bfd/
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4 Contributed by the OSF and Ralph Campbell.
5 Written by Keith Knowles and Ralph Campbell, working independently.
6 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
7 Support.
8
9 This file is part of GAS.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include "config.h"
28 #include "subsegs.h"
29 #include "safe-ctype.h"
30
31 #include "opcode/mips.h"
32 #include "itbl-ops.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35
36 #ifdef DEBUG
37 #define DBG(x) printf x
38 #else
39 #define DBG(x)
40 #endif
41
42 #ifdef OBJ_MAYBE_ELF
43 /* Clean up namespace so we can include obj-elf.h too. */
44 static int mips_output_flavor (void);
45 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
46 #undef OBJ_PROCESS_STAB
47 #undef OUTPUT_FLAVOR
48 #undef S_GET_ALIGN
49 #undef S_GET_SIZE
50 #undef S_SET_ALIGN
51 #undef S_SET_SIZE
52 #undef obj_frob_file
53 #undef obj_frob_file_after_relocs
54 #undef obj_frob_symbol
55 #undef obj_pop_insert
56 #undef obj_sec_sym_ok_for_reloc
57 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
58
59 #include "obj-elf.h"
60 /* Fix any of them that we actually care about. */
61 #undef OUTPUT_FLAVOR
62 #define OUTPUT_FLAVOR mips_output_flavor()
63 #endif
64
65 #if defined (OBJ_ELF)
66 #include "elf/mips.h"
67 #endif
68
69 #ifndef ECOFF_DEBUGGING
70 #define NO_ECOFF_DEBUGGING
71 #define ECOFF_DEBUGGING 0
72 #endif
73
74 int mips_flag_mdebug = -1;
75
76 /* Control generation of .pdr sections. Off by default on IRIX: the native
77 linker doesn't know about and discards them, but relocations against them
78 remain, leading to rld crashes. */
79 #ifdef TE_IRIX
80 int mips_flag_pdr = FALSE;
81 #else
82 int mips_flag_pdr = TRUE;
83 #endif
84
85 #include "ecoff.h"
86
87 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
88 static char *mips_regmask_frag;
89 #endif
90
91 #define ZERO 0
92 #define ATREG 1
93 #define TREG 24
94 #define PIC_CALL_REG 25
95 #define KT0 26
96 #define KT1 27
97 #define GP 28
98 #define SP 29
99 #define FP 30
100 #define RA 31
101
102 #define ILLEGAL_REG (32)
103
104 #define AT mips_opts.at
105
106 /* Allow override of standard little-endian ECOFF format. */
107
108 #ifndef ECOFF_LITTLE_FORMAT
109 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
110 #endif
111
112 extern int target_big_endian;
113
114 /* The name of the readonly data section. */
115 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
116 ? ".rdata" \
117 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
118 ? ".rdata" \
119 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
120 ? ".rodata" \
121 : (abort (), ""))
122
123 /* Information about an instruction, including its format, operands
124 and fixups. */
125 struct mips_cl_insn
126 {
127 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
128 const struct mips_opcode *insn_mo;
129
130 /* True if this is a mips16 instruction and if we want the extended
131 form of INSN_MO. */
132 bfd_boolean use_extend;
133
134 /* The 16-bit extension instruction to use when USE_EXTEND is true. */
135 unsigned short extend;
136
137 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
138 a copy of INSN_MO->match with the operands filled in. */
139 unsigned long insn_opcode;
140
141 /* The frag that contains the instruction. */
142 struct frag *frag;
143
144 /* The offset into FRAG of the first instruction byte. */
145 long where;
146
147 /* The relocs associated with the instruction, if any. */
148 fixS *fixp[3];
149
150 /* True if this entry cannot be moved from its current position. */
151 unsigned int fixed_p : 1;
152
153 /* True if this instruction occurred in a .set noreorder block. */
154 unsigned int noreorder_p : 1;
155
156 /* True for mips16 instructions that jump to an absolute address. */
157 unsigned int mips16_absolute_jump_p : 1;
158 };
159
160 /* The ABI to use. */
161 enum mips_abi_level
162 {
163 NO_ABI = 0,
164 O32_ABI,
165 O64_ABI,
166 N32_ABI,
167 N64_ABI,
168 EABI_ABI
169 };
170
171 /* MIPS ABI we are using for this output file. */
172 static enum mips_abi_level mips_abi = NO_ABI;
173
174 /* Whether or not we have code that can call pic code. */
175 int mips_abicalls = FALSE;
176
177 /* Whether or not we have code which can be put into a shared
178 library. */
179 static bfd_boolean mips_in_shared = TRUE;
180
181 /* This is the set of options which may be modified by the .set
182 pseudo-op. We use a struct so that .set push and .set pop are more
183 reliable. */
184
185 struct mips_set_options
186 {
187 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
188 if it has not been initialized. Changed by `.set mipsN', and the
189 -mipsN command line option, and the default CPU. */
190 int isa;
191 /* Enabled Application Specific Extensions (ASEs). These are set to -1
192 if they have not been initialized. Changed by `.set <asename>', by
193 command line options, and based on the default architecture. */
194 int ase_mips3d;
195 int ase_mdmx;
196 int ase_smartmips;
197 int ase_dsp;
198 int ase_dspr2;
199 int ase_mt;
200 /* Whether we are assembling for the mips16 processor. 0 if we are
201 not, 1 if we are, and -1 if the value has not been initialized.
202 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
203 -nomips16 command line options, and the default CPU. */
204 int mips16;
205 /* Non-zero if we should not reorder instructions. Changed by `.set
206 reorder' and `.set noreorder'. */
207 int noreorder;
208 /* Non-zero if we should not permit the register designated "assembler
209 temporary" to be used in instructions. The value is the register
210 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
211 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
212 unsigned int at;
213 /* Non-zero if we should warn when a macro instruction expands into
214 more than one machine instruction. Changed by `.set nomacro' and
215 `.set macro'. */
216 int warn_about_macros;
217 /* Non-zero if we should not move instructions. Changed by `.set
218 move', `.set volatile', `.set nomove', and `.set novolatile'. */
219 int nomove;
220 /* Non-zero if we should not optimize branches by moving the target
221 of the branch into the delay slot. Actually, we don't perform
222 this optimization anyhow. Changed by `.set bopt' and `.set
223 nobopt'. */
224 int nobopt;
225 /* Non-zero if we should not autoextend mips16 instructions.
226 Changed by `.set autoextend' and `.set noautoextend'. */
227 int noautoextend;
228 /* Restrict general purpose registers and floating point registers
229 to 32 bit. This is initially determined when -mgp32 or -mfp32
230 is passed but can changed if the assembler code uses .set mipsN. */
231 int gp32;
232 int fp32;
233 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
234 command line option, and the default CPU. */
235 int arch;
236 /* True if ".set sym32" is in effect. */
237 bfd_boolean sym32;
238 /* True if floating-point operations are not allowed. Changed by .set
239 softfloat or .set hardfloat, by command line options -msoft-float or
240 -mhard-float. The default is false. */
241 bfd_boolean soft_float;
242
243 /* True if only single-precision floating-point operations are allowed.
244 Changed by .set singlefloat or .set doublefloat, command-line options
245 -msingle-float or -mdouble-float. The default is false. */
246 bfd_boolean single_float;
247 };
248
249 /* This is the struct we use to hold the current set of options. Note
250 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
251 -1 to indicate that they have not been initialized. */
252
253 /* True if -mgp32 was passed. */
254 static int file_mips_gp32 = -1;
255
256 /* True if -mfp32 was passed. */
257 static int file_mips_fp32 = -1;
258
259 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
260 static int file_mips_soft_float = 0;
261
262 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
263 static int file_mips_single_float = 0;
264
265 static struct mips_set_options mips_opts =
266 {
267 /* isa */ ISA_UNKNOWN, /* ase_mips3d */ -1, /* ase_mdmx */ -1,
268 /* ase_smartmips */ 0, /* ase_dsp */ -1, /* ase_dspr2 */ -1, /* ase_mt */ -1,
269 /* mips16 */ -1, /* noreorder */ 0, /* at */ ATREG,
270 /* warn_about_macros */ 0, /* nomove */ 0, /* nobopt */ 0,
271 /* noautoextend */ 0, /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN,
272 /* sym32 */ FALSE, /* soft_float */ FALSE, /* single_float */ FALSE
273 };
274
275 /* These variables are filled in with the masks of registers used.
276 The object format code reads them and puts them in the appropriate
277 place. */
278 unsigned long mips_gprmask;
279 unsigned long mips_cprmask[4];
280
281 /* MIPS ISA we are using for this output file. */
282 static int file_mips_isa = ISA_UNKNOWN;
283
284 /* True if -mips16 was passed or implied by arguments passed on the
285 command line (e.g., by -march). */
286 static int file_ase_mips16;
287
288 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
289 || mips_opts.isa == ISA_MIPS32R2 \
290 || mips_opts.isa == ISA_MIPS64 \
291 || mips_opts.isa == ISA_MIPS64R2)
292
293 /* True if -mips3d was passed or implied by arguments passed on the
294 command line (e.g., by -march). */
295 static int file_ase_mips3d;
296
297 /* True if -mdmx was passed or implied by arguments passed on the
298 command line (e.g., by -march). */
299 static int file_ase_mdmx;
300
301 /* True if -msmartmips was passed or implied by arguments passed on the
302 command line (e.g., by -march). */
303 static int file_ase_smartmips;
304
305 #define ISA_SUPPORTS_SMARTMIPS (mips_opts.isa == ISA_MIPS32 \
306 || mips_opts.isa == ISA_MIPS32R2)
307
308 /* True if -mdsp was passed or implied by arguments passed on the
309 command line (e.g., by -march). */
310 static int file_ase_dsp;
311
312 #define ISA_SUPPORTS_DSP_ASE (mips_opts.isa == ISA_MIPS32R2 \
313 || mips_opts.isa == ISA_MIPS64R2)
314
315 #define ISA_SUPPORTS_DSP64_ASE (mips_opts.isa == ISA_MIPS64R2)
316
317 /* True if -mdspr2 was passed or implied by arguments passed on the
318 command line (e.g., by -march). */
319 static int file_ase_dspr2;
320
321 #define ISA_SUPPORTS_DSPR2_ASE (mips_opts.isa == ISA_MIPS32R2 \
322 || mips_opts.isa == ISA_MIPS64R2)
323
324 /* True if -mmt was passed or implied by arguments passed on the
325 command line (e.g., by -march). */
326 static int file_ase_mt;
327
328 #define ISA_SUPPORTS_MT_ASE (mips_opts.isa == ISA_MIPS32R2 \
329 || mips_opts.isa == ISA_MIPS64R2)
330
331 /* The argument of the -march= flag. The architecture we are assembling. */
332 static int file_mips_arch = CPU_UNKNOWN;
333 static const char *mips_arch_string;
334
335 /* The argument of the -mtune= flag. The architecture for which we
336 are optimizing. */
337 static int mips_tune = CPU_UNKNOWN;
338 static const char *mips_tune_string;
339
340 /* True when generating 32-bit code for a 64-bit processor. */
341 static int mips_32bitmode = 0;
342
343 /* True if the given ABI requires 32-bit registers. */
344 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
345
346 /* Likewise 64-bit registers. */
347 #define ABI_NEEDS_64BIT_REGS(ABI) \
348 ((ABI) == N32_ABI \
349 || (ABI) == N64_ABI \
350 || (ABI) == O64_ABI)
351
352 /* Return true if ISA supports 64 bit wide gp registers. */
353 #define ISA_HAS_64BIT_REGS(ISA) \
354 ((ISA) == ISA_MIPS3 \
355 || (ISA) == ISA_MIPS4 \
356 || (ISA) == ISA_MIPS5 \
357 || (ISA) == ISA_MIPS64 \
358 || (ISA) == ISA_MIPS64R2)
359
360 /* Return true if ISA supports 64 bit wide float registers. */
361 #define ISA_HAS_64BIT_FPRS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS32R2 \
366 || (ISA) == ISA_MIPS64 \
367 || (ISA) == ISA_MIPS64R2)
368
369 /* Return true if ISA supports 64-bit right rotate (dror et al.)
370 instructions. */
371 #define ISA_HAS_DROR(ISA) \
372 ((ISA) == ISA_MIPS64R2)
373
374 /* Return true if ISA supports 32-bit right rotate (ror et al.)
375 instructions. */
376 #define ISA_HAS_ROR(ISA) \
377 ((ISA) == ISA_MIPS32R2 \
378 || (ISA) == ISA_MIPS64R2 \
379 || mips_opts.ase_smartmips)
380
381 /* Return true if ISA supports single-precision floats in odd registers. */
382 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
383 ((ISA) == ISA_MIPS32 \
384 || (ISA) == ISA_MIPS32R2 \
385 || (ISA) == ISA_MIPS64 \
386 || (ISA) == ISA_MIPS64R2)
387
388 /* Return true if ISA supports move to/from high part of a 64-bit
389 floating-point register. */
390 #define ISA_HAS_MXHC1(ISA) \
391 ((ISA) == ISA_MIPS32R2 \
392 || (ISA) == ISA_MIPS64R2)
393
394 #define HAVE_32BIT_GPRS \
395 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
396
397 #define HAVE_32BIT_FPRS \
398 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
399
400 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
401 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
402
403 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
404
405 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
406
407 /* True if relocations are stored in-place. */
408 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
409
410 /* The ABI-derived address size. */
411 #define HAVE_64BIT_ADDRESSES \
412 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
413 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
414
415 /* The size of symbolic constants (i.e., expressions of the form
416 "SYMBOL" or "SYMBOL + OFFSET"). */
417 #define HAVE_32BIT_SYMBOLS \
418 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
419 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
420
421 /* Addresses are loaded in different ways, depending on the address size
422 in use. The n32 ABI Documentation also mandates the use of additions
423 with overflow checking, but existing implementations don't follow it. */
424 #define ADDRESS_ADD_INSN \
425 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
426
427 #define ADDRESS_ADDI_INSN \
428 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
429
430 #define ADDRESS_LOAD_INSN \
431 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
432
433 #define ADDRESS_STORE_INSN \
434 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
435
436 /* Return true if the given CPU supports the MIPS16 ASE. */
437 #define CPU_HAS_MIPS16(cpu) \
438 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
439 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
440
441 /* True if CPU has a dror instruction. */
442 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
443
444 /* True if CPU has a ror instruction. */
445 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
446
447 /* True if CPU has seq/sne and seqi/snei instructions. */
448 #define CPU_HAS_SEQ(CPU) ((CPU) == CPU_OCTEON)
449
450 /* True if CPU does not implement the all the coprocessor insns. For these
451 CPUs only those COP insns are accepted that are explicitly marked to be
452 available on the CPU. ISA membership for COP insns is ignored. */
453 #define NO_ISA_COP(CPU) ((CPU) == CPU_OCTEON)
454
455 /* True if mflo and mfhi can be immediately followed by instructions
456 which write to the HI and LO registers.
457
458 According to MIPS specifications, MIPS ISAs I, II, and III need
459 (at least) two instructions between the reads of HI/LO and
460 instructions which write them, and later ISAs do not. Contradicting
461 the MIPS specifications, some MIPS IV processor user manuals (e.g.
462 the UM for the NEC Vr5000) document needing the instructions between
463 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
464 MIPS64 and later ISAs to have the interlocks, plus any specific
465 earlier-ISA CPUs for which CPU documentation declares that the
466 instructions are really interlocked. */
467 #define hilo_interlocks \
468 (mips_opts.isa == ISA_MIPS32 \
469 || mips_opts.isa == ISA_MIPS32R2 \
470 || mips_opts.isa == ISA_MIPS64 \
471 || mips_opts.isa == ISA_MIPS64R2 \
472 || mips_opts.arch == CPU_R4010 \
473 || mips_opts.arch == CPU_R10000 \
474 || mips_opts.arch == CPU_R12000 \
475 || mips_opts.arch == CPU_RM7000 \
476 || mips_opts.arch == CPU_VR5500 \
477 )
478
479 /* Whether the processor uses hardware interlocks to protect reads
480 from the GPRs after they are loaded from memory, and thus does not
481 require nops to be inserted. This applies to instructions marked
482 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
483 level I. */
484 #define gpr_interlocks \
485 (mips_opts.isa != ISA_MIPS1 \
486 || mips_opts.arch == CPU_R3900)
487
488 /* Whether the processor uses hardware interlocks to avoid delays
489 required by coprocessor instructions, and thus does not require
490 nops to be inserted. This applies to instructions marked
491 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
492 between instructions marked INSN_WRITE_COND_CODE and ones marked
493 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
494 levels I, II, and III. */
495 /* Itbl support may require additional care here. */
496 #define cop_interlocks \
497 ((mips_opts.isa != ISA_MIPS1 \
498 && mips_opts.isa != ISA_MIPS2 \
499 && mips_opts.isa != ISA_MIPS3) \
500 || mips_opts.arch == CPU_R4300 \
501 )
502
503 /* Whether the processor uses hardware interlocks to protect reads
504 from coprocessor registers after they are loaded from memory, and
505 thus does not require nops to be inserted. This applies to
506 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
507 requires at MIPS ISA level I. */
508 #define cop_mem_interlocks (mips_opts.isa != ISA_MIPS1)
509
510 /* Is this a mfhi or mflo instruction? */
511 #define MF_HILO_INSN(PINFO) \
512 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
513
514 /* Returns true for a (non floating-point) coprocessor instruction. Reading
515 or writing the condition code is only possible on the coprocessors and
516 these insns are not marked with INSN_COP. Thus for these insns use the
517 condition-code flags unless this is the floating-point coprocessor. */
518 #define COP_INSN(PINFO) \
519 (PINFO != INSN_MACRO \
520 && (((PINFO) & INSN_COP) \
521 || ((PINFO) & (INSN_READ_COND_CODE | INSN_WRITE_COND_CODE) \
522 && ((PINFO) & (FP_S | FP_D)) == 0)))
523
524 /* MIPS PIC level. */
525
526 enum mips_pic_level mips_pic;
527
528 /* 1 if we should generate 32 bit offsets from the $gp register in
529 SVR4_PIC mode. Currently has no meaning in other modes. */
530 static int mips_big_got = 0;
531
532 /* 1 if trap instructions should used for overflow rather than break
533 instructions. */
534 static int mips_trap = 0;
535
536 /* 1 if double width floating point constants should not be constructed
537 by assembling two single width halves into two single width floating
538 point registers which just happen to alias the double width destination
539 register. On some architectures this aliasing can be disabled by a bit
540 in the status register, and the setting of this bit cannot be determined
541 automatically at assemble time. */
542 static int mips_disable_float_construction;
543
544 /* Non-zero if any .set noreorder directives were used. */
545
546 static int mips_any_noreorder;
547
548 /* Non-zero if nops should be inserted when the register referenced in
549 an mfhi/mflo instruction is read in the next two instructions. */
550 static int mips_7000_hilo_fix;
551
552 /* The size of objects in the small data section. */
553 static unsigned int g_switch_value = 8;
554 /* Whether the -G option was used. */
555 static int g_switch_seen = 0;
556
557 #define N_RMASK 0xc4
558 #define N_VFP 0xd4
559
560 /* If we can determine in advance that GP optimization won't be
561 possible, we can skip the relaxation stuff that tries to produce
562 GP-relative references. This makes delay slot optimization work
563 better.
564
565 This function can only provide a guess, but it seems to work for
566 gcc output. It needs to guess right for gcc, otherwise gcc
567 will put what it thinks is a GP-relative instruction in a branch
568 delay slot.
569
570 I don't know if a fix is needed for the SVR4_PIC mode. I've only
571 fixed it for the non-PIC mode. KR 95/04/07 */
572 static int nopic_need_relax (symbolS *, int);
573
574 /* handle of the OPCODE hash table */
575 static struct hash_control *op_hash = NULL;
576
577 /* The opcode hash table we use for the mips16. */
578 static struct hash_control *mips16_op_hash = NULL;
579
580 /* This array holds the chars that always start a comment. If the
581 pre-processor is disabled, these aren't very useful */
582 const char comment_chars[] = "#";
583
584 /* This array holds the chars that only start a comment at the beginning of
585 a line. If the line seems to have the form '# 123 filename'
586 .line and .file directives will appear in the pre-processed output */
587 /* Note that input_file.c hand checks for '#' at the beginning of the
588 first line of the input file. This is because the compiler outputs
589 #NO_APP at the beginning of its output. */
590 /* Also note that C style comments are always supported. */
591 const char line_comment_chars[] = "#";
592
593 /* This array holds machine specific line separator characters. */
594 const char line_separator_chars[] = ";";
595
596 /* Chars that can be used to separate mant from exp in floating point nums */
597 const char EXP_CHARS[] = "eE";
598
599 /* Chars that mean this number is a floating point constant */
600 /* As in 0f12.456 */
601 /* or 0d1.2345e12 */
602 const char FLT_CHARS[] = "rRsSfFdDxXpP";
603
604 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
605 changed in read.c . Ideally it shouldn't have to know about it at all,
606 but nothing is ideal around here.
607 */
608
609 static char *insn_error;
610
611 static int auto_align = 1;
612
613 /* When outputting SVR4 PIC code, the assembler needs to know the
614 offset in the stack frame from which to restore the $gp register.
615 This is set by the .cprestore pseudo-op, and saved in this
616 variable. */
617 static offsetT mips_cprestore_offset = -1;
618
619 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
620 more optimizations, it can use a register value instead of a memory-saved
621 offset and even an other register than $gp as global pointer. */
622 static offsetT mips_cpreturn_offset = -1;
623 static int mips_cpreturn_register = -1;
624 static int mips_gp_register = GP;
625 static int mips_gprel_offset = 0;
626
627 /* Whether mips_cprestore_offset has been set in the current function
628 (or whether it has already been warned about, if not). */
629 static int mips_cprestore_valid = 0;
630
631 /* This is the register which holds the stack frame, as set by the
632 .frame pseudo-op. This is needed to implement .cprestore. */
633 static int mips_frame_reg = SP;
634
635 /* Whether mips_frame_reg has been set in the current function
636 (or whether it has already been warned about, if not). */
637 static int mips_frame_reg_valid = 0;
638
639 /* To output NOP instructions correctly, we need to keep information
640 about the previous two instructions. */
641
642 /* Whether we are optimizing. The default value of 2 means to remove
643 unneeded NOPs and swap branch instructions when possible. A value
644 of 1 means to not swap branches. A value of 0 means to always
645 insert NOPs. */
646 static int mips_optimize = 2;
647
648 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
649 equivalent to seeing no -g option at all. */
650 static int mips_debug = 0;
651
652 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
653 #define MAX_VR4130_NOPS 4
654
655 /* The maximum number of NOPs needed to fill delay slots. */
656 #define MAX_DELAY_NOPS 2
657
658 /* The maximum number of NOPs needed for any purpose. */
659 #define MAX_NOPS 4
660
661 /* A list of previous instructions, with index 0 being the most recent.
662 We need to look back MAX_NOPS instructions when filling delay slots
663 or working around processor errata. We need to look back one
664 instruction further if we're thinking about using history[0] to
665 fill a branch delay slot. */
666 static struct mips_cl_insn history[1 + MAX_NOPS];
667
668 /* Nop instructions used by emit_nop. */
669 static struct mips_cl_insn nop_insn, mips16_nop_insn;
670
671 /* The appropriate nop for the current mode. */
672 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn : &nop_insn)
673
674 /* If this is set, it points to a frag holding nop instructions which
675 were inserted before the start of a noreorder section. If those
676 nops turn out to be unnecessary, the size of the frag can be
677 decreased. */
678 static fragS *prev_nop_frag;
679
680 /* The number of nop instructions we created in prev_nop_frag. */
681 static int prev_nop_frag_holds;
682
683 /* The number of nop instructions that we know we need in
684 prev_nop_frag. */
685 static int prev_nop_frag_required;
686
687 /* The number of instructions we've seen since prev_nop_frag. */
688 static int prev_nop_frag_since;
689
690 /* For ECOFF and ELF, relocations against symbols are done in two
691 parts, with a HI relocation and a LO relocation. Each relocation
692 has only 16 bits of space to store an addend. This means that in
693 order for the linker to handle carries correctly, it must be able
694 to locate both the HI and the LO relocation. This means that the
695 relocations must appear in order in the relocation table.
696
697 In order to implement this, we keep track of each unmatched HI
698 relocation. We then sort them so that they immediately precede the
699 corresponding LO relocation. */
700
701 struct mips_hi_fixup
702 {
703 /* Next HI fixup. */
704 struct mips_hi_fixup *next;
705 /* This fixup. */
706 fixS *fixp;
707 /* The section this fixup is in. */
708 segT seg;
709 };
710
711 /* The list of unmatched HI relocs. */
712
713 static struct mips_hi_fixup *mips_hi_fixup_list;
714
715 /* The frag containing the last explicit relocation operator.
716 Null if explicit relocations have not been used. */
717
718 static fragS *prev_reloc_op_frag;
719
720 /* Map normal MIPS register numbers to mips16 register numbers. */
721
722 #define X ILLEGAL_REG
723 static const int mips32_to_16_reg_map[] =
724 {
725 X, X, 2, 3, 4, 5, 6, 7,
726 X, X, X, X, X, X, X, X,
727 0, 1, X, X, X, X, X, X,
728 X, X, X, X, X, X, X, X
729 };
730 #undef X
731
732 /* Map mips16 register numbers to normal MIPS register numbers. */
733
734 static const unsigned int mips16_to_32_reg_map[] =
735 {
736 16, 17, 2, 3, 4, 5, 6, 7
737 };
738
739 /* Classifies the kind of instructions we're interested in when
740 implementing -mfix-vr4120. */
741 enum fix_vr4120_class {
742 FIX_VR4120_MACC,
743 FIX_VR4120_DMACC,
744 FIX_VR4120_MULT,
745 FIX_VR4120_DMULT,
746 FIX_VR4120_DIV,
747 FIX_VR4120_MTHILO,
748 NUM_FIX_VR4120_CLASSES
749 };
750
751 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
752 there must be at least one other instruction between an instruction
753 of type X and an instruction of type Y. */
754 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
755
756 /* True if -mfix-vr4120 is in force. */
757 static int mips_fix_vr4120;
758
759 /* ...likewise -mfix-vr4130. */
760 static int mips_fix_vr4130;
761
762 /* We don't relax branches by default, since this causes us to expand
763 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
764 fail to compute the offset before expanding the macro to the most
765 efficient expansion. */
766
767 static int mips_relax_branch;
768 \f
769 /* The expansion of many macros depends on the type of symbol that
770 they refer to. For example, when generating position-dependent code,
771 a macro that refers to a symbol may have two different expansions,
772 one which uses GP-relative addresses and one which uses absolute
773 addresses. When generating SVR4-style PIC, a macro may have
774 different expansions for local and global symbols.
775
776 We handle these situations by generating both sequences and putting
777 them in variant frags. In position-dependent code, the first sequence
778 will be the GP-relative one and the second sequence will be the
779 absolute one. In SVR4 PIC, the first sequence will be for global
780 symbols and the second will be for local symbols.
781
782 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
783 SECOND are the lengths of the two sequences in bytes. These fields
784 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
785 the subtype has the following flags:
786
787 RELAX_USE_SECOND
788 Set if it has been decided that we should use the second
789 sequence instead of the first.
790
791 RELAX_SECOND_LONGER
792 Set in the first variant frag if the macro's second implementation
793 is longer than its first. This refers to the macro as a whole,
794 not an individual relaxation.
795
796 RELAX_NOMACRO
797 Set in the first variant frag if the macro appeared in a .set nomacro
798 block and if one alternative requires a warning but the other does not.
799
800 RELAX_DELAY_SLOT
801 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
802 delay slot.
803
804 The frag's "opcode" points to the first fixup for relaxable code.
805
806 Relaxable macros are generated using a sequence such as:
807
808 relax_start (SYMBOL);
809 ... generate first expansion ...
810 relax_switch ();
811 ... generate second expansion ...
812 relax_end ();
813
814 The code and fixups for the unwanted alternative are discarded
815 by md_convert_frag. */
816 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
817
818 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
819 #define RELAX_SECOND(X) ((X) & 0xff)
820 #define RELAX_USE_SECOND 0x10000
821 #define RELAX_SECOND_LONGER 0x20000
822 #define RELAX_NOMACRO 0x40000
823 #define RELAX_DELAY_SLOT 0x80000
824
825 /* Branch without likely bit. If label is out of range, we turn:
826
827 beq reg1, reg2, label
828 delay slot
829
830 into
831
832 bne reg1, reg2, 0f
833 nop
834 j label
835 0: delay slot
836
837 with the following opcode replacements:
838
839 beq <-> bne
840 blez <-> bgtz
841 bltz <-> bgez
842 bc1f <-> bc1t
843
844 bltzal <-> bgezal (with jal label instead of j label)
845
846 Even though keeping the delay slot instruction in the delay slot of
847 the branch would be more efficient, it would be very tricky to do
848 correctly, because we'd have to introduce a variable frag *after*
849 the delay slot instruction, and expand that instead. Let's do it
850 the easy way for now, even if the branch-not-taken case now costs
851 one additional instruction. Out-of-range branches are not supposed
852 to be common, anyway.
853
854 Branch likely. If label is out of range, we turn:
855
856 beql reg1, reg2, label
857 delay slot (annulled if branch not taken)
858
859 into
860
861 beql reg1, reg2, 1f
862 nop
863 beql $0, $0, 2f
864 nop
865 1: j[al] label
866 delay slot (executed only if branch taken)
867 2:
868
869 It would be possible to generate a shorter sequence by losing the
870 likely bit, generating something like:
871
872 bne reg1, reg2, 0f
873 nop
874 j[al] label
875 delay slot (executed only if branch taken)
876 0:
877
878 beql -> bne
879 bnel -> beq
880 blezl -> bgtz
881 bgtzl -> blez
882 bltzl -> bgez
883 bgezl -> bltz
884 bc1fl -> bc1t
885 bc1tl -> bc1f
886
887 bltzall -> bgezal (with jal label instead of j label)
888 bgezall -> bltzal (ditto)
889
890
891 but it's not clear that it would actually improve performance. */
892 #define RELAX_BRANCH_ENCODE(uncond, likely, link, toofar) \
893 ((relax_substateT) \
894 (0xc0000000 \
895 | ((toofar) ? 1 : 0) \
896 | ((link) ? 2 : 0) \
897 | ((likely) ? 4 : 0) \
898 | ((uncond) ? 8 : 0)))
899 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
900 #define RELAX_BRANCH_UNCOND(i) (((i) & 8) != 0)
901 #define RELAX_BRANCH_LIKELY(i) (((i) & 4) != 0)
902 #define RELAX_BRANCH_LINK(i) (((i) & 2) != 0)
903 #define RELAX_BRANCH_TOOFAR(i) (((i) & 1) != 0)
904
905 /* For mips16 code, we use an entirely different form of relaxation.
906 mips16 supports two versions of most instructions which take
907 immediate values: a small one which takes some small value, and a
908 larger one which takes a 16 bit value. Since branches also follow
909 this pattern, relaxing these values is required.
910
911 We can assemble both mips16 and normal MIPS code in a single
912 object. Therefore, we need to support this type of relaxation at
913 the same time that we support the relaxation described above. We
914 use the high bit of the subtype field to distinguish these cases.
915
916 The information we store for this type of relaxation is the
917 argument code found in the opcode file for this relocation, whether
918 the user explicitly requested a small or extended form, and whether
919 the relocation is in a jump or jal delay slot. That tells us the
920 size of the value, and how it should be stored. We also store
921 whether the fragment is considered to be extended or not. We also
922 store whether this is known to be a branch to a different section,
923 whether we have tried to relax this frag yet, and whether we have
924 ever extended a PC relative fragment because of a shift count. */
925 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
926 (0x80000000 \
927 | ((type) & 0xff) \
928 | ((small) ? 0x100 : 0) \
929 | ((ext) ? 0x200 : 0) \
930 | ((dslot) ? 0x400 : 0) \
931 | ((jal_dslot) ? 0x800 : 0))
932 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
933 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
934 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
935 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
936 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
937 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
938 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
939 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
940 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
941 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
942 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
943 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
944
945 /* Is the given value a sign-extended 32-bit value? */
946 #define IS_SEXT_32BIT_NUM(x) \
947 (((x) &~ (offsetT) 0x7fffffff) == 0 \
948 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
949
950 /* Is the given value a sign-extended 16-bit value? */
951 #define IS_SEXT_16BIT_NUM(x) \
952 (((x) &~ (offsetT) 0x7fff) == 0 \
953 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
954
955 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
956 #define IS_ZEXT_32BIT_NUM(x) \
957 (((x) &~ (offsetT) 0xffffffff) == 0 \
958 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
959
960 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in
961 VALUE << SHIFT. VALUE is evaluated exactly once. */
962 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \
963 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \
964 | (((VALUE) & (MASK)) << (SHIFT)))
965
966 /* Extract bits MASK << SHIFT from STRUCT and shift them right
967 SHIFT places. */
968 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
969 (((STRUCT) >> (SHIFT)) & (MASK))
970
971 /* Change INSN's opcode so that the operand given by FIELD has value VALUE.
972 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once.
973
974 include/opcode/mips.h specifies operand fields using the macros
975 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start
976 with "MIPS16OP" instead of "OP". */
977 #define INSERT_OPERAND(FIELD, INSN, VALUE) \
978 INSERT_BITS ((INSN).insn_opcode, VALUE, OP_MASK_##FIELD, OP_SH_##FIELD)
979 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \
980 INSERT_BITS ((INSN).insn_opcode, VALUE, \
981 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD)
982
983 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
984 #define EXTRACT_OPERAND(FIELD, INSN) \
985 EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD)
986 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
987 EXTRACT_BITS ((INSN).insn_opcode, \
988 MIPS16OP_MASK_##FIELD, \
989 MIPS16OP_SH_##FIELD)
990 \f
991 /* Global variables used when generating relaxable macros. See the
992 comment above RELAX_ENCODE for more details about how relaxation
993 is used. */
994 static struct {
995 /* 0 if we're not emitting a relaxable macro.
996 1 if we're emitting the first of the two relaxation alternatives.
997 2 if we're emitting the second alternative. */
998 int sequence;
999
1000 /* The first relaxable fixup in the current frag. (In other words,
1001 the first fixup that refers to relaxable code.) */
1002 fixS *first_fixup;
1003
1004 /* sizes[0] says how many bytes of the first alternative are stored in
1005 the current frag. Likewise sizes[1] for the second alternative. */
1006 unsigned int sizes[2];
1007
1008 /* The symbol on which the choice of sequence depends. */
1009 symbolS *symbol;
1010 } mips_relax;
1011 \f
1012 /* Global variables used to decide whether a macro needs a warning. */
1013 static struct {
1014 /* True if the macro is in a branch delay slot. */
1015 bfd_boolean delay_slot_p;
1016
1017 /* For relaxable macros, sizes[0] is the length of the first alternative
1018 in bytes and sizes[1] is the length of the second alternative.
1019 For non-relaxable macros, both elements give the length of the
1020 macro in bytes. */
1021 unsigned int sizes[2];
1022
1023 /* The first variant frag for this macro. */
1024 fragS *first_frag;
1025 } mips_macro_warning;
1026 \f
1027 /* Prototypes for static functions. */
1028
1029 #define internalError() \
1030 as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__)
1031
1032 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1033
1034 static void append_insn
1035 (struct mips_cl_insn *ip, expressionS *p, bfd_reloc_code_real_type *r);
1036 static void mips_no_prev_insn (void);
1037 static void mips16_macro_build
1038 (expressionS *, const char *, const char *, va_list);
1039 static void load_register (int, expressionS *, int);
1040 static void macro_start (void);
1041 static void macro_end (void);
1042 static void macro (struct mips_cl_insn * ip);
1043 static void mips16_macro (struct mips_cl_insn * ip);
1044 #ifdef LOSING_COMPILER
1045 static void macro2 (struct mips_cl_insn * ip);
1046 #endif
1047 static void mips_ip (char *str, struct mips_cl_insn * ip);
1048 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1049 static void mips16_immed
1050 (char *, unsigned int, int, offsetT, bfd_boolean, bfd_boolean, bfd_boolean,
1051 unsigned long *, bfd_boolean *, unsigned short *);
1052 static size_t my_getSmallExpression
1053 (expressionS *, bfd_reloc_code_real_type *, char *);
1054 static void my_getExpression (expressionS *, char *);
1055 static void s_align (int);
1056 static void s_change_sec (int);
1057 static void s_change_section (int);
1058 static void s_cons (int);
1059 static void s_float_cons (int);
1060 static void s_mips_globl (int);
1061 static void s_option (int);
1062 static void s_mipsset (int);
1063 static void s_abicalls (int);
1064 static void s_cpload (int);
1065 static void s_cpsetup (int);
1066 static void s_cplocal (int);
1067 static void s_cprestore (int);
1068 static void s_cpreturn (int);
1069 static void s_dtprelword (int);
1070 static void s_dtpreldword (int);
1071 static void s_gpvalue (int);
1072 static void s_gpword (int);
1073 static void s_gpdword (int);
1074 static void s_cpadd (int);
1075 static void s_insn (int);
1076 static void md_obj_begin (void);
1077 static void md_obj_end (void);
1078 static void s_mips_ent (int);
1079 static void s_mips_end (int);
1080 static void s_mips_frame (int);
1081 static void s_mips_mask (int reg_type);
1082 static void s_mips_stab (int);
1083 static void s_mips_weakext (int);
1084 static void s_mips_file (int);
1085 static void s_mips_loc (int);
1086 static bfd_boolean pic_need_relax (symbolS *, asection *);
1087 static int relaxed_branch_length (fragS *, asection *, int);
1088 static int validate_mips_insn (const struct mips_opcode *);
1089
1090 /* Table and functions used to map between CPU/ISA names, and
1091 ISA levels, and CPU numbers. */
1092
1093 struct mips_cpu_info
1094 {
1095 const char *name; /* CPU or ISA name. */
1096 int flags; /* ASEs available, or ISA flag. */
1097 int isa; /* ISA level. */
1098 int cpu; /* CPU number (default CPU if ISA). */
1099 };
1100
1101 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1102 #define MIPS_CPU_ASE_SMARTMIPS 0x0002 /* CPU implements SmartMIPS ASE */
1103 #define MIPS_CPU_ASE_DSP 0x0004 /* CPU implements DSP ASE */
1104 #define MIPS_CPU_ASE_MT 0x0008 /* CPU implements MT ASE */
1105 #define MIPS_CPU_ASE_MIPS3D 0x0010 /* CPU implements MIPS-3D ASE */
1106 #define MIPS_CPU_ASE_MDMX 0x0020 /* CPU implements MDMX ASE */
1107 #define MIPS_CPU_ASE_DSPR2 0x0040 /* CPU implements DSP R2 ASE */
1108
1109 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1110 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1111 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1112 \f
1113 /* Pseudo-op table.
1114
1115 The following pseudo-ops from the Kane and Heinrich MIPS book
1116 should be defined here, but are currently unsupported: .alias,
1117 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1118
1119 The following pseudo-ops from the Kane and Heinrich MIPS book are
1120 specific to the type of debugging information being generated, and
1121 should be defined by the object format: .aent, .begin, .bend,
1122 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1123 .vreg.
1124
1125 The following pseudo-ops from the Kane and Heinrich MIPS book are
1126 not MIPS CPU specific, but are also not specific to the object file
1127 format. This file is probably the best place to define them, but
1128 they are not currently supported: .asm0, .endr, .lab, .struct. */
1129
1130 static const pseudo_typeS mips_pseudo_table[] =
1131 {
1132 /* MIPS specific pseudo-ops. */
1133 {"option", s_option, 0},
1134 {"set", s_mipsset, 0},
1135 {"rdata", s_change_sec, 'r'},
1136 {"sdata", s_change_sec, 's'},
1137 {"livereg", s_ignore, 0},
1138 {"abicalls", s_abicalls, 0},
1139 {"cpload", s_cpload, 0},
1140 {"cpsetup", s_cpsetup, 0},
1141 {"cplocal", s_cplocal, 0},
1142 {"cprestore", s_cprestore, 0},
1143 {"cpreturn", s_cpreturn, 0},
1144 {"dtprelword", s_dtprelword, 0},
1145 {"dtpreldword", s_dtpreldword, 0},
1146 {"gpvalue", s_gpvalue, 0},
1147 {"gpword", s_gpword, 0},
1148 {"gpdword", s_gpdword, 0},
1149 {"cpadd", s_cpadd, 0},
1150 {"insn", s_insn, 0},
1151
1152 /* Relatively generic pseudo-ops that happen to be used on MIPS
1153 chips. */
1154 {"asciiz", stringer, 8 + 1},
1155 {"bss", s_change_sec, 'b'},
1156 {"err", s_err, 0},
1157 {"half", s_cons, 1},
1158 {"dword", s_cons, 3},
1159 {"weakext", s_mips_weakext, 0},
1160 {"origin", s_org, 0},
1161 {"repeat", s_rept, 0},
1162
1163 /* These pseudo-ops are defined in read.c, but must be overridden
1164 here for one reason or another. */
1165 {"align", s_align, 0},
1166 {"byte", s_cons, 0},
1167 {"data", s_change_sec, 'd'},
1168 {"double", s_float_cons, 'd'},
1169 {"float", s_float_cons, 'f'},
1170 {"globl", s_mips_globl, 0},
1171 {"global", s_mips_globl, 0},
1172 {"hword", s_cons, 1},
1173 {"int", s_cons, 2},
1174 {"long", s_cons, 2},
1175 {"octa", s_cons, 4},
1176 {"quad", s_cons, 3},
1177 {"section", s_change_section, 0},
1178 {"short", s_cons, 1},
1179 {"single", s_float_cons, 'f'},
1180 {"stabn", s_mips_stab, 'n'},
1181 {"text", s_change_sec, 't'},
1182 {"word", s_cons, 2},
1183
1184 { "extern", ecoff_directive_extern, 0},
1185
1186 { NULL, NULL, 0 },
1187 };
1188
1189 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1190 {
1191 /* These pseudo-ops should be defined by the object file format.
1192 However, a.out doesn't support them, so we have versions here. */
1193 {"aent", s_mips_ent, 1},
1194 {"bgnb", s_ignore, 0},
1195 {"end", s_mips_end, 0},
1196 {"endb", s_ignore, 0},
1197 {"ent", s_mips_ent, 0},
1198 {"file", s_mips_file, 0},
1199 {"fmask", s_mips_mask, 'F'},
1200 {"frame", s_mips_frame, 0},
1201 {"loc", s_mips_loc, 0},
1202 {"mask", s_mips_mask, 'R'},
1203 {"verstamp", s_ignore, 0},
1204 { NULL, NULL, 0 },
1205 };
1206
1207 extern void pop_insert (const pseudo_typeS *);
1208
1209 void
1210 mips_pop_insert (void)
1211 {
1212 pop_insert (mips_pseudo_table);
1213 if (! ECOFF_DEBUGGING)
1214 pop_insert (mips_nonecoff_pseudo_table);
1215 }
1216 \f
1217 /* Symbols labelling the current insn. */
1218
1219 struct insn_label_list
1220 {
1221 struct insn_label_list *next;
1222 symbolS *label;
1223 };
1224
1225 static struct insn_label_list *free_insn_labels;
1226 #define label_list tc_segment_info_data.labels
1227
1228 static void mips_clear_insn_labels (void);
1229
1230 static inline void
1231 mips_clear_insn_labels (void)
1232 {
1233 register struct insn_label_list **pl;
1234 segment_info_type *si;
1235
1236 if (now_seg)
1237 {
1238 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1239 ;
1240
1241 si = seg_info (now_seg);
1242 *pl = si->label_list;
1243 si->label_list = NULL;
1244 }
1245 }
1246
1247 \f
1248 static char *expr_end;
1249
1250 /* Expressions which appear in instructions. These are set by
1251 mips_ip. */
1252
1253 static expressionS imm_expr;
1254 static expressionS imm2_expr;
1255 static expressionS offset_expr;
1256
1257 /* Relocs associated with imm_expr and offset_expr. */
1258
1259 static bfd_reloc_code_real_type imm_reloc[3]
1260 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1261 static bfd_reloc_code_real_type offset_reloc[3]
1262 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1263
1264 /* These are set by mips16_ip if an explicit extension is used. */
1265
1266 static bfd_boolean mips16_small, mips16_ext;
1267
1268 #ifdef OBJ_ELF
1269 /* The pdr segment for per procedure frame/regmask info. Not used for
1270 ECOFF debugging. */
1271
1272 static segT pdr_seg;
1273 #endif
1274
1275 /* The default target format to use. */
1276
1277 const char *
1278 mips_target_format (void)
1279 {
1280 switch (OUTPUT_FLAVOR)
1281 {
1282 case bfd_target_ecoff_flavour:
1283 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1284 case bfd_target_coff_flavour:
1285 return "pe-mips";
1286 case bfd_target_elf_flavour:
1287 #ifdef TE_VXWORKS
1288 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1289 return (target_big_endian
1290 ? "elf32-bigmips-vxworks"
1291 : "elf32-littlemips-vxworks");
1292 #endif
1293 #ifdef TE_TMIPS
1294 /* This is traditional mips. */
1295 return (target_big_endian
1296 ? (HAVE_64BIT_OBJECTS
1297 ? "elf64-tradbigmips"
1298 : (HAVE_NEWABI
1299 ? "elf32-ntradbigmips" : "elf32-tradbigmips"))
1300 : (HAVE_64BIT_OBJECTS
1301 ? "elf64-tradlittlemips"
1302 : (HAVE_NEWABI
1303 ? "elf32-ntradlittlemips" : "elf32-tradlittlemips")));
1304 #else
1305 return (target_big_endian
1306 ? (HAVE_64BIT_OBJECTS
1307 ? "elf64-bigmips"
1308 : (HAVE_NEWABI
1309 ? "elf32-nbigmips" : "elf32-bigmips"))
1310 : (HAVE_64BIT_OBJECTS
1311 ? "elf64-littlemips"
1312 : (HAVE_NEWABI
1313 ? "elf32-nlittlemips" : "elf32-littlemips")));
1314 #endif
1315 default:
1316 abort ();
1317 return NULL;
1318 }
1319 }
1320
1321 /* Return the length of instruction INSN. */
1322
1323 static inline unsigned int
1324 insn_length (const struct mips_cl_insn *insn)
1325 {
1326 if (!mips_opts.mips16)
1327 return 4;
1328 return insn->mips16_absolute_jump_p || insn->use_extend ? 4 : 2;
1329 }
1330
1331 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1332
1333 static void
1334 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1335 {
1336 size_t i;
1337
1338 insn->insn_mo = mo;
1339 insn->use_extend = FALSE;
1340 insn->extend = 0;
1341 insn->insn_opcode = mo->match;
1342 insn->frag = NULL;
1343 insn->where = 0;
1344 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1345 insn->fixp[i] = NULL;
1346 insn->fixed_p = (mips_opts.noreorder > 0);
1347 insn->noreorder_p = (mips_opts.noreorder > 0);
1348 insn->mips16_absolute_jump_p = 0;
1349 }
1350
1351 /* Record the current MIPS16 mode in now_seg. */
1352
1353 static void
1354 mips_record_mips16_mode (void)
1355 {
1356 segment_info_type *si;
1357
1358 si = seg_info (now_seg);
1359 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
1360 si->tc_segment_info_data.mips16 = mips_opts.mips16;
1361 }
1362
1363 /* Install INSN at the location specified by its "frag" and "where" fields. */
1364
1365 static void
1366 install_insn (const struct mips_cl_insn *insn)
1367 {
1368 char *f = insn->frag->fr_literal + insn->where;
1369 if (!mips_opts.mips16)
1370 md_number_to_chars (f, insn->insn_opcode, 4);
1371 else if (insn->mips16_absolute_jump_p)
1372 {
1373 md_number_to_chars (f, insn->insn_opcode >> 16, 2);
1374 md_number_to_chars (f + 2, insn->insn_opcode & 0xffff, 2);
1375 }
1376 else
1377 {
1378 if (insn->use_extend)
1379 {
1380 md_number_to_chars (f, 0xf000 | insn->extend, 2);
1381 f += 2;
1382 }
1383 md_number_to_chars (f, insn->insn_opcode, 2);
1384 }
1385 mips_record_mips16_mode ();
1386 }
1387
1388 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
1389 and install the opcode in the new location. */
1390
1391 static void
1392 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
1393 {
1394 size_t i;
1395
1396 insn->frag = frag;
1397 insn->where = where;
1398 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1399 if (insn->fixp[i] != NULL)
1400 {
1401 insn->fixp[i]->fx_frag = frag;
1402 insn->fixp[i]->fx_where = where;
1403 }
1404 install_insn (insn);
1405 }
1406
1407 /* Add INSN to the end of the output. */
1408
1409 static void
1410 add_fixed_insn (struct mips_cl_insn *insn)
1411 {
1412 char *f = frag_more (insn_length (insn));
1413 move_insn (insn, frag_now, f - frag_now->fr_literal);
1414 }
1415
1416 /* Start a variant frag and move INSN to the start of the variant part,
1417 marking it as fixed. The other arguments are as for frag_var. */
1418
1419 static void
1420 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
1421 relax_substateT subtype, symbolS *symbol, offsetT offset)
1422 {
1423 frag_grow (max_chars);
1424 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
1425 insn->fixed_p = 1;
1426 frag_var (rs_machine_dependent, max_chars, var,
1427 subtype, symbol, offset, NULL);
1428 }
1429
1430 /* Insert N copies of INSN into the history buffer, starting at
1431 position FIRST. Neither FIRST nor N need to be clipped. */
1432
1433 static void
1434 insert_into_history (unsigned int first, unsigned int n,
1435 const struct mips_cl_insn *insn)
1436 {
1437 if (mips_relax.sequence != 2)
1438 {
1439 unsigned int i;
1440
1441 for (i = ARRAY_SIZE (history); i-- > first;)
1442 if (i >= first + n)
1443 history[i] = history[i - n];
1444 else
1445 history[i] = *insn;
1446 }
1447 }
1448
1449 /* Emit a nop instruction, recording it in the history buffer. */
1450
1451 static void
1452 emit_nop (void)
1453 {
1454 add_fixed_insn (NOP_INSN);
1455 insert_into_history (0, 1, NOP_INSN);
1456 }
1457
1458 /* Initialize vr4120_conflicts. There is a bit of duplication here:
1459 the idea is to make it obvious at a glance that each errata is
1460 included. */
1461
1462 static void
1463 init_vr4120_conflicts (void)
1464 {
1465 #define CONFLICT(FIRST, SECOND) \
1466 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
1467
1468 /* Errata 21 - [D]DIV[U] after [D]MACC */
1469 CONFLICT (MACC, DIV);
1470 CONFLICT (DMACC, DIV);
1471
1472 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
1473 CONFLICT (DMULT, DMULT);
1474 CONFLICT (DMULT, DMACC);
1475 CONFLICT (DMACC, DMULT);
1476 CONFLICT (DMACC, DMACC);
1477
1478 /* Errata 24 - MT{LO,HI} after [D]MACC */
1479 CONFLICT (MACC, MTHILO);
1480 CONFLICT (DMACC, MTHILO);
1481
1482 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
1483 instruction is executed immediately after a MACC or DMACC
1484 instruction, the result of [either instruction] is incorrect." */
1485 CONFLICT (MACC, MULT);
1486 CONFLICT (MACC, DMULT);
1487 CONFLICT (DMACC, MULT);
1488 CONFLICT (DMACC, DMULT);
1489
1490 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
1491 executed immediately after a DMULT, DMULTU, DIV, DIVU,
1492 DDIV or DDIVU instruction, the result of the MACC or
1493 DMACC instruction is incorrect.". */
1494 CONFLICT (DMULT, MACC);
1495 CONFLICT (DMULT, DMACC);
1496 CONFLICT (DIV, MACC);
1497 CONFLICT (DIV, DMACC);
1498
1499 #undef CONFLICT
1500 }
1501
1502 struct regname {
1503 const char *name;
1504 unsigned int num;
1505 };
1506
1507 #define RTYPE_MASK 0x1ff00
1508 #define RTYPE_NUM 0x00100
1509 #define RTYPE_FPU 0x00200
1510 #define RTYPE_FCC 0x00400
1511 #define RTYPE_VEC 0x00800
1512 #define RTYPE_GP 0x01000
1513 #define RTYPE_CP0 0x02000
1514 #define RTYPE_PC 0x04000
1515 #define RTYPE_ACC 0x08000
1516 #define RTYPE_CCC 0x10000
1517 #define RNUM_MASK 0x000ff
1518 #define RWARN 0x80000
1519
1520 #define GENERIC_REGISTER_NUMBERS \
1521 {"$0", RTYPE_NUM | 0}, \
1522 {"$1", RTYPE_NUM | 1}, \
1523 {"$2", RTYPE_NUM | 2}, \
1524 {"$3", RTYPE_NUM | 3}, \
1525 {"$4", RTYPE_NUM | 4}, \
1526 {"$5", RTYPE_NUM | 5}, \
1527 {"$6", RTYPE_NUM | 6}, \
1528 {"$7", RTYPE_NUM | 7}, \
1529 {"$8", RTYPE_NUM | 8}, \
1530 {"$9", RTYPE_NUM | 9}, \
1531 {"$10", RTYPE_NUM | 10}, \
1532 {"$11", RTYPE_NUM | 11}, \
1533 {"$12", RTYPE_NUM | 12}, \
1534 {"$13", RTYPE_NUM | 13}, \
1535 {"$14", RTYPE_NUM | 14}, \
1536 {"$15", RTYPE_NUM | 15}, \
1537 {"$16", RTYPE_NUM | 16}, \
1538 {"$17", RTYPE_NUM | 17}, \
1539 {"$18", RTYPE_NUM | 18}, \
1540 {"$19", RTYPE_NUM | 19}, \
1541 {"$20", RTYPE_NUM | 20}, \
1542 {"$21", RTYPE_NUM | 21}, \
1543 {"$22", RTYPE_NUM | 22}, \
1544 {"$23", RTYPE_NUM | 23}, \
1545 {"$24", RTYPE_NUM | 24}, \
1546 {"$25", RTYPE_NUM | 25}, \
1547 {"$26", RTYPE_NUM | 26}, \
1548 {"$27", RTYPE_NUM | 27}, \
1549 {"$28", RTYPE_NUM | 28}, \
1550 {"$29", RTYPE_NUM | 29}, \
1551 {"$30", RTYPE_NUM | 30}, \
1552 {"$31", RTYPE_NUM | 31}
1553
1554 #define FPU_REGISTER_NAMES \
1555 {"$f0", RTYPE_FPU | 0}, \
1556 {"$f1", RTYPE_FPU | 1}, \
1557 {"$f2", RTYPE_FPU | 2}, \
1558 {"$f3", RTYPE_FPU | 3}, \
1559 {"$f4", RTYPE_FPU | 4}, \
1560 {"$f5", RTYPE_FPU | 5}, \
1561 {"$f6", RTYPE_FPU | 6}, \
1562 {"$f7", RTYPE_FPU | 7}, \
1563 {"$f8", RTYPE_FPU | 8}, \
1564 {"$f9", RTYPE_FPU | 9}, \
1565 {"$f10", RTYPE_FPU | 10}, \
1566 {"$f11", RTYPE_FPU | 11}, \
1567 {"$f12", RTYPE_FPU | 12}, \
1568 {"$f13", RTYPE_FPU | 13}, \
1569 {"$f14", RTYPE_FPU | 14}, \
1570 {"$f15", RTYPE_FPU | 15}, \
1571 {"$f16", RTYPE_FPU | 16}, \
1572 {"$f17", RTYPE_FPU | 17}, \
1573 {"$f18", RTYPE_FPU | 18}, \
1574 {"$f19", RTYPE_FPU | 19}, \
1575 {"$f20", RTYPE_FPU | 20}, \
1576 {"$f21", RTYPE_FPU | 21}, \
1577 {"$f22", RTYPE_FPU | 22}, \
1578 {"$f23", RTYPE_FPU | 23}, \
1579 {"$f24", RTYPE_FPU | 24}, \
1580 {"$f25", RTYPE_FPU | 25}, \
1581 {"$f26", RTYPE_FPU | 26}, \
1582 {"$f27", RTYPE_FPU | 27}, \
1583 {"$f28", RTYPE_FPU | 28}, \
1584 {"$f29", RTYPE_FPU | 29}, \
1585 {"$f30", RTYPE_FPU | 30}, \
1586 {"$f31", RTYPE_FPU | 31}
1587
1588 #define FPU_CONDITION_CODE_NAMES \
1589 {"$fcc0", RTYPE_FCC | 0}, \
1590 {"$fcc1", RTYPE_FCC | 1}, \
1591 {"$fcc2", RTYPE_FCC | 2}, \
1592 {"$fcc3", RTYPE_FCC | 3}, \
1593 {"$fcc4", RTYPE_FCC | 4}, \
1594 {"$fcc5", RTYPE_FCC | 5}, \
1595 {"$fcc6", RTYPE_FCC | 6}, \
1596 {"$fcc7", RTYPE_FCC | 7}
1597
1598 #define COPROC_CONDITION_CODE_NAMES \
1599 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
1600 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
1601 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
1602 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
1603 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
1604 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
1605 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
1606 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
1607
1608 #define N32N64_SYMBOLIC_REGISTER_NAMES \
1609 {"$a4", RTYPE_GP | 8}, \
1610 {"$a5", RTYPE_GP | 9}, \
1611 {"$a6", RTYPE_GP | 10}, \
1612 {"$a7", RTYPE_GP | 11}, \
1613 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
1614 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
1615 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
1616 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
1617 {"$t0", RTYPE_GP | 12}, \
1618 {"$t1", RTYPE_GP | 13}, \
1619 {"$t2", RTYPE_GP | 14}, \
1620 {"$t3", RTYPE_GP | 15}
1621
1622 #define O32_SYMBOLIC_REGISTER_NAMES \
1623 {"$t0", RTYPE_GP | 8}, \
1624 {"$t1", RTYPE_GP | 9}, \
1625 {"$t2", RTYPE_GP | 10}, \
1626 {"$t3", RTYPE_GP | 11}, \
1627 {"$t4", RTYPE_GP | 12}, \
1628 {"$t5", RTYPE_GP | 13}, \
1629 {"$t6", RTYPE_GP | 14}, \
1630 {"$t7", RTYPE_GP | 15}, \
1631 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
1632 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
1633 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
1634 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
1635
1636 /* Remaining symbolic register names */
1637 #define SYMBOLIC_REGISTER_NAMES \
1638 {"$zero", RTYPE_GP | 0}, \
1639 {"$at", RTYPE_GP | 1}, \
1640 {"$AT", RTYPE_GP | 1}, \
1641 {"$v0", RTYPE_GP | 2}, \
1642 {"$v1", RTYPE_GP | 3}, \
1643 {"$a0", RTYPE_GP | 4}, \
1644 {"$a1", RTYPE_GP | 5}, \
1645 {"$a2", RTYPE_GP | 6}, \
1646 {"$a3", RTYPE_GP | 7}, \
1647 {"$s0", RTYPE_GP | 16}, \
1648 {"$s1", RTYPE_GP | 17}, \
1649 {"$s2", RTYPE_GP | 18}, \
1650 {"$s3", RTYPE_GP | 19}, \
1651 {"$s4", RTYPE_GP | 20}, \
1652 {"$s5", RTYPE_GP | 21}, \
1653 {"$s6", RTYPE_GP | 22}, \
1654 {"$s7", RTYPE_GP | 23}, \
1655 {"$t8", RTYPE_GP | 24}, \
1656 {"$t9", RTYPE_GP | 25}, \
1657 {"$k0", RTYPE_GP | 26}, \
1658 {"$kt0", RTYPE_GP | 26}, \
1659 {"$k1", RTYPE_GP | 27}, \
1660 {"$kt1", RTYPE_GP | 27}, \
1661 {"$gp", RTYPE_GP | 28}, \
1662 {"$sp", RTYPE_GP | 29}, \
1663 {"$s8", RTYPE_GP | 30}, \
1664 {"$fp", RTYPE_GP | 30}, \
1665 {"$ra", RTYPE_GP | 31}
1666
1667 #define MIPS16_SPECIAL_REGISTER_NAMES \
1668 {"$pc", RTYPE_PC | 0}
1669
1670 #define MDMX_VECTOR_REGISTER_NAMES \
1671 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
1672 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
1673 {"$v2", RTYPE_VEC | 2}, \
1674 {"$v3", RTYPE_VEC | 3}, \
1675 {"$v4", RTYPE_VEC | 4}, \
1676 {"$v5", RTYPE_VEC | 5}, \
1677 {"$v6", RTYPE_VEC | 6}, \
1678 {"$v7", RTYPE_VEC | 7}, \
1679 {"$v8", RTYPE_VEC | 8}, \
1680 {"$v9", RTYPE_VEC | 9}, \
1681 {"$v10", RTYPE_VEC | 10}, \
1682 {"$v11", RTYPE_VEC | 11}, \
1683 {"$v12", RTYPE_VEC | 12}, \
1684 {"$v13", RTYPE_VEC | 13}, \
1685 {"$v14", RTYPE_VEC | 14}, \
1686 {"$v15", RTYPE_VEC | 15}, \
1687 {"$v16", RTYPE_VEC | 16}, \
1688 {"$v17", RTYPE_VEC | 17}, \
1689 {"$v18", RTYPE_VEC | 18}, \
1690 {"$v19", RTYPE_VEC | 19}, \
1691 {"$v20", RTYPE_VEC | 20}, \
1692 {"$v21", RTYPE_VEC | 21}, \
1693 {"$v22", RTYPE_VEC | 22}, \
1694 {"$v23", RTYPE_VEC | 23}, \
1695 {"$v24", RTYPE_VEC | 24}, \
1696 {"$v25", RTYPE_VEC | 25}, \
1697 {"$v26", RTYPE_VEC | 26}, \
1698 {"$v27", RTYPE_VEC | 27}, \
1699 {"$v28", RTYPE_VEC | 28}, \
1700 {"$v29", RTYPE_VEC | 29}, \
1701 {"$v30", RTYPE_VEC | 30}, \
1702 {"$v31", RTYPE_VEC | 31}
1703
1704 #define MIPS_DSP_ACCUMULATOR_NAMES \
1705 {"$ac0", RTYPE_ACC | 0}, \
1706 {"$ac1", RTYPE_ACC | 1}, \
1707 {"$ac2", RTYPE_ACC | 2}, \
1708 {"$ac3", RTYPE_ACC | 3}
1709
1710 static const struct regname reg_names[] = {
1711 GENERIC_REGISTER_NUMBERS,
1712 FPU_REGISTER_NAMES,
1713 FPU_CONDITION_CODE_NAMES,
1714 COPROC_CONDITION_CODE_NAMES,
1715
1716 /* The $txx registers depends on the abi,
1717 these will be added later into the symbol table from
1718 one of the tables below once mips_abi is set after
1719 parsing of arguments from the command line. */
1720 SYMBOLIC_REGISTER_NAMES,
1721
1722 MIPS16_SPECIAL_REGISTER_NAMES,
1723 MDMX_VECTOR_REGISTER_NAMES,
1724 MIPS_DSP_ACCUMULATOR_NAMES,
1725 {0, 0}
1726 };
1727
1728 static const struct regname reg_names_o32[] = {
1729 O32_SYMBOLIC_REGISTER_NAMES,
1730 {0, 0}
1731 };
1732
1733 static const struct regname reg_names_n32n64[] = {
1734 N32N64_SYMBOLIC_REGISTER_NAMES,
1735 {0, 0}
1736 };
1737
1738 static int
1739 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
1740 {
1741 symbolS *symbolP;
1742 char *e;
1743 char save_c;
1744 int reg = -1;
1745
1746 /* Find end of name. */
1747 e = *s;
1748 if (is_name_beginner (*e))
1749 ++e;
1750 while (is_part_of_name (*e))
1751 ++e;
1752
1753 /* Terminate name. */
1754 save_c = *e;
1755 *e = '\0';
1756
1757 /* Look for a register symbol. */
1758 if ((symbolP = symbol_find (*s)) && S_GET_SEGMENT (symbolP) == reg_section)
1759 {
1760 int r = S_GET_VALUE (symbolP);
1761 if (r & types)
1762 reg = r & RNUM_MASK;
1763 else if ((types & RTYPE_VEC) && (r & ~1) == (RTYPE_GP | 2))
1764 /* Convert GP reg $v0/1 to MDMX reg $v0/1! */
1765 reg = (r & RNUM_MASK) - 2;
1766 }
1767 /* Else see if this is a register defined in an itbl entry. */
1768 else if ((types & RTYPE_GP) && itbl_have_entries)
1769 {
1770 char *n = *s;
1771 unsigned long r;
1772
1773 if (*n == '$')
1774 ++n;
1775 if (itbl_get_reg_val (n, &r))
1776 reg = r & RNUM_MASK;
1777 }
1778
1779 /* Advance to next token if a register was recognised. */
1780 if (reg >= 0)
1781 *s = e;
1782 else if (types & RWARN)
1783 as_warn ("Unrecognized register name `%s'", *s);
1784
1785 *e = save_c;
1786 if (regnop)
1787 *regnop = reg;
1788 return reg >= 0;
1789 }
1790
1791 /* Return TRUE if opcode MO is valid on the currently selected ISA and
1792 architecture. If EXPANSIONP is TRUE then this check is done while
1793 expanding a macro. Use is_opcode_valid_16 for MIPS16 opcodes. */
1794
1795 static bfd_boolean
1796 is_opcode_valid (const struct mips_opcode *mo, bfd_boolean expansionp)
1797 {
1798 int isa = mips_opts.isa;
1799 int fp_s, fp_d;
1800
1801 if (mips_opts.ase_mdmx)
1802 isa |= INSN_MDMX;
1803 if (mips_opts.ase_dsp)
1804 isa |= INSN_DSP;
1805 if (mips_opts.ase_dsp && ISA_SUPPORTS_DSP64_ASE)
1806 isa |= INSN_DSP64;
1807 if (mips_opts.ase_dspr2)
1808 isa |= INSN_DSPR2;
1809 if (mips_opts.ase_mt)
1810 isa |= INSN_MT;
1811 if (mips_opts.ase_mips3d)
1812 isa |= INSN_MIPS3D;
1813 if (mips_opts.ase_smartmips)
1814 isa |= INSN_SMARTMIPS;
1815
1816 /* For user code we don't check for mips_opts.mips16 since we want
1817 to allow jalx if -mips16 was specified on the command line. */
1818 if (expansionp ? mips_opts.mips16 : file_ase_mips16)
1819 isa |= INSN_MIPS16;
1820
1821 /* Don't accept instructions based on the ISA if the CPU does not implement
1822 all the coprocessor insns. */
1823 if (NO_ISA_COP (mips_opts.arch)
1824 && COP_INSN (mo->pinfo))
1825 isa = 0;
1826
1827 if (!OPCODE_IS_MEMBER (mo, isa, mips_opts.arch))
1828 return FALSE;
1829
1830 /* Check whether the instruction or macro requires single-precision or
1831 double-precision floating-point support. Note that this information is
1832 stored differently in the opcode table for insns and macros. */
1833 if (mo->pinfo == INSN_MACRO)
1834 {
1835 fp_s = mo->pinfo2 & INSN2_M_FP_S;
1836 fp_d = mo->pinfo2 & INSN2_M_FP_D;
1837 }
1838 else
1839 {
1840 fp_s = mo->pinfo & FP_S;
1841 fp_d = mo->pinfo & FP_D;
1842 }
1843
1844 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
1845 return FALSE;
1846
1847 if (fp_s && mips_opts.soft_float)
1848 return FALSE;
1849
1850 return TRUE;
1851 }
1852
1853 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
1854 selected ISA and architecture. */
1855
1856 static bfd_boolean
1857 is_opcode_valid_16 (const struct mips_opcode *mo)
1858 {
1859 return OPCODE_IS_MEMBER (mo, mips_opts.isa, mips_opts.arch) ? TRUE : FALSE;
1860 }
1861
1862 /* This function is called once, at assembler startup time. It should set up
1863 all the tables, etc. that the MD part of the assembler will need. */
1864
1865 void
1866 md_begin (void)
1867 {
1868 const char *retval = NULL;
1869 int i = 0;
1870 int broken = 0;
1871
1872 if (mips_pic != NO_PIC)
1873 {
1874 if (g_switch_seen && g_switch_value != 0)
1875 as_bad (_("-G may not be used in position-independent code"));
1876 g_switch_value = 0;
1877 }
1878
1879 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
1880 as_warn (_("Could not set architecture and machine"));
1881
1882 op_hash = hash_new ();
1883
1884 for (i = 0; i < NUMOPCODES;)
1885 {
1886 const char *name = mips_opcodes[i].name;
1887
1888 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
1889 if (retval != NULL)
1890 {
1891 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
1892 mips_opcodes[i].name, retval);
1893 /* Probably a memory allocation problem? Give up now. */
1894 as_fatal (_("Broken assembler. No assembly attempted."));
1895 }
1896 do
1897 {
1898 if (mips_opcodes[i].pinfo != INSN_MACRO)
1899 {
1900 if (!validate_mips_insn (&mips_opcodes[i]))
1901 broken = 1;
1902 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1903 {
1904 create_insn (&nop_insn, mips_opcodes + i);
1905 nop_insn.fixed_p = 1;
1906 }
1907 }
1908 ++i;
1909 }
1910 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
1911 }
1912
1913 mips16_op_hash = hash_new ();
1914
1915 i = 0;
1916 while (i < bfd_mips16_num_opcodes)
1917 {
1918 const char *name = mips16_opcodes[i].name;
1919
1920 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
1921 if (retval != NULL)
1922 as_fatal (_("internal: can't hash `%s': %s"),
1923 mips16_opcodes[i].name, retval);
1924 do
1925 {
1926 if (mips16_opcodes[i].pinfo != INSN_MACRO
1927 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
1928 != mips16_opcodes[i].match))
1929 {
1930 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
1931 mips16_opcodes[i].name, mips16_opcodes[i].args);
1932 broken = 1;
1933 }
1934 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1935 {
1936 create_insn (&mips16_nop_insn, mips16_opcodes + i);
1937 mips16_nop_insn.fixed_p = 1;
1938 }
1939 ++i;
1940 }
1941 while (i < bfd_mips16_num_opcodes
1942 && strcmp (mips16_opcodes[i].name, name) == 0);
1943 }
1944
1945 if (broken)
1946 as_fatal (_("Broken assembler. No assembly attempted."));
1947
1948 /* We add all the general register names to the symbol table. This
1949 helps us detect invalid uses of them. */
1950 for (i = 0; reg_names[i].name; i++)
1951 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
1952 reg_names[i].num, // & RNUM_MASK,
1953 &zero_address_frag));
1954 if (HAVE_NEWABI)
1955 for (i = 0; reg_names_n32n64[i].name; i++)
1956 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
1957 reg_names_n32n64[i].num, // & RNUM_MASK,
1958 &zero_address_frag));
1959 else
1960 for (i = 0; reg_names_o32[i].name; i++)
1961 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
1962 reg_names_o32[i].num, // & RNUM_MASK,
1963 &zero_address_frag));
1964
1965 mips_no_prev_insn ();
1966
1967 mips_gprmask = 0;
1968 mips_cprmask[0] = 0;
1969 mips_cprmask[1] = 0;
1970 mips_cprmask[2] = 0;
1971 mips_cprmask[3] = 0;
1972
1973 /* set the default alignment for the text section (2**2) */
1974 record_alignment (text_section, 2);
1975
1976 bfd_set_gp_size (stdoutput, g_switch_value);
1977
1978 #ifdef OBJ_ELF
1979 if (IS_ELF)
1980 {
1981 /* On a native system other than VxWorks, sections must be aligned
1982 to 16 byte boundaries. When configured for an embedded ELF
1983 target, we don't bother. */
1984 if (strncmp (TARGET_OS, "elf", 3) != 0
1985 && strncmp (TARGET_OS, "vxworks", 7) != 0)
1986 {
1987 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
1988 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
1989 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
1990 }
1991
1992 /* Create a .reginfo section for register masks and a .mdebug
1993 section for debugging information. */
1994 {
1995 segT seg;
1996 subsegT subseg;
1997 flagword flags;
1998 segT sec;
1999
2000 seg = now_seg;
2001 subseg = now_subseg;
2002
2003 /* The ABI says this section should be loaded so that the
2004 running program can access it. However, we don't load it
2005 if we are configured for an embedded target */
2006 flags = SEC_READONLY | SEC_DATA;
2007 if (strncmp (TARGET_OS, "elf", 3) != 0)
2008 flags |= SEC_ALLOC | SEC_LOAD;
2009
2010 if (mips_abi != N64_ABI)
2011 {
2012 sec = subseg_new (".reginfo", (subsegT) 0);
2013
2014 bfd_set_section_flags (stdoutput, sec, flags);
2015 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
2016
2017 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
2018 }
2019 else
2020 {
2021 /* The 64-bit ABI uses a .MIPS.options section rather than
2022 .reginfo section. */
2023 sec = subseg_new (".MIPS.options", (subsegT) 0);
2024 bfd_set_section_flags (stdoutput, sec, flags);
2025 bfd_set_section_alignment (stdoutput, sec, 3);
2026
2027 /* Set up the option header. */
2028 {
2029 Elf_Internal_Options opthdr;
2030 char *f;
2031
2032 opthdr.kind = ODK_REGINFO;
2033 opthdr.size = (sizeof (Elf_External_Options)
2034 + sizeof (Elf64_External_RegInfo));
2035 opthdr.section = 0;
2036 opthdr.info = 0;
2037 f = frag_more (sizeof (Elf_External_Options));
2038 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
2039 (Elf_External_Options *) f);
2040
2041 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
2042 }
2043 }
2044
2045 if (ECOFF_DEBUGGING)
2046 {
2047 sec = subseg_new (".mdebug", (subsegT) 0);
2048 (void) bfd_set_section_flags (stdoutput, sec,
2049 SEC_HAS_CONTENTS | SEC_READONLY);
2050 (void) bfd_set_section_alignment (stdoutput, sec, 2);
2051 }
2052 else if (mips_flag_pdr)
2053 {
2054 pdr_seg = subseg_new (".pdr", (subsegT) 0);
2055 (void) bfd_set_section_flags (stdoutput, pdr_seg,
2056 SEC_READONLY | SEC_RELOC
2057 | SEC_DEBUGGING);
2058 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
2059 }
2060
2061 subseg_set (seg, subseg);
2062 }
2063 }
2064 #endif /* OBJ_ELF */
2065
2066 if (! ECOFF_DEBUGGING)
2067 md_obj_begin ();
2068
2069 if (mips_fix_vr4120)
2070 init_vr4120_conflicts ();
2071 }
2072
2073 void
2074 md_mips_end (void)
2075 {
2076 if (! ECOFF_DEBUGGING)
2077 md_obj_end ();
2078 }
2079
2080 void
2081 md_assemble (char *str)
2082 {
2083 struct mips_cl_insn insn;
2084 bfd_reloc_code_real_type unused_reloc[3]
2085 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2086
2087 imm_expr.X_op = O_absent;
2088 imm2_expr.X_op = O_absent;
2089 offset_expr.X_op = O_absent;
2090 imm_reloc[0] = BFD_RELOC_UNUSED;
2091 imm_reloc[1] = BFD_RELOC_UNUSED;
2092 imm_reloc[2] = BFD_RELOC_UNUSED;
2093 offset_reloc[0] = BFD_RELOC_UNUSED;
2094 offset_reloc[1] = BFD_RELOC_UNUSED;
2095 offset_reloc[2] = BFD_RELOC_UNUSED;
2096
2097 if (mips_opts.mips16)
2098 mips16_ip (str, &insn);
2099 else
2100 {
2101 mips_ip (str, &insn);
2102 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
2103 str, insn.insn_opcode));
2104 }
2105
2106 if (insn_error)
2107 {
2108 as_bad ("%s `%s'", insn_error, str);
2109 return;
2110 }
2111
2112 if (insn.insn_mo->pinfo == INSN_MACRO)
2113 {
2114 macro_start ();
2115 if (mips_opts.mips16)
2116 mips16_macro (&insn);
2117 else
2118 macro (&insn);
2119 macro_end ();
2120 }
2121 else
2122 {
2123 if (imm_expr.X_op != O_absent)
2124 append_insn (&insn, &imm_expr, imm_reloc);
2125 else if (offset_expr.X_op != O_absent)
2126 append_insn (&insn, &offset_expr, offset_reloc);
2127 else
2128 append_insn (&insn, NULL, unused_reloc);
2129 }
2130 }
2131
2132 /* Convenience functions for abstracting away the differences between
2133 MIPS16 and non-MIPS16 relocations. */
2134
2135 static inline bfd_boolean
2136 mips16_reloc_p (bfd_reloc_code_real_type reloc)
2137 {
2138 switch (reloc)
2139 {
2140 case BFD_RELOC_MIPS16_JMP:
2141 case BFD_RELOC_MIPS16_GPREL:
2142 case BFD_RELOC_MIPS16_GOT16:
2143 case BFD_RELOC_MIPS16_CALL16:
2144 case BFD_RELOC_MIPS16_HI16_S:
2145 case BFD_RELOC_MIPS16_HI16:
2146 case BFD_RELOC_MIPS16_LO16:
2147 return TRUE;
2148
2149 default:
2150 return FALSE;
2151 }
2152 }
2153
2154 static inline bfd_boolean
2155 got16_reloc_p (bfd_reloc_code_real_type reloc)
2156 {
2157 return reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16;
2158 }
2159
2160 static inline bfd_boolean
2161 hi16_reloc_p (bfd_reloc_code_real_type reloc)
2162 {
2163 return reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S;
2164 }
2165
2166 static inline bfd_boolean
2167 lo16_reloc_p (bfd_reloc_code_real_type reloc)
2168 {
2169 return reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16;
2170 }
2171
2172 /* Return true if the given relocation might need a matching %lo().
2173 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
2174 need a matching %lo() when applied to local symbols. */
2175
2176 static inline bfd_boolean
2177 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
2178 {
2179 return (HAVE_IN_PLACE_ADDENDS
2180 && (hi16_reloc_p (reloc)
2181 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
2182 all GOT16 relocations evaluate to "G". */
2183 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
2184 }
2185
2186 /* Return the type of %lo() reloc needed by RELOC, given that
2187 reloc_needs_lo_p. */
2188
2189 static inline bfd_reloc_code_real_type
2190 matching_lo_reloc (bfd_reloc_code_real_type reloc)
2191 {
2192 return mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16 : BFD_RELOC_LO16;
2193 }
2194
2195 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
2196 relocation. */
2197
2198 static inline bfd_boolean
2199 fixup_has_matching_lo_p (fixS *fixp)
2200 {
2201 return (fixp->fx_next != NULL
2202 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
2203 && fixp->fx_addsy == fixp->fx_next->fx_addsy
2204 && fixp->fx_offset == fixp->fx_next->fx_offset);
2205 }
2206
2207 /* See whether instruction IP reads register REG. CLASS is the type
2208 of register. */
2209
2210 static int
2211 insn_uses_reg (const struct mips_cl_insn *ip, unsigned int reg,
2212 enum mips_regclass class)
2213 {
2214 if (class == MIPS16_REG)
2215 {
2216 assert (mips_opts.mips16);
2217 reg = mips16_to_32_reg_map[reg];
2218 class = MIPS_GR_REG;
2219 }
2220
2221 /* Don't report on general register ZERO, since it never changes. */
2222 if (class == MIPS_GR_REG && reg == ZERO)
2223 return 0;
2224
2225 if (class == MIPS_FP_REG)
2226 {
2227 assert (! mips_opts.mips16);
2228 /* If we are called with either $f0 or $f1, we must check $f0.
2229 This is not optimal, because it will introduce an unnecessary
2230 NOP between "lwc1 $f0" and "swc1 $f1". To fix this we would
2231 need to distinguish reading both $f0 and $f1 or just one of
2232 them. Note that we don't have to check the other way,
2233 because there is no instruction that sets both $f0 and $f1
2234 and requires a delay. */
2235 if ((ip->insn_mo->pinfo & INSN_READ_FPR_S)
2236 && ((EXTRACT_OPERAND (FS, *ip) & ~(unsigned) 1)
2237 == (reg &~ (unsigned) 1)))
2238 return 1;
2239 if ((ip->insn_mo->pinfo & INSN_READ_FPR_T)
2240 && ((EXTRACT_OPERAND (FT, *ip) & ~(unsigned) 1)
2241 == (reg &~ (unsigned) 1)))
2242 return 1;
2243 }
2244 else if (! mips_opts.mips16)
2245 {
2246 if ((ip->insn_mo->pinfo & INSN_READ_GPR_S)
2247 && EXTRACT_OPERAND (RS, *ip) == reg)
2248 return 1;
2249 if ((ip->insn_mo->pinfo & INSN_READ_GPR_T)
2250 && EXTRACT_OPERAND (RT, *ip) == reg)
2251 return 1;
2252 }
2253 else
2254 {
2255 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_X)
2256 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)] == reg)
2257 return 1;
2258 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Y)
2259 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)] == reg)
2260 return 1;
2261 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Z)
2262 && (mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]
2263 == reg))
2264 return 1;
2265 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_T) && reg == TREG)
2266 return 1;
2267 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_SP) && reg == SP)
2268 return 1;
2269 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_31) && reg == RA)
2270 return 1;
2271 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_GPR_X)
2272 && MIPS16_EXTRACT_OPERAND (REGR32, *ip) == reg)
2273 return 1;
2274 }
2275
2276 return 0;
2277 }
2278
2279 /* This function returns true if modifying a register requires a
2280 delay. */
2281
2282 static int
2283 reg_needs_delay (unsigned int reg)
2284 {
2285 unsigned long prev_pinfo;
2286
2287 prev_pinfo = history[0].insn_mo->pinfo;
2288 if (! mips_opts.noreorder
2289 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
2290 && ! gpr_interlocks)
2291 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
2292 && ! cop_interlocks)))
2293 {
2294 /* A load from a coprocessor or from memory. All load delays
2295 delay the use of general register rt for one instruction. */
2296 /* Itbl support may require additional care here. */
2297 know (prev_pinfo & INSN_WRITE_GPR_T);
2298 if (reg == EXTRACT_OPERAND (RT, history[0]))
2299 return 1;
2300 }
2301
2302 return 0;
2303 }
2304
2305 /* Move all labels in insn_labels to the current insertion point. */
2306
2307 static void
2308 mips_move_labels (void)
2309 {
2310 segment_info_type *si = seg_info (now_seg);
2311 struct insn_label_list *l;
2312 valueT val;
2313
2314 for (l = si->label_list; l != NULL; l = l->next)
2315 {
2316 assert (S_GET_SEGMENT (l->label) == now_seg);
2317 symbol_set_frag (l->label, frag_now);
2318 val = (valueT) frag_now_fix ();
2319 /* mips16 text labels are stored as odd. */
2320 if (mips_opts.mips16)
2321 ++val;
2322 S_SET_VALUE (l->label, val);
2323 }
2324 }
2325
2326 static bfd_boolean
2327 s_is_linkonce (symbolS *sym, segT from_seg)
2328 {
2329 bfd_boolean linkonce = FALSE;
2330 segT symseg = S_GET_SEGMENT (sym);
2331
2332 if (symseg != from_seg && !S_IS_LOCAL (sym))
2333 {
2334 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
2335 linkonce = TRUE;
2336 #ifdef OBJ_ELF
2337 /* The GNU toolchain uses an extension for ELF: a section
2338 beginning with the magic string .gnu.linkonce is a
2339 linkonce section. */
2340 if (strncmp (segment_name (symseg), ".gnu.linkonce",
2341 sizeof ".gnu.linkonce" - 1) == 0)
2342 linkonce = TRUE;
2343 #endif
2344 }
2345 return linkonce;
2346 }
2347
2348 /* Mark instruction labels in mips16 mode. This permits the linker to
2349 handle them specially, such as generating jalx instructions when
2350 needed. We also make them odd for the duration of the assembly, in
2351 order to generate the right sort of code. We will make them even
2352 in the adjust_symtab routine, while leaving them marked. This is
2353 convenient for the debugger and the disassembler. The linker knows
2354 to make them odd again. */
2355
2356 static void
2357 mips16_mark_labels (void)
2358 {
2359 segment_info_type *si = seg_info (now_seg);
2360 struct insn_label_list *l;
2361
2362 if (!mips_opts.mips16)
2363 return;
2364
2365 for (l = si->label_list; l != NULL; l = l->next)
2366 {
2367 symbolS *label = l->label;
2368
2369 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
2370 if (IS_ELF)
2371 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
2372 #endif
2373 if ((S_GET_VALUE (label) & 1) == 0
2374 /* Don't adjust the address if the label is global or weak, or
2375 in a link-once section, since we'll be emitting symbol reloc
2376 references to it which will be patched up by the linker, and
2377 the final value of the symbol may or may not be MIPS16. */
2378 && ! S_IS_WEAK (label)
2379 && ! S_IS_EXTERNAL (label)
2380 && ! s_is_linkonce (label, now_seg))
2381 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
2382 }
2383 }
2384
2385 /* End the current frag. Make it a variant frag and record the
2386 relaxation info. */
2387
2388 static void
2389 relax_close_frag (void)
2390 {
2391 mips_macro_warning.first_frag = frag_now;
2392 frag_var (rs_machine_dependent, 0, 0,
2393 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
2394 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
2395
2396 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
2397 mips_relax.first_fixup = 0;
2398 }
2399
2400 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
2401 See the comment above RELAX_ENCODE for more details. */
2402
2403 static void
2404 relax_start (symbolS *symbol)
2405 {
2406 assert (mips_relax.sequence == 0);
2407 mips_relax.sequence = 1;
2408 mips_relax.symbol = symbol;
2409 }
2410
2411 /* Start generating the second version of a relaxable sequence.
2412 See the comment above RELAX_ENCODE for more details. */
2413
2414 static void
2415 relax_switch (void)
2416 {
2417 assert (mips_relax.sequence == 1);
2418 mips_relax.sequence = 2;
2419 }
2420
2421 /* End the current relaxable sequence. */
2422
2423 static void
2424 relax_end (void)
2425 {
2426 assert (mips_relax.sequence == 2);
2427 relax_close_frag ();
2428 mips_relax.sequence = 0;
2429 }
2430
2431 /* Classify an instruction according to the FIX_VR4120_* enumeration.
2432 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
2433 by VR4120 errata. */
2434
2435 static unsigned int
2436 classify_vr4120_insn (const char *name)
2437 {
2438 if (strncmp (name, "macc", 4) == 0)
2439 return FIX_VR4120_MACC;
2440 if (strncmp (name, "dmacc", 5) == 0)
2441 return FIX_VR4120_DMACC;
2442 if (strncmp (name, "mult", 4) == 0)
2443 return FIX_VR4120_MULT;
2444 if (strncmp (name, "dmult", 5) == 0)
2445 return FIX_VR4120_DMULT;
2446 if (strstr (name, "div"))
2447 return FIX_VR4120_DIV;
2448 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
2449 return FIX_VR4120_MTHILO;
2450 return NUM_FIX_VR4120_CLASSES;
2451 }
2452
2453 /* Return the number of instructions that must separate INSN1 and INSN2,
2454 where INSN1 is the earlier instruction. Return the worst-case value
2455 for any INSN2 if INSN2 is null. */
2456
2457 static unsigned int
2458 insns_between (const struct mips_cl_insn *insn1,
2459 const struct mips_cl_insn *insn2)
2460 {
2461 unsigned long pinfo1, pinfo2;
2462
2463 /* This function needs to know which pinfo flags are set for INSN2
2464 and which registers INSN2 uses. The former is stored in PINFO2 and
2465 the latter is tested via INSN2_USES_REG. If INSN2 is null, PINFO2
2466 will have every flag set and INSN2_USES_REG will always return true. */
2467 pinfo1 = insn1->insn_mo->pinfo;
2468 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
2469
2470 #define INSN2_USES_REG(REG, CLASS) \
2471 (insn2 == NULL || insn_uses_reg (insn2, REG, CLASS))
2472
2473 /* For most targets, write-after-read dependencies on the HI and LO
2474 registers must be separated by at least two instructions. */
2475 if (!hilo_interlocks)
2476 {
2477 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
2478 return 2;
2479 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
2480 return 2;
2481 }
2482
2483 /* If we're working around r7000 errata, there must be two instructions
2484 between an mfhi or mflo and any instruction that uses the result. */
2485 if (mips_7000_hilo_fix
2486 && MF_HILO_INSN (pinfo1)
2487 && INSN2_USES_REG (EXTRACT_OPERAND (RD, *insn1), MIPS_GR_REG))
2488 return 2;
2489
2490 /* If working around VR4120 errata, check for combinations that need
2491 a single intervening instruction. */
2492 if (mips_fix_vr4120)
2493 {
2494 unsigned int class1, class2;
2495
2496 class1 = classify_vr4120_insn (insn1->insn_mo->name);
2497 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
2498 {
2499 if (insn2 == NULL)
2500 return 1;
2501 class2 = classify_vr4120_insn (insn2->insn_mo->name);
2502 if (vr4120_conflicts[class1] & (1 << class2))
2503 return 1;
2504 }
2505 }
2506
2507 if (!mips_opts.mips16)
2508 {
2509 /* Check for GPR or coprocessor load delays. All such delays
2510 are on the RT register. */
2511 /* Itbl support may require additional care here. */
2512 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
2513 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
2514 {
2515 know (pinfo1 & INSN_WRITE_GPR_T);
2516 if (INSN2_USES_REG (EXTRACT_OPERAND (RT, *insn1), MIPS_GR_REG))
2517 return 1;
2518 }
2519
2520 /* Check for generic coprocessor hazards.
2521
2522 This case is not handled very well. There is no special
2523 knowledge of CP0 handling, and the coprocessors other than
2524 the floating point unit are not distinguished at all. */
2525 /* Itbl support may require additional care here. FIXME!
2526 Need to modify this to include knowledge about
2527 user specified delays! */
2528 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
2529 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
2530 {
2531 /* Handle cases where INSN1 writes to a known general coprocessor
2532 register. There must be a one instruction delay before INSN2
2533 if INSN2 reads that register, otherwise no delay is needed. */
2534 if (pinfo1 & INSN_WRITE_FPR_T)
2535 {
2536 if (INSN2_USES_REG (EXTRACT_OPERAND (FT, *insn1), MIPS_FP_REG))
2537 return 1;
2538 }
2539 else if (pinfo1 & INSN_WRITE_FPR_S)
2540 {
2541 if (INSN2_USES_REG (EXTRACT_OPERAND (FS, *insn1), MIPS_FP_REG))
2542 return 1;
2543 }
2544 else
2545 {
2546 /* Read-after-write dependencies on the control registers
2547 require a two-instruction gap. */
2548 if ((pinfo1 & INSN_WRITE_COND_CODE)
2549 && (pinfo2 & INSN_READ_COND_CODE))
2550 return 2;
2551
2552 /* We don't know exactly what INSN1 does. If INSN2 is
2553 also a coprocessor instruction, assume there must be
2554 a one instruction gap. */
2555 if (pinfo2 & INSN_COP)
2556 return 1;
2557 }
2558 }
2559
2560 /* Check for read-after-write dependencies on the coprocessor
2561 control registers in cases where INSN1 does not need a general
2562 coprocessor delay. This means that INSN1 is a floating point
2563 comparison instruction. */
2564 /* Itbl support may require additional care here. */
2565 else if (!cop_interlocks
2566 && (pinfo1 & INSN_WRITE_COND_CODE)
2567 && (pinfo2 & INSN_READ_COND_CODE))
2568 return 1;
2569 }
2570
2571 #undef INSN2_USES_REG
2572
2573 return 0;
2574 }
2575
2576 /* Return the number of nops that would be needed to work around the
2577 VR4130 mflo/mfhi errata if instruction INSN immediately followed
2578 the MAX_VR4130_NOPS instructions described by HISTORY. */
2579
2580 static int
2581 nops_for_vr4130 (const struct mips_cl_insn *history,
2582 const struct mips_cl_insn *insn)
2583 {
2584 int i, j, reg;
2585
2586 /* Check if the instruction writes to HI or LO. MTHI and MTLO
2587 are not affected by the errata. */
2588 if (insn != 0
2589 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
2590 || strcmp (insn->insn_mo->name, "mtlo") == 0
2591 || strcmp (insn->insn_mo->name, "mthi") == 0))
2592 return 0;
2593
2594 /* Search for the first MFLO or MFHI. */
2595 for (i = 0; i < MAX_VR4130_NOPS; i++)
2596 if (!history[i].noreorder_p && MF_HILO_INSN (history[i].insn_mo->pinfo))
2597 {
2598 /* Extract the destination register. */
2599 if (mips_opts.mips16)
2600 reg = mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, history[i])];
2601 else
2602 reg = EXTRACT_OPERAND (RD, history[i]);
2603
2604 /* No nops are needed if INSN reads that register. */
2605 if (insn != NULL && insn_uses_reg (insn, reg, MIPS_GR_REG))
2606 return 0;
2607
2608 /* ...or if any of the intervening instructions do. */
2609 for (j = 0; j < i; j++)
2610 if (insn_uses_reg (&history[j], reg, MIPS_GR_REG))
2611 return 0;
2612
2613 return MAX_VR4130_NOPS - i;
2614 }
2615 return 0;
2616 }
2617
2618 /* Return the number of nops that would be needed if instruction INSN
2619 immediately followed the MAX_NOPS instructions given by HISTORY,
2620 where HISTORY[0] is the most recent instruction. If INSN is null,
2621 return the worse-case number of nops for any instruction. */
2622
2623 static int
2624 nops_for_insn (const struct mips_cl_insn *history,
2625 const struct mips_cl_insn *insn)
2626 {
2627 int i, nops, tmp_nops;
2628
2629 nops = 0;
2630 for (i = 0; i < MAX_DELAY_NOPS; i++)
2631 if (!history[i].noreorder_p)
2632 {
2633 tmp_nops = insns_between (history + i, insn) - i;
2634 if (tmp_nops > nops)
2635 nops = tmp_nops;
2636 }
2637
2638 if (mips_fix_vr4130)
2639 {
2640 tmp_nops = nops_for_vr4130 (history, insn);
2641 if (tmp_nops > nops)
2642 nops = tmp_nops;
2643 }
2644
2645 return nops;
2646 }
2647
2648 /* The variable arguments provide NUM_INSNS extra instructions that
2649 might be added to HISTORY. Return the largest number of nops that
2650 would be needed after the extended sequence. */
2651
2652 static int
2653 nops_for_sequence (int num_insns, const struct mips_cl_insn *history, ...)
2654 {
2655 va_list args;
2656 struct mips_cl_insn buffer[MAX_NOPS];
2657 struct mips_cl_insn *cursor;
2658 int nops;
2659
2660 va_start (args, history);
2661 cursor = buffer + num_insns;
2662 memcpy (cursor, history, (MAX_NOPS - num_insns) * sizeof (*cursor));
2663 while (cursor > buffer)
2664 *--cursor = *va_arg (args, const struct mips_cl_insn *);
2665
2666 nops = nops_for_insn (buffer, NULL);
2667 va_end (args);
2668 return nops;
2669 }
2670
2671 /* Like nops_for_insn, but if INSN is a branch, take into account the
2672 worst-case delay for the branch target. */
2673
2674 static int
2675 nops_for_insn_or_target (const struct mips_cl_insn *history,
2676 const struct mips_cl_insn *insn)
2677 {
2678 int nops, tmp_nops;
2679
2680 nops = nops_for_insn (history, insn);
2681 if (insn->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
2682 | INSN_COND_BRANCH_DELAY
2683 | INSN_COND_BRANCH_LIKELY))
2684 {
2685 tmp_nops = nops_for_sequence (2, history, insn, NOP_INSN);
2686 if (tmp_nops > nops)
2687 nops = tmp_nops;
2688 }
2689 else if (mips_opts.mips16 && (insn->insn_mo->pinfo & MIPS16_INSN_BRANCH))
2690 {
2691 tmp_nops = nops_for_sequence (1, history, insn);
2692 if (tmp_nops > nops)
2693 nops = tmp_nops;
2694 }
2695 return nops;
2696 }
2697
2698 /* Output an instruction. IP is the instruction information.
2699 ADDRESS_EXPR is an operand of the instruction to be used with
2700 RELOC_TYPE. */
2701
2702 static void
2703 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
2704 bfd_reloc_code_real_type *reloc_type)
2705 {
2706 unsigned long prev_pinfo, pinfo;
2707 relax_stateT prev_insn_frag_type = 0;
2708 bfd_boolean relaxed_branch = FALSE;
2709 segment_info_type *si = seg_info (now_seg);
2710
2711 /* Mark instruction labels in mips16 mode. */
2712 mips16_mark_labels ();
2713
2714 prev_pinfo = history[0].insn_mo->pinfo;
2715 pinfo = ip->insn_mo->pinfo;
2716
2717 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
2718 {
2719 /* There are a lot of optimizations we could do that we don't.
2720 In particular, we do not, in general, reorder instructions.
2721 If you use gcc with optimization, it will reorder
2722 instructions and generally do much more optimization then we
2723 do here; repeating all that work in the assembler would only
2724 benefit hand written assembly code, and does not seem worth
2725 it. */
2726 int nops = (mips_optimize == 0
2727 ? nops_for_insn (history, NULL)
2728 : nops_for_insn_or_target (history, ip));
2729 if (nops > 0)
2730 {
2731 fragS *old_frag;
2732 unsigned long old_frag_offset;
2733 int i;
2734
2735 old_frag = frag_now;
2736 old_frag_offset = frag_now_fix ();
2737
2738 for (i = 0; i < nops; i++)
2739 emit_nop ();
2740
2741 if (listing)
2742 {
2743 listing_prev_line ();
2744 /* We may be at the start of a variant frag. In case we
2745 are, make sure there is enough space for the frag
2746 after the frags created by listing_prev_line. The
2747 argument to frag_grow here must be at least as large
2748 as the argument to all other calls to frag_grow in
2749 this file. We don't have to worry about being in the
2750 middle of a variant frag, because the variants insert
2751 all needed nop instructions themselves. */
2752 frag_grow (40);
2753 }
2754
2755 mips_move_labels ();
2756
2757 #ifndef NO_ECOFF_DEBUGGING
2758 if (ECOFF_DEBUGGING)
2759 ecoff_fix_loc (old_frag, old_frag_offset);
2760 #endif
2761 }
2762 }
2763 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
2764 {
2765 /* Work out how many nops in prev_nop_frag are needed by IP. */
2766 int nops = nops_for_insn_or_target (history, ip);
2767 assert (nops <= prev_nop_frag_holds);
2768
2769 /* Enforce NOPS as a minimum. */
2770 if (nops > prev_nop_frag_required)
2771 prev_nop_frag_required = nops;
2772
2773 if (prev_nop_frag_holds == prev_nop_frag_required)
2774 {
2775 /* Settle for the current number of nops. Update the history
2776 accordingly (for the benefit of any future .set reorder code). */
2777 prev_nop_frag = NULL;
2778 insert_into_history (prev_nop_frag_since,
2779 prev_nop_frag_holds, NOP_INSN);
2780 }
2781 else
2782 {
2783 /* Allow this instruction to replace one of the nops that was
2784 tentatively added to prev_nop_frag. */
2785 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
2786 prev_nop_frag_holds--;
2787 prev_nop_frag_since++;
2788 }
2789 }
2790
2791 #ifdef OBJ_ELF
2792 /* The value passed to dwarf2_emit_insn is the distance between
2793 the beginning of the current instruction and the address that
2794 should be recorded in the debug tables. For MIPS16 debug info
2795 we want to use ISA-encoded addresses, so we pass -1 for an
2796 address higher by one than the current. */
2797 dwarf2_emit_insn (mips_opts.mips16 ? -1 : 0);
2798 #endif
2799
2800 /* Record the frag type before frag_var. */
2801 if (history[0].frag)
2802 prev_insn_frag_type = history[0].frag->fr_type;
2803
2804 if (address_expr
2805 && *reloc_type == BFD_RELOC_16_PCREL_S2
2806 && (pinfo & INSN_UNCOND_BRANCH_DELAY || pinfo & INSN_COND_BRANCH_DELAY
2807 || pinfo & INSN_COND_BRANCH_LIKELY)
2808 && mips_relax_branch
2809 /* Don't try branch relaxation within .set nomacro, or within
2810 .set noat if we use $at for PIC computations. If it turns
2811 out that the branch was out-of-range, we'll get an error. */
2812 && !mips_opts.warn_about_macros
2813 && (mips_opts.at || mips_pic == NO_PIC)
2814 && !mips_opts.mips16)
2815 {
2816 relaxed_branch = TRUE;
2817 add_relaxed_insn (ip, (relaxed_branch_length
2818 (NULL, NULL,
2819 (pinfo & INSN_UNCOND_BRANCH_DELAY) ? -1
2820 : (pinfo & INSN_COND_BRANCH_LIKELY) ? 1
2821 : 0)), 4,
2822 RELAX_BRANCH_ENCODE
2823 (pinfo & INSN_UNCOND_BRANCH_DELAY,
2824 pinfo & INSN_COND_BRANCH_LIKELY,
2825 pinfo & INSN_WRITE_GPR_31,
2826 0),
2827 address_expr->X_add_symbol,
2828 address_expr->X_add_number);
2829 *reloc_type = BFD_RELOC_UNUSED;
2830 }
2831 else if (*reloc_type > BFD_RELOC_UNUSED)
2832 {
2833 /* We need to set up a variant frag. */
2834 assert (mips_opts.mips16 && address_expr != NULL);
2835 add_relaxed_insn (ip, 4, 0,
2836 RELAX_MIPS16_ENCODE
2837 (*reloc_type - BFD_RELOC_UNUSED,
2838 mips16_small, mips16_ext,
2839 prev_pinfo & INSN_UNCOND_BRANCH_DELAY,
2840 history[0].mips16_absolute_jump_p),
2841 make_expr_symbol (address_expr), 0);
2842 }
2843 else if (mips_opts.mips16
2844 && ! ip->use_extend
2845 && *reloc_type != BFD_RELOC_MIPS16_JMP)
2846 {
2847 if ((pinfo & INSN_UNCOND_BRANCH_DELAY) == 0)
2848 /* Make sure there is enough room to swap this instruction with
2849 a following jump instruction. */
2850 frag_grow (6);
2851 add_fixed_insn (ip);
2852 }
2853 else
2854 {
2855 if (mips_opts.mips16
2856 && mips_opts.noreorder
2857 && (prev_pinfo & INSN_UNCOND_BRANCH_DELAY) != 0)
2858 as_warn (_("extended instruction in delay slot"));
2859
2860 if (mips_relax.sequence)
2861 {
2862 /* If we've reached the end of this frag, turn it into a variant
2863 frag and record the information for the instructions we've
2864 written so far. */
2865 if (frag_room () < 4)
2866 relax_close_frag ();
2867 mips_relax.sizes[mips_relax.sequence - 1] += 4;
2868 }
2869
2870 if (mips_relax.sequence != 2)
2871 mips_macro_warning.sizes[0] += 4;
2872 if (mips_relax.sequence != 1)
2873 mips_macro_warning.sizes[1] += 4;
2874
2875 if (mips_opts.mips16)
2876 {
2877 ip->fixed_p = 1;
2878 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
2879 }
2880 add_fixed_insn (ip);
2881 }
2882
2883 if (address_expr != NULL && *reloc_type <= BFD_RELOC_UNUSED)
2884 {
2885 if (address_expr->X_op == O_constant)
2886 {
2887 unsigned int tmp;
2888
2889 switch (*reloc_type)
2890 {
2891 case BFD_RELOC_32:
2892 ip->insn_opcode |= address_expr->X_add_number;
2893 break;
2894
2895 case BFD_RELOC_MIPS_HIGHEST:
2896 tmp = (address_expr->X_add_number + 0x800080008000ull) >> 48;
2897 ip->insn_opcode |= tmp & 0xffff;
2898 break;
2899
2900 case BFD_RELOC_MIPS_HIGHER:
2901 tmp = (address_expr->X_add_number + 0x80008000ull) >> 32;
2902 ip->insn_opcode |= tmp & 0xffff;
2903 break;
2904
2905 case BFD_RELOC_HI16_S:
2906 tmp = (address_expr->X_add_number + 0x8000) >> 16;
2907 ip->insn_opcode |= tmp & 0xffff;
2908 break;
2909
2910 case BFD_RELOC_HI16:
2911 ip->insn_opcode |= (address_expr->X_add_number >> 16) & 0xffff;
2912 break;
2913
2914 case BFD_RELOC_UNUSED:
2915 case BFD_RELOC_LO16:
2916 case BFD_RELOC_MIPS_GOT_DISP:
2917 ip->insn_opcode |= address_expr->X_add_number & 0xffff;
2918 break;
2919
2920 case BFD_RELOC_MIPS_JMP:
2921 if ((address_expr->X_add_number & 3) != 0)
2922 as_bad (_("jump to misaligned address (0x%lx)"),
2923 (unsigned long) address_expr->X_add_number);
2924 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0x3ffffff;
2925 break;
2926
2927 case BFD_RELOC_MIPS16_JMP:
2928 if ((address_expr->X_add_number & 3) != 0)
2929 as_bad (_("jump to misaligned address (0x%lx)"),
2930 (unsigned long) address_expr->X_add_number);
2931 ip->insn_opcode |=
2932 (((address_expr->X_add_number & 0x7c0000) << 3)
2933 | ((address_expr->X_add_number & 0xf800000) >> 7)
2934 | ((address_expr->X_add_number & 0x3fffc) >> 2));
2935 break;
2936
2937 case BFD_RELOC_16_PCREL_S2:
2938 if ((address_expr->X_add_number & 3) != 0)
2939 as_bad (_("branch to misaligned address (0x%lx)"),
2940 (unsigned long) address_expr->X_add_number);
2941 if (mips_relax_branch)
2942 goto need_reloc;
2943 if ((address_expr->X_add_number + 0x20000) & ~0x3ffff)
2944 as_bad (_("branch address range overflow (0x%lx)"),
2945 (unsigned long) address_expr->X_add_number);
2946 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0xffff;
2947 break;
2948
2949 default:
2950 internalError ();
2951 }
2952 }
2953 else if (*reloc_type < BFD_RELOC_UNUSED)
2954 need_reloc:
2955 {
2956 reloc_howto_type *howto;
2957 int i;
2958
2959 /* In a compound relocation, it is the final (outermost)
2960 operator that determines the relocated field. */
2961 for (i = 1; i < 3; i++)
2962 if (reloc_type[i] == BFD_RELOC_UNUSED)
2963 break;
2964
2965 howto = bfd_reloc_type_lookup (stdoutput, reloc_type[i - 1]);
2966 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
2967 bfd_get_reloc_size (howto),
2968 address_expr,
2969 reloc_type[0] == BFD_RELOC_16_PCREL_S2,
2970 reloc_type[0]);
2971
2972 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
2973 if (reloc_type[0] == BFD_RELOC_MIPS16_JMP
2974 && ip->fixp[0]->fx_addsy)
2975 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
2976
2977 /* These relocations can have an addend that won't fit in
2978 4 octets for 64bit assembly. */
2979 if (HAVE_64BIT_GPRS
2980 && ! howto->partial_inplace
2981 && (reloc_type[0] == BFD_RELOC_16
2982 || reloc_type[0] == BFD_RELOC_32
2983 || reloc_type[0] == BFD_RELOC_MIPS_JMP
2984 || reloc_type[0] == BFD_RELOC_GPREL16
2985 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
2986 || reloc_type[0] == BFD_RELOC_GPREL32
2987 || reloc_type[0] == BFD_RELOC_64
2988 || reloc_type[0] == BFD_RELOC_CTOR
2989 || reloc_type[0] == BFD_RELOC_MIPS_SUB
2990 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
2991 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
2992 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
2993 || reloc_type[0] == BFD_RELOC_MIPS_REL16
2994 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
2995 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
2996 || hi16_reloc_p (reloc_type[0])
2997 || lo16_reloc_p (reloc_type[0])))
2998 ip->fixp[0]->fx_no_overflow = 1;
2999
3000 if (mips_relax.sequence)
3001 {
3002 if (mips_relax.first_fixup == 0)
3003 mips_relax.first_fixup = ip->fixp[0];
3004 }
3005 else if (reloc_needs_lo_p (*reloc_type))
3006 {
3007 struct mips_hi_fixup *hi_fixup;
3008
3009 /* Reuse the last entry if it already has a matching %lo. */
3010 hi_fixup = mips_hi_fixup_list;
3011 if (hi_fixup == 0
3012 || !fixup_has_matching_lo_p (hi_fixup->fixp))
3013 {
3014 hi_fixup = ((struct mips_hi_fixup *)
3015 xmalloc (sizeof (struct mips_hi_fixup)));
3016 hi_fixup->next = mips_hi_fixup_list;
3017 mips_hi_fixup_list = hi_fixup;
3018 }
3019 hi_fixup->fixp = ip->fixp[0];
3020 hi_fixup->seg = now_seg;
3021 }
3022
3023 /* Add fixups for the second and third relocations, if given.
3024 Note that the ABI allows the second relocation to be
3025 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
3026 moment we only use RSS_UNDEF, but we could add support
3027 for the others if it ever becomes necessary. */
3028 for (i = 1; i < 3; i++)
3029 if (reloc_type[i] != BFD_RELOC_UNUSED)
3030 {
3031 ip->fixp[i] = fix_new (ip->frag, ip->where,
3032 ip->fixp[0]->fx_size, NULL, 0,
3033 FALSE, reloc_type[i]);
3034
3035 /* Use fx_tcbit to mark compound relocs. */
3036 ip->fixp[0]->fx_tcbit = 1;
3037 ip->fixp[i]->fx_tcbit = 1;
3038 }
3039 }
3040 }
3041 install_insn (ip);
3042
3043 /* Update the register mask information. */
3044 if (! mips_opts.mips16)
3045 {
3046 if (pinfo & INSN_WRITE_GPR_D)
3047 mips_gprmask |= 1 << EXTRACT_OPERAND (RD, *ip);
3048 if ((pinfo & (INSN_WRITE_GPR_T | INSN_READ_GPR_T)) != 0)
3049 mips_gprmask |= 1 << EXTRACT_OPERAND (RT, *ip);
3050 if (pinfo & INSN_READ_GPR_S)
3051 mips_gprmask |= 1 << EXTRACT_OPERAND (RS, *ip);
3052 if (pinfo & INSN_WRITE_GPR_31)
3053 mips_gprmask |= 1 << RA;
3054 if (pinfo & INSN_WRITE_FPR_D)
3055 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FD, *ip);
3056 if ((pinfo & (INSN_WRITE_FPR_S | INSN_READ_FPR_S)) != 0)
3057 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FS, *ip);
3058 if ((pinfo & (INSN_WRITE_FPR_T | INSN_READ_FPR_T)) != 0)
3059 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FT, *ip);
3060 if ((pinfo & INSN_READ_FPR_R) != 0)
3061 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FR, *ip);
3062 if (pinfo & INSN_COP)
3063 {
3064 /* We don't keep enough information to sort these cases out.
3065 The itbl support does keep this information however, although
3066 we currently don't support itbl fprmats as part of the cop
3067 instruction. May want to add this support in the future. */
3068 }
3069 /* Never set the bit for $0, which is always zero. */
3070 mips_gprmask &= ~1 << 0;
3071 }
3072 else
3073 {
3074 if (pinfo & (MIPS16_INSN_WRITE_X | MIPS16_INSN_READ_X))
3075 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RX, *ip);
3076 if (pinfo & (MIPS16_INSN_WRITE_Y | MIPS16_INSN_READ_Y))
3077 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RY, *ip);
3078 if (pinfo & MIPS16_INSN_WRITE_Z)
3079 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RZ, *ip);
3080 if (pinfo & (MIPS16_INSN_WRITE_T | MIPS16_INSN_READ_T))
3081 mips_gprmask |= 1 << TREG;
3082 if (pinfo & (MIPS16_INSN_WRITE_SP | MIPS16_INSN_READ_SP))
3083 mips_gprmask |= 1 << SP;
3084 if (pinfo & (MIPS16_INSN_WRITE_31 | MIPS16_INSN_READ_31))
3085 mips_gprmask |= 1 << RA;
3086 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
3087 mips_gprmask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
3088 if (pinfo & MIPS16_INSN_READ_Z)
3089 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip);
3090 if (pinfo & MIPS16_INSN_READ_GPR_X)
3091 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
3092 }
3093
3094 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
3095 {
3096 /* Filling the branch delay slot is more complex. We try to
3097 switch the branch with the previous instruction, which we can
3098 do if the previous instruction does not set up a condition
3099 that the branch tests and if the branch is not itself the
3100 target of any branch. */
3101 if ((pinfo & INSN_UNCOND_BRANCH_DELAY)
3102 || (pinfo & INSN_COND_BRANCH_DELAY))
3103 {
3104 if (mips_optimize < 2
3105 /* If we have seen .set volatile or .set nomove, don't
3106 optimize. */
3107 || mips_opts.nomove != 0
3108 /* We can't swap if the previous instruction's position
3109 is fixed. */
3110 || history[0].fixed_p
3111 /* If the previous previous insn was in a .set
3112 noreorder, we can't swap. Actually, the MIPS
3113 assembler will swap in this situation. However, gcc
3114 configured -with-gnu-as will generate code like
3115 .set noreorder
3116 lw $4,XXX
3117 .set reorder
3118 INSN
3119 bne $4,$0,foo
3120 in which we can not swap the bne and INSN. If gcc is
3121 not configured -with-gnu-as, it does not output the
3122 .set pseudo-ops. */
3123 || history[1].noreorder_p
3124 /* If the branch is itself the target of a branch, we
3125 can not swap. We cheat on this; all we check for is
3126 whether there is a label on this instruction. If
3127 there are any branches to anything other than a
3128 label, users must use .set noreorder. */
3129 || si->label_list != NULL
3130 /* If the previous instruction is in a variant frag
3131 other than this branch's one, we cannot do the swap.
3132 This does not apply to the mips16, which uses variant
3133 frags for different purposes. */
3134 || (! mips_opts.mips16
3135 && prev_insn_frag_type == rs_machine_dependent)
3136 /* Check for conflicts between the branch and the instructions
3137 before the candidate delay slot. */
3138 || nops_for_insn (history + 1, ip) > 0
3139 /* Check for conflicts between the swapped sequence and the
3140 target of the branch. */
3141 || nops_for_sequence (2, history + 1, ip, history) > 0
3142 /* We do not swap with a trap instruction, since it
3143 complicates trap handlers to have the trap
3144 instruction be in a delay slot. */
3145 || (prev_pinfo & INSN_TRAP)
3146 /* If the branch reads a register that the previous
3147 instruction sets, we can not swap. */
3148 || (! mips_opts.mips16
3149 && (prev_pinfo & INSN_WRITE_GPR_T)
3150 && insn_uses_reg (ip, EXTRACT_OPERAND (RT, history[0]),
3151 MIPS_GR_REG))
3152 || (! mips_opts.mips16
3153 && (prev_pinfo & INSN_WRITE_GPR_D)
3154 && insn_uses_reg (ip, EXTRACT_OPERAND (RD, history[0]),
3155 MIPS_GR_REG))
3156 || (mips_opts.mips16
3157 && (((prev_pinfo & MIPS16_INSN_WRITE_X)
3158 && (insn_uses_reg
3159 (ip, MIPS16_EXTRACT_OPERAND (RX, history[0]),
3160 MIPS16_REG)))
3161 || ((prev_pinfo & MIPS16_INSN_WRITE_Y)
3162 && (insn_uses_reg
3163 (ip, MIPS16_EXTRACT_OPERAND (RY, history[0]),
3164 MIPS16_REG)))
3165 || ((prev_pinfo & MIPS16_INSN_WRITE_Z)
3166 && (insn_uses_reg
3167 (ip, MIPS16_EXTRACT_OPERAND (RZ, history[0]),
3168 MIPS16_REG)))
3169 || ((prev_pinfo & MIPS16_INSN_WRITE_T)
3170 && insn_uses_reg (ip, TREG, MIPS_GR_REG))
3171 || ((prev_pinfo & MIPS16_INSN_WRITE_31)
3172 && insn_uses_reg (ip, RA, MIPS_GR_REG))
3173 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3174 && insn_uses_reg (ip,
3175 MIPS16OP_EXTRACT_REG32R
3176 (history[0].insn_opcode),
3177 MIPS_GR_REG))))
3178 /* If the branch writes a register that the previous
3179 instruction sets, we can not swap (we know that
3180 branches write only to RD or to $31). */
3181 || (! mips_opts.mips16
3182 && (prev_pinfo & INSN_WRITE_GPR_T)
3183 && (((pinfo & INSN_WRITE_GPR_D)
3184 && (EXTRACT_OPERAND (RT, history[0])
3185 == EXTRACT_OPERAND (RD, *ip)))
3186 || ((pinfo & INSN_WRITE_GPR_31)
3187 && EXTRACT_OPERAND (RT, history[0]) == RA)))
3188 || (! mips_opts.mips16
3189 && (prev_pinfo & INSN_WRITE_GPR_D)
3190 && (((pinfo & INSN_WRITE_GPR_D)
3191 && (EXTRACT_OPERAND (RD, history[0])
3192 == EXTRACT_OPERAND (RD, *ip)))
3193 || ((pinfo & INSN_WRITE_GPR_31)
3194 && EXTRACT_OPERAND (RD, history[0]) == RA)))
3195 || (mips_opts.mips16
3196 && (pinfo & MIPS16_INSN_WRITE_31)
3197 && ((prev_pinfo & MIPS16_INSN_WRITE_31)
3198 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3199 && (MIPS16OP_EXTRACT_REG32R (history[0].insn_opcode)
3200 == RA))))
3201 /* If the branch writes a register that the previous
3202 instruction reads, we can not swap (we know that
3203 branches only write to RD or to $31). */
3204 || (! mips_opts.mips16
3205 && (pinfo & INSN_WRITE_GPR_D)
3206 && insn_uses_reg (&history[0],
3207 EXTRACT_OPERAND (RD, *ip),
3208 MIPS_GR_REG))
3209 || (! mips_opts.mips16
3210 && (pinfo & INSN_WRITE_GPR_31)
3211 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3212 || (mips_opts.mips16
3213 && (pinfo & MIPS16_INSN_WRITE_31)
3214 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3215 /* If one instruction sets a condition code and the
3216 other one uses a condition code, we can not swap. */
3217 || ((pinfo & INSN_READ_COND_CODE)
3218 && (prev_pinfo & INSN_WRITE_COND_CODE))
3219 || ((pinfo & INSN_WRITE_COND_CODE)
3220 && (prev_pinfo & INSN_READ_COND_CODE))
3221 /* If the previous instruction uses the PC, we can not
3222 swap. */
3223 || (mips_opts.mips16
3224 && (prev_pinfo & MIPS16_INSN_READ_PC))
3225 /* If the previous instruction had a fixup in mips16
3226 mode, we can not swap. This normally means that the
3227 previous instruction was a 4 byte branch anyhow. */
3228 || (mips_opts.mips16 && history[0].fixp[0])
3229 /* If the previous instruction is a sync, sync.l, or
3230 sync.p, we can not swap. */
3231 || (prev_pinfo & INSN_SYNC))
3232 {
3233 if (mips_opts.mips16
3234 && (pinfo & INSN_UNCOND_BRANCH_DELAY)
3235 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31))
3236 && ISA_SUPPORTS_MIPS16E)
3237 {
3238 /* Convert MIPS16 jr/jalr into a "compact" jump. */
3239 ip->insn_opcode |= 0x0080;
3240 install_insn (ip);
3241 insert_into_history (0, 1, ip);
3242 }
3243 else
3244 {
3245 /* We could do even better for unconditional branches to
3246 portions of this object file; we could pick up the
3247 instruction at the destination, put it in the delay
3248 slot, and bump the destination address. */
3249 insert_into_history (0, 1, ip);
3250 emit_nop ();
3251 }
3252
3253 if (mips_relax.sequence)
3254 mips_relax.sizes[mips_relax.sequence - 1] += 4;
3255 }
3256 else
3257 {
3258 /* It looks like we can actually do the swap. */
3259 struct mips_cl_insn delay = history[0];
3260 if (mips_opts.mips16)
3261 {
3262 know (delay.frag == ip->frag);
3263 move_insn (ip, delay.frag, delay.where);
3264 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
3265 }
3266 else if (relaxed_branch)
3267 {
3268 /* Add the delay slot instruction to the end of the
3269 current frag and shrink the fixed part of the
3270 original frag. If the branch occupies the tail of
3271 the latter, move it backwards to cover the gap. */
3272 delay.frag->fr_fix -= 4;
3273 if (delay.frag == ip->frag)
3274 move_insn (ip, ip->frag, ip->where - 4);
3275 add_fixed_insn (&delay);
3276 }
3277 else
3278 {
3279 move_insn (&delay, ip->frag, ip->where);
3280 move_insn (ip, history[0].frag, history[0].where);
3281 }
3282 history[0] = *ip;
3283 delay.fixed_p = 1;
3284 insert_into_history (0, 1, &delay);
3285 }
3286
3287 /* If that was an unconditional branch, forget the previous
3288 insn information. */
3289 if (pinfo & INSN_UNCOND_BRANCH_DELAY)
3290 mips_no_prev_insn ();
3291 }
3292 else if (pinfo & INSN_COND_BRANCH_LIKELY)
3293 {
3294 /* We don't yet optimize a branch likely. What we should do
3295 is look at the target, copy the instruction found there
3296 into the delay slot, and increment the branch to jump to
3297 the next instruction. */
3298 insert_into_history (0, 1, ip);
3299 emit_nop ();
3300 }
3301 else
3302 insert_into_history (0, 1, ip);
3303 }
3304 else
3305 insert_into_history (0, 1, ip);
3306
3307 /* We just output an insn, so the next one doesn't have a label. */
3308 mips_clear_insn_labels ();
3309 }
3310
3311 /* Forget that there was any previous instruction or label. */
3312
3313 static void
3314 mips_no_prev_insn (void)
3315 {
3316 prev_nop_frag = NULL;
3317 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
3318 mips_clear_insn_labels ();
3319 }
3320
3321 /* This function must be called before we emit something other than
3322 instructions. It is like mips_no_prev_insn except that it inserts
3323 any NOPS that might be needed by previous instructions. */
3324
3325 void
3326 mips_emit_delays (void)
3327 {
3328 if (! mips_opts.noreorder)
3329 {
3330 int nops = nops_for_insn (history, NULL);
3331 if (nops > 0)
3332 {
3333 while (nops-- > 0)
3334 add_fixed_insn (NOP_INSN);
3335 mips_move_labels ();
3336 }
3337 }
3338 mips_no_prev_insn ();
3339 }
3340
3341 /* Start a (possibly nested) noreorder block. */
3342
3343 static void
3344 start_noreorder (void)
3345 {
3346 if (mips_opts.noreorder == 0)
3347 {
3348 unsigned int i;
3349 int nops;
3350
3351 /* None of the instructions before the .set noreorder can be moved. */
3352 for (i = 0; i < ARRAY_SIZE (history); i++)
3353 history[i].fixed_p = 1;
3354
3355 /* Insert any nops that might be needed between the .set noreorder
3356 block and the previous instructions. We will later remove any
3357 nops that turn out not to be needed. */
3358 nops = nops_for_insn (history, NULL);
3359 if (nops > 0)
3360 {
3361 if (mips_optimize != 0)
3362 {
3363 /* Record the frag which holds the nop instructions, so
3364 that we can remove them if we don't need them. */
3365 frag_grow (mips_opts.mips16 ? nops * 2 : nops * 4);
3366 prev_nop_frag = frag_now;
3367 prev_nop_frag_holds = nops;
3368 prev_nop_frag_required = 0;
3369 prev_nop_frag_since = 0;
3370 }
3371
3372 for (; nops > 0; --nops)
3373 add_fixed_insn (NOP_INSN);
3374
3375 /* Move on to a new frag, so that it is safe to simply
3376 decrease the size of prev_nop_frag. */
3377 frag_wane (frag_now);
3378 frag_new (0);
3379 mips_move_labels ();
3380 }
3381 mips16_mark_labels ();
3382 mips_clear_insn_labels ();
3383 }
3384 mips_opts.noreorder++;
3385 mips_any_noreorder = 1;
3386 }
3387
3388 /* End a nested noreorder block. */
3389
3390 static void
3391 end_noreorder (void)
3392 {
3393 mips_opts.noreorder--;
3394 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
3395 {
3396 /* Commit to inserting prev_nop_frag_required nops and go back to
3397 handling nop insertion the .set reorder way. */
3398 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
3399 * (mips_opts.mips16 ? 2 : 4));
3400 insert_into_history (prev_nop_frag_since,
3401 prev_nop_frag_required, NOP_INSN);
3402 prev_nop_frag = NULL;
3403 }
3404 }
3405
3406 /* Set up global variables for the start of a new macro. */
3407
3408 static void
3409 macro_start (void)
3410 {
3411 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
3412 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
3413 && (history[0].insn_mo->pinfo
3414 & (INSN_UNCOND_BRANCH_DELAY
3415 | INSN_COND_BRANCH_DELAY
3416 | INSN_COND_BRANCH_LIKELY)) != 0);
3417 }
3418
3419 /* Given that a macro is longer than 4 bytes, return the appropriate warning
3420 for it. Return null if no warning is needed. SUBTYPE is a bitmask of
3421 RELAX_DELAY_SLOT and RELAX_NOMACRO. */
3422
3423 static const char *
3424 macro_warning (relax_substateT subtype)
3425 {
3426 if (subtype & RELAX_DELAY_SLOT)
3427 return _("Macro instruction expanded into multiple instructions"
3428 " in a branch delay slot");
3429 else if (subtype & RELAX_NOMACRO)
3430 return _("Macro instruction expanded into multiple instructions");
3431 else
3432 return 0;
3433 }
3434
3435 /* Finish up a macro. Emit warnings as appropriate. */
3436
3437 static void
3438 macro_end (void)
3439 {
3440 if (mips_macro_warning.sizes[0] > 4 || mips_macro_warning.sizes[1] > 4)
3441 {
3442 relax_substateT subtype;
3443
3444 /* Set up the relaxation warning flags. */
3445 subtype = 0;
3446 if (mips_macro_warning.sizes[1] > mips_macro_warning.sizes[0])
3447 subtype |= RELAX_SECOND_LONGER;
3448 if (mips_opts.warn_about_macros)
3449 subtype |= RELAX_NOMACRO;
3450 if (mips_macro_warning.delay_slot_p)
3451 subtype |= RELAX_DELAY_SLOT;
3452
3453 if (mips_macro_warning.sizes[0] > 4 && mips_macro_warning.sizes[1] > 4)
3454 {
3455 /* Either the macro has a single implementation or both
3456 implementations are longer than 4 bytes. Emit the
3457 warning now. */
3458 const char *msg = macro_warning (subtype);
3459 if (msg != 0)
3460 as_warn (msg);
3461 }
3462 else
3463 {
3464 /* One implementation might need a warning but the other
3465 definitely doesn't. */
3466 mips_macro_warning.first_frag->fr_subtype |= subtype;
3467 }
3468 }
3469 }
3470
3471 /* Read a macro's relocation codes from *ARGS and store them in *R.
3472 The first argument in *ARGS will be either the code for a single
3473 relocation or -1 followed by the three codes that make up a
3474 composite relocation. */
3475
3476 static void
3477 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
3478 {
3479 int i, next;
3480
3481 next = va_arg (*args, int);
3482 if (next >= 0)
3483 r[0] = (bfd_reloc_code_real_type) next;
3484 else
3485 for (i = 0; i < 3; i++)
3486 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
3487 }
3488
3489 /* Build an instruction created by a macro expansion. This is passed
3490 a pointer to the count of instructions created so far, an
3491 expression, the name of the instruction to build, an operand format
3492 string, and corresponding arguments. */
3493
3494 static void
3495 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
3496 {
3497 const struct mips_opcode *mo;
3498 struct mips_cl_insn insn;
3499 bfd_reloc_code_real_type r[3];
3500 va_list args;
3501
3502 va_start (args, fmt);
3503
3504 if (mips_opts.mips16)
3505 {
3506 mips16_macro_build (ep, name, fmt, args);
3507 va_end (args);
3508 return;
3509 }
3510
3511 r[0] = BFD_RELOC_UNUSED;
3512 r[1] = BFD_RELOC_UNUSED;
3513 r[2] = BFD_RELOC_UNUSED;
3514 mo = (struct mips_opcode *) hash_find (op_hash, name);
3515 assert (mo);
3516 assert (strcmp (name, mo->name) == 0);
3517
3518 while (1)
3519 {
3520 /* Search until we get a match for NAME. It is assumed here that
3521 macros will never generate MDMX, MIPS-3D, or MT instructions. */
3522 if (strcmp (fmt, mo->args) == 0
3523 && mo->pinfo != INSN_MACRO
3524 && is_opcode_valid (mo, TRUE))
3525 break;
3526
3527 ++mo;
3528 assert (mo->name);
3529 assert (strcmp (name, mo->name) == 0);
3530 }
3531
3532 create_insn (&insn, mo);
3533 for (;;)
3534 {
3535 switch (*fmt++)
3536 {
3537 case '\0':
3538 break;
3539
3540 case ',':
3541 case '(':
3542 case ')':
3543 continue;
3544
3545 case '+':
3546 switch (*fmt++)
3547 {
3548 case 'A':
3549 case 'E':
3550 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3551 continue;
3552
3553 case 'B':
3554 case 'F':
3555 /* Note that in the macro case, these arguments are already
3556 in MSB form. (When handling the instruction in the
3557 non-macro case, these arguments are sizes from which
3558 MSB values must be calculated.) */
3559 INSERT_OPERAND (INSMSB, insn, va_arg (args, int));
3560 continue;
3561
3562 case 'C':
3563 case 'G':
3564 case 'H':
3565 /* Note that in the macro case, these arguments are already
3566 in MSBD form. (When handling the instruction in the
3567 non-macro case, these arguments are sizes from which
3568 MSBD values must be calculated.) */
3569 INSERT_OPERAND (EXTMSBD, insn, va_arg (args, int));
3570 continue;
3571
3572 case 'Q':
3573 INSERT_OPERAND (SEQI, insn, va_arg (args, int));
3574 continue;
3575
3576 default:
3577 internalError ();
3578 }
3579 continue;
3580
3581 case '2':
3582 INSERT_OPERAND (BP, insn, va_arg (args, int));
3583 continue;
3584
3585 case 't':
3586 case 'w':
3587 case 'E':
3588 INSERT_OPERAND (RT, insn, va_arg (args, int));
3589 continue;
3590
3591 case 'c':
3592 INSERT_OPERAND (CODE, insn, va_arg (args, int));
3593 continue;
3594
3595 case 'T':
3596 case 'W':
3597 INSERT_OPERAND (FT, insn, va_arg (args, int));
3598 continue;
3599
3600 case 'd':
3601 case 'G':
3602 case 'K':
3603 INSERT_OPERAND (RD, insn, va_arg (args, int));
3604 continue;
3605
3606 case 'U':
3607 {
3608 int tmp = va_arg (args, int);
3609
3610 INSERT_OPERAND (RT, insn, tmp);
3611 INSERT_OPERAND (RD, insn, tmp);
3612 continue;
3613 }
3614
3615 case 'V':
3616 case 'S':
3617 INSERT_OPERAND (FS, insn, va_arg (args, int));
3618 continue;
3619
3620 case 'z':
3621 continue;
3622
3623 case '<':
3624 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3625 continue;
3626
3627 case 'D':
3628 INSERT_OPERAND (FD, insn, va_arg (args, int));
3629 continue;
3630
3631 case 'B':
3632 INSERT_OPERAND (CODE20, insn, va_arg (args, int));
3633 continue;
3634
3635 case 'J':
3636 INSERT_OPERAND (CODE19, insn, va_arg (args, int));
3637 continue;
3638
3639 case 'q':
3640 INSERT_OPERAND (CODE2, insn, va_arg (args, int));
3641 continue;
3642
3643 case 'b':
3644 case 's':
3645 case 'r':
3646 case 'v':
3647 INSERT_OPERAND (RS, insn, va_arg (args, int));
3648 continue;
3649
3650 case 'i':
3651 case 'j':
3652 case 'o':
3653 macro_read_relocs (&args, r);
3654 assert (*r == BFD_RELOC_GPREL16
3655 || *r == BFD_RELOC_MIPS_LITERAL
3656 || *r == BFD_RELOC_MIPS_HIGHER
3657 || *r == BFD_RELOC_HI16_S
3658 || *r == BFD_RELOC_LO16
3659 || *r == BFD_RELOC_MIPS_GOT16
3660 || *r == BFD_RELOC_MIPS_CALL16
3661 || *r == BFD_RELOC_MIPS_GOT_DISP
3662 || *r == BFD_RELOC_MIPS_GOT_PAGE
3663 || *r == BFD_RELOC_MIPS_GOT_OFST
3664 || *r == BFD_RELOC_MIPS_GOT_LO16
3665 || *r == BFD_RELOC_MIPS_CALL_LO16);
3666 continue;
3667
3668 case 'u':
3669 macro_read_relocs (&args, r);
3670 assert (ep != NULL
3671 && (ep->X_op == O_constant
3672 || (ep->X_op == O_symbol
3673 && (*r == BFD_RELOC_MIPS_HIGHEST
3674 || *r == BFD_RELOC_HI16_S
3675 || *r == BFD_RELOC_HI16
3676 || *r == BFD_RELOC_GPREL16
3677 || *r == BFD_RELOC_MIPS_GOT_HI16
3678 || *r == BFD_RELOC_MIPS_CALL_HI16))));
3679 continue;
3680
3681 case 'p':
3682 assert (ep != NULL);
3683
3684 /*
3685 * This allows macro() to pass an immediate expression for
3686 * creating short branches without creating a symbol.
3687 *
3688 * We don't allow branch relaxation for these branches, as
3689 * they should only appear in ".set nomacro" anyway.
3690 */
3691 if (ep->X_op == O_constant)
3692 {
3693 if ((ep->X_add_number & 3) != 0)
3694 as_bad (_("branch to misaligned address (0x%lx)"),
3695 (unsigned long) ep->X_add_number);
3696 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
3697 as_bad (_("branch address range overflow (0x%lx)"),
3698 (unsigned long) ep->X_add_number);
3699 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
3700 ep = NULL;
3701 }
3702 else
3703 *r = BFD_RELOC_16_PCREL_S2;
3704 continue;
3705
3706 case 'a':
3707 assert (ep != NULL);
3708 *r = BFD_RELOC_MIPS_JMP;
3709 continue;
3710
3711 case 'C':
3712 INSERT_OPERAND (COPZ, insn, va_arg (args, unsigned long));
3713 continue;
3714
3715 case 'k':
3716 INSERT_OPERAND (CACHE, insn, va_arg (args, unsigned long));
3717 continue;
3718
3719 default:
3720 internalError ();
3721 }
3722 break;
3723 }
3724 va_end (args);
3725 assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3726
3727 append_insn (&insn, ep, r);
3728 }
3729
3730 static void
3731 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
3732 va_list args)
3733 {
3734 struct mips_opcode *mo;
3735 struct mips_cl_insn insn;
3736 bfd_reloc_code_real_type r[3]
3737 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3738
3739 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
3740 assert (mo);
3741 assert (strcmp (name, mo->name) == 0);
3742
3743 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
3744 {
3745 ++mo;
3746 assert (mo->name);
3747 assert (strcmp (name, mo->name) == 0);
3748 }
3749
3750 create_insn (&insn, mo);
3751 for (;;)
3752 {
3753 int c;
3754
3755 c = *fmt++;
3756 switch (c)
3757 {
3758 case '\0':
3759 break;
3760
3761 case ',':
3762 case '(':
3763 case ')':
3764 continue;
3765
3766 case 'y':
3767 case 'w':
3768 MIPS16_INSERT_OPERAND (RY, insn, va_arg (args, int));
3769 continue;
3770
3771 case 'x':
3772 case 'v':
3773 MIPS16_INSERT_OPERAND (RX, insn, va_arg (args, int));
3774 continue;
3775
3776 case 'z':
3777 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (args, int));
3778 continue;
3779
3780 case 'Z':
3781 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (args, int));
3782 continue;
3783
3784 case '0':
3785 case 'S':
3786 case 'P':
3787 case 'R':
3788 continue;
3789
3790 case 'X':
3791 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (args, int));
3792 continue;
3793
3794 case 'Y':
3795 {
3796 int regno;
3797
3798 regno = va_arg (args, int);
3799 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
3800 MIPS16_INSERT_OPERAND (REG32R, insn, regno);
3801 }
3802 continue;
3803
3804 case '<':
3805 case '>':
3806 case '4':
3807 case '5':
3808 case 'H':
3809 case 'W':
3810 case 'D':
3811 case 'j':
3812 case '8':
3813 case 'V':
3814 case 'C':
3815 case 'U':
3816 case 'k':
3817 case 'K':
3818 case 'p':
3819 case 'q':
3820 {
3821 assert (ep != NULL);
3822
3823 if (ep->X_op != O_constant)
3824 *r = (int) BFD_RELOC_UNUSED + c;
3825 else
3826 {
3827 mips16_immed (NULL, 0, c, ep->X_add_number, FALSE, FALSE,
3828 FALSE, &insn.insn_opcode, &insn.use_extend,
3829 &insn.extend);
3830 ep = NULL;
3831 *r = BFD_RELOC_UNUSED;
3832 }
3833 }
3834 continue;
3835
3836 case '6':
3837 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (args, int));
3838 continue;
3839 }
3840
3841 break;
3842 }
3843
3844 assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3845
3846 append_insn (&insn, ep, r);
3847 }
3848
3849 /*
3850 * Sign-extend 32-bit mode constants that have bit 31 set and all
3851 * higher bits unset.
3852 */
3853 static void
3854 normalize_constant_expr (expressionS *ex)
3855 {
3856 if (ex->X_op == O_constant
3857 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3858 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3859 - 0x80000000);
3860 }
3861
3862 /*
3863 * Sign-extend 32-bit mode address offsets that have bit 31 set and
3864 * all higher bits unset.
3865 */
3866 static void
3867 normalize_address_expr (expressionS *ex)
3868 {
3869 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
3870 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
3871 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3872 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3873 - 0x80000000);
3874 }
3875
3876 /*
3877 * Generate a "jalr" instruction with a relocation hint to the called
3878 * function. This occurs in NewABI PIC code.
3879 */
3880 static void
3881 macro_build_jalr (expressionS *ep)
3882 {
3883 char *f = NULL;
3884
3885 if (HAVE_NEWABI)
3886 {
3887 frag_grow (8);
3888 f = frag_more (0);
3889 }
3890 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
3891 if (HAVE_NEWABI)
3892 fix_new_exp (frag_now, f - frag_now->fr_literal,
3893 4, ep, FALSE, BFD_RELOC_MIPS_JALR);
3894 }
3895
3896 /*
3897 * Generate a "lui" instruction.
3898 */
3899 static void
3900 macro_build_lui (expressionS *ep, int regnum)
3901 {
3902 expressionS high_expr;
3903 const struct mips_opcode *mo;
3904 struct mips_cl_insn insn;
3905 bfd_reloc_code_real_type r[3]
3906 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3907 const char *name = "lui";
3908 const char *fmt = "t,u";
3909
3910 assert (! mips_opts.mips16);
3911
3912 high_expr = *ep;
3913
3914 if (high_expr.X_op == O_constant)
3915 {
3916 /* We can compute the instruction now without a relocation entry. */
3917 high_expr.X_add_number = ((high_expr.X_add_number + 0x8000)
3918 >> 16) & 0xffff;
3919 *r = BFD_RELOC_UNUSED;
3920 }
3921 else
3922 {
3923 assert (ep->X_op == O_symbol);
3924 /* _gp_disp is a special case, used from s_cpload.
3925 __gnu_local_gp is used if mips_no_shared. */
3926 assert (mips_pic == NO_PIC
3927 || (! HAVE_NEWABI
3928 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
3929 || (! mips_in_shared
3930 && strcmp (S_GET_NAME (ep->X_add_symbol),
3931 "__gnu_local_gp") == 0));
3932 *r = BFD_RELOC_HI16_S;
3933 }
3934
3935 mo = hash_find (op_hash, name);
3936 assert (strcmp (name, mo->name) == 0);
3937 assert (strcmp (fmt, mo->args) == 0);
3938 create_insn (&insn, mo);
3939
3940 insn.insn_opcode = insn.insn_mo->match;
3941 INSERT_OPERAND (RT, insn, regnum);
3942 if (*r == BFD_RELOC_UNUSED)
3943 {
3944 insn.insn_opcode |= high_expr.X_add_number;
3945 append_insn (&insn, NULL, r);
3946 }
3947 else
3948 append_insn (&insn, &high_expr, r);
3949 }
3950
3951 /* Generate a sequence of instructions to do a load or store from a constant
3952 offset off of a base register (breg) into/from a target register (treg),
3953 using AT if necessary. */
3954 static void
3955 macro_build_ldst_constoffset (expressionS *ep, const char *op,
3956 int treg, int breg, int dbl)
3957 {
3958 assert (ep->X_op == O_constant);
3959
3960 /* Sign-extending 32-bit constants makes their handling easier. */
3961 if (!dbl)
3962 normalize_constant_expr (ep);
3963
3964 /* Right now, this routine can only handle signed 32-bit constants. */
3965 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
3966 as_warn (_("operand overflow"));
3967
3968 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
3969 {
3970 /* Signed 16-bit offset will fit in the op. Easy! */
3971 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
3972 }
3973 else
3974 {
3975 /* 32-bit offset, need multiple instructions and AT, like:
3976 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
3977 addu $tempreg,$tempreg,$breg
3978 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
3979 to handle the complete offset. */
3980 macro_build_lui (ep, AT);
3981 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
3982 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
3983
3984 if (!mips_opts.at)
3985 as_bad (_("Macro used $at after \".set noat\""));
3986 }
3987 }
3988
3989 /* set_at()
3990 * Generates code to set the $at register to true (one)
3991 * if reg is less than the immediate expression.
3992 */
3993 static void
3994 set_at (int reg, int unsignedp)
3995 {
3996 if (imm_expr.X_op == O_constant
3997 && imm_expr.X_add_number >= -0x8000
3998 && imm_expr.X_add_number < 0x8000)
3999 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
4000 AT, reg, BFD_RELOC_LO16);
4001 else
4002 {
4003 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4004 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
4005 }
4006 }
4007
4008 /* Warn if an expression is not a constant. */
4009
4010 static void
4011 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
4012 {
4013 if (ex->X_op == O_big)
4014 as_bad (_("unsupported large constant"));
4015 else if (ex->X_op != O_constant)
4016 as_bad (_("Instruction %s requires absolute expression"),
4017 ip->insn_mo->name);
4018
4019 if (HAVE_32BIT_GPRS)
4020 normalize_constant_expr (ex);
4021 }
4022
4023 /* Count the leading zeroes by performing a binary chop. This is a
4024 bulky bit of source, but performance is a LOT better for the
4025 majority of values than a simple loop to count the bits:
4026 for (lcnt = 0; (lcnt < 32); lcnt++)
4027 if ((v) & (1 << (31 - lcnt)))
4028 break;
4029 However it is not code size friendly, and the gain will drop a bit
4030 on certain cached systems.
4031 */
4032 #define COUNT_TOP_ZEROES(v) \
4033 (((v) & ~0xffff) == 0 \
4034 ? ((v) & ~0xff) == 0 \
4035 ? ((v) & ~0xf) == 0 \
4036 ? ((v) & ~0x3) == 0 \
4037 ? ((v) & ~0x1) == 0 \
4038 ? !(v) \
4039 ? 32 \
4040 : 31 \
4041 : 30 \
4042 : ((v) & ~0x7) == 0 \
4043 ? 29 \
4044 : 28 \
4045 : ((v) & ~0x3f) == 0 \
4046 ? ((v) & ~0x1f) == 0 \
4047 ? 27 \
4048 : 26 \
4049 : ((v) & ~0x7f) == 0 \
4050 ? 25 \
4051 : 24 \
4052 : ((v) & ~0xfff) == 0 \
4053 ? ((v) & ~0x3ff) == 0 \
4054 ? ((v) & ~0x1ff) == 0 \
4055 ? 23 \
4056 : 22 \
4057 : ((v) & ~0x7ff) == 0 \
4058 ? 21 \
4059 : 20 \
4060 : ((v) & ~0x3fff) == 0 \
4061 ? ((v) & ~0x1fff) == 0 \
4062 ? 19 \
4063 : 18 \
4064 : ((v) & ~0x7fff) == 0 \
4065 ? 17 \
4066 : 16 \
4067 : ((v) & ~0xffffff) == 0 \
4068 ? ((v) & ~0xfffff) == 0 \
4069 ? ((v) & ~0x3ffff) == 0 \
4070 ? ((v) & ~0x1ffff) == 0 \
4071 ? 15 \
4072 : 14 \
4073 : ((v) & ~0x7ffff) == 0 \
4074 ? 13 \
4075 : 12 \
4076 : ((v) & ~0x3fffff) == 0 \
4077 ? ((v) & ~0x1fffff) == 0 \
4078 ? 11 \
4079 : 10 \
4080 : ((v) & ~0x7fffff) == 0 \
4081 ? 9 \
4082 : 8 \
4083 : ((v) & ~0xfffffff) == 0 \
4084 ? ((v) & ~0x3ffffff) == 0 \
4085 ? ((v) & ~0x1ffffff) == 0 \
4086 ? 7 \
4087 : 6 \
4088 : ((v) & ~0x7ffffff) == 0 \
4089 ? 5 \
4090 : 4 \
4091 : ((v) & ~0x3fffffff) == 0 \
4092 ? ((v) & ~0x1fffffff) == 0 \
4093 ? 3 \
4094 : 2 \
4095 : ((v) & ~0x7fffffff) == 0 \
4096 ? 1 \
4097 : 0)
4098
4099 /* load_register()
4100 * This routine generates the least number of instructions necessary to load
4101 * an absolute expression value into a register.
4102 */
4103 static void
4104 load_register (int reg, expressionS *ep, int dbl)
4105 {
4106 int freg;
4107 expressionS hi32, lo32;
4108
4109 if (ep->X_op != O_big)
4110 {
4111 assert (ep->X_op == O_constant);
4112
4113 /* Sign-extending 32-bit constants makes their handling easier. */
4114 if (!dbl)
4115 normalize_constant_expr (ep);
4116
4117 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
4118 {
4119 /* We can handle 16 bit signed values with an addiu to
4120 $zero. No need to ever use daddiu here, since $zero and
4121 the result are always correct in 32 bit mode. */
4122 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4123 return;
4124 }
4125 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
4126 {
4127 /* We can handle 16 bit unsigned values with an ori to
4128 $zero. */
4129 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4130 return;
4131 }
4132 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
4133 {
4134 /* 32 bit values require an lui. */
4135 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_HI16);
4136 if ((ep->X_add_number & 0xffff) != 0)
4137 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4138 return;
4139 }
4140 }
4141
4142 /* The value is larger than 32 bits. */
4143
4144 if (!dbl || HAVE_32BIT_GPRS)
4145 {
4146 char value[32];
4147
4148 sprintf_vma (value, ep->X_add_number);
4149 as_bad (_("Number (0x%s) larger than 32 bits"), value);
4150 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4151 return;
4152 }
4153
4154 if (ep->X_op != O_big)
4155 {
4156 hi32 = *ep;
4157 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4158 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4159 hi32.X_add_number &= 0xffffffff;
4160 lo32 = *ep;
4161 lo32.X_add_number &= 0xffffffff;
4162 }
4163 else
4164 {
4165 assert (ep->X_add_number > 2);
4166 if (ep->X_add_number == 3)
4167 generic_bignum[3] = 0;
4168 else if (ep->X_add_number > 4)
4169 as_bad (_("Number larger than 64 bits"));
4170 lo32.X_op = O_constant;
4171 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
4172 hi32.X_op = O_constant;
4173 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
4174 }
4175
4176 if (hi32.X_add_number == 0)
4177 freg = 0;
4178 else
4179 {
4180 int shift, bit;
4181 unsigned long hi, lo;
4182
4183 if (hi32.X_add_number == (offsetT) 0xffffffff)
4184 {
4185 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
4186 {
4187 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4188 return;
4189 }
4190 if (lo32.X_add_number & 0x80000000)
4191 {
4192 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4193 if (lo32.X_add_number & 0xffff)
4194 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4195 return;
4196 }
4197 }
4198
4199 /* Check for 16bit shifted constant. We know that hi32 is
4200 non-zero, so start the mask on the first bit of the hi32
4201 value. */
4202 shift = 17;
4203 do
4204 {
4205 unsigned long himask, lomask;
4206
4207 if (shift < 32)
4208 {
4209 himask = 0xffff >> (32 - shift);
4210 lomask = (0xffff << shift) & 0xffffffff;
4211 }
4212 else
4213 {
4214 himask = 0xffff << (shift - 32);
4215 lomask = 0;
4216 }
4217 if ((hi32.X_add_number & ~(offsetT) himask) == 0
4218 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
4219 {
4220 expressionS tmp;
4221
4222 tmp.X_op = O_constant;
4223 if (shift < 32)
4224 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
4225 | (lo32.X_add_number >> shift));
4226 else
4227 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
4228 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4229 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", "d,w,<",
4230 reg, reg, (shift >= 32) ? shift - 32 : shift);
4231 return;
4232 }
4233 ++shift;
4234 }
4235 while (shift <= (64 - 16));
4236
4237 /* Find the bit number of the lowest one bit, and store the
4238 shifted value in hi/lo. */
4239 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
4240 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
4241 if (lo != 0)
4242 {
4243 bit = 0;
4244 while ((lo & 1) == 0)
4245 {
4246 lo >>= 1;
4247 ++bit;
4248 }
4249 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
4250 hi >>= bit;
4251 }
4252 else
4253 {
4254 bit = 32;
4255 while ((hi & 1) == 0)
4256 {
4257 hi >>= 1;
4258 ++bit;
4259 }
4260 lo = hi;
4261 hi = 0;
4262 }
4263
4264 /* Optimize if the shifted value is a (power of 2) - 1. */
4265 if ((hi == 0 && ((lo + 1) & lo) == 0)
4266 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
4267 {
4268 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
4269 if (shift != 0)
4270 {
4271 expressionS tmp;
4272
4273 /* This instruction will set the register to be all
4274 ones. */
4275 tmp.X_op = O_constant;
4276 tmp.X_add_number = (offsetT) -1;
4277 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4278 if (bit != 0)
4279 {
4280 bit += shift;
4281 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", "d,w,<",
4282 reg, reg, (bit >= 32) ? bit - 32 : bit);
4283 }
4284 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", "d,w,<",
4285 reg, reg, (shift >= 32) ? shift - 32 : shift);
4286 return;
4287 }
4288 }
4289
4290 /* Sign extend hi32 before calling load_register, because we can
4291 generally get better code when we load a sign extended value. */
4292 if ((hi32.X_add_number & 0x80000000) != 0)
4293 hi32.X_add_number |= ~(offsetT) 0xffffffff;
4294 load_register (reg, &hi32, 0);
4295 freg = reg;
4296 }
4297 if ((lo32.X_add_number & 0xffff0000) == 0)
4298 {
4299 if (freg != 0)
4300 {
4301 macro_build (NULL, "dsll32", "d,w,<", reg, freg, 0);
4302 freg = reg;
4303 }
4304 }
4305 else
4306 {
4307 expressionS mid16;
4308
4309 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
4310 {
4311 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4312 macro_build (NULL, "dsrl32", "d,w,<", reg, reg, 0);
4313 return;
4314 }
4315
4316 if (freg != 0)
4317 {
4318 macro_build (NULL, "dsll", "d,w,<", reg, freg, 16);
4319 freg = reg;
4320 }
4321 mid16 = lo32;
4322 mid16.X_add_number >>= 16;
4323 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4324 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4325 freg = reg;
4326 }
4327 if ((lo32.X_add_number & 0xffff) != 0)
4328 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4329 }
4330
4331 static inline void
4332 load_delay_nop (void)
4333 {
4334 if (!gpr_interlocks)
4335 macro_build (NULL, "nop", "");
4336 }
4337
4338 /* Load an address into a register. */
4339
4340 static void
4341 load_address (int reg, expressionS *ep, int *used_at)
4342 {
4343 if (ep->X_op != O_constant
4344 && ep->X_op != O_symbol)
4345 {
4346 as_bad (_("expression too complex"));
4347 ep->X_op = O_constant;
4348 }
4349
4350 if (ep->X_op == O_constant)
4351 {
4352 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
4353 return;
4354 }
4355
4356 if (mips_pic == NO_PIC)
4357 {
4358 /* If this is a reference to a GP relative symbol, we want
4359 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
4360 Otherwise we want
4361 lui $reg,<sym> (BFD_RELOC_HI16_S)
4362 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4363 If we have an addend, we always use the latter form.
4364
4365 With 64bit address space and a usable $at we want
4366 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4367 lui $at,<sym> (BFD_RELOC_HI16_S)
4368 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4369 daddiu $at,<sym> (BFD_RELOC_LO16)
4370 dsll32 $reg,0
4371 daddu $reg,$reg,$at
4372
4373 If $at is already in use, we use a path which is suboptimal
4374 on superscalar processors.
4375 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4376 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4377 dsll $reg,16
4378 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
4379 dsll $reg,16
4380 daddiu $reg,<sym> (BFD_RELOC_LO16)
4381
4382 For GP relative symbols in 64bit address space we can use
4383 the same sequence as in 32bit address space. */
4384 if (HAVE_64BIT_SYMBOLS)
4385 {
4386 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4387 && !nopic_need_relax (ep->X_add_symbol, 1))
4388 {
4389 relax_start (ep->X_add_symbol);
4390 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4391 mips_gp_register, BFD_RELOC_GPREL16);
4392 relax_switch ();
4393 }
4394
4395 if (*used_at == 0 && mips_opts.at)
4396 {
4397 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4398 macro_build (ep, "lui", "t,u", AT, BFD_RELOC_HI16_S);
4399 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4400 BFD_RELOC_MIPS_HIGHER);
4401 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
4402 macro_build (NULL, "dsll32", "d,w,<", reg, reg, 0);
4403 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
4404 *used_at = 1;
4405 }
4406 else
4407 {
4408 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4409 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4410 BFD_RELOC_MIPS_HIGHER);
4411 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4412 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
4413 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4414 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
4415 }
4416
4417 if (mips_relax.sequence)
4418 relax_end ();
4419 }
4420 else
4421 {
4422 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4423 && !nopic_need_relax (ep->X_add_symbol, 1))
4424 {
4425 relax_start (ep->X_add_symbol);
4426 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4427 mips_gp_register, BFD_RELOC_GPREL16);
4428 relax_switch ();
4429 }
4430 macro_build_lui (ep, reg);
4431 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
4432 reg, reg, BFD_RELOC_LO16);
4433 if (mips_relax.sequence)
4434 relax_end ();
4435 }
4436 }
4437 else if (!mips_big_got)
4438 {
4439 expressionS ex;
4440
4441 /* If this is a reference to an external symbol, we want
4442 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4443 Otherwise we want
4444 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4445 nop
4446 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4447 If there is a constant, it must be added in after.
4448
4449 If we have NewABI, we want
4450 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
4451 unless we're referencing a global symbol with a non-zero
4452 offset, in which case cst must be added separately. */
4453 if (HAVE_NEWABI)
4454 {
4455 if (ep->X_add_number)
4456 {
4457 ex.X_add_number = ep->X_add_number;
4458 ep->X_add_number = 0;
4459 relax_start (ep->X_add_symbol);
4460 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4461 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4462 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4463 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4464 ex.X_op = O_constant;
4465 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4466 reg, reg, BFD_RELOC_LO16);
4467 ep->X_add_number = ex.X_add_number;
4468 relax_switch ();
4469 }
4470 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4471 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4472 if (mips_relax.sequence)
4473 relax_end ();
4474 }
4475 else
4476 {
4477 ex.X_add_number = ep->X_add_number;
4478 ep->X_add_number = 0;
4479 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4480 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4481 load_delay_nop ();
4482 relax_start (ep->X_add_symbol);
4483 relax_switch ();
4484 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4485 BFD_RELOC_LO16);
4486 relax_end ();
4487
4488 if (ex.X_add_number != 0)
4489 {
4490 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4491 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4492 ex.X_op = O_constant;
4493 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4494 reg, reg, BFD_RELOC_LO16);
4495 }
4496 }
4497 }
4498 else if (mips_big_got)
4499 {
4500 expressionS ex;
4501
4502 /* This is the large GOT case. If this is a reference to an
4503 external symbol, we want
4504 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
4505 addu $reg,$reg,$gp
4506 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
4507
4508 Otherwise, for a reference to a local symbol in old ABI, we want
4509 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4510 nop
4511 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4512 If there is a constant, it must be added in after.
4513
4514 In the NewABI, for local symbols, with or without offsets, we want:
4515 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
4516 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
4517 */
4518 if (HAVE_NEWABI)
4519 {
4520 ex.X_add_number = ep->X_add_number;
4521 ep->X_add_number = 0;
4522 relax_start (ep->X_add_symbol);
4523 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4524 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4525 reg, reg, mips_gp_register);
4526 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4527 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4528 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4529 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4530 else if (ex.X_add_number)
4531 {
4532 ex.X_op = O_constant;
4533 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4534 BFD_RELOC_LO16);
4535 }
4536
4537 ep->X_add_number = ex.X_add_number;
4538 relax_switch ();
4539 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4540 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
4541 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4542 BFD_RELOC_MIPS_GOT_OFST);
4543 relax_end ();
4544 }
4545 else
4546 {
4547 ex.X_add_number = ep->X_add_number;
4548 ep->X_add_number = 0;
4549 relax_start (ep->X_add_symbol);
4550 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4551 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4552 reg, reg, mips_gp_register);
4553 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4554 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4555 relax_switch ();
4556 if (reg_needs_delay (mips_gp_register))
4557 {
4558 /* We need a nop before loading from $gp. This special
4559 check is required because the lui which starts the main
4560 instruction stream does not refer to $gp, and so will not
4561 insert the nop which may be required. */
4562 macro_build (NULL, "nop", "");
4563 }
4564 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4565 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4566 load_delay_nop ();
4567 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4568 BFD_RELOC_LO16);
4569 relax_end ();
4570
4571 if (ex.X_add_number != 0)
4572 {
4573 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4574 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4575 ex.X_op = O_constant;
4576 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4577 BFD_RELOC_LO16);
4578 }
4579 }
4580 }
4581 else
4582 abort ();
4583
4584 if (!mips_opts.at && *used_at == 1)
4585 as_bad (_("Macro used $at after \".set noat\""));
4586 }
4587
4588 /* Move the contents of register SOURCE into register DEST. */
4589
4590 static void
4591 move_register (int dest, int source)
4592 {
4593 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
4594 dest, source, 0);
4595 }
4596
4597 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
4598 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
4599 The two alternatives are:
4600
4601 Global symbol Local sybmol
4602 ------------- ------------
4603 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
4604 ... ...
4605 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
4606
4607 load_got_offset emits the first instruction and add_got_offset
4608 emits the second for a 16-bit offset or add_got_offset_hilo emits
4609 a sequence to add a 32-bit offset using a scratch register. */
4610
4611 static void
4612 load_got_offset (int dest, expressionS *local)
4613 {
4614 expressionS global;
4615
4616 global = *local;
4617 global.X_add_number = 0;
4618
4619 relax_start (local->X_add_symbol);
4620 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4621 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4622 relax_switch ();
4623 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4624 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4625 relax_end ();
4626 }
4627
4628 static void
4629 add_got_offset (int dest, expressionS *local)
4630 {
4631 expressionS global;
4632
4633 global.X_op = O_constant;
4634 global.X_op_symbol = NULL;
4635 global.X_add_symbol = NULL;
4636 global.X_add_number = local->X_add_number;
4637
4638 relax_start (local->X_add_symbol);
4639 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4640 dest, dest, BFD_RELOC_LO16);
4641 relax_switch ();
4642 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4643 relax_end ();
4644 }
4645
4646 static void
4647 add_got_offset_hilo (int dest, expressionS *local, int tmp)
4648 {
4649 expressionS global;
4650 int hold_mips_optimize;
4651
4652 global.X_op = O_constant;
4653 global.X_op_symbol = NULL;
4654 global.X_add_symbol = NULL;
4655 global.X_add_number = local->X_add_number;
4656
4657 relax_start (local->X_add_symbol);
4658 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
4659 relax_switch ();
4660 /* Set mips_optimize around the lui instruction to avoid
4661 inserting an unnecessary nop after the lw. */
4662 hold_mips_optimize = mips_optimize;
4663 mips_optimize = 2;
4664 macro_build_lui (&global, tmp);
4665 mips_optimize = hold_mips_optimize;
4666 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
4667 relax_end ();
4668
4669 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
4670 }
4671
4672 /*
4673 * Build macros
4674 * This routine implements the seemingly endless macro or synthesized
4675 * instructions and addressing modes in the mips assembly language. Many
4676 * of these macros are simple and are similar to each other. These could
4677 * probably be handled by some kind of table or grammar approach instead of
4678 * this verbose method. Others are not simple macros but are more like
4679 * optimizing code generation.
4680 * One interesting optimization is when several store macros appear
4681 * consecutively that would load AT with the upper half of the same address.
4682 * The ensuing load upper instructions are ommited. This implies some kind
4683 * of global optimization. We currently only optimize within a single macro.
4684 * For many of the load and store macros if the address is specified as a
4685 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
4686 * first load register 'at' with zero and use it as the base register. The
4687 * mips assembler simply uses register $zero. Just one tiny optimization
4688 * we're missing.
4689 */
4690 static void
4691 macro (struct mips_cl_insn *ip)
4692 {
4693 unsigned int treg, sreg, dreg, breg;
4694 unsigned int tempreg;
4695 int mask;
4696 int used_at = 0;
4697 expressionS expr1;
4698 const char *s;
4699 const char *s2;
4700 const char *fmt;
4701 int likely = 0;
4702 int dbl = 0;
4703 int coproc = 0;
4704 int lr = 0;
4705 int imm = 0;
4706 int call = 0;
4707 int off;
4708 offsetT maxnum;
4709 bfd_reloc_code_real_type r;
4710 int hold_mips_optimize;
4711
4712 assert (! mips_opts.mips16);
4713
4714 treg = (ip->insn_opcode >> 16) & 0x1f;
4715 dreg = (ip->insn_opcode >> 11) & 0x1f;
4716 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
4717 mask = ip->insn_mo->mask;
4718
4719 expr1.X_op = O_constant;
4720 expr1.X_op_symbol = NULL;
4721 expr1.X_add_symbol = NULL;
4722 expr1.X_add_number = 1;
4723
4724 switch (mask)
4725 {
4726 case M_DABS:
4727 dbl = 1;
4728 case M_ABS:
4729 /* bgez $a0,.+12
4730 move v0,$a0
4731 sub v0,$zero,$a0
4732 */
4733
4734 start_noreorder ();
4735
4736 expr1.X_add_number = 8;
4737 macro_build (&expr1, "bgez", "s,p", sreg);
4738 if (dreg == sreg)
4739 macro_build (NULL, "nop", "", 0);
4740 else
4741 move_register (dreg, sreg);
4742 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
4743
4744 end_noreorder ();
4745 break;
4746
4747 case M_ADD_I:
4748 s = "addi";
4749 s2 = "add";
4750 goto do_addi;
4751 case M_ADDU_I:
4752 s = "addiu";
4753 s2 = "addu";
4754 goto do_addi;
4755 case M_DADD_I:
4756 dbl = 1;
4757 s = "daddi";
4758 s2 = "dadd";
4759 goto do_addi;
4760 case M_DADDU_I:
4761 dbl = 1;
4762 s = "daddiu";
4763 s2 = "daddu";
4764 do_addi:
4765 if (imm_expr.X_op == O_constant
4766 && imm_expr.X_add_number >= -0x8000
4767 && imm_expr.X_add_number < 0x8000)
4768 {
4769 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
4770 break;
4771 }
4772 used_at = 1;
4773 load_register (AT, &imm_expr, dbl);
4774 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4775 break;
4776
4777 case M_AND_I:
4778 s = "andi";
4779 s2 = "and";
4780 goto do_bit;
4781 case M_OR_I:
4782 s = "ori";
4783 s2 = "or";
4784 goto do_bit;
4785 case M_NOR_I:
4786 s = "";
4787 s2 = "nor";
4788 goto do_bit;
4789 case M_XOR_I:
4790 s = "xori";
4791 s2 = "xor";
4792 do_bit:
4793 if (imm_expr.X_op == O_constant
4794 && imm_expr.X_add_number >= 0
4795 && imm_expr.X_add_number < 0x10000)
4796 {
4797 if (mask != M_NOR_I)
4798 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
4799 else
4800 {
4801 macro_build (&imm_expr, "ori", "t,r,i",
4802 treg, sreg, BFD_RELOC_LO16);
4803 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
4804 }
4805 break;
4806 }
4807
4808 used_at = 1;
4809 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4810 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4811 break;
4812
4813 case M_BALIGN:
4814 switch (imm_expr.X_add_number)
4815 {
4816 case 0:
4817 macro_build (NULL, "nop", "");
4818 break;
4819 case 2:
4820 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg);
4821 break;
4822 default:
4823 macro_build (NULL, "balign", "t,s,2", treg, sreg,
4824 (int)imm_expr.X_add_number);
4825 break;
4826 }
4827 break;
4828
4829 case M_BEQ_I:
4830 s = "beq";
4831 goto beq_i;
4832 case M_BEQL_I:
4833 s = "beql";
4834 likely = 1;
4835 goto beq_i;
4836 case M_BNE_I:
4837 s = "bne";
4838 goto beq_i;
4839 case M_BNEL_I:
4840 s = "bnel";
4841 likely = 1;
4842 beq_i:
4843 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4844 {
4845 macro_build (&offset_expr, s, "s,t,p", sreg, 0);
4846 break;
4847 }
4848 used_at = 1;
4849 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4850 macro_build (&offset_expr, s, "s,t,p", sreg, AT);
4851 break;
4852
4853 case M_BGEL:
4854 likely = 1;
4855 case M_BGE:
4856 if (treg == 0)
4857 {
4858 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4859 break;
4860 }
4861 if (sreg == 0)
4862 {
4863 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", treg);
4864 break;
4865 }
4866 used_at = 1;
4867 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
4868 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4869 break;
4870
4871 case M_BGTL_I:
4872 likely = 1;
4873 case M_BGT_I:
4874 /* check for > max integer */
4875 maxnum = 0x7fffffff;
4876 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4877 {
4878 maxnum <<= 16;
4879 maxnum |= 0xffff;
4880 maxnum <<= 16;
4881 maxnum |= 0xffff;
4882 }
4883 if (imm_expr.X_op == O_constant
4884 && imm_expr.X_add_number >= maxnum
4885 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4886 {
4887 do_false:
4888 /* result is always false */
4889 if (! likely)
4890 macro_build (NULL, "nop", "", 0);
4891 else
4892 macro_build (&offset_expr, "bnel", "s,t,p", 0, 0);
4893 break;
4894 }
4895 if (imm_expr.X_op != O_constant)
4896 as_bad (_("Unsupported large constant"));
4897 ++imm_expr.X_add_number;
4898 /* FALLTHROUGH */
4899 case M_BGE_I:
4900 case M_BGEL_I:
4901 if (mask == M_BGEL_I)
4902 likely = 1;
4903 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4904 {
4905 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4906 break;
4907 }
4908 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4909 {
4910 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
4911 break;
4912 }
4913 maxnum = 0x7fffffff;
4914 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4915 {
4916 maxnum <<= 16;
4917 maxnum |= 0xffff;
4918 maxnum <<= 16;
4919 maxnum |= 0xffff;
4920 }
4921 maxnum = - maxnum - 1;
4922 if (imm_expr.X_op == O_constant
4923 && imm_expr.X_add_number <= maxnum
4924 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4925 {
4926 do_true:
4927 /* result is always true */
4928 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
4929 macro_build (&offset_expr, "b", "p");
4930 break;
4931 }
4932 used_at = 1;
4933 set_at (sreg, 0);
4934 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4935 break;
4936
4937 case M_BGEUL:
4938 likely = 1;
4939 case M_BGEU:
4940 if (treg == 0)
4941 goto do_true;
4942 if (sreg == 0)
4943 {
4944 macro_build (&offset_expr, likely ? "beql" : "beq",
4945 "s,t,p", 0, treg);
4946 break;
4947 }
4948 used_at = 1;
4949 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
4950 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4951 break;
4952
4953 case M_BGTUL_I:
4954 likely = 1;
4955 case M_BGTU_I:
4956 if (sreg == 0
4957 || (HAVE_32BIT_GPRS
4958 && imm_expr.X_op == O_constant
4959 && imm_expr.X_add_number == (offsetT) 0xffffffff))
4960 goto do_false;
4961 if (imm_expr.X_op != O_constant)
4962 as_bad (_("Unsupported large constant"));
4963 ++imm_expr.X_add_number;
4964 /* FALLTHROUGH */
4965 case M_BGEU_I:
4966 case M_BGEUL_I:
4967 if (mask == M_BGEUL_I)
4968 likely = 1;
4969 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4970 goto do_true;
4971 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4972 {
4973 macro_build (&offset_expr, likely ? "bnel" : "bne",
4974 "s,t,p", sreg, 0);
4975 break;
4976 }
4977 used_at = 1;
4978 set_at (sreg, 1);
4979 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4980 break;
4981
4982 case M_BGTL:
4983 likely = 1;
4984 case M_BGT:
4985 if (treg == 0)
4986 {
4987 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
4988 break;
4989 }
4990 if (sreg == 0)
4991 {
4992 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", treg);
4993 break;
4994 }
4995 used_at = 1;
4996 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
4997 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4998 break;
4999
5000 case M_BGTUL:
5001 likely = 1;
5002 case M_BGTU:
5003 if (treg == 0)
5004 {
5005 macro_build (&offset_expr, likely ? "bnel" : "bne",
5006 "s,t,p", sreg, 0);
5007 break;
5008 }
5009 if (sreg == 0)
5010 goto do_false;
5011 used_at = 1;
5012 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5013 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5014 break;
5015
5016 case M_BLEL:
5017 likely = 1;
5018 case M_BLE:
5019 if (treg == 0)
5020 {
5021 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5022 break;
5023 }
5024 if (sreg == 0)
5025 {
5026 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", treg);
5027 break;
5028 }
5029 used_at = 1;
5030 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5031 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5032 break;
5033
5034 case M_BLEL_I:
5035 likely = 1;
5036 case M_BLE_I:
5037 maxnum = 0x7fffffff;
5038 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5039 {
5040 maxnum <<= 16;
5041 maxnum |= 0xffff;
5042 maxnum <<= 16;
5043 maxnum |= 0xffff;
5044 }
5045 if (imm_expr.X_op == O_constant
5046 && imm_expr.X_add_number >= maxnum
5047 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5048 goto do_true;
5049 if (imm_expr.X_op != O_constant)
5050 as_bad (_("Unsupported large constant"));
5051 ++imm_expr.X_add_number;
5052 /* FALLTHROUGH */
5053 case M_BLT_I:
5054 case M_BLTL_I:
5055 if (mask == M_BLTL_I)
5056 likely = 1;
5057 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5058 {
5059 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5060 break;
5061 }
5062 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5063 {
5064 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5065 break;
5066 }
5067 used_at = 1;
5068 set_at (sreg, 0);
5069 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5070 break;
5071
5072 case M_BLEUL:
5073 likely = 1;
5074 case M_BLEU:
5075 if (treg == 0)
5076 {
5077 macro_build (&offset_expr, likely ? "beql" : "beq",
5078 "s,t,p", sreg, 0);
5079 break;
5080 }
5081 if (sreg == 0)
5082 goto do_true;
5083 used_at = 1;
5084 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5085 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5086 break;
5087
5088 case M_BLEUL_I:
5089 likely = 1;
5090 case M_BLEU_I:
5091 if (sreg == 0
5092 || (HAVE_32BIT_GPRS
5093 && imm_expr.X_op == O_constant
5094 && imm_expr.X_add_number == (offsetT) 0xffffffff))
5095 goto do_true;
5096 if (imm_expr.X_op != O_constant)
5097 as_bad (_("Unsupported large constant"));
5098 ++imm_expr.X_add_number;
5099 /* FALLTHROUGH */
5100 case M_BLTU_I:
5101 case M_BLTUL_I:
5102 if (mask == M_BLTUL_I)
5103 likely = 1;
5104 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5105 goto do_false;
5106 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5107 {
5108 macro_build (&offset_expr, likely ? "beql" : "beq",
5109 "s,t,p", sreg, 0);
5110 break;
5111 }
5112 used_at = 1;
5113 set_at (sreg, 1);
5114 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5115 break;
5116
5117 case M_BLTL:
5118 likely = 1;
5119 case M_BLT:
5120 if (treg == 0)
5121 {
5122 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5123 break;
5124 }
5125 if (sreg == 0)
5126 {
5127 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", treg);
5128 break;
5129 }
5130 used_at = 1;
5131 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
5132 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5133 break;
5134
5135 case M_BLTUL:
5136 likely = 1;
5137 case M_BLTU:
5138 if (treg == 0)
5139 goto do_false;
5140 if (sreg == 0)
5141 {
5142 macro_build (&offset_expr, likely ? "bnel" : "bne",
5143 "s,t,p", 0, treg);
5144 break;
5145 }
5146 used_at = 1;
5147 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5148 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5149 break;
5150
5151 case M_DEXT:
5152 {
5153 unsigned long pos;
5154 unsigned long size;
5155
5156 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5157 {
5158 as_bad (_("Unsupported large constant"));
5159 pos = size = 1;
5160 }
5161 else
5162 {
5163 pos = (unsigned long) imm_expr.X_add_number;
5164 size = (unsigned long) imm2_expr.X_add_number;
5165 }
5166
5167 if (pos > 63)
5168 {
5169 as_bad (_("Improper position (%lu)"), pos);
5170 pos = 1;
5171 }
5172 if (size == 0 || size > 64
5173 || (pos + size - 1) > 63)
5174 {
5175 as_bad (_("Improper extract size (%lu, position %lu)"),
5176 size, pos);
5177 size = 1;
5178 }
5179
5180 if (size <= 32 && pos < 32)
5181 {
5182 s = "dext";
5183 fmt = "t,r,+A,+C";
5184 }
5185 else if (size <= 32)
5186 {
5187 s = "dextu";
5188 fmt = "t,r,+E,+H";
5189 }
5190 else
5191 {
5192 s = "dextm";
5193 fmt = "t,r,+A,+G";
5194 }
5195 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, pos, size - 1);
5196 }
5197 break;
5198
5199 case M_DINS:
5200 {
5201 unsigned long pos;
5202 unsigned long size;
5203
5204 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5205 {
5206 as_bad (_("Unsupported large constant"));
5207 pos = size = 1;
5208 }
5209 else
5210 {
5211 pos = (unsigned long) imm_expr.X_add_number;
5212 size = (unsigned long) imm2_expr.X_add_number;
5213 }
5214
5215 if (pos > 63)
5216 {
5217 as_bad (_("Improper position (%lu)"), pos);
5218 pos = 1;
5219 }
5220 if (size == 0 || size > 64
5221 || (pos + size - 1) > 63)
5222 {
5223 as_bad (_("Improper insert size (%lu, position %lu)"),
5224 size, pos);
5225 size = 1;
5226 }
5227
5228 if (pos < 32 && (pos + size - 1) < 32)
5229 {
5230 s = "dins";
5231 fmt = "t,r,+A,+B";
5232 }
5233 else if (pos >= 32)
5234 {
5235 s = "dinsu";
5236 fmt = "t,r,+E,+F";
5237 }
5238 else
5239 {
5240 s = "dinsm";
5241 fmt = "t,r,+A,+F";
5242 }
5243 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, pos,
5244 pos + size - 1);
5245 }
5246 break;
5247
5248 case M_DDIV_3:
5249 dbl = 1;
5250 case M_DIV_3:
5251 s = "mflo";
5252 goto do_div3;
5253 case M_DREM_3:
5254 dbl = 1;
5255 case M_REM_3:
5256 s = "mfhi";
5257 do_div3:
5258 if (treg == 0)
5259 {
5260 as_warn (_("Divide by zero."));
5261 if (mips_trap)
5262 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
5263 else
5264 macro_build (NULL, "break", "c", 7);
5265 break;
5266 }
5267
5268 start_noreorder ();
5269 if (mips_trap)
5270 {
5271 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
5272 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5273 }
5274 else
5275 {
5276 expr1.X_add_number = 8;
5277 macro_build (&expr1, "bne", "s,t,p", treg, 0);
5278 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5279 macro_build (NULL, "break", "c", 7);
5280 }
5281 expr1.X_add_number = -1;
5282 used_at = 1;
5283 load_register (AT, &expr1, dbl);
5284 expr1.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
5285 macro_build (&expr1, "bne", "s,t,p", treg, AT);
5286 if (dbl)
5287 {
5288 expr1.X_add_number = 1;
5289 load_register (AT, &expr1, dbl);
5290 macro_build (NULL, "dsll32", "d,w,<", AT, AT, 31);
5291 }
5292 else
5293 {
5294 expr1.X_add_number = 0x80000000;
5295 macro_build (&expr1, "lui", "t,u", AT, BFD_RELOC_HI16);
5296 }
5297 if (mips_trap)
5298 {
5299 macro_build (NULL, "teq", "s,t,q", sreg, AT, 6);
5300 /* We want to close the noreorder block as soon as possible, so
5301 that later insns are available for delay slot filling. */
5302 end_noreorder ();
5303 }
5304 else
5305 {
5306 expr1.X_add_number = 8;
5307 macro_build (&expr1, "bne", "s,t,p", sreg, AT);
5308 macro_build (NULL, "nop", "", 0);
5309
5310 /* We want to close the noreorder block as soon as possible, so
5311 that later insns are available for delay slot filling. */
5312 end_noreorder ();
5313
5314 macro_build (NULL, "break", "c", 6);
5315 }
5316 macro_build (NULL, s, "d", dreg);
5317 break;
5318
5319 case M_DIV_3I:
5320 s = "div";
5321 s2 = "mflo";
5322 goto do_divi;
5323 case M_DIVU_3I:
5324 s = "divu";
5325 s2 = "mflo";
5326 goto do_divi;
5327 case M_REM_3I:
5328 s = "div";
5329 s2 = "mfhi";
5330 goto do_divi;
5331 case M_REMU_3I:
5332 s = "divu";
5333 s2 = "mfhi";
5334 goto do_divi;
5335 case M_DDIV_3I:
5336 dbl = 1;
5337 s = "ddiv";
5338 s2 = "mflo";
5339 goto do_divi;
5340 case M_DDIVU_3I:
5341 dbl = 1;
5342 s = "ddivu";
5343 s2 = "mflo";
5344 goto do_divi;
5345 case M_DREM_3I:
5346 dbl = 1;
5347 s = "ddiv";
5348 s2 = "mfhi";
5349 goto do_divi;
5350 case M_DREMU_3I:
5351 dbl = 1;
5352 s = "ddivu";
5353 s2 = "mfhi";
5354 do_divi:
5355 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5356 {
5357 as_warn (_("Divide by zero."));
5358 if (mips_trap)
5359 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
5360 else
5361 macro_build (NULL, "break", "c", 7);
5362 break;
5363 }
5364 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5365 {
5366 if (strcmp (s2, "mflo") == 0)
5367 move_register (dreg, sreg);
5368 else
5369 move_register (dreg, 0);
5370 break;
5371 }
5372 if (imm_expr.X_op == O_constant
5373 && imm_expr.X_add_number == -1
5374 && s[strlen (s) - 1] != 'u')
5375 {
5376 if (strcmp (s2, "mflo") == 0)
5377 {
5378 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
5379 }
5380 else
5381 move_register (dreg, 0);
5382 break;
5383 }
5384
5385 used_at = 1;
5386 load_register (AT, &imm_expr, dbl);
5387 macro_build (NULL, s, "z,s,t", sreg, AT);
5388 macro_build (NULL, s2, "d", dreg);
5389 break;
5390
5391 case M_DIVU_3:
5392 s = "divu";
5393 s2 = "mflo";
5394 goto do_divu3;
5395 case M_REMU_3:
5396 s = "divu";
5397 s2 = "mfhi";
5398 goto do_divu3;
5399 case M_DDIVU_3:
5400 s = "ddivu";
5401 s2 = "mflo";
5402 goto do_divu3;
5403 case M_DREMU_3:
5404 s = "ddivu";
5405 s2 = "mfhi";
5406 do_divu3:
5407 start_noreorder ();
5408 if (mips_trap)
5409 {
5410 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
5411 macro_build (NULL, s, "z,s,t", sreg, treg);
5412 /* We want to close the noreorder block as soon as possible, so
5413 that later insns are available for delay slot filling. */
5414 end_noreorder ();
5415 }
5416 else
5417 {
5418 expr1.X_add_number = 8;
5419 macro_build (&expr1, "bne", "s,t,p", treg, 0);
5420 macro_build (NULL, s, "z,s,t", sreg, treg);
5421
5422 /* We want to close the noreorder block as soon as possible, so
5423 that later insns are available for delay slot filling. */
5424 end_noreorder ();
5425 macro_build (NULL, "break", "c", 7);
5426 }
5427 macro_build (NULL, s2, "d", dreg);
5428 break;
5429
5430 case M_DLCA_AB:
5431 dbl = 1;
5432 case M_LCA_AB:
5433 call = 1;
5434 goto do_la;
5435 case M_DLA_AB:
5436 dbl = 1;
5437 case M_LA_AB:
5438 do_la:
5439 /* Load the address of a symbol into a register. If breg is not
5440 zero, we then add a base register to it. */
5441
5442 if (dbl && HAVE_32BIT_GPRS)
5443 as_warn (_("dla used to load 32-bit register"));
5444
5445 if (! dbl && HAVE_64BIT_OBJECTS)
5446 as_warn (_("la used to load 64-bit address"));
5447
5448 if (offset_expr.X_op == O_constant
5449 && offset_expr.X_add_number >= -0x8000
5450 && offset_expr.X_add_number < 0x8000)
5451 {
5452 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
5453 "t,r,j", treg, sreg, BFD_RELOC_LO16);
5454 break;
5455 }
5456
5457 if (mips_opts.at && (treg == breg))
5458 {
5459 tempreg = AT;
5460 used_at = 1;
5461 }
5462 else
5463 {
5464 tempreg = treg;
5465 }
5466
5467 if (offset_expr.X_op != O_symbol
5468 && offset_expr.X_op != O_constant)
5469 {
5470 as_bad (_("expression too complex"));
5471 offset_expr.X_op = O_constant;
5472 }
5473
5474 if (offset_expr.X_op == O_constant)
5475 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
5476 else if (mips_pic == NO_PIC)
5477 {
5478 /* If this is a reference to a GP relative symbol, we want
5479 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
5480 Otherwise we want
5481 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5482 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5483 If we have a constant, we need two instructions anyhow,
5484 so we may as well always use the latter form.
5485
5486 With 64bit address space and a usable $at we want
5487 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5488 lui $at,<sym> (BFD_RELOC_HI16_S)
5489 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5490 daddiu $at,<sym> (BFD_RELOC_LO16)
5491 dsll32 $tempreg,0
5492 daddu $tempreg,$tempreg,$at
5493
5494 If $at is already in use, we use a path which is suboptimal
5495 on superscalar processors.
5496 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5497 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5498 dsll $tempreg,16
5499 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5500 dsll $tempreg,16
5501 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
5502
5503 For GP relative symbols in 64bit address space we can use
5504 the same sequence as in 32bit address space. */
5505 if (HAVE_64BIT_SYMBOLS)
5506 {
5507 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5508 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5509 {
5510 relax_start (offset_expr.X_add_symbol);
5511 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5512 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5513 relax_switch ();
5514 }
5515
5516 if (used_at == 0 && mips_opts.at)
5517 {
5518 macro_build (&offset_expr, "lui", "t,u",
5519 tempreg, BFD_RELOC_MIPS_HIGHEST);
5520 macro_build (&offset_expr, "lui", "t,u",
5521 AT, BFD_RELOC_HI16_S);
5522 macro_build (&offset_expr, "daddiu", "t,r,j",
5523 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5524 macro_build (&offset_expr, "daddiu", "t,r,j",
5525 AT, AT, BFD_RELOC_LO16);
5526 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
5527 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
5528 used_at = 1;
5529 }
5530 else
5531 {
5532 macro_build (&offset_expr, "lui", "t,u",
5533 tempreg, BFD_RELOC_MIPS_HIGHEST);
5534 macro_build (&offset_expr, "daddiu", "t,r,j",
5535 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5536 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5537 macro_build (&offset_expr, "daddiu", "t,r,j",
5538 tempreg, tempreg, BFD_RELOC_HI16_S);
5539 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5540 macro_build (&offset_expr, "daddiu", "t,r,j",
5541 tempreg, tempreg, BFD_RELOC_LO16);
5542 }
5543
5544 if (mips_relax.sequence)
5545 relax_end ();
5546 }
5547 else
5548 {
5549 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5550 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5551 {
5552 relax_start (offset_expr.X_add_symbol);
5553 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5554 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5555 relax_switch ();
5556 }
5557 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
5558 as_bad (_("offset too large"));
5559 macro_build_lui (&offset_expr, tempreg);
5560 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5561 tempreg, tempreg, BFD_RELOC_LO16);
5562 if (mips_relax.sequence)
5563 relax_end ();
5564 }
5565 }
5566 else if (!mips_big_got && !HAVE_NEWABI)
5567 {
5568 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5569
5570 /* If this is a reference to an external symbol, and there
5571 is no constant, we want
5572 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5573 or for lca or if tempreg is PIC_CALL_REG
5574 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5575 For a local symbol, we want
5576 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5577 nop
5578 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5579
5580 If we have a small constant, and this is a reference to
5581 an external symbol, we want
5582 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5583 nop
5584 addiu $tempreg,$tempreg,<constant>
5585 For a local symbol, we want the same instruction
5586 sequence, but we output a BFD_RELOC_LO16 reloc on the
5587 addiu instruction.
5588
5589 If we have a large constant, and this is a reference to
5590 an external symbol, we want
5591 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5592 lui $at,<hiconstant>
5593 addiu $at,$at,<loconstant>
5594 addu $tempreg,$tempreg,$at
5595 For a local symbol, we want the same instruction
5596 sequence, but we output a BFD_RELOC_LO16 reloc on the
5597 addiu instruction.
5598 */
5599
5600 if (offset_expr.X_add_number == 0)
5601 {
5602 if (mips_pic == SVR4_PIC
5603 && breg == 0
5604 && (call || tempreg == PIC_CALL_REG))
5605 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
5606
5607 relax_start (offset_expr.X_add_symbol);
5608 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5609 lw_reloc_type, mips_gp_register);
5610 if (breg != 0)
5611 {
5612 /* We're going to put in an addu instruction using
5613 tempreg, so we may as well insert the nop right
5614 now. */
5615 load_delay_nop ();
5616 }
5617 relax_switch ();
5618 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5619 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
5620 load_delay_nop ();
5621 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5622 tempreg, tempreg, BFD_RELOC_LO16);
5623 relax_end ();
5624 /* FIXME: If breg == 0, and the next instruction uses
5625 $tempreg, then if this variant case is used an extra
5626 nop will be generated. */
5627 }
5628 else if (offset_expr.X_add_number >= -0x8000
5629 && offset_expr.X_add_number < 0x8000)
5630 {
5631 load_got_offset (tempreg, &offset_expr);
5632 load_delay_nop ();
5633 add_got_offset (tempreg, &offset_expr);
5634 }
5635 else
5636 {
5637 expr1.X_add_number = offset_expr.X_add_number;
5638 offset_expr.X_add_number =
5639 ((offset_expr.X_add_number + 0x8000) & 0xffff) - 0x8000;
5640 load_got_offset (tempreg, &offset_expr);
5641 offset_expr.X_add_number = expr1.X_add_number;
5642 /* If we are going to add in a base register, and the
5643 target register and the base register are the same,
5644 then we are using AT as a temporary register. Since
5645 we want to load the constant into AT, we add our
5646 current AT (from the global offset table) and the
5647 register into the register now, and pretend we were
5648 not using a base register. */
5649 if (breg == treg)
5650 {
5651 load_delay_nop ();
5652 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5653 treg, AT, breg);
5654 breg = 0;
5655 tempreg = treg;
5656 }
5657 add_got_offset_hilo (tempreg, &offset_expr, AT);
5658 used_at = 1;
5659 }
5660 }
5661 else if (!mips_big_got && HAVE_NEWABI)
5662 {
5663 int add_breg_early = 0;
5664
5665 /* If this is a reference to an external, and there is no
5666 constant, or local symbol (*), with or without a
5667 constant, we want
5668 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5669 or for lca or if tempreg is PIC_CALL_REG
5670 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5671
5672 If we have a small constant, and this is a reference to
5673 an external symbol, we want
5674 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5675 addiu $tempreg,$tempreg,<constant>
5676
5677 If we have a large constant, and this is a reference to
5678 an external symbol, we want
5679 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5680 lui $at,<hiconstant>
5681 addiu $at,$at,<loconstant>
5682 addu $tempreg,$tempreg,$at
5683
5684 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
5685 local symbols, even though it introduces an additional
5686 instruction. */
5687
5688 if (offset_expr.X_add_number)
5689 {
5690 expr1.X_add_number = offset_expr.X_add_number;
5691 offset_expr.X_add_number = 0;
5692
5693 relax_start (offset_expr.X_add_symbol);
5694 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5695 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5696
5697 if (expr1.X_add_number >= -0x8000
5698 && expr1.X_add_number < 0x8000)
5699 {
5700 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5701 tempreg, tempreg, BFD_RELOC_LO16);
5702 }
5703 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5704 {
5705 int dreg;
5706
5707 /* If we are going to add in a base register, and the
5708 target register and the base register are the same,
5709 then we are using AT as a temporary register. Since
5710 we want to load the constant into AT, we add our
5711 current AT (from the global offset table) and the
5712 register into the register now, and pretend we were
5713 not using a base register. */
5714 if (breg != treg)
5715 dreg = tempreg;
5716 else
5717 {
5718 assert (tempreg == AT);
5719 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5720 treg, AT, breg);
5721 dreg = treg;
5722 add_breg_early = 1;
5723 }
5724
5725 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5726 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5727 dreg, dreg, AT);
5728
5729 used_at = 1;
5730 }
5731 else
5732 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
5733
5734 relax_switch ();
5735 offset_expr.X_add_number = expr1.X_add_number;
5736
5737 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5738 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5739 if (add_breg_early)
5740 {
5741 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5742 treg, tempreg, breg);
5743 breg = 0;
5744 tempreg = treg;
5745 }
5746 relax_end ();
5747 }
5748 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
5749 {
5750 relax_start (offset_expr.X_add_symbol);
5751 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5752 BFD_RELOC_MIPS_CALL16, mips_gp_register);
5753 relax_switch ();
5754 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5755 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5756 relax_end ();
5757 }
5758 else
5759 {
5760 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5761 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5762 }
5763 }
5764 else if (mips_big_got && !HAVE_NEWABI)
5765 {
5766 int gpdelay;
5767 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5768 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5769 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5770
5771 /* This is the large GOT case. If this is a reference to an
5772 external symbol, and there is no constant, we want
5773 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5774 addu $tempreg,$tempreg,$gp
5775 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5776 or for lca or if tempreg is PIC_CALL_REG
5777 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5778 addu $tempreg,$tempreg,$gp
5779 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5780 For a local symbol, we want
5781 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5782 nop
5783 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5784
5785 If we have a small constant, and this is a reference to
5786 an external symbol, we want
5787 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5788 addu $tempreg,$tempreg,$gp
5789 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5790 nop
5791 addiu $tempreg,$tempreg,<constant>
5792 For a local symbol, we want
5793 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5794 nop
5795 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
5796
5797 If we have a large constant, and this is a reference to
5798 an external symbol, we want
5799 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5800 addu $tempreg,$tempreg,$gp
5801 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5802 lui $at,<hiconstant>
5803 addiu $at,$at,<loconstant>
5804 addu $tempreg,$tempreg,$at
5805 For a local symbol, we want
5806 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5807 lui $at,<hiconstant>
5808 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
5809 addu $tempreg,$tempreg,$at
5810 */
5811
5812 expr1.X_add_number = offset_expr.X_add_number;
5813 offset_expr.X_add_number = 0;
5814 relax_start (offset_expr.X_add_symbol);
5815 gpdelay = reg_needs_delay (mips_gp_register);
5816 if (expr1.X_add_number == 0 && breg == 0
5817 && (call || tempreg == PIC_CALL_REG))
5818 {
5819 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5820 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5821 }
5822 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5823 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5824 tempreg, tempreg, mips_gp_register);
5825 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5826 tempreg, lw_reloc_type, tempreg);
5827 if (expr1.X_add_number == 0)
5828 {
5829 if (breg != 0)
5830 {
5831 /* We're going to put in an addu instruction using
5832 tempreg, so we may as well insert the nop right
5833 now. */
5834 load_delay_nop ();
5835 }
5836 }
5837 else if (expr1.X_add_number >= -0x8000
5838 && expr1.X_add_number < 0x8000)
5839 {
5840 load_delay_nop ();
5841 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5842 tempreg, tempreg, BFD_RELOC_LO16);
5843 }
5844 else
5845 {
5846 int dreg;
5847
5848 /* If we are going to add in a base register, and the
5849 target register and the base register are the same,
5850 then we are using AT as a temporary register. Since
5851 we want to load the constant into AT, we add our
5852 current AT (from the global offset table) and the
5853 register into the register now, and pretend we were
5854 not using a base register. */
5855 if (breg != treg)
5856 dreg = tempreg;
5857 else
5858 {
5859 assert (tempreg == AT);
5860 load_delay_nop ();
5861 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5862 treg, AT, breg);
5863 dreg = treg;
5864 }
5865
5866 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5867 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
5868
5869 used_at = 1;
5870 }
5871 offset_expr.X_add_number =
5872 ((expr1.X_add_number + 0x8000) & 0xffff) - 0x8000;
5873 relax_switch ();
5874
5875 if (gpdelay)
5876 {
5877 /* This is needed because this instruction uses $gp, but
5878 the first instruction on the main stream does not. */
5879 macro_build (NULL, "nop", "");
5880 }
5881
5882 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5883 local_reloc_type, mips_gp_register);
5884 if (expr1.X_add_number >= -0x8000
5885 && expr1.X_add_number < 0x8000)
5886 {
5887 load_delay_nop ();
5888 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5889 tempreg, tempreg, BFD_RELOC_LO16);
5890 /* FIXME: If add_number is 0, and there was no base
5891 register, the external symbol case ended with a load,
5892 so if the symbol turns out to not be external, and
5893 the next instruction uses tempreg, an unnecessary nop
5894 will be inserted. */
5895 }
5896 else
5897 {
5898 if (breg == treg)
5899 {
5900 /* We must add in the base register now, as in the
5901 external symbol case. */
5902 assert (tempreg == AT);
5903 load_delay_nop ();
5904 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5905 treg, AT, breg);
5906 tempreg = treg;
5907 /* We set breg to 0 because we have arranged to add
5908 it in in both cases. */
5909 breg = 0;
5910 }
5911
5912 macro_build_lui (&expr1, AT);
5913 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5914 AT, AT, BFD_RELOC_LO16);
5915 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5916 tempreg, tempreg, AT);
5917 used_at = 1;
5918 }
5919 relax_end ();
5920 }
5921 else if (mips_big_got && HAVE_NEWABI)
5922 {
5923 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5924 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5925 int add_breg_early = 0;
5926
5927 /* This is the large GOT case. If this is a reference to an
5928 external symbol, and there is no constant, we want
5929 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5930 add $tempreg,$tempreg,$gp
5931 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5932 or for lca or if tempreg is PIC_CALL_REG
5933 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5934 add $tempreg,$tempreg,$gp
5935 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5936
5937 If we have a small constant, and this is a reference to
5938 an external symbol, we want
5939 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5940 add $tempreg,$tempreg,$gp
5941 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5942 addi $tempreg,$tempreg,<constant>
5943
5944 If we have a large constant, and this is a reference to
5945 an external symbol, we want
5946 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5947 addu $tempreg,$tempreg,$gp
5948 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5949 lui $at,<hiconstant>
5950 addi $at,$at,<loconstant>
5951 add $tempreg,$tempreg,$at
5952
5953 If we have NewABI, and we know it's a local symbol, we want
5954 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
5955 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
5956 otherwise we have to resort to GOT_HI16/GOT_LO16. */
5957
5958 relax_start (offset_expr.X_add_symbol);
5959
5960 expr1.X_add_number = offset_expr.X_add_number;
5961 offset_expr.X_add_number = 0;
5962
5963 if (expr1.X_add_number == 0 && breg == 0
5964 && (call || tempreg == PIC_CALL_REG))
5965 {
5966 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5967 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5968 }
5969 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5970 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5971 tempreg, tempreg, mips_gp_register);
5972 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5973 tempreg, lw_reloc_type, tempreg);
5974
5975 if (expr1.X_add_number == 0)
5976 ;
5977 else if (expr1.X_add_number >= -0x8000
5978 && expr1.X_add_number < 0x8000)
5979 {
5980 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5981 tempreg, tempreg, BFD_RELOC_LO16);
5982 }
5983 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5984 {
5985 int dreg;
5986
5987 /* If we are going to add in a base register, and the
5988 target register and the base register are the same,
5989 then we are using AT as a temporary register. Since
5990 we want to load the constant into AT, we add our
5991 current AT (from the global offset table) and the
5992 register into the register now, and pretend we were
5993 not using a base register. */
5994 if (breg != treg)
5995 dreg = tempreg;
5996 else
5997 {
5998 assert (tempreg == AT);
5999 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6000 treg, AT, breg);
6001 dreg = treg;
6002 add_breg_early = 1;
6003 }
6004
6005 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
6006 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
6007
6008 used_at = 1;
6009 }
6010 else
6011 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
6012
6013 relax_switch ();
6014 offset_expr.X_add_number = expr1.X_add_number;
6015 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6016 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6017 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6018 tempreg, BFD_RELOC_MIPS_GOT_OFST);
6019 if (add_breg_early)
6020 {
6021 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6022 treg, tempreg, breg);
6023 breg = 0;
6024 tempreg = treg;
6025 }
6026 relax_end ();
6027 }
6028 else
6029 abort ();
6030
6031 if (breg != 0)
6032 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
6033 break;
6034
6035 case M_J_A:
6036 /* The j instruction may not be used in PIC code, since it
6037 requires an absolute address. We convert it to a b
6038 instruction. */
6039 if (mips_pic == NO_PIC)
6040 macro_build (&offset_expr, "j", "a");
6041 else
6042 macro_build (&offset_expr, "b", "p");
6043 break;
6044
6045 /* The jal instructions must be handled as macros because when
6046 generating PIC code they expand to multi-instruction
6047 sequences. Normally they are simple instructions. */
6048 case M_JAL_1:
6049 dreg = RA;
6050 /* Fall through. */
6051 case M_JAL_2:
6052 if (mips_pic == NO_PIC)
6053 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6054 else
6055 {
6056 if (sreg != PIC_CALL_REG)
6057 as_warn (_("MIPS PIC call to register other than $25"));
6058
6059 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6060 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
6061 {
6062 if (mips_cprestore_offset < 0)
6063 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6064 else
6065 {
6066 if (! mips_frame_reg_valid)
6067 {
6068 as_warn (_("No .frame pseudo-op used in PIC code"));
6069 /* Quiet this warning. */
6070 mips_frame_reg_valid = 1;
6071 }
6072 if (! mips_cprestore_valid)
6073 {
6074 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6075 /* Quiet this warning. */
6076 mips_cprestore_valid = 1;
6077 }
6078 expr1.X_add_number = mips_cprestore_offset;
6079 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6080 mips_gp_register,
6081 mips_frame_reg,
6082 HAVE_64BIT_ADDRESSES);
6083 }
6084 }
6085 }
6086
6087 break;
6088
6089 case M_JAL_A:
6090 if (mips_pic == NO_PIC)
6091 macro_build (&offset_expr, "jal", "a");
6092 else if (mips_pic == SVR4_PIC)
6093 {
6094 /* If this is a reference to an external symbol, and we are
6095 using a small GOT, we want
6096 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
6097 nop
6098 jalr $ra,$25
6099 nop
6100 lw $gp,cprestore($sp)
6101 The cprestore value is set using the .cprestore
6102 pseudo-op. If we are using a big GOT, we want
6103 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6104 addu $25,$25,$gp
6105 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
6106 nop
6107 jalr $ra,$25
6108 nop
6109 lw $gp,cprestore($sp)
6110 If the symbol is not external, we want
6111 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6112 nop
6113 addiu $25,$25,<sym> (BFD_RELOC_LO16)
6114 jalr $ra,$25
6115 nop
6116 lw $gp,cprestore($sp)
6117
6118 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
6119 sequences above, minus nops, unless the symbol is local,
6120 which enables us to use GOT_PAGE/GOT_OFST (big got) or
6121 GOT_DISP. */
6122 if (HAVE_NEWABI)
6123 {
6124 if (! mips_big_got)
6125 {
6126 relax_start (offset_expr.X_add_symbol);
6127 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6128 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6129 mips_gp_register);
6130 relax_switch ();
6131 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6132 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
6133 mips_gp_register);
6134 relax_end ();
6135 }
6136 else
6137 {
6138 relax_start (offset_expr.X_add_symbol);
6139 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6140 BFD_RELOC_MIPS_CALL_HI16);
6141 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6142 PIC_CALL_REG, mips_gp_register);
6143 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6144 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6145 PIC_CALL_REG);
6146 relax_switch ();
6147 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6148 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
6149 mips_gp_register);
6150 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6151 PIC_CALL_REG, PIC_CALL_REG,
6152 BFD_RELOC_MIPS_GOT_OFST);
6153 relax_end ();
6154 }
6155
6156 macro_build_jalr (&offset_expr);
6157 }
6158 else
6159 {
6160 relax_start (offset_expr.X_add_symbol);
6161 if (! mips_big_got)
6162 {
6163 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6164 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6165 mips_gp_register);
6166 load_delay_nop ();
6167 relax_switch ();
6168 }
6169 else
6170 {
6171 int gpdelay;
6172
6173 gpdelay = reg_needs_delay (mips_gp_register);
6174 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6175 BFD_RELOC_MIPS_CALL_HI16);
6176 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6177 PIC_CALL_REG, mips_gp_register);
6178 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6179 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6180 PIC_CALL_REG);
6181 load_delay_nop ();
6182 relax_switch ();
6183 if (gpdelay)
6184 macro_build (NULL, "nop", "");
6185 }
6186 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6187 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
6188 mips_gp_register);
6189 load_delay_nop ();
6190 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6191 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
6192 relax_end ();
6193 macro_build_jalr (&offset_expr);
6194
6195 if (mips_cprestore_offset < 0)
6196 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6197 else
6198 {
6199 if (! mips_frame_reg_valid)
6200 {
6201 as_warn (_("No .frame pseudo-op used in PIC code"));
6202 /* Quiet this warning. */
6203 mips_frame_reg_valid = 1;
6204 }
6205 if (! mips_cprestore_valid)
6206 {
6207 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6208 /* Quiet this warning. */
6209 mips_cprestore_valid = 1;
6210 }
6211 if (mips_opts.noreorder)
6212 macro_build (NULL, "nop", "");
6213 expr1.X_add_number = mips_cprestore_offset;
6214 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6215 mips_gp_register,
6216 mips_frame_reg,
6217 HAVE_64BIT_ADDRESSES);
6218 }
6219 }
6220 }
6221 else if (mips_pic == VXWORKS_PIC)
6222 as_bad (_("Non-PIC jump used in PIC library"));
6223 else
6224 abort ();
6225
6226 break;
6227
6228 case M_LB_AB:
6229 s = "lb";
6230 goto ld;
6231 case M_LBU_AB:
6232 s = "lbu";
6233 goto ld;
6234 case M_LH_AB:
6235 s = "lh";
6236 goto ld;
6237 case M_LHU_AB:
6238 s = "lhu";
6239 goto ld;
6240 case M_LW_AB:
6241 s = "lw";
6242 goto ld;
6243 case M_LWC0_AB:
6244 s = "lwc0";
6245 /* Itbl support may require additional care here. */
6246 coproc = 1;
6247 goto ld;
6248 case M_LWC1_AB:
6249 s = "lwc1";
6250 /* Itbl support may require additional care here. */
6251 coproc = 1;
6252 goto ld;
6253 case M_LWC2_AB:
6254 s = "lwc2";
6255 /* Itbl support may require additional care here. */
6256 coproc = 1;
6257 goto ld;
6258 case M_LWC3_AB:
6259 s = "lwc3";
6260 /* Itbl support may require additional care here. */
6261 coproc = 1;
6262 goto ld;
6263 case M_LWL_AB:
6264 s = "lwl";
6265 lr = 1;
6266 goto ld;
6267 case M_LWR_AB:
6268 s = "lwr";
6269 lr = 1;
6270 goto ld;
6271 case M_LDC1_AB:
6272 s = "ldc1";
6273 /* Itbl support may require additional care here. */
6274 coproc = 1;
6275 goto ld;
6276 case M_LDC2_AB:
6277 s = "ldc2";
6278 /* Itbl support may require additional care here. */
6279 coproc = 1;
6280 goto ld;
6281 case M_LDC3_AB:
6282 s = "ldc3";
6283 /* Itbl support may require additional care here. */
6284 coproc = 1;
6285 goto ld;
6286 case M_LDL_AB:
6287 s = "ldl";
6288 lr = 1;
6289 goto ld;
6290 case M_LDR_AB:
6291 s = "ldr";
6292 lr = 1;
6293 goto ld;
6294 case M_LL_AB:
6295 s = "ll";
6296 goto ld;
6297 case M_LLD_AB:
6298 s = "lld";
6299 goto ld;
6300 case M_LWU_AB:
6301 s = "lwu";
6302 ld:
6303 if (breg == treg || coproc || lr)
6304 {
6305 tempreg = AT;
6306 used_at = 1;
6307 }
6308 else
6309 {
6310 tempreg = treg;
6311 }
6312 goto ld_st;
6313 case M_SB_AB:
6314 s = "sb";
6315 goto st;
6316 case M_SH_AB:
6317 s = "sh";
6318 goto st;
6319 case M_SW_AB:
6320 s = "sw";
6321 goto st;
6322 case M_SWC0_AB:
6323 s = "swc0";
6324 /* Itbl support may require additional care here. */
6325 coproc = 1;
6326 goto st;
6327 case M_SWC1_AB:
6328 s = "swc1";
6329 /* Itbl support may require additional care here. */
6330 coproc = 1;
6331 goto st;
6332 case M_SWC2_AB:
6333 s = "swc2";
6334 /* Itbl support may require additional care here. */
6335 coproc = 1;
6336 goto st;
6337 case M_SWC3_AB:
6338 s = "swc3";
6339 /* Itbl support may require additional care here. */
6340 coproc = 1;
6341 goto st;
6342 case M_SWL_AB:
6343 s = "swl";
6344 goto st;
6345 case M_SWR_AB:
6346 s = "swr";
6347 goto st;
6348 case M_SC_AB:
6349 s = "sc";
6350 goto st;
6351 case M_SCD_AB:
6352 s = "scd";
6353 goto st;
6354 case M_CACHE_AB:
6355 s = "cache";
6356 goto st;
6357 case M_SDC1_AB:
6358 s = "sdc1";
6359 coproc = 1;
6360 /* Itbl support may require additional care here. */
6361 goto st;
6362 case M_SDC2_AB:
6363 s = "sdc2";
6364 /* Itbl support may require additional care here. */
6365 coproc = 1;
6366 goto st;
6367 case M_SDC3_AB:
6368 s = "sdc3";
6369 /* Itbl support may require additional care here. */
6370 coproc = 1;
6371 goto st;
6372 case M_SDL_AB:
6373 s = "sdl";
6374 goto st;
6375 case M_SDR_AB:
6376 s = "sdr";
6377 st:
6378 tempreg = AT;
6379 used_at = 1;
6380 ld_st:
6381 if (coproc
6382 && NO_ISA_COP (mips_opts.arch)
6383 && (ip->insn_mo->pinfo2 & (INSN2_M_FP_S | INSN2_M_FP_D)) == 0)
6384 {
6385 as_bad (_("opcode not supported on this processor: %s"),
6386 mips_cpu_info_from_arch (mips_opts.arch)->name);
6387 break;
6388 }
6389
6390 /* Itbl support may require additional care here. */
6391 if (mask == M_LWC1_AB
6392 || mask == M_SWC1_AB
6393 || mask == M_LDC1_AB
6394 || mask == M_SDC1_AB
6395 || mask == M_L_DAB
6396 || mask == M_S_DAB)
6397 fmt = "T,o(b)";
6398 else if (mask == M_CACHE_AB)
6399 fmt = "k,o(b)";
6400 else if (coproc)
6401 fmt = "E,o(b)";
6402 else
6403 fmt = "t,o(b)";
6404
6405 if (offset_expr.X_op != O_constant
6406 && offset_expr.X_op != O_symbol)
6407 {
6408 as_bad (_("expression too complex"));
6409 offset_expr.X_op = O_constant;
6410 }
6411
6412 if (HAVE_32BIT_ADDRESSES
6413 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
6414 {
6415 char value [32];
6416
6417 sprintf_vma (value, offset_expr.X_add_number);
6418 as_bad (_("Number (0x%s) larger than 32 bits"), value);
6419 }
6420
6421 /* A constant expression in PIC code can be handled just as it
6422 is in non PIC code. */
6423 if (offset_expr.X_op == O_constant)
6424 {
6425 expr1.X_add_number = ((offset_expr.X_add_number + 0x8000)
6426 & ~(bfd_vma) 0xffff);
6427 normalize_address_expr (&expr1);
6428 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
6429 if (breg != 0)
6430 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6431 tempreg, tempreg, breg);
6432 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6433 }
6434 else if (mips_pic == NO_PIC)
6435 {
6436 /* If this is a reference to a GP relative symbol, and there
6437 is no base register, we want
6438 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6439 Otherwise, if there is no base register, we want
6440 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6441 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6442 If we have a constant, we need two instructions anyhow,
6443 so we always use the latter form.
6444
6445 If we have a base register, and this is a reference to a
6446 GP relative symbol, we want
6447 addu $tempreg,$breg,$gp
6448 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
6449 Otherwise we want
6450 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6451 addu $tempreg,$tempreg,$breg
6452 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6453 With a constant we always use the latter case.
6454
6455 With 64bit address space and no base register and $at usable,
6456 we want
6457 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6458 lui $at,<sym> (BFD_RELOC_HI16_S)
6459 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6460 dsll32 $tempreg,0
6461 daddu $tempreg,$at
6462 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6463 If we have a base register, we want
6464 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6465 lui $at,<sym> (BFD_RELOC_HI16_S)
6466 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6467 daddu $at,$breg
6468 dsll32 $tempreg,0
6469 daddu $tempreg,$at
6470 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6471
6472 Without $at we can't generate the optimal path for superscalar
6473 processors here since this would require two temporary registers.
6474 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6475 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6476 dsll $tempreg,16
6477 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6478 dsll $tempreg,16
6479 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6480 If we have a base register, we want
6481 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6482 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6483 dsll $tempreg,16
6484 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6485 dsll $tempreg,16
6486 daddu $tempreg,$tempreg,$breg
6487 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6488
6489 For GP relative symbols in 64bit address space we can use
6490 the same sequence as in 32bit address space. */
6491 if (HAVE_64BIT_SYMBOLS)
6492 {
6493 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6494 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6495 {
6496 relax_start (offset_expr.X_add_symbol);
6497 if (breg == 0)
6498 {
6499 macro_build (&offset_expr, s, fmt, treg,
6500 BFD_RELOC_GPREL16, mips_gp_register);
6501 }
6502 else
6503 {
6504 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6505 tempreg, breg, mips_gp_register);
6506 macro_build (&offset_expr, s, fmt, treg,
6507 BFD_RELOC_GPREL16, tempreg);
6508 }
6509 relax_switch ();
6510 }
6511
6512 if (used_at == 0 && mips_opts.at)
6513 {
6514 macro_build (&offset_expr, "lui", "t,u", tempreg,
6515 BFD_RELOC_MIPS_HIGHEST);
6516 macro_build (&offset_expr, "lui", "t,u", AT,
6517 BFD_RELOC_HI16_S);
6518 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6519 tempreg, BFD_RELOC_MIPS_HIGHER);
6520 if (breg != 0)
6521 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
6522 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
6523 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
6524 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
6525 tempreg);
6526 used_at = 1;
6527 }
6528 else
6529 {
6530 macro_build (&offset_expr, "lui", "t,u", tempreg,
6531 BFD_RELOC_MIPS_HIGHEST);
6532 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6533 tempreg, BFD_RELOC_MIPS_HIGHER);
6534 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6535 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6536 tempreg, BFD_RELOC_HI16_S);
6537 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6538 if (breg != 0)
6539 macro_build (NULL, "daddu", "d,v,t",
6540 tempreg, tempreg, breg);
6541 macro_build (&offset_expr, s, fmt, treg,
6542 BFD_RELOC_LO16, tempreg);
6543 }
6544
6545 if (mips_relax.sequence)
6546 relax_end ();
6547 break;
6548 }
6549
6550 if (breg == 0)
6551 {
6552 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6553 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6554 {
6555 relax_start (offset_expr.X_add_symbol);
6556 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
6557 mips_gp_register);
6558 relax_switch ();
6559 }
6560 macro_build_lui (&offset_expr, tempreg);
6561 macro_build (&offset_expr, s, fmt, treg,
6562 BFD_RELOC_LO16, tempreg);
6563 if (mips_relax.sequence)
6564 relax_end ();
6565 }
6566 else
6567 {
6568 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6569 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6570 {
6571 relax_start (offset_expr.X_add_symbol);
6572 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6573 tempreg, breg, mips_gp_register);
6574 macro_build (&offset_expr, s, fmt, treg,
6575 BFD_RELOC_GPREL16, tempreg);
6576 relax_switch ();
6577 }
6578 macro_build_lui (&offset_expr, tempreg);
6579 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6580 tempreg, tempreg, breg);
6581 macro_build (&offset_expr, s, fmt, treg,
6582 BFD_RELOC_LO16, tempreg);
6583 if (mips_relax.sequence)
6584 relax_end ();
6585 }
6586 }
6587 else if (!mips_big_got)
6588 {
6589 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
6590
6591 /* If this is a reference to an external symbol, we want
6592 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6593 nop
6594 <op> $treg,0($tempreg)
6595 Otherwise we want
6596 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6597 nop
6598 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6599 <op> $treg,0($tempreg)
6600
6601 For NewABI, we want
6602 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6603 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
6604
6605 If there is a base register, we add it to $tempreg before
6606 the <op>. If there is a constant, we stick it in the
6607 <op> instruction. We don't handle constants larger than
6608 16 bits, because we have no way to load the upper 16 bits
6609 (actually, we could handle them for the subset of cases
6610 in which we are not using $at). */
6611 assert (offset_expr.X_op == O_symbol);
6612 if (HAVE_NEWABI)
6613 {
6614 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6615 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6616 if (breg != 0)
6617 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6618 tempreg, tempreg, breg);
6619 macro_build (&offset_expr, s, fmt, treg,
6620 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6621 break;
6622 }
6623 expr1.X_add_number = offset_expr.X_add_number;
6624 offset_expr.X_add_number = 0;
6625 if (expr1.X_add_number < -0x8000
6626 || expr1.X_add_number >= 0x8000)
6627 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6628 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6629 lw_reloc_type, mips_gp_register);
6630 load_delay_nop ();
6631 relax_start (offset_expr.X_add_symbol);
6632 relax_switch ();
6633 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6634 tempreg, BFD_RELOC_LO16);
6635 relax_end ();
6636 if (breg != 0)
6637 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6638 tempreg, tempreg, breg);
6639 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6640 }
6641 else if (mips_big_got && !HAVE_NEWABI)
6642 {
6643 int gpdelay;
6644
6645 /* If this is a reference to an external symbol, we want
6646 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6647 addu $tempreg,$tempreg,$gp
6648 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6649 <op> $treg,0($tempreg)
6650 Otherwise we want
6651 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6652 nop
6653 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6654 <op> $treg,0($tempreg)
6655 If there is a base register, we add it to $tempreg before
6656 the <op>. If there is a constant, we stick it in the
6657 <op> instruction. We don't handle constants larger than
6658 16 bits, because we have no way to load the upper 16 bits
6659 (actually, we could handle them for the subset of cases
6660 in which we are not using $at). */
6661 assert (offset_expr.X_op == O_symbol);
6662 expr1.X_add_number = offset_expr.X_add_number;
6663 offset_expr.X_add_number = 0;
6664 if (expr1.X_add_number < -0x8000
6665 || expr1.X_add_number >= 0x8000)
6666 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6667 gpdelay = reg_needs_delay (mips_gp_register);
6668 relax_start (offset_expr.X_add_symbol);
6669 macro_build (&offset_expr, "lui", "t,u", tempreg,
6670 BFD_RELOC_MIPS_GOT_HI16);
6671 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6672 mips_gp_register);
6673 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6674 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6675 relax_switch ();
6676 if (gpdelay)
6677 macro_build (NULL, "nop", "");
6678 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6679 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6680 load_delay_nop ();
6681 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6682 tempreg, BFD_RELOC_LO16);
6683 relax_end ();
6684
6685 if (breg != 0)
6686 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6687 tempreg, tempreg, breg);
6688 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6689 }
6690 else if (mips_big_got && HAVE_NEWABI)
6691 {
6692 /* If this is a reference to an external symbol, we want
6693 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6694 add $tempreg,$tempreg,$gp
6695 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6696 <op> $treg,<ofst>($tempreg)
6697 Otherwise, for local symbols, we want:
6698 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6699 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
6700 assert (offset_expr.X_op == O_symbol);
6701 expr1.X_add_number = offset_expr.X_add_number;
6702 offset_expr.X_add_number = 0;
6703 if (expr1.X_add_number < -0x8000
6704 || expr1.X_add_number >= 0x8000)
6705 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6706 relax_start (offset_expr.X_add_symbol);
6707 macro_build (&offset_expr, "lui", "t,u", tempreg,
6708 BFD_RELOC_MIPS_GOT_HI16);
6709 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6710 mips_gp_register);
6711 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6712 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6713 if (breg != 0)
6714 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6715 tempreg, tempreg, breg);
6716 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6717
6718 relax_switch ();
6719 offset_expr.X_add_number = expr1.X_add_number;
6720 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6721 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6722 if (breg != 0)
6723 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6724 tempreg, tempreg, breg);
6725 macro_build (&offset_expr, s, fmt, treg,
6726 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6727 relax_end ();
6728 }
6729 else
6730 abort ();
6731
6732 break;
6733
6734 case M_LI:
6735 case M_LI_S:
6736 load_register (treg, &imm_expr, 0);
6737 break;
6738
6739 case M_DLI:
6740 load_register (treg, &imm_expr, 1);
6741 break;
6742
6743 case M_LI_SS:
6744 if (imm_expr.X_op == O_constant)
6745 {
6746 used_at = 1;
6747 load_register (AT, &imm_expr, 0);
6748 macro_build (NULL, "mtc1", "t,G", AT, treg);
6749 break;
6750 }
6751 else
6752 {
6753 assert (offset_expr.X_op == O_symbol
6754 && strcmp (segment_name (S_GET_SEGMENT
6755 (offset_expr.X_add_symbol)),
6756 ".lit4") == 0
6757 && offset_expr.X_add_number == 0);
6758 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
6759 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6760 break;
6761 }
6762
6763 case M_LI_D:
6764 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
6765 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
6766 order 32 bits of the value and the low order 32 bits are either
6767 zero or in OFFSET_EXPR. */
6768 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6769 {
6770 if (HAVE_64BIT_GPRS)
6771 load_register (treg, &imm_expr, 1);
6772 else
6773 {
6774 int hreg, lreg;
6775
6776 if (target_big_endian)
6777 {
6778 hreg = treg;
6779 lreg = treg + 1;
6780 }
6781 else
6782 {
6783 hreg = treg + 1;
6784 lreg = treg;
6785 }
6786
6787 if (hreg <= 31)
6788 load_register (hreg, &imm_expr, 0);
6789 if (lreg <= 31)
6790 {
6791 if (offset_expr.X_op == O_absent)
6792 move_register (lreg, 0);
6793 else
6794 {
6795 assert (offset_expr.X_op == O_constant);
6796 load_register (lreg, &offset_expr, 0);
6797 }
6798 }
6799 }
6800 break;
6801 }
6802
6803 /* We know that sym is in the .rdata section. First we get the
6804 upper 16 bits of the address. */
6805 if (mips_pic == NO_PIC)
6806 {
6807 macro_build_lui (&offset_expr, AT);
6808 used_at = 1;
6809 }
6810 else
6811 {
6812 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6813 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6814 used_at = 1;
6815 }
6816
6817 /* Now we load the register(s). */
6818 if (HAVE_64BIT_GPRS)
6819 {
6820 used_at = 1;
6821 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6822 }
6823 else
6824 {
6825 used_at = 1;
6826 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6827 if (treg != RA)
6828 {
6829 /* FIXME: How in the world do we deal with the possible
6830 overflow here? */
6831 offset_expr.X_add_number += 4;
6832 macro_build (&offset_expr, "lw", "t,o(b)",
6833 treg + 1, BFD_RELOC_LO16, AT);
6834 }
6835 }
6836 break;
6837
6838 case M_LI_DD:
6839 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
6840 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
6841 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
6842 the value and the low order 32 bits are either zero or in
6843 OFFSET_EXPR. */
6844 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6845 {
6846 used_at = 1;
6847 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
6848 if (HAVE_64BIT_FPRS)
6849 {
6850 assert (HAVE_64BIT_GPRS);
6851 macro_build (NULL, "dmtc1", "t,S", AT, treg);
6852 }
6853 else
6854 {
6855 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
6856 if (offset_expr.X_op == O_absent)
6857 macro_build (NULL, "mtc1", "t,G", 0, treg);
6858 else
6859 {
6860 assert (offset_expr.X_op == O_constant);
6861 load_register (AT, &offset_expr, 0);
6862 macro_build (NULL, "mtc1", "t,G", AT, treg);
6863 }
6864 }
6865 break;
6866 }
6867
6868 assert (offset_expr.X_op == O_symbol
6869 && offset_expr.X_add_number == 0);
6870 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
6871 if (strcmp (s, ".lit8") == 0)
6872 {
6873 if (mips_opts.isa != ISA_MIPS1)
6874 {
6875 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
6876 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6877 break;
6878 }
6879 breg = mips_gp_register;
6880 r = BFD_RELOC_MIPS_LITERAL;
6881 goto dob;
6882 }
6883 else
6884 {
6885 assert (strcmp (s, RDATA_SECTION_NAME) == 0);
6886 used_at = 1;
6887 if (mips_pic != NO_PIC)
6888 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6889 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6890 else
6891 {
6892 /* FIXME: This won't work for a 64 bit address. */
6893 macro_build_lui (&offset_expr, AT);
6894 }
6895
6896 if (mips_opts.isa != ISA_MIPS1)
6897 {
6898 macro_build (&offset_expr, "ldc1", "T,o(b)",
6899 treg, BFD_RELOC_LO16, AT);
6900 break;
6901 }
6902 breg = AT;
6903 r = BFD_RELOC_LO16;
6904 goto dob;
6905 }
6906
6907 case M_L_DOB:
6908 /* Even on a big endian machine $fn comes before $fn+1. We have
6909 to adjust when loading from memory. */
6910 r = BFD_RELOC_LO16;
6911 dob:
6912 assert (mips_opts.isa == ISA_MIPS1);
6913 macro_build (&offset_expr, "lwc1", "T,o(b)",
6914 target_big_endian ? treg + 1 : treg, r, breg);
6915 /* FIXME: A possible overflow which I don't know how to deal
6916 with. */
6917 offset_expr.X_add_number += 4;
6918 macro_build (&offset_expr, "lwc1", "T,o(b)",
6919 target_big_endian ? treg : treg + 1, r, breg);
6920 break;
6921
6922 case M_L_DAB:
6923 /*
6924 * The MIPS assembler seems to check for X_add_number not
6925 * being double aligned and generating:
6926 * lui at,%hi(foo+1)
6927 * addu at,at,v1
6928 * addiu at,at,%lo(foo+1)
6929 * lwc1 f2,0(at)
6930 * lwc1 f3,4(at)
6931 * But, the resulting address is the same after relocation so why
6932 * generate the extra instruction?
6933 */
6934 /* Itbl support may require additional care here. */
6935 coproc = 1;
6936 if (mips_opts.isa != ISA_MIPS1)
6937 {
6938 s = "ldc1";
6939 goto ld;
6940 }
6941
6942 s = "lwc1";
6943 fmt = "T,o(b)";
6944 goto ldd_std;
6945
6946 case M_S_DAB:
6947 if (mips_opts.isa != ISA_MIPS1)
6948 {
6949 s = "sdc1";
6950 goto st;
6951 }
6952
6953 s = "swc1";
6954 fmt = "T,o(b)";
6955 /* Itbl support may require additional care here. */
6956 coproc = 1;
6957 goto ldd_std;
6958
6959 case M_LD_AB:
6960 if (HAVE_64BIT_GPRS)
6961 {
6962 s = "ld";
6963 goto ld;
6964 }
6965
6966 s = "lw";
6967 fmt = "t,o(b)";
6968 goto ldd_std;
6969
6970 case M_SD_AB:
6971 if (HAVE_64BIT_GPRS)
6972 {
6973 s = "sd";
6974 goto st;
6975 }
6976
6977 s = "sw";
6978 fmt = "t,o(b)";
6979
6980 ldd_std:
6981 if (offset_expr.X_op != O_symbol
6982 && offset_expr.X_op != O_constant)
6983 {
6984 as_bad (_("expression too complex"));
6985 offset_expr.X_op = O_constant;
6986 }
6987
6988 if (HAVE_32BIT_ADDRESSES
6989 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
6990 {
6991 char value [32];
6992
6993 sprintf_vma (value, offset_expr.X_add_number);
6994 as_bad (_("Number (0x%s) larger than 32 bits"), value);
6995 }
6996
6997 /* Even on a big endian machine $fn comes before $fn+1. We have
6998 to adjust when loading from memory. We set coproc if we must
6999 load $fn+1 first. */
7000 /* Itbl support may require additional care here. */
7001 if (! target_big_endian)
7002 coproc = 0;
7003
7004 if (mips_pic == NO_PIC
7005 || offset_expr.X_op == O_constant)
7006 {
7007 /* If this is a reference to a GP relative symbol, we want
7008 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
7009 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
7010 If we have a base register, we use this
7011 addu $at,$breg,$gp
7012 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
7013 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
7014 If this is not a GP relative symbol, we want
7015 lui $at,<sym> (BFD_RELOC_HI16_S)
7016 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7017 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7018 If there is a base register, we add it to $at after the
7019 lui instruction. If there is a constant, we always use
7020 the last case. */
7021 if (offset_expr.X_op == O_symbol
7022 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7023 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7024 {
7025 relax_start (offset_expr.X_add_symbol);
7026 if (breg == 0)
7027 {
7028 tempreg = mips_gp_register;
7029 }
7030 else
7031 {
7032 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7033 AT, breg, mips_gp_register);
7034 tempreg = AT;
7035 used_at = 1;
7036 }
7037
7038 /* Itbl support may require additional care here. */
7039 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7040 BFD_RELOC_GPREL16, tempreg);
7041 offset_expr.X_add_number += 4;
7042
7043 /* Set mips_optimize to 2 to avoid inserting an
7044 undesired nop. */
7045 hold_mips_optimize = mips_optimize;
7046 mips_optimize = 2;
7047 /* Itbl support may require additional care here. */
7048 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7049 BFD_RELOC_GPREL16, tempreg);
7050 mips_optimize = hold_mips_optimize;
7051
7052 relax_switch ();
7053
7054 /* We just generated two relocs. When tc_gen_reloc
7055 handles this case, it will skip the first reloc and
7056 handle the second. The second reloc already has an
7057 extra addend of 4, which we added above. We must
7058 subtract it out, and then subtract another 4 to make
7059 the first reloc come out right. The second reloc
7060 will come out right because we are going to add 4 to
7061 offset_expr when we build its instruction below.
7062
7063 If we have a symbol, then we don't want to include
7064 the offset, because it will wind up being included
7065 when we generate the reloc. */
7066
7067 if (offset_expr.X_op == O_constant)
7068 offset_expr.X_add_number -= 8;
7069 else
7070 {
7071 offset_expr.X_add_number = -4;
7072 offset_expr.X_op = O_constant;
7073 }
7074 }
7075 used_at = 1;
7076 macro_build_lui (&offset_expr, AT);
7077 if (breg != 0)
7078 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7079 /* Itbl support may require additional care here. */
7080 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7081 BFD_RELOC_LO16, AT);
7082 /* FIXME: How do we handle overflow here? */
7083 offset_expr.X_add_number += 4;
7084 /* Itbl support may require additional care here. */
7085 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7086 BFD_RELOC_LO16, AT);
7087 if (mips_relax.sequence)
7088 relax_end ();
7089 }
7090 else if (!mips_big_got)
7091 {
7092 /* If this is a reference to an external symbol, we want
7093 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7094 nop
7095 <op> $treg,0($at)
7096 <op> $treg+1,4($at)
7097 Otherwise we want
7098 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7099 nop
7100 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7101 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7102 If there is a base register we add it to $at before the
7103 lwc1 instructions. If there is a constant we include it
7104 in the lwc1 instructions. */
7105 used_at = 1;
7106 expr1.X_add_number = offset_expr.X_add_number;
7107 if (expr1.X_add_number < -0x8000
7108 || expr1.X_add_number >= 0x8000 - 4)
7109 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7110 load_got_offset (AT, &offset_expr);
7111 load_delay_nop ();
7112 if (breg != 0)
7113 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7114
7115 /* Set mips_optimize to 2 to avoid inserting an undesired
7116 nop. */
7117 hold_mips_optimize = mips_optimize;
7118 mips_optimize = 2;
7119
7120 /* Itbl support may require additional care here. */
7121 relax_start (offset_expr.X_add_symbol);
7122 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7123 BFD_RELOC_LO16, AT);
7124 expr1.X_add_number += 4;
7125 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7126 BFD_RELOC_LO16, AT);
7127 relax_switch ();
7128 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7129 BFD_RELOC_LO16, AT);
7130 offset_expr.X_add_number += 4;
7131 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7132 BFD_RELOC_LO16, AT);
7133 relax_end ();
7134
7135 mips_optimize = hold_mips_optimize;
7136 }
7137 else if (mips_big_got)
7138 {
7139 int gpdelay;
7140
7141 /* If this is a reference to an external symbol, we want
7142 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7143 addu $at,$at,$gp
7144 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
7145 nop
7146 <op> $treg,0($at)
7147 <op> $treg+1,4($at)
7148 Otherwise we want
7149 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7150 nop
7151 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7152 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7153 If there is a base register we add it to $at before the
7154 lwc1 instructions. If there is a constant we include it
7155 in the lwc1 instructions. */
7156 used_at = 1;
7157 expr1.X_add_number = offset_expr.X_add_number;
7158 offset_expr.X_add_number = 0;
7159 if (expr1.X_add_number < -0x8000
7160 || expr1.X_add_number >= 0x8000 - 4)
7161 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7162 gpdelay = reg_needs_delay (mips_gp_register);
7163 relax_start (offset_expr.X_add_symbol);
7164 macro_build (&offset_expr, "lui", "t,u",
7165 AT, BFD_RELOC_MIPS_GOT_HI16);
7166 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7167 AT, AT, mips_gp_register);
7168 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7169 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
7170 load_delay_nop ();
7171 if (breg != 0)
7172 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7173 /* Itbl support may require additional care here. */
7174 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7175 BFD_RELOC_LO16, AT);
7176 expr1.X_add_number += 4;
7177
7178 /* Set mips_optimize to 2 to avoid inserting an undesired
7179 nop. */
7180 hold_mips_optimize = mips_optimize;
7181 mips_optimize = 2;
7182 /* Itbl support may require additional care here. */
7183 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7184 BFD_RELOC_LO16, AT);
7185 mips_optimize = hold_mips_optimize;
7186 expr1.X_add_number -= 4;
7187
7188 relax_switch ();
7189 offset_expr.X_add_number = expr1.X_add_number;
7190 if (gpdelay)
7191 macro_build (NULL, "nop", "");
7192 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7193 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7194 load_delay_nop ();
7195 if (breg != 0)
7196 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7197 /* Itbl support may require additional care here. */
7198 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7199 BFD_RELOC_LO16, AT);
7200 offset_expr.X_add_number += 4;
7201
7202 /* Set mips_optimize to 2 to avoid inserting an undesired
7203 nop. */
7204 hold_mips_optimize = mips_optimize;
7205 mips_optimize = 2;
7206 /* Itbl support may require additional care here. */
7207 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7208 BFD_RELOC_LO16, AT);
7209 mips_optimize = hold_mips_optimize;
7210 relax_end ();
7211 }
7212 else
7213 abort ();
7214
7215 break;
7216
7217 case M_LD_OB:
7218 s = "lw";
7219 goto sd_ob;
7220 case M_SD_OB:
7221 s = "sw";
7222 sd_ob:
7223 assert (HAVE_32BIT_ADDRESSES);
7224 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
7225 offset_expr.X_add_number += 4;
7226 macro_build (&offset_expr, s, "t,o(b)", treg + 1, BFD_RELOC_LO16, breg);
7227 break;
7228
7229 /* New code added to support COPZ instructions.
7230 This code builds table entries out of the macros in mip_opcodes.
7231 R4000 uses interlocks to handle coproc delays.
7232 Other chips (like the R3000) require nops to be inserted for delays.
7233
7234 FIXME: Currently, we require that the user handle delays.
7235 In order to fill delay slots for non-interlocked chips,
7236 we must have a way to specify delays based on the coprocessor.
7237 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
7238 What are the side-effects of the cop instruction?
7239 What cache support might we have and what are its effects?
7240 Both coprocessor & memory require delays. how long???
7241 What registers are read/set/modified?
7242
7243 If an itbl is provided to interpret cop instructions,
7244 this knowledge can be encoded in the itbl spec. */
7245
7246 case M_COP0:
7247 s = "c0";
7248 goto copz;
7249 case M_COP1:
7250 s = "c1";
7251 goto copz;
7252 case M_COP2:
7253 s = "c2";
7254 goto copz;
7255 case M_COP3:
7256 s = "c3";
7257 copz:
7258 if (NO_ISA_COP (mips_opts.arch)
7259 && (ip->insn_mo->pinfo2 & INSN2_M_FP_S) == 0)
7260 {
7261 as_bad (_("opcode not supported on this processor: %s"),
7262 mips_cpu_info_from_arch (mips_opts.arch)->name);
7263 break;
7264 }
7265
7266 /* For now we just do C (same as Cz). The parameter will be
7267 stored in insn_opcode by mips_ip. */
7268 macro_build (NULL, s, "C", ip->insn_opcode);
7269 break;
7270
7271 case M_MOVE:
7272 move_register (dreg, sreg);
7273 break;
7274
7275 #ifdef LOSING_COMPILER
7276 default:
7277 /* Try and see if this is a new itbl instruction.
7278 This code builds table entries out of the macros in mip_opcodes.
7279 FIXME: For now we just assemble the expression and pass it's
7280 value along as a 32-bit immediate.
7281 We may want to have the assembler assemble this value,
7282 so that we gain the assembler's knowledge of delay slots,
7283 symbols, etc.
7284 Would it be more efficient to use mask (id) here? */
7285 if (itbl_have_entries
7286 && (immed_expr = itbl_assemble (ip->insn_mo->name, "")))
7287 {
7288 s = ip->insn_mo->name;
7289 s2 = "cop3";
7290 coproc = ITBL_DECODE_PNUM (immed_expr);;
7291 macro_build (&immed_expr, s, "C");
7292 break;
7293 }
7294 macro2 (ip);
7295 break;
7296 }
7297 if (!mips_opts.at && used_at)
7298 as_bad (_("Macro used $at after \".set noat\""));
7299 }
7300
7301 static void
7302 macro2 (struct mips_cl_insn *ip)
7303 {
7304 unsigned int treg, sreg, dreg, breg;
7305 unsigned int tempreg;
7306 int mask;
7307 int used_at;
7308 expressionS expr1;
7309 const char *s;
7310 const char *s2;
7311 const char *fmt;
7312 int likely = 0;
7313 int dbl = 0;
7314 int coproc = 0;
7315 int lr = 0;
7316 int imm = 0;
7317 int off;
7318 offsetT maxnum;
7319 bfd_reloc_code_real_type r;
7320
7321 treg = (ip->insn_opcode >> 16) & 0x1f;
7322 dreg = (ip->insn_opcode >> 11) & 0x1f;
7323 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
7324 mask = ip->insn_mo->mask;
7325
7326 expr1.X_op = O_constant;
7327 expr1.X_op_symbol = NULL;
7328 expr1.X_add_symbol = NULL;
7329 expr1.X_add_number = 1;
7330
7331 switch (mask)
7332 {
7333 #endif /* LOSING_COMPILER */
7334
7335 case M_DMUL:
7336 dbl = 1;
7337 case M_MUL:
7338 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
7339 macro_build (NULL, "mflo", "d", dreg);
7340 break;
7341
7342 case M_DMUL_I:
7343 dbl = 1;
7344 case M_MUL_I:
7345 /* The MIPS assembler some times generates shifts and adds. I'm
7346 not trying to be that fancy. GCC should do this for us
7347 anyway. */
7348 used_at = 1;
7349 load_register (AT, &imm_expr, dbl);
7350 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
7351 macro_build (NULL, "mflo", "d", dreg);
7352 break;
7353
7354 case M_DMULO_I:
7355 dbl = 1;
7356 case M_MULO_I:
7357 imm = 1;
7358 goto do_mulo;
7359
7360 case M_DMULO:
7361 dbl = 1;
7362 case M_MULO:
7363 do_mulo:
7364 start_noreorder ();
7365 used_at = 1;
7366 if (imm)
7367 load_register (AT, &imm_expr, dbl);
7368 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
7369 macro_build (NULL, "mflo", "d", dreg);
7370 macro_build (NULL, dbl ? "dsra32" : "sra", "d,w,<", dreg, dreg, RA);
7371 macro_build (NULL, "mfhi", "d", AT);
7372 if (mips_trap)
7373 macro_build (NULL, "tne", "s,t,q", dreg, AT, 6);
7374 else
7375 {
7376 expr1.X_add_number = 8;
7377 macro_build (&expr1, "beq", "s,t,p", dreg, AT);
7378 macro_build (NULL, "nop", "", 0);
7379 macro_build (NULL, "break", "c", 6);
7380 }
7381 end_noreorder ();
7382 macro_build (NULL, "mflo", "d", dreg);
7383 break;
7384
7385 case M_DMULOU_I:
7386 dbl = 1;
7387 case M_MULOU_I:
7388 imm = 1;
7389 goto do_mulou;
7390
7391 case M_DMULOU:
7392 dbl = 1;
7393 case M_MULOU:
7394 do_mulou:
7395 start_noreorder ();
7396 used_at = 1;
7397 if (imm)
7398 load_register (AT, &imm_expr, dbl);
7399 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
7400 sreg, imm ? AT : treg);
7401 macro_build (NULL, "mfhi", "d", AT);
7402 macro_build (NULL, "mflo", "d", dreg);
7403 if (mips_trap)
7404 macro_build (NULL, "tne", "s,t,q", AT, 0, 6);
7405 else
7406 {
7407 expr1.X_add_number = 8;
7408 macro_build (&expr1, "beq", "s,t,p", AT, 0);
7409 macro_build (NULL, "nop", "", 0);
7410 macro_build (NULL, "break", "c", 6);
7411 }
7412 end_noreorder ();
7413 break;
7414
7415 case M_DROL:
7416 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7417 {
7418 if (dreg == sreg)
7419 {
7420 tempreg = AT;
7421 used_at = 1;
7422 }
7423 else
7424 {
7425 tempreg = dreg;
7426 }
7427 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
7428 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
7429 break;
7430 }
7431 used_at = 1;
7432 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7433 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
7434 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
7435 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7436 break;
7437
7438 case M_ROL:
7439 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7440 {
7441 if (dreg == sreg)
7442 {
7443 tempreg = AT;
7444 used_at = 1;
7445 }
7446 else
7447 {
7448 tempreg = dreg;
7449 }
7450 macro_build (NULL, "negu", "d,w", tempreg, treg);
7451 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
7452 break;
7453 }
7454 used_at = 1;
7455 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7456 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
7457 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
7458 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7459 break;
7460
7461 case M_DROL_I:
7462 {
7463 unsigned int rot;
7464 char *l, *r;
7465
7466 if (imm_expr.X_op != O_constant)
7467 as_bad (_("Improper rotate count"));
7468 rot = imm_expr.X_add_number & 0x3f;
7469 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7470 {
7471 rot = (64 - rot) & 0x3f;
7472 if (rot >= 32)
7473 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7474 else
7475 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7476 break;
7477 }
7478 if (rot == 0)
7479 {
7480 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7481 break;
7482 }
7483 l = (rot < 0x20) ? "dsll" : "dsll32";
7484 r = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
7485 rot &= 0x1f;
7486 used_at = 1;
7487 macro_build (NULL, l, "d,w,<", AT, sreg, rot);
7488 macro_build (NULL, r, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7489 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7490 }
7491 break;
7492
7493 case M_ROL_I:
7494 {
7495 unsigned int rot;
7496
7497 if (imm_expr.X_op != O_constant)
7498 as_bad (_("Improper rotate count"));
7499 rot = imm_expr.X_add_number & 0x1f;
7500 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7501 {
7502 macro_build (NULL, "ror", "d,w,<", dreg, sreg, (32 - rot) & 0x1f);
7503 break;
7504 }
7505 if (rot == 0)
7506 {
7507 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7508 break;
7509 }
7510 used_at = 1;
7511 macro_build (NULL, "sll", "d,w,<", AT, sreg, rot);
7512 macro_build (NULL, "srl", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7513 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7514 }
7515 break;
7516
7517 case M_DROR:
7518 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7519 {
7520 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
7521 break;
7522 }
7523 used_at = 1;
7524 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7525 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
7526 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
7527 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7528 break;
7529
7530 case M_ROR:
7531 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7532 {
7533 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
7534 break;
7535 }
7536 used_at = 1;
7537 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7538 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
7539 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
7540 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7541 break;
7542
7543 case M_DROR_I:
7544 {
7545 unsigned int rot;
7546 char *l, *r;
7547
7548 if (imm_expr.X_op != O_constant)
7549 as_bad (_("Improper rotate count"));
7550 rot = imm_expr.X_add_number & 0x3f;
7551 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7552 {
7553 if (rot >= 32)
7554 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7555 else
7556 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7557 break;
7558 }
7559 if (rot == 0)
7560 {
7561 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7562 break;
7563 }
7564 r = (rot < 0x20) ? "dsrl" : "dsrl32";
7565 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
7566 rot &= 0x1f;
7567 used_at = 1;
7568 macro_build (NULL, r, "d,w,<", AT, sreg, rot);
7569 macro_build (NULL, l, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7570 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7571 }
7572 break;
7573
7574 case M_ROR_I:
7575 {
7576 unsigned int rot;
7577
7578 if (imm_expr.X_op != O_constant)
7579 as_bad (_("Improper rotate count"));
7580 rot = imm_expr.X_add_number & 0x1f;
7581 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7582 {
7583 macro_build (NULL, "ror", "d,w,<", dreg, sreg, rot);
7584 break;
7585 }
7586 if (rot == 0)
7587 {
7588 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7589 break;
7590 }
7591 used_at = 1;
7592 macro_build (NULL, "srl", "d,w,<", AT, sreg, rot);
7593 macro_build (NULL, "sll", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7594 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7595 }
7596 break;
7597
7598 case M_S_DOB:
7599 assert (mips_opts.isa == ISA_MIPS1);
7600 /* Even on a big endian machine $fn comes before $fn+1. We have
7601 to adjust when storing to memory. */
7602 macro_build (&offset_expr, "swc1", "T,o(b)",
7603 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
7604 offset_expr.X_add_number += 4;
7605 macro_build (&offset_expr, "swc1", "T,o(b)",
7606 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
7607 break;
7608
7609 case M_SEQ:
7610 if (sreg == 0)
7611 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
7612 else if (treg == 0)
7613 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7614 else
7615 {
7616 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7617 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7618 }
7619 break;
7620
7621 case M_SEQ_I:
7622 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7623 {
7624 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7625 break;
7626 }
7627 if (sreg == 0)
7628 {
7629 as_warn (_("Instruction %s: result is always false"),
7630 ip->insn_mo->name);
7631 move_register (dreg, 0);
7632 break;
7633 }
7634 if (CPU_HAS_SEQ (mips_opts.arch)
7635 && -512 <= imm_expr.X_add_number
7636 && imm_expr.X_add_number < 512)
7637 {
7638 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg,
7639 imm_expr.X_add_number);
7640 break;
7641 }
7642 if (imm_expr.X_op == O_constant
7643 && imm_expr.X_add_number >= 0
7644 && imm_expr.X_add_number < 0x10000)
7645 {
7646 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7647 }
7648 else if (imm_expr.X_op == O_constant
7649 && imm_expr.X_add_number > -0x8000
7650 && imm_expr.X_add_number < 0)
7651 {
7652 imm_expr.X_add_number = -imm_expr.X_add_number;
7653 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7654 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7655 }
7656 else if (CPU_HAS_SEQ (mips_opts.arch))
7657 {
7658 used_at = 1;
7659 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7660 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT);
7661 break;
7662 }
7663 else
7664 {
7665 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7666 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7667 used_at = 1;
7668 }
7669 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7670 break;
7671
7672 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
7673 s = "slt";
7674 goto sge;
7675 case M_SGEU:
7676 s = "sltu";
7677 sge:
7678 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
7679 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7680 break;
7681
7682 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
7683 case M_SGEU_I:
7684 if (imm_expr.X_op == O_constant
7685 && imm_expr.X_add_number >= -0x8000
7686 && imm_expr.X_add_number < 0x8000)
7687 {
7688 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
7689 dreg, sreg, BFD_RELOC_LO16);
7690 }
7691 else
7692 {
7693 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7694 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
7695 dreg, sreg, AT);
7696 used_at = 1;
7697 }
7698 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7699 break;
7700
7701 case M_SGT: /* sreg > treg <==> treg < sreg */
7702 s = "slt";
7703 goto sgt;
7704 case M_SGTU:
7705 s = "sltu";
7706 sgt:
7707 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7708 break;
7709
7710 case M_SGT_I: /* sreg > I <==> I < sreg */
7711 s = "slt";
7712 goto sgti;
7713 case M_SGTU_I:
7714 s = "sltu";
7715 sgti:
7716 used_at = 1;
7717 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7718 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7719 break;
7720
7721 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
7722 s = "slt";
7723 goto sle;
7724 case M_SLEU:
7725 s = "sltu";
7726 sle:
7727 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7728 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7729 break;
7730
7731 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
7732 s = "slt";
7733 goto slei;
7734 case M_SLEU_I:
7735 s = "sltu";
7736 slei:
7737 used_at = 1;
7738 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7739 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7740 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7741 break;
7742
7743 case M_SLT_I:
7744 if (imm_expr.X_op == O_constant
7745 && imm_expr.X_add_number >= -0x8000
7746 && imm_expr.X_add_number < 0x8000)
7747 {
7748 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7749 break;
7750 }
7751 used_at = 1;
7752 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7753 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
7754 break;
7755
7756 case M_SLTU_I:
7757 if (imm_expr.X_op == O_constant
7758 && imm_expr.X_add_number >= -0x8000
7759 && imm_expr.X_add_number < 0x8000)
7760 {
7761 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
7762 BFD_RELOC_LO16);
7763 break;
7764 }
7765 used_at = 1;
7766 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7767 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
7768 break;
7769
7770 case M_SNE:
7771 if (sreg == 0)
7772 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
7773 else if (treg == 0)
7774 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7775 else
7776 {
7777 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7778 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7779 }
7780 break;
7781
7782 case M_SNE_I:
7783 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7784 {
7785 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7786 break;
7787 }
7788 if (sreg == 0)
7789 {
7790 as_warn (_("Instruction %s: result is always true"),
7791 ip->insn_mo->name);
7792 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
7793 dreg, 0, BFD_RELOC_LO16);
7794 break;
7795 }
7796 if (CPU_HAS_SEQ (mips_opts.arch)
7797 && -512 <= imm_expr.X_add_number
7798 && imm_expr.X_add_number < 512)
7799 {
7800 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg,
7801 imm_expr.X_add_number);
7802 break;
7803 }
7804 if (imm_expr.X_op == O_constant
7805 && imm_expr.X_add_number >= 0
7806 && imm_expr.X_add_number < 0x10000)
7807 {
7808 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7809 }
7810 else if (imm_expr.X_op == O_constant
7811 && imm_expr.X_add_number > -0x8000
7812 && imm_expr.X_add_number < 0)
7813 {
7814 imm_expr.X_add_number = -imm_expr.X_add_number;
7815 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7816 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7817 }
7818 else if (CPU_HAS_SEQ (mips_opts.arch))
7819 {
7820 used_at = 1;
7821 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7822 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT);
7823 break;
7824 }
7825 else
7826 {
7827 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7828 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7829 used_at = 1;
7830 }
7831 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7832 break;
7833
7834 case M_DSUB_I:
7835 dbl = 1;
7836 case M_SUB_I:
7837 if (imm_expr.X_op == O_constant
7838 && imm_expr.X_add_number > -0x8000
7839 && imm_expr.X_add_number <= 0x8000)
7840 {
7841 imm_expr.X_add_number = -imm_expr.X_add_number;
7842 macro_build (&imm_expr, dbl ? "daddi" : "addi", "t,r,j",
7843 dreg, sreg, BFD_RELOC_LO16);
7844 break;
7845 }
7846 used_at = 1;
7847 load_register (AT, &imm_expr, dbl);
7848 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, sreg, AT);
7849 break;
7850
7851 case M_DSUBU_I:
7852 dbl = 1;
7853 case M_SUBU_I:
7854 if (imm_expr.X_op == O_constant
7855 && imm_expr.X_add_number > -0x8000
7856 && imm_expr.X_add_number <= 0x8000)
7857 {
7858 imm_expr.X_add_number = -imm_expr.X_add_number;
7859 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "t,r,j",
7860 dreg, sreg, BFD_RELOC_LO16);
7861 break;
7862 }
7863 used_at = 1;
7864 load_register (AT, &imm_expr, dbl);
7865 macro_build (NULL, dbl ? "dsubu" : "subu", "d,v,t", dreg, sreg, AT);
7866 break;
7867
7868 case M_TEQ_I:
7869 s = "teq";
7870 goto trap;
7871 case M_TGE_I:
7872 s = "tge";
7873 goto trap;
7874 case M_TGEU_I:
7875 s = "tgeu";
7876 goto trap;
7877 case M_TLT_I:
7878 s = "tlt";
7879 goto trap;
7880 case M_TLTU_I:
7881 s = "tltu";
7882 goto trap;
7883 case M_TNE_I:
7884 s = "tne";
7885 trap:
7886 used_at = 1;
7887 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7888 macro_build (NULL, s, "s,t", sreg, AT);
7889 break;
7890
7891 case M_TRUNCWS:
7892 case M_TRUNCWD:
7893 assert (mips_opts.isa == ISA_MIPS1);
7894 used_at = 1;
7895 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
7896 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
7897
7898 /*
7899 * Is the double cfc1 instruction a bug in the mips assembler;
7900 * or is there a reason for it?
7901 */
7902 start_noreorder ();
7903 macro_build (NULL, "cfc1", "t,G", treg, RA);
7904 macro_build (NULL, "cfc1", "t,G", treg, RA);
7905 macro_build (NULL, "nop", "");
7906 expr1.X_add_number = 3;
7907 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
7908 expr1.X_add_number = 2;
7909 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
7910 macro_build (NULL, "ctc1", "t,G", AT, RA);
7911 macro_build (NULL, "nop", "");
7912 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
7913 dreg, sreg);
7914 macro_build (NULL, "ctc1", "t,G", treg, RA);
7915 macro_build (NULL, "nop", "");
7916 end_noreorder ();
7917 break;
7918
7919 case M_ULH:
7920 s = "lb";
7921 goto ulh;
7922 case M_ULHU:
7923 s = "lbu";
7924 ulh:
7925 used_at = 1;
7926 if (offset_expr.X_add_number >= 0x7fff)
7927 as_bad (_("operand overflow"));
7928 if (! target_big_endian)
7929 ++offset_expr.X_add_number;
7930 macro_build (&offset_expr, s, "t,o(b)", AT, BFD_RELOC_LO16, breg);
7931 if (! target_big_endian)
7932 --offset_expr.X_add_number;
7933 else
7934 ++offset_expr.X_add_number;
7935 macro_build (&offset_expr, "lbu", "t,o(b)", treg, BFD_RELOC_LO16, breg);
7936 macro_build (NULL, "sll", "d,w,<", AT, AT, 8);
7937 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
7938 break;
7939
7940 case M_ULD:
7941 s = "ldl";
7942 s2 = "ldr";
7943 off = 7;
7944 goto ulw;
7945 case M_ULW:
7946 s = "lwl";
7947 s2 = "lwr";
7948 off = 3;
7949 ulw:
7950 if (offset_expr.X_add_number >= 0x8000 - off)
7951 as_bad (_("operand overflow"));
7952 if (treg != breg)
7953 tempreg = treg;
7954 else
7955 {
7956 used_at = 1;
7957 tempreg = AT;
7958 }
7959 if (! target_big_endian)
7960 offset_expr.X_add_number += off;
7961 macro_build (&offset_expr, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
7962 if (! target_big_endian)
7963 offset_expr.X_add_number -= off;
7964 else
7965 offset_expr.X_add_number += off;
7966 macro_build (&offset_expr, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
7967
7968 /* If necessary, move the result in tempreg the final destination. */
7969 if (treg == tempreg)
7970 break;
7971 /* Protect second load's delay slot. */
7972 load_delay_nop ();
7973 move_register (treg, tempreg);
7974 break;
7975
7976 case M_ULD_A:
7977 s = "ldl";
7978 s2 = "ldr";
7979 off = 7;
7980 goto ulwa;
7981 case M_ULW_A:
7982 s = "lwl";
7983 s2 = "lwr";
7984 off = 3;
7985 ulwa:
7986 used_at = 1;
7987 load_address (AT, &offset_expr, &used_at);
7988 if (breg != 0)
7989 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
7990 if (! target_big_endian)
7991 expr1.X_add_number = off;
7992 else
7993 expr1.X_add_number = 0;
7994 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
7995 if (! target_big_endian)
7996 expr1.X_add_number = 0;
7997 else
7998 expr1.X_add_number = off;
7999 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8000 break;
8001
8002 case M_ULH_A:
8003 case M_ULHU_A:
8004 used_at = 1;
8005 load_address (AT, &offset_expr, &used_at);
8006 if (breg != 0)
8007 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8008 if (target_big_endian)
8009 expr1.X_add_number = 0;
8010 macro_build (&expr1, mask == M_ULH_A ? "lb" : "lbu", "t,o(b)",
8011 treg, BFD_RELOC_LO16, AT);
8012 if (target_big_endian)
8013 expr1.X_add_number = 1;
8014 else
8015 expr1.X_add_number = 0;
8016 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8017 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8018 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8019 break;
8020
8021 case M_USH:
8022 used_at = 1;
8023 if (offset_expr.X_add_number >= 0x7fff)
8024 as_bad (_("operand overflow"));
8025 if (target_big_endian)
8026 ++offset_expr.X_add_number;
8027 macro_build (&offset_expr, "sb", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8028 macro_build (NULL, "srl", "d,w,<", AT, treg, 8);
8029 if (target_big_endian)
8030 --offset_expr.X_add_number;
8031 else
8032 ++offset_expr.X_add_number;
8033 macro_build (&offset_expr, "sb", "t,o(b)", AT, BFD_RELOC_LO16, breg);
8034 break;
8035
8036 case M_USD:
8037 s = "sdl";
8038 s2 = "sdr";
8039 off = 7;
8040 goto usw;
8041 case M_USW:
8042 s = "swl";
8043 s2 = "swr";
8044 off = 3;
8045 usw:
8046 if (offset_expr.X_add_number >= 0x8000 - off)
8047 as_bad (_("operand overflow"));
8048 if (! target_big_endian)
8049 offset_expr.X_add_number += off;
8050 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8051 if (! target_big_endian)
8052 offset_expr.X_add_number -= off;
8053 else
8054 offset_expr.X_add_number += off;
8055 macro_build (&offset_expr, s2, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8056 break;
8057
8058 case M_USD_A:
8059 s = "sdl";
8060 s2 = "sdr";
8061 off = 7;
8062 goto uswa;
8063 case M_USW_A:
8064 s = "swl";
8065 s2 = "swr";
8066 off = 3;
8067 uswa:
8068 used_at = 1;
8069 load_address (AT, &offset_expr, &used_at);
8070 if (breg != 0)
8071 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8072 if (! target_big_endian)
8073 expr1.X_add_number = off;
8074 else
8075 expr1.X_add_number = 0;
8076 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8077 if (! target_big_endian)
8078 expr1.X_add_number = 0;
8079 else
8080 expr1.X_add_number = off;
8081 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8082 break;
8083
8084 case M_USH_A:
8085 used_at = 1;
8086 load_address (AT, &offset_expr, &used_at);
8087 if (breg != 0)
8088 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8089 if (! target_big_endian)
8090 expr1.X_add_number = 0;
8091 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8092 macro_build (NULL, "srl", "d,w,<", treg, treg, 8);
8093 if (! target_big_endian)
8094 expr1.X_add_number = 1;
8095 else
8096 expr1.X_add_number = 0;
8097 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8098 if (! target_big_endian)
8099 expr1.X_add_number = 0;
8100 else
8101 expr1.X_add_number = 1;
8102 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8103 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8104 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8105 break;
8106
8107 default:
8108 /* FIXME: Check if this is one of the itbl macros, since they
8109 are added dynamically. */
8110 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
8111 break;
8112 }
8113 if (!mips_opts.at && used_at)
8114 as_bad (_("Macro used $at after \".set noat\""));
8115 }
8116
8117 /* Implement macros in mips16 mode. */
8118
8119 static void
8120 mips16_macro (struct mips_cl_insn *ip)
8121 {
8122 int mask;
8123 int xreg, yreg, zreg, tmp;
8124 expressionS expr1;
8125 int dbl;
8126 const char *s, *s2, *s3;
8127
8128 mask = ip->insn_mo->mask;
8129
8130 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
8131 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
8132 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
8133
8134 expr1.X_op = O_constant;
8135 expr1.X_op_symbol = NULL;
8136 expr1.X_add_symbol = NULL;
8137 expr1.X_add_number = 1;
8138
8139 dbl = 0;
8140
8141 switch (mask)
8142 {
8143 default:
8144 internalError ();
8145
8146 case M_DDIV_3:
8147 dbl = 1;
8148 case M_DIV_3:
8149 s = "mflo";
8150 goto do_div3;
8151 case M_DREM_3:
8152 dbl = 1;
8153 case M_REM_3:
8154 s = "mfhi";
8155 do_div3:
8156 start_noreorder ();
8157 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
8158 expr1.X_add_number = 2;
8159 macro_build (&expr1, "bnez", "x,p", yreg);
8160 macro_build (NULL, "break", "6", 7);
8161
8162 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
8163 since that causes an overflow. We should do that as well,
8164 but I don't see how to do the comparisons without a temporary
8165 register. */
8166 end_noreorder ();
8167 macro_build (NULL, s, "x", zreg);
8168 break;
8169
8170 case M_DIVU_3:
8171 s = "divu";
8172 s2 = "mflo";
8173 goto do_divu3;
8174 case M_REMU_3:
8175 s = "divu";
8176 s2 = "mfhi";
8177 goto do_divu3;
8178 case M_DDIVU_3:
8179 s = "ddivu";
8180 s2 = "mflo";
8181 goto do_divu3;
8182 case M_DREMU_3:
8183 s = "ddivu";
8184 s2 = "mfhi";
8185 do_divu3:
8186 start_noreorder ();
8187 macro_build (NULL, s, "0,x,y", xreg, yreg);
8188 expr1.X_add_number = 2;
8189 macro_build (&expr1, "bnez", "x,p", yreg);
8190 macro_build (NULL, "break", "6", 7);
8191 end_noreorder ();
8192 macro_build (NULL, s2, "x", zreg);
8193 break;
8194
8195 case M_DMUL:
8196 dbl = 1;
8197 case M_MUL:
8198 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
8199 macro_build (NULL, "mflo", "x", zreg);
8200 break;
8201
8202 case M_DSUBU_I:
8203 dbl = 1;
8204 goto do_subu;
8205 case M_SUBU_I:
8206 do_subu:
8207 if (imm_expr.X_op != O_constant)
8208 as_bad (_("Unsupported large constant"));
8209 imm_expr.X_add_number = -imm_expr.X_add_number;
8210 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
8211 break;
8212
8213 case M_SUBU_I_2:
8214 if (imm_expr.X_op != O_constant)
8215 as_bad (_("Unsupported large constant"));
8216 imm_expr.X_add_number = -imm_expr.X_add_number;
8217 macro_build (&imm_expr, "addiu", "x,k", xreg);
8218 break;
8219
8220 case M_DSUBU_I_2:
8221 if (imm_expr.X_op != O_constant)
8222 as_bad (_("Unsupported large constant"));
8223 imm_expr.X_add_number = -imm_expr.X_add_number;
8224 macro_build (&imm_expr, "daddiu", "y,j", yreg);
8225 break;
8226
8227 case M_BEQ:
8228 s = "cmp";
8229 s2 = "bteqz";
8230 goto do_branch;
8231 case M_BNE:
8232 s = "cmp";
8233 s2 = "btnez";
8234 goto do_branch;
8235 case M_BLT:
8236 s = "slt";
8237 s2 = "btnez";
8238 goto do_branch;
8239 case M_BLTU:
8240 s = "sltu";
8241 s2 = "btnez";
8242 goto do_branch;
8243 case M_BLE:
8244 s = "slt";
8245 s2 = "bteqz";
8246 goto do_reverse_branch;
8247 case M_BLEU:
8248 s = "sltu";
8249 s2 = "bteqz";
8250 goto do_reverse_branch;
8251 case M_BGE:
8252 s = "slt";
8253 s2 = "bteqz";
8254 goto do_branch;
8255 case M_BGEU:
8256 s = "sltu";
8257 s2 = "bteqz";
8258 goto do_branch;
8259 case M_BGT:
8260 s = "slt";
8261 s2 = "btnez";
8262 goto do_reverse_branch;
8263 case M_BGTU:
8264 s = "sltu";
8265 s2 = "btnez";
8266
8267 do_reverse_branch:
8268 tmp = xreg;
8269 xreg = yreg;
8270 yreg = tmp;
8271
8272 do_branch:
8273 macro_build (NULL, s, "x,y", xreg, yreg);
8274 macro_build (&offset_expr, s2, "p");
8275 break;
8276
8277 case M_BEQ_I:
8278 s = "cmpi";
8279 s2 = "bteqz";
8280 s3 = "x,U";
8281 goto do_branch_i;
8282 case M_BNE_I:
8283 s = "cmpi";
8284 s2 = "btnez";
8285 s3 = "x,U";
8286 goto do_branch_i;
8287 case M_BLT_I:
8288 s = "slti";
8289 s2 = "btnez";
8290 s3 = "x,8";
8291 goto do_branch_i;
8292 case M_BLTU_I:
8293 s = "sltiu";
8294 s2 = "btnez";
8295 s3 = "x,8";
8296 goto do_branch_i;
8297 case M_BLE_I:
8298 s = "slti";
8299 s2 = "btnez";
8300 s3 = "x,8";
8301 goto do_addone_branch_i;
8302 case M_BLEU_I:
8303 s = "sltiu";
8304 s2 = "btnez";
8305 s3 = "x,8";
8306 goto do_addone_branch_i;
8307 case M_BGE_I:
8308 s = "slti";
8309 s2 = "bteqz";
8310 s3 = "x,8";
8311 goto do_branch_i;
8312 case M_BGEU_I:
8313 s = "sltiu";
8314 s2 = "bteqz";
8315 s3 = "x,8";
8316 goto do_branch_i;
8317 case M_BGT_I:
8318 s = "slti";
8319 s2 = "bteqz";
8320 s3 = "x,8";
8321 goto do_addone_branch_i;
8322 case M_BGTU_I:
8323 s = "sltiu";
8324 s2 = "bteqz";
8325 s3 = "x,8";
8326
8327 do_addone_branch_i:
8328 if (imm_expr.X_op != O_constant)
8329 as_bad (_("Unsupported large constant"));
8330 ++imm_expr.X_add_number;
8331
8332 do_branch_i:
8333 macro_build (&imm_expr, s, s3, xreg);
8334 macro_build (&offset_expr, s2, "p");
8335 break;
8336
8337 case M_ABS:
8338 expr1.X_add_number = 0;
8339 macro_build (&expr1, "slti", "x,8", yreg);
8340 if (xreg != yreg)
8341 move_register (xreg, yreg);
8342 expr1.X_add_number = 2;
8343 macro_build (&expr1, "bteqz", "p");
8344 macro_build (NULL, "neg", "x,w", xreg, xreg);
8345 }
8346 }
8347
8348 /* For consistency checking, verify that all bits are specified either
8349 by the match/mask part of the instruction definition, or by the
8350 operand list. */
8351 static int
8352 validate_mips_insn (const struct mips_opcode *opc)
8353 {
8354 const char *p = opc->args;
8355 char c;
8356 unsigned long used_bits = opc->mask;
8357
8358 if ((used_bits & opc->match) != opc->match)
8359 {
8360 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
8361 opc->name, opc->args);
8362 return 0;
8363 }
8364 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
8365 while (*p)
8366 switch (c = *p++)
8367 {
8368 case ',': break;
8369 case '(': break;
8370 case ')': break;
8371 case '+':
8372 switch (c = *p++)
8373 {
8374 case '1': USE_BITS (OP_MASK_UDI1, OP_SH_UDI1); break;
8375 case '2': USE_BITS (OP_MASK_UDI2, OP_SH_UDI2); break;
8376 case '3': USE_BITS (OP_MASK_UDI3, OP_SH_UDI3); break;
8377 case '4': USE_BITS (OP_MASK_UDI4, OP_SH_UDI4); break;
8378 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8379 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8380 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8381 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
8382 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8383 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8384 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8385 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8386 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8387 case 'I': break;
8388 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8389 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT);
8390 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8391 case 'x': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8392 case 'X': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8393 case 'p': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8394 case 'P': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8395 case 'Q': USE_BITS (OP_MASK_SEQI, OP_SH_SEQI); break;
8396 case 's': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8397 case 'S': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8398
8399 default:
8400 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
8401 c, opc->name, opc->args);
8402 return 0;
8403 }
8404 break;
8405 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8406 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8407 case 'A': break;
8408 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
8409 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
8410 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8411 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8412 case 'F': break;
8413 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8414 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8415 case 'I': break;
8416 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
8417 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8418 case 'L': break;
8419 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
8420 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
8421 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
8422 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
8423 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8424 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
8425 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8426 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8427 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8428 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8429 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8430 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8431 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8432 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
8433 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8434 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
8435 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8436 case 'f': break;
8437 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
8438 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8439 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8440 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
8441 case 'l': break;
8442 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8443 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8444 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
8445 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8446 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8447 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8448 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8449 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8450 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8451 case 'x': break;
8452 case 'z': break;
8453 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
8454 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
8455 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8456 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
8457 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
8458 case '[': break;
8459 case ']': break;
8460 case '2': USE_BITS (OP_MASK_BP, OP_SH_BP); break;
8461 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break;
8462 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break;
8463 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break;
8464 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8465 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break;
8466 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break;
8467 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break;
8468 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break;
8469 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break;
8470 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break;
8471 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break;
8472 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break;
8473 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break;
8474 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break;
8475 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break;
8476 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8477 default:
8478 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
8479 c, opc->name, opc->args);
8480 return 0;
8481 }
8482 #undef USE_BITS
8483 if (used_bits != 0xffffffff)
8484 {
8485 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
8486 ~used_bits & 0xffffffff, opc->name, opc->args);
8487 return 0;
8488 }
8489 return 1;
8490 }
8491
8492 /* UDI immediates. */
8493 struct mips_immed {
8494 char type;
8495 unsigned int shift;
8496 unsigned long mask;
8497 const char * desc;
8498 };
8499
8500 static const struct mips_immed mips_immed[] = {
8501 { '1', OP_SH_UDI1, OP_MASK_UDI1, 0},
8502 { '2', OP_SH_UDI2, OP_MASK_UDI2, 0},
8503 { '3', OP_SH_UDI3, OP_MASK_UDI3, 0},
8504 { '4', OP_SH_UDI4, OP_MASK_UDI4, 0},
8505 { 0,0,0,0 }
8506 };
8507
8508 /* Check whether an odd floating-point register is allowed. */
8509 static int
8510 mips_oddfpreg_ok (const struct mips_opcode *insn, int argnum)
8511 {
8512 const char *s = insn->name;
8513
8514 if (insn->pinfo == INSN_MACRO)
8515 /* Let a macro pass, we'll catch it later when it is expanded. */
8516 return 1;
8517
8518 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa))
8519 {
8520 /* Allow odd registers for single-precision ops. */
8521 switch (insn->pinfo & (FP_S | FP_D))
8522 {
8523 case FP_S:
8524 case 0:
8525 return 1; /* both single precision - ok */
8526 case FP_D:
8527 return 0; /* both double precision - fail */
8528 default:
8529 break;
8530 }
8531
8532 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
8533 s = strchr (insn->name, '.');
8534 if (argnum == 2)
8535 s = s != NULL ? strchr (s + 1, '.') : NULL;
8536 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
8537 }
8538
8539 /* Single-precision coprocessor loads and moves are OK too. */
8540 if ((insn->pinfo & FP_S)
8541 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
8542 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
8543 return 1;
8544
8545 return 0;
8546 }
8547
8548 /* This routine assembles an instruction into its binary format. As a
8549 side effect, it sets one of the global variables imm_reloc or
8550 offset_reloc to the type of relocation to do if one of the operands
8551 is an address expression. */
8552
8553 static void
8554 mips_ip (char *str, struct mips_cl_insn *ip)
8555 {
8556 char *s;
8557 const char *args;
8558 char c = 0;
8559 struct mips_opcode *insn;
8560 char *argsStart;
8561 unsigned int regno;
8562 unsigned int lastregno = 0;
8563 unsigned int lastpos = 0;
8564 unsigned int limlo, limhi;
8565 char *s_reset;
8566 char save_c = 0;
8567 offsetT min_range, max_range;
8568 int argnum;
8569 unsigned int rtype;
8570
8571 insn_error = NULL;
8572
8573 /* If the instruction contains a '.', we first try to match an instruction
8574 including the '.'. Then we try again without the '.'. */
8575 insn = NULL;
8576 for (s = str; *s != '\0' && !ISSPACE (*s); ++s)
8577 continue;
8578
8579 /* If we stopped on whitespace, then replace the whitespace with null for
8580 the call to hash_find. Save the character we replaced just in case we
8581 have to re-parse the instruction. */
8582 if (ISSPACE (*s))
8583 {
8584 save_c = *s;
8585 *s++ = '\0';
8586 }
8587
8588 insn = (struct mips_opcode *) hash_find (op_hash, str);
8589
8590 /* If we didn't find the instruction in the opcode table, try again, but
8591 this time with just the instruction up to, but not including the
8592 first '.'. */
8593 if (insn == NULL)
8594 {
8595 /* Restore the character we overwrite above (if any). */
8596 if (save_c)
8597 *(--s) = save_c;
8598
8599 /* Scan up to the first '.' or whitespace. */
8600 for (s = str;
8601 *s != '\0' && *s != '.' && !ISSPACE (*s);
8602 ++s)
8603 continue;
8604
8605 /* If we did not find a '.', then we can quit now. */
8606 if (*s != '.')
8607 {
8608 insn_error = "unrecognized opcode";
8609 return;
8610 }
8611
8612 /* Lookup the instruction in the hash table. */
8613 *s++ = '\0';
8614 if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL)
8615 {
8616 insn_error = "unrecognized opcode";
8617 return;
8618 }
8619 }
8620
8621 argsStart = s;
8622 for (;;)
8623 {
8624 bfd_boolean ok;
8625
8626 assert (strcmp (insn->name, str) == 0);
8627
8628 ok = is_opcode_valid (insn, FALSE);
8629 if (! ok)
8630 {
8631 if (insn + 1 < &mips_opcodes[NUMOPCODES]
8632 && strcmp (insn->name, insn[1].name) == 0)
8633 {
8634 ++insn;
8635 continue;
8636 }
8637 else
8638 {
8639 if (!insn_error)
8640 {
8641 static char buf[100];
8642 sprintf (buf,
8643 _("opcode not supported on this processor: %s (%s)"),
8644 mips_cpu_info_from_arch (mips_opts.arch)->name,
8645 mips_cpu_info_from_isa (mips_opts.isa)->name);
8646 insn_error = buf;
8647 }
8648 if (save_c)
8649 *(--s) = save_c;
8650 return;
8651 }
8652 }
8653
8654 create_insn (ip, insn);
8655 insn_error = NULL;
8656 argnum = 1;
8657 for (args = insn->args;; ++args)
8658 {
8659 int is_mdmx;
8660
8661 s += strspn (s, " \t");
8662 is_mdmx = 0;
8663 switch (*args)
8664 {
8665 case '\0': /* end of args */
8666 if (*s == '\0')
8667 return;
8668 break;
8669
8670 case '2': /* dsp 2-bit unsigned immediate in bit 11 */
8671 my_getExpression (&imm_expr, s);
8672 check_absolute_expr (ip, &imm_expr);
8673 if ((unsigned long) imm_expr.X_add_number != 1
8674 && (unsigned long) imm_expr.X_add_number != 3)
8675 {
8676 as_bad (_("BALIGN immediate not 1 or 3 (%lu)"),
8677 (unsigned long) imm_expr.X_add_number);
8678 }
8679 INSERT_OPERAND (BP, *ip, imm_expr.X_add_number);
8680 imm_expr.X_op = O_absent;
8681 s = expr_end;
8682 continue;
8683
8684 case '3': /* dsp 3-bit unsigned immediate in bit 21 */
8685 my_getExpression (&imm_expr, s);
8686 check_absolute_expr (ip, &imm_expr);
8687 if (imm_expr.X_add_number & ~OP_MASK_SA3)
8688 {
8689 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8690 OP_MASK_SA3, (unsigned long) imm_expr.X_add_number);
8691 }
8692 INSERT_OPERAND (SA3, *ip, imm_expr.X_add_number);
8693 imm_expr.X_op = O_absent;
8694 s = expr_end;
8695 continue;
8696
8697 case '4': /* dsp 4-bit unsigned immediate in bit 21 */
8698 my_getExpression (&imm_expr, s);
8699 check_absolute_expr (ip, &imm_expr);
8700 if (imm_expr.X_add_number & ~OP_MASK_SA4)
8701 {
8702 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8703 OP_MASK_SA4, (unsigned long) imm_expr.X_add_number);
8704 }
8705 INSERT_OPERAND (SA4, *ip, imm_expr.X_add_number);
8706 imm_expr.X_op = O_absent;
8707 s = expr_end;
8708 continue;
8709
8710 case '5': /* dsp 8-bit unsigned immediate in bit 16 */
8711 my_getExpression (&imm_expr, s);
8712 check_absolute_expr (ip, &imm_expr);
8713 if (imm_expr.X_add_number & ~OP_MASK_IMM8)
8714 {
8715 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8716 OP_MASK_IMM8, (unsigned long) imm_expr.X_add_number);
8717 }
8718 INSERT_OPERAND (IMM8, *ip, imm_expr.X_add_number);
8719 imm_expr.X_op = O_absent;
8720 s = expr_end;
8721 continue;
8722
8723 case '6': /* dsp 5-bit unsigned immediate in bit 21 */
8724 my_getExpression (&imm_expr, s);
8725 check_absolute_expr (ip, &imm_expr);
8726 if (imm_expr.X_add_number & ~OP_MASK_RS)
8727 {
8728 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8729 OP_MASK_RS, (unsigned long) imm_expr.X_add_number);
8730 }
8731 INSERT_OPERAND (RS, *ip, imm_expr.X_add_number);
8732 imm_expr.X_op = O_absent;
8733 s = expr_end;
8734 continue;
8735
8736 case '7': /* four dsp accumulators in bits 11,12 */
8737 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8738 s[3] >= '0' && s[3] <= '3')
8739 {
8740 regno = s[3] - '0';
8741 s += 4;
8742 INSERT_OPERAND (DSPACC, *ip, regno);
8743 continue;
8744 }
8745 else
8746 as_bad (_("Invalid dsp acc register"));
8747 break;
8748
8749 case '8': /* dsp 6-bit unsigned immediate in bit 11 */
8750 my_getExpression (&imm_expr, s);
8751 check_absolute_expr (ip, &imm_expr);
8752 if (imm_expr.X_add_number & ~OP_MASK_WRDSP)
8753 {
8754 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8755 OP_MASK_WRDSP,
8756 (unsigned long) imm_expr.X_add_number);
8757 }
8758 INSERT_OPERAND (WRDSP, *ip, imm_expr.X_add_number);
8759 imm_expr.X_op = O_absent;
8760 s = expr_end;
8761 continue;
8762
8763 case '9': /* four dsp accumulators in bits 21,22 */
8764 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8765 s[3] >= '0' && s[3] <= '3')
8766 {
8767 regno = s[3] - '0';
8768 s += 4;
8769 INSERT_OPERAND (DSPACC_S, *ip, regno);
8770 continue;
8771 }
8772 else
8773 as_bad (_("Invalid dsp acc register"));
8774 break;
8775
8776 case '0': /* dsp 6-bit signed immediate in bit 20 */
8777 my_getExpression (&imm_expr, s);
8778 check_absolute_expr (ip, &imm_expr);
8779 min_range = -((OP_MASK_DSPSFT + 1) >> 1);
8780 max_range = ((OP_MASK_DSPSFT + 1) >> 1) - 1;
8781 if (imm_expr.X_add_number < min_range ||
8782 imm_expr.X_add_number > max_range)
8783 {
8784 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8785 (long) min_range, (long) max_range,
8786 (long) imm_expr.X_add_number);
8787 }
8788 INSERT_OPERAND (DSPSFT, *ip, imm_expr.X_add_number);
8789 imm_expr.X_op = O_absent;
8790 s = expr_end;
8791 continue;
8792
8793 case '\'': /* dsp 6-bit unsigned immediate in bit 16 */
8794 my_getExpression (&imm_expr, s);
8795 check_absolute_expr (ip, &imm_expr);
8796 if (imm_expr.X_add_number & ~OP_MASK_RDDSP)
8797 {
8798 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8799 OP_MASK_RDDSP,
8800 (unsigned long) imm_expr.X_add_number);
8801 }
8802 INSERT_OPERAND (RDDSP, *ip, imm_expr.X_add_number);
8803 imm_expr.X_op = O_absent;
8804 s = expr_end;
8805 continue;
8806
8807 case ':': /* dsp 7-bit signed immediate in bit 19 */
8808 my_getExpression (&imm_expr, s);
8809 check_absolute_expr (ip, &imm_expr);
8810 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1);
8811 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1;
8812 if (imm_expr.X_add_number < min_range ||
8813 imm_expr.X_add_number > max_range)
8814 {
8815 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8816 (long) min_range, (long) max_range,
8817 (long) imm_expr.X_add_number);
8818 }
8819 INSERT_OPERAND (DSPSFT_7, *ip, imm_expr.X_add_number);
8820 imm_expr.X_op = O_absent;
8821 s = expr_end;
8822 continue;
8823
8824 case '@': /* dsp 10-bit signed immediate in bit 16 */
8825 my_getExpression (&imm_expr, s);
8826 check_absolute_expr (ip, &imm_expr);
8827 min_range = -((OP_MASK_IMM10 + 1) >> 1);
8828 max_range = ((OP_MASK_IMM10 + 1) >> 1) - 1;
8829 if (imm_expr.X_add_number < min_range ||
8830 imm_expr.X_add_number > max_range)
8831 {
8832 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8833 (long) min_range, (long) max_range,
8834 (long) imm_expr.X_add_number);
8835 }
8836 INSERT_OPERAND (IMM10, *ip, imm_expr.X_add_number);
8837 imm_expr.X_op = O_absent;
8838 s = expr_end;
8839 continue;
8840
8841 case '!': /* MT usermode flag bit. */
8842 my_getExpression (&imm_expr, s);
8843 check_absolute_expr (ip, &imm_expr);
8844 if (imm_expr.X_add_number & ~OP_MASK_MT_U)
8845 as_bad (_("MT usermode bit not 0 or 1 (%lu)"),
8846 (unsigned long) imm_expr.X_add_number);
8847 INSERT_OPERAND (MT_U, *ip, imm_expr.X_add_number);
8848 imm_expr.X_op = O_absent;
8849 s = expr_end;
8850 continue;
8851
8852 case '$': /* MT load high flag bit. */
8853 my_getExpression (&imm_expr, s);
8854 check_absolute_expr (ip, &imm_expr);
8855 if (imm_expr.X_add_number & ~OP_MASK_MT_H)
8856 as_bad (_("MT load high bit not 0 or 1 (%lu)"),
8857 (unsigned long) imm_expr.X_add_number);
8858 INSERT_OPERAND (MT_H, *ip, imm_expr.X_add_number);
8859 imm_expr.X_op = O_absent;
8860 s = expr_end;
8861 continue;
8862
8863 case '*': /* four dsp accumulators in bits 18,19 */
8864 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8865 s[3] >= '0' && s[3] <= '3')
8866 {
8867 regno = s[3] - '0';
8868 s += 4;
8869 INSERT_OPERAND (MTACC_T, *ip, regno);
8870 continue;
8871 }
8872 else
8873 as_bad (_("Invalid dsp/smartmips acc register"));
8874 break;
8875
8876 case '&': /* four dsp accumulators in bits 13,14 */
8877 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8878 s[3] >= '0' && s[3] <= '3')
8879 {
8880 regno = s[3] - '0';
8881 s += 4;
8882 INSERT_OPERAND (MTACC_D, *ip, regno);
8883 continue;
8884 }
8885 else
8886 as_bad (_("Invalid dsp/smartmips acc register"));
8887 break;
8888
8889 case ',':
8890 ++argnum;
8891 if (*s++ == *args)
8892 continue;
8893 s--;
8894 switch (*++args)
8895 {
8896 case 'r':
8897 case 'v':
8898 INSERT_OPERAND (RS, *ip, lastregno);
8899 continue;
8900
8901 case 'w':
8902 INSERT_OPERAND (RT, *ip, lastregno);
8903 continue;
8904
8905 case 'W':
8906 INSERT_OPERAND (FT, *ip, lastregno);
8907 continue;
8908
8909 case 'V':
8910 INSERT_OPERAND (FS, *ip, lastregno);
8911 continue;
8912 }
8913 break;
8914
8915 case '(':
8916 /* Handle optional base register.
8917 Either the base register is omitted or
8918 we must have a left paren. */
8919 /* This is dependent on the next operand specifier
8920 is a base register specification. */
8921 assert (args[1] == 'b' || args[1] == '5'
8922 || args[1] == '-' || args[1] == '4');
8923 if (*s == '\0')
8924 return;
8925
8926 case ')': /* these must match exactly */
8927 case '[':
8928 case ']':
8929 if (*s++ == *args)
8930 continue;
8931 break;
8932
8933 case '+': /* Opcode extension character. */
8934 switch (*++args)
8935 {
8936 case '1': /* UDI immediates. */
8937 case '2':
8938 case '3':
8939 case '4':
8940 {
8941 const struct mips_immed *imm = mips_immed;
8942
8943 while (imm->type && imm->type != *args)
8944 ++imm;
8945 if (! imm->type)
8946 internalError ();
8947 my_getExpression (&imm_expr, s);
8948 check_absolute_expr (ip, &imm_expr);
8949 if ((unsigned long) imm_expr.X_add_number & ~imm->mask)
8950 {
8951 as_warn (_("Illegal %s number (%lu, 0x%lx)"),
8952 imm->desc ? imm->desc : ip->insn_mo->name,
8953 (unsigned long) imm_expr.X_add_number,
8954 (unsigned long) imm_expr.X_add_number);
8955 imm_expr.X_add_number &= imm->mask;
8956 }
8957 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
8958 << imm->shift);
8959 imm_expr.X_op = O_absent;
8960 s = expr_end;
8961 }
8962 continue;
8963
8964 case 'A': /* ins/ext position, becomes LSB. */
8965 limlo = 0;
8966 limhi = 31;
8967 goto do_lsb;
8968 case 'E':
8969 limlo = 32;
8970 limhi = 63;
8971 goto do_lsb;
8972 do_lsb:
8973 my_getExpression (&imm_expr, s);
8974 check_absolute_expr (ip, &imm_expr);
8975 if ((unsigned long) imm_expr.X_add_number < limlo
8976 || (unsigned long) imm_expr.X_add_number > limhi)
8977 {
8978 as_bad (_("Improper position (%lu)"),
8979 (unsigned long) imm_expr.X_add_number);
8980 imm_expr.X_add_number = limlo;
8981 }
8982 lastpos = imm_expr.X_add_number;
8983 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
8984 imm_expr.X_op = O_absent;
8985 s = expr_end;
8986 continue;
8987
8988 case 'B': /* ins size, becomes MSB. */
8989 limlo = 1;
8990 limhi = 32;
8991 goto do_msb;
8992 case 'F':
8993 limlo = 33;
8994 limhi = 64;
8995 goto do_msb;
8996 do_msb:
8997 my_getExpression (&imm_expr, s);
8998 check_absolute_expr (ip, &imm_expr);
8999 /* Check for negative input so that small negative numbers
9000 will not succeed incorrectly. The checks against
9001 (pos+size) transitively check "size" itself,
9002 assuming that "pos" is reasonable. */
9003 if ((long) imm_expr.X_add_number < 0
9004 || ((unsigned long) imm_expr.X_add_number
9005 + lastpos) < limlo
9006 || ((unsigned long) imm_expr.X_add_number
9007 + lastpos) > limhi)
9008 {
9009 as_bad (_("Improper insert size (%lu, position %lu)"),
9010 (unsigned long) imm_expr.X_add_number,
9011 (unsigned long) lastpos);
9012 imm_expr.X_add_number = limlo - lastpos;
9013 }
9014 INSERT_OPERAND (INSMSB, *ip,
9015 lastpos + imm_expr.X_add_number - 1);
9016 imm_expr.X_op = O_absent;
9017 s = expr_end;
9018 continue;
9019
9020 case 'C': /* ext size, becomes MSBD. */
9021 limlo = 1;
9022 limhi = 32;
9023 goto do_msbd;
9024 case 'G':
9025 limlo = 33;
9026 limhi = 64;
9027 goto do_msbd;
9028 case 'H':
9029 limlo = 33;
9030 limhi = 64;
9031 goto do_msbd;
9032 do_msbd:
9033 my_getExpression (&imm_expr, s);
9034 check_absolute_expr (ip, &imm_expr);
9035 /* Check for negative input so that small negative numbers
9036 will not succeed incorrectly. The checks against
9037 (pos+size) transitively check "size" itself,
9038 assuming that "pos" is reasonable. */
9039 if ((long) imm_expr.X_add_number < 0
9040 || ((unsigned long) imm_expr.X_add_number
9041 + lastpos) < limlo
9042 || ((unsigned long) imm_expr.X_add_number
9043 + lastpos) > limhi)
9044 {
9045 as_bad (_("Improper extract size (%lu, position %lu)"),
9046 (unsigned long) imm_expr.X_add_number,
9047 (unsigned long) lastpos);
9048 imm_expr.X_add_number = limlo - lastpos;
9049 }
9050 INSERT_OPERAND (EXTMSBD, *ip, imm_expr.X_add_number - 1);
9051 imm_expr.X_op = O_absent;
9052 s = expr_end;
9053 continue;
9054
9055 case 'D':
9056 /* +D is for disassembly only; never match. */
9057 break;
9058
9059 case 'I':
9060 /* "+I" is like "I", except that imm2_expr is used. */
9061 my_getExpression (&imm2_expr, s);
9062 if (imm2_expr.X_op != O_big
9063 && imm2_expr.X_op != O_constant)
9064 insn_error = _("absolute expression required");
9065 if (HAVE_32BIT_GPRS)
9066 normalize_constant_expr (&imm2_expr);
9067 s = expr_end;
9068 continue;
9069
9070 case 'T': /* Coprocessor register. */
9071 /* +T is for disassembly only; never match. */
9072 break;
9073
9074 case 't': /* Coprocessor register number. */
9075 if (s[0] == '$' && ISDIGIT (s[1]))
9076 {
9077 ++s;
9078 regno = 0;
9079 do
9080 {
9081 regno *= 10;
9082 regno += *s - '0';
9083 ++s;
9084 }
9085 while (ISDIGIT (*s));
9086 if (regno > 31)
9087 as_bad (_("Invalid register number (%d)"), regno);
9088 else
9089 {
9090 INSERT_OPERAND (RT, *ip, regno);
9091 continue;
9092 }
9093 }
9094 else
9095 as_bad (_("Invalid coprocessor 0 register number"));
9096 break;
9097
9098 case 'x':
9099 /* bbit[01] and bbit[01]32 bit index. Give error if index
9100 is not in the valid range. */
9101 my_getExpression (&imm_expr, s);
9102 check_absolute_expr (ip, &imm_expr);
9103 if ((unsigned) imm_expr.X_add_number > 31)
9104 {
9105 as_bad (_("Improper bit index (%lu)"),
9106 (unsigned long) imm_expr.X_add_number);
9107 imm_expr.X_add_number = 0;
9108 }
9109 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number);
9110 imm_expr.X_op = O_absent;
9111 s = expr_end;
9112 continue;
9113
9114 case 'X':
9115 /* bbit[01] bit index when bbit is used but we generate
9116 bbit[01]32 because the index is over 32. Move to the
9117 next candidate if index is not in the valid range. */
9118 my_getExpression (&imm_expr, s);
9119 check_absolute_expr (ip, &imm_expr);
9120 if ((unsigned) imm_expr.X_add_number < 32
9121 || (unsigned) imm_expr.X_add_number > 63)
9122 break;
9123 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number - 32);
9124 imm_expr.X_op = O_absent;
9125 s = expr_end;
9126 continue;
9127
9128 case 'p':
9129 /* cins, cins32, exts and exts32 position field. Give error
9130 if it's not in the valid range. */
9131 my_getExpression (&imm_expr, s);
9132 check_absolute_expr (ip, &imm_expr);
9133 if ((unsigned) imm_expr.X_add_number > 31)
9134 {
9135 as_bad (_("Improper position (%lu)"),
9136 (unsigned long) imm_expr.X_add_number);
9137 imm_expr.X_add_number = 0;
9138 }
9139 /* Make the pos explicit to simplify +S. */
9140 lastpos = imm_expr.X_add_number + 32;
9141 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number);
9142 imm_expr.X_op = O_absent;
9143 s = expr_end;
9144 continue;
9145
9146 case 'P':
9147 /* cins, cins32, exts and exts32 position field. Move to
9148 the next candidate if it's not in the valid range. */
9149 my_getExpression (&imm_expr, s);
9150 check_absolute_expr (ip, &imm_expr);
9151 if ((unsigned) imm_expr.X_add_number < 32
9152 || (unsigned) imm_expr.X_add_number > 63)
9153 break;
9154 lastpos = imm_expr.X_add_number;
9155 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number - 32);
9156 imm_expr.X_op = O_absent;
9157 s = expr_end;
9158 continue;
9159
9160 case 's':
9161 /* cins and exts length-minus-one field. */
9162 my_getExpression (&imm_expr, s);
9163 check_absolute_expr (ip, &imm_expr);
9164 if ((unsigned long) imm_expr.X_add_number > 31)
9165 {
9166 as_bad (_("Improper size (%lu)"),
9167 (unsigned long) imm_expr.X_add_number);
9168 imm_expr.X_add_number = 0;
9169 }
9170 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9171 imm_expr.X_op = O_absent;
9172 s = expr_end;
9173 continue;
9174
9175 case 'S':
9176 /* cins32/exts32 and cins/exts aliasing cint32/exts32
9177 length-minus-one field. */
9178 my_getExpression (&imm_expr, s);
9179 check_absolute_expr (ip, &imm_expr);
9180 if ((long) imm_expr.X_add_number < 0
9181 || (unsigned long) imm_expr.X_add_number + lastpos > 63)
9182 {
9183 as_bad (_("Improper size (%lu)"),
9184 (unsigned long) imm_expr.X_add_number);
9185 imm_expr.X_add_number = 0;
9186 }
9187 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9188 imm_expr.X_op = O_absent;
9189 s = expr_end;
9190 continue;
9191
9192 case 'Q':
9193 /* seqi/snei immediate field. */
9194 my_getExpression (&imm_expr, s);
9195 check_absolute_expr (ip, &imm_expr);
9196 if ((long) imm_expr.X_add_number < -512
9197 || (long) imm_expr.X_add_number >= 512)
9198 {
9199 as_bad (_("Improper immediate (%ld)"),
9200 (long) imm_expr.X_add_number);
9201 imm_expr.X_add_number = 0;
9202 }
9203 INSERT_OPERAND (SEQI, *ip, imm_expr.X_add_number);
9204 imm_expr.X_op = O_absent;
9205 s = expr_end;
9206 continue;
9207
9208 default:
9209 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
9210 *args, insn->name, insn->args);
9211 /* Further processing is fruitless. */
9212 return;
9213 }
9214 break;
9215
9216 case '<': /* must be at least one digit */
9217 /*
9218 * According to the manual, if the shift amount is greater
9219 * than 31 or less than 0, then the shift amount should be
9220 * mod 32. In reality the mips assembler issues an error.
9221 * We issue a warning and mask out all but the low 5 bits.
9222 */
9223 my_getExpression (&imm_expr, s);
9224 check_absolute_expr (ip, &imm_expr);
9225 if ((unsigned long) imm_expr.X_add_number > 31)
9226 as_warn (_("Improper shift amount (%lu)"),
9227 (unsigned long) imm_expr.X_add_number);
9228 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9229 imm_expr.X_op = O_absent;
9230 s = expr_end;
9231 continue;
9232
9233 case '>': /* shift amount minus 32 */
9234 my_getExpression (&imm_expr, s);
9235 check_absolute_expr (ip, &imm_expr);
9236 if ((unsigned long) imm_expr.X_add_number < 32
9237 || (unsigned long) imm_expr.X_add_number > 63)
9238 break;
9239 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number - 32);
9240 imm_expr.X_op = O_absent;
9241 s = expr_end;
9242 continue;
9243
9244 case 'k': /* cache code */
9245 case 'h': /* prefx code */
9246 my_getExpression (&imm_expr, s);
9247 check_absolute_expr (ip, &imm_expr);
9248 if ((unsigned long) imm_expr.X_add_number > 31)
9249 as_warn (_("Invalid value for `%s' (%lu)"),
9250 ip->insn_mo->name,
9251 (unsigned long) imm_expr.X_add_number);
9252 if (*args == 'k')
9253 INSERT_OPERAND (CACHE, *ip, imm_expr.X_add_number);
9254 else
9255 INSERT_OPERAND (PREFX, *ip, imm_expr.X_add_number);
9256 imm_expr.X_op = O_absent;
9257 s = expr_end;
9258 continue;
9259
9260 case 'c': /* break code */
9261 my_getExpression (&imm_expr, s);
9262 check_absolute_expr (ip, &imm_expr);
9263 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE)
9264 as_warn (_("Code for %s not in range 0..1023 (%lu)"),
9265 ip->insn_mo->name,
9266 (unsigned long) imm_expr.X_add_number);
9267 INSERT_OPERAND (CODE, *ip, imm_expr.X_add_number);
9268 imm_expr.X_op = O_absent;
9269 s = expr_end;
9270 continue;
9271
9272 case 'q': /* lower break code */
9273 my_getExpression (&imm_expr, s);
9274 check_absolute_expr (ip, &imm_expr);
9275 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE2)
9276 as_warn (_("Lower code for %s not in range 0..1023 (%lu)"),
9277 ip->insn_mo->name,
9278 (unsigned long) imm_expr.X_add_number);
9279 INSERT_OPERAND (CODE2, *ip, imm_expr.X_add_number);
9280 imm_expr.X_op = O_absent;
9281 s = expr_end;
9282 continue;
9283
9284 case 'B': /* 20-bit syscall/break code. */
9285 my_getExpression (&imm_expr, s);
9286 check_absolute_expr (ip, &imm_expr);
9287 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE20)
9288 as_warn (_("Code for %s not in range 0..1048575 (%lu)"),
9289 ip->insn_mo->name,
9290 (unsigned long) imm_expr.X_add_number);
9291 INSERT_OPERAND (CODE20, *ip, imm_expr.X_add_number);
9292 imm_expr.X_op = O_absent;
9293 s = expr_end;
9294 continue;
9295
9296 case 'C': /* Coprocessor code */
9297 my_getExpression (&imm_expr, s);
9298 check_absolute_expr (ip, &imm_expr);
9299 if ((unsigned long) imm_expr.X_add_number > OP_MASK_COPZ)
9300 {
9301 as_warn (_("Coproccesor code > 25 bits (%lu)"),
9302 (unsigned long) imm_expr.X_add_number);
9303 imm_expr.X_add_number &= OP_MASK_COPZ;
9304 }
9305 INSERT_OPERAND (COPZ, *ip, imm_expr.X_add_number);
9306 imm_expr.X_op = O_absent;
9307 s = expr_end;
9308 continue;
9309
9310 case 'J': /* 19-bit wait code. */
9311 my_getExpression (&imm_expr, s);
9312 check_absolute_expr (ip, &imm_expr);
9313 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
9314 {
9315 as_warn (_("Illegal 19-bit code (%lu)"),
9316 (unsigned long) imm_expr.X_add_number);
9317 imm_expr.X_add_number &= OP_MASK_CODE19;
9318 }
9319 INSERT_OPERAND (CODE19, *ip, imm_expr.X_add_number);
9320 imm_expr.X_op = O_absent;
9321 s = expr_end;
9322 continue;
9323
9324 case 'P': /* Performance register. */
9325 my_getExpression (&imm_expr, s);
9326 check_absolute_expr (ip, &imm_expr);
9327 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
9328 as_warn (_("Invalid performance register (%lu)"),
9329 (unsigned long) imm_expr.X_add_number);
9330 INSERT_OPERAND (PERFREG, *ip, imm_expr.X_add_number);
9331 imm_expr.X_op = O_absent;
9332 s = expr_end;
9333 continue;
9334
9335 case 'G': /* Coprocessor destination register. */
9336 if (((ip->insn_opcode >> OP_SH_OP) & OP_MASK_OP) == OP_OP_COP0)
9337 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_CP0, &regno);
9338 else
9339 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9340 INSERT_OPERAND (RD, *ip, regno);
9341 if (ok)
9342 {
9343 lastregno = regno;
9344 continue;
9345 }
9346 else
9347 break;
9348
9349 case 'b': /* base register */
9350 case 'd': /* destination register */
9351 case 's': /* source register */
9352 case 't': /* target register */
9353 case 'r': /* both target and source */
9354 case 'v': /* both dest and source */
9355 case 'w': /* both dest and target */
9356 case 'E': /* coprocessor target register */
9357 case 'K': /* 'rdhwr' destination register */
9358 case 'x': /* ignore register name */
9359 case 'z': /* must be zero register */
9360 case 'U': /* destination register (clo/clz). */
9361 case 'g': /* coprocessor destination register */
9362 s_reset = s;
9363 if (*args == 'E' || *args == 'K')
9364 ok = reg_lookup (&s, RTYPE_NUM, &regno);
9365 else
9366 {
9367 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9368 if (regno == AT && mips_opts.at)
9369 {
9370 if (mips_opts.at == ATREG)
9371 as_warn (_("used $at without \".set noat\""));
9372 else
9373 as_warn (_("used $%u with \".set at=$%u\""),
9374 regno, mips_opts.at);
9375 }
9376 }
9377 if (ok)
9378 {
9379 c = *args;
9380 if (*s == ' ')
9381 ++s;
9382 if (args[1] != *s)
9383 {
9384 if (c == 'r' || c == 'v' || c == 'w')
9385 {
9386 regno = lastregno;
9387 s = s_reset;
9388 ++args;
9389 }
9390 }
9391 /* 'z' only matches $0. */
9392 if (c == 'z' && regno != 0)
9393 break;
9394
9395 if (c == 's' && !strcmp (ip->insn_mo->name, "jalr"))
9396 {
9397 if (regno == lastregno)
9398 {
9399 insn_error = _("source and destinationations must be different");
9400 continue;
9401 }
9402 if (regno == 31 && lastregno == 0)
9403 {
9404 insn_error = _("a destination register must be supplied");
9405 continue;
9406 }
9407 }
9408 /* Now that we have assembled one operand, we use the args string
9409 * to figure out where it goes in the instruction. */
9410 switch (c)
9411 {
9412 case 'r':
9413 case 's':
9414 case 'v':
9415 case 'b':
9416 INSERT_OPERAND (RS, *ip, regno);
9417 break;
9418 case 'd':
9419 case 'G':
9420 case 'K':
9421 case 'g':
9422 INSERT_OPERAND (RD, *ip, regno);
9423 break;
9424 case 'U':
9425 INSERT_OPERAND (RD, *ip, regno);
9426 INSERT_OPERAND (RT, *ip, regno);
9427 break;
9428 case 'w':
9429 case 't':
9430 case 'E':
9431 INSERT_OPERAND (RT, *ip, regno);
9432 break;
9433 case 'x':
9434 /* This case exists because on the r3000 trunc
9435 expands into a macro which requires a gp
9436 register. On the r6000 or r4000 it is
9437 assembled into a single instruction which
9438 ignores the register. Thus the insn version
9439 is MIPS_ISA2 and uses 'x', and the macro
9440 version is MIPS_ISA1 and uses 't'. */
9441 break;
9442 case 'z':
9443 /* This case is for the div instruction, which
9444 acts differently if the destination argument
9445 is $0. This only matches $0, and is checked
9446 outside the switch. */
9447 break;
9448 case 'D':
9449 /* Itbl operand; not yet implemented. FIXME ?? */
9450 break;
9451 /* What about all other operands like 'i', which
9452 can be specified in the opcode table? */
9453 }
9454 lastregno = regno;
9455 continue;
9456 }
9457 switch (*args++)
9458 {
9459 case 'r':
9460 case 'v':
9461 INSERT_OPERAND (RS, *ip, lastregno);
9462 continue;
9463 case 'w':
9464 INSERT_OPERAND (RT, *ip, lastregno);
9465 continue;
9466 }
9467 break;
9468
9469 case 'O': /* MDMX alignment immediate constant. */
9470 my_getExpression (&imm_expr, s);
9471 check_absolute_expr (ip, &imm_expr);
9472 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
9473 as_warn ("Improper align amount (%ld), using low bits",
9474 (long) imm_expr.X_add_number);
9475 INSERT_OPERAND (ALN, *ip, imm_expr.X_add_number);
9476 imm_expr.X_op = O_absent;
9477 s = expr_end;
9478 continue;
9479
9480 case 'Q': /* MDMX vector, element sel, or const. */
9481 if (s[0] != '$')
9482 {
9483 /* MDMX Immediate. */
9484 my_getExpression (&imm_expr, s);
9485 check_absolute_expr (ip, &imm_expr);
9486 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
9487 as_warn (_("Invalid MDMX Immediate (%ld)"),
9488 (long) imm_expr.X_add_number);
9489 INSERT_OPERAND (FT, *ip, imm_expr.X_add_number);
9490 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9491 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
9492 else
9493 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
9494 imm_expr.X_op = O_absent;
9495 s = expr_end;
9496 continue;
9497 }
9498 /* Not MDMX Immediate. Fall through. */
9499 case 'X': /* MDMX destination register. */
9500 case 'Y': /* MDMX source register. */
9501 case 'Z': /* MDMX target register. */
9502 is_mdmx = 1;
9503 case 'D': /* floating point destination register */
9504 case 'S': /* floating point source register */
9505 case 'T': /* floating point target register */
9506 case 'R': /* floating point source register */
9507 case 'V':
9508 case 'W':
9509 rtype = RTYPE_FPU;
9510 if (is_mdmx
9511 || (mips_opts.ase_mdmx
9512 && (ip->insn_mo->pinfo & FP_D)
9513 && (ip->insn_mo->pinfo & (INSN_COPROC_MOVE_DELAY
9514 | INSN_COPROC_MEMORY_DELAY
9515 | INSN_LOAD_COPROC_DELAY
9516 | INSN_LOAD_MEMORY_DELAY
9517 | INSN_STORE_MEMORY))))
9518 rtype |= RTYPE_VEC;
9519 s_reset = s;
9520 if (reg_lookup (&s, rtype, &regno))
9521 {
9522 if ((regno & 1) != 0
9523 && HAVE_32BIT_FPRS
9524 && ! mips_oddfpreg_ok (ip->insn_mo, argnum))
9525 as_warn (_("Float register should be even, was %d"),
9526 regno);
9527
9528 c = *args;
9529 if (*s == ' ')
9530 ++s;
9531 if (args[1] != *s)
9532 {
9533 if (c == 'V' || c == 'W')
9534 {
9535 regno = lastregno;
9536 s = s_reset;
9537 ++args;
9538 }
9539 }
9540 switch (c)
9541 {
9542 case 'D':
9543 case 'X':
9544 INSERT_OPERAND (FD, *ip, regno);
9545 break;
9546 case 'V':
9547 case 'S':
9548 case 'Y':
9549 INSERT_OPERAND (FS, *ip, regno);
9550 break;
9551 case 'Q':
9552 /* This is like 'Z', but also needs to fix the MDMX
9553 vector/scalar select bits. Note that the
9554 scalar immediate case is handled above. */
9555 if (*s == '[')
9556 {
9557 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
9558 int max_el = (is_qh ? 3 : 7);
9559 s++;
9560 my_getExpression(&imm_expr, s);
9561 check_absolute_expr (ip, &imm_expr);
9562 s = expr_end;
9563 if (imm_expr.X_add_number > max_el)
9564 as_bad(_("Bad element selector %ld"),
9565 (long) imm_expr.X_add_number);
9566 imm_expr.X_add_number &= max_el;
9567 ip->insn_opcode |= (imm_expr.X_add_number
9568 << (OP_SH_VSEL +
9569 (is_qh ? 2 : 1)));
9570 imm_expr.X_op = O_absent;
9571 if (*s != ']')
9572 as_warn(_("Expecting ']' found '%s'"), s);
9573 else
9574 s++;
9575 }
9576 else
9577 {
9578 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9579 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
9580 << OP_SH_VSEL);
9581 else
9582 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
9583 OP_SH_VSEL);
9584 }
9585 /* Fall through */
9586 case 'W':
9587 case 'T':
9588 case 'Z':
9589 INSERT_OPERAND (FT, *ip, regno);
9590 break;
9591 case 'R':
9592 INSERT_OPERAND (FR, *ip, regno);
9593 break;
9594 }
9595 lastregno = regno;
9596 continue;
9597 }
9598
9599 switch (*args++)
9600 {
9601 case 'V':
9602 INSERT_OPERAND (FS, *ip, lastregno);
9603 continue;
9604 case 'W':
9605 INSERT_OPERAND (FT, *ip, lastregno);
9606 continue;
9607 }
9608 break;
9609
9610 case 'I':
9611 my_getExpression (&imm_expr, s);
9612 if (imm_expr.X_op != O_big
9613 && imm_expr.X_op != O_constant)
9614 insn_error = _("absolute expression required");
9615 if (HAVE_32BIT_GPRS)
9616 normalize_constant_expr (&imm_expr);
9617 s = expr_end;
9618 continue;
9619
9620 case 'A':
9621 my_getExpression (&offset_expr, s);
9622 normalize_address_expr (&offset_expr);
9623 *imm_reloc = BFD_RELOC_32;
9624 s = expr_end;
9625 continue;
9626
9627 case 'F':
9628 case 'L':
9629 case 'f':
9630 case 'l':
9631 {
9632 int f64;
9633 int using_gprs;
9634 char *save_in;
9635 char *err;
9636 unsigned char temp[8];
9637 int len;
9638 unsigned int length;
9639 segT seg;
9640 subsegT subseg;
9641 char *p;
9642
9643 /* These only appear as the last operand in an
9644 instruction, and every instruction that accepts
9645 them in any variant accepts them in all variants.
9646 This means we don't have to worry about backing out
9647 any changes if the instruction does not match.
9648
9649 The difference between them is the size of the
9650 floating point constant and where it goes. For 'F'
9651 and 'L' the constant is 64 bits; for 'f' and 'l' it
9652 is 32 bits. Where the constant is placed is based
9653 on how the MIPS assembler does things:
9654 F -- .rdata
9655 L -- .lit8
9656 f -- immediate value
9657 l -- .lit4
9658
9659 The .lit4 and .lit8 sections are only used if
9660 permitted by the -G argument.
9661
9662 The code below needs to know whether the target register
9663 is 32 or 64 bits wide. It relies on the fact 'f' and
9664 'F' are used with GPR-based instructions and 'l' and
9665 'L' are used with FPR-based instructions. */
9666
9667 f64 = *args == 'F' || *args == 'L';
9668 using_gprs = *args == 'F' || *args == 'f';
9669
9670 save_in = input_line_pointer;
9671 input_line_pointer = s;
9672 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
9673 length = len;
9674 s = input_line_pointer;
9675 input_line_pointer = save_in;
9676 if (err != NULL && *err != '\0')
9677 {
9678 as_bad (_("Bad floating point constant: %s"), err);
9679 memset (temp, '\0', sizeof temp);
9680 length = f64 ? 8 : 4;
9681 }
9682
9683 assert (length == (unsigned) (f64 ? 8 : 4));
9684
9685 if (*args == 'f'
9686 || (*args == 'l'
9687 && (g_switch_value < 4
9688 || (temp[0] == 0 && temp[1] == 0)
9689 || (temp[2] == 0 && temp[3] == 0))))
9690 {
9691 imm_expr.X_op = O_constant;
9692 if (! target_big_endian)
9693 imm_expr.X_add_number = bfd_getl32 (temp);
9694 else
9695 imm_expr.X_add_number = bfd_getb32 (temp);
9696 }
9697 else if (length > 4
9698 && ! mips_disable_float_construction
9699 /* Constants can only be constructed in GPRs and
9700 copied to FPRs if the GPRs are at least as wide
9701 as the FPRs. Force the constant into memory if
9702 we are using 64-bit FPRs but the GPRs are only
9703 32 bits wide. */
9704 && (using_gprs
9705 || ! (HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
9706 && ((temp[0] == 0 && temp[1] == 0)
9707 || (temp[2] == 0 && temp[3] == 0))
9708 && ((temp[4] == 0 && temp[5] == 0)
9709 || (temp[6] == 0 && temp[7] == 0)))
9710 {
9711 /* The value is simple enough to load with a couple of
9712 instructions. If using 32-bit registers, set
9713 imm_expr to the high order 32 bits and offset_expr to
9714 the low order 32 bits. Otherwise, set imm_expr to
9715 the entire 64 bit constant. */
9716 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
9717 {
9718 imm_expr.X_op = O_constant;
9719 offset_expr.X_op = O_constant;
9720 if (! target_big_endian)
9721 {
9722 imm_expr.X_add_number = bfd_getl32 (temp + 4);
9723 offset_expr.X_add_number = bfd_getl32 (temp);
9724 }
9725 else
9726 {
9727 imm_expr.X_add_number = bfd_getb32 (temp);
9728 offset_expr.X_add_number = bfd_getb32 (temp + 4);
9729 }
9730 if (offset_expr.X_add_number == 0)
9731 offset_expr.X_op = O_absent;
9732 }
9733 else if (sizeof (imm_expr.X_add_number) > 4)
9734 {
9735 imm_expr.X_op = O_constant;
9736 if (! target_big_endian)
9737 imm_expr.X_add_number = bfd_getl64 (temp);
9738 else
9739 imm_expr.X_add_number = bfd_getb64 (temp);
9740 }
9741 else
9742 {
9743 imm_expr.X_op = O_big;
9744 imm_expr.X_add_number = 4;
9745 if (! target_big_endian)
9746 {
9747 generic_bignum[0] = bfd_getl16 (temp);
9748 generic_bignum[1] = bfd_getl16 (temp + 2);
9749 generic_bignum[2] = bfd_getl16 (temp + 4);
9750 generic_bignum[3] = bfd_getl16 (temp + 6);
9751 }
9752 else
9753 {
9754 generic_bignum[0] = bfd_getb16 (temp + 6);
9755 generic_bignum[1] = bfd_getb16 (temp + 4);
9756 generic_bignum[2] = bfd_getb16 (temp + 2);
9757 generic_bignum[3] = bfd_getb16 (temp);
9758 }
9759 }
9760 }
9761 else
9762 {
9763 const char *newname;
9764 segT new_seg;
9765
9766 /* Switch to the right section. */
9767 seg = now_seg;
9768 subseg = now_subseg;
9769 switch (*args)
9770 {
9771 default: /* unused default case avoids warnings. */
9772 case 'L':
9773 newname = RDATA_SECTION_NAME;
9774 if (g_switch_value >= 8)
9775 newname = ".lit8";
9776 break;
9777 case 'F':
9778 newname = RDATA_SECTION_NAME;
9779 break;
9780 case 'l':
9781 assert (g_switch_value >= 4);
9782 newname = ".lit4";
9783 break;
9784 }
9785 new_seg = subseg_new (newname, (subsegT) 0);
9786 if (IS_ELF)
9787 bfd_set_section_flags (stdoutput, new_seg,
9788 (SEC_ALLOC
9789 | SEC_LOAD
9790 | SEC_READONLY
9791 | SEC_DATA));
9792 frag_align (*args == 'l' ? 2 : 3, 0, 0);
9793 if (IS_ELF && strncmp (TARGET_OS, "elf", 3) != 0)
9794 record_alignment (new_seg, 4);
9795 else
9796 record_alignment (new_seg, *args == 'l' ? 2 : 3);
9797 if (seg == now_seg)
9798 as_bad (_("Can't use floating point insn in this section"));
9799
9800 /* Set the argument to the current address in the
9801 section. */
9802 offset_expr.X_op = O_symbol;
9803 offset_expr.X_add_symbol =
9804 symbol_new ("L0\001", now_seg,
9805 (valueT) frag_now_fix (), frag_now);
9806 offset_expr.X_add_number = 0;
9807
9808 /* Put the floating point number into the section. */
9809 p = frag_more ((int) length);
9810 memcpy (p, temp, length);
9811
9812 /* Switch back to the original section. */
9813 subseg_set (seg, subseg);
9814 }
9815 }
9816 continue;
9817
9818 case 'i': /* 16 bit unsigned immediate */
9819 case 'j': /* 16 bit signed immediate */
9820 *imm_reloc = BFD_RELOC_LO16;
9821 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
9822 {
9823 int more;
9824 offsetT minval, maxval;
9825
9826 more = (insn + 1 < &mips_opcodes[NUMOPCODES]
9827 && strcmp (insn->name, insn[1].name) == 0);
9828
9829 /* If the expression was written as an unsigned number,
9830 only treat it as signed if there are no more
9831 alternatives. */
9832 if (more
9833 && *args == 'j'
9834 && sizeof (imm_expr.X_add_number) <= 4
9835 && imm_expr.X_op == O_constant
9836 && imm_expr.X_add_number < 0
9837 && imm_expr.X_unsigned
9838 && HAVE_64BIT_GPRS)
9839 break;
9840
9841 /* For compatibility with older assemblers, we accept
9842 0x8000-0xffff as signed 16-bit numbers when only
9843 signed numbers are allowed. */
9844 if (*args == 'i')
9845 minval = 0, maxval = 0xffff;
9846 else if (more)
9847 minval = -0x8000, maxval = 0x7fff;
9848 else
9849 minval = -0x8000, maxval = 0xffff;
9850
9851 if (imm_expr.X_op != O_constant
9852 || imm_expr.X_add_number < minval
9853 || imm_expr.X_add_number > maxval)
9854 {
9855 if (more)
9856 break;
9857 if (imm_expr.X_op == O_constant
9858 || imm_expr.X_op == O_big)
9859 as_bad (_("expression out of range"));
9860 }
9861 }
9862 s = expr_end;
9863 continue;
9864
9865 case 'o': /* 16 bit offset */
9866 /* Check whether there is only a single bracketed expression
9867 left. If so, it must be the base register and the
9868 constant must be zero. */
9869 if (*s == '(' && strchr (s + 1, '(') == 0)
9870 {
9871 offset_expr.X_op = O_constant;
9872 offset_expr.X_add_number = 0;
9873 continue;
9874 }
9875
9876 /* If this value won't fit into a 16 bit offset, then go
9877 find a macro that will generate the 32 bit offset
9878 code pattern. */
9879 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
9880 && (offset_expr.X_op != O_constant
9881 || offset_expr.X_add_number >= 0x8000
9882 || offset_expr.X_add_number < -0x8000))
9883 break;
9884
9885 s = expr_end;
9886 continue;
9887
9888 case 'p': /* pc relative offset */
9889 *offset_reloc = BFD_RELOC_16_PCREL_S2;
9890 my_getExpression (&offset_expr, s);
9891 s = expr_end;
9892 continue;
9893
9894 case 'u': /* upper 16 bits */
9895 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
9896 && imm_expr.X_op == O_constant
9897 && (imm_expr.X_add_number < 0
9898 || imm_expr.X_add_number >= 0x10000))
9899 as_bad (_("lui expression not in range 0..65535"));
9900 s = expr_end;
9901 continue;
9902
9903 case 'a': /* 26 bit address */
9904 my_getExpression (&offset_expr, s);
9905 s = expr_end;
9906 *offset_reloc = BFD_RELOC_MIPS_JMP;
9907 continue;
9908
9909 case 'N': /* 3 bit branch condition code */
9910 case 'M': /* 3 bit compare condition code */
9911 rtype = RTYPE_CCC;
9912 if (ip->insn_mo->pinfo & (FP_D| FP_S))
9913 rtype |= RTYPE_FCC;
9914 if (!reg_lookup (&s, rtype, &regno))
9915 break;
9916 if ((strcmp(str + strlen(str) - 3, ".ps") == 0
9917 || strcmp(str + strlen(str) - 5, "any2f") == 0
9918 || strcmp(str + strlen(str) - 5, "any2t") == 0)
9919 && (regno & 1) != 0)
9920 as_warn(_("Condition code register should be even for %s, was %d"),
9921 str, regno);
9922 if ((strcmp(str + strlen(str) - 5, "any4f") == 0
9923 || strcmp(str + strlen(str) - 5, "any4t") == 0)
9924 && (regno & 3) != 0)
9925 as_warn(_("Condition code register should be 0 or 4 for %s, was %d"),
9926 str, regno);
9927 if (*args == 'N')
9928 INSERT_OPERAND (BCC, *ip, regno);
9929 else
9930 INSERT_OPERAND (CCC, *ip, regno);
9931 continue;
9932
9933 case 'H':
9934 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
9935 s += 2;
9936 if (ISDIGIT (*s))
9937 {
9938 c = 0;
9939 do
9940 {
9941 c *= 10;
9942 c += *s - '0';
9943 ++s;
9944 }
9945 while (ISDIGIT (*s));
9946 }
9947 else
9948 c = 8; /* Invalid sel value. */
9949
9950 if (c > 7)
9951 as_bad (_("invalid coprocessor sub-selection value (0-7)"));
9952 ip->insn_opcode |= c;
9953 continue;
9954
9955 case 'e':
9956 /* Must be at least one digit. */
9957 my_getExpression (&imm_expr, s);
9958 check_absolute_expr (ip, &imm_expr);
9959
9960 if ((unsigned long) imm_expr.X_add_number
9961 > (unsigned long) OP_MASK_VECBYTE)
9962 {
9963 as_bad (_("bad byte vector index (%ld)"),
9964 (long) imm_expr.X_add_number);
9965 imm_expr.X_add_number = 0;
9966 }
9967
9968 INSERT_OPERAND (VECBYTE, *ip, imm_expr.X_add_number);
9969 imm_expr.X_op = O_absent;
9970 s = expr_end;
9971 continue;
9972
9973 case '%':
9974 my_getExpression (&imm_expr, s);
9975 check_absolute_expr (ip, &imm_expr);
9976
9977 if ((unsigned long) imm_expr.X_add_number
9978 > (unsigned long) OP_MASK_VECALIGN)
9979 {
9980 as_bad (_("bad byte vector index (%ld)"),
9981 (long) imm_expr.X_add_number);
9982 imm_expr.X_add_number = 0;
9983 }
9984
9985 INSERT_OPERAND (VECALIGN, *ip, imm_expr.X_add_number);
9986 imm_expr.X_op = O_absent;
9987 s = expr_end;
9988 continue;
9989
9990 default:
9991 as_bad (_("bad char = '%c'\n"), *args);
9992 internalError ();
9993 }
9994 break;
9995 }
9996 /* Args don't match. */
9997 if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
9998 !strcmp (insn->name, insn[1].name))
9999 {
10000 ++insn;
10001 s = argsStart;
10002 insn_error = _("illegal operands");
10003 continue;
10004 }
10005 if (save_c)
10006 *(--argsStart) = save_c;
10007 insn_error = _("illegal operands");
10008 return;
10009 }
10010 }
10011
10012 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); }
10013
10014 /* This routine assembles an instruction into its binary format when
10015 assembling for the mips16. As a side effect, it sets one of the
10016 global variables imm_reloc or offset_reloc to the type of
10017 relocation to do if one of the operands is an address expression.
10018 It also sets mips16_small and mips16_ext if the user explicitly
10019 requested a small or extended instruction. */
10020
10021 static void
10022 mips16_ip (char *str, struct mips_cl_insn *ip)
10023 {
10024 char *s;
10025 const char *args;
10026 struct mips_opcode *insn;
10027 char *argsstart;
10028 unsigned int regno;
10029 unsigned int lastregno = 0;
10030 char *s_reset;
10031 size_t i;
10032
10033 insn_error = NULL;
10034
10035 mips16_small = FALSE;
10036 mips16_ext = FALSE;
10037
10038 for (s = str; ISLOWER (*s); ++s)
10039 ;
10040 switch (*s)
10041 {
10042 case '\0':
10043 break;
10044
10045 case ' ':
10046 *s++ = '\0';
10047 break;
10048
10049 case '.':
10050 if (s[1] == 't' && s[2] == ' ')
10051 {
10052 *s = '\0';
10053 mips16_small = TRUE;
10054 s += 3;
10055 break;
10056 }
10057 else if (s[1] == 'e' && s[2] == ' ')
10058 {
10059 *s = '\0';
10060 mips16_ext = TRUE;
10061 s += 3;
10062 break;
10063 }
10064 /* Fall through. */
10065 default:
10066 insn_error = _("unknown opcode");
10067 return;
10068 }
10069
10070 if (mips_opts.noautoextend && ! mips16_ext)
10071 mips16_small = TRUE;
10072
10073 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
10074 {
10075 insn_error = _("unrecognized opcode");
10076 return;
10077 }
10078
10079 argsstart = s;
10080 for (;;)
10081 {
10082 bfd_boolean ok;
10083
10084 assert (strcmp (insn->name, str) == 0);
10085
10086 ok = is_opcode_valid_16 (insn);
10087 if (! ok)
10088 {
10089 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes]
10090 && strcmp (insn->name, insn[1].name) == 0)
10091 {
10092 ++insn;
10093 continue;
10094 }
10095 else
10096 {
10097 if (!insn_error)
10098 {
10099 static char buf[100];
10100 sprintf (buf,
10101 _("opcode not supported on this processor: %s (%s)"),
10102 mips_cpu_info_from_arch (mips_opts.arch)->name,
10103 mips_cpu_info_from_isa (mips_opts.isa)->name);
10104 insn_error = buf;
10105 }
10106 return;
10107 }
10108 }
10109
10110 create_insn (ip, insn);
10111 imm_expr.X_op = O_absent;
10112 imm_reloc[0] = BFD_RELOC_UNUSED;
10113 imm_reloc[1] = BFD_RELOC_UNUSED;
10114 imm_reloc[2] = BFD_RELOC_UNUSED;
10115 imm2_expr.X_op = O_absent;
10116 offset_expr.X_op = O_absent;
10117 offset_reloc[0] = BFD_RELOC_UNUSED;
10118 offset_reloc[1] = BFD_RELOC_UNUSED;
10119 offset_reloc[2] = BFD_RELOC_UNUSED;
10120 for (args = insn->args; 1; ++args)
10121 {
10122 int c;
10123
10124 if (*s == ' ')
10125 ++s;
10126
10127 /* In this switch statement we call break if we did not find
10128 a match, continue if we did find a match, or return if we
10129 are done. */
10130
10131 c = *args;
10132 switch (c)
10133 {
10134 case '\0':
10135 if (*s == '\0')
10136 {
10137 /* Stuff the immediate value in now, if we can. */
10138 if (imm_expr.X_op == O_constant
10139 && *imm_reloc > BFD_RELOC_UNUSED
10140 && *imm_reloc != BFD_RELOC_MIPS16_GOT16
10141 && *imm_reloc != BFD_RELOC_MIPS16_CALL16
10142 && insn->pinfo != INSN_MACRO)
10143 {
10144 valueT tmp;
10145
10146 switch (*offset_reloc)
10147 {
10148 case BFD_RELOC_MIPS16_HI16_S:
10149 tmp = (imm_expr.X_add_number + 0x8000) >> 16;
10150 break;
10151
10152 case BFD_RELOC_MIPS16_HI16:
10153 tmp = imm_expr.X_add_number >> 16;
10154 break;
10155
10156 case BFD_RELOC_MIPS16_LO16:
10157 tmp = ((imm_expr.X_add_number + 0x8000) & 0xffff)
10158 - 0x8000;
10159 break;
10160
10161 case BFD_RELOC_UNUSED:
10162 tmp = imm_expr.X_add_number;
10163 break;
10164
10165 default:
10166 internalError ();
10167 }
10168 *offset_reloc = BFD_RELOC_UNUSED;
10169
10170 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
10171 tmp, TRUE, mips16_small,
10172 mips16_ext, &ip->insn_opcode,
10173 &ip->use_extend, &ip->extend);
10174 imm_expr.X_op = O_absent;
10175 *imm_reloc = BFD_RELOC_UNUSED;
10176 }
10177
10178 return;
10179 }
10180 break;
10181
10182 case ',':
10183 if (*s++ == c)
10184 continue;
10185 s--;
10186 switch (*++args)
10187 {
10188 case 'v':
10189 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10190 continue;
10191 case 'w':
10192 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10193 continue;
10194 }
10195 break;
10196
10197 case '(':
10198 case ')':
10199 if (*s++ == c)
10200 continue;
10201 break;
10202
10203 case 'v':
10204 case 'w':
10205 if (s[0] != '$')
10206 {
10207 if (c == 'v')
10208 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10209 else
10210 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10211 ++args;
10212 continue;
10213 }
10214 /* Fall through. */
10215 case 'x':
10216 case 'y':
10217 case 'z':
10218 case 'Z':
10219 case '0':
10220 case 'S':
10221 case 'R':
10222 case 'X':
10223 case 'Y':
10224 s_reset = s;
10225 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
10226 {
10227 if (c == 'v' || c == 'w')
10228 {
10229 if (c == 'v')
10230 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10231 else
10232 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10233 ++args;
10234 continue;
10235 }
10236 break;
10237 }
10238
10239 if (*s == ' ')
10240 ++s;
10241 if (args[1] != *s)
10242 {
10243 if (c == 'v' || c == 'w')
10244 {
10245 regno = mips16_to_32_reg_map[lastregno];
10246 s = s_reset;
10247 ++args;
10248 }
10249 }
10250
10251 switch (c)
10252 {
10253 case 'x':
10254 case 'y':
10255 case 'z':
10256 case 'v':
10257 case 'w':
10258 case 'Z':
10259 regno = mips32_to_16_reg_map[regno];
10260 break;
10261
10262 case '0':
10263 if (regno != 0)
10264 regno = ILLEGAL_REG;
10265 break;
10266
10267 case 'S':
10268 if (regno != SP)
10269 regno = ILLEGAL_REG;
10270 break;
10271
10272 case 'R':
10273 if (regno != RA)
10274 regno = ILLEGAL_REG;
10275 break;
10276
10277 case 'X':
10278 case 'Y':
10279 if (regno == AT && mips_opts.at)
10280 {
10281 if (mips_opts.at == ATREG)
10282 as_warn (_("used $at without \".set noat\""));
10283 else
10284 as_warn (_("used $%u with \".set at=$%u\""),
10285 regno, mips_opts.at);
10286 }
10287 break;
10288
10289 default:
10290 internalError ();
10291 }
10292
10293 if (regno == ILLEGAL_REG)
10294 break;
10295
10296 switch (c)
10297 {
10298 case 'x':
10299 case 'v':
10300 MIPS16_INSERT_OPERAND (RX, *ip, regno);
10301 break;
10302 case 'y':
10303 case 'w':
10304 MIPS16_INSERT_OPERAND (RY, *ip, regno);
10305 break;
10306 case 'z':
10307 MIPS16_INSERT_OPERAND (RZ, *ip, regno);
10308 break;
10309 case 'Z':
10310 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno);
10311 case '0':
10312 case 'S':
10313 case 'R':
10314 break;
10315 case 'X':
10316 MIPS16_INSERT_OPERAND (REGR32, *ip, regno);
10317 break;
10318 case 'Y':
10319 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
10320 MIPS16_INSERT_OPERAND (REG32R, *ip, regno);
10321 break;
10322 default:
10323 internalError ();
10324 }
10325
10326 lastregno = regno;
10327 continue;
10328
10329 case 'P':
10330 if (strncmp (s, "$pc", 3) == 0)
10331 {
10332 s += 3;
10333 continue;
10334 }
10335 break;
10336
10337 case '5':
10338 case 'H':
10339 case 'W':
10340 case 'D':
10341 case 'j':
10342 case 'V':
10343 case 'C':
10344 case 'U':
10345 case 'k':
10346 case 'K':
10347 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
10348 if (i > 0)
10349 {
10350 if (imm_expr.X_op != O_constant)
10351 {
10352 mips16_ext = TRUE;
10353 ip->use_extend = TRUE;
10354 ip->extend = 0;
10355 }
10356 else
10357 {
10358 /* We need to relax this instruction. */
10359 *offset_reloc = *imm_reloc;
10360 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10361 }
10362 s = expr_end;
10363 continue;
10364 }
10365 *imm_reloc = BFD_RELOC_UNUSED;
10366 /* Fall through. */
10367 case '<':
10368 case '>':
10369 case '[':
10370 case ']':
10371 case '4':
10372 case '8':
10373 my_getExpression (&imm_expr, s);
10374 if (imm_expr.X_op == O_register)
10375 {
10376 /* What we thought was an expression turned out to
10377 be a register. */
10378
10379 if (s[0] == '(' && args[1] == '(')
10380 {
10381 /* It looks like the expression was omitted
10382 before a register indirection, which means
10383 that the expression is implicitly zero. We
10384 still set up imm_expr, so that we handle
10385 explicit extensions correctly. */
10386 imm_expr.X_op = O_constant;
10387 imm_expr.X_add_number = 0;
10388 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10389 continue;
10390 }
10391
10392 break;
10393 }
10394
10395 /* We need to relax this instruction. */
10396 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10397 s = expr_end;
10398 continue;
10399
10400 case 'p':
10401 case 'q':
10402 case 'A':
10403 case 'B':
10404 case 'E':
10405 /* We use offset_reloc rather than imm_reloc for the PC
10406 relative operands. This lets macros with both
10407 immediate and address operands work correctly. */
10408 my_getExpression (&offset_expr, s);
10409
10410 if (offset_expr.X_op == O_register)
10411 break;
10412
10413 /* We need to relax this instruction. */
10414 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
10415 s = expr_end;
10416 continue;
10417
10418 case '6': /* break code */
10419 my_getExpression (&imm_expr, s);
10420 check_absolute_expr (ip, &imm_expr);
10421 if ((unsigned long) imm_expr.X_add_number > 63)
10422 as_warn (_("Invalid value for `%s' (%lu)"),
10423 ip->insn_mo->name,
10424 (unsigned long) imm_expr.X_add_number);
10425 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number);
10426 imm_expr.X_op = O_absent;
10427 s = expr_end;
10428 continue;
10429
10430 case 'a': /* 26 bit address */
10431 my_getExpression (&offset_expr, s);
10432 s = expr_end;
10433 *offset_reloc = BFD_RELOC_MIPS16_JMP;
10434 ip->insn_opcode <<= 16;
10435 continue;
10436
10437 case 'l': /* register list for entry macro */
10438 case 'L': /* register list for exit macro */
10439 {
10440 int mask;
10441
10442 if (c == 'l')
10443 mask = 0;
10444 else
10445 mask = 7 << 3;
10446 while (*s != '\0')
10447 {
10448 unsigned int freg, reg1, reg2;
10449
10450 while (*s == ' ' || *s == ',')
10451 ++s;
10452 if (reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10453 freg = 0;
10454 else if (reg_lookup (&s, RTYPE_FPU, &reg1))
10455 freg = 1;
10456 else
10457 {
10458 as_bad (_("can't parse register list"));
10459 break;
10460 }
10461 if (*s == ' ')
10462 ++s;
10463 if (*s != '-')
10464 reg2 = reg1;
10465 else
10466 {
10467 ++s;
10468 if (!reg_lookup (&s, freg ? RTYPE_FPU
10469 : (RTYPE_GP | RTYPE_NUM), &reg2))
10470 {
10471 as_bad (_("invalid register list"));
10472 break;
10473 }
10474 }
10475 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
10476 {
10477 mask &= ~ (7 << 3);
10478 mask |= 5 << 3;
10479 }
10480 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
10481 {
10482 mask &= ~ (7 << 3);
10483 mask |= 6 << 3;
10484 }
10485 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
10486 mask |= (reg2 - 3) << 3;
10487 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
10488 mask |= (reg2 - 15) << 1;
10489 else if (reg1 == RA && reg2 == RA)
10490 mask |= 1;
10491 else
10492 {
10493 as_bad (_("invalid register list"));
10494 break;
10495 }
10496 }
10497 /* The mask is filled in in the opcode table for the
10498 benefit of the disassembler. We remove it before
10499 applying the actual mask. */
10500 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
10501 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
10502 }
10503 continue;
10504
10505 case 'm': /* Register list for save insn. */
10506 case 'M': /* Register list for restore insn. */
10507 {
10508 int opcode = 0;
10509 int framesz = 0, seen_framesz = 0;
10510 int args = 0, statics = 0, sregs = 0;
10511
10512 while (*s != '\0')
10513 {
10514 unsigned int reg1, reg2;
10515
10516 SKIP_SPACE_TABS (s);
10517 while (*s == ',')
10518 ++s;
10519 SKIP_SPACE_TABS (s);
10520
10521 my_getExpression (&imm_expr, s);
10522 if (imm_expr.X_op == O_constant)
10523 {
10524 /* Handle the frame size. */
10525 if (seen_framesz)
10526 {
10527 as_bad (_("more than one frame size in list"));
10528 break;
10529 }
10530 seen_framesz = 1;
10531 framesz = imm_expr.X_add_number;
10532 imm_expr.X_op = O_absent;
10533 s = expr_end;
10534 continue;
10535 }
10536
10537 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10538 {
10539 as_bad (_("can't parse register list"));
10540 break;
10541 }
10542
10543 while (*s == ' ')
10544 ++s;
10545
10546 if (*s != '-')
10547 reg2 = reg1;
10548 else
10549 {
10550 ++s;
10551 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg2)
10552 || reg2 < reg1)
10553 {
10554 as_bad (_("can't parse register list"));
10555 break;
10556 }
10557 }
10558
10559 while (reg1 <= reg2)
10560 {
10561 if (reg1 >= 4 && reg1 <= 7)
10562 {
10563 if (!seen_framesz)
10564 /* args $a0-$a3 */
10565 args |= 1 << (reg1 - 4);
10566 else
10567 /* statics $a0-$a3 */
10568 statics |= 1 << (reg1 - 4);
10569 }
10570 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30)
10571 {
10572 /* $s0-$s8 */
10573 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16));
10574 }
10575 else if (reg1 == 31)
10576 {
10577 /* Add $ra to insn. */
10578 opcode |= 0x40;
10579 }
10580 else
10581 {
10582 as_bad (_("unexpected register in list"));
10583 break;
10584 }
10585 if (++reg1 == 24)
10586 reg1 = 30;
10587 }
10588 }
10589
10590 /* Encode args/statics combination. */
10591 if (args & statics)
10592 as_bad (_("arg/static registers overlap"));
10593 else if (args == 0xf)
10594 /* All $a0-$a3 are args. */
10595 opcode |= MIPS16_ALL_ARGS << 16;
10596 else if (statics == 0xf)
10597 /* All $a0-$a3 are statics. */
10598 opcode |= MIPS16_ALL_STATICS << 16;
10599 else
10600 {
10601 int narg = 0, nstat = 0;
10602
10603 /* Count arg registers. */
10604 while (args & 0x1)
10605 {
10606 args >>= 1;
10607 narg++;
10608 }
10609 if (args != 0)
10610 as_bad (_("invalid arg register list"));
10611
10612 /* Count static registers. */
10613 while (statics & 0x8)
10614 {
10615 statics = (statics << 1) & 0xf;
10616 nstat++;
10617 }
10618 if (statics != 0)
10619 as_bad (_("invalid static register list"));
10620
10621 /* Encode args/statics. */
10622 opcode |= ((narg << 2) | nstat) << 16;
10623 }
10624
10625 /* Encode $s0/$s1. */
10626 if (sregs & (1 << 0)) /* $s0 */
10627 opcode |= 0x20;
10628 if (sregs & (1 << 1)) /* $s1 */
10629 opcode |= 0x10;
10630 sregs >>= 2;
10631
10632 if (sregs != 0)
10633 {
10634 /* Count regs $s2-$s8. */
10635 int nsreg = 0;
10636 while (sregs & 1)
10637 {
10638 sregs >>= 1;
10639 nsreg++;
10640 }
10641 if (sregs != 0)
10642 as_bad (_("invalid static register list"));
10643 /* Encode $s2-$s8. */
10644 opcode |= nsreg << 24;
10645 }
10646
10647 /* Encode frame size. */
10648 if (!seen_framesz)
10649 as_bad (_("missing frame size"));
10650 else if ((framesz & 7) != 0 || framesz < 0
10651 || framesz > 0xff * 8)
10652 as_bad (_("invalid frame size"));
10653 else if (framesz != 128 || (opcode >> 16) != 0)
10654 {
10655 framesz /= 8;
10656 opcode |= (((framesz & 0xf0) << 16)
10657 | (framesz & 0x0f));
10658 }
10659
10660 /* Finally build the instruction. */
10661 if ((opcode >> 16) != 0 || framesz == 0)
10662 {
10663 ip->use_extend = TRUE;
10664 ip->extend = opcode >> 16;
10665 }
10666 ip->insn_opcode |= opcode & 0x7f;
10667 }
10668 continue;
10669
10670 case 'e': /* extend code */
10671 my_getExpression (&imm_expr, s);
10672 check_absolute_expr (ip, &imm_expr);
10673 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
10674 {
10675 as_warn (_("Invalid value for `%s' (%lu)"),
10676 ip->insn_mo->name,
10677 (unsigned long) imm_expr.X_add_number);
10678 imm_expr.X_add_number &= 0x7ff;
10679 }
10680 ip->insn_opcode |= imm_expr.X_add_number;
10681 imm_expr.X_op = O_absent;
10682 s = expr_end;
10683 continue;
10684
10685 default:
10686 internalError ();
10687 }
10688 break;
10689 }
10690
10691 /* Args don't match. */
10692 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
10693 strcmp (insn->name, insn[1].name) == 0)
10694 {
10695 ++insn;
10696 s = argsstart;
10697 continue;
10698 }
10699
10700 insn_error = _("illegal operands");
10701
10702 return;
10703 }
10704 }
10705
10706 /* This structure holds information we know about a mips16 immediate
10707 argument type. */
10708
10709 struct mips16_immed_operand
10710 {
10711 /* The type code used in the argument string in the opcode table. */
10712 int type;
10713 /* The number of bits in the short form of the opcode. */
10714 int nbits;
10715 /* The number of bits in the extended form of the opcode. */
10716 int extbits;
10717 /* The amount by which the short form is shifted when it is used;
10718 for example, the sw instruction has a shift count of 2. */
10719 int shift;
10720 /* The amount by which the short form is shifted when it is stored
10721 into the instruction code. */
10722 int op_shift;
10723 /* Non-zero if the short form is unsigned. */
10724 int unsp;
10725 /* Non-zero if the extended form is unsigned. */
10726 int extu;
10727 /* Non-zero if the value is PC relative. */
10728 int pcrel;
10729 };
10730
10731 /* The mips16 immediate operand types. */
10732
10733 static const struct mips16_immed_operand mips16_immed_operands[] =
10734 {
10735 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10736 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10737 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10738 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10739 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
10740 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
10741 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
10742 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
10743 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
10744 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
10745 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
10746 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
10747 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
10748 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
10749 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
10750 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
10751 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10752 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10753 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
10754 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
10755 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
10756 };
10757
10758 #define MIPS16_NUM_IMMED \
10759 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
10760
10761 /* Handle a mips16 instruction with an immediate value. This or's the
10762 small immediate value into *INSN. It sets *USE_EXTEND to indicate
10763 whether an extended value is needed; if one is needed, it sets
10764 *EXTEND to the value. The argument type is TYPE. The value is VAL.
10765 If SMALL is true, an unextended opcode was explicitly requested.
10766 If EXT is true, an extended opcode was explicitly requested. If
10767 WARN is true, warn if EXT does not match reality. */
10768
10769 static void
10770 mips16_immed (char *file, unsigned int line, int type, offsetT val,
10771 bfd_boolean warn, bfd_boolean small, bfd_boolean ext,
10772 unsigned long *insn, bfd_boolean *use_extend,
10773 unsigned short *extend)
10774 {
10775 const struct mips16_immed_operand *op;
10776 int mintiny, maxtiny;
10777 bfd_boolean needext;
10778
10779 op = mips16_immed_operands;
10780 while (op->type != type)
10781 {
10782 ++op;
10783 assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
10784 }
10785
10786 if (op->unsp)
10787 {
10788 if (type == '<' || type == '>' || type == '[' || type == ']')
10789 {
10790 mintiny = 1;
10791 maxtiny = 1 << op->nbits;
10792 }
10793 else
10794 {
10795 mintiny = 0;
10796 maxtiny = (1 << op->nbits) - 1;
10797 }
10798 }
10799 else
10800 {
10801 mintiny = - (1 << (op->nbits - 1));
10802 maxtiny = (1 << (op->nbits - 1)) - 1;
10803 }
10804
10805 /* Branch offsets have an implicit 0 in the lowest bit. */
10806 if (type == 'p' || type == 'q')
10807 val /= 2;
10808
10809 if ((val & ((1 << op->shift) - 1)) != 0
10810 || val < (mintiny << op->shift)
10811 || val > (maxtiny << op->shift))
10812 needext = TRUE;
10813 else
10814 needext = FALSE;
10815
10816 if (warn && ext && ! needext)
10817 as_warn_where (file, line,
10818 _("extended operand requested but not required"));
10819 if (small && needext)
10820 as_bad_where (file, line, _("invalid unextended operand value"));
10821
10822 if (small || (! ext && ! needext))
10823 {
10824 int insnval;
10825
10826 *use_extend = FALSE;
10827 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
10828 insnval <<= op->op_shift;
10829 *insn |= insnval;
10830 }
10831 else
10832 {
10833 long minext, maxext;
10834 int extval;
10835
10836 if (op->extu)
10837 {
10838 minext = 0;
10839 maxext = (1 << op->extbits) - 1;
10840 }
10841 else
10842 {
10843 minext = - (1 << (op->extbits - 1));
10844 maxext = (1 << (op->extbits - 1)) - 1;
10845 }
10846 if (val < minext || val > maxext)
10847 as_bad_where (file, line,
10848 _("operand value out of range for instruction"));
10849
10850 *use_extend = TRUE;
10851 if (op->extbits == 16)
10852 {
10853 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
10854 val &= 0x1f;
10855 }
10856 else if (op->extbits == 15)
10857 {
10858 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
10859 val &= 0xf;
10860 }
10861 else
10862 {
10863 extval = ((val & 0x1f) << 6) | (val & 0x20);
10864 val = 0;
10865 }
10866
10867 *extend = (unsigned short) extval;
10868 *insn |= val;
10869 }
10870 }
10871 \f
10872 struct percent_op_match
10873 {
10874 const char *str;
10875 bfd_reloc_code_real_type reloc;
10876 };
10877
10878 static const struct percent_op_match mips_percent_op[] =
10879 {
10880 {"%lo", BFD_RELOC_LO16},
10881 #ifdef OBJ_ELF
10882 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
10883 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
10884 {"%call16", BFD_RELOC_MIPS_CALL16},
10885 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
10886 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
10887 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
10888 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
10889 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
10890 {"%got", BFD_RELOC_MIPS_GOT16},
10891 {"%gp_rel", BFD_RELOC_GPREL16},
10892 {"%half", BFD_RELOC_16},
10893 {"%highest", BFD_RELOC_MIPS_HIGHEST},
10894 {"%higher", BFD_RELOC_MIPS_HIGHER},
10895 {"%neg", BFD_RELOC_MIPS_SUB},
10896 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
10897 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
10898 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
10899 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
10900 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
10901 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
10902 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
10903 #endif
10904 {"%hi", BFD_RELOC_HI16_S}
10905 };
10906
10907 static const struct percent_op_match mips16_percent_op[] =
10908 {
10909 {"%lo", BFD_RELOC_MIPS16_LO16},
10910 {"%gprel", BFD_RELOC_MIPS16_GPREL},
10911 {"%got", BFD_RELOC_MIPS16_GOT16},
10912 {"%call16", BFD_RELOC_MIPS16_CALL16},
10913 {"%hi", BFD_RELOC_MIPS16_HI16_S}
10914 };
10915
10916
10917 /* Return true if *STR points to a relocation operator. When returning true,
10918 move *STR over the operator and store its relocation code in *RELOC.
10919 Leave both *STR and *RELOC alone when returning false. */
10920
10921 static bfd_boolean
10922 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
10923 {
10924 const struct percent_op_match *percent_op;
10925 size_t limit, i;
10926
10927 if (mips_opts.mips16)
10928 {
10929 percent_op = mips16_percent_op;
10930 limit = ARRAY_SIZE (mips16_percent_op);
10931 }
10932 else
10933 {
10934 percent_op = mips_percent_op;
10935 limit = ARRAY_SIZE (mips_percent_op);
10936 }
10937
10938 for (i = 0; i < limit; i++)
10939 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
10940 {
10941 int len = strlen (percent_op[i].str);
10942
10943 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
10944 continue;
10945
10946 *str += strlen (percent_op[i].str);
10947 *reloc = percent_op[i].reloc;
10948
10949 /* Check whether the output BFD supports this relocation.
10950 If not, issue an error and fall back on something safe. */
10951 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
10952 {
10953 as_bad ("relocation %s isn't supported by the current ABI",
10954 percent_op[i].str);
10955 *reloc = BFD_RELOC_UNUSED;
10956 }
10957 return TRUE;
10958 }
10959 return FALSE;
10960 }
10961
10962
10963 /* Parse string STR as a 16-bit relocatable operand. Store the
10964 expression in *EP and the relocations in the array starting
10965 at RELOC. Return the number of relocation operators used.
10966
10967 On exit, EXPR_END points to the first character after the expression. */
10968
10969 static size_t
10970 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
10971 char *str)
10972 {
10973 bfd_reloc_code_real_type reversed_reloc[3];
10974 size_t reloc_index, i;
10975 int crux_depth, str_depth;
10976 char *crux;
10977
10978 /* Search for the start of the main expression, recoding relocations
10979 in REVERSED_RELOC. End the loop with CRUX pointing to the start
10980 of the main expression and with CRUX_DEPTH containing the number
10981 of open brackets at that point. */
10982 reloc_index = -1;
10983 str_depth = 0;
10984 do
10985 {
10986 reloc_index++;
10987 crux = str;
10988 crux_depth = str_depth;
10989
10990 /* Skip over whitespace and brackets, keeping count of the number
10991 of brackets. */
10992 while (*str == ' ' || *str == '\t' || *str == '(')
10993 if (*str++ == '(')
10994 str_depth++;
10995 }
10996 while (*str == '%'
10997 && reloc_index < (HAVE_NEWABI ? 3 : 1)
10998 && parse_relocation (&str, &reversed_reloc[reloc_index]));
10999
11000 my_getExpression (ep, crux);
11001 str = expr_end;
11002
11003 /* Match every open bracket. */
11004 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
11005 if (*str++ == ')')
11006 crux_depth--;
11007
11008 if (crux_depth > 0)
11009 as_bad ("unclosed '('");
11010
11011 expr_end = str;
11012
11013 if (reloc_index != 0)
11014 {
11015 prev_reloc_op_frag = frag_now;
11016 for (i = 0; i < reloc_index; i++)
11017 reloc[i] = reversed_reloc[reloc_index - 1 - i];
11018 }
11019
11020 return reloc_index;
11021 }
11022
11023 static void
11024 my_getExpression (expressionS *ep, char *str)
11025 {
11026 char *save_in;
11027 valueT val;
11028
11029 save_in = input_line_pointer;
11030 input_line_pointer = str;
11031 expression (ep);
11032 expr_end = input_line_pointer;
11033 input_line_pointer = save_in;
11034
11035 /* If we are in mips16 mode, and this is an expression based on `.',
11036 then we bump the value of the symbol by 1 since that is how other
11037 text symbols are handled. We don't bother to handle complex
11038 expressions, just `.' plus or minus a constant. */
11039 if (mips_opts.mips16
11040 && ep->X_op == O_symbol
11041 && strcmp (S_GET_NAME (ep->X_add_symbol), FAKE_LABEL_NAME) == 0
11042 && S_GET_SEGMENT (ep->X_add_symbol) == now_seg
11043 && symbol_get_frag (ep->X_add_symbol) == frag_now
11044 && symbol_constant_p (ep->X_add_symbol)
11045 && (val = S_GET_VALUE (ep->X_add_symbol)) == frag_now_fix ())
11046 S_SET_VALUE (ep->X_add_symbol, val + 1);
11047 }
11048
11049 char *
11050 md_atof (int type, char *litP, int *sizeP)
11051 {
11052 return ieee_md_atof (type, litP, sizeP, target_big_endian);
11053 }
11054
11055 void
11056 md_number_to_chars (char *buf, valueT val, int n)
11057 {
11058 if (target_big_endian)
11059 number_to_chars_bigendian (buf, val, n);
11060 else
11061 number_to_chars_littleendian (buf, val, n);
11062 }
11063 \f
11064 #ifdef OBJ_ELF
11065 static int support_64bit_objects(void)
11066 {
11067 const char **list, **l;
11068 int yes;
11069
11070 list = bfd_target_list ();
11071 for (l = list; *l != NULL; l++)
11072 #ifdef TE_TMIPS
11073 /* This is traditional mips */
11074 if (strcmp (*l, "elf64-tradbigmips") == 0
11075 || strcmp (*l, "elf64-tradlittlemips") == 0)
11076 #else
11077 if (strcmp (*l, "elf64-bigmips") == 0
11078 || strcmp (*l, "elf64-littlemips") == 0)
11079 #endif
11080 break;
11081 yes = (*l != NULL);
11082 free (list);
11083 return yes;
11084 }
11085 #endif /* OBJ_ELF */
11086
11087 const char *md_shortopts = "O::g::G:";
11088
11089 struct option md_longopts[] =
11090 {
11091 /* Options which specify architecture. */
11092 #define OPTION_ARCH_BASE (OPTION_MD_BASE)
11093 #define OPTION_MARCH (OPTION_ARCH_BASE + 0)
11094 {"march", required_argument, NULL, OPTION_MARCH},
11095 #define OPTION_MTUNE (OPTION_ARCH_BASE + 1)
11096 {"mtune", required_argument, NULL, OPTION_MTUNE},
11097 #define OPTION_MIPS1 (OPTION_ARCH_BASE + 2)
11098 {"mips0", no_argument, NULL, OPTION_MIPS1},
11099 {"mips1", no_argument, NULL, OPTION_MIPS1},
11100 #define OPTION_MIPS2 (OPTION_ARCH_BASE + 3)
11101 {"mips2", no_argument, NULL, OPTION_MIPS2},
11102 #define OPTION_MIPS3 (OPTION_ARCH_BASE + 4)
11103 {"mips3", no_argument, NULL, OPTION_MIPS3},
11104 #define OPTION_MIPS4 (OPTION_ARCH_BASE + 5)
11105 {"mips4", no_argument, NULL, OPTION_MIPS4},
11106 #define OPTION_MIPS5 (OPTION_ARCH_BASE + 6)
11107 {"mips5", no_argument, NULL, OPTION_MIPS5},
11108 #define OPTION_MIPS32 (OPTION_ARCH_BASE + 7)
11109 {"mips32", no_argument, NULL, OPTION_MIPS32},
11110 #define OPTION_MIPS64 (OPTION_ARCH_BASE + 8)
11111 {"mips64", no_argument, NULL, OPTION_MIPS64},
11112 #define OPTION_MIPS32R2 (OPTION_ARCH_BASE + 9)
11113 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
11114 #define OPTION_MIPS64R2 (OPTION_ARCH_BASE + 10)
11115 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
11116
11117 /* Options which specify Application Specific Extensions (ASEs). */
11118 #define OPTION_ASE_BASE (OPTION_ARCH_BASE + 11)
11119 #define OPTION_MIPS16 (OPTION_ASE_BASE + 0)
11120 {"mips16", no_argument, NULL, OPTION_MIPS16},
11121 #define OPTION_NO_MIPS16 (OPTION_ASE_BASE + 1)
11122 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
11123 #define OPTION_MIPS3D (OPTION_ASE_BASE + 2)
11124 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
11125 #define OPTION_NO_MIPS3D (OPTION_ASE_BASE + 3)
11126 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
11127 #define OPTION_MDMX (OPTION_ASE_BASE + 4)
11128 {"mdmx", no_argument, NULL, OPTION_MDMX},
11129 #define OPTION_NO_MDMX (OPTION_ASE_BASE + 5)
11130 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
11131 #define OPTION_DSP (OPTION_ASE_BASE + 6)
11132 {"mdsp", no_argument, NULL, OPTION_DSP},
11133 #define OPTION_NO_DSP (OPTION_ASE_BASE + 7)
11134 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
11135 #define OPTION_MT (OPTION_ASE_BASE + 8)
11136 {"mmt", no_argument, NULL, OPTION_MT},
11137 #define OPTION_NO_MT (OPTION_ASE_BASE + 9)
11138 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
11139 #define OPTION_SMARTMIPS (OPTION_ASE_BASE + 10)
11140 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
11141 #define OPTION_NO_SMARTMIPS (OPTION_ASE_BASE + 11)
11142 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
11143 #define OPTION_DSPR2 (OPTION_ASE_BASE + 12)
11144 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
11145 #define OPTION_NO_DSPR2 (OPTION_ASE_BASE + 13)
11146 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
11147
11148 /* Old-style architecture options. Don't add more of these. */
11149 #define OPTION_COMPAT_ARCH_BASE (OPTION_ASE_BASE + 14)
11150 #define OPTION_M4650 (OPTION_COMPAT_ARCH_BASE + 0)
11151 {"m4650", no_argument, NULL, OPTION_M4650},
11152 #define OPTION_NO_M4650 (OPTION_COMPAT_ARCH_BASE + 1)
11153 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
11154 #define OPTION_M4010 (OPTION_COMPAT_ARCH_BASE + 2)
11155 {"m4010", no_argument, NULL, OPTION_M4010},
11156 #define OPTION_NO_M4010 (OPTION_COMPAT_ARCH_BASE + 3)
11157 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
11158 #define OPTION_M4100 (OPTION_COMPAT_ARCH_BASE + 4)
11159 {"m4100", no_argument, NULL, OPTION_M4100},
11160 #define OPTION_NO_M4100 (OPTION_COMPAT_ARCH_BASE + 5)
11161 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
11162 #define OPTION_M3900 (OPTION_COMPAT_ARCH_BASE + 6)
11163 {"m3900", no_argument, NULL, OPTION_M3900},
11164 #define OPTION_NO_M3900 (OPTION_COMPAT_ARCH_BASE + 7)
11165 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
11166
11167 /* Options which enable bug fixes. */
11168 #define OPTION_FIX_BASE (OPTION_COMPAT_ARCH_BASE + 8)
11169 #define OPTION_M7000_HILO_FIX (OPTION_FIX_BASE + 0)
11170 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
11171 #define OPTION_MNO_7000_HILO_FIX (OPTION_FIX_BASE + 1)
11172 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11173 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11174 #define OPTION_FIX_VR4120 (OPTION_FIX_BASE + 2)
11175 #define OPTION_NO_FIX_VR4120 (OPTION_FIX_BASE + 3)
11176 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
11177 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
11178 #define OPTION_FIX_VR4130 (OPTION_FIX_BASE + 4)
11179 #define OPTION_NO_FIX_VR4130 (OPTION_FIX_BASE + 5)
11180 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
11181 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
11182
11183 /* Miscellaneous options. */
11184 #define OPTION_MISC_BASE (OPTION_FIX_BASE + 6)
11185 #define OPTION_TRAP (OPTION_MISC_BASE + 0)
11186 {"trap", no_argument, NULL, OPTION_TRAP},
11187 {"no-break", no_argument, NULL, OPTION_TRAP},
11188 #define OPTION_BREAK (OPTION_MISC_BASE + 1)
11189 {"break", no_argument, NULL, OPTION_BREAK},
11190 {"no-trap", no_argument, NULL, OPTION_BREAK},
11191 #define OPTION_EB (OPTION_MISC_BASE + 2)
11192 {"EB", no_argument, NULL, OPTION_EB},
11193 #define OPTION_EL (OPTION_MISC_BASE + 3)
11194 {"EL", no_argument, NULL, OPTION_EL},
11195 #define OPTION_FP32 (OPTION_MISC_BASE + 4)
11196 {"mfp32", no_argument, NULL, OPTION_FP32},
11197 #define OPTION_GP32 (OPTION_MISC_BASE + 5)
11198 {"mgp32", no_argument, NULL, OPTION_GP32},
11199 #define OPTION_CONSTRUCT_FLOATS (OPTION_MISC_BASE + 6)
11200 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
11201 #define OPTION_NO_CONSTRUCT_FLOATS (OPTION_MISC_BASE + 7)
11202 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
11203 #define OPTION_FP64 (OPTION_MISC_BASE + 8)
11204 {"mfp64", no_argument, NULL, OPTION_FP64},
11205 #define OPTION_GP64 (OPTION_MISC_BASE + 9)
11206 {"mgp64", no_argument, NULL, OPTION_GP64},
11207 #define OPTION_RELAX_BRANCH (OPTION_MISC_BASE + 10)
11208 #define OPTION_NO_RELAX_BRANCH (OPTION_MISC_BASE + 11)
11209 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
11210 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
11211 #define OPTION_MSHARED (OPTION_MISC_BASE + 12)
11212 #define OPTION_MNO_SHARED (OPTION_MISC_BASE + 13)
11213 {"mshared", no_argument, NULL, OPTION_MSHARED},
11214 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
11215 #define OPTION_MSYM32 (OPTION_MISC_BASE + 14)
11216 #define OPTION_MNO_SYM32 (OPTION_MISC_BASE + 15)
11217 {"msym32", no_argument, NULL, OPTION_MSYM32},
11218 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
11219 #define OPTION_SOFT_FLOAT (OPTION_MISC_BASE + 16)
11220 #define OPTION_HARD_FLOAT (OPTION_MISC_BASE + 17)
11221 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
11222 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
11223 #define OPTION_SINGLE_FLOAT (OPTION_MISC_BASE + 18)
11224 #define OPTION_DOUBLE_FLOAT (OPTION_MISC_BASE + 19)
11225 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
11226 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
11227
11228 /* ELF-specific options. */
11229 #ifdef OBJ_ELF
11230 #define OPTION_ELF_BASE (OPTION_MISC_BASE + 20)
11231 #define OPTION_CALL_SHARED (OPTION_ELF_BASE + 0)
11232 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
11233 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
11234 #define OPTION_NON_SHARED (OPTION_ELF_BASE + 1)
11235 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
11236 #define OPTION_XGOT (OPTION_ELF_BASE + 2)
11237 {"xgot", no_argument, NULL, OPTION_XGOT},
11238 #define OPTION_MABI (OPTION_ELF_BASE + 3)
11239 {"mabi", required_argument, NULL, OPTION_MABI},
11240 #define OPTION_32 (OPTION_ELF_BASE + 4)
11241 {"32", no_argument, NULL, OPTION_32},
11242 #define OPTION_N32 (OPTION_ELF_BASE + 5)
11243 {"n32", no_argument, NULL, OPTION_N32},
11244 #define OPTION_64 (OPTION_ELF_BASE + 6)
11245 {"64", no_argument, NULL, OPTION_64},
11246 #define OPTION_MDEBUG (OPTION_ELF_BASE + 7)
11247 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
11248 #define OPTION_NO_MDEBUG (OPTION_ELF_BASE + 8)
11249 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
11250 #define OPTION_PDR (OPTION_ELF_BASE + 9)
11251 {"mpdr", no_argument, NULL, OPTION_PDR},
11252 #define OPTION_NO_PDR (OPTION_ELF_BASE + 10)
11253 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
11254 #define OPTION_MVXWORKS_PIC (OPTION_ELF_BASE + 11)
11255 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
11256 #endif /* OBJ_ELF */
11257
11258 {NULL, no_argument, NULL, 0}
11259 };
11260 size_t md_longopts_size = sizeof (md_longopts);
11261
11262 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
11263 NEW_VALUE. Warn if another value was already specified. Note:
11264 we have to defer parsing the -march and -mtune arguments in order
11265 to handle 'from-abi' correctly, since the ABI might be specified
11266 in a later argument. */
11267
11268 static void
11269 mips_set_option_string (const char **string_ptr, const char *new_value)
11270 {
11271 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
11272 as_warn (_("A different %s was already specified, is now %s"),
11273 string_ptr == &mips_arch_string ? "-march" : "-mtune",
11274 new_value);
11275
11276 *string_ptr = new_value;
11277 }
11278
11279 int
11280 md_parse_option (int c, char *arg)
11281 {
11282 switch (c)
11283 {
11284 case OPTION_CONSTRUCT_FLOATS:
11285 mips_disable_float_construction = 0;
11286 break;
11287
11288 case OPTION_NO_CONSTRUCT_FLOATS:
11289 mips_disable_float_construction = 1;
11290 break;
11291
11292 case OPTION_TRAP:
11293 mips_trap = 1;
11294 break;
11295
11296 case OPTION_BREAK:
11297 mips_trap = 0;
11298 break;
11299
11300 case OPTION_EB:
11301 target_big_endian = 1;
11302 break;
11303
11304 case OPTION_EL:
11305 target_big_endian = 0;
11306 break;
11307
11308 case 'O':
11309 if (arg == NULL)
11310 mips_optimize = 1;
11311 else if (arg[0] == '0')
11312 mips_optimize = 0;
11313 else if (arg[0] == '1')
11314 mips_optimize = 1;
11315 else
11316 mips_optimize = 2;
11317 break;
11318
11319 case 'g':
11320 if (arg == NULL)
11321 mips_debug = 2;
11322 else
11323 mips_debug = atoi (arg);
11324 break;
11325
11326 case OPTION_MIPS1:
11327 file_mips_isa = ISA_MIPS1;
11328 break;
11329
11330 case OPTION_MIPS2:
11331 file_mips_isa = ISA_MIPS2;
11332 break;
11333
11334 case OPTION_MIPS3:
11335 file_mips_isa = ISA_MIPS3;
11336 break;
11337
11338 case OPTION_MIPS4:
11339 file_mips_isa = ISA_MIPS4;
11340 break;
11341
11342 case OPTION_MIPS5:
11343 file_mips_isa = ISA_MIPS5;
11344 break;
11345
11346 case OPTION_MIPS32:
11347 file_mips_isa = ISA_MIPS32;
11348 break;
11349
11350 case OPTION_MIPS32R2:
11351 file_mips_isa = ISA_MIPS32R2;
11352 break;
11353
11354 case OPTION_MIPS64R2:
11355 file_mips_isa = ISA_MIPS64R2;
11356 break;
11357
11358 case OPTION_MIPS64:
11359 file_mips_isa = ISA_MIPS64;
11360 break;
11361
11362 case OPTION_MTUNE:
11363 mips_set_option_string (&mips_tune_string, arg);
11364 break;
11365
11366 case OPTION_MARCH:
11367 mips_set_option_string (&mips_arch_string, arg);
11368 break;
11369
11370 case OPTION_M4650:
11371 mips_set_option_string (&mips_arch_string, "4650");
11372 mips_set_option_string (&mips_tune_string, "4650");
11373 break;
11374
11375 case OPTION_NO_M4650:
11376 break;
11377
11378 case OPTION_M4010:
11379 mips_set_option_string (&mips_arch_string, "4010");
11380 mips_set_option_string (&mips_tune_string, "4010");
11381 break;
11382
11383 case OPTION_NO_M4010:
11384 break;
11385
11386 case OPTION_M4100:
11387 mips_set_option_string (&mips_arch_string, "4100");
11388 mips_set_option_string (&mips_tune_string, "4100");
11389 break;
11390
11391 case OPTION_NO_M4100:
11392 break;
11393
11394 case OPTION_M3900:
11395 mips_set_option_string (&mips_arch_string, "3900");
11396 mips_set_option_string (&mips_tune_string, "3900");
11397 break;
11398
11399 case OPTION_NO_M3900:
11400 break;
11401
11402 case OPTION_MDMX:
11403 mips_opts.ase_mdmx = 1;
11404 break;
11405
11406 case OPTION_NO_MDMX:
11407 mips_opts.ase_mdmx = 0;
11408 break;
11409
11410 case OPTION_DSP:
11411 mips_opts.ase_dsp = 1;
11412 mips_opts.ase_dspr2 = 0;
11413 break;
11414
11415 case OPTION_NO_DSP:
11416 mips_opts.ase_dsp = 0;
11417 mips_opts.ase_dspr2 = 0;
11418 break;
11419
11420 case OPTION_DSPR2:
11421 mips_opts.ase_dspr2 = 1;
11422 mips_opts.ase_dsp = 1;
11423 break;
11424
11425 case OPTION_NO_DSPR2:
11426 mips_opts.ase_dspr2 = 0;
11427 mips_opts.ase_dsp = 0;
11428 break;
11429
11430 case OPTION_MT:
11431 mips_opts.ase_mt = 1;
11432 break;
11433
11434 case OPTION_NO_MT:
11435 mips_opts.ase_mt = 0;
11436 break;
11437
11438 case OPTION_MIPS16:
11439 mips_opts.mips16 = 1;
11440 mips_no_prev_insn ();
11441 break;
11442
11443 case OPTION_NO_MIPS16:
11444 mips_opts.mips16 = 0;
11445 mips_no_prev_insn ();
11446 break;
11447
11448 case OPTION_MIPS3D:
11449 mips_opts.ase_mips3d = 1;
11450 break;
11451
11452 case OPTION_NO_MIPS3D:
11453 mips_opts.ase_mips3d = 0;
11454 break;
11455
11456 case OPTION_SMARTMIPS:
11457 mips_opts.ase_smartmips = 1;
11458 break;
11459
11460 case OPTION_NO_SMARTMIPS:
11461 mips_opts.ase_smartmips = 0;
11462 break;
11463
11464 case OPTION_FIX_VR4120:
11465 mips_fix_vr4120 = 1;
11466 break;
11467
11468 case OPTION_NO_FIX_VR4120:
11469 mips_fix_vr4120 = 0;
11470 break;
11471
11472 case OPTION_FIX_VR4130:
11473 mips_fix_vr4130 = 1;
11474 break;
11475
11476 case OPTION_NO_FIX_VR4130:
11477 mips_fix_vr4130 = 0;
11478 break;
11479
11480 case OPTION_RELAX_BRANCH:
11481 mips_relax_branch = 1;
11482 break;
11483
11484 case OPTION_NO_RELAX_BRANCH:
11485 mips_relax_branch = 0;
11486 break;
11487
11488 case OPTION_MSHARED:
11489 mips_in_shared = TRUE;
11490 break;
11491
11492 case OPTION_MNO_SHARED:
11493 mips_in_shared = FALSE;
11494 break;
11495
11496 case OPTION_MSYM32:
11497 mips_opts.sym32 = TRUE;
11498 break;
11499
11500 case OPTION_MNO_SYM32:
11501 mips_opts.sym32 = FALSE;
11502 break;
11503
11504 #ifdef OBJ_ELF
11505 /* When generating ELF code, we permit -KPIC and -call_shared to
11506 select SVR4_PIC, and -non_shared to select no PIC. This is
11507 intended to be compatible with Irix 5. */
11508 case OPTION_CALL_SHARED:
11509 if (!IS_ELF)
11510 {
11511 as_bad (_("-call_shared is supported only for ELF format"));
11512 return 0;
11513 }
11514 mips_pic = SVR4_PIC;
11515 mips_abicalls = TRUE;
11516 break;
11517
11518 case OPTION_NON_SHARED:
11519 if (!IS_ELF)
11520 {
11521 as_bad (_("-non_shared is supported only for ELF format"));
11522 return 0;
11523 }
11524 mips_pic = NO_PIC;
11525 mips_abicalls = FALSE;
11526 break;
11527
11528 /* The -xgot option tells the assembler to use 32 bit offsets
11529 when accessing the got in SVR4_PIC mode. It is for Irix
11530 compatibility. */
11531 case OPTION_XGOT:
11532 mips_big_got = 1;
11533 break;
11534 #endif /* OBJ_ELF */
11535
11536 case 'G':
11537 g_switch_value = atoi (arg);
11538 g_switch_seen = 1;
11539 break;
11540
11541 #ifdef OBJ_ELF
11542 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
11543 and -mabi=64. */
11544 case OPTION_32:
11545 if (!IS_ELF)
11546 {
11547 as_bad (_("-32 is supported for ELF format only"));
11548 return 0;
11549 }
11550 mips_abi = O32_ABI;
11551 break;
11552
11553 case OPTION_N32:
11554 if (!IS_ELF)
11555 {
11556 as_bad (_("-n32 is supported for ELF format only"));
11557 return 0;
11558 }
11559 mips_abi = N32_ABI;
11560 break;
11561
11562 case OPTION_64:
11563 if (!IS_ELF)
11564 {
11565 as_bad (_("-64 is supported for ELF format only"));
11566 return 0;
11567 }
11568 mips_abi = N64_ABI;
11569 if (!support_64bit_objects())
11570 as_fatal (_("No compiled in support for 64 bit object file format"));
11571 break;
11572 #endif /* OBJ_ELF */
11573
11574 case OPTION_GP32:
11575 file_mips_gp32 = 1;
11576 break;
11577
11578 case OPTION_GP64:
11579 file_mips_gp32 = 0;
11580 break;
11581
11582 case OPTION_FP32:
11583 file_mips_fp32 = 1;
11584 break;
11585
11586 case OPTION_FP64:
11587 file_mips_fp32 = 0;
11588 break;
11589
11590 case OPTION_SINGLE_FLOAT:
11591 file_mips_single_float = 1;
11592 break;
11593
11594 case OPTION_DOUBLE_FLOAT:
11595 file_mips_single_float = 0;
11596 break;
11597
11598 case OPTION_SOFT_FLOAT:
11599 file_mips_soft_float = 1;
11600 break;
11601
11602 case OPTION_HARD_FLOAT:
11603 file_mips_soft_float = 0;
11604 break;
11605
11606 #ifdef OBJ_ELF
11607 case OPTION_MABI:
11608 if (!IS_ELF)
11609 {
11610 as_bad (_("-mabi is supported for ELF format only"));
11611 return 0;
11612 }
11613 if (strcmp (arg, "32") == 0)
11614 mips_abi = O32_ABI;
11615 else if (strcmp (arg, "o64") == 0)
11616 mips_abi = O64_ABI;
11617 else if (strcmp (arg, "n32") == 0)
11618 mips_abi = N32_ABI;
11619 else if (strcmp (arg, "64") == 0)
11620 {
11621 mips_abi = N64_ABI;
11622 if (! support_64bit_objects())
11623 as_fatal (_("No compiled in support for 64 bit object file "
11624 "format"));
11625 }
11626 else if (strcmp (arg, "eabi") == 0)
11627 mips_abi = EABI_ABI;
11628 else
11629 {
11630 as_fatal (_("invalid abi -mabi=%s"), arg);
11631 return 0;
11632 }
11633 break;
11634 #endif /* OBJ_ELF */
11635
11636 case OPTION_M7000_HILO_FIX:
11637 mips_7000_hilo_fix = TRUE;
11638 break;
11639
11640 case OPTION_MNO_7000_HILO_FIX:
11641 mips_7000_hilo_fix = FALSE;
11642 break;
11643
11644 #ifdef OBJ_ELF
11645 case OPTION_MDEBUG:
11646 mips_flag_mdebug = TRUE;
11647 break;
11648
11649 case OPTION_NO_MDEBUG:
11650 mips_flag_mdebug = FALSE;
11651 break;
11652
11653 case OPTION_PDR:
11654 mips_flag_pdr = TRUE;
11655 break;
11656
11657 case OPTION_NO_PDR:
11658 mips_flag_pdr = FALSE;
11659 break;
11660
11661 case OPTION_MVXWORKS_PIC:
11662 mips_pic = VXWORKS_PIC;
11663 break;
11664 #endif /* OBJ_ELF */
11665
11666 default:
11667 return 0;
11668 }
11669
11670 return 1;
11671 }
11672 \f
11673 /* Set up globals to generate code for the ISA or processor
11674 described by INFO. */
11675
11676 static void
11677 mips_set_architecture (const struct mips_cpu_info *info)
11678 {
11679 if (info != 0)
11680 {
11681 file_mips_arch = info->cpu;
11682 mips_opts.arch = info->cpu;
11683 mips_opts.isa = info->isa;
11684 }
11685 }
11686
11687
11688 /* Likewise for tuning. */
11689
11690 static void
11691 mips_set_tune (const struct mips_cpu_info *info)
11692 {
11693 if (info != 0)
11694 mips_tune = info->cpu;
11695 }
11696
11697
11698 void
11699 mips_after_parse_args (void)
11700 {
11701 const struct mips_cpu_info *arch_info = 0;
11702 const struct mips_cpu_info *tune_info = 0;
11703
11704 /* GP relative stuff not working for PE */
11705 if (strncmp (TARGET_OS, "pe", 2) == 0)
11706 {
11707 if (g_switch_seen && g_switch_value != 0)
11708 as_bad (_("-G not supported in this configuration."));
11709 g_switch_value = 0;
11710 }
11711
11712 if (mips_abi == NO_ABI)
11713 mips_abi = MIPS_DEFAULT_ABI;
11714
11715 /* The following code determines the architecture and register size.
11716 Similar code was added to GCC 3.3 (see override_options() in
11717 config/mips/mips.c). The GAS and GCC code should be kept in sync
11718 as much as possible. */
11719
11720 if (mips_arch_string != 0)
11721 arch_info = mips_parse_cpu ("-march", mips_arch_string);
11722
11723 if (file_mips_isa != ISA_UNKNOWN)
11724 {
11725 /* Handle -mipsN. At this point, file_mips_isa contains the
11726 ISA level specified by -mipsN, while arch_info->isa contains
11727 the -march selection (if any). */
11728 if (arch_info != 0)
11729 {
11730 /* -march takes precedence over -mipsN, since it is more descriptive.
11731 There's no harm in specifying both as long as the ISA levels
11732 are the same. */
11733 if (file_mips_isa != arch_info->isa)
11734 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
11735 mips_cpu_info_from_isa (file_mips_isa)->name,
11736 mips_cpu_info_from_isa (arch_info->isa)->name);
11737 }
11738 else
11739 arch_info = mips_cpu_info_from_isa (file_mips_isa);
11740 }
11741
11742 if (arch_info == 0)
11743 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
11744
11745 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
11746 as_bad ("-march=%s is not compatible with the selected ABI",
11747 arch_info->name);
11748
11749 mips_set_architecture (arch_info);
11750
11751 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
11752 if (mips_tune_string != 0)
11753 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
11754
11755 if (tune_info == 0)
11756 mips_set_tune (arch_info);
11757 else
11758 mips_set_tune (tune_info);
11759
11760 if (file_mips_gp32 >= 0)
11761 {
11762 /* The user specified the size of the integer registers. Make sure
11763 it agrees with the ABI and ISA. */
11764 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
11765 as_bad (_("-mgp64 used with a 32-bit processor"));
11766 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
11767 as_bad (_("-mgp32 used with a 64-bit ABI"));
11768 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
11769 as_bad (_("-mgp64 used with a 32-bit ABI"));
11770 }
11771 else
11772 {
11773 /* Infer the integer register size from the ABI and processor.
11774 Restrict ourselves to 32-bit registers if that's all the
11775 processor has, or if the ABI cannot handle 64-bit registers. */
11776 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
11777 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
11778 }
11779
11780 switch (file_mips_fp32)
11781 {
11782 default:
11783 case -1:
11784 /* No user specified float register size.
11785 ??? GAS treats single-float processors as though they had 64-bit
11786 float registers (although it complains when double-precision
11787 instructions are used). As things stand, saying they have 32-bit
11788 registers would lead to spurious "register must be even" messages.
11789 So here we assume float registers are never smaller than the
11790 integer ones. */
11791 if (file_mips_gp32 == 0)
11792 /* 64-bit integer registers implies 64-bit float registers. */
11793 file_mips_fp32 = 0;
11794 else if ((mips_opts.ase_mips3d > 0 || mips_opts.ase_mdmx > 0)
11795 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
11796 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
11797 file_mips_fp32 = 0;
11798 else
11799 /* 32-bit float registers. */
11800 file_mips_fp32 = 1;
11801 break;
11802
11803 /* The user specified the size of the float registers. Check if it
11804 agrees with the ABI and ISA. */
11805 case 0:
11806 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
11807 as_bad (_("-mfp64 used with a 32-bit fpu"));
11808 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
11809 && !ISA_HAS_MXHC1 (mips_opts.isa))
11810 as_warn (_("-mfp64 used with a 32-bit ABI"));
11811 break;
11812 case 1:
11813 if (ABI_NEEDS_64BIT_REGS (mips_abi))
11814 as_warn (_("-mfp32 used with a 64-bit ABI"));
11815 break;
11816 }
11817
11818 /* End of GCC-shared inference code. */
11819
11820 /* This flag is set when we have a 64-bit capable CPU but use only
11821 32-bit wide registers. Note that EABI does not use it. */
11822 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
11823 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
11824 || mips_abi == O32_ABI))
11825 mips_32bitmode = 1;
11826
11827 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
11828 as_bad (_("trap exception not supported at ISA 1"));
11829
11830 /* If the selected architecture includes support for ASEs, enable
11831 generation of code for them. */
11832 if (mips_opts.mips16 == -1)
11833 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
11834 if (mips_opts.ase_mips3d == -1)
11835 mips_opts.ase_mips3d = ((arch_info->flags & MIPS_CPU_ASE_MIPS3D)
11836 && file_mips_fp32 == 0) ? 1 : 0;
11837 if (mips_opts.ase_mips3d && file_mips_fp32 == 1)
11838 as_bad (_("-mfp32 used with -mips3d"));
11839
11840 if (mips_opts.ase_mdmx == -1)
11841 mips_opts.ase_mdmx = ((arch_info->flags & MIPS_CPU_ASE_MDMX)
11842 && file_mips_fp32 == 0) ? 1 : 0;
11843 if (mips_opts.ase_mdmx && file_mips_fp32 == 1)
11844 as_bad (_("-mfp32 used with -mdmx"));
11845
11846 if (mips_opts.ase_smartmips == -1)
11847 mips_opts.ase_smartmips = (arch_info->flags & MIPS_CPU_ASE_SMARTMIPS) ? 1 : 0;
11848 if (mips_opts.ase_smartmips && !ISA_SUPPORTS_SMARTMIPS)
11849 as_warn ("%s ISA does not support SmartMIPS",
11850 mips_cpu_info_from_isa (mips_opts.isa)->name);
11851
11852 if (mips_opts.ase_dsp == -1)
11853 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
11854 if (mips_opts.ase_dsp && !ISA_SUPPORTS_DSP_ASE)
11855 as_warn ("%s ISA does not support DSP ASE",
11856 mips_cpu_info_from_isa (mips_opts.isa)->name);
11857
11858 if (mips_opts.ase_dspr2 == -1)
11859 {
11860 mips_opts.ase_dspr2 = (arch_info->flags & MIPS_CPU_ASE_DSPR2) ? 1 : 0;
11861 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
11862 }
11863 if (mips_opts.ase_dspr2 && !ISA_SUPPORTS_DSPR2_ASE)
11864 as_warn ("%s ISA does not support DSP R2 ASE",
11865 mips_cpu_info_from_isa (mips_opts.isa)->name);
11866
11867 if (mips_opts.ase_mt == -1)
11868 mips_opts.ase_mt = (arch_info->flags & MIPS_CPU_ASE_MT) ? 1 : 0;
11869 if (mips_opts.ase_mt && !ISA_SUPPORTS_MT_ASE)
11870 as_warn ("%s ISA does not support MT ASE",
11871 mips_cpu_info_from_isa (mips_opts.isa)->name);
11872
11873 file_mips_isa = mips_opts.isa;
11874 file_ase_mips16 = mips_opts.mips16;
11875 file_ase_mips3d = mips_opts.ase_mips3d;
11876 file_ase_mdmx = mips_opts.ase_mdmx;
11877 file_ase_smartmips = mips_opts.ase_smartmips;
11878 file_ase_dsp = mips_opts.ase_dsp;
11879 file_ase_dspr2 = mips_opts.ase_dspr2;
11880 file_ase_mt = mips_opts.ase_mt;
11881 mips_opts.gp32 = file_mips_gp32;
11882 mips_opts.fp32 = file_mips_fp32;
11883 mips_opts.soft_float = file_mips_soft_float;
11884 mips_opts.single_float = file_mips_single_float;
11885
11886 if (mips_flag_mdebug < 0)
11887 {
11888 #ifdef OBJ_MAYBE_ECOFF
11889 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
11890 mips_flag_mdebug = 1;
11891 else
11892 #endif /* OBJ_MAYBE_ECOFF */
11893 mips_flag_mdebug = 0;
11894 }
11895 }
11896 \f
11897 void
11898 mips_init_after_args (void)
11899 {
11900 /* initialize opcodes */
11901 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
11902 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
11903 }
11904
11905 long
11906 md_pcrel_from (fixS *fixP)
11907 {
11908 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
11909 switch (fixP->fx_r_type)
11910 {
11911 case BFD_RELOC_16_PCREL_S2:
11912 case BFD_RELOC_MIPS_JMP:
11913 /* Return the address of the delay slot. */
11914 return addr + 4;
11915 default:
11916 /* We have no relocation type for PC relative MIPS16 instructions. */
11917 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
11918 as_bad_where (fixP->fx_file, fixP->fx_line,
11919 _("PC relative MIPS16 instruction references a different section"));
11920 return addr;
11921 }
11922 }
11923
11924 /* This is called before the symbol table is processed. In order to
11925 work with gcc when using mips-tfile, we must keep all local labels.
11926 However, in other cases, we want to discard them. If we were
11927 called with -g, but we didn't see any debugging information, it may
11928 mean that gcc is smuggling debugging information through to
11929 mips-tfile, in which case we must generate all local labels. */
11930
11931 void
11932 mips_frob_file_before_adjust (void)
11933 {
11934 #ifndef NO_ECOFF_DEBUGGING
11935 if (ECOFF_DEBUGGING
11936 && mips_debug != 0
11937 && ! ecoff_debugging_seen)
11938 flag_keep_locals = 1;
11939 #endif
11940 }
11941
11942 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
11943 the corresponding LO16 reloc. This is called before md_apply_fix and
11944 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
11945 relocation operators.
11946
11947 For our purposes, a %lo() expression matches a %got() or %hi()
11948 expression if:
11949
11950 (a) it refers to the same symbol; and
11951 (b) the offset applied in the %lo() expression is no lower than
11952 the offset applied in the %got() or %hi().
11953
11954 (b) allows us to cope with code like:
11955
11956 lui $4,%hi(foo)
11957 lh $4,%lo(foo+2)($4)
11958
11959 ...which is legal on RELA targets, and has a well-defined behaviour
11960 if the user knows that adding 2 to "foo" will not induce a carry to
11961 the high 16 bits.
11962
11963 When several %lo()s match a particular %got() or %hi(), we use the
11964 following rules to distinguish them:
11965
11966 (1) %lo()s with smaller offsets are a better match than %lo()s with
11967 higher offsets.
11968
11969 (2) %lo()s with no matching %got() or %hi() are better than those
11970 that already have a matching %got() or %hi().
11971
11972 (3) later %lo()s are better than earlier %lo()s.
11973
11974 These rules are applied in order.
11975
11976 (1) means, among other things, that %lo()s with identical offsets are
11977 chosen if they exist.
11978
11979 (2) means that we won't associate several high-part relocations with
11980 the same low-part relocation unless there's no alternative. Having
11981 several high parts for the same low part is a GNU extension; this rule
11982 allows careful users to avoid it.
11983
11984 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
11985 with the last high-part relocation being at the front of the list.
11986 It therefore makes sense to choose the last matching low-part
11987 relocation, all other things being equal. It's also easier
11988 to code that way. */
11989
11990 void
11991 mips_frob_file (void)
11992 {
11993 struct mips_hi_fixup *l;
11994 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
11995
11996 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
11997 {
11998 segment_info_type *seginfo;
11999 bfd_boolean matched_lo_p;
12000 fixS **hi_pos, **lo_pos, **pos;
12001
12002 assert (reloc_needs_lo_p (l->fixp->fx_r_type));
12003
12004 /* If a GOT16 relocation turns out to be against a global symbol,
12005 there isn't supposed to be a matching LO. */
12006 if (got16_reloc_p (l->fixp->fx_r_type)
12007 && !pic_need_relax (l->fixp->fx_addsy, l->seg))
12008 continue;
12009
12010 /* Check quickly whether the next fixup happens to be a matching %lo. */
12011 if (fixup_has_matching_lo_p (l->fixp))
12012 continue;
12013
12014 seginfo = seg_info (l->seg);
12015
12016 /* Set HI_POS to the position of this relocation in the chain.
12017 Set LO_POS to the position of the chosen low-part relocation.
12018 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
12019 relocation that matches an immediately-preceding high-part
12020 relocation. */
12021 hi_pos = NULL;
12022 lo_pos = NULL;
12023 matched_lo_p = FALSE;
12024 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
12025
12026 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
12027 {
12028 if (*pos == l->fixp)
12029 hi_pos = pos;
12030
12031 if ((*pos)->fx_r_type == looking_for_rtype
12032 && (*pos)->fx_addsy == l->fixp->fx_addsy
12033 && (*pos)->fx_offset >= l->fixp->fx_offset
12034 && (lo_pos == NULL
12035 || (*pos)->fx_offset < (*lo_pos)->fx_offset
12036 || (!matched_lo_p
12037 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
12038 lo_pos = pos;
12039
12040 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
12041 && fixup_has_matching_lo_p (*pos));
12042 }
12043
12044 /* If we found a match, remove the high-part relocation from its
12045 current position and insert it before the low-part relocation.
12046 Make the offsets match so that fixup_has_matching_lo_p()
12047 will return true.
12048
12049 We don't warn about unmatched high-part relocations since some
12050 versions of gcc have been known to emit dead "lui ...%hi(...)"
12051 instructions. */
12052 if (lo_pos != NULL)
12053 {
12054 l->fixp->fx_offset = (*lo_pos)->fx_offset;
12055 if (l->fixp->fx_next != *lo_pos)
12056 {
12057 *hi_pos = l->fixp->fx_next;
12058 l->fixp->fx_next = *lo_pos;
12059 *lo_pos = l->fixp;
12060 }
12061 }
12062 }
12063 }
12064
12065 /* We may have combined relocations without symbols in the N32/N64 ABI.
12066 We have to prevent gas from dropping them. */
12067
12068 int
12069 mips_force_relocation (fixS *fixp)
12070 {
12071 if (generic_force_reloc (fixp))
12072 return 1;
12073
12074 if (HAVE_NEWABI
12075 && S_GET_SEGMENT (fixp->fx_addsy) == bfd_abs_section_ptr
12076 && (fixp->fx_r_type == BFD_RELOC_MIPS_SUB
12077 || hi16_reloc_p (fixp->fx_r_type)
12078 || lo16_reloc_p (fixp->fx_r_type)))
12079 return 1;
12080
12081 return 0;
12082 }
12083
12084 /* Apply a fixup to the object file. */
12085
12086 void
12087 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
12088 {
12089 bfd_byte *buf;
12090 long insn;
12091 reloc_howto_type *howto;
12092
12093 /* We ignore generic BFD relocations we don't know about. */
12094 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
12095 if (! howto)
12096 return;
12097
12098 assert (fixP->fx_size == 4
12099 || fixP->fx_r_type == BFD_RELOC_16
12100 || fixP->fx_r_type == BFD_RELOC_64
12101 || fixP->fx_r_type == BFD_RELOC_CTOR
12102 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
12103 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
12104 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
12105 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
12106
12107 buf = (bfd_byte *) (fixP->fx_frag->fr_literal + fixP->fx_where);
12108
12109 assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2);
12110
12111 /* Don't treat parts of a composite relocation as done. There are two
12112 reasons for this:
12113
12114 (1) The second and third parts will be against 0 (RSS_UNDEF) but
12115 should nevertheless be emitted if the first part is.
12116
12117 (2) In normal usage, composite relocations are never assembly-time
12118 constants. The easiest way of dealing with the pathological
12119 exceptions is to generate a relocation against STN_UNDEF and
12120 leave everything up to the linker. */
12121 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
12122 fixP->fx_done = 1;
12123
12124 switch (fixP->fx_r_type)
12125 {
12126 case BFD_RELOC_MIPS_TLS_GD:
12127 case BFD_RELOC_MIPS_TLS_LDM:
12128 case BFD_RELOC_MIPS_TLS_DTPREL32:
12129 case BFD_RELOC_MIPS_TLS_DTPREL64:
12130 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
12131 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
12132 case BFD_RELOC_MIPS_TLS_GOTTPREL:
12133 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
12134 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
12135 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12136 /* fall through */
12137
12138 case BFD_RELOC_MIPS_JMP:
12139 case BFD_RELOC_MIPS_SHIFT5:
12140 case BFD_RELOC_MIPS_SHIFT6:
12141 case BFD_RELOC_MIPS_GOT_DISP:
12142 case BFD_RELOC_MIPS_GOT_PAGE:
12143 case BFD_RELOC_MIPS_GOT_OFST:
12144 case BFD_RELOC_MIPS_SUB:
12145 case BFD_RELOC_MIPS_INSERT_A:
12146 case BFD_RELOC_MIPS_INSERT_B:
12147 case BFD_RELOC_MIPS_DELETE:
12148 case BFD_RELOC_MIPS_HIGHEST:
12149 case BFD_RELOC_MIPS_HIGHER:
12150 case BFD_RELOC_MIPS_SCN_DISP:
12151 case BFD_RELOC_MIPS_REL16:
12152 case BFD_RELOC_MIPS_RELGOT:
12153 case BFD_RELOC_MIPS_JALR:
12154 case BFD_RELOC_HI16:
12155 case BFD_RELOC_HI16_S:
12156 case BFD_RELOC_GPREL16:
12157 case BFD_RELOC_MIPS_LITERAL:
12158 case BFD_RELOC_MIPS_CALL16:
12159 case BFD_RELOC_MIPS_GOT16:
12160 case BFD_RELOC_GPREL32:
12161 case BFD_RELOC_MIPS_GOT_HI16:
12162 case BFD_RELOC_MIPS_GOT_LO16:
12163 case BFD_RELOC_MIPS_CALL_HI16:
12164 case BFD_RELOC_MIPS_CALL_LO16:
12165 case BFD_RELOC_MIPS16_GPREL:
12166 case BFD_RELOC_MIPS16_GOT16:
12167 case BFD_RELOC_MIPS16_CALL16:
12168 case BFD_RELOC_MIPS16_HI16:
12169 case BFD_RELOC_MIPS16_HI16_S:
12170 case BFD_RELOC_MIPS16_JMP:
12171 /* Nothing needed to do. The value comes from the reloc entry. */
12172 break;
12173
12174 case BFD_RELOC_64:
12175 /* This is handled like BFD_RELOC_32, but we output a sign
12176 extended value if we are only 32 bits. */
12177 if (fixP->fx_done)
12178 {
12179 if (8 <= sizeof (valueT))
12180 md_number_to_chars ((char *) buf, *valP, 8);
12181 else
12182 {
12183 valueT hiv;
12184
12185 if ((*valP & 0x80000000) != 0)
12186 hiv = 0xffffffff;
12187 else
12188 hiv = 0;
12189 md_number_to_chars ((char *)(buf + (target_big_endian ? 4 : 0)),
12190 *valP, 4);
12191 md_number_to_chars ((char *)(buf + (target_big_endian ? 0 : 4)),
12192 hiv, 4);
12193 }
12194 }
12195 break;
12196
12197 case BFD_RELOC_RVA:
12198 case BFD_RELOC_32:
12199 case BFD_RELOC_16:
12200 /* If we are deleting this reloc entry, we must fill in the
12201 value now. This can happen if we have a .word which is not
12202 resolved when it appears but is later defined. */
12203 if (fixP->fx_done)
12204 md_number_to_chars ((char *) buf, *valP, fixP->fx_size);
12205 break;
12206
12207 case BFD_RELOC_LO16:
12208 case BFD_RELOC_MIPS16_LO16:
12209 /* FIXME: Now that embedded-PIC is gone, some of this code/comment
12210 may be safe to remove, but if so it's not obvious. */
12211 /* When handling an embedded PIC switch statement, we can wind
12212 up deleting a LO16 reloc. See the 'o' case in mips_ip. */
12213 if (fixP->fx_done)
12214 {
12215 if (*valP + 0x8000 > 0xffff)
12216 as_bad_where (fixP->fx_file, fixP->fx_line,
12217 _("relocation overflow"));
12218 if (target_big_endian)
12219 buf += 2;
12220 md_number_to_chars ((char *) buf, *valP, 2);
12221 }
12222 break;
12223
12224 case BFD_RELOC_16_PCREL_S2:
12225 if ((*valP & 0x3) != 0)
12226 as_bad_where (fixP->fx_file, fixP->fx_line,
12227 _("Branch to misaligned address (%lx)"), (long) *valP);
12228
12229 /* We need to save the bits in the instruction since fixup_segment()
12230 might be deleting the relocation entry (i.e., a branch within
12231 the current segment). */
12232 if (! fixP->fx_done)
12233 break;
12234
12235 /* Update old instruction data. */
12236 if (target_big_endian)
12237 insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
12238 else
12239 insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
12240
12241 if (*valP + 0x20000 <= 0x3ffff)
12242 {
12243 insn |= (*valP >> 2) & 0xffff;
12244 md_number_to_chars ((char *) buf, insn, 4);
12245 }
12246 else if (mips_pic == NO_PIC
12247 && fixP->fx_done
12248 && fixP->fx_frag->fr_address >= text_section->vma
12249 && (fixP->fx_frag->fr_address
12250 < text_section->vma + bfd_get_section_size (text_section))
12251 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
12252 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
12253 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
12254 {
12255 /* The branch offset is too large. If this is an
12256 unconditional branch, and we are not generating PIC code,
12257 we can convert it to an absolute jump instruction. */
12258 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
12259 insn = 0x0c000000; /* jal */
12260 else
12261 insn = 0x08000000; /* j */
12262 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
12263 fixP->fx_done = 0;
12264 fixP->fx_addsy = section_symbol (text_section);
12265 *valP += md_pcrel_from (fixP);
12266 md_number_to_chars ((char *) buf, insn, 4);
12267 }
12268 else
12269 {
12270 /* If we got here, we have branch-relaxation disabled,
12271 and there's nothing we can do to fix this instruction
12272 without turning it into a longer sequence. */
12273 as_bad_where (fixP->fx_file, fixP->fx_line,
12274 _("Branch out of range"));
12275 }
12276 break;
12277
12278 case BFD_RELOC_VTABLE_INHERIT:
12279 fixP->fx_done = 0;
12280 if (fixP->fx_addsy
12281 && !S_IS_DEFINED (fixP->fx_addsy)
12282 && !S_IS_WEAK (fixP->fx_addsy))
12283 S_SET_WEAK (fixP->fx_addsy);
12284 break;
12285
12286 case BFD_RELOC_VTABLE_ENTRY:
12287 fixP->fx_done = 0;
12288 break;
12289
12290 default:
12291 internalError ();
12292 }
12293
12294 /* Remember value for tc_gen_reloc. */
12295 fixP->fx_addnumber = *valP;
12296 }
12297
12298 static symbolS *
12299 get_symbol (void)
12300 {
12301 int c;
12302 char *name;
12303 symbolS *p;
12304
12305 name = input_line_pointer;
12306 c = get_symbol_end ();
12307 p = (symbolS *) symbol_find_or_make (name);
12308 *input_line_pointer = c;
12309 return p;
12310 }
12311
12312 /* Align the current frag to a given power of two. If a particular
12313 fill byte should be used, FILL points to an integer that contains
12314 that byte, otherwise FILL is null.
12315
12316 The MIPS assembler also automatically adjusts any preceding
12317 label. */
12318
12319 static void
12320 mips_align (int to, int *fill, symbolS *label)
12321 {
12322 mips_emit_delays ();
12323 mips_record_mips16_mode ();
12324 if (fill == NULL && subseg_text_p (now_seg))
12325 frag_align_code (to, 0);
12326 else
12327 frag_align (to, fill ? *fill : 0, 0);
12328 record_alignment (now_seg, to);
12329 if (label != NULL)
12330 {
12331 assert (S_GET_SEGMENT (label) == now_seg);
12332 symbol_set_frag (label, frag_now);
12333 S_SET_VALUE (label, (valueT) frag_now_fix ());
12334 }
12335 }
12336
12337 /* Align to a given power of two. .align 0 turns off the automatic
12338 alignment used by the data creating pseudo-ops. */
12339
12340 static void
12341 s_align (int x ATTRIBUTE_UNUSED)
12342 {
12343 int temp, fill_value, *fill_ptr;
12344 long max_alignment = 28;
12345
12346 /* o Note that the assembler pulls down any immediately preceding label
12347 to the aligned address.
12348 o It's not documented but auto alignment is reinstated by
12349 a .align pseudo instruction.
12350 o Note also that after auto alignment is turned off the mips assembler
12351 issues an error on attempt to assemble an improperly aligned data item.
12352 We don't. */
12353
12354 temp = get_absolute_expression ();
12355 if (temp > max_alignment)
12356 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
12357 else if (temp < 0)
12358 {
12359 as_warn (_("Alignment negative: 0 assumed."));
12360 temp = 0;
12361 }
12362 if (*input_line_pointer == ',')
12363 {
12364 ++input_line_pointer;
12365 fill_value = get_absolute_expression ();
12366 fill_ptr = &fill_value;
12367 }
12368 else
12369 fill_ptr = 0;
12370 if (temp)
12371 {
12372 segment_info_type *si = seg_info (now_seg);
12373 struct insn_label_list *l = si->label_list;
12374 /* Auto alignment should be switched on by next section change. */
12375 auto_align = 1;
12376 mips_align (temp, fill_ptr, l != NULL ? l->label : NULL);
12377 }
12378 else
12379 {
12380 auto_align = 0;
12381 }
12382
12383 demand_empty_rest_of_line ();
12384 }
12385
12386 static void
12387 s_change_sec (int sec)
12388 {
12389 segT seg;
12390
12391 #ifdef OBJ_ELF
12392 /* The ELF backend needs to know that we are changing sections, so
12393 that .previous works correctly. We could do something like check
12394 for an obj_section_change_hook macro, but that might be confusing
12395 as it would not be appropriate to use it in the section changing
12396 functions in read.c, since obj-elf.c intercepts those. FIXME:
12397 This should be cleaner, somehow. */
12398 if (IS_ELF)
12399 obj_elf_section_change_hook ();
12400 #endif
12401
12402 mips_emit_delays ();
12403 switch (sec)
12404 {
12405 case 't':
12406 s_text (0);
12407 break;
12408 case 'd':
12409 s_data (0);
12410 break;
12411 case 'b':
12412 subseg_set (bss_section, (subsegT) get_absolute_expression ());
12413 demand_empty_rest_of_line ();
12414 break;
12415
12416 case 'r':
12417 seg = subseg_new (RDATA_SECTION_NAME,
12418 (subsegT) get_absolute_expression ());
12419 if (IS_ELF)
12420 {
12421 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
12422 | SEC_READONLY | SEC_RELOC
12423 | SEC_DATA));
12424 if (strncmp (TARGET_OS, "elf", 3) != 0)
12425 record_alignment (seg, 4);
12426 }
12427 demand_empty_rest_of_line ();
12428 break;
12429
12430 case 's':
12431 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
12432 if (IS_ELF)
12433 {
12434 bfd_set_section_flags (stdoutput, seg,
12435 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
12436 if (strncmp (TARGET_OS, "elf", 3) != 0)
12437 record_alignment (seg, 4);
12438 }
12439 demand_empty_rest_of_line ();
12440 break;
12441 }
12442
12443 auto_align = 1;
12444 }
12445
12446 void
12447 s_change_section (int ignore ATTRIBUTE_UNUSED)
12448 {
12449 #ifdef OBJ_ELF
12450 char *section_name;
12451 char c;
12452 char next_c = 0;
12453 int section_type;
12454 int section_flag;
12455 int section_entry_size;
12456 int section_alignment;
12457
12458 if (!IS_ELF)
12459 return;
12460
12461 section_name = input_line_pointer;
12462 c = get_symbol_end ();
12463 if (c)
12464 next_c = *(input_line_pointer + 1);
12465
12466 /* Do we have .section Name<,"flags">? */
12467 if (c != ',' || (c == ',' && next_c == '"'))
12468 {
12469 /* just after name is now '\0'. */
12470 *input_line_pointer = c;
12471 input_line_pointer = section_name;
12472 obj_elf_section (ignore);
12473 return;
12474 }
12475 input_line_pointer++;
12476
12477 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
12478 if (c == ',')
12479 section_type = get_absolute_expression ();
12480 else
12481 section_type = 0;
12482 if (*input_line_pointer++ == ',')
12483 section_flag = get_absolute_expression ();
12484 else
12485 section_flag = 0;
12486 if (*input_line_pointer++ == ',')
12487 section_entry_size = get_absolute_expression ();
12488 else
12489 section_entry_size = 0;
12490 if (*input_line_pointer++ == ',')
12491 section_alignment = get_absolute_expression ();
12492 else
12493 section_alignment = 0;
12494
12495 section_name = xstrdup (section_name);
12496
12497 /* When using the generic form of .section (as implemented by obj-elf.c),
12498 there's no way to set the section type to SHT_MIPS_DWARF. Users have
12499 traditionally had to fall back on the more common @progbits instead.
12500
12501 There's nothing really harmful in this, since bfd will correct
12502 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
12503 means that, for backwards compatibility, the special_section entries
12504 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
12505
12506 Even so, we shouldn't force users of the MIPS .section syntax to
12507 incorrectly label the sections as SHT_PROGBITS. The best compromise
12508 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
12509 generic type-checking code. */
12510 if (section_type == SHT_MIPS_DWARF)
12511 section_type = SHT_PROGBITS;
12512
12513 obj_elf_change_section (section_name, section_type, section_flag,
12514 section_entry_size, 0, 0, 0);
12515
12516 if (now_seg->name != section_name)
12517 free (section_name);
12518 #endif /* OBJ_ELF */
12519 }
12520
12521 void
12522 mips_enable_auto_align (void)
12523 {
12524 auto_align = 1;
12525 }
12526
12527 static void
12528 s_cons (int log_size)
12529 {
12530 segment_info_type *si = seg_info (now_seg);
12531 struct insn_label_list *l = si->label_list;
12532 symbolS *label;
12533
12534 label = l != NULL ? l->label : NULL;
12535 mips_emit_delays ();
12536 if (log_size > 0 && auto_align)
12537 mips_align (log_size, 0, label);
12538 mips_clear_insn_labels ();
12539 cons (1 << log_size);
12540 }
12541
12542 static void
12543 s_float_cons (int type)
12544 {
12545 segment_info_type *si = seg_info (now_seg);
12546 struct insn_label_list *l = si->label_list;
12547 symbolS *label;
12548
12549 label = l != NULL ? l->label : NULL;
12550
12551 mips_emit_delays ();
12552
12553 if (auto_align)
12554 {
12555 if (type == 'd')
12556 mips_align (3, 0, label);
12557 else
12558 mips_align (2, 0, label);
12559 }
12560
12561 mips_clear_insn_labels ();
12562
12563 float_cons (type);
12564 }
12565
12566 /* Handle .globl. We need to override it because on Irix 5 you are
12567 permitted to say
12568 .globl foo .text
12569 where foo is an undefined symbol, to mean that foo should be
12570 considered to be the address of a function. */
12571
12572 static void
12573 s_mips_globl (int x ATTRIBUTE_UNUSED)
12574 {
12575 char *name;
12576 int c;
12577 symbolS *symbolP;
12578 flagword flag;
12579
12580 do
12581 {
12582 name = input_line_pointer;
12583 c = get_symbol_end ();
12584 symbolP = symbol_find_or_make (name);
12585 S_SET_EXTERNAL (symbolP);
12586
12587 *input_line_pointer = c;
12588 SKIP_WHITESPACE ();
12589
12590 /* On Irix 5, every global symbol that is not explicitly labelled as
12591 being a function is apparently labelled as being an object. */
12592 flag = BSF_OBJECT;
12593
12594 if (!is_end_of_line[(unsigned char) *input_line_pointer]
12595 && (*input_line_pointer != ','))
12596 {
12597 char *secname;
12598 asection *sec;
12599
12600 secname = input_line_pointer;
12601 c = get_symbol_end ();
12602 sec = bfd_get_section_by_name (stdoutput, secname);
12603 if (sec == NULL)
12604 as_bad (_("%s: no such section"), secname);
12605 *input_line_pointer = c;
12606
12607 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
12608 flag = BSF_FUNCTION;
12609 }
12610
12611 symbol_get_bfdsym (symbolP)->flags |= flag;
12612
12613 c = *input_line_pointer;
12614 if (c == ',')
12615 {
12616 input_line_pointer++;
12617 SKIP_WHITESPACE ();
12618 if (is_end_of_line[(unsigned char) *input_line_pointer])
12619 c = '\n';
12620 }
12621 }
12622 while (c == ',');
12623
12624 demand_empty_rest_of_line ();
12625 }
12626
12627 static void
12628 s_option (int x ATTRIBUTE_UNUSED)
12629 {
12630 char *opt;
12631 char c;
12632
12633 opt = input_line_pointer;
12634 c = get_symbol_end ();
12635
12636 if (*opt == 'O')
12637 {
12638 /* FIXME: What does this mean? */
12639 }
12640 else if (strncmp (opt, "pic", 3) == 0)
12641 {
12642 int i;
12643
12644 i = atoi (opt + 3);
12645 if (i == 0)
12646 mips_pic = NO_PIC;
12647 else if (i == 2)
12648 {
12649 mips_pic = SVR4_PIC;
12650 mips_abicalls = TRUE;
12651 }
12652 else
12653 as_bad (_(".option pic%d not supported"), i);
12654
12655 if (mips_pic == SVR4_PIC)
12656 {
12657 if (g_switch_seen && g_switch_value != 0)
12658 as_warn (_("-G may not be used with SVR4 PIC code"));
12659 g_switch_value = 0;
12660 bfd_set_gp_size (stdoutput, 0);
12661 }
12662 }
12663 else
12664 as_warn (_("Unrecognized option \"%s\""), opt);
12665
12666 *input_line_pointer = c;
12667 demand_empty_rest_of_line ();
12668 }
12669
12670 /* This structure is used to hold a stack of .set values. */
12671
12672 struct mips_option_stack
12673 {
12674 struct mips_option_stack *next;
12675 struct mips_set_options options;
12676 };
12677
12678 static struct mips_option_stack *mips_opts_stack;
12679
12680 /* Handle the .set pseudo-op. */
12681
12682 static void
12683 s_mipsset (int x ATTRIBUTE_UNUSED)
12684 {
12685 char *name = input_line_pointer, ch;
12686
12687 while (!is_end_of_line[(unsigned char) *input_line_pointer])
12688 ++input_line_pointer;
12689 ch = *input_line_pointer;
12690 *input_line_pointer = '\0';
12691
12692 if (strcmp (name, "reorder") == 0)
12693 {
12694 if (mips_opts.noreorder)
12695 end_noreorder ();
12696 }
12697 else if (strcmp (name, "noreorder") == 0)
12698 {
12699 if (!mips_opts.noreorder)
12700 start_noreorder ();
12701 }
12702 else if (strncmp (name, "at=", 3) == 0)
12703 {
12704 char *s = name + 3;
12705
12706 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
12707 as_bad (_("Unrecognized register name `%s'"), s);
12708 }
12709 else if (strcmp (name, "at") == 0)
12710 {
12711 mips_opts.at = ATREG;
12712 }
12713 else if (strcmp (name, "noat") == 0)
12714 {
12715 mips_opts.at = ZERO;
12716 }
12717 else if (strcmp (name, "macro") == 0)
12718 {
12719 mips_opts.warn_about_macros = 0;
12720 }
12721 else if (strcmp (name, "nomacro") == 0)
12722 {
12723 if (mips_opts.noreorder == 0)
12724 as_bad (_("`noreorder' must be set before `nomacro'"));
12725 mips_opts.warn_about_macros = 1;
12726 }
12727 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
12728 {
12729 mips_opts.nomove = 0;
12730 }
12731 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
12732 {
12733 mips_opts.nomove = 1;
12734 }
12735 else if (strcmp (name, "bopt") == 0)
12736 {
12737 mips_opts.nobopt = 0;
12738 }
12739 else if (strcmp (name, "nobopt") == 0)
12740 {
12741 mips_opts.nobopt = 1;
12742 }
12743 else if (strcmp (name, "gp=default") == 0)
12744 mips_opts.gp32 = file_mips_gp32;
12745 else if (strcmp (name, "gp=32") == 0)
12746 mips_opts.gp32 = 1;
12747 else if (strcmp (name, "gp=64") == 0)
12748 {
12749 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
12750 as_warn ("%s isa does not support 64-bit registers",
12751 mips_cpu_info_from_isa (mips_opts.isa)->name);
12752 mips_opts.gp32 = 0;
12753 }
12754 else if (strcmp (name, "fp=default") == 0)
12755 mips_opts.fp32 = file_mips_fp32;
12756 else if (strcmp (name, "fp=32") == 0)
12757 mips_opts.fp32 = 1;
12758 else if (strcmp (name, "fp=64") == 0)
12759 {
12760 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
12761 as_warn ("%s isa does not support 64-bit floating point registers",
12762 mips_cpu_info_from_isa (mips_opts.isa)->name);
12763 mips_opts.fp32 = 0;
12764 }
12765 else if (strcmp (name, "softfloat") == 0)
12766 mips_opts.soft_float = 1;
12767 else if (strcmp (name, "hardfloat") == 0)
12768 mips_opts.soft_float = 0;
12769 else if (strcmp (name, "singlefloat") == 0)
12770 mips_opts.single_float = 1;
12771 else if (strcmp (name, "doublefloat") == 0)
12772 mips_opts.single_float = 0;
12773 else if (strcmp (name, "mips16") == 0
12774 || strcmp (name, "MIPS-16") == 0)
12775 mips_opts.mips16 = 1;
12776 else if (strcmp (name, "nomips16") == 0
12777 || strcmp (name, "noMIPS-16") == 0)
12778 mips_opts.mips16 = 0;
12779 else if (strcmp (name, "smartmips") == 0)
12780 {
12781 if (!ISA_SUPPORTS_SMARTMIPS)
12782 as_warn ("%s ISA does not support SmartMIPS ASE",
12783 mips_cpu_info_from_isa (mips_opts.isa)->name);
12784 mips_opts.ase_smartmips = 1;
12785 }
12786 else if (strcmp (name, "nosmartmips") == 0)
12787 mips_opts.ase_smartmips = 0;
12788 else if (strcmp (name, "mips3d") == 0)
12789 mips_opts.ase_mips3d = 1;
12790 else if (strcmp (name, "nomips3d") == 0)
12791 mips_opts.ase_mips3d = 0;
12792 else if (strcmp (name, "mdmx") == 0)
12793 mips_opts.ase_mdmx = 1;
12794 else if (strcmp (name, "nomdmx") == 0)
12795 mips_opts.ase_mdmx = 0;
12796 else if (strcmp (name, "dsp") == 0)
12797 {
12798 if (!ISA_SUPPORTS_DSP_ASE)
12799 as_warn ("%s ISA does not support DSP ASE",
12800 mips_cpu_info_from_isa (mips_opts.isa)->name);
12801 mips_opts.ase_dsp = 1;
12802 mips_opts.ase_dspr2 = 0;
12803 }
12804 else if (strcmp (name, "nodsp") == 0)
12805 {
12806 mips_opts.ase_dsp = 0;
12807 mips_opts.ase_dspr2 = 0;
12808 }
12809 else if (strcmp (name, "dspr2") == 0)
12810 {
12811 if (!ISA_SUPPORTS_DSPR2_ASE)
12812 as_warn ("%s ISA does not support DSP R2 ASE",
12813 mips_cpu_info_from_isa (mips_opts.isa)->name);
12814 mips_opts.ase_dspr2 = 1;
12815 mips_opts.ase_dsp = 1;
12816 }
12817 else if (strcmp (name, "nodspr2") == 0)
12818 {
12819 mips_opts.ase_dspr2 = 0;
12820 mips_opts.ase_dsp = 0;
12821 }
12822 else if (strcmp (name, "mt") == 0)
12823 {
12824 if (!ISA_SUPPORTS_MT_ASE)
12825 as_warn ("%s ISA does not support MT ASE",
12826 mips_cpu_info_from_isa (mips_opts.isa)->name);
12827 mips_opts.ase_mt = 1;
12828 }
12829 else if (strcmp (name, "nomt") == 0)
12830 mips_opts.ase_mt = 0;
12831 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
12832 {
12833 int reset = 0;
12834
12835 /* Permit the user to change the ISA and architecture on the fly.
12836 Needless to say, misuse can cause serious problems. */
12837 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
12838 {
12839 reset = 1;
12840 mips_opts.isa = file_mips_isa;
12841 mips_opts.arch = file_mips_arch;
12842 }
12843 else if (strncmp (name, "arch=", 5) == 0)
12844 {
12845 const struct mips_cpu_info *p;
12846
12847 p = mips_parse_cpu("internal use", name + 5);
12848 if (!p)
12849 as_bad (_("unknown architecture %s"), name + 5);
12850 else
12851 {
12852 mips_opts.arch = p->cpu;
12853 mips_opts.isa = p->isa;
12854 }
12855 }
12856 else if (strncmp (name, "mips", 4) == 0)
12857 {
12858 const struct mips_cpu_info *p;
12859
12860 p = mips_parse_cpu("internal use", name);
12861 if (!p)
12862 as_bad (_("unknown ISA level %s"), name + 4);
12863 else
12864 {
12865 mips_opts.arch = p->cpu;
12866 mips_opts.isa = p->isa;
12867 }
12868 }
12869 else
12870 as_bad (_("unknown ISA or architecture %s"), name);
12871
12872 switch (mips_opts.isa)
12873 {
12874 case 0:
12875 break;
12876 case ISA_MIPS1:
12877 case ISA_MIPS2:
12878 case ISA_MIPS32:
12879 case ISA_MIPS32R2:
12880 mips_opts.gp32 = 1;
12881 mips_opts.fp32 = 1;
12882 break;
12883 case ISA_MIPS3:
12884 case ISA_MIPS4:
12885 case ISA_MIPS5:
12886 case ISA_MIPS64:
12887 case ISA_MIPS64R2:
12888 mips_opts.gp32 = 0;
12889 mips_opts.fp32 = 0;
12890 break;
12891 default:
12892 as_bad (_("unknown ISA level %s"), name + 4);
12893 break;
12894 }
12895 if (reset)
12896 {
12897 mips_opts.gp32 = file_mips_gp32;
12898 mips_opts.fp32 = file_mips_fp32;
12899 }
12900 }
12901 else if (strcmp (name, "autoextend") == 0)
12902 mips_opts.noautoextend = 0;
12903 else if (strcmp (name, "noautoextend") == 0)
12904 mips_opts.noautoextend = 1;
12905 else if (strcmp (name, "push") == 0)
12906 {
12907 struct mips_option_stack *s;
12908
12909 s = (struct mips_option_stack *) xmalloc (sizeof *s);
12910 s->next = mips_opts_stack;
12911 s->options = mips_opts;
12912 mips_opts_stack = s;
12913 }
12914 else if (strcmp (name, "pop") == 0)
12915 {
12916 struct mips_option_stack *s;
12917
12918 s = mips_opts_stack;
12919 if (s == NULL)
12920 as_bad (_(".set pop with no .set push"));
12921 else
12922 {
12923 /* If we're changing the reorder mode we need to handle
12924 delay slots correctly. */
12925 if (s->options.noreorder && ! mips_opts.noreorder)
12926 start_noreorder ();
12927 else if (! s->options.noreorder && mips_opts.noreorder)
12928 end_noreorder ();
12929
12930 mips_opts = s->options;
12931 mips_opts_stack = s->next;
12932 free (s);
12933 }
12934 }
12935 else if (strcmp (name, "sym32") == 0)
12936 mips_opts.sym32 = TRUE;
12937 else if (strcmp (name, "nosym32") == 0)
12938 mips_opts.sym32 = FALSE;
12939 else if (strchr (name, ','))
12940 {
12941 /* Generic ".set" directive; use the generic handler. */
12942 *input_line_pointer = ch;
12943 input_line_pointer = name;
12944 s_set (0);
12945 return;
12946 }
12947 else
12948 {
12949 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
12950 }
12951 *input_line_pointer = ch;
12952 demand_empty_rest_of_line ();
12953 }
12954
12955 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
12956 .option pic2. It means to generate SVR4 PIC calls. */
12957
12958 static void
12959 s_abicalls (int ignore ATTRIBUTE_UNUSED)
12960 {
12961 mips_pic = SVR4_PIC;
12962 mips_abicalls = TRUE;
12963
12964 if (g_switch_seen && g_switch_value != 0)
12965 as_warn (_("-G may not be used with SVR4 PIC code"));
12966 g_switch_value = 0;
12967
12968 bfd_set_gp_size (stdoutput, 0);
12969 demand_empty_rest_of_line ();
12970 }
12971
12972 /* Handle the .cpload pseudo-op. This is used when generating SVR4
12973 PIC code. It sets the $gp register for the function based on the
12974 function address, which is in the register named in the argument.
12975 This uses a relocation against _gp_disp, which is handled specially
12976 by the linker. The result is:
12977 lui $gp,%hi(_gp_disp)
12978 addiu $gp,$gp,%lo(_gp_disp)
12979 addu $gp,$gp,.cpload argument
12980 The .cpload argument is normally $25 == $t9.
12981
12982 The -mno-shared option changes this to:
12983 lui $gp,%hi(__gnu_local_gp)
12984 addiu $gp,$gp,%lo(__gnu_local_gp)
12985 and the argument is ignored. This saves an instruction, but the
12986 resulting code is not position independent; it uses an absolute
12987 address for __gnu_local_gp. Thus code assembled with -mno-shared
12988 can go into an ordinary executable, but not into a shared library. */
12989
12990 static void
12991 s_cpload (int ignore ATTRIBUTE_UNUSED)
12992 {
12993 expressionS ex;
12994 int reg;
12995 int in_shared;
12996
12997 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
12998 .cpload is ignored. */
12999 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13000 {
13001 s_ignore (0);
13002 return;
13003 }
13004
13005 /* .cpload should be in a .set noreorder section. */
13006 if (mips_opts.noreorder == 0)
13007 as_warn (_(".cpload not in noreorder section"));
13008
13009 reg = tc_get_register (0);
13010
13011 /* If we need to produce a 64-bit address, we are better off using
13012 the default instruction sequence. */
13013 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
13014
13015 ex.X_op = O_symbol;
13016 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
13017 "__gnu_local_gp");
13018 ex.X_op_symbol = NULL;
13019 ex.X_add_number = 0;
13020
13021 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13022 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13023
13024 macro_start ();
13025 macro_build_lui (&ex, mips_gp_register);
13026 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13027 mips_gp_register, BFD_RELOC_LO16);
13028 if (in_shared)
13029 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
13030 mips_gp_register, reg);
13031 macro_end ();
13032
13033 demand_empty_rest_of_line ();
13034 }
13035
13036 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
13037 .cpsetup $reg1, offset|$reg2, label
13038
13039 If offset is given, this results in:
13040 sd $gp, offset($sp)
13041 lui $gp, %hi(%neg(%gp_rel(label)))
13042 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13043 daddu $gp, $gp, $reg1
13044
13045 If $reg2 is given, this results in:
13046 daddu $reg2, $gp, $0
13047 lui $gp, %hi(%neg(%gp_rel(label)))
13048 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13049 daddu $gp, $gp, $reg1
13050 $reg1 is normally $25 == $t9.
13051
13052 The -mno-shared option replaces the last three instructions with
13053 lui $gp,%hi(_gp)
13054 addiu $gp,$gp,%lo(_gp) */
13055
13056 static void
13057 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
13058 {
13059 expressionS ex_off;
13060 expressionS ex_sym;
13061 int reg1;
13062
13063 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
13064 We also need NewABI support. */
13065 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13066 {
13067 s_ignore (0);
13068 return;
13069 }
13070
13071 reg1 = tc_get_register (0);
13072 SKIP_WHITESPACE ();
13073 if (*input_line_pointer != ',')
13074 {
13075 as_bad (_("missing argument separator ',' for .cpsetup"));
13076 return;
13077 }
13078 else
13079 ++input_line_pointer;
13080 SKIP_WHITESPACE ();
13081 if (*input_line_pointer == '$')
13082 {
13083 mips_cpreturn_register = tc_get_register (0);
13084 mips_cpreturn_offset = -1;
13085 }
13086 else
13087 {
13088 mips_cpreturn_offset = get_absolute_expression ();
13089 mips_cpreturn_register = -1;
13090 }
13091 SKIP_WHITESPACE ();
13092 if (*input_line_pointer != ',')
13093 {
13094 as_bad (_("missing argument separator ',' for .cpsetup"));
13095 return;
13096 }
13097 else
13098 ++input_line_pointer;
13099 SKIP_WHITESPACE ();
13100 expression (&ex_sym);
13101
13102 macro_start ();
13103 if (mips_cpreturn_register == -1)
13104 {
13105 ex_off.X_op = O_constant;
13106 ex_off.X_add_symbol = NULL;
13107 ex_off.X_op_symbol = NULL;
13108 ex_off.X_add_number = mips_cpreturn_offset;
13109
13110 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
13111 BFD_RELOC_LO16, SP);
13112 }
13113 else
13114 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
13115 mips_gp_register, 0);
13116
13117 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
13118 {
13119 macro_build (&ex_sym, "lui", "t,u", mips_gp_register,
13120 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
13121 BFD_RELOC_HI16_S);
13122
13123 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
13124 mips_gp_register, -1, BFD_RELOC_GPREL16,
13125 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
13126
13127 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
13128 mips_gp_register, reg1);
13129 }
13130 else
13131 {
13132 expressionS ex;
13133
13134 ex.X_op = O_symbol;
13135 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
13136 ex.X_op_symbol = NULL;
13137 ex.X_add_number = 0;
13138
13139 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13140 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13141
13142 macro_build_lui (&ex, mips_gp_register);
13143 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13144 mips_gp_register, BFD_RELOC_LO16);
13145 }
13146
13147 macro_end ();
13148
13149 demand_empty_rest_of_line ();
13150 }
13151
13152 static void
13153 s_cplocal (int ignore ATTRIBUTE_UNUSED)
13154 {
13155 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
13156 .cplocal is ignored. */
13157 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13158 {
13159 s_ignore (0);
13160 return;
13161 }
13162
13163 mips_gp_register = tc_get_register (0);
13164 demand_empty_rest_of_line ();
13165 }
13166
13167 /* Handle the .cprestore pseudo-op. This stores $gp into a given
13168 offset from $sp. The offset is remembered, and after making a PIC
13169 call $gp is restored from that location. */
13170
13171 static void
13172 s_cprestore (int ignore ATTRIBUTE_UNUSED)
13173 {
13174 expressionS ex;
13175
13176 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13177 .cprestore is ignored. */
13178 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13179 {
13180 s_ignore (0);
13181 return;
13182 }
13183
13184 mips_cprestore_offset = get_absolute_expression ();
13185 mips_cprestore_valid = 1;
13186
13187 ex.X_op = O_constant;
13188 ex.X_add_symbol = NULL;
13189 ex.X_op_symbol = NULL;
13190 ex.X_add_number = mips_cprestore_offset;
13191
13192 macro_start ();
13193 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
13194 SP, HAVE_64BIT_ADDRESSES);
13195 macro_end ();
13196
13197 demand_empty_rest_of_line ();
13198 }
13199
13200 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
13201 was given in the preceding .cpsetup, it results in:
13202 ld $gp, offset($sp)
13203
13204 If a register $reg2 was given there, it results in:
13205 daddu $gp, $reg2, $0 */
13206
13207 static void
13208 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
13209 {
13210 expressionS ex;
13211
13212 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
13213 We also need NewABI support. */
13214 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13215 {
13216 s_ignore (0);
13217 return;
13218 }
13219
13220 macro_start ();
13221 if (mips_cpreturn_register == -1)
13222 {
13223 ex.X_op = O_constant;
13224 ex.X_add_symbol = NULL;
13225 ex.X_op_symbol = NULL;
13226 ex.X_add_number = mips_cpreturn_offset;
13227
13228 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
13229 }
13230 else
13231 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
13232 mips_cpreturn_register, 0);
13233 macro_end ();
13234
13235 demand_empty_rest_of_line ();
13236 }
13237
13238 /* Handle the .dtprelword and .dtpreldword pseudo-ops. They generate
13239 a 32-bit or 64-bit DTP-relative relocation (BYTES says which) for
13240 use in DWARF debug information. */
13241
13242 static void
13243 s_dtprel_internal (size_t bytes)
13244 {
13245 expressionS ex;
13246 char *p;
13247
13248 expression (&ex);
13249
13250 if (ex.X_op != O_symbol)
13251 {
13252 as_bad (_("Unsupported use of %s"), (bytes == 8
13253 ? ".dtpreldword"
13254 : ".dtprelword"));
13255 ignore_rest_of_line ();
13256 }
13257
13258 p = frag_more (bytes);
13259 md_number_to_chars (p, 0, bytes);
13260 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE,
13261 (bytes == 8
13262 ? BFD_RELOC_MIPS_TLS_DTPREL64
13263 : BFD_RELOC_MIPS_TLS_DTPREL32));
13264
13265 demand_empty_rest_of_line ();
13266 }
13267
13268 /* Handle .dtprelword. */
13269
13270 static void
13271 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
13272 {
13273 s_dtprel_internal (4);
13274 }
13275
13276 /* Handle .dtpreldword. */
13277
13278 static void
13279 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
13280 {
13281 s_dtprel_internal (8);
13282 }
13283
13284 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
13285 code. It sets the offset to use in gp_rel relocations. */
13286
13287 static void
13288 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
13289 {
13290 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
13291 We also need NewABI support. */
13292 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13293 {
13294 s_ignore (0);
13295 return;
13296 }
13297
13298 mips_gprel_offset = get_absolute_expression ();
13299
13300 demand_empty_rest_of_line ();
13301 }
13302
13303 /* Handle the .gpword pseudo-op. This is used when generating PIC
13304 code. It generates a 32 bit GP relative reloc. */
13305
13306 static void
13307 s_gpword (int ignore ATTRIBUTE_UNUSED)
13308 {
13309 segment_info_type *si;
13310 struct insn_label_list *l;
13311 symbolS *label;
13312 expressionS ex;
13313 char *p;
13314
13315 /* When not generating PIC code, this is treated as .word. */
13316 if (mips_pic != SVR4_PIC)
13317 {
13318 s_cons (2);
13319 return;
13320 }
13321
13322 si = seg_info (now_seg);
13323 l = si->label_list;
13324 label = l != NULL ? l->label : NULL;
13325 mips_emit_delays ();
13326 if (auto_align)
13327 mips_align (2, 0, label);
13328 mips_clear_insn_labels ();
13329
13330 expression (&ex);
13331
13332 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13333 {
13334 as_bad (_("Unsupported use of .gpword"));
13335 ignore_rest_of_line ();
13336 }
13337
13338 p = frag_more (4);
13339 md_number_to_chars (p, 0, 4);
13340 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13341 BFD_RELOC_GPREL32);
13342
13343 demand_empty_rest_of_line ();
13344 }
13345
13346 static void
13347 s_gpdword (int ignore ATTRIBUTE_UNUSED)
13348 {
13349 segment_info_type *si;
13350 struct insn_label_list *l;
13351 symbolS *label;
13352 expressionS ex;
13353 char *p;
13354
13355 /* When not generating PIC code, this is treated as .dword. */
13356 if (mips_pic != SVR4_PIC)
13357 {
13358 s_cons (3);
13359 return;
13360 }
13361
13362 si = seg_info (now_seg);
13363 l = si->label_list;
13364 label = l != NULL ? l->label : NULL;
13365 mips_emit_delays ();
13366 if (auto_align)
13367 mips_align (3, 0, label);
13368 mips_clear_insn_labels ();
13369
13370 expression (&ex);
13371
13372 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13373 {
13374 as_bad (_("Unsupported use of .gpdword"));
13375 ignore_rest_of_line ();
13376 }
13377
13378 p = frag_more (8);
13379 md_number_to_chars (p, 0, 8);
13380 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13381 BFD_RELOC_GPREL32)->fx_tcbit = 1;
13382
13383 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
13384 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
13385 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
13386
13387 demand_empty_rest_of_line ();
13388 }
13389
13390 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
13391 tables in SVR4 PIC code. */
13392
13393 static void
13394 s_cpadd (int ignore ATTRIBUTE_UNUSED)
13395 {
13396 int reg;
13397
13398 /* This is ignored when not generating SVR4 PIC code. */
13399 if (mips_pic != SVR4_PIC)
13400 {
13401 s_ignore (0);
13402 return;
13403 }
13404
13405 /* Add $gp to the register named as an argument. */
13406 macro_start ();
13407 reg = tc_get_register (0);
13408 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
13409 macro_end ();
13410
13411 demand_empty_rest_of_line ();
13412 }
13413
13414 /* Handle the .insn pseudo-op. This marks instruction labels in
13415 mips16 mode. This permits the linker to handle them specially,
13416 such as generating jalx instructions when needed. We also make
13417 them odd for the duration of the assembly, in order to generate the
13418 right sort of code. We will make them even in the adjust_symtab
13419 routine, while leaving them marked. This is convenient for the
13420 debugger and the disassembler. The linker knows to make them odd
13421 again. */
13422
13423 static void
13424 s_insn (int ignore ATTRIBUTE_UNUSED)
13425 {
13426 mips16_mark_labels ();
13427
13428 demand_empty_rest_of_line ();
13429 }
13430
13431 /* Handle a .stabn directive. We need these in order to mark a label
13432 as being a mips16 text label correctly. Sometimes the compiler
13433 will emit a label, followed by a .stabn, and then switch sections.
13434 If the label and .stabn are in mips16 mode, then the label is
13435 really a mips16 text label. */
13436
13437 static void
13438 s_mips_stab (int type)
13439 {
13440 if (type == 'n')
13441 mips16_mark_labels ();
13442
13443 s_stab (type);
13444 }
13445
13446 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
13447
13448 static void
13449 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
13450 {
13451 char *name;
13452 int c;
13453 symbolS *symbolP;
13454 expressionS exp;
13455
13456 name = input_line_pointer;
13457 c = get_symbol_end ();
13458 symbolP = symbol_find_or_make (name);
13459 S_SET_WEAK (symbolP);
13460 *input_line_pointer = c;
13461
13462 SKIP_WHITESPACE ();
13463
13464 if (! is_end_of_line[(unsigned char) *input_line_pointer])
13465 {
13466 if (S_IS_DEFINED (symbolP))
13467 {
13468 as_bad ("ignoring attempt to redefine symbol %s",
13469 S_GET_NAME (symbolP));
13470 ignore_rest_of_line ();
13471 return;
13472 }
13473
13474 if (*input_line_pointer == ',')
13475 {
13476 ++input_line_pointer;
13477 SKIP_WHITESPACE ();
13478 }
13479
13480 expression (&exp);
13481 if (exp.X_op != O_symbol)
13482 {
13483 as_bad ("bad .weakext directive");
13484 ignore_rest_of_line ();
13485 return;
13486 }
13487 symbol_set_value_expression (symbolP, &exp);
13488 }
13489
13490 demand_empty_rest_of_line ();
13491 }
13492
13493 /* Parse a register string into a number. Called from the ECOFF code
13494 to parse .frame. The argument is non-zero if this is the frame
13495 register, so that we can record it in mips_frame_reg. */
13496
13497 int
13498 tc_get_register (int frame)
13499 {
13500 unsigned int reg;
13501
13502 SKIP_WHITESPACE ();
13503 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
13504 reg = 0;
13505 if (frame)
13506 {
13507 mips_frame_reg = reg != 0 ? reg : SP;
13508 mips_frame_reg_valid = 1;
13509 mips_cprestore_valid = 0;
13510 }
13511 return reg;
13512 }
13513
13514 valueT
13515 md_section_align (asection *seg, valueT addr)
13516 {
13517 int align = bfd_get_section_alignment (stdoutput, seg);
13518
13519 if (IS_ELF)
13520 {
13521 /* We don't need to align ELF sections to the full alignment.
13522 However, Irix 5 may prefer that we align them at least to a 16
13523 byte boundary. We don't bother to align the sections if we
13524 are targeted for an embedded system. */
13525 if (strncmp (TARGET_OS, "elf", 3) == 0)
13526 return addr;
13527 if (align > 4)
13528 align = 4;
13529 }
13530
13531 return ((addr + (1 << align) - 1) & (-1 << align));
13532 }
13533
13534 /* Utility routine, called from above as well. If called while the
13535 input file is still being read, it's only an approximation. (For
13536 example, a symbol may later become defined which appeared to be
13537 undefined earlier.) */
13538
13539 static int
13540 nopic_need_relax (symbolS *sym, int before_relaxing)
13541 {
13542 if (sym == 0)
13543 return 0;
13544
13545 if (g_switch_value > 0)
13546 {
13547 const char *symname;
13548 int change;
13549
13550 /* Find out whether this symbol can be referenced off the $gp
13551 register. It can be if it is smaller than the -G size or if
13552 it is in the .sdata or .sbss section. Certain symbols can
13553 not be referenced off the $gp, although it appears as though
13554 they can. */
13555 symname = S_GET_NAME (sym);
13556 if (symname != (const char *) NULL
13557 && (strcmp (symname, "eprol") == 0
13558 || strcmp (symname, "etext") == 0
13559 || strcmp (symname, "_gp") == 0
13560 || strcmp (symname, "edata") == 0
13561 || strcmp (symname, "_fbss") == 0
13562 || strcmp (symname, "_fdata") == 0
13563 || strcmp (symname, "_ftext") == 0
13564 || strcmp (symname, "end") == 0
13565 || strcmp (symname, "_gp_disp") == 0))
13566 change = 1;
13567 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
13568 && (0
13569 #ifndef NO_ECOFF_DEBUGGING
13570 || (symbol_get_obj (sym)->ecoff_extern_size != 0
13571 && (symbol_get_obj (sym)->ecoff_extern_size
13572 <= g_switch_value))
13573 #endif
13574 /* We must defer this decision until after the whole
13575 file has been read, since there might be a .extern
13576 after the first use of this symbol. */
13577 || (before_relaxing
13578 #ifndef NO_ECOFF_DEBUGGING
13579 && symbol_get_obj (sym)->ecoff_extern_size == 0
13580 #endif
13581 && S_GET_VALUE (sym) == 0)
13582 || (S_GET_VALUE (sym) != 0
13583 && S_GET_VALUE (sym) <= g_switch_value)))
13584 change = 0;
13585 else
13586 {
13587 const char *segname;
13588
13589 segname = segment_name (S_GET_SEGMENT (sym));
13590 assert (strcmp (segname, ".lit8") != 0
13591 && strcmp (segname, ".lit4") != 0);
13592 change = (strcmp (segname, ".sdata") != 0
13593 && strcmp (segname, ".sbss") != 0
13594 && strncmp (segname, ".sdata.", 7) != 0
13595 && strncmp (segname, ".sbss.", 6) != 0
13596 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
13597 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
13598 }
13599 return change;
13600 }
13601 else
13602 /* We are not optimizing for the $gp register. */
13603 return 1;
13604 }
13605
13606
13607 /* Return true if the given symbol should be considered local for SVR4 PIC. */
13608
13609 static bfd_boolean
13610 pic_need_relax (symbolS *sym, asection *segtype)
13611 {
13612 asection *symsec;
13613
13614 /* Handle the case of a symbol equated to another symbol. */
13615 while (symbol_equated_reloc_p (sym))
13616 {
13617 symbolS *n;
13618
13619 /* It's possible to get a loop here in a badly written program. */
13620 n = symbol_get_value_expression (sym)->X_add_symbol;
13621 if (n == sym)
13622 break;
13623 sym = n;
13624 }
13625
13626 if (symbol_section_p (sym))
13627 return TRUE;
13628
13629 symsec = S_GET_SEGMENT (sym);
13630
13631 /* This must duplicate the test in adjust_reloc_syms. */
13632 return (symsec != &bfd_und_section
13633 && symsec != &bfd_abs_section
13634 && !bfd_is_com_section (symsec)
13635 && !s_is_linkonce (sym, segtype)
13636 #ifdef OBJ_ELF
13637 /* A global or weak symbol is treated as external. */
13638 && (!IS_ELF || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym)))
13639 #endif
13640 );
13641 }
13642
13643
13644 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
13645 extended opcode. SEC is the section the frag is in. */
13646
13647 static int
13648 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
13649 {
13650 int type;
13651 const struct mips16_immed_operand *op;
13652 offsetT val;
13653 int mintiny, maxtiny;
13654 segT symsec;
13655 fragS *sym_frag;
13656
13657 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
13658 return 0;
13659 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
13660 return 1;
13661
13662 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
13663 op = mips16_immed_operands;
13664 while (op->type != type)
13665 {
13666 ++op;
13667 assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
13668 }
13669
13670 if (op->unsp)
13671 {
13672 if (type == '<' || type == '>' || type == '[' || type == ']')
13673 {
13674 mintiny = 1;
13675 maxtiny = 1 << op->nbits;
13676 }
13677 else
13678 {
13679 mintiny = 0;
13680 maxtiny = (1 << op->nbits) - 1;
13681 }
13682 }
13683 else
13684 {
13685 mintiny = - (1 << (op->nbits - 1));
13686 maxtiny = (1 << (op->nbits - 1)) - 1;
13687 }
13688
13689 sym_frag = symbol_get_frag (fragp->fr_symbol);
13690 val = S_GET_VALUE (fragp->fr_symbol);
13691 symsec = S_GET_SEGMENT (fragp->fr_symbol);
13692
13693 if (op->pcrel)
13694 {
13695 addressT addr;
13696
13697 /* We won't have the section when we are called from
13698 mips_relax_frag. However, we will always have been called
13699 from md_estimate_size_before_relax first. If this is a
13700 branch to a different section, we mark it as such. If SEC is
13701 NULL, and the frag is not marked, then it must be a branch to
13702 the same section. */
13703 if (sec == NULL)
13704 {
13705 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
13706 return 1;
13707 }
13708 else
13709 {
13710 /* Must have been called from md_estimate_size_before_relax. */
13711 if (symsec != sec)
13712 {
13713 fragp->fr_subtype =
13714 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13715
13716 /* FIXME: We should support this, and let the linker
13717 catch branches and loads that are out of range. */
13718 as_bad_where (fragp->fr_file, fragp->fr_line,
13719 _("unsupported PC relative reference to different section"));
13720
13721 return 1;
13722 }
13723 if (fragp != sym_frag && sym_frag->fr_address == 0)
13724 /* Assume non-extended on the first relaxation pass.
13725 The address we have calculated will be bogus if this is
13726 a forward branch to another frag, as the forward frag
13727 will have fr_address == 0. */
13728 return 0;
13729 }
13730
13731 /* In this case, we know for sure that the symbol fragment is in
13732 the same section. If the relax_marker of the symbol fragment
13733 differs from the relax_marker of this fragment, we have not
13734 yet adjusted the symbol fragment fr_address. We want to add
13735 in STRETCH in order to get a better estimate of the address.
13736 This particularly matters because of the shift bits. */
13737 if (stretch != 0
13738 && sym_frag->relax_marker != fragp->relax_marker)
13739 {
13740 fragS *f;
13741
13742 /* Adjust stretch for any alignment frag. Note that if have
13743 been expanding the earlier code, the symbol may be
13744 defined in what appears to be an earlier frag. FIXME:
13745 This doesn't handle the fr_subtype field, which specifies
13746 a maximum number of bytes to skip when doing an
13747 alignment. */
13748 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
13749 {
13750 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
13751 {
13752 if (stretch < 0)
13753 stretch = - ((- stretch)
13754 & ~ ((1 << (int) f->fr_offset) - 1));
13755 else
13756 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
13757 if (stretch == 0)
13758 break;
13759 }
13760 }
13761 if (f != NULL)
13762 val += stretch;
13763 }
13764
13765 addr = fragp->fr_address + fragp->fr_fix;
13766
13767 /* The base address rules are complicated. The base address of
13768 a branch is the following instruction. The base address of a
13769 PC relative load or add is the instruction itself, but if it
13770 is in a delay slot (in which case it can not be extended) use
13771 the address of the instruction whose delay slot it is in. */
13772 if (type == 'p' || type == 'q')
13773 {
13774 addr += 2;
13775
13776 /* If we are currently assuming that this frag should be
13777 extended, then, the current address is two bytes
13778 higher. */
13779 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
13780 addr += 2;
13781
13782 /* Ignore the low bit in the target, since it will be set
13783 for a text label. */
13784 if ((val & 1) != 0)
13785 --val;
13786 }
13787 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
13788 addr -= 4;
13789 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
13790 addr -= 2;
13791
13792 val -= addr & ~ ((1 << op->shift) - 1);
13793
13794 /* Branch offsets have an implicit 0 in the lowest bit. */
13795 if (type == 'p' || type == 'q')
13796 val /= 2;
13797
13798 /* If any of the shifted bits are set, we must use an extended
13799 opcode. If the address depends on the size of this
13800 instruction, this can lead to a loop, so we arrange to always
13801 use an extended opcode. We only check this when we are in
13802 the main relaxation loop, when SEC is NULL. */
13803 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
13804 {
13805 fragp->fr_subtype =
13806 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13807 return 1;
13808 }
13809
13810 /* If we are about to mark a frag as extended because the value
13811 is precisely maxtiny + 1, then there is a chance of an
13812 infinite loop as in the following code:
13813 la $4,foo
13814 .skip 1020
13815 .align 2
13816 foo:
13817 In this case when the la is extended, foo is 0x3fc bytes
13818 away, so the la can be shrunk, but then foo is 0x400 away, so
13819 the la must be extended. To avoid this loop, we mark the
13820 frag as extended if it was small, and is about to become
13821 extended with a value of maxtiny + 1. */
13822 if (val == ((maxtiny + 1) << op->shift)
13823 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
13824 && sec == NULL)
13825 {
13826 fragp->fr_subtype =
13827 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13828 return 1;
13829 }
13830 }
13831 else if (symsec != absolute_section && sec != NULL)
13832 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
13833
13834 if ((val & ((1 << op->shift) - 1)) != 0
13835 || val < (mintiny << op->shift)
13836 || val > (maxtiny << op->shift))
13837 return 1;
13838 else
13839 return 0;
13840 }
13841
13842 /* Compute the length of a branch sequence, and adjust the
13843 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
13844 worst-case length is computed, with UPDATE being used to indicate
13845 whether an unconditional (-1), branch-likely (+1) or regular (0)
13846 branch is to be computed. */
13847 static int
13848 relaxed_branch_length (fragS *fragp, asection *sec, int update)
13849 {
13850 bfd_boolean toofar;
13851 int length;
13852
13853 if (fragp
13854 && S_IS_DEFINED (fragp->fr_symbol)
13855 && sec == S_GET_SEGMENT (fragp->fr_symbol))
13856 {
13857 addressT addr;
13858 offsetT val;
13859
13860 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
13861
13862 addr = fragp->fr_address + fragp->fr_fix + 4;
13863
13864 val -= addr;
13865
13866 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
13867 }
13868 else if (fragp)
13869 /* If the symbol is not defined or it's in a different segment,
13870 assume the user knows what's going on and emit a short
13871 branch. */
13872 toofar = FALSE;
13873 else
13874 toofar = TRUE;
13875
13876 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
13877 fragp->fr_subtype
13878 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_UNCOND (fragp->fr_subtype),
13879 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
13880 RELAX_BRANCH_LINK (fragp->fr_subtype),
13881 toofar);
13882
13883 length = 4;
13884 if (toofar)
13885 {
13886 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
13887 length += 8;
13888
13889 if (mips_pic != NO_PIC)
13890 {
13891 /* Additional space for PIC loading of target address. */
13892 length += 8;
13893 if (mips_opts.isa == ISA_MIPS1)
13894 /* Additional space for $at-stabilizing nop. */
13895 length += 4;
13896 }
13897
13898 /* If branch is conditional. */
13899 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
13900 length += 8;
13901 }
13902
13903 return length;
13904 }
13905
13906 /* Estimate the size of a frag before relaxing. Unless this is the
13907 mips16, we are not really relaxing here, and the final size is
13908 encoded in the subtype information. For the mips16, we have to
13909 decide whether we are using an extended opcode or not. */
13910
13911 int
13912 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
13913 {
13914 int change;
13915
13916 if (RELAX_BRANCH_P (fragp->fr_subtype))
13917 {
13918
13919 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
13920
13921 return fragp->fr_var;
13922 }
13923
13924 if (RELAX_MIPS16_P (fragp->fr_subtype))
13925 /* We don't want to modify the EXTENDED bit here; it might get us
13926 into infinite loops. We change it only in mips_relax_frag(). */
13927 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
13928
13929 if (mips_pic == NO_PIC)
13930 change = nopic_need_relax (fragp->fr_symbol, 0);
13931 else if (mips_pic == SVR4_PIC)
13932 change = pic_need_relax (fragp->fr_symbol, segtype);
13933 else if (mips_pic == VXWORKS_PIC)
13934 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
13935 change = 0;
13936 else
13937 abort ();
13938
13939 if (change)
13940 {
13941 fragp->fr_subtype |= RELAX_USE_SECOND;
13942 return -RELAX_FIRST (fragp->fr_subtype);
13943 }
13944 else
13945 return -RELAX_SECOND (fragp->fr_subtype);
13946 }
13947
13948 /* This is called to see whether a reloc against a defined symbol
13949 should be converted into a reloc against a section. */
13950
13951 int
13952 mips_fix_adjustable (fixS *fixp)
13953 {
13954 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
13955 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13956 return 0;
13957
13958 if (fixp->fx_addsy == NULL)
13959 return 1;
13960
13961 /* If symbol SYM is in a mergeable section, relocations of the form
13962 SYM + 0 can usually be made section-relative. The mergeable data
13963 is then identified by the section offset rather than by the symbol.
13964
13965 However, if we're generating REL LO16 relocations, the offset is split
13966 between the LO16 and parterning high part relocation. The linker will
13967 need to recalculate the complete offset in order to correctly identify
13968 the merge data.
13969
13970 The linker has traditionally not looked for the parterning high part
13971 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
13972 placed anywhere. Rather than break backwards compatibility by changing
13973 this, it seems better not to force the issue, and instead keep the
13974 original symbol. This will work with either linker behavior. */
13975 if ((lo16_reloc_p (fixp->fx_r_type)
13976 || reloc_needs_lo_p (fixp->fx_r_type))
13977 && HAVE_IN_PLACE_ADDENDS
13978 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
13979 return 0;
13980
13981 #ifdef OBJ_ELF
13982 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
13983 to a floating-point stub. The same is true for non-R_MIPS16_26
13984 relocations against MIPS16 functions; in this case, the stub becomes
13985 the function's canonical address.
13986
13987 Floating-point stubs are stored in unique .mips16.call.* or
13988 .mips16.fn.* sections. If a stub T for function F is in section S,
13989 the first relocation in section S must be against F; this is how the
13990 linker determines the target function. All relocations that might
13991 resolve to T must also be against F. We therefore have the following
13992 restrictions, which are given in an intentionally-redundant way:
13993
13994 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
13995 symbols.
13996
13997 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
13998 if that stub might be used.
13999
14000 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
14001 symbols.
14002
14003 4. We cannot reduce a stub's relocations against MIPS16 symbols if
14004 that stub might be used.
14005
14006 There is a further restriction:
14007
14008 5. We cannot reduce R_MIPS16_26 relocations against MIPS16 symbols
14009 on targets with in-place addends; the relocation field cannot
14010 encode the low bit.
14011
14012 For simplicity, we deal with (3)-(5) by not reducing _any_ relocation
14013 against a MIPS16 symbol.
14014
14015 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
14016 relocation against some symbol R, no relocation against R may be
14017 reduced. (Note that this deals with (2) as well as (1) because
14018 relocations against global symbols will never be reduced on ELF
14019 targets.) This approach is a little simpler than trying to detect
14020 stub sections, and gives the "all or nothing" per-symbol consistency
14021 that we have for MIPS16 symbols. */
14022 if (IS_ELF
14023 && fixp->fx_subsy == NULL
14024 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
14025 || *symbol_get_tc (fixp->fx_addsy)))
14026 return 0;
14027 #endif
14028
14029 return 1;
14030 }
14031
14032 /* Translate internal representation of relocation info to BFD target
14033 format. */
14034
14035 arelent **
14036 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
14037 {
14038 static arelent *retval[4];
14039 arelent *reloc;
14040 bfd_reloc_code_real_type code;
14041
14042 memset (retval, 0, sizeof(retval));
14043 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
14044 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
14045 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
14046 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
14047
14048 if (fixp->fx_pcrel)
14049 {
14050 assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2);
14051
14052 /* At this point, fx_addnumber is "symbol offset - pcrel address".
14053 Relocations want only the symbol offset. */
14054 reloc->addend = fixp->fx_addnumber + reloc->address;
14055 if (!IS_ELF)
14056 {
14057 /* A gruesome hack which is a result of the gruesome gas
14058 reloc handling. What's worse, for COFF (as opposed to
14059 ECOFF), we might need yet another copy of reloc->address.
14060 See bfd_install_relocation. */
14061 reloc->addend += reloc->address;
14062 }
14063 }
14064 else
14065 reloc->addend = fixp->fx_addnumber;
14066
14067 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
14068 entry to be used in the relocation's section offset. */
14069 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14070 {
14071 reloc->address = reloc->addend;
14072 reloc->addend = 0;
14073 }
14074
14075 code = fixp->fx_r_type;
14076
14077 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
14078 if (reloc->howto == NULL)
14079 {
14080 as_bad_where (fixp->fx_file, fixp->fx_line,
14081 _("Can not represent %s relocation in this object file format"),
14082 bfd_get_reloc_code_name (code));
14083 retval[0] = NULL;
14084 }
14085
14086 return retval;
14087 }
14088
14089 /* Relax a machine dependent frag. This returns the amount by which
14090 the current size of the frag should change. */
14091
14092 int
14093 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
14094 {
14095 if (RELAX_BRANCH_P (fragp->fr_subtype))
14096 {
14097 offsetT old_var = fragp->fr_var;
14098
14099 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
14100
14101 return fragp->fr_var - old_var;
14102 }
14103
14104 if (! RELAX_MIPS16_P (fragp->fr_subtype))
14105 return 0;
14106
14107 if (mips16_extended_frag (fragp, NULL, stretch))
14108 {
14109 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14110 return 0;
14111 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
14112 return 2;
14113 }
14114 else
14115 {
14116 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14117 return 0;
14118 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
14119 return -2;
14120 }
14121
14122 return 0;
14123 }
14124
14125 /* Convert a machine dependent frag. */
14126
14127 void
14128 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
14129 {
14130 if (RELAX_BRANCH_P (fragp->fr_subtype))
14131 {
14132 bfd_byte *buf;
14133 unsigned long insn;
14134 expressionS exp;
14135 fixS *fixp;
14136
14137 buf = (bfd_byte *)fragp->fr_literal + fragp->fr_fix;
14138
14139 if (target_big_endian)
14140 insn = bfd_getb32 (buf);
14141 else
14142 insn = bfd_getl32 (buf);
14143
14144 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14145 {
14146 /* We generate a fixup instead of applying it right now
14147 because, if there are linker relaxations, we're going to
14148 need the relocations. */
14149 exp.X_op = O_symbol;
14150 exp.X_add_symbol = fragp->fr_symbol;
14151 exp.X_add_number = fragp->fr_offset;
14152
14153 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14154 4, &exp, TRUE, BFD_RELOC_16_PCREL_S2);
14155 fixp->fx_file = fragp->fr_file;
14156 fixp->fx_line = fragp->fr_line;
14157
14158 md_number_to_chars ((char *) buf, insn, 4);
14159 buf += 4;
14160 }
14161 else
14162 {
14163 int i;
14164
14165 as_warn_where (fragp->fr_file, fragp->fr_line,
14166 _("relaxed out-of-range branch into a jump"));
14167
14168 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
14169 goto uncond;
14170
14171 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14172 {
14173 /* Reverse the branch. */
14174 switch ((insn >> 28) & 0xf)
14175 {
14176 case 4:
14177 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
14178 have the condition reversed by tweaking a single
14179 bit, and their opcodes all have 0x4???????. */
14180 assert ((insn & 0xf1000000) == 0x41000000);
14181 insn ^= 0x00010000;
14182 break;
14183
14184 case 0:
14185 /* bltz 0x04000000 bgez 0x04010000
14186 bltzal 0x04100000 bgezal 0x04110000 */
14187 assert ((insn & 0xfc0e0000) == 0x04000000);
14188 insn ^= 0x00010000;
14189 break;
14190
14191 case 1:
14192 /* beq 0x10000000 bne 0x14000000
14193 blez 0x18000000 bgtz 0x1c000000 */
14194 insn ^= 0x04000000;
14195 break;
14196
14197 default:
14198 abort ();
14199 }
14200 }
14201
14202 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14203 {
14204 /* Clear the and-link bit. */
14205 assert ((insn & 0xfc1c0000) == 0x04100000);
14206
14207 /* bltzal 0x04100000 bgezal 0x04110000
14208 bltzall 0x04120000 bgezall 0x04130000 */
14209 insn &= ~0x00100000;
14210 }
14211
14212 /* Branch over the branch (if the branch was likely) or the
14213 full jump (not likely case). Compute the offset from the
14214 current instruction to branch to. */
14215 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14216 i = 16;
14217 else
14218 {
14219 /* How many bytes in instructions we've already emitted? */
14220 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14221 /* How many bytes in instructions from here to the end? */
14222 i = fragp->fr_var - i;
14223 }
14224 /* Convert to instruction count. */
14225 i >>= 2;
14226 /* Branch counts from the next instruction. */
14227 i--;
14228 insn |= i;
14229 /* Branch over the jump. */
14230 md_number_to_chars ((char *) buf, insn, 4);
14231 buf += 4;
14232
14233 /* nop */
14234 md_number_to_chars ((char *) buf, 0, 4);
14235 buf += 4;
14236
14237 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14238 {
14239 /* beql $0, $0, 2f */
14240 insn = 0x50000000;
14241 /* Compute the PC offset from the current instruction to
14242 the end of the variable frag. */
14243 /* How many bytes in instructions we've already emitted? */
14244 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14245 /* How many bytes in instructions from here to the end? */
14246 i = fragp->fr_var - i;
14247 /* Convert to instruction count. */
14248 i >>= 2;
14249 /* Don't decrement i, because we want to branch over the
14250 delay slot. */
14251
14252 insn |= i;
14253 md_number_to_chars ((char *) buf, insn, 4);
14254 buf += 4;
14255
14256 md_number_to_chars ((char *) buf, 0, 4);
14257 buf += 4;
14258 }
14259
14260 uncond:
14261 if (mips_pic == NO_PIC)
14262 {
14263 /* j or jal. */
14264 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
14265 ? 0x0c000000 : 0x08000000);
14266 exp.X_op = O_symbol;
14267 exp.X_add_symbol = fragp->fr_symbol;
14268 exp.X_add_number = fragp->fr_offset;
14269
14270 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14271 4, &exp, FALSE, BFD_RELOC_MIPS_JMP);
14272 fixp->fx_file = fragp->fr_file;
14273 fixp->fx_line = fragp->fr_line;
14274
14275 md_number_to_chars ((char *) buf, insn, 4);
14276 buf += 4;
14277 }
14278 else
14279 {
14280 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
14281 insn = HAVE_64BIT_ADDRESSES ? 0xdf810000 : 0x8f810000;
14282 exp.X_op = O_symbol;
14283 exp.X_add_symbol = fragp->fr_symbol;
14284 exp.X_add_number = fragp->fr_offset;
14285
14286 if (fragp->fr_offset)
14287 {
14288 exp.X_add_symbol = make_expr_symbol (&exp);
14289 exp.X_add_number = 0;
14290 }
14291
14292 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14293 4, &exp, FALSE, BFD_RELOC_MIPS_GOT16);
14294 fixp->fx_file = fragp->fr_file;
14295 fixp->fx_line = fragp->fr_line;
14296
14297 md_number_to_chars ((char *) buf, insn, 4);
14298 buf += 4;
14299
14300 if (mips_opts.isa == ISA_MIPS1)
14301 {
14302 /* nop */
14303 md_number_to_chars ((char *) buf, 0, 4);
14304 buf += 4;
14305 }
14306
14307 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
14308 insn = HAVE_64BIT_ADDRESSES ? 0x64210000 : 0x24210000;
14309
14310 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14311 4, &exp, FALSE, BFD_RELOC_LO16);
14312 fixp->fx_file = fragp->fr_file;
14313 fixp->fx_line = fragp->fr_line;
14314
14315 md_number_to_chars ((char *) buf, insn, 4);
14316 buf += 4;
14317
14318 /* j(al)r $at. */
14319 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14320 insn = 0x0020f809;
14321 else
14322 insn = 0x00200008;
14323
14324 md_number_to_chars ((char *) buf, insn, 4);
14325 buf += 4;
14326 }
14327 }
14328
14329 assert (buf == (bfd_byte *)fragp->fr_literal
14330 + fragp->fr_fix + fragp->fr_var);
14331
14332 fragp->fr_fix += fragp->fr_var;
14333
14334 return;
14335 }
14336
14337 if (RELAX_MIPS16_P (fragp->fr_subtype))
14338 {
14339 int type;
14340 const struct mips16_immed_operand *op;
14341 bfd_boolean small, ext;
14342 offsetT val;
14343 bfd_byte *buf;
14344 unsigned long insn;
14345 bfd_boolean use_extend;
14346 unsigned short extend;
14347
14348 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
14349 op = mips16_immed_operands;
14350 while (op->type != type)
14351 ++op;
14352
14353 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14354 {
14355 small = FALSE;
14356 ext = TRUE;
14357 }
14358 else
14359 {
14360 small = TRUE;
14361 ext = FALSE;
14362 }
14363
14364 resolve_symbol_value (fragp->fr_symbol);
14365 val = S_GET_VALUE (fragp->fr_symbol);
14366 if (op->pcrel)
14367 {
14368 addressT addr;
14369
14370 addr = fragp->fr_address + fragp->fr_fix;
14371
14372 /* The rules for the base address of a PC relative reloc are
14373 complicated; see mips16_extended_frag. */
14374 if (type == 'p' || type == 'q')
14375 {
14376 addr += 2;
14377 if (ext)
14378 addr += 2;
14379 /* Ignore the low bit in the target, since it will be
14380 set for a text label. */
14381 if ((val & 1) != 0)
14382 --val;
14383 }
14384 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
14385 addr -= 4;
14386 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
14387 addr -= 2;
14388
14389 addr &= ~ (addressT) ((1 << op->shift) - 1);
14390 val -= addr;
14391
14392 /* Make sure the section winds up with the alignment we have
14393 assumed. */
14394 if (op->shift > 0)
14395 record_alignment (asec, op->shift);
14396 }
14397
14398 if (ext
14399 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
14400 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
14401 as_warn_where (fragp->fr_file, fragp->fr_line,
14402 _("extended instruction in delay slot"));
14403
14404 buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix);
14405
14406 if (target_big_endian)
14407 insn = bfd_getb16 (buf);
14408 else
14409 insn = bfd_getl16 (buf);
14410
14411 mips16_immed (fragp->fr_file, fragp->fr_line, type, val,
14412 RELAX_MIPS16_USER_EXT (fragp->fr_subtype),
14413 small, ext, &insn, &use_extend, &extend);
14414
14415 if (use_extend)
14416 {
14417 md_number_to_chars ((char *) buf, 0xf000 | extend, 2);
14418 fragp->fr_fix += 2;
14419 buf += 2;
14420 }
14421
14422 md_number_to_chars ((char *) buf, insn, 2);
14423 fragp->fr_fix += 2;
14424 buf += 2;
14425 }
14426 else
14427 {
14428 int first, second;
14429 fixS *fixp;
14430
14431 first = RELAX_FIRST (fragp->fr_subtype);
14432 second = RELAX_SECOND (fragp->fr_subtype);
14433 fixp = (fixS *) fragp->fr_opcode;
14434
14435 /* Possibly emit a warning if we've chosen the longer option. */
14436 if (((fragp->fr_subtype & RELAX_USE_SECOND) != 0)
14437 == ((fragp->fr_subtype & RELAX_SECOND_LONGER) != 0))
14438 {
14439 const char *msg = macro_warning (fragp->fr_subtype);
14440 if (msg != 0)
14441 as_warn_where (fragp->fr_file, fragp->fr_line, msg);
14442 }
14443
14444 /* Go through all the fixups for the first sequence. Disable them
14445 (by marking them as done) if we're going to use the second
14446 sequence instead. */
14447 while (fixp
14448 && fixp->fx_frag == fragp
14449 && fixp->fx_where < fragp->fr_fix - second)
14450 {
14451 if (fragp->fr_subtype & RELAX_USE_SECOND)
14452 fixp->fx_done = 1;
14453 fixp = fixp->fx_next;
14454 }
14455
14456 /* Go through the fixups for the second sequence. Disable them if
14457 we're going to use the first sequence, otherwise adjust their
14458 addresses to account for the relaxation. */
14459 while (fixp && fixp->fx_frag == fragp)
14460 {
14461 if (fragp->fr_subtype & RELAX_USE_SECOND)
14462 fixp->fx_where -= first;
14463 else
14464 fixp->fx_done = 1;
14465 fixp = fixp->fx_next;
14466 }
14467
14468 /* Now modify the frag contents. */
14469 if (fragp->fr_subtype & RELAX_USE_SECOND)
14470 {
14471 char *start;
14472
14473 start = fragp->fr_literal + fragp->fr_fix - first - second;
14474 memmove (start, start + first, second);
14475 fragp->fr_fix -= first;
14476 }
14477 else
14478 fragp->fr_fix -= second;
14479 }
14480 }
14481
14482 #ifdef OBJ_ELF
14483
14484 /* This function is called after the relocs have been generated.
14485 We've been storing mips16 text labels as odd. Here we convert them
14486 back to even for the convenience of the debugger. */
14487
14488 void
14489 mips_frob_file_after_relocs (void)
14490 {
14491 asymbol **syms;
14492 unsigned int count, i;
14493
14494 if (!IS_ELF)
14495 return;
14496
14497 syms = bfd_get_outsymbols (stdoutput);
14498 count = bfd_get_symcount (stdoutput);
14499 for (i = 0; i < count; i++, syms++)
14500 {
14501 if (ELF_ST_IS_MIPS16 (elf_symbol (*syms)->internal_elf_sym.st_other)
14502 && ((*syms)->value & 1) != 0)
14503 {
14504 (*syms)->value &= ~1;
14505 /* If the symbol has an odd size, it was probably computed
14506 incorrectly, so adjust that as well. */
14507 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
14508 ++elf_symbol (*syms)->internal_elf_sym.st_size;
14509 }
14510 }
14511 }
14512
14513 #endif
14514
14515 /* This function is called whenever a label is defined. It is used
14516 when handling branch delays; if a branch has a label, we assume we
14517 can not move it. */
14518
14519 void
14520 mips_define_label (symbolS *sym)
14521 {
14522 segment_info_type *si = seg_info (now_seg);
14523 struct insn_label_list *l;
14524
14525 if (free_insn_labels == NULL)
14526 l = (struct insn_label_list *) xmalloc (sizeof *l);
14527 else
14528 {
14529 l = free_insn_labels;
14530 free_insn_labels = l->next;
14531 }
14532
14533 l->label = sym;
14534 l->next = si->label_list;
14535 si->label_list = l;
14536
14537 #ifdef OBJ_ELF
14538 dwarf2_emit_label (sym);
14539 #endif
14540 }
14541 \f
14542 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14543
14544 /* Some special processing for a MIPS ELF file. */
14545
14546 void
14547 mips_elf_final_processing (void)
14548 {
14549 /* Write out the register information. */
14550 if (mips_abi != N64_ABI)
14551 {
14552 Elf32_RegInfo s;
14553
14554 s.ri_gprmask = mips_gprmask;
14555 s.ri_cprmask[0] = mips_cprmask[0];
14556 s.ri_cprmask[1] = mips_cprmask[1];
14557 s.ri_cprmask[2] = mips_cprmask[2];
14558 s.ri_cprmask[3] = mips_cprmask[3];
14559 /* The gp_value field is set by the MIPS ELF backend. */
14560
14561 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
14562 ((Elf32_External_RegInfo *)
14563 mips_regmask_frag));
14564 }
14565 else
14566 {
14567 Elf64_Internal_RegInfo s;
14568
14569 s.ri_gprmask = mips_gprmask;
14570 s.ri_pad = 0;
14571 s.ri_cprmask[0] = mips_cprmask[0];
14572 s.ri_cprmask[1] = mips_cprmask[1];
14573 s.ri_cprmask[2] = mips_cprmask[2];
14574 s.ri_cprmask[3] = mips_cprmask[3];
14575 /* The gp_value field is set by the MIPS ELF backend. */
14576
14577 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
14578 ((Elf64_External_RegInfo *)
14579 mips_regmask_frag));
14580 }
14581
14582 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
14583 sort of BFD interface for this. */
14584 if (mips_any_noreorder)
14585 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
14586 if (mips_pic != NO_PIC)
14587 {
14588 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
14589 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14590 }
14591 if (mips_abicalls)
14592 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14593
14594 /* Set MIPS ELF flags for ASEs. */
14595 /* We may need to define a new flag for DSP ASE, and set this flag when
14596 file_ase_dsp is true. */
14597 /* Same for DSP R2. */
14598 /* We may need to define a new flag for MT ASE, and set this flag when
14599 file_ase_mt is true. */
14600 if (file_ase_mips16)
14601 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
14602 #if 0 /* XXX FIXME */
14603 if (file_ase_mips3d)
14604 elf_elfheader (stdoutput)->e_flags |= ???;
14605 #endif
14606 if (file_ase_mdmx)
14607 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
14608
14609 /* Set the MIPS ELF ABI flags. */
14610 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
14611 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
14612 else if (mips_abi == O64_ABI)
14613 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
14614 else if (mips_abi == EABI_ABI)
14615 {
14616 if (!file_mips_gp32)
14617 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
14618 else
14619 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
14620 }
14621 else if (mips_abi == N32_ABI)
14622 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
14623
14624 /* Nothing to do for N64_ABI. */
14625
14626 if (mips_32bitmode)
14627 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
14628
14629 #if 0 /* XXX FIXME */
14630 /* 32 bit code with 64 bit FP registers. */
14631 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
14632 elf_elfheader (stdoutput)->e_flags |= ???;
14633 #endif
14634 }
14635
14636 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
14637 \f
14638 typedef struct proc {
14639 symbolS *func_sym;
14640 symbolS *func_end_sym;
14641 unsigned long reg_mask;
14642 unsigned long reg_offset;
14643 unsigned long fpreg_mask;
14644 unsigned long fpreg_offset;
14645 unsigned long frame_offset;
14646 unsigned long frame_reg;
14647 unsigned long pc_reg;
14648 } procS;
14649
14650 static procS cur_proc;
14651 static procS *cur_proc_ptr;
14652 static int numprocs;
14653
14654 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1" and a normal
14655 nop as "0". */
14656
14657 char
14658 mips_nop_opcode (void)
14659 {
14660 return seg_info (now_seg)->tc_segment_info_data.mips16;
14661 }
14662
14663 /* Fill in an rs_align_code fragment. This only needs to do something
14664 for MIPS16 code, where 0 is not a nop. */
14665
14666 void
14667 mips_handle_align (fragS *fragp)
14668 {
14669 char *p;
14670
14671 if (fragp->fr_type != rs_align_code)
14672 return;
14673
14674 p = fragp->fr_literal + fragp->fr_fix;
14675 if (*p)
14676 {
14677 int bytes;
14678
14679 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
14680 if (bytes & 1)
14681 {
14682 *p++ = 0;
14683 fragp->fr_fix++;
14684 }
14685 md_number_to_chars (p, mips16_nop_insn.insn_opcode, 2);
14686 fragp->fr_var = 2;
14687 }
14688 }
14689
14690 static void
14691 md_obj_begin (void)
14692 {
14693 }
14694
14695 static void
14696 md_obj_end (void)
14697 {
14698 /* Check for premature end, nesting errors, etc. */
14699 if (cur_proc_ptr)
14700 as_warn (_("missing .end at end of assembly"));
14701 }
14702
14703 static long
14704 get_number (void)
14705 {
14706 int negative = 0;
14707 long val = 0;
14708
14709 if (*input_line_pointer == '-')
14710 {
14711 ++input_line_pointer;
14712 negative = 1;
14713 }
14714 if (!ISDIGIT (*input_line_pointer))
14715 as_bad (_("expected simple number"));
14716 if (input_line_pointer[0] == '0')
14717 {
14718 if (input_line_pointer[1] == 'x')
14719 {
14720 input_line_pointer += 2;
14721 while (ISXDIGIT (*input_line_pointer))
14722 {
14723 val <<= 4;
14724 val |= hex_value (*input_line_pointer++);
14725 }
14726 return negative ? -val : val;
14727 }
14728 else
14729 {
14730 ++input_line_pointer;
14731 while (ISDIGIT (*input_line_pointer))
14732 {
14733 val <<= 3;
14734 val |= *input_line_pointer++ - '0';
14735 }
14736 return negative ? -val : val;
14737 }
14738 }
14739 if (!ISDIGIT (*input_line_pointer))
14740 {
14741 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
14742 *input_line_pointer, *input_line_pointer);
14743 as_warn (_("invalid number"));
14744 return -1;
14745 }
14746 while (ISDIGIT (*input_line_pointer))
14747 {
14748 val *= 10;
14749 val += *input_line_pointer++ - '0';
14750 }
14751 return negative ? -val : val;
14752 }
14753
14754 /* The .file directive; just like the usual .file directive, but there
14755 is an initial number which is the ECOFF file index. In the non-ECOFF
14756 case .file implies DWARF-2. */
14757
14758 static void
14759 s_mips_file (int x ATTRIBUTE_UNUSED)
14760 {
14761 static int first_file_directive = 0;
14762
14763 if (ECOFF_DEBUGGING)
14764 {
14765 get_number ();
14766 s_app_file (0);
14767 }
14768 else
14769 {
14770 char *filename;
14771
14772 filename = dwarf2_directive_file (0);
14773
14774 /* Versions of GCC up to 3.1 start files with a ".file"
14775 directive even for stabs output. Make sure that this
14776 ".file" is handled. Note that you need a version of GCC
14777 after 3.1 in order to support DWARF-2 on MIPS. */
14778 if (filename != NULL && ! first_file_directive)
14779 {
14780 (void) new_logical_line (filename, -1);
14781 s_app_file_string (filename, 0);
14782 }
14783 first_file_directive = 1;
14784 }
14785 }
14786
14787 /* The .loc directive, implying DWARF-2. */
14788
14789 static void
14790 s_mips_loc (int x ATTRIBUTE_UNUSED)
14791 {
14792 if (!ECOFF_DEBUGGING)
14793 dwarf2_directive_loc (0);
14794 }
14795
14796 /* The .end directive. */
14797
14798 static void
14799 s_mips_end (int x ATTRIBUTE_UNUSED)
14800 {
14801 symbolS *p;
14802
14803 /* Following functions need their own .frame and .cprestore directives. */
14804 mips_frame_reg_valid = 0;
14805 mips_cprestore_valid = 0;
14806
14807 if (!is_end_of_line[(unsigned char) *input_line_pointer])
14808 {
14809 p = get_symbol ();
14810 demand_empty_rest_of_line ();
14811 }
14812 else
14813 p = NULL;
14814
14815 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
14816 as_warn (_(".end not in text section"));
14817
14818 if (!cur_proc_ptr)
14819 {
14820 as_warn (_(".end directive without a preceding .ent directive."));
14821 demand_empty_rest_of_line ();
14822 return;
14823 }
14824
14825 if (p != NULL)
14826 {
14827 assert (S_GET_NAME (p));
14828 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
14829 as_warn (_(".end symbol does not match .ent symbol."));
14830
14831 if (debug_type == DEBUG_STABS)
14832 stabs_generate_asm_endfunc (S_GET_NAME (p),
14833 S_GET_NAME (p));
14834 }
14835 else
14836 as_warn (_(".end directive missing or unknown symbol"));
14837
14838 #ifdef OBJ_ELF
14839 /* Create an expression to calculate the size of the function. */
14840 if (p && cur_proc_ptr)
14841 {
14842 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
14843 expressionS *exp = xmalloc (sizeof (expressionS));
14844
14845 obj->size = exp;
14846 exp->X_op = O_subtract;
14847 exp->X_add_symbol = symbol_temp_new_now ();
14848 exp->X_op_symbol = p;
14849 exp->X_add_number = 0;
14850
14851 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
14852 }
14853
14854 /* Generate a .pdr section. */
14855 if (IS_ELF && !ECOFF_DEBUGGING && mips_flag_pdr)
14856 {
14857 segT saved_seg = now_seg;
14858 subsegT saved_subseg = now_subseg;
14859 valueT dot;
14860 expressionS exp;
14861 char *fragp;
14862
14863 dot = frag_now_fix ();
14864
14865 #ifdef md_flush_pending_output
14866 md_flush_pending_output ();
14867 #endif
14868
14869 assert (pdr_seg);
14870 subseg_set (pdr_seg, 0);
14871
14872 /* Write the symbol. */
14873 exp.X_op = O_symbol;
14874 exp.X_add_symbol = p;
14875 exp.X_add_number = 0;
14876 emit_expr (&exp, 4);
14877
14878 fragp = frag_more (7 * 4);
14879
14880 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
14881 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
14882 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
14883 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
14884 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
14885 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
14886 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
14887
14888 subseg_set (saved_seg, saved_subseg);
14889 }
14890 #endif /* OBJ_ELF */
14891
14892 cur_proc_ptr = NULL;
14893 }
14894
14895 /* The .aent and .ent directives. */
14896
14897 static void
14898 s_mips_ent (int aent)
14899 {
14900 symbolS *symbolP;
14901
14902 symbolP = get_symbol ();
14903 if (*input_line_pointer == ',')
14904 ++input_line_pointer;
14905 SKIP_WHITESPACE ();
14906 if (ISDIGIT (*input_line_pointer)
14907 || *input_line_pointer == '-')
14908 get_number ();
14909
14910 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
14911 as_warn (_(".ent or .aent not in text section."));
14912
14913 if (!aent && cur_proc_ptr)
14914 as_warn (_("missing .end"));
14915
14916 if (!aent)
14917 {
14918 /* This function needs its own .frame and .cprestore directives. */
14919 mips_frame_reg_valid = 0;
14920 mips_cprestore_valid = 0;
14921
14922 cur_proc_ptr = &cur_proc;
14923 memset (cur_proc_ptr, '\0', sizeof (procS));
14924
14925 cur_proc_ptr->func_sym = symbolP;
14926
14927 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
14928
14929 ++numprocs;
14930
14931 if (debug_type == DEBUG_STABS)
14932 stabs_generate_asm_func (S_GET_NAME (symbolP),
14933 S_GET_NAME (symbolP));
14934 }
14935
14936 demand_empty_rest_of_line ();
14937 }
14938
14939 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
14940 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
14941 s_mips_frame is used so that we can set the PDR information correctly.
14942 We can't use the ecoff routines because they make reference to the ecoff
14943 symbol table (in the mdebug section). */
14944
14945 static void
14946 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
14947 {
14948 #ifdef OBJ_ELF
14949 if (IS_ELF && !ECOFF_DEBUGGING)
14950 {
14951 long val;
14952
14953 if (cur_proc_ptr == (procS *) NULL)
14954 {
14955 as_warn (_(".frame outside of .ent"));
14956 demand_empty_rest_of_line ();
14957 return;
14958 }
14959
14960 cur_proc_ptr->frame_reg = tc_get_register (1);
14961
14962 SKIP_WHITESPACE ();
14963 if (*input_line_pointer++ != ','
14964 || get_absolute_expression_and_terminator (&val) != ',')
14965 {
14966 as_warn (_("Bad .frame directive"));
14967 --input_line_pointer;
14968 demand_empty_rest_of_line ();
14969 return;
14970 }
14971
14972 cur_proc_ptr->frame_offset = val;
14973 cur_proc_ptr->pc_reg = tc_get_register (0);
14974
14975 demand_empty_rest_of_line ();
14976 }
14977 else
14978 #endif /* OBJ_ELF */
14979 s_ignore (ignore);
14980 }
14981
14982 /* The .fmask and .mask directives. If the mdebug section is present
14983 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
14984 embedded targets, s_mips_mask is used so that we can set the PDR
14985 information correctly. We can't use the ecoff routines because they
14986 make reference to the ecoff symbol table (in the mdebug section). */
14987
14988 static void
14989 s_mips_mask (int reg_type)
14990 {
14991 #ifdef OBJ_ELF
14992 if (IS_ELF && !ECOFF_DEBUGGING)
14993 {
14994 long mask, off;
14995
14996 if (cur_proc_ptr == (procS *) NULL)
14997 {
14998 as_warn (_(".mask/.fmask outside of .ent"));
14999 demand_empty_rest_of_line ();
15000 return;
15001 }
15002
15003 if (get_absolute_expression_and_terminator (&mask) != ',')
15004 {
15005 as_warn (_("Bad .mask/.fmask directive"));
15006 --input_line_pointer;
15007 demand_empty_rest_of_line ();
15008 return;
15009 }
15010
15011 off = get_absolute_expression ();
15012
15013 if (reg_type == 'F')
15014 {
15015 cur_proc_ptr->fpreg_mask = mask;
15016 cur_proc_ptr->fpreg_offset = off;
15017 }
15018 else
15019 {
15020 cur_proc_ptr->reg_mask = mask;
15021 cur_proc_ptr->reg_offset = off;
15022 }
15023
15024 demand_empty_rest_of_line ();
15025 }
15026 else
15027 #endif /* OBJ_ELF */
15028 s_ignore (reg_type);
15029 }
15030
15031 /* A table describing all the processors gas knows about. Names are
15032 matched in the order listed.
15033
15034 To ease comparison, please keep this table in the same order as
15035 gcc's mips_cpu_info_table[]. */
15036 static const struct mips_cpu_info mips_cpu_info_table[] =
15037 {
15038 /* Entries for generic ISAs */
15039 { "mips1", MIPS_CPU_IS_ISA, ISA_MIPS1, CPU_R3000 },
15040 { "mips2", MIPS_CPU_IS_ISA, ISA_MIPS2, CPU_R6000 },
15041 { "mips3", MIPS_CPU_IS_ISA, ISA_MIPS3, CPU_R4000 },
15042 { "mips4", MIPS_CPU_IS_ISA, ISA_MIPS4, CPU_R8000 },
15043 { "mips5", MIPS_CPU_IS_ISA, ISA_MIPS5, CPU_MIPS5 },
15044 { "mips32", MIPS_CPU_IS_ISA, ISA_MIPS32, CPU_MIPS32 },
15045 { "mips32r2", MIPS_CPU_IS_ISA, ISA_MIPS32R2, CPU_MIPS32R2 },
15046 { "mips64", MIPS_CPU_IS_ISA, ISA_MIPS64, CPU_MIPS64 },
15047 { "mips64r2", MIPS_CPU_IS_ISA, ISA_MIPS64R2, CPU_MIPS64R2 },
15048
15049 /* MIPS I */
15050 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
15051 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
15052 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
15053
15054 /* MIPS II */
15055 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
15056
15057 /* MIPS III */
15058 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
15059 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
15060 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
15061 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
15062 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
15063 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
15064 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
15065 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
15066 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
15067 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
15068 { "orion", 0, ISA_MIPS3, CPU_R4600 },
15069 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
15070 /* ST Microelectronics Loongson 2E and 2F cores */
15071 { "loongson2e", 0, ISA_MIPS3, CPU_LOONGSON_2E },
15072 { "loongson2f", 0, ISA_MIPS3, CPU_LOONGSON_2F },
15073
15074 /* MIPS IV */
15075 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
15076 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
15077 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
15078 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
15079 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
15080 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
15081 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
15082 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
15083 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
15084 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
15085 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
15086 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
15087 { "rm9000", 0, ISA_MIPS4, CPU_RM9000 },
15088
15089 /* MIPS 32 */
15090 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
15091 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
15092 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
15093 { "4ksc", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
15094
15095 /* MIPS 32 Release 2 */
15096 { "4kec", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15097 { "4kem", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15098 { "4kep", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15099 { "4ksd", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
15100 { "m4k", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15101 { "m4kp", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15102 { "24kc", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15103 { "24kf2_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15104 { "24kf", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15105 { "24kf1_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15106 /* Deprecated forms of the above. */
15107 { "24kfx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15108 { "24kx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15109 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
15110 { "24kec", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15111 { "24kef2_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15112 { "24kef", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15113 { "24kef1_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15114 /* Deprecated forms of the above. */
15115 { "24kefx", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15116 { "24kex", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15117 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
15118 { "34kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15119 ISA_MIPS32R2, CPU_MIPS32R2 },
15120 { "34kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15121 ISA_MIPS32R2, CPU_MIPS32R2 },
15122 { "34kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15123 ISA_MIPS32R2, CPU_MIPS32R2 },
15124 { "34kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15125 ISA_MIPS32R2, CPU_MIPS32R2 },
15126 /* Deprecated forms of the above. */
15127 { "34kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15128 ISA_MIPS32R2, CPU_MIPS32R2 },
15129 { "34kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15130 ISA_MIPS32R2, CPU_MIPS32R2 },
15131 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
15132 { "74kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15133 ISA_MIPS32R2, CPU_MIPS32R2 },
15134 { "74kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15135 ISA_MIPS32R2, CPU_MIPS32R2 },
15136 { "74kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15137 ISA_MIPS32R2, CPU_MIPS32R2 },
15138 { "74kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15139 ISA_MIPS32R2, CPU_MIPS32R2 },
15140 { "74kf3_2", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15141 ISA_MIPS32R2, CPU_MIPS32R2 },
15142 /* Deprecated forms of the above. */
15143 { "74kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15144 ISA_MIPS32R2, CPU_MIPS32R2 },
15145 { "74kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15146 ISA_MIPS32R2, CPU_MIPS32R2 },
15147
15148 /* MIPS 64 */
15149 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
15150 { "5kf", 0, ISA_MIPS64, CPU_MIPS64 },
15151 { "20kc", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15152 { "25kf", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15153
15154 /* MIPS 64 Release 2 */
15155
15156 /* Broadcom SB-1 CPU core */
15157 { "sb1", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15158 ISA_MIPS64, CPU_SB1 },
15159 /* Broadcom SB-1A CPU core */
15160 { "sb1a", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15161 ISA_MIPS64, CPU_SB1 },
15162
15163 /* Cavium Networks Octeon CPU core */
15164 { "octeon", 0, ISA_MIPS64R2, CPU_OCTEON },
15165
15166 /* End marker */
15167 { NULL, 0, 0, 0 }
15168 };
15169
15170
15171 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
15172 with a final "000" replaced by "k". Ignore case.
15173
15174 Note: this function is shared between GCC and GAS. */
15175
15176 static bfd_boolean
15177 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
15178 {
15179 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
15180 given++, canonical++;
15181
15182 return ((*given == 0 && *canonical == 0)
15183 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
15184 }
15185
15186
15187 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
15188 CPU name. We've traditionally allowed a lot of variation here.
15189
15190 Note: this function is shared between GCC and GAS. */
15191
15192 static bfd_boolean
15193 mips_matching_cpu_name_p (const char *canonical, const char *given)
15194 {
15195 /* First see if the name matches exactly, or with a final "000"
15196 turned into "k". */
15197 if (mips_strict_matching_cpu_name_p (canonical, given))
15198 return TRUE;
15199
15200 /* If not, try comparing based on numerical designation alone.
15201 See if GIVEN is an unadorned number, or 'r' followed by a number. */
15202 if (TOLOWER (*given) == 'r')
15203 given++;
15204 if (!ISDIGIT (*given))
15205 return FALSE;
15206
15207 /* Skip over some well-known prefixes in the canonical name,
15208 hoping to find a number there too. */
15209 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
15210 canonical += 2;
15211 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
15212 canonical += 2;
15213 else if (TOLOWER (canonical[0]) == 'r')
15214 canonical += 1;
15215
15216 return mips_strict_matching_cpu_name_p (canonical, given);
15217 }
15218
15219
15220 /* Parse an option that takes the name of a processor as its argument.
15221 OPTION is the name of the option and CPU_STRING is the argument.
15222 Return the corresponding processor enumeration if the CPU_STRING is
15223 recognized, otherwise report an error and return null.
15224
15225 A similar function exists in GCC. */
15226
15227 static const struct mips_cpu_info *
15228 mips_parse_cpu (const char *option, const char *cpu_string)
15229 {
15230 const struct mips_cpu_info *p;
15231
15232 /* 'from-abi' selects the most compatible architecture for the given
15233 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
15234 EABIs, we have to decide whether we're using the 32-bit or 64-bit
15235 version. Look first at the -mgp options, if given, otherwise base
15236 the choice on MIPS_DEFAULT_64BIT.
15237
15238 Treat NO_ABI like the EABIs. One reason to do this is that the
15239 plain 'mips' and 'mips64' configs have 'from-abi' as their default
15240 architecture. This code picks MIPS I for 'mips' and MIPS III for
15241 'mips64', just as we did in the days before 'from-abi'. */
15242 if (strcasecmp (cpu_string, "from-abi") == 0)
15243 {
15244 if (ABI_NEEDS_32BIT_REGS (mips_abi))
15245 return mips_cpu_info_from_isa (ISA_MIPS1);
15246
15247 if (ABI_NEEDS_64BIT_REGS (mips_abi))
15248 return mips_cpu_info_from_isa (ISA_MIPS3);
15249
15250 if (file_mips_gp32 >= 0)
15251 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
15252
15253 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
15254 ? ISA_MIPS3
15255 : ISA_MIPS1);
15256 }
15257
15258 /* 'default' has traditionally been a no-op. Probably not very useful. */
15259 if (strcasecmp (cpu_string, "default") == 0)
15260 return 0;
15261
15262 for (p = mips_cpu_info_table; p->name != 0; p++)
15263 if (mips_matching_cpu_name_p (p->name, cpu_string))
15264 return p;
15265
15266 as_bad ("Bad value (%s) for %s", cpu_string, option);
15267 return 0;
15268 }
15269
15270 /* Return the canonical processor information for ISA (a member of the
15271 ISA_MIPS* enumeration). */
15272
15273 static const struct mips_cpu_info *
15274 mips_cpu_info_from_isa (int isa)
15275 {
15276 int i;
15277
15278 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15279 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
15280 && isa == mips_cpu_info_table[i].isa)
15281 return (&mips_cpu_info_table[i]);
15282
15283 return NULL;
15284 }
15285
15286 static const struct mips_cpu_info *
15287 mips_cpu_info_from_arch (int arch)
15288 {
15289 int i;
15290
15291 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15292 if (arch == mips_cpu_info_table[i].cpu)
15293 return (&mips_cpu_info_table[i]);
15294
15295 return NULL;
15296 }
15297 \f
15298 static void
15299 show (FILE *stream, const char *string, int *col_p, int *first_p)
15300 {
15301 if (*first_p)
15302 {
15303 fprintf (stream, "%24s", "");
15304 *col_p = 24;
15305 }
15306 else
15307 {
15308 fprintf (stream, ", ");
15309 *col_p += 2;
15310 }
15311
15312 if (*col_p + strlen (string) > 72)
15313 {
15314 fprintf (stream, "\n%24s", "");
15315 *col_p = 24;
15316 }
15317
15318 fprintf (stream, "%s", string);
15319 *col_p += strlen (string);
15320
15321 *first_p = 0;
15322 }
15323
15324 void
15325 md_show_usage (FILE *stream)
15326 {
15327 int column, first;
15328 size_t i;
15329
15330 fprintf (stream, _("\
15331 MIPS options:\n\
15332 -EB generate big endian output\n\
15333 -EL generate little endian output\n\
15334 -g, -g2 do not remove unneeded NOPs or swap branches\n\
15335 -G NUM allow referencing objects up to NUM bytes\n\
15336 implicitly with the gp register [default 8]\n"));
15337 fprintf (stream, _("\
15338 -mips1 generate MIPS ISA I instructions\n\
15339 -mips2 generate MIPS ISA II instructions\n\
15340 -mips3 generate MIPS ISA III instructions\n\
15341 -mips4 generate MIPS ISA IV instructions\n\
15342 -mips5 generate MIPS ISA V instructions\n\
15343 -mips32 generate MIPS32 ISA instructions\n\
15344 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
15345 -mips64 generate MIPS64 ISA instructions\n\
15346 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
15347 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
15348
15349 first = 1;
15350
15351 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15352 show (stream, mips_cpu_info_table[i].name, &column, &first);
15353 show (stream, "from-abi", &column, &first);
15354 fputc ('\n', stream);
15355
15356 fprintf (stream, _("\
15357 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
15358 -no-mCPU don't generate code specific to CPU.\n\
15359 For -mCPU and -no-mCPU, CPU must be one of:\n"));
15360
15361 first = 1;
15362
15363 show (stream, "3900", &column, &first);
15364 show (stream, "4010", &column, &first);
15365 show (stream, "4100", &column, &first);
15366 show (stream, "4650", &column, &first);
15367 fputc ('\n', stream);
15368
15369 fprintf (stream, _("\
15370 -mips16 generate mips16 instructions\n\
15371 -no-mips16 do not generate mips16 instructions\n"));
15372 fprintf (stream, _("\
15373 -msmartmips generate smartmips instructions\n\
15374 -mno-smartmips do not generate smartmips instructions\n"));
15375 fprintf (stream, _("\
15376 -mdsp generate DSP instructions\n\
15377 -mno-dsp do not generate DSP instructions\n"));
15378 fprintf (stream, _("\
15379 -mdspr2 generate DSP R2 instructions\n\
15380 -mno-dspr2 do not generate DSP R2 instructions\n"));
15381 fprintf (stream, _("\
15382 -mmt generate MT instructions\n\
15383 -mno-mt do not generate MT instructions\n"));
15384 fprintf (stream, _("\
15385 -mfix-vr4120 work around certain VR4120 errata\n\
15386 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
15387 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
15388 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
15389 -msym32 assume all symbols have 32-bit values\n\
15390 -O0 remove unneeded NOPs, do not swap branches\n\
15391 -O remove unneeded NOPs and swap branches\n\
15392 --trap, --no-break trap exception on div by 0 and mult overflow\n\
15393 --break, --no-trap break exception on div by 0 and mult overflow\n"));
15394 fprintf (stream, _("\
15395 -mhard-float allow floating-point instructions\n\
15396 -msoft-float do not allow floating-point instructions\n\
15397 -msingle-float only allow 32-bit floating-point operations\n\
15398 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
15399 --[no-]construct-floats [dis]allow floating point values to be constructed\n"
15400 ));
15401 #ifdef OBJ_ELF
15402 fprintf (stream, _("\
15403 -KPIC, -call_shared generate SVR4 position independent code\n\
15404 -mvxworks-pic generate VxWorks position independent code\n\
15405 -non_shared do not generate position independent code\n\
15406 -xgot assume a 32 bit GOT\n\
15407 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
15408 -mshared, -mno-shared disable/enable .cpload optimization for\n\
15409 position dependent (non shared) code\n\
15410 -mabi=ABI create ABI conformant object file for:\n"));
15411
15412 first = 1;
15413
15414 show (stream, "32", &column, &first);
15415 show (stream, "o64", &column, &first);
15416 show (stream, "n32", &column, &first);
15417 show (stream, "64", &column, &first);
15418 show (stream, "eabi", &column, &first);
15419
15420 fputc ('\n', stream);
15421
15422 fprintf (stream, _("\
15423 -32 create o32 ABI object file (default)\n\
15424 -n32 create n32 ABI object file\n\
15425 -64 create 64 ABI object file\n"));
15426 #endif
15427 }
15428
15429 enum dwarf2_format
15430 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
15431 {
15432 if (HAVE_64BIT_SYMBOLS)
15433 {
15434 #ifdef TE_IRIX
15435 return dwarf2_format_64bit_irix;
15436 #else
15437 return dwarf2_format_64bit;
15438 #endif
15439 }
15440 else
15441 return dwarf2_format_32bit;
15442 }
15443
15444 int
15445 mips_dwarf2_addr_size (void)
15446 {
15447 if (HAVE_64BIT_SYMBOLS)
15448 return 8;
15449 else
15450 return 4;
15451 }
15452
15453 /* Standard calling conventions leave the CFA at SP on entry. */
15454 void
15455 mips_cfi_frame_initial_instructions (void)
15456 {
15457 cfi_add_CFA_def_cfa_register (SP);
15458 }
15459
15460 int
15461 tc_mips_regname_to_dw2regnum (char *regname)
15462 {
15463 unsigned int regnum = -1;
15464 unsigned int reg;
15465
15466 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
15467 regnum = reg;
15468
15469 return regnum;
15470 }
This page took 0.356454 seconds and 4 git commands to generate.