else if (strcmp (name, "nooddspreg") == 0)
16223 mips_opts.oddspreg = 0;
16224 else if (strcmp (name, "oddspreg") == 0)
16225 mips_opts.oddspreg = 1;
16226 else if (strcmp (name, "mips16") == 0
16227 || strcmp (name, "MIPS-16") == 0)
16228 mips_opts.mips16 = 1;
16229 else if (strcmp (name, "nomips16") == 0
16230 || strcmp (name, "noMIPS-16") == 0)
16231 mips_opts.mips16 = 0;
16232 else if (strcmp (name, "micromips") == 0)
16233 mips_opts.micromips = 1;
16234 else if (strcmp (name, "nomicromips") == 0)
16235 mips_opts.micromips = 0;
16236 else if (name[0] == 'n'
16237 && name[1] == 'o'
16238 && (ase = mips_lookup_ase (name + 2)))
16239 mips_set_ase (ase, &mips_opts, FALSE);
16240 else if ((ase = mips_lookup_ase (name)))
16241 mips_set_ase (ase, &mips_opts, TRUE);
16242 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
16243 {
16244 /* Permit the user to change the ISA and architecture on the fly.
16245 Needless to say, misuse can cause serious problems. */
16246 if (strncmp (name, "arch=", 5) == 0)
16247 {
16248 const struct mips_cpu_info *p;
16249
16250 p = mips_parse_cpu ("internal use", name + 5);
16251 if (!p)
16252 as_bad (_("unknown architecture %s"), name + 5);
16253 else
16254 {
16255 mips_opts.arch = p->cpu;
16256 mips_opts.isa = p->isa;
16257 isa_set = TRUE;
16258 }
16259 }
16260 else if (strncmp (name, "mips", 4) == 0)
16261 {
16262 const struct mips_cpu_info *p;
16263
16264 p = mips_parse_cpu ("internal use", name);
16265 if (!p)
16266 as_bad (_("unknown ISA level %s"), name + 4);
16267 else
16268 {
16269 mips_opts.arch = p->cpu;
16270 mips_opts.isa = p->isa;
16271 isa_set = TRUE;
16272 }
16273 }
16274 else
16275 as_bad (_("unknown ISA or architecture %s"), name);
16276 }
16277 else if (strcmp (name, "autoextend") == 0)
16278 mips_opts.noautoextend = 0;
16279 else if (strcmp (name, "noautoextend") == 0)
16280 mips_opts.noautoextend = 1;
16281 else if (strcmp (name, "insn32") == 0)
16282 mips_opts.insn32 = TRUE;
16283 else if (strcmp (name, "noinsn32") == 0)
16284 mips_opts.insn32 = FALSE;
16285 else if (strcmp (name, "sym32") == 0)
16286 mips_opts.sym32 = TRUE;
16287 else if (strcmp (name, "nosym32") == 0)
16288 mips_opts.sym32 = FALSE;
16289 else
16290 return OPTION_TYPE_BAD;
16291
16292 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
16293 }
16294
16295 /* Handle the .set pseudo-op. */
16296
16297 static void
16298 s_mipsset (int x ATTRIBUTE_UNUSED)
16299 {
16300 enum code_option_type type = OPTION_TYPE_NORMAL;
16301 char *name = input_line_pointer, ch;
16302
16303 file_mips_check_options ();
16304
16305 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16306 ++input_line_pointer;
16307 ch = *input_line_pointer;
16308 *input_line_pointer = '\0';
16309
16310 if (strchr (name, ','))
16311 {
16312 /* Generic ".set" directive; use the generic handler. */
16313 *input_line_pointer = ch;
16314 input_line_pointer = name;
16315 s_set (0);
16316 return;
16317 }
16318
16319 if (strcmp (name, "reorder") == 0)
16320 {
16321 if (mips_opts.noreorder)
16322 end_noreorder ();
16323 }
16324 else if (strcmp (name, "noreorder") == 0)
16325 {
16326 if (!mips_opts.noreorder)
16327 start_noreorder ();
16328 }
16329 else if (strcmp (name, "macro") == 0)
16330 mips_opts.warn_about_macros = 0;
16331 else if (strcmp (name, "nomacro") == 0)
16332 {
16333 if (mips_opts.noreorder == 0)
16334 as_bad (_("`noreorder' must be set before `nomacro'"));
16335 mips_opts.warn_about_macros = 1;
16336 }
16337 else if (strcmp (name, "gp=default") == 0)
16338 mips_opts.gp = file_mips_opts.gp;
16339 else if (strcmp (name, "fp=default") == 0)
16340 mips_opts.fp = file_mips_opts.fp;
16341 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16342 {
16343 mips_opts.isa = file_mips_opts.isa;
16344 mips_opts.arch = file_mips_opts.arch;
16345 mips_opts.gp = file_mips_opts.gp;
16346 mips_opts.fp = file_mips_opts.fp;
16347 }
16348 else if (strcmp (name, "push") == 0)
16349 {
16350 struct mips_option_stack *s;
16351
16352 s = XNEW (struct mips_option_stack);
16353 s->next = mips_opts_stack;
16354 s->options = mips_opts;
16355 mips_opts_stack = s;
16356 }
16357 else if (strcmp (name, "pop") == 0)
16358 {
16359 struct mips_option_stack *s;
16360
16361 s = mips_opts_stack;
16362 if (s == NULL)
16363 as_bad (_(".set pop with no .set push"));
16364 else
16365 {
16366 /* If we're changing the reorder mode we need to handle
16367 delay slots correctly. */
16368 if (s->options.noreorder && ! mips_opts.noreorder)
16369 start_noreorder ();
16370 else if (! s->options.noreorder && mips_opts.noreorder)
16371 end_noreorder ();
16372
16373 mips_opts = s->options;
16374 mips_opts_stack = s->next;
16375 free (s);
16376 }
16377 }
16378 else
16379 {
16380 type = parse_code_option (name);
16381 if (type == OPTION_TYPE_BAD)
16382 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16383 }
16384
16385 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16386 registers based on what is supported by the arch/cpu. */
16387 if (type == OPTION_TYPE_ISA)
16388 {
16389 switch (mips_opts.isa)
16390 {
16391 case 0:
16392 break;
16393 case ISA_MIPS1:
16394 /* MIPS I cannot support FPXX. */
16395 mips_opts.fp = 32;
16396 /* fall-through. */
16397 case ISA_MIPS2:
16398 case ISA_MIPS32:
16399 case ISA_MIPS32R2:
16400 case ISA_MIPS32R3:
16401 case ISA_MIPS32R5:
16402 mips_opts.gp = 32;
16403 if (mips_opts.fp != 0)
16404 mips_opts.fp = 32;
16405 break;
16406 case ISA_MIPS32R6:
16407 mips_opts.gp = 32;
16408 mips_opts.fp = 64;
16409 break;
16410 case ISA_MIPS3:
16411 case ISA_MIPS4:
16412 case ISA_MIPS5:
16413 case ISA_MIPS64:
16414 case ISA_MIPS64R2:
16415 case ISA_MIPS64R3:
16416 case ISA_MIPS64R5:
16417 case ISA_MIPS64R6:
16418 mips_opts.gp = 64;
16419 if (mips_opts.fp != 0)
16420 {
16421 if (mips_opts.arch == CPU_R5900)
16422 mips_opts.fp = 32;
16423 else
16424 mips_opts.fp = 64;
16425 }
16426 break;
16427 default:
16428 as_bad (_("unknown ISA level %s"), name + 4);
16429 break;
16430 }
16431 }
16432
16433 mips_check_options (&mips_opts, FALSE);
16434
16435 mips_check_isa_supports_ases ();
16436 *input_line_pointer = ch;
16437 demand_empty_rest_of_line ();
16438 }
16439
16440 /* Handle the .module pseudo-op. */
16441
16442 static void
16443 s_module (int ignore ATTRIBUTE_UNUSED)
16444 {
16445 char *name = input_line_pointer, ch;
16446
16447 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16448 ++input_line_pointer;
16449 ch = *input_line_pointer;
16450 *input_line_pointer = '\0';
16451
16452 if (!file_mips_opts_checked)
16453 {
16454 if (parse_code_option (name) == OPTION_TYPE_BAD)
16455 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16456
16457 /* Update module level settings from mips_opts. */
16458 file_mips_opts = mips_opts;
16459 }
16460 else
16461 as_bad (_(".module is not permitted after generating code"));
16462
16463 *input_line_pointer = ch;
16464 demand_empty_rest_of_line ();
16465 }
16466
16467 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
16468 .option pic2. It means to generate SVR4 PIC calls. */
16469
16470 static void
16471 s_abicalls (int ignore ATTRIBUTE_UNUSED)
16472 {
16473 mips_pic = SVR4_PIC;
16474 mips_abicalls = TRUE;
16475
16476 if (g_switch_seen && g_switch_value != 0)
16477 as_warn (_("-G may not be used with SVR4 PIC code"));
16478 g_switch_value = 0;
16479
16480 bfd_set_gp_size (stdoutput, 0);
16481 demand_empty_rest_of_line ();
16482 }
16483
16484 /* Handle the .cpload pseudo-op. This is used when generating SVR4
16485 PIC code. It sets the $gp register for the function based on the
16486 function address, which is in the register named in the argument.
16487 This uses a relocation against _gp_disp, which is handled specially
16488 by the linker. The result is:
16489 lui $gp,%hi(_gp_disp)
16490 addiu $gp,$gp,%lo(_gp_disp)
16491 addu $gp,$gp,.cpload argument
16492 The .cpload argument is normally $25 == $t9.
16493
16494 The -mno-shared option changes this to:
16495 lui $gp,%hi(__gnu_local_gp)
16496 addiu $gp,$gp,%lo(__gnu_local_gp)
16497 and the argument is ignored. This saves an instruction, but the
16498 resulting code is not position independent; it uses an absolute
16499 address for __gnu_local_gp. Thus code assembled with -mno-shared
16500 can go into an ordinary executable, but not into a shared library. */
16501
16502 static void
16503 s_cpload (int ignore ATTRIBUTE_UNUSED)
16504 {
16505 expressionS ex;
16506 int reg;
16507 int in_shared;
16508
16509 file_mips_check_options ();
16510
16511 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16512 .cpload is ignored. */
16513 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16514 {
16515 s_ignore (0);
16516 return;
16517 }
16518
16519 if (mips_opts.mips16)
16520 {
16521 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16522 ignore_rest_of_line ();
16523 return;
16524 }
16525
16526 /* .cpload should be in a .set noreorder section. */
16527 if (mips_opts.noreorder == 0)
16528 as_warn (_(".cpload not in noreorder section"));
16529
16530 reg = tc_get_register (0);
16531
16532 /* If we need to produce a 64-bit address, we are better off using
16533 the default instruction sequence. */
16534 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
16535
16536 ex.X_op = O_symbol;
16537 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16538 "__gnu_local_gp");
16539 ex.X_op_symbol = NULL;
16540 ex.X_add_number = 0;
16541
16542 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16543 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16544
16545 mips_mark_labels ();
16546 mips_assembling_insn = TRUE;
16547
16548 macro_start ();
16549 macro_build_lui (&ex, mips_gp_register);
16550 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16551 mips_gp_register, BFD_RELOC_LO16);
16552 if (in_shared)
16553 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16554 mips_gp_register, reg);
16555 macro_end ();
16556
16557 mips_assembling_insn = FALSE;
16558 demand_empty_rest_of_line ();
16559 }
16560
16561 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16562 .cpsetup $reg1, offset|$reg2, label
16563
16564 If offset is given, this results in:
16565 sd $gp, offset($sp)
16566 lui $gp, %hi(%neg(%gp_rel(label)))
16567 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16568 daddu $gp, $gp, $reg1
16569
16570 If $reg2 is given, this results in:
16571 or $reg2, $gp, $0
16572 lui $gp, %hi(%neg(%gp_rel(label)))
16573 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16574 daddu $gp, $gp, $reg1
16575 $reg1 is normally $25 == $t9.
16576
16577 The -mno-shared option replaces the last three instructions with
16578 lui $gp,%hi(_gp)
16579 addiu $gp,$gp,%lo(_gp) */
16580
16581 static void
16582 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16583 {
16584 expressionS ex_off;
16585 expressionS ex_sym;
16586 int reg1;
16587
16588 file_mips_check_options ();
16589
16590 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16591 We also need NewABI support. */
16592 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16593 {
16594 s_ignore (0);
16595 return;
16596 }
16597
16598 if (mips_opts.mips16)
16599 {
16600 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16601 ignore_rest_of_line ();
16602 return;
16603 }
16604
16605 reg1 = tc_get_register (0);
16606 SKIP_WHITESPACE ();
16607 if (*input_line_pointer != ',')
16608 {
16609 as_bad (_("missing argument separator ',' for .cpsetup"));
16610 return;
16611 }
16612 else
16613 ++input_line_pointer;
16614 SKIP_WHITESPACE ();
16615 if (*input_line_pointer == '$')
16616 {
16617 mips_cpreturn_register = tc_get_register (0);
16618 mips_cpreturn_offset = -1;
16619 }
16620 else
16621 {
16622 mips_cpreturn_offset = get_absolute_expression ();
16623 mips_cpreturn_register = -1;
16624 }
16625 SKIP_WHITESPACE ();
16626 if (*input_line_pointer != ',')
16627 {
16628 as_bad (_("missing argument separator ',' for .cpsetup"));
16629 return;
16630 }
16631 else
16632 ++input_line_pointer;
16633 SKIP_WHITESPACE ();
16634 expression (&ex_sym);
16635
16636 mips_mark_labels ();
16637 mips_assembling_insn = TRUE;
16638
16639 macro_start ();
16640 if (mips_cpreturn_register == -1)
16641 {
16642 ex_off.X_op = O_constant;
16643 ex_off.X_add_symbol = NULL;
16644 ex_off.X_op_symbol = NULL;
16645 ex_off.X_add_number = mips_cpreturn_offset;
16646
16647 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16648 BFD_RELOC_LO16, SP);
16649 }
16650 else
16651 move_register (mips_cpreturn_register, mips_gp_register);
16652
16653 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16654 {
16655 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16656 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16657 BFD_RELOC_HI16_S);
16658
16659 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16660 mips_gp_register, -1, BFD_RELOC_GPREL16,
16661 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16662
16663 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16664 mips_gp_register, reg1);
16665 }
16666 else
16667 {
16668 expressionS ex;
16669
16670 ex.X_op = O_symbol;
16671 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16672 ex.X_op_symbol = NULL;
16673 ex.X_add_number = 0;
16674
16675 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16676 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16677
16678 macro_build_lui (&ex, mips_gp_register);
16679 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16680 mips_gp_register, BFD_RELOC_LO16);
16681 }
16682
16683 macro_end ();
16684
16685 mips_assembling_insn = FALSE;
16686 demand_empty_rest_of_line ();
16687 }
16688
16689 static void
16690 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16691 {
16692 file_mips_check_options ();
16693
16694 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16695 .cplocal is ignored. */
16696 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16697 {
16698 s_ignore (0);
16699 return;
16700 }
16701
16702 if (mips_opts.mips16)
16703 {
16704 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16705 ignore_rest_of_line ();
16706 return;
16707 }
16708
16709 mips_gp_register = tc_get_register (0);
16710 demand_empty_rest_of_line ();
16711 }
16712
16713 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16714 offset from $sp. The offset is remembered, and after making a PIC
16715 call $gp is restored from that location. */
16716
16717 static void
16718 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16719 {
16720 expressionS ex;
16721
16722 file_mips_check_options ();
16723
16724 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16725 .cprestore is ignored. */
16726 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16727 {
16728 s_ignore (0);
16729 return;
16730 }
16731
16732 if (mips_opts.mips16)
16733 {
16734 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16735 ignore_rest_of_line ();
16736 return;
16737 }
16738
16739 mips_cprestore_offset = get_absolute_expression ();
16740 mips_cprestore_valid = 1;
16741
16742 ex.X_op = O_constant;
16743 ex.X_add_symbol = NULL;
16744 ex.X_op_symbol = NULL;
16745 ex.X_add_number = mips_cprestore_offset;
16746
16747 mips_mark_labels ();
16748 mips_assembling_insn = TRUE;
16749
16750 macro_start ();
16751 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16752 SP, HAVE_64BIT_ADDRESSES);
16753 macro_end ();
16754
16755 mips_assembling_insn = FALSE;
16756 demand_empty_rest_of_line ();
16757 }
16758
16759 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16760 was given in the preceding .cpsetup, it results in:
16761 ld $gp, offset($sp)
16762
16763 If a register $reg2 was given there, it results in:
16764 or $gp, $reg2, $0 */
16765
16766 static void
16767 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16768 {
16769 expressionS ex;
16770
16771 file_mips_check_options ();
16772
16773 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16774 We also need NewABI support. */
16775 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16776 {
16777 s_ignore (0);
16778 return;
16779 }
16780
16781 if (mips_opts.mips16)
16782 {
16783 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16784 ignore_rest_of_line ();
16785 return;
16786 }
16787
16788 mips_mark_labels ();
16789 mips_assembling_insn = TRUE;
16790
16791 macro_start ();
16792 if (mips_cpreturn_register == -1)
16793 {
16794 ex.X_op = O_constant;
16795 ex.X_add_symbol = NULL;
16796 ex.X_op_symbol = NULL;
16797 ex.X_add_number = mips_cpreturn_offset;
16798
16799 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16800 }
16801 else
16802 move_register (mips_gp_register, mips_cpreturn_register);
16803
16804 macro_end ();
16805
16806 mips_assembling_insn = FALSE;
16807 demand_empty_rest_of_line ();
16808 }
16809
16810 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16811 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16812 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16813 debug information or MIPS16 TLS. */
16814
16815 static void
16816 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16817 bfd_reloc_code_real_type rtype)
16818 {
16819 expressionS ex;
16820 char *p;
16821
16822 expression (&ex);
16823
16824 if (ex.X_op != O_symbol)
16825 {
16826 as_bad (_("unsupported use of %s"), dirstr);
16827 ignore_rest_of_line ();
16828 }
16829
16830 p = frag_more (bytes);
16831 md_number_to_chars (p, 0, bytes);
16832 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16833 demand_empty_rest_of_line ();
16834 mips_clear_insn_labels ();
16835 }
16836
16837 /* Handle .dtprelword. */
16838
16839 static void
16840 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16841 {
16842 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16843 }
16844
16845 /* Handle .dtpreldword. */
16846
16847 static void
16848 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16849 {
16850 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16851 }
16852
16853 /* Handle .tprelword. */
16854
16855 static void
16856 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16857 {
16858 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16859 }
16860
16861 /* Handle .tpreldword. */
16862
16863 static void
16864 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16865 {
16866 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16867 }
16868
16869 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16870 code. It sets the offset to use in gp_rel relocations. */
16871
16872 static void
16873 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16874 {
16875 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16876 We also need NewABI support. */
16877 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16878 {
16879 s_ignore (0);
16880 return;
16881 }
16882
16883 mips_gprel_offset = get_absolute_expression ();
16884
16885 demand_empty_rest_of_line ();
16886 }
16887
16888 /* Handle the .gpword pseudo-op. This is used when generating PIC
16889 code. It generates a 32 bit GP relative reloc. */
16890
16891 static void
16892 s_gpword (int ignore ATTRIBUTE_UNUSED)
16893 {
16894 segment_info_type *si;
16895 struct insn_label_list *l;
16896 expressionS ex;
16897 char *p;
16898
16899 /* When not generating PIC code, this is treated as .word. */
16900 if (mips_pic != SVR4_PIC)
16901 {
16902 s_cons (2);
16903 return;
16904 }
16905
16906 si = seg_info (now_seg);
16907 l = si->label_list;
16908 mips_emit_delays ();
16909 if (auto_align)
16910 mips_align (2, 0, l);
16911
16912 expression (&ex);
16913 mips_clear_insn_labels ();
16914
16915 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16916 {
16917 as_bad (_("unsupported use of .gpword"));
16918 ignore_rest_of_line ();
16919 }
16920
16921 p = frag_more (4);
16922 md_number_to_chars (p, 0, 4);
16923 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16924 BFD_RELOC_GPREL32);
16925
16926 demand_empty_rest_of_line ();
16927 }
16928
16929 static void
16930 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16931 {
16932 segment_info_type *si;
16933 struct insn_label_list *l;
16934 expressionS ex;
16935 char *p;
16936
16937 /* When not generating PIC code, this is treated as .dword. */
16938 if (mips_pic != SVR4_PIC)
16939 {
16940 s_cons (3);
16941 return;
16942 }
16943
16944 si = seg_info (now_seg);
16945 l = si->label_list;
16946 mips_emit_delays ();
16947 if (auto_align)
16948 mips_align (3, 0, l);
16949
16950 expression (&ex);
16951 mips_clear_insn_labels ();
16952
16953 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16954 {
16955 as_bad (_("unsupported use of .gpdword"));
16956 ignore_rest_of_line ();
16957 }
16958
16959 p = frag_more (8);
16960 md_number_to_chars (p, 0, 8);
16961 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16962 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16963
16964 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16965 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16966 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16967
16968 demand_empty_rest_of_line ();
16969 }
16970
16971 /* Handle the .ehword pseudo-op. This is used when generating unwinding
16972 tables. It generates a R_MIPS_EH reloc. */
16973
16974 static void
16975 s_ehword (int ignore ATTRIBUTE_UNUSED)
16976 {
16977 expressionS ex;
16978 char *p;
16979
16980 mips_emit_delays ();
16981
16982 expression (&ex);
16983 mips_clear_insn_labels ();
16984
16985 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16986 {
16987 as_bad (_("unsupported use of .ehword"));
16988 ignore_rest_of_line ();
16989 }
16990
16991 p = frag_more (4);
16992 md_number_to_chars (p, 0, 4);
16993 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16994 BFD_RELOC_32_PCREL);
16995
16996 demand_empty_rest_of_line ();
16997 }
16998
16999 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
17000 tables in SVR4 PIC code. */
17001
17002 static void
17003 s_cpadd (int ignore ATTRIBUTE_UNUSED)
17004 {
17005 int reg;
17006
17007 file_mips_check_options ();
17008
17009 /* This is ignored when not generating SVR4 PIC code. */
17010 if (mips_pic != SVR4_PIC)
17011 {
17012 s_ignore (0);
17013 return;
17014 }
17015
17016 mips_mark_labels ();
17017 mips_assembling_insn = TRUE;
17018
17019 /* Add $gp to the register named as an argument. */
17020 macro_start ();
17021 reg = tc_get_register (0);
17022 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
17023 macro_end ();
17024
17025 mips_assembling_insn = FALSE;
17026 demand_empty_rest_of_line ();
17027 }
17028
17029 /* Handle the .insn pseudo-op. This marks instruction labels in
17030 mips16/micromips mode. This permits the linker to handle them specially,
17031 such as generating jalx instructions when needed. We also make
17032 them odd for the duration of the assembly, in order to generate the
17033 right sort of code. We will make them even in the adjust_symtab
17034 routine, while leaving them marked. This is convenient for the
17035 debugger and the disassembler. The linker knows to make them odd
17036 again. */
17037
17038 static void
17039 s_insn (int ignore ATTRIBUTE_UNUSED)
17040 {
17041 file_mips_check_options ();
17042 file_ase_mips16 |= mips_opts.mips16;
17043 file_ase_micromips |= mips_opts.micromips;
17044
17045 mips_mark_labels ();
17046
17047 demand_empty_rest_of_line ();
17048 }
17049
17050 /* Handle the .nan pseudo-op. */
17051
17052 static void
17053 s_nan (int ignore ATTRIBUTE_UNUSED)
17054 {
17055 static const char str_legacy[] = "legacy";
17056 static const char str_2008[] = "2008";
17057 size_t i;
17058
17059 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
17060
17061 if (i == sizeof (str_2008) - 1
17062 && memcmp (input_line_pointer, str_2008, i) == 0)
17063 mips_nan2008 = 1;
17064 else if (i == sizeof (str_legacy) - 1
17065 && memcmp (input_line_pointer, str_legacy, i) == 0)
17066 {
17067 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
17068 mips_nan2008 = 0;
17069 else
17070 as_bad (_("`%s' does not support legacy NaN"),
17071 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
17072 }
17073 else
17074 as_bad (_("bad .nan directive"));
17075
17076 input_line_pointer += i;
17077 demand_empty_rest_of_line ();
17078 }
17079
17080 /* Handle a .stab[snd] directive. Ideally these directives would be
17081 implemented in a transparent way, so that removing them would not
17082 have any effect on the generated instructions. However, s_stab
17083 internally changes the section, so in practice we need to decide
17084 now whether the preceding label marks compressed code. We do not
17085 support changing the compression mode of a label after a .stab*
17086 directive, such as in:
17087
17088 foo:
17089 .stabs ...
17090 .set mips16
17091
17092 so the current mode wins. */
17093
17094 static void
17095 s_mips_stab (int type)
17096 {
17097 mips_mark_labels ();
17098 s_stab (type);
17099 }
17100
17101 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
17102
17103 static void
17104 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
17105 {
17106 char *name;
17107 int c;
17108 symbolS *symbolP;
17109 expressionS exp;
17110
17111 c = get_symbol_name (&name);
17112 symbolP = symbol_find_or_make (name);
17113 S_SET_WEAK (symbolP);
17114 *input_line_pointer = c;
17115
17116 SKIP_WHITESPACE_AFTER_NAME ();
17117
17118 if (! is_end_of_line[(unsigned char) *input_line_pointer])
17119 {
17120 if (S_IS_DEFINED (symbolP))
17121 {
17122 as_bad (_("ignoring attempt to redefine symbol %s"),
17123 S_GET_NAME (symbolP));
17124 ignore_rest_of_line ();
17125 return;
17126 }
17127
17128 if (*input_line_pointer == ',')
17129 {
17130 ++input_line_pointer;
17131 SKIP_WHITESPACE ();
17132 }
17133
17134 expression (&exp);
17135 if (exp.X_op != O_symbol)
17136 {
17137 as_bad (_("bad .weakext directive"));
17138 ignore_rest_of_line ();
17139 return;
17140 }
17141 symbol_set_value_expression (symbolP, &exp);
17142 }
17143
17144 demand_empty_rest_of_line ();
17145 }
17146
17147 /* Parse a register string into a number. Called from the ECOFF code
17148 to parse .frame. The argument is non-zero if this is the frame
17149 register, so that we can record it in mips_frame_reg. */
17150
17151 int
17152 tc_get_register (int frame)
17153 {
17154 unsigned int reg;
17155
17156 SKIP_WHITESPACE ();
17157 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
17158 reg = 0;
17159 if (frame)
17160 {
17161 mips_frame_reg = reg != 0 ? reg : SP;
17162 mips_frame_reg_valid = 1;
17163 mips_cprestore_valid = 0;
17164 }
17165 return reg;
17166 }
17167
17168 valueT
17169 md_section_align (asection *seg, valueT addr)
17170 {
17171 int align = bfd_get_section_alignment (stdoutput, seg);
17172
17173 /* We don't need to align ELF sections to the full alignment.
17174 However, Irix 5 may prefer that we align them at least to a 16
17175 byte boundary. We don't bother to align the sections if we
17176 are targeted for an embedded system. */
17177 if (strncmp (TARGET_OS, "elf", 3) == 0)
17178 return addr;
17179 if (align > 4)
17180 align = 4;
17181
17182 return ((addr + (1 << align) - 1) & -(1 << align));
17183 }
17184
17185 /* Utility routine, called from above as well. If called while the
17186 input file is still being read, it's only an approximation. (For
17187 example, a symbol may later become defined which appeared to be
17188 undefined earlier.) */
17189
17190 static int
17191 nopic_need_relax (symbolS *sym, int before_relaxing)
17192 {
17193 if (sym == 0)
17194 return 0;
17195
17196 if (g_switch_value > 0)
17197 {
17198 const char *symname;
17199 int change;
17200
17201 /* Find out whether this symbol can be referenced off the $gp
17202 register. It can be if it is smaller than the -G size or if
17203 it is in the .sdata or .sbss section. Certain symbols can
17204 not be referenced off the $gp, although it appears as though
17205 they can. */
17206 symname = S_GET_NAME (sym);
17207 if (symname != (const char *) NULL
17208 && (strcmp (symname, "eprol") == 0
17209 || strcmp (symname, "etext") == 0
17210 || strcmp (symname, "_gp") == 0
17211 || strcmp (symname, "edata") == 0
17212 || strcmp (symname, "_fbss") == 0
17213 || strcmp (symname, "_fdata") == 0
17214 || strcmp (symname, "_ftext") == 0
17215 || strcmp (symname, "end") == 0
17216 || strcmp (symname, "_gp_disp") == 0))
17217 change = 1;
17218 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17219 && (0
17220 #ifndef NO_ECOFF_DEBUGGING
17221 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17222 && (symbol_get_obj (sym)->ecoff_extern_size
17223 <= g_switch_value))
17224 #endif
17225 /* We must defer this decision until after the whole
17226 file has been read, since there might be a .extern
17227 after the first use of this symbol. */
17228 || (before_relaxing
17229 #ifndef NO_ECOFF_DEBUGGING
17230 && symbol_get_obj (sym)->ecoff_extern_size == 0
17231 #endif
17232 && S_GET_VALUE (sym) == 0)
17233 || (S_GET_VALUE (sym) != 0
17234 && S_GET_VALUE (sym) <= g_switch_value)))
17235 change = 0;
17236 else
17237 {
17238 const char *segname;
17239
17240 segname = segment_name (S_GET_SEGMENT (sym));
17241 gas_assert (strcmp (segname, ".lit8") != 0
17242 && strcmp (segname, ".lit4") != 0);
17243 change = (strcmp (segname, ".sdata") != 0
17244 && strcmp (segname, ".sbss") != 0
17245 && strncmp (segname, ".sdata.", 7) != 0
17246 && strncmp (segname, ".sbss.", 6) != 0
17247 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
17248 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
17249 }
17250 return change;
17251 }
17252 else
17253 /* We are not optimizing for the $gp register. */
17254 return 1;
17255 }
17256
17257
17258 /* Return true if the given symbol should be considered local for SVR4 PIC. */
17259
17260 static bfd_boolean
17261 pic_need_relax (symbolS *sym)
17262 {
17263 asection *symsec;
17264
17265 /* Handle the case of a symbol equated to another symbol. */
17266 while (symbol_equated_reloc_p (sym))
17267 {
17268 symbolS *n;
17269
17270 /* It's possible to get a loop here in a badly written program. */
17271 n = symbol_get_value_expression (sym)->X_add_symbol;
17272 if (n == sym)
17273 break;
17274 sym = n;
17275 }
17276
17277 if (symbol_section_p (sym))
17278 return TRUE;
17279
17280 symsec = S_GET_SEGMENT (sym);
17281
17282 /* This must duplicate the test in adjust_reloc_syms. */
17283 return (!bfd_is_und_section (symsec)
17284 && !bfd_is_abs_section (symsec)
17285 && !bfd_is_com_section (symsec)
17286 /* A global or weak symbol is treated as external. */
17287 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
17288 }
17289 \f
17290 /* Given a MIPS16 variant frag FRAGP and PC-relative operand PCREL_OP
17291 convert a section-relative value VAL to the equivalent PC-relative
17292 value. */
17293
17294 static offsetT
17295 mips16_pcrel_val (fragS *fragp, const struct mips_pcrel_operand *pcrel_op,
17296 offsetT val, long stretch)
17297 {
17298 fragS *sym_frag;
17299 addressT addr;
17300
17301 gas_assert (pcrel_op->root.root.type == OP_PCREL);
17302
17303 sym_frag = symbol_get_frag (fragp->fr_symbol);
17304
17305 /* If the relax_marker of the symbol fragment differs from the
17306 relax_marker of this fragment, we have not yet adjusted the
17307 symbol fragment fr_address. We want to add in STRETCH in
17308 order to get a better estimate of the address. This
17309 particularly matters because of the shift bits. */
17310 if (stretch != 0 && sym_frag->relax_marker != fragp->relax_marker)
17311 {
17312 fragS *f;
17313
17314 /* Adjust stretch for any alignment frag. Note that if have
17315 been expanding the earlier code, the symbol may be
17316 defined in what appears to be an earlier frag. FIXME:
17317 This doesn't handle the fr_subtype field, which specifies
17318 a maximum number of bytes to skip when doing an
17319 alignment. */
17320 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17321 {
17322 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17323 {
17324 if (stretch < 0)
17325 stretch = -(-stretch & ~((1 << (int) f->fr_offset) - 1));
17326 else
17327 stretch &= ~((1 << (int) f->fr_offset) - 1);
17328 if (stretch == 0)
17329 break;
17330 }
17331 }
17332 if (f != NULL)
17333 val += stretch;
17334 }
17335
17336 addr = fragp->fr_address + fragp->fr_fix;
17337
17338 /* The base address rules are complicated. The base address of
17339 a branch is the following instruction. The base address of a
17340 PC relative load or add is the instruction itself, but if it
17341 is in a delay slot (in which case it can not be extended) use
17342 the address of the instruction whose delay slot it is in. */
17343 if (pcrel_op->include_isa_bit)
17344 {
17345 addr += 2;
17346
17347 /* If we are currently assuming that this frag should be
17348 extended, then the current address is two bytes higher. */
17349 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17350 addr += 2;
17351
17352 /* Ignore the low bit in the target, since it will be set
17353 for a text label. */
17354 val &= -2;
17355 }
17356 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17357 addr -= 4;
17358 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17359 addr -= 2;
17360
17361 val -= addr & -(1 << pcrel_op->align_log2);
17362
17363 return val;
17364 }
17365
17366 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17367 extended opcode. SEC is the section the frag is in. */
17368
17369 static int
17370 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
17371 {
17372 const struct mips_int_operand *operand;
17373 offsetT val;
17374 segT symsec;
17375 int type;
17376
17377 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17378 return 0;
17379 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17380 return 1;
17381
17382 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17383 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17384 operand = mips16_immed_operand (type, FALSE);
17385 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17386 || (operand->root.type == OP_PCREL
17387 ? sec != symsec
17388 : !bfd_is_abs_section (symsec)))
17389 return 1;
17390
17391 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17392
17393 if (operand->root.type == OP_PCREL)
17394 {
17395 const struct mips_pcrel_operand *pcrel_op;
17396 offsetT maxtiny;
17397
17398 if (RELAX_MIPS16_ALWAYS_EXTENDED (fragp->fr_subtype))
17399 return 1;
17400
17401 pcrel_op = (const struct mips_pcrel_operand *) operand;
17402 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17403
17404 /* If any of the shifted bits are set, we must use an extended
17405 opcode. If the address depends on the size of this
17406 instruction, this can lead to a loop, so we arrange to always
17407 use an extended opcode. */
17408 if ((val & ((1 << operand->shift) - 1)) != 0)
17409 {
17410 fragp->fr_subtype =
17411 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
17412 return 1;
17413 }
17414
17415 /* If we are about to mark a frag as extended because the value
17416 is precisely the next value above maxtiny, then there is a
17417 chance of an infinite loop as in the following code:
17418 la $4,foo
17419 .skip 1020
17420 .align 2
17421 foo:
17422 In this case when the la is extended, foo is 0x3fc bytes
17423 away, so the la can be shrunk, but then foo is 0x400 away, so
17424 the la must be extended. To avoid this loop, we mark the
17425 frag as extended if it was small, and is about to become
17426 extended with the next value above maxtiny. */
17427 maxtiny = mips_int_operand_max (operand);
17428 if (val == maxtiny + (1 << operand->shift)
17429 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17430 {
17431 fragp->fr_subtype =
17432 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
17433 return 1;
17434 }
17435 }
17436
17437 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17438 }
17439
17440 /* Given a MIPS16 variant frag FRAGP, return non-zero if it needs
17441 macro expansion. SEC is the section the frag is in. We only
17442 support PC-relative instructions (LA, DLA, LW, LD) here, in
17443 non-PIC code using 32-bit addressing. */
17444
17445 static int
17446 mips16_macro_frag (fragS *fragp, asection *sec, long stretch)
17447 {
17448 const struct mips_pcrel_operand *pcrel_op;
17449 const struct mips_int_operand *operand;
17450 offsetT val;
17451 segT symsec;
17452 int type;
17453
17454 gas_assert (!RELAX_MIPS16_USER_SMALL (fragp->fr_subtype));
17455
17456 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17457 return 0;
17458 if (!RELAX_MIPS16_SYM32 (fragp->fr_subtype))
17459 return 0;
17460
17461 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17462 switch (type)
17463 {
17464 case 'A':
17465 case 'B':
17466 case 'E':
17467 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17468 if (bfd_is_abs_section (symsec))
17469 return 1;
17470 if (RELAX_MIPS16_PIC (fragp->fr_subtype))
17471 return 0;
17472 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE) || sec != symsec)
17473 return 1;
17474
17475 operand = mips16_immed_operand (type, TRUE);
17476 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17477 pcrel_op = (const struct mips_pcrel_operand *) operand;
17478 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17479
17480 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17481
17482 default:
17483 return 0;
17484 }
17485 }
17486
17487 /* Compute the length of a branch sequence, and adjust the
17488 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17489 worst-case length is computed, with UPDATE being used to indicate
17490 whether an unconditional (-1), branch-likely (+1) or regular (0)
17491 branch is to be computed. */
17492 static int
17493 relaxed_branch_length (fragS *fragp, asection *sec, int update)
17494 {
17495 bfd_boolean toofar;
17496 int length;
17497
17498 if (fragp
17499 && S_IS_DEFINED (fragp->fr_symbol)
17500 && !S_IS_WEAK (fragp->fr_symbol)
17501 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17502 {
17503 addressT addr;
17504 offsetT val;
17505
17506 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17507
17508 addr = fragp->fr_address + fragp->fr_fix + 4;
17509
17510 val -= addr;
17511
17512 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17513 }
17514 else
17515 /* If the symbol is not defined or it's in a different segment,
17516 we emit the long sequence. */
17517 toofar = TRUE;
17518
17519 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17520 fragp->fr_subtype
17521 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17522 RELAX_BRANCH_PIC (fragp->fr_subtype),
17523 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
17524 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17525 RELAX_BRANCH_LINK (fragp->fr_subtype),
17526 toofar);
17527
17528 length = 4;
17529 if (toofar)
17530 {
17531 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17532 length += 8;
17533
17534 if (!fragp || RELAX_BRANCH_PIC (fragp->fr_subtype))
17535 {
17536 /* Additional space for PIC loading of target address. */
17537 length += 8;
17538 if (mips_opts.isa == ISA_MIPS1)
17539 /* Additional space for $at-stabilizing nop. */
17540 length += 4;
17541 }
17542
17543 /* If branch is conditional. */
17544 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17545 length += 8;
17546 }
17547
17548 return length;
17549 }
17550
17551 /* Get a FRAG's branch instruction delay slot size, either from the
17552 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
17553 or SHORT_INSN_SIZE otherwise. */
17554
17555 static int
17556 frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
17557 {
17558 char *buf = fragp->fr_literal + fragp->fr_fix;
17559
17560 if (al)
17561 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
17562 else
17563 return short_insn_size;
17564 }
17565
17566 /* Compute the length of a branch sequence, and adjust the
17567 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17568 worst-case length is computed, with UPDATE being used to indicate
17569 whether an unconditional (-1), or regular (0) branch is to be
17570 computed. */
17571
17572 static int
17573 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17574 {
17575 bfd_boolean insn32 = TRUE;
17576 bfd_boolean nods = TRUE;
17577 bfd_boolean pic = TRUE;
17578 bfd_boolean al = TRUE;
17579 int short_insn_size;
17580 bfd_boolean toofar;
17581 int length;
17582
17583 if (fragp)
17584 {
17585 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17586 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
17587 pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
17588 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17589 }
17590 short_insn_size = insn32 ? 4 : 2;
17591
17592 if (fragp
17593 && S_IS_DEFINED (fragp->fr_symbol)
17594 && !S_IS_WEAK (fragp->fr_symbol)
17595 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17596 {
17597 addressT addr;
17598 offsetT val;
17599
17600 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17601 /* Ignore the low bit in the target, since it will be set
17602 for a text label. */
17603 if ((val & 1) != 0)
17604 --val;
17605
17606 addr = fragp->fr_address + fragp->fr_fix + 4;
17607
17608 val -= addr;
17609
17610 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17611 }
17612 else
17613 /* If the symbol is not defined or it's in a different segment,
17614 we emit the long sequence. */
17615 toofar = TRUE;
17616
17617 if (fragp && update
17618 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17619 fragp->fr_subtype = (toofar
17620 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17621 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17622
17623 length = 4;
17624 if (toofar)
17625 {
17626 bfd_boolean compact_known = fragp != NULL;
17627 bfd_boolean compact = FALSE;
17628 bfd_boolean uncond;
17629
17630 if (fragp)
17631 {
17632 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17633 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
17634 }
17635 else
17636 uncond = update < 0;
17637
17638 /* If label is out of range, we turn branch <br>:
17639
17640 <br> label # 4 bytes
17641 0:
17642
17643 into:
17644
17645 j label # 4 bytes
17646 nop # 2/4 bytes if
17647 # compact && (!PIC || insn32)
17648 0:
17649 */
17650 if ((!pic || insn32) && (!compact_known || compact))
17651 length += short_insn_size;
17652
17653 /* If assembling PIC code, we further turn:
17654
17655 j label # 4 bytes
17656
17657 into:
17658
17659 lw/ld at, %got(label)(gp) # 4 bytes
17660 d/addiu at, %lo(label) # 4 bytes
17661 jr/c at # 2/4 bytes
17662 */
17663 if (pic)
17664 length += 4 + short_insn_size;
17665
17666 /* Add an extra nop if the jump has no compact form and we need
17667 to fill the delay slot. */
17668 if ((!pic || al) && nods)
17669 length += (fragp
17670 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
17671 : short_insn_size);
17672
17673 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17674
17675 <brneg> 0f # 4 bytes
17676 nop # 2/4 bytes if !compact
17677 */
17678 if (!uncond)
17679 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
17680 }
17681 else if (nods)
17682 {
17683 /* Add an extra nop to fill the delay slot. */
17684 gas_assert (fragp);
17685 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
17686 }
17687
17688 return length;
17689 }
17690
17691 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17692 bit accordingly. */
17693
17694 static int
17695 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17696 {
17697 bfd_boolean toofar;
17698
17699 if (fragp
17700 && S_IS_DEFINED (fragp->fr_symbol)
17701 && !S_IS_WEAK (fragp->fr_symbol)
17702 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17703 {
17704 addressT addr;
17705 offsetT val;
17706 int type;
17707
17708 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17709 /* Ignore the low bit in the target, since it will be set
17710 for a text label. */
17711 if ((val & 1) != 0)
17712 --val;
17713
17714 /* Assume this is a 2-byte branch. */
17715 addr = fragp->fr_address + fragp->fr_fix + 2;
17716
17717 /* We try to avoid the infinite loop by not adding 2 more bytes for
17718 long branches. */
17719
17720 val -= addr;
17721
17722 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17723 if (type == 'D')
17724 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17725 else if (type == 'E')
17726 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17727 else
17728 abort ();
17729 }
17730 else
17731 /* If the symbol is not defined or it's in a different segment,
17732 we emit a normal 32-bit branch. */
17733 toofar = TRUE;
17734
17735 if (fragp && update
17736 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17737 fragp->fr_subtype
17738 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17739 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17740
17741 if (toofar)
17742 return 4;
17743
17744 return 2;
17745 }
17746
17747 /* Estimate the size of a frag before relaxing. Unless this is the
17748 mips16, we are not really relaxing here, and the final size is
17749 encoded in the subtype information. For the mips16, we have to
17750 decide whether we are using an extended opcode or not. */
17751
17752 int
17753 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17754 {
17755 int change;
17756
17757 if (RELAX_BRANCH_P (fragp->fr_subtype))
17758 {
17759
17760 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17761
17762 return fragp->fr_var;
17763 }
17764
17765 if (RELAX_MIPS16_P (fragp->fr_subtype))
17766 {
17767 /* We don't want to modify the EXTENDED bit here; it might get us
17768 into infinite loops. We change it only in mips_relax_frag(). */
17769 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
17770 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 8 : 12;
17771 else
17772 return RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2;
17773 }
17774
17775 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17776 {
17777 int length = 4;
17778
17779 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17780 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17781 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17782 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17783 fragp->fr_var = length;
17784
17785 return length;
17786 }
17787
17788 if (mips_pic == VXWORKS_PIC)
17789 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17790 change = 0;
17791 else if (RELAX_PIC (fragp->fr_subtype))
17792 change = pic_need_relax (fragp->fr_symbol);
17793 else
17794 change = nopic_need_relax (fragp->fr_symbol, 0);
17795
17796 if (change)
17797 {
17798 fragp->fr_subtype |= RELAX_USE_SECOND;
17799 return -RELAX_FIRST (fragp->fr_subtype);
17800 }
17801 else
17802 return -RELAX_SECOND (fragp->fr_subtype);
17803 }
17804
17805 /* This is called to see whether a reloc against a defined symbol
17806 should be converted into a reloc against a section. */
17807
17808 int
17809 mips_fix_adjustable (fixS *fixp)
17810 {
17811 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17812 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17813 return 0;
17814
17815 if (fixp->fx_addsy == NULL)
17816 return 1;
17817
17818 /* Allow relocs used for EH tables. */
17819 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17820 return 1;
17821
17822 /* If symbol SYM is in a mergeable section, relocations of the form
17823 SYM + 0 can usually be made section-relative. The mergeable data
17824 is then identified by the section offset rather than by the symbol.
17825
17826 However, if we're generating REL LO16 relocations, the offset is split
17827 between the LO16 and partnering high part relocation. The linker will
17828 need to recalculate the complete offset in order to correctly identify
17829 the merge data.
17830
17831 The linker has traditionally not looked for the partnering high part
17832 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17833 placed anywhere. Rather than break backwards compatibility by changing
17834 this, it seems better not to force the issue, and instead keep the
17835 original symbol. This will work with either linker behavior. */
17836 if ((lo16_reloc_p (fixp->fx_r_type)
17837 || reloc_needs_lo_p (fixp->fx_r_type))
17838 && HAVE_IN_PLACE_ADDENDS
17839 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17840 return 0;
17841
17842 /* There is no place to store an in-place offset for JALR relocations. */
17843 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17844 return 0;
17845
17846 /* Likewise an in-range offset of limited PC-relative relocations may
17847 overflow the in-place relocatable field if recalculated against the
17848 start address of the symbol's containing section.
17849
17850 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17851 section relative to allow linker relaxations to be performed later on. */
17852 if (limited_pcrel_reloc_p (fixp->fx_r_type)
17853 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
17854 return 0;
17855
17856 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17857 to a floating-point stub. The same is true for non-R_MIPS16_26
17858 relocations against MIPS16 functions; in this case, the stub becomes
17859 the function's canonical address.
17860
17861 Floating-point stubs are stored in unique .mips16.call.* or
17862 .mips16.fn.* sections. If a stub T for function F is in section S,
17863 the first relocation in section S must be against F; this is how the
17864 linker determines the target function. All relocations that might
17865 resolve to T must also be against F. We therefore have the following
17866 restrictions, which are given in an intentionally-redundant way:
17867
17868 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17869 symbols.
17870
17871 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17872 if that stub might be used.
17873
17874 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17875 symbols.
17876
17877 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17878 that stub might be used.
17879
17880 There is a further restriction:
17881
17882 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17883 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
17884 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
17885 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
17886 against MIPS16 or microMIPS symbols because we need to keep the
17887 MIPS16 or microMIPS symbol for the purpose of mode mismatch
17888 detection and JAL or BAL to JALX instruction conversion in the
17889 linker.
17890
17891 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17892 against a MIPS16 symbol. We deal with (5) by additionally leaving
17893 alone any jump and branch relocations against a microMIPS symbol.
17894
17895 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17896 relocation against some symbol R, no relocation against R may be
17897 reduced. (Note that this deals with (2) as well as (1) because
17898 relocations against global symbols will never be reduced on ELF
17899 targets.) This approach is a little simpler than trying to detect
17900 stub sections, and gives the "all or nothing" per-symbol consistency
17901 that we have for MIPS16 symbols. */
17902 if (fixp->fx_subsy == NULL
17903 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17904 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17905 && (jmp_reloc_p (fixp->fx_r_type)
17906 || b_reloc_p (fixp->fx_r_type)))
17907 || *symbol_get_tc (fixp->fx_addsy)))
17908 return 0;
17909
17910 return 1;
17911 }
17912
17913 /* Translate internal representation of relocation info to BFD target
17914 format. */
17915
17916 arelent **
17917 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17918 {
17919 static arelent *retval[4];
17920 arelent *reloc;
17921 bfd_reloc_code_real_type code;
17922
17923 memset (retval, 0, sizeof(retval));
17924 reloc = retval[0] = XCNEW (arelent);
17925 reloc->sym_ptr_ptr = XNEW (asymbol *);
17926 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17927 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17928
17929 if (fixp->fx_pcrel)
17930 {
17931 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17932 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
17933 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17934 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17935 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17936 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17937 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17938 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17939 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17940 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17941 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17942 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17943
17944 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17945 Relocations want only the symbol offset. */
17946 switch (fixp->fx_r_type)
17947 {
17948 case BFD_RELOC_MIPS_18_PCREL_S3:
17949 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
17950 break;
17951 default:
17952 reloc->addend = fixp->fx_addnumber + reloc->address;
17953 break;
17954 }
17955 }
17956 else if (HAVE_IN_PLACE_ADDENDS
17957 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
17958 && (read_compressed_insn (fixp->fx_frag->fr_literal
17959 + fixp->fx_where, 4) >> 26) == 0x3c)
17960 {
17961 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
17962 addend accordingly. */
17963 reloc->addend = fixp->fx_addnumber >> 1;
17964 }
17965 else
17966 reloc->addend = fixp->fx_addnumber;
17967
17968 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17969 entry to be used in the relocation's section offset. */
17970 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17971 {
17972 reloc->address = reloc->addend;
17973 reloc->addend = 0;
17974 }
17975
17976 code = fixp->fx_r_type;
17977
17978 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17979 if (reloc->howto == NULL)
17980 {
17981 as_bad_where (fixp->fx_file, fixp->fx_line,
17982 _("cannot represent %s relocation in this object file"
17983 " format"),
17984 bfd_get_reloc_code_name (code));
17985 retval[0] = NULL;
17986 }
17987
17988 return retval;
17989 }
17990
17991 /* Relax a machine dependent frag. This returns the amount by which
17992 the current size of the frag should change. */
17993
17994 int
17995 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17996 {
17997 if (RELAX_BRANCH_P (fragp->fr_subtype))
17998 {
17999 offsetT old_var = fragp->fr_var;
18000
18001 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
18002
18003 return fragp->fr_var - old_var;
18004 }
18005
18006 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18007 {
18008 offsetT old_var = fragp->fr_var;
18009 offsetT new_var = 4;
18010
18011 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
18012 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
18013 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
18014 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
18015 fragp->fr_var = new_var;
18016
18017 return new_var - old_var;
18018 }
18019
18020 if (! RELAX_MIPS16_P (fragp->fr_subtype))
18021 return 0;
18022
18023 if (!mips16_extended_frag (fragp, sec, stretch))
18024 {
18025 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18026 {
18027 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
18028 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -6 : -10;
18029 }
18030 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18031 {
18032 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18033 return -2;
18034 }
18035 else
18036 return 0;
18037 }
18038 else if (!mips16_macro_frag (fragp, sec, stretch))
18039 {
18040 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18041 {
18042 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
18043 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
18044 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -4 : -8;
18045 }
18046 else if (!RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18047 {
18048 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
18049 return 2;
18050 }
18051 else
18052 return 0;
18053 }
18054 else
18055 {
18056 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18057 return 0;
18058 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18059 {
18060 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18061 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
18062 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 4 : 8;
18063 }
18064 else
18065 {
18066 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
18067 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 6 : 10;
18068 }
18069 }
18070
18071 return 0;
18072 }
18073
18074 /* Convert a machine dependent frag. */
18075
18076 void
18077 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
18078 {
18079 if (RELAX_BRANCH_P (fragp->fr_subtype))
18080 {
18081 char *buf;
18082 unsigned long insn;
18083 expressionS exp;
18084 fixS *fixp;
18085
18086 buf = fragp->fr_literal + fragp->fr_fix;
18087 insn = read_insn (buf);
18088
18089 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
18090 {
18091 /* We generate a fixup instead of applying it right now
18092 because, if there are linker relaxations, we're going to
18093 need the relocations. */
18094 exp.X_op = O_symbol;
18095 exp.X_add_symbol = fragp->fr_symbol;
18096 exp.X_add_number = fragp->fr_offset;
18097
18098 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18099 BFD_RELOC_16_PCREL_S2);
18100 fixp->fx_file = fragp->fr_file;
18101 fixp->fx_line = fragp->fr_line;
18102
18103 buf = write_insn (buf, insn);
18104 }
18105 else
18106 {
18107 int i;
18108
18109 as_warn_where (fragp->fr_file, fragp->fr_line,
18110 _("relaxed out-of-range branch into a jump"));
18111
18112 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
18113 goto uncond;
18114
18115 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18116 {
18117 /* Reverse the branch. */
18118 switch ((insn >> 28) & 0xf)
18119 {
18120 case 4:
18121 if ((insn & 0xff000000) == 0x47000000
18122 || (insn & 0xff600000) == 0x45600000)
18123 {
18124 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
18125 reversed by tweaking bit 23. */
18126 insn ^= 0x00800000;
18127 }
18128 else
18129 {
18130 /* bc[0-3][tf]l? instructions can have the condition
18131 reversed by tweaking a single TF bit, and their
18132 opcodes all have 0x4???????. */
18133 gas_assert ((insn & 0xf3e00000) == 0x41000000);
18134 insn ^= 0x00010000;
18135 }
18136 break;
18137
18138 case 0:
18139 /* bltz 0x04000000 bgez 0x04010000
18140 bltzal 0x04100000 bgezal 0x04110000 */
18141 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
18142 insn ^= 0x00010000;
18143 break;
18144
18145 case 1:
18146 /* beq 0x10000000 bne 0x14000000
18147 blez 0x18000000 bgtz 0x1c000000 */
18148 insn ^= 0x04000000;
18149 break;
18150
18151 default:
18152 abort ();
18153 }
18154 }
18155
18156 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18157 {
18158 /* Clear the and-link bit. */
18159 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
18160
18161 /* bltzal 0x04100000 bgezal 0x04110000
18162 bltzall 0x04120000 bgezall 0x04130000 */
18163 insn &= ~0x00100000;
18164 }
18165
18166 /* Branch over the branch (if the branch was likely) or the
18167 full jump (not likely case). Compute the offset from the
18168 current instruction to branch to. */
18169 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18170 i = 16;
18171 else
18172 {
18173 /* How many bytes in instructions we've already emitted? */
18174 i = buf - fragp->fr_literal - fragp->fr_fix;
18175 /* How many bytes in instructions from here to the end? */
18176 i = fragp->fr_var - i;
18177 }
18178 /* Convert to instruction count. */
18179 i >>= 2;
18180 /* Branch counts from the next instruction. */
18181 i--;
18182 insn |= i;
18183 /* Branch over the jump. */
18184 buf = write_insn (buf, insn);
18185
18186 /* nop */
18187 buf = write_insn (buf, 0);
18188
18189 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18190 {
18191 /* beql $0, $0, 2f */
18192 insn = 0x50000000;
18193 /* Compute the PC offset from the current instruction to
18194 the end of the variable frag. */
18195 /* How many bytes in instructions we've already emitted? */
18196 i = buf - fragp->fr_literal - fragp->fr_fix;
18197 /* How many bytes in instructions from here to the end? */
18198 i = fragp->fr_var - i;
18199 /* Convert to instruction count. */
18200 i >>= 2;
18201 /* Don't decrement i, because we want to branch over the
18202 delay slot. */
18203 insn |= i;
18204
18205 buf = write_insn (buf, insn);
18206 buf = write_insn (buf, 0);
18207 }
18208
18209 uncond:
18210 if (!RELAX_BRANCH_PIC (fragp->fr_subtype))
18211 {
18212 /* j or jal. */
18213 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
18214 ? 0x0c000000 : 0x08000000);
18215 exp.X_op = O_symbol;
18216 exp.X_add_symbol = fragp->fr_symbol;
18217 exp.X_add_number = fragp->fr_offset;
18218
18219 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18220 FALSE, BFD_RELOC_MIPS_JMP);
18221 fixp->fx_file = fragp->fr_file;
18222 fixp->fx_line = fragp->fr_line;
18223
18224 buf = write_insn (buf, insn);
18225 }
18226 else
18227 {
18228 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
18229
18230 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
18231 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
18232 insn |= at << OP_SH_RT;
18233 exp.X_op = O_symbol;
18234 exp.X_add_symbol = fragp->fr_symbol;
18235 exp.X_add_number = fragp->fr_offset;
18236
18237 if (fragp->fr_offset)
18238 {
18239 exp.X_add_symbol = make_expr_symbol (&exp);
18240 exp.X_add_number = 0;
18241 }
18242
18243 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18244 FALSE, BFD_RELOC_MIPS_GOT16);
18245 fixp->fx_file = fragp->fr_file;
18246 fixp->fx_line = fragp->fr_line;
18247
18248 buf = write_insn (buf, insn);
18249
18250 if (mips_opts.isa == ISA_MIPS1)
18251 /* nop */
18252 buf = write_insn (buf, 0);
18253
18254 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
18255 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18256 insn |= at << OP_SH_RS | at << OP_SH_RT;
18257
18258 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18259 FALSE, BFD_RELOC_LO16);
18260 fixp->fx_file = fragp->fr_file;
18261 fixp->fx_line = fragp->fr_line;
18262
18263 buf = write_insn (buf, insn);
18264
18265 /* j(al)r $at. */
18266 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18267 insn = 0x0000f809;
18268 else
18269 insn = 0x00000008;
18270 insn |= at << OP_SH_RS;
18271
18272 buf = write_insn (buf, insn);
18273 }
18274 }
18275
18276 fragp->fr_fix += fragp->fr_var;
18277 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18278 return;
18279 }
18280
18281 /* Relax microMIPS branches. */
18282 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18283 {
18284 char *buf = fragp->fr_literal + fragp->fr_fix;
18285 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18286 bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
18287 bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
18288 bfd_boolean pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
18289 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18290 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18291 bfd_boolean short_ds;
18292 unsigned long insn;
18293 expressionS exp;
18294 fixS *fixp;
18295
18296 exp.X_op = O_symbol;
18297 exp.X_add_symbol = fragp->fr_symbol;
18298 exp.X_add_number = fragp->fr_offset;
18299
18300 fragp->fr_fix += fragp->fr_var;
18301
18302 /* Handle 16-bit branches that fit or are forced to fit. */
18303 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18304 {
18305 /* We generate a fixup instead of applying it right now,
18306 because if there is linker relaxation, we're going to
18307 need the relocations. */
18308 if (type == 'D')
18309 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18310 BFD_RELOC_MICROMIPS_10_PCREL_S1);
18311 else if (type == 'E')
18312 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18313 BFD_RELOC_MICROMIPS_7_PCREL_S1);
18314 else
18315 abort ();
18316
18317 fixp->fx_file = fragp->fr_file;
18318 fixp->fx_line = fragp->fr_line;
18319
18320 /* These relocations can have an addend that won't fit in
18321 2 octets. */
18322 fixp->fx_no_overflow = 1;
18323
18324 return;
18325 }
18326
18327 /* Handle 32-bit branches that fit or are forced to fit. */
18328 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18329 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18330 {
18331 /* We generate a fixup instead of applying it right now,
18332 because if there is linker relaxation, we're going to
18333 need the relocations. */
18334 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18335 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18336 fixp->fx_file = fragp->fr_file;
18337 fixp->fx_line = fragp->fr_line;
18338
18339 if (type == 0)
18340 {
18341 insn = read_compressed_insn (buf, 4);
18342 buf += 4;
18343
18344 if (nods)
18345 {
18346 /* Check the short-delay-slot bit. */
18347 if (!al || (insn & 0x02000000) != 0)
18348 buf = write_compressed_insn (buf, 0x0c00, 2);
18349 else
18350 buf = write_compressed_insn (buf, 0x00000000, 4);
18351 }
18352
18353 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18354 return;
18355 }
18356 }
18357
18358 /* Relax 16-bit branches to 32-bit branches. */
18359 if (type != 0)
18360 {
18361 insn = read_compressed_insn (buf, 2);
18362
18363 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18364 insn = 0x94000000; /* beq */
18365 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18366 {
18367 unsigned long regno;
18368
18369 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18370 regno = micromips_to_32_reg_d_map [regno];
18371 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18372 insn |= regno << MICROMIPSOP_SH_RS;
18373 }
18374 else
18375 abort ();
18376
18377 /* Nothing else to do, just write it out. */
18378 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18379 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18380 {
18381 buf = write_compressed_insn (buf, insn, 4);
18382 if (nods)
18383 buf = write_compressed_insn (buf, 0x0c00, 2);
18384 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18385 return;
18386 }
18387 }
18388 else
18389 insn = read_compressed_insn (buf, 4);
18390
18391 /* Relax 32-bit branches to a sequence of instructions. */
18392 as_warn_where (fragp->fr_file, fragp->fr_line,
18393 _("relaxed out-of-range branch into a jump"));
18394
18395 /* Set the short-delay-slot bit. */
18396 short_ds = !al || (insn & 0x02000000) != 0;
18397
18398 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18399 {
18400 symbolS *l;
18401
18402 /* Reverse the branch. */
18403 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18404 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18405 insn ^= 0x20000000;
18406 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18407 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18408 || (insn & 0xffe00000) == 0x40800000 /* blez */
18409 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18410 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18411 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18412 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18413 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18414 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18415 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18416 insn ^= 0x00400000;
18417 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18418 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18419 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18420 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18421 insn ^= 0x00200000;
18422 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18423 BNZ.df */
18424 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18425 BNZ.V */
18426 insn ^= 0x00800000;
18427 else
18428 abort ();
18429
18430 if (al)
18431 {
18432 /* Clear the and-link and short-delay-slot bits. */
18433 gas_assert ((insn & 0xfda00000) == 0x40200000);
18434
18435 /* bltzal 0x40200000 bgezal 0x40600000 */
18436 /* bltzals 0x42200000 bgezals 0x42600000 */
18437 insn &= ~0x02200000;
18438 }
18439
18440 /* Make a label at the end for use with the branch. */
18441 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18442 micromips_label_inc ();
18443 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
18444
18445 /* Refer to it. */
18446 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18447 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18448 fixp->fx_file = fragp->fr_file;
18449 fixp->fx_line = fragp->fr_line;
18450
18451 /* Branch over the jump. */
18452 buf = write_compressed_insn (buf, insn, 4);
18453
18454 if (!compact)
18455 {
18456 /* nop */
18457 if (insn32)
18458 buf = write_compressed_insn (buf, 0x00000000, 4);
18459 else
18460 buf = write_compressed_insn (buf, 0x0c00, 2);
18461 }
18462 }
18463
18464 if (!pic)
18465 {
18466 unsigned long jal = (short_ds || nods
18467 ? 0x74000000 : 0xf4000000); /* jal/s */
18468
18469 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18470 insn = al ? jal : 0xd4000000;
18471
18472 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18473 BFD_RELOC_MICROMIPS_JMP);
18474 fixp->fx_file = fragp->fr_file;
18475 fixp->fx_line = fragp->fr_line;
18476
18477 buf = write_compressed_insn (buf, insn, 4);
18478
18479 if (compact || nods)
18480 {
18481 /* nop */
18482 if (insn32)
18483 buf = write_compressed_insn (buf, 0x00000000, 4);
18484 else
18485 buf = write_compressed_insn (buf, 0x0c00, 2);
18486 }
18487 }
18488 else
18489 {
18490 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18491
18492 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18493 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18494 insn |= at << MICROMIPSOP_SH_RT;
18495
18496 if (exp.X_add_number)
18497 {
18498 exp.X_add_symbol = make_expr_symbol (&exp);
18499 exp.X_add_number = 0;
18500 }
18501
18502 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18503 BFD_RELOC_MICROMIPS_GOT16);
18504 fixp->fx_file = fragp->fr_file;
18505 fixp->fx_line = fragp->fr_line;
18506
18507 buf = write_compressed_insn (buf, insn, 4);
18508
18509 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18510 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18511 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18512
18513 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18514 BFD_RELOC_MICROMIPS_LO16);
18515 fixp->fx_file = fragp->fr_file;
18516 fixp->fx_line = fragp->fr_line;
18517
18518 buf = write_compressed_insn (buf, insn, 4);
18519
18520 if (insn32)
18521 {
18522 /* jr/jalr $at */
18523 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18524 insn |= at << MICROMIPSOP_SH_RS;
18525
18526 buf = write_compressed_insn (buf, insn, 4);
18527
18528 if (compact || nods)
18529 /* nop */
18530 buf = write_compressed_insn (buf, 0x00000000, 4);
18531 }
18532 else
18533 {
18534 /* jr/jrc/jalr/jalrs $at */
18535 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
18536 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
18537
18538 insn = al ? jalr : jr;
18539 insn |= at << MICROMIPSOP_SH_MJ;
18540
18541 buf = write_compressed_insn (buf, insn, 2);
18542 if (al && nods)
18543 {
18544 /* nop */
18545 if (short_ds)
18546 buf = write_compressed_insn (buf, 0x0c00, 2);
18547 else
18548 buf = write_compressed_insn (buf, 0x00000000, 4);
18549 }
18550 }
18551 }
18552
18553 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18554 return;
18555 }
18556
18557 if (RELAX_MIPS16_P (fragp->fr_subtype))
18558 {
18559 int type;
18560 const struct mips_int_operand *operand;
18561 offsetT val;
18562 char *buf;
18563 unsigned int user_length;
18564 bfd_boolean need_reloc;
18565 unsigned long insn;
18566 bfd_boolean mac;
18567 bfd_boolean ext;
18568 segT symsec;
18569
18570 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
18571 operand = mips16_immed_operand (type, FALSE);
18572
18573 mac = RELAX_MIPS16_MACRO (fragp->fr_subtype);
18574 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
18575 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
18576
18577 symsec = S_GET_SEGMENT (fragp->fr_symbol);
18578 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
18579 || (operand->root.type == OP_PCREL && !mac
18580 ? asec != symsec
18581 : !bfd_is_abs_section (symsec)));
18582
18583 if (operand->root.type == OP_PCREL && !mac)
18584 {
18585 const struct mips_pcrel_operand *pcrel_op;
18586
18587 pcrel_op = (const struct mips_pcrel_operand *) operand;
18588
18589 if (pcrel_op->include_isa_bit && !need_reloc)
18590 {
18591 if (!ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
18592 as_bad_where (fragp->fr_file, fragp->fr_line,
18593 _("branch to a symbol in another ISA mode"));
18594 else if ((fragp->fr_offset & 0x1) != 0)
18595 as_bad_where (fragp->fr_file, fragp->fr_line,
18596 _("branch to misaligned address (0x%lx)"),
18597 (long) val);
18598 }
18599
18600 val = mips16_pcrel_val (fragp, pcrel_op, val, 0);
18601
18602 /* Make sure the section winds up with the alignment we have
18603 assumed. */
18604 if (operand->shift > 0)
18605 record_alignment (asec, operand->shift);
18606 }
18607
18608 if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18609 || RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18610 {
18611 if (mac)
18612 as_warn_where (fragp->fr_file, fragp->fr_line,
18613 _("macro instruction expanded into multiple "
18614 "instructions in a branch delay slot"));
18615 else if (ext)
18616 as_warn_where (fragp->fr_file, fragp->fr_line,
18617 _("extended instruction in a branch delay slot"));
18618 }
18619 else if (RELAX_MIPS16_NOMACRO (fragp->fr_subtype) && mac)
18620 as_warn_where (fragp->fr_file, fragp->fr_line,
18621 _("macro instruction expanded into multiple "
18622 "instructions"));
18623
18624 buf = fragp->fr_literal + fragp->fr_fix;
18625
18626 insn = read_compressed_insn (buf, 2);
18627 if (ext)
18628 insn |= MIPS16_EXTEND;
18629
18630 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18631 user_length = 4;
18632 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18633 user_length = 2;
18634 else
18635 user_length = 0;
18636
18637 if (mac)
18638 {
18639 unsigned long reg;
18640 unsigned long new;
18641 unsigned long op;
18642 bfd_boolean e2;
18643
18644 gas_assert (type == 'A' || type == 'B' || type == 'E');
18645 gas_assert (RELAX_MIPS16_SYM32 (fragp->fr_subtype));
18646
18647 e2 = RELAX_MIPS16_E2 (fragp->fr_subtype);
18648
18649 if (need_reloc)
18650 {
18651 fixS *fixp;
18652
18653 gas_assert (!RELAX_MIPS16_PIC (fragp->fr_subtype));
18654
18655 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18656 fragp->fr_symbol, fragp->fr_offset,
18657 FALSE, BFD_RELOC_MIPS16_HI16_S);
18658 fixp->fx_file = fragp->fr_file;
18659 fixp->fx_line = fragp->fr_line;
18660
18661 fixp = fix_new (fragp, buf - fragp->fr_literal + (e2 ? 4 : 8), 4,
18662 fragp->fr_symbol, fragp->fr_offset,
18663 FALSE, BFD_RELOC_MIPS16_LO16);
18664 fixp->fx_file = fragp->fr_file;
18665 fixp->fx_line = fragp->fr_line;
18666
18667 val = 0;
18668 }
18669
18670 switch (insn & 0xf800)
18671 {
18672 case 0x0800: /* ADDIU */
18673 reg = (insn >> 8) & 0x7;
18674 op = 0xf0004800 | (reg << 8);
18675 break;
18676 case 0xb000: /* LW */
18677 reg = (insn >> 8) & 0x7;
18678 op = 0xf0009800 | (reg << 8) | (reg << 5);
18679 break;
18680 case 0xf800: /* I64 */
18681 reg = (insn >> 5) & 0x7;
18682 switch (insn & 0x0700)
18683 {
18684 case 0x0400: /* LD */
18685 op = 0xf0003800 | (reg << 8) | (reg << 5);
18686 break;
18687 case 0x0600: /* DADDIU */
18688 op = 0xf000fd00 | (reg << 5);
18689 break;
18690 default:
18691 abort ();
18692 }
18693 break;
18694 default:
18695 abort ();
18696 }
18697
18698 new = (e2 ? 0xf0006820 : 0xf0006800) | (reg << 8); /* LUI/LI */
18699 new |= mips16_immed_extend ((val + 0x8000) >> 16, 16);
18700 buf = write_compressed_insn (buf, new, 4);
18701 if (!e2)
18702 {
18703 new = 0xf4003000 | (reg << 8) | (reg << 5); /* SLL */
18704 buf = write_compressed_insn (buf, new, 4);
18705 }
18706 op |= mips16_immed_extend (val, 16);
18707 buf = write_compressed_insn (buf, op, 4);
18708
18709 fragp->fr_fix += e2 ? 8 : 12;
18710 }
18711 else
18712 {
18713 unsigned int length = ext ? 4 : 2;
18714
18715 if (need_reloc)
18716 {
18717 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
18718 expressionS exp;
18719 fixS *fixp;
18720
18721 switch (type)
18722 {
18723 case 'p':
18724 case 'q':
18725 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
18726 break;
18727 default:
18728 break;
18729 }
18730 if (mac || reloc == BFD_RELOC_NONE)
18731 as_bad_where (fragp->fr_file, fragp->fr_line,
18732 _("unsupported relocation"));
18733 else if (ext)
18734 {
18735 exp.X_op = O_symbol;
18736 exp.X_add_symbol = fragp->fr_symbol;
18737 exp.X_add_number = fragp->fr_offset;
18738
18739 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18740 TRUE, reloc);
18741
18742 fixp->fx_file = fragp->fr_file;
18743 fixp->fx_line = fragp->fr_line;
18744 }
18745 else
18746 as_bad_where (fragp->fr_file, fragp->fr_line,
18747 _("invalid unextended operand value"));
18748 }
18749 else
18750 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18751 BFD_RELOC_UNUSED, val, user_length, &insn);
18752
18753 gas_assert (mips16_opcode_length (insn) == length);
18754 write_compressed_insn (buf, insn, length);
18755 fragp->fr_fix += length;
18756 }
18757 }
18758 else
18759 {
18760 relax_substateT subtype = fragp->fr_subtype;
18761 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18762 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
18763 int first, second;
18764 fixS *fixp;
18765
18766 first = RELAX_FIRST (subtype);
18767 second = RELAX_SECOND (subtype);
18768 fixp = (fixS *) fragp->fr_opcode;
18769
18770 /* If the delay slot chosen does not match the size of the instruction,
18771 then emit a warning. */
18772 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18773 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18774 {
18775 relax_substateT s;
18776 const char *msg;
18777
18778 s = subtype & (RELAX_DELAY_SLOT_16BIT
18779 | RELAX_DELAY_SLOT_SIZE_FIRST
18780 | RELAX_DELAY_SLOT_SIZE_SECOND);
18781 msg = macro_warning (s);
18782 if (msg != NULL)
18783 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18784 subtype &= ~s;
18785 }
18786
18787 /* Possibly emit a warning if we've chosen the longer option. */
18788 if (use_second == second_longer)
18789 {
18790 relax_substateT s;
18791 const char *msg;
18792
18793 s = (subtype
18794 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18795 msg = macro_warning (s);
18796 if (msg != NULL)
18797 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18798 subtype &= ~s;
18799 }
18800
18801 /* Go through all the fixups for the first sequence. Disable them
18802 (by marking them as done) if we're going to use the second
18803 sequence instead. */
18804 while (fixp
18805 && fixp->fx_frag == fragp
18806 && fixp->fx_where < fragp->fr_fix - second)
18807 {
18808 if (subtype & RELAX_USE_SECOND)
18809 fixp->fx_done = 1;
18810 fixp = fixp->fx_next;
18811 }
18812
18813 /* Go through the fixups for the second sequence. Disable them if
18814 we're going to use the first sequence, otherwise adjust their
18815 addresses to account for the relaxation. */
18816 while (fixp && fixp->fx_frag == fragp)
18817 {
18818 if (subtype & RELAX_USE_SECOND)
18819 fixp->fx_where -= first;
18820 else
18821 fixp->fx_done = 1;
18822 fixp = fixp->fx_next;
18823 }
18824
18825 /* Now modify the frag contents. */
18826 if (subtype & RELAX_USE_SECOND)
18827 {
18828 char *start;
18829
18830 start = fragp->fr_literal + fragp->fr_fix - first - second;
18831 memmove (start, start + first, second);
18832 fragp->fr_fix -= first;
18833 }
18834 else
18835 fragp->fr_fix -= second;
18836 }
18837 }
18838
18839 /* This function is called after the relocs have been generated.
18840 We've been storing mips16 text labels as odd. Here we convert them
18841 back to even for the convenience of the debugger. */
18842
18843 void
18844 mips_frob_file_after_relocs (void)
18845 {
18846 asymbol **syms;
18847 unsigned int count, i;
18848
18849 syms = bfd_get_outsymbols (stdoutput);
18850 count = bfd_get_symcount (stdoutput);
18851 for (i = 0; i < count; i++, syms++)
18852 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18853 && ((*syms)->value & 1) != 0)
18854 {
18855 (*syms)->value &= ~1;
18856 /* If the symbol has an odd size, it was probably computed
18857 incorrectly, so adjust that as well. */
18858 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18859 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18860 }
18861 }
18862
18863 /* This function is called whenever a label is defined, including fake
18864 labels instantiated off the dot special symbol. It is used when
18865 handling branch delays; if a branch has a label, we assume we cannot
18866 move it. This also bumps the value of the symbol by 1 in compressed
18867 code. */
18868
18869 static void
18870 mips_record_label (symbolS *sym)
18871 {
18872 segment_info_type *si = seg_info (now_seg);
18873 struct insn_label_list *l;
18874
18875 if (free_insn_labels == NULL)
18876 l = XNEW (struct insn_label_list);
18877 else
18878 {
18879 l = free_insn_labels;
18880 free_insn_labels = l->next;
18881 }
18882
18883 l->label = sym;
18884 l->next = si->label_list;
18885 si->label_list = l;
18886 }
18887
18888 /* This function is called as tc_frob_label() whenever a label is defined
18889 and adds a DWARF-2 record we only want for true labels. */
18890
18891 void
18892 mips_define_label (symbolS *sym)
18893 {
18894 mips_record_label (sym);
18895 dwarf2_emit_label (sym);
18896 }
18897
18898 /* This function is called by tc_new_dot_label whenever a new dot symbol
18899 is defined. */
18900
18901 void
18902 mips_add_dot_label (symbolS *sym)
18903 {
18904 mips_record_label (sym);
18905 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18906 mips_compressed_mark_label (sym);
18907 }
18908 \f
18909 /* Converting ASE flags from internal to .MIPS.abiflags values. */
18910 static unsigned int
18911 mips_convert_ase_flags (int ase)
18912 {
18913 unsigned int ext_ases = 0;
18914
18915 if (ase & ASE_DSP)
18916 ext_ases |= AFL_ASE_DSP;
18917 if (ase & ASE_DSPR2)
18918 ext_ases |= AFL_ASE_DSPR2;
18919 if (ase & ASE_DSPR3)
18920 ext_ases |= AFL_ASE_DSPR3;
18921 if (ase & ASE_EVA)
18922 ext_ases |= AFL_ASE_EVA;
18923 if (ase & ASE_MCU)
18924 ext_ases |= AFL_ASE_MCU;
18925 if (ase & ASE_MDMX)
18926 ext_ases |= AFL_ASE_MDMX;
18927 if (ase & ASE_MIPS3D)
18928 ext_ases |= AFL_ASE_MIPS3D;
18929 if (ase & ASE_MT)
18930 ext_ases |= AFL_ASE_MT;
18931 if (ase & ASE_SMARTMIPS)
18932 ext_ases |= AFL_ASE_SMARTMIPS;
18933 if (ase & ASE_VIRT)
18934 ext_ases |= AFL_ASE_VIRT;
18935 if (ase & ASE_MSA)
18936 ext_ases |= AFL_ASE_MSA;
18937 if (ase & ASE_XPA)
18938 ext_ases |= AFL_ASE_XPA;
18939 if (ase & ASE_MIPS16E2)
18940 ext_ases |= file_ase_mips16 ? AFL_ASE_MIPS16E2 : 0;
18941
18942 return ext_ases;
18943 }
18944 /* Some special processing for a MIPS ELF file. */
18945
18946 void
18947 mips_elf_final_processing (void)
18948 {
18949 int fpabi;
18950 Elf_Internal_ABIFlags_v0 flags;
18951
18952 flags.version = 0;
18953 flags.isa_rev = 0;
18954 switch (file_mips_opts.isa)
18955 {
18956 case INSN_ISA1:
18957 flags.isa_level = 1;
18958 break;
18959 case INSN_ISA2:
18960 flags.isa_level = 2;
18961 break;
18962 case INSN_ISA3:
18963 flags.isa_level = 3;
18964 break;
18965 case INSN_ISA4:
18966 flags.isa_level = 4;
18967 break;
18968 case INSN_ISA5:
18969 flags.isa_level = 5;
18970 break;
18971 case INSN_ISA32:
18972 flags.isa_level = 32;
18973 flags.isa_rev = 1;
18974 break;
18975 case INSN_ISA32R2:
18976 flags.isa_level = 32;
18977 flags.isa_rev = 2;
18978 break;
18979 case INSN_ISA32R3:
18980 flags.isa_level = 32;
18981 flags.isa_rev = 3;
18982 break;
18983 case INSN_ISA32R5:
18984 flags.isa_level = 32;
18985 flags.isa_rev = 5;
18986 break;
18987 case INSN_ISA32R6:
18988 flags.isa_level = 32;
18989 flags.isa_rev = 6;
18990 break;
18991 case INSN_ISA64:
18992 flags.isa_level = 64;
18993 flags.isa_rev = 1;
18994 break;
18995 case INSN_ISA64R2:
18996 flags.isa_level = 64;
18997 flags.isa_rev = 2;
18998 break;
18999 case INSN_ISA64R3:
19000 flags.isa_level = 64;
19001 flags.isa_rev = 3;
19002 break;
19003 case INSN_ISA64R5:
19004 flags.isa_level = 64;
19005 flags.isa_rev = 5;
19006 break;
19007 case INSN_ISA64R6:
19008 flags.isa_level = 64;
19009 flags.isa_rev = 6;
19010 break;
19011 }
19012
19013 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
19014 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
19015 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
19016 : (file_mips_opts.fp == 64) ? AFL_REG_64
19017 : AFL_REG_32;
19018 flags.cpr2_size = AFL_REG_NONE;
19019 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19020 Tag_GNU_MIPS_ABI_FP);
19021 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
19022 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
19023 if (file_ase_mips16)
19024 flags.ases |= AFL_ASE_MIPS16;
19025 if (file_ase_micromips)
19026 flags.ases |= AFL_ASE_MICROMIPS;
19027 flags.flags1 = 0;
19028 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
19029 || file_mips_opts.fp == 64)
19030 && file_mips_opts.oddspreg)
19031 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
19032 flags.flags2 = 0;
19033
19034 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
19035 ((Elf_External_ABIFlags_v0 *)
19036 mips_flags_frag));
19037
19038 /* Write out the register information. */
19039 if (mips_abi != N64_ABI)
19040 {
19041 Elf32_RegInfo s;
19042
19043 s.ri_gprmask = mips_gprmask;
19044 s.ri_cprmask[0] = mips_cprmask[0];
19045 s.ri_cprmask[1] = mips_cprmask[1];
19046 s.ri_cprmask[2] = mips_cprmask[2];
19047 s.ri_cprmask[3] = mips_cprmask[3];
19048 /* The gp_value field is set by the MIPS ELF backend. */
19049
19050 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
19051 ((Elf32_External_RegInfo *)
19052 mips_regmask_frag));
19053 }
19054 else
19055 {
19056 Elf64_Internal_RegInfo s;
19057
19058 s.ri_gprmask = mips_gprmask;
19059 s.ri_pad = 0;
19060 s.ri_cprmask[0] = mips_cprmask[0];
19061 s.ri_cprmask[1] = mips_cprmask[1];
19062 s.ri_cprmask[2] = mips_cprmask[2];
19063 s.ri_cprmask[3] = mips_cprmask[3];
19064 /* The gp_value field is set by the MIPS ELF backend. */
19065
19066 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
19067 ((Elf64_External_RegInfo *)
19068 mips_regmask_frag));
19069 }
19070
19071 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
19072 sort of BFD interface for this. */
19073 if (mips_any_noreorder)
19074 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
19075 if (mips_pic != NO_PIC)
19076 {
19077 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
19078 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
19079 }
19080 if (mips_abicalls)
19081 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
19082
19083 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
19084 defined at present; this might need to change in future. */
19085 if (file_ase_mips16)
19086 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
19087 if (file_ase_micromips)
19088 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
19089 if (file_mips_opts.ase & ASE_MDMX)
19090 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
19091
19092 /* Set the MIPS ELF ABI flags. */
19093 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
19094 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
19095 else if (mips_abi == O64_ABI)
19096 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
19097 else if (mips_abi == EABI_ABI)
19098 {
19099 if (file_mips_opts.gp == 64)
19100 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
19101 else
19102 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
19103 }
19104 else if (mips_abi == N32_ABI)
19105 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
19106
19107 /* Nothing to do for N64_ABI. */
19108
19109 if (mips_32bitmode)
19110 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
19111
19112 if (mips_nan2008 == 1)
19113 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
19114
19115 /* 32 bit code with 64 bit FP registers. */
19116 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19117 Tag_GNU_MIPS_ABI_FP);
19118 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
19119 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
19120 }
19121 \f
19122 typedef struct proc {
19123 symbolS *func_sym;
19124 symbolS *func_end_sym;
19125 unsigned long reg_mask;
19126 unsigned long reg_offset;
19127 unsigned long fpreg_mask;
19128 unsigned long fpreg_offset;
19129 unsigned long frame_offset;
19130 unsigned long frame_reg;
19131 unsigned long pc_reg;
19132 } procS;
19133
19134 static procS cur_proc;
19135 static procS *cur_proc_ptr;
19136 static int numprocs;
19137
19138 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
19139 as "2", and a normal nop as "0". */
19140
19141 #define NOP_OPCODE_MIPS 0
19142 #define NOP_OPCODE_MIPS16 1
19143 #define NOP_OPCODE_MICROMIPS 2
19144
19145 char
19146 mips_nop_opcode (void)
19147 {
19148 if (seg_info (now_seg)->tc_segment_info_data.micromips)
19149 return NOP_OPCODE_MICROMIPS;
19150 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
19151 return NOP_OPCODE_MIPS16;
19152 else
19153 return NOP_OPCODE_MIPS;
19154 }
19155
19156 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
19157 32-bit microMIPS NOPs here (if applicable). */
19158
19159 void
19160 mips_handle_align (fragS *fragp)
19161 {
19162 char nop_opcode;
19163 char *p;
19164 int bytes, size, excess;
19165 valueT opcode;
19166
19167 if (fragp->fr_type != rs_align_code)
19168 return;
19169
19170 p = fragp->fr_literal + fragp->fr_fix;
19171 nop_opcode = *p;
19172 switch (nop_opcode)
19173 {
19174 case NOP_OPCODE_MICROMIPS:
19175 opcode = micromips_nop32_insn.insn_opcode;
19176 size = 4;
19177 break;
19178 case NOP_OPCODE_MIPS16:
19179 opcode = mips16_nop_insn.insn_opcode;
19180 size = 2;
19181 break;
19182 case NOP_OPCODE_MIPS:
19183 default:
19184 opcode = nop_insn.insn_opcode;
19185 size = 4;
19186 break;
19187 }
19188
19189 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
19190 excess = bytes % size;
19191
19192 /* Handle the leading part if we're not inserting a whole number of
19193 instructions, and make it the end of the fixed part of the frag.
19194 Try to fit in a short microMIPS NOP if applicable and possible,
19195 and use zeroes otherwise. */
19196 gas_assert (excess < 4);
19197 fragp->fr_fix += excess;
19198 switch (excess)
19199 {
19200 case 3:
19201 *p++ = '\0';
19202 /* Fall through. */
19203 case 2:
19204 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
19205 {
19206 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
19207 break;
19208 }
19209 *p++ = '\0';
19210 /* Fall through. */
19211 case 1:
19212 *p++ = '\0';
19213 /* Fall through. */
19214 case 0:
19215 break;
19216 }
19217
19218 md_number_to_chars (p, opcode, size);
19219 fragp->fr_var = size;
19220 }
19221
19222 static long
19223 get_number (void)
19224 {
19225 int negative = 0;
19226 long val = 0;
19227
19228 if (*input_line_pointer == '-')
19229 {
19230 ++input_line_pointer;
19231 negative = 1;
19232 }
19233 if (!ISDIGIT (*input_line_pointer))
19234 as_bad (_("expected simple number"));
19235 if (input_line_pointer[0] == '0')
19236 {
19237 if (input_line_pointer[1] == 'x')
19238 {
19239 input_line_pointer += 2;
19240 while (ISXDIGIT (*input_line_pointer))
19241 {
19242 val <<= 4;
19243 val |= hex_value (*input_line_pointer++);
19244 }
19245 return negative ? -val : val;
19246 }
19247 else
19248 {
19249 ++input_line_pointer;
19250 while (ISDIGIT (*input_line_pointer))
19251 {
19252 val <<= 3;
19253 val |= *input_line_pointer++ - '0';
19254 }
19255 return negative ? -val : val;
19256 }
19257 }
19258 if (!ISDIGIT (*input_line_pointer))
19259 {
19260 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
19261 *input_line_pointer, *input_line_pointer);
19262 as_warn (_("invalid number"));
19263 return -1;
19264 }
19265 while (ISDIGIT (*input_line_pointer))
19266 {
19267 val *= 10;
19268 val += *input_line_pointer++ - '0';
19269 }
19270 return negative ? -val : val;
19271 }
19272
19273 /* The .file directive; just like the usual .file directive, but there
19274 is an initial number which is the ECOFF file index. In the non-ECOFF
19275 case .file implies DWARF-2. */
19276
19277 static void
19278 s_mips_file (int x ATTRIBUTE_UNUSED)
19279 {
19280 static int first_file_directive = 0;
19281
19282 if (ECOFF_DEBUGGING)
19283 {
19284 get_number ();
19285 s_app_file (0);
19286 }
19287 else
19288 {
19289 char *filename;
19290
19291 filename = dwarf2_directive_file (0);
19292
19293 /* Versions of GCC up to 3.1 start files with a ".file"
19294 directive even for stabs output. Make sure that this
19295 ".file" is handled. Note that you need a version of GCC
19296 after 3.1 in order to support DWARF-2 on MIPS. */
19297 if (filename != NULL && ! first_file_directive)
19298 {
19299 (void) new_logical_line (filename, -1);
19300 s_app_file_string (filename, 0);
19301 }
19302 first_file_directive = 1;
19303 }
19304 }
19305
19306 /* The .loc directive, implying DWARF-2. */
19307
19308 static void
19309 s_mips_loc (int x ATTRIBUTE_UNUSED)
19310 {
19311 if (!ECOFF_DEBUGGING)
19312 dwarf2_directive_loc (0);
19313 }
19314
19315 /* The .end directive. */
19316
19317 static void
19318 s_mips_end (int x ATTRIBUTE_UNUSED)
19319 {
19320 symbolS *p;
19321
19322 /* Following functions need their own .frame and .cprestore directives. */
19323 mips_frame_reg_valid = 0;
19324 mips_cprestore_valid = 0;
19325
19326 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19327 {
19328 p = get_symbol ();
19329 demand_empty_rest_of_line ();
19330 }
19331 else
19332 p = NULL;
19333
19334 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19335 as_warn (_(".end not in text section"));
19336
19337 if (!cur_proc_ptr)
19338 {
19339 as_warn (_(".end directive without a preceding .ent directive"));
19340 demand_empty_rest_of_line ();
19341 return;
19342 }
19343
19344 if (p != NULL)
19345 {
19346 gas_assert (S_GET_NAME (p));
19347 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
19348 as_warn (_(".end symbol does not match .ent symbol"));
19349
19350 if (debug_type == DEBUG_STABS)
19351 stabs_generate_asm_endfunc (S_GET_NAME (p),
19352 S_GET_NAME (p));
19353 }
19354 else
19355 as_warn (_(".end directive missing or unknown symbol"));
19356
19357 /* Create an expression to calculate the size of the function. */
19358 if (p && cur_proc_ptr)
19359 {
19360 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
19361 expressionS *exp = XNEW (expressionS);
19362
19363 obj->size = exp;
19364 exp->X_op = O_subtract;
19365 exp->X_add_symbol = symbol_temp_new_now ();
19366 exp->X_op_symbol = p;
19367 exp->X_add_number = 0;
19368
19369 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19370 }
19371
19372 #ifdef md_flush_pending_output
19373 md_flush_pending_output ();
19374 #endif
19375
19376 /* Generate a .pdr section. */
19377 if (!ECOFF_DEBUGGING && mips_flag_pdr)
19378 {
19379 segT saved_seg = now_seg;
19380 subsegT saved_subseg = now_subseg;
19381 expressionS exp;
19382 char *fragp;
19383
19384 gas_assert (pdr_seg);
19385 subseg_set (pdr_seg, 0);
19386
19387 /* Write the symbol. */
19388 exp.X_op = O_symbol;
19389 exp.X_add_symbol = p;
19390 exp.X_add_number = 0;
19391 emit_expr (&exp, 4);
19392
19393 fragp = frag_more (7 * 4);
19394
19395 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19396 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19397 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19398 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19399 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19400 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19401 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
19402
19403 subseg_set (saved_seg, saved_subseg);
19404 }
19405
19406 cur_proc_ptr = NULL;
19407 }
19408
19409 /* The .aent and .ent directives. */
19410
19411 static void
19412 s_mips_ent (int aent)
19413 {
19414 symbolS *symbolP;
19415
19416 symbolP = get_symbol ();
19417 if (*input_line_pointer == ',')
19418 ++input_line_pointer;
19419 SKIP_WHITESPACE ();
19420 if (ISDIGIT (*input_line_pointer)
19421 || *input_line_pointer == '-')
19422 get_number ();
19423
19424 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19425 as_warn (_(".ent or .aent not in text section"));
19426
19427 if (!aent && cur_proc_ptr)
19428 as_warn (_("missing .end"));
19429
19430 if (!aent)
19431 {
19432 /* This function needs its own .frame and .cprestore directives. */
19433 mips_frame_reg_valid = 0;
19434 mips_cprestore_valid = 0;
19435
19436 cur_proc_ptr = &cur_proc;
19437 memset (cur_proc_ptr, '\0', sizeof (procS));
19438
19439 cur_proc_ptr->func_sym = symbolP;
19440
19441 ++numprocs;
19442
19443 if (debug_type == DEBUG_STABS)
19444 stabs_generate_asm_func (S_GET_NAME (symbolP),
19445 S_GET_NAME (symbolP));
19446 }
19447
19448 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19449
19450 demand_empty_rest_of_line ();
19451 }
19452
19453 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
19454 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
19455 s_mips_frame is used so that we can set the PDR information correctly.
19456 We can't use the ecoff routines because they make reference to the ecoff
19457 symbol table (in the mdebug section). */
19458
19459 static void
19460 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
19461 {
19462 if (ECOFF_DEBUGGING)
19463 s_ignore (ignore);
19464 else
19465 {
19466 long val;
19467
19468 if (cur_proc_ptr == (procS *) NULL)
19469 {
19470 as_warn (_(".frame outside of .ent"));
19471 demand_empty_rest_of_line ();
19472 return;
19473 }
19474
19475 cur_proc_ptr->frame_reg = tc_get_register (1);
19476
19477 SKIP_WHITESPACE ();
19478 if (*input_line_pointer++ != ','
19479 || get_absolute_expression_and_terminator (&val) != ',')
19480 {
19481 as_warn (_("bad .frame directive"));
19482 --input_line_pointer;
19483 demand_empty_rest_of_line ();
19484 return;
19485 }
19486
19487 cur_proc_ptr->frame_offset = val;
19488 cur_proc_ptr->pc_reg = tc_get_register (0);
19489
19490 demand_empty_rest_of_line ();
19491 }
19492 }
19493
19494 /* The .fmask and .mask directives. If the mdebug section is present
19495 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
19496 embedded targets, s_mips_mask is used so that we can set the PDR
19497 information correctly. We can't use the ecoff routines because they
19498 make reference to the ecoff symbol table (in the mdebug section). */
19499
19500 static void
19501 s_mips_mask (int reg_type)
19502 {
19503 if (ECOFF_DEBUGGING)
19504 s_ignore (reg_type);
19505 else
19506 {
19507 long mask, off;
19508
19509 if (cur_proc_ptr == (procS *) NULL)
19510 {
19511 as_warn (_(".mask/.fmask outside of .ent"));
19512 demand_empty_rest_of_line ();
19513 return;
19514 }
19515
19516 if (get_absolute_expression_and_terminator (&mask) != ',')
19517 {
19518 as_warn (_("bad .mask/.fmask directive"));
19519 --input_line_pointer;
19520 demand_empty_rest_of_line ();
19521 return;
19522 }
19523
19524 off = get_absolute_expression ();
19525
19526 if (reg_type == 'F')
19527 {
19528 cur_proc_ptr->fpreg_mask = mask;
19529 cur_proc_ptr->fpreg_offset = off;
19530 }
19531 else
19532 {
19533 cur_proc_ptr->reg_mask = mask;
19534 cur_proc_ptr->reg_offset = off;
19535 }
19536
19537 demand_empty_rest_of_line ();
19538 }
19539 }
19540
19541 /* A table describing all the processors gas knows about. Names are
19542 matched in the order listed.
19543
19544 To ease comparison, please keep this table in the same order as
19545 gcc's mips_cpu_info_table[]. */
19546 static const struct mips_cpu_info mips_cpu_info_table[] =
19547 {
19548 /* Entries for generic ISAs */
19549 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19550 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19551 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19552 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19553 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19554 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19555 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19556 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19557 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
19558 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
19559 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19560 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
19561 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
19562 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
19563 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
19564
19565 /* MIPS I */
19566 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19567 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19568 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
19569
19570 /* MIPS II */
19571 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
19572
19573 /* MIPS III */
19574 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19575 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19576 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19577 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19578 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19579 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19580 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19581 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19582 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19583 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19584 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19585 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19586 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
19587 /* ST Microelectronics Loongson 2E and 2F cores */
19588 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
19589 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
19590
19591 /* MIPS IV */
19592 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19593 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19594 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19595 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19596 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19597 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19598 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19599 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19600 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19601 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19602 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19603 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19604 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19605 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19606 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
19607
19608 /* MIPS 32 */
19609 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19610 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19611 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19612 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
19613
19614 /* MIPS 32 Release 2 */
19615 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19616 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19617 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19618 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19619 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19620 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19621 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19622 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19623 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19624 ISA_MIPS32R2, CPU_MIPS32R2 },
19625 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19626 ISA_MIPS32R2, CPU_MIPS32R2 },
19627 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19628 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19629 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19630 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19631 /* Deprecated forms of the above. */
19632 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19633 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19634 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
19635 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19636 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19637 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19638 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19639 /* Deprecated forms of the above. */
19640 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19641 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19642 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
19643 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19644 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19645 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19646 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19647 /* Deprecated forms of the above. */
19648 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19649 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19650 /* 34Kn is a 34kc without DSP. */
19651 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19652 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
19653 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19654 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19655 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19656 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19657 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19658 /* Deprecated forms of the above. */
19659 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19660 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19661 /* 1004K cores are multiprocessor versions of the 34K. */
19662 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19663 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19664 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19665 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19666 /* interaptiv is the new name for 1004kf */
19667 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19668 /* M5100 family */
19669 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19670 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19671 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
19672 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
19673
19674 /* MIPS 64 */
19675 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19676 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19677 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19678 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19679
19680 /* Broadcom SB-1 CPU core */
19681 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19682 /* Broadcom SB-1A CPU core */
19683 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19684
19685 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
19686
19687 /* MIPS 64 Release 2 */
19688
19689 /* Cavium Networks Octeon CPU core */
19690 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
19691 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
19692 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
19693 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
19694
19695 /* RMI Xlr */
19696 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
19697
19698 /* Broadcom XLP.
19699 XLP is mostly like XLR, with the prominent exception that it is
19700 MIPS64R2 rather than MIPS64. */
19701 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
19702
19703 /* MIPS 64 Release 6 */
19704 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19705 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19706
19707 /* End marker */
19708 { NULL, 0, 0, 0, 0 }
19709 };
19710
19711
19712 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19713 with a final "000" replaced by "k". Ignore case.
19714
19715 Note: this function is shared between GCC and GAS. */
19716
19717 static bfd_boolean
19718 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
19719 {
19720 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19721 given++, canonical++;
19722
19723 return ((*given == 0 && *canonical == 0)
19724 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19725 }
19726
19727
19728 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19729 CPU name. We've traditionally allowed a lot of variation here.
19730
19731 Note: this function is shared between GCC and GAS. */
19732
19733 static bfd_boolean
19734 mips_matching_cpu_name_p (const char *canonical, const char *given)
19735 {
19736 /* First see if the name matches exactly, or with a final "000"
19737 turned into "k". */
19738 if (mips_strict_matching_cpu_name_p (canonical, given))
19739 return TRUE;
19740
19741 /* If not, try comparing based on numerical designation alone.
19742 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19743 if (TOLOWER (*given) == 'r')
19744 given++;
19745 if (!ISDIGIT (*given))
19746 return FALSE;
19747
19748 /* Skip over some well-known prefixes in the canonical name,
19749 hoping to find a number there too. */
19750 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19751 canonical += 2;
19752 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19753 canonical += 2;
19754 else if (TOLOWER (canonical[0]) == 'r')
19755 canonical += 1;
19756
19757 return mips_strict_matching_cpu_name_p (canonical, given);
19758 }
19759
19760
19761 /* Parse an option that takes the name of a processor as its argument.
19762 OPTION is the name of the option and CPU_STRING is the argument.
19763 Return the corresponding processor enumeration if the CPU_STRING is
19764 recognized, otherwise report an error and return null.
19765
19766 A similar function exists in GCC. */
19767
19768 static const struct mips_cpu_info *
19769 mips_parse_cpu (const char *option, const char *cpu_string)
19770 {
19771 const struct mips_cpu_info *p;
19772
19773 /* 'from-abi' selects the most compatible architecture for the given
19774 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19775 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19776 version. Look first at the -mgp options, if given, otherwise base
19777 the choice on MIPS_DEFAULT_64BIT.
19778
19779 Treat NO_ABI like the EABIs. One reason to do this is that the
19780 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19781 architecture. This code picks MIPS I for 'mips' and MIPS III for
19782 'mips64', just as we did in the days before 'from-abi'. */
19783 if (strcasecmp (cpu_string, "from-abi") == 0)
19784 {
19785 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19786 return mips_cpu_info_from_isa (ISA_MIPS1);
19787
19788 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19789 return mips_cpu_info_from_isa (ISA_MIPS3);
19790
19791 if (file_mips_opts.gp >= 0)
19792 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
19793 ? ISA_MIPS1 : ISA_MIPS3);
19794
19795 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19796 ? ISA_MIPS3
19797 : ISA_MIPS1);
19798 }
19799
19800 /* 'default' has traditionally been a no-op. Probably not very useful. */
19801 if (strcasecmp (cpu_string, "default") == 0)
19802 return 0;
19803
19804 for (p = mips_cpu_info_table; p->name != 0; p++)
19805 if (mips_matching_cpu_name_p (p->name, cpu_string))
19806 return p;
19807
19808 as_bad (_("bad value (%s) for %s"), cpu_string, option);
19809 return 0;
19810 }
19811
19812 /* Return the canonical processor information for ISA (a member of the
19813 ISA_MIPS* enumeration). */
19814
19815 static const struct mips_cpu_info *
19816 mips_cpu_info_from_isa (int isa)
19817 {
19818 int i;
19819
19820 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19821 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
19822 && isa == mips_cpu_info_table[i].isa)
19823 return (&mips_cpu_info_table[i]);
19824
19825 return NULL;
19826 }
19827
19828 static const struct mips_cpu_info *
19829 mips_cpu_info_from_arch (int arch)
19830 {
19831 int i;
19832
19833 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19834 if (arch == mips_cpu_info_table[i].cpu)
19835 return (&mips_cpu_info_table[i]);
19836
19837 return NULL;
19838 }
19839 \f
19840 static void
19841 show (FILE *stream, const char *string, int *col_p, int *first_p)
19842 {
19843 if (*first_p)
19844 {
19845 fprintf (stream, "%24s", "");
19846 *col_p = 24;
19847 }
19848 else
19849 {
19850 fprintf (stream, ", ");
19851 *col_p += 2;
19852 }
19853
19854 if (*col_p + strlen (string) > 72)
19855 {
19856 fprintf (stream, "\n%24s", "");
19857 *col_p = 24;
19858 }
19859
19860 fprintf (stream, "%s", string);
19861 *col_p += strlen (string);
19862
19863 *first_p = 0;
19864 }
19865
19866 void
19867 md_show_usage (FILE *stream)
19868 {
19869 int column, first;
19870 size_t i;
19871
19872 fprintf (stream, _("\
19873 MIPS options:\n\
19874 -EB generate big endian output\n\
19875 -EL generate little endian output\n\
19876 -g, -g2 do not remove unneeded NOPs or swap branches\n\
19877 -G NUM allow referencing objects up to NUM bytes\n\
19878 implicitly with the gp register [default 8]\n"));
19879 fprintf (stream, _("\
19880 -mips1 generate MIPS ISA I instructions\n\
19881 -mips2 generate MIPS ISA II instructions\n\
19882 -mips3 generate MIPS ISA III instructions\n\
19883 -mips4 generate MIPS ISA IV instructions\n\
19884 -mips5 generate MIPS ISA V instructions\n\
19885 -mips32 generate MIPS32 ISA instructions\n\
19886 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
19887 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
19888 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
19889 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
19890 -mips64 generate MIPS64 ISA instructions\n\
19891 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
19892 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
19893 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
19894 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
19895 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19896
19897 first = 1;
19898
19899 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19900 show (stream, mips_cpu_info_table[i].name, &column, &first);
19901 show (stream, "from-abi", &column, &first);
19902 fputc ('\n', stream);
19903
19904 fprintf (stream, _("\
19905 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19906 -no-mCPU don't generate code specific to CPU.\n\
19907 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19908
19909 first = 1;
19910
19911 show (stream, "3900", &column, &first);
19912 show (stream, "4010", &column, &first);
19913 show (stream, "4100", &column, &first);
19914 show (stream, "4650", &column, &first);
19915 fputc ('\n', stream);
19916
19917 fprintf (stream, _("\
19918 -mips16 generate mips16 instructions\n\
19919 -no-mips16 do not generate mips16 instructions\n"));
19920 fprintf (stream, _("\
19921 -mmicromips generate microMIPS instructions\n\
19922 -mno-micromips do not generate microMIPS instructions\n"));
19923 fprintf (stream, _("\
19924 -msmartmips generate smartmips instructions\n\
19925 -mno-smartmips do not generate smartmips instructions\n"));
19926 fprintf (stream, _("\
19927 -mdsp generate DSP instructions\n\
19928 -mno-dsp do not generate DSP instructions\n"));
19929 fprintf (stream, _("\
19930 -mdspr2 generate DSP R2 instructions\n\
19931 -mno-dspr2 do not generate DSP R2 instructions\n"));
19932 fprintf (stream, _("\
19933 -mdspr3 generate DSP R3 instructions\n\
19934 -mno-dspr3 do not generate DSP R3 instructions\n"));
19935 fprintf (stream, _("\
19936 -mmt generate MT instructions\n\
19937 -mno-mt do not generate MT instructions\n"));
19938 fprintf (stream, _("\
19939 -mmcu generate MCU instructions\n\
19940 -mno-mcu do not generate MCU instructions\n"));
19941 fprintf (stream, _("\
19942 -mmsa generate MSA instructions\n\
19943 -mno-msa do not generate MSA instructions\n"));
19944 fprintf (stream, _("\
19945 -mxpa generate eXtended Physical Address (XPA) instructions\n\
19946 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
19947 fprintf (stream, _("\
19948 -mvirt generate Virtualization instructions\n\
19949 -mno-virt do not generate Virtualization instructions\n"));
19950 fprintf (stream, _("\
19951 -minsn32 only generate 32-bit microMIPS instructions\n\
19952 -mno-insn32 generate all microMIPS instructions\n"));
19953 fprintf (stream, _("\
19954 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19955 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
19956 -mfix-vr4120 work around certain VR4120 errata\n\
19957 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
19958 -mfix-24k insert a nop after ERET and DERET instructions\n\
19959 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
19960 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19961 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
19962 -msym32 assume all symbols have 32-bit values\n\
19963 -O0 remove unneeded NOPs, do not swap branches\n\
19964 -O remove unneeded NOPs and swap branches\n\
19965 --trap, --no-break trap exception on div by 0 and mult overflow\n\
19966 --break, --no-trap break exception on div by 0 and mult overflow\n"));
19967 fprintf (stream, _("\
19968 -mhard-float allow floating-point instructions\n\
19969 -msoft-float do not allow floating-point instructions\n\
19970 -msingle-float only allow 32-bit floating-point operations\n\
19971 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
19972 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
19973 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
19974 -mignore-branch-isa accept invalid branches requiring an ISA mode switch\n\
19975 -mno-ignore-branch-isa reject invalid branches requiring an ISA mode switch\n\
19976 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19977
19978 first = 1;
19979
19980 show (stream, "legacy", &column, &first);
19981 show (stream, "2008", &column, &first);
19982
19983 fputc ('\n', stream);
19984
19985 fprintf (stream, _("\
19986 -KPIC, -call_shared generate SVR4 position independent code\n\
19987 -call_nonpic generate non-PIC code that can operate with DSOs\n\
19988 -mvxworks-pic generate VxWorks position independent code\n\
19989 -non_shared do not generate code that can operate with DSOs\n\
19990 -xgot assume a 32 bit GOT\n\
19991 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
19992 -mshared, -mno-shared disable/enable .cpload optimization for\n\
19993 position dependent (non shared) code\n\
19994 -mabi=ABI create ABI conformant object file for:\n"));
19995
19996 first = 1;
19997
19998 show (stream, "32", &column, &first);
19999 show (stream, "o64", &column, &first);
20000 show (stream, "n32", &column, &first);
20001 show (stream, "64", &column, &first);
20002 show (stream, "eabi", &column, &first);
20003
20004 fputc ('\n', stream);
20005
20006 fprintf (stream, _("\
20007 -32 create o32 ABI object file (default)\n\
20008 -n32 create n32 ABI object file\n\
20009 -64 create 64 ABI object file\n"));
20010 }
20011
20012 #ifdef TE_IRIX
20013 enum dwarf2_format
20014 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
20015 {
20016 if (HAVE_64BIT_SYMBOLS)
20017 return dwarf2_format_64bit_irix;
20018 else
20019 return dwarf2_format_32bit;
20020 }
20021 #endif
20022
20023 int
20024 mips_dwarf2_addr_size (void)
20025 {
20026 if (HAVE_64BIT_OBJECTS)
20027 return 8;
20028 else
20029 return 4;
20030 }
20031
20032 /* Standard calling conventions leave the CFA at SP on entry. */
20033 void
20034 mips_cfi_frame_initial_instructions (void)
20035 {
20036 cfi_add_CFA_def_cfa_register (SP);
20037 }
20038
20039 int
20040 tc_mips_regname_to_dw2regnum (char *regname)
20041 {
20042 unsigned int regnum = -1;
20043 unsigned int reg;
20044
20045 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
20046 regnum = reg;
20047
20048 return regnum;
20049 }
20050
20051 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
20052 Given a symbolic attribute NAME, return the proper integer value.
20053 Returns -1 if the attribute is not known. */
20054
20055 int
20056 mips_convert_symbolic_attribute (const char *name)
20057 {
20058 static const struct
20059 {
20060 const char * name;
20061 const int tag;
20062 }
20063 attribute_table[] =
20064 {
20065 #define T(tag) {#tag, tag}
20066 T (Tag_GNU_MIPS_ABI_FP),
20067 T (Tag_GNU_MIPS_ABI_MSA),
20068 #undef T
20069 };
20070 unsigned int i;
20071
20072 if (name == NULL)
20073 return -1;
20074
20075 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
20076 if (streq (name, attribute_table[i].name))
20077 return attribute_table[i].tag;
20078
20079 return -1;
20080 }
20081
20082 void
20083 md_mips_end (void)
20084 {
20085 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
20086
20087 mips_emit_delays ();
20088 if (cur_proc_ptr)
20089 as_warn (_("missing .end at end of assembly"));
20090
20091 /* Just in case no code was emitted, do the consistency check. */
20092 file_mips_check_options ();
20093
20094 /* Set a floating-point ABI if the user did not. */
20095 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
20096 {
20097 /* Perform consistency checks on the floating-point ABI. */
20098 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20099 Tag_GNU_MIPS_ABI_FP);
20100 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
20101 check_fpabi (fpabi);
20102 }
20103 else
20104 {
20105 /* Soft-float gets precedence over single-float, the two options should
20106 not be used together so this should not matter. */
20107 if (file_mips_opts.soft_float == 1)
20108 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
20109 /* Single-float gets precedence over all double_float cases. */
20110 else if (file_mips_opts.single_float == 1)
20111 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
20112 else
20113 {
20114 switch (file_mips_opts.fp)
20115 {
20116 case 32:
20117 if (file_mips_opts.gp == 32)
20118 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20119 break;
20120 case 0:
20121 fpabi = Val_GNU_MIPS_ABI_FP_XX;
20122 break;
20123 case 64:
20124 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
20125 fpabi = Val_GNU_MIPS_ABI_FP_64A;
20126 else if (file_mips_opts.gp == 32)
20127 fpabi = Val_GNU_MIPS_ABI_FP_64;
20128 else
20129 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20130 break;
20131 }
20132 }
20133
20134 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20135 Tag_GNU_MIPS_ABI_FP, fpabi);
20136 }
20137 }
20138
20139 /* Returns the relocation type required for a particular CFI encoding. */
20140
20141 bfd_reloc_code_real_type
20142 mips_cfi_reloc_for_encoding (int encoding)
20143 {
20144 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
20145 return BFD_RELOC_32_PCREL;
20146 else return BFD_RELOC_NONE;
20147 }
This page took 0.425846 seconds and 3 git commands to generate.