bfd/
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4 Contributed by the OSF and Ralph Campbell.
5 Written by Keith Knowles and Ralph Campbell, working independently.
6 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
7 Support.
8
9 This file is part of GAS.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include "config.h"
28 #include "subsegs.h"
29 #include "safe-ctype.h"
30
31 #include "opcode/mips.h"
32 #include "itbl-ops.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35
36 #ifdef DEBUG
37 #define DBG(x) printf x
38 #else
39 #define DBG(x)
40 #endif
41
42 #ifdef OBJ_MAYBE_ELF
43 /* Clean up namespace so we can include obj-elf.h too. */
44 static int mips_output_flavor (void);
45 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
46 #undef OBJ_PROCESS_STAB
47 #undef OUTPUT_FLAVOR
48 #undef S_GET_ALIGN
49 #undef S_GET_SIZE
50 #undef S_SET_ALIGN
51 #undef S_SET_SIZE
52 #undef obj_frob_file
53 #undef obj_frob_file_after_relocs
54 #undef obj_frob_symbol
55 #undef obj_pop_insert
56 #undef obj_sec_sym_ok_for_reloc
57 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
58
59 #include "obj-elf.h"
60 /* Fix any of them that we actually care about. */
61 #undef OUTPUT_FLAVOR
62 #define OUTPUT_FLAVOR mips_output_flavor()
63 #endif
64
65 #if defined (OBJ_ELF)
66 #include "elf/mips.h"
67 #endif
68
69 #ifndef ECOFF_DEBUGGING
70 #define NO_ECOFF_DEBUGGING
71 #define ECOFF_DEBUGGING 0
72 #endif
73
74 int mips_flag_mdebug = -1;
75
76 /* Control generation of .pdr sections. Off by default on IRIX: the native
77 linker doesn't know about and discards them, but relocations against them
78 remain, leading to rld crashes. */
79 #ifdef TE_IRIX
80 int mips_flag_pdr = FALSE;
81 #else
82 int mips_flag_pdr = TRUE;
83 #endif
84
85 #include "ecoff.h"
86
87 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
88 static char *mips_regmask_frag;
89 #endif
90
91 #define ZERO 0
92 #define ATREG 1
93 #define TREG 24
94 #define PIC_CALL_REG 25
95 #define KT0 26
96 #define KT1 27
97 #define GP 28
98 #define SP 29
99 #define FP 30
100 #define RA 31
101
102 #define ILLEGAL_REG (32)
103
104 #define AT mips_opts.at
105
106 /* Allow override of standard little-endian ECOFF format. */
107
108 #ifndef ECOFF_LITTLE_FORMAT
109 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
110 #endif
111
112 extern int target_big_endian;
113
114 /* The name of the readonly data section. */
115 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
116 ? ".rdata" \
117 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
118 ? ".rdata" \
119 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
120 ? ".rodata" \
121 : (abort (), ""))
122
123 /* Information about an instruction, including its format, operands
124 and fixups. */
125 struct mips_cl_insn
126 {
127 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
128 const struct mips_opcode *insn_mo;
129
130 /* True if this is a mips16 instruction and if we want the extended
131 form of INSN_MO. */
132 bfd_boolean use_extend;
133
134 /* The 16-bit extension instruction to use when USE_EXTEND is true. */
135 unsigned short extend;
136
137 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
138 a copy of INSN_MO->match with the operands filled in. */
139 unsigned long insn_opcode;
140
141 /* The frag that contains the instruction. */
142 struct frag *frag;
143
144 /* The offset into FRAG of the first instruction byte. */
145 long where;
146
147 /* The relocs associated with the instruction, if any. */
148 fixS *fixp[3];
149
150 /* True if this entry cannot be moved from its current position. */
151 unsigned int fixed_p : 1;
152
153 /* True if this instruction occurred in a .set noreorder block. */
154 unsigned int noreorder_p : 1;
155
156 /* True for mips16 instructions that jump to an absolute address. */
157 unsigned int mips16_absolute_jump_p : 1;
158 };
159
160 /* The ABI to use. */
161 enum mips_abi_level
162 {
163 NO_ABI = 0,
164 O32_ABI,
165 O64_ABI,
166 N32_ABI,
167 N64_ABI,
168 EABI_ABI
169 };
170
171 /* MIPS ABI we are using for this output file. */
172 static enum mips_abi_level mips_abi = NO_ABI;
173
174 /* Whether or not we have code that can call pic code. */
175 int mips_abicalls = FALSE;
176
177 /* Whether or not we have code which can be put into a shared
178 library. */
179 static bfd_boolean mips_in_shared = TRUE;
180
181 /* This is the set of options which may be modified by the .set
182 pseudo-op. We use a struct so that .set push and .set pop are more
183 reliable. */
184
185 struct mips_set_options
186 {
187 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
188 if it has not been initialized. Changed by `.set mipsN', and the
189 -mipsN command line option, and the default CPU. */
190 int isa;
191 /* Enabled Application Specific Extensions (ASEs). These are set to -1
192 if they have not been initialized. Changed by `.set <asename>', by
193 command line options, and based on the default architecture. */
194 int ase_mips3d;
195 int ase_mdmx;
196 int ase_smartmips;
197 int ase_dsp;
198 int ase_dspr2;
199 int ase_mt;
200 /* Whether we are assembling for the mips16 processor. 0 if we are
201 not, 1 if we are, and -1 if the value has not been initialized.
202 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
203 -nomips16 command line options, and the default CPU. */
204 int mips16;
205 /* Non-zero if we should not reorder instructions. Changed by `.set
206 reorder' and `.set noreorder'. */
207 int noreorder;
208 /* Non-zero if we should not permit the register designated "assembler
209 temporary" to be used in instructions. The value is the register
210 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
211 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
212 unsigned int at;
213 /* Non-zero if we should warn when a macro instruction expands into
214 more than one machine instruction. Changed by `.set nomacro' and
215 `.set macro'. */
216 int warn_about_macros;
217 /* Non-zero if we should not move instructions. Changed by `.set
218 move', `.set volatile', `.set nomove', and `.set novolatile'. */
219 int nomove;
220 /* Non-zero if we should not optimize branches by moving the target
221 of the branch into the delay slot. Actually, we don't perform
222 this optimization anyhow. Changed by `.set bopt' and `.set
223 nobopt'. */
224 int nobopt;
225 /* Non-zero if we should not autoextend mips16 instructions.
226 Changed by `.set autoextend' and `.set noautoextend'. */
227 int noautoextend;
228 /* Restrict general purpose registers and floating point registers
229 to 32 bit. This is initially determined when -mgp32 or -mfp32
230 is passed but can changed if the assembler code uses .set mipsN. */
231 int gp32;
232 int fp32;
233 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
234 command line option, and the default CPU. */
235 int arch;
236 /* True if ".set sym32" is in effect. */
237 bfd_boolean sym32;
238 /* True if floating-point operations are not allowed. Changed by .set
239 softfloat or .set hardfloat, by command line options -msoft-float or
240 -mhard-float. The default is false. */
241 bfd_boolean soft_float;
242
243 /* True if only single-precision floating-point operations are allowed.
244 Changed by .set singlefloat or .set doublefloat, command-line options
245 -msingle-float or -mdouble-float. The default is false. */
246 bfd_boolean single_float;
247 };
248
249 /* This is the struct we use to hold the current set of options. Note
250 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
251 -1 to indicate that they have not been initialized. */
252
253 /* True if -mgp32 was passed. */
254 static int file_mips_gp32 = -1;
255
256 /* True if -mfp32 was passed. */
257 static int file_mips_fp32 = -1;
258
259 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
260 static int file_mips_soft_float = 0;
261
262 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
263 static int file_mips_single_float = 0;
264
265 static struct mips_set_options mips_opts =
266 {
267 /* isa */ ISA_UNKNOWN, /* ase_mips3d */ -1, /* ase_mdmx */ -1,
268 /* ase_smartmips */ 0, /* ase_dsp */ -1, /* ase_dspr2 */ -1, /* ase_mt */ -1,
269 /* mips16 */ -1, /* noreorder */ 0, /* at */ ATREG,
270 /* warn_about_macros */ 0, /* nomove */ 0, /* nobopt */ 0,
271 /* noautoextend */ 0, /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN,
272 /* sym32 */ FALSE, /* soft_float */ FALSE, /* single_float */ FALSE
273 };
274
275 /* These variables are filled in with the masks of registers used.
276 The object format code reads them and puts them in the appropriate
277 place. */
278 unsigned long mips_gprmask;
279 unsigned long mips_cprmask[4];
280
281 /* MIPS ISA we are using for this output file. */
282 static int file_mips_isa = ISA_UNKNOWN;
283
284 /* True if -mips16 was passed or implied by arguments passed on the
285 command line (e.g., by -march). */
286 static int file_ase_mips16;
287
288 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
289 || mips_opts.isa == ISA_MIPS32R2 \
290 || mips_opts.isa == ISA_MIPS64 \
291 || mips_opts.isa == ISA_MIPS64R2)
292
293 /* True if -mips3d was passed or implied by arguments passed on the
294 command line (e.g., by -march). */
295 static int file_ase_mips3d;
296
297 /* True if -mdmx was passed or implied by arguments passed on the
298 command line (e.g., by -march). */
299 static int file_ase_mdmx;
300
301 /* True if -msmartmips was passed or implied by arguments passed on the
302 command line (e.g., by -march). */
303 static int file_ase_smartmips;
304
305 #define ISA_SUPPORTS_SMARTMIPS (mips_opts.isa == ISA_MIPS32 \
306 || mips_opts.isa == ISA_MIPS32R2)
307
308 /* True if -mdsp was passed or implied by arguments passed on the
309 command line (e.g., by -march). */
310 static int file_ase_dsp;
311
312 #define ISA_SUPPORTS_DSP_ASE (mips_opts.isa == ISA_MIPS32R2 \
313 || mips_opts.isa == ISA_MIPS64R2)
314
315 #define ISA_SUPPORTS_DSP64_ASE (mips_opts.isa == ISA_MIPS64R2)
316
317 /* True if -mdspr2 was passed or implied by arguments passed on the
318 command line (e.g., by -march). */
319 static int file_ase_dspr2;
320
321 #define ISA_SUPPORTS_DSPR2_ASE (mips_opts.isa == ISA_MIPS32R2 \
322 || mips_opts.isa == ISA_MIPS64R2)
323
324 /* True if -mmt was passed or implied by arguments passed on the
325 command line (e.g., by -march). */
326 static int file_ase_mt;
327
328 #define ISA_SUPPORTS_MT_ASE (mips_opts.isa == ISA_MIPS32R2 \
329 || mips_opts.isa == ISA_MIPS64R2)
330
331 /* The argument of the -march= flag. The architecture we are assembling. */
332 static int file_mips_arch = CPU_UNKNOWN;
333 static const char *mips_arch_string;
334
335 /* The argument of the -mtune= flag. The architecture for which we
336 are optimizing. */
337 static int mips_tune = CPU_UNKNOWN;
338 static const char *mips_tune_string;
339
340 /* True when generating 32-bit code for a 64-bit processor. */
341 static int mips_32bitmode = 0;
342
343 /* True if the given ABI requires 32-bit registers. */
344 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
345
346 /* Likewise 64-bit registers. */
347 #define ABI_NEEDS_64BIT_REGS(ABI) \
348 ((ABI) == N32_ABI \
349 || (ABI) == N64_ABI \
350 || (ABI) == O64_ABI)
351
352 /* Return true if ISA supports 64 bit wide gp registers. */
353 #define ISA_HAS_64BIT_REGS(ISA) \
354 ((ISA) == ISA_MIPS3 \
355 || (ISA) == ISA_MIPS4 \
356 || (ISA) == ISA_MIPS5 \
357 || (ISA) == ISA_MIPS64 \
358 || (ISA) == ISA_MIPS64R2)
359
360 /* Return true if ISA supports 64 bit wide float registers. */
361 #define ISA_HAS_64BIT_FPRS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS32R2 \
366 || (ISA) == ISA_MIPS64 \
367 || (ISA) == ISA_MIPS64R2)
368
369 /* Return true if ISA supports 64-bit right rotate (dror et al.)
370 instructions. */
371 #define ISA_HAS_DROR(ISA) \
372 ((ISA) == ISA_MIPS64R2)
373
374 /* Return true if ISA supports 32-bit right rotate (ror et al.)
375 instructions. */
376 #define ISA_HAS_ROR(ISA) \
377 ((ISA) == ISA_MIPS32R2 \
378 || (ISA) == ISA_MIPS64R2 \
379 || mips_opts.ase_smartmips)
380
381 /* Return true if ISA supports single-precision floats in odd registers. */
382 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
383 ((ISA) == ISA_MIPS32 \
384 || (ISA) == ISA_MIPS32R2 \
385 || (ISA) == ISA_MIPS64 \
386 || (ISA) == ISA_MIPS64R2)
387
388 /* Return true if ISA supports move to/from high part of a 64-bit
389 floating-point register. */
390 #define ISA_HAS_MXHC1(ISA) \
391 ((ISA) == ISA_MIPS32R2 \
392 || (ISA) == ISA_MIPS64R2)
393
394 #define HAVE_32BIT_GPRS \
395 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
396
397 #define HAVE_32BIT_FPRS \
398 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
399
400 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
401 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
402
403 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
404
405 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
406
407 /* True if relocations are stored in-place. */
408 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
409
410 /* The ABI-derived address size. */
411 #define HAVE_64BIT_ADDRESSES \
412 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
413 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
414
415 /* The size of symbolic constants (i.e., expressions of the form
416 "SYMBOL" or "SYMBOL + OFFSET"). */
417 #define HAVE_32BIT_SYMBOLS \
418 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
419 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
420
421 /* Addresses are loaded in different ways, depending on the address size
422 in use. The n32 ABI Documentation also mandates the use of additions
423 with overflow checking, but existing implementations don't follow it. */
424 #define ADDRESS_ADD_INSN \
425 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
426
427 #define ADDRESS_ADDI_INSN \
428 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
429
430 #define ADDRESS_LOAD_INSN \
431 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
432
433 #define ADDRESS_STORE_INSN \
434 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
435
436 /* Return true if the given CPU supports the MIPS16 ASE. */
437 #define CPU_HAS_MIPS16(cpu) \
438 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
439 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
440
441 /* True if CPU has a dror instruction. */
442 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
443
444 /* True if CPU has a ror instruction. */
445 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
446
447 /* True if CPU has seq/sne and seqi/snei instructions. */
448 #define CPU_HAS_SEQ(CPU) ((CPU) == CPU_OCTEON)
449
450 /* True if CPU does not implement the all the coprocessor insns. For these
451 CPUs only those COP insns are accepted that are explicitly marked to be
452 available on the CPU. ISA membership for COP insns is ignored. */
453 #define NO_ISA_COP(CPU) ((CPU) == CPU_OCTEON)
454
455 /* True if mflo and mfhi can be immediately followed by instructions
456 which write to the HI and LO registers.
457
458 According to MIPS specifications, MIPS ISAs I, II, and III need
459 (at least) two instructions between the reads of HI/LO and
460 instructions which write them, and later ISAs do not. Contradicting
461 the MIPS specifications, some MIPS IV processor user manuals (e.g.
462 the UM for the NEC Vr5000) document needing the instructions between
463 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
464 MIPS64 and later ISAs to have the interlocks, plus any specific
465 earlier-ISA CPUs for which CPU documentation declares that the
466 instructions are really interlocked. */
467 #define hilo_interlocks \
468 (mips_opts.isa == ISA_MIPS32 \
469 || mips_opts.isa == ISA_MIPS32R2 \
470 || mips_opts.isa == ISA_MIPS64 \
471 || mips_opts.isa == ISA_MIPS64R2 \
472 || mips_opts.arch == CPU_R4010 \
473 || mips_opts.arch == CPU_R10000 \
474 || mips_opts.arch == CPU_R12000 \
475 || mips_opts.arch == CPU_R14000 \
476 || mips_opts.arch == CPU_R16000 \
477 || mips_opts.arch == CPU_RM7000 \
478 || mips_opts.arch == CPU_VR5500 \
479 )
480
481 /* Whether the processor uses hardware interlocks to protect reads
482 from the GPRs after they are loaded from memory, and thus does not
483 require nops to be inserted. This applies to instructions marked
484 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
485 level I. */
486 #define gpr_interlocks \
487 (mips_opts.isa != ISA_MIPS1 \
488 || mips_opts.arch == CPU_R3900)
489
490 /* Whether the processor uses hardware interlocks to avoid delays
491 required by coprocessor instructions, and thus does not require
492 nops to be inserted. This applies to instructions marked
493 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
494 between instructions marked INSN_WRITE_COND_CODE and ones marked
495 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
496 levels I, II, and III. */
497 /* Itbl support may require additional care here. */
498 #define cop_interlocks \
499 ((mips_opts.isa != ISA_MIPS1 \
500 && mips_opts.isa != ISA_MIPS2 \
501 && mips_opts.isa != ISA_MIPS3) \
502 || mips_opts.arch == CPU_R4300 \
503 )
504
505 /* Whether the processor uses hardware interlocks to protect reads
506 from coprocessor registers after they are loaded from memory, and
507 thus does not require nops to be inserted. This applies to
508 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
509 requires at MIPS ISA level I. */
510 #define cop_mem_interlocks (mips_opts.isa != ISA_MIPS1)
511
512 /* Is this a mfhi or mflo instruction? */
513 #define MF_HILO_INSN(PINFO) \
514 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
515
516 /* Returns true for a (non floating-point) coprocessor instruction. Reading
517 or writing the condition code is only possible on the coprocessors and
518 these insns are not marked with INSN_COP. Thus for these insns use the
519 condition-code flags. */
520 #define COP_INSN(PINFO) \
521 (PINFO != INSN_MACRO \
522 && ((PINFO) & (FP_S | FP_D)) == 0 \
523 && ((PINFO) & (INSN_COP | INSN_READ_COND_CODE | INSN_WRITE_COND_CODE)))
524
525 /* MIPS PIC level. */
526
527 enum mips_pic_level mips_pic;
528
529 /* 1 if we should generate 32 bit offsets from the $gp register in
530 SVR4_PIC mode. Currently has no meaning in other modes. */
531 static int mips_big_got = 0;
532
533 /* 1 if trap instructions should used for overflow rather than break
534 instructions. */
535 static int mips_trap = 0;
536
537 /* 1 if double width floating point constants should not be constructed
538 by assembling two single width halves into two single width floating
539 point registers which just happen to alias the double width destination
540 register. On some architectures this aliasing can be disabled by a bit
541 in the status register, and the setting of this bit cannot be determined
542 automatically at assemble time. */
543 static int mips_disable_float_construction;
544
545 /* Non-zero if any .set noreorder directives were used. */
546
547 static int mips_any_noreorder;
548
549 /* Non-zero if nops should be inserted when the register referenced in
550 an mfhi/mflo instruction is read in the next two instructions. */
551 static int mips_7000_hilo_fix;
552
553 /* The size of objects in the small data section. */
554 static unsigned int g_switch_value = 8;
555 /* Whether the -G option was used. */
556 static int g_switch_seen = 0;
557
558 #define N_RMASK 0xc4
559 #define N_VFP 0xd4
560
561 /* If we can determine in advance that GP optimization won't be
562 possible, we can skip the relaxation stuff that tries to produce
563 GP-relative references. This makes delay slot optimization work
564 better.
565
566 This function can only provide a guess, but it seems to work for
567 gcc output. It needs to guess right for gcc, otherwise gcc
568 will put what it thinks is a GP-relative instruction in a branch
569 delay slot.
570
571 I don't know if a fix is needed for the SVR4_PIC mode. I've only
572 fixed it for the non-PIC mode. KR 95/04/07 */
573 static int nopic_need_relax (symbolS *, int);
574
575 /* handle of the OPCODE hash table */
576 static struct hash_control *op_hash = NULL;
577
578 /* The opcode hash table we use for the mips16. */
579 static struct hash_control *mips16_op_hash = NULL;
580
581 /* This array holds the chars that always start a comment. If the
582 pre-processor is disabled, these aren't very useful */
583 const char comment_chars[] = "#";
584
585 /* This array holds the chars that only start a comment at the beginning of
586 a line. If the line seems to have the form '# 123 filename'
587 .line and .file directives will appear in the pre-processed output */
588 /* Note that input_file.c hand checks for '#' at the beginning of the
589 first line of the input file. This is because the compiler outputs
590 #NO_APP at the beginning of its output. */
591 /* Also note that C style comments are always supported. */
592 const char line_comment_chars[] = "#";
593
594 /* This array holds machine specific line separator characters. */
595 const char line_separator_chars[] = ";";
596
597 /* Chars that can be used to separate mant from exp in floating point nums */
598 const char EXP_CHARS[] = "eE";
599
600 /* Chars that mean this number is a floating point constant */
601 /* As in 0f12.456 */
602 /* or 0d1.2345e12 */
603 const char FLT_CHARS[] = "rRsSfFdDxXpP";
604
605 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
606 changed in read.c . Ideally it shouldn't have to know about it at all,
607 but nothing is ideal around here.
608 */
609
610 static char *insn_error;
611
612 static int auto_align = 1;
613
614 /* When outputting SVR4 PIC code, the assembler needs to know the
615 offset in the stack frame from which to restore the $gp register.
616 This is set by the .cprestore pseudo-op, and saved in this
617 variable. */
618 static offsetT mips_cprestore_offset = -1;
619
620 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
621 more optimizations, it can use a register value instead of a memory-saved
622 offset and even an other register than $gp as global pointer. */
623 static offsetT mips_cpreturn_offset = -1;
624 static int mips_cpreturn_register = -1;
625 static int mips_gp_register = GP;
626 static int mips_gprel_offset = 0;
627
628 /* Whether mips_cprestore_offset has been set in the current function
629 (or whether it has already been warned about, if not). */
630 static int mips_cprestore_valid = 0;
631
632 /* This is the register which holds the stack frame, as set by the
633 .frame pseudo-op. This is needed to implement .cprestore. */
634 static int mips_frame_reg = SP;
635
636 /* Whether mips_frame_reg has been set in the current function
637 (or whether it has already been warned about, if not). */
638 static int mips_frame_reg_valid = 0;
639
640 /* To output NOP instructions correctly, we need to keep information
641 about the previous two instructions. */
642
643 /* Whether we are optimizing. The default value of 2 means to remove
644 unneeded NOPs and swap branch instructions when possible. A value
645 of 1 means to not swap branches. A value of 0 means to always
646 insert NOPs. */
647 static int mips_optimize = 2;
648
649 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
650 equivalent to seeing no -g option at all. */
651 static int mips_debug = 0;
652
653 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
654 #define MAX_VR4130_NOPS 4
655
656 /* The maximum number of NOPs needed to fill delay slots. */
657 #define MAX_DELAY_NOPS 2
658
659 /* The maximum number of NOPs needed for any purpose. */
660 #define MAX_NOPS 4
661
662 /* A list of previous instructions, with index 0 being the most recent.
663 We need to look back MAX_NOPS instructions when filling delay slots
664 or working around processor errata. We need to look back one
665 instruction further if we're thinking about using history[0] to
666 fill a branch delay slot. */
667 static struct mips_cl_insn history[1 + MAX_NOPS];
668
669 /* Nop instructions used by emit_nop. */
670 static struct mips_cl_insn nop_insn, mips16_nop_insn;
671
672 /* The appropriate nop for the current mode. */
673 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn : &nop_insn)
674
675 /* If this is set, it points to a frag holding nop instructions which
676 were inserted before the start of a noreorder section. If those
677 nops turn out to be unnecessary, the size of the frag can be
678 decreased. */
679 static fragS *prev_nop_frag;
680
681 /* The number of nop instructions we created in prev_nop_frag. */
682 static int prev_nop_frag_holds;
683
684 /* The number of nop instructions that we know we need in
685 prev_nop_frag. */
686 static int prev_nop_frag_required;
687
688 /* The number of instructions we've seen since prev_nop_frag. */
689 static int prev_nop_frag_since;
690
691 /* For ECOFF and ELF, relocations against symbols are done in two
692 parts, with a HI relocation and a LO relocation. Each relocation
693 has only 16 bits of space to store an addend. This means that in
694 order for the linker to handle carries correctly, it must be able
695 to locate both the HI and the LO relocation. This means that the
696 relocations must appear in order in the relocation table.
697
698 In order to implement this, we keep track of each unmatched HI
699 relocation. We then sort them so that they immediately precede the
700 corresponding LO relocation. */
701
702 struct mips_hi_fixup
703 {
704 /* Next HI fixup. */
705 struct mips_hi_fixup *next;
706 /* This fixup. */
707 fixS *fixp;
708 /* The section this fixup is in. */
709 segT seg;
710 };
711
712 /* The list of unmatched HI relocs. */
713
714 static struct mips_hi_fixup *mips_hi_fixup_list;
715
716 /* The frag containing the last explicit relocation operator.
717 Null if explicit relocations have not been used. */
718
719 static fragS *prev_reloc_op_frag;
720
721 /* Map normal MIPS register numbers to mips16 register numbers. */
722
723 #define X ILLEGAL_REG
724 static const int mips32_to_16_reg_map[] =
725 {
726 X, X, 2, 3, 4, 5, 6, 7,
727 X, X, X, X, X, X, X, X,
728 0, 1, X, X, X, X, X, X,
729 X, X, X, X, X, X, X, X
730 };
731 #undef X
732
733 /* Map mips16 register numbers to normal MIPS register numbers. */
734
735 static const unsigned int mips16_to_32_reg_map[] =
736 {
737 16, 17, 2, 3, 4, 5, 6, 7
738 };
739
740 /* Classifies the kind of instructions we're interested in when
741 implementing -mfix-vr4120. */
742 enum fix_vr4120_class {
743 FIX_VR4120_MACC,
744 FIX_VR4120_DMACC,
745 FIX_VR4120_MULT,
746 FIX_VR4120_DMULT,
747 FIX_VR4120_DIV,
748 FIX_VR4120_MTHILO,
749 NUM_FIX_VR4120_CLASSES
750 };
751
752 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
753 there must be at least one other instruction between an instruction
754 of type X and an instruction of type Y. */
755 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
756
757 /* True if -mfix-vr4120 is in force. */
758 static int mips_fix_vr4120;
759
760 /* ...likewise -mfix-vr4130. */
761 static int mips_fix_vr4130;
762
763 /* We don't relax branches by default, since this causes us to expand
764 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
765 fail to compute the offset before expanding the macro to the most
766 efficient expansion. */
767
768 static int mips_relax_branch;
769 \f
770 /* The expansion of many macros depends on the type of symbol that
771 they refer to. For example, when generating position-dependent code,
772 a macro that refers to a symbol may have two different expansions,
773 one which uses GP-relative addresses and one which uses absolute
774 addresses. When generating SVR4-style PIC, a macro may have
775 different expansions for local and global symbols.
776
777 We handle these situations by generating both sequences and putting
778 them in variant frags. In position-dependent code, the first sequence
779 will be the GP-relative one and the second sequence will be the
780 absolute one. In SVR4 PIC, the first sequence will be for global
781 symbols and the second will be for local symbols.
782
783 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
784 SECOND are the lengths of the two sequences in bytes. These fields
785 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
786 the subtype has the following flags:
787
788 RELAX_USE_SECOND
789 Set if it has been decided that we should use the second
790 sequence instead of the first.
791
792 RELAX_SECOND_LONGER
793 Set in the first variant frag if the macro's second implementation
794 is longer than its first. This refers to the macro as a whole,
795 not an individual relaxation.
796
797 RELAX_NOMACRO
798 Set in the first variant frag if the macro appeared in a .set nomacro
799 block and if one alternative requires a warning but the other does not.
800
801 RELAX_DELAY_SLOT
802 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
803 delay slot.
804
805 The frag's "opcode" points to the first fixup for relaxable code.
806
807 Relaxable macros are generated using a sequence such as:
808
809 relax_start (SYMBOL);
810 ... generate first expansion ...
811 relax_switch ();
812 ... generate second expansion ...
813 relax_end ();
814
815 The code and fixups for the unwanted alternative are discarded
816 by md_convert_frag. */
817 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
818
819 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
820 #define RELAX_SECOND(X) ((X) & 0xff)
821 #define RELAX_USE_SECOND 0x10000
822 #define RELAX_SECOND_LONGER 0x20000
823 #define RELAX_NOMACRO 0x40000
824 #define RELAX_DELAY_SLOT 0x80000
825
826 /* Branch without likely bit. If label is out of range, we turn:
827
828 beq reg1, reg2, label
829 delay slot
830
831 into
832
833 bne reg1, reg2, 0f
834 nop
835 j label
836 0: delay slot
837
838 with the following opcode replacements:
839
840 beq <-> bne
841 blez <-> bgtz
842 bltz <-> bgez
843 bc1f <-> bc1t
844
845 bltzal <-> bgezal (with jal label instead of j label)
846
847 Even though keeping the delay slot instruction in the delay slot of
848 the branch would be more efficient, it would be very tricky to do
849 correctly, because we'd have to introduce a variable frag *after*
850 the delay slot instruction, and expand that instead. Let's do it
851 the easy way for now, even if the branch-not-taken case now costs
852 one additional instruction. Out-of-range branches are not supposed
853 to be common, anyway.
854
855 Branch likely. If label is out of range, we turn:
856
857 beql reg1, reg2, label
858 delay slot (annulled if branch not taken)
859
860 into
861
862 beql reg1, reg2, 1f
863 nop
864 beql $0, $0, 2f
865 nop
866 1: j[al] label
867 delay slot (executed only if branch taken)
868 2:
869
870 It would be possible to generate a shorter sequence by losing the
871 likely bit, generating something like:
872
873 bne reg1, reg2, 0f
874 nop
875 j[al] label
876 delay slot (executed only if branch taken)
877 0:
878
879 beql -> bne
880 bnel -> beq
881 blezl -> bgtz
882 bgtzl -> blez
883 bltzl -> bgez
884 bgezl -> bltz
885 bc1fl -> bc1t
886 bc1tl -> bc1f
887
888 bltzall -> bgezal (with jal label instead of j label)
889 bgezall -> bltzal (ditto)
890
891
892 but it's not clear that it would actually improve performance. */
893 #define RELAX_BRANCH_ENCODE(uncond, likely, link, toofar) \
894 ((relax_substateT) \
895 (0xc0000000 \
896 | ((toofar) ? 1 : 0) \
897 | ((link) ? 2 : 0) \
898 | ((likely) ? 4 : 0) \
899 | ((uncond) ? 8 : 0)))
900 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
901 #define RELAX_BRANCH_UNCOND(i) (((i) & 8) != 0)
902 #define RELAX_BRANCH_LIKELY(i) (((i) & 4) != 0)
903 #define RELAX_BRANCH_LINK(i) (((i) & 2) != 0)
904 #define RELAX_BRANCH_TOOFAR(i) (((i) & 1) != 0)
905
906 /* For mips16 code, we use an entirely different form of relaxation.
907 mips16 supports two versions of most instructions which take
908 immediate values: a small one which takes some small value, and a
909 larger one which takes a 16 bit value. Since branches also follow
910 this pattern, relaxing these values is required.
911
912 We can assemble both mips16 and normal MIPS code in a single
913 object. Therefore, we need to support this type of relaxation at
914 the same time that we support the relaxation described above. We
915 use the high bit of the subtype field to distinguish these cases.
916
917 The information we store for this type of relaxation is the
918 argument code found in the opcode file for this relocation, whether
919 the user explicitly requested a small or extended form, and whether
920 the relocation is in a jump or jal delay slot. That tells us the
921 size of the value, and how it should be stored. We also store
922 whether the fragment is considered to be extended or not. We also
923 store whether this is known to be a branch to a different section,
924 whether we have tried to relax this frag yet, and whether we have
925 ever extended a PC relative fragment because of a shift count. */
926 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
927 (0x80000000 \
928 | ((type) & 0xff) \
929 | ((small) ? 0x100 : 0) \
930 | ((ext) ? 0x200 : 0) \
931 | ((dslot) ? 0x400 : 0) \
932 | ((jal_dslot) ? 0x800 : 0))
933 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
934 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
935 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
936 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
937 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
938 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
939 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
940 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
941 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
942 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
943 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
944 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
945
946 /* Is the given value a sign-extended 32-bit value? */
947 #define IS_SEXT_32BIT_NUM(x) \
948 (((x) &~ (offsetT) 0x7fffffff) == 0 \
949 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
950
951 /* Is the given value a sign-extended 16-bit value? */
952 #define IS_SEXT_16BIT_NUM(x) \
953 (((x) &~ (offsetT) 0x7fff) == 0 \
954 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
955
956 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
957 #define IS_ZEXT_32BIT_NUM(x) \
958 (((x) &~ (offsetT) 0xffffffff) == 0 \
959 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
960
961 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in
962 VALUE << SHIFT. VALUE is evaluated exactly once. */
963 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \
964 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \
965 | (((VALUE) & (MASK)) << (SHIFT)))
966
967 /* Extract bits MASK << SHIFT from STRUCT and shift them right
968 SHIFT places. */
969 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
970 (((STRUCT) >> (SHIFT)) & (MASK))
971
972 /* Change INSN's opcode so that the operand given by FIELD has value VALUE.
973 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once.
974
975 include/opcode/mips.h specifies operand fields using the macros
976 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start
977 with "MIPS16OP" instead of "OP". */
978 #define INSERT_OPERAND(FIELD, INSN, VALUE) \
979 INSERT_BITS ((INSN).insn_opcode, VALUE, OP_MASK_##FIELD, OP_SH_##FIELD)
980 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \
981 INSERT_BITS ((INSN).insn_opcode, VALUE, \
982 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD)
983
984 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
985 #define EXTRACT_OPERAND(FIELD, INSN) \
986 EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD)
987 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
988 EXTRACT_BITS ((INSN).insn_opcode, \
989 MIPS16OP_MASK_##FIELD, \
990 MIPS16OP_SH_##FIELD)
991 \f
992 /* Global variables used when generating relaxable macros. See the
993 comment above RELAX_ENCODE for more details about how relaxation
994 is used. */
995 static struct {
996 /* 0 if we're not emitting a relaxable macro.
997 1 if we're emitting the first of the two relaxation alternatives.
998 2 if we're emitting the second alternative. */
999 int sequence;
1000
1001 /* The first relaxable fixup in the current frag. (In other words,
1002 the first fixup that refers to relaxable code.) */
1003 fixS *first_fixup;
1004
1005 /* sizes[0] says how many bytes of the first alternative are stored in
1006 the current frag. Likewise sizes[1] for the second alternative. */
1007 unsigned int sizes[2];
1008
1009 /* The symbol on which the choice of sequence depends. */
1010 symbolS *symbol;
1011 } mips_relax;
1012 \f
1013 /* Global variables used to decide whether a macro needs a warning. */
1014 static struct {
1015 /* True if the macro is in a branch delay slot. */
1016 bfd_boolean delay_slot_p;
1017
1018 /* For relaxable macros, sizes[0] is the length of the first alternative
1019 in bytes and sizes[1] is the length of the second alternative.
1020 For non-relaxable macros, both elements give the length of the
1021 macro in bytes. */
1022 unsigned int sizes[2];
1023
1024 /* The first variant frag for this macro. */
1025 fragS *first_frag;
1026 } mips_macro_warning;
1027 \f
1028 /* Prototypes for static functions. */
1029
1030 #define internalError() \
1031 as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__)
1032
1033 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1034
1035 static void append_insn
1036 (struct mips_cl_insn *ip, expressionS *p, bfd_reloc_code_real_type *r);
1037 static void mips_no_prev_insn (void);
1038 static void mips16_macro_build
1039 (expressionS *, const char *, const char *, va_list);
1040 static void load_register (int, expressionS *, int);
1041 static void macro_start (void);
1042 static void macro_end (void);
1043 static void macro (struct mips_cl_insn * ip);
1044 static void mips16_macro (struct mips_cl_insn * ip);
1045 #ifdef LOSING_COMPILER
1046 static void macro2 (struct mips_cl_insn * ip);
1047 #endif
1048 static void mips_ip (char *str, struct mips_cl_insn * ip);
1049 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1050 static void mips16_immed
1051 (char *, unsigned int, int, offsetT, bfd_boolean, bfd_boolean, bfd_boolean,
1052 unsigned long *, bfd_boolean *, unsigned short *);
1053 static size_t my_getSmallExpression
1054 (expressionS *, bfd_reloc_code_real_type *, char *);
1055 static void my_getExpression (expressionS *, char *);
1056 static void s_align (int);
1057 static void s_change_sec (int);
1058 static void s_change_section (int);
1059 static void s_cons (int);
1060 static void s_float_cons (int);
1061 static void s_mips_globl (int);
1062 static void s_option (int);
1063 static void s_mipsset (int);
1064 static void s_abicalls (int);
1065 static void s_cpload (int);
1066 static void s_cpsetup (int);
1067 static void s_cplocal (int);
1068 static void s_cprestore (int);
1069 static void s_cpreturn (int);
1070 static void s_dtprelword (int);
1071 static void s_dtpreldword (int);
1072 static void s_gpvalue (int);
1073 static void s_gpword (int);
1074 static void s_gpdword (int);
1075 static void s_cpadd (int);
1076 static void s_insn (int);
1077 static void md_obj_begin (void);
1078 static void md_obj_end (void);
1079 static void s_mips_ent (int);
1080 static void s_mips_end (int);
1081 static void s_mips_frame (int);
1082 static void s_mips_mask (int reg_type);
1083 static void s_mips_stab (int);
1084 static void s_mips_weakext (int);
1085 static void s_mips_file (int);
1086 static void s_mips_loc (int);
1087 static bfd_boolean pic_need_relax (symbolS *, asection *);
1088 static int relaxed_branch_length (fragS *, asection *, int);
1089 static int validate_mips_insn (const struct mips_opcode *);
1090
1091 /* Table and functions used to map between CPU/ISA names, and
1092 ISA levels, and CPU numbers. */
1093
1094 struct mips_cpu_info
1095 {
1096 const char *name; /* CPU or ISA name. */
1097 int flags; /* ASEs available, or ISA flag. */
1098 int isa; /* ISA level. */
1099 int cpu; /* CPU number (default CPU if ISA). */
1100 };
1101
1102 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1103 #define MIPS_CPU_ASE_SMARTMIPS 0x0002 /* CPU implements SmartMIPS ASE */
1104 #define MIPS_CPU_ASE_DSP 0x0004 /* CPU implements DSP ASE */
1105 #define MIPS_CPU_ASE_MT 0x0008 /* CPU implements MT ASE */
1106 #define MIPS_CPU_ASE_MIPS3D 0x0010 /* CPU implements MIPS-3D ASE */
1107 #define MIPS_CPU_ASE_MDMX 0x0020 /* CPU implements MDMX ASE */
1108 #define MIPS_CPU_ASE_DSPR2 0x0040 /* CPU implements DSP R2 ASE */
1109
1110 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1111 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1112 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1113 \f
1114 /* Pseudo-op table.
1115
1116 The following pseudo-ops from the Kane and Heinrich MIPS book
1117 should be defined here, but are currently unsupported: .alias,
1118 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1119
1120 The following pseudo-ops from the Kane and Heinrich MIPS book are
1121 specific to the type of debugging information being generated, and
1122 should be defined by the object format: .aent, .begin, .bend,
1123 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1124 .vreg.
1125
1126 The following pseudo-ops from the Kane and Heinrich MIPS book are
1127 not MIPS CPU specific, but are also not specific to the object file
1128 format. This file is probably the best place to define them, but
1129 they are not currently supported: .asm0, .endr, .lab, .struct. */
1130
1131 static const pseudo_typeS mips_pseudo_table[] =
1132 {
1133 /* MIPS specific pseudo-ops. */
1134 {"option", s_option, 0},
1135 {"set", s_mipsset, 0},
1136 {"rdata", s_change_sec, 'r'},
1137 {"sdata", s_change_sec, 's'},
1138 {"livereg", s_ignore, 0},
1139 {"abicalls", s_abicalls, 0},
1140 {"cpload", s_cpload, 0},
1141 {"cpsetup", s_cpsetup, 0},
1142 {"cplocal", s_cplocal, 0},
1143 {"cprestore", s_cprestore, 0},
1144 {"cpreturn", s_cpreturn, 0},
1145 {"dtprelword", s_dtprelword, 0},
1146 {"dtpreldword", s_dtpreldword, 0},
1147 {"gpvalue", s_gpvalue, 0},
1148 {"gpword", s_gpword, 0},
1149 {"gpdword", s_gpdword, 0},
1150 {"cpadd", s_cpadd, 0},
1151 {"insn", s_insn, 0},
1152
1153 /* Relatively generic pseudo-ops that happen to be used on MIPS
1154 chips. */
1155 {"asciiz", stringer, 8 + 1},
1156 {"bss", s_change_sec, 'b'},
1157 {"err", s_err, 0},
1158 {"half", s_cons, 1},
1159 {"dword", s_cons, 3},
1160 {"weakext", s_mips_weakext, 0},
1161 {"origin", s_org, 0},
1162 {"repeat", s_rept, 0},
1163
1164 /* These pseudo-ops are defined in read.c, but must be overridden
1165 here for one reason or another. */
1166 {"align", s_align, 0},
1167 {"byte", s_cons, 0},
1168 {"data", s_change_sec, 'd'},
1169 {"double", s_float_cons, 'd'},
1170 {"float", s_float_cons, 'f'},
1171 {"globl", s_mips_globl, 0},
1172 {"global", s_mips_globl, 0},
1173 {"hword", s_cons, 1},
1174 {"int", s_cons, 2},
1175 {"long", s_cons, 2},
1176 {"octa", s_cons, 4},
1177 {"quad", s_cons, 3},
1178 {"section", s_change_section, 0},
1179 {"short", s_cons, 1},
1180 {"single", s_float_cons, 'f'},
1181 {"stabn", s_mips_stab, 'n'},
1182 {"text", s_change_sec, 't'},
1183 {"word", s_cons, 2},
1184
1185 { "extern", ecoff_directive_extern, 0},
1186
1187 { NULL, NULL, 0 },
1188 };
1189
1190 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1191 {
1192 /* These pseudo-ops should be defined by the object file format.
1193 However, a.out doesn't support them, so we have versions here. */
1194 {"aent", s_mips_ent, 1},
1195 {"bgnb", s_ignore, 0},
1196 {"end", s_mips_end, 0},
1197 {"endb", s_ignore, 0},
1198 {"ent", s_mips_ent, 0},
1199 {"file", s_mips_file, 0},
1200 {"fmask", s_mips_mask, 'F'},
1201 {"frame", s_mips_frame, 0},
1202 {"loc", s_mips_loc, 0},
1203 {"mask", s_mips_mask, 'R'},
1204 {"verstamp", s_ignore, 0},
1205 { NULL, NULL, 0 },
1206 };
1207
1208 extern void pop_insert (const pseudo_typeS *);
1209
1210 void
1211 mips_pop_insert (void)
1212 {
1213 pop_insert (mips_pseudo_table);
1214 if (! ECOFF_DEBUGGING)
1215 pop_insert (mips_nonecoff_pseudo_table);
1216 }
1217 \f
1218 /* Symbols labelling the current insn. */
1219
1220 struct insn_label_list
1221 {
1222 struct insn_label_list *next;
1223 symbolS *label;
1224 };
1225
1226 static struct insn_label_list *free_insn_labels;
1227 #define label_list tc_segment_info_data.labels
1228
1229 static void mips_clear_insn_labels (void);
1230
1231 static inline void
1232 mips_clear_insn_labels (void)
1233 {
1234 register struct insn_label_list **pl;
1235 segment_info_type *si;
1236
1237 if (now_seg)
1238 {
1239 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1240 ;
1241
1242 si = seg_info (now_seg);
1243 *pl = si->label_list;
1244 si->label_list = NULL;
1245 }
1246 }
1247
1248 \f
1249 static char *expr_end;
1250
1251 /* Expressions which appear in instructions. These are set by
1252 mips_ip. */
1253
1254 static expressionS imm_expr;
1255 static expressionS imm2_expr;
1256 static expressionS offset_expr;
1257
1258 /* Relocs associated with imm_expr and offset_expr. */
1259
1260 static bfd_reloc_code_real_type imm_reloc[3]
1261 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1262 static bfd_reloc_code_real_type offset_reloc[3]
1263 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1264
1265 /* These are set by mips16_ip if an explicit extension is used. */
1266
1267 static bfd_boolean mips16_small, mips16_ext;
1268
1269 #ifdef OBJ_ELF
1270 /* The pdr segment for per procedure frame/regmask info. Not used for
1271 ECOFF debugging. */
1272
1273 static segT pdr_seg;
1274 #endif
1275
1276 /* The default target format to use. */
1277
1278 const char *
1279 mips_target_format (void)
1280 {
1281 switch (OUTPUT_FLAVOR)
1282 {
1283 case bfd_target_ecoff_flavour:
1284 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1285 case bfd_target_coff_flavour:
1286 return "pe-mips";
1287 case bfd_target_elf_flavour:
1288 #ifdef TE_VXWORKS
1289 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1290 return (target_big_endian
1291 ? "elf32-bigmips-vxworks"
1292 : "elf32-littlemips-vxworks");
1293 #endif
1294 #ifdef TE_TMIPS
1295 /* This is traditional mips. */
1296 return (target_big_endian
1297 ? (HAVE_64BIT_OBJECTS
1298 ? "elf64-tradbigmips"
1299 : (HAVE_NEWABI
1300 ? "elf32-ntradbigmips" : "elf32-tradbigmips"))
1301 : (HAVE_64BIT_OBJECTS
1302 ? "elf64-tradlittlemips"
1303 : (HAVE_NEWABI
1304 ? "elf32-ntradlittlemips" : "elf32-tradlittlemips")));
1305 #else
1306 return (target_big_endian
1307 ? (HAVE_64BIT_OBJECTS
1308 ? "elf64-bigmips"
1309 : (HAVE_NEWABI
1310 ? "elf32-nbigmips" : "elf32-bigmips"))
1311 : (HAVE_64BIT_OBJECTS
1312 ? "elf64-littlemips"
1313 : (HAVE_NEWABI
1314 ? "elf32-nlittlemips" : "elf32-littlemips")));
1315 #endif
1316 default:
1317 abort ();
1318 return NULL;
1319 }
1320 }
1321
1322 /* Return the length of instruction INSN. */
1323
1324 static inline unsigned int
1325 insn_length (const struct mips_cl_insn *insn)
1326 {
1327 if (!mips_opts.mips16)
1328 return 4;
1329 return insn->mips16_absolute_jump_p || insn->use_extend ? 4 : 2;
1330 }
1331
1332 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1333
1334 static void
1335 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1336 {
1337 size_t i;
1338
1339 insn->insn_mo = mo;
1340 insn->use_extend = FALSE;
1341 insn->extend = 0;
1342 insn->insn_opcode = mo->match;
1343 insn->frag = NULL;
1344 insn->where = 0;
1345 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1346 insn->fixp[i] = NULL;
1347 insn->fixed_p = (mips_opts.noreorder > 0);
1348 insn->noreorder_p = (mips_opts.noreorder > 0);
1349 insn->mips16_absolute_jump_p = 0;
1350 }
1351
1352 /* Record the current MIPS16 mode in now_seg. */
1353
1354 static void
1355 mips_record_mips16_mode (void)
1356 {
1357 segment_info_type *si;
1358
1359 si = seg_info (now_seg);
1360 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
1361 si->tc_segment_info_data.mips16 = mips_opts.mips16;
1362 }
1363
1364 /* Install INSN at the location specified by its "frag" and "where" fields. */
1365
1366 static void
1367 install_insn (const struct mips_cl_insn *insn)
1368 {
1369 char *f = insn->frag->fr_literal + insn->where;
1370 if (!mips_opts.mips16)
1371 md_number_to_chars (f, insn->insn_opcode, 4);
1372 else if (insn->mips16_absolute_jump_p)
1373 {
1374 md_number_to_chars (f, insn->insn_opcode >> 16, 2);
1375 md_number_to_chars (f + 2, insn->insn_opcode & 0xffff, 2);
1376 }
1377 else
1378 {
1379 if (insn->use_extend)
1380 {
1381 md_number_to_chars (f, 0xf000 | insn->extend, 2);
1382 f += 2;
1383 }
1384 md_number_to_chars (f, insn->insn_opcode, 2);
1385 }
1386 mips_record_mips16_mode ();
1387 }
1388
1389 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
1390 and install the opcode in the new location. */
1391
1392 static void
1393 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
1394 {
1395 size_t i;
1396
1397 insn->frag = frag;
1398 insn->where = where;
1399 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1400 if (insn->fixp[i] != NULL)
1401 {
1402 insn->fixp[i]->fx_frag = frag;
1403 insn->fixp[i]->fx_where = where;
1404 }
1405 install_insn (insn);
1406 }
1407
1408 /* Add INSN to the end of the output. */
1409
1410 static void
1411 add_fixed_insn (struct mips_cl_insn *insn)
1412 {
1413 char *f = frag_more (insn_length (insn));
1414 move_insn (insn, frag_now, f - frag_now->fr_literal);
1415 }
1416
1417 /* Start a variant frag and move INSN to the start of the variant part,
1418 marking it as fixed. The other arguments are as for frag_var. */
1419
1420 static void
1421 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
1422 relax_substateT subtype, symbolS *symbol, offsetT offset)
1423 {
1424 frag_grow (max_chars);
1425 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
1426 insn->fixed_p = 1;
1427 frag_var (rs_machine_dependent, max_chars, var,
1428 subtype, symbol, offset, NULL);
1429 }
1430
1431 /* Insert N copies of INSN into the history buffer, starting at
1432 position FIRST. Neither FIRST nor N need to be clipped. */
1433
1434 static void
1435 insert_into_history (unsigned int first, unsigned int n,
1436 const struct mips_cl_insn *insn)
1437 {
1438 if (mips_relax.sequence != 2)
1439 {
1440 unsigned int i;
1441
1442 for (i = ARRAY_SIZE (history); i-- > first;)
1443 if (i >= first + n)
1444 history[i] = history[i - n];
1445 else
1446 history[i] = *insn;
1447 }
1448 }
1449
1450 /* Emit a nop instruction, recording it in the history buffer. */
1451
1452 static void
1453 emit_nop (void)
1454 {
1455 add_fixed_insn (NOP_INSN);
1456 insert_into_history (0, 1, NOP_INSN);
1457 }
1458
1459 /* Initialize vr4120_conflicts. There is a bit of duplication here:
1460 the idea is to make it obvious at a glance that each errata is
1461 included. */
1462
1463 static void
1464 init_vr4120_conflicts (void)
1465 {
1466 #define CONFLICT(FIRST, SECOND) \
1467 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
1468
1469 /* Errata 21 - [D]DIV[U] after [D]MACC */
1470 CONFLICT (MACC, DIV);
1471 CONFLICT (DMACC, DIV);
1472
1473 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
1474 CONFLICT (DMULT, DMULT);
1475 CONFLICT (DMULT, DMACC);
1476 CONFLICT (DMACC, DMULT);
1477 CONFLICT (DMACC, DMACC);
1478
1479 /* Errata 24 - MT{LO,HI} after [D]MACC */
1480 CONFLICT (MACC, MTHILO);
1481 CONFLICT (DMACC, MTHILO);
1482
1483 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
1484 instruction is executed immediately after a MACC or DMACC
1485 instruction, the result of [either instruction] is incorrect." */
1486 CONFLICT (MACC, MULT);
1487 CONFLICT (MACC, DMULT);
1488 CONFLICT (DMACC, MULT);
1489 CONFLICT (DMACC, DMULT);
1490
1491 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
1492 executed immediately after a DMULT, DMULTU, DIV, DIVU,
1493 DDIV or DDIVU instruction, the result of the MACC or
1494 DMACC instruction is incorrect.". */
1495 CONFLICT (DMULT, MACC);
1496 CONFLICT (DMULT, DMACC);
1497 CONFLICT (DIV, MACC);
1498 CONFLICT (DIV, DMACC);
1499
1500 #undef CONFLICT
1501 }
1502
1503 struct regname {
1504 const char *name;
1505 unsigned int num;
1506 };
1507
1508 #define RTYPE_MASK 0x1ff00
1509 #define RTYPE_NUM 0x00100
1510 #define RTYPE_FPU 0x00200
1511 #define RTYPE_FCC 0x00400
1512 #define RTYPE_VEC 0x00800
1513 #define RTYPE_GP 0x01000
1514 #define RTYPE_CP0 0x02000
1515 #define RTYPE_PC 0x04000
1516 #define RTYPE_ACC 0x08000
1517 #define RTYPE_CCC 0x10000
1518 #define RNUM_MASK 0x000ff
1519 #define RWARN 0x80000
1520
1521 #define GENERIC_REGISTER_NUMBERS \
1522 {"$0", RTYPE_NUM | 0}, \
1523 {"$1", RTYPE_NUM | 1}, \
1524 {"$2", RTYPE_NUM | 2}, \
1525 {"$3", RTYPE_NUM | 3}, \
1526 {"$4", RTYPE_NUM | 4}, \
1527 {"$5", RTYPE_NUM | 5}, \
1528 {"$6", RTYPE_NUM | 6}, \
1529 {"$7", RTYPE_NUM | 7}, \
1530 {"$8", RTYPE_NUM | 8}, \
1531 {"$9", RTYPE_NUM | 9}, \
1532 {"$10", RTYPE_NUM | 10}, \
1533 {"$11", RTYPE_NUM | 11}, \
1534 {"$12", RTYPE_NUM | 12}, \
1535 {"$13", RTYPE_NUM | 13}, \
1536 {"$14", RTYPE_NUM | 14}, \
1537 {"$15", RTYPE_NUM | 15}, \
1538 {"$16", RTYPE_NUM | 16}, \
1539 {"$17", RTYPE_NUM | 17}, \
1540 {"$18", RTYPE_NUM | 18}, \
1541 {"$19", RTYPE_NUM | 19}, \
1542 {"$20", RTYPE_NUM | 20}, \
1543 {"$21", RTYPE_NUM | 21}, \
1544 {"$22", RTYPE_NUM | 22}, \
1545 {"$23", RTYPE_NUM | 23}, \
1546 {"$24", RTYPE_NUM | 24}, \
1547 {"$25", RTYPE_NUM | 25}, \
1548 {"$26", RTYPE_NUM | 26}, \
1549 {"$27", RTYPE_NUM | 27}, \
1550 {"$28", RTYPE_NUM | 28}, \
1551 {"$29", RTYPE_NUM | 29}, \
1552 {"$30", RTYPE_NUM | 30}, \
1553 {"$31", RTYPE_NUM | 31}
1554
1555 #define FPU_REGISTER_NAMES \
1556 {"$f0", RTYPE_FPU | 0}, \
1557 {"$f1", RTYPE_FPU | 1}, \
1558 {"$f2", RTYPE_FPU | 2}, \
1559 {"$f3", RTYPE_FPU | 3}, \
1560 {"$f4", RTYPE_FPU | 4}, \
1561 {"$f5", RTYPE_FPU | 5}, \
1562 {"$f6", RTYPE_FPU | 6}, \
1563 {"$f7", RTYPE_FPU | 7}, \
1564 {"$f8", RTYPE_FPU | 8}, \
1565 {"$f9", RTYPE_FPU | 9}, \
1566 {"$f10", RTYPE_FPU | 10}, \
1567 {"$f11", RTYPE_FPU | 11}, \
1568 {"$f12", RTYPE_FPU | 12}, \
1569 {"$f13", RTYPE_FPU | 13}, \
1570 {"$f14", RTYPE_FPU | 14}, \
1571 {"$f15", RTYPE_FPU | 15}, \
1572 {"$f16", RTYPE_FPU | 16}, \
1573 {"$f17", RTYPE_FPU | 17}, \
1574 {"$f18", RTYPE_FPU | 18}, \
1575 {"$f19", RTYPE_FPU | 19}, \
1576 {"$f20", RTYPE_FPU | 20}, \
1577 {"$f21", RTYPE_FPU | 21}, \
1578 {"$f22", RTYPE_FPU | 22}, \
1579 {"$f23", RTYPE_FPU | 23}, \
1580 {"$f24", RTYPE_FPU | 24}, \
1581 {"$f25", RTYPE_FPU | 25}, \
1582 {"$f26", RTYPE_FPU | 26}, \
1583 {"$f27", RTYPE_FPU | 27}, \
1584 {"$f28", RTYPE_FPU | 28}, \
1585 {"$f29", RTYPE_FPU | 29}, \
1586 {"$f30", RTYPE_FPU | 30}, \
1587 {"$f31", RTYPE_FPU | 31}
1588
1589 #define FPU_CONDITION_CODE_NAMES \
1590 {"$fcc0", RTYPE_FCC | 0}, \
1591 {"$fcc1", RTYPE_FCC | 1}, \
1592 {"$fcc2", RTYPE_FCC | 2}, \
1593 {"$fcc3", RTYPE_FCC | 3}, \
1594 {"$fcc4", RTYPE_FCC | 4}, \
1595 {"$fcc5", RTYPE_FCC | 5}, \
1596 {"$fcc6", RTYPE_FCC | 6}, \
1597 {"$fcc7", RTYPE_FCC | 7}
1598
1599 #define COPROC_CONDITION_CODE_NAMES \
1600 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
1601 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
1602 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
1603 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
1604 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
1605 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
1606 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
1607 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
1608
1609 #define N32N64_SYMBOLIC_REGISTER_NAMES \
1610 {"$a4", RTYPE_GP | 8}, \
1611 {"$a5", RTYPE_GP | 9}, \
1612 {"$a6", RTYPE_GP | 10}, \
1613 {"$a7", RTYPE_GP | 11}, \
1614 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
1615 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
1616 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
1617 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
1618 {"$t0", RTYPE_GP | 12}, \
1619 {"$t1", RTYPE_GP | 13}, \
1620 {"$t2", RTYPE_GP | 14}, \
1621 {"$t3", RTYPE_GP | 15}
1622
1623 #define O32_SYMBOLIC_REGISTER_NAMES \
1624 {"$t0", RTYPE_GP | 8}, \
1625 {"$t1", RTYPE_GP | 9}, \
1626 {"$t2", RTYPE_GP | 10}, \
1627 {"$t3", RTYPE_GP | 11}, \
1628 {"$t4", RTYPE_GP | 12}, \
1629 {"$t5", RTYPE_GP | 13}, \
1630 {"$t6", RTYPE_GP | 14}, \
1631 {"$t7", RTYPE_GP | 15}, \
1632 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
1633 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
1634 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
1635 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
1636
1637 /* Remaining symbolic register names */
1638 #define SYMBOLIC_REGISTER_NAMES \
1639 {"$zero", RTYPE_GP | 0}, \
1640 {"$at", RTYPE_GP | 1}, \
1641 {"$AT", RTYPE_GP | 1}, \
1642 {"$v0", RTYPE_GP | 2}, \
1643 {"$v1", RTYPE_GP | 3}, \
1644 {"$a0", RTYPE_GP | 4}, \
1645 {"$a1", RTYPE_GP | 5}, \
1646 {"$a2", RTYPE_GP | 6}, \
1647 {"$a3", RTYPE_GP | 7}, \
1648 {"$s0", RTYPE_GP | 16}, \
1649 {"$s1", RTYPE_GP | 17}, \
1650 {"$s2", RTYPE_GP | 18}, \
1651 {"$s3", RTYPE_GP | 19}, \
1652 {"$s4", RTYPE_GP | 20}, \
1653 {"$s5", RTYPE_GP | 21}, \
1654 {"$s6", RTYPE_GP | 22}, \
1655 {"$s7", RTYPE_GP | 23}, \
1656 {"$t8", RTYPE_GP | 24}, \
1657 {"$t9", RTYPE_GP | 25}, \
1658 {"$k0", RTYPE_GP | 26}, \
1659 {"$kt0", RTYPE_GP | 26}, \
1660 {"$k1", RTYPE_GP | 27}, \
1661 {"$kt1", RTYPE_GP | 27}, \
1662 {"$gp", RTYPE_GP | 28}, \
1663 {"$sp", RTYPE_GP | 29}, \
1664 {"$s8", RTYPE_GP | 30}, \
1665 {"$fp", RTYPE_GP | 30}, \
1666 {"$ra", RTYPE_GP | 31}
1667
1668 #define MIPS16_SPECIAL_REGISTER_NAMES \
1669 {"$pc", RTYPE_PC | 0}
1670
1671 #define MDMX_VECTOR_REGISTER_NAMES \
1672 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
1673 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
1674 {"$v2", RTYPE_VEC | 2}, \
1675 {"$v3", RTYPE_VEC | 3}, \
1676 {"$v4", RTYPE_VEC | 4}, \
1677 {"$v5", RTYPE_VEC | 5}, \
1678 {"$v6", RTYPE_VEC | 6}, \
1679 {"$v7", RTYPE_VEC | 7}, \
1680 {"$v8", RTYPE_VEC | 8}, \
1681 {"$v9", RTYPE_VEC | 9}, \
1682 {"$v10", RTYPE_VEC | 10}, \
1683 {"$v11", RTYPE_VEC | 11}, \
1684 {"$v12", RTYPE_VEC | 12}, \
1685 {"$v13", RTYPE_VEC | 13}, \
1686 {"$v14", RTYPE_VEC | 14}, \
1687 {"$v15", RTYPE_VEC | 15}, \
1688 {"$v16", RTYPE_VEC | 16}, \
1689 {"$v17", RTYPE_VEC | 17}, \
1690 {"$v18", RTYPE_VEC | 18}, \
1691 {"$v19", RTYPE_VEC | 19}, \
1692 {"$v20", RTYPE_VEC | 20}, \
1693 {"$v21", RTYPE_VEC | 21}, \
1694 {"$v22", RTYPE_VEC | 22}, \
1695 {"$v23", RTYPE_VEC | 23}, \
1696 {"$v24", RTYPE_VEC | 24}, \
1697 {"$v25", RTYPE_VEC | 25}, \
1698 {"$v26", RTYPE_VEC | 26}, \
1699 {"$v27", RTYPE_VEC | 27}, \
1700 {"$v28", RTYPE_VEC | 28}, \
1701 {"$v29", RTYPE_VEC | 29}, \
1702 {"$v30", RTYPE_VEC | 30}, \
1703 {"$v31", RTYPE_VEC | 31}
1704
1705 #define MIPS_DSP_ACCUMULATOR_NAMES \
1706 {"$ac0", RTYPE_ACC | 0}, \
1707 {"$ac1", RTYPE_ACC | 1}, \
1708 {"$ac2", RTYPE_ACC | 2}, \
1709 {"$ac3", RTYPE_ACC | 3}
1710
1711 static const struct regname reg_names[] = {
1712 GENERIC_REGISTER_NUMBERS,
1713 FPU_REGISTER_NAMES,
1714 FPU_CONDITION_CODE_NAMES,
1715 COPROC_CONDITION_CODE_NAMES,
1716
1717 /* The $txx registers depends on the abi,
1718 these will be added later into the symbol table from
1719 one of the tables below once mips_abi is set after
1720 parsing of arguments from the command line. */
1721 SYMBOLIC_REGISTER_NAMES,
1722
1723 MIPS16_SPECIAL_REGISTER_NAMES,
1724 MDMX_VECTOR_REGISTER_NAMES,
1725 MIPS_DSP_ACCUMULATOR_NAMES,
1726 {0, 0}
1727 };
1728
1729 static const struct regname reg_names_o32[] = {
1730 O32_SYMBOLIC_REGISTER_NAMES,
1731 {0, 0}
1732 };
1733
1734 static const struct regname reg_names_n32n64[] = {
1735 N32N64_SYMBOLIC_REGISTER_NAMES,
1736 {0, 0}
1737 };
1738
1739 static int
1740 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
1741 {
1742 symbolS *symbolP;
1743 char *e;
1744 char save_c;
1745 int reg = -1;
1746
1747 /* Find end of name. */
1748 e = *s;
1749 if (is_name_beginner (*e))
1750 ++e;
1751 while (is_part_of_name (*e))
1752 ++e;
1753
1754 /* Terminate name. */
1755 save_c = *e;
1756 *e = '\0';
1757
1758 /* Look for a register symbol. */
1759 if ((symbolP = symbol_find (*s)) && S_GET_SEGMENT (symbolP) == reg_section)
1760 {
1761 int r = S_GET_VALUE (symbolP);
1762 if (r & types)
1763 reg = r & RNUM_MASK;
1764 else if ((types & RTYPE_VEC) && (r & ~1) == (RTYPE_GP | 2))
1765 /* Convert GP reg $v0/1 to MDMX reg $v0/1! */
1766 reg = (r & RNUM_MASK) - 2;
1767 }
1768 /* Else see if this is a register defined in an itbl entry. */
1769 else if ((types & RTYPE_GP) && itbl_have_entries)
1770 {
1771 char *n = *s;
1772 unsigned long r;
1773
1774 if (*n == '$')
1775 ++n;
1776 if (itbl_get_reg_val (n, &r))
1777 reg = r & RNUM_MASK;
1778 }
1779
1780 /* Advance to next token if a register was recognised. */
1781 if (reg >= 0)
1782 *s = e;
1783 else if (types & RWARN)
1784 as_warn ("Unrecognized register name `%s'", *s);
1785
1786 *e = save_c;
1787 if (regnop)
1788 *regnop = reg;
1789 return reg >= 0;
1790 }
1791
1792 /* Return TRUE if opcode MO is valid on the currently selected ISA and
1793 architecture. If EXPANSIONP is TRUE then this check is done while
1794 expanding a macro. Use is_opcode_valid_16 for MIPS16 opcodes. */
1795
1796 static bfd_boolean
1797 is_opcode_valid (const struct mips_opcode *mo, bfd_boolean expansionp)
1798 {
1799 int isa = mips_opts.isa;
1800 int fp_s, fp_d;
1801
1802 if (mips_opts.ase_mdmx)
1803 isa |= INSN_MDMX;
1804 if (mips_opts.ase_dsp)
1805 isa |= INSN_DSP;
1806 if (mips_opts.ase_dsp && ISA_SUPPORTS_DSP64_ASE)
1807 isa |= INSN_DSP64;
1808 if (mips_opts.ase_dspr2)
1809 isa |= INSN_DSPR2;
1810 if (mips_opts.ase_mt)
1811 isa |= INSN_MT;
1812 if (mips_opts.ase_mips3d)
1813 isa |= INSN_MIPS3D;
1814 if (mips_opts.ase_smartmips)
1815 isa |= INSN_SMARTMIPS;
1816
1817 /* For user code we don't check for mips_opts.mips16 since we want
1818 to allow jalx if -mips16 was specified on the command line. */
1819 if (expansionp ? mips_opts.mips16 : file_ase_mips16)
1820 isa |= INSN_MIPS16;
1821
1822 /* Don't accept instructions based on the ISA if the CPU does not implement
1823 all the coprocessor insns. */
1824 if (NO_ISA_COP (mips_opts.arch)
1825 && COP_INSN (mo->pinfo))
1826 isa = 0;
1827
1828 if (!OPCODE_IS_MEMBER (mo, isa, mips_opts.arch))
1829 return FALSE;
1830
1831 /* Check whether the instruction or macro requires single-precision or
1832 double-precision floating-point support. Note that this information is
1833 stored differently in the opcode table for insns and macros. */
1834 if (mo->pinfo == INSN_MACRO)
1835 {
1836 fp_s = mo->pinfo2 & INSN2_M_FP_S;
1837 fp_d = mo->pinfo2 & INSN2_M_FP_D;
1838 }
1839 else
1840 {
1841 fp_s = mo->pinfo & FP_S;
1842 fp_d = mo->pinfo & FP_D;
1843 }
1844
1845 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
1846 return FALSE;
1847
1848 if (fp_s && mips_opts.soft_float)
1849 return FALSE;
1850
1851 return TRUE;
1852 }
1853
1854 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
1855 selected ISA and architecture. */
1856
1857 static bfd_boolean
1858 is_opcode_valid_16 (const struct mips_opcode *mo)
1859 {
1860 return OPCODE_IS_MEMBER (mo, mips_opts.isa, mips_opts.arch) ? TRUE : FALSE;
1861 }
1862
1863 /* This function is called once, at assembler startup time. It should set up
1864 all the tables, etc. that the MD part of the assembler will need. */
1865
1866 void
1867 md_begin (void)
1868 {
1869 const char *retval = NULL;
1870 int i = 0;
1871 int broken = 0;
1872
1873 if (mips_pic != NO_PIC)
1874 {
1875 if (g_switch_seen && g_switch_value != 0)
1876 as_bad (_("-G may not be used in position-independent code"));
1877 g_switch_value = 0;
1878 }
1879
1880 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
1881 as_warn (_("Could not set architecture and machine"));
1882
1883 op_hash = hash_new ();
1884
1885 for (i = 0; i < NUMOPCODES;)
1886 {
1887 const char *name = mips_opcodes[i].name;
1888
1889 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
1890 if (retval != NULL)
1891 {
1892 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
1893 mips_opcodes[i].name, retval);
1894 /* Probably a memory allocation problem? Give up now. */
1895 as_fatal (_("Broken assembler. No assembly attempted."));
1896 }
1897 do
1898 {
1899 if (mips_opcodes[i].pinfo != INSN_MACRO)
1900 {
1901 if (!validate_mips_insn (&mips_opcodes[i]))
1902 broken = 1;
1903 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1904 {
1905 create_insn (&nop_insn, mips_opcodes + i);
1906 nop_insn.fixed_p = 1;
1907 }
1908 }
1909 ++i;
1910 }
1911 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
1912 }
1913
1914 mips16_op_hash = hash_new ();
1915
1916 i = 0;
1917 while (i < bfd_mips16_num_opcodes)
1918 {
1919 const char *name = mips16_opcodes[i].name;
1920
1921 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
1922 if (retval != NULL)
1923 as_fatal (_("internal: can't hash `%s': %s"),
1924 mips16_opcodes[i].name, retval);
1925 do
1926 {
1927 if (mips16_opcodes[i].pinfo != INSN_MACRO
1928 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
1929 != mips16_opcodes[i].match))
1930 {
1931 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
1932 mips16_opcodes[i].name, mips16_opcodes[i].args);
1933 broken = 1;
1934 }
1935 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1936 {
1937 create_insn (&mips16_nop_insn, mips16_opcodes + i);
1938 mips16_nop_insn.fixed_p = 1;
1939 }
1940 ++i;
1941 }
1942 while (i < bfd_mips16_num_opcodes
1943 && strcmp (mips16_opcodes[i].name, name) == 0);
1944 }
1945
1946 if (broken)
1947 as_fatal (_("Broken assembler. No assembly attempted."));
1948
1949 /* We add all the general register names to the symbol table. This
1950 helps us detect invalid uses of them. */
1951 for (i = 0; reg_names[i].name; i++)
1952 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
1953 reg_names[i].num, /* & RNUM_MASK, */
1954 &zero_address_frag));
1955 if (HAVE_NEWABI)
1956 for (i = 0; reg_names_n32n64[i].name; i++)
1957 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
1958 reg_names_n32n64[i].num, /* & RNUM_MASK, */
1959 &zero_address_frag));
1960 else
1961 for (i = 0; reg_names_o32[i].name; i++)
1962 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
1963 reg_names_o32[i].num, /* & RNUM_MASK, */
1964 &zero_address_frag));
1965
1966 mips_no_prev_insn ();
1967
1968 mips_gprmask = 0;
1969 mips_cprmask[0] = 0;
1970 mips_cprmask[1] = 0;
1971 mips_cprmask[2] = 0;
1972 mips_cprmask[3] = 0;
1973
1974 /* set the default alignment for the text section (2**2) */
1975 record_alignment (text_section, 2);
1976
1977 bfd_set_gp_size (stdoutput, g_switch_value);
1978
1979 #ifdef OBJ_ELF
1980 if (IS_ELF)
1981 {
1982 /* On a native system other than VxWorks, sections must be aligned
1983 to 16 byte boundaries. When configured for an embedded ELF
1984 target, we don't bother. */
1985 if (strncmp (TARGET_OS, "elf", 3) != 0
1986 && strncmp (TARGET_OS, "vxworks", 7) != 0)
1987 {
1988 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
1989 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
1990 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
1991 }
1992
1993 /* Create a .reginfo section for register masks and a .mdebug
1994 section for debugging information. */
1995 {
1996 segT seg;
1997 subsegT subseg;
1998 flagword flags;
1999 segT sec;
2000
2001 seg = now_seg;
2002 subseg = now_subseg;
2003
2004 /* The ABI says this section should be loaded so that the
2005 running program can access it. However, we don't load it
2006 if we are configured for an embedded target */
2007 flags = SEC_READONLY | SEC_DATA;
2008 if (strncmp (TARGET_OS, "elf", 3) != 0)
2009 flags |= SEC_ALLOC | SEC_LOAD;
2010
2011 if (mips_abi != N64_ABI)
2012 {
2013 sec = subseg_new (".reginfo", (subsegT) 0);
2014
2015 bfd_set_section_flags (stdoutput, sec, flags);
2016 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
2017
2018 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
2019 }
2020 else
2021 {
2022 /* The 64-bit ABI uses a .MIPS.options section rather than
2023 .reginfo section. */
2024 sec = subseg_new (".MIPS.options", (subsegT) 0);
2025 bfd_set_section_flags (stdoutput, sec, flags);
2026 bfd_set_section_alignment (stdoutput, sec, 3);
2027
2028 /* Set up the option header. */
2029 {
2030 Elf_Internal_Options opthdr;
2031 char *f;
2032
2033 opthdr.kind = ODK_REGINFO;
2034 opthdr.size = (sizeof (Elf_External_Options)
2035 + sizeof (Elf64_External_RegInfo));
2036 opthdr.section = 0;
2037 opthdr.info = 0;
2038 f = frag_more (sizeof (Elf_External_Options));
2039 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
2040 (Elf_External_Options *) f);
2041
2042 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
2043 }
2044 }
2045
2046 if (ECOFF_DEBUGGING)
2047 {
2048 sec = subseg_new (".mdebug", (subsegT) 0);
2049 (void) bfd_set_section_flags (stdoutput, sec,
2050 SEC_HAS_CONTENTS | SEC_READONLY);
2051 (void) bfd_set_section_alignment (stdoutput, sec, 2);
2052 }
2053 else if (mips_flag_pdr)
2054 {
2055 pdr_seg = subseg_new (".pdr", (subsegT) 0);
2056 (void) bfd_set_section_flags (stdoutput, pdr_seg,
2057 SEC_READONLY | SEC_RELOC
2058 | SEC_DEBUGGING);
2059 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
2060 }
2061
2062 subseg_set (seg, subseg);
2063 }
2064 }
2065 #endif /* OBJ_ELF */
2066
2067 if (! ECOFF_DEBUGGING)
2068 md_obj_begin ();
2069
2070 if (mips_fix_vr4120)
2071 init_vr4120_conflicts ();
2072 }
2073
2074 void
2075 md_mips_end (void)
2076 {
2077 if (! ECOFF_DEBUGGING)
2078 md_obj_end ();
2079 }
2080
2081 void
2082 md_assemble (char *str)
2083 {
2084 struct mips_cl_insn insn;
2085 bfd_reloc_code_real_type unused_reloc[3]
2086 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2087
2088 imm_expr.X_op = O_absent;
2089 imm2_expr.X_op = O_absent;
2090 offset_expr.X_op = O_absent;
2091 imm_reloc[0] = BFD_RELOC_UNUSED;
2092 imm_reloc[1] = BFD_RELOC_UNUSED;
2093 imm_reloc[2] = BFD_RELOC_UNUSED;
2094 offset_reloc[0] = BFD_RELOC_UNUSED;
2095 offset_reloc[1] = BFD_RELOC_UNUSED;
2096 offset_reloc[2] = BFD_RELOC_UNUSED;
2097
2098 if (mips_opts.mips16)
2099 mips16_ip (str, &insn);
2100 else
2101 {
2102 mips_ip (str, &insn);
2103 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
2104 str, insn.insn_opcode));
2105 }
2106
2107 if (insn_error)
2108 {
2109 as_bad ("%s `%s'", insn_error, str);
2110 return;
2111 }
2112
2113 if (insn.insn_mo->pinfo == INSN_MACRO)
2114 {
2115 macro_start ();
2116 if (mips_opts.mips16)
2117 mips16_macro (&insn);
2118 else
2119 macro (&insn);
2120 macro_end ();
2121 }
2122 else
2123 {
2124 if (imm_expr.X_op != O_absent)
2125 append_insn (&insn, &imm_expr, imm_reloc);
2126 else if (offset_expr.X_op != O_absent)
2127 append_insn (&insn, &offset_expr, offset_reloc);
2128 else
2129 append_insn (&insn, NULL, unused_reloc);
2130 }
2131 }
2132
2133 /* Convenience functions for abstracting away the differences between
2134 MIPS16 and non-MIPS16 relocations. */
2135
2136 static inline bfd_boolean
2137 mips16_reloc_p (bfd_reloc_code_real_type reloc)
2138 {
2139 switch (reloc)
2140 {
2141 case BFD_RELOC_MIPS16_JMP:
2142 case BFD_RELOC_MIPS16_GPREL:
2143 case BFD_RELOC_MIPS16_GOT16:
2144 case BFD_RELOC_MIPS16_CALL16:
2145 case BFD_RELOC_MIPS16_HI16_S:
2146 case BFD_RELOC_MIPS16_HI16:
2147 case BFD_RELOC_MIPS16_LO16:
2148 return TRUE;
2149
2150 default:
2151 return FALSE;
2152 }
2153 }
2154
2155 static inline bfd_boolean
2156 got16_reloc_p (bfd_reloc_code_real_type reloc)
2157 {
2158 return reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16;
2159 }
2160
2161 static inline bfd_boolean
2162 hi16_reloc_p (bfd_reloc_code_real_type reloc)
2163 {
2164 return reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S;
2165 }
2166
2167 static inline bfd_boolean
2168 lo16_reloc_p (bfd_reloc_code_real_type reloc)
2169 {
2170 return reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16;
2171 }
2172
2173 /* Return true if the given relocation might need a matching %lo().
2174 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
2175 need a matching %lo() when applied to local symbols. */
2176
2177 static inline bfd_boolean
2178 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
2179 {
2180 return (HAVE_IN_PLACE_ADDENDS
2181 && (hi16_reloc_p (reloc)
2182 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
2183 all GOT16 relocations evaluate to "G". */
2184 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
2185 }
2186
2187 /* Return the type of %lo() reloc needed by RELOC, given that
2188 reloc_needs_lo_p. */
2189
2190 static inline bfd_reloc_code_real_type
2191 matching_lo_reloc (bfd_reloc_code_real_type reloc)
2192 {
2193 return mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16 : BFD_RELOC_LO16;
2194 }
2195
2196 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
2197 relocation. */
2198
2199 static inline bfd_boolean
2200 fixup_has_matching_lo_p (fixS *fixp)
2201 {
2202 return (fixp->fx_next != NULL
2203 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
2204 && fixp->fx_addsy == fixp->fx_next->fx_addsy
2205 && fixp->fx_offset == fixp->fx_next->fx_offset);
2206 }
2207
2208 /* See whether instruction IP reads register REG. CLASS is the type
2209 of register. */
2210
2211 static int
2212 insn_uses_reg (const struct mips_cl_insn *ip, unsigned int reg,
2213 enum mips_regclass class)
2214 {
2215 if (class == MIPS16_REG)
2216 {
2217 assert (mips_opts.mips16);
2218 reg = mips16_to_32_reg_map[reg];
2219 class = MIPS_GR_REG;
2220 }
2221
2222 /* Don't report on general register ZERO, since it never changes. */
2223 if (class == MIPS_GR_REG && reg == ZERO)
2224 return 0;
2225
2226 if (class == MIPS_FP_REG)
2227 {
2228 assert (! mips_opts.mips16);
2229 /* If we are called with either $f0 or $f1, we must check $f0.
2230 This is not optimal, because it will introduce an unnecessary
2231 NOP between "lwc1 $f0" and "swc1 $f1". To fix this we would
2232 need to distinguish reading both $f0 and $f1 or just one of
2233 them. Note that we don't have to check the other way,
2234 because there is no instruction that sets both $f0 and $f1
2235 and requires a delay. */
2236 if ((ip->insn_mo->pinfo & INSN_READ_FPR_S)
2237 && ((EXTRACT_OPERAND (FS, *ip) & ~(unsigned) 1)
2238 == (reg &~ (unsigned) 1)))
2239 return 1;
2240 if ((ip->insn_mo->pinfo & INSN_READ_FPR_T)
2241 && ((EXTRACT_OPERAND (FT, *ip) & ~(unsigned) 1)
2242 == (reg &~ (unsigned) 1)))
2243 return 1;
2244 }
2245 else if (! mips_opts.mips16)
2246 {
2247 if ((ip->insn_mo->pinfo & INSN_READ_GPR_S)
2248 && EXTRACT_OPERAND (RS, *ip) == reg)
2249 return 1;
2250 if ((ip->insn_mo->pinfo & INSN_READ_GPR_T)
2251 && EXTRACT_OPERAND (RT, *ip) == reg)
2252 return 1;
2253 }
2254 else
2255 {
2256 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_X)
2257 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)] == reg)
2258 return 1;
2259 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Y)
2260 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)] == reg)
2261 return 1;
2262 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Z)
2263 && (mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]
2264 == reg))
2265 return 1;
2266 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_T) && reg == TREG)
2267 return 1;
2268 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_SP) && reg == SP)
2269 return 1;
2270 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_31) && reg == RA)
2271 return 1;
2272 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_GPR_X)
2273 && MIPS16_EXTRACT_OPERAND (REGR32, *ip) == reg)
2274 return 1;
2275 }
2276
2277 return 0;
2278 }
2279
2280 /* This function returns true if modifying a register requires a
2281 delay. */
2282
2283 static int
2284 reg_needs_delay (unsigned int reg)
2285 {
2286 unsigned long prev_pinfo;
2287
2288 prev_pinfo = history[0].insn_mo->pinfo;
2289 if (! mips_opts.noreorder
2290 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
2291 && ! gpr_interlocks)
2292 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
2293 && ! cop_interlocks)))
2294 {
2295 /* A load from a coprocessor or from memory. All load delays
2296 delay the use of general register rt for one instruction. */
2297 /* Itbl support may require additional care here. */
2298 know (prev_pinfo & INSN_WRITE_GPR_T);
2299 if (reg == EXTRACT_OPERAND (RT, history[0]))
2300 return 1;
2301 }
2302
2303 return 0;
2304 }
2305
2306 /* Move all labels in insn_labels to the current insertion point. */
2307
2308 static void
2309 mips_move_labels (void)
2310 {
2311 segment_info_type *si = seg_info (now_seg);
2312 struct insn_label_list *l;
2313 valueT val;
2314
2315 for (l = si->label_list; l != NULL; l = l->next)
2316 {
2317 assert (S_GET_SEGMENT (l->label) == now_seg);
2318 symbol_set_frag (l->label, frag_now);
2319 val = (valueT) frag_now_fix ();
2320 /* mips16 text labels are stored as odd. */
2321 if (mips_opts.mips16)
2322 ++val;
2323 S_SET_VALUE (l->label, val);
2324 }
2325 }
2326
2327 static bfd_boolean
2328 s_is_linkonce (symbolS *sym, segT from_seg)
2329 {
2330 bfd_boolean linkonce = FALSE;
2331 segT symseg = S_GET_SEGMENT (sym);
2332
2333 if (symseg != from_seg && !S_IS_LOCAL (sym))
2334 {
2335 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
2336 linkonce = TRUE;
2337 #ifdef OBJ_ELF
2338 /* The GNU toolchain uses an extension for ELF: a section
2339 beginning with the magic string .gnu.linkonce is a
2340 linkonce section. */
2341 if (strncmp (segment_name (symseg), ".gnu.linkonce",
2342 sizeof ".gnu.linkonce" - 1) == 0)
2343 linkonce = TRUE;
2344 #endif
2345 }
2346 return linkonce;
2347 }
2348
2349 /* Mark instruction labels in mips16 mode. This permits the linker to
2350 handle them specially, such as generating jalx instructions when
2351 needed. We also make them odd for the duration of the assembly, in
2352 order to generate the right sort of code. We will make them even
2353 in the adjust_symtab routine, while leaving them marked. This is
2354 convenient for the debugger and the disassembler. The linker knows
2355 to make them odd again. */
2356
2357 static void
2358 mips16_mark_labels (void)
2359 {
2360 segment_info_type *si = seg_info (now_seg);
2361 struct insn_label_list *l;
2362
2363 if (!mips_opts.mips16)
2364 return;
2365
2366 for (l = si->label_list; l != NULL; l = l->next)
2367 {
2368 symbolS *label = l->label;
2369
2370 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
2371 if (IS_ELF)
2372 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
2373 #endif
2374 if ((S_GET_VALUE (label) & 1) == 0
2375 /* Don't adjust the address if the label is global or weak, or
2376 in a link-once section, since we'll be emitting symbol reloc
2377 references to it which will be patched up by the linker, and
2378 the final value of the symbol may or may not be MIPS16. */
2379 && ! S_IS_WEAK (label)
2380 && ! S_IS_EXTERNAL (label)
2381 && ! s_is_linkonce (label, now_seg))
2382 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
2383 }
2384 }
2385
2386 /* End the current frag. Make it a variant frag and record the
2387 relaxation info. */
2388
2389 static void
2390 relax_close_frag (void)
2391 {
2392 mips_macro_warning.first_frag = frag_now;
2393 frag_var (rs_machine_dependent, 0, 0,
2394 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
2395 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
2396
2397 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
2398 mips_relax.first_fixup = 0;
2399 }
2400
2401 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
2402 See the comment above RELAX_ENCODE for more details. */
2403
2404 static void
2405 relax_start (symbolS *symbol)
2406 {
2407 assert (mips_relax.sequence == 0);
2408 mips_relax.sequence = 1;
2409 mips_relax.symbol = symbol;
2410 }
2411
2412 /* Start generating the second version of a relaxable sequence.
2413 See the comment above RELAX_ENCODE for more details. */
2414
2415 static void
2416 relax_switch (void)
2417 {
2418 assert (mips_relax.sequence == 1);
2419 mips_relax.sequence = 2;
2420 }
2421
2422 /* End the current relaxable sequence. */
2423
2424 static void
2425 relax_end (void)
2426 {
2427 assert (mips_relax.sequence == 2);
2428 relax_close_frag ();
2429 mips_relax.sequence = 0;
2430 }
2431
2432 /* Classify an instruction according to the FIX_VR4120_* enumeration.
2433 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
2434 by VR4120 errata. */
2435
2436 static unsigned int
2437 classify_vr4120_insn (const char *name)
2438 {
2439 if (strncmp (name, "macc", 4) == 0)
2440 return FIX_VR4120_MACC;
2441 if (strncmp (name, "dmacc", 5) == 0)
2442 return FIX_VR4120_DMACC;
2443 if (strncmp (name, "mult", 4) == 0)
2444 return FIX_VR4120_MULT;
2445 if (strncmp (name, "dmult", 5) == 0)
2446 return FIX_VR4120_DMULT;
2447 if (strstr (name, "div"))
2448 return FIX_VR4120_DIV;
2449 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
2450 return FIX_VR4120_MTHILO;
2451 return NUM_FIX_VR4120_CLASSES;
2452 }
2453
2454 /* Return the number of instructions that must separate INSN1 and INSN2,
2455 where INSN1 is the earlier instruction. Return the worst-case value
2456 for any INSN2 if INSN2 is null. */
2457
2458 static unsigned int
2459 insns_between (const struct mips_cl_insn *insn1,
2460 const struct mips_cl_insn *insn2)
2461 {
2462 unsigned long pinfo1, pinfo2;
2463
2464 /* This function needs to know which pinfo flags are set for INSN2
2465 and which registers INSN2 uses. The former is stored in PINFO2 and
2466 the latter is tested via INSN2_USES_REG. If INSN2 is null, PINFO2
2467 will have every flag set and INSN2_USES_REG will always return true. */
2468 pinfo1 = insn1->insn_mo->pinfo;
2469 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
2470
2471 #define INSN2_USES_REG(REG, CLASS) \
2472 (insn2 == NULL || insn_uses_reg (insn2, REG, CLASS))
2473
2474 /* For most targets, write-after-read dependencies on the HI and LO
2475 registers must be separated by at least two instructions. */
2476 if (!hilo_interlocks)
2477 {
2478 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
2479 return 2;
2480 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
2481 return 2;
2482 }
2483
2484 /* If we're working around r7000 errata, there must be two instructions
2485 between an mfhi or mflo and any instruction that uses the result. */
2486 if (mips_7000_hilo_fix
2487 && MF_HILO_INSN (pinfo1)
2488 && INSN2_USES_REG (EXTRACT_OPERAND (RD, *insn1), MIPS_GR_REG))
2489 return 2;
2490
2491 /* If working around VR4120 errata, check for combinations that need
2492 a single intervening instruction. */
2493 if (mips_fix_vr4120)
2494 {
2495 unsigned int class1, class2;
2496
2497 class1 = classify_vr4120_insn (insn1->insn_mo->name);
2498 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
2499 {
2500 if (insn2 == NULL)
2501 return 1;
2502 class2 = classify_vr4120_insn (insn2->insn_mo->name);
2503 if (vr4120_conflicts[class1] & (1 << class2))
2504 return 1;
2505 }
2506 }
2507
2508 if (!mips_opts.mips16)
2509 {
2510 /* Check for GPR or coprocessor load delays. All such delays
2511 are on the RT register. */
2512 /* Itbl support may require additional care here. */
2513 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
2514 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
2515 {
2516 know (pinfo1 & INSN_WRITE_GPR_T);
2517 if (INSN2_USES_REG (EXTRACT_OPERAND (RT, *insn1), MIPS_GR_REG))
2518 return 1;
2519 }
2520
2521 /* Check for generic coprocessor hazards.
2522
2523 This case is not handled very well. There is no special
2524 knowledge of CP0 handling, and the coprocessors other than
2525 the floating point unit are not distinguished at all. */
2526 /* Itbl support may require additional care here. FIXME!
2527 Need to modify this to include knowledge about
2528 user specified delays! */
2529 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
2530 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
2531 {
2532 /* Handle cases where INSN1 writes to a known general coprocessor
2533 register. There must be a one instruction delay before INSN2
2534 if INSN2 reads that register, otherwise no delay is needed. */
2535 if (pinfo1 & INSN_WRITE_FPR_T)
2536 {
2537 if (INSN2_USES_REG (EXTRACT_OPERAND (FT, *insn1), MIPS_FP_REG))
2538 return 1;
2539 }
2540 else if (pinfo1 & INSN_WRITE_FPR_S)
2541 {
2542 if (INSN2_USES_REG (EXTRACT_OPERAND (FS, *insn1), MIPS_FP_REG))
2543 return 1;
2544 }
2545 else
2546 {
2547 /* Read-after-write dependencies on the control registers
2548 require a two-instruction gap. */
2549 if ((pinfo1 & INSN_WRITE_COND_CODE)
2550 && (pinfo2 & INSN_READ_COND_CODE))
2551 return 2;
2552
2553 /* We don't know exactly what INSN1 does. If INSN2 is
2554 also a coprocessor instruction, assume there must be
2555 a one instruction gap. */
2556 if (pinfo2 & INSN_COP)
2557 return 1;
2558 }
2559 }
2560
2561 /* Check for read-after-write dependencies on the coprocessor
2562 control registers in cases where INSN1 does not need a general
2563 coprocessor delay. This means that INSN1 is a floating point
2564 comparison instruction. */
2565 /* Itbl support may require additional care here. */
2566 else if (!cop_interlocks
2567 && (pinfo1 & INSN_WRITE_COND_CODE)
2568 && (pinfo2 & INSN_READ_COND_CODE))
2569 return 1;
2570 }
2571
2572 #undef INSN2_USES_REG
2573
2574 return 0;
2575 }
2576
2577 /* Return the number of nops that would be needed to work around the
2578 VR4130 mflo/mfhi errata if instruction INSN immediately followed
2579 the MAX_VR4130_NOPS instructions described by HISTORY. */
2580
2581 static int
2582 nops_for_vr4130 (const struct mips_cl_insn *history,
2583 const struct mips_cl_insn *insn)
2584 {
2585 int i, j, reg;
2586
2587 /* Check if the instruction writes to HI or LO. MTHI and MTLO
2588 are not affected by the errata. */
2589 if (insn != 0
2590 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
2591 || strcmp (insn->insn_mo->name, "mtlo") == 0
2592 || strcmp (insn->insn_mo->name, "mthi") == 0))
2593 return 0;
2594
2595 /* Search for the first MFLO or MFHI. */
2596 for (i = 0; i < MAX_VR4130_NOPS; i++)
2597 if (!history[i].noreorder_p && MF_HILO_INSN (history[i].insn_mo->pinfo))
2598 {
2599 /* Extract the destination register. */
2600 if (mips_opts.mips16)
2601 reg = mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, history[i])];
2602 else
2603 reg = EXTRACT_OPERAND (RD, history[i]);
2604
2605 /* No nops are needed if INSN reads that register. */
2606 if (insn != NULL && insn_uses_reg (insn, reg, MIPS_GR_REG))
2607 return 0;
2608
2609 /* ...or if any of the intervening instructions do. */
2610 for (j = 0; j < i; j++)
2611 if (insn_uses_reg (&history[j], reg, MIPS_GR_REG))
2612 return 0;
2613
2614 return MAX_VR4130_NOPS - i;
2615 }
2616 return 0;
2617 }
2618
2619 /* Return the number of nops that would be needed if instruction INSN
2620 immediately followed the MAX_NOPS instructions given by HISTORY,
2621 where HISTORY[0] is the most recent instruction. If INSN is null,
2622 return the worse-case number of nops for any instruction. */
2623
2624 static int
2625 nops_for_insn (const struct mips_cl_insn *history,
2626 const struct mips_cl_insn *insn)
2627 {
2628 int i, nops, tmp_nops;
2629
2630 nops = 0;
2631 for (i = 0; i < MAX_DELAY_NOPS; i++)
2632 if (!history[i].noreorder_p)
2633 {
2634 tmp_nops = insns_between (history + i, insn) - i;
2635 if (tmp_nops > nops)
2636 nops = tmp_nops;
2637 }
2638
2639 if (mips_fix_vr4130)
2640 {
2641 tmp_nops = nops_for_vr4130 (history, insn);
2642 if (tmp_nops > nops)
2643 nops = tmp_nops;
2644 }
2645
2646 return nops;
2647 }
2648
2649 /* The variable arguments provide NUM_INSNS extra instructions that
2650 might be added to HISTORY. Return the largest number of nops that
2651 would be needed after the extended sequence. */
2652
2653 static int
2654 nops_for_sequence (int num_insns, const struct mips_cl_insn *history, ...)
2655 {
2656 va_list args;
2657 struct mips_cl_insn buffer[MAX_NOPS];
2658 struct mips_cl_insn *cursor;
2659 int nops;
2660
2661 va_start (args, history);
2662 cursor = buffer + num_insns;
2663 memcpy (cursor, history, (MAX_NOPS - num_insns) * sizeof (*cursor));
2664 while (cursor > buffer)
2665 *--cursor = *va_arg (args, const struct mips_cl_insn *);
2666
2667 nops = nops_for_insn (buffer, NULL);
2668 va_end (args);
2669 return nops;
2670 }
2671
2672 /* Like nops_for_insn, but if INSN is a branch, take into account the
2673 worst-case delay for the branch target. */
2674
2675 static int
2676 nops_for_insn_or_target (const struct mips_cl_insn *history,
2677 const struct mips_cl_insn *insn)
2678 {
2679 int nops, tmp_nops;
2680
2681 nops = nops_for_insn (history, insn);
2682 if (insn->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
2683 | INSN_COND_BRANCH_DELAY
2684 | INSN_COND_BRANCH_LIKELY))
2685 {
2686 tmp_nops = nops_for_sequence (2, history, insn, NOP_INSN);
2687 if (tmp_nops > nops)
2688 nops = tmp_nops;
2689 }
2690 else if (mips_opts.mips16 && (insn->insn_mo->pinfo & MIPS16_INSN_BRANCH))
2691 {
2692 tmp_nops = nops_for_sequence (1, history, insn);
2693 if (tmp_nops > nops)
2694 nops = tmp_nops;
2695 }
2696 return nops;
2697 }
2698
2699 /* Output an instruction. IP is the instruction information.
2700 ADDRESS_EXPR is an operand of the instruction to be used with
2701 RELOC_TYPE. */
2702
2703 static void
2704 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
2705 bfd_reloc_code_real_type *reloc_type)
2706 {
2707 unsigned long prev_pinfo, pinfo;
2708 relax_stateT prev_insn_frag_type = 0;
2709 bfd_boolean relaxed_branch = FALSE;
2710 segment_info_type *si = seg_info (now_seg);
2711
2712 /* Mark instruction labels in mips16 mode. */
2713 mips16_mark_labels ();
2714
2715 prev_pinfo = history[0].insn_mo->pinfo;
2716 pinfo = ip->insn_mo->pinfo;
2717
2718 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
2719 {
2720 /* There are a lot of optimizations we could do that we don't.
2721 In particular, we do not, in general, reorder instructions.
2722 If you use gcc with optimization, it will reorder
2723 instructions and generally do much more optimization then we
2724 do here; repeating all that work in the assembler would only
2725 benefit hand written assembly code, and does not seem worth
2726 it. */
2727 int nops = (mips_optimize == 0
2728 ? nops_for_insn (history, NULL)
2729 : nops_for_insn_or_target (history, ip));
2730 if (nops > 0)
2731 {
2732 fragS *old_frag;
2733 unsigned long old_frag_offset;
2734 int i;
2735
2736 old_frag = frag_now;
2737 old_frag_offset = frag_now_fix ();
2738
2739 for (i = 0; i < nops; i++)
2740 emit_nop ();
2741
2742 if (listing)
2743 {
2744 listing_prev_line ();
2745 /* We may be at the start of a variant frag. In case we
2746 are, make sure there is enough space for the frag
2747 after the frags created by listing_prev_line. The
2748 argument to frag_grow here must be at least as large
2749 as the argument to all other calls to frag_grow in
2750 this file. We don't have to worry about being in the
2751 middle of a variant frag, because the variants insert
2752 all needed nop instructions themselves. */
2753 frag_grow (40);
2754 }
2755
2756 mips_move_labels ();
2757
2758 #ifndef NO_ECOFF_DEBUGGING
2759 if (ECOFF_DEBUGGING)
2760 ecoff_fix_loc (old_frag, old_frag_offset);
2761 #endif
2762 }
2763 }
2764 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
2765 {
2766 /* Work out how many nops in prev_nop_frag are needed by IP. */
2767 int nops = nops_for_insn_or_target (history, ip);
2768 assert (nops <= prev_nop_frag_holds);
2769
2770 /* Enforce NOPS as a minimum. */
2771 if (nops > prev_nop_frag_required)
2772 prev_nop_frag_required = nops;
2773
2774 if (prev_nop_frag_holds == prev_nop_frag_required)
2775 {
2776 /* Settle for the current number of nops. Update the history
2777 accordingly (for the benefit of any future .set reorder code). */
2778 prev_nop_frag = NULL;
2779 insert_into_history (prev_nop_frag_since,
2780 prev_nop_frag_holds, NOP_INSN);
2781 }
2782 else
2783 {
2784 /* Allow this instruction to replace one of the nops that was
2785 tentatively added to prev_nop_frag. */
2786 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
2787 prev_nop_frag_holds--;
2788 prev_nop_frag_since++;
2789 }
2790 }
2791
2792 #ifdef OBJ_ELF
2793 /* The value passed to dwarf2_emit_insn is the distance between
2794 the beginning of the current instruction and the address that
2795 should be recorded in the debug tables. For MIPS16 debug info
2796 we want to use ISA-encoded addresses, so we pass -1 for an
2797 address higher by one than the current. */
2798 dwarf2_emit_insn (mips_opts.mips16 ? -1 : 0);
2799 #endif
2800
2801 /* Record the frag type before frag_var. */
2802 if (history[0].frag)
2803 prev_insn_frag_type = history[0].frag->fr_type;
2804
2805 if (address_expr
2806 && *reloc_type == BFD_RELOC_16_PCREL_S2
2807 && (pinfo & INSN_UNCOND_BRANCH_DELAY || pinfo & INSN_COND_BRANCH_DELAY
2808 || pinfo & INSN_COND_BRANCH_LIKELY)
2809 && mips_relax_branch
2810 /* Don't try branch relaxation within .set nomacro, or within
2811 .set noat if we use $at for PIC computations. If it turns
2812 out that the branch was out-of-range, we'll get an error. */
2813 && !mips_opts.warn_about_macros
2814 && (mips_opts.at || mips_pic == NO_PIC)
2815 && !mips_opts.mips16)
2816 {
2817 relaxed_branch = TRUE;
2818 add_relaxed_insn (ip, (relaxed_branch_length
2819 (NULL, NULL,
2820 (pinfo & INSN_UNCOND_BRANCH_DELAY) ? -1
2821 : (pinfo & INSN_COND_BRANCH_LIKELY) ? 1
2822 : 0)), 4,
2823 RELAX_BRANCH_ENCODE
2824 (pinfo & INSN_UNCOND_BRANCH_DELAY,
2825 pinfo & INSN_COND_BRANCH_LIKELY,
2826 pinfo & INSN_WRITE_GPR_31,
2827 0),
2828 address_expr->X_add_symbol,
2829 address_expr->X_add_number);
2830 *reloc_type = BFD_RELOC_UNUSED;
2831 }
2832 else if (*reloc_type > BFD_RELOC_UNUSED)
2833 {
2834 /* We need to set up a variant frag. */
2835 assert (mips_opts.mips16 && address_expr != NULL);
2836 add_relaxed_insn (ip, 4, 0,
2837 RELAX_MIPS16_ENCODE
2838 (*reloc_type - BFD_RELOC_UNUSED,
2839 mips16_small, mips16_ext,
2840 prev_pinfo & INSN_UNCOND_BRANCH_DELAY,
2841 history[0].mips16_absolute_jump_p),
2842 make_expr_symbol (address_expr), 0);
2843 }
2844 else if (mips_opts.mips16
2845 && ! ip->use_extend
2846 && *reloc_type != BFD_RELOC_MIPS16_JMP)
2847 {
2848 if ((pinfo & INSN_UNCOND_BRANCH_DELAY) == 0)
2849 /* Make sure there is enough room to swap this instruction with
2850 a following jump instruction. */
2851 frag_grow (6);
2852 add_fixed_insn (ip);
2853 }
2854 else
2855 {
2856 if (mips_opts.mips16
2857 && mips_opts.noreorder
2858 && (prev_pinfo & INSN_UNCOND_BRANCH_DELAY) != 0)
2859 as_warn (_("extended instruction in delay slot"));
2860
2861 if (mips_relax.sequence)
2862 {
2863 /* If we've reached the end of this frag, turn it into a variant
2864 frag and record the information for the instructions we've
2865 written so far. */
2866 if (frag_room () < 4)
2867 relax_close_frag ();
2868 mips_relax.sizes[mips_relax.sequence - 1] += 4;
2869 }
2870
2871 if (mips_relax.sequence != 2)
2872 mips_macro_warning.sizes[0] += 4;
2873 if (mips_relax.sequence != 1)
2874 mips_macro_warning.sizes[1] += 4;
2875
2876 if (mips_opts.mips16)
2877 {
2878 ip->fixed_p = 1;
2879 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
2880 }
2881 add_fixed_insn (ip);
2882 }
2883
2884 if (address_expr != NULL && *reloc_type <= BFD_RELOC_UNUSED)
2885 {
2886 if (address_expr->X_op == O_constant)
2887 {
2888 unsigned int tmp;
2889
2890 switch (*reloc_type)
2891 {
2892 case BFD_RELOC_32:
2893 ip->insn_opcode |= address_expr->X_add_number;
2894 break;
2895
2896 case BFD_RELOC_MIPS_HIGHEST:
2897 tmp = (address_expr->X_add_number + 0x800080008000ull) >> 48;
2898 ip->insn_opcode |= tmp & 0xffff;
2899 break;
2900
2901 case BFD_RELOC_MIPS_HIGHER:
2902 tmp = (address_expr->X_add_number + 0x80008000ull) >> 32;
2903 ip->insn_opcode |= tmp & 0xffff;
2904 break;
2905
2906 case BFD_RELOC_HI16_S:
2907 tmp = (address_expr->X_add_number + 0x8000) >> 16;
2908 ip->insn_opcode |= tmp & 0xffff;
2909 break;
2910
2911 case BFD_RELOC_HI16:
2912 ip->insn_opcode |= (address_expr->X_add_number >> 16) & 0xffff;
2913 break;
2914
2915 case BFD_RELOC_UNUSED:
2916 case BFD_RELOC_LO16:
2917 case BFD_RELOC_MIPS_GOT_DISP:
2918 ip->insn_opcode |= address_expr->X_add_number & 0xffff;
2919 break;
2920
2921 case BFD_RELOC_MIPS_JMP:
2922 if ((address_expr->X_add_number & 3) != 0)
2923 as_bad (_("jump to misaligned address (0x%lx)"),
2924 (unsigned long) address_expr->X_add_number);
2925 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0x3ffffff;
2926 break;
2927
2928 case BFD_RELOC_MIPS16_JMP:
2929 if ((address_expr->X_add_number & 3) != 0)
2930 as_bad (_("jump to misaligned address (0x%lx)"),
2931 (unsigned long) address_expr->X_add_number);
2932 ip->insn_opcode |=
2933 (((address_expr->X_add_number & 0x7c0000) << 3)
2934 | ((address_expr->X_add_number & 0xf800000) >> 7)
2935 | ((address_expr->X_add_number & 0x3fffc) >> 2));
2936 break;
2937
2938 case BFD_RELOC_16_PCREL_S2:
2939 if ((address_expr->X_add_number & 3) != 0)
2940 as_bad (_("branch to misaligned address (0x%lx)"),
2941 (unsigned long) address_expr->X_add_number);
2942 if (mips_relax_branch)
2943 goto need_reloc;
2944 if ((address_expr->X_add_number + 0x20000) & ~0x3ffff)
2945 as_bad (_("branch address range overflow (0x%lx)"),
2946 (unsigned long) address_expr->X_add_number);
2947 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0xffff;
2948 break;
2949
2950 default:
2951 internalError ();
2952 }
2953 }
2954 else if (*reloc_type < BFD_RELOC_UNUSED)
2955 need_reloc:
2956 {
2957 reloc_howto_type *howto;
2958 int i;
2959
2960 /* In a compound relocation, it is the final (outermost)
2961 operator that determines the relocated field. */
2962 for (i = 1; i < 3; i++)
2963 if (reloc_type[i] == BFD_RELOC_UNUSED)
2964 break;
2965
2966 howto = bfd_reloc_type_lookup (stdoutput, reloc_type[i - 1]);
2967 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
2968 bfd_get_reloc_size (howto),
2969 address_expr,
2970 reloc_type[0] == BFD_RELOC_16_PCREL_S2,
2971 reloc_type[0]);
2972
2973 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
2974 if (reloc_type[0] == BFD_RELOC_MIPS16_JMP
2975 && ip->fixp[0]->fx_addsy)
2976 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
2977
2978 /* These relocations can have an addend that won't fit in
2979 4 octets for 64bit assembly. */
2980 if (HAVE_64BIT_GPRS
2981 && ! howto->partial_inplace
2982 && (reloc_type[0] == BFD_RELOC_16
2983 || reloc_type[0] == BFD_RELOC_32
2984 || reloc_type[0] == BFD_RELOC_MIPS_JMP
2985 || reloc_type[0] == BFD_RELOC_GPREL16
2986 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
2987 || reloc_type[0] == BFD_RELOC_GPREL32
2988 || reloc_type[0] == BFD_RELOC_64
2989 || reloc_type[0] == BFD_RELOC_CTOR
2990 || reloc_type[0] == BFD_RELOC_MIPS_SUB
2991 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
2992 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
2993 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
2994 || reloc_type[0] == BFD_RELOC_MIPS_REL16
2995 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
2996 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
2997 || hi16_reloc_p (reloc_type[0])
2998 || lo16_reloc_p (reloc_type[0])))
2999 ip->fixp[0]->fx_no_overflow = 1;
3000
3001 if (mips_relax.sequence)
3002 {
3003 if (mips_relax.first_fixup == 0)
3004 mips_relax.first_fixup = ip->fixp[0];
3005 }
3006 else if (reloc_needs_lo_p (*reloc_type))
3007 {
3008 struct mips_hi_fixup *hi_fixup;
3009
3010 /* Reuse the last entry if it already has a matching %lo. */
3011 hi_fixup = mips_hi_fixup_list;
3012 if (hi_fixup == 0
3013 || !fixup_has_matching_lo_p (hi_fixup->fixp))
3014 {
3015 hi_fixup = ((struct mips_hi_fixup *)
3016 xmalloc (sizeof (struct mips_hi_fixup)));
3017 hi_fixup->next = mips_hi_fixup_list;
3018 mips_hi_fixup_list = hi_fixup;
3019 }
3020 hi_fixup->fixp = ip->fixp[0];
3021 hi_fixup->seg = now_seg;
3022 }
3023
3024 /* Add fixups for the second and third relocations, if given.
3025 Note that the ABI allows the second relocation to be
3026 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
3027 moment we only use RSS_UNDEF, but we could add support
3028 for the others if it ever becomes necessary. */
3029 for (i = 1; i < 3; i++)
3030 if (reloc_type[i] != BFD_RELOC_UNUSED)
3031 {
3032 ip->fixp[i] = fix_new (ip->frag, ip->where,
3033 ip->fixp[0]->fx_size, NULL, 0,
3034 FALSE, reloc_type[i]);
3035
3036 /* Use fx_tcbit to mark compound relocs. */
3037 ip->fixp[0]->fx_tcbit = 1;
3038 ip->fixp[i]->fx_tcbit = 1;
3039 }
3040 }
3041 }
3042 install_insn (ip);
3043
3044 /* Update the register mask information. */
3045 if (! mips_opts.mips16)
3046 {
3047 if (pinfo & INSN_WRITE_GPR_D)
3048 mips_gprmask |= 1 << EXTRACT_OPERAND (RD, *ip);
3049 if ((pinfo & (INSN_WRITE_GPR_T | INSN_READ_GPR_T)) != 0)
3050 mips_gprmask |= 1 << EXTRACT_OPERAND (RT, *ip);
3051 if (pinfo & INSN_READ_GPR_S)
3052 mips_gprmask |= 1 << EXTRACT_OPERAND (RS, *ip);
3053 if (pinfo & INSN_WRITE_GPR_31)
3054 mips_gprmask |= 1 << RA;
3055 if (pinfo & INSN_WRITE_FPR_D)
3056 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FD, *ip);
3057 if ((pinfo & (INSN_WRITE_FPR_S | INSN_READ_FPR_S)) != 0)
3058 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FS, *ip);
3059 if ((pinfo & (INSN_WRITE_FPR_T | INSN_READ_FPR_T)) != 0)
3060 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FT, *ip);
3061 if ((pinfo & INSN_READ_FPR_R) != 0)
3062 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FR, *ip);
3063 if (pinfo & INSN_COP)
3064 {
3065 /* We don't keep enough information to sort these cases out.
3066 The itbl support does keep this information however, although
3067 we currently don't support itbl fprmats as part of the cop
3068 instruction. May want to add this support in the future. */
3069 }
3070 /* Never set the bit for $0, which is always zero. */
3071 mips_gprmask &= ~1 << 0;
3072 }
3073 else
3074 {
3075 if (pinfo & (MIPS16_INSN_WRITE_X | MIPS16_INSN_READ_X))
3076 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RX, *ip);
3077 if (pinfo & (MIPS16_INSN_WRITE_Y | MIPS16_INSN_READ_Y))
3078 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RY, *ip);
3079 if (pinfo & MIPS16_INSN_WRITE_Z)
3080 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RZ, *ip);
3081 if (pinfo & (MIPS16_INSN_WRITE_T | MIPS16_INSN_READ_T))
3082 mips_gprmask |= 1 << TREG;
3083 if (pinfo & (MIPS16_INSN_WRITE_SP | MIPS16_INSN_READ_SP))
3084 mips_gprmask |= 1 << SP;
3085 if (pinfo & (MIPS16_INSN_WRITE_31 | MIPS16_INSN_READ_31))
3086 mips_gprmask |= 1 << RA;
3087 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
3088 mips_gprmask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
3089 if (pinfo & MIPS16_INSN_READ_Z)
3090 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip);
3091 if (pinfo & MIPS16_INSN_READ_GPR_X)
3092 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
3093 }
3094
3095 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
3096 {
3097 /* Filling the branch delay slot is more complex. We try to
3098 switch the branch with the previous instruction, which we can
3099 do if the previous instruction does not set up a condition
3100 that the branch tests and if the branch is not itself the
3101 target of any branch. */
3102 if ((pinfo & INSN_UNCOND_BRANCH_DELAY)
3103 || (pinfo & INSN_COND_BRANCH_DELAY))
3104 {
3105 if (mips_optimize < 2
3106 /* If we have seen .set volatile or .set nomove, don't
3107 optimize. */
3108 || mips_opts.nomove != 0
3109 /* We can't swap if the previous instruction's position
3110 is fixed. */
3111 || history[0].fixed_p
3112 /* If the previous previous insn was in a .set
3113 noreorder, we can't swap. Actually, the MIPS
3114 assembler will swap in this situation. However, gcc
3115 configured -with-gnu-as will generate code like
3116 .set noreorder
3117 lw $4,XXX
3118 .set reorder
3119 INSN
3120 bne $4,$0,foo
3121 in which we can not swap the bne and INSN. If gcc is
3122 not configured -with-gnu-as, it does not output the
3123 .set pseudo-ops. */
3124 || history[1].noreorder_p
3125 /* If the branch is itself the target of a branch, we
3126 can not swap. We cheat on this; all we check for is
3127 whether there is a label on this instruction. If
3128 there are any branches to anything other than a
3129 label, users must use .set noreorder. */
3130 || si->label_list != NULL
3131 /* If the previous instruction is in a variant frag
3132 other than this branch's one, we cannot do the swap.
3133 This does not apply to the mips16, which uses variant
3134 frags for different purposes. */
3135 || (! mips_opts.mips16
3136 && prev_insn_frag_type == rs_machine_dependent)
3137 /* Check for conflicts between the branch and the instructions
3138 before the candidate delay slot. */
3139 || nops_for_insn (history + 1, ip) > 0
3140 /* Check for conflicts between the swapped sequence and the
3141 target of the branch. */
3142 || nops_for_sequence (2, history + 1, ip, history) > 0
3143 /* We do not swap with a trap instruction, since it
3144 complicates trap handlers to have the trap
3145 instruction be in a delay slot. */
3146 || (prev_pinfo & INSN_TRAP)
3147 /* If the branch reads a register that the previous
3148 instruction sets, we can not swap. */
3149 || (! mips_opts.mips16
3150 && (prev_pinfo & INSN_WRITE_GPR_T)
3151 && insn_uses_reg (ip, EXTRACT_OPERAND (RT, history[0]),
3152 MIPS_GR_REG))
3153 || (! mips_opts.mips16
3154 && (prev_pinfo & INSN_WRITE_GPR_D)
3155 && insn_uses_reg (ip, EXTRACT_OPERAND (RD, history[0]),
3156 MIPS_GR_REG))
3157 || (mips_opts.mips16
3158 && (((prev_pinfo & MIPS16_INSN_WRITE_X)
3159 && (insn_uses_reg
3160 (ip, MIPS16_EXTRACT_OPERAND (RX, history[0]),
3161 MIPS16_REG)))
3162 || ((prev_pinfo & MIPS16_INSN_WRITE_Y)
3163 && (insn_uses_reg
3164 (ip, MIPS16_EXTRACT_OPERAND (RY, history[0]),
3165 MIPS16_REG)))
3166 || ((prev_pinfo & MIPS16_INSN_WRITE_Z)
3167 && (insn_uses_reg
3168 (ip, MIPS16_EXTRACT_OPERAND (RZ, history[0]),
3169 MIPS16_REG)))
3170 || ((prev_pinfo & MIPS16_INSN_WRITE_T)
3171 && insn_uses_reg (ip, TREG, MIPS_GR_REG))
3172 || ((prev_pinfo & MIPS16_INSN_WRITE_31)
3173 && insn_uses_reg (ip, RA, MIPS_GR_REG))
3174 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3175 && insn_uses_reg (ip,
3176 MIPS16OP_EXTRACT_REG32R
3177 (history[0].insn_opcode),
3178 MIPS_GR_REG))))
3179 /* If the branch writes a register that the previous
3180 instruction sets, we can not swap (we know that
3181 branches write only to RD or to $31). */
3182 || (! mips_opts.mips16
3183 && (prev_pinfo & INSN_WRITE_GPR_T)
3184 && (((pinfo & INSN_WRITE_GPR_D)
3185 && (EXTRACT_OPERAND (RT, history[0])
3186 == EXTRACT_OPERAND (RD, *ip)))
3187 || ((pinfo & INSN_WRITE_GPR_31)
3188 && EXTRACT_OPERAND (RT, history[0]) == RA)))
3189 || (! mips_opts.mips16
3190 && (prev_pinfo & INSN_WRITE_GPR_D)
3191 && (((pinfo & INSN_WRITE_GPR_D)
3192 && (EXTRACT_OPERAND (RD, history[0])
3193 == EXTRACT_OPERAND (RD, *ip)))
3194 || ((pinfo & INSN_WRITE_GPR_31)
3195 && EXTRACT_OPERAND (RD, history[0]) == RA)))
3196 || (mips_opts.mips16
3197 && (pinfo & MIPS16_INSN_WRITE_31)
3198 && ((prev_pinfo & MIPS16_INSN_WRITE_31)
3199 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3200 && (MIPS16OP_EXTRACT_REG32R (history[0].insn_opcode)
3201 == RA))))
3202 /* If the branch writes a register that the previous
3203 instruction reads, we can not swap (we know that
3204 branches only write to RD or to $31). */
3205 || (! mips_opts.mips16
3206 && (pinfo & INSN_WRITE_GPR_D)
3207 && insn_uses_reg (&history[0],
3208 EXTRACT_OPERAND (RD, *ip),
3209 MIPS_GR_REG))
3210 || (! mips_opts.mips16
3211 && (pinfo & INSN_WRITE_GPR_31)
3212 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3213 || (mips_opts.mips16
3214 && (pinfo & MIPS16_INSN_WRITE_31)
3215 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3216 /* If one instruction sets a condition code and the
3217 other one uses a condition code, we can not swap. */
3218 || ((pinfo & INSN_READ_COND_CODE)
3219 && (prev_pinfo & INSN_WRITE_COND_CODE))
3220 || ((pinfo & INSN_WRITE_COND_CODE)
3221 && (prev_pinfo & INSN_READ_COND_CODE))
3222 /* If the previous instruction uses the PC, we can not
3223 swap. */
3224 || (mips_opts.mips16
3225 && (prev_pinfo & MIPS16_INSN_READ_PC))
3226 /* If the previous instruction had a fixup in mips16
3227 mode, we can not swap. This normally means that the
3228 previous instruction was a 4 byte branch anyhow. */
3229 || (mips_opts.mips16 && history[0].fixp[0])
3230 /* If the previous instruction is a sync, sync.l, or
3231 sync.p, we can not swap. */
3232 || (prev_pinfo & INSN_SYNC))
3233 {
3234 if (mips_opts.mips16
3235 && (pinfo & INSN_UNCOND_BRANCH_DELAY)
3236 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31))
3237 && ISA_SUPPORTS_MIPS16E)
3238 {
3239 /* Convert MIPS16 jr/jalr into a "compact" jump. */
3240 ip->insn_opcode |= 0x0080;
3241 install_insn (ip);
3242 insert_into_history (0, 1, ip);
3243 }
3244 else
3245 {
3246 /* We could do even better for unconditional branches to
3247 portions of this object file; we could pick up the
3248 instruction at the destination, put it in the delay
3249 slot, and bump the destination address. */
3250 insert_into_history (0, 1, ip);
3251 emit_nop ();
3252 }
3253
3254 if (mips_relax.sequence)
3255 mips_relax.sizes[mips_relax.sequence - 1] += 4;
3256 }
3257 else
3258 {
3259 /* It looks like we can actually do the swap. */
3260 struct mips_cl_insn delay = history[0];
3261 if (mips_opts.mips16)
3262 {
3263 know (delay.frag == ip->frag);
3264 move_insn (ip, delay.frag, delay.where);
3265 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
3266 }
3267 else if (relaxed_branch)
3268 {
3269 /* Add the delay slot instruction to the end of the
3270 current frag and shrink the fixed part of the
3271 original frag. If the branch occupies the tail of
3272 the latter, move it backwards to cover the gap. */
3273 delay.frag->fr_fix -= 4;
3274 if (delay.frag == ip->frag)
3275 move_insn (ip, ip->frag, ip->where - 4);
3276 add_fixed_insn (&delay);
3277 }
3278 else
3279 {
3280 move_insn (&delay, ip->frag, ip->where);
3281 move_insn (ip, history[0].frag, history[0].where);
3282 }
3283 history[0] = *ip;
3284 delay.fixed_p = 1;
3285 insert_into_history (0, 1, &delay);
3286 }
3287
3288 /* If that was an unconditional branch, forget the previous
3289 insn information. */
3290 if (pinfo & INSN_UNCOND_BRANCH_DELAY)
3291 mips_no_prev_insn ();
3292 }
3293 else if (pinfo & INSN_COND_BRANCH_LIKELY)
3294 {
3295 /* We don't yet optimize a branch likely. What we should do
3296 is look at the target, copy the instruction found there
3297 into the delay slot, and increment the branch to jump to
3298 the next instruction. */
3299 insert_into_history (0, 1, ip);
3300 emit_nop ();
3301 }
3302 else
3303 insert_into_history (0, 1, ip);
3304 }
3305 else
3306 insert_into_history (0, 1, ip);
3307
3308 /* We just output an insn, so the next one doesn't have a label. */
3309 mips_clear_insn_labels ();
3310 }
3311
3312 /* Forget that there was any previous instruction or label. */
3313
3314 static void
3315 mips_no_prev_insn (void)
3316 {
3317 prev_nop_frag = NULL;
3318 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
3319 mips_clear_insn_labels ();
3320 }
3321
3322 /* This function must be called before we emit something other than
3323 instructions. It is like mips_no_prev_insn except that it inserts
3324 any NOPS that might be needed by previous instructions. */
3325
3326 void
3327 mips_emit_delays (void)
3328 {
3329 if (! mips_opts.noreorder)
3330 {
3331 int nops = nops_for_insn (history, NULL);
3332 if (nops > 0)
3333 {
3334 while (nops-- > 0)
3335 add_fixed_insn (NOP_INSN);
3336 mips_move_labels ();
3337 }
3338 }
3339 mips_no_prev_insn ();
3340 }
3341
3342 /* Start a (possibly nested) noreorder block. */
3343
3344 static void
3345 start_noreorder (void)
3346 {
3347 if (mips_opts.noreorder == 0)
3348 {
3349 unsigned int i;
3350 int nops;
3351
3352 /* None of the instructions before the .set noreorder can be moved. */
3353 for (i = 0; i < ARRAY_SIZE (history); i++)
3354 history[i].fixed_p = 1;
3355
3356 /* Insert any nops that might be needed between the .set noreorder
3357 block and the previous instructions. We will later remove any
3358 nops that turn out not to be needed. */
3359 nops = nops_for_insn (history, NULL);
3360 if (nops > 0)
3361 {
3362 if (mips_optimize != 0)
3363 {
3364 /* Record the frag which holds the nop instructions, so
3365 that we can remove them if we don't need them. */
3366 frag_grow (mips_opts.mips16 ? nops * 2 : nops * 4);
3367 prev_nop_frag = frag_now;
3368 prev_nop_frag_holds = nops;
3369 prev_nop_frag_required = 0;
3370 prev_nop_frag_since = 0;
3371 }
3372
3373 for (; nops > 0; --nops)
3374 add_fixed_insn (NOP_INSN);
3375
3376 /* Move on to a new frag, so that it is safe to simply
3377 decrease the size of prev_nop_frag. */
3378 frag_wane (frag_now);
3379 frag_new (0);
3380 mips_move_labels ();
3381 }
3382 mips16_mark_labels ();
3383 mips_clear_insn_labels ();
3384 }
3385 mips_opts.noreorder++;
3386 mips_any_noreorder = 1;
3387 }
3388
3389 /* End a nested noreorder block. */
3390
3391 static void
3392 end_noreorder (void)
3393 {
3394 mips_opts.noreorder--;
3395 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
3396 {
3397 /* Commit to inserting prev_nop_frag_required nops and go back to
3398 handling nop insertion the .set reorder way. */
3399 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
3400 * (mips_opts.mips16 ? 2 : 4));
3401 insert_into_history (prev_nop_frag_since,
3402 prev_nop_frag_required, NOP_INSN);
3403 prev_nop_frag = NULL;
3404 }
3405 }
3406
3407 /* Set up global variables for the start of a new macro. */
3408
3409 static void
3410 macro_start (void)
3411 {
3412 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
3413 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
3414 && (history[0].insn_mo->pinfo
3415 & (INSN_UNCOND_BRANCH_DELAY
3416 | INSN_COND_BRANCH_DELAY
3417 | INSN_COND_BRANCH_LIKELY)) != 0);
3418 }
3419
3420 /* Given that a macro is longer than 4 bytes, return the appropriate warning
3421 for it. Return null if no warning is needed. SUBTYPE is a bitmask of
3422 RELAX_DELAY_SLOT and RELAX_NOMACRO. */
3423
3424 static const char *
3425 macro_warning (relax_substateT subtype)
3426 {
3427 if (subtype & RELAX_DELAY_SLOT)
3428 return _("Macro instruction expanded into multiple instructions"
3429 " in a branch delay slot");
3430 else if (subtype & RELAX_NOMACRO)
3431 return _("Macro instruction expanded into multiple instructions");
3432 else
3433 return 0;
3434 }
3435
3436 /* Finish up a macro. Emit warnings as appropriate. */
3437
3438 static void
3439 macro_end (void)
3440 {
3441 if (mips_macro_warning.sizes[0] > 4 || mips_macro_warning.sizes[1] > 4)
3442 {
3443 relax_substateT subtype;
3444
3445 /* Set up the relaxation warning flags. */
3446 subtype = 0;
3447 if (mips_macro_warning.sizes[1] > mips_macro_warning.sizes[0])
3448 subtype |= RELAX_SECOND_LONGER;
3449 if (mips_opts.warn_about_macros)
3450 subtype |= RELAX_NOMACRO;
3451 if (mips_macro_warning.delay_slot_p)
3452 subtype |= RELAX_DELAY_SLOT;
3453
3454 if (mips_macro_warning.sizes[0] > 4 && mips_macro_warning.sizes[1] > 4)
3455 {
3456 /* Either the macro has a single implementation or both
3457 implementations are longer than 4 bytes. Emit the
3458 warning now. */
3459 const char *msg = macro_warning (subtype);
3460 if (msg != 0)
3461 as_warn (msg);
3462 }
3463 else
3464 {
3465 /* One implementation might need a warning but the other
3466 definitely doesn't. */
3467 mips_macro_warning.first_frag->fr_subtype |= subtype;
3468 }
3469 }
3470 }
3471
3472 /* Read a macro's relocation codes from *ARGS and store them in *R.
3473 The first argument in *ARGS will be either the code for a single
3474 relocation or -1 followed by the three codes that make up a
3475 composite relocation. */
3476
3477 static void
3478 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
3479 {
3480 int i, next;
3481
3482 next = va_arg (*args, int);
3483 if (next >= 0)
3484 r[0] = (bfd_reloc_code_real_type) next;
3485 else
3486 for (i = 0; i < 3; i++)
3487 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
3488 }
3489
3490 /* Build an instruction created by a macro expansion. This is passed
3491 a pointer to the count of instructions created so far, an
3492 expression, the name of the instruction to build, an operand format
3493 string, and corresponding arguments. */
3494
3495 static void
3496 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
3497 {
3498 const struct mips_opcode *mo;
3499 struct mips_cl_insn insn;
3500 bfd_reloc_code_real_type r[3];
3501 va_list args;
3502
3503 va_start (args, fmt);
3504
3505 if (mips_opts.mips16)
3506 {
3507 mips16_macro_build (ep, name, fmt, args);
3508 va_end (args);
3509 return;
3510 }
3511
3512 r[0] = BFD_RELOC_UNUSED;
3513 r[1] = BFD_RELOC_UNUSED;
3514 r[2] = BFD_RELOC_UNUSED;
3515 mo = (struct mips_opcode *) hash_find (op_hash, name);
3516 assert (mo);
3517 assert (strcmp (name, mo->name) == 0);
3518
3519 while (1)
3520 {
3521 /* Search until we get a match for NAME. It is assumed here that
3522 macros will never generate MDMX, MIPS-3D, or MT instructions. */
3523 if (strcmp (fmt, mo->args) == 0
3524 && mo->pinfo != INSN_MACRO
3525 && is_opcode_valid (mo, TRUE))
3526 break;
3527
3528 ++mo;
3529 assert (mo->name);
3530 assert (strcmp (name, mo->name) == 0);
3531 }
3532
3533 create_insn (&insn, mo);
3534 for (;;)
3535 {
3536 switch (*fmt++)
3537 {
3538 case '\0':
3539 break;
3540
3541 case ',':
3542 case '(':
3543 case ')':
3544 continue;
3545
3546 case '+':
3547 switch (*fmt++)
3548 {
3549 case 'A':
3550 case 'E':
3551 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3552 continue;
3553
3554 case 'B':
3555 case 'F':
3556 /* Note that in the macro case, these arguments are already
3557 in MSB form. (When handling the instruction in the
3558 non-macro case, these arguments are sizes from which
3559 MSB values must be calculated.) */
3560 INSERT_OPERAND (INSMSB, insn, va_arg (args, int));
3561 continue;
3562
3563 case 'C':
3564 case 'G':
3565 case 'H':
3566 /* Note that in the macro case, these arguments are already
3567 in MSBD form. (When handling the instruction in the
3568 non-macro case, these arguments are sizes from which
3569 MSBD values must be calculated.) */
3570 INSERT_OPERAND (EXTMSBD, insn, va_arg (args, int));
3571 continue;
3572
3573 case 'Q':
3574 INSERT_OPERAND (SEQI, insn, va_arg (args, int));
3575 continue;
3576
3577 default:
3578 internalError ();
3579 }
3580 continue;
3581
3582 case '2':
3583 INSERT_OPERAND (BP, insn, va_arg (args, int));
3584 continue;
3585
3586 case 't':
3587 case 'w':
3588 case 'E':
3589 INSERT_OPERAND (RT, insn, va_arg (args, int));
3590 continue;
3591
3592 case 'c':
3593 INSERT_OPERAND (CODE, insn, va_arg (args, int));
3594 continue;
3595
3596 case 'T':
3597 case 'W':
3598 INSERT_OPERAND (FT, insn, va_arg (args, int));
3599 continue;
3600
3601 case 'd':
3602 case 'G':
3603 case 'K':
3604 INSERT_OPERAND (RD, insn, va_arg (args, int));
3605 continue;
3606
3607 case 'U':
3608 {
3609 int tmp = va_arg (args, int);
3610
3611 INSERT_OPERAND (RT, insn, tmp);
3612 INSERT_OPERAND (RD, insn, tmp);
3613 continue;
3614 }
3615
3616 case 'V':
3617 case 'S':
3618 INSERT_OPERAND (FS, insn, va_arg (args, int));
3619 continue;
3620
3621 case 'z':
3622 continue;
3623
3624 case '<':
3625 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3626 continue;
3627
3628 case 'D':
3629 INSERT_OPERAND (FD, insn, va_arg (args, int));
3630 continue;
3631
3632 case 'B':
3633 INSERT_OPERAND (CODE20, insn, va_arg (args, int));
3634 continue;
3635
3636 case 'J':
3637 INSERT_OPERAND (CODE19, insn, va_arg (args, int));
3638 continue;
3639
3640 case 'q':
3641 INSERT_OPERAND (CODE2, insn, va_arg (args, int));
3642 continue;
3643
3644 case 'b':
3645 case 's':
3646 case 'r':
3647 case 'v':
3648 INSERT_OPERAND (RS, insn, va_arg (args, int));
3649 continue;
3650
3651 case 'i':
3652 case 'j':
3653 case 'o':
3654 macro_read_relocs (&args, r);
3655 assert (*r == BFD_RELOC_GPREL16
3656 || *r == BFD_RELOC_MIPS_LITERAL
3657 || *r == BFD_RELOC_MIPS_HIGHER
3658 || *r == BFD_RELOC_HI16_S
3659 || *r == BFD_RELOC_LO16
3660 || *r == BFD_RELOC_MIPS_GOT16
3661 || *r == BFD_RELOC_MIPS_CALL16
3662 || *r == BFD_RELOC_MIPS_GOT_DISP
3663 || *r == BFD_RELOC_MIPS_GOT_PAGE
3664 || *r == BFD_RELOC_MIPS_GOT_OFST
3665 || *r == BFD_RELOC_MIPS_GOT_LO16
3666 || *r == BFD_RELOC_MIPS_CALL_LO16);
3667 continue;
3668
3669 case 'u':
3670 macro_read_relocs (&args, r);
3671 assert (ep != NULL
3672 && (ep->X_op == O_constant
3673 || (ep->X_op == O_symbol
3674 && (*r == BFD_RELOC_MIPS_HIGHEST
3675 || *r == BFD_RELOC_HI16_S
3676 || *r == BFD_RELOC_HI16
3677 || *r == BFD_RELOC_GPREL16
3678 || *r == BFD_RELOC_MIPS_GOT_HI16
3679 || *r == BFD_RELOC_MIPS_CALL_HI16))));
3680 continue;
3681
3682 case 'p':
3683 assert (ep != NULL);
3684
3685 /*
3686 * This allows macro() to pass an immediate expression for
3687 * creating short branches without creating a symbol.
3688 *
3689 * We don't allow branch relaxation for these branches, as
3690 * they should only appear in ".set nomacro" anyway.
3691 */
3692 if (ep->X_op == O_constant)
3693 {
3694 if ((ep->X_add_number & 3) != 0)
3695 as_bad (_("branch to misaligned address (0x%lx)"),
3696 (unsigned long) ep->X_add_number);
3697 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
3698 as_bad (_("branch address range overflow (0x%lx)"),
3699 (unsigned long) ep->X_add_number);
3700 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
3701 ep = NULL;
3702 }
3703 else
3704 *r = BFD_RELOC_16_PCREL_S2;
3705 continue;
3706
3707 case 'a':
3708 assert (ep != NULL);
3709 *r = BFD_RELOC_MIPS_JMP;
3710 continue;
3711
3712 case 'C':
3713 INSERT_OPERAND (COPZ, insn, va_arg (args, unsigned long));
3714 continue;
3715
3716 case 'k':
3717 INSERT_OPERAND (CACHE, insn, va_arg (args, unsigned long));
3718 continue;
3719
3720 default:
3721 internalError ();
3722 }
3723 break;
3724 }
3725 va_end (args);
3726 assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3727
3728 append_insn (&insn, ep, r);
3729 }
3730
3731 static void
3732 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
3733 va_list args)
3734 {
3735 struct mips_opcode *mo;
3736 struct mips_cl_insn insn;
3737 bfd_reloc_code_real_type r[3]
3738 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3739
3740 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
3741 assert (mo);
3742 assert (strcmp (name, mo->name) == 0);
3743
3744 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
3745 {
3746 ++mo;
3747 assert (mo->name);
3748 assert (strcmp (name, mo->name) == 0);
3749 }
3750
3751 create_insn (&insn, mo);
3752 for (;;)
3753 {
3754 int c;
3755
3756 c = *fmt++;
3757 switch (c)
3758 {
3759 case '\0':
3760 break;
3761
3762 case ',':
3763 case '(':
3764 case ')':
3765 continue;
3766
3767 case 'y':
3768 case 'w':
3769 MIPS16_INSERT_OPERAND (RY, insn, va_arg (args, int));
3770 continue;
3771
3772 case 'x':
3773 case 'v':
3774 MIPS16_INSERT_OPERAND (RX, insn, va_arg (args, int));
3775 continue;
3776
3777 case 'z':
3778 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (args, int));
3779 continue;
3780
3781 case 'Z':
3782 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (args, int));
3783 continue;
3784
3785 case '0':
3786 case 'S':
3787 case 'P':
3788 case 'R':
3789 continue;
3790
3791 case 'X':
3792 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (args, int));
3793 continue;
3794
3795 case 'Y':
3796 {
3797 int regno;
3798
3799 regno = va_arg (args, int);
3800 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
3801 MIPS16_INSERT_OPERAND (REG32R, insn, regno);
3802 }
3803 continue;
3804
3805 case '<':
3806 case '>':
3807 case '4':
3808 case '5':
3809 case 'H':
3810 case 'W':
3811 case 'D':
3812 case 'j':
3813 case '8':
3814 case 'V':
3815 case 'C':
3816 case 'U':
3817 case 'k':
3818 case 'K':
3819 case 'p':
3820 case 'q':
3821 {
3822 assert (ep != NULL);
3823
3824 if (ep->X_op != O_constant)
3825 *r = (int) BFD_RELOC_UNUSED + c;
3826 else
3827 {
3828 mips16_immed (NULL, 0, c, ep->X_add_number, FALSE, FALSE,
3829 FALSE, &insn.insn_opcode, &insn.use_extend,
3830 &insn.extend);
3831 ep = NULL;
3832 *r = BFD_RELOC_UNUSED;
3833 }
3834 }
3835 continue;
3836
3837 case '6':
3838 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (args, int));
3839 continue;
3840 }
3841
3842 break;
3843 }
3844
3845 assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3846
3847 append_insn (&insn, ep, r);
3848 }
3849
3850 /*
3851 * Sign-extend 32-bit mode constants that have bit 31 set and all
3852 * higher bits unset.
3853 */
3854 static void
3855 normalize_constant_expr (expressionS *ex)
3856 {
3857 if (ex->X_op == O_constant
3858 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3859 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3860 - 0x80000000);
3861 }
3862
3863 /*
3864 * Sign-extend 32-bit mode address offsets that have bit 31 set and
3865 * all higher bits unset.
3866 */
3867 static void
3868 normalize_address_expr (expressionS *ex)
3869 {
3870 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
3871 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
3872 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3873 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3874 - 0x80000000);
3875 }
3876
3877 /*
3878 * Generate a "jalr" instruction with a relocation hint to the called
3879 * function. This occurs in NewABI PIC code.
3880 */
3881 static void
3882 macro_build_jalr (expressionS *ep)
3883 {
3884 char *f = NULL;
3885
3886 if (HAVE_NEWABI)
3887 {
3888 frag_grow (8);
3889 f = frag_more (0);
3890 }
3891 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
3892 if (HAVE_NEWABI)
3893 fix_new_exp (frag_now, f - frag_now->fr_literal,
3894 4, ep, FALSE, BFD_RELOC_MIPS_JALR);
3895 }
3896
3897 /*
3898 * Generate a "lui" instruction.
3899 */
3900 static void
3901 macro_build_lui (expressionS *ep, int regnum)
3902 {
3903 expressionS high_expr;
3904 const struct mips_opcode *mo;
3905 struct mips_cl_insn insn;
3906 bfd_reloc_code_real_type r[3]
3907 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3908 const char *name = "lui";
3909 const char *fmt = "t,u";
3910
3911 assert (! mips_opts.mips16);
3912
3913 high_expr = *ep;
3914
3915 if (high_expr.X_op == O_constant)
3916 {
3917 /* We can compute the instruction now without a relocation entry. */
3918 high_expr.X_add_number = ((high_expr.X_add_number + 0x8000)
3919 >> 16) & 0xffff;
3920 *r = BFD_RELOC_UNUSED;
3921 }
3922 else
3923 {
3924 assert (ep->X_op == O_symbol);
3925 /* _gp_disp is a special case, used from s_cpload.
3926 __gnu_local_gp is used if mips_no_shared. */
3927 assert (mips_pic == NO_PIC
3928 || (! HAVE_NEWABI
3929 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
3930 || (! mips_in_shared
3931 && strcmp (S_GET_NAME (ep->X_add_symbol),
3932 "__gnu_local_gp") == 0));
3933 *r = BFD_RELOC_HI16_S;
3934 }
3935
3936 mo = hash_find (op_hash, name);
3937 assert (strcmp (name, mo->name) == 0);
3938 assert (strcmp (fmt, mo->args) == 0);
3939 create_insn (&insn, mo);
3940
3941 insn.insn_opcode = insn.insn_mo->match;
3942 INSERT_OPERAND (RT, insn, regnum);
3943 if (*r == BFD_RELOC_UNUSED)
3944 {
3945 insn.insn_opcode |= high_expr.X_add_number;
3946 append_insn (&insn, NULL, r);
3947 }
3948 else
3949 append_insn (&insn, &high_expr, r);
3950 }
3951
3952 /* Generate a sequence of instructions to do a load or store from a constant
3953 offset off of a base register (breg) into/from a target register (treg),
3954 using AT if necessary. */
3955 static void
3956 macro_build_ldst_constoffset (expressionS *ep, const char *op,
3957 int treg, int breg, int dbl)
3958 {
3959 assert (ep->X_op == O_constant);
3960
3961 /* Sign-extending 32-bit constants makes their handling easier. */
3962 if (!dbl)
3963 normalize_constant_expr (ep);
3964
3965 /* Right now, this routine can only handle signed 32-bit constants. */
3966 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
3967 as_warn (_("operand overflow"));
3968
3969 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
3970 {
3971 /* Signed 16-bit offset will fit in the op. Easy! */
3972 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
3973 }
3974 else
3975 {
3976 /* 32-bit offset, need multiple instructions and AT, like:
3977 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
3978 addu $tempreg,$tempreg,$breg
3979 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
3980 to handle the complete offset. */
3981 macro_build_lui (ep, AT);
3982 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
3983 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
3984
3985 if (!mips_opts.at)
3986 as_bad (_("Macro used $at after \".set noat\""));
3987 }
3988 }
3989
3990 /* set_at()
3991 * Generates code to set the $at register to true (one)
3992 * if reg is less than the immediate expression.
3993 */
3994 static void
3995 set_at (int reg, int unsignedp)
3996 {
3997 if (imm_expr.X_op == O_constant
3998 && imm_expr.X_add_number >= -0x8000
3999 && imm_expr.X_add_number < 0x8000)
4000 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
4001 AT, reg, BFD_RELOC_LO16);
4002 else
4003 {
4004 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4005 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
4006 }
4007 }
4008
4009 /* Warn if an expression is not a constant. */
4010
4011 static void
4012 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
4013 {
4014 if (ex->X_op == O_big)
4015 as_bad (_("unsupported large constant"));
4016 else if (ex->X_op != O_constant)
4017 as_bad (_("Instruction %s requires absolute expression"),
4018 ip->insn_mo->name);
4019
4020 if (HAVE_32BIT_GPRS)
4021 normalize_constant_expr (ex);
4022 }
4023
4024 /* Count the leading zeroes by performing a binary chop. This is a
4025 bulky bit of source, but performance is a LOT better for the
4026 majority of values than a simple loop to count the bits:
4027 for (lcnt = 0; (lcnt < 32); lcnt++)
4028 if ((v) & (1 << (31 - lcnt)))
4029 break;
4030 However it is not code size friendly, and the gain will drop a bit
4031 on certain cached systems.
4032 */
4033 #define COUNT_TOP_ZEROES(v) \
4034 (((v) & ~0xffff) == 0 \
4035 ? ((v) & ~0xff) == 0 \
4036 ? ((v) & ~0xf) == 0 \
4037 ? ((v) & ~0x3) == 0 \
4038 ? ((v) & ~0x1) == 0 \
4039 ? !(v) \
4040 ? 32 \
4041 : 31 \
4042 : 30 \
4043 : ((v) & ~0x7) == 0 \
4044 ? 29 \
4045 : 28 \
4046 : ((v) & ~0x3f) == 0 \
4047 ? ((v) & ~0x1f) == 0 \
4048 ? 27 \
4049 : 26 \
4050 : ((v) & ~0x7f) == 0 \
4051 ? 25 \
4052 : 24 \
4053 : ((v) & ~0xfff) == 0 \
4054 ? ((v) & ~0x3ff) == 0 \
4055 ? ((v) & ~0x1ff) == 0 \
4056 ? 23 \
4057 : 22 \
4058 : ((v) & ~0x7ff) == 0 \
4059 ? 21 \
4060 : 20 \
4061 : ((v) & ~0x3fff) == 0 \
4062 ? ((v) & ~0x1fff) == 0 \
4063 ? 19 \
4064 : 18 \
4065 : ((v) & ~0x7fff) == 0 \
4066 ? 17 \
4067 : 16 \
4068 : ((v) & ~0xffffff) == 0 \
4069 ? ((v) & ~0xfffff) == 0 \
4070 ? ((v) & ~0x3ffff) == 0 \
4071 ? ((v) & ~0x1ffff) == 0 \
4072 ? 15 \
4073 : 14 \
4074 : ((v) & ~0x7ffff) == 0 \
4075 ? 13 \
4076 : 12 \
4077 : ((v) & ~0x3fffff) == 0 \
4078 ? ((v) & ~0x1fffff) == 0 \
4079 ? 11 \
4080 : 10 \
4081 : ((v) & ~0x7fffff) == 0 \
4082 ? 9 \
4083 : 8 \
4084 : ((v) & ~0xfffffff) == 0 \
4085 ? ((v) & ~0x3ffffff) == 0 \
4086 ? ((v) & ~0x1ffffff) == 0 \
4087 ? 7 \
4088 : 6 \
4089 : ((v) & ~0x7ffffff) == 0 \
4090 ? 5 \
4091 : 4 \
4092 : ((v) & ~0x3fffffff) == 0 \
4093 ? ((v) & ~0x1fffffff) == 0 \
4094 ? 3 \
4095 : 2 \
4096 : ((v) & ~0x7fffffff) == 0 \
4097 ? 1 \
4098 : 0)
4099
4100 /* load_register()
4101 * This routine generates the least number of instructions necessary to load
4102 * an absolute expression value into a register.
4103 */
4104 static void
4105 load_register (int reg, expressionS *ep, int dbl)
4106 {
4107 int freg;
4108 expressionS hi32, lo32;
4109
4110 if (ep->X_op != O_big)
4111 {
4112 assert (ep->X_op == O_constant);
4113
4114 /* Sign-extending 32-bit constants makes their handling easier. */
4115 if (!dbl)
4116 normalize_constant_expr (ep);
4117
4118 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
4119 {
4120 /* We can handle 16 bit signed values with an addiu to
4121 $zero. No need to ever use daddiu here, since $zero and
4122 the result are always correct in 32 bit mode. */
4123 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4124 return;
4125 }
4126 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
4127 {
4128 /* We can handle 16 bit unsigned values with an ori to
4129 $zero. */
4130 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4131 return;
4132 }
4133 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
4134 {
4135 /* 32 bit values require an lui. */
4136 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_HI16);
4137 if ((ep->X_add_number & 0xffff) != 0)
4138 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4139 return;
4140 }
4141 }
4142
4143 /* The value is larger than 32 bits. */
4144
4145 if (!dbl || HAVE_32BIT_GPRS)
4146 {
4147 char value[32];
4148
4149 sprintf_vma (value, ep->X_add_number);
4150 as_bad (_("Number (0x%s) larger than 32 bits"), value);
4151 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4152 return;
4153 }
4154
4155 if (ep->X_op != O_big)
4156 {
4157 hi32 = *ep;
4158 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4159 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4160 hi32.X_add_number &= 0xffffffff;
4161 lo32 = *ep;
4162 lo32.X_add_number &= 0xffffffff;
4163 }
4164 else
4165 {
4166 assert (ep->X_add_number > 2);
4167 if (ep->X_add_number == 3)
4168 generic_bignum[3] = 0;
4169 else if (ep->X_add_number > 4)
4170 as_bad (_("Number larger than 64 bits"));
4171 lo32.X_op = O_constant;
4172 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
4173 hi32.X_op = O_constant;
4174 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
4175 }
4176
4177 if (hi32.X_add_number == 0)
4178 freg = 0;
4179 else
4180 {
4181 int shift, bit;
4182 unsigned long hi, lo;
4183
4184 if (hi32.X_add_number == (offsetT) 0xffffffff)
4185 {
4186 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
4187 {
4188 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4189 return;
4190 }
4191 if (lo32.X_add_number & 0x80000000)
4192 {
4193 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4194 if (lo32.X_add_number & 0xffff)
4195 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4196 return;
4197 }
4198 }
4199
4200 /* Check for 16bit shifted constant. We know that hi32 is
4201 non-zero, so start the mask on the first bit of the hi32
4202 value. */
4203 shift = 17;
4204 do
4205 {
4206 unsigned long himask, lomask;
4207
4208 if (shift < 32)
4209 {
4210 himask = 0xffff >> (32 - shift);
4211 lomask = (0xffff << shift) & 0xffffffff;
4212 }
4213 else
4214 {
4215 himask = 0xffff << (shift - 32);
4216 lomask = 0;
4217 }
4218 if ((hi32.X_add_number & ~(offsetT) himask) == 0
4219 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
4220 {
4221 expressionS tmp;
4222
4223 tmp.X_op = O_constant;
4224 if (shift < 32)
4225 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
4226 | (lo32.X_add_number >> shift));
4227 else
4228 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
4229 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4230 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", "d,w,<",
4231 reg, reg, (shift >= 32) ? shift - 32 : shift);
4232 return;
4233 }
4234 ++shift;
4235 }
4236 while (shift <= (64 - 16));
4237
4238 /* Find the bit number of the lowest one bit, and store the
4239 shifted value in hi/lo. */
4240 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
4241 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
4242 if (lo != 0)
4243 {
4244 bit = 0;
4245 while ((lo & 1) == 0)
4246 {
4247 lo >>= 1;
4248 ++bit;
4249 }
4250 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
4251 hi >>= bit;
4252 }
4253 else
4254 {
4255 bit = 32;
4256 while ((hi & 1) == 0)
4257 {
4258 hi >>= 1;
4259 ++bit;
4260 }
4261 lo = hi;
4262 hi = 0;
4263 }
4264
4265 /* Optimize if the shifted value is a (power of 2) - 1. */
4266 if ((hi == 0 && ((lo + 1) & lo) == 0)
4267 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
4268 {
4269 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
4270 if (shift != 0)
4271 {
4272 expressionS tmp;
4273
4274 /* This instruction will set the register to be all
4275 ones. */
4276 tmp.X_op = O_constant;
4277 tmp.X_add_number = (offsetT) -1;
4278 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4279 if (bit != 0)
4280 {
4281 bit += shift;
4282 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", "d,w,<",
4283 reg, reg, (bit >= 32) ? bit - 32 : bit);
4284 }
4285 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", "d,w,<",
4286 reg, reg, (shift >= 32) ? shift - 32 : shift);
4287 return;
4288 }
4289 }
4290
4291 /* Sign extend hi32 before calling load_register, because we can
4292 generally get better code when we load a sign extended value. */
4293 if ((hi32.X_add_number & 0x80000000) != 0)
4294 hi32.X_add_number |= ~(offsetT) 0xffffffff;
4295 load_register (reg, &hi32, 0);
4296 freg = reg;
4297 }
4298 if ((lo32.X_add_number & 0xffff0000) == 0)
4299 {
4300 if (freg != 0)
4301 {
4302 macro_build (NULL, "dsll32", "d,w,<", reg, freg, 0);
4303 freg = reg;
4304 }
4305 }
4306 else
4307 {
4308 expressionS mid16;
4309
4310 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
4311 {
4312 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4313 macro_build (NULL, "dsrl32", "d,w,<", reg, reg, 0);
4314 return;
4315 }
4316
4317 if (freg != 0)
4318 {
4319 macro_build (NULL, "dsll", "d,w,<", reg, freg, 16);
4320 freg = reg;
4321 }
4322 mid16 = lo32;
4323 mid16.X_add_number >>= 16;
4324 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4325 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4326 freg = reg;
4327 }
4328 if ((lo32.X_add_number & 0xffff) != 0)
4329 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4330 }
4331
4332 static inline void
4333 load_delay_nop (void)
4334 {
4335 if (!gpr_interlocks)
4336 macro_build (NULL, "nop", "");
4337 }
4338
4339 /* Load an address into a register. */
4340
4341 static void
4342 load_address (int reg, expressionS *ep, int *used_at)
4343 {
4344 if (ep->X_op != O_constant
4345 && ep->X_op != O_symbol)
4346 {
4347 as_bad (_("expression too complex"));
4348 ep->X_op = O_constant;
4349 }
4350
4351 if (ep->X_op == O_constant)
4352 {
4353 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
4354 return;
4355 }
4356
4357 if (mips_pic == NO_PIC)
4358 {
4359 /* If this is a reference to a GP relative symbol, we want
4360 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
4361 Otherwise we want
4362 lui $reg,<sym> (BFD_RELOC_HI16_S)
4363 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4364 If we have an addend, we always use the latter form.
4365
4366 With 64bit address space and a usable $at we want
4367 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4368 lui $at,<sym> (BFD_RELOC_HI16_S)
4369 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4370 daddiu $at,<sym> (BFD_RELOC_LO16)
4371 dsll32 $reg,0
4372 daddu $reg,$reg,$at
4373
4374 If $at is already in use, we use a path which is suboptimal
4375 on superscalar processors.
4376 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4377 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4378 dsll $reg,16
4379 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
4380 dsll $reg,16
4381 daddiu $reg,<sym> (BFD_RELOC_LO16)
4382
4383 For GP relative symbols in 64bit address space we can use
4384 the same sequence as in 32bit address space. */
4385 if (HAVE_64BIT_SYMBOLS)
4386 {
4387 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4388 && !nopic_need_relax (ep->X_add_symbol, 1))
4389 {
4390 relax_start (ep->X_add_symbol);
4391 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4392 mips_gp_register, BFD_RELOC_GPREL16);
4393 relax_switch ();
4394 }
4395
4396 if (*used_at == 0 && mips_opts.at)
4397 {
4398 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4399 macro_build (ep, "lui", "t,u", AT, BFD_RELOC_HI16_S);
4400 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4401 BFD_RELOC_MIPS_HIGHER);
4402 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
4403 macro_build (NULL, "dsll32", "d,w,<", reg, reg, 0);
4404 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
4405 *used_at = 1;
4406 }
4407 else
4408 {
4409 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4410 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4411 BFD_RELOC_MIPS_HIGHER);
4412 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4413 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
4414 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4415 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
4416 }
4417
4418 if (mips_relax.sequence)
4419 relax_end ();
4420 }
4421 else
4422 {
4423 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4424 && !nopic_need_relax (ep->X_add_symbol, 1))
4425 {
4426 relax_start (ep->X_add_symbol);
4427 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4428 mips_gp_register, BFD_RELOC_GPREL16);
4429 relax_switch ();
4430 }
4431 macro_build_lui (ep, reg);
4432 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
4433 reg, reg, BFD_RELOC_LO16);
4434 if (mips_relax.sequence)
4435 relax_end ();
4436 }
4437 }
4438 else if (!mips_big_got)
4439 {
4440 expressionS ex;
4441
4442 /* If this is a reference to an external symbol, we want
4443 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4444 Otherwise we want
4445 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4446 nop
4447 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4448 If there is a constant, it must be added in after.
4449
4450 If we have NewABI, we want
4451 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
4452 unless we're referencing a global symbol with a non-zero
4453 offset, in which case cst must be added separately. */
4454 if (HAVE_NEWABI)
4455 {
4456 if (ep->X_add_number)
4457 {
4458 ex.X_add_number = ep->X_add_number;
4459 ep->X_add_number = 0;
4460 relax_start (ep->X_add_symbol);
4461 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4462 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4463 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4464 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4465 ex.X_op = O_constant;
4466 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4467 reg, reg, BFD_RELOC_LO16);
4468 ep->X_add_number = ex.X_add_number;
4469 relax_switch ();
4470 }
4471 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4472 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4473 if (mips_relax.sequence)
4474 relax_end ();
4475 }
4476 else
4477 {
4478 ex.X_add_number = ep->X_add_number;
4479 ep->X_add_number = 0;
4480 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4481 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4482 load_delay_nop ();
4483 relax_start (ep->X_add_symbol);
4484 relax_switch ();
4485 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4486 BFD_RELOC_LO16);
4487 relax_end ();
4488
4489 if (ex.X_add_number != 0)
4490 {
4491 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4492 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4493 ex.X_op = O_constant;
4494 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4495 reg, reg, BFD_RELOC_LO16);
4496 }
4497 }
4498 }
4499 else if (mips_big_got)
4500 {
4501 expressionS ex;
4502
4503 /* This is the large GOT case. If this is a reference to an
4504 external symbol, we want
4505 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
4506 addu $reg,$reg,$gp
4507 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
4508
4509 Otherwise, for a reference to a local symbol in old ABI, we want
4510 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4511 nop
4512 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4513 If there is a constant, it must be added in after.
4514
4515 In the NewABI, for local symbols, with or without offsets, we want:
4516 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
4517 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
4518 */
4519 if (HAVE_NEWABI)
4520 {
4521 ex.X_add_number = ep->X_add_number;
4522 ep->X_add_number = 0;
4523 relax_start (ep->X_add_symbol);
4524 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4525 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4526 reg, reg, mips_gp_register);
4527 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4528 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4529 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4530 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4531 else if (ex.X_add_number)
4532 {
4533 ex.X_op = O_constant;
4534 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4535 BFD_RELOC_LO16);
4536 }
4537
4538 ep->X_add_number = ex.X_add_number;
4539 relax_switch ();
4540 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4541 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
4542 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4543 BFD_RELOC_MIPS_GOT_OFST);
4544 relax_end ();
4545 }
4546 else
4547 {
4548 ex.X_add_number = ep->X_add_number;
4549 ep->X_add_number = 0;
4550 relax_start (ep->X_add_symbol);
4551 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4552 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4553 reg, reg, mips_gp_register);
4554 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4555 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4556 relax_switch ();
4557 if (reg_needs_delay (mips_gp_register))
4558 {
4559 /* We need a nop before loading from $gp. This special
4560 check is required because the lui which starts the main
4561 instruction stream does not refer to $gp, and so will not
4562 insert the nop which may be required. */
4563 macro_build (NULL, "nop", "");
4564 }
4565 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4566 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4567 load_delay_nop ();
4568 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4569 BFD_RELOC_LO16);
4570 relax_end ();
4571
4572 if (ex.X_add_number != 0)
4573 {
4574 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4575 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4576 ex.X_op = O_constant;
4577 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4578 BFD_RELOC_LO16);
4579 }
4580 }
4581 }
4582 else
4583 abort ();
4584
4585 if (!mips_opts.at && *used_at == 1)
4586 as_bad (_("Macro used $at after \".set noat\""));
4587 }
4588
4589 /* Move the contents of register SOURCE into register DEST. */
4590
4591 static void
4592 move_register (int dest, int source)
4593 {
4594 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
4595 dest, source, 0);
4596 }
4597
4598 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
4599 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
4600 The two alternatives are:
4601
4602 Global symbol Local sybmol
4603 ------------- ------------
4604 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
4605 ... ...
4606 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
4607
4608 load_got_offset emits the first instruction and add_got_offset
4609 emits the second for a 16-bit offset or add_got_offset_hilo emits
4610 a sequence to add a 32-bit offset using a scratch register. */
4611
4612 static void
4613 load_got_offset (int dest, expressionS *local)
4614 {
4615 expressionS global;
4616
4617 global = *local;
4618 global.X_add_number = 0;
4619
4620 relax_start (local->X_add_symbol);
4621 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4622 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4623 relax_switch ();
4624 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4625 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4626 relax_end ();
4627 }
4628
4629 static void
4630 add_got_offset (int dest, expressionS *local)
4631 {
4632 expressionS global;
4633
4634 global.X_op = O_constant;
4635 global.X_op_symbol = NULL;
4636 global.X_add_symbol = NULL;
4637 global.X_add_number = local->X_add_number;
4638
4639 relax_start (local->X_add_symbol);
4640 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4641 dest, dest, BFD_RELOC_LO16);
4642 relax_switch ();
4643 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4644 relax_end ();
4645 }
4646
4647 static void
4648 add_got_offset_hilo (int dest, expressionS *local, int tmp)
4649 {
4650 expressionS global;
4651 int hold_mips_optimize;
4652
4653 global.X_op = O_constant;
4654 global.X_op_symbol = NULL;
4655 global.X_add_symbol = NULL;
4656 global.X_add_number = local->X_add_number;
4657
4658 relax_start (local->X_add_symbol);
4659 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
4660 relax_switch ();
4661 /* Set mips_optimize around the lui instruction to avoid
4662 inserting an unnecessary nop after the lw. */
4663 hold_mips_optimize = mips_optimize;
4664 mips_optimize = 2;
4665 macro_build_lui (&global, tmp);
4666 mips_optimize = hold_mips_optimize;
4667 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
4668 relax_end ();
4669
4670 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
4671 }
4672
4673 /*
4674 * Build macros
4675 * This routine implements the seemingly endless macro or synthesized
4676 * instructions and addressing modes in the mips assembly language. Many
4677 * of these macros are simple and are similar to each other. These could
4678 * probably be handled by some kind of table or grammar approach instead of
4679 * this verbose method. Others are not simple macros but are more like
4680 * optimizing code generation.
4681 * One interesting optimization is when several store macros appear
4682 * consecutively that would load AT with the upper half of the same address.
4683 * The ensuing load upper instructions are ommited. This implies some kind
4684 * of global optimization. We currently only optimize within a single macro.
4685 * For many of the load and store macros if the address is specified as a
4686 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
4687 * first load register 'at' with zero and use it as the base register. The
4688 * mips assembler simply uses register $zero. Just one tiny optimization
4689 * we're missing.
4690 */
4691 static void
4692 macro (struct mips_cl_insn *ip)
4693 {
4694 unsigned int treg, sreg, dreg, breg;
4695 unsigned int tempreg;
4696 int mask;
4697 int used_at = 0;
4698 expressionS expr1;
4699 const char *s;
4700 const char *s2;
4701 const char *fmt;
4702 int likely = 0;
4703 int dbl = 0;
4704 int coproc = 0;
4705 int lr = 0;
4706 int imm = 0;
4707 int call = 0;
4708 int off;
4709 offsetT maxnum;
4710 bfd_reloc_code_real_type r;
4711 int hold_mips_optimize;
4712
4713 assert (! mips_opts.mips16);
4714
4715 treg = (ip->insn_opcode >> 16) & 0x1f;
4716 dreg = (ip->insn_opcode >> 11) & 0x1f;
4717 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
4718 mask = ip->insn_mo->mask;
4719
4720 expr1.X_op = O_constant;
4721 expr1.X_op_symbol = NULL;
4722 expr1.X_add_symbol = NULL;
4723 expr1.X_add_number = 1;
4724
4725 switch (mask)
4726 {
4727 case M_DABS:
4728 dbl = 1;
4729 case M_ABS:
4730 /* bgez $a0,.+12
4731 move v0,$a0
4732 sub v0,$zero,$a0
4733 */
4734
4735 start_noreorder ();
4736
4737 expr1.X_add_number = 8;
4738 macro_build (&expr1, "bgez", "s,p", sreg);
4739 if (dreg == sreg)
4740 macro_build (NULL, "nop", "", 0);
4741 else
4742 move_register (dreg, sreg);
4743 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
4744
4745 end_noreorder ();
4746 break;
4747
4748 case M_ADD_I:
4749 s = "addi";
4750 s2 = "add";
4751 goto do_addi;
4752 case M_ADDU_I:
4753 s = "addiu";
4754 s2 = "addu";
4755 goto do_addi;
4756 case M_DADD_I:
4757 dbl = 1;
4758 s = "daddi";
4759 s2 = "dadd";
4760 goto do_addi;
4761 case M_DADDU_I:
4762 dbl = 1;
4763 s = "daddiu";
4764 s2 = "daddu";
4765 do_addi:
4766 if (imm_expr.X_op == O_constant
4767 && imm_expr.X_add_number >= -0x8000
4768 && imm_expr.X_add_number < 0x8000)
4769 {
4770 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
4771 break;
4772 }
4773 used_at = 1;
4774 load_register (AT, &imm_expr, dbl);
4775 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4776 break;
4777
4778 case M_AND_I:
4779 s = "andi";
4780 s2 = "and";
4781 goto do_bit;
4782 case M_OR_I:
4783 s = "ori";
4784 s2 = "or";
4785 goto do_bit;
4786 case M_NOR_I:
4787 s = "";
4788 s2 = "nor";
4789 goto do_bit;
4790 case M_XOR_I:
4791 s = "xori";
4792 s2 = "xor";
4793 do_bit:
4794 if (imm_expr.X_op == O_constant
4795 && imm_expr.X_add_number >= 0
4796 && imm_expr.X_add_number < 0x10000)
4797 {
4798 if (mask != M_NOR_I)
4799 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
4800 else
4801 {
4802 macro_build (&imm_expr, "ori", "t,r,i",
4803 treg, sreg, BFD_RELOC_LO16);
4804 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
4805 }
4806 break;
4807 }
4808
4809 used_at = 1;
4810 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4811 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4812 break;
4813
4814 case M_BALIGN:
4815 switch (imm_expr.X_add_number)
4816 {
4817 case 0:
4818 macro_build (NULL, "nop", "");
4819 break;
4820 case 2:
4821 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg);
4822 break;
4823 default:
4824 macro_build (NULL, "balign", "t,s,2", treg, sreg,
4825 (int)imm_expr.X_add_number);
4826 break;
4827 }
4828 break;
4829
4830 case M_BEQ_I:
4831 s = "beq";
4832 goto beq_i;
4833 case M_BEQL_I:
4834 s = "beql";
4835 likely = 1;
4836 goto beq_i;
4837 case M_BNE_I:
4838 s = "bne";
4839 goto beq_i;
4840 case M_BNEL_I:
4841 s = "bnel";
4842 likely = 1;
4843 beq_i:
4844 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4845 {
4846 macro_build (&offset_expr, s, "s,t,p", sreg, 0);
4847 break;
4848 }
4849 used_at = 1;
4850 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4851 macro_build (&offset_expr, s, "s,t,p", sreg, AT);
4852 break;
4853
4854 case M_BGEL:
4855 likely = 1;
4856 case M_BGE:
4857 if (treg == 0)
4858 {
4859 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4860 break;
4861 }
4862 if (sreg == 0)
4863 {
4864 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", treg);
4865 break;
4866 }
4867 used_at = 1;
4868 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
4869 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4870 break;
4871
4872 case M_BGTL_I:
4873 likely = 1;
4874 case M_BGT_I:
4875 /* check for > max integer */
4876 maxnum = 0x7fffffff;
4877 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4878 {
4879 maxnum <<= 16;
4880 maxnum |= 0xffff;
4881 maxnum <<= 16;
4882 maxnum |= 0xffff;
4883 }
4884 if (imm_expr.X_op == O_constant
4885 && imm_expr.X_add_number >= maxnum
4886 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4887 {
4888 do_false:
4889 /* result is always false */
4890 if (! likely)
4891 macro_build (NULL, "nop", "", 0);
4892 else
4893 macro_build (&offset_expr, "bnel", "s,t,p", 0, 0);
4894 break;
4895 }
4896 if (imm_expr.X_op != O_constant)
4897 as_bad (_("Unsupported large constant"));
4898 ++imm_expr.X_add_number;
4899 /* FALLTHROUGH */
4900 case M_BGE_I:
4901 case M_BGEL_I:
4902 if (mask == M_BGEL_I)
4903 likely = 1;
4904 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4905 {
4906 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4907 break;
4908 }
4909 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4910 {
4911 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
4912 break;
4913 }
4914 maxnum = 0x7fffffff;
4915 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4916 {
4917 maxnum <<= 16;
4918 maxnum |= 0xffff;
4919 maxnum <<= 16;
4920 maxnum |= 0xffff;
4921 }
4922 maxnum = - maxnum - 1;
4923 if (imm_expr.X_op == O_constant
4924 && imm_expr.X_add_number <= maxnum
4925 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4926 {
4927 do_true:
4928 /* result is always true */
4929 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
4930 macro_build (&offset_expr, "b", "p");
4931 break;
4932 }
4933 used_at = 1;
4934 set_at (sreg, 0);
4935 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4936 break;
4937
4938 case M_BGEUL:
4939 likely = 1;
4940 case M_BGEU:
4941 if (treg == 0)
4942 goto do_true;
4943 if (sreg == 0)
4944 {
4945 macro_build (&offset_expr, likely ? "beql" : "beq",
4946 "s,t,p", 0, treg);
4947 break;
4948 }
4949 used_at = 1;
4950 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
4951 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4952 break;
4953
4954 case M_BGTUL_I:
4955 likely = 1;
4956 case M_BGTU_I:
4957 if (sreg == 0
4958 || (HAVE_32BIT_GPRS
4959 && imm_expr.X_op == O_constant
4960 && imm_expr.X_add_number == (offsetT) 0xffffffff))
4961 goto do_false;
4962 if (imm_expr.X_op != O_constant)
4963 as_bad (_("Unsupported large constant"));
4964 ++imm_expr.X_add_number;
4965 /* FALLTHROUGH */
4966 case M_BGEU_I:
4967 case M_BGEUL_I:
4968 if (mask == M_BGEUL_I)
4969 likely = 1;
4970 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4971 goto do_true;
4972 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4973 {
4974 macro_build (&offset_expr, likely ? "bnel" : "bne",
4975 "s,t,p", sreg, 0);
4976 break;
4977 }
4978 used_at = 1;
4979 set_at (sreg, 1);
4980 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4981 break;
4982
4983 case M_BGTL:
4984 likely = 1;
4985 case M_BGT:
4986 if (treg == 0)
4987 {
4988 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
4989 break;
4990 }
4991 if (sreg == 0)
4992 {
4993 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", treg);
4994 break;
4995 }
4996 used_at = 1;
4997 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
4998 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4999 break;
5000
5001 case M_BGTUL:
5002 likely = 1;
5003 case M_BGTU:
5004 if (treg == 0)
5005 {
5006 macro_build (&offset_expr, likely ? "bnel" : "bne",
5007 "s,t,p", sreg, 0);
5008 break;
5009 }
5010 if (sreg == 0)
5011 goto do_false;
5012 used_at = 1;
5013 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5014 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5015 break;
5016
5017 case M_BLEL:
5018 likely = 1;
5019 case M_BLE:
5020 if (treg == 0)
5021 {
5022 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5023 break;
5024 }
5025 if (sreg == 0)
5026 {
5027 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", treg);
5028 break;
5029 }
5030 used_at = 1;
5031 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5032 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5033 break;
5034
5035 case M_BLEL_I:
5036 likely = 1;
5037 case M_BLE_I:
5038 maxnum = 0x7fffffff;
5039 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5040 {
5041 maxnum <<= 16;
5042 maxnum |= 0xffff;
5043 maxnum <<= 16;
5044 maxnum |= 0xffff;
5045 }
5046 if (imm_expr.X_op == O_constant
5047 && imm_expr.X_add_number >= maxnum
5048 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5049 goto do_true;
5050 if (imm_expr.X_op != O_constant)
5051 as_bad (_("Unsupported large constant"));
5052 ++imm_expr.X_add_number;
5053 /* FALLTHROUGH */
5054 case M_BLT_I:
5055 case M_BLTL_I:
5056 if (mask == M_BLTL_I)
5057 likely = 1;
5058 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5059 {
5060 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5061 break;
5062 }
5063 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5064 {
5065 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5066 break;
5067 }
5068 used_at = 1;
5069 set_at (sreg, 0);
5070 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5071 break;
5072
5073 case M_BLEUL:
5074 likely = 1;
5075 case M_BLEU:
5076 if (treg == 0)
5077 {
5078 macro_build (&offset_expr, likely ? "beql" : "beq",
5079 "s,t,p", sreg, 0);
5080 break;
5081 }
5082 if (sreg == 0)
5083 goto do_true;
5084 used_at = 1;
5085 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5086 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5087 break;
5088
5089 case M_BLEUL_I:
5090 likely = 1;
5091 case M_BLEU_I:
5092 if (sreg == 0
5093 || (HAVE_32BIT_GPRS
5094 && imm_expr.X_op == O_constant
5095 && imm_expr.X_add_number == (offsetT) 0xffffffff))
5096 goto do_true;
5097 if (imm_expr.X_op != O_constant)
5098 as_bad (_("Unsupported large constant"));
5099 ++imm_expr.X_add_number;
5100 /* FALLTHROUGH */
5101 case M_BLTU_I:
5102 case M_BLTUL_I:
5103 if (mask == M_BLTUL_I)
5104 likely = 1;
5105 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5106 goto do_false;
5107 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5108 {
5109 macro_build (&offset_expr, likely ? "beql" : "beq",
5110 "s,t,p", sreg, 0);
5111 break;
5112 }
5113 used_at = 1;
5114 set_at (sreg, 1);
5115 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5116 break;
5117
5118 case M_BLTL:
5119 likely = 1;
5120 case M_BLT:
5121 if (treg == 0)
5122 {
5123 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5124 break;
5125 }
5126 if (sreg == 0)
5127 {
5128 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", treg);
5129 break;
5130 }
5131 used_at = 1;
5132 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
5133 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5134 break;
5135
5136 case M_BLTUL:
5137 likely = 1;
5138 case M_BLTU:
5139 if (treg == 0)
5140 goto do_false;
5141 if (sreg == 0)
5142 {
5143 macro_build (&offset_expr, likely ? "bnel" : "bne",
5144 "s,t,p", 0, treg);
5145 break;
5146 }
5147 used_at = 1;
5148 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5149 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5150 break;
5151
5152 case M_DEXT:
5153 {
5154 unsigned long pos;
5155 unsigned long size;
5156
5157 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5158 {
5159 as_bad (_("Unsupported large constant"));
5160 pos = size = 1;
5161 }
5162 else
5163 {
5164 pos = (unsigned long) imm_expr.X_add_number;
5165 size = (unsigned long) imm2_expr.X_add_number;
5166 }
5167
5168 if (pos > 63)
5169 {
5170 as_bad (_("Improper position (%lu)"), pos);
5171 pos = 1;
5172 }
5173 if (size == 0 || size > 64
5174 || (pos + size - 1) > 63)
5175 {
5176 as_bad (_("Improper extract size (%lu, position %lu)"),
5177 size, pos);
5178 size = 1;
5179 }
5180
5181 if (size <= 32 && pos < 32)
5182 {
5183 s = "dext";
5184 fmt = "t,r,+A,+C";
5185 }
5186 else if (size <= 32)
5187 {
5188 s = "dextu";
5189 fmt = "t,r,+E,+H";
5190 }
5191 else
5192 {
5193 s = "dextm";
5194 fmt = "t,r,+A,+G";
5195 }
5196 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, pos, size - 1);
5197 }
5198 break;
5199
5200 case M_DINS:
5201 {
5202 unsigned long pos;
5203 unsigned long size;
5204
5205 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5206 {
5207 as_bad (_("Unsupported large constant"));
5208 pos = size = 1;
5209 }
5210 else
5211 {
5212 pos = (unsigned long) imm_expr.X_add_number;
5213 size = (unsigned long) imm2_expr.X_add_number;
5214 }
5215
5216 if (pos > 63)
5217 {
5218 as_bad (_("Improper position (%lu)"), pos);
5219 pos = 1;
5220 }
5221 if (size == 0 || size > 64
5222 || (pos + size - 1) > 63)
5223 {
5224 as_bad (_("Improper insert size (%lu, position %lu)"),
5225 size, pos);
5226 size = 1;
5227 }
5228
5229 if (pos < 32 && (pos + size - 1) < 32)
5230 {
5231 s = "dins";
5232 fmt = "t,r,+A,+B";
5233 }
5234 else if (pos >= 32)
5235 {
5236 s = "dinsu";
5237 fmt = "t,r,+E,+F";
5238 }
5239 else
5240 {
5241 s = "dinsm";
5242 fmt = "t,r,+A,+F";
5243 }
5244 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, pos,
5245 pos + size - 1);
5246 }
5247 break;
5248
5249 case M_DDIV_3:
5250 dbl = 1;
5251 case M_DIV_3:
5252 s = "mflo";
5253 goto do_div3;
5254 case M_DREM_3:
5255 dbl = 1;
5256 case M_REM_3:
5257 s = "mfhi";
5258 do_div3:
5259 if (treg == 0)
5260 {
5261 as_warn (_("Divide by zero."));
5262 if (mips_trap)
5263 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
5264 else
5265 macro_build (NULL, "break", "c", 7);
5266 break;
5267 }
5268
5269 start_noreorder ();
5270 if (mips_trap)
5271 {
5272 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
5273 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5274 }
5275 else
5276 {
5277 expr1.X_add_number = 8;
5278 macro_build (&expr1, "bne", "s,t,p", treg, 0);
5279 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5280 macro_build (NULL, "break", "c", 7);
5281 }
5282 expr1.X_add_number = -1;
5283 used_at = 1;
5284 load_register (AT, &expr1, dbl);
5285 expr1.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
5286 macro_build (&expr1, "bne", "s,t,p", treg, AT);
5287 if (dbl)
5288 {
5289 expr1.X_add_number = 1;
5290 load_register (AT, &expr1, dbl);
5291 macro_build (NULL, "dsll32", "d,w,<", AT, AT, 31);
5292 }
5293 else
5294 {
5295 expr1.X_add_number = 0x80000000;
5296 macro_build (&expr1, "lui", "t,u", AT, BFD_RELOC_HI16);
5297 }
5298 if (mips_trap)
5299 {
5300 macro_build (NULL, "teq", "s,t,q", sreg, AT, 6);
5301 /* We want to close the noreorder block as soon as possible, so
5302 that later insns are available for delay slot filling. */
5303 end_noreorder ();
5304 }
5305 else
5306 {
5307 expr1.X_add_number = 8;
5308 macro_build (&expr1, "bne", "s,t,p", sreg, AT);
5309 macro_build (NULL, "nop", "", 0);
5310
5311 /* We want to close the noreorder block as soon as possible, so
5312 that later insns are available for delay slot filling. */
5313 end_noreorder ();
5314
5315 macro_build (NULL, "break", "c", 6);
5316 }
5317 macro_build (NULL, s, "d", dreg);
5318 break;
5319
5320 case M_DIV_3I:
5321 s = "div";
5322 s2 = "mflo";
5323 goto do_divi;
5324 case M_DIVU_3I:
5325 s = "divu";
5326 s2 = "mflo";
5327 goto do_divi;
5328 case M_REM_3I:
5329 s = "div";
5330 s2 = "mfhi";
5331 goto do_divi;
5332 case M_REMU_3I:
5333 s = "divu";
5334 s2 = "mfhi";
5335 goto do_divi;
5336 case M_DDIV_3I:
5337 dbl = 1;
5338 s = "ddiv";
5339 s2 = "mflo";
5340 goto do_divi;
5341 case M_DDIVU_3I:
5342 dbl = 1;
5343 s = "ddivu";
5344 s2 = "mflo";
5345 goto do_divi;
5346 case M_DREM_3I:
5347 dbl = 1;
5348 s = "ddiv";
5349 s2 = "mfhi";
5350 goto do_divi;
5351 case M_DREMU_3I:
5352 dbl = 1;
5353 s = "ddivu";
5354 s2 = "mfhi";
5355 do_divi:
5356 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5357 {
5358 as_warn (_("Divide by zero."));
5359 if (mips_trap)
5360 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
5361 else
5362 macro_build (NULL, "break", "c", 7);
5363 break;
5364 }
5365 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5366 {
5367 if (strcmp (s2, "mflo") == 0)
5368 move_register (dreg, sreg);
5369 else
5370 move_register (dreg, 0);
5371 break;
5372 }
5373 if (imm_expr.X_op == O_constant
5374 && imm_expr.X_add_number == -1
5375 && s[strlen (s) - 1] != 'u')
5376 {
5377 if (strcmp (s2, "mflo") == 0)
5378 {
5379 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
5380 }
5381 else
5382 move_register (dreg, 0);
5383 break;
5384 }
5385
5386 used_at = 1;
5387 load_register (AT, &imm_expr, dbl);
5388 macro_build (NULL, s, "z,s,t", sreg, AT);
5389 macro_build (NULL, s2, "d", dreg);
5390 break;
5391
5392 case M_DIVU_3:
5393 s = "divu";
5394 s2 = "mflo";
5395 goto do_divu3;
5396 case M_REMU_3:
5397 s = "divu";
5398 s2 = "mfhi";
5399 goto do_divu3;
5400 case M_DDIVU_3:
5401 s = "ddivu";
5402 s2 = "mflo";
5403 goto do_divu3;
5404 case M_DREMU_3:
5405 s = "ddivu";
5406 s2 = "mfhi";
5407 do_divu3:
5408 start_noreorder ();
5409 if (mips_trap)
5410 {
5411 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
5412 macro_build (NULL, s, "z,s,t", sreg, treg);
5413 /* We want to close the noreorder block as soon as possible, so
5414 that later insns are available for delay slot filling. */
5415 end_noreorder ();
5416 }
5417 else
5418 {
5419 expr1.X_add_number = 8;
5420 macro_build (&expr1, "bne", "s,t,p", treg, 0);
5421 macro_build (NULL, s, "z,s,t", sreg, treg);
5422
5423 /* We want to close the noreorder block as soon as possible, so
5424 that later insns are available for delay slot filling. */
5425 end_noreorder ();
5426 macro_build (NULL, "break", "c", 7);
5427 }
5428 macro_build (NULL, s2, "d", dreg);
5429 break;
5430
5431 case M_DLCA_AB:
5432 dbl = 1;
5433 case M_LCA_AB:
5434 call = 1;
5435 goto do_la;
5436 case M_DLA_AB:
5437 dbl = 1;
5438 case M_LA_AB:
5439 do_la:
5440 /* Load the address of a symbol into a register. If breg is not
5441 zero, we then add a base register to it. */
5442
5443 if (dbl && HAVE_32BIT_GPRS)
5444 as_warn (_("dla used to load 32-bit register"));
5445
5446 if (! dbl && HAVE_64BIT_OBJECTS)
5447 as_warn (_("la used to load 64-bit address"));
5448
5449 if (offset_expr.X_op == O_constant
5450 && offset_expr.X_add_number >= -0x8000
5451 && offset_expr.X_add_number < 0x8000)
5452 {
5453 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
5454 "t,r,j", treg, sreg, BFD_RELOC_LO16);
5455 break;
5456 }
5457
5458 if (mips_opts.at && (treg == breg))
5459 {
5460 tempreg = AT;
5461 used_at = 1;
5462 }
5463 else
5464 {
5465 tempreg = treg;
5466 }
5467
5468 if (offset_expr.X_op != O_symbol
5469 && offset_expr.X_op != O_constant)
5470 {
5471 as_bad (_("expression too complex"));
5472 offset_expr.X_op = O_constant;
5473 }
5474
5475 if (offset_expr.X_op == O_constant)
5476 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
5477 else if (mips_pic == NO_PIC)
5478 {
5479 /* If this is a reference to a GP relative symbol, we want
5480 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
5481 Otherwise we want
5482 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5483 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5484 If we have a constant, we need two instructions anyhow,
5485 so we may as well always use the latter form.
5486
5487 With 64bit address space and a usable $at we want
5488 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5489 lui $at,<sym> (BFD_RELOC_HI16_S)
5490 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5491 daddiu $at,<sym> (BFD_RELOC_LO16)
5492 dsll32 $tempreg,0
5493 daddu $tempreg,$tempreg,$at
5494
5495 If $at is already in use, we use a path which is suboptimal
5496 on superscalar processors.
5497 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5498 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5499 dsll $tempreg,16
5500 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5501 dsll $tempreg,16
5502 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
5503
5504 For GP relative symbols in 64bit address space we can use
5505 the same sequence as in 32bit address space. */
5506 if (HAVE_64BIT_SYMBOLS)
5507 {
5508 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5509 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5510 {
5511 relax_start (offset_expr.X_add_symbol);
5512 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5513 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5514 relax_switch ();
5515 }
5516
5517 if (used_at == 0 && mips_opts.at)
5518 {
5519 macro_build (&offset_expr, "lui", "t,u",
5520 tempreg, BFD_RELOC_MIPS_HIGHEST);
5521 macro_build (&offset_expr, "lui", "t,u",
5522 AT, BFD_RELOC_HI16_S);
5523 macro_build (&offset_expr, "daddiu", "t,r,j",
5524 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5525 macro_build (&offset_expr, "daddiu", "t,r,j",
5526 AT, AT, BFD_RELOC_LO16);
5527 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
5528 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
5529 used_at = 1;
5530 }
5531 else
5532 {
5533 macro_build (&offset_expr, "lui", "t,u",
5534 tempreg, BFD_RELOC_MIPS_HIGHEST);
5535 macro_build (&offset_expr, "daddiu", "t,r,j",
5536 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5537 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5538 macro_build (&offset_expr, "daddiu", "t,r,j",
5539 tempreg, tempreg, BFD_RELOC_HI16_S);
5540 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5541 macro_build (&offset_expr, "daddiu", "t,r,j",
5542 tempreg, tempreg, BFD_RELOC_LO16);
5543 }
5544
5545 if (mips_relax.sequence)
5546 relax_end ();
5547 }
5548 else
5549 {
5550 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5551 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5552 {
5553 relax_start (offset_expr.X_add_symbol);
5554 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5555 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5556 relax_switch ();
5557 }
5558 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
5559 as_bad (_("offset too large"));
5560 macro_build_lui (&offset_expr, tempreg);
5561 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5562 tempreg, tempreg, BFD_RELOC_LO16);
5563 if (mips_relax.sequence)
5564 relax_end ();
5565 }
5566 }
5567 else if (!mips_big_got && !HAVE_NEWABI)
5568 {
5569 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5570
5571 /* If this is a reference to an external symbol, and there
5572 is no constant, we want
5573 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5574 or for lca or if tempreg is PIC_CALL_REG
5575 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5576 For a local symbol, we want
5577 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5578 nop
5579 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5580
5581 If we have a small constant, and this is a reference to
5582 an external symbol, we want
5583 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5584 nop
5585 addiu $tempreg,$tempreg,<constant>
5586 For a local symbol, we want the same instruction
5587 sequence, but we output a BFD_RELOC_LO16 reloc on the
5588 addiu instruction.
5589
5590 If we have a large constant, and this is a reference to
5591 an external symbol, we want
5592 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5593 lui $at,<hiconstant>
5594 addiu $at,$at,<loconstant>
5595 addu $tempreg,$tempreg,$at
5596 For a local symbol, we want the same instruction
5597 sequence, but we output a BFD_RELOC_LO16 reloc on the
5598 addiu instruction.
5599 */
5600
5601 if (offset_expr.X_add_number == 0)
5602 {
5603 if (mips_pic == SVR4_PIC
5604 && breg == 0
5605 && (call || tempreg == PIC_CALL_REG))
5606 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
5607
5608 relax_start (offset_expr.X_add_symbol);
5609 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5610 lw_reloc_type, mips_gp_register);
5611 if (breg != 0)
5612 {
5613 /* We're going to put in an addu instruction using
5614 tempreg, so we may as well insert the nop right
5615 now. */
5616 load_delay_nop ();
5617 }
5618 relax_switch ();
5619 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5620 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
5621 load_delay_nop ();
5622 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5623 tempreg, tempreg, BFD_RELOC_LO16);
5624 relax_end ();
5625 /* FIXME: If breg == 0, and the next instruction uses
5626 $tempreg, then if this variant case is used an extra
5627 nop will be generated. */
5628 }
5629 else if (offset_expr.X_add_number >= -0x8000
5630 && offset_expr.X_add_number < 0x8000)
5631 {
5632 load_got_offset (tempreg, &offset_expr);
5633 load_delay_nop ();
5634 add_got_offset (tempreg, &offset_expr);
5635 }
5636 else
5637 {
5638 expr1.X_add_number = offset_expr.X_add_number;
5639 offset_expr.X_add_number =
5640 ((offset_expr.X_add_number + 0x8000) & 0xffff) - 0x8000;
5641 load_got_offset (tempreg, &offset_expr);
5642 offset_expr.X_add_number = expr1.X_add_number;
5643 /* If we are going to add in a base register, and the
5644 target register and the base register are the same,
5645 then we are using AT as a temporary register. Since
5646 we want to load the constant into AT, we add our
5647 current AT (from the global offset table) and the
5648 register into the register now, and pretend we were
5649 not using a base register. */
5650 if (breg == treg)
5651 {
5652 load_delay_nop ();
5653 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5654 treg, AT, breg);
5655 breg = 0;
5656 tempreg = treg;
5657 }
5658 add_got_offset_hilo (tempreg, &offset_expr, AT);
5659 used_at = 1;
5660 }
5661 }
5662 else if (!mips_big_got && HAVE_NEWABI)
5663 {
5664 int add_breg_early = 0;
5665
5666 /* If this is a reference to an external, and there is no
5667 constant, or local symbol (*), with or without a
5668 constant, we want
5669 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5670 or for lca or if tempreg is PIC_CALL_REG
5671 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5672
5673 If we have a small constant, and this is a reference to
5674 an external symbol, we want
5675 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5676 addiu $tempreg,$tempreg,<constant>
5677
5678 If we have a large constant, and this is a reference to
5679 an external symbol, we want
5680 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5681 lui $at,<hiconstant>
5682 addiu $at,$at,<loconstant>
5683 addu $tempreg,$tempreg,$at
5684
5685 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
5686 local symbols, even though it introduces an additional
5687 instruction. */
5688
5689 if (offset_expr.X_add_number)
5690 {
5691 expr1.X_add_number = offset_expr.X_add_number;
5692 offset_expr.X_add_number = 0;
5693
5694 relax_start (offset_expr.X_add_symbol);
5695 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5696 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5697
5698 if (expr1.X_add_number >= -0x8000
5699 && expr1.X_add_number < 0x8000)
5700 {
5701 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5702 tempreg, tempreg, BFD_RELOC_LO16);
5703 }
5704 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5705 {
5706 int dreg;
5707
5708 /* If we are going to add in a base register, and the
5709 target register and the base register are the same,
5710 then we are using AT as a temporary register. Since
5711 we want to load the constant into AT, we add our
5712 current AT (from the global offset table) and the
5713 register into the register now, and pretend we were
5714 not using a base register. */
5715 if (breg != treg)
5716 dreg = tempreg;
5717 else
5718 {
5719 assert (tempreg == AT);
5720 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5721 treg, AT, breg);
5722 dreg = treg;
5723 add_breg_early = 1;
5724 }
5725
5726 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5727 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5728 dreg, dreg, AT);
5729
5730 used_at = 1;
5731 }
5732 else
5733 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
5734
5735 relax_switch ();
5736 offset_expr.X_add_number = expr1.X_add_number;
5737
5738 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5739 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5740 if (add_breg_early)
5741 {
5742 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5743 treg, tempreg, breg);
5744 breg = 0;
5745 tempreg = treg;
5746 }
5747 relax_end ();
5748 }
5749 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
5750 {
5751 relax_start (offset_expr.X_add_symbol);
5752 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5753 BFD_RELOC_MIPS_CALL16, mips_gp_register);
5754 relax_switch ();
5755 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5756 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5757 relax_end ();
5758 }
5759 else
5760 {
5761 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5762 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5763 }
5764 }
5765 else if (mips_big_got && !HAVE_NEWABI)
5766 {
5767 int gpdelay;
5768 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5769 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5770 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5771
5772 /* This is the large GOT case. If this is a reference to an
5773 external symbol, and there is no constant, we want
5774 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5775 addu $tempreg,$tempreg,$gp
5776 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5777 or for lca or if tempreg is PIC_CALL_REG
5778 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5779 addu $tempreg,$tempreg,$gp
5780 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5781 For a local symbol, we want
5782 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5783 nop
5784 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5785
5786 If we have a small constant, and this is a reference to
5787 an external symbol, we want
5788 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5789 addu $tempreg,$tempreg,$gp
5790 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5791 nop
5792 addiu $tempreg,$tempreg,<constant>
5793 For a local symbol, we want
5794 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5795 nop
5796 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
5797
5798 If we have a large constant, and this is a reference to
5799 an external symbol, we want
5800 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5801 addu $tempreg,$tempreg,$gp
5802 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5803 lui $at,<hiconstant>
5804 addiu $at,$at,<loconstant>
5805 addu $tempreg,$tempreg,$at
5806 For a local symbol, we want
5807 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5808 lui $at,<hiconstant>
5809 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
5810 addu $tempreg,$tempreg,$at
5811 */
5812
5813 expr1.X_add_number = offset_expr.X_add_number;
5814 offset_expr.X_add_number = 0;
5815 relax_start (offset_expr.X_add_symbol);
5816 gpdelay = reg_needs_delay (mips_gp_register);
5817 if (expr1.X_add_number == 0 && breg == 0
5818 && (call || tempreg == PIC_CALL_REG))
5819 {
5820 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5821 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5822 }
5823 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5824 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5825 tempreg, tempreg, mips_gp_register);
5826 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5827 tempreg, lw_reloc_type, tempreg);
5828 if (expr1.X_add_number == 0)
5829 {
5830 if (breg != 0)
5831 {
5832 /* We're going to put in an addu instruction using
5833 tempreg, so we may as well insert the nop right
5834 now. */
5835 load_delay_nop ();
5836 }
5837 }
5838 else if (expr1.X_add_number >= -0x8000
5839 && expr1.X_add_number < 0x8000)
5840 {
5841 load_delay_nop ();
5842 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5843 tempreg, tempreg, BFD_RELOC_LO16);
5844 }
5845 else
5846 {
5847 int dreg;
5848
5849 /* If we are going to add in a base register, and the
5850 target register and the base register are the same,
5851 then we are using AT as a temporary register. Since
5852 we want to load the constant into AT, we add our
5853 current AT (from the global offset table) and the
5854 register into the register now, and pretend we were
5855 not using a base register. */
5856 if (breg != treg)
5857 dreg = tempreg;
5858 else
5859 {
5860 assert (tempreg == AT);
5861 load_delay_nop ();
5862 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5863 treg, AT, breg);
5864 dreg = treg;
5865 }
5866
5867 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5868 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
5869
5870 used_at = 1;
5871 }
5872 offset_expr.X_add_number =
5873 ((expr1.X_add_number + 0x8000) & 0xffff) - 0x8000;
5874 relax_switch ();
5875
5876 if (gpdelay)
5877 {
5878 /* This is needed because this instruction uses $gp, but
5879 the first instruction on the main stream does not. */
5880 macro_build (NULL, "nop", "");
5881 }
5882
5883 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5884 local_reloc_type, mips_gp_register);
5885 if (expr1.X_add_number >= -0x8000
5886 && expr1.X_add_number < 0x8000)
5887 {
5888 load_delay_nop ();
5889 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5890 tempreg, tempreg, BFD_RELOC_LO16);
5891 /* FIXME: If add_number is 0, and there was no base
5892 register, the external symbol case ended with a load,
5893 so if the symbol turns out to not be external, and
5894 the next instruction uses tempreg, an unnecessary nop
5895 will be inserted. */
5896 }
5897 else
5898 {
5899 if (breg == treg)
5900 {
5901 /* We must add in the base register now, as in the
5902 external symbol case. */
5903 assert (tempreg == AT);
5904 load_delay_nop ();
5905 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5906 treg, AT, breg);
5907 tempreg = treg;
5908 /* We set breg to 0 because we have arranged to add
5909 it in in both cases. */
5910 breg = 0;
5911 }
5912
5913 macro_build_lui (&expr1, AT);
5914 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5915 AT, AT, BFD_RELOC_LO16);
5916 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5917 tempreg, tempreg, AT);
5918 used_at = 1;
5919 }
5920 relax_end ();
5921 }
5922 else if (mips_big_got && HAVE_NEWABI)
5923 {
5924 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5925 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5926 int add_breg_early = 0;
5927
5928 /* This is the large GOT case. If this is a reference to an
5929 external symbol, and there is no constant, we want
5930 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5931 add $tempreg,$tempreg,$gp
5932 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5933 or for lca or if tempreg is PIC_CALL_REG
5934 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5935 add $tempreg,$tempreg,$gp
5936 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5937
5938 If we have a small constant, and this is a reference to
5939 an external symbol, we want
5940 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5941 add $tempreg,$tempreg,$gp
5942 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5943 addi $tempreg,$tempreg,<constant>
5944
5945 If we have a large constant, and this is a reference to
5946 an external symbol, we want
5947 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5948 addu $tempreg,$tempreg,$gp
5949 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5950 lui $at,<hiconstant>
5951 addi $at,$at,<loconstant>
5952 add $tempreg,$tempreg,$at
5953
5954 If we have NewABI, and we know it's a local symbol, we want
5955 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
5956 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
5957 otherwise we have to resort to GOT_HI16/GOT_LO16. */
5958
5959 relax_start (offset_expr.X_add_symbol);
5960
5961 expr1.X_add_number = offset_expr.X_add_number;
5962 offset_expr.X_add_number = 0;
5963
5964 if (expr1.X_add_number == 0 && breg == 0
5965 && (call || tempreg == PIC_CALL_REG))
5966 {
5967 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5968 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5969 }
5970 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5971 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5972 tempreg, tempreg, mips_gp_register);
5973 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5974 tempreg, lw_reloc_type, tempreg);
5975
5976 if (expr1.X_add_number == 0)
5977 ;
5978 else if (expr1.X_add_number >= -0x8000
5979 && expr1.X_add_number < 0x8000)
5980 {
5981 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5982 tempreg, tempreg, BFD_RELOC_LO16);
5983 }
5984 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5985 {
5986 int dreg;
5987
5988 /* If we are going to add in a base register, and the
5989 target register and the base register are the same,
5990 then we are using AT as a temporary register. Since
5991 we want to load the constant into AT, we add our
5992 current AT (from the global offset table) and the
5993 register into the register now, and pretend we were
5994 not using a base register. */
5995 if (breg != treg)
5996 dreg = tempreg;
5997 else
5998 {
5999 assert (tempreg == AT);
6000 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6001 treg, AT, breg);
6002 dreg = treg;
6003 add_breg_early = 1;
6004 }
6005
6006 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
6007 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
6008
6009 used_at = 1;
6010 }
6011 else
6012 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
6013
6014 relax_switch ();
6015 offset_expr.X_add_number = expr1.X_add_number;
6016 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6017 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6018 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6019 tempreg, BFD_RELOC_MIPS_GOT_OFST);
6020 if (add_breg_early)
6021 {
6022 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6023 treg, tempreg, breg);
6024 breg = 0;
6025 tempreg = treg;
6026 }
6027 relax_end ();
6028 }
6029 else
6030 abort ();
6031
6032 if (breg != 0)
6033 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
6034 break;
6035
6036 case M_J_A:
6037 /* The j instruction may not be used in PIC code, since it
6038 requires an absolute address. We convert it to a b
6039 instruction. */
6040 if (mips_pic == NO_PIC)
6041 macro_build (&offset_expr, "j", "a");
6042 else
6043 macro_build (&offset_expr, "b", "p");
6044 break;
6045
6046 /* The jal instructions must be handled as macros because when
6047 generating PIC code they expand to multi-instruction
6048 sequences. Normally they are simple instructions. */
6049 case M_JAL_1:
6050 dreg = RA;
6051 /* Fall through. */
6052 case M_JAL_2:
6053 if (mips_pic == NO_PIC)
6054 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6055 else
6056 {
6057 if (sreg != PIC_CALL_REG)
6058 as_warn (_("MIPS PIC call to register other than $25"));
6059
6060 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6061 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
6062 {
6063 if (mips_cprestore_offset < 0)
6064 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6065 else
6066 {
6067 if (! mips_frame_reg_valid)
6068 {
6069 as_warn (_("No .frame pseudo-op used in PIC code"));
6070 /* Quiet this warning. */
6071 mips_frame_reg_valid = 1;
6072 }
6073 if (! mips_cprestore_valid)
6074 {
6075 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6076 /* Quiet this warning. */
6077 mips_cprestore_valid = 1;
6078 }
6079 expr1.X_add_number = mips_cprestore_offset;
6080 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6081 mips_gp_register,
6082 mips_frame_reg,
6083 HAVE_64BIT_ADDRESSES);
6084 }
6085 }
6086 }
6087
6088 break;
6089
6090 case M_JAL_A:
6091 if (mips_pic == NO_PIC)
6092 macro_build (&offset_expr, "jal", "a");
6093 else if (mips_pic == SVR4_PIC)
6094 {
6095 /* If this is a reference to an external symbol, and we are
6096 using a small GOT, we want
6097 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
6098 nop
6099 jalr $ra,$25
6100 nop
6101 lw $gp,cprestore($sp)
6102 The cprestore value is set using the .cprestore
6103 pseudo-op. If we are using a big GOT, we want
6104 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6105 addu $25,$25,$gp
6106 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
6107 nop
6108 jalr $ra,$25
6109 nop
6110 lw $gp,cprestore($sp)
6111 If the symbol is not external, we want
6112 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6113 nop
6114 addiu $25,$25,<sym> (BFD_RELOC_LO16)
6115 jalr $ra,$25
6116 nop
6117 lw $gp,cprestore($sp)
6118
6119 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
6120 sequences above, minus nops, unless the symbol is local,
6121 which enables us to use GOT_PAGE/GOT_OFST (big got) or
6122 GOT_DISP. */
6123 if (HAVE_NEWABI)
6124 {
6125 if (! mips_big_got)
6126 {
6127 relax_start (offset_expr.X_add_symbol);
6128 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6129 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6130 mips_gp_register);
6131 relax_switch ();
6132 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6133 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
6134 mips_gp_register);
6135 relax_end ();
6136 }
6137 else
6138 {
6139 relax_start (offset_expr.X_add_symbol);
6140 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6141 BFD_RELOC_MIPS_CALL_HI16);
6142 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6143 PIC_CALL_REG, mips_gp_register);
6144 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6145 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6146 PIC_CALL_REG);
6147 relax_switch ();
6148 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6149 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
6150 mips_gp_register);
6151 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6152 PIC_CALL_REG, PIC_CALL_REG,
6153 BFD_RELOC_MIPS_GOT_OFST);
6154 relax_end ();
6155 }
6156
6157 macro_build_jalr (&offset_expr);
6158 }
6159 else
6160 {
6161 relax_start (offset_expr.X_add_symbol);
6162 if (! mips_big_got)
6163 {
6164 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6165 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6166 mips_gp_register);
6167 load_delay_nop ();
6168 relax_switch ();
6169 }
6170 else
6171 {
6172 int gpdelay;
6173
6174 gpdelay = reg_needs_delay (mips_gp_register);
6175 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6176 BFD_RELOC_MIPS_CALL_HI16);
6177 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6178 PIC_CALL_REG, mips_gp_register);
6179 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6180 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6181 PIC_CALL_REG);
6182 load_delay_nop ();
6183 relax_switch ();
6184 if (gpdelay)
6185 macro_build (NULL, "nop", "");
6186 }
6187 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6188 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
6189 mips_gp_register);
6190 load_delay_nop ();
6191 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6192 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
6193 relax_end ();
6194 macro_build_jalr (&offset_expr);
6195
6196 if (mips_cprestore_offset < 0)
6197 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6198 else
6199 {
6200 if (! mips_frame_reg_valid)
6201 {
6202 as_warn (_("No .frame pseudo-op used in PIC code"));
6203 /* Quiet this warning. */
6204 mips_frame_reg_valid = 1;
6205 }
6206 if (! mips_cprestore_valid)
6207 {
6208 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6209 /* Quiet this warning. */
6210 mips_cprestore_valid = 1;
6211 }
6212 if (mips_opts.noreorder)
6213 macro_build (NULL, "nop", "");
6214 expr1.X_add_number = mips_cprestore_offset;
6215 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6216 mips_gp_register,
6217 mips_frame_reg,
6218 HAVE_64BIT_ADDRESSES);
6219 }
6220 }
6221 }
6222 else if (mips_pic == VXWORKS_PIC)
6223 as_bad (_("Non-PIC jump used in PIC library"));
6224 else
6225 abort ();
6226
6227 break;
6228
6229 case M_LB_AB:
6230 s = "lb";
6231 goto ld;
6232 case M_LBU_AB:
6233 s = "lbu";
6234 goto ld;
6235 case M_LH_AB:
6236 s = "lh";
6237 goto ld;
6238 case M_LHU_AB:
6239 s = "lhu";
6240 goto ld;
6241 case M_LW_AB:
6242 s = "lw";
6243 goto ld;
6244 case M_LWC0_AB:
6245 s = "lwc0";
6246 /* Itbl support may require additional care here. */
6247 coproc = 1;
6248 goto ld;
6249 case M_LWC1_AB:
6250 s = "lwc1";
6251 /* Itbl support may require additional care here. */
6252 coproc = 1;
6253 goto ld;
6254 case M_LWC2_AB:
6255 s = "lwc2";
6256 /* Itbl support may require additional care here. */
6257 coproc = 1;
6258 goto ld;
6259 case M_LWC3_AB:
6260 s = "lwc3";
6261 /* Itbl support may require additional care here. */
6262 coproc = 1;
6263 goto ld;
6264 case M_LWL_AB:
6265 s = "lwl";
6266 lr = 1;
6267 goto ld;
6268 case M_LWR_AB:
6269 s = "lwr";
6270 lr = 1;
6271 goto ld;
6272 case M_LDC1_AB:
6273 s = "ldc1";
6274 /* Itbl support may require additional care here. */
6275 coproc = 1;
6276 goto ld;
6277 case M_LDC2_AB:
6278 s = "ldc2";
6279 /* Itbl support may require additional care here. */
6280 coproc = 1;
6281 goto ld;
6282 case M_LDC3_AB:
6283 s = "ldc3";
6284 /* Itbl support may require additional care here. */
6285 coproc = 1;
6286 goto ld;
6287 case M_LDL_AB:
6288 s = "ldl";
6289 lr = 1;
6290 goto ld;
6291 case M_LDR_AB:
6292 s = "ldr";
6293 lr = 1;
6294 goto ld;
6295 case M_LL_AB:
6296 s = "ll";
6297 goto ld;
6298 case M_LLD_AB:
6299 s = "lld";
6300 goto ld;
6301 case M_LWU_AB:
6302 s = "lwu";
6303 ld:
6304 if (breg == treg || coproc || lr)
6305 {
6306 tempreg = AT;
6307 used_at = 1;
6308 }
6309 else
6310 {
6311 tempreg = treg;
6312 }
6313 goto ld_st;
6314 case M_SB_AB:
6315 s = "sb";
6316 goto st;
6317 case M_SH_AB:
6318 s = "sh";
6319 goto st;
6320 case M_SW_AB:
6321 s = "sw";
6322 goto st;
6323 case M_SWC0_AB:
6324 s = "swc0";
6325 /* Itbl support may require additional care here. */
6326 coproc = 1;
6327 goto st;
6328 case M_SWC1_AB:
6329 s = "swc1";
6330 /* Itbl support may require additional care here. */
6331 coproc = 1;
6332 goto st;
6333 case M_SWC2_AB:
6334 s = "swc2";
6335 /* Itbl support may require additional care here. */
6336 coproc = 1;
6337 goto st;
6338 case M_SWC3_AB:
6339 s = "swc3";
6340 /* Itbl support may require additional care here. */
6341 coproc = 1;
6342 goto st;
6343 case M_SWL_AB:
6344 s = "swl";
6345 goto st;
6346 case M_SWR_AB:
6347 s = "swr";
6348 goto st;
6349 case M_SC_AB:
6350 s = "sc";
6351 goto st;
6352 case M_SCD_AB:
6353 s = "scd";
6354 goto st;
6355 case M_CACHE_AB:
6356 s = "cache";
6357 goto st;
6358 case M_SDC1_AB:
6359 s = "sdc1";
6360 coproc = 1;
6361 /* Itbl support may require additional care here. */
6362 goto st;
6363 case M_SDC2_AB:
6364 s = "sdc2";
6365 /* Itbl support may require additional care here. */
6366 coproc = 1;
6367 goto st;
6368 case M_SDC3_AB:
6369 s = "sdc3";
6370 /* Itbl support may require additional care here. */
6371 coproc = 1;
6372 goto st;
6373 case M_SDL_AB:
6374 s = "sdl";
6375 goto st;
6376 case M_SDR_AB:
6377 s = "sdr";
6378 st:
6379 tempreg = AT;
6380 used_at = 1;
6381 ld_st:
6382 if (coproc
6383 && NO_ISA_COP (mips_opts.arch)
6384 && (ip->insn_mo->pinfo2 & (INSN2_M_FP_S | INSN2_M_FP_D)) == 0)
6385 {
6386 as_bad (_("opcode not supported on this processor: %s"),
6387 mips_cpu_info_from_arch (mips_opts.arch)->name);
6388 break;
6389 }
6390
6391 /* Itbl support may require additional care here. */
6392 if (mask == M_LWC1_AB
6393 || mask == M_SWC1_AB
6394 || mask == M_LDC1_AB
6395 || mask == M_SDC1_AB
6396 || mask == M_L_DAB
6397 || mask == M_S_DAB)
6398 fmt = "T,o(b)";
6399 else if (mask == M_CACHE_AB)
6400 fmt = "k,o(b)";
6401 else if (coproc)
6402 fmt = "E,o(b)";
6403 else
6404 fmt = "t,o(b)";
6405
6406 if (offset_expr.X_op != O_constant
6407 && offset_expr.X_op != O_symbol)
6408 {
6409 as_bad (_("expression too complex"));
6410 offset_expr.X_op = O_constant;
6411 }
6412
6413 if (HAVE_32BIT_ADDRESSES
6414 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
6415 {
6416 char value [32];
6417
6418 sprintf_vma (value, offset_expr.X_add_number);
6419 as_bad (_("Number (0x%s) larger than 32 bits"), value);
6420 }
6421
6422 /* A constant expression in PIC code can be handled just as it
6423 is in non PIC code. */
6424 if (offset_expr.X_op == O_constant)
6425 {
6426 expr1.X_add_number = ((offset_expr.X_add_number + 0x8000)
6427 & ~(bfd_vma) 0xffff);
6428 normalize_address_expr (&expr1);
6429 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
6430 if (breg != 0)
6431 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6432 tempreg, tempreg, breg);
6433 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6434 }
6435 else if (mips_pic == NO_PIC)
6436 {
6437 /* If this is a reference to a GP relative symbol, and there
6438 is no base register, we want
6439 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6440 Otherwise, if there is no base register, we want
6441 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6442 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6443 If we have a constant, we need two instructions anyhow,
6444 so we always use the latter form.
6445
6446 If we have a base register, and this is a reference to a
6447 GP relative symbol, we want
6448 addu $tempreg,$breg,$gp
6449 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
6450 Otherwise we want
6451 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6452 addu $tempreg,$tempreg,$breg
6453 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6454 With a constant we always use the latter case.
6455
6456 With 64bit address space and no base register and $at usable,
6457 we want
6458 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6459 lui $at,<sym> (BFD_RELOC_HI16_S)
6460 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6461 dsll32 $tempreg,0
6462 daddu $tempreg,$at
6463 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6464 If we have a base register, we want
6465 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6466 lui $at,<sym> (BFD_RELOC_HI16_S)
6467 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6468 daddu $at,$breg
6469 dsll32 $tempreg,0
6470 daddu $tempreg,$at
6471 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6472
6473 Without $at we can't generate the optimal path for superscalar
6474 processors here since this would require two temporary registers.
6475 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6476 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6477 dsll $tempreg,16
6478 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6479 dsll $tempreg,16
6480 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6481 If we have a base register, we want
6482 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6483 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6484 dsll $tempreg,16
6485 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6486 dsll $tempreg,16
6487 daddu $tempreg,$tempreg,$breg
6488 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6489
6490 For GP relative symbols in 64bit address space we can use
6491 the same sequence as in 32bit address space. */
6492 if (HAVE_64BIT_SYMBOLS)
6493 {
6494 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6495 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6496 {
6497 relax_start (offset_expr.X_add_symbol);
6498 if (breg == 0)
6499 {
6500 macro_build (&offset_expr, s, fmt, treg,
6501 BFD_RELOC_GPREL16, mips_gp_register);
6502 }
6503 else
6504 {
6505 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6506 tempreg, breg, mips_gp_register);
6507 macro_build (&offset_expr, s, fmt, treg,
6508 BFD_RELOC_GPREL16, tempreg);
6509 }
6510 relax_switch ();
6511 }
6512
6513 if (used_at == 0 && mips_opts.at)
6514 {
6515 macro_build (&offset_expr, "lui", "t,u", tempreg,
6516 BFD_RELOC_MIPS_HIGHEST);
6517 macro_build (&offset_expr, "lui", "t,u", AT,
6518 BFD_RELOC_HI16_S);
6519 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6520 tempreg, BFD_RELOC_MIPS_HIGHER);
6521 if (breg != 0)
6522 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
6523 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
6524 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
6525 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
6526 tempreg);
6527 used_at = 1;
6528 }
6529 else
6530 {
6531 macro_build (&offset_expr, "lui", "t,u", tempreg,
6532 BFD_RELOC_MIPS_HIGHEST);
6533 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6534 tempreg, BFD_RELOC_MIPS_HIGHER);
6535 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6536 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6537 tempreg, BFD_RELOC_HI16_S);
6538 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6539 if (breg != 0)
6540 macro_build (NULL, "daddu", "d,v,t",
6541 tempreg, tempreg, breg);
6542 macro_build (&offset_expr, s, fmt, treg,
6543 BFD_RELOC_LO16, tempreg);
6544 }
6545
6546 if (mips_relax.sequence)
6547 relax_end ();
6548 break;
6549 }
6550
6551 if (breg == 0)
6552 {
6553 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6554 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6555 {
6556 relax_start (offset_expr.X_add_symbol);
6557 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
6558 mips_gp_register);
6559 relax_switch ();
6560 }
6561 macro_build_lui (&offset_expr, tempreg);
6562 macro_build (&offset_expr, s, fmt, treg,
6563 BFD_RELOC_LO16, tempreg);
6564 if (mips_relax.sequence)
6565 relax_end ();
6566 }
6567 else
6568 {
6569 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6570 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6571 {
6572 relax_start (offset_expr.X_add_symbol);
6573 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6574 tempreg, breg, mips_gp_register);
6575 macro_build (&offset_expr, s, fmt, treg,
6576 BFD_RELOC_GPREL16, tempreg);
6577 relax_switch ();
6578 }
6579 macro_build_lui (&offset_expr, tempreg);
6580 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6581 tempreg, tempreg, breg);
6582 macro_build (&offset_expr, s, fmt, treg,
6583 BFD_RELOC_LO16, tempreg);
6584 if (mips_relax.sequence)
6585 relax_end ();
6586 }
6587 }
6588 else if (!mips_big_got)
6589 {
6590 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
6591
6592 /* If this is a reference to an external symbol, we want
6593 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6594 nop
6595 <op> $treg,0($tempreg)
6596 Otherwise we want
6597 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6598 nop
6599 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6600 <op> $treg,0($tempreg)
6601
6602 For NewABI, we want
6603 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6604 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
6605
6606 If there is a base register, we add it to $tempreg before
6607 the <op>. If there is a constant, we stick it in the
6608 <op> instruction. We don't handle constants larger than
6609 16 bits, because we have no way to load the upper 16 bits
6610 (actually, we could handle them for the subset of cases
6611 in which we are not using $at). */
6612 assert (offset_expr.X_op == O_symbol);
6613 if (HAVE_NEWABI)
6614 {
6615 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6616 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6617 if (breg != 0)
6618 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6619 tempreg, tempreg, breg);
6620 macro_build (&offset_expr, s, fmt, treg,
6621 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6622 break;
6623 }
6624 expr1.X_add_number = offset_expr.X_add_number;
6625 offset_expr.X_add_number = 0;
6626 if (expr1.X_add_number < -0x8000
6627 || expr1.X_add_number >= 0x8000)
6628 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6629 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6630 lw_reloc_type, mips_gp_register);
6631 load_delay_nop ();
6632 relax_start (offset_expr.X_add_symbol);
6633 relax_switch ();
6634 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6635 tempreg, BFD_RELOC_LO16);
6636 relax_end ();
6637 if (breg != 0)
6638 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6639 tempreg, tempreg, breg);
6640 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6641 }
6642 else if (mips_big_got && !HAVE_NEWABI)
6643 {
6644 int gpdelay;
6645
6646 /* If this is a reference to an external symbol, we want
6647 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6648 addu $tempreg,$tempreg,$gp
6649 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6650 <op> $treg,0($tempreg)
6651 Otherwise we want
6652 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6653 nop
6654 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6655 <op> $treg,0($tempreg)
6656 If there is a base register, we add it to $tempreg before
6657 the <op>. If there is a constant, we stick it in the
6658 <op> instruction. We don't handle constants larger than
6659 16 bits, because we have no way to load the upper 16 bits
6660 (actually, we could handle them for the subset of cases
6661 in which we are not using $at). */
6662 assert (offset_expr.X_op == O_symbol);
6663 expr1.X_add_number = offset_expr.X_add_number;
6664 offset_expr.X_add_number = 0;
6665 if (expr1.X_add_number < -0x8000
6666 || expr1.X_add_number >= 0x8000)
6667 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6668 gpdelay = reg_needs_delay (mips_gp_register);
6669 relax_start (offset_expr.X_add_symbol);
6670 macro_build (&offset_expr, "lui", "t,u", tempreg,
6671 BFD_RELOC_MIPS_GOT_HI16);
6672 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6673 mips_gp_register);
6674 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6675 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6676 relax_switch ();
6677 if (gpdelay)
6678 macro_build (NULL, "nop", "");
6679 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6680 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6681 load_delay_nop ();
6682 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6683 tempreg, BFD_RELOC_LO16);
6684 relax_end ();
6685
6686 if (breg != 0)
6687 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6688 tempreg, tempreg, breg);
6689 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6690 }
6691 else if (mips_big_got && HAVE_NEWABI)
6692 {
6693 /* If this is a reference to an external symbol, we want
6694 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6695 add $tempreg,$tempreg,$gp
6696 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6697 <op> $treg,<ofst>($tempreg)
6698 Otherwise, for local symbols, we want:
6699 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6700 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
6701 assert (offset_expr.X_op == O_symbol);
6702 expr1.X_add_number = offset_expr.X_add_number;
6703 offset_expr.X_add_number = 0;
6704 if (expr1.X_add_number < -0x8000
6705 || expr1.X_add_number >= 0x8000)
6706 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6707 relax_start (offset_expr.X_add_symbol);
6708 macro_build (&offset_expr, "lui", "t,u", tempreg,
6709 BFD_RELOC_MIPS_GOT_HI16);
6710 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6711 mips_gp_register);
6712 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6713 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6714 if (breg != 0)
6715 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6716 tempreg, tempreg, breg);
6717 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6718
6719 relax_switch ();
6720 offset_expr.X_add_number = expr1.X_add_number;
6721 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6722 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6723 if (breg != 0)
6724 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6725 tempreg, tempreg, breg);
6726 macro_build (&offset_expr, s, fmt, treg,
6727 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6728 relax_end ();
6729 }
6730 else
6731 abort ();
6732
6733 break;
6734
6735 case M_LI:
6736 case M_LI_S:
6737 load_register (treg, &imm_expr, 0);
6738 break;
6739
6740 case M_DLI:
6741 load_register (treg, &imm_expr, 1);
6742 break;
6743
6744 case M_LI_SS:
6745 if (imm_expr.X_op == O_constant)
6746 {
6747 used_at = 1;
6748 load_register (AT, &imm_expr, 0);
6749 macro_build (NULL, "mtc1", "t,G", AT, treg);
6750 break;
6751 }
6752 else
6753 {
6754 assert (offset_expr.X_op == O_symbol
6755 && strcmp (segment_name (S_GET_SEGMENT
6756 (offset_expr.X_add_symbol)),
6757 ".lit4") == 0
6758 && offset_expr.X_add_number == 0);
6759 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
6760 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6761 break;
6762 }
6763
6764 case M_LI_D:
6765 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
6766 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
6767 order 32 bits of the value and the low order 32 bits are either
6768 zero or in OFFSET_EXPR. */
6769 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6770 {
6771 if (HAVE_64BIT_GPRS)
6772 load_register (treg, &imm_expr, 1);
6773 else
6774 {
6775 int hreg, lreg;
6776
6777 if (target_big_endian)
6778 {
6779 hreg = treg;
6780 lreg = treg + 1;
6781 }
6782 else
6783 {
6784 hreg = treg + 1;
6785 lreg = treg;
6786 }
6787
6788 if (hreg <= 31)
6789 load_register (hreg, &imm_expr, 0);
6790 if (lreg <= 31)
6791 {
6792 if (offset_expr.X_op == O_absent)
6793 move_register (lreg, 0);
6794 else
6795 {
6796 assert (offset_expr.X_op == O_constant);
6797 load_register (lreg, &offset_expr, 0);
6798 }
6799 }
6800 }
6801 break;
6802 }
6803
6804 /* We know that sym is in the .rdata section. First we get the
6805 upper 16 bits of the address. */
6806 if (mips_pic == NO_PIC)
6807 {
6808 macro_build_lui (&offset_expr, AT);
6809 used_at = 1;
6810 }
6811 else
6812 {
6813 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6814 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6815 used_at = 1;
6816 }
6817
6818 /* Now we load the register(s). */
6819 if (HAVE_64BIT_GPRS)
6820 {
6821 used_at = 1;
6822 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6823 }
6824 else
6825 {
6826 used_at = 1;
6827 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6828 if (treg != RA)
6829 {
6830 /* FIXME: How in the world do we deal with the possible
6831 overflow here? */
6832 offset_expr.X_add_number += 4;
6833 macro_build (&offset_expr, "lw", "t,o(b)",
6834 treg + 1, BFD_RELOC_LO16, AT);
6835 }
6836 }
6837 break;
6838
6839 case M_LI_DD:
6840 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
6841 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
6842 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
6843 the value and the low order 32 bits are either zero or in
6844 OFFSET_EXPR. */
6845 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6846 {
6847 used_at = 1;
6848 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
6849 if (HAVE_64BIT_FPRS)
6850 {
6851 assert (HAVE_64BIT_GPRS);
6852 macro_build (NULL, "dmtc1", "t,S", AT, treg);
6853 }
6854 else
6855 {
6856 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
6857 if (offset_expr.X_op == O_absent)
6858 macro_build (NULL, "mtc1", "t,G", 0, treg);
6859 else
6860 {
6861 assert (offset_expr.X_op == O_constant);
6862 load_register (AT, &offset_expr, 0);
6863 macro_build (NULL, "mtc1", "t,G", AT, treg);
6864 }
6865 }
6866 break;
6867 }
6868
6869 assert (offset_expr.X_op == O_symbol
6870 && offset_expr.X_add_number == 0);
6871 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
6872 if (strcmp (s, ".lit8") == 0)
6873 {
6874 if (mips_opts.isa != ISA_MIPS1)
6875 {
6876 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
6877 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6878 break;
6879 }
6880 breg = mips_gp_register;
6881 r = BFD_RELOC_MIPS_LITERAL;
6882 goto dob;
6883 }
6884 else
6885 {
6886 assert (strcmp (s, RDATA_SECTION_NAME) == 0);
6887 used_at = 1;
6888 if (mips_pic != NO_PIC)
6889 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6890 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6891 else
6892 {
6893 /* FIXME: This won't work for a 64 bit address. */
6894 macro_build_lui (&offset_expr, AT);
6895 }
6896
6897 if (mips_opts.isa != ISA_MIPS1)
6898 {
6899 macro_build (&offset_expr, "ldc1", "T,o(b)",
6900 treg, BFD_RELOC_LO16, AT);
6901 break;
6902 }
6903 breg = AT;
6904 r = BFD_RELOC_LO16;
6905 goto dob;
6906 }
6907
6908 case M_L_DOB:
6909 /* Even on a big endian machine $fn comes before $fn+1. We have
6910 to adjust when loading from memory. */
6911 r = BFD_RELOC_LO16;
6912 dob:
6913 assert (mips_opts.isa == ISA_MIPS1);
6914 macro_build (&offset_expr, "lwc1", "T,o(b)",
6915 target_big_endian ? treg + 1 : treg, r, breg);
6916 /* FIXME: A possible overflow which I don't know how to deal
6917 with. */
6918 offset_expr.X_add_number += 4;
6919 macro_build (&offset_expr, "lwc1", "T,o(b)",
6920 target_big_endian ? treg : treg + 1, r, breg);
6921 break;
6922
6923 case M_L_DAB:
6924 /*
6925 * The MIPS assembler seems to check for X_add_number not
6926 * being double aligned and generating:
6927 * lui at,%hi(foo+1)
6928 * addu at,at,v1
6929 * addiu at,at,%lo(foo+1)
6930 * lwc1 f2,0(at)
6931 * lwc1 f3,4(at)
6932 * But, the resulting address is the same after relocation so why
6933 * generate the extra instruction?
6934 */
6935 /* Itbl support may require additional care here. */
6936 coproc = 1;
6937 if (mips_opts.isa != ISA_MIPS1)
6938 {
6939 s = "ldc1";
6940 goto ld;
6941 }
6942
6943 s = "lwc1";
6944 fmt = "T,o(b)";
6945 goto ldd_std;
6946
6947 case M_S_DAB:
6948 if (mips_opts.isa != ISA_MIPS1)
6949 {
6950 s = "sdc1";
6951 goto st;
6952 }
6953
6954 s = "swc1";
6955 fmt = "T,o(b)";
6956 /* Itbl support may require additional care here. */
6957 coproc = 1;
6958 goto ldd_std;
6959
6960 case M_LD_AB:
6961 if (HAVE_64BIT_GPRS)
6962 {
6963 s = "ld";
6964 goto ld;
6965 }
6966
6967 s = "lw";
6968 fmt = "t,o(b)";
6969 goto ldd_std;
6970
6971 case M_SD_AB:
6972 if (HAVE_64BIT_GPRS)
6973 {
6974 s = "sd";
6975 goto st;
6976 }
6977
6978 s = "sw";
6979 fmt = "t,o(b)";
6980
6981 ldd_std:
6982 if (offset_expr.X_op != O_symbol
6983 && offset_expr.X_op != O_constant)
6984 {
6985 as_bad (_("expression too complex"));
6986 offset_expr.X_op = O_constant;
6987 }
6988
6989 if (HAVE_32BIT_ADDRESSES
6990 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
6991 {
6992 char value [32];
6993
6994 sprintf_vma (value, offset_expr.X_add_number);
6995 as_bad (_("Number (0x%s) larger than 32 bits"), value);
6996 }
6997
6998 /* Even on a big endian machine $fn comes before $fn+1. We have
6999 to adjust when loading from memory. We set coproc if we must
7000 load $fn+1 first. */
7001 /* Itbl support may require additional care here. */
7002 if (! target_big_endian)
7003 coproc = 0;
7004
7005 if (mips_pic == NO_PIC
7006 || offset_expr.X_op == O_constant)
7007 {
7008 /* If this is a reference to a GP relative symbol, we want
7009 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
7010 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
7011 If we have a base register, we use this
7012 addu $at,$breg,$gp
7013 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
7014 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
7015 If this is not a GP relative symbol, we want
7016 lui $at,<sym> (BFD_RELOC_HI16_S)
7017 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7018 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7019 If there is a base register, we add it to $at after the
7020 lui instruction. If there is a constant, we always use
7021 the last case. */
7022 if (offset_expr.X_op == O_symbol
7023 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7024 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7025 {
7026 relax_start (offset_expr.X_add_symbol);
7027 if (breg == 0)
7028 {
7029 tempreg = mips_gp_register;
7030 }
7031 else
7032 {
7033 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7034 AT, breg, mips_gp_register);
7035 tempreg = AT;
7036 used_at = 1;
7037 }
7038
7039 /* Itbl support may require additional care here. */
7040 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7041 BFD_RELOC_GPREL16, tempreg);
7042 offset_expr.X_add_number += 4;
7043
7044 /* Set mips_optimize to 2 to avoid inserting an
7045 undesired nop. */
7046 hold_mips_optimize = mips_optimize;
7047 mips_optimize = 2;
7048 /* Itbl support may require additional care here. */
7049 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7050 BFD_RELOC_GPREL16, tempreg);
7051 mips_optimize = hold_mips_optimize;
7052
7053 relax_switch ();
7054
7055 /* We just generated two relocs. When tc_gen_reloc
7056 handles this case, it will skip the first reloc and
7057 handle the second. The second reloc already has an
7058 extra addend of 4, which we added above. We must
7059 subtract it out, and then subtract another 4 to make
7060 the first reloc come out right. The second reloc
7061 will come out right because we are going to add 4 to
7062 offset_expr when we build its instruction below.
7063
7064 If we have a symbol, then we don't want to include
7065 the offset, because it will wind up being included
7066 when we generate the reloc. */
7067
7068 if (offset_expr.X_op == O_constant)
7069 offset_expr.X_add_number -= 8;
7070 else
7071 {
7072 offset_expr.X_add_number = -4;
7073 offset_expr.X_op = O_constant;
7074 }
7075 }
7076 used_at = 1;
7077 macro_build_lui (&offset_expr, AT);
7078 if (breg != 0)
7079 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7080 /* Itbl support may require additional care here. */
7081 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7082 BFD_RELOC_LO16, AT);
7083 /* FIXME: How do we handle overflow here? */
7084 offset_expr.X_add_number += 4;
7085 /* Itbl support may require additional care here. */
7086 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7087 BFD_RELOC_LO16, AT);
7088 if (mips_relax.sequence)
7089 relax_end ();
7090 }
7091 else if (!mips_big_got)
7092 {
7093 /* If this is a reference to an external symbol, we want
7094 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7095 nop
7096 <op> $treg,0($at)
7097 <op> $treg+1,4($at)
7098 Otherwise we want
7099 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7100 nop
7101 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7102 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7103 If there is a base register we add it to $at before the
7104 lwc1 instructions. If there is a constant we include it
7105 in the lwc1 instructions. */
7106 used_at = 1;
7107 expr1.X_add_number = offset_expr.X_add_number;
7108 if (expr1.X_add_number < -0x8000
7109 || expr1.X_add_number >= 0x8000 - 4)
7110 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7111 load_got_offset (AT, &offset_expr);
7112 load_delay_nop ();
7113 if (breg != 0)
7114 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7115
7116 /* Set mips_optimize to 2 to avoid inserting an undesired
7117 nop. */
7118 hold_mips_optimize = mips_optimize;
7119 mips_optimize = 2;
7120
7121 /* Itbl support may require additional care here. */
7122 relax_start (offset_expr.X_add_symbol);
7123 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7124 BFD_RELOC_LO16, AT);
7125 expr1.X_add_number += 4;
7126 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7127 BFD_RELOC_LO16, AT);
7128 relax_switch ();
7129 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7130 BFD_RELOC_LO16, AT);
7131 offset_expr.X_add_number += 4;
7132 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7133 BFD_RELOC_LO16, AT);
7134 relax_end ();
7135
7136 mips_optimize = hold_mips_optimize;
7137 }
7138 else if (mips_big_got)
7139 {
7140 int gpdelay;
7141
7142 /* If this is a reference to an external symbol, we want
7143 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7144 addu $at,$at,$gp
7145 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
7146 nop
7147 <op> $treg,0($at)
7148 <op> $treg+1,4($at)
7149 Otherwise we want
7150 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7151 nop
7152 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7153 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7154 If there is a base register we add it to $at before the
7155 lwc1 instructions. If there is a constant we include it
7156 in the lwc1 instructions. */
7157 used_at = 1;
7158 expr1.X_add_number = offset_expr.X_add_number;
7159 offset_expr.X_add_number = 0;
7160 if (expr1.X_add_number < -0x8000
7161 || expr1.X_add_number >= 0x8000 - 4)
7162 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7163 gpdelay = reg_needs_delay (mips_gp_register);
7164 relax_start (offset_expr.X_add_symbol);
7165 macro_build (&offset_expr, "lui", "t,u",
7166 AT, BFD_RELOC_MIPS_GOT_HI16);
7167 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7168 AT, AT, mips_gp_register);
7169 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7170 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
7171 load_delay_nop ();
7172 if (breg != 0)
7173 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7174 /* Itbl support may require additional care here. */
7175 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7176 BFD_RELOC_LO16, AT);
7177 expr1.X_add_number += 4;
7178
7179 /* Set mips_optimize to 2 to avoid inserting an undesired
7180 nop. */
7181 hold_mips_optimize = mips_optimize;
7182 mips_optimize = 2;
7183 /* Itbl support may require additional care here. */
7184 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7185 BFD_RELOC_LO16, AT);
7186 mips_optimize = hold_mips_optimize;
7187 expr1.X_add_number -= 4;
7188
7189 relax_switch ();
7190 offset_expr.X_add_number = expr1.X_add_number;
7191 if (gpdelay)
7192 macro_build (NULL, "nop", "");
7193 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7194 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7195 load_delay_nop ();
7196 if (breg != 0)
7197 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7198 /* Itbl support may require additional care here. */
7199 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7200 BFD_RELOC_LO16, AT);
7201 offset_expr.X_add_number += 4;
7202
7203 /* Set mips_optimize to 2 to avoid inserting an undesired
7204 nop. */
7205 hold_mips_optimize = mips_optimize;
7206 mips_optimize = 2;
7207 /* Itbl support may require additional care here. */
7208 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7209 BFD_RELOC_LO16, AT);
7210 mips_optimize = hold_mips_optimize;
7211 relax_end ();
7212 }
7213 else
7214 abort ();
7215
7216 break;
7217
7218 case M_LD_OB:
7219 s = "lw";
7220 goto sd_ob;
7221 case M_SD_OB:
7222 s = "sw";
7223 sd_ob:
7224 assert (HAVE_32BIT_ADDRESSES);
7225 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
7226 offset_expr.X_add_number += 4;
7227 macro_build (&offset_expr, s, "t,o(b)", treg + 1, BFD_RELOC_LO16, breg);
7228 break;
7229
7230 /* New code added to support COPZ instructions.
7231 This code builds table entries out of the macros in mip_opcodes.
7232 R4000 uses interlocks to handle coproc delays.
7233 Other chips (like the R3000) require nops to be inserted for delays.
7234
7235 FIXME: Currently, we require that the user handle delays.
7236 In order to fill delay slots for non-interlocked chips,
7237 we must have a way to specify delays based on the coprocessor.
7238 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
7239 What are the side-effects of the cop instruction?
7240 What cache support might we have and what are its effects?
7241 Both coprocessor & memory require delays. how long???
7242 What registers are read/set/modified?
7243
7244 If an itbl is provided to interpret cop instructions,
7245 this knowledge can be encoded in the itbl spec. */
7246
7247 case M_COP0:
7248 s = "c0";
7249 goto copz;
7250 case M_COP1:
7251 s = "c1";
7252 goto copz;
7253 case M_COP2:
7254 s = "c2";
7255 goto copz;
7256 case M_COP3:
7257 s = "c3";
7258 copz:
7259 if (NO_ISA_COP (mips_opts.arch)
7260 && (ip->insn_mo->pinfo2 & INSN2_M_FP_S) == 0)
7261 {
7262 as_bad (_("opcode not supported on this processor: %s"),
7263 mips_cpu_info_from_arch (mips_opts.arch)->name);
7264 break;
7265 }
7266
7267 /* For now we just do C (same as Cz). The parameter will be
7268 stored in insn_opcode by mips_ip. */
7269 macro_build (NULL, s, "C", ip->insn_opcode);
7270 break;
7271
7272 case M_MOVE:
7273 move_register (dreg, sreg);
7274 break;
7275
7276 #ifdef LOSING_COMPILER
7277 default:
7278 /* Try and see if this is a new itbl instruction.
7279 This code builds table entries out of the macros in mip_opcodes.
7280 FIXME: For now we just assemble the expression and pass it's
7281 value along as a 32-bit immediate.
7282 We may want to have the assembler assemble this value,
7283 so that we gain the assembler's knowledge of delay slots,
7284 symbols, etc.
7285 Would it be more efficient to use mask (id) here? */
7286 if (itbl_have_entries
7287 && (immed_expr = itbl_assemble (ip->insn_mo->name, "")))
7288 {
7289 s = ip->insn_mo->name;
7290 s2 = "cop3";
7291 coproc = ITBL_DECODE_PNUM (immed_expr);;
7292 macro_build (&immed_expr, s, "C");
7293 break;
7294 }
7295 macro2 (ip);
7296 break;
7297 }
7298 if (!mips_opts.at && used_at)
7299 as_bad (_("Macro used $at after \".set noat\""));
7300 }
7301
7302 static void
7303 macro2 (struct mips_cl_insn *ip)
7304 {
7305 unsigned int treg, sreg, dreg, breg;
7306 unsigned int tempreg;
7307 int mask;
7308 int used_at;
7309 expressionS expr1;
7310 const char *s;
7311 const char *s2;
7312 const char *fmt;
7313 int likely = 0;
7314 int dbl = 0;
7315 int coproc = 0;
7316 int lr = 0;
7317 int imm = 0;
7318 int off;
7319 offsetT maxnum;
7320 bfd_reloc_code_real_type r;
7321
7322 treg = (ip->insn_opcode >> 16) & 0x1f;
7323 dreg = (ip->insn_opcode >> 11) & 0x1f;
7324 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
7325 mask = ip->insn_mo->mask;
7326
7327 expr1.X_op = O_constant;
7328 expr1.X_op_symbol = NULL;
7329 expr1.X_add_symbol = NULL;
7330 expr1.X_add_number = 1;
7331
7332 switch (mask)
7333 {
7334 #endif /* LOSING_COMPILER */
7335
7336 case M_DMUL:
7337 dbl = 1;
7338 case M_MUL:
7339 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
7340 macro_build (NULL, "mflo", "d", dreg);
7341 break;
7342
7343 case M_DMUL_I:
7344 dbl = 1;
7345 case M_MUL_I:
7346 /* The MIPS assembler some times generates shifts and adds. I'm
7347 not trying to be that fancy. GCC should do this for us
7348 anyway. */
7349 used_at = 1;
7350 load_register (AT, &imm_expr, dbl);
7351 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
7352 macro_build (NULL, "mflo", "d", dreg);
7353 break;
7354
7355 case M_DMULO_I:
7356 dbl = 1;
7357 case M_MULO_I:
7358 imm = 1;
7359 goto do_mulo;
7360
7361 case M_DMULO:
7362 dbl = 1;
7363 case M_MULO:
7364 do_mulo:
7365 start_noreorder ();
7366 used_at = 1;
7367 if (imm)
7368 load_register (AT, &imm_expr, dbl);
7369 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
7370 macro_build (NULL, "mflo", "d", dreg);
7371 macro_build (NULL, dbl ? "dsra32" : "sra", "d,w,<", dreg, dreg, RA);
7372 macro_build (NULL, "mfhi", "d", AT);
7373 if (mips_trap)
7374 macro_build (NULL, "tne", "s,t,q", dreg, AT, 6);
7375 else
7376 {
7377 expr1.X_add_number = 8;
7378 macro_build (&expr1, "beq", "s,t,p", dreg, AT);
7379 macro_build (NULL, "nop", "", 0);
7380 macro_build (NULL, "break", "c", 6);
7381 }
7382 end_noreorder ();
7383 macro_build (NULL, "mflo", "d", dreg);
7384 break;
7385
7386 case M_DMULOU_I:
7387 dbl = 1;
7388 case M_MULOU_I:
7389 imm = 1;
7390 goto do_mulou;
7391
7392 case M_DMULOU:
7393 dbl = 1;
7394 case M_MULOU:
7395 do_mulou:
7396 start_noreorder ();
7397 used_at = 1;
7398 if (imm)
7399 load_register (AT, &imm_expr, dbl);
7400 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
7401 sreg, imm ? AT : treg);
7402 macro_build (NULL, "mfhi", "d", AT);
7403 macro_build (NULL, "mflo", "d", dreg);
7404 if (mips_trap)
7405 macro_build (NULL, "tne", "s,t,q", AT, 0, 6);
7406 else
7407 {
7408 expr1.X_add_number = 8;
7409 macro_build (&expr1, "beq", "s,t,p", AT, 0);
7410 macro_build (NULL, "nop", "", 0);
7411 macro_build (NULL, "break", "c", 6);
7412 }
7413 end_noreorder ();
7414 break;
7415
7416 case M_DROL:
7417 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7418 {
7419 if (dreg == sreg)
7420 {
7421 tempreg = AT;
7422 used_at = 1;
7423 }
7424 else
7425 {
7426 tempreg = dreg;
7427 }
7428 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
7429 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
7430 break;
7431 }
7432 used_at = 1;
7433 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7434 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
7435 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
7436 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7437 break;
7438
7439 case M_ROL:
7440 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7441 {
7442 if (dreg == sreg)
7443 {
7444 tempreg = AT;
7445 used_at = 1;
7446 }
7447 else
7448 {
7449 tempreg = dreg;
7450 }
7451 macro_build (NULL, "negu", "d,w", tempreg, treg);
7452 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
7453 break;
7454 }
7455 used_at = 1;
7456 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7457 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
7458 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
7459 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7460 break;
7461
7462 case M_DROL_I:
7463 {
7464 unsigned int rot;
7465 char *l, *r;
7466
7467 if (imm_expr.X_op != O_constant)
7468 as_bad (_("Improper rotate count"));
7469 rot = imm_expr.X_add_number & 0x3f;
7470 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7471 {
7472 rot = (64 - rot) & 0x3f;
7473 if (rot >= 32)
7474 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7475 else
7476 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7477 break;
7478 }
7479 if (rot == 0)
7480 {
7481 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7482 break;
7483 }
7484 l = (rot < 0x20) ? "dsll" : "dsll32";
7485 r = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
7486 rot &= 0x1f;
7487 used_at = 1;
7488 macro_build (NULL, l, "d,w,<", AT, sreg, rot);
7489 macro_build (NULL, r, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7490 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7491 }
7492 break;
7493
7494 case M_ROL_I:
7495 {
7496 unsigned int rot;
7497
7498 if (imm_expr.X_op != O_constant)
7499 as_bad (_("Improper rotate count"));
7500 rot = imm_expr.X_add_number & 0x1f;
7501 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7502 {
7503 macro_build (NULL, "ror", "d,w,<", dreg, sreg, (32 - rot) & 0x1f);
7504 break;
7505 }
7506 if (rot == 0)
7507 {
7508 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7509 break;
7510 }
7511 used_at = 1;
7512 macro_build (NULL, "sll", "d,w,<", AT, sreg, rot);
7513 macro_build (NULL, "srl", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7514 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7515 }
7516 break;
7517
7518 case M_DROR:
7519 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7520 {
7521 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
7522 break;
7523 }
7524 used_at = 1;
7525 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7526 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
7527 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
7528 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7529 break;
7530
7531 case M_ROR:
7532 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7533 {
7534 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
7535 break;
7536 }
7537 used_at = 1;
7538 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7539 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
7540 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
7541 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7542 break;
7543
7544 case M_DROR_I:
7545 {
7546 unsigned int rot;
7547 char *l, *r;
7548
7549 if (imm_expr.X_op != O_constant)
7550 as_bad (_("Improper rotate count"));
7551 rot = imm_expr.X_add_number & 0x3f;
7552 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7553 {
7554 if (rot >= 32)
7555 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7556 else
7557 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7558 break;
7559 }
7560 if (rot == 0)
7561 {
7562 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7563 break;
7564 }
7565 r = (rot < 0x20) ? "dsrl" : "dsrl32";
7566 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
7567 rot &= 0x1f;
7568 used_at = 1;
7569 macro_build (NULL, r, "d,w,<", AT, sreg, rot);
7570 macro_build (NULL, l, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7571 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7572 }
7573 break;
7574
7575 case M_ROR_I:
7576 {
7577 unsigned int rot;
7578
7579 if (imm_expr.X_op != O_constant)
7580 as_bad (_("Improper rotate count"));
7581 rot = imm_expr.X_add_number & 0x1f;
7582 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7583 {
7584 macro_build (NULL, "ror", "d,w,<", dreg, sreg, rot);
7585 break;
7586 }
7587 if (rot == 0)
7588 {
7589 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7590 break;
7591 }
7592 used_at = 1;
7593 macro_build (NULL, "srl", "d,w,<", AT, sreg, rot);
7594 macro_build (NULL, "sll", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7595 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7596 }
7597 break;
7598
7599 case M_S_DOB:
7600 assert (mips_opts.isa == ISA_MIPS1);
7601 /* Even on a big endian machine $fn comes before $fn+1. We have
7602 to adjust when storing to memory. */
7603 macro_build (&offset_expr, "swc1", "T,o(b)",
7604 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
7605 offset_expr.X_add_number += 4;
7606 macro_build (&offset_expr, "swc1", "T,o(b)",
7607 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
7608 break;
7609
7610 case M_SEQ:
7611 if (sreg == 0)
7612 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
7613 else if (treg == 0)
7614 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7615 else
7616 {
7617 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7618 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7619 }
7620 break;
7621
7622 case M_SEQ_I:
7623 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7624 {
7625 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7626 break;
7627 }
7628 if (sreg == 0)
7629 {
7630 as_warn (_("Instruction %s: result is always false"),
7631 ip->insn_mo->name);
7632 move_register (dreg, 0);
7633 break;
7634 }
7635 if (CPU_HAS_SEQ (mips_opts.arch)
7636 && -512 <= imm_expr.X_add_number
7637 && imm_expr.X_add_number < 512)
7638 {
7639 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg,
7640 imm_expr.X_add_number);
7641 break;
7642 }
7643 if (imm_expr.X_op == O_constant
7644 && imm_expr.X_add_number >= 0
7645 && imm_expr.X_add_number < 0x10000)
7646 {
7647 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7648 }
7649 else if (imm_expr.X_op == O_constant
7650 && imm_expr.X_add_number > -0x8000
7651 && imm_expr.X_add_number < 0)
7652 {
7653 imm_expr.X_add_number = -imm_expr.X_add_number;
7654 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7655 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7656 }
7657 else if (CPU_HAS_SEQ (mips_opts.arch))
7658 {
7659 used_at = 1;
7660 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7661 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT);
7662 break;
7663 }
7664 else
7665 {
7666 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7667 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7668 used_at = 1;
7669 }
7670 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7671 break;
7672
7673 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
7674 s = "slt";
7675 goto sge;
7676 case M_SGEU:
7677 s = "sltu";
7678 sge:
7679 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
7680 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7681 break;
7682
7683 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
7684 case M_SGEU_I:
7685 if (imm_expr.X_op == O_constant
7686 && imm_expr.X_add_number >= -0x8000
7687 && imm_expr.X_add_number < 0x8000)
7688 {
7689 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
7690 dreg, sreg, BFD_RELOC_LO16);
7691 }
7692 else
7693 {
7694 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7695 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
7696 dreg, sreg, AT);
7697 used_at = 1;
7698 }
7699 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7700 break;
7701
7702 case M_SGT: /* sreg > treg <==> treg < sreg */
7703 s = "slt";
7704 goto sgt;
7705 case M_SGTU:
7706 s = "sltu";
7707 sgt:
7708 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7709 break;
7710
7711 case M_SGT_I: /* sreg > I <==> I < sreg */
7712 s = "slt";
7713 goto sgti;
7714 case M_SGTU_I:
7715 s = "sltu";
7716 sgti:
7717 used_at = 1;
7718 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7719 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7720 break;
7721
7722 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
7723 s = "slt";
7724 goto sle;
7725 case M_SLEU:
7726 s = "sltu";
7727 sle:
7728 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7729 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7730 break;
7731
7732 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
7733 s = "slt";
7734 goto slei;
7735 case M_SLEU_I:
7736 s = "sltu";
7737 slei:
7738 used_at = 1;
7739 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7740 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7741 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7742 break;
7743
7744 case M_SLT_I:
7745 if (imm_expr.X_op == O_constant
7746 && imm_expr.X_add_number >= -0x8000
7747 && imm_expr.X_add_number < 0x8000)
7748 {
7749 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7750 break;
7751 }
7752 used_at = 1;
7753 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7754 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
7755 break;
7756
7757 case M_SLTU_I:
7758 if (imm_expr.X_op == O_constant
7759 && imm_expr.X_add_number >= -0x8000
7760 && imm_expr.X_add_number < 0x8000)
7761 {
7762 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
7763 BFD_RELOC_LO16);
7764 break;
7765 }
7766 used_at = 1;
7767 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7768 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
7769 break;
7770
7771 case M_SNE:
7772 if (sreg == 0)
7773 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
7774 else if (treg == 0)
7775 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7776 else
7777 {
7778 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7779 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7780 }
7781 break;
7782
7783 case M_SNE_I:
7784 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7785 {
7786 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7787 break;
7788 }
7789 if (sreg == 0)
7790 {
7791 as_warn (_("Instruction %s: result is always true"),
7792 ip->insn_mo->name);
7793 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
7794 dreg, 0, BFD_RELOC_LO16);
7795 break;
7796 }
7797 if (CPU_HAS_SEQ (mips_opts.arch)
7798 && -512 <= imm_expr.X_add_number
7799 && imm_expr.X_add_number < 512)
7800 {
7801 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg,
7802 imm_expr.X_add_number);
7803 break;
7804 }
7805 if (imm_expr.X_op == O_constant
7806 && imm_expr.X_add_number >= 0
7807 && imm_expr.X_add_number < 0x10000)
7808 {
7809 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7810 }
7811 else if (imm_expr.X_op == O_constant
7812 && imm_expr.X_add_number > -0x8000
7813 && imm_expr.X_add_number < 0)
7814 {
7815 imm_expr.X_add_number = -imm_expr.X_add_number;
7816 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7817 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7818 }
7819 else if (CPU_HAS_SEQ (mips_opts.arch))
7820 {
7821 used_at = 1;
7822 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7823 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT);
7824 break;
7825 }
7826 else
7827 {
7828 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7829 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7830 used_at = 1;
7831 }
7832 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7833 break;
7834
7835 case M_DSUB_I:
7836 dbl = 1;
7837 case M_SUB_I:
7838 if (imm_expr.X_op == O_constant
7839 && imm_expr.X_add_number > -0x8000
7840 && imm_expr.X_add_number <= 0x8000)
7841 {
7842 imm_expr.X_add_number = -imm_expr.X_add_number;
7843 macro_build (&imm_expr, dbl ? "daddi" : "addi", "t,r,j",
7844 dreg, sreg, BFD_RELOC_LO16);
7845 break;
7846 }
7847 used_at = 1;
7848 load_register (AT, &imm_expr, dbl);
7849 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, sreg, AT);
7850 break;
7851
7852 case M_DSUBU_I:
7853 dbl = 1;
7854 case M_SUBU_I:
7855 if (imm_expr.X_op == O_constant
7856 && imm_expr.X_add_number > -0x8000
7857 && imm_expr.X_add_number <= 0x8000)
7858 {
7859 imm_expr.X_add_number = -imm_expr.X_add_number;
7860 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "t,r,j",
7861 dreg, sreg, BFD_RELOC_LO16);
7862 break;
7863 }
7864 used_at = 1;
7865 load_register (AT, &imm_expr, dbl);
7866 macro_build (NULL, dbl ? "dsubu" : "subu", "d,v,t", dreg, sreg, AT);
7867 break;
7868
7869 case M_TEQ_I:
7870 s = "teq";
7871 goto trap;
7872 case M_TGE_I:
7873 s = "tge";
7874 goto trap;
7875 case M_TGEU_I:
7876 s = "tgeu";
7877 goto trap;
7878 case M_TLT_I:
7879 s = "tlt";
7880 goto trap;
7881 case M_TLTU_I:
7882 s = "tltu";
7883 goto trap;
7884 case M_TNE_I:
7885 s = "tne";
7886 trap:
7887 used_at = 1;
7888 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7889 macro_build (NULL, s, "s,t", sreg, AT);
7890 break;
7891
7892 case M_TRUNCWS:
7893 case M_TRUNCWD:
7894 assert (mips_opts.isa == ISA_MIPS1);
7895 used_at = 1;
7896 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
7897 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
7898
7899 /*
7900 * Is the double cfc1 instruction a bug in the mips assembler;
7901 * or is there a reason for it?
7902 */
7903 start_noreorder ();
7904 macro_build (NULL, "cfc1", "t,G", treg, RA);
7905 macro_build (NULL, "cfc1", "t,G", treg, RA);
7906 macro_build (NULL, "nop", "");
7907 expr1.X_add_number = 3;
7908 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
7909 expr1.X_add_number = 2;
7910 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
7911 macro_build (NULL, "ctc1", "t,G", AT, RA);
7912 macro_build (NULL, "nop", "");
7913 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
7914 dreg, sreg);
7915 macro_build (NULL, "ctc1", "t,G", treg, RA);
7916 macro_build (NULL, "nop", "");
7917 end_noreorder ();
7918 break;
7919
7920 case M_ULH:
7921 s = "lb";
7922 goto ulh;
7923 case M_ULHU:
7924 s = "lbu";
7925 ulh:
7926 used_at = 1;
7927 if (offset_expr.X_add_number >= 0x7fff)
7928 as_bad (_("operand overflow"));
7929 if (! target_big_endian)
7930 ++offset_expr.X_add_number;
7931 macro_build (&offset_expr, s, "t,o(b)", AT, BFD_RELOC_LO16, breg);
7932 if (! target_big_endian)
7933 --offset_expr.X_add_number;
7934 else
7935 ++offset_expr.X_add_number;
7936 macro_build (&offset_expr, "lbu", "t,o(b)", treg, BFD_RELOC_LO16, breg);
7937 macro_build (NULL, "sll", "d,w,<", AT, AT, 8);
7938 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
7939 break;
7940
7941 case M_ULD:
7942 s = "ldl";
7943 s2 = "ldr";
7944 off = 7;
7945 goto ulw;
7946 case M_ULW:
7947 s = "lwl";
7948 s2 = "lwr";
7949 off = 3;
7950 ulw:
7951 if (offset_expr.X_add_number >= 0x8000 - off)
7952 as_bad (_("operand overflow"));
7953 if (treg != breg)
7954 tempreg = treg;
7955 else
7956 {
7957 used_at = 1;
7958 tempreg = AT;
7959 }
7960 if (! target_big_endian)
7961 offset_expr.X_add_number += off;
7962 macro_build (&offset_expr, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
7963 if (! target_big_endian)
7964 offset_expr.X_add_number -= off;
7965 else
7966 offset_expr.X_add_number += off;
7967 macro_build (&offset_expr, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
7968
7969 /* If necessary, move the result in tempreg the final destination. */
7970 if (treg == tempreg)
7971 break;
7972 /* Protect second load's delay slot. */
7973 load_delay_nop ();
7974 move_register (treg, tempreg);
7975 break;
7976
7977 case M_ULD_A:
7978 s = "ldl";
7979 s2 = "ldr";
7980 off = 7;
7981 goto ulwa;
7982 case M_ULW_A:
7983 s = "lwl";
7984 s2 = "lwr";
7985 off = 3;
7986 ulwa:
7987 used_at = 1;
7988 load_address (AT, &offset_expr, &used_at);
7989 if (breg != 0)
7990 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
7991 if (! target_big_endian)
7992 expr1.X_add_number = off;
7993 else
7994 expr1.X_add_number = 0;
7995 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
7996 if (! target_big_endian)
7997 expr1.X_add_number = 0;
7998 else
7999 expr1.X_add_number = off;
8000 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8001 break;
8002
8003 case M_ULH_A:
8004 case M_ULHU_A:
8005 used_at = 1;
8006 load_address (AT, &offset_expr, &used_at);
8007 if (breg != 0)
8008 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8009 if (target_big_endian)
8010 expr1.X_add_number = 0;
8011 macro_build (&expr1, mask == M_ULH_A ? "lb" : "lbu", "t,o(b)",
8012 treg, BFD_RELOC_LO16, AT);
8013 if (target_big_endian)
8014 expr1.X_add_number = 1;
8015 else
8016 expr1.X_add_number = 0;
8017 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8018 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8019 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8020 break;
8021
8022 case M_USH:
8023 used_at = 1;
8024 if (offset_expr.X_add_number >= 0x7fff)
8025 as_bad (_("operand overflow"));
8026 if (target_big_endian)
8027 ++offset_expr.X_add_number;
8028 macro_build (&offset_expr, "sb", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8029 macro_build (NULL, "srl", "d,w,<", AT, treg, 8);
8030 if (target_big_endian)
8031 --offset_expr.X_add_number;
8032 else
8033 ++offset_expr.X_add_number;
8034 macro_build (&offset_expr, "sb", "t,o(b)", AT, BFD_RELOC_LO16, breg);
8035 break;
8036
8037 case M_USD:
8038 s = "sdl";
8039 s2 = "sdr";
8040 off = 7;
8041 goto usw;
8042 case M_USW:
8043 s = "swl";
8044 s2 = "swr";
8045 off = 3;
8046 usw:
8047 if (offset_expr.X_add_number >= 0x8000 - off)
8048 as_bad (_("operand overflow"));
8049 if (! target_big_endian)
8050 offset_expr.X_add_number += off;
8051 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8052 if (! target_big_endian)
8053 offset_expr.X_add_number -= off;
8054 else
8055 offset_expr.X_add_number += off;
8056 macro_build (&offset_expr, s2, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8057 break;
8058
8059 case M_USD_A:
8060 s = "sdl";
8061 s2 = "sdr";
8062 off = 7;
8063 goto uswa;
8064 case M_USW_A:
8065 s = "swl";
8066 s2 = "swr";
8067 off = 3;
8068 uswa:
8069 used_at = 1;
8070 load_address (AT, &offset_expr, &used_at);
8071 if (breg != 0)
8072 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8073 if (! target_big_endian)
8074 expr1.X_add_number = off;
8075 else
8076 expr1.X_add_number = 0;
8077 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8078 if (! target_big_endian)
8079 expr1.X_add_number = 0;
8080 else
8081 expr1.X_add_number = off;
8082 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8083 break;
8084
8085 case M_USH_A:
8086 used_at = 1;
8087 load_address (AT, &offset_expr, &used_at);
8088 if (breg != 0)
8089 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8090 if (! target_big_endian)
8091 expr1.X_add_number = 0;
8092 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8093 macro_build (NULL, "srl", "d,w,<", treg, treg, 8);
8094 if (! target_big_endian)
8095 expr1.X_add_number = 1;
8096 else
8097 expr1.X_add_number = 0;
8098 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8099 if (! target_big_endian)
8100 expr1.X_add_number = 0;
8101 else
8102 expr1.X_add_number = 1;
8103 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8104 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8105 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8106 break;
8107
8108 default:
8109 /* FIXME: Check if this is one of the itbl macros, since they
8110 are added dynamically. */
8111 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
8112 break;
8113 }
8114 if (!mips_opts.at && used_at)
8115 as_bad (_("Macro used $at after \".set noat\""));
8116 }
8117
8118 /* Implement macros in mips16 mode. */
8119
8120 static void
8121 mips16_macro (struct mips_cl_insn *ip)
8122 {
8123 int mask;
8124 int xreg, yreg, zreg, tmp;
8125 expressionS expr1;
8126 int dbl;
8127 const char *s, *s2, *s3;
8128
8129 mask = ip->insn_mo->mask;
8130
8131 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
8132 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
8133 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
8134
8135 expr1.X_op = O_constant;
8136 expr1.X_op_symbol = NULL;
8137 expr1.X_add_symbol = NULL;
8138 expr1.X_add_number = 1;
8139
8140 dbl = 0;
8141
8142 switch (mask)
8143 {
8144 default:
8145 internalError ();
8146
8147 case M_DDIV_3:
8148 dbl = 1;
8149 case M_DIV_3:
8150 s = "mflo";
8151 goto do_div3;
8152 case M_DREM_3:
8153 dbl = 1;
8154 case M_REM_3:
8155 s = "mfhi";
8156 do_div3:
8157 start_noreorder ();
8158 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
8159 expr1.X_add_number = 2;
8160 macro_build (&expr1, "bnez", "x,p", yreg);
8161 macro_build (NULL, "break", "6", 7);
8162
8163 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
8164 since that causes an overflow. We should do that as well,
8165 but I don't see how to do the comparisons without a temporary
8166 register. */
8167 end_noreorder ();
8168 macro_build (NULL, s, "x", zreg);
8169 break;
8170
8171 case M_DIVU_3:
8172 s = "divu";
8173 s2 = "mflo";
8174 goto do_divu3;
8175 case M_REMU_3:
8176 s = "divu";
8177 s2 = "mfhi";
8178 goto do_divu3;
8179 case M_DDIVU_3:
8180 s = "ddivu";
8181 s2 = "mflo";
8182 goto do_divu3;
8183 case M_DREMU_3:
8184 s = "ddivu";
8185 s2 = "mfhi";
8186 do_divu3:
8187 start_noreorder ();
8188 macro_build (NULL, s, "0,x,y", xreg, yreg);
8189 expr1.X_add_number = 2;
8190 macro_build (&expr1, "bnez", "x,p", yreg);
8191 macro_build (NULL, "break", "6", 7);
8192 end_noreorder ();
8193 macro_build (NULL, s2, "x", zreg);
8194 break;
8195
8196 case M_DMUL:
8197 dbl = 1;
8198 case M_MUL:
8199 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
8200 macro_build (NULL, "mflo", "x", zreg);
8201 break;
8202
8203 case M_DSUBU_I:
8204 dbl = 1;
8205 goto do_subu;
8206 case M_SUBU_I:
8207 do_subu:
8208 if (imm_expr.X_op != O_constant)
8209 as_bad (_("Unsupported large constant"));
8210 imm_expr.X_add_number = -imm_expr.X_add_number;
8211 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
8212 break;
8213
8214 case M_SUBU_I_2:
8215 if (imm_expr.X_op != O_constant)
8216 as_bad (_("Unsupported large constant"));
8217 imm_expr.X_add_number = -imm_expr.X_add_number;
8218 macro_build (&imm_expr, "addiu", "x,k", xreg);
8219 break;
8220
8221 case M_DSUBU_I_2:
8222 if (imm_expr.X_op != O_constant)
8223 as_bad (_("Unsupported large constant"));
8224 imm_expr.X_add_number = -imm_expr.X_add_number;
8225 macro_build (&imm_expr, "daddiu", "y,j", yreg);
8226 break;
8227
8228 case M_BEQ:
8229 s = "cmp";
8230 s2 = "bteqz";
8231 goto do_branch;
8232 case M_BNE:
8233 s = "cmp";
8234 s2 = "btnez";
8235 goto do_branch;
8236 case M_BLT:
8237 s = "slt";
8238 s2 = "btnez";
8239 goto do_branch;
8240 case M_BLTU:
8241 s = "sltu";
8242 s2 = "btnez";
8243 goto do_branch;
8244 case M_BLE:
8245 s = "slt";
8246 s2 = "bteqz";
8247 goto do_reverse_branch;
8248 case M_BLEU:
8249 s = "sltu";
8250 s2 = "bteqz";
8251 goto do_reverse_branch;
8252 case M_BGE:
8253 s = "slt";
8254 s2 = "bteqz";
8255 goto do_branch;
8256 case M_BGEU:
8257 s = "sltu";
8258 s2 = "bteqz";
8259 goto do_branch;
8260 case M_BGT:
8261 s = "slt";
8262 s2 = "btnez";
8263 goto do_reverse_branch;
8264 case M_BGTU:
8265 s = "sltu";
8266 s2 = "btnez";
8267
8268 do_reverse_branch:
8269 tmp = xreg;
8270 xreg = yreg;
8271 yreg = tmp;
8272
8273 do_branch:
8274 macro_build (NULL, s, "x,y", xreg, yreg);
8275 macro_build (&offset_expr, s2, "p");
8276 break;
8277
8278 case M_BEQ_I:
8279 s = "cmpi";
8280 s2 = "bteqz";
8281 s3 = "x,U";
8282 goto do_branch_i;
8283 case M_BNE_I:
8284 s = "cmpi";
8285 s2 = "btnez";
8286 s3 = "x,U";
8287 goto do_branch_i;
8288 case M_BLT_I:
8289 s = "slti";
8290 s2 = "btnez";
8291 s3 = "x,8";
8292 goto do_branch_i;
8293 case M_BLTU_I:
8294 s = "sltiu";
8295 s2 = "btnez";
8296 s3 = "x,8";
8297 goto do_branch_i;
8298 case M_BLE_I:
8299 s = "slti";
8300 s2 = "btnez";
8301 s3 = "x,8";
8302 goto do_addone_branch_i;
8303 case M_BLEU_I:
8304 s = "sltiu";
8305 s2 = "btnez";
8306 s3 = "x,8";
8307 goto do_addone_branch_i;
8308 case M_BGE_I:
8309 s = "slti";
8310 s2 = "bteqz";
8311 s3 = "x,8";
8312 goto do_branch_i;
8313 case M_BGEU_I:
8314 s = "sltiu";
8315 s2 = "bteqz";
8316 s3 = "x,8";
8317 goto do_branch_i;
8318 case M_BGT_I:
8319 s = "slti";
8320 s2 = "bteqz";
8321 s3 = "x,8";
8322 goto do_addone_branch_i;
8323 case M_BGTU_I:
8324 s = "sltiu";
8325 s2 = "bteqz";
8326 s3 = "x,8";
8327
8328 do_addone_branch_i:
8329 if (imm_expr.X_op != O_constant)
8330 as_bad (_("Unsupported large constant"));
8331 ++imm_expr.X_add_number;
8332
8333 do_branch_i:
8334 macro_build (&imm_expr, s, s3, xreg);
8335 macro_build (&offset_expr, s2, "p");
8336 break;
8337
8338 case M_ABS:
8339 expr1.X_add_number = 0;
8340 macro_build (&expr1, "slti", "x,8", yreg);
8341 if (xreg != yreg)
8342 move_register (xreg, yreg);
8343 expr1.X_add_number = 2;
8344 macro_build (&expr1, "bteqz", "p");
8345 macro_build (NULL, "neg", "x,w", xreg, xreg);
8346 }
8347 }
8348
8349 /* For consistency checking, verify that all bits are specified either
8350 by the match/mask part of the instruction definition, or by the
8351 operand list. */
8352 static int
8353 validate_mips_insn (const struct mips_opcode *opc)
8354 {
8355 const char *p = opc->args;
8356 char c;
8357 unsigned long used_bits = opc->mask;
8358
8359 if ((used_bits & opc->match) != opc->match)
8360 {
8361 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
8362 opc->name, opc->args);
8363 return 0;
8364 }
8365 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
8366 while (*p)
8367 switch (c = *p++)
8368 {
8369 case ',': break;
8370 case '(': break;
8371 case ')': break;
8372 case '+':
8373 switch (c = *p++)
8374 {
8375 case '1': USE_BITS (OP_MASK_UDI1, OP_SH_UDI1); break;
8376 case '2': USE_BITS (OP_MASK_UDI2, OP_SH_UDI2); break;
8377 case '3': USE_BITS (OP_MASK_UDI3, OP_SH_UDI3); break;
8378 case '4': USE_BITS (OP_MASK_UDI4, OP_SH_UDI4); break;
8379 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8380 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8381 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8382 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
8383 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8384 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8385 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8386 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8387 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8388 case 'I': break;
8389 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8390 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT);
8391 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8392 case 'x': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8393 case 'X': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8394 case 'p': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8395 case 'P': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8396 case 'Q': USE_BITS (OP_MASK_SEQI, OP_SH_SEQI); break;
8397 case 's': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8398 case 'S': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8399
8400 default:
8401 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
8402 c, opc->name, opc->args);
8403 return 0;
8404 }
8405 break;
8406 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8407 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8408 case 'A': break;
8409 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
8410 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
8411 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8412 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8413 case 'F': break;
8414 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8415 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8416 case 'I': break;
8417 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
8418 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8419 case 'L': break;
8420 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
8421 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
8422 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
8423 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
8424 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8425 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
8426 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8427 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8428 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8429 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8430 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8431 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8432 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8433 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
8434 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8435 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
8436 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8437 case 'f': break;
8438 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
8439 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8440 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8441 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
8442 case 'l': break;
8443 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8444 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8445 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
8446 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8447 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8448 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8449 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8450 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8451 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8452 case 'x': break;
8453 case 'z': break;
8454 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
8455 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
8456 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8457 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
8458 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
8459 case '[': break;
8460 case ']': break;
8461 case '1': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8462 case '2': USE_BITS (OP_MASK_BP, OP_SH_BP); break;
8463 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break;
8464 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break;
8465 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break;
8466 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8467 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break;
8468 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break;
8469 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break;
8470 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break;
8471 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break;
8472 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break;
8473 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break;
8474 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break;
8475 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break;
8476 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break;
8477 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break;
8478 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8479 default:
8480 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
8481 c, opc->name, opc->args);
8482 return 0;
8483 }
8484 #undef USE_BITS
8485 if (used_bits != 0xffffffff)
8486 {
8487 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
8488 ~used_bits & 0xffffffff, opc->name, opc->args);
8489 return 0;
8490 }
8491 return 1;
8492 }
8493
8494 /* UDI immediates. */
8495 struct mips_immed {
8496 char type;
8497 unsigned int shift;
8498 unsigned long mask;
8499 const char * desc;
8500 };
8501
8502 static const struct mips_immed mips_immed[] = {
8503 { '1', OP_SH_UDI1, OP_MASK_UDI1, 0},
8504 { '2', OP_SH_UDI2, OP_MASK_UDI2, 0},
8505 { '3', OP_SH_UDI3, OP_MASK_UDI3, 0},
8506 { '4', OP_SH_UDI4, OP_MASK_UDI4, 0},
8507 { 0,0,0,0 }
8508 };
8509
8510 /* Check whether an odd floating-point register is allowed. */
8511 static int
8512 mips_oddfpreg_ok (const struct mips_opcode *insn, int argnum)
8513 {
8514 const char *s = insn->name;
8515
8516 if (insn->pinfo == INSN_MACRO)
8517 /* Let a macro pass, we'll catch it later when it is expanded. */
8518 return 1;
8519
8520 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa))
8521 {
8522 /* Allow odd registers for single-precision ops. */
8523 switch (insn->pinfo & (FP_S | FP_D))
8524 {
8525 case FP_S:
8526 case 0:
8527 return 1; /* both single precision - ok */
8528 case FP_D:
8529 return 0; /* both double precision - fail */
8530 default:
8531 break;
8532 }
8533
8534 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
8535 s = strchr (insn->name, '.');
8536 if (argnum == 2)
8537 s = s != NULL ? strchr (s + 1, '.') : NULL;
8538 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
8539 }
8540
8541 /* Single-precision coprocessor loads and moves are OK too. */
8542 if ((insn->pinfo & FP_S)
8543 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
8544 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
8545 return 1;
8546
8547 return 0;
8548 }
8549
8550 /* This routine assembles an instruction into its binary format. As a
8551 side effect, it sets one of the global variables imm_reloc or
8552 offset_reloc to the type of relocation to do if one of the operands
8553 is an address expression. */
8554
8555 static void
8556 mips_ip (char *str, struct mips_cl_insn *ip)
8557 {
8558 char *s;
8559 const char *args;
8560 char c = 0;
8561 struct mips_opcode *insn;
8562 char *argsStart;
8563 unsigned int regno;
8564 unsigned int lastregno = 0;
8565 unsigned int lastpos = 0;
8566 unsigned int limlo, limhi;
8567 char *s_reset;
8568 char save_c = 0;
8569 offsetT min_range, max_range;
8570 int argnum;
8571 unsigned int rtype;
8572
8573 insn_error = NULL;
8574
8575 /* If the instruction contains a '.', we first try to match an instruction
8576 including the '.'. Then we try again without the '.'. */
8577 insn = NULL;
8578 for (s = str; *s != '\0' && !ISSPACE (*s); ++s)
8579 continue;
8580
8581 /* If we stopped on whitespace, then replace the whitespace with null for
8582 the call to hash_find. Save the character we replaced just in case we
8583 have to re-parse the instruction. */
8584 if (ISSPACE (*s))
8585 {
8586 save_c = *s;
8587 *s++ = '\0';
8588 }
8589
8590 insn = (struct mips_opcode *) hash_find (op_hash, str);
8591
8592 /* If we didn't find the instruction in the opcode table, try again, but
8593 this time with just the instruction up to, but not including the
8594 first '.'. */
8595 if (insn == NULL)
8596 {
8597 /* Restore the character we overwrite above (if any). */
8598 if (save_c)
8599 *(--s) = save_c;
8600
8601 /* Scan up to the first '.' or whitespace. */
8602 for (s = str;
8603 *s != '\0' && *s != '.' && !ISSPACE (*s);
8604 ++s)
8605 continue;
8606
8607 /* If we did not find a '.', then we can quit now. */
8608 if (*s != '.')
8609 {
8610 insn_error = "unrecognized opcode";
8611 return;
8612 }
8613
8614 /* Lookup the instruction in the hash table. */
8615 *s++ = '\0';
8616 if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL)
8617 {
8618 insn_error = "unrecognized opcode";
8619 return;
8620 }
8621 }
8622
8623 argsStart = s;
8624 for (;;)
8625 {
8626 bfd_boolean ok;
8627
8628 assert (strcmp (insn->name, str) == 0);
8629
8630 ok = is_opcode_valid (insn, FALSE);
8631 if (! ok)
8632 {
8633 if (insn + 1 < &mips_opcodes[NUMOPCODES]
8634 && strcmp (insn->name, insn[1].name) == 0)
8635 {
8636 ++insn;
8637 continue;
8638 }
8639 else
8640 {
8641 if (!insn_error)
8642 {
8643 static char buf[100];
8644 sprintf (buf,
8645 _("opcode not supported on this processor: %s (%s)"),
8646 mips_cpu_info_from_arch (mips_opts.arch)->name,
8647 mips_cpu_info_from_isa (mips_opts.isa)->name);
8648 insn_error = buf;
8649 }
8650 if (save_c)
8651 *(--s) = save_c;
8652 return;
8653 }
8654 }
8655
8656 create_insn (ip, insn);
8657 insn_error = NULL;
8658 argnum = 1;
8659 lastregno = 0xffffffff;
8660 for (args = insn->args;; ++args)
8661 {
8662 int is_mdmx;
8663
8664 s += strspn (s, " \t");
8665 is_mdmx = 0;
8666 switch (*args)
8667 {
8668 case '\0': /* end of args */
8669 if (*s == '\0')
8670 return;
8671 break;
8672
8673 case '2': /* dsp 2-bit unsigned immediate in bit 11 */
8674 my_getExpression (&imm_expr, s);
8675 check_absolute_expr (ip, &imm_expr);
8676 if ((unsigned long) imm_expr.X_add_number != 1
8677 && (unsigned long) imm_expr.X_add_number != 3)
8678 {
8679 as_bad (_("BALIGN immediate not 1 or 3 (%lu)"),
8680 (unsigned long) imm_expr.X_add_number);
8681 }
8682 INSERT_OPERAND (BP, *ip, imm_expr.X_add_number);
8683 imm_expr.X_op = O_absent;
8684 s = expr_end;
8685 continue;
8686
8687 case '3': /* dsp 3-bit unsigned immediate in bit 21 */
8688 my_getExpression (&imm_expr, s);
8689 check_absolute_expr (ip, &imm_expr);
8690 if (imm_expr.X_add_number & ~OP_MASK_SA3)
8691 {
8692 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8693 OP_MASK_SA3, (unsigned long) imm_expr.X_add_number);
8694 }
8695 INSERT_OPERAND (SA3, *ip, imm_expr.X_add_number);
8696 imm_expr.X_op = O_absent;
8697 s = expr_end;
8698 continue;
8699
8700 case '4': /* dsp 4-bit unsigned immediate in bit 21 */
8701 my_getExpression (&imm_expr, s);
8702 check_absolute_expr (ip, &imm_expr);
8703 if (imm_expr.X_add_number & ~OP_MASK_SA4)
8704 {
8705 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8706 OP_MASK_SA4, (unsigned long) imm_expr.X_add_number);
8707 }
8708 INSERT_OPERAND (SA4, *ip, imm_expr.X_add_number);
8709 imm_expr.X_op = O_absent;
8710 s = expr_end;
8711 continue;
8712
8713 case '5': /* dsp 8-bit unsigned immediate in bit 16 */
8714 my_getExpression (&imm_expr, s);
8715 check_absolute_expr (ip, &imm_expr);
8716 if (imm_expr.X_add_number & ~OP_MASK_IMM8)
8717 {
8718 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8719 OP_MASK_IMM8, (unsigned long) imm_expr.X_add_number);
8720 }
8721 INSERT_OPERAND (IMM8, *ip, imm_expr.X_add_number);
8722 imm_expr.X_op = O_absent;
8723 s = expr_end;
8724 continue;
8725
8726 case '6': /* dsp 5-bit unsigned immediate in bit 21 */
8727 my_getExpression (&imm_expr, s);
8728 check_absolute_expr (ip, &imm_expr);
8729 if (imm_expr.X_add_number & ~OP_MASK_RS)
8730 {
8731 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8732 OP_MASK_RS, (unsigned long) imm_expr.X_add_number);
8733 }
8734 INSERT_OPERAND (RS, *ip, imm_expr.X_add_number);
8735 imm_expr.X_op = O_absent;
8736 s = expr_end;
8737 continue;
8738
8739 case '7': /* four dsp accumulators in bits 11,12 */
8740 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8741 s[3] >= '0' && s[3] <= '3')
8742 {
8743 regno = s[3] - '0';
8744 s += 4;
8745 INSERT_OPERAND (DSPACC, *ip, regno);
8746 continue;
8747 }
8748 else
8749 as_bad (_("Invalid dsp acc register"));
8750 break;
8751
8752 case '8': /* dsp 6-bit unsigned immediate in bit 11 */
8753 my_getExpression (&imm_expr, s);
8754 check_absolute_expr (ip, &imm_expr);
8755 if (imm_expr.X_add_number & ~OP_MASK_WRDSP)
8756 {
8757 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8758 OP_MASK_WRDSP,
8759 (unsigned long) imm_expr.X_add_number);
8760 }
8761 INSERT_OPERAND (WRDSP, *ip, imm_expr.X_add_number);
8762 imm_expr.X_op = O_absent;
8763 s = expr_end;
8764 continue;
8765
8766 case '9': /* four dsp accumulators in bits 21,22 */
8767 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8768 s[3] >= '0' && s[3] <= '3')
8769 {
8770 regno = s[3] - '0';
8771 s += 4;
8772 INSERT_OPERAND (DSPACC_S, *ip, regno);
8773 continue;
8774 }
8775 else
8776 as_bad (_("Invalid dsp acc register"));
8777 break;
8778
8779 case '0': /* dsp 6-bit signed immediate in bit 20 */
8780 my_getExpression (&imm_expr, s);
8781 check_absolute_expr (ip, &imm_expr);
8782 min_range = -((OP_MASK_DSPSFT + 1) >> 1);
8783 max_range = ((OP_MASK_DSPSFT + 1) >> 1) - 1;
8784 if (imm_expr.X_add_number < min_range ||
8785 imm_expr.X_add_number > max_range)
8786 {
8787 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8788 (long) min_range, (long) max_range,
8789 (long) imm_expr.X_add_number);
8790 }
8791 INSERT_OPERAND (DSPSFT, *ip, imm_expr.X_add_number);
8792 imm_expr.X_op = O_absent;
8793 s = expr_end;
8794 continue;
8795
8796 case '\'': /* dsp 6-bit unsigned immediate in bit 16 */
8797 my_getExpression (&imm_expr, s);
8798 check_absolute_expr (ip, &imm_expr);
8799 if (imm_expr.X_add_number & ~OP_MASK_RDDSP)
8800 {
8801 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8802 OP_MASK_RDDSP,
8803 (unsigned long) imm_expr.X_add_number);
8804 }
8805 INSERT_OPERAND (RDDSP, *ip, imm_expr.X_add_number);
8806 imm_expr.X_op = O_absent;
8807 s = expr_end;
8808 continue;
8809
8810 case ':': /* dsp 7-bit signed immediate in bit 19 */
8811 my_getExpression (&imm_expr, s);
8812 check_absolute_expr (ip, &imm_expr);
8813 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1);
8814 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1;
8815 if (imm_expr.X_add_number < min_range ||
8816 imm_expr.X_add_number > max_range)
8817 {
8818 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8819 (long) min_range, (long) max_range,
8820 (long) imm_expr.X_add_number);
8821 }
8822 INSERT_OPERAND (DSPSFT_7, *ip, imm_expr.X_add_number);
8823 imm_expr.X_op = O_absent;
8824 s = expr_end;
8825 continue;
8826
8827 case '@': /* dsp 10-bit signed immediate in bit 16 */
8828 my_getExpression (&imm_expr, s);
8829 check_absolute_expr (ip, &imm_expr);
8830 min_range = -((OP_MASK_IMM10 + 1) >> 1);
8831 max_range = ((OP_MASK_IMM10 + 1) >> 1) - 1;
8832 if (imm_expr.X_add_number < min_range ||
8833 imm_expr.X_add_number > max_range)
8834 {
8835 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8836 (long) min_range, (long) max_range,
8837 (long) imm_expr.X_add_number);
8838 }
8839 INSERT_OPERAND (IMM10, *ip, imm_expr.X_add_number);
8840 imm_expr.X_op = O_absent;
8841 s = expr_end;
8842 continue;
8843
8844 case '!': /* MT usermode flag bit. */
8845 my_getExpression (&imm_expr, s);
8846 check_absolute_expr (ip, &imm_expr);
8847 if (imm_expr.X_add_number & ~OP_MASK_MT_U)
8848 as_bad (_("MT usermode bit not 0 or 1 (%lu)"),
8849 (unsigned long) imm_expr.X_add_number);
8850 INSERT_OPERAND (MT_U, *ip, imm_expr.X_add_number);
8851 imm_expr.X_op = O_absent;
8852 s = expr_end;
8853 continue;
8854
8855 case '$': /* MT load high flag bit. */
8856 my_getExpression (&imm_expr, s);
8857 check_absolute_expr (ip, &imm_expr);
8858 if (imm_expr.X_add_number & ~OP_MASK_MT_H)
8859 as_bad (_("MT load high bit not 0 or 1 (%lu)"),
8860 (unsigned long) imm_expr.X_add_number);
8861 INSERT_OPERAND (MT_H, *ip, imm_expr.X_add_number);
8862 imm_expr.X_op = O_absent;
8863 s = expr_end;
8864 continue;
8865
8866 case '*': /* four dsp accumulators in bits 18,19 */
8867 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8868 s[3] >= '0' && s[3] <= '3')
8869 {
8870 regno = s[3] - '0';
8871 s += 4;
8872 INSERT_OPERAND (MTACC_T, *ip, regno);
8873 continue;
8874 }
8875 else
8876 as_bad (_("Invalid dsp/smartmips acc register"));
8877 break;
8878
8879 case '&': /* four dsp accumulators in bits 13,14 */
8880 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8881 s[3] >= '0' && s[3] <= '3')
8882 {
8883 regno = s[3] - '0';
8884 s += 4;
8885 INSERT_OPERAND (MTACC_D, *ip, regno);
8886 continue;
8887 }
8888 else
8889 as_bad (_("Invalid dsp/smartmips acc register"));
8890 break;
8891
8892 case ',':
8893 ++argnum;
8894 if (*s++ == *args)
8895 continue;
8896 s--;
8897 switch (*++args)
8898 {
8899 case 'r':
8900 case 'v':
8901 INSERT_OPERAND (RS, *ip, lastregno);
8902 continue;
8903
8904 case 'w':
8905 INSERT_OPERAND (RT, *ip, lastregno);
8906 continue;
8907
8908 case 'W':
8909 INSERT_OPERAND (FT, *ip, lastregno);
8910 continue;
8911
8912 case 'V':
8913 INSERT_OPERAND (FS, *ip, lastregno);
8914 continue;
8915 }
8916 break;
8917
8918 case '(':
8919 /* Handle optional base register.
8920 Either the base register is omitted or
8921 we must have a left paren. */
8922 /* This is dependent on the next operand specifier
8923 is a base register specification. */
8924 assert (args[1] == 'b' || args[1] == '5'
8925 || args[1] == '-' || args[1] == '4');
8926 if (*s == '\0')
8927 return;
8928
8929 case ')': /* these must match exactly */
8930 case '[':
8931 case ']':
8932 if (*s++ == *args)
8933 continue;
8934 break;
8935
8936 case '+': /* Opcode extension character. */
8937 switch (*++args)
8938 {
8939 case '1': /* UDI immediates. */
8940 case '2':
8941 case '3':
8942 case '4':
8943 {
8944 const struct mips_immed *imm = mips_immed;
8945
8946 while (imm->type && imm->type != *args)
8947 ++imm;
8948 if (! imm->type)
8949 internalError ();
8950 my_getExpression (&imm_expr, s);
8951 check_absolute_expr (ip, &imm_expr);
8952 if ((unsigned long) imm_expr.X_add_number & ~imm->mask)
8953 {
8954 as_warn (_("Illegal %s number (%lu, 0x%lx)"),
8955 imm->desc ? imm->desc : ip->insn_mo->name,
8956 (unsigned long) imm_expr.X_add_number,
8957 (unsigned long) imm_expr.X_add_number);
8958 imm_expr.X_add_number &= imm->mask;
8959 }
8960 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
8961 << imm->shift);
8962 imm_expr.X_op = O_absent;
8963 s = expr_end;
8964 }
8965 continue;
8966
8967 case 'A': /* ins/ext position, becomes LSB. */
8968 limlo = 0;
8969 limhi = 31;
8970 goto do_lsb;
8971 case 'E':
8972 limlo = 32;
8973 limhi = 63;
8974 goto do_lsb;
8975 do_lsb:
8976 my_getExpression (&imm_expr, s);
8977 check_absolute_expr (ip, &imm_expr);
8978 if ((unsigned long) imm_expr.X_add_number < limlo
8979 || (unsigned long) imm_expr.X_add_number > limhi)
8980 {
8981 as_bad (_("Improper position (%lu)"),
8982 (unsigned long) imm_expr.X_add_number);
8983 imm_expr.X_add_number = limlo;
8984 }
8985 lastpos = imm_expr.X_add_number;
8986 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
8987 imm_expr.X_op = O_absent;
8988 s = expr_end;
8989 continue;
8990
8991 case 'B': /* ins size, becomes MSB. */
8992 limlo = 1;
8993 limhi = 32;
8994 goto do_msb;
8995 case 'F':
8996 limlo = 33;
8997 limhi = 64;
8998 goto do_msb;
8999 do_msb:
9000 my_getExpression (&imm_expr, s);
9001 check_absolute_expr (ip, &imm_expr);
9002 /* Check for negative input so that small negative numbers
9003 will not succeed incorrectly. The checks against
9004 (pos+size) transitively check "size" itself,
9005 assuming that "pos" is reasonable. */
9006 if ((long) imm_expr.X_add_number < 0
9007 || ((unsigned long) imm_expr.X_add_number
9008 + lastpos) < limlo
9009 || ((unsigned long) imm_expr.X_add_number
9010 + lastpos) > limhi)
9011 {
9012 as_bad (_("Improper insert size (%lu, position %lu)"),
9013 (unsigned long) imm_expr.X_add_number,
9014 (unsigned long) lastpos);
9015 imm_expr.X_add_number = limlo - lastpos;
9016 }
9017 INSERT_OPERAND (INSMSB, *ip,
9018 lastpos + imm_expr.X_add_number - 1);
9019 imm_expr.X_op = O_absent;
9020 s = expr_end;
9021 continue;
9022
9023 case 'C': /* ext size, becomes MSBD. */
9024 limlo = 1;
9025 limhi = 32;
9026 goto do_msbd;
9027 case 'G':
9028 limlo = 33;
9029 limhi = 64;
9030 goto do_msbd;
9031 case 'H':
9032 limlo = 33;
9033 limhi = 64;
9034 goto do_msbd;
9035 do_msbd:
9036 my_getExpression (&imm_expr, s);
9037 check_absolute_expr (ip, &imm_expr);
9038 /* Check for negative input so that small negative numbers
9039 will not succeed incorrectly. The checks against
9040 (pos+size) transitively check "size" itself,
9041 assuming that "pos" is reasonable. */
9042 if ((long) imm_expr.X_add_number < 0
9043 || ((unsigned long) imm_expr.X_add_number
9044 + lastpos) < limlo
9045 || ((unsigned long) imm_expr.X_add_number
9046 + lastpos) > limhi)
9047 {
9048 as_bad (_("Improper extract size (%lu, position %lu)"),
9049 (unsigned long) imm_expr.X_add_number,
9050 (unsigned long) lastpos);
9051 imm_expr.X_add_number = limlo - lastpos;
9052 }
9053 INSERT_OPERAND (EXTMSBD, *ip, imm_expr.X_add_number - 1);
9054 imm_expr.X_op = O_absent;
9055 s = expr_end;
9056 continue;
9057
9058 case 'D':
9059 /* +D is for disassembly only; never match. */
9060 break;
9061
9062 case 'I':
9063 /* "+I" is like "I", except that imm2_expr is used. */
9064 my_getExpression (&imm2_expr, s);
9065 if (imm2_expr.X_op != O_big
9066 && imm2_expr.X_op != O_constant)
9067 insn_error = _("absolute expression required");
9068 if (HAVE_32BIT_GPRS)
9069 normalize_constant_expr (&imm2_expr);
9070 s = expr_end;
9071 continue;
9072
9073 case 'T': /* Coprocessor register. */
9074 /* +T is for disassembly only; never match. */
9075 break;
9076
9077 case 't': /* Coprocessor register number. */
9078 if (s[0] == '$' && ISDIGIT (s[1]))
9079 {
9080 ++s;
9081 regno = 0;
9082 do
9083 {
9084 regno *= 10;
9085 regno += *s - '0';
9086 ++s;
9087 }
9088 while (ISDIGIT (*s));
9089 if (regno > 31)
9090 as_bad (_("Invalid register number (%d)"), regno);
9091 else
9092 {
9093 INSERT_OPERAND (RT, *ip, regno);
9094 continue;
9095 }
9096 }
9097 else
9098 as_bad (_("Invalid coprocessor 0 register number"));
9099 break;
9100
9101 case 'x':
9102 /* bbit[01] and bbit[01]32 bit index. Give error if index
9103 is not in the valid range. */
9104 my_getExpression (&imm_expr, s);
9105 check_absolute_expr (ip, &imm_expr);
9106 if ((unsigned) imm_expr.X_add_number > 31)
9107 {
9108 as_bad (_("Improper bit index (%lu)"),
9109 (unsigned long) imm_expr.X_add_number);
9110 imm_expr.X_add_number = 0;
9111 }
9112 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number);
9113 imm_expr.X_op = O_absent;
9114 s = expr_end;
9115 continue;
9116
9117 case 'X':
9118 /* bbit[01] bit index when bbit is used but we generate
9119 bbit[01]32 because the index is over 32. Move to the
9120 next candidate if index is not in the valid range. */
9121 my_getExpression (&imm_expr, s);
9122 check_absolute_expr (ip, &imm_expr);
9123 if ((unsigned) imm_expr.X_add_number < 32
9124 || (unsigned) imm_expr.X_add_number > 63)
9125 break;
9126 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number - 32);
9127 imm_expr.X_op = O_absent;
9128 s = expr_end;
9129 continue;
9130
9131 case 'p':
9132 /* cins, cins32, exts and exts32 position field. Give error
9133 if it's not in the valid range. */
9134 my_getExpression (&imm_expr, s);
9135 check_absolute_expr (ip, &imm_expr);
9136 if ((unsigned) imm_expr.X_add_number > 31)
9137 {
9138 as_bad (_("Improper position (%lu)"),
9139 (unsigned long) imm_expr.X_add_number);
9140 imm_expr.X_add_number = 0;
9141 }
9142 /* Make the pos explicit to simplify +S. */
9143 lastpos = imm_expr.X_add_number + 32;
9144 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number);
9145 imm_expr.X_op = O_absent;
9146 s = expr_end;
9147 continue;
9148
9149 case 'P':
9150 /* cins, cins32, exts and exts32 position field. Move to
9151 the next candidate if it's not in the valid range. */
9152 my_getExpression (&imm_expr, s);
9153 check_absolute_expr (ip, &imm_expr);
9154 if ((unsigned) imm_expr.X_add_number < 32
9155 || (unsigned) imm_expr.X_add_number > 63)
9156 break;
9157 lastpos = imm_expr.X_add_number;
9158 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number - 32);
9159 imm_expr.X_op = O_absent;
9160 s = expr_end;
9161 continue;
9162
9163 case 's':
9164 /* cins and exts length-minus-one field. */
9165 my_getExpression (&imm_expr, s);
9166 check_absolute_expr (ip, &imm_expr);
9167 if ((unsigned long) imm_expr.X_add_number > 31)
9168 {
9169 as_bad (_("Improper size (%lu)"),
9170 (unsigned long) imm_expr.X_add_number);
9171 imm_expr.X_add_number = 0;
9172 }
9173 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9174 imm_expr.X_op = O_absent;
9175 s = expr_end;
9176 continue;
9177
9178 case 'S':
9179 /* cins32/exts32 and cins/exts aliasing cint32/exts32
9180 length-minus-one field. */
9181 my_getExpression (&imm_expr, s);
9182 check_absolute_expr (ip, &imm_expr);
9183 if ((long) imm_expr.X_add_number < 0
9184 || (unsigned long) imm_expr.X_add_number + lastpos > 63)
9185 {
9186 as_bad (_("Improper size (%lu)"),
9187 (unsigned long) imm_expr.X_add_number);
9188 imm_expr.X_add_number = 0;
9189 }
9190 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9191 imm_expr.X_op = O_absent;
9192 s = expr_end;
9193 continue;
9194
9195 case 'Q':
9196 /* seqi/snei immediate field. */
9197 my_getExpression (&imm_expr, s);
9198 check_absolute_expr (ip, &imm_expr);
9199 if ((long) imm_expr.X_add_number < -512
9200 || (long) imm_expr.X_add_number >= 512)
9201 {
9202 as_bad (_("Improper immediate (%ld)"),
9203 (long) imm_expr.X_add_number);
9204 imm_expr.X_add_number = 0;
9205 }
9206 INSERT_OPERAND (SEQI, *ip, imm_expr.X_add_number);
9207 imm_expr.X_op = O_absent;
9208 s = expr_end;
9209 continue;
9210
9211 default:
9212 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
9213 *args, insn->name, insn->args);
9214 /* Further processing is fruitless. */
9215 return;
9216 }
9217 break;
9218
9219 case '<': /* must be at least one digit */
9220 /*
9221 * According to the manual, if the shift amount is greater
9222 * than 31 or less than 0, then the shift amount should be
9223 * mod 32. In reality the mips assembler issues an error.
9224 * We issue a warning and mask out all but the low 5 bits.
9225 */
9226 my_getExpression (&imm_expr, s);
9227 check_absolute_expr (ip, &imm_expr);
9228 if ((unsigned long) imm_expr.X_add_number > 31)
9229 as_warn (_("Improper shift amount (%lu)"),
9230 (unsigned long) imm_expr.X_add_number);
9231 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9232 imm_expr.X_op = O_absent;
9233 s = expr_end;
9234 continue;
9235
9236 case '>': /* shift amount minus 32 */
9237 my_getExpression (&imm_expr, s);
9238 check_absolute_expr (ip, &imm_expr);
9239 if ((unsigned long) imm_expr.X_add_number < 32
9240 || (unsigned long) imm_expr.X_add_number > 63)
9241 break;
9242 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number - 32);
9243 imm_expr.X_op = O_absent;
9244 s = expr_end;
9245 continue;
9246
9247 case 'k': /* cache code */
9248 case 'h': /* prefx code */
9249 case '1': /* sync type */
9250 my_getExpression (&imm_expr, s);
9251 check_absolute_expr (ip, &imm_expr);
9252 if ((unsigned long) imm_expr.X_add_number > 31)
9253 as_warn (_("Invalid value for `%s' (%lu)"),
9254 ip->insn_mo->name,
9255 (unsigned long) imm_expr.X_add_number);
9256 if (*args == 'k')
9257 INSERT_OPERAND (CACHE, *ip, imm_expr.X_add_number);
9258 else if (*args == 'h')
9259 INSERT_OPERAND (PREFX, *ip, imm_expr.X_add_number);
9260 else
9261 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9262 imm_expr.X_op = O_absent;
9263 s = expr_end;
9264 continue;
9265
9266 case 'c': /* break code */
9267 my_getExpression (&imm_expr, s);
9268 check_absolute_expr (ip, &imm_expr);
9269 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE)
9270 as_warn (_("Code for %s not in range 0..1023 (%lu)"),
9271 ip->insn_mo->name,
9272 (unsigned long) imm_expr.X_add_number);
9273 INSERT_OPERAND (CODE, *ip, imm_expr.X_add_number);
9274 imm_expr.X_op = O_absent;
9275 s = expr_end;
9276 continue;
9277
9278 case 'q': /* lower break code */
9279 my_getExpression (&imm_expr, s);
9280 check_absolute_expr (ip, &imm_expr);
9281 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE2)
9282 as_warn (_("Lower code for %s not in range 0..1023 (%lu)"),
9283 ip->insn_mo->name,
9284 (unsigned long) imm_expr.X_add_number);
9285 INSERT_OPERAND (CODE2, *ip, imm_expr.X_add_number);
9286 imm_expr.X_op = O_absent;
9287 s = expr_end;
9288 continue;
9289
9290 case 'B': /* 20-bit syscall/break code. */
9291 my_getExpression (&imm_expr, s);
9292 check_absolute_expr (ip, &imm_expr);
9293 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE20)
9294 as_warn (_("Code for %s not in range 0..1048575 (%lu)"),
9295 ip->insn_mo->name,
9296 (unsigned long) imm_expr.X_add_number);
9297 INSERT_OPERAND (CODE20, *ip, imm_expr.X_add_number);
9298 imm_expr.X_op = O_absent;
9299 s = expr_end;
9300 continue;
9301
9302 case 'C': /* Coprocessor code */
9303 my_getExpression (&imm_expr, s);
9304 check_absolute_expr (ip, &imm_expr);
9305 if ((unsigned long) imm_expr.X_add_number > OP_MASK_COPZ)
9306 {
9307 as_warn (_("Coproccesor code > 25 bits (%lu)"),
9308 (unsigned long) imm_expr.X_add_number);
9309 imm_expr.X_add_number &= OP_MASK_COPZ;
9310 }
9311 INSERT_OPERAND (COPZ, *ip, imm_expr.X_add_number);
9312 imm_expr.X_op = O_absent;
9313 s = expr_end;
9314 continue;
9315
9316 case 'J': /* 19-bit wait code. */
9317 my_getExpression (&imm_expr, s);
9318 check_absolute_expr (ip, &imm_expr);
9319 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
9320 {
9321 as_warn (_("Illegal 19-bit code (%lu)"),
9322 (unsigned long) imm_expr.X_add_number);
9323 imm_expr.X_add_number &= OP_MASK_CODE19;
9324 }
9325 INSERT_OPERAND (CODE19, *ip, imm_expr.X_add_number);
9326 imm_expr.X_op = O_absent;
9327 s = expr_end;
9328 continue;
9329
9330 case 'P': /* Performance register. */
9331 my_getExpression (&imm_expr, s);
9332 check_absolute_expr (ip, &imm_expr);
9333 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
9334 as_warn (_("Invalid performance register (%lu)"),
9335 (unsigned long) imm_expr.X_add_number);
9336 INSERT_OPERAND (PERFREG, *ip, imm_expr.X_add_number);
9337 imm_expr.X_op = O_absent;
9338 s = expr_end;
9339 continue;
9340
9341 case 'G': /* Coprocessor destination register. */
9342 if (((ip->insn_opcode >> OP_SH_OP) & OP_MASK_OP) == OP_OP_COP0)
9343 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_CP0, &regno);
9344 else
9345 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9346 INSERT_OPERAND (RD, *ip, regno);
9347 if (ok)
9348 {
9349 lastregno = regno;
9350 continue;
9351 }
9352 else
9353 break;
9354
9355 case 'b': /* base register */
9356 case 'd': /* destination register */
9357 case 's': /* source register */
9358 case 't': /* target register */
9359 case 'r': /* both target and source */
9360 case 'v': /* both dest and source */
9361 case 'w': /* both dest and target */
9362 case 'E': /* coprocessor target register */
9363 case 'K': /* 'rdhwr' destination register */
9364 case 'x': /* ignore register name */
9365 case 'z': /* must be zero register */
9366 case 'U': /* destination register (clo/clz). */
9367 case 'g': /* coprocessor destination register */
9368 s_reset = s;
9369 if (*args == 'E' || *args == 'K')
9370 ok = reg_lookup (&s, RTYPE_NUM, &regno);
9371 else
9372 {
9373 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9374 if (regno == AT && mips_opts.at)
9375 {
9376 if (mips_opts.at == ATREG)
9377 as_warn (_("used $at without \".set noat\""));
9378 else
9379 as_warn (_("used $%u with \".set at=$%u\""),
9380 regno, mips_opts.at);
9381 }
9382 }
9383 if (ok)
9384 {
9385 c = *args;
9386 if (*s == ' ')
9387 ++s;
9388 if (args[1] != *s)
9389 {
9390 if (c == 'r' || c == 'v' || c == 'w')
9391 {
9392 regno = lastregno;
9393 s = s_reset;
9394 ++args;
9395 }
9396 }
9397 /* 'z' only matches $0. */
9398 if (c == 'z' && regno != 0)
9399 break;
9400
9401 if (c == 's' && !strncmp (ip->insn_mo->name, "jalr", 4))
9402 {
9403 if (regno == lastregno)
9404 {
9405 insn_error = _("source and destination must be different");
9406 continue;
9407 }
9408 if (regno == 31 && lastregno == 0xffffffff)
9409 {
9410 insn_error = _("a destination register must be supplied");
9411 continue;
9412 }
9413 }
9414 /* Now that we have assembled one operand, we use the args string
9415 * to figure out where it goes in the instruction. */
9416 switch (c)
9417 {
9418 case 'r':
9419 case 's':
9420 case 'v':
9421 case 'b':
9422 INSERT_OPERAND (RS, *ip, regno);
9423 break;
9424 case 'd':
9425 case 'G':
9426 case 'K':
9427 case 'g':
9428 INSERT_OPERAND (RD, *ip, regno);
9429 break;
9430 case 'U':
9431 INSERT_OPERAND (RD, *ip, regno);
9432 INSERT_OPERAND (RT, *ip, regno);
9433 break;
9434 case 'w':
9435 case 't':
9436 case 'E':
9437 INSERT_OPERAND (RT, *ip, regno);
9438 break;
9439 case 'x':
9440 /* This case exists because on the r3000 trunc
9441 expands into a macro which requires a gp
9442 register. On the r6000 or r4000 it is
9443 assembled into a single instruction which
9444 ignores the register. Thus the insn version
9445 is MIPS_ISA2 and uses 'x', and the macro
9446 version is MIPS_ISA1 and uses 't'. */
9447 break;
9448 case 'z':
9449 /* This case is for the div instruction, which
9450 acts differently if the destination argument
9451 is $0. This only matches $0, and is checked
9452 outside the switch. */
9453 break;
9454 case 'D':
9455 /* Itbl operand; not yet implemented. FIXME ?? */
9456 break;
9457 /* What about all other operands like 'i', which
9458 can be specified in the opcode table? */
9459 }
9460 lastregno = regno;
9461 continue;
9462 }
9463 switch (*args++)
9464 {
9465 case 'r':
9466 case 'v':
9467 INSERT_OPERAND (RS, *ip, lastregno);
9468 continue;
9469 case 'w':
9470 INSERT_OPERAND (RT, *ip, lastregno);
9471 continue;
9472 }
9473 break;
9474
9475 case 'O': /* MDMX alignment immediate constant. */
9476 my_getExpression (&imm_expr, s);
9477 check_absolute_expr (ip, &imm_expr);
9478 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
9479 as_warn ("Improper align amount (%ld), using low bits",
9480 (long) imm_expr.X_add_number);
9481 INSERT_OPERAND (ALN, *ip, imm_expr.X_add_number);
9482 imm_expr.X_op = O_absent;
9483 s = expr_end;
9484 continue;
9485
9486 case 'Q': /* MDMX vector, element sel, or const. */
9487 if (s[0] != '$')
9488 {
9489 /* MDMX Immediate. */
9490 my_getExpression (&imm_expr, s);
9491 check_absolute_expr (ip, &imm_expr);
9492 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
9493 as_warn (_("Invalid MDMX Immediate (%ld)"),
9494 (long) imm_expr.X_add_number);
9495 INSERT_OPERAND (FT, *ip, imm_expr.X_add_number);
9496 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9497 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
9498 else
9499 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
9500 imm_expr.X_op = O_absent;
9501 s = expr_end;
9502 continue;
9503 }
9504 /* Not MDMX Immediate. Fall through. */
9505 case 'X': /* MDMX destination register. */
9506 case 'Y': /* MDMX source register. */
9507 case 'Z': /* MDMX target register. */
9508 is_mdmx = 1;
9509 case 'D': /* floating point destination register */
9510 case 'S': /* floating point source register */
9511 case 'T': /* floating point target register */
9512 case 'R': /* floating point source register */
9513 case 'V':
9514 case 'W':
9515 rtype = RTYPE_FPU;
9516 if (is_mdmx
9517 || (mips_opts.ase_mdmx
9518 && (ip->insn_mo->pinfo & FP_D)
9519 && (ip->insn_mo->pinfo & (INSN_COPROC_MOVE_DELAY
9520 | INSN_COPROC_MEMORY_DELAY
9521 | INSN_LOAD_COPROC_DELAY
9522 | INSN_LOAD_MEMORY_DELAY
9523 | INSN_STORE_MEMORY))))
9524 rtype |= RTYPE_VEC;
9525 s_reset = s;
9526 if (reg_lookup (&s, rtype, &regno))
9527 {
9528 if ((regno & 1) != 0
9529 && HAVE_32BIT_FPRS
9530 && ! mips_oddfpreg_ok (ip->insn_mo, argnum))
9531 as_warn (_("Float register should be even, was %d"),
9532 regno);
9533
9534 c = *args;
9535 if (*s == ' ')
9536 ++s;
9537 if (args[1] != *s)
9538 {
9539 if (c == 'V' || c == 'W')
9540 {
9541 regno = lastregno;
9542 s = s_reset;
9543 ++args;
9544 }
9545 }
9546 switch (c)
9547 {
9548 case 'D':
9549 case 'X':
9550 INSERT_OPERAND (FD, *ip, regno);
9551 break;
9552 case 'V':
9553 case 'S':
9554 case 'Y':
9555 INSERT_OPERAND (FS, *ip, regno);
9556 break;
9557 case 'Q':
9558 /* This is like 'Z', but also needs to fix the MDMX
9559 vector/scalar select bits. Note that the
9560 scalar immediate case is handled above. */
9561 if (*s == '[')
9562 {
9563 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
9564 int max_el = (is_qh ? 3 : 7);
9565 s++;
9566 my_getExpression(&imm_expr, s);
9567 check_absolute_expr (ip, &imm_expr);
9568 s = expr_end;
9569 if (imm_expr.X_add_number > max_el)
9570 as_bad(_("Bad element selector %ld"),
9571 (long) imm_expr.X_add_number);
9572 imm_expr.X_add_number &= max_el;
9573 ip->insn_opcode |= (imm_expr.X_add_number
9574 << (OP_SH_VSEL +
9575 (is_qh ? 2 : 1)));
9576 imm_expr.X_op = O_absent;
9577 if (*s != ']')
9578 as_warn(_("Expecting ']' found '%s'"), s);
9579 else
9580 s++;
9581 }
9582 else
9583 {
9584 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9585 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
9586 << OP_SH_VSEL);
9587 else
9588 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
9589 OP_SH_VSEL);
9590 }
9591 /* Fall through */
9592 case 'W':
9593 case 'T':
9594 case 'Z':
9595 INSERT_OPERAND (FT, *ip, regno);
9596 break;
9597 case 'R':
9598 INSERT_OPERAND (FR, *ip, regno);
9599 break;
9600 }
9601 lastregno = regno;
9602 continue;
9603 }
9604
9605 switch (*args++)
9606 {
9607 case 'V':
9608 INSERT_OPERAND (FS, *ip, lastregno);
9609 continue;
9610 case 'W':
9611 INSERT_OPERAND (FT, *ip, lastregno);
9612 continue;
9613 }
9614 break;
9615
9616 case 'I':
9617 my_getExpression (&imm_expr, s);
9618 if (imm_expr.X_op != O_big
9619 && imm_expr.X_op != O_constant)
9620 insn_error = _("absolute expression required");
9621 if (HAVE_32BIT_GPRS)
9622 normalize_constant_expr (&imm_expr);
9623 s = expr_end;
9624 continue;
9625
9626 case 'A':
9627 my_getExpression (&offset_expr, s);
9628 normalize_address_expr (&offset_expr);
9629 *imm_reloc = BFD_RELOC_32;
9630 s = expr_end;
9631 continue;
9632
9633 case 'F':
9634 case 'L':
9635 case 'f':
9636 case 'l':
9637 {
9638 int f64;
9639 int using_gprs;
9640 char *save_in;
9641 char *err;
9642 unsigned char temp[8];
9643 int len;
9644 unsigned int length;
9645 segT seg;
9646 subsegT subseg;
9647 char *p;
9648
9649 /* These only appear as the last operand in an
9650 instruction, and every instruction that accepts
9651 them in any variant accepts them in all variants.
9652 This means we don't have to worry about backing out
9653 any changes if the instruction does not match.
9654
9655 The difference between them is the size of the
9656 floating point constant and where it goes. For 'F'
9657 and 'L' the constant is 64 bits; for 'f' and 'l' it
9658 is 32 bits. Where the constant is placed is based
9659 on how the MIPS assembler does things:
9660 F -- .rdata
9661 L -- .lit8
9662 f -- immediate value
9663 l -- .lit4
9664
9665 The .lit4 and .lit8 sections are only used if
9666 permitted by the -G argument.
9667
9668 The code below needs to know whether the target register
9669 is 32 or 64 bits wide. It relies on the fact 'f' and
9670 'F' are used with GPR-based instructions and 'l' and
9671 'L' are used with FPR-based instructions. */
9672
9673 f64 = *args == 'F' || *args == 'L';
9674 using_gprs = *args == 'F' || *args == 'f';
9675
9676 save_in = input_line_pointer;
9677 input_line_pointer = s;
9678 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
9679 length = len;
9680 s = input_line_pointer;
9681 input_line_pointer = save_in;
9682 if (err != NULL && *err != '\0')
9683 {
9684 as_bad (_("Bad floating point constant: %s"), err);
9685 memset (temp, '\0', sizeof temp);
9686 length = f64 ? 8 : 4;
9687 }
9688
9689 assert (length == (unsigned) (f64 ? 8 : 4));
9690
9691 if (*args == 'f'
9692 || (*args == 'l'
9693 && (g_switch_value < 4
9694 || (temp[0] == 0 && temp[1] == 0)
9695 || (temp[2] == 0 && temp[3] == 0))))
9696 {
9697 imm_expr.X_op = O_constant;
9698 if (! target_big_endian)
9699 imm_expr.X_add_number = bfd_getl32 (temp);
9700 else
9701 imm_expr.X_add_number = bfd_getb32 (temp);
9702 }
9703 else if (length > 4
9704 && ! mips_disable_float_construction
9705 /* Constants can only be constructed in GPRs and
9706 copied to FPRs if the GPRs are at least as wide
9707 as the FPRs. Force the constant into memory if
9708 we are using 64-bit FPRs but the GPRs are only
9709 32 bits wide. */
9710 && (using_gprs
9711 || ! (HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
9712 && ((temp[0] == 0 && temp[1] == 0)
9713 || (temp[2] == 0 && temp[3] == 0))
9714 && ((temp[4] == 0 && temp[5] == 0)
9715 || (temp[6] == 0 && temp[7] == 0)))
9716 {
9717 /* The value is simple enough to load with a couple of
9718 instructions. If using 32-bit registers, set
9719 imm_expr to the high order 32 bits and offset_expr to
9720 the low order 32 bits. Otherwise, set imm_expr to
9721 the entire 64 bit constant. */
9722 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
9723 {
9724 imm_expr.X_op = O_constant;
9725 offset_expr.X_op = O_constant;
9726 if (! target_big_endian)
9727 {
9728 imm_expr.X_add_number = bfd_getl32 (temp + 4);
9729 offset_expr.X_add_number = bfd_getl32 (temp);
9730 }
9731 else
9732 {
9733 imm_expr.X_add_number = bfd_getb32 (temp);
9734 offset_expr.X_add_number = bfd_getb32 (temp + 4);
9735 }
9736 if (offset_expr.X_add_number == 0)
9737 offset_expr.X_op = O_absent;
9738 }
9739 else if (sizeof (imm_expr.X_add_number) > 4)
9740 {
9741 imm_expr.X_op = O_constant;
9742 if (! target_big_endian)
9743 imm_expr.X_add_number = bfd_getl64 (temp);
9744 else
9745 imm_expr.X_add_number = bfd_getb64 (temp);
9746 }
9747 else
9748 {
9749 imm_expr.X_op = O_big;
9750 imm_expr.X_add_number = 4;
9751 if (! target_big_endian)
9752 {
9753 generic_bignum[0] = bfd_getl16 (temp);
9754 generic_bignum[1] = bfd_getl16 (temp + 2);
9755 generic_bignum[2] = bfd_getl16 (temp + 4);
9756 generic_bignum[3] = bfd_getl16 (temp + 6);
9757 }
9758 else
9759 {
9760 generic_bignum[0] = bfd_getb16 (temp + 6);
9761 generic_bignum[1] = bfd_getb16 (temp + 4);
9762 generic_bignum[2] = bfd_getb16 (temp + 2);
9763 generic_bignum[3] = bfd_getb16 (temp);
9764 }
9765 }
9766 }
9767 else
9768 {
9769 const char *newname;
9770 segT new_seg;
9771
9772 /* Switch to the right section. */
9773 seg = now_seg;
9774 subseg = now_subseg;
9775 switch (*args)
9776 {
9777 default: /* unused default case avoids warnings. */
9778 case 'L':
9779 newname = RDATA_SECTION_NAME;
9780 if (g_switch_value >= 8)
9781 newname = ".lit8";
9782 break;
9783 case 'F':
9784 newname = RDATA_SECTION_NAME;
9785 break;
9786 case 'l':
9787 assert (g_switch_value >= 4);
9788 newname = ".lit4";
9789 break;
9790 }
9791 new_seg = subseg_new (newname, (subsegT) 0);
9792 if (IS_ELF)
9793 bfd_set_section_flags (stdoutput, new_seg,
9794 (SEC_ALLOC
9795 | SEC_LOAD
9796 | SEC_READONLY
9797 | SEC_DATA));
9798 frag_align (*args == 'l' ? 2 : 3, 0, 0);
9799 if (IS_ELF && strncmp (TARGET_OS, "elf", 3) != 0)
9800 record_alignment (new_seg, 4);
9801 else
9802 record_alignment (new_seg, *args == 'l' ? 2 : 3);
9803 if (seg == now_seg)
9804 as_bad (_("Can't use floating point insn in this section"));
9805
9806 /* Set the argument to the current address in the
9807 section. */
9808 offset_expr.X_op = O_symbol;
9809 offset_expr.X_add_symbol =
9810 symbol_new ("L0\001", now_seg,
9811 (valueT) frag_now_fix (), frag_now);
9812 offset_expr.X_add_number = 0;
9813
9814 /* Put the floating point number into the section. */
9815 p = frag_more ((int) length);
9816 memcpy (p, temp, length);
9817
9818 /* Switch back to the original section. */
9819 subseg_set (seg, subseg);
9820 }
9821 }
9822 continue;
9823
9824 case 'i': /* 16 bit unsigned immediate */
9825 case 'j': /* 16 bit signed immediate */
9826 *imm_reloc = BFD_RELOC_LO16;
9827 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
9828 {
9829 int more;
9830 offsetT minval, maxval;
9831
9832 more = (insn + 1 < &mips_opcodes[NUMOPCODES]
9833 && strcmp (insn->name, insn[1].name) == 0);
9834
9835 /* If the expression was written as an unsigned number,
9836 only treat it as signed if there are no more
9837 alternatives. */
9838 if (more
9839 && *args == 'j'
9840 && sizeof (imm_expr.X_add_number) <= 4
9841 && imm_expr.X_op == O_constant
9842 && imm_expr.X_add_number < 0
9843 && imm_expr.X_unsigned
9844 && HAVE_64BIT_GPRS)
9845 break;
9846
9847 /* For compatibility with older assemblers, we accept
9848 0x8000-0xffff as signed 16-bit numbers when only
9849 signed numbers are allowed. */
9850 if (*args == 'i')
9851 minval = 0, maxval = 0xffff;
9852 else if (more)
9853 minval = -0x8000, maxval = 0x7fff;
9854 else
9855 minval = -0x8000, maxval = 0xffff;
9856
9857 if (imm_expr.X_op != O_constant
9858 || imm_expr.X_add_number < minval
9859 || imm_expr.X_add_number > maxval)
9860 {
9861 if (more)
9862 break;
9863 if (imm_expr.X_op == O_constant
9864 || imm_expr.X_op == O_big)
9865 as_bad (_("expression out of range"));
9866 }
9867 }
9868 s = expr_end;
9869 continue;
9870
9871 case 'o': /* 16 bit offset */
9872 /* Check whether there is only a single bracketed expression
9873 left. If so, it must be the base register and the
9874 constant must be zero. */
9875 if (*s == '(' && strchr (s + 1, '(') == 0)
9876 {
9877 offset_expr.X_op = O_constant;
9878 offset_expr.X_add_number = 0;
9879 continue;
9880 }
9881
9882 /* If this value won't fit into a 16 bit offset, then go
9883 find a macro that will generate the 32 bit offset
9884 code pattern. */
9885 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
9886 && (offset_expr.X_op != O_constant
9887 || offset_expr.X_add_number >= 0x8000
9888 || offset_expr.X_add_number < -0x8000))
9889 break;
9890
9891 s = expr_end;
9892 continue;
9893
9894 case 'p': /* pc relative offset */
9895 *offset_reloc = BFD_RELOC_16_PCREL_S2;
9896 my_getExpression (&offset_expr, s);
9897 s = expr_end;
9898 continue;
9899
9900 case 'u': /* upper 16 bits */
9901 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
9902 && imm_expr.X_op == O_constant
9903 && (imm_expr.X_add_number < 0
9904 || imm_expr.X_add_number >= 0x10000))
9905 as_bad (_("lui expression not in range 0..65535"));
9906 s = expr_end;
9907 continue;
9908
9909 case 'a': /* 26 bit address */
9910 my_getExpression (&offset_expr, s);
9911 s = expr_end;
9912 *offset_reloc = BFD_RELOC_MIPS_JMP;
9913 continue;
9914
9915 case 'N': /* 3 bit branch condition code */
9916 case 'M': /* 3 bit compare condition code */
9917 rtype = RTYPE_CCC;
9918 if (ip->insn_mo->pinfo & (FP_D| FP_S))
9919 rtype |= RTYPE_FCC;
9920 if (!reg_lookup (&s, rtype, &regno))
9921 break;
9922 if ((strcmp(str + strlen(str) - 3, ".ps") == 0
9923 || strcmp(str + strlen(str) - 5, "any2f") == 0
9924 || strcmp(str + strlen(str) - 5, "any2t") == 0)
9925 && (regno & 1) != 0)
9926 as_warn(_("Condition code register should be even for %s, was %d"),
9927 str, regno);
9928 if ((strcmp(str + strlen(str) - 5, "any4f") == 0
9929 || strcmp(str + strlen(str) - 5, "any4t") == 0)
9930 && (regno & 3) != 0)
9931 as_warn(_("Condition code register should be 0 or 4 for %s, was %d"),
9932 str, regno);
9933 if (*args == 'N')
9934 INSERT_OPERAND (BCC, *ip, regno);
9935 else
9936 INSERT_OPERAND (CCC, *ip, regno);
9937 continue;
9938
9939 case 'H':
9940 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
9941 s += 2;
9942 if (ISDIGIT (*s))
9943 {
9944 c = 0;
9945 do
9946 {
9947 c *= 10;
9948 c += *s - '0';
9949 ++s;
9950 }
9951 while (ISDIGIT (*s));
9952 }
9953 else
9954 c = 8; /* Invalid sel value. */
9955
9956 if (c > 7)
9957 as_bad (_("invalid coprocessor sub-selection value (0-7)"));
9958 ip->insn_opcode |= c;
9959 continue;
9960
9961 case 'e':
9962 /* Must be at least one digit. */
9963 my_getExpression (&imm_expr, s);
9964 check_absolute_expr (ip, &imm_expr);
9965
9966 if ((unsigned long) imm_expr.X_add_number
9967 > (unsigned long) OP_MASK_VECBYTE)
9968 {
9969 as_bad (_("bad byte vector index (%ld)"),
9970 (long) imm_expr.X_add_number);
9971 imm_expr.X_add_number = 0;
9972 }
9973
9974 INSERT_OPERAND (VECBYTE, *ip, imm_expr.X_add_number);
9975 imm_expr.X_op = O_absent;
9976 s = expr_end;
9977 continue;
9978
9979 case '%':
9980 my_getExpression (&imm_expr, s);
9981 check_absolute_expr (ip, &imm_expr);
9982
9983 if ((unsigned long) imm_expr.X_add_number
9984 > (unsigned long) OP_MASK_VECALIGN)
9985 {
9986 as_bad (_("bad byte vector index (%ld)"),
9987 (long) imm_expr.X_add_number);
9988 imm_expr.X_add_number = 0;
9989 }
9990
9991 INSERT_OPERAND (VECALIGN, *ip, imm_expr.X_add_number);
9992 imm_expr.X_op = O_absent;
9993 s = expr_end;
9994 continue;
9995
9996 default:
9997 as_bad (_("bad char = '%c'\n"), *args);
9998 internalError ();
9999 }
10000 break;
10001 }
10002 /* Args don't match. */
10003 if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
10004 !strcmp (insn->name, insn[1].name))
10005 {
10006 ++insn;
10007 s = argsStart;
10008 insn_error = _("illegal operands");
10009 continue;
10010 }
10011 if (save_c)
10012 *(--argsStart) = save_c;
10013 insn_error = _("illegal operands");
10014 return;
10015 }
10016 }
10017
10018 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); }
10019
10020 /* This routine assembles an instruction into its binary format when
10021 assembling for the mips16. As a side effect, it sets one of the
10022 global variables imm_reloc or offset_reloc to the type of
10023 relocation to do if one of the operands is an address expression.
10024 It also sets mips16_small and mips16_ext if the user explicitly
10025 requested a small or extended instruction. */
10026
10027 static void
10028 mips16_ip (char *str, struct mips_cl_insn *ip)
10029 {
10030 char *s;
10031 const char *args;
10032 struct mips_opcode *insn;
10033 char *argsstart;
10034 unsigned int regno;
10035 unsigned int lastregno = 0;
10036 char *s_reset;
10037 size_t i;
10038
10039 insn_error = NULL;
10040
10041 mips16_small = FALSE;
10042 mips16_ext = FALSE;
10043
10044 for (s = str; ISLOWER (*s); ++s)
10045 ;
10046 switch (*s)
10047 {
10048 case '\0':
10049 break;
10050
10051 case ' ':
10052 *s++ = '\0';
10053 break;
10054
10055 case '.':
10056 if (s[1] == 't' && s[2] == ' ')
10057 {
10058 *s = '\0';
10059 mips16_small = TRUE;
10060 s += 3;
10061 break;
10062 }
10063 else if (s[1] == 'e' && s[2] == ' ')
10064 {
10065 *s = '\0';
10066 mips16_ext = TRUE;
10067 s += 3;
10068 break;
10069 }
10070 /* Fall through. */
10071 default:
10072 insn_error = _("unknown opcode");
10073 return;
10074 }
10075
10076 if (mips_opts.noautoextend && ! mips16_ext)
10077 mips16_small = TRUE;
10078
10079 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
10080 {
10081 insn_error = _("unrecognized opcode");
10082 return;
10083 }
10084
10085 argsstart = s;
10086 for (;;)
10087 {
10088 bfd_boolean ok;
10089
10090 assert (strcmp (insn->name, str) == 0);
10091
10092 ok = is_opcode_valid_16 (insn);
10093 if (! ok)
10094 {
10095 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes]
10096 && strcmp (insn->name, insn[1].name) == 0)
10097 {
10098 ++insn;
10099 continue;
10100 }
10101 else
10102 {
10103 if (!insn_error)
10104 {
10105 static char buf[100];
10106 sprintf (buf,
10107 _("opcode not supported on this processor: %s (%s)"),
10108 mips_cpu_info_from_arch (mips_opts.arch)->name,
10109 mips_cpu_info_from_isa (mips_opts.isa)->name);
10110 insn_error = buf;
10111 }
10112 return;
10113 }
10114 }
10115
10116 create_insn (ip, insn);
10117 imm_expr.X_op = O_absent;
10118 imm_reloc[0] = BFD_RELOC_UNUSED;
10119 imm_reloc[1] = BFD_RELOC_UNUSED;
10120 imm_reloc[2] = BFD_RELOC_UNUSED;
10121 imm2_expr.X_op = O_absent;
10122 offset_expr.X_op = O_absent;
10123 offset_reloc[0] = BFD_RELOC_UNUSED;
10124 offset_reloc[1] = BFD_RELOC_UNUSED;
10125 offset_reloc[2] = BFD_RELOC_UNUSED;
10126 for (args = insn->args; 1; ++args)
10127 {
10128 int c;
10129
10130 if (*s == ' ')
10131 ++s;
10132
10133 /* In this switch statement we call break if we did not find
10134 a match, continue if we did find a match, or return if we
10135 are done. */
10136
10137 c = *args;
10138 switch (c)
10139 {
10140 case '\0':
10141 if (*s == '\0')
10142 {
10143 /* Stuff the immediate value in now, if we can. */
10144 if (imm_expr.X_op == O_constant
10145 && *imm_reloc > BFD_RELOC_UNUSED
10146 && *imm_reloc != BFD_RELOC_MIPS16_GOT16
10147 && *imm_reloc != BFD_RELOC_MIPS16_CALL16
10148 && insn->pinfo != INSN_MACRO)
10149 {
10150 valueT tmp;
10151
10152 switch (*offset_reloc)
10153 {
10154 case BFD_RELOC_MIPS16_HI16_S:
10155 tmp = (imm_expr.X_add_number + 0x8000) >> 16;
10156 break;
10157
10158 case BFD_RELOC_MIPS16_HI16:
10159 tmp = imm_expr.X_add_number >> 16;
10160 break;
10161
10162 case BFD_RELOC_MIPS16_LO16:
10163 tmp = ((imm_expr.X_add_number + 0x8000) & 0xffff)
10164 - 0x8000;
10165 break;
10166
10167 case BFD_RELOC_UNUSED:
10168 tmp = imm_expr.X_add_number;
10169 break;
10170
10171 default:
10172 internalError ();
10173 }
10174 *offset_reloc = BFD_RELOC_UNUSED;
10175
10176 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
10177 tmp, TRUE, mips16_small,
10178 mips16_ext, &ip->insn_opcode,
10179 &ip->use_extend, &ip->extend);
10180 imm_expr.X_op = O_absent;
10181 *imm_reloc = BFD_RELOC_UNUSED;
10182 }
10183
10184 return;
10185 }
10186 break;
10187
10188 case ',':
10189 if (*s++ == c)
10190 continue;
10191 s--;
10192 switch (*++args)
10193 {
10194 case 'v':
10195 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10196 continue;
10197 case 'w':
10198 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10199 continue;
10200 }
10201 break;
10202
10203 case '(':
10204 case ')':
10205 if (*s++ == c)
10206 continue;
10207 break;
10208
10209 case 'v':
10210 case 'w':
10211 if (s[0] != '$')
10212 {
10213 if (c == 'v')
10214 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10215 else
10216 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10217 ++args;
10218 continue;
10219 }
10220 /* Fall through. */
10221 case 'x':
10222 case 'y':
10223 case 'z':
10224 case 'Z':
10225 case '0':
10226 case 'S':
10227 case 'R':
10228 case 'X':
10229 case 'Y':
10230 s_reset = s;
10231 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
10232 {
10233 if (c == 'v' || c == 'w')
10234 {
10235 if (c == 'v')
10236 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10237 else
10238 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10239 ++args;
10240 continue;
10241 }
10242 break;
10243 }
10244
10245 if (*s == ' ')
10246 ++s;
10247 if (args[1] != *s)
10248 {
10249 if (c == 'v' || c == 'w')
10250 {
10251 regno = mips16_to_32_reg_map[lastregno];
10252 s = s_reset;
10253 ++args;
10254 }
10255 }
10256
10257 switch (c)
10258 {
10259 case 'x':
10260 case 'y':
10261 case 'z':
10262 case 'v':
10263 case 'w':
10264 case 'Z':
10265 regno = mips32_to_16_reg_map[regno];
10266 break;
10267
10268 case '0':
10269 if (regno != 0)
10270 regno = ILLEGAL_REG;
10271 break;
10272
10273 case 'S':
10274 if (regno != SP)
10275 regno = ILLEGAL_REG;
10276 break;
10277
10278 case 'R':
10279 if (regno != RA)
10280 regno = ILLEGAL_REG;
10281 break;
10282
10283 case 'X':
10284 case 'Y':
10285 if (regno == AT && mips_opts.at)
10286 {
10287 if (mips_opts.at == ATREG)
10288 as_warn (_("used $at without \".set noat\""));
10289 else
10290 as_warn (_("used $%u with \".set at=$%u\""),
10291 regno, mips_opts.at);
10292 }
10293 break;
10294
10295 default:
10296 internalError ();
10297 }
10298
10299 if (regno == ILLEGAL_REG)
10300 break;
10301
10302 switch (c)
10303 {
10304 case 'x':
10305 case 'v':
10306 MIPS16_INSERT_OPERAND (RX, *ip, regno);
10307 break;
10308 case 'y':
10309 case 'w':
10310 MIPS16_INSERT_OPERAND (RY, *ip, regno);
10311 break;
10312 case 'z':
10313 MIPS16_INSERT_OPERAND (RZ, *ip, regno);
10314 break;
10315 case 'Z':
10316 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno);
10317 case '0':
10318 case 'S':
10319 case 'R':
10320 break;
10321 case 'X':
10322 MIPS16_INSERT_OPERAND (REGR32, *ip, regno);
10323 break;
10324 case 'Y':
10325 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
10326 MIPS16_INSERT_OPERAND (REG32R, *ip, regno);
10327 break;
10328 default:
10329 internalError ();
10330 }
10331
10332 lastregno = regno;
10333 continue;
10334
10335 case 'P':
10336 if (strncmp (s, "$pc", 3) == 0)
10337 {
10338 s += 3;
10339 continue;
10340 }
10341 break;
10342
10343 case '5':
10344 case 'H':
10345 case 'W':
10346 case 'D':
10347 case 'j':
10348 case 'V':
10349 case 'C':
10350 case 'U':
10351 case 'k':
10352 case 'K':
10353 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
10354 if (i > 0)
10355 {
10356 if (imm_expr.X_op != O_constant)
10357 {
10358 mips16_ext = TRUE;
10359 ip->use_extend = TRUE;
10360 ip->extend = 0;
10361 }
10362 else
10363 {
10364 /* We need to relax this instruction. */
10365 *offset_reloc = *imm_reloc;
10366 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10367 }
10368 s = expr_end;
10369 continue;
10370 }
10371 *imm_reloc = BFD_RELOC_UNUSED;
10372 /* Fall through. */
10373 case '<':
10374 case '>':
10375 case '[':
10376 case ']':
10377 case '4':
10378 case '8':
10379 my_getExpression (&imm_expr, s);
10380 if (imm_expr.X_op == O_register)
10381 {
10382 /* What we thought was an expression turned out to
10383 be a register. */
10384
10385 if (s[0] == '(' && args[1] == '(')
10386 {
10387 /* It looks like the expression was omitted
10388 before a register indirection, which means
10389 that the expression is implicitly zero. We
10390 still set up imm_expr, so that we handle
10391 explicit extensions correctly. */
10392 imm_expr.X_op = O_constant;
10393 imm_expr.X_add_number = 0;
10394 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10395 continue;
10396 }
10397
10398 break;
10399 }
10400
10401 /* We need to relax this instruction. */
10402 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10403 s = expr_end;
10404 continue;
10405
10406 case 'p':
10407 case 'q':
10408 case 'A':
10409 case 'B':
10410 case 'E':
10411 /* We use offset_reloc rather than imm_reloc for the PC
10412 relative operands. This lets macros with both
10413 immediate and address operands work correctly. */
10414 my_getExpression (&offset_expr, s);
10415
10416 if (offset_expr.X_op == O_register)
10417 break;
10418
10419 /* We need to relax this instruction. */
10420 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
10421 s = expr_end;
10422 continue;
10423
10424 case '6': /* break code */
10425 my_getExpression (&imm_expr, s);
10426 check_absolute_expr (ip, &imm_expr);
10427 if ((unsigned long) imm_expr.X_add_number > 63)
10428 as_warn (_("Invalid value for `%s' (%lu)"),
10429 ip->insn_mo->name,
10430 (unsigned long) imm_expr.X_add_number);
10431 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number);
10432 imm_expr.X_op = O_absent;
10433 s = expr_end;
10434 continue;
10435
10436 case 'a': /* 26 bit address */
10437 my_getExpression (&offset_expr, s);
10438 s = expr_end;
10439 *offset_reloc = BFD_RELOC_MIPS16_JMP;
10440 ip->insn_opcode <<= 16;
10441 continue;
10442
10443 case 'l': /* register list for entry macro */
10444 case 'L': /* register list for exit macro */
10445 {
10446 int mask;
10447
10448 if (c == 'l')
10449 mask = 0;
10450 else
10451 mask = 7 << 3;
10452 while (*s != '\0')
10453 {
10454 unsigned int freg, reg1, reg2;
10455
10456 while (*s == ' ' || *s == ',')
10457 ++s;
10458 if (reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10459 freg = 0;
10460 else if (reg_lookup (&s, RTYPE_FPU, &reg1))
10461 freg = 1;
10462 else
10463 {
10464 as_bad (_("can't parse register list"));
10465 break;
10466 }
10467 if (*s == ' ')
10468 ++s;
10469 if (*s != '-')
10470 reg2 = reg1;
10471 else
10472 {
10473 ++s;
10474 if (!reg_lookup (&s, freg ? RTYPE_FPU
10475 : (RTYPE_GP | RTYPE_NUM), &reg2))
10476 {
10477 as_bad (_("invalid register list"));
10478 break;
10479 }
10480 }
10481 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
10482 {
10483 mask &= ~ (7 << 3);
10484 mask |= 5 << 3;
10485 }
10486 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
10487 {
10488 mask &= ~ (7 << 3);
10489 mask |= 6 << 3;
10490 }
10491 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
10492 mask |= (reg2 - 3) << 3;
10493 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
10494 mask |= (reg2 - 15) << 1;
10495 else if (reg1 == RA && reg2 == RA)
10496 mask |= 1;
10497 else
10498 {
10499 as_bad (_("invalid register list"));
10500 break;
10501 }
10502 }
10503 /* The mask is filled in in the opcode table for the
10504 benefit of the disassembler. We remove it before
10505 applying the actual mask. */
10506 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
10507 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
10508 }
10509 continue;
10510
10511 case 'm': /* Register list for save insn. */
10512 case 'M': /* Register list for restore insn. */
10513 {
10514 int opcode = 0;
10515 int framesz = 0, seen_framesz = 0;
10516 int args = 0, statics = 0, sregs = 0;
10517
10518 while (*s != '\0')
10519 {
10520 unsigned int reg1, reg2;
10521
10522 SKIP_SPACE_TABS (s);
10523 while (*s == ',')
10524 ++s;
10525 SKIP_SPACE_TABS (s);
10526
10527 my_getExpression (&imm_expr, s);
10528 if (imm_expr.X_op == O_constant)
10529 {
10530 /* Handle the frame size. */
10531 if (seen_framesz)
10532 {
10533 as_bad (_("more than one frame size in list"));
10534 break;
10535 }
10536 seen_framesz = 1;
10537 framesz = imm_expr.X_add_number;
10538 imm_expr.X_op = O_absent;
10539 s = expr_end;
10540 continue;
10541 }
10542
10543 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10544 {
10545 as_bad (_("can't parse register list"));
10546 break;
10547 }
10548
10549 while (*s == ' ')
10550 ++s;
10551
10552 if (*s != '-')
10553 reg2 = reg1;
10554 else
10555 {
10556 ++s;
10557 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg2)
10558 || reg2 < reg1)
10559 {
10560 as_bad (_("can't parse register list"));
10561 break;
10562 }
10563 }
10564
10565 while (reg1 <= reg2)
10566 {
10567 if (reg1 >= 4 && reg1 <= 7)
10568 {
10569 if (!seen_framesz)
10570 /* args $a0-$a3 */
10571 args |= 1 << (reg1 - 4);
10572 else
10573 /* statics $a0-$a3 */
10574 statics |= 1 << (reg1 - 4);
10575 }
10576 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30)
10577 {
10578 /* $s0-$s8 */
10579 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16));
10580 }
10581 else if (reg1 == 31)
10582 {
10583 /* Add $ra to insn. */
10584 opcode |= 0x40;
10585 }
10586 else
10587 {
10588 as_bad (_("unexpected register in list"));
10589 break;
10590 }
10591 if (++reg1 == 24)
10592 reg1 = 30;
10593 }
10594 }
10595
10596 /* Encode args/statics combination. */
10597 if (args & statics)
10598 as_bad (_("arg/static registers overlap"));
10599 else if (args == 0xf)
10600 /* All $a0-$a3 are args. */
10601 opcode |= MIPS16_ALL_ARGS << 16;
10602 else if (statics == 0xf)
10603 /* All $a0-$a3 are statics. */
10604 opcode |= MIPS16_ALL_STATICS << 16;
10605 else
10606 {
10607 int narg = 0, nstat = 0;
10608
10609 /* Count arg registers. */
10610 while (args & 0x1)
10611 {
10612 args >>= 1;
10613 narg++;
10614 }
10615 if (args != 0)
10616 as_bad (_("invalid arg register list"));
10617
10618 /* Count static registers. */
10619 while (statics & 0x8)
10620 {
10621 statics = (statics << 1) & 0xf;
10622 nstat++;
10623 }
10624 if (statics != 0)
10625 as_bad (_("invalid static register list"));
10626
10627 /* Encode args/statics. */
10628 opcode |= ((narg << 2) | nstat) << 16;
10629 }
10630
10631 /* Encode $s0/$s1. */
10632 if (sregs & (1 << 0)) /* $s0 */
10633 opcode |= 0x20;
10634 if (sregs & (1 << 1)) /* $s1 */
10635 opcode |= 0x10;
10636 sregs >>= 2;
10637
10638 if (sregs != 0)
10639 {
10640 /* Count regs $s2-$s8. */
10641 int nsreg = 0;
10642 while (sregs & 1)
10643 {
10644 sregs >>= 1;
10645 nsreg++;
10646 }
10647 if (sregs != 0)
10648 as_bad (_("invalid static register list"));
10649 /* Encode $s2-$s8. */
10650 opcode |= nsreg << 24;
10651 }
10652
10653 /* Encode frame size. */
10654 if (!seen_framesz)
10655 as_bad (_("missing frame size"));
10656 else if ((framesz & 7) != 0 || framesz < 0
10657 || framesz > 0xff * 8)
10658 as_bad (_("invalid frame size"));
10659 else if (framesz != 128 || (opcode >> 16) != 0)
10660 {
10661 framesz /= 8;
10662 opcode |= (((framesz & 0xf0) << 16)
10663 | (framesz & 0x0f));
10664 }
10665
10666 /* Finally build the instruction. */
10667 if ((opcode >> 16) != 0 || framesz == 0)
10668 {
10669 ip->use_extend = TRUE;
10670 ip->extend = opcode >> 16;
10671 }
10672 ip->insn_opcode |= opcode & 0x7f;
10673 }
10674 continue;
10675
10676 case 'e': /* extend code */
10677 my_getExpression (&imm_expr, s);
10678 check_absolute_expr (ip, &imm_expr);
10679 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
10680 {
10681 as_warn (_("Invalid value for `%s' (%lu)"),
10682 ip->insn_mo->name,
10683 (unsigned long) imm_expr.X_add_number);
10684 imm_expr.X_add_number &= 0x7ff;
10685 }
10686 ip->insn_opcode |= imm_expr.X_add_number;
10687 imm_expr.X_op = O_absent;
10688 s = expr_end;
10689 continue;
10690
10691 default:
10692 internalError ();
10693 }
10694 break;
10695 }
10696
10697 /* Args don't match. */
10698 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
10699 strcmp (insn->name, insn[1].name) == 0)
10700 {
10701 ++insn;
10702 s = argsstart;
10703 continue;
10704 }
10705
10706 insn_error = _("illegal operands");
10707
10708 return;
10709 }
10710 }
10711
10712 /* This structure holds information we know about a mips16 immediate
10713 argument type. */
10714
10715 struct mips16_immed_operand
10716 {
10717 /* The type code used in the argument string in the opcode table. */
10718 int type;
10719 /* The number of bits in the short form of the opcode. */
10720 int nbits;
10721 /* The number of bits in the extended form of the opcode. */
10722 int extbits;
10723 /* The amount by which the short form is shifted when it is used;
10724 for example, the sw instruction has a shift count of 2. */
10725 int shift;
10726 /* The amount by which the short form is shifted when it is stored
10727 into the instruction code. */
10728 int op_shift;
10729 /* Non-zero if the short form is unsigned. */
10730 int unsp;
10731 /* Non-zero if the extended form is unsigned. */
10732 int extu;
10733 /* Non-zero if the value is PC relative. */
10734 int pcrel;
10735 };
10736
10737 /* The mips16 immediate operand types. */
10738
10739 static const struct mips16_immed_operand mips16_immed_operands[] =
10740 {
10741 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10742 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10743 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10744 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10745 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
10746 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
10747 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
10748 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
10749 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
10750 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
10751 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
10752 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
10753 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
10754 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
10755 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
10756 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
10757 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10758 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10759 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
10760 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
10761 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
10762 };
10763
10764 #define MIPS16_NUM_IMMED \
10765 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
10766
10767 /* Handle a mips16 instruction with an immediate value. This or's the
10768 small immediate value into *INSN. It sets *USE_EXTEND to indicate
10769 whether an extended value is needed; if one is needed, it sets
10770 *EXTEND to the value. The argument type is TYPE. The value is VAL.
10771 If SMALL is true, an unextended opcode was explicitly requested.
10772 If EXT is true, an extended opcode was explicitly requested. If
10773 WARN is true, warn if EXT does not match reality. */
10774
10775 static void
10776 mips16_immed (char *file, unsigned int line, int type, offsetT val,
10777 bfd_boolean warn, bfd_boolean small, bfd_boolean ext,
10778 unsigned long *insn, bfd_boolean *use_extend,
10779 unsigned short *extend)
10780 {
10781 const struct mips16_immed_operand *op;
10782 int mintiny, maxtiny;
10783 bfd_boolean needext;
10784
10785 op = mips16_immed_operands;
10786 while (op->type != type)
10787 {
10788 ++op;
10789 assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
10790 }
10791
10792 if (op->unsp)
10793 {
10794 if (type == '<' || type == '>' || type == '[' || type == ']')
10795 {
10796 mintiny = 1;
10797 maxtiny = 1 << op->nbits;
10798 }
10799 else
10800 {
10801 mintiny = 0;
10802 maxtiny = (1 << op->nbits) - 1;
10803 }
10804 }
10805 else
10806 {
10807 mintiny = - (1 << (op->nbits - 1));
10808 maxtiny = (1 << (op->nbits - 1)) - 1;
10809 }
10810
10811 /* Branch offsets have an implicit 0 in the lowest bit. */
10812 if (type == 'p' || type == 'q')
10813 val /= 2;
10814
10815 if ((val & ((1 << op->shift) - 1)) != 0
10816 || val < (mintiny << op->shift)
10817 || val > (maxtiny << op->shift))
10818 needext = TRUE;
10819 else
10820 needext = FALSE;
10821
10822 if (warn && ext && ! needext)
10823 as_warn_where (file, line,
10824 _("extended operand requested but not required"));
10825 if (small && needext)
10826 as_bad_where (file, line, _("invalid unextended operand value"));
10827
10828 if (small || (! ext && ! needext))
10829 {
10830 int insnval;
10831
10832 *use_extend = FALSE;
10833 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
10834 insnval <<= op->op_shift;
10835 *insn |= insnval;
10836 }
10837 else
10838 {
10839 long minext, maxext;
10840 int extval;
10841
10842 if (op->extu)
10843 {
10844 minext = 0;
10845 maxext = (1 << op->extbits) - 1;
10846 }
10847 else
10848 {
10849 minext = - (1 << (op->extbits - 1));
10850 maxext = (1 << (op->extbits - 1)) - 1;
10851 }
10852 if (val < minext || val > maxext)
10853 as_bad_where (file, line,
10854 _("operand value out of range for instruction"));
10855
10856 *use_extend = TRUE;
10857 if (op->extbits == 16)
10858 {
10859 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
10860 val &= 0x1f;
10861 }
10862 else if (op->extbits == 15)
10863 {
10864 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
10865 val &= 0xf;
10866 }
10867 else
10868 {
10869 extval = ((val & 0x1f) << 6) | (val & 0x20);
10870 val = 0;
10871 }
10872
10873 *extend = (unsigned short) extval;
10874 *insn |= val;
10875 }
10876 }
10877 \f
10878 struct percent_op_match
10879 {
10880 const char *str;
10881 bfd_reloc_code_real_type reloc;
10882 };
10883
10884 static const struct percent_op_match mips_percent_op[] =
10885 {
10886 {"%lo", BFD_RELOC_LO16},
10887 #ifdef OBJ_ELF
10888 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
10889 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
10890 {"%call16", BFD_RELOC_MIPS_CALL16},
10891 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
10892 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
10893 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
10894 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
10895 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
10896 {"%got", BFD_RELOC_MIPS_GOT16},
10897 {"%gp_rel", BFD_RELOC_GPREL16},
10898 {"%half", BFD_RELOC_16},
10899 {"%highest", BFD_RELOC_MIPS_HIGHEST},
10900 {"%higher", BFD_RELOC_MIPS_HIGHER},
10901 {"%neg", BFD_RELOC_MIPS_SUB},
10902 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
10903 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
10904 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
10905 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
10906 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
10907 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
10908 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
10909 #endif
10910 {"%hi", BFD_RELOC_HI16_S}
10911 };
10912
10913 static const struct percent_op_match mips16_percent_op[] =
10914 {
10915 {"%lo", BFD_RELOC_MIPS16_LO16},
10916 {"%gprel", BFD_RELOC_MIPS16_GPREL},
10917 {"%got", BFD_RELOC_MIPS16_GOT16},
10918 {"%call16", BFD_RELOC_MIPS16_CALL16},
10919 {"%hi", BFD_RELOC_MIPS16_HI16_S}
10920 };
10921
10922
10923 /* Return true if *STR points to a relocation operator. When returning true,
10924 move *STR over the operator and store its relocation code in *RELOC.
10925 Leave both *STR and *RELOC alone when returning false. */
10926
10927 static bfd_boolean
10928 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
10929 {
10930 const struct percent_op_match *percent_op;
10931 size_t limit, i;
10932
10933 if (mips_opts.mips16)
10934 {
10935 percent_op = mips16_percent_op;
10936 limit = ARRAY_SIZE (mips16_percent_op);
10937 }
10938 else
10939 {
10940 percent_op = mips_percent_op;
10941 limit = ARRAY_SIZE (mips_percent_op);
10942 }
10943
10944 for (i = 0; i < limit; i++)
10945 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
10946 {
10947 int len = strlen (percent_op[i].str);
10948
10949 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
10950 continue;
10951
10952 *str += strlen (percent_op[i].str);
10953 *reloc = percent_op[i].reloc;
10954
10955 /* Check whether the output BFD supports this relocation.
10956 If not, issue an error and fall back on something safe. */
10957 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
10958 {
10959 as_bad ("relocation %s isn't supported by the current ABI",
10960 percent_op[i].str);
10961 *reloc = BFD_RELOC_UNUSED;
10962 }
10963 return TRUE;
10964 }
10965 return FALSE;
10966 }
10967
10968
10969 /* Parse string STR as a 16-bit relocatable operand. Store the
10970 expression in *EP and the relocations in the array starting
10971 at RELOC. Return the number of relocation operators used.
10972
10973 On exit, EXPR_END points to the first character after the expression. */
10974
10975 static size_t
10976 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
10977 char *str)
10978 {
10979 bfd_reloc_code_real_type reversed_reloc[3];
10980 size_t reloc_index, i;
10981 int crux_depth, str_depth;
10982 char *crux;
10983
10984 /* Search for the start of the main expression, recoding relocations
10985 in REVERSED_RELOC. End the loop with CRUX pointing to the start
10986 of the main expression and with CRUX_DEPTH containing the number
10987 of open brackets at that point. */
10988 reloc_index = -1;
10989 str_depth = 0;
10990 do
10991 {
10992 reloc_index++;
10993 crux = str;
10994 crux_depth = str_depth;
10995
10996 /* Skip over whitespace and brackets, keeping count of the number
10997 of brackets. */
10998 while (*str == ' ' || *str == '\t' || *str == '(')
10999 if (*str++ == '(')
11000 str_depth++;
11001 }
11002 while (*str == '%'
11003 && reloc_index < (HAVE_NEWABI ? 3 : 1)
11004 && parse_relocation (&str, &reversed_reloc[reloc_index]));
11005
11006 my_getExpression (ep, crux);
11007 str = expr_end;
11008
11009 /* Match every open bracket. */
11010 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
11011 if (*str++ == ')')
11012 crux_depth--;
11013
11014 if (crux_depth > 0)
11015 as_bad ("unclosed '('");
11016
11017 expr_end = str;
11018
11019 if (reloc_index != 0)
11020 {
11021 prev_reloc_op_frag = frag_now;
11022 for (i = 0; i < reloc_index; i++)
11023 reloc[i] = reversed_reloc[reloc_index - 1 - i];
11024 }
11025
11026 return reloc_index;
11027 }
11028
11029 static void
11030 my_getExpression (expressionS *ep, char *str)
11031 {
11032 char *save_in;
11033 valueT val;
11034
11035 save_in = input_line_pointer;
11036 input_line_pointer = str;
11037 expression (ep);
11038 expr_end = input_line_pointer;
11039 input_line_pointer = save_in;
11040
11041 /* If we are in mips16 mode, and this is an expression based on `.',
11042 then we bump the value of the symbol by 1 since that is how other
11043 text symbols are handled. We don't bother to handle complex
11044 expressions, just `.' plus or minus a constant. */
11045 if (mips_opts.mips16
11046 && ep->X_op == O_symbol
11047 && strcmp (S_GET_NAME (ep->X_add_symbol), FAKE_LABEL_NAME) == 0
11048 && S_GET_SEGMENT (ep->X_add_symbol) == now_seg
11049 && symbol_get_frag (ep->X_add_symbol) == frag_now
11050 && symbol_constant_p (ep->X_add_symbol)
11051 && (val = S_GET_VALUE (ep->X_add_symbol)) == frag_now_fix ())
11052 S_SET_VALUE (ep->X_add_symbol, val + 1);
11053 }
11054
11055 char *
11056 md_atof (int type, char *litP, int *sizeP)
11057 {
11058 return ieee_md_atof (type, litP, sizeP, target_big_endian);
11059 }
11060
11061 void
11062 md_number_to_chars (char *buf, valueT val, int n)
11063 {
11064 if (target_big_endian)
11065 number_to_chars_bigendian (buf, val, n);
11066 else
11067 number_to_chars_littleendian (buf, val, n);
11068 }
11069 \f
11070 #ifdef OBJ_ELF
11071 static int support_64bit_objects(void)
11072 {
11073 const char **list, **l;
11074 int yes;
11075
11076 list = bfd_target_list ();
11077 for (l = list; *l != NULL; l++)
11078 #ifdef TE_TMIPS
11079 /* This is traditional mips */
11080 if (strcmp (*l, "elf64-tradbigmips") == 0
11081 || strcmp (*l, "elf64-tradlittlemips") == 0)
11082 #else
11083 if (strcmp (*l, "elf64-bigmips") == 0
11084 || strcmp (*l, "elf64-littlemips") == 0)
11085 #endif
11086 break;
11087 yes = (*l != NULL);
11088 free (list);
11089 return yes;
11090 }
11091 #endif /* OBJ_ELF */
11092
11093 const char *md_shortopts = "O::g::G:";
11094
11095 struct option md_longopts[] =
11096 {
11097 /* Options which specify architecture. */
11098 #define OPTION_ARCH_BASE (OPTION_MD_BASE)
11099 #define OPTION_MARCH (OPTION_ARCH_BASE + 0)
11100 {"march", required_argument, NULL, OPTION_MARCH},
11101 #define OPTION_MTUNE (OPTION_ARCH_BASE + 1)
11102 {"mtune", required_argument, NULL, OPTION_MTUNE},
11103 #define OPTION_MIPS1 (OPTION_ARCH_BASE + 2)
11104 {"mips0", no_argument, NULL, OPTION_MIPS1},
11105 {"mips1", no_argument, NULL, OPTION_MIPS1},
11106 #define OPTION_MIPS2 (OPTION_ARCH_BASE + 3)
11107 {"mips2", no_argument, NULL, OPTION_MIPS2},
11108 #define OPTION_MIPS3 (OPTION_ARCH_BASE + 4)
11109 {"mips3", no_argument, NULL, OPTION_MIPS3},
11110 #define OPTION_MIPS4 (OPTION_ARCH_BASE + 5)
11111 {"mips4", no_argument, NULL, OPTION_MIPS4},
11112 #define OPTION_MIPS5 (OPTION_ARCH_BASE + 6)
11113 {"mips5", no_argument, NULL, OPTION_MIPS5},
11114 #define OPTION_MIPS32 (OPTION_ARCH_BASE + 7)
11115 {"mips32", no_argument, NULL, OPTION_MIPS32},
11116 #define OPTION_MIPS64 (OPTION_ARCH_BASE + 8)
11117 {"mips64", no_argument, NULL, OPTION_MIPS64},
11118 #define OPTION_MIPS32R2 (OPTION_ARCH_BASE + 9)
11119 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
11120 #define OPTION_MIPS64R2 (OPTION_ARCH_BASE + 10)
11121 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
11122
11123 /* Options which specify Application Specific Extensions (ASEs). */
11124 #define OPTION_ASE_BASE (OPTION_ARCH_BASE + 11)
11125 #define OPTION_MIPS16 (OPTION_ASE_BASE + 0)
11126 {"mips16", no_argument, NULL, OPTION_MIPS16},
11127 #define OPTION_NO_MIPS16 (OPTION_ASE_BASE + 1)
11128 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
11129 #define OPTION_MIPS3D (OPTION_ASE_BASE + 2)
11130 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
11131 #define OPTION_NO_MIPS3D (OPTION_ASE_BASE + 3)
11132 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
11133 #define OPTION_MDMX (OPTION_ASE_BASE + 4)
11134 {"mdmx", no_argument, NULL, OPTION_MDMX},
11135 #define OPTION_NO_MDMX (OPTION_ASE_BASE + 5)
11136 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
11137 #define OPTION_DSP (OPTION_ASE_BASE + 6)
11138 {"mdsp", no_argument, NULL, OPTION_DSP},
11139 #define OPTION_NO_DSP (OPTION_ASE_BASE + 7)
11140 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
11141 #define OPTION_MT (OPTION_ASE_BASE + 8)
11142 {"mmt", no_argument, NULL, OPTION_MT},
11143 #define OPTION_NO_MT (OPTION_ASE_BASE + 9)
11144 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
11145 #define OPTION_SMARTMIPS (OPTION_ASE_BASE + 10)
11146 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
11147 #define OPTION_NO_SMARTMIPS (OPTION_ASE_BASE + 11)
11148 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
11149 #define OPTION_DSPR2 (OPTION_ASE_BASE + 12)
11150 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
11151 #define OPTION_NO_DSPR2 (OPTION_ASE_BASE + 13)
11152 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
11153
11154 /* Old-style architecture options. Don't add more of these. */
11155 #define OPTION_COMPAT_ARCH_BASE (OPTION_ASE_BASE + 14)
11156 #define OPTION_M4650 (OPTION_COMPAT_ARCH_BASE + 0)
11157 {"m4650", no_argument, NULL, OPTION_M4650},
11158 #define OPTION_NO_M4650 (OPTION_COMPAT_ARCH_BASE + 1)
11159 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
11160 #define OPTION_M4010 (OPTION_COMPAT_ARCH_BASE + 2)
11161 {"m4010", no_argument, NULL, OPTION_M4010},
11162 #define OPTION_NO_M4010 (OPTION_COMPAT_ARCH_BASE + 3)
11163 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
11164 #define OPTION_M4100 (OPTION_COMPAT_ARCH_BASE + 4)
11165 {"m4100", no_argument, NULL, OPTION_M4100},
11166 #define OPTION_NO_M4100 (OPTION_COMPAT_ARCH_BASE + 5)
11167 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
11168 #define OPTION_M3900 (OPTION_COMPAT_ARCH_BASE + 6)
11169 {"m3900", no_argument, NULL, OPTION_M3900},
11170 #define OPTION_NO_M3900 (OPTION_COMPAT_ARCH_BASE + 7)
11171 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
11172
11173 /* Options which enable bug fixes. */
11174 #define OPTION_FIX_BASE (OPTION_COMPAT_ARCH_BASE + 8)
11175 #define OPTION_M7000_HILO_FIX (OPTION_FIX_BASE + 0)
11176 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
11177 #define OPTION_MNO_7000_HILO_FIX (OPTION_FIX_BASE + 1)
11178 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11179 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11180 #define OPTION_FIX_VR4120 (OPTION_FIX_BASE + 2)
11181 #define OPTION_NO_FIX_VR4120 (OPTION_FIX_BASE + 3)
11182 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
11183 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
11184 #define OPTION_FIX_VR4130 (OPTION_FIX_BASE + 4)
11185 #define OPTION_NO_FIX_VR4130 (OPTION_FIX_BASE + 5)
11186 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
11187 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
11188
11189 /* Miscellaneous options. */
11190 #define OPTION_MISC_BASE (OPTION_FIX_BASE + 6)
11191 #define OPTION_TRAP (OPTION_MISC_BASE + 0)
11192 {"trap", no_argument, NULL, OPTION_TRAP},
11193 {"no-break", no_argument, NULL, OPTION_TRAP},
11194 #define OPTION_BREAK (OPTION_MISC_BASE + 1)
11195 {"break", no_argument, NULL, OPTION_BREAK},
11196 {"no-trap", no_argument, NULL, OPTION_BREAK},
11197 #define OPTION_EB (OPTION_MISC_BASE + 2)
11198 {"EB", no_argument, NULL, OPTION_EB},
11199 #define OPTION_EL (OPTION_MISC_BASE + 3)
11200 {"EL", no_argument, NULL, OPTION_EL},
11201 #define OPTION_FP32 (OPTION_MISC_BASE + 4)
11202 {"mfp32", no_argument, NULL, OPTION_FP32},
11203 #define OPTION_GP32 (OPTION_MISC_BASE + 5)
11204 {"mgp32", no_argument, NULL, OPTION_GP32},
11205 #define OPTION_CONSTRUCT_FLOATS (OPTION_MISC_BASE + 6)
11206 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
11207 #define OPTION_NO_CONSTRUCT_FLOATS (OPTION_MISC_BASE + 7)
11208 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
11209 #define OPTION_FP64 (OPTION_MISC_BASE + 8)
11210 {"mfp64", no_argument, NULL, OPTION_FP64},
11211 #define OPTION_GP64 (OPTION_MISC_BASE + 9)
11212 {"mgp64", no_argument, NULL, OPTION_GP64},
11213 #define OPTION_RELAX_BRANCH (OPTION_MISC_BASE + 10)
11214 #define OPTION_NO_RELAX_BRANCH (OPTION_MISC_BASE + 11)
11215 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
11216 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
11217 #define OPTION_MSHARED (OPTION_MISC_BASE + 12)
11218 #define OPTION_MNO_SHARED (OPTION_MISC_BASE + 13)
11219 {"mshared", no_argument, NULL, OPTION_MSHARED},
11220 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
11221 #define OPTION_MSYM32 (OPTION_MISC_BASE + 14)
11222 #define OPTION_MNO_SYM32 (OPTION_MISC_BASE + 15)
11223 {"msym32", no_argument, NULL, OPTION_MSYM32},
11224 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
11225 #define OPTION_SOFT_FLOAT (OPTION_MISC_BASE + 16)
11226 #define OPTION_HARD_FLOAT (OPTION_MISC_BASE + 17)
11227 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
11228 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
11229 #define OPTION_SINGLE_FLOAT (OPTION_MISC_BASE + 18)
11230 #define OPTION_DOUBLE_FLOAT (OPTION_MISC_BASE + 19)
11231 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
11232 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
11233
11234 /* ELF-specific options. */
11235 #ifdef OBJ_ELF
11236 #define OPTION_ELF_BASE (OPTION_MISC_BASE + 20)
11237 #define OPTION_CALL_SHARED (OPTION_ELF_BASE + 0)
11238 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
11239 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
11240 #define OPTION_CALL_NONPIC (OPTION_ELF_BASE + 1)
11241 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
11242 #define OPTION_NON_SHARED (OPTION_ELF_BASE + 2)
11243 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
11244 #define OPTION_XGOT (OPTION_ELF_BASE + 3)
11245 {"xgot", no_argument, NULL, OPTION_XGOT},
11246 #define OPTION_MABI (OPTION_ELF_BASE + 4)
11247 {"mabi", required_argument, NULL, OPTION_MABI},
11248 #define OPTION_32 (OPTION_ELF_BASE + 5)
11249 {"32", no_argument, NULL, OPTION_32},
11250 #define OPTION_N32 (OPTION_ELF_BASE + 6)
11251 {"n32", no_argument, NULL, OPTION_N32},
11252 #define OPTION_64 (OPTION_ELF_BASE + 7)
11253 {"64", no_argument, NULL, OPTION_64},
11254 #define OPTION_MDEBUG (OPTION_ELF_BASE + 8)
11255 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
11256 #define OPTION_NO_MDEBUG (OPTION_ELF_BASE + 9)
11257 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
11258 #define OPTION_PDR (OPTION_ELF_BASE + 10)
11259 {"mpdr", no_argument, NULL, OPTION_PDR},
11260 #define OPTION_NO_PDR (OPTION_ELF_BASE + 11)
11261 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
11262 #define OPTION_MVXWORKS_PIC (OPTION_ELF_BASE + 12)
11263 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
11264 #endif /* OBJ_ELF */
11265
11266 {NULL, no_argument, NULL, 0}
11267 };
11268 size_t md_longopts_size = sizeof (md_longopts);
11269
11270 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
11271 NEW_VALUE. Warn if another value was already specified. Note:
11272 we have to defer parsing the -march and -mtune arguments in order
11273 to handle 'from-abi' correctly, since the ABI might be specified
11274 in a later argument. */
11275
11276 static void
11277 mips_set_option_string (const char **string_ptr, const char *new_value)
11278 {
11279 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
11280 as_warn (_("A different %s was already specified, is now %s"),
11281 string_ptr == &mips_arch_string ? "-march" : "-mtune",
11282 new_value);
11283
11284 *string_ptr = new_value;
11285 }
11286
11287 int
11288 md_parse_option (int c, char *arg)
11289 {
11290 switch (c)
11291 {
11292 case OPTION_CONSTRUCT_FLOATS:
11293 mips_disable_float_construction = 0;
11294 break;
11295
11296 case OPTION_NO_CONSTRUCT_FLOATS:
11297 mips_disable_float_construction = 1;
11298 break;
11299
11300 case OPTION_TRAP:
11301 mips_trap = 1;
11302 break;
11303
11304 case OPTION_BREAK:
11305 mips_trap = 0;
11306 break;
11307
11308 case OPTION_EB:
11309 target_big_endian = 1;
11310 break;
11311
11312 case OPTION_EL:
11313 target_big_endian = 0;
11314 break;
11315
11316 case 'O':
11317 if (arg == NULL)
11318 mips_optimize = 1;
11319 else if (arg[0] == '0')
11320 mips_optimize = 0;
11321 else if (arg[0] == '1')
11322 mips_optimize = 1;
11323 else
11324 mips_optimize = 2;
11325 break;
11326
11327 case 'g':
11328 if (arg == NULL)
11329 mips_debug = 2;
11330 else
11331 mips_debug = atoi (arg);
11332 break;
11333
11334 case OPTION_MIPS1:
11335 file_mips_isa = ISA_MIPS1;
11336 break;
11337
11338 case OPTION_MIPS2:
11339 file_mips_isa = ISA_MIPS2;
11340 break;
11341
11342 case OPTION_MIPS3:
11343 file_mips_isa = ISA_MIPS3;
11344 break;
11345
11346 case OPTION_MIPS4:
11347 file_mips_isa = ISA_MIPS4;
11348 break;
11349
11350 case OPTION_MIPS5:
11351 file_mips_isa = ISA_MIPS5;
11352 break;
11353
11354 case OPTION_MIPS32:
11355 file_mips_isa = ISA_MIPS32;
11356 break;
11357
11358 case OPTION_MIPS32R2:
11359 file_mips_isa = ISA_MIPS32R2;
11360 break;
11361
11362 case OPTION_MIPS64R2:
11363 file_mips_isa = ISA_MIPS64R2;
11364 break;
11365
11366 case OPTION_MIPS64:
11367 file_mips_isa = ISA_MIPS64;
11368 break;
11369
11370 case OPTION_MTUNE:
11371 mips_set_option_string (&mips_tune_string, arg);
11372 break;
11373
11374 case OPTION_MARCH:
11375 mips_set_option_string (&mips_arch_string, arg);
11376 break;
11377
11378 case OPTION_M4650:
11379 mips_set_option_string (&mips_arch_string, "4650");
11380 mips_set_option_string (&mips_tune_string, "4650");
11381 break;
11382
11383 case OPTION_NO_M4650:
11384 break;
11385
11386 case OPTION_M4010:
11387 mips_set_option_string (&mips_arch_string, "4010");
11388 mips_set_option_string (&mips_tune_string, "4010");
11389 break;
11390
11391 case OPTION_NO_M4010:
11392 break;
11393
11394 case OPTION_M4100:
11395 mips_set_option_string (&mips_arch_string, "4100");
11396 mips_set_option_string (&mips_tune_string, "4100");
11397 break;
11398
11399 case OPTION_NO_M4100:
11400 break;
11401
11402 case OPTION_M3900:
11403 mips_set_option_string (&mips_arch_string, "3900");
11404 mips_set_option_string (&mips_tune_string, "3900");
11405 break;
11406
11407 case OPTION_NO_M3900:
11408 break;
11409
11410 case OPTION_MDMX:
11411 mips_opts.ase_mdmx = 1;
11412 break;
11413
11414 case OPTION_NO_MDMX:
11415 mips_opts.ase_mdmx = 0;
11416 break;
11417
11418 case OPTION_DSP:
11419 mips_opts.ase_dsp = 1;
11420 mips_opts.ase_dspr2 = 0;
11421 break;
11422
11423 case OPTION_NO_DSP:
11424 mips_opts.ase_dsp = 0;
11425 mips_opts.ase_dspr2 = 0;
11426 break;
11427
11428 case OPTION_DSPR2:
11429 mips_opts.ase_dspr2 = 1;
11430 mips_opts.ase_dsp = 1;
11431 break;
11432
11433 case OPTION_NO_DSPR2:
11434 mips_opts.ase_dspr2 = 0;
11435 mips_opts.ase_dsp = 0;
11436 break;
11437
11438 case OPTION_MT:
11439 mips_opts.ase_mt = 1;
11440 break;
11441
11442 case OPTION_NO_MT:
11443 mips_opts.ase_mt = 0;
11444 break;
11445
11446 case OPTION_MIPS16:
11447 mips_opts.mips16 = 1;
11448 mips_no_prev_insn ();
11449 break;
11450
11451 case OPTION_NO_MIPS16:
11452 mips_opts.mips16 = 0;
11453 mips_no_prev_insn ();
11454 break;
11455
11456 case OPTION_MIPS3D:
11457 mips_opts.ase_mips3d = 1;
11458 break;
11459
11460 case OPTION_NO_MIPS3D:
11461 mips_opts.ase_mips3d = 0;
11462 break;
11463
11464 case OPTION_SMARTMIPS:
11465 mips_opts.ase_smartmips = 1;
11466 break;
11467
11468 case OPTION_NO_SMARTMIPS:
11469 mips_opts.ase_smartmips = 0;
11470 break;
11471
11472 case OPTION_FIX_VR4120:
11473 mips_fix_vr4120 = 1;
11474 break;
11475
11476 case OPTION_NO_FIX_VR4120:
11477 mips_fix_vr4120 = 0;
11478 break;
11479
11480 case OPTION_FIX_VR4130:
11481 mips_fix_vr4130 = 1;
11482 break;
11483
11484 case OPTION_NO_FIX_VR4130:
11485 mips_fix_vr4130 = 0;
11486 break;
11487
11488 case OPTION_RELAX_BRANCH:
11489 mips_relax_branch = 1;
11490 break;
11491
11492 case OPTION_NO_RELAX_BRANCH:
11493 mips_relax_branch = 0;
11494 break;
11495
11496 case OPTION_MSHARED:
11497 mips_in_shared = TRUE;
11498 break;
11499
11500 case OPTION_MNO_SHARED:
11501 mips_in_shared = FALSE;
11502 break;
11503
11504 case OPTION_MSYM32:
11505 mips_opts.sym32 = TRUE;
11506 break;
11507
11508 case OPTION_MNO_SYM32:
11509 mips_opts.sym32 = FALSE;
11510 break;
11511
11512 #ifdef OBJ_ELF
11513 /* When generating ELF code, we permit -KPIC and -call_shared to
11514 select SVR4_PIC, and -non_shared to select no PIC. This is
11515 intended to be compatible with Irix 5. */
11516 case OPTION_CALL_SHARED:
11517 if (!IS_ELF)
11518 {
11519 as_bad (_("-call_shared is supported only for ELF format"));
11520 return 0;
11521 }
11522 mips_pic = SVR4_PIC;
11523 mips_abicalls = TRUE;
11524 break;
11525
11526 case OPTION_CALL_NONPIC:
11527 if (!IS_ELF)
11528 {
11529 as_bad (_("-call_nonpic is supported only for ELF format"));
11530 return 0;
11531 }
11532 mips_pic = NO_PIC;
11533 mips_abicalls = TRUE;
11534 break;
11535
11536 case OPTION_NON_SHARED:
11537 if (!IS_ELF)
11538 {
11539 as_bad (_("-non_shared is supported only for ELF format"));
11540 return 0;
11541 }
11542 mips_pic = NO_PIC;
11543 mips_abicalls = FALSE;
11544 break;
11545
11546 /* The -xgot option tells the assembler to use 32 bit offsets
11547 when accessing the got in SVR4_PIC mode. It is for Irix
11548 compatibility. */
11549 case OPTION_XGOT:
11550 mips_big_got = 1;
11551 break;
11552 #endif /* OBJ_ELF */
11553
11554 case 'G':
11555 g_switch_value = atoi (arg);
11556 g_switch_seen = 1;
11557 break;
11558
11559 #ifdef OBJ_ELF
11560 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
11561 and -mabi=64. */
11562 case OPTION_32:
11563 if (!IS_ELF)
11564 {
11565 as_bad (_("-32 is supported for ELF format only"));
11566 return 0;
11567 }
11568 mips_abi = O32_ABI;
11569 break;
11570
11571 case OPTION_N32:
11572 if (!IS_ELF)
11573 {
11574 as_bad (_("-n32 is supported for ELF format only"));
11575 return 0;
11576 }
11577 mips_abi = N32_ABI;
11578 break;
11579
11580 case OPTION_64:
11581 if (!IS_ELF)
11582 {
11583 as_bad (_("-64 is supported for ELF format only"));
11584 return 0;
11585 }
11586 mips_abi = N64_ABI;
11587 if (!support_64bit_objects())
11588 as_fatal (_("No compiled in support for 64 bit object file format"));
11589 break;
11590 #endif /* OBJ_ELF */
11591
11592 case OPTION_GP32:
11593 file_mips_gp32 = 1;
11594 break;
11595
11596 case OPTION_GP64:
11597 file_mips_gp32 = 0;
11598 break;
11599
11600 case OPTION_FP32:
11601 file_mips_fp32 = 1;
11602 break;
11603
11604 case OPTION_FP64:
11605 file_mips_fp32 = 0;
11606 break;
11607
11608 case OPTION_SINGLE_FLOAT:
11609 file_mips_single_float = 1;
11610 break;
11611
11612 case OPTION_DOUBLE_FLOAT:
11613 file_mips_single_float = 0;
11614 break;
11615
11616 case OPTION_SOFT_FLOAT:
11617 file_mips_soft_float = 1;
11618 break;
11619
11620 case OPTION_HARD_FLOAT:
11621 file_mips_soft_float = 0;
11622 break;
11623
11624 #ifdef OBJ_ELF
11625 case OPTION_MABI:
11626 if (!IS_ELF)
11627 {
11628 as_bad (_("-mabi is supported for ELF format only"));
11629 return 0;
11630 }
11631 if (strcmp (arg, "32") == 0)
11632 mips_abi = O32_ABI;
11633 else if (strcmp (arg, "o64") == 0)
11634 mips_abi = O64_ABI;
11635 else if (strcmp (arg, "n32") == 0)
11636 mips_abi = N32_ABI;
11637 else if (strcmp (arg, "64") == 0)
11638 {
11639 mips_abi = N64_ABI;
11640 if (! support_64bit_objects())
11641 as_fatal (_("No compiled in support for 64 bit object file "
11642 "format"));
11643 }
11644 else if (strcmp (arg, "eabi") == 0)
11645 mips_abi = EABI_ABI;
11646 else
11647 {
11648 as_fatal (_("invalid abi -mabi=%s"), arg);
11649 return 0;
11650 }
11651 break;
11652 #endif /* OBJ_ELF */
11653
11654 case OPTION_M7000_HILO_FIX:
11655 mips_7000_hilo_fix = TRUE;
11656 break;
11657
11658 case OPTION_MNO_7000_HILO_FIX:
11659 mips_7000_hilo_fix = FALSE;
11660 break;
11661
11662 #ifdef OBJ_ELF
11663 case OPTION_MDEBUG:
11664 mips_flag_mdebug = TRUE;
11665 break;
11666
11667 case OPTION_NO_MDEBUG:
11668 mips_flag_mdebug = FALSE;
11669 break;
11670
11671 case OPTION_PDR:
11672 mips_flag_pdr = TRUE;
11673 break;
11674
11675 case OPTION_NO_PDR:
11676 mips_flag_pdr = FALSE;
11677 break;
11678
11679 case OPTION_MVXWORKS_PIC:
11680 mips_pic = VXWORKS_PIC;
11681 break;
11682 #endif /* OBJ_ELF */
11683
11684 default:
11685 return 0;
11686 }
11687
11688 return 1;
11689 }
11690 \f
11691 /* Set up globals to generate code for the ISA or processor
11692 described by INFO. */
11693
11694 static void
11695 mips_set_architecture (const struct mips_cpu_info *info)
11696 {
11697 if (info != 0)
11698 {
11699 file_mips_arch = info->cpu;
11700 mips_opts.arch = info->cpu;
11701 mips_opts.isa = info->isa;
11702 }
11703 }
11704
11705
11706 /* Likewise for tuning. */
11707
11708 static void
11709 mips_set_tune (const struct mips_cpu_info *info)
11710 {
11711 if (info != 0)
11712 mips_tune = info->cpu;
11713 }
11714
11715
11716 void
11717 mips_after_parse_args (void)
11718 {
11719 const struct mips_cpu_info *arch_info = 0;
11720 const struct mips_cpu_info *tune_info = 0;
11721
11722 /* GP relative stuff not working for PE */
11723 if (strncmp (TARGET_OS, "pe", 2) == 0)
11724 {
11725 if (g_switch_seen && g_switch_value != 0)
11726 as_bad (_("-G not supported in this configuration."));
11727 g_switch_value = 0;
11728 }
11729
11730 if (mips_abi == NO_ABI)
11731 mips_abi = MIPS_DEFAULT_ABI;
11732
11733 /* The following code determines the architecture and register size.
11734 Similar code was added to GCC 3.3 (see override_options() in
11735 config/mips/mips.c). The GAS and GCC code should be kept in sync
11736 as much as possible. */
11737
11738 if (mips_arch_string != 0)
11739 arch_info = mips_parse_cpu ("-march", mips_arch_string);
11740
11741 if (file_mips_isa != ISA_UNKNOWN)
11742 {
11743 /* Handle -mipsN. At this point, file_mips_isa contains the
11744 ISA level specified by -mipsN, while arch_info->isa contains
11745 the -march selection (if any). */
11746 if (arch_info != 0)
11747 {
11748 /* -march takes precedence over -mipsN, since it is more descriptive.
11749 There's no harm in specifying both as long as the ISA levels
11750 are the same. */
11751 if (file_mips_isa != arch_info->isa)
11752 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
11753 mips_cpu_info_from_isa (file_mips_isa)->name,
11754 mips_cpu_info_from_isa (arch_info->isa)->name);
11755 }
11756 else
11757 arch_info = mips_cpu_info_from_isa (file_mips_isa);
11758 }
11759
11760 if (arch_info == 0)
11761 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
11762
11763 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
11764 as_bad ("-march=%s is not compatible with the selected ABI",
11765 arch_info->name);
11766
11767 mips_set_architecture (arch_info);
11768
11769 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
11770 if (mips_tune_string != 0)
11771 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
11772
11773 if (tune_info == 0)
11774 mips_set_tune (arch_info);
11775 else
11776 mips_set_tune (tune_info);
11777
11778 if (file_mips_gp32 >= 0)
11779 {
11780 /* The user specified the size of the integer registers. Make sure
11781 it agrees with the ABI and ISA. */
11782 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
11783 as_bad (_("-mgp64 used with a 32-bit processor"));
11784 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
11785 as_bad (_("-mgp32 used with a 64-bit ABI"));
11786 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
11787 as_bad (_("-mgp64 used with a 32-bit ABI"));
11788 }
11789 else
11790 {
11791 /* Infer the integer register size from the ABI and processor.
11792 Restrict ourselves to 32-bit registers if that's all the
11793 processor has, or if the ABI cannot handle 64-bit registers. */
11794 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
11795 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
11796 }
11797
11798 switch (file_mips_fp32)
11799 {
11800 default:
11801 case -1:
11802 /* No user specified float register size.
11803 ??? GAS treats single-float processors as though they had 64-bit
11804 float registers (although it complains when double-precision
11805 instructions are used). As things stand, saying they have 32-bit
11806 registers would lead to spurious "register must be even" messages.
11807 So here we assume float registers are never smaller than the
11808 integer ones. */
11809 if (file_mips_gp32 == 0)
11810 /* 64-bit integer registers implies 64-bit float registers. */
11811 file_mips_fp32 = 0;
11812 else if ((mips_opts.ase_mips3d > 0 || mips_opts.ase_mdmx > 0)
11813 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
11814 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
11815 file_mips_fp32 = 0;
11816 else
11817 /* 32-bit float registers. */
11818 file_mips_fp32 = 1;
11819 break;
11820
11821 /* The user specified the size of the float registers. Check if it
11822 agrees with the ABI and ISA. */
11823 case 0:
11824 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
11825 as_bad (_("-mfp64 used with a 32-bit fpu"));
11826 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
11827 && !ISA_HAS_MXHC1 (mips_opts.isa))
11828 as_warn (_("-mfp64 used with a 32-bit ABI"));
11829 break;
11830 case 1:
11831 if (ABI_NEEDS_64BIT_REGS (mips_abi))
11832 as_warn (_("-mfp32 used with a 64-bit ABI"));
11833 break;
11834 }
11835
11836 /* End of GCC-shared inference code. */
11837
11838 /* This flag is set when we have a 64-bit capable CPU but use only
11839 32-bit wide registers. Note that EABI does not use it. */
11840 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
11841 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
11842 || mips_abi == O32_ABI))
11843 mips_32bitmode = 1;
11844
11845 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
11846 as_bad (_("trap exception not supported at ISA 1"));
11847
11848 /* If the selected architecture includes support for ASEs, enable
11849 generation of code for them. */
11850 if (mips_opts.mips16 == -1)
11851 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
11852 if (mips_opts.ase_mips3d == -1)
11853 mips_opts.ase_mips3d = ((arch_info->flags & MIPS_CPU_ASE_MIPS3D)
11854 && file_mips_fp32 == 0) ? 1 : 0;
11855 if (mips_opts.ase_mips3d && file_mips_fp32 == 1)
11856 as_bad (_("-mfp32 used with -mips3d"));
11857
11858 if (mips_opts.ase_mdmx == -1)
11859 mips_opts.ase_mdmx = ((arch_info->flags & MIPS_CPU_ASE_MDMX)
11860 && file_mips_fp32 == 0) ? 1 : 0;
11861 if (mips_opts.ase_mdmx && file_mips_fp32 == 1)
11862 as_bad (_("-mfp32 used with -mdmx"));
11863
11864 if (mips_opts.ase_smartmips == -1)
11865 mips_opts.ase_smartmips = (arch_info->flags & MIPS_CPU_ASE_SMARTMIPS) ? 1 : 0;
11866 if (mips_opts.ase_smartmips && !ISA_SUPPORTS_SMARTMIPS)
11867 as_warn ("%s ISA does not support SmartMIPS",
11868 mips_cpu_info_from_isa (mips_opts.isa)->name);
11869
11870 if (mips_opts.ase_dsp == -1)
11871 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
11872 if (mips_opts.ase_dsp && !ISA_SUPPORTS_DSP_ASE)
11873 as_warn ("%s ISA does not support DSP ASE",
11874 mips_cpu_info_from_isa (mips_opts.isa)->name);
11875
11876 if (mips_opts.ase_dspr2 == -1)
11877 {
11878 mips_opts.ase_dspr2 = (arch_info->flags & MIPS_CPU_ASE_DSPR2) ? 1 : 0;
11879 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
11880 }
11881 if (mips_opts.ase_dspr2 && !ISA_SUPPORTS_DSPR2_ASE)
11882 as_warn ("%s ISA does not support DSP R2 ASE",
11883 mips_cpu_info_from_isa (mips_opts.isa)->name);
11884
11885 if (mips_opts.ase_mt == -1)
11886 mips_opts.ase_mt = (arch_info->flags & MIPS_CPU_ASE_MT) ? 1 : 0;
11887 if (mips_opts.ase_mt && !ISA_SUPPORTS_MT_ASE)
11888 as_warn ("%s ISA does not support MT ASE",
11889 mips_cpu_info_from_isa (mips_opts.isa)->name);
11890
11891 file_mips_isa = mips_opts.isa;
11892 file_ase_mips16 = mips_opts.mips16;
11893 file_ase_mips3d = mips_opts.ase_mips3d;
11894 file_ase_mdmx = mips_opts.ase_mdmx;
11895 file_ase_smartmips = mips_opts.ase_smartmips;
11896 file_ase_dsp = mips_opts.ase_dsp;
11897 file_ase_dspr2 = mips_opts.ase_dspr2;
11898 file_ase_mt = mips_opts.ase_mt;
11899 mips_opts.gp32 = file_mips_gp32;
11900 mips_opts.fp32 = file_mips_fp32;
11901 mips_opts.soft_float = file_mips_soft_float;
11902 mips_opts.single_float = file_mips_single_float;
11903
11904 if (mips_flag_mdebug < 0)
11905 {
11906 #ifdef OBJ_MAYBE_ECOFF
11907 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
11908 mips_flag_mdebug = 1;
11909 else
11910 #endif /* OBJ_MAYBE_ECOFF */
11911 mips_flag_mdebug = 0;
11912 }
11913 }
11914 \f
11915 void
11916 mips_init_after_args (void)
11917 {
11918 /* initialize opcodes */
11919 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
11920 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
11921 }
11922
11923 long
11924 md_pcrel_from (fixS *fixP)
11925 {
11926 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
11927 switch (fixP->fx_r_type)
11928 {
11929 case BFD_RELOC_16_PCREL_S2:
11930 case BFD_RELOC_MIPS_JMP:
11931 /* Return the address of the delay slot. */
11932 return addr + 4;
11933 default:
11934 /* We have no relocation type for PC relative MIPS16 instructions. */
11935 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
11936 as_bad_where (fixP->fx_file, fixP->fx_line,
11937 _("PC relative MIPS16 instruction references a different section"));
11938 return addr;
11939 }
11940 }
11941
11942 /* This is called before the symbol table is processed. In order to
11943 work with gcc when using mips-tfile, we must keep all local labels.
11944 However, in other cases, we want to discard them. If we were
11945 called with -g, but we didn't see any debugging information, it may
11946 mean that gcc is smuggling debugging information through to
11947 mips-tfile, in which case we must generate all local labels. */
11948
11949 void
11950 mips_frob_file_before_adjust (void)
11951 {
11952 #ifndef NO_ECOFF_DEBUGGING
11953 if (ECOFF_DEBUGGING
11954 && mips_debug != 0
11955 && ! ecoff_debugging_seen)
11956 flag_keep_locals = 1;
11957 #endif
11958 }
11959
11960 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
11961 the corresponding LO16 reloc. This is called before md_apply_fix and
11962 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
11963 relocation operators.
11964
11965 For our purposes, a %lo() expression matches a %got() or %hi()
11966 expression if:
11967
11968 (a) it refers to the same symbol; and
11969 (b) the offset applied in the %lo() expression is no lower than
11970 the offset applied in the %got() or %hi().
11971
11972 (b) allows us to cope with code like:
11973
11974 lui $4,%hi(foo)
11975 lh $4,%lo(foo+2)($4)
11976
11977 ...which is legal on RELA targets, and has a well-defined behaviour
11978 if the user knows that adding 2 to "foo" will not induce a carry to
11979 the high 16 bits.
11980
11981 When several %lo()s match a particular %got() or %hi(), we use the
11982 following rules to distinguish them:
11983
11984 (1) %lo()s with smaller offsets are a better match than %lo()s with
11985 higher offsets.
11986
11987 (2) %lo()s with no matching %got() or %hi() are better than those
11988 that already have a matching %got() or %hi().
11989
11990 (3) later %lo()s are better than earlier %lo()s.
11991
11992 These rules are applied in order.
11993
11994 (1) means, among other things, that %lo()s with identical offsets are
11995 chosen if they exist.
11996
11997 (2) means that we won't associate several high-part relocations with
11998 the same low-part relocation unless there's no alternative. Having
11999 several high parts for the same low part is a GNU extension; this rule
12000 allows careful users to avoid it.
12001
12002 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
12003 with the last high-part relocation being at the front of the list.
12004 It therefore makes sense to choose the last matching low-part
12005 relocation, all other things being equal. It's also easier
12006 to code that way. */
12007
12008 void
12009 mips_frob_file (void)
12010 {
12011 struct mips_hi_fixup *l;
12012 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
12013
12014 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
12015 {
12016 segment_info_type *seginfo;
12017 bfd_boolean matched_lo_p;
12018 fixS **hi_pos, **lo_pos, **pos;
12019
12020 assert (reloc_needs_lo_p (l->fixp->fx_r_type));
12021
12022 /* If a GOT16 relocation turns out to be against a global symbol,
12023 there isn't supposed to be a matching LO. */
12024 if (got16_reloc_p (l->fixp->fx_r_type)
12025 && !pic_need_relax (l->fixp->fx_addsy, l->seg))
12026 continue;
12027
12028 /* Check quickly whether the next fixup happens to be a matching %lo. */
12029 if (fixup_has_matching_lo_p (l->fixp))
12030 continue;
12031
12032 seginfo = seg_info (l->seg);
12033
12034 /* Set HI_POS to the position of this relocation in the chain.
12035 Set LO_POS to the position of the chosen low-part relocation.
12036 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
12037 relocation that matches an immediately-preceding high-part
12038 relocation. */
12039 hi_pos = NULL;
12040 lo_pos = NULL;
12041 matched_lo_p = FALSE;
12042 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
12043
12044 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
12045 {
12046 if (*pos == l->fixp)
12047 hi_pos = pos;
12048
12049 if ((*pos)->fx_r_type == looking_for_rtype
12050 && (*pos)->fx_addsy == l->fixp->fx_addsy
12051 && (*pos)->fx_offset >= l->fixp->fx_offset
12052 && (lo_pos == NULL
12053 || (*pos)->fx_offset < (*lo_pos)->fx_offset
12054 || (!matched_lo_p
12055 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
12056 lo_pos = pos;
12057
12058 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
12059 && fixup_has_matching_lo_p (*pos));
12060 }
12061
12062 /* If we found a match, remove the high-part relocation from its
12063 current position and insert it before the low-part relocation.
12064 Make the offsets match so that fixup_has_matching_lo_p()
12065 will return true.
12066
12067 We don't warn about unmatched high-part relocations since some
12068 versions of gcc have been known to emit dead "lui ...%hi(...)"
12069 instructions. */
12070 if (lo_pos != NULL)
12071 {
12072 l->fixp->fx_offset = (*lo_pos)->fx_offset;
12073 if (l->fixp->fx_next != *lo_pos)
12074 {
12075 *hi_pos = l->fixp->fx_next;
12076 l->fixp->fx_next = *lo_pos;
12077 *lo_pos = l->fixp;
12078 }
12079 }
12080 }
12081 }
12082
12083 /* We may have combined relocations without symbols in the N32/N64 ABI.
12084 We have to prevent gas from dropping them. */
12085
12086 int
12087 mips_force_relocation (fixS *fixp)
12088 {
12089 if (generic_force_reloc (fixp))
12090 return 1;
12091
12092 if (HAVE_NEWABI
12093 && S_GET_SEGMENT (fixp->fx_addsy) == bfd_abs_section_ptr
12094 && (fixp->fx_r_type == BFD_RELOC_MIPS_SUB
12095 || hi16_reloc_p (fixp->fx_r_type)
12096 || lo16_reloc_p (fixp->fx_r_type)))
12097 return 1;
12098
12099 return 0;
12100 }
12101
12102 /* Apply a fixup to the object file. */
12103
12104 void
12105 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
12106 {
12107 bfd_byte *buf;
12108 long insn;
12109 reloc_howto_type *howto;
12110
12111 /* We ignore generic BFD relocations we don't know about. */
12112 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
12113 if (! howto)
12114 return;
12115
12116 assert (fixP->fx_size == 4
12117 || fixP->fx_r_type == BFD_RELOC_16
12118 || fixP->fx_r_type == BFD_RELOC_64
12119 || fixP->fx_r_type == BFD_RELOC_CTOR
12120 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
12121 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
12122 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
12123 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
12124
12125 buf = (bfd_byte *) (fixP->fx_frag->fr_literal + fixP->fx_where);
12126
12127 assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2);
12128
12129 /* Don't treat parts of a composite relocation as done. There are two
12130 reasons for this:
12131
12132 (1) The second and third parts will be against 0 (RSS_UNDEF) but
12133 should nevertheless be emitted if the first part is.
12134
12135 (2) In normal usage, composite relocations are never assembly-time
12136 constants. The easiest way of dealing with the pathological
12137 exceptions is to generate a relocation against STN_UNDEF and
12138 leave everything up to the linker. */
12139 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
12140 fixP->fx_done = 1;
12141
12142 switch (fixP->fx_r_type)
12143 {
12144 case BFD_RELOC_MIPS_TLS_GD:
12145 case BFD_RELOC_MIPS_TLS_LDM:
12146 case BFD_RELOC_MIPS_TLS_DTPREL32:
12147 case BFD_RELOC_MIPS_TLS_DTPREL64:
12148 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
12149 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
12150 case BFD_RELOC_MIPS_TLS_GOTTPREL:
12151 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
12152 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
12153 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12154 /* fall through */
12155
12156 case BFD_RELOC_MIPS_JMP:
12157 case BFD_RELOC_MIPS_SHIFT5:
12158 case BFD_RELOC_MIPS_SHIFT6:
12159 case BFD_RELOC_MIPS_GOT_DISP:
12160 case BFD_RELOC_MIPS_GOT_PAGE:
12161 case BFD_RELOC_MIPS_GOT_OFST:
12162 case BFD_RELOC_MIPS_SUB:
12163 case BFD_RELOC_MIPS_INSERT_A:
12164 case BFD_RELOC_MIPS_INSERT_B:
12165 case BFD_RELOC_MIPS_DELETE:
12166 case BFD_RELOC_MIPS_HIGHEST:
12167 case BFD_RELOC_MIPS_HIGHER:
12168 case BFD_RELOC_MIPS_SCN_DISP:
12169 case BFD_RELOC_MIPS_REL16:
12170 case BFD_RELOC_MIPS_RELGOT:
12171 case BFD_RELOC_MIPS_JALR:
12172 case BFD_RELOC_HI16:
12173 case BFD_RELOC_HI16_S:
12174 case BFD_RELOC_GPREL16:
12175 case BFD_RELOC_MIPS_LITERAL:
12176 case BFD_RELOC_MIPS_CALL16:
12177 case BFD_RELOC_MIPS_GOT16:
12178 case BFD_RELOC_GPREL32:
12179 case BFD_RELOC_MIPS_GOT_HI16:
12180 case BFD_RELOC_MIPS_GOT_LO16:
12181 case BFD_RELOC_MIPS_CALL_HI16:
12182 case BFD_RELOC_MIPS_CALL_LO16:
12183 case BFD_RELOC_MIPS16_GPREL:
12184 case BFD_RELOC_MIPS16_GOT16:
12185 case BFD_RELOC_MIPS16_CALL16:
12186 case BFD_RELOC_MIPS16_HI16:
12187 case BFD_RELOC_MIPS16_HI16_S:
12188 case BFD_RELOC_MIPS16_JMP:
12189 /* Nothing needed to do. The value comes from the reloc entry. */
12190 break;
12191
12192 case BFD_RELOC_64:
12193 /* This is handled like BFD_RELOC_32, but we output a sign
12194 extended value if we are only 32 bits. */
12195 if (fixP->fx_done)
12196 {
12197 if (8 <= sizeof (valueT))
12198 md_number_to_chars ((char *) buf, *valP, 8);
12199 else
12200 {
12201 valueT hiv;
12202
12203 if ((*valP & 0x80000000) != 0)
12204 hiv = 0xffffffff;
12205 else
12206 hiv = 0;
12207 md_number_to_chars ((char *)(buf + (target_big_endian ? 4 : 0)),
12208 *valP, 4);
12209 md_number_to_chars ((char *)(buf + (target_big_endian ? 0 : 4)),
12210 hiv, 4);
12211 }
12212 }
12213 break;
12214
12215 case BFD_RELOC_RVA:
12216 case BFD_RELOC_32:
12217 case BFD_RELOC_16:
12218 /* If we are deleting this reloc entry, we must fill in the
12219 value now. This can happen if we have a .word which is not
12220 resolved when it appears but is later defined. */
12221 if (fixP->fx_done)
12222 md_number_to_chars ((char *) buf, *valP, fixP->fx_size);
12223 break;
12224
12225 case BFD_RELOC_LO16:
12226 case BFD_RELOC_MIPS16_LO16:
12227 /* FIXME: Now that embedded-PIC is gone, some of this code/comment
12228 may be safe to remove, but if so it's not obvious. */
12229 /* When handling an embedded PIC switch statement, we can wind
12230 up deleting a LO16 reloc. See the 'o' case in mips_ip. */
12231 if (fixP->fx_done)
12232 {
12233 if (*valP + 0x8000 > 0xffff)
12234 as_bad_where (fixP->fx_file, fixP->fx_line,
12235 _("relocation overflow"));
12236 if (target_big_endian)
12237 buf += 2;
12238 md_number_to_chars ((char *) buf, *valP, 2);
12239 }
12240 break;
12241
12242 case BFD_RELOC_16_PCREL_S2:
12243 if ((*valP & 0x3) != 0)
12244 as_bad_where (fixP->fx_file, fixP->fx_line,
12245 _("Branch to misaligned address (%lx)"), (long) *valP);
12246
12247 /* We need to save the bits in the instruction since fixup_segment()
12248 might be deleting the relocation entry (i.e., a branch within
12249 the current segment). */
12250 if (! fixP->fx_done)
12251 break;
12252
12253 /* Update old instruction data. */
12254 if (target_big_endian)
12255 insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
12256 else
12257 insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
12258
12259 if (*valP + 0x20000 <= 0x3ffff)
12260 {
12261 insn |= (*valP >> 2) & 0xffff;
12262 md_number_to_chars ((char *) buf, insn, 4);
12263 }
12264 else if (mips_pic == NO_PIC
12265 && fixP->fx_done
12266 && fixP->fx_frag->fr_address >= text_section->vma
12267 && (fixP->fx_frag->fr_address
12268 < text_section->vma + bfd_get_section_size (text_section))
12269 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
12270 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
12271 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
12272 {
12273 /* The branch offset is too large. If this is an
12274 unconditional branch, and we are not generating PIC code,
12275 we can convert it to an absolute jump instruction. */
12276 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
12277 insn = 0x0c000000; /* jal */
12278 else
12279 insn = 0x08000000; /* j */
12280 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
12281 fixP->fx_done = 0;
12282 fixP->fx_addsy = section_symbol (text_section);
12283 *valP += md_pcrel_from (fixP);
12284 md_number_to_chars ((char *) buf, insn, 4);
12285 }
12286 else
12287 {
12288 /* If we got here, we have branch-relaxation disabled,
12289 and there's nothing we can do to fix this instruction
12290 without turning it into a longer sequence. */
12291 as_bad_where (fixP->fx_file, fixP->fx_line,
12292 _("Branch out of range"));
12293 }
12294 break;
12295
12296 case BFD_RELOC_VTABLE_INHERIT:
12297 fixP->fx_done = 0;
12298 if (fixP->fx_addsy
12299 && !S_IS_DEFINED (fixP->fx_addsy)
12300 && !S_IS_WEAK (fixP->fx_addsy))
12301 S_SET_WEAK (fixP->fx_addsy);
12302 break;
12303
12304 case BFD_RELOC_VTABLE_ENTRY:
12305 fixP->fx_done = 0;
12306 break;
12307
12308 default:
12309 internalError ();
12310 }
12311
12312 /* Remember value for tc_gen_reloc. */
12313 fixP->fx_addnumber = *valP;
12314 }
12315
12316 static symbolS *
12317 get_symbol (void)
12318 {
12319 int c;
12320 char *name;
12321 symbolS *p;
12322
12323 name = input_line_pointer;
12324 c = get_symbol_end ();
12325 p = (symbolS *) symbol_find_or_make (name);
12326 *input_line_pointer = c;
12327 return p;
12328 }
12329
12330 /* Align the current frag to a given power of two. If a particular
12331 fill byte should be used, FILL points to an integer that contains
12332 that byte, otherwise FILL is null.
12333
12334 The MIPS assembler also automatically adjusts any preceding
12335 label. */
12336
12337 static void
12338 mips_align (int to, int *fill, symbolS *label)
12339 {
12340 mips_emit_delays ();
12341 mips_record_mips16_mode ();
12342 if (fill == NULL && subseg_text_p (now_seg))
12343 frag_align_code (to, 0);
12344 else
12345 frag_align (to, fill ? *fill : 0, 0);
12346 record_alignment (now_seg, to);
12347 if (label != NULL)
12348 {
12349 assert (S_GET_SEGMENT (label) == now_seg);
12350 symbol_set_frag (label, frag_now);
12351 S_SET_VALUE (label, (valueT) frag_now_fix ());
12352 }
12353 }
12354
12355 /* Align to a given power of two. .align 0 turns off the automatic
12356 alignment used by the data creating pseudo-ops. */
12357
12358 static void
12359 s_align (int x ATTRIBUTE_UNUSED)
12360 {
12361 int temp, fill_value, *fill_ptr;
12362 long max_alignment = 28;
12363
12364 /* o Note that the assembler pulls down any immediately preceding label
12365 to the aligned address.
12366 o It's not documented but auto alignment is reinstated by
12367 a .align pseudo instruction.
12368 o Note also that after auto alignment is turned off the mips assembler
12369 issues an error on attempt to assemble an improperly aligned data item.
12370 We don't. */
12371
12372 temp = get_absolute_expression ();
12373 if (temp > max_alignment)
12374 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
12375 else if (temp < 0)
12376 {
12377 as_warn (_("Alignment negative: 0 assumed."));
12378 temp = 0;
12379 }
12380 if (*input_line_pointer == ',')
12381 {
12382 ++input_line_pointer;
12383 fill_value = get_absolute_expression ();
12384 fill_ptr = &fill_value;
12385 }
12386 else
12387 fill_ptr = 0;
12388 if (temp)
12389 {
12390 segment_info_type *si = seg_info (now_seg);
12391 struct insn_label_list *l = si->label_list;
12392 /* Auto alignment should be switched on by next section change. */
12393 auto_align = 1;
12394 mips_align (temp, fill_ptr, l != NULL ? l->label : NULL);
12395 }
12396 else
12397 {
12398 auto_align = 0;
12399 }
12400
12401 demand_empty_rest_of_line ();
12402 }
12403
12404 static void
12405 s_change_sec (int sec)
12406 {
12407 segT seg;
12408
12409 #ifdef OBJ_ELF
12410 /* The ELF backend needs to know that we are changing sections, so
12411 that .previous works correctly. We could do something like check
12412 for an obj_section_change_hook macro, but that might be confusing
12413 as it would not be appropriate to use it in the section changing
12414 functions in read.c, since obj-elf.c intercepts those. FIXME:
12415 This should be cleaner, somehow. */
12416 if (IS_ELF)
12417 obj_elf_section_change_hook ();
12418 #endif
12419
12420 mips_emit_delays ();
12421 switch (sec)
12422 {
12423 case 't':
12424 s_text (0);
12425 break;
12426 case 'd':
12427 s_data (0);
12428 break;
12429 case 'b':
12430 subseg_set (bss_section, (subsegT) get_absolute_expression ());
12431 demand_empty_rest_of_line ();
12432 break;
12433
12434 case 'r':
12435 seg = subseg_new (RDATA_SECTION_NAME,
12436 (subsegT) get_absolute_expression ());
12437 if (IS_ELF)
12438 {
12439 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
12440 | SEC_READONLY | SEC_RELOC
12441 | SEC_DATA));
12442 if (strncmp (TARGET_OS, "elf", 3) != 0)
12443 record_alignment (seg, 4);
12444 }
12445 demand_empty_rest_of_line ();
12446 break;
12447
12448 case 's':
12449 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
12450 if (IS_ELF)
12451 {
12452 bfd_set_section_flags (stdoutput, seg,
12453 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
12454 if (strncmp (TARGET_OS, "elf", 3) != 0)
12455 record_alignment (seg, 4);
12456 }
12457 demand_empty_rest_of_line ();
12458 break;
12459 }
12460
12461 auto_align = 1;
12462 }
12463
12464 void
12465 s_change_section (int ignore ATTRIBUTE_UNUSED)
12466 {
12467 #ifdef OBJ_ELF
12468 char *section_name;
12469 char c;
12470 char next_c = 0;
12471 int section_type;
12472 int section_flag;
12473 int section_entry_size;
12474 int section_alignment;
12475
12476 if (!IS_ELF)
12477 return;
12478
12479 section_name = input_line_pointer;
12480 c = get_symbol_end ();
12481 if (c)
12482 next_c = *(input_line_pointer + 1);
12483
12484 /* Do we have .section Name<,"flags">? */
12485 if (c != ',' || (c == ',' && next_c == '"'))
12486 {
12487 /* just after name is now '\0'. */
12488 *input_line_pointer = c;
12489 input_line_pointer = section_name;
12490 obj_elf_section (ignore);
12491 return;
12492 }
12493 input_line_pointer++;
12494
12495 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
12496 if (c == ',')
12497 section_type = get_absolute_expression ();
12498 else
12499 section_type = 0;
12500 if (*input_line_pointer++ == ',')
12501 section_flag = get_absolute_expression ();
12502 else
12503 section_flag = 0;
12504 if (*input_line_pointer++ == ',')
12505 section_entry_size = get_absolute_expression ();
12506 else
12507 section_entry_size = 0;
12508 if (*input_line_pointer++ == ',')
12509 section_alignment = get_absolute_expression ();
12510 else
12511 section_alignment = 0;
12512
12513 section_name = xstrdup (section_name);
12514
12515 /* When using the generic form of .section (as implemented by obj-elf.c),
12516 there's no way to set the section type to SHT_MIPS_DWARF. Users have
12517 traditionally had to fall back on the more common @progbits instead.
12518
12519 There's nothing really harmful in this, since bfd will correct
12520 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
12521 means that, for backwards compatibility, the special_section entries
12522 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
12523
12524 Even so, we shouldn't force users of the MIPS .section syntax to
12525 incorrectly label the sections as SHT_PROGBITS. The best compromise
12526 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
12527 generic type-checking code. */
12528 if (section_type == SHT_MIPS_DWARF)
12529 section_type = SHT_PROGBITS;
12530
12531 obj_elf_change_section (section_name, section_type, section_flag,
12532 section_entry_size, 0, 0, 0);
12533
12534 if (now_seg->name != section_name)
12535 free (section_name);
12536 #endif /* OBJ_ELF */
12537 }
12538
12539 void
12540 mips_enable_auto_align (void)
12541 {
12542 auto_align = 1;
12543 }
12544
12545 static void
12546 s_cons (int log_size)
12547 {
12548 segment_info_type *si = seg_info (now_seg);
12549 struct insn_label_list *l = si->label_list;
12550 symbolS *label;
12551
12552 label = l != NULL ? l->label : NULL;
12553 mips_emit_delays ();
12554 if (log_size > 0 && auto_align)
12555 mips_align (log_size, 0, label);
12556 mips_clear_insn_labels ();
12557 cons (1 << log_size);
12558 }
12559
12560 static void
12561 s_float_cons (int type)
12562 {
12563 segment_info_type *si = seg_info (now_seg);
12564 struct insn_label_list *l = si->label_list;
12565 symbolS *label;
12566
12567 label = l != NULL ? l->label : NULL;
12568
12569 mips_emit_delays ();
12570
12571 if (auto_align)
12572 {
12573 if (type == 'd')
12574 mips_align (3, 0, label);
12575 else
12576 mips_align (2, 0, label);
12577 }
12578
12579 mips_clear_insn_labels ();
12580
12581 float_cons (type);
12582 }
12583
12584 /* Handle .globl. We need to override it because on Irix 5 you are
12585 permitted to say
12586 .globl foo .text
12587 where foo is an undefined symbol, to mean that foo should be
12588 considered to be the address of a function. */
12589
12590 static void
12591 s_mips_globl (int x ATTRIBUTE_UNUSED)
12592 {
12593 char *name;
12594 int c;
12595 symbolS *symbolP;
12596 flagword flag;
12597
12598 do
12599 {
12600 name = input_line_pointer;
12601 c = get_symbol_end ();
12602 symbolP = symbol_find_or_make (name);
12603 S_SET_EXTERNAL (symbolP);
12604
12605 *input_line_pointer = c;
12606 SKIP_WHITESPACE ();
12607
12608 /* On Irix 5, every global symbol that is not explicitly labelled as
12609 being a function is apparently labelled as being an object. */
12610 flag = BSF_OBJECT;
12611
12612 if (!is_end_of_line[(unsigned char) *input_line_pointer]
12613 && (*input_line_pointer != ','))
12614 {
12615 char *secname;
12616 asection *sec;
12617
12618 secname = input_line_pointer;
12619 c = get_symbol_end ();
12620 sec = bfd_get_section_by_name (stdoutput, secname);
12621 if (sec == NULL)
12622 as_bad (_("%s: no such section"), secname);
12623 *input_line_pointer = c;
12624
12625 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
12626 flag = BSF_FUNCTION;
12627 }
12628
12629 symbol_get_bfdsym (symbolP)->flags |= flag;
12630
12631 c = *input_line_pointer;
12632 if (c == ',')
12633 {
12634 input_line_pointer++;
12635 SKIP_WHITESPACE ();
12636 if (is_end_of_line[(unsigned char) *input_line_pointer])
12637 c = '\n';
12638 }
12639 }
12640 while (c == ',');
12641
12642 demand_empty_rest_of_line ();
12643 }
12644
12645 static void
12646 s_option (int x ATTRIBUTE_UNUSED)
12647 {
12648 char *opt;
12649 char c;
12650
12651 opt = input_line_pointer;
12652 c = get_symbol_end ();
12653
12654 if (*opt == 'O')
12655 {
12656 /* FIXME: What does this mean? */
12657 }
12658 else if (strncmp (opt, "pic", 3) == 0)
12659 {
12660 int i;
12661
12662 i = atoi (opt + 3);
12663 if (i == 0)
12664 mips_pic = NO_PIC;
12665 else if (i == 2)
12666 {
12667 mips_pic = SVR4_PIC;
12668 mips_abicalls = TRUE;
12669 }
12670 else
12671 as_bad (_(".option pic%d not supported"), i);
12672
12673 if (mips_pic == SVR4_PIC)
12674 {
12675 if (g_switch_seen && g_switch_value != 0)
12676 as_warn (_("-G may not be used with SVR4 PIC code"));
12677 g_switch_value = 0;
12678 bfd_set_gp_size (stdoutput, 0);
12679 }
12680 }
12681 else
12682 as_warn (_("Unrecognized option \"%s\""), opt);
12683
12684 *input_line_pointer = c;
12685 demand_empty_rest_of_line ();
12686 }
12687
12688 /* This structure is used to hold a stack of .set values. */
12689
12690 struct mips_option_stack
12691 {
12692 struct mips_option_stack *next;
12693 struct mips_set_options options;
12694 };
12695
12696 static struct mips_option_stack *mips_opts_stack;
12697
12698 /* Handle the .set pseudo-op. */
12699
12700 static void
12701 s_mipsset (int x ATTRIBUTE_UNUSED)
12702 {
12703 char *name = input_line_pointer, ch;
12704
12705 while (!is_end_of_line[(unsigned char) *input_line_pointer])
12706 ++input_line_pointer;
12707 ch = *input_line_pointer;
12708 *input_line_pointer = '\0';
12709
12710 if (strcmp (name, "reorder") == 0)
12711 {
12712 if (mips_opts.noreorder)
12713 end_noreorder ();
12714 }
12715 else if (strcmp (name, "noreorder") == 0)
12716 {
12717 if (!mips_opts.noreorder)
12718 start_noreorder ();
12719 }
12720 else if (strncmp (name, "at=", 3) == 0)
12721 {
12722 char *s = name + 3;
12723
12724 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
12725 as_bad (_("Unrecognized register name `%s'"), s);
12726 }
12727 else if (strcmp (name, "at") == 0)
12728 {
12729 mips_opts.at = ATREG;
12730 }
12731 else if (strcmp (name, "noat") == 0)
12732 {
12733 mips_opts.at = ZERO;
12734 }
12735 else if (strcmp (name, "macro") == 0)
12736 {
12737 mips_opts.warn_about_macros = 0;
12738 }
12739 else if (strcmp (name, "nomacro") == 0)
12740 {
12741 if (mips_opts.noreorder == 0)
12742 as_bad (_("`noreorder' must be set before `nomacro'"));
12743 mips_opts.warn_about_macros = 1;
12744 }
12745 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
12746 {
12747 mips_opts.nomove = 0;
12748 }
12749 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
12750 {
12751 mips_opts.nomove = 1;
12752 }
12753 else if (strcmp (name, "bopt") == 0)
12754 {
12755 mips_opts.nobopt = 0;
12756 }
12757 else if (strcmp (name, "nobopt") == 0)
12758 {
12759 mips_opts.nobopt = 1;
12760 }
12761 else if (strcmp (name, "gp=default") == 0)
12762 mips_opts.gp32 = file_mips_gp32;
12763 else if (strcmp (name, "gp=32") == 0)
12764 mips_opts.gp32 = 1;
12765 else if (strcmp (name, "gp=64") == 0)
12766 {
12767 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
12768 as_warn ("%s isa does not support 64-bit registers",
12769 mips_cpu_info_from_isa (mips_opts.isa)->name);
12770 mips_opts.gp32 = 0;
12771 }
12772 else if (strcmp (name, "fp=default") == 0)
12773 mips_opts.fp32 = file_mips_fp32;
12774 else if (strcmp (name, "fp=32") == 0)
12775 mips_opts.fp32 = 1;
12776 else if (strcmp (name, "fp=64") == 0)
12777 {
12778 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
12779 as_warn ("%s isa does not support 64-bit floating point registers",
12780 mips_cpu_info_from_isa (mips_opts.isa)->name);
12781 mips_opts.fp32 = 0;
12782 }
12783 else if (strcmp (name, "softfloat") == 0)
12784 mips_opts.soft_float = 1;
12785 else if (strcmp (name, "hardfloat") == 0)
12786 mips_opts.soft_float = 0;
12787 else if (strcmp (name, "singlefloat") == 0)
12788 mips_opts.single_float = 1;
12789 else if (strcmp (name, "doublefloat") == 0)
12790 mips_opts.single_float = 0;
12791 else if (strcmp (name, "mips16") == 0
12792 || strcmp (name, "MIPS-16") == 0)
12793 mips_opts.mips16 = 1;
12794 else if (strcmp (name, "nomips16") == 0
12795 || strcmp (name, "noMIPS-16") == 0)
12796 mips_opts.mips16 = 0;
12797 else if (strcmp (name, "smartmips") == 0)
12798 {
12799 if (!ISA_SUPPORTS_SMARTMIPS)
12800 as_warn ("%s ISA does not support SmartMIPS ASE",
12801 mips_cpu_info_from_isa (mips_opts.isa)->name);
12802 mips_opts.ase_smartmips = 1;
12803 }
12804 else if (strcmp (name, "nosmartmips") == 0)
12805 mips_opts.ase_smartmips = 0;
12806 else if (strcmp (name, "mips3d") == 0)
12807 mips_opts.ase_mips3d = 1;
12808 else if (strcmp (name, "nomips3d") == 0)
12809 mips_opts.ase_mips3d = 0;
12810 else if (strcmp (name, "mdmx") == 0)
12811 mips_opts.ase_mdmx = 1;
12812 else if (strcmp (name, "nomdmx") == 0)
12813 mips_opts.ase_mdmx = 0;
12814 else if (strcmp (name, "dsp") == 0)
12815 {
12816 if (!ISA_SUPPORTS_DSP_ASE)
12817 as_warn ("%s ISA does not support DSP ASE",
12818 mips_cpu_info_from_isa (mips_opts.isa)->name);
12819 mips_opts.ase_dsp = 1;
12820 mips_opts.ase_dspr2 = 0;
12821 }
12822 else if (strcmp (name, "nodsp") == 0)
12823 {
12824 mips_opts.ase_dsp = 0;
12825 mips_opts.ase_dspr2 = 0;
12826 }
12827 else if (strcmp (name, "dspr2") == 0)
12828 {
12829 if (!ISA_SUPPORTS_DSPR2_ASE)
12830 as_warn ("%s ISA does not support DSP R2 ASE",
12831 mips_cpu_info_from_isa (mips_opts.isa)->name);
12832 mips_opts.ase_dspr2 = 1;
12833 mips_opts.ase_dsp = 1;
12834 }
12835 else if (strcmp (name, "nodspr2") == 0)
12836 {
12837 mips_opts.ase_dspr2 = 0;
12838 mips_opts.ase_dsp = 0;
12839 }
12840 else if (strcmp (name, "mt") == 0)
12841 {
12842 if (!ISA_SUPPORTS_MT_ASE)
12843 as_warn ("%s ISA does not support MT ASE",
12844 mips_cpu_info_from_isa (mips_opts.isa)->name);
12845 mips_opts.ase_mt = 1;
12846 }
12847 else if (strcmp (name, "nomt") == 0)
12848 mips_opts.ase_mt = 0;
12849 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
12850 {
12851 int reset = 0;
12852
12853 /* Permit the user to change the ISA and architecture on the fly.
12854 Needless to say, misuse can cause serious problems. */
12855 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
12856 {
12857 reset = 1;
12858 mips_opts.isa = file_mips_isa;
12859 mips_opts.arch = file_mips_arch;
12860 }
12861 else if (strncmp (name, "arch=", 5) == 0)
12862 {
12863 const struct mips_cpu_info *p;
12864
12865 p = mips_parse_cpu("internal use", name + 5);
12866 if (!p)
12867 as_bad (_("unknown architecture %s"), name + 5);
12868 else
12869 {
12870 mips_opts.arch = p->cpu;
12871 mips_opts.isa = p->isa;
12872 }
12873 }
12874 else if (strncmp (name, "mips", 4) == 0)
12875 {
12876 const struct mips_cpu_info *p;
12877
12878 p = mips_parse_cpu("internal use", name);
12879 if (!p)
12880 as_bad (_("unknown ISA level %s"), name + 4);
12881 else
12882 {
12883 mips_opts.arch = p->cpu;
12884 mips_opts.isa = p->isa;
12885 }
12886 }
12887 else
12888 as_bad (_("unknown ISA or architecture %s"), name);
12889
12890 switch (mips_opts.isa)
12891 {
12892 case 0:
12893 break;
12894 case ISA_MIPS1:
12895 case ISA_MIPS2:
12896 case ISA_MIPS32:
12897 case ISA_MIPS32R2:
12898 mips_opts.gp32 = 1;
12899 mips_opts.fp32 = 1;
12900 break;
12901 case ISA_MIPS3:
12902 case ISA_MIPS4:
12903 case ISA_MIPS5:
12904 case ISA_MIPS64:
12905 case ISA_MIPS64R2:
12906 mips_opts.gp32 = 0;
12907 mips_opts.fp32 = 0;
12908 break;
12909 default:
12910 as_bad (_("unknown ISA level %s"), name + 4);
12911 break;
12912 }
12913 if (reset)
12914 {
12915 mips_opts.gp32 = file_mips_gp32;
12916 mips_opts.fp32 = file_mips_fp32;
12917 }
12918 }
12919 else if (strcmp (name, "autoextend") == 0)
12920 mips_opts.noautoextend = 0;
12921 else if (strcmp (name, "noautoextend") == 0)
12922 mips_opts.noautoextend = 1;
12923 else if (strcmp (name, "push") == 0)
12924 {
12925 struct mips_option_stack *s;
12926
12927 s = (struct mips_option_stack *) xmalloc (sizeof *s);
12928 s->next = mips_opts_stack;
12929 s->options = mips_opts;
12930 mips_opts_stack = s;
12931 }
12932 else if (strcmp (name, "pop") == 0)
12933 {
12934 struct mips_option_stack *s;
12935
12936 s = mips_opts_stack;
12937 if (s == NULL)
12938 as_bad (_(".set pop with no .set push"));
12939 else
12940 {
12941 /* If we're changing the reorder mode we need to handle
12942 delay slots correctly. */
12943 if (s->options.noreorder && ! mips_opts.noreorder)
12944 start_noreorder ();
12945 else if (! s->options.noreorder && mips_opts.noreorder)
12946 end_noreorder ();
12947
12948 mips_opts = s->options;
12949 mips_opts_stack = s->next;
12950 free (s);
12951 }
12952 }
12953 else if (strcmp (name, "sym32") == 0)
12954 mips_opts.sym32 = TRUE;
12955 else if (strcmp (name, "nosym32") == 0)
12956 mips_opts.sym32 = FALSE;
12957 else if (strchr (name, ','))
12958 {
12959 /* Generic ".set" directive; use the generic handler. */
12960 *input_line_pointer = ch;
12961 input_line_pointer = name;
12962 s_set (0);
12963 return;
12964 }
12965 else
12966 {
12967 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
12968 }
12969 *input_line_pointer = ch;
12970 demand_empty_rest_of_line ();
12971 }
12972
12973 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
12974 .option pic2. It means to generate SVR4 PIC calls. */
12975
12976 static void
12977 s_abicalls (int ignore ATTRIBUTE_UNUSED)
12978 {
12979 mips_pic = SVR4_PIC;
12980 mips_abicalls = TRUE;
12981
12982 if (g_switch_seen && g_switch_value != 0)
12983 as_warn (_("-G may not be used with SVR4 PIC code"));
12984 g_switch_value = 0;
12985
12986 bfd_set_gp_size (stdoutput, 0);
12987 demand_empty_rest_of_line ();
12988 }
12989
12990 /* Handle the .cpload pseudo-op. This is used when generating SVR4
12991 PIC code. It sets the $gp register for the function based on the
12992 function address, which is in the register named in the argument.
12993 This uses a relocation against _gp_disp, which is handled specially
12994 by the linker. The result is:
12995 lui $gp,%hi(_gp_disp)
12996 addiu $gp,$gp,%lo(_gp_disp)
12997 addu $gp,$gp,.cpload argument
12998 The .cpload argument is normally $25 == $t9.
12999
13000 The -mno-shared option changes this to:
13001 lui $gp,%hi(__gnu_local_gp)
13002 addiu $gp,$gp,%lo(__gnu_local_gp)
13003 and the argument is ignored. This saves an instruction, but the
13004 resulting code is not position independent; it uses an absolute
13005 address for __gnu_local_gp. Thus code assembled with -mno-shared
13006 can go into an ordinary executable, but not into a shared library. */
13007
13008 static void
13009 s_cpload (int ignore ATTRIBUTE_UNUSED)
13010 {
13011 expressionS ex;
13012 int reg;
13013 int in_shared;
13014
13015 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13016 .cpload is ignored. */
13017 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13018 {
13019 s_ignore (0);
13020 return;
13021 }
13022
13023 /* .cpload should be in a .set noreorder section. */
13024 if (mips_opts.noreorder == 0)
13025 as_warn (_(".cpload not in noreorder section"));
13026
13027 reg = tc_get_register (0);
13028
13029 /* If we need to produce a 64-bit address, we are better off using
13030 the default instruction sequence. */
13031 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
13032
13033 ex.X_op = O_symbol;
13034 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
13035 "__gnu_local_gp");
13036 ex.X_op_symbol = NULL;
13037 ex.X_add_number = 0;
13038
13039 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13040 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13041
13042 macro_start ();
13043 macro_build_lui (&ex, mips_gp_register);
13044 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13045 mips_gp_register, BFD_RELOC_LO16);
13046 if (in_shared)
13047 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
13048 mips_gp_register, reg);
13049 macro_end ();
13050
13051 demand_empty_rest_of_line ();
13052 }
13053
13054 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
13055 .cpsetup $reg1, offset|$reg2, label
13056
13057 If offset is given, this results in:
13058 sd $gp, offset($sp)
13059 lui $gp, %hi(%neg(%gp_rel(label)))
13060 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13061 daddu $gp, $gp, $reg1
13062
13063 If $reg2 is given, this results in:
13064 daddu $reg2, $gp, $0
13065 lui $gp, %hi(%neg(%gp_rel(label)))
13066 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13067 daddu $gp, $gp, $reg1
13068 $reg1 is normally $25 == $t9.
13069
13070 The -mno-shared option replaces the last three instructions with
13071 lui $gp,%hi(_gp)
13072 addiu $gp,$gp,%lo(_gp) */
13073
13074 static void
13075 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
13076 {
13077 expressionS ex_off;
13078 expressionS ex_sym;
13079 int reg1;
13080
13081 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
13082 We also need NewABI support. */
13083 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13084 {
13085 s_ignore (0);
13086 return;
13087 }
13088
13089 reg1 = tc_get_register (0);
13090 SKIP_WHITESPACE ();
13091 if (*input_line_pointer != ',')
13092 {
13093 as_bad (_("missing argument separator ',' for .cpsetup"));
13094 return;
13095 }
13096 else
13097 ++input_line_pointer;
13098 SKIP_WHITESPACE ();
13099 if (*input_line_pointer == '$')
13100 {
13101 mips_cpreturn_register = tc_get_register (0);
13102 mips_cpreturn_offset = -1;
13103 }
13104 else
13105 {
13106 mips_cpreturn_offset = get_absolute_expression ();
13107 mips_cpreturn_register = -1;
13108 }
13109 SKIP_WHITESPACE ();
13110 if (*input_line_pointer != ',')
13111 {
13112 as_bad (_("missing argument separator ',' for .cpsetup"));
13113 return;
13114 }
13115 else
13116 ++input_line_pointer;
13117 SKIP_WHITESPACE ();
13118 expression (&ex_sym);
13119
13120 macro_start ();
13121 if (mips_cpreturn_register == -1)
13122 {
13123 ex_off.X_op = O_constant;
13124 ex_off.X_add_symbol = NULL;
13125 ex_off.X_op_symbol = NULL;
13126 ex_off.X_add_number = mips_cpreturn_offset;
13127
13128 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
13129 BFD_RELOC_LO16, SP);
13130 }
13131 else
13132 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
13133 mips_gp_register, 0);
13134
13135 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
13136 {
13137 macro_build (&ex_sym, "lui", "t,u", mips_gp_register,
13138 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
13139 BFD_RELOC_HI16_S);
13140
13141 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
13142 mips_gp_register, -1, BFD_RELOC_GPREL16,
13143 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
13144
13145 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
13146 mips_gp_register, reg1);
13147 }
13148 else
13149 {
13150 expressionS ex;
13151
13152 ex.X_op = O_symbol;
13153 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
13154 ex.X_op_symbol = NULL;
13155 ex.X_add_number = 0;
13156
13157 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13158 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13159
13160 macro_build_lui (&ex, mips_gp_register);
13161 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13162 mips_gp_register, BFD_RELOC_LO16);
13163 }
13164
13165 macro_end ();
13166
13167 demand_empty_rest_of_line ();
13168 }
13169
13170 static void
13171 s_cplocal (int ignore ATTRIBUTE_UNUSED)
13172 {
13173 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
13174 .cplocal is ignored. */
13175 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13176 {
13177 s_ignore (0);
13178 return;
13179 }
13180
13181 mips_gp_register = tc_get_register (0);
13182 demand_empty_rest_of_line ();
13183 }
13184
13185 /* Handle the .cprestore pseudo-op. This stores $gp into a given
13186 offset from $sp. The offset is remembered, and after making a PIC
13187 call $gp is restored from that location. */
13188
13189 static void
13190 s_cprestore (int ignore ATTRIBUTE_UNUSED)
13191 {
13192 expressionS ex;
13193
13194 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13195 .cprestore is ignored. */
13196 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13197 {
13198 s_ignore (0);
13199 return;
13200 }
13201
13202 mips_cprestore_offset = get_absolute_expression ();
13203 mips_cprestore_valid = 1;
13204
13205 ex.X_op = O_constant;
13206 ex.X_add_symbol = NULL;
13207 ex.X_op_symbol = NULL;
13208 ex.X_add_number = mips_cprestore_offset;
13209
13210 macro_start ();
13211 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
13212 SP, HAVE_64BIT_ADDRESSES);
13213 macro_end ();
13214
13215 demand_empty_rest_of_line ();
13216 }
13217
13218 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
13219 was given in the preceding .cpsetup, it results in:
13220 ld $gp, offset($sp)
13221
13222 If a register $reg2 was given there, it results in:
13223 daddu $gp, $reg2, $0 */
13224
13225 static void
13226 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
13227 {
13228 expressionS ex;
13229
13230 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
13231 We also need NewABI support. */
13232 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13233 {
13234 s_ignore (0);
13235 return;
13236 }
13237
13238 macro_start ();
13239 if (mips_cpreturn_register == -1)
13240 {
13241 ex.X_op = O_constant;
13242 ex.X_add_symbol = NULL;
13243 ex.X_op_symbol = NULL;
13244 ex.X_add_number = mips_cpreturn_offset;
13245
13246 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
13247 }
13248 else
13249 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
13250 mips_cpreturn_register, 0);
13251 macro_end ();
13252
13253 demand_empty_rest_of_line ();
13254 }
13255
13256 /* Handle the .dtprelword and .dtpreldword pseudo-ops. They generate
13257 a 32-bit or 64-bit DTP-relative relocation (BYTES says which) for
13258 use in DWARF debug information. */
13259
13260 static void
13261 s_dtprel_internal (size_t bytes)
13262 {
13263 expressionS ex;
13264 char *p;
13265
13266 expression (&ex);
13267
13268 if (ex.X_op != O_symbol)
13269 {
13270 as_bad (_("Unsupported use of %s"), (bytes == 8
13271 ? ".dtpreldword"
13272 : ".dtprelword"));
13273 ignore_rest_of_line ();
13274 }
13275
13276 p = frag_more (bytes);
13277 md_number_to_chars (p, 0, bytes);
13278 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE,
13279 (bytes == 8
13280 ? BFD_RELOC_MIPS_TLS_DTPREL64
13281 : BFD_RELOC_MIPS_TLS_DTPREL32));
13282
13283 demand_empty_rest_of_line ();
13284 }
13285
13286 /* Handle .dtprelword. */
13287
13288 static void
13289 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
13290 {
13291 s_dtprel_internal (4);
13292 }
13293
13294 /* Handle .dtpreldword. */
13295
13296 static void
13297 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
13298 {
13299 s_dtprel_internal (8);
13300 }
13301
13302 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
13303 code. It sets the offset to use in gp_rel relocations. */
13304
13305 static void
13306 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
13307 {
13308 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
13309 We also need NewABI support. */
13310 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13311 {
13312 s_ignore (0);
13313 return;
13314 }
13315
13316 mips_gprel_offset = get_absolute_expression ();
13317
13318 demand_empty_rest_of_line ();
13319 }
13320
13321 /* Handle the .gpword pseudo-op. This is used when generating PIC
13322 code. It generates a 32 bit GP relative reloc. */
13323
13324 static void
13325 s_gpword (int ignore ATTRIBUTE_UNUSED)
13326 {
13327 segment_info_type *si;
13328 struct insn_label_list *l;
13329 symbolS *label;
13330 expressionS ex;
13331 char *p;
13332
13333 /* When not generating PIC code, this is treated as .word. */
13334 if (mips_pic != SVR4_PIC)
13335 {
13336 s_cons (2);
13337 return;
13338 }
13339
13340 si = seg_info (now_seg);
13341 l = si->label_list;
13342 label = l != NULL ? l->label : NULL;
13343 mips_emit_delays ();
13344 if (auto_align)
13345 mips_align (2, 0, label);
13346 mips_clear_insn_labels ();
13347
13348 expression (&ex);
13349
13350 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13351 {
13352 as_bad (_("Unsupported use of .gpword"));
13353 ignore_rest_of_line ();
13354 }
13355
13356 p = frag_more (4);
13357 md_number_to_chars (p, 0, 4);
13358 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13359 BFD_RELOC_GPREL32);
13360
13361 demand_empty_rest_of_line ();
13362 }
13363
13364 static void
13365 s_gpdword (int ignore ATTRIBUTE_UNUSED)
13366 {
13367 segment_info_type *si;
13368 struct insn_label_list *l;
13369 symbolS *label;
13370 expressionS ex;
13371 char *p;
13372
13373 /* When not generating PIC code, this is treated as .dword. */
13374 if (mips_pic != SVR4_PIC)
13375 {
13376 s_cons (3);
13377 return;
13378 }
13379
13380 si = seg_info (now_seg);
13381 l = si->label_list;
13382 label = l != NULL ? l->label : NULL;
13383 mips_emit_delays ();
13384 if (auto_align)
13385 mips_align (3, 0, label);
13386 mips_clear_insn_labels ();
13387
13388 expression (&ex);
13389
13390 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13391 {
13392 as_bad (_("Unsupported use of .gpdword"));
13393 ignore_rest_of_line ();
13394 }
13395
13396 p = frag_more (8);
13397 md_number_to_chars (p, 0, 8);
13398 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13399 BFD_RELOC_GPREL32)->fx_tcbit = 1;
13400
13401 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
13402 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
13403 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
13404
13405 demand_empty_rest_of_line ();
13406 }
13407
13408 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
13409 tables in SVR4 PIC code. */
13410
13411 static void
13412 s_cpadd (int ignore ATTRIBUTE_UNUSED)
13413 {
13414 int reg;
13415
13416 /* This is ignored when not generating SVR4 PIC code. */
13417 if (mips_pic != SVR4_PIC)
13418 {
13419 s_ignore (0);
13420 return;
13421 }
13422
13423 /* Add $gp to the register named as an argument. */
13424 macro_start ();
13425 reg = tc_get_register (0);
13426 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
13427 macro_end ();
13428
13429 demand_empty_rest_of_line ();
13430 }
13431
13432 /* Handle the .insn pseudo-op. This marks instruction labels in
13433 mips16 mode. This permits the linker to handle them specially,
13434 such as generating jalx instructions when needed. We also make
13435 them odd for the duration of the assembly, in order to generate the
13436 right sort of code. We will make them even in the adjust_symtab
13437 routine, while leaving them marked. This is convenient for the
13438 debugger and the disassembler. The linker knows to make them odd
13439 again. */
13440
13441 static void
13442 s_insn (int ignore ATTRIBUTE_UNUSED)
13443 {
13444 mips16_mark_labels ();
13445
13446 demand_empty_rest_of_line ();
13447 }
13448
13449 /* Handle a .stabn directive. We need these in order to mark a label
13450 as being a mips16 text label correctly. Sometimes the compiler
13451 will emit a label, followed by a .stabn, and then switch sections.
13452 If the label and .stabn are in mips16 mode, then the label is
13453 really a mips16 text label. */
13454
13455 static void
13456 s_mips_stab (int type)
13457 {
13458 if (type == 'n')
13459 mips16_mark_labels ();
13460
13461 s_stab (type);
13462 }
13463
13464 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
13465
13466 static void
13467 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
13468 {
13469 char *name;
13470 int c;
13471 symbolS *symbolP;
13472 expressionS exp;
13473
13474 name = input_line_pointer;
13475 c = get_symbol_end ();
13476 symbolP = symbol_find_or_make (name);
13477 S_SET_WEAK (symbolP);
13478 *input_line_pointer = c;
13479
13480 SKIP_WHITESPACE ();
13481
13482 if (! is_end_of_line[(unsigned char) *input_line_pointer])
13483 {
13484 if (S_IS_DEFINED (symbolP))
13485 {
13486 as_bad ("ignoring attempt to redefine symbol %s",
13487 S_GET_NAME (symbolP));
13488 ignore_rest_of_line ();
13489 return;
13490 }
13491
13492 if (*input_line_pointer == ',')
13493 {
13494 ++input_line_pointer;
13495 SKIP_WHITESPACE ();
13496 }
13497
13498 expression (&exp);
13499 if (exp.X_op != O_symbol)
13500 {
13501 as_bad ("bad .weakext directive");
13502 ignore_rest_of_line ();
13503 return;
13504 }
13505 symbol_set_value_expression (symbolP, &exp);
13506 }
13507
13508 demand_empty_rest_of_line ();
13509 }
13510
13511 /* Parse a register string into a number. Called from the ECOFF code
13512 to parse .frame. The argument is non-zero if this is the frame
13513 register, so that we can record it in mips_frame_reg. */
13514
13515 int
13516 tc_get_register (int frame)
13517 {
13518 unsigned int reg;
13519
13520 SKIP_WHITESPACE ();
13521 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
13522 reg = 0;
13523 if (frame)
13524 {
13525 mips_frame_reg = reg != 0 ? reg : SP;
13526 mips_frame_reg_valid = 1;
13527 mips_cprestore_valid = 0;
13528 }
13529 return reg;
13530 }
13531
13532 valueT
13533 md_section_align (asection *seg, valueT addr)
13534 {
13535 int align = bfd_get_section_alignment (stdoutput, seg);
13536
13537 if (IS_ELF)
13538 {
13539 /* We don't need to align ELF sections to the full alignment.
13540 However, Irix 5 may prefer that we align them at least to a 16
13541 byte boundary. We don't bother to align the sections if we
13542 are targeted for an embedded system. */
13543 if (strncmp (TARGET_OS, "elf", 3) == 0)
13544 return addr;
13545 if (align > 4)
13546 align = 4;
13547 }
13548
13549 return ((addr + (1 << align) - 1) & (-1 << align));
13550 }
13551
13552 /* Utility routine, called from above as well. If called while the
13553 input file is still being read, it's only an approximation. (For
13554 example, a symbol may later become defined which appeared to be
13555 undefined earlier.) */
13556
13557 static int
13558 nopic_need_relax (symbolS *sym, int before_relaxing)
13559 {
13560 if (sym == 0)
13561 return 0;
13562
13563 if (g_switch_value > 0)
13564 {
13565 const char *symname;
13566 int change;
13567
13568 /* Find out whether this symbol can be referenced off the $gp
13569 register. It can be if it is smaller than the -G size or if
13570 it is in the .sdata or .sbss section. Certain symbols can
13571 not be referenced off the $gp, although it appears as though
13572 they can. */
13573 symname = S_GET_NAME (sym);
13574 if (symname != (const char *) NULL
13575 && (strcmp (symname, "eprol") == 0
13576 || strcmp (symname, "etext") == 0
13577 || strcmp (symname, "_gp") == 0
13578 || strcmp (symname, "edata") == 0
13579 || strcmp (symname, "_fbss") == 0
13580 || strcmp (symname, "_fdata") == 0
13581 || strcmp (symname, "_ftext") == 0
13582 || strcmp (symname, "end") == 0
13583 || strcmp (symname, "_gp_disp") == 0))
13584 change = 1;
13585 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
13586 && (0
13587 #ifndef NO_ECOFF_DEBUGGING
13588 || (symbol_get_obj (sym)->ecoff_extern_size != 0
13589 && (symbol_get_obj (sym)->ecoff_extern_size
13590 <= g_switch_value))
13591 #endif
13592 /* We must defer this decision until after the whole
13593 file has been read, since there might be a .extern
13594 after the first use of this symbol. */
13595 || (before_relaxing
13596 #ifndef NO_ECOFF_DEBUGGING
13597 && symbol_get_obj (sym)->ecoff_extern_size == 0
13598 #endif
13599 && S_GET_VALUE (sym) == 0)
13600 || (S_GET_VALUE (sym) != 0
13601 && S_GET_VALUE (sym) <= g_switch_value)))
13602 change = 0;
13603 else
13604 {
13605 const char *segname;
13606
13607 segname = segment_name (S_GET_SEGMENT (sym));
13608 assert (strcmp (segname, ".lit8") != 0
13609 && strcmp (segname, ".lit4") != 0);
13610 change = (strcmp (segname, ".sdata") != 0
13611 && strcmp (segname, ".sbss") != 0
13612 && strncmp (segname, ".sdata.", 7) != 0
13613 && strncmp (segname, ".sbss.", 6) != 0
13614 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
13615 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
13616 }
13617 return change;
13618 }
13619 else
13620 /* We are not optimizing for the $gp register. */
13621 return 1;
13622 }
13623
13624
13625 /* Return true if the given symbol should be considered local for SVR4 PIC. */
13626
13627 static bfd_boolean
13628 pic_need_relax (symbolS *sym, asection *segtype)
13629 {
13630 asection *symsec;
13631
13632 /* Handle the case of a symbol equated to another symbol. */
13633 while (symbol_equated_reloc_p (sym))
13634 {
13635 symbolS *n;
13636
13637 /* It's possible to get a loop here in a badly written program. */
13638 n = symbol_get_value_expression (sym)->X_add_symbol;
13639 if (n == sym)
13640 break;
13641 sym = n;
13642 }
13643
13644 if (symbol_section_p (sym))
13645 return TRUE;
13646
13647 symsec = S_GET_SEGMENT (sym);
13648
13649 /* This must duplicate the test in adjust_reloc_syms. */
13650 return (symsec != &bfd_und_section
13651 && symsec != &bfd_abs_section
13652 && !bfd_is_com_section (symsec)
13653 && !s_is_linkonce (sym, segtype)
13654 #ifdef OBJ_ELF
13655 /* A global or weak symbol is treated as external. */
13656 && (!IS_ELF || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym)))
13657 #endif
13658 );
13659 }
13660
13661
13662 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
13663 extended opcode. SEC is the section the frag is in. */
13664
13665 static int
13666 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
13667 {
13668 int type;
13669 const struct mips16_immed_operand *op;
13670 offsetT val;
13671 int mintiny, maxtiny;
13672 segT symsec;
13673 fragS *sym_frag;
13674
13675 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
13676 return 0;
13677 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
13678 return 1;
13679
13680 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
13681 op = mips16_immed_operands;
13682 while (op->type != type)
13683 {
13684 ++op;
13685 assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
13686 }
13687
13688 if (op->unsp)
13689 {
13690 if (type == '<' || type == '>' || type == '[' || type == ']')
13691 {
13692 mintiny = 1;
13693 maxtiny = 1 << op->nbits;
13694 }
13695 else
13696 {
13697 mintiny = 0;
13698 maxtiny = (1 << op->nbits) - 1;
13699 }
13700 }
13701 else
13702 {
13703 mintiny = - (1 << (op->nbits - 1));
13704 maxtiny = (1 << (op->nbits - 1)) - 1;
13705 }
13706
13707 sym_frag = symbol_get_frag (fragp->fr_symbol);
13708 val = S_GET_VALUE (fragp->fr_symbol);
13709 symsec = S_GET_SEGMENT (fragp->fr_symbol);
13710
13711 if (op->pcrel)
13712 {
13713 addressT addr;
13714
13715 /* We won't have the section when we are called from
13716 mips_relax_frag. However, we will always have been called
13717 from md_estimate_size_before_relax first. If this is a
13718 branch to a different section, we mark it as such. If SEC is
13719 NULL, and the frag is not marked, then it must be a branch to
13720 the same section. */
13721 if (sec == NULL)
13722 {
13723 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
13724 return 1;
13725 }
13726 else
13727 {
13728 /* Must have been called from md_estimate_size_before_relax. */
13729 if (symsec != sec)
13730 {
13731 fragp->fr_subtype =
13732 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13733
13734 /* FIXME: We should support this, and let the linker
13735 catch branches and loads that are out of range. */
13736 as_bad_where (fragp->fr_file, fragp->fr_line,
13737 _("unsupported PC relative reference to different section"));
13738
13739 return 1;
13740 }
13741 if (fragp != sym_frag && sym_frag->fr_address == 0)
13742 /* Assume non-extended on the first relaxation pass.
13743 The address we have calculated will be bogus if this is
13744 a forward branch to another frag, as the forward frag
13745 will have fr_address == 0. */
13746 return 0;
13747 }
13748
13749 /* In this case, we know for sure that the symbol fragment is in
13750 the same section. If the relax_marker of the symbol fragment
13751 differs from the relax_marker of this fragment, we have not
13752 yet adjusted the symbol fragment fr_address. We want to add
13753 in STRETCH in order to get a better estimate of the address.
13754 This particularly matters because of the shift bits. */
13755 if (stretch != 0
13756 && sym_frag->relax_marker != fragp->relax_marker)
13757 {
13758 fragS *f;
13759
13760 /* Adjust stretch for any alignment frag. Note that if have
13761 been expanding the earlier code, the symbol may be
13762 defined in what appears to be an earlier frag. FIXME:
13763 This doesn't handle the fr_subtype field, which specifies
13764 a maximum number of bytes to skip when doing an
13765 alignment. */
13766 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
13767 {
13768 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
13769 {
13770 if (stretch < 0)
13771 stretch = - ((- stretch)
13772 & ~ ((1 << (int) f->fr_offset) - 1));
13773 else
13774 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
13775 if (stretch == 0)
13776 break;
13777 }
13778 }
13779 if (f != NULL)
13780 val += stretch;
13781 }
13782
13783 addr = fragp->fr_address + fragp->fr_fix;
13784
13785 /* The base address rules are complicated. The base address of
13786 a branch is the following instruction. The base address of a
13787 PC relative load or add is the instruction itself, but if it
13788 is in a delay slot (in which case it can not be extended) use
13789 the address of the instruction whose delay slot it is in. */
13790 if (type == 'p' || type == 'q')
13791 {
13792 addr += 2;
13793
13794 /* If we are currently assuming that this frag should be
13795 extended, then, the current address is two bytes
13796 higher. */
13797 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
13798 addr += 2;
13799
13800 /* Ignore the low bit in the target, since it will be set
13801 for a text label. */
13802 if ((val & 1) != 0)
13803 --val;
13804 }
13805 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
13806 addr -= 4;
13807 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
13808 addr -= 2;
13809
13810 val -= addr & ~ ((1 << op->shift) - 1);
13811
13812 /* Branch offsets have an implicit 0 in the lowest bit. */
13813 if (type == 'p' || type == 'q')
13814 val /= 2;
13815
13816 /* If any of the shifted bits are set, we must use an extended
13817 opcode. If the address depends on the size of this
13818 instruction, this can lead to a loop, so we arrange to always
13819 use an extended opcode. We only check this when we are in
13820 the main relaxation loop, when SEC is NULL. */
13821 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
13822 {
13823 fragp->fr_subtype =
13824 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13825 return 1;
13826 }
13827
13828 /* If we are about to mark a frag as extended because the value
13829 is precisely maxtiny + 1, then there is a chance of an
13830 infinite loop as in the following code:
13831 la $4,foo
13832 .skip 1020
13833 .align 2
13834 foo:
13835 In this case when the la is extended, foo is 0x3fc bytes
13836 away, so the la can be shrunk, but then foo is 0x400 away, so
13837 the la must be extended. To avoid this loop, we mark the
13838 frag as extended if it was small, and is about to become
13839 extended with a value of maxtiny + 1. */
13840 if (val == ((maxtiny + 1) << op->shift)
13841 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
13842 && sec == NULL)
13843 {
13844 fragp->fr_subtype =
13845 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13846 return 1;
13847 }
13848 }
13849 else if (symsec != absolute_section && sec != NULL)
13850 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
13851
13852 if ((val & ((1 << op->shift) - 1)) != 0
13853 || val < (mintiny << op->shift)
13854 || val > (maxtiny << op->shift))
13855 return 1;
13856 else
13857 return 0;
13858 }
13859
13860 /* Compute the length of a branch sequence, and adjust the
13861 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
13862 worst-case length is computed, with UPDATE being used to indicate
13863 whether an unconditional (-1), branch-likely (+1) or regular (0)
13864 branch is to be computed. */
13865 static int
13866 relaxed_branch_length (fragS *fragp, asection *sec, int update)
13867 {
13868 bfd_boolean toofar;
13869 int length;
13870
13871 if (fragp
13872 && S_IS_DEFINED (fragp->fr_symbol)
13873 && sec == S_GET_SEGMENT (fragp->fr_symbol))
13874 {
13875 addressT addr;
13876 offsetT val;
13877
13878 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
13879
13880 addr = fragp->fr_address + fragp->fr_fix + 4;
13881
13882 val -= addr;
13883
13884 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
13885 }
13886 else if (fragp)
13887 /* If the symbol is not defined or it's in a different segment,
13888 assume the user knows what's going on and emit a short
13889 branch. */
13890 toofar = FALSE;
13891 else
13892 toofar = TRUE;
13893
13894 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
13895 fragp->fr_subtype
13896 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_UNCOND (fragp->fr_subtype),
13897 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
13898 RELAX_BRANCH_LINK (fragp->fr_subtype),
13899 toofar);
13900
13901 length = 4;
13902 if (toofar)
13903 {
13904 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
13905 length += 8;
13906
13907 if (mips_pic != NO_PIC)
13908 {
13909 /* Additional space for PIC loading of target address. */
13910 length += 8;
13911 if (mips_opts.isa == ISA_MIPS1)
13912 /* Additional space for $at-stabilizing nop. */
13913 length += 4;
13914 }
13915
13916 /* If branch is conditional. */
13917 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
13918 length += 8;
13919 }
13920
13921 return length;
13922 }
13923
13924 /* Estimate the size of a frag before relaxing. Unless this is the
13925 mips16, we are not really relaxing here, and the final size is
13926 encoded in the subtype information. For the mips16, we have to
13927 decide whether we are using an extended opcode or not. */
13928
13929 int
13930 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
13931 {
13932 int change;
13933
13934 if (RELAX_BRANCH_P (fragp->fr_subtype))
13935 {
13936
13937 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
13938
13939 return fragp->fr_var;
13940 }
13941
13942 if (RELAX_MIPS16_P (fragp->fr_subtype))
13943 /* We don't want to modify the EXTENDED bit here; it might get us
13944 into infinite loops. We change it only in mips_relax_frag(). */
13945 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
13946
13947 if (mips_pic == NO_PIC)
13948 change = nopic_need_relax (fragp->fr_symbol, 0);
13949 else if (mips_pic == SVR4_PIC)
13950 change = pic_need_relax (fragp->fr_symbol, segtype);
13951 else if (mips_pic == VXWORKS_PIC)
13952 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
13953 change = 0;
13954 else
13955 abort ();
13956
13957 if (change)
13958 {
13959 fragp->fr_subtype |= RELAX_USE_SECOND;
13960 return -RELAX_FIRST (fragp->fr_subtype);
13961 }
13962 else
13963 return -RELAX_SECOND (fragp->fr_subtype);
13964 }
13965
13966 /* This is called to see whether a reloc against a defined symbol
13967 should be converted into a reloc against a section. */
13968
13969 int
13970 mips_fix_adjustable (fixS *fixp)
13971 {
13972 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
13973 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13974 return 0;
13975
13976 if (fixp->fx_addsy == NULL)
13977 return 1;
13978
13979 /* If symbol SYM is in a mergeable section, relocations of the form
13980 SYM + 0 can usually be made section-relative. The mergeable data
13981 is then identified by the section offset rather than by the symbol.
13982
13983 However, if we're generating REL LO16 relocations, the offset is split
13984 between the LO16 and parterning high part relocation. The linker will
13985 need to recalculate the complete offset in order to correctly identify
13986 the merge data.
13987
13988 The linker has traditionally not looked for the parterning high part
13989 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
13990 placed anywhere. Rather than break backwards compatibility by changing
13991 this, it seems better not to force the issue, and instead keep the
13992 original symbol. This will work with either linker behavior. */
13993 if ((lo16_reloc_p (fixp->fx_r_type)
13994 || reloc_needs_lo_p (fixp->fx_r_type))
13995 && HAVE_IN_PLACE_ADDENDS
13996 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
13997 return 0;
13998
13999 #ifdef OBJ_ELF
14000 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
14001 to a floating-point stub. The same is true for non-R_MIPS16_26
14002 relocations against MIPS16 functions; in this case, the stub becomes
14003 the function's canonical address.
14004
14005 Floating-point stubs are stored in unique .mips16.call.* or
14006 .mips16.fn.* sections. If a stub T for function F is in section S,
14007 the first relocation in section S must be against F; this is how the
14008 linker determines the target function. All relocations that might
14009 resolve to T must also be against F. We therefore have the following
14010 restrictions, which are given in an intentionally-redundant way:
14011
14012 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
14013 symbols.
14014
14015 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
14016 if that stub might be used.
14017
14018 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
14019 symbols.
14020
14021 4. We cannot reduce a stub's relocations against MIPS16 symbols if
14022 that stub might be used.
14023
14024 There is a further restriction:
14025
14026 5. We cannot reduce R_MIPS16_26 relocations against MIPS16 symbols
14027 on targets with in-place addends; the relocation field cannot
14028 encode the low bit.
14029
14030 For simplicity, we deal with (3)-(5) by not reducing _any_ relocation
14031 against a MIPS16 symbol.
14032
14033 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
14034 relocation against some symbol R, no relocation against R may be
14035 reduced. (Note that this deals with (2) as well as (1) because
14036 relocations against global symbols will never be reduced on ELF
14037 targets.) This approach is a little simpler than trying to detect
14038 stub sections, and gives the "all or nothing" per-symbol consistency
14039 that we have for MIPS16 symbols. */
14040 if (IS_ELF
14041 && fixp->fx_subsy == NULL
14042 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
14043 || *symbol_get_tc (fixp->fx_addsy)))
14044 return 0;
14045 #endif
14046
14047 return 1;
14048 }
14049
14050 /* Translate internal representation of relocation info to BFD target
14051 format. */
14052
14053 arelent **
14054 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
14055 {
14056 static arelent *retval[4];
14057 arelent *reloc;
14058 bfd_reloc_code_real_type code;
14059
14060 memset (retval, 0, sizeof(retval));
14061 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
14062 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
14063 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
14064 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
14065
14066 if (fixp->fx_pcrel)
14067 {
14068 assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2);
14069
14070 /* At this point, fx_addnumber is "symbol offset - pcrel address".
14071 Relocations want only the symbol offset. */
14072 reloc->addend = fixp->fx_addnumber + reloc->address;
14073 if (!IS_ELF)
14074 {
14075 /* A gruesome hack which is a result of the gruesome gas
14076 reloc handling. What's worse, for COFF (as opposed to
14077 ECOFF), we might need yet another copy of reloc->address.
14078 See bfd_install_relocation. */
14079 reloc->addend += reloc->address;
14080 }
14081 }
14082 else
14083 reloc->addend = fixp->fx_addnumber;
14084
14085 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
14086 entry to be used in the relocation's section offset. */
14087 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14088 {
14089 reloc->address = reloc->addend;
14090 reloc->addend = 0;
14091 }
14092
14093 code = fixp->fx_r_type;
14094
14095 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
14096 if (reloc->howto == NULL)
14097 {
14098 as_bad_where (fixp->fx_file, fixp->fx_line,
14099 _("Can not represent %s relocation in this object file format"),
14100 bfd_get_reloc_code_name (code));
14101 retval[0] = NULL;
14102 }
14103
14104 return retval;
14105 }
14106
14107 /* Relax a machine dependent frag. This returns the amount by which
14108 the current size of the frag should change. */
14109
14110 int
14111 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
14112 {
14113 if (RELAX_BRANCH_P (fragp->fr_subtype))
14114 {
14115 offsetT old_var = fragp->fr_var;
14116
14117 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
14118
14119 return fragp->fr_var - old_var;
14120 }
14121
14122 if (! RELAX_MIPS16_P (fragp->fr_subtype))
14123 return 0;
14124
14125 if (mips16_extended_frag (fragp, NULL, stretch))
14126 {
14127 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14128 return 0;
14129 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
14130 return 2;
14131 }
14132 else
14133 {
14134 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14135 return 0;
14136 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
14137 return -2;
14138 }
14139
14140 return 0;
14141 }
14142
14143 /* Convert a machine dependent frag. */
14144
14145 void
14146 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
14147 {
14148 if (RELAX_BRANCH_P (fragp->fr_subtype))
14149 {
14150 bfd_byte *buf;
14151 unsigned long insn;
14152 expressionS exp;
14153 fixS *fixp;
14154
14155 buf = (bfd_byte *)fragp->fr_literal + fragp->fr_fix;
14156
14157 if (target_big_endian)
14158 insn = bfd_getb32 (buf);
14159 else
14160 insn = bfd_getl32 (buf);
14161
14162 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14163 {
14164 /* We generate a fixup instead of applying it right now
14165 because, if there are linker relaxations, we're going to
14166 need the relocations. */
14167 exp.X_op = O_symbol;
14168 exp.X_add_symbol = fragp->fr_symbol;
14169 exp.X_add_number = fragp->fr_offset;
14170
14171 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14172 4, &exp, TRUE, BFD_RELOC_16_PCREL_S2);
14173 fixp->fx_file = fragp->fr_file;
14174 fixp->fx_line = fragp->fr_line;
14175
14176 md_number_to_chars ((char *) buf, insn, 4);
14177 buf += 4;
14178 }
14179 else
14180 {
14181 int i;
14182
14183 as_warn_where (fragp->fr_file, fragp->fr_line,
14184 _("relaxed out-of-range branch into a jump"));
14185
14186 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
14187 goto uncond;
14188
14189 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14190 {
14191 /* Reverse the branch. */
14192 switch ((insn >> 28) & 0xf)
14193 {
14194 case 4:
14195 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
14196 have the condition reversed by tweaking a single
14197 bit, and their opcodes all have 0x4???????. */
14198 assert ((insn & 0xf1000000) == 0x41000000);
14199 insn ^= 0x00010000;
14200 break;
14201
14202 case 0:
14203 /* bltz 0x04000000 bgez 0x04010000
14204 bltzal 0x04100000 bgezal 0x04110000 */
14205 assert ((insn & 0xfc0e0000) == 0x04000000);
14206 insn ^= 0x00010000;
14207 break;
14208
14209 case 1:
14210 /* beq 0x10000000 bne 0x14000000
14211 blez 0x18000000 bgtz 0x1c000000 */
14212 insn ^= 0x04000000;
14213 break;
14214
14215 default:
14216 abort ();
14217 }
14218 }
14219
14220 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14221 {
14222 /* Clear the and-link bit. */
14223 assert ((insn & 0xfc1c0000) == 0x04100000);
14224
14225 /* bltzal 0x04100000 bgezal 0x04110000
14226 bltzall 0x04120000 bgezall 0x04130000 */
14227 insn &= ~0x00100000;
14228 }
14229
14230 /* Branch over the branch (if the branch was likely) or the
14231 full jump (not likely case). Compute the offset from the
14232 current instruction to branch to. */
14233 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14234 i = 16;
14235 else
14236 {
14237 /* How many bytes in instructions we've already emitted? */
14238 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14239 /* How many bytes in instructions from here to the end? */
14240 i = fragp->fr_var - i;
14241 }
14242 /* Convert to instruction count. */
14243 i >>= 2;
14244 /* Branch counts from the next instruction. */
14245 i--;
14246 insn |= i;
14247 /* Branch over the jump. */
14248 md_number_to_chars ((char *) buf, insn, 4);
14249 buf += 4;
14250
14251 /* nop */
14252 md_number_to_chars ((char *) buf, 0, 4);
14253 buf += 4;
14254
14255 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14256 {
14257 /* beql $0, $0, 2f */
14258 insn = 0x50000000;
14259 /* Compute the PC offset from the current instruction to
14260 the end of the variable frag. */
14261 /* How many bytes in instructions we've already emitted? */
14262 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14263 /* How many bytes in instructions from here to the end? */
14264 i = fragp->fr_var - i;
14265 /* Convert to instruction count. */
14266 i >>= 2;
14267 /* Don't decrement i, because we want to branch over the
14268 delay slot. */
14269
14270 insn |= i;
14271 md_number_to_chars ((char *) buf, insn, 4);
14272 buf += 4;
14273
14274 md_number_to_chars ((char *) buf, 0, 4);
14275 buf += 4;
14276 }
14277
14278 uncond:
14279 if (mips_pic == NO_PIC)
14280 {
14281 /* j or jal. */
14282 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
14283 ? 0x0c000000 : 0x08000000);
14284 exp.X_op = O_symbol;
14285 exp.X_add_symbol = fragp->fr_symbol;
14286 exp.X_add_number = fragp->fr_offset;
14287
14288 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14289 4, &exp, FALSE, BFD_RELOC_MIPS_JMP);
14290 fixp->fx_file = fragp->fr_file;
14291 fixp->fx_line = fragp->fr_line;
14292
14293 md_number_to_chars ((char *) buf, insn, 4);
14294 buf += 4;
14295 }
14296 else
14297 {
14298 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
14299 insn = HAVE_64BIT_ADDRESSES ? 0xdf810000 : 0x8f810000;
14300 exp.X_op = O_symbol;
14301 exp.X_add_symbol = fragp->fr_symbol;
14302 exp.X_add_number = fragp->fr_offset;
14303
14304 if (fragp->fr_offset)
14305 {
14306 exp.X_add_symbol = make_expr_symbol (&exp);
14307 exp.X_add_number = 0;
14308 }
14309
14310 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14311 4, &exp, FALSE, BFD_RELOC_MIPS_GOT16);
14312 fixp->fx_file = fragp->fr_file;
14313 fixp->fx_line = fragp->fr_line;
14314
14315 md_number_to_chars ((char *) buf, insn, 4);
14316 buf += 4;
14317
14318 if (mips_opts.isa == ISA_MIPS1)
14319 {
14320 /* nop */
14321 md_number_to_chars ((char *) buf, 0, 4);
14322 buf += 4;
14323 }
14324
14325 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
14326 insn = HAVE_64BIT_ADDRESSES ? 0x64210000 : 0x24210000;
14327
14328 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14329 4, &exp, FALSE, BFD_RELOC_LO16);
14330 fixp->fx_file = fragp->fr_file;
14331 fixp->fx_line = fragp->fr_line;
14332
14333 md_number_to_chars ((char *) buf, insn, 4);
14334 buf += 4;
14335
14336 /* j(al)r $at. */
14337 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14338 insn = 0x0020f809;
14339 else
14340 insn = 0x00200008;
14341
14342 md_number_to_chars ((char *) buf, insn, 4);
14343 buf += 4;
14344 }
14345 }
14346
14347 assert (buf == (bfd_byte *)fragp->fr_literal
14348 + fragp->fr_fix + fragp->fr_var);
14349
14350 fragp->fr_fix += fragp->fr_var;
14351
14352 return;
14353 }
14354
14355 if (RELAX_MIPS16_P (fragp->fr_subtype))
14356 {
14357 int type;
14358 const struct mips16_immed_operand *op;
14359 bfd_boolean small, ext;
14360 offsetT val;
14361 bfd_byte *buf;
14362 unsigned long insn;
14363 bfd_boolean use_extend;
14364 unsigned short extend;
14365
14366 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
14367 op = mips16_immed_operands;
14368 while (op->type != type)
14369 ++op;
14370
14371 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14372 {
14373 small = FALSE;
14374 ext = TRUE;
14375 }
14376 else
14377 {
14378 small = TRUE;
14379 ext = FALSE;
14380 }
14381
14382 resolve_symbol_value (fragp->fr_symbol);
14383 val = S_GET_VALUE (fragp->fr_symbol);
14384 if (op->pcrel)
14385 {
14386 addressT addr;
14387
14388 addr = fragp->fr_address + fragp->fr_fix;
14389
14390 /* The rules for the base address of a PC relative reloc are
14391 complicated; see mips16_extended_frag. */
14392 if (type == 'p' || type == 'q')
14393 {
14394 addr += 2;
14395 if (ext)
14396 addr += 2;
14397 /* Ignore the low bit in the target, since it will be
14398 set for a text label. */
14399 if ((val & 1) != 0)
14400 --val;
14401 }
14402 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
14403 addr -= 4;
14404 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
14405 addr -= 2;
14406
14407 addr &= ~ (addressT) ((1 << op->shift) - 1);
14408 val -= addr;
14409
14410 /* Make sure the section winds up with the alignment we have
14411 assumed. */
14412 if (op->shift > 0)
14413 record_alignment (asec, op->shift);
14414 }
14415
14416 if (ext
14417 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
14418 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
14419 as_warn_where (fragp->fr_file, fragp->fr_line,
14420 _("extended instruction in delay slot"));
14421
14422 buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix);
14423
14424 if (target_big_endian)
14425 insn = bfd_getb16 (buf);
14426 else
14427 insn = bfd_getl16 (buf);
14428
14429 mips16_immed (fragp->fr_file, fragp->fr_line, type, val,
14430 RELAX_MIPS16_USER_EXT (fragp->fr_subtype),
14431 small, ext, &insn, &use_extend, &extend);
14432
14433 if (use_extend)
14434 {
14435 md_number_to_chars ((char *) buf, 0xf000 | extend, 2);
14436 fragp->fr_fix += 2;
14437 buf += 2;
14438 }
14439
14440 md_number_to_chars ((char *) buf, insn, 2);
14441 fragp->fr_fix += 2;
14442 buf += 2;
14443 }
14444 else
14445 {
14446 int first, second;
14447 fixS *fixp;
14448
14449 first = RELAX_FIRST (fragp->fr_subtype);
14450 second = RELAX_SECOND (fragp->fr_subtype);
14451 fixp = (fixS *) fragp->fr_opcode;
14452
14453 /* Possibly emit a warning if we've chosen the longer option. */
14454 if (((fragp->fr_subtype & RELAX_USE_SECOND) != 0)
14455 == ((fragp->fr_subtype & RELAX_SECOND_LONGER) != 0))
14456 {
14457 const char *msg = macro_warning (fragp->fr_subtype);
14458 if (msg != 0)
14459 as_warn_where (fragp->fr_file, fragp->fr_line, msg);
14460 }
14461
14462 /* Go through all the fixups for the first sequence. Disable them
14463 (by marking them as done) if we're going to use the second
14464 sequence instead. */
14465 while (fixp
14466 && fixp->fx_frag == fragp
14467 && fixp->fx_where < fragp->fr_fix - second)
14468 {
14469 if (fragp->fr_subtype & RELAX_USE_SECOND)
14470 fixp->fx_done = 1;
14471 fixp = fixp->fx_next;
14472 }
14473
14474 /* Go through the fixups for the second sequence. Disable them if
14475 we're going to use the first sequence, otherwise adjust their
14476 addresses to account for the relaxation. */
14477 while (fixp && fixp->fx_frag == fragp)
14478 {
14479 if (fragp->fr_subtype & RELAX_USE_SECOND)
14480 fixp->fx_where -= first;
14481 else
14482 fixp->fx_done = 1;
14483 fixp = fixp->fx_next;
14484 }
14485
14486 /* Now modify the frag contents. */
14487 if (fragp->fr_subtype & RELAX_USE_SECOND)
14488 {
14489 char *start;
14490
14491 start = fragp->fr_literal + fragp->fr_fix - first - second;
14492 memmove (start, start + first, second);
14493 fragp->fr_fix -= first;
14494 }
14495 else
14496 fragp->fr_fix -= second;
14497 }
14498 }
14499
14500 #ifdef OBJ_ELF
14501
14502 /* This function is called after the relocs have been generated.
14503 We've been storing mips16 text labels as odd. Here we convert them
14504 back to even for the convenience of the debugger. */
14505
14506 void
14507 mips_frob_file_after_relocs (void)
14508 {
14509 asymbol **syms;
14510 unsigned int count, i;
14511
14512 if (!IS_ELF)
14513 return;
14514
14515 syms = bfd_get_outsymbols (stdoutput);
14516 count = bfd_get_symcount (stdoutput);
14517 for (i = 0; i < count; i++, syms++)
14518 {
14519 if (ELF_ST_IS_MIPS16 (elf_symbol (*syms)->internal_elf_sym.st_other)
14520 && ((*syms)->value & 1) != 0)
14521 {
14522 (*syms)->value &= ~1;
14523 /* If the symbol has an odd size, it was probably computed
14524 incorrectly, so adjust that as well. */
14525 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
14526 ++elf_symbol (*syms)->internal_elf_sym.st_size;
14527 }
14528 }
14529 }
14530
14531 #endif
14532
14533 /* This function is called whenever a label is defined. It is used
14534 when handling branch delays; if a branch has a label, we assume we
14535 can not move it. */
14536
14537 void
14538 mips_define_label (symbolS *sym)
14539 {
14540 segment_info_type *si = seg_info (now_seg);
14541 struct insn_label_list *l;
14542
14543 if (free_insn_labels == NULL)
14544 l = (struct insn_label_list *) xmalloc (sizeof *l);
14545 else
14546 {
14547 l = free_insn_labels;
14548 free_insn_labels = l->next;
14549 }
14550
14551 l->label = sym;
14552 l->next = si->label_list;
14553 si->label_list = l;
14554
14555 #ifdef OBJ_ELF
14556 dwarf2_emit_label (sym);
14557 #endif
14558 }
14559 \f
14560 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14561
14562 /* Some special processing for a MIPS ELF file. */
14563
14564 void
14565 mips_elf_final_processing (void)
14566 {
14567 /* Write out the register information. */
14568 if (mips_abi != N64_ABI)
14569 {
14570 Elf32_RegInfo s;
14571
14572 s.ri_gprmask = mips_gprmask;
14573 s.ri_cprmask[0] = mips_cprmask[0];
14574 s.ri_cprmask[1] = mips_cprmask[1];
14575 s.ri_cprmask[2] = mips_cprmask[2];
14576 s.ri_cprmask[3] = mips_cprmask[3];
14577 /* The gp_value field is set by the MIPS ELF backend. */
14578
14579 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
14580 ((Elf32_External_RegInfo *)
14581 mips_regmask_frag));
14582 }
14583 else
14584 {
14585 Elf64_Internal_RegInfo s;
14586
14587 s.ri_gprmask = mips_gprmask;
14588 s.ri_pad = 0;
14589 s.ri_cprmask[0] = mips_cprmask[0];
14590 s.ri_cprmask[1] = mips_cprmask[1];
14591 s.ri_cprmask[2] = mips_cprmask[2];
14592 s.ri_cprmask[3] = mips_cprmask[3];
14593 /* The gp_value field is set by the MIPS ELF backend. */
14594
14595 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
14596 ((Elf64_External_RegInfo *)
14597 mips_regmask_frag));
14598 }
14599
14600 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
14601 sort of BFD interface for this. */
14602 if (mips_any_noreorder)
14603 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
14604 if (mips_pic != NO_PIC)
14605 {
14606 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
14607 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14608 }
14609 if (mips_abicalls)
14610 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14611
14612 /* Set MIPS ELF flags for ASEs. */
14613 /* We may need to define a new flag for DSP ASE, and set this flag when
14614 file_ase_dsp is true. */
14615 /* Same for DSP R2. */
14616 /* We may need to define a new flag for MT ASE, and set this flag when
14617 file_ase_mt is true. */
14618 if (file_ase_mips16)
14619 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
14620 #if 0 /* XXX FIXME */
14621 if (file_ase_mips3d)
14622 elf_elfheader (stdoutput)->e_flags |= ???;
14623 #endif
14624 if (file_ase_mdmx)
14625 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
14626
14627 /* Set the MIPS ELF ABI flags. */
14628 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
14629 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
14630 else if (mips_abi == O64_ABI)
14631 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
14632 else if (mips_abi == EABI_ABI)
14633 {
14634 if (!file_mips_gp32)
14635 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
14636 else
14637 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
14638 }
14639 else if (mips_abi == N32_ABI)
14640 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
14641
14642 /* Nothing to do for N64_ABI. */
14643
14644 if (mips_32bitmode)
14645 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
14646
14647 #if 0 /* XXX FIXME */
14648 /* 32 bit code with 64 bit FP registers. */
14649 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
14650 elf_elfheader (stdoutput)->e_flags |= ???;
14651 #endif
14652 }
14653
14654 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
14655 \f
14656 typedef struct proc {
14657 symbolS *func_sym;
14658 symbolS *func_end_sym;
14659 unsigned long reg_mask;
14660 unsigned long reg_offset;
14661 unsigned long fpreg_mask;
14662 unsigned long fpreg_offset;
14663 unsigned long frame_offset;
14664 unsigned long frame_reg;
14665 unsigned long pc_reg;
14666 } procS;
14667
14668 static procS cur_proc;
14669 static procS *cur_proc_ptr;
14670 static int numprocs;
14671
14672 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1" and a normal
14673 nop as "0". */
14674
14675 char
14676 mips_nop_opcode (void)
14677 {
14678 return seg_info (now_seg)->tc_segment_info_data.mips16;
14679 }
14680
14681 /* Fill in an rs_align_code fragment. This only needs to do something
14682 for MIPS16 code, where 0 is not a nop. */
14683
14684 void
14685 mips_handle_align (fragS *fragp)
14686 {
14687 char *p;
14688
14689 if (fragp->fr_type != rs_align_code)
14690 return;
14691
14692 p = fragp->fr_literal + fragp->fr_fix;
14693 if (*p)
14694 {
14695 int bytes;
14696
14697 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
14698 if (bytes & 1)
14699 {
14700 *p++ = 0;
14701 fragp->fr_fix++;
14702 }
14703 md_number_to_chars (p, mips16_nop_insn.insn_opcode, 2);
14704 fragp->fr_var = 2;
14705 }
14706 }
14707
14708 static void
14709 md_obj_begin (void)
14710 {
14711 }
14712
14713 static void
14714 md_obj_end (void)
14715 {
14716 /* Check for premature end, nesting errors, etc. */
14717 if (cur_proc_ptr)
14718 as_warn (_("missing .end at end of assembly"));
14719 }
14720
14721 static long
14722 get_number (void)
14723 {
14724 int negative = 0;
14725 long val = 0;
14726
14727 if (*input_line_pointer == '-')
14728 {
14729 ++input_line_pointer;
14730 negative = 1;
14731 }
14732 if (!ISDIGIT (*input_line_pointer))
14733 as_bad (_("expected simple number"));
14734 if (input_line_pointer[0] == '0')
14735 {
14736 if (input_line_pointer[1] == 'x')
14737 {
14738 input_line_pointer += 2;
14739 while (ISXDIGIT (*input_line_pointer))
14740 {
14741 val <<= 4;
14742 val |= hex_value (*input_line_pointer++);
14743 }
14744 return negative ? -val : val;
14745 }
14746 else
14747 {
14748 ++input_line_pointer;
14749 while (ISDIGIT (*input_line_pointer))
14750 {
14751 val <<= 3;
14752 val |= *input_line_pointer++ - '0';
14753 }
14754 return negative ? -val : val;
14755 }
14756 }
14757 if (!ISDIGIT (*input_line_pointer))
14758 {
14759 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
14760 *input_line_pointer, *input_line_pointer);
14761 as_warn (_("invalid number"));
14762 return -1;
14763 }
14764 while (ISDIGIT (*input_line_pointer))
14765 {
14766 val *= 10;
14767 val += *input_line_pointer++ - '0';
14768 }
14769 return negative ? -val : val;
14770 }
14771
14772 /* The .file directive; just like the usual .file directive, but there
14773 is an initial number which is the ECOFF file index. In the non-ECOFF
14774 case .file implies DWARF-2. */
14775
14776 static void
14777 s_mips_file (int x ATTRIBUTE_UNUSED)
14778 {
14779 static int first_file_directive = 0;
14780
14781 if (ECOFF_DEBUGGING)
14782 {
14783 get_number ();
14784 s_app_file (0);
14785 }
14786 else
14787 {
14788 char *filename;
14789
14790 filename = dwarf2_directive_file (0);
14791
14792 /* Versions of GCC up to 3.1 start files with a ".file"
14793 directive even for stabs output. Make sure that this
14794 ".file" is handled. Note that you need a version of GCC
14795 after 3.1 in order to support DWARF-2 on MIPS. */
14796 if (filename != NULL && ! first_file_directive)
14797 {
14798 (void) new_logical_line (filename, -1);
14799 s_app_file_string (filename, 0);
14800 }
14801 first_file_directive = 1;
14802 }
14803 }
14804
14805 /* The .loc directive, implying DWARF-2. */
14806
14807 static void
14808 s_mips_loc (int x ATTRIBUTE_UNUSED)
14809 {
14810 if (!ECOFF_DEBUGGING)
14811 dwarf2_directive_loc (0);
14812 }
14813
14814 /* The .end directive. */
14815
14816 static void
14817 s_mips_end (int x ATTRIBUTE_UNUSED)
14818 {
14819 symbolS *p;
14820
14821 /* Following functions need their own .frame and .cprestore directives. */
14822 mips_frame_reg_valid = 0;
14823 mips_cprestore_valid = 0;
14824
14825 if (!is_end_of_line[(unsigned char) *input_line_pointer])
14826 {
14827 p = get_symbol ();
14828 demand_empty_rest_of_line ();
14829 }
14830 else
14831 p = NULL;
14832
14833 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
14834 as_warn (_(".end not in text section"));
14835
14836 if (!cur_proc_ptr)
14837 {
14838 as_warn (_(".end directive without a preceding .ent directive."));
14839 demand_empty_rest_of_line ();
14840 return;
14841 }
14842
14843 if (p != NULL)
14844 {
14845 assert (S_GET_NAME (p));
14846 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
14847 as_warn (_(".end symbol does not match .ent symbol."));
14848
14849 if (debug_type == DEBUG_STABS)
14850 stabs_generate_asm_endfunc (S_GET_NAME (p),
14851 S_GET_NAME (p));
14852 }
14853 else
14854 as_warn (_(".end directive missing or unknown symbol"));
14855
14856 #ifdef OBJ_ELF
14857 /* Create an expression to calculate the size of the function. */
14858 if (p && cur_proc_ptr)
14859 {
14860 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
14861 expressionS *exp = xmalloc (sizeof (expressionS));
14862
14863 obj->size = exp;
14864 exp->X_op = O_subtract;
14865 exp->X_add_symbol = symbol_temp_new_now ();
14866 exp->X_op_symbol = p;
14867 exp->X_add_number = 0;
14868
14869 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
14870 }
14871
14872 /* Generate a .pdr section. */
14873 if (IS_ELF && !ECOFF_DEBUGGING && mips_flag_pdr)
14874 {
14875 segT saved_seg = now_seg;
14876 subsegT saved_subseg = now_subseg;
14877 valueT dot;
14878 expressionS exp;
14879 char *fragp;
14880
14881 dot = frag_now_fix ();
14882
14883 #ifdef md_flush_pending_output
14884 md_flush_pending_output ();
14885 #endif
14886
14887 assert (pdr_seg);
14888 subseg_set (pdr_seg, 0);
14889
14890 /* Write the symbol. */
14891 exp.X_op = O_symbol;
14892 exp.X_add_symbol = p;
14893 exp.X_add_number = 0;
14894 emit_expr (&exp, 4);
14895
14896 fragp = frag_more (7 * 4);
14897
14898 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
14899 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
14900 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
14901 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
14902 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
14903 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
14904 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
14905
14906 subseg_set (saved_seg, saved_subseg);
14907 }
14908 #endif /* OBJ_ELF */
14909
14910 cur_proc_ptr = NULL;
14911 }
14912
14913 /* The .aent and .ent directives. */
14914
14915 static void
14916 s_mips_ent (int aent)
14917 {
14918 symbolS *symbolP;
14919
14920 symbolP = get_symbol ();
14921 if (*input_line_pointer == ',')
14922 ++input_line_pointer;
14923 SKIP_WHITESPACE ();
14924 if (ISDIGIT (*input_line_pointer)
14925 || *input_line_pointer == '-')
14926 get_number ();
14927
14928 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
14929 as_warn (_(".ent or .aent not in text section."));
14930
14931 if (!aent && cur_proc_ptr)
14932 as_warn (_("missing .end"));
14933
14934 if (!aent)
14935 {
14936 /* This function needs its own .frame and .cprestore directives. */
14937 mips_frame_reg_valid = 0;
14938 mips_cprestore_valid = 0;
14939
14940 cur_proc_ptr = &cur_proc;
14941 memset (cur_proc_ptr, '\0', sizeof (procS));
14942
14943 cur_proc_ptr->func_sym = symbolP;
14944
14945 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
14946
14947 ++numprocs;
14948
14949 if (debug_type == DEBUG_STABS)
14950 stabs_generate_asm_func (S_GET_NAME (symbolP),
14951 S_GET_NAME (symbolP));
14952 }
14953
14954 demand_empty_rest_of_line ();
14955 }
14956
14957 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
14958 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
14959 s_mips_frame is used so that we can set the PDR information correctly.
14960 We can't use the ecoff routines because they make reference to the ecoff
14961 symbol table (in the mdebug section). */
14962
14963 static void
14964 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
14965 {
14966 #ifdef OBJ_ELF
14967 if (IS_ELF && !ECOFF_DEBUGGING)
14968 {
14969 long val;
14970
14971 if (cur_proc_ptr == (procS *) NULL)
14972 {
14973 as_warn (_(".frame outside of .ent"));
14974 demand_empty_rest_of_line ();
14975 return;
14976 }
14977
14978 cur_proc_ptr->frame_reg = tc_get_register (1);
14979
14980 SKIP_WHITESPACE ();
14981 if (*input_line_pointer++ != ','
14982 || get_absolute_expression_and_terminator (&val) != ',')
14983 {
14984 as_warn (_("Bad .frame directive"));
14985 --input_line_pointer;
14986 demand_empty_rest_of_line ();
14987 return;
14988 }
14989
14990 cur_proc_ptr->frame_offset = val;
14991 cur_proc_ptr->pc_reg = tc_get_register (0);
14992
14993 demand_empty_rest_of_line ();
14994 }
14995 else
14996 #endif /* OBJ_ELF */
14997 s_ignore (ignore);
14998 }
14999
15000 /* The .fmask and .mask directives. If the mdebug section is present
15001 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
15002 embedded targets, s_mips_mask is used so that we can set the PDR
15003 information correctly. We can't use the ecoff routines because they
15004 make reference to the ecoff symbol table (in the mdebug section). */
15005
15006 static void
15007 s_mips_mask (int reg_type)
15008 {
15009 #ifdef OBJ_ELF
15010 if (IS_ELF && !ECOFF_DEBUGGING)
15011 {
15012 long mask, off;
15013
15014 if (cur_proc_ptr == (procS *) NULL)
15015 {
15016 as_warn (_(".mask/.fmask outside of .ent"));
15017 demand_empty_rest_of_line ();
15018 return;
15019 }
15020
15021 if (get_absolute_expression_and_terminator (&mask) != ',')
15022 {
15023 as_warn (_("Bad .mask/.fmask directive"));
15024 --input_line_pointer;
15025 demand_empty_rest_of_line ();
15026 return;
15027 }
15028
15029 off = get_absolute_expression ();
15030
15031 if (reg_type == 'F')
15032 {
15033 cur_proc_ptr->fpreg_mask = mask;
15034 cur_proc_ptr->fpreg_offset = off;
15035 }
15036 else
15037 {
15038 cur_proc_ptr->reg_mask = mask;
15039 cur_proc_ptr->reg_offset = off;
15040 }
15041
15042 demand_empty_rest_of_line ();
15043 }
15044 else
15045 #endif /* OBJ_ELF */
15046 s_ignore (reg_type);
15047 }
15048
15049 /* A table describing all the processors gas knows about. Names are
15050 matched in the order listed.
15051
15052 To ease comparison, please keep this table in the same order as
15053 gcc's mips_cpu_info_table[]. */
15054 static const struct mips_cpu_info mips_cpu_info_table[] =
15055 {
15056 /* Entries for generic ISAs */
15057 { "mips1", MIPS_CPU_IS_ISA, ISA_MIPS1, CPU_R3000 },
15058 { "mips2", MIPS_CPU_IS_ISA, ISA_MIPS2, CPU_R6000 },
15059 { "mips3", MIPS_CPU_IS_ISA, ISA_MIPS3, CPU_R4000 },
15060 { "mips4", MIPS_CPU_IS_ISA, ISA_MIPS4, CPU_R8000 },
15061 { "mips5", MIPS_CPU_IS_ISA, ISA_MIPS5, CPU_MIPS5 },
15062 { "mips32", MIPS_CPU_IS_ISA, ISA_MIPS32, CPU_MIPS32 },
15063 { "mips32r2", MIPS_CPU_IS_ISA, ISA_MIPS32R2, CPU_MIPS32R2 },
15064 { "mips64", MIPS_CPU_IS_ISA, ISA_MIPS64, CPU_MIPS64 },
15065 { "mips64r2", MIPS_CPU_IS_ISA, ISA_MIPS64R2, CPU_MIPS64R2 },
15066
15067 /* MIPS I */
15068 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
15069 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
15070 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
15071
15072 /* MIPS II */
15073 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
15074
15075 /* MIPS III */
15076 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
15077 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
15078 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
15079 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
15080 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
15081 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
15082 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
15083 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
15084 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
15085 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
15086 { "orion", 0, ISA_MIPS3, CPU_R4600 },
15087 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
15088 /* ST Microelectronics Loongson 2E and 2F cores */
15089 { "loongson2e", 0, ISA_MIPS3, CPU_LOONGSON_2E },
15090 { "loongson2f", 0, ISA_MIPS3, CPU_LOONGSON_2F },
15091
15092 /* MIPS IV */
15093 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
15094 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
15095 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
15096 { "r14000", 0, ISA_MIPS4, CPU_R14000 },
15097 { "r16000", 0, ISA_MIPS4, CPU_R16000 },
15098 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
15099 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
15100 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
15101 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
15102 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
15103 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
15104 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
15105 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
15106 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
15107 { "rm9000", 0, ISA_MIPS4, CPU_RM9000 },
15108
15109 /* MIPS 32 */
15110 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
15111 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
15112 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
15113 { "4ksc", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
15114
15115 /* MIPS 32 Release 2 */
15116 { "4kec", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15117 { "4kem", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15118 { "4kep", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15119 { "4ksd", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
15120 { "m4k", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15121 { "m4kp", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15122 { "24kc", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15123 { "24kf2_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15124 { "24kf", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15125 { "24kf1_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15126 /* Deprecated forms of the above. */
15127 { "24kfx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15128 { "24kx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15129 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
15130 { "24kec", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15131 { "24kef2_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15132 { "24kef", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15133 { "24kef1_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15134 /* Deprecated forms of the above. */
15135 { "24kefx", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15136 { "24kex", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15137 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
15138 { "34kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15139 ISA_MIPS32R2, CPU_MIPS32R2 },
15140 { "34kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15141 ISA_MIPS32R2, CPU_MIPS32R2 },
15142 { "34kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15143 ISA_MIPS32R2, CPU_MIPS32R2 },
15144 { "34kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15145 ISA_MIPS32R2, CPU_MIPS32R2 },
15146 /* Deprecated forms of the above. */
15147 { "34kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15148 ISA_MIPS32R2, CPU_MIPS32R2 },
15149 { "34kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15150 ISA_MIPS32R2, CPU_MIPS32R2 },
15151 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
15152 { "74kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15153 ISA_MIPS32R2, CPU_MIPS32R2 },
15154 { "74kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15155 ISA_MIPS32R2, CPU_MIPS32R2 },
15156 { "74kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15157 ISA_MIPS32R2, CPU_MIPS32R2 },
15158 { "74kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15159 ISA_MIPS32R2, CPU_MIPS32R2 },
15160 { "74kf3_2", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15161 ISA_MIPS32R2, CPU_MIPS32R2 },
15162 /* Deprecated forms of the above. */
15163 { "74kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15164 ISA_MIPS32R2, CPU_MIPS32R2 },
15165 { "74kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15166 ISA_MIPS32R2, CPU_MIPS32R2 },
15167
15168 /* MIPS 64 */
15169 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
15170 { "5kf", 0, ISA_MIPS64, CPU_MIPS64 },
15171 { "20kc", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15172 { "25kf", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15173
15174 /* Broadcom SB-1 CPU core */
15175 { "sb1", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15176 ISA_MIPS64, CPU_SB1 },
15177 /* Broadcom SB-1A CPU core */
15178 { "sb1a", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15179 ISA_MIPS64, CPU_SB1 },
15180
15181 /* MIPS 64 Release 2 */
15182
15183 /* Cavium Networks Octeon CPU core */
15184 { "octeon", 0, ISA_MIPS64R2, CPU_OCTEON },
15185
15186 /* End marker */
15187 { NULL, 0, 0, 0 }
15188 };
15189
15190
15191 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
15192 with a final "000" replaced by "k". Ignore case.
15193
15194 Note: this function is shared between GCC and GAS. */
15195
15196 static bfd_boolean
15197 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
15198 {
15199 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
15200 given++, canonical++;
15201
15202 return ((*given == 0 && *canonical == 0)
15203 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
15204 }
15205
15206
15207 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
15208 CPU name. We've traditionally allowed a lot of variation here.
15209
15210 Note: this function is shared between GCC and GAS. */
15211
15212 static bfd_boolean
15213 mips_matching_cpu_name_p (const char *canonical, const char *given)
15214 {
15215 /* First see if the name matches exactly, or with a final "000"
15216 turned into "k". */
15217 if (mips_strict_matching_cpu_name_p (canonical, given))
15218 return TRUE;
15219
15220 /* If not, try comparing based on numerical designation alone.
15221 See if GIVEN is an unadorned number, or 'r' followed by a number. */
15222 if (TOLOWER (*given) == 'r')
15223 given++;
15224 if (!ISDIGIT (*given))
15225 return FALSE;
15226
15227 /* Skip over some well-known prefixes in the canonical name,
15228 hoping to find a number there too. */
15229 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
15230 canonical += 2;
15231 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
15232 canonical += 2;
15233 else if (TOLOWER (canonical[0]) == 'r')
15234 canonical += 1;
15235
15236 return mips_strict_matching_cpu_name_p (canonical, given);
15237 }
15238
15239
15240 /* Parse an option that takes the name of a processor as its argument.
15241 OPTION is the name of the option and CPU_STRING is the argument.
15242 Return the corresponding processor enumeration if the CPU_STRING is
15243 recognized, otherwise report an error and return null.
15244
15245 A similar function exists in GCC. */
15246
15247 static const struct mips_cpu_info *
15248 mips_parse_cpu (const char *option, const char *cpu_string)
15249 {
15250 const struct mips_cpu_info *p;
15251
15252 /* 'from-abi' selects the most compatible architecture for the given
15253 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
15254 EABIs, we have to decide whether we're using the 32-bit or 64-bit
15255 version. Look first at the -mgp options, if given, otherwise base
15256 the choice on MIPS_DEFAULT_64BIT.
15257
15258 Treat NO_ABI like the EABIs. One reason to do this is that the
15259 plain 'mips' and 'mips64' configs have 'from-abi' as their default
15260 architecture. This code picks MIPS I for 'mips' and MIPS III for
15261 'mips64', just as we did in the days before 'from-abi'. */
15262 if (strcasecmp (cpu_string, "from-abi") == 0)
15263 {
15264 if (ABI_NEEDS_32BIT_REGS (mips_abi))
15265 return mips_cpu_info_from_isa (ISA_MIPS1);
15266
15267 if (ABI_NEEDS_64BIT_REGS (mips_abi))
15268 return mips_cpu_info_from_isa (ISA_MIPS3);
15269
15270 if (file_mips_gp32 >= 0)
15271 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
15272
15273 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
15274 ? ISA_MIPS3
15275 : ISA_MIPS1);
15276 }
15277
15278 /* 'default' has traditionally been a no-op. Probably not very useful. */
15279 if (strcasecmp (cpu_string, "default") == 0)
15280 return 0;
15281
15282 for (p = mips_cpu_info_table; p->name != 0; p++)
15283 if (mips_matching_cpu_name_p (p->name, cpu_string))
15284 return p;
15285
15286 as_bad ("Bad value (%s) for %s", cpu_string, option);
15287 return 0;
15288 }
15289
15290 /* Return the canonical processor information for ISA (a member of the
15291 ISA_MIPS* enumeration). */
15292
15293 static const struct mips_cpu_info *
15294 mips_cpu_info_from_isa (int isa)
15295 {
15296 int i;
15297
15298 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15299 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
15300 && isa == mips_cpu_info_table[i].isa)
15301 return (&mips_cpu_info_table[i]);
15302
15303 return NULL;
15304 }
15305
15306 static const struct mips_cpu_info *
15307 mips_cpu_info_from_arch (int arch)
15308 {
15309 int i;
15310
15311 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15312 if (arch == mips_cpu_info_table[i].cpu)
15313 return (&mips_cpu_info_table[i]);
15314
15315 return NULL;
15316 }
15317 \f
15318 static void
15319 show (FILE *stream, const char *string, int *col_p, int *first_p)
15320 {
15321 if (*first_p)
15322 {
15323 fprintf (stream, "%24s", "");
15324 *col_p = 24;
15325 }
15326 else
15327 {
15328 fprintf (stream, ", ");
15329 *col_p += 2;
15330 }
15331
15332 if (*col_p + strlen (string) > 72)
15333 {
15334 fprintf (stream, "\n%24s", "");
15335 *col_p = 24;
15336 }
15337
15338 fprintf (stream, "%s", string);
15339 *col_p += strlen (string);
15340
15341 *first_p = 0;
15342 }
15343
15344 void
15345 md_show_usage (FILE *stream)
15346 {
15347 int column, first;
15348 size_t i;
15349
15350 fprintf (stream, _("\
15351 MIPS options:\n\
15352 -EB generate big endian output\n\
15353 -EL generate little endian output\n\
15354 -g, -g2 do not remove unneeded NOPs or swap branches\n\
15355 -G NUM allow referencing objects up to NUM bytes\n\
15356 implicitly with the gp register [default 8]\n"));
15357 fprintf (stream, _("\
15358 -mips1 generate MIPS ISA I instructions\n\
15359 -mips2 generate MIPS ISA II instructions\n\
15360 -mips3 generate MIPS ISA III instructions\n\
15361 -mips4 generate MIPS ISA IV instructions\n\
15362 -mips5 generate MIPS ISA V instructions\n\
15363 -mips32 generate MIPS32 ISA instructions\n\
15364 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
15365 -mips64 generate MIPS64 ISA instructions\n\
15366 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
15367 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
15368
15369 first = 1;
15370
15371 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15372 show (stream, mips_cpu_info_table[i].name, &column, &first);
15373 show (stream, "from-abi", &column, &first);
15374 fputc ('\n', stream);
15375
15376 fprintf (stream, _("\
15377 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
15378 -no-mCPU don't generate code specific to CPU.\n\
15379 For -mCPU and -no-mCPU, CPU must be one of:\n"));
15380
15381 first = 1;
15382
15383 show (stream, "3900", &column, &first);
15384 show (stream, "4010", &column, &first);
15385 show (stream, "4100", &column, &first);
15386 show (stream, "4650", &column, &first);
15387 fputc ('\n', stream);
15388
15389 fprintf (stream, _("\
15390 -mips16 generate mips16 instructions\n\
15391 -no-mips16 do not generate mips16 instructions\n"));
15392 fprintf (stream, _("\
15393 -msmartmips generate smartmips instructions\n\
15394 -mno-smartmips do not generate smartmips instructions\n"));
15395 fprintf (stream, _("\
15396 -mdsp generate DSP instructions\n\
15397 -mno-dsp do not generate DSP instructions\n"));
15398 fprintf (stream, _("\
15399 -mdspr2 generate DSP R2 instructions\n\
15400 -mno-dspr2 do not generate DSP R2 instructions\n"));
15401 fprintf (stream, _("\
15402 -mmt generate MT instructions\n\
15403 -mno-mt do not generate MT instructions\n"));
15404 fprintf (stream, _("\
15405 -mfix-vr4120 work around certain VR4120 errata\n\
15406 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
15407 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
15408 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
15409 -msym32 assume all symbols have 32-bit values\n\
15410 -O0 remove unneeded NOPs, do not swap branches\n\
15411 -O remove unneeded NOPs and swap branches\n\
15412 --trap, --no-break trap exception on div by 0 and mult overflow\n\
15413 --break, --no-trap break exception on div by 0 and mult overflow\n"));
15414 fprintf (stream, _("\
15415 -mhard-float allow floating-point instructions\n\
15416 -msoft-float do not allow floating-point instructions\n\
15417 -msingle-float only allow 32-bit floating-point operations\n\
15418 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
15419 --[no-]construct-floats [dis]allow floating point values to be constructed\n"
15420 ));
15421 #ifdef OBJ_ELF
15422 fprintf (stream, _("\
15423 -KPIC, -call_shared generate SVR4 position independent code\n\
15424 -call_nonpic generate non-PIC code that can operate with DSOs\n\
15425 -mvxworks-pic generate VxWorks position independent code\n\
15426 -non_shared do not generate code that can operate with DSOs\n\
15427 -xgot assume a 32 bit GOT\n\
15428 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
15429 -mshared, -mno-shared disable/enable .cpload optimization for\n\
15430 position dependent (non shared) code\n\
15431 -mabi=ABI create ABI conformant object file for:\n"));
15432
15433 first = 1;
15434
15435 show (stream, "32", &column, &first);
15436 show (stream, "o64", &column, &first);
15437 show (stream, "n32", &column, &first);
15438 show (stream, "64", &column, &first);
15439 show (stream, "eabi", &column, &first);
15440
15441 fputc ('\n', stream);
15442
15443 fprintf (stream, _("\
15444 -32 create o32 ABI object file (default)\n\
15445 -n32 create n32 ABI object file\n\
15446 -64 create 64 ABI object file\n"));
15447 #endif
15448 }
15449
15450 enum dwarf2_format
15451 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
15452 {
15453 if (HAVE_64BIT_SYMBOLS)
15454 {
15455 #ifdef TE_IRIX
15456 return dwarf2_format_64bit_irix;
15457 #else
15458 return dwarf2_format_64bit;
15459 #endif
15460 }
15461 else
15462 return dwarf2_format_32bit;
15463 }
15464
15465 int
15466 mips_dwarf2_addr_size (void)
15467 {
15468 if (HAVE_64BIT_SYMBOLS)
15469 return 8;
15470 else
15471 return 4;
15472 }
15473
15474 /* Standard calling conventions leave the CFA at SP on entry. */
15475 void
15476 mips_cfi_frame_initial_instructions (void)
15477 {
15478 cfi_add_CFA_def_cfa_register (SP);
15479 }
15480
15481 int
15482 tc_mips_regname_to_dw2regnum (char *regname)
15483 {
15484 unsigned int regnum = -1;
15485 unsigned int reg;
15486
15487 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
15488 regnum = reg;
15489
15490 return regnum;
15491 }
This page took 0.37122 seconds and 4 git commands to generate.